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Preface

This text is intended to serve as an introduction to the geometry of the action
of discrete groups of Mobius transformations. The subject matter has now
been studied with changing points of emphasis for over a hundred years, the
most recent developments being connected with the theory of 3-manifolds:
see, for example, the papers of Poincaré [77] and Thurston [101]. About
1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen
manuscript appeared. Sadly, the manuscript never appeared in print, and this
more modest text attempts to display at least some of the beautiful geo-
metrical ideas to be found in that manuscript, as well as some more recent
material.

The text has been written with the conviction that geometrical explana-
tions are essential for a full understanding of the material and that however
simple a matrix proof might seem, a geometric proof is almost certainly more
profitable. Further, wherever possible, results should be stated in a form that
is invariant under conjugation, thus making the intrinsic nature of the result
more apparent. Despite the fact that the subject matter is concerned with
groups of isometries of hyperbolic geometry, many publications rely on
Euclidean estimates and geometry. However, the recent developments have
again emphasized the need for hyperbolic geometry, and I have included a
comprehensive chapter on analytical (not axiomatic) hyperbolic geometry.
It is hoped that this chapter will serve as a ““dictionary” of formulae in plane
hyperbolic geometry and as such will be of interest and use in its own right.
Because of this, the format is different from the other chapters: here, there is
a larger number of shorter sections, each devoted to a particular result or
theme.

The text is intended to be of an introductory nature, and I make no
apologies for giving detailed (and sometimes elementary) proofs. Indeed,



viii Preface

many geometric errors occur in the literature and this is perhaps due, to
some extent, to an omission of the details. I have kept the prerequisites to a
minimum and, where it seems worthwhile, I have considered the same topic
from different points of view. In part, this is in recognition of the fact that
readers do not always read the pages sequentially. The list of references is
not comprehensive and I have not always given the original source of a
result. For ease of reference, Theorems, Definitions, etc., are numbered
collectively in each section (2.4.1,2.4.2,...).

I owe much to many colleagues and friends with whom I have discussed
the subject matter over the years. Special mention should be made, however,
of P. J. Nicholls and P. Waterman who read an earlier version of the manu-
script, Professor F. W. Gehring who encouraged me to write the text and
conducted a series of seminars on parts of the manuscript, and the notes
and lectures of L. V. Ahlfors. The errors that remain are mine.

Cambridge, 1982 ALAN F. BEARDON
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CHAPTER 1
Preliminary Material

§1.1. Notation

We use the following notation. First, Z, Q, R and C denote the integers, the
rationals, the real and complex numbers respectively: H denotes the set of
quaternions (Section 2.4).

As usual, R" denotes Euclidean n-space, a typical point in this being
x = (xq,...,Xx,) with

[x] = (x? + - + x2)V2

Note that if y > 0, then y!'/? denotes the positive square root of y. The
standard basis of R" is e,,..., e, where, for example, ¢, = (1,0,...,0).
Certain subsets of R” warrant special mention, namely

B"= {xeR" |x| < 1},
H" = {xeR": x, > 0},
and
S" = {xeR":|x| =1}

In the case of C (identified with R?) we shall use A and 0A for the unit
disc and unit circle respectively.

The notation x — x? (for example) denotes the function mapping x to x?:
the domain will be clear from the context. Functions (maps or transforma-
tions) act on the left: for brevity, the image f(x) is often written as fx (omitting
brackets). The composition of functions is written as fg: this is the map

X = f(g(x)).
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Two sets A and B meet (or A meets B) if A n B # (. Finally, a property
P(n) holds for almost all n (or all sufficiently large n) if it fails to hold for only
a finite set of n.

§1.2. Inequalities

All the inequalities that we need are derivable from Jensen’s inequality: for a
proof of this, see [90], Chapter 3.

Jensen’s Inequality. Let p be a positive measure on a set X with W(X) = 1,
let f: X — (a, b) be u-integrable and let ¢: (a, b) — R be any convex function.
Then

qs( Lfdu) < fx(qsf) . (12.1)

Jensen’s inequality includes Holder’s inequality

Lfg dp < (Lf 2 d#)m ( ng dﬂ)m

as a special case: the discrete form of this is the Cauchy—Schwarz inequality

|Z a;b;| < (Z 'ai|2)1/2(z |b;%)'?

for real a; and b;. The complex case follows from the real case and this can, of
course, be proved by elementary means.

Taking X = {x,,..., x,} and ¢(x) = ¢, we find that (1.2.1) yields the
general Arithmetic—-Geometric mean inequality

Vv <uyr + 0+ s

where p has mass y; at x;and y; = ¢f (x)).

In order to apply (1.2.1) we need a supply of convex functions: a sufficient
condition for ¢ to be convex is that ¢® > 0 on (a, b). Thus, for example,
the functions cot, tan and cot? are all convex on (0, 7/2). This shows, for
instance, that if 8, ..., 8, are all in (0, n/2) then

(1.2.2)

(01+~--+9,,) cot @, + --- + cot 0,
cot < .
n n

As another application, we prove that if x and y are in (0, /2) and
X + y < m/2 then

tan x tan y < tan? (%X) (1.2.3)
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Writing w = (x + y)/2, we have

tan x + tan y

= tan(x
1 —tan x tan y (x+)

_ 2tanw
T 1 —tan®w

As tan is convex, (1.2.1) yields
tanx + tany > 2tanw

and the desired inequality follows immediately (noting that tan? w < 1 so
both denominators are positive).

§1.3. Algebra

We shall assume familiarity with the basic ideas concerning groups and (to a
lesser extent) vector spaces. For example, we shall use elementary facts about
the group S, of permutations of {1, 2, ..., n}: in particular, S, is generated
by transpositions. As another example, we mention that if :G - H is a
homomorphism of the group G onto the group H, then the kernel K of 0 is a
normal subgroup of G and the quotient group G/K is isomorphic to H.

Let g be an element in the group G. The elements conjugate to g are the
elements hgh™! in G (heG) and the conjugacy classes {hgh™':he G}
partition G. In passing, we mention that the maps x — xgx~* and x +— gxg !
(both of G onto itself) play a special role in the later work. The commutator
ofgand his

[g, k]l = ghg™'h™1:

for our purposes this should be viewed as the composition of g and a
conjugate of g~ 1.

Let G be a group with subgroups G; (i belonging to some indexing set).
We assume that the union of the G; generate G and that different G; have only
the identity in common. Then G is the free product of the G; if and only if
each g in G has a unique expression as g, - - - g, where no two consecutive g;

belong to the same G;. Examples of this will occur later in the text.

§1.4. Topology

We shall assume a knowledge of topology sufficient, for example, to discuss
Hausdorff spaces, connected spaces, compact spaces, product spaces and
homeomorphisms. In particular, if fis a 1-1 continuous map of a compact
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space X onto a Hausdorff space Y, then f is a homeomorphism. As special
examples of topologies we mention the discrete topology (in which every
subset is open) and the topology derived from a metric p on a set X. An
isometry f of one metric space (X, p) onto another, say (Y, o), satisfies

o(fx, fy) = p(x, y)

and is necessarily a homeomorphism.

Briefly, we discuss the construction of the quotient topology induced by a
given function. Let X be any topological space, let Y be any non-empty set
and let f: X — Y be any function. A subset V of Yis open if and only if f ~*(V)
is an open subset of X: the class of open subsets of Y is indeed a topology
J; on Y and is called the quotient topology induced by f. With this topology,
f is automatically continuous. The following two results on the quotient
topology are useful.

Proposition 1.4.1. Let X be a topological space and suppose that f maps X
onto Y. Let 7 be any topology on Y and let J; be the quotient topology on Y
induced by f.

(M) If f: X = (Y, T) is continuous, then T < T .
@) If f: X — (Y, F) is continuous and open, then T = F .

PROOF. Suppose that f: X — (Y, ) is continuous. If Vis in 7, then f ~ (V)
is in open in X and so V is in Z;. If, in addition, f: X — (Y, J) is an open
map then V in 7} implies that f ~*(V)is open in X and so f(f ~'V)isin 7.
As f is surjective, f(f ~'V) = Vso J; < J. a

Proposition 1.4.2. Suppose that f maps X into Y where X and Y are topological
spaces, Y having the quotient topology ;. For each map g: Y — Z define
g.1: X > Z by g, = gf. Then g is continuous if and only if g, is continuous.

PROOF. As f'is continuous, the continuity of g implies that of g,. Now suppose
that g, is continuous. For an open subset V of Z (we assume, of course, that
Z is a topological space) we have

9)* M) =Yg~ V)

and this is open in X. By the definition of the quotient topology, g~ (V) is
open in Y so g is continuous. |

An alternative approach to the quotient topology is by equivalence rela-
tions. If X carries an equivalence relation R with equivalence classes [x],
then X/R (the space of equivalence classes) inherits the quotient topology
induced by the map x> [x]. Equally, any surjective function f: X - Y
induces an equivalence relation R on X by xRy if and only if f(x) = f(»)
and Y can be identified with X/R. As an example, let G be a group of homeo-
morphisms of a topological space X onto itself and let f map each x in X
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to its G-orbit [x] in X/G. If X/G is given the induced quotient topology, then
f: X - X/G is continuous. In this case, f is also an open map because if V
is open in X then so is

vy = U g

geG

Finally, the reader will benefit from an understanding of covering spaces
and Riemann surfaces although most of the material in this book can be read
independently of these ideas. Some of this is discussed briefly in Chapter 6:
for further information, the reader is referred to (for example) [4], [6],
[28], [50], [63] and [100].

§1.5. Topological Groups

A topological group G is both a group and a topological space, the two
structures being related by the requirement that the maps x+ x~! (of G
onto G) and (x, y)+> xy (of G x G onto G) are continuous: obviously,
G x G is given the product topology. Two topological groups are isomorphic
when there is a bijection of one onto the other which is both a group iso-
morphism and a homeomorphism: this is the natural identification of
topological groups.

For any y in G, the space G x {y} has a natural topology with open sets
A x {y} where A4 is open in G. The map x+ (x, y) is a homeomorphism
of G onto G x {y} and the map (x, y) — xy is a continuous map of G x {y}
onto G. It follows that x+ xy is a continuous map of G onto itself with
continuous inverse x — xy~ ! and so we have the following elementary but
useful result.

Propeosition 1.5.1. For each y in G, the map x> xy is a homeomorphism of G
onto itself: the same is true of the map x — yx.

A topological group G is discrete if the topology on G is the discrete
topology: thus we have the following Corollary of Proposition 1.5.1.

Corollary 1.5.2. Let G be a topological group such that for some g in G, the
set {g} is open. Then each set {y} (y € G) is open and G is discrete.

Given a topological group G, define the maps

P(x) = xax ™1
and

Y(x) = xax"'a™ ' = [x, a],
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where a is some element of G. We shall be interested in the iterates ¢" and
Y" of these maps and with this in mind, observe that ¢ has a unique fixed
point, namely a. The iterates are related by the equation

¢"(x) = ¥"(x)a,

because (by induction)

¢"* 1(x) = [Y"()alaly"(x)al ™!
= Y"(x)aly"()]"!
=y (x)a.

In certain circumstances, the iterated commutator /"(x) converges to the
identity (equivalently, the iterates ¢"(x) converge to the unique fixed point
a of ¢) and if the group in question is discrete, then we must have ¢"(x) = a
for some n. For examples of this, see [106], [111: Lemma 3.2.5] and Chapter 5
of this text.

Finally, let G be a topological group and H a normal subgroup of G.
Then G/H carries both the usual structures of a quotient group and the
quotient topology.

Theorem 1.5.3. If H is a normal subgroup of a topological group G, then G/H
with the usual structures is a topological group.

For a proof and for further information, see [20], [23], [39], [67], [69]
and [94].

§1.6. Analysis

We assume a basic knowledge of analytic functions between subsets of the

complex plane and, in particular, the fact that these functions map open

sets of open sets. As specific examples, we mention Mobius transformations

and hyperbolic functions (both of which form a major theme in this book).
A map f from an open subset of R" to R" is differentiable at x if

SO =f)+ @ —x)A4+ |y — x|e(p),

where 4 is an n x n matrix and where &(y) » 0 as y — x. We say that a
differentiable f is conformal at x if A4 is a positive scalar multiple u(x) of an
orthogonal matrix B. More generally, f is directly or indirectly conformal
according as det B is positive or negative. If f is an analytic map between
plane domains, then the Cauchy-Riemann equations show that f is directly
conformal except at those z where f1)(z) = 0.
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If D is a subdomain of R" and if A is a density (that is, a positive continuous
function) on D we define

p(x, y) = inf f A dr,

the infimum being over all (smooth) curves y (with derivative }) joining x
to y in D. It is easy to see that p is a metric on D; indeed, p is obviously sym-
metric, non-negative and satisfies the Triangle inequality. As p(x, x) = 0,
we need only prove that p(x, y) > 0 when x and y are distinct. Choosing a
suitably small open ball N with centre x and radius r, we may assume (by
continuity) that A has a positive lower bound 4, on N and that y ¢ N. Thus
A is at least 1, on a section of y of length at least r so p(x, y) > 0.

More generally, let y = (y,, ..., 7,) be any differentiable curve in D and
suppose that

q(t) = 3 a, (y)pe)i )

is positive on D (except when 7 = 0). Then we can define a metric as above
by integrating [¢(t)]*/> and the metric topology is the Euclidean topology.
If f is a conformal bijection of D onto the domain D,, then

o [SO) = FGII

y=x |y—x|

w(x).
and D, inherits the density ¢ where

o(fx) = Ax)/u(x)

and hence a metric p;. In fact, f is then a isometry of (D, p) onto (D,, p;).
If, in addition, D = D, and

MfX)ux) = Ax),

then f is an isometry of (D, p) onto itself: in terms of differentials, this con-
dition can be expressed as

A)dyl = Mx)|dx|, y = f(x).
As an example, let D = H?, A(z) = 1/Im[z] and

where a, b, ¢ and d are real and ad — bc > 0. Then f maps H? onto itself
and as

Im[ fz] = Im[z]| f(2)I,
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we see that f is an isometry of (H?, p) onto itself: this is the hyperbolic metric
on H2.
We shall need the Poisson kernel for the unit disc A and the upper half-plane
H?. For each z in A and each { in A, the Poisson kernel is
1— |z

Py(z, () = z=CP

Obviously, P, is positive on A and zero on JA except at the point {. Because

Pue) = Re ]

¢
we see immediately that P, is (for each {) a harmonic function of z with a
pole at ¢.
The map
{4z
@ =52,

maps A onto {z: x > 0} and { to co with

Re[f(2)] = Pa(z, D).

It follows immediately that the level curves of P,(z, {) (for a fixed {) are the
images under f ~! of the vertical lines in H? and these are circles in A which
are tangent to J0A at {.

The most general Mobius transformation preserving A is of the form

az + ¢

=S JaP P =1

9(2)

and a computation shows that
1 —1g@)P =191 — |z]?).
As g is a Mobius transformation, we also have
19(2) — 9O = 1z = {1219V g (D))
and so we obtain the relation
Py(gz, g0)1g'(D)] = Py(z, 0).
The Poisson kernel for the half-plane H? is

)y if { = oo,
P(Z’ C)_ {y/lz _ C|2 1fC5é 00,

and the reader is invited to explore its properties.



CHAPTER 2
Matrices

§2.1. Non-singular Matrices

If ad — bc # 0, the 2 x 2 complex matrix

a b
A=(C d) (2.1.1)

induces the Mobius transformation

of the extended complex plane onto itself. As these transformations are our
primary concern, it is worthwhile to study the class of 2 x 2 complex matrices.
Given A4 as in (2.1.1), the determinant det(A4) of A is given by

det(4) = ad — bc

and A is non-singular if and only if det(4) # 0. If A4 is non-singular then the

inverse
Ad  —Ab
A -1 = /1 = —_ -1
(_ e ), (ad — bc)

exists and is also non-singular.
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For any matrices A and B we have

det(AB) = det(A) det(B) (2.1.2)
= det(BA),

and so

det(BAB™1) = det(4B™'B)
= det(A). (2.1.3)

The class of non-singular 2 x 2 complex matrices is a group with respect
to the usual matrix multiplication: it is the General Linear Group and is
denoted by GL(2, C). We shall be more concerned with the subgroup
SL(2, C), the Special Linear Group, which consists of those matrices with
det(4) = 1. We denote the identity matrix (of any size) by I although
sometimes, for emphasis, we use I, for the n x n identity matrix.

Much of the material in this chapter can be written in terms of n x n
complex matrices. The determinant can be defined (by induction on n) and a
matrix 4 is non-singular with inverse A~ ! if and only if det(4) # 0. The
identities (2.1.2) and (2.1.3) remain valid.

The n x n real matrix A is orthogonal if and only if

Ix| = [xA|

for every x in R": this is equivalent to the condition A~! = A' where A’
denotes the transpose of A. Observe that if 4 is orthogonal then, because
det(A) = det(A4"), we have det(4) is 1 or — 1. The class of orthogonal n x n
matrices is denoted by O(n).

For z,,...,z,in C", we write

lz] = [lzy > + -+ + |2,]2
A complex n x n matrix is unitary if and only if
|z| = |zA]

for every z in C": this is equivalent to the condition 4A~' = A’ where 4 is
obtained in the obvious way by taking the complex conjugate of each element
of A.

From a geometric point of view, the following result is of interest.

Selberg’s Lemma. Let G be a finitely generated group of n x n complex
matrices. Then G contains a normal subgroup of finite index which contains no
non-trivial element of finite order.

This result is used only once in this text and we omit the proof which can
be found in [92] and [17], [18]:see also [16], [27], [31],[35],[85] and [104]
where it is discussed in the context of discrete groups.
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EXERCISE 2.1

1. Show that the matrices

1 1 1 -1
0 1)’ 0 1
are conjugate in SL(2, C) but not in SL(2, R) (the real matrices in SL(2, C)).

2. Show that A — det(A) is a homomorphism of GL(2, C) onto the multiplicative
group of non-zero complex numbers and identify the kernel.

3. The centre of a group is the set of elements that commute with every element of the
group. Show that the centres of GL(2, C) and SL(2, C) are

H = {tI:t # 0}, K={,-1I}
respectively. Prove that the groups
GL(2, C)/H, SL(2, C)/K
are isomorphic.
4. Find the centres H, and K; of GL(2, R) and SL(2, R) respectively. Are
GL(2, R)/H, SL(2, R)/K

isomorphic?

§2.2. The Metric Structure

The trace tr(A4) of the matrix 4 in (2.1.1) is defined by
tr(4) = a + d.
A simple computation shows that

tr(AB) = tr(BA)

and we deduce that
tr(BAB™!) = tr(AB™ 'B) = tr(A):
thus tr is invariant under conjugation. Other obvious facts are

tr(A4) = A tr(A) (Le Q)
and

tr(A4') = tr(A),

where A' denotes the transpose of 4.
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The trace function also acts in an important way on pairs of matrices.
First, we recall that the class of 2 x 2 matrices is a vector space over the
complex numbers and the Hermitian transpose A* of A is defined by

Yl
QI Ol

A* = (A) = < ) Q.2.1)

_fa b [ B
A—<c d)’ Bm(v 5)’

[A, B] = tr(AB*)
= ad + b + ¢y + db.

Given any matrices

we define [A, B] by

This is a scalar product on the vector space of all 2 x 2 matrices: explicitly

(i) [A4, A] = 0 with equality if and only if 4 = 0;
(i) [414, + A2 4,, B] = 41[4,, B] + 4,[4,, B];

and
(iii) [B, A] = [A4, B].

Any scalar product, say [x, y], induces a norm [x, x]'/? and hence a
metric [x — y, x — y]'/%. In our case the norm || 4| is given explicitly by

14l = [4, A1'2
= (lal® + 6> + [c|* + [d]")"?

and for completeness, we shall show that this satisfies the defining properties
of a norm, namely

(iv) | A|l = O with equality if and only if A = 0;
W) 124] = |4]. 14 (A€ ©)

and
(vi) |4 + Bl < ||4] + [IB]l.

Of these, (iv) and (v) are trivial: (vi) will be proved shortly.
We also have the additional relations

(vii) |det(4)|. A7) = [ 4]};
(vii) |[4, B]| < || 4] . | BI;
(ix) 4Bl < [ A] . [B

and

(x) 2|det(A)| < || 4]>.
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Of these, (vii) is immediate. To prove (viii) let
C =14 — uB,
where A = [B, 4] and u = ||4]%. By (iv), |C|* = 0 and this simplifies to
give (viii). As
IA + B|* = |A||*> + [4, B] + [B, 4] + | B|%,

(vi) follows directly from (viii) and (iii).
To prove (ix), note that if

4B = (p q)’
r S

IpI> = lax + by
< (al? + [Pl + 1717,
(the last line by the Cauchy-Schwarz inequality). A similar inequality holds
for ¢, r and s and (ix) follows.
Finally, (x) holds as
1A? — 2|det(A)] = |al> + [b* + |c|* + |dI* — 2(|ad| + |bc])
= (lal = [d])* + (Ib] = lc])?
> 0.

then, for example,

Next, the norm | 4| induces a metric |4 — B| for
|[A — Bl =0 ifand onlyif A = B;
IB— Al = I(—=1)(4 — B)| = |4 — B
and
4 — Bl = (4 - C) +(C - B)|
<|4-Cll +IIC— BJ.
The metric is given explicitly by
lA =Bl =[la—af +---+|d - 5]*]"

a, b, a b
¢, d, ¢ d

in this metric if and only if a, — a, b, = b, ¢, = ¢ and d,, — d. Note that this
is a metric on the vector space of all 2 x 2 matrices.

Observe that the norm, the determinant and the trace function are all
continuous functions. The map A+ A~ ! is also continuous (on GL(2, C))
andif 4, —» A and B, — Bthen A, B, — AB. These facts show that GL(2, C) is
a topological group with respect to the metric |4 — Bj|.

and we see that
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EXERCISE 2.2
1. Show that if A and B are in SL(2, C) then

(i) tr(AB) + tr(4A~'B) = tr(A) tr(B);

(ii) tr(BAB) + tr(A) = tr(B) tr(AB);
(iii) tr’(A) + tr*(B) + tr’(AB) = tr(A) tr(B) tr(AB) + 2 + tr(ABA™'B™ ).
Replace B by A"B in (i) and hence obtain tr(4"B) as a function of tr(A4), tr(B), tr(AB)
and n.

2. Find subgroups G, and G, of GL(2, C) and a map f of G, onto G, which is an iso-
morphism but not a homeomorphism.

3. Let V be the metric space of all 2 x 2 complex matrices with metric |4 — B|. Prove
that as subsets of ¥,

(1) GL(2, C) is open but not closed;
(it) SL(2, C) is closed but not open;
(iii) GL(2, R) is disconnected ;
(iv) GL(2, C) 1s connected;
(v) {A:tr(4) = 1} is closed but not compact.

[In (iv), show that every matrix in GL(2, C) is conjugate to an upper triangular
matrix T and that T can be joined to / by a curve in GL(2, C).]

4. For an n x n complex matrix A = (a;;), define
tr(d) = ay; + - + a,,.
Prove that
tr(BAB™ 1) = tr(A)

and that tr(4AB*) is a metric on the space of all such matrices.

§2.3. Discrete Groups

In this section we shall confine our attention to subgroups of the topological
group GL(2, C). We recall that a subgroup G of GL(2, C) is discrete if and
only if the subspace topology on G is the discrete topology. It follows that
if G is discrete and if X, A, 4,,...are in G with A, — X then A, = X for all
sufficiently large n. It is not necessary to assume that X € G here but only that
X is in GL(2, C). Indeed, in this case,

An(An+1)_1 ‘)XX—I =1

and so for almost all n, we have 4, = A,,, and hence 4, = X.
In order to prove that G is discrete, it is only necessary to prove that one
point of G is isolated: for example, it is sufficient to prove that

inf{|X — I|: XeG, X # I} >0,
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so that {I} is open in G (Corollary 1.5.2). In terms of sequences, G is discrete
ifand only if 4, — I and A4, € G implies that A, = I for almost all n.

We shall mainly be concerned with SL(2, C) and in this case an alternative
formulation of discreteness can be given directly in terms of the norm. The
subgroup G of SL(2, C) is discrete if and only if for each positive k, the set

{AeG:|A| <k} (2.3.1)

is finite. If this set is finite for each k, then G clearly cannot have any limit
points (the norm function is continuous) and so G is discrete. On the other
hand, if this set is infinite then there are distinct elements 4, in G with
4. < k,n=1,2,....1If A, has coefficients a,, b,, ¢, and d, then |a,| < k
and so the sequence a, has a convergent subsequence. The same is true of
the other coeflicients and using the familiar “diagonal process” we see that
there is a subsequence on which each of the coefficients converge. On this
subsequence, A, — B say, for some B and as det is continuous, B € SL(2, C):
thus G is not discrete.

The criterion (2.3.1) shows that a discrete subgroup G of SL(2, C) is
countable. In fact,

s

G =

n

Gu

1

where G, is the finite set of 4 in G with ||A|| < n. Any subgroup of a discrete
group is also discrete: this is obvious. Finally, if G is discrete then so is any
conjugate group BGB™!, because X ~> BXB~ ! is a homeomorphism of
GL(2, C) onto itself.

There are other more delicate consequences of and criteria for discrete-
ness but these are best considered in conjunction with Mébius transforma-
tions (which we shall consider in later chapters). For a stronger version of
discreteness, see [11]. We end with an important example.

Example 2.3.1. The Modular group is the subgroup of SL(2, R) consisting
of all matrices A with g, b, ¢ and d integers. This group is obviously discrete.
More generally, Picard’s group consisting of all matrices A4 in SL(2, C) with
a, b, c and d Gaussian integers (that is, m + in where m and n are integers) is
discrete.

EXERCISE 2.3

1. Show that {2"I: ne Z} is a discrete subgroup of GL(2, C) and that in this case,
(2.3.1) is infinite.

2. Find all discrete subgroups of GL(2, C) which contain only diagonal matrices.
3. Prove that a discrete subgroup of GL(2, C) is countable.

4. Suppose that a subgroup G of GL(2, R) contains a discrete subgroup of finite index.
Show that G is also discrete.
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§2.4. Quaternions

A quaternion is a 2 x 2 complex matrix of the form

q= (_Z_ v_v): 2.4.1)

w Z

the set of quaternions is denoted by H (after Hamilton). The addition and
multiplication of quaternions is as for matrices and the following facts are
easily verified:

(i) H is an abelian group with respect to addition;
(ii) the non-zero quaternions form a non-abelian group with respect to
multiplication;
(1ii) H is a four-dimensional real vector space with basis

)b )
NE WS

(note that 1 is not the same as 1, likewise i # i).

As multiplication of matrices is distributive, the multiplication of
quaternions is determined by the products of the four elements 1, i, j and k.
In fact, these elements generate a multiplicative group of order 8 and

P=j=k=—1;
if=k jk=1i ki=j
ji=-k kj=—i, k= —j.
The quaternions contain a copy of C for the map
x + iy x1 + yi

of C into H clearly preserves both addition and multiplication. Returning
to (2.4.1) we write x + iy = zand u + iv = wso that

q = (x1 + yi) + (uj + vk)
= (x1 + yi) + (ul + vi)j. (24.2)

In view of this, it is convenient to change our notation and rewrite (2.4.2)
in the form

q=z+wj,
where such expressions are to be multiplied by the rule

(z1 + Wiz + wy)) = (212, — WiW,) + (21w, + WiZ5)).
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In particular, if z and w are in C, then
jz =7
and
(z + w)E — wj) = |z|* + |w]”.
This last identity gives the form of the multiplicative inverse, namely
E+w)™t=GE—w)llz? + W)
where, of course,

det(z + wj) = |z|2 + |w|%

EXERCISE 2.4

1. Show that the non-zero quaternions form a multiplicative group with centre
{tI: t real and non-zero}.

2. Show that SL(2, C) is not compact whereas
{geH: det(q) = 1}
is compact.

3. Let S be the set of quaternions of the form z + ¢ where ¢ is real. Show that S is in-
variant under the map g — jgj~'. By identifying z + tj with (x, y, t) in R3, give a
geometric description of this map.

4. As in Question 3, show that the map g kqgk ! also leaves S invariant and give a
geometric description of this map.

§2.5. Unitary Matrices

The matrix A is said to be unitary if and only if
AA* = 1,

where A* is given by (2.2.1). Any unitary matrix satisfies

1 = det(A4) det(4*) = |det(A4) >
and we shall focus our attention on the class SU(2, C) of unitary matrices
with determinant one.
Theorem 2.5.1. Let A be in SL(2, C). The following statements are equivalent
and characterize elements of SU(2, C).

(1) A is unitary;
(i) 1A4)* = 2;
(iii) A is a quaternion.
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In particular
SU(2, C) = SL(2, C) n H.

PRrOOF. Suppose that

A=(a b), ad — bc =1,

c d
then
lal®> + |b|? ac + bd
A* = 2.5.1
4 ( ac +bd |c)* +|d)? @30
and
la—d?>+|b+c|>=]A4|*> -2 (2.5.2)

First, (2.5.1) shows that if A is unitary then | A2 = 2. Next, if |4]* = 2 we
deduce from (2.5.2) that a = d and b = —¢ so A4 is a quaternion. Finally, if
A is a quaternion, then a = d, b = —¢ and recalling that ad — bc = 1, we
find from (2.5.1) that A is unitary. O

A simple computation shows that each 4 in SU(2, C) preserves the quad-
ratic form |z|? + |w|?: explicitly, if
(z, WA = (Z,w),
then
1212 + (w2 = [z + [w]”.
A similar result holds for column vectors and so for any matrix X,
lAX] = | XAl = [ X]|.
This shows that
|AXA™! — AYAT!| = |AX - AT = |X - Y|
and so we have the following result. |

Theorem 2.5.2. Suppose that A is in SU(2, C). Then the map X — AXA™!
is an isometry of the space of matrices onto itself.

Remark. Theorems 2.5.1 and 2.5.2 will appear later in a geometric form.

EXERCISE 2.5

1. Show that SU(2, C) is compact and deduce that any discrete subgroup of SU(2, C)
is finite.

2. Is SU(2, C) connected?
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3. The group of real orthogonal matrices 4(44' = I) in SL(2, R) is denoted by SO(2).
Show that there is a map of SO(2) onto the unit circle in the complex plane which is
both an isomorphism and a homeomorphism.

4. Show that every matrix in SU(2, C) can be expressed in the form

(e"’ 0 ) cos ¢ —sin d)) <ei“’ 0 )
0 e <sin ¢  cos¢p/\0 e

for some real 6, ¢ and .



CHAPTER 3
Mobius Transformations on R”

§3.1. The Mobius Group on R”

The sphere S(a, r) in R" is given by
S(a, 1) = {xeR": |x —a| =r}

where a € R" and r > 0. The reflection (or inversion) in S(a, r) is the function
¢ defined by

d(x) = a+ ( r )Z(x — a). (3.1.1)

|x — al
In the special case of S(0, 1) (=S"" 1), this reduces to
d(x) = x/|x|?

and it is convenient to denote this by x > x* where x* = x/|x|?. The general
reflection (3.1.1) may now be rewritten as

d(x) = a + r’(x — a)*.

The reflection in S(a, r) is not defined when x = a and this is overcome by
adjoining an extra point to R". We select any point not in R" (for any n),
label it oo and form the union

R" = R" U {0}

As |¢(x)| = + oo when x — a it is natural to define ¢(a) = co: likewise, we
define ¢(c0) = a. The reflection ¢ now acts on R" and, as is easily verified,
$*(x) = x for all x in R". Clearly ¢ is a 1-1 map of R" onto itself: also,
¢(x) = x if and only if x € S(a, r).
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We shall call a set P(a, t) a plane in R" if it is of the form
Pla,t) = {xeR": (x.a) =t} U {0},

where aeR", a # 0, (x.a) is the usual scalar product Y x;a; and ¢ is real.
Note that by definition, oo lies in every plane. The reflection ¢ in P(a, t) (or,
as we sometimes say, in (x . a) = t) is defined in the usual way; that is

o(x) = x + Aa,

where the real parameter A is chosen so that 3(x + ¢(x)) is on P(a, t). This
gives the explicit formula

o(x) = x — 2[(x.a) — t]la*, (3.1.2)

when x € R" and, of course, ¢(c0) = co. Again, ¢ acts on R", ¢*(x) = x for
all x in R and so ¢ is a 1-1 map of R” onto itself. Also, ¢(x) = x if and only if
x € P(a, t).

It is clear that any reflection ¢ (in a sphere or a plane) is continuous in R"
except at the points co and ¢~ }(co) where continuity is not yet defined. We
shall now construct a metric on R* and shall show that ¢ is actually con-
tinuous (with respect to this metric) throughout R".

We first embed R” in R"*! in the natural way by making the points
(x4,...,x,) and (x,,..., x,, 0) correspond. Specifically, we let x> X be
the map defined by :

i=(x1""9xn?0)5 x=(x1>"',xn),

and, of course, 3 = oo. Thus x+— X is a 1-1 map of R" onto the plane
X,+1 = 0 in R"*!, The plane x,,; = 0 in R"*! can be mapped in a 1-1
manner onto the sphere

S"={yeR* |yl =1}

by projecting X towards (or away from) e,,, until it meets the sphere S"
in the unique point 7n(X) other than e,,,. This map = is known as the
stereographic projection of R" onto 5"

It is easy to describe = analytically. Given x in R", then

(%) = X + tleys 1 — %),

where t is chosen so that |n(%)| = 1. The condition |7(%)|?> = 1 gives rise
to a quadratic equation in ¢t which has the two solutions t = 1 and. (as
IX] = Ix])

|x|* =1
‘ x40
We conclude that

- 2x, 2x, x> =1
= .. , R eR",
() (uﬁ+1”uﬁ+1uﬁ+1 xe

and, by deﬁnition, (00) = €,41-
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As x+— 7(%X) is a 1-1 map of R" onto S" we can transfer the Euclidean
metzic from S” to a metric d on R". This is the chordal metric d and is defined
on R" by

d(x5 y) = [Tlf(i) - 7'5(?)|, X, ,VER"-

A tedious (but elementary) computation now yields an explicit expression
for d, namely

2|x — y| if .
T+ P + 7= Y
d(x, y) = ) (3.1.3)
T+ xP7 e

A shorter proof of this will be given in Section 3.4.

This formula shows that the metric d restricted to R" induces the same
topology as does the Euclidean metric; thus a function from a subset of R”
to R" is continuous with respect to both or to neither of these two metrics. It
is now easy to see that each reflection ¢ is a homeomorphism (with respect
to d) of R" onto itself. Indeed, as ¢ = ¢~ we need only show that ¢ is
continuous at each point x in R” and this is known to be so whenever x is
distinct from oo and @¢(o0) (= ¢~ 1(0)). If ¢ denotes reflection in S(a, r) then,
for example,

d(¢(x), p(a)) = d($(x), )
_ 2
L+ [
-0

as x — a. Thus ¢ is continuous at x = a: a similar argument shows ¢ to be
continuous at oo also. If i is the reflection in the plane P(q, t) then (as is
easily seen)

W) I? = [x]* + O(|x])

as |x| - oo and so |Y(x)| - + 0. This shows that ¥ is continuous at oo
and so is also a homeomorphism of R" onto itself.

Definition 3.1.1. A M¢bius transformation acting in R" is a finite composition
of reflections (in spheres or planes).

Clearly, each Mébius transformation is a homeomorphism of R" onto
itself. The composition of two Mobius transformations is again a Mobius
transformation and so also is the inverse of a Mobius transformation for
if¢p = ¢, - ¢, (Where the ¢; are reflections) then ¢ ~! = ¢,,, - - - ¢,. Finally,
for any reflection ¢ say, ¢*(x) = x and so the identity map is a Mobius
transformation.
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Definition 3.1.2. The group of Mobius transformation§ acting in R" is
called the General Mobius group and is denoted by GM(R").

Let us now consider examples of Mobius transformations. First, the
translation x +— x + a, a € R", is a Mobius transformation for it is the reflec-
tion in (x.a) = O followed by the reflection in (x.a) = %|a|*>. Next, the
magnification x +— kx, k > 0, is also a Mdbius transformation for it is the
reflection in S(0, 1) followed by the reflection in S(0, \/E).

If ¢ and ¢* denote reflections in S(a, r) and S(0, 1) respectively and if
Y(x) = rx + a, then (by computation)

¢ =yory L. 3.14)

As  is a Mobius transformation, we see that any two reflections in spheres
are conjugate in the group GM(R").

As further examples of Mobius transformations we have the entire class
of Euclidean isometries. Note that each isometry ¢ of R" is regarded as
acting on R" with ¢(c0) = oo.

Theorem 3.1.3. Each Euclidean isometry of R" is a composition of at most
n + 1 reflections in planes. In particular each isometry is a M obius transforma-
tion.

PROOF. As each reflection in a plane is an isometry, it is sufficient to consider
only those isometries ¢ which satisfy ¢(0) = 0. Such isometries preserve
the lengths of vectors because

[p(x)| = [9(x) — ¢(0)| = |x — O] = |x]
and also scalar products because
2¢(x)- () = 1) + [$(1)? — |d(x) — ¢

= |xP +|yl* = Ix =y
=2(x.y).

This means that the vectors ¢(e,), ..., ¢(e,) are mutually orthogonal and
so are linearly independent. As there are n of them, they are a basis of the
vector space R”" and so for each x in R" there is some y in R" with

30 = ¥ ).

But as the ¢(e;) are mutually orthogonal,

i = (¢(x) . d(ey)
=(x.¢e)
= X;.
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Thus
¢< ;:vdlxj ej) = équb(ej)

and this shows that ¢ is a linear transformation of R" into itself. As any
isometry is 1-1, the kernel of ¢ has dimension zero: thus ¢(R") = R".

If A is the matrix of ¢ with respect to the basis e,, ..., e, then ¢(x) = xA4
and A has rows ¢(e,;), ..., ¢(e,). This shows that the (i, j)th element of the
matrix AA"' is (¢(e;) . P(e;)) and as this is (e;.¢)), it is 1 if i = j and is zero
otherwise. We conclude that 4 is an orthogonal matrix.

We shall now show that ¢ is a composition of at most n reflections in
planes. First, put

a; = ¢ley) — ey.

Ifa; # 0,welety, be thereflection in the plane P(a,, 0) and a direct computa-
tion using (3.1.2) shows that i/, maps ¢(e,) to e;. If a; = 0 we let ¥, be the
identity so that in all cases, ¥/, maps ¢(e,) to e;. Now put ¢, = 1 ¢: thus
¢, is an isometry which fixes 0 and e;. ‘

In general, suppose that ¢, is an isometry which fixes each of 0, ey, ..., e,
and let ‘

Uv1 = Pullr+1) — €1
Again, we let Y, ., be the identity (if ;. , = 0) or the reflection in P(a, , ;, 0)

(if ax+ 1 # 0) and exactly as above, ¥, , ¢, fixes 0 and ¢, ;. In addition, if
1 <j < kthen ‘

(ej Sgyq) = (ej cOlexs 1) — (ej es1)

= (¢k(ej) - Pilexs1)) — 0

= (e i+ €+ 1)

=0
and so by (3.1.2),

Ui+l = e;.
As ¢, also fixes 0, ey, ..., ¢, we deduce that Y, ¢, fixes each of 0, e,
-+» €+ 1. In conclusion, then, there are maps i, (each the identity or a reflec-

tion in a plane) so that the isometry y,, - - - ;¢ fixes each of 0, ey, ..., e,. By
our earlier remarks, such a map is necessarily a linear transformation and so is
the identity: thus ¢ = y, - - - ¥,. This completes the proof of Theorem 3.1.3
as any isometry composed with a suitable reflection is of the form ¢. O

There is an alternative formulation available.

Theorem 3.1.4. A function ¢ is a Euclidean isometry if and only if it is of the
form ,
d)(x) = XA + an

where A is an orthogonal matrix and x, € R".
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PROOF. As an orthogonal matrix preserves lengths, it is clear that any ¢ of
the given form is an isometry. Conversely, if ¢ is an isometry, then ¢(x) — ¢(0)
is an isometry which fixes the origin and so is given by an orthogonal matrix
(as in the proof of Theorem 3.1.3). O

More detailed information on Euclidean isometries is available: for
example, we have the following result.

Theorem 3.1.5. Given any real orthogonal matrix A there is a real orthogonal
matrix Q such that

A,

040" = T4, ,

0 ~1,

where r, s, t are non-negative integers and

cos 0, —sin 6,
Ak = . .
sin 0, cos 0,

Any Euclidean isometry which fixes the origin can therefore be represented
(with a suitable choice of an orthonormal basis) by such a matrlx and th1s
explicitly displays all possible types of isometries.

We now return to discuss again the general reflection ¢. It seems clear
that ¢ is orientation-reversing and we shall now prove that this is so.

Theorem 3.1.6. Every reflection is orientation-reversing and conformal.

PROOF. Let ¢ be the reflection in P(q, t). Then we can see directly from (3.1.2)
that ¢ is differentiable and that ¢'")(x) is the constant' symmetric’ matrix
(¢:;) where

| ‘ 2a;a

— i%
¢ij = 0ij — [al’

(6;; is the Kronecker delta and is 1 if i = j and is zero otherw1se) We prefer
to write this in the form

¢'(x)=1-20,, , ‘
where Q, has elements a;a;/|al>. Now Q,, is symmetric and 02 =0, so
P(x). ¢ (x) =1 -20,) =1

This shows that ¢’(x) is an orthogonal matrix and so establishes the con-
formality of ¢.



26 3. Mobius Transformations on R"

Now let D = det ¢'(x). As ¢'(x) is orthogonal, D # O (in fact, D = +1).
Moreover, D is a continuous function of the vector g in R” — {0} and so is a
continuous map of R" — {0} into R' — {0}. As R* — {0} is connected (we
assume that n > 2), D is either positive for all non-zero a or is negative for
all non-zero a. If a = ey, then ¢ becomes

d)(xl’-"’xn) = (—xl + 2t5 xZ""axn)

and in this case, D = — 1. We conclude that for all non-zero a, D < 0 and so
every reflection in a plane is orientation reversing.

A similar argument holds for reflections in spheres. First, let ¢ be the
reflection in S(0, 1). Then for x # 0, the general element of ¢'(x) is

Iy _ 2x;x;
x> Ix*’

SO
¢'(x) =[x — 20,

This shows (as above) that ¢ is conformal at each non-zero x.
Now let D(x) be det ¢'(x). As ¢(¢(x)) = x, the Chain Rule yields

D(¢(x))D(x) = 1

and so exactly as above, D is either positive throughout R" — {0} or negative
throughout R" — {0}. Taking x = e,, a simple computation yields D(e;) =
—1 and so D(x) < O for all non-zero x.
The proof for the general reflection is now a simple application of (3.1.4):
the details are omitted. O

The argument given above shows that the composition of an even number
of reflections is orientation-preserving and that the composition of an odd
number is orientation-reversing.

Definition 3.1.7. The Mébius group M(R") acting in R" is the subgroup of
GM(RR™ consisting of all orientation-preserving Mébius transformations in
GM(R").

We end this section with a simple but useful formula. If ¢ is the reflection
in the Euclidean sphere S(a, r) then

lo(y) — o(x)| = r|(y — &)* — (x — a)*|
=r2[| 1 2(x—a).(y—a)+ 1 ]1/2

y—al? |x—alfly—al ' |x—al

r’ly — x|
= —_— 1.
X —ally —al (3.1.5)
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This shows that

lim lo(x +h) —o(x)| 1
h—=0 |h| |x — af?

and this measures the local magnification of ¢ at x.

EXERCISE 3.1

1. Show that the reflections in the planes x.a = 0 and x . b = 0 commute if and only
if @ and b are orthogonal.

2. Show that if ¢ is the reflection in x . a = ¢, then

[ I* = |x|* + O(x)
as x| » + oo.
3. Let ¢ be the reflection in S(a, r). Prove analytically that

(i) ¢(x) = x if and only if x € S(a, r);
(i) ¢*(x) = x;
(iii) |x — a|.|$(x) — a| = r2.
Repeat (with a modified (iii)) for the reflection in P(a, 1).

4. Prove (analytically and geometrically) that for all non-zero x and y in R",
[x[.1y = x*| = [y].]x — y*|.
5. Show that if ¢, denotes reflection in S(ta, ¢ |a]) then

x> @(x) = lim ¢ (x)

t— + ©

denotes reflection in the plane x.a = 0.
6. Verify the formula (3.1.3).

7. Let = be the stereographic projection of x,, . ; = 0 onto S". Show that if y € S then

1
() = m(Y1,~--, Yns 0).

8. Let ¢ denote reflection in S(e, 4 ¢, \/5). Show that ¢ = = on the plane x, ., =0
and find ¢(H"* 7).

9. Show that the map z+ 1 + z in C is a composition of three (and no fewer) reflec-
tions. (Thus n + 1 in Theorem 3.1.3 can be attained.)

10. Use Theorem 3.1.5 and Definition 3.1.7 to show that if n is odd and if ¢ € M(R")
has a finite fixed point, then ¢ has an axis (a line of fixed points).
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§3.2. Properties of M&bius Transformations

We shall show that a Mobius transformation maps each sphere and plane
onto some sphere or plane and because of this, it is convenient to modify our
earlier terminology. Henceforth we shall use “sphere” to denote either a
sphere of the form S(a, r) or a plane. A sphere S(a, r) will be called a Euclidean
sphere or will simply be said to be of the form S(a, r).

Theorem 3.2.1. Let ¢ be any Mdbius transformation and Z any sphere. Then
P(Z) is also a sphere.

PRrOOF. It is easy to see that ¢(X) is a sphere whenever ¢ is a Euclidean
isometry: in particular, this holds when ¢ is the reflection in a plane. It is
equally easy to see that ¢(X) is a sphere when ¢(x) = kx, k > 0.

Each sphere X is the set of points x in R" which satisfy some equation

glx|? = 2(x.a) +t =0,

where ¢ and ¢ are real, a € R" and where, by convention, oo satisfies this
equation if and only if ¢ = 0.
If x e Z, then writing y = x* we have

e—2(y.a)+tly*=0

and this is the equation of another sphere X ;. Thus if ¢* is the map x > x*
then ¢*(Z) = ;. The same argument shows that ¢*(Z,) <« X and so
P*(3) = Z;.

By virtue of (3.1.4) and the above remarks, ¢(Z) is a sphere whenever ¢ is
the reflection in any Euclidean sphere. As each Mobius transformation is a
composition of reflections the result now follows. U

Any detailed discussion of the geometry of Mdbius transformations
depends essentially on Theorem 3.2.1 and the fact that Mdbius transforma-
tions are conformal. A useful substitute for conformality is the elegant
concept of the inversive product (£, X') of two spheres X~ and X'. This is an
explicit real expression which depends only on ¥ and X’ and which is in-
variant under all Mobius transformations. When ¥ and X' intersect it is a
function of their angle of intersection: when X and X’ are disjoint it is a
function of the hyperbolic distance between them (this will be explained
later). Without doubt, it is the invariance and explicit nature of (£, Z') which
makes it a powerful and elegant tool.

The equation defining a sphere X, say S(a, r) or P(a, t), is

1xI* = 2(x.a) + laf* — r* =0,
or

—2(x.a)+ 2t =0,
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respectively, and these can be written in the common form
ag|x|* = 2(x.a) + ay4, =0,

where a = (ay, ..., a,). The coefficient vector of X, namely (ay, ay, ..., a,,
a,+) is not uniquely determined by X but it is determined to within a real
non-zero multiple. Moreover if (ag, ..., a,4 ) is any coefficient vector of
then (as is easily checked in the two cases)

|a|2 > Ap0y+1-
Definition 3.2.2. Let = and X’ have coefficient vectors (ag, ..., a,+1) and
(bo, - - . » b+ 1) respectively. The inversive product (Z, X') of ¥ and X' is

[2(a.b) — agb,s1 — Gy41bol
2(lal* = agan+1)*(1b1> — bob, )V

=, %) = (3.2.1)

Note that this is uniquely determined by ¥ and X': the bracketed terms
in the denominator are positive and we take positive square roots. If we
define a bilinear form g on R"*2 by

q(x, y) = 20x1y;1 + -+ + X ¥0) — XoYut1 + Xn+1V0)s

then we can write the inversive product more concisely as

lq(a’, b))
3 Y)=
&2 = @, ) 7 g, o
where ' = (aq, a4, .. ., a,, ,+ 1) and similarly for b'.

It is helpful to obtain explicit expressions for (X, Z') in the following
three cases.

Case I. If X = S(a, r) and X' = S(b, t) then

2+t —|a—- b

X)) = e 3.2.2)
Case II. If £ = S(a, r) and X' = P(b, t) then
@y l@h -1 (3.2.3)
r|b|
Case II1. If ¥ = P(a,r) and X' = P(b, t) then
= 5= @Dl (3.2.4)
lal|b]

These formulae are easily verified. Note that in all cases, if ~ and X' intersect
then (T, ) = cos 6 where 0 is one of the angles of intersection. In particular,
(Z, ) = 0ifand only if £ and X' are orthogonal. Observe also that in Case II,

E,X) = o,
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where ¢ is the distance of the centre of S(q, r) from the plane P(b, t): thus
(Z, 2) = 0if and only if a e P(b, t).
We shall now establish the invariance of (Z, Z').

Theorem 3.2.3. For any Mébius transformation ¢ and any spheres Z and X',

(D), 6(Z) = Z, Z).

PROOF. A Mobius transformation maps a sphere X to a sphere X’ and so
induces a map

(g, A1y vy Qyy Ay 1) (Ag, Ay ooy Ay Ay 1)

between the coefficient vectors (to within a scalar multiple) of £ and X'
For example, an orthogonal transformation x+> x4 = y or R" (and this
includes all reflections in planes through the origin) satisfies

x> =|yl>, (x.a) =(xA.ad) = (y.aA)
and so maps the sphere
aglx|* —2(x.a) + a4, =0
to the sphere
aoly* — 2(y.ad) + a,., = 0.
The induced map between the coefficients is thus
ap— ag, ar»aA, Qi1 Quiq

and it is clear that (3.2.1) is invariant if both coefficient vectors are subjected to
this transformation. We deduce that (£, ¥’)isinvariant under the map x — xA.

In a similar way, the maps (i) x — kx (k > 0); (ii) x — x*; (iil)) X > x + u
induce the maps:

() (g, 1s---» Any Ayy 1) (ag, kay, . .., kay,, kK2a,1);
(ll) (aO’ Ags-vv5 Qyy Ay I)H(an+ 15815 -+ -5 Ay, aO);
(lll) (aO’ Ayy ..., qy, an+l)H(aO5 a + QoUg, ..., dy + AoUy, p+1

+ 2(a-u) + aolul?).

It is easy to check that (3.2.1) remains invariant under all of these trans-
formations and, as the corresponding Mobius transformations generate the
Mobius group, the proof is complete. Algebraically, one is simply observing
that a Mobius transformation induces a linear transformation with matrix
A on the coefficient vectors and that A leaves the quadratic form ¢ invariant.

O

The proof of the next result illustrates the use of the inversive product in
place of conformality.
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Theorem 3.2.4. Let X be any sphere, ¢ the reflection in X and I the identity
map. If ¢ is any Mébius transformation which fixes each x in Z, then either

¢=1or¢=o.

ProoF. First, we consider the case when I is the plane x, = 0 in R". Let
Y = S(a, r) whereae X and r > 0. As o0 € X, ¢ fixes co: thus ¢ maps ' toa
Euclidean sphere, say X" = S(b,t). As aeX we have (Z,X) = 0. The
invariance described by Theorem 3.2.3 yields (£, £”) = 0 and so b € Z: thus
a, = b, = 0. Each point of £ n X' is fixed by ¢, thus

G —a)’ + -+ Xy — @gy)® =17
if and only if
(%1 = b)? + -+ (Xmy — by y)? = 2.

We conclude that a = b and ¢ = r: hence ¢ maps X' onto itself.
Next, we select any x not in X and let y = ¢(x). Now select any a in Z and
let r = |x — a| so x € S(a, r). As ¢ preserves S(a, r), y is on S(a, r) and so

x> = 20x.a) + lal* = [y = 2(v. @) + |a|*:

note that this holds for all g in X. Taking a = 0 we find that |[x| = |y|. As a
consequence of this we find that for all ¢ in %,

(x.a)=({y.a)

and taking a to be e, ...,e,—; we find that x;=y;,j=1,...,n— L
As |x] = |y| we now see that y, = +Xx,: thus ¢(x) (=) is either x or a(x).
As ¢ leaves X invariant, it permutes the components of R" — X and so

¢=1 or ¢p=oc.

We can now complete the proof in the general case. First, given any
sphere T there exists a Mobius transformation y which maps X onto the
plane x, = 0: we omit the details of this. Now let ¢ be the reflection in X
and # the reflection in plane x, = 0. The transformation Yoy ~! fixes each
point of the plane x, = 0 and is not the identity: thus by the first part of the
proof, yoy ! = 1.

If ¢ is now any Mébius transformation which fixes each point of X, then
Yy~ is either I or #: thus ¢ is either I or o. 1

This proof also shows that any reflection ¢ is conjugate to the fixed
reflection . Thus we have obtained the following generalization of (3.1.4).

Corollary. Any two reflections are conjugate in GM@®R™.
There is an alternative formulation of Theorem 3.2.4 in terms of inverse

points. Let ¢ denote reflection in the sphere X: then x and y are inverse
points with respect to X if and only if y = a(x) (and, of course, x = a(y)).
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Now let x and y be inverse points with respect to Z, let ¢ be any Mdbius
transformation and let o, be the reflection in the sphere ¢(Z). According to
Theorem 3.2.4, ¢~ '6,¢ = o or equivalently, 6,¢ = ¢o. This is the same as
saying that for all x, o; maps ¢(x) to ¢(y): thus ¢(x) and ¢(y) are inverse
points with respect to ¢(X). We state this as a second formulation of Theorem
3.24.

Theorem 3.2.5. Let x and y be inverse points with respect to the sphere X and
let ¢ be any Mébius transformation. Then ¢(x) and ¢(y) are inverse points
with respect to the sphere ¢(Z).

Theorem 3.2.6. The points x and y are inverse points with respect to the sphere
2 if and only if every sphere through x and y is orthogonal to X.
PRrROOF. This is clearly true when X is a plane: it is true in general by the

invariance of both inverse points and orthogonality. U

We end this section with a brief discussion of cross-ratios. Given four
distinct points x, y, u, v in R", the cross-ratio of these points is

d(x, u) d(y, v)
a(x, y) d(u, v)’

By virtue of (3.1.3) (the expression for the chordal distance d) we also have

[X, s u, U] = (325)

[x —ul-|y — v]

[x, y,u,v] =]

Ll B A (3.2.6)
x—yl-lu—vl

with appropriate interpretations (which are completely justified by (3.2.5))
when one of the variables is co.

Theorem 3.2.7. A map ¢: R" > R" is a Mobius transformation if and only if it
preserves Cross-ratios.

PRrROOF. As each Mobius map that changes Euclidean distance by a constant
factor leaves the expression (3.2.6) invariant, it is only necessary to consider
the map x — x*. As (see (3.1.5))

*l_lx—yl

IX* - s
lxl 1yl

cross-ratios are also invariant under x — x*. It follows that all M&bius maps
preserve cross-ratios.

Suppose now that ¢: R" — R" preserves cross-ratios. By composing ¢
with a Mobius transformation, we see that it is sufficient to consider only the
case when ¢(c0) = oo. Take four distinct points x, y, u, vin R": as

[w’ y’ u’ U]/[x7 y’ w’ U]
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is invariant under ¢, we obtain

[60) = ¢ _ [9) — o@)|

lx =yl lu — vl

The restriction that {x, y} n {u, v} = ¢ is unnecessary (compare each side
with a similar expression for two points a and b chosen to be distinct from all
of x, y, u, v) so ¢ is a Euclidean similarity and so is a Mdbius map. d

EXERCISE 3.2

1. Verify (3.2.2), (3.2.3) and (3.2.4).

2. Verify the details in the proof of Theorem 3.2.3.
3. Let d be the chordal metric in ®”. Show that

d(x*, y*) = d(x, y).

§3.3. The Poincaré Extension

Poincaré observed that each M&bius transformation ¢ acting in R" has a
natural extension to a Mobius transformation ¢ acting in R*** and that in
this way, GM(R") may be regarded as a subgroup of GM(R"*1). This exten-
sion depends on the embedding

X=X = (Xq,...,%,,0), X =(Xg,---5 X,

of R" into R"*1,

For each reflection ¢ acting in R", we define a reflection ¢ acting in
R"*1 as follows. If ¢ is the reflection in S(a, r), a € R", then & is the reflection
in S(@, r): if ¢ is the reflection in P(a, t) then ¢ is the reflection in P(d,).
If xe R"and y = ¢(x), then from (3.1.1) and (3.1.2)

~ —
d)(xl"-',xnao) = (y1>---ayn’0) = ¢(X), (331)
and it is in this sense that ¢ is regarded as an extension of ¢. Alternatively, we
can identify R"*! with R" x R! and write (3.3.1) as

¢(x, 0) = (¢(x), 0).

Note that ¢ leaves invariant the plane x,, ., = 0 (this is R") and each of the
half-spaces x,,; > 0 and x,,; < 0: these facts follow directly from (3.1.1)
and (3.1.2).

As each Mobius transformation ¢ acting in R" is a finite composition of
reflections ¢;,say ¢ = @, - - - ¢, there is at least one MSbius transformation
@, namely @, --- ¢,,, which extends the action of ¢ to R"*! in the sense of
(3.3.1) and which preserves

Hn+1 = {(xla ey Xpgt 1): Xp+1 > 0}
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In fact, there can be at most one extension for if ; and Y, are two such
extensions, then 5 1y, fixes each point of the plane x,,,; = 0 and preserves
H"*!, Thus by Theorem 3.2.4, Y/, = ,.

Definition 3.3.1; The Poincaré extension of ¢ in GM(R") is the transforma-
tion ¢ in GM(IR"* 1) as defined above.

Observe that if ¢ and y are in GM(R") with say ¢ = ¢, --- ¢,, and
Y = Y, -- -, then the Poincaré extension of ¢y is given by

@) = (@1 s+ Y

= i Bl

= oy,
so the map ¢ — @ is an injective homomorphism of GM(R") into GM(R"*+1):
this is a trivial but nonetheless important remark.

We shall now focus our attention on the action of the Poincaré extension
@ in H"*!. First, if ¢ is the reflection in the sphere S(d, r), a € R", then by
(3.1.5),
160) — d()| _ r?

ly=xl  Ix—ally—al

For the moment, let [$(x)] ; denote the jth component of d(x). As
$(x) = a + r’(x — a)*,
we find that

2
FXn+1

[d;(x)]n-f-l =0+ W (332)
and this shows that

2
— X
ly=xP (33.3)
Vn+1Xn+1
is invariant under ¢.
The reflection ¢ in the plane P(d, t), a e R", is a Euclidean isometry and
Moreover,

[(ﬁ(x)]n+ 1= Xp41:t

thus (3.3.3) is also invariant under this reflection. We conclude that (3.3.3)
is invariant under all Poincaré extensions. It is a direct consequence of this
invariance that the Poincaré extension of any ¢ in GM(R") is an isometry
of the space H"*! endowed with the Riemannian metric p given by

ds = 121

Xn+1
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This is our first model of hyperbolic space and p is the hyperbolic metric in
H"*!, The rich structure of the hyperbolic geometry of (H"*!, p) is now
available as an important tool for studying any subgroup G of GM(R") for
we can form the Poincaré extension of each ¢ in G and thereby study G as a
group of isometries of H"*1,

We shall study the geometry of the hyperbolic plane H? in great detail in
Chapter 7 and some of the results (and proofs) given there extend without
difficulty to H**1, One such result is that if x = se,., and y = te,,,, then

p(x, y) = [log(s/t)],
SO

Ix —yP?
2xn+ 1Vn+1

cosh p(x,y) =1+ (3.34)

As both sides of (3.3.4) are invariant under all ¢, we see that this is actually
valid for all x and y in H"**.
In particular, the hyperbolic sphere

{xeH" ' p(x,y) = r}

with hyperbolic centre (y,, . . ., y,+ 1) and hyperbolic radius r is precisely the
Euclidean sphere
(1 — y)* + -+ (X, = Yu)? 4 (Xps1 — Vas1 €Osh 1)* = (y,4 sinh r)”.
(3.3.5)

In addition to this, we mention that given two distinct points of H"** there
is a unique curve y joining them which minimizes the integral

J ldx]|
yxn+1.

such a curve is an arc of a geodesic and the geodesics are the Euclidean
semi-circles orthogonal to R" together with the vertical Euclidean lines in
H" + 1.

EXERCISE 3.3
1. Show that if x and y are in H"* ! then
lx —yP?

sinh? bp(x, y) =~ 2
A%y 4 1 Vn 41

2. Show that if xe H"* ! then
cosh p(x, | x|e, + 1) = |X|/Xy+ 4

and interpret this geometrically.
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3. Let S be the hyperbolic sphere in H"* ! with hyperbolic centre y and hyperbolic
radius r. Let y denote the reflection of y in the plane x, , ; = 0. Show that .

S= {x: Ix = {' = tanh(%r)}.
[x — ¥

4. Suppose that ¢ e GM(R"* 1) and that ¢ leaves H" * ! invariant. Prove that ¢ is the
Poincaré extension of some ¢ in GM(R").

§3.4. Self-mappings of the Unit Ball

We have seen that the elements of GM(R") act as hyperbolic isometries of
H"* ! and we can obviously transform this situation to obtain other models of
hyperbolic space. We shall now map H"*! onto B"*! and so obtain another
(isomorphic) copy of GM(R") in which the elements leave B"*! invariant.
This new model has a greater symmetry and the point co no longer plays a
special role.

Let ¢, denote the reflection in S(e, . 1, \/5) so that

‘ 20x — e,
Go(x) = e,41 + (—“3
[x — e,+1]

If x e R", then

2(X1qy ey Xy, — 1)
1+ |x|?

o 2x, 2x, |x]2-—1
TN XU+ P x P+ 1

and this is precisely the formula for the stereographic projection 7 of R" onto
S" in R"** considered in Section 3.1.

This realization of stereographic projection as ‘a reflection leads to an
easy proof of the formula for the chordal distance given in (3.1.3). If xe R"
then

Do(X) = eys1 +

Ix — ey > =1+ |x]?
and this with (3.1.5) yields (as before)

d(x, y) = (%) — n(y)|
= [$o(X) — ¢o(D

_ 2]x - y|
0+ XD+ )7
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Let us now return to the reflection ¢, defined above. If x € R"*! then

4 Aepsr-[x — enr1])
2 — 1 + n n
¢l Ix — ep41l? |3§—en+1|2
4
—1 +|X%':i—1?: (34.1)

this shows that ¢, maps the lower half-space x,,,; < 0 into B"* 1.

Now let ¢ = ¢o0 where o is the reflection in the plane x,,; = 0: this
maps the plane x,,,; = 0 onto S" and H"*' onto B""'. Also, we find from
(3.1.5) that ‘

[ 180) = $] _ . 1$0(00) = do(al)]
y-x |y—x| y=x ,y_xl
_ i [$0(00) = $o(o()]
y—ox |0'(Y) - O-(x)l
o

lo(x) — ensr[*

Now (3.4.1) with x replaced by a(x) gives

1—[p(x)]> =1 — [dpo(a(x))?
_ 4x, 41
(%) — enesl?
and so we find that R

[ 160) = ¢l _ 1= 19

y=x |y—x| 2X,,+1

It now follows from Section 1.6 that the hyperbolic metric p in H"*! trans-
forms to the metric

2|dx|
ds = T Il xP

in B**! and that the isometries y of H"*! transform by Y — ¢y ™' to
isometries of B"*! with this metric. This shows that GM(R") is conjugate in
GM(R"* 1) to the subgroup of GM(R"* 1) consisting of those elements which
leave B"*! invariant.

We shall now undertake a study of those Mobius transformations which
leave the unit ball invariant. As there is no longer any need to consider
R+ we revert to a consideration of the space R": thus we shall study the
elements ¢ in GM(R") with ¢(B") = B".
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Before proceeding further, we mention that we can derive a formula for
B" analogous to (3.3.4): see Chapter 7. In fact we only need to know that if

x € B", then
1
p(0, x) = log( * "")

1 — x|

and we leave the details of this to the reader.

Theorem 3.4.1. Let ¢ be a Mobius transformation with ¢(0) =0 and
¢(B") = B". Then ¢(x) = xA for some orthogonal matrix A.

PROOF. By Theorem 3.2.5, ¢ fixes oo and, as in the proof of Theorem 3.2.7,
we see that ¢ is a Euclidean similarity. Because ¢ fixes the origin and leaves
$"~1 invariant, it is actually a Euclidean isometry. The result now follows
from Theorem 3.1.4. O

It is easy to see that the reflection in the plane P(a, t) leaves B" invariant
if and only if ¢ = 0. Better still, this reflection leaves B" invariant if and only
if P(a, t) is orthogonal to $" ! and in this form the statement is true for all
reflections.

Theorem 3.4.2. Let ¢ be the reflection in S(a, r). Then the following are equiva-
lent:

(i) S(a, r) and S"~! are orthogonal,
(i) ¢(a*) = 0 (equivalently, $(0) = a*);
(ii) $(B") = B".

PROOF. As

¢0) = a — r’a*
= (la]* — r*)a*

we see that (i) and (ii) are equivalent. The assertion that (iii) implies (ii) is
simply the fact that a and a* map to inverse points with respect to S$"~*
(Theorem 3.2.5).
Finally, (i) and (ii) together with (3.1.5) imply that
|p(x)| = |¢(x) — ¢(a*)|
r?|x — a*|

" x —al.|a* — al

_lal.Ix = a*|

|x — al
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SO

(1 — |x)r?
Ix —al?

1 - || = (34.2)
and this proves (iii). O

As another application of (3.4.2) we observe that if ¢ preserves B” then

|$(x) — O)I? |x — yI?
= : 343
A = [¢)HA = [¢M) A = IxHA =1y (43)

this follows immediately from (3.1.5) and (3.4.2). In addition, (3.4.3) holds
whenever ¢ is the reflection in a plane P(a, 0) and hence for all Mébius ¢
which preserve B".

The invariance expressed by (3.4.3) also yields

i 190) = 69| _ 1= 19001

yox |y_x| 1-’[X|2

and this confirms once again the invariance of the hyperbolic metric in B".
In two dimensions the complex conjugate Z of z is available and in our
notation this may be written as

z* = 1/z.

The familiar expression |1 — Zw| (where z and w are complex numbers)
satisfies

|1 —zw| = |z||z* — w|
and this suggests the definition
[u, v] = |u||u* — v] (u,veR").
Observe that

[, v]? = |u|?|v|® — 2(u-v) + 1
=lu—v*+ (u-D(v]?=1) (344)

and this shows that
[u, v] = [v, ul.
The identity (3.4.4) also shows that if ja| > 1 then

[x —a*|

[x a*]

if and only if | x| = 1. Thus

_ |x — a*|
st = R™: =1
{xe [x, a*]
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and this is the n-dimensional version of the equation

T—w
1'— 2w

of the unit circle in the complex plane.
Finally, we observe that (3.4.4) together with the invariance expressed by
(3.4.3) yields the invariance -

[$(x), ¢(»)]* _ [x, y1?
A =1¢®HA — W) A = IxHA — [y»)

(3.4.5)

EXERCISE 34
1. Show that for x in B",

1
20, %) = log( LX)
1 — x|
Deduce that if x and y are in B” then

Ix — y|?
(1= IxPX1 =1y’

sinh? $p(x, y) =

[Use (3.4.3).]

2. Let ¢ and y be reflections in the spheres S(a, r) and S(b, t) respectively. Show that
these spheres are orthogonal if and only if ¢(b) = Y(a).

3. Use Questions 1 and 2 to show that if S(a, ) is orthogonal to S(0, 1) and if ¢ denotes
reflection in S(a, r) then

sinh $p(0, $0) = 1/r
and, for all x,

|¢(x) — al.|x — a| = 1/sinh? 3p(0, $0).

§3.5. The General Form of a Mdbius Transformation

We shall establish the following characterization of Mbius transformations.

Theorem 3.5.1. Let ¢ be a Mébius transformation.
(i) If ¢(B") = B" then
P(x) = (ox)4,

where o is a reflection in some sphere orthogonal to S"* and A is an
orthogonal matrix.
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(1) If ¢(c0) = oo then
¢(x) = r(xA) + xo,

where r > 0, x, € R" and A is orthogonal.
(iii) If ¢(o0) # oo then
P(x) = r(ox)4 + x,

for some r, xy, A and some reflection o.

Remark. 6(x)A denotes g followed by A: the matrix 4 appears on the right
as we are using row vectors.

PROOE. If ¢ preserves B", let ¢ be the reflection in the sphere S(a, r) where
a= ¢ Y(o)and|a|®> = 1 + r>. By Theorem 3.4.2, ¢ (and hence ¢o) preserves
B". By computation, ¢(0) = a* so

#(0(0)) = ¢(a*) = 0,
(because ¢ preserves inverse points): thus ¢(ox) = xA. Replacing x by ox,
we obtain (i).
If ¢ fixes oo then, for a suitable

Vix(x — xo)/r,

the map Y ¢ fixes oo and B" and hence also the origin. Now (ii) follows from
Theorem 3.4.1. Finally, (iii) follows by applying (ii) to ¢o for a suitable
reflection ¢ mapping oo to ¢~ '(c0). O

The characterization in (iii) leads to the notion of an isometric sphere.
Suppose that ¢(c0) # oo so that

P(x) = r(ox)A + X,

where o is the reflection in some sphere S(a, t) and (necessarily) a = ¢~ (o).
By (3.1.5),

16(x) — ()| = rlo(x) — o(y)|
_ rPx—y

|x —al.|ly — al

and so ¢ acts as a Euclidean isometry on the sphere with equation |x — a
= t, where t; = t._/r. Indeed, ‘

o [20) — ¢)|
yox |y - XI

is greater than, equal to or less than one according as x is inside, on or
outside S(a, t,). For this reason, S(a, t,) is called the isometric sphere of ¢.
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Note that if ¢ denotes reflection in the isometric sphere of ¢ then ¢o fixes
oo and also acts as a Euclidean isometry on the isometric sphere. It follows
that the expression in Theorem 3.5.1(ii) must take the form

¢a(x) = xA + xo,
so in general, we see that
P(x) = Ya(x),

where o is the reflection in the isometric sphere and y is a Euclidean isometry.

In the special case when ¢ preserves B", the reflection ¢ in Theorem 3.5.1(1)
must be the reflection in the isometric sphere of ¢ as ¢ and 4 act as Euclidean
isometries on this sphere. We deduce that in this case, the isometric sphere is
orthogonal to S"~*.

EXERCISE 3.5

1. Show that if ¢ preserves B" then the Euclidean radius of the isometric sphere of ¢
is 1/(sinh 4p(0, ¢0).

2. Show that if T is the isometric sphere of ¢, then ¢(Z) is the isometric sphere of ¢~ 1.

§3.6. Distortion Theorems

We prove two sharp distortion theorems for Mobius transformations.

Theorem 3.6.1. Let ¢ be a Mébius transformation acting in R" and let p be the
hyperbolic metric in H**!. Then

d(¢x, ¢y))
.y d(x, y) = €Xp P(e,,+ 1> ¢en+ 1)‘

Remark. This shows that ¢ satisfies a Lipschitz condition on R" with
respect to the chordal metric d and actually exhibits the best Lipschitz
constant in terms of ¢ acting on the hyperbolic space (H"* !, p).

The second result shows that if a family of Mdbius transformations omits
two values £ and { in a domain D, then the family is equicontinuous on
compact subsets of D: this enables one to develop, for example, the theory of
normal families for GM(R").

Theorem 3.6.2. Let D be a subdomain of R" and suppose that ¢ and { are
distinct points in R If ¢ in GM(R") does not assume the values £ and { in D,
then for all x and y in D,

d(¢x, by) < Bd(x. )

d(¢, Od(x, 8D)*d(y, oD)'/*"

The constant 8 is best possible.
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PRrOOF OF THEOREM 3.6.1. By reflecting in x,,, ;, = 0 and applying stereographic
projection, we may assume that ¢ preserves B"*': now we need to show that
sup L‘j’y' = exp p(0, 40)

x,yesS" , - |

By Theorem 3.5.1(i), the Euclidean distortion under ¢ is the same as the
distortion under the reflection ¢ in the isometric sphere S(a, r) of ¢. This is
maximal (as a limiting value) at the point of S" closest to the centre a of
S(a, r). Thus from (3.1.5),

wp 190 = 00N 7

nyesn X — (la| = 1)?
_lal+1
Cal =1

because S(a, r) is orthogonal to S” (Section 3.5). Now

lal = 1¢7'(c0)| = 1/1¢~1(0)]
and so the supremum is
1 10
e = e 60.97HO)
= exp p(¢0, 0). O

PROOF OF THEOREM 3.6.2. Suppose that x and y are distinct points in D and that
o and p are distinct points outside of D. By Theorem 3.2.7, the product

[x, &y, B]. [x, B, y, o]

of cross-ratios is invariant under ¢. Thus

[d(d)x, d>y)]2 < [ d(a, B) ]2[ 16 ]
dix,y) | = |d(ox, ¢B)| [d(x, 0)d(x, B)d(y, 0)d(y, B)

|z o) (19" 7 .9 0.8
<@ 8| | * T 5|0 » " 20,

64
< .
= d(¢a, ¢P)*d(x, dD)d(y, oD)
The inequality follows by writing o = ¢~ () and B = ¢~ ({).
To show that the constant 8 cannot be improved, consider ¢(z) = z + 2m

acting on C with D = € — {00, —m}. Clearly, ¢ omits the values co and
min D and if x = —2m, we have

lim d(¢x, ¢y) 8
yox d(x,y)  d(co, m)d(x, oD)’
asm —> + o0. O
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As an application of Theorem 3.6.2, we mention (briefly) the concept
of a normal family. A family % of functions from one metric space (X, d)
to another, say to (X', d'), is equicontinuous on X if and only if for every
positive ¢ there is a positive J such that for all x and y in X and all f in &,

d'(fx, fy) <& whenever d(x, y) < d.

Each function in an equicontinuous family is uniformly continuous on X
and the uniformity is with respect to f as well as to the pair (x, y).

A family & (as above) is said to be normal in X if every sequence f;, f5, ...
chosen from % has a subsequence that converges uniformly on each compact
subset of X. There is a general result (the Arzela-Ascoli Theorem) which
relates the concepts of equicontinuity and normal families. In the context
in which we are primarily interested, it is sufficient to obtain the following
special case.

Proposition 3.6.3. A family & of Mobius transformations of (R", d) onto
itself'is normal in a subdomain D of R" if it is equicontinuous on every compact
subset of D.

PrOOF. We only sketch the proof as the interested reader can find a proof of
the Arzela—Ascoli Theorem elsewhere in the literature. Find a sequence
X1, X, - .. which is dense in D. Given a sequence ¢,, ¢, ...in % we can find
(because R" is compact) a subsequence which converges at x,, then a sub-
sequence of this which converges at x, and so on. By choosing a subsequence
of the ¢, suitably, we can obtain a subsequence which is ultimately a sub-
sequence of each of these chosen subsequences: thus we have constructed a
subsequence which converges at each point x;.

Now take any compact subset K of D and consider any positive &. We
can cover K by a finite number of open balls (in the d-metric) of radius ¢
(corresponding to ¢ in the definition of equicontinuity). Select one point
x; in each: let the selected points be (after relabelling) x,, x5, ..., x,. If
yis in K then d(y, x;) < ¢ for some j and hence

d(¢ny’ ¢my) < d(d)ny’ d)nxj) +‘d(¢nxjs ¢mxj) + d(d)mxj’ ¢my)
< 28 + d(Ppxj, QX

For n, m > ny, say, the last term is at most ¢ for all x,,..., x,: hence
d($,y, Pmy) < 3eon K. -

We can now combine Theorem 3.6.2 and Proposition 3.6.3.

Theorem 3.6.4. Let D be a subdomain of R" and let F be a family of Mébius
transformations. Suppose that for every ¢ in F, there are two points o, B, in
R" which are not taken as values of ¢ in D and suppose that also,

inf d(e,, B,) > O.
]

Then & is normal in D.
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Remark. We can rewrite the inequality in Theorem 3.6.4 as

inf [chordal diameter ¢(R" — D)] > 0.
®

PrOOF. We simply apply Theorem 3.6.2 with ¢ = o, { = B, and we find that
Z is equicontinuous (in fact, it satisfies a umform Lipschitz condition) on
every compact subset of D. O

Finally, this leads to the following result.

Theorem 3.6.5. Let ¢y, ¢5,... be Mobius transformations and suppose that
¢u(x;) > y; for three distinct points x,,X,, X3 and three distinct points
V1, V2, V3. Then ¢, @,, ... contains a subsequence which converges uniformly
on R" to a Mébius transformation.

ProOF. By the deletion of a finite number of the ¢; (which clearly does not
affect the result) we may assume that for each n, i and j (i # j) we have

d(d)nxis ¢nxj) = %d(yn y}) > 0

It follows that the family {¢,, ¢,...} is normal in each of the sets R" —

{x;, x;} (Theorem 3.6.4) and hence in their union, namely R Thus there is a
subsequence of the ¢; converging uniformly to some ¢ in R" and by Theorem
3.2.7 (and its proof), ¢ is a Mobius transformation. O

EXERCISE 3.6

1. Show that a family F of Mbius transformations is normal in R" if and only if

sup p(en + 1 ¢en.+ 1)‘ <+ ®©
¢eF

Wheree,,ﬂ—(O 01)inH"+1 »
2. Prove that if two Moblus transformations are equal on an open subset D of R” then
- they are the same transformation on R, Deduce that if the Mébius transformations

¢, converge uniformly to / on some open subset of R", then they converge uniformly
tolon R,

§3.7. The Topologicai Group Structure

There are several ways to give GM(RR") the structure of a topological group.
The simplest constructlon is to observe that the elements of GM(R") map
the compact space R” onto itself so

D(¢. ¥) = supld(¢x, ¥x): x & R,

(where dis the chardal metric on R")is a metric on GM(R"). Clearly, ¢, —» ¢
in this metric if and only if ¢, — ¢ uniformly on R".
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Theorem 3.7.1. GM(R") is a topological group with respect to the topology
induced by the metric D.

PrOOF. From Theorem 3.6.1, we see that for each ¢ in GM(R") there is a
positive constant c(¢) such that for all x and y we have

d(¢x, ¢y) < c(¢)d(x, y).

Clearly, for any ¢,, ¢, and ¥ we also have
D(¢1¥, 92¥) = D(¢1, ¢2),

SO

D(dy, ¢1¥r1) < D(PY, 1Y) + D(d1Y, d1¥ry)
< D(¢, 1) + (@)D, Y1)

This shows that the composition map (¢, ¥) — ¢ is continuous at (¢4, ¥y).
Similarly, the map  +— ¢~ ! is continuous at ¢ as

D™y~ =D(¢™ Y, D)
< (¢~ HDW, ). O

For a different construction of the same topology we proceed as follows.
The group GM(R") is conjugate in GM(R"* 1) to the group GM(B"**) of
all Mobius transformations preserving B"* L. If ¢ in GM(R") corresponds
to ¢, in GM(B"*?) then (by definition of the chordal metric)

D(¢, ) = sup{|¢,x — ¥;x|:x € §"}.

Thus we may consider GM(B""!) instead of GM(R") with the metric (which
we continue to denote by D) of uniform convergence in Euclidean terms on S”
and the conjugation is then an isometry between GM(R") and GM(B"**).

For each non-zero a in B"*! let ¢, be the reflection in the sphere with
centre a* that is orthogonal to S": thus o, preserves B"*! and o,(a) = 0.
Also, let 7, denote the reflection in the plane x .a = 0. Then, defining T, to
be the composition 7,06,, we find that the isometry T, of B"*! leaves the
Euclidean diameter through ¢ invariant and T,(a) = 0. We call any isometry
T, constructed in this way a pure translation: if a = 0 we define T, to be the
identity.

Lemma 3.7.2. (i) The map ¢ — ¢(0) of GM(B"* ') onto B"*! is continuous
(ii) The map a+— T, is a homeomorphism of B"** onto the set of pure transla-
tions.

Proor. To prove (i) we suppose first that D(¢,, I) < & Each Euclidean
diameter L; of B"*" is mapped by ¢, to a circular arc ¢,(L;) (orthogonal to
S in B"*! whose end-points are at most a distance & from those of L;. We
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deduce that the Euclidean cylinder C; with axis L; and radius of cross-section
& contains ¢,(L;). Thus

¢n(0) = ﬂ ¢n(LJ)
J
=N¢
J
= {xeB""':|x| < &}
This shows that if ¢, — I uniformly on S, then ¢,(0) — 0: in fact,

16.(0)| < D(n, 1)

Suppose now that ¢, - ¢ (as GM(B"*!) and B"*! are metric spaces,
it is sufficient to consider sequential convergence). From Theorem 3.7.1
we have ¢~ ¢, — I:thus (from above) ¢~ '¢,(0) » 0and hence ¢,(0) — ¢(0).
This proves (i).

To prove (ii) observe first that the map T, T, ! is continuous (Theorem
3.7.1). By (i), the composite map

T— T, ' T '(0),

namely, T, a, is continuous.

It remains to prove that the map a+> T, is continuous: explicitly, as
b - a so T, — T, uniformly on S". We have explicit formulae for ¢, and 7,
and the continuity follows from straightforward (if tedious) estimates: we
omit the details. O

We know from Theorem 3.5.1 that every element ¢ of GM(B"*!) can be
expressed uniquely as

d(x) = (0,%)4,

where a = ¢~ 1(0) and 4 is an orthogonal matrix (4 acts after ¢,: it appears
on the right because we are using row vectors). It follows that we can also
write (uniquely)

o(x) = (T,x)Ay,

where 4, (namely, 7, followed by A) is also an orthogonal matrix and this
description establishes a natural bijection between GM(B"*!) andO(n + 1)
x B"*! by the correspondence

¢ (44,0), a=¢ 0

Now the group O(n + 1) of orthogonal matrices is itself a metric space.
First, there is the natural metric

1/2
'(aij) - (bij)l = [Z (aij - bij)z] s
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and second, there is the metric D-induced by regarding O(n + 1) as a subset
of GM(B™*1). In fact, these metrics yield the same topology because if 4 =
(a;)), B = (b;)),C = A — Band x is on §", then

D(A, B)*> = sup |xA — xB|?

|x|=1

=sup Y (x;¢1;+ - + X,0)°

Ixl=1 j=1
n n .n o
<sup 3 (z x,?)(z cizj)
Ixl=1 j=1 \i=1 i=1
— |4 - BP

Il
D=
[
D=
o
Ly )
SN—

=Y |e;A — ¢;B|?
i=1

< nD(A4, B).

The space O(n + 1) x B""! now inherits a natural product topology and
we have the following result.

Theorem 3.7.3. The bijection ¢+ (A,, a) is a homeomorphism of GM(B"*1)
onto O(n + 1) x B"*1.

ProoF. The proof consists of repeated applications of Theorem 3.7.1 and
Lemma 3.7.2. First, a+— T, is continuous, hence so is the map (A, a) —
(44, T,). Also the map of (4,, T,) into their composition, namely @, is
continuous thus so is the map (4 4, a) — ¢.

Next, ¢ — a(= ¢~ *0)is continuous, as are themaps a — T,and T, T, ':
thus ¢ — T, ! is continuous. We deduce that the composition

G (9, Ti V> ¢T; ' = A,

is continuous, hence so is ¢ — (4, a). O

Remark. Theorem 3.7.3 simply means that the topology on GM(B"*1)
induced by the bijection from O(n + 1) x B"*?! coincides with the topology
induced by the metric D. As GM(R") has been identified isometrically with
GM(B"*1), this result provides a new construction for the topology induced
on GM(RR") by the metric D.

For our third and final construction of the topology we need another model
of hyperbolic space. " ‘

Definition 3.7.4. Let Q be the hyperboloid model defined by
Q = {(%0---» x) €R™ 11 q(x, %) = 1, X > 0},
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where
q(x, ¥) = Xoyo — (X1y1 + =+ + XuYn)-

Observe that Q is one sheet of a hyperboloid of two sheets and that if
x € Q then

x2=14+ G2+ 4+ x2),

so, in fact, xq > 1.
Now let y = (v, .- -, y,) be any smooth curve on Q. Thus for all t,

70 = 71(0)* + -+ + 9 + 1,
so differentiating,
70()70(®) = y1(O)71(0) + -+ + P()7a2),

(more briefly, q(7, ) = 1 50 g(7, 7) = 0). We deduce that

q(,)-), ,)-)) — (’YI').)I + :))-0. + 7,.'9:1) ‘_ (,}-)2 .+ ,yn)
< QDD — Qi
= —Q 7
<0,

the summations being over j = 1, ..., n. Observe also that a strict inequality
holds unless 7, = --- = , = 0 in which case, 7, = 0 also. It follows that we
can construct a metric on Q in the usual way by the line element

ds? = dx? + - + dx? — dx3, 3.7.1)

the distance between two points on Q being the infimum of
[-at. 2 a

over all curves joining the two points. The associated metric topology is the
Euclidean topology on Q. We shall now compare Q and this metric with the
model B" and the metric _ ‘
4 dx* S
ds* = ———— . 372
ST a—xpy 61

Theorem 3.7.5. The map

X1 Xn
F: s eeey Xy) PR AR
(Xo x)'_)(l + Xo 1+x0>

is an isometry of Q with the metric (3.7.1) onto B" with the metric (3.7.2).
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PRrOOF. For brevity, we write

_ X1 Xn
(yls"'5yn)_ (1+XO7"',1 +x0)

and denote the vectors by x and y in the obvious way. As x € Q, a computation
yields

xo — 1

2 _
lyl* = Yot 1 (3.7.3)
so 0 < |y| < 1 and F maps Q into B".
By direct computation we find that the map
- L+ 1y 2y, 2y
F ‘:(y,...,yn)n—>< ; T (3.74)
' e e N e e

is indeed the inverse of F and so F is a bijection of Q onto B".
To verify that F is an isometry, we observe that

_dx;  x;dxo
1+ xo (1+x0)*
Thus, using this and (3.7.3) we have
Adyi + - +dy7) : ( dx; x; dxq )2

— 2 _
T L G P N Vel vy

dy;

" dx3 = 20077 x;dx;) dxg
=Y ax?+ —2 5 Y xRt
j; T+ X)) (1 + xo)
“ -1 dxy d(x3 — 1)
=Y dx? + (X0 dx2 — o X0 — 1)
j;1 XJ ( 0 + 1 0 1 + Xo
=) dx} —dx}. O

It is now clear that the group G(Q) of isometries of Q and the group GM(B")
of isometries of B" are isomorphic by virtue of the relation

GM(B") = F(G(Q))F 1.
Our aim now is to prove an alternative characterization of G(Q) and hence
of GM(B").

Theorem 3.7.6. The isometries of Q are precisely the (n + 1) x (n + 1)
matrices which preserve both the quadratic form ¢(x, x) and the half-space
given by x, > 0.

PrOOF. First, let 4 be any matrix with the prescribed properties. As x, > 0
is preserved and as

g(xA, xA) = q(x,x) = 1,
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when x € @ we see that 4 preserves Q. Moreover, for any curve y on Q, let
I' = yA. Then I" = 74 so
a(T, 1) = q(3, 7)
and this simply expresses the fact that y and yA4 have the same length. Thus
each such A4 is an isometry of Q onto itself.
It remains to show that every ¢ in GM(B") is of the form F(A4)F~! for
some such matrix 4 and to do this, we simply compute the action of F(4)F ~!

on B". Suppose then that 4 = (a;;) where i,j = 0, 1, ..., n. With the obvious
notation, we write

W15 V) 1> (o thys - )
s (s Uiy - -+ s Un)
s Wy, ..., W),
Now
(g, -5 0,) = (Ug, ..., u)A,
$O

Uj = anOj + -4 unanj.
Using (3.7.4), this yields

(1 - |)’|2)Uj =1+ |Y|2)¢10j + 231045 + - + Yuly)-
Thus

_ a—lyPw
(I =1y + A = |y

_ a1+ |Y|2)ao,' + 20101 + - + Yuap)
|J’|2(aoo = 1)+ 2(y1a10 + -+ + Yulno) + (ago + 1)

(3.7.5)
and this is the explicit expression for the map F(4)F 1.
If A, is an orthogonal n x n matrix (viewed as an isometry of B"), then

10 - 0

preserves g and the condition x, > 0. In this case, (3.7.5) yields w = yA,
and so every isometry of B" which fixes the origin does arise in the form
F(A)F 1.
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It is only necessary to show now that the reflection in the sphere S((, r)
orthogonal to $"~ ! is of the form F(A)F ~!. Because orthogonal transforma-
tions are of this form, we need only consider the case when ( is of the form
(s,0,...,0). It is actually more convenient to introduce another positive
parameter ¢ with

cosh ¢

sinh ¢

{=(@®),0,...,0), c(t) =
and

r = 1/sinh t,

so the orthogonality requirement |{|?> = 1 + r? is satisfied.
Consider now the matrix

cosh 2t sinmh2t 0 --- O
—sinh 2t —cosh2t 0 -~ O
P= 0 0
: : Iy
0 0

observe that det(P) = —1 and that P preserves both the quadratic form
g(x, x) and the half-space x, > 0. The effect y+>w of F(4)F~! on B" is
given by (3.7.5) and the denominator of this expression can be simplified
as follows:

IJ’[Z(GOO — 1)+ 2(y1a10 + *** + YuGno) + (a0 + 1)
= 2|y|? sinh? t — 2y, sinh(2¢) + 2 cosh? ¢
=2|y — {|*sinh? ¢
= 20y— (P

Now forj = 2,..., n the formula (3.7.5) yields

ry;
w, = L
Ty =P

Also,
W — (1 + |y|?) sinh(2t) — 2y, cosh(2r)
1 2|y — (|? sinh? ¢
_sinh@O)[|y — (1> + 1 = [{1> + 2(y- O] — 2y;[2 cosh® t — 1]
B 2|y — {|*sinh? ¢

r2

(1) + =1 vy — c(®)).
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This proves that F(P)F ! is
y= L+ iy = O,
that is, the reflection in S({, r). O
In view of Theorem 3.7.6, we examine briefly the group O(1, n) of matrices
which preserve the quadratic form g(x, x). If A € O(1, n), then
q(x, x) = g(xA, xA),

SO
AJA' = J, (3.7.6)
where
1 0 0
J = 0 -1,
0

We deduce that det(4)? = 1: the subgroup of O(1, n) with determinant 1 is
SO(1, n).

Next, we show that the set of matrices 4 in O(1, n) with ay, > 0 is also a
subgroup. We denote this subgroup by O *(1, n) with

SO*(1, n) = SO(1, 1) ~ O*(1, n).

Suppose that the matrices 4, B and C satisfy ago > 0, bgy > 0 and C = AB:
then

Coo = Aooboo + *+ + Aonbao
= agoboo = lag1bio + -+ + Gonbyol
> agoboo — (aby + -+ + ao) 2 (b3o + -+ + blo)V2

Because of (3.7.6), we have
(@00> —@o1>-- -5 —aon) - (@005 Ao1> - -+ > don) = 1,
SO
ajo=as +-- +al, + 1
Taking the transpose of both sides of (3.7.6) after replacing A with B yields
blo =bio+ -+ b+ 1,
SO Coo > 0.
Finally, the inverse of 4 (=(a;;)) is (JAJ)' because
A(JAJ) = AJAYJ
= J?
=T



54 3. Mobius Transformations on R”

Thus 4+ A~ ! preserves the condition aqq > 0 and so O*(1, n) is indeed
a group. Observe that an element A of O(1, n) leaves the hyperboloid of two
sheets {x: g(x, x) = 1} invariant: the component Q is A-invariant if and only
if age > 0.

We have proved that the isometries of Q are precisely the elements of
O*(1,n) and that in the isomorphism 4 F(4)F~' of O*(1, n) onto
GM(B") the subgroup SO*(1, n) corresponds exactly to the directly con-
formal elements of GM(B") (in the proof of Theorem 3.7.6, each reflection
corresponds to a matrix of determinant — 1). We can now induce a topology
on GM(B") by transferring the natural topology from O™ (1, n) to GM(B")
and it is not hard to see that convergence of matrices in O * (1, n) corresponds
exactly to uniform convergence on S$" ': thus this topology agrees with
those previously constructed. Reverting back to GM(R"), we have proved
the following result.

Theorem 3.7.7. GM(R") with the topology of uniform convergence in the
chordal metric is isomorphic as a topological group to the group O*(1,n + 1)
of matrices.

In particular, if we identify R? with the extended complex plane, then
M(IR?) is (as we shall see) the class of complex Mobius transformations

az+b

2,
cz+d

ad — bc # 0,
and this is isomorphic to the Lorentz group of matrices preserving both the
quadratic form x} + x3 + x3 — ¢* and the inequality t > 0.

EXERCISE 3.7

1. Show that if the M6bius transformations ¢, preserve B"* ! and if ¢,, — I uniformly
on some relatively open subset of S* then ¢,, — I uniformly on B"* ! and on S".
[Identify S" with R” and consider convergence on R" first.]

2. Suppose that n = 2 so that Q in Definition 3.7.4 lies in R®. Show that the geodesics
in B? through the origin correspond via F and F~! to the intersections of Q with
certain planes through the origin in R>.

§3.8. Notes

For recent treatments of Mobius transformations in R”, see [5], [101] and
[110]: for shorter works see (for example) [3], [33] and [108]. A more
algebraic treatment based on quadratic forms is given in [197]. Theorem
3.1.5 is well documented: see, for instance, [36], p. 133.
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The inversive product (Section 3.2) is discussed in [7], [21], [22], [110]:
it can be derived from the metrical theory of the hyperboloid model (see
[110]).

It is known that the only (smooth) conformal maps in R” (or in part
of R") are the Mobius transformations: this is due originally to Liouville
(1850) and has been considerably extended since then (by diminishing the
degree of smoothness required). For further information see [105], pp. 15
and 43 and the references given there; also, see [88].



CHAPTER 4
Complex Mobius Transformations

§4.1. Representation by Quaternions

In this chapter we shall examine the action of Mobius transformations in
R2 and their extensions to R3. We identify R? with the complex plane C and
the algebraic structure of C then allows us to express the action of Mdbius
transformations algebraically. We shall also identify (x, y, t) in R® with the
quaternion

X+ yi+tj 4.1.1)

(Section 2.4): this enables us to express the Poincaré extension of a Mdbius
transformation in terms of the algebra of quaternions. The extended complex
plane C is C U {00} and this is identified with R2. In terms of quaternions,

H*={z+t:zeC,t >0}

and the boundary of H? in R3is C.
Mobius transformations are usually encountered first as mappings of
the form

“ro 4.1.2)

where a,b,c and d are given complex numbers with ad — bc # 0. This
latter condition ensures that g is not constant: it also ensures that ¢ and d
are not both zero and the algebra of C then guarantees that g is defined on
Cifc=0o0ron C— {—d/c} if ¢c # 0. Now define g(o0) = oo if c = 0 and

g(—djc) = o,  g(o0) = a/c

if ¢ # 0. With these definitions, g is a 1-1 map of C onto itself. In addition,
g~ ! is of the same form.
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Any finite composition g, --- g, of these maps can be computed alge-
braically and the resulting map, say g, is again of the same form. Note,
however, that the algebra is only valid on the complement of some finite
set Esog = g,--- g,on C — E. Each map of the form (4.1.2) when extended
as above, is a continuous map of C onto itself (here, continuity is with respect
to the chordal metric) and so by continuity, g = g, --- g, on C. These facts
(which are left for the reader to check) show that the class .# of maps of
the form (4.1.2) is a group under the usual composition of functions. We
must now show that .# = M([R?), the class of orientation preserving Mobius
transformations of € onto itself.

In the case of dimension two, the reflections (3.1.1) and (3.1.2) are both
of the form

az +b
Z—)m, ad—bc;éO

The composition of two such maps is in .# (again, we use algebra first and
then appeal to continuity) and so M(R?) = .#.
Now suppose that g is in .# and is given by (4.1.2). If ¢ = 0 then g is
either a translation (if a = d) or a rotation and expansion, namely,
9(z) = a + (a/d)(z — o),

about some «. In both cases, g is a composition of an even number of
reflections and so is in M(R?).
Now assume that ¢ # 0. The isometric circle Q, of g is (see Section 3.5)

Q,={zeC:|cz +d| = |ad — bc|'?}:
the significance of this lies in the fact that if z and w are on Q, then

(ad — bc)(z — w)
(cz + d)(cw + d)

This property is also shared by the reflection o in Q, and so also by ¢ where

l9(z) — gw)| = =]z —wl.

¢ = go.
Now
_ —d |ad — bc| (z + d/c)
o(2) = ¢ + lc]*> |z + d/c|?
and so

#(2) = g(a(2))
_as(z) + b
" co(z) + d
_a[ca(z) + d] — (ad — bc)
B clca(z) + d]
(a/c) — (u/clul)cz + d), (4.1.3)
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where u = ad — bc. Any map
z -0z + f, la] = 1,
is a composition of an odd number of reflections so again, g € M(R?). This
shows that .4 = M(R?). R
We shall use the notation .# in preference to M(R?) for the remainder
of the text. Also, there are many arguments which, strictly speaking, depend

on an algebraic computation followed by an appeal to continuity: we shall
not mention this again. The next result is well known.

Theorem 4.1.1. Let z,, z,, z5 be a triple of distinct points in C and let wy, w,,
wy be another such triple. Then there is a unique M6bius transformation
which maps z4, z,, Z3 to Wy, W,, W, Fespectively.

We come now to the representation of g in (4.1.2) in terms of quaternions.
The quaternion (4.1.1) is z + tj where z = x + iy and the Poincaré extension
of g is given by
(az + b)(cz + d) + act? + |ad — bcltj

lez + d|? + [c]? '
Observe that this agrees with (4.1.2) if t = 0. We shall verify (4.1.4) when
¢ # 0: the case ¢ = 0 is easier and the proof is omitted.

The Poincaré extension of ¢ is the reflection in the sphere in R® with
the same centre and radius as Q,: thus the action of ¢ in R3 is given by

lad — be| (z + (d/c) + tj)
lel> |z + (dfe) + 4I?

gz + tj) = 4.1.9)

—d
O'(Z+tj)=7+

=—_—‘z+|ll(cz+d+ctj),
C Ccv

where
u=uad —bc, v=|cz+d?+|c|*
It is convenient to write
o(z + tj) = z; + t,/,
SO

t
ez, +d= %(cz +d), t, = lult (4.1.5)

The Poincaré extension of g is found by composing the extensions of ¢
and o. The extension of ¢ is given above and the extension of ¢ (and of any
Euclidean isometry of C) is given by

¢(w + 5j) = ¢(w) + .
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Thus
9(z + tj) = ¢(a(z + 1))
= ¢(z; + 1))
= ¢(z;) + 1]
and using (4.1.3) and (4.1.5) this simplifies to give (4.1.4).

If ad — be > 0 we can describe the action of g in R? through the algebra
of quaternions. Indeed,

[a(z + tj) + b].[c(z + tj)) + d)]7 ! = [(az + b) + atj].[(cz + d) + ctj]™ "
[(az + b) + atjllcz + d — tqj]
lcz + d|* + |ct)?
(az + b)(cz + d) + act® + (ad — bo)tj
lez 4+ d|* + |c|*t?

and this is g(z + tj) precisely when ad — bc > 0.
It is possible to write each transformation in GM(R?) in terms of
quaternions. For example, the function

fwy=w—-pw+N7Y, w=z+1 (4.1.6)

is the reflection in x5 = 0 followed by reflection in S(e;, f ) (note that
es = j). In fact, f maps H* onto B and the restriction of f to C is simply the
stereographic projection discussed in Section 3.1. In general,

fe+t)=C+0t—10)z+[t+11)7"Y

(4 [t =1])E — [t + 11)j
- |z|? + (@ + 1)?

>

which simplifies to
2z + (|z)> + 12 = 1)j
lz? + ¢+ 1)°

For t = 0 this gives the formula for stereographic projection on C: it also
shows that f(j) =

fG@+14)=

4.1.7)

EXERCISE 4.1
1. Let g be given by (4.1.2) with ¢ # 0. Prove

(i) d,(gz, a/c) > 0 as d,(z, ©) = 0;
(ii) dy(gz, 00) = 0 as dy(z, — d/c) = 0

where d, is the chordal metric on ¢.

2. Let g be given by (4.1.2) and (4.1.4) with ad — bc = 1. Show that g(j) = j if and only if

(“ b)GSU(z, 0).
c d
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3. Show that the Poincaré extension of any Euclidean isometry g is given by
9(z + 1) = g(2) + 1.

Describe the action on H? of a Euclidean isometry g of C which fixes j in H>.
4. Show that in terms of quaternions, the reflection in S(a, r), « € R?, is given by
w (aw + b)(cw + d)~!
for some suitable a, b, ¢ and d where w = z — tj when w = z + 1.

5. Let g be given by (4.1.2) with ¢ # 0. Show that for quaternions w and w’ of the form
X+ iy + tj,

g(w) — gw) = (ad — be)(we + d)™Y(w — w)(ew + d)™ L.

Deduce that if ad — bc = 1, then g acts as a Euclidean isometry on the sphere
S(—d/c, 1/|c]) in R3.

§4.2. Representation by Matrices

Any 2 x 2 matrix A in GL(2, C) induces a mapping g in .# by the formula

A — g, where
a b az + b
4= <c d)’ 942) = cz+d

We denote the map 4 — g, by ® and this maps GL(2, C) onto .#: we shall
say that A projects to or represents g 4.
An elementary computation shows that

94G8(2) = g4p(z), zeC,

where AB is the matrix product and so @ is a homomorphism. The kernel
K of @ is easily found for A € K if and only if

az+ b
_— =7z
cz+d

forall zin C. If 4 € K we take z = 0, oo and 1 and find that

a 0
A_<0 a)’ a#0.

Clearly any matrix of this form is in K and so

0
K=Ker(D={<a ):a#O}.
0 a

In particular, # is isomorphic to GL(2, C)/K: in less formal language, g,
determines the matrix A to within a non-zero multiple.
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In general, we shall be more concerned with the restriction of @ to SL(2, C).
The kernel of this restriction is
Ky=KnSL2,C)={l, -1}

and each g in . is therefore the projection of exactly two matrices, say A
and — A, in SL(2, C). We deduce that .# is isomorphic to SL(2, C)/{I, —1}.
The two functions
tr’(4) 14]?
det(4)’ |det(A4)|
are invariant under the transformation 4 — 14, A # 0, and so they induce
corresponding functions on .#, namely

AeGL(2, C),

_ tr¥(4)
trace®(g) = &) 4.2.1)
and
Al
gl =

|det(4)]""*’

where A is any matrix which projects to g.We often abbreviate trace*(g) to
tr¥(g); also, we use |trace(g)| for the positive square root of |tr’(g)|. These
functions are of great geometric significance: we shall consider ||g| now and
discuss tr?(g) in Section 4.3. Observe, however, that trace?(g) is invariant
under any conjugation g — hgh™ ™.

Theorem 4.2.1. For each g in M, we have

lgll> = 2 cosh p(j, gj)-
PROOF. Write

az + b
= — —_ = 1'
g(2) ot d ad — bc ;
then by (4.1.4) (with z = O and ¢ = 1),
_(bd+ad)+j
g(]) - |C|2 + |d|2

According to (3.3.4),if{; = z, + t;jand {, = z, + t,j, then

lzy — 2z, + (t; — 1)
2t,t,

+ 1 = cosh p({;, ().
The result now follows by substituting z, = 0, t, = 1 (so {; =), {, = g(j)
and using the identity
|bd + ac|* + 1 = |bd + ac|* + |ad — bc|?
= (la]* + |bP)(Icl* + |d]?). O
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We have already seen from (4.1.7) that
fWm=w-pw+N"Y w=z+1 4.22)

is the reflection in € followed by the reflection in S(j, ﬁ) and that this
transforms the hyperbolic metric in H? to the metric

_ 2ldx|
ds = T— P

in B, As another illustration of the use of quaternions let us consider an
alternative proof of Theorem 4.2.1, this time the computations being carried
out in B3,

SECOND PROOF. Let w = g(j) and { = f(w) so { € B®. Now for any quater-
nions o and f,

laf| = la)IBl,  Ja™t = ]a|™?
and so
) = [(aj + b)cj + &)~ ' —jl.|jl
I(aj + b)cj + d)™ ' +j
_ @ +b) = j(cj + Dl + )|
I(@j + b) + j(cj + D|(cj + d)™ 1|
_b+9+(a— d)jl
(b — &) + (a + djl’
Thus
|C‘2_(b+E)(E+c)+(a—c_l)(ﬁ—d)

T b-0b -0+ @+dya+d
_igl? + (be — ad) + (bc — ad)
~ lgl* + (ad — be) + (ad — be)
_ gl =2
lgll* +2°
Using p for both the metric in H* and the metric in B3, we have

p(> 9 = p(S (s £ (9()

(4.2.3)

= p(0,0)
gl 1l
=T

Writing p for p(j, g(j)) and using (4.2.3), this gives
2coshp=e"+e*

21+ 1)
e
= llgl>. O
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We can now review Theorems 2.5.1 and 2.5.2 in the light of the geometric
action of M&bius transformations. Suppose that

a b az+ b
A = =
(c d)’ 9(z) cz+d

where A is in SL(2, C) and suppose also that f'is given by (4.2.2).

Theorem 4.2.2. The following statements are equivalent.

(i) 4eSU2, C);
(1) g(j) =Jj;
(iii) lgll*> = 2;
(iv) fgf ~!is a linear orthogonal transformation;
(V) g is an isometry of the chordal metric space (€, a).

PRrooF. The equivalence of (ii) and (iii) is a direct corollary of Theorem 4.2.1.
As A4 € SL(2, C) we have ||4]> = ||g||*> and the equivalence of (i) and (iii)
is a direct consequence of Theorem 2.5.1.

Next, (ii) is equivalent to

faf~'(0)=0

and by Theorem 3.4.1, this is equivalent to (iv).
Finally, the equivalence of (i) and (v) is established by observing that g
is an isometry if and only if for all z,

g _ 1
L+ 9@ 1+ |z

Thus (v) holds if and only if for all z,
1+ |z? = |az + b|* + |cz + d[?,

or, equivalently,
1+ [z2 = (Jal* + |c1®)|z* + (|b]* + |d]|®) + 2 Re(ab + cd)z.
This is equivalent to
lal> + [ = b + |d? = 1
and
ab +cd =0,

which, in turn, is equivalent to 4’4 = I and this is (i). O

Of course, Theorem 4.2.2 shows that the classical symmetry groups of
the regular solids (embedded in B?) correspond to the finite subgroups of
SU(2, C): indeed, each rotation of B? is represented by a Mobius g derived
from a matrix in SU(2, C) and the symmetry groups can be realized as finite
Moébius groups.
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EXERCISE 4.2
1. Show that if g(j) = w + sj then
gl = (Iwl* + s* + 1)/s.

2. Leta subgroup I' of SL(2, C) project to a subgroup G of .#. Show that if I is discrete
then for any compact subset K of H?, g(j) € K for only a finite number of g in G.

3. Show that if a matrix A in SL(2, C) is of order two then A = I or —I. Deduce that
if B is a matrix in SL(2, C) representing a M6bius transformation of order two, then
B is of order four.

4. Show that g: z+ —z is not the projection of any matrix in SL(2, R). Verify that the
projection of SL(2, R) consists of those M&bius transformations which preserve the
extended real axis and the upper half-plane in C.

5. Show that the transformations

3z -1 2z — 1
Z> 2z I — Iy ———
7z -2 7z — 3
2z — 1 z 3z—-1
Zb— - Z>
3z-2 5z —1 8z —3

form a group. Show that there is a unique point w + tj in H? fixed by every element
of this group and describe the corresponding group of rotations in R>.

§4.3. Fixed Points and Conjugacy Classes

We begin with a brief discussion of the relationship between certain alge-
braic concepts and some geometric ideas concerning fixed points. Initially,
the discussion will be quite general and there is no advantage to be gained
by restricting ourselves to M&bius transformations (indeed, such a restriction
may even deflect the reader from the central ideas).

Let X be any non-empty set. A permutation of X is a 1-1 mapping of X
onto itself: for example, a reflection in a sphere is a permutation of R". The
fixed points of a permutation g are those x in E which satisfy g(x) = x: if
this is so we say that g fixes x.

If G is any group of permutations of X then the stabilizer G, (in G) of x
is the subgroup of G defined by

G, = {geG:g(x) = x}.
Finally, the orbit (or G-orbit) G(x) of x is the subset of X defined by
G(x) = {gx)e X:g € G}.

Observe that there is a natural one-to-one correspondence between the set
G/G, of cosets and the orbit G(x). If g and h are in G, then h(x) = g(x) if and
only if hG, = ¢gG, and this shows that the map hG — h(x) is both properly
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defined and one-to-one. It clearly maps G/G, onto G(x) and this is the
required correspondence. The same facts show that the coset hG, is the
complete set of g in G which map x to h(x).

Two subgroups G, and G, of G are conjugate if for some h in G,
Go = hG,h~ 1. As g fixes x if and only if hgh~! fixes h(x), we see that

Gh(x) = thh_ 1:

thus if x and y are in the same orbit then G, and G, are conjugate.

Conjugate subgroups are, of course, isomorphic; however, they are also
the same from a geometric point of view. This is not necessarily true of
isomorphic subgroups, for example, the groups generated by z+— z + 1 and
z > 3z are isomorphic but have quite different geometric actions. We are
primarily interested in the geometric action of subgroups of .# and we shall,
in general, state our results in a form which remains invariant under conjugation.

Now let F, be the set of fixed points of g. If gh = hg then

g(Fy) = Fy, h(F,) = F,, 4.3.1)
This is clear for if x € F), then

h(g(x)) = g(h(x)) = g(x)

and so g(x) € F,: thus, g(F,) = F,. Replacing g by g~ * we obtain g(F,) = F,
and (similarly) h(F,) = F,. We shall see later (Theorem 4.3.6) that the
converse is also true when G is a group of Mdbius transformations.

We return now to study the transformations in .#. In its action on c,
a Mobius transformation g has exactly one fixed point, exactly two fixed
points or is the identity. This provides a rather primitive classification and
we can obtain a finer classification based on the fixed points in R3. This new
classification is invariant under conjugation and so there is a still finer
classification, namely the classification into conjugacy classes. One of our
main results is that the function tr? defined by (4.2.1) actually parametrizes
the conjugacy classes.

It is convenient to introduce certain normalized M&bius transformations.
For each non-zero k in C we define m, by

mz) = kz (ifk #1)
and
my(z) =z + 1:
we call these the standard forms. For future use, note that for all k (including

k= 1),

1
tri(m) = k + 7 + 2 (4.32)

If g (#1) is any Mdbius transformation then either g has exactly two
fixed points « and f in C or g has a unique fixed point « in C (in this case,
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we choose f§ to be some point other than o). Now let h be any Mdbius trans-
formation with

h(@) = c0,  hB) =0, hgB) =1 ifg(h)+ B,

and observe that

0 ifg(p) =B,
1 ifg(B) # B.

If g fixes « and B, then hgh~* fixes 0 and oo and so for some k (k # 1), we
have hgh™' = m,.If g fixes « only then hgh™ ! fixes oo only and hgh™'(0) = 1:
thus hgh™! = m,. This shows that any Mdbius transformation g (#I) is
conjugate to one of the standard forms m,, and this leads to a simple proof of
of the next result.

hgh™'(o0) = 0,  hgh™'(0) = {

Theorem 4.3.1. Let f and g be Mdobius transformations, neither the identity.
Then f and g are conjugate if and only if tr*(f) = tr’(g).

For brevity, we use ~ to denote conjugacy in /4.

PrOOF. We have already noted (following (4.2.1)) that if f ~ g then
tr’(f) = tr’(g).
Now assume that tr?(f) = tr’(g). We know that f and g are each con-
jugate to some standard form, say f ~ m, and g ~ m,. Thus
tr¥(m,) = tr*(f) = tr¥(g) = tr’(m,)
and using (4.3.2), this shows that p=gq or p=1/g. Now note that
m, ~ my,,: this is trivial if p = 1 while if p # 1, we have
hm,h™' =my,, h(z) = —1/z
We now have f ~m,, g ~m, and (as p=gq or p=1/qg) m, ~ m,. As
conjugacy is an equivalence relation, this shows that f ~ g and the proof
is complete. (M

We shall now classify Mobius transformations in terms of fixed points
in R? and it is natural to begin by studying the fixed points of the standard
forms. The action of m, in R* as given by (4.1.4) is

m(z + tj) = kz + |kltj k #1);
m1(2+tj)=Z+1+tj,
and this enables one to find the fixed points of each m, . Clearly:
(i) m, fixes oo but no other point in R3;

(ii) if |k| # 1, then m, fixes 0 and oo but no other points in R3;
(iii) if |k] = 1, k # 1, then the set of fixed points of m, is

{tj:t e R} U {0}
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Definition 4.3.2. Let g (#1) be any Mobius transformation. We say

(i) g is parabolic if and only if g has a unique fixed point in C (equivalently,
g~ my);
(i) g is loxodromic if and only if g has exactly two fixed points in R?
(equivalently, g ~ m, for some k satisfying |k| # 1); ~
(iii) g is elliptic if and only if g has infinitely many fixed points in R3
(equivalently, g ~ m, for some k satisfying |k| = 1, k # 1).

It is convenient to subdivide the loxodromic class by reference to in-
variant discs rather than invariant (fixed) points. Note, however, that the
following usage is not universal: some authors use “loxodromic” for our
“strictly loxodromic” and have no name for our loxodromic transformations.

Definition 4.3.3. Let g be a loxodromic transformation. We say that g is
hyperbolic if g(D) = D for some open disc (or half-plane) D in C: otherwise
g is said to be strictly loxodromic.

The classification described in these definitions is invariant under con-
jugation and by virtue of Theorem 4.3.1, we must be able to classify g
according to the value of tr?(g). This is our next result.

Theorem 4.3.4. Let g (# 1) be any Mébius transformation. Then

(i) g is parabolic if and only if tr’(g) = 4;
(ii) g is elliptic if and only if tr*(g) € [0, 4);
(iii) g is hyperbolic if and only if tr*(g) € (4, + ©);
(iv) g is strictly loxodromic if and only if tr*(g) ¢ [0, + o).

Proor. We shall verify (i), (ii) and (iii): then (iv) will automatically be satis-
fied. Throughout the proof, we suppose that g is conjugate to the standard
form m, so by (4.3.2),

1
tr’(g) = p + , + 2. 4.33)

Recall that g is conjugate to m, and to m,, but to no other m,.

If g is parabolic, then g is conjugate to m; only: so p = 1 and tr(g) = 4.
Conversely, if tr>(g) = 4, then p = 1 and g is parabolic. This proves (i).

If g is elliptic, then p = €%, say, with 6 real and cos 6 # 1. Then

tr’(g) =2 + 2 cos 6 4.3.4)

and so tr?(g) € [0, 4). Conversely, suppose that tr’(g) € [0, 4). Then we may
write tr’(g) in the form (4.3.4) with cos 6 # 1 and then (4.3.3) has solutions
p=2¢€"%e ™ Thus |p|=1,p # 1 and we deduce that g is elliptic. This
proves (ii).
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Finally, we prove (iii). Suppose first that tr?(g) € (4, + o0). Then (4.3.3)
has solutions p = k, 1/k say, where k > 0. As both solutions are positive,
m, necessarily preserves the upper half-plane and so is hyperbolic. This
means that g is hyperbolic. Now suppose that g, and hence m,, is hyperbolic
and let D be a disc which is invariant under m,. For any z in D, the images
of z under the iterates of m, are in D and so

{p"z:ne”Z} = D.

Because |p| # 1, this shows that 0 and oo are in the closure of D. The same
argument, but with z chosen in the exterior of D, leads to the conclusion
that 0 and oo lie on the boundary of D. Thus D is a half-plane and in order
to preserve D, it is necessary that m, leaves invariant each of the half-lines
from O to oo on the boundary of D. Thus p > 0 and so tr’(g) > 4. O

We now prove three useful results concerning fixed points. Recall that
in any group the commutator of g and h is

[9.h] = ghg™'h™' = g(hg™'h™").

If A and B are matrices in SL(2, C) representing Mobius transformations
g and h then they are determined to within a factor of —1 and so

tr[g,h] = tr(ABA~ B~ 1)

is uniquely determined, independently of the choice of 4 and B.

Theorem 4.3.5.(i) Two Mébius transformations g and h have a common fixed
point in C if and only if tr[g, h] = 2. R
(i) If g and h (neither the identity) have a common fixed point in C then either:

(@) [g,h] = I (sogh = hg) and F, = F,; or
(b) [g, k] is parabolic (and gh # hg) and F, # F,.

Proor. The assertions in (i) remain invariant under conjugation so we may
assume that in terms of matrices in SL(2, C),

_fa b b= o f
9=\o a) “\y o/
A computation shows that
tr[g, h] = 2 + b*y* + b(a — d)y(a — 8) — (a — d)*yP.

If g and h have a common fixed point, we may assume thatitis cosoy =0
and tr [g, h] = 2.

Now suppose that tr[g, h] = 2. If g is parabolic we can take a =d =1
and b # 0:theny = 0so both g and A fix co. If g is not parabolic we can take
b=0s0ad =1 and a # d: then yf = 0 so h fixes one of 0 and co. This
proves (i).
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To prove (i) we may assume that g and h are as above with y = 0. Then
[g, ] = I if and only if

Bla — d) = b(a — 9)

and this is equivalent to F, = F,, (consider the cases a = d, a # d).

For an alternative approach to (ii), suppose that the common fixed point
is 0o and so g and also h is of the form z + az + b. The map g — a is a homo-
morphism of {g, h) to the group C — {0}: as this group is abelian, every
commutator is in the kernel of the homomorphism and so is a translation

(or I). O

A Euclidean similarity is a map x — r¢(x) + x, where ¢ is a Euclidean
isometry and the above proof is concerned with such similarities. In fact,
Theorem 4.3.5 is a theorem on Euclidean similarities but stated in a form
that is invariant under conjugation.

Theorem 4.3.6. Let g and h be Mébius transformations other than I. The
following statements are equivalent:

() hg = gh;
(1) h(Fy) = Fg,g(F)) = Fy;
(iii) either F, = F, or g and h have a common fixed point in H> with g* =
h* = (gh)* =Tand F,n F, = &.

Proor. First, (4.3.1) shows that (i) implies (ii).

The proof that (iii) implies (i) is easy. If F, = F), then g and h have a
common fixed point and so by Theorem 4.3.5, [g, h] = I: thus in this case,
gh = hg. The other alternative offered by (iii) also leads to gh = hg as

hg = hg(ghgh) = gh
and so (iil) implies (i).

It remains to prove that (ii) implies (iii). We assume that (ii) holds and
also that F, # F, (else (iii) certainly holds). This means that there is some
w in exactly one of the sets F,, F, and we may assume that w e F, — F:
thus g(w) = w and h(w) # w. By (ii), F, contains the points w, h(w), h%(w)
and as these cannot be distinct (else g = I) we must have h*(w) = w. This
shows that F, has exactly two points and that these are interchanged by h.
It also shows that F, n F, = (J.

By conjugation, we may assume that F, = {0, co}: thus for some a and b,

9(z) = az, h(z) = b/z.
It is now clear that h? = (gh)*> = 1. Moreover, as g(F,) = F,, we must have

g(\/g) = —\/E so a = —1 and g* = I. Finally g and h have a common
fixed point, namely |b|!/?j, in H?: this follows directly from (4.1.4). O

Theorem 4.3.5 is concerned with two transformations with a common
fixed point in C: the next result concerns a common fixed point in H>.
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Theorem 4.3.7. A subgroup G of # contains only elliptic elements (and I) if
and only if the elements of G have a common fixed point in H>.

It follows from Definition 4.3.2 that if g(#1) is of finite order then g is
necessarily elliptic. As every element in a finite group has finite order we
have the following corollary.

Corollary. The elements in a finite subgroup of M have a common fixed point
in H3.

To understand the geometric nature of the proof it is convenient to
introduce the notion of the axis of an elliptic element g. If the fixed points
of gin € are o and B, then (by cons1der1ng a conjugation to one of the standard
forms), the fixed points of g in R* are precisely the points on the circle I
which is orthogonal to C and which passes through « and B. The axis 4,
of g is the Euclidean semi-circle I' » H? (in fact, this is a geodesic in the
hyperbolic geometry of H?). The condition that two elliptic elements g and
h have a common fixed point in H? is simply that the two axes 4, and 4,
are concurrent in H>. Note that a necessary and sufficient condition for this
is that the fixed points of g and h in € lie on a circle Q and separate each
other on Q.

Parts of the proof of Theorem 4.3.7 are algebraic (the geometry is compli-
cated) but even so, we shall stress the geometric interpretation. First, we
prove a preliminary result.

Lemma 4.3.8. Suppose that g, h and gh are elliptic. Then the fixed points of
g and h in C are concyclic. If, in addition, [g, h] is elliptic or I, then the axes
A, and A, are concurrent in H>.

PrOOF. If g and h have a common fixed point in C, then F 4 Y F, has at most
three points and so lies in some circle. If, in addition, [g, 4] is elliptic or I,
then from Theorem 4.3.5, F, = F, and so A, = A,: thus g and h have
infinitely many common ﬁxed points in H>.

We may now assume that g and h have no common fixed points in C.
By conjugation we may assume that

az + b
z+d

g9(z) = «*z,  h(z ) ="
where ? # 1, |a| = 1 and ad — bc = 1. Now
tr2(h) = (a + d)*>,  tr’(gh) = (0a + ad)?

and so by Theorem 4.3.4, the numbers

A=a+d, u=oaa+ od
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are in the interval (—2,2). Solving for a and d in terms of o, A and u, we
obtain

a=d=u+ i,
say.
The fixed points of h are (using ad — bc = 1)
a—d+i[4—(a+ d)?]?
2c

and these are the points
&= (/)b + (1 — uP)'?].

As |a + d| < 2, we find that u? < 1 and so ¢ and { lie on a straight line L
through the origin: thus the fixed points of g and h are concy¢lic.
A computation (after writing « = ¢’ and using ad — bc = 1) gives

tr’([g, h]) = 4[1 + (Ja|* — 1)sin? 6]>

and so the additional hypothesis that [g, h] is elliptic or I implies that
|a| < 1 because we must have

0 < tr?([g, H]) < 4.

Now |a| = 1 implies that u? + v? = 1 and so one of the points ¢, { is zero.
This is excluded as g and h are assumed to have no common fixed points:
thus |a] < 1 and so (taking the positive root)

1 —u®'? >0
This means that
¢ =isle, ( =it/

where s and ¢ are real with st < 0. Thus the origin (fixed by g) lies between
¢ and { and so A, and A, are concurrent in H 3, O

We now use Lemma 4.3.8 to obtain information about subgroups of .#
of the form (g, h) which contain only elliptic elements and I. First, by
Lemma 4.3.8, g and h have a common fixed point {, say, in H* and, of course,
every element of (g, h) fixes {. By considering a conjugate group, we may
assume that g and h preserve B® and that { = 0.

Lemma 4.3.9. Let g and h be Mébius transformations (1) which preserve
B3 and fix the origin. Then

(i) the elements of {g, h) have the same axis and same fixed points or
(ii) thereis somefin{g, h) suchthat the three axes A,, A,, A, are not coplanar.

Assuming the validity of Lemma 4.3.9 for the moment, we complete the
proof of Theorem 4.3.7.
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ProOF OF THEOREM 4.3.7. The conclusion is obviously true if all elliptic
elements of G have the same axis so we may assume that G contains elements
g and h with distinct axes. By Lemma 4.3.8, g and h have a common fixed
point in H* and by considering a conjugate group we may assume that G
acts on B® and that Lemma 4.3.9 is applicable. By assumption, (i) fails so
(i1) of Lemma 4.3.9 holds.

Every clement of {g,h) fixes the origin so the axes A4,, A,, A; are
Euclidean diameters of B3: moreover, by (ii), they are not coplanar. Now
take any ¢ in G, g # I. We shall show that g(0) = 0 and this will complete
the proof. By Lemma 4.3.8, the fixed points of g and g lie on some circle
on dB? and so also lie on a Euclidean plane I, . As I1, contains the end-points
of the diameter A,, we see that 0 e I, : also 4, < I1,. A similar definition
and argument holds for [T, and I, : so

Oell,nII, nII,
and

A, <, nI1,nI1,. (43.5)
q g S

The planes I1,, IT,, IT; cannot be the same plane (else 4,, 4,, 4, would be
coplanar) thus the intersection

I, n 11,

is either {0} or is a diameter D of B>. Because this intersection contains the
fixed points of g on dB? it is a diameter D and we conclude from (4.3.5) that
A, = D. In particular, 0 € 4, and so ¢(0) = 0. O

Proor oF LEMMA 4.3.9. Every element of (g, h) fixes the origin and so is
elliptic or 1. For each such elliptic f, let A, denote the axis (of fixed points)
of fin B3, Note that by assumption, A, and A, are Euclidean diameters of B>.

We shall assume that (i) fails so A, and A, are distinct diameters and
hence determine a Euclidean plane IT. Let the normal to I1 through the
origin be the diameter D of B*. If h(A4,) does not lie in IT, then take f = hgh™ !
and this satisfies (ii) as then A, = h(4,). A similar construction of fis possible
if g(A4,) does not lie in I1. These attempts to construct f can only fail if g and
h preserve IT in which case, they are both rotations of order two. Then both

g and h interchange the end-points of D and so (ii) is satisfied with f = gh.
O

We end this section with a discussion of the iterates of a Mobius

transformation.
If g is parabolic, then for some h we have

hgh ™ '(z) =z +t (t #0).
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Thus
hg"h~Y(2) = z + nt
and

g"(z) = h™'(hz + nt).

Observe that for each z in €, hg"h™(z) > o as |n| — co: thus in general,
if g is parabolic then

g'(z) - a,

where « is the fixed point of g.
If g is not parabolic, then g has two fixed points, say o and f, and for some
h we have

hgh Y z2) =tz (t#0,1)
and hence

hg"h™'(z) = t"z.

These facts show that if g is loxodromic (equivalently, |t| # 1) and if z is not
o or f, then the images g"(z) are distinct and accumulate at o« and f only.
If g"(z) - a, say, as n > + oo, then « is called the attractive fixed point of
g while B s called the repulsive fixed point. Then for all z other than f, g"(z) — «
asn — +oo.

If g is elliptic (equivalently, |t| = 1), then g has invariant circles: indeed
each circle for which « and f are inverse points is a g-invariant circle and so
each orbit under iterates of g is constrained to lie on such a circle. We collect
these results together for future reference.

Theorem 4.3.10. (i) Let g be parabolic with fixed point a. Then for all z in c,
g"(z) = aas n —> + 00, the convergence being uniform on compact subsets
of C — {a}.

(1) Let g be loxodromic. Then the fixed points o and B of g can be labelled so
that g"(z) - a as n - + o (if z # ), the convergence being uniform on
compact subsets of C — {B}.

(iii) Let ge be elliptic with fixed points o and f. Then g leaves invariant each
circle for which o and 8 are inverse points.

If a Mébius g is of finite order k (so g*, but no smaller power, is I) then g
is necessarily elliptic. In this case we have

hgh™1(z) = €'z,
say, and so

0 = 2nmyk,
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where k and m are coprime. We deduce that
tr?(g) = 4 cos?(0/2)
= 2[1 + cos(2am/k)].

Note that this can take different values depending on the prime factors of k.
If g is elliptic of order two, then k = 2 and necessarily, tr’(g) = 0: the con-
verse is also true. Observe that among all g of order k, the largest value of
tr?(g) occurs whenm = lork — 1,

tr?(g) = 4 cos*(n/k)

and 0 = +2n/k. Again we record this for future reference.

Theorem 4.3.11. Let g be an elliptic transformation of order k. Then
tr?(g) < 4 cos?(n/k),
with equality if and only if g is a rotation of angle +2n/k.

EXERCISE 4.3

1. Find Mébius transformations g and h such that

(i) tr[g, h] = —2;and .
(ii) g and h have no common fixed point in C.

2. Let g be any Mdbius transformation which does not fix co. Show that g = ¢,9,93,
where g, and g5 are parabolic elements fixing co and where g, is of order two.

3. An nth root of a Mdbius transformation g is any Mobius transformation  satisfying
h" = g. Prove

(i) if g = I then g has infinitely many sth roots;
(ii) if g is parabolic then g has a unique nth root;
(iii) in all other cases, g has exactly n nth roots.

4. Show that if A and B are in SL(2, C) then
det(A — I) = 2 — tr(A)
and
det(AB — BA) =2 — tr[ A, B]

([A, B] is the commutator of A and B). Deduce that if A and B viewed as Md&bius
transformations do not have a common fixed point in C, then AB — BA is a non-
singular matrix which represents a M&bius transformation or order two.

5. Let g(z) = z/(cz + 1). Verify (i) by induction and (ii) by considering a suitable hgh ™!
that

"(z) = —
z) =
g nez + 1

Find f" where f(z) = 6z/(z + 3) and check your result by induction.
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§4.4. Cross Ratios

Given four distinct points z,, z,, z3,z, of C we define the cross-ratio of
these points as

(zy — z3)(z2 — 24)_

(21 — z)(z3 — z4)

compare this with (3.2.5) where division is not permitted. The definition is

extended by continuity to include the case when one of the z; is co so, for
example,

[219 22923724] =

[21,22,23, w] = 21 — 23-
Z1 — 23
Note that in particular,
[0,1,z,00] = z (44.1)
If
az+ b
g(z) = i d (ad — bc # 0),
then
z — w)(ad — bc
9(2) — glw) = &= WNad = b)

(cz + d)(ew + d)

and it is immediate that the cross-ratio is invariant under Mobius trans-
formations; that is,

[g(zl)a g(ZZ)a g(Z3), g(Z4)] = [le 22523, Z4:|' (442)

This is a useful property which often leads to a considerable simplification.
Moreover, the converse is also true: if
[WlaWZ,w3>W4] = [21,22,23,24] (443)
holds then there is a Mébius transformation g with g(z;) = w;. To see this,
let f and h be Mobius transformations which map z4, z,, z4 to 0, 1, 00 and
wi, Wy, w, to 0,1, 00 respectively: these exist by Theorem 4.1.1. Then by
(4.4.1), (4.4.2) and (44.3),
f(z3) = 10,1, f(z3), ]

= [f(z1), f(22), f(23), f(z4)]

= [219 23,23, Z4]

= [wy, Wy, W3, wy]

= [h(wy), h(w2), h(w3), h(w,)]

= [0, 1, h(ws), o0 ]

= h(w3).

It is now clear that g(z;) = w; whereg = h™ ' f. O
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We are now going to study how the cross ratio
2‘ = [21,22,23,24] (444)

varies as we permute the z;. With this in mind we let S, denote the permu-
tation group of {1,...,n} and remark that (as with all functions) we regard
permutations as acting on the left: for example, (12) (13) maps 3 to 2.

Each ¢ in S, induces a change in the value of the cross ratio by the formula

A=121,22,23, 241 (2615 Zo25 2635 Z54]
and it is essential to realize that the resulting value depends on ¢ and A but
not on the individual values z;. This is so because if
[Zl’ 23523, 24] = [Wla Wy, W3, W4]’

then there is some g with g(z;) = w; and so

[Zo'l’ 25252435 204] = [g(zol)’ g(ZO'Z)s g(zo3)9 9(204)]
= [Wa-ls W2, Wo3s Wo4]'

Because of this fact, we can introduce functions f, (¢ € S,) by the formula

fa(l) = [Zala 2625 243> 264]’
where A is given by (4.4.4). Because

fﬂ(fzr(i)) = [Zn:ala Zn625> Zna3>s Z7w4]
= frod)

we have the important relation

Jato = Jra (44.5)
Now suppose that ¢ is the transposition (1, 2) and let g be the Mdbius

transformation which maps z,, z,, z, to 0, 1, oo respectively. Then
A =[z1,22,23,24]
= [0, 1, g(z3), o]
= ¢(z3)
and so
foD) = [22, 24, 23, 24]
=[1,0,4, 0]
=1-—-4A
A similar argument holds for all six transpositions in S, and we find
@) ifo=(1,2)or(3,4) thenf (1) =1 — 4;

(i) if o = (1, 3) or (2,4) then f,(A) = AJ(A — 1);
(iii) if ¢ = (1, 4) or (2, 3) then f,(A) = 1/A.
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This information leads to a determination of all f,.. As S, is generated by
transpositions, (i), (ii) and (iii) together with (4.4.5) suffice to give all f,.
Note that for each transposition g, the function f is actually a Mobius
transformation which maps {0, 1, co} onto itself. Thus if we denote by .|,
the subgroup of Mobius transformations which map {0, 1, co} onto itself
we find from (4.4.5) that the map

0:0 > f,
is actually a homomorphism of S, into .#, (which is isomorphic to S;). In
addition to this, it is clear from (i), (ii) and (iii) and (4.4.5) that the subgroup
K ={I,(1,2)3,4),(1,3)(2,4),(1,4)2, 3)}

of §, is contained within the kernel of . We can now describe the situation
completely.

Theorem4.4.1. The map 0: S, - M, is a homomorphism of S, onto My with
kernel K.

PRrROOF. Theorem 4.1.1. implies that .#, has exactly six elements: these are
the functions

of A. There are six permutations ¢ in S, with 6(4) = 4 and a straightforward
computation shows that the corresponding f, are precisely the six elements

of #,. This shows that § maps S, onto .#, and as this implies that the
kernel of 6 has exactly four elements, the kernel must be K. O

Four distinct points z4, z,, 25, z,4 in € are concyclic if and only if they lie
on some circle. Let g be the M6bius transformation which maps zy, z,, z4
to 0, 1, co respectively. Then the z; are concyclic if and only if the g(z;) are
and this is so if and only if g(z;) is real. However,

g(Z3) = [O> 17 g(Z3)7 OO]
= [21, 23,23, 24]:
thus zy, z,, z3, z4 are concyclic if and only if [z, z,, 23, 24] is real.

If zq, z,, 23, 24 lie on a circle Q and are arranged in this order around Q,

then g(z3) > 1 and so

A=1[z1,23,23,24] > 1.

EXERCISE 4.4

1. Show that the unique M&bius transformation which maps z,, z,, z4 to 0, 1, c©
respectively is g where

g(Z) = [Zl »Z25 % Z4]'

2. Verify that f,(1) = A/(A — 1) when ¢ = (2, 4).
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3. Let z,, z,, z3, z4 be distinct points in €. Show that the circle through z,, z,, z, is
orthogonal to the circle through z,, z4, z, if and only if

Re(zy, 25, 23, 24] = 0.

Generalize this to the case where the circles meet at an angle 6 (note that the z; are
concyclic if and only if 6 = 0).

4. Let g be any Mobius transformation. Show that if g does not fix z then [z, gz, g*z, g°z]
is independent of z and evaluate this in terms of tr?(g).

§4.5. The Topology on .4

As described in Section 4.2, there is a homomorphism
O:SL2,C) > A,

which associates to each g in .# exactly two matrices 4 and — A4 in SL(2, C).
The group SL(2, C) is a topological group with respect to the metric |4 — B
and the map @ induces the quotient topology  on .#, namely the largest
topology on .# with respect to which, ® is continuous. In addition, .# has
a topology 7 *, namely the topology of uniform convergence with respect
to the chordal metric on C (see Section 3.7) and it is essential to know that
these topologies are the same. One method is to compare the action of
SL(2, C) through the action of .# on H? (and then B?) to the matrix group
O*(1, 3). However, a more direct approach is not without interest.

Theorem 4.5.1. The topology 7 induced on M by ® coincides with the
topology T * of uniform convergence on C.

PRrOOF. It is sufficient to show that the map
O:SLQ2,C) » (M,T ) 4.5.1)
is open and continuous: see Proposition 1.4.1.

Assuming that this has been established, observe that if X is in SL(2, C)
then
IX — (=Xl = 2| X

>2,/2,

(see (x) of Section 2.2). This yields the next result.

Corollary 4.5.2. The restriction of ® to any open ball of radius \/5 inSL(2, C)
is a homeomorphism: thus SL(2, C) is a two-sheeted covering space of M.
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It remains to prove that the map (4.5.1) is open and continuous. Define

o(f,g) = sup d(fz, g2),

zZe

where d is the chordal metric: thus J* is the metric topology induced by
the metric 6. We shall derive the continuity of ® from the next result.

Proposition 4.5.3. If A in SL(2, C) represents g, then
o(g, ) < /6114 —1II.

Explicitly, if B represents f, then

o(g, f) = olgf ™", 1)
</614B™* —I|
<./614 - B|.|B|

and so @ is continuous at the general element B of SL(2, C).

PROOF OF PROPOSITION 4.5.3. There is a unitary matrix B representing a
Mébius map h such that hgh™! fixes oo (h corresponds to a rotation of the
sphere moving a selected fixed point of g to o0). By Theorems 2.5.2 and
4.2.2 we have

|A—I|| = |BAB™' —I|
and
o(hgh™ ', I) = o(gh™ ', h™ %)
= o(g, ).
These remarks show that we may assume, without loss of generality, that

g fixes oo. In addition, if g is loxodromic we may assume that the repulsive
fixed point of g is co (we simply choose h appropriately).

Assume then that
a B
A= (0 5), ad = 1:

the condition on the fixed point of g in the loxodromic case means that in
all cases,

la| <1< [8].

oz oz oz + ﬁ
d(z,gz) < d(z, —5—) + d<§,_5_)

2|z|. |1 — («/9)]
T+ 2P)Y2A A+ Jaz/o Y
20z|. o — 6|
T 18] . 122112 | 202/ |12

Now

7 + 21B/9|

+ 2181,
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the last line being an application of the Arithmetic—Geometric Mean
inequality. This upper bound simplifies to a value independent of z and
using ad = 1, we have
a(g, I) < |oo — 8] + 2|B|
<lo—1]+ 1|1 - 96|+ 2|B|
<(la=1P+ 1 =38P+ [BHVH1 + 1 + 42
<. /6lla—1I|. O

Finally, we must show that the map (4.5.1) is an open map and this will
be derived from the next result.

Proposition 4.5.4. Let g;,9,, . - . be Mébius transformations and suppose that
g.(w) = wforw=0,1, co. Then:

(1) there exist matrices A, representing gy which converge to 1; and
(ii) g, — I uniformly on C.
a, b
A — n n
n 8ﬂ<cn dn)

in SL(2, C) representing g, where ¢, is 1 or —1 and is to be chosen later.
In the following argument, trivial modifications are required if g,(c0) = oo:
we ignore these cases.

As

Proor. Choose matrices

1 1
T 9u(1) = 9,0)  g.(0) — .(0)

-1,

d2

we can select ¢, so that ¢,d, — 1. Next,

(a0 )end,) = and,
_9d0)
gn(20) = 9a(0)

-1,
s0 g,a, — 1 also. As
Cy = ay/gu(0), b, = dng,(0),
we see that ¢, and b, tend to zero: thus 4, — I. This proves (i). Observe that

(ii) follows from (i) and Proposition 4.5.3. O

Finally, we can complete the proof of Theorem 4.5.1. Let % be an open
subset of SL(2, C) and suppose that ®(4) is not an open subset of .# (with
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respect to the metric topology  *). Then there is some g in (%) and some
J1,92,- - - not in O(H) with

o(g.> 9) — 0.

As

9(gu> 9) = 0(gag™ ", D,
we see from Proposition 4.5.4 that there are matrices A4, representing g,g !
with A, — I. If B (in %) represents g, then 4,B — B so A,B is in 4 for all

large n. It follows that g,(= ®(4,B)) is in ®(H) for these n and this is a
contradiction. O

A subgroup G of ./ is discrete if and only if the topology described by
Theorem 4.5.1 induces the discrete topology on G. It is clear from Corollary
4.5.2 that if G is discrete, then ®~ (G) is a discrete subgroup of SL(2, C).
Conversely, if I is a discrete subgroup of SL(2, C), then ®(I) is a discrete
subgroup of /.

Of course, if G is a discrete subgroup of .#, then G is countable (see
Section 2.3), say G = {9, 9, .}, and

lgall = + o0
as n — 4+ o0. In view of this, the next result is of interest.
Theorem 4.5.5. Suppose that K is a compact subset of a domain D in € and

that g omits the values 0 and oo in D. Then for some positive m depending only
on D and K, we have

for all z and w in K.
PRrOOF. Define m, by

2m, = inf{d(z, w): ze K, w¢ D}
and suppose that

As g~ *(o0) ¢ D, we see that for z in K,

2m,; < d(z, g~ *o0)
< 2|cz + d|
T+ 2P + 1DV
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A similar inequality holds for g~ 0 so
(1 + 1z lgl? (my)* < laz + b + |cz + d[*.
As
d(gz, gw) < ( 1+ |z)? )”2< 1+ |w? )”2
d(z,w) ~ \laz + b* + |cz + d|? law + b|* + |cw + d|?
the result follows. g

The implication of this is that if G is discrete, then under the assumptions
in Theorem 4.5.5, the chordal diameters of the sets g,(K) tend to zero.

EXERCISE 4.5
1. Prove that if ad — bc = 1 then for all z
(al® + lcI)(laz + b + ez +d|P) = 1

with equality if and only if z = —(@b + &d)/(]al* + |c|?). Show that if g(z) =
(ab + b)(cz + d)™! then for all z,

1 laz + b|® + |cz + dJ?
2 = 2
lgll 1+ |z
2. Let G be a group of Mébius transformations preserving H?. Show that each g in G

can be written uniquely in the form g = fh where f(z) = az + b (a > 0, be R) and
h(i) = i. Deduce that G is homeomorphic to R* x S'.

< ligli®.

3. Show that a sequence g, of loxodromic transformations can converge to an elliptic
element but if this is so, then g, is strictly loxodromic for almost all n. Show that a
sequence of elliptic elements cannot converge to a loxodromic element.

§4.6. Notes

For a discussion of quaternions and Mobius transformations see [1], [5]
and [26]. The problem of obtaining a subgroup of SL(2, C) isomorphic to
a given subgroup of .# has been considered in [2] and [74]. For general
information on M&bius transformations see [30] (especially for isometric
circles), [51] and [52]. See [53] for Theorems 4.2.2 and 4.3.7.



CHAPTER 5
Discontinuous Groups

§5.1. The Elementary Groups

In this section we shall define and describe a class of subgroups of .# which
have a particularly simple structure. This class contains all finite subgroups
of ., all abelian subgroups of .# and the stabilizer of each point in R3.

Definition 5.1.1. A subgroup G of ./ is said to be elementary if and only if
there exists a finite G-orbit in R>.

Of course, the emphasis here is on the word finite. Also, note that this
definition makes no reference to discreteness. The group .# acts as the
group of directly conformal isometries of H® and G is elementary if there
is a finite G-orbit in the closure of hyperbolic space.

Obviously, if a single point is G-invariant then G is elementary. If G is
abelian, then either G contains only elliptic elements and I or G contains
some parabolic or loxodromic element g. In the first case (whether G is
abelian or not), G is elementary by virtue of Theorem 4.3.7: in the second
case, G is elementary by Theorem 4.3.6(iii). Thus every abelian subgroup
of # is elementary.

Remark. Elementary groups are sometimes defined by the condition that
for every g and h in G which are of infinite order, we have trace[g, h] = 2:
equivalently, g and h have a common fixed point in € (Theorem 4.3.5).
However, with this definition, the stabilizer of a point in H? is not necessarily
elementary.
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Let us now assume that G is an elementary group and examine the
possibilities. Suppose that the finite orbit is {x;, ..., x,}. If g is in G then the
points g™(x;),m =0, 1,2, ..., cannot all be distinct so there is an integer
m; with the property that g™ fixes x;. If m is now the product of the m;, then
g™ fixes each x;. With this available we can now classify the elementary
groups into three types.

Type 1: suppose that n > 3 or that {x,,...,x,} is not in C.

If the points x; are not in C then each g in G has some power g" fixing
x; and so g™, and hence g itself, is elliptic (or I). If n > 3 and the x; are in C,
then g™ has at least three fixed points and so is the identity: thus again, each
non-trivial element of G is elliptic. This shows that if G is of Type 1, then G
contains only elliptic elements and I. By Theorem 4.3.7, there is some x in
H?3 which is fixed by every element of G and by mapping H® onto B* and x
to 0 we see that G is conjugate in GM(R?) to a subgroup of the Special
Orthogonal group SO(3) (see Theorem 3.4.1).

Type 2: suppose that n = 1 and x, is in C.

In this case, G is conjugate to a subgroup of .#, every element of which
fixes oo and so is of the form z s az + b. Thus G is conjugate to a group of
Euclidean similarities of C.

Type 3: suppose that n = 2 and that x,, x, are in .
In this case, G is conjugate to a subgroup of ., every element of which
leaves {0, oo} invariant and is therefore of the form

Z>azs, a#0,s*=1.

Note that G is then conjugate to a group of isometries of the space C — {0}
with the metric derived from |dz|/|z|.

We shall now describe all discrete elementary groups. If G is a discrete
elementary group of Type 1 we may assume that every element of G fixes
the point j in H3. Thus by Theorem 4.2.1, ||g||*> = 2 for every g in G and
(as G is discrete) G is necessarily finite. Thus G is conjugate to a finite sub-
group of SO(3) and hence to one of the symmetry groups of the regular
solids.

We can use the fact that G is finite to obtain the possible structures of G
without reference to the regular solids. We say that v in C is a vertex if v is
fixed by some g (1) in G and we denote the set of vertices by V. Now
consider the number | E| of elements of the finite set

E={g,v):g9eG,g+#1LveV, gl = v}
Aseach gin G (g # I) is elliptic it fixes exactly two vertices and we have

|El =2(1G| = D).
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The stabilizer of a vertex v is G, so we also have

lEl= Y (IG,] — D).

veV

The set V is partitioned by G into disjoint orbits V,,..., V; and as the
stabilizers of each v in V; have the same number, say n;, of elements we have

Y Y (1G] - 1)

j=1veV;

INIACER

|E|

Finally, each orbit G(v) is in 1-1 correspondence with the class of cosets
G/G,so for vin V;, we have V; = G(v) and

v,
IV G

|Gl _ |G|
i

of o

Eliminating | V;| we obtain

1 s 1
2(1 - |—G~|) = ,; (1 - n—j). (5.1.1)

We shall exclude the trivial group, so |G| > 2 and

1
1<2(l——)<2
( |G|>

s 1
<y (1—‘><s.
=1

J

By definition, n; > 2 so

These inequalities together with (5.1.1) show that s = 2 or s = 3.

Casel:s = 2.
In this case, (5.1.1) becomes
G
2 = L_l + @
ny n,
and hence (as [n;| < G),
|Gl =ny =ny,, |Vi[=|W|=1

In this case there are only two vertices and each is fixed by every element
of G. By conjugation, we may take the vertices to be 0 and oo and G is then
a finite, cyclic group of rotations of C.
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Case2:s = 3.
In this case, (5.1.1) becomes
1 + 1 N 1 - 2
Ry np N3 |Gl

and we may assume that n; < n, < n,. Clearly n, > 3 leads to a contra-
diction: thus n, = 2 and

1 1 1 2

m tme 201Gl

If ny = n, > 4 we again obtain a contradiction, so n, = 2 or 3. The case
n, = 2 leads to

(IGl,ny,ny,m3) = (2n,2,2,n)  (n22)

and this is isomorphic to the group of orientation preserving symmetries
of a regular plane n-gon (the dihedral group D,).
The remaining cases are those with s = 3,n, = 2, n, = 3 and

1 1 2

=— 4 >
moetiegr ™=

and the (integer) solutions of this are

(1) (|G|’ ng, Ry, n3) = (12’ 2’ 3’ 3)a
(i) (G, ny, ny, n3) = (24,2, 3, 4);
(iii) (|G|, ny, ny, n3) = (60, 2, 3, 5).

These groups are isomorphic to A,, S, and A, respectively and they corre-
spond to the symmetry groups of the tetrahedron, the octahedron and the
icosahedron respectively. For more details, see the references in Section 5.5.

We continue with our discussion of discrete, elementary groups. The
next result essentially distinguishes between groups of Types 2 and 3.

Theorem 5.1.2. Let g be loxodromic and suppose that f and g have exactly
one fixed point in common. Then { f, g> is not discrete.

PROOF. As discreteness is preserved under conjugation we may assume that
the common fixed point is oo and, say,

g@)=az (Ja|>1), f()=az+b

(if necessary, we may replace g by g 1).
Then
g "fg'(z) = az + a”"h.
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As fand g have only one common fixed point, we see that b # 0. As |a| > 1,
we find that the sequence

lg~"fg"l, n=12,...

is a convergent sequence of distinct terms: thus {f, g) is not discrete. For
a much more illuminating proof, the reader need only draw a diagram and
locate (for large n) the points z, g"z, fg"zand g~ " fg"z. O

Suppose now that G is elementary, discrete but not of Type 1. Then G
must contain parabolic or loxodromic elements. If G contains a parabolic
element g, fixing oo say, then every element of G fixes co (because all other
orbits are infinite) and by Theorem 5.1.2, G has no loxodromic elements.
Such a group is of Type 2. If G contains a loxodromic element g, fixing 0 and
oo say, then every element of G must leave the set {0, co} invariant. This
implies that G cannot contain parabolic elements and such a group is of
Type 2 or 3.

Let us now examine the structure of a discrete group of Type 2 with
parabolic elements. Thus G contains only I, parabolic elements and possibly
some elliptic elements.

By conjugation, we may assume that every element of G fixes «o and so
is of the form z+» az + B. As this is either elliptic or parabolic, we see that
|} = 1: thus G is conjugate to a group of Euclidean isometries of C.

We call o the multiplier of the map z+ az + f and in general, we denote
the multiplier of g by a,. Note that «, = 1 if and only if g is parabolic or I.
It is a trivial matter to check that the set S of multipliers of g in G is a (multi-
plicative) subgroup of {|z| = 1} and that the map #: G —» S defined by
8(g) = a, is a homomorphism of G into S. The statement that «, = 1 if and
only if g is parabolic or I is precisely the statement that the kernel, T, of
0 is the subgroup of translations in G. As G/T is isomorphic to S (=6(G)),
we can describe G by giving explicit descriptions of S and T': this effectively
separates the parabolic and elliptic elements.

First, we show that S is a finite cyclic group. Now G contains a trans-
lation, say f(z) = z + Aand if g(z) = az + fisin G, then so is

9f97 @) =z + al

We deduce that G contains z+— z + sA for every s in S and as G is discrete,
S cannot accumulate in C. Thus S is a finite subgroup of {|z| = 1} and (as
is easily seen) it is necessarily cyclic.

We can obtain even more information about S. With fand g as above,

SS9 )@ =z + (« — DA
and so if |a — 1| < 1, then there is a translation z — z + A, in G with

[A4] = [(@ = DA < |A].
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The same argument yields translations z +— z + A, in G with
[Aul = o = 1]"]A} > 0

as n — + oo and this violates the discreteness of G. It follows that for every
ain S, ja — 1] = 1. As S is a cyclic group, say,

S={lL,wo*..,6 01",
where
w = exp(2mi/q),
we see that ¢ < 6. In fact, g # 5. Indeed

f9fg™ '@ =z+ (x+ DA

and for exactly the same reason as above, we must have | + 1| > 1. This
implies that q # 5 for if ¢ = 5, then |w? + 1| < 1. The remaining possi-
bilities, namely ¢ = 1, 2, 3, 4 and 6 can all occur.

We must now describe T. Let A be the set of 4; for which z+—z + 4,
isin G and let A* = A — {0}. As G is discrete, A cannot accumulate in C
and so A* contains an element A of smallest (positive) modulus. If
A = {nA:ne Z}, then

T={z—z+ni:nelZ}. (5.1.2)

If this is not so, there is an element u of smallest (positive) modulus in
A* — {nd:ne Z}: note that |u| = |A|. The translations

Z 2z + nd + my; nmel#, (5.1.3)

are in G and we shall show that T consists precisely of these translations.
It is clear that u is not a real multiple of A (else we write u = (k + )4 where
keZ,0 <6 < 1, and consider d4). Thus A and u span the vector space C
(over RY) and if z+> z + y is in G we may write

7= (ny + X)A + (my + Y,
where n;, m;€Z and x, ye [—%,4]. Nowy — njA — myuisin A and
|y = mAd — mypl = x4 + yul < |ul,

a strict inequality holding because A and u are linearly independent. We
deduce that

Yy —miA—mpue{ni:ineZ}

and so T is precisely the set of translations (5.1.3).

We can now describe G. We select g in G with multiplier « which generates
S. Then g, g2, ..., g% ! have multipliers w, w?, ..., 0% 1 (w? =1, g < 6)
and so G has the coset decomposition

G=TuTgu---uTg L
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This shows that every element of G is of the form
z—> w*z + nd + my,

where k, m, n are integers,0 < k < gand g < 6,9 # 5.

Next, we suppose that G is discrete, elementary with loxodromic elements.
First we suppose that every element of G fixes both 0 and oo and so is of the
form

g(z) = oz, o # 0.

The map 6: G — {x e R':x > 0} defined by 6(g) = |o,| is a homo-
morphism of G into the multiplicative group of positive numbers and this
time the kernel E of 0 consists of I and all elliptic elements of G. Because
G and hence E, is discrete we see that E is a finite cyclic group generated by,
say, z » wz where @? = 1.

The image 6(G) is the set {|«,|:g € G} and this set cannot accumulate
at 1 else there are distinct elements g, in G with

&

= |o,|* + =2 (g.2) = %32)

lg
! loty |2
and this violates discreteness. It is now very easy to see that the multi-
plicative group 6(G) is of the form

0(G) = {A":neZ}
for some positive . We may assume that g(z) = az where |¢| = A: then G
has the coset decomposition
G=|JEg

neZ

and each element of G is of the form
z - okoz, (5.1.4)

where neZ,keZ and 0 < k < q. If || = 1, then 6(G) is the trivial group
and G is a finite cyclic group of Type 1. Otherwise, G is infinite and contains
loxodromic elements but in any event, G has no parabolic elements.

Finally, we consider the general discrete, elementary group of this type.
We may assume that {0, o0} is the G-invariant and we denote by G, the
elements in G which fix both 0 and oo so G, is of the form given by (5.1.4).
If G, is a proper subgroup of G, then G necessarily contains some element
h with

h(0) = oo, h(c0) = 0.
By a further conjugation (leaving 0 and oo fixed) we may assume that
h(1) = 1: thus h(z) = 1/z. If fin G interchanges 0 and oo, then fh € G, and

80 Gy is of index two in G: this shows that all elements of G are of the form
(5.1.4) or of the form

z > ooz
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This completes our discussion of all elementary discrete groups. In
general, we shall be more interested in the non-elementary subgroups of
4. We end with two results which give necessary conditions for a group
to be non-elementary: these results make no reference to discreteness. The
first of these results gives some insight into the complexity of such groups.

Theorem 5.1.3. Every non-elementary subgroup G of M contains infinitely
many loxodromic elements, no two of which have a common fixed point.

ProoF. We begin by showing that G has some loxodromic elements. Suppose,
then, that G has no loxodromic elements. If G contains only I and elliptic
elements then G is elementary. It follows that G contains a parabolic
element which we may take to be

f@=z+ 1
For any g in G, say
az+ b

g(2) T ad — bc =1,

we find that
n _(a+nc)z + (b + nd)

'9(@) = cz+d

and

tr2(f"g) = (a + d + nc)>.
As f"g is not loxodromic, we see that for all integers n,
0<(a+d+nc)? <4

and so ¢ = 0. This implies that every element in G fixes oo and so G is
elementary, a contradiction. Thus every non-elementary group contains
loxodromic elements.

Now consider any non-elementary group G and let g be a loxodromic
element of G fixing, say, « and f. As G is non-elementary, there is some fin
G which does not leave {a, §} invariant and two cases arise:

) {« B}, {f, [P} are disjoint;

(ii) {a, B}, {fo, fB} have exactly one element in common.

In case (i), g and g, = fgf ! are loxodromic with no common fixed
points. It is now easy to see that the elements g"g,g ™" (n € Z) contain the
desired loxodromic elements because the fixed points of g"g,g ™" are ¢g" fa,
g"f B and these are distinct from but converge towards « or f (see Theorem
4.3.10).

In case (ii), g and g, have exactly one common fixed point, say a, so by
Theorem 4.3.5, p = [g, g,] is parabolic and also fixes a. As {a} cannot be
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G-invariant, there is some & in G not fixing a so g = hph~ ! is parabolic and
does not fix a. Thus g and g (or q and g;) have no common fixed points.
Then for suitably large n, the elements g and ¢"gq ™" are loxodromic with
no common fixed points and case (i) is applicable. [

Theorem 5.1.4. Let f(#1) be a Mébius transformation not of order two and
define the map 0: M — M by 0(g) = gfg~". If for some n, we have 6"(g) = f,
then {f,g) is elementary and 6*(g) = f.

PROOF. Define g, = g and g, = 6"(g) so for m > 0,

gm+1 = gmf(gm)_l'

Suppose first that fis parabolic; then without loss of generality, f(z) =
z+ 1. Asg,,..., g, are conjugate to f, they are each parabolic and so have
a unique fixed point. Now for r > 0, g, ., fixes g,(o0). Thus if g, , , fixes oo,
then so does g,. As g,(= f) fixes o0, we deduce that each g; (including g,)
fixes co. This shows that {f, g) is elementary as both elements fix co. Also,
g, is parabolic and fixes co and so commutes with f: thus g, = f.

Suppose now that f has exactly two fixed points: then we may assume
that f(z) = kz. Clearly ¢,,..., g, each have exactly two fixed points. Now
suppose that g, ; fixes 0 and oo (as does g,): then

{0’ OO} = {gr(o)’ g,(OO)}

Now g, cannot interchange 0 and oo (r > 1) else (g,)* fixes 0, co and other
points too and so g,, and hence f (which is conjugate to g,), is of order two.
We deduce that if g, , , fixes both points 0 and oo, then so does g, for r > 1.
It follows that g, ..., g, each fix 0 and co. This shows that fand g leave the
set {0, oo} invariant and so {(f, g) is elementary. Again, g, and f commute
s0g, = f. O

The reader may wish to relate this result to the discussion in Section 1.5.

EXERCISE 5.1

1. Let G be an elementary group containing a parabolic element which fixes co. Show
that if the group of all such parabolic elements is cyclic then any elliptic element in G
is of order two.

2. Show that a group G is elementary if and only if for all f and g in G, {f, ¢
is elementary.

3. Show that if g and h are of order two, then (g, h) is elementary. Is {g, h) necessarily
discrete?
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4. Show that the map
z—(z/|z|, log|z])

is an isometry of C — {0} with the metric |dz|/|z| onto the cylinder S! x R! with the
Euclidean metric. Deduce that an elementary group leaving {0, co} invariant is
isomorphic to a group of isometries of the cylinder. Find the Euclidean isometry
corresponding to the group element z ~> az? where p = 1 or —1.

5. Let

=(l+t)z—(l+t)

J@==5 4@ =T

where t = 1/\/5. Show that g is parabolic with fixed point w, say, where w # 0.
Deduce that fgf ~! is parabolic with fixed point —w(# w)so { f, g) is non-elementary
Show however that in the notation of Theorem 5.1.4, 0*(g) = f. (The assumption
that f is not of order two in Theorem 5.1.4 is necessary.)

§5.2. Groups with an Invariant Disc

Later, we shall be interested in those subgroups of .# which have an in-
variant disc: here, we characterize such groups.

Theorem 5.2.1. Let G be a non-elementary subgroup of M. Then there exists
a G-invariant disc if and only if G has no strictly loxodromic elements. If D is
a G-invariant open disc, then D and its exterior are the only G-invariant discs.

Note that we do not require G to be discrete. The restriction to non-
elementary groups is necessary: for example, if

poy=z+1, q@@=z+1i

then {p, ¢)> has no loxodromic elements and no invariant disc and {p) has
infinitely many invariant discs.

PrOOF. Directly from Definition 4.3.3, if a G-invariant disc exists then G has
no strictly loxodromic elements.

To prove the converse, suppose that G is non-elementary and has no
strictly loxodromic elements. By Theorem 5.1.3, we can find loxodromic,
and therefore hyperbolic, elements g and & in G with no common fixed
points. By conjugation, we may assume that g fixes 0 and oo.

Now select any fin G. In terms of matrices we can write

_ (u 0 [« B
g_(o l/u)’ f'<y 5)’
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where each matrix is in SL(2, C). As g is hyperbolic, we find that u is real.
Next, write

t, =trace(f)=o + 9
and
t, = trace(gf) = ua + o/u.
Because f and g f are not strictly loxodromic, ¢, and t, are real. Solving for

o and 8, we find that o and 0 are real. This shows that every element of G has
real diagonal elements.

Now let
a b
h = d — be =
(c d)’ a c=1,

so a and d are real. Also (a + d)2 > 4 because h is hyperbolic. The fixed
points of h are the points
(@a—d)+[(a+d 4"

2c

Wi, Wy =

and as ¢ # 0, the ratio w,/w, is real. This implies that the fixed points of g
and h are collinear. In an invariant formulation, the absence of strictly
loxodromic elements implies that the fixed points of every pair g and h of
hyperbolic elements are concyclic. One can proceed by geometry but the
algebraic proof seems simpler.

We may assume that the fixed points of g and h lie on the real axis. Then
g and h leave H? invariant and all entries of h are real. Now

_ [xa + Bc *
fh_( * yb+5d>

and these diagonal elements are real. As a, b, c,d, o and J are real and
bc # 0, we find that f and 7 are real so fis in SL(2, R). This shows that
every element of G preserves H>.

Finally, let D be an invariant disc. For any hyperbolic 4 in G, the points
h"(z) accumulate at the fixed points of h (Theorem 4.3.10). By taking z in
D and then in the exterior of D we see that all hyperbolic fixed points must
lie in the boundary of D: thus there are precisely two G-invariant discs, the
common boundary containing all hyperbolic fixed points (see Theorem
5.1.3). O

The argument given in the last part of this proof shows that if g is para-
bolic or hyperbolic with an invariant disc D, then the fixed points of g lie on
OD. If g is elliptic with an invariant disc D, then the fixed points of g cannot
lie on 0D (consider g(z) = € z). If wis a fixed point of g, then so is the inverse
point of w with respect to dD because inverse points and dD are preserved
by g. Thus if g is elliptic with invariant disc D then the fixed points of g are
inverse points with respect to 0D and are not on 0D.
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EXERCISE 5.2

1. Verify the statements regarding the location of the fixed points of g with invariant
disc D by taking D to be H? and regarding g as a matrix in SL(2, R).

§5.3. Discontinuous Groups

We begin with a general definition.

Definition 5.3.1. Let X be any topological space and G a group of homeo-
morphisms of X onto itself. We say that G acts discontinuously on X if and
only if for every compact subset K of X,

gK)yn K =g,

except for a finite number of g in G.

In our applications, X will always be a subset of R with the usual
topology. There are, however, several useful results which, even in the
general situation, follow easily from this definition. Suppose now that G
acts discontinuously on X : then the following statements are true.

Every subgroup of G acts discontinuously on X. (5.3.1)
If ¢ is a homeomorphism of X onto Y, then ¢pG¢~*
acts discontinuously on Y. (5.3.2)

If 'Y is a G-invariant subset of X, then G acts
discontinuously on Y. (5.3.3)

If xeX and if g,, g,,... are distinct elements
of G, then the sequence g,(x), g,(x), ... cannot con-

verge to any y in X. (5.34)
If x € X, then the stabilizer G, is finite. (5.3.9)
If (for example) X < R3, then G is countable. (5.3.6)

Proors. Clearly (5.3.1) and (5.3.2) are true. If ¥ < X, then any compact
subset of Y is also a compact subset of X and (5.3.3) follows. To prove
(5.3.4), observe that if the given sequence converges to y, then

K = {y’ X, gl(x)5 gz(x); L) }

is a compact set. As g,(K) n K # J(n = 1, 2,...) and as the g, are distinct,
G cannot act discontinuously on X : thus (5.3.4) follows. For each x in X,
{x} is compact; thus (5.3.5) is a direct consequence of Definition 5.3.1.
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Finally, we have seen (in Section 4.3) that there is a 1-1 correspondence
between G/G, and the orbit G(x) and so by (5.3.5), G is countable if and only
if G(x) is countable. Now any uncountable set in R? contains a limit point
of itself and so by (5.3.4), G(x) must be countable. This proves (5.3.6). [

Our aim is to study the relationship between discreteness and discon-
tinuity as applied to subgroups of .#. First, we consider the action of G in H>.

Theorem 5.3.2. A subgroup G of M is discrete if and only if it acts discon-
tinuously in H3.

PROOF. Suppose first that G is discrete. As G is the homomorphic image of
a discrete (and therefore countable) subgroup of SL(2, C), we see that G is
countable, say

G=1{91.92,--}

As G is discrete, |g,|l = + oo and so using Theorem 4.2.1, we see that as
n — + 00, SO

pUs, g.()) = + 0. (5.3.7)

It is clear from (3.3.5) that a compact subset K of H? lies in some
hyperbolic ball

B = {xe H?: p(x,)) < k}.
If g(K) n K # &, then g(B) n B # ¢ and so

pU> 9()) < 2k

By (5.3.7) this can only happen for a finite number of g in G and so G acts
discontinuously in H>.

Now suppose that G acts discontinuously in H* (or in any subdomain
of @). If G is not discrete, we can find distinct matrices 4;, 4,, ...in SL(2, C)
projecting to g,,4,,... in G with 4, - I as n - oo. Using (4.1.4), we see
that g,(x) - x as n — oo for every x in R3. Clearly this violates (5.3.4) and
so we deduce that G is necessarily discrete. d

We now turn our attention to the extended complex plane and we seek
to understand the relationship between discreteness and discontinuity in
open subsets of €. Of course, the proof of Theorem 5.3.2 shows that if G
acts discontinuously in some non-empty open subset of C, then G is discrete.
The converse is false: it is possible for G to be discrete yet not act discon-
tinuously in any open subset of C. In order to give a simple example of this,
we establish a criterion which excludes the possibility of a discontinuous
action.
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Lemma 5.3.3. Let G be any subgroup of M and let D be an open subset of C
which contains a fixed point v of some parabolic or loxodromic element g of
G. Then G does not act discontinuously in D.

Proor. This is trivial as the stabilizer G, contains the distinct iterates of g.
If g is parabolic or loxodromic, then G, is infinite and this violates (5.3.5).

O

Example 5.3.4. Let G be Picard’s group, namely the group of transformations
of the form

az + b
cz+d

g(z) = (5.3.8)
where a, b, ¢ and d are Gaussian integers (of the form m + in where m,
ne Z)and ad — bc = 1. Obviously G is discrete.

By Lemma 5.3.3 it is sufficient to show that the parabolic fixed points of
G are dense in C. Let w = (p + ig)/r where p, g and r are integers: obviously,
the set of such w is dense in C. Now simply observe that

(1 — wr)z + r’w?

hz) = —r2z 4+ (1 + wr?)

is a parabolic element of G that fixes w. O

Our aim now is to understand the situation in which a discrete group
does act discontinuously on some open subset of C. The exposition will be
clearer if we restrict our attention to the non-elementary groups: the case of
the elementary groups is rather easy and are left to the reader. Note, how-
ever, that once again we do not begin with the assumption of discreteness.

The discussion will be based on the fixed points of loxodromic elements
of G and we begin with a preliminary result which enables us to locate these
fixed points.

Lemma 5.3.5. Let X be an open disc and suppose that g € M and g(T) = X.
Then g is loxodromic and has a fixed point in g(Z).

PrOOF. We may assume that g(oo) = co. With this assumption, 0Z is a
Euclidean circle (and not a straight line) as clearly, no fixed point of g is
on the boundary of X. If g is elliptic or parabolic then (as g fixes o0) g is a
Euclidean isometry and this is not compatible with g(X) = £. Thus g is
loxodromic. For any w not fixed by g, the images g"(w),n=1,2,...,
accumulate at a point v fixed by g. If w € Z, these images are in g(Z) and so
ve g). O

We now begin our study of discontinuity in subsets of C.

Definition 5.3.6. Let G be a non-clementary subgroup of .# (G need not be
discrete) and let A, denote the set of points fixed by some loxodromic
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element in G. The limit set A(G) of G is the closure of A, in C: the ordinary
set Q(G) of G is the complement of A in C.

In general, we shall write A and Q without explicit mention of G. Note
that if G = G, then

A(G) = A(G)), QG) o AG)).
We shall study A first and then Q.

Theorem 5.3.7. For any non-elementary group G, the limit set A is the smallest
non-empty G-invariant closed subset of C. In addition, A is a perfect set and is
therefore uncountable.

PrROOF. As A, is G-invariant, so is A. By definition, A is closed and by
Theorem 5.1.3, A # . Now let E be any non-empty, closed G-invariant
subset of C. As G is non-elementary, every orbit is infinite, thus E is infinite.
Now take any point v fixed by a loxodromic element g in G. There is some
w in E not fixed by g and the set {g"(w): n € Z} accumulates at v (and at the
other fixed point of g). As E is closed, v € E. This shows that A, = E; hence
A cE.

This argument also shows that A, has no isolated points (we simply
choose w in A, but not fixed by g): hence A has no isolated points. A set is
perfect if it is closed and without isolated points and as is well known any
non-empty perfect set is uncountable. As A is perfect, the proof is complete.

d

Theorem 5.3.7 shows that the countable set A, is dense in the uncountable
set A but we can say even more than this.

Theorem 5.3.8. Let G be a non-elementary subgroup of M and let O, and O,
be disjoint open sets both meeting A. Then there is a loxodromic g in G with
a fixed point in O, and a fixed point in O,.

PRroOF. Recall that if fis loxodromic with an attractive fixed point « and a
repulsive fixed point §, then as n - + oo, f* — « uniformly on each compact
subset of € — {#} and f " — B uniformly on each compact subset of C -
{a} (Theorem 4.3.10). The repulsive fixed point of f is the attractive fixed
point of f 7 1.

Now consider G, O, and O, as in the theorem. It follows (Definition
5.3.6) that there is a loxodromic p with attractive fixed point in O, and a
loxodromic g with attractive fixed point in O,. By Theorem 5.1.3, there is
a loxodromic f with attractive fixed point o and repulsive fixed point f,
neither fixed by p. Now choose (and then fix) some sufficiently large value
of m so that

m

g=p"fp"
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Figure 5.3.1

has its attractive fixed point a, (=p™x) and repulsive fixed point §, (=p™B)
in O,. Then choose (and fix) some sufficiently large value of r so that

h=4q
maps &, into O, : put o, = h(e,). See Figure 5.3.1
Next, construct open discs E and K with the properties
Bl € E < E c 01,
O(2 € K [ K < 02.
As B, ¢ K we see that g" — a, uniformly on K as n —» + 0. As h™ (K)
is an open neighbourhood of «; we see that for all sufficiently large n,
g"(K) = h™'(K)
and so

hg"(K) < K. (5.3.9)

As h(x,) ¢ E so a, is not in h~*(E) and so g~ " — B, uniformly on h™(E)
as n — + oo. Thus for all sufficiently large n,

g "h Y(E) c E. (5.3.10)
Choose a value of n for which (5.3.9) and (5.3.10) hold. By Lemma 5.3.5,

hg" is loxodromic with a fixed point in K: also, g~"h~ !, which is (hg") ™!,
has a fixed point in E, hence so does hg". O

Theorems 5.3.7 and 5.3.8 do not require G to be discrete. If we add the
extra condition that G is discrete, we can describe A in terms of any one orbit.
For any z in C, let A(z) be the set of w with the property that there are
distinct g, in G with g,(z) = w (the points g,(z) need not be distinct).

Theorem 5.3.9. Let G be a non-elementary discrete subgroup of .M. Then
for all z in C, we have A = A(2).
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Remark. The group generated by z +— 2z shows that the conclusion may
fail if G is only discrete. The group of M&bius transformations preserving
the unit disc shows that the conclusion may fail if G is only non-elementary.

ProOF OF THEOREM 5.3.9. Fach A(z) is closed, non-empty and G-invariant
so by Theorem 5.3.7, we have

A < A(2).
If z € A, then G(z) = A and so

AR) = G@) < A:

in this case, then we have A = A(z).
Now suppose that z is in Q and select any w in A(z): we must show that
w € A. Suppose not, then w € Q and there is a disc Q with centre w whose
closure Q lies in Q. We may suppose that 0 and oo are in A so taking
K = Q U {z} we deduce from Theorem 4.5.6 that for all g in G and all 2’
in Q,
gz, gz') < m/|g|.

As w € A(z), there are distinct g, with g,(z) — w: as ||g,||> = + o0, we deduce
that g, — w uniformly on Q. This implies that for large n,

9.(0) = Q:
hence for Lemma 5.3.5 we have Q n A # & and this contradicts @ < Q. O

We now turn our attention to the open set Q.

Theorem 5.3.10. Suppose that G is a discrete non-elementary subgroup of
M. Then Q is the maximal domain of discontinuity in C of G: precisely,

(1) G acts discontinuously in Q; and R
(ii) if G acts discontinuously in an open subset D of C, then D < Q.

Remark. Traditionally, a discrete group G was called Kleinian if Q # .
More recently, Kleinian is used synonomously with discrete.

PROOF OF THEOREM 5.3.10.If G does not act discontinuously in €, then
there is a compact subset K of Q and distinct g,, g,,... in G such that
g(K) " K # . Thus there are points z,, z,, ... in K with g,(z,) € K. By
taking a subsequence, we may assume that g,(z,) - w in K and so w e Q.
However, exactly as in the proof of Theorem 5.3.9, we now see that g, - w
uniformly on K and so w € A, a contradiction. This proves (i).

It is easy to prove (ii). By Lemma 5.3.3, D n Ay = . As D is open, this
implies that DN A = Fso D < Q. O
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Theorem 5.3.10 has an interesting corollary.

Corollary. Let G be discrete and non-elementary. Then Q # J if and only if
for some z, G(z) is not dense in C.

Proor. By Theorem 5.3.9, Q # ¢ if and only if A(z)(=A) is not C and this
is the assertion in the corollary. O

Lemma 5.3.3 shows that the fixed points of parabolic and loxodromic
elements of G lie in A and hence not in Q. It is not hard to see that there
can be fixed points of elliptic elements of G both in A and in Q. However,
if an elliptic fixed point lies in Q, the stabilizer of that point must be cyclic.

Theorem 5.3.11. Suppose that G is non-elementary and that Q # . If zeQ
then the stabilizer G, is cyclic and finite.

PRrOOF. By virtue of Lemma 5.3.3, if z € Q then every element of the stabilizer
G, is either elliptic or I. Thus by Theorem 4.3.7, there is some { in H* which
is fixed by every g in G,. Now let 4 be the unique semi-circle in H*® which
has end-point z, which passes through { and which is orthogonal to C.
Every elliptic element of G, fixes z and { and so has the axis 4. This means
that every element of G, fixes both end-points of 4 and an examination of
the discrete elementary groups listed in Section 5.1 shows that G, is neces-
sarily a finite cyclic group.

For an alternative proof, suppose that g and & fix z in Q. As both g and h
are elliptic they each have another fixed point. If these other fixed points
are distinct, then by Theorem 4.3.5, [g, h] is parabolic and also fixes z and
this violates Lemma 5.3.3. |

We can use Theorem 5.3.11 to obtain a result concerning the local be-
haviour of a discrete group G near a point in Q or H>.

Theorem 5.3.12. Let G be a discrete non-elementary subgroup of M. Then
(considering only g in G):

(i) each x in H® is the centre of an open hyperbolic ball N such that g(N) = N
if g(x) = x and g(NY " N = & otherwise,

() If Q # &, each x in Q has an open neighbourhood N in Q such that
g(N) = N if g(x) = x and g(N) " N = J otherwise.

ProoF. First, (i) is a direct consequence of the fact that G is a group of
isometries acting discontinuously in H>.

To prove (ii), we may assume that z = 0 and that every g in G, also
fixes co (use Theorem 5.3.11). Now select a disc

N = {z:|z]| < 1}

whose closure is contained in Q. As G acts discontinuously in Q,
g(N) n N # & for only a finite set of g in G. By continuity, for a sufficiently
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small r (depending in this finite set) g(N) n N = & unless g(0) =0 in
which case, g(N) = N. O
If G is a discrete group, then G = {g,, g,, ...} say, and
lg.l = +00 asn— + 0.

We now show this convergence cannot be too slow.

Theorem 5.3.13. Let G be a discrete subgroup of M. Then:

(i) the number n(t) of elements g in G with ||g|| <t is O(t*);
(i) for any s > 4, the series )_ |lg|l ~* converges;
(iii) if Q # J, then the series Y. |g||~* converges.

ProoF¥. The stabilizer G; of j in H* is finite with, say, k elements. Let N be a
hyperbolic ball in H?* with centre j and radius r, say, such that g(N) " N = &
when g € G — G;. Let V(R) be the hyperbolic volume of a hyperbolic ball
of radius R.

Now |ig|| < tisequivalent to

2 cosh p(j, gj) < t2,
(Theorem 4.2.1) and so if ||g|| < t, then
g(N) = {x e H?: p(x, j) < r + cosh™ *(3t%)}.

By adding the volumes of the disjoint images g(N) of N with |g| <t and
by taking into account the order of the stabilizer of j, we obtain

n(t)/k < V(r + cosh™*(3t2))/V(r). (5.3.11)
Now (see [5], p.61)
V(R) = n[sinh(2R) — 2R]

< ne?R)2
and
cosh™'(y) = log(y + [y* — 11'%)
< log(2y).
Thus

n(t) < (kn/2V(r)) exp[2r + 2 log(t?)]
= (kne? 2V (r))t*.

To prove (ii) simply observe that n(1) = 0 so

td
S o= [

geG, gl =t 1

n st) +s J“ n(x) dx

t xs+1

(5.3.12)
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and so (i) implies (ii). Note that in general, this yields

Y. lgl™* = O(log 1)

ligll <t

and indeed, an estimate of the partial sums (5.3.12) for any positive s.

To prove (iii) we can use a similar argument but in Q and with the chordal
metric. We can find an open disc N in Q such that for all g in G, g # I, we
have g(N) n N = (. Then the sum of the areas of the g(N) measured in
the chordal metric converges to at most 4x (the chordal area of €) and it is
only necessary to estimate this area of g(N). Let

g(z) = , ad — bc = 1.

Then the chordal area of g(N) is
J‘f 4dxdy 4J‘ g V(2)|? dx dy
1+ [z (1 + 1g(2)1)?
N

g(N)
_ J‘f 4dx dy
~ Jlaz + b)? + |cz + d]P)?
N

> |lgl ~* (chordal area of N),

the last line being an application of the Cauchy—Schwarz inequality, namely

laz + b|* + |cz + dI*> < (lal* + [bP)(A + |z?) + (c]* + 1)) + |z[?).
0

We end with two result which imply that Q # .

Theorem 5.3.14. Let G be a discrete non-elementary subgroup of M.

() If D is a non-empty open G-invariant set which is not C, then G acts
discontinuously in D;

(i) if D is a non-empty open set such that g(D) n D = ¢ for all g in G except
1, then G acts discontinuously in | ), g(D).

PrOOF. The set E = C — D is non-empty, closed and G-invariant and so by

Theorem 5.3.7, A = E. Thus G acts discontinuously in D (Theorem 5.3.10).

By definition, ( Jg(D) is disconnected and so is not C: now apply (i) to
O]

Ug(D).

Referring to (ii) in the previous theorem, we say that a subdomain D of
C is a G-packing if g(D) n D = f whenever g € G and g # I. This terminol-
ogy enables us to state our next result easily.



§5.3. Discontinuous Groups 103

Theorem 5.3.15. Let G,, G,, . .. be subgroups of .# whose union generates
the group G. Let D; be a G;-packing and suppose that D; L D; = € when
i # j. Suppose also that D*(= (") D) is nonempty. Then G is the free product
of the G;, D*is a G-packing and G acts discontinuously on Ug g(D™®).

ProoF. Consider any element g,---g, of G where g, € G, ,g, # I and

ir>

iy # x4 for any k. First, because D;, is a G; -packing, we have
g1(D*) = g4(D;) = C- D;,.
In fact, it follows (by induction) that

G- 91(D*) = C - D,

for if this is so, then

Im+1Gm - 91)D*) < gps 1(@ - Dim)
< gm+1(Dim+1)
€ -Dp,

Im+1°
We deduce that
Gn 91D < C —-D, «C - D*
so D* is a G-packing. Because D* # (f we must have g,,--- gy # I so G is

the free product of the G;. The last assertion follows from Theorem
5.3.14(ii). U

As an application of Theorem 5.3.15, consider G, = {g) and G, = <h)
where

g(z) = z + 6, hz) = z/(z + 1).

D,nD,

Figure 5.3.2
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Let
D, = {x +iy:|x| < 3}
and
D,=zi|z+1]|>1}n{z:|z - 1| > 1}:

see Figure 5.3.2.

Clearly, D, is a G-packing: as h maps the domain |z + 1| > 1 onto the disc
[z—1] <1 we see that D, is a G,-packing. Obviously D*# @ and
D, U D, = C: thus Theorem 5.3.15 is applicable.

EXERCISE 5.3
1. Verify the details in the Remark following Theorem 5.3.9.

2. Let g and X be as in Lemma 5.3.5. Show that for some w,

N ¢'C) = w}

n=1
and that w is the unique fixed point of g in X.

3. Suppose that G is discrete and non-elementary. Show that Q is the largest domain in

C in which G is a normal family.

4. Suppose that G is non-elementary and contains parabolic elements. Show that A is
also the closure of the set of parabolic fixed points of G.

5. Let G;, D; and D* be as in the application of Theorem 5.3.15 and let G = {g, h).
Prove that A = R' U {00} so G acts discontinuously in the upper and lower half-
planes. Deduce that Q is connected.

Let D be the set obtained by removing the origin from the closure of D*. Prove
that D < Q and deduce that
Uroy=a
feG

6. Let Q;,0_,,Q,, Q_, be four mutually exterior circles in C. For j = 1, 2, let g; map
the exterior of Q _ ; onto the interior of ;. Deduce that G = {g,, g, acts discontinu-
ously on

U 9(D)

geG

where D is the domain lying exterior to all four circles. This is called a Schottky group
on two generators.

§5.4. Jorgensen’s Inequality

We end our general discussion of discreteness and discontinuity with an
account of Jorgensen’s inequality. Later, we shall examine the geometric
interpretation in greater detail in the special case of isometries of the
hyperbolic plane.
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Let A and B be matrices in SL(2, C) representing the Mobius trans-
formations f and g respectively. As A and B are determined by f and g to
within a factor of —1, we see that the commutator ABA™ B! is uniquely
determined by fand g. Thus we may (unambiguously) write

tr(fgf ~'g™!) = tr(ABA™'B™1).

Theorem 5.4.1. (Jgrgensen’s Inequality). Suppose that the Mobius trans-
formations f and g generate a discrete non-elementary group. Then

1tr*(f) — 4] + lt(fgf 197 = 2[ = 1. (54.1)

The lower bound is best possible.

The inequality (5.4.1) can be interpreted in terms of the metric on SL(2, C)
for if {f, g> is non-elementary and discrete, then

|tr2(4) — 4| + |tr(ABA™'B™1) — 2| > 1 (5.4.2)

and so A4 and B cannot both be close to I. Thus (5.4.1) represents a quanti-
tative statement about the isolated nature of I within a discrete group.
It is easy to obtain an explicit numerical bound by writing

A=1+X, AP =1+ X*
and noting that
1X| = X*, X+ X*+ XX*=0:

similar expressions hold for B = I + Y, say. The Cauchy-Schwarz inequality
yields

Itr(X)| < /211X

and a computation shows that [4, B] — I reduces to a sum of six terms,
each being a product of at least two of the matrices X, X*, Y and Y*. If
[X] <eand ||Y| < ¢then (5.4.2) yields

1< /2604 + \/2¢) + 6,/2¢2
=4./2e + 2 + 6,/2)¢

so ¢ > 0-14. Thus we have the following (presumably) crude but explicit
estimate.

Corollary. If A and B generate a non-elementary discrete group then

max{[|4 —I|, |B —I|} > 0-14.

To show that the lower bound in (5.4.1) is best possible, consider the
group generated by

f@=z+1  g&)=-1
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In this case, G is the Modular group arising from SL(2, Z): it is obviously
non-elementary and equality holds in (5.4.1).

PrOOF OF THEOREM 5.4.1. The idea of the proof is contained in Section 1.5
and Theorem 5.1.4. We know that {f, g) is discrete and non-elementary.
Now (5.4.1) holds if f is of order two (because then, tr’(f) = 0) so we
may assume that fis not of order two. Select matrices A and B representing
fand g respectively in SL(2, C) and define

B,=B, B,.,=B,AB;". (5.4.3)

It follows that B, represents g, as defined in the proof of Theorem 5.1.4,
hence (by that Theorem) B, # A for any n. It remains only to show that if
(5.4.2) fails, then for some n we have

B,=A (5.4.4)
and we consider two cases.

Case 1: f'is parabolic.
As the trace is invariant under conjugation we may assume that

11 a b
A - B =
o1} 23
where ¢ # 0 (else (A, B) is elementary). We are assuming that (5.4.2) fails
and this is the assumption that

lc] < 1.
The relation (5.4.3) yields

( b) _ (1 —ae @ )
Cnt1 Gnry - —cr 1+ a,c,)
From this we deduce (by induction) that
&= —(=0"
(which is —¢?" except when n = 0) and as |¢| < 1 we see that
c,— 0.
As |c,| < 1, we have (by induction)
la,| < n + |aol
so a,c¢, — 0 and
Apiy = L.
This proves that
B,yy— 4,
which, by discreteness, yields (5.4.4) for all large n.
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Case 2: f'is loxodromic or elliptic.
Without loss of generality,

where B is as in Case 1 and bc # 0 (else (A4, B) is elementary). The assump-
tion that (5.4.2) fails is

U= |tr?(A) — 4| + |tr(ABA™'B~ 1) — 2]
= (1 + |be|u — 1/ul?
< 1.

The relation (5.4.3) yields

n 41 bn+1 — andnu - bncn/u anbn(l/u - u)
Cn+1 dn+1 cndn(u - l/u) andn/u - bncnu
SO

bn+lcn+1 = _bncn(l + bncn)(u - l/u)z'
We now obtain (by induction)

[bycal < p|be| < |bc]
1)
b,c, =0
and
a,d, =1+ b,c,— L.

Also, we obtain

ayv1 2> U, dn+1 - l/u
Now
[bns1/bnl = la(1/u — u)|
= |u(l/u — u)|
< puM?|ul
SO
b, 14+ u'2\|b,
unii << D) ?

for all sufficiently large n. Thus
b,/u" =0
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and similarly, ¢,u” — 0. It follows that

cnr ()
- A
As {4, B) is discrete, we must have
A""B, A" = A
for all sufficiently large » so for these n, B,, = A which is (5.4.4). O

We end this chapter with several applications of Jgrgensen’s inequality.

Theorem 5.4.2. A non-elementary group G of Mobius transformations is
discrete if and only if for each f and g in G, the group {f, g) is discrete.

Proor. If G is discrete, then so is every subgroup of G. Now suppose that
every subgroup <f, g)> is discrete: we suppose that G is not discrete and
our aim is to reach a contradiction.

As G is not discrete we can find distinct f, f5, ... (1) in G represented
by matrices 4,, A,,... in SL(2, C) which converge to I. By considering
traces, we may assume that no f, is of order two.

For any g in G with matrix B, say, we have

|tr®(4,) — 4] + |tr[4,, B] — 2| >0

and so by Theorem 5.4.1, for n > n(g) say, the group < f;, g» is elementary.
Now G contains two loxodromic elements g and k& with no common
fixed points (Theorem 5.1.3). For n greater than n(g) and n(h), both groups

$g: S WS>

are elementary and discrete and, according to the discussion of such groups
in Section 5.1, we deduce that f, must leave the fixed point pair-of g and of h
invariant. As f, is not elliptic of order two