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Preface 

This text is intended to serve as an introduction to the geometry of the action 
of discrete groups of Mobius transformations. The subject matter has now 
been studied with changing points of emphasis for over a hundred years, the 
most recent developments being connected with the theory of 3-manifolds: 
see, for example, the papers of Poincare [77] and Thurston [101]. About 
1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen 
manuscript appeared. Sadly, the manuscript never appeared in print, and this 
more modest text attempts to display at least some of the beautiful geo­
metrical ideas to be found in that manuscript, as well as some more recent 
material. 

The text has been written with the conviction that geometrical explana­
tions are essential for a full understanding of the material and that however 
simple a matrix proof might seem, a geometric proof is almost certainly more 
profitable. Further, wherever possible, results should be stated in a form that 
is invariant under conjugation, thus making the intrinsic nature of the result 
more apparent. Despite the fact that the subject matter is concerned with 
groups of isometries of hyperbolic geometry, many publications rely on 
Euclidean estimates and geometry. However, the recent developments have 
again emphasized the need for hyperbolic geometry, and I have included a 
comprehensive chapter on analytical (not axiomatic) hyperbolic geometry. 
It is hoped that this chapter will serve as a "dictionary" offormulae in plane 
hyperbolic geometry and as such will be of interest and use in its own right. 
Because of this, the format is different from the other chapters: here, there is 
a larger number of shorter sections, each devoted to a particular result or 
theme. 

The text is intended to be of an introductory nature, and I make no 
apologies for giving detailed (and sometimes elementary) proofs. Indeed, 



viii Preface 

many geometric errors occur in the literature and this is perhaps due, to 
some extent, to an omission of the details. I have kept the prerequisites to a 
minimum and, where it seems worthwhile, I have considered the same topic 
from different points of view. In part, this is in recognition of the fact that 
readers do not always read the pages sequentially. The list of references is 
not comprehensive and I have not always given the original source of a 
result. For ease of reference, Theorems, Definitions, etc., are numbered 
coHectively in each section (2.4.1, 2.4.2, ... ). 

lowe much to many colleagues and friends with whom I have discussed 
the subject matter over the years. Special mention should be made, however, 
ofP. J. Nicholls and P. Waterman who read an earlier version of the manu­
script, Professor F. W. Gehring who encouraged me to write the text and 
conducted a series of seminars on parts of the manuscript, and the notes 
and lectures of L. V. Ahlfors. The errors that remain are mine. 

Cambridge, 1982 ALAN F. BEARDON 
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CHAPTER 1 

Preliminary Material 

§1.1. Notation 

We use the following notation. First, 7L, (f), IR and C denote the integers, the 
rationals, the real and complex numbers respectively: IHl denotes the set of 
quaternions (Section 2.4). 

As usual, IRn denotes Euclidean n-space, a typical point in this being 
x = (xt. ... , xn) with 

Note that if y > 0, then yl/2 denotes the positive square root of y. The 
standard basis of IRn is e1 , ••• , en where, for example, e1 = (1,0, ... , 0). 
Certain subsets of IRn warrant special mention, namely 

and 

En = {x E IRn : Ixl < I}, 

Hn = {x E IRn: Xn > O}, 

sn-l = {XElRn : Ixi = I}. 

In the case of C (identified with 1R2) we shall use .1 and 0.1 for the unit 
disc and unit circle respectively. 

The notation x f---+ X2 (for example) denotes the function mapping x to X2: 

the domain will be clear from the context. Functions (maps or transforma­
tions) act on the left: for brevity, the image f(x) is often written asfx (omitting 
brackets). The composition of functions is written as fg: this is the map 
X f---+ f(g(x». 
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Two sets A and B meet (or A meets B) if A (l B i= 0. Finally, a property 
P(n) holds for almost all n (or all sufficiently large n) if it fails to hold for only 
a finite set of n. 

§1.2. Inequalities 

All the inequalities that we need are derivable from Jensen's inequality: for a 
proof of this, see [90], Chapter 3. 

Jensen's Inequality. Let J1 be a positive measure on a set X with J1(X) = 1, 
let f: X --+ (a, b) be J1-integrable and let ¢: (a, b) --+ IR be any convex function. 
Then 

(1.2.1) 

Jensen's inequality includes Holder's inequality 

as a special case: the discrete form of this is the Cauchy-Schwarz inequality 

for real ai and bi • The complex case follows from the real case and this can, of 
course, be proved by elementary means. 

Taking X = {Xl' ... , xn} and ¢(x) = eX, we find that (1.2.1) yields the 
general Arithmetic-Geometric mean inequality 

where J1 has mass J1j at Xj and Yj = ¢f(x} 
In order to apply (1.2.1) we need a supply of convex functions: a sufficient 

condition for ¢ to be convex is that ¢(2) ~ 0 on (a, b). Thus, for example, 
the functions cot, tan and cot2 are all convex on (0, nI2). This shows, for 
instance, that if {}l, ... , {}n are all in (0, n12) then 

(
{}l + ... + {} ) cot {}l + ... + cot {} cot n S n. 

n n 
(1.2.2) 

As another application, we prove that if X and yare in (0, n12) and 
x + Y < nl2 then 

( X + Y) tan x tan Y s tan2 -2- . (1.2.3) 
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Writing w = (x + y)/2, we have 

tan x + tan y ) -:-------'-- = tan(x + y 
1 - tan x tan y 

2 tan w 
1 - tan2 w· 

As tan is convex, (1.2.1) yields 

tan x + tan y 2 2 tan w 

3 

and the desired inequality follows immediately (noting that tan2 w < 1 so 
both denominators are positive). 

§1.3. Algebra 

We shall assume familiarity with the basic ideas concerning groups and (to a 
lesser extent) vector spaces. For example, we shall use elementary facts about 
the group Sn of permutations of {1, 2, ... , n}: in particular, Sn is generated 
by transpositions. As another example, we mention that if e: G --+ H is a 
homomorphism of the group G onto the group H, then the kernel K of e is a 
normal subgroup ofG and the quotient group G/K is isomorphic to H. 

Let g be an element in the group G. The elements conjugate to g are the 
elements hgh- 1 in G (hEG) and the conjugacy classes {hgh-1:hEG} 
partition G. In passing, we mention that the maps x ~ xgx- 1 and x ~ gxg- 1 

(both of G onto itself) playa special role in the later work. The commutator 
of g and h is 

[g, h] = ghg-1h- 1: 

for our purposes this should be viewed as the composition of g and a 
conjugate of g-l. 

Let G be a group with subgroups G; (i belonging to some indexing set). 
We assume that the union ofthe G; generate G and that different G; have only 
the identity in common. Then G is the free product of the G; if and only if 
each g in G has a unique expression as gl ... gn where no two consecutive g; 
belong to the same Gj • Examples of this will occur later in the text. 

§1.4. Topology 

We shall assume a knowledge of topology sufficient, for example, to discuss 
Hausdorff spaces, connected spaces, compact spaces, product spaces and 
homeomorphisms. In particular, if f is a 1-1 continuous map of a compact 
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space X onto a Hausdorff space Y, then f is a homeomorphism. As special 
examples of topologies we mention the discrete topology (in which every 
subset is open) and the topology derived from a metric p on a set X. An 
isometry f of one metric space (X, p) onto another, say (Y, 0), satisfies 

u(fx,fy) = p(x, y) 

and is necessarily a homeomorphism. 
Briefly, we discuss the construction of the quotient topology induced by a 

given function. Let X be any topological space, let Y be any non-empty set 
and letf: X --+ Ybe any function. A subset Vof Yis open if and only iff-1(V) 
is an open subset of X: the class of open subsets of Y is indeed a topology 
!Yj on Y and is called the quotient topology induced by f. With this topology, 
f is automatically continuous. The following two results on the quotient 
topology are useful. 

Proposition 1.4.1. Let X be a topological space and suppose that f maps X 
onto Y. Let ff be any topology on Y and let !Yj be the quotient topology on Y 
induced by f. 
(1) Iff: X --+ (Y, ff) is continuous, then ff c fif. 
(2) Iff: X --+ (Y, ff) is continuous and open, then ff = fif. 
PROOF. Suppose that f: X --+ (Y, ff) is continuous. If Vis in ff, then f-l(V) 
is in open in X and so V is in fij. If, in addition, f: X --+ (Y, ff) is an open 
map then V in!Yj implies that f-1(V) is open in X and so fU- 1 V) is in ff. 
As f is surjective,f(f - 1 V) = V so !Yj c ff. D 

Proposition 1.4.2. Suppose that f maps X into Y where X and Yare topological 
spaces, Y having the quotient topology !Yj. For each map g: Y --+ Z define 
gl: X --+ Z by gl = gf Then g is continuous if and only if gl is continuous. 

PROOF. Asfis continuous, the continuity of g implies that of gl' Now suppose 
that gl is continuous. For an open subset V of Z (we assume, of course, that 
Z is a topological space) we have 

(gl)-l(V) = f-1(g-lV) 

and this is open in X. By the definition ofthe quotient topology, g-l(V) is 
open in Y so g is continuous. D 

An alternative approach to the quotient topology is by equivalence rela­
tions. If X carries an equivalence relation R with equivalence classes [x], 
then X/R (the space of equivalence classes) inherits the quotient topology 
induced by the map x H [x]. Equally, any surjective function f: X --+ Y 
induces an equivalence relation R on X by xRy if and only if f(x) = f(y) 
and Y can be identified with X/R. As an example, let G be a group of hom eo­
morphisms of a topological space X onto itself and let f map each x in X 
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to its G-orbit [x] in X/G. If X/G is given the induced quotient topology, then 
f: X ..... X/G is continuous. In this case, f is also an open map because if V 
is open in X then so is 

f-1(fV) = U g(V). 
geG 

Finally, the reader will benefit from an understanding of covering spaces 
and Riemann surfaces although most of the material in this book can be read 
independently of these ideas. Some of this is discussed briefly in Chapter 6: 
for further information, the reader is referred to (for example) [4], [6], 
[28], [50], [63] and [100]. 

§l.S. Topological Groups 

A topological group G is both a group and a topological space, the two 
structures being related by the requirement that the maps x f-+ x -1 (of, G 
onto G) and (x, y) f-+ xy (of G x G onto G) are continuous: obviously, 
G x G is given the product topology. Two topological groups are isomorphic 
when there is a bijection of one onto the other which is both a group iso­
morphism and a homeomorphism: this is the natural identification of 
topological groups. 

For any y in G, the space G x {y} has a natural topology with open sets 
A x {y} where A is open in G. The map x f-+ (x, y) is a homeomorphism 
of G onto G x {y} and the map (x, y) f-+ xy is a continuous map of G x {y} 
onto G. It follows that x f-+ xy is a continuous map of G onto itself with 
continuous inverse x f-+ xy-1 and so we have the following elementary but 
useful result. 

Proposition 1.5.1. For each y in G, the map x f-+ xy is a homeomorphism of G 
onto itself: the same is true of the map x f-+ yx. 

A topological group G is discrete if the topology on G is the discrete 
topology: thus we have the following Corollary of Proposition 1.5.1. 

Corollary 1.5.2. Let G be a topological group such that for some g in G, the 
set {g} is open. Then each set {y} (y E G) is open and G is discrete. 

Given a topological group G, define the maps 

cfJ(x) = xax- 1 

and 



6 I. Preliminary Material 

where a is some element of G. We shall be interested in the iterates 4Jn and 
tjJn of these maps and with this in mind, observe that 4J has a unique fixed 
point, namely a. The iterates are related by the equation 

4Jn(x) = tjJn(x)a, 

because (by induction) 

4Jn+ l(X) = [tjJn(x)aJa[tjJn(x)ar 1 

= tjJn(x)a[tjJn(x)r 1 

= tjJn+ l(x)a. 

In certain circumstances, the iterated commutator tjJn(x) converges to the 
identity (equivalently, the iterates 4Jn(x) converge to the unique fixed point 
a of 4J) and if the group in question is discrete, then we must have 4Jn(x) = a 
for some n. For examples of this, see [106J, [111: Lemma 3.2.5J and Chapter 5 
of this text. 

Finally, let G be a topological group and H a normal subgroup of G. 
Then G/H carries both the usual structures of a quotient group and the 
quotient topology. 

Theorem 1.5.3. If H is a normal subgroup of a topological group G, then GIH 
with the usual structures is a topological group. 

For a proof and for further information, see [20J, [23J, [39J, [67J, [69J 
and [94]. 

§1.6. Analysis 

We assume a basic knowledge of analytic functions between subsets of the 
complex plane and, in particular, the fact that these functions map open 
sets of open sets. As specific examples, we mention Mobius transformations 
and hyperbolic functions (both of which form a major theme in this book). 

A map f from an open subset of ~n to ~n is differentiable at x if 

f(y) = f(x) + (y - x)A + Iy - xle(y), 

where A is an n x n matrix and where e(y) --+ 0 as y --+ x. We say that a 
differentiable f is conformal at x if A is a positive scalar multiple Jl(x) of an 
orthogonal matrix B. More generally, f is directly or indirectly conformal 
according as det B is positive or negative. If f is an analytic map between 
plane domains, then the Cauchy-Riemann equations show that f is directly 
conformal except at those z where j<l l(Z) = O. 
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If D is a subdomain of IRn and if A. is a density (that is, a positive continuous 
function) on D we define 

p(x, y) = inf i A.(y(t)) I y(t) I dt, 

the infimum being over all (smooth) curves I' (with derivative y) joining x 
to y in D. It is easy to see that P is a metric on D; indeed, P is obviously sym­
metric, non-negative and satisfies the Triangle inequality. As p(x, x) = 0, 
we need only prove that p(x, y) > 0 when x and yare distinct. Choosing a 
suitably small open ball N with centre x and radius r, we may assume (by 
continuity) that A. has a positive lower bound ..10 on N and that y 1: N. Thus 
A. is at least ..10 on a section of I' of length at least r so p(x, y) > O. 

More generally, let I' = (Yt> ... , Yn) be any differentiable curve in D and 
suppose that 

q(t) = L ai/yt)y;(t)ylt) 
i,i 

is positive on D (except when y = 0). Then we can define a metric as above 
by integrating [q(t)r/ 2 and the metric topology is the Euclidean topology. 

If f is a conformal bijection of D onto the domain D l , then 

1· If(y) - f(x) I _ () 
1m I I - f.l x. 

y .... x Y - x 

and Dl inherits the density (J where 

(J(fx) = A.(x)/f.l(x) 

and hence a metric Pl' In fact, f is then a isometry of (D, p) onto (Dl' Pl)' 
If, in addition, D = D 1 and 

A.(fx)f.l(x) = A.(x), 

then f is an isometry of (D, p) onto itself: in terms of differentials, this con­
dition can be expressed as 

A.(y)ldYI = A.(x)ldxl, y = f(x). 

As an example, let D = H2, A.(z) = l/Im[z] and 

f(z) = az + b, 
ez + d 

where a, b, e and d are real and ad - be > O. Then f maps H2 onto itself 
and as 

Im[fz] = Im[z] lJ<l)(z)l, 
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we see that J is an isometry of (H2, p) onto itself: this is the hyperbolic metric 
onH2. 

We shall need the Poisson kernel for the unit disc L\ and the upper half-plane 
H2. For each z in L\ and each (in oL\, the Poisson kernel is 

1 - Izl2 
P iz, () = I z _ (12· 

Obviously, P,1 is positive on L\ and zero on oL\ except at the point (. Because 

P,1(z, 0 = Re[~ ~ ;l 
we see immediately that P,1 is (for each 0 a harmonic function of z with a 
pole at (. 

The map 

J(z) = (+ z 
(-z 

maps L\ onto {z: x > O} and ( to 00 with 

Re[f(z)] = P iz, O. 
It follows immediately that the level curves of P iz, 0 (for a fixed 0 are the 
images under J - 1 of the vertical lines in H2 and these are circles in L\ which 
are tangent to oL\ at (. 

The most general Mobius transformation preserving L\ is of the form 

(z) = az + c 
g cz + ii' 

and a computation shows that 

1 - Ig(zW = Ig(1)(z)l(l - IzI2). 

As g is a Mobius transformation, we also have 

Ig(z) - g«(W = Iz - (l2Ig(1)(z)llg(1)(01 

and so we obtain the relation 

P igz, gO I g(1)(O I = P ,1(z, O· 
The Poisson kernel for the half-plane H2 is 

{
y if ( = 00, 

P(z, 0 = y/I z _ (12 if ( =1= 00, 

and the reader is invited to explore its properties. 



CHAPTER 2 

Matrices 

§2.1. Non-singular Matrices 

If ad - be #- 0, the 2 x 2 complex matrix 

induces the Mobius transformation 

g(z) = az + b 
ez + d 

(2.1.1) 

of the extended complex plane onto itself. As these transformations are our 
primary concern, it is worthwhile to study the class of2 x 2 complex matrices. 

Given A as in (2.1.1), the determinant det(A) of A is given by 

det(A) = ad - be 

and A is non-singular if and only if det(A) #- 0. If A is non-singular then the 
Inverse 

-Ab) 
).,a' 

A = (ad - be)-l 

exists and is also non-singular. 



10 

For any matrices A and B we have 

and so 

det(AB) = det(A) det(B) 

= det(BA), 

det(BAB- 1) = det(AB- 1 B) 

= det(A). 

2. Matrices 

(2.1.2) 

(2.1.3) 

The class of non-singular 2 x 2 complex matrices is a group with respect 
to the usual matrix multiplication: it is the General Linear Group and is 
denoted by GL(2, C). We shall be more concerned with the subgroup 
SL(2, C), the Special Linear Group, which consists of those matrices with 
det(A) = 1. We denote the identity matrix (of any size) by I although 
sometimes, for emphasis, we use In for the n x n identity matrix. 

Much of the material in this chapter can be written in terms of n x n 
complex matrices. The determinant can be defined (by induction on n) and a 
matrix A is non-singular with inverse A-I if and only if det(A) =1= O. The 
identities (2.1.2) and (2.1.3) remain valid. 

The n x n real matrix A is orthogonal if and only if 

Ixl = IxAI 

for every x in ~n: this is equivalent to the condition A-I = AI where AI 
denotes the transpose of A. Observe that if A is orthogonal then, because 
det(A) = det(AI), we have det(A) is 1 or -1. The class of orthogonal n x n 
matrices is denoted by O(n). 

For ZI,' .. , Zn in en, we write 

A complex n x n matrix is unitary if and only if 

Izi = IzAI 

for every z in en: this is equivalent to the condition A-I = .if! where .if is 
obtained in the obvious way by taking the complex conjugate of each element 
ofA. 

From a geometric point of view, the following result is of interest. 

Selberg's Lemma. Let G be a finitely generated group of n x n complex 
matrices. Then G contains a normal subgroup of finite index which contains no 
non-trivial element of finite order. 

This result is used only once in this text and we omit the proof which can 
be found in [92] and [17], [18]: see also [16], [27], [31], [35], [85] and [104] 
where it is discussed in the context of discrete groups. 
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EXERCISE 2.1 

1. Show that the matrices 

(~ 
are conjugate in SL(2, I[:) but not in SL(2, IR) (the real matrices in SL(2, 1[:)). 

2. Show that A H det(A) is a homomorphism of GL(2, I[:) onto the multiplicative 
group of non-zero complex numbers and identify the kernel. 

3. The centre of a group is the set of elements that commute with every element of the 
group. Show that the centres of GL(2, I[:) and SL(2, I[:) are 

H = {tI: t =ft O}, K = {I, -I} 

respectively. Prove that the groups 

GL(2, I[:)/H, SL(2,I[:)/K 

are isomorphic. 

4. Find the centres HI and KI ofGL(2, IR) and SL(2, IR) respectively. Are 

SL(2, IR)/KI 

isomorphic? 

§2.2. The Metric Structure 

The trace tr(A) of the matrix A in (2.1.1) is defined by 

tr(A) = a + d. 

A simple computation shows that 

tr(AB) = tr(BA) 

and we deduce that 

tr(BAB- 1) = tr(AB- 1B) = tr(A): 

thus tr is invariant under conjugation. Other obvious facts are 

tr(A.A) = A. tr(A) (A. E C) 

and 

tr(At) = tr(A), 

where At denotes the transpose of A. 
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The trace function also acts in an important way on pairs of matrices. 
First, we recall that the class of 2 x 2 matrices is a vector space over the 
complex numbers and the Hermitian transpose A * of A is defined by 

A * = (AY = (~ ~). (2.2.1) 

Given any matrices 

we define [A, B] by 

[A, B] = tr(AB*) 

= aii. + bP + ey + db. 

This is a scalar product on the vector space of all 2 x 2 matrices: explicitly 

(i) [A, A] ~ 0 with equality if and only if A = 0; 
(ii) [A1Al + A2A2, B] = Al[A l , B] + A2[A2, B]; 

and 

(iii) [B, A] = [A, B]. 

Any scalar product, say [x, y], induces a norm [x, xr /2 and hence a 
metric [x - y, x - yr /2 • In our case the norm IIAII is given explicitly by 

IIAII = [A, A]1/2 

= (lal 2 + Ibl 2 + lel 2 + Id12)1/2 

and for completeness, we shall show that this satisfies the defining properties 
of a norm, namely 

(iv) IIAII ~ 0 with equality if and only if A = 0; 
(v) IIAAII = IAI· IIAII (A E C) 

and 

(vi) IIA + BII ::; IIAII + IIBII. 

Of these, (iv) and (v) are trivial: (vi) will be proved shortly. 
We also have the additional relations 

(vii) Idet(A)I.IIA-lll = IIAII; 
(viii) I[A,B]I::; IIAII.IIBII; 

(ix) IIABII ::; IIAII· IIBII 

and 

(x) 2Idet(A)I ::; IIAI12. 
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Of these, (vii) is immediate. To prove (viii) let 

C = AA - p.B, 

13 

where A = [B, A] and p. = IIAI12. By (iv), IICII 2 ?: 0 and this simplifies to 
give (viii). As 

IIA + BI12 = IIAI12 + [A, B] + [B, A] + IIBI12, 

(vi) follows directly from (viii) and (iii). 

To prove (ix), note that if 

AB = (~ ~). 
then, for example, 

Ipl2 = laoc + byl2 

~ (lal2 + IbI 2)(locI 2 + lyI2), 

(the last line by the Cauchy-Schwarz inequality). A similar inequality holds 
for q, rand sand (ix) follows. 

Finally, (x) holds as 

IIAI12 - 2 Idet(A) I ?: lal2 + Ibl 2 + !e12 + Idl2 - 2(ladl + Ibcl) 
= (Ial - Idl)2 + (Ibl - Icl)2 
?: O. 

Next, the norm IIAII induces a metric IIA - BII for 

and 

IIA - BII = 0 if and only if A = B; 

liB - All = II( -l)(A - B)II = IIA - BII 

IIA - BII = II(A - C) + (C - B)II 
~ IIA - CII + IIC - BII· 

The metric is given explicitly by 

IIA - BII = [Ia - ocl 2 + ... + Id - 151 2]1 / 2 

and we see that 

( an bn) -+ (a b) 
Cn dn c d 

in this metric if and only if an -+ a, bn -+ b, Cn -+ c and dn -+ d. Note that this 
is a metric on the vector space of all 2 x 2 matrices. 

Observe that the norm, the determinant and the trace function are all 
continuous functions. The map A f--+ A -1 is also continuous (on GL(2, C)) 
and if An -+ A and Bn -+ B then An Bn -+ AB. These facts show that G L(2, C) is 
a topological group with respect to the metric IIA - BII. 
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EXERCISE 2.2 

1. Show that if A and B are in SL(2, C) then 

(i) tr(AB) + tr(A -1 B) = tr(A) tr(B); 
(ii) tr(BAB) + tr(A) = tr(B) tr(AB); 

2. Matrices 

(iii) tr2(A) + tr2(B) + tr2(AB) = tr(A) tr(B) tr(AB) + 2 + tr(ABA -1 B- 1). 

Replace B by AnB in (i) and hence obtain tr(AnB) as a function oftr(A), tr(B), tr(AB) 
and n. 

2. Find subgroups G1 and G2 of GL(2, C) and a map f of G l onto G2 which is an iso­
morphism but not a homeomorphism. 

3. Let V be the metric space of a112 x 2 complex matrices with metric IIA - BII. Prove 
that as subsets of V, 

(i) GL(2, C) is open but not closed; 
(ii) SL(2, C) is closed but not open; 

(iii) GL(2, ~) is disconnected; 
(iv) GL(2, C) is connected; 
(v) {A: tr(A) = I} is closed but not compact. 

[In (iv), show that every matrix in GL(2, C) is conjugate to an upper triangular 
matrix T and that T can be joined to I by a curve in GL(2, C).] 

4. For an n x n complex matrix A = (aij), define 

tr(A) = all + ... + ann. 

Prove that 

tr(BAB- l ) = tr(A) 

and that tr(AB*) is a metric on the space of all such matrices. 

§2.3. Discrete Groups 

In this section we shall confine our attention to subgroups of the topological 
group GL(2, C). We recall that a subgroup G of GL(2, C) is discrete if and 
only if the subspace topology on G is the discrete topology. It follows that 
if G is discrete and if X, A 1, A 2 , ••• are in G with An -+ X then An = X for all 
sufficiently large n. It is not necessary to assume that X E G here but only that 
X is in GL(2, C). Indeed, in this case, 

A.(An+ 1)-1 -+ Xx- 1 = J 

and so for almost all n, we have An = An+ 1 and hence An = X. 
In order to prove that G is discrete, it is only necessary to prove that one 

point of G is isolated: for example, it is sufficient to prove that 

inf{IIX - JII:XEG,X:F J} > 0, 
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so that {l} is open in G (Corollary 1.5.2). In terms of sequences, G is discrete 
if and only if An --+ I and An E G implies that An = I for almost all n. 

We shall mainly be concerned with SL(2, C) and in this case an alternative 
formulation of discreteness can be given directly in terms of the norm. The 
subgroup G of SL(2, C) is discrete if and only if for each positive k, the set 

{A E G: IIAII ~ k} (2.3.1) 

is finite. If this set is finite for each k, then G clearly cannot have any limit 
points (the norm function is continuous) and so G is discrete. On the other 
hand, if this set is infinite then there are distinct elements An in G with 
IIAnl1 ~ k, n = 1,2, .... If An has coefficients an, bn, Cn and dn then lanl ~ k 
and so the sequence an has a convergent subsequence. The same is true of 
the other coefficients and using the familiar" diagonal process" we see that 
there is a subsequence on which each of the coefficients converge. On this 
subsequence, An --+ B say, for some B and as det is continuous, B E SL(2, C): 
thus G is not discrete. 

The criterion (2.3.1) shows that a discrete subgroup G of SL(2, C) is 
countable. In fact, 

00 

G = U Gn , 
n=l 

where G n is the finite set of A in G with II A II ~ n. Any subgroup of a discrete 
group is also discrete: this is obvious. Finally, if G is discrete then so is any 
conjugate group BGB- \ because X ~ BXB- 1 is a homeomorphism of 
GL(2, C) onto itself. 

There are other more delicate consequences of and criteria for discrete­
ness but these are best considered in conjunction with Mobius transforma­
tions (which we shall consider in later chapters). For a stronger version of 
discreteness, see [11]. We end with an important example. 

Example 2.3.1. The Modular group is the subgroup of SL(2, ~) consisting 
of all matrices A with a, b, c and d integers. This group is obviously discrete. 
More generally, Picard's group consisting of all matrices A in SL(2, C) with 
a, b, c and d Gaussian integers (that is, m + in where m and n are integers) is 
discrete. 

EXERCISE 2.3 

1. Show that {2n I: n E Z} is a discrete subgroup of GL(2, C) and that in this case, 
(2.3.1) is infinite. 

2. Find all discrete subgroups of GL(2, C) which contain only diagonal matrices. 

3. Prove that a discrete subgroup of GL(2, C) is countable. 

4. Suppose that a subgroup G of GL(2, IR) contains a discrete subgroup of finite index. 
Show that G is also discrete. 
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§2.4. Quaternions 

A quat ern ion is a 2 x 2 complex matrix of the form 

q = ( ~ ~): -w Z 
(2.4.1) 

the set of quaternions is denoted by IHI (after Hamilton). The addition and 
multiplication of quaternions is as for matrices and the following facts are 
easily verified: 

(i) IHI is an abelian group with respect to addition; 
(ii) the non-zero quaternions form a non-abelian group with respect to 

multiplication; 
(iii) IHI is a four-dimensional real vector space with basis 

I = (~ 
. (0 J= -1 

i = G _~). 
k = (~ ~). 

(note that I is not the same as 1, likewise i =F i). 

As multiplication of matrices is distributive, the multiplication of 
quaternions is determined by the products of the four elements I, i, j and k. 
In fact, these elements generate a multiplicative group of order 8 and 

i 2 = j2 = k 2 = -I; 
ij = k, jk = i, ki = j; 
ji = - k, kj = - i, ik = - j. 

The quaternions contain a copy of IC for the map 

x + iy 1-+ xl + yi 

of C into IHI clearly preserves both addition and multiplication. Returning 
to (2.4.1) we write x + iy = z and u + iv = w so that 

q = (xl + yi) + (uj + vk) 

= (xl + yi) + (ul + vi)j. (2.4.2) 

In view of this, it is convenient to change our notation and rewrite (2.4.2) 
in the form 

q = z + wj, 

where such expressions are to be multiplied by the rule 

(Zl + Wd)(Z2 + W2j) = (ZlZ2 - WIW2) + (ZlW2 + W1Z2)j· 



§2.S. Unitary Matrices 

In particular, if z and ware in IC, then 

jz = zj 

and 

(z + wj)(z - wj) = IZl2 + Iw12. 

This last identity gives the form of the multiplicative inverse, namely 

(z + wj)-l = (z - wj)/(lzI 2 + Iw12) 

where, of course, 

EXERCISE 2.4 
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1. Show that the non-zero quaternions form a multiplicative group with centre 
{t/: t real and non-zero}. 

2. Show that SL(2, IC) is not compact whereas 

{qEIHl: det(q) = I} 

is compact. 

3. Let S be the set of quaternions of the form z + tj where t is real. Show that S is in­
variant under the map q 1--+ jqT 1. By identifying z + tj with (x, y, t) in [R3, give a 
geometric description of this map. 

4. As in Question 3, show that the map q 1--+ kqk -1 also leaves S invariant and give a 
geometric description of this map. 

§2.5. Unitary Matrices 

The matrix A is said to be unitary if and only if 

AA* = I, 

where A* is given by (2.2.1). Any unitary matrix satisfies 

1 = det(A) det(A*) = Idet(AW 

and we shall focus our attention on the class SU(2, IC) of unitary matrices 
with determinant one. 

Theorem 2.5.1. Let A be in SL(2, IC). The following statements are equivalent 
and characterize elements of SU(2, IC). 

(i) A is unitary; 
(ii) IIAI12 = 2; 

(iii) A is a quaternion. 
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I n particular 

SU(2, q = SL(2, q n IHI. 

PROOF. Suppose that 

ad - bc = 1, 

then 

(2.5.1) 

and 

(2.5.2) 

First, (2.5.1) shows that if A is unitary then IIAI12 = 2. Next, if IIAI12 = 2 we 
deduce from (2.5.2) that a = a and b = -c so A is a quaternion. Finally, if 
A is a quaternion, then a = a, b = - c and recalling that ad - bc = 1, we 
find from (2.5.1) that A is unitary. 0 

A simple computation shows that each A in SU(2, q preserves the quad­
ratic form Izl2 + Iw12: explicitly, if 

(z, w)A = (z', w'), 

then 

Iz'12 + Iw'12 = IzI2 + Iw12. 
A similar result holds for column vectors and so for any matrix X, 

IIAXII = IIXAII = IIXII· 
This shows that 

IIAXA- 1 - AYA- 1 11 = IIA(X - Y)A- 1 11 = IIX - YII 
and so we have the following result. 

Theorem 2.5.2. Suppose that A is in SU(2, q. Then the map X 1--+ AXA- 1 

is an isometry of the space of matrices onto itself. 

Remark. Theorems 2.5.1 and 2.5.2 will appear later in a geometric form. 

EXERCISE 2.5 

1. Show that SU(2, q is compact and deduce that any discrete subgroup of SU(2, q 
is finite. 

2. Is SU(2, q connected? 
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3. The group of real orthogonal matrices A(AA' = 1) in SL(2, IR) is denoted by SO(2). 
Show that there is a map of SO(2) onto the unit circle in the complex plane which is 
both an isomorphism and a homeomorphism. 

4. Show that every matrix in SU(2, q can be expressed in the form 

o ) (cos 1> 
e- iB sin 1> 

for some real e, 1> and 1/1. 

- sin 1» (eil/l 
cos 1> 0 



CHAPTER 3 

Mobius Transformations on ~n 

§3.1. The Mobius Group on ~n 

The sphere S(a, r) in IRn is given by 

S(a,r) = {XElRn: Ix - al = r} 

where a E IRn and r > O. The reflection (or inversion) in S(a, r) is the function 
¢ defined by 

¢(x) = a + (IX ~ al)\x - a). 

In the special case of S(O, 1) ( = sn -1), this reduces to 

¢(x) = x/lxl 2 

(3.1.1) 

and it is convenient to denote this by x ~ x* where x* = xlix 12. The general 
reflection (3.1.1) may now be rewritten as 

¢(x) = a + r2(x - a)*. 

The reflection in S(a, r) is not defined when x = a and this is overcome by 
adjoining an extra point to IRn. We select any point not in IRn (for any n), 
label it 00 and form the union 

iRn = IRn u {oo}. 

As I ¢(x) I -+ + 00 when x -+ a it is natural to define ¢(a) = 00: likewise, we 
define ¢( 00) = a. The reflection ¢ now acts on iRn and, as is easily verified, 
¢2(X) = x for all x in iRn. Clearly ¢ is a 1-1 map of iRn onto itself: also, 
¢(x) = x if and only if x E S(a, r). 
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We shall call a set P(a, t) a plane in iRn if it is of the form 

P(a, t) = {x E !Rn : (x. a) = t} U {oo}, 

where a E !Rn, a 1= 0, (x. a) is the usual scalar product L xjaj and t is real. 
Note that by definition, 00 lies in every plane. The reflection 4J in P(a, t) (or, 
as we sometimes say, in (x . a) = t) is defined in the usual way; that is 

4J(x) = x + Aa, 

where the real parameter A is chosen so that t(x + 4J(x» is on P(a, t). This 
gives the explicit formula 

4J(x) = x - 2[(x . a) - t]a*, (3.1.2) 

when x E !Rn and, of course, 4J( (0) = 00. Again, 4J acts on iRn, 4J2(X) = x for 
all x in iRn and so 4J is a 1-1 map of iRn onto itself. Also, 4J(x) = x if and only if 
x E P(a, t). 

It is clear that any reflection 4J (in a sphere or a plane) is continuous in iRn 
except at the points 00 and 4J -1( (0) where continuity is not yet defined. We 
shall now construct a metric on iRn and shall show that 4J is actua:1ly con­
tinuous (with respect to this metric) throughout iRn. 

We first embed iRn in iRn+ 1 in the natural way by making the points 
(Xl' ... , xn) and (Xl, ... , xn , 0) correspond. Specifically, we let x ~ x be 
the map defined by 

X=(Xl,···,Xn ,O), 

and, of course, 00 = 00. Thus x~x is a 1-1 map of iRn onto the plane 
X n +l = 0 in iRn+l. The plane X n +l = 0 in iRn+1 can be mapped in a 1-1 
manner onto the sphere 

sn = {y E !Rn + 1: I y I = I} 

by projecting.x towards (or away from) en + 1 until it meets the sphere sn 
in the unique point n(x) other than en + l' This map n is known as the 
stereographic projection of iRn onto sn. 

It is easy to describe n analytically. Given x in !Rn, then 

n(x) = x + t(en + 1 - x), 

where t is chosen so that I n(x) I = 1. The condition I n(xW = 1 gives rise 
to a quadratic equation in t which has the two solutions t =;= .1 and (as 
Ixl = Ixl) 

We conclude that 

Ixl2 - 1 
t=lxI2 +1' 

~ (2Xl 2xn Ix12...:. 1) 
n(x) = Ixl2 + 1 '''' Ixl2 + l' Ixl2 + 1 ' 

and, by definition, n( (0) = en + l' 

X E !Rn, 
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As X ~ n(x) is a 1-1 map of IR" onto S" we can transfer the Euclidean 
metric from S" to a metric d on IR". This is the chordal metric d and is defined 
on IR" by 

d(x, y) = In(x) - n(y)l, X, Y E IRn. 
A tedious (but elementary) computation now yields an explicit expression 
for d, namely 

1 (1 + 1 X l;j~2Zt ~ 1 Y 12)1/2 if X, Y :I: 00; 

d(x, y) = 
2 

(1 + 1 X 12)1/2 if Y = 00. 

A shorter proof of this will be given in Section 3.4. 

(3.1.3) 

This formula shows that the metric d restricted to IRn induces the same 
topology as does the Euclidean metric; thus a function from a subset of IRn 
to IRn is continuous with respect to both or to neither of these two metrics. It 
is now easy to see that each reflection 1J is a homeomorphism (with respect 
to d) of IRn onto itself. Indeed, as 1J = 1J - 1 we need only show that 1J is 
continuous at each point x in IRn and this is known to be so whenever x is 
distinct from 00 and 1J( 00 ) ( = 1J - 1 ( 00 ». If 1J denotes reflection in S( a, r) then, 
for example, 

d(1J(x),1J(a» = d(1J(x), 00) 

2 

-0 

as x-a. Thus 1J is continuous at x = a: a similar argument shows 1J to be 
continuous at 00 also. If t/J is the reflection in the plane P(a, t) then (as is 
easily seen) 

as 1 x 1 - 00 and so 1 t/J(x) 1 - + 00. This shows that t/J is continuous at 00 

and so is also a homeomorphism of IRn onto itself. 

Definition 3.1.1. A Mobius transformation acting in IR" is a finite composition 
of reflections (in spheres or planes). 

Clearly, each Mobius transformation is a homeomorphism of IRn onto 
itself. The composition of two Mobius transformations is again a Mobius 
transformation and so also is the inverse of a Mobius transformation for 
if 1J = 1J1 .. ·1Jm (where the 1Jj are reflections) then 1J- 1 = 1Jm .. ·1J1' Finally, 
for any reflection 1J say, 1J2(X) = x and so the identity map is a Mobius 
transformation. 
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Definition 3.1.2. The group of Mobius transformations acting in ~n is 
called the General Mobius group and is denoted by GM(~n). 

Let us now consider examples of Mobius transformations. First, the 
translation x 1-+ x + a, a E IRn, is a Mobius transformation for it is the reflec­
tion in (x. a) = 0 followed by the reflection in (x. a) = !laI2 • Next, the 
magnification x 1-+ kx, k > 0, is also a Mobius transformation for it is the 
reflection in S(O, 1) followed by the reflection in S(O, .jk). 

If tjJ and tjJ* denote reflections in S(a, r) and S(O, 1) respectively and if 
I/I(x) = rx + a, then (by computation) 

(3.1.4) 

As 1/1 is a Mobius transformation, we see that any two reflections in spheres 
are conjugate in the group GM(~n). 

As further examples of Mobius transformations we have the entire class 
of Euclidean isometries. Note that each isometry tjJ of IRn is regarded as 
acting on ~n with tjJ( 00) = 00. 

Theorem 3.1.3. Each Euclidean isometry of IRn is a composition of at most 
n + 1 reflections in planes. In particular each isometry is a Mobius transforma­
tion. 

PROOF. As each reflection in a plane is an isometry, it is sufficient to consider 
only those isometries tjJ which satisfy tjJ(O) = O. Such isometries preserve 
the lengths of vectors because 

I tjJ(x) I = ItjJ(x) - tjJ(O) I = Ix - 01 = Ixl 

and also scalar products because 

2(tjJ(x).tjJ(y» = I tjJ(x) 12 + I tjJ(y) 2 -ltjJ(x) - tjJ(yW 
= Ixl2 + lyl2 - Ix _ yl2 

= 2(x. y). 

This means that the vectors tjJ(el), ... , tjJ(en) are mutually orthogonal and 
so are linearly independent. As there are n of them, they are a basis of the 
vector space IRn and so for each x in IRn there is some J.I. in IRn with 

n 

tjJ(x) = L J.l.jtjJ(eJ 
j= 1 

But as the tjJ(e) are mutually orthogonal, 

J.l.j = (tjJ(x). tjJ(ej» 
= (x. e) 

= Xj' 
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Thus 

4>et xjej) = J1 xA)(e) 

and this shows that 4> is a linear transformation of ~n into itself. As any 
isometry is 1-1, the kernel of 4> has dimension zero: thus 4>(~n) = ~n. 

If A is the matrix of 4> with respect to the basis e1, ... , en then 4>(x) = xA 
and A has rows 4>(e1), ... , 4>(en). This shows that the (i,j)th element of the 
matrix AAt is (4)(ei)' <J>(e)) and as this is (ei' e), it is 1 if i = j and is zero 
otherwise. We conclude that A is an orthogonal matrix. 

We shall now show that 4> is a composition of at most n reflections in 
planes. First, put 

a1 = 4>(e1) - e1' 

If a1 =1= 0, we let 1/1 1 be the reflection in the plane P(a1, 0) and a direct computa­
tion using (3.1.2) shows that 1/11 maps 4>(e1) to e1' If a1 = 0 we let 1/11 be the 
identity so that in all cases, 1/11 maps 4>(e1) to e1' Now put 4>1 =1/114>: thus 
4> 1 is an isometry which fixes 0 and e l' 

In general, suppose that 4>k is an isometry which fixes each of 0, e1"'" ek 
and let 

ak+ 1 = 4>k(ek+ 1) - ek+1' 

Again, we let I/Ik+ 1 be the identity (if ak+ 1 = 0) or the reflection in P(ak+ h 0) 
(if ak + 1 =1= 0) and exactly as above, 1/1 k +1 4>k fixes 0 and ek + l' In addition, if 
1 ~j ~ k then 

and so by (3.1.2), 

(ej.ak+1) = (ej·4>k(ek+1)) - (ej.ek+1) 

= (4)k(e). 4>k(ek+i)) - 0 
= (ej. ek+1) 
=0 

I/Ik+1(e) = ej. 

As 4>k also fixes 0, e1"'" ek we deduce that I/Ik+14>k fixes each of 0, e1' 
... , ek + l' In conclusion, then, there are maps 1/1 j <each the identity or a reflec­
tion in a plane) so that the isometry 1/1 n ••• 1/114> fixes each of 0, e 1, ... , en' By 
out earlier remarks, such a map is necessarily a linear transformation and so is 
the identity: thus 4> == I/I~ .. ·I/In. This completes the proof of Theorem 3.1.3 
as any isometry composed with a suitable reflection is of the form 4>. 0 

There is an alternative formulation available. 

Theorem 3.1.4. A function 4> is a Euclidean isometry if and only if it is of the 
form 

4>(x) = xA + xo, 

where A is an orthogonal matrix and Xo E ~n. 
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PROOF. As an orthogonal matrix preserves lengths, it is clear that any ¢ of 
the given form is an isometry. Conversely, if ¢ is an isometry, then ¢(x) - ¢(O) 
is an isometry which fixes the origin and so is given by an orthogonal matrix 
(as in the proof of Theorem 3.1.3). D 

More detailed information on Euclidean isometries is available: for 
example, we have the following result. 

Theorem 3.1.5. Given any real orthogonal matrix A there is a real orthogonal 
matrix Q such that 

o 
where r, s, t are non-negative integers and 

Is 

-sin 8k). 

cos 8k 

o 

Any Euclidean isometry which fixes the origin can therefore be represented 
(with a suitable choice of an orthonormal basis) by such a matrix and this 
explicitly displays all possible types of isometries. 

We now return to discuss again the general reflection ¢. It seems clear 
that ¢ is orientation-reversing and we shall now prove that this is so. 

Theorem 3.1.6. Every reflection is orientation-reversing and conformal. 

PROOF. Let ¢ be the reflection in pea, t). Then we can see directly from (3.1.2) 
that ¢ is differentiable and that ¢(1)(x) is the constant symmetric matrix 
(¢i) where 

(bij is the Kronecker delta and is 1 if i = j and is zero otherwise). We prefer 
to write this in the form . 

¢'(x) = I - 2Qa, 

where Qa has elements aia)laI2. Now Qa is symmetric and Q; = Qa, so 

This shows that ¢'(x) is an orthogonal matrix and so establishes the con­
formality of ¢. 
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Now let D = det cjJ'(x). As cjJ'(x) is orthogonal, D =f. 0 (in fact, D = ± 1). 
Moreover, D is a continuous function of the vector a in /R" - {O} and so is a 
continuous map of /R" - {O} into /R 1 - {O}. As /R" - {O} is connected (we 
assume that n ?: 2), D is either positive for all non-zero a or is negative for 
all non-zero a. If a = e1, then cjJ becomes 

and in this case, D = -1. We conclude that for all non-zero a, D < 0 and so 
every reflection in a plane is orientation reversing. 

A similar argument holds for reflections in spheres. First, let cjJ be the 
reflection in S(O, 1). Then for x =f. 0, the general element of cjJ'(x) is 

so 

This shows (as above) that cjJ is conformal at each non-zero x. 
Now let D(x) be det cjJ'(x). As cjJ(cjJ(x» = x, the Chain Rule yields 

D(cjJ(x»D(x) = 1 

and so exactly as above, D is either positive throughout /R" - {O} or negative 
throughout /R" - {O}. Taking x = e 1, a simple computation yields D(el) = 
-1 and so D(x) < 0 for all non-zero x. 

The proof for the general reflection is now a simple application of (3.1.4): 
the details are omitted. 0 

The argument given above shows that the composition of an even number 
of reflections is orientation-preserving and that the composition of an odd 
number is orientation-reversing. 

Definition 3.1.7. The Mobius group M(iR") acting in iR" is the subgroup of 
GM(iR") consisting of all orientation-preserving Mobius transformations in 
GM(iR"). 

We end this section with a simple but useful formula. If a is the reflection 
in the Euclidean sphere S(a, r) then 

la(y) - a(x) I = r21(Y - a)* - (x - a)*1 

- r2 _ + .,-----_--,-,;-[ 1 2(x-a).(y-a) 1 J1/ 2 

- Iy - al 2 Ix - al 2 1y - al 2 Ix - al 2 

r21Y - xl 
(3.1.5) 
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This shows that 

lim lu(x + h) - u(x) I = ,2 2 

h~O Ihl Ix - al 

and this measures the local magnification of u at x. 

EXERCISE 3.1 

1. Show that the reflections in the planes x . a = 0 and x . b = 0 commute if and only 
if a and b are orthogonal. 

2. Show that if cP is the reflection in x . a = t, then 

IcP(xW = Ixl2 + O(x) 

as Ixl-+ + 00. 

3. Let cP be the reflection in S(a, r). Prove analytically that 

(i) cP(x) = x if and only if x E S(a, r); 
(ii) cP2(x) = x; 

(iii) Ix - al.lcP(x) - al = r2. 

Repeat (with a modified (iii)) for the reflection in P(a, t). 

4. Prove (analytically and geometrically) that for all non-zero x and y in IR", 

Ixl.ly - x*1 = Iyl·lx - Y*I. 

5. Show that if cPt denotes reflection in S(ta, t laD then 

X f-+ cP(x) = lim cPt(x) 
t --t + 00 

denotes reflection in the plane x . a = o. 
6. Verify the formula (3.1.3). 

7. Let 1t be the stereographic projection of x. + 1 = 0 onto SR. Show that if YES" then 

-I 1 
1t (y) = (1 )(YI, ... , Y.,O). 

- Y.+ 1 

8. Let cP denote reflection in S(e" + I, j2). Show that cP = 1t on the plane x. + 1 = 0 
and find cP(H" + I). 

9. Show that the map z f-+ 1 + z in IC is a composition of three (and no fewer) reflec­
tions. (Thus n + 1 in Theorem 3.1.3 can be attained.) 

10. Use Theorem 3.1.5 and Definition 3.1.7 to show that if n is odd and if t/J E M(IR") 
has a finite fixed point, then t/J has an axis (a line of fixed points). 
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§3.2. Properties of Mobius Transformations 

We shall show that a Mobius transformation maps each sphere and plane 
onto some sphere or plane and because of this, it is convenient to modify our 
earlier terminology. Henceforth we shall use "sphere" to denote either a 
sphere of the form S(a, r) or a plane. A sphere S(a, r) will be called a Euclidean 
sphere or will simply be said to be of the form S(a, r). 

Theorem 3.2.1. Let 4J be any Mobius transformation and ~ any sphere. Then 
4J(~) is also a sphere. 

PROOF. It is easy to see that 4J(~) is a sphere whenever 4J is a Euclidean 
isometry: in particular, this holds when 4J is the reflection in a plane. It is 
equally easy to see that 4J(~) is a sphere when 4J(x) = kx, k > O. 

Each sphere ~ is the set of points x in IR" which satisfy some equation 

elxl2 - 2(x.a) + t = 0, 

where e and t are real, a E IR" and where, by convention, 00 satisfies this 
equation if and only if e = O. 

If x E~, then writing y = x* we have 

e - 2(y.a) + tlyl2 = 0 

and this is the equation of another sphere ~ l' Thus if 4J* is the map x H x* 
then 4J*(~) c ~1' The same argument shows that 4J*(~1) c ~ and so 
4J*(~) = ~1' 

By virtue of (3.1.4) and the above remarks, 4J(~) is a sphere whenever 4J is 
the reflection in any Euclidean sphere. As each Mobius transformation is a 
composition of reflections the result now follows. D 

Any detailed discussion of the geometry of Mobius transformations 
depends essentially on Theorem 3.2.1 and the fact that Mobius transforma­
tions are conformal. A useful substitute for conformality is the elegant 
concept of the inversive product (~, ~') of two spheres ~ and ~'. This is an 
explicit real expression which depends only on ~ and ~' and which is in­
variant under all Mobius transformations. When ~ and ~' intersect it is a 
function of their angle of intersection: when ~ and ~' are disjoint it is a 
function of the hyperbolic distance between them (this will be explained 
later). Without doubt, it is the invariance and explicit nature of (~, ~') which 
makes it a powerful and elegant tool. 

The equation defining a sphere ~, say S(a, r) or P(a, t), is 

'lxl2 - 2(x .a) + lal2 - r2 = 0, 

or 

-2(x. a) + 2t =0, 
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respectively, and these can be written in the common form 

aolxI2 - 2(x. a) + an+l = 0, 

where a = (at. ... , an). The coefficient vector of L, namely (ao, al' ... , an' 
an + 1) is not uniquely determined by L but it is determined to within a real 
non-zero multiple. Moreover if (ao, ... , an + 1) is any coefficient vector of L 
then (as is easily checked in the two cases) 

I a 12 > ao an + 1 . 

Definition 3.2.2. Let Land L' have coefficient vectors (ao, ... , an+d and 
(bo, ... , bn + 1) respectively. The inversive product (L, L') of Land L' is 

, 12(a.b) - aObn+1 - an+lbol 
(L, L) = 2(la12 _ aoan+l)1/2(lbI2 _ bobn+l )1/2. (3.2.1) 

Note that this is uniquely determined by Land L': the bracketed terms 
in the denominator are positive and we take positive square roots. If we 
define a bilinear form q on IRn + 2 by 

q(x, y) = 2(X1Yl + ... + xnYn) - (XOYn+ 1 + Xn+ lYO), 

then we can write the inversive product more concisely as 

, I q(a', b') I 
(L, L) = I q(a', a') 11/21 q(b', b') 11/2 ' 

where a' = (ao, al' ... , an' an+1) and similarly for b'. 
It is helpful to obtain explicit expressions for (L, L') in the following 

three cases. 

Case I. If L = S(a, r) and L' = S(b, t) then 

(L, L') = I r2 + t2 ~r~ a - b 12 1. (3.2.2) 

Case II. If L = S(a, r) and L' = P(b, t) then 

(L L') = I(a.b) - tl 
, rlbl· (3.2.3) 

Case III. IfL = P(a, r) and L' = P(b, t) then 

(L L') = I(a. b)1 
, lallbl· (3.2.4) 

These formulae are easily verified. Note that in all cases, if Land L' intersect 
then (L, L') = cos e where e is one ofthe angles of intersection. In particular, 
(L, L') = ° if and only if Land L' are orthogonal. Observe also that in Case II, 

(L, L') = b/r, 
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where () is the distance of the centre of S(a, r) from the plane P(b, t): thus 
(I:, I:') = 0 if and only if a E P(b, t). 

We shall now establish the invariance of (I:, I:'). 

Theorem 3.2.3. For any Mobius transformation 4J and any spheres I: and I:', 

(4J(I:), 4J(I:')) = (I:, I:'). 

PROOF. A Mobius transformation maps a sphere I: to a sphere I:' and so 
induces a map 

between the coefficient vectors (to within a scalar multiple) of I: and I:'. 
For example, an orthogonal transformation x 1---+ xA = y or ~n (and this 
includes all reflections in planes through the origin) satisfies 

(x. a) = (xA . aA) = (y . aA) 

and so maps the sphere 

aolxl2 - 2(x. a) + an+l = 0 

to the sphere 

aolyl2 - 2(y.aA) + an+l = o. 
The induced map between the coefficients is thus 

a 1---+ aA, 

and it is clear that (3.2.1) is invariant if both coefficient vectors are subjected to 
this transformation. We deduce that (I:, I:') is invariant under the map x 1---+ xA. 

In a similar way, the maps (i) x 1---+ kx (k > 0); (ii) x 1---+ x*; (iii) x 1---+ x + u 
induce the maps: 

(i) (ao, aI' ... , an, an+ 1) 1---+ (ao, kal, ... , kan, Pan+ 1); 
(ii) (ao, aI' ... , an, an+ 1) 1---+ (an+ 1, aI' ... , an, ao); 

(iii) (ao, aI' ... , an, an+ 1) 1---+ (ao, al + ao Ul' ... , an + aoun, an+ 1 

+ 2(a·u) + aoluI 2). 

It is easy to check that (3.2.1) remains invariant under all of these trans­
formations and, as the corresponding Mobius transformations generate the 
Mobius group, the proof is complete. Algebraically, one is simply observing 
that a Mobius transformation induces a linear transformation with matrix 
A on the coefficient vectors and that A leaves the quadratic form q invariant. 

o 

The proof of the next result illustrates the use of the inversive product in 
place of conformality. 
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Theorem 3.2.4. Let L be any sphere, a the reflection in L and I the identity 
map. If ¢ is any Mobius transformation which fixes each x in L, then either 
¢ = I or ¢ = a. 

PROOF. First, we consider the case when L is the plane Xn = 0 in ~n. Let 
L' = Sea, r) where a ELand r > O. As 00 E L, ¢ fixes 00: thus ¢ maps L' to a 
Euclidean sphere, say Lit = S(b, t). As a E L we have (L, L') = O. The 
in variance described by Theorem 3.2.3 yields (L, Lit) = 0 and so bEL: thus 
an = bn = O. Each point of L n L' is fixed by ¢, thus 

(Xl - a l )2 + ... + (xn - l - an _I)2 = r2, 

if and only if 

(Xl - bl )2 + ... + (xn - l - bn _ I )2 = t 2 • 

We conclude that a = band t = r: hence ¢ maps L' onto itself. 
Next, we select any X not in L and let y = ¢(x). Now select any a in Land 

let r = I x - a I so x E Sea, r). As ¢ preserves Sea, r), y is on Sea, r) and so 

Ixl2 - 2(x. a) + lal2 = lyl2 - 2(y. a) + lal2: 

note that this holds for all a in L. Taking a = 0 we find that I x I = I y I. As a 
consequence of this we find that for all a in L, 

(x. a) = (y. a) 

and taking a to be el, ... ,en-l we find that xj=yj,j= 1, ... ,n-1. 
As Ixl = Iyl we now see that Yn = ±xn: thus ¢(x) (= y) is either x or a(x). 
As ¢ leaves L invariant, it permutes the components of ~n - L and so 

¢ = I or ¢ = a. 

We can now complete the proof in the general case. First, given any 
sphere L there exists a Mobius transformation I/J which maps L onto the 
plane Xn = 0: we omit the details of this. Now let a be the reflection in L 
and 1'/ the reflection in plane Xn = O. The transformation l/JaI/J-I fixes each 
point of the plane Xn = 0 and is not the identity: thus by the first part of the 
proof, l/JaI/J-I = 1'/. 

If ¢ is now any Mobius transformation which fixes each point of L, then 
I/J¢I/J-I is either I or 1'/: thus ¢ is either I or a. 0 

This proof also shows that any reflection a is conjugate to the fixed 
reflection 1'/. Thus we have obtained the following generalization of (3.1.4). 

Corollary. Any two reflections are conjugate in GM(iR n). 

There is an alternative formulation of Theorem 3.2.4 in terms of inverse 
points. Let a denote reflection in the sphere L: then x and yare inverse 
points with respect to L if and only if y = a(x) (and, of course, x = a(y)). 
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Now let x and y be inverse points with respect to ~, let </J be any Mobius 
transformation and let u 1 be the reflection in the sphere </J(~). According to 
Theorem 3.2.4, </J -1U 1 </J = u or equivalently, u 1 </J = </Ju. This is the same as 
saying that for all x, U1 maps </J(x) to </J(y): thus </J(x) and </J(y) are inverse 
points with respect to </J(~). We state this as a second formulation of Theorem 
3.2.4. 

Theorem 3.2.5. Let x and y be inverse points with respect to the sphere ~ and 
let </J be any Mobius transformation. Then </J(x) and </J(y) are inverse points 
with respect to the sphere </J(~). 

Theorem 3.2.6. The points x and yare inverse points with respect to the sphere 
~ if and only if every sphere through x and y is orthogonal to ~. 

PROOF. This is clearly true when ~ is a plane: it is true in general by the 
invariance of both inverse points and orthogonality. 0 

We end this section with a brief discussion of cross-ratios. Given four 
distinct points x, y, u, v in ~n, the cross-ratio of these points is 

d(x, u) d(y, v) 
[x, y, u, v] = d(x, y) d(u, v)· (3.2.5) 

By virtue of (3.1.3) (the expression for the chordal distance d) we also have 

Ix - ul·ly - vi 
[x, y, u, v] = I I I I' x-y· u-v 

(3.2.6) 

with appropriate interpretations (which are completely justified by (3.2.5» 
when one of the variables is 00. 

Theorem 3.2.7. A map </J: IRn --+ IRn is a Mobius transformation if and only ifit 
preserves cross-ratios. 

PROOF. As each Mobius map that changes Euclidean distance by a constant 
factor leaves the expression (3.2.6) invariant, it is only necessary to consider 
the map x H x*. As (see (3.1.5» 

I * * I Ix - yl 
x - y = Ixllyl' 

cross-ratios are also invariant under x H x*. It follows that all Mobius maps 
preserve cross-ratios. 

Suppose now that </J: IRn --+ IRn preserves cross-ratios. By composing </J 
with a Mobius transformation, we see that it is sufficient to consider only the 
case when </J( 00) = 00. Take four distinct points x, y, u, v in ~n: as 

[00, y, u, v]/[x, y, 00, v] 
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is invariant under ¢, we obtain 

I ¢(x) - ¢(y) I I ¢(u) - ¢(v) I 
Ix - yl lu - vi 

The restriction that {x, y} n {u, v} = 0 is unnecessary (compare each side 
with a similar expression for two points a and b chosen to be distinct from all 
of x, y, u, v) so ¢ is a Euclidean similarity and so is a Mobius map. 0 

EXERCISE 3.2 

1. Verify (3.2.2), (3.2.3) and (3.2.4). 

2. Verify the details in the proof of Theorem 3.2.3. 

3. Let d be the chordal metric in [R". Show that 

d(x*, y*) = d(x, y). 

§3. 3. The Poincare Extension 

Poincare observed that each Mobius transformation ¢ acting in ~n has a 
natural extension to a Mobius transformation $ acting in ~n+ 1 and that in 
this way, GM(~n) may be regarded as a subgroup of GM(~"+ 1). This exten­
sion depends on the embedding 

x ~ x = (Xl' ... , x", 0), 

of ~n into ~n+ 1. 

For each reflection ¢ acting in ~n, we define a reflection $ acting in 
~n+ 1 as follows. If ¢ is the reflection in S(a, r), a E jRn, then $ is the reflection 
in S((i, r): if ¢ is the reflection in P(a, t) then $ is the reflection in P(ii,t). 
If x E ~n and y = ¢(x), then from (3.1.1) and (3.1.2) 

r-J 
$(Xl' ... , xn, 0) = (Yl, ... , Yn, 0) = ¢(x), (3.3.1) 

and it is in this sense that $ is regarded as an extension of ¢. Alternatively, we 
can identify jRn+ 1 with jRn x jRl and write (3.3.1) as 

$(x,O) = (¢(x),O). 

Note that $ leaves invariant the plane xn + 1 = 0 (this is ~n) and each of the 
half-spaces Xn + 1 > 0 and Xn + 1 < 0: these facts follow directly from (3.1.1) 
and (3.1.2). 

As each Mobius transformation ¢ acting in ~n is a finite composition of 
reflections ¢";' say ¢ = ¢1 ... ¢m, there is at least one Mo~ius transformation 
$, namely CPl ..• $m, which extends the action of ¢ to jRn+ 1 in the sense of 
(3.3.1) and which preserves 

H n+1 = {(Xl> ... , Xn +l): Xn+l > O}. 
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In fact, there can be at most one extension for if t/l1 and t/l2 are two such 
extensions, then t/l2 1t/11 fixes each point of the plane Xn + 1 = 0 and preserves 
Hn+1. Thus by Theorem 3.2.4, t/l1 = t/l2. 

Definition 3.3.1. The Poincare extension of cP in GM(lRn) is the transforma­
tion 4) in GM(lRn+ 1) as defined above. 

Observe that if cP and t/I are in GM(lRn) with say cP = CP1 ... CPm and 
t/I = t/l1 ... t/lk then the Poincare extension of cPt/l is given by 

(cpt/lf = (CP1 ... CPmt/l1 ... t/lk)-
= 4)1 ... 4)mtil1 ... tilk 
= 4)tiI, 

so the map cP H 4) is an injective homomorphism ofGM(lRn) into GM(lRn+ 1): 
this is a trivial but nonetheless important remark. 

We shall now focus our attention on the action of the Poincare extension 
4) in H n + 1. First, if 4) is the reflection in the sphere S(a, r), a E ~n, then by 
(3.1.5), 

14)(y) - 4)(x) I r2 
Iy - xl Ix - ally - al· 

For the moment, let [4)(x)]j denote thejth component of 4)(x). As 

4)(x) = a + r2(x - ii)*, 

we find that 

and this shows that 

is invariant under 4). 

(3.3.2) 

(3.3.3) 

The reflection 4) in the plane P(a, t), a E ~n, is a Euclidean isometry and 
moreover, 

[4)(X)]n+1 = Xn+1: 

thus (3.3.3) is also invariant under this reflection. We conclude that (3.3.3) 
is invariant under all Poincare extensions. It is a direct consequence of this 
invariance that the Poincare extension of any cP in GM(lRn) is an isometry 
of the space H n + 1 endowed with the Riemannian metric p given by 

ds = Idx l . 

Xn +1 
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This is our first model of hyperbolic space and p is the hyperbolic metric in 
Hn+ 1. The rich structure of the hyperbolic geometry of (Hn+ 1, p) is now 
available as an important tool for studying any subgroup G of GM(~n) for 
we can form the Poincare extension of each </> in G and thereby study G as a 
group of isometries of Hn + 1. 

We shall study the geometry of the hyperbolic plane H2 in great detail in 
Chapter 7 and some of the results (and proofs) given there extend without 
difficulty to Hn + 1. One such result is that if x = sen + 1 and Y = ten + 1, then 

p(x, y) = Ilog(s/t) I, 

so 

Ix - yI 2 

cosh p(x, y) = 1 + 2 . 
Xn+1Yn+ 1 

(3.3.4) 

As both sides of (3.3.4) are invariant under all (p, we see that this is actually 
valid for all x and Y in Hn + 1. 

In particular, the hyperbolic sphere 

{xeHn+1:p(x,y) = r} 

with hyperbolic centre (Y1' ... , Yn+ 1) and hyperbolic radius r is precisely the 
Euclidean sphere 

(Xl - Yl)2 + ... + (xn - Yn)2 + (Xn+ 1 - Yn+1 cosh r)2 = (Yn+ 1 sinh r)2. 

(3.3.5) 

In addition to this, we mention that given two distinct points of H n + 1 there 
is a unique curve y joining them which minimizes the integral 

L~~:! : 
such a curve is an arc of a geodesic and the geodesics are the Euclidean 
semi-circles orthogonal to ~n together with the vertical Euclidean lines in 
Hn+1. 

EXERCISE 3.3 

1. Show that if x and yare in Hn + 1 then 

. Ix _ yl2 
smh2 tp(x, y) = ----

4xn + lYn + 1 

2. Show that if x E Hn + 1 then 

and interpret this geometrically. 
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3. Let S be the hyperbolic sphere in H" + 1 with hyperbolic centre y and hyperbolic 
radius r. Let y denote the reflection of y in the plane x" + 1 = O. Show that 

S = x:--_- = tanh(tr)· . { Ix-yl } 
Ix -YI 

4. Suppose that ¢ E GM(IR" + 1) and that ¢ leaves H" + 1 invariant. Prove that ¢ is the 
Poincare extension of some ljJ in GM(ill"). 

§3.4. Self-mappings of the Unit Ball 

We have seen that the elements of GM(lRn) act as hyperbolic isometries of 
Hn+ 1 and we can obviously transform this situation to obtain other models of 
hyperbolic space. We shall now map Hn + 1 onto Bn + 1 and so obtain another 
(isomorphic) copy of GM(lRn) in which the elements leave Bn + 1 invariant. 
This new model has a greater symmetry and the point 00 no longer plays a 
special role. 

Let 4Jo denote the reflection in S(en + 1, )2) so that 

If x E IRn, then 

and this is precisely the formula for the stereo graphic projection n of IRn onto 
sn in IRn+ 1 considered in Section 3.1. 

This realization of stereo graphic projection asa reflection leads to an 
easy proof of the formula for the chordal distance given in (3.1.3). If x E IR" 
then 

and this with (3.1.5) yields (as before) 

d(x, y) = I n(x) - n(ji) I 

= l4Jo(x) - 4Jo(ji) I 

21x - yl 
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Let us now return to the reflection ¢o defined above. If x E ~n+ 1 then 

l¢o(xW = 1 + 4 2 + 4(en+l·[x - e;+I]) 
Ix - en + 1 1 Ix - en+ll 

= 1 + 4xn+ 1 2: 

Ix - en + 11 
(3.4.1 ) 

this shows that ¢o maps the lower half-space Xn + 1 < 0 into Bn + 1. 

Now let ¢ = ¢o (J where (J is the reflection in the plane Xn + 1 = 0: this 
maps the plane Xn + 1 = 0 onto sn and H n + 1 onto Bn + 1. Also, we find from 
(3.1.5) that 

lim I¢(Y)- ¢(X) I = lim l¢o((J(Y)) - ¢o((J(X)) I 
y .... x Iy - xl y .... x Iy - xl 

= lim l¢o((J(Y)) - ¢o((J(X)) I 
y .... x 1(J(Y)-(J(x)1 

2 

Now (3.4.1) with x replaced by (J(x) gives 

and so we find that 

lim I¢(Y) - ¢(X) I = 1 - 1¢(x)1 2 

y .... x Iy - xl 2Xn+l 

It now follows from Section J.6 that the hyperbolic metric p in H n + 1 trans­
forms to the metric 

d _ 21dxI 
s - 1 _ IxI2 

in Bn + 1 and that the isometries IjJ of H n + 1 transform by IjJ H ¢1jJ ¢ - 1 to 
isometries of Bn + 1 with this metric. This shows that GM(~n) is conjugate in 
GM(~n+ 1) to the subgroup of GM(~n+ 1) consisting ofthose elements which 
leave Bn+ 1 invariant. 

We shall now undertake a study of those Mobius transformations which 
leave the unit ball invariant. As there is no longer any need to consider 
~n + 1 we revert to a consideration of the space ~n: thus we shall study the 
elements ¢ in GM(~n) with ¢(Bn) = Bn. 
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Before proceeding further, we mention that we can derive a formula for 
B" analogous to (3.3.4): see Chapter 7. In fact we only need to know that if 
xeB", then 

( 1 + IXI) 
p(O, x) = log 1 _ Ixl 

and we leave the details of this to the reader. 

Theorem 3.4.1. Let </J be a Mobius transformation with </J(O) = 0 and 
</J(B") = B". Then </J(x) = xA for some orthogonal matrix A. 

PROOF. By Theorem 3.2.5, </J fixes 00 and, as in the proof of Theorem 3.2.7, 
we see that </J is a Euclidean similarity. Because </J fixes the origin and leaves 
S"-1 invariant, it is actually a Euclidean isometry. The result now follows 
from Theorem 3.1.4. D 

It is easy to see that the reflection in the plane P(a, t) leaves B" invariant 
if and only if t = O. Better still, this reflection leaves B" invariant if and only 
if P(a, t) is orthogonal to S"-1 and in this form the statement is true for all 
reflections. 

Theorem 3.4.2. Let </J be the reflection in S(a, r). Then the following are equiva­
lent: 

(i) S(a, r) and S"-1 are orthogonal; 
(ii) </J(a*) = 0 (equivalently, </J(O) = a*); 

(iii) </J(B") = B". 

PROOF. As 

</J(O) = a - r2a* 
= (lal2 - r2)a* 

we see that (i) and (ii) are equivalent. The assertion that (iii) implies (ii) is 
simply the fact that a and a* map to inverse points with respect to S"-1 
(Theorem 3.2.5). 

Finally, (i) and (ii) together with (3.1.5) imply that 

I </J(x) I = I</J(x) - </J(a*) I 
r21x - a*1 

I x - a I . I a* - a I 
lal.lx - a*1 

Ix - al 
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so 

and this proves (iii). 
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(3.4.2) 

o 

As another application of (3.4.2) we observe that if cjJ preserves B" then 

IcjJ(x) - cjJ(YW Ix - yl2 
(1 -lcjJ(xW)(l -lcjJ(Y)12) = (l-lxI2)(1 -lyI2): 

(3.4.3) 

this follows immediately from (3.1.5) and (3.4.2). In addition, (3.4.3) holds 
whenever cjJ is the reflection in a plane P(a, 0) and hence for all Mobius cjJ 
which preserve B". 

The invariance expressed by (3.4.3) also yields 

lim IcjJ(y) - cjJ(x) I _ 1 - IcjJ(xW 
y--+x Iy - xl - 1 - Ixl2 

and this confirms once again the in variance of the hyperbolic metric in B". 
In two dimensions the complex conjugate z of z is available and in our 

notation this may be written as 

z* = liz. 
The familiar expression 11 - zwl (where z and ware complex numbers) 
satisfies 

11 - zw I = I z II z* - wi 

and this suggests the definition 

[u, v] = lullu* - vi (u, V E R"). 

Observe that 

[u, V]2 = lul 21vl 2 - 2(u·v) + 1 

= lu - Vl2 + (lul2 - 1)(lv12 - 1) 

and this shows that 

[u, v] = [v, u]. 

The identity (3.4.4) also shows that if I a I > 1 then 

Ix - a*1 = 1 
[x,a*] 

if and only if I x I = 1. Thus 

S"-l = {XER": Ix - a*1 = I} 
[x, a*] 

(3.4.4) 
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and this is the n-dimensional version of the equation 

I

.: - w 1 

1-zw =1 

of the unit circle in the complex plane. 
Finally, we observe that (3.4.4) together with the invariance expressed by 

(3.4'.3) yields the invariance . . 

[4>(x), 4>(Y)] 2 _ Ix, YY 
(1 - 14>(x)12)(1 - 14>(yW) - (1 - IxI2)(1 _ IYI2)' 

(3.4.5) 

EXERCISE 3.4 

1. Show that for x in Bn, 

( 1 + IXI) 
p(O,x) = log 1 -Ixl . 

Deduce that if x and yare in Bn then 

'h21 () Ix-yl2 sm -p x y - ----;:-----,;-
2 , - (1 _ IxI2)(1 _ lyI2)' 

[Use (3.4.3).] 

2. Let 4> and", be reflections in the spheres S(a, r) and S(b, t) respectively. Show that 
these spheres are orthogonal if and only if 4>(b) = "'(a). 

3. Use Questions 1 and 2 to show that if S(a, r) is orthogonal to S(O, 1) and if 4> denotes 
reflection in S(a, r) then 

sinh tp(O, 4>0) = l/r 

and, for all x, 

14>(x) - al·lx - al = l/sinh2 tp(O, 4>0). 

§3.S. The General Form of a Mobius Transformation 

We shall establish the following characterization of Mobius transformations. 

Theorem 3.5.1. Let 4> be a Mobius transformation. 

(i) If 4>(Bn) = Bn then 

4>(x) = (ax)A, 

where a is a reflection in some sphere orthogonal to sn-l and A is an 
orthogonal matrix. 
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(ii) If cjJ( (0) = 00 then 

cjJ(x) = r(xA) + xo, 

where r > 0, X o E [Rn and A is orthogonal. 
(iii) If cjJ( (0) =f. 00 then 

cjJ(x) = r(ax)A + X o 

for some r, xo, A and some reflection a. 
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Remark. a(x)A denotes a followed by A: the matrix A appears on the right 
as we are using row vectors. 

PROOF. If cjJ preserves Bn, let a be the reflection in the sphere Sea, r) where 
a = cjJ - 1( (0) and I a 12 = 1 + r2. By Theorem 3.4.2, a (and hence cjJa) preserves 
Bn. By computation, a(O) = a* so 

cjJ(a(O» = cjJ(a*) = 0, 

(because cjJ preserves inverse points): thus cjJ(ax) = xA. Replacing x by ax, 
we obtain (i). 

If cjJ fixes 00 then, for a suitable 

1jJ: x f--+- (x - xo)/r, 

the map IjJcjJ fixes 00 and Bn and hence also the origin. Now (ii) follows from 
Theorem 3.4.1. Finally, (iii) follows by applying (ii) to cjJa for a suitable 
reflection a mapping 00 to cjJ - 1 ( 00 ). 0 

The characterization in (iii) leads to the notion of an isometric sphere. 
Suppose that cjJ( (0) =f. 00 so that 

cjJ(x) = r(ax)A + xo, 

where a is the reflection in some sphere Sea, t) and (necessarily) a = cjJ - 1( (0). 
By (3.1.5), 

I cjJ(x) - cjJ(y) I = r I a(x) -a(y) I 

rt 2 1x - yl 
Ix - al·ly - al 

and so cjJ acts as a Euclidean isometry on the sphere with equation I x - a I 
= t1 where t1 = tJr. Indeed, 

1. I cjJ(y) - cjJ(x) I 
lm-----
y~x Iy-xl 

is greater than, equal to or less than one according as x is inside, on or 
outside Sea, t1)' For this reason, Sea, t 1 ) is called the isometric sphere of cjJ. 
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Note that if (J denotes reflection in the isometric sphere of ¢ then ¢(J fixes 
00 and also acts as a Euclidean isometry on the isometric sphere. It follows 
that the expression in Theorem 3.5.1(ii) must take the form 

¢(J(x) = xA + Xo, 

so in general, we see that 

¢(x) = tjJ(J(x), 

where (J is the reflection in the isometric sphere and tjJ is a Euclidean isometry. 
In the special case when ¢ preserves En, the reflection (J in Theorem 3.5.1(i) 

must be the reflection in the isometric sphere of ¢ as (J and A act as Euclidean 
isometries on this sphere. We deduce that in this case, the isometric sphere is 
orthogonal to sn-l. 

EXERCISE 3.5 

1. Show that if ¢ preserves B" then the Euclidean radius of the isometric sphere of ¢ 
is Ij(sinh !p(O, ¢O). 

2. Show that if ~ is the isometric sphere of ¢, then ¢(~) is the isometric sphere of ¢ - 1. 

§3.6. Distortion Theorems 

We prove two sharp distortion theorems for Mobius transformations. 

Theorem 3.6.1. Let ¢ be a Mobius transformation acting in illn and let p be the 
hyperbolic metric in Hn + 1. Then 

d(¢x, ¢y» 
sUI? d( ) =expp(en+h¢en+l)' 

X,YElH1n X, y 

Remark. This shows that ¢ satisfies a Lipschitz condition on illn with 
respect to the chordal metric d and actually exhibits the best Lipschitz 
constant in terms of ¢ acting on the hyperbolic space (Hn+ 1, p). 

The second result shows that if a family of Mobius transformations omits 
two values ~ and , in a domain D, then the family is equicontinuous on 
compact subsets of D: this enables one to develop, for example, the theory of 
normal families for GM(illn). 

Theorem 3.6.2. Let D be a subdomain of illn and suppose that ~ and , are 
distinct points in illn. If ¢ in GM(illn) does not assume the values ~ and, in D, 
then for all x and y in D, 

8d(x, y) 
d(¢x, ¢y) ~ d(~, Od(x, OD)1/2d(y, OD)1/2' 

The constant 8 is best possible. 
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PROOF OF THEOREM 3.6.1. By reflecting in Xn + 1 = 0 and applying stereo graphic 
projection, we may assume that ¢ preserves Bn + 1: now we need to show that 

I¢x - ¢YI 
sup I I = exp p(O, ¢O). 

X.YESn X - Y 

By Theorem 3.5.1(i), the Euclidean distortion under ¢ is the same as the 
distortion under the reflection (J in the isometric sphere S(a, r) of ¢. This is 
maximal (as a limiting value) at the point of sn closest to the centre a of 
S(a, r). Thus from (3.1.5), 

I¢(x) - ¢(y) I 
sup 

Ix - yl X, yeS" (Ial - 1)2 

lal + 1 
lal - l' 

because S(a, r) is orthogonal to sn (Section 3.5). Now 

and so the supremum is 

1 + 1¢-1(0)1 -1 
1 _ I¢ 1(0)1 = exp p(O, ¢ (0)) 

= exp p( ¢O, 0). o 
PROOF OF THEOREM 3.6.2. Suppose that x and yare distinct points in D and that 
IX and p are distinct points outside of D. By Theorem 3.2.7, the product 

[X,IX,y,P]·[x,p,y,lX] 

of cross-ratios is invariant under ¢. Thus 

[ d(¢X' ¢Y)J2 [d(lX, P) J2 [ 16 J 
d(x, y) S d(¢IX, ¢P) d(x, lX)d(x, P)d(y, lX)d(y, P) 

S [d(¢IX~ ¢f3)T [d(:, IX) + d(:, P)J [d(: IX) + d(Y: P)J 
64 

S d(¢IX, ¢P)2d(x, aD)d(y, aD)· 

The inequality follows by writing IX = ¢ - 1(~) and P = ¢ - 1(0. 
To show that the constant 8 cannot be improved, consider ¢(z) = z + 2m 

acting on t with D = t - {oo, -m}. Clearly, ¢ omits the values 00 and 
min D and if x = -2m, we have 

1. d(¢x, ¢y) 8 
1m '" -c-----,--__ 

Y~X d(x, y) d( 00, m)d(x, aD)' 
as m -4 +00. o 
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As an application of Theorem 3.6.2, we mention (briefly) the concept 
of a normal family. A family !F of functions from one metric space (X, d) 
to another, say to (X', d'), is equicontinuous on X if and only if for every 
positive 8 there is a positive b such that for all x and Y in X and all fin !F, 

d'(fx, fy) < 8 whenever d(x, y) < b. 

Each function in an equicontinuous family is uniformly continuous on X 
and the uniformity is with respect to f as well as to the pair (x, y). 

A family!F (as above) is said to be normal in X if every sequence fl'/2, ... 
chosen from !F has a subsequence that converges uniformly on each compact 
subset of X. There is a general result (the Arzela-Ascoli Theorem) which 
relates the concepts of equicontinuity and normal families. In the context 
in which we are primarily interested, it is sufficient to obtain the following 
special case. 

Proposition 3.6.3. A family !F of Mobius transformations of (~n, d) onto 
itself is normal in a subdomain D of ~n if it is equicontinuous on every compact 
subset ofD. 

PROOF. We only sketch the proof as the interested reader can find a proof of 
the Arzela-Ascoli Theorem elsewhere in the literature. Find a sequence 
Xl> X2' ... which is dense in D. Given a sequence cPl> cP2' ... in!F we can find 
(because ~n is compact) a subsequence which converges at Xl' then a sub­
sequence of this which converges at X2 and so on. By choosing a subsequence 
of the cPn suitably, we can obtain a subsequence which is ultimately a sub­
sequence of each of these chosen subsequences: thus we have constructed a 
subsequence which converges at each point Xj' 

Now take any compact subset K of D and consider any positive 8. We 
can cover K by a finite number of open balls (in the d-metric) of radius b 
(corresponding to 8 in the definition of equicontinuity). Select one point 
Xj in each: let the selected points be (after relabelling) Xl> X2,"" XS' If 
y is in K then d(y, Xj) < b for some j and hence 

d(cPnY, cPmY) :$;; d(cPnY, cPn x ) +.d(cPnxj' cPm x ) + d(cPmxj' cPmY) 
:$;; 28 + d(cPnxj,cPmx), 

For n, m ~ no, say, the last term is at most 8 for all Xl"'" xs: hence 
d(cPnY, cPmY) :$;; 38 on K. D 

We can now combine Theorem 3.6.2 and Proposition 3.6.3. 

Theorem 3.6.4. Let D be a subdomain of ~n and let !F be a family of Mobius 
transformations. Suppose that for every cP in !F, there are two points IX</>, p", in 
~n which are not taken as values of cP in D and suppose that also, 

Then !F is normal in D. 

inf d(IX</> , p</» > O. 
</> 
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Remark. We can rewrite the inequality in Theorem 3.6.4 as 

inf [chordal diameter 4>(lRn - D)] > O. 
cp 
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PROOF. We simply apply Theorem 3.6.2 with ~ = r:t.cp,' = Pcp and we find that 
$' is equicontinuous (in fact, it satisfies a uniform Lipschitz condition) on 
every compact subset of D. 0 

Finally, this leads to the following result. 

Theorem 3.6.5. Let 4>1,4>2, ... be Mobius transformations and suppose that 
4>n(x) ~ Yj for three distinct points Xl' X2, X3 and three distinct points 
Yl' Y2' Y3. Then 4>1, 4>2, ... contains a subsequence which converges uniformly 
on IRn to a Mobius transformation. 

PROOF. By the deletion of a finite number of the 4>j (which clearly does not 
affect the result) we may assume that for each n, i and j (i 1= j) we have 

d(4)nx;, 4>nx) ~ td(Yi' Y) > O. 

It follows that the family {4>1' 4>2,"'} is normal in each of the sets IRn -
{Xi' Xj} (Theorem 3.6.4) and hence in their union, namely IRn. Thus there is a 
subsequence of the 4> j converging uniformly to some 4> in IRn and by Theorem 
3.2.7 (and its proof), 4> is a Mobius transformation. 0 

EXERCISE 3.6 

1. Show that a family F of Mobius transformations is normal in IR" if and only if 

sup pee" + I, rPe" + I) < + CIJ 
,¢EF 

whereen+, =(O, ... ,O,l)inHn+ , ., 

2. Prove that if two Mobius transformations are equal on an open subset D of IRn then 
they a~e the same transformation on IRn. Deduce that if the Mobius transformations 
rPn converge uniformly to I on some open subset of IRn,then they converge uniformly 
to Ion IR". 

§3.7. The Topological Group Structure 

There are several ways to give GlY1(lRn) the structure of a topological group. 
The simplest construction is tq observe that the elements of GM(lRn) map 
the compact space ~n onto itself so " . 

D(4), tjJ) := sup{d(4)x, I/lx): X,E IRn}, 

(where d is the chordal metric on IRn) is a metric on GM(lRn). Clearly, 4>. ~ 4> 
in this metric if and only if 4>n -.+ 4> uniformly on IRn. 
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Theorem 3.7.1. GM(lRn) is a topological group with respect to the topology 
induced by the metric D. 

PROOF. From Theorem 3.6.1, we see that for each ¢ in GM(lRn) there is a 
positive constant c(¢) such that for all x and y we have 

d(¢x, ¢y) ~ c(¢)d(x, y). 

Clearly, for any ¢l> ¢2 and tjJ we also have 

so 

D(¢tjJ, ¢ltjJ1) ~ D(¢tjJ, ¢ltjJ) + D(¢ltjJ, ¢ltjJ1) 
~ D(¢, ¢1) + C(¢l)D(tjJ, tjJ1)' 

This shows that the composition map (¢, tjJ) ~ ¢tjJ is continuous at (¢1' tjJ1)' 
Similarly, the map tjJ ~ tjJ-1 is continuous at ¢ as 

D(¢-l, tjJ-1) = D(¢-ltjJ, 1) 

~ c( ¢ - 1 )D( tjJ, ¢). D 

For a different construction of the same topology we proceed as follows. 
The group GM(lRn) is conjugate in GM(lRn+ 1) to the group GM(Bn+ 1) of 
all Mobius transformations preserving Bn + 1. If ¢ in GM(lRn) corresponds 
to ¢1 in GM(Bn+ 1) then (by definition of the chordal metric) 

D(¢, tjJ) = sup{ l¢lX - tjJ1xl: x E sn}. 

Thus we may consider GM(Bn+ 1) instead ofGM(lRn) with the metric (which 
we continue to denote by D) of uniform convergence in Euclidean terms on sn 
and the conjugation is then an isometry between GM(lRn) and GM(Bn+ 1). 

For each non-zero a in Bn+ 1 let (Ja be the reflection in the sphere with 
centre a* that is orthogonal to sn: thus (Ja preserves Bn+ 1 and (JaCa) = O. 
Also, let La denote the reflection in the plane x . a = O. Then, defining 7;, to 
be the composition La(Ja, we find that the isometry 7;, of Bn + 1 leaves the 
Euclidean diameter through a invariant and 7;,(a) = O. We call any isometry 
7;, constructed in this way a pure translation: if a = 0 we define 7;, to be the 
identity. 

Lemma 3.7.2. (i) The map ¢ ~ ¢(O) of GM(Bn+ 1) onto Bn+ 1 is continuous 
(ii) The map a ~ 7;, is a homeomorphism of Bn + 1 onto the set of pure transla­

tions. 

PROOF. To prove (i) we suppose first that D(¢n' J) < e. Each Euclidean 
diameter Lj of Bn + 1 is mapped by ¢n to a circular arc ¢nCL) (orthogonal to 
sn) in Bn+ 1 whose end-points are at most a distance e from those of L j • We 
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deduce that the Euclidean cylinder C j with axis L j and radius of cross-section 
e contains <Pn(LJ Thus 

<Pn(O) = n <Pn(Lj ) 
j 

= {xeBn + 1 : Ixl < e}. 

This shows that if <Pn -+ J uniformly on sn, then <Pn(O) -+ 0: in fact, 

I <Pn(O) I < D(<Pn, J). 

Suppose now that <Pn -+ <P (as GM(Bn+1) and Bn+1 are metric spaces, 
it is sufficient to consider sequential convergence). From Theorem 3.7.1 
we have <P - 1 <Pn -+ J: thus (from above) <P - 1 <Pn(O) -+ 0 and hence <Pn(O) -+ <p(0). 
This proves (i). 

To prove (ii) observe first that the map T" H T;; 1 is continuous (Theorem 
3.7.1). By (i), the composite map 

T" H T;; 1 H T;; 1(0), 

namely, T" H a, is continuous. 
It remains to prove that the map a H T" is continuous: explicitly, as 

b -+ a so 1'" -+ T" uniformly on sn. We have explicit formulae for <Pa and 1:a 
and the continuity follows from straightforward (if tedious) estimates: we 
omit the details. 0 

We know from Theorem 3.5.1 that every element <P of GM(Bn+ 1) can be 
expressed uniquely as 

where a = <p- 1(0) and A is an orthogonal matrix (A acts after O"a: it appears 
on the right because we are using row vectors). It follows that we can also 
write (uniquely) 

<p(x) = (T"x)Aq" 

where Aq, (namely, 'La followed by A) is also an orthogonal matrix and this 
description establishes a natural bijection between GM(Bn+ 1) andO(n + 1) 
x Bn + 1 by the correspondence 

<pH(Aq" a), 

Now the group O(n + 1) of orthogonal matrices is itself a metric space. 
First, there is the natural metric 
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and second, there is the metric D· induced by regarding O(n + 1) as a subset 
of GM(Bn+ 1). In fact, these metrics yield the same topology because if A = 
(ai), B = (bij), C = A - B and x is on sn, then 

D(A, B)2 = sup IxA - xBI2 
Ixl= 1 

n 

= sup I (X1C1j + ... + xncn)2 
Ixl=1 j=1 

:::; sup ±.( i xl) ( ± . ci1) 
1~1=1 j=1 i=1 i=1 

= IA _E12 

it1 Ctci1) 
n 

IleiA - ei B I2 
i= 1 

:::; nD(A, B)2. 

The space O(n + 1) x Bn + 1 now inherits a natural product topology and 
we have the following ~esult. 

Theorem 3.7.3. The bijection 4> H (A"" a) is a homeomorphism ojGM(Bn+ 1) 
onto O(n + 1) x Bn+1. . . '. 

PROOF. The proof consists of repeated applications of Theorem 3.7.1 and 
Lemma 3.7.2. First, a H 7;. is continuous, hence so is the map (A"" a) H 

(A~, 7;.). Also the map of (A"" 7;.) into their composition, namely 4>, is 
continuous thus so is the map (A </>' a) H 4>. 

Next, 4> H a ( = 4> - 10) is continuous, as are the maps a H T,. and 7;. H T;; 1 : 
thus 4> H T;;1 is contip.uous. We deduce that the composition 

4>H(4), T;;1)H4>T;;r = A", 

is continuous, hence so is 4> H (A"" a). D 

Remark. Theore,m 3.7.3 simply means that the topology on GM(Bn+1) 
induced by the bijection from O(n + 1) x Bn+ 1 coincides ,with the topology 
induced by the metric D. As GM(/Rn) h~s been identified isometrically with 
GM(Bn+ 1), this result provides a new construction for the topology induced 
on GM(illn) by the metric D. 

For our third and final construction of the topology we need another model 
of hyperbolic space. . 

Definition 3.7.4. Let Q be the hyperbolOid model defined by 

Q = {(xo, ... , xn) E !Rn + 1: q(x, x) = 1, Xo > OJ, 
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where 

q(x, y) = xoYo - (X 1Y1 + ... + XnYn). 

Observe that Q is one sheet of a hyperboloid of two sheets and that if 
x EQ then 

x~ = 1 + (xi + ... + x;), 

so, in fact, Xo ::?: 1. 
Now let Y = (Yo, ... , Yn) be any smooth curve on Q. Thus for all t, 

YO(t)2 = Y1(t)2 + ... + Yn(t)2 + 1, 

so differentiating, 

Yo(t)Yo(t) = Y1(t)Y1(t) + ... + Yn(t)Yn(t), 

(more briefly, q(y, y) = 1 so q(y, y) = 0). We dedllce that 

( .. ) _ (Y1Y1 + ... + YnYn)2 (.2 + + .2) q y, Y - - . Y1 . . . Yn 
Yo 

S (I yJ)(I yJ)jy~ - (L: yJ) 

= -(L: YJ)/Y~ 
sO, 

the summations being over j = 1, ... , n. Observe also that a strict inequality 
holds unless Y1 = ... = Yn = 0 in which case, Yo = 0 also. It follows that we 
can construct a metric on Q in the usual way by the line element 

ds2 = dxi + ... + dx; - dx~, (3.7.1) 

the distance between two points on Q being the infimum of 

f [ -q(y, y)]1/2 dt 

over all curves joining the two points. The associated metric topology is the 
Euclidean topology on Q. We shall now compare Q and this metric with the 
model Bn and the metric 

(3~7.2) 

Theorem 3.7.5. The map 

F: (xo,···, xn)~ C:1XO'···' 1:nXJ 
is an isometry ofQ with the metric (3.7.1) onto Bn with the metric (3.7.2). 
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PROOF. For brevity, we write 

(Yl, ... ,Yn) = (-1 Xl ""'-1 Xn ) + Xo + Xo 

and denote the vectors by X and Y in the obvious way. As X E Q, a computation 
yields 

lyI2 = =: ~ ~, (3.7.3) 

so 0:::;; lyl < 1 and F maps Q into Bn. 
By direct computation we find that the map 

F- I ( ) (1 + lyI2 2YI 2Yn ) 
: YI,'''' Yn 1-+ 1 _ lyl2' 1 _ lyI2"'" 1 _ lyI2 (3.7.4) 

is indeed the inverse of F and so F is a bijection of Q onto Bn. 
To verify that F is an isometry, we observe that 

d .=~_ XjdxO 
YJ 1 + Xo (1 + XO)2' 

Thus, using this and (3.7.3) we have 

4(dYI + ... + dy~) _ (1 )2 ~ (~_ XjdXO)2 
-----,----:-;2.,....,.2 - - + Xo L... 2 

(1 - lyl ) j=l 1 + Xo (1 + xo) 

~ 2 dx~ ~ 2 2(Lj=1 xjdx)dxo 
= L... dx j + 2 L... X j - ----"''''''----=--''---''----'-

j= I (1 + Xo) j= I (1 + Xo) 

_ ~ d 2 (xo - 1) d 2 dxo d(x~ - 1) 
- L... X· + --- Xo - ----''------'---=---'-

j= I } Xo + 1 1 + Xo 
n 

= L dxJ - dx~. D 
j= I 

It is now clear that the group G( Q) of isometries of Q and the group GM(Bn) 
of isometries of Bn are isomorphic by virtue of the relation 

GM(Bn) = F(G(Q»F- I . 

Our aim now is to prove an alternative characterization of G(Q) and hence 
ofGM(Bn). 

Theorem 3.7.6. The isometries of Q are precisely the (n + 1) x (n + 1) 
matrices which preserve both the quadratic form q(x, x) and the half-space 
given by Xo > O. 

PROOF. First, let A be any matrix with the prescribed properties. As Xo > 0 
is preserved and as 

q(xA, xA) = q(x, x) = 1, 



§3.7. The Topological Group Structure 51 

when x E Q we see that A preserves Q. Moreover, for any curve y on Q, let 
r = yA. Then t = yA so 

q(t, t) = q(y, y) 

and this simply expresses the fact that y and yA have the same length. Thus 
each such A is an isometry of Q onto itself. 

It remains to show that every 4> in GM(Bn) is of the form F(A)F- 1 for 
some such matrix A and to do this, we simply compute the action of F(A)F- 1 

on Bn. Suppose then that A = (aij) where i,j = 0, 1, ... , n. With the obvious 
notation, we write 

Now 

so 

1'-1 
(YI, ... , Yn) t--+ (Uo, Ut> .•• , Un) 

~ (VO, VI' ... , Vn) 

~ (WI' ... , W n)· 

Using (3.7.4), this yields 

(1 - IYI2)Vj = (1 + lyl2)aOj + 2(Ylalj + ... + Ynan). 

Thus 

(1 - lyI 2)v. _ J 

- (1 - lyl2 ) + (1 - IYI2)VO 

(1 + lyl2)aoj + 2(Ylalj + ... + Ynan) 
= IYl2(aoo - 1) + 2(YlalO + ... + YnanO) + (aOO + 1) (3.7.5) 

and this is the explicit expression for the map F(A)F-I. 
If Ao is an orthogonal n x n matrix (viewed as an isometry of Bn), then 

preserves q and the condition Xo > O. In this case, (3.7.5) yields W = yAo 
and so every isometry of Bn which fixes the origin does arise in the form 
F(A)F- 1• 
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It is only necessary to show now that the reflection in the sphere S«(, r) 
orthogonal to sn-l is of the form F(A)F-l. Because orthogonal transforma­
tions are of this form, we need only consider the case when ( is of the form 
(s, 0, ... , 0). It is actually more convenient to introduce another positive 
parameter t with 

and 

, = (c(t), 0, ... , 0), c(t) = c?sh t 
smh t 

r = l/sinh t, 

so the orthogonality requirement 1 (12 = 1 + r2 is satisfied. 
Consider now the matrix 

observe that det(P) = -1 and that P preserves both the quadratic form 
q(x, x) and the half-space xo > O. The effect Y H W of F(A)F- 1 on Bn is 
given by (3.7.5) and the denominator of this expression can be simplified 
as follows: 

IYl2(aoo - 1) + 2(Ylal0 + ... + YnanO) + (aoo + 1) 

= 21 Y 12 sinh2 t - 2Yl sinh(2t) + 2 cosh2 t 
= 21Y - (12 sinh2 t 
= 21Y- (l2/r2. 

Now for j = 2, ... , n the formula (3.7.5) yields 

Also, 

(1 + lyl2) sinh(2t). - 2Yl cosh(2t) 
W = -'----------''-'---'----':-:-----'-:-:-,.;.---:-:-+-------'----'--

1 21Y _ (12 sinh2 t 

sinh(2t)[IY - (12 + 1 - 1(12 + 2(y. 0] - 2Yl[2 cosh2 t - 1] 
21Y - (12 sinh2 t 

r2 , 
== e(t) + Iy _ (12 (Yl - e(t»; 
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This proves that F(P)F- 1 is 

y~C + r2(y - 0*, 

that is, the reflection in S(C, r). 
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o 

In view of Theorem 3.7.6, we examine briefly the group 0(1, n) of matrices 
which preserve the quadratic form q(x, x). If A E 0(1, n), then 

q(x, x) = q(xA, xA), 

so 

AJAI = J, (3.7.6) 

where 

We deduce that det(A)2 = 1: the subgroup of 0(1, n) with determinant 1 is 
SO(1, n). 

Next, we show that the set of matrices A in 0(1, n) with aoo > 0 is also a 
subgroup. We denote this subgroup by 0+(1, n) with 

SO+(1, n) = SO(1, n) n 0+(1, n). 

Suppose that the matrices A, Band C satisfy aoo > 0, boo> 0 and C = AB: 
then 

Coo = aooboo + ... + aonbno 
~ aooboo - laOlb lO + ... + aonbnol 
~ aooboo - (a~l + ... + aon)1/2(bio + ... + b;O)1/2. 

Because of (3.7.6), we have 

so 

a~o = a~l + ... + a~n + 1. 

Taking the transpose of both sides of (3.7.6) after replacing A with B yields 

b~o = bio + ... + b;o + 1, 

so coo> O. 
Finally, the inverse of A ( = (a i) is (J AJ)' because 

A(JAJ)' = AJAIJ 
= J2 

=1. 
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Thus A ~ A - 1 preserves the condition aoo > 0 and so 0 + (1, n) is indeed 
a group. Observe that an element A of 0(1, n) leaves the hyperboloid of two 
sheets {x: q(x, x) = 1} invariant: the component Q is A-invariant if and only 
if aoo > O. 

We have proved that the isometries of Q are precisely the elements of 
0+(1, n) and that in the isomorphism A ~ F(A)F- 1 of 0+(1, n) onto 
GM(Bn) the subgroup SO+(1, n) corresponds exactly to the directly con­
formal elements of GM(Bn) (in the proof of Theorem 3.7.6, each reflection 
corresponds to a matrix of determinant -1). We can now induce a topology 
on GM(Bn) by transferring the natural topology from 0+(1, n) to GM(Bn) 
and it is not hard to see that convergence of matrices in 0 + (1, n) corresponds 
exactly to uniform convergence on sn-1: thus this topology agrees with 
those previously constructed. Reverting back to GM(iR1n), we have proved 
the following result. 

Theorem 3.7.7. GM(!Rn) with the topology of uniform convergence in the 
chordal metric is isomorphic as a topological group to the group 0+(1, n + 1) 
of matrices. 

In particular, if we identify !R2 with the extended complex plane, then 
M(!R2) is (as we shall see) the class of complex Mobius transformations 

az + b 
z~---d' ad - bc"# 0, 

cz + 

and this is isomorphic to the Lorentz group of matrices preserving both the 
quadratic form xi + x~ + x~ - t2 and the inequality t > O. 

EXERCISE 3.7 

1. Show that if the Mobius transformations ¢m preserve Bn + 1 and if ¢m --+ I uniformly 
on some relatively open subset of sn then ¢m --+ I uniformly on Bn + 1 and on sn. 
[Identify sn with iRn and consider convergence on iRn first.] 

2. Suppose that n = 2 so that Q in Definition 3.7.4 lies in JR3. Show that the geodesics 
in B2 through the origin correspond via F and F - 1 to the intersections of Q with 
certain planes through the origin in JR3. 

§3.8. Notes 

For recent treatments of Mobius transformations in !Rn, see [5], [101] and 
[110]: for shorter works see (for example) [3], [33] and [108]. A more 
algebraic treatment based on quadratic forms is given in [19]. Theorem 
3.1.5 is well documented: see, for instance, [36], p. 133. 



§3.8. Notes 55 

The inversive product (Section 3.2) is discussed in [7], [21], [22], [110]: 
it can be derived from the metrical theory of the hyperboloid model (see 
[110]). 

It is known that the only (smooth) conformal maps in IRn (or in part 
of IRn) are the Mobius transformations: this is due originally to Liouville 
(1850) and has been considerably extended since then (by diminishing the 
degree of smoothness required). For further information see [105], pp. 15 
and 43 and the references given there; also, see [88]. 



CHAPTER 4 

Complex Mobius Transformations 

§4.1. Representation by Quaternions 

In this chapter we shall examine the action of Mobius transformations in 
~2 and their extensions to ~3. We identify [R2 with the complex plane C and 
the algebraic structure of C then allows us to express the action of Mobius 
transformations algebraically. We shall also identify (x, y, t) in [R3 with the 
quaternion 

x + yi + tj (4.1.1) 

(Section 2.4): this enables us to express the Poincare extension of a Mobius 
transformation in terms of the algebra of quaternions. The extended complex 
plane Cis C u {oo} and this is identified with ~2. In terms of quaternions, 

H3 = {z + tj: z E C, t > O} 

and the boundary of H3 in ~3 is C. 
Mobius transformations are usually encountered first as mappings of 

the form 

( ) _ az + b 
gz ---d' 

ez + 
(4.1.2) 

where a, b, e and d are given complex numbers with ad - be "# o. This 
latter condition ensures that g is not constant: it also ensures that e and d 
are not both zero and the algebra of C then guarantees that g is defined on 
C if e = 0 or on C - {-die} if e "# O. Now define g(oo) = 00 if e = 0 and 

g( -die) = 00, g(oo) = ale 

if e "# o. With these definitions, g is a 1-1 map of C onto itself. In addition, 
g-l is of the same form. 
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Any finite composition g 1 ... gn of these maps can be computed alge­
braically and the resulting map, say g, is again of the same form. Note, 
however, that the algebra is only valid on the complement of some finite 
set E so g = gl'" gn on C - E. Each map oftheform (4.1.2) when extended 
as above, is a continuous map of C onto itself (here, continuity is with respect 
to the chordal metric) and so by continuity, g = gl ... gn on C. These facts 
(which are left for the reader to check) show that the class At of maps of 
the form (4.1.2) is a group under the usual composition of functions. We 
must now show that At = M(1R2), the class of orientation preserving Mobius 
transformations of C onto itself. 

In the case of dimension two, the reflections (3.1.1) and (3.1.2) are both 
of the form 

az + b 
z-.+---

cz + d' 
ad - bc =F O. 

The composition of two such maps is in At (again, we use algebra first and 
then appeal to continuity) and so M(1R2) c At. 

Now suppose that g is in At and is given by (4.1.2). If c = 0 then g is 
either a translation (if a = d) or a rotation and expansion, namely, 

g(z) = a + (a/d)(z - a), 

about some a. In both cases, g is a composition of an even number of 
reflections and so is in M(1R2). 

Now assume that c =F O. The isometric circle Qg of g is (see Section 3.5) 

Qg = {ZEC: Icz + dl = lad - bcI 1/2 }: 

the significance of this lies in the fact that if z and ware on Qg then 

I (ad - bc)(z - w) I 
Ig(z) - g(w) I = (cz + d)(cw + d) = Iz - wi· 

This property is also shared by the reflection a in Qg and so also by ¢ where 
¢ = ga. 

Now 

and so 

a(z) = -d + lad - bcl (z + d/c) 
C !e1 2 Iz + d/cl 2 

¢(z) = g(a(z)) 

aa(z) + b 

ca(z) + d 

a[ca(z) + d] - (ad - bc) 

c[ca(z) + d] 

= (a/c) - (u/clul)(cz + d), (4.1.3) 
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where u = ad - bc. Any map 

Z~IXZ+f3, 11X1=1, 
is a composition of an odd number of reflections so again, g E M(~2). This 
shows that .A = M(~2). 

We shall use the notation .A in preference to M(~2) for the remainder 
of the text. Also, there are many arguments which, strictly speaking, depend 
on an algebraic computation followed by an appeal to continuity: we shall 
not mention this again. The next result is well known. 

Theorem 4.1.1. Let ZI' Z2' Z3 be a triple of distinct points in t and let WI' W2, 

W3 be another such triple. Then there is a unique Mobius transformation 
which maps ZI' Z2' Z3 to WI' W2' W3 respectively. 

We come now to the representation of gin (4.1.2) in terms of quaternions. 
The quaternion (4.1.1) is z + tj where z = x + iy and the Poincare extension 
of g is given by 

( .) (az + b)(cz + d) + aa2 + lad - bcltj 
gz + t} =--- . 

Icz + d/ 2 + 1c12t 2 
(4.1.4) 

Observe that this agrees with (4.1.2) if t = o. We shall verify (4.1.4) when 
c ¥ 0: the case c = 0 is easier and the proof is omitted. 

The Poincare extension of (J is the reflection in the sphere in ~3 with 
the same centre and radius as Qg: thus the action of (J in ~3 is given by 

( .) -d lad - bcl (z + (d/c) + tj) 
(J Z + t) = C + Icl2 Iz + (d/c) + tjl2 

-d lui . = - + - (cz + d + ct}), 
c cv 

where 

u = ad - bc, 

It is convenient to write 

so 

lui 
CZl + d = - (cz + d), 

v 
lult 

tl =-. 
V 

(4.1.5) 

The Poincare extension of g is found by composing the extensions of ¢ 
and (J. The extension of (J is given above and the extension of c/J (and of any 
Euclidean isometry of C) is given by 

c/J(W + sj) = c/J(w) + sj. 
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Thus 
g(z + tj) = cjJ(a(z + tj)) 

= cjJ(Zl + t 1 j) 

= cjJ(Zl) + td 

and using (4.1.3) and (4.1.5) this simplifies to give (4.1.4). 
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If ad - be > 0 we can describe the action of g in [R3 through the algebra 
of quaternions. Indeed, 

[a(z + tj) + b]. [e(z + tj) + d)r 1 = [(az + b) + atn. [(ez + d) + etn- 1 

[(az + b) + atn[CZ+d - ten 

lez + dl 2 + letl2 

(az + b)(CZ+d) + aa2 + (ad - be)tj 

lez + dl 2 + 1c12t2 

and this is g(z + tj) precisely when ad - be > O. 
It is possible to write each transformation in GM(il~n in terms of 

quaternions. For example, the function 

few) = (w - j)(w + j)-lj, w = Z + tj, (4.1.6) 

is the reflection in X3 = 0 followed by reflection in S(e3 , J2) (note that 
e3 = j). In fact,fmaps H3 onto B3 and the restriction off to t is simply the 
stereographic projection discussed in Section 3.1. In general, 

fez + tj) = (z + [t - 1]j)(z + [t + 1]j)-lj 

(z + [t - 1]j)(z - [t + 1]j)j 

Izl2 + (t + 1)2 

which simplifies to 

f( .) 2z + (lzl 2 + t 2 - 1)j 
z + tJ = --..:;-----'-----=--'-"-

Izl2 + (t + 1)2 
(4.1.7) 

For t = 0 this gives the formula for stereographic projection on IC: it also 
shows thatf(j) = O. 

EXERCISE 4.1 

1. Let 9 be given by (4.1.2) with e #- O. Prove 

(i) d1(gz, ale) -> 0 as d1(z, 00) -> 0; 
(ii) d1(gz, 00) -> 0 as d1(z, - die) -> 0 

where d1 is the chordal metric on t. 
2. Let 9 be given by (4.1.2) and (4.1.4) with ad - be = 1. Show that g(j) = j if and only if 

(: ~) E SU(2, 0. 
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3. Show that the Poincare extension of any Euclidean isometry g is given by 
g(z + tj) = g(z) + tj. 

Describe the action on H3 of a Euclidean isometry g of C which fixes j in H3. 

4. Show that in terms of quaternions, the reflection in S(IX, r), IX E 1R3, is given by 

w ....... (aw + b)(ew + d)-I 

for some suitable a, b, e and d where w = z - tj when w = z + tj. 

5. Let g be given by (4.1.2) with e #- O. Show that for quaternions wand w' of the form 
x + iy + tj, 

g(w) - g(w') = (ad - be)(we + d)-I(w - w')(ew' + d)-I. 

Deduce that if ad - be = 1, then g acts as a Euclidean isometry on the sphere 
S( -die, lileD in 1R3. 

§4.2. Representation by Matrices 

Any 2 x 2 matrix A in GL(2, C) induces a mapping g in .A by the formula 
A --+ gA where 

az + b 
gA(Z) = --d' 

cz + 
We denote the map A --+ gA by <D and this maps GL(2, C) onto .A: we shall 
say that A projects to or represents gk 

An elementary computation shows that 

ZEC, 

where AB is the matrix product and so <D is a homomorphism. The kernel 
K of <D is easily found for A E K if and only if 

az + b 
---=Z 
cz + d 

for all Z in C. If A E K we take z = 0, 00 and 1 and find that 

a # O. 

Clearly any matrix of this form is in K and so 

In particular, .A is isomorphic to GL(2, C)/K: in less formal language, gA 
determines the matrix A to within a non-zero multiple. 



*4.2. Representation by Matrices 61 

In general, we shall be more concerned with the restriction of <l> to SL(2, q. 
The kernel of this restriction is 

Ko = K n SL(2, q = {I, - I} 

and each g in vii is therefore the projection of exactly two matrices, say A 
and -A, in SL(2, q. We deduce that vii is isomorphic to SL(2, q/{I, -I}. 

The two functions 

IIAI12 

Idet(A)I' 
A E GL(2, q, 

are invariant under the transformation A f---+ AA, A =f. 0, and so they induce 
corresponding functions on vii, namely 

2 tr2(A) 
trace (g) = det(A) (4.2.1) 

and 

IIAII 
Ilgll = Idet(A)11/2' 

where A is any matrix which projects to g.We often abbreviate trace2(g) to 
trZ(g); also, we use I trace(g)1 for the positive square root of I trZ(g )1. These 
functions are of great geometric significance: we shall consider Ilgll now and 
discuss tr2(g) in Section 4.3. Observe, however, that trace2(g) is invariant 
under any conjugation g f---+ hgh -1. 

Theorem 4.2.1. For each 9 in vii, we have 

IIgl1 2 = 2 cosh p(j, gj). 

PROOF. Write 

( ) _ az + b 
g z - d' 

cz + 
ad - bc = 1; 

then by (4.1.4) (with z = ° and t = 1), 

. (bJ + ac) + j 
g(j) = Icl z + Idl 2 

According to (3.3.4), if (1 = Z1 + td and (z = Z2 + tzj, then 

IZ1 - z21 z + (t 1 - tZ)2 + 1 -_ h (1 1) 
2 cos P '01, 'oz • 

t 1tZ 

The result now follows by substituting z 1 = 0, t 1 = 1 (so (1 = j), (z = g(j) 
and using the identity 

IbJ + acl z + 1 = IbJ + acl z + lad - bclz 

= (lalZ + IbIZ)(lcI Z + IdI Z). o 
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We have already seen from (4.1.7) that 

f(w) = (w - j)(w + j)-lj, W = Z + tj, (4.2.2) 

is the reflection in t followed by the reflection in SU, )2) and that this 
transforms the hyperbolic metric in H3 to the metric 

d _ 21dxl 
s - 1 _ Ixl2 

in B3. As another illustration of the use of quaternions let us consider an 
alternative proof of Theorem 4.2.1, this time the computations being carried 
out in B3. 

SECOND PROOF. Let w = gU) and, = f(w) so 'E B3. Now for any quater­
nions (I. and /3, 

and so 

Thus 

1'1 = I(aj + b)(ej + d)-I-jl· UI 
I(aj + b)(ej + d) 1 +jl 

I(aj + b) - j(ej + d)ll(ej + d)-II 

I(aj + b) + j(ej + d)ll(ej + d) 11 

I(b + c) + (a - i1)jl 

I(b - e) + (a + d)jl' 

y 2 _ (b + c)(lJ + e) + (a - J)(a - d) 

I ~ I - (b _ e)(v - e) + (a + J)(a + d) 

IIgl1 2 + (be - ad) + (be - ad) 

IIgl1 2 + (ad - be) + (ad - be) 

IIgl1 2 - 2 
= IIgl1 2 + 2' 

Using p for both the metric in H3 and the metric in B3, we have 

pU, g(j» = p(fU), f(g0» 

= p(O,O 

1 + 1'1 
= log 1 _ 1'1' 

Writing p for pU, g0» and using (4.2.3), this gives 

2 cosh p = eP + e - P 

2(1 + 1(12) 
1 _ 1'12 

= Ilg112. 

(4.2.3) 

o 
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We can now review Theorems 2.5.1 and 2.5.2 in the light of the geometric 
action of Mobius transformations. Suppose that 

() _az+b 
9 z - d' cz + 

where A is in SL(2, IC) and suppose also thatfis given by (4.2.2). 

Theorem 4.2.2. The following statements are equivalent. 

(i) A E SU(2, IC); 
(ii) g(j) = j; 

(iii) IIgl1 2 = 2; 
(iv) f gf- 1 is a linear orthogonal transformation; 
(v) 9 is an isometry of the chordal metric space (t, d). 

PROOF. The equivalence of (ii) and (iii) is a direct corollary of Theorem 4.2.1. 
As A E SL(2, IC) we have IIAI12 = IIgl1 2 and the equivalence of (i) and (iii) 
is a direct consequence of Theorem 2.5.1. 

Next, (ii) is equivalent to 

fgf-1(0) = 0 

and by Theorem 3.4.1, this is equivalent to (iv). 
Finally, the equivalence of (i) and (v) is established by observing that 9 

is an isometry if and only if for all z, 

Ig(l)(z)I 1 

1 + Ig(z)12 1 + Iz12· 
Thus (v) holds if and only if for all z, 

1 + Izl2 = laz + bl2 + Icz + d1 2, 

or, equivalently, 

1 + Izl2 = (lal2 + 1c12)lz12 + (lbl2 + Id12) + 2 Re(ao + cJ)z. 

This is equivalent to 

and 

aD + cJ = 0, 

which, in turn, is equivalent to At A = I and this is (i). D 

Of course, Theorem 4.2.2 shows that the classical symmetry groups of 
the regular solids (embedded in B 3 ) correspond to the finite subgroups of 
SU(2, IC): indeed, each rotation of B3 is represented by a Mobius 9 derived 
from a matrix in SU(2, IC) and the symmetry groups can be realized as finite 
Mobius groups. 
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EXERCISE 4.2 

1. Show that if g(j) = w + sj then 

IIgl1 2 = (lwl 2 + S2 + l)/s. 

2. Let a subgroup r of SL(2, IC) project to a subgroup G of uIt. Show that if r is discrete 
then for any compact subset K of H 3 , g(j) E K for only a finite number of gin G. 

3. Show that if a matrix A in SL(2, IC) is of order two then A = I or - I. Deduce that 
if B is a matrix in SL(2, IC) representing a Mobius transformation of order two, then 
B is of order four. 

4. Show that g: z ~ -z is not the projection of any matrix in SL(2, IR). Verify that the 
projection of SL(2, IR) consists of those Mobius transformations which preserve the 
extended real axis and the upper half-plane in C. 

5. Show that the transformations 

2z - 1 
z~--· 

3z - 2' 

3z - 1 
z~--· 

7z - 2' 

z 
z~--; 

5z - 1 

2z - 1 
z~--· 

7z - 3' 

3z - 1 
z~--

8z - 3 

form a group. Show that there is a unique point w + tj in H3 fixed by every element 
of this group and describe the corresponding group of rotations in 1R3. 

§4.3. Fixed Points and Conjugacy Classes 

We begin with a brief discussion of the relationship between certain alge­
braic concepts and some geometric ideas concerning fixed points. Initially, 
the discussion will be quite general and there is no advantage to be gained 
by restricting ourselves to Mobius transformations (indeed, such a restriction 
may even deflect the reader from the central ideas). 

Let X be any non-empty set. A permutation of X is a 1-1 mapping of X 
onto itself: for example, a reflection in a sphere is a permutation of iR". The 
fixed points of a permutation g are those x in E which satisfy g(x) = x: if 
this is so we say that g fixes x. 

If G is any group of permutations of X then the stabilizer Gx (in G) of x 
is the subgroup of G defined by 

G x = {g E G: g(x) = x}. 

Finally, the orbit (or G-orbit) G(x) ofx is the subset of X defined by 

G(x) = {g(x) E X: g E G}. 

Observe that there is a natural one-to-one correspondence between the set 
GIGx of cosets and the orbit G(x). If g and h are in G, then hex) = g(x) if and 
only if hGx = gGx and this shows that the map hG f-> hex) is both properly 
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defined and one-to-one. It clearly maps G/Gx onto G(x) and this is the 
required correspondence. The same facts show that the coset hG x is the 
complete set of gin G which map x to h(x). 

Two subgroups Go and G1 of G are conjugate if for some h in G, 
Go = hG1h- 1. As 9 fixes x if and only if hgh- 1 fixes h(x), we see that 

Gh(x) = hGxh- 1: 

thus ifx and yare in the same orbit then Gx and Gy are conjugate. 
Conjugate subgroups are, of course, isomorphic; however, they are also 

the same from a geometric point of view. This is not necessarily true of 
isomorphic subgroups, for example, the groups generated by Z ~ Z + 1 and 
Z ~ 3z are isomorphic but have quite different geometric actions. We are 
primarily interested in the geometric action of subgroups of.lt and we shall, 
in general, state our results in aform which remains invariant under conjugation. 

Now let F 9 be the set of fixed points of g. If gh = hg then 

g(Fh) = Fh, h(Fg) = Fg, (4.3.1) 

This is clear for if x E F h then 

h(g(x)) = g(h(x)) = g(x) 

and so g(x) E Fh: thus, g(Fh) c Fh. Replacing 9 by g-1 we obtain g(Fh) = Fh 
and (similarly) h(Fg) = Fg. We shall see later (Theorem 4.3.6) that the 
converse is also true when G is a group of M 6bius transformations. 

We return now to study the transformations in .It. In its action on C, 
a Mobius transformation 9 has exactly one fixed point, exactly two fixed 
points or is the identity. This provides a rather primitive classification and 
we can obtain a finer classification based on the fixed points in ~3. This new 
classification is invariant under conjugation and so there is a still finer 
classification, namely the classification into conjugacy classes. One of our 
main results is that the function tr2 defined by (4.2.1) actually parametrizes 
the conjugacy classes. 

It is convenient to introduce certain normalized Mobius transformations. 
For each non-zero k in C we define mk by 

mk(z) = kz (if k ¥- 1) 

and 

m1(z)=z+l: 

we call these the standard forms. For future use, note that for all k (including 
k = 1), 

2 1 
tr (mk) = k + k + 2. (4.3.2) 

If 9 ( ¥- I) is any Mobius transformation then either 9 has exactly two 
fixed points a and f3 in C or 9 has a unique fixed point a in C (in this case, 
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we choose 13 to be some point other than IX). Now let h be any Mobius trans­
formation with 

h(lX) = 00, 

and observe that 

h(f3) = 0, h(g(f3» = 1 if g(f3) =I 13, 

h h-1(0) = {O if g(/3) = 13, 
9 1 if g(f3) =I 13· 

If 9 fixes IX and 13, then hgh- 1 fixes ° and 00 and so for some k (k =I 1), we 
havehgh- 1 = mk. Ifg fixes IX only then hgh- 1 fixes 00 only and hgh-1(0) = 1: 
thus hgh- 1 = ml. This shows that any Mobius transformation g(=l1) is 
conjugate to one of the standard forms mk and this leads to a simple proof of 
of the next result. 

Theorem 4.3.1. Let f and 9 be Mobius transformations, neither the identity. 
Thenf and 9 are conjugate if and only iftr2(f) = tr2(g). 

For brevity, we use,...., to denote conjugacy in .d. 

PROOF. We have already noted (following (4.2.1» that if f ,...., 9 then 
tr2(f) = tr2(g). 

Now assume that tr2(f) = tr2(g). We know that f and 9 are each con­
jugate to some standard form, say f ,...., mp and 9 ,...., mq. Thus 

tr2(mp) = tr2(f) = tr2(g) = tr2(mq) 

and using (4.3.2), this shows that p = q or p = l/q. Now note that 
mp ,...., ml/p: this is trivial if p = 1 while if p =I 1, we have 

h(z) = -liz. 

We now havef,...., mp' g,...., mq and (as p = q or p = 1/q) mp """ mq. As 
conjugacy is an equivalence relation, this shows that f ,...., 9 and the proof 
is complete. 0 

We shall now classify Mobius transformations in terms of fixed points 
in ~3 and it is natural to begin by studying the fixed points of the standard 
forms. The action of mk in ~3 as given by (4.1.4) is 

mk(z + tj) = kz + Ikltj 

ml(z + tj) = z + 1 + tj, 
(k =I 1); 

and this enables one to find the fixed points of each mk. Clearly: 

(i) m1 fixes 00 but no other point in ~3; 
(ii) if I k I =I 1, then mk fixes ° and 00 but no other points in ~3; 

(iii) if I k I = 1, k =I 1, then the set of fixed points of mk is 

{tj: t E ~} U {oo}. 
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Definition 4.3.2. Let 9 (=1=1) be any Mobius transformation. We say 

(i) 9 is parabolic if and only if 9 has a unique fixed point in C (equivalently, 
9 '" ml); 

(ii) 9 is loxodromic if and only if 9 has exactly two fixed points in 1R3 
(equivalently, 9 '" mk for some k satisfying Ikl =1= 1); 

(iii) 9 is elliptic if and only if 9 has infinitely many fixed points in 1R3 
(equivalently, 9 '" mk for some k satisfying Ikl = 1, k =1= 1). 

It is convenient to subdivide the loxodromic class by reference to in­
variant discs rather than invariant (fixed) points. Note, however, that the 
following usage is not universal: some authors use "loxodromic" for our 
"strictly loxodromic" and have no name for our loxodromic transformations. 

Definition 4.3.3. Let 9 be a loxodromic transformation. We say that 9 is 
hyperbolic if g(D) = D for some open disc (or half-plane) D in C: otherwise 
9 is said to be strictly loxodromic. 

The classification described in these definitions is invariant under con­
jugation and by virtue of Theorem 4.3.1, we must be able to classify 9 
according to the value of tr2(g). This is our next result. 

Theorem 4.3.4. Let 9 (=1= 1) be any Mobius transformation. Then 

(i) 9 is parabolic if and only iftr2(g) = 4; 
(ii) 9 is elliptic if and only iftr2(g) E [0,4); 

(iii) 9 is hyperbolic if and only if tr2(g) E (4, + (0); 
(iv) 9 is strictly loxodromic if and only if tr2(g) ¢ [0, + (0). 

PROOF. We shall verify (i), (ii) and (iii): then (iv) will automatically be satis­
fied. Throughout the proof, we suppose that 9 is conjugate to the standard 
form mp so by (4.3.2), 

1 
tr2(g) = p + - + 2. 

p 

Recall that 9 is conjugate to mp and to ml/p but to no other mq • 

(4.3.3) 

If 9 is parabolic, then 9 is conjugate to ml only: so p = 1 and tr2(g) = 4. 
Conversely, if tr2(g) = 4, then p = 1 and 9 is parabolic. This proves (i). 

If 9 is elliptic, then p = ei8 , say, with () real and cos () =1= 1. Then 

tr2 (g) = 2 + 2 cos () (4.3.4) 

and so tr2(g) E [0,4). Conversely, suppose that tr2(g) E [0,4). Then we may 
write tr2(g) in the form (4.3.4) with cos () =1= 1 and then (4.3.3) has solutions 
p = ei8, e - i8. Thus I pi = 1, p =1= 1 and we deduce that 9 is elliptic. This 
proves (ii). 
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Finally, we prove (iii). Suppose first that tr2(g) E (4, + (0). Then (4.3.3) 
has solutions p = k, 11k say, where k > O. As both solutions are positive, 
mp necessarily preserves the upper half-plane and so is hyperbolic. This 
means that 9 is hyperbolic. Now suppose that g, and hence mp ' is hyperbolic 
and let D be a disc which is invariant under mp. For any z in D, the images 
of z under the iterates of mp are in D and so 

{p"z: n E Z} cD. 

Because Ipi "# 1, this shows that 0 and 00 are in the closure of D. The same 
argument, but with z chosen in the exterior of D, leads to the conclusion 
that 0 and 00 lie on the boundary of D. Thus D is a half-plane and in order 
to preserve D, it is necessary that mp leaves invariant each of the half-lines 
from 0 to 00 on the boundary of D. Thus p > 0 and so tr2(g) > 4. D 

We now prove three useful results concerning fixed points. Recall that 
in any group the commutator of 9 and h is 

[g, h] = ghg-1h- 1 = g(hg-1h- 1). 

If A and B are matrices in SL(2, C) representing Mobius transformations 
9 and h then they are determined to within a factor of - 1 and so 

tr[g,h] = tr(ABA-1B- 1) 

is uniquely determined, independently of the choice of A and B. 

Theorem 4.3.5.(i) Two Mobius transformations 9 and h have a common fixed 
point in t if and only iftr[g, h] = 2. 

(ii) If 9 and h (neither the identity) have a common fixed point in t then either: 

(a) [g, h] = I (so gh = hg) and Fg = Fh ; or 
(b) [g, h] is parabolic (and gh "# hg) and Fg "# Fh • 

PROOF. The assertions in (i) remain invariant under conjugation so we may 
assume that in terms of matrices in SL(2, C), 

A computation shows that 

tr[g, h] = 2 + b2y2 + b(a - d)y(rJ. - £5) - (a - d)2yp. 

If 9 and h have a common fixed point, we may assume that it is 00 so y = 0 
and tr [g, h] = 2. 

Now suppose that tr[g, h] = 2. If 9 is parabolic we can take a = d = 1 
and b "# 0: then y = 0 so both 9 and h fix 00. If 9 is not parabolic we can take 
b = 0 so ad = 1 and a "# d: then yp = 0 so h fixes one of 0 and 00. This 
proves (i). 
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To prove (ii) we may assume that g and h are as above with y = O. Then 
[g, h] = I if and only if 

f3(a - d) = b(rx - b) 

and this is equivalent to F 9 = F h (consider the cases a = d, a "# d). 
For an alternative approach to (ii), suppose that the common fixed point 

is 00 and so g and also h is of the form z ~ az + b. The map g ~ a is a homo­
morphism of <g, h) to the group C - {O}: as this group is abelian, every 
commutator is in the kernel of the homomorphism and so is a translation 
~n 0 

A Euclidean similarity is a map x -+ r</J(x) + Xo where </J is a Euclidean 
isometry and the above proof is concerned with such similarities. In fact, 
Theorem 4.3.5 is a theorem on Euclidean similarities but stated in a form 
that is invariant under conjugation. 

Theorem 4.3.6. Let g and h be Mobius transformations other than 1. The 
following statements are equivalent: 

(i) hg = gh; 
(ii) h(Fg) = Fg, g(Fh) = Fh; 

(iii) either F 9 = F h or g and h have a common fixed point in H3 with g2 = 

h2 = (gh)2 = I and Fg n Fh = 0. 
PROOF. First, (4.3.1) shows that (i) implies (ii). 

The proof that (iii) implies (i) is easy. If Fg = Fh then g and h have a 
common fixed point and so by Theorem 4.3.5, [g, h] = I: thus in this case, 
gh = hg. The other alternative offered by (iii) also leads to gh = hg as 

hg = hg(ghgh) = gh 

and so (iii) implies (i). 
It remains to prove that (ii) implies (iii). We assume that (ii) holds and 

also that Fg "# Fh (else (iii) certainly holds). This means that there is some 
W in exactly one of the sets Fg, Fh and we may assume that WE Fg - Fh: 
thus g(w) = wand h(w) "# w. By (ii), Fg contains the points w, h(w), h2(W) 
and as these cannot be distinct (else g = I) we must have h2(W) = w. This 
shows that F 9 has exactly two points and that these are interchanged by h. 
It also shows that Fg n Fh = 0. 

By conjugation, we may assume that F 9 = {O, 00 }: thus for some a and b, 

g(z) = az, h(z) = biz. 

It is now clear that h2 = (gh)2 = 1. Moreover, as g(Fh) = Fh, we must have 
g(.jb) = -.jb so a = -1 and g2 = I. Finally g and h have a common 
fixed point, namely I b Il/2j, in H3: this follows directly from (4.1.4). 0 

Theorem 4.3.5 is concerned with two transformations with a common 
fixed point in C: the next result concerns a common fixed point in H3. 
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Theorem 4.3.7. A subgroup G of JI{ contains only elliptic elements (and I) if 
and only if the elements of G have a common fixed point in H3. 

It follows from Definition 4.3.2 that if g( #- I) is of finite order then 9 is 
necessarily elliptic. As every element in a finite group has finite order we 
have the following corollary. 

Corollary. The elements in a finite subgroup of JI{ have a common fixed point 
in H3. 

To understand the geometric nature of the proof it is convenient to 
introduce the notion of the axis of an elliptic element g. If the fixed points 
of gin t are a and p, then (by considering a conjugation to one of the standard 
forms), the fixed points of 9 in 1R3 are precisely the points on the circle r 
which is orthogonal to C and which passes through a and p. The axis Ag 
of 9 is the Euclidean semi-circle r n H3 (in fact, this is a geodesic in the 
hyperbolic geometry of H 3 ). The condition that two elliptic elements 9 and 
h have a common fixed point in H3 is simply that the two axes Ag and Ah 
are concurrent in H3. Note that a necessary and sufficient condition for this 
is that the fixed points of 9 and h in t lie on a circle Q and separate each 
other on Q. 

Parts of the proof of Theorem 4.3.7 are algebraic (the geometry is compli­
cated) but even so, we shall stress the geometric interpretation. First, we 
prove a preliminary result. 

Lemma 4.3.8. Suppose that g, hand gh are elliptic. Then the fixed points of 
9 and h in tare concyclic. If, in addition, [g, h] is elliptic or I, then the axes 
Ag and Ah are concurrent in H3. 

PROOF. If 9 and h have a common fixed point in t, then Fg u Fh has at most 
three points and so lies in some circle. If, in addition, [g, h] is elliptic or I, 
then from Theorem 4.3.5, Fg = Fh and so Ag = Ah: thus 9 and h have 
infinitely many common fixed points in H3. 

We may now assume that 9 and h have no common fixed points in t. 
By conjugation we may assume that 

h(z) = az + b, 
cz + d 

where a2 #- 1, lal = 1 and ad - bc = 1. Now 

and so by Theorem 4.3.4, the numbers 

A = a + d, J1=aa+&ti 



§4.3. Fixed Points and Conjugacy Classes 71 

are in the interval ( - 2, 2). Solving for a and d in terms of IX, A and jJ., we 
obtain 

a = a = u + iv, 

say. 
The fixed points of h are (using ad - bc = 1) 

a - d ± i[ 4 - (a + d)2]1/2 

2c 

and these are the points 

~,' = {i/c)[v ± (1 - U2)1/2]. 

As I a + d I < 2, we find that u2 < 1 and so ~ and, lie on a straight line L 
through the origin: thus the fixed points of g and hare concyclic. 

A computation (after writing IX = ei9 and using ad - bc = 1) gives 

tr2([g, h]) = 4[1 + (lal 2 - 1) sin2 0]2 

and so the additional hypothesis that [g, h] is elliptic or I implies that 
lal ~ 1 because we must have 

o ~ tr2 ([g, h]) < 4. 

Now I a I = 1 implies that u2 + v2 = 1 and so one of the points ~, , is zero. 
This is excluded as g and h are assumed to have no common fixed points: 
thus I a I < 1 and so (taking the positive root) 

(1 - U2)1/2 > v. 

This means that 

~ = is/c, , = it/c, 

where sand t are real with st < O. Thus the origin (fixed by g) lies between 
~ and, and so Ag and Ah are concurrent in H3. 0 

We now use Lemma 4.3.8 to obtain information about subgroups of .A 
of the form <g, h) which contain only elliptic elements and I. First, by 
Lemma 4.3.8, g and h have a common fixed point" say, in H3 and, of course, 
every element of <g, h) fixes ,. By considering a conjugate group, we may 
assume that g and h preserve B3 and that, = O. 

Lemma 4.3.9. Let g and h be Mobius transformations ('# I) which preserve 
B3 and fix the origin. Then 

(i) the elements of <g, h) have the same axis and same fixea points or 
(ii) there is somefin <g, h) such that the three axes Ag, Ah, AI are not coplanar. 

Assuming the validity of Lemma 4.3.9 for the moment, we complete the 
proof of Theorem 4.3.7. 
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PROOF OF THEOREM 4.3.7. The conclusion is obviously true if all elliptic 
elements of G have the same axis so we may assume that G contains elements 
g and h with distinct axes. By Lemma 4.3.8, g and h have a common fixed 
point in H3 and by considering a conjugate group we may assume that G 
acts on B3 and that Lemma 4.3.9 is applicable. By assumption, (i) fails so 
(ii) of Lemma 4.3.9 holds. 

Every element of (g, h) fixes the origin so the axes Ag, Ah, AJ are 
Euclidean diameters of B3: moreover, by (ii), they are not coplanar. Now 
take any q in G, q i= I. We shall show that q(O) = 0 and this will complete 
the proof. By Lemma 4.3.8, the fixed points of q and g lie on some circle 
on oB 3 and so also lie on a Euclidean plane TIg. As TIg contains the end-points 
of the diameter Ag, we see that 0 E TIg: also Aq c TIg. A similar definition 
and argument holds for TIh and TI J : so 

and 

(4.3.5) 

The planes TIg , TIh, TIJ cannot be the same plane (else Ag, Ah, A J would be 
coplanar) thus the intersection 

is either {O} or is a diameter D of B3. Because this intersection contains the 
fixed points of q on oB 3 it is a diameter D and we conclude from (4.3.5) that 
Aq = D. In particular, 0 E Aq and so q(O) = O. 0 

PROOF OF LEMMA 4.3.9. Every element of (g,h) fixes the origin and so is 
elliptic or I. For each such elliptic f, let A r denote the axis (of fixed points) 
offin B3. Note that by assumption, Ag and Ah are Euclidean diameters of B3. 

We shall assume that (i) fails so Ag and Ah are distinct diameters and 
hence determine a Euclidean plane TI. Let the normal to TI through the 
origin be the diameter D of B3. If h(Ag) does not lie in TI, then takef = hgh- 1 

and this satisfies (ii) as then A J = h(Ag). A similar construction offis possible 
if g(Ah) does not lie in TI. These attempts to construct f can only fail if g and 
h preserve TI in which case, they are both rotations of order two. Then both 
g and h interchange the end-points of D and so (ii) is satisfied withf = gh. 

o 

We end this section with a discussion of the iterates of a Mobius 
transformation. 

If g is parabolic, then for some h we have 

(t i= 0). 
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Thus 

hg"h- 1(z) = z + nt 

and 

g"(z) = h- 1(hz + nt). 

Observe that for each z in C, hg"h- 1(z) -+ 00 as Inl-+ 00: thus in general, 
if g is parabolic then 

g"(z) -+ IX, 

where IX is the fixed point of g. 
If g is not parabolic, then g has two fixed points, say IX and {3, and for some 

h we have 

(t =F 0, 1) 

and hence 

hg"h- 1(z) = t"z. 

These facts show that if g is loxodromic (equivalently, It I =F 1) and if z is not 
IX or {3, then the images g"(z) are distinct and accumulate at IX and {3 only. 
If g"(z) -+ IX, say, as n -+ + 00, then IX is called the attractive fixed point of 
g while {3 is called the repulsive fixed point. Then for all z other than {3, g"(z) -+ IX 

as n -+ +00. 

If g is elliptic (equivalently, It I = 1), then g has invariant circles: indeed 
each circle for which IX and {3 are inverse points is a g-invariant circle and so 
each orbit under iterates of g is constrained to lie on such a circle. We collect 
these results together for future reference. 

Theorem 4.3.10. (i) Let g be parabolic with fixed point IX. Thenfor all z in C, 
g"(z) -+ IX as n -+ + 00, the convergence being uniform on compact subsets 
ofe - {IX}. 

(ii) Let g be loxodromic. Then the fixed points IX and {3 of g can be labelled so 
that g"(z) -+ IX as n -+ + 00 (if z =F {3), the convergence being uniform on 
compact subsets ofC - {{3}. 

(iii) Let ge be elliptic with fixed points IX and {3. Then g leaves invariant each 
circle for which IX and {3 are inverse points. 

If a Mobius g is of finite order k (so l, but no smaller power, is J) then g 
is necessarily elliptic. In this case we have 

say, and so 

() = 2nm/k, 
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where k and m are coprime. We deduce that 

tr 2(g) = 4 cos2(8/2) 

= 2[ 1 + cos(2nm/k)]. 

Note that this can take different values depending on the prime factors of k. 
If g is elliptic of order two, then k = 2 and necessarily, tr 2(g) = 0: the con­
verse is also true. Observe that among all g of order k, the largest value of 
tr 2(g) occurs when m = 1 or k - 1, 

tr 2(g) = 4 cos 2(n/k) 

and 8 = ± 2n/k. Again we record this for future reference. 

Theorem 4.3.11. Let g be an elliptic transformation of order k. Then 

tr2(g) ::::;; 4 cos 2(n/k), 

with equality if and only if g is a rotation of angle ±2n/k. 

EXERCISE 4.3 

1. Find Mobius transformations 9 and h such that 

(i) tr[g, h] = -2; and 
(ii) 9 and h have no common fixed point in C. 

2. Let 9 be any Mobius transformation which does not fix 00. Show that 9 = 919293, 
where 91 and 93 are parabolic elements fixing 00 and where 92 is of order two. 

3. An nth root of a Mobius transformation 9 is any Mobius transformation h satisfying 
hn = 9. Prove 

(i) if 9 = J then 9 has infinitely many nth roots; 
(ii) if 9 is parabolic then 9 has a unique nth root; 

(iii) in all other cases, 9 has exactly n nth roots. 

4. Show that if A and B are in SL(2, C) then 

det(A - J) = 2 - tr(A) 

and 

det(AB - BA) = 2 - tr[A, B] 

([A, B] is the commutator of A and B). Deduce that if A and B viewed as Mobius 
transformations do not have a common fixed point in C, then AB - BA is a non­
singular matrix which represents a Mobius transformation or order two. 

S. Let 9(z) = z/(cz + 1). Verify (i) by induction and (ii) by considering a suitable h9h- 1 

that 
z 

9n(z) =-­
ncz + 1 

Find{n wheref(z) = 6Z/(2 + 3) and check your result by induction. 
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§4.4. Cross Ratios 

Given four distinct points Z 1, Z2' Z3' Z4 of C we define the cross-ratio of 
these points as 

compare this with (3.2.5) where division is not permitted. The definition is 
extended by continuity to include the case when one of the Zj is 00 so, for 
example, 

Note that in particular, 

If 

then 

[0,1, z, 00] = z. 

g(Z) = az + b 
cz + d 

(ad - bc =f. 0), 

( ) () (z - w)(ad - bc) 
g Z - g w = -(c-z-+-d)-(c-w-+-d-:-) 

(4.4.1) 

and it is immediate that the cross-ratio is invariant under Mobius trans­
formations; that is, 

(4.4.2) 

This is a useful property which often leads to a considerable simplification. 
Moreover, the converse is also true: if 

(4.4.3) 

holds then there is a Mobius transformation g with g(Zj) = Wj' To see this, 
letf and h be Mobius transformations which map Z1' Z2, Z4 to 0,1,00 and 
W1' W2, W4 to 0,1,00 respectively: these exist by Theorem 4.1.1. Then by 
(4.4.1), (4.4.2) and (4.4.3), 

f(Z3) = [0,1, f(Z3), 00] 

= [f(Z1), f(Z2), f(Z3), f(Z4)] 

= [Z1, Z2, Z3, Z4] 

= [W1' W2' w3, W4] 
= [h(W1), h(W2), h(W3), h(w4)] 

= [0,1, h(W3), 00] 

= h(W3)' 

It is now clear that g(Zj) = Wj where g = h- 1 0 f. D 
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We are now going to study how the cross ratio 

A = [Zl,Z2,Z3,Z4] (4.4.4) 

varies as we permute the Zj. With this in mind we let Sn denote the permu­
tation group of {1, ... , n} and remark that (as with all functions) we regard 
permutations as acting on the left: for example, (12) (13) maps 3 to 2. 

Each (J in S4 induces a change in the value of the cross ratio by the formula 

and it is essential to realize that the resulting value depends on (J and A but 
not on the individual values Zj. This is so because if 

then there is some g with g(Zj) = Wj and so 

[Zal' Za2' Za3' Za4] = [g(Zal), g(Za2), g(Za3), g(Za4)] 

Because of this fact, we can introduce functions fa «(J E S4) by the formula 

where A is given by (4.4.4). Because 

f,,(fa(A» = [Z"al, Z"a2, Z"a3' Z"a4] 

= f"iA) 

we have the important relation 

(4.4.5) 

Now suppose that (J is the transposition (1, 2) and let g be the Mobius 
transformation which maps Zl' Z2' Z4 to 0, 1, 00 respectively. Then 

and so 

A = [Zl,Z2,Z3,Z4] 

= [0,1, g(Z3), 00] 

= g(Z3) 

fa(A) = [Z2' Zl' Z3' Z4] 

= [1,0, A, 00] 

= 1 - A. 

A similar argument holds for all six transpositions in S4 and we find 

(i) if (J = (1,2) or (3,4) thenfiA) = 1 - A; 
(ii) if (J = (1,3) or (2,4) then fiA) = Aj(A - 1); 

(iii) if (J = (1,4) or (2, 3) thenfa(A) = 1jA. 
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This information leads to a determination of allfa. As S4 is generated by 
transpositions, (i), (ii) and (iii) together with (4.4.5) suffice to give all fa. 
Note that for each transposition (1, the function fa is actually a Mobius 
transformation which maps {O, 1, oo} onto itself. Thus if we denote by .40 
the subgroup of Mobius transformations which map {O, 1, oo} onto itself 
we find from (4.4.5) that the map 

e: (1 -+ fa 

is actually a homomorphism of S4 into .40 (which is isomorphic to S 3)' In 
addition to this, it is clear from (i), (ii) and (iii) and (4.4.5) that the subgroup 

K = {I, (1, 2)(3, 4), (1, 3)(2,4), (1, 4)(2, 3)} 

of S4 is contained within the kernel of e. We can now describe the situation 
completely. 

Theorem4.4.1. The map e: S4 -+ .40 is a homomorphism of S4 onto .40 with 
kernel K. 

PROOF. Theorem 4.1.1. implies that.4o has exactly six elements: these are 
the functions 

Jc, 1 - Jc, A/(Jc - 1), I/Jc, 1/(1 - Jc), (Jc - 1)/Jc 

of Jc. There are six permutations (1 in S4 with (1(4) = 4 and a straightforward 
computation shows that the corresponding fa are precisely the six elements 
of .40, This shows that e maps S4 onto .40 and as this implies that the 
kernel of e has exactly four elements, the kernel must be K. 0 

Four distinct points Z 1, Z 2, Z 3, Z4 in Care concyclic if and only if they lie 
on some circle. Let g be the Mobius transformation which maps ZI,Z2,Z4 
to 0, 1, 00 respectively. Then the Zj are concyclic if and only if the g(Zj) are 
and this is so if and only if g(Z3) is real. However, 

g(Z3) = [0,1, g(Z3)' ooJ 

= [ZI, Z2, Z3, Z4J: 

thus ZI, Z2, Z3, Z4 are concyclic if and only if[zl, Z2, Z3, Z4J is real. 
If ZI, Z2, Z3, z4lie on a circle Q and are arranged in this order around Q, 

then g(Z3) > 1 and so 

EXERCISE 4.4 

1. Show that the unique Mobius transformation which maps z 1, Z2, Z4 to 0, 1, 00 

respectively is g where 

g(z) = [ZI' Z2, Z, Z4]' 

2. Verify that!iA.) = A./(A. - 1) when u = (2,4). 
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3. Let Zl, Zz, Z3, Z4 be distinct points in t. Show that the circle through Zl, Z2, Z4 is 
orthogonal to the circle through Z 1, Z 3, Z4 if and only if 

Generalize this to the case where the circles meet at an angle () (note that the Zj are 
concyclic if and only if () = 0). 

4. Let 9 be any Mobius transformation. Show that if 9 does not fix Z then [z, gz, g2z, g3Z] 
is independent of Z and evaluate this in terms of tr 2(g). 

§4.5. The Topology on A 

As described in Section 4.2, there is a homomorphism 

<1>: SL(2, IC) --> ...It, 

which associates to each g in ...It exactly two matrices A and - A in SL(2, IC). 
The group SL(2, IC) is a topological group with respect to the metric IIA - BII 
and the map <I> induces the quotient topology fT on ...It, namely the largest 
topology on ...It with respect to which, <I> is continuous. In addition, ...It has 
a topology fT*, namely the topology of uniform convergence with respect 
to the chordal metric on t (see Section 3.7) and it is essential to know that 
these topologies are the same. One method is to compare the action of 
SL(2, IC) through the action of ...It on H3 (and then B3) to the matrix group 
0+(1,3). However, a more direct approach is not without interest. 

Theorem 4.5.1. The topology fT induced on ...It by <I> coincides with the 
topology fT* of uniform convergence on t. 
PROOF. It is sufficient to show that the map 

<1>: SL(2, IC) --> (...It, fT*) (4.5.1) 

is open and continuous: see Proposition 1.4.1. 

Assuming that this has been established, observe that if X is in SL(2, IC) 
then 

IIX - (-X)II = 211XII 

22j2, 

(see (x) of Section 2.2). This yields the next result. 

Corollary 4.5.2. The restriction of<l> to any open ball of radius j2 in SL(2, IC) 
is a homeomorphism: thus SL(2, IC) is a two-sheeted covering space of ...It. 
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It remains to prove that the map (4.5.1) is open and continuous. Define 

a(f, g) = sup d(fz, gz), 
ZEt 

where d is the chordal metric: thus f/* is the metric topology induced by 
the metric a. We shall derive the continuity of <1> from the next result. 

Proposition 4.5.3. If A in SL(2, IC) represents g, then 

a(g, I) S J6IIA - III· 

Explicitly, if B representsf, then 

a(g, f) = a(g f -1, I) 

S J6II AB- 1 - III 
s J6 IIA - BII . IIBII 

and so <1> is continuous at the general element B of SL(2, C). 

PROOF OF PROPOSITION 4.5.3. There is a unitary matrix B representing a 
Mobius map h such that hgh- 1 fixes 00 (h corresponds to a rotation of the 
sphere moving a selected fixed point of g to 00). By Theorems 2.5.2 and 
4.2.2 we have 

and 
IIA - III = IIBAB- 1 - III 

a(hgh-1,1) = a(gh-1,h- 1) 

= a(g, I). 

These remarks show that we may assume, without loss of generality, that 
g fixes 00. In addition, if g is loxodromic we may assume that the repulsive 
fixed point of g is 00 (we simply choose h appropriately). 

Assume then that 

ab = 1: 

the condition on the fixed point of g in the loxodromic case means that in 
all cases, 

Now 

d(z, gz) S d(Z, ~) + d(a;, az ; P) 
21zl.11 - (a/b) I 

S (1 + IzI2)1/2(1 + laz/bI2)1/2 + 21P/bl 

2lzl.la - bl 
S Ibl.12zI1/212az/bI1/2 + 21PI, 
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the last line being an application of the Arithmetic-Geometric Mean 
inequality. This upper bound simplifies to a value independent of z and 
using rx6 = 1, we have 

a(g,I)::; Irx - 61 + 21PI 

::; Irx -11 + 11- 61 + 21PI 

::; (Ia - 112 + 11 - 61 2 + IPI2)1/2(1 + 1 + 4)1/2 

::; J6IIA - III· D 

Finally, we must show that the map (4.5.1) is an open map and this will 
be derived from the next result. 

Proposition 4.5.4. Let gl' g2, ... be Mobius transformations and suppose that 
gnCw) ---> w for w = 0,1,00. Then: 

(i) there exist matrices An representing gn which converge to I; and 
(ii) gn ---> I uniformly on C. 
PROOF. Choose matrices 

in SL(2, C) representing gn where Cn is 1 or -1 and is to be chosen later. 
In the following argument, trivial modifications are required if gn( 00) = 00: 
we ignore these cases. 

As 

1 

---> 1, 

we can select Cn so that cndn ---> 1. Next, 

(cnan){cndn) = andn 
gn( 00) 

---> 1, 

so Cn an ---> 1 also. As 

we see that Cn and bn tend to zero: thus An ---> I. This proves (i). Observe that 
(ii) follows from (i) and Proposition 4.5.3. D 

Finally, we can complete the proof of Theorem 4.5.1. Let flJ be an open 
subset of SL(2, C) and suppose that <l>(flJ) is not an open subset of JIt (with 
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respect to the metric topology Y*). Then there is some 9 in <1>(88) and some 
g1> g2'··· not in <1>(£?8) with 

O"(gn' g) ~ o. 
As 

we see from Proposition 4.5.4 that there are matrices An representing gng- 1 

with An ~ I. If B (in £?8) represents g, then AnB ~ B so AnB is in £?8 for all 
large n. It follows that gi = <1>(AnB)) is in <1>(88) for these n and this is a 
contradiction. D 

A subgroup G of At is discrete if and only if the topology described by 
Theorem 4.5.1 induces the discrete topology on G. It is clear from Corollary 
4.5.2 that if G is discrete, then <1>-1(G) is a discrete subgroup of SL(2, C). 
Conversely, if r is a discrete subgroup of SL(2, C), then <1>(r) is a discrete 
subgroup of At. 

Of course, if G is a discrete subgroup of At, then G is countable (see 
Section 2.3),say G = {g1,g2, ... },and 

as n ~ + 00. In view of this, the next result is of interest. 

Theorem 4.5.5. Suppose that K is a compact subset of a domain D in C and 
that 9 omits the values 0 and 00 in D. Thenfor some positive m depending only 
on D and K, we have 

for all z and w in K. 

PROOF. Define m1 by 

and suppose that 

md(z, w) 
d(gz, gw) $; IIgl1 2 

2m1 = inf{d(z, w): z E K, w¢ D} 

(z) = az + b 
9 cz + d' 

ad - bc = 1. 

As g-1(00) ¢ D, we see that for z in K, 

2m1 $; d(z, g-1 oo ) 

21cz + d I 
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A similar inequality holds for 9 - 10 so 

(1 + Iz12) IIgl1 2 (ml)2 ::; laz + bl2 + lez + d1 2. 

As 

d(gz, gw) < ( 1 + Izl2 )1/2( 1 + Iwl2 )1/2 
d(z, w) - laz + bl2 + lez + dl 2 law + bl2 + lew + dl 2 

the result follows. o 

The implication of this is that if G is discrete, then under the assumptions 
in Theorem 4.5.5, the chordal diameters of the sets gn(K) tend to zero. 

EXERCISE 4.5 

1. Prove that if ad - be = 1 then for all z 

(lal2 + 1c12)(laz + W + lez + d1 2 ) ~ 1 

with equality if and only if z = - (ab + cd)/( I a 12 + Ie 12). Show that if g(z) = 

(ab + b)(ez + d)-1 then for all z, 

1 laz+bI 2 +lez+dI2 2 

IIgl1 2 ~ 1 + Izl2 ~ Ilgll . 

2. Let G be a group of Mobius transformations preserving H2. Show that each g in G 
can be written uniquely in the form g = fh wheref(z) = az + b (a> 0, bE \R) and 
h(i) = i. Deduce that G is homeomorphic to \R 2 x SI. 

3. Show that a sequence gn of loxodromic transformations can converge to an elliptic 
element but if this is so, then gn is strictly loxodromic for almost all n. Show that a 
sequence of elliptic elements cannot converge to a loxodromic element. 

§4.6. Notes 

For a discussion of quaternions and Mobius transformations see [1], [5] 
and [26]. The problem of obtaining a subgroup of SL(2, C) isomorphic to 
a given subgroup of ..# has been considered in [2] and [74]. For general 
information on Mobius transformations see [30] (especially for isometric 
circles), [51] and [52]. See [53] for Theorems 4.2.2 and 4.3.7. 



CHAPTER 5 

Discontinuous Groups 

§5.1. The Elementary Groups 

In this section we shall define and describe a class of subgroups of .A which 
have a particularly simple structure. This class contains all finite subgroups 
of .A, all abelian subgroups of.A and the stabilizer of each point in ~3. 

Definition 5.1.1. A subgroup G of .A is said to be elementary if and only if 
there exists a finite G-orbit in ~3. 

Of course, the emphasis here is on the word finite. Also, note that this 
definition makes no reference to discreteness. The group .A acts as the 
group of directly conformal isometries of H3 and G is elementary if there 
is a finite G-orbit in the closure of hyperbolic space. 

Obviously, if a single point is G-invariant then G is elementary. If G is 
abelian, then either G contains only elliptic elements and I or G contains 
some parabolic or loxodromic element g. In the first case (whether G is 
abelian or not), G is elementary by virtue of Theorem 4.3.7: in the second 
case, G is elementary by Theorem 4.3.6(iii). Thus every abelian subgroup 
of .A is elementary. 

Remark. Elementary groups are sometimes defined by the condition that 
for every 9 and h in G which are of infinite order, we have trace[g, h] = 2: 
equivalently, 9 and h have a common fixed point in t (Theorem 4.3.5). 
However, with this definition, the stabilizer of a point in H3 is not necessarily 
elementary. 
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Let us now assume that G is an elementary group and examine the 
possibilities. Suppose that the finite orbit is {Xl' ... ,xn }. If g is in G then the 
points gm(xj), m = 0, 1,2, ... , cannot all be distinct so there is an integer 
mj with the property that gmj fixes Xj' If m is now the product of the mj, then 
gm fixes each Xj' With this available we can now classify the elementary 
groups into three types. 

Type 1: suppose that n ~ 3 or that {Xl" .. ,xn} is not in C. 
If the points Xj are not in C then each g in G has some power gm fixing 

Xj and so gm, and hence g itself, is elliptic (or I). Ifn ~ 3 and the Xj are in C, 
then gm has at least three fixed points and so is the identity: thus again, each 
non-trivial element of G is elliptic. This shows that if G is of Type 1, then G 
contains only elliptic elements and I. By Theorem 4.3.7, there is some X in 
H3 which is fixed by every element of G and by mapping H3 onto B3 and X 

to ° we see that G is conjugate in GM(1R 3) to a subgroup of the Special 
Orthogonal group SO(3) (see Theorem 3.4.1). 

Type 2: suppose that n = 1 and Xl is in C. 
In this case, G is conjugate to a subgroup of A, every element of which 

fixes 00 and so is of the form Z H az + b. Thus G is conjugate to a group of 
Euclidean similarities of IC. 

Type 3: suppose that n = 2 and that X I ,X2 are in C. 
In this case, G is conjugate to a subgroup of A, every element of which 

leaves {O, oo} invariant and is therefore of the form 

ZHazs, a oF 0, S2 = 1. 

Note that G is then conjugate to a group of isometries of the space IC - {O} 
with the metric derived from 1 dz 1/1 z I· 

We shall now describe all discrete elementary groups. If G is a discrete 
elementary group of Type 1 we may assume that every element of G fixes 
the point j in H3. Thus by Theorem 4.2.1, IIgl1 2 = 2 for every g in G and 
(as G is discrete) G is necessarily finite. Thus G is conjugate to a finite sub­
group of SO(3) and hence to one of the symmetry groups of the regular 
solids. 

We can use the fact that G is finite to obtain the possible structures of G 
without reference to the regular solids. We say that v in C is a vertex if v is 
fixed by some g (oFl) in G and we denote the set of vertices by V. Now 
consider the number 1 E 1 of elements of the finite set 

E = {(g,V):gEG,g oF I,VE V,g(v) = v}. 

As each g in G (g oF I) is elliptic it fixes exactly two vertices and we have 

1 E 1 = 2( 1 G 1 - 1). 
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The stabilizer of a vertex v is Gv so we also have 

lEI = L (IGvl - 1). 
veV 

The set V is partitioned by G into disjoint orbits VI"'" Vs and as the 
stabilizers of each v in Vj have the same number, say nj' of elements we have 

s 

lEI = L L (IGvl - 1) 
j= I veVj 

s 

= L I Vjl(nj - 1). 
j= I 

Finally, each orbit G(v) is in 1-1 correspondence with the class of cosets 
G/Gv so for v in Vj' we have Vj = G(v) and 

Eliminating Il-j I we obtain 

2(1 __ 1 ) = ± (1 _ ~). 
IGI j=l nj 

(5.1.1) 

We shall exclude the trivial group, so I G I ~ 2 and 

By definition, nj ~ 2 so 

These inequalities together with (5.1.1) show that s = 2 or s = 3. 

Case 1: s = 2. 
In this case, (5.1.1) becomes 

and hence (as I n j I ::; G), 

IGI = nl = n2 , 

In this case there are only two vertices and each is fixed by every element 
of G. By conjugation, we may take the vertices to be 0 and 00 and G is then 
a finite, cyclic group of rotations of IC. 
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Case 2: s = 3. 
In this case, (5.1.1) becomes 

1 1 1 2 
-+-+- = 1 +­
n1 n2 n3 IGI 

5. Discontinuous Groups 

and we may assume that n1 :s; n2 :s; n3. Clearly n1 ~ 3 leads to a contra­
diction: thus n1 = 2 and 

1 1 1 2 
-+-=-+-. 
n2 n3 2 IGI 

If n3 ~ n2 ~ 4 we again obtain a contradiction, so n2 = 2 or 3. The case 
n2 = 2 leads to 

(n ~ 2) 

and this is isomorphic to the group of orientation preserving symmetries 
of a regular plane n-gon (the dihedral group Dn). 

The remaining cases are those with s = 3, n1 = 2, n2 = 3 and 

1 1 2 
n3 = 6 + IGI' 

and the (integer) solutions of this are 

(i) (IGI, n1, n2' n3) = (12,2,3,3); 
(ii) (IGI, n1, n2, n3) = (24,2,3,4); 

(iii) (I G I, n1, n2' n3) = (60, 2, 3, 5). 

These groups are isomorphic to A4 , S4 and As respectively and they corre­
spond to the symmetry groups of the tetrahedron, the octahedron and the 
icosahedron respectively. For more details, see the references in Section 5.5. 

We continue with our discussion of discrete, elementary groups. The 
next result essentially distinguishes between groups of Types 2 and 3. 

Theorem 5.1.2. Let 9 be loxodromic and suppose that f and 9 have exactly 
one fixed point in common. Then (J, g> is not discrete. 

PROOF. As discreteness is preserved under conjugation we may assume that 
the common fixed point is 00 and, say, 

g(z) = rxz (Irxl> 1), J(z) = az + b 

(if necessary, we may replace 9 by g-1). 
Then 
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AsJand g have only one common fixed point, we see that b :F 0. As IIXI > 1, 
we find that the sequence 

n = 1,2, ... 

is a convergent sequence of distinct terms: thus <J, g) is not discrete. For 
a much more illuminating proof, the reader need only draw a diagram and 
locate (for large n) the points z, gRz, J gRz and g-R J gRZ• 0 

Suppose now that G is elementary, discrete but not of Type 1. Then G 
must contain parabolic or loxodromic elements. If G contains a parabolic 
element g, fixing 00 say, then every element of G fixes 00 (because all other 
orbits are infinite) and by Theorem 5.1.2, G has no loxodromic elements. 
Such a group is of Type 2. If G contains a loxodromic element g, fixing ° and 
00 say, then every element of G must leave the set {a, oo} invariant. This 
implies that G cannot contain parabolic elements and such a group is of 
Type 2 or 3. 

Let us now examine the structure of a discrete group of Type 2 with 
parabolic elements. Thus G contains only f, parabolic elements and possibly 
some elliptic elements. 

By conjugation, we may assume that every element of G fixes 00 and so 
is of the form z 1---+ IXZ + p. As this is either elliptic or parabolic, we see that 
IIX I = 1: thus G is conjugate to a group of Euclidean isometries of C. 

We call IX the multiplier of the map z 1---+ IXZ + P and in general, we denote 
the multiplier of g by IXg • Note that IXg = 1 if and only if g is parabolic or f. 
It is a trivial matter to check that the set S of multipliers of g in G is a (multi­
plicative) subgroup of {I z I = I} and that the map (): G --+ S defined by 
(}(g) = IXg is a homomorphism of G into S. The statement that IXg = 1 if and 
only if g is parabolic or f is precisely the statement that the kernel, T, of 
() is the subgroup of translations in G. As GjT is isomorphic to S (= (}(G)), 
we can describe G by giving explicit descriptions of Sand T: this effectively 
separates the parabolic and elliptic elements. 

First, we show that S is a finite cyclic group. Now G contains a trans­
lation, say J(z) = z + A. and if g(z) = IXZ + p is in G, then so is 

We deduce that G contains Z 1---+ Z + sA. for every s in S and as G is discrete, 
S cannot accumulate in C. Thus S is a finite subgroup of {izi = I} and (as 

. is easily seen) it is necessarily cyclic. 
We can obtain even more information about S. With J and g as above, 

and so if IIX - 11 < 1, then there is a translation z 1---+ Z + A.i in G with 
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The same argument yields translations z ~ z + A.n in G with 

I A.n I = loc - lin I A.I -+ 0 

as n -+ + 00 and this violates the discreteness of G. It follows that for every 
oc in S, loc - 11 2:: 1. As S is a cyclic group, say, 

S = {I, W, w2 , ... , wq - 1 }, 

where 

w = exp(2ni/q), 

we see that q :s; 6. In fact, q '# 5. Indeed 

fgfg-l(Z) = Z + (oc + 1)A. 

and for exactly the same reason as above, we must have 10( + 11 2:: 1. This 
implies that q '# 5 for if q = 5, then I w2 + 11 < 1. The remaining possi­
bilities, namely q = 1, 2, 3, 4 and 6 can all occur. 

We must now describe T. Let A be the set of A.l for which z ~ z + A.l 
is in G and let A * = A - {O}. As G is discrete, A cannot accumulate in C 
and so A * contains an element A. of smallest (positive) modulus. If 
A = {nA.: n E Z}, then 

T = {z ~ z + nA.: n E Z}. (5.1.2) 

If this is not so, there is an element Il of smallest (positive) modulus in 
A* - {nA.: n E Z}: note that IIlI 2:: IA.I. The translations 

z ~ z + nA. + mil; n,mEZ, (5.1.3) 

are in G and we shall show that T consists precisely of these translations. 
It is clear that Il is not a real multiple of A. (else we write Il = (k + c5)A. where 
k E Z, 0 :s; c5 < 1, and consider c5A.). Thus A. and Il span the vector space C 
(over ~1) and if z ~ z + y is in G we may write 

y = (nl + x)A. + (ml + Y)Il, 

where n1, m1 E Z and x, Y E [ -1, n Now y - n1A. - mlll is in A and 

Iy - n1A. - mllll = IxA. + YIlI < 11l1, 

a strict inequality holding because A. and Il are linearly independent. We 
deduce that 

y - n1A. - mlll E {nA.: n E Z} 

and so T is precisely the set of translations (5.1.3). 
We can now describe G. We select 9 in G with multiplier w which generates 

S. Then g, g2, ... , gq-l have multipliers w, w2, ... ,wq- 1 (wq = 1, q :s; 6) 
and so G has the coset decomposition 

G = T u Tg U··· U Tgq-l. 
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This shows that every element of G is of the form 

z f--+ wkz + nA + mil, 

where k, m, n are integers, 0 ::;; k ::;; q and q ::;; 6, q =F 5. 
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Next, we suppose that G is discrete, elementary with loxodromic elements. 
First we suppose that every element of G fixes both 0 and 00 and so is of the 
form 

g(z) = ocz, oc =F O. 

The map (): G--+ {xER1:X > O} defined by (}(g) = locgl is a homo­
morphism of G into the multiplicative group of positive numbers and this 
time the kernel E of () consists of I and all elliptic elements of G. Because 
G and hence E, is discrete we see that E is a finite cyclic group generated by, 
say, z --+ wz where wq = 1. 

The image ()( G) is the set {Iocg I : 9 E G} and this set cannot accumulate 
at 1 else there are distinct elements gn in G with 

and this violates discreteness. It is now very easy to see that the multi­
plicative group ()( G) is of the form 

(}(G) = {An: n E Z} 

for some positive A. We may assume that g(z) = ocz where loci = A: then G 
has the coset decomposition 

G = U Egn 

neZ 

and each element of G is of the form 

Z f--+ wkocnz, (5.1.4) 

where nEZ, k E Z and 0 ::;; k < q. If loci = 1, then (}(G) is the trivial group 
and G is a finite cyclic group of Type 1. Otherwise, G is infinite and contains 
loxodromic elements but in any event, G has no parabolic elements. 

Finally, we consider the general discrete, elementary group of this type. 
We may assume that {O, oo} is the G-invariant and we denote by Go the 
elements in G which fix both 0 and 00 so Go is of the form given by (5.1.4). 
If Go is a proper subgroup of G, then G necessarily contains some element 
h with 

h(O) = 00, h(oo) = O. 

By a further conjugation (leaving 0 and 00 fixed) we may assume that 
h(l) = 1: thus h(z) = 1/z.IfJin G interchanges 0 and 00, thenJh E Go and 
so Go is of index two in G: this shows that all elements of G are of the form 
(5.1.4) or of the form 

Z f--+ wkocn Iz. 
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This completes our discussion of all elementary discrete groups. In 
general, we shall be more interested in the non-elementary subgroups of 
A. We end with two results which give necessary conditions for a group 
to be non-elementary: these results make no reference to discreteness. The 
first of these results gives some insight into the complexity of such groups. 

Theorem 5.1.3. Every non-elementary subgroup G of A contains infinitely 
many loxodromic elements, no two of which have a common fixed point. 

PROOF. We begin by showing that G has some loxodromic elements. Suppose, 
then, that G has no loxodromic elements. If G contains only I and elliptic 
elements then G is elementary. It follows that G contains a parabolic 
element which we may take to be 

For any g in G, say 

we find that 

and 

f(z) = z + 1. 

() _az+b 
g z - ---d' 

cz + 
ad - bc = 1, 

f"g(z) = (a + nc)z + (b + nd) 
cz + d 

tr2(f"g) = (a + d + nc)2. 

As f"g is not loxodromic, we see that for all integers n, 

o s (a + d + nc)2 S 4 

and so c = O. This implies that every element in G fixes 00 and so G is 
elementary, a contradiction. Thus every non-elementary group contains 
loxodromic elements. 

Now consider any non-elementary group G and let g be a loxodromic 
element of G fixing, say, a and [3. As G is non-elementary, there is some fin 
G which does not leave {a, [3} invariant and two cases arise: 

(i) {a, [3}, {fa, f[3} are disjoint; 
(ii) {a, [3}, {fa, f [3} have exactly one element in common. 

In case (i), g and g 1 = f g f - 1 are loxodromic with no common fixed 
points. It is now easy to see that the elements g"glg-" (n E Z) contain the 
desired loxodromic elements because the fixed points of g"glg-" are g" fa, 
g" f [3 and these are distinct from but converge towards a or [3 (see Theorem 
4.3.10). 

In case (ii), g and gl have exactly one common fixed point, say a, so by 
Theorem 4.3.5, p = [g, gl] is parabolic and also fixes a. As {a} cannot be 
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G-invariant, there is some h in G not fixing IX so q = hph- 1 is parabolic and 
does not fix IX. Thus q and 9 (or q and gl) have no common fixed points. 
Then for suitably large n, the elements 9 and qngq-n are loxodromic with 
no common fixed points and case (i) is applicable. 0 

Theorem 5.1.4. Let f( # l) be a Mobius transformation not of order two and 
define the map (): vi( --. vi( by (}(g) = 9 f 9 - 1. If for some n, we have (}n(g) = f, 
then <f, g) is elementary and (}2(g) = f. 

PROOF. Define go = 9 and gn = (}n(g) so for m ~ 0, 

Suppose first thatfis parabolic; then without loss of generality,J(z) = 
z + 1. As gl" .. , gn are conjugate to f, they are each parabolic and so have 
a unique fixed point. Now for r ~ 0, gr+l fixes g.(oo). Thus if gr+l fixes 00, 

then so does gr' As gn( = f) fixes 00, we deduce that each gj (including go) 
fixes 00. This shows that <f, g) is elementary as both elements fix 00. Also, 
gl is parabolic and fixes 00 and so commutes withf: thus g2 = f. 

Suppose now that f has exactly two fixed points: then we may assume 
that f(z) = kz. Clearly gl'" ., gn each have exactly two fixed points. Now 
suppose that gr+ 1 fixes 0 and 00 (as does gn): then 

{O, oo} = {g.(O), g.(oo)}. 

Now gr cannot interchange 0 and 00 (r ~ 1) else (gr)2 fixes 0, 00 and other 
points too and so g" and hence f (which is conjugate to gr), is of order two. 
We deduce that if gr+ 1 fixes both points 0 and 00, then so does gr for r ~ 1. 
It follows that gl"'" gn each fix 0 and 00. This shows thatfand 9 leave the 
set {O, oo} invariant and so <f, g) is elementary. Again, gland f commute 
so g2 = f. 0 

The reader may wish to relate this result to the discussion in Section 1.5. 

EXERCISE 5.1 

1. Let G be an elementary group containing a parabolic element which fixes 00. Show 
that if the group of all such parabolic elements is cyclic then any elliptic element in G 
is of order two. 

2. Show that a group G is elementary if and only if for all f and g in G, if, g) 
is elementary. 

3. Show that if g and h are of order two, then <g, h) is elementary. Is <g, h) necessarily 
discrete? 
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4. Show that the map 

Z f--+ (z/l zl, log Izl) 

is an isometry of C - {O} with the metric I dz III z I onto the cylinder SI x IRI with the 
Euclidean metric. Deduce that an elementary group leaving {O, oo} invariant is 
isomorphic to a group of isometries of the cylinder. Find the Euclidean isometry 
corresponding to the group element z f--+ azP where p = 1 or -1. 

5. Let 

fez) = -z, 
(1 + t)z - (I + t) 

g(z) = (1 _ t)z + (l - t) 

where t = l/fi. Show that g is parabolic with fixed point w, say, where w t= O. 
Deduce thatfgf-l is parabolic with fixed point -we t= w) so <f, g) is non-elementary 
Show however that in the notation of Theorem 5.1.4, (J2(g) =.f. (The assumption 
thatf is not of order two in Theorem 5.1.4 is necessary.) 

§5.2. Groups with an Invariant Disc 

Later, we shall be interested in those subgroups of .A which have an in­
variant disc: here, we characterize such groups. 

Theorem 5.2.1. Let G be a non-elementary subgroup of .A. Then there exists 
a G-invariant disc if and only if G has no strictly loxodromic elements. If D is 
a G-invariant open disc, then D and its exterior are the only G-invariant discs. 

Note that we do not require G to be discrete. The restriction to non­
elementary groups is necessary: for example, if 

p(z) = z + 1, q(z) = z + i, 

then (p, q) has no loxodromic elements and no invariant disc and (p) has 
infinitely many invariant discs. 

PROOF. Directly from Definition 4.3.3, if a G-invariant disc exists then G has 
no strictly loxodromic elements. 

To prove the converse, suppose that G is non-elementary and has no 
strictly loxodromic elements. By Theorem 5.1.3, we can find loxodromic, 
and therefore hyperbolic, elements g and h in G with no common fixed 
points. By conjugation, we may assume that g fixes 0 and 00. 

Now select any fin G. In terms of matrices we can write 

g = (~ 1/~). 
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where each matrix is in SL(2, IC). As 9 is hyperbolic, we find that U is real. 
Next, write 

t1 = trace(f) = \I. + b 

and 

t2 = trace(gf) = Uri. + b/u. 

Because f and 9 f are not strictly loxodromic, t 1 and t 2 are real. Solving for 
\I. and b, we find that \I. and b are real. This shows that every element of G has 
real diagonal elements. 

Now let 

ad - be = 1, 

so a and d are real. Also (a + d)2 > 4 because h is hyperbolic. The fixed 
points of h are the points 

WI> W2 = 
(a - d) ± [(a + d)2 - 4]1/2 

2e 

and as e "# 0, the ratio WdW2 is real. This implies that the fixed points of 9 
and h are collinear. In an invariant formulation, the absence of strictly 
loxodromic elements implies that the fixed points of every pair 9 and h of 
hyperbolic elements are concyclic. One can proceed by geometry but the 
algebraic proof seems simpler. 

We may assume that the fixed points of 9 and h lie on the real axis. Then 
9 and h leave H2 invariant and all entries of h are real. Now 

fh = (rl.a + f3c *) 
* yb + bd 

and these diagonal elements are real. As a, b, c, d, rI. and b are real and 
bc "# 0, we find that f3 and yare real so f is in SL(2, IR). This shows that 
every element of G preserves H2. 

Finally, let D be an invariant disc. For any hyperbolic h in G, the points 
hn(z) accumulate at the fixed points of h (Theorem 4.3.10). By taking z in 
D and then in the exterior of D we see that all hyperbolic fixed points must 
lie in the boundary of D: thus there are precisely two G-invariant discs, the 
common boundary containing all hyperbolic fixed points (see Theorem 
5.1.3). 0 

The argument given in the last part of this proof shows that if 9 is para­
bolic or hyperbolic with an invariant disc D, then the fixed points of 9 lie on 
aD. If 9 is elliptic with an invariant disc D, then the fixed points of 9 cannot 
lie on aD (consider g(z) = eiOz). Ifw is a fixed point of g, then so is the inverse 
point of w with respect to aD because inverse points and aD are preserved 
by g. Thus if 9 is elliptic with invariant disc D then the fixed points of 9 are 
inverse points with respect to aD and are not on aD. 
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EXERCISE 5.2 

1. Verify the statements regarding the location of the fixed points of 9 with invariant 
disc D by taking D to be H2 and regarding 9 as a matrix in SL(2, IR). 

§5.3. Discontinuous Groups 

We begin with a general definition. 

Definition 5.3.1. Let X be any topological space and G a group of homeo­
morphisms of X onto itself. We say that G acts discontinuously on X if and 
only if for every compact subset K of X, 

g(K) n K = 0, 

except for a finite number of gin G. 

In our applications, X will always be a subset of 1R3 with the usual 
topology. There are, however, several useful results which, even in the 
general situation, follow easily from this definition. Suppose now that G 
acts discontinuously on X: then the following statements are true. 

Every subgroup of G acts discontinuously on X. 

If ¢ is a homeomorphism of X onto Y, then ¢G¢ - 1 

acts discontinuously on Y. 

If Y is a G-invariant subset of X, then G acts 
discontinuously on Y. 

If XEX and if gl' g2"" are distinct elements 
of G, then the sequence gl(X), g2(X), ... cannot con­
verge to any y in X. 

If x E X, then the stabilizer G x is finite. 

If(for example) X c 1R3, then G is countable. 

(5.3.1) 

(5.3.2) 

(5.3.3) 

(5.3.4) 

(5.3.5) 

(5.3.6) 

PROOFS. Clearly (5.3.1) and (5.3.2) are true. If Y c X, then any compact 
subset of Y is also a compact subset of X and (5.3.3) follows. To prove 
(5.3.4), observe that if the given sequence converges to y, then 

K = {y,x,gl(x),gix), ... } 

is a compact set. As gn(K) n K "# 0 (n = 1,2, ... ) and as the gn are distinct, 
G cannot act discontinuously on X: thus (5.3.4) follows. For each x in X, 
{x} is compact; thus (5.3.5) is a direct consequence of Definition 5.3.1. 
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Finally, we have seen (in Section 4.3) that there is a 1-1 correspondence 
between G/Gx and the orbit G(x) and so by (5.3.5), G is countable if and only 
if G(x) is countable. Now any uncountable set in ik3 contains a limit point 
of itself and so by (5.3.4), G(x) must be countable. This proves (5.3.6). 0 

Our aim is to study the relationship between discreteness and discon­
tinuity as applied to subgroups of 0#. First, we consider the action of Gin H3. 

Theorem 5.3.2. A subgroup G of 0# is discrete if and only if it acts discon­
tinuously in H3. 

PROOF. Suppose first that G is discrete. As G is the homomorphic image of 
a discrete (and therefore countable) subgroup of SL(2, q, we see that Gis 
countable, say 

G = {gl' g2'" .}. 

As G is discrete, Ilgnll -+ + 00 and so using Theorem 4.2.1, we see that as 
n -+ + 00, so 

(5.3.7) 

It is clear from (3.3.5) that a compact subset K of H3 lies in some 
hyperbolic ball 

B = {x E H3: p(x,j) < k}. 

If g(K) n K -=1= 0, then g(B) n B -=1= 0 and so 

p(j, g(j» < 2k 

By (5.3. 7) this can only happen for a finite number of gin G .and so G acts 
discontinuously in H3. 

Now suppose that G acts discontinuously in H3 (or in any subdomain 
of C). If G is not discrete, we can find distinct matrices AI' A 2, ... in SL(2, q 
projecting to gl' g2"" in G with An -+ I as n -+ 00. Using (4.1.4), we see 
that gix) -+ x as n -+ 00 for every x in ik3. Clearly this violates (5.3.4) and 
so we deduce that G is necessarily discrete. 0 

We now turn our attention to the extended complex plane and we seek 
to understand the relationship between discreteness and discontinuity in 
open subsets of C. Of course, the proof of Theorem 5.3.2 shows that if G 
acts discontinuously in some non-empty open subset of C, then G is discrete. 
The converse is false: it is possible for G to be discrete yet not act discon­
tinuously in any open subset of C. In order to give a simple example of this, 
we establish a criterion which excludes the possibility of a discontinuous 
action. 
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Lemma 5.3.3. Let G be any subgroup of .A and let D be an open subset of C 
which contains a fixed point v of some parabolic or loxodromic element 9 of 
G. Then G does not act discontinuously in D. 

PROOF. This is trivial as the stabilizer Gv contains the distinct iterates of g. 
If 9 is parabolic or loxodromic, then Gv is infinite and this violates (5.3.5). 

D 

Example 5.3.4. Let G be Picard's group, namely the group of transformations 
of the form 

() _az+b 
gz ---d' 

cz + 
(5.3.8) 

where a, b, c and d are Gaussian integers (of the form m + in where m, 
n E Z) and ad - bc = 1. Obviously G is discrete. 

By Lemma 5.3.3 it is sufficient to show that the parabolic fixed points of 
G are dense in C. Let w = (p + iq)jr where p, q and r are integers: obviously, 
the set of such w is dense in C. Now simply observe that 

(1 - wr2 )z + r2w2 
h( z) = -'---.,,---'-::-,...---,..-

-r2z + (1 + wr2) 

is a parabolic element of G that fixes w. D 

Our aim now is to understand the situation in which a discrete group 
does act discontinuously on some open subset of C. The exposition will be 
clearer if we restrict our attention to the non-elementary groups: the case of 
the elementary groups is rather easy and are left to the reader. Note, how­
ever, that once again we do not begin with the assumption of discreteness. 

The discussion will be based on the fixed points of loxodromic elements 
of G and we begin with a preliminary result which enables us to locate these 
fixed points. 

Lemma 5.3.5. Let ~ be an open disc and suppose that 9 E .A and g(~) c ~. 
Then 9 is loxodromic and has a fixed point in g(~). 

PROOF. We may assume that g(oo) = 00. With this assumption, o~ is a 
Euclidean circle (and not a straight line) as clearly, no fixed point of 9 is 
on the boundary of~. If 9 is elliptic or parabolic then (as 9 fixes (0) 9 is a 
Euclidean isometry and this is not compatible with g(~) c ~. Thus 9 is 
loxodromic. For any w not fixed by g, the images gn(w), n = 1,2, ... , 
accumulate at a point v fixed by g. If w E ~, these images are in g(~) and so 
v E g(~). D 

We now begin our study of discontinuity in subsets of C. 

Definition 5.3.6. Let G be a non-elementary subgroup of.A (G need not be 
discrete) and let Ao denote the set of points fixed by some loxodromic 
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element in G. The limit set A(G) of G is the closure of Ao in C: the ordinary 
set Q( G) of G is the complement of A in C. 

In general, we shall write A and Q without explicit mention of G. Note 
that if G c G1 then 

We shall study A first and then Q. 

Theorem 5.3.7. For any non-elementary group G, the limit set A is the smallest 
non-empty G-invariant closed subset oft. In addition, A is a perfect set and is 
therefore uncountable. 

PROOF. As Ao is G-invariant, so is A. By definition, A is closed and by 
Theorem 5.1.3, A i= 0. Now let E be any non-empty, closed G-invariant 
subset of C. As G is non-elementary, every orbit is infinite, thus E is infinite. 
Now take any point v fixed by a loxodromic element g in G. There is some 
win E not fixed by g and the set {gn(w): n E Z} accumulates at v (and at the 
other fixed point of g). As E is closed, vEE. This shows that Ao c E; hence 
AcE. 

This argument also shows that Ao has no isolated points (we simply 
choose w in Ao but not fixed by g): hence A has no isolated points. A set is 
perfect if it is closed and without isolated points and as is well known any 
non-empty perfect set is uncountable. As A is perfect, the proof is complete. 

D 

Theorem 5.3.7 shows that the countable set Ao is dense in the uncountable 
set A but we can say even more than this. 

Theorem 5.3.8. Let G be a non-elementary subgroup of A and let 0 1 and O2 

be disjoint open sets both meeting A. Then there is a loxodromic g in G with 
a fixed point in Oland a fixed point in O2 . 

PROOF. Recall that iff is loxodromic with an attractive fixed point rJ. and a 
repulsive fixed point {3, then as n ---+ + 00, r ---+ rJ. uniformly on each compact 
subset of C - {{3} andf-n ---+ {3 uniformly on each compact subset of C -
{rJ.} (Theorem 4.3.10). The repulsive fixed point of f is the attractive fixed 
point off- 1 • 

Now consider G,O l and O2 as in the theorem. It follows (Definition 
5.3.6) that there is a loxodromic p with attractive fixed point In 0 1 and a 
loxodromic q with attractive fixed point in 02. By Theorem 5.1.3, there is 
a loxodromic f with attractive fixed point rJ. and repulsive fixed point {3, 
neither fixed by p. Now choose (and then fix) some sufficiently large value 
ofm so that 
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h 

Figure 5.3.1 

has its attractive fixed point 1X1 (= pmlX) and repulsive fixed point PI (= pmp) 
in 0 1, Then choose (and fix) some sufficiently large value ofr so that 

h = qr 

maps 1X1 into O2 : put 1X2 = h(IX\). See Figure 5.3.1 
Next, construct open discs E and K with the properties 

PI E E c E cOl , 

1X2 EKe K cO2 , 

As PI ¢ K we see that gn -+ 1X1 uniformly on K as n -+ + 00. As h - l(K) 
is an open neighbourhood of 1X1 we see that for all sufficiently large n, 

and so 

hgn(K) c K. (5.3.9) 

As h(1X1) ¢ E so 1X1 is not in h-l(E) and so g-n -+ PI uniformly on h-l(E) 
as n -+ + 00. Thus for all sufficiently large n, 

(5.3.10) 

Choose a value of n for which (5.3.9) and (5.3.10) hold. By Lemma 5.3.5, 
hgn is loxodromic with a fixed point in K: also, 9 - n h -1, which is (hgn)-1, 
has a fixed point in E, hence so does hgn. 0 

Theorems 5.3.7 and 5.3.8 do not require G to be discrete. If we add the 
extra condition that G is discrete, we can describe A in terms of anyone orbit. 
For any z in C, let A(z) be the set of w with the property that there are 
distinct gn in G with giz) -+ w (the points giz) need not be distinct). 

Theorem 5.3.9. Let G be a non-elementary discrete subgroup of .It. Then 
for all z in C, we have A = A(z). 
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Remark. The group generated by z f---+ 2z shows that the conclusion may 
fail if G is only discrete. The group of Mobius transformations preserving 
the unit disc shows that the conclusion may fail if G is only non-elementary. 

PROOF OF THEOREM 5.3.9. Each A(z) is closed, non-empty and G-invariant 
so by Theorem 5.3.7, we have 

A c A(z). 

If z E A, then G(z) c A and so 

A(z) c G(z) c A: 

in this case, then we have A = A(z). 
Now suppose that z is in n and select any w in A(z): we must show that 

w E A. Suppose not, then WEn and there is a disc Q with centre W whose 
closure Q lies in n. We may suppose that 0 and 00 are in A so taking 
K = Q u {z} we deduce from Theorem 4.5.6 that for all g in G and all z' 
in Q, 

d(gz, gz') ::;; m/llg 112. 

As W E A(z), there are distinct gn with gn(z) -.. w: as IIgnl1 2 -.. + 00, we deduce 
that gn -.. W uniformly on Q. This implies that for large n, 

hence for Lemma 5.3.5 we have Q (l A "# 0 and this contradicts Q c n. D 

We now turn our attention to the open set n. 

Theorem 5.3.10. Suppose that G is a discrete non-elementary subgroup of 
0.#. Then n is the maximal domain of discontinuity in C ofG: precisely, 

(i) G acts discontinuously in n; and 
(ii) if G acts discontinuously in an open subset D of C, then Den. 

Remark. Traditionally, a discrete group G was called Kleinian if n "# 0. 
More recently, Kleinian is used synonomously with discrete. 

PROOF OF THEOREM 5.3.1O.1f G does not act discontinuously in n, then 
there is a compact subset K of n and distinct g l' g 2, . .. in G such that 
giK) (l K "# 0. Thus there are points Zl' Z2' .•. in K with gn(zn) E K. By 
taking a subsequence, we may assume that gn(zn) -.. win K and so WEn. 

However, exactly as in the proof of Theorem 5.3.9, we now see that gn -.. W 

uniformly on K and so W E A, a contradiction. This proves (i). 
It is easy to prove (ii). By Lemma 5.3.3, D (l Ao = 0. As D is open, this 

implies that D (l A = 0 so Den. D 
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Theorem 5.3.10 has an interesting corollary. 

Corollary. Let G be discrete and non-elementary. Then n "# 0 if and only if 
for some z, G(z) is not dense in t. 
PROOF. By Theorem 5.3.9, n "# 0 if and only if A(z)( =A) is not t and this 
is the assertion in the corollary. 0 

Lemma 5.3.3 shows that the fixed points of parabolic and loxodromic 
elements of G lie in A and hence not in n. It is not hard to see that there 
can be fixed points of elliptic elements of G both in A and in n. However, 
if an elliptic fixed point lies in n, the stabilizer of that point must be cyclic. 

Theorem 5.3.11. Suppose that G is non-elementary and that n "# 0. If ZEn 

then the stabilizer Gz is cyclic and finite. 

PROOF. By virtue of Lemma 5.3.3, if ZEn then every element of the stabilizer 
Gz is either elliptic or I. Thus by Theorem 4.3.7, there is some' in H3 which 
is fixed by every g in GZ" Now let A be the unique semi-circle in H3 which 
has end-point z, which passes through , and which is orthogonal to t. 
Every elliptic element of Gz fixes z and, and so has the axis A. This means 
that every element of Gz fixes both end-points of A and an examination of 
the discrete elementary groups listed in Section 5.1 shows that G z is neces­
sarily a finite cyclic group. 

For an alternative proof, suppose that g and h fix z in n. As both g and h 
are elliptic they each have another fixed point. If these other fixed points 
are distinct, then by Theorem 4.3.5, [g, h] is parabolic and also fixes z and 
this violates Lemma 5.3.3. D 

We can use Theorem 5.3.l1 to obtain a result concerning the local be­
haviour of a discrete group G near a point in n or H3. 

Theorem 5.3.12. Let G be a discrete non-elementary subgroup of A. Then 
(considering only g in G): 

(i) each x in H3 is the centre of an open hyperbolic ball N such that g(N) = N 
if g(x) = x and g(N) (l N = 0 otherwise; 

(ii) If n "# 0, each x in n has an open neighbourhood N in n such that 
g(N) = N if g(x) = x and g(N) (l N = 0 otherwise. 

PROOF. First, (i) is a direct consequence of the fact that G is a group of 
isometries acting discontinuously in H3. 

To prove (ii), we may assume that z = 0 and that every g in Gz also 
fixes 00 (use Theorem 5.3.11). Now select a disc 

N = {z: Izl < r} 

whose closure is contained in n. As G acts discontinuously in n, 
g(N) (l N "# 0 for only a finite set of g in G. By continuity, for a sufficiently 
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small r (depending in this finite set) g(N) n N = 0 unless g(O) = 0 in 
which case, g(N) = N. 0 

If G is a discrete group, then G = {gl' g2,"'} say, and 

Ilgnll--+ +00 as n --+ +00. 

We now show this convergence cannot be too slow. 

Theorem 5.3.13. Let G bea discrete subgroup of A. Then: 

(i) the number n(t) of elements gin G with Ilgll :::; tis 0(t4); 
(ii) for any s > 4, the series L II g 11- S converges; 

(iii) if 0. #- 0, then the series L Ilgll- 4 converges. 

PROOF. The stabilizer Gj of j in H3 is finite with, say, k elements. Let N be a 
hyperbolic ball in H3 with centre j and radius r, say, such that g(N) n N = 0 
when g E G - Gj . Let V(R) be the hyperbolic volume of a hyperbolic ball 
of radius R. 

Now Ilgll :::; t is equivalent to 

2 cosh pU, gj) :::; t 2 , 

(Theorem 4.2.1) and so if Ilgll :::; t, then 

g(N) c {x E H3: p(x,j):::; r + cosh-1(!t2)}. 

By adding the volumes of the disjoint images g(N) of N with IIgll :::; t and 
by taking into account the order of the stabilizer of j, we obtain 

n(t)/k:::; V(r + cosh-l(tt2))/V(r). 

Now (see [5], p.61) 

and 

Thus 

V(R) = n[sinh(2R) - 2R] 

< ne2R/2 

cosh -l(y) = log(y + [y2 - Ir/2) 

< log(2y). 

n(t) :::; (kn/2V(r)) exp[2r + 210g(t2)] 

= (kne2r/2V(r))t4 . 

To prove (ii) simply observe that n(1) = 0 so 

I'dn(x) L IIgll- S = -s 

gEG. Ilgll ", 1 X 

= n(~) + s I' n(~~ ~x 
t 1 X 

(5.3.11) 

(5.3.12) 
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and so (i) implies (ii). Note that in general, this yields 

L Ilgll- 4 = O(log t) 
IIgll s t 

and indeed, an estimate of the partial sums (5.3.12) for any positive s. 
To prove (iii) we can use a similar argument but in Q and with the chordal 

metric. We can find an open disc N in Q such that for all g in G, g :F I, we 
have g(N) n N = 0. Then the sum of the areas of the g(N) measured in 
the chordal metric converges to at most 4n (the chordal area of C) and it is 
only necessary to estimate this area of g(N). Let 

() az+b 
gz =--d' cz + 

Then the chordal area of g(N) is 

ad-bc=1. 

~ Ilgll- 4 (chordal area of N), 

the last line being an application of the Cauchy-Schwarz inequality, namely 

laz + bl2 + Icz + dl2 ::;;; (lal2 + IbI2)(1 + Iz12) + (c12 + IdI2){l + IzI2). 
D 

We end with two result which imply that Q :F 0. 

Theorem 5.3.14. Let G be a discrete non-elementary subgroup of vIt. 

(i) If D is a non-empty open G-invariant set which is not C, then G acts 
discontinuously in D; 

(ii) if D is a non-empty open set such that g(D) n D = 0 for all g in G except 
I, then G acts discontinuously in UgeG g(D). 

PROOF. The set E = C - D is non-empty, closed and G-invariant and so by 
Theorem 5.3.7, AcE. Thus G acts discontinuously in D (Theorem 5.3.10). 

By definition, Ug(D) is disconnected and so is not C: now apply (i) to 
U~ D 

Referring to (ii) in the previous theorem, we say that a subdomain D of 
C is a G-packing if g(D) n D = 0 whenever g E G and g :F I. This terminol­
ogy enables us to state our next result easily. 
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Theorem 5.3.15. Let G l , G2 , • •• be subgroups of vIt whose union generates 
the group G. Let Dj be a Grpacking and suppose that Di u Dj = C when 
i =I j. Suppose also that D*( = n D) is nonempty. Then G is the free product 
of the Gj , D* is a G-packing and G acts discontinuously on Ug g(D*). 

PROOF. Consider any element gn··· g 1 of G where gk E Gik, gk =I I and 
ik =I ik+ 1 for any k. First, because Dil is a Gil-packing, we have 

In fact, it follows (by induction) that 

for if this is so, then 

We deduce that 

gm+l(gm··· gl)(D*) C gm+l(C - DiJ 

c gm+ l(Dirn +.) 
C t - D· . 

~m+ 1 

so D* is a G-packing. Because D* =I 0 we must have gm ... g 1 =I I so G is 
the free product of the Gj • The last assertion follows from Theorem 
5.3. 14(ii). 0 

As an application of Theorem 5.3.15, consider Gl = <g) and G2 = <h) 
where 

g(z) = z + 6, h(z) = z/(z + 1). 

Figure 5.3.2 
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Let 
Dl = {x + iy: Ixl < 3} 

and 
D2 = z: Iz + 11> I} n {z: Iz - 11 > I}: 

see Figure 5.3.2. 
Clearly, Dl is a G-packing: as h maps the domain Iz + 11 > 1 onto the disc 
I z - 11 < 1 we see that D2 is a G2 -packing. Obviously D* =1= 0 and 
Dl u D2 = C: thus Theorem 5.3.15 is applicable. 

EXERCISE 5.3 

1. Verify the details in the Remark following Theorem 5.3.9. 

2. Let g and ~ be as in Lemma 5.3.5. Show that for some w, 

<Xl n gn(~) = {w} 
n = 1 

and that w is the unique fixed point of g in ~. 

3. Suppose that G is discrete and non-elementary. Show that Q is the largest domain in 
t in which G is a normal family. 

4. Suppose that G is non-elementary and contains parabolic elements. Show that A is 
also the closure of the set of parabolic fixed points of G. 

5. Let Gj , Dj and D* be as in the application of Theorem 5.3.15 and let G = <g, h). 
Prove that A c [RI U {oo} so G acts discontinuously in the upper and lower half­
planes. Deduce that Q is connected. 

Let D be the set obtained by removing the origin from the closure of D*. Prove 
that D c Q and deduce that 

Uf(D) = Q. 
fEG 

6. Let QI, Q -I' Q2, Q _ 2 be four mutually exterior circles in C. For j = 1, 2, let gj map 
the exterior of Q_ j onto the interior of Qj. Deduce that G = <gl' g2) acts discontinu­
ouslyon 

U g(D) 
gEG 

where D is the domain lying exterior to all four circles. This is called a Schottky group 
on two generators. 

§5.4. Jorgensen's Inequality 

We end our general discussion of discreteness and discontinuity with an 
account of Jergensen's inequality. Later, we shall examine the geometric 
interpretation in greater detail in the special case of isometries of the 
hyperbolic plane. 



§S.4. Jl1Jrgensen's Inequality 105 

Let A and B be matrices in SL(2, IC) representing the Mobius trans­
formations f and 9 respectively. As A and B are determined by f and 9 to 
within a factor of -1, we see that the commutator ABA -1 B- 1 is uniquely 
determined by f and g. Thus we may (unambiguously) write 

tr(fgf-1 g -1) = tr(ABA- 1B- 1). 

Theorem 5.4.1. (J¢rgensen's Inequality). Suppose that the Mobius trans­
formations f and 9 generate a discrete non-elementary group. Then 

(5.4.1) 

The lower bound is best possible. 

The inequality (5.4.1) can be interpreted in terms of the metric on SL(2, IC) 
for if <J, g> is non-elementary and discrete, then 

(5.4.2) 

and so A and B cannot both be close to I. Thus (5.4.1) represents a quanti­
tative statement about the isolated nature of I within a discrete group. 

It is easy to obtain an explicit numerical bound by writing 

A = I + X, A -1 = 1+ X* 

and noting that 

IIXII = IIX*II, X + X* + X X* = 0: 

similar expressions hold for B = I + Y, say. The Cauchy-Schwarz inequality 
yields 

I tr(X) I ::;; fi11X11 

and a computation shows that [A, B] - I reduces to a sum of six terms, 
each being a product of at least two of the matrices X, X*, Yand Y*. If 
IIXII < B and II ¥II < B then (5.4.2) yields 

1 ::;; fiB(4 + fiB) + 6fiB2 

= 4fiB + (2 + 6fi)B2 

so B > 0·14. Thus we have the following (presumably) crude but explicit 
estimate. 

Corollary. If A and B generate a non-elementary discrete group then 

max{IIA - III, liB - III} > 0·14. 

To show that the lower bound in (5.4.1) is best possible, consider the 
group generated by 

f(z) = z + 1, g(z) = -liz. 
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In this case, G is the Modular group arising from SL(2, Z): it is obviously 
non-elementary and equality holds in (S.4.1). 

PROOF OF THEOREM S.4.I. The idea of the proof is contained in Section 1.S 
and Theorem S.1.4. We know that <J, g) is discrete and non-elementary. 
Now (S.4.1) holds if f is of order two (because then, tr 2(f) = 0) so we 
may assume thatfis not of order two. Select matrices A and B representing 
f and g respectively in SL(2, IC) and define 

Bo = B, (S.4.3) 

It follows that Bn represents gn as defined in the proof of Theorem S.1.4, 
hence (by that Theorem) Bn #- A for any n. It remains only to show that if 
(S.4.2) fails, then for some n we have 

(S.4.4) 

and we consider two cases. 

Case 1 :fis parabolic. 
As the trace is invariant under conjugation we may assume that 

A = (1 1) o l' 
where c#-O (else <A, B) is elementary). We are assuming that (S.4.2) fails 
and this is the assumption that 

Icl < 1. 

The relation (S.4.3) yields 

( an + 1 bn+ 1) = (1 - a;cn 
Cn+ 1 dn+ 1 -cn 

From this we deduce (by induction) that 

Cn = _( _c)2n 

(which is - c2" except when n = 0) and as I c I < 1 we see that 

As I Cn I < 1, we have (by induction) 

I an I ~ n + I ao I 
so ancn -+ 0 and 

This proves that 

which, by discreteness, yields (S.4.4) for all large n. 
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Case 2:fis loxodromic or elliptic. 
Without loss of generality, 

where B is as in Case 1 and bc =1= 0 (else <A, B) is elementary). The assump­
tion that (5.4.2) fails is 

p. = Itr2(A) - 41 + Itr(ABA- 1B- 1) - 21 
= (1 + IbcDlu - 1/u1 2 

<1. 

The relation (5.4.3) yields 

( an + 1 bn+ 1) = (andnU - bncn/u 
cn+ 1 dn+ 1 cndn(u - l/u) 

so 

We now obtain (by induction) 

so 

and 

Also, we obtain 

Now 

so 

an+ 1 --+ U, dn + 1 --+ 1/u. 

Ibn+dbnl = lai1/u - u)1 
--+ lu(l/u - u)1 

~ p.1/2Iul 

I ~I < (1 + p.1/2) Ibnl 
un+1 2 un 

for all sufficiently large n. Thus 
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and similarly, Cn un ~ O. It follows that 

A-nB An = ( a2n 
2n 2n 

U C2n 

~A. 

As (A, B> is discrete, we must have 

5. Discontinuous Groups 

for all sufficiently large n so for these n, B 2n = A which is (5.4.4). 0 

We end this chapter with several applications of J~rgensen's inequality. 

Theorem 5.4.2. A non-elementary group G of Mobius transformations is 
discrete if and only iffor eachf and gin G, the group (f, g> is discrete. 

PROOF. If G is discrete, then so is every subgroup of G. Now suppose that 
every subgroup (f, g> is discrete: we suppose that G is not discrete and 
our aim is to reach a contradiction. 

As G is not discrete we can find distinct f1' f2' ... ('# 1) in G represented 
by matrices A 1, A 2 , .•• in SL(2, C) which converge to I. By considering 
traces, we may assume that no fn is of order two. 

For any g in G with matrix B, say, we have 

and so by Theorem 5.4.1, for n ;::: neg) say, the group (fn, g> is elementary. 
Now G contains two loxodromic elements g and h with no common 

fixed points (Theorem 5.1.3). For n greater than neg) and n(h), both groups 

(g,f,,), (h,f,,) 

are elementary and discrete and, according to the discussion of such groups 
in Section 5.1, we deduce thatfn must leave the fixed point pair of g and of h 
invariant. As fn is not elliptic of order two, it cannot interchange a pair of 
points so in must fix each individual fixed point of g and of h. We deduce 
that g and h have a common fixed point and this is the required 
contradiction. 0 

Next, we give alternative formulations of (5.4.1) in the particular case 
whenfis parabolic (p is the hyperbolic metric in H 3 ). 

Theorem 5.4.3. Let f be parabolic and suppose that (J, g> is discrete and 
non-elementary. Then 

(i) Ilf - III . Ilg - III ;::: 1 
and this is best possible; 
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(ii) if 9 is also parabolic, then for all x in H3 we have 

sinh tp(x, fx)sinh tp(x, gx) ~ i 
and this is best possible. 

109 

Remark. In (i), Ilf - III is to be interpreted as IIA - III for either choice 
of the matrix A representingfand similarly for g. 

PROOF. There is a Mobius h corresponding to a unitary matrix U such that 
hfh- 1 fixes 00. If A corresponds tof, then 

IIUAU- 1 -III = IIA -III 
and simih:trly for g: thus we may assume thatffixes 00. Then 

(ad - be = 1), 

where 62 = 1 and where B represents g. J~rgensen's inequality (5.4.2) yields 

1cA.1 ~ 1 

and (i) follows as 

IIA - III ~ 1.1.1, liB -III ~ lei· 
To prove (ii), select matrices A and B for f and 9 respectively with 

tr(A) = tr(B) = 2. 

Then using Theorem 4.2.1, we have 

IIA - 1112 = IIAII2 + 2 - 2 Re[tr(A)] 

= IIAII2 - 2 

= 4 sinh2 tp(j,fj), 

where j = (0,0, 1) in H3. This verifies (ii) when x = j. 
The general case of (ii) follows easily. If x E H 3, choose a Mobius h 

mapping x to j. Now apply (ii) withf, 9 and x replaced by hfh-l, hgh- 1 

and j. The maps f: Z H Z + 1, g(z): Z H z/(z + 1) show that both bounds 
are best possible. 0 

Theorem 5.4.3 has an interesting geometric interpretation. A horoball :E 
in H3 is an open Euclidean ball in H3 which is tangent to C. If the point of. 
tangency is w, we say that :E is based at w: the boundary o:E of:E (in [R3) is 
a horosphere. A horoball based at 00 is a set of the form 

{(Xl' X2' X3) E H3: X3 > k}, 

where k > 0. Thus in this case, and hence in general, a horosphere is a 
surface in H3 which is orthogonal to all hyperbolic planes containing the 
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point w on the sphere at 00, namely C. This characterizes horoballs and 
horospheres in terms of the geometry of H3 alone. 

If 9 is a parabolic element of Jt fixing w, then for all positive k, 

~[g, k] = {x E H3: sinh tp(x, gx) < k} 

is a horoball based at 00. Indeed, if g(z) = z + 1, then using (3.3.4) we obtain 

sinh tp(x, gx) = 1/2x3 

and hence 

~[g,k] = {xEH3:X3 > 1/2k}: 

the general case follows because for all Mobius h, 

h(~[g, k]) = ~[hgh-l, k]. 

Now define, for each parabolic g, the horoball 

~g = {x E H3: sinh tp(x, gx) < t}. 
Obviously, for any Mobius h we have 

h(~g) = ~hgh-I. 

(5.4.5) 

(5.4.6) 

It is clear from Theorem 5.4.3(ii) that if ~g meets ~h' then (g, h) cannot be 
both discrete and non-elementary. In particular, if 9 and h are known to be 
in a discrete group, then 9 and h must have a common fixed point. This 
proves the next result. 

Theorem 5.4.4. Let G be a discrete non-elementary subgroup of Jt with 
parabolic elements. For each parabolic 9 in G, let ~g be the horoball defined 
by (5.4.5). Then the family 

{~g: 9 parabolic in G} 

is permuted by G according to (5.4.6) and ~g ("\ ~h = 0 unless 9 and h have a 
common fixed point. 

Our last application of J0rgensen's inequality relates Theorem 5.4.3(ii) 
to non-parabolic elements: for completeness, we include this in the state­
ment of the next result. 

Theorem 5.4.5. Suppose that (g, h) is discrete and non-elementary. 

(i) if 9 is parabolic, then for all x in H 3, 

sinh tp(x, gx) sinh tp(x, hgh-1x) ~ !; 
(ii) if 9 is hyperbolic, then for all x in H 3, 

sinh tp(x, gx) sinh tp(x, hgh-1x) ~ i; 
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(iii) if 9 is elliptic or strictly loxodromic and if I tr2(g) - 41 < * (which defines 
an open neighbourhood of I) then for all x in H3 

If 

then 

max{sinh 1P(X, gx), sinh 1P(X, hgh-1x)} ~ l 

p(x, gx) < B, p(x, hx) < B, 

p(x, hgh-1x) = p(h-1x, gh-1x) 

::;; p(h-1x, x) + p(x, gx) + p(gx, gh-1x) 

< 3B: 

thus we obtain the following corollary of Theorem S.4.S. 

Corollary 5.4.6. Let N be the open neighbourhood of I in vii defined by 
{f: Itr2(f) - 41 < H. If 9 is in N and if <g, h) is discrete and non-elementary, 
then for all x in H 3, 

max{p(x, gx), p(x, hx)} ~ 0·38 .... 

The proof of Theorem S.4.S requires details of the geometry of the action 
of loxodromic and elliptic elements. Suppose first that 

is loxodromic (this includes hyperbolic) or elliptic. Observe that 

I u - l/u 12 = (u - l/u)(u - l/u) 

= (lui - 1/lul)2 + 4 sin2 e. 

Next, for all x and y in H 3, (3.3.4) yields 

. h2 1 Ix - yl2 
4 sm IP(X, y) = . 

X3Y3 

The transformation 9 acts on [R3 (viewed as C x [Rl) by the formula 

g: (z, t) f-+ (u 2z, IUI 2t) 

and so with x = (z, t) we have 

4 . h21 ( ) Iz - u2z1 2 + (t - IU1 2t)2 
sm IP x, gx = lul2t2 

( 1)2 (IZI)2( 1)2 = lui - ~ + t u - U . 

(S.4.7) 

(S.4.8) 

(S.4.9) 
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The axis A of g is, by definition, the geodesic joining the fixed points of g. 
In the particular case (5.4.7), the axis is given by z = ° and it is clear from 
(5.4.9) that the displacement 

Ty = p(x, gx) 

is independent of x on A: we call Ty the translation length of g. The identity 
(5.4.9) shows that 

(5.4.10) 

in particular, Ty = ° if g is elliptic. Note that the two terms involving u in 
(5.4.8) are invariant under conjugation (they can be expressed in terms of 
trace(g) and Ty), hence so is sin2 e. In particular, sin e = ° if g is hyperbolic. 

The next task is to express I z I It geometrically. The reader is referred 
forward to Section 7.9 where it is shown that 

Izllt = sinh p(x, A): x = (z, t). 

With this available, (5.4.9), (5.4.8) and (5.4.10) yield 

sinh2 !p(x, gx) = sinh2HTy) cosh2 p(x, A) + sinh2 p(x, A) sin2 e. (5.4.11) 

Thus the displacement by g arises out of a contribution corresponding to 
the shift Ty along the axis and a contribution arising out of the rotational 
effect of e and each contribution is adjusted according to the distance of x 
from the axis. 

PROOF OF THEOREM 5.4.5. We need only prove (ii) and (iii) and by considering 
conjugate elements we may suppose that g is given by (5.4.7). As J~rgensen's 
inequality is applicable, we write 

ad - be = 1, 

and so 

(1 + Ibel)lu - l/ul 2 ;;::: 1: (5.4.12) 

see the proof of Theorem 5.4.1, Case 2. 
In order to interpret the term I be I, we seek a Mobius transformation f 

taking 0, 00, hO, hoo to 1, -1, w, - w respectively. Such a transformation 
exists if and only if we have equality of cross-ratios, namely 

[1, -1, w, -w] = [0,00, bid, ale], 

or, equivalently, 

be = (1 - w)2/4w. (5.4.13) 
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Now A is the geodesic with end-points 0 and 00; hA is the geodesic with 
end-points hO and hoo. As (g, h) is non-elementary, the geodesics A and 
hA cannot have a common end-point: thus be =1= O. It follows that there are 
two solutions in w of (5.4.13), each solution being the reciprocal of the 
other. Let w be such a solution and we may suppose that I wi;;:: 1: the 
location off (A) andf(hA) is illustrated in Figure 5.4.1. 

It is an easy deduction from (3.3.4) that 

p(A, hA) = p(fA,jhA) 

= inf{p(x, y): x E fA, y E fhA} 

= p(e3' Iwle3) 
= log Iwl, 

because if (x, y, t) E f(A) and (u, v, s) E fh(A) then 

(x - U)2 + (y - V)2 + (t - S)2 1 + I W 12 - 2(xu + yv + st) 

ts ts 

and the Cauchy-Schwarz inequality is applicable. 
We now write 

w = exp 2(oc + if3) 

so 

p(A, hA) = 2oc. 

Also, 

be = sinh2(oc + if3), 
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hence 

41bel 2 = I cosh 2(1J( + if3) - 112 

= (cosh 21J( cos 2f3 - 1)2 + (sinh 21J( sin 2f3)2 

= (cosh 21J( - cos 2f3)2 

:::;; (1 + cosh 21J()2 

= (2 cosh2 IJ()2. 

Thus for all x in H 3 , 

Ibel :::;; cosh2 IJ( 

= cosh2 !p(A, hA) 

:::;; cosh 2![p(A, x) + p(x, hAn 

Now (by elementary means or because log cosh is a convex function) we 
have 

(p + q) 
cosh2 -2- :::;; cosh p cosh q, (p, q real) 

thus 

I be I :::;; cosh p(x, A) cosh p(x, hA). (5.4.14) 

Finally, observe that the conjugate elements g and hgh- 1 have the same 
trace2, the same translation length and hence the same value of sin2 e. 
With this in mind, we combine (5.4.12), (5.4.14), (5.4.8), (5.4.10) and (5.4.11) 
to obtain 

(sinh2 !p(x, gx) + sin2 e)(sinh2 !p(x, hgh-1x) + sin2 e) 

:2: [cosh p(x, A) cosh p(x, hA) I u - lju 12/4Y 

Because of (5.4.12) and (5.4.14) we have 

2 cosh p(x, A) cosh p(x, hA) I u - l/u 12 :2: 1 

so in all cases 

(sinh2 !p(x, gx) + sin2 e)(sinh2 !p(x, hgh-1x) + sin2 e) :2: l4 
If g is hyperbolic, then sin e = 0 and we obtain (ii). In all other cases 

write 

m = max {sinh !p(x, gx), sinh !p(x, hgh-1x)}. 

Then 

The hypotheses of (iii) together with (5.4.8) yields 

sin2 e :::;; /6 
and so m :2: t. D 
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§5.5. Notes 

For a discussion of the elementary groups given in Section 5.1, see, for 
example, [30J, [51J and [107]. Discrete Euclidean groups in R" are dis­
cussed in [91 J and [111]. 

For a selection of papers concerned with the geometric action of discon­
tinuous groups acting in plane domains or in H 3, see [8J, [9J, [13J, [14J, 
[15J, [65J, [108J and [109]. Theorem 5.3.15 and extensions of it can be 
found in [30J, [51J, [54J, [60J and [61]. As more comprehensive accounts, 
we cite [5J, [25J, [30J, [35J, [50J, [51J, [52J, [57J and [114]. 

Jf/lrgensen's inequality (Theorem 5.4.1) appears in [41]: for related 
material, see [14J, [40J, [44J, [45J and [89]. 



CHAPTER 6 

Riemann Surfaces 

§6.1. Riemann Surfaces 

Briefly, a Riemann surface is a topological space which, when viewed locally, 
is essentially the same as the complex plane. The formal definition is con­
structed so that the concept of an analytic function and complex analytic 
function theory extend without difficulty to a Riemann surface. The function 
theory will not concern us here and we shall confine our discussion to the 
relationship between Riemann surfaces and the quotient by a discontinuous 
group action. We shall develop these ideas only as far as is necessary to 
interpret results on discontinuous groups in terms of Riemann surfaces. 

A Hausdorff connected topological space X is a Riemann surface if there 
exists a family 

{(4)j' U):jEJ}, 

called an atlas (each (4)j' U) is called a chart) such that 

(i) {U/j E J} is an open cover of X; 
(ii) each 4> j is a homeomorphism of U j onto an open subset of the complex 

plane; and 
(iii) if U = Ui n U j -# 0, then 

4>i(4))-l: 4>/U) --+ 4>i(U) 

is an analytic map between the plane sets 4>/U) and and 4>i(U), 

Clearly, (i) is saying that X is covered by a collection of" distinguished" 
open sets, each of which (by (ii)) is homeomorphic to an open subset of IC. 
Two distinguished sets may overlap but then by (iii), the corresponding 
homeomorphisms are related by an analytic homeomorphism. 
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It is now possible to define analytic functions between Riemann surfaces. 
If X and Yare Riemann surfaces with atlases {(cPi' U):j E J} and {(t/lk, ~): 
k E K} respectively, then a continuous map!: X --.. Y is analytic if each map 

(6.1.1) 

is analytic. The domain of this map is a subset ofC and the assumed continuity 
of! guarantees that this set is open. Of course by (iii), it is only necessary to 
check that the maps (6.1.1) are analytic for subatlases which still provide an 
open cover of X and Y respectively. 

We can also talk of the angle between (smooth) curves y and a on X which 
cross at some point x. If x E Ui , we can measure the angle f} between the 
curves cPh), cPia) which cross at cPix) in the complex plane. If x E Ui' also, 
then cP;(y) and cP;(a) will cross at the same angle f} because, being an analytic 
homeomorphism, the map cP i cPi) - 1 is conformal. It follows that f} is defined 
independently of the choice ofj and this is then taken to be the angle between 
y and a at x. 

The simplest non-planar example of a Riemann surface is X = C u {CX)} 
with the atlas given by J = {l, 2} and 

cPl(Z) = Z, 

cP2(Z) = liz, 

U1 = C; 

U 2 = {CX)} u {z E C: z #- O}: 

obviously, cPicPl)-1 is analytic on cPl(U 1 n U 2)' 
We say that two Riemann surfaces Rl and R2 are conformally equivalent if 

there is an analytic bijection! of Rl onto R2 (then !-1 is also analytic). This 
is an equivalence relation on the class of all Riemann surfaces and in general, 
we do not distinguish between conformally equivalent surfaces. 

EXERCISE 6.1 

1. Prove that a Riemann surface is arcwise connected. 

2. Show that if R is a Riemann surface containing points Wj' then R - {WI"'" wn } is 
also a Riemann surface. 

3. Letj: R -+ S be a non-constant analytic map between the Riemann surfaces Rand S. 
Prove thatjmaps open subsets of R onto open subsets of S. Deduce that if R is com­
pact, thenj is surjective and so S is compact. 

§6.2. Quotient Spaces 

One method of constructing Riemann surfaces is by forming the quotient 
space with respect to a discontinuous group action. In fact, it is known that 
every Riemann surface arises in this way. 
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Theorem 6.2.1. Let D be a subdomain of e and let G be a group of Mobius 
transformations which leaves D invariant and which acts discontinuously in D. 
Then DIG is a Riemann surface. 

PROOF. We know that DIG is a topological space with the quotient topology 
and that the quotient map n: D -+ DIG is continuous. As D is connected and n 
is continuous, it follows that DIG is connected (in fact, arcwise connected). 
It is also clear that n is an open map for if A c: D, then 

n- 1(nA) = U g(A): 
geG 

thus if A (and therefore g(A» is open, then so is n(A). 
We now show that DIG is Hausdorff. First, choose distinct Z1 and Z2 in D 

and choose a positive r so that the discs 

K1 = {z: Iz - zd ~ r}, 

lie in D. For n ;;::: 1, define 

An = {z: Iz - z11 < rln}, 

Bn = {z: Iz - z21 < rln}. 

If for every n, 

gn(K) (\ K =I 0, 

where K = K1 U K2 (which is compact) and it follows (from discontinuity) 
that the set {g1, g2, ... } is finite. On a suitable subsequence, gn = g, say, and 

To prove that DIG is Hausdorff, consider two distinct points, say n(z 1) and 
n(z2) in DIG. Thus Z1 and Z2 are in D but not equivalent under G. 

It follows that for some n, the disjoint sets n(An) and n(Bn) separate n(z 1) 
and n(z2) and these sets are open as n is an open map. 

Our last task is to construct an atlas for DIG. For each z in D, we select an 
open disc N z (whose closure lies in D) with the properties 

g(Nz ) = N z 

g(Nz) (\ N z = 0 

see Theorems 5.3.11 and 5.3.12. 

if g(z) = z; 

if g(z) =I z: 

Observe that N z - {z} contains no fixed points ofG. Indeed, if h (=II) fixes 
a point in N z' then (because ofthe definition of N z) h fixes z. The inverse point 
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of z with respect to N z is also fixed by h so there are no fixed points of h in 
N z - {z}. Recall that if h fixes z, then h is elliptic. 

For each w in D, let (J be a Mobius transformation which maps w to zero 
and N w to the unit disc ~. The stabilizer of w in G is of order n, say, and is 
generated by some elliptic g where 

(Jg(J-l(Z) = z exp(2nijn), z E~. 

Now let q(z) = z": this maps ~ onto itself and has the property that for all k 
and for all z in N w' we have 

q(Jl(z) = [(Jgk(J-l«(JZ)]" 

= [(J(z) exp(2nikjn)]" 

= (J(z)". 

Observe that this is independent of the integer k. 
We shall take as charts for DjG the pairs 

where nw is the restriction of n to N w: see Figure 6.2.1. 

(6.2.1) 

Each point in nw(N w) is mapped by (nw)-l into n points gk(Z), say, where 
k = 0, 1, ... , n - 1 in N w' According to (6.2.1), these map under q(J to the 
same point in~, thus 

is a bijection of nw(N w) onto ~. As the maps q, (J and nw are both open and 
continuous, we see that each <Pw is a homeomorphism. 

Figure 6.2.1 
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In order to check that the transition maps are analytic we must first study 
the maps 

u'l- v. (6.2.2) 

Suppose that (u E N u, (v E N v and 

say: then for some g in G, we have 

Suppose now that (u, and hence (v, are not elliptic fixed points. Then 17:v is 
1-1 in some neighbourhood of (v and therefore there is a local inverse (17:v)-l 
mapping (to (v' The two maps 

agree with 17:, and hence with each other, on some neighbourhood of (u and 
take values in 17:iNv). Applying (17:v)-l we see that 

g = (17:v)-l17:u 

near (u' We deduce that the maps (6.2.2) are analytic near points which are not 
elliptic fixed points of G. 

We now show that the transition maps 

(u 'I- v) 

are analytic (where defined): writing 

¢v = qv(Jv(17:v)-l 

and similarly for u, the situation is illustrated in Figure 6.2.2. At points 
corresponding to the non-fixed points of G, we can compute ¢v(¢J- 1 by 
choosing a single valued branch of (qu)-l and the map ¢i¢J- 1 is a com­
position of analytic maps. At points corresponding to elliptic fixed points the 
homeomorphism ¢i¢u)-l is analytic in a deleted neighbourhood of the 
point in question (by the previous remark) and hence has a removable 
singularity at this point. D 

There is a converse to Theorem 6.2.1 (which we shall not prove here). 
Given any Riemann surface R one can construct a simply connected Riemann 
surface R and a mapping 17:: R ~ R with the properties 

(i) each 2 in R has a neighborhood N such that 17: restricted to N is a 
homeomorphism onto an open subset of R; 

(ii) Given any curve y: [0, 1] ~ R and any 2 on R with 17:(2) = y(O), then there 
is a unique curve y: [0, 1] ~ R such that 17:Y = Y and y(O) = 2 (we say 
that y projects to y or that y lifts to y from 2). 
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Figure 6.2.2 

These properties are expressed by saying that (R, n) is a smooth unlimited 
covering surface of R. By the Riemann Mapping Theorem (for Riemann 
surfaces) R is conformally equivalent to one of the standard Riemann surfaces 

d={lzl<l}, C , Cu{oo}, 

(with the trivial atlases) so without loss of generality, we may assume that R 
is one of these. 

It can now be shown that there is a group G of Mobius transformations 
preserving R such that the given surface R is conformally equivalent to RIG. 
Writing the quotient map as n, this means that ng = n for all gin G. Further, 
one can show that G acts discontinuously in R and has no elliptic elements. 

If R = C u {oo}, these restrictions imply that G = {I} (the trivial group) 
so essentially, R = C u {oo}. If R = C, the only possibilities for G are: (i) the 
trivial group; (ii) a cyclic group generated by some Z f---+ Z + A; (iii) a group 
generated by two translations Z f---+ Z + A, Z f---+ Z + f1 where A, f1 are linearly 
independent over the real numbers. These cases show that R is either C, 
C* = {z E C: Z -=f. O} or a torus. In all other cases, R is of the form diG where 
G acts discontinuously in d and has no elliptic elements. If R is compact, say 
with genus g, then R = t when g = 0, R = C when g = 1 and R = d when 
g ~ 2. 

In view of these remarks, we can see the importance of groups acting 
discontinuously in d (or in some conformal image of d). 

Definition 6.2.2. A group G of Mobius transformations is a Fuchsian group 
if and only if there is some G-invariant disc in which G acts discontinuously. 
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A Riemann surface R is said to be of hyperbolic type ifit is of the form fl/G 
where G acts in ~. In this case, we can view the differential 

21dzl 
ds = 1 -'lzl2 

as acting on R and each curve on R can be partitioned into small segments and 
the length of these segments then computed (in an invariant manner) in ~. In 
this way we can talk of the hyperbolic metric on R and so compute lengths 
and areas on R. 

If we join z to g(z) in ~ (g E G) and project this to R (= ~/G) we obtain a 
closed curve on R for ng(z) = n(z). Conversely, if we select a closed curve 
y: [0, 1] ~ Rand z in ~ with n(z) = y(O), then there is a unique curve 
~: [0, 1] ~ ~ with n~ = y and ~(O) = z. Note that 

n~{l) = y{l) = y(O) = n(z), 

so for some h in G, ~(1) = h(z): thus ~ is a curve from z to hz. Ify is homotopic 
to the point z on R then, by the Monodromy Theorem, ~ is a closed curve on 
~ and h = I (because h is not elliptic). 

More generally, one can consider n-dimensional manifolds: in the defini­
tion of a Riemann surface, we replace C in (ii) by [R" and we delete (iii) (or 
replace" analytic" by some other smoothness condition). If G is any discrete 
Mobius group, then G acts discontinuously in H3 and one can study H 3/G: 
this topic has attracted much attention in recent years. 

EXERCISE 6.2 

1. Let G be generated by g: z H z + 1. Prove that H2/G is (conformally equivalent to) 
8* = {z: 0 < Izl < I}. [Consider the map z H exp(2niz).J 

Show how to project the metric Idzl!Im[zJ from H2 to a metric J.t(w)ldwl in 8*. 
Find J.t and show that in this metric, the area of {z: 0 < Izl < t} is finite. 

§6.3. Stable Sets 

Suppose that a domain D (a subset of C) is G-invariant and that G acts 
discontinuously in D. We need to consider the following type of invariance. 

Definition 6.3.1. A subset Do of D is said to be stable (or precisely invariant) 
with respect to G if and only if for all g in G, either 

g(Do) = Do or g(Do) n Do = 0. 

The set of g with g(Do) = Do is the stabilizer of Do. 
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For examples of stable sets, see Theorem 5.3.12. 
Let Do be stable with stabilizer Go: it is natural to form the quotient space 

Do/Go and in general (for example, if Go is cyclic) this is easier to discuss than 
the projection n(Do) of Do into D/G. Unfortunately, the two spaces 

need not be homeomorphic as the next example shows. 

Example 6.3.2. Take D = C, let G be generated by g(z) = z + 1 and let 
Do = {x + iy: 0 ::; x < I}. Clearly Do/Go (=Do) is simply connected 
whereas n(Do) (= n(C) = {z: z =F O}) is not. 

There are important cases when Do/Go and n(Do) are homeomorphic and 
we need explicit conditions which guarantee that this is so. 

Theorem 6.3.3. Suppose that G acts discontinuously in D and that Do is stable 
with stabilizer Go. If either 

(i) Do is open in D; or 
(ii) Do/Go is compact; 

then Do/Go (with the quotient topology) and n(Do) (with the subspace topology 
from D/G) are homeomorphic. 

PROOF. Both quotient maps 

n: D -+ D/G, 

are continuous and open as the respective groups are groups of homeo­
morphisms of the corresponding spaces. The restriction no of n to Do is 
continuous so the natural bijection 

given by 

Go(x) -+ G(x), 

(where, for example, G(x) is the G-orbit of x) is continuous: see Figure 6.3.1. 

Do/Go --------... ~ n(Do) 
(J 

Figure 6.3.1 
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If (i) holds, then no is an open map (because n is an open map) and () - 1 is 
continuous. If (ii) holds, then () is a continuous bijection from a compact 
space to a Hausdorff space and so is a homeomorphism (see Section 1.4). 0 

Remark. If D is a subdomain of t, then cjJ and n are analytic and Do/Go and 
n(Do) are then conformally equivalent. 

We end this chapter with some examples illustrating the hypotheses (i) 
and (ii) in Theorem 6.3.2. 

Example 6.3.4. Suppose that G preserves and acts discontinuously in the 
upper half-plane HZ of C and let g be a hyperbolic element of G. We may 
assume that g fixes 0 and 00 so the positive imaginary axis, say L, is invariant 
under g. 

Suppose now that for all h in G, either h(L) = L or h(L) n L = 0 and 
suppose also that G has no elliptic elements of order two (which might leave L 
invariant and interchange the end-points of L). This situation will be dis­
cussed in detail later in the book. Then h(L) = L only if h lies in a cyclic 
subgroup of G generated by a hyperbolic element (which we may assume is g) 
fixing 0 and 00. Now g(z) = kz, say, where k > 1, and L/<g) is compact and, in 
fact, is a simple closed curve. According to Theorem 6.3.3, the projection of L 
into HZ /G is also a simple closed curve. 

Example 6.3.5. Suppose that a group G acts discontinuously in a subdomain 
D of IR and that there is an open disc Q which is stable with stabilizer <g) 
where g is parabolic. As Q is open, Theorem 6.3.3 implies that the projection of 
Q in D/G is conformally equivalent to Q/<g). 

By conjugation, we may assume that g(z) = z + 1 so that for some Yo, 

Q = {x + iy: y > Yo}. 

It is clear that the quotient space Q/<g) is conformally equivalent to the 
image of Q under the map z ~ exp(2niz): thus the projection of Q in D/G is 
conform ally equivalent to a punctured disc and hence to 

{ZEC:O < Izl < 1}. 

Now adjoin 00 (the fixed point of g) and all of its G-images to D to form 
the larger space D*. We generate a topology on D* from the open subsets of 
D together with sets of the form {oo} U {x + iy: y > t} and their G-images 
and the quotient space D* /G is also a Riemann surface: the adjoining of 00 to 
D corresponds to the addition of the origin to the punctured disc. Note, 
however, that the sequence n + iy, n ?: 1, does not converge in the topology 
of D* so 00 does not have a compact neighbourhood in D*. Of course, we 
may adjoin different orbits of parabolic fixed points to D provided that in 
each case, a corresponding disc Q exists. For more details and a converse 
result, see [50], Chapter 2. 
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EXERCISE 6.3 

1. Let G be generated by g: Z H Z + 1 and h: Z H Z + i and let 

D = {x + iy: 0 S Y < I}. 

125 

Show that D is stable under <g). Let n be the natural projection of C onto C/G. 
Show that neD) is compact whereas D/<g) is not compact. 



CHAPTER 7 

Hyperbolic Geometry 

§7.1. The Hyperbolic Plane 

From the outset we have assumed both an acceptance and understanding 
of Euclidean geometry: we have not entered into a discussion of the axiom­
atic foundations of the geometry and we shall not do so. The question now 
arises as to how we should treat hyperbolic geomeJry. We must not assume 
that the reader is as familiar with this as with Euclidean geometry yet it is 
necessary to have available some of the more basic and elementary results in 
hyperbolic geometry for we shall be using this (rather than Euclidean 
geometry) for the remainder of the text. Indeed, we have already seen the 
importance of hyperbolic geometry in the earlier chapters. 

We shall describe hyperbolic geometry in terms of Euclidean geometry, 
thus it can be thought of here as being subordinate to Euclidean geometry. 
The points, lines and other configurations will be defined as subsets of the 
Euclidean plane and in this way we avoid the need to discuss the axioms for 
hyperbolic geometry. Of course, appropriate sets of axioms do exist and 
once we have verified that these axioms hold in our model we are entitled 
to use those theorems which are derivable from these axioms: we shall not, 
however, follow this path. Within the limitations of Euclidean geometry we 
shall be as rigorous and complete as possible. 

We have seen in Section 3.3 that we may use the upper half-plane 

H2 = {x + iy: y > O} 

as a model for the hyperbolic plane and that this supports a metric p derived 
from the differential 

(7.1.1) 
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We have also seen that reflections in circles of the form Iz - Xo I = r (xo real, 
r > 0) and reflections in "vertical" lines of the form x = x 1 (x 1 real) are 
isometries of (HZ, p). We shall return to these facts in the next few sections. 

There is a parallel development in terms of the unit disc 

~ = {ZEC: Izi < 1}. 

The results in Section 3.4 are applicable and the metric p in HZ transfers to 
a metric in ~ which is derived from the differential 

21dzl 
ds = 1 _ Izlz' (7.1.2) 

Throughout the remainder of the book we shall use p for both the metric in 
HZ and the metric in ~: no confusion should arise, indeed the reader must 
become adept at frequently changing from one model to the other as each 
has its own particular advantage. 

One of the principal benefits of discussing hyperbolic geometry in 
Euclidean terms is that we can easily introduce the circle of points at infinity: 
by this we mean /R l U {oJ} for HZ and {z: Izl = 1} for ~. These are not 
points in the hyperbolic plane, nevertheless they play a vital part in any 
discussion of hyperbolic geometry and Fuchsian groups. The union of the 
hyperbolic plane and the circle at infinity is called the closed hyperbolic 
plane. 

We shall refer to the two models of hyperbolic geometry described above 
as the Poincare models. There are other models available (see Section 3.7) 
and we shall discuss (briefly) one alternative, namely the Klein model. The 
reader should note, however, that apart from one result (in Section 7.5) 
and occasional remarks and exercises, we shall not use the Klein model. 

We have seen in Section 3.4 that the reflection in the plane X3 = 0 followed 
by stereographic projection maps H3 isometrically onto B3, the metrics being 
those analogous to (7.1.1) and (7.1.2). Let this composite map be denoted by 
s. It follows that the upper hemisphere 

Q = {(Xl' Xz, X3): xi + X~ + x~ = 1, X3 > O}, 

(which is a model ofthe hyperbolic plane embedded in hyperbolic space H 3 ) 

is mapped by s isometrically onto ~ (=BZ) embedded in B3. Observe that 
as s is conformal, arcs of circles in Q orthogonal to oH3 map to arcs of 
circles in ~ orthogonal to OB3. 

We can also map Q onto ~ by vertical projection, namely 

Thus under the map F (= vs- l ) of ~ onto ~, arcs of circles in ~ orthogonal 
to o~ (the geodesics in A) map to Euclidean segments with the same end-points 
on O~. The significance of this is that F is a homeomorphism of the closed 
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Figure 7.1.1 

unit disc ti onto itself which maps each geodesic L in the Poincare model 
onto the Euclidean straight line segment L * of L1 with the same end-points 
as L: see Figure 7.1.1. 

The effect of F can easily be verified analytically and the preceding discus­
sion is equally valid in n dimensions. If x E Bn, then 

F(x) = vs- 1(x), 

= vn- 1(x) 

= vn(x), 

where n is stereographic projection (or, more properly, reflection in the 

sphere S(en + l'.j2». The formula for n given in Section 3.1 now yields the 
explicit formula for F, namely 

2x 
F(x) = 1 + Ixl2 

Given that the sphere S(a, r) is orthogonal to oBn, the orthogonality implies 
that 1 a 12 = 1 + r2 and so S has equation 

Ixl2 + 1 = 2(x.a). 

Thus F maps S(a, r) onto the Euclidean hyperplane 

S* = {y:y.a = I}, 

which meets oBn at the same set of points as does S(a, r). 
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The Klein model of hyperbolic geometry (that is, the model ~ with 
geodesics represented by the Euclidean segments L *) is a useful model for 
establishing properties of incidence and convexity in that it transfers problems 
in hyperbolic geometry to corresponding problems in Euclidean geometry. 

§7.2. The Hyperbolic Metric 

Our first task is to give a careful description of the construction of the 
metric p from the differential (7.1.1). To each piecewise continuously dif­
ferentiable curve in H2, say y: [a, b] -+ H2, we assign a "length" Ilyll by the 
formulae 

fb I y(l)(t) I 
Ilyll = a Im[y(t)] dt. 

The function p is now defined by 

p(z, w) = infllyll 

where the infimum is taken over all y which join z to w in H2. It is clear that p 
is non-negative, symmetric and satisfies the Triangle Inequality 

P(Zb Z3) :-s;; P(Zb Z2) + P(Z2' Z3): 

indeed, p is a metric on H2 (see Section 1.6). 
Now let 

(z)=az+b 
g ez + d' 

(7.2.1) 

where a, b, e and d are real and ad - be > 0: thus g maps H2 onto itself. An 
elementary computation yields 

Ig(l)(z)I 1 

Im[g(z)] Im[z] 

and so 

IlgY11 = fb Ig(l)(y(t»I·ly(l)(t)1 dt = Ilyli. 
a Im[g(y(t»] 

Because of this invariance we immediately obtain the invariance of p, 
namely 

p(gz, gw) = p(z, w) (7.2.2) 

and this proves that each such g is an isometry of (H 2 , p). This will now be 
used to obtain an explicit expression for p(z, w). 
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Theorem 7.2.1. With p as above, and with z, win H2, 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

Iz - wi + Iz - wi 
p(z, w) = log I I I I; z-w - z-w 

Iz - Wl2 

cosh p(z, w) = 1 + 2 Im[z] Im[w]; 

. 1 Iz - wi . 
smh["2P(z, w)] = 2(Im[z] Im[w])1/2' 

1 Iz - wi . 
cosh["2P(z, w)] = 2(Im[z] Im[w])1/2' 

tanh[!p(z, w)] = --_ . Iz - wi 
z - w 

PROOF OF THEOREM 7.2.1. It is easy to see that the five equations are equivalent 
to each other: we shall prove that (ii) holds. 

By (7.2.2), the left-hand side of (ii) is invariant under g. A straightforward 
computation shows that 

Ig(z) - g(wW 
Im[g(z)] Im[g(w)] 

Iz - wl 2 

Im[z] Im[wJ' 

thus the right-hand side of (ii) is also invariant under g. In fact, this is no more 
than the invariance of (3.3.3) established in Section 3.3. 

Now select distinct z and w in H2 and let L be the unique Euclidean circle 
or line which contains z and wand which is orthogonal to the real axis. Now 
L meets the real axis at some finite point oc and by taking g(z) = -(z - OC)-l 
+ f3 (for a suitable f3) we may assume that gin (7.2.1) maps L onto the imagin­
ary axis. It is only necessary, therefore, to verify (ii) when z and w lie on the 
imaginary axis. 

We now assume that z = ip, w = iq and also (as both sides of (ii) are 
symmetric in z and w) that 0 < p < q.1f 

y(t) = x(t) + iy(t), o ~ t ~ 1, 

is any curve joining z to w, then 

_J,1 IX(l)(t) + iy(l)(t) I 
Ilyll - ( ) dt 

o y t 

J,1 y(l)(t) 
~ -() dt 

o y t 

= log(qjp) 

as y(1) = q, y(O) = p. As equality holds when, for example, 

y(t) = i[P + t(q - p)], 
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we find that 

p(ip, iq) = log(q/p) (0 < p < q), 

and it is easy to see that (ii) holds when z = ip and w = iq. D 

Remark. We have proved a little more than is stated in Theorem 7.2.1. 
First, we have obtained 

111'11 = p(ip, iq), 

(that is, 111'11 is minimal) if and only if x(t) = 0 and y(1)(t) > 0 for all t in 
[0, 1]. We shall return to this in the next section. Next, for future reference 
we record the formula 

p(ip, iq) = Ilog(p/q) I: 

in this form we do not need to assume that p < q. 

We now consider the model L\. The map 

J(z) = z - ~ 
z+z 

is a 1-1 map of H2 onto L\, thus p* given by 

p*(z, w) = p(f-lz,f-1W) 

is a metric on L\. However, as 

2 1J<1)(z) I 1 
1 - IJ(zW = Im[z] 

(z, WE L\), 

(7.2.3) 

we can also identify p* with the metric derived from the differential (7.1.2). 
As we have already remarked, we prefer to use p for p* and with this con­
vention, J is an isometry oj (H2, p) onto (L\, p). 

We can derive formulae for the model L\ by simply rewriting Theorem 
7.2.1 by means of f. It is more instructive, though, to work directly with L\: 
for example, corresponding to (7.2.3) we find that if 0 < r < 1 then 

5, r 2dt 1 + r 
p(O, r) = -1 -2 = log-l-

o - t - r 

(the reader should verify this). 
Given distinct points z and w there is an isometry g of L\ onto itself with 

g(z) = 0 and g(w) = r, r > O. The invariance described by (3.4.3) yields 

Iz - wl2 r2 
(1 - Iz12)(1 - Iw12) = 1 - r2 

= sinh2[!p(0, r)] 

= sinh2[!p(z, w)]. (7.2.4) 
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The identity (3.4.4) becomes 

11 - zwl2 = Iz - wl2 + (1 - IzI2)(1 - Iw12) 

and this together with (7.2.4) yields 

2 1 _ 11 - zwl2 . 
cosh [2P(Z, w)] - (1 _ I z 12)(1 _ I w 12)" 

this is actually (3.4.5). Finally, we obtain 

I z - w I tanh[!p(z, w)] = 1 _ zw 

and 

11 - zwl + Iz - wi 
p(z, w) = log 11 I I I· (7.2.5) 

-zw - z-w 

As simple and useful examples of these ideas, we compute the length of a 
circle and the area of a disc (see (3.3.5)). Of course, length and area here are 
with respect to the hyperbolic metric and both remain invariant under 
isometries. 

If E is contained in .1, then the hyperbolic area of E is 

[ 2 J2 h-area(E) = II 1 _ Izl2 dx dy: 

E 

if E is contained in H2, the integrand is replaced by Ill. For any curve C in 
.1, the hyperbolic length of C is 

r 21dzl 
h-Iength(C) = Jc 1 _ Iz12: 

if C is in H2, the integrand is replaced by l1Y. 

Theorem 7.2.2. (i) The area of a hyperbolic disc of radius r is 4n sinh2(!r). 
(ii) The length of a hyperbolic circle of radius r is 2n sinh r. 

PROOF. We use the model.1 and let C and D be the circle and disc with centre 
o and (hyperbolic) radius r. From (7.2.4) we see that 

C = {z: Izl = R}, D = {z: Izl ~ R}, 

where 

or, equivalently, 

tanh<!r) = R. 

The stated results now follow by direct integration. o 
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g(w*) = 00 

g(w) = iv 

g(z) = iy 
z 

L 

w 

g(z*) = 0 z* w* 

Figure 7.2.1 

If we are prepared to use points on the circle at infinity we can also express 
p(z, w) in terms of a cross-ratio. We recall from Section 4.4 that the cross-ratio 
is defined by 

Let z and w be distinct points in H2 and let g and L be as in the proof of 
Theorem 7.2.1. Further, let L meet the real axis at z* and w*, these being 
labelled so that z*, z, w, w* occur in this order along L (see Figure 7.2.1). 
Now as g(L) is the imaginary axis, g(z*) = ° or g(z*) = 00. If g(z*) = 00 

we can apply the map z --+ -liz: thus we may assume g to be chosen so that 

g(z*) = 0, g(z) = iy, g(w) = iv, g(w*) = 00, 

where y < v. As the cross-ratio is invariant under Mobius transformations 
we obtain from (7.2.3), 

p(z, w) = p(gz, gw) 

= log(vly) 

= log[O, iy, iv, 00] 

= log[z*, z, w, z*]. (7.2.6) 

Of course, this is equally valid in ~ for we can simply map H2 isometrically 
onto ~ without changing the value of the cross-ratio. 

We end this section with a few brief remarks about the metric topology 
of the hyperbolic plane. First, the Euclidean and hyperbolic metrics on H2 
(and ~) induce the same topologies. In particular, the closed hyperbolic 
plane is compact in the Euclidean topology and the subspace topology is the 
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hyperbolic topology. It is convenient to introduce notation for the closure 
relative to the hyperbolic plane as well as the closed hyperbolic plane. 

Definition 7.2.3. Let E be a subset of the hyperbolic plane. Then 

(i) E denotes the closure of E relative to the hyperbolic plane; 
(ii) E denotes the closure of E relative to the closed hyperbolic plane. 

Of course, E is also the closure of E in C. 

EXERCISE 7.2 

1. Let L be the set of points x + iy in Hl where x = y. Find where 

inf{p(z, w): zEL} 

is attained and describe this point in geometric terms. 

2. Suppose that XI < Xl < X3 < X4. Let the semi-circle in Hl with diameter [XI' X3] 
meet the line X = Xl at the point z 3. Similarly, let Z4 be the intersection of this line 
and the semi-circle with diameter [XI' X4]. Prove that 

P(Z3, Z4) =! log[xl, X3, X4, 00]. 

3. Show that if (J IS a metric on a set X then tanh (J IS also a metric on X. 
Deduce that 

Iz - wi Po(z, w) = --_ 
z - w 

is a metric on Hl. Show that 

Po(U, v) = Po(u, w) + Po(w, v) 

if and only if w = u or w = v. 

4. Show that (Hl, p) is complete but not compact. 

§7.3. The Geodesics 

We begin by defining a hyperbolic line or, more briefly, an h-line to be the 
intersection of the hyperbolic plane with a Euclidean circle or straight line 
which is orthogonal to the circle at infinity. With this definition, the following 
facts are easily established. 

(1) There is a unique h-line through any two distinct points of the hyperbolic 
plane. 

(2) Two distinct h-lines intersect in at most one point in the hyperbolic plane. 
(3) The reflection in an h-line is a p-isometry (see Section 3.3). 
(4) Given any two h-lines Ll and L 2 , there is a p-isometry g such that g(L 1) 

= L2 (see the proof of Theorem 7.2.1). 



§7.3. The Geodesics 135 

Given any w in H2, it is clear that 

{zEH2: izi = iwi} 

is the unique h-line which contains wand which is orthogonal to the positive 
imaginary axis (an h-line). As the isometry in (4) can be taken to be a Mobius 
transformation we obtain: 

(5) given any h-line and any point w, there is a unique h-line through wand 
orthogonal to L. 

Without going into the details, the reader should be aware that an essential 
feature of axiomatic geometry is the notion of "between" on a line. In our 
case, this notion can be described in terms of the metric. 

Given two distinct points z and w on an h-line L, the set L - {z, w} has 
three components exactly one of which has a compact closure (relative to the 
hyperbolic plane). This component is the open segment (z, w) and, is between 
z and w if and only if' E (z, w). The closed segment [z, w] and segments 
[z, w), (z, w] are defined in the obvious way. 

The discussion preceding (7.2.3) shows that a curve y joining ip to iq 
satisfies 

iiyii = p(ip, iq) 

if and only if y is a parametrization of [ip, iq] as a simple curve. Clearly, this 
can be phrased in an invariant form as follows. 

Theorem 7.3.1. Let z and w be any points in the hyperbolic plane. A curve y 
joining z to w satisfies 

iiyii = p(z, w) 

if and only ify is a parametrization oj[z, w] as a simple curve. 

It is for this reason that we refer to h-lines as geodesics (that is, curves of 
shortest length). 

Now consider any three points z, wand '.It is clear from the special case 
(7.2.3) that if' is between z and w, then 

p(z, w) = p(z, 0 + p(', w). 

Equally clearly, if' is not between z and w then the curve y comprising of the 
segments [z, '] and [C w] satisfies (by Theorem 7.3.1) 

iiyii > p(z, w). 

Thus we obtain the next result. 

Theorem 7.3.2. Let z and w be distinct points in the hyperbolic plane. Then 

p(z, w) = p(z, 0 + p(', w) 

if and only if' E [z, w]. 
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Parallel Disjoint 

Figure 7.3.1 
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Intersecting 

We end this section with more terminology. First, the points Zl' Z2' .•. 

are collinear if they lie on a single geodesic. Each geodesic has two end-points, 
each on the circle at infinity. It is natural to extend the notation for a segment 
so as to include geodesics: thus (oc, {3) denotes the geodesic segment with 
end-points oc and {3 even if these are on the circle at infinity. A ray from z is a 
segment [z, oc) where oc lies on the circle at infinity: each geodesic (oc, {3) 
through z determines exactly two rays from z, namely [z, oc) and [z, {3). 

Definition 7.3.3. Let Ll and L2 be distinct geodesics. We say that Ll and 
L2 are parallel if and only if they have exactly one end-point in common. If 
Ll and L2 have no end-points in common, then they are intersecting when 
Ll n L2 "# 0 and disjoint when Ll n L2 = 0. 

Warning. This terminology is not standard and the terms are illustrated in 
the model Ll in Figure 7.3.1. Much of the geometry is based on a discussion 
of these three mutually exclusive possibilities (parallel, intersecting and 
disjoint) and for this reason we prefer a particularly descriptive terminology. 

EXERCISE 7.3 

1. Let w = u + iv, w' = ivand z = ri be points in H2. Prove that 

p(w, z) ~ p(w', z) 

with equality if and only if w = w'. Deduce Theorem 7.3.2. 

§7.4. The Isometries 

The objective here is to identify all isometries of the hyperbolic plane. Let 
z, wand, be distinct points in H2 with, between z and w. It is an immediate 
consequence of Theorem 7.3.2 that for any isometry ifJ, the point ifJ(O is 
between ifJ(z) and ifJ(w). Thus ifJ maps the segment [z, w] onto the segment 
[ifJ(z), ifJ(w)]: because of this, ifJ maps h-lines to h-lines. 
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Given any isometry cp, there is an isometry 

g(z) = az + b 
cz + d 

(ad - bc > 0), 
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such that gcp leaves the positive imaginary axis L invariant (simply choose 9 
to map cp(L) to L). By applying the isometries z ~ kz (k > 0) and z ~ -l/z 
as necessary, we may assume that gcp fixes i and leaves invariant the rays 
(i, (0), (0, i). It is now an immediate consequence of (7.2.3) that gcp fixes 
each point of L. 

Now select any z in H2 and write 

For all positive t, 

z = x + iy, gcp(z) = u + iv. 

p(z, it) = p(gcp(z), gcp(it» 

= p(u + iv, it) 

and so, by Theorem 7.2.l(iii), 

[x2 + (y - t)2]V = [u2 + (v - t)2]y. 

As this holds for all positive t we have y = v and x2 = u2 : thus 

gcp(z) = z or -z. 

A straightforward continuity argument (isometries are necessarily continu­
ous) shows that one of these equations holds for all z in H2: for example, the 
set of z in the open first quadrant with gcp(z) = z is both open and closed in 
that quadrant. This proves the next result. 

Theorem 7.4.1. The group of isometries of (H2, p) is precisely the group of 
maps of the form 

az + b 
Zl---+---

cz + d' 

a(-z)+b 
Zl---+ , 

c(-z)+d 

where a, b, c and d are real and ad - bc > O. Further, the group of isometries 
is generated by reflections in h-lines. 

A similar development holds for the model ~: here, the isometries are 

az + C 
Zl---+--

cz + a' 

where lal2 - !e1 2 = 1. 
Note that if 

g(z) = az + = 
cz + a 

az + C 
Zl---+---

cZ + a' 
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then from (7.2.4) we obtain the useful expressions 

I c I = sinh !p(O, gO), 

I a I = cosh !p(O, gO) 

and so (see Section 4.2) we find again that 

IIgll 2 = 2 cosh p(O, gO). 

Of course, if h is an isometry of (H2, p) then 

IIhl1 2 = 2 cosh p(i, hi): 

(7.4.1) 

(7.4.2) 

the proof is by an elementary computation using Theorem 7.2.1(ii) (or by 
Theorem 4.2.1). 

EXERCISE 7.4 

1. Letzj , wjU = 1,2, 3) be points inH2. Show that there is an isometryg withg(z) = Wj 
for each j if and only iffor all i and j, 

P(Zi' z) = P(Wi, Wj)' 

§7.S. Convex Sets 

A subset E of the hyperbolic plane is said to be convex if and only if for each 
z and w in E, we have [z, w] c E. The following facts regarding convexity are 
easily verified. 

(1) If E is convex, then so is geE) for every isometry g. 
(2) If E is convex, then so are EO (the interior of E) and E. 
(3) If E1, E2, ... are convex and E1 c E2 C •.• , then U En is convex. 
(4) If each E~ is convex, then so is n~ E~. 

By definition, a geodesic is convex. The mapping iy -+ log y is a homeo­
morphism ofthe hyperbolic geodesic {iy: y > O} onto the Euclidean geodesic 
{x + iy: y = O} which preserves the relation "between". We deduce that 
the segments are the only convex subsets of a hyperbolic geodesic. 

An open half-plane is a component of the complement of a geodesic 
and any open half-plane is convex. As an illustration of the use of the Klein 
model, let F: A -+ A be the map described in Section 7.1. This maps the 
geodesics of the Poincare model (A, p) onto Euclidean segments in A and so 
a subset E of A is convex in the Poincare model if and only if F(E) is convex 
in the Euclidean sense. In particular, a half-plane in the Poincare model maps 
onto the intersection of A with a Euclidean half-plane and this is indeed convex 
in the Euclidean sense. In this way, the Klein model enables us to refer 
hyperbolic convexity to the more familiar context of Euclidean convexity. 
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Figure 7.5.1 

By (2), a closed half-plane is convex. If E~ (IX E A) is now any family of 
half-planes (open or closed), then the complement of U E~ is the intersection 
of half-planes and so is convex. For example, a hyperbolic disc D is convex 
for it is the complement of a union of (shaded) half-planes as in Figure 7.5.1. 

There are two other examples of a similar nature which we shall use later. 
A horocyclic region is the interior of a Euclidean circle which is tangent to the 
circle at infinity. By taking the model H2 and 00 as the point of tangency, 
we may assume that the horocyclic region is {x + iy: y > t}. This region is 
convex for it is complement of the union of all half-planes of the form 
{z E H2: I z - Xo I :::; t} as Xo varies over the real line. For future reference, a 
horocycle is the boundary of a horocyclic region. 

A hypercyclic region is any region which is isometrically congruent to a 
region of the form 

{zEH2: larg(z) - n/21 < e} 

for some e in (0, n/2). The significance of this will appear later, however such 
a region in convex for it is the complement of the union of half-planes of the 
form 

(xo real). 

The boundary of a hypercyclic region is called a hypercycle. 
We end with a characterization of closed convex sets. A set E is locally 

convex if and only if each z in E has an open neighbourhood N such that 
E n N is convex. The notions of convexity and local convexity are meaningful 
in both Euclidean and hyperbolic spaces and they extend in the obvious way 
to the closed hyperbolic plane. 
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Theorem 7.5.1. Let P be the Euclidean plane or the closed hyperbolic plane. A 
closed subset E of P is convex if and only if it is connected and locally convex. 

PROOF. If the result is true when P is the Euclidean plane, the relationship 
between the Poincare and Klein models shows that the result is also true 
when P is the closed hyperbolic plane. Thus it is only necessary to show that 
if E is a closed, connected, locally convex subset of 1R2 then E is convex (the 
reverse implication is trivial). 

We say two points in E are polygonally connected if they can be joined 
by a polygonal arc lying in E. This is an equivalence relation and the local 
convexity of E implies that the equivalence classes are relatively open in E. 
As E is connected, there is only one equivalence class so any two points of E 
can be joined by a polygonal curve in E. Because of this it is sufficient to 
prove that if the Euclidean segments [u, v], [v, w] lie in E then so does the 
segment [u, w]. If u, v, ware collinear then this is trivial: thus we assume that 
these points are not collinear. 

For each a, b, c let T(a, b, c) denote the closed triangle with vertices 
a, b, c (by this, we mean the convex hull of the points a, b, c). Now let K be 
the set of x in [v, u] with the property that for some y in (v, w) we have 
T( v, x, y) c E. As E is locally convex at v, K contains some interval of positive 
length. Clearly, K is an interval of the form [v, xo) or [v, xo] where Xo t= v 
and we shall now show that K = [v, u]. 

Choose a neighbourhood N of Xo such that E (') N is convex and then 
choose Xl in [v, xo) (') Nand X2 in [xo, u] (') N: see Figure 7.5.2. 

As Xl E K, there is some YI in (v, w) with 

T(v, Xl> YI) c E. 

Choose z in N (') (Xl, YI): as E (') N is convex we have 

T(z, Xl' X2) c E. 

w 

v 

Figure 7.5.2 

u 
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With Y2 as in Figure 7.5.2 we also have 

T(v, X2, Yz) c T(v, Xl> Yl) U T(Xl' X2' z) 
cE, 
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so X2 E K. This shows that Xo E K and Xo = u so K = [v, u]. Note that as 
u E K, there is some Y in (v, w) with T(v, u, y) c E. 

Now consider the set K 1 of Y in [v, w] such that T( v, u, y) c E. Exactly 
as before, K 1 is some segment [v, Yo) or [v, Yo]. As E is closed, we see that 
K 1 = [v, Yo]. The argument in the preceding paragraph (with u, v, w replaced 
by u, Yo, w) shows that Yo = w so W E Kl and 

T(v, u, w) c E. D 

EXERCISE 7.5 

1. Let z, z', w, w' be points in H2. Prove that if w E [z, z'] then 

pew, w') S max{p(w, z), pew', z)}. 

Deduce (analytically) that a hyperbolic disc is convex. 

2. Construct a subset E of H2 which is connected and locally convex but not convex 
(see Theorem 7.5.1). 

3. Show that exactly one of the sets 

is convex. 

§7.6. Angles 

{x + iYEH2:a < x < b,y < c}, 

{x + iYEH2: a < x < b,y > c} 

Our attitude to angles in the hyperbolic plane is consistent with the policy 
outlined in Section 7.1, namely we describe the angles of hyperbolic geometry 
in terms of Euclidean geometry. In hyperbolic geometry, an angle at a point z 
is an unordered pair of rays (L, L') from z. Let (L, L') be an angle at z and 
suppose for the moment that Land L' are not on the same geodesic. The ray 
L determines a geodesic, say L*, and L' - {z} does not meet L*. It follows 
that L' - {z} lies in one of the open half-planes say L', complementary to 
L *. Similarly, L - {z} lies in one of the half-planes, say L, complementary 
to L'. We now define the interior of the angle (L, L') to be L n L'. It is easy to 
see that the interior of (L, L') is one component of the complement of 
L u L': the other component is called the exterior of (L, L'). 

If Land L' lie on the same geodesic then either L u L' is a geodesic (and 
there is no canonical choice of interior or exterior) or L = L' in which case 
we define the interior to be empty and the exterior to be the complement of L. 
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Given an angle (L, L') at Z with L and L' defining different geodesics, the 
interior of (L, L') is convex as it is the intersection of half-planes. To comple­
ment this, the exterior cannot be convex for otherwise a segment joining points 
on L - {z} and L' - {z} would lie in both the interior and the exterior of 
(L, L'). Of course, we can measure the interior and exterior angles at z in 
the usual way and the measurements lie in [0, n) and (n, 2n], respectively. 

§7 . 7. Triangles 

Let ZI' Z2 and Z3 be three non-collinear points in the hyperbolic plane and 
let L2 and L3 be the rays from ZI through Z2 and Z3 respectively. Then 
(L2' L 3) is an angle at ZI: we denote its interior by AI' In a similar way, A2 
and A 3 are the interiors of angles at z 2 and z 3' This notation will readily be 
absorbed by a glance at Figure 7.7.1. Note that by convexity, (Z2' Z3) c Al 
(see Section 7.6). 

The Zj are the vertices, the [z;, zJ are the sides and the Ai are the angles 
of T(ZI' Z2' Z3)' Each angle of T(ZI' Z2' Z3), being an interior angle, is less 
than n. For brevity, we write T for T(ZI' Z2, Z3)' Observe that as each Aj 
is convex, so is T. Moreover, the A j are also the angles of T in the sense that 
for any sufficiently small open disc D with centre, say, ZI' we have 

Dn T= DnAI. 

To see this, let H j be the half-plane containing Zj and having the other two Zi 
on its boundary. Then (if D cHI) 

DnAI = (DnHl)n(H2nH3) 

= D n (H 2 n H 3) n (H 3 n HI) n (HI n H 2) 
=DnT. 

Figure 7.7.1 
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Next, define aTby 

this may be parametrized as a Jordan curve with interior, say To. As 
aT c ii 1, so To c H 1. The same argument holds for Hz and H 3 so 

As T is connected (in fact, convex) and does not meet aT, it lies inside or 
outside of aT. However, Tmeets To so T c To and hence T = To. 

In an axiomatic treatment, it is sometimes necessary to take as an axiom 
the fact that a ray L from Z1 through a point w in T(zl> Zz, Z3) necessarily 
meets the side (zz, Z3). In our case, we observe that the (connected) segment 
L - {zd meets the interior of aT (at w) and cannot meet the sides [Z1' zz] 
or [Z1, Z3]. As L - {Z1} is unbounded, its closure meets the circle at infinity 
and so must meet aT. 

The next result is used frequently in deriving trigonometric formulae (and 
so must be proved independently of these formulae). 

Theorem 7.7.2. Let L be the geodesic containing the longest side, say [zz, Z3], 
of T. Then the geodesic L1 through Z1 and orthogonal to L meets L at a point 
w in [zz, Z3]. 

PROOF. We may assume that L is the positive imaginary axis so w = ilztl: 
see Figure 7.7.2. 

It is easy to see that 

and similarly 

Zj 

W 

Ll Zl 

L 

~ 

Figure 7.7.2 
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(see Section 7.20 which does not use trigonometry). As [Z2' Z3] is the longest 
side we deduce that 

The points Z2' Z3' ware collinear and one must lie between the other two. 
Using Theorem 7.3.2, we see that w must lie between Z2 and Z3 (or be equal 
to one of them). 0 

Most of the material in this section extends without difficulty to the case 
when some (or all) of the vertices lie on the circle at infinity. The notable 
exception to this is Theorem 7.7.2 (consider Z2 but not Z3 on the circle at 
infinity). 

EXERCISE 7.7 

1. Show that in hyperbolic geometry, the vertices of a triangle may, but need not, lie 
on a circle. 

2. Prove that the diameter of a triangle T, namely 

sup{p(z, w): z, wET}, 

is the length of the longest side (see Exercise 7.5.1). 

§7.8. Notation 

In the next six sections we shall be concerned with hyperbolic triangles and 
it is convenient to adopt a standard notation which allows us to express 
trigonometric relations easily. A triangle T will have vertices labelled Va' Vb 

and Vc: the sides opposite these vertices will have lengths a, band c respec­
tively and the interior angles at the vertices will be ex, p and y. This notation 
will readily be absorbed by a glance at Figure 7.8.1. As isometries preserve 
length and angles, trigonometric formulae remain invariant under isometries. 

b 

T 

cx_--_ 
a 

c 

Figure 7.8.1 
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We shall allow some or all of the vertices of a triangle to be on the circle 
at infinity. If, for example, Va is at infinity, then 

rx = 0, b = c = + 00. 

If two vertices are on the circle at infinity, then all three sides have infinite 
length. 

EXERCISE 7.8 

1. Let Tl and Tz be two triangles, each with all sides of infinite length. Show that there 
is an isometry mapping Tl onto Tz . 

§7.9. The Angle of Parallelism 

The Angle of Parallelism is the classical term for the trigonometric relation 
which holds for a triangle with angles rx, 0, n12: in this case, there are only two 
parameters, namely rx and b. 

Theorem 7.9.1. Let T be a triangle with angles rx, 0, nl2 (rx =I- 0). Then 

(i) sinh b tan rx = 1; 
(ii) cosh b sin rx = 1; 

(iii) tanh b sec rx = 1. 

PROOF. We work in H2 and we may assume that 

Va = X + iy, 

where X2 + y2 = 1: see Figure 7.9.1. As y = sin rx, Theorem 7.2.1(ii) yields 
(ii). The remaining formulae are equivalent to (ii). D 

T 

/ 

x + iy 
/1 

/ I 

I I 
I I 

/ I 

/ I 

I/O( 

Figure 7.9.1 
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§7.10. Triangles with a Vertex at Infinity 

Consider a triangle with angles IX, p, 0 where IX and p are non-zero: then 

a = b = +00, O<C< +00 

and we shall determine the relationship between IX, p and c. 

Theorem 7.10.1. For any triangle with angles IX, p, 0 we have 

(i) h _ 1 + cos IX cos P . 
cos c - . . p , 

sm IX sm 

(ii) 
. h _ cos IX + cos p 

sm c - . . p . 
sm IX sm 

PROOF. We work in H2 with Vc = 00. We may assume that Va and Vb lie on the 
circle I z I = 1, say with 

Va = exp(ie), Vb = exp(i¢), 

where 0 < e < ¢ < n. Thus IX = e, p = n - ¢ and (i) follows from Theorem 
7.2.1 as 

cosh c = cosh p(va, Vb)' 

The verification of (ii) is left to the reader. 

§7.11. Right-angled Triangles 

D 

We now consider a triangle with angles IX, p, n/2. By applying a suitable 
isometry we may assume that 

Va = S + it, 
where k > 1 and sand t are positive with S2 + t 2 = 1: see Figure 7.11.1. 

We begin with the relationship between the three sides: this is the hyper­
bolic form of Pythagoras' Theorem. 

Theorem 7.11.1. For any triangle with angles IX, p, n/2 we have 

cosh c = cosh a cosh b. 

PROOF. Using Theorem 7.2.1(ii) we have 

cosh c = (1 + k2 )/2kt; 

cosh b = l/t; 

cosh a = (l + k2)/2k. 

(7.11.1) 

D (7.11.2) 
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Xo 0 

Figure 7.11.1 

Note that we also obtain 

tanh b = s. 

Next, we seek relations between two sides and one angle. 

Theorem 7.11.2. For any triangle with angles (J(, /3, nl2 we have 

(i) tanh b = sinh a tan /3; 
(ii) sinh b = sinh c sin /3; 

(iii) tanh a = tanh c cos /3. 
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(7.11.3) 

PROOF. Let the geodesic through Va and Vb have Euclidean centre Xo' Then by 
equating the distances from Va and Vb to Xo we see that 

k2 = 1 - 2xos. 

This shows that Xo < O. The Euclidean triangle with vertices xo, 0 and ki 
has angle /3 at Xo' Thus 

tan /3 = kll Xo I 
= 2skl(k2 - 1) 

and this gives (i) because of (7.11.2) and (7.11.3). 
Elimination of a from (i) and (7.11.1) yields (ii): elimination of b from (i) 

and (ii) yields (iii). D 

We end with the relations between one side and two angles. 

Theorem 7.11.3. For any triangle with angles (J(, /3, n12: 

(i) 

(ii) 

cosh a sin /3 = cos (J(; 

cosh c = cot (J( cot /3. 
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PROOF. Theorem 7.11.2(i) gives 

sinh a tan p = tanh b, 

sinh b tan IX = tanh a 

and elimination of b gives (i). 

7. Hyperbolic Geometry 

To prove (ii), simply eliminate cosh a and cosh b from (7.11.1), Theorem 
7.11.3(i) and the corresponding identity with a and (l( interchanged with b 
~t D 

§7.12. The Sine and Cosine Rules 

We now consider the general hyperbolic triangle with sides a, band c and 
opposite angles IX, p and y. We assume that IX, p and yare positive (so a, b 
and c are finite) and we prove the following results, 

The Sine Rule: 

sinh a sinh b sinh c 
sin IX sin p sin y 

The Cosine Rule I: 

cosh c = cosh a cosh b - sinh a sinh b cos y. 

The Cosine Rule II: 

h _ cos IX cos P + cos Y 
cos c - . . p . 

SIn IX SIn 

Note the existence of the second Cosine Rule. This has no analogue in 
Euclidean geometry: in hyperbolic geometry it implies that if two triangles 
have the same angles, then there is an isometry mapping one triangle onto the 
other. 

PROOF OF THE COSINE RULE I. We shall use the model ~ and we may assume 
that Vc = 0 and Va > 0: See Figure 7.12.1. 

Note that 

and similarly, 

Va = tanh !p(O, va) 

= tanh(!b) (7.12.1) 

(7.12.2) 
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~--......;~v. 
b 

Figure 7.12.1 

From (7.2.4) we have 

cosh c = 2 sinh2 [tp(va , Vb)] + 1 

21 va - vbl 2 1 
(1 - IVa I2)(1 - IVbI2) + . 

The Euclidean Cosine Rule gives 1 Va - Vb 12 in terms of 1 Va I, 1 Vb 1 and cos y 
and using (7.12.1) and (7.12.2), the required result follows by straightforward 
simplification. D 

PROOF OF THE SINE RULE. Using the Cosine Rule I we obtain 

1 _ (COSh a cosh b - cosh C)2' 
sinh a sinh b 

(Si~h C)2 
sm y 

The Sine Rule will be valid provided that this is symmetric in a, band c and 
this will be so if 

(sinh a sinh b)2 - (cosh a cosh b - cosh C)2 

is symmetric. After writing sinh2 in terms of cosh2 , we find that this is so. 
D 

PROOF OF THE COSINE RULE II. For brevity, we shall write A for cosh a and 
similarly for Band C. The Cosine Rule I yields 

(AB - C) 



150 7. Hyperbolic Geometry 

and so 

. 2 D 
sm y = (A2 _ I)(B2 _ 1)' 

where 

D = 1 + 2ABC - (A 2 + B2 + C2) 

is symmetric in A, Band C. The expression for sin2 y shows that D ~ O. 
Now observe that if we multiply both numerator and denominator of 

cos ex cos fJ + cos y 
sin ex sin fJ 

by the positive value of 

we obtain 

cos ex cos fJ + cos y [(BC - A)(CA - B) + (AB - C)(C2 - 1)] 

sin ex sin fJ D 

=c. D 

EXERCISE 7.12 

1. For a general triangle, prove that a ::;; b ::;; c if and only if IX ::;; P ::;; y. [Use the Sine 
Rule and the Corollary of Theorem 7.13.1.] 

2. Show that a triangle is an equilateral triangle if and only if IX = P = y and that in 
this case, 

2 cosh(!a) sin(~) = 1. 

3. Show that for a general triangle, the angle bisector at Va contains the mid-point of 
[Vb' Vc] if and only if b = c (Isosceles triangles). 

4. Prove that there exists an isometry mapping a triangle Tl onto a triangle T2 if and 
only if Tl and T2 have the same angles (or sides ofthe same lengths). 

§7 .13. The Area of a Triangle 

Theorem 7.13.1. For any triangle Twith angles ex, fJ and y, 

h-area(T) = 1t - (ex + fJ + y). 

Corollary. The angle sum of a hyperbolic triangle is less than 1t. 
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T 

Figure 7.13.1 

PROOF. Assume first that 1 = O. We may assume that Ve = 00 and that Va 

and Vb lie on Izl = 1. Referring to Figure 7.13.1 we find that 

h-area(T) = ;' dx ICOSP [fa:> d ] 
COS(II-I%) (1-x2)'/2 Y 

= n - (tX + P), 

which is the desired result when 1 = O. In general, any triangle is the difference 
of two such triangles (continue the ray from Va through Ve to W on the circle 
at infinity and consider T(va, Vb' w)) and the general case follows easily. 0 

§7.14. The Inscribed Circle 

This is the last section on hyperbolic trigonometry and we leave the reader 
to provide most of the details. 

Theorem 7.14.1. The three angle bisectors of a triangle T meet at a point' in T. 

PROOF. We may assume that 1 is the smallest angle so 1 < n12. Now construct 
angle bisectors at Va and Vb: these must meet at a point, in T(see Section 7.7). 
Next, define 11 and 12 as in Figure 7.14.1. As tX/2, P12, 11 and 12 are each less 
than n12, we can construct points W a , Wb and We as in Figure 7.14.1 (and these 
points must lie on the open sides of T). 

The Sine Rule applied to the two triangles with side [', Vb] gives 

The same result holds with Wb instead of Wa so the points W a , Wb and We lie 
on a circle with centre ,. Moreover, elementary trigonometry now shows that 
11 = 12' 0 
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v. 

Figure 7.14.1 

The circle centre, passing through W a , Wb and We is called the inscribed 
circle of T. 

Theorem 7.14.2. The radius R of the inscribed circle of T is given by 

2 cos2 a + COS 2 13 + COS 2 Y + 2 cos a cos 13 cos y - 1 
tanh R= . 

2(1 + cos a)(1 + cos 13)(1 + cos y) 

cos a cos 13 + cos y .. 
. . 13 = cosh x cosh y + smh x smh y 

smasm 

so 

[(cos a cos 13 + cos y) - (sin a sinh x)(sin 13 sinh y)]2 

= [(1 - cos2 a) + sin2 a sinh2 x] [(1 - cos2 13) + sin2 13 sinh2 y]. 

The identity 

sin fJ = (1 + cos fJ) tan(fJ/2) 

together with the relation 

tanh R = sinh x tan(a/2) 

yields 

sin a sinh x = (1 + cos a) tanh R. 

A similar expression holds for 13, y and R and substitution yields (after some 
simplification) the desired result. 0 

The next example is of interest. 
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Example 7.14.3. For each oc in (0, n) we can construct a triangle T with 
angles oc, 0, 0. Then 

4 tanh2 R = t(1 + cos oc) 

= cos2(oc/2) 
= sin2[th-area(T)]. 

In Euclidean geometry, a triangle may have a large area but a small 
inscribed circle. The next result shows that the situation in hyperbolic 
geometry is quite different: for a proof of this, see [10]. 

Theorem 7.14.4. The radius R of the inscribed circle ofT satisfies 

tanh R ~ t sin[th-area(T)] 

and this lower bound is best possible for each value of h-area(T). 

Example 7.14.3 shows that this lower bound is best possible. 

§7.15. The Area of a Polygon 

A polygon P is the interior of a closed Jordan curve 

[Zl' Z2] U [Z2' Z3] U··· U [Zn-l, zn] U [zn' Zl]. 

The interior angle (}j of the polygon at Zj is the angle determined by D n P 
for all sufficiently small discs D centered at Zj. Note that this is not neces­
sarily the interior of the angle determined by the two sides of P leaving Zj; 

it is this interior angle if and only if ° < (}j < n. We allow the vertices to lie 
on the circle at infinity: if Zj is such an infinite vertex, then (}j = 0. 

Theorem 7.15.1. If P is any polygon with interior angles (}b ... , (}n, then 

h-area(P) = (n - 2)n - «(}l + ... + (}n). 

PROOF. This has been proved for the case n = 3 (Section 7.13) and from this 
it follows for convex polygons by subdivision of Pinto n - 2 triangles (the 
details are omitted). It is worth noting explicitly that Theorem 15.1 applies 
to all polygons whether convex or not. 

The proof for non-convex polygons is also by subdivision into triangles: 
the subdivision is less tractable but we can compensate for this by using 
Euler's formula. We begin by extending each side of P to a complete geodesic. 
This provides a subdivision of the entire hyperbolic plane into a finite 
number of non-overlapping convex polygons (convex as each is the inter­
section of half-planes). 
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We now consider only those polygons P j of the subdivision which lie in 
the original polygon P. By convexity, each Pj can be subdivided into triangles. 
We have now subdivided P into non-overlapping triangles ~ such that each 
vertex of P is a vertex of some ~ and each side of a ~ is either a side of some 
other T; or is part of a side of P (and not of any other T;). 

Let this triangulation of P have N triangles, E edges, V vertices and let 
there be Eo edges which lie in the sides of P. Euler's formula for the sphere 
yields 

(N + 1) - E + V = 2. 

As each of the N triangles has three sides we count sides in different ways 
and obtain 

3N = Eo + 2(E - Eo). 

Elimination of E now gives 

N - 2 V + Eo = - 2. (7.15.1) 

We can now compute areas. Of the V vertices in the subdivision, n occur 
as vertices of P, Eo - n occur at points lying interior to a side of P and V - Eo 
occur inside P. Thus 

N 

area(P) = L area(~) 
j= 1 

= Nn - (0 1 + ... + On) - (Eo - n)n - (V - Eo)2n 

= (n - 2)n - (0 1 + ... + On) 

by virtue of (7.15.1). 

Remark. For a Euclidean polygon, of course, we have 

(n - 2)n = 01 + ... + On. 

§7.16. Convex Polygons 

D 

We establish two results concerning convex polygons. The first is a necessary 
and sufficient condition for a polygon to be convex: the second establishes 
the existence of convex polygons with prescribed angles. 

Theorem 7.16.1. Let P be a polygon with interior angles 01, ••• , On. Then P 
is convex if and only if each OJ satisfies 0 :::; OJ :::; n. 
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This is an immediate consequence of Theorem 7.5.1. Observe that Theorem 
7.15.1 shows that a necessary condition for the existence of a polygon with 
interior angles 01, ••• , On is 

01 + ... + On < (n - 2)n. 

In fact, for convex polygons (and possibly for all polygons) this is also 
sufficient. 

Theorem 7.16.2. Let 01, ••• , On be any ordered n-tuple with 0 :::;; OJ < n, 
j = 1, ... , n. Then there exists a polygon P with interior angles 01, ••• , On, 
occurring in this order around GP, if and only if 

01 + ... + On < (n - 2)n. (7.16.1) 

In fact, we shall construct a polygon P with these angles and with an 
inscribed disc touching all sides of P. 

PROOF. Given 01, ••• , On satisfying (7.16.1) and each lying in [0, n), construct 
quadrilaterals Ql,"" Qn each with one vertex at the origin in 11 as in 
Figure 7.16.1. The length d can take any positive value and is to be determined 
later: note that Qj is determined (to within a rotation about the origin) by d 
and OJ. It is clear that we can construct the desired polygon P as the union of 
non-overlapping Qj provided that 

n 

L!Xj = n. 
j= 1 

o 
Figure 7.16.1 

(7.16.2) 
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Now (Theorem 7.11.3) 

. cos(OP) 
SIn (Xj = h d cos 

(7.16.3) 

and so it is appropriate to examine the function 

( ) ~. -1 (COS(O)2)) g t = L... SIn , 
j=l cosht 

where t ~ 0 and where sin - 1 takes values in [0, n12]. 
Clearly, g is continuous and decreasing and g(t) --+ 0 as t --+ + 00. Also, 

g(O) = i (n - OJ) 
j=l 2 

= t[nn - (0 1 + ... + On)] 

>n 

because of (7.16.1). The Intermediate Value Theorem guarantees the existence 
ofapositivedwithg(d) = nand with (Xjdefined by (7.16.3), we see that (7.16.2) 
holds. 0 

As an application of Theorem 7.16.2, observe that there exists a polygon 
with n sides and all interior angles equal to nl2 if and only ifn ~ 5. 

§7.17. Quadrilaterals 

It is a direct consequence of Theorem 7.16.2 that there exist quadrilaterals 
with angles n12, n12, n12, cP if and only if 0 ::; cP < n12: such a quadrilateral 
is illustrated in Figure 7.17.1. This quadrilateral is known as a Lambert 
quadrilateral (after J. H. Lambert, 1728-1777). If we reflect across one side 
we obtain a quadrilateral with angles n12, n12, cP, cP: this quadrilateral 
(illustrated in Figure 7.17.2) was used by G. Saccheri (1667-1733) in his 
study of the parallel postulate and is known as the Saccheri quadrilateral. 

The next theorem refers to Figure 7.17.1. 

Figure 7.17.1 
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Figure 7.17.2 

Theorem 7.17.1. (i) sinh al sinh a2 = cos ¢; 
(ii) cosh al = cosh b l sin ¢. 

The proof depends on two useful preliminary results. 
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Lemma 7.17.2. Let L be a hyperbolic geodesic in d with Euclidean centre ~ 
and radius r and let w be the point on L which is nearest to the origin. Then 

sinh p(O, w) = 1/r, cosh p(O, w) = 1 ~ I/r. 
PROOF. Clearly, 1 ~ 1 = 1 w 1 + r and orthogonality gives 1 ~ 12 = 1 + r2. Using 
(7.2.4) we obtain sinh !p(O, w) and hence 

. 21wl 1 
smh p(O, w) = 1 _ Iwl2 = -;:. 

The value for cosh follows immediately. D 

Lemma 7.17.3. Let Land L' be geodesics in the hyperbolic plane. Then the 
inversive product (L, L') is 

cosh p(L, L'), 1, cos ¢ 

according as Land L' are disjoint, parallel or intersecting at an angle ¢ where 

° :S ¢ :S n/2. 

PROOF. It is not difficult to see that disjoint geodesics have a common orthog­
onal geodesic (see Section 7.22) and (for the moment) p(L, L') is defined to 
be the length of this orthogonal segment between Land L'. By the usual 
in variance arguments we need only consider the cases 

(i) L, L' are in H2 and are given by Izl = r, Izl = R; 
(ii) L, L' are in H2 and are given by x = 0, x = Xl; 

(iii) L, L' are Euclidean diameters of d. 
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In all these cases, the formula for (L, L') given in Section 3.2 yields the 
desired result. D 

PROOF OF THEOREM 7.17.1. We may suppose that the quadrilateral in Figure 
7.17.1 has the sides al and a2 lying on the positive real and imaginary axes. 
Suppose that the sides labelled b l and b2 lie on the circles 

Iz - ivl = R, Iz - ul = r, 

respectively, where u, v, rand R are positive. Then by Lemma 7.17.2, 

sinh al sinh a2 = l/rR. 

Lemma 7.17.3 implies that 

(L, L') = cos 4J 

and from Section 3.2 we have 

, _I r2 + R2 - I u - iv 121 
(L, L) - 2rR 

Ir2 + R2 - u2 _ v21 

2rR 

= l/rR 

because, for example, u2 = 1 + r2. 
To prove (ii) we relocate the polygon so that the vertex with angle 4J 

is at the origin and the side labelled b2 is on the positive real axis: see Figure 
7.17.3. 

Now reflect the quadrilateral in the real axis: let L be the geodesic con­
taining the side labelled a2 and let L' be its reflection in the real axis. By 
Lemma 7.17.3 we have 

(L, L') = cosh(2al). (7.17.1) 

o 

Figure 7.17.3 
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If L (viewed) as a Euclidean circle) has centre de i </> and radius r, then L' 
has centre de- i </> and radius r and clearly, 

Thus 

by virtue of Lemma 7.17.2. This with (7.17.1) yields (ii). D 

EXERCISE 7.1 7 

1. Derive Lemma 7.17.2 directly from Theorem 7.9.1 (Lemma 7.17.2 is simply a re­
statement of the Angle of Parallelism formula). 

§7.18. Pentagons 

We shall examine the metric relationships which exist for the pentagon 
illustrated in Figure 7.18.1 where 0 ~ 4J < n. 

Theorem 7.1S.1. (i) cosh a cosh c + cos 4J = sinh a cosh b sinh c. 
(ii) If 4J = n/2 then 

tanh a cosh b tanh c = 1, 

sinh a sinh b = cosh d. 

(7.18.1) 

(7.18.2) 

PROOF. It is easy to see that there is a geodesic through the vertex with angle 
4J which meets and is orthogonal to the side of length b. Let b l and b2 be the 

b 

Figure 7.18.1 
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lengths as illustrated and let cPt> cP2 be the subdivision of cP; cPl being on the 
same side of this geodesic as the side oflength b l . By Theorem 7.17.1, we have 

cosh a = cosh h sin cPl; 

cosh c = cosh h sin cP2; 

sinh a sinh b l = cos cPl; 

sinh c sinh b2 = cos cP2. 
It follows that 

(cosh a cosh c - sin cPt sin cP2)2 
= (cosh a cosh c - sin cPl sin cP2f - (cosh a sin cP2 - cosh c sin cPl)2 

= (cosh2 a - sin2 cPl)(cosh2 c - sin2 cP2) 
= (sinh2 a + cos2 cPl)(sinh2 c + cos2 cP2) 
= (sinh2 a cosh 2 bl)(sinh2 c cosh2 b2 ) 

and so, taking positive square roots, 

cosh a cosh c - sin cP I sin cP2 = sinh a sinh c cosh b I cosh b2. 

This leads directly to (i) as 

cosh a cosh c + cos cP = cosh a cosh c - sin cPl sin cP2 + cos cPl cos cP2 
= sinh a sinh c (cosh bl cosh b2 + sinh bl sinh b2 ) 

= sinh a sinh c cosh b. 

Putting cP = nl2 in (i), we obtain (7.18.1). To prove (7.18.2), we apply 
(7.18.1) to the triple b, c, d and eliminate c from the resulting expression and 
(7.18.1). D 

§7 .19. Hexagons 

We shall only consider the right-angled hexagon illustrated in Figure 7.19.1. 
If we join the end-points ofthe sides labelled al and b l to form a quadrilateral 
Q, we find that each interior angle of Q is less than n12. This implies that the 
sides labelled al and b l have a common orthogonal of length, say t, as 
illustrated. 

Theorem 7.19.1. 

PROOF. From Theorem 7.18.1 we obtain 

sinh a3 

sinh b3 • 

sinh b2 sinh a3 = cosh t = sinh a2 sinh b3 

and the result follows by symmetry considerations. D 
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Theorem 7.19.2. 

L 
I 

bl 

Figure 7.19.1 

cosh b1 sinh a2 sinh a3 = cosh al + cosh a2 cosh a3 

PROOF. From Theorem 7.18.1 we obtain the identities 

sinh x sinh a2 = cosh u; 

sinh y sinh a3 = cosh v; 

sinh u sinh t = cosh a2; 

sinh v sinh t = cosh a3 . 

Next, we obtain the identity 

(cosh2 a2 + sinh2 u)(cosh2 a3 + sinh2 v) 

= (cosh a2 cosh a3 + sinh u sinh V)2 

by expressing both sides as functions of u, v and t. Thus 

cosh b1 sinh a2 sinh a3 

= (cosh x cosh y + sinh x sinh y)sinh a2 sinh a3 

= cosh x cosh y sinh a2 sinh a3 + cosh u cosh v 

= (cosh x sinh a2)(cosh Y sinh a3) + cosh u cosh v 
= (sinh2 a2 + cosh2 u)I/2(sinh2 a3 + cosh2 V)I/2 + cosh u cosh v 

= (cosh2 a2 + sinh2 u)I/2(cosh2 a3 + sinh2 V)I/2 + cosh u cosh v 

= cosh a2 cosh a3 + sinh u sinh v + cosh u cosh v. 
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D 

Remark. Theorem 7.19.2 shows that the lengths of all sides of the hexagon 
are determined by the lengths ai' a2 and a3' 
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§7.20. The Distance of a Point from a Line 

For each point z and each geodesic L, define 

p(z, L) = inf{p(z, w): WE L}. 

There is a unique geodesic Ll through z and orthogonal to Land p(z, L) 
is the distance from z to L measured along L l . 

We work in H2 and we may assume that L is the positive imaginary axis. 
Then 

and we are asserting that 

p(z, L) = p(z, ilzl). 

Each point on L is of the form it (t > 0) and from Theorem 7.2.1, 

x 2 + y2 + t2 
cosh p(z, it) = -----,:2--­

yt 

= i:l (i:l + ~) 
2y t Izl 

Izl 
~-. 

y 

(z = x + iy) 

As equality holds here if and only if t = I z I, this verifies (7.20.1). 
With e as in Figure 7.20.1, we can use (7.20.2) and 

cosh p(z, L) = 1jcos e; 
sinh p(z, L) = tan e; 
tanh p(z, L) = sin e. 

L 

I 
I 
I 
I 
I 
I ilzl ...J __ ,,/2-0 I 

-- .......... I 

o x 
Figure 7.20.1 

(7.20.1) 

(7.20.2) 

(7.20.3) 
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-r r 

Figure 7.20.2 

As an application of these formulae, note that the regions 

{zEH2: p(z, L) < k} (k > 0) 

are precisely the hypercyclic regions described in Section 7.5. 

We can also obtain a formula for p(z, L) when L is the Euclidean semi­
circle {w: Iwl = r} in H2: see Figure 7.20.2. 

Suppose first that I z I < r. With () as in Figure 7.20.2, the Euclidean circle 
through z, rand -r has centre -ir(tan () and radius rlcos (). Thus 

and so 

Iz + ir(tan ()W = r2/cos2 () 

r2 _ Izl2 
tan () = -2-,------­

yr 
(z = x + iy). 

A similar formula holds for z 1 when I z 1 I > r with I z 1 12 - r2 replacing 
r2 - Iz12. Thus if L is given by Iwl = r we obtain from (7.20.3), 

. l, z I2_ r21 
smh p(z, L) = 2yr . (7.20.4) 

We shall also need a formula for the model A when L is the real diameter 
(-1, 1) of A. In this case we show that for all w in A, 

. 2 I Im(w) I 
smh p(w, L) = 1 _ Iw12 ' (7.20.5) 

First, there is a unique geodesic L' through wand orthogonal to L. Let L 
and L' meet at ,: then there is an isometry g of A which fixes -1 and 1, which 
maps' to 0 and which leaves L invariant. Now g maps L' to the segment 
(-i, i) and so g(w) = it for some real t. The relationship between w and t is 
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best found by noting that as g preserves both differentials I dz II y and 
21dzl/(1 - Iz12) we have 

On the other hand, 

t Im(w) 
1 - t 2 - 1 - Iw1 2 ' 

p(w, L) = p(w, 0 
= p(it, O) 

=1 (~) og 1 _ It I 

and this gives (7.20.5). 

EXERCISE 7.20 

1. Let L be the geodesic (_e iO , eiO) in~. Find an explicit formula for sinh p(z, L), z E~. 

§7.21. The Perpendicular Bisector of a Segment 

Let Zl and Z2 be distinct points and let w be the mid-point of [Zl' Z2]. We 
shall prove that 

is the unique geodesic through wand orthogonal to [Z1' Z2]: this is the perpen­
dicular bisector of [z 10 z 2]. 

We work in H2 and assume that Z1 = i and Z2 = r2 i where r > 1: thus 
w = rio From Theorem 7.2.1, 

if and only if 

Iz - zl12 Iz - z212 

y r2y 

and this simplifies to I z I = r. 

In the model d, the direct isometries are of the form 

g(z) = az + :, 
cz + a 
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Using (7.2.4) we find that z is on the perpendicular bisector of [0, gO] if 
and only if 

Izl2 Iz - gOl2 
(1 - IzI2)(1 - 1012) = (1 - Iz12)(1 - IgOI2)' 

or, equivalently, 

As 

we see that the perpendicular bisector of [0, gO] is the isometric circle of g - 1. 

EXERCISE 7.21 

1. Show thatthe perpendicular bisector of the two points 2j = Xj + iYj (j = 1,2) in H2 is 

Deduce that for any 21 and any compact subset K of R2, L n K = 0 when 1221 is 
sufficiently large. 

§7.22. The Common Orthogonal of Disjoint 
Geodesics 

If Ll and L2 are disjoint geodesies then there exists a unique geodesic which is 
orthogonal to both Ll and L 2 • 

The assertion remains invariant under isometries so we may assume that 
Ll and L2 are in H2 with equations 

x = 0, 

respectively, where a > r > O. The only geodesics orthogonal to Ll are 
those with equations I z I = t and such a geodesic is orthogonal to L2 if and 
only if a2 = r2 + t2. As a > r there is a unique positive t satisfying this 
equation. 

EXERCISE 7.22 

1. Prove that if two distinct geodesics have a common orthogonal then they are disjoint. 
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§7.23. The Distance Between Disjoint Geodesics 

For disjoint geodesics Ll and L2 define 

P(Lb L2) = inf{p(z, w): z ELI, WE L 2}. 

The distance P(Ll' L 2) between Ll and L2 is the distance measured along their 
common orthogonal. 

We work in H2 and assume that the common orthogonal is the positive 
imaginary axis. Then Ll and L2 are given by Izl = r, Izl = R, say and the 
result follows from (7.20.4) (see also Section 5.4). 

There are other convenient expressions for P(Lb L 2), for example Lemma 
7.17.2. Also, P(Ll' L 2) can be expressed as a cross-ratio: if Ll has end-points 
Zl and Z2 and if L2 has end-points WI and W2, these occurring in the order 
Zl' Wb W2, Z2 around the circle at infinity, then 

(7.23.1) 

EXERCISE 7.23 

1. Verify (7.23.1) by working in HZ and taking ZI = 0, WI = 1 and Zz = 00. 

§7.24. The Angle Between Intersecting Geodesics 

The angle 0, 0 < 0 < TC, between intersecting geodesics can be expressed 
both in terms of the inversive product (Lemma 7.17.2) and the cross-ratio. 
If Ll = (Zl, Z2) and L2 = (WI, W2) with the end-points occurring in the 
order Z 1, Wb Z2' W2 around the circle at infinity, then 

[Zl' WI' Z2' w2] sin2(O/2) = 1. 

For the proof, use A and Ll = (-1, 1), L2 = (e i8, _ei8). 

§7.25. The Bisector of Two Geodesics 

Let Ll and L2 be distinct geodesics: the bisector of Ll and L2 is 

L = {z: p(z, L 1 ) = p(z, L2)}. 

We show that L is one or two geodesics. 

Case 1: Ll and L2 are parallel. 
In this case, take Ll and L2 to be x = a and x = -a in H2. From (7.20.3) 
we see that Z is on L if and only if I x - a I = I x + a I, equivalently, x = o. 
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Case 2: Ll and L2 are disjoint. 
Take Ll and L2 to be Izl = 1 and Izl = r2 in H2. By (7.20.4), z is on L if 
and only if 

(lzl2 - r4 )2 = r4(lzl2 _ 1)2 

and this reduces to 1 z 1 = r. 

Case 3: L land L2 are intersecting. 
Take 

in d where 0 < e < n12. Let L' = (-1, 1): then z is on L if and only if 

p(eiBz, L') = p(z, L l ) 

= p(z, L 2 ) 

= p(e- i6z, L'). 

Using (7.20.5) with z = rei! this becomes 

[sinCe + t)]2 = [sinCe - t)]2, 

which gives L as the union of the two geodesics ( - 1, 1) and ( - i, 0. 

§7.26. Transversals 

Let Ll and L2 be disjoint geodesics. A geodesic L is a e-transversal 
(0 < e < n12) of Ll and L2 if and only if L meets both Ll and L2 at an angle 
e. As an example of howe-transversals arise naturally consider the isometry 
g(z) = kz(k > 0)ofH2 and the geodesic L given byx = O.IfLlisanygeodesic 
meeting L, the L is a e-transversal of Ll and g(Ll)' We need to investigate 
the metric relations which exist for e-transversals. 

The common orthogonal of Ll and L2 is h the unique nl2-transversal of 
L land L 2 • We shall see that for all other values of e there are exactly four 
e-transversals. Let Lo be the common orthogonal of Ll and L2 and let L * 
be the bisector of Ll and L 2. We shall work in d and we assume that 

Lo = (-1, 1), L* = (-i, 0. 

The situation is then as illustrated in Figure 7.26.1 where the four transversals 
are shown, two in each case. We omit the proofs (which are not difficult) 
that any e in (0, n12) can be attained in this way and that there are no other 
e-transversals. 

With an obvious reference to Euclidean geometry, we call the e-transversals 
in Case (i) the alternate transversals: those in Case (ii) are the complementary 
transversals. Let to denote the length of the segment of a e-transversal which 
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Figure 7.26.1 Case (ii) 

lies between Ll and L 2 • For alternate transversals we have from Theorem 
7.11.2, 

for complementary transversals, Theorem 7.17.1 yields 

EXERCISE 7.26 

1. For a given 8, are the alternate 8-transversals longer or shorter than the comple­
mentary 8-transversals? 

2. Let the two alternate 8-transversals meet L! at z! and Z2: let the complementary 
8-transversals meet L! at w! and W2' Which of p(z!, Z2) and pew!, w2) is the greater? 

§7 .27 . The General Theory of Pencils 

Much of the hyperbolic geometry required for a detailed discussion of 
Fuchsian groups is best described in terms of pencils of geodesics. For 
example, we see that circles, horocycles and hypercycles are simply varia­
tions of the same idea and this brings a greater unity into the subject. We shall 
also see that the classification of pencils leads naturally to the classification 
of isometries which is more illuminating than that given in Section 4.3. In 
this section we merely describe the notion of a pencil and list its main prop­
erties: the details occur in the next three sections. 

Each pair of geodesics, say Land L', lie in a geometrically defined one­
parameter family f!jJ of geodesics called the pencil determined by L and L'. 
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Associated with each pencil f!1> there is an orthogonal family ((j of curves: 
the curves in ((j are not in general geodesics and ((j is called the complementary 
family of f!1>. The interest centres on the following joint properties of f!1> and ((j. 

PI: each point in the hyperbolic plane lies on exactly one curve in ((j. 
P2: with possibly one exception, each point in the plane lies on exactly one 

geodesic in f!1>. 
P3: every geodesic in f!1> is orthogonal to every curve in ((j. 

P4: Every curve in ((j is invariant under the reflection in any geodesic in f!1>. 
P5: any two curves C1 and C2 in ((j are equidistant: that is, for each Z1 on C1 

there is some z 2 on C 2 such that 

moreover, Z1 and Z2 lie on the same geodesic in f!1>. 
P6: two points z and w lie on the same curve in ((j if and only if the perpendicular 

bisector of [z, w] is in f!1>. 
P7: the set f!1> is precisely the set of geodesics of the form 

{z: a sinh p(z, L) = b sinh p(z, L')} 

for some positive constants a and b. 

The pencil determined by Land L' is 

(i) parabolic if Land L' are parallel; 
(ii) elliptic if Land L' are intersecting; 

(iii) hyperbolic if Land L' are disjoint. 

We shall examine these pencils in detail in the next three sections. 

§7.28. Parabolic Pencils 

Let Land L' be parallel geodesics with common end-point w. We define f!1> 
to be the family of all geodesics with end-point wand ((j to be the family of all 
horocycles tangent to the circle at infinity at w (see Section 7.5). We use the 
model H2 with w = 00: in this case the geodesics in f!1> are the lines x = 

constant, the curves in ((j are given by y = constant and PI, P2, P3 and P4 
are obvious. 

Now consider two horocycles, say y = k and y = K. From Theorem 
7.2.1 we obtain 

(x - S)2 + (k - K)2 
cosh p(x + ik, s + iK) = 1 + 2kK 

;::: cosh p(x + ik, x + iK) 

and this established P5. 
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The bisector of [zt> Z2] (Zj = Xj + iy) is given by 

Iz - zd2 Iz - z212 

Yl Y2 

and this geodesic ends at 00 if and only if Y 1 = Y2: this proves P6. 

EXERCISE 7.28 

1. Verify P7 by showing that if Land [; are given by x = a and x = a'then 

sinh p(u + iv, L) = 1 u - a I. 
sinh p(u + iv, V) u - a' 

§7 .29. Elliptic Pencils 

Let Land L' be geodesics which intersect at the point w in the hyperbolic 
plane. We define fIJ to be the family of all geodesics through w and Cfj to be 
the family of all circles 

Cr = {z: p(z, w) = r}. 

If we use the model .:1 with w = 0, the geodesics in fIJ are the Euclidean diam­
eters of .:1 and the circles in Cfj are the Euclidean circles with centre at the 
origin. It is now clear that PI, P2, P3 and P4 hold, the exceptional point in 
P2 being w. 

To prove that P5 holds, we assume that z is on Cr and that z' is on Ct. 
Using (7.2.4) we see that the minimum of p(z, z') is attained precisely when 
I z - z'l attains its minimum: this establishes P5 for this occurs precisely 
when z and z' lie on a geodesic in f1J. The proof of P6 is trivial as 

p(z, w) = p(z', w) 

expresses both the fact that z and z' lie on the same Cr as well as the fact that 
w lies on the perpendicular bisector of [z, z']. 

EXERCISE 7.29 

1. Verify P7 (but see Section 7.25, Case 3). 

§7.30. Hyperbolic Pencils 

Let Land L' be disjoint geodesics with Lo as the common orthogonal 
geodesic. We define fIJ to be the family of all geodesics which are orthogonal 
to Lo and Cfj to be the family of all hypercycles (defined in Section 7.5) which 



§7.31. The Classification ofIsometries 171 

have the same end-points as Lo. As a standard model ofthis situation, we use 
the half-plane H2 and take Lo to be the positive imaginary axis. Then fjJ 

consists of all geodesics given by I z I = constant and CC consists of all curves 
given by arg(z) = constant. It is immediate that P1, P2, P3 and P4 hold. 

To verify P5, consider the two curves 

CI = {z: arg(z) = O}, C2 = {z: arg(z) = <fJ} 

in CC. From Theorem 7.2.1 we obtain 

iO it/> 2 
. 2.! iO it/> _ I te - re I 

smh [2P(te ,re )] - 4 . 0 . <fJ tr sm sm 

= . . - + - - 2 cos(O - <fJ) 1 [t r ] 
4smOsm<fJ r t 

and this is minimal precisely when t = r. This proves P5. 
Now consider two points Wj = Uj + iVj: the perpendicular bisector of 

[WI> W2] has equation 

or, equivalently, 

This geodesic is in fjJ if and only if UI V2 = U2 VI' that is, if and only if WI and 
W2 lie on the same curve in CC: this proves P6. 

EXERCISE 7.30 

1. Verify P7. 

2. Let g> be any pencil (not necessarily hyperbolic). Show that no three distinct points 
on any curve in 'C are collinear. 

3. Prove that the three perpendicular bisectors of the sides of a hyperbolic triangle lie 
in one pencil. 

§7.31. The Classification of Isometries 

If we recall the classification of Mobius transformations given in Definition 
4.3.2 and take account of Theorem 5.2.1, we see that every conformal isom­
etry of the hyperbolic plane is either parabolic, elliptic or hyperbolic. These 
can be recognized by the location of their fixed points or by the function 
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trace2• In fact, each such isometry can be expressed as a product of two 
involutions and the geometric action of the isometry is intimately connected 
with the theory of pencils. We explore this idea in the next three sections. 

§7.32. Parabolic Isometries 

An isometry g is parabolic if and only if it can be represented as g = (J' 2 (J'1 

where (J'j is a reflection in the geodesjc Lj and where Ll and L2 determine a 
parabolic pencil (and so are parallel geodesics). This is clear when g(z) 
= z + 1 acting on H2 and so is true in general by invariance. 

Given a parabolic isometry g, the associated parabolic pencil is the pencil 
containing all geodesics which end at the fixed point of g and (and this is 
most important) either Ll or L2 may be chosen arbitrarily from this pencil. 
Also, L2 is the bisector of Ll and g(Ll)' 

EXERCISE 7.32 

1. Let g be parabolic with fixed point w, let L be a geodesic ending at w. For any z, let 
z' be the point on L where [z, z'] is orthogonal to L. Prove that 

p(z, gz) :?: p(z', gz'). 

2. Let g be a parabolic isometry acting on H2. Show that there is a conformal isometry h 
of H2 such that hgh -1 is z 1-+ Z + t for some real non-zero t. Let Yg be the set of t 
obtainable in this way (for varying h but fixed g). Prove that 'rg is either ( - 00, 0) or 
(0, + (0) and call g negative or positive respectively. Find a necessary and sufficient 
condition for 

az + b 
g(z) = ez + d 

to be positive in terms of a, b, e and d. 

§7.33. Elliptic Isometries 

(ad - be = 1) 

An isometry g is elliptic if and only if it can be represented as g = (J' 2 (J'1 

where (J'j is the reflection in Lj and Ll and L2 lie in an elliptic pencil. This is 
true when g(z) = eiOz and hence in general by invariance. 

Given an elliptic isometry g, the associated elliptic pencil is the pencil 
containing all geodesics passing through the fixed point v of g in the hyper­
bolic plane. Moreover, Ll (or L 2 ) can be chosen arbitrarily from this pencil 
and the other L j is then uniquely determined by g. 

An elliptic isometry g is completely determined by and completely 
determines its fixed point v in the hyperbolic plane and a real number 
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8 in [0, 211:). Indeed, g also fixes V 1 (the reflection of v in the circle at infinity) 
and we can write 

g(z) - v = eie(~): 
g(z) - V 1 Z - V 1 

this shows that g(l)(V) = eiO• We call 8 the angle of rotation of g. As g is 
conjugate (in .It) to z H eiOz, we have 

trace2(g) = 4 cos2(8j2). 

EXERCISE 7.33 

1. Show that the elliptic elements 9 and h with angles of rotation {} and cP in (0, 2n) are 
conjugate in the group of conformal hyperbolic isometries if and only if {} = cP. 

§7.34. Hyperbolic Isometries 

An isometry g is hyperbolic if and only if it can be represented as g = (J 2 (J 1 

where (Jj is the reflection in L j and where Ll and L2 determine a hyperbolic 
pencil. The axis of g (in the hyperbolic plane) is the axis of the pencil, that is 
the unique geodesic orthogonal to all lines in the pencil and ending at the 
fixed points of g. Of course, the axis of g is the unique g-invariant geodesic. 
We can choose Ll (or L 2) arbitrarily and the other L j is determined by g. 
These facts are easily verified when g(z) = kz, k > 0, and they are true in 
general by invariance. 

Observe that if g(z) = kz, then by Theorem 7.2.1, 

. 1 Izill-ki 
smh zp(z, gz) = fi: 

2yv' k 

and this attains its minimum (over all z in H2) at and only at each z on the 
axis of g (the line x = 0). As infz p(z, gz) remains invariant under conjugation 
we can define, for a general hyperbolic g, the translation length T of g by 

T = inf p(z, gz). 

Observe that T is positive and (again by in variance) 

(1 k)2 
cosh2(!T) = 1 + ~k 

= trace2(g)j4 

so 

! I trace(g) I = cosh(! T). 
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There is another representation of a hyperbolic 9 as two involutions. An 
isometry 9 is hyperbolic if and only if it can be represented as 9 = e2 el 
where ej is a rotation of order two about some point Vj lying on the axis of g. 
Here, VI (or V2) can be chosen arbitrarily and the other Vj is determined by g. 
The proof is only needed in the special case g(z) = kz and this is straight­
forward. Observe that 

and that eiv l ) = g(v l ) (so the ray from VI through V2 ends at the attractive 
fixed point of g). 

§7.35. The Displacement Function 

Let 9 be an isometry of the hyperbolic plane. It is easy to see that the dis­
placement function 

zl-+p(z,gz) = p(Z,g-lZ) 

determines and is determined by the pair {g, g-l}. This is a particularly 
attractive way of discussing isometries; however, for technical reasons, it is 
preferable to use the function 

z 1-+ sinh !p(z, gz). 

We shall evaluate this function in purely geometric terms. 

Theorem 7.35.1. (i) If 9 is hyperbolic with axis A and translation length T then 

sinh !p(z, gz) = cosh p(z, A) sinh(!T). 

(ii) If 9 is elliptic with fixed point V and angle of rotation e, then 

sinh !p(z, gz) = sinh p(z, V) 1 sin(ej2) I, 

where here we take e in the range [ -n, n]. 
(iii) If 9 is parabolic with fixed point V then 

P(z, v) sinh !p(z, gz) 

is constant (which depends on g) where P(z, v) is the Poisson kernel of the 
hyperbolic plane. 

Remark. The Poisson kernel is discussed in Section 1.6. 
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PROOF. By conjugation, we may assume in (i) that g acts on H2 and that 
g(z) = kz, k > 1. By Theorem 7.2.1 we have 

.1 Iz-kzl 
smh 2P(Z, gz) = /I. 

2Yyk 

= (1;1)~(fi -~) 
= (1;1) sinhHT) 

as p(z, gz) = T when Izl = y (i.e. x = 0): see Section 7.34. Finally, as A is 
the positive imaginary axis, we can use Section 7.20 and obtain 

cosh p(z, A) = Izl/Y. 

To prove (ii), we may assume that g acts on .1 and that g(z) = eiOz. As 

and 

1 sin(0/2) 1 = Isin(n - 0/2)1, 

we may assume that 0 < 0 < n (the cases 0 = 0 and 0 = n are trivial). 
Now construct the triangle with vertices 0, z, gz and corresponding 

angles 0, cP, cP, say. Bisecting the angle at the origin yields a right-angled tri­
angle with angles 0/2, cP, n/2 and opposite sides of lengths !p(z, gz), s (ir­
relevant), p(z, 0). From Section 7.11 we obtain 

sinh !p(z, gz) = sinh p(z, 0) sin(0/2). 

To prove (iii), we need only consider the case when g(z) = z + 1 acting 
on H2: the general case follows by the usual invariance argument and the 
discussion of the Poisson kernel given in Chapter 1. The significance of the 
Poisson kernel here is that its level curves coincide with the level curves of 
the displacement function: indeed, this is all that (iii) says. 

If g(z) = z + 1, then v = 00 and 

P(z, v) sinh !p(z, gz) = Y(;y) = !. o 

In conclusion, note that in all cases, the level curves of the displacement 
function are precisely the curves in the family CIJ orthogonal to the pencil f!IJ 
associated with g. 
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EXERCISE 7.35 

1. For any isometry 9 let m be the infimum of p(z, gz). Show that 9 is hyperbolic if and 
only if m > o. If m = 0, show that 9 is elliptic when m is attained and parabolic when 
m is not attained. 

Let w be any point such that pew, gw) > m. Show that the value of pew, gw) 
together with the set {z: p(z, gz) = m} determines the pair {g, g-I}. 

§7.36. Isometric Circles 

Recall from Section 4.1 that for any Mobius transformation g, the isometric 
circle 1 9 of g is the set of points on which g acts as a Euclidean isometry. 

If g is an isometry of the hyperbolic plane .1, then (see Section 7.21) 

Ig = {z: p(z, 0) = p(z, g-10)} 

and it is instructive to give an alternative proof of this. 

PROOF. According to Sections 7.32-7.34 we can write g = 0"20"1 where O"j 

denotes reflection in L j • Choose L2 to pass through the origin so 0"2 is a 
Euclidean isometry. We deduce that z is on Ig if and only if the Euclidean 
distortion of 0"1 at z is unity: hence Ig = L 1 • With this available, we see that 

0" 1 (0) = 0"10"2(0) = g-1(0) 

so 1 9 ( = L 1 ) is the bisector of 0 and g - 1(0). D 

It is this geometric proof which reveals the true nature of the isometric 
circle in plane hyperbolic geometry. Given any point w in the hyperbolic 
plane or on the circle at infinity, we suppose that g(w) i= wand we write 
g = 0"20"1 where L2 is chosen to pass through w. We call L1 the w-isometric 
circle of g and write it as 1 y( w). In this form, there is a useful invariance 
property, namely, 

and, of course, the isometric circle is the case w = O. Now note that g acts 
symmetrically about 0.1 so we can allow w to be any point in the extended 
plane and then 

In particular, 

and this is simply the dependence of the classical isometric circle 1 9 on the 
special point 00. For more details, see Section 9.5. 
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EXERCISE 7.36 

1. Prove that 9 is elliptic, parabolic or hyperbolic according as I 9 and I 9 - 1 are inter­
secting, parallel or disjoint respectively. 

§7.37. Canonical Regions 

To each conformal isometry g of the hyperbolic plane we shall associate a 
"canonical" region I:g which is intimately connected with the geometric 
action of g and which uniquely determines the pair {g, g-1}. 

Definition 7.37.1. Let g be a conformal isometry which is not the identity 
nor elliptic of order two. The canonical region I:g of g is defined by 

I:g = {z: sinh tp(z, gz) < tltrace(g)I}. 

If g is of order two with fixed point v, then I:g is {v}. 

The properties of canonical regions are described in the next theorem. 

Theorem 7.37.2. (i) I:g is conjugation invariant: explicitly 

I:hgh-I = h(I:g). 

(ii) I:g determines the pair {g, g -1 }: explicitly, I:g = I:h if and only if h = g or 
h = g-1. 

Before proving this we give a geometric construction of I:g • 

The geometric construction of I: g • If 9 is not of order two, then I:g may be 
constructed as follows. For each z on the circle at infinity let Lz be the geo­
desic joining z to gz. Then if P denotes the hyperbolic plane, we have 

I:g = P - U L z • 
z 

Suppose first that g is parabolic: it is only necessary to consider the case 
when g acts on H2 and is given by g(z) = z + 1. In this case, 

P - U L z = {x + iy: y > t}· 
z 

On the other hand, 

I trace(g) I = 2 

so by Theorem 7.2.1, z is in I:g if and only if 

1 > sinh tp(z, gz) 

= 1/2y. 
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o 

/ 
Figure 7.37.l 

Next, suppose that g is elliptic. We may suppose that g acts on d and is 
given by g(z) = eiOz,O < 101 < 1t. In this case the family of lines Lz contains 
the geodesics that subtend an angle 0 at the origin: see Figure 7.37.l. 

From Section 7.9 we obtain 

sinh p(O, w) tan(Oj2) = 1, 
thus 

P - U L z = {z: sinh p(z, 0) tan(Oj2) < 1}. 
z 

However, by Theorem 7.35.1, 

sinh tp(z, gz) = sinh p(z, 0) Isin(Oj2) I 

= sinh p(z, 0) Itan(Oj2) I(tltrace(g) I) 

and this is the desired result. 
Finally, we suppose that g is hyperbolic: without loss of generality, 

g(z) = kz, k > 1, and g acts on H2. In this case, P - Uz Lz is the hypercyclic 
region shaded in Figure 7.37.2 

A 

z 

Figure 7.37.2 
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However, from Section 7.20, z lies in this region if and only if 

cosh p(z, A) < l/cos () 

(k + 1)/2 
(k - 1)/2 

eT + 1 
= eT - 1 

cosh(tT) 
sinh(tT) . 

Using Theorem 7.35.1, we see that Lg is indeed this shaded region. 

179 

PROOF OF THEOREM 7.37.2. First, (i) is trivially true. Next, observe from the 
geometric construction of Lg that Lg determines the fixed points of g and 
also the pairs {z, gz} on the circle at infinity. It follows that Lg determines the 
pair {g, g-1}. D 

Observe that Lg can be constructed from the fixed points of g and one 
pair {z, gz} on the circle at infinity. Also, the boundary OfLg consists of one 
or two curves from the family CfI of curves orthogonal to the pencil f!J> associated 
with g. 

§7.38. The Geometry of Products of Isometries 

We know that any conformal isometry of the hyperbolic plane can be 
expressed as a product f = (11 (12 of reflections (1 j in geodesics L j' The relative 
geometric positions of L1 and L2 determine the nature of f: for example, if 
L1 and L2 cross, then f is elliptic. The relative metric positions of L1 and 
L2 determine the geometric parameters of f (for example, the angle of 
rotation of f) in a particularly simple way. 

Theorem 7.38.1. Let L1 and L2 be distinct geodesics, let (1j denote reflection 
in L j and letf = (11(12' Then the inversive product (L1> L 2) satisfies 

PROOF. If L1 and L2 are disjoint, then their common orthogonal geodesic L 
is invariant under (11 and (12' It follows that f is hyperbolic, that L is the axis 
of f and consequently, the translation length T of f satisfies 
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We also know that the inversive product (LI' L 2) is given by 

(LI' L2) = cosh P(Ll' L2) 

(Lemma 7.17.2) and the result follows in this case for (see Section 7.34) 

I trace(f) I = 2 cosh(t T). 

If Ll amd L2 are parallel, then the inversive product equals one and, as f 
is then parabolic, I trace(f) I = 2. 

Finally, suppose that LI and L2 intersect in an angle e, ° < e ::;; n/2, then 

(LI' L2) = cos e. 
However, in this case, f is a rotation of angle 2e about the point of intersection 
of Ll and L2 and 

I trace(f) I = 2 cos e. o 

Given two isometries 9 and h we can write 

where (Jj represent reflections in the geodesics L j chosen from certain pencils 
&>1 and &>2' Suppose now that &>1 and &>2 have a common geodesic L: then 
we can take L2 = L = L3 so (J2 = (J3 and 

gh = «(JI(J2)((J3(J4) = (Jl(J4' 

Thus we have obtained a simple representation ofthe product gh from which 
we can study the geometric action of gh. In particular, 

I trace(gh) I = 2(Ll , L4), 

thus the geometry of the relative positions of LI and L4 enables us to predict the 
nature of gh. The results in this section are examples of this technique: other 
results are available and the choice of the material given here has been 
dictated by later use. 

Theorem 7.38.2. Let 9 and h be elliptic isometries with 9 a rotation of 28 
about u and h a rotation of2¢ about v. We suppose that 9 and h are rotations 
in the same sense with u i= v and e, ¢ in (0, n). Then 

tl trace(gh) I = cosh p(u, v) sin e sin ¢ - cos e cos ¢. 

PROOF. We may assume that 9 and h act on H2, that u and v lie on the positive 
imaginary axis L and that 

where L2 = L = L3. This is illustrated in Figure 7.38.1 and by Theorem 
7.38.1, it is simply a matter of computing (Ll' L4)' 
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L 

Figure 7.38.1 

Now L1 has Euclidean equation 

x 2 + y2 - 2xlul cot e - lul2 = 0, 

while L4 has equation 

x2 + y2 + 2xlvl cot ¢ - Ivl2 = o. 

The definition of the inversive product gives 

(Lb L 4 ) = ~ (II~: + II~:) sin e sin ¢ - cos e cos ¢ 

and this is the required result as 

cosh p(u, v) = COSh(IOg~) 
lui 

= !(~ ~) 2 lui + Ivl . 
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D 

Remark. As an explicit example of Theorem 7.38.2, observe that gh is 
parabolic if and only if 

1 + cos e cos ¢ 
cosh p(u, v) = . e . ¢ . 

sm sm 

Of course, gh is parabolic if and only if L1 and L4 are parallel and this 
formula is seen to be in agreement with that given in Section 7.10. 

Next, we examine gh when both g and h are hyperbolic. 
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f. = -1 [; = +1 

Figure 7.38.2 

Theorem 7.38.3. Let g and h be hyperbolic with translation lengths Yg, 1/. and 
disjoint axes A g , A h • Then 

tltrace(gh)I = Icosh p(Ag, A h) sinh(tYg) sinh(t1/.) 

+ 8 cosh(t Yg) cosh(t 1/.) I , 

where 8 is + 1 or - 1 according to the relative directions of g and h as given in 
Figure 7.38.2. 

Corollary 7.38.4. If g and h are directed so that 8 = + 1, then gh is hyperbolic. 

PROOF OF THEOREM 7.38.3. We refer to Figure 7.38.3 (which is the case 8 = -1) 
where we have assumed (as we may) that the positive imaginary axis L2 is 
the common orthogonal of Ag and A h • In this case 

gh = (0"30"2)(0"20"1) = 0"30"1 

so 

Figure 7.38.3 



§7.38. The Geometry of Products of Isometries 183 

In order to compute (L3' L 1) suppose that Ah is given by Izl = t. Then 
L1 has equation 

I

t I t z--- =--
sin () tan ()' 

or, equivalently, 

(x 2 + y2) sin e - 2xt + t2 sin () = 0. 

Now from Section 7.9, 

sin e = tanh(t 1',,) 

so L1 has coefficient vector (to within a scalar multiple) 

(tanh(t1',,), t,O, t2 tanh(t1',,)). 

A similar result holds for Ag , given by Izl = s say, and 

cosh p(Ag, Ah) = ~ G + ~). 
The result when t: = -1 now follows by a direct computation of the inversive 
product. To establish the result when t: = + 1, we simply modify Figure 
7.38.3 so that L1 and L3 occur on opposite sides of L 2. D 

Corollary 7.38.5. Suppose that g and h are hyperbolic with disjoint axes and 
the same translation length T. If gh and gh - 1 are not elliptic, then 

sinh tp(Ag, Ah) sinh(tT) ~ 1. 

PROOF. With these assumptions we have 

tltrace(gh)I ~ 1 

and similarly for gh - 1. By using h or h - 1 we may assume that t: = -1 in 
Theorem 7.38.3 and the result follows as 

cosh p(Ag, Ah) sinh(t Yg) sinh(t 1',,) - cosh(t Yg) cosh(t 1',,) 

= [1 + 2 sinh2 tp(Ag, Ah)] sinh2(tT) - [1 + sinh2(tT)] 

= 2 sinh2 tp(Ag, Ah) sinh2(tT) - 1. D 

Finally, we consider the case when Ag and Ah cross. 

Theorem 7.38.6. Let g and h be hyperbolic and suppose that Ag and Ah intersect 
at a point V2 in an angle e, ° < () < n, this being the angle between the half-rays 
from V2 to the attractive fixed points of g and h. Then gh is hyperbolic and 

t I trace(gh) I = cosh(t Yg) cosh(t 1',,) + sinh(t Yg) sinh(t 1',,) cos e. 
PROOF. This proof uses the alternative expression of a hyperbolic element as a 
product of two rotations of order two (see Section 7.34). 
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Figure 7.38.4 
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We refer to Figure 7.38.4: then 

gh = (G3 G2)(G2 G1) = G3 £1 

7. Hyperbolic Geometry 

g 

and it is immediate that gh is hyperbolic with axis L and translation length 
2p(Vl, V3). Thus 

!I trace(gh) I = cosh P(V1, v3 ) 

and the result follows from the Cosine Rule (Section 7.12). D 

EXERCISE 7.38 

1. Derive Corollary 7.38.5 by constructing the following geodesics in ~. The common 
orthogonal L of Ag and Ah may be taken as the real segment (-1, 1): we may also 
take the origin to be the mid-point of the segment of L between Ag and Ah. By selecting 
g of g-l and h or h- 1 as appropriate, we may write g = 0"10", h = 0"0"2 where 0" is 
reflection in L, O"j is reflection in L j (L j lying in the lower half of ~): in addition, 

p(L, L 1) = p(L, L 2 ) = !T. 

Now apply the results of Sections 7.18 and 7.19 to the polygon whose sides lie on 
L, Lb L 2 , Ag and Ah. 

§7.39. The Geometry of Commutators 

Recall that the commutator [g, h] is ghg- 1h- 1• Our aim here is to discuss the 
geometry of [g, h] and we shall do this by regarding [g, h] as the product of 
g and the conjugate hg - 1 h - 1 of g - 1 and then considering, in turn, the various 
possibilities for g. Note that if, say, g is a rotation of angle () then hg - 1 h - 1 is 
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also a rotation of angle e but in the opposite sense. We can restrict our 
attention to the possibilities for 9 (rather than h) because 

[h, g] = [g, hr 1 

and we need only consider conjugates of 9 and h because 

[fgf-1,fhf-1] = f[g, h]f- 1. 

(7.39.1) 

Theorem 7.39.1. Let 9 be parabolic and suppose that 9 and h have no common 
fixed point. Then [g, h] is hyperbolic. 

PROOF. A matrix proof (with g(z) = z + 1) is easy enough but the geometry 
is more revealing. Let 9 fix the point v and let L2 be the geodesic from v to 
h(v). For a suitable L1 and L3 we can write 

9 = 0"1(12, hg- 1h- 1 = 0"20"3, [g, h] = 0"1(13, 

where L1 and L3 end at v and h(v) respectively. As 9 and hg- 1h- 1 act in 
opposite directions, it is clear that L1 and L3 lie on different sides of L2 and 
so are disjoint. Thus 0"10"3 is hyperbolic with translation length 2p(L1' L3)' 

o 

Theorem 7.39.2. Let g be elliptic with fixed point v and angle of rotation 2e, 
o < e :s; 11:. Let h be any isometry not fixing v: then [g, h] is hyperbolic with 
translation length T and 

sinh(T/4) = sinh !p(v, hv) sin e. 

PROOF. We write 9 = 0"10"2 where L2 joins v to h(v). Now constJ:uct L3 as in 
Figure 7.39.1 so hg- 1h- 1 = 0"2(13 and [g, h] = 0"10"3' 

Figure 7.39.1 
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As L1 and L3 make equal angles with L z they are disjoint so [g, h] is 
hyperbolic with 

T = 2p(L1' L3)' 

From Section 7.26, we see that 

sinh !P(Lb L 3) = sinh !p(v, vh) sin f). o 

Finally, we consider [g, h] when g is hyperbolic. If h is elliptic or parabolic, 
the previous cases apply by virtue of (7.39.1): thus we may assume that both 
g and h are hyperbolic. Note that hg - 1 h - 1 has translation length Yy and 
axis h(Ag). 

Theorem 7.39.3. Let g and h be hyperbolic and suppose that h(Ag) and Ag 
cross at an angle f) (between the positive directions of g and hg - 1 h - 1). Then 
[g, h] is hyperbolic with translation length T where 

cosh(!T) = 1 + 2 sinhZ(!Yy) cosZ(f)/2). 

PROOF. Apply Theorem 7.38.6 with h in that theorem replaced by hg- 1h- 1 : 

thus 
o 

It is possible to consider many other situations with g and h hyperbolic 
and thereby construct an "animated film" of the behaviour of [g, h] as the 
three parameters Yy, 1/, and (Ag, A h) (the inversive product) vary. It is 
extremely instructive to do this but the reader will benefit most if he does 
this for himself: we simply give three "frames" of the film in Figure 7.39.2 
in which [g, h] (= 0"30" 1) is respectively elliptic, parabolic and hyperbolic. 

We end with two results concerning crossing axes. 

Theorem 7.39.4. Let g and h be hyperbolic with their axes Ag and Ah crossing 
at an angle f), 0 < f) < n. If [g, h] is not elliptic then 

sinh(! Yy) sinh(! 1/,) sin f) 2 1. 

PROOF. The situation is that described in one of the last two diagrams in 
Figure 7.39.2. We may apply Theorem 7.38.3 with h in that theorem replaced 

Figure 7.39.2 
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by hg-1h- 1 and with 8 = -1. Thus 

so 

1 ::; !Itrace[g, h] I 

= Icosh p(Ag, hAg) sinh2(t'Yg) - cosh2(!Yg)I 

= Isinh2(!Yg)[1 + 2 sinh2 !p(Ag, hAg)] - [1 + sinh2(!Yg)] I 

= 12 sinh2(!Yg) sinh2 !p(Ag, hAg) - 11 

sinh(!Yg) sinh !p(Ag, hAg) 2 1. 

However, from Section 7.26 we obtain 

sinh !p(Ag, hAg) = sinh(!1h) sin e. 
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o 

Coronary 7.39.5. Let gl' ... , gn be conjugate hyperbolic elements in a group 
G with no elliptic elements, let T be the common translation length and suppose 
that the axes Aj of gj are concurrent. Then 

sinh 2(! T) sin( n/n) 2 1. 

PROOF. Two axes Ai and Aj must cross at an angle e where e::; n/n: now 
apply Theorem 7.39.4. 0 

EXERCISE 7.39 

1. Derive Theorem 7.39.4 from the last two diagrams in Figure 7.39.2 by using the 
results of Sections 7.18 and 7.19 on the polygons with sides lying on A g , A h , L 1 , L2 
and L 3 • 

2. Let L be the positive imaginary axis in H2 and let 

h(z) = az + b 
cz + d 

(ad - be = 1) 

preserve H2. Show that the inversive product (L, hL) and the cross-ratio 
[0, 00, hO, hoo] can be expressed in terms of each other and in terms of the coefficients 
a, b, c and d: for example, show that (L, hL) = 2ad - 1. Show also that Land hL cross 
each other if and only if ad E (0, 1). These ideas will be found useful when L is the axis 
of some 9 so hL is the axis of hgh - 1. 

§7.40. Notes 

For a general introduction to hyperbolic geometry we mention [21], [32], 
[66], [68] and [112]: for a discussion of hyperbolic isometries, see, for 
example, [55], [56], [57] and [98]. Convexity is discussed in [102]; convex 
hyperbolic polygons are considered in [10]. The metric relations for polygons 
(Sections 7.17, 7.18 and 7.19) are used in [29] for a discussion of plane 
geometry (and Riemann surfaces) and in the account [101] of recent develop­
ments in the theory of 3-manifolds. 



CHAPTER 8 

Fuchsian Groups 

§8.1. Fuchsian Groups 

We recall Definition 6.2.2: a Fuchsian group G is a discrete subgroup of j{ 
with an invariant disc D (so G acts discontinuously in D). We may assume 
that the unit disc L\ (or the half-plane H2) is G-invariant and so we may 
regard G as a discrete group of isometries of the hyperbolic plane. We shall 
see in Chapter 9 that this induces a tesselation, or "tiling," of the plane by 
hyperbolic polygons and it is the geometry of this action of G which, from 
now on, is our only concern. 

If G is non-elementary then (Theorem 5.3.7) the limit set A of G lies on 
the unit circle aL\ (this is also true for elementary Fuchsian groups) and it is 
important to distinguish between the cases in which A is or is not the entire 
circle aL\. 

Definition 8.1.1. Let G be a Fuchsian group with an invariant disc D. We 
say that G is ofthejirst kind if A = aD and of the second kind if A is a proper 
subset of aD. 

The elementary discrete groups are given in Section 5.1 and it is worthwhile 
to describe explicitly all elementary Fuchsian groups. Note that these are 
all of the second kind. 

First, consider a Fuchsian group G consisting only of elliptic elements 
and I. By Theorem 4.3.7 the elements of G have a common fixed point' in 
H3. We may suppose that H2 is G-invariant so each elliptic gin G has fixed 
points, say, wand w in t (see Section 5.2). As the axis of g is a geodesic in 
H3 which contains, and ends at wand W, we see that w independent of g. 
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Thus all elements of G have the same fixed points and it is now easy to see 
that G is a finite cyclic group. 

An algebraic (but less illuminating) proof can be given. We may suppose 
that ~ is G-invariant ana that 

lui = 1, 

are elliptic elements in G. As 

we find that c = 0 or Im[u] = 0 (else [g, h] is hyperbolic). As lui = 1 and 
u2 "# 1, we see that c = 0 so h also fixes 0 and 00. 

In order to find all elementary Fuchsian groups we first consider an 
arbitrary Fuchsian group G which leaves ~ invariant and which fixes a 
single point w. The fixed points of elliptic elements cannot occur on a~: the 
fixed points of parabolic and hyperbolic elements of G must occur on a~. 
Moreover, by Theorem 5.1.2, parabolic and hyperbolic elements of G 
cannot have a common fixed point. We deduce that G can only contain 
elements of one type and the next result follows easily from the discreteness 
ofG. 

Theorem 8.1.2. Let G be any Fuchsian group. Thenfor each w, the stabilizer 

G w = {g E G: g( w) = w} 

is cyclic. 

More generally, it is easy to see that any elementary Fuchsian group is 
either cyclic or is conjugate to some group <g, h) where g(z) = kz (k > 1) 
and h(z) = -liz. 

Definition 8.1.3. A parabolic or hyperbolic element 9 of a Fuchsian group G 
is said to be primitive if and only if 9 generates the stabilizer of each of its 
fixed points. If 9 is elliptic, it is primitive when it generates the stabilizer 
and has an angle of rotation of the form 2nln. 

Remark 8.1.4. Let Go be the stabilizer of each of the fixed points of g. Then 9 
is primitive if and only if~g ~ ~h for all h in Go where ~g denotes the canonical 
region associated with 9 (see Section 7.37). In some, but not all, cases this 
can be describ~d in terms of the trace function. 

Finally, we discuss the classification of hyperbolic elements in a Fuchsian 
group into the simple and non-simple hyperbolics. This classification depends 
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on the way in which the hyperbolic element lies in the entire group and it is 
not an "absolute" classification of hyperbolic elements. 

Definition 8.1.5. Let h be a hyperbolic element of a Fuchsian group G and 
let A be the axis of h. We say that h is a simple element of G if and only if 
for all g in G, either g(A) = A or g(A) n A = 0. Otherwise, we say that h 
is non-simple. 

This situation has been described in Section 6.3 and in the terminology 
introduced there, h is simple if and only if the axis A is G-stable. 

Let us assume that G acts on L\ and that G has no elliptic elements. If h 
is simple, then the projection n(A) of A into L\jG is the same as A/<g) where 
g generates the cyclic stabilizer of A. Thus n(A) is a simple closed curve on 
L\jG. If h is non-simple there is an image f(A) crossing A at, say, w. As G 
has no elliptic elements, the projection n is a homeomorphism near wand 
so n(A) is a closed curve which intersects itself. 

EXERCISE 8.1 

1. Let G be a Fuchsian group acting on HZ and suppose that g: Z f-> kz (k > 1) is in G. 
Show that 9 is simple if and only if for all 

az + b 
h(z) =-­

ez + d 
(ad - be = 1) 

in G, we have abed :2: 0 (equivalently, lad - il :2: i). 

§8.2. Purely Hyperbolic Groups 

In this section we study those groups which contain only hyperbolic elements 
and I: in Section 8.3 we allow parabolic, but not elliptic, elements. These 
are an important class of groups from the point of view of Riemann surfaces 
(see Chapter 6): in particular, they represent compact surfaces of genus at 
least two. 

A group of Mobius transformations is a purely hyperbolic group if every 
non-trivial element of G is hyperbolic. By Theorem 5.2.1, a non-elementary 
purely hyperbolic group has an invariant disc: in fact, it is also necessarily 
discrete and so is a Fuchsian group. A purely algebraic proof of this will be 
given (together with a geometric interpretation of the proof) but a stronger 
quantitative result will be established by geometry alone. It is worth noting 
that this stronger result (Theorem 8.2.1) contains much information yet 
requires no further development of the theory for its proof. 
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Theorem 8.2.1. Let G be a purely hyperbolic group with d as its invariant disc. 
Then G is either discrete or elementary. Further, if g, hE G and <g, h) is 
non-elementary, then for all z in d, 

sinh !p(z, gz) sinh !p(z, hz) ~ 1. (8.2.1) 

The lower bound is best possible. 

We mention three corollaries. 

Corollary 8.2.2. If <g, h) is non-elementary and purely hyperbolic, thenfor all z, 

max{p(z, gz), p(z, hz)} ~ 2 sinh -1(1) > 1· 76 

and this is best possible. 

Example 8.2.5 (to follow) shows that this lower bound is best possible. 
As G preserves d, (7.2.4) yields 

. hZ 1 ( ) I g(OW 
sm ];p 0, gO = 1 _ Ig(O)lz · 

For z = 0, the inequality in Theorem 8.2.1 is 

Ig(OW . I h(O) IZ ~ (1 - Ig(OW)(1 - Ih(OW) 

and this is equivalent to the next inequality (which is a Euclidean version of 
Theorem 8.2.1). 

Corollary 8.2.3. If <g, h) is non-elementary and purely hyperbolic, then 

Ig(O)I Z + Ih(O)I Z ~ 1. 

Another inequality (which relates more directly to the concept of discrete­
ness in SL(2, IC) can be obtained by observing that if 

then 

IIg - Ili z ~ 21clz 

= 2 sinhz !p(O, gO) 

Thus we also have the following result. 

Corollary 8.2.4. Let <g, h) be a purely hyperbolic non-elementary group 
preserving d. If A and B are matrices in SL(2, IC) representing g and h, then 

II A - I II . II B-1 II ~ 2. 
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Theorem 8.2.1 and its consequences are similar in character to 
J~rgensen's inequality (Theorem 5.4.1) in that both imply that g and h 
cannot both be near to I. However, the latter inequality, namely 

Itrace2(g) - 41 + Itrace[g, h] - 21 ~ 1, 

gives no information unless trace2(g) lies between 3 and 5 whereas Theorem 
8.2.1 (involving a product instead of a sum) and the corollaries give useful 
information in all cases. 

Now let R be any Riemann surface of the form Il./G where G is non­
elementary and purely hyperbolic. From any point on R, construct two 
closed curves !l'l and !l' 2 of lengths tl and t2 respectively. By Theorem 
8.2.1 (and Section 6.2), 

unless the corresponding group <g, h) obtained by lifting !l'l and !l' 2 to .1 
is elementary (this only arises when !l'l or !l' 2 is homotopic to its initial 
point or when !l'l and !l' 2 are both homotopic to some power of a single 
closed curve in which case <g, h) is cyclic). 

The next example shows that the lower bound in Theorem 8.2.1 is best 
possible. 

Example S.2.S. Construct four disjoint geodesics L j in .1 as in Figure 8.2.1. 
Let g be the hyperbolic element which fixes 1, -1 and which maps Ll to L2 : 

let h be the hyperbolic element which fixes i, - i and which maps L3 to 
L4 and let G = <g, h). Obviously, G is non-elementary. 

U 
I 

d2 1 
I 
I r -----------1---
I d1 

I 
I 
I 

Figure 8.2.1 
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Using Corollary 5.3.15 (with G1 = <g), G2 = <h) and D the region 
bounded by the L), we see that G acts discontinuously in Ll. It will be apparent 
from later considerations (Chapter 9) that G is purely hyperbolic (D is a 
fundamental region for G and no elliptic or parabolic fixed points occur on 
15) so the hypotheses of Theorem 8.2.1 are satisfied. 

In this example the origin lies on the axis of both 9 and h so from Theorem 
7.18.1, we have 

sinh tp(O, gO) sinh tp(O, hO) = sinh(fl~) sinh(fli.) 
= sinh(d1) sinh(d2 ) 

= cosh P(L2' L4)' 

As the construction can be achieved with P(L2' L 4) arbitrarily small, the 
lower bound in Theorem 8.2.1 is best possible. 

PROOF OF THEOREM 8.2.1. We begin by showing that if <g, h) is non­
elementary and purely hyperbolic, then (8.2.1) holds. We are not assuming 
that <g, h) is discrete: indeed discreteness will be derived from (8.2.1). 

Let Ag and Ah be the axes of 9 and h. As <g, h) is non-elementary, these axes 
either cross or are disjoint. Recalling Definition 8.1.5, we now see that one 
of the following cases must arise. 

Case 1: Ag and Ah cross. 
Case 2: Both 9 and h are non-simple. 
Case 3: Ag and Ah are disjoint and (without loss of generality) 9 is simple. 

In Case 2 we can apply Corollary 7.39.5 (with n = 2) and obtain (as an 
image of Ag meets Ag) 

sinh(fTy) ~ 1. 

A similar inequality holds for h and so 

sinh(t Yg) sinh(fli.) ~ 1. 

Observe that by Theorem 7.39.4, this also holds in Case 1. Applying Theorem 
7.35.1, we find that in Cases 1 and 2, 

sinh tp(z, gz) sinh tp(z, hz) 

and this is (8.2.1). 

= cosh p(z, Ag) cosh p(z, Ah) sinh(t Yg) sinh(t 7;.) 
~l. 

The proof of (8.2.1) in Case 3 is more difficult. As 9 is simple and <g, h) 
is non-elementary, the geodesics Ag, h(Ag) are disjoint. Thus the three 
geodesics Ag, Ah, h(Ag) are pairwise disjoint and by applying a suitable 
isometry, the situation is as illustrated in Figure 8.2.2 (construct Lo first, 
then L so that h is the reflection in Lo followed by reflection in L). 
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L 

Ag ,../--1--.. .......... 
I 

Figure 8.2.2 

Applying Theorem 7.19.2 we have 

Thus 

cosh 1'" sinh2 p(Ag, A h) = cosh2 p(Ag, Ah) + cosh p(Ag, hAg). 

cosh2 p(Ag, Ah)[cosh 1'" - 1] ~ 2 sinh2 !p(Ag, hAg) 

= 2 sinh2 p(Ag, L) 

and this yields 

cosh p(Ag, Ah) sinh(!1',,) ~ sinh p(Ag, L). (8.2.2) 

Now construct lines Ln (n E Z) orthogonal to Ag so that if O"j denotes 
reflection in L j , then O"nO"O = gn (or g-n): thus p(Lo, Ln) = nT,/2. Now no 
Ln can meet L as if it does, then 

O"nO" = (O"nO"O)(O"OO") E G 

(0" denotes reflection in L so 0"00" is h or h - 1) and this is elliptic fixing the point 
of intersection of Ln and L. It follows that for some value, say m, of n, the lines 
Lm, Lm+ 1 as are illustrated in Figure 8.2.3. In order to focus attention on the 
relevant features, this situation is illustrated again (after applying an isometry) 
in Figure 8.2.4. 

We may assume (without loss of generality) that d1 ~ d2 so 

d1 ~ !<!T,) = iT, 
and applying Theorem 7.18.1 we obtain 

sinh(T,/4) sinh p(Ag, L) ~ sinh(d1) sinh p(Ag, L) 

= cosh p(Lm+l' L) . 
~l. 
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sinh(tYg) sinh p(Ag, L) = 2 sinh(Yg/4) cosh(Yg/4) sinh p(Ag, L) 

2':2 

and this with (8.2.2) yields 
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(8.2.3) 
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Now observe that 

2 cosh p(z, Ag) cosh p(z, Ah) ~ cosh[p(z, Ag) + p(z, Ah)] 

~ cosh p(Ag, Ah) 

so by (8.2.3), 

cosh p(z, Ag) sinh(! I'g) cosh p(z, Ah) sinh(i T,.) ~ 1 

and, by virtue of Theorem 7.35.1, this is (8.2.1). 
To complete the proof of Theorem 8.2.1, we must show that any purely 

hyperbolic group G is either discrete or elementary. We assume, then, that 
G is purely hyperbolic but not discrete so there are distinct hyperbolic 
elements gn in G with gn --+ 1. It follows that 

p(O, gnO) --+ 0 

and, by discarding some of the gn' we may assume that for all n, 

sinh ip(O, gnO) < 1. 

From the first part of the proof we see that for all m and n, the group <gm, gn) 
is elementary. As G has no parabolic elements, gn and gm cannot have a 
single common fixed point (Theorem 4.3.5) so there are distinct points u 
and v fixed by every gn. 

Finally, for every h in G (h '" 1), 

sinh ip(O, hO) sinh ip(O, gnO) --+ 0 

and so for large n, <gn, h) is elementary. We deduce (as above) that h fixes 
u and v and as h is any element of G we see that G is elementary. D 

AN ALGEBRAIC PROOF OF THEOREM 8.2.1. We prove only that G is discrete 
although a more thorough investigation may also yield (8.2.1). 

Assume that G is non-elementary and acts on H2. Thus from Theorem 
5.1.3, G contains a hyperbolic element which we may assume is 

h = (~ I~U). u > O. 

Now select any sequence 

gn = (an bn) 
Cn dn ' 

in G with gn --+ 1. In order to prove that G is discrete we must show that 
gn = 1 for all sufficiently large n. A computation shows that 

trace[h, gn] = 2 - bnCn(U - ~r 
--+2 
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as n --+ 00, because bncn --+ 0 (as gn --+ I). Because G is purely hyperbolic, the 
traces of elements in G cannot'lie in the interval ( - 2, 2) so for all sufficiently 
large n, we have bncn :::;; O. 

Now write 

with AnDn - BnCn = 1. Exactly the same reasoning (note that f" --+ I 
because gn --+ I) shows that for all sufficiently large n, 

BnCn:::;; O. 

However, a computation shows that 

trace[h, f,,] = 2 - BnCn( u - ~r 

= 2 + bncn(1 + bnCn)(U - ~r 
so for all sufficiently large n, 

bncn ~ O. 

We deduce that for all sufficiently large n, 

bncn = O. 

This means that for these n, the hyperbolic elements hand gn have a common 
fixed point. By Theorem 5.1.3, G contains three hyperbolic elements hI' h2 
and h3' no two of which have a common fixed point. It follows that for 
sufficiently large n, each gn has three fixed points (one in common with each 
hj) so gn = I. 

The Geometric Interpretation. The method of proof is simply to extract 
information from the fact that a commutator is not elliptic. Now the axes A 
(of h) and gn(A) (of gnhg;l) cannot be close and disjoint else [gn,h] is 
elliptic (Corollary 7.38.5): this is the condition bncn :::;; O. Indeed, A is the 
positive imaginary axis, gn(A) is the geodesic with end-points bn/dn and 
an/cn and the inversive product of A and gn(A) is 

(A (A» = !I(bn/dn) + (an/cn)I 
,gn !I(bn/dn) - (an/cn)I 

= 11 + 2bncn l· 
This shows that if Ibncnl is small, then bncn :::;; 0 as otherwise, A and gn(A) 
are close and disjoint. 

As bncn --+ 0, we see that for large n, the axes A and gn(A) cross or are 
parallel and bncn :::;; O. If they cross, then they do so at a small angle (as 
bncn --+ 0) and Theorem 7.38.6 shows that the commutator 
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has a small translation length and an axis which crosses A. It follows that 
the axes A (of h) and f,,(A) (of f"hf;; 1) are close and disjoint so the second 
commutator [h, f"J is elliptic. As this cannot happen we see that the axes A 
and gn(A) have a common end-point and this is bncn = O. 

For an alternative interpretation, note that bncn -+ 0 and bncn =F 0 
implies that there is a sequence of axes gn(A) of elements conjugate to h 
which converge to (but are distinct from) the axis A of h and this clearly 
violates discreteness. 0 

It is worth noting explicitly that the algebraic proof of Theorem 8.2.1. 
actually proves that G is discrete providing only that G has no elliptic 
elements. We state this as our next result: a geometric proof of this is given 
in the next section. 

Theorem 8.2.6. Let G be a non-elementary group of isometries of the hyperbolic 
plane. If G has no elliptic elements, then G is discrete. 

EXERCISE 8.2 

1. Verify the details given in the geometric interpretation of the algebraic proof of 
Theorem 8.2.1. 

2. Show that if G is a group of isometries acting on H2 without elliptic elements and if 
g: Z f-+ Z + 1 is in G, then for all 

h(z) = az + b 
ez + d 

(ad - be = 1) 

in G, either e = 0 or lei ~ 4. [Consider the trace of the matrix representing g"h.] 

§8.3. Groups Without Elliptic Elements 

We now obtain a direct extension of Theorem 8.2.1 to allow groups with 
parabolic (but not elliptic) elements. The conclusion is the same as for 
Theorem 8.2.1 and the conclusions of Corollaries 8.2.2, 8.2.3 and 8.2.4 
remain valid: however, the reader will benefit from reading the proof of 
Theorem 8.2.1 first. More general results (which allow elliptic elements) are 
considered in Section 8.4 and Chapter 11. 

Theorem 8.3.1. Let G be a group of isometries of the hyperbolic plane and 
suppose that G has no elliptic elements. Then G is either elementary or discrete. 
Further, if g, h E G and (g, h) is non-elementary, then for all z in ~, 

sinh tp(z, gz) sinh tp(z, hz) ~ 1 

and this is best possible. 

(8.3.1) 
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PROOF. Example 8.2.5 shows that the lower bound is best possible: indeed, 
as G may now contain parabolic elements, we can construct the four geodesics 
in that example with each consecutive pair being tangent and so the lower 
bound in (8.3.1) can actually be attained. 

Now let G be any non-elementary group without elliptic elements. 
Theorem 8.2.6 shows that G is discrete but we prefer to ignore this and keep 
to the spirit of the geometric proof of Theorem 8.2.1. If G has no parabolic 
elements, this result is Theorem 8.2.1, thus we may assume that G has some 
parabolic elements. 

We shall suppose that G acts on H2 and that 00 is fixed by some parabolic 
element, say h(z) = z + 1, in G. If G contains a hyperbolic element f fixing 
00, we may assume that f also fixes the origin, say f(z) = kz, and G then 
contains translations z HZ + t for arbitrarily small t: see Figure 8.3.1. 
Thus G contains z H z + t for a set T of t which is dense in lIt 

As G is non-elementary, it contains a hyperbolic element g which does not 
fix 00. Thus there are geodesics Lo (ending at (0) and L (the isometric circle 
of g) with g = uou (u being the reflection in L). As Tis dense in ~,there is a 
vertical geodesic L * (with reflection u*) crossing L and with u* u 0 a Euclidean 
translation in G. Thus u*u is an elliptic element of G, a contradiction. We 
deduce that a parabolic fixed point is not fixed by any hyperbolic element of G 
(compare Theorem 5.1.2 in which discreteness is assumed). 

Exactly the same argument shows that the stabilizer of any parabolic 
fixed point of G is a discrete (hence cyclic) subgroup of parabolic elements 
ofG. 

Now consider any g and h in G with (g, h) non-elementary. If g and h 
are hyperbolic, then they cannot have a single common fixed point (else 
[g, h] is parabolic and this has been excluded above). In all other cases, the 
proof of (8.3.1), which is the same as (8.2.1), as given in the proof of Theorem 

h 

o 
Figure 8.3.1 
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8.2.1 remains valid (with weak inequalities) and so it only remains to consider 
the following case: 

Case 4: h is parabolic, g is parabolic or hyperbolic. 

We may suppose that h(z) = z + 1 and that h generates the stabilizer of 
00 because for all non-zero integers n, 

sinh tp(z, hz) ~ sinh tp(z, hnz). 

Now take 

(z)=az+b 
g cz + d' 

ad - bc = 1, 

with g( 00) i= 00 so c i= O. With Lo as above, let Ln be the vertical geodesic 
given (in the obvious sense) by Lo + n12: thus (In(JO = hn. The reasoning 
given above shows that none of the lines Ln can meet the isometric circle of g 
so necessarily, 2/1c1 ~ t: thus 

Icl ~ 4. 

Now suppose that g has fixed points u and v (possibly coincident but 
not 00). Then, as u and v are real, we have 

Iz - g(z)I·lcz + dl = Iz(cz + d) - (az + b)1 

= Icl.lz - ul·lz - vi 
~ Icly2 
~ 4y2. 

Using Theorem 7.2.1, we have 

. h 1 ) . h 1 Iz - g(z) I 1 
SIn zp(z, gz SIn zp(z, hz) = 2(y Im[gz])1/2 2y 

and this completes the proof in Case 4. 

= Iz - g(z)I.lcz + dl/4y2 

~1 

The discreteness of G follows as in the proof of Theorem 8.2.1. 0 

§8.4. Criteria for Discreteness 

The following result is the culmination of several earlier results. 

Theorem 8.4.1. Let G be a non-elementary group ofisometries of the hyperbolic 
plane: the following statements are equivalent. 
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(1) G is discrete; 
(2) G acts discontinuously in .1; 
(3) the fixed points of elliptic elements of G do not accumulate in .1; 
(4) the elliptic elements of G do not accumulate at I; 
(5) each elliptic element of G has finite order; 
(6) every cyclic subgroup of G is discrete. 
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The structure of the proof is illustrated below: the solid arrows (A --+ B 
means A implies B) denote implications which are trivial or already known; 
the implications given in dotted arrows are proved below. 

Remark. If G has no elliptic elements then all six conditions are known to 
be true thus we assume that G has elliptic elements. 

PROOF THAT (2) IMPLIES (3). Select any z in .1 and any compact neighbour­
hood N of z. By (2), g(N) meets N for only a finite set of g in G so only finitely 
many fixed points lie in N. D 

PROOF THAT (3) IMPLIES (5). If (5) fails, then G contains an elliptic element g 

of infinite order. If g fixes v say, then the points gn(z), n E 7L, are dense on the 
hyperbolic circle centre v and radius p(z, v). As G is non-elementary, there 
is some fwithf(v) "# v and so the points gnf(v) are elliptic fixed points which 
~~~~~A D 

PROOF THAT (4) IMPLIES (5). If (5) fails we may assume that G contains 
g(z) = exp(2niO)z where () is irrational. The numbers exp(2nniO), n E 7L, are 
dense on the unit circle so on a suitable subsequence we have gn --+ I. D 

PROOF THAT (5) IMPLIES (i).We view G as a group of matrices and let Go be 
any finitely generated subgroup of G. By a result of Selberg (see Section 2.2), 
Go contains a subgroup G1 of finite index which has no elements of finite 
order. 

Because (5) holds, we see that G1 has no elliptic elements and so by 
Theorem 8.3.1, G1 is discrete. It is easy to see that as G1 is of finite index in 
Go, the subgroup Go is also discrete. Finally, by Theorem 5.4.2, G itself is 
discrete. D 
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§8.S. The Nielsen Region 

Let G be a Fuchsian group acting in the hyperbolic plane L\: we shall be 
concerned here with non-empty G-invariant convex sets. 

First, suppose that G is of the first kind. In this case, the orbit of every point 
accumulates at every point of 8L\ and so any non-empty G-invariant convex 
set is necessarily the entire hyperbolic plane. 

Now suppose that G is of the second kind. Then 8L\ is the disjoint union 
of the limit set A of G and a countable union of mutually disjoint open arcs 
Uj. Let L j be the geodesic with the same end-points as Uj and let H j be the 
open half-plane bounded by L j and separated from Uj by L j • As the col­
lection {Uj} is G-invariant, so is the collection {H j } and so 

(8.5.1) 

is a G-invariant convex subset of L\. If G is non-elementary, then A is infinite 
and so N is non-empty. Also, in this case, there are infinitely many arcs Uj 

and so asj -+ + 00, the Euclidean length of Uj tends to zero. This means that 
each open disc {I zl < r}, r < 1, lies in all but a finite number of the H j and 
this in turn implies that N is open. To summarize: N is a non-empty G­
invariant open convex subset of A 

Definition 8.5.1. Let G be a non-elementary Fuchsian group acting in L\. 
Let N be defined by (8.5.1) if G is of the second kind and let N = L\ if G is of 
the first kind. Then N is called the Nielsen region of G. 

The next result shows that N may be defined without reference to the 
circle at infinity. 

Theorem 8.5.2. N is the smallest non-empty G-invariant open convex subset 
of L\. 

PROOF. As N has these properties except possibly of being the smallest such 
set, we must show that any non-empty G-invariant open convex set E 
contains N. As E is non-empty and G-invariant, it contains some G-orbit 
which necessarily accumulates at each point of A. It follows that E :::J N. 
Now for any open convex set A, we have (.4)0 = A and so E :::J N. 

EXERCISE 8.5 

1. Prove carefully that for each z, C(z) ::::J N where C(z) is the convex hull of the G-orbit 
ofz. 
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§8.6. Notes 

For a general account of Fuchsian groups, we refer the reader to [30], [52], 
[57], [103] and [114]. The geometric ideas explored in this chapter have 
their origins in the work of Fenchel and Nielsen (see, for example, [29], [99]). 
The algebraic proof of Theorem 8.2.1 is given in [95]: to the best of my 
knowledge, Theorem 8.3.1 is new. The ideas in Section 8.4 originate in [42]. 



CHAPTER 9 

Fundamental Domains 

§9.1. Fundamental Domains 

Let G be a Fuchsian group acting on the hyperbolic plane .1 (or H2). A 
fundamental set for G is a subset F of .1 which contains exactly one point 
from each orbit in .1. Thus no two distinct points in Fare G-equivalent and 

U f(F) = .1. 
feG 

The Axiom of Choice guarantees the existence (but little else) of a funda­
mental set for G. A fundamental domain is a domain which, with part of its 
boundary, forms a fundamental set for G. 

Definition 9.1.1. A subset D of the hyperbolic plane is a fundamental domain 
for a Fuchsian group G if and only if 

(1) D is a domain; 
(2) there is some fundamental set F with D c FeD; 
(3) h-area(oD) = O. 

The existence of a fundamental domain will be established in Section 9.4. 
If D is a fundamental domain, then for all g in G (g =F 1) 

g(D)nD = 0, Uf(D) = .1 
feG 

and, with a slight abuse of terminology, we say that D and its images 
tesselate .1. 
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Remark 9.1.2. It is not sufficient (as is sometimes suggested) to replace (2) 
by the requirement that each point of oD is the image of some other point 
of oD. For example, the group generated by z ~2z acts discontinuously 
on H2 but the set {x + iy: y > 0, 1 < x < 2} (which has this property) is 
not a fundamental domain for G. 

The properties (2) and (3) of Definition 9.1.1 imply that F is measurable 
and 

h-area(D) = h-area(F). 

In fact, the next result shows that h-area(D) depends only on G and not on the 
choice of D. Later (Section 10.4) we shall see that in all cases 

h-area(D) 2': n/21. 

Theorem 9.1.3. Let F 1 and F 2 be measurable fundamental sets for G. Then 

h-area(F 1) = h-area(F 2)· 

Let F 0 be a measurable fundamental set for a subgroup Go of index k in G. 
Then 

h-area(F 0) = k . h-area(F 1), 

PROOF. Denote h-area by Jl. As Jl is invariant under each isometry we have 

Jl(Fd = Jl(F1 n [V gF2J) 
= L Jl(F 1 n gF2 ) 

9 

Next, write G as a disjoint union of cosets, say 

G = U Gogn 
n 

and let 

Ifw E d, then g(w) E F 1 for some g in G and g-l = h- 1gn for some n and some 
h in Go. Thus h(w) Egn(F 1) and so F* contains at least one point from each 
orbit. 

Now suppose that z and f(z) are in F* where f E Go and z is not fixed by 
any non-trivial element of G. For some m and n, the points g;; l(Z), g;;.l(fZ) 
lie in F 1 and so gng;;.lf fixes z. We deduce that 

gmg;;l = fEG o: 

so Gogm = Gogn and therefore n = m. This shows that f fixes z so f = I. 
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These facts show that F* contains exactly one point from each orbit not 
containing fixed points and at least one point from each orbit of fixed points. 
If we now delete a suitable ( countable) set of fixed points from F*, the resulting 
set is a fundamental set for Go and by the first part, 

Il(F*) = Il(F 0)' 

Clearly, F 1 intersects an image of itself in at most a countable set (of fixed 
points) so 

n 

D 

In terms of quotient spaces, Theorem 9.1.3 is to be expected. As discussed 
in Section 6.2, the differential ds for the hyperbolic metric projects to a metric 
on the quotient surface A./G and Theorem 9.1.3 merely states that for any 
measurable fundamental set F, we have 

h-area(F) = h-area(A.jG). 

EXERCISE 9.1 

1. Let D be a fundamental domain for G. Show that if wED, then D - {w} is also a 
fundamental domain (so a fundamental domain need not be simply connected). 
Now let E = (Dr (the interior of the closure of D relative to ~). Show that E is a 
simply connected fundamental domain which contains D. 

2. Let D be a fundamental domain for G and suppose that Dl and D2 are open subsets 
of D with 

Under which circumstances is 

a fundamental domain for G? 

§9.2. Locally Finite Fundamental Domains 

There is another condition that is required before we can develop any 
reasonably interesting theory of fundamental domains. We motivate this in 
the next example: the fact that this is not a Fuchsian group is of no conse­
quence for we have merely selected the simplest example to illustrate the 
condition. 

Example 9.2.1. Let C* be the set of non-zero complex numbers and let G 
be the cyclic group generated by g: z -+ 2z. The quotient space C* /G is a 
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Figure 9.2.1 

torus. Now let ')I be the curve illustrated in Figure 9.2.1: in the first open 
quadrant, y is the curve y = e- x ; elsewhere y is given by Izl = 1. The region 
D lying between y and g(y) is a fundamental domain for G in the sense that 
each point of C* is equivalent to at least one point of 15 and at most one point 
of D. Nevertheless, if we identify equivalent points on aD, we find that the 
quotient space DIG is not compact; thus DIG and C*IG are not homeo­
morphic. 

The same situation can arise for a Fuchsian group, even when D is a 
convex polygon with only finitely many sides (Example 9.2.5) and we wish to 
impose a condition which prevents this unpleasant possibility. 

Let G be a Fuchsian group acting in ~ and let D be a fundamental domain 
for G in ~. The group G induces the natural, continuous, open projection 7t: 
~ --+ NG. We can also use G to induce an equivalence relation on V by 
identifying equivalent points (necessarily on aD) and so with VIG inheriting 
the quotient topology, there is another continuous projection ft: V --+ VIG. 
The elements of NG are the orbits G(z): the elements of VIG are the sets 
V n G(z) and 

7t(z) = G(z), ft(z) = V n G(z). 

Next, let t: V --+ ~ denote the inclusion map (the identity restricted to i5). 
We now construct a map e: VIG --+ NG by the rule 

e: V n G(z) --+ G(z). 

The map e is properly defined because for each z, V n G(z) -:f= 0 and, of 
course. 

eft = 7tt: (9.2.1) 

these maps are illustrated in Figure 9.2.2. 
We study now the relationship between VIG and ~/G. 
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jj ----... ti 

-j j. 
fJ/G ----.... ti/G 

IJ 

Figure 9.2.2 

Proposition 9.2.2. (i) (J and .. are injective; 
(ii) n, it and (J are surjective; 

(iii) n, it, (J and .. are continuous; 
(iv) n is an open map. 

9. Fundamental Domains 

PROOF. The only assertion which is not completely trivial is that (J is con­
tinuous. If A is any open subset of fj.jG, we may apply (9.2.1) to obtain 

and this is open in D as n is continuous. For any B, it-l(B) is open in D if 
and only if B is open in DIG: thus (J-l(A) is open in DIG and (J is continuous 
(in fact, this is Proposition 1.4.2). 0 

We come now to the property which, if satisfied, guarantees that (J is a 
homeomorphism and hence that I1IG and DIG are topologically equivalent. 

Definition 9.2.3. A fundamental domain D for G is said to be locally finite 
if and only if each compact subset of 11 meets only finitely many G-images 
of D. 

In order to appreciate the implications of Definition 9.2.3, suppose that 
D is locally finite. Each z in 11 has a compact neighbourhood N and this meets 
only finitely many G-images, say g;(D), of D. By decreasing N if necessary, 
we may assume that all these images actually contain z. Finally, if h(D) meets 
N, then h(D) meets the union of the g;(D) and so (as aD has measure zero) 
h = gi for some i. To summarize, if D is locally finite, each z has a compact 
neighbourhood N and an associated finite subset gl' ... ,gn of G with 

(1) z E gl(D) (\ ... (\ gn(D); 
(2) N c gl(D) u ... u giD); 
(3) h(D) (\ N = 0 unless h is some gj. 

We shall use these facts consistently throughout the following discussion. 

Theorem 9.2.4. D is locally finite if and only if (J is a homeomorphism of DIG 
onto fj.jG. 
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PROOF. First, we suppose that fJ is a homeomorphism and that D is not 
locally finite and we seek a contradiction. As D is not locally finite there exists 
some w in d, points Z1' Z2"" in D and distinct g1' g2"" in G with 

(9.2.2) 

Now write 

K = {Z1' Z2'" .}. 

First, KeD. Next, every neighbourhood of w meets infinitely many of the 
distinct images gn(D), thus w ¢: h(D) for any h in G. We deduce that 

n(w) ¢: n(K). 

The contradiction we seek is obtained by proving that 

n(w) E n(K). (9.2.3) 

The points g; l(W) cannot accumulate in d as G is discrete. Because of 
(9.2.2), the points Zn cannot accumulate in d and this shows that K is closed 
in D. As KeD, we have 

ic- 1(icK) = K 

and the definition of the quotient topology on DIG may be invoked to deduce 
that ic(K) is closed in DIG. By (9.2.1), 

n(K) = nr(K) = fJ(icK) 

and as fJ is a homeomorphism, this is closed in diG. We conclude that 

n(w) = lim n(gnzn) = lim n(zn) E n(K) 

and this is (9.2.3). 
To complete the proof, we must show that if D is locally finite, then fJ is a 

homeomorphism. We assume, then, that D is locally finite: by Proposition 
9.2.2, we need only prove that fJ maps open sets to open sets. 

Accordingly, we select any non-empty open subset A of DIG. As ic is 
both surjective and continuous, there exists an open subset B of d with 

Now put 

Then 

ic- 1(A) = D n B, ic(D n B) = A. 

v = U g(D n B). 
gEG 

n(V) = n(D n B) 

= nr(D n B) 

= fJic(D n B) 

= fJ(A). 
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We need to prove that e(A) is open but as n is an open map, it is sufficient to 
prove that V is an open subset of A This has nothing to do with quotient 
spaces and depends only on the assumption that D is locally finite. 

Consider any z in V: we must show that V contains an open set N which 
contains z. As V is G-invariant, we may assume that 

zEDnB. 

As D is locally finite there exists an open hyperbolic disc N with centre z 
which meets only the images 

go(D), gl(D), ... , gm(D) 

of D where go = I: also, we may suppose that each of these sets contains z. 
Then 

-1 -gj (z)ED, j = O, ... ,m, 

and this means that if is defined at gj l(Z). Clearly if maps this point to if(z) 
in A so 

gj l(Z) E if-l(A) = D n B. 

It follows that z E giB) and by decreasing the radius of N still further, we 
may assume that 

N c go(B) n ... n gm(B). 

It is now clear that N c V. Indeed, if wEN, then for some j, W is in both 
giD) and giB): 

The proof is now complete. D 

Next, we give an example to show that convexity is not sufficient to ensure 
local finiteness. 

Example 9.2.5. We shall exhibit a convex five-sided polygon which is a 
fundamental domain for a Fuchsian group G but which is not locally finite. 
The group G is the group acting on H2 and generated by 

f(z) = 2z, 
3z + 4 

g(z) = 2z + 3' 

Our first task is to show that G is discrete and to identify a fundamental 
domain for G. To do this, consider Figure 9.2.3. 

A computation shows that f('Yl) = "12 and g«(11) = (12 and a straight­
forward application of Theorem 5.3.15 (with G1 = <f), Dl the region 
between "11 and "12 and similarly for g) shows that G is discrete and h(D) n D 
= 0 whenever hE G, h # I (D being the region bounded by "It. "12' (11 and 
(12)' 
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-2 -1 2 

Figure 9.2.3 

In fact, D is a (locally finite) fundamental domain for G. To see this, 
take any z in H2 and select an image of z which is closest to iJ2 (this is 
possible as G is discrete). By relabelling, we may assume that z itself has this 
property. It is now easy to see that 

p(z, iJ2) :-:;; p(z,f(iJ2)) = p(f-1z, iJ2) 

if and only if 1 z 1 :-:;; 2. Similarly, z is closer to iJ2 than to J -1(iJ2) if and 
only if 1 z 1 2=: 1. With a little more computation (Theorem 7.2.1) or geometry 
we find that z lies outside or on (J 1 and (J 2 because 

p(z, iJ2) :-:;; p(gz, iJ2) = p(z, g-1(iJ2)) 

and similarly for g - 1. We deduce that z E i5 and this proves that D is a funda­
mental domain for G. 

We proceed by modifying D to obtain a new fundamental domain k. The 
essential feature of this process is to replace parts of D by various images of 
these parts in such a way that the modified domain is still a fundamental 
domain. First, we replace 

D1 = D (") {z: Re[z] < O} 

by g(D1): the new domain is illustrated in Figure 9.2.4 and this is still a 
fundamental domain for G. 

Next, construct the vertical geodesics x = 1 and x = 2 and let w, ( and (' 
be as in Figure 9.2.5. We now replace the closed triangle T(w, 1, 2w) with 
vertices w, 1, 2w by the triangle T(2w, 2, 4w) (= J(T)). Each Euclidean 
segment [(, 2(], where ( lies on Izl = 1 and is strictly between wand i, is 
replaced by the equivalent segment [C 2(,], Finally, the segment [i,2i] is 
deleted: note, however, that [i,2i] is equivalent to the hyperbolic segment 
[g(i), g(2i)] on the boundary of g(D 1) and, as this segment is retained, the new 
domain k still contains in its closure at least one point from every orbit. 
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The construction given above replaces the quadrilateral D by the pentagon 
L with vertices 1, g(i), g(2i), 2, 00. By construction, L is a fundamental domain 
for G and by Theorem 7.16.1, L is convex. Observe that the points on the 
boundary segment [g(i), g(2i)] have no equivalent points on OL: the only 
possibility, then, is that the images of L accumulate (from below) along the 
segment [g(i), g(2i)]. For a more explicit proof that L is not locally finite, 
we need only observe that the points Zn = 1 + 2ni, n = 1, 2, ... , are in f and 

We conclude that L is a convex non-locally finite fundamental domain. As 
the original domain D is locally finite, the quotient space H2/G is homeo­
morphic to DIG and this is a torus with one point removed. The reader 
should now examine 'fIG and also the projection of L into H2/G. 0 

In view of Theorem 9.2.4 and Example 9.2.5 it is of interest to record the 
following criterion for a fundamental domain to be locally finite. 

Theorem 9.2.6. Let D be a fundamental domain for a Fuchsian group G and 
suppose that for each Z in oD we have 

(1) there is some gin G with g =1= I and g(z) E oD; 
(2) Z can be joined to a point in D by a curve lying entirely in D u {z}. 

Then D is locally finite. 

PROOF. Neither (1) nor (2) is sufficient to ensure that D is locally finite. We 
shall restrict ourselves here to a brief sketch of the proof in the most interesting 
case, namely when D is convex (convexity being stronger than (2». 

It is convenient to say that Z in ~ is regular if there is a neighbourhood of Z 

which meets only finitely many copies of D: if z is not regular, we say that z 
is exceptional. Now D is locally finite if there are no exceptional points and 
we shall show that this is so by proving: 

(a) the set of exceptional points is countable; and 
(b) if there is one exceptional point, then there are uncountably many such 

points. 

By (1), each exceptional z lies in some set g(D) n h(D), g =1= h. By convexity, 
the interior points of the intersection 

a(g, h) = g(D) n h(D), 

(which, by convexity, is a hyperbolic segment) are regular; thus there are at 
most two exceptional points in a(g, h). As G is countable, (a) follows. 

To prove (b), assume that w is exceptional so there exist points Zl' Z2, ..• 

in D and distinct gl' g2' ... in G with gizn) ~ w. Now we may assume that 
D is unbounded in the hyperbolic metric (as clearly if D is compact, then D 
is locally finite) so there is some ( in 15 with I( I = 1. Let Ln be the ray [zn' O. 
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The giLn) accumulate at some ray [w, (*), 1(* I = 1, and by construction, 
every point of [w, (*) is exceptional. D 

It is clear from Theorem 9.2.4 that the concept of local finiteness is im­
portant. We end this section with some of the properties shared by all locally 
finite fundamental domains: we stress that these properties are derived from 
local finiteness without any additional assumptions on D. 

Theorem 9.2.7. Let D be any locally finite fundamental domain for a Fuchsian 
group G. Then 

Go = {g E G: g(15) n 15 "# 0} 
generates G. 

PROOF. Let G* be the group generated by Go. We may suppose that G acts 
in .1 so for any z in .1 there is some g in G with g(z) E 15. Suppose also that 
h(z) E 15. Then h(z) is in both 15 and hg- 1(15) so hg- 1 E Go: thus we have equal­
ity of cosets, namely 

G*h = G*g. 

This fact means that there is a properly defined map 

ljJ: .1 --+ GIG* 

given by 

cjJ(z) = G*g, 

where g(z) E 15: our proof is based on a discussion of this map. 
Consider any z in .1. As D is locally finite, there exist a finite number of 

Images 

each containing z and such that their union covers an open neighbourhood 
N of z. If wEN, then WE gi15) for some j and 

cjJ(w) = G*(g)-l = cjJ(z). 

We deduce that each z has an open neighbourhood N on which cjJ is constant. 
Now any function cjJ with this property is constant on .1 (give cjJ(.1) the 

discrete topology: cjJ is continuous and cjJ(.1) is connected, thus cjJ(.1) contains 
only one point). This shows that 

cjJ(z) = cjJ(w) 

for all z and w in .1. Given any g in G we select z in D and w in g-l(D). Then 
as cjJ is constant, 

G* = cjJ(z) = cjJ(w) = G*g 
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and so g E G*. This proves that G c G*. Clearly G* c G so G* = G and Go 
generates G. 0 

The next result relates local finiteness to invariant regions: for the defini­
tions of horocyclic and hypercyclic regions, see Section 7.5. 

Theorem 9.2.8. Let D by any locally finite fundamental domain for a Fuchsian 
group G. 

(i) Let g be an elliptic element in G and let K be a compact disc with g(K) = K. 
Then D meets a positive but only finite number of distinct images of K. 

(ii) Let g be a parabolic element in G and let K be a horocyclic region with 
g(K) = K. Then D meets a positive but only finite number of distinct 
images of K. 

(iii) Let g be a hyperbolic element in G and let K be a hypercyclic region with 
g(K) = K. Then D meets a positive but only finite number of distinct 
images of K. 

PROOF. In all cases, choose w in K. For some h in G, h(w) E D so D meets some 
image of K. Now (i) is trivial for K is compact since if D meets h(K), then 
h- 1(D) meets K and this can only happen for a finite set of h. 

To prove (ii) it is convenient to suppose that G acts on H2 and that g(z) = 
z + 1. It follows that K must be of the form 

K = {x + iy: y > k}. 

Now write 

Ko = {x + iy: y ~ ko} 

and 

Kl = {x + iy: k ::; y ::; ko}, 

where ko is chosen so that 

This last condition implies that Ko cannot contain an image of D so that if 
f(D) meets K then necessarily, it also meets K 1 . Observe that this choice of 
K~ is made possible by Jlbrgensen's inequality, namely if 

f(z) = az + b 
cz + d 

is in G and does not fix 00, then I c I ~ 1. Thus 

Im[fz] ::; l/y 

so with ko > 1 we find that Ko does not meet the orbit G(i). 



216 9. Fundamental Domains 

Now suppose that D meets h(K): then h-l(D) meets K and hence it meets 
K l . If 

E = {x + iy: ° ~ x ~ 1; k ~ y ~ ko}, 

then 

U gn(E) = Kl 
n 

so for some n, gnh-l(D) meets E. Now as E is compact and D is locally finite, 
only a finite number of images of D, say 

meet E. Thus gnh- l = gj for some j and n and so h(K) = gj l(K). 
The proof of (iii) is similar. We may assume that G acts on H2 and that 

g(z) = kz, k > 1. The hypercyclic region is necessarily of the form 

K = {re iO : r > 0, Ie - nl21 < c:}: 

we write 

E = {z E K; 1 ~ Izl ~ k} 

so U gn(E) = K. Only finitely many images of D meet the compact set E: 
let these be gl(D), ... , giD). Suppose now that h(K) meets D: then for some 
n, gnh-l(D) meets E and so for somej, h(K) = gjl(K). 0 

We mention just one consequence of Theorem 9.2.8. 

Corollary 9.2.9. Let G be a Fuchsian group, D any locally finite fundamental 
domain for G and let, be fixed by some parabolic element of G. Then for some 
gin G, g(O lies in the Euclidean closure of D. 

PROOF. We may suppose that G acts on H2, that, = 00 and that the stabilizer 
of, is generated by p: z ~ z + 1. 

Now let K be a horocyclic region invariant under p. Choose any sequence 
of points Zl' Z2, ... in K with Im[znJ --+ + 00. There are elements hI> h2 , •.• 

in G with hn(zn) E D so D meets each image hn(K). An application of Theorem 
9.2.8 (after taking a subsequence and relabelling) shows that 

It follows that there are integers t 2, t 3, . .. such that hn = hlptn: hence 
h1(wn) E D where Wn = ptn(zn)' As 

we see that Wn --+ 00 and so hl(oo) lies in the Euclidean closure of D. 0 
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EXERCISE 9.2 

1. Modify Definition 9.2.3 to apply to Example 9.2.1 and show that D is not locally finite. 

2. Construct a Fuchsian group G(= {g"g2, ... }) acting on H2 and a locally finite 
fundamental domain D for G with 

Euclidean diameter gn(D) = + CIJ 

for every n. 
3. Let G be a Fuchsian group acting on ~ with a fundamental domain D. Show that D 

is bounded in the hyperbolic metric if and only if (i) I1/G is compact and (ii) D is 
locally finite. 

4. Let G be generated by g: Z H Z + 1 and h: Z H Z + i. Despite the fact that C/G is 
compact, construct a fundamental domain D for G which is not locally finite in C. 

5. Show that the convex fundamental domain L in Example 9.2.2 contains a hyperbolic 
fixed point on its (Euclidean) boundary. By contrast, show that a fixed point of a 
hyperbolic g in G cannot be on the Euclidean boundary of any convex locally finite 
fundamental domain. 

§9.3. Convex Fundamental Polygons 

It is natural to pay special attention to fundamental domains that are poly­
gons. Non-convex polygons are rarely used but on the other hand, convexity 
is not enough to guarantee satisfactory results (Example 9.2.5). With these 
preliminary remarks, we embark on a discussion of convex, locally finite 
fundamental polygons. It is a striking fact that the polygonal nature actually 
follows from the convexity and local finiteness: accordingly we begin with a 
rather stark definition which does not explicitly mention the polygonal 
structure. 

Definition 9.3.1. Let G be a Fuchsian group. Then P is a convex fundamental 
polygon for G if and only if P is a convex, locally finite fundamental domain 
for G. 

We emphasize that this is a definition of the phrase" convex fundamental 
polygon" and it does not presuppose any particular structure of the boundary 
of P. We now add a little flesh to this skeletal definition: the discussion is 
elementary but, as might be guessed, it is important to derive results in the 
optimal order. Throughout, P is taken to be a convex fundamental polygon 
for G. It is perhaps worth mentioning now that P is a hyperbolic polygon in 
a more general sense than is usually allowed. For example, P may have 
vertices on the circle at infinity (possibly infinitely many) and the boundary 
of P can even contain arcs of the circle at infinity. Explicitly, it will be shown 
that 

P= nHi' 



218 9. Fundamental Domains 

where the Hi are a countable number of open half-planes with the property 
that any compact subset of the hyperbolic plane is contained in all but a 
finite number of the Hi' 

As P is locally finite, for any z in t.. there is an open hyperbolic disc N 
centre z and distinct elements g1' ... , gt in G such that 

Z E g1(P) n ... n gt(P), 

N c g1(P) u ... u glP), 

and, if g(P) meets N, then necessarily 9 = gj for somej. If z E ap, then g1 = I, 
say and t ~ 2 (else zEN, N c P). This proves' 

(1) for each Z in ap, there is some gin G with 9 '# I, g(z) E ap. 

In fact, with convexity, (1) is equivalent to local finiteness: see Theorem 9.2.6. 

Now consider any 9 ('# I) in G. Clearly, P n g(P) is convex. Moreover, 
P n g(P) cannot contain three non-collinear points else it contains a non­
degenerate triangle and then (because ap has zero area) we find that P n g(P) 
'# 0. We deduce that P n g(P) is a geodesic segment, possibly empty. 
We can now define the sides and vertices of P. 

Definition 9.3.2. A side of P is a geodesic segment of the form P n g(P) of 
positive length. A vertex of P is a single point of the form P n g(P) n h(P) 
for distinct I, 9 and h. 

Warning. A side of P is not necessarily a side in the usual conventional sense. 
If we call a maximal geodesic segment in ap an edge of P, then an edge may 
contain infinitely many sides of P. From a different point of view, we allow 
the interior angles of P at the vertices to assume the value n. 

Now G is countable and only finitely many images of P can meet any 
compact subset of t... Thus 

(2) P has only countably many sides and vertices: 
(3) only finitely many sides and vertices can meet any given compact subset oft... 

Clearly the sides and vertices of P lie in ap. In fact, 

(4) ap is the union of the sides of P. 

Observe that with this definition of sides, this apparently obvious state­
ment is false for domains which are not locally finite: see Example 9.2.5. 

To prove (4). consider any w on ap. Each sufficiently small circle centre w 
must contain points in P and points (other than w) not in P so there are points 
Wn in ap tending to w. A compact neighbourhood of w meets only finitely 
many images of P so there is some 9 and infinitely many n with Wn E P n g(P). 
This implies that P n g(P) is a side containing w. 
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It follows from (4) that every vertex of P actually lies on a side of P. Much 
more is true, namely 

(5) each vertex lies on exactly two sides and it is the common end-point of each. 

To verify (5), let w be an interior point of the side P n g(P) = s. Choose a 
point Z in P and form the triangle with vertex Z and opposite side s: the 
open triangle lies in P. A similar construction yields an open triangle in g(P) 
with side s: this shows that a vertex cannot be the interior point of a side 
and two sides meet, if at all, in a vertex. 

Now by (3), (4) and the preceding remarks, every vertex v lies on a finite, 
positive number of sides and it is the common end-point of these sides. A 
trivial convexity argument of the type outlined above shows that this number 
cannot be one, nor can it exceed two. This proves (5): it also proves 

(6) any two sides meet, if at all, in a vertex and this is then a common end-point 
of each. 

Note that (5) and (6) imply that the intersection of three sides is empty. 
Another useful property of fundamental polygons is that if G = 

{I, gl' g2,···} acts on A then 

(7) Euclidean diameter (gnD) -+ 0 as n -+ 00. 

If this were not so, we could find Zn and Wn in gn(D) with 

Zn-+Z,Wn-+W,Z"# w,lzl = Iwi = 1. 

This would imply that the gn(D) accumulate on the geodesic [z, w] contrary 
to the local finiteness of D. 

We turn our attention now to the pairing of sides of P by certain elements 
of G. Let G* be the set of elements g in G for which P n g(P) is a side of P 
and let S be the set of sides of P. Clearly, each g in G* produces a unique side 
sin S (namely, s = P n g(P» and every side arises in this way, thus formally 
there is a surjective map 

<II: G* -+ S 

given by 

<II(g) = P n g(P). 

In fact, <II is a bijection for if <Il(g) = <Il(h) then 

P n g(P) = P n h(P) 

and this cannot occur for sides unless g = has (6) shows. 
The existence of <11- 1: S -+ G* shows that to each side s there is associated 

a unique g. in G* with 

s = P n g.(P). 



220 9. Fundamental Domains 

Then 

g; 1(S) = P n g; 1(p) = s', 

say,and,as this has positive length, this too is a side. Note that if s' = (g.)-1(S) 
then 

g., = (g.)-1. 

We have now constructed a map s H s' of S onto itself and this is called a 
side-pairing of P because 

(s')' = (g.r 1(S') 

= g.(s') 

= s. 

In this way, the set S of sides of P partitions naturally into a collection of 
pairs {s, s'}: we do not exclude the possibility that s = s'. 

The next result is a strengthened version of Theorem 9.2.7 and it is made 
possible by the polygonal nature of P. 

Theorem 9.3.3. The side-pairing elements G* of P generate G. 

PROOF. Because of Theorem 9.2.7, it is only necessary to show that if 
P n h(P) =F 0, then h lies in the group generated by the g •. Consider, then, 
any w in P n h(P). First, there is an open disc N with centre wand elements 
ho (= I), h1' h2' ... , ht in G such that h = hj for some j =F 0, and 

WE ho(P) n ... n ht(P); 

N c ho(P) u ... u ht(P). 

One can show (alternatively one can decrease the radius of N and assume) 
that N contains no vertices of any hiP) except possibly wand no sides of 
the hiP) except those that contain w (see (3». By (4), the boundary of P 
in N therefore consists of one side only or two distinct sides emanating 
from w. The same is true of each of the other hiP) thus we have one of the 
situations illustrated in Figure 9.3.1 (after relabelling h1' ... , ht). 

p 

w 

Figure 9.3.1 
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Formally, we require the fact that (after relabelling) two consecutive 
polygons in the list 

ho(P) = P,h1(P), h2(P), ... , ht(P),P = ho(P) 

have a side in common. From this it follows that 

- 1 -Pnhi hj+ 1(P) 

is a geodesic segment of positive length and hence is a side. Thus 

hj+ 1 = hjgs 

for some side-pairing gs and we find that h is in the group generated by the gs. 
D 

We come now to a detailed examination ofthe way in which the images of 
P tesselate a neighbourhood of any point in ~. Clearly we may confine our 
attention to points in oP and the situation for these points is completely 
described in the preceding proof. We now summarize the results. 

Take any w in OP: so WE P n h(P) for some h. There exist hi' ... , hI as in 
the proof of Theorem 9.3.3 and if g(w) E oP, then WE g-l(p) and so h = hj 

for somej. We can now introduce some terminology. 

Definition 9.3.4. (i) a cycle C in P is the intersection of a G-orbit with P: 
this is necessarily a finite set {Z1' ... , zn} and the length I CI of Cis n. 

(ii) If C is a cycle, say {Z1' ... , zn} of points in ~, then the stabilizers Gj of 
Zj are conjugate to each other and are finite cyclic subgroups of G. The 
order of the cycle C, which we denote by Ord(C), is the common order 
of the Gj • 

(iii) Let C be the cycle in (ii) and let P subtend an angle ej at Zj. The angle sum 
e(C) of the cycle C is defined to be e 1 + ... + en. 

The following result is of fundamental importance. 

Theorem 9.3.5. For every Fuchsian group G, every convex fundamental 
polygon P and every cycle C, 

e(c) = 2njord(C). 

PROOF. Without doubt, the most efficient description of the proof is by 
means of cosets. Let C = {Z 1, ... , zn} so that for some g 1 (= I), g2' ... , gk 
we have g/z) = ZI. It follows that g/P) has Z1 as a vertex and the angle of 
g/P) at Z1 is ej • 

Next, Z1 E h(P) if and only if h- 1(z 1) is some Zj and this is so if and only 
iffor somej, h(g)-l fixes Z1. Now let G1 be the stabilizer of Z1: thus Z1 E h(P) 
if and only iffor somej, hE G1gj • Referring now to Figure 9.3.1, we have 

(ho = I), 
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and these are precisely the images of l' which contain Z l' As the elements of 
G1 are rotations about Zl> each f in G1gj is such that f(1') subtends an angle 
OJ at Z1: thus 

2n = [order(G 1)] (0 1 ... + Ok) 

= [ord(C)]O(C). o 

Let us examine, in detail, the consequences of Theorem 9.3.5. Suppose 
first that z is not fixed by any elliptic element of G: the cycle C containing Z 

(in ]5) is then said to be an accidental cycle. These cycles are characterized 
by ord(C) = 1 so 

O(C) = 01 + ... + On = 2n (n = ICI). 

If n = 1, then 01 = 2n and Z E P. If n = 2 then 01 = O2 = n (by Theorem 
7.16.1, each 01 satisfies 0 ~ OJ ~ n) and z is then an interior point of a side. 
The converse statements are also true so if Z is an accidental vertex (a vertex 
in an accidental cycle C) then I C I ~ 3. 

Next, suppose that z is fixed by an elliptic element in G and that the 
stabilizer of z has order q; thus ord(C) = q. Then 

O(C) = 01 + ... + On = 2n/q. 

A special case of great interest is when I C I = 1 (so z is not equivalent to any 
other point on OP): then 01 = 2n/q. If I CI = 1 and q = 2, then 

O(C) = 01 = n. 

It is easy to see that in this case, the stabilizer of z is {J, g}, g2 = J and z is an 
interior point of the side 

s = 1'n g(1'). 

Note that in this case, 

because g = g-1. Conversely, if, in general, s = Sf then it is easy to see that 
gs is of order two with fixed point on s (consider the effect of gs on the geodesic 
containing s and note that P n g.(P) = 0). 

Because the elliptic fixed points of G demand special attention, it is often 
convenient to regard all elliptic fix-points as vertices. This is only at variance 
with the earlier definition in as far as it concerns elliptic fix-points of order 
two. It is a matter of convention which definition we adopt and the matter 
is completely settled by stating whether or not elliptic fix~points of order two 
are vertices of P: equivalently, it is settled by stating whether or not we insist 
that s ¥- Sf. A trivial example should clarify this point. 
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Example 9.3.6. Let g(z) = -z and G = {J, g}. We may take P as the upper 
half of ~ and, according to the two conventions, either: 

(1) P has one side, namely (-1, 1), and no vertices; or 
(2) P has two sides, namely (-1,0), (0,1), and one vertex, namely {O}. D 

We now discuss (as far as we can) the Euclidean boundary of P on 
{Izl = 1}: we denote this by E. Now E may have uncountably many com­
ponents but there can only be countably many components of positive 
(Euclidean) length: we call these the free sides of P and these are closed non­
degenerate intervals on {I z I = 1}. 

Note that ifw E E, then there exist Zn in P converging to w. For any z in P, 
the segment [z, znJ lies in P and obviously, [z, w) c P. The same is true for 
all points sufficiently close to z and as P is convex, we deduce that 
[z, w) c P. 

A point w of E need not lie on any side or any free side of P; for example, 
there may be infinitely many sides of P accumulating at, but not containing, 
the point w. We can say very little in this case and we confine the discussion 
to end-points of two sides. 

Definition 9.3.7. A point v in E is a proper vertex of P (at infinity) if v is the 
end-point oftwo sides of P: v is an improper vertex of P if it is the end-point 
of a side and free side of P. In both cases, we say that v is an infinite vertex 
of P. 

These vertices are illustrated in Figure 9.3.2. 
For each z in E, the cycle of z is (as before) G(z) () E. If z is an ordinary 

point, the cycle of z must be finite (otherwise infinitely many images of P 
meet any neighbourhood of z and by (7), z would then be a limit point). By 
the same token, z must also be a proper or improper vertex at infinity. 

v v 

Improper vertex Proper vertex 

Figure 9.3.2 
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Definition 9.3.4 clearly generalizes to this situation and if C is the cycle of Z 

we have 

ord(C) = 1, 

this is the counterpart of Theorem 9.3.5. This holds equally well if z is the 
interior point of a free side where I CI = 1, (}1 = n. Note that otherwise, (}j 

can only take the values 0 or n/2 so if I CI = 2, then necessarily (}1 = (}2 = n/2 
and so z is the common end-point of a free side of P and a free side of some 
g(P). We shall return to this case in the next section. 

There is only one other case that we can profitably discuss. 

Theorem 9.3.8. Let v be any point of E that is fixed by some non-trivial 
element ofG. Then v isfixed by a parabolic element ofG (and not by any hyper­
bolic element). Further, the cycle C of v on E is a finite cycle each point of 
which is a proper vertex of P. 

PROOF. First, v cannot be fixed by an elliptic element in G as I v I = 1. If v 
is fixed by a hyperbolic element h of G, let A be the axis of h and construct 
any [z, v) in P. Take Zn on [z, v) with Zn -+ v. Then there exist points an on 
A with 

For each n, there is some power of h, say hn' such that hn(an) lies on a compact 
sub-arc of A. Thus the points hn(zn) lie in a compact subset K of Ll: as the hn 
are distinct, this contradicts the fact that P is locally finite. We deduce that v 
cannot be fixed by hyperbolic elements: thus the elements fixing v must be 
parabolic. 

Obviously the cycle of points on E determined by v contains only para­
bolic fix-points. If the cycle is infinite, say v, VI> V2, .•• then there are distinct 
gn with giv) = vn. If K is any horocyclic region based at v, then gn(K) is a 
horocyclic region based at Vn and this must meet the convex P as VEE. We 
deduce that P meets infinitely many images of K and this violates Corollary 
9.2.9: it follows that the cycle determined by v (or by any parabolic fix-point) 
is finite. 

Finally, we must show that v is a proper vertex of P: the same must then 
be true (by the same argument) for all points in the cycle of v. 

Choose any horocyclic region K at v. By Corollary 9.2.9, P meets only a 
finite number of images of K, say 

based at v, V1' ... , Vt (Vj = giv» respectiv~ly. If vL~ E, then P is disjoint from 
some Euclidean neighbourhood of Vj so P n giK) is a compact subset of Ll. 
By decreasing K as necessary, we may suppose that for each j, the point v j 
lies in E. This shows that cycle of v is now {v, V1' ... , vt }. 
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Without loss of generality, we assume that G acts on H2, that v = 00 and 
that the stabilizer of 00 is generated by p: z ~ z + 1. Of course, K is now 
of the form {x + iy: y > k}: we may assume that k > 1. If 

a = inf{Re[z]: z E P}, b = sup{Re[z]: z E P}, 

then a ::;:; b ::;:; a + 1 (else b - a > 1 and P contains, by convexity, a triangle 
of width exceeding one so P n p(P) -::/= 0). Now K meets h(F) if and only 
if h -l(K) is K or some g j(K) and this is so if any only if for some j and n, 

h- 1 = gjpn (go = J). 

It follows that 00 lies on the boundary of h(P) (because h(v) = (0). Exactly 
as above, h(P) lies in a vertical strip of width one and hence there are at most 
three (consecutive) values of n for which p-ngjl(p) (=h(F)) meets P. We 
deduce that only finitely many images of F can intersect F n K. This means 
that P n K meets only finitely many sides of P and so, in a sufficiently small 
horocycle at 00, the boundary of P consists only of two vertical geodesics. 

o 

Remark. We end with a remark concerning the elliptic and parabolic 
conjugacy classes in G. Let g be any parabolic element of G with fixpoint, 
say v. Then Corollary 9.2.9 implies that for some h in G, the point h(v) lies 
in E and, of course, is fixed by the parabolic element hgh -1 which is conju­
gate to g. By Theorem 9.3.8, there are two sides of P ending at h(v). We 
conclude that every parabolic element of G is conjugate to some parabolic 
element which fixes a proper vertex of P: in this sense the fundamental 
polygon P contains representatives of all conjugacy classes of parabolic 
elements. The same is true of elliptic elements: the proof is trivial and is 
omitted. 

EXERCISE 9.3 

1. Let 

D = {zE~:p(z,D) < r} 

and suppose that Ai>"" An are pairwise disjoint, convex, open subsets of D which 
satisfy 

(i) jj = Al u ... U An; 
(ii) DEAl n ... nAn. 

Prove that for a suitable choice of OJ (with 01 = On + I), 

Aj = {zED: OJ < arg(z) < OJ+ d· 

2. Let SI, LI, S2, L2,'" be pairwise disjoint closed sub-arcs of.{lzl = 1} and (for 
convenience) assume that each Sj subtends an angle less than 11: at the origin. Let L j 

be the geodesic with the same end~points as S j: thus ~ - L j is the union of the two 
half-planes H j (containing the origin) and Hj (with boundary L j us). 
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Let gl, g2, . .. be conformal isometries of ~ with 

g/H) = H'_j 

and define 

G = <gl, g2,·· .), 

Show 

(i) each gj is hyperbolic; 
(ii) if 9 E G and 9 =j:. J, then g(D) n D = 0. 

Now suppose that there exists a positive b such that for allj, 

{zEHj: p(z, L) < b} cD. 

Show that 

{z E~: p(z, 15) < b} c U g(D) 
geG 

and deduce that 
U g(15) = ~ 

9 EG 

(so D is a convex fundamental domain for G). Show also that D is locally finite. 

3. Use Question 2 to show that if D is a convex fundamental polygon for a Fuchsian 
group, then the Euclidean closure of D on {I z I = I} may have uncountably many 
components (arrange the Sj in a manner analogous to the construction of a Cantor 
set). 

4. In the notation of Question 2, let S 1 and s- 1 be given by I arg(z) - n I ~ n/4 and 
I arg(z) I ~ n/4 respectively. By constructing Sj, S _ j accumulating at the end-points of 
S 1 but not at S _ 1 , show that an improper vertex of a convex fundamental polygon for 
G may be a limit point of G. 

§9.4. The Dirichlet Polygon 

In this section we describe a particular construction of a convex fundamental 
polygon and this establishes the existence of such polygons for any Fuchsian 
group. Let G be a Fuchsian group acting in ~ and let w be any point of ~ 
that is not fixed by any elliptic element of G. For each g in G (g "# J) define 

Lg(w) = {z E~: p(z, w) = p(z, gw)} 
and 

Hg(w) = {z E~: p(z, w) < p(z, gw)} 
= {ZE~: p(z, w) < p(g-l z, w)}. 

Note that Lg(w) is a geodesic (not containing w) and that Hg(w) is the half­
plane which contains wand which is bounded by Lg(w). In fact, Lg(w) is the 
common boundary of Hg(w) and Hg-l(gW): see Figure 9.4.1. 
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Figure 9.4.1 

Definition 9.4.1. The Dirichlet polygon D(w) for G with centre w is defined by 

D(w) = n Hg(w). 
geG,g'¢l 

Sometimes D(w) is called the Poincare (or normal) polygon for G. 
Dirichlet used the construction in 1850 for Euclidean spaces and it was 
subsequently exploited by Poincare for hyperbolic spaces. 

In view of the two descriptions for H g, we can either describe D( w) as the 
set of points z which are closer to w than to any other image of w or as the 
set of points z which are, among all their images, closest to w. Observe that 

so we have a symmetry expressed by 

zeD(w) iJand only iJweD(z). 

If h is any isometry of the hyperbolic plane, then 

and, consequently (using DG(w) for D(w», 

In particular, if he G, then 

h(D(w» = D(hw). 

Theorem 9.4.2. The Dirichlet polygon D(w) is a convex fundamental polygon 
forGo 

PROOF. As each Hg(w) is convex and contains w we see that D(w) is convex 
and non-empty. 
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The rest of the proof depends on the crucial fact that only finitely many of 
the Liw) can meet any given compact subset of~: this is a direct consequence 
of the fact that if G = {go, gl' ... } then 

as n ~ +00. 

p(w, Lgn(w)) = !p(w, gn w) 

~+oo 

Now select any z in the closure of D(w). It follows that there is a compact 
disc K with centre z such that for all g, either K c Hiw) or z E Lg(w) and, 
moreover, the latter can only occur for a finite set of g. Of course, if z E D(w) 
then the second possibility cannot occur at all so K c D(w) and this proves 
that D(w) is open. More generally, we see that the boundary of D(w) is 
contained in the union of the Lg(w), hence 

h-area(oD(w)) = O. 

Next, we prove that there is a fundamental set F with 

D(w) c F c D(w). 

From each orbit G(z), we select exactly one point z* which satisfies 

p(w, z*) S p(w, gz) 

for all 9 in G: such a choice is possible as G(z) does not accumulate at w. The 
set of selected points is F: clearly F contains D(w) for if z E D(w) then we have 
no choice but to choose z* = z. 

To prove that F c D(w), select any z in F and consider the segment 
[w, z). As WE D(w), no Liw) passes through w. If Liw) meets the segment 
(w, z) then 

p(z, w) > p(z, gw) = p(g-l z, w) 

contrary to the fact that z E F. Thus no Liw) meets (w, z) and so (w, z) c 

D(w). It follows that z E D(w) so F c D(w). 
We have now shown that D(w) is a convex fundamental domain for G: it 

remains to show that D(w) is locally finite. Let K be any compact disc with 
centre wand radius r and suppose that g(D(w)) meets K: thus there is some 
z in D(w) with p(gz, w) S r. As z E D(w), we have 

p(w, gw) S p(w, gz) + p(gz, gw) 

S r + p(z, w) 

S r + p(gz, w) 

S 2r 

and this can only be true for a finite set of g. D 
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By virtue of Theorem 9.4.2, all of the results established in Sections 9.1, 
9.2 and 9.3 are va lid for Dirichlet polygons. For example, the quotient space 

D(w)/G 

is independent (topologically) of the choice of w, provided, of course, that w 
is not an elliptic fixed-point of G: this exceptional case is discussed in Section 
9.6. 

In the particular case of the fundamental polygon D(w), we can say a 
little more about the structure of the boundary. For example, we have the 
following elementary but important result. 

Theorem 9.4.3. Let {Z1' ... , zn} be any cycle on the boundary of the Dirichlet 
polygon D(w). Then 

P(Z1' w) = P(Z2' w) = ... = p(zn' w). 

PROOF. Consider, for example Z1 and Z2 on the boundary of D(w) with 
Z2 = h(z1)' As [w, Z1) c D(w) we see that 

[hw, Z2) = hew, Z1) 
c h(D(w») 
= D(hw). 

It follows that Z2 is equidistant from wand hw and so 

pew, Z2) = p(hw, Z2) 
= pew, h- 1z2) 

= pew, Z1)' 

Each side of D( w) is of the form 

s = D(w) n g(D(w)) 

= D(w) n D(gw) 

o 

and in view of our earlier description, this must be contained in Liw). 
Thus the sides of D(w) are segments of the bisectors Lg(w). For similar reasons, 
the vertices are the boundary points of D(w) where two or more bisectors Liw) 
meet. 

Let us now illustrate some of these ideas by discussing a specific example. 

Example 9.4.4. Let G be the Modular group acting in H2: we shall show 
that the open polygon P illustrated in Figure 9.4.2 is the Dirichlet polygon 
with centre iv for any v > 1. Accordingly, let w = iv with v > 1 and, for 
brevity, write D for D(iv) and similarly for Lg and Hg. 
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First, the isometries 

J(z) = z + 1, g(z) = -liz 

are in G and (as the reader can easily verify) the three geodesic sides of P 
are L f , Lf-" L g • This shows that Dc P. 

If D 1= P, then some side of D crosses P and so there is some z in D with 
h(z) E h(D) n P. It follows that z, hz E P and we shall now show that this 
cannot happen. Suppose that 

Then 

h(z)=az+b, 
cz + d 

Icz + dl2 = c21z12 + 2 Re[z]cd + d2 

> c2 + d2 - I cd I 
= (lei - Idl)2 + Icdl 

as Izl > 1 and I Re[z] I <!. This lower bound is an integer: it is non-negative 
and is zero if and only if c = d = 0 and this is excluded because ad - be = 1. 
We deduce that Icz + di > 1 (note that the strict inequality holds) and so 

Im[z] 
ImLP J = Icz + dl2 < Im[z]. 

Exactly the same argument holds with z, h replaced by hz, h- 1 and a contra­
diction is reached: thus D = P. 0 
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As D is a convex fundamental polygon, the material in Section 9.3 is 
available. We can either view D as having three sides, namely, 

S2 = [-~, 00), 

with the side-paring f(S2) = S1' g(S3) = S3 or we may adopt the alternative 
convention regarding the fix-points of elliptic elements of order two. If this 
convention is adopted, we replace S3 by the two sides 

Ss = [i, G, 
with g(S4) = ss, g(ss) = S4 and we consider i to be a vertex of D. 

As P is a fundamental polygon for G so is the polygon P 1 illustrated in 
Figure 9.4.3 (we have merely replaced a vertical strip of P by the f-image 
of this strip). Note that in this case, P 1 has (according to convention) five 
or six (but never four) sides: these are (in the case of six sides) 

S1 = [ -w, 00), 

S3 = [-w, i], 

Ss = [w, G, 

S2 = f(S1) = [1 - W, 00); 

S4 = g(S3) = [i, w]; 

S6 = fg(ss) = [(, 1 - w]. 

The cycles of vertices of P 1 are the sets 

{oo}, {i}, {n, {-w, w, 1 - w}. 

Note that the last cycle is an accidental cycle and the angle subtended by P 
at the vertex W is 1t (regardless of the convention being used). 
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Returning now to the general situation, it must be expected that certain 
properties of D(w) depend on the choice ofw and, having said this, that there 
must be certain optimal choices of w. The last result in this section describes 
some such optimal choices. 

Theorem 9.4.5. Let G be a Fuchsian group and let D(w) be the Dirichlet 
polygon with centre w. Then for almost all choices of w: 

(1) every elliptic cycle on aD(w) has length 1; 
(2) every accidental cycle on aD(w) has length 3; 
(3) every improper vertex that is an ordinary point is in a cycle of length 2; 
(4) every proper vertex has cycle length 1 and is a parabolicjix-point; 
(5) every parabolic cycle has length 1 and is a proper vertex. 

PROOF. The proof of each part follows the same pattern: if the condition (k) 
fails, then w must lie in some exceptional set Ek with area zero. If w lies outside 
the set U E j of zero area, then all five conditions are satisfied. We write D 
for D(w). 

The verification of (1) is easy. Let E1 be the union of geodesics which are 
equidistant from two (distinct) elliptic fixed points. Clearly E1 has zero area. 
If u, v are distinct elliptic fixed points in the same cycle, then p(u, w) = 
p(v, w) (Theorem 9.4.3) and so WE E 1• 

For the remainder of the proof we need the following simple lemma. 

Lemma 9.4.6. Let R(z) be any non-constant rationalfunction ofz. Then 

has zero area. 
E = {z: R(z) is real} 

PROOF OF LEMMA 9.4.6. At every point of the extended plane apart from a 
finite set Zl"'" Zn' the function R is locally a homeomorphism satisfying 
some Lipschitz condition. Thus each z (:#:z) has a neighbourhood N with 
E n N having area zero and a countable number of these N cover the plane 
with z 1, ..• , Zn deleted. 0 

We return to the proof of Theorem 9.4.3. For all f, g, h in G, distinct 
from each other and from I, we define 

R(z) = (z - gz)(fz - hz) 
(z - fz)(gz - hz) 

(for brevity, we prefer not to mention explicitly the dependence of R on 
f, g, h). Note that R may be constant (for example, if f, g and h fix 0 and 00). 
Let 

E2 = U {z: R(z) is real} 

the union being over all triples (f, g, h) for which R is not constant. By 
Lemma 9.4.6, E2 has area zero and we shall show now that if (2) fails, then 
wEE2 • 
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Suppose, then that (2) fails so that there are four distinct points u, f - lU, 

g - lU, h - lU lying in some accidental cycle on aD. Theorem 9.4.3 implies that 

pew, u) = p(fw, u) = p(gw, u) = p(hw, u) 

so the distinct points w, fw, gw, hw lie on a hyperbolic circle with centre u. 
It follows that the cross-ratio R(w) is real so WE E2 unless, of course, R is 
constant. 

We now show that R cannot be constant. If R is constant, say A, then by 
selecting some z not fixed by g,f,f-lh, g-lh we see that ,1,=1= 0, 00. Now let 
z tend to a fixed point v of g: the numerator of R tends to zero, hence so does 
the denominator and so f or h also fixes v. Suppose, then that g and f have a 
common fixed point (the same argument will be valid for h). As g and f lie 
in the Fuchsian group G, we see that <g, f) is a cyclic group generated, 
say, by p. Clearly p is hyperbolic, parabolic or elliptic depending on whether 
the orbit of any point under <g, f) lies on a hypercycle, or horocycle or a 
hyperbolic circle respectively (these possibilities are mutually exclusive). 
By assumption, then, p is elliptic and fixes the centre of the unique hyperbolic 
circle through w,gw,fw. Wededucethatfu = gu = uwhichisacontradiction 
as u lies in an accidental cycle. This proves (2). 

A similar argument establishes (3), (4) and (5). Suppose first that v is a 
proper vertex of D so there are two sides 

S2 = 15 n h(15) 

ending at v. As SI is in the geodesic bisecting the segment [w, gw] (and 
similarly for S2) it follows from Section 7.28 that v, w, gw, hw lie on a horocycle 
based at v. 

Now consider the function 

R l(z) = [v, z, gz, hz] 

(v - gz)(z - hz) 

(v - z)(gz - hz)' 

As a horocycle is a Euclidean circle, R 1 (w) is real. It follows that either R 1 

is not constant and w lies in the corresponding exceptional set of zero area 
or Rl is constant. We must show, therefore, that in the latter case each of (3), 
(4) and (5) hold. 

Suppose, then, that Rl is constant, say A where (as before) A =1= 0, 00. 

Letting z tend to v we see that g or h fixes v: by symmetry, we may assume that 
gv = v. Then, by Theorem 9.3.8, g is parabolic. This implies that the side 
g-I(St) of D also ends at v and so is precisely the side S2' This means that 
h = g-1 and v is a parabolic fixed point in a cycle of length one and this 
establishes (4) and (5) as every parabolic fixed point on aD is a proper vertex 
(Theorem 9.3.8). 

Finally, any improper vertex v that is an ordinary point belongs to a finite 
cycle VI (= v), V2, ... , Vn and D has angles e 1, ... , en at these points where 
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each () j is zero or nl2 and L () j = n. Using (4), we see that () j cannot be zero : 
thus n = 2 and this is (3). D 

EXERCISE 9.4 

1. Develop the theory of Dirichlet polygons (or, strictly speaking, polyhedra) for discrete 
subgroups of SL(2, IC) acting in H3. 

§9.5. Generalized Dirichlet Polygons 

Let G be any group of Mobius transformation which acts discontinuously 
in some G-invariant open subset L of the extended complex plane. We 
suppose that 00 ELand that 00 is not fixed by any non-trivial element in G. 
These assumptions ensure that every non-trivial g in G has an isometric 
circle Ig. Let Hg denote the exterior of Ig: then it can be shown that 

is essentially a fundamental domain for G (it need not be connected: it may 
be necessary to remove some boundary points of F G)' This is called the 
Ford fundamental region and it is apparently Euclidean (rather than hyper­
bolic) in character. 

Consider now a Fuchsian group G acting on ~ and suppose that 00, and 
therefore the origin as well, is not fixed by any non-trivial g in G. We can 
construct both F G and also the Dirichlet polygon DG(O) with centre 0 and 
we shall see shortly that 

(9.5.1) 

Note that this identifies two sets one of which is Euclidean in character and in 
no sense conjugation invariant, while the second is of essentially hyperbolic 
character and is conjugation invariant. The explanation of this lies in the 
inversive geometry of the extended complex plane and in this geometry, the 
two apparently different constructions appear as different cases of one single 
construction which we shall now describe. 

Let P be any model (e.g. ~ or H2) of the hyperbolic plane constructed 
as an open disc in the extended complex plane. Let i3P be the circle at infinity. 
Select any ( in the extended complex plane. Each conformal isometry g of P 
can be written as 

where (1/ P -+ P denotes reflection in a geodesic L j • We extend each L j 

to a circle and insist that the circle L2 contains (. Provided that g does not 
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fix ( (which we assume), this determines 0"1' 0"2, L 1, L2 uniquely and hence­
forth these special choices will be denoted by 

respectively. 
By definition, (E L:. It follows that (1= Lg else O"g' 0": (and therefore g) 

fixes (: thus there is a unique hyperbolic half-plane Hg bounded by Lg and 
containing (. Let Kg be the other half-plane bounded by Lg: see Figure 9.5.1 
where these are illustrated for a parabolic g. 

Definition 9.5.1. Let G be a Fuchsian group acting on P and suppose that ( 
(in the extended complex plane) is not fixed by any non-trivial element of G. 
Then 

TIGm = n Hg 
gEG,g*I 

is called the generalized Dirichlet polygon with centre (. 

If T denotes reflection in OP, then L: (extended) contains ( if and only it 
contains Tm (because L: is orthogonal to oP): thus we have the invariance 
condition 

(9.5.2) 

In particular, if P = L\, then 

(9.5.3) 
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Theorem 9.5.2. In addition to the assumptions made in Definition 9.5.1, 
suppose that, is an ordinary point of G. Then 0G(O is a fundamental domain 
for G in P. r-

If' E P, then 0G(O is the Dirichlet polygon DG(O' If' = 00, then 0G(O 
is the region exterior to the isometric circles of all elements of G. Finally, 
for all h, we have 

(9.5.4) 

Remark. We have deliberately used P for the hyperbolic plane rather than 
Il. or H2 in order to cope adequately with the point 00. For example, note that 
00 E OP if P = H2 but not if P = Il.. 

PROOF. If U denotes reflection in a circle L in C, then huh- 1 is the reflection 
in h(L). This fact leads directly to (9.5.4) and this is now available to simplify 
the rest of the proof. 

In the case when 'E P, we may use (9.5.4) and thereby assume that 
P = Il. and, = O. Thus 0 E Lt and so for z on Lg we have 

p(z, g-10) = p(z, ugutO) 

= p(ugz, utO) 
= p(z, 0). 

This identifies Lg with the hyperbolic bisector of the segment [0, g -10] and 
so 0G(O is the corresponding Dirichlet polygon. If, = 00, then Lt is a Euclidean straight line. Thus g acts as a Euclidean 
isometry on Lg and so Lg is necessarily the isometric circle of g. As 00 E Hg, 
we see that 0G(O is region exterior to all isometric circles. 

It remains to prove that nG(o is a fundamental domain for G in P. This is 
true if' E P as we have already identified 0G(O as a Dirichlet polygon. It 
is also true if' ¢ P U OP because of (9.5.2). 

The remaining case is when, E oP and here we may use (9.5.4) and assume 
that P = H2 and, = 00. First, 

and the bracketed term denotes reflection in ut(Lg). Thus (by the uniqueness 
of the decomposition of g - 1) 

Lg- I = u:(Lg) 
= g(Lg). 

This means that g(Hg) and g(Kg) are separated by Lg-,. As 

g-1(O = ugu:(O 

= ug(O 
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lies in Kg, we find that' E g(Kg): thus 

g(Hg) = K g -. 

and hence 

g(IIG(O) n IIG(O = 0· 
Clearly, this implies that the images of IIG(O by distinct g and h are disjoint. 

Now consider any z in H2. As 00 is an ordinary point of G, the orbit of z 
lies in some (compact) disc in the Euclidean plane and so there is necessarily 
some point z' in the orbit of z with 

Im[z'] ;?: Im[gz] 

for all gin G. As the action of g on points in Kg increases the imaginary part, 
we see that z' lies on or outside each Lg • This in turn implies that the ray 
(z', (0) lies outside every Lg and so lies in IIG(O' We deduce that every z is 
equivalent to some point in the closure of IIG(O' 0 

Remark. The proof that IIG( (0) is a fundamental domain can be written 
in Euclidean terms involving computations of derivatives: for example, 

Hg = {z: Ig(l)(z)1 < I}. 

It seems preferable, though, to use the intrinsic method given above. 

In conclusion, observe that if P = ~ and , = 0, then from (9.5.3) and 
Theorem 9.5.2 we have 

which is (9.5.1). 

EXERCISE 9.5 

DG(O) = IIG( (0) 

= ~nFG' 

1. Using the notation in the text, let O'~ denote the reflection in L~ (= g(Lg)). Prove that 

2. Prove that 9 is elliptic, parabolic or hyperbolic according as L g , L: are intersecting, 
parallel or disjoint respectively. Show that 

(i) if 9 is elliptic then it fixes the common point of Lg and L: ; 
(ii) if 9 is parabolic then it fixes the common point of tangency of L g , L: ; 

(iii) if 9 is hyperbolic then its fixed points are inverse points with respect to L g , L: 
and Lg-l. 

3. Let 9 be parabolic and not fixing 00 and let rn be the radius of the isometric circle of 
gn' Prove that I'n = rl/lnl· 

4. Let I and I' be the isometric circles of some hyperbolic 9 (not fixing 00) and 9 -I. 

Show that g(/) = I'. Compare the images of I and I' under gn with the isometric 
circles of gn and g-n. 
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§9.6. Fundamental Domains for Coset 
Decompositions 

Let G be a Fuchsian group acting in ~ and let H be a subgroup of G. It is 
often convenient to construct a fundamental domain for G with special 
reference to H and with this in mind, we suppose that G has a coset decompo­
sition 

(9.6.1) 
n 

The essence of the construction is to find an H -invariant set L such that the 
sets giL) tesselate ~: if the H-images of some D tesselate L, then D is a 
fundamental domain for G in ~. 

Suppose now that the set L is stable under the action of H: that is, g(L) = L 
when 9 E Hand g(L) n L = 0 otherwise. Each coset gnH determines the 
corresponding set giL) uniquely (and independently of the choice of 
representative gn) and if m "# n, then 

(9.6.2) 

because (gm)-lgn ¢ H. We make one other assumption, namely 

These last two statements are reminiscent of the definition of a fundamental 
domain, however here they are with reference to the action of coset representa­
tives rather than all elements of G. 

Theorem 9.6.1. Let G be a Fuchsian group acting in ~ and let H be a subgroup 
of G with coset decomposition (9.6.1). Suppose that II is a convex fundamental 
polygon for H and that a convex open polygon L of ~ satisfies 

(1) L is stable under the action of Hand 

(2) 

Then II n L is a fundamental domain for G in ~. 

PROOF. First, II n L is open and convex and its boundary has zero area. It 
is necessary to show that 

U g(fi n!) = ~ (9.6.3) 
gEG 

and, if f and 9 are distinct elements of G, then 

g(ll n L) n f(ll n L) = 0. (9.6.4) 



§9.6. Fundamental Domains for Coset Decompositions 239 

If Z E.1, then by (2), there is some n with g;; l(Z) in t. Only finitely many 
H-images of II meet some neighbourhood of g;; l(Z) and so for some hn in H, 

hnU;; l(Z) E n. 
Also, as g;; l(Z) E t, we have 

hng;; l(Z) E hn(f.) = f. 

and so hng;; l(Z) E n n t: this verifies (9.6.3). 
Finally, suppose that (9.6.4) fails so that 

f(II n ~) n g(II n ~) =f. 0. 

From (9.6.1) we can write 

and then 

We deduce from (9.6.2) that gn = gm so 

hill) n hm(II) => g;; l(f(II n ~) n g(II n ~)) 

=f. 0. 

As II is a fundamental domain for H we deduce now that hn = hm so f = g. 
D 

We consider three examples: in these, H is a parabolic, elliptic and hyper­
bolic cyclic subgroup of G. 

Example 9.6.2. Suppose that H = (h) where h is parabolic. By considering 
a conjugate group we may suppose that G acts on H2 and that h(z) = z + 1. 
Every element in G - H has an isometric circle and we let ~ denote the set 
of points having some neighbourhood not meeting any isometric circle. It 
is easy to see that the hypotheses of Theorem 9.6.1 are satisfied (as a guide, 
see Section 9.5 or, for full details, see [52], p. 58) and so a fundamental domain 
for G is (for example) the set of z outside all isometric circles and lying in some 
strip {x + iy:y > O,xo < x < Xo + I}. 

Example 9.6.3. Suppose that H = (h) where h is elliptic. We may suppose 
that G acts on .1 and that h(z) = e27t;/nz. Again, we take as ~ the points in .1 
which are exterior to all isometric circles: equivalently, we follow the con­
struction of the Dirichlet polygon with centre 0 and define ~ as the intersec­
tion of the half-planes 

{z E.1: p(z, 0) < p(z, gO)} 
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taken over all g with gO '# O. A fundamental domain for H is a sector of <'1, 
say 

IT = {z: 0 < arg z < 0 + 2n/n} 

(for any 0) and IT n ~ is a fundamental domain for G. 

Example 9.6.4. Suppose that H = <h) where h is hyperbolic. We shall also 
suppose that h is a simple hyperbolic element so the axis A of h is stable under 
H. If g 1'. H then A and g(A) are disjoint and the set 

Kg = {z: p(z, A) <-p{z, gA)} 

is a half-plane. It is easy to see that ~ defined by 

~ = n Kg 
g¢H 

satisfies the conditions of Theorem 9.6.1 and taking any suitable IT (for 
example, the region bounded by geodesics Land gL orthogonal to A) we 
obtain a fundamental domain for G. 

EXERCISE 9.6 

1. Verify the details of Examples 9.6.2, 9.6.3 and 9.6.4. 

2. Show that any cycle on the boundary of the fundamental domain D constructed in 
Example 9.6.2 necessarily lies on some horocycle based at 00. 

§9.7. Side-Pairing Transformations 

Let G be a Fuchsian group and P a convex fundamental polygon for G. We 
have seen that the side-pairing elements of P generate G (Theorem 9.3.3); this 
short section is devoted to characterizing those primitive elements of G 
which can arise as side-pairing elements of some choice of P. 

Each primitive elliptic element and each primitive parabolic element in 
G pair sides of some fundamental domain (indeed, of some Dirichlet polygon): 
this follows from Examples 9.6.2 and 9.6.3 or from Theorem 9.4.5 and 
Corollary 9.2.9. The problem, then, is to characterize the primitive, side­
pairing hyperbolic elements in G. 

Theorem 9.7.1. Let g be a primitive hyperbolic element of a Fuchsian group 
G and let A be the axis of g. Then g pairs sides of some convex fundamental 
polygon P if and only iffor all h in G, either h(A) = A or h(A) n A = 0. 

PROOF. Suppose first, that h(A) = A or h(A) n A = 0 and define 

H = {hEG: h(A) = A}. 
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Then H contains all powers of g: the only other elements that H can contain 
are elliptic elements of order two with fixed point on A. Exactly as in Example 
9.6.4, we can construct a set L satisfying the conditions of Theorem 9.6.1. 
We may assume that G acts on H2 and that g(z) = kz. If H is cyclic it is 
generated by 9 and we can take 

n = {zEH2: 1 < Izl < k}: 

if H is not cyclic it is generated by 9 and some elliptic element of order two 
which we may assume fixes i.jk and we then take 

n = {zEH2: 1 < Izl < k, Re[z] > O}. 

In both cases, 9 pair sides of n n L that contain arcs of I z I = 1 and I z I = k, 
respectively. 

To prove the necessity of the condition on h and A we suppose that 9 
pairs two sides sand s' of some P. Choose a point w in the relative interior 
of s and not fixed by any non-trivial element of G; let y = [w, gw]. Then y 
lies in P apart from its end-points wand gw. The curve 

r = U g"(y) 

" 
is a simple g-invariant curve in ~ which (because y is compact) has as end­
points the fixed points u and v of g. Note that the axis A of 9 also has these 
properties. 

Now suppose that h(A) n A ¥ 0, thus there is some h in G such that the 
geodesics A and h(A) cross or are equal (they cannot be parallel by Theorem 
5.1.2). Suppose that A crosses h(A). This means that the curves rand h(r) 
also cross each other, say at the point (in~. It follows that for some Zl and 
Z2 in y and some m and n, we have 

so 

Now the only two distinct points of y which are G-equivalent are wand gw 
so either Zl = Z2 or Zl = gZ2 or Z2 = gZl' In all cases some gihgi fixes some 
point of y. By construction, no point of y is fixed by any non-trivial element of 
G so h is some power of g. This implies that h(A) = A. 0 

In view of Definition 8.1.5, we have shown that the only side-pairing 
elements of G are elliptic, parabolic and simple hyperbolic elements. 
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§9.8. Poincare's Theorem 

Any Fuchsian group G acting on the unit disc d has a convex fundamental 
polygon P. The action of G on P tesselates d and there is a collection of side­
pairing maps gs which generate G. Moreover, the sum ofthe interior angles of 
P at points of a cycle is a certain submultiple of 2n (Theorem 9.3.5). Poincare's 
Theorem is concerned with reversing this process and so provides a method 
of constructing Fuchsian groups. Suppose that one starts with a polygon P 
and a collection of side-pairing maps. We use these maps to generate a group 
G. Next, we formulate the notion of a cycle (at this stage we do not know 
whether or not this cycle is the intersection of P with a G-orbit) and we impose 
a suitable angle condition on each cycle. The aim is to prove that G is discrete 
and that P is a fundamental domain for G. 

As these ideas arise in other geometries and in other dimensions it seems 
worthwhile to proceed in a fairly general manner. We shall include hypo­
theses as they are needed and only at the end shall we give a definitive 
statement of the result. The argument that we shall use may be summarized 
as follows. First, we construct a space X* which is tesselated by the group 
action: then we attempt to identify this tesselation of X* with the G-images 
of the polygon P in the original space. 

We begin by constructing a tesselated space. Let X be any non-empty 
set. We assume 

(Al) P is an abstract polygon in X. 

By this, we mean that P is a non-empty subset of X which has associated with 
it a non-empty collection of non-empty subsets Si of X called the sides of P. 
The union of the sides is denoted by 8P: we insist that P and 8P are disjoint 
and we write 

p = P u 8P. 

We also assume 

(A2) there is a side-pairing <I> of P. 

Explicitly, this means that there is an involution (or self-inverse) map 
s ~ s' of the set of sides of P onto itself and associated with each pair (s, s'), 
there is a bijection gs of X onto itself with 

g.(s) = s' 

and 

gs' = (g.)-l. 

Now let G be the group generated by the gs and form the Cartesian 
product G x p, It is helpful to think of G x P as a collection of disjoint 
copies 

(g, P) = {(g, x): x EP} 
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of P indexed by G (like pieces of a jigsaw separated from each other) and to 
think of (g, x) as the point g(x) viewed from within g(P). We now join these 
copies together along common edges as dictated to us by the group G. 
Observe first that the map hgsh- l may be viewed as a map of the side h(s) of 
h(P) onto both: 

(i) the side h(gss) of h(P); and 
(ii) the side (hgs)(s) of (hgs)(P). 

Writing 9 = hg .. we therefore wish to identify (g, s) with (h, gss). This 
identification is achieved by defining the relation '" on G x P by 

if and only if either: 

(i) 9 = h, x = y; or 
(ii) XES, Y = g.(x), 9 = hgs. 

(g, x) '" (h, y) 

This relation is symmetric and reflexive (but not necessarily transitive) and 
it extends to an equivalence relation * on G x P by defining 

(g, x) * (h, y) 

if and only iffor some (gi' x) we have 

(g, x) = (gl' Xl) '" (g2, X2) '" ... '" (gn, Xn) = (h, y). 

The equivalence class containing (g, x) is denoted by (g, x) and the 
quotient space (of equivalence classes) is denoted by X*. Note that if 

(g, x) = (h, y) 

then 

g(x) = h(y) 

and 

(fg, x) = (fh, y). 

In addition, if x E P, then 

g = h, x = y. 

These facts holds for '" and hence for *. 
Each f in G induces a map f*: X* ~ X* by the rule 

f*: (g, x) H (fg, x) 

and this is well defined by (9.8.2). It is clear that 

(f-l)* = (f*)-l 

and 

(fh)* = f*h* 

(9.8.1) 

(9.8.2) 

(9.8.3) 
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so the group G* of all such f* is a group of bijections of X* onto itself and 
fr--+ f* is a homomorphism of G onto G*. In fact, this is an isomorphism 
for if f* = h*, select x in P and observe that 

<f, x) = f*<I, x) 
= h*(I, x) 

= <h, x). 

As x E P, (9.8.3) implies that f = h. 
If we now define 

<P) = (<I, x): x E P} 

and similarly for <P) we find that the action of G* on <P) tesselates X* in 
the sense that 

U g*<P) = X* (9.8.4) 
g* 

and, if g* "# h*, then 

g*<P) n h*<P) = 0: (9.8.5) 

the proof is trivial. 
The relevance of this tesselation to the original problem is easily explained. 

By (9.8.1) there is a natural map 0:: X* --+ X given by 

o:<g, x) = g(x) 

and we have the following result. 

Proposition 9.S.1. (i) If 0: is surjective, then 

U g(P) = X. 
gEG 

(ii) If 0: is injective, then for distinct 9 and h in G, 

g(P) n h(P) = 0. 

Again, the proof (which uses only (9.8.4) and (9.8.5)) is trivial and is 
omitted. Note that so far, there has been no mention of topology. 

We now introduce topologies: explicitly we make the following assump­
tions. 

(A3) X is a metric space with metric d; 
(A4) the gs are isometries of X onto itself; 
(AS) P is open and connected. 

In order to analyse the map 0: and so use Proposition 9.8.1, we introduce 
the natural maps 

[3: G x P --+ X*, 

y: G x P --+ X, 



§9.8. Poincare's Theorem 

given by 

Note that 

{3(g, x) = <g, x), 

y(g, x) = g(x). 

y = r:t..{3 

so the following figure is commutative. 

G x P --....:.p--~. X* 

X 

Figure 9.8.1 

245 

(9.8.6) 

We give G the discrete topology, G x P the product topology and X* the 
quotient topology. The quotient map {3 is automatically continuous. Next, y 
is continuous for if A is open in X, then 

y-l(A) = U {g} x (g-1(A)nP) 
9 

and this is open in G x P. Finally, as y is continuous, then so is r:t.. because 
r:t..- 1(A) is open in X* if and only if p- 1r:t..- 1(A) is open in G x P. 

Each J in G induces a map 1: G x P --+ G x P by the rule 

1: (g, x) ~ (fg, x). 

Trivially, the J are homeomorphisms of G x P onto itself, the group of 
such J is isomorphic to G and 

so 

{3J = J*{3, 

yJ = fy, 

r:t..J*{3 = yJ = fy. 

In addition, if A is an open subset of X*, then 

p-1(f*)-1(A) = (f)-1{3-1(A), 

(9.8.7) 

which is open in G x P. We deduce that (f*)-1(A) is open in X* so J* is 
continuous. As (f*) - 1 = (f -1 )*, we see that the J* are homeomorphisms 
of X* onto itself. 

The final assumption replaces the intuitive angle condition by a formal, 
dimension free condition which enables us to express the formal details of the 
proof easily. We require a condition which guarantees that at each point x 
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of ap there is a (local) tesselation of some neighbourhood of x. This condition 
must express the fact that the geometry of this local tesselation is consistent 
with the equivalence relation * and nothing less than this can be adequate. 

In order to express this condition concisely, suppose for the moment that 

<1, x) = {(gl, Xl),···, (gn, xn)}· 

Then some (gj' x) is (I, x) and 

gl(Xl) = ... = gixn) = I(x) = x. 
If 

N j = {y E P: d(y, x) < e}, 

(this is the ball in P with centre Xj and radius e), then the sets giN) are 
subsets of giP) and have the point x (=gix) in common. As the gj are 
isometries, 

giN) C {YEX:d(y,x) < e} 
= B(x, e), 

say, and we wish to impose the condition that for all sufficiently small e 
the sets giN) tesselate B(x, e). Formally, we assume 

(A6) Each x in P has a finite equivalence class 

<1, x) = {(gl, Xl),···, (gn, xn)}· 

In addition,jor all suffiiently small e, 

n 

U giN) = B(x, e) 
j= 1 

and, moreover,for each win B(x, e), the set of points in U (gj' N) which 
map by y to w is an equivalence class. 

Observe that the result that we are seeking can be expressed by saying 
that the set of points in G x P which map by y to any w in X is an equivalence 
class (so 0( is a bijection). Thus (A6) appears as a natural local version of the 
desired global result. Also, observe that as <f, x) is the image of <1, x) 
under f*, each equivalence class is finite. 

Let us write 

W= U(gj,N), 
j 

v = P(W). 

The condition (A6) implies that y(W) = B(x, e) and also that W is a union 
of equivalence classes. In other words, 

P-l(V) = P-l(PW) = W 

and we deduce that V is open in X*. 
To complete the details of the proof we need the following result. 

Proposition 9.8.2. The sets f*( V) are a base for the topology of X*. 
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PROOF. We know that the sets f*(V) are open. Suppose that A is an open 
subset of X* and that <f, x) EA. Writing <1, x) as in (A6) we find that 

(f, x) = {(fgl, Xl), ... , (fgn, xn)}· 

As f3 is continuous, 

heG 

where each Ah is open in F. As (fgj, Xj) is in f3- l(A), we see that Xj E Ah 
when h = fgj so for these h, we have Ah "# 0. Now choose e sufficiently small 
so that (A6) is applicable and that N j c Ah when h = fgj (this is possible 
as j takes only the values 1, ... , n and these Ah are open and non-empty in 
F). Clearly, this means that 

and so 

J(W) = U (fgj, N) c P-l(A) 
j 

f*(V) = f*f3(W) 

= f3J(W) 
cA. 

As (I, x) E W, so <f, x) (which is f3j(I, x» lies in f*f3(W) and this is f*(V). 
o 

We proceed now with the general discussion. First, by (9.8.7), 

ocf*(V) = ocf*f3(W) 

= fy(W) 
= B(fx, e). 

Thus oc maps each f*(V) to an open set and so oc: X* ~ X is an open map. 
Next, if u and v are in f*(V) and if oc(u) = oc(v), then choose points u' 

and v' in J(W) with f3(u') = u, f3(v') = v. Thus 

y(u') = ocf3(u') = ocf3(v') = y(v') 

and so by (A6) (after referring the problem back to W), u' and v' are in the 
same equivalence class: hence 

u = f3(u') = f3(v') = v. 

We deduce that oc is a bijection, and hence a homeomorphism, of each f*(V) 
onto fy(W). 

Next, X* is Hausdorff. To see this, take distinct points 

<f, x) = {(fl, Xl), ... , (In, Xn)}, 

<g, y) = {(gl, Yl),···, (gm, Ym)} 

in X*: as these are distinct points in X*, they are disjoint subsets of G x F. 
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Now choose the Ni corresponding to <1, x) as in (A6) and let M j be the 
corresponding sets for <1, y). We may choose the Ni and M j so that the 
sets 

U (/;, N;), (9.8.8) 
i 

are disjoint in G x P (if /; #- gj then (/;, N i) and (gj' M) are disjoint: if 
/; = gj then Xi #- Yj and we can insist that Ni and M j are disjoint). Because 
the disjoint sets (9.8.8) are each a union of equivalence classes, it follows 
that their fj-images are disjoint (and open): thus X* is Hausdorff. 

Finally, X* is connected. Indeed, as P is connected, so are (g, p) and its 
fj-image <g, P). Observe that if x E Sf then 

so 

<g, p) n < <gg" p) #- 0. 

We deduce that 

<g, p) u <gg" p) 

is connected: hence so is X* as each g is a product of the gs. The next result 
is a summary of the results obtained so far. 

Proposition 9.8.3. X* is Hausdorff and connected. Also, every x* in X* has 
an open neighbourhood N* such that the restriction of CI. to N* is a homeo­
morphism of N* onto an open subset of x. 

Let us specialize now to the case of major interest to us. We suppose 
that (X, d) is the hyperbolic plane with the hyperbolic metric (the argument 
will work equally well in the Euclidean plane or in the sphere S2), that P is a 
hyperbolic polygon (possibly with vertices and free sides on the circle at 
infinity: these are not in X) and finally, that <I> is some given set of side­
pairing isometries. Our aim is to deduce that G is discrete and that P is a 
fundamental polygon for G. Note that (Al)-(A5) hold and that there is no 
need to check (A6) at points on the circle at infinity. 

The condition (A6) is easily restated in a simpler form. If x is in P, choose 8 

so that the open disc N with centre x and radius 8 lies in P. For each y in N, 
the equivalence class 0, y) contains only (1, y) and (A6) holds trivially for 
this choice of x. Next, suppose that x is in the interior of a side s. Then x is 
on a unique side of P and this leads immediately to the fact that 0, x) 
contains precisely (1, x) and (gs-l, gsx). It is clear that (A6) holds in this 
case too (with W being the union of two semi-discs) provided that gl (N 1) 
u gz(N2 ) is a neighbourhood ofx (which we shall assume implicitly). 
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We now see that (A6) may be rewritten in terms of the vertices of Palone: 
indeed, (A6) is now equivalent to 

(A6)' for each vertex x of P, there are vertices Xo (=X), Xl' ... , Xn of P 
and elements fo (= 1), ... ,fn of G such that the sets jj(N j) are non­
overlapping sets whose union is B(x, 8) and such that each jj+ 1 is of the 
form jjgs for some s (j = 1, ... , n; fn+ 1 = J). 

We also assume 

(A 7) the 8 in (A6) can be chosen independently of x in P. 

This last assumption ensures that each curve in X can be lifted to a 
curve in X* (for each point can be referred back to P and then lifted for at 
least a distance 8) and so (X*, Q() is a smooth unlimited covering surface of X, 
Q( mapping X* onto X. As X is simply connected, the Monodromy Theorem 
implies that Q( is now a homeomorphism and the desired result follows from 
Proposition 9.8.1. We have proved 

Theorem 9.8.4 (Poincare's Theorem). For a polygon P with a side-pairing <I> 
satisfying (A6)' and (A 7), G is discrete and Pis afundamental polygon for G. 

Remark. If P has no vertices in X, then (A6)' is automatically satisfied. 
However, (A 7) need not hold. 

Example 9.8.5. Let P be a polygon with r sides and angles n/nj at the vertices 
Vj in X (j = 1, ... , r). For each side s let gs be the reflection across s: denote 
these maps by g1> ... , gr' Then (A6)' holds (see Figure 9.8.2) and (A 7) holds 
(essentially because P is compact). Thus P is a fundamental polygon for G. 

Figure 9.8.2 
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Later, we shall need the following result and this is closely related to 
Poincare's Theorem. Let P be an open hyperbolic polygon in d and let <l> 
be a side-pairing of P. We shall always assume that if x is an interior point 
of a side s with corresponding point y = g.(x), then for any choice of neigh­
bourhoods N x and Ny relative to P of x and y respectively, the set 

N x u (gs)-l(Ny) 

is a neighbourhood of x (thus N x and (gs)-l Ny lie on different sides of s 
near x). 

Finally, for each Z and each g, define 

8(z) = L 8y(z), 
gEG 

where 8y(z) is the angle subtended at z by g(P). If z E g(P) then 8y(z) = 2n; 
if z ¢ g(p), then 8g(z) = o. 

Theorem 9.8.6. Let P be a hyperbolic polygon with compact closure in d and 
let <l> be a side-pairing satisfying the assumption given above. If the group G 
generated by the side-pairing elements is discrete, then 8(z) is constant, say 
2nk, on d, k is an integer and 

h-area(P) = k h-area(d/G). 

PROOF. Let V be the set of all images of all vertices of P: by the discreteness of 
G, V contains only isolated points in d. Let B be the union of all images of 
(JP: by discreteness, B is a closed subset of d and obviously, V c B. 

The set d - B is open so is a disjoint union of domains, say d j • By 
definition, each d j either lies inside g(P) or is disjoint from g(P) so 8g is 2n 
throughout d j or it is zero throughout d j . We deduce that 8(z) is constant 
on each d j , say equal to 2nkj there where k j is an integer. 

Next, consider w in B - V. The side-pairing assumptions ensure that 
there are pairs of distinct elements (gj' gj), say, (j = 1, ... , n) such that w 
lies interior to a common side of g/P) and gj(P) and that for all other g, 
8y(z) is constant (0 or 2n) near (that is, in a neighbourhood of) w. By dis­
creteness, we can choose one such neighbourhood, say N, valid for all other 
g. Each term 

8gj(z) + 8g j(z) 

is constant (namely 2n) near w: thus 8(z) is constant near w. We conclude 
that 8/2n is continuous and integer valued on the domain d - V. As V 
contains only isolated points, 8 is constant on d - V. A similar argument 
holds for w in V; however, this is of no consequence. 

Finally, let Q be any open fundamental polygon for the discrete G and 
for any set A, let XA be the characteristic function of A. For almost all z in 
d, we have 
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Also, for almost all z in ~, 

k = L Oy(z)/2n 
9 

Thus (writing fJ. for hyperbolic area and taking all integrals over M we have 

fJ.(P) = f Xp(z) [~ Xg(QlZ)] dfJ.(z) 

= ~ f Xp(z)xg(Qlz) dfJ.(z) 

= ~ f xg-'(plw)xQ(w) dfJ.(w) 

= g'5;., f Xg-'(P)(w)XQ(w) dfJ.(w) 

= f XQ(W)[t Xh(P)(W)] dfJ.(w) 

= kfJ.(Q). D 

In fact, Theorem 9.8.6 says that if we identify the sides of P we obtain a 
branched covering of the compact space ~/G: thus the covering is a k - 1 
map for some k. 

EXERCISE 9.8 

1. The proof of Poincare's Theorem remains valid if (A 7) is replaced by: (A 7)' there 
exists a positive e such that for all x in P there is a single valued branch of r'L 1 in 
B(x, e). 

Show that the application in Example 9.S.5 remains valid if some of the Vj now lie 
on the circle at infinity (the Vj are now fixed by a parabolic elements in G and a horo­
cyclic disc at Vj is suitably tesselated). 

2. Generalize the ideas in Question 1 to include arbitrary polygons with some vertices 
on the circle at infinity provided that these are fixed by parabolic elements in G 
(but see Question 3). 

3. The condition concerning parabolic elements in Question 2 is essential. Show (for 
example) that g: z ~ 2z is a side-pairing of 

P = {zEH2: 1 < Re[z] < 2} 

but that P is not a fundamental domain for G (= (g» in H2. 
Show, however, that Poincare's Theorem is applicable to this P and G if G is 

considered to act on the first quadrant with the metric ds = (I z I/xy) 1 dz I· 
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4. Let X = IC - {O} with metric ds = Idzl/lzi. For () in (0, 2n), let 

P = {ZEX: 1 < Izl < 3,0< arg(z) < (}}. 

Divide 8P into four sides in the obvious way and generate G from the side-pairing 
isometries 

g(z) = 3z, 

Examine the case () = 2nplq where (p, q) = 1 by reference to the covering surface X* 
(which exists even if X is not simply connected). One can view this as a multiple 
tesselation of X. 

§9.9. Notes 

There are other constructions of fundamental polygons and, in particular, 
of polygons which relate to a particular defining relation (a product of 
commutators) of a group with compact quotient space. For further informa­
tion see, for example, [46], [47], [52], [70], [85], [86] and [114]. For other 
information on convex fundamental polygons, see [71], [72], [73] [83]: 
for recent treatments of Poincare's Theorem (Section 9.8) see [24] [48] and 
[62]. Theorem 9.8.6 occurs in [48]. 



CHAPTER 10 

Finitely Generated Groups 

§10.1. Finite Sided Fundamental Polygons 

We recall that a side s of a convex fundamental polygon P is a segment of 
the form P n g(P) (except that this set may be considered as two sides when 
g is elliptic and of order two). By an edge of P we mean a maximal geodesic 
segment in 8P. We must distinguish carefully between sides and edges and 
to convince the reader of the necessity of this, we begin with an example in 
which one edge contains infinitely many sides. 

Example 10.1.1. We work in H2. For n = 0, 1,2, ... , let en be the geodesic 
with end-points 1 + 4n and 3 + 4n and let e~ be its reflection in the 
imaginary axis. For each n, let gn be the hyperbolic element that preserves 
H2 and that maps the exterior of en onto the interior of e~ and let G be the 
group generated by the gn. By Poincare's Theorem (Section 9.8), the region 
exterior to all of the en and e~ is a fundamental domain for G. 

Now let D be the region in the second quadrant exterior to all of the e~ 
and let 

Dn = {x + iy: x> 0, y > 0,4n < Izl < 4(n + 1), Iz - (4n + 2)1 2:: 1}: 

see Figure 10.1.1. It is clear that 

P = D u (90 gn[Dn u en] ) 

is a convex fundamental polygon for G and that the positive imaginary 
axis is a single edge e of P. However, for each n, 

g;; l(p) n P = [4in,4i(n + 1)] 

and so the edge e contains infinitely many sides of P. 
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4i(n + 1) 

D 4in 

g.(D.) 
C' • 

Figure 10.1.1 

In view of the preceding example, and as we are about to make claims 
about the number of sides of a polygon, the distinction between edges and 
sides must be kept clear. 

Theorem 10.1.2. Let G be a non-elementary Fuchsian group with Nielsen 
region N. Then the following statements are equivalent: 

(1) G is finitely generated; 
(2) for any convex fundamental polygon P of G, h-area (P n N) < + 00; 
(3) there exists a convex fundamental polygon of G with finitely many sides; 
(4) every convex fundamental polygon of G has finitely many sides. 

PROOF. Obviously, (4) implies (3). Now assume that (3) holds and let P be 
a finite sided convex fundamental polygon. Each closed free side 
Ai (i = 1, ... , m) of P lies in the interior of an interval of discontinuity (Ji 
which determines a half-plane Hi containing N (see Section 8.5). Then 

is a finite sided polygon with no free sides and so has finite h-area. As PI 
contains P n N, we see that (2) holds for this choice of P. However, as N 
is G-invariant, it is easy to see that h-area (P n N) is independent of the 
choice of P and (2) follows. 

Next, we prove that (2) implies (1). First, write Q = P n N. It is clear 
that N meets 8P and as N is G-invariant, Q contains all or none of the points 
in a cycle on 8P. Suppose that Q contains (perhaps as a proper subset) 
cycles C 1, ••• , Ct of vertices in ~ n 8P and also points w1, ••• , Wn on 8~ 
and let Qo be the polygon whose set of vertices is 

(Qo is the convex hull of a finite set of points on the boundary of a convex 
set). By convexity, Qo c Q so the sum of the interior angles of Qo at its 
vertices is not greater than the sum of the interior angles of Q at the same 
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points. If the cycle Cj has length tj and order qj' we deduce from Section 
7.15 that 

h-area(Q) ~ h-area(Qo) 

~ n[n + tl + ... + tt - 2] - 2n(~ + ... +!) 
ql qt 

= n(n - 2) + n L (t j - ?:). 
j qj 

It is convenient to adopt here the convention that an elliptic fixed point of 
order two and cycle length one is not a vertex. With this convention, each 
cycle C j is either accidental (and tj ~ 3, qj = 1) or elliptic (and tjqj ~ 3). 
In all cases, then, 

2 tj 1 
t'-->->-3 

J qj - 3 -

so 

3n + t < 6 + (3/n) h-area(Q). 

It follows that only finitely many sides of P (in either convention) meet Q. 
Now let gs be those side-pairing maps of P for which the corresponding 

sides meet Q: there are only finitely many such gs and it is only necessary to 
show that these generate G. We select any gin G and, by the convexity and 
invariance of N, we can join two points, one in Q and the other in g(Q), by 
a segment (1 in the convex set N. We may assume that (1 does not meet any 
image of any vertex of P; then (1 crosses, in turn, the images 

P, gl(P)"", gn(P), 

where g = gn' As 

is a geodesic segment, so is 

- 1-P (") (gj+l)- gj(P) (") N, 

(because N is G-invariant) and so each (gj+ l)-lgj is some gs. This proves 
that (2) implies (1). 

Next, we prove that (1) implies (3): a proof that (3) implies (4) will be 
given in the next section and this will then complete the proof of Theorem 
10.1.2. We assume that (1) holds and let D be the Dirichlet polygon with 
centre at the origin (which we may assume is not an elliptic fixed point of 
G). The idea of this part of the proof is first to show that the Euclidean 
boundary of D on all has only finitely many components (so the surface 
Il/G has only finitely many "ends"). This allows us to express D in the form 

D = K U Dl U ... u Dn , 
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where K is a compact subset of ~ and where each Dj is a subdomain of ~ 
whose boundary on a~ is connected. It is then only necessary to show that 
only finitely many sides of D meet each Dj for this is certainly true of the 
compact set K. Actually, it is not essential for the proof to show that the 
boundary of Dj on a~ is connected but the proof of this is very easy and it 
can only increase the general understanding of the ideas involved. 

The side-pairing elements of D generate G and so each element of some 
finite generating set (which exists by (1)) is a finite word in the side-pairing 
elements of D. It follows that a finite number of side-pairing elements 
generate G: let these be g l' ... , gt. 

Choose some r in (0, 1) such that the disc {I z 1 :s; r} contains arcs (of 
positive length) of each of the sides of P paired by g l' ... , gt. Let 

K = 15 n {z: Izl < r} 

(it is more convenient to take this K rather than its compact closure) and let 

G(K) = U g(K). 
9EG 

Observe that for each j, the set K u g/K) is connected (K is convex) and 
hence so is each 

Because the gi generate G, this implies that G(K) is connected. 
We may choose r in (0, 1) so that the circle {I z 1 = r} does not meet any 

vertex of D and so that it is not tangent to any side of D. Then 

15 n {z: Izl = r} = 0'1 U ... U 0'" 

where the O'j are pairwise disjoint closed arcs of {Izl = r} lying, apart from 
their end-points, entirely in D. Note that by Theorem 9.4.3, the collection 
of end-points of all the O'j are also paired by the side-pairing maps. This 
implies that each end-point of each O'j is the end-point of some h(O'i) for a 
unique h and unique O'i' The same is true of each h(O';) and of each sub­
sequent image of the O'i' and we deduce that each O'j lies in a simple arc rj 
comprising of images of the O'i' Because there are only finitely many O'i' 
the arcs rj contain images of the same O'i and the uniqueness of the con­
struction of the rj implies that rj is invariant under some non-trivial element 
hj of G. Note that rj consists of the images of a compact arc under iterates 
of hj • If hj is elliptic (and hence of finite order) then rj is a Jordan curve in 
~. If hj is hyperbolic, then rj is a cross-cut of ~ with the fixed points of hj 

as its end-points. If hj is parabolic, then rj is a closed Jordan curve in ~ 
apart from its initial (and equal final) point which is the fixed point of hj • 

Note that a point of K cannot be equivalent to any point of any O'j so G(K) 
does not meet any r j . 
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Izl = 1 

Jzl = r 

Figure 10.1.2 

Now let Dj be the union of Uj (a cross-cut of D) and the component of 
D-uj that does not contain the origin: see Figure 10.1.2. Observe that rj 
separates Dj and G(K) in d. 

It is easy to see that Dj n ad is connected. Indeed, if u and v are distinct 
points in this set, construct a curve by joining u to ru (on u) radially, then 
ru to rv in Uj and finally, rv to v radially. This curve, which we denote by 
T: j , lies in D and does not meet G(K). If h (oF I) is in G, then h(D) ~o~s ~ot 
meet T:j and so lies on the same side of T: j as does G(K). We deduce that the 
region L j illustrated in Figure 10.1.3. does not meet any h(D), h oF I, and 
so lies in D. This shows that Dj n ad is connected. 

We now return to the classification of the hj stabilizing rj and complete 
the proof. If hj is elliptic, then rj is a Jordan curve in d so one component 
of d-rj has a compact closure in d. If this component is Dj , then only 
finitely many sides of D meet Vj.lfthis component is not Dj , then it contains 
G(K) and so G is finite: then the Dirichlet polygon for G obviously only 
has a finite number of sides. 

Suppose next, that hj is hyperbolic so rj is a cross-cut of d. One compo­
nent of d-rj contains G(K) (and hence the orbit of the origin) and so every 
limit point of G lies in the closure of this component. The other component 
of d-rj contains Dj and there are no limit points on the open arc of ad that 
bounds this component. However, D j lies in D and so lies between the geo­
desic bisecting the segment [0, hjO] and the geodesic bisecting [0, (h)-10] 
and these separate Dj from the fixed points of hj. We deduce that the 
Euclidean closure of D j lies in the set of ordinary points of G. As the Euclidean 
diameters of images of D tend to zero (Section 9.3) we see that Vj can meet 
only a finite number of images of V and hence only a finite number of sides 
of D. 
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Figure 10.1.3 

Finally, suppose that hj is parabolic. In this case, l5j n all consists of a 
single point, namely the fixed point of hj. However, we know that two sides 
of D end at a parabolic fixed point (Theorem 9.3.8) so in this case too, only 
finitely many sides of D meet Vj • 

Subject to proving that (3) implies (4) (in Section 10.2) the proof of 
Theorem 10.1.2 is complete. D 

§10.2. Points of Approximation 

Consider a Fuchsian group G acting in ll. Let, be a limit point of G so there 
are distinct gn in G with gn{O) converging to ,. How fast (in Euclidean terms) 
can gn{O) converge to ,? Clearly, 

with equality if, for example, gn is the nth iterate of some hyperbolic 9 with 
axis equal to the Euclidean diameter [ -" n of ll. We conclude that the 
fastest rate of convergence (to within a constant factor) occurs when 

as n --+ + 00. As the terms 

/ 
Ilgnl1 2, 2 cosh p{O, gnO), 2/(1 - Ign{O)I) 
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are asymptotic to each other as n --+ 00, this fastest rate can be described in 
hyperbolic terms, namely, 

I ( - gn(O) I = O(ljcosh p(O, gnO», 

or in terms of matrices, namely, 

Moreover, it is easy to see that we can replace the origin in the first two 
expressions by any z in d. This is implicit in the next result which provides 
yet another interpretation of this fastest rate of convergence. 

Theorem 10.2.1. Let G be a Fuchsian group acting in d, let' be a limit point 
of G and let gi' g2"" be distinct elements of G. Then the following state­
ments are equivalent: 

(1) for each w in d, 

(2) for each w in d and each geodesic half-ray L ending at (, 

o(gn(w), L) = 0(1); 

(3) for each geodesic half-ray L ending at , there is a compact subset K of d 
such that for all n, 

PROOF. In general, p(gw, L) :::;; m if and only if g-l(L) meets the compact 
disc {z: p(z, w) :::;; m}: thus (2) and (3) are equivalent and for a given L, (2) 
is true or false independently of the choice of w. Further if Li and L2 are 
geodesic half-rays ending at " then for some mi' 

so (2) is also true or false independently of the choice of L. For the remainder 
of the proof, L will denote the Euclidean radius [0, 0 and L' will denote the 
Euclidean diameter (-" O. Observe that if z is close to (, then 
p(z, L) = p(z, L'). 

Suppose first that (1) holds. Then putting w = ° we obtain 

I( - gn(O) I = 0(1 - IgiO)I)· 

This implies that giO) --+ , so for all sufficiently large n, 

p(gnO, L) = p(gnO, L'). 
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If z E L1 then (from Section 7.20) we have 

. h ( L') _ 2IIm[~z]1 
sm p z, - 1 _ I(zl2 

21~z - 11 < ----;:-
- 1 - Izl2 

21z - (I 
< . 
- 1 -Izl 

Putting z = gn(O) with n large, we obtain (2) in the case w = O. As (2) is 
independent of the choice of w, we see that (1) implies (2). 

Next, let z be in L1 and closer to ( than to - ( and let v be the foot of the 
Euclidean perpendicular from z to L'. Then ( is the point on oL1 that is 
nearest to v and so 

As 

we deduce that 

Iz - (I s Iz - vi + Iv - (I 

s Iz - vi + Iv - (z/lzl)1 

s 21z - vi + Iz - (z/lzl)1 

s 21 z - v I + (1 - I z I ). 

Iz - vi = IIm[~z]l, 

Iz - (I . -- s 2 smh p(z, L') + 1 
1 - Izl 

s 2 sinh p(z, L) + 1. 

Putting z = giO) and using (2), we find that (2) implies that (1) holds with 
w = O. 

Finally, if w E L1 and 

() az + c 
gz =-­

cz + (i' 

we obtain (by direct computation) 

2 
Ig(w) - g(O) I s (1 _ Iwl) cosh p(O, gO) 

4 

- (1 - Iwl)llgI1 2' 

because 

I a I = cosh -!p(O, gO), I c I = sinh tp(O, gO). 

(10.2.1) 

We have seen that (2) implies that (1) holds when w = O. Clearly this with 
(10.2.1) yields (1) for a general w. 0 
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In view of the different characterizations of the fastest rate of convergence 
it is convenient to adopt some suitable terminology. 

Definition 10.2.2. A limit point ( of a Fuchsian group G is a point of approxi­
mation of G if for each w in ~ there is a sequence of distinct gn in G with 

I( - gn(w) 1 = 0(llgnll- 2 ). 

Theorem 10.2.3. A point of approximation of a Fuchsian group G cannot lie 
on the boundary of any convex fundamental polygon for G. 

PROOF. Suppose that a point of approximation ( lies on the boundary of a 
convex fundamental polygon P. By convexity, we can construct a geodesic 
half-ray L lying in P and ending at (. By Theorem 10.2.1(3), the images 
(gn) -l(p) meet a compact set and this violates the fact that P is a locally 
finite (see Definition 9.3.1). D 

Example 10.2.4. Every parabolic fixed point of a Fuchsian group G lies on 
the boundary of some Dirichlet region: thus a parabolic fixed point of G 
cannot be a point of approximation of G. 

For a finitely generated groups, Theorem 10.2.3 and Example 10.2.4 
give a complete description of the limit points of G. 

Theorem 10.2.5. A Fuchsian group G is finitely generated if and only if each 
limit point is either a parabolic fixed point of G or a point of approximation 
ofG. 

Remark. Let us say that the limit set A splits if it contains only parabolic 
fixed points or points of approximation of G. If G is finitely generated, then 
there exists a finite sided convex fundamental polygon for G (because (1) 
implies (3) in Theorem 10.1.2). We shall show that the existence of such a 
polygon implies that A splits. We will also prove that if A splits then every 
convex fundamental polygon for G has finitely many sides and this implies 
that G is finitely generated (because (4) implies (1) in Theorem 10.1.2). 
Observe that this reasoning shows that Theorem 10.1.2(3) implies that A 
splits and hence that Theorem 10.1.2(4) holds. Thus in proving Theorem 
10.2.5 in this way, we also complete the proof of Theorem 10.1.2. 

PROOF OF THEOREM 10.2.5. First, suppose that A splits and let P be any 
convex fundamental polygon for G. If P has infinitely many sides, then these 
sides must accumulate at some point ( on o~. As the Euclidean diameters 
of the images of P tend to zero, ( must be a limit point on OP. By Theorem 
10.2.3, ( cannot be a point of approximation of G and by Theorem 9.3.8, 
( cannot be a parabolic fixed point of G (else-two sides of P end at O. This 
contradicts the fact that A splits so P can only have finitely many sides. 
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Now suppose that P is a finite sided convex fundamental polygon for G: 
we may assume that P is a Dirichlet polygon (as the proof of Theorem 
10.1.2 shows that in this case, G is finitely generated and then any Dirichlet 
polygon is finite sided) and we may assume (for simplicity) that the con­
ditions stated in Theorem 9.4.5 hold. By conjugation, we may also suppose 
that the centre of P is at the origin. 

If two sides of P, say s and Sf, have a common end-point v on all, then v 
is a parabolic fixed point of G (Theorem 9.4.5) and the stabilizer of v is 
generated by a parabolic element p of G which maps s onto Sf. Now con­
struct an open horocyclic region at v bounded by a horocycle Q. Note that 
there is a compact arc q of Q such that Q is the union of the images pn(q), 
n E 7L.. 

A similar construction holds for the free sides of P. Each end-point of a 
free side is the end-point of some image of some free side. The interval of 
discontinuity (1 in which a given free side lies is the countable union of 
images of the finite number of free sides of P: these images are non­
overlapping and accumulate only at the end-points of (1. It follows that some 
h in G maps one image of a free side in (1 to another such image, also in (1, 

and so h«(1) = (1 (because the intervals of discontinuity are permuted by the 
elements of G). We deduce that h fixes both end-points of (1 and so is hyper­
bolic. The geodesic L with the same end-points as (1 is the axis of h and we 
may assume that h generates the stabilizer of L. Note that there is a compact 
sub-arc t of L such that L is the union of the images hn(t), n E 7L.. 

The geodesics L and the horocycles Q are finite in number and they 
separate the boundary points of P on all from a compact subset Po of P. 
Let K denote the compact set consisting of the union of Po and the finite 
number of arcs q and t. 

Now let, be any limit point of G which is not a parabolic fixed point and 
let Lo be a geodesic half-ray ending at ,. The initial point of Lo can be mapped 
to a point in P and the corresponding image of Lo cannot lie entirely in one 
of the horocyclic or hypercyclic regions constructed above else it ends at a 
paraboiic fixed point or an ordinary point of G respectively. It follows that 
either Lo meets Poor, alternatively, Lo meets one of these regions in which 
case some image of Lo meets one of the arcs q or t. In both cases an image 
of Lo meets K and so there is some Zo in Lo with, say, go(zo) in K. 

Now let Ln be obtained from Lo by deleting the initial segment of Lo of 
length n. Exactly as for Lo, the ray Ln, contains some Zn with gn(zn) in K. 
Clearly, Zn -+ , and the set {gl' g2, ... } is infinite: thus by Theorem 10.2.1, 
, is a point of approximation and A splits. D 

EXERCISE 10.2 

1. Verify Example 10.2.4 by working in H2 with 00 the parabolic fixed point (use 
Theorem 10.2.1(2)). 
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§lO.3. Conjugacy Classes 

Any group is partitioned into the disjoint union of its conjugacy classes. 
The classification of conformal Mobius transformations is invariant under 
conjugation and so we may speak unambiguously of elliptic, parabolic and 
hyperbolic conjugacy classes. Within the group of all Mobius transforma­
tions, the conjugacy classes are parametrized by the common value of trace2 

of their elements but, as we shall now see, this is not true of the conformal 
group of isometries of the hyperbolic plane. 

Theorem 10.3.1. Within the group of all isometries of the hyperbolic plane, 
two non-trivial conformal isometries are conjugate if and only if they have the 
same value of trace2 • Within the group of conformal isometries, the value 
trace2 determines two parabolic or elliptic conjugacy classes or one hyperbolic 
conjugacy class. 

PROOF. We shall prove the result in detail for the parabolic case only. Using 
the model H2, any two parabolic isometries are conjugate (in the group of 
conformal isometries) to, say, Z H Z + p and Z H Z + q where p and q are 
real and non-zero. These are conjugate in the group of conformal isometries 
if and only if for some real a, b, c and d with ad - be = 1, we have 

a(z + p) + b az + b 
---"--- = -- + q. 

c(z + p) + d cz + d 

Putting z = -d/c, we find that cp = 0: thus c = 0 and ap = dq. As ad = 1, 
we have a2p = q so p and q must have the same sign. This shows that within 
the conformal group, trace2 determines two conjugacy classes of parabolic 
elements. In the full group of isometries, however, the translations z H Z + 1 
and Z H Z - 1 are conjugate: indeed if rJ. and p denote reflections in x = 0 
and x = ! respectively, then 

prJ. = rJ.( rJ.P)rJ. 
so rJ.p and prJ. are conjugate. 

The elliptic case is handled similarly using the model Ll and two 
rotations fixing the origin. The hyperbolic case is best handled in H2 with 
two hyperbolic elements fixing 0 and 00. In this case, each element is 
conjugate to its inverse because there is a conformal isometry, namely 
Z H -l/z, interchanging 0 and 00. D 

We are now going to examine in detail the conjugacy classes in a Fuchsian 
group. 

Theorem 10.3.2. Let G be a Fuchsian group and let Vi' v2 , ••• be the parabolic 
and elliptic fixed points on the boundary of some convex fundamental polygon 
for G. Suppose that gj generates the stabilizer of Vj: then any elliptic or para­
bolic element of G is conjugate to some power of some g j' 
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PROOF. If g is elliptic or parabolic with fixed point v, then some h in G maps 
v to some point on ap. Thus for some j, we have h(v) = Vj and then 
hgh- 1 E <gj). 0 

Corollary 10.3.3. If G is finitely generated, then G has a finite number of 
maximal cyclic subgroups <gl)' ... , <gn) such that any elliptic or parabolic 
element in G is conjugate to exactly one element in exactly one of these sub­
groups. 

We need only observe that if g is elliptic or parabolic and if two powers 
of g are conjugate, say if 

then h has the same fixed points as g and so is itself a power of g: thus n = m. 
Note that if g is parabolic and fixes v, then h also fixes v and so cannot be 
hyperbolic. 

Later, we shall need information on the number of such conjugacy classes 
of these maximal cyclic subgroups in a subgroup G 1 of G and the following 
simple result is sufficient for our needs. 

Theorem 10.3.4. Let G be a Fuchsian group and G1 a subgroup of index k in 
G. Suppose that G and G1 have t and tl respectively, conjugacy classes of 
maximal parabolic cyclic subgroups. Then tl :::;; kt. The same result holds for 
elliptic elements. 

PROOF. Let D be a Dirichlet polygon for G in which parabolic and elliptic 
fixed points on aD have cycle length one. Thus exactly t parabolic fixed 
points lie in aD. Now express G as a coset decomposition, say 

so 

contains at least one point from each G I-orbit. As D* has at most kt para­
bolic fixed points on its boundary, we have t 1 :::;; kt. The same proof holds 
for elliptic elements. 0 

We turn now to the conjugacy classes of hyperbolic elements in a Fuchsian 
group. 

Theorem 10.3.5. Any non-elementary Fuchsian group contains infinitely many 
conjugacy classes of maximal hyperbolic cyclic subgroups. 

PROOF. Suppose not, then there are hyperbolic elements hI' ... , ht in G 
such that each hyperbolic element in G is conjugate to some power of some 
hj. Let u and v be distinct limit points of G. By Theorem 5.3.8, there are 
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hyperbolic elements f1' f2' ... with distinct axes A l' A2, ... such that An 
has end-points Un and Vn where Un --+ U and Vn --+ v. 

As each fn is conjugate to some power of one of a finite number of the 
hj' we may relabel and assume that hj = h1 for every n. Then 

fn = gih1)n 1(gn)-1, 

say, and so the elements 

qn = gn h1(gn)-1 

have distinct axes An and the same translation length T as h1. As An con­
verges to the geodesic (u, v), this violates discreteness: explicitly, if Z E (u, v), 
then 

sinh ip(z, qnz) = sinh(iT) cosh p(z, An) 

--+ sinh(i T) 

as n --+ + 00 yet the qn are distinct. D 

Now let the conjugacy classes of hyperbolic elements in a Fuchsian 
group G be C b C 2 , ••• • The elements in Cn have a common translation 
length, say T". 

Theorem 10.3.6. If G is finitely generated then Tn --+ + 00 as n --+ + 00. 

PROOF. Theorem 10.2.5 and its proof shows that every hyperbolic fixed 
point of G is a point of approximation and moreover, that there exists a 
compact subset K of d such that every hyperbolic axis has an image which 
meets K. This means that every hyperbolic conjugacy class Cn contains an 
element gn with its axis An meeting K. For some d, 

K c {z E d: p(O, z) :::;; d}. 

From Sections 7.4 and 7.35 we obtain 

IIgnl1 2 = 2cosh p(O, gnO) 

= 2 + 4sinh2 ip(O, gnO) 

= 2 + 4sinh2(iT,,) cosh2 p(O, An) 

:::;; 2 + 4cosh 2( d) sinh 2(i T,,) 

so T" --+ + 00 as n --+ + 00. D 

Remark. Using known information about the convergence of series, for 
example, Theorem 5.3.13, we can obtain more precise information about 
the rate at which T" tends to + 00. 

There are two types of hyperbolic elements in a Fuchsian group which 
warrant special attention. First, there are the simple hyperbolic elements 
(Definition 8.1.5). There are also the boundary hyperbolic elements h which 
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are characterized by the fact that they leave some interval of discontinuity 
on the circle at infinity invariant: of course, these only exist for Fuchsian 
groups of the second kind. 

Theorem 10.3.7. A finitely generated Fuchsian group has only afinite number 
of conjugacy classes of maximal boundary hyperbolic cyclic subgroups. A 
finitely generated Fuchsian group can have infinitely many conjugacy classes 
of primitive simple hyperbolic elements. 

PROOF. A finitely generated group G has a convex fundamental polygon P 
with only a finite number of free sides, say S1' .•. , SR' Each free side Sj lies 
in an interval of discontinuity Uj whose stabilizer is generated by a boundary 
hyperbolic element, say hj' 

If h is any boundary hyperbolic element, it leaves some interval of dis­
continuity U invariant and we can construct a half-ray L ending at some 
interior point of U and lying entirely in some image f(P) (because the images 
of P do not accumulate at the interior points of u). As f-1(L) lies in P and 
ends at an ordinary point of G, it must end in some Sj' Thus f(u) = Uj and 
so fhf-1 leaves Uj invariant: this proves that h is conjugate to some power 
of hj' 

Finally, we must exhibit an example of a finitely generated Fuchsian 
group which contains infinitely many non-conjugate primitive simple 
hyperbolic elements. 

Construct a quadilateral P in ~ with vertices V1' v2 , v3 , V4 lying on the 
circle at infinity. Let f and g be hyperbolic elements pairing the sides of P 
as illustrated in Figure 10.3.1. By Poincare's Theorem (see Exercise 9.8.2), 
the group G generated by f and g is discrete and P is a fundamental polygon 
for G. As f and g pair sides of a convex fundamental polygon, they are 

Figure 10.3.1 
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simple hyperbolic elements of G (Theorem 9.7.1). It is clear from the 
geometry of the actions that the axes of f and g cross P and this implies 
that f and g are primitive. 

Now let Vs = f(VI): then the quadilateral with vertices VI' V3, v4, Vs is 
also a convex fundamental polygon for G, this time with its sides paired by 
f and fg: see Figure 10.3.2. Exactly as above, f and fg are simple, primitive 
hyperbolic elements. 

This process can be repeated to obtain a sequence g,fg,f2g, ... of prim­
itive simple hyperbolic elements of G. By conjugation, we may assume that 
G now acts on H2 and that 

f = (~ 1~J, 
where u > 1. A trivial computation shows that trace2(fng) --+ + 00 as 
n --+ + 00 so the sequence (fng) contains infinitely many non-conjugate 
elements (note that a is not zero else g andfhave a common fixed point). D 

EXERCISE 10.3 

1. Construct an infinitely generated Fuchsian group G containing infinitely many 
conjugacy classes of simple primitive hyperbolic elements with the same translation 
length (see Theorems 10.3.6 and 10.3.7). 

2. Verify the details in the text relating to Figures 10.3.1 and 10.3.2 in the proof of 
Theorem 10.3.7 (use Exercise 9.8.2). Give an alternative construction in which the 
vertices Vj are replaced by free sides and apply Poincare's Theorem directly. 
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§10.4. The Signature of a Fuchsian Group 

Let G be a finitely generated non-elementary Fuchsian group. Any Dirichlet 
polygon D for G is finite sided and topologically, /jIG is a compact surface 
S of some genus, say g, with a certain number of holes removed. As tl/G and 
/jIG are homeomorphic (Theorem 9.2.4), the genus g does not depend on 
the choice of D. 

Now consider the Nielsen region N for G and corresponding quotient 
space NIG. The argument given in Section 10.3 shows that the boundary 
of N in A consists of all axes of all boundary hyperbolic elements in G. Let 
A be one such axis with stabilizer generated by h and let H be the component 
of A-A not containing N. Obviously, H is stable with respect to <h) so the 
projection of H into tl/G is topologically a cylinder, namely HI<h) (Theorem 
6.3.3). One end of this cylinder is the simple loop AI<h): indeed no image 
of A can cross A (as the open arc of aA which bounds H contains only 
ordinary points of G) and there are no elliptic elements of order two stabi­
lizing A (else G would then have only two limit points). 

If we denote the natural projection of A onto A/G by n, we see that n(A) 
is the disjoint union of n(N) together with simple loops of the form n(A) 
and with cylinders of the form n(H). The cylinders n(H) are joined to n(N) 
across the common boundary loops n(A) and there are the same number, 
say t, of these as there are conjugacy classes of maximal boundary hyper­
bolic cyclic subgroups. It is clear now that the three spaces tl/G, DIG, NIG 
are homeomorphic to each other. 

In addition, G contains only a finite number, say s, of conjugacy classes 
of maximal parabolic cyclic subgroups and each of these corresponds to a 
puncture on the surface S (consider the quotient of a horocyclic region that 
is stable under a cyclic parabolic subgroup). Finally, G contains only a 
finite number, say r, of conjugacy classes of maximal elliptic cyclic subgroups: 
let these have orders ml , ... , mr respectively. We introduce terminology to 
summarize these facts. 

Definition 10.4.1. The symbol 

(g: ml' ... , mr ; s; t) (10.4.1) 

is called the signature of G: each parameter is a non-negative integer and 
mj ~ 2. 

If there are no elliptic elements in G, we simply write (g: 0; s; t). It is 
possible to state precisely which signatures occur. 

Theorem 10.4.2. There is a non-elementary finitely generated Fuchsian group 
with signature (10.4.1) and mj ~ 2 if and only if 

2g - 2 + s + t + jt (1 - ~) > O. (10.4.2) 
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The proof that (10.4.2) is a necessary condition for the existence of a 
group with signature (10.4.1) is a consequence of the following result. 

Theorem 10.4.3. Let G be a non-elementary finitely generated Fuchsian group 
with signature (10.4.1) and Nielsen region N. Then 

h-area(N jG) = 2n{2g - 2 + s + t + .± (1 - ~)}. 
J=l mJ 

If G is also of the first kind, then N = L\ and t = 0: thus we obtain a 
formula for the area of any fundamental polygon of G. 

Corollary 10.4.4. Let G be a finitely generated Fuchsian group of the first 
kind with signature (g: m l , ... , m,; s; 0). Then for any convex fundamental 
polygon P ofG, 

h-area(P) = 2n[2g - 2 + s + .± (1 - ~)J. 
)=l m) 

PROOF OF THEOREM 10.4.3. We take D to be the Dirichlet polygon ror G 
with centre w so 

h-area(D n N) = h-area(N jG). 

By choosing w appropriately, we may assume that each elliptic and parabolic 
cycle on aD has length one and (by taking w to avoid a countable set of 
geodesics) we may assume that no cycle of vertices of D lies on the axes of 
hyperbolic boundary elements. 

Clearly, only finitely many distinct images of a hyperbolic axis can meet 
the closure of any locally finite fundamental domain. As N is bounded by 
hyperbolic axes (because G is finitely generated), this implies that only 
finitely many sides of N meet D and so D n N is a finite sided polygon. The 
boundary of D nN consists of, say, 2n paired sides (which are arcs of paired 
sides of P) and k sides which are not paired (and consist of arcs in D of the 
axes bounding N). The vertices of D n N are the r elliptic cycles of length 
one, the s parabolic cycles of length one, some accidental cycles of P (say 
a of these) and finally k cycles oflength two corresponding to the end-points 
of the k unpaired sides of D n N. 

Applying Euler's formula (after "filling in" the holes), we obtain 

2 - 2g = (1 + t) - (n + k) + (r + a + k + s) 

so 

n - a = 2g - 1 + r + s + t. 
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Now join w to each vertex of D n N, thus dividing D n N into 2n + k 
triangles. Adding the areas of these triangles, we obtain 

r 2n 
h-area(D n N) = (2n + k)n - 2n - 2na - nk - L -

j=l mj 

= 2n[n - a - 1 - t ~J 
j=l mj 

= 2n[2g - 2 + s + t + .f (1 - ~)J. D 
J= 1 mJ 

It is evident from the nature of the formula in Theorem 10.4.3 that 
h-area(NjG) has a positive universal lower bound, valid for all groups G. 
For brevity, write 

A = (1j2n) h-area(NjG) 

and, in order to compute this lower bound, we may assume that A < i: 
this is a convenient number for the following analysis and we shall soon see 
that there are groups for which A < i. 

If r = ° or if mj = 2 for eachj, then A = nj2 for some integer n. As A > 0, 
we find that A ~ t so we may assume that r > ° and that some mj is at 
least three. Then 

which yields 

Because 

we obtain 

so 

1> 6A 

~6[2g-2+S+t+ (r; 1) +1J 

4g + 2s + 2t + r < 4. 

2<A+2 

:::;;2g+s+t+r 

:::;; 4g + 2s + 2t + r 

< 4, 

2g+s+t+r=3 

= 4g + 2s + 2t + r 

g = s = t = 0, r = 3. 
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We may now assert that 

If each mj is at least three, then one mj is at least four and then A ~ /2' If 
not, then m3 = 2, say, and so 

1 ( 1 1 ) A ='2 - - +- > O. 
m1 m2 

If each of m1 and m2 is at least four, then one is at least five and then A ~ lo. 
If not, then m2 = 3, say, and 

with equality when and only when G has signature (0: 2, 3, 7; 0; 0). For 
future reference we state this as our next result. 

Theorem 10.4.5. For every non-elementary Fuchsian group G with Nielsen 
region N 

h-area(N /G) ~ n/21. 

Equality holds precisely when G has signature (0: 2, 3, 7; 0; 0) in which case 
N=~. 

We end this section with the remaining part ofthe proof of Theorem 10.4.2. 

PROOF OF THEOREM 10.4.2. Sufficiency. Given the symbol (10.4.1) satisfying 
(10.4.2), we must construct a Fuchsian group G which has (10.4.1) as its 
signature. 

For any positive d, construct the circle given by p(z, 0) = d and also a set 
of 4g + r + s + t points Zj equally spaced around this circle (and labelled 
in the natural way). The arcs ZjZj+ 1 subtend an angle 2B at the origin where 

B = 2n 
8g + 2r + 2s + 2t 

For the first four of these arcs, we construct a configuration with mappings 
hj as illustrated in Figure 10.4.1. Note that the points Zl"'" Zs are all 
images of each other. 

This construction is repeated g - 1 more times, starting the next stage 
at Z s and so on: this accounts for 4g arcs Z j Z j + l' an angle 8gB at the origin 
and mappings hi' ... , h2a' 

Using the next r arcs ZjZj+ 1, we construct configurations with mappings 
ei as illustrated in Figure 10.4.2 (recall that the integers mi are available 
from (10.4.1) and mi ~ 2). Necessarily, ei is an elliptic element of order mi 
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o 
p(z, 0) = d 

Figure 10.4.1 

and fixing Wi. This part of the construction accounts for an additional 
angular measure of 2r8 at the origin. Next, we repeat the construction s 
times and now on each occasion the corresponding Wi are on {I Z I = 1}; 
the angle at Wi is zero and the corresponding mappings Pi (for ei) are 
parabolic. 

There are now t remaining arcs, each subtending an angle of 28 at the 
origin. On each of these arcs we construct the configurations and hyperbolic 
mappings hi as illustrated in Figure 10.4.3 where 

( 1 + d) 
81 = 1 + 2d 8. 

We have now constructed a polygon with vertices Zj' Ui , Vi' Wi and with 
side-pairings given by the hi, e i , Pi and hi. The group G generated by these 
maps mayor may not be discrete but in any case, the points Z1' Z2' ... lie 
in the same G-orbit. Moreover, the angle sum subtended at these Zj is 

¢(d) = 8ga + 2(P1 + ... + Pr+s+t)· 

p(z, 0) = d 

Figure 10.4.2 
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Each of the angles a and {3j depend continuously on the parameter d. We 
shall show that for some choice of d we have 4;(d) = 2n. Then Poincare's 
Theorem (see Exercise 9.8.2) implies that G is discrete and that the con­
structed polygon is a fundamental domain for G. It then remains to verify 
that G does indeed have the signature (10.4.1). 

By elementary trigonometry, we have (using Figures 10.4.1, 10.4.2 and 
10.4.3 in turn) 

(i) 

(ij) 

(iii) 

cosh d = cot 8 cot a; 

h d _ cos 8 cos {3j + cos(n/m) 
cos - . 8 . {3 , 

sm sm j 

when j = 1, ... , r, and a similar expression with cos(n/m) replaced by 
1 when j = r + 1, ... , r + s; 

h d _ cos 81 cos {3j + 1 
cos -. . 

sm 81 sin {3j 

Note that as d -+ 0, so a -+ (n/2) - 8. In (ii), we have 

cos(8 + {3) = cos( n - ;J + sin 8 sin {3j(cosh d - 1) 

and so as d -+ 0, 

with the appropriate interpretation of mj = + 00 when r < j ~ r + s. In 
(iii), we have 

so 
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It follows that as d --+ 0, so 

¢(d) --+ 2n[2g - 2 + s + t + t (1 - ~)J + 2n 
J= I mJ 

> 2n. 

As d --+ + 00, the angles IX and {3j each tend to zero (note that OI --+ Oj2) so 
in this case, ¢(d) --+ 0. We deduce that for some choice of d, we have ¢(d) = 2n 
and G is then discrete. 

It is clear that G has elliptic elements of orders ml , ... , mr and also s 
parabolic and t boundary elements and that these do not represent the same 
conjugacy classes (essentially because they pair adjacent sides of the funda­
mental polygon). If l:!jG has genus g~ then by Euler's formula applied to the 
identified polygon, 

2 - 2g* - s - t = 1 - (2g + r + s + t) + (1 + r) 

so (as expected), g* = g. D 

EXERCISE 10.4 

1. Let G be a non-elementary Fuchsian group and suppose that a parabolic element g 
in G generates the stabilizer of its fixed point v. By considering a suitable horocyclic 
region H based at v, show that n(H) is conformally equivalent to a punctured disc 
in MG. 

2. Show that there is a positive constant b such that if P is any convex fundamental 
polygon for some non-elementary Fuchsian group G, then P n N contains a disc of 
radius at least b. Obtain an explicit estimate of b. 

3. Let P be the hyperbolic quadilateral in H2 with vertices -1,0, 1, 00. Show that P 
is a fundamental domain for the group G generated by 

g(z) = z + 2, h(z) = z/(2z + 1). 

Compute the signature of G and verify the formula for the area of H2/G explicitly in 
this case. Find the index of G in the Modular group (this is a particular case of 
Selberg's Lemma). 

§10.5. The Number of Sides of a Fundamental 
Polygon 

We restrict our discussion in this section to a finitely generated group G of 
the first kind. In this case, we can omit the last parameter in the signature 
(10.4.1) and we can consider parabolic elements as elliptic elements with 
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order mj = + 00. Thus we can shorten the notation for the signature to 
(g: m 1 , ••• , mn) or, if G has no elliptic or parabolic elements, to (g: 0). 

Theorem 10.5.1. Let G be a finitely generated Fuchsian group of the first 
kind and let P be any convex fundamental polygon for G. Suppose that P has 
N sides (where no side is paired with itself). 

(i) If G has signature (g: m 1 , ••• , mn) where possibly n = 0, then 

N :s; 12g + 4n - 6. 

This upper bound is attained by the Dirichlet region with centre w for 
almost all choices of w. 

(ii) If G has signature (g: 0), then N ::::: 4g and this is attained for some P. 
(iii) If G has signature (g: m1 , ••• , mn), n > 0, then 

N::::: 4g + 2n - 2 

and this is attained for some P. 

PROOF. Suppose that P has elliptic or parabolic cycles C 1, ... ,Cn and 
accidental cycles Cn + l' ... , Cn + A : either (but not both) of these sets of 
cycles may be absent. In general, we let I C I denote the number of points in 
the cycle C. 

Now 

and 

Thus 

Euler's formula yields 

ICjl::::: 1 if 1 :S;j:S; n; 

ICjl:::::3 ifn<j:S;n+A, 

n+A 

N = L ICjl· 
j= 1 

o :s; A :s; (N - n)j3. 

2 - 2g = 1 - (Nj2) + n + A (10.5.1) 

and the inequalities in (i) and (iii) follow by eliminating A. The inequality 
in (ii) follows from (10.5.1) by putting n = 0 and observing that as n = 0, 
we have A ::::: 1. 
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The polygon P has N sides and hence N vertices. For almost all choices 
of w, the Dirichlet region with centre w has I Cj I = 1 for 1 ::; j ::; nand 
I Cjl = 3 for j > n. Then 

3A = N - n 

and so equality holds in (i). The proof of Theorem 10.4.2 (sufficiency) 
shows that the lower bound of 4g in (ii) may be attained. Finally, a similar 
argument to that used in the same proof shows that the lower bound in 
(iii) may also be obtained: briefly, one constructs the polygon as though the 
signature were (g: ml , ... , mn - I ) and seeks a value of d so that 
¢(d) = 2n/mn • 0 

In the next section we shall study Triangle groups: these are the groups 
with signatures (0: p, q, r) where (necessarily) 

1 1 1 
-+-+-<1. 
P q r 

Observe that for almost all choices of the centre w, the corresponding 
Dirichlet region has six sides: the customary fundamental polygon for such 
groups is a quadrilateral yet, in some sense, this is the exceptional case. 

§10.6. Triangle Groups 

This section is devoted to an important class of Fuchsian groups known as 
the Triangle groups. Roughly speaking, these are the discrete groups with 
the more closely packed orbits and the smallest fundamental regions. We 
begin with a geometric definition that does not mention discreteness. 

Definition 10.6.1. A group G of isometries of the hyperbolic plane is said to 
be of type (Ct, {3, y) if and only if G is generated by the reflections across the 
sides of some triangle with angles Ct, {3 and y. 

Of course, such groups exist if and only if Ct, {3 and yare non-negative 
and satisfy 

o ::; Ct + {3 + Y < n. 

Any two such groups of the same type are conjugate in the group of all 
isometries (because two triangles with the same angles are congruent) and 
there is no significance to be attached to the order of Ct, {3 and y in the triple 
(Ct, {3, y). 

The next example shows that such a group (even if discrete) may be of 
more than one type. 
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Figure 10.6.1 

Example 10.6.2. Let Tl and T2 be the two triangles illustrated in Figure 
10.6.1: the corresponding groups are 

of type (0, n12, n13) and 

of type (0, 0, 2n13) where 1'/, (11 and r are reflections in the lines x = 0, x = ! 
and x = 1 respectively and (12 is the reflection in I z I = 1. 

Clearly, 

so 1'/ E G2 and r E G1 ; thus G1 = G2 . In fact, the subgroup of conformal 
isometries of this group is the Modular group and so G 1 is itself discrete. 

Note that 

h-area(T2) = 2h-area(T1) 

so T2 is not a fundamental domain for G2 . o 

Each group G of type (IX, {3, y) has a distinguished subgroup Go of index 
two in G, namely the subgroup of conformal elements of G: we call Go a 
conformal group of type (IX, {3, y). If (11' (12 and (13 denote the reflections 
which generate G, then the elements of Go are precisely the words of even 
length in the (1i and Go is generated by, say, (11(12 and (13(12 because 
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Suppose that y is the angle of the triangle at the vertex V3 opposite the 
side fixed by the reflection (J 3' Then (J 1 (J 2 fixes V3 and it is parabolic if y = ° 
and elliptic with a rotation of angle 2y if y > 0. Thus Go is generated by a 
pair j, g of conformal isometries, each being elliptic or parabolic. It is con­
venient to consider parabolic elements as elliptic elements of infinite order 
and we shall frequently adopt this convention in the following discussion. 

If G of type (a, /3, y) (or its corresponding conformal subgroup Go) is 
discrete, then every elliptic element in Go is of finite order. Thus if any of 
a, /3 and yare positive, then they are necessarily of the form 

knlp, (k, p) = 1 (10.6.1) 

for (coprime) integers k and p. This is a necessary condition for discreteness 
but it is not sufficient. Indeed, it is easy to see that if a, /3 and yare all positive, 
then the images of the triangle T under G cover the hyperbolic plane. We 
deduce that if G is discrete then two disjoint copies of T must contain a 
fundamental region for Go and so (from Theorem 10.4.5), 

h-area(T) ~ n142. 

It follows that if a, /3 and yare of the form (10.6.1) with 

n - (a + /3 + y) < nl42 

(and such angles clearly exist) then Go is not discrete. 
A sufficient condition for discreteness is that each of a, /3 and y is of the 

form 

nip, 2~p~ +00 (10.6.2) 

for some integer p: indeed, if this is so then a direct application of Poincare's 
Theorem shows that G is discrete. This sufficient condition, however, is not 
necessary: for example, G2 of type (0, 0, 2n13) in Example 10.6.2 is discrete. 

The apparent discrepancy between (10.6.1) and (10.6.2) is easily resolved. 
A group of type (a, /3, y) is discrete if and only if it is also of some (possibly 
different) type (nip, nlq, nlr): for example, G2 in Example 10.6.2 is also of 
type (0, n12, nI3). This result will be proved later in this section. 

We shall confine our attention to discrete conformal groups and we 
adopt the following standard terminology. 

Definition 10.6.3. A group G is a (p, q, r)-Triangle group if and only if G is a 
conformal group of type (nip, nlq, nlr): we call G a Triangle group if it is a 
(p, q, r)-Triangle group for some integers p, q and r. 

Observe that, from the remarks relating to (10.6.2), a Triangle group is 
necessarily discrete. Now we derive two results concerning Triangle groups. 
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Theorem 10.6.4. A group G is a (p, q, r)- Triangle group if and only if it is a 
discrete group of the first kind with signature (0: p, q, r). 

Theorem 10.6.5. Let G be a discrete group of conformal isometries of the 
hyperbolic plane. If G contains a Triangle group Go as a subgroup, then G 
itself is a Triangle group. 

PROOF OF THEOREM 10.6.4. Suppose first that G is a (p, q, r) Triangle group. 
Then G is the conformal subgroup of index two of a discrete group G* 
generated by reflections 0'1' 0'2 and 0'3 across the sides of a triangle T* with 
angles nip, n/q and n/r. Poincare's Theorem implies that T* is a fundamental 
domain for G* and so 

T = T* U 0'1(T*) 

is a fundamental domain for G. Clearly, then, G is of the first kind. 
The isometries 

generate G and 

gr = hq = (h- 1g)P = I: 

see Figure 10.6.2. The images of a neighbourhood of V3 relative to T under 
iterates of g tesselate a plane neighbourhood of V3 so (as T is a fundamental 
domain) neither V1 nor V2 are images of V3' This shows that 9 is not conjugate 
to any power of h or h- 1g. By symmetry, then, G has three elliptic or para­
bolic conjugacy classes of subgroups represented by (g), (h) and (h- 1g). 

The genus k of fl.jG is found from Euler's formula, namely 

2 - 2k = (faces) - (edges) + (vertices) 

= 1 - 2 + 3: 

Figure 10.6.2 
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so G has signature (0: p, q, r). Alternatively, one can show that k = 0 by 
applying the Area formula to T. 

Now suppose that G is a discrete group of conformal isometries with 
signature (0: p, q, r). Let D be a convex fundamental polygon for G with, 
say, cycles of lengths N p' N q and N r corresponding to the conjugacy classes 
associated with p, q and r. Suppose also that there are t accidental cycles 
of lengths, say, M 1, ... , M, so M j ;:::: 3. Observe that as G is of the first kind, 
D has no free sides. 

Select any w in D and join w to each vertex of D. Equating areas, we obtain 

2n[ 1 - G + t + ~) ] 
= h-area(D) 

= [Np + N q + N r + Ml + ... + M,Jn - 2n - 2nt - 2n(~ + ~ +~) 
p q r 

and so 
t 

1 = (Np - 1) + (Nq - 1) + (N r - 1) + L (M j - 2). 
j= 1 

As each of the t + 3 terms on the right is a non-negative integer, only two 
cases arise, namely 

Casel.Np=Nq=Nr = l;t= I,M l =3;or 

Case 2. N p, N q, N r are (in some order) 1, 1,2 and there are no accidental 
cycles. 

In Case 2, D has four vertices and so is a quadrilateral. Supposing that 
N q = N r = 1, we see that D is as illustrated in Figure 10.6.3. 

Figure 10.6.3 
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The cycle corresponding to N q (= 1) is {vd so the two sides ending at 
VI are paired: thus 

and so /31 = /32· Similarly, 0(1 = 0(2 so 

0(1 + /31 = 0(2 + /32 

= t(O(l + 0(2 + /31 + /32) 

= nip· 

The properties of isosceles triangles guarantee that the segment [VI' V3] is 
a line of symmetry of the quadrilateral so in this case G is the conformal 
Triangle group associated with group generated by reflections across the 
sides of the triangle with vertices VI' v 2 and V3 . 

In Case 1, D is a hexagon with elliptic (or parabolic) vertices VI' V2 , V3 

and a single accidental cycle {aI' a2' a3}. The side-pairing must occur as in 
Figure 10.6.4. where we have sub-divided D into the regions Q, T1 and T2 • As 

we see that h = gf (a2 is not an elliptic or parabolic fixed point). It is now 
easy to see that Q u h(T1 ) U g(T2) is a fundamental quadrilateral with 
vertices VI' V2 , V3 , h(v2)( =g(v2» and this reduces Case 1 to Case 2. 0 

Q 

/ 
g(Tl ) / 

\ / 
\ / 

\ / 
\ / 

\ I / 
\ I / 
\ I / 
\It 

h(Vl) = g(Vl) 

Figure 10.6.4 

/ 

/ 
/ 

/ 
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Observe that this proof shows that a convex fundamental polygon for a 
Triangle group is necessarily a quadrilateral or a hexagon: the reader should 
now review the remark at the end of Section 10.5. 

PROOF OF THEOREM 10.6.5. In view of Theorem 10.6.4, we can work entirely 
with the signatures of G and Go. As 

o < h-area(A/G) ~ h-area(AjGo) ~ 211: 

we see that Go is of some finite index k in G (Theorem 9.1.3). The case k = 1 
is trivial so we may assume that k ~ 2, hence 

h-area(A/Go) = k h-area(A/G) 

~ 2 h-area(AjG). 

(10.6.3) 

According to Theorem 10.6.4, Go has some signature (0: p, q, r). Let G 
have signature (g: t1, ••• , tn): then the Area formula (Corollary 10.4.4) 
yields 

1 - (! + ! + !) = k[2g - 2 + .± (1 - ~)~ 
p q r }=1 ~ ~ 

> O. 

The left-hand side is at most one: so g = 0 or 1. If g = 1, then n ~ 1 (else 
the area is zero) and (as tj ~ 2 and k ~ 2) we have 

1 ~ nk ~ k ± (1 - .!.) 
2 j=l 0 

~1-(!+!+!) 
p q r 

~1. 

This cannot be so, however, as then equality holds throughout, Go contains 
parabolic elements (for then p = q = r = 00) but G does not (t 1 = ... = 

tn = 2). 
We deduce that g = 0 and (for positive area) n ~ 3. This yields 

~1. 

As k ~ 2 we obtain n ~ 5. If n = 5, then k = 2 and equality again holds 
throughout: this is excluded exactly as above. Thus n = 3 or 4. If n = 3, 
then G has a signature (0: t 1, t 2 , t 3 ) and so is a Triangle group. It only 
remains to exclude the case g = 0, n = 4. 
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Assume, then, that g = 0 and n = 4. We may assume that r ::; q ::; p and 

p ::; t4 (as Go contains an element of order p, so does G). Then 

1-~21- (~+~+~) 
P P q r 

= kLtl (1 -D -2] 
22U+(1-t)-2] 

2 
= 1 --. 

P 

This is false unless p = 00 in which case, equality holds throughout so 
k = 2 and the signatures of Go and G are 

(0: 00, 00, (0), (0: 2, 2, 2, (0), 

respectively. This is excluded, however, by Theorem 10.3.4. D 

Finally, we turn our attention to conformal groups of an arbitrary type 
(a, /3, y). We observed earlier that these groups are generated by elliptic or 
parabolic elements g and h which pair the sides of a quadrilateral with a 
line of symmetry as illustrated in Figure 10.6.5. Conversely, given .such a 
configuration, it is clear that <g, h) is a conformal group of type (a; /3, y). 
Note that the reflection in (v l , V3) interchanges V2 and V4 so (V2, v4 ) is orthog­
onal to (v l , v3 ). 

Theorem 10.6.6. A conformal group of some type (a, /3, y) is discrete if and 
only if it is a Triangle group. 

Figure 10.6.5 
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y 

x 

Figure 10.6.6 

PROOF OF THEOREM 10.6.6. By definition, a Triangle group is a discrete con­
formal group of some type (C(, [3, y). Now suppose that G is a discrete con­
formal group of some type (C(, [3, y): by virtue of Theorem 10.6.5, it is only 
necessary to construct a Triangle group which arises as a subgroup of G. 
We refer to Diagram 10.6.5 and there are three cases to consider. 

Case 1: both 9 and h are elliptic. 
As G is discrete, 9 is of finite order p and h is of finite order q, say. Thus there 
is some g1 in (g) with angle of rotation 2njp and some h1 in (h) with angle 
of rotation 2njq. Now take conjugates (in G), say gz of g1 and hz of hI such 
that the fixed points u (of gz) and v (of hz) are distinct but otherwise are as 
close together as possible: this can be achieved because the images of V3 

cannot accumulate at VI' 

Now construct the quadrilateral illustrated in Figure 10.6.6 by drawing 
the geodesics at angles njp and njq from [u, vJ. These geodesics must meet 
at some points x and y (possibly on the circle at infinity) as otherwise (from 
Section 7.10) 

h ( ) 1 + cos(njp) cos(njq) 
cos p u, V >. . 

sm(njp) sm(njq) 

1 + cos C( cos y 
~ . . 

sm C( sm y 

cos [3 + cos C( cos y 
~ . . 

sm C( sm y 

= cosh P(V1' v3 ) 

contrary to our choice of u and v. As remarked earlier, (x, y) and (u, v) are 
othogonal. 

Now observe that 
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fixes x and is the reflection a x, v in [x, v] followed by the reflection ax, u in 
[x, u]: indeed, 

f = (au, va u, x) - 1 (au, vax, v), 

If x is on the circle at infinity, thenfis parabolic and <g2, h2) is a (p, q, (0) 
Triangle group. If x is a finite point, then f is elliptic and of finite order so 
the angle at x is of the form kn/r with (k, r) = 1 (and f is a rotation of 2nk/r). 
There is then some anti-clockwise rotation f2 about x of angle 2n/r. If k ~ 3 
then f2(V) is nearer to but distinct from u, contrary to our choice of u and v. 
Thus k = 1 or 2. If k = 1, then the angle at x is n/r and <g2' h2 ) is a (p, q, r)­
Triangle group. If k = 2, then 

f2 = ax, wax, v 

and so <h2, f2) is a (2, q, r)-Triangle group in G associated with the triangle 
with vertices x, v, w. This completes the proof in Case 1. 

Case 2: 9 is elliptic and h is parabolic. 
We work in H2 and suppose that h fixes 00. The line joining the fixed points 
of 9 and h is necessarily a line of symmetry of the quadrilateral so the 
situation is as illustrated in Figure 10.6.7. 

The orbit of V l contains points of maximal height (h is parabolic fixing 
00 and this is essentially 10rgensen's inequality) and this symmetric con­
struction can be carried out using an image of V l of maximal height instead 
of v and a rotation of angle 2n/p about this point (p being the order of g) 
instead of g. Because the original angle at V l is not less than 2n/p, the new 
diagram provides a quadrilateral exactly as in Figure 10.6.7; however, we 
may now assume that V l is of maximal height in its orbit and that the angle 
at V l is 2n/p. 

If () = 0, then <g, h) is a (p, 00, (0)-Triangle group. If () > 0, then () = kn/r 
for some coprime k and r. If k ~ 2 there is an anti-clockwise rotation f of 
2n/r about V2 in G and f(v l ) has greater imaginary part than Vl' This cannot 
be so: thus k = 1 and <g, h) is a (p, r, (0)-Triangle group in G. 

h 

Figure 10.6.7 
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h 
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Figure 10.6.8 

Case 3: 9 and h are parabolic. 
We work in H2 and we may assume that 9 fixes 0 and h fixes 00: the situation 
is illustrated in Figure 10.6.8 and if () = 0, then (g, h> is a (00, 00, (0)­
Triangle group. If () > 0, we construct the group (I, h> where 1 = hg - 1 is 
elliptic and this reduces Case 3 to Case 2. 0 

E~RCISE 10.6 

1. Show that if G is a Fuchsian group acting on .:\ and if h-area(.:\/G) < n/3 then G is a 
triangle group. Show that the bound of n/3 cannot be improved. 

2. Show that if G is a conformal discrete group of some type (tX, {J, y), then it is of exactly 
one type (n/p, n/q, n/r). 

3. Construct a fundamental quadilateral for a Heeke group Hq (q = 3,4, ... ) of signa­
ture (0: 2, q, 00) and show that Hq is generated by a parabolic g and an elliptic h of 
order two. 

4. Let VI' V2, V3 and V4 be distinct points on and placed in this order around {I z I = 1}. 
Let g and h be parabolic elements with 

g(vI) = VI' g(V2) = V4, h(V3) = V3, h(v4) = V2· 

Show that ~-Ih is parabolic if and only if the cross-ratio [VI' V2, V3, V4] takes a 
specific value. Is G = (g, h> discrete? In any event, the quadilateral is not a funda­
mental domain for G unless g-Ih is parabolic. 

§10.7. Notes 
For information on finite sided polygons, see [9], [10], [34], [35], [38], 
[46], [58], [76]. Points of approximation were studied by Hedlund (see 
[51], p. 181): also, see [8] and [109]. For results on conjugacy classes and 
subgroups, consult [49] and [97]. For a discussion of Triangle groups see 
[48] (for angles of the form na/b) and [65]. 



CHAPTER 11 

Universal Constraints On Fuchsian 
Groups 

§11.1. Uniformity of Discreteness 

This chapter is concerned with the uniformity of discreteness exhibited by 
Fuchsian groups. As there is no uniformity to be found in the class of 
elementary groups, these must be regarded as exceptional. The Triangle 
groups are also, in some respects, exceptional. In general, a sharp quanti­
tative expression for uniform discreteness will take a special form (depending 
only on the signature) for Triangle groups, and another single form (in­
dependent of the signature) for all non-elementary non-Triangle discrete 
groups. Thus it is the nature rather than the existence of the uniformity 
which leads one to treat the Triangle groups as a special case. 

We shall discuss the following aspects of uniformity. 

(1) The distribution of a cycle of vertices of a fundamental polygon. What 
are the geometric constraints relating to a cycle of vertices? What (if 
anything) can be said about accidental cycles? 

(2) The geometric constraints on the isometries. For example, how close can 
two elliptic fixed points be in a discrete group? What are the constraints 
on the translation lengths of hyperbolic elements? 

(3) The location of canonical regions. Canonical regions were defined in 
Section 7.37. The definition does not depend on discreteness: what can 
be said in the presence of discreteness and what does this imply for the 
quotient surface? 

(4) The displacement function p(z, gz). This has been discussed earlier (see, 
for example, Theorem 8.3.1): what can be said when elliptic elements 
are present? 

(5) The constraints on the corresponding matrix group. A typical example of 
this is Jorgensen's inequality. 
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The results presented here do not form a complete and comprehensive 
account of uniformity of discreteness. Nevertheless, they indicate from a 
geometric point of view why such results must exist and references are given 
to further results of this type. 

Broadly speaking, our attitude here is to apply simple geometric ideas 
to obtain universal constraints: these methods may fail for certain (and 
usually, relatively few) Triangle groups and for these, the reader is invited 
to supply individual computations. 

§11.2. Universal Inequalities for Cycles of Vertices 

We establish here some of the universal constraints which must be satisfied 
by a cycle of elliptic or even accidental vertices on the boundary of a funda­
mental polygon of a Fuchsian group. 

First, consider a Fuchsian group G acting on HZ with g(z) = z + 1 in 
G and generating the stabilizer of 00. In this case, we can construct a funda­
mental domain as in Section 9.6, this being the region lying exterior to all 
isometric circles and inside any strip of width one. Note that in this case, 
each cycle of vertices lies on some horocycle Im[z] = constant. 

By choosing the vertical strip Xo < x < Xo + 1 suitably, we may assume 
that the cycle of vertices is Wj (j = 1, ... , n + 1) where Wj = Uj + ivand 

Xo = Ul < Uz < ... < Un + 1 = Xo + 1. 

Now construct triangles ~ with angles ()j as in Figure 11.2.1. 

Xo v/tan (JI 

Figure 11.2.1 
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By noting that the ~ lie in a fundamental region (by convexity) and by 
considering the angle sum at the cycle (w j ) we have 

(11.2.l ) 

where the cycle (w) is of order q (for an accidental cycle, q = 1). Clearly, by 
considering the Euclidean projection of the ~ onto the x-axis, we have 

L v cot OJ =!. 
j 

By Jensen's inequality, (1.2.2), we have (using (11.2.1) first) 

cot(n/qn):s cot(n- 1 ~ OJ) 

:S L n - 1 cot OJ 
j 

= 1/2vn. 

This yields the following result. 

Theorem 11.2.1. Suppose that g: ~ z + 1 generates the stabilizer of 00 in a 
Fuchsian group G acting on HZ and let WI' ... , Wn be those vertices in a cycle 
of order q which lie in some strip Xo :S x < Xo + 1. Then 

Im[wj] :S 1/2n tan(n/qn). 

For an accidental cycle, we have q = 1 and n ?: 3: thus we obtain the 
next result. 

Corollary 11.2.2. If (w) in Theorem 11.2.1 is an accidental cycle, then 

Im[wj] :S i tan(n/3) = 1/2)3, 

or, in an invariant form, 

sinh !p(w j , gw) ?: )3. 

Corollary 11.2.3. If (w) in Theorem 11.2.1 is an elliptic cycle of order q 
(q?: 3) then 

or, equivalently, 

sinh !p(w j , gw j ) ?: l/tan(n/q). 

We shall see in Section 11.3 that the bound in Corollary 11.2.3 is best 
possible. 

We can also obtain inequalities for accidental vertices on the boundary of 
a Dirichlet polygon. 
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Theorem 11.2.4. Let G be a non-elementary Fuchsian group and let Vl' ••• ,Vn 

be an accidental cycle on the boundary of the Dirichlet polygon with centre w. 

(i) If n ;::: 5, then cosh p(w, Vj) ;::: l/tan2(n/n) ;::: 1·89 ... ; 
(ii) if n = 4, then cosh p(w, Vj) is not less than some absolute constant J1.(> 1); 

(iii) there is no universal lower bound in the case n = 3. 

If G has no elliptic elements, a universal lower bound exists for all values 
ofn. 

Theorem 11.2.5. Let G be a non-elementary Fuchsian group without elliptic 
elements. If (v) is an accidental cycle of vertices on the boundary of the 
Dirichlet polygon with centre w, then 

cosh p(w, v) ;::: ,Ji. 
PROOF OF THEOREM 11.2.5. The cycle (Vj) lies on a circle C, say {z: p(z,w) = r} 
and contains at least three vertices with, say, 

Let Go be the group generated by g and h. If Go is elementary, then it is 
cyclic with a parabolic or hyperbolic generator f. In either case, the points 
Vl' V2 and V3 cannot lie on a circle so Go must be non-elementary. By Theorem 
8.3.1, 

Now 
P(Vl, gV 1) = P(V1, V2) 

::; P(V1, w) + p(w, V2) 

= 2r 

and similarly for h. We deduce that sinh r ;::: 1 as required. o 
PROOF OF THEOREM 11.2.4. We may assume that G acts on L\ and that w = 0 
as all terms are invariant under conjugation. Thus the points Vj lie (and can 
be assumed to be labelled cyclically) on some circle p(z,O) = r. The arcs 
(Vj' Vj+ 1) (not containing any other Vi) subtend an angle 2IXj at the origin and 

~>j= n. 
j 

As the cycle length is at least three there is at most one j for which 2IXj ;::: n. 
If 2IXj < n then the triangle ~ with vertices 0, Vj' Vj+ 1 and angles 21Xj' ()j' ()j 

lies in the Dirichlet polygon and as the angle sum of the cycle is 2n, we have 

L ()j ::; n. 
j 

Note that from Section 7.12 (by considering one half of~) 

cosh r tan ()j tan IXj = 1: 

see Figure 11.2.2. 
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o 
Figure 11.2.2 

Now either each (Xj is less than nl2 and then 
n 

L «(Jj + (X) ~ 2n 
j= 1 

p(z,O) = r 

or exactly one (Xj (say (Xn) is at least n12, in which case 
n-l 

L «(Jj + (Xj) ~ 2n - (Xn ~ 3n12. 
j= 1 

291 

In both cases, some (Jk + (Xk is at most the average value which (as n ;;:: 5) is 
at most 2nln. Thus for this k we have (see (1.2.3» 

tan (Xk tan (Jk ~ tan 2 ((Jk ~ (Xk) 

~ tan 2(nln). 

This proves (i): note that it provides no information when n is 3 or 4. 
The case n = 4 is more complicated and the proof of (ii) will be given in 

Section 11.6. 
To prove (iii), construct the polygon P illustrated in Figure 11.2.3. The 

polygon has four pairs of sides with side-pairing elements g, h (each of 

'\ 
\ 

Figure 11.2.3 

I 
/ 

I 
/ 

/ 
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order two), hg (hyperbolic) and f (parabolic). By Poincare's Theorem, P is 
a fundamental domain for the non-elementary Fuchsian group generated by 
f, g and h. 

This construction is possible if and only if e < n/6 and then 

cosh t sin(n/3) = cos e, 2t = p(v I , v2 ): 

thus t ~ 0 + as e ~ n/6 from below. Observe that each v j is the same distance 
from wand that 

cosh p(w, VI) tan(n/3) tan e = 1. 

Thus as e ~ n/6, so p(w, VI) ~ o. 
It remains only to prove that P is actually the Dirichlet polygon D(w) 

for <f, g, h) with centre w. Now the sides paired by f are the perpendicular 
bisectors of the segments [w,fw], and [w,f -IW]: a similar statement holds 
for hg. Also the two sides making the edge [vj, v2 ] lie on the perpendicular 
bisector of the segment [w, gw]: a similar statement holds for [VI' V3]. We 
deduce that P contains the Dirichlet polygon D(w); as P is a fundamental 
domain, it must be D(w). 0 

Example 11.2.6. Given any integer k with k ~ 2 we can construct a Fuchsian 
group G acting on Ll which has as its fundamental domain a regular polygon 
with 4k sides and all vertices lying in one accidental cycle (see Section lOA). 
Referring to the proof of Theorem 11.2A(i), we find that IY.j = ej = n/4k so 
in this case, equality holds in (i). Thus (at least for n of the form 4k), Theorem 
l1.2A(i) is best possible. 

Finally, we consider unbounded fundamental polygons (although the 
idea in the following proof clearly extends to other situations). 

Theorem 11.2.7. Let D be a fundamen tal polygon for a Fuchsian group G and 
suppose that D contains two points WI and W2 on the circle at infinity. Let L 
be the geodesic joining WI and w2 . If V is an elliptic fixed point of G of order n, 
lying on the boundary of D, then 

cosh p(v, L) ~ l/sin(n/n) ~ 2/)3. 

PROOF. The triangle with vertices WI' W2 and V lies in D and so the interior 
angle of this triangle at V cannot exceed 2n/n. This means that V cannot be 
too close to L: the numerical details are left to the reader. 0 

Note that this result implies that no elliptic fixed point on aD lies in the 
lens region between the two hypercycles making an angle n/6 with L. 

EXERCISE 11.2 

1. Derive an inequality similar to (i) in Theorem 11.2.4 which is applicable to an 
elliptic cycle of order q on the boundary of the Dirichlet polygon. 

2. Is the bound in Corollary 11.2.2 best possible? 



g11.3. Hecke Groups 293 

3. Let D be a convex fundamental polygon for a Fuchsian group G. Show that if there 
is some w such that the sides of D lie on the bisectors {z: p(z, w) = p(z, gw)}, g E G, 
then D is the Dirichlet polygon with centre w. 

4. Let D be a convex fundamental polygon for a Fuchsian group G acting in d and 
suppose that D contains a geodesic L. Prove that if {VI, ... , vn} is an accidental cycle 

on aD then ( ) 
coshp(vl' L) + ... + coshp(vn , L) ~ nisin ~ ~ n2ln. 

Find a corresponding inequality when the Vj form an elliptic cycle of order q. 

5. With reference to Figure 11.2.3, show thatf-Ihg is parabolic (writef = rxfJ, hg = rxy 
where rx, fJ and yare reflections). 

§11.3. Heeke Groups 
In this section, we study the class of Hecke groups as these play an ex­
ceptional role in the following discussions. 

Definition 11.3.1. A Hecke group is a Triangle group with signature (0: 2, 
q, 00) for some integer q satisfying 3 :::;; q :::;; + 00. 

Let 
g(z) = -l/z, h(z) = z + 2 cos(n/q): 

then <g, h) has signature (0: 2, q, 00) and a fundamental domain for <g, h) 
is illustrated in Figure 11.3.1. As any two Triangle groups with the same 
signature are conjugate, we see that any Hecke group with signature (0: 2, 
q, CXl) is conjugate to <g, h). Note that hg is elliptic of order q and fixes one 
vertex of the triangle. 

h 

w 

-cos(n/q) o cos (n/q) 

Figure 11.3.1 
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It is sometimes convenient to normalize the parabolic generator h so that 
this is the map z 1-+ z + 1. Then g becomes 

g(z) = -1/4z cos2(n/q) 

and this is elliptic of order two with fixed point i/2 cos(n/q). Note that with 
this normalization, the fixed point, say w, of order q satisfies 

Im[w] = ! tan(n/q): 

this shows that Corollary 11.2.3 is best possible. 
The next two results help in identifying Hecke groups. 

Proposition 11.3.2. Let G be a Fuchsian group with parabolic elements. If G 
has a fundamental domain with h-area less than n, then G has one of the 
signatures (0: 2, q, 00) where 3 ~ q ~ + 00 or (0: 3, q, 00) where q = 3, 4 or 5. 

PROOF. As the fundamental domain has finite area, G has signature (k: m1' 
... , mn, 00) say, the 00 being present as G is known to include parabolic 
elements. From Section 10.4 we deduce that 

2n[2k - 2 + .f. (1 - ~) + 1J < n 
J=1 mJ 

(11.3.1) 

and so (as mj ;;:: 2) 

4k + n < 3. 

Thus k = 0 and (for positive area) n = 2. With this information, (11.3.1) 
now yields 

1 1 
+- >-

m1 m2 2 

and hence min{m1' m2} ~ 3. The result now follows easily. o 

Theorem 11.3.3. Let Go be a Hecke group and let G be a Fuchsian group 
containing Go. Then G = Go. 

PROOF. We may suppose that G acts on H2 so 

k h-area(H2/G) = h-area(H2/Go), (11.3.2) 

where Go is of index k in G. By assumption, Go has signature (0: 2, p, 00), 
say, and so G has one of the signatures described in Proposition 11.3.2. 

If k ;;:: 2 then 

h-area(H2 /G) ~ n/2 

and so G is also a Hecke group (see the proof of Proposition 11.3.2) with 
signature (0: 2, p, 00). This contradicts (11.3.2) so k = 1 and G = Go. 

For an alternative proof, recall that the elliptic fixed points of order q at 
the vertices of the triangle in Figure 11.3.1 have the largest possible imaginary 
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part for any group containing Go. In particular, their images by elements of 
G cannot have a larger imaginary part so these fixed points must lie on the 
boundary of the corresponding fundamental domain D for G (constructed 
as in Section 9.6). It follows from convexity that D contains the triangle and 
as G ::::J Go, D must be the triangle. Thus G = Go. D 

EXERCISE 11.3 

1. With reference to Figure 11.3.1, show that hg is the composition of reflections in the 
two sides with common vertex wand hence is a rotation about w of angle 2n/q. 

2. Show that if G contains parabolic elements and if h-area(H2/G) < 2n/3, then G is a 
Hecke group. 

§11.4. Trace Inequalities 

The objective here is to obtain certain algebraic inequalities which must be 
satisfied by two elements in order that they generate a non-elementary 
discrete group. 

Theorem 11.4.1. Suppose that the two parabolic elements g and h generate a 
non-elementary Fuchsian group G. Then one of the following possibilities 
must occur: 

(1) trace[g, h] ;;::: 18; 
(2) trace[g, h] = 2 + 16 cos4(n/r) and G has signature (0: 2, r, (0); 
(3) trace[g, h] = 2 + 16 cos4 (n/2r) and G has signature (0: r, 00, (0). 

PROOF. By conjugation, we may suppose that G acts on H2 and that 

h(z) = z + 1, g(z) = z/(cz + 1). 

By using g-l if necessary, we may suppose that c > O. As 

trace[g, h] = trace[h, g] = 2 + c2 , 

the three possibilities are equivalent to 

(1) c ;;::: 4; 
(2) c = 2 + 2 cos(2n/r); 
(3) c = 2 + 2 cos(n/r). 

(11.4.1) 

Jprgensen's inequality, namely c ;;::: 1, holds so assuming that (1) fails, we 
have 1 ::; c < 4. Now construct the quadrilateral with sides formed by the 
isometric circles of g and g-l and the lines x = t and x = -t: see Figure 
11.4.1. Observe that 1 ::; c < 4 implies that the point w d6es exist. 
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h 

Figure 11.4.1 

By considering reflections in x = 0, x = ! and I cz - 11 = 1, we find that 
hg- 1 is a rotation of angle 2e about w. Thus for some k and r (which we 
rna y assume are coprime) we have 

e = knlr, c = 2 + 2 cos(knlr). 

If k = 1 or r = 00, then Poincare's Theorem is applicable, the quad­
rilateral is a fundamental polygon for G and G has signature (0: r, 00, (0): 
this is Case (3). 

If k 2:: 2 and r is finite, then there is some f in G which is a rotation of 
angle 2nlr about w. In this case, construct the quadrilateral in Figure 11.4.2. 
Observe that as k 2:: 2 we have nlr = elk::;; e/2 so (by elementary trigo­
nometry) 4> 2:: n/2. 

h 

"-

o 
Figure 11.4.2 

"-, 
\ 

\ 
\ 



§ 11.4. Trace Inequalities 297 

Now the images under <h, f) (and hence under G) of the quadrilateral 
with angles 0, cP, cP, 2rclr cover the hyperbolic plane (because any curve 
from w can be covered by images of the quadrilateral a small, but fixed, 
distance at a time) and so G has a fundamental domain of area at most 
rc - (2rclr). Proposition 11.3.2 implies that G is a Triangle group with 
signature, say, (0: rl' s, 00) where r divides rl. Thus 

2rc(1 - ~ - ~) ::s;; 2rc - 2cP _ 2rc 
r1 s r 

2rc 
::s;; rc --

r 

2rc 
< rc -­- rl· 

This shows that s = 2: thus equality holds throughout and so cP = rc12. 
Because cP = rc12, we have () = 2rclr: then k = 2, r = r1 and this is Case (2). 

o 

Theorem 11.4.2. Suppose that h is parabolic and that g and h generate a non­
elementary Fuchsian group G. Then 

(1) trace[g, h] ?: 3; 
(2) if 3 ::s;; trace[g, h] < 6 then G has signature (0: 2, q, 00) and 

trace[g, h] = 4 + 2 cos(2rclq); 

(3) if trace[g, h] < 18 then G contains elliptic elements. 

PROOF. We may assume that G acts on HZ and that 

h(z) = z + 1, () _az+b 
g z - d' cz + 

where ad - bc = 1 and c > O. As (11.4.1) holds, we see that (1) is simply 
10rgensen's inequality. In order to prove (2), we assume that trace[g, h] < 6 
or, equivalently, c < 2. This means that G has a fundamental domain lying 
outside the isometric circle of g and inside a vertical strip of width one: see 
Figure 11.4.3. As the isometric circle of g has a Euclidean diameter greater 
than one, we see that HZ IG has area less than rc and so G has one of the 
signatures given in Proposition 11.3.2. 

Now observe that g = O"ZO"I where 0"1 is the reflection in Ll given by 
I cz + d I = 1 and where 0" Z is the reflection in a vertical line L z. For any 
choice of the integer n, let L3 be the line L z translated by a (Euclidean) 
distance n12. Then 
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lie 

(J 

(-die) -! -die (-die) +! 
Figure 11.4.3 

Now let L be the vertical geodesic orthogonal to L1 : see Figure 11.4.4. 
By choosing n to minimize the Euclidean distance between Land L 3 , we 
see that L3 meets Ll at a point w in an angle e/>, say. Thus hng fixes wand is 
a rotation about w of angle 2e/>. Clearly, if t is the distance between Land 
L 3 , then t ~ * and 

thus e/> > n13. Also, e/> ~ n12. 

cos e/> = ct 

< !: 

Let p be the order of the fixed point w. Then e/> = knlp say, with (k, p) = 1 
and hence 

(11.4.2) 

L 

lez + dl = 1 

Figure 11.4.4 
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Also, by Corollary 11.2.3, we have 

tan(n/p) ;:::: 2 Im[w] 

= 2(1/c) sin cp 
;:::: sin(n/3) 

= fi/2 
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(11.4.3) 

so p = 2, 3 or 4. With these values of p, the only solutions of (11.4.2) lead to 
cp = n/2, p = 2, w = C so G contains as elliptic element / of order two 
which fixes C. 

If G has one of the signatures (0: 3, q, 00) where q = 3,4 or 5, then q = 4 
(as / E G). But in this case, w is a fixed point of order four so 

2 Im[w] $; tan(n/4) 
= 1 

contrary to (11.4.3). Thus G must be a Hecke group with signature (0: 2, q, 
00) say. The elements hand / generate G and pair the sides of the triangle 
illustrated in Figure 11.4.3 (with/interchanging the sides [C, Zl] and [C, Z2])' 
From consideration of areas, we have 

n - 2n/q $; n - 2(} 

and so (} $; n/q. On the other hand, the minimum angle of rotation in G is 
2n/q so 2(};:::: 2n/q. This gives (} = n/q and 

c = 2 cos(n/q) 
which is (2). 

If G has no elliptic elements then c ;:::: 4 (see the proof of Theorem 8.3.1) so 
(3) holds. 0 

Similar results hold for elliptic elements in place of parabolic elements. 

Theorem 11.4.3. Let g be a rotation of angle 2n/n (n ;:::: 3) about some point 
in the hyperbolic plane and suppose that / and g generate a non-elementary 
Fuchsian group. Then apart from certain Triangle groups (which are listed 
in the proo!), 

(1) trace[f, g] ;:::: 2 + 4 cos2(n/n) ;:::: 3; 
(2) Itrace2(g) - 41 + Itrace[f, g] - 21;:::: 4. 

Remark. If/and g lie in a non-Triangle discrete group, then either (/, g> 
is elementary or (1) and (2) hold: see Theorem to.6.5. 

Remark. The inequality (2) is meaningful for all n ;:::: 3: this is not true if 
the lower bound is replaced by one. 

PROOF. We may suppose that / and g act on L\ and that in terms of matrices, 

( ei1t1n 0) 
g = 0 e- i1t1n ' / = (: ~). 
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o 
~ ... 21C/n , 

/ "-
... D ' Izl = 1 

Figure 11.4.5 

where lal2 - 1e12 = 1. Now <f, g) has a fundamental domain lying within 
the region D illustrated in Figure 11.4.5: here, D is the region outside the 
isometric circle of f - I and within a sector of angle 2n/n situated symmetri­
cally with respect to the isometric circle. 

The exceptional groups are those for which D is bounded. In this ·case, 
the signature (k: ml' ... , ms) satisfies 

2n[2k - 2 + .± (1 - ~)J < n - 2n/n 
)=1 m) 

(11.4.4) 

::;; n - 2n/m .. 

say, where n divides ms. Thus k = 0 and s = 3. A more detailed investigation 
of (11.4.4) now yields the exceptional cases 

ml = 2 or (ml' m2) = (3, 3), (3, 4) or (3, 5). 

Assume now that <f, g) is not one of these exceptional groups. Then D 
is unbounded and, noting that the isometric circle of f - 1 is the bisector of 
[0, fO], we may use the Angle of Parallelism formula to obtain 

or, equivalently, 

As 

cosh !p(O, fO) sin(n/n) ~ 1, 

lei = sinh !p(O,JO) 

~ cot(n/n), 

a computation yields first (1) and then (2). 

EXERCISE 11.4 

o 

1. Verify that (in the proof of Theorem 11.4.1) the assumption c > 0 ensures that 9 acts 
in the direction shown in Figure 11.4.1. 
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2. Suppose that e > 4 and let G be generated by 

h(z) = z + 1, 
z 

g(z) = ez + 1 . 

Show that G is discrete and find its signature. 

301 

Prove analytically and geometrically (which is much shorter) that gh- 1 is hyper­
bolic with translation length T where the hyperbolic distance between x = t and 
the isometric circle of 9 is t T. 

3. Suppose that G is a Fuchsian group acting on H2 which contains 

az + b 
h(z) = z + 1, g(z) = ez + d (e oF 0, ad - be = 1) 

Prove that h-area(H2/G) :2: n13. 
Show that the triangle bounded by the isometric circle of 9 and the two vertical 

lines 

x = (-die) - t, x = (-die) + t 
contains a fundamental domain for G and deduce that lei :2: 1 (this is Jorgensen's 
inequality). 

4. As in the proof of Theorem 11.4.2, assume that e < 2. Show that G contains an element 
of order two as follows. 
(i) Let 

az + b 
f(z)=--

ez + d 
(ad - be = 1) 

be in G with the smallest (positive) value of I e I possible. By considering the 
matrix for P, show that either f has order two or that I trace(f) I :2: 1. 
(ii) Show that for a suitable n, I trace(h1) I < 1 so h"f is of order two. 

§11.5. Three Elliptic Elements of Order Two 

Let j, 9 and h be elliptic elements of order two with distinct fixed points u, v 
and w respectively. If u, v and ware collinear then the group G generated by 
j, 9 and h is elementary for it leaves the geodesic containing these points 
invariant. We shall assume that u, v and ware not collinear: let (x, [3 and y 
be the angles and a, band c be the lengths of the sides of the triangle with 
vertices u, v and w: see Figure 11.5.1. 

The three vertices of the triangle determine a positive number A which is 
defined by 

A = sinh a sinh b sin y 

= sinh b sinh c sin (X 

= sinh c sinh a sin [3, 

(11.5.1) 

the equality of these expressions being a consequence of the Sine Rule. If we 
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Figure 11.5.1 

view the side [u, v] as the base of the triangle lying, say, on the geodesic Lw , 

then the height of the triangle is p(w,Lw) where 

sinh p(w, Lw) = sinh a sin p. 
Thus we may also write (in the obvious way) 

A. = sinh(base) x sinh(height), 

regardless of the choice of which side is the base. 
The quantity A. is related to the elliptic elements f, g and h as follows. 

Theorem 11.5.1. The absolute value of the trace of any of the isometries 

fgh, hfg, ghf, hgf, fhg, gfh 
is equal to 2A.. 

PROOF. First, I trace(fgh) I is invariant under cyclic permutations of f, g and 
h: for example, 

Also, 

I trace(fgh) I = I trace h(fgh)h- 1 1 

= Itrace(hfg)l· 

I trace(fgh) I = Itrace(fgh) -11 

= I trace(hgf) I 
so I trace(fgh) I is invariant under any permutation of f, g and h. 

Now let L be the geodesic through u and v. Construct 

(i) the geodesic L1 through wand orthogonal to L; 
(ii) the geodesic L2 through wand orthogonal to L 1 ; 

(iii) the geodesics L3 and L4 orthogonal to L with 

see Figure 11.5.2. 
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L 

----~----------~+------Ll 

p(u, v) 

Figure 11.5.2 

Denoting reflection in L j by (fi' we have 

(f 2 (f 1 = h, (f 1 (f 3 = f g (or g f) 
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as fg is a hyperbolic element with axis L and translation length 2p(u, v). It 
follows from Theorem 7.38.1 that 

!Itrace(hfg)I = !ltrace«(f2(f3)1 

= (L2' L3)' 

Now the inversive product (L2' L 3) is cosh P(L2' L 3) when L2 and L3 
are disjoint and it is cos ¢ when L2 and L3 meet at an angle ¢ (possibly 
zero). In all cases (see Theorem 7.17.1, Lemma 7.17.3 and Theorem 7. 18.1(iii» 
we have 

(L2' L 3) = sinh p(L, L 2) sinh P(Ll' L 3) 

= sinh p(w, L) sinh p(u, v) 

= A. o 

We shall now examine how the value of A determines the nature of the 
group generated by f, g and h. 

Theorem 11.5.2. Let f, g and h be elliptic elements of order two which generate 
a non-elementary group G and let A be given by (11.5.1). 

(1) If A> 1 then G is discrete and has signature (0: 2, 2, 2; 0; 1). 
(2) If A = 1 then G is discrete and has signature (0: 2, 2, 2; 1; 0). 
(3) If A < 1 then G is discrete only if A is one of the values 

cos(n/q), q ;;::: 3; cos(2n/q), q ;;::: 5; cos(3n/q), q ;;::: 7: 

the possible signatures for G are 

(0: 2, 2, 2, q; 0; 0), (0: 2, 3, q; 0; 0), (0: 2, 4, q; 0; 0). 
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A construction of a fundamental domain for each discrete G will arise in 
the proof and it will be apparent that every value of A given in Theorem 
11.5.2 does give rise to a discrete group. Thus we can derive the following 
universal bound. 

Corollary 11.5.3. Iff, g and h are elliptic elements of order two which generate 
a non-elementary discrete group, then 

I trace(fgh) I ?: 2 cos(3n/7) 

and this is best possible. 

PROOF OF THEOREM 11.5.2. We suppose first that A> 1. Then we can con­
struct the polygon illustrated in Figure 11.5.3 where u' and v' are images of 
u and v respectively under some power of the hyperbolic element fg with 
axis L. Note that 

The elements fixing u' and v' are, say, 

respectively. The side-pairing maps of the polygon in Figure 11.5.3 generate 
G and by Poincare's Theorem, the polygon is a fundamental domain for 
G. In this case, G has signature (0: 2, 2, 2; 0; 1). This proves (1): an obvious 
modification gives (2) with A = 1 precisely when L2 is tangent to L3 and L4 
on the circle at infinity. 

The case when A < 1 is more difficult: here L2 meets L3 and L4 at an 

Figure 11.5.3 
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L 

" Figure 11.5.4 

angle 8 say and we consider the polygon illustrated in Figure 11.5.4. Note 
that as discussed earlier, we have A = cos 8. 

Suppose now that G is discrete. Then hgf (or hfg) satisfies 

hgf = «(JZ(Jl)«(Jl(J3) 

and this is rotation of angle 28 about (. Let q be the order ofthe elliptic element 
hgf so that 8 = np/q for some integer p, (p, q) = 1. 

If p = 1, we obtain a fundamental polygon for G and in this case G has 
signature (0: 2, 2, 2, q; 0; 0) and A = cos(n/q) where q 2 3. 

From now on we may assume that p 2 2. The G-images of the compact 
quadrilateral cover the hyperbolic plane (there is a positive r such that each 
point of the quadrilateral lies in a disc of radius r covered by G-images) so 
by considering areas we have 

2n[2k - 2 + .± (1 - ~)J ::s; n - 2np/q, 
J= 1 mJ 

where G has signature (k: mb ... , m,). This gives 

4k-4+s<1. 

For positive area, we also have 

0< 2k - 2 + s 

and so the only possibilities are k = 0 and s = 3 or 4. 
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In fact, s = 3. To see this, assume that s = 4. As G contains an element 
of order q, we may suppose that q divides m4. Then as p ~ 2, mj ~ 2 and 
q ~ m4, we have 

2[~ - _1 ] ~ 2[2 - ± ~J 
2 m4 j=l mj 

~ 1 _ 2p 
q 

4 
~ 1--. 

m4 

This implies that m4 = 00 and hence that G contains parabolic elements: 
however this cannot be so as the quadrilateral is compact and contains 
points from every orbit. Thus s = 3 and G is a Triangle group. 

Let us now write the signature of G as (0: I, m, n) where q divides n. By 
Theorem 9.8.6, there is a positive integer N such that the quadrilateral 
contains N images of each point in the plane. Thus by considering areas, 

2nN[1- G+~+~)J =n_ 2: P. 

As () = np/q and as' and,' are in the same orbit we find that N ~ p (consider 
points close to O. Thus 

2P[1- G+~+~)J ~2N[1- G+~+~)J 
~ 1 _ 2p 

q 

2p 
~ 1--. 

n 

The inequality between the first and last terms yields (as p ~ 2) 

and the solutions of this are 

1 1 2p - 1 3 
-+->--->­/ m - 2p - 4 

(I, m, p) = (2,3,2), (2, 3, 3), (2, 4, 2). 

(11.5.2) 

If (I, m, p) = (2, 4, 2), then equality holds throughout (11.5.2) so q = n: 
thus in this case G has signature (0: 2, 4, q) where q ~ 5 and A = cos(2n/q). 

If (/, m, p) = (2,3,3), equality again holds throughout (11.5.2) so q = n, 
G has signature (0: 2, 3, q) where q ~ 7 and A = cos(3n/q). 

For the remaining case, namely (I, m, p) = (2,3,2) we need a slightly 
different argument. First, the elliptic fixed points u', v', W, , and C lie in at 
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most two orbits (none can lie in the orbit of order three). This means that 
N ;;:: 3 and using the middle terms of (11.5.2) we have 

6(! -!) :::;; 1 -~ 
6 n q 

so q = n (because n/q is an integer). This actually completes the proof of 
Theorem 11.5.2 as stated as this does not assert which signatures correspond 
to which values of A.. Briefly, there exist integral solutions of the above 
equations which do not correspond to discrete groups and a more detailed 
analysis yields all possibilities. For example, the middle terms of (11.5.2) 
yield 

so 

6 
N=3+-­

n-6 

(n, N) = (7,9), (8, 6), (9, 5) or (12, 4). 

However, N must be a multiple of three (consider the fixed points of order 
three in the quadrilateral). 0 

As an illustration of the possible cases, consider the quadrilateral 
illustrated in Figure 11.5.5 where p(u', w) = p(u', v'). Let IX, {3 and y be 
reflections as shown. The three rotations of order two (fixing w, u' and v' 
respectively) are 1X{3, (lXy)2 and Y(IX{3)y and these generate the same group as 
1X{3, {3y and ylX, namely a Triangle group with signature (0: 2, 4, q). 

v'---

tLr--'--+--~ W 

c' 
Figure 11.5.5 
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EXERCISE 11.5 

1. Suppose that{, g and h are elliptic elements of order two with collinear fixed points 
u, v and w respectively. Find a necessary and sufficient condition for <J, g, h) to be 
discrete in terms of p(u, v) and p(v, w). 

2. Give a proof of Theorem 11.5.1 using matrices (takeJ, g and h fixing i, ti and u + iv 
respectively in HZ). 

§11.6. Universal Bounds on the Displacement 
Function 

Our aim is to obtain lower bounds of 

M(g, h) = inf max {sinh 1P(Z, gz), sinh 1P(Z, hz)} 

and 

peg, h) = inf sinh 1P(Z, gz) sinh 1P(Z, hz) 

for various choices of g and h subject to <g, h) being discrete and non­
elementary. Observe that 

M(g, h)2 ~ peg, h). 

Obviously, a lower bound on peg, h) is preferable for it shows that if one 
of the sinh terms is small then the other term is correspondingly large: this 
does not follow from a lower bound on M(g, h). If g or h is elliptic, then 
peg, h) = 0 so one must use M(g, h). 

The inequality 

M(g, h) ~ m 

means that for every z, either g or h moves z at least a distance 2 sinh - l(m). 
It is known that in every case, 

M(g, h) ~ O· 131846 ... : 

the existence of a lower bound was established by Marden: this lower bound, 
which is best possible, was obtained by Yamada and is given in Theorem 
11.6.14. 

The evaluation of the best lower bounds for M(g, h) and peg, h) is in­
timately connected with the geometric constraints on g and h and both the 
numerical bounds and the geometric constraints appear in this section. At 
this point, the reader should recall Theorem 8.3.1: if <g, h) is discrete, non­
elementary and has no elliptic elements, then peg, h) ~ 1 and this lower bound 
is best possible. 

We shall obtain different lower bounds depending on the classification 
of g and h. First, we assume that one of these is parabolic. 
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Theorem 11.6.1. Let g and h be isometries and suppose that <g, h) is discrete 
and non-elementary. 

(1) If g and h are parabolic, then peg, h) ~ i. If, in addition, <g, h) is not a 
Triangle group, then peg, h) ~ 1. 

(2) ~r g is parabolic and h is hyperbolic, then peg, h) ~ !. If, in addition, 
<g, h) is not a Triangle group, then peg, h) ~ t. 
All four bounds are best possible. 

PROOF. Let g be parabolic and let h be parabolic or hyperbolic. We may 
suppose that g and h act on HZ and that 

g(z) = z + 1, h(z) = az + b, 
cz + d 

ad - bc = 1. 

As <g, h) is non-elementary, colO. Now h has two real, finite, possibly 
coincident, fixed points u and v and 

Iz - h(z)I·lcz + dl = Icl·lz - ul·lz - vi 
~ Iclyz. 

From Theorem 7.2.1 we obtain 

sinh tp(z, gz) sinh tp(z, hz) = Iz - h(z)I.lcz + dl/4yZ 

~lcl/4. (11.6.1) 

From 10rgensen's inequality, Icl ~ 1 so in both cases, peg, h) ~ ±. 
Suppose now that <g, h) is not a Triangle group. If h is parabolic, 

Theorem 11.4.1 yields I c I ~ 4 and so peg, h) ~ 1. If h is hyperbolic, then 
from Theorem 11.4.2 we deduce that I c I ~ 2 so peg, h) ~ t. This establishes 
(1) and (2); the following examples show that these lower bounds are best 
possible. D 

Example 11.6.2. The isometries g, hand f given by 

g(z) = z + 1, 
z 

h(z) = --1' z+ 
fez) = 2z + 3 

z+2 

are parabolic, parabolic and hyperbolic respectively and generate a discrete 
group (a subgroup of the Modular group). A computation using (11.6.1) 
with z = iy gives 

sinh tp(z, gz) sinhtp(z, hz) = ! 
and 

sinh tp(z, gz) sinh tp(z, fz) = ! + (3/4y2) 

and, letting y tend to + 00, we see that the lower bounds of ! are best 
possible. 0 



3lO 11. Universal Constraints On Fuchsian Groups 

Example 11.6.3. Let g(z) = z + 1 and let h be the reflection in Iz + tl = t 
followed by reflection in x = 0 where 0 < t < i. Thus h is parabolic and 
fixes the origin: in fact, 

z 
h(z) = (z/t) + 1· 

Using (11.6.1), we see that when z = iy, 

sinh tp(z, gz) sinh tp(z, hz) = 1/4t. 

Clearly, <g, h) is a non-elementary Fuchsian group of the second kind. 
Letting t tend to i we find that the lower bound of one in Theorem 11.6.1(1) 
is best possible. D 

Example 11.6.4. Let g(z) = z + 1 and let h be an elliptic element of order 
two fixing the point iv where 0 < v < t. Then <g, h) is discrete and non­
elementary: for example, 

{z E H2: 1 Re[z]1 < t, Izl > v} 

is a fundamental domain for <g, h). Now write J = gh: then J is hyperbolic 
and is a reflection in 1 z 1 = v followed by the reflection in x = t. It follows 
that 

so 

J(z) = (z/v) - v 
(z/v) 

= 1 - (V2/Z) 

·1 ·1 Iz-Jzl·lz/vl 
smh zp(z, gz) smh zp(z, Jz) = 4y2 

IZ2 - Z + v2 1 

4vy2 

Letting y tend to + 00 with, say, x = 0, this expression tends to 1/4v. As v 
can be arbitrarily close to t, and as <g, h) = <g,f) we see that the lower 
bound of t in Theorem 11.6.1(2) is best possible. D 

Next, we consider one elliptic and one parabolic generator: in this case 
we must use M(g, h). 

Theorem 11.6.5. Let 9 be parabolic, let h be elliptic oj order q and suppose that 
<g, h) is discrete and non-elementary. 

(1) IJ q 2: 3 then 

cosCn/q) 
M (g, h) 2: -=-[ 1c--+--:2'-c-o-sC-:-n-'-/ q:-)---CO-S'2 (-:-n:-/ q--:) ]"'1"/2 

2: 1/fi· 
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(2) If q = 2, then M(g, h) ;;::: 1/J8. 
(3) If, in addition, (g, h) is not a Triangle group, then jor q ;;::: 2 we have 

M( ,h) > [1 + cos(n/q)]1/2 
9 - 3 - cos(n/q) 

;;:::l/ji 
All of these bounds are best possible. 

PROOF. Let 

m(z) = max{sinh !p(z, gz), sinh !p(z, hz)}. 

We may assume that 9 and h act on H2, that g(z) = z + 1 and that h is a 
rotation of angle 20 (where 0 < 20 < n) about a point w of the form iv. 

For any Zl' let Z2 be the point where the horizontal line (a horocycle at 
00) through Zl meets the geodesic L from 00 through w. Now let Z3 be the 
point on the half-ray [w, 00) such that Z2 and Z3 are equidistant from w (if 
Im[zl] ;;::: Im[w] then Z2 = Z3 but not otherwise). Then 

Im[zl] = Im[z2] ::;; Im[z3], 

P(Zl' w) ;;::: P(Z2' w) = P(Z3' w) 

and so (see Section 7.35), 

As 
M(g, h) = inf m(z), 

z 

this means that we can confine out attention to m(z) for those z of the form 
iy where y ;;::: v. As y increases from v to + 00, so p(z, gz) decreases to zero 
and p(z, hz) increases from zero to + 00: hence there is a unique z, say z = it, 
where 

sinh !p(z, gz) = sinh !p(z, hz) 

and where this common value is M(g, h). 
Now observe (from Section 7.35) that when z = it, 

sinh !p(z, gz) = 1/2t 

and 

sinh !p(z, hz) = I sin 0 I sinh p(it, iv) 

= !Isin 01 G - ~). 
Thus 

2 2 V 
t = v + IsinOI. 
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As h is of order q (and h #- I), we must have Isin 81 ~ sin(nlq). By Corollary 
11.2.3, if q ~ 3, then 

and so 

As 

v s 1 tan(nlq) 

2 
4t2 S tan 2(nlq) + (I) cos n q 

M(g, h) = 1/2t, 

the lower bound involving q in (1) follows. By elementary calculus, this is 
an increasing function of cos(nlq) and the lower bound of 1/fi is the case 
q = 3. It is clear that this lower bound is best possible for each value of q: 
indeed, equality holds throughout this argument for the Hecke groups dis­
cussed in Section 11.3. 

This argument fails if q = 2. However, in this case, v S 1 (the fixed point 
lies on the isometric circle and, by J0rgensen's inequality, lei ~ 1) and 
8 = nl2 and so t2 S 2: this proves (2). This is also best possible: for example, 

take g(z) = z + 1, h(z) = -liz and z = iJ2. 
Now suppose that <g, h) is not a Triangle group. As h is of order q, some 

power of h, say hn, is a rotation of angle 2nlq about iv and <g, hn) (= <g, h» 
is not a Triangle group. Exactly as above, we have 

v 
t2 < v2 + (11.6.2) 

- sin(nlq) 

Now consider the quadrilateral (possibly with two free sides on the real 
axis) with sides lying on the lines x = 1, x = -1 and the isometric circles 
of hn and h- n• This quadrilateral is not bounded (Theorem 10.6.6), thus 

see Figure 11.6.1. 

V 1. 
. ( I ) [1 + cos(nlq)] < 2' sm n q 

I 
I 
I 

rr./q : rr./q 

o 
Figure 11.6.1 

1 
"2 

(11.6.3) 
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Using (11.6.2) and (11.6.3) we obtain 

4 2 3 - cos(n/q) 
t < -------''---

- 1 + cos(n/q) 

~3 

and the lower bounds in (3) hold. These lower bounds are best possible for 
we can construct groups from a quadrilateral as suggested by the proof: we 
omit the details. D 

Next, we consider two elliptic generators. 

Theorem 11.6.6. Let 9 and h be elliptic elements of orders p and q respectively 
and suppose that (g, h) is discrete and non-elementary. Then 

M( h) > [4 cos2(n/7) - 3J 1/2 = 0.1318 
g, - 8 cos(n/7) + 7 .... 

If, in addition, (g, h) is not a Triangle group, then 

M( ,h) > ( [cos(n/p) + cos(n/q)J2 )1/2 > _1_. 
g - 4 - [cos(n/p) - cos(n/q)J2 -.ji5 

Both bounds are best possible. 

We shall need the following geometric result. 

Theorem 11.6.7. Let 9 be elliptic of order p with fixed point u, let h be elliptic 
of order q with fixed point v and suppose that (g, h) is discrete, non-elementary 
but not a Triangle group. Then 

h ( ) 1 + cos(n/p) cos(n/q) 
cos P u, v > . ( /) . ( /) . sm n p sm n q 

PROOF OF TJIEOREM 11.6.7. Some gl in (g) has angle of rotation 2n/p, some 
hI in (h) has angle of rotation 2n/q and (g, h) = (gl, hI)' Thus we may 
assume that g and h have angles of rotation 2n/p, 2n/q. Without loss of 
generality, g and h act on L\, u = 0 and v > O. Now construct the isometric 
circles of hand h- 1 and the segments from the origin making an angle n/p 
with (0, 1): see Figure 11.6.2. The rays Land L' are paired by g and the rays 
Ll and L'I are paired by h. If Land Ll meet, then (g, h) is a Triangle group 
(Theorem 10.6.6). If this is not so, then (Theorem 7.10.1) cosh p(u, v) is 
bounded below by the given bound. D 

PROOF OF TJIEOREM 11.6.6. Write 

m(z) = max{sinh 1P(Z, gz), sinh 1P(Z, hz)}. 

Clearly if g or h is replaced by a rotation about the same point but with a 
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u=o 

L' 

nip 
nip 

L 

Figure 11.6.2 

smaller angle of rotation, then the corresponding m(z) decreases: thus we 
may assume that g and h have angles of rotation 2n/p and 2n/q respectively. 
We may assume that these act on ~, that g fixes the origin and that h fixes 
the point v where v > 0. Exactly as in the proof of Theorem 11.6.5, the mini­
mum value ofm(z) is attained at some point x of the real segment [0, v], where 

sinh tp(x, gx) = sinh tp(x, hx) 

and where this common value is M(g, h). 
Now write 

p(O, x) = t, 

so p(x, v) = d - t. Also, write 

p(O, v) = d 

sp = sin(n/p), 

and, similarly, for Sq' cq. Then 

Cp = cos(n/p) 

sp sinh t = Sq sinh(d - t) 

(both sides are M(g, h)) so 

However, 

h Sq sinh d 
tan t = . 

sp + Sq cosh d 

M(g, h)2 = (Sp)2 sinh2 t 

(Sp)2 tanh2 t 

1 - tanh2 t 

(spSq)2[cosh2 d - 1] 
(11.6.4) 
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By elementary calculus, this is an increasing function of cosh d: thus if (g, h) 
is not a Triangle group, then Theorem 11.6.7 is applicable and 

SpSq cosh d ~ 1 + cpcq. 

Substitution in (11.6.4) yields 

M( h)2 > (c p + Cq)2 
g, - 4 ( )2' - cp - cq 

which is the lower bound stated in the theorem. This lower bound is an in­
creasing symmetric function of C p and cq in the permitted ranges so taking say, 
p = 3 and q = 2 (if p = q = 2 then (g, h) is elementary) we obtain a lower 
bound of M(g, h)2 equal to ls. It is clear from this proof that one can con­
struct groups to show that these bounds are best possible. 

It remains only to establish the first (and smaller) lower bound in 
Theorem 11.6.6 in the case when G is a Triangle group. Let G be a Triangle 
group with signature (0: m, n, r). Suppose that g and h are associated with 
the cyclic subgroups of orders m and n respectively (but they need not be of 
orders m or n). The estimation of M(g, h) must allow for, and cannot be 
smaller than, the estimation under the assumption that g and h have angles of 
rotation 2nlm and 2nln; thus we may assume that m = p and n = q. In this 
case the fixed points u and v of g and h respectively must be separated by at 
least a distance along the side of a triangle with angles nip, nlq and nlr 
(otherwise we could construct a fundamental domain with area less than 
the known value): thus by the Cosine Rule: 

C C + C 
coshp(u,v)~ pq r. 

SpSq 

The identity (11.6.4) remains valid so 

M( h)2 > (cpcq + Cr )2 - (SpSq)2 
g, - (Sp)2 + (Sq)2 + 2[cpcq + cr ] 

c; + c; + c; + 2cpcqcr - 1 
2 + 2cr - (c p - Cq)2 

We need to obtain the infimum of this expression over all p, q and r 
satisfying 

111 
-+-+-<1. 
p q r 

In fact the infimum occurs when r = 7, p = 2 and q = 3 (or when p = 3, 
q = 2): in this case the lower bound is 

In general, we have 

4 cos2(nI7) - 3 = 0.0173 .... 
8 cos(nl7) + 7 
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so 

M(g, h)2 ~ i [c; + c~ + c; + 2cp cq cr - 1]. 

Assume for the moment that one of p, q, r, is at least 8: another is at least 
3 and then 

M(g, h)2 ~ i[cos2(n/8) + cos2(n/3) - 1] 

= 0·025 .... 

Thus in our search for a lower bound on M(g, h), we can assume that each 
of p, q and r is at most 7: this reduces the problem to a finite number of 
computations, however even most of these can be avoided. 

If none of p, q and rare 2, then two are at least 3, the other being at least 
4: then 

M(g, h)2 ~ i[2 cos2(n/3) + cos2(n/4) + 2 cos2(n/3)cos(n/4) - 1] 

= 0·088 .... 

Thus we may assume that one of p, q and r is 2. If none are 3, then the others 
are at least 4 and 5 and then 

M(g, h)2 ~ [cos2(n/4) + cos2(n/5) - 1]/4 

> 0·038. 

We deduce that one of p, q and r is 2, another is 3 and the third is at most 
and (for positive area) at least 7. The lower bound is symmetric in p and q 
and the numerator is symmetric in p, q and r. Thus we need only maximize 

2 + 2cr - (c p - Cq)2 

over the possibilities 

(p, q, r) = (2,3, 7), (2, 7, 3), (3, 7, 2): 

the details are omitted. o 

We turn our attention now to hyperbolic elements. First, we establish 
geometric constraints which must be satisfied by any two hyperbolic elements 
in a discrete group. The motivation for the next two results is the distinction 
between simple and non-simple hyperbolic elements (Definition 8.1.5): 
however, the results are more generally applicable than this, indeed, they 
are concerned with whether or not the projection of the two axes cross on 
the quotient surface. 

Theorem 11.6.8. Let g and h be hyperbolic elements with axes and translation 
lengths A g , A h , 'Fg and T" respectively. Suppose that <g, h) is discrete and non­
elementary and that Ag and Ah cross at an angle e. Then 

(1) sinh(!Tg) sinh(!Th) sin e ~ cos(3n/7) = 0·2225 .... 
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In fact 
(2) sinh(! Tg) sinh(! 1/,) sin () ~ !, 
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except possibly when <g, h) has one of the signatures (0: 2, 3, q), (0: 2, 4, q) 
or (0: 3, 3, 4) and 

(3) sinh(! I'g) sinh(! 1/,) sin () ~ 1 

if <g, h) has no elliptic elements or has an unbounded fundamental domain. 

In particular, if g is a non-simple hyperbolic element in <g, h) then 
sinh(!I'g) ~ [cos(3n/7)]1/2( = 0·47 ... ). 

PROOF. Let u be the point where Ag and Ah cross and construct points v and 
won Ag and Ah respectively such that p(u, v) = !I'g, p(u, w) = !1/, and such 
that the triangle with vertices u, v, w has angle () at u. Let fu,Jv and fw be 
elliptic elements of order two fixing u, v and w respectively. Replacing g 
and(or) h by their inverses as necessary, we may assume that 

gh- 1 = fvfw· 

We deduce that every product of an even number of fu, fv and fw is in <g, h): 
thus <g, h) is of index one or two in <fu, fv, fw) and so this latter group is 
discrete. 

Recalling the results of Section 11.5, we may write 

sinh(! I'g) sinh(! 1/,) sin () = A. 

= !I trace(fU/vfw) I 

and Theorem 11.6.8 follows essentially from Theorem 11.5.2 and its proof. 
First, (1) is Corollary 11.5.3. If <g, h) has no elliptic elements, then (3) 
follows from Theorem 7.39.4: if <g, h) has an unbounded fundamental 
domain, then (3) follows from cases (1) and (2) of Theorem 11.5.2. 

It remains to verify (2). According to Theorem 11.5.2(3), we see that the 
lower bound of! in (2) holds except possibly in the cases when A. is of the 
form cos(2n/q) or cos(3n/q). It is now necessary to examine the proof of 
Theorem 11.5.2 to see when this can arise. For brevity, we denote <fu, fv, fw) 
by G* and <g, h) by G. 

Referring to the proof of Theorem 11.5.2, we need only consider the cases 
p = 2 and p = 3. However, G* contains a product of three elliptic elements 
of order two which is a rotation of 2np/q. Thus if p = 2, there is a rotation 
r of angle 2n/q such that r2 is a product of three rotations of order two. As 
r E G* we have rEG: hence G contains a rotation of order two. In this case, 
G = G* so G has one of the signatures (0: 2, 3, q) or (0: 2, 4, q). 

The remaining case is p = 3: here G* has one of the signatures (0: 2, 3, q) 
where (see the proof of Theorem 11.5.2) q = n = 7 or 8. A tedious arithmetic 
exercise on areas shows that if G has index two in G*, then the only possible 
signature for G is (0: 3, 3,4). 

The last assertion concerning non-simple hyperbolic elements is an 
application of (1) in which h is taken to be a conjugate of g. 0 
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Theorem 11.6.9. Let g and h be hyperbolic with axes and translation lengths 
Ag, A h, Yy and 1/, respectively. Suppose that (g, h) is discrete and non­
elementary and that no images of Ag and Ah cross. Then 

sinh(! Yy) sinh(! 1/,) cosh p(Ag, A h) ~ cosh(! Yy) cosh(! 1/,) - !. 

If (g, h) has no elliptic elements, we can replace -! by + 1 (and the lower 
bound by 2). 

If g is a simple hyperbolic element in (g, h) this result can be applied 
with h being any conjugate, say fgf- 1, of g. Thus (by elementary manipu­
lation) we obtain the next inequality. 

Corollary 11.6.10. If g and h are hyperbolic elements generating a discrete 
non-elementary group and if g is a simple hyperbolic element in this group, 
then for all fin (g, h), either f(Ag) = Ag or 

sinh(!Yy) sinh !p(Ag, fAg) ~!. 

This bound is best possible. 

The next example shows that the lower bound of! is best possible. 

Example 11.6.11. Construct the polygon D as in Figure 11.6.3 where f 
(elliptic of order two) and g (hyperbolic) pair the sides of D. By Poincare's 
Theorem, D is a fundamental polygon for (f, g) and as g pairs the sides of 
D, g must be a simple hyperbolic element. Finally, 

sinh(! Yy) sinh !p(Ag, fAg) = sinh !p(L, L') sinh p(O, Ag) 
= cos(n/3). D 

f 
~ - - - - - oor--~-.....,.:.-~,--

/' 
/ 

Figure 11.6.3 
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Figure 11.6.4 

PROOF OF THEOREM 11.6.9. Consider Figure 11.6.4. As 9 (or g-1) is (13(11 

and h (or h -1) is (12 (13 we see that (12 (11 is in G. If G has no elliptic elements, 
then L1 and L2 cannot intersect (this case is not illustrated) and from 
Theorem 7.19.2 we obtain 

sinh(!Tg) sinh(!T,,) cosh p(Ag, A h) = cosh(!Tg) cosh(!T,,) + cosh P(L1' L2)' 

This yields the second inequality. 
If L1 and L2 intersect, say at an angle e, then e = 2rep/q for some coprime 

integers p and q. If e > 2re/q we can rotate Ah about the point of intersection 
to an image of itself which is closer to (but, by assumption, not intersecting) 
Ag • Thus if, in the argument above, we replace h by a conjugate fhf-1 of h 
with the property that its axis f(Ah) is as close as possible to (but distinct 
from) A g , we find that 

and the corresponding e satisfies e ::;; 2re/q ::;; 2re/3 as obviously e < re. Thus 
from Theorem 7.18.1 we obtain the first inequality, namely 

sinh<!Tg) sinh<!T,,) cosh p(Ag, A h) ~ cosh(!Tg) cosh(!Th) + cos(2re/3). 0 

Theorems 11.6.8 and 11.6.9 yield the following bound on P(g, h). 

Theorem 11.6.12. Let g and h be hyperbolic elements which generate a discrete 
non-elementary group. Then peg, h) ~ cos(3re/7). 
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PROOF. If the axes of g and h cross at w, say, then obviously (using the notation 
of Theorems 11.6.8 and 11.6.9) 

peg, h) = sinh tp(w, gw) sinh tp(w, hw) 

= sinh(t Tg) sinh(t 1/,) 

~ cos(3n/7). 

The same inequality holds if any images of Ag and Ah cross. If not, then 
Theorem 11.6.9 is applicable and we obtain 

sinh tp(z, gz) sinh tp(z, hz) = sinh(tTg) sinh(t1/,) cosh p(z, Ag) cosh p(z, Ah) 

~ tsinh(t Tg) sinh(t 1/,) cosh[p(z, Ag) + p(z, Ah)] 

~ tsinh(tTg) sinh(t1/,) cosh p(Ag, Ah) 

~ t[ cosh(t Tg) cosh(t 1/,) - t] 

~t 
> cos(3n/7). D 

Finally, we consider M(g, h) for one elliptic and one hyperbolic element. 

Theorem 11.6.13. Let g be hyperbolic and let h be elliptic of order q (q ~ 2). 
If (g, h) is discrete and non-elementary, then M(g, h) ~ 1/.)8. 
PROOF. If g is a non-simple hyperbolic element of (g, h) then (from Theorem 
11.6.8) 

M(g, h) ~ sinh(tTg) 

~ [cos(3n/7)]1/2 

> 1/.)8. 
We may now assume that g is a simple hyperbolic element. In this case, 

the fixed point v of the elliptic h cannot lie on Ag and a rotation of Ag of an 
angle 2n/q about v must map Ag onto a disjoint image which we may assume 
is h(Aq): see Figure 11.6.5. 

From Section 7.17 we have 

cosh p(v, Ag) sin(n/q) = cosh tp(Ag, hAg) 

~ sinh tp(Ag, hAg) 

and, from Corollary 11.6.10 (applied to (g, hgh-l», 

sinh(tTg) sinh tp(Ag, hAg) ~ t. 

Thus 

cosh p(v, Ag) sin(n/q) sinh(tTg) ~ t. 

This expresses a geometric constraint between the parameters I'g, 2n/q and 
the separation of g and h as measured by p(v, Ag). Writing 

m = max {sinh tp(z, gz), sinh tp(z, hz)} 
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Figure 11.6.5 

we have 

t ~ sin(n/q) sinh(tYg) cosh[p(v, z) + p(z, Ag)] 

= sin(n/q) sinh(tYg)[cosh p(v, z) cosh p(z, Ag) + sinh p(v, z) sinh p(z, Ag)] 

~ m sin(n/q)[l + sinh2 p(v, Z)]1/2 + m2 

~ m[sin2(n/q) + m2r/2 + m2 

~ m(l + m2)1/2 + m2, 

which certainly implies that m ~ 1/)8. o 

Collecting together all the results in this section we obtain a universal 
lower bound on M(g, h). 

Theorem 11.6.14. If g and h generate a non-elementary discrete group, then 
M(g, h) ~ 0 ·1318 ... and this lower bound is attained by two elliptic generators 
of the (0: 2, 3, 7)-Triangle group. 

We end this section by completing an earlier proof. 

PROOF OF THEOREM 11.2.4(2). We consider an accidental cycle of four 
vertices, say 

Vi> f(vi) = V2, g(Vi) = V3, h(vi ) = V4 

on the boundary of a Dirichlet polygon: thus the Vj lie on a circle with, say, 
centre wand radius r. If <f, g) is non-elementary, then, as we have just seen, 

M(f, g) ~ 0·1318 ... 
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and so for some j ( = 2 or 3), 

0·1318 ... :::;; sinh 1P(Vb v) 

:::;; sinh Hp(V1' w) + p(w, v)] 

:::;; sinh r. 

The same is true of <g, h) or <h, 1) is non-elementary: thus it is sufficient 
to consider the case when all three groups <g, h), <h, 1) and <1, g) are 
elementary. 

We assume that these three two-generator groups are elementary. As 
Vb v2 and V3 are concyclic, either <1, g) is cyclic with an elliptic generator 
or it is generated by two elliptic elements of order two. The first case cannot 
arise (else the elliptic generator fixes w): in the second case, one of 1 and g, 
say, g, must be elliptic of order two. A similar argument holds for the other 
two groups so without loss of generality, we may assume that both g and h 
are elliptic and of order two. 

If 1 is hyperbolic, then as <1, g) and <1, h) are elementary, the axis of 1 
contains the fixed points of g and hand <1, g, h) is elementary. If 1 is elliptic 
of order two, either the three fixed points WI' W 9 and Wh of 1, g and hare 
collinear, and again <1, g, h) is elementary, or WI' Wg and Wh are non­
collinear in which case <j~ g, h) is non-elementary. 

If <1, g, h) is non-elementary, then from Section 11.5 we have 

sinh P(wI' wg) sinh p(wI , wh) ~ A. 

~ cos(3rrj7). 

However, 

p(WI , wg) :::;; p(wI , v1) + P(V1, wg) 

= 1P(V1, V2) + 1P(V1, v3 ) 

so in this case, 

:::;; Hp(V1' w) + p(w, V2) + P(Vb w) + p(w, V3)] 

= 2r 

sinh 2 (2r) ~ cos(3rrj7). 

There remain the cases in which <1, g, h) is elementary and we shall 
show that these cannot happen. We may suppose that the group acts on H2 
and that <1, g, h) leaves the positive imaginary axis invariant. The orbit of 
any point (not on the axis) is, say, 

where this is illustrated in Figure 11.6.6 and where for each j, 

p(Zj, Zj+ 1) = p(Wj, Wj+ 1) = t, 

say. 
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Zo 

Figure 11.6.6 

Now recall that in order that four points V1' V2, V3, V4 chosen from this 
orbit lie on the boundary ofthe Dirichlet polygon with centre w, it is necessary 
that these four points are the points in the orbit which are closest to (and 
equidistant from) w. Elementary metric and geometric considerations show 
that this can only happen when the centre w lies on the positive imaginary 
axis and IZol = IWol (after relabelling) with, say 

{V1' V2' V3, V4} = {zo, ZI' wo, wd· 

(consider the bisectors of the [Vi> V j]: these must meet at w). Suppose that 
V1 = Zo and V2 = W1 (a similar argument holds for the other possibilities). 
Then w is the mid-point of [V1' V2] and f (which maps V1 to V2) must be 
elliptic of order two: it follows that f must fix w, a contradiction. D 

EXERCISE 11.6 

1. In the case of Theorem 11.6.1(1) we have M(g, h) ~ t. Use Example 11.6.2 to show 
that this is best possible. 

2. Suppose that <I, g> is elementary. Prove that if v,fv, gv are distinct points on a circle 
with centre w then either 

(i) land 9 are elliptic fixing w or 
(ii) one of I and 9 is elliptic of order two (they cannot both be hyperbolic). 

3. Consider Figure 11.6.3. Using reflections in L and in the real and imaginary diameters 
of ~, show thatl -1g is an elliptic element of order three fixing one vertex of D. 

4. Let G be a (p, q, r)-Triangle group. Suppose that G contains 9 of order p fixing u and I 
of order q fixing v. Prove that 

cos(n/p) cos(n/q) + cos(n/r) 
coshp(u, v) ~ . ( / ) . ( / ) sm n p sm n q 

(this is used in the proof of Theorem 11.6.6). Hint: construct a quadilateral with 
angles 2n/p (at u), 2n/q (at v), e, e which contains a fundamental domain for G. 
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5. Let G be the Modular group and let 9 in G be hyperbolic with axis A and translation 
length Yg. Let Ng be the number of images of A which intersect a fixed segment of 
length Yg on A. Show that the average gap between images, namely Ng/Yg, can be 
arbitrarily small: more precisely, prove that 

inf N g/Yg = o. 
q 

6. Let 9 be a non-simple hyperbolic element in a Fuchsian group without elliptic 
elements. Show that if 9 has translation length T then sinh(! T) ;::0: 1. 

§11.7. Canonical Regions and Quotient Surfaces 

The reader is invited to recall the geometric definition of a canonical region 
Lg of an isometry 9 (see Section 7.37): analytically, 

Lg = {z: sinh !p(z, gz) < !ltrace(g)I}. 

If 9 is parabolic, then 

Lg = {z: sinh !p(z, gz) < 1}, 

while if 9 is hyperbolic with axis A and translation length T, then 

Lg = {z: sinh p(z, A) sinh(~T) < 1}, 

because in this case Lg is given by 

sinh !p(z, gz) = sinh(!T) cosh p(z, A) 

< cosh(!T). 

(11.7.1 ) 

(11.7.2) 

(11.7.3) 

Almost any Riemann surface R is conformally equivalent to !'!../G for 
some Fuchsian group G without elliptic elements. The hyperbolic metric 
on !'!.. projects to !'!../G and so transfers to R. With this in mind, the following 
result gives quantitative information on the metric structure of R. 

Theorem 11.7.1. Let G be a Fuchsian group without elliptic elements, and 
suppose that 9 and h are in G. 

(1) If 9 and h are parabolic elements with district fixed points, then Lg and 
Lh are disjoint. 

(2) If 9 is parabolic and h is a simple hyperbolic element of G, then Lg and Lh 
are disjoint. 

(3) If 9 and h are simple hyperbolic elements of G whose axes do not cross, 
then Lg and Lh are disjoint. 

Essentially, this means that each puncture on R lies in an open disc and 
each simple closed geodesic loop on R lies in an open "collar": the discs do 
not intersect each other or the collars; two collars are disjoint if the corre­
sponding loops are disjoint. Further, we know the sizes of the discs and 
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collars (by computing the size of a canonical region) and each is the quotient 
of a horocyclic or hypercyclic region by a cyclic subgroup of G. Observe 
that Theorem 11.7.1 applies to boundary hyperbolic elements. 

PROOF. For a Fuchsian group without elliptic elements, we have (Theorem 
8.3.1) 

sinh !p(z, gz) sinh !p(z, hz) ~ 1, 

whenever (g, h) is non-elementary. In view of (11.7.1), this proves (1). For a 
geometric proof of (1), we may assume that 

z 
h(z) = --. 

cz + 1 
g(z) = z + 1, 

The isometric circles of hand h - I must lie in the strip I x I < ! (else G contains 
elliptic elements) and this implies that Lg and Lh (constructed geometrically) 
are disjoint. 

We shall give a geometric proof of (2): an analytic proof is tricky and re­
quires the inequality 

sinh(t 7;.) sinh !P(Ah' gAh) ~ 1: 

see the proof of Theorem 8.2.1. We invite the reader to supply the details. 
For the geometric proof, suppose that g(z) = z + 1 and construct the 

axis A of h and geodesics L I , L z , L3 and L4 as in Figure 11.7.1. 
Clearly ()1()4 and ()Z()4 are each h or h- I . Now LI cannot meet the line 

x = xo + ! and L2 cannot meet the line x = xo - ! else G would contain 
elliptic elements. 

Moreover, Ah cannot meet the lines x = xo - !, x = xo + ! as other­
wise, Ah has Euclidean radius greater than! and then Ah meets g(Ah) 
(contradicting the fact that h is simple). Thus the real interval [WI' W 2] lies 
strictly within the real interval [xo - !, Xo + n The canonical region for 

Figure 11.7.1 
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h is bounded by the hypercycle which is tangent to L3 and which ends at 
the end-points of Ah (because h(L2) = L l ): the canonical region for 9 is 
above the geodesic with end-points Xo - !, Xo + ! so Lg n Lh = 0. This 
proves (2). 

To prove (3), consider Figure 11.7.2 with the geodesics L, L l , L2 as 
illustrated. Observe that 

g-I(Ah) = O'lO'(Ah) 
= O'I(Ah)· 

As h is a simple hyperbolic element, we see that LI cannot meet Ah (else 
0'1 (Ah) is an image of Ah which meets Ah)' Similarly, L2 does not meet A g • 

We know also that Ll and L2 do not meet (as 0'20'20'1 E G). It follows that 
there is a geodesic L * with Ll and g(L 1) one side of L * and with L2 and h(L2) 
on the other side of L *. It is now immediate from geometric considerations 
that Lg n Lh = 0. 

For an analytic proof of (3) observe that as Ll and L2 do not meet, we 
have (Theorem 7.19.2), 

cosh p(Ag Ah) sinh(! Yg) sinh(! 1/,) 2 1 + cosh(! Yg) cosh(! 1/,). 

If Lg n Lh =f. 0 then for some z in the intersection, (11.7.2) and (11.7.3) 
hold (with h as well as g) so 

sinh(! Yg) sinh(! 1/,) cosh p(Ag, Ah) 

< sinh(! 7;,) sinh(! 1/,) cosh[p(z, Ag) + p(z, Ah)] 

= sinh(!T,,) sinh(!1/,)[cosh p(z, Ag) cosh p(z, Ah) 

+ sinh p(z, Ag) sinh p(z, Ah)] 

< cosh(! Tg) cosh(! Th) + 1 

contradicting the application of Theorem 7.19.2. o 
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It is possible to establish certain results for canonical regions even for 
Fuchsian groups with elliptic elements. For example, we have the following 
result. 

Theorem 11.7.2. Let G be a non-elementary, non-Triangle Fuchsian group. If 
9 and h are elliptic or parabolic elements in G, then either <g, h) is cyclic or 
the canonical regions Lg and Lh are disjoint. 

PROOF. We may assume that 9 and h are primitive (this can only increase 
the'size of Lg and Lh). Construct the geodesic L through (or ending at) the 
fixed point u of 9 and the fixed point v of h. Construct geodesics L1 and L2 
through u which are symmetrically placed with respect to L such that 
g(L1) = L 2: repeat this construction using L3 and L4 through v in the 
obvious way. Assume the L j are labelled so that L1 and L3 lie on the same 
side of L. If L1 meets L 3, then <g, h) is a Triangle group and hence so is 
G (Theorem 10.6.6). This is not so, thus L1 and L3 are disjoint. The geo­
metrical construction of canonical regions now shows that Lg and Lh are 
disjoint. D 

EXERCISE 11.7 

1. (i) Let g be parabolic with canonical region Lg: show that h-area(Lg/<g» = 2. 
(ii) Let g be hyperbolic with translation length T: show that Lg/<g) has area 

2 T/sinh(t T). 
(iii) Let g be elliptic with angle of rotation 2n/q: show that Lg/<g) has area 

2;[sin(~/q) - 1] 

and this tends to 2 as q -> + 00. 

2. Let G be a non-elementary Fuchsian group. At each fixed point w of a parabolic 
element in G, let 

Hw = {z: sinh tp(z, gz) < t} 

where g generates the stabilizer ofw. Show that for all parabolic fixed points u and v, 

Prove also that for allf in G, 

§11.8. Notes 

Some of the results in Section 11.6 occur in [59], [113]; for a completely 
algebraic approach, see [78], [79], [96]. For Section 11.7, see [12], [37], 
[43], [64], [87]: for a selection of geometric results on Fuchsian groups, 
consult [10], [75], [80], [81], [82], [84] and [93]. 
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