


Graduate Texts in Mathematics 156 
Editorial Board 

J.H. Ewing F.W. Gehring P.R. Halmos 



Graduate Texts in Mathematics 

TAKEUTI/ZARING. Int.roduction to 32 ,JACOBSON. Lectures in Abstract. 
Axiomatic Set Theory. 2nd ed. Algebra III. Theory of Fields and Galois 

2 OXTOBY. !lleasure and Category. 2nd ed. Theory. 
3 SCHAEFFER. Topological Vf'ct.or Spaces. 33 HIRSCH. Difff'rential Topology. 
4 HILTON/STA~IMBACH. A ComBe in :34 SPITZER. Principles of Random 'Valko 

Homologkal Algebra. 2nd ed. 
5 !lIACLANE. Categories for the Working 35 \i\'ER~IER. Banach Algebras and Several 

!lIathematician. Complex Variables. 2nd eel. 
6 HCGlIES/PIPER. Projective Planes. 36 KELLEY /N MIIOKA et al. Linear 
7 SERRE. A Comse in Aritillllt'tic. Topological Spaces. 
8 TAKELTTI/ZARING. Axiometic Set Theory. 37 MONK. !lIathematical Logic. 
9 H l'~IPHREYS. Introduct.ion to Lie 38 GRAI'ERT /FRITZSCHE. Several Complex 

Algebras and Representation Theory. Variablps. 
10 COHEN. A Course in Simple Homotopy 39 ARVESON. An Invitation to C'-Algebras 

Theory. 40 KE~!ENY /SNELL/KNAPP. Denumerable 
11 CONWAY. Funct.ions of One Complex !llarkov Chains. 2nd ed. 

Variable. 2nd pd. 41 ApOSTOL. !l1odular Functions and 
12 BEALS. Ad\'anced !lIathelllatical Analysis. Dirichlet Series in N umlwr Theory. 
13 ANDERSON/FULLER. Rings and 2nd ed. 

Categories of Modules. 2nd I'd. 42 SERRE. Linear Representat.ions of Finite 
14 GOLI1BiTSKY/GlIILEWN. Stable Groups. 

Mappings and Their Singularities. 43 GILL~IAN /.1 ERISON. Rings of Continllom 
15 BERBERIAN. L('ctures in Functional Functions. 

Analysis and Operator Theor,'. 44 KENDIG. Elementar.\' Algebraic 
16 WINTER. The Structure of Fields. Geometry. 
17 ROSENBLATT. Random Processes. 2nd ed. 45 LoEVE. Probability Theory I. 4th ed. 
18 HAL~IOS. I\Ieasure Theory. -16 LOEvE. Probability Theory II. 4th ed. 
19 HAUIOS. A Hilbert Space Problem Book. 47 !l1OISE. Geometric Topology in 

2nd cd. Dimensions 2 and 3. 
20 HUSE~IOLLER. Fibre Bundles. 3rd "d. 48 SACHS/WI'. General Relativity for 
21 HUMPHREYS. Linear Algebraic Groups. I\lat hematicians. 
22 BARNES/MACK. An Algebraic 49 GRI;ENBERG/\NEIR. Linear Geometry. 

Introdnction to !lIathematical Logic. 2nd ed. 
23 GREllB. Lineal' Algebra. 4th ed. 50 EDWARDS. Fermat's Last Theorem. 
24 HOL~IES. Geompt,ric Functional Analysis 51 KLINGENBERG.A Course in Differential 

and Its Applications. Geometry. 
25 HEWITT /STRO~IBERG. Real and Abstract 52 HARTSHORNE<;. Algebraic Geonll'try-. 

Analysis. .53 MANIN. A Course in Mathematical Logic 
26 I\IANES. Algebraic Theorip,,, 54 GRAVER/~rATKINS. Combinatorics with 
27 KELLEY. General Topology. Emphasis on the Theory of Graphs. 
28 ZARISKI/SAl\IITEL. Commut.at.ive Algebra. 55 BROWN/PEARCY. Introduction 

Vel. I. to Operator Theory I: Element.s of 
29 ZARISKI/SA~!l1EL. Commutative Algebra. Functional Analysis. 

Vol. II. 56 !l1ASSEY. Algebraic Topology: An 
30 JACOBSON. Lectures in Abstract Iutroduction. 

Algebra I. Basic Concepts. 57 CROWELL/Fox. Introduction to Knot 
31 JACOBSON. Lectures in Abstract Theor~·. 

Algebra II. Linear Algehra. 

continued aft(T mdf.£ 



Alexander S. Kechris 

Classical Descriptive 
Set Theory 
With 34 Illustrations 

Springer-Verlag 
New York Berlin Heidelberg London Paris 
Tokyo Hong Kong Barcelona Budapest 



Alexander S. Kechris 
Alfred P. Sloan Laboratory of 

Mathematics and Physics 
Mathematics 253-37 
California Institute of Technology 
Pasadena, CA 91125-0001 

Editorial Board 
J.H. Ewing 
Department of 

Mathematics 
Indiana University 
Bloomington, IN 47405 
USA 

F. W. Gehring 
Department of 

Mathematics 
University of Michigan 
Ann Arbor, MI 48109 
USA 

P.R. Halmos 
Department of 

Mathematics 
Santa Clara University 
Santa Clara, CA 95053 
USA 

Mathematics Subject Classifications (1991): 04-01, 04A15, 28A05, 54H05 

Library of Congress Cataloging-in-Publication Data 
Kechris, A. S., 1946-

Classical descriptive set theory / Alexander S. Kechris. 
p. cm. -- (Graduate texts in mathematics: vol. 156) 

Includes bibliographical references and index. 
ISBN-13: 978-1-4612-8692-9 e-ISBN-13: 978-1-4612-4190-4 
DOl: 10.1007/978-1-4612-4190-4 
1. Set theory. I. Title. II. Series: Graduate texts in 

mathematics: 156. 
QA248.K387 1994 
511.3'22 dc20 94-30471 

Printed on acid-free paper. 

© 1995 Springer-Verlag New York. Inc. 
Sotlcover reprint of the hardcover 15t edition 1995 
All rights reserved. This work may not be translated or copied in whole or in part without 
the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, 
New York, NY 10010, USA). except for brief excerpts in connection with reviews or scholarly 
analysis. Use in connection with any form of information storage and retrieval, electronic 
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter 
developed is forbidden. 
The use of general descriptive names, trade names, trademarks, etc., in thIS publication, even 
if the former are not especially identified, is not to be taken as a sign that such names, as 
understood by the Trade I\Iarks and Merchandise Marks Act, may accordingly be used freely 
by anyone. 

Production managed by Frederick H. Bartlett; manufacturing supervised by J acqui Ashri. 
Photocomposed pages prepared from the author's 'lEX files using Springer-Verlag's plain 'lEX 
nlacro. 

987654321 



To Alexandra and Olympia 



Preface 

This book is based on some notes that I prepared for a class given at Cal
tech during the academic year 1991-92, attended by both undergraduate 
and graduate students. Although these notes underwent several revisions, 
which included the addition of a new chapter (Chapter V) and of many com
ments and references, the final form still retains the informal and somewhat 
compact style of the original version. So this book is best viewed as a set 
of lecture notes rather than as a detailed and scholarly monograph. 

I would like to thank R. Dougherty, H. Ki, X. Li, T. Linton, A. Louveau, 
J. Mycielski, F. van Engelen, and T. Zavisca for many helpful comments and 
suggestions. I am particularly grateful to A. Andretta. H. Becker, S. Solecki, 
and S. M. Srivastava for their extensive and detailed criticism as well as 
numerous corrections, which substantially improved the presentation. 

It is my pleasure to acknowledge the financial suppon of the National 
Science Foundation and the help from the Mathematic~ Department at 
Caltech while I was writing this book. In particular, I would like to thank 
J. Madow and J. Cassidy for typing the manuscript and B. Turring for 
preparing the diagrams. 

Los Angeles 
September 1994 

Alexander S. Kechris 
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Introduction 

Descriptive set theory is the study of "definable sets" in Polish (i.e., sep
arable completely metrizahle) spaces. In this theory, sets are classified in 
hierarchies, according to the complexity of their definitions, and the struc
ture of the sets in each level of these hierarchies is systematically analyzed. 

In the beginning we have the Borel sets, which are those obtained from 
the open sets, of a given Polish space, by the operations of complementation 
and countable union. Their class is denoted by B. This class can be further 
analyzed in a transfinite hierarchy of length WI (= the first uncountable 
ordinal), the Borel hierarchy, consisting of the open, closed, Fa (count
able unions of closed), Go (countable intersections of open), Fab (countable 
intersections of Fo1 Gou (countable unions of Go), etc., sets. In modern 
logical notation, these classes are denoted by ~~, II~, for 1 ::; ~ < Wj, 

where 
~y = open, II? = closed; 

~~ = {U An : An is in IIt for ~n < 0: 
nEN 

II~ = the complements of ~~ sets. 

(Therefore, ~g = Fa, IIg = Go, ~~ Goa, II~ 
ramifies in the following hierarchy: 

~? ~g ~() 
1) 

Fa6, etc.) Thus B 

where ~ ::; '7 < WI, every class is contained in any class to the right of it, 
and 
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B = U ~~ = U II~. 
E<Wl E<Wl 

Beyond the Borel sets one has next the projective sets, which are those 
obtained from the Borel sets by the operations of projection (or continuous 
image) and complementation. The class of projective sets, denoted by P, 
ramifies in an infinite hierarchy of length w (= the first infinite ordinal), 
the projective hierarchy, consisting of the analytic (A) (continuous images 
of Borel), co-analytic (CA) (complements of analytic), PCA (continuous 
images of CA), CPCA (complements of PCA), etc., sets. Again, in logical 
notation, we let 

~i = analytic, IIi = co-analytic; 

~1 - all continuous images of II:, sets', ,,+1 - . 
II~+1 = the complements of ~;'+1 sets; 

so that in the following diagram every class is contained in any class to the 
right of it: 

~i ~~ ~;, ~~+l 
B 

III 
1 

III 
2 

III 
n II;, + I 

and 
P = U~; = UII;. 

n n 

One can of course go beyond the projective hierarchy to study trans
finite extensions of it, and even more complex "definable sets" in Polish 
spaces, but we will restrict ourselves here to the structure theory of Borel 
and projective sets, which is the subject matter of classical descriptive set 
theory. 

Descriptive set theory has been one of the main areas of research in 
set theory for almost a century now. Moreover, its concepts and results are 
being used in diverse fields of mathematics, such as mathematical logic, 
combinatorics, topology, real and harmonic analysis, functional analysis, 
measure and probability theory, potential theory, ergodic theory, operator 
algebras, and topological groups and their representations. The main aim 
of these lectures is to provide a basic introduction to classical descriptive 
set theory and give some idea of its connections or applications to other 
areas. 
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These lectures are divided into five chapters. The first chapter sets up the 
context by providing an overview of the basic theory of Polish spaces. Many 
standard tools, such as the Baire category theory, are also introduced here. 
The second chapter deals with the theory of Borel sets. Among other things, 
methods of infinite games figure prominently here, a feature that continues 
in the later chapters. In the third chapter, the theory of analytic sets, which 
is briefly introduced in the second chapter, is developed in more detail. The 
fourth chapter is devoted to the theory of co-analytic sets and, in particular, 
develops the machinery associated with ranks and scales. Finally, in the 
fifth chapter, we provide an introduction to the theory of projective sets, 
including the periodicity theorems. 

We view this book as providing a first basic course in classical descrip
tive set theory, and we have therefore confined it largely to "core material" 
with which mathematicians interested in the subject for its own sake or 
those that wish to use it in their own field should be familiar. Throughout 
the book, however, are pointers to the literature for topics not treated here. 
In addition, a brief summary at the book's end (Section 40) describes the 
main further directions of current research in descriptive set theory. 

Descriptive set theory can be approached from many different view
points. Over the years, researchers in diverse areas of mathematics-logic 
and set theory, analysis, topology, probability theory, and others-have 
brought their own intuitions, concepts, terminology, and notation to the 
subject. We have attempted in these lectures to present a largely balanced 
approach, which combines many elements of each tradition. 

We have also made an effort to present a wide variety of examples 
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and applications ill order to illustrate tlw general concepts and results of 
the theory. Moreover, over 400 exercises are included, of varying degrees of 
difficulty. Among them are important results as well as propositions and 
lemmas, whose proofs seem best to be left to the reader. A section at the 
end of these lectures contains hints to selected exercises. 

This book is essentially self-contained. The only thing it requires is fa
miliarity, at the beginning graduate or even advanced undergraduate leveL 
with the basics of general topology, measure theory, and functional analy
sis, as well as the elements of set theory, including transfinite induction and 
ordinals. (See, for example, H. B. Enderton [1977], P. R. Halmos [1960a] 
or Y. N. l\Ioschovakis [1994].) A short review of some standard set theo
retic concepts and notation that we use is given in Appendices A and B. 
Appendix C explains some of the basic logical notation employed through
out the text. It is recommended that the reader become familiar with the 
contents of these appendices before reading the book and return to them 
as needed later on. On occasion, especially in some examples, applications, 
or exercises, we discuss material drawn from various areas of mathematics, 
which does not fall under the preceding basic prerequisites. In s11ch cases. 
it is hoped that a reader who has not studied these concepts before will at 
least attempt to get some idea of what is going on and perhaps look over a 
standard textbook in one of these areas to learn more about them. (If this 
becomes impossible, this material can be safely omitted.) 

Finally, given the rather informal nature of these lectures, we have 
not attempted to provide detailed historical or bibliographical notes and 
references. The reader call consult the monographs by N. N. Lusin [1972], 
K. Kuratowski [1966], Y. N. Moschovakis [1980]' as well as the collection 
by C. A. Rogers et al. [1980] in that respect. The n-Bibliogmphy of Mathe
matical Logic (G. H. l\liiller, eel.. Vol. 5, Springer-Verlag, Berlin, 1987) also 
contains an extensive bibliography. 



CHAPTER I 
Polish Spaces 

1. Topological and Metric Spaces 

l.A Topological Spaces 

A topological space is a pair (X, T), where X is a set and T a collection 
of subsets of X such that 0, X E T and T is closed under arbitrary unions 
and finite intersections. Such a collection is called a topology on X and its 
members open sets. The complements of open sets are called closed. Both 
0, X are closed and arbitrary intersections and finite unions of closed sets 
are closed. 

A set of the form nnE!'! Un, where Un are open sets, is called a G{j set, 
and a set of the form UnE!'! Fn. where Fn are closed sets, is called an Fu 
set. 

A subspace of (X, T) consists of a subset Y <;;;; X with the relative 
topology TIY = {U n Y : U E T}. (In general, for a set X, a subset 
Y <;;;; X, and a collection A of subsets of X, its restriction to Y is defined 
by AIY = {AnY: A E A}.) 

A basis B for a topology T is a collection B <;;;; T with the property that 
every open set is the union of elements of B. (By convention the empty union 
gives 0.) For a collection B of subsets of a set X to be a basis for a topology, 
it is necessary and sufficient that the intersection of any two members of 
B can be written as a union of members of Band U{ B : B E B} = X. A 
subbasis for a topology T is a collection S <;;;; T such that the set of finite 
intersections of sets in S is a basis for T. For any family S of subsets of 
a set X, there is a smallest topology T containing S, called the topology 
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generated by S. It consists of all unions of finite intersections of members of 
S. (By convention the empty intersection gives X.) Clearly, S is a subbasis 
for T. A topological space is second countable if it has a countable basis. 

If X is a topological space and ;r E X, an open nbhd (neighborhood) 
of .7: is an open set containing x. A nbhd basis for x is a collection U of 
open nbhds of .r such that for every open nbhd V of :r there is U E U with 
U~v. 

Given topological spaces X, Y, a map 1 : X -+ Y is continuous if the 
inverse image of each open set is open. It is open (resp. closed) if the image 
of each open (resp. closed) set is open (resp. closed). It is a homeomorphism 
if it is a bijection and is both continuous and open. Finally, it is called an 
embedding if it is a homeomorphism of X with I(X) (given its relative 
topology). A function 1 : X -+ Y is continuous at .7: E X (or x is a point of 
continuity of 1) if the inverse image of an open nbhd of 1(.7:) contains an 
open nbhd of x. So 1 is continuous iff it is continuous at every point. 

If (Y,)iE] is a family of topological spaces and I, : X -+ Y" a family of 
functions, there is a smallest topology T on X for which all Ii are contin
uous. It. is called the topology generated by (fJiEl and has as a subbasis 
the family S = {Ji~l(U) : U ~ Yi . U open, i E I}. If Si is a subbasis for 
the topology of Y" we can restrict U to Si here. 

The product I1El Xi of a family of topological spaces (Xi)iEl is the 
topological space consisting of the cartesian product of the sets Xi with the 
topology generated by the projection functions (:r'i)iEl -+ :Cj (j E 1). It has 
as basis the sets 11 Ui , where U i is open in Xi for all i E I, and U i = Xi 
for all but finitely many i E I. If Hi is a basis for the topology of X" the 
sets of the form IT, Ui • where Ui = Xi except for finitely many i for which 
Ui E Hi, form a basis for the product space. Note also that the projection 
functions are open. If Xi = X for all i E I. we let Xl = I1iEl Xi. 

The sum E!1; X, of a family of topological spaces (Xi)iE] is defined (up 
to homeomorphism) as follows: If we replace Xi by a homeomorphic copy, 
we can assume that the sets Xi are pairwise disjoint. Let X = UiEI Xi. A 
set U ~ X is open iff U n Xi is open in Xi for each i E I. 

l.B Metric Spaces 

A metric space is a pair (X, d), with X a set and d : X 2 -+ [O,x) a function 
satisfying: 

i) d(x, y) = () ~ x = y: 
ii) d(x, y) = d(y, x); 
iii) d ( x, y) ::; d ( x, z) + d ( z, y). 

Such a function is called a metric on X. 
The open ball with center x and radius r is defined by 

B(J:, r) = {y EX: d(J:. y) < T}. 
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(The corresponding closed ball is denoted by 

Bcl(X, r) = {y EX: d(x, y) ::; r}.) 

These open balls form a basis for a topology, called the topology of the 
metric space. 

A topological space (X, T) is metrizable if there is a metric d on X so 
that T is the topology of (X, d). In this ca;;e we ;;ay that the metric d is 
compatible with T. If T i;; metrizable with compatible metric d, then the 
metric 

i;; also compatible and d' ::; 1. 

, d 
d =-

l+d 

A sub;;et D <;;;; X of a topological space X i;; dense if it meets every 
nonempty open set. A space X admitting a countable dense set is called 
separable. Every second countable ;;pace i;; ;;eparable (but the converse does 
not hold). If Xi;; metrizable, then X i;; separable iff X is second countable, 
so we use the;;e terms interchangeably in this case. 

A subspace of a metric space (X, d) is a ;;ubset Y <;;;; X with the in
duced metric dlY (i.e., dIY(x, y) = d(x, y) for any x, y E Y). The topology 
of (Y. dlY) is then the relative topology of Y. Thus a sub;;pace of a metriz
able topological space i;; metrizable. Moreover. a subspace of a ;;eparable 
metrizable ;;pace is separable. 

A function f : X --> Y between metric spaces (X, dx), (y, dy ) is 
an isometry if it is a bijection and dX(Xl, X2) = dy(f(Xl), f(X2)). Every 
i;;ometry is clearly a homeomorphism. We call f an isometric embedding if 
f is an isometry of X with f(X). 

The product of a sequence of metric spaces ((Xn' dn )) nEN is the metric 
space (TIn X n , d), where 

with x = (X n ), Y = (Yn). The topology of this metric space is the product of 
the topologies of (( X n , dn ) ). TIm;; the product of a sequence of metrizable 
topological spaces is metrizable. Moreover, the product of a sequence of sep
arable metrizable spaces is also separable. The sum of a family ((Xi, di )) iEI 

of metric spaces is defined (up to isometry) as follows: By copying the met
ric of each Xi on a set of the same cardinality, we can assume that the sets 
Xi are pairwise disjoint. Let X = Ui.EI Xi. \Ve define a metric d on X by 
letting d(:r, y) = di(:r, y), if x. y E Xi, and d(x, y) = 1, if x E Xi and y E XJ 

with i I j. The topology of this metric space is the sum of the topologies 
of ((Xi, d;) ). Thu;; the sum of metrizable topological ;;paces is metrizable. 
and the ;;um of a ;;equence of ;;eparable metrizable spaces is separable. 

\Ve recall here the following important metrization theorem. A topo
logical space X is called T 1 if every ;;ingleton is closed and is called regular 
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if for every point x E X and open nbhd U of x, there is an open nbhd V 
of x with V <;;;; U (where, as usual, A denotes the closure of A, i.e., the 
smallest closed set containing A). 

(1.1) Theorem. (Urysohn l\letrization Theorem) Let X be a second count
able topological space. Then X is metrizable iff X is Tl and regular. 

We conclude with two basic results (the first of which is a special 
case of the second) concerning the existence of continuous real functions on 
metrizable spaces. 

(1.2) Theorem. (Urysohn's Lemma) Let X be a metrizable space. If A,B are 
two disjoint closed subsets of X, there is a continuous function f:X --> [0,1] 
such that f(x) = ° for x E A and f(x) = 1 for x E B. 

(1.3) Theorem. (Tietze Extension Theorem) Let X be a metrizable space. 
If A <;;;; X is closed and f:A --> lR is continuous, there is j:X --> lR which is 
continuous and extends f. Moreover, if f is bounded by M, i.e., If(x)1 :S M 
for all x E A, so is j. 
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2. Trees 

2.A Basic Concepts 

The concept of a tree is a basic combinatorial tool in descriptive set theory. 
What is referred to as a tree in this subject is not, however, the same 
notion as the one used either in graph theory or combinatorial set theory, 
although it is closely related. On the rare occasion that we will use the 
graph theoretic notion, we will refer to it as a "graph theoretic tree" . 

Let A be a nonempty set and n E N. \;Ve denote by An the set of finite 
sequences s = (s(O), ...• s(n - 1)) = (so, ... , 8 n -d of length n from A. We 
allow the case n = 0, in which case AO = {0}, where 0 denotes here the 
empty sequence. The length of a finite sequence s is denoted by length( 8). 
Thus length(0) = o. If 8 E An and m ::::. n. we let slm = (so •... , 8m-I). 

(SO slO = 0.) If s, t are finite sequences from A, we say that s is an initial 
segment of t and t is an extension of s (in symbols. s <;;; t) if s = tim. 
for some m ::::. length(t). Thus 0 <;;; 8, for any s. Two such finite sequences 
are compatible if one is an initial segment of the other and incompatible 
otherwise. 'Ve use 8 1. t to indicate that 8, t are incompatible. Finally, let 

be the set of all finite sequences from A. The concatenation of s = 
(8;)1<71' t = (tj)j<m is the sequence sAt = (so, ...• .5 n -l,to, ... ,trn - I ). We 
write .5 A a for SA (a), if a E A. 

Let AN be the set of all infinite sequences x = (x(n)) = (x n ) from 
A. If x E AN and n E 1"1, let xln = (xo, ... ,Xn-l) E A". \Ve say that 
sEAn is an initial segment of x E AN if .5 = xln. \;Ve write s <;;; x if 
s is an initial segment of x. Also, for .5 E A <'l and x E AN, we let the 
concatenation of s,x be the infinite sequence SAX = y, where y(i) = s(i) 
ifi < length( s) and y(length( s) + i) = x( i). The (infinite) concatenation 
So A S1 A 82 A ••• of Si E A <1'1 is the unique x E AN uA <1'1 such that x( i) = so(i), 
if i < length(so); x(length(so) + i) = slei), if i < lcngth(sd: and so on. 

(2.1) Definition. A tree on a set A is a subset T <;;; A <1'1 closed under initial 
segments; i.e., if t E T and s <;;; t, then sET. (In particular, 0 E T if T is 
nonempty.) We call the elements of T the nodes of T. An infinite branch 
of T is a sequence x E AN such that xln E T, for all n. The body of T, 
written as [T], is the set of all infinite branches of T,i. e., 

[T] = {x E AN : 'v'n(xln E T)}. 

Pinally, we call a tree T pruned if every sET has a pTOper extension 
t~s,tET. 

We visualize trees as follows (Figure 2.1): 
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o 

(a) (b) 

/ I 

/ I 

~(c, d') (c, e') T 
I 

I 0") 
[1l 

FIGURE 2.1. 

The bold line represents an infinite branch (b, c', f", ... ) E [T]. The tree in 
Figure 2.1 is not pruned. The full binary tree {O, I} <N pictured in Figure 2.2 
is, of course, pruned. 

FIGURE 2.2. 
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2.B Trees and Closed Sets 

We can view a set A as a topological space with the discrete topology, i.e., 
the topology in which every subset of A is open. This is metrizable with 
compatible metric 15( a, b) = 1, if a oj b. Therefore AN, viewed as the product 
space of infinitely many copies of A, is metrizable with compatible metric: 
d(x, y) = 2-n - 1 if x oj y and n is the least number with Xn oj Yn' 

(2.2) Exercise. A metric d is an ultrametric if 

d(x,y):s max{d(x,z), d(y,z)}. 

Show that the above metric is an ultrametric. 

The standard basis for the topology of AN consists of the sets 

Ns={XEAN:s<;;;x}, 

where s E A<N. Note that s <;;; t ¢o} N" ~ Nt and s ..l t ¢o} Ns n Nt = 0. 

(2.3) Exercise. i) Show that if U <;;; AN is open, then there is a set S <;;; A<N 
such that: s, t E S, s oj t =} s ..l t, and U = USES N s . 

ii) Let U = Us D N,,, with D <;;; A <1'1 closed under extensions. Show 
that U is dense in Aifu iff D is dense in A<N, i.e., Vs E A<N:Jt E D(s <;;; t). 

iii) Let xn , x E AN. Show that xn --+ x iff Vi(xn(i) = x(i), for all large 
enough n). 

iv) Show that (AN)n (n 2': 1), (AN)N are homeomorphic to AN. 

(2.4) Proposition. The map T f--+ [T] is a bijection between pruned trees on 
A and closed subsets of AN. Its inverse is given by 

F f--+ TF = {x In : x E F, n E N}. 

We call T F the tree of F. 

The proof is evident. 
For later reference we introduce the following notation. If T is a tree 

on A, then for any s E A<N, 

and 
T[s] = {t E T : t is compatible with s} . 

Thus [T[s]] = [T] n Ns forms a basis for the topology of [T]. Note that T[s] 
is a subtree of T, but Ts in general is not. 

(2.5) Definition. Let S,T be trees (on sets A,B, resp.). A map <p:S --+ T is 
called monotone if s <;;; t implies <p(s) <;;; <p(t). For such <p let 
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D(;p) = {.r E [S] : lim length( ;p(xl71)) = oo} . 
n 

FOT:r: E D(;p), let 
;p* (:r) = U ;p(xl71) E [1']. 

n 

We call;p proper if D(;p) = [S]. 

(2.6) Proposition. The set D(;p) is G~ in [S] and ;p*:D(;p) --> [1'] is contin~ 
UOllS. ConveTsely, if f:G --> [1'] is continuous, with G <;;: [S] a Go set, then 
theTe is monotone ;p:S --> l' with f = ;p* . 

Proof. We have x E D(;p) ? 'v'rdrn(length(;p(xlrn)) 2: 71), so D(;p) = 

nn Un, with Un = {x : 3m. (length(;p(xlrn)) 2: 71)} open. To see that ;p* is 
continuous, note that the sets [1'] n Nt = Vi: form a basis for the topology 
of [1'] and (;p*)-1(Vi:) = U{N, n D'{J : S E S, ;p(s) :::2 t} is open in D'{J' 

Now, given G, a Gh set in [S] which we can assume is nonempty (oth
erwise take ;p(s) = 0), and f : G --> [1'] continuous, define ;p : S --> l' as 
follows: Let (Un) be a decreasing sequence of open sets in [S], with Uo = [S], 
such that G = nn Un- For any s E S, let k( s) E N be defined as follows: 
k(s) = the largest k :::; length(s) such that N, n [S] <;;: Uk. Now set ;p(s) = 

the longest 11 E l' of length:::; k(s) such that f(N, n G) <;;: N". if N, n G i- 0, 
otherwise ;p(s) = ;p(slrn), wherem < length(s) is largest with NsjmnG i- 0. 
(Note that if N, n G i- 0, and f(N, n G) <;;: N" n N ,,, then 11 and v are 
compatible.) Clearly, " <;;: 8' =} k(s) :::; k(s') and ;p(s) <;;: ;p(s'). 

If x E G. then limn k(xln) = 00 because :r E UN for each N, and 
thus there i:s n 2: N with Nxjn n [S] <;;: UN. and so k(xl71) 2: N. Al:so 
lim" length(;p(xln) =00 since for each N there is n with k(.rln) 2: N 
:such that 0 i- f(NJjn n G) <;;: Nf(x)jN, so f(x)IN <;;: ;P(J:ln). This also 
"how:s that G <;;: D(;p) and f(x) = ;p*(x) for x E G. Finally, if x E D(;p), 
then limn k(xln) = 00, so for each N there is n with k(:[ln) > N: thus 
x E N Jjn n [S] <;;: UN. Therefore. x E G and G = D(;p). 0 

(2.7) Exercise. Let ;p : 5 --> l' be monotone. We call ;p Lipschitz if 
length(;p(s») = length(s). Show that in this ca"e d(;p*(.r),;p*(y» :::; d(x,y) 
for any .r,y E D(;p), where d i:s the usual metric on sequences (see remarks 
preceding 2.2). 

A closed set F in a topological space X is a retract of X if there is a 
continuous surjection f : X --> F such that f (x) = :[ for :r E F. 

(2.8) Proposition. Let F <;;: H be two closed nonempty subsets of AN. Then 
F is a Tetmct of H. 

Pmof. Let S, T be pruned trees on A such that [5] = F and [1'] = H. \iVe 
will define a monotone proper ;p : l' --> S with ;p(s) = 8 for s E 5 (note 
that 5 <;;: 1'). Then f = ;p* shows that F is a retract of H. We define ;p(t) 



2. Trees 9 

by induction on length(t). Let !p(0) = 0. Given !pet), we define !p(ra) for 
a E A and Ca ETas follows: If Ca E 5, let !p(ra) = Ca. If i'a tf. 5, let 
!p(ra) be any !p(trb E 5, which exists since 5 is pruned. 0 

2. C Trees on Products 

We will sometimes have to deal with trees T on sets A which are products of 
the form A = B x e or A = B x e x D, etc. When, for example, A = B x e, 
a member of T is a sequence s = (S'i)i<n with Si = (b;, Ci), bi E B, Ci E e. 
It is more convenient in this case to identify S with the pair of sequences 
(t, u) with ti = bi , Ui = Ci and to view T as being a subset of B<N x e<N 
with the property that (t, u) E T implies that length( t) = length( u), and 
(t, u) <;;; (t', u' ) (i.e., t <;;; t' and u <;;; u' ), (t', u' ) E T imply that (t, u) E 

T. With this convention [T] is the set of pairs (x, y) E BN X eN with 
(xln, yin) E T for all n. The meaning of Tt"" T[t,u] for (t,71) E B<N x e<N 
with length( t) = length( u) is also self-explanatory. 

According to 2.4, applied to (B x e)N, which we identify with BN x eN, 
the closed subsets of BN x eN are exactly those of the form [T], for T a 
pruned tree on B x e. 

If T is a tree on B x e and x E B N , consider the section tree T(x) on 
e defined by 

T(x) = {s E e<N: (xllength(s),s) E T}. 

Note that ifT is pruned it is not necessarily true that T(x) is pruned. Also, 

(x, y) E [T] ? Y E [T(x)]. 

Similarly, for s E B <N, we define T (s ) = {t E e<N 
length(s) & (sllength(t), t) E T}. 

2.D Leftmost Branches 

length(t) < 

We will now discuss the concept of the leftmost branch of a tree. Let T be a 
tree on a set A and let < be a wellordering of A. If [T] #- 0, then we specify 
the « -) leftmost branch of T, denoted by aT, as follows. We define aT (n) 
by recursion on n: 

aT(n) = the < - least element a of A such that [T(aTin)'a] #- 0. 

If for x =f YEAN, or x =f y E Am (for some m), we define the «-) 
lexicographical ordering <lex by X <lex Y ? for the least n such that x(n) =f 
yen), we have x(n) < yen), then it is clear that aT is the lexicographically 
least element of [Tl. When T is pruned, aT is also characterized by the 
property that for each m, aT 1m is the lexicographically least element of 
TnAm. 
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2.E Well-founded Trees and Ranks 

If a tree T on A has no infinite branches, i.e., [T] = 0, then we call T 
well-founded. This is because it is equivalent to sayiug that the relation 
8 -< t ¢} 8 ~ t restricted to T is well-founded. (See Appendix B.) On the 
other hand, if [T] i= 0, we call T ill-founded. If T is a well-founded tree, we 
denote the rank function of -< restricted to T by PT. Thus 

PT(05) = SUP{PT(t) + 1 : t E T t ~.5}. 

for sET. An easy argument shows that we also have 

PT(.5) = SUP{PT(.5' a) + 1 : sAa E T}. 

Also. PT(S) = 0 if sET is terminal, i.e .. for no a. SA a E T. We also 
put PT(.5) = 0 if s rt T. The rank of a well-founded tree is defined by 
p(T) = SUP{PT(S) + 1: 8 E T}. Thus ifT i= 0, p(T) = PT(0) + 1. 

If 8, T are trees (on A, B, resp.), a map 'P : 8 ---+ T will be called 
strictly monotone if s ~ t =? 'P(s) ~ 'P(t). i.e., if p is order preserving for the 
relation ~. Then if T is well-founded and 'P : 8 --+ T is strictly monotone, 
we have that 8 is well-founded and ps(s) :s: PT('P(S)), for all .5 E 8, so in 
particular p(S) :s: p(T). But we also have the converse here. If 8, Tare well
founded and p(8) :s: p(T), then there is a strictly monotone 'P : 8 --+ T. vVe 
define 'P(.5) by induction on length( s) for .5 E 8, so that Ps (s) :s: {JT ('P( s)). 
First let 'P(0) = 0. Assuming that 'P(s) has been defined, consider .5 A a E S. 
Then ps(sAa) < ps(s) :s: PT(P(S)), so there is some b with p(srb E T and 
ps(sAa) :s: PT('P(srb). Let p(sAa) = 'P(srb. We have therefore shown the 
following fact. 

(2.9) Proposition. Let S, T be tr'ees on A, E, respectively. If T is well
founded, then 8 is well-founded with p( 8) :s: p(T) iff there is a strictly 
monotone map 'P:8 --+ T. 

(2.10) Exercise. Given a relation -< on X, we associate with it the following 
tree on X: 

(:T() , ...• :Tn~l) E T--< ¢} ;Tn~1 -< .Tn~2 -< ... -< X'I -< Xo· 

(By cOllvention, when n = 1, ( . .ro) E T--< for any :r:() E X.) Show that 
-< is well-founded iff T--< is well-founded, and in this case for any x E X 
and any Xo, ... ,Xn~1 with x -< Xn~l -< ... -< Xl -< Xo, we have p--«:r:) = 

PT-< ((xo, ... , :r:n~l, x)). (We allow the case where n = 0 here, i.e., p--«:r:) = 

PT-< ((:r)).) Conclude that p( -<) = PT-< (0). 
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2.F The Well-founded Part of a Tree 

Even if a tree T is ill-founded, we can define a rank function on its well
founded part WFT , which is defined as follows: 

s E WFT {c? sET & T" is well-founded. 

Note that if 05 E WFT and s <;:; t E T, then t E WFT . Also, the relation 
-< = ~ is well-founded on \VFT . and so we can define the rank function PT 
on WFT by 

PT(S) = SUp{PT(t) + 1: t E T, t ~ s} 
= SUP{PT(s'a) + 1: o5Aa E T}, 

for 05 E WFT . Note that any terminal sET belongs to \VFT and PT(05) = O. 
For a tree T on A, it is also convenient to define 

PT(05) = 00 = the smallest ordinal of cardinality > max{ card(A), ~o}, 

for 05 E T \ WFT , so that PT(t) < PT(S) if t E WF T , S r:t WFT . (Hence, 
if A is countable, PT(05) = wd Finally, we can extend PT to all of A<N by 
letting PT (05) = 0 if s r:t T. Again, we let 

p(T) = SUp{pT(S) + 1: s E WFT}, 

so that PT!WFT maps WFT onto {a: a < p(T)}. 

(2.11) Exercise. For each tree T on A, let T* = {s E T : :Ja (s A a E T)} and 
by transfinite recursion define: 

T(O) = T, 

T(a+l) = (T(a))*, 

T().) = n T(o-), if A is limit. 
0'<). 

Let aD be the least ordinal a such that T(n) = T(a+l) and let T(oc) = 

T(O:o). Show that WFT = T \ T(00) and so T is well-founded iff T(=) = 0. 
Additionally, show that for 05 E WFT , 

pT(S) = the unique a with S E T(a) \ T(n+l). 

2. G The Kleene-Brouwer Ordering 

Now let (A, <) be a linearly ordered set. We define the Kleene-Brouwer 
ordering <KB on A<N as follows: If S = (so, ... , sm~d, t = (to, ... , tn~d, 
then 
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S <KB t {o} (S ~ t) or [3i < min{m,n}(\ij < i(sj = tj) & S; < till. 

It is easy to check that < K B is a linear ordering (extending the partial 
ordering ~). 

(2.12) Proposition. Assume that (A < ) is a wellor'dered set. Then for- any 
tree T on A T is well-founded iff the Kleene-Bmuwer or-der-ing restricted 
to T is a wellordering. 

Pmof. If T is ill-founded and x E [T], clearly xl(n + 1) <KB xln for each 
n, so <KB is not a wellordering on T. Conversely, let (8n ) be an infinite 
descending chain in <KB restricted to T. Then so(O) 2: 81(0) 2: 82(0) 2: "', 
so eventually 8 n (0) is constant, say 8 n (0) = 80 for n 2: no. Thus 8n (1) 
exists for all n > no and snu+ 1 (1) 2: 8no +2(1) 2: .... Therefore, for some 
nl > no, 8n (1) is constant, say 8,,(1) = 81, for n 2: nIl and so on. Then 
(so, Sl,"') E [T], i.e., T is ill-founded. D 
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3. Polish Spaces 

3.A Definitions and Examples 

Let (X, d) be a metric space. A Cauchy sequence is a sequence (xn) of 
elements of X such that limm .n d(xm' xn) = a. vVe call (X, d) complete if 
every Cauchy sequence has a limit in X. Given any metric space (X,d), 
there is a complete metric space (X, d) such t.hat (X, d) is a subspace of 
(X, d) and X is dense in X. This space is unique up to isometry and is 
called the completion of (X, d). Clearly, X is separable iff X is separable. 

(3.1) Definition. A topological space X is completely metrizable if it admits 
a compatible metTic d such that (X,d) is complete. A sepamble completely 
metrizable space is called Polish. 

(3.2) Exercise. Consider the open interval (a,l) with its usual topology. 
Show that it is Polish although its usual metric is not complete. 

The following facts are easy to verify. 

(3.3) Proposition. i) The completion of a sepamble metT'ic space is Polish. 
ii) A closed subspace of a Polish space is Polish. 
iii) The pmduct of a sequence of completely metrizable (resp. Polish) 

spaces is completely metT'lzable (resp. Polish). The sum of a family of com
pletely meirizable spaces is completely metT"lzable. The s'urn of a sequence 
of Polish spaces is Polish. 

EXAMPLES 

1) JR;, IC, JR;n, Cn . JR;N, and CN are Polish; the unit interval 

II = [0,1], 

the unit circle 
'If={xEc:lxl=I}, 

the n-dimensional cube lIn, the Hilbert cube lIN, the n-dimensional torus 
'lfn , and the infinite dimensional torus 'lfN are Polish. 

2) Any set A with the discrete topology is completely metrizable, and 
if it is countable it is Polish. 

3) The space AN, viewed as the product of infinitely many copies of A 
with the discrete topology, is completely metrizable and if A is countable it 
is Polish. Of particular importance are the cases A = 2 = {a, I} and A = N. 
We call 

the Cantor space and 
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the Baire space. 

(3.4) Exercise. i) The Cantor (1/3 -) set is the closed subset E 1/ 3 of 1I 
consisting of those numbers that have only O's and 2's in their ternary 
expansion. Show that C is homeomorphic to E 1/ 3 . 

ii) Denote by Irr the space of irrationals (with the relative topology as 
a subset of lR). Show that the continued fraction expansion gives a homeo
morphism of Irr n (0, 1) with (N \ {O} l', and therefore Irr is homeomorphic 
toN. 

4) The topology of any (real or complex) Banach space is completely 
metrizable and for separable Banach spaces it is Polish. 

Beyond the finite dimensional spaces lRn , en, examples of separable 
Banach spaces that we will occasionally consider are the £P spaces (1 :::; 
p < (0), in particular the Hilbert space £2; Co (the space of converging to 
o sequences with the sup norm); the LP(JL) spaces (1 :::; p < (0), where JL is 
a iT-finite measure on a count ably generated iT-algebra; C(X), the space of 
continuous (real or complex) functions on a compact metrizable space X 
with the sup norm. 

5) Let X,Y be separable Banach spaces. We denote by L(X, Y) the 
(generally non-separable) Banach space of bounded linear operators T : 
X ----+ Y with norm IITII = sup{IITxll : x E X, Ilxll :::; I}. If X = Y, we let 
L(X) = L(X,X). Denote by L1(X, Y) the unit ball 

L1(X,Y) = {T E L(X, Y): IITII :::; I} 

of L(X, Y). The strong topology on L(X, Y) is the topology generated by 
the family of functions fx(T) = Tx, fx : L(X, Y) ----+ Y, for x E X. It has 
as basis the sets of the form 

VXi ...• x,,;f;T = {S E L(X, Y) : IISx] - TXll1 < E, ... , IISxn - Txnll < E}, 

for Xl, ... ,xn EX, f > 0, T E L(X, Y). 
The unit ball Ll (X, Y) with the (relative) strong topology is Polish. To 

see this, consider, for notational simplicity, the case of real Banach spaces, 
and Jet D <;;; X be countable dense in X and closed under rational linear 
combinations. Consider Y D with the product topology, which is Polish, 
since D is countable. The map T >--> TID from Ll (X, Y) into Y D is injective 
and its range is the following closed subset of Y D: 

F = {J E yD :\lx, y E D\lp, q E Q[f(px + qy) = pf(x) + qf(y)] 

& \Ix E D(IIf(x)11 :::; Ilxll)}· 

It is easy to verify that this map is a homeomorphism of Ll (X, Y) and F, 
thus Ll (X, Y) with the strong topology is Polish. 
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(3.5) Exercise. Show that the following is a complete compatible metric for 
the strong topology on L1 (X, Y) : 

d(S, T) = LTn-111(S - T)(xn)ll, 
71..=0 

where (x n ) is a dense sequence in the unit ball of X. 

3.B Extensions of Continuous Functions 
and Homeomorphisms 

Let X be a topological space, (Y, d) a metric space, A <;;; X, and f : A ----> Y. 
For any set B <;;; Y, let 

diam (B) = sup{ d(x, y) : x, y E B} 

(with diam(0) = 0, by convention), and define the oscillation of f at x E X 
by 

OSCj(x) = inf{diam(f(U)): U an open nbhd of x} 

(where it is understood that f(U) = f(AnU)). Note that if x E A, then x is 
a continuity point of f iff OSCj(x) = O. Letting A, = {x EX: OSCj(x) < E}, 
note that A, is open and {x : OSCj(x) = O} = nn A1/(n+1) is a Go set. Thus 
we have shown the following proposition. 

(3.6) Proposition. Let X be a topological space, Y a metrizable space, and 
f:X ----> Y. Then the points of continuity of f form aGo set. 

Let us also note the following basic fact about metrizable spaces. 

(3.7) Proposition. Let X be a metrizable space. Then every closed subset of 
X is a Go set. 

Proof. Let d be a compatible metric for X. For x E X, 0 I- A <;;; X define 

d(x,A) = inf{d(x,y) : YEA}. 

Note that 
Id(x, A) - d(y, A)I 50 d(x, y). 

Thus the €-ball around A, B(A, E) = {x : d(x, A) < E} is open. It follows 
that if F <;;; X is closed (nonempty without loss of generality), then 

F = nB(F, l/(n + 1)), 
n 

and so F is a Go. o 
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\Ve will use the preceding ideas to prove the following basic extension 
theorem. 

(3.8) Theorem. (Kuratowski) Let X be metrizable, Y be completely metriz
able, A t;;;; X. and f:A -) Y be continuous. Then there is a Gh set Gwith 
A t;;;; G t;;;; A and a continuous extension g:G -) Y 011. 
Proof. In the preceding notation, let G = An {.r : osc.r(x) = O}. This is a 
G8 set and "illce 1 is continuous on A. A t;;;; G t;;;; A. 

Now let .r E G. Sillce .r E A, find :1"1/ E A. Tn --7 :r. Then 
lim,,(diam(f({x,,+1. :r,,+2." .}))) = 0, so (f(x,,)) is a Cauchy sequence 
and thus cOllverges ill Y. Let 

g(.T) = liml(:rll)' 
II 

It is easy to check that 9 is well-defined. i.e., it is independellt of the choice 
of (xn ), and extends f. To see finally that 9 is continuous on G, we have to 
check that oscg(x) = O. for all x E G. If U is open in X, then g(U) t;;;; f(U), 
so clialll(g(U)) :::: cliam(f(U)), thus oscy(:r) :::: oscr(x) = o. 0 

The following is an important application. 

(3.9) Theorem. (Lavrentiev's Theorem) Let X,Y be completely metrizable 
spaces. Let A t;;;; X. B t;;;; Y, and I:A -) B be a homeomorphism. Then f 
can be extended to a homeomorphism h:G -) H where G 2 A. H 2 Band 
G. Hare G8 sets. 

In partic'ular, a homeomorphism between dense subsets of X, Y can be 
extended to a homeomorphism between dense G 8 sets. 

Proof. By 3.8, let h : G 1 -) Y. g1 : Hl -) X, where G 1 2 A. HI 2 B 
are G b sets, be continuous extensions of 1. 1-1 respectively. Let R = 

graph(h), 5 = graph- 1 (gl) = {(;r,y)::r = gdY)}. Let G = pro.ix(Rn 
5), H = projy(R n 5), so that A t;;;; G t;;;; G 1 • B t;;;; H t;;;; H 1 • and 
.r E G ¢} g1Ch(x)) = ;1:, y E H ¢} h(gdY)) = lJ. Also, h = hlG is a 
homeomorphism of G with H. It is enough, therefore, to show that G, H 
are Go sets. Consider, for example, G: The map 7I(x) = (x, h (:1')) is con
tinuous from G1 into X x Y and G = 71-1(5). But 5 is closed in X x HI, 
so it is a G/l in X x Y. Thus. since inverse images of Go sets by continuous 
functions are Go too, Gis G b in G 1 • so G is G8 in X. 0 

(3.10) Exercise. Let X be a completely metrizable space and A t;;;; X. If 1 : 
A -) A is a homeomorphism, then 1 can be extended to a homeomorphism 
h : G ---4 G. where G 2 A is a G() set. 
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3. C Polish Subspaces of Polish Spaces 

We will characterize here the subspaces of Polish spaces which are Polish 
(in the relative topology). 

(3.11) Theorem. If X is metrizable and Y <;;; X is completely metrizable, 
then Y is a Gh in X. Conversely, if X is completely metrizable and Y <;;; X 
is a Go, then Y is completely metrizable. 

In par-ticular-, a subspace of a Polish space is Polish iff it is a Go. 

Pmoj. For the first assertion, consider the identity idy : Y --> Y. It is 
continuous, so there is a G b set G with Y <;;; G <;;; Y and a continuous 
extension 9 : G --> Y of idy . Since Y is dense in G, 9 = ide, so Y = G. 

For the second assertion, let Y = nn Un, with Un open in X. Let 
Fn = X\Un. Let d be a complete compatible metric for X. Define a new 
metric on Y, by letting 

It is easy to check that this is a metric compatible with the topology of Y. 
We show that (Y, d) is complete. 

Let (Yi) be a Cauchy sequence in (Y, d'). Then it is Cauchy in (X, d). 
So Yi --> Y EX. But also for each n. limi.j~= I d( IF) - -d( IF ) I = 0, so 

Y1' n Yl ~ 11 

for each n, -d( IF) converges in JR, so d(Yi' Fn) is bounded away from O. Y1, 11 

Since d(Yi.Fn) --> d(Y.Fn), we have d(y, Fn) i= 0 for all n, so Y t/: Fn for all 
n, i.e., y E Y. Clearly, Yi --> Y in (Y, d'). 0 

(3.12) Exercise. Let on = 0 ... 0 (n times). Show that the map f(x) 
oxu 10'" 1 OX2 . .. , where x = (x n ), is a homeomorphism of N with a co
countable Go set in C. Identify f(N). 
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4. Compact Metrizable Spaces 

4.A Basic Facts 

A topological space X is compact if every open cover of X has a finite 
subcover, i.e .. if (U,JiEl is a family of open sets and X = UiEI Ui, then 
there is finite 10 c:: I such that X = UiEI(J U i • This is equivalent to saying 
that every family of dosed subset" of X with the finite intersection property 
(i.e .. one for which every finite subfamily has nonempty intersection) has 
llonernpty intersection. 

Recall also that a topological space X is Hausdorff if every two distinct 
points of X have disjoint open nbhds. Metrizable spaces are Hausdorff. 

Here are some standard facts about compact spaces. 

(4.1) Proposition. i) Compact (in the relative topology) subsets of Hausdorff 
spaces are closed. 

ii) A closed s'ubset of a compact space is compact. 
iii) The union of finitely many compact subsets of a topological space 

is compact. Finite sets are compact. 
iv) The contin1L011s image of a compact space is compact. In particulaT, 

if f:X ---+ Y is continuous, wheTe X is compact and Y is HmlsdoTff, f(F) 
is closed (Tesp. Fa) in Y, if F is closed (resp. Frr) in X. 

v) A continuous injection from a compact space into a Hausdorff space 
is an embedding. 

vi) (Tychonoff's Theorem) The pTOd'uct of compact spaces is compact. 
vii) The sum of finitely many compact spaces i8 compact. 

For metric spaces we also have the following equivalent formulations 
of compactncns. 

(4.2) Proposition. Let X be a metric space. Then the following statements 
are equivalent: 

i) X is compact. 
ii) BUETY sequence in X has a conveTgent subsequence. 
iii) X is complete and totally bounded (i. e., fOT eveTY f > 0, X can be 

covered by finitely many balls of radius < f). 
In particulaT, compact metTizable spaces are Polish. 

RemaT}.;. A compact subset of a metric "pace is bounded (i.e., has finite 
diameter). So compact sets in metric spaces are closed and bounded. Thi" 
characterizes compact sets in JR". en, but not in general. 

(4.3) Exercise. Show that the unit ball {x E f2 : Ilxll ::;; I} of Hilbert space 
is not compact. 
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(4.4) Exercise. If X is compact metrizable and d is any compatible metric, 
(X, d) is complete. 

Concerning continuous functions on compact metric spaces, we have 
the following standard fact. 

(4.5) Proposition. If (X,d) is compact metric, (Y,d') is metric, and f:X......, 
Y is continuous, then f is uniformly continuous (i.e., \fd6 [d(x,y) < 6 ==? 

d' (1(x )J(y)) < E]). 

Finally, metrizability of compact spaces has a very simple characteri
zation. 

(4.6) Proposition. Let X be a compact topological space. Then X is metriz
able iff X is Hausdorff and second countable. 

4.B Examples 

1) The finite or infinite dimensional cubes lIn, lIN, and tori ']['n, ']['N are com
pact (but lRn , en, £2, etc. are not). The Cantor space C is compact. 

2) Let X be a separable Banach space. The dual X' of X is the Banach 
space of all bounded linear functionals x* : X ......, lK, where lK = lR or e is the 
scalar field, with norm Ilx*11 = sllp{l(x,.r*)1 : x E X, Ilxll :S I}, where we 
let (x,x*) = x*(x). In other words, X* = L(X,lK). For X = £\ X* = EX, 
which is not separable. Consider now the strong topology on X*, i.e., the 
one generated by the functions x* f-> (x, x*), x E X, which in this context is 
called the weak*-topology of X*. Let B1 (X*) (= L1 (X, lK)) be the unit ball 
of X*. As in Example 5) of Section 3.A, B1 (X*) with the weak* -topology is 
Polish, but actually in this case it is moreover compact. This is because in 
the notation established there, F ~ I1xED [-II.rll, Ilxll] (we are working with 
lR again) and f1,. E D [ -II x II, II x II] is compact. We summarize in the following 
theorem. 

(4.7) Theorem. (Banach) The unit ball B1 (X*) of a separable Banach space 
X is compact metrizable in the weak* -topology. A compatible metric is given 
by 

oc 

d(x*,y*) = L2-n-11(:rn,x*) - (xn,y*)1 
n=O 

for (x n ) dense in the unit ball of X. 

(4.8) Exercise. Show that B 1(t)O) = [-1, 1]l\! and that the weak*-topology 
on B1 (ROO) is the same as the product topology on [-1, 1]l\!. (For the complex 
case replace [-1,1] by][]) = {x E e: Ixl :S I}, the unit disc.) 
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(4.9) Exercise. Let X, Y be separable Banach spaces. The weak topology 
on L(X, Y) is the one generated by the functions (from L(X, Y) into the 
scalar field) 

T f--> (Tx,y*) ; x E X, y* E Y*. 

Show that if Y is reflexive, L1 (X, Y) with the weak topology is compact 
metrizable. Find a compatible metric. 

(4.10) Exercise. A topological vector space is a vector space X (over lR or 
q equipped with a topology in which addition and scalar multiplication are 
continuous (from X x X into X and OC x X into X, resp., where OC = lR or e). 
So Banach spaces and their duals with the weak* -topology are topological 
vector spaces. A subset K of a vector space is called convex if for every 
x, y E K and 0 :s: >.. :s: 1, >..x + (1 - >..)y E K. A point x in a convex set K 
is extreme (in K) if x = >..y + (1 - >")z, with 0 < >.. < 1, y, Z E K, implies 
y = z (= x). Denote by 8e K the extreme boundary of K, i.e., the set of 
extreme points of K. Show that if K is a compact metrizable (in the relative 
topology) convex subset of a topological vector space, then the set 8e K is 
G b in K, and thus Polish. In particular, this holds for all compact convex 
subsets of BI(X*), for X a separable Banach space. What is 8e (B1(£=))'1 

(4.11) Exercise. If T is a tree on A, we call T finite splitting if for every 
sET there are at most finitely many a E A with s A a E T. Show that if T 
is pruned, [T] is compact iff T is finite splitting. In particular, if K <;;; N is 
compact, there is x EN such that for all y E K, y(n) :s: x(n) for every n. 
Conclude that N is not a countable union of compact sets. 

(4.12) Exercise. (Konig's Lemma) Let T be a tree on A. If T is finite 
splitting, then [T] =1= 0 iff T is infinite. Show that this fails if T is not finite 
splitting. 

(4.13) Exercise. (The boundary of a graph theoretic tree) An (undirected) 
graph is a pair Q = (V, E), where V is a set called the set of vertices, 
and E <;;; V 2 with (x, y) E E ¢:} (y, x) E E and (x, x) rf:- E. If (x, y) E 
E, we say that (x, y) is an edge of Q. A path in Q is a finite sequence 
(xo, Xl, ... , x n ), n 2 1, with (Xi, Xi+l) E E for i < n and where the X'i are 
distinct except possibly for Xo and x n , when n 2 3. A closed path, i.e., one 
in which Xo = Xn is called a loop. A graph Q is connected if for every two 
distinct vertices x, y there is a path (xo, ... , x n ) with Xo = x and Xn = y. A 
graph theoretic tree is a connected graph with no loops. This is equivalent 
to saying that for any pair (x, y) of distinct vertices there is a unique path 
(:J:(), ... ,xn ) with x = Xo and y = X n . 

The two-dimensional lattice in Figure 4.1 is an example of a connected 
graph that is not. a graph theoretic tree. Figure 4.2 depicts a graph theoretic 
tree. 
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A rooted graph theoretic tree is a graph theoretic tree with a distin~ 
guished vertex, called its root. A tree T on a set A can be viewed as a 
rooted tree with 0 as the root, vertices the nodes of T, and edges all pairs 
(s,sAa) or (sAa,s) for S,SA a E T. Conversely, every rooted graph theoretic 
tree 9 = (V, E) gives rise to a tree T (on V) as follows: Identify each v E V 
with the sequence (vo, VI, ... , vn ), which is the unique path from Va = root 
to the vertex Vn = v. (By convention, the root corresponds to 0.) 

A graph theoretic tree 9 is locally finite if every vertex v has finitely 
many neighbors (i.e., u for which (v,u) E E). 

Given a tree g, an infinite path through 9 is a sequence (Xo, Xl,"') 
such that (Xi,Xi+l) E E and Xi. i= Xj for each i i= j. Two infinite paths 
(x.;), (Yi) are equivalent if :In:JrnVi(Xn+i = Yrn+i). See, for example, Fig~ 
ure 4.3: 
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Yo 

FIGURE 4.3. 

An end of Q is the equivalence class of an infinite path. Denote the set 
of ends by 8Q. This is called the boundary of Q. We define a topology 
on 8Q by taking as basis the sets of the form [xo, ... , x n ] = {e E 8Q : 
3Xn +l, .Tn +2, ... (xu, Xl) ... ) E e} with (xu, ... ,xn ) a path in Q. 

If Xu E V, then for each end e E 8Q, there is a unique infinite path 
X = (.TO, Xl, ... ) with Xo E e. We call X the geodesic from Xo to e and denote 
it by [xo, e]. Thinking of Xo as a root of Q, we can view Q as a tree T on 
V. Show that the geodesic map e f--+ [Xo, e] is a homeomorphism of 8Q with 
[T]. In particular, Q is locally finite iff T is finite splitting and in this case 
8Q is compact. 

4. C A Universality Property of the Hilbert Cube 

(4.14) Theorem. Every separable metrizable space is homeomorphic to a 
subspace of the Hilbert cube rrN. In particular, the Polish spaces are, up to 
homeomorphism, exactly the CD subspaces of the Hilbert cube. 

Proof. Let (X, d) be a separable metric space with d :s; 1. Let (xn) be dense 
in X. Define f : X ---+ lIN by f (x) = (d( X, xn) ). Clearly, f is continuous and 
injective. It remains to show that f- l : f(X) ---+ X is also continuous. Let 
f(x 7n ) ---+ f(x), i.e., d(xm, Xn) ---+ d(x, xn) for all n. Fix to> 0 and then let n 
be such that d(x, Xn) < E. Since d(xm, Xn) ---+ d(x, xn), let 11/[ be such that: 
m ~ 1vl =? d(xrn,xn ) < E. Then if m ~ M, d(x7n,x) < 21'. So xm ---+ X. 0 

It follows that every separable metrizable (resp. Polish) space X can 
be embedded as a dense (resp. C6) subset of a compact metrizable space 
Y. 
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(4.15) Definition. If X is separable metrizable, a compactification of X is a 
compact metrizable space Y in which X can be embedded as a dense subset. 

(4.16) Exercise. Show that C and H are both compactifications of N. So 
compactifications are not uniquely determined up to homeomorphism. 

(4.17) Theorem. Every Polish space is homeomorphic to a closed subspace 
of ]RN. 

Proof. The proof is similar to that of 3.11. We can assume that the given 
Polish space is a Go set G <:;; HN. Let (Un) be open with G = nn Un' Let 
Fn = HN\U". Define f : G -'> ]RN by letting 1 = (fn) with 

hn+l(X) = Xn, if x = (Xi), 
1 

hn(x) = d(x, Fn)' 

where d is a compatible metric on HN. Clearly, 1 is injective and con
tinuous. We check now that 1 (G) is closed and 1-1 : 1 (G) -'> G is 
continuous: If 1 (xn) = yn -'> y E ]RN, then xn -'> X E HN and also 
l/d(xn,F;) converges for each i, so (d(xn,Fi)) is bounded away from 0, 
thus d(x, Fi ) = limn d(xn, Fi ) of. 0 and x t/:. Fi for each i, so x E G. Clearly, 
l(x) = y. 0 

Remark. It has been proved by R. D. Anderson that ]RN is homeomorphic 
to the Hilbert space £2; see J. van Mill [1989]. 

4.D Continuous Images of the Cantor Space 

(4.18) Theorem. Every nonempty compact metrizable space is a continuous 
image ofC. 

Proof. First we show that HN is a continuous image of C. The map f(x) = 

L~=() x(n)2- n - 1 maps C continuously onto H, so (xn ) I--> (f(xn)) maps 
CN , which is homeomorphic to C, onto HN. Since every compact metrizable 
space is homeomorphic to a compact subset of HN , it follows that for every 
compact metrizable space X there is a closed set F <:;; C and a continuous 
surjection of F onto X. Using 2.8 our proof is complete. 0 

We will discuss next two important constructions of Polish spaces as
sociated with compact spaces and sets. 
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4.E The Space of Continuous Functions on a Compact Space 

Let X be a compact metrizable space and Y a rnetrizable space. We denote 
by C(X. Y) the space of continuous functions from X into Y with the 
topology induced by the sup or uniform metric 

dll (J, g) = sup dy(J(x), g(x)). 
J;EX 

where dy is a compatible metric for Y. A simple compactness argument 
shows that this topology is independent of the choice of dy . When Y = IR 
or C we write just C(X) when it is either irrelevant or clear from the 
context which of the two cases we consider. In this case C(X) is a Banach 
space ,vith norm Ilfllx = SUP;r,EX If(.r)l, and du(J, g) = Ilf - gll= is the 
associated metric. 

(4.19) Theorem. If X is compact metrizable and Y is Polish, then C(X,Y) 
is Polish. 

Proof. Let dy be a compatible complete metric for Y and let d" be as 
above. If (In) is Cauchy in C(X. Y), then SUPxEX dy (Jm (x), fn(x)) -+ 0 as 
m, n -+ 00. In particular, (In (x)) is Cauchy for each x, so f (x) = lim fn (x) 
exists in Y. It is easy now to check that f E C(X, Y) and fn -+ f. So 
C(X, Y) is compjpte. 

\Ve now prove separabilit.y. Let. dx be a compatible metric for X and let 
C rn . n = {f E C(X, Y) : '112:, y[dx(x. y) < 11m =? dy(J(:r;), f(y)) < lin]}. 
Choose a finite set Xrn C;;; X such that every point of X is within 11m from 
sornp point of X m . Then let D m . n C;;; Crn •n be countable such that for every 
f E Cm . n and every E > 0 there is 9 E DrnJ1. with dy(J(y),g(y)) < E for 
y E X m · We claim that D = Urn.n D m .n is dense in C(X, Y). Indeed, if 
f E C(X, Y) and E > 0, let n > 3/E and let m be such that f E em.n 
(which is possible since f is uniformly continuous). Let 9 E D m .n be such 
that dy(J(y),g(y)) < lin for all y E X m . Given x E X. let y E Xm be 
such that dx(.r,y) < 11m. Then dy(J(x),g(x)) < E. SO dll (J, g) < E. 0 

4.F The Hyperspace of Compact Sets 

Let X be a topological space. \Ve denote by K(X) the space of all compact 
subsets of X equipped with the Vietoris topology, i.e., the one generated 
by the sets of the form 

{K E K(X) : K C;;; U}, 

{K E K(X) : K nUl- 0}, 

for U open in X. A basis for this topology consists of the sets 

{K E K(X) : K C;;; Uo & K n U1 I- 0 & ... & K n Un I- 0} 
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for Un, U1 , ... , Un open in X. 

(4.20) Exercise. i) A point x in a topological space is isolated if {x} is open. 
Show that 0 is isolated in K(X). 

ii) Show that if X is a topological subspace of Y, K(X) is a topological 
subspace of K (Y). 

Now let (X, d) be a metric space with d :::; 1. We define the Hausdorff 
metric on K(X), dH , as follows: 

d H (K, L) = 0, if K = L = 0, 
= 1, if exactly one of K, Lis 0, 
= max{8(K,L),8(L,K)}, if K,L =10, 

where 
8(K,L) =maxd(x,L). 

xEK 

Thus we have for nonempty K, L E K(X), 

dH(K,L) < E -R K c:: B(L,E) & L c:: B(K,E). 

(4.21) Exercise. Show that the Hausdorff metric is compatible with the 
Vietoris topology. 

(4.22) Theorem. If X is a metrizable space, so is K(X). If X is separable, 
so is K(X). 

Proof. If D c:: X is countable dense in X, then K f (D) = {K c:: D : 
K is finite} is countable dense in K(X). 0 

Next we will study convergence in K(X). Given any topological space 
X and a sequence (Kn) in K(X), define its topological upper limit, 
TlimnKn , to be the set 

{x EX: Every open nbhd of x meets K n for infinitely many n}, 

and its topological lower limit, T limn K n, to be the set 

{x EX: Every open nbhd of x meets K n for all but finitely many n} . 

Clearly, T limnKn c:: T limnKn, and both are closed sets. If they are 
equal, we call the common value the topological limit of (Kn), written 
as Tlimn Kn. Finally note that if X is metrizable and Kn =I 0, then the 
topological upper limit consists of all x that satisfy: 

:J(xn)[Xn E Kn, for all n, and for some subsequence (x n ,), xni ---+ x], 

and the topological lower limit consists of all x that satisfy: 
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3(X1/)[Xn E K n, for all n, and Xn --+ xl. 

(4.23) Exercise. Let (X. d) be metric with d :s: 1. Show that for nonempty 
K,Kn E K(X): 

i) b(K, K,,) --+ 0 =? K ~ T lim"Kn ; 

ii) b(Kn. K) --+ 0 =? K J T lim"K". 
In particular, dH(Kn.K) --+ 0 =? K = TlimK". Show that the converse 
may fail. 

(4.24) Exercise. Let (X, d) be compact metric with d :s: l. Then for Kn i- 0. 
i) if T limnK" i- 0, then b(T limnK", Kn) --+ 0; 
ii) b(Kn. TlimnKn) --+ O. 

So if K = Tlim" Kn exists, dH(Kn. K) --+ O. 

(4.25) Theorem. If Xis completely metrizable. so is K (X) . Hence. in par
ticular, if X is Polish, so is K(X). 

Proof. Fix a complete compatible metric d :s: 1 on X. Let (Kn) be Cauchy 
in (K(X} dH ), where without loss of generality we can assume Kn i- 0. 
Let K = TlimnK". \Ve will show that K E K(X) and dJf(Kn.K) --+ O. 

Note first that K = nJU~n K;) and that K is closed and nonempty. 

Claim 1. K is compact: It is enough to show it is totally bounded. For 
that we will verify that for each n there is a finite set F" ~ X with K ~ 
UrEFn B(x, 2-") or even that for L" = U~n K t , Ln ~ UrEFn B(x, 2-n). 
To see this, let F:, be finite with K; ~ UJEF)\ B(x, 2- 71 - 1). Let p > n be 

sHch that dH(K,. K)) < 2- n - 1 for i,j ::;0. p. Finally, let Fn = Un:Si:Sp Fi" 

Claim 2. dlI(Kn,K) --+ 0: Fix f > O. Then find N with: i,j > N =? 

dH(K;. KJ < f/2. We will show that if n ::;0. N, dll(Kn , K) < f. 

i) If x E K, let ;r:n , E K"" :Fn , --+ x. Then for large i, Tli > Nand 
d(xn, . .r) < (:/2. For such i, let Yn E Kn be such that d(:cni • Yn) < f/2. Then 
d(::c. Yn) < f. and therefore b(K, K,,) < f. 

ii) Now let iJ E Kn· Findn = kl < k2 < k:3 < ... such that 
rill (Kk] , Km) < 2-J - 1 f for all m ::;0. kJ" Then define Xk J E KA;J as fol
lows: Let .rk] = Y ami :CkJ + 1 be such that d(Xk J +1 , XkJ < 2- j - 1f. Then 
(Xk J ) is Cauchy, so XkJ --+ 1: E K, dry, x) < E, and finally, b(Kn, K) < f. D 

(4.26) Theorem. If X is compact metrizable, 80 is K(X). 

Proof. It is enough to show that if d is a compatible metric for X. d :s: l. 
then (K(X), elf{) is totally bounded. Fix f > O. Let F <;;; X be finite with 
X = UJEF B(x. f). Then K(X) = USCF B(5. f) (the open ball of radius f 

around 5 in dll ). - D 
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(4.27) Exercise. Let (X,d) be a metric space with d -s; 1. Then x f--t {x} is 
an isometric embedding of X in K(X). 

(4.28) Exercise. Let X be metrizable and Kn E K(X), Ko ~ Kl ~ .... 
Then limn Kn = n" Kn. In particular, if Kn is the union of the 2" many 
closed intervals occurring in the nth step of the construction of the Cantor 
set E l/3 , Kn --t Ell:" 

(4.29) Exercise. Let X be metrizable. 
i) The relation "x E K" is closed, i.e., {(x,K) : x E K} is closed in 

X x K(X). 
ii) The relation "K ~ L" is closed, i.e., {(K.L): K ~ L} is closed in 

K(X)2. 
iii) The relation "K n L # 0" is dosed. 
iv) The map (K, L) f--t K U L from K(X)Z into K(X) is continuous. 
v) For lC E K(K(X)), let U lC = U{K : K E lC}. Show that U lC E 

K(X) and U : K(K(X)) --t K(X) is continuous. 
vi) If f : X --t Y is continuous, where Y is a metrizable space, then 

the map 1" : K(X) --t K(Y) given by 1"(K) = f(K) is continuous. 
vii) If Y is metrizable, then the map (K, L) f--t K x L from K (X) x K (Y) 

into K(X x Y) is continuous. 
viii) Find a compact X for which the map (K, L) f--t K n L is not 

continuolls. 

(4.30) Exercise. Let X be metrizable. Show that the set 

Kr(X) = {K E K(X): K is finite} 

is Fa in K(X). 

(4.31) Exercise. A topological space is perfect if it has no isolated points. 
Let X be separable metrizable. Show that 

Kp(X) = {K E K(X) : K is perfect} 

is a G~ set in K(X). 

(4.32) Exercise. View a tree T on N as an element of 21\1<;; by identifying 

it with its characteristic function (note that T ~ N<I\I). Let Tr ~ 2Pl <" 

denote the set of trees and PTr ~ 21\1<1; denote the set of pruned trees. 
Show that jf 21\1<'" is given the product topology with 2 = {G, I} discrete 
(so that it is homeomorphic to C), Tr is closed and PTr is a G b. Now let 
Trz ~ 22 <h denote the set of trees on 2 and PTr2 ~ 22 <1; denote the set of 
pruned trees on 2. Show that they are both closed and that K f--t TK is a 
homeomorphism of K(C) with PTr2. 
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Show that the sets Tr f of finite splitting trees on Nand PTr f of fi
nite splitting pruned trees on N are not Go and that J{ f---7 TK is not a 
homeomorphism of J{ (N) and PTr f. 
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5. Locally Compact Spaces 

A topological space is locally compact if every point has an open nbhd with 
compact closure. Clearly, compact spaces and closed subspaces of locally 
compact spaces are locally compact. Products of finitely many locally com
pact spaces are locally compact, but a product of an arbitrary family of 
locally compact spaces is locally compact iff all but finitely many of the 
factors are compact. The sum of locally compact spaces is locally compact. 

For example, all discrete spaces, JR" and en are locally compact, but 
JRN and /1[ are not. 

(5.1) Definition. Given a locally compact Hausdorff space X, its one-point 
compactification X is constructed as follows: If X is compact, X = X. 
Otherwise, let 00 tI- X. Let X = Xu {oo}, and define the topology of X by 
declaring that it.s open sets are the open sets in X together with all the sets 
of the form X\I< for K E K(X). 

Clearly X is open in "Y" and X is compact Hausdorff. 
For example, the one-point compactification of JR;. is (up to homeo

morphism) T; the one-point compactification of (0,1] is [0,1]; and the 
one-point compactification of JR;.TI is S", the n-dimensional sphere (i.e., 
{:r E JR;.n+l : 11:["11 = I}). 

(5.2) Definition. A set A in a topological space X is Ku if A = Un K n, 
where KII E K(X). 

(5.3) Theorem. Let X be Hausdorff and locally compact. Then the following 
statements are equivalent: 

i) X is second countable; 
ii) X is metrizable and K a; 
iii) X 'i.~ compact metrizable; 
iv) X is Polish; 
v) X -is homeomorphic to an open subset of a compact metrizable space. 

Proof. i) =} iii): By 4.6, it is enough to show that X is second countable. 
Fix a countable basis {Un} for X. Then {UTI : Un is compact} is also a 
basis, so we can assume that U" is compact for each n. If (X\K) with 
K E K(X) is an open nbhd of 00, then K ~ UnEF Un, for some finite F, 
so {Vr,} = {nnEF(X\Un) : F finite} is a countable nbhd basis for 00. Then 

{ Un} U {V;,} is a basis for X. 
iii) =} v): Obvious since X is open in X. 
v) =} iv): Open subspaces of Polish spaces are Polish. 
iv) =} ii): As in the first part of i) =} iii). 
ii) =} i): Let X = Un K n, with Kn compact. We will define in

ductively a sequence (Urn) of open sets in X with U Tn compact and 
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Urn ~ Um+1 , Urn Urn = X, as follows: For m = 0, let Uo be open 
with Vo compact and Ko ~ Uo. In general, let Urn be open such that 
Um- 1 U Krn ~ Urn and Urn is compact. 

Since Urn is second countable, so is Urn, and thus let {Urn.n}nEN be a 
basis for Urn. Then {Um,n}m,nEN is a basis for X. 0 
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6. Perfect Polish Spaces 

6.A Embedding the Cantor Space in Perfect Polish Spaces 

A limit point of a topological space is a point that is not isolated, i.e., for 
every open nbhd U of x there is a point y E U, Y oF x. A space is perfect if 
all its points are limit points. If P is a subset of a topological space X, we 
call P perfect in X if P is closed and perfect in its relative topology. 

For example, lR'" lRN, en, eN, ITN, C, N are perfect. If X is perfect, so 
is K(X)\{0} (0 is an isolated point of K(X)). The space C(X), X compact 
metrizable, is perfect. 

(6.1) Definition. A Cantor scheme on a set X is a family (AS)sE2<N of 
subsets of X such that: 

i) As'o n As"l = 0, for s E 2<N; 

ii) A.'"i <;;; A." for 8 E 2<N, i E {O,l}. 
(See Figure 6.1.) 

FIGURE 6.1. 

(6.2) Theorem. Let X be a nonempty perfect Polish space. Then there is an 
embedding of C into X. 

Proof. We will define a Cantor scheme (Us LE2<N on X so that 

i) Us is open nonempty; 
ii) diam(Us ) ::; 2-1ength(s); 

iii) Us"i <;;; Us, for 8 E 2<N, i E {O, I}. 

Then for x E C, nn Ux1n = nn Uxl n is a singleton (by the completeness 
of X), say {J(x)}. Clearly, f : C -+ X is injective and continuous, and 
therefore an embedding. 
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We define Us by induction on length(s). Let Uf/J be arbitrary satisfying 
i), ii) for s = 0. Given Us, we define Us'(), Us'! by choosing x of y in Us 
(which is possible since X is perfect) and letting U,'(), Us'l be small enough 
open balls around :T. y, respectively. 0 

(6.3) Corollary. If X is a nonempty perfect Polish space, then card(X) 
2No. In particular, a nonempty perfect subset of a Polish space has the car
dinality of the continuum. 

6.B The Cantor-Bendixson Theorem 

A point x in a topological space X is 11 condensation point if every open 
nbhd of .T is uncountable. (Note that in a rnetrizable space a limit point is 
one for which every open nbhd is infinite.) 

(6.4) Theorem. (Cantor-Bendixson) Let X be a Polish space. Then X can 
be uniquely W7'ltten as X = PuC. with P a perfect subset of X and C 
countable open. 

Proof. For any space X let 

X* = {:c EX: :r is a condensation point of X}. 

Let P = X*. C = X\P. If {U7I } is an open basis of X, then C is the union 
of all the Un which are countable, so C is countable. It is evident that P is 
closed. To show that P is perfect, let :r E P and U be an open nbhd of :r in 
X. Then U is uncountable, so it contains uncountably many condensation 
points, and U n P is thus uncountable. 

To prove uniqueness. let X = PI U C1 be another such decomposition. 
Note first that if Y is any perfect Polish space, then Y* = Y. This is because 
if y E Y and U is an open nbhd of y, then un Y is perfect nonempty Polish. 
thus having cardinality 2NIJ . SO we have Pt = P! and thus P j <:;;: P. Now if 
:r E C1 , then, since C1 is countable open, x: E C and so C] <:;;: C. It follows 
that P = PI and C = C 1 . 0 

(6.5) Corollary. Any uncountable Polish space contains a homeomorphic 
copy of C and in particular has cardinality 2No. 

In particular, every uncountable G h or Fa set in a Polish space contains 
a homeomorphic copy of C and so has cardinality 2NIJ , i.e., the Continuum 
Hypothesis holds for such sets. 

(6.6) Exercise. In the notation of 6.4, show that P is the largest perfect 
subset of X. 
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(6.7) Definition. For any Polish space X, if X = puc, where P is perfect 
and C is countable with P n C = 0, we call P the perfect kernel of X. 

6. C Canior'-Bendixson Dcrivai'ivcs and Ranks 

We will next give an alternative proof of the Cantor-Bendixson Theorem 
and a more informative construction of the kernel. First we need a gen
eral fact about monotone well ordered sequences of closed (or open) sets in 
second countable spaces. 

(6.8) Definition. We denote by ORD the class of ordinal numbers: 

O,1.2, ... ,w,w+l, .... 

An ord'inal 0: is successor if 0: = ,3 + 1 for some ordinal (3 and limit if it is 
not 0 or successor. As usual, every ordinal is identified with the set of its 
predecessors: 0: = {(3:(3 < a}, so 1 = {O}, 2 = {O,l}, ... , w = {O,l,2, ... }, 
etc. 

(6.9) Theorem. Let X be a second countable topological space and (Fa)a<p 
a strictly decreasing transfinite seq7tcnCe of closed sets (i. e., Cl' < (3 =? 

Fa ~ Fr3). Then p is a countable ordinal. This holds similarly for strictly in
creasing transfinite sequences of closed sets (and thus for strictly decreasing 
or increasing transfinite families of open sets). 

Pmoj. Let {Un} be an open basis for X. Associate to each closed set F C;;; X 
the set of numbers N(F) = {n : Un n F of 0}. Clearly, X\F = U{Un : n tf. 
N(F)}, so F f---+ N(F) is injective. Also, F C;;; G =? N(F) C;;; N(G). Thus for 
any strictly monotone (i.e., decreasing or increasing) transfinite sequence 
(Fn)(y<p, (No,) = (N(Fn )) is a strictly monotone transfinite sequence of 
subsets of N, so obviously p is countable. 0 

(6.10) Definition. For any topological space X, let 

X' = {x EX: :E is a limit point of X}. 

We call X' the Cantor-Bendixson derivative of X. CleaTty, X' is closed 
and X is perfect iff X = X'. 

Using transfinite rec7Lrsion we define the iterated Cantor-Bendixson 
derivatives xa, Cl' E ORD, as follows: 

XO=X, 

X a +1 = (xn)', 

X>' = n X CY , if ,\ is limit. 
n<>' 
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Thus (X")nEORD lS a deer-easing transfinite sequence of closed subsets of 
X. 

(6.11) Theorem. Let X be a Polish s]lace. For some countable ordinal 
ao, X" = X"() for all a ;::: ao and X'xu is the perfect kernel of X. 

Proof. It is easy to see by induction all a, that if P is the perfect kernel of 
X. PC: X" (note that P' = P). If ao is now a countable ordinal such that 
XC> = Xno for a ;::: ao, then (XO())' = X(}o+ 1 = X"o, so XU() is perfect, 
therefore X"u c: P. 0 

(6.12) Definition. FOT any Pulish space X, the lmst urdinal (Yo as in 6.11 is 
called the Cantor-Bendixson rank of X and is denoted by IXlcB. We also 
let 

XX = XlxlcD = the perfect kernel of X. 

Clearly, for X Polish, 

X is countable {o? X::l0 = I/J . 

Note also that if X is countable compact, then X"" = 0, and so by COlIl

pactness, if X is nonempty, IXlcD = (Y + 1 for some (Y. In this case it is 
customary to call (1 (instead of (Y + 1) the Cantor-Bendixson rank of X. To 
avoid confusion, we will let IXlcD = a in this case. (We abo let 101cB = 0.) 

(6.13) Exercise. For each countable ordinal (1, construct a closed countable 
su bset of C, K,y such that I K" I C' B = (1. 

(6.14) Exercise. Let T be a tree on A. vVe call T perfect if 

\/s E T ::it.u(t :.::> s &, u:'::> 8 & t.11 E T &, t.l 11) , 

i.e., every lIlember of T has two incompatible extensions in T. If T IS a 
pruned tree 011 A, show that T is perfect iff [T] is perfect in AN. 

(6.15) Exercise. For any tree T on A we define its Cantor-Bendixson deriva
tive T' by 

T'={8ET:::it,UET(t:'::>8 & 1):'::>8 &; t.lu)}. 

Recursively, we then define its iterated Cantor-Bendixson derivatives by 
TO = T, T"+! = (Tn)'. TA = n"<A Tn, if .A is limit. Show that for some 
ordinal ao of cardinality at most max{card(A), ~u}, Tn = TOO for all (12: 

00. 'We call the least such 0 the Cantor-Bendixson rank of T, written as 
ITlcR' Let T X = TITlcD. For A = 2 or N show that [T X '] is the perfect 
kernel of [T]. i.e., [TOC] = [T]x. However, construct examples on A = 2 to 
show that [TO] may be different from [T]" even for pruned trees T. How 
are [Tn] and [T]n related? How about ITleD and I[T]lcD? 
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7. Zero-dimensional Spaces 

'l.A Basic Facts 

A topological space X is connected if there is no partition X = U U V, un 
V = 0 where U, V are open nonempty sets. Or equivalently, if the only 
elopen (i.e., open and closed) sets are 0 and X. For example, ]Rn, en are 
connected, but C, N are not. 

At the other extreme, a topological space X is zero-dimensional if it 
is Hausdorff and has a basis consisting of clop en sets. 

For example, the space AN is zero-dimensional since the standard basis 
{N,LEA<! consists of clopen sets. 

(7.1) Exercise. Let (X, d) be a metric space, where d is actually an ultra
metric. Show that 

i) d(x,z) of d(y.z) =} d(x,y) = max{d(x,z),d(y,z)}. 

ii) B (:1:, r) is clopen, and thus X is zero-dimensional. 

iii) y E B( x, r) =} B(x, r) = B(y, r) (and similarly for the closed balls). 

iv) If two open balls intersect, then one is contained in the other. 

v) (:1: n ) is Cauchy iff d(xn' Xn+l) -" O. 

(7.2) Exercise. Let X be a second countable zero-dimensional space. If 
A, B s: X are disjoint closed sets, there is a clopen set C separating A and 
B, i.e., A s: C, B n C = 0. 

Notice that subspaces, products, and sums of zero-dimensional spaces 
are zero-dimensional. Finally, 2.8 is valid also for any separable metrizable 
zero-dimensional space (see K. Kuratowski [1966]' Ch. II, §26, Cor. 2). 

(7.3) Theorem. Let X be separable metr-izable. Then X is zero-dimensional 
iff every nonempty closed subset of X is a r-etract of x. 

'i.B A Topolog'ical Characterization of the Cantor Space 

(7.4) Theorem. (Brouwer) The Cantor space C is the unique, up to home
omorphism, perfect nonempty, compact metrizable, zero-dimensional space. 

Proof. It is clear that C has all these properties. 
Now let X be such a space and let d be a compatible metric. We will 

construct a Cantor scheme (C" LE2<'j on X such that 

i) Cf/j = X; 
ii) C.s is elopen, nonempty: 
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iii) Cs = Cs -o U Cs - I ; 

iv) limndiam(Cxln ) = 0, for x E C. 

Assuming this can be done, let f : C --+ X be such that {f(x)} = nn Cxln
Then f is a homeomorphism of C onto X (by iii) ). 

Construction of (Cs LE2<1'J: Split X into X = Xl U ... U X n , where 
Xi n Xj = ° if if j and Xi is clop en of diameter < 1/2. Let COi-1 = Xi+l 
if 0::; i < n -1, Con-l = X n , and COi = X i+l U ... U X n , for 0::; i < n - 1 
(here a j = aa ... a (j times)). (See Figure 7.1.) 

x 
0 

00 01 ~ 

001 X; 

~ 

X 
n 

X 
n-\ 

FIGURE 7.1. 

Now repeat this process within each Xi, using sets of diameter < 1/3, and 
so on by induction. 0 

7. C A Topological Characterization of the Baire Space 

(7.5) Definition. A Lusin scheme on a set X is a family (A')SEN<r; of subsets 
of X such that 

i) A'-i n As-j = 0, if 05 E N<N, i f j in N; 

ii) AS-i ~ A" if S E N<N, i E N. 

(See Figure 7.2.) 
If (X,d) is a metric space and (AS)sEN<~ is a Lusin scheme on X, we 

say that (AS)SEN<I'J has vanishing diameter if limn diam(Ax1n ) = 0, for all 
x E N. In this case if D = {x E N: nn A xln f 0}, define f:D --+ X by 
{J(x)} = nn A xl", We call f the associated map. 

(7.6) Proposition. Let (As)sEN<N be a Lusin scheme on a metric space (X,d) 
that has vanishing diameter. Then if f:D --+ X is the associated map, we 
have 
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~ ... ~ ... 6 
FIGURE 7.2. 

i) f is injective and continuous. 

ii) If (X ,d) is complete and each As is closed, then D is closed. 

iii) If As is open, then f is an embedding. 

Proof. Part i) is straightforward. For ii), note that if Xn E D, Xn --'> x, then 
(J(xn)) is Cauchy since, given f > 0, there is N with diam(AxIN) < E and 
M such that xnlN = xlN for all n :::: M, so that d(f(xn), f(xm)) < E if 
n, Tn :::: AI. Thus, f(xn) --'> y E X. Since each As is closed, y E Axln for 
all n, so that xED and f (x) = y. Finally, iii) follows from the fact that 
f(Ns n D) = f(D) n As. 0 

Recall that the interior, Int(A), of a set A in a topological space X is 
the union of all open subsets of A. 

(7.7) Theorem. (Alexandrov-Urysohn) The Baire space N is the un'ique, 
up to homeomeorphism, nonempty Polish zero-dimensional space for which 
all compact subsets have empty interior. 

Proof. Clearly, N has all these properties (recall 4.11 here). 
Now let X be such a space. Fix a compatible complete metric d :::; l. 

We will construct a Lusin scheme (CsLEN<Ci on X such that 

i) C0 = X, Cs # 0 for all s E N<N; 

ii) C., is clopen; 

iii) C s = UiEN Cs'i; 

iv) diam(Cs ) :::; 2-length(s). 

Let f : D --'> X be the associated map. By i) - iv) D = N, f(D) = X, and 
so by ii) and 7.6 iii) f is a homeomorphism. 
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For the construction it is enough to show that for any nonempty open 
set U c;;: X and any f > 0, there is a partition U = UiEN Ui into clopen 
nonempty sets of diameter < f. 

Since a compact set in X has empty interior, it follows that the closure 
of U in X is not totally bounded, thus there is 0 < [' < 0, so that no 
covering of U by finitely many open sets of diameter < f' exists. If we 
write U = UJ EN Vj , where Vj are pairwise disjoint clopen sets of diameter 
< f' (which we can certainly do as X is zero-dimensional), we have that 
infinitely many Vj are nonempty. 0 

7.D Zero-dimensional Spaces as Subspaces of the Baire Space 

(7.8) Theorem. Every zeTO-dimensional separable metrizable space can be 
embedded into both}ll and C. Every zero-dimensional Polish space is home
omorphic to a closed subspace of}ll and a G h subspace of C. 

Proof. The assertions about C follow from those about }II and the fact that 
}II is homeomorphic to a CD subspace of C (see 3.12). 

To prove the results about }II, let X be as in the first statement of the 
theorem and let d S; 1 be a compatible metric for X. Then we can easily 
construct a Lusin scheme (C8 )sEN<r! on X such that 

i) C0 = X; 

ii) Cs is clopen; 

iii) C, = U i C, i : 

iv) diam( Cs ) S; 2-1cngth(s). 

(Some Cs may, however, be empty.) Let f : D -+ X be the associated map. 
By iii) f(D) = X, so by 7.6 iii) f is a homeomorphism of D with X, and 
by 7.6 ii) D is closed if d is complete. 0 

7.E Polish Spaces as Continuous Images of the Baire Space 

(7.9) Theorem. Let X be a Polish space. Then there is a closed set F c;;: }II 
and a continuous bijection f:F -+ X. In particular, if X is rwnempty, there 
is a continuous surjection g:}II -+ X extending f. 

Proof. The last assertion follows from the first and 2.8. 
For the first assertion fix a compatible complete metric d S; 1 on X. 

\Ve will construct a Lusin scheme (FsLEN<F! on X such that 

i) F0 = X: 



ii) F" is an F(j set; 

iii) Fs = Ui Fs'i = Ui Ps'i ; 

iv) diam(Fs) :::; 2-length(s). 
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Then let f : D ----> X be the associated map. By iii) f(D) = X, so by 7.6 
i) f is a continuous bijection of D onto X. It is thus enough to show that 
D is closed. If Xn E D, Xn ----> x, then, as in the proof of 7.6 ii), (f(xn)) is 
Cauchy, so f(xn) ----> Y E X and y E nn Fxln = nn Fxln (by iii) above), so 
xED and f(x) = y. 

To construct (Fs) it is enough to show that for every Fa set F <;;; X and 
every E > 0, we can write F = U iEN Fi , where the Fi are pairwise disjoint 

Fa sets of diameter < E such that Fi <;;; F. For that let F = UiEN C i , 

where C i is closed and C i <;;; CHI. Then F = UiEN(CH1 \Ci ). Now write 

C,+l \Ci = U]EN Er), where E1 are pairwise disjoint Fa sets of diameter 
(i) ~ < E. Then F = Ui,j Ej and E J <;;; CHI \Ci <;;; CHI <;;; F. 0 

7.F Closed Subsets Homeomorphic to the Baire Space 

Theorem 6.2 shows that every uncountable Polish space contains a closed 
subspace homeomorphic to C, and, by 3.12, a Gb subspace homeomorphic 
to N. \Ve cannot replace, of course, Go by closed, since N is not compact. 
However, we have the following important fact (for a more general rer:mlt 
see 2l.19). 

(7.10) Theorem. (Hurewicz) Let X be Polish. Then X contains a closed 
subspace homeomorphic to N iff X is not Ka. 

Proof. If X contains a closed subspace homeomorphic to N, then X cannot 
be Ka since N is not Ka (by 4.11). 

Assume now that X is not K a , and fix a compatible complete metric 
d:::; l. We will find a Lusin scheme (Fs)SEN<' such that 

i) Ff/j = X, Fs of- 0; 
ii) Fa is closed; 
iii) Fs rt Ka; 
iv) for each n and each x E X there is some open nbhd U of x such 

that Fs n U of- 0 for at most one 5 E Nn; 
v) diam(Fs) :::; 2-1ength(s). 

Then let f : D ----> X be the associated map. By i), ii), and v), D = N. 
We check next that f(D) is closed. Let x E f(D). Then. for each n, let 
Un be the open nbhd of x given by iv). We can assume that Un+1 <;;; Un. 
Since Unnf(D) of- 0, Un intersects some Fsn. Similarly, each nbhd U <;;; Un 
intersects some Fsu ' so by the uniqueness of sit, Su = s". Thus x E Fsn 
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and s" C;; S,,+l, so there is y E /v with x E n" F1jI" , i.e., .r E f(D). Finally, 
to see that f is a homeomorphism, it is enough to verify that F.s is open in 
f(D) (by applying 7.6 iii) to As = f(D) n Fs). But iv) immediately implies 
that F., is open in U{Ft : length(t) = length(s)}, thus in f(D) as well. 

We construct Fs by induction on length(s) = n. For n = 0, taking 
F0 = X clearly works. Assume Fs has been defined for sEN" satisfying 
i) - v). We will define I'd, for kEN. Let Hs = {x E F., : \;j nbhd U of 
x (U n F., is not KG')}' Then fl., is closed and is non empty since F., is not 
K". l\Ioreover, Hs canllot be compact for the same reason, since F.s \Hs 
is contained in a K". It follows that we can find a sequence of distinct 
points (xd, X:k E Hs, with no converging subsequence. Then let Uk be an 
open nbhd of Xk of diameter::'; 2- n -,-1 with Uk n Um = 0 if k i= m. Put 
Fs'k = Uk n F.s. This clearly works. 0 

(7.11) Exercise. Show that if X is zero-dimensional, so is K(X). Conclude 
that K(C)\{0} is homeomorphic to C. 

(7.12) Exercise. (Sierpirlski, Frechet) Show that Ql (the space of rationals 
with the relative topology as a subspace of JR) is the unique, up to homeo
morphism, nonempty, countable metrizable, perfect space. Prove that every 
countable metrizable space is homeomorphic to a closed subspace of Ql. 

(7.13) Exercise. Let X C;; JR be Gh and such that X, JR\X are dense in lR. 
Show that X is homeomorphic to N. Prove that the same fact also holds 
when JR is replaced by a zero-dimensional non empty Polish space. Show 
that it fails if JR is replaced by JR 2 . 

(7.14) Exercise. A Souslin scheme on a set X is a family (As)sEN<ff of subsets 
of X. If (X, d) is a metric space, we say again that (As) has vanishing 
diameter if diam( AJ;ln) -> 0 as n -> 00, for all x E N. Again, in this case, 
let D = {x : n" Acln i= O} and for xED, {J(x)} = nn AJ ;I1l' We call 
f : D -> X the associated map. 

i) Show that f is continuous. 
ii) If (X, d) is complete and each As is closed, then D is closed in N. 
iii) If each As is open and As C;; Ui As'; for all .5 E N<N, then f is 

open. 
iv) If X is nonernpty separable, show that there is a Souslin scheme 

(Us) with U0 = X, Us open nonempty, Us'; C;; U" Us = Ui Us';, and 
diam(Us ) ::.; 2-1ellgth(s) if 8 i= 0. Conclude that if X is nonempty Polish, 
there is a continuous and open surjection f : /v -> X. (In R. Engelking 
[1969] it is shown that X can also be obtained as a continuous and closed 
image of N.) 

(7.15) Exercise. Let X be a nonempty Polish space. Then X is perfect iff 
there is a continuous bijection f : N -> X. 
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B.A Meager Sets 
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Let X be a topological space. A set A <;;; X is called nowhere dense if its 
closure A has empty interior, i.e., Int(A) = 0. (This means equivalently 
that X\A is dense.) So A is nowhere dense iff A is nowhere dense. A set 
A <;;; X is meager (or of the first category) if A = UnEN An, where each An 
is nowhere dense. A non-meager set is also called of the second category. 
The complement of a meager set is called comeager (or residual). So a set 
is comeager iff it contains the intersection of a countable family of dense 
open sets. 

For example, the Cantor set is nowhere dense in [0,1]' a compact set 
is nowhere dense in N, and so a K" set is meager in N. A countable set is 
meager in any perfect space, so, for example, IQJ is meager in R Notice also 
that if X is second countable with open basis {Un}, then F = Un (Un \ Un) 
is meager Fa and Y = X\F is zero-dimensional. 

An ideal on a set X is a collection of subsets of X containing 0 and 
closed under subsets and finite unions. If it is also closed under countable 
unions it is called a a-ideal. The nowhere dense sets in a topological space 
form an ideal, and the meager sets form a a-ideal. Being a a-ideal is a 
characteristic property of many notions of "smallness" of sets, such as being 
countable, having measure 0, being meager, etc. 

B.B Baire Spaces 

(8.1) Proposition. Let X be a topological space. The following statements 
are equivalent: 

i) Every nonempty open set in X is non-meager. 
ii) Every com eager set in X is dense. 
iii) The intersection of countably many dense open sets in X is dense. 

The proof is straightforward. 

(8.2) Definition. A topological space is called a Baire space if it satisfies the 
equivalent conditions of 8.1. 

(8.3) Proposition. If X is a Baire space and U <;;; X is open, U is a Baire 
space. 

Proof. Let (Un) be a sequence of dense sets open in U and thus open in X. 
Then Un U (X\U) is dense open in X, so nn(Un U (X\U)) = (nn Un) U 
(X\U) is dense in X, so nn Un is dense in U. D 

(8.4) Theorem. (The Baire Category Theorem) Every completely metriz
able space is Baire. Every locally compact Hausdorff space is Baire. 
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Proof. Let (X, d) be a complete metric space. Let (Un) be dense open in X 
and let U ~ X be a nonempty open set. \Ve will show that nn Un n U 1= 0. 
Since Un Uo 1= 0, let Eo be an open ball of radius < 1/2 such that Eo ~ 
Un Uo. Since Eo n U1 1= 0, let EJ be an open ball of radim; < 1/3 such 
that El ~ Eo n Ul , etc. Let Xi. be the center of Hi.. Then (.Ii) is a Cauchy 
sequence, so Xi -+ :£ E nn En = n" En ~ (nn Un) n U. 

If X is Hausdorff locally compact, then for every point x and opel! 
nbhd U of x there is an open nbhd V of X with 17 compact and 17 ~ U. We 
can now use the same argument as above, but with Hi open such that Hi 
is compact, so that again nn En 1= 0. 0 

(8.5) Definition. Let X be a topological space and P ~ x. rf P is comeager, 
we say that P holds generically or that the generic element of X is in P. 
(Sometimes the word typical is used instead of generic.) 

In a nonempty Baire space X, if P ~ X holds generically, then, in 
particular, P 1= 0. This leads to a well-known method of existence proofs in 
mathematics: In order to show that a given set P ~ X is nonempty, where 
X is a nonempty Baire space, it is enough to show that P holds generically. 
Also in such a space, it cannot be that both P and X\P hold generically. 

(8.6) Exercise. Show that the generic element of C([O, 1]) is nowhere differ
entiable. (So there exist nowhere differentiable functions.) 

(8.7) Exercise. Let X be a perfect Polish space. Let Q ~ X be countable 
dense. Show that Q is FeT but not Ct. 

(8.8) Exercise. i) Let X be a Polish space. Recall from 4.31 that 

Kp(X) = {K E K(X) : K is perfect} 

is C b in K (X). If X is also perfect, K p (X) is dense. In particular, the 
generic element of K(X) is perfect. 

ii) Let X, Y be Polish and f : X --) Y continllous. Show that if f(X) 
is uncountable, there is a homeomorphic copy K ~ X of C such that flK 
is injective. In particular, there is a homeomorphic copy of C contained in 
f(X). 

(8.9) Exercise. Show that if C ~ 2N is comeager, then there is a partition 
N = Ao U A l , AD n A1 = 0 and sets Ei ~ Ai, i E {O, I}, such that for 
A ~ N, if either An Ao = Eo or An A1 = E l , then A E G. (Here we 
identify subsets of N with their characteristic functions so we view them as 
members of 2N.) 
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8. C Choquet Games and Spaces 

(8.10) Definition. Let X be a nonempty topological space. The Choquet 
game G x of X is defined as follows: Players I and II take tums in playing 
nonempty open subsets of X 

II \Ill VI 

so that Uo d \Ill d UI d VI d .. '. We say that II wins this run of the game 
if nll Vn ( = nn Un) #- 0. (Thus I wins if nn Un ( = nn Vn) = 0.) 

A stmtegy for I in this game is a "rule" that tells him how to play, for 
each n, his nth move Un, given II's previous moves \Ill"" ,V,,-I. Formally, 
this is defined as follows: I,et T be the tnoe of legal positions in the Choquet 
game Gx , i.e., T consists of all finite seqv.ences (H'o, ... ,TYn ) , where ~Yi 
aTe nonempty open subsets of X and HTo d H'I d ... d ~Vn' (Thus T is a 
pruned tree on {W c:;: X: W is open nonempty}.) A strategy for I in G x is 
a subtree (J" c:;: T such that 

i) (J" is nonempty; 

'ii) if (Uo,vo, ... ,Un) E (J", then for all open nonempty V" c:;: Un, (Ua, 
Vo.··· ,Un,v,J E (J"; 

iii) if (Ua.\Ill .... ,Un-I,V,,-d E (J", then fOT a 7mique Un, (Uo,\Ilh"" 
Un-I.V,,-l,Un ) E (J". 

Intuitively, the stmtegy (J" works as follows: I 8taTts playing Uo where 
(Uo) E (J" (and this is unique by iii)); II then plays any nonempty open Vo c:;: 
Uo: by ii) (Uo,vo) E (J". Then I responds by playing the unique nonempty 
open Ul c:;: Va such that (Uo,vo,U j ) E (J", etc. 

A position (Wo, ... ,VV,J E T is compatible with (J" ij(Wo .... ,Wn ) E (J". 

A r'un of the game (UO,vO,ul,vl, ... ) is compatible with (J" if (Uo,vo, ... ) 
E [(J"j. The stmtegy (J" is a winning strategy for I if he wins every compatible 
with (J" run (UO,\Ill •... ) (i.e., (Uo,vo .... ) E [(J"j =} n" Un ( = n" V,,) = 0). 

The cOTTesponding notions of stmtegy and winn'ing stmtegy for II are 
defined mutatis mutandis. 

(8.11) Theorem. (Oxtoby) A nonernpty topological space X is a BaiTe space 
iff player- I has no winning stmtegy in the Choquet game G x. 

Proof. <¢=: Assume X is not a Baire space, and let Uo be a nonempty open set 
in X and (G n ) be a sequence of dense open sets with nn GnnUo = 0. Player 
I starts by playing this Ua. If II then plays \Ill c:;: Un, we have Vo n Go #- 0, 
so I can play UI = \Ill n Go c:;: \Ill, II plays next Vj c:;: UI and I follows by 
U2 = VI n G I c:;: VI, etc. Clearly, nn Un c:;: nn G n n Uo = 0, so we have 
described a winning strategy for 1. 
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=?: Suppose I now has a \vinning strategy (T. Let Uo be I's first move ac
cording to (T. \Ve will show that Uo is not Baire. For this we will construct a 
nonempty pruned subtree S C;;; (T such that for any p = (Uo, Va .. .. , Un) E S 
the set Up = {Un +1 : (Uo, V() .... , Un, v", U,,+l) E S} consists of pairwise 
disjoint (open) sets and UUp is dense in Un. If we then let Wn = U{Un : 
(Uo, V() .... , Un) E S}, it follows that ~V71 is open and dense in Uo for each 
n. \Ve claim that nn IVn = 0. Otherwise, if :r E nn HTn., there is unique 
(Un, %, U1 , VI,"') E [S] with J.' E Un for each n, so nil. Un ic 0, contradict
ing the fact that (Un, V(), ... ) E [(T] and (T is a winning strategy for I. 

To construct S we determine inductively which sequences from (T of 
length n we put in S. First 0 E S. If (Uo, Vo, .... Un - l . v,,-J) E S, then 
(Uo, Va,···, Un-I, V,,-I, Un) E S for the unique Un with (Uo, Vo.···, Un-I, 
Vn - I, Un) E (T. If now p = (Un, %, ... , Un) E S, notice that for allY 
nonempty open Vn C;;; Un if v,~ = Un+1 is what (T requires I to play next, 
we obviously have that U,,+1 is a nonempty open subset of Vn. Let, by 
an application of Zorn's Lemma (or by a transfinite exhaustion argument), 
Vp be a maximal collection of nonempty open subsets v" C;;; Un snch that 
{v,~ : V" E VI'} is pairwise disjoint. Put in S all (Un, V(). ... ,U", v", v,n with 
Vn E VI" Then Up = {Un+1 : (V(), ... , Un, v,,, Un+l ) E S} = {V,~ : v" E Vp} 
is a family of pairwise disjoint sets and UUp is dense in Un by the maxi
mality of Vp , since if 11" C;;; Un is nonernpty open and disjoint from UU1" 

then Vp U {v,,} violates the maximality of VI" 0 

(8.12) Definition. A nonempty topological space is a Choquet space if playeT 
II has a winning strategy in G x . 

Since it is not possible for both players to have a winning strategy in 
G x, it follows that every Choquet space is Baire. (The converse fails even 
for nonempty separable rnetrizable spaces, using the Axiom of Choice.) 

(8.13) Exercise. Show that products of Choquet spaces are Choquet. Also, 
open nonempty sllbspaces of Choquet spaces are Choquet. (It is not true 
that products of Baire spaces are Baire. See, however, 8.44.) 

B.D Strong Choquet Games and Spaces 

(8.14) Definition. Given a nonempty topological space X, the strong Cho
quet game Gx is defined as follows: 

I xo,Uo :CI,UI 

II Vn VI 

PlayeTs I and II take tUTnS in playing nonernpty open subsets of X as in 
the Choquet game, but additionally I is requiTed to playa point Xn E Un 
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and II mnst then play Vn ~ Un with Xn E Vn . So we must have Uo ;;;> Vo ;;;> 
U I ;;;> VI ;;;> .... Xn E Un. Xn E Vr,. 

Player II wins this run of the game if nn Vr, ( = nn Un) f. 0. (Thns I 
wins if nn Un ( = nn Vr,) = 0.) 

A nonempty space X 'is called a strong Choquet space if player II has 
a winning strategy in Gx. (The notion of strategy is defined as before.) 

(8.15) Exercise. Any strong Choquet space is Choquet. (The converse turns 
out to be false.) 

(8.16) Exercise. i) Show that all nonempty completely metrizable or locally 
compact Hausdorff spaces are strong Choquet. 

ii) Show that products of strong Choquet spaces are strong Choquet. 

iii) Show that nonempty Gf, subspaces of strong Choquet spaces are 
strong Choquet. 

iv) If X is strong Choquet and f : X -> Y is a surjective continuous 
open map, then Y is strong Choquet. 

8.E A Characterization of Polish Spaces 

(8.17) Theorem. Let X be a nonempty separable metrizable space and X a 
Polish space in which X is dense. Then 

i) (Oxtoby) X is Choquet -¢=? X is comeager 'in X; 
ii) (Choquet) Xis strong Choquet -¢=? X is Go in X -¢=? X is Polish. 

This has the following immediate applications. 

(8.18) Theorem. (Choquet) A nonempty, second conntable topological space 
is Polish iff it is T I • regular, and strong Choquet. 

Proof. By 8.17 and 1.1. D 

(8.19) Theorem. (Sierpinski) Let X be Polish and Y separable metrizable. 
fr there is a continuons open surjection of X onto Y, then Y is Polish. 

Proof. Exercise. D 

Remark. ValIlsteln has shown that 8.19 remains true if "open" is replaced 
by "closed" (see, e.g., R. Engelking [1977]' 4.5.13). 

Proof. (of 8.17) i) ¢=: This is easy, since X contains a dense Gf, set in X. 
=?: Let a be a winning strategy for II in G x. Fix also a compati

ble metric d for X. As in the proof of 8.11, we can build a nonempty 
pruned tree S consisting of sequences of the form (Uo, %, U I , i\, ... , Un) 
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or (Uo, VA, UI, VI"'" Un, Vn ), where Ui are nonempty open in X and 
"Vi are nonempty open in X, Vo :2 VI :2 "', and if Vi = "Vi n X 
(so that Vi are nonempty open in X), then (Uo, Va, UI, VI"'" Un) or 
(Uo, Va, UI, VI"'" Un, V,,) are compatible with 0", and moreover S has the 
following property: If p = (Uo, Va, ... ,Un-I, Vn-d E S (allowing the empty 
sequence too), and Vp = {Vn : (Uo, Va, ... , Vn- I , Un, 11,,) E S}, then Vp is 
a family of pairwise disjoint open sets with U Vp dense in V,,_I (in X if 
p = 0) and such that diam(V;,) < 2-n for all V;, E Vp. 

Let Wn = U{v" : (Uo, Vc)'", ,Un, V;,) E S}. Then Wn is dense open 
in X. We claim that nn TV" ~ X. Indeed, if x E nn TV", there is unique 
(Uo, VO, UI, Vi .... ) E [5] such that x E nn Vn. Since diam(V;,) < 2-", we 

actually have then that {x} = nn Vn- But, as (Uo, vel, ... ) E [0"], we have 

(nn Vn ) n X = nn Vn -=J 0, so x E X. 

ii) ¢=: By 8.16. 

=}: We need the following general lemma. 

(8.20) Lemma. Let (Y, d) be a separable metric space. Let U be a family of 
nonempty open sets in Y. Then U has a point-finite refinement V! i. e., V is 
a family of nonempty open sets with U V = U U, \IV E V3U E U(V ~ U), 
and \ly E Y ({ V E V : y E V} is finite) . Moreover, given E > 0 we can also 
assume that diam(V) < E, \IV E V. 

Proof. Since Y is second countable, let (Un) be a sequence of open sets such 
that Un Un = UU and \ln3U E U(Un ~ U). Furthermore, given E > 0 we 

can always assume that diam(Un ) < E. Next let Un = UPEN U,~P) with Ur~p) 

open, Ur\p) ~ Ur\P+l) , and U~p) ~ Un. Put Vrn = Urn \ Un<m Ur\m). First 
we claim that Un Vn = Un Un: Indeed, if x E Un Un and m is least with 

x E Urn, then x E Vm · Clearly, v'n ~ Urn. Finally, if x E Un, then x E U~p) 
for some p, so x tt Vrn if m > p, n. Let V = {Vn : Vn -=J 0}. 0 

Now fix a compatible metric d for X and a winning strategy 0" for II in 
Gx. Using the preceding lemma we can now construct (as in the proof of 

8.11 again) a tree S of sequences of the form (xo, (veh Va), Xl, (VI, VI)"'" 
Xn) or (XO, (Vo, Va), XI, (VI, VI)"'" Xn, (Vn, V,,)), where Vi is open in X, V; 
is open in X, Xi E V;-I n X (with V-I = X), Xi E Vi, "Vi n X ~ 
Vi, Va :2 VI :2 "', and ((xo, X), V(), (XI, VO n X), VI,"') is compatible 
with 0", such that S additionally has the following property: For each p = 

(xu, (Vo, Va), XI, (VI, Vd, ... ,Xn-I, (V,,-I, V;,-d) E S (including the empty 
sequence), if Vp = {V;, : (Xo, (vel, Vc}), XI, ... , (Vn-l, V;'-I),Xn , (Vn, Vn )) E 

S}, then X n Vn - I ~ U Vp , diam(Vn ) < 2-n for all V;, E Vp , and for every 
i; E X there are at most finitely many (xn' (Vn' Vn)) with (xo, (Vo, Vo), ... , 
(Vn-I, V;,-d,xn , (V,,, Vn )) E 5 and i; E V7]' 

Let Wn = U{Vn: (xo,(Vo,Vo), ... ,xn,(V",V;,)) E 5}. Then Wn is 
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open and X ~ Wn (as we can see by an easy induction on n). It remains to 
show that nn Wn ~ X: Let x E nn Wn. Consider the subtree Sx of S con
sisting of all initial segments of the sequences (xo, (Vo, Vo), ... , X n, (Vn' Vn» 
E S for which x E Vn . Since x E nn Wn , Sx is infinite. By the pre
ceding conditions on S, it is also finite splitting. So, by Konig's Lemma 
4.12, [Sx] =1= 0. Say (xo, (Vo, Vo), ... ) E [Sx]. Then «xo,X), Vo, (Xb Vo n 
X), Vb (X2' V1nX), ... ) is a run of Gx compatible with a, so nn VnnX =1= 0, 
thus, since diam(Vn ) < 2-n , X E X. 0 

8.F Sets with the Baire Property 

Let I be a a-ideal on a set X. If A, B ~ X we say that A, Bare 
equal modulo I, in symbols A =7: B, if the symmetric difference Ah.B = 
(A\B) U (B\A) E I. This is clearly an equivalence relation that respects 
complementation and countable intersections and unions. 

In the particular case where I is the a-ideal of meager sets of a topo
logical space, we write 

A=* B 

if A, B are equal modulo meager sets. 

(8.21) Definition. Let X be a topological space. A set A ~ X has the Baire 
property (BP) if A =* U for some open set U ~ x. 

Recall that a u-algebra on a set X is a collection of subsets of X 
containing 0 and closed under complements and countable unions (and 
thus under countable intersections). 

(8.22) Proposition. Let X be a topological space. The class of sets having 
the BP is a a-algebra on X. It is the smallest a-algebra containing all open 
sets and all meager sets. 

Proof. Notice that if U is open, U\U is closed nowhere dense and so is 
meager. Similarly, if F is closed, F\Int(F) is closed nowhere dense. Thus 
U =* U and F =* Int(F). 

Now if A has the BP, so that A =* U for some open U, then X\A =* 
X\U =* Int(X\U), so X\A has the BP. Finally, if each An has the BP, say 
An =* Un, with Un open, then Un An =* Un Un, so Un An has the BP. 

The last assertion follows from the fact that if A =* U, where U is 
open, then with M = Ah.U, M is meager, and A = M h.U. 0 

In particular, all open, closed, F'Il and G li sets have the BP. 

(8.23) Proposition. Let X be a topological space and A ex. Then the 
following statements are equivalent: 
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i) A has the BP; 

ii) A = C U AI, where C is C b and AI is meager; 

iii) A = F\M where F is Fa and AI is meager. 

Proof. By 8.22, ii) =} i) and iii) =} i). For i) =} ii), let U be open and F a 
meager Fa set with A6U <;;; F. Then C = U\F is C b and C <;;; A. Also, 
M = A\C <;;; F is meager. To prove i) =} iii), use ii) for X\A. 0 

(8.24) Example. There is a subset A <;;; lR not having the BP. 

Proof. Using the Axiom of Choice, one can show that there exists a Bern
stein set A <;;; R i.e., a set such that neither A nor lR\A contains a nonempty 
perfect set. To see this, let (P,dt:<2No be a transfinite enumeration of the 
nonempty perfect subsets of lR and find by transfinite recursion on ~ < 2Nu 

distinct reals at:, bt: with at:, bE, E Pt:. Then let A = {at: : ~ < 2No}. If A 
has the BP, since either A or lR\A is not meager, one of them contains a 
non-meager C b set (by 8.23), which must therefore be uncountable and so, 
being Polish, must contain a homeomorphic copy of C, a contradiction. 0 

8. G Localization 

We localize the previous notions to open sets in a topological space. 

(8.25) Definition. Let X be a topological space and U <;;; X an open set. 
We say that A is meager in U if An U is meager in X. (Note that this is 
equivalent to saying that A n U is meager in U with the relative topology.) 
Then A is comeager in U if U\A is meager, which means that there is a 
sequence of dense open in U sets whose intersection is contained in A. If 
A is comeager in U, we say that A holds generically in U or that U forces 
A, in symbols 

Ulf-A. 

Thus A is comeager iff Xlf-A. 

Note that 
U <;;; V, A <;;; B =} (Vlf-A =} Ulf-B). 

We now have the following important fact. 

(8.26) Proposition. Let X be a topological space and suppose that A <;;; X 
has the BP. Then either A is meager or there is a nonempty open set 
U <;;; X on which A is comeager (i. e., Xlf-(X\A) or there is nonempty open 
U <;;; X, with Ulf-A). If X is a Baire space, exactly one of these alternatives 
holds. 
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Proof. Let AL:"U = Al, with U open and 11:1 meager. If A is not meager, 
then U of 0 and A is comeager in U since U\A C;;; AI. 0 

A weak basis for a topological space X is a collection of nonempty 
open sets such that every nonempty open set contains one of them. It is 
clear that in the previous result U can be chosen in any given weak basis. 

We can now derive the following formulas concerning the forcing rela
tion Ulf-A. For convenience we put for A C;;; X, 

cv A = X\A. 

(8.27) Proposition. Let X be a topological space. 

i) If An C;;; X, then for any open U C;;; X, 

Ulf-n An ¢? Ifn(UIf- An) . 
n 

ii) If X is a Baire space, A has the BP in X and U varies below over 
nonempty open sets in X, and V over a weak basis, then 

Ulf- '" A ¢? If V C;;; U (VJlL A) 

(where VJlL A iff it is not the case that Vlf- A). 

Proof. Part i) is straightforward. For ii), note that if U C;;; X is open, then 
An U has the BP in U, so this follows by applying 8.26 to U. 0 

(8.28) Exercise. If X is a Baire space, the sets An C;;; X have the BP, and 
U below varies over nonempty open sets in X, and V, W over a weak basis, 
then 

Ulf- U An ¢? If V C;;; U3W C;;; V3n(TVIf- An) . 
n 

Next we compute a canonical open set equal modulo meager sets to a 
givcn set with the BP. 

(8.29) Theorem. Let X be a topological space and A C;;; X. Put 

U(A) = U {U open: Ulf-A}. 

Then U(A)\A is meager, and if A has the BP, A\U(A), and thus AL:"U(A), 
is meager, so A =* U(A). 

Pm of. Let (U;)iEI be a maximal pairwise disjoint subfamily of {U open: 
U If- A}. Let H/ = UiEI U;, so that W is dense in U(A), i.e., U(A) C;;; W. 
Then U (A) \ W C;;; n"\ W is meager. Since A is comeager in each Ui and 
thcse sets are pairwise disjoint, it follows that A is comeager in TV. So 
U(A)\A C;;; (U(A)\W) U (W\A) is meager. 



50 I. Polh;h Spaces 

To prove the second assertion, let U be open with A =* U. Then U\A 
is meager, so Ulf-A, i.e., U ~ U(A). Thus, A\U(A) ~ A\U is meager too. 

o 

We can express this also by the following formula. Let X be a topo
logical space, and suppose A ~ X has the BP. Then for the generic x EX, 

x E A {o}:J open nbhd U of x(UIf-A). 

(8.30) Exercise. A set U in a topological space X is called regular open if 
U = Int(U). (Dually, a set F is regular closed if '" F is regular open or 
equivalently F = Int(F).) Let A ~ X. Show that U(A) is regular open. 
Moreover, if X is a Baire space and A has the BP, then U(A) is the unique 
regular open set U with A =* U. Thus U(A) =* A and A =* B {o} U(A) = 
U(B), i.e., U(A) is a selector for the equivalence relation =*, on the sets 
with the BP. 

Let BP(X) denote the O'-algebra of subsets of X with the BP and let 
MGR(X) denote the O'-ideal of meager sets in X. Let [A] = {B : B =* A} 
be the =*-equivalence class of A, and BP(X)/MGR(X) be the quotient 
space {[A] : A E BP(X)}. If we let RO(X) denote the class of regular 
open subsets of X, the preceding shows that we can canonically identify 
BP(X)/MGR(X) with RO(X), for Baire spaces X. 

(8.31) Exercise. Assume X is a second countable Baire space. Show that the 
O'-ideal MGR(X) has the cOlmtable chain condition in BP(X), i.e., there is 
no uncountable subset A ~ BP(X) such that A (j. MGR(X) for any A E A, 
and An B E MGR(X) for any two distinct A, B E A. 

(8.32) Exercise. Let X be a topological space. Equip the quotient space 
BP(X)/MGR(X) with the partial ordering 

[A] ::; [B] {o} A\B E MGR(X). 

Show that this is a Boolean u-algebra, i.e., a Boolean algebra in which 
every countable subset has a least upper bound. (For the basic theory of 
Boolean algebras, see P. R. Halmos [1963J.) If, moreover, X is a Baire space, 
show that it is a complete Boolean algebra, i.e., one in which every subset 
has a least upper bound. This is called the category algebra of X, denoted 
as CAT(X). Show that it is uniquely determined up to isomorphism if X 
is nonempty perfect Polish. 
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8.H The Banach-Mazur Game 

We will characterize meagerness in terms of games. 
Let X be a nonempty topological space and let A c;;: X. The Banach

Mazur (or **-game) of A, denoted as G**(A) (or as G**(A, X) if there is a 
danger of confusion) is defined as follows: 

Players I and II choose alternatively non empty open sets with Uo :::J 

Vo :::J U1 :::J Vj :::J "', 

I Uo U1 

II Vo VI 

Player II wins this run of the game if nn Vn (= nn Un) c;;: A. 

(8.33) Theorem. (Banach-rVlazur, Oxtoby) Let X be a nonempty topological 
space. Then 

i) A is comeageT <¢=? II has a winning strategy in G**(A). 
ii) If X is Choquet and there is a metric d on X whose open balls aTe 

open in X, then A is meageT in a nonempty open set <¢=? I has a winning 
.strategy in G**(A). 

Pmoj. i) =}: Let (~'Fn) be a sequence of dense open sets with nTl ~Vn c;;: A. 
Let II play Vn = Un n ~Vn- ¢: Exactly as in the proof of 8.11. 

ii) =}: If A is meager in the nonempty open set Uo, let (~Vn) be dense 
open in Uo with nn ~Vn c;;: cv A. Since Uo is Choquet, I has a winning 
strategy in the game 

I U1 U2 

II V() VI 

Uo :::J Vo :::J U1 :::J Ui , Vi open nonempty; I wins iff nn Un i- 0. (Note 
that II starts first here.) Call such a strategy (J". \Ve describe now a strategy 
for I in G**(A): He starts by playing Uo. Then II plays Vi) c;;: Un. Let V~ = 

Hlo n Vo. Player I responds by playing the unique U1 so that (V~, U1 ) E (J". 

Next II plays VI c;;: U1 . Let V{ = VI n Tt"I' Player I responds by playing 
the unique U2 such that (VJ,U1 ,V{,U2 ) E (J", etc. Then nnUn i- 0 and 
nTi Un = nn V:, c;;: nn Wn c;;: cv A, so nn Un g; A, i.e., I wins. 

¢: Let (J" be a winning strategy for I in G**(A). Denote by Uo the first 
move of I according to (J". \Ve claim that we can find a new winning strategy 
(J"' for 1 such that (J"' also starts by Uo and if in the nth move it produces 
Un, then diam(Un ) < 2- n , for all n 2" 1 (diameter here is in the metric d). 
We describe (J"' informally: I starts by playing Uo. If II next plays V() c;;: Uo, 
choose V~ c;;: Va of diameter < 2- 1 and respond by (J", pretending that II 
has played V~, to produce U1 c;;: \1((. Thus U1 c;;: Vo and diam(UJ) < 2- 1 . 

Next II plays VI c;;: U1 . Let V{ c;;: VI have diameter < 2-2 and respond by 
(J", pretending that II has played V~, V{ in his first two moves, to produce 
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U2 C;;; V{. Thus U2 C;;; VI and diam(U2 ) < 2~2, etc. Using (J' instead of (J one 
now guarantees that nn Un is a singleton and thus is contained in '"'-' A, i.e., 
nn Un C;;; '"'-'A. As in i) (and 8.11), it follows now that A is meager in Uo. 0 

(8.34) Definition. A game i8 determined if at lea8t one of the two player8 
ha8 a winning strategy. 

(8.35) Exercise. Assume X is as in 8.33 ii). Let A C;;; X. Show that A has 
the BP iff for all open U the game G** ('"'-' A U U) is determined. 

(8.36) Exercise. Let X be a nonempty topological space. Consider the vari
ant of the Banach-Mazur game G** (A) in which players play open sets in 
some fixed weak basis instead of arbitrary nonempty open sets. Show that 
this variant is equivalent to G**(A). (Two games G, G' are equivalent if I 
(resp. II) has a winning strategy in G iff I (resp. II) has a winning strategy 
in G'.) 

Use this to show that for X = AN, the game G**(B) for B C;;; X is 
equivalent to the following game: 

I So 82 

II 81 83 

8; E A<N, 8; '" 0; II wins iff 80'81' ... E B. 

8.I Baire Measurable Functions 

(8.37) Definition. Let X,Y be topological space8. A function f:X --+ Y i8 
Baire measurable if the inver8e image of any open 8et in Y ha8 the BP in 
X. 

If Y is second countable, it is clearly enough to consider only the inverse 
images of a countable basis of Y. 

For example, every continuous function is Baire measurable. If Y is 
metrizable, any function that is a pointwise limit of a sequence of continuous 
functions is Baire measurable. 

(8.38) Theorem. Let X,Y be topological space8 and f:X --+ Y be Baire 
mea8urable. IfY is 8econd countable, there i8 a set G C;;; X that is a countable 
intersection of den8e open 8et8 such that fiG is continuous. In particular, 
if X i8 Baire, f is continuou8 on a dense G 8 set. 

Proof. Let {Un} be a basis for Y. Then f~I(Un) has the BP in X, so let 
v" be open in X and let Fn be a countable union of closed nowhere dense 
sets with f~1(Un)6Vn C;;; Fn. Then G n = X\Fn is a countable intersection 
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of dense open sets and so is G = nn Gn · Since f-l(Un ) n G = v;., n G, fiG 
is continuous. 0 

(8.39) Exercise. Let X be a nonempty perfect Polish space, Y a second 
countable space, and f : X ---+ Y be injective and Baire measurable. Then 
there is a homeomorphic copy of C contained in f(X). 

8. J Category Quantifiers 

It is sometimes convenient to use the following logical notation: When A <;;; 
X we let 

A(X)BXEA. 

We view A here as a property, with A(x) meaning that x has property A. 

(8.40) Notation. Let X be a topological space and A <;;; X. Let 

\f*xA(x) B A is corneager, 

::I*xA(x) B A is non-meager. 

Similarly for U <;;; X open, let 

\f* x E U A( x) B A is comeager in U, 

::I*x E U A(x) B A is non-meager in U. 

Thus (denoting negation by,) 

,\f*x E U A(x) B ::I*x E U ~ A(x). 

We read\f*x as "for comeager many" x and ::1* x as "for non-meager many" 
x. 

With this notation, 8.27 (under the appropriate hypotheses) reads: 

i) \f*x\fnAn(x) B \fn\f*xAn(x), 

ii) \f*x E U A(x) B \fV <;;; U::I*x E V A(x) 

(we switched A and ~ A here). 

8.K The Kuratowski-Ulam Theorem 

We now consider sets in product spaces. 

(8.41) Theorem. (Kuratowski-Ulam) Let X ,Y be second countable topolog
ical spaces. Let A <;;; X x Y have the BP. Then 

i) \f*x(Ax = {y:A(x,y)} has the BP in Y). Similarly, \f*y(AY = 

{x:A(x,y)} has the BP in X). 
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ii) A is meager B V*x(Ax is meager) B V*y(AY is meager). 

iii) A is comeager B V*x(Ax is comeager) B V*y(AY is comeager) 
(i.e., V*(x,y)A(x,y) B V*xV*yA(x,y) B V*yV*xA(x,y)). 

Proof. First we need the following lemma. 

(8.42) Lemma. Let X be any topological space and Y a second countable 
space. If F C;;; X x Y is nowhere dense, then V* x(Fx is nowhere dense). 

Proof. We can assume that Y of- 0 and F is closed. Let U = (X x Y)\F. It 
is enough to show that V*x(U,,; is dense). Let {Vr,} be a basis for Y, Vr, of- 0. 
Then Un = proh(U n (X x Vn)) is dense open in X, since if G C;;; X is 
nonempty open, then Un (G x Vn ) of- 0. If x E nn Un, then U:l; n Vn of- 0 for 
all n, i.e., Ux is dense. 0 

It follows immediately that if NI C;;; X x Y is meager, then V*x(Mx is 
meager). 

Let A C;;; X x Y now have the BP, so A = U 6Al, with U open, AI 
meager. Then Ax = Ux 6NIx , so V*x(Ax has the BP). Thus we have proved 
i) and =?) of ii). (Clearly, ii) B iii).) 

(8.43) Lemma. Let X, Y be second countable. If A C;;; X, B C;;; Y, then A x B 
is meager iff at least one of A, B is meager. 

Proof. If Ax B is meager, but A is not meager, there is x E A with 
(A x B) x = B meager (by (=?) of ii)). Conversely, if A is meager and 
A = Un Fn , with Fn nowhere dense, then A x B = Un(Fn x B), so it is 
enough to show that Fn x B is nowhere dense. This is clear since if G is 
dense open in X, G x Y is dense open in X x Y. 0 

Finally, let A C;;; X x Y have the BP and be such that V*x(Ax is 
meager). If A = U 6AI, U open, M meager, and A is not meager, U is 
not meager, so there are open G C;;; X, H C;;; Y with G x H C;;; U and 
G x H not meager (since X, Yare second countable). So by 8.43, G, H 
are not meager. So there is x E G with Ax meager and NIx meager. Since 
H\1Ilx C;;; Ux \1I1x C;;; Ux6NIx = Ax, we have H C;;; Ax U M x , so H is meager, 
which is a contradiction. 0 

Theorem 8.41 fails if A does not have the BP. For example, using the 
Axiom of Choice, there exists a non-meager A C;;; [0, IF so that no three 
points of A are on a straight line. 

(8.44) Exercise. Show that if X, Yare second countable Baire spaces, so is 
XxY. 

(8.45) Exercise. Let X, Y be topological spaces and J : X ----> Y be open 
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and continuous. Then the inverse image of a dense set is dense and of 
a comeager set is comeager. In particular, this applies to the projection 
function projx : X x Y --+ X. 

8.L Some Applications 

(8.46) Theorem. (First topological 0-1 law) Let X be a Baire space and G 
a group of homeomorphisms of X with the following homogeneity property: 
ff u, V are nonempty open sets in X, there is g E G such that g( U) n V#-0. 
Let A <;;; X be G-invariant (i.e., g(A) = A for g E G). If A has the BP, 
then A is either meager or comeager. 

Proof. If this fails, there are nonempty open sets U, V with Ulf- A, Vlf- rv A. 
Let g E G be such that W = g(U)nV #- 0. Since g(A) = A and g(U)If-g(A), 
we have Wlf-A and Wlf- rvA, so W is meager, which is a contradiction. 0 

Given a sequence (Xn) of sets, a subset A <;;; TIn Xn is called a tail set 
if (Xn) E A and if Yn = Xn for all but finitely many n implies that (Yn) E A. 

(8.47) Theorem. (Second topological 0-1 law) Let (Xn) be a sequence of 
second countable Baire spaces. If A <;;; TIn Xn has the BP and is a tail set, 
then A is either meager or comeager. 

Proof. Assume A is not meager. Then for some nand nonempty open sets 
Ui <;;; Xi, 0 :s: i :s: n - 1, we have that A is comeager on TI:~)l Ui x TI:n Xi. 
Let Y = TIZ:Ol Xi, Z = TI:n Xi, so that X = Y x Z under the obvious 
identification of x = (Xi) with (y, z), where y = (Xi)i<n, z = (xik:~n. 
To show that A is comeager in X it is enough, by the Kuratowski-Ulam 
Theorem, to show that V*yV* zA(y, z). Fix Xi E Ui (0 :s: i < n) with 
V*ZA«Xi)i<n,Z), which is possible, since A is comeager in TI~:; Ui x Z, so 
V*y E TI~:Ol Ui V*zA(y,z), and TI~:r)l Ui is Baire, by 8.44. Since A is a tail 
set, this shows that VyV*zA(y,z), and thus we are done. 0 

(8.48) Theorem. Let X be nonempty, perfect Polish. Let < be a wellordering 
of X. Then < <;;; X 2 does not have the BP. 

Proof. Assume < has the BP. If < is meager, then V*x( <x and <x are 
meager), so for some x, <x and <x are meager and X =<x U <x U{x} is 
meager, a contradiction. 

So < is not meager. Then for some x, <x is not meager and has the 
BP. Let Xo be the <- least such. Put Y = <Xo and <'=< IY (= < ny2). 
Since <'=< n (X x Y) n (Y x X) and X x Y, Y x X have the BP (by 
8.43), clearly <' has the BP. By the minimality of Xo, V*x« <'Y is meager). 
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Thus <' is meager and Ii* x( <~ is meager). So there is x E Y with <~, «'f 
meager. Then Y =<~ U «')" u {x} is meager, a contradiction. 0 

(8.49) Exercise. Let X be a Polish space. Let (I, <) be a wellordered set 
and (A;)'iEl a family of meager sets in X. Let A = UiEl Ai. Consider the 
relation x 'S* y defined by: 

x, yEA &: (the < - least i with.x E Ai) 'S (the < - least j with y E Aj). 

If 'S* has the BP (in X 2 ), then A is meager. (Note that this is a strength
ening of 8.48.) 

(8.50) Exercise. For any set X, Pow(X) denotes its power set: 

Pow(X) = {A : A c: X}. 

An ultrafilter on X is a set U c: Pow(X) such that U I- 0 and i) A E 

U. B -;2 A =* B E U; ii) A, B E U =* A n B E U; iii) A rJ. U {c? ~ A E U. 
An ultrafilter is principal if for some :r E X, {x} E U or, equivalently, 
U = {A : x E A} for some x EX. 

Let U now be an ultrafilter on N. View U as a subset of 21'1. If U is 
non-principaL then show that U does not have the BP in 21'1. 

8.M Separate and Joint Continuity 

(8.51) Theorem. Let X,Y,Z be metrizable spaces and f:X x Y ---+ Z. As
sume f is separately continuous (i.e., for x E X,y E Y, fr:Y ---+ Z given by 
frey) = f(x,y) and fY:X -t Z given by fY(x) = f(x,y) are both continu
ous). Then there is a com eager set G c: X x Y such that for all y E Y, GY 
is comeager in X and f is continuous at every point of G. 

Proof. Let dy , dz be compatible metrics for Y, Z. Let 

Fn .k = {(x, y) : VIl, v E B(y, Tk)[dz(f(x, u). f(x, v)) ::; Tn]}. 

Since f1' i;,; continuous for each x, X x Y = nn Uk Fn .k . \Ve claim that Fn,k 
i;,; closed: Let (Xi.Yi) E Fn .k , (Xi,Yi) --+ (x,y). Fix u,v E B(y,2- k ) and io 
such that for i 2' i o, u. v E B(y,. 2- k ). For ;,;uch i, dz(f(x" 11.), f(x" v)) 'S 
2-". ;';0, as .r,.!" are continuou;,; and Xi --+ x, dz (f(x,11.),j(x.v)) 'S 2- 71 • 

Now let 
D = U U{(·x. y) : x E F;;./,; \Int(F;;.IJ}· 

n " 

Then D c: Un Uk(Fn.k \Int(Fn.k)), and so D is meager, and DY is also 
meager for all y. Let G = (X x Y)\D. It is enough to verify that f is 
continuous at each (:1:, y) E G. Let E > 0 and n be such that 2-n 'S E. 
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Let k be such that (x, y) E Fn,k' Then x E FY \DY C Int(FY ). n,k - n.k 
Since 1Y is continuous, let V be open with x E V t;;; F,:,k and for 
8 E V, dz(J(x, y), 1(8, y)) :::; E. Then for 8 E V, t E B(y,2- k ), we have 
dz(J(x, y), 1(8, t)) :::; dz(J(x, y), 1(8, y)) + dZ (J(8, y), 1(8, t)) < 21', since 
8 E F;,k and t E B(y, 2- k). D 

1. Namioka [1974] has shown that if, for example, X, Yare also com
pact, then we can take G to be of the form H x Y for H comeager in 
X. 
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9. Polish Groups 

9.A MetTizable and Polish GTOUpS 

A topological group is a group (G, .) together with a topology on G such 
that (.1', y) f--+ .ry-l is continuous (from G2 into G). 

First we have the following metrization theorem. 

(9.1) Theorem. (Birkhoff. Kakut,1lli) Let G be a topological group. Then 
G is m.etrizable iff G is Hausdorff and the ident'ity 1 has a countable nbhd 
basis. Ai oreover, if G is metrizable, G admits a compatible metric d which 
is left-invariant: d(xy,xz) = d(y,z). 

Similarly, of conrse, a metrizable group admits a right-invariant metric. 
Hmvever, in general it may not admit a (two-sided) invariant metric. A 
necessary and sufficient condition for that is the existence of a countable 
nbhd basis {Un} at 1 such that gU"g-l = Un' for all 9 E G, n E N. 
Gronps that admit compatible invariant metrics include the abelian and 
the compact groups (see E. Hewitt and K. A. Ross [1979], (8.6)). 

If d is a left-invariant compatible metric on G, consider the new metric 

p(x', y) = d(x, y) + d(X-l, y-l). 

It is easy to see that it is also compatible (but not necessarily left-invariant). 
If (G. p) is the completion of (G. p), then the group multiplication extends 
uniquely to G so that G becomes a topological group (with compatible met
ric pl. Thus every metrizable topological group can be densely embedded in 
a completely metrizable one (see C. A. Rogers et a1. [1980], pp. 352-353). 

(9.2) Definition. A Polish group is a topological g7'OUp whose topology is 
Polish. 

Every separable metrizable group is thus densely embedded in a Polish 
group. Also. every Hausdorff, second countable, locally compact group is 
Polish. 

A Polish group admits a compatible complete metric, but it may not 
admit a left-invariant compatible complete metric. 

9.B Examples of Polish GTOUpS 

1) All cOllntable groups with the discrete topology. 

2) (JR. +), (lR?' = 1R\{O}, .), (1I', .), and (X, +), where X is a separable 
Banach space. 

3) If (XII) is a sequence of Polish groups, so is II" XII' An example 
is ;:z~' (which is topologically the same as C), the so-called Cantor group. 
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Identifying x E Z~ with the subset of N, of which it is the characteristic 
function, we have x + y = x6y. 

4) Let lK = lit or C. Any set S of n x n matrices will be considered as a 
subspace of lKn2 . Let CL(n, lK) be the group of non-singular n x n matrices 
over lK. Then C L(n, lK) is an open subspace of lKn2

, so it is a Polish locally 
compact group. Let SL(n, lK) be the subgroup of CL(n, lK) consisting of all 

2 
matrices with determinant 1. This is a closed subspace of lKn , and so is 
also a Polish locally compact group. 

For an n x n matrix A, denote by A* = (AY its adjoint matrix. The 
unitary group U(n) consists of all A E CL(n, q with AA* = A* A = [. 
Viewing en as an n-dimensional Hilbert space, we can view U(n) as the 
group of linear isometries of en. The orthogonal group 0(71,) is defined sim
ilarly using lit instead of C. The groups SU(n) and SO(n) are also defined 
analogously to SL(n, lK). The groups U(n), O(n), SU(n), and SO(n) are 

2 • 
closed bounded subsets of lKn , so they are Pohsh compact groups. 

5) More generally, all (second countable) Lie groups are Polish locally 
compact. 

6) Let H now be a separable, infinite-dimensional Hilbert space, such 
as £2. Let L(H) be the algebra of bounded linear operators T : H ---7 H. 
For T E L(H) its adjoint T* : H ---7 H is the bounded linear operator 
defined by (x, T*y) = (Tx, y). An operator T for which TT* = T*T = [ is 
called unitary. This is the same as saying that T is a linear isometry of H. 
Unitary operators form a group called the unitary group, U(H), if H is a 
complex space and the orthogonal group, O(H), if H is a real space. This 
group is a subspace of the unit ball L1 (H) of L(H), and it turns out that 
the strong topology (see Example 5 in Section 3.A) and the weak topology 
(see Exercise 4.9) agree on U(H) and O(H). \Vith this topology U(H) and 
O(H) are Polish groups (as they are C b subsets of L 1(H) with the strong 
topology). A compatible complete metric is 

d(S, T) = 2: 2-n- 1(IISxn - TXT/II + IIS*xn - T*.Tnll), 
n=O 

where {x n } is dem3e in the unit ball of H. 

(9.3) Exercise. Show that U(H) and O(H) are not locally compact. 

7) Let S= be the group of permutations of N. \Vith the relative 
topology as a subset of N, it is a topological group and it is a Pol
ish group since SCX) is a Cb set in N. A compatible complete metric is 
p(x, y) = d(x, y) + d(x- 1 , y-l), where d is the usual metric on N = NN (see 
Section 2.B). Again, S= is not locally compact. 

1\1ore generally, consider a structure A = (A, (Ri)iE [, (fj )jE.l, (Cdk:EK) 
(in the sense of model theory) consisting of a set A, a family of relations 
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(R.i)'E!, operations (fi).iEJ, and distinguished elements (CX)kEK on A. As
sume A is countably infinite. Let Aut(A) be the group of automorphisms 
of A. Thinking, without loss of generality, of A as being N, Aut(A) is a 
closed subgroup of Sex;, so again Polish. (The group S:xc is just the group 
Aut(A), where A = (N), the trivial structure on N.) 

8) Let X be a compact metrizable space. Let H(X) be the group 
of homeomorphisms of X. Then H(X) <;:; C(X, X), and with the relative 
topology it is a topological group. Since H(X) is Go in C(X, X), it is a Pol
ish group. A compatible complete metric is p(f, g) = du (f, 9 )+d" (f-l, g-1 ), 
where d" is the sup metric on C(X, X). Again, H(X) is in general not lo
cally compact, for example, for X = [0,1]. 

9) Let (X, d) be a complete separable metric space. Denote by Iso(X. d) 
the group of its isometries. Put on Iso(X, d) the topology generated by the 
functions f f--> f(x), for ;[ E X. This is a Polish group with a compatible 
complete metric given by 

6(f,y) = I=2- n- 1 ( d(f(x,,),y(xn )) + d(f l~~:r,).gl~~n)) ), 
rl=fl l+d(f(xn ),g(:[n)) l+d(f ('[TI),g (xn)) 

where {x n } is dense in X. 

(9.4) Exercise. If (X, d) is a compact metric space, show that Iso(X, d) is a 
compact subgroup of H(X). 

(9.5) Exercise. Let 9 be a graph theoretic tree (see 4.13). If 9 is locally 
finite, then Aut(Q) is locally compact. 

(9.6) Exercise. Let H be a Polish group and G <;:; H a subgroup of H. Shmv 
that if G is Polish (in the relative topology, that is. a GD set ill H), then G 
is closed in H. 

(9.7) Exercise. Let I be an ideal on N. View I as a subset of 2!'; identifying 
a set with its characteristic function. Show that if I is Go, then it is closed. 
Show that the Frechet ideal, IFl = {A <;:; N: A is finite}, is Fer but not Gb . 

9. C Basic Facts about Baire Groups and Their Actions 

A topological group is Baire if it is Baire as a topological space. Such groups 
have a number of interesting properties, which therefore also hold for all 
Polish groups. 

(9.8) Proposition. Let G be a topological group. Then G is Baire iff G is 
non-meager. 
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Proof. Assume G is not meager. Let U be a nonempty open set. If U is 
meager, so is gU for any 9 E G, so G is a union of a family of open meager 
sets. Since for U meager open, UI~ 0, it follows from 8.29 that U(0) = G, 
so G is meager. 0 

(9.9) Theorem. (Pettis) Let G be a topological gmup. If A c::: G has the 
Baire property and is non-meager', the set A- 1 A (= {x-1y: x,y E A}) 
contains an open nbhd of 1. 

Proof. Let U be nonempty open with A6U meager. By the continuity of 
.ry-l. let 9 E G and V an open nbhd of 1 be such that gVV- 1 c::: U. So 
gV c::: UnUh. for hE V. We will now show that V c::: A-I A, by showing that 
for all h E V. AnAh # 0. Indeed, if hE V. we have (UnUh)6(AnAh) c::: 
(U 6A) U ((U 6A)h), so (U n Uh)6(A n Ah) is meager. If An Ah is empty, 
then (U n U h) is meager, and then so is 9 V, a contradiction to the fact that 
Gis Baire (by 9.8). 0 

(9.10) Theorem. Let G,H be topological groups and '{!:G -7 H a homomor
phism. If G is Baire, H is separable, and '{! is Baire measurable, then '{! is 
continuo'us. 

Proof. It is enough to show thatp is continuous at 1. Fix an open nbhd U of 
1 E H. Let V be an open nbhd of 1 E H such that V-IV c::: U. Let {hn } be 
dense in H, so that, in particular, U,,(hnV) = H. Thus Un p-l(hn V) = G, 
so for some 71, p-l(hn V) is non-meager. By 9.9, (p-l(hnV))-lp-l(hnV) 
contains an open nbhd of 1 E G. But clearly, (p-1 (h nV))-lp-l(h n V) c::: 
p-l(V-IV) c::: tp-l(U). 0 

(9.11) Exercise. Let G be a topological group. Let H c::: G be a subgroup 
that has the Baire property and is not meager. Show that H is clopen. 
Show also that every proper subspace of a Banach space which has the 
Baire property is meager. 

(9.12) Exercise. Let f : ~ -7 ~ be Baire measurable and satisfy the func
tional equation f(:1: + y) = f(x) + f(y)· Show that for some a E ~, f(x) = 
a:r. 

(9.13) Definition. Let G be a gro'up and X (l set. An action of G on X is a 
map (g,.1:) E G x X f--> g.x E X such that 1.x = x, (gh).x = g.(h.x). 

Thus fur each 9 E G, the map :r f--> g.:1' is a bijection of X with itse~f 
with inverse x f--> 9- 1 .:r. The map that sends 9 to x f--> g.x is a homomor
phism of G into the group of permutations of X. 

If G,X are also topological spaces, the action is continuous if it is 
coni'inuous as a function fmm G x X into X. In this case we have a homo
morphism of G into the group of homeomorphisms of X. 
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(9.14) Theorem. Let G be a group with a topology that is metrizable and 
Baire, such that for each 9 E G the function h f---7 gh is continuous. Let 
X be a metrizable space and (g,x) f---7 g.x an action of G into X which is 
separately continuous (i. e., the maps 9 f---7 g.x for' x EX, X f---7 g.x for 9 E G 
are continuous). Then the action is continuous. 

Proof. Fix (go,xo) E G x X. By 8.51 the map (g,x) f---7 g.x is continuom; 
at (g, xo) for comeager many g. So let ho be such that (g, x) f---7 g.x is 
continuous at (ho,xo). Since g.x = (gohOl).(hogolg.X), the map (g,x) f---7 

g.x is continuous at (go, xu). 0 

(9.15) Corollary. Let G be a group with a topology that is metrizable and 
Baire. Assume g f---7 g-1 is continuous and (g,h) f---7 gh is separately contin
uous. Then G is a topological group. 

Proof. Let G act on itself by (g, h) f---7 gh. o 

Remark. In 9.15, if the topology is Polish one can drop the hypothesis 
that the inverse is continuous (see 14.15). It can also be shown that this 
hypothesis can be dropped if the topology is Hausdorff locally compact (see 
C. A. Rogers et al. [1980], pp. 350-352). 

(9.16) Exercise. i) Let G be a group with a metrizable Baire topology 
in which multiplication is separately continuous and let X be separable 
metrizable. Let (g, x) f---7 g.x be an action of G on X, which for each 9 is 
continuous in x and for each x is Baire measurable in g. Show that this 
action is continuous. 

ii) Let G, H be groups with metrizable topologies in which multiplica
tion is separately continuous. Assume G is Baire and H is separable. Then 
any homomorphism 'P : G -> H that is Baire measurable is continuous. 

(9.17) Theorem. (Miller) Let G be a topological group such that G and all its 
closed subgroups are Baire, X a Tl second countable space, and (g,x) f---7 g.x 
an action of G on X. Assume that for a given x E X, the map 9 f---7 g.x 
restricted to any closed subgroup H ~ G is Baire measurable on H. Then 
the stabilizer G x = {g E G:g.x = x} is closed. 

Proof. Clearly, G x is a subgroup of G as is its closure H = Gx . By our 
hypothesis, if we restrict the action to H it has the property that h f---7 h.x 
is Baire measurable on H for any x E X. So, replacing G by H if necessary, 
we can assume that G x is dense in G. From this we want to conclude that 
G x =G. 

If G,T is non-meager, we are done by 9.11 (since G x has the BP, as points 
are closed in X). So assume G x is meager. Let {V,J be an open basis for 
X and note that, since X is T 1 , {Vn} separates points in X (i.e., for each 
x, y E X with x f. y, there is n with x E Vn , y rf. Vn ). Let 1(g) = g.x, and 
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put An = f-1(Vn), so that An has the BP in G. Moreover, Anh = An if 
hE Gx . Since g.x = h.x ¢o} f(g) = f(h) ¢o} 'Vn(g E An ¢o} h E An), we have 
gGx = n{An : 9 E An}. By applying 8.46 to the group of homeomorphisms 
of G induced by right multiplication by elements of Gx , we have that each 
An is either meager or comeager. Since gGx is meager, there is n with 
9 E An and An meager. So G = U{An : An is meager}, so G is meager, 
which is a contradiction. 0 

9.D Universal Polish Groups 

We have seen in 4.14 that the Hilbert cube liN has an important universality 
property: Every Polish space is a subspace of liN (up to homeomorphism). 
We prove here that the Polish group of homeomorphisms H(lIN) of liN has 
a similar property among all Polish groups. 

Given two topological groups G, H, we call them isomorphic if there 
is an algebraic isomorphism 1r : G --+ H that is also a homeomorphism. 

(9.18) Theorem. (Uspenskii) Every Polish group is isomorphic to a (nec
essarily closed) subgroup of H (liN). 

Proo]. For a separable Banach space X, let Llso(X) be the group of linear 
isometries of X. This is a closed subgroup ofIso(X, d), where d is the metric 
induced by the norm of X, so it is Polish. 

Now let G be an arbitrary Polish group. First we will find a separa
ble Banach space X such that G is isomorphic to a (necessarily closed) 
subgroup of Llso(X). 

Let d be a bounded left-invariant metric compatible with the topol
ogy of G. Given 9 E G, associate with it the bounded continuous map 
fo9 : G --t ]]{ given by fo9(h) = d(g, h). Let Cb(G) be the Banach space 
of bounded continuous real-valued functions on G with the sup norm 
Ilflloc = sup{lf(x)1 : x E G}. (It is not necessarily separable.) Let X be the 
closed linear subspace of Cb(G) generated by the functions {fg : 9 E G}. 
Then X is separable. Every 9 E G determines a linear isometry To9 : X --+ X 
given by Tg (f) (h) = f (g-l h). It is easy now to check that 9 I--> Tg is an 
isomorphism of G with a closed subgroup of Llso(X). 

Now let K = Bl(X*) be the unit ball of the dual X* of X with the 
weak*-topology. By 4.7, K is compact metrizable. For S E LIso(X), let 
S* E Llso(X*) be its adjoint, i.e., (x, S*x*) = (Sx, x*). Then S*IK E 
H(K). For T E Llso(X), let h(T) = (T-1)*IK E H(K). 

Claim. The map h is an isomorphism of Llso(X) with a (necessarily closed) 
subgroup of H(K). 

Proo]. It is easily an algebraic isomorphism. We will show next that it is 
continuous. If Tn --+ T and d is the metric on K given in 4.7, we will verify 
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that d(h(Tn)(x*), h(T)(x*) ----+ 0 uniformly on x* E K, or equivalently 
L m2-m - 1J(T,;,-1(xm),x*) - (T-1(xm),x*)1 ----+ 0 uniformly on x* E K, 
where {Xm} is dense in the unit ball of X. But this is easy, since Tn(xm) ----+ 
T(xm), for all m. 

Finally, we check that h-1 is continuous. Let h(Tn) ----+ h(T) (in H(K)), 
so that d(h(Tn)(x*), h(T)(x*)) ----+ 0 uniformly on X* E K. In particular, 
I (T,;,-l(xm), x*) - (T-1(xm), x*)1 ----+ 0 uniformly on x* E K, for any m. To 
see that Tn ----+ T, or equivalently T,-:l ----+ T-l, it is enough to check that 
Tn-1(xm) ----+ T-1(xm), for all m, i.e., II(T,-:l_T-l )(xm)ll----+ 0, for all m. But 
I I (T,;,-l - T-1)(xm)11 = sup{1 (T,;,-l (xm), x*) - (T-1(xm),x*)1 : x* E K} ----+ 0 
for any m. 

We use now the following result in infinite-dimensional topology (see 
C. Bessaga and A. Pelczyftski [1975]). 

(9.19) Theorem. (Keller'S Theorem) If X is a separable infinite-dimensional 
Banach space, Bl(X*) with the weak* -topology is homeomorphic to the 
Hilbert cube TIN. 

If X is infinite-dimensional, we are done. Otherwise, X is finite
dimensional, so K = Bl (X*) is homeomorphic to TIn for some n. Then 
G is isomorphic to a subgroup of H(TIrt), which is easily isomorphic to a 
subgroup of H(TIN), and the proof is complete. 0 



CHAPTER II 
Borel Sets 

10. Measurable Spaces and Functions 

10.A S'igma-Algebras and Their Generators 

Let X be a set. Recall that an algebra on X is a collection of subsets of X 
containing 0 and closed under complements and finite unions (so also under 
finite intersections). It is a O'-algebra if it is also closed under countable 
unions (so also under countable intersections). Given E ~ Pow(X), there is 
a smallest cr-algebra containing E, called the O'-algebra generated by E and 
denoted by cr( E). Also, E is called a set of generators for cr( E). A cr-algebra 
is count ably generated if it has a countable set of generators. 

(10.1) Theorem. Let X be a set. 
i) For any E ~ Pow(X), cr(E) is the smallest collection of subsets of 

X containing 0, E, and rv E ( = {rvA:A E E}) and closed under countable 
intersections and unions. 

ii) Let A ~ Pow(X) be an algebra on X. Then cr(A) is the small
est monotonically closed class of subsets of X containing A, where M ~ 

Pow( X) is monotonically closed if for any decreasing (resp., increasing) 
sequence (An), where An EM, nn An EM (resp., Un An EM). 

i'ii) (The 7r - A theorem) Let P ~ Pow(X) be closed under finite inter
sections (a 7r-class). Then cr(P) is the smallest A-class containing P, where 
L ~ Pow(X) is a A-class if it contains X and 'is closed under complements 
and countable disjoint unions. 
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iv) Let E s: Pow(X). Then CT(E) is the smallest class of subsets of 
X containing 0, E, and cv E and closed under countable intersections and 
countable disjoint unions. 

Proof. i) Let S be the smallest such class. Clearly, S s: CT(£). Let S' = {A s: 
X: A, ~ A E S}. Then S' is a CT-algebra containing E, so dE) s: S' s: S. 

ii) Let M be the smallest monotonically closed class containing A. It 
is enough to verify that if A. B E Jvt then A \ E, Au B E M. Indeed, 
if this holds, ;vt is closed under cornplements and countable unions, since 
Un An = Un(Ao u··· u An-I). 

For A s: X, let M(A) = {B : A \B. E\A, AuB EM}. Then M(A) is 
monotonically closed. If A E A, then A s: M(A), so .A/f s: M(A). Thus if 
BE M, B E M(A), so A E M(B). Therefore, A s: M(B) for all B E M 
(i.e., M s: .M(B) [or all B E }vl), and we are dOlle. 

iii) Let .c be the smallest A-class containing P. \Ve will show that it 
is an algebra. It will then follow that it is a CT-algebra, since U. An = n 
Un (An \ Ui<n A;) and the latter is a pairwise disjoint union. 

For any A s: X, let .c(A) = {B : An BEL}. Then .c(A) is a A-class 
for any A E .c since if An B E .c. then A \ B = ~ (( '"" A) u (A n B)) E .c. So 
if A E P, P s: .c(A), so .c s: .c(A). Thm; if BE .c, A E .c(B), so P s: .c(B) 
and therefore .c s: .c (E). It follows that if A, B E .c, then A n B E .c. 

iv) Let R s: Pow(X) be the smallest class containing 0, E, ~ E and 
closed under countable intersections and countable pairwise disjoint unions. 
Let R' = {A E R : '"" A E R}. Then E s: R', and R' is closed under 
complements. So it is enough to show that R' is closed under countable 
unions. Since Un An = Un(A,,\Ui<n A;), it is enough to show that R' 
is closed under finite unions. Let A, B E R'. Then AU B = (A \ B) U 
(B \ A) U (A n B) and this is a disjoint union, so Au B E R. But also 
~(AUB)=(cvA)n('""VB)ER.soAUBER'. 0 

10.B Measurable Spaces and Functions 

A measurable (or Borel) space is a pair (X,S), where X is a set and S is 
a CT-algebra on S. The members of S are called measurable. 

A subspace of (X. S) consists of a subset Y s: X with the relative 
O"-algebra SlY = {A n Y : A E S}. Notice that if S = CT(E), then SlY = 

CT(EIY). 
Let (X, S), (Y, A) be measurable spaces. A map f : X -'> Y is 

called measurable if f-l(A) E S for any A E A. If E generates A, it is 
enough to require this for A E E, since f-l(CT(E)) = CT(f-l(E)) (where 
f-l(V) = {f-l(A) : A E V} for V s: Pow(Y)). A (measurable) isomor
phism between X, Y is a bijection 1 : X -> Y such that both 1,1- 1 are 
measurable. If such an isomorphism exists, we call X, Y(measurably) iso
morphic. A (measurable) embedding of X into Y is an isomorphism of X 
with a subspace of Y. 
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If X is a set, ((Yi, 8 i) )iEI a family of measurable spaces, and Ii : X -+ 

Yi are maps, there is a smallest a-algebra 8 on X such that all Ii are 
measurable. \Ve call it the CT-algebra generated by (Ii). If Ei is a set of 
generators for 8 i , then {fi- 1 (A) : A r;;; Yi, A E Ei , i E I} generates 8. 

Let ((Xi, 8 i )) iEI again be a family of measurable spaces. The product 
measurable space (Il Xi, TIi 8;) is that generated by the projection maps 
(X;}iEI f--7 Xj (j E 1). Equivalently, it is generated by the sets of the form ni Ai, where Ai E 8, and Ai = Xi except perhaps for at most one i (or 
equivalently except for finitely many i). If Ei is a set of generators for 8 i , 

then the sets of the form TI, Ai, where Ai = Xi except perhaps for at most 
OIle .j for which Ai. E Ei , form a set of generators for the product space. 

The sum (EBi Xi, EBi 8 i ) of a family of measurable spaces ((Xi, 8;) )iEI 

is defined (up to isomorphism) as follows: Replacing Xi by an isomorphic 
copy, we can assume that the sets Xi are pairwise disjoint. Let X = UiEI Xi. 
A set A r;;; X is measurable if A n Xi E 8 i for each i E I. 

(10.2) Exercise. Let X, Y be measurable spaces. If A r;;; X x Y is measurable 
(in the product space), then for each x E X, A,r is measurable in Y. 
Similarly if X, Y, Z are measurable spaces and I : X x Y -+ Z is measurable, 
then for each x E X the function II' : Y -+ Z is mea::mrable. Generalize 
these to arbitrary products. 
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11. Borel Sets and Functions 

11.A Borel Sets in Topological Spaces 

Let (X, T) be a topological space. The dass of Borel sets of X is the (J

algebra generated by the open sets of X. We denote it hy B(X, T) (or 
by B(X) or B(T), when appropriate). We call (X, B(X)) the Borel space 
of X. If E is a countable suhbasis for X, then clearly B(X) = cr(E), so 
B(X) is count ably generated when X is second countable. Note also that 
if Y is a subspace of X then (Y, B(Y)) is a subspace of (X, B(X)) (i.e., 
B(Y) = B(X)IY). It is obvious that B(X) contains all open, closed, Fer, 
and Gf; sets in X. 

By applying 10.1 to the class of open sets in X, we see the following: 
(a) B(X) is the smallest collection of subsets of X containing the open 

as well as the closed sets and closed under countable intersections and 
UIllons: 

(b) B(X) is the smallest collection of subsets of X containing the open 
sets and closed under complements and countable pairwise disjoint unions; 

(c) B( X) is the smallest collection of subsets of X containing the open 
as well as the closed sets and closed under countable intcrsectionti and 
countable pairwise disjoint unions. 

Note altio that if (Xn) is a sequence of second countable spaces, then 

By standard terminology, if (X, S) is a measurable space and Y a topo
logical space, we call a function 1 : X -> Y measurable if it is measurable 
with respect to (X, S), (Y, B(Y)). If {Vn} is a countable subbasis for Y, it 
is enough to require that 1-1 (Vn ) E S for each n. 

11.B The Borel Hierarchy 

Assume now that X is metrizable, so that every closed set is a G6 set. Let 
W1 be the first uncountable ordinal, and for 1 :s: ~ < W1 define by transfinite 
recursion the classes ~~(X). II~(X) of subsets of X as follows: 

~?(X) = {U ~ X : U is open}, 

II~(X) = ~ ~~(X), 

~~(X) = {U An : An E IIt (X), ~n < C n E N}, if ~ > 1. 
n 

In addition let 
a~(x) = ~~(X) n II~(X) 

be the so-called ambiguous classes. 
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Traditionally, one denotes by G(X) the class of open subsets of X, and 
by F( X) the class of closed subsets of X. For any collection [; of subsets of 
a set X, let 

n 

n 

Then we have ~~(X) = G(X), rr~(X) = F(X), ~g(X) = (F(X))a = 
F(T(X), rrg(X) = (G(X)),s = G,s(X), ~g(X) = (G8(X))a = G6a(X), 
rrg(X) = (Fa(X)),s = Fa,s(X), etc. (Also, a~(X) = {A ~ X : A is 
clop en }.) In general, an easy transfinite induction shows that 

so in particular 
~~+l(X) = (rr~(X))a. 

Finally, it is easy to see that 

B(X) = U ~~(X) = U rr~(X) = U a~(X), 

which gives us the following picture, 
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where ~ ::; T/ and any class is contained in every class to the right of it. This 
gives a ramification of the Borel sets in a hierarchy (of at most Wl levels), 
the Borel hierarchy. We will study it in some detail in Section 22. 

EXAMPLES 

1) A number x in the interval (0,1) is normal (in base 2) if its non
terminating binary expansion x = 0.b1b2 b3 ... is such that 

card({i < n : b = I}) 
lim - z = 1/2. 

n---+(x) n 

Let N be the set of normal numbers. We claim that it is Borel. To see this, 
let dn be the following step function on (0,1) : dn = ° on (0,1/2"]' dn = 
Ion (1/2",2/2n], dn = ° on (2/2n, 3/2n], .... Then x = I:~=ldn(x)/2n is 
the non-terminating binary expansion of x. Let Q+ be the set of positive 
rationals. Then for x E (0,1) we have: 
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N ow I;~ 1 di (X) is constant on each dyadic interval (k / 2m , (k + 1) / 2m ], so 
the set Am." = {x : 1(I;~1di(x))/m - 1/2 1< f} is a finite union of such 
intervals. Since 

1'1= nun Am." 

it follows that 1'1 is Borel in (0.1). 

2) Let X = C([O, 1]) and denote by C l the class of continuously differ
entiable functions in C([O, 1]). (At the endpoints we take one-sided deriva
tives.) Then for f EX, f E C 1 iff for all E E Q+ there exist rational open 
intervals 10 , ... ,1,,-1 covering [0,1] ::;uch that for all j < n: 

. (I f(a) - f(b) f(c) - f(d) 1 ) Va, b, c, dE IJ n [0,1] wIth a 1= b, c 1= d -. <::: E . 
a-b c-d 

So if for an open interval J and f > 0, we put AJ,f = {f E C([O,I]) : 

Va, b, c, dE J n [0, 1] with a 1= b, c 1= d, 1 f(a~=t(b) - f(c~=~(d) 1<::: f}, we have 
that A.J,E i::; closed in X and 

u 
cEQl+ n (Io" .. In-!lj<n 

where (Io, , .. , In -1) varies over all n- tuples of rational open intervals with 
Ui<n Ii :2 [0,1]. Thus C 1 is Borel. 

3) Let X =][N and consider Co = conx = {(xn) EX: xn -> O}. Then 
we have for (xn) EX: 

(x n ) E Co <=? Vf E Q+jnVm ~ n(x.", <::: f), 

so Co is Borel. 

4) Let f E C([O, 1]). Put Df = {x E [0,1] : f'(x) exists} (at endpoints 
we take one-sided derivatives). Then for x E [0,1] : 

:r E D f <=? VE E Q+j8 E Q+Vp,q E [0,1] nQ: 

(I p - x 1,1 q - x 1< 8 =} 

1 

f(p) - f(x) _ f(q) - f(x) 1 <::: f), 
p-.c q-.1: 

so again D f is BoreL 

(11.1) Exercise. Show that all of the preceding examples are actually II~. 

11. C Borel Functions 

Let X, Y be topological spaces. A map f : X -> Y is Borel (measurable) 
if the inverse image of a Borel (equivalently: open or clo::;ed) ::;et i::; BoreL 
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If Y has a countable subbasis {Vn }, it is enough to require that f-1(Vn ) is 
Borel for each n. We call f a Borel isomorphism if it is a bijection and both 
f, f- 1 are Borel, i.e., for A <;:; X, A E B(X) B f(A) E B(Y). If X = Y, we 
call f a Borel automorphism. 

It is clear that continuous functions are Borel. 

(11.2) Exercise. i) Let (X, S) be a measurable space and Y a metriz
able space. Let fn : X ---+ Y be measurable. If fn ---+ f pointwise (i.e., 
limn fn(x) = f(x) for each x), then f is also measurable. 

ii) Call a function f : [0,1] ---+ JR a derivative if there is F : [0,1] ---+ 

JR differentiable such that F' = f (again at endpoints we take one-sided 
derivatives). Show that derivatives are Borel functions. 

iii) Let X be a topological space and f : X ---+ JR a lower (resp., upper) 
semicontinuous function, i.e., {x : f (x) > (J,} (resp., {x : f (x) < a}) is open 
for every (J, E JR. Show that f is Borel. 

(11.3) Exercise. Let X, Z be metrizable with X separable and Y a topo
logical space. Let f : X x Y ---+ Z be such that fY : X ---+ Z is continuous 
for all y E Y and f x : Y ---+ Z is Borel for a countable dense set of x EX. 
Show that f is Borel. 

(11.4) Exercise. Let X be a Polish space. 
i) Show that the family of sets {K E K(X) : K <;:; U}, U open in 

X, generates B(K(X)). Prove the same fact for the family of sets {K E 

K(X) : K n U =l0}, U open in X. 
ii) Show that the map K 1--7 K' (= the Cantor-Bendixson derivative 

of K) on K (X) is Borel. Show also that the map (K, L) 1--7 K n L from 
K(X) x K(X) into K(X) is Borel. If Y is compact metrizable and F <;:; 
X x Y is closed, show that x 1--7 FJ: is Borel. 

The following obvious fact is important, as it allows us to apply the 
theory of Section 8 to Borel sets and functions. 

(11.5) Proposition. Every Borel set has the Baire property, and every Borel 
function is Baire measurable. 

The Borel sets are generated from the open sets by the operations of 
complementation and countable union. We will now see that real-valued 
Borel functions are generated from the continuous functions by the oper
ation of taking pointwise limits of sequences. (We will prove an extension 
and a more detailed version of this result in 24.3, but the present form will 
suffice in the meantime.) 

(11.6) Theorem. (Lebesgue, Hausdorff) Let X be a metrizable space. The 
class of Borel functions f:X ---+ JR is the smallest class of functions from 
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X into JR. which contains all the continuous functions and is closed under 
taking pointwise limits of sequences of functions (i. e., if fn:X --+ JR. belong 
in the class and f(x) = limnfn(.r) for each x, then f is in the class too). 

Pmoj. Denote by B the smallest class of real-valued functions containing 
the continuous functions and closed under the operation of taking pointwise 
limits of sequences of functions. It is easy to see that B is a vector space, 
i.e., if T, s E JR. and f,g E B then rf + 8g E B. 

\Ve claim first that the characteristic function XA of any Borel set 
A c: X is in B. To see this we use 10.1, iii). Since X~A = 1 - XA and 
XU An = limn(XAo + ... + XA,J, if (An) are pairwise disjoint, it is enough 

to ;how that Xu E B for any open U. Let U = Un Fn , with Fn closed and 
Fn c: Fn +1 . By Urysohn's Lemma 1.2, let fn : X --+ JR. be continuous with 
() S fn S 1, fn = Ion F rI , fn = () on rv U. Clearly, fn --+ Xu pointwise, so 
Xu E B. 

Let now f : X --+ JR. be a Borel function. \Ve will show that fEB. 
Now f = r - f- with .r = 1112+1, f- = 1112-1. Clearly Ifl,f+,f
are also Borel, so it is enough to consider non-negative f. For such f, 
let for 71 = 1,2,3, ... and 1 Si S n2n , An.i = f-1W;,1, 2~')) and put 

fn = ~~~ (i - 1)/2n . XA".i' Then, since An,; is Borel, fn E B. But fn --+ f 
pointwise, so fEB. 

Since the class of Borel functions contains the continuous functions 
and is closed under taking pointwise limits of sequences of functions, our 
proof is complete. 0 

(11.7) Exercise. Show that ] 1.6 holds when JR. is replaced by any of the 
following: JR.n, cr' (71 = 1,2, ... ), an interval] c: JR. or In. In particular, the 
class of bounded Borel functions f : X --+ JR. is the smallest class of real
valued functions containing the bounded continuous functions, which is 
closed under taking bounded pointwise limits of sequences of functions (i.e., 
if fn are in the class, with Ifni S 11.1 for some A1, and fn --+ f pointwise, 
then f is in the class). 
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12. Standard Borel Spaces 

12.A Borel Sets and Functions in Separable Metrizable Spaces 

We characterize first the Borel spaces of separable metrizable spaces. 

(12.1) Proposition. Let (X ,S) be a measurable space. Then the following 
are equivalent: 

i) (X,S) is isomorphic to some (Y,B(Y)), where Y is separable metriz
able; 

ii) (X,S)is isomorphic to some (Y,B(Y)) for Y \: C (and th11S to 
some Y \: Z for any uncountable Polish space Z); 

iii) (X,S) is countably generated and separates points (i.e., if x,y are 
distinct points in X, there is A E S with x E A, y et A). 

Proof. ii) =} i) =} iii) are trivial. We will prove now that iii) =} ii). Let 
{An} generate S. Define f : X -+ C by f(x) = (XAn(x)), where XA = the 
characteristic function of A. Then J is injective, since {An} separates points. 
It is also measurable, since f(x)(n) = 1 B x E An. Let Y = J(X) \: C. 
Since J(An) = {y E C : y(n) = I} nY, J- 1 is also measurable (i.e., 
(X, S), (Y, B(Y)) are isomorphic). 0 

For measurable spaces (X, S) satisfying the equivalent conditions of 
12.1, we will usually denote S by B(X) and call its elements the Borel sets 
of X, when there is no danger of confusion. We will also call measurable 
maps between such spaces Borel maps. 

The following is an analog of 3.8. 

(12.2) Theorem. (Kuratowski) Let X be a rneasumble space and Y be 
nonempty Polish. If Z \: X and J:Z ---> Y is measumble, there is a mea
sumble function j:X -+ Y extending f. 

Proof. It is enough to find a measurable set Z* \: X, Z* "d Z and a 
measurable function J* : Z* -+ Y extending J. 

Let {Vn } be a basis of nonempty open sets for Y. There are measurable 
sets Bn in X with J- 1 (Vr,) = ZnBn . Thus for z E Z, z E Bn B J(z) E Vn . 

Put Z* = {x EX: =:Jy E Y\in(x E BTl ByE Vn )}, and for x E Z*, let 
J*(x) = y, where {y} = n{Vn : x E Bn}. Clearly, Z \: Z*, J* extends J 
and J* : Z* -> Y is measurable since (J*) -1 (Vn ) = Bn n Z*. It remains to 
show that Z* is measurable. 

Let (n, x) EBB x E Bn so that BX = {n : x E Bn}. Then x E Z* iff 
{Vn : n E BX} is the family of basic open nbhds of some point in Y, so that 
x E Z* iff the three following conditions hold: 

(1) 
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(2) VWn E B"V'rn E B"3E E B"(Vi: ~ Vr, n Vrn & diam(Vf) < 1/(k + 1)), 

(3) VrNrn(rn E B"; & Vrn ~ Vn =} n E BE). 

Conditions (1) and (2) guarantee, by the completeness of Y, that 
nnEBx Vr, consists of a unique point, say y, and then condition (3) guaran
tees that B" = {n : y E Vn }. 

Letting 

we have 

(k, E, m, 71) E C B Vr ~ Vr, n Vm & diam(Vt) < 1/(k + 1). 

(m,n) E DB v'n ~ v", 

x E Z* B 3n(x E Bn) & VkVrNrn[x E Bn & x E Bill =} 

3t'(x E Bf & (k,t',m,n) E C)] & 

VnVm[x E Bm & (m, n) ED=} x E B1I]' 

so that Z* is measurable (see Appendix C). 

\Ve have also the analog of Lavrentiev's Theorem :3.9. 

D 

(12.3) Exercise. Let X, Y be Polish and A ~ X. B ~ Y. If f : A ~ B is a 
Borel isomorphism, then show that there exist Borel sets A* ~ X, B* ~ Y 
with A ~ A *, B ~ B* and a Borel isomorphism 1* : A * ~ B* extending 
f. Formulate and prove an analog of 3.10. 

There iiS a basic connection between the measurability of ftlllctions and 
their graphiS. 

(12.4) Proposition. Let (X,S) be a measurable space, Y a separable metriz
able space, and f:X ~ Y a measurable function. Then graph(f) ~ X x Y 
is also measurable (with respect to S x B(Y)). 

Proof. We have 

f(x) = Y B Vn(y E v" =} f(x) E Vn ), 

where {Vr,} is a basis for Y. D 

The converse is also true when X, Yare Polish (see 14.12). 

12.B Standard Borel Spaces 

(12.5) Definition. A measurable space (X,S) is a standard Borel space if it 
is isomorphic to (Y,B(Y)) for' some Polish space Y or equivalently, if theTe 
is a Polish topology T on X with S = B(T). 
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The product and ;.;um of a sequence of ;.;tandard Borel spaces are ;.;tan
dard. We will also see later (see 13.4), that if (X, S) is standard and Y S;; X 
is in S, then (Y,SIY) is also standard. Finally, from 12.1 it follows that a 
count ably generated and separating point;.; (X, S) is a subspace of a stan
dard Borel space (and conversely of course). 

12. C The Efiro8 Borel Space 

\Ve will now discuss an important example of a ;.;tandard Borel space. 
Given a topological space X we denote by F(X) the set of closed 

subsets of X. (When X i;.; metrizable, we also u;.;e rr?(X) for this set, but 
we will retain the classical notation F(X) in the context of the Effros Borel 
structure.) We endow F(X) with the a-algebra generated by the sets 

{F E F(X) : F n U ¥ 0}. 

where U varies over open sub;.;et;.; of X. If X has a countable basis {Un}, 
it is clearly enough to consider U in that basis. The space F(X) with this 
a-algebra is called the Effros Borel space of F(X). 

(12.6) Theorem. If X is Poli8h, the EffTOS Borel space of F(X) is 8tandard. 

Proof. Let X be a compactification of X. Then the map F E F(X) f---'> F E 

K(X) (F denotes the closure of F in X) is injective, since F = F n X. 
We claim now that G = {F : F E F(X)} is G~ in K(X). Indeed, for 
K E K(X), KEG {=} K n X is dense in K, so if X = nn Un, where Un 
is open in X, and letting {Vm } be a basis for X. we have by the Baire 
Category Theorem: 

KEG {=} V'n(K n Un is dense in K) 

{=} V'nV'rn(K n 11,,, ¥ 0 =? K n (11,,, nUn) ¥ 0). 

Thus G is Polish. Transfer back to F(X) its topology via the bijection 
F f---'> F, to get a Polish topology T on F(X). We have to verify that the 
Borel space of this topology is the Effros Borel space. By 11.4 i), the sets 
{K E K(X) : K n U ¥ 0} for U open in X generate the Borel space of 
K(X), so the sets of the form {F E F(X) : F n U ¥ 0} generate the Borel 
space ofT. But {F E F(X) : FnU ¥ 0} = {F E F(X) : Fn(UnX) ¥ 0}, 
so these are exactly the generators of the Effros Borel space. 0 

Let d be a compatible complete metric on the Polish space X. G. Beer 
[1991] has shown that the topology on F(X) \ {0} generated by the maps 
F f---'> d(x, F), x E X, is Polish and that the Effros Borel ;.;pace on F(X)\ {0} 
i;.; the Borel space of this topology. 

(12.7) Exercise. Let X be Polish locally compact. Consider the Fell topology 
on F(X). which has as a basis the sets of the form {F E F(X) : F n K = 
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o & F n UI =I 0 & ... & F n Un =I O}, where K varies over K(X) and 
Ui over open sets in X. Show that the Fell topology is compact metrizable 
and its Borel space is exactly the Effros Borel space. (For X compact, this 
is the Vietoris topology.) 

(12.8) Exercise. Let X be separable metrizable. If X is K eT , then the Efhos 
Borel space on F(X) is standard. 

(12.9) Remark. J. Saint Raymond [1978] has shown that for separable 
metrizable X, the Effros Borel space on F (X) is standard iff X is the 
union of a Polish space and a K (J' 

(12.10) Exercise. Let X = /V. View a tree on N as an dement of 2N<" by 
identifying it with its characteristic function. Recall from 4.:12 that the set 
of pruned trees PTr is G,I (thus Polish) in . Show that the Effros Borel 
space of F(N) is exactly the one induced by its identification with PTr via 
the map F f-+ TF (see 2.4). 

(12.11) Exercise. Let X be Polish. 
i) Show that K(X) is a Borel set in F(X). Moreover, the Borel space 

of K(X) is a subspace of the Effros Borel space. (In particular, if X is 
compact, the Effros Borel space on F(X) = K(X) is the Borel space of 
K(X), which also follows from 12.7.) 

ii) Show that the relation "FI <;;; F/' (in F(X)2) is Borel and that 
the function (Fj , F2) f-+ FI U F2 (from F(X)2 into F(X)) is also Borel. 
In particular, F(Y) is Borel in F(X), if Y is closed in X. If Z is also 
Polish, show that the function (Fj , F2) f-+ F j x F2 (from F(X) x F(Z) into 
F(X x Z)) is Borel and if f : X --7 Z is continuous, the Illap F f-+ f(F) 
(from F(X) into F(Z)) is also Borel. 

iii) Let RF(X) be the class of regular clotOed tlets in X. Show that 
RF(X) is Borel in F( X). 

(By 8.30 and 8.32 the category algebra CAT(X) can be identified with 
RO(X) and, by taking complements, with RF(X). So by 13.4 we can view 
CAT(X) as having a standard Borel structure.) 

(12.12) Remark. In general, the operation (FI' F2 ) f-+ Fl n F2 is not Borel 
(see 27.7). Also for U open in X, {F : F <;;; U} is in general not Borel (see 
also 27.7). For F <;;; X x Y closed, the map 1; f-+ F,. is also in general not 
Borel (see 15.5). 

The following is a basic fact about the Effros Borel space. 

(12.13) Theorem. (The Selection Theorem for F(X)) (Kuratowski Ryll
Nardzewski) Let X be Polish. There is a sequence of Borel functions 
dn:F(X) ----> X, such that for' nonernpty FE F(X). {dn(F)} is dense in F. 
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Proof. Assume that X i= 0 and fix a compatible complete metric for X. 
Let (Us) be a Som;lin scheme on X with U'lJ = X, Us open nonempty, 
Us"i <;;; Us. Us = Ui Us· i., and diam(U.,) ~ 2-length(s) if s i= 0. For x E N , let 
{f(x)} = nn U11n- Then f : N -+ X is a continuous (and open) surjection 
(see 7.14). Given nonempty F E F(X), let TF = {s E N<N : F nus i= 0} 
and note that TF is a nonempty pruned tree on N. Denote by aF (= aTF ) 

its leftmost branch (see Section 2.D). Let d(F) = f(aF) so that d(F) E F. 
Define also d(0) = Xn, some fixed element of X. Now the function 9 : 
F(X) \ {0} -+ N given by g(F) = aF is Borel, since given a basic open set 
}Vs , s E Nn. we have 

g(F) EN, {=} F n Us i= 0 & Vt E Nn(t <lex S =? F n Ut = 0), 

where <lex is the lexicographical ordering on NTI. So d is Borel as well. 
Fix now a basis {V,,} of nonempty open sets in X. By the above argu

ment, we can find, for each n, a Borel function d~. : F(X) -+ X such that 
d~ (F) E F n Vn if F n V" i= 0. Finally, let 

d (F) = {d~(F.), 
n d(F). 

if F n Vn i= 0; 
if F n Vn = 0. 

o 

(12.14) Exercise. Let X be a measurable space and Y a Polish space. Show 
that a function f : X -+ F(Y) is measurable iff f- 1 ({0}) is measurable and 
there is a sequence of measurable functions fn : X -+ Y such that {f n (x)} 
is a dense subset of f(x) when f(x) i= 0. 

12.D An Application to Selectors 

(12.15) Definition. Let X be a set and E an equivalence relation on X. 
A selector for E is a map s:X -+ X such that xEy =? s(x) = s{y)Ex. 
A transversal for E is a set T <;;; X that meets every equivalence class in 
exactly one point. 

If s is a selector for E, then {x : s (x) = x} is a transversal for E. If T 
is a transversal for E, then s : X -+ X, given by {s{x)} = Tn [xlE, is a 
selector for E (here [xlF: is the equivalence class of x). 

For a set A <;;; X its (E-) saturation [AlE is defined by 

[AlE = {x EX: :Jy E A(xEy)}. 

The following is a basic result on Borel selectors. (See also 18.20 iv) for a 
stronger theorem.) 
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(12.16) Theorem. Let X be a Polish space and E an equivalence relation 
such that every equivalence class is closed and the saturation of any open 
set is Borel. Then E admits a Borel selector (and thus a Borel transversal). 

Proof. Consider the map x f---> [X]E from X to F(X). We claim that it is 
Borel. Indeed, if U ~ X is open, then 

Un [X]E ¥ 0 {=} x E rUlE. 

By 12.13, let d : F(X) --+ X be Borel with d(F) E F if F ¥ 0. Then 
s(x) = d([x]E) works. 0 

An important special case is the following: 

(12.17) Theorem. Let G be a Polish group and H ~ G a closed subgroup. 
There is a Borel selector for· the equivalence relation whose classes are the 
(left) cosets of H. In particular, there is a Borel set meeting every (left) 
coset in exactly one point. 

Proof. It is clear that every (left) coset gH is closed. Let now U ~ G be 
open. Then the saturation of U is the set U H = UhEH Uh, which is open. 
So by 12.16 we are done. 0 

(12.18) Exercise. Show that in 12.16 the condition that the saturation of 
open sets is Borel can be replaced by the condition that the saturation of 
closed sets is Borel. 

12.E Further Examples 

1) Every Polish space is homeomorphic to a closed subspace of]RN by 4.17. 
So we can view F(]RN) as being a representation (up to homeomorphism) of 
all Polish spaces, and by giving it the Effros Borel structure we can endow 
the class of Polish spaces with a standard Borel structure. We can call this 
the Borel space of Polish spaces. For example, the set of compact Polish 
spaces is Borel. (This means that {F E F(]RN) : F is compact} is Borel.) 

2) Similarly we can identify, by 9.18, the Polish groups, with the closed 
subgroups of Go = H(JIN). Let Subg(Go) = {F E F(Go) : F is a subgroup}. 
Then Subg(Go) is a Borel set in F(Go), since if (dn ) is as in 12.13, 

FE Subg(Go) {=} 1 E F & VnVm(dn(F)dm(F)-l E F). 

So we can endow the class of Polish groups with the relative Borel space 
on Subg( Go). It is standard, as it follows from 13.4. We can call this the 
Borel space of Polish groups. (See also here C. Sutherland [1985].) 
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(12.19) Exercise. Show that the classes of abelian Polish groups and of 
Polish locally compact groups are Borel. 

3) Let X now be a separable Banach space. Let Subs(X) = {F E 

F(X) : F is a closed (linear) subspace of X}. Then Subs(X) is a Borel set 
in F(X). To see this, notice that if (dr,) is as in 12.13, then for F E F(X) : 

FE Subs(X) {o} 0 E F & VnVmVp, q E Q[Pdn(F) + qdm(F) E Fl. 

(We consider here the case ofreal Banach spaces. One replaces Q by Q+iQ 
for the complex ones.) 

It is a basic result of Banach space theory that every separable Banach 
space is isometrically isomorphic to a closed subspace of C(2N), i.e., there is 
a linear isometry between the given space and a closed subspace of C(2N). 
(To see this, consider the unit ball Bl (X*) of X* with the weak* -topology. 
It is compact metrizable, so let r.p : 2N -+ Bl (X*) be a continuous surjection 
by 4.18. For x E X, let Vlx E C(2N) be defined by 1/Jx(Y) = ip(Y)(x). Then 
x >--+ Vlx is a linear isometry of X with a closed subspace of C(2N).) 

So identifying separable Banach spaces with the closed subspaces of 
C(2N), i.e., with Subs(C(2N)), we can endow the class of separable Banach 
spaces with the relative Borel space of Subs( C(2N)), which again is standard 
by 13.4. We can call this the Borel space of separable Banach spaces. 

(12.20) Exercise. Show that the set of finite-dimensional Banach spaces is 
Borel. 

4) Again let X be a separable Banach space and X* its dual. Let 
Bw' (X*) be the class of Borel sets in X* in the weak* -topology. We claim 
that (X*, Bw' (X*)) is standard. To see this, notice that the closed balls 
Br(X*) = {x* E X* : Ilx*11 :::; r} are closed in the weak*-topology, so if 
Sn = Bn+l(X*)\Bn(X*), then X* is the disjoint union of the {Sn}, Sn E 

Bw'(X*) and thus (X*,Bw'(X*)) is the direct sum of (Sn,Bw.(X*)ISn)' 
But Bw' (X*) ISn are just the Borel sets of Sn in the relative weak* -topology. 
Since Sn is open in the weak* -topology of B n +1 (X*), therefore Polish in 
the weak*-topology, Bw.(X*)ISn is standard and so is (X*,Bw'(X*)). 

(12.21) Exercise. If X* is separable, show that Bw' (X*) coincides with the 
class of Borel sets in the norm-topology (which is of course Polish). 

5) Now let H be a (complex) separable infinite-dimensional Hilbert 
space and let L(H) be the non-separable Banach space of bounded linear 
operators on H. We have already seen, in Example 5) of Section 3 and 
in 4.9, the definition of the strong and weak topologies on L(H). There is 
another important topology on L(H), called the cr-weak topology, defined 
as follows. 
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An operator T E L(H) is compact if T( {x E H : Ilxll ::; I}) ~ H 
has compact closure. We denote by Lo(H) the class of these operators. It 
is a closed subspace of L(H). Although L(H) is not separable, Lo(H) is 
separable. An operator T E L(H) is positive if (Tx,x) :::= 0 for all x E H. 
For such an operator we define its trace by tr(T) = ~n (Ten, en), where {en} 
is an orthonormal basis for H (this definition is independent of the choice 
of such a basis). Thus 0 ::; tr(T) ::; 00. Now for any T E L(H), there is a 
unique positive operator S, usually denoted by ITI, such that IITxl1 = II5:rll 
for all x E H. Denote by Ll(H) the set of trace class operators (i.e., those 
T E L(H) for which tr(ITI) < (0). They form a separable Banach space 
under the norm IITlll = tr(ITI). It turns out that Lo(H)* = Ll(H) and 
Ll(H)* = L(H). (Compare this with Co = el , (el)* = [')C.) So L(H) is 
the dual of a separable Banach space and its weak * -topology is called the 
u-weak topology. 

It turns out that on Ll(H) = {T E L(H) : IITII ::; I}, the weak and 
O"-weak topologies coincide and it is easy to see that on Ll (H) the strong, 
weak, and O"-weak topologies have the same Borel space, which is standard 
by Example 5) of Section 3 or 4.9. Then, as in the preceding Example 4), 
the Borel space of the strong, weak and O"-weak topologies on L(H) is the 
same and standard. We will denote it by B(L(H)). It turns out that the 
usual operations like ST, T* are Borel. (Actually, T f-7 T* is continuous in 
the weak and O"-weak topology, but not in the strong one. The operation 
(S, T) f-7 ST is not continuous in any of these topologies, but is separately 
continuous. It is continuom; in the strong topology on Ll (H).) 

6) (Effros) A von Neumann algebra is a sub algebra A ~ L(H) closed 
in the weak (equivalently in the strong) topology and such that I E A and 
TEA '* T* E A. Since A is completely determined by A = An Ll (H), we 
can identify A with A. Clearly, A E K(Ll(H)), and it can be easily checked 
that VN = {A : A is a von Neumann algebra} is Borel in K(Ll(H)), where 
Ll (H) is given the weak topology, so that it is compact metrizable. So 
we can endow the class of von Neumann algebras with the relative Borel 
space of VN, which is standard by 13.4. It is called the Borel space of von 
Neumann algebras on a separable Hilbert space. It turns out that the basic 
notion of factor, and the classification into types (I, II, III, etc.) define Borel 
subsets of this space (see O. A. Nielsen [1980] or E. A. Azoff [1983]). 

(12.22) Exercise. Let X, Y be separable Banach spaces. Generalize the pre
ceding Examples 4) and 5) to show that the Borel spaces of the weak 
(see 4.9) and strong (see Example 5) of Section 3.A) topologies on L(X. Y) 
are the same and are standard. 

12.F Standard Borel Croups 

(12.23) Definition. A standard Borel group is a standard Borel space G, 
where G is a group and (x ,y) f-7 xy-l is Borel (from G2 'into G). 
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If G is a standard Borel group, it is not necessarily true that there exists 
a Polish topology T giving its Borel space such that (G, T) is a topological 
group. However, if such a topology exists it must be unique. 

(12.24) Proposition. Let G be a standard Borel group. There is at most one 
Polish topology T giving its Borel space so that (G, T) is a topological group. 

Proof. Let T, T' be two such topologies. Then ide: (G, T) ....... (G, T') is a 
Borel, therefore Baire measurable, homomorphism. Consequently, by 9.10 
it is continuous, i.e. T' <:;;; T. Similarly, T <:;;; T', so T = T'. 0 

(12.25) Definition. A standard Borel group G is Polishable if there is a 
(necessarily unique) Polish topology T giving its Borel space, so that (G, T) 
is a topological group. 

(12.26) Exercise. Consider the compact metrizable group ']['N and the sub
group G <:;;; ']['N consisting of the sequences (xn) such that Xn = 1 for all 
large enough n. Show that G is Borel in ']['N and (G, B( G)) is a standard 
Borel group. Show that G is not Polishable. 

(12.27) Exercise. Consider the Polish group ~N and the subgroup f2 <:;;; ~N. 
Show that (f2, B( £2)) is a standard Borel group that is Polishable. 
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13. Borel Sets as Clopen Sets 

13.A Turning Borel into Clopen Sets 

The following is a fundamental fact about Borel sets in Polish spaces. 

(13.1) Theorem. Let (X,T) be a Polish space and A C;;; X a Borel set. Then 
there is a Polish topology L1 :2 T such that B(T4.) = B(T) and A is clopen 
in Ll. 

Proof. \Ve need the following two lemmas, which are interesting in their 
own right. 

(13.2) Lemma. Let (X, T) be Polish and F C;;; X closed. Let TF be the 
topology genem.ted by T U {F}. i.e .. the topology with basis T U {U n F : 
U E T}. Then TF is Polish, F is clopenin TF, and B(TF) = B(T). 

Proof. Note that ~. is the direct sum of the relative topologies on F and 
~ F so. by 3.11, TF is Polish. D 

(13.3) Lemma. Let (X, T) be Polish and let ('T,,)nEN be a sequence of Polish 
topologies on X with T C;;; 'T", n EN. Then the topology Too genemted by 
Un 7" is Polish. Morcovcr, if7" C;;; B(T). B(T')0) = B(T). (As we wzll see 
in 15.4.7" C;;; B(T) IS implied by T C;;; 7".) 

Proof. Let XII = X for n. E N. Consider the map zp : X .....c, ITn X" given by 
zp(x) = (:r .. r, ... ). Note first that :.p(X) is closed in ITn(Xn.Tn). Indeed, if 
(XII) t/' :.p(X), then for some i < j, Xi'" Xj, so let U, V be disjoint open in 
T (t hus also open in 7" T; resp.) i:mch that :c i E U. Xj E V. Then 

(xn) E Xo x··· X X'-l X U X X i+1 x··· X X j - 1 X V X X j +1 x··· C;;; ~ :.p(X). 

So :.p(X) is Polish. But. zp is a homeomorphism of (X, TX)) with zp(X). 
so (X. T')0) is Polish. 

If 7" C;;; B(T) and {U/n)};EN is a basis for Tn, then {U/n)knEl\! is a 
sub basis for T=, so Tx C;;; B(T) as well. D 

Consider now the class S of subsets A of X for which there exist::; a 
Polish topology Ll :2 T with B(TA ) = B(T) and A c10pen in TA . It i::; 
enough to show that T C;;; Sand S is a O"-algebra. The first assertion follows 
from 13.2. Clearly, S is closed under complements. Finally, let {An} C;;; S. 
Let 7" = T4. n satisfy the above condition for An. Let Tx be as in 13.3. 
Then A = Un An is open in TXJ and one more application of 13.2 completes 
the proof. 0 

(13.4) Corollary. Let (X,S) be a standard Borel space and Y C;;; X be in S. 
Then (Y,SIY) is also standard. (Note that SlY = {A C;;; Y:A. E S}, since 
YES.) 
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Pmoj. We can assume that X is Polish and S = B(X). Since Y is Borel, 
we can assume without loss of generality, by 13.1, that Y is clopen and 
therefore Polish. Since B(X)IY = B(Y), (Y, B(X)[Y) is standard. 0 

(13.5) Exercise. Let (X, T) be Polish and (An) a sequence of Borel sets. 
Show that there is a Polish topology T' on X with T c: T', B(T) = B(T') 
and All clopen in T' for all n. Show, moreover, that T' can be taken to be 
zero-dimensional. 

The following application of 13.1 solves the cardinality problem for 
Borel sets in Polish spaces. 

For convenience we will say that a subset C of a topological space is a 
Cantor set if it is homeomorphic to the Cantor space C. 

(13.6) Theorem. (The Perfect Set Theorem for Borel Sets) (Alexandrov, 
Hausdorff) Let X be Polish and A c: X be Borel. Then either A is covntable 
OT else -it contains a CantoT set. In particular, eveTY uncountable standard 
Bord space has cardinality 2No. 

Prooj. By 13.1 we can extend the topology T of X to a new topology 7.4 
with the same Borel sets in which A is clopen, so Polish (in the relative 
topology.) By 6.5, if A is uncountable, it contains a homeomorphic (with 
respect to 7.4.) copy of C. But since T c: T1, this is also a homeomorphic 
copy with respect to T. 0 

lS.B Other Representations of Borel Sets 

The following are useful representations of Borel sets. 

(13.7) Theorem. (Lusin-Souslin) Let X be Polish and A c: X be Borel. 
There is a closed set F c: N and a continuous bijection f:F ----+ A. In par
tic1Llar, if A cf 0, there is also a continlLolLs s'lLTjeciion g:N ----+ A extending 
f. 
Pmoj. Enlarge the topology T of X to a Polish topology TA in which A 
is clopen, thus Polish. By 7.9, there is a closed set F c: N and a bijection 
f : F ----+ A continuous for TA [A. Since T c: 7.4., f : F ----+ A is continuous 
for T as well. The last assertion follows from 2.8. 0 

(13.8) Exercise. Derive 13.6 using 13.7 and 8.39. 

(13.9) Theorem. Let X be Polish and A c: X BOTel. Then theTe is a LlLsin 
scheme (AS)SEN<f' slLch that 

i) As is Borel: 
ii) A0 = A, As = Un A,,'n, 8 E N<N; 
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iii) if x E Nand Axln -I- 0 for all n, then Ax = nn Axln is a singleton 
{x*} and for any Xn E An, Xn ---. X*. 

Moreover, if d is a compatible metric for X, we can make sure that 
diam(A,,) ::; 2-1ength(s), if s -I- 0. 

Proof. Let TA be a Polish zero-dimensional topology extending the topology 
T of X with B(TA) = B(T) and A clop en in TA (by 13.5). Let dA be a 
compatible metric for TA, and note that dA = d + dA is also a compatible 
metric for 7.4, so we can assume that d ::; dA. Now it is easy to define 
recursively on length(s), As, so that As is clop en in TA and satisfies i), ii), 
and iii) of the statement, and diam(A.) ::; 2-1ength(s) for s -I- 0. D 

(13.10) Exercise. Let X be Polish and A S;; X Borel. Show that there is a 
closed set F S;; X x N such that 

x E A¢} 3y(x, y) E F ¢} 3!y(x, y) E F, 

where "3!" abbreviates "there exists unique". Similarly, there is G S;; X x 
C, GaG fJ set satisfying (*). Show that G cannot in general be taken to be 
Fa in X xC. 

18. C Turning Borel into Continuous Functions 

Finally, we derive some consequences concerning Borel functions. 

(13.11) Theorem. Let (X,T) be a Polish space, Y a second countable space, 
and f:X ---. Y a Borel function. Then there is a Polish topology Tt :2 T 
with B(Tt) = B(T) such that f:(X ,Tt) ---. Y is continuous. 

Proof. Let {Un} be an open basis for Y. Consider the sets f-l(Un ) and use 
13.5. D 

(13.12) Exercise. i) Let (X, Tx ), (Y, Ty) be Polish and f : X ---. Y a Borel 
isomorphism. Show that there are Polish topologies T~ :2 Tx , T{. :2 Ty 

with B(T~) = B(Tx ), B(T?) = B(Ty ) such that f : (X, T~) ---. (Y, T?) is 
a homeomorphism. 

ii) Formulate and prove versions of 13.11 and part i) of this exercise 
for a countable sequence of functions. 



14. Analytic Sets and the Separation Theorem 85 

14. Analytic Sets and the Separation Theorem 

14.A Basic Facts about Analytic Sets 

(14.1) Definition. Let X be a Polish space. A set A <;: X is called analytic 
if there is a Polish space Y and a contin'Uo'Us f'Unction f: Y ----+ X with 
f(Y) = A. (The empty set is analytic, by taking Y = 0.) 

By 7.9, we can take in this definition Y = N if A '" 0. The class of 
analytic sets in X is denoted by 

(The classical notation is A(X).) 
It follows from 13.7 that 

~i(X). 

B(X) <;: ~i(X). 

This inclusion is proper for uncountable X. 

(14.2) Theorem. (Souslin) Let X be an 'Unco'Untable Polish space. Then 
B(X)~~i(X). 

Proof. Let f be a class of sets in arbitrary Polish spaces (such as open, 
closed, Borel, analytic, etc.). By r(X) we denote the subsets of X in f. 
If U <;: N x X, we call UN-universal for f(X) if U is in f(N x X) and 
r(X) = {Uy : YEN}. 

First notice that there is an }/-universal set for ~?(N). Indeed, enu
merate N<N in a sequence (571) and put (y, x) E U ¢} x E U{Ns , : y(i) = a}. 

Since N 2 is homeomorphic to N, it follows that there is an /v- universal 
set for ~?(N2), and by taking complements there is an N-universal set F 
for II?(N2). We now claim that A = {(y,x) : 3z(y,x,z) E F} is N
universal for ~i(N). Since projection is continuous, A and all sections Ay 
are ~t. Conversely, if A <;: N is ~L there is closed F <;: N and continuous 
surjection f : F ----+ A (F could be empty). Let G = graph(f)-l, so that G 
is closed in N 2 and x E A¢} 3z(x, z) E G. Let yEN be such that G = F y . 

Then A = A y . 

Now A cannot be Borel, since then ~ A would be too, so A = {x : 
(x, x) t/:- A} would also be Borel and thus analytic, so for some Yo, A = Ayu 
(i.e., (x,x) t/:- A¢} (Yo, x) E A). Let x = Yo, to get a contradiction. 

Since every uncountable Polish space X contains a homeomorphic copy 
of N, it follows that B(X)~~t(X) as well. 0 

The following exercise gives another representation of analytic sets. 
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(14.3) Exercise. Let X be Polish and let A ~ X. Then the following are 
equivalent: 

i) A is analytic. 
ii) There is Polish Y and Borel B ~ X x Y with A = proh(B). 
iii) There is closed F ~ X x N with A = proh(F). 
iv) There is Go G ~ X x C with A = proh(G). 

Here are some additional basic closure properties of the analytic sets. 

(14.4) Proposition. i) If X is Polish and An <;:; X are analytic, then 
Un An, nn An are analytic. 

ii) If X,Y are Polish and f:X -; Y is Borel, then for A ~ X analytic 
and B <;:; Y analytic, f(A), rl(B) are analytic. 

Proof. i) Let Yn be Polish and fn : Yn -; X continuous with fn(Yn ) = 
An. We can assume that the spaces Yn are disjoint and thus Un fn maps 
continuously the direct sum of (Yn) onto Un An, so Un An is analytic. 

Now let Z = ((Yn) E ITn Yn : fn(Yn) = fm(Ym), for all n, m}. Then Z 
is closed in ITn Yn, and so is Polish. If f : Z -; X is defined by f((x n)) = 

fo(xo), f is continuous and f(Z) = nn An, so nn An is analytic. 
ii) We have 

Y E f(A) {=} 3x(x E A & f(x) = y) 

{=} 3x(y, x) E F 

(where (y, x) E F {=} x E A & f(x) = y), i.e., f(A) = projy(F). Since 
projection is continuous and, obviously, continuous images of analytic sets 
are analytic, it is enough to show that F is analytic. By 12.4, {(y, x) : 
f(x) = y} is Borel, so it remains to check that {(y,x) : x E A} = Y x A is 
:EHY x X). Let Z be Polish and 9 : Z -; X be continuous with g(Z) = A. 
Then g* : Y x Z -; Y x X given by g*(y,z) = (y,g(z)) is continuous and 
g* (Y x Z) = Y x A. 

Finally, note that 

x E rl(B) {=} 3y(J(x) = y & y E B), 

so we are done as before. o 

(14.5) Definition. If X is a standard Borel space and A ~ X, we say that 
A is analytic if there is a Polish space Y and a Borel isomorphism f:X -; 
Y such that f (A) is analytic in Y. (By the preceding proposition, this is 
independent of the choice of Y,f.) We will again denote by :Ei(X) the 
class of analytic subsets of x. 

(14.6) Exercise. Show that for any standard Borel space X, :Et(X) = {A <;:; 
X : for some standard Borel space Y and Borel f : Y -; X, f(Y) = A} = 
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{A ~ X : for some standard Borel space Y and Borel B ~ X x Y, A = 
proh(B)}. 

14.B The Lusin Separation Theorem 

The following result is of fundamental importance. 

(14.7) Theorem. (The Lusin Separation Theorem) Let X be a standard 
Borel space and let A,B ~ X be two disjoint analytic sets. Then there is a 
Borel set C ~ X separating A from B, i.e., A ~ C and en B = 0. 

Proof. We can assume of course that X is Polish. Call two subsets P, Q of 
X Borel-separable if there is a Borel set R separating P from Q. 

(14.8) Lemma. If P = Um Pm, Q = Un Qn, and Pm,Qn are Borel-separable 
for each m,n, then P,Q are Borel-separable. 

Proof· If Rm,n separates Pm, Qn, then R = Um nn Rm,n separates P, Q. 0 

Assuming now, without loss of generality, that A, Bare nonempty, let 
f : N -+ A, g : N -+ B be continuous surjections. Put As = feNs), Bs = 

geNs). Then As = Urn As'rn' Bs = Un Bs'n. If A, B are not Borel
separable, toward a contradiction, then by repeated use of Lemma 14.8 
we can recursively define x(n), yen) EN such that A xln , BYln are not Borel
separable for each n E N. Then f(x) E A, g(y) E B, so f(x) #- g(y). Let 
U, V be disjoint open sets with f(x) E U, g(y) E V. By the continuity of 
f, g, if n is large enough we have f(Nx1n ) ~ U, g(Nyln ) ~ V, so U separates 
Axln from B yln , a contradiction. 0 

The following extension is immediate. 

(14.9) Corollary. Let X be a standard Borel space and (An) a pairwise 
disjoint sequence of analytic sets. Then there are pairwise disjoint Borel 
sets Bn with Bn :2 An· 

14. C Souslin's Theorem 

(14.10) Definition. Let X be a Polish space and let A ~ X. We call A 
co-analytic if rv A is analytic and similarly when X is a standard Borel 
space. We denote by IIi(X) the class of co-analytic subsets of X. (The 
classical notation is CA( X).) The hi-analytic sets are those that are both 
analytic and co-analytic. Their class is denoted by at(X), i.e., at (X) = 

~t(X) n IIt(x). 
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(14.11) Theorem. (Souslin's Theorem) Let X be a standard Borel space. 
Then B(X) = ~i(X). 

Proof. Take B = cv A in 14.7. o 

One final application provides a converse to 12.4 in standard Borel 
spaces. 

(14.12) Theorem. Let X,Y be standard Borel spaces and f:X ----7 Y. Then 
the following are equivalent: 

i) f is Borel; 
ii) graph(f) is Borel; 
iii) graph(f) is analytic. 

In particular, if f is a Borel bijection, then f 'is a Borel isomorphism (i. e., 
f- 1 is also Borel). 

Proof. It is enough to show that if graph (f) is analytic, f is Borel. Let A 
be Borel in Y. Then 

(1) 

(2) 

x E rl(A) ¢} :3y[f(x) = y & yEA] 

¢} Vy[J(x) = y * YEA]. 

It is clear by (1) that f-l(A) is analytic and by (2) that f-l(A) is co
analytic (since the negation of (2) is :3y[J(x) = y & y fJ- A]), so f-l(A) is 
in ~i(X) = B(X). 0 

(14.13) Exercise. (The Perfect Set Theorem for Analytic Sets) (Souslin) 
Let X be a Polish space and let A C;;; X be analytic. Show that either A is 
countable or else A contains a Cantor set. In particular, every uncountable 
analytic set in a standard Borel space has cardinality 2No. (This extends 
13.6 and solves the cardinality problem for analytic sets in Polish spaces.) 

(14.14) Exercise. Let X be a standard Borel space. Let E be an analytic 
equivalence relation on X (i.e., E E ~i(X2)). Let A, B C;;; X be disjoint 
E-invariant analytic sets. (A set A C;;; X is E-invariant if x E A and xEy 
imply yEA.) Show that there is an E-invariant Borel set C separating A 
from B. 

(14.15) Exercise. Let G be a group with a Polish topology in which multi
plication is separately continuous. Show that G is a topological group. 

(14.16) Exercise. (Blackwell) Let X be a standard Borel space and (An) 
a sequence of Borel sets in X. Consider the equivalence relation xEy ¢} 

Vn(x E An ¢} YEAn). Show that a Borel set A C;;; X is E-invariant iff it 
belongs to the a-algebra generated by {An: n E N}. 
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15. Borel Injections and Isomorphisms 

lS.A Borel Injective Images of Borel Sets 

Although the continuous image of a Borel set need not be Borel, we have 
the following basic fact. 

(15.1) Theorem. (Lusin-Souslin) Let X,Y be Polish spaces and f:X -> Y 
be continuous. If A s: X is Borel and flA is injective, then f(A) is Borel. 

Proof. By 13.7 we can assume that X = N and A is closed. Let Bs = 

f(AnNs ) for 8 E N<N. Then, since flA is injective, (Bs) is a Lusin scheme, 
B0 = f(A), Bs = Un Bs"n, and Bs is analytic. So by 14.9 we can find a 
Lusin scheme (B:), with B~ Borel, such that B0 = Y, Bs s: B~. We finally 
define by induction on length(s) Borel sets B;, such that (B;) is also a 
Lusin scheme, as follows: 

B0 = Bqp 
B(nll) = Bino) n B(no), 

B* - B' n B* n B (nD ..... ne) - (no, .... n") (no, .. ,n,,_,) (no . ... nd· 

Then we can easily prove by induction on k that B(no". ,nc) s: B(nll .... nd s: 
B(no,.n<l' We claim now that 

f(A) = nUB:, 
k sENk 

which shows of course that f(A) is Borel. 
If x E f(A), let a E A be such that f(a) = X, so that x E n" Balko and 

thus x E' nk B~lk' Conversely, if x E nk UsENk B;, there is unique a EN 

such that x E nk B~lk' Then also x E nk Balko so in particular Balk. # 0 
for all k and thus An Nalk # 0 for all k, which means that a E A since A 
is closed. So f(a) E nk.Balk. We claim that f(a) = x. Otherwise, since f is 
continuous, there is an open nbhd Nalko of a with f(Nalk,J s: U, where U 

is open such that x tt V. Then x tt f(Nalko ) :::2 Balkll' a contradiction. 0 

(15.2) Corollary. Let X,Y be standard Borel spaces and f:X -> Y be Borel. 
If A c;:: X is Borel and flA is injective, then f(A) is Borel and f is a Borel 
isomorphism of A with f(A). 

Proof. First we can clearly assume that X, Yare Polish. Then we can apply 
15.1 to the projection of X x Y onto Y and the set (A x Y) ngraph(f). 0 

(15.3) Exercise. Show that the Borel sets in Polish spaces are exactly the 
injective images by continuous (equivalently Borel) functions of the closed 
subsets of N. 
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(15.4) Exercise. i) Let (X, T), (X. T') be Polish with T <;;: B(T'). Then 
B(T) = B(T'). (In particular. T <;;: T' implies that B(T) = B(T')). 

ii) Let (X. S) be a standard Borel space. Let [ <;;: S be countable and 
assume [ separates points. Then S = 0"( [). 

RemorA:. Notice that 15.1 implies the more general version in which Y is 
allowed to he just separahle metrizable. since we can view Y as a subspace 
of a Polish space. Similarly. in 15.2 we can allow Y to be just count ably 
generated and separating points (by 12.1). 

(15.5) Exercise. Show that there is a closed set F <;;: N2 such that the map 
:1' f--> F J , from N to F (/1/). is not Borel. 

15. B The Isomorphi.srn Theorem 

The next result classifies standard Borel spaces up to isomorphism. 

(15.6) Theorem. (The ISOlnorphism Theorem) Let X,Y be standar'd Borel 
spaces. Then XX are Borel isomorphic iff card(X) = card(Y). In partic
ular. an:if two uncountable standard Borel spaces aTe Borel isomorphic. 

Proof. It is enough to show that if X is an llllcountable Polish space, then 
X is Borel isomorphic to C. By 7.8,7.9 and 14.12. there is a Borel injection 
f: X f--> C. (As B. V. Rao and S. ]\1. Srivastava point out. this can be also 
seen in a more elementary ,vay as follows: By 3.12 and 3.4 ii). C and [ are 
Borel isomorphic and thus so are C and [1'1. But X is homeomorphic to a 
subspace of [N hy 4.14.) By 6.5 there is a continuous, thus Borel. injection 
9 : C ---. X. So it is enough to prove the following fact, which ii:i important 
in its own right. 

(15.7) Theorem. (The Borel Schroder-Berni:itein Theorem) Let X,Y be 
standard Borel spaces and f:X ---. Y, g:Y ---. X be Borel injections. Thcn 
there are Borel sets A <;;: X, B <;;: Y such that f(£1) = Y\B and g(B) 
X\£1. In particular. X and Y ar'e Borel isomorphic. 

Proof. Define inductively X". }~, ai:i follow::;: Xo = X, Yr) = y. X 1l + 1 = 

gf(X,,), }~'+l = fg(Y,,)· Let Xx = nIl X n, Yoc = nn Y". Then f(Xx) = 

Yx and f(Xn \g(Y,,)) = f(Xn) \ Y,,+l, g(Y" \f(Xn)) = g(Y,,) \Xn+ 1· Finally 
let A = Xx U U"(X,, \ g(}~,)), B = Un(Y" \ f(XIl )). All the8e sets are 
Borel by 15.2. 0 

o 

Notice that, by the same proof, 15.7 holds more generally when X. Y 
are measurable i:ipaces, f is an isoIllorphism of X with a measurable sub-
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space of Y, and 9 is an isomorphism of Y with a measurable subspace of 
X. 

(15.8) Exercise. Let X, Y be standard Borel spaces and A c:;; X, B c:;; Y 
Borel sets. Show that there is a Borel isomorphism f : X ---> Y with f(A) = 

B iff card(A) = card(B) and card(X\A) = card(Y\B). 

15.C Homomorphi8m8 of Sigma-Algebm8 Induced by Point 
Map 8 

The Isomorphism Thfc)orem is often used to reduce a problem from arbitrary 
standard Borel spaces to a particular one that is appropriately chosen for 
the problem at hand. Let us consider an example of this. 

Let (X, S) be a measurable space and I c:;; S a a-ideal in S (Le., I 
is closed under subsets that are in S and countable unions). As usual, we 
let for A,B E S: A =I B ¢o} AL~.B E I and [A] = {B : B =I A}. Let 
SII = {[A] : A E S}. With the partial ordering [A] ::; [B] ¢o} A\B E 

I, S II as a Boolean a-algebra. In general, in a Boolean a-algebra we 
denote by -a the complement of a and by V"an the supremum of {an}, 
also called the countable join of {an}. In the case of S II we have - [A] = 

[~ A] and v,,[A,,] = [UrIAn]. A map between Boolean a-algebras is a 
a-homomorphism if it preserves complements and countable joins. 

(15.9) Theorem. (Sikorski) Let (X,S) be a measumble space, I c:;; S a a
ideal in S, and Y a nonempty standard Borel space. If <I>:B(Y) ---> S II is 
a a-homomorphism, then there is a measumble map cp:X ---> Y such that 
<I>(B) = [cp-l(B)] for any BE B(Y). This cp is uniquely determined modulo 
I (i.e., i/1./) is another such map, then {x:cp(x) #1p(x)} EI). 

Proof. By the Isomorphism Theorem we can as~mme that Y = [0,1]. (The 
case where Y is countable is straightforward.) 

For p E IQln [0.1] we can choose Bp E S with [Bp] = <I>([O,p]) snch that 
Bl =X. 

For .T E X, now let cp(x) = inf{p : x E Bp}. Then cp : X ---> [0,1] and 
{x: cp(x) < a} = Up<o Bp for a E (0,1]' so cp is mcasurable. If 1>: B(Y)---> 
SII is given by 1>(B) = [cp-l(B)], then 1> is also a a-homomorphism and 
<P,1> agree on the intervals [O,p), p E IQln [0,1]. Since the class {B E B(X) : 
<I>(B) = 1>(B)} is a a-algebra, we have <I> = 1>, which completes the first 
part of the proof. 

For the uniqueness, suppose that 1/J is another such map and, say, 
{x : cp(x) <1/J(x)} tJ. I. Then, since I is a a-ideal, there is a rational 
p with A = {x : cp(x) ::; p < lp(X)} = cp-l([O,p])\1/J-l([O,p]) tJ. I. But 
[cp-l([O,p])] = <p([O,p]) = [1/J-l ([O,p])], so A E I, a contradiction. 0 



92 II. Borel Sets 

This result in turn has the following consequence. 

(15.10) Theorem. Let XX be standard Borel spaces and I ~ B(X), J ~ 
B(Y) be (J-ideals in B(X), B(Y), respectively. Then <p:B(Xl/I -+ B(Yl/ J 
is an isomorphism (of the corresponding Boolean algebras) iff there are 
Borel sets Xo ~ X. Yo ~ Y with rv Xo E I, rv Y(l E J and a Borel 
isomor]Jhi8m ep:Y() -+ Xo such that <I>([A]) = [:p-l(A n Xol]. Such a:p is 
uniquely determined modulo J. If both I and J contain rLnco'llntable sets. 
then we can actually take Xo = X and Y() = Y. 

~mof. By 15.9, let tjJ : Y -+ X he B_orel with <I>([AD = [tjJ-l(A)] and 
I/J : X -+ Y ~e Borel \vith <I>-l([B]) = [r/,-l(Bl]. TheIlU·' 0 tjJ = id} modulo 
J and tjJ 0 1/) = idx modulo I. So there are Borel sets Xu ~ X, Y() ~ Y 
with rv Xu E I, rv Y() E J t-iuch that :p = tjJlY() : Yo -+ Xo is a Borel 
isomorphism. 

The last assertion is evident. since any two uncountable standard Borel 
spaces are Borel isomorphic. D 

(15.11) Exercise. Let X be a standard Borel space and I ~ B(X) a (J
ideal in B(X). If <I> is an automorphism of B(X)/I. then there is a Borel 
automorphism rp of X such that <I>([AJ) = rep-leA)]. 

(15.12) Exercise. Recall the category algebra of 8.32. Since every set 
with the BP is equal to a Borel set modulo meager sets, it follows that 
CAT(X) = BP(X)/l\lGR(Xl = B(X)/(B(X) n MGR(X)) under the ob
vious identifications. Show that if X is perfect Polish, any automorphism 
of CAT(X) is induced by a homeomorphitilIl of a dense Ch in X (i.e .. if <I> 

is an automorphism, there i" a dense G~ set G ~ X and a hOlneolUOrphit-iIll 
ep of G onto itself with <I>([A]) = [:p-l(A nO)]). 

lS.D Some Applications to Group Actions 

Let G be a standard Borel group, X a standard Borel space, and (g .. r 1 f--+ 

g .. x a Borel action of G on X (i.e., the action iti a Borel map of G x X 
into X). The orbit of .r E X is the set {g.:r : 9 E G}. Any two distinct 
orbits are disjoint and thus the orbitti give a partition of X. \Ve denote the 
equivalence relation on X whose equivalence clasties are the orbits by Ec;. 
Thwi for .r, y E X, 

:rEc;y ¢} 3g E G(gJ = y). 

It is easy to verify that Ec; is analytic (in X2). In generaL however (tieE', 
e.g., Sections 16.C and 27.D), it iti not Borel. Here are two caseti where it 
is actually Borel. 
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(15.13) Exercise. i) Let G be a standard Borel group, X a standard Borel 
space, and (g, x) f--> g .. r a Borel action of G on X. This action is called free 
if for :1: E X, 9 1= L g.:r 1= .T. Show that if the action is free, Ec is Borel. 

ii) Let G be a Polish locally compact group, X a Polish space, and 
(g, :r) f--> g.x a continuous action of G on X. Show that Ec is F(}" 

\lVe have now the following basic fact concerning orbits of Borel actions 
of Polish groups. 

(15.14) Theorem. (l\Iiller) Let G be a Pol'ish grolLp, X a standard Borel 
space, and (g,x) f--> g,:r a Borel action ofG on X. Then every orbit {g.x:g E 
G}is Borel. 

Proof. By 9,17 the stabilizer GJ: = {g : g.:1: = J:} of x E X is a closed 
subgroup of G, So by 12.17, let Tr be a Borel set meeting every left coset of 
G.l' in exactly one point. Note that g.x = h.:T iff h-1g .. T = x iff h-1g E G,,: iff 
9 E hG.I iff g. h belong to the same left coset of G x' Thus the map g f--> g.x 
is a Borel bijection of Tr with {g.x : 9 E G}, so this orbit is Borel. 0 

(15.15) Exercise. Let G be a Polish group, H a standard Borel group, and 
r.p : G -> H a Borel homomorphism. Then r.p( G) is Borel in H. 
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16. Borel Sets and Baire Category 

16.A Borel Definability of Category Notions 

Every Borel set has the BP, and every Borel function is Baire measurable. 
We will calculate next the complexity of the property of being meager for 
Borel sets. 

(16.1) Theorem. (Montgomery, Novikov) Let (X,S) be a measurable space, 
Y a Polish space, and A C;;; X x Y a measurable set (Jar S x B(Y». Then 
for any open set U C;;; Y, 

{x EX: Ax is meager in U} 

and the corresponding sets with "meager" replaced by "non-meager" or "co
meager" are measurable. 

Proof. If U is empty the result is trivial, so let us assume that U varies over 
nonempty open sets. Let {Un} be a basis of nonempty open sets for Y. 

Consider the class A of measurable sets A C;;; X x Y such that the set 

Au = {x EX: Ax is not meager in U} 

= {x EX: :3* y E U (x, y) E A} 

is measurable for every open nonempty U C;;; Y. We will show that A con
tains all the rectangles S x V with S E S and V open in Y and is closed 
under complementation and countable unions. This implies that it contains 
all measurable sets in X x Y, and our proof is complete. 

and 

This follows immediately from the following properties: 

i) If S E S, V is open in Y, then 

(S x V)u = S, if Un V ! 0, 

(S x V)u = 0, if un V = O. 

ii) (Un An)u = Un(An)u. 

iii) (rv A)u = rv nu"cu(A)u". 

Only iii) is not straightforward. We have 

x E (rv A)u B :3*y E U rv A(x,y) 
B -,'g'*y E U A(x, y) 

B -,'g'Un C;;; U:3*y E UnA(x, y), 

where the last equivalence follows from 8.27 ii) (see also Section 8.J) since 
Ax is Borel and therefore has the BP. 0 



16. Borel Sets and Baire Category 95 

Notice that the previous result can be expressed by saying that if A <:: 
X x Y is measurable, then so are 

B(x) ¢} 'I/*y E U A(x, y), C(x) ¢} 3*y E U A(x, y); 

i.e., the category quantifiers 'I/*y E U, 3*y E U preserve measurability. This 
is far from true for the usual quantifiers 'l/y, 3y. (Why?) 

We will discuss now some applications to group actions and model 
theory. 

16.B The Vaught Transforms 

Let G be a Polish group, X a standard Borel space, and (g, x) f--7 g.x a 
Borel action of G on X. 

Let us denote by [A] the saturation of A, i.e., the smallest invariant 
(under the action or equivalently the associated equivalence relation Ec) 
set containing A, and by (A) the hull of A, i.e., the largest invariant set 
contained in A. Then [A] = {x : 3g E G(g.x E A)}, (A) = {x : 'l/g E 

G(g.x E A)}, and (A) S;;; A S;;; [A]. 
If A is Borel, then (A) is co-analytic and [A] is analytic. 

(16.2) Definition. For A S;;; X, let A* = {x:'I/*g E G(g.x E A)} and A.6. = 
{x:3*gEG(g.xEA)}. WecallA*,A.6. theVaughttransformsofA. We can 
also define the local Vaught transforms of A as follows: For U nonempty 
open in G, let A*u = {x:'I/*g E U(g.x E A)}, A.6.U = {x:3*g E U(g.x E A)}. 

(16.3) Proposition. i) The Vaught transforms A * ,A.6. are invariant and 
(A) S;;; A* S;;; A.6. S;;; [A]. Thus A is invariant iff A = A* iff A = A.6.. 

ii) If A is Borel, so are A *u, A.6.u. In particular, A *, A.6. are Borel 
invariant sets sandwiched between the hull and the saturation of A. 

Proof. i) Let x E A*, so that {g : g.x E A} is comeager. Then for any 
h E G, {g : g.x E A}h- 1 = {gh- 1 : g.x E A} = {g : g.(h.x) E A} is 
also comeager, i.e., h.x E A*. The proof for A.6. is similar. The inclusions 
(A) S;;; A* S;;; A.6. S;;; [A] are straightforward. 

ii) If A is Borel, let (x, g) E A ¢} g.x E A, so that A is Borel and note 
that A*u = {x : Ax is comeager in U}, which is Borel by 16.1 (similarly for 
A6.U). 0 

(16.4) Exercise. i) Show that A6.U = "" ("" A)*u, x E A*u ¢} g.x E 

A*(Ug- 1
) (n A )*u = n (A )*u and (U A ).6.U = U (A ).6.U 'nn nn, nn nn· 

ii) If {Un} is a weak basis for G and A, An are Borel, then ("" A)*u = 
"" Uunc;;u A*un and (Un An)*U = nuiC;;U UUjC;;Ui Un (An)*U j • 
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16. C Connections with Model Theory 

(16.5) Definition. Let L be a countable language, which for notational sim
plicity we assume to be relational, say L = (R;)iEJ' whcre I is countable, 
and Hi is an 7li-ary relat'ion symbol. Denote by XL the spacc 

XL = 2 . IT ]\in, 

which is homeomorphic to C, if L # 0. We view XL as the space of countably 
infinite structures for L, since every x = (:c,) E XL can be identified with 
the structure AJ = (H, (RfJ')iEI)' where RfT (s) <* Xi (s) = 1 foT' 8 E H'" . 

The Polish group Sx acts in the obvious way on XL : 

In other words, g.:r = y iff 9 is an isomorphism of At with A.4 • This action, 
called the logic action, is clearly continuous. The associated equivalence 
relation is just isomorphism, i.e .. 3g E S,x(g.x = y) iff Ar~A4 (~ denotf's 
isomorphism of structures). It follows that ~ is analytic (but in general not 
Borel; see Section 27.D). 

\Ve have immediately from 15.14 the following result. 

(16.6) Theorem. (Scott) The isorrwrphisrn class {,lj:Ar~A4} of any.r E XL 
is Borel. 

Consider now the logic LC,)p'; based on the language L. It is the ex
tension of first-order logic associated with L ill which for any countable 
sequence (;Pn) of formulas whosf' free variables are among Vi), ...• Vk-l (for 
some k independent of n) we can form the infinite conjunction and disjunc
tion /\n;Pn. V n;PTl' So every formula has finitely many free variables. For 
any structure A = (A, (Ri)iEI) for L. any formula ;p(vo .... ,Uk-I! of LWlo.! 
whose free variables are among 1'0 •... ,Vk-l, and any 00, .... ak-J E A, the 
notation A F ;p[ao, ... ,(lk-l] means as usual that A satisfies the formula 
;p(vo, ... , vk-d, when Vi is interpreted by a,. 

(16.7) Proposition. Let ;p(uo, ... ,Uk-l) be a formula of L""o.!' Then the set 
A<p.k ~ XL X Hk defined by 

(x, s) E A,d <* AI' F )C[so, .... 8k-d 

is Borel (in XL x Hk. with H discrete). 

Proof. By induction OIl the COIlstrll('tion of )C. If ;p is atomic, say, for exam
ple, ;p is R,O (uo. 1'1) (to E 1), then letting :J: = (Xi) E XL we have 
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so this set is dopen. Clearly, A~cp.k = ~ Acp.k, (here 'lP is the negation 
of 'n), AA •. 0 t. = n A~ 1.:. etc" .. for the Boolean connectives, including r HT'II''''' 11, Tn, I 

the infinitary ones. Finally, if, e.g., lP is the formula 3vl.:1/!( Vo, ... ,Vk-l, Vk), 

then 
(x, s) E A,d {=? 3rn(x, sAm) E A~).k+l' 

so Acp.k = Urn f;;;l(A,,'J.h+l), where fm : XL x I'll.: --> XL X Nk+1 is the 
continuous function fm(:r;,s) = (x, sAm). 0 

Note now that if a is a sentence in L W1W (Le., a formula with no free 
variables), then An- (= A".o = {x: A, F a}) is invariant Borel in XL (i.e., 
~-invariant). The following is the converse. 

(16.8) Theorem. (Lopez-Escobar) The 'invariant Borel subsets of XL are 
exactly those of the form An-, fO'r!T a sentence of LW1W ' 

Proof. (Vaught) The group S% is topologically a Co subspace of N. We fix 
a particular hasis for S0C as follows: 

Denote hy (I'l)k the set of 1l E I'll.: that are injective (i.e., U; i- Uj if 
i i- j). For u E (I'l)", let 

[u] = {g E Sx : 11 S;;; g -1 }. 

In particular, for k = 0, [0] = SCjQ. Clearly, {[1L] : 1l E (N)k, kEN} is a 
basis for Sex. 

For A S;;; XJ~, kEN, let 

A*k = {(x, u) : 1L E (I'l)" & x E A*[u1}. 

ALlA = {(:r;,11): Ii. E (I'l)" & x E ALl[u1}. 

The basic fact now follows. 

(16.9) Proposition. For each Bard set A S;;; XL and kEN, A*" is of the 
form Acp,.k faT some formula lPk(l'O, ... ,1'k-d of LW1W ' 

Granting this, let A S;;; XL be Borel invariant and take k = O. Then 
A * = A is of the form Aa for a a sentence of Lw J w. 

Proof. (of 16.9) We show that the class of A S;;; XL satisfying 16.9 contains 
the sets of the form 7T'.i 1 (U) for j E I and U a basic open set in 2M"j 

(here 7T'.7((Xi)) = :J'j) and is dosed under complementation and countable 
intersections. 

First, fix j E I and U a basic open set in 2M"] . Then it is easy to check 
that 7T'j1(U) has the form 

A = {:r E XL: Ax F e [(), .... p - l]}, 
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for some pEN and a formula e(vo, ... , Vp-l) that is a boolean combination 
of atomic formulas of L. Then for any kEN, 

(.x,U) E A*" ¢} U E (N)/,; & \:I*g E [11](g .. r E A) 

¢} 11 E (N)" & \:I*g E [u](AgJ F e[o .... ,p - 1]) 

¢} U E (N/' & \:I*g E [u](Ac r= e[g-l(O), .... g-l(p - 1)]). 

If k:2" p, then, since 9 E [11] ¢} 11 c;:: g-1, we have (g-l(O), .... g-l(p_ 
1)) = (l1(h ... , (Jp-l ). so 

(x, u) E A*A ¢} U E (N)k & Ax F e[110 .... , 11p-d. 

Thus A*h' = Ap".k with 'Pk(VO,.'" 'Uk-J) being the formula Ai<j<dv ,. "I
Vj) A e(e{) , ... ,lip-I). 

On the other hand, if k < p, notice that 

\:I*g E[U] (At F e[g-l(o), .... g-I(p - 1)]) 

¢} \:Ill' 211, wE (N)l' (Ax F e[wo, ... ,Wp-l]), 

since any com eager set in [/1] must intersect all [u] with v 2 11, V E (N)P. 
So A*k = A"'h.k. where 'Pk(U() .... , VA-I) is the formula A'<.7<k(V, "I- v.J) A 

\:Ivk\:lUk+l" ·\lvp-I(Ai<j<p(Vi"l- I'j) =? e(vo, ... ,Up-d)· 
For the operation of complementation, let A *k = A"'h. k for kEN and 

formulas 'Pk(IJO, ... ,Vk-t!. Then, by 16.4 ii), 

(:['.u) E (~A)*k ¢}.r E (~A)*llIl 

¢} \:Ie:2" k \Ill' 2 11,11' E (N)t(x tf. A*[wl ) 

¢} \:If:2" k\:lw 2 u,w E (N)f((x,w) rt ApJ.f) 

so (~A)*k = A,:".h· with l1'dVO, .... Vk-l) the formula Ai<j<A(vi i- Vj) A 

AC2k\:lvk\lVk+l ... \:Ivf-dA,<J<dvi i- 1.'J) =? -o'Pf(VO ..... vp-d]· 
Finally, for countable inteisections, note that if A;,k = A'P~.k for kEN 

and formulas 'Pk (vo , '" .Vk-J then if A = nn An. we have by 16.4 i), 

A*k = n A;,k = A/\""'~(1I1J. ",vk-tl.k. 

n 

Here are some applications to model theory. 

o 
o 

(16.10) Corollary. (Scott) For every countable str-uctur'e A of L there is 
a sentence OA of Lwl',J such that for any countable structure B of L. B 1= 
CT A iff B ~ A. (Such a sentence is called a Scott sentence of A.) 
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Proof. This is straightforward if A is finite. For infinite A use 16.6 and 
16.8. 0 

The following is a form of the Interpolation Theorem for L W1W ' It is 
due to Lopez-Escobar. For sentences p,O" of L"'lW we write p ~* 0" if for 
any count ably infinite structure A for L, A F p implies A ~ 0". 

(16.11) Corollary. Let R,S be two distinct symbols not in L and let p,O", 
respectively be sentences in (L U {RH.J] wand (L U {Sn.J1W· fr p ~* 0", then 
there is a sentence Tin LW1W with P 1=* T and T ~* 0". 

Proof. Let A = {x E XL : Al ~ 3Rp}, B = {:J; E XL : Al ~ VSO"}. 
Then A is analytic, B is co-analytic, and A ~ B. Moreover. A and Bare 
invariant. so by 14.14 there is an invariant Borel set C with A ~ C ~ B. 
By 16.8, C = AT for some sentence T of Lw!w' Thus p ~* T, T ~* 0". 0 

16. D Connections with Cohen's Forcing Method 

The following is a brief and informal introduction to one approach to the 
Cohen method of forcing, which illustrates its connections with the cate
gory methods studied here. Proofs are omitted and some knowledge of the 
axiomatics and models of set theory would be desirable. 

Let IP = (P, :::;) be an infinite countable, partially ordered set (poset) 
with least element denoted by O. \Ve call the elements of P conditions. If 
p :::; q, we say that q extends p. \Vhen there is l' E P with p :::; l' and q :::; 1', 
we call P. q compatible. If p, q are incompatible we write p -.l q. We will 
aSSUllle below that IP is separative, i.e., if pi q, thell there is T ~ q, l' -.l p. 

An ideal in IP is a subset G ~ P such that i) 0 -I G -I P; ii) (q E 

G & P :::; q =? pEG); and iii) (p, q E G =? 31' E G(p :::; T & q :::; 1')). An 
ideal G is called strong maximal if for every p 1:. G then' is T E G with 
p -.l r. 

The ideals of IP are in one-to-one correspondence with the equivalence 
classes of 

p(N) = {(p' . ) E pr, : 1) > 1) } n n+l _ n 

under the equivalence relation 

If we write [Pn] for the equivalence class of (Pn), the correspondence is 

[Pn] ~ G[Pnl = {p : 3n(p :::; Pn)}. 

Cnder this correspondence, the strong maximal ideals correspond to the 
maximal (PIl) E p(N), i.e., those for which Vp E P3n(p:::; Pn or P -.l Pn). Let 

XI? = {G ~ P : G is a strong maximal ideal}. 
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We view Xp as a subspace of 2P (= {O, l}P, which is homeomorphic to the 
Cantor space). Then XlP' is easily GD and thus Polish. The topology of X p 

has as basis the sets 

{G E X p : Po,··· ,Pn-I E G; qo,···, q",-l rt. G}, 

which we denote by Up.~q (if j5 = (Po, ... ,Pn-I), q = (qo,"', qrn-d). But 
if G E Up.~ij, there are q;' ..1 qi such that q~ E G. Then G E Up'?!, c=: Up,~q. 
Furthermore, if G E Up' ij', then there is rEG with Pi, qj S; r for all i, j, so 
G E U,. c=: Up' q" So we can take the sets 

Up = {G E Xl' : pEG} 

as basis for X p . Notice that they are clopen, since if P rt. G there is T E G 
with P ..1 l' so that rv Up = Ur-Lp Ur . Note also that Uo = Xii', P S; q -¢=? 

Up :;;;J Uq and P ..1 q -¢=? Up n Uq = 0. 
Call D c=: P open if \:fp EO D\:fq ~ p(q EO D), and dense if \:fp EO P~q E 

D(p S; q). Then U c=: Xl' is open (and dense) iff U = UPED Up, for D open 
(and dense). 

For any A c=: XlP', put 

P If--A -¢=? Up I f-- A. 

If P If--A we say that P forces A. 
Suppose now that AI is a countable transitive model of Zermelo

Fraenkel set theory (ZF) and IP' E 11,[. Then Cohen has shown that for 
the generic G E XlP' (i.e., for comeager many G E Xp) there is a smallest 
transitive model of ZF containing .AI as a subseL and G as all element, de
noted by AI[ G]; AI [G] is also countable and has the same ordinals as AI. If 
AI satisfies the Axiom of Choice (AC), so does M[G]. 

By choosing IP' appropriately, one can make sure that various state
ments in set theory hold or fail in 2\:I[G], thus showing that they are con
sistent or independent of ZF or ZFC (= ZF & AC). For example, if IP' is 
chosen to consist of all P which are functions with domain a finite subset of 
N~l x N (where N~f is the second uncountable cardinal in ilf) and values in 
{O, I}, with ordering P S; q -¢=? PC=: q, then for the generic G, M[G] F --, CH, 
where CH is the Continuum Hypothesis (i.e., the assertion that 2No = NI). 
On the other hand, if one chooses IP' to consist of all functions in AI with 
domain a countable in AI ordinal and range included in Pow(N)M (i.e., the 
power set of N in AI) with the partial order of inclusion, then for the generic 
G, M[G] F CH. It follows that the CH is both consistent and independent 
of ZFC, which are results of Godel (with a different proof than the above) 
and Cohen, respectively. 

We will give a brief sketch of the ideas involved in proving the ba
sic facts about the so-called generic extension AI[G] in order to sec the 
connection with the category methods discussed here. 
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One first sets up a system of "naming" elements of the model M[G] 
by elements of AI. This is done by defining in the language of set theory a 
class function K(x, y, z), which has the following properties: 

i) K is simply definable and therefore it has the same meaning (i.e., is 
absolute) in any transitive model of ZF. (Technically K is 6fF.) 

ii) Let M be a transitive model of ZF, lP' E M, and G E XlP'. Let M[G] = 

{K(G, lP', a) : a EM}. Then M[G] is transitive, M <;;; M[G], G E M[G], 
and for any transitive model N of ZF with M U {G} <;;; N, M[G] <;;; N. 
Finally, AI and M[G] have the same ordinals. 

Thus every element x E M[G] is of the form Kp.G(a) = K(G, lP', a) for 
some a E AI. We view a as a name of x. 

For a fixed countable transitive M and lP' E AI, the forcing language 
(of lP' over AI) is the language of ZF augmented by constant symbols for 
elements a E lvI. A sentence in this language is of the form 'P( ao, ... , an-l ), 
where 'P(vo, ... , vn-d is a formula in the language of set theory and 
ao, . .. , an -1 E AI. \Ve write 

We also define the forcing relation 

p If-- 'P ( ao, ... , an - 1) {=;> p If-- {G : AI [G] F 'P ( ao, ... , an -1 )} . 

Put 

Then one shows, by induction on the construction of 'P, that Ap(ao ..... a n _,) is 
Borel in XlP'. The only difficulty is when 'P is atomic, i.e., of the form "a E b" 
or "a = b". The proof is then by induction on max{rank(a),rank(b)} and 
uses the particular definition of K, which we have not spelled out here. 

From the paragraph preceding 8.30 we have the Truth Lemma: For the 
generic G, for all 'P(ao, ... , an-I), 

M[G] F 'P(a() , ... , an-d {=;> =Jp E G(p If-- 'P(a(), ... ,an-d). 

(Notice here that there are only count ably many such 'P(a(), ... , an-I).) 
Finally, one proves the key Definability Lemma: For every formula 

'P( Vo, ... , V n-1) of the language of ZF, we can find a formula 'P* (vo, ... , V n -1, 

Vn' vn+d such that 

which shows that the relation of forcing is definable within lv!. The proof 
of the definability lemma proceeds by induction on the construction of 'P 
using the formulas of 8.27. 

For example, we have (omitting the ao, ... , an -1, when they are un
necessary) 
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i) P Ihp /\ 1/J ¢} P If-- cp & P If-- 1/J; 

ii) P Ihcp ¢} Vq ;::: p(q j,jLcp); 

iii) P If--Vvncp(ao, ... , an-l, vn ) ¢} 

Van E AI(p If-- cp(ao, ... ,an-1, an)) 

(since /vI is countable). Again one handles the atomic formulas "a = b", 
"a E b" by induction on max{ rank ( a), rank(b)} using the definition of K 
and the formulas of 8.27. 

Once the definability lemma is established, it is used in conjunction 
with the truth lemma to verify that all the axioms of ZF (o~ AC) are true 
in AI[G] for the generic G, essentially by reducing this verification to the 
fact that the corresponding axioms are true in M. 

The further development of the technique of forcing requires the fol
lowing refinement. 

The various facts mentioned above are true generically: There is a dense 
Gb set of G's for which they hold. This means that there is a countable 
sequence of dense open sets Dn c::: P such that if G E nn UPEDn Up, then 
G has the required properties. Notice that G E UpED n Up just means that 
G n Dr! of. 0, so if G meets all the Dr> it has the required properties. The 
aforementioned refinement is t.hat it is enough to take {Dn} to be the 
family of dense open sets which are in 1'1. ';\Ie say that G is M-generic if 
G meets all the dense open D E AI. All the previous results hold when G 
is .III-generic. 

(16.12) Exercise. i) Show that the Banach-Mazur game G**(A) for A c::: XI' 
is equivalent to the following game: 

I Po P2 

II P1 P3 

Players I and II take turns playing Pi E P with Po :S Pl :S P2 :S ... ; player 
II wins iff (Pn) is maximal and G[Pnl E A. 

ii) The Cohen poset is IfD = (P :S), where P = N<N and p:S t ¢} PC::: t. 
What is Xp? 
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17. Borel Sets and Measures 

17.A General Facts on Measures 

Let (X, S) be a measurable space. A measure on (X, S) is a map 11 : S ---> 

[0,00] such that 11(0) = ° and I1(Un An) = I:n I1(An) for any pairwise 
disjoint family {An} ~ S. A measure space is a triple (X,S,I1), where 
(X, S) is a measurable space and 11 is a measure on (X, S). We often write 
(X, 11) when there is no danger of confusion. 

A measure is called a-finite if X = Un X n , with Xn E S, I1(Xn) < 00, 
finite if I1(X) < oc, and a probability measure if I1(X) = L 

A measure space (y, A, v) is a subspace of (X, S, 11) ifY E S, A = SlY 
and v = ILIA (Le., v(A) = I1(A) for A ~ Y, A E S). In this case we write 
v = I1IY. 

A set A ~ X is called p,-null if there is B E S with A ~ Band 
I1(B) = 0. We say that a property P ~ X holds p,-almost everywhere 
(p,-a.e.) and we write 

P(x) l1-a.e., 

if X \ Pis l1-nulL We denote by NULL j " the class of l1-null sets. It is clearly 
a O'-ideal on X. The O'-algebra generated by S U NULL IL , which is easily 
seen to consist of the sets of the form Au N with A E Sand N E NULL j ", 

is denoted by MEAS1" and its members are called p,-measurable sets. The 
measure 11 is extended to a measure f1 on lVIEAS1Ll called its completion, 
by j1(A U N) = I1(A). We will also write 11 for this completion, if there is 
no danger of confusion. 

An outer measure on a set X is a map 11* : Pow(X) ---> [0,00] such that 
p:(0) = 0, A ~ B =? 11*(A) ::; 11*(B), and 11*(Un An) ::; I:n 11* (ATJ. A set 
A ~ X is p,*-measurable if for every E, li*(E) = 11*(E n A) + 11*(E \ A). 
The 11* -measurable sets form a O'-algebra MEASI'*' and IL* restricted to 
MEAS!,* is a measure. 

Every measure 11 on (X, S) gives rise to an outer measure 11* defined 
as follows: 11*(A) = inf{I1(B) : B E S, B :2 A}. If 11 is O'-finite, then 
MEAS 1L = MEAS IL* and (the completion of) 11 and IL* agree on MEASw 

A function f : X ---> Y, where Y is a measurable space, is called p,
measurable if the inverse image of a measurable set in Y is l1-measurable. If 
Y is countably generated, this is easily seen to be equivalent to the assertion 
that there is a measurable g : X ---> Y such that f(x) = g(x) holds li-a.e. 

When f : X ---> lR or C, and f is integrable with respect to 11, we write 
J f dl1 or J f(x)dIL(X) for its integraL 

If (X. S, 11) is a measure space, (Y, A) is a measurable space, and f : 
X ---> Y is l1-measurable, then the image measure f p. (also denoted f* (11)) 
is defined by 

for any B E A. Note that 
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in the sense that if one of these integrals exists, so does the other and they 
are equal. 

Given now a-finite measure spaces (Xi, Si, f-ti), i = 0, ... , n - 1, there 
is a unique product measure f-t = TIi<nf-ti on TIi<n(Xi,Si) such that for 
Ai E Si 

f-tnT Ai) = II f-ti(Ai). 
i.<n -i<n 

Moreover, f-t is a-finite. 
Consider, for notational simplicity, the case n = 2. Let (X, f-t), (Y, v) 

be a-finite measure spaces. Then the Fubini Theorem asserts that if f is 
integrable with respect to It x v then Iris integrable f-t-a.e., fY is inte
grable v-a.e., and I fd(lt x v) = IU fxdv)df-t(x) = IU fYdf-t)dv(y) (which 
implicitly implies also that x f-7 I fxdv, y f-7 I fYdf-t are integrable). 

Let now «Xn' Sn, f-tn))nEN be a sequence of probability measure spaces. 
Then there is a unique product measure f-t = TIn f-tn on (TIn X n, TIn Sn) 
such that f-t(TIi<n Ai) = TIi<n f-t(Ai) for Ai E Si' (Here TIi<n Ai = {(Xi) E 
TIi Xi : Vi < n(Xi E Ai)}.) Clearly, f-t is a probability measure too. 

Given measure spaces «Xn,Sn,f-tn)) with Xn pairwise disjoint, we de
fine their sum (EBnXn, EBnSn, EBnf-tn) by letting EBnf-tn = f-t, where 

n 

for any A E EBnSn. 

(17.1) Exercise. (The 0-1 law) Let (Xn' f-tn) be probability measures and 
(X,f-t) = TIn(Xn,f-tn)' Let A c:;; TInXn be a measurable tail set. Then 
f-t(A) = a or f-t(A) = 1. 

(17.2) Exercise. Let (X, S, f-t) be a a-finite measure space. Consider the a

algebra MEASJl and the a-ideal NULLJl" Show that NULLJl has the count
able chain condition in MEASJl" (Compare this with 8.31.) 

For A, B E MEASJl , let A =~ B {=} A~B E NULLJl , and denote by 
[AJ the equivalence class of A. As in 8.32 and 15.C, consider the Boolean 
algebra MEASJl/NULLJl of equivalence classes under the partial ordering 
[AJ S [BJ {=} A\B E NULLJl (which is clearly the same as S/(NULLJl nS)) 
and show that it is a complete Boolean algebra, called the measure algebra 
of f-t, in symbols MALGJl" 

Let f-t, v be measures on (X, S). We say that f-t is absolutely contin
uous with respect to v, written as f-t « v, if NULL v c:;; NULLJl" We say 
that f-t is equivalent to v, denoted as It rv v, if f-t « v and v « f-t (i.e., 
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NULL IL = NULL,,). This is an equivalence relation and we denote by [p.] 
the equivalence class of (I, called its measure class. 

Two measures p., v as above are orthogonal, in symbols p. ..1 v, if there 
exists A E S with (L(A) = 0, v(X\A) = O. 

(17.3) Exercise. i) If p. ~ v, then MEAS1L = MEAS" and so MALG IL = 
MALG". 

ii) If p. is non-zero CT-finite, there is a probability measure v with p. ~ v. 

The Radon-Nikodym Theorem asserts that if {I, V are CT-finite mea
sures on (X, S), then 11«V iff there is measurable f : X ---> [0,(0) with 
p.( A) = JA f dv (= J f XA dv). This f is unique v-a.e and also satisfies 
J gdp. = I 9 f dv for all measurable g, which are integrable for p.. It is de
noted by ¥V and called the Radon-Nikodym derivative of p. with respect to 
v. The usual chain rule holds: If ).,«{L«V, then dd.\ = 'd1'\ . <!:1!:d holds v-a.e. v Ii v 

One can also characterize absolute continuity for finite measures p., v 
as follows: p.«v iff \if > O:3b > O\i A E S(v(A) < b =? p.(A) < f). 

(17.4) Exercise. Let (X, S) be a measurable space such that {x} E S for 
all x EX. A measure p. on X is called continuous if p. ( {x}) = 0 for all x. 
Equivalently this means that p.(A) = 0 for all countable A c::: X. A measure 
p. on X is called discrete if p.(X\A) = 0 for some countable set A c::: X; 
in other words, p. = LXEA p.( {x} )bx, where bx is the Dirac measure at x, 
i.e., b",(A) = XA(X) for A E S. (Notations such as p. = LiE! aiv, mean that 
p.(A) = LiE! aiv;(A).) Show that if p. is CT-finite, there are only count ably 
many points :r E X with /L( {x}) > 0, and p. can thus be uniquely written 
in the form p. = P.e + P.d, where P.e is continuous and P.d is discrete. We call 
ILc the continuous and P.d the discrete part of p.. 

17.B Borel Measures 

(17.5) Definition. Let X be a topological space or a standard Borel space. A 
Borel measure on X is a measure p. on (X,B(X)). 

Let us consider some examples of Borel measures. 

1) Let rn (= rn", if there is a danger of confusion) be the Lebesgue 
measure on lR.r!. It is CT-finite, and every bounded Borel set has finite mea
sure. Also rn" = (rnl)" (= the product of n copies of Lebesgue measure on 
lR.) . 

2) Let G be a Polish locally compact group. Then there is a unique 
(up to a multiplicative positive constant) CT-finite Borel measure P.e on G 
such that p.c(K) < 00 if K is compact, p.e(U) > 0 if U of 0 is open, and 
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J.LG(gA) = J.LG(A) for any g E G and Borel A. It is called the (left) Haar 
measure on G. Similarly there is a unique right-invariant one. These are in 
general distinct but equivalent. (They are, however, the same if G is abelian 
or compact.) In the compact case, the Haar measure is normalized, making 
it a probability measure. 

3) Fix ° < p < 1. Put on the set 2 = {O, 1} the measure II( {O}) = p, 
J.L( {1}) = 1 - p, and let P'p be the product measure on 2H = C. Then 
IIp(Ns ) = p<L(1 - p)b, where s = (so, ... , 8 n -d E 2" and a = card( {i < 11 : 

Si = O}), b = n - a. The measure 111/2 is the Haar measure on the compact 
group Z~ (= C). We will denote it by J.Lc. 

4) Let (X, d) be a metric space and p* an outer measure on X. We call 
p* a metric outer measure if for any A, B <;;; X with d( A, B) = inf {d( x, y) : 
x E A, y E B} > 0, we have p*(AUB) = p*(A)+p*(B). A standard result 
in measure theory asserts that Il* is a metric outer measure iff every Borel 
set in X is p*-measurable. So in this case Il*IB(X) is a Borel measure. 

An example of this is the Hausdorff measure. Let (X, d) be a met
ric space and h : [0,00) ---+ [0,00) a continuous nondecreasing function 
with r > ° =} h(r) > 0. For f > 0, let II,,(A) = inf{2:n h(diam(Fn )) : 

Fn closed with diam(F,,) :s; E and A <;;; Un Fn}. Then E :s; f' =} IL}, 2: IL,,' 
and we put J.L;;(A) = limf--->opi.(A). This turns out to be a metric outer 
measure called the h-Hausdorff outer measure. Its restriction to B(X) 
is called the h-Hausdorff measure Ph. It may not be O'-finite. When 
h( x) = x s , s > 0, this is called the s-dimensional Hausdorff measure. 

Let A be an algebra on X and let J.L be a count ably additive function 
J.L : A ---+ [0,00] (i.e., if An E A are pairwise disjoint and Un An E A, then 
p(A) = 2:n p(An)) with Il(0) = 0. This it> abo called a measure on .A. It 
is O'-finite, if X = Un An, with A1I E A, 11(A.n) < 00. Then Olle has the 
following standard extension theorem. 

(17.6) Proposition. If A is an algebra on X and {I a a-finite measure on A, 
then J.L has a unique extension to a measure, also denoted by II, on O'(A). 

(17.7) Exercise. Show that if'P : 2<N ---+ [0,1] satisfies 'P(0) = 1 and 'P(s) = 
'P(s'O} + 'P(s'1) for all s E 2<N, then there is a unique probability Borel 
measure J.L on C with p( N s ) = 'P( s). Show also that all probability Borel 
measures on C arise in this way. 

(17.8) Exercise. Consider the map f : C ---+ [0,1] given by f(x) 
2:~ox(i)2-i-1. Let J.Lc be the Haar measure on C. Show that fpc 
ml[0,1]. 

(17.9) Exercise. Recall the Lebesgue Density Theorem for R If A <;;; lR is 
Lebesgue measurable, then 
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m(A n I) 
limlII~o rn(I) = XA(X), rn-a.e., 

where I varies over open intervals containing x and [I[ = m(I) = length(I). 
Prove a similar result for the Haar measure fLc, namely, for all fLc
measurable A <;;;; c, 

lim 
n--+cx; 

17. C Regularity and Tightness of Measures 

(17.10) Theorem. Let X be a metrizable space and fL a finite Borel measure 
on X. Then fL is regular: For any IL-measurable set A <;;;; X 

fL(A) = SUp{fL(F) : F <;;;; A, F closed} 

inf{ll(U) : U :2 A, U open}. 

In particular, a set A <;;;; X is fL-measurable iff there is an Fa set F <;;;; A 
with A\F E NULLlliff there is a G/j set G ;;::: A with G\A E NULL,.,. 

Proof. It is easy to check that the class of sets A <;;;; X that satisfy the 
above condition contains all the closed sets (since they are G {j) and is closed 
under complementation and countable unions. So it contains all Borel sets. 
If now A E .'vIEAS IL , let B, C E B(X) and N <;;;; C be such that fL(C) = 

0, A = BuN. First, fL(A) = 11(B) = SUp{fL(F): F <;;;; B, F closed} :s; 
sup {fL(F) : F <;;;; A, F closed} :s; IL(A). Also, given f > 0, let U1 :2 B be 
open with fL(U1 \B) < f/2 and U2 :2 C be open with 11(U2) < f/2. Then if 
U = U1 U U2, we have U :2 A and 11(U\A) < f. 0 

For Polish spaces we have the following strengthening. 

(17.11) Theorem. Let X be Polish and fL a finite Borel measure on X. Then 
fL is tight, i. e., for any fL-measurable set A <;;;; X 

fL(A) = SUp{ll(K) : K <;;;; A, K compact}. 

In particular, a set A <;;;; X is fL-measurable iff there is a Ka set F <;;;; A 
with fL(A\F) = O. 

Proof. By 17.10 we can assume that A is closed. Then A itself is Polish, so 
by considering fL [ A if necessary, it is enough to show that 

fL(X) = SUp{fL(K) : K compact}. 
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Fix a compatible complete metric for X. Let F > D. For each n pick a se
quence of closed balls Bin) with X = Ui Bin) and diam(B;/)) :::; 2~1I. Since 

JL(Ui<k B;n)) --> 11(X) as k --> 00, let 1,:1/ be such that JL(X\ Ui<A: Bin)) < 
E/2 11+1 . Let K = nil U~~o Bi")· Then K is closed and totally b(~l:~ded, and 

thus compact. Also, IL(X\K) :::; L II.(X\ U<, B(n)) < f. 0 n i._hu I 

17.D Lusin's Theorem on MeasL/,mble Functions 

(17.12) Theorem. (Lllsin) Let X be a metrlzable space and p a finite Borel 
measure on X. Let Y be a second unmtable topological space and f:X --> Y 
a p.-measurable function. For every f > 0, theTe is a dosed set F <::; X with 
JL(X\F) < f such that flP is continuous. Moreover, if X is Polish, we can 
take F to be compact. 

In particular, if Y = JR, there is a continuous g:X --> JR with 
11( {x:f(x) cI g(x:)}) < E. 

Pmoj. Let {Un} be an open basis for Y. Then f~l(UII) is Il-measurable. 
so let Fn, 11" be closed, resp. open, such that FIl <::; f~ 1 (Un) <::; 11" and 
JL(V,,\Fn ) < 1'/2,,+1. Let U = Un(v,,\Fn ), so that U is open and p.(U) < f. 

Let F = X\U. Then F is closed and f~l(UI/) n F = Vn n F, thus JIF is 
continuous. 0 

(17.13) Exercise. i) Let G be a Polish locally compact group, Pc; its (left) 
Haar measure, A <::; G a p·e-measurable set with Pe(A) < 00, and let 
f(x) = pc;(.TA,0,A). Show that f: G --> JR is continuous. 

ii) Show that if A <::; G is flo-measurable and /le(A) > 0, then A ~l A 
contains an open nbhd of 1. 

Remark. Notice that this is the analog of 9.9 for measure instead of cat
egory. For Polish locally compact groups, one can use measure instead of 
category in most results in Section 9. (It is instructive to do this as an 
exercise.) However, category methods apply to every Polish group. 

I\Iackey has shown that if a standard Borel group G admits even a so
called (left) quasi-invariant a-finite llleasure 11 (i.e., Il(A) = 0 iff /l(gA) = 0 
for all g E G, A E B(G)), then it mllst be Polishable locally compact (i.e., 
Polish able and the unique topology given in 12.25 is locally compact) and 
p. is equivalent to Pc. 

(17.14) Exercise. Prove the analog of 8.48 for measures: If X is a standard 
Borel space, < a wellordering on X. and fl a continuous probability Borel 
measure on X, then < is not 112-measurable. Formulate and prove also an 
analog of 8.49. Using the notation of 8.50, show that U is not pc-measurable. 
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(17.15) Exercise. Let X be a Polish space, A s: X a Borel set, Y a second 
countable space, and I : A -+ Y a Borel function. If Ji is a finite Borel 
measure on X, then for each E > 0 there is a compact set K s: A with 
IL(A\K) < E and IlK continuous. 

(17.16) Exercise. (The Kolmogorov Consistency Theorem) Let ((Xn,Sn)) 
be a sequence of measurable spaces and In : Xn -+ X n - 1 a surjective 
measurable map (for n 2 1). Let 

n 

and let 7rn : l~nX" -+ Xn be defined by 7rn ((Xi)) = Xn. Thus In 07rn = 

7rn -l. Let 7r~l(Sn) = {7r~l(A) : A E Sn}. Verify that 7r;;-l(Sn) C 

7r;;-~I(Sn+d. Let Sex. = Un 7r;;-l(Sn)' Verify that this is an algebra on 
limnXn and let 

The measurable space (l~~nn X" . l~n Sn) is called the inverse limit of 

((Xn,Sn),In). Show that if (X,,,S,,) are all standard Borel spaces, so is 
their inverse limit. 

N ow let Jin be a probability measure on (Xn, Sn) such that InJin = 
ILn-I' Show that if (Xn . Sn) are standard Borel spaces, there is a unique 
probability measure 

on (l~lnXn' l~lnSn) such that 7rn Ji = Jin. \,ye call (l~nXn' l~nSn' l~lnJin) 

the inverse limit of ((X", Sn, Jin ), In). 
Show that the product of ((Xn,Sn,Jin)), where (Xn,Sn) are standard 

Borel spaces, is a special case of an inverse limit. 

(17.17) Exercise. Let T be a pruned tree on N. Show that for every function 
'P : T -+ [0,1] such that 'P(0) = 1 and :p(s) = L:s'iET :p(s'i) there is a 
unique probability Borel measure Ji on [T] with IL([T] n No) = :p(s). Show 
that all probability Borel measures on [T] arise in this fashion. 

17.E The Space of Probability Borel Measures 

Let X be a separable metrizable space. We denote by P(X) the set of prob
ability Borel measures on X and we denote by Cb(X) the set of bounded 
continuous real-valued functions on X. We endow P(X) with the topol
ogy generated by the maps Ji -+ J IdJi, where I varies over Cb(X). This 
topology has as a basis the sets of the form 
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U/-"E,h, ... ,fn = {v E P(X) : I J fi dv - J fidJ.l1 < E, i = 1, ... ,n}, 

for J.l E P(X), E > 0, fi E Cb(X). 
For many arguments we need a more manageable subclass of bounded 

continuous real-valued functions, which still defines the same topology. 
Fix a metric d compatible with the topology of X, such that the com

pletion (X, d) of (X, d) is compact. Denote by Ud(X) the class of uniformly 
continuous (for d) real-valued functions on X. Since every f E Ud(X) has 
a unique extension i E C(X), it follows that Ud(X) ~ Cb(X). 

(17.18) Proposition. If f E Cb(X), there are fn,gn E Ud(X), with fn i f 
and gn 1 f (i.e., (in) is monotonically increasing and converges pointwise 
to f and analogously for (gn)). 

Proof. It is clearly enough to find (in). Put fn(x) = inf U(y) + nd(x, y) : 
y E X}. Then fn ~ fn+l ~ f. Also Ifn(x) - fn(z)1 ~ nd(x,z), so in 
particular fn is uniformly continuous. It remains to check that fn -> f. 
Clearly limn fn(x) ~ f(x). Fix E > 0. For each n, pick Yn with f(Yn) ~ 
f(Yn)+nd(x, Yn) ~ fn(X)+E. Since f is bounded, Yn -> x. So f(Yn) -> f(x), 
and thus f(x) ~ limn fn(x) + E. 0 

It follows from this and from the usual convergence theorems of in
tegration, that in the definition of the topology of P(X) we can replace 
Cb(X) by Ud(X). 

Consider the vector space Ud(X) with the sup norm Ilfll oo ' Since every 
f E Ud(X) extends to a unique i E C(X) with Ilili oo = Ilflloo, we have 
that (Ud(X), 111100) is isometric with (C(X), 111100)' so in particular, Ud(X) 
is a separable Banach space. Pick a dense set Un} in Ud(X) with the sup 
norm, with f n not the constant ° function. It follows immediately that we 
can replace Cb(X) by Un} in the definition of the topology of P(X). 

The map J.l 1---+( If:II:)nEN from P(X) into [-1, llN is an embedding, 
and so P(X) is separable metrizable with compatible metric 

"( ) = ~ 2-n-1 I J fndJ.l - J fndvl 
u J.l, v ~ Ilfnlloo' 

We summarize all of this in the following result, which also determines 
canonical countable dense sets. 

(17.19) Theorem. Let X be separable metrizable and d a compatible metric, 
whose completion is compact. Let {fn} be non-zero and dense in Ud(X) with 
the sup norm. Then P(X) is separable metrizable with compatible metric 

"( ) = ~ 2-n-1 I J fndJ.l - J fn dv I 
u J.l,V ~ Ilfnll' 

n=O CX) 
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Moreover', if D r;;; X is countable dense, the set of J.L E P(X) of the 
f ",,,-1 J: . h iT1l 0 ",,,-1 d D orm ~k=O o.kuxk' wzt . o.k E ~, o.k;::: , ~k=O o.k = 1 an Xk E is 
countable dense in P(X), 

Proof. It suffices to prove the last assertion. 
Note that if Xn ---) x in X, then DXn ---) Dx in P(X) since I fd(Dy) = f(y) 

for f E Cb(X). So it is enough to show that the discrete measures of 

the form 2:Z~6 o.kbx, , with o.k E ~, o.k ;::: 0, 2:o.k = 1, and Xk E X, 
are dense. Since a discrete probability measure 2:"EN o."bxn , where o.n E 
~, 0." > 0, 2: 0." = 1, and Xn E X, is the limit of the probability measures 
2: Q b t<k n Xn , it is enough to show that the discrete probability measures 

OTt 
1!<k: 

2:nEN o."Dxn as above are dense in P(X). 

Fix tl E P(X). For each n, let X = Ui A~n) be a (finite or infinite) 

partition of X into Borel sets with diam(A;")) < 2- n . Pick x;n) E A;n). 

Let J.Ln = 2:i J.L(A;n))Dx;n). We claim that J.Ln ---) tl· To see this, let 

f E Ud(X). Let n;n) = inf(fIA;Tl)), (3~n) = sup(fIA;Tl)). By uniform conti

nuity, E(n) = snp;(!3;") - o.;n)) ---) 0 as n ---) 00. So 1 I fdJ.Ln - I fdJ.L 1 = 

12:;/4.;,,)(f - f(x;n)))d{l 1 ::; ((n) ---) 0 as n -->00. 0 

We will prove now a number of important equivalences for convergence 
in P(X). 

(17.20) Theorem. (The Portmanteau Theorem) Let X be separable metriz
able. The following are equivalent for J.L,J.Ln E P(X): 

i) J.Ln --> J.L; 
ii) I fdtln ---) I fdJ.L, for all f E Cb(X), or equivalently all f in any 

countable dense subset of Ud(X) with the sup norm, where d is a compatible 
metric fOT X, whose completion is compact; 

iii) limntl.n(F) ::; tl(F) for every closed F; 
iv) liIll"tln (U) ;::: J.L(U) for every open U; 
v) limn ILn(A) = J.L(A) fOT every Borel set A whose boundary 8A ( = 

A\ Int(A)) is (i-null. 

Proof. It is clear that i) {o} ii) and iii) {o} iv). 
ii) =? iv): Let U be open, F = X\U and ik(x) = min{l, kd(x, F)}. 

Then ik E Cb(X) and 0 ::; fk T Xu· So J.L(U) = I Xudtl = limk I ikdJ.L. 
Now I fkdp = limn.r ikdJ.L". In addition, .r ikdpn ::; .r XUd{Ln = J.Ln(U), so 
limn I ikdP·n ::; limnJ.Ln(U), and thus J.L(U) ::; limnJ.Ln(U), 

iv) =? v): We have by iv), and thus iii), J.L(Int(A)) ::; limnILn(Int(A)) ::; 
limnPn(A) ::; liIllnILn(A) ::; limpn(A) ::; IL(A). If IL(8A) = 0, then 
J.L(Int(A)) = p(A), so Pn(A) --+ p(A) (= J.L(A)). 

v) =? ii): Fix f E Cb(X), say f : X ---) (a, b), in order to show that 
.r f dtln ---) J f dlL. For each x E (a, b) consider the set Fx = f- 1 ({ x} ). 
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These sets are pairwise disjoint. so at most countably many of them have 
positive p-measure. Fix E > 0 and then find a = to < t[ < ... < tm = b. 
with 11(Ft,) = 0 and f i+1 - ti < f. Let Ai = f- 1([t i_1 .fi)). Then X = 
U;:1 Ai and DA, ~ F!,-l U Ft ,. so 11(DAi) = 0, and thus PII(A i ) ----> II(A,), 
for i = 1 ..... m. Let g = 2:;)~1 fi-l\.1,. Then Ilf - gll= < f: therefore 
I .r f dp" - .r fdll I ~ .r I f - g I lipn + .r I f - g I dp + I .r gdPn - I grip I 
~ 2f + 2:::1 I III/(Ai ) - II(A,) I . I t;-1 I· Letting n ---->x;. we have 
lim I .r frill)) - J frip I ~ 2f, so J fdp'/I --+ J fdll. D 

(17.21) Corollary. Let X be separable metTizable. Then for each open U ~ 
X, the function I' --+ 11( U) i8 lower semicontirL1Lolls and for each dosed 
F ~ X the function p f--C> Il(F) is upper semicontin'lLo'lLs. 

(17.22) Theorem. If X is compact mftrizo.ble. 80 is P(X). 

Proof. Consider the I::ieparable Banach space C(X) (= C( X, R)) and its 
dual C(X)*. The unit ball B1 (C(X)*) with the weak* -topology is compact 
metrizable. Let 

1\ = {A E Bl(C(Xl*): (l.A) = 1 &: 

Vf E C(X)(f::;' () =? (l.A) ::;, O)}. 

By the Riesz Representation Theorem there is a bijection A --+ p. between 
K and P(X) satisfying (l. A) = I fdll for f E C(X). It is immediate that 
this bijection is a homeomorphism of K with P(X). But K, being dosed 
in Bt{C(X)*). is compact metrihable, and thus t-iO is P(X). D 

(17.23) Theorem. If X is Polish, so is P(X). 

Pmof. Let X be a compactification of X. Consider the map II E P(X) f--C> 

il E P(X) given by p(A) = p(AnX) for any A E B(X). It is easy to see that 
it is an embedding of P(X) into P(X) with range {p E P(X) : II(X) = I}. 
So it is enough to show that this set is G~ in P(X). 

Let Un be open in X with X = nn Un. Since p(X) = 1 iff 'in(/i(Un ) = 

1), it is enough to show that for any open U ~ X. {p E P(X) : Il(U) = I} 
is G~: or equivalently if F ~ X is clot-ied, {II E P(X) : 11(F) = O} is G~. 
Since 11(F) = 0 ¢} Vn(/I(F) < 2-"). it suffices to shmv that {Ii E P(X) : 
p(F) < f} is open. which is immediate from 17.2l. D 

(17.24) Theorem. Let X be separable m.etrizable. Then B(P(X))is gener
ated by the maps Ii f--C> ptA). A E B(X). and also by the maps 11 f--C> .r fdp., 
when; f varies oveT bounded Bard real-valued fu.nctions. 

Proof. Denote by 5 the a-algebra generated by the maps 11 f--C> p(A). A E 

B(X), and by 5' the a-algebra generated by the maps f1 f--C> J frip for f a 
bounded Borel real-valued function. It it-i clear that 5 ~ S'. To prove that 



17. Borel Sets and Measures 113 

S' <;;; S, use "step function" approximations of bounded Borel functions, as 
in the proof of 11.6 and the Lebesgue Dominated Convergence Theorem. 

Finally, we show that S' = B(P(X)). Since the basic open sets of 
P(X) are in S', it is clear that B(P(X)) <;;; S'. So it is enough to verify 
that. tl f--+ f fdtL is Borel on P(X) for each bounded Borel real-valued f. By 
11.7 and the Lebesgue Dominated Convergence Theorem again, it is enough 
to verify this for f E Cb(X). But by definition tL f--+ f fdtl is continuous 
when f E Cb(X), so the proof is complete. 0 

For each standard Borel space X, we denote by P(X) the space of all 
probability Borel measures on X equipped with the a-algebra generated by 
the maps tl f--+ tL(A), A E B(X). By 17.23 and 17.24 this is a standard Borel 
space and it is also generated by the maps tL f--+ f fdtL, where f varies over 
bounded Borel real-valued functions on X. We will denote by B(P(X)) this 
a-algebra. 

The following important computation is the analog of 16.1 for mea
sures. 

(17.25) Theorem. Let (X ,S) be a measurable space, Y a separable metrizable 
space, and A <;;; X x Y a measurable set. Then the map 

is measurable (for S x B(P(Y))). Similarly, if f:X x Y --+ ~ is bounded 
measurable, the map 

is measurable. 

Proof. Consider the class .A. of measurable sets A <;;; X x Y such that the map 
(x, tl) f--+ tL(Ax) is measurable. We will show that .A. contains all rectangles 
S x U, with S E Sand U open in Y, and is closed under complementation 
and count.able disjoint unions. By 10.1 iii), this will prove the first assertion. 

This follows immediately from the following facts: 
i) If S E S, U is open in Y and A = S x U, then tL(Ax) = tL(U), 

if XES, and tL(Ax) = 0, if x rj. S. Since by 17.21 tL f--+ tL(U) is lower 
semicontinuous, the proof for rectangles is complete. 

ii) tl((rv AL·) = 1 -Ji(AJ .). 

iii) If (An) are pairwise disjoint measurable, then tL((U" An)x) = 
2:" tL((A1l).r). 

The second assertion follows, as f can be expressed as the pointwise 
limit of a bounded sequence of linear combinations of characteristic func
tions of measurable sets (see the proof of 11.6). 0 

(17.26) Notation. Let (X,tL) be a measure space and A <;;; X. Let 
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V~xA(x) ¢} X\A is fl-null 

¢} A(.T) Il-a.e .. 

:3~:r.!l(x) ¢} A is not fl-null. 

So if A is fl-measurable, :3~J;A(x) ¢} fi(A) > O. If fl is a probabil
ity measure, V:,xA(x) ¢} II(A) = 1. We call these the measure quanti
fiers. In this notation and under the appropriate hypotheses, the Fubini 
Tlworem implies, for example, that V~ xv(x, y)A(x, y) ¢} V;LxV:yA(.T, y) ¢} 

V:yV~XA(;T, V). 
It follows from the preceding theorem that if A <:: X x Y is measur

able, then so are B(J:, Ii) ¢} V:,yA(x, y) and C(x, 11) ¢} :3:,yA(x, V), i.e., the 
measure quantities V~y, :3;,y preserve measurability. 

(17.27) Exercise. Let X be separable metrizable. Then x f--+ b.T is an em
bedding of X into P( X). 

{17.28} Exercise. Let X, Y be separable metrizable and let I : X f--+ Y be 
continuous. Show that the map fl f--+ I fl from P(X) into P(Y) is continuous. 
If I is an embedding and I(X) E B(Y), then II f--+ III is an embedding. 
In particular, if X <:: Y is in B(Y), then P(X) is homeomorphic to {ji E 

P(Y) : 11(X) = I}. 

{17.29} Exercise. Let X be separable metrizable. Show that 

{(fl,Ka) E P(X) x K(X) x lR: fl(K):;o. a}. 

{(fl, K a) E P(X) x K(X) x lR : f.1.(K) > a}. 

{(p.Ka) E P(X) x K(X) x lR: 11(K):s. a}. 

are closed. F(5, and Go. respectively. In particular, for any II E P(X), 
NULL" n K(X) is G6 in K(X). 

{17.30} Exercise. By 17.7, we can identify P( C) with the set of all <p : 2<f\i ---+ 

[0,1] that satisfy <p(0) = 1 and <p(s) = <.p(s'O) + cp(s'l). Note that this is 
a closed subset of [0, 1]2<' (which is homeomorphic to the Hilbert cube). 
Show that this identification is a homeomorphism. 

(17.31) Exercise. (Prohorov) Let X be a Polish space and 11:1 <:: P(X). Then 
AI has compact closure iff 111 is (uniformly) tight, i.e., for every f > 0 there 
is a compact set K <:: X such that fl(X\K) < f for all f.1 E AI. 

(17.32) Exercise. Let X be compact metrizable. Denote by MIR(X) the 
dual space C(X, lR)* of C(X, lR). By the Riesz Representation Theorem the 
members of MR(X) can be viewed as signed Borel measures on X (i.e., 
they have the form 1" - v for fl, v finite Borel measures on X). Similarly, 
M.:c(X) = C(X, IC)* can be viewed as the space of complex Borel measures 
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on X (i.e., those of the form f.L + iv for f.L, v signed Borel measures on X). 
As we pointed out in the proof of 17.22, P(X) is a closed subspace of 
B1(MIR(X)) as well as of Bl(Mc(X)). So P(X) is a compact convex set in 
MIR(X) and Mc(X). What is De(P(X))? (Recall 4.10 here.) 

(17.33) Exercise. Let X be a compact metrizable space and G a group of 
homeomorphisms of X. One can view G as acting on X by g.x = g(x). Let 
Ec be the associated equivalence relation xECY ~ 3g E G(g.x = y). We 
call a measure f.L E P(X) invariant if gf.L = f.L, for all 9 E G. Denote by 
INV c the set of invariant f.L E P(X). Show that INV c is compact convex 
in P(X). 

We call f.L E P(X) G (or Ec)-ergodic if for every invariant Borel set 
A ~ X we have f.L(A) = 0 or IL(A) = 1. For example, if X = Z~ (= C) and 
G is the subgroup of Z~ consisting of all (xn ) E Z~, which are eventually 0, 
acting on Z~ by addition (g.x = 9 + x if 9 E G, x E X), then the invariant 
sets are exactly the tail sets, so the 0-1 law 17.1 implies that every product 
measure f.L = TIn ILn , where f.Ln are probability measures on {O, I} (= Z2), is 
ergodic. (Of course f.Ln has the form f.Ln = Pn bo + (1 - Pn)b 1 for 0 ::; Pn ::; 1.) 
In particular, the Haar measure f.Le is both invariant and ergodic. 

Denote by EINV c the set of ergodic invariant f.L E P(X). Assuming 
that G is countable, show that De (INV c) = EINV c and therefore EINV c 
is a Go set in P(X). 

(17.34) Exercise. Let X be a standard Borel space and f.L E P(X) and let 
Y = XZ and v = f.Lz be the corresponding product measure. Let S : Y ---> Y 
be the shift map S((xn)) = (xn+l)' Finally, let G = {sn}"EZ be the group 
generated by S. Show that v E EINV c. 

(17.35) Exercise. (The Measure Disintegration Theorem) i) Let X, Y be 
standard Borel spaces and f : X ---> Y be a Borel map. Let f.L E P(X) 
and v = ff.L. Show that there is a Borel map y f-+ f.Ly from Y into P(X) 
such that \i~Y(f.Ly(f-l({y})) = 1) and f.L = I f.Lydv(y) (i.e., for any Borel 
A ~ X, f.L(A) = I f.Ly(A)dv(y) , or equivalently for any bounded Borel 
r.p: X ---> JR., I rpdf.L = IU rpdf.Ly)dv(y)). Show also that if y f-+ Vy is another 
map with these properties, then f.Ly = vy, v-a.e. 

ii) Apply this to the projection map projx of X x Y onto X to show that 
any probability Borel measure f.L on X x Y can be written as an "iterated" 
measure, i.e., that there is a Borel map x f-+ f.L" from X into P(Y) with 
f.L(A) = I f.Lx(Ax)dv(x) for any Borel set A ~ X x Y, where v = prohf.L. 
(The case f.L" = P gives, of course, the product measure v x p.) 

Check also the converse: If v is any probability measure on X and 
x f-+ f.Lx is a Borel map from X into P(Y), then the formula f.L(A) = 
I f.Lx(Ax)dv(x) defines a measure f.L E P(X x Y) with projxf.L = v. Show 
that the following generalized Fubini Theorem holds: If f : X x Y ---> JR. is 
bounded Borel, then I fdf.L = IU fxdf.Lx)dv(x). 
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(17.36) Exercise. Let X be a measurable space, Y a separable metrizable 
space, and p., a a-finite Borel measure on Y. If A ~ X x Y is measurable, 
show that the map :r f-7 Il( A,.) is measurable (from X into [0, 00], viewed 
as the one-point compactification of [0,00)). Similarly, show that if I : 
X x}' ---t [0, ,00) is bounded measurable, the map x f-7 J l.rdp., is measurable. 

(17.37) Exercise. Let X be standard Borel. Show that {p., E P(X) : Il is 
continuous} is Borel in P(X). 

(17.38) Exercise. Let X be separable metrizable and Ii E P(X). The 
(closed) support of Il (denoted by SUpp(ll» is the smallest dosed set of 
Il-measure 1. Show that this exists. Assume now that X is Polish and show 
that the map p f-7 Sllpp(p.) is Borel from P(X) to F(X). 

(17.39) Exercise. Let X be standard Borel. Show that p., « 1/, 11 rv 1/, and 
111.. 1/ are Borel (in P(X)2). 

(17.40) Exercise. Show that if X. Yare standard Borel, then the map 
(p.l/) E P(X) x P(Y) f-7 P X 1/ E P(X x Y) is Borel. Also, if I : X ---t Y is 
Borel the map II E P( X) f-7 I p., E P(Y) is Borel. 

17.F The Isomorphism Theorem for Measures 

(17.41) Theorem. Let X be a standard Borel space and Il E P(X) a con
tinuous measure. Then there is a Borel isomorphism I:X ---t [0,1] with 
111. = m I [0,1] ( = the Lebesgue measure on [0,1]). 

Pmof. We can, of course, assume that X = [0,1]. Let g(x) = p.,([0, x]). 
Then 9 : [0.1] ---t [0,1] is continuous and increasing, with g(O) = 0, g(l) = 
1. Also, gil. = nt, since if y E [0,1] and g(x) = y, we have gp.,([O, y]) = 
Il(g-l ([0, y]) = p.,( [0, x]) = g(x) = y = m([O, y]). 

For y E [0,1], let F~ = g-l({y}) and note that Fy is an interval 
which may be degenerate. i.e., a point. Let N = {y : Fy is not degenerate}. 
Then N is countable and if M = g-l(N), then p(M) = m(N) = O. Clearly, 
gl ([0. l]\M) is a homeomorphism of[O, l]\M with [0, l]\N. Let Q ~ [0, l]\N 
be an uncountable Borel set of m-measure 0, and put g-l (Q) = P, so 
that Il(P) = O. Then P U lIf, Q U N are uncountable Borel sets, so there 
exists a Borel isomorphism h : P U M ---t Q U N. Finally, define I by 
II(P U M) = h, fl([O,l]\(P U AI» = gl([O, l]VP U M». Then f is a Borel 
isomorphism of [0,1] onto itself and fp., = 'In 1 [0, 1]. 0 

(17.42) Exercise. Show that the measure algebra MALG,L of a continuous 
probability Borel measure on a standard Borel space is uniquely determined 
up to isomorphism. It is called the Lebesgue measure algebra. 
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(17.43) Exercise. i) Let X be a standard Borel space and fl E P(X). Define 
the following metric on l'vIALG J1: 

o([P], [Q]) = fl(Pb.Q). 

Show it is complete separable. (This makes MALG,l a Polish space in this 
topology.) Show that if A c:;; B(X) is an algebra that generates B(X), then 
{[P] : PEA} is dense. Show that the Boolean operations -[P] = [~ 

P], [P]A [Q] = [P n Q], and [P] V [Q] = [P U Q] are continuous. (Here A, 

V denote the meet and join operations, respectively.) 
ii) Let A c:;; MALGJ1 be a a-subalgebra, i.e., a subset closed under 

complements and countable joins. Show that A is closed in MALGp . 

Show also that there is a standard Borel space Y and a Borel map 
f : X -+ Y such that if v = f fl and if f* : JVIALG v -+ MALGJ1 is given 
by f*([Q]) = [f-l(Q)], then f* is a (Boolean algebra) isomorphism of 
MALG v with A. Thus A is (up to isomorphism) also a measure algebra of 
some measure. 

If A c:;; B(X) is a a-algebra and if A = {[P] : PEA}, then show that 
f above can actually be taken to be measurable with respect to (X, A). 

Remark. Woodin has shown that there is no Polish topology in the category 
algebra (of IR) in which the Boolean operations are continuou8. (See the 
Notes and Hints section for a simple proof by Solecki.) 

(17.44) Exercise. A measure algebra is a Boolean a-algebra A together with 
a strictly positive probability measure v : A -+ [0, 1], i.e., v( a) = 0 {=} a = 0 
and v(van) = L11 v(an ) for any sequence of pairwise disjoint elements (an) 
of A. (If a, bE A, we call a, b disjoint if aAb = 0.) The algebras MALG,", 
with v([P]) = fl(P), are clearly measure algebras. Show that all measure 
algebras are complete (as Boolean algebras). 

i) An isomorphism 7'1 : (A,v) -+ (A',v') between measure algebras 
is a Boolean algebra isomorphism that also preserves the measure, i.e., 
v(a) = v'(7r(a)). Show that 17.42 is also valid in the sense of measure 
algebra isomorphisms. Also, 17.43 ii) holds in that sense, where A is viewed 
as a measure algebra by restricting the measure to it. 

ii) If (A, v) is a measure algebra, we define the metric 6 or A as in 
17.43: O(a, b) = I/(ab.b), where ab.b = (aVb) - (aAb). Show that (A,o) is 
complete. Show that it is separable iff A is count ably generated as a Boolean 
a-algebra (i.e., there is a countable set B c:;; A such that A is the smallest 
Boolean a-algebra containing B). 

iii) An atom in a Boolean algebra A is a non-zero element a E A such 
that: b :s a =? (b = 0 or b = a). Show that any two distinct atoms are 
disjoint and also that in a measure algebra there are only count ably many 
atoms. 

iv) A Boolean algebra is atomless if it contains no atoms. Show that 
the Lebesgue measure algebra is the unique (up to isomorphism) separable 
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(in the sense of ii)), atomless measure algebra. Show also that any sepa
rable measure algebra is isomorphic to MALG/L for some probability Borel 
measure J1 on a standard Borel space X. 

(17.45) Exercise. Let X be a standard Borel space, J1 E P(X), and 
MFUNCT /L be the set of real-valued J1-measurable functions. For f, 9 E 
MFUNCT/L let f rv 9 {o} f(x) = g(x) J1-a.e. This is an equivalence rela
tion and denote by U] the equivalence class of f and by M /L the set of 
equivalence classes. Define on it the metric 

J If-g 1 

b([f], [g]) = 1+ 1 f _ 9 1 dJ1. 

Show that this metric is complete and separable. (Thus M/L is a Polish 
space in this topology.) Prove that Un] ----> [f] iff fn ----> f in measure, i.e., 
for all E > 0, J1({x:1 fn(x) - f(x) 12: E}) ----> o. 

Show that MALG/L is homeomorphic to a closed subset of Mw 

(17.46) Exercise. i) Let X be a standard Borel space and J1 E P(X). For 
S, T Borel automorphisms of X define the equivalence relation: S rv T {o} 

Sex) = T(x) J1-a.e. Denote by [T] the equivalence class of T. (It is cus
tomary to write often T instead of [T], if there is no danger of confusion.) 
A Borel automorphism T of X is (p,-) measure preserving if T J1 = J1. Let 
Aut(X, J1) be the set of equivalence classes [T] of such measure preserving 
automorphisms. It is a group under composition, called the group of mea
sure preserving automorphisms of J1. (Notice that this group is independent 
of J1, if J1 is continuous.) By 15.11, we can canonically identify Aut(X, J1) 
with the group of measure algebra automorphisms of the measure algebra 
MALGw 

Every T E Aut(X,J1) gives rise to a unitary operator UT E U(L2(X, 
J1)), given by 

UT(f) = f 0 T- 1 . 

Show that T 1-+ UT is an algebraic isomorphism of Aut(X, J1) with a closed 
(thus Polish) subgroup of the unitary group U(L2(X, J1)). Put on Aut(X, J1) 
the topology induced by this isomorphism, so it becomes a Polish group. 

Define the following metric on Aut(X, J1): 

where A = {An} is an algebra generating B(X). Show that it is complete 
and compatible with the topology of Aut(X, J1). Also show that Aut(X, J1) 
is a closed subgroup of Iso(MALG /L' b), where MALG /L is endowed with the 
metric 8 as in 17.43 i). 

(We call T E Aut(X, J1) ergodic if every invariant under T Borel set 
A s-;;: X has measure 0 or 1. Halmos has shown that the set of ergodic T is 
a dense GD set in Aut(X, J1).) 
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ii) Let X be a standard Borel space and f1 E P(X). A Borel automor
phism T of X is (11-) non-singular if Tf1 rv f1. By 15.11, we can canonically 
identify the group of automorphisms of the Boolean algebra MALG J-L with 
the group, denoted by Aut*(X, f1), of all [T] with T non-singular (under 
composition). (Again, this group is independent of f1, if f1 is continuous.) 

To each T E Aut*(X, f1) we can assign the unitary operator UT E 
U(L2(X,IL)), given by 

UT(f)(x) = (d(Tf1) (x))1/2 f(T-1x). 
dJL 

Show that T f--' UT is an algebraic isomorphism of Aut* (X, IL) with a closed 
subgroup of U(L2(X, IL)). Put on Aut*(X, JL) the topology induced by this 
isomorphism so that it becomes a Polish group. Show that Aut(X, JL) is a 
closed subgroup of Aut*(X,JL). (Choksi and Kakutani have shown that the 
set of ergodic T is dense CD in Aut*(X,JL).) 

(17.47) Exercise. i) For each Lebesgue measurable set A ~ (0,1), let 

lP(A) = {x: x has density 1 in A} 

m(A n 1) __ I} {x : lim 
xEI,ili-+O m(I) 

(where I varies over open intervals). Recall (from 17.9) that A =;'" lP(A). 
We thus have for any two Lebesgue measurable sets A, B: A =;" B =? 

lP(A) = lP(B) =;" A; so A f--' lP(A) is a canonical selector for the equivalence 
relation A =;" B. (Compare this with A f--' U(A); see 8.30.) 

ii) We define a new topology on (0,1) called the density topology, by 
declaring that the open sets are those Lebesgue measurable sets A ~ (0,1) 
for which A ~ lP(A). Prove that this is indeed a topology and that it 
contains the usual topology on (0,1). 

iii) Show that for A ~ (0,1), A is nowhere dense in the density topology 
iff A is closed nowhere dense in the density topology iff A is meager in the 
density topology iff A has Lebesgue measure 0. 

iv) Show that for A ~ (0,1), A has the BP in the density topology iff 
A is Lebesgue measurable. 

v) Show that if A ~ (0,1) is Lebesgue measurable and x E lP(A) n A, 
then there is a perfect non empty set P ~ A with x E lP(P) n P. 

vi) Show that the density topology is strong Choquet and regular. 
However, it is not second countable. 
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18. Uniformization Theorems 

lB.A The Jankov, von Neumann UniJormization Theorem 

Given two sets X, Y and P ~ X x Y, a uniformization of P is a subset 
P* ~ P such that for all x E X, 3yP(x,y) ¢? 3!yP*(x,y) (where 3! stands 
for "there exists unique"). In other words, P* is the graph of a function J 
with domain A = proh-(P) such that J(x) E Px for every x E A. Such an 
J is called a uniformizing function for P. 

y 

A X 

FIGURE IS.1. 

The Axiom of Choice makes it clear that such uniformizations exist. 
However, our interest here is to find "definable" uniformizations of "defin
able" sets. We will study here the case when P is Borel. 

Given measurable spaces (X, S), (y, A) and a function J : X' -> Y, 
where X' ~ X, we say that J is measurable if it is measurable with respect 
to the subspace (X', S I X'). As usual, a(~D is the a-algebra generated by 
the ~i sets. 

(18.1) Theorem. (The Jankov, von Neumann Uniformization Theorem) Let 
X,Y be standard Borel spaces and let P ~ X x Y be ~i. Then P has a 
uniJormizing Junction that is a(~i) -measurable. 

Proof. We can assume, of coun,e, that X, Yare uncountable and, since 
a(~D is invariant under Borel isomorphisms, we can assume that X = 
Y = N. If P = 0, there is nothing to prove, so we also assume that P -I- 0. 

Let 7r : N -> X x Y be a continuous function with 7r(N) = P and define 
F ~ X x N by (x, z) E F ¢? proh:(7r(z)) = x. Then F is closed. Let A = 
prot>;-(P) = proly(F). If J uniformizes F, then g(x) = projy(7r(j(x))) 
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uniformizes P. Since Jr. projy are continuous, if f is O'(~i )-measurable, so 
is g. \Ve can thus assume that actually P is dosed. 

By 2.C, there is a pruned tree T on N x N such that P = [T]. If for 
:1" E /v, T{x) is the section tree determined by x, then we have 

PI = [T{.r)]. 

So for each x E A = proh (P). let 

be the leftmost branch (see 2.D) of T(x) (with respect to the ordering 
on N). This is our uniformizing fUllction. We will show that it is O'(~D
measurable. (Its domain A is dearly :Ei.) For that we will check that for 
each" E N<N, f-I(N,) = {.r E A:" c;;: anI)} is in O'(~n. \Ve prove this 
by induction on length( s). It is clear when s = 0. Assume it holds for 8: 

now consider t = 8 A k. Then f- I (Nt) is the intersection of f- l (N,) and the 
set of x' satisfying the following condition: 

3y{(.T.y) E [T] & sAk c;;: y} &, \:If < b3y{(:1".Y) E [T] &, sAf c;;: y}. 

so f- I (N,) is in O'(:ED (refer to Appendix C). o 

In generaL we cannot improve the above result to obtain a Borel un i
formizing function, even when P is closed and projx (P) = X: see 18.17. 

(18.2) Exercise. Give an alternative argument for lS.1 as follows: As before, 
assume X. Yare Polish and P c;;: X x Y is closed. Let p{.T) = P"o so that 
p: X ---; F(Y). Verify that p is O'(~D-llleas1ll'able and then use 12.13. 

(18.3) Exercise. Let X, Y be standard Borel spaces and f : X ---; Y a Borel 
function. Show that there is a 0'(~l)-ll1easurable function 9 : f(X) ---; X 
such that f(g(y)) = y. 

(18.4) Exercise. Recall the notation of 4.32. Put IF = {T E Tr : [T] 01 0}. 
Show t.hat IF is :Ei and that the IIlap T E IF f---7 aT E N (see 2.D) is 
O'(:ED-measurable. Also denote by TIf the set of finite splitting trees on N. 

ancllet IFf = IF n Trr. Show that 1'rf is Borel in 2N < '. IFf is Borel, and 
T E IFf f---7 aT is Borel. 

Next we will prove results that, under various conditions. allow us to 
unifonnize Borel sets by Borel functions. They basically fall in two cat
egories: One applies when the Borel set P has the property that all its 
nOllPmpty sectiolls PI are "large". The other applies when all the sections 
PI are ·'small". 
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IB.B "Large Section" UniJorrnization Results 

(18.5) Definition. Let X,Y be standard Borel spaces. "4 function <P:X --+ 

Pow(Pow(Y)) is called Borel on Borel zf for every standard Bard space Z 
and Borel set A <:;; Z x X x Y the set {(z.x):A2.1 E <p(J:)} is Borel. 

\Vc are particularly interested here in the case where to each .J: E X 
we assign a iT-ideal <p(x) = Ix: of subsets of Y. For example, Vie could have 
a Borel map :r: f--+ Il.1 E pry) and take Ix = NULL/IT' By 17.25, the map 
x f--+ I" is Borel on Borel. Also, if Y is Polish and Ix = l\IGR(Y) (this is 
independent of :r:), t hen again this is a Borel on Borel assignment, by 16.l. 

(18.6) Theorem. Let X,Y be standard Borel spaces and P <:;; X x Y be Borel. 
Let :1' f--+ I J , be a Bard un Bard map assigning to each :r: E X a iT-ideal in 
Y. If for x E projx (I'), Px rt. 110 then there i8 a Burd uniforrnization faT 
P, and in parficular projy( P) is Burel. 

Proof. \Ve can assullle that X. Yare Polish. Consider then a Lusill scheme 
(P' associated to P according to 1 :3. 9 and satisfying i)· iii) of that 
theorclll. For each;l: E X. let P;: = (PS).r (= {y : P'(:r.y)}). Then 
(P;: satisfies i) - iii) of 1:3.9 for Pr. 

For each ;1: E projx(P). let TJ = {8 E N<r; : P;' tJ. I r } so that TI 
is a nonempty pruned tree on N. Let a.1 be its leftmost branch. By the 
properties of (P;:), p;~r = nn ?;lr I II is a singleton, say U (.1')}. This is Ollr 

uniformizing function. \Ve will show that it is Borel. Let {Vn } be an open 
basis for Y. 

\Ve have for each open U <:;; Y, 

f(.r) E U {=? 3k[Vk <:;; U & 3mlin 2' rnlit E NT! n Tr3s E Nil n Tr 

(8 "Slex t & VI; n P;' tJ. II)] 
{=? 3k{h <:;; U & 3mVn 2' mVt E Nn[P; tJ. IT =? 

38 E W(s "Slex t & P;~ tJ. Ii & VI; n P;' tJ. I J )]}, 

where <lex is the lexicographical ordering on N rl • Since x --+ IT is Borel on 
BoreL f is Borel. D 

(18.7) Corollary. Let X.Y be standard Borel spaces and P <:;; X x Y be BOTel. 
Let x f-+ J.1.1" be a Burel map from X to P(Y). ff fan; E proh (P), J.l, (Pr ) > 
0, then P admits a BUTelllniformization (and so projx(P) is Borel). Sim
ilar-ly, this holds if Y is Pulish and if faT each .1' E projx(P). PI is nOTl

mea.ger. 

(18.8) Exercise. Show that if X, Yare standard Borel spaces and P <:;; X x Y 
is 1;i. then there is a unifonnization P* c=: P of the form P* = nrn A1I/' 
where each Am is a union of a 1;i and a IIi set. 
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Remark. Martin and Steel (see Y. N. Moschovakis [1980], 4F.22) have 
shown that P* cannot in general be of the form Uk A k , with Ak an inter
section of a :Ei and a IIi set. 

(18.9) Exercise. Show that there is a closed set F c::; N x N such that every 
nonempty FJ; is uncountable, but F admits no Borel uniformization. Prove 
also that if X, Yare uncountable standard Borel spaces and P c::; X x Y is 
Borel, the set {x EX: PI' is countable} is not necessarily Borel. Show that 
it is IIi. 

18. C "Small Section" UniJormization Results 

(18.10) Theorem. (Lusin-Novikov) Let X,Y be standard Borel .spaces and 
let P c::; X x Y be Borel. If ever'y section Px is countable, then P has a 
Borel uniformization and therefore proh ... (P) is Borel. 

lvloreover, P can be written as Un Pn , where each Pn i.s a Borel graph 
(i.e., if P,,(x,y) and Pn(x,y') hold, then y = y'). 

Proof. (Kechris) \Ve will need the following result, which is interesting in 
its own right. 

(18.11) Theorem. (The set of unicity of a Borel set) (Lusin) Let X,Y be 
standard Borel .spaces and let R c::; X x Y be Borel. Then 

{x EX: Cl!y(x, y) E R} 

i.s IIi. 

We will assume this temporarily and now complete the proof of 18.10. 

(18.12) Lemma. Let X,Y be standard Borel spaces and P c::; X x Y a Borel 
set with each section Px countable. Then projx(P) is Borel. 

Proof. \Ve can assume that X, Yare Polish. Let F c::; N be closed and 
7r: F -+ X x Y a continuous injection with 7r(F) = P. Let Q c::; X x N be 
defined by (x, z) E Q {o} Z E F & proh(7r(z)) = x. Then Q is closed, every 
section Qx is countable, and projx(P) = projx(Q). So we can assume that 
P is closed to start with. 

Since Pc is countable closed, it must have an isolated point if it is 
nonempty. If {Un} is a basis of open sets for Y and we let 

An = {x: Cl!y((x,y) E P & y E Un)}. 

then by 18.11 An is IIt and (by our preceding remark) projx(P) = Un An. 
Since the IIi sets are closed under countable unions, projx (P) is IIi and 
thus, since it is clearly :Ei, it is Borel, by Sonslin's Theorem. 0 
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To prove 18.10. note that it. is enough to show (hat P c:; U" P". where 
(P,,) is a sequence of Borel graphs (since then P = U 1/ (P n P,,)) and 
so. h~· C'nlarging P if necessary. we can assume that each section PI is 
cOUlltably infinite. vVe will find then a Borel map e : X ----'> ylJ sllch that 
P, = {r(:r),,: liEN} and put P" = {(.r.y): eer)" = y}. 

For that purpose. let E c:; X X yC" be defined by 

(:r. (e" )) E E <=? (e II) enUlllerates P, 

<=? Vn(r" E PI) & 

Vy E P , 3n(y = (1/)' 

'Ve claim that E is Borel: Clearly. "Vn( en E PI r is Borel. To see that 
"Vy E P I 3n(:/j = ell r is Borel. cOllsider its complemeut 

(.1'. (e,,)) E R <=? 3y[y E P, k Vn(y # E'n)] 

<=? 3y(.T. ((',,). !J) E S'. 

where S is Borel and its sections Sr.(e" ) are cOllntable. and tiO by 18.12. R 
is Borel. 

'Ve finally cOllle down to tlw problem of finding a Bord uuiforlllizatiOll 
of E. This will be accomplished using 18.6. 

For each :r. give P" the discrete topology and thell pI! the prodllct. 
topology. Thus pf is homeomorphic to /v. Clearlv. E" = {( c,,) E P~' : (c,,) 
it) surjective (i.e .. Vy E Pr3n(y = e,,))}. So E, iti a dense Go set in p~J. 
Theil define the following o--ideal II OIl yH : 

A E II <=? A n Er is meager in pI!. 

Thus E.r tf. I r. So if we can show that .r f--4 I,. is Borel on Borel. then. by 
18.6. E has a Borel unifonnization and we are done. 

So fix a standard Borel space Z and a Borel set A c:; Z x X X yf!. and 
consider {(:; . .T) : A z . , E I,} = {(:; •. r) : A z . , n Er E I r } in order to show it 
is Borel. \Ve can clearly atisume that A c:; Z x E. 

If c = (e,,) : N -+ Pl' is a bijection. e induces a homeomorphism Ti, 
between./I[ and pJ.' given hy Tie(w) = cow. So Az.I' E L,. <=? A, .. r is Il1pager 
in P~ <=? Ti;l(Ao.1') i8 meager ill N <=? {w E ./V : (0 Ii' E Az..r} is meager. 
By 16.1, the set 

(:; .. r.e) E q <=? (.1'. c) E E k VnVm(n # III =? err # CUI) 

& {l1' E ./1[ : (:; .. r. e 0 Ir) E A} is meager 

is Borpl. But 

Jiu' E I.r <=? 3e (': .. r, e) E Q 
<=? Vt{[(.r. c) E E & VrNm(71 fill=? 

err f em)] =? .r. e) E Q}. 
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so {(z,x) : A. x E IT} is ~i and II} (see Appendix e), and thus Borel, by 
Souslin's Theorem. 0 

Finally, we give the proof of 18.1I. 

Proof. (of 18.11) (Kechris) vVe can assume that X = Y = iV, and as in the 
proof of 18.12, using the fact. that R is the injcctive continuous image of a 
closed set in N, we can assume that R is closed. Let 5 be a pruned tree on 
N x N such that R = [5]. Then we have =:I!y(x, y) E R ~ =:I!y(y E [5(x)]). 
Sincc the map x r--; 5 (x) is easily continuous (from N to Tr) it is enough 
to show that t he set 

DB = {T E Tr : =:I!y(y E [T])} 

is II}. We will provc this by a game argument. 
Let LY0 ~ Tr he defincd by 

T E Lx ~ Vn]8 E N"(8 E T). 

Loc is clearly Borel. For each tree T on N, now consider the following game 
GT : 

I no X(O) x(l) 

II y(O) y(l) 

Player I starts with no E N, II responds with y(O) E N, then I plays x(O) E 
N, II responds by y(l) EN, etc. Player I wins this nm of the game iff 

Vn 2:: l(yln E T =* .Tln E T) &: =:In < no(:r(n) i=- y(n)). 

(We require that player I play something different than player II before stage 
no, in order to make sure that I wins iff a certain condition is satisfied at 
each stage of the game, thereby ensuring that the set TV below is GD.) 

The main claim is that, for T E L~: 

T tf. DB ~ I has a winning strategy in GT . 

Granting this the proof is completed as follows. As in 8.10, a strategy for I 
in GT is a nonempty tree a on N such that if.s E a has odd length, .s'n E a 

for all n. and if sEa has even length . .sAn E a for a unique n. It is winning 
if every run (no,y(O),;r(O),y(l),x(l), ... ) E [a] is a win for 1. Denote by 
1FT ~ Tr the set of winning strategies for I in GT . 

Define W ~ Tr x Tr by (a, T) E TV ~ a E H TT . Then we have 

(a, T) E TV ~ a i=- 0 & VmVs E N'" [(8 E a &: 

Tn is odd =? Vn(sAn E a)) & 

(.s E a &: m is even =? =:I!n(.sA n E a))] 

& VnVs E NT/Vt E NnYno{ [(no, to, 80,···, tn-I, 8 n -l) 

E a=?r t E T =? SET)] &: (n 2:: no =? 

=:I i < no ( .5 i f t;)) }, 
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so W is clearly GD• Finally, T E VB iff T E Lac and I has no winning 
strategy in GT , i.e, 

T E VB ¢} T E Lx & -da(a,T) E W, 

so VB is IIi. 
(The preceding calculation is a particular instance of 20.11.) 
It remains to prove (*). 
¢=: Let T E VB. We will show that II has a winning strategy in GT 

(and thus I has no winning strategy). Since T E VB, let y be its unique 
infinite branch. Let II play this y, independently of what I does. 

=;.: Now let T ~ VB. \Ve will show that I has a winning strategy ill 
GT . 

Case 1. [T] has at least two elements. Let Xl =I X2 be two infinite 
branches of T and let n be least with xI(n) =I :r2(n). Player I starts 
by playing no = n + 1. Then, independently of what II plays, I plays 
(x(O), ... ,x(n -- 1)) = xlln (= x2In). If II now plays y(n), then for some 
i E {1,2}, y(n) =I xi(n), and I plays from then on (x(n). x(n + 1) .... ) = 

(xi(n). x.Jn + 1), ... ), i.e. X = :ri. This is clearly winning for I. 
Case 2. [T] = 0. Then the tree T is well-founded, and so let PT be its 

associated rank function. Since we are assuming that T E Lx, it follows 
easily that PT(0) 2: w. So PT(0) = A + n, where A is a limit ordinal and 
n < w. 

The strategy of I is as follows: He starts by playing no = n + 1. To 
describe how I plays from then on, let us say that a position of t.he game 
(no,y(O),x(O), ... ,y(k),x(k)) with k < no is decisive if either: (A) ylk E 
T, xlk E T, yl(k+l) ~ T, and x(k) =I y(k), or (B) YI(k+l) E T, .TI(k+l) E 

T, and PT(yl(k + 1)) < PT(xl(k + 1)) (so that, in particular, yl(k + 1) =I 
xl(k + 1)). Notice that if I can reach a decisive position, then in case (A) 
he plays from then on x(k + I), x(k + 2), ... arbitrarily, and in case (B) he 
plays (after seeing y(k + 1), y( k+ 2), ... ) :r(k + 1), :c(k + 2), ... in such a way 
that for any m 2: k, YI(m + 1) E T =;. (xl(m + 1) E T and PT(yl(m + 1)) S 
PT(xl(m+l))). He can do that inductively on m since, if 05, t E TnN",+l and 
PT(S) S PT(t), then for every p with SAp E T, PT(S'P) < pT(S) S PT(t), 
so there is q with Cq E T and PT(S'P) S PTU'q). In either case, if I plays 
from then on this way he wins. 

So it is enough to show that I can play, responding to II's moves, in 
such a way that he reaches a decisive position. Say II starts with y(O). If 
Yll = (y(O)) ~ T, then I plays x(O) =I y(O), and I has reached a decisive 
position. Else Yll E T. Then I tries to find x(O) such that xiI = (1:(0)) E T 
and PT(yll) < PT(xll). If he can do that he reached a decisive position. 
Otherwise, since PT(yll) < PT(0) = SUP{PT((P)) + 1 : (p) E T} = A + n. it 
must be that 71 > 0 and P7'(yll) = A+n-1. In this case, I plays x(O) = y(O). 
Player II next plays y(I). If Yl2 ~ T, II plays any x(l) =I .1/(1) and we are 
done. Else y 12 E T. Player I again tries to find X (1) with x 12 E T and 
PT(yI2) < PT(xI2). If he succeeds, we are done. Else, as before, we must 
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have n > 1 and PT(yI2) = PT(yI1) - 1 = A + n - 2, etc. If I has failed 
by k = n - 1 to reach a decisive position, we must have xln = yin E T 
and PT(yln) = pT(xln) = A + n - n = A. Then II plays y(n) and we have 
PT(yl(n+ 1)) < pT(yln) = A, so there is definitely x(n) with PT(yl(n+1)) < 
PT(xl(n + 1)); thus we have reached a decisive position. 0 

(18.13) Exercise. Show the converse of 18.11: If X is a Polish space and 
A ~ X is nt, there is a Polish space Y and a Borel set R ~ X x Y with 
A = {.r EX: 3!y(x, y) E R}. In fact, show that there is a Polish space Y 
and a surjective continuous f : Y -? X such that A = {x : 3!y(f(y) = x)}. 

(18.14) Exercise. Let X. Y be standard Borel spaces and f : X -? Y a Borel 
function, which is countable-to-l (i.e., f- 1 ({y}) is countable for any y E Y). 
Show that f(X) is Borel and there is a Borel function g : f(X) -? X with 
f(g(y)) = y for all y E f(X). 

(18.15) Exercise. Let X, Y be standard Borel spaces and P ~ X x Y a Borel 
set with countable sections PJ : for all x EX. Show that there is a sequence 
(fn) of Borel functions fn: proh(P) -? Y such that p.7: = {fn(x): n EN} 
for all x E proh(P). 

Next show that if An = {x : card(Fr) = n} for n = 1,2, ... , ~o, then 

An is Borel and for each n there is a sequence (fi(n))i<n of Borel functions 

fin) : An -? Y with pairwise disjoint graphs such that for x E An, Px = 
{fi(n) (x) : i < n}. 

(18.16) Exercise. (Feldman-Moore) Let X be a standard Borel space and 
E a Borel equivalence relation on X. We say that E is countable if every 
equivalence class [X]E of E is countable. Show that if E is countable, there 
is a countable group G of Borel automorphisms of X such that xEy ¢'} 

3g E G(g(x) = V). 

(18.17) Exercise. Show that there is a closed set F ~ N x N whose (first) 
prejection is all of N, but F has no Borel uniformization. 

The uniformization theorem 18.10 admits a powerful generalization, 
which we will prove later in 35.46. 

(18.18) Theorem. (Arsenin, Kunugui) Let X be a standard Borel space, Y 
a Polish space, and P ~ X x Y a Borel set all of whose sections Px, for 
x E X, are Ku· Then P has a Borel uniformization and so, in particular, 
projx(P) is Borel. 
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lB.D Selectors and Transversals 

Problems of ulliformization are closely connected wit.h those of select.ors for 
equivalence relations. Recall here 12.15 for the basic definitions. 

A Borel equivalence relation need not have a "nice" selector or transver
sal, e.g .. a transversal having t.he BP or being measurable (with respect to 
some given measure). For example, if E is the Vitali equivalence relation 
on [0,1] (i.e., :rEy <=> :r - y E Q), then E cannot have a transversal that 
either has the BP or is Lebesgue measurable. 

(18.19) Exercise. Prove the prect'ding statement.. 

In the special case when E is a closed (in X2) equivalence relation 
on a Polish space X, the map x 1----+ EJ . = [X]E is o-(:ED-measurable (see 
18.2) and so by 12.13 E has a o(ED-measurable tielector (and we will see 
later in 29.B that o-(:ED-measurable functions are Baire measurable anel 
if-measurable, for any probability Borel measure pl. But such an E might 
not have a Borel select.or or equivalently a Borel transversal. To see this, 
let F c;;: N x N be clotieel sHch that its first projection is El but not Borel. 
Then F clearly has no Borel uniformization. Take X = F and consider the 
equivalence relation E on X given by (a. b)E(a' . b' ) <=> a = a' . A trantiversal 
for E is just a uniformization of F. 

For a special situation when we can obtain a Borel selector for E, recall 
12.IG. 

(18.20) Exercise. Let X be a standard Borel space and E a Borel equivalence 
relation on X. \Ve say that E is smooth if there is a Borel map f : X ---+ Y. Y 
a standard Borel space, with :rEy <=> f(x) = 1(y). 

i) Show that E is smoot.h iff there is a sequence (An) of Borel subsets of 
X with xEy.;=} Vn(:r E An <=> YEAn). Show t.hat if E has a Borel select.or 
or if X is Polish and E is closed, then E is smooth. (Thus smoothnetis does 
not imply the existence of Borel selectors.) 

ii) (Keduis) Show that if E is smoot.h and moreover t.hat x ---+ Ir is 
a Borel on Borel map assigning to each ;r E X a o-ideal of subsets of [:r]E 
such that xEy =? 'IF = 'Ly and [:r]E tic 'L,l, then E has a Borel selector. 

iii) (Bmgess) Show that if E is smooth and moreover it is induced 
by a Borel action of a Polish group G on X (i.e., in the notatioll of 15.D. 
E = Ee; for a Borel actioll of G on X), then E has a Borel selector. 

iv) (Srivastava) Show that if X is a Polish space and E an equivalence 
relat.ion on X such that every equivalence class is Gh and the saturation of 
every open set is Borel, then E has a Borel selector. 
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19. Partition Theorems 

19.A Partitions with a Comeager or Non-meager Piece 

Recall the pigeon-hole principle: If N = Po U ... U Pk - 1 is a partition of N 
into finitely lllany pieces, then for somei < k, Pi is infinite. Ramsey proved 
the following important extension: For any set X, let X, [Xl" = {A <;;; X : 
card(A) = n}, 71 = 1,2, .. " If [N]" = Po U '" U Pk-l is a partition of [N]n 
illtO finitely many pieces, there is infinite H <;;; N such that [H]n <;;; Pi for 
SOllle i < k. Such an H is called a homogeneous set for the partition. 

\Ve will consider here extensions of Ramsey's theorem involving Polish 
spaces instead of N or infinite exponents. 

First we consider the case of partitioning with one large piece. 

(19.1) Theorem. (l\Iycielski. Kuratowski) Let X be a rnetrizable space. 
Let U <;;; XII be a dense open set. For any set A, let (At = {(Xi) E 

A"::ri # .1:j' if i # j}. Then {K E K(X):(K)" <;;; U} is a dense G D 

in K(X). In particular, if Ri <;;; X'" are cornca.ger for i E N, then {K E 
K(X):\!i((K)'" <;;; R i )} is corneager in K(X). So if X is a nonernpty perfect 
Polish space, there is a Cantor set C <;;; X with (Cr" <;;; Ri faT all i. 

Proof. Let D = {(:rl ....• :I·,,) E xn : .ri = x) for some i # j}. Then 
(K)" <;;; U B K" <;;; U U D. Now the lnap K f-+ K" from K(X) to K(xn) 
is continuous by 4.29 vii) and U U D is Gb in X". from which it follows that 
{K: (K)" <;;; U} is Gb in K(X). 

We show npxt that {K : (K)" <;;; U} is dense. Notice first that if 
V <;;; K(X) is nonempty open and does not contain 0, there is m 2: nand 
nonempty open U1 , ... . U'" <;;; X such that if Xi E Ui ' 1 :::; i :::; m, then 
{ Xi: 1 :::; i :::; m} E V. It. is enough then to show that we can shrink Ui to 
U: <;;; Ui · U: noncmpty open, such that for any distincti 1, ... ,in :::; m we 
have Ur, x ... x U(" <;;; U. This is easily accomplished by repeated (finitely 
often) application of the following fact. which holds since U is open and 
dense: If G 1 .... , Gn are nonempty open in X, there are non empty open 
sets G~ <;;; G i such that G~ x ... x G~ <;;; U. 

The last statement follows from 8.S. 0 

(19.2) Exercise. i) Show that there is a Cantor set C <;;; lIt whose members 
arc linearly independent over Q. 

ii) Show that there is a Cantor 8et C <;;; S= that generates a free group. 

(19.3) Exercise. Let X be a lloncmpty perfect Polish space and R <;;; X 2 be 
a corneager set. Show that. there is Cantor 8et C <;;; X and a den8e Go set 
G <;;; X with C x G <;;; R. 
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(19.4) Exercise. Let X be a nonempty perfect Polish space and let Y be 
second countable. Let f, : Xli, -+ Y be Baire measurable (i EN). Thell 
there is a Cantor set C c: X with fi I (C)"i continuous for all i E N. 

(19.5) Exercise. Let X be a perfect Choquet space, and assume there is a 
metric d on X whose open balls are open in X. Let R c: xn be comeager. 
Then there is a Cantor (in the topology of (X, d)) set C c: X with (C)" c: R. 

It is easy to see that if A c: X 2 is non-meager and has the BP, it is 
generally not possible to find a Cantor set C c: X with (C) 2 c: A. But we 
still have the following fact. 

(19.6) Theorem. (Galvin) Let X be a nonempty perfect Polish space and 
let P c: xn have the BP and be non-meager. Then there ar'e Cantor sets 
C 1 , •.. ,Cn c: X with C 1 X ... X Cn c: P. In particulaT, if xn = Ui EN Pi. 
whcTe each Pi has the BP. then there aTe CantoT sets C 1 •...• Cn c: X and 
i E N with C1 x .,. X Cn c: Pi. 

Proof. Since P is 1l0l1-IIleager and has the BP, let U1 , . .. ,Un be nonempty 
open in X with P comeager in Uj x ... X Un. So let Gm be open dense 
in U1 x ... X Un \;vith nm G m c: P. Thus for any TTl E Nand nonempty 
open sets Vi c: Ui • there are Ilonelllpty open sets v,' c: Vi with V{ x ... x 

V~ c: Gm . using this. we can construct n Calltor schemes (Ri i )tE2<"" i = 

1,···, n, such that R~i) = U i • R~i) is a nonernpty open subset of U" R~i)17I c: 
R.\i) , diaIll(R.~i)) s: 2- lcnp;th(s) (with respect to some complete compatible 
metric for X) and for each m. if s 1 •... ,SII are sequences of length rn, then 

R.~~) X· .. x Ri::) c: Gm . Then let C, be the Cantor set defined by the scheme 
(R(i)) . s ,l.e., 

c = n U R(i) = U nR(i J • 
I S £17n 

:rE2:" ill 

Then C1 x ... X en c: nm G m c: P. o 

19.B A Ramsey Theorem for Polish Spaces 

If X is a nonempty perfect Polish space and X = UiEN Pi with each Pi 
having the BP, then one of them will be non-meager, and will thus contain 
a non-meager G6 set and therefore a Cantor set. \Ve need some "regularity" 
assumption for the Pi, as the Axiom of Choice can be used to show the 
existence of partitions iPI. = Po U PI, where neither Po nor PI contain a 
Cantor set (see the proof of 8.24). 

(19.7) Theorem. (Galvin) Let X be a nonempty perfect Polish space and 
[X]2 = Po U ... U P k - 1 a par·titian, where euch Pi has the BP, in the sense 
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that Pt = {(x,y) E X 2:{x,y} E P;} has the BP in X2. Then there is a 
Cantor set C C;;; X 'With [Cr~ C;;; Pi for some i. 

Fmof. We can clearly assume that the Pi are pairwi:se disjoint and thus 
so are the Pi*' The function f(x, y) = the unique i with (x, y) E Pt, if 
:1' fcc y, (= 0, if x = y) is Baire measurable; by 19.4 there is a Cantor 
set Y C;;; X t-)O that. thit-) function is continuous on (Yf. Then if Qi = 
Pi n [Yj2. {(x.y) E y:2 : {x,y} E Qd = {(x,y) E (y)2 : f(x,y) = i} is 
open in y2. So by replacing X by Y, if necessary, we can assume that each 
F,* is open. Also notice that by induction we can assume that k = 2. So 
[Xj2 = Po U P l , with p(r, Pt open in X2. 

If there it-) a nonempty open set U C;;; X with (U)2 C;;; Per, then any 
Cantor set C C;;; U works. So assume that for all nonempty open U, (uj2 n 
Pt fcc 0, so by the openness of Pt we can find two disjoint non empty 
open sets U', U" C;;; U such that U' x U" C;;; Pt. By repeating this, we can 
easily construct a Cantor scheme (Gs ).,E2<1 with GI/) = X, Gs nonempty 
open, G s '; C;;; G." diam(Gs ) 'S 2-leni\th(s) (with respect to some complete 
compatible metric for X), and Gs'o x Gs'l C;;; P{. If C is the Cantor set 
defined by this schellle, [CF C;;; PI' 0 

(19.8) Exercise. Let X be a noncmpty perfect. Poli:sh space, let Y be a 
second countable Hausdorff space, and let f : X -+ Y be Baire measurable. 
Then there is a Cantor set C C;;; X such that flC is either a homeomorphism 
or R const.ant. 

(19.9) Exercise. Show that 19.7 fails in general for partitions of [X]2 into 
infinitely many, cvcn clopen, pieces. 

(19.10) Exercise. For dist.inct :r, y E C, let 6.(x, y) = lea:st n such that 
:1'(1/) fcc y(n). Let <lex be the lexicographical order on C and identify [CP 
with the set of triples (x, y, z) E C:l snch that x <lex Y <lex Z. Considering 
the partition [CP = Po U Pl , where Po = {(x,y,z) E [CP : 6.(x,y) 'S 
6.(y.z)}, PI = {(:I·.y,Z) E [C]3: 6.(:r,y) > 6.(y,z)}, show that 19.7 fails in 
general for partitions of [XP into finitely many, even clopen, pieces. 

Suppose now that n :2: 2 and identify again [Cl" with the set of all 
lexicographically increasing n-tuplelO Xu <lex Xl <Iex< ... <lex X n -]. We 
say that (Xo, ... ,.rn-d has a type if 6.(X.j,Xi+l) fcc 6.(:rJ,xj+d for i fcc j, 
and in that case its type is the ordering of {O, ... , n - 2} given by: i < j B 

6.(X, .J:i+l) < 6.(X.l,:Cj+l). Thus there are (n-l)! possible types. Theorem 
19.7 has been generalized by Galvin (for n = 3) and A. Blass [1981] (in 
general) to IOhow that if [c]n = Po U ... U Pk - I , with each Pi having the BP, 
then there is a Cantor set C C;;; C such that all (xo, ... , Xn-I) E [C] n have a 
type and if (:1'0 .... , .Tn-d, (Yo, ... , Yn-d E [c]n have the same type, they 
belong to the same Pi (depending on the type). It follows that if X is a 
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nonempty perfect Polish space and [X]II = Po U ... U Pk- 1, with each Pi 
having the BP, then there is a Cantor set C c;: X and S c;: {O ..... k - I} of 
cardinality::; (n - I)! such that [C]n c;: UiES Pi. 

19. C The Galvin-Pr-'ikr-y Theor-em 

\Ve will consider now an infinitary analog of Ramsey's tllf'orem. For each 
set X. let 

[X]No = {A c;: X: card(A) = No}. 

Given a partition [Nr'l(l = Po U ... U Pk - I , is it possible to find an infinite 
H c;: N so that [H]No c;: Pi for somei? It is easy to see that this fails for 
"pathological" partitions constructed U;.;illg the Axiom of Choice. Indeed. 
enumerate all infinite subsets of N ill a transfinite scquence (H~)t,<2NII alld 
by transfinite recur;.;ion on ~ < 2No find distinct infinite subsets of N, At,. Bt,. 
with A~ U BE c;: HE,. Let Po = {A~ : ~ < 2No}. PI = [N]Nu\R). Clearly there 
is no i and infinite H with [H]NII c;: Pi' 

HoweveL we will see that for "definable" partitiollS this ext ells ion of 
Ramsey's theorem goes through. 

Consider [N] Nil as a G b (so Polish) subspacc of C, identifying subsets 
of N wiLh their characteristic fUllctions. 

(19.11) Theorem. (Galvin-Prikry) Let [N]NO = Po u·· . U P"-l. when: wch 
Pi is Borel. Then there is infinite H c;: Nand i < k with [Ht o c;: Pi. 

Remark. \Ve cannot have an infinite partition [N]No = UiEPd Pi. here. as the 
example Pi = {A E [N]No : the least element of A is i} shows. 

vVe will actually prove a much stronger result in the next section, which 
allows for considerable extensions of 19.11. 

19.D Ramsey Sets and the Ellentuck Topology 

We will introduce a new topology on [N]No called the Ellentuck topology. 
For distinction we will call the topology of [N]N(I its usual topology. 

Here the letters a. b. c .... vary over finite subsets of N and A. R. C. ... 
over infinite subsets of N. We write a < A if max(a) < min(A). For (J < A, 
let 

[a. A] = {S E [N]No : a c;: S c;: auA}. 

This notion is motivated by work of J\Iathias in forcing. Note that [0. A] = 

[A]No. The Ellentuck topology on [N]N(I has as basic open sets the sets of 
the form [a. A] for a < A. Note that there are continllum many of them. 

(19.12) Exercise. Show that [a, A] c;: [b. B] iff a =2 b. a\b c;: B. A c;: B. 
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(19.13) Exercise. Show that the Ellentuck topology is strong Choquet but 
not second countable. Show also that it contains the usual topology of [N]l{o. 

A set X <;;; [N]l{o is called Ramsey if there is A with [O, A] <;;; X or 
[O, A] <;;; ~ X. It is called completely Ramsey if for every a < A there is 
B <;;; A with [a,B] <;;; X or [a,B] <;;; ~ X. 

\Ve now have the main result. 

(19.14) Theorem. (Ellentuck) Let X <;;; [Nt o . Then X is completely Ramsey 
iff X has the BP in the Ellentuck topolog:/j. 

Let us see how this implies the Galvin-Prikry theorem. 

Proof. (of 19.11 from 19.14) By a simple induction and using the fact that 
the increasing enumeration of an infinite set H <;;; N gives a homeomorphism 
of [N]l{() with [H]l{o, it is enough to consider the case [N]l{() = Po U PI, with 
Po, PI Borel, Po n PI = O. Then Po is Borel in the Ellentuck topology, so it 
has the BP in this topology: thus it is completely Ramsey by 19.14 and we 
are done. 0 

We give now the proof of 19.14. 

Proof. (of 19.14) Everything below refers to the Ellentuck topology. 
If X is completely Ramsey, then we claim that Y = X\Int(X) is 

nowhere dense (so X has the BP). Indeed, if this fails, there is a < A 
with [a, A] <;;; Y. Let B <;;; A be such that [a, B] <;;; X or [a, B] <;;; ~ X. 
Since [a, B] n Y 'I 0, [a, B] <;;; ~ X is impossible. So, [a, B] <;;; X, thus 
[a, B] <;;; Int(X) and [a, B] n Y = 0, giving a contradiction. 

\Ve will show now that every set with the BP is completely Ramsey. 

(19.15) Lemma. Let U be open. Then U is completely Ramsey. 

Proof. Call [a, A] good if for some B <;;; A, [a, B] <;;; U; otherwise call it 
bad. Call [a, A] very bad if it is bad and for every n E A, [a U {n}, A/n] is 
bad, where A/n = {m E A : m > n}. Notice that: [a, A] is (very) bad and 
B <;;; A =? [a, B] is (very) bad. 

We claim now that if [a, A] is bad, there is B <;;; A with [a, B] very 
bad. Indeed, if this fails, let no E A be such that [a U {no}, A/no] is good, 
so there is Bo <;;; A/no with [(1 U {no}, Bo] <;;; U. Since [a, Bo] is not very 
bad, let nl > no, n] E Bo be such that [a U {nJ}, BO/nl] is good, so there 
is BI <;;; BO/nl with [a U {nJ},B1 ] <;;; U, etc. Let B = {nO,nl," .}. Then 
[a, B] <;;; U, so [a, A] is good, which establishes a contradiction. 

Suppose now [a, A] is given. If it is good, we are done. So assume 
it is bad. We will then find B <;;; A with [a, B] <;;; ~ U. To do this, use 
repeatedly the preceding claim to find a decreasing sequence A :;,2 Bo :;,2 
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B1 :2 ... , with ni = min(Bi) strictly increasing, such that for any b <;;:: 

{no, . .. ,ni-d, [a U b, Bi] is very bad and thus [a U b, Bi/ni] is bad for all 
b <;;:: {no, ... ,ni}. Then let B = {nO,n1' ... }. We claim that [a,B] <;;:: rv U. 
Otherwise, since U is open, there is [a', B'] <;;:: [a, B] such that [a', B'] <;;:: U. 
Then for some i, a' = aU b with b <;;:: {no, ... , nJ and B' /ni <;;:: Bi/n;, so, 
since [a U b, B' /71;] <;;:: U, we have that [aU b, Bi/ni] is good, a contradiction. 

o 

(19.16) Lemma. If X is nowhere dense, then for any a < A, there is B <;;:: A 
with [a,B] <;;:: rv X. 

Proof. By 19.15, X is completely Ramsey. So there is B <;;:: A such that 
[a, B] <;;:: rv X <;;:: rv X or else [a, B] <;;:: X. Since Int(X) = 0, the second 
alternative fails. 0 

(19.17) Lemma. If X is meager, then for every a < A, there is B <;;:: A with 
[a,B] <;;:: rv X. 

Proof. Let X = Un X n , with Xn nowhere dense. Let ao = a and let Ao <;;:: A 
be such that lao, Ao] <;;:: rv Xo. Put no = min(Ao). Let a1 = ao U {no} 
and choose A1 <;;:: Ao/no such that. [aub,Ad <;;:: rv Xl for any b <;;:: {no}. 
Let 711 = min(A1). Let a2 = a1 U {nd and choose A2 <;;:: Adn1 such that 
[a U b, A2] <;;:: rv X 2 for any b <;;:: {no, nd, etc. Put B = {no, 711, .. . }. 0 

We can complete now the proof: Let X have the BP. Thus X = U ~Y, 
with U open, Y meager. Given a < A, let B <;;:: A be such that [a, B] <;;:: rv Y. 
Let then C <;;:: B be such that [a, C] <;;:: U or [a, C] <;;:: rv U. In the first case, 
[a, C] <;;:: X, and in the second, [a, C] <;;:: rv X. 0 

(19.18) Exercise. A set X <;;:: [NF~ll is Ramsey null if for any a < A there is 
B <;;:: A with [a, B] <;;:: rv X. Show that X is Ramsey null iff X is meager in 
the Ellentuck topology iff X is nowhere dense in the Ellentuck topology. 

(19.19) Exercise. Let f : [N]Nll --> X, with X second countable, be a Borel 
function. Then there is infinite H <;;:: N with f I [H]No continuous. (Here 
"Borel" and "continuous" refer to the usual topology of [H]No.) 

19.E An Application to Banach Space Theory 

Let X be a real (for simplicity) Banach space with norm II II. Given a 
sequence (xn) in X we say that (xn) is equivalent to the unit basis of £1 if 
there are positive constants a, b such that for any 71 E N and co, ... ,Cn -1 E 

~, 
n-1 n-1 n-1 

a L ICil ::; II L cixill ::; b L ICil· 
i=O i=O i=O 
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Then the map (Ci) E gl f---> 2::0 CiXi, which exists by the preceding in
equalities, is an embedding of gl into X. 

For each non empty 8et 5, denote by PO(5) the Banach space of 
boundedreal-valuedfunctionson5withthesupnormllfll= = sup{lf(x)l: 
x E 5}. 

(19.20) Theorem. (Rosenthal) If(fn) is a bounded sequence ingOO(5), there 
is a subsequence (f nk) such that either (fnJ is pointwise convergent OT else 
(fn,.) is equivalent to the unit basis of gl . 

(19.21) Corollary. If X is a Teal Banach space, then the following are equiv
alent: 

i) Every bounded sequence (x n ) 'in X has a weakly Cauchy subsequence 
(x nk ) (i.e., fOT any x* E X*, (x*(xnJ) converges). 

ii) gl does not embed in X. 

Proof. (of 19.21 from 19.20) i) =? ii): If en is the nth unit vector in gl (i.e., 
en is the infinite sequence with exactly one 1 in the nth position), then 
(en) has no weakly Cauchy subsequence, because if (en,) was such, then 
for X* E (1:1)* = goc given by x*(i) = 1 if i = n2k for some k, and by 
x*(i) = 0 otherwise, we have x*(enJ = 2:x*(i)c",(i) = x*(nk). 

ii) =? i): Immediate from 19.20, since every element x of X can be 
viewed as a function on 5 = B1(X*), namely x(;z;*) = x*(x). Note that 

Ilxll= = Ilxll. 0 

Pr·oof. (of 19.20; see J. Diestel [198tl]) Given A, B S;;; 5, we say that (A, B) is 
disjoint if An B = 0. A sequence ((An, Bn)) of disjoint pairs is independent 
if for any two finite disjoint subsets F, G S;;; N, 

n An n n Bn cf 0. 
nEF nEG 

(19.22) Lemma. Forrationalsr < s, IctAn = A;;·8 = {x: fn(x) < r}, Bn = 

B~s = {x: fn(x) > s}. If ((An' Bn)) is 'independent, then (fn) is equivalent 
to the unit basis of gl . 

Proof. Since for some b, Ilfnll= ::; b < (Xl for all n, clearly 112:;:01 cihll ov ::; 

b 2::':cl1 I Ci I· SO it suffices to show that 

Let F = {i < n : Ci ;:: O}, G = {i < n : Ci < O}. By independence, let 
x E niEFAi n n iEG B i , y E niEG Ai n niEF B i . Then 

C = L Cdi(Y) ;:: L ICii s - L ICil r 
i<Tt iEF iEG 
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and 
d = L Cd,(X) ::; L IcJr - L !eils, 

i<n iEF iEG 

so c - d ~ (s - r) Li<n !e,l, and the proof is complete. D 

\Ne say that a sequence ((An, Bn)) of disjoint pairs is convergent if 
I;fx[(for all but finitely many 71, x tf. An) or (for all but finitely many 
71, x tf. Ell)]' 

(19.23) Lemma. If faT all r'ationals T < .5 ((A;;', E;;")) is convergent, then 
(in) converges pointwise. 

Proof. Otherwise, let T < .5 be such that for some x E 5, limf n (x) < r < 
s < limfn(x). Then for infinitely many 71, x E A;~'s and for infinitely many 
71, x E E;"s, which gives a contradiction. D 

So the proof can be easily completed using the following lemma and a 
simple diagonal argument. 

(19.24) Lemma. Every sequence ((An, Bn)) of disjoint pairs contains a con
vergent subsequence OT an independent subsequence. 

Proof. Let P C;;; [N]No be defined by: 

{nU,nl, ... } E P B I;fk[ n An, n n En, t= 0], 
i<k.'l: even i<k.i odd 

where no < Ttl < .... P is clearly closed, so there is infinite H C;;; N such 
that [H]No C;;; P or [H]Nu C;;; rv P. 

Case I. [H]No C;;; P. We will show that if H = {rnO,rnl""}' with rno < 
Tnl <"', then ((Am2'+1,Em21+1)) is independent. To see this, it is enough 
to show that if F, G C;;; {O .... , k - I}, F n G = 0, F U G = {O, ... , k - I}, 
then niEF A rn21 + 1 n niEG B m21 +! t= 0. But it is easy to see that there is 
I = {no, nl""} C;;; H, with no < TIl < ... , such that niEF A m2i+1 n 
niEG E m2 ,+1 "2 ni<U even An, n ni<f.i odd En, t= 0 (for some £ > k), so we 
are done. 

Case II. [H1Nu c;;; rv P. If H = {rnO,Tnl, ... }, we show that ((Am"Bm,)) 
converges. Otherwise, there is x and infinite I, J such that I = {rni : 
x E Ami}' J = {rni : x E Ern,}. Note that In J = 0. So we can find 
K = {nu, nl""} C;;; H, with no < nl < ... , such that {no, n2, ... } C;;; I and 
{nl,n3,"'} C;;; J. Then K E P, which is a contradiction. D 

D 
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20. Borel Determinacy 

20.A Infinite Game8 

Let A be a nonempty set and X c::; AN. \,y-e associate with X the following 
game: 

I an a2 

IT a] a3 

Player I plays an E A, II then plays al E A, I plays a2 E A, etc. I wins iff 
(an) EX. (Thus X is the payoff set.) 

We denote this game by G(A, X) or G(X) if A is understood. A strat
egy for I is a map :p : A<N -+ A<N such that length(:p(s)) = length(s) + 1 
and -" c::; t =? :p(s) c::; :p(t). Intuitively, if :p(0) = (ao), :p((al)) = 

(ao.a:2). :p((al,(l:l)) = (aO,a2.a4),"" then I plays, following:p, aO.a2,a4, 
.... when II plays aI, a3, .... 

Equivalently, a strategy for I can be viewed as a Illap :p : A <N -+ A 
with I playing an = :p(0). a2 = :p((al))' a4 = :p((al. (3))' when II plays 
al· a:l· .... 

E (T. 

Finally, we can also view a strategy for I as a tree (J" c::; A <N such that 

i) (J" is nonempty and pruned: 
ii) if (0o, aI, ... ,(2)) E (J", then for all a2j+l. (au •.... a2], a2j+d E (J"; 

iii) if (ao, al •... , a2j-l) E (J", then for a unique a2j, (an, ... , (2)-I, a2j) 

Again, this is interpreted as follows: I starts with the unique ao such 
that (ao) E (J". If II next plays aI, then (an.ad E (J". so there is unique a2 

with (an. al,(12) E (T, and this is I's next move, etc. 
\Ve define the notion of a strategy for player II mutatis mutandis. 
A strategy for I is winning in G(A, X) if for every run of the game 

(an. al. a2.·· .), in which I follows this strategy, (an) E X. Similarly, we 
define a winning strategy for player II. Note that it cannot be that both I 
and II have a winning strategy in G(A, X). We say that the game G(A, X), 
or just the set X, is determined if one of the two players has a winning 
strategy. 

It is easy to see again, using the Axiom of Choice, that there are 
"pathological" set8 X c::; 21"1 that are not determined. For example, if X c::; 2N 
i8 a Bern8tein set (see the proof of 8.24), then X i8 not determined (why?). 
However, we expect "definable" sets to be determined. We will prove this 
below for Borel sets. 

It is often convenient to consider games in which the players do not 
play arbitrary au. aI, ... from a given set A, but have to obey also certain 
rules. This means that we are given A and a nonempty pruned tree T c::; 
A <I'~. which determines the legal positions. For X c::; [T] consider the game 
G(T. X) played a8 follows: 
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II al a:1 

I, II take turns playing ao, al . ... so that (ao, .... an) E T for each n. I,vins 
iff (an) EX. 

Thus ifT = A<I'J and X ~ AN, G(A<N.X) = G(A,X) in our previous 
notation. 

The notions of strategy, winning strategy, and deterlllinacy are defined 
as before. So, for example, a strategy for I would now be a nOlwlllpty pruned 
subtree a ~ T satisfying condition ii) before, as long as (2)+1 is such that 
(ao .... , a2), a2j+l) E T, and iii). It will be winning iff [a] ~ X. 

Note that. all the games we considered earlier in Section 8 are pal'ticulnx 
instances of this general type of game. Note also that the game C(T. X) is 
equivalent to the game G(A. X'), where X' = {.r E AN : [3n(J'ln tJ. T) &:: 
(the least n such that xln tJ. T is even)] or (:1' E [T] &:: J' E X)}. where two 
games G, G' are equivalent if I (resp. II) has a winning strategy in G <¢=? I 
(resp. II) has a winning strategy in G'. Thus the introduction of "games 
with rules" does not really lead to a wider clas" of games. 

20.B Determinacy of Closed Game.s 

As usual AN will be given the product topology with j1 discrete and [T], a 
closed subset of A:", the relative topology. \Ve have first the following basic 
fact. 

(20.1) Theorem. (Gale-Stewart) Lei. T be a nonempty pruned tnx on A. 
Let X ~ [T] be closed or open in [T]. Then G(T,X) is determined. 

Proof. Assume first that X is closed. Assume also 1 hat II haH no winning 
strategy in G(T. X). \Ve will find a winning strategy for I. 

Given a position p = (ao, al . .... a211-1) E T with I to play next, we say 
that it is not losing for I if II has no winning strategy from then on, i.e., II 
has no winning strategy in the game G(T]!, X p ), where T[I = {s : pA 8 E T} 
and Xl' = {.J; : p~J: E X}. So 0 is not losing for I. 

The obviouCi, but cruciaL observation is that if p is not losing for I, 
there is a2n with (a2n) E Tp such that for any (1211+ 1 with (a211, a211+ 1) E 
Tp, P A (02n, (12n+ 1) is not losing for I too. 

We use this to produce a strategy for I as follows: 
I starts by choosing an ao, with (ao) E T, such that for all a1 with 

(ao, ad E T, (ao, ad is not losing for 1. II then plays some al with (ao, ad E 

T. I responds by choosing some 02, with (a(), aI, (}.2) E T, Huch that for all 
a3 with (aO,al,(12,0:l) E '1', (aO,al,02,a:,) is not losing for L etc. 

\Ve claim that this strategy is winning for 1. Indeed, if (all, ai, ... ) is a 
run of the game in which 1 followed it. then (u(), 01 , ... , IILn -1) E T is not 
losing for 1, for all n. If (on) tJ. X, then, as rv X is open in [T], there is k 
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such that N(ao ..... a2k_,) n [T] <;: ~ X. But then (ao, ... , a2k-d is losing for I, 
as II has a trivial winning strategy from then on (i.e., she plays arbitrarily). 

The case when X is open is essentially the same, switching the roles of 
I and II. The only difference is that II plays second, but this is irrelevant 
in the previous argument. 0 

(20.2) Exercise. Let T be a nonempty pruned tree on A and let X <;: [T] be 
closed. Thus X = [S] for S a subtree of T. Define by transfinite recursion 
S~ <;: T as follows: 

'P E So ¢} P = (ao, ... , a2n-d E T \ S, 

P E SUI ¢} P = (ao, ... , a2n-I) E T &, 

'v'a2n[pA a2n E T =? 3a2n+dp'a2n'a2n+I ESE)]' 

P E SA ¢} 3~ < A(p ESE,), if A is limit. 

Show that II has a winning strategy in G(T, X) iff ° E UE SE' 

Note that because of the single-valuedness condition iii) in the defini
tion of strategy (see Section 20.A), 20.1 requires in general the Axiom of 
Choice. 

(20.3) Exercise. Show that in fact 20.1 is equivalent (in ZF) to the Axiom 
of Choice. 

Without the Axiom of Choice, we can still prove a form of 20.1, by 
introducing the notion of quasistrategy, which is useful apart from these 
comments about choice. 

Let T be a nonempty pruned tree on A. A quasistrategy for I in 
T is a pruned nonempty subtree ~ c::: T such that if (ao, ... , a2j) E ~ 

and (ao, .... a2j,a2Hl) E T, then (ao, ... ,a2j,a2Hd E ~. Note that 
since ~ is pruned, if (00, ... , a2J-l) E ~ then there is some a2j with 
(ao, ... ,a2j-I,a2j) E~, but this may not be unique. Similarly, we define 
quasistrategies for II. If X c::: [T] is given, we say that a quasistrategy ~ for 
I is winning in G(T, X) if [~] c::: X (similarly for II). Note that if ~ c::: T 
is a winning quasistrategy for I (II) in G(T, X), then there is a winning 
strategy (J c::: ~ for I (II) in G(T, X), using the Axiom of Choice. 

Remark. It follows, using the Axiom of Choice, that both players cannot 
have winning quasistrategies in a game. Actually, one only needs for that 
the Axiom of Dependent Choices, which is the assertion that any nonempty 
pruned tree on a set A has an infinite branch. Conversely, it is trivial to 
see that if T is a nonempty pruned tree on A with [T] = 0, then in the 
game G(T, O), T itself is a winning quasistrategy for both players. Thus 
the Axiom of Dependent Choices is equivalent to the assertion that in all 
such games it cannot be that both players have winning quasistrategies. 
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\Ve can call a game G(T. X) quasidetermined if at least aIle of the 
players has a winning quasistrategy. Then the proof of 20.2 shows that 
every closed or open game is quasidetermined witho'ui using the Axiom of 
Choice. 

(20.4) Exercise. Using the notatioll of 20.2, shmy that if 0 E Uc S~. then 
one can explicitly describe (vvithout using the Axiom of Choice) ~ winning 
quasistrategy for player II in G(T. X). while one can do the same for player 

I if 0 t/c U~ SE' 

Independently of these remarks about choice. it will be important in 
the sequel to isolate the Cjuasistrategy for the "closed" player that arises 
in the proof of 20.l. So let T be a pruned tree and X c=: [T] a closed set 
for which I has a winning strategy in G(T. X). Call a positioll pET of 
arbitrary length (not llecessarily even) not losing for I if II has no winning 
strategy from then on. If p = (an ..... (l211-d, this IlleallS the same thing 
as in the proof of 20.l. If ]J = (ao ..... (1211-1. (/2n ). it means that II has no 
winning strategy in the gallle G(0" Xp), \yith the convention that II starts 
first in this game. Let I; = {p E T : ]J is not losing for I}. Then I; is a 
winning quasistrategy for I in G(T X). called t.he canonical quasistrategy 
for I in G(T. X). 

20. C Borel Determinacy 

(20.5) Theorem. (Martin) Let T be a nonempiu pruned tTee on A and let 
X c=: [T] be BOTel. Then G(T.X)is deteTmined. 

The idea of the proof of this (and lllany other determinacy res111ts) 
is to associate to the gaIlle G(T.X) an auxiliary game G(T*.X*). vvhich 
is known to be determined, usually a closed or open game, in s11ch a way 
that a winning strategy for any of the players in G(T*. X*) gives a win
ning strategy for the corresponding player in G(T. X). l\Iost often, in the 
game G(T*, X*) the players play essentially a run of the game G(T, X) hut 
furthermore they play in each turn some additional objects, part of whose 
role is to make sure that the payoff set becomes simpler, such as closed or 
open. So, in particular. there is a natnral "projection" from T* into T. 

In our case the above general ideas are capt.ured in the concept of 
covering of a game. 

Let T be a nonempty pruned tree on a set A. A covering of T is a 
triple CT, Jr. cp), where 

i) 1 is a nonempty pruned tree (on some A). 

ii) Jr : t ----+ T is monotone with length(Jr(8)) = lcngth(.s). Thus Jr 
gives rise to a continuous function from [1] into [T] also denoted here by 
Jr: [1]----+ [T]. 
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iii) 'P maps strategies for player I (resp. II) in t to strategies for player 
I (resp. II) in T, in such a way that 'P(o-) restricted to positions of length 
:s: n depends only on 0- restricted to positions of length :s: n, for all n. 

]'dore precisely, we view here strategies as pruned trees as in Section 
20.A. Letting for any tree S, Sin = {71 E S : length( 71) :s: n}. this condition 
means that for each strategy 0- (for I or II) on t, 'P(o-)In depends only 
on 0-171. In other words, 'P is really defined on partial strategies 0-171 in a 
monotone way (rn :s: 71 =? 'P( o-Irn) = 'P( 0-171) 1m) and 'P( 0-) is defined by 
'P(o-) In = 'P(iTln) for each n. 

iv) If 0- is a Dtrategy for I (reDp. II) in t and x E [T] is played according 
to 'P(o-) (i.e., :r E ['P(a)]) , then there is x E [t] played according to 0-
(i.e" x E [a]) DUeh that IT(x) = :r:. 

It is clear that if (t. IT, 'P) is a covering of T and X c:;; [T], then the 
game G(T. X) can be "simulated" by the auxiliary game G(t, X), where 
X = IT-1(X) (a run x E [t] giving rise to the run IT(x) E [T]). If a is a 
winning strategy for I (resp. II) in G(t, X), then 'P(a) is a winning strategy 
for I (resp. II) in G(T. X). Indeed, otherwise there is x E ['P(a)] with x 1:. X 
(resp. ;[ E X). But, by iv), we can find x E [0-] with IT(x) = :r. Then x E X 
(resp. x 1:. X). so x E X (resp. x 1:. X), which is a contradiction. 

For technical reasons we will also need a strengthening of the concept 
of covering. For kEN, we say that (t, IT, 'P) is a k-covering if it is a covering 
such that TI2k = tl2k and ITICfI2k) is the identity. Intuitively, this means 
that in the auxiliary game G(f. ,X') the first k moves of each player are 
identical to those of G (T. X) . Note that if (t, IT, 'P) is a k-covering, then for 
any strategy 0- in f (for either player), we have that 'P(0-)12k = 0-12k. This 
is because by iv) we have that 'P(0-)12k c:;; 0-12k, so since fl2k = TI2k and 
'P(iT)12k,iTI2k are both partial strategies for the same player in T, we must 
have 'P(iT)12k = iTl2k. 

Finally, we say that a covering (/', IT, 'P) unravels X c:;; [T] if IT- 1 (X) = 

X is clopen (in [fl). 
It is clear then that if (f, IT, 'P) unravels G(T, X), then, by the Gale

Stewart Theorem G(f, X) is determined and thus, by the preceding re
marks, G(T, X) is determined. So 20.5 will follow from the following: 

(20.6) Theorem. (Martin) IJTis a nonempty pTuned tTee on A and X c:;; [T] 
'is Bard, then JOT' each kEN theTe is a k-coveTing oj T which unmvels X. 

The reason for proving 20.6 for k-eoverings (although we need it only 
for coverings to prove determinacy) is so that we can carry out an inductive 
argument. The two main lemmas that we need are given next. 

(20.7) Lemma. Let T be a nonernpty pTuned tTee and let X c:;; [T] be closed. 
FOT each kEN theTe is a k-coveTing oj T that unmvels X. 
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(20.8) Lemma. (Existence of inverse limits) Let kEN. Let (Ti +1 ,'if,+1 ,'PHd 
be a (k + i)-covering of Ti , i = 0,1,2, .... Then there is a pruned tree T= 
and 'ifoc.i, 'Px,i such that (Tex,'ifx.i,'Pao.i) is a (k + i)-covering of T; and 
'ifi+1 0 'ifoo ,i+1 = 'if.C)0.i, 'Pi+1 0 'Poc,i+1 = 'Px.i· 

Granting these two lemmas, 20.6 can be proved as follows: 
Recall from Section ll.B the Borel hierarchy on [T]. (Note that AN 

and thus [T] are metrizable.) We will prove by induction on 1 :S ~ < WI 

that for all T, kEN and XC;;; [T] in E~([T]) there is a k-covering of T that 
unravels X. 

Notice that if a k-covering unravels X it also unravels ~ X, so by 
20.7 this is true for ~ = l. Assume now that it holds for all T/ < ~. So for 
each T, each Y E rrg ([T]) , T/ < ~, and for each k there is a k-covering 
that unravels ~ Y, thus also Y itself. Let X E E~([T]) and kEN. Then 

X = UiENXi, with Xi E rr~i([T]), ~, <~. Let (T1,'if1,ipd be a k-covering 

of To = T that unravels Xo. Then 'if1 1(Xi ) is also in rr~, ([TID fori ~ 1, 

since it is easy to check that E~, rr~ are closed under continuous preimages. 
By recursion define now (Ti+ 1 , 'ifi+1, 'PHd to be a (k+i)-covering ofT; that 
unravels 'ifi1 0 'ifi_\ o· .. 0 'if 11 (Xi)' Let (T oc. 'if =.i, 'Poo.i) be as in 20.S. Then 

(Too, 'if.XJ.O' 'Poe,o) unravels every Xi' Thus 'if~~o(X) = U, 'if~I()(Xi) is open 

in [Tex,]. Finally, let (T, 'if. ip) be a k-covering of T =, that unravels 7i~lO (X) 

(by 20.7). Then (T. 'ifex.o 0 'if, 'P=.o 0 'P) is a k-covering of T that unravels X. 
We now prove the two lemmas. 

Proof. (of Lemma 20.8) Note that for any finite sequence s, if 2(k +i) > 
length(8), then whether 05 E Ti or not is independent ofi. So put 

8 E Too ¢} 8 E Ti for any i with length(s) :S 2( k + i). 

It is easy to see that Tex is a pruned tree (on some set). It is also clear that 
T",,12(k + i) = Til2(k +i). 

We next define 'if.x-J: If length(s) :S 2(k + i), then 'if.')(),i(s) = 8. If 
length(s) > 2(k + 'i) and 2(k + j) ~ length(s), we put 'if:x;.i(S) = 'ifi+l 0 

'ifi+2 0··· 'ifj(8). Notice again that this is independent of j. 
Finally. we define 'Px.i' If a oo is a strategy for TX), let 'Px.i(a,xJI2(k+ 

i) = a oo l2(k + i), and for j > i, 'P.x.i(aoc )12(k +.j) = 'PHI 0 'Pi+2 0 ···0 

'PJ (aoo 12(k + j)). (Note that since T j 12(k + j) = T C)Q 12(k + j), ax 12(k + j) 
is a partial strategy for TJ as well.) 

It remains to verify condition iv) of the definition of covering. Sup
pose aoc is a strategy for T=, and let Xi E ['P')().i(ax )]' Let Xi+l E 
['Poo,HI(aoo )], Xi+2 E ['Px,.H2(aoc )] •... come from condition iv) for the 
coverings (Ti+ 1, 'if HI. 'PHI). (T,+2. 'ifi+2, 'PH2) •... together with the fact 
that 'Pj+ d'Poc.j+ 1 (a=)) = 'Poc.j(ax;) for any j ~i. so that 'ifj+l(Xj+J) = Xj 
for any j ~ i. Since 'ifj+l is the identity on sequences of length :S 2(k + .i). 
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it follows that (Xi, Xi+l, Xi+2, ... ) converges to a sequence Xoo defined by 
xool2(k + j) = xjl2(k + j) for j 2:: i. Now Uoo and rpoo,j(uoo ) agree on se
quences of length ~ 2(k + j) so, as Xj E [rpoo,j (uoo )] for j 2:: i, we have that 
Xoo E [uoo ]. Finally, it is clear that ?Too,i(Xoo ) = Xi' 0 

Proof. (of Lemma 20.7) Recall that for a tree S, Su = {v : u A v E S} and 
for Y ~ [S], Yu = {x : uAx E Y}, so that Yu ~ [Su]. 

Fix k, T, X and let Tx be the tree of the closed set X, i.e., s E Tx {o} 

:3x E X(s ~ x). Thus Tx ~ T. 
The game G(T, X) has the form 

II Xl X3 

(Xo, ... ,Xi) E T for all i, and I wins iff (xn) E X. 
The k-covering (T,?T, rp) that we will define is a way of playing an 

auxiliary game in which players I and II, beyond the moves Xo, Xl,"" 

make also some additional moves. First we informally describe this auxiliary 
game. Its legal moves define the tree T. 

In the games on T players start with moves Xo, Xl, ... , X2k-2, X2k-l, 

I Xo 

X2k-l 

which must be such that (Xo, ... , Xi) E T for i :S 2k - 1. In her next move 
I plays (X2k' ~I) 

I Xo 

II X2k-l 

where (xo, ... ,X2k) E T and ~I is a quasistrategy for I in T(XQ, ... ,X2k) ' with 
the convention that II starts first in games on T(XQ, ... ,X2k)' In her next move 
II has two options: 

Option 1. She plays (X2k+ 1, u), 

I Xo 

II 

where (Xo, ... , X2k+l) E T and u is a sequence of even length such that 
u E T(xQ, ... ,x2k+Il and u E (~d(x2k+Il \ (Tx )(XQ, ... ,X2k+,)· 

If II chooses this option, from then on players I and II play X2k+2, 
X2k+3, ... so that (xo, ... , X j) E T for all j and moreover we have u ~ 
(X2k+2,X2k+3, .. . ), i.e., these moves are consistent with u. 

Option 2. She plays (X2k+l' ~II)' 
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I .TO 

II 

where (:rO ...... T2k+1) E T and L[l is a quasistrategy for II in (Lr)(J'2Hl) 

with LlI c: (1\; )(r" .. J2k~tl· 
If II chooses this option, from then on players I and II play ~f2H2. 

:r:2k+:3.···, so that (:r2J:+2,;f2k+3 ...... r,) E L[l, for all f 2'" 2k + 2. 
Thus. formally, T consists of all finite sequences of the form 

or 

such that (xo .... , .1';) E T for alli :S f; L] is a quasistrategy for I in 
T(.1:" .... "·2d and for the sequences of type (1), II E T(1.() .... T2l.+tl has even 
length, II E (LJ)(:r21+,) \ (Tx )(I()..r2lc+l)' and (X2k+2, . .. , xc) is compatible 
with II, while for the sequences of type (2), Ln is a quasistrategy for II 
in (LIl(12Htl with LlI c: (TX )(1() .. 12Htl, and (.T2k+2 ..... Xf) E Ln. (It 
is understood here that ( could be :S 2k + 1. in which case some of these 
conditions will be vacuous.) _ 

It is easy to check that T is pruned. i.e., that every player has a legal 
move at each turn. 

The map r, i" also straightforward: 

Notice also that 

i: E r,-l(X) B i(2k + 1) is of the form (.T2k+1, (2, Ll1)) 

(i.e., II chose option 2), so that r,-l(X) is dopen. 
It remains to define 'P. \Ve will informally describe how to play, given 

a strategy (j on T, the strategy (T = 'P((j) on T in such a way that for any 
run .T E [(T] there is a mn i E [(j] with r,cn = .T. It will be dear from our 
description that (Tin depends only on (jin. 

Case I. (j is a strategy for I in T. 

For the first 2k moves, (T just follows 0-. Next 0- provides I with (.f2k' LIl. 
I plays X2k by (T. 

Then II plays in T X2k+l. \Ve have two subcases now. 

SlIbcasf. 1. I has a winning strategy in 

Then (T requires I to play this strategy. After tinitely many moves. a 
shortest position II of even length is reached for which II t/:- (Tx) (.Tn .... 1:2H 1)' 
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say u = (X2k+2,"" XU-I). Then (Xo, ... , X2k-l, (X2k' :EI), (X2k+l, (1, u)), 
X2k+2, ... ,X2f-d is a legal position of T, and a requires I from then on to 
play just following Cr. 

Subcase 2. II has a winning strategy in 

Let :ElI be her canonical quasistrategy in this game (recall here that 
the set X(xo ..... X2k+,) is closed). In particular, :ElI <:: (:EI)(x2k+,)' From the~ 
on I plays, according to a, just following Cr, assuming that in the game on T 
II played (X2k+l' (2, :ElI)) in her appropriate move. I can do that as long as 
II collaborates and plays her moves afterward so that (X2k+2, ... ,X2f-l) E 
(:EII )(X() ..... x2k+,), since then we have legal positions in T. But if for some £ 
with 2£-1 > 2k+2, II plays (in the game on T) so that (X2k+2' ... ,X2C-l) ~ 
(:Err)(xo, .... X2k+,)' then by definition of :ElI it follows that I has a winning 
strategy in G((:Er)(X2k+l .... ,X2f_1l, [(:E 1)(X2k+l, ... ,XU_,)] \ X(xo, .... X2f_,)). But 
then I can continue by a as in Sub case 1. 

Case II. Cr is a strategy for II in T. 
Again for the first 2k moves a just follows Cr. Next I plays X2k (in the 

game on T). Put S = {:EI : :EI is a quasistrategy for I in T(xO, ... ,X2k)} and 
U = {(X2k+lrU E T(xo ..... X2k) : U has even length, and there is :EI in S such 
that Cr requires II to play (X2k+ 1, (1, u)) when I plays (X2k,:Er)}. Then 

is an open set in [T(X[) ..... X2k)]. 

Consider the game on T(X[), .... X2kl, 

I 

where II plays first and wins iff (X2k+l,X2k+2"") E U. 

Subcase 1. II has a winning strategy in this game. 

Then (in the game on T) a follows after X2k this winning strategy for 
II, until (X2k+l' X2k+2, ... ,X2f-d E U. Let u = (X2k+2, ... ,X2f-d and, by 
the definition of U, let :Er witness that this sequence is in U. It is clear 
that from then on (Le., for (X2£," .)) II can playa by just following a on 
(xo, ... , X2k-l' (X2k' :Er), (X2k+l, (1, u)), X2k+2,'" ,x21'-d· 

Subcase 2. I has a winning strategy in this game. 

Call :Er her canonical winning quasistrategy. (This game is closed for 
I.) Then if I played in the game on T, (X2k, :Er), a cannot ask II to play 
something of the form (X2k+l' (1, u)). Because then (X2k+lrU E U and, by 
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the rules of t, (X2k+lrU E I:r, contradicting the fact that no sequence in 
I: r can be in U. 

So if I played in the game on t. (X2k' I:d, (j asks II next to play 
(X2k+1, (2,I:n)). So II plays according to (J" this X2k+l and continues to 
play by (J" just following (j on (xo, ... ,X2k-l,(X2ko I:I),(X2k+I,(2,I:n )). 
X2k+2 •...• X2£) as long as I collaborates so that (X2k+2, ...• X2f) E I:n . 
If for some € ~ k + 1, I plays X2£ with (X2/,'+2, ... ,X2£) fJ. I:n , then, since 
I:u is a quasistrategy for II in (I:r)X2k+l so that I's moves are unrestricted 
as long as they are in I:r, it follows that (X2k+2,"" X2e) fJ. (I:r)(X2k+,) and 
we are back in Subcase 1 again. D 

Notice that in order to unravel a closed game in which the moves are in 
{O, I} (i.e., T = 2<N), we need to play in the preceding proof a game whose 
moves are essentially from Pow(N) (quasistrategies are subsets of 2<N which 
can be "identified" with N by some enumeration). Tracing then the proof 
that Borel games on {O, I} are determined, we see that one uses there the 
existence of PowdN), the ~th iterated power set of N, for all ~ < WI. Thus 
one uses set theoretic objects of very high type (natural numbers have type 
0, sets of natural numbers have type 1, etc.). A metamathematical result 
of H. Friedman [1971] shows that this is necessary for any proof of Borel 
determinacy. In other words, to establish the validity of Borel determinacy 
for games on {O, I}, which is a statement about simply definable subsets 
of the Cantor set, requires the existence of quite large sets, certainly much 
bigger than the reals. the sets of reals. etc. This turns out to be a typical 
phenomenon in descriptive set theory. 

(20.9) Exercise. Give a direct proof that ~g games are determined as fol
lows: Let X ~ AN be ~g, so that X = Un Fn, Fn ~ AN closed. Let Tn be a 
pruned tree with Fn = [Tn]. Define by transfinite recursion WI; ~ A <N by: 

S E WO ¢} length( s) is even & 3n(1 has a winning strategy in (FrJ,). 

If W'7, TJ < ~, have been defined, let 

and put 

x E cl;·n ¢} I;j even k(xlk E U W'7 U Tn), 

'7<E 

s E W~ ¢} length( s) is even & 

3n(1 has a winning strategy in (Cl;·,,) .. ). 

(Note that Cf"" is closed.) Show that: 1) s E Uf, wf. '* I has a winning 
strategy in Xs; and 2) 0 fJ. U~ WI; '* II has a winning strategy in X. 
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20.D Game Quantifiers 

Let X ~ AN. Then the statement "I has a winning strategy in G(A, X)" 
can be abbreviated naturally as 

Similarly, 
\iao3al \ia23al ... -,( an) E X 

abbreviates the statement that II has a winning strategy in G(A, X). Thus 
the determinacy of G(A, X) can be expressed as 

-,3ao\ial ... (an) EX{=} \iao3al ... -,(an ) EX. 

So determinacy can be thought of as an infinitary analog of the basic rule 
of logic 

-,3ao\ial ... Qan-IX(ao,···, an-I) {=} 

\iao3al ... Qan-I-,X(aO,···, an-d, 

where Q = 3 or \i and Q (= the dual of Q) is \i or 3. Notice that this logical 
rule asserts the determinacy of the finite game 

I wins iff X(ao, ... , an-d, where we took n to be even for definiteness. 
Thus this infinitary rule is valid if X is a Borel set in AN, but not for 

arbitrary X even in 2N , using the Axiom of Choice. As we will discuss later 
(see 26.B), it is one of the basic strong axioms of modern set theory that all 
"definable" games with moves in A, where A is a standard Borel space, are 
determined, so this rule is valid if X is a "definable" set in AN, A standard 
Borel. 

(20.10) Exercise. Define explicitly a game with moves in A = Pow(2N) which 
is not determined. (Remark: It is easy to define such a game explicitly and 
then show that it is not determined using the Axiom of Choice. In 21.4 we 
will ask for another example, where the Axiom of Choice can be avoided, 
even in the proof that the game is not determined.) 

For any nonempty set A the game quantifier 9 A is defined by 

gAYP(X, y) {=} 3ao\iaaa2\ia3· .. P(x, (an)), 

where P ~ X X AN. The dual game quantifier QA is defined by 

QAYP(X, y) {=} \iao3al\ia23a3··· P(x, (an)). 

So if all games G(A, Px ) are determined, then 
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(20.11) Exercise. Show that the sets of the form gNyF(x, y), where F ~ 
N x N is closed, are exactly the !:t subsets of N. Show that the sets of 
the form gNYC(X,y), where C ~ N x N is clop en , are exactly the Borel 
subsets of N. 
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2l. Games People Play 

21.A The *-Garnes 

Let X be a nonempty perfect Polish space with compatible complete metric 
d. Fix also a basis {Vn} of non empty open sets for X. Given A c::: X, consider 
the following * -game G* (A): 

I (U CO ) U CO )) (U(l) U(1)) o ' I 0 , I 

II io 

utI) are basic open sets with diam(U/ n )) < 2-", U6 n ) n uin ) = 0, in E 

{O, I}, and ucin+l) U uIn+l) c::: ut). Let x E X be defined by {x} = 

nn ut)· Then I wins iff x E A. 
Thus in this game I starts by playing two basic open sets of diameter 

< 1 with disjoint closures and II next picks one of them. Then I plays 
two basic open sets of diameter < 1/2, with disjoint closures, which are 
contained in the set that II picked before, and then II picks one of them, 
et.c. (So this is a version of a cut-and-choose game.) The sets that II picked 
define a unique x. Then I wins iff x E A. 

(21.1) Theorem. Let X be a nonempty perfect Pohsh space and A c::: X. 
Then 

i) I has a winning 8trategy in G* (A) iff A contain8 a Cantor 8et. 
ii) II has a winning 8trategy in G* (A) iff A is countable. 

Proof. i) A winning strategy for I is essentially a Cantor scheme (Us) sE2<~, 
with Us open, u.,'OUUs'l c::: Us, diam(Us ) < 2-length(s)+l, if 8 -# O, such 
that for each y E 21\1, if {x} = nn Uy1n , then x E A. So A contains a Cantor 
set. 

Conversely, if C c::: A is a Cantor set, we can find a winning strategy for 
I as follows: I starts with (a legal) (Uci°), ufO)) such that Ui(O) n C -# O, for 

i E {O, I}. Next II chooses one of them, say uci°) for definiteness. Since C is 

perfect., I plays (a legal) (U(\l), ui l )) such that U?) n C -# 0, for i E {O, I}, 
etc. Clearly, this is a winning strategy for I. 

ii) If A is countable, tiay A = {xo, Xl, ... }, then a winning strategy for 

II is defined by having her chootie in her nth move U/ n ) so that Xn r/c Ut') 
(i.e., plays in = i). 

Finally, assume (J is a winning strategy for II. Given x E A, call a 
position 

, -((U(O) U(O)) . (U(n-l) U(n-l)). ) p- 0' I ,~O,···, 0 , 1 ,~n-l 

good for x if it has been played according to (J (Le., p E (J) and x E U(n-l). 
~n-l 

By convention, the empty position I/) is good for x. If every good for x 
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position p has a proper extension that is also good for x, then there is a 
run of the game according to (J', which produces x E A, so player I won, 
giving a contradiction. 

So for each x E A there is a maximal good p for x. If p is as just 
defined, then 

x E Ap = {y E Ut~~l) : \;:j legal (U6") , ui n )), if 

i is what (J' requires II to play 

next, then y rt. Ui(n)}. 

Thus, A C;;; UPEO' Ap' Now notice that Ap contains at most one point, since 

if Yo cf Yl belong to Ap and I plays (a legal) (U6 n ) , uin )) with Yi E utn ) , we 
have a contradiction to the fact that Yi E Ap. The tree of legal positions in 
G* (A) is countable and thus so is (J', being a subtree of it. So A is countable. 

o 
Since the map that sends a run of G*(A), ((U6°) , UiO)),io, ... ) to x, 

where {x} = nn utl , is clearly continuous (from [T] into X, where T is 
the tree of legal positions of this game), this shows that if A C;;; X is Borel, 
this game is determined, so we have one more proof that an uncountable 
Borel set in a Polish space contains a Cantor set. (If the space X on which 
we are working is not perfect, replace it by its perfect kernel.) Recall that 
in 14.13 we proved that this so-called perfect set property also holds for all 
analytic sets. We can, in fact, prove this extension by using a further trick, 
called unfolding, which actually allows us to use only the determinacy of 
closed games. 

21.B Unfolding 

Suppose now X is a perfect Polish space, and let F C;;; X x N. Consider 
then the unfolded *-game G:,(F): 

I y(O),(U6°),uiol ) y(l),(U~l),ui1)) 

II io 

I and II play moves as in the *-game, but additionally I plays y(n) EN in 
her nth move. If x is defined as before, then I wins iff (x, y) E F. 

(21.2) Theorem. Let X be a perfect Polish space, F C;;; X x N, and A = 

proh(F). Then 
i) I has a winning strategy in G~ (F) =} A contains a Cantor set. 
ii) II has a winning strategy in G~(F) =} A is countable. 

Proof. i) If I has a winning strategy in G~f (F), then it is immediate that 
(by ignoring the y(n)'s) I has a winning strategy in G*(A), so A contains 
a Cantor set. 
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ii) If now II has a winning strategy a in G~ (F), let x E A and choose a 
"witness" Yo with (x, Yo) E F. As in 21.1 there must exist a maximal good 
for (x, Yo) position 

_ (( () (U(O) (0))). (( ) (U(n-l) U(n-l))). ) P - Yo 0, 0 ,Ul ,10,···, Yo n - 1, 0 '1 ,In-l , 

where good means that pEa and x E U;~~-,I). So if a = yo(n), we have that 

A' { U(n-l) W I I ( (U(n) Urn))) x E ]l,a = Z E in~l : vega a, 0 '1 , 

if i is what a requires II to 

play next, then z ~ Ui(n)}. 

So A <;;; U]lE(T,aEN A~,a and, as in 21.1, A~,a contains at most one element. 
So A is countable. 0 

In particular, if A <;;; X is analytic and (by 14.3) we choose F <;;; X x N 
closed with projx(F) = A, we have that G~(F) is a closed game for I, so 
determined. Thus, either A is countable or contains a Cantor set, so we 
have another proof of 14.13. 

(21.3) Exercise. For A <;;; 2N consider the following game 

I 30 31 

II io 71 

3 n E 2<N, in E {a, I}. Let x = 30 Aio A 31 Ail A .... Then I wins iff x E A. 
Show that this game is equivalent to G* (A). (So it is also usually 

denoted G*(A).) Study its unfolded version as well. 

(21.4) Exercise. Define explicitly a game on A = Pow(2N) and show, without 
using the Axiom of Choice, that it is not quasidetermined. (Recall 20.10.) 

21.C The Banach-Mazur or **-Games 

Let X be a nonempty Polish space and d a compatible complete metric on 
X. Also let W be a countable weak basis for X and let A <;;; X. We define 
the **-game G**(A) as follows: 

I Uo Ul 

II V() VI 

U;, Vi E W, diam(Un ), diam(Vn) < 2- n , Uo ;;;? Vo ;;;? Ul ;;;? VI ;;;? •... Let x 
be such that {x} = nn Un = nn V n' Then II wins iff x E A. 



152 II. Borel Sets 

This game is a variant of the Banach-l\Iazur game G** (A) as defined in 
8.H, but it is easy to see (compare, e.g., 8.36) that it i::; actually equivalent 
to it, so there is no danger of confusion. From 8.33 we have: 

i) I has a winning ::;trategy in G** (A) <¢=} A is meager in some nonempty 
open set.. 

ii) II has a winning strategy in G**(A) <¢=} A is comeager. 

\Ve can abo consider the unfolded version of this game which allows 
Wi to show that all analytic sets have the BP. 

Let F c:;:: X x jV, and define the unfolded **-game G~* (F) as follows: 

Un 

II y(O), Va 

I and II play Un. Vt), ... as in the **-game, but additionally II plays y(n) EN 
in her nth move. If x is defined as before, II win::; iff (:r:, y) E F. 

(21.5) Theorem. Let X be a Polish space, F c:;:: X x N, and A = proh (F). 
Then 

i) I has a winning strutegy in G~,*(F) =? A is meager in some nonempty 
open set. 

if) II has (J winning strategy in G~* (F) =? A is comeager. 

Proof, ii) If II has a willlling strategy in G:* (F), she al::;o has one in G** (A). 
i) Let Un be I's first move by a winning strategy a. We will show 

that. A i::; meager in U(j. Given .r E An Uo, choose a witne::;::; Yo EN with 
(x, Yo) E F. Call a position 

good for (x, Yo) if]J E a and x E U". Again it i::; clear that not every good 
po::;ition has a proper good extension, so let p be a maximal good for (x, Yn) 
position. If a = yo(n) and p is as defined above, then 

x E Fp." = {z E U" : V legal (a. 11,,), if 

Un +1 is played next by I 

following a, then z rt Un +1 }. 

Clearly, Fp.(L i::; a closed in Un set and has no interior, since if 11" i::; a set in the 
weak basis with V" c:;:: Fp.a and diam{1I,,) < 2-", and II plays (a, 11,,) in her 
nth move, then I, followinga. plays U,,+1 c:;:: V"' with Un+1nFp .a = 0, which 
is a contradiction. So Fp.o is meager and since An Uo c:;:: UPEIT.aEN Fp,a, An 
Uo is meager too. 0 

III particular, if we take A to be analytic and choose F to he closed, so 
that the game C:* (F) is closed too, and thus determined, we obtain that 
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i) or ii) of the theorem holds, in particular that G**(A) is determined. But 
then, by 8.35, it follows that all analytic sets have the BP. Thus we have 
the following result. 

(21.6) Theorem. (Lusin-Sierpiriski) Let X be a Polish space. Then all an
alytic sets have the BP. 

It also follows that all sets in ()(~D have the BP, so by 18.1 every 
analytic set has a Baire measurable uniformizing function. 

(21.7) Exercise. Consider the game defined in the second part of 8.36. For 
countable A, analyze its unfolded version. 

21.D The General Unfolded Banach-Mazur Games 

The proof of 21.5 makes use of the existence of a countable weak basis 
for X. Actually, one can prove a much more general version of this fact 
which avoids such count ability assumptions and therefore applies to such 
topologies as the Ellentuck and the density with further applications. 

We will consider nonempty topological spaces X that are Choquet and 
have a metric whose open balls are open in X (see 8.33 ii)). Fix a weak basis 
W for X. As before, it is easy to see that for A c::: X the Banach-Mazur 
game G* * (A), as defined in 8.H, is equivalent to the following: 

I Uo U I 

II Vo 

Ui , Vi E W, Uo :2 Vo :2 UI :2 VI :2 "', diam(Ui), diam(V;) < 2-;. II wins 
iff nn Vn (= nn Un) c::: A. 

Suppose now F c::: X x N, and let A = proh(F). Consider the 
unfolded Banach-Mazur game G~*(F) 

I Uo UI 

II y(O), Va y(I), VI 

U;, Vi E W, Uo :2 Vo :2 UI :2 VI :2 "', diam(Ui),diam(V,) < 2- i . II wins 
iff nn V;, x {y} c::: F. 

Note that in both games if a player has a winning strategy then, since 
X is Choquet, she can guarantee, by modifying her winning strategy, also 
that n" Vn (= nn Un) is nonempty, thus a singleton (see the proof of 8.33 
ii)) . 

We now have the next theorem. 

(21.8) Theorem. Let X be a nonempty Choquet space that admits a metric 
whose open balls are open in X. Let F c::: X x N and A = proh (F). Then 
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i) I has a winning strategy in G~* (F) =} A is meager in a nonempty 
open set. 

ii) II has a winning strategy in G~* (F) =} A is com eager. 

Proof. ii) is clear, since if II has a winning strategy in G~*(F), II clearly 
has a winning strategy in G**(A). 

i) Let (5 be a winning strategy for 1. Let Uo be her first move by (5. We 
will show that A is meager in Uo. 

Fix a finite sequence u E N<N of positive length. We say that a finite se
quence (Uo,v(), UI , VI, ... , Un), with n ::; length(u), or (Uo, Vo, ... , Un, Vn) 
with n < length(u), is compatible with (5, u if (Uo, (u(O), Vo), UI , (u(l), Vd, 
... , Un), respectively (Uo, (u(O), Vo), ... , Un, (u(n), V;,)), is in (5. It is easy 
now (see, e.g., the proof of 8.11) to construct for each u a tree Tu of com
patible with (5, u sequences such that: 

a) For any (Uo, Vo, . .. ,Un) E Tu, the family U = {Un+1 : (Uo, Vo, ... , 
Un, Vn, Un+!) E T,t} is pairwise disjoint and UU dense in Un if n + 1 ::; 
length(u). 

b) If u <;;; u', then Tu is the restriction of Tu l to the sequences as above 
with n::; length(u), respectively n < length(u). 

Then let Wu = U{Ulength(u) : (Uo, Vo,.·., Ulength(u)) E Tu}. Thus Wu 
is open dense in Uo for each u E N<N. Let G = nu WU' Then G is comeager 
in Uo, so it is enough to check that G <;;; rv A (i.e., if x E G then \:fy E 

N(:r, y) tI- F). Fix YEN. Since x E nu W u , in particular x E nn Wyl n ' and 
so by a) and b) there is unique (Uo, Vo, ... ) Un, V;" ... ) such that x E Un 
for each nand (Uo, (y(O), Vo), UI , (y(l), VI)"") E [(5]. So (x, y) tI- F and we 
are done. D 

Now consider a Polish space (X, I) and let I' ;;;;> I be another topol
ogy on X which is Choquet. Let d be a compatible complete metric for 
(X, I). The preceding result clearly applies to (X, 7'). Actually, it is more 
cOllvenient to work in this context with the following equivalent variant of 
G**(A). Fix a weak basis W for I'. Consider then the game 

Ui , V; E W, Uo ;;;;> Vo ;;;;> U1 ;;;;> VI :2 ... , diam(Ui ), diam(V;) < 2- i . II wins 
-7 -7 -7 

if x E A, where {x} = nn V" (= nn Un), with U = the closure of U in 
T. 

We define the unfolded games G:/(F) for F <;;; X x N. Note here that 
if F is closed in (X, I) x N, then G~*(F) is determined, being a closed 
game. 

We can apply this to the Ellentuck and density topologies. 
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(21.9) Theorem. (Silver) Let S <;;;; [Nt" be analytic. Then S is completely 
Ramsey. 

Proof. Let [a, A] be any basic open set in the Ellentuck topology. Note that 
[a, A] is closed in the usual topology of [Nt". By applying Theorem 21.8 
and the preceding remarks to X = [a, A], T = the usual topology, T' = 

the Ellentuck topology, we have that either S is com eager in [a, A] or there 
is [b, B] <;;;; [a, A] with S meager in [b, B]. 

In order to show that S is completely Ramsey, it is enough, by 19.14, 
to show that S has the BP in the Ellentuck topology; for the latter, it is 
enough to show by 8.29 that S \ U(S) is nowhere dense. Otherwise, there 
is [a, A] <;;;; S \ U(S), where closure is in the Ellentuck topology. If S is 
comeager in [a, A], then by definition [a, A] <;;;; U(S), contradicting the fact 
that [a, A] n (S \ U(S)) and thus [a, A] \ U(S) is nonempty. There must be 
therefore [b, B] <;;;; [a, A] with S meager in [b, B], so by 19.17 there is [b, B'] 
with B' <;;;; B such that [b, B'] <;;;; ~ S. Since [b, B'] <;;;; [b, B] <;;;; [a, A], we 
have that [b, B'] n (S \ U (S)) (and thus [b, B'] n S) is non empty, which is a 
contradiction. 0 

A set A <;;;; X, where X is a standard Borel space, is called univer
sally measurable if it is Jl-measurable for any a-finite Borel measure Jl on 
X. A function f : X --t Y between standard Borel spaces is universally 
measurable if it is Il-measurable for any a-finite Borel measure {I. 

(21.10) Theorem. (Lusin) Let X be a standard Borel space. Every analytic 
set S <;;;; X is 1miversally measurable. 

Proof. Let Jl he a a-finite Borel measure on X. We will show that S is If.
measurable. Since Ii, is equivalent to a probability measure, we can assume 
that Ii, is actually a probability measure. By separating If into its continuous 
and discrete parts, we can assume, without loss of generality, that Jl is 
continuous. Then by 17.41 we can assume that X = (0,1) and that If is 
Lebesgue measure. 

Let P = ~ Sand {L.(P) = sup{Jl(A) : A <;;;; P, A Borel}. Clearly, 
Jl.(P) = 11(A) for some Borel A <;;;; P. Let pi = P\A. Then 1f*(P') = ° and 
pi E II}. If pi has Jl-measure 0, then pi <;;;; B for some Borel set B of Jl
measure 0, so A <;;;; P <;;;; AuB and Jl(A) = Jl(AUB); thus P is Jl-measurable, 
and so is S. Therefore it is enough to show that pi has {L-measure 0. 

As in the proof of 21.9, but working now with the density topology 
(see 17.47), we see that either ~ pi is comeager or else r-v pi is meager in 
a nonempty open set in this topology. In the first case, by 17.47, pi has 
measure ° and we are done. In the second case, let U be nonempty open in 
the density topology so that U \ pi is meager. Thus U \ pi has measure 0, 
so U\P' <;;;; G, where G is Borel of measure 0. Then U\ G <;;;; pi and U\ Gis 
measurable of positive measure, thus Jl. (Pi) > 0, which is a contradiction. 

o 
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In particular, every set in O"(~D is universally measurable. Thus it 
follows (from 18.1) that every analytic set admits a universally measurable 
uniformizing function. 

(21.11) Exercise. Given X ~ [Nll{o, consider the following game: 

I (ao, Ao) (a2' A2) 

II (al,A1 ) (a3.A3) 

ai E Un[Nln, Ai E [Nll{o, a; < Ai, ai+1 :;;2 ai, ai+l \ ai ~ Ai, A;+l ~ 
Ai, card(ai) 2: i + 1. Let A = Un an E [Nll{o. II wins iff A E X. 

Show that this game is equivalent to the Banach-Mazur game for the 
Ellentuck topology (and similarly, for the unfolded version). 

(21.12) Exercise. For A ~ (0,1) consider the following game: 

I Fo F2 

II Fl F3 

Fi ~ (0.1), F; closed, Fo :;;2 Fl :;;2 F2 :;;2 "'. diam(F;) < 2- i , m(Fi) > ° (m 
is Lebesgue measure). Let {x} = nn Fn. II wins iff x E A. 

Show that this game is equivalent to the Banach-Mazur game for the 
density topology (and similarly, for the unfolded version). 

21.E Wadge Games 

(21.13) Definition. Let X,Y be sets and A ~ X,B ~ Y. A reduction of A 
to B is a map f:X ---> Y with f-l(B) = A, i.e., x E A {=} f(x) E B. If XX 
are topological spaces, we say that A is Wadge reducible to B, in symbols 
A :S w B, if there is a continuous reduction of A to B. (Strictly speaking, 
we should write (X ,A) :Sw (Y,B), but X,Y are usually understood.) 

This gives a notion of relative complexity of sets in topological spaces. 
If A :Sw B, then A is "simpler" than B. It is easy to see that :Sw is re
flexive and transitive (i.e., a partial preordering) which is called the Wadge 
(pre) ordering. We will study here the Wadge ordering on Borel sets in 
zero-dimensional Polish spaces. 

From now on we will consider sets A in nonempty zero-dimensional 
Polish spaces X. By 7.8 we can view X as a closed subspace of N. thus 
X = [Tl for a nonempty pruned tree on N. 

(21.14) Theorem. (Wadge's Lemma) Let S,T be nonempty pruned trees 
on N. and A ~ is], B ~ [Tl be Borel sets. Then either A :Sw B or 
B :Sw'" A ( = [Sl \ A). 
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Proof. Consider the Wadge game WG(A, B), 

I x(O) x(l) 

II y(O) y(1) 

:r(i), y(i) EN; xln E 5, yin E T for all n. II wins iff (x E A ¢} Y E B). 
Since A, B are Borel, this is clearly a Borel game, so determined. 
Suppose first that II has a winning strategy. \Ve can view this strategy 

as a monotone map cp : 5 ----> T such that length( cp( 8)) = length( 8) (a 
Lipschitz map: see 2.7). Thus cp gives rise to a continuous map cp* : [5] ----> 

[T]. Since cp is winning for II, x E A ¢} cp*(x) E B, so A Sw B. 
Notice that I wins the above game if (x rt A¢} Y E B). So, as above, 

if I has a winning strategy, then B Sw ev A. 0 

For sets A. B as above, let 

This is an equivalence relation, whose classes 

A=[A]w 

are called Wadge degrees. We denote by WADGE the set of Wadge degrees 
and by \VADGEB the set of \Vadge degrees of Borel sets. Let also, 

so that (\VADGE, S) is a partial ordering. For each A define its dual A by 

A = [ev A]w. 

Note that A S B ¢} A S B. 
It is possible that A = A. For example, take X = 2N , A = N(o) = {x E 

2N : x(O) = O}. It is also possible that A f A. Take, for instance, A = 0 or 
for a more interesting example, A = Q = a countable dense subset of 2N. 
\Vhen A f A, the Wadge degrees A, A are clearly not (S-) comparable. 
\Vadge's Lemma asserts that, for Borel sets, these are the only incomparable 
pairs of \Vadge degrees, in fact, for any given A, B with BfA, A we must 
have B S A,A or A,A S B. 

\Ve can define then a coarser equivalence relation by identifying A, A. 
Let 

A =tv B ¢} A =11' B or A =w ev B, 

and let 
A* = [A]w U [ev A]w = AuA. 

\Ve call A * the coarse Wadge degree of A and denote the set of these coarse 
degrees by WADGE* (WADGED if we look at Borel sets only). Again, we 
can define an ordering on it by 
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A* :s;* B* {=} A :S;W B or A :S;W"-' B. 

Thus \Vadge's Lemma says that (vVADGEs, :S;*) is a linear ordering. 
We will next show that it is actually a wellordering. 

First note though that if A r:;;: [T], then there is B r:;;: N with A =w B. 
To see this, fix a continuous surjection f : N -+ [T] with f being the identity 
on [T] (see 2.8). Put B = f-l(A) r:;;: N. Then B :S;W A. But the identity 
map from [T] into N also shows that A :s; w B. Thus, when studying Wadge 
degrees, we can work just with subsets of N. 

(21.15) Theorem. (Wadge, Martin) The ordering (WADGEs, :S;*) is a well
ordering. 

Proof. (Martin-Monk) It is enough to show that there is no infinite de
scending chain··· <* A2 <* Ai < A;), with Borel Ai r:;;: N. If such existed, 
toward a contradiction, then player I would have a winning strategy, say O'~, 
in WG(An' An+d (since An iw An+d and I would also have a winning 
strategy, say 0';" in WG(An' "-' An+1 ) (since An iw"-' An+d· 

)6(0) YI(O) Yz(O) Y3(0) Y4(0) 

<1. x(O) 
0 /' /' /' /' 

II Yo(1) y/I) Yz(1) i1) 
3 

(l)~ (I~ (1~ (1~ 
Y/) YO YI Y2 Y3 

<1. x(l) 
I /' /' /' /' 

II )6(2) Y1(2) Yz(2) ~(2) 

(2)~ (2~ (z~ (zy/ yP) 
YO Y1 Y2 Y3 

<1. x(2) 
2 /' /' /' /' 

II YO(3) Y1(3) Yz (3) lo) 

Yo(3)~ ~--if--- --:-~.---
Y1(3) Y2(3) Y3(3) Y4(3) 

a x (3) 
3 /' /' /' /' 

II )6(4) y1(4) )2(4) Y3(4) 

~ ~-----#--# 
FIGURE 21.1. 

Fix X E 2N. Consider the diagram in Figure 21.1. I plays Y6n ) in the nth 

game following O'~(n). This fills the first column. Then II copies as shown 
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to play Y6n +1) in the nth game. This fills the second column. I responds by 

following a~(n) in the nth game to play y~n). This fills the third column, 

etc. Let Yn(x) = (yin)hEN' Then 

x = {x E 2N : Yo (x) E Ao}. 

Since x f---7 Yn(x) is continuous, X is Borel and thus has the BP. Notice 
now that if x, x E 2N and x, x differ at exactly one point, say x(n) = x(n) 
for n '" k, but x(k) '" x(k), then x E X {o} x ~ X. To see this, note that 
Yn(x) depends only on x(n), x(n + 1), ... , so Ye(x) = y£(x) if (i > k. Then, 

by (*), Yk(X) ~ Ak {o} Yk+l(X) E Az~l {o} Yk+l(X) E AZW {o} Yk+l(X) ~ 
A~~{ {o} Yk(X) E Ak. Finally, since x(n) = x(n) for n < k, it follows from 
(*) again that Yo(x) E Ao {o} Yo(x) ~ Ao· 

We will now derive a contradiction by showing that X does not have 
the BP. Otherwise, by 8.26, there is n E Nand s E 2n , so that X is 
either meager or comeager in N". Let 'P : Ns -7 N, be the homeomorphism 
given by 'P( (Xi)) = (xo, ... ,Xn~l, 1 ~ xn, xn+l, ... ). Then x E X {o} 'P(x) ~ 
X, so 'P(X n N s ) = ~ X n N,,, which is a contradiction. D 

We call a Wadge degree A self-dual if A = A. The following facts 
have been proved by Steel-Van Wesep (see R. Van Wesep [1978]). If A is 
a self-dual (resp., not self-dual) degree and B* is the successor of A * in 
(WADGE'B, :S;*), then B is not self-dual (resp., is self-dual). Moreover, it 
is easy to see that the least element of this ordering is [0l w u [N]w. At a 
limit stage A in the wellordering (WADGE'B. :S;*) we have a self-dual degree 
if cofinalitY(A) = w, and a non-self-dual degree if cofinality(A) > w. Finally, 
the ordinal type of (WADGE'B, :S;*) is a limit ordinal e, where WI < e < W2. 

Thus we have the following picture of the partial ordering of Wadge degrees 
(and by identifying a degree with its dual, of the wellordering of coarse 
Wadge degrees) of Borel sets: 

• • • • 
• • • 

• • • • 
(0) (1) (2) (3) (W) (w+l) 

Thus the Wadge ordering :S;W imposes an (essentially wellordered) hi
erarchy on the Borel sets, called the Wadge hierarchy. Since the classes 
~~, II~ are closed under continuous preimages, these classes are initial seg
ments of the \\Tadge hierarchy. The Wadge hierarchy gives a very detailed 
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hierarchical analysis of the Borel sets, much finer than that given by the 
classes E~, II~. 

(21.16) Exercise. Show that [0hv- = {0}, [Nhl = {N} occupy level 0 of 
the vVadge hierarchy. Show that the clop en sets that are =1= 0'/\! occupy 
level 1 of this hierarchy. Show that level 2 consists of U, F, where U is 
open, lIot closed, and F is closed, not open. Show that level 3 consists of 
A = [U E-) F]IF, where U, F are as above and U t£ F = {i';r : (i even &:r E 
U) or (i odd & x E F)}. (It can be shown that level WI is occupied by A, A, 
where A is Fa but not G~.) 

(21.17) Exercise. Show that if Q c::: 2N is countable dense, then A S IF Q 
for any A c::: N in Fer. 

21.F Sepamtion Garnes and Hurewicz's Theorem 

Let 5, T be non empty pruned trees on N and let A c::: [5] and Eo, El be 
subsets of [T] with Bo n B1 = 0. The following generalization of the Wadge 
game, which is also due to \Vadge, is called the separation game of A, Bo, B 1 , 

denoted as SG(A; B o, Bd, 

I x(O) x(l) 

II y(O) y(l) 

xCi), y(i) E N: xln E 5, yin E T. II wins iff (:1; E A =} Y E Eo) and 
(x tic A =} Y E Bd· In particular, SG(A; B, ~ B) = ~VG(A, B). 

As in the proof of 21.14, if I has a winning strategy, there is a continuous 
function J : [T] -+ [5] induced by this winning strategy such that (y E BI =} 

J(y) E A) and (y E Bo =} f(y) tic A), so I-I(A) separates Bl from Bo. If, 
on the other hand, II has a winning strategy, there is a continuous function 
9 : [5] -+ [T] induced by her winning strategy such that g(A) c::: Bo and 
g(~ A) c::: B 1 · 

\Ve will use such games to prove Hurewicz's Theorem 7.10 and, in fact, 
much stronger results. Let us first state the original form of Hurewicz's The
orem, of which 7.10 is a special case. (For the following results it is relevant 
to recall the fact that every countable dense subset of C is homeomorphic 
to CQl (see 7.12) and that its complement is homeomorphic to}\! (see 7.13).) 

(21.18) Theorem. (Hurewicz) Let X be a Polish space and A c::: X an 
analytic set. If A is not Fa, then thercis a Cantor set C c::: X such that C\A 
is countable dense in C, so that en A is a relatively closed subset of A that 
is homeomorphic to N. Therefore, if B c::: X is co-analytic, then either B 
is G b (i. e., Polish) or else B contains a relatively closed set homeomorphic 
to CQl. 
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Let us mention some corollaries. 

(21.19) Corollary. (Same as 7.10) Let X be Polish. Then X contains a 
closed subspace homeomorphic to N iff X is not K". 

Proof. (of 21.19 from 21.18) If X is K", it clearly cannot contain a closed 
set homeomorphic to N, since N is not K". Conversely, if X is not K" and 
X is a compactification of X, then X is not F(J" in X, so it contains a closed 
set homeomorphic to N. D 

Recall that every Polish space is Baire and so is every closed subspace of 
it (also being Polish). We call a topological space completely Baire if every 
closed subspace of it is Baire. Is every separable. metrizable, completely 
Baire X a Polish space'? 

(21.20) Exercise. Use the Axiom of Choice to show that there exists A C;;; ffi. 
that is completely Baire but not Polish (i.e., C 6 ). 

However, for "definable" X the answer to the question preceding 21.20 
turns out to be positive. Below, call a separable metrizable space co-analytic 
if it is homeomorphic to a co-analytic set in a Polish space. 

(21.21) Corollary. Let X be a separable metr'izable co-analytic space. Then 
X is Polish iff it contains no closed s'ubset homeomorphic to IQl iff it is 
completel:1j Bair-e. 

Pmof. (of 21.21 from 21.18) We can assume that X C;;; Y, where Y is Polish 
and X is IIi in Y. If X is not Polish, then X is not Cf! in Y, so there is a 
closed subspace of X homeomorphic to 1Ql. But IQl is not Baire. D 

We will now prove 21.18 by actually proving a stronger "separation" 
result. 

(21.22) Theorem. (Kechris-Louveau-\:\Toodin) Let X be a Polish space, let 
A C;;; X be analytic, and let B C;;; X be ur-bitrary with An B = 0. If ther-e 
is no FIT set separating A fmm B, then ther'e is a Cantor- set C C;;; X such 
that C C;;; Au Band C n B is countable dense in C. In par-ticular-, C n B is 
homeomorphic to IQl und C n A is homeomorphic to N. 

Hurewicz's Theorem 21.18 follows by taking B = ~ A. 

Pmof. (of 21.22) First we will verify that it is enough to prove the theorem 
for X = C. 

It is clear that we can replace X by a compactification X, so we may 
as well assume that X is compact. Then let Jr : C -+ X be a continuous 
surjection and put A' = Jr- 1 (A), B' = Jr-l(B). Then A' is analytic, A' n 
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B' = 0 and if an Fa set F' separates A' from B', then, as it is actually 
K cr , 7r(F') is also Kcr and separates A from B. So if the result holds for 
C, there is a Cantor set H ~ C with H c::: A' u B' and H n B' countable 
dense in H. Then K = 7r(H) is a closed subset of X, K c::: Au B, and 
K n A. K n B are disjoint dense subsets of K, with K n B countable. 

In particular, K is perfect. It is easy now to construct a Cantor set C c::: 
K having the same properties. Just construct a Cantor scheme (C')"E20, 
where C, is open in K, diam(Cs ) < 2-1ength(s), Cs -; c::: C" together with 
points :r:s E C., Ii B such that x,"O = :r:s for all 8. Then the set C = 

UrEC nIL Cx1n has all the required properties. 
In fact, from the preceding argument, we see that it is actually enough 

to prove the following: 

Let A, B c::: C, A analytic, and AnB = 0. If there is no FJ set separating 
A from B, then there is a closed set K c::: C with K c::: Au B. K n A. K n B 
densf' in K and K n B r:ountable. 

To prove this, consider the separation game SG( Q; B, A), where Q c::: C 
is a countable dEmse set. vVe note first that player I cannot have a winning 
strategy in this game, because a winning strategy would induce a continuous 
function f : C --+ C such that (U E A =} f(u) E Q) and (U E B =} fCIj) rt Q). 
But then f- 1 (Q) is F(T and separates A from B, a contradiction. 

So, if this game is determined, II has a winning strategy, which again 
induces a continuous function 9 : C --+ C such that g(Q) c::: Band g(rv Q) c::: 
A, so if K = g(C), K c::: Au B. K n A, K n B are dense in K and K n B 
is countable, so we are done. However, it is not clear how to prove that 
this game is determined since, among other things, B is arbitrary (not even 
necessarily "definable"). 

So we will work instead with an appropriate "unfolded" game. Denote 
by 7r1 : C X C --+ C the projection to the first coordinate. By 14.3, let 
G c::: CxC be G{) so that 7rl(G) = A. Put Uo = U{U open in CxC: 7rl(UnG) 
can be separated by an Frr set from B}. Clearly, G \ Uo = Go of 0 since 
the union of count ably many Frr sets is FJ • Also. Go is G (). Fix a basis of 
nonempty open sets {TV,,} for Go (in the relative topology). \Ve claim that 
7rl (TV,,) n B of 0. Indeed, otherwise, letting U:, be open with U:, n Go = lVn , 

we have that 7rdU:, n G) c::: 7rl (TT',,) U 7r1 (Un n G) c::: 7rl (W,,) u 7r] (UO n G), 
which can be separated by an Fa sct from B. Thus U:, c::: Un, and so ~Vn = 0, 
which is a contradiction. 

Therefore choose .Tn E rrJ(l-l',,) II B. Let Bo = {xn : II EN}. Then 
Go, Bo x C are disjoint and there is no Frr set (in C x C) separating Go 
from Bo x C. To see this. let, toward a contradiction, F" be closed with 
Go c::: Un F" and (Un F,,) n Bo X C = 0. Then by the Baire Category 
Theorem (applied to the Polish space Go), there are rn, n with HTm c::: F", so 
7r1(H7rn) c::: 7rl(F,,) since 7r1(F,,) is closed, being compact. So :rrn E 7r1(Fn), 
and thus Fn n (Bo x C) of 0, which is a contradiction. 
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Consider the game SG(Q; Eo x C, Go). (To put it in the proper form as 
described in the beginning of this section, we can think of C x C as identified 
with C via the homeomorphism (x, y) = (x(O), y(O), x(l), y(l), ... ).) The 
payoff of this game is now a Boolean combination of Go sets, so it is Borel, 
thus determined. Since there is no Fer set separating Go from Eo x C, player 
I cannot have a winning strategy as before. So II has a winning strategy, 
which again gives a closed set K' with K' C;;; Go U (Eo x C), K' n Go, K' n 
(Eo x C) dense in K' and K' n (Eo x C) countable. Then K = 7['1 (K') clearly 
works. D 

Let us finally notice one more corollary of 21.22. Compare this with 
the perfect set theorem for analytic sets (see 14.13 and Section 21.B). 

(21.23) Corollary. (Kechris, Saint Raymond) Let X be Polish and A C;;; X 
be analytic. Either there is a closed set F C;;; X homeorrwTphic to N which 
is contained in A or else A is contained in a Ker subset of X (and exactly 
one of these alternatives holds). 

Pmoj. Consider a compactification X of X and let E = X \ X. If there is 
an Fa set separating A from E, then clearly A is contained in a K" subset 
of X. Otherwise, there is a Cantor set C C;;; X such that C C;;; A u (X \ X) 
and F = C n A = C n X is closed in X and homeomorphic to N. D 

(21.24) Exercise. i) Recall that a tree T is perfect if every sET has 
an extension t :2 S in T with at least two distinct immediate extensions 
r il, r bET (il j b). We call T superperfect if every SET has an extension 
t :2 S in T with infinitely many distinct immediate extensions in T. 

Show that if T is a nonempty superperfect tree, then there is a closed 
subset of [T] which is homeomorphic to N. 

ii) Call A C;;; N a-bounded if it is contained in a Ka subset of N 
(equivalently, if there is a countable set {x,,} C;;; N such that Yx E A:3n(.T ::; 
xn ), where :1: ::; y <¢=} x(i) ::; y(i), Vi). Show that if F C;;; N is closed, then 
F can be written uniquely as F = pUC, with P n C = 0, P = [T] with T 
superperfect (we call P itself superperfect in this case) and C a-bounded 
(which is an analog of the Cantor-Bendixson Theorem). In particular, a 
closed set in N contains a closed subset homeomorphic to N iff it contains 
a non empty superperfect set. 

iii) For A C;;; N consider the game G(A): 

I 80 81 

II kl k2 

S/ E N<N \ {0}, k; EN, Si(O) > k i . I wins iff So ASI AS2 A ••• E A. 
Show that 

a) I was a winning strategy in G(A) <¢=} A contains a nonempty super
perfect set. 
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b) II has a winning strategy in G(A) q A is u-bounded. 
Consider also the unfolded version of this game, and use it to show 

that for analytic A <;;; N, either A contains a nonempty superperfect set or 
A is u-bounded. (This is another proof of 21.23 for X = N.) 

21. G Turing Degrees 

Recall from 2.7 that every continuous function f : G ----? /1/, where G <;;; N in 
G b, has the form f = cp* for some monotone cp : N<N ----? N<N. \Ve call such 
a cp recursive (or often computable) if there is an algorithm that for each 
S E N<N computes the value cp( s). Note that. there are only countably many 
such cp. Given x, V EN, we say that x is recursive in V, in symbols x ~T V, 
if there is recursive cp as above with cp* (V) = x. Intuitively, this means that 
x is computable relative to V. Since the identity is computable and if cp,~, 
are recursive, so is cp 0 the relation ~T is reflexive and transitive. Define 
the Turing equivalence relation x =T V by 

:r =T V q:r ~T y & V ~T X. 

Its equivalence classes 
X= [:Z:]T 

are called Turing degrees, and their set is denoted by D. On D we define 
the partial ordering 

x ~ y q:r ~T y. 

The study of the structure of (D, ~) occupies a large part of recursion (or 
computability) theory. This structure is very complex, but here are some 
elementary facts: 

i) (D,~) has a least element denoted by O. It is defined by 0 = [0], 
where (j = (0,0, ... ). Clearly, 0 consists of the recursive x E /1/, i.e., those 
functions x : N ----? N that can be computed by algorithms. 

ii) The initial segments fa = {b : b ~ a} arc countable, but D has 
cardinality 2~n. 

iii) (D,~) is not linearly ordered. This can be seen as follows: Notice 
first that the relation ~T is :Eg (in /v x N). If { CPn} enumerates the recursive 
monotone maps, then 

X ~T V q 3n[ lim length(cpn(vlk)) = = 
k~= 

& 'v'k('Pn(Vlk) <;;; :c)]. 

SO ~T has the BP. Now {x : x ~T V} is countable and thus meager. By 
8.41, ~T is meager, hencc for comeager many x, {V: x ~'J' y} is meager. 
Then if x ~T V or V ~T x holds for any :1;, y, N must be meager. which is 
a contradiction. 
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iv) Any two x, y ED have a least upper bound x V y = [(x(O), y(O), 
x(l), y(l), .. . )]r (but in general not a greatest lower bound). 

v) Any sequence XO,Xl, ... in D has an upper bound (but not neces
sarily a least one). Indeed, fix a recursive bijection ( ) : N x N --+ N and let 
x((m,n)) = xm(n). Then Xi:::; X, for each i. 

vi) (D, :::;) has no maximal element. Indeed, given y, the set {x : x :::; y} 
is countable, so let zED be such that z i y. Then if y* = y V z, we have 
that y < y*. 

The cone of an element xED is the set 

ex = {y ED: y ?: x}. 

We have now the following important fact about (D, :::;). 

(21.25) Theorem. (.:'vlartin) Let A r:::: D be Borel, in the sense that A* 
{x E N:x E A} is BOTel. Then for some xED, ex r:::: A aT ex r:::: rv A. 

Proof. Consider the game G(A*): 

I a(O) a(2) 

II a(l) a(3) 

a(i) E N. I wins iff a E A*. 
This game is Borel, so determined. Say I has a winning strategy. (The 

argument in the other case is similar.) We will view this strategy as a map 
ol/J : N<N --+ N (see 20.A). Fix now a recursive bijection '{! : N --+ N<N 
and let :r: = l/J 0 '{! so that x E N. We claim that ex r:::: A. Let y E ex 
so that x is recursive in y. Consider the run of the above game in which 
II plays (a(1), a(3), ... ) = y and I responds by l/J to play (a(O), a(2), .. . ). 
Then Y :::;T a, so Y :::; a. But also, a :::;T (y(O), x(O), y(l), x(l), .. . ), so 
a:::; y V x = y, thus a = y. Since a E A, YEA, and we are done. D 

Consequently, in any Borel partition of D into two pieces, one (and 
by iv) above, exactly one) of the pieces contains a cone. \Ve define the 
Martin measure on the Borel subsets of D by asserting that such a set 
has measure 1 if it contains a cone, and measure 0 otherwise. Since, by 
v), the intersection of countably many cones contains another cone, this 
is a count ably additive {O, 1 }-valued measure on the Borel subsets of D. 
(Note that the only such measures on a standard Borel space are the Dirac 
measures.) 

(21.26) Exercise. Show that if A r:::: D is Borel and cofinal (i.e., Vx E D::Jy E 
A(x :::; y)), then A contains a cone. 

Call y E D a minimal cover if there is x < y so that y is minimal 
above x, i.e., there is no z with x < z < y. A theorem of G. E. Sacks [1963] 
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shows that for any xED there is y E D minimal above x. Use this to show 
that there is a cone consisting solely of minimal covers. 

(21.27) Exercise. Let A ~ D be Borel and let A* = {x EN: x E A}, A' = 
{x E C : x E A}. Show that A* (and A') is meager or comeager. Show that 
if J-tc is the usual product measure (Haar measure) on C (see Example 3) in 
17.B), then J-tc(A' ) = 0 or 1. (This shows that category and measure also 
provide countably additive {O, l}-valued measures on the Borel subsets of 
D.) 
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22. The Borel Hierarchy 

22.A Universal Sets 

For any metrizable space X recall the definition of the Borel hierarchy 
~~(X), II~(X), ~~(X) in Section ll.B. Without repeating it explicitly, in 
this notation we always assume that 1 ::::; ~ < WI' 

Note that if X <;;; Y, then ~~(X) = ~~(y)IX = {A n X: A E ~~(Y)} 
and similarly for II~. But this fails in general for ~g(X). Consider, for 
example, IQl <;;; IR and let A <;;; IQl be such that A, IQl \ A are dense. Then 
A E ~g(IQl), but there is no B <;;; IR in ~g(IR) with B n IQl = A. It is true, 
however, for ~ :2: 2 and X Polish, as it follows easily from 22.1 for ~ :2: 3 
and from 22.27 for ~ = 2. 

Let us note the following simple closure properties of the classes 
~~, II~, and ~~. 

(22.1) Proposition. For each ~ :2: 1, the classes ~~,II~, and ~~ are closed 
nnder finite intersections and nnions and continn071S preimages. Moreover, 
~~ is closed nnder countable nnions, II~ nnder countable inter'sections, and 
~~ under complements. 

Proof. By induction on ~. 0 

There is a partial converse to closure under continuous preimages; see 
24.20. 

The classes ~~, IIg, and ~~ provide for each Polish space X a hierarchy 
for B(X) of at most WI levels. We will next show that this is indeed a proper 
hierarchy, i.e., all these classes are distinct, when X is uncountable. This is 
based on the existence of universal sets for the classes ~~, and II~. 

(22.2) Definition. Let f be a class of sets in varions spaces (snch as ~~ ,II~, 
Borel, ~L etc.). We denote by f(X) the collection of snbsets of X which are 
in f. We say that a set U <;;; YxX is Y-universal for f(X) if U E f(YxX) 
and {Uy:y E Y} = f(X). (Thus in the proof of 14.2 we have shown that 
there exists a set that is N -universal for ~i (N).) Such a universal set 
provides a parametrization (or coding) of the sets in f(X), where we view 
y as a parameter (or code) of Uy. 

For any class of sets f, we denote by t its dual class 

t(X) = rv f(X) = {X \ A: A E f(X)} 

and by ,0,. its ambiguous part 

,0,.(X) = f(X) n t(X) = {A <;;; X: A, rv A E r(X)}. 
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(22.3) Theorem. Let X be a separable metrizable space. Then for each ~ :.:: 1, 
there is a C-universal set for ~~(X) and similarly for n~(x). 

Proof. We proeeed by induction on ~. Let {Vn} be an open basis for X. Put 

(,Il,X) E U {c}.I/ E C & x E X & 

:r E U{V" : y(n) = O}. 

Then U E ~~(C x X) and {Uy : y E C} = ~~(X), so U is C-universal for 
~~(X). 

Note next that ifU is Y-universal for r(X), then '"V U is Y-universal for 
the dual class f(X). In particular, there exists a C-universal set for n~(X), 
and if there is a C-universal set for ~~(X), there is also one for n~(X). 

Assume now that C-universal sets U'I for ng(X) are given for all 'I) < ~. 
Let Tin < ~, n E N, be such that Tin s:. Tln+l and SUP{Tln + 1 : n E N} = ~. 
For each y E C, let (y)" E C, n E N, be defined by (y)" (m) = y(\n, m)), 
where ( ) is a bijection of N x N with N. Then y f-) (y)" is continuous and 
for any sequence (Yn) E CN there is y E C with (Y)n = Yn, lin E N. Put 

(.1/, :r) E U {c} ::In((y),,, x) E Uri,,' 

Then U is C-universal for ~~(X). o 

(22.4) Theorem. ~et X be an nnco/J.ntablf: Polish space. Then for each ~, 
~~(X) j n~(X). Thf:refore ..::l~(X) ~ ~~(X) ~ ..::l~+l (X), and .similarlv 
for n~(x). 

Proof. Since X is uncountable, we can assume that C c;:; X. So if ~~(X) = 

n~(X), then ~~(C) = ~~(X)IC = n~(X)IC = n~(C). Let U be C-universal 
for ~~(C). Put yEA {c} (V, V) tf. U. Then A E n~(C) = ~~(C), so for some 
Yo E C. A = UyO ' which is a contradiction. 0 

(22.5) Exercise. Show that if X is an uncountable Polish space and .\ is a 
limit ordinal. then 

(22.6) Exercise. Show that if X, Yare Polish and Y is uncountable, then 
there exists a Y-universal set for :E~(X), and similarly for n~(X). 

(22.7) Exercise. A class r is called self-dual if it is closed under complements 
(i.e., r = f). Show that if r, a class of sets in metrizable spaces, is closed 
under continuous preimages and is self-dual, then for any X there cannot 
be an X-universal set for r(X). Conclude that the classes ..::l~(X) cannot 
have X-universal sets. 
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(22.8) Exercise. Show that for any uncountable Polish X, ~~(X) is not 
closed under either complements or countable intersections. Also II~(X) is 
not closed under either complements or countable unions and, for ~ ~ 2 or 
~ = 1 and X zero-dimensional, a~ (X) is not closed under either countable 
unions or intersections. 

22.B The Borel versus the Wadge Hierarchy 

\Ve discuss here the relationship between the Borel and the Wadge hierar
chies. 

If A E ~~ (resp., II~) and B :s.w A, then B E ~~ (resp., II~). So ~~ 
and II~ are initial segments of :s. w. We will next see that all the sets in 

~~ \ II~ are maxima in :s. w among all ~~ sets (and similarly switching ~~ 

and II~). 

(22.9) Definition. £et r be a class of sets in Polish spaces. If Y is a Polish 
space, we call A c;:: Y f-hard if B :s.w A for any B E f(X), where X 
is a zero-dimensional Polish space. Moreover, if A E r(Y), we call A f
complete. 

Note that if f is not self-dual on zero-dimensional Polish spaces and 
is closed under continuous preimages, no f-hard set is in t. Note also that 
if A is f-hard (f-complete), then ~ A is t-hard (t-complete). Finally, if 
A is f-hard (f-complete) and A :s.w B, then B is f-hard (f-complete, if 
also B E r). This simple remark is the basis of a very common method for 
showing that a given set B is f-hard: Choose an already known f-hard set 
A and show that A :s.w B. 

(22.10) Theorem. (Wadge) Let X be a zero-dimensional Polish space. Then 
A c;:: X is ~~-complete iff A is in ~~ \ II~. Moreover, a Borel set A c;:: X is 
~~ -hanl iff it is not II~ and similarly interchanging ~~ and II~. 

Proof. If A is ~~-hard, it cannot be II~, since ~~(N) =f. II~(N). If now A 
is Borel and A 1:. II~, Y is zero-dimensional and B c;:: Y is ~~, then by 
\Vadge's Lemma 21.14, A :s.w~ B or B :s.w A. The first alternative fails, 
so B :s.w A. Thus A is ~~-harcl. D 

Recall from 21.16 that every clopen (= a?) set A, with (/) =f. A =f. N, 
is a~-complete. We will see in 22.28 that there is no a~-complete set for 
~ ~ 2. So for N we have the following picture of the Wadge degrees: 
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(22.11) Exercise. Show that if ~ S 2 and X is an arbitrary Polish space, 
then every A <;:; X, A E ~~ \ n~ is ~~-completc (similarly, interchanging 

~~ and n~). 

It turns out that 22.11 holds (for any Polish space) for any ~ 2: 1; see 
24.20. 

(22.12) Exercise. Let Y be Polish and U be Y-universal for ~~(N). Show 
that U is ~~-complete and similarly for n~. 

(22.13) Exercise. Let X be Polish and let Ao, Al <;:; X be Borel sets with 
Ao n Al = 0 and assume there is no ~~ set separating Ao from A l . Let 
B C;;; C be any n~ set. Show that for X = C there is a continuous function 
f : C --+ X with f(C) <;:; Ao U Al and B = J-l(Ao). 

Again this holds for any Polish space X and ~ 2: 1; see 24.20. Finally, 
26.12 and 28.19 are also relevant here. 

22. C Structural Properties 

(22.14) Definition. Let r be a class of sets. We say that r has the separation 
property if for any X and A,B E r(X) with An B = 0, there is C E b.(X) 
sepamting A from B. 

We say that r has the generalized separation property if for any se
quence An E f(X) with nn An = 0 thf:r'f: is a Sf:quence Bn E b.(X) with 
An <;:; En and nn Bn = 0. 

A class r has the reduction property if for any A,B E f(X) there an: 
A*,B* E f(X) such that A* C;;; A, B* <;:; B, A* U B* = Au B, A* n B* = 0. 
(We say then that A* ,B* reduce A,B.) 

We say that r has the generalized reduction property 'zf fOT any se
quence An E f(X) theTe is a sequence A:, E r(X) with A;, <;:; An, A;,nA;" = 

o for n # m and Un An = Un A:,. 
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Finally, r has the number uniformization property if for any R <;;; 
X x N, R E r(X x N), there is a uniformization R* <;;; R also in r(X x N). 

Let us note the following simple facts concerning these structural prop
erties of a class. For convenience, let us call a class r reasonable if for any 
sequence (An) with An <;;; X, An E r(X) for all n iff A E r(X x N), 
where (x, n) E A B :r E An. Notice that if r, a class of sets in metrizable 
spaces, contains all clop en sets and is closed under continuous preimages 
and finite unions and.intersections, and either r or t is closed under count
able unions, then r is reasonable. This is because the projection functions 
(x, m) f---> x, (x, m) f---> m as well as the functions;T f---> (x, n) are continuous, 
while if (An), A are as above, A = UnAn x {n}, ~ A = UTI(~ An) X {n} 
and An X {n} = Bn n Cn, where Bn = An X N = {(x,m): x E An}, Cn = 

X x {n} = {(x,m) : m = n}. 
In particular, ~~ and II~ are reasonable. 

(22.15) Proposition. Let r be a class of sets inrnetrizable spaces. 
i) If r has the reduction property, t has the separation property. 
ii) If r 'is closed under countable unions and has the generalized reduc

tion proper·ty, t has the generalized sepamtion property. 
iii) If r is reasonable, then r has the generalized reduction property iff 

r has the number' 1miformization property. 
iv) If l' is closed under continuous preimages and there is a C -universal 

set for r( C), then r cannot have both the reduction and separation proper
ties. 

Proof. i) To separate A, B reduce ~ A, ~ B. 
ii) Let An E t(X), nn An = 0 and consider Cn = ~ An. By gen

eralized reduction let C~ E r(X), C~ <;;; Cn, C~ n C;" = 0 if n =I m 
and Un C~ = Un Cn = X. Then {C,~} is a partition of X and so 
c;, = ~ Um#n C;", thus C~ E ~(X), as r is closed under countable unions. 
Now let Bn = rv C~. Clearly, An <;;; Bn and nn Bn = 0. 

iii) Let r have the number uniformization property, An E r(X), and 
(x, n) E A B x E An. Then, since r is reasonable, A E r. Let A* <;;; A be 
a uniformization of A that is in r(X). Set x E A;, B (x,n) E A*. Again, 
A~. E r(X) and A;, <;;; An, A;' n A;', = 0 if n =I m, while Un An = Un A;,. 
So r has the generalized reduction property. 

For the converse, let A <;;; X x N be in r(X x N). Put x E An B A(x, n). 
Then An E r(X) and by the generalized reduction property, let A;, E r(X) 
satisfy the above properties and put (x, n) E A * B x E A~ .. This easily 
works as before. 

iv) Let U <;;; C x C be C-universal for r(C). Put (y, x) E UO B ((Y)o, x) E 
U, (y, x) E U1 B ((yh, x) E U, where (Y)o(n) = y(2n), (Yh(n) = y(2n+l). 
Then (UO,U 1) is a universal pair, i.e., if A, HE I'(C) there is y E C such that 
(UO)y = A., (U1)y = B. By the closure of r under continuous preimages, 
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UO)u1 E r. 
Assume now that r has both the reduction and separation properties. 

Then let Un) U1 E r reduce Uo, U 1 and let V E 6. separate Un, U1 . Then it 
is easy to check that V is C-universal for 6.(C), violating 22.7. D 

(22.16) Theorem. In metr'izable spaces and for any ~ > 1, the class :E~ 
has the number uniformization property, and th,us the general'ized reduction 
property, but it does not have the separation property. The class rr~ has the 
generalized separation property b'IJ.t not the reduction. property. 

This also holds if ~ = 1 for zero-dimensional spaces. 

Proof. It is enough to show that :E~ has the number uniformization property. 

Let R ~ X x N be in :E~ (~ > 1) and write R = UiEN Ri , Ri E 

rr~i' C,i <~. So (x,n) E R <=? 3i(:r,n) E Ri • Put q(x,k) <=? (.r, (k)I) E 

R(A)o' where k c--. ((k)o. (kh) is a bijection of N with N x N. Let 

(x,k) E Q* <=? (:r,k) E q & W < k(x,€) t/:- q 

and finally let (x, n) E R* <=? 3i(.r. (i. n)) E Q*. Clearly, R* uniformizes R. 
Notice now that R* = Ui Si, where Si = {(:r, n): (x, (i, 71)) E Q*}, so it is 
enough to show that Hi E :E~. Since :E~ is reasonable, it is enough to check 

that for each k) (Q*)k = {:r : (.T.I.:) E Q*} is :E~ or. since :E~ is closed 
under finite intersections, that Qk, (~ Q)k arc in :E2. But this is clear, as 

each Qk is in rrg for some 'I < ~. 
For ~ = 1 and X zero-dimensional \vrite R = Ui Ri with R, clopen 

and repeat the above proof. D 

The above result allows to distinguish structurally the classes :E~ from 
the classes rr2 by the fact that exactly one of them has the number uni
formization (and reduction) property and the other has the (generalized) 
separation property. Then we have the following picture: 

where the boxed classes are those that have the number uniformization 
property (in zero-dimensional spaces if C, = 1) and the others have the 
generalized separation property. 

(22.17) Exercise. (Kuratowski) Given any sequence of sets (An), An ~ X 
let 
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limnAn = n U Am 
n'm2n 

= {X : X belongs to infinitely many An}; 

liIIlnAn = U n Am 
n rn~n 

= {;r: belongs to all but finitely many An}. 

It is clear that limn An <;;; limn A" . If they are equal, let limn An = limn An = 

limn An-
Show that for E, > 1, 

A is .6.~+1 B A = limA", for some sequence (An) with An E .6.~. 
n 

This is also true for E, = 1, in zero-dimensional spaces. 
Show also that if A is a limit ordinal, 

A E .6.~+1 B A = lim An, for some sequence (An) with An E U .6.g. 
n 

22. D Additional Results 

\Ve will discuss here level-by-Ievel versions of results that we proved for 
Borel sets in earlier sections. Additional such results will be given in Sec
tion 24. 

The following is a refinement of results in 13.A. 

(22.18) Theorem. (Kuratowski) Let (X,T) be a Polish space and An <;;; X be 
.6.~(X,T). Then there is a Polish topology T' :2 T such that T' <;;; :E~(X,T) 

and An E .6.?(X,T') for all n. 

Proof. By 13.3, it is enough to prove this for a single set A E .6.~(X, T). 
The proof is by induction on E, 2: l. For E, = 1 take T' = T. For E, = 2, 
both A and rv A are CD, so Polish in the relative T-topology. Put on X 
the direct sum T' of these relative topologies. So U E T' iff unA, U \ A 
are open in A, rv A respectively. This is clearly Polish, and A is .6.? in T'. 
Also, T' <;;; .6.g(X, T) <;;; :Eg(X, T). 

Let now E, be a limit ordinal. Then A = Un An = nn Bn, with An, Bn E 
.6.t (X, T), E,n < E,. Let T~, T;' be topologies that work for An, Bn resp. 
Let T' be the topology generated by Un Cr,; u ~;'). By 13.:~ it is Polish and 
clearly A E .6.?(X, T')' Since every set in ~; U T~' is in :E~(X, T), clearly 
T' <;;; :E~(X, T). 

Finally, let E, = 7] + 1 2: 3 be successor. Then, by 22.17, A = 

limn An, An E .6.;; (X, T). Let T* :2 T be Polish with T* <;;; :Eg(X, T) 
and An E .6.?(X, T*) for all n (also using 13.3). Then again by 22.17, 
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A E .:lg(X, T*). Apply now the case ~ = 2 to (X, T*) to obtain T' :2 T* 
with A E .:l~(X, T') and T' s;;; ~g(X, T*) s;;; ~g+l (X, T) = ~~(X, T). D 

(22.19) Exercise. Using the notation of 22.18, show that if ~ > 1 is successor 
and A E .:l~(X, T), there is a Polish topology T' :2 T with T' s;;; .:l~(X, T) 
and A E .:l~(X, T'). 

(22.20) Exercise. Using the notation of 22.18, show that if ~ > 1 and 
An E .:l~(X, T), there is a Polish topology T' :2 T such that T' C 

~~(X, T), An E .:l~(X, T') for all n, and T' is zero-dimensional. 

The next result refines 13.9. 

(22.21) Theorem. Let X be a Polish space and A E ~~(X). If ~ > 1, then 
there is a Lusin scheme (As) sEN<F" such that 

i) As E .:l~(X), if S of 0: 
ii) A0 = A, A, = Un As'n; 
iii) if X E Nand ATin of 0 for all n, then Ax = nn AJin is a singleton 

{x*} and for any Xn, E A Tin , Xn ---4 x*. 
Moreover, if d 'l.S a compatible metric for' X, we can make sW'e that 

diam(As) ~ 2-1ength(s) if s of 0. 
The same result holds faT ~ = 1 if X is zero-dimensional. 

Proof. First assume that X is zero-dimensional and that A E ~7(X). Write 
A = Un An, with An dopen of diameter ~ 1/2. Put A(n) = An. Since An is 
dopen, it is easy to find a Lusin scheme (A:')"EN<c; satisfying all the above 
properties for An and ~ = 1, additionally with diam(A~) ~ 2--1cngth(s)-1 for 

s of 0. Then for n.2: 2 and S E Nn,s = (sQ, ... ,8n-1), let As = A(~"".sn_,)' 

Now let ~ > 1 and A E ~~(X). Let T be the topology of X. Write 

A = Un An, with An E .:l~(X, T) and let T' be as in 22.20. Let d ~ d' be 
a compatible metric for T'. Now apply the case E, = 1 to A E ~~(X, T') 
(and the metric d' ) to find (A8 )sEN<H, which clearly works, as .:l7(x, T') s;;; 
.:l~(X, T). D 

The next exercises provide refinements of results given in Sections 16 
and 17. 

(22.22) Exercise. (Montgomery) Let X, Y be Polish, A S;;; X x Y be ~~ and 
let U S;;; Y be open. Show that {x : Ax is non-meager in U} is ~~. Show the 
same for II~ if "non-meager" is replaced by "comeager". (Compare with 
16.1.) 

(22.23) Exercise. Let G be a Polish group, X a Polish space, and (g, x) f--+ 

g.x a continuous action of G on X. Recall the definition of the Vaught 
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transforms in 16.B. Show that if A is :E~, so is AD.U and that if A is n~, 
so is A*u. 

(22.24) Exercise. (Vaught) Using the notation of 16.C, define the :E~,n2 
formulas of LW,W as follows: The :E~ formulas are those of the form VnOn ) 
where On is of the form :3vl'" :3vkn Pn, with Pn quantifier-free. The n~ 
formulas are the negations of :E2 formulas. The :E~ formulas for ~ > 1 are 
those of the form VnOn ) where On is of the form :3VI ... :3vkn P", with Pn a 
nt formula, ~n < ~. 

Prove the following refinement of 16.8: An invariant subset of XL is 
:E~(n~) iff it is of the form AT for tJ a :E~(n~) sentence. 

(22.25) Exercise. (Montgomery) Let X, Y be Polish spaces. If A ~ X x Y 
is :E~, then {(p"x,r) E P(Y) x X x [0,1] : Il(Ax) > r} is :E~. (Compare 
with 17.25.) 

22.E The Difference Hierarchy 

We will finally study a method of constructing the class .:l~+l from the 
class :Eg, which leads to the so-called difference hierarchy. (There is also 
a corresponding construction and ramification of the classes .:l ~, A limit 
from U~<.\.:l~ which we will not discuss here.) 

Every ordinal 0 can be uniquely written as 0 = A + n, where A is limit 
or 0 and n < w. We call 0 even (resp.) odd) if n is even (resp., odd). 

Now let (Ar1)'I<1! be an increasing sequence of subsets of a set X with 
o ~ 1. Define the set DI!((A'I)'I<fJ) ~ X by 

x E De((A 1J )rl<e) {=? x E U A1J & the least T) < 0 with x E A1J 
rl<1! 

has parity opposite to that of O. 

So DI ((Ao)) = Ao, D2((Ao, Ad) = Al \ Ao, D3((Ao, AI, A2)) = (A2 \ 
Ad u Ao, ... , Dw((A,,)n<w) = Un(A2n+1 \ A 2n ), Dw+I((An)n:Sw) = Au U 

Un (A 2n+2 \ A2n+d U (Au; \ Un An), .... 
For 1 <:; ~, 0 < WI, X metrizable, let 

(22.26) Exercise. i) Show that De(:E~) is closed under continuous preimages 
and is reasonable. 

ii) Show that if X ~ Y, then De(:E~)(X) = De(:Eg)(Y)IX = {A n X: 
A E D(I(:E~)(Y)}. 
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iii) Show that for each separable metrizable space X, there is a C
universal set for De('E~)(X). Conclude that De('En(X) I- DII('E~)(X), for 

any uncountable Polish space X, where Do('E~) is the dual class of De('E~). 
iv) Show that for A,) ~ X. X \ Do((A,,),)<o) = Dl!+d(A,,),,<B A X). 

Conclude that DIi('E~) U De('E~) ~ DI!+I('E~). 

A. Louveau and J. Saint Raymond [1988] have shown that De('E~) has 
the number uniformization property (in zero-dimensional spaces if C, = 1), 
which gives us the following picture 

('E~=) IDd'E~)1 I Dd'E2)I 

(II~=) DI('E~) D2('E~) 

IDe('E~)1 

D(!('E~) 

where (j :S rl, every class is contained in every class to the right of it, and the 
boxed classes are exactly those that have the number ulliformization prop
erty and the others have the separation property (again in zero-dimensional 
spaces if C, = 1). 

\Ve establish nmv the main result. 

(22.27) Theorem. (Hausdorfl:', Kuratowski) In Polish spaces and for any 
1 :S C, < WI, 

a~-j-l - U De(:E~). 
l-c;e<Wl 

Proof. Clearly, De('E~) ~ 'E~+], and by 22.26 iv) De('EV ~ D II+1 ('E~). so 

Ul<e<Wl De('E~) ~ a~+l' 
- For the other inclusion. we claim that it is enough to prove it for C, = 1 : 

Let (X, T) be Polish and A E a2+1 (X, 7). Then there are An E a~(X, T), 
with A = lim" An, by 22.17. By 22.18. let T' ~ T be a Polish topology 
so that An E a~(x. 7') and 7' ~ 'E~(X, 7). Then A E a8(X,7') (by 
22.17 again), so A E DIi('E~)(X. T') for some (j by the C, = 1 case. Since 
'E?(X.7') = 7' ~ 'E~(X, T), clearly A E DIi('E~)(X. 7). 

Consequently, we only have to prove that ag ~ Ue De('E?). 
It will bt~ actually convenient to work with decreasing sequences of 

closed sets as opposed to increasing sequences of open sets. It is easy to 
verify that the sets in Ue DII('E~) are exactly those of the form 

A = U (F" \ H,,) 
,,<0 

for some (j < W], where Fo ~ Ho ~ Fl ~ HI ~ ... ~ F" ~ 

H" ~ ... are closed sets. To see this note that any set of that form 
is equal to Do- ((A~)~<II-), where (j* = ). + 271 if (j = ). + 71, and 
A,).~+2h- = ~ Fw.E,+k-. A"'.~+2k+l = ~ Hw.~+!· are open. Conversely, if 
A. = De*((A,)),)<Ii'), where by 22.26 iv) we can assume that (j* =). + 2n 
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is even, and we define FTI , H Tj for 7) < e = A + n by the previous formulas, 
then A = Url<e(Frj \ HTj)' 

Now let X be Polish, and A C;;; X and F C;;; X be closed. Put 

8p (A)=(AnF) n (rvAnF) 

= the boundary of A n F in F. 

Define by transfinite recursion 

Fo =X, 

F'I+l = fh" (A), 

FA = n F'I' if A is limit. 
'j<A 

This is a decreasing sequence of closed sets, so let e < WI be least such that 
Fe = FIi+I. 

Claim. If A E ~.g, then Fe = 0. 

Proof. Note that if Z is nonempty Polish and C C;;; Z is Llg, then the 
boundary of C cannot be equal to Z, since otherwise both C and rv C 
would be dense G 6 sets. 

If now Fli i- 0, Fo is Polish nonem pty and A n Fe is Llg (Fe). Also 
8Fe (A) = boundary of A n Fe in Fe, and 8Fe (A) = FIJ+I = Fe, which is a 
contradiction. 

Now let H'j = (rv A) n Frl if 7J < e. Thus Fo :;2 Ho :;2 Fl :;2 HI :;2 ... :;2 
FTj :;2 HTj :;2 .... Finally, we claim that if A E Llg, then A = Ul]<Ii(Fl] \ HTJ 

If x E A, let 77 be such that x E FTI \ FTj + 1. If x E HTjl then x E 

(rv A) n Frl n (A n FTj ) C;;; FTI + I, which is a contradiction. So x E FTj \ HTj . 
Conversely, if x E FTI \ H Tj for some T), but x 1. A, then x E (rv A) n FTj C;;; 

(rv A) n Frl = H 1]' a contradiction. D 

(22.28) Exercise. Show that for any ~ ;::: 2 there is no Ll~-complete set. 

(22.29) Exercise. Show that Un<w Dn(~~) is the smallest Boolean algebra 
containing the ~~ sets. 

(22.30) Exercise. Let X be Polish and A, B C;;; X be such that An B = 0. 
Define for any closed set F C;;; X, 

Use 8F and the argument in 22.27, to show that if there is no Llg set 
separating A from B, there is a Cantor set C C;;; X with An C, B n C dense 
in C (and the converse is also trivially true). 
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Use this also to show directly that any two disjoint Gs sets A, B can 
be separated by a set in UII<Wl DII(y:,~) (which also follows from 22.16 and 
22.27) . 

(22.31) Exercise. Let (Ar')I)<(!' (B'))'1<I), where e < WI, be two transfinite 
sequences of subsets of a set X. For .7: E U,/<II A TI • let 114(.7:) = least 1](.7: E 
A,,) and for .7: 1. Ur,<1i A r] let ~LA(X) = Wl' Similarly define liB. Put 

Dg((A,/),/<I), (B,/)rl<lI) = {x: I1A(X) < ILB(.7:)}. 

(Thus if.1' E De((Ar/),,<IJ. (B' /)'I<II), then x E Uq<1I A".) For e = .\ + n. let 
e* = '\+2n. Define C'I' 17 < e*, recursively, by C>., = UI;<A' Ai;U U';<A' Bi;U 
BA'. C>.I+2k = C>.'+2k-J U BA'H', and CA'+2k-l = C>.'+2k-2 U AA'+k-l 
if .\' ::; .\ is limit or 0 and k > O. Show that De((Ar/),/<e, (B,,)r/<Ii) 
Do* ((C,,),/<e*) and 

U DI!(I;~) = U {De((A1))rl<lI, (B")1)<IJ) : A", B" E y:,n· 
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23. Some Examples 

23.A Combinatorial Examples 

Recall from 22.11 that any ~g \ rrg set is ~g-complete and similarly inter
changing ~g, rrg. It follows that if X is a perfect Polish space and Q ~ X 
is countable dense, then Q is ~g-complete and its complement 1'1 = X \ Q 
is rrg-complete. 

(23.1) Exercise. Prove directly that any countable dense Q ~ C is ~g
complete, by showing that player II has a winning strategy in the Wadge 
game WG(A, Q) for any A E ~g(N). 

Let us abbreviate as follows: 

VOCnP(n) ¢} {n EN: P(n)} is cofinite, 

::?'=nP(n) ¢} {n EN: P(n)} is infinite. 

Then it follows from the above that the sets 

Q2 = {x E C :VX)n(x(n) = O)}, 

1'12 = {x E C 3'On(x(n) = O)}, 

1'1~ = {x E C :::?,:lOn(x(n) = 0) & 

::?,DOn(x(n) = I)}, 

are respectively ~g-, rrg-, rrg-complete. 
Now let 

P3 = {x E 2NxN : VmV=n(x(m, n) = O)}. 

(This is the set of all N x N 0-1 matrices, every row of which is eventually 0.) 
We claim that it is rrg-complete. Indeed, let X be Polish zero-dimensional 
and A ~ X be rrg. Then A = nmAm, with Am E ~g(X). Let fm : X --> C 
be continuous such that x E Am ¢} fm (x) E Q2. Define f : X --> 2N x N by 
f(x)(m, n) = frn(x)(n). Then f is continuous and x E A ¢} VmU",(x) E 

Q2) ¢} f(x) E Pl· 
It follows that the set 

S:l = {x E 2NxN : :lm:lDOn(x(m, n) = O)} 

is :Eg-complete. 
Below one should keep in mind the remarks following 22.9: One method 

for showing that a given set A in some class r is r-complete is to choose 
judiciously an already known r-complete set B and reduce it continuously 
to A (i.e., show B Sw A). 

(23.2) Exercise. Show that the set 
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OJ = {:r E NN : limx(n) = oo} 
n 

ie; rr!i-colllpkte, and thue; t.he e;ct 

D:J = {:r EN" : lim"x(n) < ex:;} 

is ~!i-colllplete. Show also that the e;et. 

P; = {:r E 2NxN : =jC0 m Vn(x(nL n) = O)} 

is rr!j-colllplete, and tIme; t.he set 

8:7 = {:r: E 2NxN : VXm=jn(x(m, n) = O)} 

ie; ~!j-colllplete. 

(23.3) Exercise. For each C, < W1, e;how t.hat if t.he e;et A ~ C ie; ~~-colllplete, 

then the set AI = {:r E 2NxN : Vm(:r:", E A)} is rr~+l-coIllplete, where 
}:m(n) = x(m., n). More generally, e;how that if the sets An ~ X" are ~~

complete', where X" are Polish spaces, then ITn An ~ ITn X" is rr~+l
COll! plete. 

(23.4) Exercise. We saw in 9.7 that every ideal on N which is rr8 (in 2r!) is 
actually rr~ and the Frechet ideal is ~g but not rrg and so ~~-coIllplete. 
Show that for every C, 2: 3 there is an ideal I on N which is ~~-complete, 

and similarly for rr~. 

(23.5) Exercise. For each F ~ Pow(N), define the Hausdorff operation 
F"A" on sequences (An) of subsets of a set X by 

Fn An = {:r : {17 : .r E An} E F}. 

For example, if F = {N}, FnA" = nn An; if F = {A ~ N : A ic 
0}, FnA" = Un An: if F = {A ~ N : A is cofinite}, FnAn = liIll"An; 
and if F = {A ~ N : A is infinite}, FnAn = limnAIl' Usually F is mono
tone (i.e., A E F & B ::2 A =? B E F), but this is not required in the above 
definition. 

For any class r of sets in metrizable spaces, let 

Also let 

Fr = {FnAn : An E r(X), X metrizable}. 

I;f= = {A ~ N: A is cofinite}, 

=j= = {A ~ N : A is infinite}. 

i) Show that if X is o;eparable rnetrizable, then for any C, 2: 1, 

=jxrr~(x) = rr~+2(X), 

V=~~(X) = ~~+2(X), 
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ii) For each metrizable space X, show that 

B(X) = U{.F~?(X) : .F Borel }. 

Show that for ~ ?:: 1 there i8 Borel .F~ such that 

(23.6) Exercise. Consider the 8ets 

P4 = {x E 2NxN : =j=m=jCXJn(x(m, n) = O)}, 

54 = {x E 2NxN : l;;Jocml;;Jocn(x(m, n) = O)}. 

Show that they are respectively rr~-, ~~-complete. 

(23.7) Exercise. (Ki-Linton) i) For a subset A ~ N we say that A has density 
x if lim" card(An{~ .... ,n-l}) = x. Show that {A ~ N : A has density O} in 
rrg-complete (in 2N ). 

ii) Show that the set of normal (in base 2) numbers (see Example 1 in 
l1.B) is rr~-complete. 

2S.B Classes of Compact Sets 

(23.8) Exercise. Let X be a perfect Polish space. Show that the set 
Kj(X) = {K E K(X) : K finite} is ~g-complete (and so Koc(X) = {K E 

K(X) : K infinite} is rrg-complete). Show that for each n, {K E K(X) : 
card(K) = n} is in D2(~~)' but not in ~~ or rr~. 

(23.9) Exercise. i) Let X be a perfect compact metrizable space. Show that 
the set {K E K(X) : K is meager (i.e., nowhere dense)} is rrg-complete. 

ii) Let X be compact metrizable. Show that if IL E P(X) is continuous, 
then {K E K(X) : M(K) = O} is rrg-complete. 

(23.10) Exercise. The following class of closed subsets of T is of interest in 
harmonic analysis: 

H = {K E K (T) : :=J an open interval (arc) I in l' 

:=Jno < nl < n2 < .. ·l;;Jx E Kl;;Ji(nix tJ. I)}, 

where if x = eie E T, then nx = e",e. For example, show that K = {eie : 
8/27r E El/:J is in H, where E l j:3 is the Cantor set (see 3.4). Show that H 
is ~g. (T. Linton [1994] has shown that H is actually ~g-cornplete.) 
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The Cantor-Bendixson analysis of closed sets provides examples of 
classes of compact sets occupying higher levels of the Borel hierarchy. Con
sider K(C), and recall 6.12 and the notation introduced in the comments 
following it. For a < WI, let 

K,,(C) = {K E K(C) : IKlcB < a} 
= {K E K (C) : KG = 0}. 

D. Cenzer and R. D. Mauldin [1983] have shown that Kn is "Egn-complete 
if n < w, and that KHn is ~~+2n-complete if A is limit and n < w. 

Let ARn = {K E K(IRn): K is an AR (absolute retract)} and 
ANRn = {K E K(IRn): K is an ANR (absolute nbhd retract)}. (See 
J. van Mill [1989] for these basic topological concepts.) It was shown in 
R. Cauty, T. Dobrowolski, H. Gladdines and J. van Mill [1997] that AR2 
is rrg-complete and ANR2 is D2(~g)-complete, while T. Dobrowolski and 
L. R. Rubin [1997] prove that AR", ANRn are rr~-complete for n ~ 3. (For 
n = 1 these classes are ~g.) 

23. C Sequence Spaces 

(23.11) Exercise. Consider the Hilbert cube TIN. For 0 < p < 00 let 

Also let 
Co = {(xn) E TIN: (Xn) E Co (i.e., Xn -> O)}, 

C = {(xn) E TIN : (Xn) converges}. 

Show that Lp is ~g-complete and that Co, Care rrg-complete. Show, in 
fact, that there is no ~g set S with Co ~ S ~ C. 

(23.12) Exercise. (Becker) A sequence (xn) in Co converges weakly to x E Co 

if (xn,x*) -> (x,x*) for any x* E (co)' = £1 (i.e., (1Ixnl!) is bounded and 
xrJi) --t x(i) for each i). Let X = Bl(co) be the unit ball of Co. Show that 
the set 

W = {(xn) E XN : (X.,J is weakly convergent in co} 

is rr~-complete. 

23.D Classes of Continuous Functions 

A function f E C(T) is in COC(T) if it is infinitely differentiable (viewed as 
a 21f-periodic function on IR). It is analytic if it can be expressed as a power 

(Xl 

series 2:: an(x - xo)" in an open nbhd of every point Xo. We denote the 
n=O 
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class of such functions by AN (1'). Finally, we denote by cn (1') the class of 
71-times continuously differentiable functions. 

It is known from Fourier analysis (see Y. Katznelson [1976]) that for 
f E C(1') , 

f E C OO (1') {:} 'Vk3M'V71 E 2(1](71)1 ::; MI71I- k), 

i.e., the Fourier coefficients (J(71))nEZ, where ](71) = 2~ ft' f(t)e-intdt, 
converge to 0 "faster than polynomially". It is also known that for f E C(1') 

f E AN(1') {:} 3M3a > O'V71 E 2(li(n)1 ::; Me- nlnl ), 

i.e., (J (n)) converges to 0 "exponentially". 

(23.13) Exercise. Show that cn(1'), COO (1') are all II~ and that AN(1') is 
:E~-complete. 

(23.14) Theorem. The sets cn(1'),Coo(1') are II~-complete. 

Proof. We prove the result for Coo (1'). The proof for cn (1') is similar and 
can be left as an exercise. 

We will need the following simple lemma. 

(23.15) Lemma. For any closed interval I ~ JR., any E > 0 and any k 2' 1 
there is a Coo -function in I which is 0 in open nbhds of the endpoints of I 
and Ilf(k)lloo = E. 

Proof. Say I = [a, b]. Pick a < c < d < b. Let g(x) = e- 1/(x-c)2 . e- 1/(x-d)2, 

when x E (c, d), and g(x) = 0, in [a, b] \ (c, d). Then g E Coo. Let Ilg(k) II = b. 
Put f = (E/b)g. 0 

Consider the II~-complete set P3 given in 23.A. We will construct a 
continuous function x f--+ IT from 2NxN into C(1') and show that x E P3 {:} 

fx E C=(1'). 
Start with the interval I = [0,27r] and split it into the subintervals 

la, h, ... as in Figure 23.1. 

o 
• • 

FIGURE 23.1. 

• 

Thus IInl = 27r' 2-(n+1) (III = length of 1). Split each also In into subin
tervals In,a, I n ,l,'" by the same subdivision process, so that IIn,kl = 

IInl . 2-(k+1). By the lemma, let fn,k be a COO-function that is non-zero 
only in an open concentric interval properly contained in the interior of 
In,k, and 
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For x E 2NxN , let 

f" = Lx(n,k)fn,k' 
n,k 

Since Ilfn.kll:xJ ::; IIn,kl, this is a uniformly convergent series, so fx E C(1I') 
(by extending fx with 27r-periodicity to ~; note that fx(O) = fx(27r) = 0). 
It is easy also to check that x f---+ f x is continuous (from 21'1 x 1'1 into C (11')): 
Given E > 0, choose N so that Ln>N k Ilfn.klloo < E/2 and then K such 
that Ln<N.k>K Ilfn.kllcx; < E/2. Then ifx(p,q) = y(p,q) for p < N, q < K, 
we have Ilfx =- fylloo < E. 

First let x E P3' Clearly, fx E C(1I') and fx(O) = fx(27r) = O. Assume 
inductively that f£n) exists and f~n)(O) = f£n)(27r) = O. Clearly, f£n+1)(y) 
exists for y E (0,211'). Also, the right derivative of f£n) at 0 is O. It is then 

enough to show that the left derivative of f£n) at 211' is also O. Let a E Ie,k, 
where e > n. Then 

211' x x < c'k < I f
In) (a) ~ f(n) (211') I II/n) 11= 

a ~ 211' - 2-(£+1) -

IlfYk+1) lloe 2-2£ 
2-(£+1) ---> 0, as e ---> 00. 2-(£+1) 

So f3(n+1) (211') = O. 
If now x 1. P3 , let n be such that for infinitely many k, x(n, k) = 1. 

Consider f£n+1). Clearly, f£n+1) = f~~k+1) in the interior of In,k if x(n, k) = 

1. So, for each k with x(n,k) = 1, pick ak,bk E In.k with 

If£n+1)(ak)1 = T 2n , f£n+1) (bk) = O. 

This shows that f5"+1) cannot be continuous at the right endpoint of In, 
so f x 1. C'X> (11'). 0 

Of course it is well known that AN(1I') ~ COO (11') , but the preceding 
fact shows that there is an interesting "definability" distinction between 
the classes. 

It is also known (again see Y. Katznelson [1976]) that if f E C(1I') 
and L InIPlj(n)1 < 00, then f E CP (11') , while if f E CP(1I') , then 

nEZ 

j(n) E O(lnl-P). Notice that conditions of this form cannot exactly char
acterize CP (11'), since otherwise they would give ~g definitions of CP (11'). 
So, for example, there exists f E C(1I') with j(n) E O(lnl-P), but for which 
f 1. CP(1I') (while on the other hand, for such f, f E CP-2(1I')). This is an 
analysis result proved by definability methods. It is a typical use of clas
sification results to prove existence theorems: If A ~ B are sets and A, B 
have different "definable complexity", then A ~ B in particular, i.e., there 
exists an element of B that is not in A. 
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23.E Uniformly Convergent Sequences 

Let X be a separable Banach space and let 

UCx = {(xn) E XN : (xn) converges (in X)}. 

(23.16) Exercise. Show that UCx ~ X N is IIg-complete. In particu
lar, for X = C(1[') show that UC = UCC(1I') = {Un) E C(1[')N : 
Un) converges uniformly} is IIg-complete. Show also that UCn = {Un) E 
C(1[')N : fn ....... 0 uniformly} is IIg-complete. 

oc' 

For f E C(1['), let L: j(n)einx be its Fourier series. We denote by 
n=-OCl 

N A • 

SNU) its partial sums: SNU)(X) = L: f(n)e tnX , N = 0,1,2, .... We say 
n=-N 

00 A • 

that L: f(n)e mx converges (uniformly) iff the sequence of partial sums 
n=-oo 

(SNU)) converges (uniformly). Now let 

CX) 

UCF = {f E C(1['): 2:= j(n)einx converges uniformly} 
n=-(X) 

be the class of functions with uniformly convergent Fourier series. (Note 
that if f E UCF, L: j(n)einT = f(x) uniformly.) 

(23.17) Exercise. Show that UCF is IIg. (Ki has shown that it is IIg
complete.) 

23.F Some Universal Sets 

Let X be a Polish space and f = Un) a sequence of continuous functions 
fn : X ....... R Let 

Cf = {x EX: Un(x)) converges}. 

(23.18) Theorem. (Hahn) Let X be Polish. A subset A ~ X is IIg iff it is of 
the form Cf for some sequence of continuous functions f = Un), fn:X ....... 
rn;. 

In particular, if X is compact, the set 

U = ((f,x) E C(X)N X X : Un(x)) converges} 

is C(X)N -universal for IIg(X). 

Proof. If fn : X ....... JR, then 



186 II. Borel Sets 

(fn(x)) converges ¢} \lm3N\lk,£ ~ N(I!k(x) - h(x)l:::; l/(m+ 1)), 

so C r is rr~, and if X is compact metrizable, U is rrg since the map (f, x) E 

C(X) x X f-t f(x) E ~ is continuous. 
It remains to show that if A <;;; X is rrg, then A = Cr for some f 
We claim first that it is enough to show that if A <;;; X is :Eg, then 

there exists a sequence In : X -4 [-1,1] of continuous functions such that 
A = Cr and moreover fn(x) -7 0, \Ix E A. Indeed, if A is a rrg set and 

A = nm Am with Am E :Eg, let (fAm))nEN work as above for Am with 

Ilf,\m)ll= :::; l/(m + 1). Rewrite (f,\m\n.n as a single sequence (fi)iEN. 
Clearly, f;(x) -4 0 for all x E A, since for each E > 0, lf~rn)(x)1 < E for 

all but finitely many m, and for these m, If~m)(x)1 < E for all but finitely 
many n. On the other hand, if x ~ A, so that x ~ Am for some m, then 
(fAm)(x)) diverges as n -7 00, so (fi(X)) diverges too. 

So it is enough to prove the above fact about :Eg sets. For that we use 
a basic result about semicontinuous functions. 

Recall that an extended real-valued function f : X -4 [-00,00] is lower 
semicontinuous if for each a E R {x : a < f (x)} is open. Then we have: 

(23.19) Theorem. Let X be a rnetrizable space. Let f : X -4 [-00,00] be 
bounded frorn below. Then f is lower sernicontinuous iff there is an increas
ing sequence fo :::; h :::; 12 :::; ... of continuous functions f : X -4 ~ such 
that f(x) = sUPnfn(x). 

Proof. If f is the sup of an increasing sequence of continuous functions, it 
is clearly lower semicontinuous. 

For the converse, we can assume that f is not identically 00, since 
otherwise we can take fn == n. Let d be a compatible metric for X. Put 

fn(x) = inf{f(y) + nd(x, y) : y EX}. 

Then fn : X -4 ~ and fn(x) :::; fn+l(X) :::; f(x). Also, Ifn(x) - fn(y)1 :::; 
nd(x, y), so f" is continuous. We will now show that fn(x) -4 f(x). Fix E > 
O. For all n, let Yn EX be such that f(Yn):::; f(Yn)+nd(x,Yn):::; fn(X)+E. 
If 111 is a lower bound for f, then d(x, Yn) :::; fn(X)~E-JI!. If fn(x) -4 00, 
then f(x) = 00 and we are done. So we can assume that (fn(x)) is bounded 
and thus that Yn -4 X. By the lower semicontinuity of f, f(x) :::; limnf(Yn). 
Thus f(x) :::; lim."f(Yn) :::; limn(fn(x)+E) = limn fn(X)+E, i.e., limn fn(x) = 

f(x). 0 

Say now A E :Eg, A = Un>l Fn , with Fn closed and Fl <;;; F2 <;;; ..•. 
Consider the function f : X -4 [=-00,00] given by 

f(x) = 1 on F1; f(x) = n on Fn \ F n - 1 for n ~ 2; f(x) = 00 on rv A. 

Then for a E R 
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{x : f ( x) > a} = X if a < 1; 

{x: f(x) > a} = cv Fn if n <::: a < n + 1, n;:: 1. 

So f is lower semicontinuous. By 23.19, let 'Pn : X --) lR be continuous with 
'PI <::: 'P2 <::: ... and sUPn'Pn(x) = f(x). 

For any two real-valued functions f,g let f I\g(x) = min{J(x),g(x)}, 
fV g(x) = max{J(x), g(x)}. Clearly, if f, g are continuous, so are fV g, f I\g. 

By replacing 'Pn above by ('Pn VI) 1\ n, we can assume also that 1 <::: 

'Pn <::: n. Finally, since 'Pn+1 -'Pn <::: n, we can interpolate between 'Pn, 'Pn+1 
the functions 'Pn + 2~' ('Pn+ I -'Pn) for k = 0, ... ,2n, so that by renumbering 
we can assume that 1 = 'Po <::: 'PI <::: ... and 'Pn+1 - 'Pn <::: 1/2. Finally put 

fn (x) = sin(7r'Pn (x)). 

Then fn : X --) [-1,1] is continuous and fn(x) --) ° for x E A, as 'Pn(x) 
converges to an integer. On the other hand if x rf. A, then 'Pn (x) --) DC 

and since 'Pn+I(X) - 'Pn(x) <::: 1/2, for each k there is at least one Tl with 
'Pn(x) E [k + 1/4,k + 3/4]' so (-l)k sin(7r'Pn(x));:: sin(7r/4) and (f,,(x)) 
diverges. 0 

(23.20) Exercise. Show that 23.18 remains valid if Cl , U are respectively 

replaced by Cf = {x : fr'(x) -+ o} and UO = {U~ x) : fn(x) -+ O}. 

(23.21) Exercise. Show that for X compact metrizable the set 

U = {(f,x) E C(X)N X X: infnf,,(x) > O} 

is C(X)N-universal for ~g(X). 

(23.22) Exercise. Prove the following uniform version of 23.18: Let X, Y be 
compact rnetrizable. Show that for any A <;:;; Y x X, A E II~, there is a 
continuous function F : Y -+ C(X)N such that Ay = C F(y), 

Consider now f E C([O, 1]). Let 

D f = {x E [0,1] : f'(x) exists}. 

(At endpoints we consider one-sided derivatives.) 
Zahorski (see, e.g., A. Bruckner [1978], p. 228) has shown that the sets 

of the form D f are exactly those that can be written as An B, with A E ~~ 
and B E II~ with m(B) = 1 (where m is Lebesgue measure). 

(23.23) Exercise. Show that the set D = {(j, x) E C([O, 1]) x [0, 1] : x E D f } 
is II~. Let X be a Gil subset of (0,1) with m(X) = 0. Show that 

U = {(j,x) E C([O, 1]) x X : f'(x) exists} 
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is C([O, 1])-universal for rrg(X). 

A set E <:;;; 11' has logarithmic measure 0 if for cvery f > 0 there is a 
sequence (In) of intervals (arcs) in 11' with E <:;;; Un In and L 1/llogII,,11 < E. 

For any f E C(lI'), let 

= 
Cf = {:r E 11': L ](n)cinr convergeti} 

n=-x' 

DC 

= {r E 11': L j(n)einJ = f(:r:)}· 

Sladkowska (see, e.g., M. Ajtai and A. S. Kechris [1987]) has shown 
that if B <:;;; 11' is a :Eg set of logarithmic measure 0 and A <:;;; B is :E~l, then 
there is f E C(lI') with A = ~ Cf' 

(23.24) Exercise. Show that the set C = {(f, r) E C(1I') x 11' : J: E Cd IS 

Wi. Show that if X <:;;; 11' is A.g of logarithmic measure 0, the set 

U = {(f,:r) E C(1I') x X : J; E ('.r} 

i:-; C(lI')-universal for rrg(X). 

23. G Farther Examples 

"Ve now discuss a couple of examples related to logic. 

(23.25) Exercise. Call a function f : Nll ----> N arithmetical if its graph is 
definable by a formula of first-order logic 011 the structure of arithmetic 
(N. + .. ). It is known that there is a bijection h : N<N ----> N such that the 
functions 

f(3) = Jellgth(h- 1 (8)) 

and 
( .') _ { the i th element of h -I (3). if i < f (s ): 

9 '<'. l - . 
0, otherWise. 

are arit.hmetical. Lct 2: be the set of :-;entence:-; ill first-order logic for the 
language {+'" U}, U a unary relation "ymbo!. Then 2: is countable, so wc 
can view it. as a discret.e Polish space. Show that the truth set 

TR = {(XA.y) E ex 2:: (N,+, ·.A) 1= y} 

is in A.~ but not ill Un A.~ (in the space C x 2:). 

Contiider next the language L = {R}, consisting of one binary relation 
tiymbol R and the space XL = 2NxN as in 16.5. For n < WI. let 
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w'o<n ={x E 2NxN : Ax = (N, RAx) is 

a wellordering of order type < a} c::; XL. 

J. Stern [1978] has shown that Wo<w~ is ~g.n-complete (a ~ 1) and if 
,r> < '" < . 0+1 tl '''0<11', A 0 b t t ~O u., IJ vJ • len vv 'IS ..... 2.n+2 U no L.i2.c;+l' 

In conclusion, we would like to mention that we do not know of any 
interesting "natural" examples of Borel sets in analysis or topology which 
are in one of the classes ~~ or II~ for ~ ~ 5, but not in a class with lower 
index. 
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24. The Baire Hierarchy 

24.A The Baire Classes of Functions 

(24.1) Definition. Let X,Y be metrizable spaces. A function f:X -t Y is of 
Baire class 1 if f-l(U) E Eg(X) for every open set U t::;; Y. IfY is separable, 
it is dearly enough in this definition to restrict U to an:1J countable sub basis 
for Y. Recursively, for] < ~ < WI we define now a function f:X ---> Y to be 
of Baire class ~ if it is the pointwise limit of a sequence of functions fn:X -t 

Y, where fn is of Ba'ire class ~n <~. We denote by BdX,Y) the set of Bair'e 
class ~ functions fTOm X into Y. As usual, BdX) = B,dX,JK:), where JK: = lR 
or C (the context should make clear which case 11Je are considering). 

Clearly, continuous t::;; BJ t::;; B2 t::;; '" t::;; Be; t::;; ... t::;; B" t::;; ...• for any 
~ ::;1] < WI· 

(24.2) Definition. Given a class r of sets in metrizable spaces, we say that 
f:X -t Y is r-measurable if f-l(U) E r for every open set U t::;; Y. If 
r is closed under countable unions and finite intersections, it is enough to 
restrict U to any countable subbasis for' Y, when Y is separable. 

Thus E~-measurable = continuous and Eg-measurable = Baire class 
1. The following is an extension and refinement of 11.6. 

(24.3) Theorem. (Lebesgue, Hausdorff, Banach) Let X,Y be metrizable 
spaces, with Y separable. Then for 1 ::; ~ < WI, f:X ---> Y is in Be; iff f is 
E~+1 -measurable. In particular, Ue; B~ is the class of Borel functions. 

Proof. =}: By induction on ~. It is clearly true for ~ = 1. Next notice that 
if in ---> f pointwise, U t::;; Y is open and we write U = Urn Bm = Urn B rn , 
with Brn open balls, then f-l(U) = Urn Un nk>n f;I(B rn ). If fn is in 

1 - 0 0 - -I - 0 
Bt.", ~n < ~, then f,-: (Em) E IIe;n+ 1 t::;; II.;-, so nk2:n fk (Brn) E II.; and 
thus f- I (U) E E~+I . 

-¢=: Again, the proof is by induction on ~. It is obvious for ~ = 1. So 
let ~ > 1. 

\Vc first prove the result in case f : X ---> {O, I} i", a characteristic 
function f = XA for A t::;; X. To say that f is E~+I-measurable just means 
then that A is a~+I' If ~ = TJ + 1 i", successor, then by 22.17 A = limn An 
with An E a~ = ag+ 1 . Then XAn is in Br" by induction hypothesis, and 
since XA = limn XA", XA is in B,,+l = Bf.. If now ~ is limit, thell by 22.17 
A = limn A,,, where An E UIJ<f. ag, say An E ag,,+l' with Tin < ~. Then 
XAn is in B"n' so XA is in Bf.. 

The preceding argument easily extends to the case f : X ---> Y, with 
Y finite. For this, note that if Ai = limn A~n fori = 1, ... , k, where X = 
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A A '. .. f d A-(i) A(i)\U A(i) h A-(i) A-(i) 
1 U· ··U k IS a partItIon 0 X an n = n j<i. n, t en 1"'" k 

are pairwise disjoint and still Ai = limn A},i). 
Notice also that if Y is finite with a metric d and if f, g : X ----> Yare 

such that d(J(x), g(.T)) :s: a for all x and fn, gn are ~g-measurable with 
fn ----> f, gn ----> g pointwise, then we can find g;, ----> g also ~g-measurable 
with d(Jn(.T),g;,(x)) :s: a for all x. For that just define 

if d(Jn(x),gn(x)) :s: a; 
otherwise. 

Let Y now be an arbitrary separable metrizable space and, by consid
ering a compactification of Y, find a compatible metric d for Y such that 
for any E > 0 there are finitely many points Yo, ... , Yn-I E Y with Y <;;; 

Ui<n B(Yi,E). Then for each k, let y(k) = {y~k), ... 'Y~~)-I} <;;; Y be such 

that Y <;;; Ui<nk B(y;k),2-k ) and y(k) <;;; y(k+I). Then f- 1(B(y;k),2- k )) E 

~~+I' so by the reduction property 22.16, since Ui<nk f-I(B(y;k), 2- k)) = 

X, we can find A)k)E.6~+I with A;k) <;;; f-I(B(y;k), 2- k)) such that X = 

A (k) A(k). . 't't' f X Th f(k). X {(k) (k)} () u',· U nk -1 IS a par 1 1011 0 . en , ----> Yo " .. , Ynk-I 

given by f(kl(x) = Yi 9 x E Aik), is ~~+l-measurable, and so by the finite 
. d I t f(k l X {(A) (k)} b f t' . B case we Just prove ,e n : ----> Yo , .. " Ynk-I e unc lOns In '1n,k 

for some Tln.k < ~ with f~k) ----> f(k) pointwise. Since d(J(x), f(k)(X)) :s: 2- k , 
so that d(J(k)(x), f(k+l)(X)) :s: 2·2- k, we can also assume, by the preceding 

remark, that d(J~k)(X),f~k+I)(X)):S: 2, 2- k. Let!k = fk k). Then fk k) is in 
B(k for some ~k < ~ and fk ----> f pointwise, so f is in B(. D 

(24.4) Exercise. In this exercise spaces are separable metrizable. 
i) Let d be a compatible metric for Y. If fn : X ----> Y is in BE, and 

fn ----> f uniformly with respect to d, then f is also in B(. 
ii) Show that the two possible compositions of a function in B( and a 

continuous function are in B(. 
iii) Show that if f is ~~-measurable and g is ~g-measurable then go f 

is ~~+'1- measurable. 

(24.5) Exercise. Let (X, T), Y be Polish spaces and f : X ----> y, Show that 
f is in BE, iff there is a Polish topology T' :;2 T with T' <;;; ~~+I (X, T) such 
that f : (X, T') ----> Y is continuous. 

(24.6) Exercise. Let X, Y be Polish. For each ~ show that there is a Borel 
function FE, : C x X ----> Y such that BtJX, Y} <;;; {(F()a : a E C}. 

(24.7) Exercise. Let X, Y be Polish and A <;;; X x Y be ~~. Then the 
function (11, x) E P(Y) x X f--+ IL( Ax) is in BE,. 
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(24.8) Exercise. Show that if X, Yare Polish and if A s;,; X x Y is :E~ and 
such that for some fixed II E P(Y), Ax =I 0 ==? fl(ArJ > 0, then A has a 
unifonnizing function in BI;(pro.ix(A), Y) for ~ > 1 (and for ~ = 1 if X, Y 
are zero-dimensional). Prove the same result in case A;r =I 0 ==? A, is not 
meager. (Recall 22.22 and 22.25 here.) 

(24.9) Exercise. (Cenzer-Ivlauldin) Consider the space K(C) and the map 
DC> : K(C) --> K(C) given by Dn(K) = K(} = the nth iterated Cantor
Bendixson derivative of K (see 6.10). Show that Dk is in B2k for k < wand 
DA+k is in BA+2k if A is limit and k < w. Use the result of Cenzer-I\Iauldin 
mentioned at the end of 23.B to show that this estimate is best possible, 
i.e., D" is not in B2k - 1 and D A+k is not in BA+2k - 1 • 

24.B Functions of Baire Class 1 

We will conclude with a study of the important class of Baire class 1 func
tions. 

It is easy to check that the pointwise limit of a sequence of continuous 
functions is in B I . The converse fails in general. (Take, for example, f : 
JR. --> {O, 1} to be any non-constant function in BI , e.g., X[O,lj') However, we 
have the following result. 

(24.10) Theorem. (Lebesgue, Hausdorff, Banach) Let X,Y be separable 
metr-izable and f:X --> Y be in B1 . If either- X is zero-dimensional or- else 
Y = JR., then f is the pointwise limit of a seqm:nce of continuous functions. 

Pmoj. The case of X zero-dimensional is exactly as in the proof of 24.3, 
using the fact that 22.17 goes through for ~ = 1 as well in this case. 

Consider now the case Y = R Fix a homeomorphism h : R --> (0,1). If 
f is in B1 , so is h 0 f : X -7 R If the result holds for 9 : X --> JR. in BI with 
g(X) s;,; (0,1), then h 0 f = limngn , where gn : X --> lR are continuous; by 
replacing gn by (gn V lin) 1\ (1- lin), we can assume that 9n : X --> (0,1). 
Then fn = h.-I 0 gn --> f. So it is enough to prove the result for f : X --> lR 
in BI with f(X) s;,; (0,1). 

For N 2': 2, i = 0, ... , N - 2, let AiV' = j-I((iIN, (i + 2J/N)). Then 
AN is :Eo and UN - 2 AN = X. So bv the reduction property for :Eo (see 

1 2 '/=0 1 'c • 2 
22.16) we can find E;'v s;,; A;v so that Efv is .6.g and X = E(~ u ... U Bf:-2 

is a partition of X. Then XBN is in Bl and if gN = 2:j~-()2(iIN)xBN' then 
1 l - I 

9N --> f uniformly, So the result follows from the next two lemmas. 

(24.11) Lemma. Let each Pn : X -; JR. be the pointwise limit of a sequence 
of continuous functions. Then if Pn -; P unifor-mly, p is also the pointwise 
limit of a sequence of continuous functions. 
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(24.12) Lemma. Let A s;;- X be ag. Then XA is the pointwise limit of a 
sequence of continuous functions. 

Pmof. (of 24.11) It is enough to show that if each q" : X ---+ ~ is the 
pointwise limit of a sequence of continuous functions and Ilqn 1100 ::; 2-n , 
then 2:: qn is the pointwise limit of a sequence of continuous functions. So 
let gin) be continuous with qin) ---+ qn as i ---+ 00. Clearly, we can assume 

that Ilq;n)llx ::; 2-n . So ri = 2:::=0 gin) is continuous and it is enough 
to show that r; ---+ 2: q". Fix x E X and E > O. Find N so that for all 

i, 12::=N+l q;n)(x)1 ::; E/3 and 12:::=N+l qn(x)1 ::; E/3. Then h(x) -
2: q." (:z;) I ::; 2E/3 + 2:~=o Iqin) (x) - qn (x) I· SO for all large enough i, lri(x)-
2:qn(x)1 ::; E, and tlm:o r; ---+ 2:qn. 0 

Pmof. (of 24.12) Let A = Un F", rv A = Un Hn with Fn, Hn closed, 
Fn s;;- Fn+l' Hn s;;- Hn+1 · By Ury:oohn's Lemma 1.2, let hn : X ---+ ~ be 
:ouch that hn(x) = 1 on Fn and h,,(x) = 0 on Hn- Then hn ---+ XA. 0 

o 

(24.13) Exercise. Show that 24.10 holds when Y is an interval in ~, Y = 
C. y=~n,orY=Cn. 

The following result :ohow:o that Baire class 1 functions have many 
continuity points. 

(24.14) Theorem. (Baire) Let X,Y be metrizable, with Y separable, and 
f:X ---+ Y be of Baire class 1. Then the set of points of continuity of f is a 
comeager Go set. 

Pmof. Fix an open ba:ois {V,,} for Y. We then have 

f is not continuous at x {c? :In[x E rl(Vn) \ Int(j-l(v,,))], 

i.e., {x : f is not continuous at x} = Un f-l(Vn ) \ Int(j-l(v,,)). Now 
r 1 (V,,) is ~g, thu:o so is f- 1(Vn)\Int(j-l(V,,)). Say it is equal to Uk Fb Fk 
clo:oed. Clearly, Fk has no interior, so the set of points of discontinuity of x 
is a countable union of clo:oed, nowhere dense sets. 0 

This leads to the following, final characterization of Baire class 1 func
tions. 

(24.15) Theorem. (Baire) Let X be Polish, Y separable metrizable, and 
f:X ---+ Y. Then the following are equivalent: 

i) f is of Baire class 1; 

ii) flF has a point of continuity for every nonempty closed set F s;;- X; 
iii) flC has a point of continuity for every Cantor set C s;;- X. 
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Proof. i) ==} ii) follows from 24.14 since every such F is Polish and flP is 
of Baire class 1 too. ii) ==} iii) is trivial. So we will prove iii) ==} i). 

Let U be open in Y in order to show that f-l(U) is ~8. Put U = 

Un Fn , with Fn closed. Then f- 1 (Fn), f- 1 (~ U) are disjoint. If we can 
show that they can be separated by a a8 set D n, then clearly f- 1 (U) = 

Un Dn E ~8, and we are done. 
Assume therefore, tmvard a contradiction, that this fails for some n. 

Then, by 22.30, there is a Cantor set C ~ X with f- 1 (rv U)nC, f- 1 (Fn)nC 
dense in C. By iii), let x E C be a continuity point for fiC. If Xra E f-l(~ 
U) n C is such that Xm --7 .1:, then f(:1:",) --7 f(x) and f(:x: m ) E rv U, so 
f(x) E rv U. Similarly, if Ym E f-l(Fn) n C is such that Ym --7 x. then 
f(Ym) --7 f(x) and f(Ym) E Fn , so f(x) E FIl •. a contradiction. 0 

(24.16) Exercise. Let X be rnetrizable. Recall that a function f : X --7 lR'. is 
lower (upper) semicontinuous if {:1' : f(~') > a} ({ x : f( x) < a}) is open for 
any a E R Show that all such functions are in B l . 

(24.17) Exercise. Let X be Polish and f : X --7 lR'. have only count ably 
many discontinuities. Then f is in B1 . Tn particular, all f : [0, 1J --7 lR'. that 
are monotone or of bounded variation are in B 1 . 

(24.18) Exercise. Let F : [0,1] --7 lR'. be differentiable (at endpoints we take 
one-sided derivatives). Then its derivative FI is in B l . 

There are many interesting relationships between derivatives and B1 
functions on [0,1]. First, recall that derivatives have the Darboux property, 
that is they send intervals to intervals. Denote by DBI the class of functions 
on Bl that have the Darboux property. Also, denote by D.. the class of 
derivatives FI of differentiable functions. So D.. ~ DB1 . Although D.. =I DB1 , 

one has the following facts (see, e.g., A. Bruckner [1978]' and A. Bruckner, 
J. l\lafik and C. E. Weil [1992]): 

i) (l\Iaxillloff) A function f : [0, 1J --7 lR'. is in DBl iff. there is a homeo
morphism II of [0,1] with f 0 h E D.. 

ii) (Petruska-Laczkovich) Let H c::;; [0, 1J. Then m(H) = 0 iff for every 
f E Bl there is 9 E D.. with flH = giH. 

iii) (Preiss) A function f : [0,1] --7 lR'. is in Bl iff f = 9 + hk, where 
g, h, kED... 

Finally, Preiss has shown that f : [0, 1] --+ lR'. is in B2 iff it is the 
pointwise limit of a sequence of derivatives. 

(24.19) Exercise. Show that if X is Polish and if h : X --+ lR'., t; < WI, is a 
pointwise increasing (i.e., f,J(x) :s: h,(x) , when TJ :s: t;) transfinite sequence 
of Baire class 1 functions, then for some n < WI, fE = fIX for all t; 2:': n. 
Conclude that if (A~)E<OJl is an increasing or decreasing sequence of a~ 
sets, then (A~) is eventually constant. (Compare with 6.9.) 
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(24.20) Exercise. (Saint Raymond) Let X, Y be compact metrizable spaces, 
Z a separable metrizable space, 1 : X --> Y a continuous surjection, and 
9 : X --> Z a Baire class ~ function. Show that there is a Baire class 1 
function s : Y --> X so that s(y) E 1-1 ({y}) and go" is also of Baire class 
~. Conclude that if X, Yare compact metrizable spaces, 1 : X --> Y is a 
continuous surjection, and A <;;;: Y is such that 1-1 (A) is ~~ (resp., II~), 
then A is ~~ (resp., II~). 

Use this to prove also that 22.11 and 22.13 are valid for any Polish 
space X and any ~ :2: 1. 



CHAPTER III 
Analytic Sets 

25. Representations of Analytic Sets 

25.A Review 

Let X be a Polish space. Recall that a set A C;;; X is analytic if it is the con
tinuous image of a Polish space. We denote by ~i(X) the class of analytic 
subsets of X. 

The analytic sets contain all the Borel sets and are closed under count
able intersections and unions as well as images and preirnages by Borel 
functions. In particular, they are closed under projections (i.e., existential 
quantification over Polish spaces). 

In 14.3 the following basic equivalent formulations of analyticity were 
established. Given X Polish and A <;;; X, the following statements are equiv
alent: 

i) A is analytic. 
ii) For some Polish Y and Borel B C;;; X x Y. A = prot" (B). 
iii) For some closed set F C;;; X x N, A = proh(F). 
iv) For some G~ set G <;;; X x C, A = proh(G). 

(25.1) Exercise. Let X, Y be Polish spaces with XC;;; Y. Show that ~} (X) = 

~i(Y)IX (= {AnX: A E ~i(Y)}) = {A C;;; X: A E ~i(Y)}. 

Given a standard Borel space X we call A C;;; X analytic if for some (all) 
Borel isomorphisms IT : X ---+ Y, with Y Polish, the set IT(A) is analytic. 
Equivalently, by 14.6, A is analytic if it is the Borel image or projection of 
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a Borel set. We use again the notation "E t (X) for the class of analytic sets 
in X. 

We can also extend the definition of analyticity to arbitrary separable 
metrizable spaces X by calling A ~ X analytic (or "Ei(X)) if for some 
Polish Y :2 X and analytic B ~ Y, A = B n X. This is easily equivalent to 
saying that A = proh(F) for some closed F ~ X x N (or A = proh(G) 
for some Go set G ~ X xC). A :subset A ~ X such that both A and X\A are 
analytic is called hi-analytic or at (X). It is not true that for any separable 
metrizable X we have at(X) = B(X) (see the remarks following 35.1), so 
a at set A may not be of the form B n X, where B is in at (Y) = B(Y) 
for some Polish space Y :2 X. 

Finally, the following concepts are of interest. A separable metrizable 
space is called analytic if it is homeomorphic to an analytic set in a Polish 
space (with the relative topology), or equivalently if it is a continuous image 
of a Polish space. Also, a measurable space is called analytic or usually an 
analytic Borel space if it is isomorphic to (X, B(X)) for some analytic set 
(or space) X. 

2S.B Analytic Sets in the Baire Space 

In the Baire space N we can represent analytic sets in a simple combina
torial fashion using trees. 

Given a tree T on a set A = B x C, recall that for x E B N , T(x) = 

{s E C<N : (x Ilength( s), s) E T} is the section tree. 
Let 

p[T] = {x: T(x) is ill-founded} 

= {x: [T(x)] =1= 0} 

= {x: :Jy(x, y) E [Tl} 

be the projection of [T] ~ BN x CN on BN. 

(25.2) Proposition. Given A ~ lv, the following statements are equivalent. 
i) A is analytic. 
ii) There is a (pruned) tree T on PI x PI with A = p[T]. 
iii) There is a (pruned) tree T on PI x 2 with x E A<=? :Jy E N(x,y) E 

[TL where N = {x E C::J=n(x(n) = I)}. 

Proof. The equivalence of i) and ii) is clear since all the closed subsets of 
N x N are of the form [T] for a (pruned) tree on PI x PI and the analytic 
subsets of N are just the projections of closed sets in N xN. The equivalence 
with iii) follows from the same remark plus the fact that N is homeomorphic 
to N (see 3.12). 0 

(25.3) Exercise. Let X be Polish and A ~ X. Then the following statments 
are equivalent: 

i) A is analytic. 
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ii) There is a closed F ~ X x N with x E A {? QR!yF(x, y), where QR! 
is the game quantifier (see 20.D). 

25. C The So'Uslin Operation 

(25.4) Definition. Let (P,LEw'l be a Souslin scheme on a set X, i.e., a 
family of subsets of X indexed by N<N. The Souslin operation A applied to 
such a scheme produces the set 

AsPs = U n Pylw 
xEN n 

Given any collection r of subsets of (), set X we denote by Ar the class 
of sets AsP" wheTe Ps ~ X aTe in r. 

(25.5) Exercise. i) A Souslin scheme (P,) is regular if 3 ~ t =? P" :2 Pt. 
Show that if (P,) is it Souslin scheme and Qs = ntCs Pt , then (Qs) is regular 
and AsPs = AsQs. -

ii) Denoting by r a' r 6 the class of sets that are respectively countable 
unions or countable intersections of sets in r, show that if X E r, then 
raurb~Ar. 

The following is an important stability property of the operation A. 

(25.6) Proposition. Let X be a set and r <;;; Pow(X). Then AAr = Ar. 

Pmoj. It is trivial that for any r, r ~ Ar. So it is enough to show that 
AAr ~ Ar. Let A = AsPs, with Ps EAr, so that Ps = AtQs,t with 
Qs,t E r. Then 

x E A {? ::Jy E NVm(x E Pylm ) 

{? ::Jy E N'l!m::Jz E N'l!n(x E Qylm,zln) 

{?::Jy E N::J(zml E NR!VmVn(x E Qylm.zml n )' 

Fix now a bijection (m, n) of N x N with N, so that m :::; (m, n) and 
(p < n =? (m,p) < (m, n») (e.g., (m, n) = T"(2n + 1) - 1). Let also for 
kEN, (k)o, (kh be such that ((k)o, (kh) = k. Then encode (y, (zm)) E 
NxNN by wEN given by w(k) = (y(k), Z(k)o((kh). This gives a bijection 
of N x NN with N. Note that knowing wl(m, n) determines ylrn and zrnln, 
by the above properties of ( ) (i.e., there are functions i.p,1j; : N<R! ----> N<N 
such that if w encodes (y, (zlm) and s = wl(rn, n), then i.p(s) = ylrn and 
1j;(3) = zmln). It follows that 

:r E A {? ::Jw E N'l!k(:r E Rwl k ) 

{? x E A"R" 
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where Rs = P<p(s).?/J(s) is in r. o 

The next result gives a basic representation of analytic sets. 

(25.7) Theorem. Let X be a Polish space and d a compatible metric. For 
any A ~ X the following statements are equivalent: 

i) A is analytic. 
ii) A = AsFs, with Fs closed. 
iii) A = AsP" with Fs closed and (Fs) regular of vanishing diameter 

(i.e., diam(Fxln) ---; 0, "Ix EN), and Fs -=I- 0 if A -=I- 0. 
iv) A = AsPs, with Ps analytic, PfIJ = A, Ps = Un Ps'n, (Ps) of 

vanishing diameter and nn Pxln -=I- 0, "Ix EN, if A -=I- 0. 

Proof. Clearly, iii) =} ii). Also iv) =} i) and ii) =} i), since if A = AsPs with 
Ps analytic, then A = proh(P), with P ~ X x N given by (x,y) E P {=} 

Vn(x E Pyln )' and so P is analytic. We prove next i) =} iii). Let A ~ X 
be analytic and, without loss of generality, assume that A -=I- 0. Then there 
is a continuous function f : N ---; X with f(N) = A. Put Fs = f(Ns). 
Clearly, (Fs) is regular. Since f is continuous, (Fs) has vanishing diameter. 
Note now that if x E nn Fyl n' then for each n there is Xn E f(Ny1n ) with 
d(x, x n ) < 2-n . Let Yn ~ yin be such that f(Yn) = x n . Then Yn ---; y, so 
f(Yn) = Xn ---; f(y), i.e., x = f(y)· So {J(y)} = nn FYIn- Thus AsFs = 
A. Finally, to prove i) =} iv), take Ps = f(Ns ) and apply the preceding 
argument. 0 

Thus :Et(X) = AII~(X), for any Polish space X. In particular, we 
have: 

(25.8) Corollary. Let X be a Polish space. Then A:Et(X) = :Et(X). 

(25.9) Exercise. Show that 25.7 i) {=} ii) and 25.8 are valid in any separable 
metrizable space. 

(25.10) Exercise. Let X be a set and (Ps ) a regular Souslin scheme on X. 
For x E X put 

Tx = {s E N<N : x E P s }. 

Show that Tx is a tree on N and if A = AsPs, then 

x E A{=} [Txl -=I- 0. 

(25.11) Exercise. Using the notation of 25.7, fix a countable open basis 
{ Un} for X containing 0, X. Show then that in ii) one can take (Fs) to be 
regular, with each Fs of the form Un with diam(Fs) :S 2-1ength(s) if s -=I- 0. 

(25.12) Exercise. Let (Ps ) be a Lusin scheme on X. Then show that 
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n sENT! 

so that if Ps is closed, As P, is rrg (for X metrizable). 

The following is also an important representation of analytic sets. 

(25.13) Theorem. Let X be a Polish space and A c:: X be analytic. Then 
there is a regular Souslin scheme (P,) with A = AsPs such that: 

i) PH is analytic; 
ii) P0 = A,1~, = Un PST! and also P'~m c:: ?"'.,, IJ m ::; n: 
iii) Jar each Y E .N. P1j = nil Pyln is compact; 
iv )iJ U c:: X is open and P" c:: U, then Jar some n, Pyln c:: U. 

Proof. For each s E 1\1<1'1, let N: = {y EN: Vi < length(s)(y(i) ::; s(i))}. 
Then for yEN, let 

N; = n N;ln = {z EN: z ::; y pointwise}, 
II 

so that N; is compact in JV. 
If A = O. we can clearly take ?" = 0, so assume A f O. Let J : N --t X 

be continuous with J(N) = A. Put 

S· 1\'* U J\T* 1 ~T* C)\T* 'f < lHee l.Vs == n lV,s'n aIle J.V,<;~nl ~ iV8~n 1 'In _ n, i), ii) are clear. To prove 
iii) and A = A,?'" it is enough to check that 

n 

Clearly, J(N:) c:: nn J(N: ln). Conversely, let x E nn J(N;ln) so that for 

each n there is Yn E N;ln with J(Yn) = x. Since Yn(i) ::; y(i), Vi < n, it 
follows that there is a subsequence (YII,) of (YII) converging to some z ::; y. 
Then .f(:YnJ --t J(z) = x E J(N;). 

Finally, let Py c:: U with U open. If for all n, Pyln n (X \ U) f 0, 
let YII E N;ln be such Lhat J(Yn) E X \ U. As before, some imbsequence 

(Yn,) of (lfn) converges to a z ::; Y and so J(Yn,l --t J(z) E X \ U, thus 
J(z) E Py n (X \ U), which is a contradiction. 0 

Comparing 25.7 and 25.13, we see that 25.7 (and its proof) give a 
representation A = AsF" where actually i) Fs is closed, iii) Fy = nil FYln 
is singleton or empty, and iv) of 25.13 is true as well. However, ii) does not 
necessarily hold. 

(25.14) Exercise. Let Y be a topological space, X a rnetrizable space, and 
J : Y --t K(X). We call J upper semicontinuous if for any open U c:: 
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x, {y : f(y) S;;; U} is open in Y. So 25.13 implies that if X is Polish and 
A S;;; X is analytic, then the map f(y) = Py from N into K(X) is upper 
semicontinuous and A = UyEN Py . Show that if Y, X are Polish spaces and 
y!---> Ky from Y into K(X) is upper semicontinuous, then it is Borel and so 
in particular, A = Uy Ky is analytic. If Y = N, show also that A = AsFs, 

with F., = UyEN, Ky. 

(25.15) Exercise. Let (P~) be a regular Souslin scheme. 
i) Put Rs = UXEN nn P,"xln- Show that Rs is a regular Souslin scheme, 

Rf/J = AsP. = AsRs. and Rs = Un R s".,.. 
ii) Put for any sequences s, t E Nn, s :::; t {o} Vi < n(s(i) :::; t(i». Let 

for s E NTl, 

QS = U npXli' 
x.xln:S;s i 

Show that QS is regular, Qf/J = AsP. = AsQs, QS = Un Qs"n, and Qs"m S;;; 
Qs"n if m :::; n. Let also for s E Nn, 

Qs = U Pt. 
tENn ,t:S;s 

25.D Wellordered Unions and Intersections of Borel Sets 

Although, as we saw in 14.2, there are analytic non-Borel sets, we will see 
now that analytic sets can be expressed both as intersections and unions of 
Wi Borel sets in a canonical fashion. 

(25.16) Theorem. (Lusin-Sierpiriski) Let X be a standard Borel space. If 
A S;;; X is :EL then A = U~<Wl Ae = n{<Wl Be with Ae,Be Borel sets. 

Proof. (Sierpiriski) We can assume without loss of generality that X = N. 
SO, by 25.2, let T be a tree on N x N with A = p[T] and put C = N \ A. 
For ~ < Wi, S E N<N let 

C; = {x EN: PT(x)(S) ::; O. 

(Recall here the notation of 2.F; the tree T(x) may be ill-founded). 
Since 

x E C <=} T(x) is well-founded 

{o} 3~ < Wi(PT(x)(0)::; ~), 

clearly C = U~<Wl C{, where Ce = cg = {x : PT(x)(0) :::; O. SO if B€ = '" 
C{, then A = n{ Be. We claim now that each C; (and thus C{) is Borel. 
For this notice that 
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is closed and 

c~ = {x EN: s E T(x) is terminal or sf/- T(x)} 

= {x EN: Ifn(xl(1ength(s) + 1), sAn) f/- T} 

cE = n u C 7
" if (: > 0 S s n' ~ , 

n 71<1; 

so by induction on ~, each C; is Borel. 
Now let 

AI; = {x : T(x) is ill-founded and p(T(x)) ::; O. 

Then clearly, A = UI;<Wl AI;, so it is enough to show that AE is Borel. For 
this note that 

This is true because if x E AI;, then PT(x)(0) = 00 > ~, and we cannot 
have PT(x)(S) = ~, since then s E WFT(x) and ~ < p(T(x)). Conversely, 
if PT(x)(0) > ~ and PT(x)(S) =I- ~ for all s, then T(x) is ill-founded and 
p(T(x)) ::;~, since otherwise, there would be some s with PT(x)(S) =~. 

Thus 

so AE is Borel. o 

(25.17) Exercise. (Sierpiriski) Let (Ps ) be a regular Souslin scheme on X and 
(as in 25.10) let Tx = {s E N<N : x E Ps}. Define by transfinite recursion on 
~ < WI Souslin schemes (PJ) by P~ = Ps, p;+l = Un PsE'n' PSA = nl;<A pf, 
for A limit. Show that if T; = {s E N<N : x E ?;}, then T; = TJO (in the 
notation of 2.11). 

Show that 

x E AsPs <=? [Txl =I- 0 
<=? If~ < WI (Ti =I- 0) 

<=? 3~ < WI (T; = T;+I & T; =I- 0), 

and use this to show that if r is a class of subsets of X and A E Ar, then 
A = UI;<Wl AI; = nE<Wl BE, where At" BI; E O'(r). 

2S.E Analytic Sets as Open Sets in Strong Choquet Spaces 

The following result can be viewed as an analog of 13.1 and 13.5 for analytic 
sets. 
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(25.18) Theorem. Let X be a nonempty Polish space, (An) a sequence of 
analytic sets in X. Then there is a second countable strong Choquet topology 
T, extending the topology of X and consisting of analytic sets, such that 
each An is open in T. 

Proof. vVe can clearly work with X = N. SO, by 25.2 fix a sequence of trees 
(Rn) on N x N such that An = p[Rn]. 

For any two trees S, T OIl N x N, let S * T be the tree on N x N defined 
by 

(s, u) E S * T <=? ((so .... , 8 m -d, (no, U2,"" U2(m-l))) E S & 

((so, ... ,sm-d, (U1,'n3, ... ,U2m-1)) ET, 

where m is the largest number with 2m ~ 1 < length( s) (= length( 11)). 
Then note that p[ 5 * T] = p[ 5] n p[T]. Recall also that if (s, u) E N" X W', 
then S[s.u] = {(t, v) E S: (t, v) is compatible with (8, u)}. 

Fix now a countable set S of non empty trees on N x N such that 
{Rn : n E N} ~ S, {(t, v) : length(t) = length(v) & t is compatible with 
8} ~ S for all 8 E N<N if S, T are in S, so is S * T, and if S is in S, then 
for all (8, u), S[s.u] E S. Let T be the topology with basis {p[S]: S E S}. 
Clearly, T consists of analytic sets, is second countable, and contains all An 
and N,,, and thus the topology of N. It remains to prove that T is strong 
Choquet. 

It is clear that the strong Choquet game for this topology (see 8.14) is 
equivalent to the following: 

I xo, So Xl, Sl 

II To T1 

S;, Ti E S; p[So] ~ p[To] ';2 P[Sl] ~ P[T1] ~ ... ; Xn E p[SnL Xn E p[Tn]. 
Player II wins iff n" p[Sn] (= nn p[TnD i- 0. 

\Ve describe a winning strategy for II in this game: I starts with 
Xo, So. Since ;1:0 E p[SoL fix (silO), u~O)) E N1 X N1 with (s6°), ubO)) E 

So and Xo E p[(So)[s~O)u60Ij]' II plays 7(1 = (SO)[8~O),U~O)]' Next I plays 

Xl, Sl. Since Xl E P[Sl] t;;; p[ToJ, let (siO), uiO)) E N2 x N2 be such 
I ( (0) (0)) ((0) (0)) S [()] t lat So ,uo t;;; sl ,u1 E ° and ·1:1 E P So [s;O) .uiO)] . Also let 

(s~l), u~l)) E N2 X N2 be such that (s~l), u~l)) E Sl and Xl E p[(Sd[ (1),' (1)]]. 
So 'U o 

Then II plays Tl = (So)[s;O),,;O)] * (Sl\5i)1).U~11]' If I next plays X2, S2, 

then X2 E P[S2] t;;; p[(SO)[B;O)u\Olj] n p[(Sd[s6'1 ,Ub')]] n P[S2], so find 

(s~()), u~O)) E N3 X N3 in So extending (siO) ,niO)), (s~l), u~l)) E N3 X N3 

ill Sl extending (s~l),'ui/)) and (s~2),u~2)) EN:) x N:) in S2 such that 

X2 E p[(So)[s10).u1U1]] n P[(Sl)[s;')u;'I]] n P[(S2)[s~2).ui)2)j]' Then II answers 
by playing 
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etc. It is clear from the definition of 8)71) that 8~O) = 8~,121 = 8~,222 = ... = 

86") = xnl(n+ 1), so let:1: = lim:1:n . Also, there are YC),Yl,'" such that 

'U~n) <;;; Yn for all 71, i, and so (x, Yn) E [Sn] for all 71, thus x E nn p[Snl and 
the proof is complete. 0 

(25.19) Exercise. (Beeker) Show conversely that if X is nonernpty Polish, 
and T i8 a second countable strong Choquet topology extending the topol
ogy of X, then T <;;; Ei(X). 

Remark. If in the proof of 25.18 one chooses the family S to consist of 
all trees recur8ive in a given ;1: EN (8ee 21.G), one obtains a much more 
canonical topology T that has a lot of remarkable properties. This topol
ogy, called the Gandy-Harrington topology (relative to x), has become, 
through the use of the methods of "effective descriptive set theory" (which 
are beyond the scope of these lectures), one of the m08t powerful tools in 
descriptive set theory (see A. Louveau [199?]). 
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26. Universal and Complete Sets 

26.A Universal Analytic Sets 

For any class r of sets in Polish spaces and each Polish space Y, let 

=jYr = {projx(B) : B E r(X x Y), X Polish}. 

Thus from 25.A we have 
~t = =jNTI7 

Y 0 ==j TI2 • 

for any uncountable Polish space Y. 
Note now that if U C;;; Y x X x Z is Y-universal for r(X x Z), then 

is Y-universal for =jzr(X). So from 22.6 we have the next result. 

(26.1) Theorem. Let X,Y be Polish spaces with Y 7Lncov.ntable. Then there 
exists a Y -universal set for ~i (X). 

As in the proofs of 14.2 and 22.4, we now have the following. 

(26.2) Corollary. For each uncountable Polish space X, B(X) ( = ~i(X)) ~ 
~i(X). 

Similar facts hold, of course, for standard Borel spaces. 

26.B Analytic Determinacy 

We discuss next ~t-complete sets (see 22.9). Clearly, ifU is Y-universal for 
~i(N), U is ~i-complete. In fact, by the argument in the proof of 22.10, 
every set in ~t \ TIt in a zero-dimensional space is ~i-complete. This proof, 
which is based on the argument in Wadge's Lemma 21.14 cannot be carried 
through within the framework of classical set theory that is codified in the 
standard ZFC (Zermelo-Fraenkel with the Axiom of Choice) axioms. It 
requires the determinacy of games that are Boolean combinations of ~i 
sets and these, as it can be shown, cannot be proved determined in ZFC 
alone. (The determinacy of Borel games is the best possible result provable 
in ZFC.) 

Following extensive studies in the foundations of set theory in the last 
25 years, there is now overwhelming evidence of the validity of the "Princi
ple of Definable Determinacy" , or just "Definable Determinacy" , originally 
proposed by I\Iycielski and St.einhaus (see J. Mycielski and H. Steinhaus 
[1962]' and J. Mycielski [1964, 1966]) which asserts the determinacy of all 
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"definable" games on A, where A is a standard Borel space, i.e., the games 
G(A, X), with X ~ AN "definable". This evidence comes on the one hand 
from the structural coherence of the theory of "definable" sets in Polish 
spaces developed on the basis of this principle and on the other hand on 
the deep connections of this theory with that of the so-called "large cardi
nals" in set theory; see Y. N. IVIoschovakis [1980], J. l\lycielski [1992], and 
D. A. Martin [199'1]. 

We will be freely using various instances of "Definable Determinacy" 
as needed in the sequel. In this and the next chapter we will only need that 
all Boolean combinations of :Ei games on N are determined. 

(26.3) Definition. We will abbreviate by 

:E i-Determinacy 

the principle that all games G(N,X), where X ~ NN is in the Boolean 
algebm generated by the analytic sets, are determined. 

The name ":Ei-Determinacy" is justified by a result of Harrington and 
Martin (see D. A. Martin [199'1]) according to which this principle is equiv
alent (in ZFC) to the determinacy of all games G(N, X), with X ~ NN 
analytic. 

In the last chapter we will make use of a stronger instance of "Defin
able Determinacy," namely "Projective Determinacy," which is the princi
ple that all projective games on N are determined. This principle (and so 
in particular :E t -Determinacy) can be proved outright from the existence 
of sufficiently large cardinals (see D. A. Martin and J. R. Steel [1989]). 

26. C Complete Analytic Sets 

From now on we will explicitly indicate theorems whose proof depends on 
some instance of determinacy. 

(26.4) Theorem. (:Et-Determinacy) Let X be a zeTO-dimensional Polish 
space. If A E :Ei(X) \ IIi( X), then A is :Ei -complete (similaTly switching 
:Ei,IIi). 

PTOOj. Let B be a :Ei subset of a zero-dimensional space Y. Assuming, as we 
can without loss of generality, that X = Y = N, consider the Wadge game 
WG(B, A). This is a game on N whose payoff set is a Boolean combination 
of:Ei sets, so it is determined, thus, as in the proof of 2l.14, either B S ~v A 
and we are done, or else A S wrv B and so A is IIt, which is a contradiction. 

o 

Remark. L. Harrington [1978] has shown that the above statement is actu
ally equivalent (in ZFC) to :Ei-Determinacy. 
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(26.5) Exercise. (~t-Determinacy) Show that 26.4 is valid in any Polish 
space X. 

In fact, show the following result, which is reminiscent of Hurewicz's 
Theorem 21.18: Fix any set S E ~i(C) \ IIt(C). Let X be Polish and 
A, B S;;; X be disjoint sets that are in IIi, ~i, respectively. If there is no ~i 
set separating A from B, then there is a continuous function f : C -> X 
with f(C) S;;; Au Band f- 1 (B) = S. (See also 26.12.) 

(26.6) Exercise. (~i-Determinacy) Let X be a Polish space and A S;;; X be 
a Boolean combination of analytic sets. If A is not IIi, then it is ~i-hard. 

(A more general result can he proved for "definable" A if "Definable 
Determinacy" is used.) 

(26.7) Definition. Given a class f of sets in standard Borel spaces and a 
subset A S;;; X, where X is standard Borel, we say that A is Borel r -hard 
'if for any standard Borel space Y and B E f(Y) there is a Borel function 
f:Y -> X with B = f-1(A). If, moreover, A E f(X), we say that A is 
Borel r -complete. 

These notions are similar to the ones we used in Polish spaces except 
that we use Borel instead of continuous reductions. It turns out (although 
we will not prove it here) that if X is Polish, then for A S;;; X, A is Borel 
~i-hard (complete) iff A is ~i-hard (complete), and so these two notions 
coincide in the context of Polish spaces (similarly for II L of course). 

26.D Classification up to Borel Isomorphism 

In 15.6 we classified Borel sets up to isomorphism. Vie do this here for 
analytic sets. 

(26.8) Theorem. (Steel) (~i-Determinacy) Let X,Y be standard Borel 
spaces and let A S;;; X, B S;;; Y be analytic. If A,B are not Borel, then 
there is a Borel isomorphism f:X -> Y with f(A) = B. 

Proof. \Ve can of course assume that X = Y = C. So from 26.4 we have 
that there are continuous functions g, h : C -> C with g-l(B) = A and 
h -1 (A) = B. If g, h are injective, then, by the Borel Schroder-Bernstein 
Theorem 15.7, it follows that there is a Borel isomorphism f : X -> Y with 
f(A) = B. 

So it is enough to show that we can find such g, h that are injective. 
We do this for g, the other case being similar. The following argument is 
due to Harrington. 

For any set C S;;; C define the set C S;;; C as follows: If x E C is eventually 
0, x E C'. If x is eventually 1, x tf- C. If x has infinitely many O's and l's, 
view x as a sequence of blocks of O's separated by 1's. (Two consecutive l's 
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determine the empty block.) Let i: E C be defined as follows: .r(71) = 0 iff 
there is an even number of 0'13 in the nth block in :r. Then we put :r E (; iff 
i: E C. 

If it is easy to check that A. is also :Et. So by 20.4 there is a continuous 
function 9 : C --> C with A. = (g)-l(B). Our proof is complete then from 
the following lemma. 

(26.9) Lemma. Let A <;;; C. X bc Hausdorff and .fJ : C ---4 X be continu.ous 
such that g( A.) n g( ~ A) = 0. Then then: is u continu.ous function p : C ---4 C 
such that A = p-l (.4.) and 9 = .iJ 0 P is iT/dective. 

Proof. By 2.G, we will view continuolls functions on C as being of the form 
cp*. where cp : 2<1'1 ---4 2<'" is proper monotone. 

vVe will then define a proper monotone y so that J! = cp* works as 
above. vVe define y(s) recursively on the length of s so that it has the 
following properties: 

i) p(0) = 0: 
ii) the last value of cp (s) is 1: 
iii) if 8 E 2m , then p( 8) has exactlym blocks of ()"s separated by 1 '13, and 

sCi) = 0 iff there is an even nUIllber of 0'13 in the tth block of cp(.')). Vi <m: 
iv) .?](N'Pl80)), g(N"'(8 1)) are disjoint. 

Then c:learly. ii 0 p* is continuous, injective, and for any :1' E C. (.r) 
~ 

has infinitely many 0'13 and I·s. Also, y*(.1:) = :1:, so .r E A <=? cp*(.r) E .4.. 
To construct cp. assume cp(s) is defined for 8 E Um<n 2m and satisfies 

i), ii) and iii) ahove, as well as iv) provided that length(sf < T/. Givell oS E 2" 
we will define y(s~O). cp(8'I) satist~'ing i) - iv). Let :r = cp(srOOO···, .1} = 

p(srIll···. Thm .r E A. y ~ A, thus g(:1') # g(y). So let I,: be large 
enollgh. so that g(N'IA')' g(N'ild are disjoint. Then let cp(s'O) = :1,11,:'11. 

where IJ, E 2<Y1 is chosen so that ii). iii) are satisfied and similarly define 
cp(s~I) = Ylk' u for an appropriate ('. 0 

o 

(26.10) Corollary. (:Ei-Determinacy) Let XX be analytic Borel spaces. If 
X,Y an; not standard, then thcy arc Borel isomorphic. 

(26.11) Exercise. Let f contain :Eg u ng and be closed UlHkr contirmolls 
preimages and finite unions and intersections (e.g., :E~, n~ for t; 2: 3 or 
:El, ni). If X is Polish and A <;;; X, then A is f-hanl iff for every B E r(C) 
there is an embedding f : C --+ X with f-l(A) = B. 

(26.12) Exercise. Strengthell 26.5 by showing that f can be taken to be an 
embedding. Additionally, strengthen 22.13 by showing that f can again be 
taken to be all embedding when t; 2: 3. 
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27. Examples 

27.A The Class of Ill-founded Trees 

The following is perhaps the archetypical ~t-complete set. Recall from 4.32 
that Tr is the space of trees on N (viewed as a closed subspace of 2N<N). 
Let 

IF = {T E Tr: T is ill-founded} 

= {T E Tr: [T] ~ 0}. 

(27.1) Theorem. The 8et IF of ill-founded tree8 on N i8 ~t-complete. 

Proof. Since T E IF {o}::Ix E AfYn(xln E T), clearly IF is ~t. Now 
let A <::;; N be ~t. Then A = p[T], with T a pruned tree on N x N (by 
25.2). Then the section map x f-t T(x) is continuous from N to Tr and 
x E A {o} T(x) E IF, so IF is ~t-complete. 0 

(27.2) Exercise. (Lusin) Consider the space X = (N\ {O})N (which is home
omorphic to N) and the set L <::;; X defined by 

x E L {o} ::Iko < kl < k2 < ... (x(k;) divides X(k·i+1 )). 

Show that it is ~t-complete. 

If instead of trees on N we look at trees on 2 = {O, I}, it is easy to see 
that the class of ill-founded trees IF2 on 2 is a G{j subset of Tr2 (the space 
of trees on 2 as in 4.32). This follows from Konig's Lemma 4.12. 

There is still, however, an analog of 27.1 for trees on 2. 

(27.3) Exercise. Let N <::;; C be the set of all binary sequences with infinitely 
many 1 's. Put 

IF; = {T E PTr2 :::Ix E N(x E [TD}. 

Then IF:;; is ~t-complete. 

27.B Classes of Closed Sets 

It is clear that 27.3 can also be formulated in the following form. The set 

{K E K(C) : K n N ~ 0} 

is Et-complete (see 4.32 again). There is a corresponding fact for [0,1] and 
indeed for general Polish spaces. 

(27.4) Exercise. (Hurewicz) i) Show that the set {K E K([O, ID : K contains 
an irrational} is ~t-complete. 
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ii) 1\10re generally, show that if X is Polish, and G c;: X is rrg but not 
~8, then {K E K(X) : K n G i= 0} is ~i-complete. 

The following is also a fundamental example of a ~i-complete set. 

(27.5) Theorem. (Hurewicz) Let X be a Polish space. Then 

{]{ E ]{ (X) : ]{ is uncountable} 

is ~l and if X is uncountable it is ~i-cornplete. 
Similarly, {F E F(X): F is uncountable} is ~i and if X is uncount

u.bleit is BOTel ~i -complete. 

Pmoj. By the Cantor-Bendixson Theorem 6.4, for any F E F(X), F is 
uncountable ¢} 3H E F(X)(H c;: F & H is nonempty perfect). 

Now the set {H E F(X) : H is perfect} is Borel in F(X), since if {Vn } 

is an open basis for X, we have 

H is perfect ¢} lik{V" n H i= 0 =} 

3£3rn[Vr n Vm = 0 & Vp u Vrn c;: Vk 

& Vr n H i= I/J & Vm n H i= I/J]}. 

So it is clear that {F E F(X) : F iSUllcOlmtahle} and {K E K(X) 
K is uncountable} are ~i. 

To prove the completeness result, notice that it is enough to work with 
X = C, since C embeds in any uncountable Polish space (by 6.2). 

Recall the set N from 27.3. Define f : C ---+ K(C) by f(x) = {y E C : 
y S; :1: pointwise}. Then f is continuous and (x EN=} f (x) is perfect 
nonempty), while (x tJ. N =} f(x) is finite). For K E K(C) now let g(K) = 

U f(K). Then, by 4.29, 9 is continuous and 

K n N i= 0 ¢} g(K) is uncountable, 

and so the set {K E K(C) : K n N i= I/J} (see the first paragraph of 27.B) 
is Wadge reducible to {K E K(C) : K is uncountable}, so this set is ~}
complete. 0 

The preceding argument illustrates again a very common method for 
showing that a given ~i set A is ~i-complete: Choose an already known 
~ i-complete set B and show that B S; IV A. 

Let H now be an infinite-dimensional separable Hilbert space (e.g., £2). 
Let Bl(H) = {x E H: Ilxll S; I}, Sl(H) = {:r E H: Ilxll = I} be its unit 
ball and sphere, respectively. These clearly are closed subsets of H. 

(27.6) Theorem. (Christensen) The set 
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is Borel :E~-complete. 

Proof, It is enough to find a Borel map J : Tr --+ F(BI (H)) such that 
T E IF B J(T) n 51 (H) of 0. 

Fix an orthonormal basis (ern,n)rn.nEN for H. For s E Nn , let 

1 1 1 
Vs = y'2eo,s(o) + (y'2)2 el,s(l) +'" + (y'2)n en-I.s(n-I)' 

Clearly, Ilvs II < L For T E Tr let 

J(T) = {vs : SET} E F(Bl(H)). 

It is easy to check that J is BoreL We next verify that T E IF B J(T) n 
51(H) of 0. 

1fT E IF, let x E [T]. Then VJ'in+1 -vrl n = (v'2~n+l en,J:(n), so 1171:1:1,,+1-

vxlnll = (v'2~n+l and v"ln converges to some v E Bl(H). Also 

""'" 1 2 IIvxlnl12 = L 2i --+ 1 = Ilvll . 
1 S is TI 

So v E J(T) n 51 (H), 
Conversely, let v E J(T) n 51 (H), Find {Si : i E N} <;;; T with vs , --+ v. 

Since for each nand S E Nn, IlvsW = Z=1<i<n:ft < 1, it follows that 
length(si) is unbounded, So, by going to a subsequence we can assume that 
length(si) ~ i and Ilvs; - vs ,+111 2 < 2-,-1, Notice next that if s, t E N<N 
and s( i) of t(i), then Ilvs - vtl1 2 ~ 2- i - l , and so Sn In = 8 n +lln, Thus there 
is x EN with xln = snln for all n, Then x E [T], so T ElF. D 

(27.7) Exercise. Using the notation of 27.6, show that the operation 
(FI ,F2 ) f--+ Fl nF2 is not Borel in F(Bl(H)). Also find open U in Bl(H) 
such that {F E F(Bl(H)) : F <;;; U} is not BoreL (Compare with 12.12 
here. ) 

Show that {F E F(N) : Fn{x EN: V even n(x(n) = O)} of 0} is Borel 
:Ei-complete, Conclude that for any Polish space X that is not KG" there 
is a closed set Fo <;;; X with {F E F(X) : F n Fo of 0} Borel :Ei-complete. 
On the other hand, verify that if X is Polish K (T, then (FI' F2 ) f--+ Fl n F2 
is Borel on F(X). 

{27.8} Exercise. i) Show that {F E F(N) : F' # 0}, where F' is the Cantor
Bendixson derivative of F, is Borel :Ei-complete. 

ii) Let X be an uncountable Polish space, Show that the map that 
sends F E F(X) to its perfect kernel is not BoreL 

{27.9} Exercise. Let X be a Polish space that is not KG" Show that 

{F E F(X) : F is not contained in a K" set} 
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is Borel :EJ-colllplete. Show also that there is no analytic set A with {F E 

F(X) : F is countable} Z;;;; A Z;;;; {F E F(X) : F is contained in a Krr set}. 

(27.10) Exercise. Consider F(N/' and its Borel subset 

D={(F1I )EF(Nt: Fo 2F1 2"'}' 

For (FII ) E D. let 

II 

Show that (FII ) ~ n(F,,) (from D into F(N)) is not Borel. 

An important example of a :Ei-complete set was discovered in the 
1980\ in the theory of trigonometric series. A subset A Z;;;; 1I' is called a 
set of uniqueness if every trigonometric series L" EZ e" elll .,. (where ell E 

:c, .r E R) that converges to (J (i.e .. limN L;~=-N cne in.1 = 0) outside A is 
identically O. (We view here A il:-; a subset of [0. 27T') identifying .J: E [0, 21T') 
with ell E 1I'.) Otherwise it is called a set of multiplicity. Denote hy UNIQ 
the class of closed sets of uniqueness and by l\IULT the class of closed 
sets of lllultiplicity. (Th11:-; GNIQ. 1\ICLT Z;;;; K(1I').) Kaufman and Solovay 
(independently) (sec n. Kaufman [1984]; A. S. Kcchris and A. Louveau 
[1989]) have shown that 1\TULT is a :Et-coJ1lpletc set. One proof of the 
hardness part of this result is hased 011 thc following facts: 

i) There is a continuous function f : [0.1] -+ K(1r) such that: :1' rf. Ql q 

f(J:) E l\IULT. 
ii) (Bary) The union of coulltably lllallY closed sets of uniqueness is a 

set of uniqueness. 

(27.11) Exercise. i) C:-;e these facts to complete the proof that 1\ICLT is 
:Et-harcl. 

ii) Use only the fact that 1\IUL1' is not Borel, and the easy fact that 
every closed set of po,;itivp measure ii:i in J'vHJLT, to show that there is 
a trigonometric series L ('ncin.1: that. converges t.o 0 a.c. (with respect to 
Lebesgue measure). but is not identically O. This is a classical theorem 
of 1\ICllShov and should be contrasted with the fact t.hat a Fourier series 
L ](n)(',n.1: t.hat converges to 0 a.('. is identically O. 

\Ve will return to this example in 33.C. 

27. C Cla.s.se8 of Struct1Lre8 in Model TheoT;t! 

Let L be the language containing one billary relation symbol R. Consider 
X r. = 2',!2. the space of structures of this language with universe N. as in 
16.C. Put 

LO = {x E XL: AJ is a linear ordering}, 
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so that LO is a closed subspace of XL. Put 

WO = {x E LO: Ax is a wellordering}, 

NWO = LO\ WOo 

The following result is closely related to 27.1. 

(27.12) Theorem. (Lusin-Sierpiriski) The set NWO is 1:;i -complete. 

Proof. Recall from 2.G the concept of the Kleene-Brouwer ordering <KB 

on N<N (with N given its usual ordering). Given a tree T on N, define 
x(T) E LO as follows: Fix a bijection h : N ---> N<N and put 

x(T)(m, n) = 1 ~ (h(m), h(n) E T & h(m) <KB h(n)) or 

(h(m) E T & h(n) t/c T) or 

(h(m), h(n) t/c T & m < n). 

Thus x(T) is a linear ordering on N isomorphic (via h) to the ordering of 
N<N in which all elements of T precede those of N<N \ T, the elements 
of T are ordered by <KB, and the elements of N<N \ T are ordered by 
h-l(S) < h-1(t). It is clear then (using 2.12) that 

T E IF ~ x(T) E NWO. 

Since T f--'t x(T) is continuous from (Tr to LO), we are done. D 

(27.13) Exercise. Identify Pow(QJ) with 2«£ (which is homeomorphic to C). 
Show that the set {A c;;: QJ: The ordering of QJ restricted to A is not a 
wellordering} is 1:; i-complete. 

27.D Isomorphism 

Consider now the relation of isomorphism ~ between elements of XL, L = 

{R},R binary, i.e., 
x ~ y ~ Ax ~ A y. 

It is clearly 1:;i (in XL x Xd. It can be shown (see H. Friedman and L. 
Stanley [1989]) that it is also 1:;i-complete, but the only proof we know 
that can be carried in ZFC uses methods of effective descriptive set theory, 
which we do not develop here. However, using a result that we will prove in 
Section 31, it is much easier to show that ~ is not Borel and then use 26.4 
to conclude, using 1:;i-Determinacy, that it is 1:;i-complete. This is a typical 
situation: The use of 1:;i-Determinacy often allows to find simpler proofs of 
results that can be also proved in ZFC by more difficult arguments. 

To see that ~ is not Borel, note that if it was 1:;~, for some ~ < Wj, 

toward a contradiction, then all its equivalence classes would also be 1:;~, 
thus, in particular, for every a < WI 
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won = {x E WO: Ax has order type :s: a} 

would be ~~. This violates 31.3. (See also the results of Stern mentioned 
in 23.G.) 

We will see also in 33.26 that the isomorphism relation OIl separable 
Banach spaces is Borel ~i-complete (in X 2 , where X is the standard Borel 
space of separable Banach spaces as in Example 3) of 12.E). 

(27.14) Exercise. Let G be a Polish group, X a standard Borel space and 
(g, x) f--7 g.x a Borel action of G on X. If GJ ; is the stabilizer of x, then, 
by 9.17, G J is a closed subgroup of G. Show that the map x f----+ Gx from 
X into F( G) is D"(~D-measurable. Show also that if it is Borel, then the 
equivalence relation xECY ¢? 3g E G(g.x = y) is Borel. 

Notice that for the logic action of 5 00 on XL (see 16.C) the stabilizer 
G.r for .1: E XL is just the automorphism group Aut(Ax) of the structure 
Ax. Show that the map x f----+ Aut(Ax) is not Borel on LO. 

27.E Some Universal Sets 

Poprougenko has shown that if we let 

Rf = {y E ~: 3x E [0, l](j'(x) = y)}, 

for f E C([O, 1]), then the sets of the form Rf are exactly the ~i subsets 
of~. It follows that the set 

U(j, x) ¢? f E C([O, 1]) & x E Rj 

is C([O, 1])-universal for ~}(~). 
Let L(co) = L(co 1 co) be the space of bounded linear operators on Co. 

By 12.22 its Borel structure in either the weak or strong operation topology 
coincides and is standard. So, by putting a Polish topology that generates 
this Borel structure, we will view L(co) as being Polish itself. 

Given a separable Banach space X and T E L(X), its point spectrum 
D"p(T) is the set 

D"p(T) = {A E C : 3x i- O(T(x) = AX)}. 

This is a ~i subset of C that is bounded, since it is contained in the 
spectrum of T. 

Kaufman has shown that every bounded ~i subset of C is of the form 
D"p(T) for some T E L(co). It follows that the set 

n 

is (L(co))N-universal for ~t(q. 
Our last example is due to Lorentz and Zeller. 



27. Examples 215 

A summability method is an infinite matrix A = (aij), i EN, j EN, 
of real numbers. Given a (formal) series 2::=0 U m of real numbers, we say 
that it is A-summable to s E ~ if the numbers Vn = 2::=0 anrnUm exist 
and 2:~=0 Vn = s. (If A = (Oij), where Oij is the Kronecker delta, then A
summability is ordinary summability.) In this case, we write A-2::=0 Urn = 
s. A rearrangement of a series 2::=0 U m is any series 2::=0 u".(rn) where 
7r is a permutation of N. The A-rearrangement set of 2: Urn is the set of 
real numbers R (2: Urn, A) given by 

= = 
{A- L u".(m) : 7r a permutation of N & A- L u".(m) exists}. 

m=O rn=O 

By a classical theorem of Riemann, if A = (Oij), the A-rearrangement set 
of 2: Urn is either 0, a singleton, or R 

Clearly, R(2: Um, A) is an analytic set. Conversely, Lorentz and Zeller 
showed that if P ~ ~ is analytic, then there is A such that R(2: em, A) = P, 
where 2: em = eli + ° + e2! + ° + e3 ! + ° + .. '. It follows that the set 

is ~l\!2 -universal for ~H~). 

27.F Miscellanea 

(27.15) Exercise. Let X be a Polish space. Consider the set 

CS = {(xn) E Xl\! : (xn) has a convergent subsequence}. 

Show that CS is ~t and that if X is not K,., it is ~t-complete. 

(27.16) Exercise. Consider the Polish space [N]No of infinite subsets of N as 
in 19.C. For F ~ [N]No, let F* = {H E [N]No : ?JH' E F(H' ~ H)}. Find a 
closed set F for which F* is ~t-complete. . 

Woodin has shown that the set of all f E C([O, 1]) which satisfy Rolle's 
Theorem (i.e., those f for which for all a < b in [0,1], if f(a) = feb), there 
is c E (a, b) with f'(c) = 0) is ~t-complete. 

(27.17) Exercise. Show that this set is indeed ~t. 

Humke and Laczkovich have shown that {J 0 f : f E C([O, I])} ~ 
C([O, 1]) is ~t but not Borel (but it is not known how to prove in ZFC that 
it is ~t-complete). 

R. Kaufman [1989] has shown that the class of Wiener sets (a subset 
of 2;2;) is ~t-complete, where A ~ Z is a Wiener set if there is a continuous 
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complex Borel measure on 11' with I/i,(n)I ~ 1, \:In E A, where iL(n) = 

J~ e-intdjl(t) (we identify here 11' again with [0, 27r)). 
P. Erdos and A. H. Stone [1970] have I:lhown that there il:l a closed set 

A c::; ]R;. and a Co set B c::; ]R;. with A + B (analytic but) not Borel. (Note 
that if A, B are Fer, then A + B is Fer too.) 

L. Dubins and D. Freedman [1964] have shown that there is a Co subl:let 
of rr3 whose convex hull is (analytic but) not Borel. 

(27.18) Exercise. (Sierpiriski) Show that there il:l a Co set H c::; ]R;.2 such that 
the distance I:let D(H) = {l;r - yl : X,y E H} il:l (analytic but) not Borel. 

Finally, several other examples will be discussed in Section 33. 



28. Separation Theorerm; 217 

28. Separation Theorems 

2B.A The Lusin Sepamtion Theor'em Revisited 

\Ve first recall the Lusin Separation Theorem (14.7). 

(28.1) Theorem. (The Lusin Separation Theorem) Let X be a standard 
Borel space and let A,B <: X be hLIO disjoint analytic sets. Then there is a 
Borel set C <: X separating A from B. 

\Ve will give two (related) proofs of this result. The first one is es
sentially the proof of 14.7, but it is expresseel in the language of Souslin 
schemes, which is convenient for the further re:mlts that we will prove in 
this section. This is formulated as a proof by contradiction. The second 
proof is inst.ead a "constructive" one. 

Proof. (I of 28.1) \Ve call assume that X is Polish. Let d be a compat
ible metric for X. Taking A, B to be nonernpty, without loss of gener
ality, let (P8 ), (QI) be Souslin schemes for A B as in 25.7 iv). Call a 
pair (8. t) E N<N bad if p" Qf cannot be separated by a Borel set. So 
aSSUIlle toward a contradiction that (0,0) is bad. Now if (.0, t) is bael. 
there are m, II such that (sAm, rn) is bad: Otherwise. every p,"m can 
he separated from every Qf" n by a Borel set, say H m . n . Then, since 
p, = Um p,"1TI. Qt = Un Qt' n, Um nn H m .n is Borel and separates p" Qf. 

So, by recursion, define J', yEN such that (.rin, yin) is bad for all n. 
Let {p} = nn P rIr" {q} = nn Qyl7l" Then pEA, q E B, so p i= q. Let U, V be 
disjoint open sets with p E [T, q E 1/. Then for large n. Prln <: U Quill <: V 
(by the vanishing diameter condition). so U separates Prln from QuiT/" a 
contradiction. 0 

Proof. (II of 28.1) It clearly suffices to prove the result for X = N. SO let 
A. B <: N be pairwise disjoint :Ei sets. By 25.2 let T4., TH be trees on N x N 
such that A = p[T.1] , B = p[Tn]. Form the separation tree T on N x N x N 
as follows: 

(8, u, v) E T -¢=} length(8) = length(1L) = length(v) & 

(s,u.) E T4. & (8,0) E Tn. 

Since An B = 0, T is well-founded. Thus (see Appendix B) we can define 
fUllctiollS f on T recursively by specifying the values of f at the terminal 
nodes of T, and then, assuming f(8', u', v') is known for all (.s', 11.', v') ~ 
(.0,11.1'), (s', 11/, v') E T define f(8, 11..1') in terms of them. (Here (s', IL', u') ~ 
(s, 1/,1') means that 8' ~ s.u' ~ 11,/" ~ u.) For s,/,u,L' E N<N, let 

(TA)[".u] = {(s',I1') : (8',U') ETA & (S',Il') is compatible with (8, u.)}, 

(TE)[I.,] = {(t',u') : (t', v') E TB & (t'. v') is compatible with (t, l')}, 



218 III. Analytic Sets 

and 

Thus 

and 

A vU7)=A, Bf/J//J=B, 

As,u = UAS"k,U"l, 
k,l 

Bt,v = U Bt"m,v"n' 
rn,n 

It will be enough to define for each (s, u, v) ETa Borel set Cs,u,v sepa
rating As,u from Bs,v' Then Cf/J,f/J,f/J separates A from B. To define Cs,u." , it is 
enough to define Borel sets Cs,u,v;k,l,m,n separating As"k,u"l from Bs"m,,,"n, 
since then 

U n Cs,u.,v;k,l,m,n = Cs,u,,, 
k,l m.n 

separates As,u from B s,,,' 

If k # m, let Cs,u",;k,l.m.n = Ns"k. If k = m, we define Cs,u,v;k,l.k,n 
recursively on (s,u,v) E T (for all k,l,n). 

Case 1. (s,u,v) E T is terminal: Then (s'k,u'l) tf. TA or (s'k,v'n) tf. TB . 

In the first case, As"k,u"l = 0, so take Cs,u,v;k,l.k,n = 0. In the second, 
Bs"k,,,"n = 0, so take Cs,u,v;k,l,k.n = N. 
Case 2. Assume (s, u, v) E T is not terminal, and Cs',u' ,"';k'.l' .m.' ,n' has been 
defined for all (s',u',v') ~ (s,u,v) with (s',u',v') E T and all k',l',m',n'. 

If (s'k,u'l,v'n) E T, then Cs"k,u'l.vn, as defined by (*), separates 
As"k.u'l from B,,"!,;,v"n' So take C,5,u.v;k,l,k,n = Cs"k,u'l,v'n' If, on the other 
hand, (s'k,u'l,v'n) tf. T, proceed as in Case 1. 0 

(28.2) Exercise. Show that :E~ does not have the reduction property. 

(28.3) Exercise. Recall from 25.A the definition of an analytic Borel space. 
If (X,S) is an analytic Borel space, a subset A <;;; X is called analytic (or 
:En if there is an isomorphism 7r of (X, S) with (Y, B(Y)), where Y is 
an analytic set in some Polish space Z, such that 7r(A) is analytic. Show 
that A <;;; X is analytic iff A = A.sPs, where Ps E S. Show that the Lusin 
Separation Theorem goes through in any analytic Borel space and thus so 
does the Souslin Theorem 14.11. 
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28.B The Novikov Separation Theorem 

(28.4) Exercise. Let r, r ' be two classes of subsets of a set X such that 
for any two disjoint sets A, B E r there are disjoint sets A', B' E r ' with 
A ~ A', B ~ B'. Assume that r, r ' are closed under finite unions and 
intersections and that if rv A E r', B E r, then A n B E r. Show that for 
any AI, ... , An E r with Al n ... nAn = 0, there are B l , ... ,Bn E r ' with 
A, ~ Bi and Bl n ... n Bn = O. 

Conclude that for any standard (or even analytic) Borel space and any 
~i sets AI, ... ,An with Al n ... nAn = 0, there are Borel sets Bi :2 Ai 
with Bl n ... n Bn = O. 

\"e extend this to infinite sequences. 

(28.5) Theorem. (The Novikov Separation Theorem) The class of ~i sets 
in standard Borel spaces has the generalized separation property, i. e., for 
a standard Borel space X and any sequence (An) of ~l sets in X with 
nn An = 0, there is a sequence of Bard sets Bn :2 An with nn Bn = O. 

Equivalently, if X is a standard Borel space, (Bn) is a sequence of ITl 
sets with X = Un Bn , thus there is a sequence (Cn ) of pairwise disjoint 
Borel sets with Cn ~ Bn and X = Un Cn. 

Still equivalently, if X is a standard Borel space and B ~ X x N is 
ITt such that Vx3nB(x, n), there is a Borel function f : X-. N with 
B(x, f(x)), Vx. 

Thus ITt satisfies a weaker version of the generalized reduction (or 
number uniformization) property. We will actually see in 35.1 that it satis
fies the full generalized reduction (or equivalently the number uniformiza
tion) property. 

Proof. (l\lokobodzki) We can assume of course that X is Polish. Again let 

(pii)) be a Souslin scheme for Ai as in 25.7 iv). We can assume again that 
A, oj 0, Vi E N. 

Call an infinite sequence (so, SI, ... ) of elements of N<N bad if the 

conclusion of the theorem fails for (P~:)). So assume, toward a contra

diction, that (O,O, ... ) is bad. Since pJi) = UrnP~i~n' if (SO,SI,"') is 
bad, then for every n there is m with (S(),SI, ... ,Sn-l,.sn~m,8n+I"") 
also bad. So recursively, we can define Xo, Xl, ... E N such that for each 
n, (xOin,xlin, ... ,xn in.0,0, ... ) is bad. 

Let {p,} = nn P;;;n' Since Pi E Ai and ni, A = 0, there are 
i < j with Pi oj Pj. Let Ui , U j be open disjoint with Pi E Ui , Pj E 

U]. Thus find m >i, j such that pCI',)1 C U i , pUll' C U],. Then 
• X'I nt 'XJ rn 

(X, ... , X, Ui , X, ... , X, Uj , X, ... ) shows that (xoim, xlim, .... xmirn, 0, 
0, ... ) is not bad, which is a contradiction. D 
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(28.6) Exercise. Show that the Novikov Separation Theorem goes through 
in any analytic Borel space. 

28. C Borel Sets with Open or Closed Sections 

The following is an important application of the Novikov Separation The
orem. 

(28.7) Theorem. (Kunuglli. Novikov) Let X be a standaTd Borel space, Y 
a Polish space, and A <;:.: X x Y a BOTel set s(lch that ever:IJ section AJ . is 
open. Then if {V,,} is an:IJ open basis faT y, A = Un (Bn X Vn ), with IJn 

Borel in X. 

Proof. If (:r.:IJ) E A, then for some n, y E \!~, <;:.: A" So A = U,,(Xn x v,,), 
where X" = {:T EX: v" <;:.: Ax}. Clearly, XII is a III set. If Z" = Xn X v", 
then Zn is II{, and A = Un Zn, so by 28.5, there is a sequence (An) of Borel 
sets with A = Un An and An <;:.: Z". Let Sn = proh: (An) <;:.: X il . Then Sil 
is ~i, so by the Lllsin Separation Theorem (applied to Sf/, ~ Xn) there is 
a Borel set Bn with 811 <;:.: Bn <;:.: XII' Thcll An <;:.: E" X V" <;:.: X" X v~, = Z1l' 
and so A = U)Bn x V,,). 0 

The precedillg result completely determines the structure of Borel sets 
in product spaces whose sections are open and therefore, by taking comple
ments, those \vhose sections are closed. Applying this to the particular case 
of Borel sets with compact sections, we obtain the following result, which, 
in particular. proves a special case of 18.18. 

(28.8) Theorem. Let X be a standard Borel space, Y a Polish space, and 
A <;:.: X x Y a Borel set, all of 'Whose sections A.r are compact. Then the map 
J> f--+ A, (from. X to K(Y)) is Bord. Equivalently, a map f:X f--+ K(Y) is 
Borel iff the set F(x,y) ¢} y E f(:r;) is BOTel. In particulaT, 'if A is as above, 
A has a Borel nniformization (and 80 prot" A is Bord). 

Proof. \Ve can first assume that Y is compact, by replacing it by a COIll

pactificatioll if necessary. By 28.7. ~ A = Un(BI1 x V,,), where {V,,} is an 
open basis for Y and each Bn <;:.: X is Borel. Thus 

yEA, ¢} Vn(:r E Bn =? y rt Vn ). 

Put Y \ Vn = K'I> b(.T) = {n : .r E En}. Theil b : X ---f 2'" is Borel and 
Ar = nnEIJ(J) K II . The proof that .r f--+ AI' is Borel is then clear from the 
following. 

Claim. The lllap S f--+ nnES Kn. from 211 into K(Y) is Borel. 

Proof of Claim. By 11.4 it is enough to show that if F C;; Y is closed, then 
P = {S E 2r~ : nnES Kn n F i- 0} is Borel. Put 
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R(S, x) B Vn(n E S =? x E Kn) &.r E F. 

Then R c: 2N X Y is closed, so compact, and P = pro,h" (R) h., compact too. 

The final assertion about uniformization follows immediately now from 
12.13. 0 

(28.9) Exercise. Let X be a standard Borel space and A c: X xN a Borel set 
all of whose sect.ions Ar are closed. Show that there is a Borel map x f--+ Tx 
from X into Tr such that [T2:] = AI. Vx E X. Show that, in general, Tr 
cannot be taken to be always pruned, even when projx(A) = X. 

There is a general version of 28.7 for Borel sets with ~~ sections. Given , 
a standard Borel space X and a Polish space y, consider the following 
classes of sets in X x Y, where {v,,} is an open basis for Y, 

~l;'Y = IIi;'Y = {A x 11" : A E B(X), n E PJ}: 

~rY = {UA" : An E II~:Y, ~n <~. n E PJ}: if ~;::: 1; 
II 

II~,Y = {rv A: A E ~E\"Y}. if ~;::: 1. 

Then we have this result. 

(28.10) Theorem. Let X be a standard Borel space, Y a Parish space, and 
A c: X x Y a Borel set all of whose sections Al are ~~. Then A E ~rY. 

This is 2S.7 for ~ = 1, it is due to J. Saint R.aymond [IU76a] for ~ = 2, 
J. Bourgain [19S0,19S0a] for ~ = 3, and A. Louveau [IUSO,19S0a] in general. 
vVe will prove in 35.45 the case ~ = 2 and use it. also to prove IS. IS. 

Note that 2S.10 can be also formulated in the following equivalent form: 
If X is standard Borel, Y Polish, and A c: X x Y is Borel all of whose 

sections 1'12' are ~~. then there is a Polish topology T on X giving its Borel 

structure such that A is ~~ in (X, T) x Y. 

2B.D Some Special Separation Theorems 

vVe will next prove two special separation theorems and use them to produce 
"generation" results for Borel sets. 

Consider first the space Pow(PJ), which we identify wit.h 2N. The Borel 
sets in this space form the smallest class containing the sets of the form 

Un = {x c: PJ : n EX}. 

Un = {:r c: PJ : n ¢c x}, 

which is closed under countable int.ersections and unions. To see this, notice 
that the basic open sets N" (8 E 2<N) of 2N are finite intersections of 
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sets of the previous form. The Borel sets obtained from the sets Un only 
by countable intersections and unions (i.e., the sets in the smallest class 
containing the Un and closed under these operations) are called positive 
Borel sets (since the variable "x" is used only positively in their definitions). 
If A <;;; Pow(N) is positive Borel, then it is clearly monotone (i.e., X' E 

A & y :2 x =? YEA). The converse turns out to be true as well. 

(28.11) Theorem. For every Borel set A <;;; Pow(N), A is monotone iff A is 
positive. 

This result will be proved by actually establishing, as usual, a stronger 
separation theorem. 

(28.12) Theorem. (Dyck) Let A,B <;;; Pow(N) be disjoint ~i sets with A 
monotone. Then there is a positi.ve Borel set C separating A from B. 

Proof. Let (Ps ), (Qt) be Souslin schemes for A. B as in 25.7 iv). Call a 
pair (s, t) E N<N X N<N bad if p, cannot be separated from Qf by a pos
itive Borel set. So assume, toward a contradiction. that (0,0) is bad. As 
in proof I of 28.1, if (05. t) is bad, then for some rIL, n, (sAm, en) is also 
bad. So by recursion define x, y E /V with (xln, yin) bad for all n. Let 
{p} = nn Prln , {g} = n" Qyln- Since pEA, g tj. A and A is monotone, and 
so p r:z g, let n E p, n tj. g (i.e., p E Un, q E Un). Now find k large enough 
so that Prlk <;;; Un, Qylk <;;; Un. Then Un separates Pxlk' from Qui"" which is 
a contradiction. 0 

We look next at convex Borel sets in jR". We need the following stan
dard fact. 

(28.13) Proposition. If K <;;; jR" is compact, its convex hull (i. e., the smallest 
convex set containing it) is also compact. 

Proof. Let H(K) be the convex hull of K. Then by Caratheodory's theorem, 

,,+1 11+1 

H(K) = {L aixi ; L ai = 1, a, 2: O. Xi E K}. 
i=l ;=1 

So H(K) = proj;Rn(L), where L <;;; jR" x (jRTI)n+l X jRn+1 is given by 

(:T, Xl. X2 •... , Xn+l. al •... an+l) E L ¢c} Xl,"" X n +l E K & a'i 2: 0 & 
n+1 11+1 

L ai = 1 & X = L X iai· 

;=1 

Thus, L is compact and so is H(K). o 
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Notice now that the intersection of a family of convex sets is convex and 
so is the union of an increasing sequence of convex sets. So we call a Borel 
set in JRn convexly generated if it can be obtained from the compact convex 
sets by the operations of countable intersection and increasing countable 
union (i.e., it belongs to the smallest class of sets containing the compact 
convex sets and closed under these operations). Note that in this definition 
we could have used "open convex" instead of "compact convex" (using 28.13 
and the simple fact that if A is a convex set, so is {x : d(x, A) < E}, where 
d is the usual Euclidean distance in JRn). 

Clearly, the convexly generated Borel sets are convex. The following is 
the converse. 

(28.14) Theorem. Given a Borel set A <;;; JRn, A is convex iff A is convexly 
generated. 

Again this is a corollary of the following separation theorem. 

(28.15) Theorem. (Preiss) Let A,B <;;; JRn be disjoint ~i sets with A convex. 
Then there is a convexly generated Borel set C separating A from B. 

Proof. We will use now also the representation of analytic sets given in 
25.13. Let (Ps) be a Souslin scheme for A as in 25.13 and (Qs) a Souslin 
scheme for B as in 25.7 iv). Call (s, t) bad if F., cannot be separated from 
Qt by a convexly generated Borel set. So assume (0,0) is bad, toward a 
contradiction. We claim again that if (s, t) is bad, then there are m, n 
with (s~m, t'n) bad: Otherwise, each Ps'm can be separated from each 
QCn by a convexly generated Borel set C rn .n . Since Ps'm <;;; Ps'(m+l), the 
set Drn = nl>rn nn CZ.n is convexly generated and separates Ps'rn from 
Un QCn = Q~. Clearly, Dm <;;; Dm+l' so D = Um Dm is also convexly 
generated and separates Urn F.,om = Ps from Qt, which is a contradiction. 

Thus define x, yEN recursively such that (xln, yin) is bad for all n. Let 
K = nn Px1n and {q} = nn QYln' Then K <;;; A and K is compact, so the 
convex hull H(K) of K is compact and H(K) <;;; A since A is convex. Hence 
q fj. H(K). Then for some E > 0, the E-nbhd U = {p: d(p,H(K)) < E} of 
H(K) is convex open, and thus convexly generated, and is disjoint from 
some open nbhd V of q. Now choose n with Px1n <;;; U, QYln <;;; V, to obtain 
a contradiction. D 

(28.16) Exercise. Show that the class of convexly generated Borel sets in JRn 
is the smallest class containing the compact convex sets and closed under 
increasing countable unions and decreasing countable intersections. 
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28.E "Hurewicz- Type" Separation Theorems 
Recall first the following two results that \ve proved 111 22.30 and 21.22, 
respectively. 

(28.17) Theorem. Let A,B be two disjoint (arbitrary) subsets of a Polish 
space X. Then A,B can be separated by a ag set iff there is no Cantor set 
C ~ X with An C,B n C dense in C. 

(28.18) Theorem. Let AB be two disjoint s'ubseis of a Polish space X ,with 
A analytic. Then AB can be separated by a :Eg set iff there is no Cantor 
set C ~ A U B with C n B countable dense in C. 

A. LOllveall and J. Saint Raymond [1987] have proved extensions of 
28.18 for :E~, when A. Bare :Ei. 

(28.19) Theorem. (Louveau-Saint Raymond) Let t; 2: 3 and let AB ~ X be 
disjoint analytic s1tbsets of a Polish space X. Let HE, be any 112 \:E~ subset 
of C. Then A,B can be sepamted by a :E2 set iff there is no embedding 
g:C -+ X with g(C) ~ Au Band g(C) n A = g(Hd. (Compare this with 
22.1S and 26.12.) 

We will give only a simple proof of 28.19, using :Ei-Detenninacy, in 
the case when X is zero-dimensioual: 

Let T be a pruned tree on N and A B ~ [T] be disjoint :Et sets. 
Consider the set HE, as in the proof of 26.8. Since t; 2: 3, it is easy to see that 
H~ is also 11~. Consider then the separation game SG(H~: A. B) as in 21.F. 
It is a Boolean combination of:Ei games, so it is determined. If player I has 
a winning strategy, then there is a continuous function f : [T] -+ C such that 
f~l(rv HE,) separates A from B, which is impossible because f~l(rv Hd is 
:E~. So player II has a winning strategy, and there is a continuous function 

g : C --7 [T] with ij(Hc,) ~ A, g(~ HE,) ~ B. By 26.9 there is a continuous 
functionp: C -+ C with H~ = p~l(HE,) and 9 = gop an embedding. Clearly. 
g(C) s: Au Band g(C) n A = g(Hd. 

(28.20) Exercise. (:Ei-Determinacy) Let X be a separable llletrizable ana
lytic space. Then X is Polish iff it contains no closed set homeomorphic: to 
Q iff it is completely Baire. (Compare this with 21.21. :More generally, from 
"Definable Determinacy" one can see that this holds for any "definable" 
separable metrizable space X.) 

(28.21) Exercise. Provide the details for the following different proof of 
21.22 (=28.18) for the case where A B ~ C are analytic setti. The proof 
uses only closed games as opposed to the more complicated ones used in 
the proof of 21.22. This proof is due to A. Louvean and J. Saint Raymond 
[1987], and later we will see other applications of it (see 35.48 and 39.24). 
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Let A = p[S], B = p[T] be disjoint, where S, T are trees on 2 x N. 
Let Q <;;; C be the set of all eventually 0 binary sequences, and consider 
the following game SG'(Q;B,A), which we can think of as some sort of 
unfolded version of SG(Q; B. A). 

f(O) f(l) 

II x(O),y(O) x(l), y(l) 

E(i), xCi) E {O. I}; y( i) E N. II wins iff for each n the position (Eln, xln, Yin) 
is good, i.e., the following hold: 

i) If E(n - 1) = 0 and k < n is least with E(k) = E(k + 1) = ... = 

E(n - 1) = 0, then (xl(n - k), (y(k), ... , y(n - 1))) E T. 

ii) If E(n - 1) = 1 andio < i 1 < ... < il~l = n - 1 are those integers 
i < n for which E(i) = 1, then (:rll. (y(io), ... , y(il~l))) E S. 

So this game is closed for II. Show first that if II has a winning strategy 
T (which we view here as a continuous function from C into C x C) and we let 
T(E) = (f(f),g(E)), then f is continnous and f(C) <;;; AUB, f(C)nA, f(C)nB 
are dense in f(C) and f(C) n B is countable, so, as in the proof of 2l.22, 
there is a Cantor set C <;;; Au B with C n B countable dense in C. 

So assume I has a winning strategy cr, which we view here as a function 
from U,,(N" x N") into {O, I}. For x E C, we say that 1L E Nn is x-good if II 
plays xln,1L in his first n moves, I plays according to cr, and the positions 
(Elk, xlk, ulk), k :Sn, are good. By convention, 0 is x-good. Let 

C = {:r E C ::In:Ju E p,f"[(ll is x-good & 

for n > 0, cr(xl(n - 1), 1l1(n - 1)) = 1) & 

Vv:2 u(v is x-good =} cr(xllength(v), v) = O)]}. 

Check that C is ~g and then show (arguing by contradiction) that C sep
arates A from B. 
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29. Regularity Properties 

29.A The Perfect Set Property 

The following basic fact has been proved by various means in earlier sections 
(see 8.8 ii), 14.13,21.2 and the remarks following it). 

(29.1) Theorem. (The Perfect Set Theorem for Analytic Sets) (Souslin) 
Let X be a Polish space and A c::: X an analytic set. Either A is countable 
or elsc it contains a Cantor set. 

(29.2) Exercise. (Solovay) Fill in the details in the following alternative 
proof of the Perfect Set Theorem. 

First, argue that it is enough to consider the case X = N. SO let T be 
a tree on N x N such that p[T] = A. Define a derivative 5 f--7 S~ for trees on 
N x N (reminiscent of the Cantor-Bendixson derivative of 6.15) by letting 
S~ be the set 

((s,11.) E S: 3(t,1'), (r, w) E S[(t, v) :] (05, n) & (r, w) :] (8,11.) & t ...L rn. 
By transfinite recursion define T? = T, T{,+l = (Tf)~ and Ti" = na<.\ T[' 
if)" is limit. Let aa be least such that T{' = T{'O for a 2: ao. Put T{>C~ = Tr". 
SO (T1OOE = T~. Show that if Tl = 0, then A is countable, while if 
Tl =f O, A contains a Cantor set. 

A result having the same general flavor as 29.1 is the following, which 
we proved in 21.23. 

(29.3) Theorem. Let X be a Polish space and A c::: X an analytic set. Either 
A is contained in a Ka set or else A contains a closed set homeomorphic 
toN. 

(29.4) Exercise. Use an idea similar to that of 29.2 to give another proof of 
29.3 for X = N. (See 21.24.) 

29.B Measure, Category, and Ramsey 

The following result was proved in 21.6. 

(29.5) Theorem. Let X be a Polish space and A c::: X an analytic set. Then 
A has the BP. 

(29.6) Exercise. Let G, H be Polish groups and yJ : G f--7 H a Borel ho
momorphism. Then if p( G) is nOll-meager, yJ is open (and continuous by 
9.10). 
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Given a standard Borel space X, we call a subset A c;;: X universally 
measurable if for any cr-finite (equivalently: probability) Borel measure fL 
on X, A is fL-measurable. Sets having this property form a cr-algebra con
taining B(X). We have now by 21.10: 

(29.7) Theorem. (Lusin) Let X be a standard Borel space and A c;;: X an 
analytic set. Then A is universally measurable. 

Finally by 21.9 we have: 

(29.8) Theorem. (Silver) Let A c;;: [N]No be analytic. Then A is completely 
Ramse:lj. 

If X, Yare standard Borel spaces, we say that a function f : X --+ Y 
is universally measurable if f is fL-measurable for any cr-finite (equivalently, 
prohability) Borel measure on X. We extend this definition to apply to 
functions f : X' --+ Y, where X' c;;: X is universally measurable. 

From 18.1 we have also the following: 

(29.9) Theorem. (Jankov, von Neumann) If X,Y are standard Borel spaces 
and P c;;: X x Y is :Et, then P has a uniformizing function that is crCEi)
measurable and thus universally measurable. If X is Polish, it is also Baire 
measurable. 

(29.10) Exercise. Show that universally measurable functions are closed 
under composition. (This is not generally true for fL-measurable functions.) 

29. C A Clos1Lre Property for the S01Lslin Operation 

We will prove now the results in 29.B by a different general method, which 
is based OIl a key property of the operation A. 

Let (X, S) he a measurable space. Given A c;;: X, an S-cover of A is a 
set A E S with the following properties: 

i) A c::: A; 
ii) if A c::: B E S. then every subset of A \ B is in S. 

If every A c::: X has an S-cover, we say that (X, S) admits covers. The 
main examples of such measurable spaces are given next. 

(29.11) Theorem. Let X be a topological space and BP(X) the cr-algebra of 
subsets of X that have the BP. Then (X,BP(X)) admits coveTS. 

Proof. For any A c::: X consider the closed set E(A) = rv U(rv A). Then 
A \ E(A) is meager, so A \ E(A) c::: W, where W is an Fa meager set. Put 
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A = E(A) U ~V, which is also F". So A E BP(X). Now let A c:;; B E BP(X). 
Clearly, E(A) c:;; E(B), so A \ B = (W\ B) U (E(A) \ B) c:;; W U (E(B) \ B). 
But, by 8.29, as B has the BP, 

E(B)6B = U( ~ B)6( '"V B) 

is meager. So A \ B is meager, thus every subset of it is also meager, and 
therefore has the BP. 0 

(29.12) Theorem. Let X be a standard Borel space and 11 a (J-finite Borel 
mea81LTe on X. Then (X, rVIEAS1,) admits cover·s. 

Proof. We can clearly assume that p is a probability measure. For A c:;; X, 
let 

/1* (A) = inf{tl(B) : B E B(X) & A c:;; B} 

be the associated outer measure. Then there is A E B(X). A c:;; A such that 
/1*(A) = /1(A). If A c:;; B E MEAS1" then /1(A \ B) = 0, since otherwise 
there is a Borel set C c:;; A \ B c:;; A \ A with /1( C) > O. which is impossible. 
So every subset of A \ B is in NULLw and so in MEASI" 0 

We have now the following basic fact. 

(29.13) Theorem. (Szpilrajll-Marczewski) Let (X ,S) be a measumble space 
admitting covers. Then S is closed U'Tuier the Souslin opemtion A. 

Proof. Let (P,) be a Souslin scheme with p, E S. As in 25.5 i) we can 
assume that (P,) is regular. Let 

We will show that PES. For s E N<]IJ, let 

P" = u nPJln c:;; p,. 
xE./\/.x;?s n 

Then p0 = P and ps = U p',-n. Let ps be an S-cover for ps. Since p, E S 
n " 

and p8 c:;; p" we can intersect ps with p, to obtain another S-cover for 
ps, and so we can assume that ps c:;; p,. Put 

n 

Since P" = Un ps"n c:;; Un [>s"T/, it follows that every subset of Q" is ill S 
and every subset of Q = Us Qs is also in S. 

-0 Claim. P \ p c:;; Q. 

Granting this, [>0 \ PES, so P 
pf/J ~ pC'! = Pl. 

p0 \ (p0 \ P) E S (recall that 
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Proof of claim. Let x E pf/J \ Q in order to show that x E P. Notice that if 
x E p., \ Q, then x t/c Qs and so x E Un ps~n; thus for some n, x E p8~n. 

So by recursion we can define y E JlI such that x E pYln for all n. But 
pYln C;;; Pul n ' so x E nn Puln C;;; P. D 

(29.14) Corollary. (Nikodym) The class of sets with the BP in any topo
logical space is closed under the operation A. 

(29.15) Corollary. (Lusin-Sierpinski) Let X be a standard Borel space and 
IL a a-finite Borel measure on X. Then the class of IL-measurable sets is 
closed under the operation A and so is the class of universally measurable 
sets. 

There is also a version of 29.15 for outer measures (which are not 
necessarily a-finite). 

(29.16) Theorem. (Saks) Let X be a set and JL* an outer measure on X. 
Then the class MEASIl , of p: -measurable sets is closed under the Souslin 
operation A. 

Proof. Let (P.,) be a regular Souslin scheme of JL*-mea8urable set8 and 
define (QS), (Qs) as in 25.15. Let P = AsPs. We have to show, for every 
8et A C;;; X, that JL*(A);::: JL*(Anp)+JL*(A \P). We can assume, of course, 
that JL*(A) < 00. 

For every set B, let 

ILA (B) = inf{JL* (A n C): B C;;; C, Cis JL* -measurable}. 

Clearly, this infimum is attained. Also, for any increasing sequence (Bn), 
JL*(AnUnBn):::: JL:4JUnBn) = limn IL:4(Bn). (This follows easily from the 
fact that JL*(AnUn Dn) = 2.:" IL*(AnDn), when (Dn) is a pairwise disjoint 
sequence of IL* -measurable sets.) 

Now fix f > O. Using these facts we can define x EN recursively so that 
ILA(Q(x(O)));::: JL*(Anp) -E = 2, and JLA(Qcl(n+1)) 2: JLA(Qxln) -E = 2,,+1 
if n ;::: 1. Then for n 2: 1, JL*(A n Qxln) ;::: JL:t(Qxln) 2: IL*(A n P) - E, as 

Qxln :2 QTln and Q.Tln is JL*- measurable. So, for n 2: 1, 

IL*(A) = JL*(A n Qrln) + JL*(A \ Q,rln) 2: JL*(A n P) + Ji.*(A \ QxIn) - E. 

Since (Q-rl'') is decreasing and nn Q,rln C;;; AsQs = AsP., = P, we have 
that (rv Q-rln) is increasing and Un rv Qxln :2 rv P, so JL*(A \ Qxln) ....... 
JL*(AnUn(rv Qxln)) ;::: JL*(A\P), and thus JL*(A) ;::: JL*(Anp)+IL*(A\P)-E. 
Since E is arbitrary, we are done. D 
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29.D The Class of C -Sets 

Let X be a topological space or a standard Borel space. A subset A <;;; X 
is called a C-set if it belongs to t.he smallest O'-algebl'a of subsets of X 
containing the Borel sets and closed under the operation A. \Ve denote by 
C(X) the class of C-sets in X. In general, this class i::; much bigger than 
the O'-algebra O'(~n gellerated by the analytic sets. 

(29.17) Exercise. For each Polish space X and each uncountable Polish 
space Y show that there is a Y-universal ::;et for AIIi(X). Also show that 
O'(~i)(X) <;;; AIIi(X). Conclude that when X i::; uncountable, 

O'(~n(X) ~ AIIt(X) ~ C(X). 

It follows from 29.13 that if X i::; a topological ::;pace, every set in C(X) 
ha::; the BP, and that if X i::; a standard Borel space, then every set in C(X) 
is universally measurable. 

By 29.9, ~i sets admit uniformizing functions that are O'(~} )-measur
able. But this class of function::; is not very useful since it is not closed under 
compositions. However, the C-measurable functions have this important 
closure property. (If X, Yare standard Borel spaces, a function f : X --" Y 
is C -measurable if the inverse image of any Borel set in Y is in C (X).) 

(29.18) Exercise. i) Show that the C-mcasurable functions on standard 
Borel spaces are closed under composition. 

ii) Show that if X is a standard Borel space, and if S is a O'-algebra on 
X containing ~i (X) which has thf~ following property: 

(A E ~i(X) & f : X --" X is S-measurable) =? rl(A) E S, 

then AS <;;; S. 

Thus, in particular, C is the smallest class [ of sets in standard Borel 
spaces containing the ~i sets and closed under complements and count
able unions, for which the class of [-measurable functions is closed under 
composition. 

29.E Analyticity of "Largeness" Conditions on Analytic Sets 

Given standard Borel spaces X, Y and A <;;; X x Y, as well as some notion 
of "largeness" for subsets of Y, consider the set {x : AT is "large"}. \Ve will 
show that when A is analytic, this set is also analytic for various standard 
notions of "largeness" . The simplest example of a "largelless" property is of 
course "being nonern pty'·. Then {x : A" is nonern pty} = {x : 3y (x. Y) E A} 
is obviously analytic. 
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(29.19) Theorem. (Mazurkiewicz-Sierpinski) Let X,Y be standard Borel 
spaces and A <;;; X x Y be analytic. Then 

{x : Ax is uncountable} 

is also analytic. 

Proof. We can assume of course that X, Yare Polish. Our proof is based 
on the following fact, which is important in its own right. 

(29.20) Theorem. Let Z, W be Polish spaces and H <;;; Z x W be closed. If 
B = projz(H) is uncountable, there is a Cantor set K <;;; H with projz 
injective on K (so that in particular projz(K) is also a Cantor set}. 

Proof. By 8.8 ii). o 

So if B <;;; Y is analytic and H <;;; Y x N is closed with projy(H) = B, 
we have that B is uncountable iff 

:3K E K(Y x N)[K <;;; H & projy(K) is nonempty perfect]. 

Let F <;;; X x Y x N be closed with projxxy(F) = A so that for any 
x E X, AT = projy(Fx) and Fx <;;; Y xN is closed. Then Ar is uncountable 
iff 

:3K E K(Y x N)[K <;;; Fx & projy(K) is nonempty perfect]. 

Now 
R(x,K) {=} K <;;; Fx {=} {x} x K <;;; F 

is closed (in X x K(Y xN), K f-+ projy(K) is continuous (from K(Y xN) 
into K(Y)), and {L E K(Y) : L is perfect} is C 8 (see 4.29 and 4.31), so 
{x : Ax is uncountable} is analytic. 0 

(29.21) Exercise. Let X be Polish. Show that A <;;; X is analytic iff there is 
a closed set F <;;; X x N such that 

x E A {=} Fx i= 0 
{=} Fx is uncountable. 

We next consider "largeness" in the sense of category. 

(29.22) Theorem. (Novikov) Let X be a standard Borel space, Y a Polish 
space, and A <;;; X x Y an analytic set. For any nonempty open U <;;; Y we 
have that the sets 

{x EX: Ax is not meager in U} 

and 
{x EX: Ax is com eager in U} 
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are analytic. 

Proof. The first assertion follows from the second, since if {~Vn} is a basis 
of nonempty open sets for Y, we have 

Ax is not meager ill U <=} jTl.(H'lI C;;; U & Ax is comeager in TV,,). 

Also, by replacing Y by U if necessary, it is enough to show that 

{:1: : Ax is comeager} 

is analytic. Finally. we can of course take X to be Polish as well. 
Let F C;;; X x Y x N be closed with A = projxxy(F). Then, by 2l.5 

AI; is corneager <=} II has a winning strategy in C:* (F:I) 
For the argument below, it would be convenient to use the following 

equivalent variant of C7,* (H), H C;;; Y x /1[ (see the comments following 
2l.8): Fix a complete compatible metric d for Y and a countable basis of 
nonempty open sets W for Y. 

II z(O), Va 

U" V; E W, Uo :2 vel :2 UI :2 VI :2 "', diam(U;), diam(V;) < 2~i. II wins 
iff (.II, z) E H, where {.II} = nn Vn (= nn Un). 

Consider the tree T of legal moves in these games. The tree T is clearly 
countable, so we can view it as a pruned tree on N. Given 8 E T, say of even 
length. it corresponds to a position (Un, (z( 0), Vn), UI , ... , (z (n), \/;;») of the 
game. Put f(8) = \/;, x N(z(o) ... z(n))' Similarly, we define f(8) for s of odd 
length. Then f : T ---) F(Y x N) \ {0} and 8, t E T & .5 C;;; t =} f(8) :2 f(t). 
Moreover, for any b E [T]. nn f(bln) is a singleton, say {.f(b)}, where 
J(b) = (.II, z) is the outcome of the run corresponding to b E [T]. Finally, 
if Wn E f(bln) for all n, then w" ---7 J(b). So, now viewing strategies as 
subtrees of T, we have, letting 

TV(O', x) <=} 0' C;;; T is a winning strategy for II in C:*(Fx), 

that 

TV (0', x) <=} 0' C;;; T is a t-itrategy for II & \lb E [O']U(b) E Fx) 

<=} 0' C;;; T is a strategy for II & \Is E O'(f(s) n Fo; # 0), 

so clearly W is ~i (in TrxX). Since AT is comeager <=} jO'W(O',x), {x : 
A.r is corneager} is also ~ i . 0 

This result can be also expressed by saying that if A(x, y) is analytic, 
so are B(:J:) <=} \1*.11 E UA(:T, .II) and C(.T) <=} j*y E U A(x, .II), i.e., that the 
category quantifiers preserve analyticity. 



29. Regularity Properties 233 

(29.23) Exercise. In the notation of 16.B, show that if A is analytic, so are 
its Vaught transforms A *U , A ~U. 

(29.24) Exercise. Give a proof of 29.19 similar to that of 29.22 by using 
unfolded * -games (see 21. B) . 

(29.25) Exercise. Show that if X is standard Borel, Y Polish, and A ~ X x Y 
is analytic, then so is {x : Ax is not contained in a Ku}. 

We conclude with a result about measures. 

(29.26) Theorem. (Kond6-Thgue) Let X,Y be standard Borel spaces and 
A ~ X x Y an analytic set. Then the set 

{(ji,x,r) E P(Y) x X x ~: ji(Ax) > r} 

is analytic. 

Proof. We can assume that X, Yare Polish. We have now the following 
basic fact. 

(29.27) Theorem. Let Z,W be Polish spaces and H ~ Z x W be closed. If ji 
is a Borel probability measure on Z and for some a E ~, ji(projz(H) > a, 
then there is a compact set K ~ H such that ji(projz(K) > a. 

Proof. Let f : projz(H) -; W be a a(~D-measurable function uniformizing 
H. In particular, f is ji-measurable. Since projz(H), being analytic, is ji
measurable, by regularity there is a closed set G ~ projz(H) with ji(G) > a. 
By Lusin's Theorem 17.12 applied to fiG and jilG, there is a compact set 
L ~ G with ji(L) > a and flL continuous. Then K = {(z,f(z)): z E L} is 
a compact subset of Hand projz(K) = L, so ji(projz(K)) > a. D 

So if F ~ X x Y x N is closed with projxxy(F) = A, then 

ji(Ax) > r ¢} 3K E K(Y x N)(K ~ Fx & ji(projy(K)) > r). 

Since the function (ji,L) E P(Y) x K(Y) ~ ji(L) is Borel (by 17.25) our 
proof is complete. D 

Again, from 29.26 it follows that the measure quantifiers (see 17.26) 
V~, 3~ preserve analyticity. 

(29.28) Exercise. Show that if X, Yare standard Borel spaces and ji is a 
a-finite Borel measure on Y, then for any analytic set A ~ X x Y the set 
{(x,r): ji(Ax) > r} is also analytic. 

(29.29) Exercise. Give a proof for 29.22 similar to that of 29.26. 
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30. Capacities 

30.A The Basic Concept 

We will present here a short introduction to Choquet's theory of capacities 
and its relationship with the theory of analytic sets. 

(30.1) Definition. Let X be a Hausdorff topological space. A capacity on X 
is a map T Pow (X) --. [0 ,:x::] such that: 

i) A <;:; B =} ~((A) :::; ;(B): 
ii) Ao <;:; AJ <;:; ... =} b(A,,) --. ~!( Un An)); 
iii) JOT any compact K <;:; X, ~i(K) < 00; and if ;(K) < 1', then fOT 

some open U :;2 K, ((U) < r. 

(30.2) Exercise. Consider the following condition: 
iii)' For any compact K <;:; X, ~!(K) < 00; and if Ko :;2 Kl :;2 ... are 

compact, then 1(Kn) --. ((nn Kn). 
Show that i), ii), iii) =} i), ii), iii)', but not conversely. Show that i). 

ii), and iii) are equivalent to i). ii), and iii)' in compact metrizable X. 

Two capacities (, l' on X are called equivalent if I (K) = I' (K) for 
any compact K <;:; X. 

30. B Examples 

1) Outer measures and capacities. Let X be a Polish space and /-1 a finite 
Borel measure on X. Let /-1* be the outer measure associated to /-1, i.e., 
/-1*(A) = inf{JL(B) : B E B(X), B :;2 A}. Then it is easy to verify that fl* 
is a capacity. 

1\lore generally, if ( : B(X) ---> [0, oc] satisfies i) - iii) on B(X) and we 
define (* from ( as above, then is a capacity. 

(30.3) Exercise. Verify that /-1*, 1* are indeed capacities. 

2) Lifting. Let X, Y be Hausdorff topological spaces and f : X --. Y 
a continuous function. If I is a capacity on Y and we define 

(j(A) = ~((f(A)), 

then it is routine to verify that ~fJ is a capacity on X. A typical example 
of this is the case where X = Y x Z and f = projy. 

3) Capacities alternating of order 00. Let X, Y be compact metrizable. 
Let K <;:; X x Y be compact. For any capacity I on X define the capacity 
IK on Y by 

IK(A) = I (proh'((X x A) n K)). 
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A capacity "( is called alternating of order 00 if it satisfies the fol
lowing conditions: For compact sets K, L 1 , L2 , .•. let ~l(K; L 1 ) = "((K) -
"((K U L1 ), ~n+1(K; L1 ,··. ,Ln, Ln+1) = ~n(K; L1 ,.·., Ln) - ~n(K U 
Ln+1; L1, ... , Ln). Then for all n 2: 1, ~n :::; o. The capacity "(K meets 
these criteria if "( = J.1* with J.1 a finite Borel measure on X. 

(30.4) Exercise. Let Y be a compact metrizable space and J.1 a probability 
Borel measure on K (Y). Define for A <;;; Y, 

"((A) = J.1* ({ K E K(Y) : K n A # 0}). 

Show that this is a capacity on Y. In fact, show that if X = K(Y), K = 

{( L, x) : x E L}, then "( = (J.1 *) K in the preceding notation. A theorem of 
Choquet asserts that every capacity "( on Y alternating of order 00 with 
"((0) = 0 is equivalent to one of that form for a uniquely determined J.1. 

4) Strongly subadditive capacities. Let X be a Hausdorff space and 
p: K(X) ---> [0,00) a function such that: 

i) K <;;; L => p(K) :::; p(L); 
ii) p(K U L) + p(K n L) :::; p(K) + p(L) (i.e., p is strongly subadditive); 
iii) p(K) < r => for some open U ;2 K and all compact L <;;; U we have 

p(L) < r. 
Then p can be extended to a capacity "( on X as follows: 

"((U) = sup{p(K) : K compact, K <;;; U} 

for U open, and 

"((A) = infb(U) : U open, U ;2 A} 

for arbitrary A. 

(30.5) Exercise. i) For p, "( as above show that "( satisfies i), iii) of Definition 
30.1 and "( extends p. Show also that "( is strongly subadditive, i.e., for all 
A, B <;;; X we have "((A U B) + "((A n B) :::; "((A) + "((B). 

ii) Show that if Ai <;;; Bi <;;; X, i = 1, ... , n, then "((U~=l Bi ) + 
E~l "((Ai) :::; "((U~=l Ai) + E~=l "((Bi). 

iii) Show that "( is a capacity. 

Remark. Note that for a monotone function p : K(X) ---> [0,00) strong 
subadditivity is equivalent to the condition ~2 :::; 0, where ~2 is defined as 
above (with p instead of "(). 

The classical example of a capacity constructed in this fashion is the 
Newtonian capacity on ]R3 defined as follows: For a finite Borel measure 
in ]R3 define the potential function U!-'(y) = J ,f:~~11. Then for a compact 
subset K of ]R3, let 

p(K) = sup{J.1(K) : J.1 is a finite Borel measure on K, with U!-'(y) :::; 1, Vy}. 
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It turns out actually that the Newtonian capacity is moreover alternating 
of order 00. 

5) Capacities induced by compact families of measures. Let X be a 
compact metrizable space and let H(X) be the compact convex subset of 
Bl(MJR(X» (see 17.32) consisting of all positive Borel measures M on X 
with M(X) :::; 1. Also, let C <:;;; P1 (X) be a compact subset of Pl(X), Put 

')'c(A) = sUPI'EeM*(A). 

Then ')'e is a capacity on X. 

(30.6) Exercise. i) Prove the following minimax principle: If Y is a compact 
space and fn : Y --+ IR are upper semicontinuous with fo ::::: h ::::: h ::::: ... , 
then 

infn supyfn(Y) = SUPy infnfn(Y)· 

ii) Verify that ')'e is indeed a capacity. 

It turns out that if ')' :::; 1 is a strongly subadditive capacity on a 
compact metrizable space X, then 

is compact convex (in P1(X» and ')',')'e are equivalent. However, not all 
')'e, for C <:;;; Pl(X) compact, are strongly subadditive (Preiss). 

6) Capacities associated to Hausdorff measures. Let (X, d) be a com
pact metric space. Recall the definition of h-Hausdorff outer measure given 
in Example 4) of 17.B. The functions Mh, Mil defined there may not be ca
pacities. Now let 

00 diam(X) 
Mh = Mh 

be M" for E = diam(X), in other words, with no restriction on diam(Fn). 
Then it can be shown that M'h is a capacity. 

(30.7) Exercise. Show that for any A <:;;; X, Mh(A) = 0 iff M'h(A) = O. 

(30.8) Exercise. What is Mh if h = I? 

7) The separation capacity. Let X be a Polish space and let 7rl, 7r2 

be the two projection functions of X x X. Define for A <:;;; X x X 

')'(A) = 

Then,), is a capacity. 

{ 
0, 

1, 

if 7rl (A), 7r2(A) can be 
separated by a Borel set; 
otherwise. 

(30.9) Exercise. Verify this statement. 
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80. C The Choquet Capacitability Theorem 

(30.10) Definition. Let, be a capacity on the Hausdorff topological space 
X. We say that A <;;;; X isr-capacitable if ,(A) = sup{r(K):K compact, 
K <;;;; A}. We call A universally capacitable if it is ,-capacitable for every 

r· 

(30.11) Exercise. Let X be a Polish space and f.L a finite Borel measure on 
X. If ~I = {i*, then A is ~(-capacitable iff A is {i-measurable. 

(30.12) Exercise. Show that if X, Yare Hausdorff topological spaces and 
f : X ---t Y is continuous, then if A <;;;; X is universally capacitable, so is 
f(A). 

The main fact about capacitability follows. 

(30.13) Theorem. (The Choquet Capacitability Theorem) Let X be a Pol
ish space. Then ever'y analytic subset of X is universally capacitable. 

Pmof. Let A <;;;; X be analytic and (jJ,) a Souslin scheme for A as in 25.13. 
Let, be a capacity on X. Let ,(A) > r. We will find a compact set K <;;;; A 
,vith ,(K) 2': r. 

Since A = Un p(n) and p(rn) <;;;; p(n) for m :::; 71, let no be such that 
,(p(no») > T. Since PCno) = Un p(n(),n) and p(no,m) <;;;; p(n().n) for Tn :::; 71, 

let III be such that ,(p(no,n,)) > r, etc. Thus we can find yEN with 
,(Pyl") > r for all n. We claim that if P4 = nn Pyl'" then ,(Py) 2': r, which 
completes the proof because P4 is compact by 25.13 iii). If this fails (i.e., 
,(Py) < r), then there is open U with P'I <;;;; U and ,(U) < r. However, 
by 25.13 iv) there is large enough II with P'Iln <;;;; U, so ~((PYln) < r, a 
contradiction. 0 

(30.14) Exercise. i) Use Example 7) in 30.B and 30.13 to give another proof 
of the Lusin Separation Theorem. 

ii) We will prove in 35.1 iii) that there are two disjoint IIi sets in C 
which cannot be separated by a Borel set. Use this to show that not all IIi 
sets are universally capacitable. (On the other hand, Busch, Mycielski and 
Shochat have shown, using ~i-Determinacy, that all IIi sets in compact 
metrizable spaces are ,-capacitable for any capacity" with ,(0) = 0, which 
is alternating of order:xJ: see 36.22.) 

(30.15) Exercise. Show that if, is a capacity on a metrizable space X, the 
set 

{(K,r): K E K(X) & r E lR & ,(K) < r} 

is open in K(X) x lR (and so {K E K(X) : ,(K) = O} is Cj). Also show 
that the set 
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{(K,r): K E K(X) & r E lR & "((K) > r} 

is F". 

(30.16) Exercise. Generalize 29.27 and 29.28 as follows: 
i) Let Z, W be Polish spaces and H ~ Z x W be closed. If "( is a 

capacity on Z and "(projz(H)) > r, then there is a compact set K ~ H 
with "(projz(K)) > r. 

ii) Let X, Y be Polish spaces and A ~ X x Y an analytic set. Then 
for any capacity "( on Y, the set 

({x,r) E X x lR: "(Ax) > r} 

is analytic. 

(30.17) Exercise. Let X be a Hausdorff topological space and A ~ X be 
universally capacitable. Then for any capacity "(, "((A) = infb(B) : B E 

B(X), B;;:> A}. 

(30.18) Exercise. Let X be a Polish space and J.1 E P(X). For any Polish 
space Y, let "( be the following capacity on X x Y : "(A) = J.1*(proh(A»). 
Show that for A ~ X x Y, A is "(-capacitable iff for every E > 0, there is a 
Borel set B ~ proh(A) with "(A) :=; J.1(B) + E, and a Borel map f : B ----> Y 
that uniformizes An (B x Y). Show also that B can be taken here to be 
compact. 

(30.19) Exercise. Give proofs of 28.12 and 28.15 by introducing appropri
ate capacities (reminiscent of the separation capacity) and applying the 
Choquet Capacitability Theorem. 
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31. Analytic Well-founded Relations 

31.A Bounds on Ranks of Analytic Well-founded Relations 

If -< is a well-founded relation on a standard Borel space X and p(-<) 
its rank (see Appendix B), then p(-<) < card(X)+:S: (2No)+. Moreover, 
sup{p(-<) :-< is a well-founded relation on N} = (2No)+. However, when 
-< is "definable" one can expect to find better upper bounds for p( -<). We 
prove this here for analytic well-founded relations. 

(31.1) Theorem. (Boundedness Theorem for Analytic Well-founded Re
lations) Let X be a standard Borel space and -< an analytic well-founded 
relation. Then p( -<) is countable. 

Proof. (Kunen) We can clearly assume that X = N. As in 2.10 associate 
with -< the tree T-< on N given by 

(Xo, . .. , xn~d E T-< ¢} Xn~l -< Xn~2 -< ... -< Xl -< Xo 

(when n = 1, by convention, (xo) E T-< for all Xo EX). 
As shown in 2.10, T-< is well-founded and p( -<) = PT.J0). SO it is 

enough to show that p(T -<) < WI' This will be done by proving that there 
is an order preserving map from (T-< \ {0},~) into (W, -<*), where -<* is a 
well-founded relation on a countable set W. Then (see Appendix B again) 
p(T-<) :s: p( -<*) + 1 < WI' 

Let 5 be a tree on N x N x N such that 

X -< y ¢} ::Jz(x,y,z) E [5]. 

Let TV consist of all sequences of the form 

w = ((so, to, uo), ... , (Sn~l' tn~l, un~r)), 

where (Si,ti,Ui) E 5 and 8i = t i+ l for all i < n -1. (We allow also w = 0 
here.) For w,v/ as above let Wi -<* w be defined by 

length(w) < length(w' ) & Vi < length(w) [(s;, t;, u;) ~ (Si' t i , Ui)]. 

\Ve claim that the relation -<* is well-founded. Otherwise, let Wn 
((so,to,uo),···,(skn~l,tkn~l' ut~l)) be such that Wn+l -<* W n . Then 
kn T CXJ and if In = length(si') (= length(ti) = length(ui'), for i < kn), 
also ln T CXJ, and there are xo, Xl, ... in Nand zo, Zl,' .. in N such that for 
all n, tll ~ xo, So = tj ~ Xl, SI' = t;' ~ X2) ... and Uo ~ zo, uI' ~ Zl, ... . 

Thus (XI,XO,ZO) E [5], (X2,Xl,Zr) E [5], ... , that is, Xl -< XO,X2 -< Xl, ... , 

which is a contradiction. 
We will find now an order preserving map from (T-< \ {0},~) into 

(W, -<*). For this, note that if X -< y, the section tree 5(x,y) = {s E N<N: 
(xilength(s), Yllength(s), s) E 5} is not well-founded, so let hx,y E [5(x, y)] 
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(for example, its leftmost branch). Consider the map f : T -<, \ {0} --'> H/ 
given by 

f((xo)) = 0, 

and for n 2" 2, 

f(xo, ... ,XII-I) = ((XI In .. foln, hIl .. IO In), (x2In, :flln, hx2 .Tl ln), 

... , (x n -lln, x n -2In, h'I ,,_1 .x" _2In)). 

Then f(;J.;(), ... ,.rn-I,XIl ) --<* f(xo, ... ,x,,-d for any n 2" 1, so our proof is 
complete. D 

Recall from 27.1 that the set IF of ill-founded trees on N is ~i-complete 
and therefore the set 

WF = {T E Tr: T is well-founded} 

of well-founded trees on N in IIi-complete. To each T E \VF we associate its 
rank p(T). It is easy to see that {p(T) : T E WF} = {et + 1 : et < WI} U {O}. 

(31.2) Theorem. (The Boundedness Theorem for WF) Let A C WF be 
analytic. Then sup{p(T):T E A} < WI. 

Pmof. Consider the following relation --< on Tr x N<N: 

(5,8) --< (T, t) B 5 = TEA & 8, t E T & 8 ~ t. 

Clearly --< is analytic and well-founded. So p( --<) < "-'1. But if TEA, the map 
t E T f---' (T, t) is order preserving from (T,~) into --<, so p(T) ::; p( --<) < "-'I. 

D 

(31.3) Exercise. (Lusin-Sierpiliski) Consider the set WO (of wellorderings 
on N) as in 27.C. For .J.; E WO, let i1:1 = the order type of Al < WI. Clearly, 
{lxl: x E WO} = WI \w. 

From 27.12 WO is IIt-complete. Show that if A <;;; \VO is analytic, 
then sup{lxl : x E A} < WI. 

Use this to show that if X is a standard Borel space and A <;;; X is 
BoreL then there is a Borel function f : X -4 LO and et < WI such that 
A = I-I (woa), with WO" = {x E WO: Ixl ::; Q} (similarly with X zero
dimensional Polish and f continuous). Use this to justify the argument in 
27.D that ~ is not Borel. 

(31.4) Exercise. Give a different proof of 31.1 using the fact that WF is not 
~l and using 2.9. 
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Sl.B The Kunen-Martin Theorem 

Let X be a Polish space and Y any set. A set A <;;; X is called Y-Souslin 
if A = proh(F), where F iH a closed set in X x yN (with Y discrete). 
Usually, Y iH an ordinal number K,. So N-Souslin (= w-Souslin) = analytic. 
The following generalizes 31.1. 

(31.5) Theorem. (The Kunen-Martin Theorem) Let X be a Polish space, 
K, an infinite ordinal, and -< a well-founded K,-Souslin relation on X. Then 
p(-<) <K,+. 

The proof iH identical to that of 31.1, so we will not repeat it. In fact, 
that proof is essentially Kunen's proof of 3l.5. (Martin's independent proof 
was somewhat different and used forcing.) For another (earlier) proof of 
3l.1, see 3l.4. 



CHAPTER IV 
Co-Analytic Sets 

32. Review 

32.A Basic Facts 

Given a Polish (or standard Borel) space X, a set A <;;; X is co-analytic if 
~ A is analytic. We denote by I1i(X) the class of co-analytic subsets of X. 

If X <;;; Yare Polish (or standard Borel) spaces, clearly I1i(X) = 

I1i(Y) IX = {A n X: A E I1i(Y)} = {A <;;; X : A E I1i(Y)}. 
More generally. a subset A of an arbitrary separable metrizable space 

X is co-analytic (or I1i(X)) if ~ A is analytic. We also call a separable 
metrizable space co-analytic if it is homeomorphic to a co-analytic set in 
a Polish space. Finally, a co-analytic Borel space is a measurable space 
isomorphic to (X, B (X)) for some co-analytic set (or space) X. 

The co-analytic sets contain all the Borel sets and are closed under 
countable intersections and unions and Borel preimages. They are also 
closed under co-projection (or universal quantifiers) over Polish spaces: 
If X. Yare Polish spaces and A <;;; X x Y is co-analytic, so is B <;;; X given 
by B = ~ proh(~ A), i.e., 

x E B ¢} \ly(x,y) E A. 

They are not closed under continuous images or the Souslin operation A. 
For each Polish X, y, with Y uncountable, there is a Y-universal set 

for I1i(X), so for each uncountable Polish X, B(X) = ~i(X) ~ I1ieX). 
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Moreover, assuming :E~-Determinacy, any ITi(X) \ :Ei(X) in a Polish space 
X is ITt-complete (see 26.5) and any two such sets are Borel isomorphic 
(see 26.8). 

32.B Representations of Co-Analytic Sets 

From 25.A we have that for each Polish space X and A ~ X, the following 
statements are equivalent: 

i) A is co-analytic. 
ii) For some Polish Y and Borel B ~ X x Y, x E A .;=} I:/y(x, y) E B. 
iii) For some open G ~ X x N, x E A.;=} I:/y(x, y) E G. 
iv) For some Fa set F ~ X x C, x E A.;=} I:/y(x, y) E F. 

From 25.B we have that the following are equivalent for A ~ N: 

i) A is co-analytic. 
ii) For a (pruned) tree T on N x N, x E A.;=} T(x) is well-founded. 

More generally, if WF = Tr \ IF is the class of well-founded trees and 
WO the class of wellorderings on N, then by 27.1 and 27.12, WF and WO 
are ITt-complete. So the following are equivalent for any Polish space X 
and A ~ X: 

i) A is co-analytic. 
ii) There is a Borel function f : X ---> Tr such that x E A.;=} f(x) E 

WF. 
iii) There is a Borel function f : X ---> LO such that x E A.;=} f(x) E 

WOo 
(Note also that by 26.11 and 15.6 one can take f in ii), iii) here to be 

injective. ) 

Also, from 25.3, we have the following: For any Polish space X and 
A ~ X, the following are equivalent: 

i) A is co-analytic. 
ii) For some open G ~ X x N, x E A.;=} 9NyG(X, y). 

Next recall 18.11 and 18.13. For any Polish space X and A ~ X the 
following are equivalent: 

i) A is co-analytic. 
ii) For some Polish space Y and Borel (equivalently: closed) F ~ 

X x Y, x E A.;=} 3!yF(x, y). 
iii) For some Polish space Y and continuous surjection f : Y ---> X, x E 

A.;=} 3!y(f(y) = x). 

We have, moreover, the following representation, using 29.21. For any 
Polish space X and A ~ X, the following are equivalent: 

i) A is co-analytic. 
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ii) For some closed set F c: X x N. x E A{=? FJ: is countable. 
iii) For some closed set F C X x N. x E A {=? Fcc is countable 

{=? Fr = 0. 

Finally, from 25.16, we have that every co-analytic set is both the union 
and the intersection of "-'1 Borel sets. 

(32.1) Exercise. The dual Souslin operation A is defined by 

A,P, = '" A(~ Ps ) 

= n UPr1n-
"Eli n 

Show that the co-analytic sets in a Polish space X are those of the form 
A,G" with Gs open, and that IIi is closed under A. 

32. C Regnlar'ity Properties 

'\Ve saw in Section 29 that all co-analytic sets in Polish spaces have the 
BP and are universally measurable and that in [pW~u they are completely 
Ramsey. Concerning the Perfect Set Property we have the following: 

(32.2) Theorem. (The Perfect Set Theorem for Co-Analytic Sets) CEt
Determinacy) Let X be a Polish space and A c: X a co-analytic set. Either 
A is cou.ntable OT else it contains a CantoT set. 

Pmof. 'Ve can assume that X is perfect. This follows then from 21.1. since 
the game G* (A) is IIi. D 

(32.3) Exercise. CEi-Determinacy) Let X be Polish and A c: X be co
analytic. Then either A is contained in a Ka set or dse it contains a closed 
set homeomorphic to lv. 

As we pointed out in 30.14. not all co-analytic sets are universally 
capacitable (but they are capacitable for any capacity r with -((0) = () 

alternating of order 00: see 36.22). 
The following are analogs of 29.22, 29.23, 29.26 and 29.28. 

(32.4) Exercise. i) Let X be a standard Borel space, Y be a Polish space, 
and A c: X x Y be co-analytic. Then for any nonempty open set U c: Y 
the sets {x : AT is not meager in U} and {x : A" is comeager in U} are 
co-analvtic. 

ii) • In the notation of 16.B, if A is co-analytic, so are A *U , A i:.U . 

iii) If X. Yare standard Borel spaces and A c: X x Y is co-analytic, 
then the set {(IL, x, T) E P(Y) x X x lR : IL( Ax) > T} is co-analytic. The same 
holds. if II is a CT-finite Borel measure on Y, for the set {(:r. T) : p.( A,·) > T}. 



33. Examples 245 

33. Examples 

33.A Well-founded Trees and Wellorderings 

Let WF ~ Tr be the set of well-founded trees on N. Then WF is IIi
complete (see 32.B). Also, by 27.3, the set WF; = Tr2 \ IF; of all pruned 
trees on 2 which have no infinite branch in N is IIi-complete. Recall also 
from 32.B that the set WO of wellorderings on N is IIi-complete. 

(33.1) Exercise. i) Let DB = {T E Tr : T has a unique infinite branch}. 
Show that DB is IIi-complete. 

ii) Let C = {T E PTr2 : [T] is countable}. Show that C is IIi
complete. 

iii) Let Wn = {T E Tr: II has a winning strategy in the game 
G(N, [T])}. Show that WI! is IIi-complete. 

(33.2) Exercise. A linear ordering (A, <) is scattered if there is no order 
preserving map of (Ql, <) into (A, <). For example, N, Z are scattered. 
Consider the following subset of LO: 

x E SCAT {::} x E LO & Ax is scattered. 

Show that SCAT is IIi-complete. 

33.B Classes of Closed Sets 

For any Polish space X and A ~ X, let K(A) be the set of all compact 
subsets of A, i.e, K(A) = {K E K(X) : K ~ A}. 

If A is IIg, then it is immediate that K(A) is IIg too (in K(X)). 
However, from 27.4 ii), we have that if F ~ X is ~g \ IIg, then K(F) is 
IIi-complete. (In general, it is easy to see that if A is IlL so is K(A).) 

Now let 

KNo(X) = {K E K(X): K is countable}, 

and 
FNo(X) = {F E F(X): F is countable}. 

Then from 27.5 we have the following result of Hurewicz: 
For any uncountable Polish space X, KNo (X) is IIi-complete and 

FNo (X) is Borel IIi-complete. 
Also, from 27.9 we have that for each Polish X that is not Ku the set 

{F E F(X): F is contained in a Ku} is Borel IIi-complete. 
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33. C Sigma-Ideals of Compact Sets 

If X is a Poli8h space, a sub8et I C;;; K(X) is called a IT-ideal of compact 
sets if i) I is hereditary on K(X) (i.e., K E K(X) & K C;;; LEI =? K E 1) 
and ii) I is closed under countable union8 that are compact (i.e., Kn E 

I & Un Kn = K E K(X) =? K E I). For example, K(A) and KNo(X) a8 
defined in 33.B, are O"-ideals of compact sets. 

(33.3) Theorem. (The Dichotomy Theorem for Co-Analytic O"-Ideals) 
(Kechri8-Louveau-Woodin) Let X be a Polish space and I C;;; K(X) a co
analytic O"-ideal of compact sets. Then either I is Go or else it is IIt
complete. 

Proof. Assume I is not G/). Then by 21.18 there is a Cantor set C C;;; K(X) 
8uch that Q = C n I is countable dense in C. For K E K(C) C;;; K(K(X)), 
let a8 u8ual UK = U{ K : K E K}. By 4.29 v), K f--+ UK i8 continuous 
from K(C) into K(X). Moreover, 

since Q is countable and I is a O"-ideal of compact 8ets. SO K(Q), which 
i8 IIi-complete by 33.B, is reduced to I by a continuou8 function, 80 I i8 
IIi-complete. 0 

For any probability Borel mea8ure tL on a Polish space X, we denote 
by II" (= NULLI" n K(X)) the O"-ideal of compact sets of fL-measure O. 
More generally, let "( be a capacity that i8 8ubadditive on compact sets 
(i.e., "((K U L) S; "((K) + "((L) if K, L E K(X)) and let 1"( = {K E K(X) : 
"((K) = O}. Then 1"( (and so 11") is a O"-ideal of compact sets and it i8 Go 
by 30.15. 

(33.4) Exercise. Let X be a Polish space. Show that I MGR = {K E K(X) : 
K i8 meager (i.e., nowhere den8e)} i8 a Gb O"-ideal of compact 8et8. 

On the other hand K No (X) is a IIi-complete O"-ideal of compact sets, 
when X is uncountable. 

(33.5) Exercise. Let X be a Poli8h space and A C;;; X a co-analytic set. Then 
the following are equivalent: 

i) A is Polish; 
ii) K(A) is Polish; 
iii) K(A) is not IIi-complete. 

Remark. It has been shown in A. S. Kechri8, A. Louveau and W. H. Woodin 
[1987J that every analytic O"-ideal of compact sets is actually IIg. 
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We revisit next an example that we introduced in 27.B. Recall that 
we denote by UNIQ the class of closed sets of uniqueness in 1I'. As we 
mentioned there the union of count ably many closed sets of uniqueness is 
a set of uniqueness; in particular, UNIQ is a a-ideal of compact sets in 1I'. 

(33.6) Theorem. (Kaufman, Solovay) The a-ideal UNIQ of closed sets of 
uniqueness in 1I' is nl-complete. 

Proof. We will omit the proof that UNIQ is nt, which requires some knowl
edge of harmonic analysis (see A. S. Kechris and A. Louveau [1989]). To 
show that it is nt-complete, by 33.3, it is enough to show that UNIQ is 
not ng. For that we will find a continuous function f : [0,1] ----> K(1I') such 
that x E IQ {:} f(x) E UNIQ. 

For "10 = ° < "11 < ... < "Ik < 1, put ~ = 1 - "Ik and assume that 
~ < "Ii+l - "Ii for all i < k. Construct a perfect set E(~; "11,.··, "Ik) as 
follows (in [0,27T] or, equivalently, 'lI'): For each interval [a, b] with l = b - a 
consider the disjoint intervals [a + l"li' a + l"li + l~J, i = 0, ... ,k and let E 
be their union (see Figure 33.1). 

a t~ t~ t~ t~ b 
• • • • • • • • 

t t t 
a + t171 a + t17 2 a+t17k 

FIGURE 33.1. 

We say that E results from [a, b] by a dissection of type (~;"Il"'" "Ik)' 
Starting from Eo = [0,27TJ, define closed sets Eo ;2 El ;2 E2 ;2 ... by 
performing a dissection of type (~; "11,"" "Ik) to each interval of Em to 
obtain E m+ l · Finally, let E(~; "11,"" "Ik) = nn En. 

We have here the following remarkable characterization. 

(33.7) Theorem. (Salem-Zygmund) The set E(~;TJl"" ,"Ik) is in UNIQ iff 
8 = l/~ is a Pisot number, i.e., an algebraic integer> 1 all of whose 
conjugates have absolute value < 1, and "11, ... ,"Ik E 1Q(8). 

Note now that all integers> 1 are Pisot numbers. Let 

f(x) = E(I/4; 3/8 + x/9, 3/4). 

o 
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(33.8) Exercise. Show that the class of perfect sets of uniqueness in 1l' is 
IIi-complete in the Go, thus Polish, space of perfect subsets of 1l'. 

A classical problem concerning the theory of uniqueness sets is the 
so-called Characterization Problem: To find necessary and sufficient con
ditions for a perfect set in 1l' to be a set of uniqueness. Although this is a 
vague problem, it appean; that its intended meaning was to find somewhat 
explicit structural conditions that will characterize among perfect sets those 
that are sets of uniqueness (such as those in 33.7 that provide such a char
acterization in a special case). By 33.8 no such characterization is possible, 
which can be expressed by conditions that lead to a Borel definition of the 
perfect sets of uniqueness. This can be viewed as an important negative 
implication concerning the Characterization Problem. (For more on this, 
see A. S. Kechris and A. Louveau [1989].) 

33.D Differentiable Functions 

The following is one of the earliest examples of a IIi-complete set in anal
ysis. 

(33.9) Theorem. (Mazurkiewicz) The set DIFF of differentiable functions 
in C([O,1]) is IIi-complete. 

Proof. As usual, at the endpoints we consider one-sided derivatives. 
From 23.23, we see that DIFF is IIi. To show it is IIi-complete, we 

will reduce WF by a continuous function to DIFF. 
Given a closed interval I = [a, b] <;:; [0,1]' let ip(x; I) be the following 

function on [0, 1], 

{ 
I6(x_a)2(x_b)2 if x E I', 

ip(x; I) = (b-a)3.' 
0, otherwIse. 

(See Figure 33.2.) 
Now define for each S E N<N, an open interval J s and a closed interval 

Ks such that: 

i) K" <;:; J" is concentric in J~ and IKsl:s 2-(s)(IJsl-IKsl), where IJI 
is the length of the interval J and ( ) is a bijection of N<N with N; 

ii) Js'n <;:; Ki L ) = the left half of Ks. (Denote also by Ki R ) the right 
half of Ks.); 

iii) Js'n n Js'rn = 0, if n =I- m. 

Note then that all the Ki R ) are pairwise disjoint and for each x E 

N, nn Jxln = nn K,rln = nn K~t~ is a singleton. 
Given now a tree T on N, let 
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b-a 

o a b 

FIGURE 33.2. 

FT(X) = L <p(x; Ki R)). 
sET 

Since 0 :::; :p(X; K!!) :::; IK.~R) I :::; 2~(s), clearly FT E C([O, 1]). Moreover, 
T f--+ FT is continuous from Tr into C([O, 1]), since if the trees S, T agree 
for all .5 with (8) < N, then 

IFs(x) - FT(x)l:::; L (:p(x; K1R)) + <p(x; K~R))) :::; L Ti+l. 
(s)?:.N i?:.N 

Now let 

CT = U nJlJln 
YEIT] 11 

= n u .Is. 
n sETnN11 

Then 

T E WF ¢} CT = 0, 

and so, to complete the proof, it is enough to show that 

:1' t/. C T ¢} FH x) exists. 

If x E CT , let y E [T] be such that x E K.~t:, for all n. Let en be the 

midpoint of K~~; and let 2ln = IK~~; I (see Figure 33.3). 
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x 

~~.-~-~ 21 
11 

---"'-1 ._-. 111 f ------1 
11 

- '---~--'---y 
K 

yin 

FIGURE 33.3. 

Then FT(X) = 0, as x tJ. K.~R) for any 8. Also FT(cn 

so Fr(en+ln)-Fr(x) = 0. Moreover, 1 Fr(cn)-Fr(x) 1 :::: ?In 

+ in) = 0, 

(c ll +1 1l )-.1, cn-x ,3l n 

2 
:3' Since 

en. Cn + In ---) x. FHx) does not exist. 
Now let x tJ. GT . Find N so that for sET and (8) :::: N, 

such an 8. (See Figure 33.4.) 
x tJ. 18 , Fix 

1, 
(~ . __ ~ _______ . ....P'---____ ~ __ ~. __ \ 

K 
---)~ 

-~\ 

x 
• • • • 

FIGURE 33.4. 

It is easy then to see that 

I 
<;(x: K.~R)) - <;(x + £:'x; K.~R)) I 

£:'x 

• 

l<p(x + £:'x;KiR))1 

I£:'xl 

• 

21K.~R)1 < -:--=--';---:-::~ ::; 2- (8) . 
1J.,I-IKsl 

Tlmi-i. if for n :::: N we let 
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Fr(x) = L 
sET.(s)<;n 

we have 

I FT(X) - FT(X + Llx) _ Fr(x) - Fr(x + Llx) I < ~ Tm:::; Tn. 
Llx Llx - ~ 

m=71+l 

B t ,0\ ° F';:(x)-F}(2;+6.X) (F71)'() -I' -. Fr(x)-FT(X+6.X) 
U . as uX --->, 6..7: ---> T x, so Im6.x->O 6.2; -

lim Fr(x)-FT(X+6.X) < 2-71+ 1 and letting n ---> 00. we see that 
-b.x~O ~;]; -, , 

Fr(x)-~:(T+6.X) converges as Llx ---> 0, which means that F.f,(x) exists. D 

(33.10) Exercise. Show that the set of differentiable functions with deriva
tive bounded in absolute value by 1 is IIi-complete (in C([O, 1])). 

33.E Everywhere Convergence 

Consider now the space C([O, l])N and the sets 

CN = {Un) E C([O, l])N : Un) converges pointwise}, 

CNo = {Un) E C([O, l])N : fn ---> ° pointwise}. 

(33.11) Theorem. The sets CN,CNo of pointwise convergent, respectively to 
0, sequences of continuous functions are IIi -complete. 

Proof. From 23.18 we know that CN,CNo are IIi. We will next reduce WF 
to CN,CNo by a continuous function. 

Let 1." .Is be closed subintervals of [0, 1] such that: 

i) If/) = [0,1]; 
ii) .Is is a proper concentric subinterval of 1.,; 
iii) Is"n <;:;: .Is and Is"m n Is"n = 0 if mIn; 
iv) IIsl:::; 2-1ength(s). 

Also let 0:::; j, :::; 1 in C([O, 1]) be equal to 1 on .18 , and ° outside Is. 
Fix also a bijection h of N with N<N, and for n E Nand T E Tr let 

f'[ E C([O, l]) be equal to 0 if h(n) tf- T and to ih(n) if h(n) E T. The 
function T I--? U:I) from Tr into C([O, I])N is clearly continuous, and we 
claim that 

T E WF ¢? u:I) E CN 

¢? U'[) E CNo. 

Given any x E [0,1] we have for each n at most one sENT! with x E Is. 
Thus, if T E WF, there are at most finitely many sET with x E Is. So for 
all but finitely many n, g(x) = 0 (Le., f:I(x) ---> 0). 
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Conversely, if T ~ WF, let y E [T]. Then let {x} = nrJyln = nn Jyl n ' 

So there are infinitely many k for which /[(x) = 1 and also infinitely many 
k for which /{(x) = 0 (i.e., (f:f(x)) diverges). 0 

(33.12) Exercise. Show that the following sets are IIi-complete: 

{(fn) E C([O, I])N : Vx3nVm ::::: n(fm(x) = O)}, 

{(frl) E C([O, I])N : 0 :::; in :::; 1 & Vx(inf(fn(x)) > O)}. 

Consider now C(1r) and the set 

CF = {J E C(1r) : 2:= ](n)e inx converges everywhere} 

= {J E C(1r): f(x) = 2:=](n)e inX , for all x E 1r} 

of continuous functions on 1r with everywhere convergent Fourier series. 
Then we have the next result. 

(33.13) Theorem. (Ajtai-Kechris) The set CF of continuous functions with 
everywhere convergent Fourier series is IIi-complete (in C(T)). 

33.F Parametrizing Baire Class 1 Functions 

The set CN can be used to encode or parametrize Baire class 1 functions 
on [0,1] as follows: 

Associate to each J = (fn) E CN the following function in B1([0, 1]): 

By 24.10, {bf : J E CN} = B1 ([0, 1]). We view J as a code or parameter 
of bf. 

Using this parametrization, we can also classify sets of B1 functions 
descriptively. Given a class r of sets in separable metrizable spaces, and a 
set C <;;:: B1([0, 1]), we say that C is in r (in the codes) if C = {]: bf E C} 
is in the class r(CN). For example, if ~ is the set of derivatives, then ~ is 
in IIi (Ajtai) but not in :Ei (Dougherty-Kechris); see R. Dougherty and A. 
S. Kechris [1991]. 

For each f E ~ denote by 'P(x) = J; f its unique primitive with 
value 0 at O. Then it turns out that the operation f f---t 'P has a graph 
that is both :El and IIi in ~ x C([O, 1]) (Ajtai) but not Borel (Dougherty
Kechris). In fact {] E ~ : Jo1 bf > O} is both :EU~) and IIH~) but not 
B(~). This has interesting implications concerning the so-called Classical 
Problem of the Primitive and the role of transfinite constructions in the 
process of antidifferentiation; see R. Dougherty and A. S. Kechris [1991]. It 
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also provides a natural instance of failure of the Souslin Theorem B(X) = 

at (X) for the co-analytic space X = LS.. Abstractly, one can see that 
the Souslin Theorem fails in general for co-analytic spaces X, by taking 
X = Au B, where A. B are IIi disjoint subsets of some Polish space Y 
which are not separable by a Borel set; see 35.1 and the remarks following it. 
Recall from 28.3 that Souslin's Theorem goes through for analytic spaces. 

88. G A Method for' PT'Oving Completeness 

\Ve will give now a different proof that eN (see 33.11) is Ill-complete. This 
proof illustrates a powerful technique for proving such completeness theo
rems. It can be applied to many other examples discussed in this section. 

Let A <;;;; C be a IIi set. From 32.B we have that there is an FO' set 
B<;;;;Cx [0.1] with 

x E A{=? \/:y(x,:y) E B 

q B J . = [0,1] 

(recall here that C can be viewed as a closed subset of [0,1]). From 23.22 
there is a continuous function F : C -+ C([O, l])N with Bx = C F\lJ' So 

x E A{=? F(x) E eN, 

and thus eN is IIi-complete. 
Similarly, we can use t.he fact that Zahorski's Theorem (mentioned 

in the paragraph preceding 23.23) holds uniformly, to give another proof 
of 33.9. 1Iore precisely, to take a particular case, one can show that if 
B <;;;; N x [0,1] is :E~, there is a continuous function F : N -+ C([O, 1]) with 
Bo; = D F(r)' Then, exactly as in the previous example, if A <;;;; N is IIi and 
B <;;;; N x [0,1] is :Eg with 

we have 

so DIFF is IIi-complete. 

x E A q \/:y(x,:y) E B, 

x E A{=? Bo = [0,1] 

q DF(r) = [0,1] 

q F(x) E DIFF, 

(33.14) Exercise. The result of Kaufman mentioned in 27.E admits a uni
form version: Let A <;;;; IT:l be analytic. Then there is a Borel function 
f : IT -+ £(co) such that for all x, A, = O'p(f(x)). Use this to show 
that {T E £(co) : O'p(T) = 0} and {T E £(co) : O'p(T:1 <;;;; 1I'} are Borel 
IIi-complete. 
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33.H Singular Functions 

(33.15) Theorem. (Mauldin) Let NDIFF be the set of functions in C([O,l]) 
that are nowhere differentiable. Then NDIFF is Borel ni-complete. 

Proof. (Kechris) The idea of the proof is the following: 
To each K E K ( (0, 1)) we will associate in a Borel way a function f K E 

C([O, 1]), which is differentiable at exactly the points of K, and a function 
gK E C([O, 1]), which is differentiable exactly at the points outHide K n Ql. 
Then let hK = fK + 9K. Clearly, K f-+ hK is Borel and if Q = Ql n (0,1), 
then for K E K((O, 1)), 

K ~ Q ¢} h K E NDIFF. 

Since {K E K((O, 1)) : K ~ Q} is ni-complete (see 33.B), we are done. 

Contltruction of gK: Since the map K f-+ K n Ql from K((O, 1)) to 2Q itl 
Borel, it is enough to show that we can aHsociate in a Borel way to each 
p ~ Ql a function gp E C([O, 1]), which is differentiahle exactly outside P. 
This is done as follows: 

Let Ql = {Q1, Q2, ... } be an enumeration without repetitions and let 
I p = {n EN: Qn E P}. Fix now a continuous function cp on IR such that 

cp(O) = 0, I 'P(r~=:(1I) I :s: 1 for x i- y, and cp has no one-sided derivative at 0 

but has a derivative at every other point. Then let gp(x) = LnElp 2-"cp(x
qn) for x E [0,1]. (If P = 0, let 9p = 1.) 

Construction of fK: vVe can uniquely write (0,1) \K as a pairwise diHjoint 
union of intervals (a, b) with a, b E K, or a = 0, b E K, or a E K, b = 

1. These are called the contiguous intervals of K. Clearly, there are only 
countably many of them. 

(33.16) Lemma. There is a Borel function 

C: K((O, 1)) --+ ([0,1]2/'1 ffi EB([0,1]2r 
n~l 

such that C(K) = ((a;:, b~)) is an enumeration without repetitions of the 
contiguous intervals of K. 

Proof. Consider the set R ~ K((O, 1)) x [0, IF given by 

R( K, (a, b)) ¢} (a, b) is an interval contiguous to K 
¢} [(a, b E K & a < b) or 

(a = 0 & b > 0 & b E K) or (a E K & a < 1 & b = 1)] 

& --,3c(a < c < b & c E K). 
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R is clearly Borel. Moreover, for each K, RK is countable, so by 18.15 we 
~~m. 0 

Let now f be continuous on [0,1] with Ilflloo :s; 1, but having no 
derivative at any point of (0,1). For 0 < a < b < 1, let 

ifxE(a,b); 
ifxE[O,I]\(a,b). 

Note that Ilfa,bll= :s; b-a, fa,b has no derivative in (a, b) and has derivative 
o at a, b. Also 

1 
fa.b(X) I, 1 fa,b(X) 1 :s; b - a. 
x-a x-b 

If a = 0 < b, define fa,b to have similar properties in (a, b) and at b, but no 
right derivative at 0 and analogously for a < b = 1. 

Finally, put 

n 

Since ~(b~ - a~) :s; 1, fK is continuous. It is easy to see that fK has 
no derivative at any point outside K and (using (*)) it has derivative 0 at 
every point of K. 0 

The above method can be also w:led to show the following result of 
Mauldin: The class of Besicovitch functions is Borel IIi-complete, where a 
Besicovitch function is a continuous function on [0, 1] with no one-sided, 
finite or infinite, derivative at any point. (Besicovitch first proved that 
such functions exist.) Finally, one can show that the class of functions in 
L 1 (1I') whose Fourier series diverge everywhere is also Borel IIi-complete 
(Kechris). (Kolmogorov first showed that such functions exist.) 

33.1 Topological Examples 

Given an open set U c;:; ]R.2, we define its components as being the equiv
alence classes of the following equivalence relation on U: p rv q iff there is 
a path from p to q contained in U (i.e., a continuous map, : [0,1] ---> U 
with ,(0) = p, ~((1) = q). A Jordan curve in ]R.2 is a homeomorphic copy 
of T. By the Jordan Curve Theorem, if J is a Jordan curve, then ]R.2 \ J 
has exactly two components: one bounded and one unbounded. We call the 
bounded component the Jordan interior of J, Jint(J). 

\iVe say that a compact set K c;:; ]R.2 has no holes if for every Jordan 
curve J c;:; K, Jint(J) c;:; K. Denote by NH the class of compact sets with 
no holes. We say that K is simply connected if it is path connected (i.e., 
every two points of K are connected by a path contained in K) and has no 
holes. We denote their class by SCON. 
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(33.17) Theorem. (Becker) The sets NH and SCON are IIi -complete. 

Proof. \Ve will only give the proofs that NH is IIi-complete and SCON is 
IIi-hard. The proof that SCON is actually IIi is much harder and we will 
not give it here. 

\Ve compute first that NH E IIi. Denote by JC the class of Jordan 
curves. JC C;;; K(JR:.2). 

(33.18) Lemma. JC is :Ei and the set {(x, J) E JR'.2 X JC : ;7.: E Jint(J)} lS 

clearly open in JR:.2 x JC, 80 it is also :Ei in JR:.2 x K(JR:.2). 

Proof. \Ve have 

K E JC ¢o} 3h E C(1f, JR:.2)(h is injective & K = h(1f)). 

Now for h E C(1f, JR'.2), 

h is not injective ¢o} 3x3y(:r 1= y & h(:r) = h(y)). 

The set 
R = {(h.x,y)::r 1= y &, h(:r) = h(y)} 

is Fer in C(1f.JR:.2 ) x 1f2, so since 1f is compact. {h: 3x3y(h.x,y) E R} is Fer 
in C(1f, JR:.2), thus 

{h E C(1f,lR'.2): h is injective} 

is G b. Also if {Un} is an open basis for JR:.2, 

K = h(1f) ¢o} Vn(K n Un 1= 0 ¢o} h(1f) n Un 1= 0} 

and {h : h(1f) n Un 1= 0} is open, so {(h. K) : h(1f) = K} is Dorel in 
C(1f. JR:.2) x K(JR:.2 ), and JC is thus :Ei. 0 

\Ve now have that 

L tJ- NH ¢o} 3x3K(K E JC & x E Jint(K) &, K C;;; L &, J' tJ- L), 

so NH is IIt. 
We will show now that \VF can be reduced by a continuous function 

to NH and SCON. 
We will use below a standard example of a connected but not path 

connected compact set in JR:.2, as in Figure 33.5. 
To each tree T on N, we will assign a sequence of compact sets K'} C;;; 

JR:.2, n 2: 1, with K} C;;; Ki, C;;; ... , so that KT = Un Ky is also compact, 
T f---+ K T is continuous, and 

T E WF ¢o} Kr E NH ¢o} KT E SCON. 

Construction of K}: K} consists of a horizontal segment l, a verti
cal segment 10, and a line p from a point r to the left end of I, together 
with a "zig-zag curve" as in Figure 33.5 converging to If/J (see Figure 33.6). 
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FIGURE 33.5. 

Moreover, enumerating as 0,1,2, ... the local minima of this curve, we 
hang down a line segment T(n) below the nth minimum iff (n) E T. The 
bottom of this segment is half the distance from T to l. (In Figure 33.6, 
(n) E T B n = 0,2,5, .... ) 

Construction of Kf : Kf consists of K} together with some additional 
"zig-zag curves" and line segments as in Figure 33.7: We add a line i(n) iff 
(n) E T and this line goes from i to the same height as the bottom of T(n) 

and lies vertically between the nth and (n + 1 )th local minimum of the 
"zig-zag curve" of J<}. For exactly these n we also add a "zig-zag curve" 
converging to i(n) starting from the bottom of T(n)' Finally, we hang a line 
segment T(n.m) from the mth local minimum of the "zig-zag curve" starting 
from the bottom of T(n) iff (n, Tn) E T. The bottom of 1;his line segment 
is half the distance from l to the bottom ofT(n)' (In Figure 33.7, (O,m) E 

T B TTl = L 3, ... , (2, m) E T B Tn = 0, ... , (5, m) E T {co} 172 = 2, .... ) 

We proceed analogously to define K¥ recursively. The verification that 
KT = Un K¥ works is straightforward. Notice that KT is path connected. 

o 

33.J Homeomorphisms of Compact Spaces 

Let X be a compact metrizable space and h E H(X) a homeomorphism of 
X. We call h periodic if for some n, and all.T, hn(x) = x (i.e., all orbits of 
h have finite cardinality "S k, for some k). 

(33.19) Exercise. Show that the set of periodic homeomorphisms is 'Eg in 
H(X). 

Let us say now that h E H(X) is quasiperiodic if all orbits of hare 
finite. 
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(33.20) Theorem. (Kechris) The set QP of quasiperiodic homeomorphisms 
of C is IIi -complete. 

Proof. For hE H(C) 

hE QP ~ V£Jn(hn(:r) = x), 

and so QP is IIi. 
Consider now the following set of pruned trees on 2: 

S = {T E PTr2 : ::Ix E [T](for infinitely many n, xln has a unique 

immediate extension x I n A i (= .r I (n + 1)) E T)}. 
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If sET and there is a unique immediate extension s'i Eo T, then we say 
that s is a non-split of T. Thus 

S = {T E PTr2 : =:Jx E [T](there are infinitely many non-splits xln)}. 

We will show that S is I;i-complete and that it can be reduced by a con
tinuous function to rv QP. This will complete the proof. 

(33.21) Lemma. Sis I; i-complete. 

Proof. Clearly, S is I;i. Recall now the I;i-complete set IF2 of 27.3. We 
will show that IF2 can be continuously reduced to S. 
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By a k-tree, we mean a nonempty finite tree t ~ U71<k 2" s11ch that 
if v. E t and length(u) < k, then 7I has at least one imm(Xliate extension 
v.' 'i E t. By recursion on k we will associate to each k-tree t a 2k-tree t* 
and maps i) u f--+ u* from t to t* such that length(u*) = 2·length(u) and, 
ii) v f--+ v* from all even length sequences of t* into t, s11ch that (u*)* = u. 
Moreover, if for 71. E 2<N we let 

lui = number of 1 's in It, 

and for any v E t* of even length, say 21, we let 

117)11 = the number of non-splits of t*contained in vl(21 ~ 1), 

i.e., Ilvll is the number of m ::; 21 ~ 1 such that vim has a unique immediate 
extension (i.e., vl(m. + 1)) in t*, then we will also havc 

so Ilu*11 = lui. Finally, the map t f--+ t* and the associatedu*,7'* are 
monotone: If t :< 5, in the sense that t = s n UnSk 2", then t* :< s* and 
u~w=}u* ~w*, v~z=}v* ~z*' 

If this can be done, for each T E PTr2 let T" = Tn (U71<k 2") and 
put T* = Uk:(Tk )*. If T E IF; and x E [T] has infinitely many l's, then 
x* = Uk(xlk)* is such that there are infinitely many non-splits :r*ln, so 
T* E S. Conversely, if T* E Sand y E [T*] is such that yin is a non-split 
for infinitely many n, and x = Y* = Uk (yI2k)*, then x has infinitely many 
I's, so T E IF;. So T E IF; ~ T* E S, and T f--+ T* is clearly continuous. 

\Ve define now t f--+ r and the associated maps u f--+ 11*. U f--+ 7'*. by 
recursion on k. 

Bas'is: k = O. Let t = {0}, t* = {0}, 0* = 0, and 0* = 0. 

Induction step: k ---) k + 1. Assume t ---) t* and the associated maps have 
been defined for all k-trees. Let t] be a k + I-tree and put t = t1 n Un<k 2" 
so that t is a k-tree. -

We define ti as follows: First, tl n Un<2k 2" = t*. Next let v E t* n 22k. 
We will define the extensions of v in f[ by-considering cases: 

If 11 is not of the form u* for u E t n 2"', we put allvAi. vAiAj for 
i,j E {OJ I} in ti. 

If v = u* for u E t n 2k, we consider subcases: 

Subcase 1. u AlE t 1 . Then we put 

vAi, v'iAj E tr for all i.j E {O, I}. 



:13. Examples 261 

\>\Te now describe the map Ul f-+ ui for Ul E tl. If Ul =, U E t*, then u* 
has been already defined. Else Ul E 2k+l. Put U = ullk. Then we define ui 
according to the preceding subcases. In Subcase 1, we put (u A 1)* = u* A 1 AO, 
and if uAO E t l , (uAO)* = u* '0'0. In Subcase 2, we put (uAO)* = U*AOAO. 

It remains only to define (vd* for VI E ti. Again if VI = V E t*, v. 
has already been defined. Otherwise, VI E ti n 22(k+l). Put. V = VI 12k. If 
VI is not of the form u1: for Ul E tl n 2k+ l , then put (vd* = v* Ai, where 
v. A i is some immediate extension of v. in tl. Otherwise, VI = uj for some 
Ul E tl n 2k+l, and we let (vd* = Ul. 0 

We will find now a continuous reduction of S to rv QP. To do this we 
need some preliminaries on the so-called Lipschitz homeomorphisms of C. 

Given a permutation 11' of 2", n ::0> 1, and a permutation p of 2m , where 
m ::0> n, we write 11' :::; P if p((;TO .... , xm-d)ln = 11'((X() , ... , Xn-l)). If 11'n is 
a permutation of 2n and 11'1 :::; 11'2 :::; .. " then h : C --) C given by 

n 

is a homeomorphism of C called a Lipschitz homeomorphism of C. Note that 
(11' n) is uniquely determined by h, since 11'" ((xo, ... ,.Tn-l)) = (Yo, ... , Yn-d 
iff h(N(xo ... ,xn _,)) = N(yo .... 'lln_,). 

Given a Lipschitz homeomorphism h as above, we deJine its orbit tree 
Th as follows. First notice that for n ::0> 1 and an orbit (j of 11'71 on 211 exactly 
one of the following happens: \>\Then we look at 11'n+l, (j extends to one orbit 
or to two orbits as in Figure 33.8. (In particular, card((j) = 2m for some 
m.) 

So we can form a binary tree (i.e., a tree in which every node ,5 has at 
most two immediate extensions 8 A a) as follows: The nth level of Th consists 
of the orbits of 11' n on 211. Every nth level node has one or two (n + 1 )th 
level immediate extensions according to the above cases. 

For x E C, there is a unique infinite branch ax E [Th] such that xl(n + 
1) E ax (n). If for all large enough n , ax (n) splits into two orbits as above, 
so that aT I (n + 1) has two immediate extensions inn, then it is easy to 
check that the h-orbit of .T is finite. On the other hand, if for infinitely many 
n, ax I (n + 1) has a unique immediate extension ax I (n + 1 r i = ax I (n + 2) 
in T h , then the h-orbit of x is infinite. It follows that h ~ QP ¢} there is an 
infinite branch a E [Th] such that for infinitely many n, aln has a unique 
immediate extension in Th . 

It is easy now to define for each tree T E PTr2 a Lipschitz homeomor
phism hT of C such that Ther is isomorphic (in the obvious sense) to T and 
T f-+ hT is continuous. Thus 

T E S ¢} hT ~ QP, 

and our proof is complete. o 
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Concerning classes of homeomorphisms we have also the following re
sult. Let (X, d) be a compact metric space. A homeomorphism h of X is 
minimal if there is no proper closed subset of X invariant under h. It is 
distal if for x "I y in X, there is E > 0 such that d(h"(x),hTl(y)) > E, Vn. 
The class of distal minimal homeomorphisms has been studied extensively 
in topological dynamics (see H. Furstenberg [1963]). We now have the fol
lowing result. 

(33.22) Theorem. (Beleznay-Foreman) The set J'vID of minimal distal home
omorphisms of TJ'N is Borel ITt -complete (in H(TJ'N)). 

(33.23) Exercise. Show that for any compact metric space the set of minimal 
distal homeomorphisms is ITt. 

33.K Classes of Separable Banach Spaces 

Consider the standard Borel space of separable Banach spaces as in Exam
ple 3) of 12.E. We will denote it by SB. 

A separable Banach space X is called universal if every separable Ba
nach space is isomorphic to a closed subspace of X. This is equivalent to 
saying that C(2N) is isomorphic to a closed subspace of X. A separable Ba
nach space X has separable dual if X* is a separable Banach space. Denote 
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by NU the class of non-universal separable Banach spacer; and by SD the 
class of separable Banach spaces with separable dual. 

(33.24) Theorem. The classes NU of non-universal separable Banach spaces, 
and SD of separable Banach spaces with separable dual, are Borel II}
complete (in SB). 

Proof. The main part (i.e., that NU, SD are Borel II}-hard) uses an argu
ment due to Bourgain. 

Given K E K(C) \ {0}, consider C(K). The dual C*(K) of C(K) is the 
space of signed or complex (depending on the scalar field) Borel measures 
on K (see 17.32). If K is countable, then C*(K) is isomorphic to II, if K 
is infinite and to lKll (lK = the scalar field) if card(K) = n is finite. So, 
clearly, C* (K) is separable if K is countable. On the other hand, if K is 
uncountable, C* (K) is non-separable. (Consider, for example, the Dirac 
measures Dx for x E K. Then IIDx - Dyll = 2 if x -I y.) Moreover, in this 
case C(K) is universal as can be seen as follows: 

Let L <;:; K be a Cantor set contained in K. By 2.8 there is a continuous 
surjection f : K ---> L. Then the map h E C(L) f---> h 0 f E C(K) is a linear 
isometry, so C(L) is in particular isomorphic to a closed subspace of C(K), 
and C(K) is thus universal. 

So we have for K E K(C) \ {0}, 

K is countable <=? C (K) E NU 

<=? C(K) E SD. 

By 33.B it is enough to show that K f---> C(K) is "Borel" in the sense that 
there is a Borel map K f---> g(K) from K(C) \ {0} into SB sllch that g(K) is 
isomorphic to C(K). 

By 1.32, we can identify K(C) with PTr2. Given T E PTr2 \ {0}, there 
is a monotone map 'PT : 2<N ---> T with length('PT(s)) =, length(s) and 
'PT(S) = s if sET (see the proof of 2.8). It is easy to check that T f---> 'PT 
from PTr2 \ {0} into (2<N?<" (which is homeomorphic to N) is Borel. Let 
fT = 'P"!T (as in 2.5). Then iT is a continuous surjection of C to [T] and 
iT = id on [T]. Thus the map f E C([T]) f---> f 0 iT E C(2N) is a linear 
isometry of C([T]) onto a closed linear subspace g(T) of C(2N). It only 
remains to show that 9 is Borel, and for that it is enough to show that 
there is a sequence (g,,) of Borel functions 9n : PTr2 \ {0} ---> C(2N) with 
{g71(T)} dense in g(T). 

Enumerate, in some canonical fashion, {!n(T)}, the set of all continu
ous functions on [T] which are rational linear combinations of characteristic 
functions of the basic nbhds N, n [T] of [T], and let gn(T) = fn(T) 0 fy. 
It. is not hard to see that T f---> g71 (T) is Borel. Clearly, {gn (T)} is dense in 
g(T). 

It remains to show that NU and SD are lIt. 
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For NU: It is enough to show that for any fixed separable Banach 
space Xu, the set 

{X E SB : Xo is isomorphic to a closed subspace of X} 

is ~l. \Ve can assume, of course, that Xu E SB as well. 
Fix a countable dense subset Do c:;; Xu, which is also closed un

der rational linear combinations. Say Do = {dn }nEN. Then, Xo is iso
morphic to a closed subspace of X {=i- ::J( en) E C(2N)N[Vn( en E X) 
& {en} is closed under rational linear combinat.ions & ::J positive reals 
a,b Vn(bllenll ~ Ildnll ~ allenll) & dn f---> en is a bijection of {dn } with 
{en} preserving rational linear combinations], which is clearly ~}. 

For SD: \Ve will use the following standard fact from Banach space 
theory. 

(33.25) Exercise. Let X be a separable Banach space. Let B j (X*) be the 
unit ball of its dual with the weak *-topology. Then X* is not separable 
iff there is f > 0 and an uncouutable closed set K c:;; Bl (X*) such that 
Ilx* - Y*II > c, for all :r*,y* E K with :r* eI y*. 

So we have 

X ~ SD {=i- 3E > 03K E K(Bl(X*))[K is uncountable & 

V:L"*,y* E K(x* elY* =} 11:r* -Y*II > E)l· 

We will express this now as a ~i property. For each X E SB, let {d;E} be a 
countable dense subset of X closed under rational linear combinations. By 
12.13 we can assume that X f---> (d;E) E C(2N)N is Borel. Put I;E = Ild;Ell. We 
will view every element x* E Bl(X*) as an element of [-1, llN identifying 

it with n f---> ";';~;;) (if d;E = 0, we define this ratio to be 1). (We work 

here with real B~nach spaces; the obvious modifications are made for the 
complex case.) With this identification Bl (X*) becomes a closed subset 
of [- L llN, since it consists of all f E [-1, llN that satisfy the following 
condition: 

for any rationals ql, q2 and any k, m, n with ql d;E + q2d;;' = d-:. (Given 
such an f, the corresponding x* is defined by x*(d;E) = f(n)I?f. Note that 
Ix*(d?f)1 ~ Ild?f11 = l?f.) :Moreover. this identification is a homeomorphism 
of Bl(X*) and this closed subset of [-1, 11N , which we denote by K'X. 
Finally, if .f, 9 E K'X and x*, y* are the corresponding elements of B 1 (X*), 
then 

Ilx* - Y*II = 'mp{I:r;*(d?f)l~y*(d?f) I: d;; eI O} 
n 

= sup{lf(n) - g(n)1 : d~ eI O} 

= sup{lf(n) - g(n11 : n E N} 

= Ilf - gl 
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So we have 

X 'I. SD {;} :JE > O:JK E K([-I, I]N)[K ~ K'X & 

K is uncountable & 

'tff,g E K(f i= 9 =? Ilf - glloo > E)]. 

Now the map X f---> K'X is Borel from SB into K([-I, I]N), as it follows 
from the fact that the relation "f E K'X" is Borel in [-1, I]N x SB and 
28.8. Also "K is uncountable" is ~~ by 27.5. Finally, the negation of the 
last condition in the above expression is 

:Jf,g[j,g E K & f i= 9 & Ilf - gll= S E], 

which is a projection of the K(J" set 

{(K,J, g) E K([-I, I]N) X [-1, I]N x [-1, I]N : 

f, 9 E K & f i= 9 & Ilf - glloo S E}, 

so it is K(J" too. Thus rv SD is ~t. D 

(33.26) Exercise. Show that the relation of isomorphism between separable 
Banach spaces is Borel ~t-complete. In fact, show that the set of separable 
Banach spaces isomorphic to C(2N) is Borel ~t-complete. (You might need 
to use here the following result of Milutin (see, e.g., P. Wojtaszczyk [1991]' 
p. 160): If K is uncountable, compact metrizable, then C(K) is isomorphic 
to C(2N).) 

Show also that the relation of embedding (i.e., being isomorphic to a 
closed subspace) between separable Banach spaces is Borel ~t-complete. 

The following extension of 33.24 has been proved by B. Bossard [1993]: 
Denote by REFL, NLI the classes of separable Banach spaces that are 
reflexive, respectively contain no closed subspace isomorphic to 11. Thus 

REFL ~ SD ~ NLI ~ NU. 

Then there is a Borel function f : Tr -+ SB such that f(WF) ~ REFL and 
f( rv WF) ~ rv NU. In particular, REFL, NLI are also Borel nt-complete. 

We present now an application of 33.24. 
Given a class F of separable Banach spaces, a separable Banach space 

X is called universal for F if every Y E F is isomorphic to a closed subspace 
of X. An old problem in Banach space theory (Problem 4£1 in the Scottish 
Book, due to Banach and Mazur - see R. D. Mauldin [1981]) asks whether 
there is a separable Banach space with separable dual, which is universal 
for the class of separable Banach spaces with separable dual. Wojtaszczyk 
answered this negatively using methods of Szlenk. Bourgain then showed 
that if a separable Banach space X is universal for the above class it must 
be universal (for the class of all separable Banach spaces). We used his 
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argument for this in the proof of 33.24. Let us see how it follows from what 
we have proved here: 

Suppose Xo was universal for the class of separable Banach spaces with 
separable dual. Then {K E K(C) : C(K) is isomorphic to a closed subspace 
of Xo} in ~i (by 33.26) and contains {K E K(C) : K is countable}, which 
is IIi but not ~i, so there must be some uncountable K with C(K) iso
morphic to a closed subspace of X o, thus C(K) is universal and so is Xo. 

33.L OtheT Examples 

First we consider an interesting example of a IIi-complete, set of probabil
ity measures, that is studied in harmonic analysis. Recall from 23.10 the 
concept of a (closed) H-set. Denote by H.L the set of probability Borel 
measures on 1I' which annihilate H, i.e., It E H.L -¢=} \::IK E H(jL(K) = 0). 

(33.27) Theorem. (Kechris-Lyons, Kaufman) The set H.L is IIi -complete 
(in P(1I')). 

In 4.10 we saw that the extreme boundary acK of a compact metrizable 
convex set K (in a topological vector space) is G () in K. Actually, it can be 
shown (see G. Choquet [1969], Vol. II, p. 189, and R. Haydon [1975]) that 
every Polish space is homeomorphic to such a ae J(. On the other hand, if F 
is a closed, convex bounded set in a separable Banach space, aeF is easily 
a IIi set. In fact we have: 

(33.28) Theorem. (Kaufman) Every sepamble rnetrizable co-analytic space 
is homeomorphic to some aeF, F a closed convex bO'UTuled set in a sepamble 
Banach space. 
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34. Co-Analytic Ranks 

34. A Ranks and Prewellorderings 

Given a set S a rank (or norm or index) on S is a map 'P : S ......, ORD. 
Such a rank is called regular if 'P(S) is an ordinal, i.e., an initial segment 
ofORD. 

A prewellordering on a set S is a relation :s: on S which is reflexive, 
transitive, and connected (i.e., x :s: y or y :s: x for any x, yES) and 
has the property that every nonempty subset of S has a least element, or 
equivalently the strict part x < y ? x :s: y & --, y :s: x is well-founded. If :s: 
is a prewellordering, consider the associated equivalence relation 

x ~ Y ? x :s: y & y :s: x. 

Then :s: induces a relation, also denoted by :S:, on S/ ~, namely 

[xl~ :s: [Yl~ ? x :s: y. 

Clearly, :s: on S / ~ is a wellordering. 
To each rank 'P : S ......, ORD on S we associate a prewellordering :S:'P 

by 
x :S:'P Y ? 'P( x) :s: 'P(y), 

Conversely, given a prewellordering :s: on S, there is a unique regular rank 
'P : S ......, 0 RD such that :s: = :s: 'P' defined as follows: Let 1/J : S / ~ ......, 
ORD be the canonical isomorphism of (S/ ~,::;) with an i:litial segment of 
ORD and put 'P(x) = 1{!([xl~). Calling two ranks 'P, 'P' on S equivalent if 
::;'P = :S:'P" we see therefore that every rank has a unique equivalent regular 
rank. 

34.B Ranked Classes 

A key property of the co-analytic sets is that they admit ranks with nice 
definability properties. Roughly speaking, given a IIt set A in a Polish 
space, there is a rank 'P : A ......, WI such that the initial segments AE = {x E 

A: 'P(x) :s: 0 are at "uniformly". We will make this more precise below. 
Let f be a class of sets in Polish spaces. Let X be a Polish space and 

A ~ X. A rank 'P : A ......, ORD is called a r-rank if there are relations 
:s:~,:s:~ ~ X x X in f, t respectively such that for yEA: 

'P(x) ::; 'P(y) (? x E A & 'P(.r) ::; 'P(Y)) 

? x ::;~ Y 

? x :s:~ y. 

In other words, the initial segments :s:~ are uniformly in r n t = ,6.. This 
notion is primarily of interest if A itself is in f. Note that 'P being a f-rank 
depends only on :S:'P' 
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(34.1) Exercise. Let <'P be the strict part of 5o'P' i.e., x <'P y ¢} ip(x) < ip(y). 
Show that if r is closed under continuous preimages, finite intersections and 
unions, and A E r, then ip : A ---7 ORD is a r-rank iff there are relations 
<~, <& in r, t respectively such that for yEA: 

x <'P Y (¢} x E A & ip(x) < ip(y)) 

¢} x <~ y 
r 

¢} x <'P y. 

We give now another convenient reformulation of the concept of r
rank. Given A <:;;; X and a rank ip : A --+ ORD, we ext.end ip to X by letting 
for x E X \ A, ip(x) = 00 = the first ordinal of cardinality bigger than the 
cardinality of ip(x) for all x E A. So ipCT) < ip(Y) if x E A and y rf A. Now 
define the relations 50~, <~ <:;;; X x X by 

x 50~ y ¢} x E A & ip(.T) 50 ip(Y) 

(¢} x E A & (y tJ. A or (y E A & ip(x) 50 p(y)))), 

x <~ y ¢} x E A & ip(x) < p(y) 

(¢}:r: E A & (y tJ. A or (y E A & p(x) < p(y))) 
¢} p(x) < p(y)). 

(34.2) Exercise. Assume r is closed under continuous preimages and finite 
intersections and unions. If A E r, then p : A --+ ORD is a r-rank iff 
50~, <~ are both in r. 

(34.3) Exercise. Let r, A, p he as in 34.2. Show that p is a r-rank iff there 

are relations < ~, < ~ in t such that for yEA, 
~'y. '+' 

p(:r:) 50 p(y) (¢}:r: E A & p(x) 50 p(y)) 
t ¢} X 5o'P y, 

p(x) < ip(Y) (¢}:r: E A & ip(x) < p(y)) 
t 

¢} x <'P y. 

We say now that a class r is ranked or has the rank property if every 
A E r admits a r-rank. (Other terminologies used include: normed or has 
the prewellordering property.) 

34. C Co-Analytic Ranks 

A fundamental property of the IIi sets is the following: 

(34.4) Theorem. The class IIi of co-analytic sets in Polish spaces is ranked. 
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Pm oj. It is enough to show that some IIi-complete set admits a IIi-rank. 
We will work with WO (see 33.A). 

If x E WO, then Ax = (f'J, <x) (where rn <x n {:} x(rn, n) = 1) is a 
wellordering, so it is isomorphic to a unique ordinal 0'1 = p( <x), which is 
traditionally denoted by IxI- (Clearly, {Ixl : x E WO} = lUI \ w.) We will 
show that x f--) Ixl is a IIi-rank. By 34.3, it is enough to find relations 
:s~i, <~i sHch that for y E WO: 

Put 

and 

x E WO & Ixl :s Iyl {:} :r :s~i y, 

x E WO & Ixl < Iyl {:} x <~i y. 

x <~; y {:} ~k~f E f'JNVrnVn[J(rn) <y k & 

(rn <x n =? f(rn) <y f(n))]. 

Clearly, these work. o 

Actually, froIll the preceding proof we have the following additional 
information. 

(34.5) Corollary. (of the proof) Every IIi set A in a Polish space admits 
a IIi -rank <p:A --7 WI. 

If <p : A --7 a is a r-rank, then for each ~ < a let 

AE = {x E A : <p(x) :s O· 

Then A~ is in fl = r n r, A~ S;; ATl if ~ :s 7/, and A = UE<<> A~. So A is the 
union of an a sequence of sets in fl. In particular, we see again that every 
IIi set is the union of WI ai (= Borel) sets (see 32.B). Also, if <p : A --7 WI 

is a IIi-rank on a IIi but not Borel set, then sup{ip(x): x E A} = WI. 

(34.6) Exercise. i) Show that T f--) p(T) is a IIi-rank on the IIi-complete 
set WF (of well-founded trees on N). 

ii) (Solovay) Show that if X is Polish, A S;; X is III and E is a :Ei 
equivalence relation on X such that A is E-invariant, then there is a IIl
rank ip: A --7 WI such that ip is E-invariant (i.e., x:,y E A & xEy =? ip(x) = 

ip(Y))· 

(34.7) Exercise. Let T be a tree on f'J x N, A = p[T], and G = ~ A. For 
x E G, let ip(x) = p'(T(x)) = PT(x)(0). Show that ip: G --7 WI is a IIi-rank 
on C. Note that the decomposition C = U~<Wl GE, where G~ = {x : ip(x) :s 
0, corresponds exactly to that given in 25.16. 
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Remark. Note that the concept of IIi-rank 34.4 and 34.5 extend in an 
obvious way to lIt sets in standard and analytic Borel spaces. 

Theorem 34.4 gives us an abstract ranking with nice definability prop
erties for any given co-analytic set. In many concrete situations, however, 
it is important to be able to find a "natural" IIi-rank on a given lIt set 
which reflects the particular structure of this set. For example, in the proof 
of 34.4 and in 34.6 we found such "natural" rankings associated with \VO 
and WF. 

Canonical rankings often arise in practice from Lrallsfinite iteration of 
derivation processes, such as the Cantor-Bendixson derivative (see 6.10). 
We will next discuss rankings associated to ~mch processes and show that 
under fairly general conditions they lead to IIi-ranks. \Ve will use this 
then to compute canonical IIi-ranks for some of the Ill-complete sets we 
discussed in Section 33. 

34.D Derivatives 

Let X be a set and V c;: Pow(X) be a collection of subsets of X closed 
under nonempty intersections. Typical examples we have in mind are 

i) V = Pow(X); 
ii) X a Polish space and V = F(X) or V = K(X). Note that the 

case V = F(X) contains that. of i) when X is countable (with the discrete 
topology). 

A derivative on V is a map D : V ---+ V such that D(A) c;: A and 
A c;: B =? D(A) c;: D(B). If D is a derivative and A c;: X, A E V, we define 
by transfinite recursion its iterated derivatives as follows: 

DO(A) = A. 

Dcx+1(A) = D(D"(A)), 

DA(A) = n D"(A) if A is limit. 
n<A 

Note also that 
D"(A) = n D(Dd(A)) if a> O. 

(3<00 

There is a least ordinal a < card(X)+ such that D"(A) = Dn+l(A) (= 
DB(A), '</(3 2 a). We call it the D-rank of A, denoted as lAID. We also 
put DOO(A) = DIAID (A). If x E A \ DCXJ(A), we let Ix, AID = the (unique) 
ordinal a such that x E DQ(A) \ Dn+l(A) and call lx, AID the D-rank of 
x in A. 

We can also define the dual notion of expansion. Let [c;: Pow(X) be 
closed under nonempty unions. A map E : [ ---+ [ is an expansion if E(A) "2 
A and A c;: B =? E(A) c;: E(B). We define E"(A), IAIE, EX(A), lx, AlE 
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for A E [; by dualizing in the obvious fashion the preceding definitions. 
Note that if D : D --+ D is a derivative, its dual iJ : l) --+ D, where 
D = {rv A: A E D}, given by iJ(A) = rv D(rv A) is an expansion and vice 
versa. 

We now discuss some examples. 

1) Let X = A<N, D = Pow(X), and D(T) = {s E T: :3a E A(s'a E 

T) }. If T is a tree on A, so are all DQ (T), and D= (T) is the largest pruned 
subtree of T. So T is well-founded iff D=(T) = 0. This is the same as the 
derivative introduced in 2.11, where in that notation T* =, D(T), T(a) = 

Dr>(T), and T(=) = D=(T) for a tree T. Also, Is, TID = PT(S). 

2) Let X = A<N, D = Pow(X), and D(T) = {s E T: :3t,u E T(t:;2 
8, U :;2 s & t 1.. 11)}. If T is a tree, so are all D" (T), and DOG (T) is the largest 
perfect subtree of T. So, for countable A, [T] is countable iff DX (T) = 0. 
This is the same as the derivative introduced in 6.15. 

3) Let X = N<N, D = Pow(X), and D(T) = {s E T : :3u E T(u :;2 
8 & for infinitely many n, u'n E T}. Again if T is a tree, so are all DQ(T), 
and Dec (T) is the largest superperfect subtree of T. So [T] is O'-bounded iff 
D= (T) = 0. (See also 21.24 here.) 

4) Let X = (N X N)<N, D = Pow,(X) and D(T) = {(s,u) E T : 
:3(t, v), (r, w) E T[(t, v) :;2 (8,11) & (r, w) :;2 (8, u) & t 1.. rn. [f T is a tree, so 
are all D"(T). Also, p[T] is countable iff D=(T) = 0 (see 29.2). 

5) Let X = T be a nonempty pruned tree on some set A, let [; = 
Pow(X), and define the following expansion on [;: E(P) ,= P u {p E T : 
length(p) is even & Ya E A[p'a E T =? :3b E A(p'a'b E pm. If S ~ T is a 
subtree and Ps = {p E T: length(p) is even & p tic S}, then in the notation 
of 20.2, S ~ = E~ (Ps ), so player II has a winning strategy in G (T, [SD iff 
o E g>c(Ps). 

6) Let X be a Polish space and D = F(X) or D = K(X). Given a 
hereditary set B ~ D ( i.e., A E B & (B ~ A, BED) =? B E B), define 
the following generalized Cantor-Bendixson type derivative: 

DB(F) = {x E F : Y open nhbd U of x (U n F tic B)}. 

Note here that U can be restricted to a basis of X since B is hereditary. 
Put 

IFIB = IFIDB' Ix,FIB = Ix,FIDB' 
and note that IF 113 < Wl· 

The following is a basic fact concerning DB. 

(34.8) Proposition. For any FED, D'B(F) = 0 iff FE Bu. 

Proof. Let D'B(F) = 0. Given x E F, let ct = lx, FIB. Let {Un} be a basis 
for X. Then for some n, x E Un n D'B(F) E B. Since ct < IFIB < Wl, 
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there are only countably many such UTI n D'B(F), so F E Ba. Conversely, 
if F = UTI FrI , Fn E B but D'B(F) cf 0, by the Baire Category Theorem 
there are Tn, n with 

Um n D[3(F) cf 0 &: Urn n Ds(F) c:: Fn. 

If x E Urn n Da(F) and D'B(F) = D'B(F), then y: tJ. D~+l (F) = D'B(F), a 
contradiction. D 

If B = {{x} : .r E X} u {0}, then DB(F) = F' is the Cantor-Bendixson 
derivative. If V = F(X) and B = K(X), then DB is a derivative such that 
DB (F) = 0 iff F is in K (T' 

(34.9) Exercise. Let X = N in Example 6). Define the following derivative 
DB on Pow(N<N): DB(T) = {s E T : [T[.,ll (= [T] n N s ) tJ. B}. Show that 
for a tree T, [DB(T)] = D[-i([T]). 

34.E Co-Analytic Ranks Associated with Borel Derivatives 

(34.10) Theorem. Let X be a Polish space and eitheT V = K(X), aT X is 
also Ka and V = F(X). Let iJ:V -+ V be a BOTel deT'ivative. Put 

~~n = {F E V: D'X(F) = 0}. 

Then flD is ITt and th" map F f-t WID is a ITt-rank on flD. 

Pmof. We will use the following simple fact about V. 

(34.11) Lemma. Let X be a Polish space and V = K(X), aT X is also Ka 
and V = F(X). Then the map n : V N -+ V, given by n(Fn) = nn Fn , lS 

BOTel. 

Pmof. Let {Un} be a basis of nonernpty open sets in X. 
If V = K(X) and U is open in X, then Un(nn Fn) cf 0 ifL::lrn'lirz(Um c:: 

U &: Urn n (ni<n Fi ) cf 0), so n is Borel since finite intersection is Borel in 
K(X) by 11.4 -ii). 

If X is Ka and V = F(X), let X = Un K n, Kn E K(X) and note that 

n n 

But for any K E K(X) the map F E F(X) f-t F n K E K(X) is Borel, 
because if X is a compactification of X, then F E F(X) f-t F E K(X) is 
Borel and F n K = F n K (where F is the closure of F in X). It. follows 
that (F1 , ... , Frn) -+ K n Fl n ... n Fm is also BoreL and we are done as 
before. D 
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For convenience, we will now introduce a variant of \\'0 and the rank 
x f---> Ixl. Denote by LO* the set of x E 2NxN which encode a linear ordering 
on some subset of N, which has as least element O. In other words, if for 
x E 2NxN we let D*(x) = {rn EN: x(rn,rn) = I} and we define rn S;: n B 

rn, n E D*(x) & x(rn, n) = 1, then by definition 

x E LO* B 0 E D*(x) & S;~ is a linear ordering of D*(x) & 

OS;; rn, \:1m E D*(:r). 

Clearly, LO* is closed in 2NxN. \Ve denote by \VO* the set of x E LO* for 
which S;,; is actually a wellordering and by Ixl* the associated ordinal < WI· 

As for \VO and x f---> lxi, we can see that WO* is IIi-complete and x f---> Ixl* 
is a IIi-rank on WO*. Note that {Ixl* : x E WO*} = WI \ {O}. 

To prove the theorem, we claim that it is enough to prove the following: 

ii) There are ~i relations R, S S;; LO* x D such that 

a) If FE flD \ {0}, then 

x E WO* & Ixl* s; WID B R(x, F). 

b) If x E WO*, then 

FE flD & WID = Ixl* B S(x, F). 

Indeed, granting these, we have for FEnD \ {0} that 

HE flD & IHID S; WID B H = 0 or =:Jx[R(x, F) & S(x, H)], 

which is clearly ~}. Also, 

HE flD & IHID < WID B H = 0 or =:Jx[R(x' , F) & S(x, H)], 

where x f---> x' is a Borel function from LO* to LO* such that x E WO* iff 
x' E WO*, and for x E \VO* we have Ixl* + 1 = Ix'l*, so that this is also 
~i. By 34.3, F f---> WID is a IIi-rank. 

So it remains to prove i), ii). 

For i): We have 

F tJ. flD B =:JH S;; F[D(H) = H & H cJ 0], 

For ii): Put 



274 IV. Co-Analytic Set~ 

R(x, F) <=} x E LO' & 3h E V N (h(O) = F & 

vrn E D*(x) [h(rn) cI 0 & 

(mclO=?h(rn)c:,; n D(h(n)))J) 
n<~n"/" 

(where n <:; m <=} n cI rn & n ::;:. rn). To see that this works, let F E 

rl D \ {0}. Direction =? of a) is clear. For <=, notice first that if 0 cI rn E 

D*(x), then for some 0: < IFID we have nn<'rn D(h(n)) cf D"'+l(F). 

(Otherwise, for all 0: < IFID. 0 cI h(rn) c:,; nn<'r: D(h(n)) c:,; DQ+1(F), so 

D=(F) = nc.<IFID D"+l(F) cI 0.) So put f(O) ~ 0 and for 0 cI rn E D*(x): 

f(rn) = least ex < IFID such that n D(h(n)) cf DU+1(F). 
n<~ rn 

We claim that rn <; p =? f(rn) < f(p), so f is order preserving from <:: 
into IFID, and thus x E WO* & Ixl* ::; IFID· To see this, note that for 
o cI Tn E D*(x), 

n D(h(n)) c:,; n D a +1 (F) = Df(mJ(F). 
n<:,m n<f(m) 

so h(rn) c:,; nn<'m D(h(n)) c:,; Df(m)(F), and thus D(h(rn)) c:,; Df(m)+l(F). 

So ifrn <:; p, then nq<;pD(h(q)) c:,; D(h(rn)) c:,; Df(m)+l(F) and therefore 

f(rn) < f(p). The case rn = 0 can be proved easily. 
Finally, let 

S(x. F) <=} x E LO* & 3h E VN ( h(O) = F & 

vrn E D*(x) (h(rn) cI 0 & 

(rn cI 0 =? h(rn) = n D(h(n)))) & 
n<.;. rn 

n D(h(rn)) = 0). 
mEV'(.T) 

Then S is ~~ by 34.11, and satisfies easily b). o 

Remark. One can show (using, for example, 27.10 and its hint) that in 34.10 
and for the case V = F(X) the assumption that X is Ker is necessary. 

(34.12) Exercise. Let X be Polish and either V = K(X), or X is K" and 
V = F(X). Let B c:,; V be hereditary Borel. Show that DB is Borel and 
thus 34.10 holds for rlD/3 (= V n Ber) and F f--> IFIB' 
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(34.13) Exercise. The following parametrized version of 34.10 is very useful 
in applications. 

Let X, V be as in 34.10, let Y be a standard Borel space and let 
!Dl : Y x V ---+ V be Borel such that for each y E Y, !Dly is a derivative on V. 
Put 

stj[]) = {(y, F) : !Dl;: (F) = el}. 
Show that stj[]) is IIi and that the map (y, F) 1---+ IFID" is a IIi-rank on stj[). 

(34.14) Exercise. Formulate and prove an analog of 34.10 for expansions. 

(34.15) Exercise. Let D be a Borel derivative on Pow(N) (= F(N)). Let 
no EN. Put 

st~) = {A <;;; N: no'/:. DOC (A)}. 

Then st~) is IlL and the map A 1---+ IAI~o = least Q such that no '/:. DO'(A) 
is a IIi-rank on Sl']!;'. 

Prove a similar result for expansions on Pow(N). 

(34.16) Exercise. Let X be Polish and D a derivative OIl F(X). Assume 
that 

S(F, H) {=? F <;;; D(H) 
is :Ei. Show that stD (= {F E F(X): D=(F) = el}) is IIi and if A <;;; st D is 
:Ei, then sup{lFlv : F E A} < WI. In particular, show that this applics to 
the Cantor-Bendixson derivative and in fact all DB for B <;;; F(X) hereditary 

lIt· 

84. F Examples 

1) Consider Example 1) of 34.D. The set st D n Tr is clearly the same 
as WF and the IIi-rank T 1---+ ITID (restricted to WF) is clearly the rank 
T 1---+ p(T) discussed in 34.6. 

(34.17) Exercise. Define a parametrized derivation, as in 34.13, which gives 
appropriately the canonical IIi-rank on WO, which was defined in the proof 
of 34.4. 

(34.18) Exercise. Consider the example discussed in 33.2. Given a linear 
ordering (A, <), we define a transfinite sequence of equivalence relations 
(Eo:) on A as follows. For x:S: yEA, put [x,y] = {z: x ~; z:S: y} and, by 
abuse of notation, also put [x, y] = [y, x] if x 2: y. Then let 

Eo ={(x, x) : x E A}, 

E rx+1 ={(x,y): :3xl:3X2 ···:3Xn (Xl,' . .,Xn E [x,y] 

& \::jz E [x, y]:3i( zEa Xi) n, 
E), = U Eo" if A is limit. 

a<), 
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Show that Eo c;:; E1 c;:; "', and if we let EX) = Ul' E a , then 

(A. <) is scattered iff Ex = A x A. 

Use this to define a canonical rank on the set SCAT and show that it is a 
IIi-rank. 

2) Consider next the set 

tVll = {S E Tr: II has a winning strategy in the game G(N. [S])}. 

Let E be the expallsion defined in Example 5) of 34.D (for X = N<P''). 
Using E we can assign the following rank on T-VlI : 

15111 = the least ~ such that 0 E S~ (= E~(PS')). 

By 34.1.5 we see that WII is IIi (and complete by 33.1 iii)) and 5 f---> 15111 
is a IIt-rank. 

3) Let X be a Polish space, let V = K(X), and let D = DB, where 
B = {{x} : x E X} U {0}, be the Cantor-Bendixson derivative. Since B is 
clearly Borel, we have by 34.12 that K f---> IKID = IKlcB is a IIi-rank on 
the II} set flo = KNo(X). If X is also Krr and V = F(X), then the same 
D shows that F f---> WlcB is a IIi-rank on the IIt set FNo(X). 

On the other hamL the Cantor-Bendixsoll rank is not a IIt-rank on 
the IIi set FN()(X), when X is not 1(,. To see this, notice that X, since 
it is not K rr • contains a closed subspace homeomorphic to /1,{ (see 7.10), so 
we can assume that X = N. Now if F f---> WlcB was a IIt-rank, the set 
A = {F E FNo(N) : IFlcB <:; I} = F(N) \ {F E F(N) : F' -I- 0} would be 
BoreL which contradicts 27.8. 

(34.19) Exercise. Use Example 2) of 34.D to find a canonical IIi-rank on 
FNo(N). 

\\Te do not know a "natural" IIt-rank on FNo(X) for a general Polish 
space X. 

(34.20) Exercise. Let X be a Polish space and consider again KN(I(X), 
As is sometimes customary (see comments following 6.12), we associate to 
K, instead of the least 0: (= IKlcB) such that K Oi = 0. which is always 
a successor ordinal if K -I- 0, its predecessor IKlc~B = 0: - 1. Clearly, 
K f---> IKlcB and K f---> IKlcB are equivalent ranks on K(X) \ {0}. (We also 
let 101c'H = 0.) 

\\T e define now the Cantor-Bendixson degree of K E K No (X) to be the 
(finite) cardinality of the compact set K", where (t = IKlcB' Denote it by 
d(K). Thus d(K) < uJ, and d(K) = 0 iff K = 0. Put now 

IIKllcB = uJ . IKlc~B + d(K). 
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Note that IIKllcB is essentially the pair (IKlcB' d(K» ordered lexicograph
ically, i.e., 

IIKllcB::; IILllcB ~ IKlcB < ILlcB or (IKlcB = ILlcB &: d(K) ::; d(L». 

Show that K f--+ IIKllcB is a IIi-rank on KNo(X). 

4) (A. S. Kechris and W. H. Woodin [1986]) We will now describe 
a canonical IIi-rank on the IIi set DIFF of differentiable functions in 
C([0,1]). 

For 1 E C([O, 1]) and ° ::; x < y ::; 1, let 

6.f (x, y) = I(x) - I(Y). 
X-Y 

Given a positive rational E > ° and 1 E C([O, 1]), define the following 
derivative on K([O, 1]): 

DE.j(K) = {x E K : V open nbhd U of x 

:3 rational p < q, r < 8 in Un [0,1] such that 

([P, q] n [r,8] n K -1= 0 & l6. f (p, q) - 6.f (r, 8)1 2: E)}. 

It is easily seen that DE.j is Borel uniformly in E, I, i.e., D(E, I, K) 
DE.j(K) is Borel. 

(34.21) Exercise. If 1 E C([O, 1]), K E K([O, 1]) \ {0}, and "Ix E K(f'(x) 
exists), then DE.j(K) is nowhere dense in K, so DE.j(K) ~~ K. 

It follows that for 1 E C([O, 1]), 

1 E DIFF ~ "IE E rQ+(D~f([O, 1]) = 0). 

Note that it is enough here to restrict E to the numbers lin for n E N\ {a}. 
Now define 

I/IDIFF = sup I[O,l]ID'.f 
EEiQI+ 

= sup 1[0, 1]ID1 / n !" 
n>O 

(34.22) Exercise. Show that for 1 E DIFF, {x E [0,1] : f' is discontinuous 
at x} = UE EiQI+ DE.j([O, 1]), so that 

I/IDIFF = 1 ~ 1 E C1([0, 1]). 

(34.23) Exercise. Show that if lo(x) = x2 sin(l/x) for x -1= 0, 10(0) = 0, 
then I/olDIFF = 2. (One can actually construct examples of 1 E DIFF with 
I/IDIFF an arbitrary countable ordinal> 0.) 



278 IV. Co-Analytic Sets 

We verify now that f f--+ IflDlFF is a ITt-rank on DIFF. 
Consider the space X = EB~=1 X n , where Xn = [0,1]' and the deriva

tive IDl j on F(X) given by 

IDl j (F) = U DI/n.j(F n X,,). 
71.=1 

Since 1Dl( E, f, K) is Borel, it is easy to see that JfJJ(f, F) = IDl j (F) is Borel 
(from C([O, 1]) x F(X) to F(X)). Also, 

f E DIFF B (f,X) E nlIll 

and, since X is K(T, we have by 34.13 that 

f f--+ IX = IflDIFF 

is a ITt-rank. 
The rank IflDIFF can also be described in a different way, which serves 

to illustrate another method for defining ITt-ranks. 
For f E C([O,I]), E E Ql+, define a tree TJ on A = {(p,q): 0::; P < 

q ::; 1, p, q E Ql} as follows: f/J E TJ and 

((PI, ql),"" (Pn, qn)) E TJ B qi - Pi::; Iii & 
n 

i=1 

Then it is not hard to see that 

f E DIFF B VE E Ql+(TJ is well-founded) 

B vn > O(Tyn is well-founded), 

so we can define 

IfliJIFF = sup{p(TJ) : E E Ql+} 

( = sup{p(Tyn) : n E N, n > O}). 

It can be shown in fact that except for linear f (for which Ifl oIFF = 2), 

IfloIFF = W . IfIDlFF. 

(34.24) Exercise. For f E C([O, 1]), define the following tree: 

Show that 

Sf = {0}U{(n,(pI,qd,···,(Prn,qm)): 

((Pl,qd"",(Pm,qm))ETj/n, n>O}. 
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f E DIFF {o} Sf is well-founded 

and for f E DIFF 

IflDIFF = psf (0). 

Conclude that f f---> IflDIFF is a IIi-rank on DIFF (without using its 
relationship with IfIDIFF)' 

This "tree description" of the rank IflDIFF can be viewed as a combi
natorial analysis of it. Abstractly, from the fact that WF is a IIi-complete 
sct, one can always assign, given a Polish space X and a lIt set A <:;; X, 
a tree Tx to each x E X such that x f---> Tr is Borel and x E A {o} Tx is 
well-founded. Then x f---> p(Tx) is a lIt-rank on A. One often seeks, for a 
given IIi set A, to find a "natural" tree assignment x f---> T~, which reflects 
the structure of A. If a "natural" rank 'P on A can also be described by some 
other means, then this tree assignment and the associated rank x f---> P(T.T) 
often give an essentially equivalent rank and so provide a "combinatorial" 
analysis of 'P. 

5) Let X = C([O, I])N and consider the set CN = {(fr,) EX: (fn) 
converges pointwise}. A canonical rank for CN comes from work of Z. Zal
cwasser [1930] and independently from D. C. Gillespie ane. \V. A. Hurwitz 
[1930]. 

Given (fn) E X and K E K([O, 1]), x E K, the oscillation of (fn) at x 
on K, is defined by 

W(f )(x, K) = inf inf sup{lfrn(x') - fn(x')1 : 
n h>O pEN 

m > n ;::: p & x' E K & lx' - xl < 6}. 

Define for E E Ql+, (fn) E X the following derivative on K([O, 1]): 

It is easily seen that D(c, (fn), K) = Dc(fn)(K) is Borel. 

(34.25) Exercise. If (fn) E C([O,I])N and K E K([O, I]) \ {0} is such 
that Vx E K(fn(x) converges), then DE,(fn)(K) is nowhere dense in K, 
so Dt,(fn)(K) ~ K. 

It follows that 

So for (fn) E CN, define its Zalcwasser rank by 

l(fn)lz = sup I[O,I]ID'I/n)' 
EE«:Jl+ 
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(34.26) Exercise. Show that for (fn) E CN, 1(f,,)lz = 1 {c} (fn) converges 
uniformly (i.e., {(fn) E eN : l(fn)lz = I} = UCx, as in 23.16, for X = 

C([O,l]). 

(34.27) Exercise. Find (fn) E CK with l(fn)lz = 2. (Again, examples of 
(fn) E CN can be constructed with any countable ordinal> 0 as Zalcwasser 
rank.) 

As in the case of DIFF, it is easy to verify that (fn) f--7 l(fn)lz is a 
IIt-rank on CN. 

We can also apply this idea to the set CF of f E C(1I') with everywhere 
convergent Fourier series, to obtain the IIi-rank 

Iflz = I(Sn(f))lz, 

where Sn(f)(x) = L,:~'=_71f(m)ein,": is the nth partial sum of the Fourier 
series of f. In particular, If I z = 1 {c} the Fourier series of f converges 
uniformly. Thus {f E CF: Iflz = I} = UCF (as in 23.17). It follows from 
33.13 and the remarks after 34.5, that for every countable ordinal Ct there 
is f E CF with Iflz > Cl (i.e., there are f E C(1I') that can be expanded to 
Fourier series but for which their convergence is "arbitrarily bad"). 

(34.28) Exercise. Consider the set QP of quasi-periodic homeomorphisms of 
H(X), X compact metrizable (as in 33.,J). For h E H(X), let Bh = {K E 

K(X) : 3n'v'J: E K(h"(J:) = xl}. Show that B" is hereditary Borel and if 
DB" = D" is the corresponding derivative on K(X), then 

Ii E QP {c} X E (B,,)o- {c} X EnD". 

Show that if Ihl = IXID", then h f--7 Ihl is a IIi-rank on the IIi set QP. 
What is {h E QP: Ihl = I}? 

Canonical II}-ranks for other examples of IIi-complete sets we dis
cussed in Section 33 have been studied in the literature, such as for the 
class UNIQ of closed sets of uniqueness, using work of Piatetski-Shapiro 
(see A. S. Kechris and A. Louveau [1989]) and for the class of minimal 
distal homeomorphisms, using the structure theorem of Furstenberg (see 
F. Beleznay and lVl. Foreman [1997]). 
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35. Rank Theory 

85.A Basic Properties of Ranked Classes 

\Ve will first derive some immediate properties of ranked classes, which are 
valid in particular for Ill. 

(35.1) Theorem. Let r be a class of set.s in Polish spaces that contains all the 
clopen sets and is closed 1mder continuous preimages and finite intersections 
and unions. If r is mnked, then: 

i) r has the r'eduction property and t the sepamtion propeTty; and, 
if there is a C -univer'sal set for r( C), then r fails to have the sepamtion 
propeTty and t fails to have the reduction propeTty. 

i'i) If r is closed undeT countable inter'sections, then I' has the numbeT 
unifoTmization property and the genemlized Teduction property. 

iii) If r is closed undeT countable inteTsections and 1mions, then t 
has the genemlized sepamtion propeTty. 

In partienlaT, i) - iii) hold fOT I' = lIt. 
Proof. i) Let A, B C;;; X, X Polish, be in r(X). Put 

(x, n) E R <=} (n = 0 & x E A) or (n = 1 & x E B). 

Then R E r(X x N), so let cp: R --+ ORD be a I'-rank. Put 

x E A* <=} (x, 0) <~ (J';, 1), 

x E B* <=} (x, 1) ::;~ (:r:, 0). 

Then A*, B* E r{X) and reduce A, B. 
The fact about the separation property of t follows from 22.15 i). 

Finally, the last statement of i) follows from 22.15 iv). 
ii) Let R C;;; X x N, X a Polish space, be in r{X x N). Let cp : R --+ ORD 

be a r-rank. For each x E proh·(R), we will look at the n with (x,n) E R 
and choose among them those for which cp(x, n) is least. There may be 
many of them, so we will then choose among them the least one in the 
usual ordering of N. In other words, let 

(x,n) E R* <=} (x,n) E R & 

cp(x,n) = min{zp(x,m) : (x,m) E R} (= a) & 

n = min{m : (x. m) E R & cp(x. m)= a}. 

Then R* clearly uniformizes R. To see that R* E r note that 

(x, n) E R* <=} (x, n) E R & 'v'm[(x, n) ::;~ (x, m)] & 

'v'm[(x, n) <~ (x, m) or n ::; m]. 
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The second statement, about the generalized reduction property, fol
lows from 22.15 iii) (since r is reasonable). 

iii) Follows from ii) and 22.15 ii). 0 

Note that from iii) of the preceding theorem we obtain another proof 
of the Novikov Separation Theorem 28.5. 

It also follows from i) that there are two disjoint II~ sets that cannot be 
separated by a Borel set (e.g., in the space C, and thus in any uncountable 
Polish space). The union of these sets is an example of a co-analytic space 
in which Souslin's Theorem 14.11 fails. 

We will see now some concrete examples of this phenomenon. 

(35.2) Exercise. (Becker) For any set A ~ X x Y, where X, Yare Polish, 
put 

Al = {x EX: Vy(x,y) rt. A}, 

A2 = {x EX: :3!y(x, y) E A}. 

If A is Borel, show that AI, A 2 are II~. Prove that there is a closed F ~ 
N x N such that F I , F2 cannot be separated by a Borel set. 

Use this to show that the following two disjoint II~ subsets of Tr are 
Borel inseparable: WF, VB (see 33.A). Next use the proof of 33.9 to show 
that the following two disjoint II~ sets are Borel inseparable: DIFF, {J E 

C([O, I]) : f'(x) exists except at exactly one point}. Formulate analogous 
results related to 33.11 and 33.13. 

Remark. Note that if A, B ~ X, are II~ sets that are Borel inseparable, 
then for any Borel set P with A ~ P, there is x E P n B, i.e., we have the 
following overspill property: Any Borel condition true for all elements of A 
must necessarily (overspill and) hold for some element of B. 

(35.3) Exercise. Let r contain all clopen sets and be closed under continuous 
preimages and countable intersections and unions. Assume r is ranked. 
Then r satisfies the following Principle of Dependent Choices: 

If A ~ X x N x N, X Polish, is in rand VxVm:3n(x,m,n) E A, then 
for each 9 : X -+ N with graph in ~ there is f : X x N -+ N whose graph is 
in ~ such that f(x,O) = g(x), (x,f(x, n), f(x, n + 1)) E A for every n, x. 

In particular, this holds for r = II~. 

For completeness let us also state the following fact. 

(35.4) Exercise. Show that the classes ~~, ~ ~ 2, on Polish spaces and the 
class ~? on zero-dimensional Polish spaces are ranked. 

This gives us the following picture: 
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where the boxed classes are ranked and have the number uniformization 
and generalized reduction properties, and the others have the generalized 
separation property (only in zero-dimensional spaces if ~ =, 1). 

35.B Parametrizing Bi-Analytic and Borel Sets 

It is clear (see, e.g., 22.7) that there is no X-universal set for at(X), for any 
Polish space X. The following result provides however a nice parametriza
tion of the at sets. 

(35.5) Theorem. Let X be a Polish space. There is a IIt set D c:: C and 
5 E ~i(C x X), P E IIi(C x X) such that for d E D, 5d = Pd, which we 
denote by Dd, and {Dd:d E C} = at(X). 

Proof. By 32.A, let U c:: C x X be C-universal for IIt (X) and as in the proof 
of22.15 iv) form the universal pair (UO,U 1 ). So for A,B E: IIt(X) there is 

. . ( 0) ( 1) -0 -1 1 . Y E C WIth U y = A, U y = B. By 35.1, let U ,U be ITI sets reducmg 
UO,U 1 and put 

-0 -1 
dE D {=} 'v'x[(d,x) E U or (d,x) E U 1 

({=} 'v'x[(d, x) E UO or (d, x) E U 1 ]). 

Clearly, D is IIt. Let also 

-0 
P(d, x) {=} U (d. x), 

-1 
5(d, x) {=} -, U (d, x). 

Since [/ n ri = 0, it is clear that for dE D, Pd = 5 d , which we denote by 
Dd. Also, it is clear that Dd E at(X). Conversely, let A E at(X) and put 
B = ~ A. Then for some d, (UO)d = A, (U 1 )d = B. Since Au B = X, it is 

-0 -1 
clear also that (U )d = A, (U )d = B, and so d E D and Dd = A. 0 

Such a triple (D, 5, P) provides a parametrization (or coding) of 
a i( X), viewing d E D as a parameter (or code) of D d . Note that if 
(d, x) ED{=} x E D d , then D is at on D x X. We will see in 35.8 that the 
requirement that D E IIt(C) cannot be replaced by D E :~i(C). 

By Souslin's Theorem this clearly also provides a parametrization of 
the Borel sets. However, there are several natural ways to parametrize Borel 
sets directly based on their definition. \Ve describe one next. 

Let B c:: C be defined as follows: Given x E C, let (x)o (n) = 
x(3n), (x h (n) = x(3n + 1), and (x h (n) = x(3n + 2). Fixing a bijection 
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( ) : N<fi ~ N, we can view (x)o as being the characteristic function of a 
subset of N<"', which we denote by Tn and (xh as the characteristic func
tion of a set Sr <;;;; N<N. We can also view (x h as a function Ir : N<N ~ N, 
where we let fAs) = Tl iff there is a unique Tl with (xh(((.5),n)) = o. 
otherwise IT (.5) = O. Let E now be the set of all b satisfying: 

T/) is a nonempty well-founded tree & 5 b = {.., En: s is terminal}. 

Clearly, E E TIl( C). Fix now an open basis {V,,} for X including 0, X. 
For each bEE define a set Eb <;;;; X as follows: By recursion on the well
founded relation --< = ~ on Tb , we define a set Et <;;;; X for .5 E Tb by letting 
E'b = Vfb(s) if .5 is terminal, and for .5 non-terminal, E{', = Us 'nET" Efn 
if length(.5) is even, Er, = ns'nET" E{T> if length(.5) is odd. Finally, let 

Eb = Eg. It is easy to see that {Eb : bEE} = B(X). 
There is an alternative way to think of Eb. For bEE consider the tree 

n, and given any x E X, let G(b, :r) be the following clopen game: 

I no T/2 

II TIl Tl3 

ni EN; Vir (no, ... , ni-d En is not terminal =:? (no, ... , Tli) E Tb]; I wins 
iff for the uniquei E N such that 8 = (no, ... ,Tli-Il E Tb is terminal, we 
have 1: E Vfl,(s)' (Ifi = 0, 8 = 0 here.) Then we have: 

(35.6) Exercise. i) For bEE, x E Eb -R I has a winning strategy in G(b, 1:). 
ii) There are Q E ~i(C xX), R E TIl (C xX) such that for bEE, Qb = 

Rb = B b · 

Using these parametrizations one can also prove a "uniform" version of 
the Lusin Separation Theorem 14.7 and Souslin's Theorem 14.11, which is 
a version of the so-called Souslin-Kleene Theorem (see Y. N. r-.Ioschovakis 
[1980]). For simplicity we will consider the case X = N only. 

(35.7) Exercise. Let U be C-universal for TIt Vv), and (UO, U 1) be the corre
sponding universal pair. Show that there is a continuous function f : C ~ C 
such that if (rv UGly, (rv Ul)y are disjoint, then f(y) E E and Bf(y) sep
arates (rv UG)y from (rv Ul)y. In particular, if d E D (as in 35.5), then 
f(d) E Band Dd = Ef(d)' (For definitiveness, in the definition of Bb we fix 
{Vn } to be an enumeration of {Ns:.5 E N<N} U {0}.) 

(35.8) Exercise. Show that there is no D' E ~ i (C) and 5' E ~ i( C xC), P' E 

TIi(C x C) such that for d ED', 5:z = ~; (= D~) and {D:l : d ED'} = 
Ai(C). 
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35. C Reflection Theorems 

(35.9) Definition. Let X be a Polish space and r a class of sets in Polish 
spaces. If if> ~ Pow(X), we say that if> is r on r if for an1' Polish space Y 
and any A E r(Y x X) the set 

AI> = {y E Y: Ay E if>} 

is also in r. 

For example, if X = N x Z, with Z Polish and if>(B) ¢} Un Bn = Z, 
then if> is IIi on IIi. (Recall that if>(B) ¢} B E if>.) 

(35.10) Theorem. (The First Reflection Theorem) Let r be a class of sets in 
Polish spaces which is closed under contimwus preimages and finite unions 
and intersections. Assume r is ranked. Then for any Polish space X and 
if> ~ Pow(X) which is r on r. and any A ~ X in r, we have 

if>(A) =? 3B ~ A(B E 6. & if>(B)). 

In particular, this holds for r = IIi. 
Proof. Let cp : A -t ORD be a r-rank. If if>(A) but for no B ~ A, B E 6. 
we have if>(B), then we claim that 

,T tf. A¢} if>({y: y <~ x}). 

Indeed, if x tf. A, then {y : y <~ x} = A, while if x E il, then B = {y : 
y <~ x} is in 6. and clearly B ~ A. 

By 34.2, <~ is in r, so since if> is r on r, rv A E r, and thus A E 6., 
which is a contradiction. 0 

Sometimes the First Reflection Theorem is formulated in an equivalent 
"dual" form: 

Let r be a class of sets in Polish spaces, X be Polish, and if> ~ Pow (X). 
We say that if> is r on t if for any Polish space Y and any A E t(Y x X) 
the set 

Al>={yEY: AyE<I>} 

is in r. Then 35.10 is equivalent to the statement (under the same hypothe
ses on r) that if <I> is r on t and if>(A) holds for A E t then we also have 
<I>(B) for some B =2 A, BE 6.. To see this, apply 35.10 to ,:pI (A) ¢} <I> ( rv A). 

(35.11) Exercise. Derive the :--Jovikov Separation Theorem 28.5 from 35.10. 
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(35.12) Exercise. Let (An) be a sequence of :Ef sets in a standard Borel 
space with limnAn = 0. Show that there are 4li sets Bn :;:::> An such that 
limnBn = 0. 

(35.13) Exercise. (Analytic sets with countable sections) (Lusin) Let X, Y 
be standard Borel spaces and A c: X x Y be analytic such that Vx(Ay: is 
countable). Show that there is B :;:::> A, B Borel with Vx(Bx is countable). 
In particular, there is a sequence of Borel functions fn : X -4 Y with 
A, c: {fn(x) : n EN}. (See also 39.23 here.) 

(35.14) Exercise. Let X be a standard Borel space, :s; a ITf partial pre
ordering on X (i.e., x :s; x & (x :s; y & Y :s; z =} :r :s; z)), and A c: X be 
:Ei such that :s; I A is a linear preordering (i.e., moreover, x :s; y or y :s; x 
for all x, 11 E A). Show that there is B :;:J A, B E 4lf such that :s; I B is a 
linear preordering. 

(35.15) Definition. Let X be a Polish space and r a class of sets in Polish 
spaces. If <f> c: Pow(X) x Pow(X), we say again that <f> is r on r if for 
any Polish Y,Z and any A c: Y x X, B c: Z x X in r, the set 

is also in r. We say that <f> is monotone if <f>(A,B) & A c: A' & Be: B' =} 

<f>(A',B') for any A,B c: X. Finally, we say that <f>is continuous downward 
in the second variable if <f>(A,B71) & Bn :;:J Bn+l =} <f>(A, nn Bn). 

(35.16) Theorem. (The Second Reflection Theorem) Let r be a class of sets 
in Polish spaces closed under continuous preimages, countable unions and 
intersections, and co-projections. Assume r is ranked. Then for any Polish 
space X and <f> c: Pow(X) x Pow(X) which is r on r, monotone, and 
continuous downward in the second variable, we have for any A c: X, A E r 

<f>(A, ~ A) =} 3B c: A[B E 6. & <f>(B, ~ B)l. 

In particular, this holds faT r = ITi. 
Proof. Assume A c: X is in rand <f>(A, ~ A) holds. 

Claim. If C c: X, C E 6., and C c: A, then there is C E 6., C c: C c: A 
with <f>(C, ~ C). 

Proof of claim. Let 

iII(D) B C c: D & <f>(D, ~ C). 

Then iII is r on r, and iII(A) holds, as ~ C :;:J ~ A and <f> is monotone. So 
let C c: A be in 6. with iII (C). 

Using this claim, starting from any Co c: A, Co E 6. we call define 
recursively Cn such that Cn c: Cn +1 c: A, Cn E 6., and <f>(Cn +1 , ~ Cn) 
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holds for any n. Put B = Un Cn. Then B E ~, B ~ A, and by monotonic
ity, <I>(B, ~ Cn) holds for each n, so by downward continuity in the second 
variable, <I>(B, nn ~ Cn), i.e., <I>(B, '" B) holds. 0 

Again there is also a "dual" formulation of this reflection theorem: If 
<I> is r on t, hereditary (i.e., closed under subsets instead of supersets), and 
continuous upward in the second variable, then for any A I;:: X, A E t 

<I>(A, ~ A) =} ::JB :2 A[B E ~ & <I>(B, '" B)]. 

(35.17) Exercise. Let X be a Polish space and P ~ X x X be IIt. Put 

<I>(A, B) oR Yx tJ. AYy tJ. B(x, y) E P. 

Show that <I> is IIi on IIt, monotone, and downward continuous in the 
second variable. 

(35.18) Exercise. (The Burgess Reflection Theorem) Let r be as in 35.16. 
Let X be a Polish space, R ~ X N X xn (n E N) be in r, and let 

<I>(A) oR Yx E XNyy E Xn{[Yi(.ri tJ. A) & 

Yi < n(Yi E A)] =} R(x, y)}. 

Show that if A ~ X is in r, then 

<I>(A) =} ::JB ~ A(B E ~ & <I>(B)). 

(35.19) Exercise. (Burgess) Let X be a standard Borel space, E ~ X 2 

a :Et equivalence relation. If E ~ A (~ X 2 ), where A is ilL show that 
there is a Borel equivalence relation F with E ~ F ~ A. Conclude that 
E = n~<Wl E~, where (EE,) is a decreasing transfinite sequence of Borel 
equivalence relations. 

A theorem of Silver, that we will not prove here, asserts the following: 

(35.20) Theorem. (Silver) If X is a Polish space and E ~~ X 2 a IIt equiv
alence relation, then either E has only countably many equivalence classes 
or there is a Cantor set C ~ X such that if X,y E C, x =I y, then -,xEy. 

(35.21) Exercise. i) Show that 35.20 implies the Perfect Set Theorem for 
:Ei sets. 

ii) (Burgess) Use 35.19 and 35.20 to show that if E is a :Ei equivalence 
relation on a Polish space X, then either X has at most ~l many equivalence 
classes or there is a Cantor set C ~ X with x, y E C, x =I y =} -,xEy. Give 
an example of a :Ei equivalence relation with exactly ~l many equivalence 
classes for which there is no such Cantor set. 
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85.D Boundedne8s Properties of Ranks 

(35.22) Theorem. Let r be a class of sets in Polish spaces closed llndeT 
continllOllS pTeimages, finite inteTsections and unions, and co-pmjections. 
If X is Polish and A <;;; X is in r \ 6.. then fOT eveTY r -mnk cp:A ---t ORD 
and eveTY B <;;; A in [, theTe is Xo E A with cp(x) :S cp(xo), \Ix E B. 

Pmoj. Otherwi:oe, 

:[ E A {=? 3y(y E B & x :S~ y). 

so A E t. thus A E 6., which is a contradiction. 

\Ve apply this now to r = fIt. 

o 

(35.23) Theorem. (The Boundedness Theorem for fIi-ranks) Let X be a 
Polish space, let A <;;; X be a fIt set and let cp:A ---+ ORD be a reglllaT 
fIi-rank, withcp(A) = G. Then ct :S Wl and A is BOTel iff ct < Wl. 

ff IL,:A ---t Wj is any fIi-rank and B C;;; Ais :Et, then sup( {1;.'(x)::1' E 

B}) < Wj. 

Pmoj. Let x E A. Then the relation 

is Borel and well-founded, so p(-<) = cp(:r) < Wl, by 31.1. So Cl:S Wl. 

If A is Borel, then the relation 

y -<' z {=? y, z E A & Y <I" z 

is Borel and p( -<') = n < Wj. If n < Wj. A is clearly Borel. 
The last statement follows from 35.22. o 

(35.24) Exercise. Let X be a Polish space, A C;;; X a fIi-complete set, and 
cp : A ---t Wl a fIt-rank. Let Y be a Polish space, B <;;; Y a dt set, and 
J : Y ---+ X a Borel function with y E B {=? J(y) E A. Put Ar, = {x E A : 
cp(:r) :S et}, G < Wj. Show that for some (l < lv'l. :1: E B {=? f(x) EAr,. 

(35.25) Exercise. Show that there is no uncountable :Et set A C;;; \VO such 
that for any two distinct :1', yEA we have Ixl of Iyl. Similarly, assuming 
:Et-Determinacy, show that there can be IlO such A E fIt. (l\Iore generally, 
there is no such "definable" A using "Definable Determinacy" .) 

There is an even stronger bounded ness property of ranks with respect 
to well-founded relations, which generalizes 3l.1. For its proof we will bor
row a basic: tool from effective descriptive set theory, which is a form of the 
so-called Recursion Theorem. 
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(35.26) Theorem. (Kleene) Let r be a class of sets in Polish spaces which 
is closed under continuous preimages. Assume that for each Polish space 
X there is a C -universal set for r (X). Then for each such X there is a 
C-univer'sal set for r(x), U w'ith the following fixed point property: If P ~ 
C x X is in r, there is Po E C with Ppo = Upu ' 

Proof. Let V ~ C x (C x X) he C-universal for r(C x X), For P E C, let 
(p)o(n) = p(2n), (ph(n) = p(2n + 1) and puL p = (q, r) if q = (p)o, r = 
(p) 1. Define 

U(p,x) ¢} V«p)o,(ph,:r:). 

Clearly, U is C-universal for f(X). Now given P E r(C x X), there is qo with 
V(qo,p,x) ¢} P«p,p),x). So U«qO,p),x) ¢} P«P.p).x). Let Po = (qo,qo). 

D 

(35.27) Theorem. (Moschovakis) Let r be a class of sets in Polish spaces 
containing the Borel sets and closed under Borel preimage,<, finite intersec
tions and unions, and co-projections. Assume for each Polish space X there 
is a C-universal set for r(X). Then if A ~ X, X a Polish space, is Borel 
r -complete and cp:A --7 ORD is a regular f -rank with cp(A) = b, then for 
any well-founded relation --< in t we have p( --<) < b. 

Proof. vVe can assume that --< is a relation on X. Let U be as in 35.26. Let 
f : C x X --> X be Borel with v. E U ¢} f(lL) E A. Let ,jJ(1L) = cp(J(11.)). 
Clearly, 'Ij; is a r-rank on U and for 1L, v E U, 1L <4) v=? f(lL) <", f(v), so 
it is enough to find Po E C such that (Po, x) E U for all x and x --< y =? 

(Po. x) <<< (Po, V)· It will follow then that {J(po, x) : x E X} = B is a ~L 
so t subset of A, and by 35.22 there is ao E A with cp(J(po, x)) :s: <p(ao) 
for all x. Since also :r; --< y =? cp(J(po, x)) < cp(J(po, V)), it follows that 
p( --<) :s: cp(ao) < b. 

To find Po, let P ~ C x X be defined by 

P(q, V) ¢} Yx[x --< y =? (q, x) <~) (q, V)]· 

Clearly, PEr, so by 35.26 let Po be such that P(Po,Y) ¢} U(po, V)· We 
claim that (Po, V) E U for all y. Otherwise, pick y minimal in --< for which 
(Po,V) rt- u. Then -,P(Po,Y), so let x be such that [x --< y & -'(Po,X) <1) 
(Po.V)], Since (Po,y) rt- U, -'(Po,x) <'0 (Po,Y) implies that (Po,x) rt- u, 
contradicting the minimality of y. Since P(Po, y) holds for any y, it ii:i clear 
that for any x --< y, (Po, x) <'0 (Po, V), so 'Ij;(Po, x) < 'ljJ(Po, V). D 

Here, for a prewellordering :s: on a set 5, we denote by < its strict part: 
x < y ¢} x :s: y & y 10 x. If cp is the unique regular rank on 5 with :s: = :S:"" 
then cp(5) = p( <). 

For each class r of sets in Polish spaces, define 

6r = sup{p( <) ::S: is a .6. prewellordering}. 
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(35.28) Corollary. Let r be a ranked class as in .'15.27. Then 

6[' = sup{p( -<) :-< is a t well-founded relation} 

= p( <OF)' for any regular r-rank VJ : A --+ ORD, 

on a Borel r -complete set A. 

For r = Ill. we let D{ = Dill. Thus 6{ = Wl. 
1 

(35.29) Exercise. (:rvIosdlOvakis) Let r he a ranked class as in 35.27. If X 
is a Polish space and \jJ : Pow(X) -> Pow(X) is an expansion, we say that 
\jJ is r on r if for each A E r(Y x X). Y a Polish space, 

A,., = {(x,.I/) : :r E \jJ(Ay)} 

is in r. Show that if A E r(X) and \jJ is r on r, then \jJOC(A) = 

U~<6, \jJ1;(A), \jJOO(A) is ill r, and if B <;;; \jJ=(A) is in t, there is ~ < 6[' 
with B <;;; \jJ1; (A). In particular, this holds for r = IIi. 

85.E The Rank Method 

Theorem 35.23 is the basis of another method for showing that a given IIi 
set is not BoreL ,vhich is called the rank method: Given a IIi set A, find a 
IIi-rank VJ : A -> Wl and construct for each ex < Wl an element x E A with 
VJ(x) 2' o. 

(35.30) Exercise. Use the rank method to show that WF, WO, K<I.,,(X), for 
X an uncountable Polish space, DIFF are not BoreL 

Note also that 3.5.23 implies the following overspill property: If A is a 
IIi set, VJ : A -> Wl is a IIi-rank. and B is a ~i set such that \/0 < wax E 

A(x E B & VJ(x) 2' ex), then there is x E B \ A, i.e., every ~i property, 
which is true for elements of A of arbitrarily large rank. must "overspill" 
and hold for some element out.side A. This can be used as an existence 
proof method. 

(35.31) Exercise. Let X be a separable Banach space. Show that X is uni
versal iff it contains closed subspaces isomorphic to C(K), for K countable 
closed subsets of C of arbitrarily large Cantor-Bendixson rank. 
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35.F The Strategic UniJormization Theorem 

\Ve will next use boundedness to show that one can define winning strategies 
for open games on N "in a Borel way" . 

(35.32) Theorem. (The Strategic Uniformization Theorem) Let X be a 
standard Borel space and A ~ X x N a Borel set with open sections. If 
player I has a winning strategy in G(N,Ax} for all x, then there is a Borel 
function CTj:X -? Tr such that VX(CTj(X) is a winning strategy for I in 
G (N,A.7))' (We view strategies here as trees on N,) 

Proof. It will be more convenient to show the easily equivalent statement 
that if A c;:; X x N is Borel with closed sections, and II has a winning 
strategy in G(N, Ax) for all x, then there is Borel CTn : X -? Tr, with 
CTn(X) a winning strategy for II in G(N,Ax) for all x. 

By 28.9, let x ......-, Sx be a Borel map from X into T'r such that Ax = [Sx]. 
Thus, in the notation of Example 2) of 34.F, 5.y E Wn for every x E X. 
Now {S3 : x E X} is a ~i subset of Wn and since S......-, ISln is a IIi-rank 
on the IIi-complete set W II , there is an ordinal E < Wl with ISxlIl :::: E for 
all :r. It is easy now to read off the strategy CTn (x) from 20.2 (see 20.4) and 
show that CTII is Borel. D 

There is actually a stronger version of 35.32: If X is a standard Borel 
space and A c;:; X x N is Borel with open sections, then A + = {x : I has 
a winning strategy in G(N, AJ)} is a IIi subset of X and there is a IIi
measurable function CTj on A + (i.e., for open V, CTI l (V) is in IIi) such that 
Vx E A+(CTj(X) is a winning strategy for I in G(N,Ax)). For a proof, see 
39.22. 

(35.33) Exercise. Show that if X is a standard Borel space and A c;:; X x N 
is Borel with open sections, then there is a CT(~D-measurable function CTII 
from B = {x: II has a winning strategy in G(N,Ax)} into Tr such that for 
x E B, CTII(X) is a winning strategy for II in G(N, Ax). Find an example of 
such an A for which Vx(II has a winning strategy in G(N, Ax)) but there is 
no Borel function CTII : X -? Tr such that VX(CTII(X) is a winning strategy 
for II in G(N, Ac)). 

(35.34) Exercise. Show that if X is a standard Borel space, A c;:; X x N is 
~i, and Vx(Ax is meager), then there is a sequence (An) of Borel sets with 
closed sections such that A c;:; Un An, and Vx((An)x is nowhere dense). 

(35.35) Exercise. In the notation of 35.34, if Vx(Ax is CT-bounded), there is 
a sequence fn : X -? /v of Borel functions such that V:rVy E A x3n(y :::: 
in (:r)). (See 21.24.) 
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85. G Co-Analytic Families of Closed Sets and Their Sigma
Ideals 

Let X be a Polish space. A subset F c:;; F(X) is hereditary if FE F & H E 

F(X), H c:;; F ==? H E F. We will study here IIi (in the Effros Borel 
structure) heredit.ary families of closed sets and the a-ideals they generate. 

Examples of such F that we will encounter are F(X), all closed sets 
of cardinality -S L all nowhere dense closed sets, all compact sets, and all 
closed subsets of a IIi set A c:;; X. 

(35.36) Exercise. Verify that all these examples are indeed IIi. 

\,\'e denote by F; the a-ideal of subsets of X generated by F, i.e., 
A E F; B 3(Fn) (Fn E F & A c:;; Un Fn). So if A E F", then A E F; B 
A E Fa. 

First note the following simple fact. 

(35.37) Proposition. Let X be a Polish space and F c:;; F(X) a her-editar7! 
IIt family. Then {F E F(X):F E Fa} is IIi. 

Proof. COllsider the derivative Dy on F(X) associated with F as in Ex
ample G) of 34.D. Then by 34.16 and 34.8, {F E F(X): F E Fa} = {F E 

F(X) : D'F(F) = 0} is II]. 0 

vVe generalize this now to ~i sets. 

(35.38) Theorem. Let Y be a Polish 8pace and F c:;; F(Y) a hereditary IIi 
family. Let X be a 8tandard Bor-el space and A c:;; X x Y a ~i 8et. Then 
{x:Ar E F;} i8 IIi. 

Proof. We can assume, of course, that X is Polish. Let f : N ---'> X X Y 
be continuous with f(N) = A (assuming, without loss of generality, that 
A "10). Let H c:;; X x N be defined by 

(:r, z) E H B proh(f(z)) = x. 

So H is closed. Let :F c:;; F(N) be defined by 

FE:i B projy(f(F)) E F. 

As F f-t projy(j(F)) is Borel (from F(N) into F(Y)), :i is hereditary IIi. 
It is easy now to check that for each .7:, 

A:t E F; B He E :i; B H J . E :Fa. 
Since H.t" is closed, as in the proof of 35.37, we have 

HI ¢:. :icy B D';(H.l) "10 
B 3F E F(N)(F c:;; HJ" & D;(F) "10), 
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which is ~i by 35.37 and the fact that 

(F,x)ER¢?Fc:::Hx 

is ~L since if {Vn } is an open basis for Y, then 

F c::: Hx ¢? \fn[F n v" i= 0 '* ]y(y E v" & (x, y) (: H)]. 

D 

(35.39) Corollary. Let Y be a Polish space and F c::: F(Y) a hereditary 
TIt family. Let X be a standard Borel space and A c::: X x Y a ~i set. If 
\fx(Ax E F;), then there is a Borel set B :2 A with \fx(Br E F;). 

Proof. By 35.38 and the First Reflection Theorem 35.10. D 

Next we prove the following separation theorem. 

(35.40) Theorem. Let Y be a Polish space and F c::: F(Y) a hereditary TIt 
family. Let X be a standard Borel space and A,B c::: X x Y be disjoint ~i 
sets. If\fx(Ax E F), then there is a Borel set C separating A from B such 
that \fx(Cx E F). 

Proof. Let <I> c::: Pow(X x Y) be defined by 

<I>(P) ¢? \fx(Pr E F) & P n B = 0. 

Then <I> is TIt on ~i since if PC::: Z x X x Y, Z Polish, is ~L then if {V,,} 
is a basis for Y we have 

and so 

is clearly TIi. 

<I>(Pz ) ¢? \fx(Pz .x E F) & Pz n B = 0 

¢? \fx\fF E F(Y)(F c::: pz .. r '* F E F) & 

Pz n B = 0 
¢? \fx\f F E F(Y)[\fn(v" n F i= 0 '* 

Vn n pz.x i= 0) '* F E F] & 

Pz n B = 0, 

Since <I>(A) holds, we have, by the First Reflection Theorem, that there 
is a di set D with A c::: [) and <I>(D). So Dr E F and D n B = 0. Put 
E=~D. 

Since 'V A is TIt and 'V Ax is open for each x, we have 

'V A = U(Qn x V,,), 
n 
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where Qn = {.J': Vn <;;;; rv A., }, and thus Qn is IIt. Since E <;;;; rv A, Vw E 

E3n(w E Qn x 11,,). By the First Reflection Theorem again, applied to W <;;;; 

Pow(N x X) given by 

w(R) ¢? V(x,y) E E3n[(n,x) E R & y E Vn ] 

(¢? V11) E E3n(w E Rn x Y,~,)). 

we can find Borel C;, with C;, <;;;; Q" and V1L' E E3n(11) E G;, x Vn). Put 
rv G = Un (C~ X Vn ). Then G is Borel, G" is closed for all .1', and since 
E <;;;; U,,(G;, x 11,,) = rv G, we have Cr <;;;; rv Er = D". <;;;; Dx E F, so 
Gx E :F. Finally, G <;;;; rv E = D. so G n B = 0, and rv C <;;;; rv A, so 
A<;;;;C. 0 

(35.41) Exercise. State explicitly the applications of 35.40 for the examples 
of 35.36. 

(35.42) Exercise. Show that if Y is Polish, F <;;;; F(Y) is hereditary IIi. X 
is standard Borel, A. B <;;;; X x Yare disjoint ~L and Vx(A" E F~), then 
there is Borel C separating A from B slIch that Vx(Gy E F~). 

The following gives the main result concerning Borel sets with sec
tions in F~. It generalizes a result of Saint Raymond, which we will see 
immediately after. 

(35.43) Theorem. (Burgess, Hillard) Let Y be a Poli8h space, F <;;;; F(Y) 
a hereditary IIi family. Let X be a standard Burel space and A <;;;; X x Y 
a ~i set such that Vx(A" E F~). Then A <;;;; Un An, with An Borel and 
VnVx[(An)r E F]. Moreover, if A is Borel and every section Axis in FrY 
(so AT E FrY), then we can find An Borel with A = U" An and (An)T E F 
for all II.J. 

Proof. \Ve will reduce it first to the special case where X is Polish, Y = lv, 
and A is closed, ill which case we have Borel An with A = Un An and 
(An)" E F for all 1I.:r. 

\Ve can clearly assume that X is Polish and A =I 0. Then let f : N --> 

X x Y be continuouti with I(N) = A. Define H <;;;; X x N by 

(x, z) E H ¢? pro.ix(f(z) = :1:, 

so H is closed in X x N. Define :F <;;;; F(N) as in the proof of 35.38, i.e., 

FE :F ¢? projy(f(F» E:F. 

Again, :F is hereditary IIt and, since AI' E F~ ¢? H" E :Fa, we have 
Vx(HT E :Fcy ), so assuming the special case above, H = Un Hn. Hn Borel 

with (Hn)x· E :i. Put (x, y) E Bn ¢? !J E projy(f((H"L»), so that Bn is 
~l, (BnL E F. and A = U"Bn. Put (;r,y) E Bn ¢? Y E (Bn),r' Then 1371 
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is ~~ and (En)" E F. By 35.40, let An be Borel such that En c:;; An and 
(An);,; E F. 

So we have proved the first assertion of the theorem from the special 
case. To prove the second assertion, assume additionally that A is Borel 
and Ax is Fa for all x. Then instead of using :F as before, we use :F, where 
:F c:;; F(N) is given by 

FE :F -R F E :F & f(F) c:;; A. 

This is again hereditary Ill. Since Ar; E Fa for all :r, it follows that HI E :FO" 
for all x. So let H = U"H:" with H;, Borel, be such that (H;,)x E:F for 
all x. Let (x, y) E Dn -R Y E projy.(f((H:,)x)). Then Dn is ~i, (Dn)x E 

F, (Dn)x c:;; Ax for all .1:, and A = Un Dn. Put Dn(x, y) -R Y E (Dnh· 
Then DTl is ~L (D',,):r E F, and A = Un D". Applying 35.40 to D" and 
~ A, we get Borel sets An with Dn c:;; An c:;; A and (An)) E F, for all x. 
Also, A = Un An, and wc~ are done. 

So it remains to prove the special case: If A c:;; X x .N is closed, F c:;; 
F(lv) is hereditary IlL and Vx(Ar E F rr ), then A = UnA,., with An Borel 
and V.1:((Anh E F). 

Consider the derivative Dr = D associated with F, as in Example 6) 
of 34.D. Thus for each x, A, E riD. \Ve first argue that sup{IAJ;ID : x E 

N} < WI. To see this, notice that {F E F(N) : -::Jx(F c:;; AT)} is ~i and 
contained in riD, and so we are done by 34.16. 

The main claim is now the following: 

Claim. We can write A = Un En, where En is Borel and for each :r, (En)" E 

F(N) and D((E,,)r) = 0. 

Granting this, the proof is completed as follows: It is enough to show 
that if E c:;; X xN is Borel such that for each x, Ex E F(N) and D(Er) = 0, 
then E can be written as a countable union of Borel sets with sections in 
F. If y E Ex, then there is s E N<N such that Ns n Ex E F and y E N.,. So 
if for s E N<N, C s = {x: Ns n Ex E F}, then E c:;; U,(Cs >< N s), and Cs is 
IIi. By the First Reflection Theorem, we can find Borel sets D s c:;; Cs such 
that E c:;; U,(D., x N.,). Hence if Es = (Ds x N s ) n E, then E = Us E s , Es 
is Borel and (EsL = Ec n Ns E F if.1: ED., (c:;; Cs), while (Es)x = 0 E F 
(as we can clearly assume that F I 0) if x rt Ds. This completes the proof 
modulo the claim. 

Proof of claim. Let P = {F E F(N) : D(F) = 0}. Then P is also 
hereditary IIi, since 

FE P -R Vx(x rt D(F)) 

-R Vx-::Js E N<N(x E Ns & Ns n FE F). 

For each ex < WI, let 

(x, y) E An -R y E Dn(Ar)' 
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Then by induction on (l we can show that iF' is ~t. The point is that if 
B <;;;; X x N is ~} with closed sections, then 

y E D(Br ) ¢c} (x, y) E B & Vs E p:J<N[y E Ns =? 

3F E F(N)(F <;;;; N" n Br & F tf. .F)], 

so "y E D(BJ )" is ~i as well. 
vVe will finally prove by induction on 0: that if Q <;;;; X x N is a Borel 

set with closed sections and An <;;;; Q, then A \ Q is contained in a countable 
union of Borel sets with sections in .F'. Since for some 0: < W 1, A c> = 0, 
taking Q = 0 we are done. 

Case I. 0: = 1. Then A 1 <;;;; Q. Since Q has closed sections, ~ Q = 

U'EN<" (Qs x N,), with Qs Borel by 28.7. Thus A \ Q = U,,((Q, x Ns)nA) = 

US A" where A, = (Qs x N s) n A is Borel and has closed sections. Also, 
(A,);r <;;;; A, \ A~. so D((A,))) <;;;; D(Ar) n (A,L = 0, i.e., (As), E P. 

Case II. 0: = A is limit. Let AA <;;;; Q. Since AA = nn<A A", by the Novikov 
Separation Theorem there are Borel sets B" ;;;;> An with nCY<A Bn <;;;; Q. By 
35.40, for .F = F(Jv) we can find Borel sets Qo such that AU <;;;; QCt <;;;; Bn 
and Qn has closed sections, Vo: < A. So also nO<A Qu <;;;; Q. By induction 
hypothesis, A \ Qn can be covered by count ably many Borel sets with 
sections in F' for 0 < A, and since A \ Q <;;;; Un<A(A \ Qn), so can A \ Q. 

Case III. cy = ,{3 + 1. Let kH 1 <;;;; Q. As in Case I, write All \ Q = US A" 
with As now analytic with sections in .F' (note that D(A~) = A~+l). So 
by 35.40 again, Ail \ Q is contained in a countable union, say 1\1, of Borel 
sets with closed sections in F'. Since Ail \ Q <;;;; lVI, Ail <;;;; Q U lvI, and 
one more application of 35.40 shows that there is a Borel set Q' ;;;;> .41' 
with closed sections and Q' <;;;; Q U "\1. By induction hypothesis, A \ Q' can 
be covered by a countable union of Borel sets with sections in F'. Since 
A \ Q <;;;; (A \ Q') u (Q' \ Q) <;;;; (A \ Q') U AI, we are done. 0 

(35.44) Exercise. i) State the particular instances of 35.43, corresponding 
t.o the examples of 35.36. 

ii) Let Y be a Polish space, F <;;;; F(Y) a hereditary IIi family. Let X 
be a standard Borel space and A, B <;;;; X x Y be ~i sets such that for all 
:/;, AT can be separated from Br by an .Fer set. Then we can find Borel sets 
e" with (e,Jr E F for all 71,:;; ami Un en separating A from B. 

3S.H Borel Sets with Fer and K" Sections 

(35.45) Theorem. (Saint Raymond) Let Y be a Polish space, X a standard 
Borel space, and A <;;;; X x Y a Borel set with A J . E Fa for all x EX. Then 
A = Un An' with An Borel such that (An)x is closed for all x. 
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In other words, in the notation of 28.10, A E ~i"Y. 

Proof. Take F = F(Y) in 35.43. o 

(35.46) Theorem. Let Y be a Polish space, X a standard Borel space, and 
A ~ X x Y Bord such that A£ is Ker Jor all x. 

i) (Saint Raymond) There is a sequence oj Borel Junctions Kn:X -> 

K(Y) with AI = UnK,,(x) Jor all x. 
ii) (Arsenin, Kunugui) There is IL Borel uniJormization oj A (and so 

in particular, proh(A) is Borel). 

Proof. i) By 35.43 and 35.36, let An be Borel with compact sections such 
that A = Un An. TheIL by 28.8, x f--> (A1l)x = Kn(x) is Borel. 

ii) Note that projx (A) = {x : 3n(Kn (x) #- 0)} is Borel and the 
function 

J: pro.b. .. (A) -> K(Y) 

given by 
J(:r) = Kn(x)(x), 

where 
n(x) = least n ,mch that K,,(x) #- 0, 

is also Borel. Let c : K(Y) -> Y be Borel with c(K) E K if K #- 0. Then 
g( x) = c(J (x)) is a Borel uniformizing function for A. 0 

(35.47) Exercise. (Hurewicz) Let Y be a Polish space, let X be a standard 
Borel space, alld let A ~ X x Y be Borel. Show that for ~ ::; 2, {x : Ax is 
~n is IIi· (Similarly for II~, if'; ::; 2, and for Ka.) 

A. Louveau [1980,1980aj has shown that 35.47 is true for all .; < WI. 

Moreover, he has proved the following extension of 35.46 i): Let Y be a 
Poli"h space, X be a standard Borel "pace and A ~ X x }r be Borel. Let 
B = {x : At is K:r} (so that by 35.47 B is lID. Then there is a sequence 
of functions Kn : B -> K(Y) each of which is ni-measurable in B, i.e., for 
any open U ~ K(Y), Kr-;I(U) is IlL and \:Ix E B(Ax = Un Kn(x)). (A 
proof of thi" can be given using 28.21 and 39.22.) 

(35.48) Exercise. (Louveau-Saint Raymond) Give a proof of 35.45 and 35.46 
based on 35.32 and 28.21. In fact, show by this method the following result 
of Saint Raymond: 

If Y is a Polish space, X is a standard Borel space, and A, B c;;: X x Y 
are disjoint ~i sets such that Ax, Bx can be separated by an Fer set for 
each x, then there is a sequence (en) of Borel sets with closed sections such 
that Un en separates A from B. 

A. Louveau [1980,1980aj has appropriately extended this result to ~~ 
for all ~ 2:: 2. 
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(35.49) Exercise. Let G be a Polish locally compact group, X a standard 
Borel space, and (g, x) 1---+ g.x a Borel action. Show that the equivalence 
relation 

xECY -<=? 3g E G(g.x = y) 

is Borel. (Recall also 15.13 ii).) 

(35.50) Exercise. Let X be a Polish space and E a Borel equivalence relation 
on X. Recall (from 18.20) that E is called smooth if there is a Borel function 
f: X ----7 Y, Y standard Borel, with xEy -<=? f(x) = f(y). Show that if E is 
smooth, with witness f as above, and E has K" equivalence classes, then 
f(X) is Borel and for some Dorel 9 : f(X) ----7 X we have f(g(y)) = y, Yy E 

f(X). In particular, E has a Dorel selector. 
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36. Scales and U niformization 

36.A Kappa-Souslin Sets 

\Ve will study in this section the problem of uniformization for co-analytic 
sets. We want to find a canonical procedure to select a point from a given 
non empty co-analytic set. (To uniformize a co-analytic set A <;;; X x Y, we 
will then apply this procedure to each nonempty section AJ;') It is clear 
that, without loss of generality, we can work in the Baire space N. 

There is a canonical such procedure for the class of K-Souslin sets, K 

an ordinal (see 31.B), a procedure that we used in the proof of the Jankov, 
von Neumann Uniformization Theorem lS.1. 

Let A <;;; N be a nonempty K-Souslin set so that for some tree T on 
N x K, A = p[T] = {x EN: 3i(x,j) E [Tl}. 

We will first define the leftmost branch (aT, iT) of [T] and then let 
a = aT be the canonical point we select from A. The leftmost branch 
(aT, iT) of [T] (see also 2.D) is defined recursively as follows: Define first 
the ordering < on pairs (k, (~) E N x K by 

(k,a) < (£,(3) {=? 0; < ,3 or (0 = /3 & k < e), 

i.e .. < is the anti-lexicographical ordering on N x K. (\Ve use this instead 
of the lexicographical ordering for technical reasons related to definability 
calculations that will become apparent later on - see the proof of 36.S.) 

Then let 

(a'r(n) , h(n)) = the < -least element (k, 0) of 

N x K such that [TuTln'k.hln'''] i= 0, 

where as usual T".u = {(t,v) : (SAt,u.AV) E T}. Clearly, (aT,iT) is the 
lexicographically least element of [T]. 

The uniformization problem for co-analytic sets will be solved therefore 
by showing that every co-analytic set A can be represented as a K-Souslin 
set A = p[T], T a tree on N x K (where actually K will turn out to be wd, 
with nice definability properties. 

Remark. Note that the notion of K-Souslin set is uninteresting without 
some definability or size restrictions on K, as the next exercise shows, 

(36.1) Exercise. Using the Axiom of Choice, show that every set A <;;; N is 
K-Souslin for some K :::: 2No , 

36.B Scales 

We will now introduce an alternative viewpoint concerning the represen
tation of a set as a projection of a tree, that will make more transparent 
these definability considerations. 
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Let T be a tree on N x K and A = p[T]. For each x E A, let 
<pT (x) = ('P~ (:r)) be the leftmost branch of T( x) (in the usual ordering 
of the ordinals). Thus 'P~ : A ---> h: and note that ('P;') has the following 
property: 

If :r, E A, x, ---> x and also 'P;,-(:1:;j ---> Cl n (for some ordinal an) for all 
n, then x E A. Jl..Ioreover, cpT(x) 'Slex (an). 

Here we view the ordinals < K as having the discrete topology, so that 
ai ---> Cl just means that OJ = Cl event.ually, and <lex is the lexicographical 
ordering of KN (see 2.D). 

Conversely, if A c:;- Nand :;In : A ---> K is a sequence of ranks such that 
Xi E A, Xi --->:J:, and 'Pn(:r;) ---> an for all n implY:J: E A, then we can define 
a t.ree Tcp on N x 11. as follows: 

((k(), ... , kn-J), (no, .... Cln-d) E Tcp <=? 

3:1; E A[:J:ln = (ko, ... ,kn - 1 ) & vi < n(o./ = 'P;(:J:))], 

and easily verify that £1= p[T",,]. 
Given a Polish space X and A c:;- X. a sequence of ranks 'Pn : A -+ 

ORD is called a semiscale if :ri E A, :J:j ---> X and 'Pn(:J:i) ---> 0" for all n, 

imply x E A. It is called a K,-semiscale if 'Pn : A ---> K. 

Thus to each tree T on N x K, with A = p[T], we have associated a 
canonical K-semiscale ('P;') and conversely to each K-semiscale cp on A we 
have associated a canonical tree T; on N x h:, with A = p[T",,]. 

As we noted earlier the semiscale ('P~-) has an additional important 
property: If Xi E A. :rj ---> x and 'Pn(.Ti) ---> an, then <pT(;r) 'SJex (on). 
We can make this property more transparent by using t.he following device. 
Given an ordinal K, consider h,T! (n 2.: 1) and the lexicographical ordering 
on it: 

This is a wellordering with order type the ordinal h;'l (ordinal exponen
tiation). \lVe denote by (oa, ... ,an-l) the ordinal « Kn) correspond
ing to (00, ... , a,,_ J) under the isomorphism of (",", <lex) wit.h ",". So 
(O(j, ... ,ftn-l) < (jJ(), .... (3,,-l) <=?(oo .... ,nn-l)<lex(/i()' ... JJn~d· 

Define now from ('P~) a new sequence (1/.':,') as follows: 

Then, denoting by f 'S g the pointwise ordering on sequences of ordinals, 
f 'S g <=? vn(f(n) 'S g(71)), we have for f.g E ",N, f 'Slex 9 <=? ((fIn)) 'S 
((gin)). It follows that (1j);') has the following property: 

If .1;j E A, :J:/ ---> x. and0;,(xd ---> Cl n for all n, then .r E A and 

1/7T (x) 'S (on). 

\lVe have thus arrived at the following basic: concept due to l'vIoschovakis. 
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(36.2) Definition. Let X be a Polish space and A ~ X. A scale on Ais a 
sequence ifn:A ----+ ORD of ranks such that Xi E A, Xi ----+ X and ifn(Xi) ----+ an 
for all n imply that :1.' E A and (ifn (x)) S; (a r,). (This last pmperty of scales 
is called semicontinuity.) 

fr ifn: A ----+ K" we say that (if,,) is a h:-scale. 

(36.3) Exercise. Let T be a tree on N x K, and A = p[T]. We say that T has 
pointwise leftmost branches if for each X E A there is a pointwise leftmost 
branch of T(x), i.e., ~f E [T(x)]\fg E [T(x)]U S; g). Show that in this 
case the canonical semiscale cpT OIl A associated to T is cLctually a scale. 
Conversely, if cp is a K,-scale on A and T 0 is its associated tree on N x K" 

then T 0 has pointwise leftmost branches. 

Given a scale (ifn) on A ~ Jif, we now have the following canonical way 
of selecting an element out of A: Successively minimize ifo(:r), x(O), ifl (x), 
x(I), .... More precisely, let A;) = {x E A : ifo(X) is least}, Ao = {x E 
A~ : x(O) is least}, A~ = {x E An : ifl(X) is least}, Al = {x E A~ : x(l) is 
least}, etc. Then A;) :2 Ao :2 A~ :2 Al :2 ... and the properties of a scale 
easily imply that n" An is a singleton {a"d, with a0 E A. 

(36.4) Exercise. If T is a tree on N x K, A = p[T], cpT is the canonical 
semiscale, andJ;T is the canonical scale on A associated to T, show that 
a~7T = aT and fT = q;T(aT), i.e., the procedure just described coincides 
with that explained in :36.A. 

Again we can make this procedure more transparent by defining a new 
scale (1P,,) from the scale (if.,,) as follows: 

lj;n (x) = ('Po(:r), x(O), 'PI (:r), :r(I) .... , 'P" (x), x( n)). 

Note that additionally (1/;,,) has the following properties: 

i) 1/;n(x):::: lj;n(Y) =} wm(x) ::::l/Jm(Y), \fm :::: n; 
ii) If Xi E A and 1/;n(Xi) ----+ an for all n, then Xi ----+ x for some x E A. 

(36.5) Definition. Let X be a Polish space and A c:;; X. A scale ('Pn) on A 
is called very good if: 

i) ifn(X):::: ifn(Y) =} \fm:::: n(ifm(x) :::: ifrn(Y)); 
ii) If Xi E A and ifn(Xi) ----+ an for all n, then Xi ----+ X for some x E A. 

Given a very good scale (if,,) on A c:;; X, we have the following picture 
(Figure 36.1) of the prewellorderings ::::"n associated to if", i.e., each ::::'Pn 
refines ::::",,-1 (n 2' 1). 

For a very good scale 'Pn on A, the procedure of selecting an element of 
A is now very simple: Just minimize ifo(X), ifl(X), ... , i.e., let Ao = {x E 

A: ifo(X) is least}, Al = {:r E A: 'Pl(X) is least}, A2 = {x E A: if2(X) 
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is least}, etc. Then Ao :;;;> Al :2 ... and nn An = {x}, with .1: E A, as it 
easily follows from the properties of a very good scale. (If (CPa) is a scale 
on a subset of Nand (7/Jn) is the very good scale associated to it by the 
procedure described just before 36.5, then this procedure applied to (ljin) 
gives exactly the canonical element acji E A determined by rp.) 

If (CPn) is a very good K-scale on A, we can also associate to it a 
generalized ("'-) Lusin scheme (A u )uEh<l as follows: 

Au = {:x: E A : Vi < length(u)(u, = 'Pi(X))}. 

Then AI) = A, Au = U"<K Au'''' and Au'n n Au ',a = 1'1 if Q oF /3. 
In terms of the associated K-Lusin scheme (Au )llEK<l we can describe 

this procedure as follows: Suppose first that f E KN is such that A fln oF 1'1 for 
all n. Then AII(n+I) ~ Alln for all n, hut nn A lln may be empty. However, 
if Xn E A lln . then by the properties of a very good scale, X" -t :r E A and 
although we do not necessarily have X E nn A lln , we have x E nn Aqln 
for some g:::: f. So if f = fn is defined by fn(n) = min{CPn(x) ::r E A}, 
then clearly g:::: fn =? 9 = fo, so that x E n"Aloln and {x} = nnAloln = nn An, is the canonical element of A described before. 

36. C Scaled Classes and UniJormization 

(36.6) Definition. Let r be a class of sets in Polish spaces. Let X be a Polish 
space, A ~ X, and (CPn) a scale on A. We say that (CPn) is a f-scale if each 
rank CPn is a r -rank. (Again this notion is primarily of interest if A E r.) 
The class r is scaled or has the scale property if every A E r admits a 
r -scale. 

Clearly, every scaled class is ranked. 
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(36.7) Exercise. Show that :E~ for ~ ~ 2 (and for ~ = 1 in zero-dimensional 

spaces) is scaled. III fact, shmv that each A E :E~ admits a :E~-scale 
'Pn : A -> '"-. that has the following stronger continllity (instead of serni
continuity) property: If .Ti E A and 'P,,(.Ci) -> 0", then :ri -> .r E A and 
'Pn (:.c) = 0", \In. (This cOJltinuity property does not extetld to definable 
classes beyond the Borel sets. It is easy to see thollgh, using the Axiom of 
Choice, t.hat every set A c:; X. X a Polish space', admits a scale 'Pn : A -> n 

with this continllity property.) 

(36.8) Proposition. Let [ be a class of sets in Polish spaces containing all 
Borel sets and closed 'Under BOTe! pTeimages and .finite intersections and 
unions. If A E [ admits a l'-sca/e. A admits a '(I("'':!) good [-scale. 

Proof. First let A c:; X. where X is hero-dimensionaL so that we call assume 
X = [1']. for some pruned tree T Oil N. Let (Y1I) be a [-scale OIJ A. Define 
as llsual 

so that 
:y E A, 

Cr) = ('PoCr), :r(O) ..... YII(.r) .. r(n)). 

is a very good scale. To see that it is a r-scale, note that for 

J' E A &. ~'II(.T;) S;~'nClj) 

holds iff (.r <~() y), or (x <:::~() y &: .IJ S;~IJ J: &. :1'(0) < y(O)), or (.1' S;~IJ 

Y &. :y S;~IJ .T: &: x(O) = y(O) &: .1' <~I y), or ... , and similarly usillg <~, 
so thatliJn is a [-rank. (l\;otice that this works because we first compare 
'Po(.T:) with yo(y) alld thell .r(O) with y(O). which also explains our use of 
the anti-lexicographical orderillg ill 3G.A.) 

Let X be arbitrary Polish and A C;;; X be in r. Let F c:; /V he closed 
and I : F ---7 X a continuous bi.iectioll. Put A' = I-I (A). If ('P,,) is a r -scale 
on A. then y", = y" 0 I is a [-scale on A'. Dy the special case proved above, 
A' admits a very good r-scale CU';,). Let 0 I-I. This is easily a 
very good r-scale on A. D 

Finally, we have t he following basic connection between definable scales 
and lllliforlllihatioll. 

(36.9) Theorem. Let r be a class of sets in Polish spaccs containing all 
Borel sets and closed under Borel pTeimages. countable 'inteTsections and 
finite ·IUl.ions, and co-projections. If X,Y are Po/ish and Jl c:; X x Y in [ 
admits a [-scale, then A. has a v.niforrnization in r. 
Proof. By 36.8, let ('P,,) be a very good r-scale on A. Then y f-7 cp;;(y) = 

'P,,(.r.y) is a very good [-scale on A J • Let YJ be the ulIlonical elemellt 
determined by ('P~;) on A.., if A, f. 0, as in 3G.D. Put 

A. * ( J:. if) <=? Y = Y.I· 

vVe claim that A* E r. Indeed, 
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A*(x, y) {=> Ifnlfz[(x, y) :::;~n (x, z)]. 

D 

(36.10) Corollary. (Lusin-Sierpinski) Every Borel set admits a ITt -uniform
ization. 

(36.11) Exercise. i) Let X be an uncountable Polish space. Show that there 
is function f : X --+ X that has ITt graph but is not Borel. 

ii) (Kanovei) Show that there are two functions f, 9 : lR --+ lR with ITt 
graphs and f(x) < g(x). Ifx, but for which there is no Borel set A ~ IR x lR 
such that Ifx(Ax i= 0) and Ify E Ax(f(x) < y < g(x)). 

36.D The Novikov-Kond6 UniJormization Theorem 

(36.12) Theorem. The class ITt is scaled. In fact, for every Polish space X 
and A E ITt( X), A admits a ITt -scale that is also an WI -scale. 

Proof. As in the argument in 36.8, we can assume that A ~ N. SO let T be 
a tree on N x N with x E A{=> T(x) is well-founded. 

For s E Nn , define the following linear ordering <8 on {O, ... ,n - I}: 

i <8 j {=> (ti,tj ¢. T(s) & i < j) or 

(t i ¢. T(s) & tj E T(s)) or 

(ti' tj E T(s) & ti <KB tj), 

where {t;} is a bijection of N with N<N such that to = 0, tj ~ ti =} j > i, 
and length(ti) :::; 'i, and T(s) = {u : length(u) :::; length(s) & (sIlength(u), 
u) E T}. Thus, identifying ti with i, <8 is the Kleene-Brouwer ordering on 
T(s) n {O, .. " n -I} with the rest of {O, ... ,n - I} thrown at the bottom 
with its natural ordering. 

Note now that 

i) s i= 0 =} 0 is the largest element of <Sl 
ii) s ~ t =}<s ~ <t, 

since (for i)) to = 0 is the largest element of < KB and (for ii)) length( til :::; i. 
Put for x EN, 

<x= U <xln, 
n 

so that <x is a linear ordering on N with largest element O. It is just the 
Kleene-Brouwer ordering on T(x) with the rest of N thrown at the bottom 
with its natural ordering. So 



36. Scales and Uniformization 305 

x E A {o} T(x) is well-founded 

{o} <KB I T(x) is a wellordering 

{o} <0; is a wellordering. 

Define now the following tree 5 on N x WI, called the Shoenfield tree, 

Then 

(8, u) E 5 {o} 3n(8 E N" & U E w~ & 

U : n ~ WI is order preserving for <.5' 
i.e., for 0::; i,j < n, i <8 j =} Ui < Uj). 

x E A {o} <:r: is a wellordering 

{o} 3f : N ~ WI (f is order preserving for <x) 
{o} 3f(x, f) E [5]. 

So 5 shows that A is wI-Souslin. 
Next let us note that for each x E A, 5(x) has a pointwise leftmost 

branch. Since <x is a wellordering, let hx : N ~ G be its canonical iso
morphism with a countable ordinal G. Then hx = P<x' the rank function 
of <x, and so if f : N ~ WI is order preserving, i.e., f E [5(x)], then 
hAn) ::; f(n), Vn (see Appendix B). Thus hl E [5(x)] is the pointwise 
leftmost branch of 5 (x). 

Put 'Pn(x) = hx(n). Then by 36.3 (if,,) is a scale on A. It may not be, 
however, a lIt-scale. We will modify it a bit to produce a lIt-scale. 

Denote by <~t the restriction of <x to the initial segment of <x deter
mined by n (i.e., {Tn EN: Tn <x n}). Let 

An = {x :<:' is a wellordering}, 

and for x E An, let 

4;n(x) = the ordinal isomorphic to <~ =p«~). 

Then, as in the proof of 34.4, ?/In is a IIi-rank on An. 
Note that A = Ao (since 0 is the largest element of <J') and A <;;: An for 

each n. Also for x E A, 'Pn(x) = p<,(n) = p«~) = ?/In(x). But although 
is a IIi-rank on An, 'Pn = wnlA may not be a lIt-rank on A. So put 

Then it is easy to check that (CPu) is a scale on A and that it is a IIi-scale 
since for :y E A, 

and similarly with ~i. 
Strictly speaking, (CPn) is not an wI-scale but rather an wi-scale. 

However, if we replace CPn by the unique regular rank 't';, equivalent to 
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it, tlwn (y;,) is a IIi-scale, and if y;, (x) :::; y;, (y) for some yEA, 
thell tPn (x) :::; :P n (y), thus in particular, yO (x) :::; yO (y) = G, and so 
'Pn(x) = p<,(n):::; p<,(O) = yo(x):::; G. It follows that y;,(y) is collnt
able, so (y;,) is an ;..)1-scale. 0 

In view of this result and 36.7, the picture at t.he end of 35.A applies 
to scales as well. 

(36.13) Definition. We say that a class r has the uniformization property 
ij eveT'Y set in r admits a unijoT'rnization in r. 

\Ve have now immediately the next result. 

(36.14) Theorem. (The Kovikov-Kond{l Uniformization Theorem) (Kondo) 
The class III has the unijoT'mization pmpeT'ty. 

Pmof. By 36.12 alld 36.9. o 

(36.15) Theorem. (Shoenfield) EveT'Y III set is Wl-So11slin. 

Proof. This is clear from 36.B and 36.12 for every III subset of N. Let 
X be any llonempty Polish space and A c:;; X a III set. Let p : .Iv ---. X 
be a continuous surjection and put p-l(A) = A'. TheIl A' is IlL so A' = 

pro.Lv(F). with F c:;; N x w~ closed. So x E A B :3y E N:3j E w~(p(y) = 

x&' (y. f) E F) B :3g E W\i(x, g) E H, where H c:;; X x w~ is the following 
closed ;,let: 

(:x;,g) E H B (go,gl) E F & p(go) = :r, 

where for 9 E w~, 9o(n) = 9(271), 9dn) = g(2n + 1) (we view here N = W 

as a subset of WI). 0 

(36.16) Exercise. (l\Iartin) Show that every III well-founded relation has 
rank < W2. Construct III well-founded relations of rank WI. WI + L WI + WI. 

(36.17) Exercise. (Mansfield) Show that if t'C is all infinite ordinal and A is 
K;-Souslin, then A has cardinality:::; card( t'C) or else A contains a Cantor set. 
In particular, every III set has cardinality:::; Nl or else contains a Cantor 
set. 

Rernar'k. This is the best result that can be proved in ZFC concerning the 
cardinality problem of II) sets. Recall, however, 32.2. 

(36.18) Exercise. (Kechris) Show that if t'C is an infinite ordinal and A c:;;./Ii 
is t'C-Souslin, either A c:;; U~<h' AE with each AI; compact or else A contains 
a :mperperfect set. So every III set can be covered by Nl compact sets or 
else contains a superperfect set. (Recall, however, 32.3.) 
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(36.19) Exercise. Generalize 25.16 to h:-Souslin sets. 

36.E Regularity Properties oj UniJormizing Functions 

Let X, Y be Polish spaces and A <:;; X x Y a IIi set. Let A * be a II} 
uniformization and J: pro.ix (A) --> Y be the corresponding uniformizing 
function, J(:r) = y <¢=} A*(x, y). Even when projx(A) =, X, we cannot 
proVf~ in ZFC alone that for every probability Borel measure fl" J is J1.
measurable or that J is Baire measurable. This is because for any open set 
U <:;; Y, J-1(U) = {x : 3y(y E U & A*(:r, y))} is a 'E~ set (i.e., a continuous 
image of a IIi set) and such sets (which form a class bigger than that of 
the 'Ei or IIi sets - see Section 37) cannot be proved to be measurable or 
have the BP in ZFC alone. However, they have these regularity properties, 
as we can see using 'Ei-Determinacy. 

(36.20) Theorem. ('E~-Determinacy) Let X be a Polish space and A <:;; X 
a 'E~ set. Then A is universally meas1Lrabie and A has the BP. 

Proof. We prove the second assertion first. Let X be Polish and A <:;; X 
be 'E~. Note that for some IIi set F <:;; X x N, A = pro.ix(F). Indeed, 
let J : Y --> X, Y a Polish space, be continuous and B ~: Y be IIi with 
J(B) = A. Then let 9 : N --> Y be a continuous surjection (we can assume 
of course that Y # 0). Then 

x E A<¢=} 3y(y E B & J(y) = x) 
<¢=} 3z E N[g(z) E B & J(g(z)) = .r] 
<¢=} 3z(x,z) E F 

for some IIi set F <:;; X x N. 
Consider now the unfolded game C:*(F) as in 21.5. Since X has a 

countable basis, we can view it as a game on N that easily has a IIi payoff 
set, so it is determined. Thus all Banach-Mazur games G**(A) for A E 

'E~(X), X Polish, are determined, and so by 8,35 (and the obvious fact 
that 'E~ is closed under finite unions) it follows that all 'E~ sets have the 
BP. 

We prove now the first assertion, Note that 'E~ is closed under Borel 
isomorphisms, so we can work with X = C. Also, by separating a given 
probability Borel measure into its discrete and continuous parts, it is enough 
to consider only continuous measures; thus, by 17.41 it is enough to show 
that if A <:;; C is 'E~ and J1. = J1.e is the usual measure on C, then A is 
J1.-mea'iurable. 

For any A <:;; C, let 

J1.*(A) = sup{J1.(B) : B <:;; A, B Borel}, 

J1.*(A) = inf{J1.(B) : B :2 A, B Borel}. 



308 IV. Co-Analytic Set:; 

Clearly, tL*(A) = p(B) for some Borel B <;;; A. Let A' = A \ B. Then 
tL* (A') = 0, and since (as it is easy to see) :E~ sets are closed under finite 
intersections, if A E :Ei, then so is A'. If p*(A') = 0, then, as tL*(A') = tl(G) 
for some Borel G :;;;z A', we have that B <;;; A <;;; BuG and p(B) = tL(BuG), 
so A is p-rneasurable. 

Thus it is enough to prove the following: 

If A <;;; C is :E~ and p*(A) = 0, then p*(A) = O. 

Let (since /If can he viewed as a subspace of C) F <;;; C x C be IIi such 
that 

;r E A<=? 3y(;r,y) E F. 

Consider then the following "unfolded version" of the covering game due 
to Harrington. 

Let (G;) be a bijection between N and all finite unions of basic open 
sets N, of C. Fix E > O. The game is defined as follows: 

I x(O), y(O) x(l). y(l) 

II z(O) z(l) 

J:(i),y(i) E {O, I}; z(i) EN: tL(Gz(i)) -s: E/231 . Player II wim, iff [(.T.y) E 
F =?:r E Ui GzU )]' 

This game is clearly :Et, and so determined. 
If I has a winning strategy, this induces as usual a continuous function 

j : N ---+ C x C, and j(N) <;;; F, so B = {x : 3y(x, y) E j(N)} <;;; A and 
B is :Ei. So B is 11-measurable and p(B) -s: p*(A) = O. Let z then be such 
that tl(G z (i)) -s: E/23i and B <;;; U, GZ(i)' Then z beats I's winning strategy, 
which is a contradiction. 

So II has a winning strategy. Let n :::: 1 and for (8. t) E 271 X 2", Gs,t = 

0,,(n-1), where (11(0), ... , 1J(n -1)), is what II plays following this strategy 
when I plays (s(O), t(O)), (s(l), t(l)), ... , (s(n - 1), t(n - 1)). Clearly, A <;;; 

Un U(s.f)E2 n x2" Gs,t, so 

u G ) < "'(::")2_f_ = '" f/2n - 3 < 8f. 
s.t - L.J 23(n-1) L.J -

n (s,f)E2H x2n TI n 

Since E was arbitrary, 11* (A) = 0 and we are done. o 

(36.21) Corollary. (:Ei-Determinacy) Let X,Y be Polish spaces and A <;;; 
X x Y be IIi. Then projx(A) is lLniversally measlLrable and has the BP. 
Moreover, A has a lLnijormizing j1Lnction j: proh(A) ---+ Y with IIi-graph 
and SlLch that j is universally measlLrable and Baire measlLrable. 

(36.22) Exercise. Recall from 30.14 ii) that IIi sets are not necessarily uni
versally capacitable. (Busch, Mycielski, Shochat) Using :Ei-Determinacy, 
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show now that if Y is a compact metrizable space and "( a capacity alter
nating of order 00 with "((0) = 0, then every IIt set A ~ Y is ,,(-capacitable. 

36.F UniJormizing Co-Analytic Sets with Large Sections 

We will next prove a uniformization theorem for IIt sets with large sections 
which extends 18.6. 

Let Y be a Polish space and I a a-ideal in Y. Given a class r of sets in 
Polish spaces we say that I is r -additive provided that for any transfinite 
sequence (Ao,)a<1J (TJ some ordinal) of subsets of Y, if Aa E I and the 
prewellordering on Ua<1J Aa defined by 

x ~* y {=? (the least 0: with x E Aa) ~ (the least f3 with y E A/3) 

is in r, then Ua<1J Aa E I. 
If r contains only sets that have the BP and I = MGR(Y), or if J-l is a 

a-finite Borel measure, r contains only Ii-measurable sets and I = NULL/L' 
then I is r-additive, by 8.49 and 17.14. Thus the a-ideal~: of meager sets 
and Ii-measurable sets are IIt-additive. 

If X is a Polish space and x f-> Ix is a map from X into the a-ideals of 
Y, we say that it is r on r if for every Polish space Z and A ~ Z x X x Y 
in r the sets {(z,x) : Az,x (j. Ix} and {(z,x) : r-.J Az,x E I,} are also in r. 
(Note that this agrees with 18.5 for r = Borel.) 

Again, if x f-> lix E P(Y) is Borel and Ix = NULL/Lx or if Ix = 
MGR(Y), then x f-> Ix is IIt on II} by 32.4. 

Finally, if X, Yare Polish spaces, A ~ X, and J : A --c. Y, we say that 
J is r-measurable if for U open in Y, J-1(U) is r on A (i.e., of the form 
An P with P ~ X in r). Notice that if r is closed under countable unions 
and intersections, then r-measurability is equivalent to r-measurability. To 
see this, write U = Un r-.J Un, with Un open in Y, so that J-1(U) = Un r-.J 

J-l(Un ). Clearly, if A E rand r is closed under finite intersections, this just 
means that J-1(U) E r. Also, if A = X and r = IIL then IIt-measurable 
= :Et-measurable = at-measurable = Borel. 

(36.23) Theorem. (Kechris) Let r be a class oj sets in Polish spaces con
taining all clopen sets and closed under Borel preimages and countable in
tersections and unions. Assume r is scaled. IJ x f-> Ix is a r on r map 
Jrom X to a-ideals on Y such that each Ix is r -additive, and A ~ X x Y 
is in r, then B = {x: Ax (j. Ix} is in r and there is a r -measurable Junction 
J:B --> Y with J(x) E Ax Jor all x E B (i.e., J uniJormizes An (B x Y)). 

In particular, this holds Jor r = IIt. 
Proof. We can clearly assume that X = Y = N. B is clearly in r, since 
x f-> Ix is a r on r map. 

Let i.pn : A --> ORD be a r -scale and let 
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CT,.I)) = (Po(.1" . .I)), ,r(0) . .1)(0). Pl (.J:. y) . . 1"(1), .1)(1) .... , p" (:r, .I)), .r(n), y(n)) 

he the associated wry good I'-scnle. Theil for each .1". (y) = 1/'//(.1". y) 
is a ver)' good ('-scale on el,. Notice. moreover, thatV:,(Y) = (.:;) =? 

yl(1I + 1) =~I(II + 1). For each .1" E B. we will select an d('lllent lJ., of A.x 
as follows: 

Since is a f-ra1lk 011 A" el, tJ. I,. and I, is r-additive, it follows 
that for sOllle 1\, A::" = {y E A,: (.I)) = o} is not in I" Let n" he 
the least such. TIICIl hy f-additivit), again. {.If EA.,: ,,(y) < nIl} E I,. 
Sincc ki,) is very good. we lll\l"t have (h~' the sallle reasoning) that A;;',: =2 
A},';' =2 A~; =2 ... , awl t IlPre is a 111liqud:v determined .IJ = Y., such that 
Ytl(n + 1) = ·:1(11 + 1) for all~': E A;;;;' by the above propert~' of ( ). If 
.II" E A;; ,,'. thell .iJ" ---+ .l/r. so h~' the properties of scales, ./J.t E A,. 

It remains to show that f(.r) = .lJ,. is f-lllE'asmable. So fix.'; E N", II ~ 

1. Then for .1" E B, 

f(.r) E N, B .iJ, E N, 

B lV, n A // - I .. , d It 
O(l-l 'i-

B {.IJ E iV, : .lJ E At &: {.:; :: :S ~,:, _ j .Ii &: lJ :S * 
j 

.:;} tJ. Ir &: 

rv{':::Y:S* '::}EIr}tJ.Ir' 
-1 

so since .1' f--+ I, is a r on r map. f- 1 (N,,) is in I' and we are done. D 

The following results have been proved by G. E. Sacks [1969], H. 
Tanaka [19Gtl] for llleasure, and b~' P. C, Hinman [HJG9]. S. K. Thomason 
[1967] for category. 

(36.24) Corollary. Lei X,Y be Polish 81)(1ce8 and A r;;; X x Y a IIi set. Let 
.r f---7 II, E P(Y) be Borel mul I., = NeLL", m' else let I.l = l\IGR(Y). 
Then {.t:Ar tJ. II} is III and thel'C is a IIl-me(J/j'll.Table function f:B ---+ Y 
with f(.r) Ell" 1;/,)" E B. In particular, if A, has positive II,-meaSuJ'c fOT 
all ,I", or if A, is lwtmcaqe1" for all .r, then there is aBoI'd uniforrnizing 
flllu:tio7t f01" A. 

(36.25) Exercise. Show that there is an analytic set A. r;;; /v x/v snch that 
for each .1". /v \ A..I has cardinality :s 1. hut A. has no Borel uniformi:-ling 
function. 

:16. G E:ramples of Co-Analytic Scales 

In ;~4.F we discussed several examples of canollical IIt-ranks on various IIi 
sets. \Ve cOllsider here the question of fillclillg canonical IIi-scales. It turns 
ont that givC'1l a canonica.l III-rank on SOlllP III set A. a canonical IIl-scale 
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can often be obtained from it by a "localization" process. ~:() one can view 
such a scale as a "local rank". \Ve will illust.rate this point by discussing 
a few examples. Other cases t.o which it has been applied include the set 
DIFF of differentiable functions awl the set CF of continuous functions 
with everywhere cOllvergent. Fourier scries. 

1) \Ve consider first the set \VF of well-founded trees on N. A canonical 
IIt-rank OIl \\'F is T f--+ PT(0) (= 0 if T = 0). For allY givell :; E N<fl. we 
can "localize" this to the tree T, = {t : .';' t E T} to obtain 

cp,(T) = PT~(0) = PT(S), 

\Ve will verify that. this is indecd a scale (viewing (cp,) as a sequcllcc via 
some enumeration of N<N). 

Let T; E WF, Ti ----) T ill Tr, and CP., (Ti) ----) Ct. s for all 8. Note that 
8 E T iff for all large enough i. ,'; E T,. \Ve will show that T E WF and 
cps (T) <::: 0, for all 8. To see this it sufficcs to show that -" f--+ 0, is order 
preservillg on T (i.e .. S.t E T iv. -" ~ t =? Ct., < Ot). Because then for 
.s E T, cp,(T) = PT(.s) <::: Ct." while if .'; rt T, cp,(1') = 0 <::: ct,. So fix 
,'; ~ t, ,';. t E T. Then s. t E Ti for all large enough i, and so for all large 
enough i. Os = PT j (8) < (JT, (t) = Ot· 

Now. as in the proof of :36.12. Wt' call obtaill a IIi-scale from (cp,) by 
letting 

2) Next we look at the set \VO of welloreierings on N. In the proof 
of :H.4 we associated to it the canonical III-rank 1:1'1 = p( <J')' \Ve can 
"localize" this to an,v II E N to obtain the rank 

where <:' is the initial segment of <.1 deterlllilled by n. Theil. as ill 
Example 1), OllC can easily check that (I:rl,,) is a scale on \VO and if 
CPn(,r) = ( !-rl, Ixl n ). then (cp,,) is a IIi-scale on WOo 

3) (Kechris-Louveau) Considf'r fillally a nOllelllpty Polish space X and 
the III set K No (X) of all cOllntable COlll pact Sl1 bsets of X. Let K f--+ II K II C B 

be the IIi-rallk associated to J\"Nu(X) ill :34.20. Givell a basis of nOIlclllpty 
open sets {v~,} of X, dosed undcr fillite intersections with X E {V,,}. we 
"localize" IIKllcn to each U E {v",} to ohtain 

CPu(I{) = 11K nUlleD. 

\Ve claim that (after enumerating it in a sequence) this is a scale on 
KNIJ(X), from which it follows as usual that :?r(K) = (1IKllcD,CPu(K)) = 

(CPx(K). cpu(K)) is a IIt-scale on KNll(X), 
So assume K; E K No (X). K, ----) K (in K(X)). and cpdKi ) --+ W· ctu + 

du (Ct.u < WI. du < w) for all U E {V,,}. We will show that K E KN o (X) 
and cpdf{) <::: W· Ct.[/ + duo 
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We can clearly assume that Ki =I 0 and IKilcB = a (= ax) is constant. 
The proof will be by induction on a. So assume this has been proved for 
all .B < a. Let U E {Vn }. Then for all large enough i, IKi n UlcB = au. 
Put L j = (Ki n U)'l:u. Then Li = {:I:1,"" x:lu} for all large enough i. 
Since K U Ui Ki is compact, by going to a subsequence we can assume 
that :rj ----> Xj for j = l, .... du . Let L = {Xi: j = l, ...• du }. This has 
cardinality :::; du . 

Claim. (K n u)a u <;;; L. 

Granting this, we get (letting U = X) K E KNo (X) as well as 'Pu(K) :::; 
w . au + du , so the proof is complete. 

Proof of claim. Otherwise, (K n U)"u rz L, so let V E {Vn} be such that 
(K n U)"u n V =I 0 and V n L = 0. Thus (since Li ----> L) for all big enough 
i, (K, n u)nu n V = 0. 

By going to a subsequence if necessary, we can also assume that 
Ki nUn V ----> F E K(X). Now (Ki nun V)C>u <;;; (Ki n U)ou n V = 0. so 
IK; nUn Vlc:B < au. Since IKi n U n VlcB is eventually constant, namely 
/3 = aunY, we can assume that IKi nUn vlCB = f3 < au :::; a. So by 
the induction hypothesis (since Ki nun V -+ F and 'Pw(Ki nUn V) = 

11K; nUn V n WI!cB = IIKi nUn V n WlleB = 'Punvnw(Ki ) converges. 
for all W E {V,,}) we have F E KNo(X) and also WlcB :::; /3. Since 
KnUnl/ <;;; F and ,3 < au. (KnUnV)'l:L' <;;; F'l:U = 0. But by an 
easy induction on r it can be shown that for j\J E K(X) and any open 
W, AI"! n W <;;; (M n TVr!, so 

o =I (K n uyxu n V <;;; (K nUn V)"L' = (K nUn V)'-'U = 0. 

which is a contradiction. 

Since a scale {'Pn} on a set A gives a form of convergence criterion 
for membership in A (if Xi E A, Xi -+ X and 'Pn (Xi) converges for each 
n. then X E A). it appears that the determination of canonical scales on 
concrete ITt sets like the above examples (and other ones that we have 
not discussed here, i.e., DIFF and CF) could be useful in applications to 
analysis and topology. 



CHAPTER V 
Projective Sets 

37. The Projective Hierarchy 

87.A Basic Facts 

For each n 2: 1 we define the projective (or Lusin) class4~s ~;,. II;" A;, 
of sets in Polish spaces as follows: We have already defined the ~i (= 
analytic), IIi (= co-analytic) sets. Then we let, in general, 

~;'+l = {proh(A): X Polish, A r:: X x N. A E II1
l,(X x N)} 

= :JNII1 
n' 

II;,+l = rv ~;'+l = {X \ A: X Polish, A E ~;L+l (X)}, 

A.;, = ~;, n II;, . 

Classically, one uses the notation A, CA, PCA, CPCA, ... for the classes 
~L IIL ~~, II~, .... 

Since it is clear that ~i r:: ~~, it follows easily by induction that 
~~. U II~ r:: A~'+l' Put 

p = U~~. = UII~ = UA;,. 
n n n 

The sets in the class P are called the projective sets. So we have the fol
lowing picture of the projective hierarchy: 
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v 
p 

where every class is contained in any class to the right of it. 
We will first state some basic closure properties of the projective 

classes. 

(37.1) Proposition. i) The cla;ses ~; are closed under continuous preim
ages. countable intersections and unions, and continuous images (in partic
ular, projections, i. e" existential quantification over Polish spaces). 

ii) The classes II~ are closed under continuous preimages, countable 
intersections and unions, and co-projections (i. e., universal quantification 
over Polish spaces). 

iii) The classes .6.;' are closed under continuous preimages, comple
ments, and countable unions (i.e., they form a (j-algebra). 

Proof. By induction on n. We have already proved these for n = 1. Assume 
therefore they have been established for n and consider i) for n+ 1 (clearly, 
ii) and iii) then follow). 

Closure under continuous preimages is straightforward. Let Ai E 

~;'+l(X), i EN, say Ai = proh(Bi), Bi E II;,(X x N). Then 

x E nAi {=> Vdy(x,y) E Bi 

{=> 3yVi(x, (Y)i) E Bi , 

where (Y)i(m) = y( (i, m)) with ( ) a bijection of N x N with N. If 

(x, y) E B {=> Vi(x, (y);) E B i , 

then B E II~,(X x N) by the closure properties of II~" so n Ai E ~;'+1' 
Closure under countable unions is straightforward. 

Finally, if A E ~;'+l(X) with A = projx(B), B E II;,(X x N), and 
f : X -+ Y is continuous, then 

Y E f(A) {=> 3x3z[(x, z) E B & f(x) = yj. 

Let g : N -+ X x N be a continuous surjection. Then we have 

Y E f(A) {=> 3w E N[g(w) E B & 

f(proh:(g(w))) = yj 
{=> 3w E N(y,w) E C 

for some C E II;, (Y x N) by the closure properties of II;'. So f (A) E 

~;'+1 (Y). D 
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It follows that for each n 2: 1 and any fixed uncountable Polish Y, 

:E~'+l = {proh(A) : A E II;,(X x V), X Polish}, 

= {teA) : A E II;,(Z), j: Z ~ X continuous, X, Z Polish}. 

(37.2) Exercise. If X ~ Yare Polish, then :E;,(X) = :E;,(Y)IX = {A ~ X: 
A E :E;, (Y)}, and similarly for II;" a;,. 

(37.3) Exercise. Let X, Y be Polish. Show that a function j : X ~ Y has 
:E;, graph iff it has a;, graph iff it is a;,- (or :E~- or II;-) measurable. 
Such functions will simply be called a~ functions. (The ai functions are 
clearly the Borel functions.) A projective function is a function that is a;, 
for some n. 

Show that :E.;" II;, and a;, are closed under preimages by a;, func
tions. Show also that :E;, is closed under images by a;, functions. 

Remark. By 36.11 there are functions with IIi graphs that are not a i . 

(37.4) Exercise. (Kantorovich-Livenson) Show that :E;" II;, and a;, are 
closed under the Souslin operation A, if n 2: 2. 

(37.5) Exercise. Show that if X, Yare Polish spaces, U is non empty open 
in Y, and A c::: X x Y is projective, so are {x : Ax is countable}, {x : Ax is 
meager in U}, {x : Ax is contained in a Kcr set}, and (IL, x) E P(Y) x X f--+ 

p*(A,.). 

(37.6) Exercise. Consider the structure R = (JR:., +, .,:is) in the language 
L = {F, G, U} where F, G are binary function symbols and U is a unary 
relation symbol. Show that a set A c::: JR:.n is projective iff it is first
order definable with parameters in R, i.e., there is a first-order formula 
'P (u 1, ... ,Un, WI, ... , w m ) in Land r 1, ... ,rm E JR:. such that 

We can also define the projective classes :E~(X),II~(X), and a;,(X) 
and P(X) for any standard Borel space X by asserting that A c::: X is in one 
of these classes if for some Polish space Y and Borel isomorphism j : X ~ 
Y, j(A) is in the corresponding class of Y (this is independent of j, Y by 
37.1). Also, for any separable metrizable space X and any r = :E~., II~., P, 
we can define A c::: X to be in reX) iff for some Polish space Y ~ X and 
some BE reV), A = BriX. We also let a~(X) = :E;,(X) nII;,(X). Again 
it is easy to check that one can equivalently define :E;, (X), II;, (X) for any 
separable metrizable X by the same inductive process as in Polish spaces. 
Finally, we call a separable metrizable space :E;" II~, a;, or projective if it 
is homeomorphic to a :E;" II;" a~ or projective subset of a Polish space. 
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We prove next that the projective hierarchy is indeed a proper hierar
chy. 

(37.7) Theorem. For eveTY Polish space X and eveTY uncountable Polish 
space Y there is a Y-univeTsalset for :E;,(X) and sim.ilarly JOT rr~(X). In 
paTticular, ~;)(X) ~ :E~(X) ~ ~;)+1(X) JOT any uncountable Polish space 
X. 

Proof. By a simple induction on n, noting that if U E r(Y x X) is Y
universal for r(X), then ~ U is Y-universal for t(X), and if U E f(Y x 
X x N) is Y-universal for f(X x N), then 

v = {(y, x) : :=Iz(11, x, z) E U} 

is universal for 

:=INr(x) = {protJ((A) : A E r(X x N)}. o 

(37.8) Exercise. Show that for n :2: 1 and any uncountable Polish space 
X, O'(:E~)(X) ~ ~;)+l(X), Show also that C(X) (= the class of C-sets of 
X) ~ ~~(X) and formulate and prove an analogous result for all ~~)' n:2: 
2. 

37.B Examples 

We will discuss here a number of examples of projective sets that are neither 
analytic or co-analytic. 

1) \Ve can use the method described in 33.G, together with some 
uniformities concerning universal sets described in 27.E, to produce several 
examples of rr~-complete sets. 

Consider first the result of Poprougenko described in 27.E. It can be 
shown that it admits a uniform version: Namely, if A C;; N x IR is :Ei, 
then there is a continuous function F : N -> C([O, 1]) such that for every 
x EN. Ar = Rp(T)' Let 

5 = {f E C([O, 1]) : V'y E IR:=Ix E [0, I]U'(:r) = y)}. 

Then 5 is rr~-complete. To see this, let B C;; N be rr~. Then find A C;; N x IR 
in :Ei with :}'; E B -R V'y(x, y) EA. Then x E B -R A.T = IR -R RF(J) = IR-R 
F(x) E 5, so B is reducible to 5 by a continuous function. 

(37.9) Exercise. Show (using the notation of 27.E and 33.14) that {T E 

L(co) : O'l'(T) = 1'} and {T E L(co) : O'l'(T) has nonempty interior} are 
Borel rr~-complete. 
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2) Woodin has shown that 

l\IV = {J E C ([ 0, 1]) : f satisfies the Mean Value Theorem} 

is IT§-complete, where f E C([O,I]) satisfies the Mean Value Theorem if 
for all a < b in [0, 1] there is c, with a < c < b, such that l' (c) exists 
and 1'(c) = f(b~=~(a). This should be compared with the result of Woodin 
mentioned in 27.F that the set of f E C([O, 1]) satisfying Rolle's Theorem 
is ~i-complete. 

(37.10) Exercise. Show that MV is IT§. 

3) Consider compact subsets of ~n. Recall that such a set is path 
connected if every two points in it are connected by a path contained in K. 
Let PCONn = {K E K(~n) : K is path connected}. 

(37.11) Theorem. (Ajtai, Becker) For n :2': 3, the set PCONn is IT~
complete. 

Proof. Consider the construction in the proof of 33.17. Modify it byelim
inating the path p from KT ~ ~2. Call the resulting compact set LT. For 
definitiveness, we will take the point r in LT to be the origin (0,0) of ~2 
and the segment f!x to be parallel to the x-axis. Note thcct 

T tJ- WF B LT is path connected. 

Now let A C;;; N be a IT~ set and B C;;; N x C be ~i with 

x E A B Vy(x,y) E B. 

Let T be a tree on N x 2 x N with 

B = {(x, y) : ::Jz(x. y, z) E [Tn = {(x, y) : T(x, y) tJ- WF} 

(where, as usuaL T(x, y) denotes the section tree {s E N<N : (xllength(s), 
Yllength(.5), .5) E T}). For each x E N, let Px be now the compact subset of 
~.3 defined as follows: Identify C with the Cantor set E 1/ 3 C;;; [0,1]. For each 
y E C, let L x .y be the set LT(x.y) placed on the plane {(a, b, c) : c = V}. 
Then let PI = UYEcLx.y U {(:1:,y,z): x = 0, y = 0, z E [0, I]}. It is clear 
that Pr; E K (~:J) and x f---+ Pr is continuous. \Ve will check next that 

which completes the proof. We have 

:1: E A B Vy(x,y) E B 
B Vy(T(x, y) tJ- WF) 

B Vy(L r . y is path connected) 

B Px is path connected. D 
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For n = 2. A.it.ai and (independent.ly) Becker have shown that PCON2 

is II1 but not II j. This is all that is known about the descriptive das
sificaticJll of this set. (On the other hallcl, it is not hard to see that 
{I{ E J{ (R") : f{ is connccted} is closed ill l\ (JR;II).) 

Deuote by NHII thc set of compact subsets of;R" with no holes. i.e., 
those fl' E I\ (JR;II) such that ever~' contilluous lIlap from the unit circle 
1f illtO J{ can he extell(kd to a continuOlls lllap of the uuit disk ]]JJ into 
I\. (For /I = 2. this ddinitiull agrccs with the 011(' we gave ill ;{3.1 alld so 
NH:2 = )JH.) Lct SCON II = PCO:"J II nKH II he the set of silllply COlllll'cted 
cOlllpact. subsets of ;R". (So SCOK2 = SCON as ill :3:3.1.) Becker has ShOWll 
that SCON II is IIi-COluplctc if 1/ 2" ,1 amI for II = :3 that it is II1 but not 
~j or IIi. 

(37.12) Exercise. (Becker) Let P he a class of compact sets in JR;". A compact 
set L iu SOllle IR;. k generates P if P = {f (L) : .f : L ~ Illi." is continuous}. 
Show that there is llO COlli pact set gellcrating PCON II for Tl 2" :3. (This 
should be contrasted with t he classical Hallll-l\Iazmkiewicz Theorem ac
cordillg to which [0. 1] gPllerat.cs {I{ E fdA") : f{ is COllllPcted and locally 
COl 11 H'cted }.) 

4) \Ve di:-;CllSS llcxt all exalllple of a Ilniversal ~i set due to H. Becker 
[HJ87]. Let U C;;; C([O, l]ll x C([O, 1]) be given by 

((.III)' f) E U -(=} there is a subscCj1l('IH'C' (.III,) cOIlvergillg pointwi:-;c to f. 

Then U i:-; C([O, I])II-nnivcrsal for ~1(C([O, 1])). l\lorcover. this holds uni
forllll~': If A C;;; JV x C([O.l]) is ~1, there is a continuous hmctiou F : /If ~ 
C([O, l]t snch that Ar = Unr ). 

(37.13) Exercise. i) Shovv that U above is iudeed ~~. 
ii) Say that (fn) E C([O. J])ll is quasidense ill C([0.1]) if every h E 

C([O, 1]) is the pointwise limit of it cmbseqllellce of (fll)' Show that the set 
of qmtsidcnsc (fll) E C([O, 1] t is II:}-colllpletc. 

iii) Show that there i::i a SCqllCUCC of polynomials (PII ) :-;uch that letting 
PII = Til 1[0, 1] \ve have DIFF (= U E C([0.1]):.f is differentiable}) 
{f E C([O. 1]): There is n snb:-;c(juC'llc(' (p",) converging pointwise to fl. 

RecnllllCJw that a seCjuellCC (f,,) E C([O, 1])11 cOllvergps weakly to .r E 
C([O.l]) ill the BauClch space C([O.l]) iff (fll) is ulliformly boullded and 
fll ~ .f pointwise. R. KHufmall [IDD1] has shown that the set 

((fn). f) E U -(=} therC' is a subseCjnence (fll, ) converging weakly to f 

is C([o.l]fl-univcrsal for ~~(C[O.I]). Again this holds uniformly. and Olle 
call repeat 37.13 in the cOlltext of weak cOllvergeIlCP. 
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5) The work of Becker discussed in Example 4) has been extended by 
H. Becker. S. Kahane, and A. Louveau [1993] to provide fJrther examples 
of universal and complete :E~ sets which, surprisingly, include some classi
cal classes of thin sets studied in harmonic analysis. The main fact is the 
following. 

(37.14) Theorem. (Becker-Kahane-Louveau) The set U ~ C(C X C,2)N xC 
defined by 

((fn), x) E U ¢:} there is a subsequence (f nJ 
such that f~, -; 0 pointwise 

is C(C X C,2)N -u,niveTsal faT :E~(C). (HeTe F(y) = f(y,x).) 

\Ve postpone the proof for a while to see some of the implications of 
this result. 

(37.15) Exercise. (Becker-Kahane-Louveau) i) Show that the sets {(fn) E 

C([O, l])N: some subsequence (fn,) converges pointwise}, {(fn) E C([O, l])N: 
some subsequence (fn,) converges pointwise to O} are :E~-complete. (Using 
the method of R. Kaufman [1991] convergence can be replaced by weak 
convergence here.) 

ii) Let 'if" : C -; 2 be defined by 'ifn(x) = x(n). Show that the set 
{K E K(C): some subsequence ('if",) converges to 0 pointwise on K} is 
:E~-complete. 

The following two classes of thin subsets of 1I' have been studied exten
sively in harmonic analysis. The first class, denoted by No, was introduced 
by Salem: 

x' 

No = {K E K(lI') : 3no < nl < ... (2:: sin(ni t ) 
;=0 

converges absolutely for all eit E K)}. 

The second, denoted by A, was introduced by Arbault: 

A = {K E K(lI') : 3no < nl < ... (sin(nit) 

converges pointwise to 0 for all eit E K)}. 

Then we have the following result, using 37.15 ii) and some further con
structions that we will not present here. 

(37.16) Theorem. (Becker-Kahane-Louveau) The .sets No,A aTe :E~-comple
teo 

\Ve now give the proof of 37.14. 
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Proof. (of 37.14) It is easy to check that U is :E~. 
Let A c:;; C now be :E~. We will find (in) E G(C X C,2)N such that 

x E A ¢} there is a subsequence (in,) such that I:::, ----> 0 pointwise. 
Since A is :E~, there is a IIi set B c:;; C x C such that 

J: E A ¢} 3y(:r, y) E B. 

Then, by 25.2, there is a tree T on 2 x 2 x 2 such that (x. y) tI- B ¢} 3z E 
N(x, y, z) E [T], where N = {z E C : 3 X n(z(n) = I)}. So x tI- A¢} Vy3z E 
N(x, y, z) E [T]. 

Fix first a 1-1 enumeration (sn) of 2<N so that 8 m c:;; Sn =? m ::; n. Put 
In = length(sn). We will also look at sequences (J' E (2 x 2 x N x 2)n (n EN), 
which we view interchangeably as 4-tuples (J' = (a, b, c, d) E 2" x 2" x Nn x 2" . 
For each such sequence (J' we fix a nonempty dopen subset Grr c:;; C such 
that 

i) (J' c:;; T =? Grr :.2 GT ; 

ii) (J'..l T =? Grr n GT = 0. 

Finally, we introduce the following crucial for the construction techni
cal definition: 

Let (J' = (a, b, c, d) have length k + 1 (for some k), n E N. We call (J' 

n-good if the following hold: 

i) C E Nk+1 is strictly increasing and c(k) = In; 
ii) b(k) = d(k) = 1; 
iii) ifp = card({m::; k: d(m) = I}), then alp = sniP. 

Clearly, for each n there are only finitely many n-good (J', since i) 
imposes an upper bound on k and also allows only finitely many such c. 

We now define the functions In. Put 

{ 
1. if 11 E Grr for some n-good 

In (11, :1:) = (J' = (a, b, c,' d,) of len,gth k + 1 with 
(xl(k + 1). a. b) E T; 

O. otherwise. 

By the preceding remark In is continuous. We will show now that it 
works. 

Claim 1. If x E A, then there is a subsequence (in,) with I:", ----> 0 pointwise. 

Proof. Choose y E C with (x, y) E B. Let no < 71] < ... be such that 
Yli = S"i' We will show that Ir~, ----> 0 pointwise. If not, there isu E C and 
a subsequence (mj) of (ni) such that 1:;'J (11) = ImJu, x) = 1 for all j. Let 
(J'j be mj-good witnessing that. Since 11 E CaJ , these (J'j are all compatible. 
Also, lmj = length(srnJ 2' j as length(snJ = i and (m]) is a subsequence 
of (ni)' So if (J'J = (aj,bj,cj,dj ) has length kj + L then c7 (kj ) = lmj 2' j, 
so k] ----> 00. Thus there is (y', z'", b) E C x C x N x C such that (J'j = 
(y'l(k j + 1), z'l(kJ + 1).,I(kj + 1), bl(k) + 1)). Also, (xl(k j + 1). y'l(kJ + 
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1), z'l(kj + 1)) E T, and thus (x, y', z') E [T]. Finally, z'(kj ) = c5(kj ) = 1, 
so z' E Nand Pj = card( {m :S kj : c5( m) = I}) --> 00. Therefore, since 
y'lpj = smJIPj = ylpj, we have y = y'. Thus 3z' E N(x,y,z') E [T], so 
(x, y) et E, which is a contradiction. 

Cla-im 2. If x et A, then for any subsequence (fn,), (f::i) does not converge 
to 0 pointwise. 

Pmof. Fix;r; et A, (n,). Going to a subsequence we can assume that lni i (X) 

and for some y E C, S71i converges to y. Clearly, (x, y) et E, so there is zEN 
with (x, y. z) E [T]. Define c5 E 2N recursively as follows: 

{
I, if z(i) = 1 and for P = card({m < i: 8(m) = I}) + 1 

8( i) = we have yip = S"j Ip, for all j ~ i ; 
0, otherwise. 

Note that 8 E N. Because if 8(io) = 1 (or io = -1) and P = card( {m :S 
-io : 8(m) = I}) + L find the least jo > io such that j ~ jo ~ yip = sn)lp, 
and since zEN, let i 1 be the least number ~ jo with z(id = 1. Then 
c5(i) = 0 if io < i < iI, and c5(i l ) = 1. 

Also put i(i) = In,. Then note that forj with c5(j) = 1, (yIU+ 1), zl(.j+ 
l),il(j + l),c5I(j + 1)) is nFgood. Now let n E n{C(vln,zln'")ln,hln) : n EN}. 
Then it is obvious that for any j with c5(.j) I, In] (n, x) = 1, and the 
proof is complete. D 
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38. Projective Determinacy 

38.A The Second Level of the Projective Hierarchy 

Part of the theory of the first level of the does ';0 projective hierarchy (lIt 
and ~} set,;) extends to the second level but does so with an interesting 
twist. This is based 011 the fact that the rank or scale properties are pre
served under projections. 

Recall that for any clas,; [ of sets in Polish spaces, we denote by ::l""[ 
the class 

3N [ = {A c: X: 3B E r(X x N)(A = proh(B))}. 

(38.1) Theorem. (Novikov. Moschovakis) Let [ be a class of sets in Polish 
spaces which is closed under continuous preimages, finite intersections and 
unions, and co-projections. If r is ranked, so is 3N [. 

Proof. Let A E 3N r(X) and H E r(X x N) be ,;uch that A = proh(B) 
(i.e., x E A ¢} 3y(x,y) E B). Let :p be a [-rank on B. Define the rank 1/) 
on A by 

1jJ (x) = inf { :p (.r, y) : (x, y) E B}. 

Then 1./) is a 3N [-rank, since 

X Xl ¢} 3VVyl(X, V) :s:~ (Xl, Vi), 

x <1) Xl ¢} 3VVV/(x, V) <~ (Xl, Vi). 

(Note that 3N [ is closed under continuous preimages and finite intersec
tions and unions.) 0 

(38.2) Corollary. The class ~~is ranked. In particular, (Novikov, Kura
towski) ~§ has the generalized reduction property but not the separation 
property, and II~ has the generalized separation proper·ty but not the r-edv.c
tion proper-fy. 

Proof. From 34.4,35.1 and 38.1. o 

(38.3) Exercise. Show that every 1:~ set A admits a 1:~-rank :p : A -+ :..il' 

A similar transfer theorem holds for scales. 

(38.4) Theorem. (Moschovakis) Let [ be a class of sets 'in Polish spaces 
containing all Borel sets, which is closed under Borel preimages, finite in
tersections and unions, and co-projections. If [ is scaled, so is 3N [. 

Pm of. Let A c:;;: X be in 3N r and B E r(X x Jv) be such that .r E A ¢} 

3V(x, y) E B. By 36.8, let (:Pn) be a very good [-scale on B. Then let 
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B* be the canonical uniformization of B given in the proof of 36.9. Then 
x E A¢} 3y(x, y) E B ¢} 3!y(x, y) E B*, and for x E A denote by Yx the 
unique y with (x, y) E B*. Define the following sequence of ranks on A, 

\Ve claim first that this is a scale: Let x, E A, Xi --> x and 'l/Jn(Xi) --> an, Vn. 
Thus 'Pn(Xj, Yx,) --> an, and so, since ('Pn) is a very good scale, YXi --> y, 
where (x,y) E B, and 'Pn(x,y) :::; an. So x E A. By the definition of 
Y.r, 'l/Jn(:r) = 'Pn(x, Yx) :::; 'Pn(x, y) :::; an, and so we are done. Finally, ('l/Jn) 
is a 3N r -scale, since 

:r :::;~)n x' ¢} 3yVy'[(x,y) E B* & (x,y) :::;~" (x',y')]' 

x x' ¢} 3yVy'[(x, y) E B* & (x, y) <~n (x', y')]. 

(38.5) Corollary. The class :E§ is scaled. 

o 

It does not follow immediately from this and from 36.9 that every :E~ 
set has a :E~ uniformization, but this can be deduced easily from 36.14 and 
the following general fact. 

(38.6) Proposition. Let r be a class of sets in Polish spaces. If every r set 
has a r uniformization, every 3N r set has a 3N r uniformization. 

Proof. Let A C;;; X x Y be in 3N r, so (x, y) E A ¢} 3z(x, y, z) E B for 
B E r. Let B* be a r uniformization of B on (y, z), i.e., B* C;;; Band 
3y3z(x, y, z) E B ¢} 3!(y, z) (x, y, z) E B*. Put 

(x, y) E A* ¢} 3z(x, y, z) E B*. 

Then A * C;;; A. A * E 3N r and clearly uniformizes A. o 

(38.7) Corollary. (Kondo) The class :E~ has the uniform1zaiion property. 

Since II~ does not have the generalized reduction property or equiv
alently the numher uniformization property, 38.7 fails £or II~. However, 
assuming :E~-Determinacy it can be shown that every II~ set can be uni
formized by a II§ set (D. A. Martin and R. M. Solovay [1969], R. Mansfield 
[1971]). We will prove this result from Projective Determinacy in 39.9. One 
cannot prove that II~ sets admit "definable" uniformizations in ZFC. 

In view of the preceding results, we have one more step in the picture 
given at the end of 35.A: 
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The boxed classes are scaled and ranked and have the number uni
formization and generalized reduction properties, and the other classes have 
the generalized separation properties (in zero-dimensional spaces if ~ = 1). 
Notice the flip from the n to the ~ class between the first and second levels 
of the projective hierarchy. (Can you guess the pattern at higher levels?) 

(38.8) Exercise. (Sierpinski) Show that every ~~ set is the union of Wi Borel 
sets. 

(38.9) Exercise. i) Show that every ~~ set admits a ~~-scale that is also 
an Wi-scale. 

ii) (Shoenfield) Show that all ~~ sets are wrSouslin. 

In particular, it follows from 38.8 (or 38.9 ii) and 36.17) that every ~~ 
set either has cardinality ~ Ni or else contains a Cantor set. This is the 
best result that can be proved in ZFC. See, however, 38.14 ii) below. 

(38.10) Exercise. (Martin) Show that every ~~ well-founded relation has 
rank < W2. 

(38.11) Exercise. Show that the Boundedness Theorem 35.22 fails for r = 

~~: Find a set A s:;; X, in some Polish space X, which is in ~~ \ ~~, a 
~~-rank r.p: A ----> ORD, and a closed set B s:;; A such that 't/x E A:Jy E 

B( r.p(x) < r.p(y». 

(38.12) Exercise. Let 6~ = 6E~ = sup{p( <) : ~ is a ~~ prewellordering}. 

Show that 6~ = sup{p( -<) :-< is a ~~ well-founded relation} and 6~ ~ 
W2. (Compare this with 35.28.) Show, however, that if A is ~~ and r.p : A----> 
ORD is a ~~-rank, then p( <<p) < 6~. 

(38.13) Exercise. Show that for any Polish space X and any 0 i A s:;; X, A 
is ~~(X) iff there is a continuous function f: WO ----> X with f(WO) = A. 

Many regularity properties of the second level projective sets can also 
be established using ~~-Determinacy. 

(38.14) Exercise. (~~-Determinacy) i) Recall (see 36.20) that every ~~ and 
n~ set in a Polish space is universally measurable and has the BP. Show that 
every ~~ set has a uniformizing function that is both universally measurable 
and Baire measurable. 

ii) Show that the perfect set property holds for the ~~ sets: Every 
uncountable ~~ set in a Polish space contains a Cantor set. 

iii) Let X be Polish and let A s:;; X be ~~. Then either A is contained 
in a Ka set or else it contains a closed set homeomorphic to N. 
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iv) Show that if X, Yare Polish spaces, U c:;; Y is nonempty open, and 
A c:;; X x Y is ~~, then {x : Ax is uncountable} is ~~, {x : Ax is not meager 
in U} is ~~, and similarly with "not meager" replaced by "comeager". Show 
also that {(I1, x, r) E P(Y) x X x IR.: 11( Ax) > r} is ~~. Finally, show that 
{x: Ax is not contained in a K,,} is ~~. 

38.B Projective Determinacy 

In developing the basic theory of sets in the first and second level of the 
projective hierarchy, we have used only one instance so far of "Definable 
Determinacy", namely ~i-Determinacy. In developing the theory of higher 
level projective sets, however, we will have to tap a stronger form, that of 
"Projective Determinacy". In fact, several properties of second level sets 
cannot be established with just ~i-Determinacy, such as, for example, the 
Perfect Set Property for II§ sets. 

(38.15) Definition. We will abbreviate by 

Projective Determinacy (PD) 

the principle that all games G(N,X), where X c:;; NN is projective, are de
termined. 

It is now straightforward to verify that several results that we proved 
earlier for the lowest levels of the projective hierarchy carryover immedi
ately to all projective sets using Projective Determinacy. For example, the 
results of 21.E hold for all projective sets, and the ordering (WADGE;', ::;*) 
is wellordering (P stands for "projective" here). A set A c:;; X, where X is 
Polish, is ~~, -complete iff A E ~;, \ II~,. :t-.loreover, any two sets in ~;, \ II;, 
are Borel isomorphic (and similarly switching ~~" II;'). Also, the theory of 
21.F and 28.E goes through with the obvious modifications. For instance, 
a separable metrizable projective space is Polish iff it is completely Baire. 
The same applies to 21.G. 

For any class r we let 

gNr = {A c:;; X: for some BE r(X x N), x E A ¢? ~;NY(X, y) E B}. 

Thus gN~? = IIL 9NII? = ~i (see 25.3 and 32.B). 

(38.16) Exercise. (Projective Determinacy) Show that gN~;, = II;,+l and 
9NII;, = ~;'+l for all n 2: 1. Therefore, gNIIi = ~~, 9~II} = II§, g~IIi = 
~l, and so on. 
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38. C Regularity Properties 

It should also be clear by now that all the usual regularity properties can 
be established for the projective sets using Projective Determinacy. 

(38.17) Theorem. (Projective Determinacy) i) (Davis) The perfect set 
property holds for the projective sets; that is, every unco'Untable projective 
set in a Polish 8pace contains a Cantor set. 

ii) (I\1ycielski-SwierczkowskL Banach-I\Iazur) Every projective set in 
a Polish space is universally measurable and has the BP. Similarly, every 
projective function is 'Universally rneas'UT-able and Baire m.easumble. 

Proof. See 21.A. 21.C and the proof of 36.20. o 

(38.18) Exercise. (Projective Determinacy) Let X be Polish and let A <:;; X 
be projective. Show that A either is contained in a K" set or else contains 
a closed set (in X) homeomorphic to N. 

(38.19) Exercise. It can bc shown using only Projective Determinacy (see 
L. Harrington and A. S. Kechris [1981]) that all projective sets are com
pletely Ramsey, but this seems to require more advanced techniqnes. One 
can use, however, a stronger form of "Definable Determinacy", namely the 
determinacy of all games G(A, X), where A is standard Borel and X <:;; AN 
is projective, to establish this. It is clear that an equivalent form of determi
nacy is obtained here by restricting A to be any fixed uncountable standard 
Borel space, like N or JR. Therefore, this form of "Definable Determinacy" 
is called Real Projective Determinacy (PDIFIJ. 

Use PDlF. to prove that all projective sets are completely Ramsey. 
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39. The Periodicity Theorems 

39.A Periodicity in the Projective Hierarchy 

As we have seen earlier, Illany basic structural properties of the projective 
sets of the first two levels are consequences of the fact that the classes 
IIi. ~~ have the scale property. USillg Projective Determillacy, we will es
tahlish in this section that this property propagates throughout the projec
tive hierarch." with a periodicity of order 2, so that we have the following 
picture: 

~l 
1 I~~I ~1 I~~I ~~n+l I~L~ 

IIIiI II~ Injl III 
1 III~n+11 IIbn+2 

where the boxed classes are scaled (and thus also satisfy the uniformization, 
rank, and generalized reduction properties) and the other dasses satisfy the 
generalized separation property. Thus the basic structure of the projective 
hierarchy is periodic of order 2. However, a filler analysis reveals significant 
strnctnral differences, for example. between the first and the higher odd 
levels (see A. S. Kechris, D. A. I\Iartin, and R. :\1. Solova:! [1983]), that we 
will not pursue here. 

\Ve will establish first the above periodicity pattern for the weaker 
rank property (the First Periodicity Theorem) in 39.B in order to see more 
clearly in a simpler context some of the ideas needed ill establishing the full 
result for the scale property (the Sc~~ond Periodicity Theorem), which we 
will prove in 39.C. 

Although the Second Periodicity Theorem can be llsed to extend a 
significant part of the theory of the first two levels throughout the projective 
hierarchy, it still leaves out some important results. This gap can be filled 
by the Third Periodicity Theorem, which we will prove in 39.D. This result 
provides an extension of 35.:32 to all odd levels of the projective hierarchy. 

The reader should note that the game methods employed in this section 
can be used to give (in ZFC) alternate proofs of many results for Dorel, ~t, 
and IIi sets, which we proved earlier by different means. 

S9.B The Fir-st Per-iodicity Theorem 

If B ~ X x N. we denote by \:IN B ~ X the co-projection of B, defined by 

::r E \:IN B {=)- \:IY(:J:, y) E B. 

For a class r. let 
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(39.1) Theorem. (The First Periodicity Theorem) (Martin, Moschovakis) 
Let r be a class of sets in Polish spaces closed under continuous preimages 
and projections. Assume that every game G(N,P), for P <:;;; N in .6., is 
determined. 

If X is Polish and B E r(X x N) admits a r -rank, A = VN B admits 
a VN r -rank. Thus, if r is ranked, so is VN r. 

Proof. (Moschovakis) Let ip be a r-rank on B. For each x, y E X consider 
the following game Gx .y on N: 

I a(O) a(l) 

II b(O) b(l) 

a(i), b(i) EN; II wins iff (x, a) :::;~ (y, b). 
Note that if x,y E A, the winning condition is just ip(x, a) :::; ip(x, b), 

since (x, a), (y, b) E B. Note also that G x .y is determined for any YEA, 
since then (x, a) :::;~ (y, b) ¢:> (x, a) E B & ip(x, a) :::; ip(y, b), which is in .6. 
by the definition of r-rank. 

(This game is called the sup game since a winning strategy for II is a 
uniform way of demonstrating that sup{ip(x,a) : a EN} :::; sup{ip(y, b) 
bEN}. Compare this with the inf method used in the proof of 38.1.) 

For X,y E A, let 

x :::; y ¢:> II has a winning strategy in G x .y . 

We will show that :::; is a prewellordering on A whose associated rank is a 
VNr-rank, which will complete the proof. 

Claim 1. :::; is reflexive, i.e., x :::; x. 

This is evident: II copies 1's moves in Gx •x . 

Claim 2. :::; is transitive, i.e., x:::; y & y :::; z::::} x:::; z. 

Proof. Fix winning strategies for II in Gx •y and Gy,z' 
We describe a winning strategy for II in Gx •z in the following diagram 

(Figure 39.1). 
Player I starts with a(O) in Gx.z; this is copied as 1's first move in Gx,y; 

II plays b(O) following his winning strategy in Gx,y; this is copied as 1's first 
move in Gy.z; II then plays c(O) following his winning strategy in Gy,z; this 
is copied as II's reply to a(O) in Gx,z; etc. 

Then ip(x, a) :::; ip(y, b) :::; ip(z, c), so II wins by this strategy. 

Claim 3. :::; is connected, i.e., x :::; y or y :::; x. 

Proof. Assume x :::; y fails, so fix a winning strategy for I in Gx,y. The 
diagram in Figure 39.2 shows how to obtain a winning strategy for II in 
G y •x . 

Since <p(x, a) > ip(y, b), it follows that ip(Y, b) :::; ip(x, a). 
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Cia-im 4. The strict part < of :s: is well-founded. 

Proof. Assume··· < X2 < Xl < Xo, toward a contradiction. Notice first 
that from Claim 3 it follows easily that 

X < y <* I has a winning strategy in Gy,x' 

Thus fix winning strategies for I in GXn,Xn+l and consider the following 
diagram (Figure 39.3): 
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ao (0) ao (1) ao (2) 

G / / xO,x1 

II a1(0) a1 (1) 

~ ~ 
(;/ (;/ 

al (0) a1 (1) a1 (2) 
G / / x l ,x2 

II az (0) a2 (1) 

# ~ p (;/ 

G 
az (0) az (1) a2 (2) 

xZ,x3 / / 
II a3 (0) a3 (1) 

FIGURE 39.3. 

tion. 

Finally, we have to compute that if 1/) i~ the rank as~ociated with :S, 
then 1j; is a \iN r -rank. 

View here strategies as functions eJ : N<N --+ N (~ee 20.A). If eJ is a 
strategy for II and II plays bEN by eJ when I plays a E N, we will denote 
b by eJ * a. Similarly, if T is a strategy for I, we will write a = b * T if I plays 
a via T when II plays b. Then we have for yEA, 

x E A & 1jJ(x):S 1jJ(y) -R ::lCJ\ia[(x,a):s~ (y,eJ * all 
-R \idb[(x, b * T) :S~ (y, b)], 

the last equivalence following from the determinacy of the games Gx .)}. D 

(39.2) Corollary. (Martin, Moschovakis) (Projective Determinacy) For each 
n, II~n+l' ~~n+2 are ranked. 

(39.3) Exercise. Use 39.1 to give an alternative proof that IIi is ranked. 

Recall now 35.28 and the notation preceding it. \Ve put b~n+l = b IT , 
2n+l 

and 6~n+2 = 6,£1 . 
2n+2 
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(39.4) Exercise. (Kechris, Moschovakis) (Projective Determinacy) Show 
that 

The projective ordinals 6;, play an important role in the theory of 
projective sets. We have seen that 6i = Wj and 6~ :s: W2. It turns out that 
all the 6;, can actually be "computed explicitly"; see S. Jackson [1989]. 

(39.5) Exercise. Using the notation from the proof of 39.1. show that 

x :s:~ y B Vao::lboVaj::lb j ... (x, (an)) :s:~ (y, (b~)), 

x <~, y B ::IboVao::lbjVaj'" (x, (an)) <~ (y, (b.,)). 

We will prove now a generalization of 39.1, whose p:coof will also be 
useful in that of the Third Periodicity Theorem. 

For A ~ X x N, recall that 9NA ~ X is the set defined by x E 9NA B 
9NY(X, y) E A, and for a class r, 9Nr(X) = {gNA : A E r(X x N)}. Note 
now the following simple fact (generalizing 38.16). 

(39.6) Proposition. Let r be a class of sets in Polish spaces closed under 
continuous pTeimages. Then we have: 

i) ::INr u vNr c;;: 9Nr; 
ii) vNr c;;: r =} 9Nr = ::INr: 
iii) if ::INr c;;: r and all games G(N,A) with A c;;: N in r are deter

mined, then 9Nr = vNr. 

Proof. i) Note that for A c;;: X x N, 

::Iy(x, y) E A¢} 9NZ(X, z) E B, 

where (x, z) E B ¢} (x, (z(O), z(2), z(4), ... )) E A. Similarly for VN. 
ii) In the notation of the proof of 39.1 and letting (x, y) = (x(O), y(O), 

x(l), y(l), .. . ) for x, YEN, we have 

9NY(X, y) E A¢} ::ITVb(x, (b * T, b)) E A). 

iii) Note that 

9NY(X, y) E A ¢} I has a winning strategy in G(N, Ax) 

¢} II has no winning strategy in G(N,Ax) 

¢} Va::la(x, (a, a * a)) E A. 

We now have the following result. 

o 
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(39.7) Theorem. (Moschovakis) Let [ be a class of sets in Polish spaces 
closed under continuous preimages and finite unions and intersections. As
sume that every game G(N,P), for' P r;;; N in [, is determined. If X is 
Polish and B E r(X x N) admits a [-rank, then A = YNB admits a Yf\l[

rank. Thus, if [ is ranked, so is YN[. 

Proof. Let cp be a [-rank on B. For x, Y E X consider the following game 
Gt. y on N between two players, whom we will call Circle and Square (Figure 
39.4): 

~ ~ Y I \ / \ 
I \ / \ 

1:0; 1 \ I:'; 1 \ 
I \ I 

-------f---\---+------
I \ / 

1;(1;1 \ 1;(3;1 
x I \ I 

I ~ I 

@ @ 
FIGURE 39.4. 

Players Circle and Square play successively a(O), a(l), b(O), b(l), ... , as 
shown in the picture. (Thus, in effect, they play simultaneously, and in the 
order shown, two rounds, one of the game G(N, By) and one of G(N, By). 
In the first game Circle plays as player I, but in the second Circle plays as 
player 11.) Circle wins iff (x, a) :;~ (y, b). 

Note that Ct.y is determined for all x. y. 
Define for x, yEA, 

X :;+ Y ¢} Circle has a winning strategy in G;.y. 

We will show that this is a prewellordering whose associated rank is a YN[
rank. 

Claim 1. There are no xu, Xl, ... with :r:o E A such that Square has a 
winning strategy in G x+ X' for all n. 

n' n+l 

Proof. Otherwise fix strategies for Square in all these games and consider 
the following diagram (Figure 39.5). 

Here Square plays following these strategies and Circle copies as shown 
except for au (0), ao (2), . ... These are determined by following a winning 
strategy for I in G (N, B xn ), when II plays in this game ao (1), ao (3), .... 



39. The Periodicity Theorems 333 

Xl 

~ 
Xl 

III (2) I 

FIGURE 39.5. 

This ensures that (xo, ao) E B, therefore (xn' an) E B for all nand 
ip(xo,ao) > ip(xl,al) > ip(x2,a2) >"', which is a contradlction. 

Claim 2. ::;+ is reflexive. 

Proof. Otherwise for some x E A, -, x ::;+ x, meaning that Square has a 
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winning strategy in Gt.x, contradicting Claim l. 

Claim 3. ::;+ is transitive. 

Proof. Let x ::;+ y, Y ::;+ z and fix strategies for Circle in G;.y. Gt.z' The 
diagram in Figure 39.6 describes a strategy for Circle in G;.z: 

c(l) 

z 

c(O) 

a(l ) 
x 

a(O) 

c( 1) 
z 

c(O) 

b(l) 
y 

y 

a(1) 
x 

a(O) 

FIGURE 39.6. 

Then we have (x, a) ::;; (y, b) ::;; (z, c), so (x, a) ::;; (z, c) aIHi Circle 
wins. 

Claim 4. ::;+ is connect.ed. 

Proof. If <+ is the strict part of ::;+, then using Claim 1 we can easily sec 
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that x <+ y {o} Square has a winning strategy in Ct.2' 11: follows that if 
-, Y :::;+ x, then x <+ y and we are done. 

From Claims 1-4 it follows that :::;+ is a prewellordering on A. Call 1jJ 
its associated rank. 

Claim 5. are in gl\jf, so 1/' it; a gNf-rank. 

Proof. We have, as it is easy to see, 

:r :::;~, y {o} Circle hat; a winning strategy in G-+;.y 

{o} 3a(O)\ia(1)\ib(O)::3b(1) 3a(2)\ia(3)\ib(2)3b(3)··· (J', a) :::;~ (y, b), 

so :::;~, is in gl\jf. 

To prove the same fact for <~" consider the following game, G;.y be
tween Circle and Square as in Figure 39.7, where Circle wins iff (x, a) <~ 
(y, b). 

~ ~ 
/ \ / \ 

/ \ / \ 

1'<0;1 \ 1:2;1 \ 
\ \ 11 

y 

\ / \ / - - - - - - - ---.- - - -+ - - -----..,----~ 
\ / \ / 

\\ 1;0;1 \\ 1;(3;1 
\ / \ / 
~ / .~ / 

@ (~ 
x 

FIGURE :39.7. 

We claim now that 

;r <~, y {o} Circle has a winning strategy in G-; . .<J 

{o} \ib(O)3b(1 )3a(O)\ia(1) \ib(2):Jb(3)3a(2)\ia(:~) .. · (.1:, (1) <~ (y, b), 

which shows that <~, is also in gNf and completes the proof. 
To see this, note that if x E A and y ~ A, Circle has a winning 

strategy in G;.y, and if Circle has a winning strategy in C~.y, then x E A. 
So it is enough to prove the above equivalence when J:, yEA. In this case, 
x <~, ]I {o} J: <+ y {o} Square has a winning strategy in G,; .. r. So finally it 
is enough to show: 

Claim 6. For X,]I E A. Square has a winning strategy in G;~.l' {o} Circle has 
a winnilJO' strate<Yv in G.---: . ' 

b Co.- J-.I1 
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Proof. -¢=: This follows from the following diagram (Figure 39.8). (Note that 
(:r, a) <~ (y, b) =} ---, (y, b) :::;~ (x. a).) 

y 

x 

x 

G+ -y.x 

y 

b(O) 

b(l) 

a(O) a(2) 

a(l) a(3) 

a(O) a(2) 

b(2) 

FIGURE 39.8. 

=}: Fix, toward a contradiction, winning ::-;trategie::-; for Square in ct.x 
and also in C-;,y. Consider then the diagram in Figure 39.9. 

Square plays following his winning strategie::-; and Circle copies a::-; 
::-;hown, except for ao(O), ao(2), ... , which he plays following a winning 
strategy for I in By, when II plays ao(l), ao(3), .... Thu::-; (y. aD) E B 
and so (x,a1)' (y,a2), (:r.a3) .... are also in Band p(y,ao) > p(x,ad 2:: 
p(y, a2) > p(x, (3) 2:: .. " which is a contradiction. 0 

39. C The Second Periodic'ity Theorem 

(39.8) Theorem. (The Second Periodicity Theorem) (Mosc:hovakis) Let r 
be a class of sets in Polish spaces containing all Borel sets and closed under 
Borel preimages, finite intersections and unions, and projections. Assume 
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x 

y 

y 

x 

x 

y 

FIGURE 39.9. 

that eveTY game G(N,P) faT P <::: N in ~ is deteTmined. If X is Polish and 
B E f(X x N) admits a f -scale, A = VN B admits a VNf -scale. Thus, if f 
is scaled, so is VNf. 

PTOOj. \'Ve will "localize" the rank construction in the proof of 39.1 to obtain 
the scale. 

First, by 36.8 let (ifn) be a very good f-scale on B. Fix an enumeration 
(s,,) of N<N with So = 0 and S; <::: Sj =? i:::; j. For each n E N and x, y E X, 
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consider now the gallle G','.!I on N: 

I 0(0) u(l) 

II b(O) btl) 
ali). b(i) EN: II \vim; iff Cr..'i,,' (1) 

Define next for .r . .11 E A. . 
(.11. 8 ,,"/)). 

.!" S" .11 q II has a winnillg strategy ill C','.'i" 

As in t he proof of ;39.1. S" is n prewcllorcierillg OIl .:1. Let I:"" he the a::;su
cinted nlllk. TIlPll. if \w let for .1' E A. 

l~,,(,I') = (f()(.r).~,,,(.r)). 

where as in ;Hl.B (n. (3) denotes t lie ordillal corrcsponcling to (0. ;:i) in the 
lexicographical ordering so that 

(.1') S 17,,,(.11) q Ij'IJ(.)") < l'o(Y) or (co(.I') = (,'o(,lJ) l\:; 1/',,(,1') S (.11)). 

then we call see (by the computatiolls ill ;3D.l) that each 4~'" is n 1;f':\'I'-rank 
(keep ill millCl here that So = 0). 

It n'llH~illS to ::;how that (C',,) i::; a scalc (froll! \vhich it is illllllediate 
that so i::; (Ii'''))' 

So let .ri E ,/1 amI .I'i ---+ .1'. C'" (.ei) ---+ 0". in order to show that 
.1' E A and li'"Ce) So". By going to a subsequellce we call aSS1111Je that 
1;'" (.)'i) = (\" for all i 2" n. 

Claim 1. .1' E A. 

Proof. Fix 0 E .V ill order to show that (:1'. a) E fl. Put alk = s",. so that 
0= no < III < 112 < .... Let Ui = .f",. Then ii'", (Ui) = ,(ui+d. tlms 
Ui+ IS", Ui, so II ha::; a winning strategy in all G~,'+ j .//,' Fix such strategies 
alHl cOllsicler Figme :39.10. where I plays as ShOWll ami II follows his Willllillg 
strategics. 

Let au = (uo(O).uo(I) .... ). U1 = ((1(0)'((1(1) .... ). (/2 = (u(O).(I(I). 
(/2(2) .... ) ..... Sillce.p"I/ClJo.uo) 2" r"l/(ill.ad· CP"JIJI,OI) 2" r"l C1l2. (2)' 
... alld (y,,) is avnry gooclsC'Clle. it follows that r"I/(YO.oo) 2" y",,(Yl,1I1) 2" 
rn,J,ll'2' (}.'2) 2" .... so r",'cIj;JJi) converges. and similarly rnl (.l/i. a,) con
verge::;, etc .. so (.1/,. Oi) ----> (.r:. (1) E B. 

Claim 2.G',,(.)') SOn. 

Proof. \Ve have to show that .I.' S" .r". i.e .. II has a winning strategy ill 
C'i.I n ' Sillce 1/',(.)",,) = (.r",) for all In 2" k. fix willllillg strategies for II ill 
all C~'n . .11. for m 2" k. The diagram in Figure :3D.ll then descrihes it \vinning 
strategy for II ill Gil 

I play::; au in G','.I1/' Let .';n, = 8 n 'ao, so '111 > II. Put .If I = .r"l and 
consider C;;I.'1/ . Let I play ao and II answer by his winning strategy to 
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a(O) a(l) a(2) a3(3) a3(4) 

G n2 \ \ \ Y3'Y2 

a(O) a(l) II ap) ap) a/4) 

\\ \\ \\ 
)5j )5j )5j 

a(O) a(1) ap) ap) a2(4) 

"] \ \ \ \ G)'2'YI 

a(O) II a](l) a l (2) a](3) a] (4) 

S\ S\ S\ 
~ ~ ~ 

13 a(O) a l (1) a l (2) a l (3) 

G no 
,VI,YO \ \ \ \ 

13 II ao(O) ao(1) ao(2) ao(3) 

FIGURE 39.10. 

give bo(O). This is what II plays in G';.r" answering ao. Next I plays al 
in G~~,.r". Let S"2 = S"1 'al = Sn 'ao 'aI, so n2 > nl· Put Y2 = x n2 and 
consider G~~.Y1' Let I play al and II an8wer by his winning strategy to 
play bl (I). Copy bl (l) as 1'8 next move in G~1'X" and let II an8wer by 
his winning 8trategy to play bo (1). This is II'8 answer in G~'.J'" to a2, etc. 
Let a' = sn'(aO,al .... ), and bG = s,,'(bo(O),bo(I) . ... ), b~ = sn'ao' 
(b l (I), bl (2), ... ), b~ = s" 'ao 'al '(b2(2), b2 (3), ... ), .... Then IPn(x n , bG) 2: 
IPn(YI, bD, IPn1 (YI, b~) 2: IPn1 (Y2, b~), ... , so as before (Yi, V) -7 (x, a') and 
IPn(x,a'):S limiIPn(y;,b';):S IPn(x",b;)), so II wins in G~.x". D 

Remark. Y. N. l\loschovakis [1980], 6E.15, has also proved an analog of 39.7 
for scales. 

(39.9) Corollary. (Moschovaki8) (Projective Determinacy) For each n, the 
classes IT~"+1 ,EL+2 are scaled and satisfy the uniformization property. 

In particular, the class of projective sets has the uniformization prop
erty. 

(39.10) Exercise. Use the proof of 39.8 to give an alternative proof that ITt 
is scaled. 

(39.11) Exercise. (Moschovakis) (Projective Determinacy) Show that every 
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C "2 
Y3'Y2 \ 

Sn2 II b/2) 

a l 
H 

snl I b2(2) 

C"I \ \ Y2'YI 

snl 
II bl (1) bl (2) 

Sn I ao ~) bl (2) 
n \ \ \ C 

YI,x" 

Sn II bo(O) boO) bo(2) 

---
Sn I ao 

11 

Cx,x 
n 

I--- I---

a l 

bo(1) 

FIGURE 39.11. 

az 

f-

~~n+2 set is 6~n+l-Souslin and every ~~n+1 set is K-Souslin for some K < 
6~n+l' (Kunen, Martin) Show that 6~n+2 ::::: (6~n+l)+' 

Using Projective Determinacy, Martin has shown that 6j ::::: W3, so 
from the preceding we have 6~ ::::: W4, and S. Jackson [1989] has shown that 
Vn(6~ < ww ). 

(39.12) Exercise. (Projective Determinacy) (Martin) Use this to show that 
every ~§ set is the union of a transfinite sequence of W2 Borel sets and every 
~~ set is the union of a transfinite sequence of W3 Borel sets. (Jackson) Show 
that every projective set is the union of transfinite sequence of < Ww Borel 
sets. 

(39.13) Exercise. (Projective Determinacy) i) Show that if X, Yare Polish 
spaces and A <;::; XxY is ~;" n 2: 1, so are {x: Ax is uncountable}, {x: Ax 
is not meager in U}, {x : Ax is comeager in U} for any nonempty open 
U <;::; Y, {x: Ax is not contained in a K a}, and {(Il,x,r) E P(Y) x X x lR: 
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J-L(Ax) > r}. 
ii) (Kechris) Show that if X, Yare Polish space8, A ~ X x Y is a 

n~n+l set, and x f-'> Ix is a n~n+l on n~n+l map from X to O'-ideals on Y 
such that each Ix is n~n+cadditive, then B = {x : Ax rt. Ix} is n~n+l and 
there is a n~n+l-measurable function f : B --+ Y with f(x) E Ax, Vx E B. 
In particular, this holds if Ix = NULL ILx ' with x f-'> J-Lx E P(Y) a a~n+ 1 

map, or if Ix = MCR(Y). 

(39.14) Exercise. (Busch, Mycielski, Shochat) (Projective Determinacy) 
Show that every projective set A ~ X, X compact metrizable, is ,
capacitable for any capacity, with ,(0) = 0 which is alternating of order 
00. 

We have seen until now that, using Projective Determinacy, the pro
jective sets have all the usual regularity properties, such as the perfect set 
property, universal measurability, BP, etc. and satisfy the uniformization 
property. Woodin has conjectured that conversely these properties of the 
projective sets imply (in ZFC) Projective Determinacy. 

The class of projective sets does not form a O'-algebra. However, it is 
straightforward to extend the preceding theory to the smallest "projective" 
O'-algebra. 

(39.15) Definition. For each Polish space X, denote by O"P(X) the small
est O'-algebra of subsets of X containing the open sets and closed under 
projections. We call these the O"-projective subsets of X. 

(39.16) Exercise. If X is an uncountable Polish space, then O"P(X) ~ P(X). 

(39.17) Exercise. Show that if every game G(N, A) for A ~ N in O"P is 
determined (which we abbreviate by O"-Projective Determinacy), then all 
the sets in O"P are universally measurable and have the BP and the class 
0" P has the uniformization property. 

(39.18) Exercise. For 1 S ~ < WI, define the classes ~2' n~, aJ as follows: 

~2+1 = :3Nn~, 
n~=C"V~~, 

a~ = ~~ nn~, 

~ l = {U An : An E ~ L, ~n < A} if A is limit. 
n 

Show that ~~ U n~ ~ a;, for any ~ < T) and O"P = Ul::;E<Wl ~~ 
Ul::;E<Wl n~ = U 1::;E<Wl a~. Show that these form a proper hierarchy on 
any uncountable Polish space, and also show that ~~+1 is closed under 
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continuous preimages, countable intersections and unions. and continuous 
images. Establish the analogous properties for Il2+1 and A2+1' Show that 
for A limit, ~i is closed under all these operation:; except countable inter
section:;. 

Assuming O'-Projective Determinacy, show that all ~i+211' Ili+2n+1 
are scaled for any limit ordinal A (or A = 0). 

39.D The Third Periodicity Theorem 

In the periodicity picture, one often denotes ~(\ == ~~ and Il(\ == Il~ and 
views ~~n' IlL as higher level analogs of ~~, Il~. With this analogy, the 
following general Strategic Unifonnization TllPorem, which is usually called 
the Third Periodicity Theorem. generalizes 35.32. 

(39.19) Theorem. (The Third Periodicity Theorem) (l\Ioschovakis) Let r 
be a reasonable class of sets in Polish spaces containing all the elopen sets, 
and closed under continuous prcimages and finite intersections and unions. 
Assume r is scaled. Let r+ = QNr and assume also that r+ is closed under 
Borel preimages. If every game G(N,P), for P ~ N in r. is deterrnined, 
then for an:/j Polish space X and any A ~ X x N,if we let A + = QNA, 
theTe is a r+ -rneasumble function O'I:A+ --> Tr such thatVx E A+(O'I{:r) is 
a winning stmtegy fOT I in G(N, A,)), 

Proof. We claim that it is enough to find L: ~ X x N<Pl in r+ such that 
projx(L:) = A+ and for each .1' E A+, L:.I is a winning quasistrategy for 
I in A" To see this, notice that r+ contains all clopen sets and is clo:;ed 
under continuou:; preimages and countable intersection:; and unions, so by 
39.7 it satisfies all the hypotheses of 35.1 ii), and so it satisfies the number 
unifonnization property. Using this we can define L: n ~ X x N<f'! recursively 
in r+ such that L: :2 L:0 :2 L:! :2 L:2 :2 ... for each J: E A +, L:~' is a 
quasistrategy for I (so it is winning in A l ), and if s E L:~r' has even length 
:::; 211, then 3!11I(8'm E L:.'r'). Then O'I(J:) = nil L:'" clearly works. 

Next notice that since r+ is closed under Borel preimages, it is enough 
to work with X zero-dimensional. TheiL by the first part of the proof of 
36.S. we can find a very good r-scale (-Pn) on A. For.r E A+, let 

~; ={s E N<Il: lellgth(8) is even &: 

I has a winning strategy in G (N, (A l .).,)}, 

that is, 
8 E L:; ¢} length(.5) is even & QrW(.£. 05' Y) E A. 

Motivated by the proof of 39.7, consider for each n the game G;.n;.d (Figure 
39.12). 

Players Circle and Square play successively a(O), a(l). b{O), b(l), ... , as 
in the picture. Circle wins iff (.r. s'a) :::;~" (J'. rb). 
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~ ~ 
I 1 I 1 

t I \ I \ 

1:(0;1 \\ 1:(2;1 ~ 
I \ I --------1---1---+------

I \ I 

1;0;1 \\ 1;(3;1 
5 I 1 I 

I ~ I 

@ @ 
FIGURE 39.12. 

Then if for 8. t E ~; we put 

.5 :Se;.n t {o} Circle has a winning strategy in C;.,,,,.I' 

we have, by an argument as ill 39.7. that :Se;.11 is a prewellordering on ~;. 
In particular. 8 :Se;.11 ,<; for all 8 E ~;. So if.5 E ~;, =ja(O)Va(1) (Circle has 

a winning strategy in C: .. ,u.s:o(O).a(lj)' where C:.n.,.I:a(O).a(l) is the game 
given in Figure 39.13 in which Circle wins iff (J'.sAa) :Se~A (:r.t'b). (Here 
a(O). a(1) are given a pri.ori, awl so Squan~ starts from b(O). etc.) 

~ ~ 
I \ I 1 

til I \ 

Ib(O;1 \ 1;(2;1 \ 
\ \ 11 
\ I \ I --------;-------f------,---I--

\ I \ I 

a(l) \1 1;(3;1 1\ 1;(5;1 
5 \ I \ I 

~ I ~ I 

a(O) @ @ 
FICURE :39.13. 

Note also that if Circle has a winning strategy ill C::. II .s .t:a(().Il(l)' then 
I has a winning strategy in C(N. (A.,.)s·a(ll)'a(l))' So for all 71, 

B E ~; =? =ja(O)\fa(l)[s'a(Ora(l) E ~; & 

Circle has a winning strategy in C:,. II . s .':(1(O).a(1)]' 
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This shows that if for length( s) odd, say equal to 2n + 1, we put 

s E I:: x ¢} \lj(SAj E I::; & 

Circle has a winning strategy in C:,n,sj2n,sj2n:s(2n).,j)' 

and for length(s) even, ,<; E I::x iff (8 = 0 or 8I(length(s) ~ 1) E I::"), then 
I::", is a quasistrategy for I and if we let I:: (x, s) ¢} x E A + & s E I::,r, 
then clearly I:: is in r+, So the proof will be complete if we can show it is 
winning for I in A",. So fix a E [I::rl in order to show that (x, a) E A. Fix 
also winning strategies for Circle in all the game8 C:',i,aj2i,aj2i:a(2i),a(2i+l)' 

Consider Figure 39.14, where Circle always follows hi8 winning strate
gie8 and Square copies as shown, except for ao(O), 0.0(2), "', which 
are played following a winning strategy for I in C(N, A.T)' Let a~ 

a(O)'a(1)'al' a~ = a(Ora(lra(2ra(3)' 0.2, etc. Then 'Po(x,a~) < 
'Po(x.ao), 'PI (:r, as) ::s: 'PI (:1', aD, "', so (x, a~,) -+ (x. (1) EA. D 

(39.20) Corollary. (Moschovakis) (Projective Determinacy) Let X be Pol
ish, A c:: X x N be ~~n' and let A+ = 9NA, Then there is a n~n+l
measurable function O'j:A+ -+ Tr surh that \Ix E A+(O'I(X) is a winning 
strategy for I in C(N, A.T))' 

(39.21) Exercise. Show that the application of 39.19 to r = n~n+l is already 
included in 39.9. 

(39.22) Exercise. Prove the following generalization of 35.32: Let X be a 
standard Borel space and A c:: X xN a Borel set with open sections. Then if 
A+ = 9NA, A+ is ni and there is a nl-measurable function O'j : A+ ---+ Tr 
such that for x E A+, 0'1(.1:) is a winning strategy for I in C(N, AT)' 

(39.23) Exercise. (Martin) (Projective Determinacy) Let X, Y be Polish 
spaces and let A c:: X x Y be ~~n+ l' Let B = {x : Ax is countable} (80 
that B i8 n~n+l by 39.13). Show that there is a 8equence Ii : B ---+ Y of 
n~n+rmea8urable fUllctions with Ax c:: {fi(X) : i E N} for x E B. (Note 
that this generalizes and strengthens 35.13. The proof for n = 0 can be 
carried in ZFC.) In particular, if A is Ll~n+l and \lx(Ax is countable), 
projx (A) is LlL+l and there is a sequence of Ll~n+l functions fi : X -+ Y 
such that AT = {fi(X) : i E N} for x E pro.ix(A). (This generalizes 18.15.) 

(39.24) Exercise. (Kechris) (Projective Determinacy) Let X, Y be Polish 
spaces and let A c:: X x Y be ~~n+ l' Let B = {x : Ax is meager (resp., 
contained in a f{" set)} (which is n~n+l by 39.13). Show that there is 
a sequence F; : B --+ F(Y) of n~n+I-measurable functions such that for 
x E B, Fi(X) is nowhere dense (resp., compact) and Ax c:: Ui Fi(X). 
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0 

-- --

a (1) 

0 
a (0) 

a(O), a(l) 

a(3) 

a(O), a(1) 
a (2) 

a(O), a(l), a(2), a(3) 

-- ~--

a(S) 
a(O), a(l), a(2), a(3) 

a (4) 

FIGURE 39.14. 

(39.25) Exercise. (Moschovakis) (Projective Determinacy) If X, Yare Polish 
spaces and A t;;;; X x Y is ~~n+l' then {x: :3!y(x,y) E A} is II~n+l' (This 
generalizes 18.11.) Also, if f : X ----t Y is ~~n+l and A t;;;; X is ~§n+l such 
that flA is injective, then f(A) is also ~~n+l' (This generalizes 15.2.) 

Y. N. Moschovakis [1980]' 6E.14, has also shown that the following 
analog of 13.10 goes through, using Projective Determinacy: 

Let X be Polish and A t;;;; X be ~§n+l' Then there is a II~n set 
B t;;;; X x N such that 

x E A¢? :3y(x, Y) E B ¢? :3!y(x, y) E B. 
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40. Epilogue 

40.A E:r:teTisioTis of the Projective Hierarchy 

The projectiw sets constitute the traditional field of study ill descriptive 
set theory. but they only form a part, alheit one that is very important, of 
t he domain of ;'definable" sets in Polish spaces. In the last 25 ~'('ars or so the 
range of classical descriptive set theory has been great ly expanded, under 
"Definable Deterlllillac~·'·. to encompass vast.ly more extensive hierarchies of 
"defillable sets". such as. for example, those helonging to L(iR), that is, the 
sn1811est model of ZF set theory containing all tIlt' ordinals and rcals. (The 
projective. the CT-projectivc, as \vcll as the more complex hyperprojcctive 
sets belong to this lllodel.) The reader can consult Y. N. l\Ioschovakis [HJ80] 
and lhe seminar notes A. S. Kechris et al [1978. ] 98]. 1983. 1988] on these 
cievcloplllelits. 

40.B Effective Descriptive Set Theor'Y 

In these lectllres we have presentee! a basic introcillction to classical descrip
tive set t Iwor~'. For a deeper llnderstanding of the subject. the cOllC:epts and 
llwthods of effective descriptive set theory are indispensable. In effective 
descriptivE' set t1lC'OlT the elassical concept of topology is replaced by that 
of all effective topology. 

Gh'pn a set X a]](l a seqllPllCP (U,,) of "basic" OpCll sets satisfying 
appropriate dfcctivPJl('sS (,(Jll<iitions, one defines all effective open set to he 
H set of the forll! U" Uf (,,). where .f : N --+ N is a computable (or recursive) 
fUllction. Starting frOll! this, on(' defines and st.udies effective analogs of the 
Uorel a]](l projccli\'e classes. The effective classes arc properly contained 
in the classical Olles, hllt ill turn the classical (noll-:-;elf~clllal) ClnHSC'S cnll 

he ubtained I)\' the procpss of tnking sections of Cicts from the dfec:tive 
ones. III particular. the results of the effective theory immediately il1lpl~' 

their dassical c:mlllterparts. In the effective theory new powerful ideas awl 
lllcthods of computability (or recursion) theory have heen usee! to develop 
an extensive subject that is of great interest in its own right. In relation to 
the classica.l theon', this leads both to llew (often 11lIlcll silllpler. once the 
basic effectivp theory is 1ll1derstuocl) proofs of known results as well a.s to 
IIPW results in the classical cOlltext for 'which uo "c1assical-type" proof has 
yet. heen founel. The reader can consult Y. l\". :\Ioschovakis [1980] and thp 
forthcoming A. LOll\"('ilU [109?] to learn more about this. 

40. C L(uge Cardinals 

Deyoml the effective theory. the further study of projective and mon~ gcneral 
"'defillahle sets" is illtrinsically conllected wit.h the study of large cardinal:-; 
ill set theory and their ilJlwr lllodels. This uncovers a deep "duality". where 
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these two a prioT'i unrelated subjects are shown to provide equivalent de
scriptions of an underlying reality. For more on this, see Y. l\. l\loschovakis 
[1980]' auc! the forthcoming A. Kanamori [199,?] and D. A. T\Iartin [199'?]. 

40.D Connections to Other Areas of Mathematics 

Traditioually. the theory of Borel and analytic sets has heen useful in many 
areas of mathematics, including measure theory, probability theory. func:
tiona I analysis. potential theory. group representation theory. and operator 
algebras. See, for example. C. A. Rogers et al. [1980] . .T. Hoffman-Jorgensen 
[1970]. C. Dellacherie [1972]. C. Dellachcrie and P.-A. r.Ie.vcr [1978]. J. P. 
R. Christensen [1974]' K. P. Parthasarathy [1907]. R. 1\I. Dudley [1989]. 
D. L. Coh11 [1980]. D. P. Bertsekas and S. E. Shreve [1978], \V. Arvcson 
[1976]. L. Auslander and C. C. :\Ioore [1900]. C. W. T\IackC'y [1976]. T\I. 
Takesaki [~!)79]. B. R. Li [1992]. R. Zimmer [198'1]. E. Klein and A. C. 
Thompson [1984]. T\lore recently. the theory of co-analytic sds provided 
the appropriate context for applications of descriptive set theory to the 
classical theory of trigonometric series and related areas of harmonic anal
ysis. sHch a:o the stud,v of thiu sets and the harmonic anal~'sis of measures 
(sce. e.g .. A. S. Kec:hris and A. Lonveau [1989, 1992]. and the references 
contained therein). The class of projective (or O'-projective) sets has all the 
desired regularity properties. like universal measurability. BP, dc., but it 
has, moreover. strong closure properties (projection) and important struc
tural properties, like unifonni7-ation. Tlwrefore, it sePlllS quite probable to 
us that the theory of projective sets will prove very useful ill providing the 
proper framework for applications of descriptive :-let theoretic methods to 
further mathematical theories. 



Appendix A. Ordinals and 
Cardinals 

We denote by ORD the class of ordinals and by < the ordering among 
ordinals. As is common in set theory, we identify an ordinal a with the set 
of its predecessors, i.e., a = {,B : ,B < a}. Also, we identify the finite ordinals 
with the natural numbers 0, L 2, .. " so that the first infinite ordinal w is 
equal to {O, L 2, ... } = N. 

The successor of an ordinal a is the least ordinal> a. An ordinal is 
successor if it is the successor of some ordinal, and it is limit if it is not ° or 
successor. Finally, every set of ordinals X has a least upper bound or supre
mum in ORD, denoted by sup(X~ If (a~)~<.\ is an increasing transfinite 
sequence of ordinals, with ,\ limit, we write 

lima~ = sup{a~: t; < '\}. 
~<.\ 

The cofinality of a limit ordinal e, written as cofinality(e), is the small
est limit ordinal ,\ for which there is a strictly increasing transfinite sequence 
(a()«.\ with lim~<.\ at; = e. 

If 0, {3 are ordinals, then a + {J, a· {J, and aa denote respectively their 
sum, product, and exponential. These are defined by transfinite recursion 
as follows: a + 0 = Ct, Ct + 1 = the ,,;uccessor of a, 0 + (,B + 1) = (a + (J) + 
1, a+,\ = lim!3<.\(a+/3) if,\ is limit; 0:·0 = 0, a·({:i+1) = O:'{J+O:, 0''\ = 
limjj<.\(o, ,(1); etO = 1,0:;3+1 = 0: 8 • 0:,0:.\ = lim;3<.\0:(3. 

An ordinal n is initial if it cannot be put in one-to-one correspondence 
with a smaller ordinal. Thus 0, 1,2, ... ,ware initial ordinals. For 0 E ORD, 
0+ denote,,; the smallest initial ordinal> o. We define (WoJnEORD by trans
finite recursion as follows: Wo = W, W o+1 = (woJ+, W.\ = limcx<'\w", if,\ is 
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limit, TImi'l "'-'I = the first uncOlllltable ordinal, W2 = the tiri'lt ordinal with 
cardinali t~· higger than that of "'-' i, etc, 

Using the Axiom of Choice, there ii'l a bijection of any i'let X with 
unique iuitial ordinal (\, so we idE'lltify the cardinality card(X) of X with 
thii'l orcliuaL \Vhen we view the initial ordinal Wn as a cardinal in thii'l 
fai'lhion we often Hi'll' the Ilotation N" for "'-'n' So No = W, N1 = Wi, etc. \Ve 
denote by 2N() the cardinality of the set of reals (uot t.o be confused with 
the ordinal exponentiation 2uJ ), 



Appendix B. Well-founded 
Relations 

Let X be a set and -< a (binary) relation on X (i.e., -< ~ X2). We say 
that -< is well-founded if every nonempty subset Y ~ X has a -<-minimal 
element (i.e., ::Jyo E YVy E Y ~ (y -< Yo)). This is equivalent to asserting 
that there is no infinite descending chain· ., -< X2 -< Xl -< Xo. Otherwise, 
we call -< ill-founded. 

For a well-founded relation -< on X we have the following principle of 
induction: If Y <;;:: X is such that 

Vy(y -< X =? Y E Y) =? x E Y, 

then Y = X. 
\Ve also have the following principle of definition by recursion on any 

well-founded relation -< on X: Given a function g, there is a unique function 
f with 

f(x) = g(fl{y : y -< x}, x) 

for all x E X. (It is 3.'isumed here that 9 : A x X --+ Y, where A = {h: his 
a function with domain a subset of X and range included in Y} for some 
set Y.) 

Using this, we can define the rank function p-< of -<, p-< : X --+ ORD 
as follows: 

p-«x) = sup{p-«y) + 1 : y -< x}. 

In particular, p-«x) = 0 if .r is minimal, i.e., ., ::Jy(y -< x). Note that p-< 
maps X onto some ordinal 0: (which is clearly < card(X)+). This is because 
if Q is the least ordinal not in range(p-<), then by a simple induction on -< 
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we have p-< (.r) < a for all x EX. We denote this ordinal by p( -<) and call 
it the rank of -<. Thus p( -<) = sup{p-«x) + 1: x EX}. 

If -< = < is a wellordering, then a = p( <) is the unique ordinal iso
morphic to < and p< is the unique isomorphism of < with a. 

If -<x, -<yare two relations 011 X, Y respectively, a map f : X ---> Y 
such that x -<x x'/ =} f(x) -<y f(x l ) will be called order preserving. Note 
that if -<y is well-founded and f : X ---> Y is order preserving, then -<x is 
well-founded and p-<,Jr) ::; p-<y(f(x)) for all x E X, so that in particular 
p( -<x) ::; p( -<y). It followi:i that a relation -< on X is well-founded iff there 
is order prei:ierving f : X ---> ORD (i.e., x -< y =} f(:r) < f(y), with < the 
usual ordering of ORD). lVloreover, if f : X ---> ORD is order preserving, 
then p-< (x) ::; f (x) (i.e., p-< is the least (pointwise) order preserving function 
into the ordinals). 

Note finally that if f : X ---> Y is a surjection, -<}' is a well-founded 
relation on Y, and the relation -<x on X if) defined by:1' -<x Xl B f(x) -<y 
f(x l ), then p( -<x) = p( -<y). 



Appendix C. On Logical Notation 

In this book we use the following notation for the usual connectives and 
quantifiers of logic: 

for negation (not) 

& for conj unction (and) 

or for disjunction (or) 

=? for implication (implies) 

{=} for equivalence (iff) 

::l for the existential quantifier (there exists) 

V for the universal quantifier (for all). 

It should always be kept in mind that "P =? Q" is equivalent to "oP or Q" 
and "P {=} Q" to "(P =? Q) & (Q =? P)". The expressions "::lx E X" and 
"V:r E X" mean "there exists x in X" and "for all x in X" respectively, 
but we often just write ::lx, Vx when X is understood. For example, as a 
letter such as n (as well as k, I, m) is usually reserved for a variable ranging 
over the set of natural numbers N, we most often write just ''::In" instead 
of ''::In E N". 

For convenience and brevity we frequently employ logical notation in 
defining sets, functions, etc., or express them in terms of other given ones. 
It should be noted that there is a simple and direct correspondence between 
the logical connectives and quantifiers and certain set theoretic operations, 
which we now describe. 

If an expression P(x), where :r varies over some set X, determines 
the set A, i.e., A = {:r: EX: P(x)}, and similarly Q(x) determines B, 
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then PCI') N Q(:I') detenlliucs A n B. i.e" conjunction "N " corrcspoJl(is 
to intersection n, Silllilarl~', disjunctioll "or" corresponds to union U, and 
negation ;'," to complementation rv, i.e" if P(x) determines A, then ,P(J') 
determines rv A = X \ A.. Also "=?". "{=}" correspond to SOllle\vhat lllore 
complicat ed Boolean operations via t Ite above equivalcllces. 

Now let peLY). where .1' varies over a set X and y over a set Y (or 
equivalently CLY) varies over X xY), detprminp a ::;pt A. i.e., A = {(:LY) E 
X x Y: P(.t.!!)}. Then ~yP(.r.!I) determilles tlte projectiou projx(A) of 
A on X. i.e" pxistential quantification corresponds to projectiolt. Silllilarl~', 
since ''VyP(.r. iJ r is eqlli\'alellt to "'~.Ij'P(.r. .1/ r, it f01lm\'s that vyP(.1', y) 
determinps the (solllewhat less t.ransparent. operatioll of) co-projection rv 

pro,Lx· (rv A) of A, i.e., the llniversal quantifier corresponds to co-projection. 
Note hel'(' that if Z c:;: Y. thell the expression 3y E ZP(:!', y) is eqllivalent 
to ~y(y E Z N P(:r,y)) ami thus deterlllines the set projdAn (X x Z)), 
aJl(1 vy E ZP(:r.y) is equivalent to vy(y E Z =? P(.r.y)) and determilles 
the ;;e/ rv pro.Lx· (( rv A) n (X x Z)). 

One' can also interpret the existential awl llnivprsal quantifiers as in
dexed unions and intersections. If I is an index set and PU.:r) is a given 
cxpressiOlL where i varies over I and .r over X, \ve call vie\v A = {( i . .r) : 
P(i,.r)} as an indexed family (A,LEr, where A.i = {.r : (i .. r) E .4}. alld 
then 3iP(i.:r) dctenllines the set UiEI Ai and viPO,.r) the set n,Er Ai. 
This interpretatioll is particularly COllllllon when I = N or more generally 
I is a collntahle index set, such as J = f::j<'l. 

If PCr) is a giVE'll expression. where .1' varies over X, which defille;; 
a set A c:;: X. awl f : Y -7 )( is a function. then the expre;;sion PU(y)), 
obtained hy sub;;tituting fry) for.r in P. determine;; the ;;et {y : P(f(y))} = 

{y : fry) E A} = f- l (A), i.e., sub;;titution colTe;;pclllds to inverse image:;. 
To con::;ider another situation, if an expression PCc y) defiuE's A c:;: X x Y 
and f : Z ---> Y, the expression P(.r,f(:)) defines the set .If-I (A), where 
9 : X x Z -7 X X Y is givell h~' gCr..:) = (.r. f(.:)). Similarlv, one can 
handle more complex type;; of substitution as appropriate inverse illlage". 
Also note that if P(.l', y) defines A c:;: X x Y and q(.r) defines B c:;: X. then 
an expre;;f;ioll such as "Q(.,.) or P(x, y)". for example, which is the :;allle as 
"Q(7I(:r;, y)) or P(.I', yr. with 7I()', y) = .r. defines 71- 1 (B)UA = (B x Y)UA. 

In view of these corresponclell(,cs between logical cOllllectives and qwm
tifiers alld set theoretic opcratiolls, we often elllploy logicalnotatioll ill ('\'al
witing the descriptive complexity of various ;;ds. functioll';, etc., in these 
lectures. For exalllple. to show that a spt is BoreL it is Cllollgh to exhibit 
a definition of it that involves ollly other knO\vn Borel sets or functions 
(recall that the preilllage of a Borel set hy a Borel fUllction i;; Borel) ami 
'. N, or, =? {=}. ~i, vi (i Yaryillg owr a countable illdex set). Silllilarly. if 
a set is defined by an cxprcs;;ioll that illvolve;; onlv other knowll :Et (rE';;p., 
ni) set;; and &. or. ~i, vi (i agaill varyillg on'!' a COUlltable index set). ~,r 
(re;;p. v:r) varying over a Polish space), thell it is :E} (resp., nll, etc. 
TIlt' application of such logical notatioll to descriptive complexity calcula-
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tions is usually referred to as the Tarski-Kuratowski algorithm (see Y. N. 
l\loschovakis [1980]). 

As a final comment, we note that we occasionally also follow logical 
tradition in thinking of sets A c;:; X as properties of elements of X and in 
writing "A(x)" interchangeably with "x E A", A(x) meaning that x has 
the property A. Similarly, if R c;:; X x Y, we can view R as a (binary) 
relation between elements of X, Y and write R(x, V) or sometimes xRV 
(instead of the cumbersome R((x,V))) as synonymous with (x,V) E R, and 
correspondingly P(x. V, z) if P c;:; X x Y x Z, etc. 



Notes and Hints 

CHAPTER I 

4.32. To show that Trf and PTrf are not C b use the map x E C f---+ Tx E Tr, 
where Tx is defined by 0 E Tx, s E Tx =} {n: s'n E Tx} = {n: x(n) = I}, 
and the Baire Category Theorem (see 8.4), which implies that {x E C : 
x(n) = 1 for only finitely many n} is not C 8 . 

Sections 7, 9. See the article of F. Tops0e and J. Hoffmann-J 0rgensen in 
C. A. Rogers, et al. [1980]. 

7.1. See N. Bourbaki [1966]' IX, §2, Ex. 4. 

7.2. By taking complements, it is enough to prove Kuratowski's reduction 
property: If A, B c:;; X are open, there are open A * c:;; A, B* c:;; B with 
A* UB* = AUB and A* nB* = 0. Write A = UiENAi, B = UiENBi with 
Ai, Bi clopen and put A* = Ui(Ainnj<i rv B j ), B* = Ui(Binn)::;i rv A j ). 

7.10. This proof comes from the article of E. K. van Douwen in K. Kunen 
and J. E. Vaughan [1984]' Ch. 3, 8.8. 

7.12. Show that if X is non empty countable metrizable and perfect, then 
i) it is zero-dimensional: ii) if U c:;; X is clopen, x E U and E > 0, then there 
is a partition of U into a countable sequence (Ui)iEN of nonempty clopen 
sets of diameter < E with x E Uo. Construct an appropriate Lusin scheme 
(C,,) and points Xs E Cs with Xs'o = Xs and x" = the least (in some fixed 
enumeration of X) element of C s . 

7.15. Let X be nonempty perfect Polish with compatible complete metric 
d. Show that for each E > 0 there is a sequence (Cn)nEN of pairwise disjoint 
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nonempty G h sets with diameter < f s11ch that G = Un Gil and each Gil is 
perfect in its relative topology. Use this to construct a Lllsin scheme (G s ) 

with G'/J = X, each G., a G i' set that is perfect in its relative topology with 
compatible complete llll'tric cis. and (G., ,,) n EN satisfies the above conditions 
relative to G., for the compatible complete lJIetric Ii + L dS11 and 
f = 2-kngLh(s). O<i<;l(,llgth(s) . 

Section 8. For a detailed historical survc.v of the Banach-l\laz1ll' and related 
games snch as the (strollg) Choqllet gallles, see R. Telg<:ixsky [1987]. (Note, 
however. that his terminology is sometimes different than oms.) 

8.8. ii) Argue that we ccm assume without loss of generality that f(U) is 
uncountable for each llonelllpt.v open U c:;; X and in this case show that 
{K E K(X) : IlK is injective} is dense G~. 

8.32. For the last assertiOll. llse 7.12 awl ~{. 9 to show that. for allY 
two nonelllpty perfect Polish "paces X. Y there are dense G h subsets 
A c:;; X. B c:;; Y that are honwolllorphic. 

9.1. For a proof, see S. K. Berberian [1974]. 

9.16. i) By 9.14, it is enough to check that the action is separately COlI
tinllous. So fix .1' ill Ol'ciel' to show that 9 >-+ g .. " is continuous ill g. By 
8.38, g >-+ g.:1' is continuous on a dense G~ set A. Given gil ----7 g. note that 
n" {h : hgll E A} rl {II : IIg E A} t 0. 
9.17. See D. E. l\liller [1977]. 

9.18. See V. V. Uspmskii [1986]. 

9.19. See C. Bcssaga and A. Pdc:oyriski [1975]. 

CHAPTER II 

12.A, n. See G. W. l\Iackey [1957]. 

12.C. See E. G. Eflios [1965] and J. P. R. Christensen [1974]. 

12.7. Let oY = XU{ x} be the Olle-point compactifieation of X anc! consider 
the map F>-+ F U {0C} from F(X) to K(X). 

12.8. Use the proof of 12.(j. but now argue that G is Borel in K(X). Then 
use 13.4. 

12.13. See K. Kuratowski and C. Ryll-Nardzewski [I9G5]. 

14.13. Use 8.8 ii). 

14.15. Use 9.14 and 9.15 to show that multiplication is continuous. For 
the inverse, show t.hat 9 ----7 g-1 is BoreL and thus must be continuous 011 a 
dense Go. 

14.16. Let f : X ----7 21'1 be defilled by f(l')(n) = 1 9 .1' E An. Lettillg 
S = a({An : n EN}). note that f is (S.B(2Pl))-mcasurable (ill particular, 
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Borel). If A c: X is Borel E-invariant. then f(A), f(~ A) are disjoint 
analytic subsets of 2N. Now use the Lusin Separation Theorem. 

15.C. See H. L. Royden [1968]' Cll. 15. 

16.B, C. See R. L. Vaught [1974]. 

16.D. For an exposition of Cohen's method of forcing, see K. Kunen [1980]. 

17.16. See K. R. Parthasarathy [1978], §27. 

17.E. See K. R. Parthasarathy [1967]. 

17.31. See K. R. Parthasarathy [1967]' Ch. It 6.7. 

17.34. See R 1\1. Dudley [1989], 8.4.5. 

17.35. vVe can assume that X = C. For any clopen set A c: C, define VA E 

P(Y) by vA(B) = Il(A n f- I (B)). Then VA « v. Put /lIJ(A) = d;~, (y). 
Then use 17.6. This elegant proof comes from O. A. Nielsen [1980]' 4.5, 
where it is attributed to Effros. 

17.39. Work with X = C. 

17.F. See P. R. Halmos [1950]. 

17.43. For ii) argue as follows: Let A c: B(X) be a CT-algebra and A = 

{[P] : PEA}. Choose a sequence (P,,), with PIt E A such that {[P,,]} is 
dense in A (for the metric b). Define f : X -+ C by f(r)(n) = 1 B x E PI!' 

17.43. (Remark following it) Solecki has found the following simple proof of 
this result: If CAT=CAT(lF!'.) admitted such a topology, the sets F" = {a E 

CAT: a 1\ lin = OJ, where Un = [V,,] with {V,,} a basis of llonmnpty open 
sets ill lR'., would be Borel in this topology. Clearly, Un F" = CAT \ {1}; so 
for S0111e no, Fnu is not meager. Each F" is a subgroup of the Polish group 
(CAT, +), where (J + b = (a V b) - (01\ b), so by 9.11 F"u is open, thus has 
countahle index ill (CAT, +). But {o E CAT: a 'S: 'U nu } is uncountable, so 
there are (J =I b 'S: 1'nIJ with a + Ii E F"u' TIlPn ((( + Ii) 1\ vno = 0, so (( = Ii, 
which is a contradiction. 

17.44. For ii), if D c: A is countable dense, show that D gCllerates A. For 
the other direction one can use the following approach suggested by Solecki: 
Let B c: A be a countable subaJgebra generating A. Adapting 10.1 ii) in an 
obvious way to any Boolean CT-algebra, A is the smallest monotone subset of 
A containing B. So it is enough to show that B (the closure of B in (A, 8)) 
is monotonC'. For that use the easy fact that if (a /I) E AI''' is increasing, then 
8(v."on, a) = limn b(an , 0). For iv), see P. R. Halmos [1950]' §41. 

17.46. i) See P. R. Halmos [1960]. ii) See the survey article J. R. Choksi 
and V. S. Prasad [198:3]. 

18.B. The results here are special cases of those in 36.F - see references 
therein. The measure case of 18.7 was hrst proved in D. Blackwell and C. 
Ryll-Nardzewski [1963]. See also A. Maitra [1983]. 
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18.8. Assuming P t 0, let f : N ----+ X x Y be continuous with f(N) = P. 
Put P' = f(N.). Then P" is ~l p0 = P P" = U . ps'n and if a E s 1 I ~ n' 

N. Wn E pain for all n, then Wn ----+ W, where W is the unique element of n. pain. 
n 

Put P; = {lJ : (.r, lJ) E ps}, and note that (P;)sEW'; has the above 
properties for Px if P J : t 0. For each x E proh(P), let Tx = {s E N<N : 
P; t 0}, so that TT is a nonempty pruned tree on N. Let ax be its leftmost 
branch. Put {J(x)} = nnPJaTI". Then f uniforrnizes P. 

18.16. See J. Feldman and C. C. Moore [1977]. 

18.17. For (x, lJ) EN x N, put (x, lJ) = (x(O), y(O), x(I), y(I), ... ) EN, 
and if z = (:r, lJ), let (z)o = x, (zh = lJ. As in the proof of 14.2, let :F <;;; 
N x N:' be N-lll1iversal for II~(N3). Define S <;;; N x N by 

(x,lJ) E S <=? {3!(u,v)(x,x,/t,v) E F =? Y t (TI)o, 

where (TI, u) are (unique) such that (x, x, TI, v) E :F}. 

Show that S is ~L so let F <;;; N x N x N be closed with (x, lJ) E S <=? 

3z(x, y, z) E F. Put (x, u) E F <=? (x, (u)o, (u)d E P. Note that F is closed 
and 'v'x3u(x,u) E F. Show that this works, using 13.10. 

For another proof, using later material, see the notes to 35.1. 

18.20. i) For the case when X is Polish and E is closed, let {Un} be an 
open basis for X and notice that if (x, lJ) ~ E there are U, V E {Un} with 
(x, y) E U x V <;;; rv E. Now use 14.14. 

ii) See A. S. Kechris [1992]' 2.5. 
iii) See J. P. Burgess [1979]. 
iv) See S. M. Srivastava [1979]. Let p(x) = [X]E' P : X ----+ F(X). 

Show that p is Borel and xEy <=? p( x) = p(y), so in particular E is Borel. 
Define P <;;; F(X) x X by (F, x) E P <=? p(x) = F, and for F E F(X), 
let IF = the IT-ideal of meager in (the relative topology of) F sets. Verify 
that F f-f IF is Borel on Borel. Then, by 18.6, Q = ProjF(X)(P) is 
Borel and there is a Borel function q : Q ----+ X with p(q(F)) = F. It 
follows that s(x) = q(p(x)) is a Borel selector for E. The verification that 
F f-f IF is Borel on Borel is based on the following fact which can be 
proved by the same method as 16.1: If (Y, S) is a measurable space, Z a 
Polish space, U <;;; Z open, and A <;;; Y x Z x F(Z) is Borel, then so is 
Au = ((y,F) E Y x F(Z) : {z : (y,z,F) E A} is meager in (the relative 
topology of) F n U}. 

19.1. See J. l\Iycielski [1973] and K. Kuratowski [1973]. 

19.11. See F. Galvin and K. Prikry [1973]. 

19.14. See E. Ellentuck [1974]. 
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19.E. \Ve follow here a seminar presentation by Todorcevic. 

19.20. See H. P. Rosenthal [1974]. 

20.1. See D. Gale and F. M. Stewart [1953]. 

20.C. See D. A. Martin [1985]. 

20.11. For the last assertion, let A C;;; N be Borel and find F, H closed 
in N x N with x E A -R :lu(x, u) E F, x if. A -R :lv(x, v) E H. Let 
(x, y) E F' -R (:r, (y)o) E F, (x, y) E H' -R (x, (yh) E H, where for 
yEN, (y)o(n) = y(2n), and (Yh(n) = y(2n + 1). Let C C;;; N x N be 
clop en separating F',H'. Then x E A -R (hmC(x,y). 

21.A, B. The * -games for X = C in the form given in 21.3 were studied in 
M. Davis [1964], which contains the proof of 21.1 for these games. 

21.B, C, D. Unfolded games seemed to have been first considered by Solo
vay. for a measure-theoretic game of Mycielski-Swierczkowski, and later by 
l\Iartin for * -games alld by Kechris for ** -games. 

21.4. In the notation of 16.C, let L be the language containing one binary 
relation symbol R. Consider XL = 2N2 , put "VO = {x E XL : Ax is a 
wellordering}, and for x E WO, let Ax = (N, <x), and Ixl = p( <x) be 
the unique ordinal isomorphic to <x. Thus {Ixl : x E "VO} = WI \ W. For 
W -S n < WI, let WOn = {x E WO: Ixl = n}. 

Consider the following game G: I starts by playing either (WO" , 0) for 
some n < WI or (X,l) for some X C;;; 2N. If I chooses the first option, from 
then on I and II play O's or l's and if II plays yeO), y(l), ... , then I wins 
iff y if. WOn. If I chooses the second option, then II next plays i E {O, I}, 
which we view as choosing a side in the game G* (X). Then they playa run 
of the game G* (X) with II starting first if she chooses i = 0 and I starting 
first if she chooses 'i = 1. Let x be the concatenation of the sequence of 
their moves. Then I wins iff (i = 0 & x if. X) or (i = 1 & :1: E X). Without 
using the Axiom of Choice, show that this game is not quasidetermined. 
Use the proof of 8.24, which shows that if we can wellorder 2N , then there 
is a subset of 2N which is uncountable but contains no perfect subset. 

21.9. See J. H. Silver [1970]. 

21.15. See D. A. Martin [1981]. 

21.22. See A. S. Kechris, A. Louveau and W. H. Woodin [1987]. The case 
when B is analytic was also proved in A. Louveau and J. Saint Raymond 
[1987]. 

21.23,24. This was proved independently in A. S. Kechris [1977] for X = N 
in the form given in 21.24, and in J. Saint Raymond [1975] for general X. 

21.25. See D. A. Martin [1968]. 
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22.6. See Y. N. l\Ioschovakis [1980]' IG.I1. Let C C;; Y be a Cantor set. Let 
U' C;; C x X be C-universal for ~~(X). Then let U C;; Y x X be ~~(Y x X) 
with Un (C x X) = U'. Clearly, U is Y-universal for ~~(X). 

22.14, 16. The concept of (generalized) reduction is due to Kuratowski. 
who also established the generalized reduction property for ~~. The (gen
eralized) separation property for IT~ is due to Sierpinski. 

22.17. Apply the separation property of the ITts. 

22.24. See R. L. Vaught [1974]. 

22.E. For a more detailed exposition of the difference hierarchy, see A. 
Louveau [199?]. 

22.26. For iii), notice that if Do((A,/),/d) is defined by the same formula for 
any, not necessarily increasing (A,Jr/<II, then De((A ,/),/<o) = Do((A")r/<Ii), 
where A~ = UCS1)AC (which is increasing). 

22.29. See F. Hausdorff [1978]. 

23.2. For 03, show that P:3 ~w Co by considering the map J: E 2NxN f-t 

x' E 1'11'1 given by ;['((m.n)) = (rn,n) if :c(m,n) = 0; = m if .c(m,n) = 1. 
where ( ) is a bijection of 1'1 x 1'1 with 1'1, with (171. n) :2: m. 

For P; , one method is to show that P:l ~ W Pl' An easier method. sug
gested by Linton, is to show that C, ~ w PI. Define for each,'; E 1'1 11 , 8* E 
2(n+l)x(n+l) by induction on n, so that if 8 C;; t, then 8* C;; t* (in the sense 
that s* = t*12(n+J)x(n+l)). Let 0* = (0). Given 8* for 8 E Nil, consider 
t = "A k. To define t*, enumerate in increasing order ao < ... < (Jp-l all 
the numbers 0 ~ a ~ n for which 8'(a. b) = O. for all 0 ~ b ~ n. Define 
then for 0 ~ a ~ n. t*(a, n + 1) = 0 iff a = Il, for some i ~ k, and let 
t*(n+ 1. b) = 0 for all 0 ~ b ~ TI + 1. For each.r E NN,let x* = Un(:rlnr. 
Show that J; E C 3 ¢} :r* E p;;. Finally, a third method is to use 23.5 i) 
for X = C. ~ = 1 and the fact that any dosed but not open subset of C is 
IT~ -complete. 

23.4. Fix a bijection ( ) of 2<N with 1'1 so that .5 ~ t =} (8) < (t). For 
x E 2N, let (,r) C;; 1'1 be given by (:[) = {(;[In) : n EN}. Note that (J:) ri (y) 
infinite =} ;[ = y. For A C;; 2[\/, let IA = the ideal on 1'1 generated by the 
sets (xl for x E A. Note that A :SHe IA via J; f-t (x). 

23.5. For i), use the following argument of Solecki: Every IT~+2 set is a 

decreasing intersection of a sequence of ~2+1 sets. If ~ 2: 2, every ~~+l set 
is the union of a sequence of pairwise disjoint IT2 sets. For l; = 1, every 
~g set is the union of a point-finite sequence (Fn)nEw of closed sets (i.e .. 
{n : x E Fn} is finite for each x). This follows easily using the fact that every 
metric space is paracompact (see, e.g., K. Kuratowski [1966]' p. 236). For ii), 
consider iterations defined as follows: A E F * (I ¢} {m : {n : (m. n) E A} E 
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g} E F and A E F* (Yn)71EN ¢} {rn: {n (m,n) E A} E gm} E F, where 
( ) is a bijection of N x N with N. 

23.7. See H. Ki and T. Linton [199'1]. 

23.12. Show that it is ellough to prove that W i8 ~~-hard. Then verify 
that S:~ <::n' lV. where 5:t is as ill 23.2. 

23.25. Show that for every ~~)/ set X <;;; 2"', X <::wTR. Por that prove by 
induction on n that for every X <;;; 2i~. X E ~;~. there i8 B <;;; N and a 
sentence (J ill the language {+'" u. V}. U. V unary relation symbols, such 
that 

A EX¢} (N. +. '. A. B) F (J. 

Encode the11 (A. B) by A B = {2n : n E A} U {2n+ 1 : 11 E B}. For 11 = 1, 
also U8e the functions .f. g. 

24.8. Usc 22.21. 24.7 and the method of proof of 18.6. To obtain that the 
uniformizillo function f defilled this \vav is actuallv ~o -measurable. use to. .O' 1;+1 . 
the followillg argument of Ki: Fix a cOlllltable dense set D <;;; Y and find 
fll : prot,(A) ....... Y which are ~~+1-111ea:mrable and take value8 in D, 80 
that fll ....... f uniformly. Then use 24.± i). 

24.19. See K. Kuratowski [1966]. 82/1, III, Th. 2'. 

24.20. See.J. Saillt RaYIllolld [1976]. alld for further results and references 
see S. Bhattacharya and S. 1\1. Srivastava. [1986]. By induction on ( show 
that it i8 enough to consider the case E = 1. The proof is then a variant of 
that of 12.1:3. Find a S01lslin scheme (F,) on X with F(/J = X, F, nonernpty 
closed, F,'i <;;; F" F, = U; F,;, diam(F,) <:: 2-length(8), and diam(g(Fs )) <:: 
2-lcngth(,) if oS # 0. Also 1lse 24.4 i). 

CHAPTER III 

25.11. Sec Y. N. :\loschovakis [1980], p. 71. 

25.19. It is enough to show that if 0 # A <;;; X carries a topology S 
that extends its (relative) topology and is second countahle strong Cho
quct. then A is analytic (in X). Fix a compatible metric d for X and a 
c01lntable hasis W = {n'n} for S. Fix a winning strategy (J for II in the 
strong Choquet game for (iI..5). vVe can assume that ill this game the 
players play open sets ill W ami in his nth move II plays a set of diame
ter < 2- 11 • View (J as a tree Ton W x A x W. i.e .. (U/,:r;. Vi)/<n E T iff 
((.To. Uo), \I() .... , Cc n-1 . U Il - 1 ). Vi/-I) is a run oftlw strong Choquet game in 
which II follows (J. For B <;;; A. denote by TJ3 the subtree of T determined by 
restricting the :r i to be in B. For an infinite branch .f = (Ui ,.1" i, Vi); E N of TB 
dCllote by .Tf the unique point in ni Vi, and let p(TE) = {.Tf : f E [TEn. 
Show that for some countable B <;;; A. iI. = p(TTJ). 

27.6 and 27.7. For more general results, see.1. P. R. Christensen [1974]. 
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27.9. We can work with X = N (why?). To each tree T on 2 assign a tree 
T* on N as follows: Fix a bijection ( ) : 2 x N -'> N and let ((n)o. (nh) = n. 
Put s = (so ..... sn-d E T* «=} ((so)o ..... (s.f/-do) E T & \:Ii < n((8i)O = 
o =? (sih = 0). If N is as in 27.3. show that [T] n N -10 «=} [T*] contains a 
nonempty superperfect tree (see 21.24). 

27.10. For each tree T on N define a sequence of pruned trees (Tn) on N 
such that T E IF «=} nn [Tn] -I 0. 

27.E, F. See H. Becker [1992]. 

27.18. To each set B S;;; [0. 1] x [0. 1] assign the set B* = {xc iy : (.z:. y) E 

B} S;;; C = IR2. Note that Proj[O.l] (B) = {Izl : z E B*}. 

Section 28. See the article by Rogers and .layne in C. A. Rogers, et a1. 
[1980]. 

28.9. For the last assertion. see 18.17. 

28.12. See R. Dougherty [1988]' p. 480. 

28.15. See D. Preiss [1973]. 

28.20. See the proof of 2l.22. 

29.6. Given an opcn nbhd U of 1 E G, show that there is an open nbhd N 
of 1 E H with N S;;; c.p(U). Let V be an open nbhd of 1 E G with V-I V S;;; U. 
Argue that c.p(V) is not meager and then use 9.9. 

29.18. ii) It is enough to consider the case X = N. Let (P')'EN<IO be given 
with Ps E S. Let f : N --> N be defined by f(x) = (XPh1n1 (.r))nEN, where 
h : N --> N<N is a bijection. Show that AJ:, = f-I(B), with B = {J: : 3y E 
N\:In(.T(h-I(yln)) = I}. 

Section 30. The exposition here is based on C. Dellacheric [1972]. [1981]. 

30.17. Use Example 1) of 30.B. 

CHAPTER IV 

32.2 and 32.3. For stronger results, see 38.14. 

33.1. i) Use 18.13. ii) Use 27.5 and recall 4.32. iii) Use one of the repre
sentations in 32.B. 

33.2. For a pruned tree T on 2 consider (T, <KB IT) (see 2.G). Show that 
[T] is countable «=} (T, <KR IT) is scattered. 

33.3. See A. S. Kechris, A. Louveau, and W. H. \Voodin [1987]. 

33.13. See 1\1. Ajtai and A. S. Kechris [1987]. 

33.H. See R. D. Mauldin [1979] and A. S. Kechris [1985]. 
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33.1. See H. Becker [1992]. 

33.20. For more on Lipschitz homeomorphisms, see R. Dougherty, S. Jack
son and A. S. Kechris [1994]. (Note that the Lipschitz homeomorphisms 
are exactly the isometries of (C, d), where d is the usual metric on C = 2M , 

given in the paragraph preceding 2.2.) 

33.22. See F. Beleznay and M. Foreman [199?]. 

33.25. A::;sume X* is not separable. Then it is easy to find uncountable 
Y <;;;; BI(X*) and E > 0 such that Ilx* - Y*II > E for all x* =I- y* in Y. Work 
from now on in the weak * -topology of BI (X*). Fix a compatible complete 
metric d for it. We can assume that every point in Y is a limit point of 
Y. Build a Cantor scheme (Us) consisting of open sets in BI(X*) with 
U, n Y =I- 0, Us-; <;;;; Us and diam(Us ) < 2~length(s), having the following 
property: If x* E Us'u, y* E Us 'I' then Ilx* - Y*II > E. 

33.27. See A. S. Kechris and R. Lyons [1988], R. Kaufman [1991]. 

33.28. See R. Kaufman [1987]. 

34.B. The modern concept of f-rank was formulated by Moschovakis and 
can be viewed as a distillation of the crucial properties of ordinal rankings, 
like the Lusin-Sierpil'lski index, that have long played a prominent role in 
classical descriptive set theory. See Y. N. Moschovakis [1980]' p. 270. 

34.6. ii) Show first that it is enough to consider the case X = Tr, A = 
WY Note now that the proof of 31.1 shows the following parametrized 
version of 31.2: If Y is Polish and A <;;;; Y x Tr is ~t, then there is a Borel 
function fA : Y -> Tr such that: Ay <;;;; WF =} fA(Y) E WF & p(fA(Y)) > 
sup{p(T) : T E Ay}. Define Borel functions fn: Tr -> Tr by fo(T) = T 
and fn+l = fAn' where An(T, S) ¢? 3T'(T' E T & S = fn(T')). Note that 
T E WF =} Vn(f.,,(T) E WF) & p(T) = p(fo(T)) < p(h(T)) < p(h(T)) < 
.. '. Put lP(T) = sup." p(fn (T)). 

34.16. To show that if A <;;;; liD is ~L then sup({IFID : F E A}) < WI, 

use the relation R(x, F) in the proof of 34.10 to show that otherwise WO* 
would be ~t. 

35.1. The generalized reduction property for TIt is due to Kuratowski, and 
the non-separation property for TIi to Novikov. 

Becker has suggested the following simpler proof of 18.17 using 35.1: 
If 18.17 fails, given any two ~i sets A, B <;;;; N with Au B = N, there are 
~i sets A* <;;;; A, B* <;;;; B with A* n B* = 0, A* U B* = N. This implies 
that TIt has the separation property. 

35.2. See H. Becker [1986]. Let U <;;;; NxN2 be N-universal for TI~(N2) and 
consider U 1 = {(w,x) : Vy(w,x,y) f:. U}, U 2 = {(w,x): 3!y(w,x,y) E U}. 
If U 1 ,U2 are separated by a Borel set V, argue that V is N-universal for 
B(N). Use 13.10 for that. 
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35.7. See proof II of 28.1. 

35.10. Sec A. S. Kechris [1975], p. 286. 

35.16. See 1. Harrington, D. l'vIarker, and S. Shelah [1988]. 

35.18, 19. See J. P. I3urgess [1979a]. 

35.20. See J. H. Silver [1980]. 

35.21. ii) See J. P. Burgess [1978]. The following simplified argument 
was suggested by Becker: \Vrite E = nt;<Wl Et;, with Et; decreasing Borel 
equivalence relations. By 35.20 we can assume that each Et; has only 
count ably many equivalence classes, say Ben. n E N. Put {A~ h<CVl = 

{Bt;.nh<wl.nEN. Thus xEy ¢} V'~ < W1 (.r E At; ¢} y E Ad. Assume that 
E has more than Nl equivalence classes. Call A c;:: X big if it meets more 
than NI equivalence classes. Note that if A is big, then for some ~ < WI, 

both A n At;, A \ At; are big. Using these remarks, 13.1 and 13.3, we can 
find a countable Boolean algebra A of Borel sets in X, which contains a 
countable basis for the topology of X, such that the topology generated by 
A is Polish, say with compatible complete metric Ii S 1, and for A E A that 
is big there is ~ < W1 with At; E A such that A n At> A \ At; are big. Then, 
also using the obvious fact that if A = U" A" is big, then for some n, An is 
big, it is easy to construct a Cantor scheme (A,s) sE2<", with As E A, such 
that AQ) = X, diam(As) S 2-]Pllgtb(s) (in the metric d). cach A,s is big and 
for each .5 E 2<'" there is ~s < :.vj such that Aso c;:: AC' A,'1 c;:: ~ A(s' If 
{J(x)} = n71 Axln for x E 2"', then .r -I y =? -'1(:r)E1(Y)· 

35.27 and 35.28. See Y. N. I\Ioschovakis [1980]' pp. 212-217. 

35.29. See Y. N. Moschovakis [1980]' 7C.8. Let U be as in 35.26 andletlj) : 
U -t or be a f-rank. Put P(q,l') ¢} x E A or:1: E I}!({y: (q,y) (q,x)}). 
Then F is in f, so fix Po E C with Fpo = Upo ' i.e., U(po,.r) ¢}.1: E A or 
x E I}!({y: (Po.y) <~) (Po,:r:)}). By induction on ~ = Jj)(po,:c), show that 

x E Fpo =? x E 1}!t;+1 (A) and by induction on II show that .r E I}!"(A) =? 

x E Fpo' So I}!X(A) = Ut;dr I}!t(A) = F p(). 

35.G. The exposition here is hased on Dellacherie's article in C. A. Rogers 
et al. [1980]' IV. 4. 

35.43. See J. P. Burgess [1979a] and G. Hillard [1979]. 

35.45. See J. Saint Raymond [1976a]. 

35.47. For ~ = 2 argue first, llsing 21.18, that it is enough to consider the 
case X = Y = C. Then use 28.21. 

35.48. See A. LOllveall and .T. Saint Raymond [1987]. 

36.1. Use a wellordering of /v. 

36.B, C, D. The approach here is based on Y. K. Moschovakis [1980]' 4E. 
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36.7. See 22.2l. 

36.11. ii) See V. G. Kanovei [1983]. Let f : IR -> IR be as in i). Consider 
9,,(:1:) = f(x) + 1/2". 

36.17. See R. lVlansfield [1970]. Use the method of 29.2. 

36.18. See A. S. Kechris [1977]. Use the method of 29.4 or 2l.24 iii). 

36.20. These regularity properties of :E~ sets were first established by Solo
vay (unpublished, but see the related R. M. Solovay [1969], [1970]) from a 
large cardinal principle that turns out to be implied by :Ei-Determinacy. 

36.22. See D. R. Busch [1979]. First recall that f is of the form given in 
30.4, and thus also of the form given in Example 3) of 30.B. So it is enough 
to show that if X, Yare compact metrizable, K C;;; X x Y is compact, jL a 
probability Borel measure on X, and ,(A) = jL*(pro.ix((X x A) n K)) for 
A C;;; Y, then every IIi subset of Y is f-capacitable. Then use a version of 
30.18 and 36.2l. 

36.23. See A. S. Kechris [1973]. 

36.25. See the hint for 18.17. 

CHAPTER V 

37.4. If (Ps) is a regular Souslin scheme with p', E II';, recall from 25.lO 
that x tf. AsPs {=} Tx = {s E P:I<N: x E Ps} is well-founded {=} 3w E 

W03f: P:I<N -> P:lVs, t E Tx(s ~ t '* w(.f(s), f(t)) = I), so that AsPs is 
II;, if n 2: 2. 

37.6. The main difficulty is to show that any open set U C;;; IR" is defin
able with parameters in R. Take n = 1 for notational simplicity. Let U = 
Un (Pn, qn), with Pn < qn in Q. Using the functions h, r 9 of 23.25, show 
first that there is a definable in R (i.e., having definable graph) surjection 
q: P:I-> Q2. Let A = {k E P:I: 3n(q(k) = (Pn,qn))} (where we use (Pn,q,,) 
ambiguously here for the interval (p", qn) and the pair (Pn, q,,)). Note that, 
assuming without loss of generality that {(PrJ, qn) : n E P:I} is infinite, we 
have that A is infinite and co-infinite. So there is a real 0 < T < l. which is 
not a dyadic rational, such that its binary expansion T = . TO T1 T2 ... is such 
that Tk = 1 iff k E A. Next, using the functions h, f, 9 again, show that there 
is a definable in R function s : IR2 -> {O, I} such that if 0 < Y < 1 is not a 
dyadic rational with binary expansion Y = .YOYIY2···, then s(y, k) = Yk, Vk. 
Thus x E U {=} 3n(Pn < x < qn) {=} 3k(s(T,k) = 1 & qo(k) <.1: < ql(k)), 
where q(k) = (qO(k),q1(k)). 

37.9. For the second assertion argue as follows: On IT2 define the following 
equivalence relation: (x,y)E(x',y') {=} x - x',y - y' E Q. Let A C;;; IT be II~ 
and find B C;;; ][ X ][2 in :Ei such that a E A{=} V(x, y) (a, (x, y)) E B. Put 
(a, (x, y)) E B' {=} V(x', y')E(x, y) (a, (x', y')) E B, so that B' is also :Ei 
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and for each a, B~ C;;; rr 2 is E-invariant. Note now that a E A g Ba = rr2 g 

n~ = rr2 g B~ has nonempty interior. 

37.B. For Example 3), the comments following it, and Exercise 37.12, see 
H. Becker [1992]. 

37.15. For ii) let A C;;; C be:E~ and, by 37.14, let (tn) be such that A = UUn)' 
For any x E C, let Kx = {z E C: 3y E Clin(z(n) = In(Y,x))}. 

38.1, 4. See Y. N. Moschovakis [1980]' 4B.3, 6C.2. 

38.11. If boundedness holds, argue that every IT§ set is :E§. 

38.12. Use the proof of 3l.5. 

38.13. Argue that it is enough to show that every nonempty ITt set A C;;; C 
is a continuous image of WOo Use the fact that WO is ITt-complete, 26.11 
and 7.3. 

38.14. For i), see the note for 36.20. For ii), see R. M. Solovay [1969]. For 
iii), see A. S. Kechris [1977] for X = N. For iv), see A. S. Kechris [1973] 
for measure and category. For the final statement, use the proob of 21.22 
and 2l.23. 

38.17. See lV!. Davis [1964] and J. Mycielski and S. Swierczkowski [1964]. 

38.18. See A. S. Kechris [1977] for X = N. 

38.19. See the proof of 2l.9. 

39.B, C, D. See Y. N. Moschovakis [1980], Ch. 6. 

39.4. For 8~n+l < 8~n+2 use 35.28. For 8~n+2 < 8L+3 show that there 
is a :E~n+3 well-founded relation -< such that p( -<) 2': p( -<') for any :EL+2 
well-founded relation -<', and then use 35.28 again. 

39.12. If T is a tree on N x f)" where f), is a cardinal of cofinality > w, then 
p[T] = UE<"p[TI~]' where TI.;- = {(s,u) E T: u E ~<N}. 

39.13. i) The first statement is due to Martin. For measure and category, 
see A. S. Kechris [1973]. 

39.23. Use unfolded *-games; see 2l.B. It is convenient to work with X = 

Y = C and use 2l.3. 

39.24. For the K(J" case use the method of proof of 21.22, but with separation 
games if n > 0 and the game in 28.21 if n = O. For the meager case, 
notice first that by considering the complement of the closure of the set 
of isolated points of Y, we can assume Y is nonempty perfect and by 8.A, 
throwing away a meager F", we can assume that Y is zero-dimensional, 
and so Y = [T] for a perfect non empty tree on N. We can also assume that 
X = N. Consider now unfolded Banach-Mazur games (most conveniently 
in the form. similar to that in 8.36; see 2l.7 and 2l.5). 

39.25. Use 39.23. 
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Symbols and Abbreviations 

o (empty set), Pi! (natural numbers), G 6 , Fa 1 

nbhd (neighborhood), TIiEIXi,EBiEIXi (for topological spaces), Xl, 
B(x,r) 2 

Bcl(x,r), I (restriction), Tl 3 
11 4 

s = (s(O), 0 0 0, s(n - 1)) = (so, 0 0 0, sn-d, 0 (empty sequence), length(s), 
slm, s ~ t, s.l. t, Ad" sOt, sOa, AN, x = (x(n)) = (x n ), xln, s'x, 
s~s~ s; 0 0 0, [T] 5 

N." TF , 'J" T[s] 7 

D('P), 'P* 8 

T(x), T(s), <lex, aT 9 
PT (for well-founded trees), p(T), T-< 10 

W FT , PT (for any tree), PT(S) = 00, p(T) (for any tree), T*, T(a), 
<KB 11 

lR (real numbers), C (complex numbers), lI, 11', C 13 

N, E 1/:3, Irr, fP , Co, LP(/-L) , C(X), L(X, Y), L(X), L1(X, Y), IQl 
(rationals) 14 

diam, osc!, B(A, E) 15 

graph(f), projx (projection onto X) 16 

idy (identity on Y) 17 

X*, B1(X*), Roc, j[]) 19 



:382 Symbols and Abbreviations 

D,f( 20 

()Q, [;ro ..... ;c n ]. [;co, e] 22 

C(X Y). C(X). d u , !!!!!x, K(X) 24 

dlf(K,L), I!(K.L). Tlim"Kn , TlimllKn , Tlillln I{1I 25 

UK. f"(K), Kf(X), Kp(X), Tr, PTr, Tr2, PTr2 27 

Trr. PTr, 28 

Kr 29 

(A, LE2<1 :31 

ORD. w. X'. xo :3:1 

X"". !X!C13, !X!C':B' T. Tn, T"', !TIcIl 34 
36 

Int(A) 37 

G x 43 

G\; 44 
A =I E, A6B, A =* B. BP 47 

I~ 48 

~ A. U(A)l9 

BP(X). l\IGR(X). RO(X), DP(XJ/1IGR(X), CAT(X) 50 

G**(A), G**(A, X) 51 

ACt) ¢c};T E A, \:I*.r:, =j*;T. \:1*,1' E U. =j*.r: E U. '. A r • Ail 5:3 

Pow(X), fro i'l 56 

lP!.', !Z2 (integers mod 2) 58 

GL(n,OC), S'L(n,OC), A"', Urn). O(n), S'U(n), S'O(n), 

r, L(H). L j (H). U(H), S'x 59 

Ant(A), H(X), Iso(X, d), IFr 60 

g .. T 61 

G.l 62 

(T(E) 65 

SlY 66 

(fl,)(,,[lS,), (EBiXi,EB,S;) 67 

B(X T), B(X). B(T), :E~(X), rr~(X), a~(X) 68 

G(X), F(X), Ecr , Eh • card (cardinality), IQ+ 69 

C 1• Co, Dr 70 

\A. (characteristic function of A) 73 

F(X) 75 

RF(X) 76 



Symbols and Abbreviations 383 

[AJE 77 

B,.(X*), Bw' (X*), Lo(H) 79 

tr(T), ITI, Ll(H), V:-J 80 

:3! 1:14 

~j, A(X) 85 

IIi (X), CA(X), ai(X) 87 

.:; II, ~a, VnrIn 91 

Ec 92 

[AJ, (A), A*, A''', A*U, A6U 95 

XL, AI' ~, LW"w, 1= 96 

()A 98 
~, p(N), X IF 99 

U11) If-, ZF, M[G], AC, ZFC, CH 100 

Il-a ,e" NULL II. , l'vIEASI" Ti, 11*, MEAS,r*, J !dll· (= J f(:x:)dll(X)), 
fll 103 

ITi<nlli' ITn 11,,, EBnlLn, MEAS p INULLp , MALG ,11 11 « //, 11 rv v 104 

[11], p. ~ v, ~~, tix , I:i aiui, PC) lid, 'nI, rnn , ILG 105 

PIll ILC, d(AB), Ph' P';" /lh 106 
IJI, length(I) 107 

l~lnXn' l~nnSn' l~lnl.ln' P(X), Cb(X) 109 

Ud(X), ti(Il' v) 110 

DA III 
\/:', :3~, Ml{(X), Mcc(X) 114 

INV c, EINVc;, Z (integers) 115 

supp(p) 116 

/\, V, ac.b 117 

l'vIFUNCT,ll Mill Aut(X, II), UT 118 

Aut*(x'/l.), UT 119 

()(~D 120 

IF, IFf 121 

UB 125 

[X]E 128 

[X]", (A)" 129 
[XF~o, [a, A] 132 

Aln 133 

(!DC(S) 135 
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G(A, X), G(X), G(T, X) 137 

Xp 138 

Pow.;(N) 146 

3aO'v'aaa2'v'a3"', 'v'a03a1'v'al 3a3"', gA, 9A 147 

G*(A) 149 

C:(F) 150 

G**(A) 151,153 

G~,*(F) 152,153 

<:::w 156 

WG(A,E), =~,v, [Alw, WADGE, WADGEB , A <::: B, A, A =ws B, A*, 
WADGE*, WADGE'B 157 

A* <:::* B* 158 

SG(A; Bo, Ed 160 

G(A) 163 

<:::T, =T, [xJr, D, x <::: y, 0, 0, fa 164 

X V y, Cx 165 

r, r(X), t (=~ r), ~ = rnt 167 

limn An , limn An , lim An 173 

De((A,/)r/<e), De(:E~) 175 

OF 177 

De ((A1J)rl<li, (Brl)'/d) 178 
'v'x, 3"", P3, S3 179 

C3 , D3 , Pt, Sil, FnA", JT 180 

P4, S4, Kf(X), Kx;(X), H 181 

K,,(C), Lp , COOef), AR, ANR 182 

j(n), AN(1l') , C71(1l') 183 

UCx, UC, UCo, SN(f), UCF, Cr 185 

f V g, f 1\ g, C~~ 187 

Gf , TR 188 

WO<CY 189 

B,,(X, Y), B.;(X) 190 

D"(K) 192 

DB1 , ~ 194 

:Ei(X) 196 

A.i(X), p[T], ]V 197 

A, Asp" Ar 198 
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3 Y r 205 

IF, IF::; 209 

UNIQ, MULT, LO 212 

WO, NWO, x ~ y 213 

won,O"p(T) 214 

Dij, A-2::=oum, R(2:um,A), CS 215 

p.(n) 216 

2: XY rrX,Y 221 
~ , ~ 

8~, Tr, Tf' 226 

C(X) 230 

If, ~iK 234 

U11 235 

P 1 (X), ~(c, Jf'f':: 236 

WF, Ixl (for x EWO) 240 

TIi(X) 242 

A, AsPs 244 

WF, WFi, UB, WII , SCAT, K(A), KNo(X), FNo(X) 245 

E(!;; Til,"', 17k), Q(e) 247 

DIFF 248 

CN, CNu 251 

CF, bj, J;~; f 252 

NDIFF 254 

Ll(1!'), Jint(J), NH, SCON 255 

JC 256 

QP 258 

J\1D, SB 

NU, SD 

REFL, NLI 

H-L 266 

< <I' <I' 
-'P' -tp' -'P 

262 

263 

265 

267 

<'P' <~, <&, cp(x) = 00, :s;~, <~ 268 

D"(A), lAID, D=(A), lx, AID, E"(A), IAIE, E=(A), lx, AlE 270 

D, D, DB, IFIB, lx, FIB 271 

liD 272 

LO*, WO*, Ixl* 273 

nIJ}, lI?J', IAI~U 275 
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H'Il, ISIIl. d(I\). III\llcll 276 

i:::,.f. DeI Ifl])]FF' (,1([0.1]) 277 

I} Ifli'mF' Sf 278 

..v'U,,)· D,U"j' IU,,)lz 270 

Iflz 280 

A,[> 28S.286 

6r 289 

6j 290 

:F~ 292 

p[T]. (oz· .iT). T,,, 299 
--'r . 'j" '. .;T, T y = (y,,). ni ~ n. T.;:. (no ..... O"-l).~· = (V,,). f s. g :mo 

P*. ~1 307 

~;,. II~" d~,. A, CA, PCA, CPCA, P :31:3 

l\IV. peON" :317 

SCONn • NH" :318 

No. A 319 

t5J :324 

PD. Qnr :325 

PDf, 326 

\:1''1;'. \:IN'r :327 

t5i, 3:31 

O'P(X). ~J. II2' d~ 341 

ORD. cU, sup(X). lim Cl~. 
~<A 

cofinality(R). n: + d. (}. f n". n+. cUn 349 

c:ard(X), No., 2N" 350 

(I...; 351 

(I( -<) :352 

'. tx.. or. =? ¢?, 3, \:I 353 
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absolute nbbd retract 182 
absolute retract ] 82 
ahsolutel~' continuous 104 
action of a group 61 

Borel 02 
continuous 61 
free 02 

adjoint operator 59 
admits covers 227 
Ajtai, 1\1. 252, 317. 318 

Ajtai-Kechris [1987]188, 364 
Alexandrov, P. 37, 83 
algebra of sets 65 
almost e\'erywhere 103 
ambigllom; 68, 167 
analytic 

Borel space 197 
function 182 
set 85.86. 19G, 197,218 
sets wit h countable sections 

286 
(separable metrizablc) space 

197 
Anderson. R. D. 23 
anti-lexicographical ordering 299 

Arbault. .1. :319 
aritlulletical 188 
Arscnill. V. Ya.. 127. 297 
Arveson, 'V. 

[1976] 347 
associated lllap (of a Lusill or 

Souslin schellle) :36, 40 
atOll! 117 
atolllless Boolean algebra 117 
Au,;lallcieL L. 

Au,;lalldcf-1\[oore [1966] 347 
Axiom of Choice (AC) 100 
Axiolll of DepelH\ent Choice,; 139 
Awff, E. A. 

[1083] 80 

Baire 
Category Theorem 41 
elm;,; 190 
llleasurable function .52 
property (BP) 47 
(topological) space 41 
span'Iv H 

Bajre. R. 193 
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ball (around a set) 15 
Banach, S. 19, 51, 190, 192, 265, 

326 
Banach-Mazur (or **-game) 51, 

151 
Bary, }';". 212 
basis (of a topology) 1 
Becker, H. 182, 204, 256, 282, 

317,318,319,365,366 
[1986] 365 
[1987] 318 
[1992] 364, 365, 367 
Becker-Kahane-Louveau 

[1993] 319 
Beer, G. 

[1991] 75 
Beleznay, F. 262 

Beleznay-Foreman [199?] 
280, 365 

Berberian, S. K. 
[1974] 358 

Bernstein set 48 
Bertsekas, D. P. 

Bertsekas-Shreve [1978] 347 
Besicovitch, A. S. 255 
Besicovitch function 255 
Bessaga, C. 

Bessaga-Pelczyriski [1975] 
64, 358 

Bhattacharya, S. 
Bhattacharya-Srivastava 

[1986] 363 
bi-analytic set 87, 197 
Birkhoff, G. 58 
Blackwell, D. 88 

Blackwell-Ry 11-N ardzewDki 
[196:3] 359 

Blass, A. 
[1981]131 

body of a tree 5 
Boolean a-algebra 50 
Borel 

action 92 
alltomorphiDm 71 
(measurable) function 70, 73 

f-complete set 207 
f-hard set 207 
hierarchy 69 
isomorphiDm 71 
map 70.73 
llleasure 105 
on Borel 122 
Schroder-Bernstein Theorem 

90 
sct 68, 7:3 
space 66 
space (of a topological space) 

68 
space of Polish groups 78 
space of Polish spaces 78 
space of separable Banach 

spaces 79 
space of von NellllHUlll 

algebras 80 
Bossard. B. 

[1993] 265 
boundary 

of a graph theoretic tree 22 
of a set III 

BOllndedncss 
ThcOH'l1l for analytic well

fOlmdcd relations 239 
Theorem for Ill-ranks 288 
Theorem for ",TF 240 

Bourbaki, N. 
[1966] 357 

Bourgain. J. 263. 265 
[1980] 221 
[1980a] 221 

BP 47 
Brouwer, L. E .. J. 35 
Bruckner" A. 1\1. 

[1978] 187. 194 
Bruckner-~Iafik-Weil [1992] 

194 
Burgess, J. P. 128, 287, 294 

[1978] 366 
[1979] 360 
[1979a] :366 

Burgess Refiection Theorem 287 



Busch, D. R. 237, 308, 341 
[1979] 367 

C-measurable 230 
C-set 230 
canonical quasistrategy 140 
Cantor 

group i.Z~ 58 
scheme 31 
set 83 
(1/3-) set 14 
space C 13 

Cantor-Bendixson 
degree 276 
derivative 33 
derivative of a tree 34 
rank 34 
rank of a tree 34 
Theorem 32 

capacitable 237 
capacity 234 

alternating of order 00 235 
category 

algebra 50 
quantifier 53 

Cauchy sequence 13 
Cauty, R. 

Cauty-Dobrowolski
Gladdines-van Mill 
[199?] 182 

Cenzer, D. 192 
Cenzer-Mauldin [1983] 182, 

192 
chain rule 105 
Characterization Problem (for 

sets of uniqueness) 248 
Choksi, J. R. 119 

Choksi-Prasad [1983] 359 
Choquet 

Capac:itability Theorem 237 
game 43 
space 44 

Choquet, G. 45, 234, 235 
[1969] 266 

Index 389 

Christensen, J. P. R. 210 
[1974] 347,358,363 

clopen set 35 
closed 

ball 3 
map 2 
set 1 

closure 4 
co-analytic 

set 87, 242 
space 161, 242 

coarse Wadge degree 157 
code 252, 283 
coding 167, 283 
cofinality 349 
Cohen, P. J. 99, 100 
Cohen poset 102 
Cohn, D. L. 

[1980] 347 
comeager 41 

in an open set 48 
compact 

operator 80 
space 18 

compactification 23 
compatible 

conditions 99 
metric 3 
position 43 
run 43 
sequences 5 

complement in a Boolean algebra 
91 

complete 
Boolean algebra 50 
metric space 13 
set 169 

completely 
Baire space 161 
metrizable space 13 
Ramsey 133 

completion 
of a measure 103 
of a metric space 13 

complex Borel measure 114 



390 Index 

component 255 
computability theory 346 
computable 164, 346 
concatenation 5 
condensatioll point :32 
condition 99 
COll(, lG5 
conjunction 35:3 
connE'ctE'd 

graph 20 
space 35 

contiguous intervals 254 
continuous 

action 61 
at a point 2 
downward in the sE'cond 

variable 2RG 
map 2 
measure 10.5 
part of a measnre 105 

Continuum Hypotlwsis 100 
convergence in measurE' llR 
converges weakly 182 
convex set 20 
cOllvE'xly generated 223 
co-projection 2/12, :351 
cOllntable 

chain condition 50 
equivalence rPlation 127 
join 91 
-to-1 lllap 127 

countably generated o--algebra 65 
cover (in a measurable space) 227 
covering 140, lel1 
covering game :308 
cube (n-dimensional) 13 
cut-and-choose game 149 

Darboux property 194 
Davis, :1\1. 326 

[1964] 361, 368 
Definahility Lemma 101 
Definable Determinacy 205 
Dellac:hc:rie, C, :366 

[1972] 347, 364 
[1981] 364 
Dellacherie-Meyer [1978] 347 

d;-fllIlCtiOll 315 
dense set 

ill A <N 7 

in a topological space :3 
of conditions 100 

densit,v 
of it subset of N 181 
topology ll!) 

derivativp 
fUllc:tion 71 
on scts 270 

determined gallle .52, 137 
Dichotomy Theorem for Co

Analytic o--Ideals 246 
DiesteL J. 

[1984] 1:35 
Dirac measurE' 105 
discrete 

llleaSUrE' 105 
part. of a measurE' 105 
topology 7 

disjoint 117 
disjunctioll 35:3 
dissection of type (l; ,1/1, ' , , ,fJd 

247 
distal homeomorphism 262 
Dobrowolski. T, 

Cauty-Dobrowolski
Gladdines-vall Mill 
[199?] 182 

Dobrowobki-Rubin [199?] 
1:32 

Dougherty, R, 252 

dual 

[1988] :364 
Dougherty-J ackson-Kechris 

[1994] 365 
Dougherty-Kcchris [1991] 

252 

class 167 
game quant.ifier 147 
of a derivative 271 



Souslin operation 244 
Wadge degree 157 

Dubins, L. 
Dubins-Freedman [1964) 216 

Dudley, R. M. 
[1989) 347, 359 

Dyck, S. 222 

edge of a graph 20 
effective 

descriptive set theory 346 
open set 346 
topology 346 

Effros Borel space 75 
Effros, E. G. 80, 359 

[1965) 358 
Ellentuck, E. 133 

[1974] 361 
Ellentuck topology 132 
embedding 

of measurable spaces 66 
of topological spaces 2 

empty sequence 5 
end of a tree 22 
Enderton, H. B. 

[1977) xviii 
Engelking, R. 

[1969) 40 
[1977) 45 

equal modulo a a-ideal 47 
equivalence 353 
equivalent 

capacities 234 
games 52, 138 
paths 21 
ranks 267 
to the unit basis of £1 134 

Erdos, P. 
Erdos-Stone [1970) 216 

ergodic 
Borel automorphism 118 
measure 115 

even ordinal 175 
existential quantifier 353 

expansion 270 
extends 99 

Index 391 

extension (of sequences) 5 
extreme 

boundary 20 
point 20 

F". set 1 
Feldman, J. 127 

Feldman-Moore [1977) 360 
Fell topology 75 
finite 

measure 103 
splitting tree 20 

first category 41 
First 

for 

Periodicity Theorem 328 
Reflection Theorem 285 

comeager many 53 
non-meager many 53 

forces 48, 100 
forcing 99-102 

in a topological space 48 
Foreman, M. 262 

Beleznay-Foreman [1997) 
280, 365 

Fourier series 185 
Frechet ideal 60 
Frechet, M. 40 
free action 93 
Freedman, D. 

Dubins-Freedman [1964) 216 
Friedman, H. 

[1971)146 
Friedman-Stanley [1989) 213 

Fubini Theorem 104 
full binary tree 6 
Furstenberg, H. 280 

[1963) 262 

G/5 set 1 
Gale, D. 
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Gale-Stewart [1953] 361 
Gale-Stewart Theorem 138 
Galvin, F. 130, 131, 132 

Galvin-Prikry [1973] 360 
Galvin-Prikry Theorem 132 
game 

r 

*-game 149 
**-game 151 
quantifier 147 

-additive 309 
-complete 169 
-hard 169 
in the codes 252 
-measurable 190, 309 
on r 285, 286, 290, 309 
on t 285 
-rank 267 
-scale 302 

Gandy-Harrington topology 204 
generalized 

Lusin scheme 302 
reduction property 170 
separation property 170 

generators for a a-algebra 65 
generic 

element 42 
extension 100 
over a model of set theory 

102 
geodesic 22 
Gillespie, D. C. 

Gillespie-Hurwitz [1930] 279 
Gladdines, H. 

Cauty-Do browolski
Gladdines-van Mill 
[199?] 182 

Gode!, K. 100 
graph 20 
graph theoretic tree 20 
group of measure preserving 

automorphisms 118 

Haar measure 106 

Hahn, H. 185, 318 
Halmos. P. R. 

[1950] 359 
[1960] 359 
[1960a] xviii 
[1963] 50 

hard set 169 
Harrington, L. 206, 207, 308 

[1978] 206 
Harrington-Kechris [1981] 

326 
Harrington-Mar ker -Shelah 

[1988] 366 
Hausdorff 

measure 106 
metric 25 
operation 180 
outer measure 106 
space 18 

Hausdorff, F. 71, 83, 176, 190, 
192 

[1978] 362 
Haydon, R. 

[1975] 266 
hereditary 246, 292 
Hewitt, E. 

Hewitt-Ross [1979] 58 
Hilbert 

cube 13 
space 14 

Hillard, G. 294 
[1979] 366 

Hinman, P. G. 
[1969] 310 

Hoffman-J0rgensen, J. 357 
[1970] 347 

holds 
almost everywhere 103 
generically 42 
generically on an open set 48 

homeomorphism 2 
homogeneous set 129 
hull 95 
Humke, P. D. 215 



Hurewicz, W. 39, 160, 209, 210, 
297 

Hurwitz, "V. A. 
Gillespie-Hurwitz [1930] 279 

hyperspace 24 

ideal 
in a poset 99 
on a set 41 

ill-founded 
relation 351 
tree] 0 

image measure 103 
immediate extension 163 
implica tion 353 
in the codes 252 
incompatible 

conditions 99 
sequences 5 

index 267 
inf method 328 
infinite 

branch of a tree 5 
path of a graph theoretic 

tree 21 
initial 

ordinal :349 
segment 5 

interior of a set 37 
Interpolation Theorem 99 
invariant 

measure 115 
set 88 

inverse limit 109 
isolated point 25 
isometric embedding 3 
isometrically isomorphic 79 
isometr:v 3 
isomorphic 

measurable spaces 66 
topological groups 63 

isomorphism 
measurable 66 
of structures 96 

Index 393 

Isomorphism 
Theorem for measures 116 
Theorem for standard Borel 

spaces 90 
iterated Cantor-Bendixson 

derivative 33 
derivative of a tree 34 

iterated derivative on sets 270 

Jackson, S. 340 
[1989] 331 
Dougherty-J ackson-Kechris 

[1994] 365 
Jankov, V. A. 227 
Jankov, von Neumann 

U niformization 
Theorem 120, 227 

Jayne, J. E. 364 
join 117 
Jordan 

curve 255 
interior 255 

KrI set 29 
Kahane, S. 319 

Becker-Kahane-Louveau 
[1993] 319 

Kakutani, S. 58, 119 
Kanamori. A. 

[199?] 347 
Kanovei, V. G. 304 

[1983] 367 
Kantorovich, L. 315 
K 

-scale 301 
-semiscale 300 
-Souslin 241, 299 

Katllnelson. Y. 
[1976] 182. 184 

Kaufman, R. 212, 214, 247, 253, 
266 

[1984] 212 
[1987] :365 
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[1989] 215 
[1991] 318. :319. 305 

Kechris. A. S. 12:3. 125. 128. WI. 
103. 246, 252. 254. 255. 
258. 20(j. :3()G. :m9. :31 1. 
:3:n. :341. ;345. 3Gl 

[1973] :367. :368 
[1975] :300 
[1977] ;3(1l. :3G7. :3G8 
[1985] :3G4 
[1992] :3GO 
Ajtai-Kechris [1987]188. :364 
Dougherty -J ackson-Kec:hris 

[Hl9 c1] 365 
Doughcrt~'-Kechris [1991] 

252 
Harringtoll-Kcchris [1 D81] 

:326 
Kechris el aL [1978. 1981. 

ID8:3. 1988] 34G 
Kechris-Louveau [198D] 212. 

247. 248. 280. :3c17 
Kechris-Louveau [1992] :347 
Kechris-Louveall- \Voodill 

[1987] 246. 301. :3Ci-1 
Kechris-L~'()ns [1988] 3Ci5 
K echris- i\ Iartill-Solova.v 

[H)8:3] :327 
Kechris- \Voodill [1986] 277 

Keller's Theorem 6-1 
Ki. H. 181. 185.36:3 

Ki-Linton [19D?] 3Ci:3 
Kleenp-Brouwer orderillg 11 
Kleenc. S. C. 28D 
Klein. E. 

Kleill-Thompson [1984] :3-17 
Kolmogorov. A. N. 255 
Kolmogorov COllsistemT 

Theorem 109 
Kowld. ~I. 2:3:3. :30G. 32:3 
Konig's LCllIma 20 
Kumm. K. 2:3D. 2H. :3-10 

[1980] :359 
K Ullell-Vaughan [1984] :357 

KUllen-]\Iartill TheorcllI 211 

KllllllgUi. K. 127.220.297 
Kmatowski. K. 16. 5:3. 73. 76. 

129. 172. 173. 176. :322. 
3;37. :362. :365 

[lDG6] xviii. :35. :362. 36:3 
[1973] :360 
Kuratowski Ryll-

Nardzevvski [Hl65] 
:3.58 

Kuratowski-Flalll Theorem 5:3 

Laczkovidl. M. 1D4. 215 
A-clasi'i GE; 
Lavrentiev's Theorelll IG 
Lebesgue' 

Dellsity Theoreltl 106 
J II eaSll H' 105 
IlIE'HSll],(' algehra 11G 

LebesquE'. H. 71. 190. 192 
left -illvariallt llletric 58 
leftmost branch D. 299 
legal positioll 4:3. 1:37 
lexicographical ordering 9 
Li. R. 

[lDD2] :347 
littillg 2:31 
limi t 

ordinal :33. :3-1D 
poillt :31 

LilltOll. T. 181. :362 
[lD94] 181 
Ki-LintcJll [199?] :3G:3 

Lipschitz 
hOllleumorphism 2Gl 
Illap 8 

Livellson. E. 315 
loe al Vaught t rallsforms 95 
1()(,i111~' 

COlllpact space 2D 
fillite tree 21 

logarit hmic meaSUrE' () 188 
logic action DG 
loop 20 
LOjl('z-Escobar. E. G. K. 97. 99 



Lorentz, C. G. 214, 215 
Louveau. A. 161, 224. 246, 297, 

311. 319 
[198Cl] 221, 297 
[1980a] 221. 297 
[199?] 204, 346, 362 
Becker-Kahane-Louveau 

[1993] 319 
Kechris-Louveau [1989] 212, 

247, 248, 28Cl, 347 
Kechris-Louveau [1992] 347 
Kechris-Louveau-\Voodin 

[1987] 246, 361, 364 
r~ouveall-Sail1t Raymond 

[1987] 224, 361, :366 
Louveau-Saint Raymond 

[1988] 176 
lower i-icmicontinuous real-valued 

function 71. 186 
LUi-iill 

classes 313 
scheme 36 
Separation Theorem 87, 217 

Lusin, N. N. 83, 89, 108, 123, 
153, 155, 2Cl1. 2Cl9, 213, 
227, 229, 240, 286, 304 

[1972] xviii 
Lyons, R. 266 

Kechris-Lyons [1988] 365 

l\Iackey. G. W. 108 
[1957] :358 
[1976] 347 

l\laitra. A. 
[1983] ;359 

l\1ansfield. R. 306 
[1970] 367 
[1971] 323 

l\lahk, J. 
Bruckner-Marik-Weil [1992] 

ID4 
l\Iarker. D. 

Harrington-l\Iarker-Shelah 
[lD88] 366 

Index 395 

l\lartin, D. A. 123, 14Cl, 141, 158, 
165, 2Cl6, 241, 3Cl6, 324, 
328, 330, 34Cl, 345, 361, 
368 

[1968] 361 
[1981] 361 
[1985] 361 
[199'1] 206, 347 
Kechris-Martin-Solovay 

[1983] 327 
Martin-Solovay [1969] 323 
Martin-Steel [1989] 2Cl6 

Martin measure 16,5 
Mathias. A. R. D. 132 
Mauldin. R. D. 192, 254, 255 

[1979] :364 
[1981] 265 
Cenzer-Mauldin [1983] 192 

maximal sequence in a poset 99 
Maximoff. 1. 194 
Mazur, S. 51, 265, 326 
Mazurkiewicz. S. 231, 248, 318 
meager 41 

in an open set 48 
measurable 

embedding 66 
isomorphism 66 
map 66, 68, 120, 19C1 
set 66 
space 66 

measure 103 
algebra 104, 117 
algebra of a Illeasure 104 
class 105 
continuous 105 
discrete 105 
on an algebra 106 
preserving automorphism 

118 
quantifiers 114 
space 103 

l\leasure Disintegration Theorem 
115 

meet 117 
l\lenshov, D. 212 
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metric 2 
on AN 7 
outer measure 106 
space 2 

metri,mble (topological space) 3 
l'vleyer, P.-A. 

Dellacherie-l\Ieyer [1978] 347 
Miller, D. E. 62, 93 

[1977] 358 
Milutin, A. A. 265 
minimal 

above 165 
cover 165 
element in a relation 351 
homeomorphism 262 

minimax principle 236 
Mokobodzki. G. 219 
Monk, J. 158 
monotone 

collection of suhsets of N 
180, 222 

map on trees 7 
subset of Pow(X) x Pow(X) 

286 
monotonically closed 65 
Montgomery, D. 94,174,175 
Moore, C. C. 127 

Auslander-Moore [1966] 347 
Feldman-Moore [1977] 360 

Moschovakis, Y. N. 289, 290, 300, 
322,328,330,3:31, 332, 
336, 339, 342, 345, 365 

[1980] xviii, 123, 206, 284, 
339, 345. 346, 347, 355, 
362. 363, 365, 366. 368 

[1994] xviii 
II-almost everywhere 10:3 
fJ-measurable 103 
fJ-null 10:3 
/1 * -measurable 103 
Miiller, G. H. xviii 
Mycielski, J. 129, 205, 308, 326, 

341, :361 
[1964] 205 
[1966] 205 

[1973] 360 
[1992] 206 
Mycielski-Steinhaus [1962] 

20.5 
Mycielski-Swierczkowski 

[1964] 368 

name 101 
N arnioka, 1. 

[1974] 57 
nbhd 2 

basis 2 
negation 53, 310 
neighbor of a vertex 21 
Newtonian capacity 235 
Nielsen. O. A. 

[1980] 359 
Nikodyrn, O. M. 229 
no holes 255 
node 5 
non-singular Borel automorphism 

119 
norm 267 
normal number 69 
llormed class 268 
not losing position 138, 140 
Novikov 

Separation Theorem 219 
-Kondo U niformization 

Theorem 306 
Novikov. P. 94, 123, 220, 231. 

322, 365 
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