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Preface 

This book was written expressly to serve as a textbook for a one- or 
two-semester introductory graduate course in functional analysis. Its (soon 
to be published) companion volume, Operators on Hilbert Space, is in
tended to be used as a textbook for a subsequent course in operator theory. 
In writing these books we have naturally been concerned with the level of 
preparation of the potential reader, and, roughly speaking, we suppose him 
to be familiar with the approximate equivalent of a one-semester course in 
each of the following areas: linear algebra, general topology, complex 
analysis, and measure theory. Experience has taught us, however, that such 
a sequence of courses inevitably fails to treat certain topics that are 
important in the study of functional analysis and operator theory. For 
example, tensor products are frequently not discussed in a first course in 
linear algebra. Likewise for the topics of convergence of nets and the Baire 
category theorem in a course in topology, and the connections between 
measure and topology in a course in measure theory. For this reason we 
have chosen to devote the first ten chapters of this volume (entitled Part I) 
to topics of a preliminary nature. In other words, Part I summarizes in 
considerable detail what a student should (and eventually must) know in 
order to study functional analysis and operator theory successfully. The 
presence of this extensive review of the prerequisite material means that a 
student who is not familiar with one or more of the four basic courses 
mentioned above may still successfully read this book by making liberal 
use of Part I. Indeed, it should be said that perhaps the only critical 
prerequisite for a profitable reading of this book is a certain mathematical 
maturity, which, for our purposes, may be taken to mean the ability to 
follow and construct e-8 arguments, a level of maturity that any talented 

VB 



Preface 

student who has had a good course in advanced calculus will have 
attained. 

In keeping with our pedagogical intent in writing this book, we have 
provided both examples and exercises in copious supply. Indeed, every 
chapter contains a number of illuminating examples and is followed by a 
collection of problems. (Some problems appear as simple assertions of 
fact; in such cases the student is expected to provide a proof of the stated 
fact.) In this connection we observe that the problem sets constitute an 
integral part of the book, and that the student must study them along with 
the text. Working problems is very important in the study of mathematics 
in general, of course, for that is how mathematics is learned, but in this 
textbook it is particularly important because many topics of interest are 
first introduced in the problems. Not infrequently the solution of a 
problem depends in part on material in one or more preceding problems, a 
fact that instructors should bear in mind when assigning problems to a 
class. 

While, as noted, this book is intended to serve as a textbook for a 
course, it is our hope that the wealth of carefully chosen examples and 
problems, together with the very explicit summary of prerequisite material 
in Part I, will enable it to be useful as well to the interested student who 
wishes to study functional analysis individually. 

An instructor who plans to use this book as a textbook in a course has 
several options depending on the time available to him and the level of 
preparation of his students. He may wish to begin, for example, by 
devoting some weeks to the study of various chapters in Part I. Whether he 
does this or not, time limitations may make it impossible for him to treat 
all of Part II in one semester. With this in mind, we suggest the following 
abbreviated syllabus for a somewhat shorter course of study. 

Chapter 11: Read entire text; omit Problems L-Q and U-Y. 
Chapter 12: Read entire text; omit Problems R-Y. 
Chapter 13: Read entire text; omit Problems S-T. 
Chapter 14: Omit the material on Frechet spaces, viz., Examples H-L 

and Proposition 14.9; omit Problems Q-W. 
Chapter 15: Omit all text after Theorem 15.11; omit Problems a-x. 
Chapter 16: Omit the material on dual pairs, viz., everything after 

Proposition 16.12; omit Problems a-x. 
Chapter 17: Read entire text; omit Problems T-y' 
Chapter 18: Omit the material on approximation theory, viz., everything 

after Example D; omit Problems V-W. 
Chapter 19: Omit. 

In the writing of this book no systematic effort has been made to 
attribute results or to assign historical priorities. 

The notation and terminology used throughout the book are in essen
tial agreement with those to be found in contemporary (American) 
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textbooks. In particular, the symbols N, 71., !R, and C will consistently 
represent the systems of positive integers, integers, real numbers, and 
complex numbers, respectively. We have also found it convenient to 
reserve the symbol No for the system of nonnegative integers. 

Finally, there is one basic convention in force throughout the book: All 
vector spaces that appear herein are either real or complex. If nothing is said 
about the scalar field of a vector space under discussion, it is automatically 
assumed to be complex. 

ARLEN BROWN 

CARL PEARCY 
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PART I 

PRELIMINARIES 



Set theory 1 

We shall assume the reader to be familiar with the elements of set theory, 
Nonetheless, we begin with a review of certain set-theoretic fundamentals, 
largely to fix notation and terminology. (Readers wishing to improve their 
acquaintance with set theory, or to pursue in greater depth any of the topics 
touched on beiow, might consult [31] or [34]; another excellent source for 
most topics is [10].) For one thing, at the most elementary levei, we reserve 
certain symbols throughout the book for several important sets. The system 
of positive integers is denoted by N, the system of nonnegative integers by 
No, the system of all integers by Z, the real number system by IR, and the 
complex number system by C. The empty set is denoted by 0, and if X and 
Yare any two sets, the set-theoretic difference {x EX: x ~ Y} is denoted by 
X\ Y and the symmetric difference (X\ Y) u (Y\X) by X V Y. Moreover, 
if f is a mapping of X into Y (notation: f: X ---+ Y) and A c X and 
BeY, then f(A) will denote the set U(x):xEA} and f-l(B) the set 
{xEX:f(x)EB}. 

The reader is also assumed to be familiar with the notion of a partially 
ordered set. In this context our terminology and notation are quite standard. 
Thus if X = (X, :s:) is a partially ordered set, then an element Xo of X is 
maximal [minimal] in X if there exists no element x of X such that x > Xo 
[x < xo]. Likewise, if E is a subset of a partially ordered set X and if Xo is an 
element of X such that x :s: Xo for every x in E, then Xo is an upper bound of E. 
If the set of upper bounds of E in X is nonempty, then E is bounded above in X. 
If, in addition, the set of upper bounds of E possesses a least element, then that 
least upper bound is also called the supremum of E and is denoted by sup E. 
Dually E is bounded below if the set oflower bounds of E in X is nonempty; if, 
in addition, the set oflower bounds of E possesses a greatest element, then that 
greatest lower bound is called the infimum of E (notation: inf E). A subset of a 
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I Set theory 

partially ordered set is bounded if it is bounded both above and below. For 
finite subsets {x 1> •.• , xn} of a partially ordered set X we shall also write 
Xl v .,. V Xn for sup{Xj, ... , xn} and Xl /\ ... /\ Xn for inf{xl, ... , x n}. If X 
has the property that X v y and X /\ Y exist for every pair of elements X and y 
of X, then X is a lattice. If, more generally, every subset of X has both a supre
mum and an infimum, then X is a complete lattice. A mappingf of one partially 
ordered set into another is monotone increasing [decreasing] if X s y implies 
f(x) s fey) [f(x) ~ fey)] and is strictly monotone increasing [decreasing] 
if X < y implies f(x) < fey) [f(x) > fey)]. A mapping f of a set X into a 
partially ordered set Y is bounded [above, below] if its range f(X) is bounded 
[above, below] in Y. 

Example A. The system IR of real numbers is a lattice (in its usual ordering). 
Indeed, we have 

s v t = Hs + t + Is - tl] 

and 

S /\ t = tcs + t - Is - t I] 

for every pair of real numbers sand t. If t is a real number the numbers t v 0 
and - (t /\ 0) are called the positive and negative parts of t, and are denoted 
by t+ and t-, respectively. Note that t+ and t- are nonnegative and satisfy 
the conditions 

for every real number t. 

t+ + t- = Itl, 
t+ - t- = t, 

Example B. Every bounded nonempty subset of IR has a supremum and an 
infimum in IR (this is, in effect, one formulation of the Dedekind postulate; a 
lattice with this property is said to be boundedly complete). It follows that every 
closed interval [a, b] (= {t E IR: as t S b}) is a complete lattice. While IR 
itself is not a complete lattice, it is very useful to imbed IR in a complete lattice. 
To do this we simply introduce two new "numbers," + 00 and - 00, and define 
- 00 < + 00 and also - 00 < t < + 00 for every t in IR. The enlarged set 
IR u { + oo} U { - oo} is called the extended real number system and will 
consistently be denoted by IRq. It is clear that IRq is a simply ordered complete 
lattice, and that if E is a subset of IR that is not bounded above [below] in IR, 
then sup E = + 00 [inf E = - 00] in IRq. We make a partial extension of the 
operation of addition to IRq by defining 

t+(±oo)=(±oo)+t= ±oo 

for every real number t, and 

(±oo) + (±oo) = ±oo. 
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I Set theory 

Subtraction is also extended analogously to IR\ but the symbols 

( ± (0) + (+ 00 ) and ( ± (0) - (± 00 ) 

remain undefined. Similarly we define 

{ 
+ 00, t > 0, 

t( ± (0) = (± oo)t = ~ t = 0, 
+ 00, t < 0, 

for every real number t, and write 

(±oo)(±oo) = +00 and (±oo)(+oo) = -00. 

Likewise, just as for ordinary real numbers, if t is an extended real number 
we write t+ = t v 0, t- = -(t /\ 0), and It I = t+ + t-. When the extended 
real number system is employed, the ordinary real numbers, that is, the 
elements of IR itself, are called finite (real) numbers. 

Example C (The Banach-Knaster-Tarski Lemma). Let X be a complete 
lattice, and let cp be a monotone increasing mapping of X into itself. If we set 
A = {x EX: cp(x) s x}, then it is at once clear that cp(A) c A. Let Xo = inf A, 
and suppose x E A. Then Xo S x and therefore cp(xo) s cp(x) S x. Thus 
cp(xo) is a lower bound of A, whence it follows that cp(xo) s Xo, so Xo is 
itself an element of A. But then cp(xo) E A, so Xo s cp(xo). Thus we see that 
cp(xo) = xo, and we have proved the following result: A monotone increasing 
mapping of a complete lattice into itself possesses a fixed point. 

In this book the axiom of choice is used without apology or explanation, 
and is usually employed in the following form. 

Zorn's lemma. Let X be a partially ordered set, and suppose that every simply 
ordered suhset olX is bounded above. Then X possesses a maximal element. 

If {XY}YEr is any family of sets indexed by an index set r, then the 
(Cartesian or set-theoretic) product of the family {Xl'} will be denoted by 
flYEr Xl" The set flYEr Xl' consists of all indexed families {X)'}YEr where 
xl' E X l' for each "I in r. The projection 7tyo is the mapping defined by 7tyo( {x y }) = 

xYo for each element {xl'} in fl)'E r Xl" 
A nonempty partially ordered set A = (A, s) is a directed set if, for every 

pair of elements ,11 and ,12 of A, there exists an element A of A such that ,11 s A 
and ,12 S llf A is a directed set and f is a mapping of A into a set Y, then 
f is a net in Y. A net f will usually (but not always) be written as an indexed 
family {Y;'};'EA, where YA = f(A), A E A. As will be seen (Chapter 3), nets 
play the role of generalized sequences in many situations. If {x;.} ;'EA is a net 
in a set X, r is another directed set, and N is a function mapping r into A, 
then {xN(yj}YEr is also a net in X.1f N has the property that for every ,10 in A, 
there exists an index Yo in r such that N(y) 2: ,10 for every}' 2: Yo, then the 
net {xN(yj}l'Er is called a sub net of {XJhA' 

5 



I Set theory 

The reader is also assumed to be familiar with the concept of a well-ordered 
set and with the notions of cardinal and ordinal numbers. The cardinal 
number of a set E will be denoted by card E. The smallest infinite cardinal 
number will be denoted by ~o, the cardinal number of the continuum by ~. 
Thus card N = card No = card 7L = ~o, while card IR = card IC = ~. We 
shall also use the well-ordering principle, by which we mean the following 
fact. 

Zermelo's theorem. For any set X there exists a well-ordering of X. Equiv
alently,jor any cardinal number c there exists an ordinal number IY. such that 
c = card IY.. 

Finally, the reader is assumed to be familiar with the elementary arithmetic 
properties of cardinal and ordinal numbers. In particular, we shall use the 
fact that 

~~o = ~~o = 2~o = ~, 

as well as the fact that if IY. is an ordinal number, and if W(IY.) denotes the 
ordinal number segment consisting of all ordinal numbers ~ such that ~ < IY., 

then the ordinal number of the well-ordered set W(IY.) is IY. and card W(IY.) = 
card IY.. 

PROBLEMS 

A. Let X and Y be sets, and suppose given a mapping I of some subset B of X into Y. 
If A is a subset of B, then the restriction of I to A is the mapping I I A of A into 
Y defined by (fIA)(x) = I(x) for every x in A. If I and g are mappings of subsets 
A and B of X, respectively, into Y, and if I is the restriction of g to A, then g is 
an extension of f. (This requires, of course, that A be a subset of B.) We write f c g 
to indicate that f is a restriction of g. Show that this relation is a partial ordering 
on the collection ,$I of all mappings of subsets of X into Y. 

B. A partially ordered set X is said to be simply ordered or linearly ordered if for every 
pair of elements x, y of X it is the case that either x :::; y or y :::; x. Show that a simply 
ordered set is a lattice, and therefore (if nonempty) a directed set. 

C. If r is an index set, X is a partially ordered set, and if f and g are mappings of r 
into X, we write f :::; g to mean that f(}') :::; g(y) for every y in r. Show that this 
relation is a partial ordering on the set of mappings of r into X. More generally, the 
same definition introduces a partial ordering on every Cartesian product II = 
DYEr Xy of partially ordered sets. Show that if each Xy is a [complete] lattice, then 
II is a [complete] lattice. In particular, the set of all [extended] real-valued functions 
on a set r is a [complete] lattice. 

D. Suppose that !i' is a nonempty collection of real-valued functions on a set X 
with the property that I + g, f - g, and f /2 belong to !i' whenever I and g do. 
Show that !i' is a function lattice (i.e., that f v g and I /\ g belong to !i' whenever 
I and g do; cf. Problem C) if and only if I f I belongs to !i' whenever f does. Show, 
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similarly, that 2' is a function lattice if and only if r = f v 0 and r = - (f 1\ 0) 

belong to 2' whenever f does. (The functions f + and f - are the positive and 
negative parts of f, respectively.) 

E. Let X be a fixed set. For each subset A of X, the characteristic function of A is that 
function XA which takes the value 1 at every point of A and the value 0 at every point 
of X\A. If A and B are subsets of X, then XAnB = XA 1\ XB = XAXB and XAuB = 

XA V XB' Furthermore, A c B if and only if XA ::; XB, and XAuB = XA + XB if and 
only if A and B are disjoint. 

F. Let {A,} and {By} be two similarly indexed families of subsets of a set X. Verify 
that both 

are subsets of Uy (Ay \By). Verify, likewise, that 

are subsets of Uy (Ay V By). 

G. Let a and b be real numbers with a ::; b. By a partition of the closed interval [a, b] 
is meant a finite sequence a = to < tl < ... < tn = b. If rf> = {s;}~~o and .2 = 
{t j } i ~ 0 are two partitions of [a, b], then .2 is finer than f1J (notation: ,OJ ::; .2) if every 
number Sj in f1J also appears in.2. Show that the set of all partitions of [a, b] forms 
a directed set under the relation of refinement. Is this directed set a lattice? If 
f1J = {sJ~~ 0 is a partition of [a, b], then the mesh of f1J is by definition the maximum 
maXj~1. .... m (Sj - Sj-1)' Show that the mesh is a monotone decreasing net on 
the directed set of partitions of [a, b]. 

H. Let f be a bounded real-valued function on the interval [a, b], let f1J = {s;}~~ 0 be a 
partition of [a, bJ, let Mj be the supremum of f on the ith subinterval of {!l': Mj = 

sup{f(t): Sj-l ::; t ::; sJ, and set M g> = L~ 1 Mj(Sj - Si-l)' Then {M g>} is a net, 
called the net of upper Darboux sums of the function I Show that the net {M g>} is 
monotone decreasing. Dually, if one employs the infimum mj of f on the ith sub
interval instead of Mj, one obtains the net {mg>} of lower Darboux sums of I Show 
that the net {mg>} is monotone increasing. 

I. Let f be a function, real or complex, defined on the real interval [a, b]. An interesting 
and useful net associated with f and indexed by the directed set of all partitions 
of the interval [a, b] is defined by setting 

v(.OJ) = I 1 f(s;) - f(si-l)l, 
i;;;;;; 1 

where f1J = {s;}i~o. The number v(f1J) is called the variation of f over f1J. Show that 
the net {v(f1J)} is monotone increasing. The function f is said to be of bounded 
variation on [a, b] if the net {v(f1J)} is bounded (above), and in this case the supremum 
sUpg> v(f1J) is called the total variation of f over [a, b], and is denoted by V = 

V(f; a, b). Show that if f and g are both of bounded variation on [a, b] and A. is a 
complex number, then V(f + g; a, b) ::; V(f; a, b) + V(g; a, b) and V(lf; a, b) = 
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IAI V(f; a, b). (A complex-valued function I on [a, b] may be thought of as a kind 
of curve in C Consequently a function I that is of bounded variation on [a, b] is 
also sometimes said to be rectifiable, and the total variation V(f; a, b) is called the 
length of f.) 

J. (i) Let I be a real-valued function on a closed interval [a, b]. We define two nets 
of nonnegative real numbers associated with f and indexed by the directed set 
of partitions of [a, b] by writing 

v+(!?P) = L[f(sJ - I(Si-')]+, V_(!?P) = L [f(sJ - I(Si- dr 
i= 1 i= 1 

(Ex. A), where !?P = {si}i=o. The numbers v+(!?P) and v_(!?P) are called the 
positive and negative variations of lover !?P, respectively. Show that the nets 
{v+(!?P)} and {v _(!?P)} are both monotone increasing, and that I is of bounded 
variation on [a, bJ if and only if both of the nets {v+(!?P)} and {v_(!?P)} are 
bounded (above). Show also that if I is of bounded variation on [a, b], and 
if we define V+(f; a, b) = sup&> v+(!?P) and V-(f; a, b) = sup", v_(!?P), then 

V(f; a, b) = V+(f; a, b) + V-(f; a, b) 

and 

I(b) - I(a) = V+(f; a, b) - V-(f; a, b). 

The numbers V+(f; a, b) and V-(f; a, b) are called the positive and negative 
variations of lover [a, b], respectively. 

(ii) Verify that a complex-valued function I on [a, b] is of bounded variation on 
[a, b] when and only when both Re I and 1m I are, and that, when this is 
the case, we have 

V(Re I; a, b) v V(lm I; a, b) :::; V(f; a, b) :::; V(Re I; a, b) + V (1m I; a, b). 

K. Let I be a function of bounded variation on the interval [a, b], and let c be a number 
such that a:::; c :::; b. Verify that V(f; a, b) = V(f; a, c) + V(f; c, b), and conclude 
that if we define Vet) = V(f; a, t), a :::; t :::; b, then V is a monotone increasing 
function of t. Show similarly that, when I is real-valued, the functions I+(t) = 
V+(f; a, t) and I-(t) = V-(f; a, t) are also monotone increasing. Use Problem J 
to show that 

V = 1+ + 1- and 1=1+ - (f- - I(a». (1) 

The functions 1+ and 1- are known as the positive and negative variations of I, 
respectively. The expression for I in (1) is known as the Jordan decomposition of f. 

L. If X is an arbitrary set then a collection !?P of subsets of X is called a partition of X 
if U [J} = X, i.e., if!?P covers X, and if the sets in!?P are pairwise disjoint. (In the event 
that X is a closed interval of real numbers there are two distinct notions of partition 
that have now been introduced, viz., the one in this problem and the one in Problem 
G. At no time will this slight ambiguity give rise to any misunderstanding.) 
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in E. Show also that the collection of all partitions of X is a directed set with 
respect to the partial ordering :5:. 

(ii) If {EI' ... , En} is a finite collection of subsets of a set X, then the partition of X 
determined by {E I, ... , En} consists of the collection of all sets of the form 

where each Ai is either Ei or X\Ei. (There are 2n such sequences {A b ... , An}, 
but the number of sets in the partition may be smaller, of course.) Equivalently, 
the partition determined by {EI' ... , En} is the coarsest partition of X that 
partitions each ofthe sets Ej, i = 1, ... , n. Show that if s is a function ofthe form 

n 

S = L C(iXE" 
i= 1 

where EI , •.• , En are subsets of X and C(b •.• , IXn are complex numbers (such 
a function is called a simple function on X), then s is constant on each set F 
in the partition of X determined by {EI' ... , En} and the value f3F of s on the 
set F is given by the formula 

M. If r is an arbitrary set, then the collection f1J of all finite subsets of r is a directed 
set under the inclusion ordering. Let {Al'}]'Er be a family of complex numbers 
indexed by r, and for each D in f1J define (JD = LYED Ay • Then {(JDbE!)) is a net 
directed by f1J, called the net of finite sums of the given family {AY}YEr. Show that the 
net {(J D} DE!)) is monotone increasing if the numbers Ay are all nonnegative. 

N. The sets N and No are directed sets in their usual ordering. Hence infinite sequences 
{xn}:= I and {x n}:= 0 of points in a space X are also nets in X. Moreover, every sub
sequence of a sequence is a subnet of that sequence. Give an example of a subnet 
of an infinite sequence that is not a subsequence. 

O. If Al and Az are directed sets, then the Cartesian product Al x Az is also directed 
when ordered, as in Problem C, by defining (Ab Az) :5: (XI' A~) to mean that Al :5: XI 
and Az :5: A~. Show that if {x A) Al EAl is a net indexed by AI, then 

defines a subnet {X(AI. ),2)} indexed by Al x Az . 

P. Let X be a partially ordered set. A subset X' of X is co final in X if for every x in 
X there exists x' in X' such that x :5: x'. We shall say that X is countably determined 
if it possesses a countable cofinal subset. Show that if A is a countably determined 
directed set, then there exists a monotone increasing sequence {An}:= I in A such 
that for any A in A there is a positive integer n such that Ak ;::: A for all k ;::: n. Give 
an example of a directed set that is countably determined and an example of one 
that is not. 

Q. If X and Yare two sets then card X is defined to be less than or equal to card Y 
ifthere exists a one-to-one mapping of X into Y. Use Zorn's lemma to show that if 
X -=I 0 then it is also the case that card X :5: card Y if and only if there exists a 
mapping of Y onto X. (Hint: See Problem A.) 
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R. (Cantor-Bernstein Theorem) Let X and Y be sets, let cp be a one-to-one mapping 
of X into Y, and let t/t be a one-to-one mapping of Y into X. Use Example C to 
show that the mapping 

<Il(A) = X\t/t(Y\cp(A» 

of the power class q: on X into itself possesses a fixed point. (By the power class 
on X we mean the collection of all subsets of X.) Use this fact to show that there 
exists a one-to-one mapping of X onto Y, and conclude that if CI and C2 are any two 
cardinal numbers such that C I :$ C 2 and C 2 :$ C I' then C I = C 2 . 

S. If X is any set and if q: denotes the power class on X, then card q: > card X. (Hint: 
Suppose there exists a mapping cp of X onto Fl. Set A = {x EX: x ¢ cp(x)}, and 
let Xo be an element of X for which cp(xo) = A.) 

T. (i) If c is an infinite cardinal number, then ~oc = c. (Hint: It suffices to show that 
c = ~ob for anyone cardinal number b because of the associativity of multi
plication of cardinal numbers. Let X be a set with card X = c, consider the 
collection of all disjoint collections of countably infinite subsets of X, and employ 
Zorn's lemma.) Conclude that if c and d are any two cardinal numbers, one of 
which at least is infinite, then c + d = c v d, the larger of the two. More gener
ally, the sum of any finite collection of cardinal numbers, one of which at least is 
infinite, coincides with the largest number in the collection. 

(ii) If c is an infinite cardinal number, then, in fact, c2 = c. (Hint: Let X be a set with 
card X = c, and consider the collection Cf; of all those mappings f of a subset of 
X into X x X with the property that, if A is the domain off, then f is a one-to
one mapping of A onto A x A. Use Zorn's lemma to show thai ((} contains a 
maximal element.f~ with respect to extension (Prob. A). Then use (i) to prove that 
if Ao is the domain of .1'0. and if the desired condusion is false, then X\Ao 
contains a subset Al with card Al = card Ao. Finally, use (i) again to show that 
there exists in ((} an extensionfl of/'o to the domain Ao u A 10 a contradiction.) 
Conclude that if c and d are any two cardinal numbers, one of which at least is 
infinite, then cd = c v d. More generally, the product of any finite collection 
of cardinal numbers, one of which at least is infinite, coincides with the largest 
number in the collection. 

U. (Principle of Transfinite Induction) Let p( ) be a predicate that is either true or 
false for every ordinal number in some ordinal number segment W(a). Suppose 
(i) p(O) is true, (ii) if p(~) is true and if ~ + 1 < a, then p( ~ + 1) is true, and (iii) if A. 
is a limit ordinal less than a, and if p(~) is true for every ~ in W(A), then p(A) is true. 
(By definition, a limit ordinal is a nonzero ordinal number that does not possess 
an immediate predecessor, i.e., that cannot be written in the form a + 1.) Show 
that p(~) is true for every ~ in W(a). (Hint: If this were not the case, then the set 
consisting of those ordinal numbers ~ in W(a) such that p(~) is false would possess 
a smallest element.) Show also that an alternate formulation of this principle is 
the following: If Q is a subset of W(a) with the property that W(~) c Q implies 
~ E Q for every ~ in W(a), then Q = W(a). 

v. (Principle of Transfinite Definition) The principle of transfinite induction can also 
be employed to give definitions. Let A. be a limit ordinal, let G be an arbitrary set, 
and let go be a fixed element of G. Suppose that for each ~ # 0 in W(A) there exists 
a rule R~ that associates with each mapping f: W(~) -> G a unique element Rlf) 
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of G. Show that there exists a unique mapping F : W(A) ...... G such that F(O) = go and 
such that F(¢) = R~(FI W(m for each ¢, 0 < ¢ < A.. (Hint: Consider the subset 
of W(A) consisting of 0 and all of those ordinal numbers '1, 0 < '1 < ,1., with the 
property that there exists a unique mapping F,,: W('1) ...... G such that F~(O) = go 
and such that F~(¢) = R~(F~I W(¢» for all nonzero ¢ in W('1). We speak here only 
of defining a function, but since practically everything in mathematics may be 
construed to be a function in one way or another, this formulation of the principle 
is adequate.) 

W. If c is an infinite cardinal number, then there is a first, or smallest, ordinal number rx 
such that card rx = c. This ordinal number is called the initial number of c. Thus ro, 
the smallest infinite ordinal number, is the initial number of ~o. The first non
countable ordinal number, i.e., the initial number of the smallest cardinal number 
exceeding ~o, is customarily denoted by Q. Thus the initial segment W(Q) coincides 
with the set of all countable ordinal numbers. Show that every countable subset 
of W(Q) is bounded in W(Q). In other words, show that if M is any countable set of 
ordinal numbers such that card rx ::; ~o for every rx in M, then there exists an ordinal 
number Ii such that card Ii ::; ~o and such that rx ::; fJ for every rx in M. (Hint: 
If M were cofinal in W(Q) (Prob. P), we would have W(Q) = U"EM W(rx).) Thus 
if {¢n};;'= 1 is any infinite sequence of ordinal numbers in W(Q), then supn ¢n < Q. 

Show in the converse direction that if ,1. is an arbitrary limit ordinal in W(Q), then 
there exists an increasing sequence {¢.}::'= 1 such that ,1. = suP. ¢n' Show finally 
that if z(¢) is an arbitrary monotone increasing integer-valued function defined 
on W(Q), then there exists an ordinal number rxo in W(Q) such that z(¢) is constant 
on the tail W(Q)\ W(rxo). 
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We shall assume that the reader is familiar with the rudiments of linear 
algebra. In particular, he should be acquainted with the notion of a linear 
space, or vector space, and the elementary concepts associated with linear 
spaces. In this chapter we review these ideas, partially to fix terminology 
and notation. (An exception is our treatment of algebraic tensor products 
at the end of the chapter; we do not assume any prior knowledge of this subject 
on the part of the reader.) Readers wishing to improve their acquaintance 
with any part of linear algebra, or to pursue in greater depth any of the topics 
touched on below, might consult [38]; another excellent source is [32]. 

To begin with, all of the linear spaces in this book are either real or complex 
(that is, the field of scalars is either IR or q. Furthermore, the following 
convention will be in force throughout the book: If nothing is said about the 
scalar field of a vector space under discussion, the vector space is automatically 
assumed to be complex. 

If tt is a (real or complex) linear space, and if M 1 and M 2 are arbitrary 
subsets of tt, we shall write M 1 + M 2 for the set of sums 

{Xl + X2: Xi E M;, i = 1,2}. 

More generally, if {M)'L'Er is an arbitrary indexed family of subsets of tt, 
we write LYEr My for the set of all sums of the form LYEr xl' where xl' = 0 
except for some finite set of indices, and xl' E My whenever xl' i= O. In partic
ular, if {Ml, ... , Mn} is a finite sequence of subsets of tt, then Ml + ... + Mn 
denotes the set of sums Xl + '" + Xn , where Xi E M;, i = 1, ... , n. Similarly, 
if A denotes a set of scalars and M a set of vectors in tt, we shall write AM 
for the set {O(x: 0( E A, x EM}. 

Let tt be a real or complex linear space. An element x of tt is a linear 
combination of vectors Y 1, ... , Y n in tt if there exist scalars 0( 1, ... , O(n such that 
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x = IXlYl + ... + IXnYn' A nonempty subset A of 8 is a linear manifold 
in 8 (or a linear submanifold of 8) if, for every pair of vectors x, Y in A and 
every pair of scalars IX, p, the linear combination IXX + py belongs to oit. If oit 
is a linear submanifold of 8 then it is easily seen that every linear combination 
of vectors in oit belongs to jt. Among the linear submanifolds of 8 are the 
space 8 itself and the trivial submanifold (0) consisting of the single vector O. 
If A and JV are linear manifolds in 8, then the sum A + JV is also a linear 
manifold in 8; more generally, if {oit1'}YEr is an indexed family of linear 
manifolds in 8, then Ll' A). is a linear manifold in 8. For any set M of vectors 
in 8 there exists a smallest linear manifold 2 in 8 that contains M. If M = 0, 
then 2 = (0); otherwise 2 consists of all linear combinations of elements of 
M. We say that;tJ is generated (algebraically) by M, or that M is an (algebraic) 
system of generators for 2. 

Analogously, an element x of 8 is a convex combination of vectors 
Yb ••• , Yn in 8 if there exist nonnegative real numbers Sb ••. , Sn such that 
Sl + ... + Sn = 1 and such that x = SlYl + ... + SnYn' A subset C of 8 is 
convex if, for every pair of vectors x and Y in C and every pair of nonnegative 
real numbers sand t such that S + t = 1, the convex combination sx + ty 
belongs to C. It is not difficult to show that if C is convex then every convex 
combination of vectors in C belongs to C. (A complex linear space becomes 
a real linear space if one simply declines to multiply by any but real scalars. 
Clearly a subset C of a complex linear space 8 is convex if and only if C 
is convex in 8 when 8 is regarded as a real linear space.) For any set M of 
vectors in 8 there exists a smallest convex set C in 8 that contains M. This 
convex set consists of all convex combinations of elements of M, and is called 
the convex hull of M. The convex hull a = a(x, y) of a doubleton {x, y} 
is called the line segment joining x and y, and x and yare said to be the 
endpoints of a. The line segment a(x, y) clearly consists of the set of vectors 
{sx + (1 - s)y: 0 ~ s ~ 1}. According to the above definition, a set C is 
convex if and only if C contains the line segment joining any two vectors 
in C. By a line in 8 is meant any set of the form L = {x + sy: s E Ih£}, where 
x, y E 8 and Y =1= O. (The set L is known, more precisely, as the line through x 
along y.) If Xl and X2 are distinct vectors in iff then there exists a unique line 
joining Xl and X2 (that is, containing both Xl and X2), and this line coincides 
with the set {sx 1 + (1 - S)X2 :SE Ih£}. Thus the line joining X I and X2 contains 
the line segment joining them. 

A non empty finite set of vectors J = {Xb ••. , xn} in a (real or complex) 
vector space 8 is linearly independent if the only way in which 0 can 
be expressed as a linear combination 0 = IXIXI + ... + IXnXn is with 
IXI = ... = CX n = O. An arbitrary subset J of 8 is linearly independent if 
every nonempty finite subset of J is linearly independent. A linearly inde
pendent set of vectors in 8 that is at the same time a system of generators 
for 8 is a Hamel basis for 8. Every (real or complex) vector space has a Hamel 
basis (Prob. A). If {XJYEr is an indexed Hamel basis for a (real or complex) 
linear space 8, then for each vector y in 8 there exists a uniquely determined 
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indexed family of scalars {Al'}l'Er such that Al, = 0 for all but a finite number 
of indices and such that y = Ll'Er Al'X)'. The scalars Al' are called the co
ordinates of y with respect to the basis {x y}. If X and Yare any two Hamel 
bases for !C, then card X = card Y (Prob. B). The common cardinal number 
of all the Hamel bases for!C is the Hamel dimension of !C. Linear spaces, both 
real and complex, that have finite Hamel dimension are finite dimensional, 
and those that do not have finite Hamel dimension are infinite dimensional. 
A Hamel basis for a finite dimensional space !C is simply called a basis for $, 
and the Hamel dimension of!C is known as the dimension of!C and is denoted 
by dim !C. The vector space (0) consisting of the vector 0 alone is finite 
dimensional and has dimension O. 

Example A. Let X be an arbitrary set, and let :F denote the linear space of 
all those mappings f of X into IC with the property that f vanishes everywhere 
on the complement of some finite subset of X. (The subset of X on which 
f is nonzero may vary with f; addition, and multiplication by scalars, are 
defined pointwise on X.) If for each x in X we denote by ex the element of:F 
such that elx) = I while ex(Y) = 0 for all y # x, then {eJxEx is a Hamel 
basis for :F. If, as is customary, we simply identify each x in X with the 
associated vector ex, then X itself becomes a Hamel basis for:F. In this linear 
space, known as the free linear space generated by X, the vectors are formal 
linear combinations 

of elements of X. 

n 

L!Y.iXi 
i= 1 

If {!Cl'}l'Er is an indexed family of linear spaces, all over the same scalar 
field (either IC or IR), then the set of all indexed families {Xl'})'Er, where 
Xl' E $), for each index yin r, forms a linear space $ under the operations 
{xl'} + {yl'} = {xl' + y)'} and ct{x),} = {ctxJ. This linear space is called the 
full algebraic direct sum of the family {!C)'}, and will be denoted by Ll'Er + $l" 

If all of the spaces $ l' coincide with a single vector space :F, then the full 
algebraic direct sum cff is called the direct sum of card r copies of:F indexed 
by r. If the index set r is the finite set {I, ... , n} we write the elements of!C 
in the form (x b ... ,xn) and write !C = !C 1 + ... + $ n' In this case !C is 
called simply the (linear space) direct sum of the spaces $i' The Hamel 
dimension of the full algebraic direct sum Ll' + !C y is Ll' dl' , where dl' 
denotes the Hamel dimension of !C y , y E r (Prob. F). In particular, if 
!C 1, ... , Iff n are finite dimensional, and if!C = !C 1 + ... + Iff n' then dim !C = 

dim !C 1 + . . . + dim !C n • 

Example B. The familiar linear space [real linear space] of all complex [real] 
n-tuples may be viewed as the direct sum of n copies of IC[IRJ Henceforth 
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this space will be denoted by ICn[rRn]. The n-tuples ei = (6 i1 , ... , 6in ), i = 

1, ... , n (where by definition 6ij is the Kronecker delta 

6 .. = {O, i =1= j, 
I) 1, i = j, 

for all integers i,j), constitute a basis for ICn[lRn] sometimes called the natural 
basis. Clearly ICn[lRn] is n-dimensional. 

Example C. For any pair of positive integers m and n we shall denote by 
ICm,n[lRm,n] the collection of all complex [real] m x n matrices. We assume 
the reader to be familiar with the rudiments of matrix theory; in particular 
we take it as known that ICm,n[lRm,n] is a vector space [real vector space] 
with respect to the usual linear operations. If we think of each m x n matrix 
as composed of its n columns, then it is natural to identify ICm, n with the direct 
sum of n copies of ICm; if we think of each m x n matrix as composed of its 
m rows, then it is natural to identify ICm,n with the direct sum of m copies 
of ICn. The linear space ICm, n[lRm, n] also possesses a natural basis, namely, 
the system of matrices {Ek,l};= 1 1= 1, where Ek,l = (107/) and 107/ = 6ik 6j1 for 
i, k = 1, ... , m andj, I = 1, ... , n. Clearly ICm, n[lRm, nJ is mn-dimensional. 

Example D. The direct sum of ~o copies of IC indexed by No is the vector 
space of all complex sequences {an}::'= o. In the sequel this space will be 
denoted by (d). The subset consisting of all the bounded sequences in (d) 
is a linear manifold in (d) which we shall denote by (m). Similarly the 
collections of all convergent sequences and all null sequences (sequences 
converging to zero) form linear submanifolds of (d) (and of (m». We denote 
these spaces by (c) and (co), respectively. 

Example E. The collection of all complex-valued functions [real-valued 
functions] on an arbitrary set X is a complex linear space [real linear space] 
with respect to the pointwise linear operations 

(f + g)(x) = f(x) + g(x) and (af)(x) = af(x), x E X, a E IC[IR]. 

(This space can also be viewed as the full algebraic direct sum of card X 
copies of IC[IR] indexed by X) Whenever (as in Example A or in the following 
example) we refer to a "linear space [real linear space] of functions" on a 
set X, it is always some linear submanifold of this space that is meant. 

Example F. Suppose given a (real or complex) linear space Iff. A scalar
valued function f defined on Iff is a linear functional on Iff if f(ax + [3y) = 

af(x) + [3f(y) for all vectors x, y in Iff and all scalars a, [3. It is a triviality to 
verify that a linear combination of linear functionals on Iff is again a linear 
functional on Iff, and hence that the collection of all linear functionals on Iff 
forms a linear sub manifold of the space of all scalar-valued functions on Iff. 
The linear space of all linear functionals on Iff (which is real or complex 
according as Iff is real or complex) will be called the full algebraic dual of Iff. 
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If g is a (real or complex) linear space, and if oiIf is a linear submanifold of 
g, then the relation '" on g defined by setting x '" y if x is congruent to y 
modulo oiIf, that is, if x - y E oif, is an equivalence relation on g. The equiv
alence class [x] = x + A of a vector x will be called the coset of x modulo 
A. The set of all cosets [x] modulo .if is turned into a new linear space by 
the definitions [x] + [y] = [x + y] and a[x] = [ax]. This space, denoted by 
g/j/f, is the quotient space of g modulo A, and the transformation n of g onto 
g/oif defined by n(x) = [x] is the natural projection of g onto g/A. 

If g is a real vector space, the complexification g + of g is the complex 
vector space consisting of the Cartesian product of g with itself with addition 
defined by (Xl> yd + (X2, Y2) = (Xl + X2, Yl + Yl) and multiplication by 
a complex scalar a = s + it defined by a(x, y) = (sx - ty, tx + sy). Thus C 
is the complexification of IR. If the mapping x --+ (x, 0) is used to identify g 
with a real linear manifold in g+ regarded as a real space, then, since i(x, 0) = 
(0, x), every vector in g+ has a unique expression of the form x + iy, where x 
and y belong to g. (Recall that a complex linear space may always be regarded 
as a real space simply by refusing to multiply by any but real scalars') 

Example G. If X is a Hamel basis for a real linear space g, and if, as above, 
we identify g with the real submanifold g x (0) of the complexification g+, 
then X is also a basis for g+. Thus the Hamel dimension of the complex 
space g+ is the same as that of the real space g. On the other hand, if g+ 
is regarded as a real space, then the union of the two sets 

x = {(x, 0): x E X} and X' = {CO, x): x E X} 

is a Hamel basis for g+. Thus, in particular, if the dimension of g is n, then 
the dimension of g+ regarded as a real space is 2n. More generally, if g is 
any (complex) linear space of dimension n, then g has dimension 2n when 
regarded as a real space. 

Example H. If ~ is a complex linear space of complex-valued functions 
on a set X and if ~ IH denotes the set of all real functions in ~, then it is clear 
that ~ ~ is a real linear space, and that the complexification (~lHt may be 
identified with the linear submanifold of ~ consisting of functions of the 
form f + ig, f, g E ~~. This submanifold, however, does not coincide with 
~, in general. Indeed it is readily seen that a necessary and sufficient condition 
for this to be so is that ~ contain the complex conjugate J of each function 
f in ~, a condition that is customarily expressed by saying that ~ is self
conjugate. Thus we may, and frequently shall, identify a self-conjugate 
linear space of functions ~ with the complexification of the real linear space 
of real-valued functions in ~. 

If ~ is a self-conjugate linear space of complex-valued functions on a set X, 
and if <p is a linear functional defined on ~, then <p is said to be self-conjugate 
if <pC!) = <p(f) for every function f in ~. We observe that <p is self-conjugate if 
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and only if the restriction cp I g; ~ is a real linear functional on g; ~ or, equiv
alently, if and only if cp(Re f) = Re cpU) [cp(lm f) = 1m cp(f)] for every 
fin g;. 

Example I. If a and b are real numbers, a < b, we shall denote by ~«a, b» = 
~(O)«a, b» the collection of all continuous complex-valued functions on the 
open interval (a, b) ( = {t E IR : a < t < b}). Clearly ~«a, b» is a linear space. 
Similarly one sees, using the rules of elementary calculus, that the collection 
~(n)«a, b» of n times continuously differentiable functions on (a, b), i.e., 
the collection of those functions f on (a, b) with the property that the nth 
derivative f(n) exists and is continuous on (a, b), is a linear space. If 0 ~ m ~ n, 
then ~(n)«a, b» is a linear submanifold o(~(m)«a, b». Likewise, if~~)«a, b» 
denotes the collection of real-valued functions in ~(n)«a, b», then ~~)«a, b» 
is a real vector space, and ~(n)«a, b» is the complexification of ~~)«a, b». 
If &>[&>~] denotes the space of polynomial functions [real polynomial 
functions] on (a, b), then &>[&>~] is a linear submanifold of ~(n)«a, b» 
[~~)«a, b»] for every n. 

Example J. To define analogs of the spaces of Example I for functions on a 
closed interval, special arrangements must be made regarding the end
points of the interval. We shall say that a (complex-valued) function f on a 
closed interval [a, b] (a < b) is continuously differentiable on that interval if 
(i) f is differentiable on the open interval (a, b), (ii) the one-sided derivatives 
f'+(a) andf'_(b) exist, and (iii) the function 

{
f'+(a), t = a, 

f'(t) = f:(t), a ~ t < b, 
f _(b), t - b, 

is continuous on [a, b]. We then declare ~([a, b]) = ~(O)([a, b]) to be the 
linear space of all continuous functions on [a, b], and define ~(n)([a, b]) 
inductively for positive integers n by setting ~(n)([a, b]) equal to the collection 
of all those continuously differentiable functions f with the property that 
f' belongs to ~(n-l)([a, b ]). Here again it is clear that each ~(n)([a, b]) is a 
vector space, that ~(n)([a, b]) is a linear submanifold of ~(m)([a, b]) when 
and only when m ~ n, and that, if ~~)([ a, b]) denotes the set of real-valued 
functions in ~(n)([a, b ]), then ~~)([a, b]) is a real vector space and ~(n)([a, b]) 
is the complexification of ~~)([a, b ]). 

If cK and g; are linear spaces over the same scalar field, and if T is a mapping 
defined on CJ and taking its values in g;, then T is a linear transformation of cK 
into g; provided T(r:J.x + f3y) = r:J.Tx + f3Ty for all x, y in cK and all scalars 
r:J., {J. (When CJ = g; we refer to T as a linear transformation on cK. A linear 
transformation of a linear space cK into its scalar field is a linear functional 
on cK (Ex. F).) Whether or not T maps cK onto Ji', the range of T is a linear 
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submanifold of ff which we denote consistently by ~(T). Likewise, the kernel 
or null space of T, that is, the set of vectors mapped into 0 by T, is a linear 
manifold in iff that will be denoted throughout the book by %(T). 

Example K. For any vector space iff and any fixed scalar a the mapping 
x --t ax, x E iff, is a linear transformation on iff which we consistently denote 
by a or, when necessary in order to avoid confusion, by as. In particular, 
the identity mapping 1 and zero mapping 0 are linear transformations. 

Example L. Let iff be a linear space, and let .-'I be a linear submanifold of iff. 
Then the natural projection 7r of iff onto the quotient space iff 1.-'1 is a linear 
transformation. Moreover, if T is any linear transformation of iff into a linear 
space ff, then there exists a linear transformation f: iff IJt --t ff such that 
T = to 7r if and only if .-'I c %(T). (Briefly: linear transformations T on iff 
with T(Jt) = (0) can be factored through iff I.~.) 

Example M.1f iff is a real linear space and T is a linear transformation of iff into 
a complex linear space ff (regarded as a real space), then 

T+(x + iy) = Tx + iTy 

defines a linear transformation of the complexification iff+ into ff. The 
linear transformation T + is called the complexification of T. 

If iff and ff are linear spaces over the same scalar field, and if T is a one-to
one linear transformation of tff into ff (that is, if %(T) = (0», then the set
theoretic inverse of T is also a linear transformation (of ~(T) onto iff). 
If in addition ~(T) = ff, then T is a linear space isomorphism of iff onto ff. 
Two linear spaces are isomorphic if there exists a linear space isomorphism 
of one onto the other. 

Example N. If iff is an n-dimensional linear space [real linear space] and 
X = {Xl' ... , xn} is an ordered basis for iff, then the mapping 

n 

L aixi ~ (aI' ... , an) 
i= I 

that assigns to each vector in iff its n-tuple of coordinates with respect to X 
is a linear space isomorphism of iff onto Cn[/RIi ]. If Y = {Yb ... , Yn} is some 
other ordered basis for iff then there exist unique scalars 7rij such that 

n 

Xj = L 7rijYi, j = 1, ... , n. 
i= I 

The n x n matrix P = (7rij) is the change of basis matrix (for changing from 
the basis Y to the basis X). If r( is the isomorphism of iff onto Cn[/R"] that 
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assigns to each vector in Iff its n-tuple of coordinates with respect to Y, 
and if (a b ... , ctn) denotes an arbitrary element of e[lRn], then 

Thus ,,(x) = (131, ... , f3n) can be computed in terms of 1J(x) = (a 1, ... , an) 
by means of the formula 

n 

f3i = L 7rija j , i = 1, ... , n. 
j= 1 

If Iff and ff' are linear spaces over the same scalar field, and if Sand Tare 
two linear transformations of Iff into ff', then the sum S + T is defined by 
pointwise addition: (S + T)x = Sx + Tx for all x in Iff. Likewise, for a 
scalar ct, the mapping ctS is defined by (ctS)x = ct(Sx) for all x in Iff. Clearly 
S + T and ctS are also linear transformations of Iff into ff'. Moreover, 
these definitions turn the set of all linear transformations of Iff into ff' into 
a new linear space-the full space of linear traniformations of Iff into ff'. The 
zero element of this linear space is the linear transformation 0 defined by 
Ox = 0 for all x in {f. (The full space of linear transformations of {f into its 
scalar field coincides with the full algebraic dual of {f (Ex. F).) 

Suppose now that Iff, ff', and r§ are all vector spaces over the same scalar 
field. Let T be a linear transformation of Iff into ff' and let S be a linear 
transformation of ff' into r§. Then the composition SoT is a linear transfor
mation of Iff into r§ called the product of Sand T and denoted by ST. The 
multiplication of linear transformations satisfies the following relations 
whenever the various products are defined: 

(i) R(ST) = (RS)T, 

(ii) R(S + T) = RS + RT; (R + S)T = RT + ST, 

(iii) ct(ST) = (ctS)T = S(ctT). 

(1) 

In particular, if R, S, and T denote linear transformations of a linear space Iff 
into itself, then all of these products are defined, and the relations (1) hold 
without exception. 

Conditions (1) are the main ingredients in the definition of the concept ofa 
linear algebra, a notion that is of considerable importance in functional 
analysis. 

Definition. A vector space [real vector space] s1 on which is given a product 
satisfying the conditions 

(i) x(yz) = (xy)z, 

(ii) x(y + z) = xy + xz; (x + y)z = xz + yz, 
(iii) ct(xy) = (ctx)y = x(cty), 
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for all elements x, y, z of d and all scalars lI. is an (associative, linear) 
algebra [real algebra]. If x and yare elements of d such that xy = yx, 
then x and y commute. The collection of all elements of d that commute 
with every element of d is the center of d, and if the center of d coincides 
with d, then d is a commutative or abelian algebra. If d possesses an 
element 1 such that Ix = xl = x for every x in d, then 1 is the identity 
or unit of d (such an element is obviously unique if it exists, and must 
belong to the center of d), and d is said to be a unital algebra [real 
algebra] or an algebra with identity or unit. If d is a unital algebra [real 
algebra] with identity I, and if A is a scalar, we shall simply write A for Al 
when no confusion can result. Likewise, if x is an element of d, then an 
element y of d is the inverse of x in d if xy = yx = 1. (The inverse of an 
element x is obviously unique if it exists, and is denoted by X-I.) An 
element of d that possesses an inverse in d is said to be invertible (in d). 
If x is an invertible element of d, and if x and y commute, then it is 
readily seen that X-I and y also commute (x-l(xY)X- 1 = yx- l while 
x-I(YX)X- 1 = x-ly). Thus the inverse X-I not only commutes with x, 
it also commutes with every element of d that commutes with x. Such 
an element of d, that is, one that commutes with every element of d 
that commutes with x, is said to doubly commute with x. 

Thus the full space of linear transformations on a linear space [real 
linear space] is a unital algebra [real algebra] in which the transformation 1 
is the identity element. Another important example of a unital algebra 
[real algebra] is the system en. n[lRn. n] of all complex [real] n x n matrices. 
(The product in this algebra is the customary row by column multiplication; 
see Problem H.) The identity in Cn.n[lRn.n] is the identity matrix 1 = (D i), 

where, as usual, Dij denotes the Kronecker delta (Ex. B). If A is a scalar the 
scalar matrix Al will be denoted by ,t We recall that if A is an element of the 
algebra Cn. n and if there exists a matrix B such that either AB = 1 or BA = 1, 
then A is invertible and B = A-I (see Problems G and M). 

On the algebra Cn,n of n x n matrices there are two important complex
valued functions. The first of these is the trace of an n x n matrix A = (lI.i), 
defined as 

n 

tr A = l>ii; 
i= 1 

the second is the determinant, defined as 

det A = L (sgn CT)lI.IO'(1) ••• lI.nO'(n)' 
0' 

where the sum is taken over all permutations (J of the set {I, ... , n}. The 
main properties of the trace that we shall need are the readily verified facts 
that tr is linear and that tr(AB) = tr(BA). The central fact concerning 
determinants is that A --+ det A is a homomorphism (as defined in Problem L) 
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of the algebra en, n onto e with the property that det A =f. 0 when and only 
when A is invertible in en, n' 

If A = (ai}) is a matrix in em•n (for arbitrary m, n), then the transpose of A 
(denoted by At) is the n x m matrix (~ij) defined by ~ij = aji , i = 1, ... , n; 
j = 1, ... , m. Furthermore the adjoint of A (denoted by A *) is the n x m 
matrix (Yij) defined by Yij = fiji> i = 1, ... , n; j = 1, ... , m. (If A is a real 
matrix, then At = A*.) A real n x n matrix A with the property that A = At 
is symmetric; a complex n x n matrix A with the property that A = A * is 
Hermitian (or self-adjoint). A complex n x n matrix N with the property that 
N N* = N* N is said to be normal; such a matrix U with the additional 
property that UU* = U*U = 1 is unitary. 

Suppose now that g and /F are finite-dimensional linear spaces of 
dimension nand m, respectively, and let X = {x 1, ... , xn} and Y = {y 1> ... , Y m} 
be ordered bases in g and /F, respectively. If T is a linear transformation of g 
into /F, then the equations 

m 

TXj = ~>jjYi' j = 1, ... , n, (2) 
i= 1 

define an m x n matrix 

called the matrix of T with respect to X and Y. (When g = /F and X = Y, 
this matrix is called the matrix of T with respect to X.) The correspondence 
T +-+ (ai) between linear transformations of g into /F and m x n complex 
matrices established by (2) is a linear space isomorphism between the full 
space of linear transformations of If into g; and the linear space em. n of all 
complex m x n matrices. Moreover, when If = /F and X = Y, the corre
spondence T +-+ (ai) is an algebra isomorphism as well; see Problems 
Land M. 

Let A be the matrix of a linear transformation T: If ---t /F with respect 
to the ordered bases X and Y, and suppose that X' and Y' are new ordered 
bases in the spaces g and /F, respectively. If B denotes the matrix of T with 
respect to X' and Y', then straightforward calculation shows that 

B = QAP-l 

where P and Q denote the change of basis matrices for changing from the 
bases X' and Y' to the bases X and Y, respectively. (See Example N; we here 
employ the obvious fact that an n x n matrix is invertible if and only if it can 
be viewed as a change of basis matrix.) In particular, if A is the matrix of a 
linear transformation Ton g with respect to X, and if B is the matrix of Twith 
respect to X', then 

(3) 
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Two n x n matrices A and B that are related as in (3) for some (invertible) 
n x n matrix P are said to be similar. From what has been said it is clear 
that two n x n matrices are similar if and only if they can be taken to be the 
matrices of some one linear transformation with respect to suitably chosen 
ordered bases for an n-dimensional vector space. It is also clear that similarity 
is an equivalence relation on (n, n' 

Thus far we have considered only functions of one variable, but we shall 
also be interested in certain kinds of functions of two or more variables. 
Suppose that fff, $', and rg are (real or complex) linear spaces over the same 
scalar field, and let cp = cp(x, y) be a mapping defined on the direct sum 
fff + $' and taking values in rg.lffor each fixed Yo in $' the function cp(x, Yo) 
is a linear transformation of fff into rg, and, for each fixed Xo in fff, cp(xo, y) is a 
linear transformation of $' into rg, then cp is a bilinear transformation of 
fff + $' into rg. If the space rg is the scalar field, then cp is a bilinear functional 
on fff + $'. If, in addition, fff = $', then cp is a bilinear functional on fff. 
The set of all bilinear transformations of fff + $' into rg is a linear space with 
linear operations defined pointwise. In particular, the set of all bilinear 
functionals on fff is a linear space. 

When fff and $' are complex, there is a notion closely related to that of a 
bilinear functional on fff + $' that we shall have occasion to use. A mapping 
1/1 : fff + $' --+ ( is said to be a sesquilinear functional on fff + $' if I/I(x, Yo) 
is a linear functional on fff for each Yo in $' and I!i(xo, y) is a linear functional 
on $' for each Xo in fff. (Another way to state the second of these conditions 
is to say that I/I(xo, O(YI + {3Yl) is equal to fil/l(xo, yd + PI/I(xo, Yl) for all 
complex numbers 0(, f3 and all vectors Yl' Y2 in :F; such a functional is said 
to be conjugate linear.) When fff = :F, 1/1 is called a sesquilinear functional on 
fff. A sesquilinear functional 1/1 on fff is said to be symmetric ifl/l(x, y) = ljJ(y, x) 
for all x, Y in fff. 

We close this chapter with an account of tensor products of linear spaces. 
No prior knowledge of this topic is assumed on the part of the reader. If fff 
and :F are any two linear spaces over the same scalar field, we may form the 
free linear space f7 generated by the set-theoretic product fff x $', that is, 
the space of all formal linear combinations 2::7= 1 A;(Xj, yJ of pairs in fff x $' 
(see Example A). Let f!Il denote the linear manifold in f7 generated by all 
differences of the form 

(Xt + Xl' y) - (Xt, y) - (X2' y) and (x. Yt + Y2) - (x, Yt) - (x, Yl) 

together with all differences of the form 

(AX, y) - A(X, y) and (x, AY) - A(X, y) 

where x, Xl' and Xl denote arbitrary vectors in C, y, Yl' and Y2 arbitrary 
vectors in .<17, and A an arbitrary scalar. Our interest focuses on the quotient 
space f7 /f!Il, which is called the algebraic tensor product of fff and :F, and is 
denoted by fff x $'. (If fff and :F are complex [real] vector spaces, then 
ex$' is a complex [real] vector space.) If X belongs to fff and Y belongs to 
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ff, then the pair (x, y), regarded as an element of .07, projects onto an element 
of g x ff which we denote by x Q9 y. Elements of g x ff of the form x Q9 y 
are said to be decomposable. The mapping of g + ff into g x ff that 
carries (x, y) to x Q9 y will be denoted by p. From the definition of f1A we 
see that the following relations hold for all vectors x, x I and X 2 in g, all 
vectors Y, YI, and Y2 in ff, and all scalars A: 

(i) 

(ii) 

(iii) 

(Xl + X2) Q9 Y = Xl Q9 Y + x2 Q9 Y, 

x Q9 (YI + Y2) = x Q9 YI + x Q9 Y2, and 

(Ax) Q9 Y = A(x Q9 y) = x Q9 (Ay). 

(4) 

According to the definition, the decomposable elements of g x ff form 
an algebraic system of generators for g x ff. By condition (iii) of (4) we 
see that, in fact, the general element of g x .'JF can be written (in various ways) 
as a sum of decomposables: t = I?= I Xj Q9 Yj. The central facts about 
algebraic tensor products are readily established. 

Proposition 2.1. The mapping p of g + ff into g x ff is bilinear, and the 
range of p generates g x ff. Moreover, if q> is any bilinear transformation 
of g + ff into a linear space '1/, then there exists a unique linear transfor
mation ijJ of g X ff into '1/ such that q> = ijJ 0 p (briefly: bilinear mappings 
on g + ff can be factored through g x .'F). 

PROOF. It is clear from (4) and the definition that p is a bilinear transforma
tion, and it has just been observed that every element of g x ff can be 
written (not uniquely) as a finite sum of decomposable elements. Thus the 
range of p generates g x ff algebraically, so ijJ is unique if it exists. With 
respect to existence we observe that any mapping of g + ff into a linear 
space '1/ possesses a unique linear extension to .07 (Prob. E). Since q> is 
bilinear, this extension annihilates the linear submanifold fJIl, and con
sequently can be factored through g x ff (Example L). 0 

Definition. Suppose ~: gj ~ ffj is a linear transformation, i = 1,2. Then the 
mapping (Xl> X2) ~ TIXI Q9 T2X2, Xj E gil i = 1,2, is a bilinear mapping 
of g I + g 2 into ff I X ff 2' Consequently, according to the foregoing 
result, there exists a unique linear transformation T: g I X g 2 ~ '~l X ff 2 

satisfying the condition T(XI Q9 X2) = Tix i Q9 T2X2 for all Xj in gj, 
i = 1.2. We shall call T the algebraic tensor product o{ TI and T2 and 
write T = TI X T2 . 

Proposition 2.1 has an important and useful counterpart that provides 
a categorical characterization of the algebraic tensor product. 

Proposition 2.2. Let g and .'F be complex [real] linear spaces and suppose 
given a pair ('1/, 0), where '1/ is a complex [real] linear space and (J is a 
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bilinear transformation of C + :F into ~. Suppose also that the following 
conditions are satisfied: 

(i) The range of (J generates ~ algebraically, 
(ii) If <P is any bilinear transformation of C + :F into a complex [real] 

linear space yt, then there exists a linear transformation T: ~ --+ yt 
such that <P = To (J. 

Then there exists a linear isomorphism <I> of ~ onto C x :F such that 
<I> 0 (J = p. (The isomorphism <I> is unique by virtue of (i) and coincides, 
in fact, with the result of applying (ii) to p.) 

PROOF. We simply define <I> to be the result of factoring P through ~ as in 
(ii), and denote by 'I' the result of factoring (J through C x :F. It is clear that 
<I> and 'I' are mutually inverse mappings on the ranges of (J and p, respectively, 
and since the range of (J generates ~ and the range of p generates C x :F, 
it follows that <I> and 'I' are, in fact, mutually inverse linear isomorphisms 
between ~ and C x :F. D 

Example O. Let C and:F be linear spaces, and let 2 and A be linear mani
folds in C and :F, respectively. It is obvious that if we set Po = pi (2 + jl) 
where p is as above, then Po is a bilinear mapping of 2 + j{ into C x :F. 
Moreover, if we denote by ~ the linear submanifold of C x :F generated by 
p(2 + ,-It), then the pair (~, Po) satisfies the conditions of Proposition 2.2. 
Indeed, if <Po is a bilinear mapping of 2 + ,-It into a linear space yt, let 
<p denote a bilinear extension of <Po to C + :F (Prob. Q). If ifJ denotes the 
result of factoring <p through C x :F, and if we set T = ifJ I ~, then T is a linear 
transformation of'!J into yt and we have <Po = To Po. Hence the result 1 of 
factoring Po through 2 x .-It is a linear isomorphism of 2 x .A onto the 
linear manifold ~ in C x .'F. It is readily verified that if x and yare vectors 
in 2 and .-It, respectively, and if (x ® y)o denotes (for the moment) the 
corresponding element of 2 x .-It, then I((X ® y)o) = x ® y in C x :F. 
Throughout this book, whenever tensor products are under discussion, we shall 
use the canonical isomorphism 1 to identify 2 x .-It with the linear manifold 
'!J = 1(2 x A) in C x :F. 

Let C and :F be linear spaces over the same scalar field, and let t = 

I~= 1 Xi ® Yi be an element of C x :F. If {eJ, ... , eJ is a basis for a linear 
manifold in C containing all of the vectors Xl' ... , Xr and if 

then 
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This calculation shows that, when representing an element of g x :F 
in the form Li Xi (8) Yi' we may always arrange for the Xi'S (or the y/s) to be 
linearly independent. In this connection the following result is important. 

Proposition 2.3. Let g and :F be linear spaces over the same scalar field, let 
X bea subset of g, let Y be a subset of:F, and let T = {x (8) y: X E X,y E Y}. 
If X and Y generate g and :F, respectively, then T generates g x :F. 
If X and Yare each linearly independent, then T is linearly independent 
in g x :F. Finally, if X and Yare Hamel bases for g and :F, respectively, 
Then T is a Hamel basis for g x :F. 

PROOF. The first assertion is obvious, and is included here only for complete
ness, while the third assertion is an immediate consequence of the first two. 
Thus the proof comes down to showing that T is linearly independent when 
X and Yare, and here it is clearly enough to treat the case in which X and Y 
are non empty finite sets. Suppose, then, that X = {Xb ... ,xm } and Y = 
{Yl' ... ,Yn} are linearly independent, and let f:t and At denote the linear 
manifolds generated by X and Y, respectively. For each vector x = Li'= 1 lXiXi 

in f:t and y = L'}= 1 {3jYj in jl, we define the m x n matrix 

i = 1, ... , m,j = 1, ... , n, 

and observe that <p is a bilinear mapping of f:t + At into the linear space 
(m,n' Moreover, if ijJ denotes the result of factoring <p through f:t x j{, 
then 

i = 1, ... , m,j = 1, ... , n, 

where Eij denotes the matrix with a one in the (i, j) position and all other 
entries equal to zero (cf. Example C). Since the matrices Eij are linearly 
independent in (m.", it is clear that the products Xi (8) Yj are linearly inde
pendent in g x :F, and the proposition follows. (We here use our convention 
that it is a matter of indifference whether Xi (8) Yj is regarded as an element of 
f:t x jl or g x :F.) D 

Corollary 2.4. The Hamel dimension of g x :F is the product of the Hamel 
dimensions of g and :F. 

It is easy to see how the above definitions should be modified so as to 
cover algebraic tensor products of the form g 1 X ... X g" and likewise 
how Propositions 2.1, 2.2, and 2.3 are to be generalized so as to cover this 
more general case. Details are left to the interested reader. 

PROBLEMS 

A. The union of a nested collection of linearly independent sets in a (real or complex) 
linear space ~ is again linearly independent. Use this fact and Zorn's lemma to 
show that there exists a maximal linearly independent set in lff. Show also that a 
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maximal linearly independent set in g is a Hamel basis for g. (The empty set 0 is a 
Hamel basis for (0).) Show similarly that if M is an arbitrary subset of g and J an 
arbitrary linearly independent subset of M, and if!i' denotes the linear submanifold 
of g generated by M, then there exists a Hamel basis X for !i' such that J c X c M. 

B. (i) Let X = {Xl' •.. , xm} and Y = {YI' ... , Yn} be linearly independent sets of 
vectors in a (real or complex) vector space g, and suppose X is contained in the 
submanifold j{ of g that is generated by Y. Show that m :-:; n and that it is 
possible to select a set Z of exactly n-m vectors from Y so that X u Z is also 
a basis for J/{. (In particular, then, if m = n, the set X is itself a basis for .it.) 
Conclude that if a vector space g possesses a finite basis, then any two bases for 
g contain the same number of vectors, and that, if dim g = n, then g is itself the 
only n-dimensional submanifold of g. (Hint: The heart of the matter is that if a 
vector X belongs to .it, and if in the expression X = I?= I AiYi some Aio #- 0, 
then the set Y consisting of X and {Yi: i #- io} is linearly independent, and is 
therefore another basis for .it.) 

(ii) Let g be an infinite dimensional linear space (real or complex), and suppose 
given two (infinite) Hamel bases X and Y for g. If X is any nonzero vector 
belonging to X, then there exist (unique) vectors Yb ... , YP in Yand (unique) 
nonzero scalars ,110 ..• , Ap such that X = AIYI + ... + ApYp. (The vectors Yi 
and scalars Ai vary with x, of course.) Let Ex denote the set {YI' ... , Yp}. Show 
that Y = UXEX Ex, and show that this implies that card Y :-:; ~o card X. 
Finally, show that card X = card Y (and hence that the definition of Hamel 
dimension makes sense). (Hint: Cf. Problems lR and IT.) 

C. If.it is a linear manifold in a (real or complex) vector space g and JV is another linear 
manifold in g such that .it !l Ai = (0) and .it + JV = g, then % is a complement 
of .it. Show that every linear manifold J/{ in g has a complement. (Hint: Use a 
Hamel basis.) 

D. Let g and g; be linear spaces, and let T be a linear transformation of some linear 
submanifold .it of g into iF Show that there exists a linear transformation f of 
g into g; such that T = TI.it. (Hint: Use a Hamel basis or Problem C.) 

E. Let g and g; be linear spaces, and let qJ be a mapping of a subset M of g into g;. 
Show that there exists a linear transformation T: g ---> g; such that qJ = TIM if 
and only if qJ "respects" all linear dependencies in M, that is, if and only if 
Ir= I ,11 Xi = 0 with XI, ... , Xm in M implies that Ir= 1 AiqJ(X) = O. Show also that 
such a linear transformation T is uniquely determined by qJ on the linear sub
manifold of g generated by M. (Hint: The stated condition ensures that if 

m m 

whenever Xl' ... , Xm and Y10 ... , Yn are vectors in M.) In particular, if X is a Hamel 
basis for g, and if qJ is an arbitrary mapping of X into g;, then qJ possesses a unique 
linear extension to ,g. Conclude that two linear spaces are isomorphic if and only 
if they have the same Hamel dimension. 

F. (i) Let {gl'}YEf be an indexed family of vector spaces, let,g denote the full algebraic 
direct sum ,g = I1' + g 1" and for each index )' 0 let .it 1'0 denote the set of those 
elements {xl'} of g such that xl' = 0 for all y #- Yo. Verify that .ityO is a linear 
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manifold in Iff and that the mapping 'Yo obtained by restricting to .it'Q the 
projection nyu of Iff onto Iff;.o is an isomorphism of .it Yo onto Iff yO' (This iso
morphism is frequently used to identify Iff Yo with its counterpart .it yO') Show 
also that the indexed family of submanifolds {.Jt'}YEr has the following prop
erties: 

(a) 

(b) 

Use this observation to prove that the Hamel dimension of Iff is the sum I, dy 

where d, denotes the Hamel dimension of Iffy, Y E r. (Hint: If Xy is a Hamel 
basis for .Jt y, Y E r, then the sets X, are pairwise disjoint, and U y X, is a Hamel 
basis for Iff. Recall that the cardinal number of the union of a disjoint collection 
of sets is the sum of the cardinal numbers of the sets in the collection.) 

(ii) An indexed family {.it,},Ef of linear submanifolds of a linear space Iff is said 
to form an internal direct sum decomposition of Iff if (a) and (b) of (i) are satisfied. 
Thus, according to (i), to every (external) full algebraic direct sum Iff = Iy + Iffy 

there corresponds a similarly indexed internal direct sum decomposition 
{.Jt,} of Iff, where each .Jt, is isomorphic to Iffy in a natural way. Show, conversely, 
that if {.Jt,} is any internal direct sum decomposition of a linear space Iff, then 
there exists a unique isomorphism of Iff onto the (external) direct sum I, + .Jty 

that agrees with ,;1 on each linear submanifold .Jt) .. 

G. If T is a linear transformation of a linear space Iff into a linear space %, and if its range 
~(T) is finite dimensional, then dim ~(T) is called the rank of T (notation: rank T). 
Likewise, if the null space .ff(T) is finite dimensional, them dim .ff(T) is the 
nullity of T Show that if Iff is finite dimensional, then for an arbitrary linear trans
formation T: Iff -> % we have 

(rank T) + (nullity of T) = dim Iff. 

Conclude that if S is a linear transformation on an n-dimensional linear space ff, 

then S is invertible if either XeS) = (0) or .3f(S) = 1%. i.e .. if either the nullity of S 
vanishes or the rank of S equals n. Show finally that if there exists a linear trans
formation R on Iff such that RS = I or SR = 1, then S is invertible and R = S-I. 

H. If A = (lXij) is an m x n matrix and B = (fiij) an n x p matrix, then the product AB 
is the m x p matrix (-Yij), where Yij = D= 1 lXikfikj, i = 1, ... , m; j = 1, ... , p. 
(This operation is, for obvious reasons, known as "row by column" multiplication.) 
In particular, the product of any two matrices in Cn•n is defined, and this product 
turns Cn•n into an algebra. 

(i) Suppose that X = {XI' ... , xp} and Y = {Ylo ... , Yn} are ordered bases for 
the linear spaces Iff and %, respectively, and that B is the matrix of a linear 
transformation T: Iff -> % with respect to X and Y. Verify that if (IX 1, ... , IXp) 

is the p-tuple of coordinates of a vector X with respect to the basis X and 
(fi 1, ... , fin) the n-tuple of coordinates of Tx with respect to Y, then 
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(ii) Let Z = {ZI,"" zm} be an ordered basis for a third linear space 'fJ, and let A 
be the matrix of a linear transformation S : :F ---+ 'fJ with respect to Y and Z. 
Verify that AB is the matrix of ST with respect to the bases X and Z. 

(iii) If A = (ili) is an element of Cm. n' and iffor each x = (~1> ... , ~n) in C" we set 
Tx = y = ('11' ... , '1m), where 

then the mapping T of en into Cm is a linear transformation. We shall refer to 
this as the linear transformation defined by the matrix A. Verify that this 
assignment of a linear transformation to each m x n matrix is a linear space 
isomorphism between Cm• n and the full space of linear transformations ofC" 
into cm. In the same spirit, verify that if ~ and :F are, respectively, n- and m
dimensional, and if X and Yare any ordered bases for ~ and :F, respectively, 
then the correspondence pairing each linear transformation T of ~ into :F 
with the matrix of T with respect to X and Y is a linear space isomorphism 
between the full space of linear transformations of ~ into :F and Cm. n . If A 
is an m x n matrix, and if T denotes the linear transformation of en into cm 
defined by A, then A is the matrix of T with respect to the natural bases in en 
and Cm (Ex. B). 

I. By the rank of an m x n matrix A (notation: rank A) is meant the maximal number 
of linearly independent columns in A (that is, the number of elements in a maximal 
linearly independent set of columns; the columns of A are here viewed as elements 
of cm). Show that if T is a linear transformation of an n-dimensional linear space ~ 
into an m-dimensional linear space :F, and if A is the matrix of T with respect to 
ordered bases for ~ and iF, then rank A = rank T. Conclude that an n x n matrix 
A is invertible if and only if rank A = n. (Hint: See Problem G.) 

J. Let d be a (real or complex) algebra. A linear manifold.'/ in d that is closed under 
multiplication is a subalgebra of d. If .'/ has the additional property that for every 
s in .'/ and x in d, sx belongs to Y'[xs belongs to .'/], then .'/ is a right [left] ideal 
in st. If Y' is both a left and a right ideal, then .'/ is a two-sided ideal, or, more 
simply, an ideal in d. Show that if Y' is a two-sided ideal in d, then the quotient 
vector space dl.'/ equipped with the product [x][y] = [xyJ forms an algebra. 
This algebra dl.'/ is called the quotient algebra of sf modulo .'/. 

K. Show that the vector space (a) of Example D forms a unital algebra with respect 
to the product {iln} {Pn} = {ilnPn}. Show that the linear manifolds (m), (c), and (co) 
are subalgebras of (0), and that (co) is an ideal in (m). 

L. Let d and !1B be algebras over the same scalar field, and suppose that <p is a linear 
transformation of d into !1B such that <p preserves products (i.e., such that <p(xy) = 
<p(x)<p(y) for every pair x, y of elements of d). Then <p is called an (algebra) homo
morphism of d into !1B. If <p is a vector space isomorphism of d onto !1B that is also 
an algebra homomorphism, then <p is an algebra isomorphism of d onto !1B, and if 
such an isomorphism exists, d and !1B are said to be isomorphic (as) algebras. 
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(i) Let <p be a linear transformation of d into !1B, and let X = {xy} be a Hamel 
basis for d (regarded as a linear space). Verify that <p is an algebra homo-
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morphism if and only if ep(xyxy,) = ep(x,)ep(xy') for every pair Xy, Xy' of elements 
of the basis X. 

(ii) Verify that if)' is an ideal in sI, then the natural projection IT of sI onto the 
quotient algebra sI /,I is a homomorphism with kernel" (see Problem J for 
definitions). Show in the converse direction that if ep is an arbitrary homo
morphism of sI into fJI, then the kernel.Yr(ep) is an ideal in sI, the range Bl(ep) 
is a subalgebra of fJI, and the result of factoring ep through the ideal .Yr( ep) 
(Ex. L) is an algebra isomorphism of the quotient algebra sI j.Yr(ep) onto Bl(ep). 

(iii) Suppose sI is an algebra with identity 1, and let f1J denote the algebra of all 
complex polynomials p(A) = 1X0 + IXIA + ... + IXnAn. Show that for each 
element x of sI there exists a unique homomorphism epx of f1J into sI satisfying 
the conditions epil) = 1 and epiA) = x. (Hint: The sequence {I, A, .1.2, ••• } 

constitutes a Hamel basis for f1J; use (i),) The image epip) of a polynomial p 
under the homomorphism epx is denoted by p(x), and is referred to as the result 
of evaluating p at x. Show that for an arbitrary polynomial p the element p(x) 
doubly commutes with x, i.e., that p(x) commutes with every element y of sI 
that commutes with x. Verify that an analogous construction exists, even when 
sI does not possess a unit, provided the algebra f1J is replaced by the ideal f1J 0 

consisting of all polynomials having zero constant term, and discuss the case 
of a real algebra. 

(iv) Show in the same vein that if f1J(n) denotes the linear algebra of all polynomials 
p(AI' .'" An) in n indeterminates, and if Xl, •.• , Xn denote elements of sI that 
commute in pairs, then there exists a unique homomorphism of f1J(n) into sI 
that assigns the identity 1 in sI to the polynomial 1 and Xi to A;, i = 1, ... , n. 

The image of p(AI' ... , An) under this homomorphism is also referred to as the 
result of evaluating p at (x[, ... , xn), and is denoted by p(x!, ... , xn), 

(v) Show that if Iff and ff are vector spaces and 11 is a linear space isomorphism 
of Iff onto ff, then ep(T) = I1TI1-1 defines an algebra isomorphism ep of the 
full space oflinear transformations on Iff onto the full space oflinear transforma
tions on ff. (The isomorphism ep is said to be spatially implemented by 11,) 

M. If Iff is an n-dimensional linear space, then, as noted in Example N, for each ordered 
basis X = {x[, ... , xn} for Iff the mapping 

L AiXi ~ (.1.[, ... , An), 
i= 1 

which assigns to each vector in Iff its n-tuple of coordinates with respect to the 
basis X, is a linear space isomorphism of Iff onto en. Show similarly that the mapping 
1/1 that assigns to each linear transformation T on Iff its matrix with respect to X is 
an algebra isomorphism of the algebra of linear transformations on Iff onto the 
matrix algebra en. n' Show, in the same vein, that if t5 denotes the mapping assigning 
to each matrix A in en, n the linear transformation on en defined by A (Prob, H (iii)), 
then t5 is an algebra isomorphism of en,n onto the algebra of all linear transforma
tions on en. Show, finally, that if ep = t5 0 1/1, then ep(T) = I1TI1-1 for every linear 
transformation T on Iff, in other words, that ep is the isomorphism spatially imple
mented by 11 (Prob, L (v)), (Thus if the isomorphism t5 is used to identify the algebra 
of linear transformations on C" with en,", then 1/1 may be said to be spatially imple
mented,) 
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N. Show that if A and B are similar n x n matrices then tr A = tr Band det A = det B. 

Use this fact to conclude that if T is a linear transformation on an n-dimensional 
vector space Iff, then we may define (unambiguously) 

tr T = tr A and det T = det A, 

where A denotes the matrix of T with respect to any ordered basis for Iff, and verify 
that det T -# 0 when and only when T is invertible. (Hint: Recall that det is a 
homomorphism of Cn. n onto C with the property that det A = 0 if and only if A 
is not invertible.) 

O. If T is a linear transformation on a vector space Iff, and if there exists a complex 
number A and a nonzero vector x in <ff such that Tx = AX, then A is an eigenvalue 
of T, and x is an eigenvector of T associated with the eigenvalue A.. The set 
{y E <ff: Ty = AY} is a linear manifold in <ff called the eigenspace associated with A.. 
Show that every linear transformation on a finite dimensional vector space has an 
eigenvalue. (Hint: Apply the fundamental theorem of algebra to the characteristic 
equation det(A - T) = 0.) 

P. Show that if T is a linear transformation on an n-dimensional linear space Iff, then 
there is an ordered basis X = {XI' ... , xn} for <ff such that the matrix A = (IXij) 
of T with respect to X is in upper triangular form (that is, IXij = 0 whenever i > j). 
(Hint: According to the preceding problem there is a basis {YI' ... , Yn} for <ff such 
that TYI = AYI for some complex number A.. Let ({3ij)7,J= I be the matrix of T with 
respect to this basis, let j( denote the linear manifold generated by the vectors 
{Y2' ... , Yn}, and let!£' denote the linear manifold consisting of the scalar multiples 
of YI' The submatrix ({3ij)?J=2 is the matrix of a linear transformation S on j( 

with the property that, for every X in .1(, Tx - Sx belongs to !£'. Use induction.) 
Show also that if the matrix A of T is in upper triangular form, then the diagonal 
entries IXii of A are precisely the eigenvalues of T. 

Q. Let Iff, :#i', and '11 be linear spaces, let j( and JV be linear submanifolds of <ff and :#i', 
respectively, and let q> be a bilinear transformation of j( + JV into '11. Show that q> 

can be extended to a bilinear transformation of <ff + :#i' into '11. (Hint: Recall 
Problem D.) 

R. Let Iff, :#i', and '11 be linear spaces, let M and N be subsets of <ff and :#i', respectively, 
and let q>o be a mapping of the Cartesian product M x N into '11. Show that neces
sary and sufficient conditions for the existence of a bilinear transformation q> of 
<ff + :#i' into '11 with the property that q> I (M x N) = q>o are 

(i) if XI' ... , Xn is any finite subset of M and if 

n 

L IXi Xi = 0, then L IXiq>o(Xi, y) = 0 
i=1 

for every Y in N, and 
(ii) if {YI' ... , Ym} is any finite subset of N and if 

i= 1 i= 1 

for every x in M. 
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(Hint: Use Hamel bases (Prob. A). Note that, according to Problem E, these con-
ditions may be paraphrased as follows: For each Yo in N the mapping x ..... fPo(x, Yo) 
admits a linear extension to Iff, and for each Xo in M the mapping y ..... fPo(xo, y) 
admits a linear extension to ff.) 

S. Let Iff be a linear space, let G be a system of algebraic generators for Iff, and let l{Io 
be a mapping of G x G into IC. Show that a necessary and sufficient condition for 
the existence of a sesquilinear functionall{l on Iff with the property that l{I(x, y) = 
l{Io(x, y) for all x, y in G is that if {x 1, ... ,xn} is any finite subset of G and if 
Ii; 1 AiXi = 0, then Ii; 1 AiI{lO(Xil y) = 0 and Ii; 1 XiI{lO(y, XJ = 0 for every y 
in G. (This condition can be paraphrased as follows: For each Yo in G the mappings 
x ..... l{Io(x, Yo) and x ..... i/io(Yo, x) can be extended to Iinearfunctionals on Iff. It would 
be easy, of course, to state a more general version of this result, along the lines 
of the preceding problem, but we will have no need for such generality.) Show also 
that I{I is uniquely determined by l{Io when it exists, and that I{I is symmetric if and 

only if l{Io has the property that l{Io(x, y) = l{Io(Y, x) for all x, y in G. 

T. Show that there exists a "natural" isomorphism between the algebraic tensor 
product em x C" and the space em.n of m x n matrices. (Hint: For each x = 
(~1"'" ~m) in em and y = ('11"'" '1n) in C" let a(x, y) be the matrix (~i'1) and set 
'§ = em. n in Proposition 2.2.) 

U. Let Iff and ff be linear spaces, and lett = Ii; 1 Xi ® Yi be an element of the algebraic 
tensor product Iff x ff. Show that if the vectors Xi are linearly independent, then 
the vectors Yi are uniquely determined by t (and, similarly, the vectors Xi are uniquely 
determined by t when the vectors Yi are linearly independent). Conclude that if 
x E Iff and Y E ff, then x ® Y = 0 when and only when one of the vectors x or Y 
is 0, and, likewise, that if x, x' are vectors in Iff and y, y' vectors in ff, and if x ® Y = 
x' ® y' #- 0, then there exists a scalar A such that x = AX' and y' = Ay. 
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General topology 

In this chapter we briefly review the basic facts about general topology that 
will be used in this book. We omit many of the most basic definitions, and 
some of the proofs. (The topic of convergence of nets, by contrast, is treated 
in full detail.) For definitions of terms used below without definition, and for 
proofs of theorems stated without proof, the reader is referred to any textbook 
on general topology, e.g., [40], [11], or [20], To begin with, the terms 
topology, topological space, open set, closed set, interior, closure, boundary, 
and neighborhood, will be used without explanation, and the various relations 
between these notions will be assumed known. The interior of a set A in a 
topological space will be denoted by AO, the closure of A by A -, and the 
boundary of A by vA. 

Other terms and concepts with which the reader will be assumed to be 
familiar are topological base and subbase and the first and second axioms 
of countability (cf. Problem A). In connection with the notion of a base 
for a topology the following fact, whose verification is routine, is frequently 
useful. 

Proposition 3.1. A collection ~ of subsets of a set X forms a base for a topology 
on X if and only if every point of X lies in some element of ~ (briefly: 
if ~ covers X) and the intersection of every pair of sets belonging to ~ 
is a union of sets belonging to ~. (The only property that a collection 51' 
of subsets of X must possess in order to be a subbase for a topology on X 
is that it cover X.) 

Example A. The collection of all open intervals (a, b), where a, bE IR and 
a < b, is a base for the usual topology on IR. Similarly, the collection of all 
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open cel/s, i.e., the collection of all products of open intervals 

(ab bd x ... x (an, bn) 

is a base for the usual topology on IRn. A base for the usual topology on the 
complex plane C is given by the set of all open discs 

Dr(rt) = fA EC: Irt - AI < r}, 

where rt is a point of C and r is a positive number. Similarly, the collection 
of all products of open discs 

Drt(rt1) x ... x Drn(rtn) 

is a base for the usual topology on en. Since all of (the real and imaginary parts 
of) the parameters employed in defining these various bases may be restricted 
to assume only rational values, the spaces in this example all satisfy the 
second axiom of countability. 

Example B. Let X be a simply ordered set containing at least two elements. 
For each a in X let 

La={xEX:x<a} and Ra={xEX:x>a}. 

Then the collection !f' = {La: a E X} u {Ra : a E X} is a subbase for a 
topology on X called the order topology. A base for the order topology is 
given by g u {Ra n Lb: a, b E X, a < b}. The set Ra n Lb, a < b, is called an 
open interval and is sometimes denoted by (a, b),just as when X is the system 
of real numbers. The order topology on IR is the usual topology on IR. Another 
situation in which the order topology is important arises when X is a segment 
W(il() of ordinal numbers. In particular, if A is a limit ordinal, then a base 
for the order topology on W(A) is given by the collection of sets of the form 
{~E W(A): rt ~ ~ < P}, where rt < P < A. 

A subset A of a topological space X is itself a topological space, called 
a subspace of X, when A is given its relative topology. This is the topology on A 
consisting of all sets of the form A n U, where U is an open set in X. Whenever 
a subset A of a topological space is regarded as a topological space, the 
topology on A is always understood to be the relative topology unless the 
contrary is expressly stipulated. 

A set A in topological space X is dense in X if A - = X. The space X is 
separable if it possesses a countable dense subset; every topological space 
that satisfies the second axiom of countability is separable. 

Example C. We topologize the extended real number system IR~ (Ex. lB) 
by giving it its order topology. Note that this has the effect of making IR 
a dense open subspace of IR~. 
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Recall that if X and Yare topological spaces, if f is a mapping of X into 
Y, and if Xo E X, then f is continuous at Xo if for every neighborhood Wof 
f(xo) in Y there is a neighborhood V of Xo in X such that f(V) c W; more
over, f is continuous if it is continuous at every point of X. A mapping 
f : X --+ Y is continuous if and only if f -l(U) is open in X for every open set 
U in Y, or, equivalently, if and only if f - !(F) is closed in X for every closed 
set F in Y. A mapping f: X --+ Y with the property that feU) is open in Y 
whenever U is open in X is an open mapping. Likewise, f is a homeomorphism 
of X onto Y if f is a one-to-one mapping of X onto Y such that both f and 
f - 1 are continuous, i.e., such that f is both continuous and open. Two 
topological spaces are homeomorphic if there exists a homeomorphism of 
one of them onto the other. 

Example D. If X is any topological space, then the collection of continuous 
complex-valued functions on X will be denoted by ~(X), and the collection 
of continuous real-valued functions on X by ~ ~(X). It is clear that ~(X) 
[~~(X)] is a unital linear algebra [real linear algebra] with respect to the 
usual operations of pointwise addition and mUltiplication. The space ~(X) 
is the complexification of ~ ~(X). If A is an arbitrary subset of X, then the 
set of all functions in (t(X) that vanish on A is an ideal in (t(X). If cp is a 
homeomorphism of a topological space X onto a topological space Y, then 
the mapping f --+ f 0 cp is an algebra isomorphism of ~(Y) onto ~(X) 
called the isomorphism induced by cp. 

Example E. Let U denote a nonempty open subset of ~n. Iff is a complex
valued function on U, then there are many degrees of smoothness that f may 
possess beyond mere continuity. Recall that a function f on U is k times 
continuously differentiable on U if all of the kth order partial derivatives 
o"j /oxT' ... ox~n (m! + ... + mn = k) exist and are continuous on U. The 
collection of all k times continuously differentiable complex-valued functions 
on U will be denoted by ~(k)(U), the collection of real-valued functions in 
(t(k)( U) by (t~)( U). (To form the partial derivative of/ox i of a complex-valued 
function f we simply differentiate the real and imaginary parts: 

of 0 Re f . 0 1m f 
-=--+1--) 
OXj OXj OXj' 

It is, once again, easily seen that ~(k)(U) [~~)(U)] is a unital algebra [real 
algebra], and that ~(k)( U) is the complexification of ~~)( U). 

A topological space X is [countably] compact if from every [countable] 
open covering of X it is possible to extract a finite subcovering. A subset A of 
a topological space X is compact if it is compact in its relative topology. 
Equivalently, A is compact if and only if from every open covering of A by 
open subsets of X it is possible to extract a finite covering. Countable 
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compactness implies compactness in spaces satisfying the second axiom of 
countability. 

Example F (Heine-Borel Theorem). Every closed interval La. b] in [R is 
compact. Indeed. if Jll is an arbitrary open covering of [a. b]. if T denotes 
the set of those numbers t in [a. b] with the property that the subinterval 
[a. t] is covered by some finite number of sets in )/1. and if to = sup T, then 
it is easy to see that to > a and to E T. But to < b is impossible, so [a. b] = T. 

More generally, a subset K of [Rn is compact if and only if K is closed and 
is contained in some closed cell [a1' b1] x ... x [an, bnJ. This theorem, 
known as the H eine-Borel theorem, is an easy consequence of Proposition 3.2, 
Theorem 3.15 below, and the just established fact that closed intervals are 
compact. 

A topological space X is a Hausdorff space if every two distinct points in X 
have disjoint neighborhoods. A major role is played in modern analysis by 
compact Hausdorff spaces, and the following two propositions concerning 
such spaces are frequently useful. (The proofs of both propositions are 
elementary. Other facts of basic importance pertaining to compact Hausdorff 
spaces are stated in Propositions 3.4, 3.14, and Theorem 3.15.) 

Proposition 3.2. A subspace A of a compact Hausdorff space X is itself a 
compact Hausdorff space if and only if A is closed in X. 

Proposition 3.3. If f is a continuous mapping of a [countably] compact 
topological space X onto a topological space Y, then Y is [countably] 
compact. Iff is a continuous one-to-one mapping of a compact space X onto 
a Hausdorff space Y, then f is a homeomorphism. 

A Hausdorff space X is called regular if for every closed set F in X and 
every point x in X\F there are disjoint open sets U and V such that x E U 
and F c V. A Hausdorff space X is normal if for each pair of disjoint closed 
sets E and F in X there are disjoint open sets U and V such that E c U 
and F c V. Equivalently, a Hausdorff space X is normal if and only if for 
every closed set F and open set U in X such that FeU there exists an open 
set V such that F eVe V - cU. The facts we shall need concerning normal 
spaces are the following. (The proof of Proposition 3.4 is quite elementary; 
see Problem C. Proposition 3.5 is another matter altogether; no really easy 
proof is known except in special cases; see Problem 4D.) 

Proposition 3.4. Every compact Hausdorff space is normal. 

Proposition 3.5 (Urysohn's Lemma). If E and F are disjoint closed subsets 
of a normal space X, then there exists a continuous function f : X ~ [0, 1] 
such that f is identically zero on E and identically one on F, i.e., such that 
XF :s; f :s; XXIE' 

35 



3 General topology 

Example G. Let X be a normal topological space, and suppose given a finite 
open covering {U b ... , Un} of X. If F = X\(U 1 U ... U Un- d, then F 
is a closed set contained in Un, and there exists an open set V such that 
Fe V c V- C Un' Using this observation and an obvious induction 
argument, one verifies without difficulty the following important fact: 
If {U 1, ... , Un} is any finite open covering of a normal space X, then there 
exists a corresponding closed covering {F 1, ... , Fn} of X such that Fi c Ui> 
i = 1, ... , n. 

Suppose now, once again, that {U b ... , Un} is an open covering of X, 
and let {F 1, ... , Fn} be a closed covering of X such thatFi cUi, i = 1, ... , n. 
By Urysohn's lemma there exists, for each i = 1, ... , n, a continuous mapping 
/; of X into [0,1] with the property that XFi s /; S XUi' Iff = fl + .. , + fn' 
then f ~ 1 on X. Hence if we define gi = H f, then the continuous functions 
{gil ... , gn} satisfy the following conditions: 

gl + ... + gn = 1 and 0 S gi S Xu i , i = 1, ... , n. 

Such a system of functions is customarily called a partition of unity on X 
subordinate to the given open covering {U b ... , Un}. 

Suppose now that F is a closed set in X and that {U 1, ... , Un} is a given 
open covering of F. Set U 0 = X\F, and let {go, gl, ... , gn} be a partition of 
unity of X subordinate to the open covering {U 0' U b ... , Un}. Then the 
system of functions {g 1, ... , g n} possesses the following properties: 

(i) 0 S gi S XUi' i = 1, ... , n, 
(ii) If g = gl + ... + gn' then 0 S g S 1 on X, 

(iii) g(x) = 1 for every x in F. 

Such a system is also frequently called a partition of unity subordinate to the 
given sequence {U b ... , Un}. 

Iffor each point x in a Hausdorff space X and for each neighborhood V of x 
there exists a continuous function f : X --t [0, 1] such that f(x) = 1 and f is 
identically zero on X\ V, then X is said to be completely regular. It is obvious 
that every completely regular space is regular, and, according to Urysohn's 
lemma, every normal space is completely regular. 

A topological space X is connected if it is not possible to express X as the 
union of two disjoint nonempty open [closed] subsets. Equivalently, a 
topological space X is connected if and only if the only closed-open (i.e., 
both closed and open) subsets of X are 0 and X itself. Still another formula
tion is the following: X is connected if A c X and oA = 0 imply A = 0 or 
A = X. A subset of a topological space is connected if it is connected as a 
subspace. It is easily seen that if C is a connected subset of a topological space 
X, then C - is also connected. Another important property of connected 
sets is given in the following proposition. 

Proposition 3.6. If C is connected subset of a topological space X, and if A 
is a subset of X such that C (\ oA = 0, then either C c A or C (\ A = 0· 
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PROOF. IfC n ciA = 0 and XEC n A. then xEAo. Thus C n A = C n AO 
is open relative to C. Since A and X\A have the same boundary, this shows 
that C\A is also open relative to C. Thus C = (C n A) u (C\A) expresses C 
as the union of two disjoint relatively open subsets, one of which must be 
empty. D 

Example H. A collection 'fl of subsets of a set X is said to be chained if for 
an y two sets Co, C 1 in 'fl there is a finite sequence {Do, ... , Dn} of sets in 'fl 
such that Di- I n Di =j:. 0, i = 1, ... , n, and such that Do = Co and Dn = C1• 

Suppose given a chained collection 'fl of connected subsets of a topological 
space X, let E denote the union of the sets in 'fl, and let A be a closed-open 
subset of E. Then ciA = 0 in the subspace E. Thus if C is a connected subset 
of E, then either C n A = 0 or C c A. In particular, this is true of each ofthe 
sets in 'fl. Thus if A =j:. 0, then A contains some one of the sets in 'fl. But then, 
since 'fl is chained, it is seen at once that A must contain every set in 'fl. Thus 
A = E, and we have proved that E is connected. 

Example I. Every interval or ray in IR, open, closed, or half-open (including 
the space IR itself), is connected. To see this we note first that if I is either 
an interval or a ray (or IR), then the closed subintervals of I form a chained 
collection of subsets of I that covers I (Ex. H). Thus it suffices to verify that 
every closed interval [a, b J is connected. Suppose U is a relatively open subset 
of [a, b] such that a E U and such that V = [a, b J\ U is also relatively open 
in [a, b]. Let T = {t E [a, bJ: [a, tJ c U} and set to = sup T. Then 
a < to :-:; b, and the assumption that to E V leads at once to a contradiction 
of the definition of to. Hence to E U, and it follows that to is also an element of 
T. On the other hand, the assumption to < b likewise leads to a contradiction 
of the definition of to. Thus to = band U = [a, b J. 

Each point x in a topological space X is contained in a unique largest 
connected subset of X, called the (connected) component of x. (It is clear from 
Example H that the union of all the connected subsets of X that contain x is 
connected, so this union is the component of x.) The component of anyone 
point is also the component of every other point it contains, and is accordingly 
also referred to as a (connected) component of X. The components of a 
topological space are closed sets, since their closures are also connected. 

Proposition 3.7. If E is an arbitrary subset of the real line IR, then the following 
conditions are equivalent: 

(i) E is connected, 
(ii) If a, bEE, and if a < c < b, then c E E, 

(iii) E is either an interval (open, closed, or half-open), or a ray (open or 
closed), or the entire real line IR. 
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If U is an open subset of IR, then U can be expressed uniquely as a countable 
union of pairwise disjoint nonempty open intervals, and these intervals are 
the connected components of U. 

PROOF. That (iii) implies (i) was proved in Example I, while the proof that (ii) 
implies (iii) amounts to nothing more than a careful consideration of cases. 
Finally, to show that (i) implies (ii) we note that ( - 00, c) u (c, + 00) is a 
disconnection of the set IR\ {c} obtained by removing a single point c from IR. 
Hence if C is a connected subset of IR that does not contain c, then either 
C c ( - 00, c) or C c (c, + 00 ). 

To prove the last assertion of the proposition we observe that, since U is 
open, every nonopen interval that is contained in U is contained in an open 
interval contained in U. It follows from this that the connected components 
of U are all open intervals. That no disjoint collection of non empty open 
intervals can be uncountable follows from the fact that IR satisfies the second 
axiom of countability. To complete the proof it suffices to observe that if 
{In} is a disjoint (countable) collection of nonempty open intervals such 
that U = Un In, and if V is a connected component of U that meets some one 
In' then neither endpoint of In can belong to V, and therefore V = In (Prop. 
3.6). [] 

If X is a connected space and f : X ~ Y is a continuous mapping, then 
f(X) is a connected set in Y. Thus, in particular, iff is a continuous mapping 
of a closed interval [a, b] into Y, then the range of f is connected in Y. Such 
a mapping is called an arc in Y, and [a, b] is the parameter interval of the 
arc f. If f(a) = Yo and feb) = Yl' then the arc f is said to join Yo to Yl' If 
for every pair of points Yo and Yl in Y there exists an arc joining Yo to Yb 
then Y is said to be arcwise connected. An arcwise connected space is clearly 
connected. 

Proposition 3.8. If U is a connected open subset of IRn, then U is arcwise 
connected. 

PROOF. We may assume U to be nonempty. Let Xo be a point of U, and denote 
by V the set of those points x in U such that there exists an arc in U joining 
Xo to x. If x E V and if W is an open cell in IRn containing x and contained 
in U (Ex. A), then x can clearly be joined to every point of W by an arc in W 
Hence W c V, and it follows that V is an open set. 

Suppose now that Yo E Un av, and let W1 be an open cell containing Yo 
and contained in U. Then there exists a point x of V belonging to Wb and 
since x can be joined to Yo by an arc in Wf, it follows that Yo E V, which is 
impossible since V is open. Thus Un av = 0, and therefore V = U by 
Proposition 3.6. [] 

The structure of the most general open subset of IR is set forth in 
Proposition 3.7. In the topology of the plane matters are not quite so simple, 
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but there are some useful things that can be said. (In this discussion we speak 
of the complex plane C, but the following facts are equally valid for the real 
plane [R2, which may be identified with C via the standard homeomorphism 
s + it <--+ (s, t).) We begin by recalling that a domain in C is a nonempty 
connected open subset of C. 

Proposition 3.9. Every open subset U of C is uniquely expressible as a countable 
union of disjoint domains, and these domains are the components of U. 

PROOF. The empty set is the empty union of domains. If U is a nonempty open 
set in C, and if ,,1.0 is an element of some component U 0 of U, then (Ex. A) 
there is an open disc D.(A.o) about ,,1.0 (r > 0) such that D.(A.o) c U. Since 
discs are (arcwise) connected, it is clear that D.(A.o) c U 0, and hence that the 
components of U are open. That no collection of disjoint open sets in C can be 
uncountable is clear from the fact that C satisfies the second axiom of count
ability. To complete the proof it suffices to observe that if {Un} is a disjoint 
(countable) collection of nonempty domains such that U = Un Un' and if 
V is a connected component of U that meets some one Un' then V n au n = 0, 
and therefore V = Un (Prop. 3.6). 0 

If K is a compact subset of C, then K is bounded, that is, there exists a 
disc DR(O) large enough so that K c DR(O)-, and since V = C\DR(O)
is (arcwise) connected, it follows that V is entirely contained in some one of 
the components of C\K. Hence all of the components of C\K except this one 
are contained in DR(O), and are therefore bounded. 

Definition. If K is a compact subset of C then there is exactly one unbounded 
component of C\K. The other components of C\K (if any) are called the 
holes of (or in) K. 

Proposition 3.10. Let K be a compact subset of C, and suppose L is a compact 
subset ofC such that K eLand such that aL c K. Then L consists of the 
union of K and some of the holes of K. In particular, if K has no holes, then 
L=K. 

PROOF. According to Proposition 3.6 each component of C\K is either 
contained in L or disjoint from L. In particular, the unbounded component 
of C\K is disjoint from L since L is bounded. 0 

In any deep study of plane topology an important role is played by the 
Jordan curve theorem. In this connection we shall employ the following 
terminology. 

Definition. A Jordan loop or Jordan curve is an arc y in C defined on a real 
parameter interval [a, b] (a < b) such that yea) = y(b) and such that y 
is one-to-one and never equal to yea) on the open interval (a, b). It is 
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easily seen (Prop. 3.3) that the range J of a Jordan loop y is compact and 
could equally well be characterized as a homeomorphic image in C of the 
unit circle. We shall also refer to the range of a Jordan loop as a Jordan 
loop or Jordan curve when that is convenient. In the event that a Jordan 
curve J is a simple polygon in C (as defined in elementary geometry) we 
say that J is a Jordan polygon. 

A Jordan domain in C is a domain whose (entire) boundary consists 
of the union of a finite number of pairwise disjoint Jordan curves. The 
closure of a Jordan domain is, therefore, the union of the domain and 
the various Jordan curves constituting its boundary. Such a closed set is 
known as a Jordan region. 

The following result is the central fact concerning the topology of the plane; 
an elementary proof can be found in [66; pp. 100-104]' 

Theorem 3.11 (Jordan Curve Theorem). If J is a Jordan curve in C, then the 
open set C\J is the union of exactly two components, each of which is a 
Jordan domain having J for its entire boundary. 

Definition. If J is the range of a Jordan loop y, then the bounded component 
of C\J (that is, the hole in J), is called the interior domain of J, and is 
denoted by Int(y) or Int(J). The unbounded component of C\J is the 
exterior domain of J and is denoted by Ext(y) or Ext(J). 

Proposition 3.12. Let U be an open subset of C, and let K be a compact subset 
of U. Then there exists a finite set .11, ... , .1p of Jordan domains such that 
the corresponding Jordan regions R j = .1; are pairwise disjoint, and such 
that 

K C .11 U··· u,1p and R1 u ... u Rp C U. 

Moreover, it is possible to arrange matters so that each of the boundaries 
o,1j is the disjoint union of a finite number of disjoint Jordan polygons. 

We shall have no occasion to refer to this fact until Chapter 5. At that time, in connection 
with some related material, we sketch a proof of Proposition 3.12. (See Problem 5K.) 

Using Proposition 3.12 together with the Jordan curve theorem, it is 
not difficult to determine the structure of the most general Jordan domain. 

Proposition 3.13. If J 1, ... , J n are Jordan loops that are mutually exterior 
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in pairs, that is, are so situated that J j C Ext(J j ), i ¥- j, i,j = 1, ... , n, and 
if R j = (lnt(JJ)-, i = 1, ... , n, then the complement C\(R 1 u ... uRn) is 
an unbounded Jordan domain with boundary J 1 u··· u I n. Conversely, 
every unbounded Jordan domain is of this form. If J 0, J b ... , J n are 
Jordan curves such that J 1, ••• , I n are mutually exterior in pairs, and such 
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that Ji C Int(J 0), i = 1, ... , n, and if Ri = (Int(J;)r, i = 1, ... , n, then 
Int(Jo)\(R I u .,. uRn) is a bounded Jordan domain with boundary 
Jo u J1 U··· U I n. Conversely, every bounded Jordan domain is of this 
form. 

A topological space is totally disconnected if its connected components are 
all singletons, i.e., if its one-point subsets are the only nonempty connected 
subsets that it possesses. The discrete topology on a set X is the topology 
consisting of all the subsets of X; a set X together with the discrete topology 
on X is a discrete (topological) space. Such spaces are obviously totally dis
connected. Here is a less trivial example of a totally disconnected space. 

Example J. Let !Fo denote the singleton {CO, I]}, i.e., the set whose sole 
element is the unit interval, and, for each positive integer n, let !F n denote the 
set of closed intervals obtained by removing the middle open third of each 
of the intervals in the set !F n _ I' (Thus !F n is a set of disjoint closed intervals 
In. I, ... , In. 2"') If for each nonnegative integer n we write 

then 

is the Cantor set. For each interval In,i in !Fn let us write Cn,i = In,i n C. 
The set Cn, i is closed and is also open relative to C (for an open interval 
slightly larger than In, i meets C in the same set). Let c be a point in C, and let 
a and b be any real numbers such that a < c < b. If n is chosen large enough 
so that 1/3n < (c - a) /\ (b - c), and if In,i denotes that interval in !#'n 
that contains c, then Cn. i C (a, b) n C. Thus the system of sets Cn. i constitutes 
a base of closed-open subsets for the (relative) topology on C. From this it is 
clear that C is totally disconnected. 

It is no accident that the Cantor set possesses a base of closed-open sets. 
In fact, the following result is valid (cf. Problem F). 

Proposition 3.14. If C denotes a connected component of a compact Hausdorff 
space X, and if U is any open set in X containing C, then there exists a closed
open set E in X such that C c E c U. In particular, if X is a totally dis
connected compact Hausdorff space, then the closed-open subsets of X 
constitute a base for the topology on X. 

It is frequently useful to consider two topologies on the same set X. If !7 
and ff are two topologies on X, and if every open set in !7 is also in ff 
(briefly: if!7 c ff), then ff is said to be finer than !7, or to refine !f', and !f' 
is said to be coarser than ff. This relation between topologies on X is 
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obviously a partial ordering (as noted, it is just another name for the inclusion 
ordering), and in this ordering the collection of all topologies on X becomes 
a complete lattice (Prob. G). In particular, there is a finest topology on X 
and a coarsest topology. The finest topology on X is clearly the discrete 
topology introduced above; the coarsest topology on X is the two-element 
topology {X, 0}, sometimes known as the indiscrete topology. 

Example K. If X is a simply ordered set, the collection of all sets La = 
{x EX: x < a}, a E X, together with the whole space X, is a base for a 
topology :7, on X known as the left ray topology on X. Similarly, the 
collection of all sets Ra = {x EX: x > a}, a E X, together with X, is a base 
for a topology:7r on X known as the right ray topology on X. The infimum 
:7, /\ :7r = :7, n :7r is easily seen to coincide with the indiscrete topology 
on X. The supremum:7, v :7r contains all rays La and Ra, a E X, and there
fore coincides with the order topology on X (assuming that X is not a 
singleton; see Example B). 

This construction is of particular importance when X = R If Z denotes 
an arbitrary topological space and I is a real-valued function defined on Z, 
then I is continuous at a point Zo of Z when IR is equipped with the left-ray 
topology :7, if and only if the following condition is satisfied: For every posi
tive number f. there exists a neighborhood V of Zo such that I(z) < I(zo) + f. 
for every z in V. This situation is expressed by saying that I is upper semi
continuous at Zo. Dually, I is lower semi-continuous at Zo if I is continuous at 
Zo when IR is equipped with the right-ray topology :7" which is equivalent to 
the following: For every positive number f. there exists a neighborhood Vof 
Zo such that I(z) > I(zo) - f. for every z in V. A real-valued function I on a 
topological space Z is upper [lower] semi-continuous if it is upper [lower] 
semi-continuous at every point z of Z, i.e., if I is continuous as a mapping 
of Z into IR equipped with the topology:7, [:7r ]. Note that I is upper [lower] 
semi-continuous on Z if and only if the inverse image under I of every open 
ray to the left [right] in IR is open in Z, or, equivalently, if and only if the 
inverse image of every closed ray to the right [left] in IR is closed in Z. 

If X is a set and if I is a mapping of X into some topological space Y, then 
the collection of all inverse images l-l(V) of open sets V in Y forms a 
topology on X, called the topology inversely induced by I (or, when no 
confusion can result, the topology induced by f). The topology inversely 
induced by I may also be described as the coarsest topology on X making 
I continuous. If V is merely allowed to run over a base [subbase] for the 
topology on Y, then the inverse images l-l(V) provide a base [subbase] 
for the inversely induced topology on X. 

Example L. Let X be a topological space, and let A be a subset of X. If we 
take for I the inclusion mapping of A into X (f(x) = x for all x in A), then 
the topology inversely induced on A by I is the relative topology on A. 

42 



3 General topology 

A more sophisticated version of the above construction goes as follows. 

Definition. Let X be a set, and for each 'I in an index set r let fy be a mapping 
of X into a topological space Yy • Then the coarsest topology on X making 
all of the mappings i y continuous is the topology inversely induced on X 
by the family {fy}yer. (That such a topology always exists is an immediate 
consequence of Problem G. When no confusion is possible, this topology 
will simply be said to be induced by the family {fy}.) 

If {fy} is a family of mappings of a set X into a family {I;} of topological 
spaces, as in the foregoing definition, and if:Y denotes the topology induced 
on X by the family {fy}, then it is clear that a subbase for :Y is given by the 
collection of all sets of the form f; leU), where U is an open set in Yy andy 
runs through r. (More generally, if, for each index 'I, :/ y is a subbase for thr 
topology on Yy , then the set of all inverse images f; leW), WE:/y. 'I E r, 
constitutes a subbase for :Y.) Consequently a base for :Y is given by the 
collection of all sets of the form 

(1) 

where each Ui is an open set in Yy; (which may be required to belong to a 
specified base for Yy) and {rto ... , 'In} is an arbitrary finite subset of r. 

Example M. Let {:Yy}yer be an indexed family of topologies on a set X, 
and for each index 'I let Yy and fy denote, respectively, the topological space 
consisting of X equipped with the topology :Y yo and the identity mapping 
on X regarded as a mapping of X onto Yy. Then the topology inversely 
induced on X by the family {fy}yer coincides with the supremum :Y of the 
given family of topologies (Prob. G). Consequently a base for :Y is given by 
the collection of all sets of the form U I (\ ... (\ Un, where Ui belongs to 
:Yy , i = 1, ... , n, and {'II"'" 'In} denotes an arbitrary finite subset of r. 
(Each U i may also be required to belong to a prescribed base for ffy) 

Example N. If {Yy}yer is an arbitrary indexed family of topological spaces, 
and if X = fly Yy, then the product topology on X is the topology inversely 
induced by the family {1t y} of projections. Thus a base for the product 
topology on X is given by the collection of all products fly U y' where U y 

is an open subset of Yy for all indices 'I, and where U y = Yy except for a finite 
number of indices. In the event that the index set r is {1, ... , n}, it is 
customary to write Yl x ... x y" for the product of the topological spaces 
{1';}i= I equipped with the product topology. (A base for this topology is 
given by the collection of all products U I x ... x Un, where U i is an open 
subset of 1';, i = 1, ... , n.) Similarly, if X and Yare topological spaces, their 
product is denoted by X x Y and is understood to be equipped with the 
product topology. Indeed, whenever a product of topological spaces is 
regarded as a topological space, it is the product topology that is understood 
to be in use unless the contrary is expressly stipulated. 
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Concerning products of topological spaces the following fact is of primary 
importance. (See Problem T for a sketch of a proof.) 

Theorem 3.15 (Tihonov's Theorem). An arbitrary product of compact 
Hausdorff spaces is a compact Hausdorff space. 

In the more classical parts of general topology, in particular in the study 
of metric spaces, a very considerable role is played by infinite sequences. 
Unfortunately sequences cannot play this central role in an arbitrary 
topological space. It turns out, however, that the concept of a net, defined 
in Chapter 1, serves as a natural generalization of the concept of an infinite 
sequence. The following discussion does not assume any prior knowledge of 
nets on the part of the reader other than a familiarity with the relevant 
material in Chapter 1 (see p. Sff.). 

Definition. If X is a topological space, then a net {X;.};.EA in X is said to 
converge to a point Xo in X and Xo is said to be the limit of the net {x;.} 
(notation: lim;. x;. = Xo or x;. --+ xo) if for every neighborhood V of Xo 
there exists an index Ay , depending on V, such that x;. E V for every 
A in A such that A ~ Ay . 

Since the system N of positive integers and the system No of nonnegative 
integers are directed sets in the natural ordering, infinite sequences may be 
viewed as a very special, albeit very important, kind of net. Thus the foregoing 
definition serves to define convergence for an infinite sequence of points 
in an arbitrary topological space. 

Example O. Let X be a simply ordered set containing at least two elements, 
and let {X;.LEA be a monotone increasing net in X. Then {x;.} converges 
in the order topology on X (Ex. B) if and only ifsup;'EA x;. exists, and, if this 
supremum does exist, then 

lim x;. = sup x;.. 
;. ;. 

In particular, a monotone increasing net of real numbers is convergent 
in IR if and only if it is bounded above in IR. Similarly, an arbitrary monotone 
increasing net of extended real numbers is convergent in IRq. (Analogous 
remarks apply to decreasing nets.) 

Example P. If a and b are real numbers with a < b, then the open interval 
(a, b) is a directed set in the natural ordering of the real numbers. If f is a 
mapping of (a, b) into a topological space X, and if f converges as a net 
indexed by the directed set (a, b), then the limit is the limit off as t tends to b 
from below and is denoted by limrtb f(t) or by f(b - ). Similarly, iff converges 
as a net indexed by the set (a, b) in the inverse ordering of IR, then the limit 
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is known as the limit of f as t tends to a from above and is denoted by 
lim! ta f(t) or by f(a + ). (The inverse ordering of IR is the ordering -< defined 
by setting s -< t when and only when t ~ s. It is clear that an open interval 
is directed in this new ordering as well as in the natural ordering.) 

Example Q. Let {,qYEr be an indexed family of complex numbers, and let 
{O'DlvE~ denote the net of finite sums of the given family P'Y} (Prob. 1M). 
If the net {O'D}DE~ is convergent in C to a limit 0', then the family P'Y} is 
said to be summable, 0' is called the sum of the indexed family P'y}, and we 
write 

Similarly, if {tY}YE! is an indexed family of extended real numbers such that 
- 00 < ty ~ + 00 [-00 ~ ty < + 00] for every index y (Ex. 1B), and if the 
net {SD}DE~ of finite sums converges to a limit s in the topological space 
IRq (Ex. C), then s is called the sum of the indexed family {ty} and we write 

s = L ty. 
YE! 

(Note that when s = ± 00 we do not say that the family {ty} is summable.) 
An indexed family {ty} of nonnegative real numbers is summable in IR if 
and only if the net of finite sums is bounded above in IR, and always possesses 
a sum in IRq (Ex, 0). An indexed family {tl'}"E! of nonnegative extended 
real numbers satisfies the condition 

L ty = +00 

if and only if either some ty = + 00 or the net of finite sums fails to be bounded 
above in IR. 

In the event that the index family is N (or No), i.e., when we start with a 
sequence {An}:'= 1 of complex numbers, care must be taken to distinguish 
between the indexed sum LnEN An and the sum of the infinite series I:'=1 An' 
Indeed, it is readily verified that the sequence {An }:'= 1 is summable as an 
indexed family with sum 0' if and only if the infinite series L:'= 1 An converges 
unconditionally to 0', (Recall that an infinite series I:,= 1 An of complex 
numbers is unconditionally convergent if it converges to a sum 0' that is 
unchanged by permuting the sequence {An}:'= 1 and that a series is un
conditionally convergent if and only if it is absolutely convergent.) In the 
same context, if {tn}:'= 1 is a sequence of extended real numbers such that 
- 00 < tn ~ + 00 [- 00 ~ tn < + 00] for every n, then the sequence 
{tn}:'= 1 has sum s as an indexed family in IRq if and only if the series I:,= 1 tn 
converges unconditionally to s, i.e., possesses a sum s that is unchanged by 
permuting the sequence {tn}:'= l' (We define s to be the sum of an infinite 
series I:'=1 tn of extended real numbers if the sequence {Ii'= I t;}:'=1 of 
partial sums converges to s in IR'.) Like observations apply, of course, when 
the index family is No. 
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One unpleasant property that a topological space X may have is that a 
net in X can converge to more than one point. In fact, if X is not a Hausdorff 
space, then there always exist nets in X that converge to two different 
points (Prob. K). Fortunately, all of the topological spaces that play any 
significant role in this book are Hausdorff, and in such spaces this pathology 
cannot occur. 

Proposition 3.16. If X is a Hausdorff space, then no net in X converges to more 
than one point. 

PROOF. If x and yare distinct points of X, then there are neighborhoods U 
and V of x and y, respectively, such that U and Vare disjoint. Now suppose 
that {Z;'};.EA is a net in X that converges to both x and y. Then there exist 
indices Al and ,.1,2 in A such that Z;. E U for all A ::?: Al and such that Z;. E V for 
all A ::?: ,.1,2' Let ,.1,0 be an index in A such that ,.1,0 ::?: AI, ,.1,2' Then z;'o E Un V, 
which is impossible. 0 

The following propositions, valid in the most general topological space, 
characterize closure and continuity in terms of nets. 

Proposition 3.17. A point Xo in a topological space X belongs to the closure 
of a subset M of X if and only if there exists a net in M that converges 
to Xo. Consequently a set U in X is open !f and only if no net in X\ U con
verges to a limit lying in U. 

Proposition 3.18. A mapping f of a topological space X into a topological 
space Y is continuous at a point Xo of X if and only if,for every net {xJ ;'EA 
in X converging to xo, the net {f(X;')};'EA converges in Y to f(xo). 

As has been noted, the preceding results are generalizations of familiar facts about 
sequences in metric spaces. It is worth pointing out that the possibility of describing 
closure and continuity in a topological space by means of the special nets that are 
sequences has nothing to do with the metrizability of that space, but rather with the 
first axiom of countability (Prob. J). 

The proofs of Propositions 3.17 and 3.18 depend upon the following 
considerations: If the set .AI(x) consisting of all the neighborhoods of any 
one point x in a topological space X is ordered by the inverse inclusion 
ordering, in other words if we write V ::;; V' whenever V and V' are neighbor
hoods of x such that V ::) V', then .AI(x) becomes a directed set. (Indeed, 
if VI and V2 belong to %(x), then VI n V2 is a neighborhood of x that is 
contained in both VI and V2 .) Whenever %(x) is regarded as a directed set, 
it is this ordering that is understood. 

PROOF OF PROPOSITION 3.17. Suppose first that there exists a net {x;.} in M 
that converges to Xo' Then every neighborhood of Xo contains elements of 
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that net, and therefore meets M. Thus Xo is in the closure of M. On the other 
hand, if Xo is in M-, then for each neighborhood V of x in JV(x) there exists 
a point x = Xv such that Xv belongs to V n M. The indexed family {XVhE.¥(X) 

thus obtained is a net lying in M and directed by JV(x). Since this net clearly 
converges to xo, the proof is complete. 0 

PROOF OF PROPOSITION 3.18. Suppose first thatf is continuous at xo, and let 
{x .. } be a net in X that converges to Xo. For any neighborhood V of f(xo) 
in Y, there exist a neighborhood W of Xo such that feW) c V and an index 
Aw such that x .. E W for all A ~ Aw. Then, of course,J(x .. ) E V for all A ~ Aw, 
and the net {f(x,,)} converges to f(xo). On the other hand, if f is discon
tinuous at xo, then there exists a neighborhood V of f(xo) such that no 
member W of the directed set JV(x) satisfies the condition feW) c V. 
Hence for every Win JV(x) there exists a point Xw in W such thatf(xw) ¢ V. 
Clearly the net {xw }WE.¥(X) thus obtained converges to xo, but equally clearly 
the net {f(xw)}WEJir(X) does not converge to f(xo). 0 

Corollary 3.19. If X and Yare topological spaces and f is a one-to-one mapping 
of X onto Y, thenfis a homeomorphism o/X onto Y ifand only if an arbitrary 
net {x,,} in X converges to a limit Xo when and only when the net {f(x,,)} 
converges in Y to the limit f(xo). In particular, if!l' and:Y are two topologies 
on the same set X, then !I' = :Y ifand only if an arbitrary net {x)J in X con
verges to a limit Xo with respect to the topology !I' when and only when {x;J 
converges to Xo with respect to the topology .'1. 

The following results are also frequently useful. 

Proposition 3.20. If {fy} YE r is a family of mappings fy : X --+ Yy of a set X into 
topological spaces Yy , then a net {x,J in X converges to a limit Xo in the 
topology inversely induced on X by the given family of mappings if and only 
if the net {f/x,,)} converges in Yy to f/xo) for every index y. In particular, 
a net {x .. } in the product fly Yy of an indexed family of topological spaces 
converges to a limit Xo if and only if it converges to Xo "coordinatewise," 
i.e., if and only if {n/x .. )} converges to n/xo) for every index y. Similarly, 
if {.'1 y} is an indexed family of topologies on a set X, then a net {x .. } in X 
converges to a limit Xo with respect to the supremum SUpy :Y y of the family 
{.'1 y} if and only if {x .. } tends to Xo with respect to each of the topologies :Yy. 

PROOF. Since the mappings fy are continuous on X with respect to the 
topology they induce, it follows from Proposition 3.18 that lim" x .. = Xo 

implies lim .. f/x .. ) = f/xo) for every y. Suppose, in the other direction, 
that the latter condition is satisfied, and let V be a neighborhood of Xo in the 
topology inversely induced by the family {fy}. Since sets of the form (1) 
constitute a base for this topology, there exist indices Y1, ... , Yn and open 
subsets Vi of Y", i = 1, ... , n, such that 

" 
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Since fy,(x o) E Vi and fy,(x) ~ fy,(xo), i = 1, ... , n, there exist indices Ai 
such that fy/x) E Vi for all A ?: Ai, i = 1, ... , n. If ..1.0 is an index such that 
Ai ~ ..1.0, i = 1, ... , n, and if A?: ..1.0 , then f),,(x) E Vi for every i = 1, ... , n. 
Therefore X A E V for all A ?: ..1.0, The last two assertions of the proposition 
follow by virtue of Examples M and N. D 

Corollary 3.21. If {fY}YEf is an indexed family of mappings fy: X ~ r; 
of a set X into topological spaces r;, and if g is a mapping of a topological 
space Z into X, then g is continuous with respect to the topology inversely 
induced on X by the family {fy} if and only iffy 0 g is continuous for each 
index y. In particular, a mapping g of a topological space Z into a product 
space TIy r; is continuous if and only if Te y 0 g is continuous for each 
projection Te y. Similarly, if {3") is an indexed family of topologies on a 
set X, then a mapping g of a topological space Z into X is continuous with 
respect to the topology SUpy 5 Y if and only if g is continuous with respect 
to each of the topologies 5 Y' Y E r. 

PROOF. It suffices to prove the first assertion of the corollary. The condition is 
clearly necessary since the mappings fy are all continuous with respect 
to the topology they induce. To verify the sufficiency of the stated criterion, 
suppose that all of the compositions fy 0 g are continuous on Z, and let 
{ZA} be a net in Z converging to a limit Zo. Then {fy(g(ZA»} converges in r; 
to the limitf/g(zo», and it follows by Proposition 3.20 that {g(ZA)} converges 
to g(zo) in X with respect to the topology inversely induced by the family 
{fy}. Hence g is continuous by virtue of Proposition 3.18. D 

Example R. Let X be a set, let {fY}YEf be a family of mappings fy: X ~ r;, 
of X into topological spaces r;, and suppose that for any pair of distinct points 
Xl' X 2 in X there is some mapping J;. such that f.(x 1) -# J;.(x 2) (such a family of 
mappings is said to be separating on X). If we form the product II = fly r;, 
and define 

F(x) = {fy(X)}YEf, X E X, 

then F is a one-to-one mapping of X into II. Moreover, if Xo is a point of X 
and {xA} a net in X, then, according to Proposition 3.20, limA xA = Xo in the 
topology inversely induced by the family {fy} if and only iflimA fix J = fy(xo) 
for every index y. On the other hand, the net {F(x A)} tends to F(xo) if and only 
if the very same condition is satisfied. Hence, by Corollary 3.19, F is a homeo
morphism of X in the topology induced by the family {fy} onto the subspace 
F(X) of II. Thus we have established the following important fact: Let X 
be a topological space, and let {fy} be an arbitrary separating family of 
continuous mappings of X into topological spaces r; such that the topology 
induced on X by the family {fy} coincides with the given topology on X. 
Then the mapping 

F(x) = {fy(X)}YEf, X E X, 
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of X into n = Dy Yy is a homeomorphism of X onto the subspace F(X). 
(Such a mapping is called a topological embedding of X in 0.) 

Example S. A very important application of the foregoing construction arises 
when X is a completely regular space. In this case let$' denote the collection 
of all continuous mappings of X into the unit interval [0, 1 J, and note that the 
complete regularity of X ensures that the topology inversely induced on X 
by $' coincides with the given topology. Moreover, the fact that X is 
Hausdorff assures that$' is separating on X. Thus we obtain the following 
result (Tihonov): If we write 

F(x) = {f(X)}fEY;' X E X, 

then F is a topological embedding of X in n = Df Yf , where Yf = [0, IJ 
for every f in $'. Since n is a compact Hausdorff space (Th. 3.15), this 
construction shows that an arbitrary completely regular space can be 
topologically embedded in a compact Hausdorff space. Conversely, it is 
clear that every subspace of a compact Hausdorff space is completely 
regular (Prop. 3.4). 

PROBLEMS 

A. (i) The weight of a topological space X is the minimum cardinal number that a base 
for the topology on X can have. (Thus the second axiom of countability requires 
the weight ofa space to be a countable cardinal number.) Show that ifthe weight 
of X is an infinite cardinal number c and if rJB is an arbitrary base for X, then !YJ 
contains a base .?lo having cardinal number c. (Hint: Recall Problem 1 T.) 

(ii) If X is a topological space and x is a point of X, then a neighborhood base at x 
is a collection Y of neighborhoods of x with the property that every neighror
hood of x contains some one of the neighborhoods in Y. (Briefly: Y is a cofinal 
subset of JV(x) (Prob. IP) in the inverse-inclusion ordering.) By the weight of 
X at x is meant the smallest cardinal number a neighborhood base at x can 
have. (Thus, the first axiom of countability requires that the weight of X be 
countable at each point of X.) Show that if the weight of X at x is c, and if Y is 
an arbitrary neighborhood base at x, then Y contains a neighborhood base Yo 
at x having cardinal number c. 

B. A point x in a topological space X is an accumulation point of a subset A of X if x 
belongs to the closure (A\{x})-. (In a space in which all singletons are closed, 
in particular, in an arbitrary Hausdorff space, it comes to the same thing to require 
that V n A be an infinite set for every neighborhood V of x.) The set A* consisting 
of all the points of accumulation of A is called the derived set of A. 

(i) Show that A - = A u A * and verify that A * is closed if X is a space in which 
all singletons are closed sets. 

(ii) A subset D of a topological space X is said to be dense in itself if D c D*, and 
to be perfect if D is both dense in itself and closed. (Thus, if X is a Hausdorff 
space, D is a perfect set if and only if D = D*.) An example of a set that is dense 
in itself is the set Q of rational numbers in the space III Examples of perfect 
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sets in fR are the closed intervals [a, b J, a < b. Show that the Cantor set (Ex. J) 
is perfect. 

(iii) A point x in a topological space X is a condensation point of a set A c X 
if the intersection V n A is uncountable for every neighborhood V of x. Show 
that if X is a Hausdorff space satisfying the second axiom of countability, 
and if F is a closed subset of X, then F can be expressed as the (disjoint) union 
of two sets A and B, where A is a countable set while B is a (perfect) set having 
the property that every point of B is a condensation point of B. In particular, 
every closed set in fRn can be so expressed. (Hint: Set B equal to the set of all 
condensation points of F.) 

C. Let K be a compact subset of a Hausdorff space X, and let y be a point of X such that 
y rt K. Show that there exist disjoint open sets U and V in X such that K c U 
and y E V. (Hint: For each point x of K there exist disjoint open sets U x and Vx 
such that x E U x and y E Vx , and some finite collection of the sets U x suffices to cover 
K.) Use this fact to prove Propositions 3.2 and 3.4. 

D. (i) It is clear that an ordinal number segment W(f3) has a greatest element if and 
only if f3 is of the form a + 1, in which case W(f3) = W(a) u {a}. Show that an 
ordinal number segment W(f3), f3 > 0, is compact in the order topology if and 
only if W(f3) contains a greatest element, or, equivalently, if and only if f3 is not a 
limit ordinal. Use this fact to show that if n denotes the smallest noncountable 
ordinal number, then W = Wen) is countably compact but not compact in 
the order topology (Ex. B). (Hint: To show that W is count ably compact, let 
{U n}:=, be a sequence of open sets in W that covers W, and for each countable 
ordinal number a let k(a) denote the smallest positive integer k such that 
W(a) = {~E W: ~ :s: a} is covered by {U" ... , Uk} (such a positive integer 
exists since W(a) is compact by the first part of the problem); use Problem 1 W.) 

(ii) It follows at once from (i) that the topological space W consisting of the ordinal 
number segment Wen) in the order topology does not satisfy the second axiom 
of countability. Show that, in fact, if Y is an arbitrary Hausdorff space satisfying 
the second axiom of countability, and \I> is any continuous mapping of W into 
y, then II>(W) is a countable, compact subset of Y, and there exists a unique 
point Yo in Y and an ordinal number ex in W such that \I>(~) = Yo identically 
on the tail W\ W(a). (Hint: Show first that \I>(W) is compact. Then consider the 
set of those points y in Y with the property that the set C = {~ E W: \I>(~) E V} 
is uncountable for every neighborhood V of y. If y, and Y2 are points of C, then 
there exist increasing sequences {~n}:= 1 and {'1n}:=, in W such that 

and such that 

~, < '11 < ~2 < '12 < .... ) 

E. Every real number t, 0 :s: t :s: 1, has an expression of the form 

(2) 

where each of the digits <.,' <'2' ... is either 0, 1, or 2, and where the symbol in (2) 
represents the number 

I ~. 
j= 1 3 
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(The ternary expansion (2) is not always unique since each triadic fraction r = m/3", ° < r < 1, possesses two ternary expansions, one ending in a sequence of zeros, the 
other in a sequence of twos. Every other real number in [0, 1] has a unique ternary 
expansion.) Verify that the set F 1 in Example J consists precisely of those real 
numbers t in [0, I] such that E 1 #- 1 in the representation (2). (If t is a triadic fraction 
and therefore has two ternary expansions, then t E F 1 if f.l #- 1 in either of its 
expansions.) Pursue this line of reasoning to show that the Cantor set coincides 
with the set of all those numbers in the unit interval possessing a ternary expansion 
in which no digit En is equal to one. (Such expansions are sometimes said to be 
" one-free.") 

F. Let x be a point in a compact Hausdorff space X, and let D denote the intersection 
of all of the closed-open subsets of X that contain x. Show that D coincides with 
the connected component of x, and use this fact to prove Proposition 3.14. (Hint: 
The hard part is to show that D is connected. Suppose that D = Dl U D2 , where 
Dl and D2 are closed and disjoint. Let Viand V 2 be disjoint open sets such 
that Dj C Vj, i = 1, 2 (Prop. 3.4). There exists a closed-open set E such that 
DeE c VI U V2 .) 

G. Show that the in,tersection of an arbitrary nonempty collection of topologies on a 
set X is again a topology on X. Use this fact to prove that the col1ection of all 
topologies on X is a complete lattice in the inclusion ordering. Show, in other words, 
that for an arbitrarilygiven family {ffY}YEf of topologies on X there is a coarsest 
topology on X that refines each ff Y (the supremum SUPy ff Y of the given family) 
and a finest topology on X that is refined by each ffy (the infimum infy ffy of the 
given family). (The supremum of the collection of all topologies on X, that is, the 
finest topology on X, coincides with the power class on X and is cal1ed the discrete 
topology; the supremum of the empty collection of topologies on X, that is, the 
coarsest topology on X, consists of the two sets 0 and X, and is called the indiscrete 
topology.) 

H. Suppose that X is a topological space and that ~ is an equivalence relation on X. 
Let the quotient space of X modulo ~. that is, the family of equivalence classes 
determined by "', be denoted by X I ~, let n be the projection of X onto X I ~, 
and define a subset U of XI ~ to be open if n- 1(U) is open in X. The col1ection 
of open sets so obtained forms a topology on XI ~ cal1ed the quotient topology. 
The mapping n of X onto the space XI ~ in the quotient topology is continuous. 
Let f be a mapping of X into a topological space Y that respects the equivalence 
relation ~, that is, such that x ~ y implies f(x) = f(y). Show that f can be 
factored through X 1-, so that f = Jon, where J maps XI - into Y. Show also 
that if X/ ~ is equipped with the quotient topology, then f is continuous when and 
only when 1 is. 

I. Let X be a topological space satisfying the first axiom of countability. Verify that 
a point x is in the closure of a subset A of X if and only if there exists a sequence 
in A that converges to x. Show likewise that if X also has the property that al1 
singletons are closed sets, in particular if X is Hausdorff, then x is an accumulation 
point of A (Prob. B) if and only if there exists a sequence of distinct points in A 
that converges to x. Show, final1y, that Proposition 3.18 is valid, with sequences 
replacing pets, for mappings between topological spaces that satisfy the first axiom 
of countability. 
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J. It is well known that an infinite sequence {xn} in a topological space X converges 
to a limit y if and only if every subsequence of {xn} possesses a subsequence that 
converges to y. (Proof?) Show that it is also the case that a net {X,j"EA in a 
topological space X converges to a limit y ifand only ifevery subnet of {x,,} possesses 
a subnet that converges to y. 

K. Suppose that X is a topological space that is not Hausdorff. Show that there exists 
a net in X that converges to two distinct points of X. (Hint: Let x and y be distinct 
points of X that do not possess disjoint neighborhoods, and turn the product 
A '(x) x cqy) into a directed set.) 

L. Every convergent sequence in (: is bounded. Give an example of a net in (: that 

converges but is not bounded. 

M. Let a and b be real numbers, a < b, and let f be a monotone real-valued function 
defined on [a, b]. Show that f(c-) = lim'le f(t) exists for every a < c S b, and 
likewise that I(c + ) = lim, Ie f(t) exists for every a S (' < b (see Example P). 
Thus f is continuous except for "jump" discontinuities. At each point t, a < t < b, 
let us define the jump in f to be 

0, = If(t+) - f(t- )1, (3) 

and set oa = If(a+) - f(a)l, Ob = If(b) - f(b- )1. Show that 

I 0, s If(b) - f(a)l· 
a$.l:Sb 

In the same vein verify that if f is an arbitrary function of bounded variation on 
[a, bJ (Prob. 11), then the one-sided limits f(t+) and f(t-) exist wherever each 
is defined, so that f is continuous except for jump discontinuities. Moreover, 
if 0, is defined as in (3) (and we set oa = 1 f(a +) - f(a) I, Ob = 1 feb) - f(b-)I), 
then Ia:5':5b 0, is dominated by the total variation of f over [a, b]. 

N. Let A be a subset of a topological space X, and let f be a mapping of A into a 
second topological space Y. If Xo is a point of A - and Yo is a point of Y, then we say 
thatfhas limit Yo as x tends to Xo along A (notation: Yo = limx~xo f(x» iffor every 
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neighborhood W of Yo in Y there is a neighborhood V of Xo in X such that 
f(A n V) c W 

(i) Show that limx~xo f(x) = Yo if and only if f(x;) -+ Yo for every net {x;J 
XEA 

in A such that Xi -+ Xo (Hint: Cf. the proof of Proposition 3.17.) 
(ii) Let A denote the subset of A - consisting of those points x at which the limit 

of f exists as x tends to x along A, and for each x in A write 

lex) = lim f(x). 

Show that if the space Y is regular, then 1 is continuous on A. Show further that 
if Y is regular and f is continuous on A, then A c A and 1 is an extension of f 
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According to this definition of limit, a function f defined on a subset A of a 
topological space X possesses a limit at a point Xo of A when and only when 
r is contilluous at Xo relative to A, in which event 

lim f(x) = f(xo). 
x-xo 
XEA 

In some contexts it is desirable to relax this rather stringent requirement. 
The slightly different definition oflimit that the reader may have encountered 
elsewhere (notably in his elementary calculus textbook) corresponds in our 
notation to 

lim I(x). 
x--->x() 

XEA\lxuf 

O. If X is a topological space and {x;,} J.eA is a net in X, then a point y in X is a cluster 
point of {x;,} if for every neighborhood V of y and every A in A. there exists an index 

A' in A. such that A' 2: A and X;" E V 

(i) Let {X;,LEA be a net in a topological space X, and for each A in A. let T;, = 
{x i,' : A' 2: A}. Show that y is a cluster point of the net {x J if and only if yET i 
for every A in A.. 

(ii) Show that if X is a Hausdorff space and a net {xJ in X converges to a limit xo, 
then Xo is the unique cluster point of the net {x;,}. 

P. A point y in a topological space X is a cluster point of a net {x;,};, E A in X if and only 
if some subnet of {x;,} converges to y. (Hint: Turn the product A. x X(y) into 
a directed set.) If X satisfies the first axiom of countability, then a point y in X is a 
cluster point of a sequence {x n} in X if and only if some subsequence of {xn} con
verges to y. 

Q. A nonempty collection iF of sets is said to have the .finite intersection property if the 
intersection of each nonempty finite subcollection of ff is nonempty. 

(i) Show that a topological space X is compact if and only if every collection of 
closed sets in X that possesses the finite intersection property has nonempty 
intersection. 

(ii) In the same vein, show that X is count ably compact if and only if every de
creasing sequence {F n}:= 1 of nonempty closed sets in X has nonempty inter
section. 

(iii) A point x of a topological space X is said to be an adherent point of a collection 
C{j of subsets of X if x E E - for every E in C{j. Verify that X is compact if and only 
if every collection of sets in X with the finite intersection property possesses 
an adherent point. 

R. Show that a topological space X is compact if and only if every net in X possesses 
a cluster point. Conclude that X is compact if and only if every net in X has a 
convergent subnet. (Hint: To go one way, note that if {x),} is an arbitrary net, and 
if we write T;, = {x;" : A' 2: A} for each index A, then the collection of sets {T;,} 
has the finite intersection property. To go the other way, let ff be a collection of 
closed sets in X possessing the finite intersection property, and denote by q; the 
collection consisting of all finite intersections of members of :F. Then 'fj has the 
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finite intersection property and is directed under inverse-inclusion. For each G 
in rg choose a point XG in G, and consider the net {XdGE\9') 

S. A collection 0/1 of subsets of a set X is called an ultrafilter on X if (a) 0/1 has the finite 
intersection property, and (b) 0/1 is maximal with respect to possessing the finite 
intersection property (in the inclusion ordering on the power class on the power 
class on X). 

(i) Verify that if 0/1 is an arbitrary ultrafilter on a set X, and if A is a subset of X 

such that A n E "# 0 for every set E in 0/1, then A E 0/1. Show also that 0/1 is 
closed with respect to the formation of finite intersections, i.e., show that if 
E 1, ... , En are sets belonging to °ll, then E 1 n ... n En belongs to rJlI. 

(ii) Prove that a topological space X is compact if and only if every ultrafilter on 
X possesses an adherent point. (Hint: Use Zorn's lemma and Problem Q.) 

T. Let 0/1 be an ultrafilter on a topological space X, and let f be a continuous mapping 
of X into a compact space Y. Show that there exists a point Yo in Y such that 
f- 1(V) E 0/1 for every neighborhood V of Yo in Y, and use this fact to prove 
Theorem 3.15. (Hint: Choose Yo to be an adherent point of the collection 
{f(E) : E E 0/1} of subsets of Y, and apply part (i) of Problem S. The hard part of the 
proof of Tihonov's theorem consists in showing that the product X = fly Yy of a 
family {Yy} of compact spaces is compact. Let 0/1 be an ultrafilter on X, apply the 
stated fact to each projection ny, and use Problem S once again.) 

U. A topological space X is said to be sequentially compact if every infinite sequence 
in X possesses a convergent subsequence. Show that if X is Hausdorff and satisfies 
the first axiom of countability, then X is sequentially compact if and only if it is 
countably compact. (Hint: A necessary and sufficient condition for an arbitrary 
Hausdorff space to be countably compact is that every infinite sequence in the space 
possess a cluster point.) 

V. A topological space X is said to be locally compact if every point of X has a compact 
neighborhood. Examples oflocally compact spaces are /Rn, en, all compact Hausdorff 
spaces, and all open subspaces of compact Hausdorff spaces. Show that if x is 
an arbitrary point of a locally compact Hausdorff space X, then the compact 
neighborhoods of x form a neighborhood base at x, and conclude that X is 
completely regular. (Hint: If L is a compact neighborhood of x and V is an arbitrary 
neighborhood of x, then L is closed (Prob. C) and W = VO n LOis an open neighbor
hood of x such that W- is contained in L and is therefore compact and normal 
(Prop. 3.4).) Show also that if K is a compact subset of a locally compact Hausdorff 
space X, and U is an open subset of X containing K. then there exists a continuous 
mapping f of X into [0, 1] such that XK ~ f ~ Xu. (Hint: Construct an open set V 
such that K eVe V- c U and such that V- is compact; apply Urysohn's lemma 
(Prop. 3.5).) 
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If for an ordinal number IX we write W(IX) for the closed initial segment 
W(IX) U {IX} in the order topology, then 

n = Wen) x W(w) 

is a compact Hausdorff space in which the open subspace U = n \ {(n, w)} 
fails to be normal. Thus U in its relative topology, known as the Tihonov 
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plank, is a locally compact Hausdorff space that is not normal. (The Tihonov 
plank is thus also an example of a completely regular space that is not 
normal.) 

W. Let X be a locally compact Hausdorff space. Show that there exists a compact 
Hausdorff space X such that X contains X as a subspace and such that X\X 
is a singleton {w}. Show also that X is unique in the sense that, if X is another 
compact Hausdorff space such that X contains X as a subspace and such that 
X\X is a singleton {w'}, then the identity mapping on X extends to a homeomor
phism between X and X carrying w to w'. The (essentially unique) space X is called 
the one-point compactijication of X, and the point w is known as the point at infinity 
in X. Show that the one-point compactification (: of the complex plane IC is homeo
morphic to the two-dimensional sphere 

S2 = {(x, y, z) E [R3: x2 + l + (z - 1)2 = I}. 

(For this reason (: is frequently called the complex or Riemann sphere. The point 
at infinity in (: is denoted by 00. It is important to note the distinction between the 
element 00 of t and the elements ± 00 of [R~.) 
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We assume the reader to be familiar with the notion of a metric space, and 
with the elementary concepts associated with the theory of metric spaces, In 
this chapter we briefly review some of these concepts, largely to fix notation 
and terminology. (An exception is our treatment of the theory of Baire 
categories; we do not assume any prior knowledge of this topic.) In particular, 
the reader is assumed to be acquainted with the notion of a bounded set, the 
diameter of a bounded set A (notation: diam A), the distance between a point 
x and a set A (notation: d(x, A», and the distance between two sets A and B 
(notation: d(A, B», in a metric space. The reader is also assumed to be familiar 
with the notion of the metric topology on a metric space, and with the 
elementary properties of a metric space regarded as a topological space. 
In particular, the following result is assumed known (see Problem 31). 

Proposition 4.1. Every metric space is normal and satisfies the first axiom of 
countability. A metric space satisfies the second axiom of countability if and 
only if it is separable. If E is a subset of a metric space X, then a point x of X 
belongs to E- if and only if there exists a sequence {xn} in E such that Xn ~ x. 
If f is a mapping of a metric space X into a metric space Y, then f is con
tinuous at a point x of X if and only if; for every sequence {xn} in X, Xn ~ x 
implies f(x n) ~ f(x). 

On occasion, we shall find the more general notion of a pseudometric 
useful. A nonnegative real-valued function a defined on the Cartesian 
product of a set X with itself is a pseudometric on X if 

(i) a(x, y) = a(y, x), 
(ii) a(x, z) ::; a(x, y) + a(y, z), 

(iii) a(x, x) = 0, 
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for all points x. y, and z in X. A set X equipped with a pseudometric is a 
pseudometric space. If (X, (j) is a pseudometric space and Xo is a point of X. 
then for any positive number r the set 

Dr(xo) = {x EX: (j(X, XO) < r} 

is the open ball in X with center Xo and radius r. If in this definition" < " is 
replaced by " ~ ", the result is the closed ball with the same center and radius. 
Just as in a metric space, a subset B of a pseudo metric space X is bounded 
if there exists a closed ball in X that contains B. The collection of all open 
balls in X is a base for a topology on X -the pseudometric topology or 
topology induced by the pseudometric. Whenever a pseudo metric space is 
regarded as a topological space, it is understood that the topology employed 
is the pseudo metric topology unless the contrary is expressly stipulated. 
In particular, limits of sequences and nets, as well as accumulation points 
of sets, are defined in a pseudo metric space by regarding it as a topological 
space in the pseudo metric topology. It is important to note that in an 
arbitrary pseudometric space, just as in the complex plane, a convergent 
sequence is necessarily bounded, but this need not be true of a convergent net 
(see Problem 3L). We also note that it results from these agreements that if 
(X, p) is a metric space and {Xn}~= 1 is a sequence in X, then {xn} converges 
to the point Xo of X if and only if limn p(xn , xo) = o. 

If (X, (j) is a metric [pseudometric] space and if M is a subset of X, then the 
restriction (j I (M x M) is a metric [pseudometric] on M called the relative 
metric [pseudometricl The set M equipped with this relative metric [pseudo
metric] is a subspace of the space (X, (j). The relative metric [pseudometric] 
on M always induces the relative topology on M. 

The continuity of a mapping from one pseudo metric space into another 
is defined, in like manner, in terms of the pseudometric topologies of the 
spaces. In this connection we observe that the topology of a pseudometric 
space, like that of a metric space, satisfies the first axiom of countability. 
Consequently, the closure of a subset of a pseudo metric space, as well as 
the continuity of a mapping of one pseudo metric space into another, can 
be characterized in terms of sequences just as in Proposition 4.1. 

There is an important concept in the theory of metric spaces that has no 
exact counterpart in general topology. 

Definition. Let (X, p) and (Y, p') be metric spaces, and let f be a mapping 
of X into Y. Then f is uniformlY,continuous on X if for every s > 0 there 
exists <5 > 0 such that p(x', x") < <5 implies p'(f(x'), f(x"» < s for 
every pair of points x', x" in X. 

From this definition it is clear that a uniformly continuous mapping is 
continuous. As is well known, there is one very important context in which 
the converse assertion is valid (see Proposition 4.6 below). 

57 



4 Metric spaces 

Two pseudometrics (J land (J 2 on the same set X are equivalent if their 
pseudo metric topologies coincide. Similarly, two metrics Pl and P2 on the 
same set X are equivalent if they give rise to the same metric topology. This 
amounts, of course, to saying that the identity map on X is a homeomorphism 
between (X, Pl) and (X, P2)' 

Example A. If P is a metric on a set X, then 

'() p(x, y) P x,y = , 
1 + p(x, y) 

X,yE X, 

is an equivalent metric on X. (That P and P' are equivalent is apparent from 
the fact that the function J(t) = t/(l + t) is strictly increasing on the ray 
[0, + <Xl) (= {u E IR : u ~ O}). The only hard part is to verify that P' is a 
metric, and this follows at once from the following inequalities: 

u + v u + v + uv u v 
----< <--+--, u,v~O.) 
1 + u + v - 1 + u + v + uv - 1 + u 1 + v 

Thus every (nonempty) metric space (X, p) admits an equivalent metric P' 
in which diam X ::s; 1. 

If X and Yare metric spaces with metrics P and p', respectively, then a 
mapping <p of X into Y is said to be isometric, or to be an isometry, if 
p'(<p(x), <p(x'» = p(x, x') for every pair of points x, x' in X.lfthere exists an 
isometry of X onto Y, then X and Yare isometric, or isomorphic as metric 
spaces. Metric spaces that are isometric are indistinguishable for many 
purposes, and are frequently identified. 

A sequence {xn} in a metric space (X, p) is a Cauchy sequence if 
limm•n p(xm, xn) = O. More generally, a net {X.l},'eA in X is a Cauchy net if 
for every f, > 0 there exists an index Ae in A such that p(X.l, X.l') < f, whenever 
A, A' ~ Ae' A metric space in which every Cauchy sequence is convergent is 
said to be complete. As it happens, every Cauchy net in a complete metric 
space is convergent (Prob. M). The metric spaces IR and C are complete in 
the usual metric p( rt., 13) = I rt. - PI. More generally, the metric spaces IRn 
and en (as defined in Problem A) are complete metric spaces in their usual 
metrics. 

If X is a metric space with metric p, then a completion of X is a complete 
metric space (X, p) together with an isometry <p of X onto a dense subset of X. 
As is customary, we shall consistently use the embedding <p to identify X 
with the subset <p(X) of X. If (X', p') is another completion of X, then there 
exists a unique isometry of X onto X' leaving X pointwise fixed (Prob. I). 
Every metric space possesses an essentially unique completion (Prob. L). 
In particular, if X is complete to begin with, then the completion X of X 
coincides with X. Moreover, if M is a subset of a metric space X, then the 
completion AI of M (in the relative metric pi (M x M» can be identified 
with the closure of M in the completion X of X, and we shall consistently 
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make this identification. In particular, a subset of a complete metric space is 
itself a complete metric space if and only if it is closed. More generally if M is a 
subset of an arbitrary metric space X and M is complete as a subspace of X, 
then M is closed in X (see Problem I). 

A topological space X is said to be metrizable if there exists a metric p 
on X such that the metric topology induced by p coincides with the given 
topology on X. Clearly the metric that metrizes a given metrizable space is 
unique only up to equivalence. The following metrization theorem, due to 
Urysohn, is frequently useful. 

Theorem 4.2. A normal topological space that satisfies the second axiom of 
countability is metrizable. 

PROOF. Let f!4 be a countable base for X. There are only countably many pairs 
(U, V) of sets in f!4 such that V- c U.Let{(Un' y")}:'=1 bean enumeration 
of the set of all such pairs, and for each positive integer n let fn be a continuous 
function on X such that 

Xv" ~ fn ~ Xu" 

(Prop. 3.5). It is easily seen that the topology inversely induced on X by the 
sequence of mappings Un} coincides with the given topology on X. Thus, 
by Example 3R, the space X can be topologically embedded in the product 
of a countable number of copies of the unit interval [0, 1]. Since this product 
is metrizable (Prob. C), the result follows. 0 

Compact metric spaces are automatically compact Hausdorff spaces, 
and enjoy all of the properties of the latter. Additional special properties 
of compact metric spaces are set forth in the following four propositions, 
proofs of the first three of which are entirely elementary. 

Proposition 4.3. If (X, p) is a compact metric space, then for every I: > ° 
there exists a finite covering of X consisting of (disjoint) sets of diameter 
less than 1:. (A metric space with this property is said to be totally bounded.) 
Equivalently, X has the property that for every I: > ° there exists a finite 
subset N e of X with the property that d(x, Nt) < I: for every x in X. (Such 
a set is called an I:-net in X.) 

Corollary 4.4. Every compact metric space is separable and satisfies the second 
axiom of countability. A compact Hausdorff space is metrizable if and only 
if it satisfies the second axiom of countability. 

Corollary 4.5. If f: X -+ Y is a continuous mapping of a compact topological 
space X into a metric space Y, then the range f(X) is a bounded set in Y. 
(A mapping that takes its values in a metric space is said to be bounded if 
its range is bounded. Thus every continuous mapping of a compact space into 
a metric space is bounded.) 
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Proposition 4.6. Every continuous mapping f of a compact metric space 
(X, p) into a metric space (Y, pi) is uniformly continuous. 

PROOF. Let c be a positive number. For each point x of X there exists a 
6x > 0 such that pl(f(X'), f(x» < c/2 whenever x' is a point of X such that 
p(X', x) < 6x • The open balls Dox/2(x) cover X, so there exists a finite set of 
points Xl> ... , Xn in X such that the balls 

i = 1, ... , n, 

cover X. Let 6i = 6Xi ' i = 1, ... , n, set 6 = 61 /\ ... /\ 6n , and suppose 
p(X', x") < 6/2. Then x' belongs to some D i , and it follows that x' and x" 
both belong to Doi(x;). But then pl(f(X'),f(x;) < c/2 andp'(f(x"),f(x;) < c/2, 
so that pl(f(X'), f(x"» < c. D 

Example B. If <p is a continuous complex-valued function on a closed interval 
[a, b J (a < b), then <p is uniformly continuous on [a, b J by the preceding 
proposition. It follows that for every c > 0 there exists a 6, > 0 with the 
property that if {a = to < ... < t N = b} is any partition of [a, b J having 
mesh less than 6, (Prob. IG), and if t', til are two real numbers belonging to 
anyone of the subintervals [t i- 1, tJ then I <p(t') - <p(t") I < c. Consequently, 
the diameter in C of the set <P([ti - 1, tiJ) (usually known as the oscillation 
of <p over [t i - 1, t;]) is not greater than c. 

Suppose next that <p is a rectifiable (but not necessarily continuous) 
function on [a, bJ (Prob. 11), and for each t, a ~ t ~ b, let L(t) denote the 
length, or total variation, of <p on the subinterval [a, tJ (The function L is 
monotone increasing and has the property that L(t) - L(s) gives the total 
variation of <p on the subinterval [s, tJ for a ~ s ~ t ~ b; see Problem lK.) 
Let f. be a positive number, and let flo = {a = So < ... < SM = b} be a 
partition such that 

M 

L I <P(Si) - <p(si-dl > L(b) - c. 
i= 1 

If {a = to < ... < tN = b} is any refinement of flo, then 

i = 1, ... , N. 

From this observation it clearly follows that L is left-continuous [right
continuous J at every point of the interval [a, b J at which the given function 
<p is left-continuous [right-continuous]. Consequently, when <p is both 
rectifiable and continuous, the function L is also (uniformly) continuous on 
[a, b]. Hence if {&'n},~)=1 is any sequence of partitions of [a, bJ such that 
limn mesh &'n = 0, then the maximum of the lengths of the subarcs of <p 
determined by the subintervals of each partition &' n tends to zero as n tends to 
infinity. (It may also be noted that if {&' n} is any such sequence of partitions, 
and if v" denotes the variation of <p over &' n' then limn v" = L(b), the length 
of <po Indeed, whenever mesh &'n is sufficiently small, the partition points Si 
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of 220 belong to distinct subintervals of f!J>n.lfmesh f1l'n is also so small that the 
oscillation of q> over each of the subintervals of f!J>n does not exceed elM, 
then v" > L(b) - 3£. 

We turn now to the topic of Baire categories in metric spaces. No prior 
knowledge of this topic is assumed on the part of the reader. 

Definition. A subset N of a metric space X is nowhere dense in X if the closure 
N- contains no nonempty open set. A subset A of X is of first category 
in X if it can be written as a countable union of sets each of which is 
nowhere dense in X. A subset B is of second category in X if it is not of 
first category in X. 

It is clear that if {An} is any countable collection of sets each of which is 
of the first category in a metric space X, then Un An is of first category in X. 
Likewise, any subset of a set of the first category in X is itself of first category 
in X. Hence, if X happens to be of first category in itself, then all subsets of X 
are of first category in X. Thus category distinctions have significance 
only in spaces that are of second category in themselves, and the most 
important examples of such spaces are complete metric spaces. The following 
proposition is central to the proof of this fact. 

Proposition 4.7. A set N is nowhere dense in a metric space X if and only if, 
for every nonempty open set U in X, there exists a nonempty open set V such 
that V c U and V n N = 0. Moreover, if N is nowhere dense, it is always 
possible to arrange for V to be an open ball with arbitrarily small positive 
radius satisfying the stronger conditions Y- c U and Y- n N = 0. 

PROOF. If N is not nowhere dense, and U is a nonempty open set contained 
in N-, then every nonempty open subset Y of U clearly meets N. This proves 
the sufficiency of the given condition. To prove the necessity, set V = U\N-. 
If V = 0, then N is not nowhere dense. Otherwise, Y is a nonempty open 
subset of U that is disjoint from N. Thus the necessity of the given condition 
is proved. To prove the last assertion of the proposition, observe that if Xo 

is any point of V, then there exists a radius r > 0 such that D.(xo) c V. 
But then, if £ is a positive number less than r, the ball Dixo) satisfies all the 
desired conditions. 0 

Theorem 4.8 (Baire Category Theorem). Let X be a complete metric space, 
and let U be a nonempty open subset of X. Then U is of second category in X. 

PROOF. Let {Nn}~ 1 be an arbitrary sequence of nowhere dense sets in X. 
It suffices to show that if A = U:,= 1 N n , then U\A -1= 0. Note first that 
by the foregoing proposition there exists an open ball Dl = Dr,(xd with 
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radius rl ::; 1 such that Dl C U and Dl n NI = 0. Continuing via 
mathematical induction, one easily constructs a nested sequence 

of open balls Dn = Dr"(xn) such that rn ::; lin and such that D; n Nn = 0 
for every n. The sequence of centers {xn} is then obviously a Cauchy sequence, 
and since X is complete, {xn} must converge to some limit Xo. Since Xo is 
also the limit of every tail {xn}:= m' and since this tail lies in Dm, it follows that 
Xo ED;;; for m = 1,2, .... Thus Xo ~ A, and since Xo E Dl and Dl C U, 
we have Xo E U\A. 0 

While the hypothesis of the Baire category theorem is metric in nature, the conclusion 
is clearly topological. It follows that the theorem holds in any metric space X for which 
there exists an equivalent metric making it complete. For another, purely topological, 
setting in which an analog of the Baire category theorem is valid, see Problem W. Readers 
wishing to learn more about metric spaces could not do better than to consult [42]. 

PROBLEMS 

A. Establish the Cauchy inequality 
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for arbitrary n-tuples (~I"'" ~n) and ('11"", '1n) in en. (Hint: The Cauchy in
equality follows from the elementary quadratic inequality 

a2 + b2 

ab<---- 2 ' 

valid for all nonnegative a and b; consider first the normalized case 

n n 

I l~kl2 = I l'1kl2 = 1.) 
k=l k=l 

Use the Cauchy inequality to prove that 

(1) 

defines a metric on en. This metric is called the usual metric on e n, and en equipped 
with the usual metric is known as n-dimensional unitary space. If x = (Xl, ... , xn) 
and y = (Yt> ... , Yn) belong to ~n, then (1) simplifies slightly to 

d(x, y) = Ct/Xk - Yk)2 r/2
. 

The space ~n equipped with this metric (also called the usual metric) is n-dimensional 
Euclidean space. (The topological space ~~ (Ex. 3C) is homeomorphic to a closed 
interval of real numbers, and may therefore be metrized whenever that is convenient, 
but there is no one metric on ~~ that deserves to be called the usual one.) 
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B. Let X be a metric space with metric p. If {xn} and {Yn} are sequences in X converging 
to limits Xo and Yo, respectively, then {p(xn' Ynn converges to p(xo, Yo). Show that 
diam A - = diam A for every (nonempty) set A in X. 

C. (i) Let X and Y be metric spaces with metrics P and pi, respectively. Verify that the 
function PI defined by 

PI«XI, YI), (xz, Yz» = P(XI' Xz) + P'(YI' Yz) 

is a metric on the product X x Y. Verify likewise that 

and 

PZ«Xb YI), (xz, yz» = [P(Xb xz)Z + P'(YI' YZ)Z]l/Z 

also define metrics on X x Y (see Problem A). In each of these metrics it is 
the case that a sequence {(xn, Ynn:= I in X x Y converges to a limit (xo, Yo) 
if and only if Xn --+ Xo and Yn --+ Yo. Thus these metrics all metrize the product 
topology on X x Yand are therefore all equivalent. 

(ii) Show that any finite Cartesian product of metric spaces is metrizable. 
(iii) Suppose given an infinite sequence {(Xn, Pn)}:=1 of metric spaces such that 

diam Xn ~ 1 for every n. Verify that 

00 1 
p( {xn}, {Yn}) = n~1 fn p.(xn, Yn) 

defines a metric on the product 0:= I X n' and use this fact to show that the 
product topology on the product of an arbitrary countable collection of 
metric spaces is metrizable. (Hint: See Example A.) 

D. If A is a nonempty subset of a metric space X, the function dA(x) = d(x, A) is 
(uniformly) continuous on X. Hence the set B = {x EX: dA(x) = O} is closed. 
Show that, in fact, B = A - .If E and Fare nonempty disjoint closed sets, then the sum 
dix) + dF(x) is nowhere equal to 0, so that we may define 

The function u is a continuous mapping of X into the unit interval [0, 1] with the 
properties that u(x) = 0 if and only if x E E and u(x) = 1 if and only if x E F. 
(This proves Urysohn's lemma (Prop. 3.5) for metric spaces.) 

E. Let X be a metric space with metric p.1f {xn} is a Cauchy sequence in X, and if some 
subsequence of {xn} converges to a limit Xo, then {xn} itself converges to Xo. Show 
that a Cauchy sequence {xn} always possesses subsequences {Xk" = Yn} satisfying 
the condition P(Yn, Yn+ I) ~ 1/2n, and therefore the condition 

00 

I P(Yn, Yn+ 1) < + 00. (2) 
n=l 

(Conversely, a sequence satisfying (2) is automatically Cauchy.) Show that if every 
sequence {Yn} in X that satisfies (2) is convergent, then X is complete. 
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F. Suppose given a mapping I defined on a metric space (X, p) and taking its values 
in a second metric space (Y, a). We say that I is Lipschitzian if there exists a posjtive 
number M such that a(f(x), I(y» ::0; Mp(x, y) for all points x and y in X. (The 
number M is then called a Lipschitz constant for f) Show that if I is Lipschitzian 
on X, then I is uniformly continuous on X. If A is a nonempty subset of X, then the 
function dA(x) = d(x, A) is Lipschitzian. So are the projections (~b"" ~n) -> ~i 
oflC"[lRn] onto IC [IR], wherelC n[lRn] is given its usual metric (Prob. A). 

G. Let (X, a) be a pseudo metric space. Show that if we define x ~ y to mean a(x, y) = 0, 
then ~ is an equivalence relation on X, and that if [x] denotes the equivalence class 
of a point x of X, then setting 

p([x], [y]) = a(x, y), x,yE X, 

defines a metric on the quotient space X / ~. Verify also that the metric topology 
on X / ~ is the quotient topology of the pseudometric topology on X (Prob. 3H). 
The metric p is known as the metric associated with a. 

H. Suppose that I is a uniformly continuous mapping whose domain is a dense set A 
in a metric space (X, p) and whose range is a subset of a complete metric space 
(Y, a). Show that there exists a unique continuous mapping J of X into Y such 
that J I A = f. The mapping J is said to be obtained by extending I by continuity. 

I. Suppose A and B are subsets of complete metric spaces X and Y, respectively, and 
that t/J is an isometry of A onto B. Then there exists a unique isometry ,"f; of A -
onto B- that extends t/J. (The isometry,"f; is the mapping obtained by extending t/J by 
continuity.) In particular, if (i, .0) and (X' • .0') are two completions of the same 
metric space (X, p), then there exists a unique isometry t/J of X onto X' leaving every 
point of X fixed. In this sense the completion of a metric space is unique. Show, 
in the same vein, that if M is a subset of a metric space X, then there is a unique 
isometry of the completion Nt onto the closure of M in the completion i of X 
that leaves M pointwise fixed. Conclude that if X is complete, then M is complete as a 
subspace of X if and only if M is closed in X, and show that if M is complete, then M 
is always closed in X, whether X is complete or not. 

J. Two sequences {x.} and Lv.} in a metric space X with metric pare equiconvergent if 

lim p(x., Y.) = o. 

A necessary and sufficient condition for a sequence {x.} to converge to a limit Xo 
is that {x.} be equiconvergent with the constant sequence {xa, Xa,"" Xa," .}. 
If either of two equiconvergent sequences is a Cauchy sequence, then both are. If 
either of two equiconvergent sequences converges, then both converge to the same 
limit. Let A be a dense subset of X, and suppose every Cauchy sequence in A 

converges to some limit in X. Show that X is complete. 

K. Show that if {x.} and {y.} are Cauchy sequences in a metric space (X, p), then 
lim. p(x., Y.) exists, and that a( {x.}, {Y.}) = lim. p(x., Y.) defines a pseudo metric a 
on the collection of all Cauchy sequences in X. Show also that if {x.} and {y.} are 
Cauchy sequences and {z.} is any sequence that is equiconvergent with {Y.}, 
then a({x.}, {yn}) = a({x.}, {z.}). 

L. Let X be a metric space with metric p, and let rtf denote the collection of all Cauchy 
sequences in X. We define a relation on rtf by writing {x.} ~ {y.} whenever the 
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Cauchy sequences {xn} and {Yn} are equiconvergent. Verify that ~ is an equivalence 
relation on «1, and that, if (J denotes the pseudo metric defined on «1 in the preceding 
problem, thell(J( {xn}, {Yn}) = 0 ifand only if {xn} ~ {Yn}. Conclude that if X denotes 
the quotient space of all equivalence classes [{xn}] of Cauchy sequences under the 
relation ~, then 

P([{Xn)], [{Yn}]) = (J({xn}, {Yn}) = lim p(x", Yn) 

defines a metric P on X (Prob. G). Show also that if we define 

<p(X) = [{x, x, ... , x, ... }] 

for each x in X, then <p is an isometry of X onto a dense subset of X. Show, finally, 
that X is complete. Thus every metric space possesses a completion, and this 
completion is unique up to a uniquely determined isometry. (Note, in particular, 
that if X is complete to begin with, then the completion X. as constructed here 
coincides with X.) 

M. Let X be a metric space with metric p, and let {X;.LEA be a Cauchy net in X. Show 
that there exists an increasing sequence of indices {An};,"~ I such that p(X;.' , X;.,,) < lin 
whenever A.', A." 2 An' and that the corresponding sequence {xn = x;J is a Cauchy 
sequence. Show that if X is complete, then the net {x;.} converges to the limit of 
the sequence {x n}. 

N. An indexed family {AY}YEr of complex numbers is summable in IC (Ex. 3Q) if and 
only if the corresponding net {(JD}DECi of finite sums satisfies the following Cauchy 
criterion: For every I: > 0 there exists a finite subset D, ofr such that if D is any finite 
subset of r that is disjoint from D" then I (J D I < 1:. Conclude that if {A) is a summable 
family of complex numbers, then Ay = 0 except for a countable set of indices y. 
Show also that {A y} is summable when and only when {lAy I} is, and that, if this is 
the case, then 

(Hint: Do the real case first.) 
In the same vein verify that if the index family r is partitioned in any way into 

subsets r I and r 2, and if {A'Y}YEr is a summable family of complex numbers with 
sum (J, then 

(J = I A). + I A). 
i'Er 1 }' Er2 

More generally, if {rO}OE8 is an arbitrary indexed partition of the index family, then 

(J= I I It) .. 
OE8 YEr. 

In particular, if a doubly indexed family {1t) .. 0})'EUE8 of complex numbers is sum
mabie over r x ~ and has sum (J, then 
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O. Let X be a nonempty set and let (Y, p) be a metric space. 

(i) A net {fA}.E'" of mappings of X into Y is said to be uniformly convergent to a 
limit f (where f is another mapping of X into Y) if for every positive number e 
there exists an index Ao such that (J(f(x), fix)) < (; for all A ;,:: Ao and all 
x in X. Show that if X is a topological space and each fA is continuous on X, 
then the uniform limit f is also continuous on X. 

(ii) Let &leX, Y) denote the set of all bounded mappings from the set X into the 
metric space Y. If f and g belong to &leX, Y), we define 

(J(f, g) = sup p(f(x), g(x». 
XEX 

Show that (J is a metric on &leX, Y) and that a net {fA} in &leX, Y) converges 
uniformly to a limit f if and only if it converges to f with respect to the metric (J. 
(For this reason (J is called the metric of uniform convergence, and the topology 
induced by (J the topology of uniform convergence, on &leX, Y).) Show also 
that &leX, Y) is complete in the metric of uniform convergence if and only 
if Y is complete in its metric p. 

(iii) When X is a topological space, we denote by CfJ b(X, Y) the set of all continuous 
mappings in &leX, Y). (Note that CfJb(X, Y) coincides with the collection 
of all continuous mappings of X into Y when the space X is compact; see 
Corollary 4.5.) Show that CfJb(X, Y) is complete in the metric of uniform con
vergence when and only when Y is complete. 

P. A metric space X is totally bounded (Prop. 4.3) if and only if every sequence {x n} 

in X possesses a Cauchy subsequence. (Hint: One way is easy; the other way involves 
the diagonal process. Suppose X is totally bounded, and let {xn} be an arbitrary 
sequerice in X. If {AI,"" Ak } is some covering of X, where each Ai is a set of 
diameter no greater than one, then an infinite number of terms of the sequence 
{x n} must fall into some one of the sets Ai' Hence {xn} possesses a subsequence 
{x~l)} lying in a subset of X of diameter less than or equal to one. If {B I , •.• , Bq } 

is a covering of X such that diam Bi :s; 1/2, i = 1, ... , q, then, repeating the above 
argument, we conclude that {X~l)} in turn possesses a subsequence {X~2)} lying 
in a set of diameter less than or equal to 1/2. Continuing in this fashion, we obtain 
by induction a sequence {X~k)}~ 1 of sequences, in which each term (except the first) 
is a subsequence of the preceding term, all terms are subsequences of the given 
sequence, and in which the kth term is confined to a set of diameter less than or 
equal to l/k. The "diagonal" sequence {x~n)}:=l is Cauchy.) 

Q. For any metric space X the following conditions are equivalent: 

(i) X is compact, 
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(ii) X is countably compact, 
(iii) X is sequentially compact, 
(iv) X is both totally bounded and complete. 

(Hint: A totally bounded metric space is separable; recall Problem 3U.) 

Note that conditions (i), (ii), and (iii) of Problem Q are topological in 
nature. Hence these properties are equivalent in any topological space that 
is metrizable. It follows from this remark that if Q denotes, as usual, the 
first noncountable ordinal number, then the ordinal segment W(Q) is not 
metrizable in the order topology (see Problem 3D). 
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R. (Ascoli's Theorem) A collection ff of mappings of a nonempty topological space X 
into a metric space (y, p) is equicontinuous at a point Xo of X iffor every f. > 0 there is 
a neighborhood V of Xo such that p(f(x), f(xo» < 8 for every x in V and every 
f in ff. Likewise, ff is equicontinuous on X if ff is equicontinuous at every point 
xof X. 

(i) Show that if {fALEA is an equicontinuous net of mappings of X into Y, then 
the set F of those points x in X at which the net {fix)LEA is Cauchy in Y 
is a closed subset of X. 

(ii) Show that if X is compact and {j~} ),EA is an equicontinuous l1et of mappings of X 
into Y that is pointwise Cauchy on X [pointwise convergent on X to some limit 
f], then {fA} is Cauchy in the metric of uniform convergence on ~b(X, Y) 
[uniformly convergent to f on X] (Prob. 0). 

(iii) Prove that if X is a separable compact topological space (in particular, if X 
is a compact metric space) and Y is a metric space, then a subset ff of the metric 
space ~b(X, Y) of (bounded) continuous mappings of X into Y is totally 
bounded in the metric of uniform convergence on X if and only if (a) it is 
equicontinuous on X, and (b) the set ff(x) = {f(x) E Y: f E ff} is totally 
bounded in Y for every x in X. {Hint: To go one way, show that an arbitrary 
uniformly continuous mapping carries a totally bounded set onto a totally 
bounded set, and recall (Prop. 4.3) that a totally bounded set possesses a, finite 
B-net for every f. > O. To go the other way, start with a sequence {fn} in ~b(X, Y) 
with the property that {fn(x)} is totally bounded in Y for each x in X, and use 
the diagonal process to obtain a subsequence that is Cauchy at every point of 
some countable dense subset of X.) This result, usually known as Asco/i's 
theorem, provides an effective criterion for the compactness of subsets of 
~b(X, Y) in the metric of uniform convergence when X is a compact metric 
space and Y is complete. In particular, if X is a compact metric space, then 
Ascoli's theorem provides an important criterion for identifying the compact 
subsets of ~(X) (Ex. 3D) in the topology of uniform convergence: A subset 
,~ of ~(X) that is closed in the topology of uniform convergence on X is 
compact if and only if $' is equicontinuous on X and $'(x) is bounded in IC 
for every x in X. 

S. Let X be a complete metric space, and suppose given a sequence {Fn}:=o of non
empty closed subsets of X such that 

Fo ;::)F 1 ;::)· .. ;::)Fn ;::) ... 

and such that limn diam Fn = O. Show that the intersection n:=o Fn is nonempty 
and consists of a singleton. Show also (by giving examples) that if the hypothesis 
diam Fn'" 0 is dropped, then n:=o Fn may be either empty or infinite. 

T. (i) For each nonnegative integer n, let us write ~n for the collection of special 
basic sets Cn,; = C n In,;, i = 1, .. " 2n, introduced in the construction of 
the Cantor set C (see Example 3J), and let ~ denote the topological base 
U n ~ n in C. If <p denotes any continuous mapping of C into an arbitrary metric 
space X, then the induced mapping Cn,; ~ <p(Cn) of rt' into the power class 
on X possesses the following three properties: 

(a) The sets <1>(Cn,;) are closed and nonempty, 
(b) IfCn+l,j c Cn,;, then <1>(Cn+ 1,) C II>(Cn,;), 
(c) Ifmn = sup{diam <1>(Cn,;): i = 1, ... , 2n}, then limn mn = O. 
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Show conversely that if 1> is a mapping of Cf} into the power class on a complete 
metric space X, and if 1> satisfies (a), (b), and (c), then there exists a unique· 
mapping ep of e into X such that ep(en) = 1>(en• i) for every set en• i in Cf}. 

Show also that this mapping ep is necessarily continuous. (Hint: For each t in e 
there exists a uniquely determined sequence {in}:=o of positive integers such 
that tEen. in for every nonnegative integer n. Consequently ep(t) must be given 
by {ep(t)} = n:=o 1>(en• i.).) 

(ii) Prove that if X is an arbitrary nonempty compact metric space, then there 
exists a continuous mapping of the Cantor set e onto X. (Hint: Construct a 
mapping 1> as in (i) satisfying conditions (a), (b), and (c), along with the added 
conditions 

(d) 1>(eO• l ) = X, 
(e) If en. i = en+ 1.j U e n+ l.k then 1>(en.;) = 1>(en+ 1.) U 1>(en+ 1. k)' 

Make use of the fact that X is totally bounded (Prop. 4.3).) 
(iii) Prove that if P is a nonempty perfect subset of a complete metric space X, 

then there exists a homeomorphism of the Cantor set e into P. (Hint: Construct 
a mapping 1> as in (i) satisfying conditions (a), (b), and (c), along with the 
added condition 

(d') Ifen• i n en.j = 0, then 1>(en) n 1>(en) = 0,) 

Since singletons are nowhere dense in a perfect Hausdorff space, it is an 
obvious consequence of the Baire category theorem that a perfect complete 
metric space cannot be countable. Problem T (iii) shows more-namely, 
that a perfect complete metric space must have at least the cardinality of the 
continuum. Moreover, it is clear on the basis of this last result that a 
complete metric space satisfying the second axiom of countability must 
either be countable or have cardinal number ~ (see Problem 3B). 

U. Show that the intersection of a countable collection of dense open subsets of a 
nonempty complete metric space X is a dense set of the second category in X. 

V. Let (X, p) be a nonempty complete metric space, and let I be a mapping of X into 
a metric space (Y, p'). Show that if the set e of points of continuity of I is dense in 
X, then e is of the second category in X. (Hint: For each point x of X and each 
positive number 8 write w(J; x, D) for the supremum in IR' of the set of distances 
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{p'(J(x), I(Y»: Y E X, p(x, y) < D}, 

and set 

w(J; x) = inf w(J; x, e), XEX. 
£>0 

(The extended real number w(J; x) is called the oscillation off at x.) Show that.r is 
continuous at a point x if and only if w(f; x) = 0, and that the set 

{XEX:W(J;X) < I'/} 

is open in X for every positive number 1'/. Use Problem U) Conclude from this fact, 
in particular, that there does not exist any real-valued function I on the unit interval 
[0, 1] with the property that the set of points at which I is continuous consists 
exactly of the rational numbers in [0, 1]. 



4 Metric spaces 

W. A subset N of an arbitrary topological space X is said to be nowhere dense in X 
if (N- t = 0, and a subset A of X is of first category in X if A can be expressed 
as a countable union of sets each of which is nowhere dense in X. Likewise, a 
subset of X that is not of first category in X is of second category in X. Prove that 
if X is a locally compact Hausdorff space, then every nonempty open subset of X 
is of second category in X. (Hint: Follow the proof of Theorem 4.8.) 

X. Suppose that {A,,},~~ I and {B,J::,= I are two sequences of sets in a topological space X 
such that for each positive integer n the symmetric difference An V Bn is of first 
category in X. Show that for each pair of positive integers m and n the symmetric 
difference (An \Am) V (Bn \Bm) is also of first category in X. Show also that 
(U:."= 1 An) V (U:."= 1 Bn) is of first category in X. (Hint: See Problem IF). 
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Complex analysis 

We shall have numerous occasions in the sequel to refer to the theory of 
functions of a complex variable, and we assume the reader to be familiar 
with the elements of this theory. We present here an outline of the rudiments 
of complex analysis, chiefly for convenience of reference, but also to fix 
notation and terminology. To begin at the beginning, we recall that a domain 
in the complex plane is a non empty connected open subset of C, and that a 
(complex-valued) function f defined on a domain Ll is analytic (or holo
morphic) on Ll if its derivative J' exists at each point of Ll. (More generally, 
if U is an arbitrary non empty open subset of C and f is a differentiable 
complex-valued function defined on U, we shall say that f is locally analytic 
on U. The study of a locally analytic function f on U reduces at once to the 
study of the analytic functions obtained by restricting f to the components 
of U; cf. Proposition 3.9.) We also recall that all of the elementary rules of 
ordinary real differential calculus hold for analytic functions of a complex 
variable. Thus the sum, product, and quotient rules for computing derivatives 
all hold for analytic functions, as does the chain rule. In particular, every 
complex polynomial function is analytic on the entire complex plane, and 
may be differentiated by means of the same elementary rule learned in 
calculus. Similarly, every complex rational function is analytic on the 
complement of the (finite) set of points at which its denominator vanishes. 

Example A. If {cxn}nCD=O is any sequence of coefficients, then the power series 

(1) 
n=O 

has a radius of convergence r, 0 :::; r :::; + 00, where r has the property that 
the series (1) converges for all A such that I A - Ao I < r and diverges for 
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all A such that I A - ,1,0 I > r. (If r = + 00, then the series (1) converges for 
every A and is said to converge everywhere; ifr = 0, then (1) converges only 
for A = ,1,0' No general statement can be made concerning the convergence 
of (1) on the circle of convergence ClAo) = {A E C: 1,1, - ,1,01 = r} when ° < r < + 00; in this connection see Problem A.) The radius of convergence 
r of the power series (1) is given by the formula 

~ = lim sup I an 11/n. 
r n 

(2) 

(If lim supn I an 11/n = + 00, then r = 0; if lim supn I an 11/n = 0, then r = + 00.) 
Moreover, if r > 0, the formula 

en 

f(A) = L an(A - ,1,0)" 
n=O 

defines an analytic functiop f on the disc of convergence 

Dr(AO) = {AEC: 1,.1. - ,.1.01 < r} 

(3) 

of the series, the derivative I' being given by the formally differentiated power 
series 

en 

1'(,.1.) = L nan(A - ,.1.0)" - 1 (4) 
n= 1 

for all A in D,(Ao). Moreover, the convergence of (3) and (4) is absolute and 
uniform on compact subsets of Dr(Ao)' (When r = + 00, the convergence is 
absolute everywhere and uniform on arbitrary compact subsets of the plane.) 

Thus a power series (1) with a positive radius of convergence defines an 
analytic function on a disc about its center ,.1.0' To see that the series is in 
turn determined by its sum f in (3), we note that (4), together with an easy 
induction argument, shows that each coefficient exn is given by the familiar 
formula an = pn)(Ao)/n !. Hence the series expansion (3) is automatically 
and necessarily the Taylor expansion of its sum. 

Along these lines we also make the following observation: if f is given by 
the power series expansion (3) in a disc D,(Ao) with r > 0, and if f vanishes 
on some subset M of D,(Ao) such that the center ,.1.0 is an accumulation point 
of M (Prob. 3B), then (by another induction argument) all of the coefficients 
an must vanish, and therefore f is identically equal to zero. Thus the sum fin 
(3) is completely determined by its behavior along any set such as M. 

Example B. The power series 
00 An ,.1.2 
L-=1+A+-+'" 

n=O n! 2! 

converges everywhere to the exponential function eA = exp A.. (We take this 
to be the definition of eA in the complex domain.) According to (4) we have 

d A A 
dA e = e , 
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Similarly, using a straightforward series calculation, it is not difficult to 
verify that 

tX, {3 E C. 

In this connection we observe that the series 

00 (-1 t A 2n 00 (_ 1)" A 2n + 1 

n~o (2n!) and n~o (2n + I)! 
also converge everywhere, and we use these expressions to define the circular 
functions on (, setting 

00 (_I)"A2n 00 (_ltA2n+l 
cos A = L ,and sin A = L ----

n=O (2n). n=O (2n + I)! 
for all complex numbers l (These definitions are not capricious, of course; 
it is readily seen that these are the only analytic functions on ( that extend 
the real functions et, cos t, and sin t, defined on the real axis in C.) It is a 
simple matter, using these series representations, to show that 

eit = cos t + i sin t 

for all real numbers t. Hence if we write A = s + it, where sand t are real, then 

eS = le),1 while t = arg eA. (5) 

The facts announced in Example A, all of which may be established by 
quite elementary methods, principally by means of comparison tests for 
the convergence of infinite series, show that a function defined by a convergent 
power series is not only analytic on its disc of convergence but is, in fact, 
infinitely differentiable there. A converse assertion is the following well
known theorem. (For a sketch of a proof see Example J.) 

Theorem 5.1 (Taylor's Theorem). Let .1 be a domain in (, let f be a complex
valued function defined and analytic on .1, and let Ao be a point of .1. Then 
there is a power series L;."=o tXn(A - Aot with radius of convergence 
r ;::: do = d(Ao, (\.1) such that 

00 

f(A) = L tXnCA - Ao)", (6) 
n=O 

(In the event that .1 = ( the power series (6) converges everywhere.) 
Moreover, ifg is any function analytic on a disc Dro(Ao) (ro > 0) that agrees 
with f on the intersection Dro(AO) n .1, then ro S r. (Thus the power series 
in (6) defines f on the largest disc about Ao onto which f can be extended 
so as to be analytic.) 

The following consequence of Taylor's theorem is of the greatest 
importance. 
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Theorem 5.2 (Identity Theorem). Let f and g be analytic functions on the same 
domain~, and suppose f(A) = g(A) for all A in some subseL M of ~ possessing 
an accumulation point in ~. Then f == g on ~. 

PROOF. It clearly suffices to show that f = 0 identically on ~ when f = 0 
on M. Let U denote the subset of ~ consisting of all those points A in ~ 
such that f vanishes identically on some open disc of positive radius about A. 
Then U is an open subset of ~ which, according to Example A, contains 
all ofthe accumulation points of M that lie in~, as well as all ofthe accumula
tion points of U itself that belong to ~. Hence U is a nonempty open subset 
of ~ such that au n ~ = 0, whence it follows at once that U = ~ (Prop. 
3.6). D 

The proof of Taylor's theorem requires a penetrating analysis of the 
behavior of analytic functions on discs. In this connection, and in many 
others, an important role is played by certain line integrals. Accordingly, 
we shall give a brief account of the pertinent concepts. To begin with, we 
recall that an arc in IC is a continuous complex-valued function defined 
on some real interval [a, b], called the parameter interval of the arc. In the 
following discussion we shall consistently identify an arc a defined on an 
interval [a, b] with the equivalent arc a(t - c) defined on the translated 
interval [a, b] + c, - 00 < c < + 00. (The reader may check at each appro
priate point as we go along that the concept or construction under discussion 
is unaffected by thus translating the parameter interval.) If a is an arc defined 
on the interval [a, b], then the point AD = a(a) is the initial point of a, the 
point A1 = a(b) the terminal point of a, and a is said to join AD to A1. (If AD = A1 
the arc a is said to be closed.) 

If a is an arc in IC defined on the interval [a, b], and if {to < '" < tn} 
is a partition of [a, b], then a is divided by that partition into sub arcs a l , ... ,an 
where ai = al [ti- 1, t;], i = 1, ... , n. We say that the arcs a l , ... , an are 
chained, meaning that the initial point of ai+ 1 coincides with the terminal 
point of ai for each i = 1, ... , n - 1. In this situation it is also customary to 
say that a is the sum of the arcs ai and to write a = a1 + .. , + an' In the 
reverse direction, if a1, ... , an are any arcs in IC that are chained in this 
sense, then there exists an arc a (unique up to equivalence) such that 
a = a1 + ... + an' In the same spirit we define the arc opposite to a given 
arc a defined on [a, b] to be the arc 

aCt) = a( -t), -b ~ t ~ -a. 

In this connection the following concepts are frequently useful. 

Definition. An arc a in IC defined on the parameter interval [a, b] is smooth 
if it belongs to ~(1)([a, b]) (recall from Example 2J that this requires a 
to have a right derivative at a and a left derivative at b), and is piecewise 
smooth if there exists a partition {a = to < ... < tn = b} such that each of 
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the su barcs a I [t i-I' t;], i = 1, ... , n, is smooth. If a is a piecewise smooth 
arc and if the left and right derivatives of a not only exist at every point 
where they are defined, but are also different from zero at every point, 
then a is said to be regular. 

Recall (Prob. 11) that an arc a defined on the interval [a, b] is rectifiable 
if it is of bounded variation on [a, b], and that, when a is rectifiable, the total 
variation of a over [a, b] is also called the length of a, which we shall here 
denote by L(a). It is clear that if an arc a is subdivided in any manner into a 
sum of subarcs, a = a l + ... + an' then a is rectifiable if and only if all of 
the subarcs ai are, and if this is the case, then L(a) = L(a j ) + ... + L(an). 
We take it as known from advanced calculus that a piecewise smooth arc a 
defined on the parameter interval [a, b] is rectifiable and that L(a) = 

J~ la'(t)ldt. 
Suppose now that a is a rectifiable arc defined on a parameter interval 

[a, b], and let f be a bounded complex-valued function defined on the range 
of a. If & = {to < ... < tn} is any partition of [a, b], if a = a l + ... + an 
is the corresponding subdivision of a, and if, for each i = 1, ... , n, (i denotes 
a point in the range of ai> then the sum 

n 

S = L f«(;) [a(ti) - a(ti- l )] 
i= I 

is called a Riemann sum for the function f with respect to a based on the 
given partition &. 

Proposition 5.3. Let a be a rectifiable arc in C defined on the parameter interval 
[a, bJ, and let f be a continuous complex-valued function defined on the 
range of a. Then there exists a unique complex number J with the following 
property: If e is an arbitrary positive number, then there exists a positive 
number J = Je such that if & is any partition of [a, b] with mesh & < J, 
and if S is an arbitrary Riemann sum for f with respect to a based on &, 
then I J - S I < e. This number J is called the line integral of f along a, 
and is denoted by 

J = i f(Od(, 

From this definition and the foregoing discussion it is clear that if a 
is a rectifiable arc such that a = a l + ... + an and f is a function defined 
and continuous on the range of a, then 

L f«()d( = Jl Lf(Od( 

and 
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Moreover, it is readily established that if IY. is a rectifiable arc in IC with 
range W, then the mapping 

is a linear functional on ~(W) satisfying the condition 

I il«)d(1 :::; L(IY.) max I/«)I, 
a 'EW 

I E ~(W). (7) 

Example C. If AD and Al are complex numbers and [a, b] is a nondegenerate 
interval, then the linear parametrization on [a, b] of the directed line segment 
a = a(Ao, AI) joining AD to Al is given by 

1 
lY.(t) = b _ a [(t - a)Al + (b - t)Ao], a:::; t :::; b. 

The length of this arc is clearly what it should be, viz., I Al - AD I. Moreover, 
if I is a continuous complex-valued function on a, that is, on the range of IY., 

then the line integral of I along IY. is easily seen to be independent of the choice 
of a and b (cf. Problem E or Problem F). We shall denote this integral by 

or, when possible, simply by 

If {AD, AI' ... , An} is any finite sequence of complex numbers, then an 
arc n = n(Ao, ... , An) obtained by forming the sum oflinear parametrizations 
of the segments a(Ai- b A;), i = 1, ... , n, is a polygonal arc joining the given 
points. The length of such an arc is simply L( n) = Li = 1 I Ai - Ai _ 1 I, and 
if I is a continuous function on the range of n, then I" I«)d( exists and is 
independent of the (piecewise linear) parametrization of n. For future 
purposes we observe that if IY. is an arbitrary rectifiable arc in IC defined 
on an interval [a, b], and if E is a positive number, then there exists a corre
sponding positive number c5 such that if f!J = {to < ... < tn} is an arbitrary 
partition of [a, b] with mesh f!J < c5, and if we write Ai = lY.(ti), i = 1, ... , n, 
then a polygonal arc n = n(Ao, ... , An) joining these points has the property 
that L(IY.) < L(n) + E. Moreover, reducing c5 if necessary, we may also arrange 
things so that IIY.(t) - n(t) I < E for all a:::; t :::; b simply by choosing the 
parameter interval of each segment a(Ai _ l , Ai) to be the corresponding 
subinterval [ti-I> tJ of [JJ>. (The proofs of these last assertions are not alto
gether trivial; see Example 4B and Problem D(iii).) 
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Example D. For each complex number ,1.0 and positive number r the arc 

o :S t :S 2n, (8) 

is the standard parametrization ofthe circle C = ClAo) of radius r and center 
,1.0' This arc is rectifiable, of course, with length 2nr. In the sequel, given a 
continuous complex-valued function f on Cr(AO), we shall write 

or, when possible, simply 

for the integral of f along the arc y in (8). 

While Proposition 5.3 assures us of the existence of the line integral 
L f d( whenever rt is a rectifiable arc and f is continuous on the range of 
rt, it gives no hint as to how such an integral is to be evaluated. It is appropriate 
to recall therefore that when rt is piecewise smooth and defined, say, on the 
parameter interval [a, b], the integral of f along rt can be evaluated, at least 
in principle, by the familiar formula 

fJ(Od( = f f(rt(t»rt'(t)dt 

(see Problem F). Thus, for example, if f is continuous on the circle C = 
ClAo), then 

If rt, 13, and yare any three complex numbers, then a polygonal arc joining 
the points {rt, 13, y, rt} will be denoted by [rt, 13, y]. (The symbol [rt, 13, y] 
thus denotes an object that is unique only up to piecewise linear reparam
etrization; since we are interested principally in various line integrals along 
such arcs, this is no drawback.) When rt, 13, and yare noncollinear, the range 
W of such a triangular arc is a triangle in C, and the union of Wand Int(W) 
(Ch. 3, p. 40) will be called the triangular region determined by rt, 13, and y. 
(In the case of three collinear vertices rt, 13, and y, the triangular region 
determined by them is understood to consist of the line segment constituting 
the range of [rt, 13, y].) 
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theorem (Th. 3.11) for a simple polygon in C is a theorem in elementary plane geometry, 
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The following result is the cornerstone upon which the entire edifice 
of complex analysis is based. 

Theorem 5.4. Let L1 be a domain in C, let Cto be a point in L1, and let f be a 
function that is continuous on L1 and analytic on L1 \ {Cto}. If Ct, p, and 'Yare 
complex numbers such that the triangular region determined by them is 
contained in L1, then 

I f(()d( = o. 
[a. fl. Y] 

For a proof of this fundamental result when f is assumed to be analytic 
on the entire domain L1 we refer the reader to any standard textbook on 
complex analysis. For a proof of the theorem as stated here one may consult 
[57]. (Proofs of the other results stated in this chapter may be constructed 
by the reader on the basis of the material in the problems.) The principal 
tool needed to exploit Theorem 5.4 is set forth in the following result, a 
proof of which is sketched in Problem F. 

Proposition 5.5. Let f be a function defined and continuous on a domain L1 
and suppose f possesses a primitive F on L1. In other words, suppose there 
is an analytic function F on L1 whose derivative is f. Then for an arbitrary 
rectifiable arc Ct in L1 we have 

where ..1.0 and ..1.1 denote the initial and terminal points of Ct, respectively. 
In particular, if y is a closed rectifiable arc in A, then 

~J(()d( = O. 

Example E.1f p(A) = Ctn An + ... + Cto is a polynomial, and if'Y is an arbitrary 
closed rectifiable arc in C, then L p(A)dA = 0, since p possesses the primitive 

Ctn 1 n + 1 1 
--A + '" + Ctoll. 
n + 1 

on the domain C. Likewise if rx is any fixed complex number and 'Y is a closed 
rectifiable arc in C\{Ct}, then 

f dA 
Y (A _ Ct)n+ 1 = 0 

for every positive integer n. 
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Theorem 5.6. Let y be a closed rectifiable arc in IC and let W denote the range 
of y. Then the function 

1 J d( 
wl~·) = 2ni y ( - A 

is constant and integer-valued on each component of the complement IC\ W. 
I n particular, Wy vanishes identically on the unbounded component of IC \ W. 
The integer w/A) is called the index or winding number of y at (or about) 1 

PROOF. Since W is compact it is easily seen that Wy(A) tends to zero as A 
tends to infinity. Similarly it is easy to verify that Wy is continuous on IC\ W. 
(If Ao ¢ Wand if A is sufficiently close to Ao, then 1/(( - A) tends uniformly 
to 1/(( - Ao) on Was A tends to Ao.) Hence it is enough to prove that Wy 
assumes only integral values on IC \ w. Moreover (Prob. D(iii» we may, 
and do, assume that y is piecewise smooth. Suppose y is defined on the param
eter interval [a, b], so that 

1 Ib y'(t) 
Wy(A) = -2' () A dt 

7rl a yt-

(Prob. F). If we define 

{IS y'(t) } 
ep(s) = exp a yet) _ A dt , a :5:: s :5:: b, 

then straightforward calculation shows that 

ep'(s) y'(s) 
ep(s) (y(s) - A)' 

and hence that the function I/I(s) = ep(s)j(y(s) - A) has derivative zero when
ever it is differentiable, which is at all but a finite number of values of s. 
Since 1/1 is continuous on [a, b], this shows that 1/1 is a constant function, and 
since ep(a) = 1, we have I/I(s) == 1j(y(a) - A), and therefore 

yes) - A 
. ep(s) = yea) _ A' a :5:: s :5:: b. 

Since y is closed, y(b) = yea), and therefore ep(b) = 1. But this implies that 

J d( 

y ( - A 

is an integral multiple of 2ni (Ex. B), and the proof is complete. D 

Example F. If y is the standard parametrization of the circle ereCt:) (Ex. D), 
then 

J dA f2" dt 
-- = ri - = 2ni. 

yA-1X 0 r 
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Thus the winding number of y about every point inside C,(IX) is one, while the 
winding number of y about every point outside Cr(IX) is zero. For this reason 
the standard parametrization of a circle is said to be positive. Note that in this 
positive parametrization the inward tending normal vector to C.(IX) (i.e., the 
vector -(y(t) - IX)) is n/2 ahead of the tangent vector (= y'(t))(cf. Problem X). 

Example G. Let Q be a square region in C with sides parallel to the real and 
imaginary axes. In other words, Q is the intersection of a closed strip of some 
width w in C parallel to the real axis, and a closed strip of the same width 
parallel to the imaginary axis. Let Ao denote the center of Q, and let C denote 

the circle with center Ao and radius w/j2, so that, if y is the standard 
parametrization of C, then Kl = y(n/4), K2 = y(3n/4), K3 = y(5n/4), and 
K4 = y(7n/4), are the four vertices of aQ. Then a polygonal arc n = 

n(Kl' K 2 , K 3 , K4 , K 1) is a standard parametrization of the square aQ. Since 
Ao is in the unbounded component of the complement of the range of each of 
the four closed arcs formed by adding an edge of aQ to the shorter subarc 
of y joining the end points of that edge, it is clear that the winding number 
about Ao of a standard parametrization n of aQ is one. Thus n has winding 
number one at each point of QO = Int(aQ) and winding number zero at each 
point of C\Q. For this reason a standard parametrization of aQ is said to be 
positive. Note here again that in such a positive parametrization the inward 
tending normal vector at each point of aQ (other than a vertex) is n/2 ahead 
of the tangent vector. Consequently if Q' is another square region in C that 
shares exactly one edge with Q, then, in standard parametrizations of aQ and 
aQ', that common edge is traversed in opposite directions. 

Similarly, if IX, {3, yare any three noncollinear points in C, then a positive 
parametrization of[ IX, {3, y] is a polygonal arc joining the vertices in the order in 
which they occur in a standard parametrization of the circle passing through 
them. Suppose n = n(lX, {3, y, IX) is such a positive parametrization, and let T 
denote the triangular region determined by IX, {3, and y. Then w" is one on r 
and zero on C\ T. Note here too that if T' is some other triangular region that 
meets T in exactly one common edge, then that edge is traversed in opposite 
senses in positive parametrizations of aT and aT'. 

Using this last observation it is easy to show that if P is any simple polygon in IC, then 
there exists a closed (essentially unique) polygonal arc 7r such that P is the range of 7r and 
such that w. is one on Int(P) and zero on Ext(P). More generally, it can be shown that if;' 
is any Jordan loop in C that is piecewise smooth and regular. then 111')'1 = Ion Int(]'). so 
that one or the other of/' and y has winding number one about every point ofInt(;} This 
choice of parametrization is said to be positive, its opposite to be negative (see Problem X). 

Theorem 5.7 (Cauchy-Goursat Theorem in a Disc). Let D = DR(IX) be an 
open disc in C(R > 0), let IXo be a point in D, and let f be a continuous 
function on D that is analytic on D\ {1X0}. Then f possesses a primitive on D, 
so that the integral of f about any closed rectifiable arc in D vanishes. 
In particular, this is true iff is analytic on D. 
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PROOF. For each point A in D we define F(A) = S" J(Od" where a denotes the 
directed line segment a(ct, A). Then according to Theorem 5.4 we have 
F(A) - F(Ao) = St J(Od( for any two points A and ,.1.0 of D, where r denotes 
the segment a(Ao, A). Hold ,.1.0 fixed, let 8 be an arbitrary positive number, 
and let 6 be chosen so that I J(A) - J(Ao) I < 8 whenever I A - ,.1.0 I < 6. For 
each such A we have 

and therefore 

by virtue of Proposition 5.5 and the estimate (7). Thus 

whenever 0 < I A - ,.1.0 I < 6, which shows that F'(Ao) = J(Ao), and hence 
that F is a primitive of Jon D. D 

Theorem 5.8 (Cauchy Integral Formula in a Disc). Let D = DR(ct) be a disc 
in IC (R > 0), let J be a Junction defined and analytic on D, and let y be a 
closed rectifiable arc in D. Then 

w,.(A)f(A) = 2~i J. (~(~ d( 

at every point A of D that is not in the range oj y, where w)'(A) denotes the 
winding number oj y at l In particular, if C = C(ct) is a circle about ex with 
radius r, 0 < r < R, then 

J(A) = ~1 . f !(O d( 
2m c i, - A 

Jor every A inside C. 

PROOF. The function 

J
Jm - J(A) (1= A 

g(O = ( - A '. , 

1'(,.1.), ( = A, 

is continuous on D and analytic on D\ {A} for anyone fixed A in D. Hence 

Jq(Od( = J. (~OA d( - J(A) J ( ~ A = 0 

by Theorem 5.7. D 
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The consequences of these two theorems are very numerous and of 
enormous importance. Here are a few that we shall find useful. 

Example H. Let K denote a compact subset of a disc D = DR(rx), let r be a 
positive radius such that r < R and such that K c D,(rx), and let do = 
d(K, C,(rx)). Then for any analytic function f on D, and for arbitrary A in K 
and ~ such that I ~ I < do, we have 

f(A + 0 - f(A) = 2~i Lr('/(O[( _ ~ _ ~ - (~A]d( 
~ f f«)d( 

= 2ni Cr(a) «( - ..1.)«( - ..1.-0' 

Hence there exist positive constants [; and M (e.g., [; = do/2 and M = 2rld6) 
such that 

If(A + ~) - f(A) I ~ MI~I max If(OI 

whenever A E K and I ~ I < E. 

This discussion only pertains directly to compact subsets of a disc and 
functions analytic on that disc. However, every compact subset K of a domain 
~ can be covered by a finite number of open discs each as small as desired 
(Heine-Borel theorem; Example 3F), and K can then be decomposed into 
the union of compact subsets each of which is contained in one of the covering 
discs (see Example 3G). Hence the foregoing observations lead directly to 
the following conclusion. Let K be a compact subset of a domain ~. and let U 
be any bounded open subset of ~ such that K c U and U - c ~. Then there 
exist positive constants E and M (which depend on the geometry of K and U 
but on nothing else) such that if A E K and I ~ I < E, and if f is any analytic 
function on Ll, then 

If(A + ~) - f(A)1 ~ MI~I suplJ.(OI. 
~E u 

In particular, any collection of analytic functions on ~ that is uniformly 
bounded on U is uniformly equicontinuous on K, and is therefore totally 
bounded in the metric of uniform convergence on K (see Problem 4R). 

Example I. Let D, K, and r be as in the preceding example, and let f be an 
analytic function on D. Then, as we just saw, if A E K and I ~ I is small enough 
(~ ::j= 0), 

f(A + ~~ - f(A) = _1 f f«)d( v • 

S 2ni Cr(a) «( - ..1.)«( - A - s) 

Similarly, if IJ is another nonzero complex number with IIJ I sufficiently small, 

f(A + IJ) - f(A) = _1 f f(Od( 
IJ 2ni Cr(a) «( - ..1.)«( - A - IJ)' 
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whence it follows that 

f(A + ~) - f(A) f(A + '1) - f(A) 

~ '1 

~ - '1 f f(Od( 
= 2ni Cr(~) (( - A)(( - A - ~)(( - A - '1)' 

Hence, using the Heine-Borel theorem just as in the preceding example, 
we conclude that if K is a co>upact subset of an arbitrary domain d, and if 
V is any bounded open subset of d such that K c V and U- c d, then 
there exist positive constants 8 and M such that 

I f(A + ~~ - f(A) - f(A + '1) - f(A) I s MI~ - '1lsuplf(OI (9) 
C; '1 ~EU 

for all A in K, all ~ and '1 such that 0 < 1 ~ I, 1 '11 < 8, and all analytic functions 
f on d. Letting '1 tend to zero in (9) we find that 

I f(A + ~) - f(A) - 1'(A) I s MI~lsuplf(01 
~ ~EU 

for all A in K and all ~ such that 0 < 1 ~ 1 < 8. Thus the difference quotient off 
tends uniformly to l' on K. 

Example J (Taylor's Theorem and the Cauchy Estimates). Let r, r', and R 
be positive numbers such that r' < r < R, and let IX be a point in the complex 
plane. Straightforward calculation discloses that for each ( on C/Cl) we have 

(10) 

for every A inside Cla). Moreover, the convergence in (10) is uniform in the 
variable ( on Cr(Cl) for each A inside Cr,(Cl). Hence if f is an arbitrary analytic 
function on D = DR(Cl), we have 

f(A) = ~ f f(O d( 
2m Cr(~) ( - A 

f (A - Clt ~ f f(On+l d( 
n=O 2m Cr(~) (( - Cl) 

00 

= I Cln(A - Cl)n, IA-ClI<r', (11) 
n=O 

where 

1 f f(() 
Cln = -2 ' (( _ t+ 1 d(, m Cr(~) Cl 

(12) 
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(The coefficients an are also given by the familiar formula an = f(n)(a)/n! 
as noted in Example A, cr. Problem G.) Since r' can be taken to be any positive 
number smaller than r, it follows that the representation (11) is valid for all 
A in Dr(a), and since r can be taken to be any positive number smaller than R, 
we see that, in fact, the representation (11) holds everywhere in D. Thus 
Taylor's theorem is proved. Moreover, from the expression (12) for the Taylor 
coefficients of f we learn that 

2nr Mr Mr 
lanl ~ -2 Ii+l = -n' n r r 

where Mr denotes the maximum modulus of f on the circle Cla): Mr = 
max { I f (0 I : " - a I = r}. These inequalities are known as the Cauchy 
estimates for f about the point a. 

Example K (Liouville's Theorem on Entire Functions). A function f that is 
defined and analytic on the entire complex plane C is called an entire function. 
Examples of entire functions are polynomial functions, the exponential 
function, and the circular functions. Iff is an entire function and a an arbitrary 
complex number, then the Taylor series expansion 

00 

f(A) = L aiA - a)n 
n=O 

of f about a converges everywhere. Hence the Cauchy estimates hold for 
every r > O. Thus I an I ~ M r/rn for every positive integer n and every positive 
number r. From this we conclude immediately that if f is a bounded entire 
function, then f is a constant function. This result is known as Liouville's 
theorem. 

Example L (Morera's Theorem). Taylor's theorem shows that an analytic 
function (that is, a differentiable function) on a domain ~ is actually infinitely 
differentiable on ~. Hence any function that possesses a primitive on ~ is 
automatically analytic on ~. Suppose f is a continuous function on ~ 
such that 

I f(Od( = 0 
[~.P, y) 

for every triangular arc [a, p, yJ in ~, and let AO be a point of ~. If DlAo) 
is any disc of positive radius that is contained in ~, then, just as in the proof 
of Theorem 5.7, the function 

F(A) = J f(Od( 
<1().0, ).) 

may be seen to be a primitive off, so f is analytic on Dr(AO)' In particular f is 
differentiable at Ao, and since Ao is an arbitrary point of ~, we see that f is 
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analytic on d. Thus we have proved that if a Junction J is continuous on a 
domain d and if the integral oj J around every triangular arc in d is zero, 
then J is analytic on d. This result is known as Morera's theorem. (As the 
argument shows, it suffices to consider the integral of J about arbitrarily 
small triangles each of which is contained in some disc contained in d.) 

Example M (The Maximum Modulus Principle). Let J be an analytic 
function on a disc D = DR(rx) (R > 0), and for each radius r, 0 ~ r < R, 
let Mr denote the maximum modulus of J on the circle C,(rx) as defined in 
Example J. Since 

J(rx) = ~ ( J(O d(, 
2m JCr(a) ( - rx 

(13) 

it follows from (7) that 1 J(rx) 1 = Mo ~ Mr for every r, 0 < r < R. More 
is true however. Let us suppose, as we may without loss of generality, that 
J(rx) is positive, so that J(rx) = IJ(rx)l, and evaluate the integral in (13) 
according to Problem F. Taking real parts we obtain 

1 (2" 
J(rx) = 211: Jo Re J(rx + reit)dt, 

and therefore 

;11: f" [J(rx) - Re J(rx + reit)]dt = O. (14) 

Suppose now that J(rx) = Mr. Then the integrand [J(rx) - Re J(rx + reit)] 
in (14) is nonnegative and continuous, and must therefore vanish identically, 
whence it follows at once thatJis constantly equal to J(rx) on C,(rx), and there
fore, by the identity theorem, constantly equal to J(rx) on the entire domain 
on whichJis defined (and analytic). It follows that ifJis an arbitrary analytic 
function on a domain d, and if K is any compact subset of d, then the 
maximum of 1 J(A) 1 on K is assumed on the boundary oK. In particular, the 
maximum modulus function Mr itself is seen to yield the maximum of 
IJ(A)I over the entire closed disc D,(rx)-, not just over the boundary C,(rx). 
Hence for any nonconstant analytic function on a domain d, and for any 
point rx in d, the maximum modulus function Mr is a strictly increasing 
function of r wherever it is defined. 

More general versions of the Cauchy integral formula may be formulated 
and employed to obtain other important results. The version given in 
Problem 0 is appropriate for the following result, the proof of which may be 
patterned after the proof of Taylor's theorem. 

Proposition 5.9. Let ro and rl be nonnegative numbers such that ro < rl' 
let rx be a complex number, and suppose J is an analytic Junction on the 
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annular domain A = {A E c: r 0 < I A - a I < r I}' Then there exist coeffi
cients {an} :=00_ 00 such that 

+00 

f(A) = L an(A - a)n, AEA. (15) 
n= - 00 

The coefficients an in (15) are uniquely determined by f, and the convergence 
in (15) is absolute in A and uniform on compact subsets of A. The series (15) 
is known as the Laurent expansion of fin A. 

A special case of particular importance arises when the inner radius ro is 
zero. 

Definition. Iff is an analytic function on a domain Ll, and iffor some complex 
number a not belonging to Ll there exists a positive number r such that Ll 
contains the punctured disc {A E C: 0 < I A - a I < r}, or, in other words, 
if a is an isolated point of all, then a is an isolated singularity oIf 

If a is an isolated singularity of an analytic function f on a domain Ll, 
then f possesses a Laurent expansion 

+00 

f(A) = L an(A - a)n 
n= - 00 

in which the power series 

has some positive radius of convergence r, while the series 

OCJ 

I a_n(A - a)-n 
n= 1 

converges for every A =f. a. (The sum of this latter series is known as the 
principal part of f at a.) Thus if we write r = 1/(A - a), then the function 
I:,= 1 a_ n rn is an entire function of r. 

There are three possible cases to be distinguished. To begin with, the 
function f is bounded on some punctured disc about a if and only if the 
principal part off at a is so bounded, and by Liouville's theorem this can only 
happen when a_ n = 0 for every positive integer n. In this case f can be 
extended to a by continuity by setting f(a) = ao, and if this is done, the 
enlarged function thus obtained is analytic on Ll u {a}. In this situation we 
say that the singularity a is removable and that the analytic function on 
Ll u {a} obtained by settingf(a) = ao is obtained by removing the singularity 
at a. (Thus, for example, the apparent singularity allowed for in the statements 
of Theorems 5.4 and 5.7 is already removed, the function f in each case 
being analytic on Ll.) 
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If the isolated singularity is not removable there are some nonzero 
coefficients in the sequence {IX _ n},~)= b and two sharply different cases arise. 
If there are infinitely many nonzero, negatively indexed coefficients, then IX 
is an essential singularity of.f. If there are only finitely many nonzero, 
negatively indexed coefficients, and if N denotes the largest positive integer 
n for which IX-n =1= 0, then the function (A - IX)Nf(A) has a removable 
singularity at IX. If g denotes the function obtained by removing the singularity 
at IX, then 9 satisfies the condition g(IX) =1= 0, and we have 

g(A) 
f(A) = (A - IXr 

In this situation it is said that f has a pole of order N at IX. 
In this connection we note that the classification of singularities is extended 

to the point at infinity in a systematic manner (see Problem 3W). If f is a 
function defined and analytic on the complement in C of some closed disc 
Dr(O) - , then the point at infinity is an isolated singularity off, and is said to be 
an essential singularity of f or a pole of order N if the function her) = f(l/r) 
has an essential singularity or pole of order N at r = 0. On the other hand, if 
the function h has a removable singularity at r = 0, then f is said to have a 
removable singularity at infinity, and when this is the case, the function 
obtained by defining f at 00 by continuity is said to be analytic at infinity. 

In the same vein we also recall that iff is an analytic function on a domain 
~ and if f(IX) = 0, then IX is called a zero off. If IX is a zero off then by Taylor's 
theorem (Th. 5.1) there exist a unique positive integer N and an analytic 
function 9 on ~ such that g(IX) =1= ° andf(A) = (A - IXt g(A). In this situation it 
is said that IX is a zero of order N of f. Iff has a zero of order N at IX then 1/ f 
has a pole of order N at IX. Conversely, iff has a pole of order N at IX, then the 
result of removing the singularity in 1/ fat IX has a zero of order N there. 

Example N. An entire function f with a removable singularity at infinity 
is bounded, and is therefore a constant by Liouville's theorem (Ex. K). 
An entire function f with a pole at infinity is bounded away from zero outside 
some disc centered at the origin, and can therefore have only a finite number 
of zeros. If lXI' ••• , IXn is a complete list of the zeros of f, and k; denotes the 
order of the zero lXi' i = 1, ... , n, then the function 9 obtained by removing 
the removable singularities off /(,1. - IXltl ... (A - IXn)kn at the zeros IX I, ... ,IXn 
is entire, has no zeros, and also has at worst a pole at infinity. Hence l/g is a 
bounded entire function, and is therefore a nonzero constant. If we denote 
this constant by l/IXo, then f is seen to coincide with the polynomial 
IXo(A - IXI)kl ... (A - IXn)kn. Thus the polynomial functions on C are char
acterized as those entire functions with (at worst) a pole at infinity. Similarly, 
it is easy to see that the rational functions on C may be characterized as those 
functions that are holomorphic at every point of C except for a finite number 
of poles and that possess (at worst) a pole at infinity. 
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We conclude this chapter with a brief remark concerning the relations 
between analytic functions and harmonic functions. To facilitate this 
discussion we note first that there is an obvious one-to-one correspondence 
between domains ~ in C and domains (i.e., nonempty connected open sets) 
~' in [R2 obtained via the correspondence x + iy +-+ (x, y). Moreover, for 
each complex-valued function f on a complex domain ~, there exist two 
real-valued functions u and v on the corresponding real domain ~' such that 

f(x + iy) = u(x, y) + iv(x, y), (x, y) E ~'. 

The functions u and v are known customarily (if not with total accuracy) 
as the real and imaginary parts of f. 

Definition. Let ~' be a domain in [R2, and let f be a function in C6'(2)(~1) 

(Ex. 3E). Then f is harmonic on ~' if the differential equation 

fxx+fyy=O 

is satisfied everywhere on K Similarly, a function f on a complex domain 
~ is harmonic on ~ if the functionfo(x, y) = f(x + iy) is harmonic on the 
corresponding real domain K 

Proposition 5.10. Let f be a complex-valued function on a complex domain ~, 
and let u and v be the real and imaginary parts of f on the corresponding 
real domain K If f is analytic on ~ then u and v satisfy the equations 

(16) 

known as the Cauchy-Riemann equations, identically on N. Conversely, 
if u and v belong to C6'(1)(~I) and satisfy the Cauchy-Riemann equations 
identically on ~I, then f is analytic on ~. 

PROOF. Let ..1.0 = Xo + iyo be a point of ~ (xo, Yo real), let R be a positive 
radius small enough so that the disc DR(Ao) C ~, and suppose that f is 
differentiable at ..1.0, If A is restricted so that 0 < I A - ..1.0 I < R and also so 
that the difference A - ..1.0 = h is a real number, and if the limit of the dif
ference quotient (f(A) - f(Ao»/(A - ..1.0) = (f(A) - f(Ao))/h is then taken 
as h tends to zero, a simple calculation shows that 

On the other hand, if 1'(..1.0) is computed using values of A such that 
A - ..1.0 = ih where h is real, a parallel calculation discloses that 

Thus the Cauchy-Riemann equations are satisfied on ~' whenever f is 
analytic on ~. 
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Suppose now, to go the other way, that u, v E ~(1)(d'). Then, as is shown 
in advanced calculus (theorem on the total differential), there exist real
valued functions £', £//, r!', and 1}//, defined on the disc 

D' = {(x, y): (x - xo)Z + (y - Yo)Z < R} 

and tending to zero as (x, y) ~ (xo, Yo), such that 

u(x, y) - u(xo, Yo) = [ux(xo, Yo) + £'(x, y)J(x - xo) 

+ [uy(xo, Yo) + £//(x, y)J(y - Yo) 

and 

vex, y) - v(xo, Yo) = [vxCxo, Yo) + r(x, y)J(x - xo) 
+ [vy(xo, Yo) + 1}//(x, y)J(y - Yo) 

identically on D'. If, in addition, the Cauchy-Riemann equations are satisfied 
at (xo, Yo) then straightforward calculation shows that 

f(A) - f(Ao) = ux(xo, Yo)(A - Ao) + ivx(xo, Yo)(A - Ao) 
+ [£'(x, y) + i1}'(x, y)J(x - xo) 

+ [c"(x, y) + i1}//(x, y)J(y - Yo)· 

Hence f'(Ao) exists (and equals ux(xo, Yo) + ivx(xo, Yo», and the result 
follows. 0 

Corollary 5.11. If f is an analytic function on a complex domain d, then the 
real and imaginary parts of f are harmonic functions on the corresponding 
real domain d'. 

Proposition 5.12. If u is a real harmonic function on a disc 

D' = {(x, y): (x - xo)Z + (y - Yo)Z < rZ} (r> 0) 

in ~z, then u possesses a harmonic conjugate u on D', that is, there exists 
an analytic function f on the complex disc DrCa), where a = Xo + iyo, 
such that u and u are the real and imaginary parts of f, respectively. The 
harmonic conjugate u is unique up to an additive constant. 

PROOF. The uniqueness of the harmonic conjugate follows from the fact 
that the Cauchy-Riemann equations must be satisfied (see also Problem B). 
To see that u exists, we observe that for any function u in ~~)(D') the functions 

V 1 (x, y) = - fX uy(s, yo)ds + fY ux(x, t)dt, 
Xo YO 

(x, Y) ED', 

and 

UZ(x, y) = - fX uy(s, y)ds + fY uxCxo, t)dt, 
Xo Yo 

(x, y) ED', 
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satisfy the conditions 

aU I aU2 
Ty = Ux and ax -uy 

on D'. Moreover if u belongs to ce~)(D') we have 

U I - U 2 = fX fY [uxis, t) + Uyy(s, t)]ds dt. 
Xo Yo 

Thus U 1 == U 2 when u is harmonic, and if we set 

u = U I = U 2 , 

then u + iCi satisfies the Cauchy-Riemann equations and is therefore analytic 
by Proposition 5.10. 0 

PROBLEMS 

A. (Abel's Theorem) Let 

00 

f(A) = I CXnAn, (17) 
n=O 

where the power series (17) has radius of convergence ro, 0 < ro < +00, and 
suppose that for some point Ao = roeito on the circle of convergence the series 
In CXnAo converges, say to a. Show that 

lim f(re ito) = a. 
rtro 

Thus f converges "radially" to the sum of the power series representing f at each 
point on the circle of convergence at which the series converges. (Hint: It is no loss 
of generality to assume ro = 1 and to = O. Multiply the given series by the geometric 
series Ln An to show that 

oc 

f(A) = (1 - A) L anAn, 
n=O 

where an = L7=0 CXi' n E No, and hence that 
ex) 

a - f(A) = (1 - A) I Pn An, IAI < 1, 
"=0 

where the sequence {Pn = a - an} tends to zero. Write this last series as the sum 
of a partial sum and a remainder I:= N + 1 P nAn.) 

B. (i) Let f be an analytic function on a domain ~. Show that the complex conjugate 
.f is differentiable at precisely those points A of ~ at which r(A) = O. Hence.f is 
not analytic on ~ (or on any subdomain of M unless f is a constant. Conclude 
that if an analytic function f maps any nonempty open set onto a subset of a 
straight line or onto a subset of a circle, then f must be constant. In particular, 
a nonconstant analytic function cannot have constant modulus or be real
valued. (Hint: limA~Ao 0: - Ao)/(A - Ao) does not exist at any point Ao.) 
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(ii) Let f be an analytic function on a domain ~, and let ti denote the reflection 
of ~ in the real axis- ti = {A E c: A: E ~}. Verify that the function 

f A (A) = feA) 

is analytic on ti and that, in fact, (.f A)' = (f') A on ti. If ~ = ti, then f = fA 
if and only if f is real-valued along the intersection of ~ with the real axis. 

As it turns out, if f is an analytic function on a domain A, and if f'().o) '" 0 
at some point Ao of A, then there exists an open neighborhood V of ;'0 
such that f I V is a homeomorphism of V onto an open set in C. Thus 
Problem B(i) reveals only a fragment ofthe truth concerning the range of an 
analytic function. 

C. In real analysis it is apparent that the hyperbolic functions sinh t and cosh tare 
closely related to the circular functions. This relation becomes particularly lucid in 
complex analysis. Show that, in fact, 

cosh t = cosCit) and sinh t = - i sinCit) 

for every real number t. (These relations are used to define the entire functions 
cosh , and sinh , on iC.) 

D. (i) Let (J. be a rectifiable arc in C, and let f be a bounded complex-valued function 
defined on the range of (J.. Show that the line integral fo f(Od, exists if and only 
if the following Cauchy criterion is satisfied: Given f: > 0 there exists (j > 0 
such that if :JjJ and :JjJ' are arbitrary partitions of the parameter interval of (J. 
with mesh :JjJ, :JjJ' < (j and if Sand S' are arbitrary Riemann sums for f with 
respect to (J. based on :JjJ and :JjJ', respecti vely, then ! S - S' I < B. Verify also 
that if the line integral So f(Od, does exist, and if Band (j are as stated, then 

90 

for any Riemann sum S for f with respect to (J. based on a partition :JjJ of the 
parameter interval of (J. such that mesh :JjJ < (j. 

(ii) Let (J. be a rectifiable arc in C with parameter interval [a, b], and let f and l be 
bounded complex-valued functions defined on the range of (J. such that for some 
fixed nonnegative number 1], I f(O - l(O I ::; I] for every' in that range. 
Suppose that for a given positive number e there exists a positive (j with the 
property that If«(J.(t» - f«(J.(t') I < f, for all t, t' in [a, b] such that It - t'l < (j. 

Show that if:JjJ and :JjJ' are partitions of [a, b] such that mesh :JjJ,:JjJ' < (j, and S 
and S' are Riemann sums for f and l with respect to (J. based on :JjJ and :JjJ', 

respectively, then IS - S'I < L(2e + 1]) where L denotes the length of (J.. 
(Hint: Consider first the case in which :JjJ' is a refinement of:JjJ and f = /.) 

In particular, if Sand S' are both Riemann sums for f with respect to (J. based 
on :JjJ and :JjJ' respectively, then IS - S'I ::; 2Le. Complete the proof of 
Proposition 5.3, and verify that if f is continuous on the range of (J., and if f, 

and (j are related as above, then 
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for any Riemann sum S for f[S' for 1J with respect to rx based on any partition 
iJJ of [a, b] with mesh .Of < D. 

(iii) Let f be a continuous complex-valued function on a domain ~ in C, and let rx 
be a rectifiable arc in ~. Show that for any arbitrarily given positive number f; 

there exists a positive number 15 such that if g> = {to < ... < tn} is any partition 
of the parameter interval of rx such that mesh g> < 15, and if we write Ai = rx(t), 
i = 0, ... , n, then the polygonal arc n = n(Ao, ... , An) lies entirely in ~, and 
we have 

Thus, in particular, every line integral can be approximated as closely as 
desired by integrals along (regular) piecewise smooth arcs. (Hint: Choose 
a bounded open set U such that W cUe U- c ~, where W denotes the 
range of rx. If d = d( W, C\ U) and if 15 is small enough so that mesh g> < 15 
implies IAi - Ai_II < d, i = 1, ... , n, then n lies in U. Use Example C and 
part (ii).) 

E. Let q> be an arbitrary strictly increasing continuous mapping of a real interval [a, b] 
onto another real interval [c, d]. Show that if rx is a rectifiable arc in C defined on 
the parameter interval [c, d], then rx 0 q> is also a rectifiable arc having the same 
length as rx, and that if f is any function defined and continuous on the range of rx, 
then 

F. Let rx be a piecewise smooth arc in C defined on the parameter interval [a, b], and 
let f be a continuous function on the range of rx. Show that 

f f(Od( = r f(rx(t»rx'(t)dt, 
" a 

and use this formula along with Problem D(iii) to prove Proposition 5.5. (Hint: 
One may assume that rx is smooth. If g> = {to < ... < tn} is a partition of [a, b], 
and if'i is chosen so that ti - I :5: 'i :5: t i , i = 1, ... , n, then 

where s denotes the step function that takes the value f(rx(,J) on the interval 
(t i - I , tJ) 

G. Let rx be a rectifiable arc in C and let g be an arbitrary continuous function on the 
range W of rx. Show that the function 

f(A) = f g(O d( 
" ( - A 

is infinitely differentiable on the complement C\ W by verifying the formula 

j '(n)(A) = n! f g(O d" 
,«(-At+ 1 ~, 
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(Hint: If A and AO are two points in C\ W, then 

and the integrand in this last integral tends uniformly in ( on W to g(O/«( - AO)2 
as A tends to AO' Use an induction argument.) 

H. Thus far we have employed the notion of the sum of a sequence of arcs {:Xl' ••• , :xn} 

only when these arcs are chained. It turns out that a more general concept is also 
useful. If :Xl, "',:Xn are arbitrary arcs in C we introduce the formal sum :x = 
:Xl + ... + :Xn with the understanding that two formal sums IJ. = IJ. I + ... + IJ.n 

and P = PI + ... + Pm are equal if (and only if) each lJ.i and Pi can be partitioned 
into a chained sum lJ.i = Ii:" I lJ.ij' Pi = Ii,;, I Pij' in such a way that the two systems 
of arcs {lJ.ij} and {Pij} are pairwise equivalent except for order. Show that if :x = 

IJ. I + ... + IJ.n is such a formal sum of rectifiable arcs, and if for each continuous 
function f on W, where W denotes the union of the ranges of the arcs lJ. i , we define 

ffCOd( =± f fCOd(, 
:% i = 1 !Xi 

then the mapping f -> J. f(Od( is a linear functional on "6'(W). In particular, if 
Y = Yl + ... + Y. is a formal sum of closed rectifiable arcs, and if W denotes the 
union of the ranges of the various arcs Yi' we define the winding number wi' of yon 
the open complement C\ W to be 

Wy(A) = ~f d( " 
2m y' - II. 

so that w 1' = w 1', + ... + w1'n at every point of C\ W 

I. Suppose given a finite collection !I' = {O'J of directed line segments in C, each 
equipped with a linear parametrization, and suppose that 

(i) No two of the segments in !I' meet, except possibly at a common endpoint, 
(ii) For any endpoint Ao of any segment in !/' there are exactly as many segments 

in !I' having Ao for terminal point as there are having Ao for initial point. 

(Such a set of directed line segments is called balanced.) Show that the formal 
sum IaiEY' O'i can also be written as a formal sum n l + ... + nm of closed polygonal 
arcs whose ranges intersect only at common vertices. (If !/' satisfies (i) and the 
stronger condition 

(ii') Each endpoint of a segment in !/' is the initial point, and likewise the terminal 
point, of exactly one segment in !/', 

then the polygons in the formal sum n I + ... + nm will be simple and pairwise 
disjoint.) 

J. Let m be a positive number. By the grid "§ m in C of mesh m we shall mean the system 
of all the horizontal lines in C obtained by translating the real axis by amounts 
kmi, k E 7L, together with the system of all the vertical lines obtained by translating 
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the imaginary axis by amounts km, k E 71. The closed strip bou~ded by two adjacent 
horizontal lines, IR + kmi and IR + (k + 1 )mi, in the grid is a horizontal strip of I'fj m' 

Likewise, a vertical strip of I'fjm is a closed strip bounded by two adjacent vertical 
lines in I'fj m' Finally, a square region Q is a square region of I'fj m if it is the intersection 
of a horizontal strip of I'fj m and a vertical strip of I'fj m' and a complex number ,1,0 is a 
vertex of I'fj m if it is a vertex of some square region of I'fj m' 

Now let {Ql,"" Qn} be an arbitrary finite, nonempty collection of square 
regions of a grid I'fjm' and set L = Ql U ... U Qn. Show that the boundary oL 
can be parametrized as a formal sum n = n I + ... + nm of closed polygonal arcs 
in such a way that the winding number of n is one at each point of L 0 and zero on 
the complement of L. (Hint: Let Yi denote a standard parametrization of OQi, 
i = 1, ... , n, set Y = D= I Yi, and verify that the winding number of Y is one in the 
interior of each Qi and zero outside L. Then write Y as a formal sum of all of the edges 
of all of the squares oQj, and thus as a formal sum of directed line segments. Remove 
all matched pairs of oppositely directed line segments, and show that this removes all 
line segments that meet L", so that what is left is really a parametrization of oL 
given as a formal sum of directed line segments. Then apply Problem I.) 

K. Let U be an open subset of I[ and let K be a compact subset of U. 
(i) Show that there exists a formal sum Y = YI + ... + Yn of closed rectifiable 

arcs in U\K with the following properties: 

(a). If V denotes the (open) set of points A at which wP) = 1, then K c V 
and V- is a (compact) subset of U, 

(b) The range of Y constitutes the topological boundary of V, and 
(c) The winding number of Y is zero at every point of 1[\ V-. 

Such a formal sum Y will be called an oriented envelope of K in U. (Hint: If 
U = I[ or K = 0 the result is trivial; otherwise let d = d(K, 1[\ U), choose a 

mesh m such that m < d/Ji, and let QI' ... , Qp be the set of closed squares of 
the grid I'fjI1l that touch K. Set L = Q7 U ... u Qp' and parametrize oL as in the 

preceding problem.) 
(ii) Show further that in the foregoing construction it is possible to arrange matters 

so that the individual arcs yi' i = 1, ... , n, are Jordan loops with pairwise 
disjoint ranges, and hence so that V- is a finite union of disjoint Jordan regions 
(see Chapter 3 for definitions). (Hint: The only way that the set L in (i) can fail to 
be a disjoint union of polygonal Jordan regions is for one or more vertices of the 
grid I'fj m to be an endpoint of all four of the line segments joining it to adjacent 
vertices of I'fj m ~Iet us call such a vertex a quadruple point in oL. Verify that a 
quadruple point in oL cannot belong to K, and show that L can be modified by 
subtracting from it small open squares centered at each quadruple point in oL 
so as to obtain a closed set M such that K c MO and such that oM is the union 
of a set !f1 ofline segments with the property that each endpoint of a line segment 
in!f1 is an endpoint of exactly two line segments in .ref'. Orient the line segments 
in !f1 suitably, and use Problem I.) 

The reader should note that Problem K(ii) constitutes a proof of Pro
position 3.12. The device employed there to avoid quadruple points would 
be completely unnecessary if, as has been suggested by W. Gustin, we had 
paved the plane with congruent hexagons instead of squares. 
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L. Let U and V be open subsets of C, and let ex and [3 be rectifiable arcs lying in U and 
V, respectively. Let W, and Wp denote the ranges of ex and [3, and let g(e A) be a 
continuous complex-valued function (of two variables) on tv. x Wp. Show that 
the function II (0 = Ip g«(, A)dA is continuous on tv., and likewise that the function 
j~(A) = I, g(C A)d( is continuous on Wp. (Hint: If [a, b] and [c, d] denote, respec
tively, the parameter intervals of ex and [3, then the function g(ex(s), [3(t» is (uniformly) 
continuous on the closed rectangle Q = [a, b] x [c, d]. Hence for a given positive F. 

there exists a positive 6 such that 

Ig(ex(s), [3(t» - g(ex(s'), [3(n) I < /; 

for all (s, t), (s', t') in Q such that Is - s'l, It - t'I < 6. Verify that if a:::; s, s' :::; b 
and Is - s'j < 6, then 

IIp g(ex(s), A)dA - ig(ex(S'), A)dAI :::; Lflr., 

where Lp denotes the length of [3; see Problem D(ii).) Show further that 

(Hint:Letr.and6beasabove,andlet~1 = {so < ... < s\I}and2Jl2 = {to < ... < tN } 

be partitions of [a, b] and [c, d], respectively, such that mesh .Jf'1':Y2 < 6. Show 
first that 

for all ( in tv., and conclude from this that the double sum 

M N 

a = L L g(ex(Si), [3(t))[[3(t) - [3(ti~ I)] [exes;) - ex(Si~ I)] (18) 
i= 1 j= 1 

satisfies the condition 

where L, denotes the length of ex. Then reverse the order of summation in (18).) 

M. Let I be a locally analytic function on an open subset U of C, and let 
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{ 
1(0 - I(A) , 

g(e A) = ( - A 

r(A). 

(, A.E U. 

Show that g is continuous on U x U. (Hint: One may either express the difference 
g«(, A) - g(ex, ex) as the integral of [j'(¢) - r(ex)] over a(A, 0 (for" A sufficiently 
close to ex), or refer to Example I.) 
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N. (Dixon [19J) Let U be an open set in C. and let /' be a formal sum of closed rectifiable 
arcs in U (Prob. H). Suppose given a locally analytic function f on U and set 

{I((~ - f().), 

g(e ).) = ~ - ). 

f'().), 

Ch U. 

Show that if V denotes the (open) subset of C at which w, vanishes, then 

{

-21 . fg((, )')d(, 
m. 

h()') - ' 
1 f(O" -f-d( 2ni ,( -). ., 

hU, 

(19) 

hV, 

defines a locally analytic function on U u V. (Hint: It is obvious that the two 
definitions of h agree on U (\ V, so (19) really defines a function on U u V. Moreover 
it is also clear (Prob. G) that h is differentiable at each point of V. To complete the 
proof, use Problems Land M and Morera's theorem (Ex. L).) 

O. (The Cauchy-Goursat Theorem and Cauchy Integral Formula: The General Case) 

(i) Let U be an open set in C, let f be a locally analytic function on U, and let y 
be a formal sum of closed rectifiable arcs in U with the property that if ). ~ U 

then wi).) = O. (This condition says, intuitively, that y does not wind around 
any point of the complement of U, and is frequently indicated by writing 
y - 0 in U.) Show that 

w.().)j·(),) = ~ f .[(0 d" 
, 2'"' ~, m "~ - /I. 

).EU\W, 

where W denotes the union of the ranges of the arcs constituting y. (Hint: 
If V denotes the set of points at which Wy vanishes, then U u V = C; use 
Liouville's theorem (Ex. K).) Verify in particular that if C1 and C2 are any 
two circles such that C 2 C Int( C 1), and if f is analytic on some domain 
containing A -, where A denotes the annular domain Int( C 1) (\ Ext( C 2), then 

I().) = _I . (5 -5 ) f(() de ). E A, 
2m c, c, (-). 

(cf. Example F). 
(ii) Let U be an open subset of C, let f be a locally analytic function on U, and let 

}' be a formal sum of closed rectifiable arcs in U such that f - 0 in U as in (i). 
Show that 

f,f(Od( = O. 

(Hint: Apply the Cauchy integral formula to the function g(O = (( - l1.)f(() 
at the point 11., where 11. is some point of U not in the union W of the ranges of the 
arcs constituting y. (That such a point 11. exists is clear from the fact that U is 
open and W is compact.» 
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P. A domain L\ in ( is said to be simply connected if every closed rectifiable arc), in L\ 
satisfies the condition " ~ 0 in L\. 

(i) Use the results of Problem K to prove that a domain L\ in ( is simply connected 
if and only if the complement of L\ in the Riemann sphere t is connected (cf. 
Problem 3W). 

(ii) Show that every analytic function on a simply connected domain L\ possesses 
a primitive on L\. (Hint: Fix a point ,1,0 in L\. If{ is analytic on L\ and if IXI and 
1.2 are any two rectifiable arcs in L\ joining ,1,0 to a point A, then ,[" I(Od( = 

J"f(Od( by the Cauchy-Goursat theorem.) 

Q. Let L\ be a simply connected domain, and let I be an analytic function on L\ with 
no zeros in L\. Show that there exists an analytic determination of log I(A) on L\, 
that is, an analytic function log I(A) such that exp{log I(A)} == I(A) on L\. In 
particular, if 0 ¢ L\, then there is an analytic determination of log A on L\, unique 
up to an additive constant of the form 2kni, k E Z. (For example, if C denotes an 
arbitrary closed, connected, unbounded subset of ( that contains 0, then there is 
an analytic determination of log A on each component of (\ C.) Conclude that if 
L\ is a simply connected domain not containing 0, then there exists a real harmonic 
function arg A on L\ (unique up to an additive constant of the form 2kn, k E Z) 
satisfying the condition ,1,== IAlexp{i arg A} in L\. In the event that the domain L\ 
contains the positive ray of the real axis there is precisely one of these determinations 
of the argument junction that vanishes on that ray; this uniquely determined function 
is called the principal branch of the argument on L\, and is denoted by Arg 1 Show, 
analogously, that in a simply connected domain L\ that contains the positive ray of 
the real axis but does not contain 0 there exists, for each complex number IX, a unique 
determination ofthe power functionI,(A) = A", A E L\, satisfying the usual exponential 
laws identically on L\ and having the property thatf,(s) = S' when s is positive and tis 
real. (Hint: If F denotes any primitive of the function r / f, then Ie -F is a constant fi; 
hence I = fieF. Choose any complex number IX such that e' = fi, and set logI(A) = 

F(A) + IX.) 

R. A pair (D, f) consisting of an open disc D in ( and an analytic function I defined 
on D is called a junction element. Let (Db '/;), ... , (D», In) be a finite set offunction 
elements, and suppose given an analytic function ./~ on a domain L\ such that 

(i) ./; agrees with Io on Dj n L\ # 0 for all i = 1, ... ,11, 

(ii) Dj n Dj # 0 implies Dj n Dj n L\ # 0 for all i,j = I, ... , n. 

(Condition (ii) will hold, for example, if L\ is convex and the centers of the discs Dj 

all lie in L\ -.) Show that there exists a (unique) analytic function f on the union 
L\ l.) D I l.) ... l.) Dn that extends all of the functions Io, II' ... ,In· 

S. A circle chail1 in (is a finite sequence X' = {Do, ... , Dn} of open discs in (such that 
Dj n Dj _ 1 # 0 for every i = 1, ... ,11. If.x = {Do, ... , Dn} is a circle chain, and if 
j; is an analytic function on D j , i = 0, ... ,11, then the sequence {(Do,fo), . .. , (Dn,fn)} 
of function elements constitutes an analytic continuation along .x if./: agrees with 
./:-1 on D j n Dj _ l , i = 1, ... , n. It is clear from the identity theorem (Th. 5.2) that 
an analytic continuation along X' is uniquely determined by anyone of its function 
elements. Customarily it is said that .[" is obtained by continuing fo analytically 
along.x. 
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(i) Let I be a line in C, and let ,i;" = {Do, " " Dn} be a circle chain such that the 
center a; of each disc D; lies on L Show that if {(Do, f~), ' '" (Dn, In)} is an 
analytic continuation along ,X', then there exists a (unique) analytic function 
I on the union ~ = Do U ' , , u Dn that extends each j;, i = 0, ... , n. (If the 
centers a; all lie on the line segment a(ao, an), such an analytic continuation is 
known as an analytic continuation along the directed line segment a(ao, exn).) 
(Hint: Deal first with the case in which the centers ex;, i = 0, ... , n, are arranged 
in order in one direction or the other along I. Begin by showing that if a disc 
D; in $' is wholly contained in some other disc in ,;t', then the function element 
(D;, J;) can be removed from the analytic continuation without prejudice to 
any hypothesis. Hence one may assume without loss of generality that no disc in 
,i;" is contained in any other. Show that if this is the case, and if D; n Dk # 0 
for some i and k with i < k - 1, then D; n Dk - I # 0.) 

(ii) If ,i;" I' ... , % p is a sequence of circle chains, and if there is given an analytic 
continuation along each of these circle chains, we say that this sequence of 
analytic continuations is chained if the last function element in the analytic 
continuation along %; coincides with the first function element in the analytic 
continuation along %;+ I, i = 1, ... , p - 1. In this case we can form a single 
analytic continuation simply by juxtaposing the given ones in the given order 
(and then, if desired, suppressing consecutive repetitions). We may call this the 
result of chaining together the given analytic continuations. If rc = rc(Ao, ... , An) 
is a polygonal are, then by an analytic continuation along rc we mean an analytic 
continuation obtained by chaining together analytic continuations along the 
individual edges a(A;_I' A;), i = 1, ... , n. Let ~ be a domain and let I be an 
analytic function on ~. Show that if rc = rc(Ao, ... , An) is a polygonal arc in ~, 
and if (Dr(AO)' 10) is a function element centered at Ao such that 10 agrees witr 
I on Dr(AO)' then there exists an analytic continuation of f~ along n such that 
every function element in that continuation is obtained simply by restricting I 
to the appropriate disc. 

T. (i) Let a, fl, y be noncollinear complex numbers, and let T denote the triangular 
region determined by them. Suppose given a function element (Do, lo) centered 
at one of the vertices of T, say at a, and suppose this function element can be 
continued along every polygonal arc in T. Show that if 10 is continued an
alytically around the triangular arc [a, P, )I] then the last function element 
in the continuation agrees with fo in a neighborhood of a. (Hint: Let Pt = 

(I - t)a + tp and)it = (1 - t)a + ty, Os t S 1, and consider the set E of those 
points t in the unit interval with the property that analytic continuation of 10 
along [ex, Pro )It] has the stated property that the last function element agrees 
with 10 in a neighborhood of a. Use Problem SCi) to show that E is a nonempty, 
closed, relatively open subset of [0, I].) 

(ii) Let P be a simple polygon in C and suppose given a function element (Do, fo) 
centered at a vertex Ao of P with the property that 10 can be continued 
analytically along every polygonal arc beginning at Ao and lying wholly in 
P u Int(P). Show that if n = n(Ao, ... , An' Ao) is a polygonal arc parametrizing 
P (such an arc exists by Problem I), then the result of continuing 10 along n 
has the property that the last function element in the analytic continuation, 
which is also centered at Ao, agrees with 10 in a neighborhood of Ao. (Hint: It is 
a theorem in elementary plane geometry that the region R = P u Int(P) 
can be dissected into triangular regions TJ , •••• Ii in such a way that the vertices 
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of all these triangular regions are also vertices of P, and such that any two 
triangular regions 7; and Ti , i oF j, that are not disjoint meet only in a common 
edge (which must then be a line segment lying entirely in Int(P) except for its 
end-points, which are vertices of P). Use (i) and an induction on k.) 

U. (Monodromy Principles) Let Ll be a simply connected domain, let Do be an open disc 
contained in Ll, and let 10 be an analytic function defined on Do. Suppose 10 can 
be continued analytically along every polygonal arc in Ll. Prove that if n l and nz are 
any polygonal arcs in Ll joining the center ,1.0 to the same point A, then the last 
function elements in the analytic continuations of 10 along nl and n2 , respectively, 
agree in a neighborhood of A. Conclude that there exists a (unique) analytic function 
Ion Ll that agrees with 10 on Do. (Hint: It comes to the same thing to show that the 
analytic continuation of 10 along the arc n l + fe 2 returns to the function 10 in a 
neighborhood of ,10' By interpolating new vertices (and new function elements) 
as needed along n I + fez, one may arrange things so that the resulting closed 
polygonal arc n intersects itself only at its own vertices, in which case it is the formal 
sum of various polygonal arcs of the form p + p and of polygonal Jordan loops. 
Use Problem T and an induction on the number of edges in n.) 

V. Let u be a real harmonic function on a simply connected domain!J.' in [Rl. Show that 
there exists an analytic function 1 on the corresponding complex domain !J. having 
u for its real part, and conclude that u possesses a (real) harmonic conjugate in !J.' 
that is unique up to an additive constant. 

W. If 1 is an analytic function on a domain!J., then 1 and J are both (complex-valued) 
harmonic functions on !J.. Hence if 1 and 9 are any two analytic functions on !J., 
then 1 + 9 is harmonic on !J.. Show, in the converse direction, that if!J. is simply 
connected and h is a complex-valued harmonic function on !J., then h can be written 
as h = 1 + g, where 1 and 9 are analytic on!J.. Show also that this decomposition of h 
is unique up to an additive constant. (Hint: A complex-valued function is harmonic 
if and only if its real and imaginary parts are. Let u and v be the real and imaginary 
parts of h, let u and iJ denote harmonic conjugates of u and v, respectively, and set 
WI = (u - iJ)/2, W2 = (u + iJ)/2. If f and g denote analytic functions on !J. having 
WI and wz, respectively, for their real parts, then 1 + g differs from h by an additive 
constant.) 

X. Let y be a piecewise smooth, regular, Jordan loop in 1[, and let !J. = Int(y). The 
purpose of this problem is to show that either wl' == 1 or w;' == -lon!J.. 
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(i) Let [a, b] be the parameter interval of y, let to < ... < to be a partition of 
[a, b] such that the subarcs lXi = Y I [t i _ I' t;] are all smooth, and let t be a point 
of [a, b] strictly between some pair of consecutive partition points-say 
ti- I < t < ti· Then at the point ,10 = lXi(t) there are unique tangent and normal 
lines to lXi' and if Al is any other point on the normal n to lXi at ,10, then pes) = 
SAl + (1 - s)Ao, - 00 < S < + 00, is a parametrization of n. Show that for 
sufficiently small positive F. one of the two segments 0' I = {p(t): - e < t < O} 
and 0'2 = {p(t): 0 < t < + e} lies entirely in !J., while the other lies entirely 
in Ext(y). If AI is chosen so that it is 0'2 that lies in!J., then p is called an inward 
tending parametrization of n. (Hint: If a line segment 0' has the property 
that ,10 is the midpoint of 0', and if 0' lies (except for its midpoint) entirely in 
one complementary component of y, then 0' is an edge of a polygonal Jordan 
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loop P such that ,1,0 is the only point of}' on P (see Proposition 3.8). Hence 
the range of y lies (except for the one point ,1,0) either in Int(P) or Ext(P).) 

(ii) Let!J.i be one of the smooth arcs of which y is the chained sum, and for each 
t, ti - I < t < ti, let ,1,0 = Ao(t} = !J.i(t), let Al = Al (t) denote the point of the 
normal to !J.i at Ao(t) such that the parametrization pes) = SAl + (l - s)Ao 
is inward tending and such that I Al - ,1,0 I = 1, and let Az = Az(t) denote the 
point on the tangent line to !J.i at ,1,0 such that Az - ,1,0 is a positive multiple of 
!J.'(t) and such that IAz - ,1,0 I = 1. Show that if Aj - ,1,0 = xi + iYj' where xi' Yj 
are real,j = 1,2, then the determinant 

bet) = [xz Y2[ 
XI YI 

is either + 1 for every t or -1 for every t, ti- 1 < t < ti. When bet) == 1, we 
say that !J.i is oriented positively with respect to ~. (Hint: For arbitrary 
t', ti- I :$; t' < t;, let !J.o and !J.' denote, respectively, !J.;(t') and the (right) deriv
ative of !J. i at t'. Set /31 = W!J.', /32 = OJ!J.', where w = exp(iuo), 0 < Uo < 71./2, 
and define pJ{s) =!Y.o + s/3J' 0 :$; s < + 00, j = 1, 2. Thus PI, pz are param
etrizations of two rays emanating from !J.o that straddle the (right) tangent 
vector to !J.i at !J.o, and make an angle less than 71. (Figure 1). Show that there 
exists a number 15 > 0 such that if 0 < So < 15, and if ~j = p/so), j = 1,2, 
then the set of values of the parameter t, t' :$; t :$; b, for which yet) lies in or on 
the triangle [!J.o, ~ b ~z] consists of a single interval [t', t' + e] for some positive 
number e, where yet) is strictly inside [!J.o, ~b ~z] on this interval except for 
t = t', t' + e. Use this observation to prove that for every t', a < t' < b, there 
exists a positive number r 0 such that if 0 < r < r 0, then the set of values of the 
parameter t, a :$; t :$; b, for which yet) lies in or on the circle C = CrCy(t')) 
consists of a single closed interval [c, d], a :$; c < t' < d :$; b, where yet) is 
strictly inside C on this interval except for t = c, d. (A similar assertion can 
also be made in a neighborhood of the point yea) = y(b), of course, but it 
must be worded differently.» 

(iii) Show that if one subarc !J.i of y is oriented positively with respect to 11, then all 
the subarcs !J.i are. When this is the case, we say that y is oriented positively with 
respect to~. (Hint: It suffices to show that if the subarc!J. i is positively oriented 

" " " 

Figure I. 
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100 

Figure 2. 

with respect to~, then (.(i+ 1 is too. Let (.(0 = yet;), and let C = C,((.(o) be a circle 
with the property set forth in the hint in (ii) and small enough so that (.('1 changes 
very little on the subinterval [sJ, tJ on which (.(It) lies in Int(C) u C, while 
(.(;+ 1 also changes very little on the subinterval [t i , S2] on which (.(i+ 1 lies in 
Int(C) u C. Then the points Aj = yes), j = 1, 2, divide C into two arcs, one 
lying entirely in ~ except for its endpoints, and the other lying in Ext(y) except 
for its endpoints, and if p denotes a parametrization of the subarc of C (or of 
C) that is in ~ and has Al and A2 for initial and terminal points, respectively, 
then the tangent vector to p lies (roughly) along the inward tending normal to I' 
at AJ, and (roughly) opposite to the inward tending normal to I' at A2 ; see 
Figure 2.) 

Figure 3. 
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(iv) Verify that if t' is positively oriented with respect to ~, then w; == 1 on ~. 
(Hint: Let C = Cr (..1.0 ) be a circle in ~. Show first that there exist two arcs KI 
and K 2, lying in ~ n Ext( C) except for their endpoints, such that the initial 
points of K I and K2 lie on C, while the terminal points of h I and K2 belong to 
the range J of "I, and such that the ranges of KI and K2 are disjoint. Chain sub
arcs of "I and C together with KI and K2 (and KI and K2) to form two simply 
closed arcs "II and "12 such that W;, = w;', = 0 at ..1.0 , while the winding number 
ofYI + "12 at..1.o is the same as that of "I + C; see Figure 3.) 
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In this chapter and the following four we review some needed facts from the 
theory of measure and integration. Most of the proofs of those propositions 
that are stated below without proof are outlined in the problems. The reader 
may consult [30], [58], or [36] for more detail. 

A nonempty collection R of subsets of a set X is a ring (of sets) if R is 
closed with respect to the formation of unions and differences (i.e., if for 
every pair of sets A and B in R, A u B and A \B belong to R). Every ring of 
sets contains the empty set, and is closed under the formation of intersections. 
A ring of sets that is closed with respect to the formation of countable unions is 
a a-ring of sets. Every a-ring S of sets is closed under the formation of count
able intersections. Moreover, S is closed under the formation of complements 
if and only if the entire space X belongs to S. The intersection of a nonempty 
family of rings [a-rings] is itself a ring [a-ring]. If <6' is any collection of subsets 
of a set X, then there exists a smallest ring [a-ring] of subsets of X that 
contains <6', namely, the intersection of the collection of all those rings 
[a-rings] of subsets of X that contain I(}. This ring [a-ring] is called the ring 
[a-ring] generated by <6' and is denoted by R(<6') [S(<6')]. The ring R(I(}) can 
be described directly in a fairly straightforward manner (see Problems E 
and F); the general description of the a-ring S(I(}) requires a transfinite 
procedure (Prob. G). 

A set X together with a a-ring S of subsets of X such that X belongs to S 
is a measurable space. Thus a measurable space is a pair (X, S) such that S 
is a a-ring of subsets of X that is closed with respect to the formation of 
complements. However we shall frequently denote the measurable space 
(X, S) by the single symbol X, and refer to X as measurable with respect to S 
or as measurable [S]. The elements of S are called the measurable ([S]) 
subsets of X. If (X, S) is a measurable space, and A is an arbitrary subset of X, 
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then the trace SA = {E (\ A: E E S} of S on A is a a-ring of sets (Prob. D), 
and (A, SA) is a measurable space. In case A E S, so that the elements of SA 
are exactly the measurable subsets of A, (A, SA) is called a (measurable) 
subspace of (X, S). 

Example A. Let X be an arbitrary set, and let ~ be an arbitrary collection of 
subsets of X. Then there exists a smallest a-ring S of subsets of X that contains 
~ and turns X into a measurable space, viz., the a-ring S(~ u {X}). If ~ 
is itself a a-ring, then S consists of the union of ~ and the collection of all 
the complements of the sets in ~. 

Example B. Let X be a set and let:?iJ be a nonempty collection of subsets of X 
with the property that :?iJ is closed with respect to the formation of countable 
intersections. If S denotes the collection of all those subsets A of X such that 
either A or its complement X\A contains some set D belonging to :?iJ, then 
it is readily verified that S is closed with respect to the formation of comple
ments and countable intersections. Hence S is a a-ring turning X into a 
measurable space (Prob. E(ii)). We note for future reference that the sub
collection of S consisting of sets disjoint from some one fixed set D in ,q; 
is a a-ideal in S (Prob. I). 

Example C. If Sand T are two a-rings of subsets of X, then we say that S is 
refined by T (or that S is coarser than T, or that T is finer than S) ifS c T. For 
an arbitrary set X the power class on X (Problem lR) is a a-ring on X that 
turns X into a measurable space, and it is clear that this is the finest a-ring 
of subsets of X. The coarsest a-ring of subsets of X turning X into a measur
able space is the pair {0, X}. Every other a-ring that turns X into a 
measurable space lies between these two extremes. The coarsest a-ring that 
turns X into a measurable space in which every singleton is a measurable 
set consists of the collection of all countable subsets of X together with the 
collection of all those subsets of X that have countable complements. 

Example D. In IRn consider the collection of all half-open cells of the form 

(1) 

(where (a, b] denotes the half-open interval {t E IR: a < t ~ b}). If Ho and 
H 1 are two such cells, then H 0 (\ H 1 is another, and H 1 \H 0 can be expressed 
(not uniquely) as a finite disjoint union of still other half-open cells. In fact, 
every set in the ring Hr generated by the collection of all half-open cells of 
the form (1) can be expressed as a finite disjoint union of such cells. Similarly, 
the ring HI generated by the collection of all half-open cells of the form 

H = [a1' b1) x [a2' b2) x .,. x [an, bn) 

(where [a, b) = {t E IR: a ~ t < b}) consists of the collection of all finite 
disjoint unions of such cells. Since any a-ring containing either Hr or HI must 
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also contain all the degenerate closed cells [a1, b1] x [al, bl ] x ... x [an, bn] 
in which ai = bi for at least one i, 1 :$; i :$; n, it is clear that Hr and HI generate 
the same a-ring. 

Example E. Let ff denote the collection of all finite unions of closed cells 

Z = Cab b1] x ... x [an, bn] 

in Euclidean space ~n. The collection ff is closed with respect to the formation 
of finite unions and intersections, since the intersection of two closed cells 
is again a closed cell. (Such a collection of subsets of a set X is called a lattice 
of subsets of X.) It is easily seen that ff also generates the same a-ring 
as that generated by Hr and HI in Example D. The elements of ff are known 
as elementary figures in ~n. 

Suppose now that X is a topological space. Then the a-ring B generated by 
the collection of all open subsets of X is the a-ring of Borel sets in X. The 
a-ring B is also the a-ring generated by the collection of all closed sets in X. 
Every set in X that can be written as the intersection of a countable collec
tion of open sets is called a G6 • Likewise, every set in X that can be written as 
the union of a countable collection of closed sets is called an F (T. The union of 
a countable collection of G 6'S is a G b", and so forth. All of these sets are Borel 
sets. 

If (X, 8) and (Y, T) are measurable spaces, and if <l> is a mapping of X 
into Y, then <l> is measurable with respect to 8 and T, or measurable [8, T] 
(or, if no confusion is possible, simply measurable) if <I>-l(E) E S for every 
set E in T. More generally, if <l> is defined only on some subset of X that 
contains a measurable set A, then <l> is measurable on A if <l> I A is measurable 
on the subspace (A, 8 A). In the special case that Y is a topological space, 
a mapping <l> of X into Y will be called measurable with respect to 8, or 
measurable [8] if it is measurable [8, By] where By denotes the ring of Borel 
sets in Y. In particular, a complex-valued function I defined on a measurable 
space X is measurable if and only if 1- 1(V) is a measurable set in X for 
every open set of complex numbers V (see Problem B). If I is a real-valued 
function and all of the sets {x EX: I(x) < t}, - 00 < t < + 00, are measur
able sets in X, then I is measurable. (Other similar sufficient conditions for 
a real-valued function to be measurable are mentioned in Problem C.) 
We observe that a measurable real-valued function is measurable when 
regarded as a complex-valued function (because ~ is topologically embedded 
in IC as the real axis), and that a complex-valued function is measurable if 
and only if its real and imaginary parts are (because IC is the topological 
product of the real and imaginary axes). In the same vein we recall that the 
extended real number system ~~ is a topological space in its order topology 
(Ex. 3C), and we observe that if I is an extended real-valued function on a 
measurable space (X,8), then I is measurable if and only if all of the sets 
{x EX: I(x) < t}, - 00 < t :$; + 00, are measurable. Equivalently, I is 
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measurable when and only when the sets E + 00 = {x EX: f(x) = + oo} and 
E_oo = {x E X :f(x) = - oo} are both measurable and the finite real-valued 
function fo = f I X 0 is measurable on X 0 where X 0 = X\ (E + 00 u E - (0). 

If both X and Yare topological spaces, then a mapping of X into Y is 
Borel measurable if it is measurable [Bx , By], where Bx and By denote 
the IT-rings of Borel sets in X and Y, respectively. In particular, every con
tinuous mapping of X into Y is Borel measurable. 

Example F. Let X be a metric space, and let F be a nonempty closed set in X. 
Then the function f(x) = d(x, F) is continuous on X and satisfies the 
condition 

F = {x EX: f(x) = O} 

(Prob. 4D). It follows that if S is any IT-ring of subsets of X such that all the 
continuous real-valued functions on X are measurable [S], then S must 
contain the entire ring B of Borel sets in X. Thus B is the smallest IT-ring 
of subsets of the metric space X with respect to which all complex (or even 
all real) continuous functions are measurable. 

The following proposition is an easy consequence of the various defi
nitions. 

Proposition 6.1. Let (X, S), (Y, T), and (2, U) be measurable spaces, and let 
<l> : X -+ Y and 'I' : Y -+ 2 be measurable mappings. Then the composition 
'I' 0 <l> is measurable. In particular, if Yand 2 are topological spaces, and 
if 'I' is a Borel measurable mapping of Y into 2, then 'I' 0 <l> is measurable 
[S] whenever <l> is. 

It follows that if f is a measurable complex-valued function, then so are 
the functions f and f\ k = 2, 3, ... , as well as the functions I fir, r > O. 
Likewise, the functions f - k and I f I - r are measurable on the measurable 
set {x :f(x) :f. OJ. If f and g are measurable complex-valued functions on 
the same measurable space, then fg and all linear combinations r:t.f + pg 
are also measurable. If f and g are real functions, then f v g and g A fare 
measurable. (To verify that these last named facts are consequences of 
Proposition 6.1 it suffices to note that if f and g are measurable complex
valued functions on (X, S), then x -+ (f(x), g(x)) is a measurable mapping 
of X into (2, and the functions Af.1, and r:t.A + pf.1 are continuous on 
(2. Likewise, if f and g are measurable real-valued functions, then 
x -+ (f(x), g(x)) is a measurable mapping of X into (R2, and s v t and SAt 
are continuous functions on (R2; alternatively, see Problem C.) With respect 
to sequences of measurable functions, we recall the following two results 
(cf. Problems R and C). 
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Proposition 6.2. Let X be a measurable space, and let Un} be a sequence of 
measurable complex-valued functions on X. Denote by E the set of all those 
points x at which the numerical sequence Un(x)} is convergent. Then E is a 
measurable set, and the function f defined on E by f(x) = limn fn(x) is 
measurable on the subspace E. 

Proposition 6.3. Let X be a measurable space, and let Un} be a sequence of 
measurable [extended] real-valued functions on X. Then the extended 
real-valued jimctions supn j~, infn fn' lim supn fn' and lim infn fn' are all 
measurable on X. In particular, the set of those points x at which the 
numerical sequence Un(x)} is bounded above in IR is measurable, as is the 
set of those point x at which Un(x)} is bounded below in III 

The following theorem is a convenient summary of some of the preceding 
facts. 

Theorem 6.4. The collection d of all measurable complex-valued functions 
on a measurable space X is a unital algebra that contains all constant 
functions, is self-conjugate (Ex. 2H), and is closed with respect to the 
formation of limits of pointwise convergent sequences. The collection of 
real-valued functions in d forms a unital real algebra that is also a function 
lattice (Prob. lD). 

This theorem has a converse which is sometimes useful, and we record it here for complete
ness. The proof is sketched in Problems T and U. 

Theorem 6.5. Let X be a set and let .<1 be a real algebra of real-valued functions on 
X that contains the constant functions and is closed with respect to the formation oflimits 
of pointwise convergent sequences. Then there is a unique a-ring 8 of subsets of X such 
that X is a measurable space with respect to S and such that sf is precisely the set of all 
real-valued functions on X that are measurable [8]. Similarly, if .sI is a self-conjugate 
algebra of complex-valued functions on X that contains the constant functions and is 
closed with respect to the formation of limits of pointwise convergent sequences, then 
there exists a unique a-ring S of subsets of X such that (X, S) is a measurable space 
and such that sf is precisely the set of all complex-valued functions on X that are measur
able [8]. 

Recall that a complex-valued function defined on a set X is said to be 
simple if it assumes only a finite number of distinct values (Prob. lL). 
Equivalently, a function on X is simple if and only if it can be expressed as a 
finite linear combination of characteristic functions of subsets of X. Among 
such representations of a simple function s there is precisely one, 

m 

S = L (XiXE;' 
i= 1 

(2) 

in which the sets Ei are disjoint and nonempty, and the coefficients (Xi are 
distinct and different from zero. (If s = 0, the sum in (2) is empty.) If X is a 
measurable space, then a simple function s on X is measurable if and only 
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if it assumes each of its values on a measurable set, or, equivalently, if and 
only if the sets Ei in the representation (2) are measurable. The following 
useful result shows how measurable real-valued functions can be approxi
mated by measurable simple functions; for a sketch of a proof as well as a 
discussion of the complex case see Problem S. 

Proposition 6.6. Let X be a measurable space and let f be a real-valued function 
defined on X. Then the following three conditions are equivalent: 

(i) f is measurable, 
(ii) There exists a sequence {sn}:= 1 of measurable simple real-valued 

functions converging pointwise to f, 
(iii) There exists a sequence {Sn}:= 1 of measurable simple real-valued 

functions converging pointwise to f and satisfying the following 
additional conditions: 

(a) Isix)1 ~ If(x)ljor all n in N and x in X, 
(b) At each point x of X, either 0 ~ Sj(x) ~ ... ~ sn(x) ~ "', or 

o ~ Sl(X) ~ ... ~ sn(x) ~ "', 
(c) IfN is a positive integer and if If(x)1 ~ N,thenlf(x) - sn(x) I ~ 

1)2n for every n ~ N. In particular, the convergence of {sn} to f is 
uniform on every set on which f is bounded. 

PROBLEMS 

A. Let X and Y be sets, and let <1> : X ---> Y be a mapping of X into Y. Then the induced 
mapping <1> - 1 of the power class on Y into the power class on X preserves arbitrary 
unions and intersections as well as complements, differences, and symmetric differ
ences. (Thus, for example, <1>-I(A V B) = <1>-I(A) V <1>-I(B) for all subsets A 
and B of Y.) This is sometimes expressed by saying that <1>-1 is a complete Boolean 
homomorphism. Verify that if S is a a-ring in Y, then <1>-I(S) = {<1>-I(A): A E S} 
is a a-ring in X. Similarly, if S is a a-ring in X, then {B c Y: <1>-I(B) E S} is a 
a-ring in Y. 

B. Let (X, S) be a measurable space, and let <1> be a mapping of (X, S) into a measurable 
space (Y, T). If <1>-I(C) is measurable for every C in some collection of sets ~ in Y, 
then <1>-I(E) is measurable for every E in S(~). Thus, to show that <1> is measurable 
[S, T] it suffices to verify that <1>-I(C) is measurable [S] for every set C in some 
subcollection ~ of T sufficiently large so that T c S(~). In particular, if Y is a 
topological space satisfying the second axiom of countability, and if <1>-I(W) 
is measurable for every open set W in some base (or subbase) for the topology on Y, 
then <1> is measurable [S]. 

C. Let M denote anyone fixed set of real numbers that is dense in IR, e.g., the set of 
rationals, or the set of dyadic fractions mI2". Then the set of rays {[t, + (0) : t E M} 
generates the ring of Borel sets in IR, as does each of the sets of rays {(t, + (0): t EM}, 
{( - 00, t] : t EM}, and {( - 00, t): t EM}. Hence a real-valued function on a 
measurable space X is measurable if and only if the inverse image of each of the sets 
of anyone of these four special forms is measurable. Devise analogous criteria for 
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the measurability of extended real-valued functions on X, and use your findings to 
show that if Un} is an arbitrary sequence of measurable extended real-valued 
functions defined on X then supn In and infn f~ are measurable. Show also that an 
arbitrary monotone real-valued function defined on an arbitrary subset A of IR is 
Borel measurable on A. 

D. If0 is a collection of subset~ of X, and if M is a fixed subset of X, then the collection 
0 M = {C 1\ M: C E '&} is called the trace of'& on M. Show that the a-ring generated 
by the trace 'fJM coincides with the trace on M of the a-ring S('&) generated by 0. 
(Hint: It is readily verified that the trace ofS(~) on M is a a-ring of subsets of M that 
contains ((, M and therefore contains S('fJ M); to go the other way, let T denote the 
collection of subsets A of X such that A 1\ M E S('fJ'M), and show that T is a a-ring.) 

E. (i) Let {E l' ... , En} be a finite collection of subsets of a set X, and let 3'0 denote the 
collection of sets obtained by deleting from the partition of X determined by 
{E 1, ... , En} the one set X\(E 1 U ... U En). (See Problem lL for an explanation 
of this terminology; if the sets E 1, ... , En cover X, the set X\ (E 1 u ... U En) = 0 
need not be excluded.) Show that the ring of sets generated by {E 1,.··, En} 
consists of all (finite) unions of sets belonging to .1/'0' Show also that the ring 
R(,&) generated by an arbitrary nonempty collection 'fJ of subsets of X is the 
union of the rings generated by the various finite subsets of'&. (Hint: This union 
forms a ring.) Show in a like vein that the a-ring S('fJ) is the union of the a-rings 
generated by the various countable subsets of 'fJ. 

(ii) A ring of sets is closed with respect to the formation of both finite unions and 
finite intersections. Likewise, a a-ring is closed with respect to the formation 
of both countable unions and countable intersections. Show that if S is a 
collection of subsets of a set X that is closed with respect to the formation 
of complements, then S is a ring [a-ring] if S is closed with respect to either 
the formation of finite [countable] unions or intersections. 

F. (i) Show that the binary set operation V is associative, that is, that A v (B v C) = 
(A v B) v C for any three sets A, B, C, and conclude that the symmetric difference 
E, v E2 v··· v En of an arbitrary finite sequence of sets {E" ... , En} can be 
defined without regard to either order or bracketing. (Hint: If E 1, ... , En are 
subsets of a set X, then an element x of X belongs to E, v' .. v En if and only if 
x E E j for an odd number of indices i.) . 
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(ii) Let ~ be a nonempty collection of subsets of a set X, and let '&d denote the 
collection of all finite intersections C 1 1\ ... 1\ Ck of sets belonging to ~. 

Then the ring R = R(~) generated by C{j coincides with the collection of all 
finite symmetric differences PI v ... v Pm of sets in ((, d' 

If.f' denotes the power class on a set X, and ifthe binary operations V and n 
are interpreted as .. addition" and .. multiplication," respectively, then .f' 
becomes a ring in the sense of abstract algebra. Moreover, the rings of sets 
discussed in this section are precisely the subrings of .r in the algebraic 
sense (hence the terminology). Viewed in this light, Problem F can be seen 
to be simply the translation into set-theoretic terms of the standard 
description in ring theory of the subring generated by a subset of a ring. 

Viewed algebraically, rings of sets have the curious properties that every 
nonzero element has additive order two (E V E = 0) and every element 
is idempotent (E n E = E). Such rings have been called Boolean rings by 
M. H. Stone [63]. 
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G. For an arbitrary nonempty collection ((j of subsets of a set X let ((j * ((j denote the 
collection of all differences E\F, where E and F belong to (f,. Furthermore, let Cfi rr 

denote the collection of all unions of countable subcollections of Cfi, and let (g* = 

«((j * 't)a. In terms of this operation it is possible to describe the a-ring S(ct) 
generated by 'to We suppose, without loss of generality, that 0 E 'to Let (&,(Ol = ((;, 

and, for a given countable ordinal number (J., suppose (&,@ already defined for every 
ordinal number ~ less than (J.. Then if (J. is not a limit ordinal we set 't(al = «(&,(~l)*, 

where (J. = ~ + I, while if (j, is a limit ordinal we set 't(al = U~<, 't({l. (See Problem 
1 V for a discussion of transfinite definitions.) Show that if Q denotes, as usual, the 
smallest uncountable ordinal number (Prob. IW), then S('t) = U{<Q 't(~l. 

H. Let 't be a collection of subsets of a set X, and let Rand S denote, respectively, the 
ring and a-ring generated by (g. If't is finite, then so is R. What about S? If't is 
countable, then so is R, while for S one has the estimate card S :::; l{ (where l{ denotes 
the cardinal number of the continuum). Indeed, card 't :::; l{ implies card S :::; l{. 

(Hint: If't consists of k sets, then R('t) cannot contain more than 22 k sets: if card 
C(;. :::; l{, then card 'ta :::; l{, where 'ta is defined as in Problem G.) 

I. If R is a ring of sets then a non empty subset J of R is an ideal in R if J is closed with 
respect to the formation of finite unions and if A E J whenever A c B with A in R 
and B in J. If S is a a-ring of sets, then an ideal in S is a a-ideal if it is closed with 
respect to the formation of countable unions. Verify that an ideal [a-ideal] in a 
ring R [a-ring S] is itself a ring [a-ring]. If S is a ring [a-ring] of sets, and if (t 
is an arbitrary subcollection of S, then 't is contained in a smallest ideal [a-ideal] 
J, called the ideal [a-ideal] generated by 'to Show that J consists of all the sets 
A belonging to S such that there exists a finite [countable] collection of sets in (g 
that covers A. In particular, if (&' is an arbitrary nonempty collection of subsets of a 
set X, then every set in R('t) [S«(t)] is covered by some finite [countable] sub
collection of ({!. 

This terminology is readily explained. If the rings of subsets of a set X are 
viewed as the subrings of the Boolean ring consisting of the power class on 
X equipped with the operations V and n (cf. the remark following Problem 
F). then a subset of a ring R is an ideal in R in the above sense if and only if 
it is an ideal in R in the sense of abstract ring theory. 

J. A nonempty collection Q of subsets of a set X is a quasiring in X if (i) P\Q belongs 
to Q whenever P and Q belong to Q and Q c P, and (ii) P u Q belongs to Q when
ever P and Q are disjoint sets belonging to Q. A quasiring Q is a a-quasiring if it is 
closed with respect to the formation of countable disjoint unions, that is, if Un Qn 
belongs to Q for every sequence {Q,,};:"= 1 of pairwise disjoint sets belonging to Q. 
Show that a a-quasiring is a a-ring if and only if it is closed with respect to the 
formation of finite intersections. Give an example of a a-quasiring that is not a a-ring. 
Show that the intersection of any non empty collection of a-quasirings in X is again 
a a-quasiring in X, and conclude that an arbitrary collection C(; of subsets of X 
is contained in a unique smallest a-quasiring. This a-quasi ring is called the a

quasiring generated by ({! and will be denoted by Q(C(;). 

K. Show that if '/ is a nonempty collection of subsets of a set X that is closed with 
respect to the formation of finite intersections, then the a-quasiring Q(!t') generated 
by f}} coincides with the a-ring S(<:LJ). (Hint: Let A denote the collection of all subsets 
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A of X with the property that if D E 9;, then AnD E Q(!.I), and let B denote the 
collection of all subsets B of X with the property that if Q E Q(Q), then B n Q E Q(ft). 
Verify that A and B are both a-quasirings containing 2, and use Problem 1.) 

L. Let X be a topological space and let A be an arbitrary subset of X. If:Y denotes 
the topology of X, then the trace .'1 A of .'1 on A is the relative topology on the 
subspace A. Use this fact to show that the ring of Borel sets in the subspace A is the 
trace BA of B on A, where B denotes the ring of Borel sets in X (see Problem D). 

M. Let F be a nonempty closed set in a metric space X, and for each positive integer 
11 let Gn denote the set Gn = {x EX: d(x, F) < 1/1l}. Show that each Gn is open 
and that F = n:= 1 Gn . Thus F is a Go. Dually, every open set in X is the union of 
an increasing sequence of closed subsets. In particular, every open set is an Fa. 
Show that the characteristic functions of Qpen sets and closed sets are pointwise 
limits of sequences of continuous functions. (Hint: See Problem 40.) 

The above construction uses the metric on X, and cannot be duplicated in 
an arbitrary topological space. In fact, the results of Problem M are not 
valid in a general topological space. 

N. If X is a metric space there is a transfinite construction of the a-ring of Borel sets 
in X that goes as follows. Set .~(O) equal to the collection of all open sets in X, then 
define ~(1) to consist of the collection of all G o's, .~(2) to consist of the collection of 
all GOa's, etc. In general, let f3 be an ordinal number, 0 < f3 < Q, and suppose 
~(¢) has been defined for all 0 ::0:; ~ < f3. If f3 is a limit number, we define ~(p) = 
U¢<p ~(¢). If f3 is not a limit number, and if, say, f3 = :J. + 1, we set ~(p) equal to the 
collection (~("»o of all countable intersections of sets in ~(") if f3 is odd, and to the 
collection (~("»a of all countable unions of sets in ~(") if f3 is even. (An ordinal f3 
can be written in exactly one way as f3 = A + 11, where A is either a limit number or 0 
and 11 is an ordinary nonnegative integer; we say that :J. is even or odd according 
as 11 is.) Show that the union U¢<Q .~(~) coincides with the ring of Borel sets in X. 

There is likewise a construction, dual to the one set forth here, that begins with 
the collection of closed sets, continues with the Fa's, the F ao's and so on. This 
construction also produces the ring of all Borel sets in X. 

Except for fairly trivial metric spaces X the ordinal number n cannot be 
replaced in the above construction by any smaller number. If, for example, 
X is a subset of I!;l" that contains a nonempty perfect set, then iJB(~) is strictly 
larger than .1dI() whenever ¢ < Ij < Q [34: pp. 182-184]. 

O. The ring B of Borel sets in Euclidean space [Rn coincides with the a-ring generated by 
the ring Hr[H1J of Example D. The ring B is also generated by the collection of all 
closed cells as well as by the collection of all open cells (see Examples 3A and 3F). 
Hence the lattice of elementary figures of Example E also generates B as a a-ring. 

P. Let X be a metric space, and let ({, be a countable collection of subsets of X with the 
property that for every point x in X and every [; > 0 there exists a set C in ({, such 
that x E C and diam C < E. Show that the a-ring generated by C(;' contains the 
a-ring of Borel sets in X. 

Q. Let W denote the topological space W(Q) of countable ordinal numbers in the order 
topology (see Problem 1 Wand Example 3B). If E and F are closed and unbounded 
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subsets of W, then E n F is also closed and unbounded. Show, more generally, 
that if {Fn}~= 1 is an arbitrary sequence of closed subsets of Weach of which is 
unbounded, then n:= 1 Fn is also unbounded, and use this fact to verify that every 
Borel set A in W has the property that either A or its complement W\A contains 
a closed unbounded subset of W. (Hint: Given a countable ordinal number rx, 
there are various ways to construct a strictly increasing sequence {~n}:= 1 in Un F n 
such that ~n > rx for every n and such that, for each m = I, 2, ... , {~n} possesses 
a subsequence lying in Fm' The supremum of any such sequence belongs to nn Fn: 
use Example B.) 

R. Let (X, S) be a measurable space, let (Y, p) be a complete metric space, and let 
{~n}:= 1 be a sequence of measurable mappings of X into Y. Show that if E denotes 
the subset of X consisting of the points x at which the sequence {~n(x)} is convergent 
in Y, then E is measurable, and setting 

<l>(x) = lim ~n(x), xEE, 

defines a measurable mapping <l> of E into Y. (Hint: For each triple (p, q, r) of 
positive integers write Ep,q,r = {x EX: p(~p(X), ~iX» :s; Ilr}, and for each pair 
(N, r) of positive integers set F N.r = n;;:q=N Ep,q,r' Then nr UN F N,r is precisely 
the set of points x at which the sequence {~n(x)} is Cauchy. To see that the pointwise 
limit <l> is measurable on E, let U be any open set in Y different from Y itself, and set 
F = Y\U. For each positive integer k let ~ = {y E Y: dey, F) > Ilk}, and for each 
pair (N, k) of positive integers set GN.k = n:=N ~n-l(~). Then a point x of E is 
mapped into U by <l> if and only if x E Uk. N G N. k.) 

S. (i) Provide a proof for Proposition 6.6. (Hint: It suffices to show that (i) implies 
(iii). For each positive integer N partition the interval [ - N, + NJ into N2N+ 1 

subintervals by means of the points - N + i12N, i = 0, I, ... , N2N+ 1. If 
I/(x)1 :s; N, set SN(X) equal to the closest endpoint to zero of any subinterval 
of the partition that contains I(x). If I/(x)1 > N, set SN(X) = 0.) 

(ii) Proposition 6.6 shows, in particular, that every measurable real-valued function 
I is the pointwise limit of a sequence {sn} of measurable, simple, real-valued 
functions such that I Sn I :s; I I I for all n, and such that the convergence of {sn} 
to I is uniform on any set on which I is bounded. Show that the analogous 
assertion for measurable complex-valued functions is also valid. (Hint: For 
each positive integer N dissect the complex plane into squares of edge 1/2v, 
and adapt the hint given in part (i).) 

The following two problems provide a sketch of a proof of Theorem 6.5. In 
this argument we employ the Weierstrass approximation theorem, as well 
as the Stone-Weierstrass theorem, at least in a special setting. Since these 
matters are not discussed in this book until Chapter 18, it is appropriate to 
point out that Theorem 6.5 is not used anywhere in the sequel. so no even 
apparent danger of circularity is to be feared. 

T. Let.sf denote a real algebra of real-valued functions on a set X that 
contains the constant functions and is closed with respect to the forma
tion of limits of pointwise convergent sequences. Set S = {E eX: 
XE E.sf} and verify the following: (i) S is a a-ring, (ii) X is a measurable 
space with respect to S, (iii) the functions in .sf are all measurable [S], 
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and (iv) every real-valued function on X that is measurable [S] belongs 
to ,01. (Hint: The proofs of (i) and (ii) are straightforward, and (iv) 
follows at once from Proposition 6.6. To establish (iii) let f be a function 
in d and let U be an open subset of R Use Problem M and the Weier
strass approximation theorem (see Example 18C) to show that there 
exists a sequence {p.(t)} ofreal polynomials that converges pointwise 
to Xu, and observe that the function h.(t) = P.(f(t)) belongs to d for 
every positive integer 11.) 

U. Use Problem M and the Stone-Weierstrass theorem (see Example 18D) 
to show that if U is an open subset of the complex plane. then there exists 
a sequence {P.(A, ~)} of complex polynomials in A and X that converges 
pointwise to Xu. Then follow the argument sketched in Problem T to 
prove the complex version of Theorem 6.5. 



Integrals and measures 7 

In the language of modern integration theory the term integral refers to a 
number of somewhat different concepts arrived at through a variety of 
constructions and definitions. About the only thing that can be said about 
integration in full generality is that an integral on a space X is a linear 
transformation that is defined on a linear space of functions on X and satisfies 
certain continuity requirements. As regards the Lebesgue integral, however, 
matters are in a much less chaotic state. Indeed, while here too a considerable 
number of different definitions and constructions can be found in the litera
ture, there is unanimous agreement on what a Lebesgue integral is. For
tunately, the concept is easy to characterize axiomatically. 

Definition. Let X = (X, S) be a measurable space. A linear functional L 
defined on a linear space Y of complex-valued measurable functions 
on X is a (complex) Lebesgue integral on X provided the following two 
conditions are satisfied. 

(L1) If f belongs to Y and if g is a measurable function on X such that 
Igl ~ If I, then 

(a) g belongs to Y, and 
(b) I L(g) I ~ L( I f I ). 

(Lz) If the sequence {f,,}:~ 1 belongs to Y, and if 

(a) limm n L( I fm - fn I) = 0, and 
(b) {f,,} converges pointwise to g, 

then g belongs to Y and limn L(fn) = L(g). 
Similarly a real linear functional L on a real linear space of real-valued 
measurable functions on X is a real Lebesgue integral on X if conditions 
(L1) and (Lz) are satisfied. 
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The reader will note that, strictly speaking, a [real] Lebesgue integral 
is a triple (X, 2, L), where X is a measurable space, 2 a [real] linear space 
of measurable functions on X, and L a [real] linear functional defined on 2. 
In line with the convention enunciated in Chapter 2 (and in the preface), 
in any discussion concerning a Lebesgue integral, the integral is understood [0 

be complex if no reference is made to the scalar field. The functions belonging 
to the domain 2 of a (real or complex) Lebesgue integral L are said to be 
integrable with respect to L. Note that the right member of (Ll b) is defined. 
Indeed, the first conclusion we draw from (Ll a) is that I f I is integrable along 
with f. Likewise,], Re f, and 1m f are all integrable along with f, and one has 

ILU)I ~ L(lfl)· 

Note also that (L2 b) implies that g is measurable (Prop. 6.2). A sequence of 
functions integrable with respect to L that satisfies condition (L2 a) will be 
said to be Cauchy in the mean. In the same vein, if the functions f and fn are 
integrable with respect to L, and if L( I f - fn I) --t 0, we shall say that the 
sequence Un} converges to f in the mean. 

Example A. Let (X, S) be a measurable space, and let A denote the linear 
space of all complex-valued measurable functions on X. Then the zero 
functional on A is a Lebesgue integral on X. Similarly, the zero functional 
on the trivial submanifold (0) c A is a Lebesgue integral on X. More 
generally, let J bean arbitrary O"-ideal in S (Prob. 61) and let 2J denote the 
collection of all those functions f in A such that f vanishes outside of some 
set belonging to J. Then the zero functional on !l'J is a Lebesgue integral 
onX. 

Example B. If L is a Lebesgue integral on a set X, if 2 denotes the linear 
space of integrable functions with respect to L, and if a is a positive real 
number, then the functional aL is also a Lebesgue integral on X having 2 
for its space of integrable functions. (For a = ° this assertion is not valid 
in general.) Likewise, if L' is another Lebesgue integral on X and 2' is 
the linear space of functions integrable with respect to L', then L + L' 
acting on 2 n 2' is a Lebesgue integral on X. 

Example C. Let Xo be a point in a measurable space (X, S) and let A denote 
the linear space of all measurable functions on X. The linear functional D 
defined on A by setting DU) = f(xo) for all f in A is a Lebesgue integral 
on X. So is the functional D defined by 

D(n = f(xo) + ... + f(xn) 

when~ {xo, ... , x n} is any fixed set of n + 1 points in X. 

Example D. There is an interesting infinite analog of the foregoing con
struction. Suppose {xn } ~= ° is a fixed infinite sequence of distinct points in a 

114 



7 Integrals and measures 

measurable space (X, S). Consider the collection 2 of all those measurable 
functions I on X with the property that the infinite series In I I(xn) I is 
convergent, and for each I in 2 set S(n = In I(xn). Then S is a Lebesgue 
integral on X. The nontrivial part of the proof of this fact, of course, is the 
verification of axiom (Ll)' Let {f,J be a sequence of functions in 2 that 
converges pointwise on X to a function g and is Cauchy in the mean with 
respect to S -limk. k' S( I fi - f~' I) = 0. Then for any given £ > 0, there exists 
a positive integer K such that S( I f~ - Ik' I) < £ for all integers k, k' ~ K. 
Hence, in particular, 

N 

I I f~(xn) - Ik'(Xn) I < £ 
n=O 

for every positive integer N and all k, k' ~ K. Taking the limit as k' tends to 
infinity, we obtain 

N 

I I h(Xn) - g(Xn) I s; £, k ~ K, 
n=O 

for all N, and therefore 

I I h(xn) - g(xn) I s; £, k ~ K. (1) 
n=O 

This shows, in the first place, that h - g belongs to 2, and hence that g 
does so too. In the second place, (1) shows that 

I S(j~) - S(g) I s; S( I h - g I) s; £ 

for all k ~ K, and the verification is complete. The simplest instance of this 
construction is obtained by taking for X the set No of nonnegative integers, 
for S the power class on No, and setting Xn = n. 

Example E. There is also a generalization of the construction in Example D 
that is sometimes useful. Suppose given an arbitrary indexed family {LY}YEr 
of Lebesgue integrals, all on the same measurable space (X, S), but with each 
integral L1, having its own space 2 1, of integrable functions. We denote by 2 
the collection of all those functions I in the intersection ny 2y with the 
property that Il' E r L).( I I I) < + 00, and for each I in 2 we define 

L(f) = I Lin. 
YEr 

(Since ILinl S; Lilli) for each index y, the indexed family {Ly(f)}YEr 
is summable for each I in 2; see Problem 4N.) It is clear that 2 is a linear 
space of measurable functions on X and that L is a linear functional on 2. 
Here again it turns out that L is a Lebesgue integral on X. Just as in Example 
D, the only difficulty encountered in proving this assertion comes in verifying 
axiom (Ll ). Suppose {h} is a sequence of functions in 2 that converges 
pointwise on X to a function g and that is Cauchy in the mean with respect 
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to L-limk • k , L(lj~ - j~,I) = O. Then the sequence {fd is also Cauchy in 
the mean with respect to each of the integrals Ly, so 9 E 2y and limk L/fk) = 
L/g) for each index y. For any given c > ° there exists a positive integer K 
such that L( 1 fk - fk' I) < c for all integers k, k' ~ K. Hence, in particular, 
we have 

L Li 1 fk - fk' I) < c 
YED 

for all integers k, k' ~ K, where D denotes an arbitrary finite subset of r. 
Taking the limit as k' tends to infinity, we obtain 

L Lilfk - gl) :0:;; c, k ~ K, 
YED 

for an arbitrary finite set D of indice~, whence it follows that 

L Ly( 1 fk - 9 I) :0:;; c, k ~ K. (2) 
YEr 

This shows, in the first place, that fk - 9 belongs to 2, and hence that 9 
does so too. In the second place, (2) shows that 

for all k ~ K, and the verification is complete. 

Example F. The Cauchy integral of elementary calculus (say, on the unit 
interval) is a linear functional defined on the real linear space ~ ~([o, 1 J) 
(Ex. 2J), but it is obviously not a real Lebesgue integral. Likewise, the 
Riemann integral R of advanced calculus defined on the real linear space [J1t 

of Riemann integrable functions on [0, 1 J fails to be a real Lebesgue integral. 
Indeed, if R were a real Lebesgue integral, then the functions in [J1t would 
all be measurable with respect to some u-ring S of subsets of [0, 1J, and 
according to Example 6F, S would contain all Borel sets. But then the 
characteristic function of the set of rational numbers in [0, 1J would be 
Riemann integrable, contrary to fact. 

Proposition 7.1. Let L be a Lebesgue integral on a measurable space X and let 
2 denote the linear space of functions integrable with respect to L. Iff is a 
real-valued [nonnegative Jfunction in 2, then L(f) is also real [nonnegative]. 
Hence L is monotone increasing on the real-valued functions in 2, and is self
conjugate on 2, so that 

L(J) = L(f), L(Re f) = Re L(f), L(lm f) = 1m L(f), f E 2 

(Ex. 2H). Moreover, iff and 9 are real functions in 2, then so are f v 9 
and f 1\ g. (In other words, the real-valued functions in 2 form a function 
lattice (Prob. lD).) Finally, 

u(f, g) = L( 1 f - 9 I), f,gE2, 
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defines a pseudometric (J (Ch. 4,p.56) on the vector space!£ with the property 
that convergence in the mean with respect to L is convergence with respect 
to the pseudo metric (J. 

PROOF. If f is a nonnegative function that belongs to fE, then f = I f I, 
and it follows that L(f) ;:::: 0 (set g = 0 in axiom (Ll))' Iff is real-valued and 
belongs to fE, then the positive and negative parts of f also belong to 
!£(O ::;; f± ::;; I f I) and L(f) = L(f +) - L(f -), so L(f) is real. The rest 
of the proof is routine. 0 

Example G. Let L be a (complex) Lebesgue integral on a measurable space 
X, and let !£ denote the vector space of integrable functions with respect 
to L. Then !£ is self-conjugate and is therefore (identifiable with) the complex
ification (!£ [J;lt of the real vector space !£ [J;l of real-valued functions in !£ 
(see Example 2H). Moreover, it is clear that if this identification is made, then 
L itself coincides with the complexification (L I !£ [J;l) + (Example 2M). Con
versely, if one starts with a real Lebesgue integral L defined on a real linear 
space !£ of real-valued functions on a measurable space X, then the 
complexification L + (defined on the space !£+ of complex-valued functions) 
is a complex Lebesgue integral; see Problem C. 

Proposition 7.2. Let L be a (real or complex) Lebesgue integral on a measurable 
space X, and let {f,,} be a monotone increasing sequence of nonnegative 
functions on X, each of which is integrable with respect to L. Suppose also 
that Un} converges pointwise to a real function g. Then g is integrable with 
respect to L if and only if the numerical sequence {L(fn)} is bounded, and in 
this case we have L(fn) ---+ L(g). 

PROOF. According to Proposition 7.1 the sequence of integrals {L(fn)} is 
nonnegative and monotone increasing. Moreover, if g is integrable, then 
o ::;; L(f,,) ::;; L(g) for every n. On the other hand, if the sequence {L(fn}} is 
bounded in IR, then it is convergent, and is therefore a Cauchy sequence: 

lim I L(fm) - L(f,,) I = lim I L(fm - fn) I = o. 
m.n m.n 

But, since the sequence {f,,} is monotone, we have I L(fm - f,,) I = L( Ifm - f" I) 
for all positive integers m and n, so the sequence Un} is Cauchy in the 
mean, and the result follows at once from axiom (L2)' 0 

The most important characteristic of a Lebesgue integral is its close 
connection with a measure, a concept which we now review. Recall that a 
function cp whose domain of definition is a collection rrf of subsets of some 
set X is a set function on X. We shall be concerned with set functions that are 
either complex-valued or extended real-valued. In either of these two cases 
we say of a set function cp that it is finitely additive on rrf if for every finite 
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sequence {Ak}Z= 1 of pairwise disjoint sets in ~ such that the union 
A 1 U ... u An also belongs to ~ we have 

(3) 

Similarly, we say that q> is countably additive on ~ if for every infinite sequence 
{A n} ~ 1 of pairwise disjoint sets in ~ such that the union U:= 1 An also 
belongs to ~ we have 

(4) 

If q> takes on only ordinary complex values the sum appearing in (4) is 
simply a convergent infinite series of complex numbers. Note that since the 
left member of (4) is not changed if an arbitrary permutation is applied to the 
sequence {A n}:=!> the series appearing in (4) is unconditionally convergent, 
and therefore 

(5) 

where the latter expression represents, of course, the sum of the indexed 
family {q>(An)}nE 1\1 of complex numbers (see Example 3Q). If q> is an extended 
real-valued set function, then the sums appearing in (3) and (4) must be 
interpreted in IR~. In particular, the validity of (3) implies that there do not 
exist disjoint sets A and B in ~ such that cp(A) = - 00, cp(B) = + 00, and 
A u B E ~. Moreover, the sum appearing in (4) is an infinite series of extended 
real numbers convergent in IR~ as discussed in Example 3Q. In this case also, 
the fact that the series I:= 1 q>(An) is unconditionally convergent in IR~ 
implies that (5) is valid. Thus, if cp is either a complex-valued or extended 
real-valued set function that is countably additive, we may write Ln CP(An) for 
the sum in (5) without fear of ambiguity. 

Another important concept with which we shall be concerned is defined 
only in the real case; a nonnegative, extended real-valued set function q> is 
said to be countably subadditive on ~ iffor every set B in ~ and every sequence 
of sets {An}:= 1 in ~ such that B C Un An, we have q>(B) :::;; I:= 1 q>(An). 

Definition. If (X, S) is a measurable space, then a measure on (X, S) is a 
nonnegative, extended real-valued, countably additive set function /1 
defined on the a-ring S of measurable sets and satisfying the additional 
requirement /1(0) = O. The value /1(E) of /1 at a set E is the measure of E. 
A measurable space (X, S) together with a measure /1 on (X, S) will be 
called a measure space and will be denoted by (X, S, /1), or, when no 
confusion is possible, simply by X. If /1(X) < + 00, then the measure /1 
and the measure space (X, S, /1) are said to be finite. 
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If 11 is a measure on a measure space X, and if {EY}YEr is any countable 
indexed family of disjoint measurable sets in X, then 

in the sense of the sum of an indexed family of extended real numbers 
(Example 3Q). In particular, measures are finitely additive. Certain elemen
tary properties of measures are shared by any finitely additive, nonnegative, 
extended real-value set function defined on a ring of sets and vanishing at 0. 
Such a set function is known as afinitely additive measure. The proofs of the 
following two results are routine and are therefore omitted. 

Proposition 7.3. Let v be a finitely additive measure defined on a ring of sets 
R. Then v is monotone and subtractive in the sense that, if A and B belong to 
R and if A c B, then v(A) $; v(B) and, provided v(A) < + 00, v(B\A) = 

v(B) - v(A). 

Proposition 7.4. Every measure 11 is countably subadditive and also semi
continuous in the sense that 

for every monotone increasing sequence {En} of measurable sets. Conversely, 
if v is a finitely additive measure defined on the a-ring of measurable sets 
in a measurable space (X, S), and if v is either countably subadditive or 
semicontinuous in the above-named sense, then v is countably additive and 
is therefore a measure. 

The following result concerning the convergence of a sequence of functions 
is useful in many situations. 

Theorem 7.S (Egorov's Theorem). Let (X, S, 11) be a measure space, let E 
be a measurable subset of X having finite measure, and let Un} be a sequence 
of complex-valued functions defined and measurable on E and converging 
pointwise on E to a function f. Then for any positive number e, there exists 
a subset F of E such that Il(F) < e and such that Un} converges uniformly 
to f on E\F. 

Egorov's theorem is actually valid for measurable mappings taking their 
values in an arbitrary metric space; see Problem G. The following funda
mental theorem sets forth the intimate connection between measures and 
Lebesgue integrals. 
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Theorem 7.6. Let (X, S) be a measurable space, and suppose given a Lebesgue 
integral [real Lebesgue integral] (X, Sf, L) on X. For each measurable 
set E in X, define 

(6) 

Then fl is a measure on (X, S). Conversely, if fl is any measure on (X, S), 
then there exists a unique Lebesgue integral [real Lebesgue integral] 
(X, Sf, L) on X that is related to fl as in (6). Thus (6) gives rise to a one-to-one 
correspondence between the set of all Lebesgue integrals [real Lebesgue 
integrals] on (X, S) and the set of all measures on (X, S). 

The proofthat (6) defines a measure on (X, S) is an easy exercise (Prob. A). 
Furthermore, the uniqueness of the Lebesgue integral [real Lebesgue 
integral] L satisfying (6) with respect to a given measure fl is a consequence 
of the fact that (6) determines which characteristic functions, and therefore 
which simple functions, are integrable with respect to L, as well as the value 
of L at all integrable simple functions (see Problem B). To prove the existence 
assertion of the theorem is a nontrivial task. The reader who wishes to provide 
a proof may do so by following the procedure for constructing the Lebesgue 
integral with respect to a given measure as set forth in any textbook on 
integration theory. (Programs for such a construction can be derived from 
Problems 0 and P; see also Example 9D and the proof of Theorem 9.10.) 

If L is a (real or complex) Lebesgue integral on a measurable space X, 
and fl is the measure determined by L via (6), then fl is called the measure 
associated with L. Likewise we say that L is integration with respect to the 
measure fl. In the same spirit, the value LU) of L at an integrable function f 
is called the integral of f with respect to fl, and is denoted by 

or, when necessary to avoid confusion, by 

Similarly, the functions that have heretofore been spoken of as integrable 
with respect to L are ordinarily said to be integrable (over X) with respect to 
the measure fl associated with L, or, more briefly, to be integrable [fl]. 
More generally, let E be any measurable subset of X, and let f be a scalar
valued function defined on a subset of X that contains E. If the function 1 
defined by 

lex) = {f(X), 
0, 

XEE, 

x E X\E, 
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is integrable [,u], then f is said to be integrable [,u] over E, L(]) is declared 
to be the integral off over E with respect to ,u, and we write L(]) = h f d,u. 
Thus, if f is integrable [,u] over X, then 

for every measurable set E (for in this case 1 = XEf is integrable [,u] along 
with f; cf. axiom (Ll»' 

Let us pause to restate the defining properties of a Lebesgue integral in this 
more familiar terminology and notation. To begin with, we now suppose 
given a measure space (X, S, ,u). Axiom (L1) states that if f and 9 are two 
complex-valued measurable functions on X such that I 9 I ~ I f I, and if f is 
integrable [,u], then 9 is also integrable [,u] and I J 9 d,u I ~ J I f I d,u. In 
particular, I f I is integrable [,u] and 

Axiom (L2) states that if a sequence Un} of functions integrable [,u] is Cauchy 
in the mean with respect to ,u, i.e., if 

lim f,fm - fnld,u = 0, 
m.n 

and if Un} also converges pointwise to g, then 9 is integrable [,u] and 
J 9 d,u = limn J fn d,u. (It should also be remarked, of course, that the 
collection fil = fill' of functions integrable [,u] is a linear space, and that 
integration with respect to ,u is a linear functional on fil.) The following 
proposition helps to clarify the relations between measures and their 
integrals. (All parts of Proposition 7.7 are easy consequences of the defi
nitions; cf. Problem 8.) 

Proposition 7.7. Let (X, S, ,u) be a measure space, let E be a measurable subset 
of X, and let f be a real-valued function that is integrable over E. If a is a 
real number such that a ~ f(x) [f(x) ~ a] for all x in E, then 

In particular, if a is positive [negative], then ,u(E) < + 00. If s is a measur
able simple function, then s is integrable if and only if it vanishes outside 
a set of finite measure. If this is the case, and if s = Ii = 1 lI.; XE; is a repre
sentation of s with Ii= 1 ,u(E;) < + 00, then 
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Example H. Let (X, S) be a measurable space, and let J be a a-ideal in S, 
The measure associated with the Lebesgue integral of Example A based on 
the a-ideal J assigns measure 0 to every set E in J and measure + 00 to 
every set E in S\J. In particular, the zero linear functional on the space of 
all measurable functions on (X, S) is Lebesgue integration with respect to the 
zero measure on S. 

Example I. Recall the Lebesgue integral D constructed in Example C. The 
measure bxo associated with this integral is given by 

EES. 

(The measure bxo is known as the Dirac measure or Dirac mass concentrated 
at xo.) More generally, if {xn} is a sequence of distinct points in a measurable 
space (X, S), and if S denotes the Lebesgue integral constructed in Example 
D, then the measure p, associated with S may be described as follows: If E 
is any measurable set, and if the number of points of the sequence {xn} 
belonging to E is finite, then p,(E) is the number of those points; if the number 
of points of the sequence {xn} belonging to E is infinite, then p,(E) = + 00. 

It should be noted that if the a-ring of measurable sets S in this example is 
insufficiently rich, then II and its integral S may not be very interesting. 
Suppose for example, to take the worst possible case, that the sequence 
{xn} were so chosen that every measurable set either contained all of the 
points of the sequence or no point of it. Then the only functions integrable 
with respect to p, would have integral zero, and S would be one of the trivial 
integrals of Example A. 

Example J. If S is the Lebesgue integral on No described in Example D, 
then the associated measure K is characterized by the fact that K( {n}) = 1 
for every nonnegative integer n. The measure K is called the counting measure 
on No, Quite generally, if X is an arbitrary set, then the counting measure 
on (X, S), where S is any a-ring that contains X and all ofthe singletons in X, 
is the (unique) measure on (X, S) that assigns measure one to each singleton 
in X. 

Example K. Let p, and p,' be measures on the same measurable space (X, S), 
and let !f and fE' denote the linear spaces offunctions integrable with respect 
to p, and p,', respectively. If a and b are positive real numbers, then ap, + bp,' 
is also a measure on (X, S), and the space of functions integrable [all + bp,'J 
is precisely the linear space fE n fE'. On the other hand, if either a or b 
is allowed to be zero, then the measure ap, + bp,' will, in general, have a 
larger space of integrable functions. (Compare this example with Example 
B.) 

Example L. More generally, suppose given an indexed family {P,y}yef of 
measures on a measurable space (X, S). If we form the sum L of the indexed 
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family of Lebesgue integrals with respect to these measures as in Example E, 
then it is a simple matter to determine the measure f1 associated with L. 
Indeed, direct calculation shows that 

fleE) = I f1/E), 

where the sum of the indexed family {f1/E)} is formed in 1R1~ (see Example 3Q). 
Thus the sum of an indexed family of measures is a measure. (This can also 
be verified directly, of course.) 

Example M. Let (X, S, f1) be a measure space, and let E denote a fixed 
measurable subset of X. If for every measurable function f on E that is 
integrable [f1 J over E we write 

then Lo is a Lebesgue integral on the subspace (E, SE)' The measure associated 
with Lo, which we shall refer to as the restriction of f1 to E and denote by 
f11 E, is given by (f11 E) (F) = f1(F) for every measurable subset F of E. If 
f is any function defined and measurable on E, then 

1 (f 1 E)d(f11 E) = If df1 (7) 

in the sense that equality holds if either member of (7) is defined. A measure 
space of the form (E, SE' f11 E) is said to be a subspace of the measure space 
(X, S, f1). 

An important element in the theory of Lebesgue integration, and one 
that helps to give that theory its characteristic flavor, is the prominent role 
played by sets of measure zero, or null sets, as they are frequently called. 
Given a property p( ) that is predicable of the points of a measure space 
(X, S, f1), one says that the property holds almost everywhere with respect 
to f1, or almost everywhere [f1J, if there exists a null set Z such that p(x) holds 
for every x in X\Z. If there can be no doubt as to which measure is intended, 
we simply say that the property holds almost everywhere. We shall also 
employ the abbreviations a.e. and a.e. [f1]. In particular, two functions 
f and g on X are equal almost everywhere [f1J (f = g a.e. [f1J) if there exists 
a null set Z such that {x EX: f(x) # g(x)} c Z, and two subsets E and F 
of X are almost equal [f1J if XE = XF a.e. [f1]. Likewise, a sequence offunctions 
{fn} converges a.e. to a limit g if there exists a null set Z such that {fn} con
verges pointwise to g on X\Z. If each of a countable sequence {Pn( )} 
of properties holds a.e. [f1 J, then all of the properties Pn( ) hold simul
taneously a.e. [f1], since the union of a countable collection of null sets is 
again a null set. The following proposition summarizes some important 
facts pertinent to this circle of ideas. 
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Proposition 7.8. Let (X, S, p,) be a measure space. Iff is a nonnegative measur
able function on X, then S f dp, = 0 if and only iff = 0 a.e. [p,]. Iff is an 
arbitrary complex-valued measurable function on X such that f = 0 a.e. [p,], 
then f is integrable and S f dp, = O. If f and g are measurable functions 
on X such that f = g a.e. Lu], then f is integrable [p,] if and only if g is, and 
in this case S f dp, = S g dp,. 

PROOF. Let f be a nonnegative measurable function on X, and let {sn} be 
a monotone increasing sequence of nonnegative measurable simple functions 
converging pointwise to f (Prop. 6.6). If S f dp, = 0, then S Sn dp, = 0 and 
therefore Sn = 0 a.e. [p,] for every positive integer n by Proposition 7.7. But 
then f = 0 a.e. [p,]. On the other hand, if f = 0 a.e. [p,], then Sn = 0 a.e. [p,], 
and therefore S Sn dp, = 0, for every n, whence it follows by Proposition 7.2 
that f is integrable and that S f dp, = O. 

Suppose now that f is a complex-valued, measurable function on X 
and that f = 0 a.e. [p,]. Then (Re f)± and (1m f)± all vanish almost every
where, and it follows at once from what has just been proved that f is 
integrable and that S f dp, = O. Moreover, if f and g are measurable 
functions such that f = g a.e. [p,], then since If I ~ Igl + If - gl and 
Igl ~ If I + If - gl,fandg are integrable together. Finally, iff = ga.e. [p,] 
and f and g are integrable [p,], then it is clear that S f dp, = S g dp,. 0 

It is illuminating to paraphrase Proposition 7.8 in the language of linear 
spaces. Let (X, S, p,) be a measure space and let!£l p and jt denote, respectively, 
the linear space of all integrable functions and the linear space of all measur
able functions on X. Then according to Proposition 7.8 the set jt 0 of those 
functions in jt that vanish a.e. [p,], which is clearly a linear submanifold 
of jt, is also a linear submanifold of !£l p and is, in fact, the kernel of the 
integral with respect to p,. Let f be a function in jt and let [fJ denote the 
coset of f in the quotient space Jt / Jt o. Then a function g in Jt belongs 
to [fJ if and only if g = f a.e. [p,]. In particular, if f is integrable, and if g 
belongs to [fJ, then S g dp, = S f dp,. Thus it makes sense to define 
Ix [fJdp, = Ix f dp,. In other words, if we denote by j; p the quotient space 
!£l iii 0, then the linear functional consisting of integration with respect to p, 
can be factored through 2 p (cf. Example 2L). Indeed, once a measure p, is 
fixed, it is frequently advantageous to think of integration with respect to p, 
as a linear functional on the quotient space 2/1 rather than on !£l p itself. 
(This is standard practice, in fact, in the study of Lebesgue spaces (Chapter 
17).) In this same context we observe that 

p([fJ, [g]) = L[lf - gl]dp" [fJ, [g] E 2,1' 

defines a metric on 2 p' and that this is precisely the metric associated with 
the pseudometric aU, g) = Ix If - g I dp, (Prob. 4G). 
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Proposition 7.8 also suggests a modest generalization of the concepts of 
measurability and integrability. 

Definition. Let (X, S, f.!) be a measure space, and let f be a complex-valued 
[extended real-valued] function whose domain of definition is a subset A 
of X. Then f is said to be defined almost everywhere [f.!], or defined a.e. [f.!], 
on X if there exists a null set Z c X such that (X\A) c Z. Two functions 
f1 and f2 that are defined a.e. [f.!] are equal almost everywhere [f.!] 
(notation: f1 = f2 a.e. [f.!]) if there exists a null set Z c X such that 
f1(X) = fix) for every x in X\Z. Let f be a complex-valued [extended 
real-valued] function that is defined a.e. [f.!] on X. Then f is said to be 
measurable [f.!] on X if there exists a measurable complex-valued [extended 
real-valued] function 9 that is defined everywhere on X such that 
f = 9 a.e. [f.!]. (There may well also be nonmeasurable functions h on X 
such that f = h a.e. [f.!].) Similarly, f is said to be integrable [f.!] if there 
exists a (finite-valued, everywhere defined) function 9 that is integrable 
[f.!] such that f = 9 a.e. [f.!]. Moreover, in this situation, the integral of f 
with respect to f.! (notation: Ix f df.! or J f df.!) is declared to be the 
integral J x 9 df.!. (If one such integrable function 9 exists, and if h is any 
(finite-valued) measurable function defined on all of X such that 
f = h a.e. [f.!], then 9 = h a.e., so J h df.! = J 9 df.! by Proposition 7.8.) 

Note that it follows from this definition that an extended real-valued 
function f that is everywhere defined on X is integrable if and only if there 
exists an integrable, finite real-valued function 9 on X such that f = 9 a.e. [f.!]. 
In particular, an integrable extended real-valued function must be finite
valued almost everywhere. It should also be noted that the collection of 
functions integrable [f.!] in this sense does not any longer constitute a vector 
space in general, but it is the case, of course, that if f is an arbitrary function 
that is integrable [f.!], then there exists a unique element of the vector space 
j; I' consisting exclusively of functions each of which is equal to f a.e. [f.!]. 
Another concept that should be mentioned in connection with this general 
circle of ideas is the following. 

Definition. Let (X, S, f.!) be a measure space and let f be a complex-valued 
function that is measurable [f.!] on X. Then f is essentially bounded 
with respect to f.!, or essentially bounded [f.!], if there exists a real constant M 
such that I f I ~ M a.e. [f.!]. More generally, if E is a measurable set, 
then f is essentially bounded on E if fXE is essentially bounded on X . 

. If f is a real-valued function (or extended real-valued function) that is 
measurable [f.!] on a measure space (X, S, f.!), and if E is a measurable subset 
of X having positive measure, then it is easily seen that there is a smallest 
extended real number M with the property that f ~ M a.e. [f.!] on E. This 
number is called the essential supremum off over E with respect to f.! and is 
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denoted by ess SUPE f. The essential infimum off over E with respect to {l is 
defined analogously, and is denoted by ess infE f. If E is a measurable set of 
positive measure, and iff is a real-valued function that is defined and measur
able [{l] on E, then f is essentially bounded on E if and only if both ess SUPE f 
and ess infE fare finite, in which case ess SUPE I f I = I ess sup IE I v less inf E I I· 
If E is a measurable set of finite measure, and if I is defined and measurable 
[{l] and essentially bounded on E with respect to {l, then f is integrable [{l] 
over E, and we have 

J I f I d{l ~ (ess sup I f 1){l(E). 
E E 

It should be noted that if f is an arbitrary measurable real-valued function 
on a measure space (X, S, {l) with {leX) > 0, then M = ess SUPE f may also 
be characterized as the largest extended real number with the property that 
the set {x EX: f (x) > t} has positive measure for every t < M. In this same 
general connection the following notion is frequently useful. 

Definition. Let (X, S, {l) be a measure space and let f be a complex-valued 
function that is defined and measurable [{l] on X. Then the essential range 
of f with respect to {l is the set of all those complex numbers A with the 
property that the set {x EX: I f(x) - AI < e} has positive measure for 
everye> O. 

We conclude this chapter with a sequence of important theorems having 
to do with passing to the limit under the integral sign. In stating these 
theorems, and elsewhere, it is convenient to employ the following convention: 
If f is an extended real-valued function that is defined a.e. and measurable 
[{l] and nonnegative a.e. [{l] on a measure space (X, S, {l), then we write 

to indicate that f is not integrable [{l] over X. (According to the above 
definition of integrability for extended real-valued functions this amounts 
to saying that if g is a measurable nonnegative extended real-valued function 
on X that is equal to f a.e. ell], then g is either not integrable over the set on 
which g is finite-valued, or the set E + 00 on which g takes the value + 00 

has positive measure. Justification for this notational convention is to be 
found in Problem O. Note that this is consonant with the practice of writing 
Ly Xy = + 00 for an indexed family {Xy}yef of extended real numbers when 
the net of finite sums converges to + 00 in IRq; cf. Example 3Q.) 

Theorem 7.9 (Monotone Convergence Theorem). Let (X, S, {l) be a measure 
space, and let Un} be a sequence of extended real-valued functions defined 
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and nonnegative a.e. [Il] and measurable [Il] on X. Suppose also that the 
sequence Un} is monotone increasing a.e. [Il]. Then 

f (lim!,,) dll = lim f fn dll· 
x n n X 

(Note that limn fn is defined a.e. as a nonnegative extended real-valued 
function.) In particular, limn fn is integrable if and only if the numerical 
sequence {J fn dll} is bounded above in R 

PROOF. By hypothesis there exists a measurable set X 0 such that Il(X\X 0) = 0 
and such that the sequence Un} is defined, nonnegative, and monotone in
creasing pointwise on X o. Clearly it suffices to prove the theorem with X 
replaced by X o, so that we may, without loss of generality, assume that 
X = X o. Let us write f for the extended real-valued function f(x) = 
limn fn(x), X E X. Denote by E the set of those points x in X at which 
f(x) < + 00, by Y the complementary set of points at which f(x) = + 00, 

and let 1 be the function 

l(x) = {f(X), 
0, 

xEE, 
XEY. 

Note that E, Y, and 1 are all measurable (Prop. 6.2). Suppose first that f 
is integrable [Il]. Then, by definition, Y is a null set and J f dll = J 1 dll· 
Moreover, the sequence {f"xd converges pointwise to J Therefore by 
Proposition 7.2 the sequence {JE fn dll} is bounded, and we conclude that 

To complete the proof we must show that if I is not integrable, then the 
sequence {J In dll} is not bounded above in /R, and thus converges to + 00 

in /R~. Suppose on the contrary that {J In dll} is bounded in /R-say by the 
constant M. It follows immediately from Proposition 7.2 that the function 
J is integrable [Il] over E and that h J dll = limn h In dll· Thus the proof 
will be complete if we show that Y is a null set (for this will show that the 
measurable extended real-valued function I is, in fact, integrable, contrary 
to hypothesis). 

Our first step in this direction is a modest one but essential. The set Y 
is at least a-finite with respect to fl. Indeed, Y is contained in the union of the 
supports of the functions In' and each In has a-finite support (see Problems 
Hand J). Hence it suffices to show that every measurable subset Z of Y 
that has finite measure actually has measure zero (Prob. K). Suppose, on 
the contrary, that there exists a subset Z of Y such that Il(Z) = a, where 
o < a < + 00. Then there also exists a subset W of Z such that Il(W) < a/2 
and such that the convergence of Un} to + 00 is uniform on Z\ W. (This is 
no more than a special version of Egorov's theorem; see Problem G.) Thus 
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there exists a positive integer no such that fno(x) ~ 2Mla for all x in Z\ W. 
But then, since f1(Z\ W) > a12, we obtain (Prop. 7.7) 

r fno df1 ~ J fno df1 ~ (2M la)f1(Z\ W) > M, Jx Z\W 

which is impossible. o 

Corollary 7.10 (Theorem of Beppo-Levi). Let (X, S, f1) be a measure space, let 
{Pn} be a sequence of extended real-valued functions defined and non
negative a.e. [f1] and measurable [f1] on X, and let p denote the (almost 
everywhere defined) pointwise sum p(x) = Ln Pn(x). Then 

f p df1 = L f Pn df1. 
x n X 

In particular, p is integrable [f1] if and only if all of the functions Pn are 
integrable and the numerical series Ln J Pn df1 is convergent in IR. Hence 
Ln J Pn df1 < + 00 implies In pix) < + 00 at almost every point x. 

PROOF. Just as in the preceding proof it is easy to see that it is enough to 
treat the case in which the functions Pn are defined and nonnegative every
where on X. Set fn = PI + P2 + ... + Pn' n = 1, 2, ... , and apply the mono
tone convergence theorem. 0 

Theorem 7.11 (Fatou's Lemma). Let (X, S, f1) be a measure space, and let 
{j~} be a sequence off unctions defined and nonnegative a.e. [Il] and in
tegrable [f1] on X. Suppose that there exists a real number M such that 
J j~ df1 ~ M for every n, and suppose also that Un} converges a.e. to the 
function f. Then f is integrable [f1] and J f df1 ~ M. 

PROOF. For each positive integer n the function gn = infk>n fk is defined 
and nonnegative almost everywhere. Moreover, gn is measurable and, since 
o ~ gn ~ fn a.e., it follows that g; is integrable [f1]. Finally, the sequence 
{gn} is monotone increasing and convergent a.e. to f. Hence the desired 
conclusion follows at once from the monotone convergence theorem 
(Th.7.9). 0 

Example N. Let {fn};:"= I be a sequence of integrable complex-valued functions 
on a measur.e space (X, S, f1) such that 

Then by the theorem of Beppo-Levi, the numerical series 

00 

L (fix) - fn+ 1 (x)) 
n=1 
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converges absolutely almost everywhere [,u]. Since this series telescopes, 
we see that the sequence Un} converges a.e. to some limit-say f. Since 
{j~} is Cauchy in the mean, one sees, by applying Fatou's lemma to the 
sequence {j~ - j~};::; l' that {In} also tends to I in the mean with respect to ,u. 

The three convergence theorems studied thus far (Th. 7.9, Cor. 7.10, 
Th. 7.11) all suffer from the limitation that they apply only to functions 
that are nonnegative almost everywhere. We turn now to the standard 
convergence theorems for complex-valued functions. 

Theorem 7.12 (Dominated Convergence Theorem). Let (X, S, ,u) be a measure 
space, let Un} be a sequence of complex-valued functions measurable 
[,u] on X, and suppose that Un} converges a.e. to afunction f. Suppose also 
that there exists a function g on X such that g is integrable [,u] and such 
that I In I :0:; g a.e. [,u] for every n. Then f is integrable [,u], 

lim f Ifn - Ild,u = 0, 
n X 

and therefore 

f f d,u = lim f fn d,u. 
x n X 

Theorem 7.13 (Bounded Convergence Theorem). Let (X, S, ,u) be a finite 
measure space, and let Un} be a sequence of complex-valued functions 
measurable [,u] on X. Suppose that Un} converges a.e. to a function f, 
and that there exists a real number M such that I fn I :0:; M a.e. for every n. 
Then the functions fn and I are integrable [,u], 

lim f Ifn - fld,u = 0, 
n X 

and therefore 

f f d,u = lim f fn d,u. 
x n X 

The bounded convergence theorem is an easy consequence of the domi
nated convergence theorem, which can, in turn, be derived from the monotone 
convergence theorem and a version of Fatou's lemma; see Problem S. A 
simpler, more direct proof ofthe dominated convergence theorem is sketched 
in Problem T. 

PROBLEMS 

A. Show that the set function J1 defined in (6) is indeed a measure. (Hint: The finite 
additivity of J1 follows from the linearity of L. To establish the countable additivity 
of J1 use Propositions 7.2 and 7.4.) 
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B. Let (X, S) be a measurable space, let (X, !f', L) be a Lebesgue integral on (X, S), 
and let /1 be the measure associated with L as in Theorem 7.6. Verify that if E is 
a set in Sand 'J. is a complex number such that 'J. =1= 0 then 'J.XE belongs to !l' if and 
only if /1(E) < + 00, and use this fact to show that a measurable simple function s on 
X belongs to !l' if and only if it vanishes on the complement of a set of finite measure. 
Conclude that for each simple function s in !f' there exist representations of the form 
s = I?= 1 'J.j XE" where /1(EJ < + 00, i = 1, ... ,n, and that, for any such repre
sentation, L(s) = 2:7= 1 'J. j/1(EJ 

(i) Let (X, !f", L') be a second Lebesgue integral on (X, S), let II' be the measure 
associated with L' as in Theorem 7.6, and suppose /1(E) ~ /1'(E), E E S. Prove 
that !l" c !f' and that L(f) ~ ['(f) for every nonnegative function fin !f". 
(Hint: Use Propositions 6.6 and 7.2.) 

(ii) Verify the uniqueness assertion of Theorem 7.6 by showing that if (X, S, /1) 
is a measure space and (X,!l' 1, L 1) and (X, !l' 2, L 2 ) are Lebesgue integrals on 
X, each of which satisfies (6) with respect to /1, then !f'1 = !l' 2 and L1 = L 2 . 

c. [f(X,!l', L) is a complex Lebesgue integral on a measurable space X, then, as noted 
in Example G, the restriction of L to the real linear space !l' ~ of real integrable 
functions in !f' is a real Lebesgue integral on X. Show, conversely, that if (X, !f', L) 
is a real Lebesgue integral, if !f'+ is the complexification of!f' (Ex. 2H), and L + is 
the complexification of L (Ex. 2M), then L + is a complex Lebesgue integral on X. 
Briefly, the complexification of a real Lebesgue integral is a complex Lebesgue 
integral, and every complex Lebesgue integral is the complexification of its real 
part. (Hint: This is not an altogether trivial exercise: one approach is to employ 
Theorem 7.6.) 

D. Let C(; be a collection of subsets of a set X such that the empty set 0 belongs to (t, 
and let ({l be an extended real-valued set function defined on ((j that is either finitely 
or countably additive. Show that ((l(0) must be either 0 or ± 00. Conclude that 
every countably additive, nonnegative, extended real-valued set function defined 
on Cf? is also finitely additive. Show also that 1/1(0) = 0 if 1/1 is a complex-valued 
set function defined on (fi that is either finitely or countably additive. 

E. Propositions 7.3 and 7.4 are valid for complex-valued set functions insofar as they 
make sense. Thus, a finitely additive complex-valued set function defined on a ring 
of sets is subtractive. Likewise, a finitely additive complex-valued set function ({l 
defined on the a-ring of measurable subsets of a measurable space (X, S) is count ably 
additive if and only if ({l is semicontinuous in the sense that ({l(Un En) = limn ({l(En) 
for every monotone increasing sequence of sets {En} in S. 

F. Let /1 be a measure on a measurable space X.1t is stated in the text (Proposition 7.4) 
that if {En} is an arbitrary increasing sequence of measurable sets, then the numerical 
sequence {/1(En)} tends upward to /1(Un En). On the other hand, if {En} is a decreasing 
sequence, then {/1(En)} need not tend to /1(nn En) (example?). Show, on the other 
hand, that the equation /1(nn En) = limn /1(En) is valid for a decreasing sequence of 
measurable sets {En} if /1(En) < + 00 for anyone set En. 

G. Let (X, S, /1) be a finite measure space, let (Y, p) be a metric space, and let {<1>n} be a 
sequence of measurable mappings of X into Y that converges pointwise on X to 
a limit <1>. 
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in N (recall Problem 6R). Show also that U(~1 Gm. k = X for each m, and 
conclude that for each m and for arbitrary positive 8 there exists a positive 

integer k(m) such that J1(F m.k(m) < F./2m. Set F = U~= 1 F m.k(m)' and show that 
J1(F) < F. and that {<Dn} converges uniformly to <D on X\F. 

(ii) Use these observations to give a proof of Theorem 7.5. Conclude also that if 
Un} is a sequence of measurable real-valued functions on X converging point
wise to + 00 in IR' on a set E of finite measure, then for arbitrary positive 8 there 
exists a subset F of E such that J1(F) < F. and such that Un} converges uniformly 
to + 00 on E\F. 

H. Show that an essentially bounded measurable function I on a measure space 
(X, S, J1) is integrable [J1J if its support N J = {x EX: I(x) of. O} has finite measure. 
If I is bounded away from zero on N J' the condition is both necessary and sufficient. 
(Thus, for example, as was noted in Problem B, a measurable simple function s is 
integrable [J1J if and only if J1(N,) < + 00.) 

I. Let (X, S, J1) be a measure space and let I be an arbitrary complex-valued function 
defined on an arbitrary subset of X. Show that if I is integrable [J1J over some 
measurable subset E of X, and if F is a measurable subset of E, then I is also 
integrable [J1J over F. Let R denote the collection of measurable sets over which I is 
integrable [J1]' Show that R is a ring of sets (and therefore an ideal in S; Problem 61), 
and verify that if veE) = Sc I dJ1 for every set E in R, then v is a finitely additive 
set function on R. (If I is nonnegative and integrable over X, then v is actually a 
finite measure on (X, S); we shall return to this idea in Chapter 9.) 

J. If (X, S, J1) is a measure space, then a measurable set E is said to be (J-finite with 
respect to J1 if there exists a countable sequence {En} of sets of finite measure with 
respect to J1 such that E = Un En. In particular, if X is (J-finite with respect to J1, 
then J1 is (Jjinite and (X, S, J1) is a (J~finite measure space. The collection of all sets 
that are (J-finite with respect to J1 is a (J-ideal in S (Prob. 61). So is the collection Z of 
all sets of measure zero with respect to J1. (The sets of finite measure form an ideal 
in S between these two (J-ideals.) Show that if I is a function that is integrable [IlJ, 
then the support of I is (J-finite with respect to 11. 

K. If E is a (J-finite set in a measure space (X, S, 11), and if Il(F) :s; a for every measurable 
subset F of E having finite measure, then Il(E) :s; a. Show by an example that the 
assumption that E is (J-finite cannot be dropped. 

L. Let (X, S, 11) be a measure space and let A be a measurable subset of X such that 
J1(A) = + 00 and such that if E is any measurable subset of A, then either J1(E) = + 00 

or Il(E) = O. (Such a set A is called an infinite atom; we shall return to this notion 
in Chapter 8.) Show that if B is any (J-finite subset of X, then J1(A n B) = O. Conclude 
that if I is any function integrable [J1 J, then I = 0 a.e. on A and hence that 
h f dll = h\A f dJ1. In particular, if {xo} is a measurable singleton such that 
J1( {xo}) = + 00, then f(xo) = O. 

M. Suppose (X, S) and (X, So) are two measurable spaces (with the same carrier X) 
such that So c S, and suppose given a measure J1 on (X, S). Then the restriction 
J10 = J1I So is clearly a measure on (X, So). Show that a function f on X that is 
measurable [SoJ is integrable [lloJ if and only if it is integrable [IlJ, and that, ifthis is 
the case, then S I dJ10 = S I dll· 
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N. Let (X, S, /1) be a measure space, and suppose given a a-ring So contained in S 
with the property that every set in S is almost equal [/1] to some set in So. (In other 
words, for each set E in S there is a set Eo in So such that /1(E V Eo) = 0.) Show that 
every function measurable [S] on X is equal a.e. [/1] to a function that is measurable 
[So]. Hence for every integrable function f on (X, S, /1) there is a function fa on X 
that is equal to f a.e. [/1] such that fa is integrable [/11 So] on (X, So) and such that 

(Hint: Show that if f is measurable [S] and if e > 0, then there exists a function 
f, that is measurable [So] and possesses the property that If - J, I :-:;; B a.e. [/1]. 
Construct a sequence of functions.) 

O. Let (X, S, /1) be a measure space, and let f be nonnegative function defined and 
measurable on X and having a-finite support (Prob. J). Consider the supremum M 
in IR~ of the set of all integrals J s d/1 of integrable simple functions s such that 
o :-:;; s :-:;; f. Show that f is integrable if and only if M < + 00 and that in this case 
M = J f d/1. (This fact is exploited in many textbooks on integration theory to 
construct the Lebesgue integral with respect to a given measure /1.) Show also 
that the supremum M can be finite even if the support of f is not a-finite. (Hint: 
Use Propositions 6.6 and 7.2. To obtain an example as asked for in the last part of 
the problem, consider Example H.) 

These last results show clearly that iff is a nonnegative measurable function 
on a measure space (X, S, f1), then the only way for f not to be integrable is 
for f to be too large. Indeed, if the support of f is not a-finite, then f is a 
fortiori too large to be integrable (Prob. J). On the other hand, iff has ([
finite support, then there exists a monotone increasing sequence of non
negative integrable functions Cr.) that converges pointwise to f, and the 
sequence is f;, df1} is either bounded, in which case f is integrable, or else 
S .I~ df1 ..... + x, in which case f is not integrable. 

P. Let (X, S, /1) be a finite measure space and letfbe a real-valued measurable function 
on X. 

132 

(i) Suppose first that f is bounded and that the range of f is contained in the half
open interval (a, b]. Let 

a = to < t 1 < ... < tn = b 

be a partition of [a, b], and for each i = 1, ... , n, let Ei = {x: ti- 1 < f(x) :-:;; t;}. 
Let B be a positive number and suppose that ti - t i - 1 :-:;; B for all i. Show that 

(ii) In the general case let 8 be a positive number, and let {tn}:~oc:, x be a two-way 
infinite sequence such that 0 < tn - tn-I :-:;; 8 for every integer n and such that 
tn -+ ± 00 as n -+ ± 00. Let En = {x: tn-I < f(x) :-:;; tn} for every integer n. 
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Then f is integrable [.uJ if and only if the series 

n= +:c 

n= - X" 

is absolutely convergent, and in this event 

(These observations have also been made the basis for a construction of the 
Lebesgue integral with respect to a given finite measure /1.) 

Q. Show that an indexed family P'Y}YEr of complex numbers is summable (Ex. 3Q) 
when and only when the function fey) = Ay is an integrable function on the index 
set r with respect to the counting measure K on r (Ex. J), and that if this is the case, 
then Irf dK = LYEr Ay. Thus the summation of (summable) indexed families of 
complex numbers is a special case of Lebesgue integration. (Hint: It suffices to 
treat the case Ay 2: 0; use Proposition 7.2.) 

R. Let (X, S, /1) be a measure space and let f be a measurable complex-valued function 
on X. 

(i) Show that there exists a radius R 2: 0 such that /1(r l(C\DR(O)-» = 0 if and 
only if f is essentially bounded, and that if I is essentially bounded, then 
ess supx I f I is the smallest such radius. Show, in general, that the essential range 
off is the smallest closed set F in C such that /1Cr l(C\F» = O. 

(ii) Let f be essentially bounded, and let !£It denote the linear space of all equiv
alence classes [gJ of integrable functions 9 on X (where [gJ consists of all the 
measurable functions h on X such that h = 9 a.e. [/1 J). Show that the mapping 
M f defined by 

M /[gJ) = [.ffJJ, 

is a linear transformation on !£It' The collection of all such linear transforma
tions forms a unital commutative algebra, and M f is invertible in this algebra 
if and only if 0 does not belong to the essential range of f. 

S. (i) The assumption that the functions In in Fatou's lemma (Th. 7.11) are non
negative a.e. cannot be dropped (example?) but it can be relaxed, and the 
conclusion can also be strengthened slightly. Here is an alternate version of 
Fatou's lemma. Let (X, S, /1) be a measure space and let {fn} be a sequence 
of real-valued functions on X such that each fn is integrable [/1]. Suppose that 
there exists a real function cp, integrable [/1 J over X, such that cp :0:: In a.e. for 
all n. Then the pointwise inferior limit of {fn} is integrable [/1J and we have 

(Hint: In the proof of Fatou's lemma given in the text we actually have 

I gn d/1 :0:: infk~n I Ik d/1.) 
(ii) Let (X, S, /1) be a measure space, let {j~} be a sequence of measurable real

valued functions on X, and suppose that there exist real functions cp and <1>, both 
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integrable [J1] over X, such that qJ S f~ S ct> a.e. [J1] for all n. Use (i) to show that 
lim infn f~ and lim supn f~ are integrable [J1] and that 

f (lim inf fn) dJ1 s lim inf f fn dJ1 
n n 

s lim sup f f~ dJ1 s f (lim sup fn) dJ1. 
n n 

Use this fact to give a proof of the dominated convergence theorem (Th. 7.12). 

T. Let (X, S, J1) be a measure space and let g be a nonnegative function on X that is 
integrable [J1]' 

(i) Show that for an arbitrarily given positive number f. there exists a measurable 
set W such that S w g dJ1 < 8 and such that g is bounded on X\ W, and use this 
fact to conclude that for an arbitrarily given positive number 8 there exists 
a positive number b such that J1(E) < b implies h g dJ1 < 8. (Hint: For each 
positive integer N set 

( ) _ {g(X), 
gN x -

0, 

g(x) s N, 

g(x) > N, 

and invoke the monotone convergence theorem.) 
(ii) Use these observations to give another proof of the dominated convergence 

theorem (Th. 7.12). (Hint: First treat the case J1(X) < + 00 using Egorov's 
theorem; then employ the fact that the support of g is (J-finite (Prob. J).) 

U. Let (X, S, J1) be a measure space and let .P ~ denote, as usual, the linear space of all 
complex-valued functions on X that are integrable with respect to J1. Let .it 0 

be the linear submanifold of !i'~ consisting of those functions that vanish a.e. [J1], 
let 2" 1 = .P,j.it 0' and let p be the metric 

p([f], [g]) = t[lf -glJdJ1 = tlf -gldJ1 

on !i w Show that if {fn} is an arbitrary sequence in .P ~ such that the sequence 
{[fn]} is Cauchy with respect to the metric p, then {fn} possesses a subsequence 
{fn.} that is convergent to some limit f a.e. [J1J and possesses the further property 
that there exists a single function qJ in .P ~ such that I fn. I s qJ a.e. [J1] for every 
index k. Show, finally, that the metric space (!ill' p) is complete. (Hint: See Example 
N and Problem 4E.) 

V. Let (X, S, J1) be a finite measure space, and let {fn} be a sequence of integrable 
functions on X converging uniformly to a function f. Show that f is integrable and 
that {fn} converges to f in the mean. Show by examples that if the requirement 
that J1 be finite is dropped, then it is possible for the limit f not to be integrable and 
that, even if f is integrable, the sequence {J fn dJ1} may fail to converge, or may 
converge to some limit other than S f dJ1. 

W. (i) Let (X, S, J1) be a measure space, and let {fALEA be a net of real-valued functions 
defined everywhere on X and integrable [J1]' Suppose that the net {fA} is 
monotone increasing in the sense that fA s fA' pointwise on X whenever 
A. S ,.1.', and suppose finally that the directed set i\. is countably determined 

134 



7 Integrals and measures 

(Prob. IP). Then the pointwise limit limA IA is integrable if and only if the 
numerical net {f j~ dJl} A EA is bounded in IR, and in any case we have S (limA{;)dJl 
= limA S f~ dJl. Show by example that the assumption that A is countably deter
mined cannot be dropped. 

(ii) Let (X, S, Jl) be a measure space, let {jJ AEA be a net of complex-valued measur
able functions on X, and suppose {fA} converges a.e. [Jl] to the function I. 
Suppose also that A is countably determined and that there exists a function g on 
X such that g is integrable [Jl] and such that I IA I ~ g a.e. [Jl] for every index A. 
Show that limA Ix I IA - I I dJl = O. (Hint: Let {An} ~= 1 be an increasing cofinal 
sequence in A, and write f~ = f~", n EN. Suppose the desired conclusion is false. 
Then there exist a positive number 80 , a second sequence {A~} in A, and a strictly 
increasing sequence {kn} of positive integers such that Akn ~ A~ ~ Akn+! and 
such that S I IA~ - I I dJl Z eo for every n.) 

X. Let (X, S, Jl) be a measure space, let I be a function that is measurable [S], and let 
{fn} be a sequence of functions each of which is measurable [S]. Let us write 
E,. n = {x EX: I I(x) - I.(x) I z e} for every positive number e and positive integer 
n. Then {fn} is said to converge to I in measure if limn Jl(E,. n) = 0 for every e > O. 
Show that if Jl(X) < + 00 and if U;,} converges to I a.e. [Jl], then {fn} also converges 
to f in measure. Show likewise that if the functions In and f are all integrable [Jl], 
and if {fn} tends to I in the mean, then {fn} also tends to f in measure. Show, in 
addition, that if the sequence {fn} converges to f in measure, then a subsequence 
{fn.} converges to f a.e. [Jl]' (Hint: Choose Ink so that 

Show, finally, that Theorem 7.12 is valid with convergence almost everywhere 
replaced by convergence in measure. (Hint: One possibility is to use Problem T(i).) 
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As we have seen (Th. 7.6), there is a one-to-one correspondence between the 
set of measures on a measurable space (X, S) and the set of Lebesgue integrals 
on (X, S). In this section we discuss the properties of some specific measures 
that play an important role in this book and, more generally, in all of mathe
matical analysis, and we also review some of the standard theory concerning 
these and other measures. 

With the exception of various uncomplicated measures such as those discussed in 
Examples 7H. 71 and 71, which are simple enough to be described directly, the measures of 
interest in mathematical analysis are obtained via some indirect procedure. Frequently 
this procedure consists of extensions or approximations, sometimes encompassing 
several stages, starting from some more primitive set function, not itself a measure. The 
theory of such processes lies largely outside the scope of this book, though some fragments 
of it are developed in the problems. The reader interested in a more detailed treatment 
should consult a treatise on measure theory such as [30J or [26]. 

Example A. The most familiar and important measure of all is Lebesgue 
measure on the real line. This is the measure J1, constructed by Lebesgue on the 
(I-ring of Lebesgue measurable subsets of IR, with the property that 

J1([a, b]) = b - a, a, b E IR, a~b (1) 

(see Problems E and F). In particular, all singletons have Lebesgue measure 
zero, so that if a ~ b, then all of the intervals (a, b), (a, b], [a, b), and [a, b] 
have the same Lebesgue measure b - a. If I denotes any such interval, we 
shall write I I I for its length, so that J1(J) = I I I for all bounded intervals I. 

Lebesgue measure J1 is the unique measure on the (I-ring of Lebesgue 
measurable subsets of IR that satisfies (1). Furthermore, J1 is translation 
invariant in the sense that if E is any Lebesgue measurable set and r is a real 
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number, then Il(E + r) = Il(E). The Lebesgue integral associated with the 
measure 11 (according to Theorem 7.6) is the Lebesgue integral of elementary 
real analysis, and possesses the property that if f is any continuous function 
on a real interval [a, b], then the value of the ordinary Cauchy-Riemann 
integral of f, as studied in calculus, is identical with the value of the Lebesgue 
integral of f with respect to 11. In view of this fact, if E is a Lebesgue measur
able subset of IR and f is a function that is integrable [11] over E, we shall 
write 

for the Lebesgue integral of f over E and, if E is an interval with endpoints 
a and b, we shall also use the standard notation 

f f(t)dt. 

Example B. The u-ring S of Lebesgue measurable subsets of IR contains all 
closed intervals, and therefore contains the u-ring B of Borel subsets of IR 
(Ch. 6, p. 104). Furthermore, as it happens (Prob. H), every Lebesgue mea
surable set is almost equal [11] to some Borel set. It follows (Prob. 7N) that for 
purposes of integration theory it does not matter whether one does business 
with the measure space (IR, S, 11) or with (IR, B, 111 B). In this book we shall 
usually prefer to employ the measure 111 B, called Lebesgu~-Borel measure 
on IR. (See Problem F. As a matter of historical fact, Lebesgue-Borel measure 
was originally constructed by E. Borel.) 

If n is a positive integer, and if 11 , .•• , In are arbitrary bounded intervals 
of real numbers-open, closed, or half-open-then the product 

(2) 

is called a cell in IRn, and for any such cell we define I Z 1 to be the product 

(It is clear that the intervals 11, ... , In in (2) are uniquely determined by Z 
unless Z is empty, which happens when and only when one of the intervals 
11, ••• , In is empty, and hence that I Z I is really a function of Z itself, and not 
of the representation (2). The reader will note that the open cells [closed 
cells] in Chapter 3 (see Examples 3A and 3F) are simply those cells in the 
present sense that happen to be open [closed].) 

Example C. For each positive integer n there exists a unique measure Iln 
defined on the u-ring S of Lebesgue measurable subsets of IRft (see Problem E) 
with the property that 

IlnCZ) = IZI (3) 
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for every cell Z. (Thus J11 is Lebesgue measure on R) The measure J1n' which is 
Lebesgue measure on [Rn, is also translation invariant in the obvious sense. 
Once again, the (J'-ring S contains the (J'-ring B of Borel subsets of[Rn, and every 
set in S is almost equal to a Borel set (Prob. H), so that for purposes of 
integration theory one may use Lebesgue measure lIn and Lebesgue-Borel 
measure J1n I B interchangeably (Prob. 7N). In this book we shall usually 
choose to do business with the measure space ([Rn, B, J1n I B). 

Lebesgue measure is a natural extension of other, older, schemes for 
assigning a "content" to various subsets of [Rn. In particular, for n = 3 the 
Lebesgue measure of any geometrical solid is readily seen to agree with its 
ordinary (Euclidean) volume. Likewise, the Lebesgue measure of a geo
metrical figure in [R2 coincides with its area. Thus, for example, the Lebesgue 
measure of a rectangle in the plane is the product of its length and width, 
whether or not the edges are parallel to the coordinate axes. Since the measure 
of an arbitrary Lebesgue measurable set in [R2 may be defined in terms of the 
measures of various rectangles (Prob. F), this implies, in turn, that Lebesgue 
measure on [R2 is invariant under rigid motions. More generally, Lebesgue 
measure on [Rn is invariant under rigid motions for every positive integer n. 

If f is a bounded complex-valued function on some set Q c [R" on which 
the Cauchy-Riemann integral, as studied in advanced calculus, is defined, 
then, just as in the case n = 1, the Lebesgue integral SQf dJ1n coincides with 
that integral. Accordingly we shall use the familiar notation 

r ~. f f(Xl' ... , xn)dx 1 ... dXn 

for the Lebesgue integral of f over a Lebesgue measurable set E. In the same 
spirit, if Z is the cell 11 X .. , x In, where the interval I j has endpoints a j 
and bj,j = 1, ... , n, we shall also write 

for Lf dJ1I1' 

Example D. There exists a unique measure von the (J'-ring of Borel subsets of 
the complex plane e satisfying the condition that if a, band c, d are any real 
numbers such that a ~ band c ~ d, then vCR) = (b - a)(d - c), where R 
denotes the rectangle 

{A E e: a ~ Re A ~ b, c ~ 1m A ~ d}. 

The measure v, known as Lebesgue-Borel measure on e, is also characterized 
by the fact that in the standard identification s + it ~ (s, t) of e with [R2, 
if E' denotes the Borel set in [R2 corresponding to a Borel set E in e, then 
veE) = /liE'). Similarly, there is a unique measure VII on the Borel subsets 
of e", called Lebesgue-Borel measure on IC", satisfying the condition that if E 
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is a Borel set in en, and if E' denotes the corresponding subset of 1R 2n under the 
identification 

then viE) = 112n(E'). 

Example E. Let f be a monotone increasing real-valued function defined 
on IR. Then there exists a unique measure III defined on the O"-ring of Borel 
subsets of IR such that for all a, b in IR, a < b, we have 

IlAa, b» = feb - ) - f(a + ) = lim f(t) - lim f(t). (4) 
tj b t La 

(For an explanation of the notation employed in (4) see Example 3P; for 
a sketch of a proof of the asserted fact see Problem I.) The measure III 
is called the Stieltjes-Borel measure associated with f, and integration with 
respect to III is known as Lebesgue-Stieltjes integration with respect to f 
Clearly when f(t) == t, the measure III coincides with Lebesgue-Borel 
measure on IR. 

Starting from (4) it is easy to verify that 11/{t}) = 6t = f(t+) - f(t-), 
so that 11/ {t}) = 0 except for those real numbers t at whichf is discontinuous, 
where 11 I{ {t}) is equal to the jump in f (cf. Problem 3M for notation and 
terminology). More generally, we have 11/[a, b]) = f(b+) - f(a-) for 
all a ::;; b. Likewise, 11 Aa, b]) = feb + ) - f(a + ) for all a < b. 

If I is another monotone increasing function that agrees with f at every 
point of continuity off, then I(t) = f(t) except for at most countably many 
values of t, whence it follows that l(t+) = f(t+) and ./(t-) = f(t-) 
for every t, and therefore that 11 j = Ill. Thus, starting from a given monotone 
increasing function f, we may change the value off at any point t at which f is 
discontinuous to any value in the interval [J(t - ), f(t + )] without changing 
III in any way. In particular, we may choose I such that I(t) = f(t+) 
for all t (so that f is right-continuous on IR), and if this is done we have 

11 Aa, b]) = I(b) - ./(a), a, b E IR, a ~ b. 

Because of this fact we may assume without loss of generality, when dealing 
with a Stieltjes-Borel measure ilIon IR, that the function f is right -continuous. 

Suppose now that f is a monotone increasing function defined on a closed 
interval [a, b]. If we extend f by setting 

{
f(a), 

1(t) = f(t), 

feb), 

t ~ a, 

a ~ t::;; b, 

t c. b, 

then 1 is a monotone increasing function on IR and 11 j has the property that 
J1j« - 00, a» = 11 j{(b, + (0» = O. Accordingly, in this situation we shall 
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write 11 f for the restriction of 11 f to [a, b]. It is readily seen that 11 f is uniquely 
characterized by the two conditions 

Ili(s, t)) = f(t-) - f(s+), a ~ s < t ~ b, 

and 

Ili{a}) = f(a+) - f(a), Ili{b}) = feb) - f(b-) 

provided a < b. (The measure Ilf is clearly the zero measure if the interval 
[a, b] is degenerate.) Here again an analysis exactly like the foregoing one 
shows that there is no loss of generality in assuming f to be right -continuous 
at every point of the open interval (a, b) (since changing f so as to make it 
right-continuous on (a, b) has no effect on Ilf)' and that, if this is done, then 
11 f is also characterized by the formulas 

Ili(s, t]) = f(t) - f(s), 

Ili[a, t]) = f(t) - f(a), 
a < s ~ t ~ b, 
a < t ~ b. 

We note that the second of these two formulas actually implies the first, and 
also serves to show that a right -continuous monotone increasing function f is 
uniquely determined up to an additive constant by its associated Lebesgue
Stielties measure 11 f' 

In the preceding example, if f has a jump discontinuity at some real 
number t, so that Dt > 0, then the set {t} is a singleton with positive measure 
with respect to Ilf' This is an instance of a phenomenon that has no parallel 
in the theory of Lebesgue measure on IRn and one that deserves special 
attention. 

Definition. A measurable set A in a measure space (X, S, 11) is an atom of 11 
(or with respect to 11) if Il(A) > ° and if for every measurable subset E 
of A either Il(E) = 0 or Il(E) = Il(A). An atom A is finite or infinite 
according as Il(A) < + 00 or Il(A) = + 00. If 11 possesses no atoms, then 
11 and (X, S, 11) are said to be atom1ree. 

Thus, if the function f in Example E has a discontinuity at t, then {t} 
is an atom with respect to Ilf' and III is atom-free ifand only iff is continuous. 
It is clear that any (measurable) singleton with positive measure is an atom, 
but atoms need not consist of a single point. Indeed, in the measure space 
of Example 71, in which a single point Xo of a space X is fixed and Dxo is 
defined by Dx/E) = XE(XO), every subset of X containing Xo is an atom. 

If ° < Il(A) < + 00, then to say that A is an atom with respect to 11 is the 
same as saying that every measurable subset of A either is a null set or is 
almost equal to A. For an infinite atom, however, things are rather different, 
since it is quite possible for an atom A with J.L(A) = + 00 to split into the dis
joint union of sets E and F with Il(E) = J.L(F) = + 00 (cf. Example 7H). 
In this connection, and in others as well, the following concept is of interest. 
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Definition. If (X, S, p,) is a measure space, and if p, has the property that 

p,(E) = sup{p,(F): F E S, FeE, p,(F) < + 00 } 

for every set E in S, then p, and (X, S, p,) are said to be locally finite. 

If a measure is locally finite, then all of its values are determined by the 
values it assumes on sets of finite measure. In this context the following 
result is important. 

Proposition 8.1. A necessary and sufficient condition for a measure space 
(X, S, p,) to be locally finite is that it possess no infinite atoms. 

PROOF. If p,(A) = + 00 and A is an atom with respect to p" then p,(F) < + 00 

and F c A imply p,(F) = 0, so p, is certainly not locally finite. Suppose, in 
the converse direction, that p, fails to be locally finite. Then there exists a 
measurable set Eo such that p,(Eo) = + 00 and such that 

M = sup{p,(F): F E S, F cEo, p,(F) < + oo} < + 00. 

Let {Fn};,Xl= 1 be a sequence of measurable subsets of Eo of finite measure 
such that p,(F n) -> M, and set En = FlU' .. U F n' Then p,(F n) ~ P,(En) < + 00 

for each n, whence it follows at once that {P,(En)} also tends to M. But then, 
if Fo = U~l Fn = U:'=l En, we have p,(Fo) = M. Set A = Eo\Fo, and 
suppose F is a measurable subset of A such that ° < p,(F) < + 00. Then for 
sufficiently large n we have P,(En) > M - p,(F), and therefore 

P,(En U F) = P,(En) + p,(F) > M. 

Since En U F is a subset of Eo of finite measure, this contradicts the definition 
of M. Thus every measurable subset of A either has measure zero or + 00, 

and since p,(A) = + 00, A is an infinite atom. 0 

The proof of Proposition 8.1 is a typical illustration of a line of argument 
that occurs frequently in measure theory and is known generally as the 
"method of exhaustion." It is appropriate to recall that, as was seen in 
Problem 7L, if f is an integrable function on a measure space (X, S, p,), and 
if A is an infinite atom with respect to p" thenf must vanish a.e. [p,] on A. Thus, 
while it is of importance measure-theoretically whether or not a given 
measure possesses infinite atoms, the distinction is of little consequence in 
matters concerning integration with respect to that measure. 

We turn now to a useful scheme for defining a new measure in terms of a 
given one. Let (X, S) and (Y, T) be measurable spaces, let <ll be a mapping of 
X into Y that is measurable [S, T], and suppose given a measure p, on (X, S). 
Let ff 0 denote the collection of all those measurable functions f on Y with 
the property that f 0 <ll is integrable [p,]. It is clear that ff 0 is a linear space 
and that the equation 

LoU) = Ix U c <ll)dp, 
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defines a linear functional Lo on !to. Moreover, it is a routine chore to verify 
that Lo is a Lebesgue integral on (Y, T). The measure v associated with the 
integral Lo is called the measure induced on Y by <l> and J1. 

Proposition 8.2. Let (Y, T) be a measurable space, let (X, S, J1) be a measure 
space, and let <l> be a mapping of X into Y that is measurable [S, T]. If v 
denotes the measure induced on Y by <l> and J1, and if f is a measurable 
function on Y that is either integrable [v] or nonnegative, then 

J/ dv = 1 (f 0 <l»dJ1. 

I n particular, f is integrable [v] if and only if f 0 <l> is integrable [J1], and 

EET. 

Example F. Let f(t) = eir, t E R Then f maps IR onto the unit circle Z in a 
continuous fashion, and it follows that if A belongs to the a-ring B of Borel 
subsets of Z, then B = f-l(A) is a Borel subset of IR. Moreover, B has the 
property that B + 2n = B, from which it follows at once that, if we write 
Ia = [a, a + 2n) for each real number a, then the Lebesgue measure of 
B n Ia is independent of a. Hence, if fa = fila' then the measure induced 
on (Z, B) by fa and Lebesgue-Borel measure on Ia does not depend on the 
choice of a. This measure on Z is known as arc-length measure and throughout 
this book will consistently be denoted bye. From the foregoing discussion 
it is clear that e is rotation invariant in the sense that, if A is a Borel subset of 
Z and y is a complex number of modulus one, then 8(yA) = 8(A). It should 
also be remarked that 8 can be characterized as the unique measure on 
(Z, B) that assigns to every simple arc on Z its arc-length as measure (hence 
the name, of course). If for each function g on Z we define g by setting 

get) = g(e i!), t E IR, 

then g is Borel measurable if and only if {j is, and g is integrable [8] if and 
only if g is Lebesgue integrable over each period interval Ia. Moreover, if g 
is integrable [8] then 

r sa+ 2" J/ dO = a g(t)dt, aE R (5) 

Example G. Let A denote the affine transformation on IRn defined by 

A(x) = Xo + ax, 

where a denotes a fixed positive number and Xo a fixed n-tuple in IRn. Let Eo 
be a Borel subset of IRn, and let E 1 = A(Eo). If v denotes the measure induced 
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on E1 by A and ,unIEo, then v = ,un/an on E1 (Prob. F). Hence if f is an 
arbitrary Lebesgue integrable function on E 1, then 

In particular, if f is Lebesgue integrable over [Rn, then 

f f d,un = an f f 0 A d,un· 

A useful way of making one large measure space out of several smaller 
ones is the formation of direct sums. 

Definition. Let {(Xy, SY)}YEf be an indexed family of measurable spaces 
with the property that the sets X yare pairwise disjoint. Then by the direct 
sum LYEf E8 (X y, Sy) is meant the measurable space (X, S), where X = 

U y X y and S denotes the a-ring consisting of all those subsets E of X 
with the property that E n Xy E Sy for every index y. (It is obvious that S 
is indeed a a-ring and that XES.) If, in addition, there is given a measure 
,uy on (X Y' Sy) for each index y, then it is an easy consequence of Example 
7L that the set function ,u defined by 

,u(E) = L ,uiE n Xy), E E S, (6) 
YEf 

is a measure on the measurable space (X, S). The measure space (X, S, ,u) 
is called the direct sum of the indexed family {(XY' Sy, ,uy)}YEf of measure 
spaces, and is denoted by LYEf E8 (Xy, Sy, ,uy). The a-ring S is likewise 
called the direct sum of the a-rings Sy, and ,u is called the direct sum of the 
measures ,uy. We write,u = Ly E8 ,uy, or when the index family is the finite 
set {1, ... , n}, 11 = 111 EB ... EB I1n' 

Observe that the a-ring S in this definition can equally well be described 
as the collection of all unions Uy Ey, where Ey is a measurable subset of Xy 
for each index y. The following proposition, a proof of which can easily be 
given on the basis of Example 7L, summarizes the main facts about direct 
sums of measure spaces. 

Proposition 8.3. Let {(X Y' Sy, ,uy)}YE f be an indexed family of measure spaces 
with the property that the sets X ~ are pairwise disjoint, and let (X, S, ,u) 
denote the direct sum of the given family. Then X contains each of the 
measure spaces X y as a subspace (Ex. 7 M), and a function f on X is measur
able [S] if and only iff I X y is measurable on X y for every index y. Further
more, ({ f is measurable on X, then f is integrable [,u] if and only if the 
indexed family {J x)' I f I d,uy} y E f is summable, in which case 
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Example H. Let {tn};~O be a strictly increasing sequence of nonnegative 
numbers such that 

to = ° and lim tn = + 00. 

Let B denote the a-ring of Borel subsets of the half-line [0, + 00), and for 
each positive integer n let Bn denote the trace of B on the interval [tn-I' tn) 
(Prob. 6D). Then 

00 

([0, + 00), B, fl) = L EB ([tn-I' tn), Bn, fll [tn-I, tn)), 
n= 1 

where fl denotes Lebesgue-Borel measure on [0, + CXl). More generally, if 
(X, S, fl) is an arbitrary measure space and if {En} is any partition of X into a 
countable collection of measurable sets, then 

(X, S, fl) = L EB (En' SEn' fl I En)· 
n 

Example 1. Let X be an arbitrary set, let S denote the power class on X, and 
let K be the counting measure on (X, S) (Ex. 71). Then (X, S, K) is, in an 
obvious sense, the direct sum of the (self-indexed) family of all the singletons 
in X. 

The subject of measure theory is ordinarily understood to deal with 
various set functions other than measures. Two useful generalizations of the 
notion of a measure are given in the following definition. 

Definition. Let (X, S) be a measurable space. An extended real-valued set 
function fl on (X, S) is a signed measure if fl(0) = ° and if fl is countably 
additive on S. Similarly, a complex-valued set function ( defined on S 
is a complex measure on (X, S) ifit is countably additive. (There is no need 
to assume (0) = ° in the case of a complex measure since this follows 
from countable additivity; see Problem 7D). Thus if fl is either a signed 
measure or a complex measure, and if {En}:'= 1 is an infinite sequence of 
pairwise disjoint measurable sets, then 

fl(91En) = n~/(En) = n"F/(En). 

(Recall the discussion of countably additive set functions in Chapter 7.) 
A signed measure fl on (X, S) is finite if I fleX) I < + 00, and is a-finite 
if X is a countable union of measurable sets En such that I fl(En) I < + 00 
for every n. 

The above terminology, while fairly standard in the literature, is less logical than it 
might be. Thus a complex measure is not a measure. in general. since it need not be non
negative. Likewise, a measure is not, in general, a complex measure, since it may take on 
the value + 00, and a signed measure may be neither a measure nor a complex measure. 
On the other hand, a finite signed measure is a complex measure. and a finite measure 
is both a signed measure and a complex measure. 
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If, is a complex measure on (X, S), then the real and imaginary parts of, 
are real-valued complex measures, i.e., finite-valued signed measures on 
(X, S). Accordingly we turn first to a discussion of signed measures. Our 
initial observation is a repetition of one made earlier: If p is a signed measure, 
and if E and F are disjoint measurable sets, then peE) + p(F) must be defined, 
so f.1(E) and f.1(F) cannot be infinities of opposite sign. It follows that if E 
and F are measurable sets such that E c F, and if f.1(E) = ± 00, then p(F) = 
± 00. This proves half of the following elementary lemma. 

Lemma 8.4. If f.1 is a signed measure on a measurable space (X, S), and if 
f.1(E) < + 00 for some measurable set E, then f.1(F) < + 00 for every measur
able set F contained in E. Similarly, if f.1(E) > - 00, then p(F) > - 00 for 
every measurable set F contained in E. In particular, if f.1(E) is finite, then f.1 is 
finite-valued on the measurable subsets of E. If f.1(E) = + 00 [peE) = - 00] 

for anyone measurable set E, then p(F) > - 00 [f.1(F) < + 00] for every 
measurable set F. 

COMPLETION OF PROOF. Suppose f.1(E) = + CXl and f.1(F) = - 00. Then 
- 00 < f.1(E n F) < + 00 by what has already been said, so f.1(E\F) = + 00 

and f.1(F\E) = - oc, which is impossible. 0 

One way to build a signed measure on a measurable space (X, S) is to 
start with two measures f.1 and von (X, S), one of which is finite, and form the 
difference f.1 - v. The central fact concerning signed measures is that this 
simple construction produces the most general signed measure. 

Definition. If f.1 is a signed measure on a measurable space (X, S), then a 
measurable set A is said to be positive with respect to f.1 if f.1(F) ;:::: 0 for 
every rri.easurable set F contained in A. Similarly, a measurable set B 
is negative with respect to f.1 if f.1(F) S 0 for every measurable set F 
contained in B. 

The importance of positive and negative sets with respect to a signed 
measure is indicated by the following theorem, a proof of which is outlined 
in Problem T. 

Theorem 8.5. If f.1 is a signed measure on a measurable space (X, S), then there 
exists a partition of X into two (disjoint) sets A and B such that A is positive 
and B is negative with respect to f.1. 

Two sets A and B with the properties set forth in Theorem 8.5 are said 
to constitute a Hahn decomposition of X with respect to f.1. A Hahn de
composition is not (usually) uniquely determined, but it is easy to see that 
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if {A, B} and {A', B'} are two Hahn decompositions of a space X with 
respect to the same signed measure fl, then 

fl(E n A) = fl(E n A') and fl(E n B) = fl(E n B') 

for every measurable set E. 

Definition. If fl is a signed measure on a measurable space (X, S), and if 
X = A u B is a Hahn decomposition of X with respect to fl, then the set 
functions defined (unambiguously) on S by 

fl+(E) = fl(E n A) and fl-(E) = -fleE n B), EES, 

are called the positive and negative variations of fl, respectively. 

The following basic result is an easy consequence of the definitions, 
Lemma 8.4 and Theorem 8.5. 

Theorem 8.6. The positive and negative variations fl+ and fl- of a signed 
measure fl on a measurable space (X, S) are measures on (X, S), one of 
which at least is finite, and fl = fl+ - fl- setwise on S. Moreover, fl+ and 
fl- are minimal in this respeGt in the sense that if VI and V2 are any two 
measures on (X, S) such that fl = V I - V2 , then there exists a finite measure 
6 on (X, S) such that VI = fl+ + 6 and V2 = fl- + 6. If fl is finite or (J-finite, 
then so are fl+ and fl- . 

PROOF. It is clear that fl+ and fl- are measures, one of which is necessarily 
finite, that both are finite (or (J-finite) if fl is, and that fl = fl+ - fl-. Suppose 
VI and V2 are measures on (X, S) such that fl = VI - V2 , and let X = Au B 
be a Hahn decomposition of X, where A is positive and B negative with 
respect to fl. Then 

6(E) = v2(E n A) + vl(E n B), 

defines a finite measure on (X, S) satisfying the required conditions. D 

The representation of a signed measure fl as the difference of its positive 
and negative variations is called the Jordan decomposition of fl, in analogy 
with the older notion of the Jordan decomposition of a real-valued function of 
bounded variation (see Problems Wand lK). The fact that a signed measure 
has a Jordan decomposition enables us to define the integral of a function 
with respect to it. 

Definition. Let fl be a signed measure on a measurable space (X, S) and let 
fl = fl+ - fl- be the Jordan decomposition of fl. A complex-valued 
function f on X is integrable with respect to fl (or integrable [fl]) if it is 
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integrable both [11+] and [11-]. If f is integrable [11], then the integral 
of f with respect to 11 is defined to be 

Example J. Let 9 be a real-valued function of bounded variation on a 
closed interval of real numbers [a, b], a ~ b. (See Problems 11, 11, and lK 
for definitions and terminology.) Then there exists a unique signed measure 
119 on the a-ring of Borel subsets of [a, b] satisfying the conditions 

Ili(s, t)) = g(t-) - g(s+), a ~ s < t ~ b, 

and 

Ili{a}) = g(a+) - g(a), Ili{b}) = g(b) - g(b -). 

Indeed, if we write 9 + and 9 _ for the positive and negative variations, 
respectively, of 9 on the interval [a, b], then 9 + and 9 _ are monotone 
increasing functions on [a, b] satisfying the condition 

a ~ t ~ b. 

Hence, if \' 1 and v 2 denote the Stieltjes-Borel measures associated with 9 + and 
g_, respectively, as in Example E, then the signed measure 119 = VI - V2 

has the prescribed properties. Just as in Example E, if 9 is normalized so as to 
make get + ) = get) for all a < t < b, then the formulas 

Ili(s, t]) = get) - g(s), 
.ui[a, tJ) = g(t) - g(a), 

a < s ~ t ~ b, 
a < t :5: b, 

also characterize 119 provided a < b. (If a = b, 119 is the zero measure. Here, 
as before, the second of these formulas implies the first, and also shows that 9 
is uniquely determined up to an additive constant by 119 when 9 is right
continuous.) It is also an easily verifiable fact that 119 = VI - 1'2 is the 
Jordan decomposition of 119 when 9 is right-continuous, so that 119+ = (119)+ 
and 119 - = (119)- in this case~ cf. Problem W. Integration with respect to 
the signed measure 119 is known as Lebesgue-Stieltjes integration with respect 
to g. 

Suppose now that (X, S) is a measurable space and ( is a given complex 
measure on (X, S). If we write 

Il(E) = Re (E) and veE) = 1m (E), E E S, 

then, as has been noted, 11 and v are finite-valued signed measures on (X, S) 
known as the real and imaginary parts of (, respectively. It follows of course 
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that if {E 1, ... , En} is any finite partition of X into disjoint measurable sets, 
then the sum 

n 

L I((EJI (7) 
i= 1 

is dominated by the finite number .u+(X) + .u~(X) + v+(X) + v~(X). 
The supremum of the set of sums of the form (7), taken over the set of all 
finite partitions of X into measurable subsets, is therefore a finite real number 
called the total variation of (. More generally, we define the total variation 
of ( over each measurable set E to be the total variation of the complex 
measure (I E obtained by restricting (to the measurable subsets of E (Ex. 7M). 
The total variation of ( over E will be denoted by I (I (E), so that the total 
variation of ( is given by I (I (X). The reader will note that this defines the 
total variation of a finite signed measure, since a finite signed measure 
is a complex measure; a discussion of the total variation of an arbitrary 
signed measure may be found in Problem U(i). The following proposition, 
whose proof is left as an exercise (Prob. U(ii)), summarizes the elementary 
facts concerning the total variation of a complex measure. 

Proposition 8.7. Let ( be a complex measure on a measurable space (X, S), 
and let .u and v denote the real and imaginary parts of (, respectively. Then 
l.ul =.u+ + .u~, Ivl = v+ + L, and 1(1 is a finite measure on (X,S) 
such that 

1.uI(E) v Ivl(E) S I(I(E) s 1.uI(E) + Ivl(E), E E S. 

It is an immediate consequence of Proposition 8.7 and Problem 7B 
that a complex-valued function on (X, S) is integrable with respect to the 
total variation of a complex measure ( if and only if it is integrable with 
respect to both the real and imaginary parts of (. We are thus led to the 
following definition. 

Definition. Let ( be a complex measure on a measurable space (X, S), and 
let .u and v denote the real and imaginary parts of (, respectively. A 
complex-valued function f on X is integrable with respect to ( (or 
integrable [0) if it is integrable with respect to the total variation I( I. If 
f is integrable [(], then the integral of f with respect to ( is defined to be 

Proposition 8.8. Let ( be a complex measure on a measurable space (X, S), 
and let !i' denote the set of all those complex-valued measurable functions 

148 



8 Measure theory 

on X that are integrable [n Then 5£ is a linear space offunctions and the 
mapping 

f ~ If d( 

is a linear functional on 5£ satisFying the inequality 

f E 5£. (8) 

PROOF. It is obvious that 5£ is a linear space and that integration with respect 
to ( is a linear functional on 5£. In order to verify (8) we note that this in
equality is clearly valid when f is a simple function. Indeed, if s = D = 1 rx i XEj' 
where the sets Ei are disjoint and measurable, then 

Since an arbitrary integrable function f is the pointwise limit of a sequence 
{sn} of integrable simple functions such that I Sn I :=;; I II for all n (Prob. 6S), 
the proposition follows by the dominated convergence theorems (see 
Theorem 7.12 and Problem U). D 

Example K. Let rx be a complex-valued function of bounded variation on the 
interval [a, b], a :=;; b (Prob. 11). Then there exists a unique complex measure 
(a on the a-ring of Borel subsets of [a, b] satisfying the conditions 

U(s, t» = rx(t-) - rx(s+), a :=;; s < t :=;; b, 

and 

'a({aD = rx(a+) - rx(a), (a({b}) = rx(b) - rx(b-). 

Moreover, if rx is modified at its points of discontinuity in the open interval 
(a, b) so as to make it right-continuous at every such point, then (a is un
changed and is characterized by the formulas 

(aC(s, t]) = rx(t) - rx(s), 

C([a, t]) = rx(t) - rx(a), 
a < s :=;; t :=;; b, 

a < t:=;; b, 

provided a < b. (If a = b, (, is the zero measure. Here again the second of these 
formulas implies the first and shows that rx is uniquely determined up to an 
additive constant by (, when rx is right-continuous.) Integration with respect 
to the complex measure (a is known as Lebesgue-Stieltjes integration with 
respect to rx. If rx is a rectifiable are, i.e., if rx is a continuous function of bounded 
variation on [a, b], and if f is a continuous complex-valued function defined 
on the range of rx, then it is readily seen that the Lebesgue-Stieltjes integral 
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of the composition f 0 IY. with respect to IY. coincides with the line integral 
of f along IY. introduced in Chapter 5: 

ff 0 IY. d(a = {f(Od(. 

Cf. Problem X and Problem 5D. 

In Example A, at the very beginning of this chapter, we introduced the 
notion of Lebesgue measure on the real line IR. This historically important 
concept constitutes the root of the development of all modern real analysis. 
Up to this point we have concerned ourselves primarily with that portion 
of real analysis directly associated with the theory of abstract Lebesgue 
integration and, as a matter of fact, little of the rest of real analysis is needed 
for our purposes in this book. There are, however, some extremely useful 
results in the theory of differentiation that we shall want to use later and we 
conclude this chapter with a brief scrutiny of them. The attentive reader will 
observe that the arguments and constructions that follow consist largely 
of unsophisticated calculations depending on little more than elementary 
arithmetic. Indeed, the bulk of the following discussion might very well have 
been presented earlier, say in Chapter 3, where the structure of open subsets 
of IR is set forth. It has been delayed until now because Lebesgue measure is 
also an essential ingredient in the discussion. 

We shall be concerned primarily with continuous real-valued functions 
on real intervals and their derivatives and difference quotients. Let f be a 
continuous real-valued function on the closed interval [a, b]. If m is a real 
number and (e, d) an open subinterval of [a, b], then we define the set 
Rm = Rm(f; Ce, d» to consist of all those points t of (e, d) for which there 
exists a point u in (t, d) such that 

feu) - f(t) 
---->m. 

u - t 

Similarly, the set Lm = Lm(f; (e, d» is defined to consist of those points 
t in (e, d) for which there exists a point s of (e, t) such that 

f(s) - f(t) 
'----'---'--~---'--- < m. 

s - t 

More generally, if U is any open subset of [a, b], then the set 

is defined to be the union of all sets of the form 

[Lm(f; (e, d»] 

where (e, d) is an open interval that is a connected component of U. (There 
may be either finitely many or count ably infinitely many such intervals; 
see Proposition 3.7.) 
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Proposition 8.9. Let f be a continuous real-valued function defined on a closed 
interval [a, b], let U be an open subset of [a, b], and let m be a real number. 
Then the set Rm(f; U) [Lm(f; U)] is open, and if (Ck' dk) is anyone ot'its 
components, then 

PROOF. It clearly suffices to treat the case in which U is a single open interval, 
which we may as well assume to be (a, b). Let get) = f(t) - mt, a ~ t ~ b. 
Then the difference quotient of g across any subinterval of [a, b] is less than 
that of f across the same subinterval by exactly m, whence it follows that 
Rm(f; (a, b» = Ro(g; (a, b» [Lm(f; (a, b» = Lo(g; (a, b»)]. Thus it suffices 
to prove the proposition for m = O. Moreover, the left-hand version follows 
at once from the right-hand version by applying the latter to the function 
let) = f( - t)(defined on the interval [ - b, - a]). Hence it is enough to prove 
the following lemma. 

Lemma 8.10 (Riesz [54]). For any continuous real-valued function f defined 
on a closed interval [a, b], the set Ro = Ro(f; (a, b» is open, and it' (c, d) 
is anyone of the components of Ro, then f(c) ~ fed). 

PROOF. A point t of (a, b) belongs to Ro if and only if there exists a point u in 
(t, b) such that f(t) < feu). From this and the fact that f is continuous it is 
obvious that Ro is open. Let (c, d) be a component of Ro, let t be a point in 
(c, d), and suppose f(t) > fed). Since f is continuous there is a largest 
number t I in [t, d) such that f(t I) = f(t), and it is clear that feu) < f(t) 
for all u in the interval (t I, d). Since tIE Ro there is a real number u 1 in 
(tl' b) such thatf(uI) > f(t l ), and it is clear that UI cannot belong to (tl' d]. 
But then fed) < f(t l ) < f(u l ) and d < U I < b, which implies that dE Ro, 
contrary to fact. Thus we see that f(t) ~ fed) for every t in (c, d), and hence 
that f(c) ~ fed). 0 

The application we wish to make of Proposition 8.9 depends on the 
notion of the derivates of a function. 

Definition. Iff is a real-valued function defined on a subset of IR containing 
some interval [a, b), then the extreme limits 

1· f(t) - f(a) d 1· . f f(t) - f(a) 
1m sup an 1m III 

t ia t - a t ia t - a 

are known, respectively, as the upper and lower right-hand derivates 
off at a, and will be denoted by D +(a) = D+(a; f) and d+(a) = d+(a; f). 
Similarly, iff is defined on a set containing some interval (a, b], then the 
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upper and lower left -hand derivates of fat b, denoted by D _ (b) = D _ (b; f) 
and L(b) = d_(b; f), are defined as 

I· f(t) - feb) and 
1m sup b 

rib t -
I· . f f(t) - feb) 
1m ill , 

rib t - b 

respectively. 

The basic significance of these derivates in differentiation theory is clear. 
A real-valued function f is differentiable to the left [right] at a point t if and 
only if D _(t) = L(t)[D +(t) = d+(t)]. Hence J is differentiable at a point! 
in the interior of its domain of definition if and only if D_(t) = d_(t) = 
D+(t)=d+(t). (We are here admitting ±oo as possible values of the 
derivative.) 

Suppose now thatJis a continuous real-valued function defined on an inter
val [a, b] and that the upper right-hand derivate ofJat a point t, a < t < b, 
exceeds some real number m. Then for any open subset U of [a, b] such that 
t E U we have t E Rm(f; U). Similarly, if d_(t; f) < m, then t E Lm(f; U) 
whenever t E U c [a, b]. These observations are exploited in the following 
lemma. 

Lemma 8.11. Let f be a continuous monotone increasing function defined on an 
interval [a, b] and let m and M be positive numbers such that m < M. Let 

E = {t E (a, b): D+(t) > M and L(t) < m}, 

and let V be an open subset of [a, b] containing E. Then there exists a second 
open subset W such that E eWe U and such that J11 (W) :-s; (m/ M)J11 (U), 
where J11 denotes Lebesgue measure on R 

PROOF. Let V = Lm(f; U), and set W = RM(f; V). According to the above 
remarks we have E eWe V c U. Moreover, if (c, d) denotes anyone 
component of V, then, according to Proposition 8.9,f(d) - fCc) :-s; m(d - c). 
Hence if {(Ck' dk)} is an enumeration of the components of V, then 

L (f(dk) - f(ck)) :-s; mJ11CV), 
k 

(The sum on the left in this inequality exists and is finite, even if it represents 
an infinite series, since f is monotone.) Likewise, for exactly analogous 
reasons, if {(Pi' qi)} is an enumeration of the components of W, then 

L (f(qJ - f(Pi)) ~ MJ11(W), 
i 

But W is contained in V, and since f is increasing, it follows that 

L (f(qi) - J(p;}) :-s; L (f(dk) - J(ck))· 
i k 

Hence MJ11(W) :-s; mJ11(V), and the result follows. 
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Theorem 8.12 (Lebesgue). If f is a continuous monotone function defined 
on an interval [a, b], then the derivative f' exists at every point of (a, b )\Z, 
where Z is a set of Lebesgue' measure zero (briefly: f is differentiable 
a.e. [/1, ]). 

PROOF. We assume, as we clearly may, that f is increasing. Let m and M be 
positive numbers such that m < M and consider the set Em, M of those points 
t in (a, b) at which d_Ct) < m < M < D+Ct). CSince f is increasing, all four 
of its derivates are nonnegative at every point, so it will suffice to use positive 
numbers for m and M.) According to the preceding lemma Cwith U = 
(a, b», there exists an open subset W, of Ca, b) such that Em. M C W, and 
/1,(W,) ~ (m/M)(b - a). Then, applying the lemma again with U = WI' 
we obtain a second open set W2 such that Em. M C W2 C W, and such that 
/1,(W2 ) ~ (m/M)/1,(Wd ~ (m/M)2(b - a). Continuing in this manner, we 
obtain by mathematical induction a nested sequence of open sets 

W, ::J W2 ::J ••. ::J w" ::J .•. ::J Em, M 

such that /1, (w,,) ! 0, Hence /11 (Em, M) = 0, (See Problems C and E; note 
that it is not asserted here that Em, M is a Borel set, only that it is Lebesgue 
measurable by virtue of having measure zero,) 

Next we consider the set E = {t E (a, b): d_(t) < D+(t)}, For each point t 
of E there exists a pair of positive rational numbers m and M such that 
L(t) < m < M < D+(t). Hence E is a countable union of subsets of the 
formEm,M' whence it follows that /1, (E) = 0, and therefore that D +(t) ~ d_(t) 
a.e. [/1,]. 

Finally, let us consider the function J(t) = - f( -t) on the interval 
[ - b, - a]. Since J is also continuous and monotone increasing, we conclude 
by what has just been shown that D+(t; J) ~ L(t; J) a.e. on [ -b, -a]. 
But a straightforward calculation shows that 

D±Ct;J) = D+(-t;f) and d±Ct;J) = d:d-t;f) 

on (-b, -a). Hence D_(t; f) ~ d+(t; f) a.e. [/1,] on (a, b). But also 
d±(t; f) ~ D±(t; f) at every point of (a, b). Hence 

D+(t; f) ~ d_Ct; f) ~ D_(t; f) ~ d+(t; f) ~ D+(t; f) 

a.e. [/11] on [a, b], and the theorem is proved. D 

The foregoing remarkable theorem is complemented by the following 
result. 

Theorem 8.13 (Lebesgue). Let f be a continuous monotone increasing function 
defined on an interval [a, b], and let f' denote the derivative of f (existent 
a.e. [/1,] by the preceding theorem), Then f' is Lebesgue measurable and 
integrable [/1,] over [a, b], and 

f l' d/11 ~ feb) - f(a). 
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PROOF. Let {8Pn}~~ 1 be a nested sequence of partitions of the interval [a, b] 
with the property that mesh f1Jn 1 ° (see Problem 1G for basic definitions), 
let fYJn = {a = tbn) < ... < t~~ = b}, and for each n let 

for i = 1, ... , N n' Then each of the step functions qn (undefined on the finite 
set of points appearing in the partition f1Jn) satisfies the condition 

fqnCt)dt = feb) - f(a). 

On the other hand, if t~':! 1 < t < dn), then it is a matter of elementary arith
metic to verify that qn(t) is straddled by the two difference quotients 

Hence at every point t of (a, b) at which f'(t) exists, and which is not one of 
the countable set of points appearing in the various partitions [1jJ n' the sequence 
{qn(t)}:= 1 converges to f'(t). This shows that f' is Lebesgue measurable 
[,u1], and the asserted inequality follows by Fatou's lemma (Th. 7.11). 0 

The following extension of Theorems 8.12 and 8.13 is little more than a 
corollary. 

Proposition 8.14. If 9 is any continuous complex-valued function of bounded 
variation defined on an interval [a, b], then the derivative g' exists a.e. [,u1] 
and satisfies the condition 

f I9'ld,u1 s V(g; a, b) (9) 

(see Problem 11 for notation). 

PROOF. That the derivative of 9 exists a.e. [,u1] and is Lebesgue integrable 
on [a, b] follows at once from consideration of Jordan decompositions of 
the real and imaginary parts of 9 (Prob. lK). To verify (9), let f;?fn}n:0= 1 be a 
nested sequence of partitions of [a, b] with the property that mesh f1J n 1 0, 
and define the sequence {qn} of step functions as in the proof of the preceding 
theorem. Then, just as before, the sequence {qn} tends pointwise to g' a.e. 
[,u 1], and it is clear from the definition that J~ I qn I d,u 1 is dominated by the 
total variation of 9 over [a, b] for every n. Hence (9) follows by Fatou's 
lemma. 0 
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It is only fair to say that the above discussion develops but a very small fragment of a 
vast theory of differentiation. Much more could be said. For one thing, the hypothesis of 
continuity can be dropped outright in Theorem 8.12 (and therefore in Theorem 8.13 and 
Proposition 8.14 as well). Secondly, the theory of differentiation can be extended to much 
more general functions with much more general domains of definition. The reader who 
desires to study these topics more fully should consult a treatise on real analysis, such as 
[58]. Alternatively, he might consult the encyclopedic [26]. 

PROBLEMS 

A. Let eX, SI) and eX, S2) be two measurable spaces with the same carrier X, and let 
fJ)) be a collection of sets belonging to both SI and S2 that is closed with respect to 
the formation of finite intersections. Suppose ifJI and ifJ2 are signed [complex] 
measures on (X, SI) and (X, S2), respectively. such that ifJl(E) and ifJ2(E) are finite 
and equal for every set E in fJ)). Show that ifJI = ifJ2 on the entire a-ring S(fJ))). (Hint: 
If Eo is anyone fixed set in fJ)), and if Q denotes the collection of all those subsets 
F of Eo such that ifJl(F) = ifJ2(F), then Q is a a-quasiring containing the trace 
fJ))Eo' Recall Problems 6D and 6K.) 

Problem A provides the basic uniqueness theorem used to establish all of the 
assertions of uniqueness made throughout Chapter 8. Neither of the prin
cipal hypotheses in this theorem can be omitted, even in the presence of the 
other. Thus, if /\ denotes the counting measure on IR, then, for example, 2/\ 
agrees with /\ on the ring H, of half-open intervals (Ex. 60) since both 
measures are infinite on all nonempty sets in H" but /\ # 2/\ on the u-ring 
B of Borel subsets of IR generated by H,. That the requirement that ftJ be 
closed with respect to the formation of finite intersections cannot be 
dropped may be seen by experimenting with a three point space. 

B. A nonnegative, extended real-valued set function /1* defined on the power class 
on a set X is an outer measure on X if /1* is countably subadditive and satisfies the 
condition /1*(0) = O. Show that an outer measure /1* on X is finitely subadditive 

in the sense that if AI' ... , An and B are subsets of X such that B c A I U ... U An, 
then 

/1*(B) S /1*(A I) + ... + /1*(An)· 

In particular, if A c B c X, then /1*(A) S /1*(B). 

C. (Theorem of Caratheodory) Let 11* be an outer measure on a set X. A subset E 
of X is said to be measurable (in the sense of Caratheodory) with respect to /1* if 
for every subset A of X we have 

/1*(A) ~ /1*(A 11 E) + /1*(A\E}. 

and therefore 

/1*(A) = /1*(A 11 E) + /1*(A\E). 

Show that every set Z with the property that /1*(Z) = 0 is measurable with respect 
to /1*, and that X\E is measurable with respect to /1* whenever E is. Let EI and E2 
be two sets that are measurable with respect to 11*, and write Ell = El 11 E2, 
E12 = EI \E2, E21 = E2 \E I, and E22 = X\(E 1 U E2), for the four sets into 
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which EI and E2 partition X. Show that if A denotes an arbitrary subset of X, 
and if we write Aij = A n Eij , i,j = 1,2, then 

Use this fact to show that the collection M of all those subsets of X that are measur
able with respect to )1* is a ring of sets and that )1* I M is countably additive on M. 
(Hint: A finitely additive, countably subadditive, nonnegative set function defined on 
a ring of sets is automatically countably additive.) Show finally that M is a a-ring, 
and hence that (X, M, )1* I M) is a measure space. The measure )1* I M is called 
the measure defined by )1*. (Hint: It suffices to verify that M is a a-quasi ring (Prob. 
61). If {En};;'=1 is a disjoint sequence of sets in M with E = Un En' and A is an 
arbitrary subset of X, then it follows from what has already been shown that 

)1*(A) = )1*(A\(E J U ... U En» + L )1*(A n EJ 
i~ 1 

~ )1*(A \E) + L )1*(A n EJ 
i= 1 

for every positive integer n.) 

D. Let us say that a collection C(j of subsets of a set X is admissible if (i) the empty set 0 
belongs to C(j and (ii) X is the union of some countable collection of sets belonging 
to C(j. Let C(j be an admissible collection of subsets of X, and let qJ be a nonnegative, 
extended real-valued set function defined on C(j and satisfying the condition 
qJ(0) = O. (Such a set function is sometimes called a gauge.) For an arbitrary subset 
A of X let us define 

where the infimum is taken over all countable coverings of A by means of sets 
belonging to C(j. Show that )1* is an outer measure on X, that )1*( e) S qJ( e) for every 
set e in C(j, and that )1* = qJ on C(j if and only if qJ is countably subadditive. The 
outer measure )1* is called the outer measure generated by qJ. (Hint: If e is a positive 
number and Am is the mth set in some sequence of subsets of X, then there is a 
sequence {en} of sets in C(j such that Am C Un en and such that 

Suppose that qJ is a finite-valued gauge defined on an admissible collection C(j of 
subsets of X and that)1* is the outer measure generated by qJ. Verify that if )1*(A) > 0 
and if r satisfies 0 < r < 1, then there exist sets C in C(j such that )1*( A n C) > rqJ( C). 

E. For each positive integer n the collection :Ln of all cells in [Rn is admissible, and the 
set function qJn(Z) = I Z I, Z E :!l n' satisfies the condition qJn(0) = O. Hence qJn 
generates an outer measure on [Rn according to the procedure set forth in the pre
ceding problem. This outer measure is Lebesgue outer measure on [Rn, and will 
be denoted by )1:. A subset E of [Rn is said to be Lebesgue measurable if it is measur-

156 



8 Measure theory 

able with respect to J1~ (see Problem C). Show that every cell in [Rn is Lebesgue 
measurable, and hence that the a-ring S of Lebesgue measurable sets contains all 

Borel subsets of [Rn. (Hint: Show first that if a is an arbitrary real number and io 
is an integer, io = 1, ... , n, then the half-space {(r 1, ... , rn) E [Rn: rio s: a} is 
Lebesgue measurable.) 

F. The measure defined by Lebesgue outer measure J1~ introduced in the preceding 
problem agrees with Lebesgue-Borel measure J1n on the Borel subsets of [Rn 
(Examples B and C). Verify this by showing that if Z is a cell in [Rn, then J1~(Z) = IZ 1 

(recall Problem A). Show also that if for anyone fixed point a = (a 1 . ... , an) we 
write 7;, for the translation carrying each point x = (Xl' ... , xn) to X + a = 
(Xl + a1, ... , Xn + an), then J1~(7;,(A» = J1~(A) for every subset A of [Rn. Show, 
finally, that if <I> denotes the mapping of [Rn onto itself defined for each point X in [Rn 
by <I>«x 1, ... , xn» = (a1x1, ... , anxn), where (a 1, ... , an) is some fixed n-tuple 
of positive numbers, then J1~(<I>(A» = a1 ... anJ1~(A) for every subset A of [Rn. 
(Hint: It is necessary to show that if Zo is a cell and {Zn} is a countable covering 
of Zo by cells, then IZol s: In IZnl. The gauge <p(Z) = IZI is continuous on lln 
in the sense that if a cell Z is replaced by a slightly smaller compact cell contained 
in Z, or by a slightly larger open cell containing Z, the value of <p is changed as 
little as desired. Use this fact to reduce the problem to the case of a finite covering. 
The finite case may be disposed of by direct calculation.) Verify that if A is a subset 
of [Rn such that J1~(A) > 0, then for any ratio r satisfying ° < r < I there exist cells 
Z such that J1~(A n Z) > r 1 Z I, Show also that such cells exist having edges as 
short as desired, and having, for example, rational points for vertices. (Hint: If a 
cell Z has the property that J1n(A n Z) > r 1 Z I, and if Z is partitioned in any manner 
into subcells Z;, i = 1, ... ,p, then J1~(A n ZJ > rlZ;1 for at least one index i.) 

G. If V is an open subset of IR, then V is uniquely expressible as a countable union of 
disjoint open intervals (the connected components of V; Proposition 3.7). Hence if J1 
denotes Lebesgue measure on [R, then J1(V) is given by the sum of the lengths of 
these constituent intervals. Using this fact, show that the Cantor set (Ex. 31) has 
Lebesgue measure zero. Conclude that there exist (many) Lebesgue measurable 
sets in [R that are not Borel sets. (Hint: All of the subsets of the Cantor set are 
Lebesgue measurable; use Problems 6H and IS.) 

H. If E is a Lebesgue measurable subset of [Rn and if e is a positive number, then there 
exists an open set V containing E such that J1n(V\E) < f:. Likewise there exists 
a closed set F contained in E such that J1n(E\F) < e. Conclude that there exist 
sets G and H such that GeE cHand such that J1n(H\E) = J1n(E\ G) = 0, 
where G is an Fa and H is a Gb . (Hint: See Problem E.) 

I. Let f be a monotone increasing real-valued function on IR, and for each open 
interval (a, b), a < b, set <p Aa, b)) = f (b - ) - f (a + ). If we also define <p 1(0) = 0, 
then <PI is a gauge defined on an admissible collection of subsets of [R. Show that 
J1}«a, b» = <pAa, b» for all open intervals (a, b), where J1} denotes the outer 
measure on [R generated by <PI (i.e., show that <PI is countably subadditive), and 
show also that all intervals are measurable with respect to J1'f. Conclude that the 
a-ring of subsets of [R measurable with respect to J1} contains the a-ring B of Borel 
subsets of [R and that J1} 1 B is the Stieltjes-Borel measure of Example E. (Hint: 
Show first that the ray {r E [R : r s: to} is measurable with respect to J1t whenever 
to is a point of continuity of f.) 
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J. Let B denote the a-ring of Borel subsets of IR, and suppose given a measure v on 
(IR, B) which is finite on the bounded sets in B. Let 

J{t) = {V«O, t]), 
- v«t, 0]), 

t :2: 0, 

t < O. 

Show that J is a monotone increasing right-continuous function on IR and that v 
is the Stieltjes-Borel measure associated with f 

K. Let J be a monotone increasing function defined on a real interval [a, b]. If 9 is a 
bounded, real-valued function defined on [a, b] and r!J = {tJf=o is a partition 
of [a, b], then the upper Darboux sum (for 9 with respect to f) based on fY' is the sum 

N 

Df? = I Mi[f(ti) - J(ti- l )], 
i= 1 

where Mi = sup{g(t): t i - l S; t S; tJ, i = 1, ... , N (see Problem 10 for basic 
definitions). Similarly, the lower Darboux sum (for 9 with respect to f) based on r!J 
is the sum 

N 

df? = I mi[f(tJ - J(ti- l )], 
i= 1 

where mi = inf{g(t): t i - l S; t ::;; tJ, i = 1, ... , N. Verify that for fixed J and 9 the 
nets {Df?} and {df?}' indexed by the directed set of partitions of [a, b], are monotone 
decreasing and monotone increasing, respectively. (This is a straightforward 
generalization of the construction introduced in Problem 1H where J(t) == t.) 
Show also that the limits 

I = lim df? and J = lim Df? 

exist and satisfy the condition I S; J. The limits ,1 and J are known as the lower 
and upper Darboux integrals over [a, b] of 9 with respect to f, respectively. In the 
event that ,l = J, the common value is the Darboux integral over [a, b] of 9 with 
respect to f Show that if 9 is a bounded real-valued Borel measurable function on 
[a, b] and J1 f is the Stieltjes-Borel measure associated with J (Ex. E), then the 
Lebesgue-StieItjes integral S[a.b] 9 dJ1f is straddled by the upper and lower Darboux 
integrals over [a, b] of 9 with respect to J, so that the Darboux integral over [a, b] 
of 9 with respect to J coincides with S[a.b] 9 dJ1f whenever the former exists. (Hint: 
The upper and lower Darboux sums based on an arbitrary partition of [a, b] 
are the integrals with respect to J1 f of a pair of simple functions that straddle g. When 
J is continuous this is easily seen; if J is discontinuous at any ofthe internal partition 
points, extra care must be taken.) 

L. Let cp and ex be bounded complex-valued functions defined on an interval [a, b] 
(a S; b). If r!J = {tJ~=o is a partition of [a, b], then by a Riemann-Stieitjes sum 
(for cp with respect to ex) based on .OJ> is meant a sum of the form 

N 

S = I cp(rJ [ex(ti) - ex(ti - l )], 

i= 1 
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where t i - 1 ~ T i ~ t i , i = 1, ... , N. The number J is defined to be the Riemann

Stieitjes integral of qJ over [a, bJ with respect to '1 if for each given positive number F. 

there exists a positive number b such that I J - S I < [; for every Riemann-Stieltjes 
sum S (for qJ with respect to '1) based on any partition & of [a, bJ such that the mesh 
of & is less than o. If J is the Riemann-Stieltjes integral over [a, b] of qJ with respect 
to IX, we write 

J = r qJ(t)da(t). 
a 

(In particular, when aCt) == t, the Riemann-Stieltjes integral of qJ with respect to a 
is the Riemann integral of qJ over [a, b], denoted by J~ qJ(t)dt.) If the Riemann
Stieltjes integral of qJ over [a, b] with respect to a exists, then qJ is said to be 
(Riemann-Stieltjes) integrable over [a, b] with respect to a. In the Riemann-Stieltjes 
integral J~ qJ(t)da(t) the function qJ is known as the integrand, the function a as 
the integrator. 

(i) Show that a bounded function qJ is integrable over an interval [a, b] with respect 
to a bounded function a if and only if the following Cauchy criterion is satisfied: 
Given e > 0 there exists 0 > 0 such that if & and &' are arbitrary partitions of 
[a, b] with mesh &, &' < 0, and if S and S' are arbitrary Riemann-Stieltjes 
sums for qJ with respect to IX based on & and &', respectively, then IS - S'I < e. 
Verify also that if qJ is integrable with respect to a over [a, b], and if e and b 
are as stated, then 

for any Riemann-Stieltjes sum S for qJ with respect to a based on a partition & 
of [a, b] such that mesh & < o. 

(ii) Let qJ and a be complex-valued functions on the real interval [a, b] and 
suppose qJ is bounded and a is of bounded variation over [a, bJ. Verify that if 
for a given positive number e there exists a positive number 0 with the property 
that I qJ(t) - qJ(t') I < dor all t,t' in [a, b] such that It - t'I < 0, and if & and &' 
are partitions of [a, b] such that mesh &, .0;>' < 0, and Sand S' are Riemann
Stieltjes sums for qJ with respect to IX based on & and. &', respectively, then 
IS - S'I < 2Ve, where V = V(a; a, b) denotes the total variation of a. (Hint: 
Consider first the case in which &' is a refinement of &.) Conclude that if qJ is 
continuous, then qJ is integrable over [a, b] with respect to a, and if e and 0 
are as above, then IS - J~ qJ(t)da(t) I ~ 2Ve for any Riemann-Stieltjes sum S 
for qJ with respect to a based on a partition & of [a, b] with mesh & < o. 

(iii) Suppose f is a monotone increasing real-valued function on [a, b] and qJ is a 
Borel measurable function that is Riemann-Stieltjes integrable over [a, b] with 
respect to f. Show that 

fb qJ(t)df(t) = f qJ d/1f, 
a (a,b] 

where /1f denotes the Stieltjes-Borel measure associated with f (Ex. E). Show 
likewise that if qJ is real-valued, then J~ qJ(t)df(t) is also equal to the Darboux 
integral over [a, b] of qJ with respect to f. (Hint: First treat the case in which qJ 
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is real. If I: is a positive number, if b is chosen as in the definition of the Riemann
Stieltjes integral, and if:JfJ is a partition of [a, b] with mesh .OJ> < b, then the 
upper and lower Oarboux sums for cp with respect to f based on ?I cannot 
differ by more than 2e. Hence J - ,1 ::s; 2£.) 

The condition of continuity in the result obtained in Problem L(ii) is only a 
convenient sufficient condition for the integrability of lfJ with respect to IX. A 
closer study of the question discloses that if lfJ is any bounded complex
valued function and IX is a function of bounded variation, both defined on 
[a, b), then.a necessary and sufficient condition for the existence of the 
Riemann-Stieltjes integral of lfJ with respect to IX over [a, b] is that lfJ be 
continuous almost everywhere with respect to the measure J.i-v, where Vet) 
denotes the total variation of IX over the interval [a, t). It is worth remarking 
that this condition, in turn, implies that lfJ is measurable with respect to the 
completion of J.i-v (Prob. 0). Thus, for example, a Riemann integrable 
function on an interval [a, b) is always Lebesgue measurable, though it need 
not be Borel measurable. 

M. Let R be an admissible ring of subsets of a set X, let A be a countably additive, 
nonnegative, extended real-valued set function defined on R such that ..1.(0) = 0, 
and let /1* be the outer measure generated by A (Prob. 0). Show that every set in R 
is measurable with respect to /1* and that /1* I R = },. Conclude that if (X, S, /1) is a 
measure space and R is a ring of measurable sets of finite measure such that R 
generates S as a O"-ring, then for any set E of finite measure and any positive number 
e there exists a set R in R such that /1(E V R) < e. Thus, for example, if/is a monotone 
increasing function on an interval [a, b] and if /1 f is the associated Stieltjes-Borel 
measure on [a, b] (Ex. E), then for any Borel subset E of [a, b] and any e > 0 there 
exist half-open intervals (a;, bJ, i = L ... , n, such that I1/E V H) < e, where H = 

Ui~ 1 (ai' b;]. 

N. Let (X, S, /1) be a finite measure space, and letfbe a real-valued integrable function 
on X. For each real number t let E, = {x E X :f(x) ::s; t} and define met) = I1(E,), 
t E IR. Then m is a monotone increasing, right-continuous function on R (The 
function m is known as the distribution function of f.) Show that the Stieltjes-Borel 
measure /1m (Ex. E) is the measure induced on (IR, B) by the function f and 11 (Prop. 
8.2). Conclude that if cp is a continuous function on IR such that cp 0 f is integrable 
[/1], then 

f/ 0 f d/1 = r: cp(t)dm(t) (10) 

where the integral in the right member of (10) is the improper Riemann-Stieltjes 
integral 

a~ll100 f cp(t)dm(t). 

b- + 00 

In particular, 

f/ d/1 = r: t dm(t). 

O. Let e denote arc-length measure on the unit circle Z (Ex. F). Show that Sz An deCAl = 0 
for all integers n =I- O. 
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P. A measure space (X, S, /1) is said to be complete if every subset of an arbitrary 
set of measure zero with respect to /1 is measurable and is, therefore, also a set of 
measure zero. (Another way to say this is to say that the collection Z of null sets is a 
O"-ideal (Prob. 61) not only in S, but in the power class on X.) If (X, s, /1) is complete, 
the measure /1 is also said to be complete. Show that if (X, s, /1) is a complete measure 
space, and if f is a measurable function on (X, S), then every function 9 on X 
such that 9 = f a.e. [/1] is also measurable [S]. Similarly, if (X, s, /1) is complete 
and E belongs to S, then every set F that is almost equal [/1J to E also belongs to S 
and we have /1(E) = /1(F). If Z is a null set in a complete measure space (X, S, /1), 
then an arbitrary complex-valued function defined on Z is measurable on Z. 
Show that if /1* is an outer measure on a set X, and if M denotes the O"-ring of sets 
that are measurable with respect to /1* (Prob. C), then (X, M, /1* I M) is complete. 

Q. Let (X, S, /1) be a measure space. Consider the collection S of those subsets of X 
that are almost equal [/1J to some set E in S. If F belongs to S and if El and E2 
are sets in S such that F and E;, i = 1,2, are almost equal [/1J, then El and E2 
are almost equal [/1J and therefore /1(E 1) = /1(E2). Thus we may and do define 
P,(F) = /1(E 1) = /1(E2). Show that S is a O"-ring of subsets of X and that p, is a measure 
on the measurable space (X, S). Show also that (X, S, P,) is complete, and if (X, T, v) 
is any complete measure space such that SeT and /1 = v I S, then SeT and 
p, = viS. The space (X, S, p,) is the completion of (X, S, /1) and p, is the completion 
of /1. Thus Lebesgue measure on [Rn is the completion of Lebesgue-Borel measure 
on [Rn. (Hint: See Problem H.) 

R. Show that a measure space is O"-finite (Prob. 71) if and only if it can be expressed 
as the direct sum of a countable collection of finite measure spaces. Show also 
that an arbitrary direct sum of finite measure spaces is locally finite. 

S. A measure space (X, S, /1) is said to be purely atomic if every measurable subset of X 
is the union of a set of measure zero and a disjoint collection of atoms. Show that an 
arbitrary direct sum of finite measure spaces can be expressed (essentially uniquely) 
as the direct sum of two subspaces A and B, where A is purely atomic, while B is 
atom-free. In particular, this is true of every O"-finite measure space. (Hint: First 
treat the case in which /1(X) < + 00. Show that a disjoint collection of atoms in X is 
necessarily countable, and use the method of exhaustion.) 

T. (i) Let /1 be a signed measure on a measurable space (X, S), and suppose /1(X) < O. 
Show that there is a negative set Bo with respect to /1 such that /1(Bo) < O. 
(Hint: Suppose the contrary. Then for any set E in S, /1(E) < 0 implies the 
existence of a subset F of E such that /1(F) > O. For each E in S having negative 
measure let keEl denote the smallest positive integer k with the property that 
there exists a subset F of E such that /1(F) ~ 11k. Note that if /1(E) < 0 and 
/1(F) > 0, where FeE, then /1(E\F) S /1(E) < 0 and k(E\F) ~ k(E). Set 
kl = k(X) and construct by induction a disjoint sequence {Fn} of measurable 
sets and a corresponding sequence {kn } of positive integers such that 

1 
kn+l = k(X\(F 1 U··· U Fn)) and /1(Fn) ~ k 

n 

for every positive integer n. Set F = Un Fn and show that Bo = X\F is negative 
with respect to /1 and that /1(Bo) S /1(X).) 
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(ii) Use (i) to give a proof ofTheorem 8.5. (Hint: Suppose, without loss of generality, 
that - 00 < I1(E) S + 00 for every measurable set E, and exhaust the negative 
measure from x.) 

U. (i) Let 11 be a signed measure on a measurable space (X, S), and let E be a measur
able set. Verify that 

11+(E) + 11-(E) = sup III1(E i)l, 
i= 1 

where the supremum is taken in IR' over all finite partitions {EI' ... , En} of E 
into disjoint measurable subsets. Thus the total variation 1111 (E) of 11 over E, 
defined to be the indicated supremum, is given by 11+ (E) + 11-(E). Verify that 
a measurable function I on (X, S) is integrable [p] if and only iff is integrable 
[Ipl], and that iff is integrable [II], then Ih I dill s hllldll1l. Show also 
that if {fn} is a sequence of measurable functions on (X, S) that converges to a 
limit f a.e. [1111], and if there exists a function q> that is integrable [11] such 
that I f~ I s q> a.e. [1111] for every index n, then limn S I I - f~ I dp = 0 and 
limn S in dp = S I dp. (In other words, the dominated convergence theorem is 
valid for signed measures.) 

(ii) Prove Proposition 8.7 for a complex measure ( on a measurable space (X, S). 
(Hint: Show first that I (I is finitely additive.) Show also that if Un} is a sequence 
of measurable complex-valued functions on (X, S) that converges to a 
limit I a.e. [I (1], and if there exists a function q> that is integrable [(] such 
that I f~ I S q> a.e. [I m for every index n, then limn S I I - In I d( = 0 and 
limn J In d( = J I d(. (In other words, the dominated convergence theorem is 
valid for complex measures.) 

V. Let ( be a complex measure on a measurable space (X, S). Show that the total 
variation of, is given by 

where the supremum is taken over the collection of all measurable functions f on X 
such that III S 1 a.e. ml]. 

W. (i) Suppose given two monotone increasing real-valued functions II and 12 on 
the same real interval [a, b]. Show that I = II - 12 is of bounded variation on 
[a, b]. Show also that II = I+ + d and 12 = (f- - I(a» + d, where d is 
another monotone increasing function on [G, b] and f~ and I_denote the 
positive and negative variations, respectively, of I (Prob. lK). Use this mini
mality of the positive and negative variations of a given real-valued function I 
of bounded variation to verify that in the Jordan decomposition I = 
f+ - (f- - I(a» of such a function we have PJ _ = (I1J)+ and I1J _ = (,1r)
whenever I is right-continuous on (a, b). (Hint: Show first that the positive 
[negative] variation off on any subinterval of [a, b] (Prob. 11) is dominated by 
the increment of II [f2] on that subinterval; then use Theorem 8.6.) 
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(ii) Let rt be a complex-valued function of bounded variation on [a, b] that is right
continuous on (a, b), let ,. denote the complex Stieltjes-Borel measure on 
[a, b] associated with rt (Ex. K), and for each t, a S t S b, let L(t) denote the 
length, or total variation, of rt on the interval [a, t]. Show that the total variation 
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I (, I is the measure lit associated with the monotone increasing function L. (Hint: 
It suffices to show that I (, I agrees with the measure associated with L on sub
intervals of the form [a, tJ, a < t ::s; b (Prob. A). This amounts to verifying that 
I (a I ([a, tJ) = L(t). Inequality one way is obvious: to obtain inequality the other 
way use Problem M.) 

X. Let'J. be a complex-valued function of bounded variation on a real interval [a, b J, 
and let ({J be a bounded, complex-valued, Borel measurable function on [a, h]. 
Show that if the Riemann-Stieltjes integral S~ ({J(t)d'J.(t) exists (see Problem L), then 

fb ({J(t)d'J.(t) = I ({J d(ao 
a (a.bl 

where (, is the Stieltjes-Borel measure associated with 'J. (Ex. K). Using this fact, 
show that if the Riemann-Stieltjes integral of ({J with respect to Y. over [a, b] exists, 
then 

where L(t) denotes the total variation of'J. on the interval [a, t]. 

Y. Let 'J. be a complex-valued function defined on a real interval [a, b]. Show that 'J. is 
Lipschitzian on [a, b J (Prob. 4F) if and only if there exists a bounded, Lebesgue 
measurable, complex-valued function !i on [a, bJ such that 

'J.(t) - 'J.(a) = f'P(U)dU, 
a 

a ::s; t ::s; b, (11) 

and that, when 'J. is given in this manner, then P = 'J.' a.e. [/11]. (Hint: If 'J. is 
Lipschitzian on [a, b J, then 'J. is continuous and of bounded variation on [a, b]. 
Moreover, if 'J. is Lipschitzian, then the sequence {qn} of step functions defined in 
the proof of Theorem 8.13 tends to 'J.' a.e. [/11] and is uniformly bounded, so r o:'(t)dt = o:(b) - o:(a) 

a 

by the bounded convergence theorem (Th. 7.13). Conclude that o:(t) - o:(a) = 

S~ o:'(u)du, a ::s; t ::s; b, and also that if 0: is related to f1 as in (11), then P - 0:' is a 
Lebesgue integrable function whose integral with respect to Lebesgue measure is 
zero over every Lebesgue measurable subset of [a, b].) 
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In this chapter we treat some additional important topics in the theory of 
measure and integration. The first of these concerns another way that new 
measures can be constructed from old ones. If (X, 8) and (Y, T) are measur
able spaces, then a set of the form E x F, where E E 8 and F E T, is called a 
measurable rectangle in X x Y. The a-ring of subsets of X x Y generated 
by the collection of all measurable rectangles is denoted by 8 x T, and the 
space X x Yequipped with the product O"-ring S x T is a measurable space 
called the product of (X, S) and (Y, T). 

Example A. If X and Yare topological spaces, and if Bx and By denote the 
a-rings of Borel subsets of X and Y, respectively, then Bx x By is, in general, 
a subring of the a-ring B of Borel subsets of X x Y. If X and Y both satisfy 
the second axiom of count ability, then Bx x By = B. (In this connection see 
Problem A.) 

Lemma 9.1. Let (X, 8, /1) and (Y, T, v) be measure spaces, and let f be a 
complex-valued function on X x Y that is measurable [8 x T]. Then for 
each x in X the function f(x, y), considered as a function of the single 
variable y, is measurable [TJ. Moreover, if v is a-finite, and if A denotes 
the set of those points x in X such that f(x, y) is integrable [v] as a function 
of y, then A is measurable and the function 

g(x) = {f(x, y)dv(y), xEA, 

is a measurable function on A. The analogous assertions obtained by inter
changing the roles of X and Yare also valid. 
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If X and Yare arbitrary sets, and if E is a subset of X x Y. then for each 
point x of X we denote by E" the set 

Ex= {yEY:(X,Y)EE}. 

This set is called the X -section of E determined by x: Y-sections of E are 
defined analogously, and are denoted by P. It is an immediate consequence of 
Lemma 9.1 that if(X, S, /l) and (Y, T, v) are any two measure spaces, and if E 
is a subset of X x Y belonging to S x T, then the section Ex is a measurable 
subset of Y for each x in X, and, in the event that v is a-finite, the function 
g(x) = v(EJ is a measurable function on X. In this connection see Problems 
Band C. 

Example B. Let us take for both (X, S) and (Y, T) the unit interval [0, 1] 
equipped with its ring of Borel sets, so that (X x y, S x T) is simply the unit 
square Q equipped with its ring of Borel sets B (see Example A). Let /l be 
ordinary Lebesgue-Borel measure on (X, S), and let K be the counting 
measure on (Y, T) (Ex. 71). According to Lemma 9.1, if A is any Borel set 
in Q, then the function hey) = /l(AY) is a Borel measurable function on [0, 1]. 
Irrespective of that fact, we may certainly define 

~(A) = Lh(Y)dK(Y) = O$~$l/l(AY), 

and it follows by the theorem of Beppo-Levi (Cor. 7.10) that the set function ~ 
is a measure on (Q, B). On the other hand, if A is a given Borel subset of Q, and 
if we define 

g(x) = K(AJ, ° ::;; x ::;; 1, 

then the function 9 need not be Borel measurable on [0, 1]. (This is one of 
those set-theoretic mysteries, an explanation of which would take us far 
afield from the proper concerns of this book; the interested reader is referred 
to [34; §37, Satz IV].) 

Example B shows clearly that the hypothesis of a-finiteness is of great 
importance in Lemma 9.1. Note that the measure space (Y, T, 1\:), while not 
a-finite, is locally finite. The following theorem, the proof of which is sketched 
in Problem E, is of basic importance. 

Theorem 9.2 (Fubini Theorem). If (X, S, /l) and (Y, T, v) are a-finite measure 
spaces, then there exists a unique measure /l x v (called the product of 
/l and v) on the measurable space (X x Y, S x T) satisfying the condition 
(/l x v)(E x F) = /l(E)v(F) jar every measurable rectangle E x F in 
X x Y. (The measurable space (X x Y, S x T) equipped with the measure 
/l x v is the product of the measure spaces (X, S, /l) and (Y, T, /l).) Iff is 
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a complex-valued function on X x Y that is integrable [,u x v], then the 
function g(x) = h f(x, y)dv(y) is measurable and integrable [,u] and we 
have 

Similarly, the iterated integral 

L [{f(X, y)d,u(X)]dV(y) 

exists and is equal to the product (or double) integral IxxY f d(,u x v). 

In applications of the Fubini theorem it is of great importance to be able to 
determine when a measurable function on a product space X x Y is integrable 
with respect to the product of two measures. In this connection the following 
result, the proof of which is sketched in Problems C and D, is very useful. 

Theorem 9.3 (Tonelli Theorem). Let (X, S, ,u) and (Y, T, v) be a-finite measure 
spaces. If f is a function that is measurable [S x T] and nonnegative on 
X x Y, then 

{[fl(X, Y)dv(y)]d,u = L [{f(x, Y)d,u(X)]dV 

= f f d(,u x v). 
xxy 

Thus if q> is an arbitrary measurable complex-valued function on X x Y, and 
if the function g(x) = J y I q>(x, y) I dv(y) satisfies the condition J x g d,u < + 00 

(or ifh(y) = Ix Iq>(x, y)ld,u(x) satisfies the condition Srhdv < +00), then 
q> is integrable [,u xv]. 

Corollary 9.4. Let (X, S, ,u) and (Y, T, v) be a-finite measure spaces. If E is a 
measurable subset of X x Y, then (,u x v)(E) < + 00 if and only if 
Ix v(Ex)d,u < + 00. Furthermore, (,u x v)(E) = 0 if and only if v(EJ = 0 
for almost every x in X or, equivalently, if and only if ,u(e) = 0 for almost 
every yin Y. 

The Fubini and Tonelli theorems extend, of course, to arbitrary finite 
products XIX'" X Xn of a-finite measure spaces (see Problem J). 

The assumption that the measure spaces (X, S, fJ.) and (Y, T, v) are both IT-finite is 
certainly sufficient to assure the validity of the Fubini and Tonelli theorems, but this 
relatively strong condition has seemed to many to be unjustifiably restrictive. In this 
connection it is appropriate to remark that if (X, S, fJ.) and (Y, T, v) are any two, absolutely 
arbitrary, measure spaces, then there exists a measure X on S. x T satisfying the condition 

X(E x F) = fJ.(E)v(F) (1) 
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on measurable rectangles, and this measure, which is constructed in a completely 
standard fashion, possesses certain rather appealing properties. For example, the Fubini 
theorem is valid for the measure A, again without any restrictions whatever on X or Y 
(Prob. H). Thus it might seem natural simply to define the "product measure" on 
(X x y, S x T) to be the measure i In the most general case, however, the measure A 
is not uniquely determined by (1), which makes the terminology "product measure" 
somewhat suspect. (Indeed, at least one serious student of this circle of ideas has proposed 
another candidate altogether for the "product" of two arbitrary measures [5].) Another 
(more serious) difficulty is that the Tonelli theorem is not valid, in general, for the measure 
i, and since this is ordinarily the only feasible way of determining when the Fubini theorem 
is applicable, we have, in this book, relegated the measure A to the problems (see Problems 
G and H). Readers who wish to probe more deeply into these matters may consult 
the articles [49], [50], [6], and [45]. 

Example C. If we identify [Rm x [Rn with [Rm + n in the usual manner, then the 
O'-ring of Borel subsets of [Rm + n is identified with the product of the O'-rings of 
Borel subsets of [Rm and [Rn. Thus Lebesgue-Borel measure on [Rm+n is also 
identified with the product of the Lebesgue-Borel measures on [Rm and [Rn. 

In the same way, Lebesgue-Borel measure on [Rn may be thought of as the 
product of n copies of Lebesgue-Borel measure on the real line, and 
Lebesgue-Borel measure on C as the product of the Lebesgue-Borel 
measures on the real and imaginary axes in C. 

Example D. Let (Y, T, v) be a O'-finite measure space, let ([R, B, Ji) denote the 
measure space consisting of Lebesgue-Borel measure on [R, and let f be a 
nonnegative real-valued function defined on Y. If R f denotes the set 
ret, y): 0 ~ t < fey)}, then f is measurable [T] when and only when Rf 
is measurable [B x T]. Likewise, f is integrable [v] when and only when 
(Ji x v)(Rf ) < + 00, and, when f is integrable [v], we have (Ji x v)(Rf ) = 
J y f dv. (It is easy to see that these observations can be used to construct the 
real Lebesgue integral with respect to the measure v, and thus to give a proof 
of Theorem 7.6 in the O'-finite case.) 

For any given measure Ji there are other measures associated with and, 
in a sense, subordinate to Ji. To make this more precise, let (X, S, Ji) be a 
measure space, let f be a measurable, nonnegative, extended real-valued 
function defined on X, and let F = {x EX: f(x) < + oo}. Clearly the 
mapping 9 -> gf is a linear transformation of the space A 0 into itself, 
where A 0 denotes the linear space of all those measurable complex-valued 
functions on X that vanish on X\F. Let Sf f denote the linear space of all 
those measurable functions 9 in A 0 with the property that gf is integrable 
[Ji], and set 

Then L J is a linear functional on Sf J, and it is a routine chore to verify that 
Lf is, in fact, a Lebesgue integral on (X, S). 
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Proposition 9.5. If f is a measurable extended real-valued function defined 
and nonnegative a.e. [fl] on a measure space (X, S, fl), then the set function 

is a measure on (X, S) called the indefinite integral off with respect to fl. 
If g is an arbitrary measurable function that is either integrable with 
respect to v f or nonnegative, then 

Example E. Let T denote the strip {(r, t) : r ;::: 0,0 :::; t < 2n} in the plane 
1R2, and consider the mapping 

(r, t) E T, 

of T onto the complex plane C. The mapping cp is clearly Borel measurable; 
indeed, if 0:::; ro < r1 < + 00 and 0:::; to < t1 < 2n, then the half
open rectangle H = [ro, r1) x [to, t1) is the inverse image under cp of the 
segment S of the annulus {A E I[: : r 0 :::; I A I < r d cut out by the angle 
{A E I[: : to :::; Arg A < t d, and sets of the form S generate the CT-ring of Borel 
subsets of C. Moreover, it is easily seen that the Lebesgue-Borel measure of 
S is given by 

() (t1 - to)(ri - r6) 
v S = ---2---. 

(Indeed, if to and t 1 are both rational multiples of 2n, this follows at once 
from the fact that Lebesgue-Borel measure on I[: is invariant under rotations, 
and the general case then follows by continuity.) But this number is also the 
value of the integral 

f i'l It 1 

r dr dt = r dr dt. 
H '0 10 

Thus the measure induced on I[: (Prop. 8.2) by the mapping cp and the 
indefinite integral v, of the coordinate function r on T agrees with Lebesgue
Borel measure v on I[: on all segments S of the above form. Since, as has been 
noted, these sets suffice to generate the CT-ring of Borel subsets of I[: (just as 
the half-open rectangles of the form H generate the CT-ring of Borel subsets 
of the strip T), it follows (Prob. 8A) that Lebesgue-Borel measure on I[: is 
identical with the measure induced by cp and v,. Hence if E is an arbitrary 
Borel set in 1[:, then 

veE) = II r dr dt. 
",- 1(£) 
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Thus, for example, if A denotes the annulus A = {A- E IC: ro < lA-I < rd, 
and if f is any Lebesgue integrable function on A, then 

J f2" Irl 
f dv = f(reil)r dr dt. 

A 0 ro 

In particular, if f is Lebesgue integrable over a disc DR(O), then 

r f dv = f2" fR f(reil)r dr dt. 
JDR(O) 0 0 

The properties of the indefinite integral v I of a function f with respect to a 
measure iJ- as defined in Proposition 9.5 reflect, quite naturally, the properties 
of the underlying measure space (X, S, iJ-) as well as those of the function f. 
Thus ifjis finite-valued (a.e. [iJ-]), then v I is easily seen to be a-finite whenever 
iJ- is a-finite, and locally finite whenever iJ- is locally finite; cf. Proposition 8.l. 
On the other hand, it is possible for v I(E) to be equal to + 00 even when iJ-(E) 
is finite and f is finite-valued. An important observation concerning inde
finite integrals that holds quite generally is the following: For any measurable 
nonnegative extended real-valued function f, v I vanishes wherever iJ- does 
(Prop. 7.8). 

Definition. Let (X, S, iJ-) be a measure space, and suppose that v is a measure 
on (X, S) with the property that iJ-(E) = 0 implies veE) = 0 for every set 
E in S. Then we say that v is absolutely continuous with respect to iJ-, 
or absolutely continuous [iJ-], and we write v ~ iJ-. 

Example F. Let (X, S) be a measurable space, let iJ- and v be measures on 
(X, S), and suppose the following condition is satisfied: 

For any given positive number /; there exists a positive 
number c5 such that ,u(E) < c5 implies v( E) < dor every set (2) 
EinS. 

Then iJ-(Z) = 0 implies v(Z) < £ for every positive number /; and therefore 
v(Z) = O. Hence v is absolutely continuous with respect to ,u. On the other 
hand, if condition (2) is not satisfied, then there exists a positive number £0 

and a sequence {En}:= 1 of measurable sets such that v(En) ~ £0 and 
iJ-(En) < 1/2n for every positive integer n. Set 

Then it is clear that v(F n) ~ £0 and ,u(F n) < 1/2n for every positive integer n, 
but the sequence {Fn} is decreasing and has empty intersection. Since 
{v(F n)} does not converge to zero, this shows that v cannot be a finite measure 
(see Problem 7F). Thus if,u and v are two measures on the same measurable 
space (X, S), and if v is finite, then v is absolutely continuous with respect 
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to fl if and only if (2) is satisfied. (The finiteness restriction on v cannot be 
dropped, or even relaxed; consider the indefinite integral of the function 
lit with respect to Lebesgue measure on the unit interval (0, 1).) 

According to the discussion preceding the above definition the indefinite 
integral of an arbitrary nonnegative measurable function f with respect 
to a measure fl is absolutely continuous with respect to fl. It is somewhat 
astonishing that the converse of this elementary assertion is also valid when 
the measure fl is (T-finite. (Indeed, even weaker conditions on fl suffice to 
make the converse valid; see Problem T.) 

Theorem 9.6 (Radon~Nikodym Theorem). Let (X, S, fl) be a (T-finite 
measure space, and suppose given a measure v on (X, S) that is absolutely 
continuous with respect to fl. Then there exists a measurable nonnegative 
extended real-valued function f on X such that 

veE) = Lf dfl, (3) 

In other words, v = v f is the indefinite integral of f with respect to fl· 
The function f, which is unique in the sense that if fo is any other function 
satiifying (3), then f = fo a.e. [fl], is called the Radon-Nikodym derivative 
of v with respect to fl, and is frequently denoted by dvldfl· 

PROOF. Let {En}~= 1 be a disjoint sequence of sets of finite measure with 
respect to fl such that X = Un En, and suppose the theorem valid for each 
of the subspaces En. If, for each n, fn is a Radon-Nikodym derivative of 
v I En with respect to fll En' and if we define 

f(x) = !,.(x), 

for every n in N, then it is clear that f is a Radon-Nikodym derivative of v 
with respect to fl. Moreover, if fo is any other Radon-Nikodym derivative of v 
with respect to fl, then fo lEn must agree with fn a.e. [fl], so the set Z = 

{x EX: f(x) i= fo(x)} meets each set En in a set of measure zero with respect 
to fl. But then fl(Z) = O. Thus it suffices to prove the theorem when 
fleX) < + 00, and we henceforth assume this to be the case. 

Suppose first that f and fo are two Radon-Nikodym derivatives of v 
with respect to fl. For each positive integer n let Fn = {x EX: fo(X) :::; n}, 
and set S = {x EX: f(x) > fo(x)}. Then for each n 

1 f dfl = 1 fo dfl < + 00, 
SnFn SnFn 

whence it follows (Ch. 7, p. 125) thatfis finite-valued almost everywhere on 
S n Fn and that Ss nFn (f - j~)dfl = O. But this implies that fl(S n Fn) = 0 
for every n (Prop. 7.8), and it follows that fl(S) = O. Similarly, the set 
{x E X:f(x) < fo(x)} has measure zero with respect to fl, and it follows that 
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f = Io a.e. [,ul This proves the uniqueness assertion of the theorem. It 
remains to establish the existence of a measurable nonnegative extended 
real-valued function I on X satisfying (3). 

For each positive rational number r let {An X\Ar} be a Hahn decom
position of X with respect to the signed measure rf.1 - l' (Theorem 8.5), so 
that veE) ~ rf.1(E) for every measurable subset E of An while veE) ~ rf.1(E) 
for every measurable subset E of X\Ar. The countable collection of sets 
{Ar} thus obtained need not be nested, but if rand s are any two rational 
numbers such that ° < r < s, then 

sf.1(Ar\As) ~ v(Ar\As) ~ rf.1(Ar\AJ, 

which implies that f.1(Ar\AJ = 0, and hence that v(Ar\AJ = ° too, since v is 
absolutely continuous with respect to ,u. Using this fact it is not difficult 
to verify that if we define 

O<r<t 

for each positive real number t, where the union is extended over all those 
rational numbers r such that ° < r < t, then the new family {B t } retains the 
property that {Bp X\B t } is a Hahn decomposition of X for the signed 
measure tf.1 - v, ° < t < + 00, and also satisfies the condition 

Bu = U Bt , 

O<t<u 

for every positive real number u. 
We now define the function f by setting 

f(x) = {inf{t: x E Bt }, 

+00, 

where Boo denotes the union U 0 < t < + 00 Bt • Clearly f is defined and non
negative everywhere on X. Furthermore, it is easy to see that if t is a positive 
number, then 

{xEX:f(x) < t} = BI' 

which shows that f is measurable (Prob. 6C). We complete the proof by 
verifying the validity of (3). Suppose first that E is a measurable subset of Bt 

for some positive number t, and let I: be a given positive number. If ° = 
to < t 1 < ... < tn = t is any partition of the interval [0, tJ such that each 
I1t j = tj - t j- 1, i = 1, ... , n, is less than 1:, and if we write Ej = E (\ (Bti\Bti _), 
i = 1, ... , n, then it is easy to see that both v(E j) and v iEj) are straddled by 
the numbers t j- 1f.1(Ei) and tif.1(E;). Hence 

i = 1, ... , n, 

and therefore 
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Since 11 is finite and c is arbitrary, this implies that veE) = v feE). Next, if E 
is any measurable subset of Boo, and if {tn} is an increasing sequence of positive 
real numbers tending to + 00, then 

veE) = li~ veE n BtJ = v AE n BtJ = v feE) 

by what has just been shown and the semicontinuity of measures (Prop. 7.4). 
Suppose, finally, that E is a measurable subset of X\Boo' If Il(E) = 0, 

then veE) = v AE) = ° because v and v f are both absolutely continuous 
[11]. On the other hand, if Il(E) > 0, then veE) ~ tll(E) for every positive real 
number t, and therefore veE) = + 00 = v AE). Thus v and v f agree on the 
measurable subsets of both Boo and X\B oo , and the theorem follows. 0 

We note that if 11 and v are as in the statement of the Radon~Nikodym 
theorem, and if g is either integrable [v] or nonnegative and measurable [S], 
then 

(4) 

by virtue of Proposition 9.5. 

Definition. Let (X, S) be a measurable space, and suppose that 11 and v 
are measures on (X, S) with the property that v ~ 11 and 11 ~ v. Then 
we say that 11 and v are equivalent measures (notation: 11 == v). 

It is clear that two measures on the same measurable space (X, S) are 
equivalent if and only if they possess exactly the same null sets, and that the 
relation of being equivalent is an equivalence relation on the set of all 
measures on (X, S). 

Proposition 9.7. Let A., 11, and v be a-finite measures on a measurable space 
(X, S), and suppose that A. ~ 11 ~ v. Then 

dA. = (dA.) (dll) 
dv dll dv 

almost everywhere with respect to all three measures. In particular, if 11 
and v are equivalent measures, then 

dll 1 
dv dv/dll 

a.e. with respect to both 11 and v. 

PROOF. If E is a set belonging to S, then 

o 
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The antithesis of the concept of equivalence for measures is that of 
singularity. 

Definition. Let (X, S) be a measurable space, and suppose /l and v are measures 
on (X, S) with the property that there exists a partition of X into disjoint 
measurable sets A and B such that IleA) = 0 and v(B) = O. Then /l and v 
are (mutually) singular and we write /l.1 v or, equivalently, v.1 /l. We 
also say that v is singular with respect to /l, and that /l is singular with 
respect to v. 

A sketch of the proof of the following proposition is to be found in 
Problem K. 

Proposition 9.8. If (X, S) is a measurable space, and if /l and v are a-finite 
measures on (X, S), then there exists a unique decomposition of v into the 
sum of two measures VI and V2 on (X, S) such that VI ~ /l and V2 .1 /l. 
The decomposition v = VI + V2 is called the Lebesgue decomposition 
of v with respect to /l. 

Let (X, S, /l) be a measure space, and for each pair of sets E1, E2 in S let 
us write El '" E2 to indicate that El and E2 are almost equal Ell], i.e., that 
/l(E I V E2) = O. It is clear that", is an equivalence relation on S. We shall 
denote by [E] the equivalence class of a measurable set E with respect to the 
relation "', and denote by 8 the collection of all equivalence classes into 
which S is thus partitioned. Note that if El '" E2, then /l(E 1) = /l(E2). 
Thus a function fi, is unambiguously defined on 8 by setting fi,([E]) = /leE), 
E E S. Similarly, if we define [E] ::;; [F] to mean that /l(E\F) = 0, then::;; is 
an unambiguously defined order relation on 8 turning it into a partially 
ordered set. In this ordering S is a lattice in which [E] v [F] = [E u F] 
and [E] 1\ [FJ = [E n F]. More generally (since the union of a countable 
sequence of null sets is again a null set), every sequence {[EnJ}:= 1 in 8 
possesses a supremum V ~ 1 [EnJ and an infimum 1\:= 1 [EnJ given by 

respectively. (Such a system is called a a-complete lattice.) In this same vein 
we set 

[E]\[F] = [E\F] and [E] V [F] = [E V F]. 

The pair (8, fi,), equipped with these Boolean operations, is called the measure 
ring of the measure space (X, S, /l). Likewise, if 8y; denotes the subset of 8 
consisting of those elements [E] of 8 such that fi,([ E]) is finite, then the pair 
(8 y;, fi,1 8 y;) is the finite measure ring of (X, S, /l). It is easy to see that the 
function p defined by p([E], [F]) = ji([E V F]) for all [E], [F] in 8y; is a 
metric on Sy;. The metric space (Sy;, p) is the metric space associated with 
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(X, S, p). A measure space is said to be separable ifits associated metric space 
is separable. (The completeness of the measure space (X, S, p) has nothing 
to do with the completeness of its associated metric space; see Problem u.) 

The terminology "measure ring" has an easily explained origin. The system S associated 
with a measure space (X, S, Ii) is, in fact, a Boolean ring if 1\ is interpreted as multiplication 
and V as addition. As was remarked in Chapter 6, such rings were studied initially in [63]. 

Example G. Let ([R", S, p") be the measure space consisting of Lebesgue 
measure on the Lebesgue measurable sets in [R", and let ([R", B, p" 1 B) be 
Lebesgue-Borel measure on [Rn. Then each equivalence class in (5, /1") 
contains exactly one equivalence class in the measure ring CO, (p" i B» 
(Prob. 8H). Thus the measure rings, as well as the associated metric spaces, 
of these two measures spaces are virtually identical. More generally, the 
measure ring, and the associated metric space of any measure space (X, S, p) 
may be identified with the measure ring and associated metric space, 
respectively, of the completion of (X, S, p) (Prob. 8Q). 

Example H. Let (X, S, p) be a measure space, and let R be any ring of mea sur
able sets of finite measure with respect to p that generates S as a a-ring. Then, 
according to Problem 8M, R = {[A] E 5: A E R} is dense in the metric 
space (5y;, p) associated with (X, S, 11)' Thus, for instance, the set of equiv
alence classes of all finite unions of (half-open) cells in [R" is dense in the metric 
space associated with Lebesgue measure on [R". From this observation it is 
easily seen that Lebesgue measure on [R" is separable. 

Proposition 9.9. The function /1 on the metric space (5,:>" p) associated with 
an arbitrary measure space (X, S, p) satisfies the condition 

1/1([E]) - /1([F]) 1 ~ p([E], [F]), [E], [F] E 5%. 

In particular, /1 is (uniformly) continuous on 5%. Similarly, the Boolean 
operations v, /\, \, and V are all continuous mappings of 5% x 5% into 5%. 

PROOF. For any two sets E and F of finite measure in X it is easy to verify that 

1 peE) - p(F) 1 S; p(E V F), 

whence the first part of the proposition follows at once. Similarly, if <I> 

denotes anyone of the four Boolean operations listed above, and if (E1' F 1) 
and (E 2, F 2) are any two pairs of sets of finite measure with respect to p, 
then a routine computation shows that 

(cf. Problem IF), and hence that 
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Example I. For each fixed point a in [Rn let us write Ta for the translation 
that carries each x in [Rn to 7;,(x) = x + a, and if E is a subset of [Rn let us also 
write E + a for 7;,(E). Since 

(E + a) V (F + a) = (E V F) + a 

for all subsets E and F and every point a, it is clear that the mapping t 
defined by t([E]) = [E + a] for each Lebesgue measurable set E is an 
isometry on the metric space (8$', p) associated with Lebesgue measure on 
IR". 

Suppose now that H is a half-open cell in [Rn: 

(5) 

If U is an open cell slightly larger than H, and K a closed cell slightly smaller 
than H, then there is a neighborhood V of the origin in IRn such that if x E V, 
then K c H + x c U, and therefore such that H V (H + x) c U\K for 
every x in V. Thus for any given 8 > 0 there exists a neighborhood V of the 
origin such that p([H], t([H]) < 8 for every x in V. Consider next the ring 
HI of sets generated by all half-open cells of the form (5). If A is an element of 
HI, then A is the union HI U ... u H k of such cells (Ex. 6D), and since 

p([A], [A + x]) s p([H 1], [H 1 + x]) + ... + p([Hk], [Hk + x]) 

(Prob. IF), we see again that for any given 8 > 0 there exists a neighborhood 
V of the origin in IRn such that 

p([A], t([A]» < 8, x E V. 

Consider now the real-valued function 

Since 

fA(X) = p([A], 7;,([A]» = Il(A V TxCA», X E IR". 

IfA(X) - fA(Y) I = IIl(A V Y,,(A» - Il(A V -z;,(A» I 
s p([A V TxCA)], [A V -z;,(A)]) 

= Il(A V TxCA) V A V -z;,(A», 

and A V Tx(A) V A V -z;,(A) = Tx(A) V -z;,(A), we see that 

/fix) - fiY) I s p(t([A]), 'fy([A]» 

= p([A], 'fy-xC[A]». 

Hence fA is uniformly continuous on IRn. Moreover, if E denotes any Borel 
set in IRn of finite Lebesgue measure, then, as noted in Example H, there 
exists a set A in HI such that p([E], [A]) < 8. But then, once again, it is 
easily seen that 

Ip([E], [E + x]) - p([A], [A + x])1 < 28 
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for every x in [Rn. Thus the function fE(x) = p([E], t([E]» is uniformly 
approximable by uniformly continuous functions of the form fA' A E HI, 
and it follows that fE is also uniformly continuous on [Rn. 

It is in terms of measure rings that we define the notion of isomorphism 
appropriate to measure spaces. 

Definition. Let (X, S, Jl) and (Y, T, v) be measure spaces, and let (S, jl) and 
(t, v), respectively, be their measure rings. A one-to-one mapping <I> 
of S onto t is said to be a weak measure ring isomorphism if 

(i) <I>([E]\[F]) = <I>([E])\<I>([F]) for every pair [E], [F] in S, and 
(ii) <1>( V::"= 1 [En]) = V ~~ 1 <I>([En]) for every sequence {[En]}::"= 1 in S. 

(It is easy to see that a weak measure ring isomorphism preserves all 
Boolean operations; cf. the proof of Theorem 9.10.) If <I> is a weak measure 
ring isomorphism of (S, {1) onto (t, i') satisfying the further condition 

(iii) v(<I>([E]» = jl([E]), 

then <I> is said to be a measure ring isomorphism. If there exists a [weak] 
measure ring isomorphism' of (S, {1) onto (t, v), then the measure spaces 
(X, S, Jl) and (Y, T, v), as well as the measure rings (S, {1) and (t, i'), 
are said to be [weakly] isomorphic. 

ExampJeJ. Let (X, S, Jl) and (Y, T, v) be measure spaces, and let Xo and Yo 
be measurable subsets of X and Y, respectively, such that Jl(X\X 0) = 

v(Y\ Yo) = O. Suppose given a one-to-one mapping ep of Xo onto Yo with 
the property that a subset E of X 0 belongs to S if and only if epeE) belongs to 
T. (This is equivalent to requiring that ep be measurable [S, T] on X 0 and 
that ep - 1 be measurable [T, S] on Yo; such a mapping is said to be measur
ability preserving.) Suppose also that ep possesses the further property that 
Jl(E) = 0 if and only if v(ep(E» = O. (This condition can also be stated in 
another way; it says that v is equivalent to the measure induced on (Yo, T yo) 

by ep and the measure JlI X 0') Then 

<1>([ E]) = [ep(E n X 0)], E E S, 

defines a weak isomorphism <I> of (S, {1) onto (t, v). The weak isomorphism 
<I> that arises in this manner is said to be induced by the point transformation ep. 
The weak isomorphism <I> induced by ep is an isomorphism if and only if ep 
possesses the added property that 

Jl(E) = v(ep(E», E ES, E c Xo. 

(Such a mapping ep is said to be measure preserving.) An isomorphism of 
(S, jl) onto (t, v) that is induced by a measure preserving point trans
formation ep is called a strong isomorphism. If such a strong isomorphism 
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exists, then the measure spaces (X, S, J1) and (Y, T, v), as well as the measure 
rings (5, (1) and (t, v), are said to be strongly isomorphic. (The point mapping 
cP itself is also frequently called a strong isomorphism.) 

Example K. Let {(X", S" J1)} and {(X", S" P)} be two similarly indexed 
families of measure spaces such that X, n X y' = 0 = X, n X y' for all 
indices y "# y', and let us form the direct sums 

(X, S, J1) = I EB (X" Sy, J1 y) 

and 

If for each index y the measure spaces X y and X yare isomorphic, then it is 
easy to see that X and X are also isomorphic. Likewise, if for each index y 
the spaces Xy and Xy are strongly isomorphic, and if the index family is 
countable, then it is readily seen that X and X are also strongly isomorphic. 
On the other hand, if for each index y there exists a strong isomorphism 
CPy of all of X y onto all of X Y' then the isomorphisms CP, can be combined 
to construct a strong isomorphism of (all of) X onto (all of) X, no matter 
what the cardinality of the index family may be. Using this remark it is 
possible to introduce a notion of weak direct sum of an indexed family of 
measure spaces {(X)" Sr' J1)} even when the carriers X, are not pairwise 
disjoint. The trick is simply to construct a new, pairwise disjoint, family of 
sets X y such that X y is in one-to-one correspondence with X y for each index 
y, to use the one-to-one correspondence to import the structure of the 
measure space X y into X Y' and then to form the direct sum of the new 

indexed family {X y}. This procedure does not result in a uniquely defined 
measure space, to be sure, but, as we have just seen, any two such spaces are 
strongly isomorphic. 

Example L. In a binary expansion 

of a number t in the unit interval (here {£n}:=] is a sequence of zeros and 
ones and t = I:=] £n/2n), it is well known that the number t is rational if and 
only if the sequence {£n} is ultimately periodic. On the other hand, it is clear 
that two sequences {£n} and {l1n} of zeros and ones are both ultimately 
periodic if and only if the" perfect shuffle" 

is ultimately periodic. It follows that if X 0 denotes the subset of the unit 
square X = [0, 1] x [0, 1] consisting of pairs (r, s) in which either r or s 
is irrational, then 

cp(. £]£2· .. , ·111112 ... ) = . £]11]£2112·· • 
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defines (unambiguously) a one-to-one mapping of X 0 onto the set Yo of 
irrational numbers in the unit interval Y. Note that if fl1 denotes Lebesgue
Borel measure on the real line, and fl2 denotes Lebesgue-Borel measure on 
the plane [Rz, then fl1 (Y\ Yo) = flz(X\X 0) = O. Moreover, if rand s are any 
two dyadic fractions of the form k/2", 0 :::; k < 2", and if Q denotes the square 
[r, r + 1/2"] x [s, s + 1/2"], then direct calculation discloses that cp maps 
Q n X 0 onto the set of irrational numbers in an interval of length 1/22". Since 

and since squares of the special form here considered suffice to generate the 
a-ring ofBorel subsets of X, while subintervals of the form [k/22", (k + 1)/22"] 

likewise suffice to generate the a-ring of Borel subsets of Y, it follows readily 
that cp is a measure preserving mapping of X 0 onto Yo (see Problem 8A). 
Thus the unit square equipped with Lebesgue-Borel measure and the unit 
interval equipped with Lebesgue-Borel measure are strongly isomorphic 
measure spaces. Similarly the real line [R equipped with Lebesgue-Borel 
measure is strongly isomorphic to the plane [R2 equipped with Lebesgue
Borel measure. More generally, ([R, B, Ill) is strongly isomorphic to [R" 
equipped with Lebesgue-Borel measure. 

The following theorem shows that the Lebesgue integrals on two iso
morphic measure spaces are not very different. In order to formulate the 
desired result we employ the notation if> 11' as in Chapter 7, for the linear 
space of equivalence classes of complex-valued functions defined and 
integrable [fl] on a measure space (X, S, fl). If [f] and [g] are elements of 
if> 11' then [f] = [g] if and only iff = g a.e. [fl], and if E E S, then IE [f]dfl = 
h f dfl by definition. 

Theorem 9.10. If <I> is a measure ring isomorphism of the measure ring (S, it) 
of a measure space (X, S, fl) onto the measure ring (t, v) of a measure space 
(Y, T, v), then there exists a unique linear isomorphism T<t> of the linear 
space if> 11 onto the linear space if> v satisfying the following conditions: 

(i) If E is a set in S such that fleE) < + 00, and if <I>([E]) = [F], then 
T<t>([XE]) = [XF]' 

(ii) If [f] E if> 11 and [g] = T<t>([f]), then [Ig I] = T<t>([ 1 f I] and 

Ix [f]dfl = I [g]dv. 

The isomorphism T<t> is also an isometry between the space ;£11 equipped 
with the metric 

f2 E!f' 11' 
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and the space !i'v equipped with the metric 

PROOF. It is easily seen that <I>([0J) = [0J and <I>([XJ) = [YJ, so that 
<I>([X\EJ) = [YJ\<I>([EJ) for every [EJ in S, and likewise 

It follows that if {E 1> ••• , En} is an arbitrary finite collection of measurable 
subsets of X, and if F 1, ... , Fn are chosen so that [F;] = <I>([E;]), i = 1, ... , n, 
then <I> carries the equivalence classes of the sets belonging to the partition 
of X determined by {E 1, .•. , En} (Prob. 1L) onto the equivalence classes 
of the sets belonging to the partition determined by {F 1, ... , Fn} in such 
a manner that if G is in the former partition and <I>([GJ) = [HJ, then 
[GJ ::;; [E;] if and only if [HJ ::;; [F;], i = 1, ... , n. (This much is valid even 
for weak isomorphisms, of course.) 

Suppose now that we denote by tt Il the linear submanifold of !i' Il 
consisting of all equivalence classes of the form [s], where s is an integrable 
simple function, and that Y v is defined analogously. It is clear that if [s J E Y Il' 
where s = 2:7= 1 (XiXEi and /1(E;) < + 00, i = 1, ... , n, and if T is any linear 

transformation of!i'll into!i'v satisfying (i), then we must have T([sJ) = [tJ 
where t = 2:1=1 (XiXFi and [F;] = <I>([E;]), i = 1, ... , n. On the other hand, 
on the basis of what has already been said, it is easy to verify that setting 

where [F;] = <I>([E;]), i = 1, ... , n, does indeed define a linear transforma
tion To of :J1l onto :Jv satisfying condition (i) (see Problem lL). Moreover, 
it is clear that if [tJ = To([sJ), then [ltlJ = To([lsIJ) and J [tJdv = J [sJd/1. 
Hence if Sl and S2 are any two integrable simple functions on X, and if 
[t;] = To([s;]), i = 1, 2, then 

{[I S1 - s2lJd/1 = Jpt 1 - t2 lJdv. 

This says that the mapping To is an isometry of :JI / onto :J,. with respect to 
the metrics PIl and Pv (see Problem 7U). Moreover, :/ Il is dense in !i' Il' 
(Proof: If f belongs to 21l and {sn} is any sequence of measurable simple 
functions on X that converges pointwise to f and satisfies the condition 
I Sn I ::;; I f I for every n (Prob. 6S), then {sn} converges to f in the mean by the 
dominated convergence theorem (Th. 7.12), so the sequence {[snJ} tends 
to [J] in the metric P Il") Likewise §' v is dense in !i'v· Since !i' Il and !i'v are 
complete metric spaces with respect to the metrics PIl and p" respectively, 
it follows that To admits a unique isometric extension Til> mapping if Il 
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onto i£v (see Problem 4H), and it is a simple matter to verify that T", is a 
linear transformation satisfying (i) and (ii). 

To complete the proof it suffices to show that T", is uniquely determined by 
(i) and (ii). But, as has already been observed, if T is any Jinear transformation 
of i£ p. into i£ v satisfying (i), then T must agree with To on Y p.. If T also shares 
condition (ii) with T"" if [J] and {[f,,]} belong to i£ p. and are such that 
{f,,} converges to f in the mean, and if we write [gn] = T([fn]) and [g] = 
T([f]), then {gn} converges to g in the mean. Hence T = T",. D 

The version of Theorem 9.10 appropriate for weak isomorphisms goes 
as follows. 

Theorem 9.11. Let <I> be a weak measure ring isomorphism of the measure ring 
(8, /1) of a a-finite measure space (X, S, )1) onto the measure ring (t, v) 
of a a-finite measure space (Y, T, v). Then there exists a nonnegative 
measurable function h on Y and a linear isomorphism T", of i£ p. onto i£v 
satisfying the following conditions: 

(i) If E is a set in S such that )1(E) < + 00, and if <I>([E]) = [F], then 
T",([XE]) = [hXF]' 

(ii) If [J] E i£ p. and T",([J]) = [g], then T",([ I f I]) = ([ I g I] and 

Ix [J]d)1 = I [g]dv. 

Both the function h and the linear transformation T", are uniquely determined 
by <I> and conditions (i) and (ii), and the isomorphism T", is an isometry 
between the metric spaces i£p. and i£v of Theorem 9.10. 

SKETCH OF PROOF. If we define vo(F) = /1(<I>-l([F]», FE T, it is easy to 
verify that Vo is a a-finite measure on (Y, T) such that Vo is equivalent to v, 
and that <I> is a measure ring isomorphism of (8, /1) onto the measure ring 
(t, vo) of the measure space (Y, T, vo). Since Theorem 9.10 applies to this 
latter isomorphism, a moment's reflection discloses that it suffices to treat 
the case in which )1 and v are equivalent measures on the same measurable 
space (Y, T) and the isomorphism <I> is the identity mapping on t. In this 
case there exists a nonnegative measurable function h = d)1/dv on Y such 
that 

J/ d)1 = I~f dv, 

(Th. 9.6), and if we simply define TI\,([J]) = Elf] for each element [J] of 
!i! p.' then it is obvious that T", is a linear transformation satisfying (i) and (ii). 
The fact that Til> is also an isometry follows from condition (ii),just as before. 
The uniqueness of the function h follows from the fact that h must coincide 
with d)1/dv on sets of finite measure with respect to )1, along with the fact 
that )1 is a-finite; the uniqueness of Til> is then also clear. 
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The scope of Theorem 9.10 is considerably enhanced by the fact that, 
up to isomorphism, there is only one separable atom-free measure space of 
a given size. 

Theorem 9.12 (Halmos-von Neumann Theorem [33]). If (X, S, fl) is a 
separable atomjree measure space with ° S; fleX) S; + 00, then (X, S, fl) 
is isomorphic to the measure space consisting of Lebesgue-Borel measure on 
the interval [0, fleX)). 

PROOF. If (Sy;, p) is the metric space associated with (X, S, fl), then by hypo
thesis there exists a dense sequence {[En]} in 51,97" Set Xo = Un En. If E is a 
measurable subset of X\ X 0, then fleE) must be either ° or + 00. Since fl 
is atom-free, this implies that fl(X\X 0) = 0, and hence that fl is a-finite. 
Thus it suffices to treat the case ° < fleX) < + 00 (cf. Example SH, Example 
K, and Problem SR). Accordingly we assume henceforth that {[En]};;"~ 1 

is a fixed dense sequence in the metric space associated with the finite measure 
space (X, S, fl) (with fleX) > 0), and we write (Y, B, v) for the measure space 
consisting of the interval [0, fleX)] equipped with Lebesgue-Borel measure. 
For each positive integer n let f!Jn be the partition of X determined by the sets 
E I, E 2, .•. , En' that is, the partition consisting of all the nonempty subsets 
of X of the form Al n ... n An' where, for each i = 1, ... , n, Ai denotes 
either Ei or X\Ei (Prob. lL). Let Rn denote the ring of subsets of X generated 
by f!Jn (thus Rn consists of the unions of the various sets belonging to f!Jn), 
and set Rn = {[A] : A ERn}. Note that f!Jn+ I refines f!Jn and that Rn c Rn+ I 
for each positive integer n, Hence, using Problem X repeatedly and starting 
with n = 1, we may construct by induction a sequence {<Pn}:~ I of mappings 
and an accompanying sequence {!!l n}:~ I of partitions of the interval [0, fleX)] 
possessing the following properties for each positive integer n: 

(i) The partition 2n + I refines 2 n , 

(ii) If !!In = {ti}f~o, then <Pn maps Rn onto the subset of B consisting of 
equivalence classes [B], where B runs over the ring of unions of the 
subintervals [t i - I , t i), i = 1, ... , Nn, of !!In' 

(iii) <Pn+IIRn = <Pn' 
(iv) If A ERn' then v(<Pn([A]) = ji([A]), 
(v) If AI, A2 ERn, then <Pn([AI] v [A2]) = <Pn([AI]) v <Pn([Az]) and 

<Pn([A I]\[A2]) = <Pn([AI])\<Pn([A2])' 

Let R = Un Rn and define <1>0 on R by setting <l>o([A]) = <Pn([A]) for any 
one n such that [A] ERn. The mapping <1>0 is unambiguously defined by 
virtue of (iii), and it is clear from (iv) and (v) that if [A] E Ii then v(<I>o([A]» = 
ji([A]), and likewise that <1>0 preserves the operations v and \. Hence <1>0 is an 
isometry of R, regarded as a subset of (51, p), into the metric space associated 
with (Y, B, v). Moreover, R is dense in 51, since R contains the entire sequence 
{[En]}, and the range of <1>0 is also dense in B, since the sequence {mesh !!In} 
tends to zero as may be seen by consulting Problem W. Hence, extending <1>0 
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by continuity, we obtain an isometry <1> of S onto B. Since <1> is isometric, we 
have \1(<1>([EJ)) = .u([EJ) for every E in S. Likewise, <1>IR = <1>0 preserves v 
and \, and since R is dense in S, and since the operations v and \ are 
continuous on S and on B (Prop. 9.9), we see that <1> also preserves v and \. 
Finally, this shows that <1> is order preserving, from which it follows at once 
that 

<1>(Yl [FnJ) = nYl <1>([FnJ) 

for every sequence {[FnJ} in S. Thus <1> is a measure ring isomorphism of 
(S, .u) onto (B, v). D 

PROBLEMS 

A. Let W denote the topological space W( Q) of countable ordinal numbers in the 
order topology (Prob. lW, Ex. 3B), and let B denote the a-ring of Borel subsets 
of W Show that the diagonal L\ == {(a, a): a E W} is a Borel set in the topological 
space W x W, but that L\ does not belong to the a-ring B x B. (Hint: Every set 
A in the a-ring B x B has the property that either A or its complement (W x W)\A 
contains a set of the form F x F, where F is a closed unbounded subset of W; 
cf. Problem 6Q.) 

It is easy to show that if (X, S) and (Y, T) are arbitrary measurable spaces, 
and if E is anyone set in S x T, then there exist a-rings So c S and To c T 
such that E E So x To and such that both So and To are generated by 
countable collections of sets (see Problem 6E). According to Problem 6H, 
the a-rings So and To both have cardinal number no greater than ~, and 
according to Lemma 9.1, all of the X-sections EX' x E X, belong to To, 
and all of the Y-sections £Y, y E Y, belong to So. Thus an arbitrary set E 
belonging to a product a-ring S x T can have no more than ~ distinct 
sections in either direction. In particular, if card X > ~, then the diagonal 
Ll = {(x, x):x E Xl does not belong to any a-ring of the form S x S. On the 
other hand, Ll is a closed set, a fortiori a Borel set, whenever X has a 
Hausdorff topology and X x X is given its product topology. (We are 
indebted to Professor J. C. Oxtoby for calling our attention to this rather 
startling counterexample.) 

B. Show that if (X, S) and (Y, T) are measurable spaces, and if E is a subset of X x Y 
that belongs to the product S x T, then every X -section Ex of E is measurable 
[T], and every Y-section EY is measurable [S]. Show also that if f(x, y) is a function 
on X x Y that is measurable [S x n, then, for each Xo in X,f(xo, y) is measurable 
[T] as a function of the single variable y, and likewise that, for each Yo in Y,f(x, Yo) 
is measurable [S] as a function of the single variable x. (Hint: The collection of 
subsets E of X x Y with the property that Ex E T for every x in X is a a-ring.) 

C. Let (X, S, /1) and (Y, T, v) be measure spaces, and suppose that v is a-finite. 
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9 More integration theory 

on (X x Y, S x T), then h f(x, y)dv(y) is a measurable extended real-valued 
function of x on X, and complete the proof of Lemma 9.1. (Hint: Ifv(Y) < + 00, 

then the coIlection of all measurable sets G in X x Y with the property that v(GJ 
is a measurable function of x is a a-quasiring (Prob. 61). Verify first that 
h sex, y)dv(y) is a measurable function of x for a nonnegative finite-valued 
measurable simple function s, and use the monotone convergence theorem.) 

(ii) Show that if we write 

A( G) = Ix v( G Jdll, G ES X T, 

then A is a measure on (X x y, S x T) satisfying the condition A(E x F) = 
Il(E)v(F) on measurable rectangles. Show also that iff is a nonnegative, measur
able, extended real-valued function on (X x y, S x T), then 

(6) 

(Hint: Use the theorem of Beppo-Levi (Cor. 7.10) to prove that A is a measure. 
Verify (6) first for a nonnegative measurable simple function, and use the 
monotone convergence theorem.) 

D. Show that if (X, S, Il) and (Y, T, v) are both a-finite measure spaces, then there 
exists a unique measure Il x v on eX x Y, S x T) such that (Il x v)(E x F) = 
Il(E)v(F) for every measurable rectangle E x F, and use this fact to prove the 
ToneIli theorem (Th. 9.3). (Hint: Use Problem C and Problem 8A.) 

E. Complete the proof of the Fubini theorem (Th. 9.2). (Hint: Suppose f is measurable 
[S x T] and integrable [Il xv]. Apply the ToneIli theorem to 1 f 1 to conclude that 
f(x, y) is integrable [v] as a function of the single variable y for almost every x. 
Write f as a linear combination of four nonnegative integrable functions, and use 
Problem C) 

F. Let ~ and ( be complex measures on measurable spaces (X, S) and (Y, T), re
spectively. 

(i) Show that if G is a set belonging to S x T, then the function ( G x) is measurable 
[S] on X, and likewise that the function ~(GY) is measurable [T] on Y. Show also 
that if f is a measurable complex-valued function on (X x Y, S x T), then 
the set of all points x of X such that Sy I(x, y)d(y) exists is a measurable subset 
of X and 

g(x) = {f(X, y)d(y) 

is a measurable function on that set. Similarly, hey) = Ix f(x, y)d~(x) defines 
a measurable function on a measurable subset of Y. (Hint: Just as in Problem C, 
the collection of all sets G in S x T with the property that ( G x) is a measurable 
function of x is a a-quasi ring containing all measurable rectangles. Since 
f(x, y) is integrable m with respect to y if and only if 1 {(x, y) 1 is integrable 
[I' I] with respect to y (Ch. 8, p. 148), the set on which this holds coincides with 

A = {XEX: Ilf(X,Y)ldl(I(Y) < +oo}, 
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a measurable set by Problem C. If {sn} is a sequence of measurable simple 
functions on X x Y such that Sn -> f and 1 Sn 1 ::::; 1 f 1 pointwise on X (Prob. 6S), 
then 

lir,n t~n(X' y)d(y) = {f(X, y)d(y) 

for every x in A by the dominated convergence theorem for complex measures 
(Prob. 8U).) 

(ii) Verify that there exists a unique complex measure ~ x ( on (X x y, S x T) 
satisfying the condition 

(~ x ()(E x F) = ~(EK(F) (7) 

on measurable rectangles (the measure ~ x (is called the product of ~ and 0, 
and show that the total variation 1 ~ x (I of ~ x ( coincides with 1 ~ 1 x 1 (I. 
(Hint: If G E S x T then ( G x> is not only a measurable function of x, it is also 
bounded (by 1 (ICY». Hence one may define (~ x O(G) = Ix (GX>d~, and 
it is clear that this set function satisfies (7). To show that ~ x ( is a complex 
measure, use the dominated convergence theorem. To obtain the identity 
1 ~ x (I = 1 ~ 1 x I( I, verify it first for measurable rectangles and use Problem 
8A.) 

(iii) Iff is a complex-valued function on X x Y that is integrable [~ x (J, then the 
function g(x) = h f(x, y)d(y) is a measurable and integrable function 
[I~IJ, and 

Similarly, the iterated integral 

{[{f(X, Y)d~(X)]d(Y) 
exists and is equal to the product (or double) integral Ixxrf d(~ x O. (Hint: 
According to (ii) and Chapter 8 a function f is integrable ~ x ( if and only 
if 1 f 1 is integrable [I ~ 1 x I( I], Hence if a sequence {sn} of measurable simple 
functions is constructed as in (i), then the sequence {iy sn(x, y)d(y)} converges 
to Srf(x,y)d(y) a.e. [I~I] by the dominated convergence theorem. Two 
further similar applications of the dominated convergence theorem reduce 
the problem to the case of a single integrable simple function.) 

G. Let (X, S, fJ.) and (Y, T, v) be arbitrary measure spaces, and let R denote the ring of 
sets in X x Y generated by the measurable rectangles E x F, so that the a-ring 
S x T coincides with S(R). 
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(i) Verify that every set R in R can be expressed (not necessarily uniquely) as a 
disjoint union of a finite number of measurable rectangles. 

(ii) Show that if {En X Fn} is any countable disjoint collection of measurable 
rectangles such that 

E x F = U (En X F n), 

then 
fJ.(E)v(F) = I J1(En)v(Fn)· 
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(Hint: For anyone fixed x in E the collection of rectangles En X Fn that meet 
the set {x} x F is exactly the same as the collection of rectangles En X F n 
such that x E En' and the corresponding collection of sets F n forms a disjoint 
covering of F. Use this observation to show that 

v(Fhix) = I v(Fnhdx), XEX; 

then apply the theorem of Beppo-Levi (Cor. 7.10).) 
(iii) Conclude that there exists a unique finitely additive set function A on R such 

that A(E x F) = J1(E)v(F) for every measurable rectangle E x F, and that 
A is, in fact, countably additive on R. Conclude further that if A* denotes the 
outer measure on X x Y generated by A (which is the same as the outer 
measure generated by the gauge J1(E)v(F) on the set of all measurable rectangles; 
cf. Problem 8D), then every set in S x T is measurable with respect to A*, 
so that X = A * I (S x T) is a measure on (X x Y, S x T) with the property that 

X(E x F) = J1(E)v(F), (8) 

(Hint: See Problem 8M.) 
(iv) Show that a set A in S x T is a-finite with respect to X when and only when 

there exist sets E and F, a-finite with respect to J1 and v, respectively, such 
that AcE x F. Use this fact to show that any measure on (X x y, S x T) 
that satisfies condition (8) must agree with X on every set that is a-finite with 
respect to l Conclude from this that any measure on (X x Y, S x T) that 
satisfies condition (8) is necessarily dominated (setwise) by X and agrees with 
X on any set in S x T that is not an infinite atom with respect to 1 Conclude, 
finally, that if X is locally finite, then X is the unique measure on S x T satisfying 
condition (8). 

H. Let (X, S, J1) and (Y, T, v) be measure spaces, and let X be the measure on 
(X x y, S x T) introduced in the preceding problem. 

(i) Verify that the Fubini theorem is valid for every function on X x Y that is 
measurable [S x T] and integrable [X]. (Hint: An integrable function always 
vanishes outside some a-finite set; see Problem 71.) 

(ii) (Mukherjea [49]) Show that if X is locally finite, then Tonelli's theorem is also 
valid for an arbitrary nonnegative function f on X x Y that is measurable 
[8 x T], in the sense that if either of the iterated integrals 

exists and is finite, then f is integrable [X] on X x Y. (Hint: It clearly suffices 
to prove that f vanishes outside some set that is a-finite with respect to 1 Thus 
one may assume that 
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and also that f(x, y) ~ k > 0 on some set A such that X(A) = + 00. If X is 
locally finite then A contains a subset B such that X(B) is finite and as large as 
desired; use part (i) to obtain a contradiction.) 

The last two problems show that if (X, S, fl) and (Y, T, v) are any two 
measure spaces such that the measure A constructed in Problem G is locally 
finite, then both the Fubini and Tonelli theorems hold for measurable 
functions on (X x Y, S x T, A) without any further restriction on X or Y. 
It should not go unmentioned, however, that in this more general version of 
the Tonelli theorem it is a part of the hypothesis of the theorem that the 
function g(x) = J fix, y)dv(y) be measurable [fl] (or that the function 
hey) = J fix, y)dfl(X) be measurable [v]). 

I. Let (X, S) = (Y, T) be the unit interval [0,1] equipped with its a-ring of Borel 
sets, so that (X x Y, S x T) is the unit square Q equipped with its a-ring B of Borel 
sets (see Example A). Let fl denote Lebesgue-Borel measure on (X, S) and let K 

denote the counting measure on (Y, T). Let X be the measure defined on (Q, B) as 
in Problem G (with v = K), and let ~ be the measure on (Q, B) introduced in Example 
B. Verify that ~ satisfies (8), and that if A is an arbitrary Borel subset of the diagonal 
A = ret, t): 0 :0:; t :0:; I}, then ~(A) = O. Show also that X(d) = + 00 and that, in 
fact, A is an infinite atom for X, so that X is not locally finite. (Note that in this 
construction the measure space X is finite, while Y is locally finite but not a-finite.) 
(Hint: Recall Problem G(iv).) 

J. (i) Suppose given an indexed family {(X" Sl')};'Er of measurable spaces. Form the 

product D = flYEr Xl" and call a product Z = flYEr E;. a measurable cell 
in IT if Ey E Sy for every y and if, in addition (when the index family r is infinite), 
E). = Xl' for all but a finite number of indices. If S denotes the a-ring generated 
by the collection of all measurable cells, then (IT, S) is a measurable space 
known as the product of the given family {(X)" Sy)}. Show that if the index set 
r is partitioned into nonempty subsets r 1 and r 2, if we write (IT;, SJ for the 
product of the indexed family {(Xl" SY)}YEr" i = 1,2, and if we identify the set 
IT with IT 1 X IT2 in the usual manner, then (IT, S) is identified with the product of 
(ITb SI) and (IT2' S2)' Show further that if A is any fixed subset of ITb then 
{B c D2 : A x BE S} is a a-ring. 
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(ii) Let {(X;" Sy, flyJ})'Er be a finite indexed family of a-finite measure spaces, and 
let (D, S) denote the product of the corresponding family {(X)" SY)}l'Er in the 
sense of (i). Show that there exists a unique measure fl on (IT, S) satisfying the 
condition 

The measure fl is called the product of the measures fly and is denoted by 
flYE r flY" (When the index family is {l, ... , n}, we shall also write fll x ... x fl. 
for the product measure.) Show further that if r = r 1 u r 2 is any partition 
of r into nonempty subsets, and if D is identified with the product 
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in the usual manner, then the product measure J1 on (11, S) coincides with the 
measure 

The construction of product measures extends in a natural way to the 
product of infinite, even noncountably infinite, indexed families 
{(X)., Sp J1 y)} provided all but a finite number of the factors X satisfy the 
condition J1).(X),) = 1 (see [30; §38]). 

K. Let J1 and v be finite measures on the same measurable space (X, S). Show that there 
exists a function f that is measurable [S] such that 0 ::; f ::; 1 on X and such that 

L (1 - f)dv = f/ dJ1, (9) 

Show also that if f is as in (9), and if A = {x EX: f(x) < I} and B = 
{x EX: f(x) = I}, then J1(B) = 0, while if J1(E) = 0 for some measurable subset 
E of A, then veE) = O. Complete the proof of Proposition 9.8. (Hint: Observe that 
v is absolutely continuous with respect to J1 + v, and also that if two finite measures 
V2 and V2 are both singular with respect to J1, then there exists a single set C such that 
J1(C) = vz{X\C) = V2(X\C) = 0.) 

L. (i) If (X, S, J1) is a a-finite measure space, and if ( is a complex measure on (X, S), 
then ( is said to be absolutely continuous with respect to J1 (notation: ( ~ J1) 
if J1(E) = 0 implies (E) = o. Show that ( is absolutely continuous with respect 
to J1 if and only if I (I is. Show also that if ( ~ J1 then there exists an integrable 
function qJ on X such that 

(E) = L qJ dJ1, (10) 

The function qJ, which is uniquely determined by (10) up to a set of measure 
zero with respect to J1, is called the Radon-Nikodym derivative of (with respect 
to J1, and is denoted by d(/dJ1. (The complex measure (is also called the indefinite 
integral of qJ with respect to J1.) Show that ( is real-valued [a measure] if and 
only if d(/dJ1 is real-valued [nonnegative] a.e. [J1]' Show finally that if a function 
g is integrable [(], then S g d( = S g(d(/dJ1)dJ1. 

(ii) Let (X, S, J1) be a measure space, and let f be a measurable real-valued function 
on X. If either f + or f - is integrable [J1 ] (even if the other fails to be), then the 
difference 

can be formed in Iffi' for every set E in S, and this set function is a signed measure 
v f on (X, S) (called the indefinite integral of f with respect to J1) which is 
absolutely continuous with respect to J1 (notation: v f ~ J1) in the sense that 
J1(E) = 0 implies viE) = O. Show conversely that if J1 is a-finite and v is a signed 
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measure that is absolutely continuous with respect to fl, then there exists a 
measurable extended real-valued function j on X such that 

veE) = Lr dfl - Lr dfl, EES. (11) 

The function j, which is uniquely determined by (11) up to a set of measure zero 
with respect to fl, is called the Radon-Nikodym derivative of v with respect to fl, 
and is denoted by dv/d/1. Show that if a function g is integrable [ v], then 
S g dv = S gf dfl· 

M. Let fl be a a-finite signed measure on a measurable space (X, S), and let ( be a 
complex measure on (X, S). Show that ( ~ Ifll ifand only if there exists an integrable 
complex-valued function qJ on X such that 

(E) = L qJ dfl, EES, (12) 

and show that the function qJ in (12) is uniquely determined up to a set of measure 
zero with respect to 1/11. (Here again the complex measure ( is called the indefinite 
integral of qJ with respect to fl, and qJ is the Radon-Nikodym derivative d(/dfl.) 
State and prove an analogous theorem for two complex measures. In both cases 
state and prove the appropriate counterpart of formula (4). (Hint: Use a Hahn 
decomposition of X with respect to fl.) 

N. A complex-valued function a defined on a real interval [a, b] is said to be absolutely 
continuous there if for every c > 0 there exists a tJ > 0 such that if {( Cb dk)}f = I 

is any finite disjoint system of open subintervals of [a, b] with I.f= I (dk - Ck) < tJ, 
then D= I la(dk) - a(ck) I < c. 
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(i) Verify that an absolutely continuous function a on an interval [a, b] is both 
continuous and of bounded variation there, and that a is absolutely continuous 
if and only ifthe associated function L(t) = V(a: a, t) is. (Hint: Show first that a 
is continuous if it is absolutely continuous, and recall (Ex. 4B) that L is con
tinuous along with a.) Show further that if a is a complex-valued function of 
bounded variation on [a, b], and if (. denotes the Stieltjes-Borel measure on 
[a, b] associated with a (Ex. 8K), then a is absolutely continuous on [a, b] if and 
only if (. is absolutely continuous with respect to Lebesgue-Borel measure 
on [a, b]. (Hint: Recall (Prob. 8W) that lei is the Stieltjes-Borel measure 
associated with the function L. Use Example F.) 

(ii) Let a be a complex-valued function defined on an interval [a, b]. Show that 
a is absolutely continuous on [a, b] if and only if there exists a Lebesgue 
integrable function f3 on [a, b] such that 

a(t) - ala) = Lf3(U)dU, a ~ t ~ b, (13) 

and that, when this is the case, f3 = a' almost everywhere. (Hint: Let a and f3 
be related as in (13) with ala) = 0 and f3 2: O. Set f3n = f3 /\ nand 

an(t) = f'f3n(U)dU, 
a 

a ~ t ~ b, 
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for every positive integer n. Then J~ rx~(u)du = rxn(t), a S t s b, for aliI! (Prob. 
8Y), and the sequence {rxn(t)} tends upward to rx(t). Show that rx~ s rx' for all n, 
and conclude that rx(t) = J~ rx'(u)du for a S t s b, and hence that /J - rx' 
is a Lebesgue integrable function whose indefinite integral vanishes identically 
on the a-ring of Lebesgue measurable subsets of [a, b ].) 

(iii) (Integration by parts) Prove that 

f rx(t)/J'(t)dt = [rx(b)fJ(b) - rx(a)fJ(a)] - f /J(t)rx'(t)dt 

for any two absolutely continuous functions rx and /J on the real interval 
[a, b]. (Hint: Verify that the product rx/J is absolutely continuous.) 

o. If /1 and v are two measures on the same measurable space (X, 8), let us say that 
v is accessible with respect to /1 if for every set E in 8 we have 

veE) = sup{v(F): FE 8, FeE, /1(F) < + oo}. 

Thus a measure /1 is accessible with respect to itself if and only if it is locally finite. 

(i) Show that v is accessible with respect to /1 if and only if for each set E in 8 such 
that veE) > 0 there exists a subset F of E such that v(F) > 0 and /1(F) < + 00. 

(Hint: Use the method of exhaustion.) 
(ii) Let X be a set, let 8 denote the power class on X, and let K be the counting 

measure on (X, S). Describe the measures on (X, S) that are accessible with 
respect to K. (Whether there exists a set X and a finite measure v on (X, 8) 
such that v is not accessible with respect to K is a version of an old problem known 
as the problem oj' the existence oj' a measurable cardinal, a question of some 
consequence in the study of the foundations of mathematics.) 

P. Let (X, S, J-l) be a locally finite measure space, let j' be an arbitrary measurable, 
nonnegative, extended real-valued function on X, and let v I denote the indefinite 
integral of l Show that v I is accessible with respect to /1. Show also that vI is 
locally finite if and only if f is finite-valued a.e. [JlJ. Can the requirement that Jl 
be locally finite be dropped? 

Q. A measure space (X, S, /1) is said to be localizable ifits measure ring (S, jl) is complete 
as a lattice, that is, if given any subset ((j of S, the supremum sup r(j exists in S. In 
terms of measurable sets this comes out as follows: Given an arbitrary subset re of8, 
there exists a set S in 8 such that 

(i) If CEre, then /1(C\S) = 0, 
(ii) If T is any other set in 8 with property (i), then /1(S\ T) = O. 

(Such a set S will be called a supremum [J-l] of"t.) Show that any finite measure space 
is localizable, and that an arbitrary direct sum of localizable spaces is localizable. 
(Hint: Use the method of exhaustion.) 

R. Show that a localizable measure space (X, S, /1) is the direct sum of a locally finite 
subspace A and an infinite atom B. (Hint: Consider indexed collections {D y} of 
measurable sets of positive finite measure with the property that /1(D y, n Dy) = 0 
for Yl #- Yz, and use Zorn's lemma.) 

S. According to Problem Q and Problem 8R, an arbitrary direct sum of finite measure 
spaces is locally finite and localizable. (Thus, in particular, every a-finite measure 
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space is localizable.) Show, in the converse direction, that if (X, S, fl) is a locally 
finite and localizable measure space, then (X, S, fl) is isomorphic to a direct SU'11 of 
finite measure spaces. (Hint: Using the definition of localizability and Zorn's 
lemma show that there exists a family {DY}YEr of pairwise almost disjoint measur
able sets such that ° < fl(D y) < + 00 for every index y and such that X is a supremum 
[fl] of the family {D y}. Show that if E is an arbitrary measurable subset of X, then E is 
a supremum [fl] of the family {E n D y}, and that if fleE) > 0, then fl(E n D,) > ° 
for at least one y. Conclude that, in general, fleE) = Ly fl(E n Dy), and hence that 
(X, S, fl) is isomorphic to the direct sum 

L EB (Dy, SDy' flI D).) 
YEr 

T. The following is an outline of what is substantially the most general version of the 
Radon-Nikodym theorem for two ordinary measures. (The appropriately 
formulated versions of the Radon-Nikodym theorem suggested in Problems L 
and M continue to hold in the present context. Moreover, it is easy to see that 
appropriate versions of Propositions 9.7 and 9.8 are also valid.) 

(i) Let fl and v be measures on a measurable space (X, S), and suppose that fl is 
locally finite and localizable and that v is absolutely continuous with respect 
to fl. Show that there exists a partition of X into the union of two disjoint measur
able sets A and B such that veE) :s; fleE) for every measurable subset E of A, 
while veE) ~ fleE) for every measurable subset E of B. (Hint: Let us call a set 
N a v-set if veE) ~ fleE) for every measurable subset E of N. Let B denote a 
supremum [fl] of the collection of all v-sets, and set A = X\B. If veE) > fleE) 
for some set E c: A, then Theorem 8.5 may be applied to the signed measure 
(viE) - (flIE) to obtain a v-set N c: A such that fl(N) > 0, in contradiction 
to the definition of B. Thus veE) :s; fleE) for every measurable subset E of A. 
To show that B itself is a v-set use the method of exhaustion to show that if 
E c: Band 0< fleE) < + 00, then E contains a v-set N such that fl(E\N) = 0, 
and hence that E is itself a v-set. Then invoke the local finiteness of fl.) 

(ii) Let fl be a locally finite and localizable measure on the measurable space 
(X, S), and let v be a measure on (X, S) that is absolutely continuous and 
accessible with respect to fl. Show that there exists a measurable, nonnegative, 
extended real-valued function f on X such that v is the indefinite integral of f 
with respect to fl. Show that the function f (to be called the Radon-Nikodym 
derivative of v with respect to fl and denoted by dv/dfl) is unique up to a set of 
measure zero with respect to fl, and that if <p is any function that is either inte
grable [v] or nonnegative and measurable [SJ, then S <p dv = S <pf dfl. (Hint: 
Follow the same procedure used to prove Theorem 9.6 to construct f, using (i) 
instead of Theorem 8.5 to obtain the necessary sets Ar • The same argument used 
in proving Theorem 9.6 also shows that veE) = SE f dfl whenever fleE) < + 00. 

Use Problem P.) 

U. Prove that the metric space (Sy;,p) associated with an arbitrary measure space 
(X, S, fl) is complete. (Hint: If {[En]} is a sequence in (Sy;,p) such that 
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then the sequence {XEJ is convergent both in the mean and almost everywhere 
with respect to J1. See Example 7N and Problem 4E.) 

V. Let (X, S, J1) and (Y, T, v) be measure spaces, let If# and If. denote the linear 
spaces of functions integrable [J1] and [v], respectively, and suppose q> is a strong 
isomorphism between (X, S, J1) and (Y, T, v) as in Example 1. Show that there 
exists a linear transformation Tip: If # -+ If. such that 

where <I> denotes the measure ring isomorphism of (8, f;.) onto (t, Ii) induced by the 
point mapping q> and T<J> is the isomorphism ofTheorem 9.10. (Thus the isomorphism 
T<J> induced by a strong isomorphism can be lifted from 2' ~ to If w) 

W. Suppose given a finite measure space (X, S, J1) with associated metric space 
(8, p) = (89', p), and let {[?lIn};;"= 1 be a sequence of partitions of X such that each [?lin 
consists of a finite number of measurable sets and such that [?lin + 1 refines [?lin for 
each n. Suppose also that {En}:'= 1 is a nested sequence of sets such that En E [?lin 
for all n and such that J1(nn En) = (j > O. Show that if F is a measurable subset of 
nn En such that 0 < J1(F) < (j, and if e denotes the smaller of the two numbers J1(F) 
and (j - J1(F), then p([F], [A]) ~ e for every set A in the ring of sets R generated 
by all of the sets in the various partitions [?lin' Conclude that if J1 is atom-free, if 
{[?lin} is such a sequence of partitions, and if the ring R generated by all of the sets 
in the partitions has the property that R = {[A] E 8: A E R} is dense in (8, p), 
then 

lim max{J1(E): E E [?lin} = O. 

X. Let (X, S, J1) be a measure space with 0 < J1(X) < + 00, let (8, f;.) be its measure 
ring, and let (Y, B, v) denote the measure space consisting of the interval [0, J1(X)] 
equipped with Lebesgue-Borel measure. Suppose given a partition [?lI of X into a 
finite number of measurable subsets, let R denote the ring of sets generated by [?lI, 
and let R = {[A] E 8: A E R}. Show that there exists a partition !fl = {t;}f= 1 

of [0, J1(X)] and a mapping q> ofR into (8, Ii) such that (i) the range of q> is the subset 
of 8 consisting of equivalence classes [B] of the elements B of the ring generated 
by the subintervals of !fl, (ii) q> preserves measures in the sense that v(q>([A])) = 
f;.([A]) for every A in R, and (iii) q> preserves the Boolean operations v, 1\ and \. 
Show also that if [?lI' is another such partition of X, and if [?lI' refines [?lI, so that the 
ring R' generated by [?lI' contains R, then the corresponding partition !fl' of [0, J1(X)] 
may be chosen to refine !fl and the mapping q>' constructed so as to extend q>. (Hint: 
If E1> ... , EN is any enumeration of the sets of positive measure in [?lI, then each 
element [A] of R has a unique representation as a union of certain of the sets Ej • 

Define tj = J1(E 1) + ... + J1(EJ, i = 1, ... , N. In dealing with the refinement [?lI', 
take care in choosing an enumeration of the sets of positive measure in [?lI' so that 
it fits nicely with the enumeration E1>"" EN') 

Y. Show that every separable, locally finite measure space is isomorphic to the direct 
sum of two measure spaces, the first of which is an interval (possibly infinite) of the 
real line IR equipped with Lebesgue-Borel measure, and the second of which is 
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a purely atomic measure space consisting of a countable disjoint collection of finite 
atoms. (Hint: A separable, locally finite measure space is a-finite; use the Halmos
von Neumann theorem (Th. 9.12) and Problem 8S.) 

192 

As it turns out, there exist finite measure spaces that are not separable. 
(Indeed, the product of a noncountable number of copies of the unit 
intervaL each equipped with Lebesgue measure, fails to be separable.) Thus 
the converse of the implication stated in Problem Y is false. 



Measure and topology 10 

If X is an arbitrary topological space, then, as defined in Chapter 6, the a-ring 
B of Borel sets in X is the a-ring generated by the open [closed] subsets of X. 
There are important cases, however, in which B is generated by smaller 
collections of sets satisfying additional conditions. 

Definition. A subset A of a topological space X is said to be a-compact if 
there exists a countable covering of A consisting of compact subsets of X. 
In particular, the space X itself is a-compact if it is a countable union of 
compact subsets. 

Proposition 10.1. If X is a a-compact Hausdorff space, then the collection 
off of all compact subsets of X generates the a-ring B of Borel subsets of X. 

PROOF. It suffices to show that every closed set F in X belongs to S( off). If 
X = u.~)= 1 Kn, where each Kn is compact, then F = U:,= 1 (F (\ Kn), and 
each set F (\ Kn is compact. 0 

Definition. If X is a locally compact Hausdorff space (cf. Problem 3V), a 
subset S of X is said to be topologically bounded if its closure S - is compact. 
(Note that a topologically bounded subset of a locally compact metric 
space is a bounded set, but that the converse need not hold.) 

Example A. Let U be an open set in [Rn such that both U and its complement 
[Rn\ U are nonempty. If we write F n = {x E [Rn : d(x, [Rn\ U) 2 lin} for each 
positive integer n, then the sets 

Kn = {x = (x1, ... ,xn) E Fn:xi + ... + x; ~ n2 } 

193 



10 Measure and topology 

are compact, nested, and have union U. This shows that every open subset 
of fRn is a a-compact locally compact Hausdorff space in its relative topology. 
We also observe that, with the sequence {Kn} defined in this way, the sets 
K~ are nested, topologically bounded, open subsets of U suth that 

U = U~=I K~. 

Proposition 10.2. If X is a a-compact, locally compact, Hausdorff space, then 
the collection of all topologically bounded open sets in X generates the 
a-ring B of Borel sets in X. 

PROOF. It suffices to show that every open subset U of X is a countable union 
of topologically bounded open subsets of X. We write X = U:'=l Kn, where 
each Kn is compact. According to Problem A, there exists for each positive 
integer n a. topologically bounded open set v" containing Kn , so that X = 
U:,= I v". But then U = U:,= 1 (U n v,,), and each Un v" is a topologically 
bounded open set. 0 

If Jl is a measure on a measurable space (X, B), where X is a topological 
space and B is its a-ring of Borel sets, then it is natural to require that the 
values of Jl on arbitrary Borel sets be related to the values of Jl on the 
topologically important open sets and compact sets. Furthermore, it is 
sufficient for our purposes to deal with topological spaces that are locally 
compact Hausdorff spaces. 

Definition. Let X be a locally compact Hausdorff space, and let B denote its 
a-ring of Borel subsets. A Borel measure on X is a measure Jl on the measur
able space (X, B) with the property that Jl(K) is finite for every compact 
subset K of X. A Borel set E is said to be outer regular with respect to the 
Borel measure Jl if 

Jl(E) = inf{Jl(U): U => E, U open}, 

and to be inner regular with respect to Jl if 

Jl(E) = sup{Jl(K): K c E, K compact}. 

A Borel set E is regular with respect to Jl if E is both inner and outer regular 
with respect to Jl. If every Borel set in X is regular with respect to Jl, then Jl is 
a regular Borel measure. 

The following proposition, whose proof is left as an exercise (Problems 
F and G), is frequently useful in connection with the notion of regularity. 

Proposition 10.3. Let Jl be a Borel measure on a locally compact Hausdorff 
space X, and let <(j be a collection of regular sets of finite measure with 
respect to Jl. Then every set in the a-ring S(<{j) generated by <{j is regular 
with respect to Jl. 
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This proposition has several useful consequences. 

Corollary 10.4. Let j1 be a Borel measure on a locally compact Hausdorff space 
X, and let .% denote the collection of all compact subsets of x. If every set 
K in .% is outer regular with respect to j1, or if every topologically bounded 
open set in X is inner regular with respect to j1, then every set in the a-ring 
S(.%) is regular with respect to j1. In particular, if X is a-compact, then a 
Borel measure j1 on X is regular if and only if every compact subset of X is 
outer regular with respect to j1 (or, equivalently, if and only if every topologi
cally bounded open subset of X is inner regular with respect to j1). 

PROOF. It is an immediate consequence of Problem A that the a-ring generated 
by the collection of topologically bounded open sets coincides with S(.%). 
If X is a-compact, this a-ring coincides with the a-ring of all Borel subsets of 
X (Prop. 10.1). 0 

Corollary 10.5. If X is a locally compact Hausdorff space, and if .%0 denotes 
the collection of all compact Gr/s in X, then the sets belonging to the a-ring 
S(.% 0) are all regular with respect to every Borel measure on X. 

PROOF. Every set Ko in .%0 can be written as the intersection of a decreasing 
sequence of open sets, each of which may be taken to be topologically bounded 
(Prob. A). Hence Ko is outer regular by Problem 7F. 0 

Corollary 10.6. If X'is a locally compact Hausdorff space that is metrizable, 
then the sets belonging to the a-ring S(.%) generated by the collection .% 
of compact sets in X are all regular with respect to every Borel measure on 
X. If X is a locally compact Hausdorff SPace that satiifies the second axiom 
of countability, then every Borel measure on X is regular. 

PROOF. If X is metrizable, then every compact set in X is a G~ (Prob. 6M). 
If X is a locally compact Hausdorff space satisfying the second axiom of 
count ability, then X is metrizable and a-compact (Prob. B). 0 

Example B. A Borel measure whose carrier is an arbitrary Borel subset of 
any of the familiar spaces IR" and iC" is regular. In particular, the Stieltjes
Borel measures introduced in Example 8E are all regular, as is arc-length 
measure on the unit circle Z (Ex. 8F). 

The preceding remarks show that in order to find a Borel measure that is 
not regular one must be prepared to examine some fairly large locally com
pact Hausdorff spaces. Here is a standard example of a Borel measure that is 
not regular. (This example is due to Dieudonne; see [30, p. vii]. AIiother 
example is outlined in Problem 1.) 

Example C. Let W denote the space W(Q) of all countable ordinal numbers 
in the order topology (Problem 1 Wand Example 3B). Then, for every 
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Borel set E in W, either E or W\E contains some closed unbounded subset 
of W (Prob. 6Q), and the collection J of those Borel sets E in W such that 
W\E contains a closed unbounded subset of W forms a cr-ideal in the cr-ring 
B ofBorel subsets of W. Hence, if a denotes an arbitrary nonnegative extended 
real number, and if we define 

l1a(Ji) = {O, 
a, 

EEJ, 

EEB\J, 

then l1a is a measure on (W, B) with the property that l1a(K) = 0 for every 
compact set K in W. Thus l1a is a Borel measure on W, but l1a is not regular 
unless a = ° (in which case l1a = 0). 

Whether a Borel measure is regular or not has profound consequences for 
the Lebesgue integral with respect to that measure. 

Proposition 10.7. Let 11 be a regular Borel measure on a locally compact 
H ausdorjJ space X. Then Jor any Borel measurable Junction J on X that is 
integrable [I1J there exists a sequence {gn} oj integrable continuous Junctions 
on X that converges to J in the mean. 

PROOF. It suffices to show that ifjis integrable [I1J, then there exists a con
tinuous function g on X such that S I J - g I dl1 is as small as desired. To this 
end, suppose first that E is a Borel set such that I1(E) < + 00 and that e is a 
positive number. Since 11 is regular, there exist a compact set K and an open 
set U such that K c E c U and such that I1(U\K) < B. By an easy extension 
of Urysohn's lemma (Prob. 3V), there exists a continuous function g on X 
such that XK ~ g ~ Xu, whence it clearly follows that Jig - XEldl1 ~ 
I1(U\K) < e. From this observation we conclude at once that if s is an 
integrable simple function on X, then there exists a continuous function g on 
X such that Jig - sldl1 < e. But ifJis integrable [I1J, then, as we have noted 
before (cf. the proof of Theorem 9.10), there are always integrable simple 
functions s such that Sis - J I dl1 < e, and the result follows. D 

Proposition 10.S. Let 11 and v be regular Borel measures on the same locally 
compact HausdorjJ space X, and suppose the integrals with respect to 11 
and v agree on continuousfunctions; that is, suppose !l'11 and !l'\, contain the 
same set rr oj continuous Junctions on X and 

Then 11 = v. 

PROOF. Let K be a compact set in X, and let 
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be a nested sequence of topologically bounded open sets such that 
fl(U n) -t fl(K) and v(U n) -t v(K) (see Problem D). By Problem- 3V there 
exists for each n a continuous function gn such that XK ~ gn ~ Xv", and there
fore such that 

fl(K) ~ fgndfl ~ fl(Un) and v(K) ~ fgndV ~ v(Un). 

Thus the sequence {f gn dfl = J gn dv} converges to both fl(K) and v(K). 
Hence fl(K) = v(K), and it follows at once that fl = v since both measures 
are regular. 0 

We close this chapter by deriving a preliminary version of an important 
representation theorem due to F. Riesz. To this end we introduce the following 
definition. 

Definition. Let lff be a self-conjugate linear space of complex-valued functions 
on a set X with the property that the real-valued functions in lff form a 
function lattice (see Example 2H and Pro blem 1 D). Then a linear functional 
cp on @" is positive if cp(f) ~ 0 for every nonnegative function f in lff. Like
wise, if lff is a real linear space of real-valued functions that is a function 
lattice, then a linear functional cp on lff is positive if cpU) ~ 0 for every 
nonnegative function f in lff. 

Example D. If (X, S, f.1) is an arbitrary measure space, then the Lebesgue 
integral with respect to f.1 is a positive linear functional on the linear space 
!I? of all integrable functions on X (Prop. 7.1). 

If Iff is a linear space of functions as specified in the foregoing definition, 
and if cp is a positive linear functional on lff, then cpU) is real whenever f is a 
real-valued function in lff (in other words, cp is self-conjugate). Iff and 9 are 
real functions in lff such that f ~ g, then cp(f) ~ cp(g). In particular, if lff 
contains the constant functions, and iffis a function in lff such that 0 ~ f ~ 1, 
then ° ~ cpU) ~ cp(l). Hence if cp(l) = 0, then cp annihilates all of the 
bounded functions in Iff. 

Theorem 10.9. Let cp be a positive linear functional on the linear space ~(X) 
of continuous complex-valued functions on a compact Hausdorff space X. 
Then there exists a unique regular Borel measure f.1 on X such that 

fE~(X). (1) 

Example E. If X is a compact Hausdorff space and Xo a point of X, then 
point-evaluation at xo, that is, the linear functional mapping each function 
f in ~(X) to its value f(x o), is a positive linear functional on ~(X). As we 
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already know (Ex. 71), a measure satisfying condition (1) for this linear 
functional is the Dirac mass bxo concentrated at the point xo, and since Dirac 
masses are obviously regular as Borel measures, bxo is in this case the measure 
referred to in Theorem 10.9. 

We preface the proof of Theorem 10.9 with a sequence of lemmas. 

Lemma 10.10. Let <(Jo be a positive linear functional on Cd?(X), where X is a 
compact Hausdorff space, and suppose in addition that «Jo(1) = 1. For each 
open set U in X let 

p(U) = sup{<{Jo(f): 0 :s; f :s; Xu'! E <,&(X)}. 

Then p is a countably subadditive gauge (Prob. 8D) on the collection Y of 
all open sets in X. In particular, p is monotone increasing on Y. 

PROOF. Clearly p(0) = O. Let Vbe an open subset of X, let {Un} be a countable 
open covering of V, let £ be a positive number, and let f be a continuous func
tion on X such that 0 :s; f :s; Xv. We set K = {x E X :f(x) ~ d. Iff, denotes 
the function j~ = (f - £) V 0, then 0 :s; f, :s; XK and f :s; /, + £. Since K 
is compact, there exists a positive integer N such that 

KcUlu···UUN, 

and there exist corresponding nonnegative continuous functions gl'···' gN 
on X such that gi :s; XUi' i = 1, ... , N, and such that if g = gl + ... + gN, 
then 0 :::; g :::; I on X, while g(x) = I for all x in K (this is just a partition 
of unity subordinate to {U 1, ... , UN}; see Example 30). Thus I. = j~g = 
f.gl + ... + f.gN' whence it follows that «Jo(f.) :s; p(U 1) + ... + p(U N)· 
Since f :s; I. + £, we conclude that 

OCJ 

«Jo(f) :::; p(U 1) + ... + p(U N) + £ :s; L p(Un) + £. 
n~1 

By the definition of p this shows that p(V) :s; L:~ I p(Un) + £, and since £ is 
arbitrary, the result follows. 0 

Lemma 10.11. Let X, <(Jo and p be as in the preceding lemma, let U be an open 
set in X, and let £ be a positive number. Iff is a continuous junction on X such 
that 0 :s; f :s; Xu and «Jo(f) > p( U) - £, and if K denotes the set K = 

{x EX: f(x) ~ £}, then p(U\K) :s; 2£. 

PROOF. Suppose g is a continuous function on X such that 0 :s; g :s; XU.K. 
Then f + g :s; Xu + B. If we set h = (f + g - £) V 0, then 0 :s; h :s; Xu and 
f + g :s; h + B, so we have «Jo(f) + «Jo(g) :s; «Jo(h) + I; :s; p(U) + B. Hence 

«Jo(g) :s; p(U) - «Jo(f) + £ < 2£, 

and the lemma follows. o 
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Lemma 10.12. Let X, ({Jo and p be as in Lemma 10.10, and let U and V be open 
sets in X. Then 

p(U) + p(V) ::; p(U u V) + p(U n V). 

PROOF. Let f and g be arbitrary continuous functions on X such that ° ::; f::; Xu and 0::; g ::; Xv, and set 

h = (f + g) 1\ 1 and k = f + g - h. 

Then it is easy to verify that ° ::; h ::; Xu u v and ° ::; k ::; Xu n v. Since 
f + g = h + k, we have 

({Jo(f) + ({Jo(g) = ({Jo(h) + ((Jo(k) ::; p(U u V) + p(U n V). 

and the lemma follows. o 

Lemma 10.13. Let X, ({Jo and p be as in Lemma 10.10, and let 11* denote the 
outer measure on X generated by p (see Problem 8D for definitions). Then 
11* agrees with p on open sets, and 

11*(V\ U) + 11*(V n U) = 11*(V) 

for all open sets U and V. 

PROOF. That 11* agrees with p on open sets follows at once from Lemma 
10.10. Let U and V be open sets, and let e be any positive number. Let f 
be any continuous function on X such that ° ::; f ::; Xu and ((Jo(f) > p(U) - e, 
and let K = {x EX: f(x) ~ e}. If we write W = V\K, then W u (U n V) = 
V and W n (U n V) c U\K. Thus, applying Lemmas 10.11 and 10.12, we 
see that 

peW) + p(U n V) ::;; p(V) + p(U\K) ::;; p(V) + 2e. 

Since V\ U c W, this implies that 

11*(V\U) + ,u*(V n U) ::; 11*(V) + 2e. 

Since e is arbitrary and 11* is subadditive, the lemma follows. o 

PROOF OF THEOREM 10.9. If ({J(1) = 0, then ({J = 0, and (1) is satisfied by 
11 = 0. If ({J(1) = ao > 0, then ({Jo = ({J/ao is a positive linear functional on 
~(X) such that ({Jo(l) = 1, and if 110 satisfies the appropriate modification of 
(1) for ({Jo, then 11 = aol1o satisfies (1) for ({J. Thus we may and do assume that 
({J satisfies the extra condition ({J( 1) = 1. Let p and 11* be defined as in Lemmas 
10.10 and 10.13, so that 11* is an outer measure on X such that ° ::; 11* ::; 1 
and such that if U is an open set in X then 

11*(U) = p(U) = sup{({J(f): ° ::; f ::; Xu,f E ~(X)}. 

We first show that every open set is measurable with respect to 11*. To this 
end, let U be an open subset of X and let A be an arbitrary subset of X. If 
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8 is a positive number, then by the definition of fl* there exists a sequence 
{v,,} ~= 1 of open sets in X such that 

00 00 

A c U v" and L p(v,,) < fl*(A) + 8. 
n=1 n=1 

By the countable subadditivity of fl* we have 

00 00 

fl*(A n V) s I fl*(v" n V) and fl*(A \ V) s L fl*(v" \ V). 
n=1 n=1 

But then, by Lemma 10.13 and (2), we obtain the inequality 

fl*(A n V) + fl*(A\V) S fl*(A) + 8, 

(2) 

and since 8 is arbitrary, this implies that V is measurable with respect to fl*. 
From this it follows, of course, that the O"-ring of sets measurable with respect 
to 1-1* contains the O"-ring B of Borel sets in X (see Problem 8C), and hence 
that fl = fl* I B is a Borel measure on X with the property that fl(U) = p(V) 
for every open set V. Since Lemma 10.11 clearly shows that the measure fl 
is regular, and since the uniqueness of fl was settled in Proposition 10.8, 
the proof will be complete if we verify (1 ) for the measure 11. 

To do this, we note first that if/is a continuous function on X and V is an 
open set in X such that f ~ Xv, then cpU) ~ cp(g) for every continuous 
function g on X such that d S g s Xv, and therefore cpU) ~ p(V) = fl(V). 
Thus if V and V are open sets in X such that V c V, and iffis a continuous 
function on X such that Xv sf s Xu, then the numbers cp(f) and J f dfl 
are both straddled by the pair of numbers I1(V) and fl(V). To put this obser
vation to use, suppose thatfis a nonnegative function in ~(X) and that a is a 
positive number such that the interval [0, a] contains the range off. Let 
0= to < t1 < ... < tN = a be a partition of[O,a]. Foreachi = 1, ... ,N,let 
us write l1ti = ti - t i - 1 and denote by /; the continuous function 

Likewise, for i = 0, ... , N, let Vi denote the open set {x EX: f(x) > tJ 
(Note that V N is the empty set.) Then, on the one hand, we have 

i = 1, .. . ,N, 

while, on the other hand, as is readily verified,f = f1 + ... + fN. Thus 

I cp(/;) - Ix/; dill S l1t i fl(V i - 1 \ V;), 

and therefore 
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Since the mesh of the partition may be taken to be as small as desired, this 
shows that (1) holds for all nonnegative functionsfin ~(X), and the theorem 
follows. 0 

Thus far we have considered only Borel measures. Appropriate gener
alizations of this concept are also frequently useful. 

Definition. Let X be a locally compact Hausdorff space, and let B denote, as 
usual, the IT-ring ofBorel sets in X. A complex measure ~ on the measurable 
space (X, B) is called a complex Borel measure. Similarly, a signed measure 
11 on (X, B) is called a signed Borel measure provided Il(K) is finite for 
every compact set K in X. 

Proposition 10.14. Let X be a locally compact Hausdorff space. If 11 is a signed 
Borel measure on X, then 11+,11- and 1111 are Borel measures on X. If ~ is a 
complex Borel measure on X, then Re ~ and 1m ~ are signed Borel measures 
on X, and I~I is a finite Borel measure. 

PROOF. If 11 is a signed Borel measure on X, and if K is a compact subset of 
X, then both 1l+(K) and 1l_(K) must be finite, since Il(K) = 1l+(K) - 1l_(K) 
is. But then 11l1(K) = 1l+(K) + 1l_(K) < + 00 (Prob. 8U). Hence 11+,11-
and 1111 are Borel measures on X. If ~ is a complex Borel measure on X, 
then V1 = Re ~ and V2 = 1m ~ are clearly signed Borel measures such that 
both v1(X) and V2(X) are finite (since ~(X) = Vl(X) + iV2(X)), But then 

o 

Example F. Let X be a locally compact Hausdorff space, let ( be a nonzero 
complex Borel measure on X, and let <p be a measurable complex-valued 
function defined on X. Then 

f(A) = f d~(x) 
x <p(x) - A 

defines a locally analytic function on the complement U in IC of the essential 
range of <p with respect to I ~ I (Ch. 7, p. 126). Indeed, if AO E U and if DR(AO) 
is a disc such that Z = <p - l(DR(AO)) has measure zero [I ~ I], then for each 
o < r < R we have 

<-<1 \
A-AO \ r 

<p(x) - AO R 

for all A. in the disc Dr(AO) and all x in X\Z. Consequently the series 

(jJ (A - Ao)" 

n~o (<p(x) - Ao)"+ 1 
(3) 
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converges uniformly on X\Z to the sum Ij(<p(x) - A) for each A in Dr(Ao), 
and we may therefore integrate the series (3) term by term, thus obtaining 
the power series expansion 

r d~(x) = i: an(A - Aot 
Jx <p(x) - A n=O 

on Dr(Ao), where an = Ix d~(x)j(<p(x) - Aot+ 1, n E No· 
In particular, if ~ is a complex Borel measure on e itself, then 

h(A) = r d~(O 
Jc' - A 

is a locally analytic function on the complement V of the support of ~ (see 
Problem Pl. The function h is usually called the Cauchy transform of the 
measure ~. 

Definition. A signed Borel measure It on a locally compact Hausdorff space 
X is regular if its total variation I It I is regular. Similarly, a complex Borel 
measure ~ on X is regular if I ~ I is regular. 

The proof of the following result is an easy exercise which we leave to the 
reader. 

Proposition 10.15. A signed Borel measure It on a locally compact Hausdorff 
space X is regular if and only if its positive and negative variations It+ and 
It- are both regular. A complex Borel measure ~ on X is regular if and only 
ifRe ~ and 1m ~ are regular. 

Thus a regular complex Borel measure is simply a linear combination of 
(four) ordinary regular Borel measures. It should be noted that if ~ is a regular 
complex Borel measure on a locally compact Hausdorff space X, if E is a 
Borel set in X, and if c is a positive number, then there exist a compact set 
K and an open set V in X such that K c E c V and I~I(U\K) < c. In 
particular, I~(E) - ~(K)I = I~(E\K)I and I~(U) - ~(E)I = I¢(U\E)I are 
both dominated by c. 

It follows from the above definition and Corollary 10.6 that all complex 
Borel measures and all signed Borel measures on a locally compact Hausdorff 
space satisfying the second axiom of countability are regular. Thus, in particu
lar, a complex Borel measure on a locally compact subset oflRn or en is regular. 

Example G. If a is an arbitrary complex-valued function of bounded variation 
on a real interval [a, b J(a ~ b), then the Stieltjes-Borel measure'~ associated 
with a (Ex. 8K) is a regular complex Borel measure on [a, b]. (Conversely, 
every complex Borel measure on [a, bJ is of this form; see Problem R.) 

Finally we observe the following fact, an immediate consequence of 
Proposition 8.8. 
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Proposition 10.16. Let X be a compact Hausdorff space and let ~ be a complex 
Borel measure on X. Then the mapping 

fE~(X), 

is a linear functional on the space ~(X) of continuous complex-valued 
functions on X such that 

fE~(X). 

PROBLEMS 

A. Show that a closed subset F of a locally compact Hausdorff space X is compact if and 
only if there exists a topologically bounded open set U in X such that FeU. 

B. Let X be a locally compact Hausdorff space satisfying the second axiom of count
ability, and let X dehOte the one-point compactification of X (Prob. 3W). Show that 
X is a-compact, and use this fact to show that X also satisfies the second axiom of 
count ability. Conclude that X and X are both metrizable. Finally, in the converse 
direction, show that a locally compact metrizable space X satisfies the second 
axiom of countability if and only if X is a-compact. 

C. (Berberian and Jakobsen [8].) Let X be a locally compact Hausdorff space, and 
let X denote the collection of all compact subsets of X. Show that the a-ring SeX) 
is a a-ideal (Prob. 61) in the a-ring B of Borel subsets of X, and use this fact to con
clude that S( X) consists precisely of those Borel sets in X that are a-compact. 
(Hint: Let T denote the collection of subsets T of X with the property that E E SeX) 
implies E (\ T E SeX), and show that T contains all closed subsets of X.) 

D. Let J.l be a Borel measure on a locally compact Hausdorff space X, and let E be a 
Borel set in X that is outer regular with respect to /1. Show that there exists a de
creasing sequence {Un} of open sets in X such that E c Un for every n and such 
that /1( Un) 1 J.l(E). Show also that if v is another Borel measure on X and if E is also 
outer regular with respect to v, then the sequence {Un} may be chosen so that 
v(U n) 1 vee) as well. Formulate and prove the dual assertions for an inner regular 
Borel set. 

E. If /1 is a Borel measure on a locally compact Hausdorff space X, and if {En};;'~ 1 

is a sequence of inner regular sets of finite measure with respect to /1, then n:~ 1 En 
is inner regular with respect to J1. On the other hand, if {Fn}:~ 1 is a decreasing 
sequence of outer regular sets of finite measure with respect to J1, then n:~ 1 F n is 
also outer regular with respect to J1. 

F. Let X be a locally compact Hausdorff space, and let J1 be a Borel measure on X. 

(i) Verify that a Borel set E in X is regular and of finite measure with respect to J1 
when and only when, for arbitrarily given f, > 0, there exist a compact set K 
and an open set U such that K c E c U and such that J1(U\K) < e. 

(ii) Show that if E and F are regular Borel sets of finite measure with respect to J1, 
then E\F is also regular (and of finite measure) with respect to J1. 
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(iii) Show similarly that if each set En of a countable collection {En} of Borel sets 
is regular with respect to J.l, then the union Un En is also regular with respect 
to J.l. (Hint: Sets of infinite measure are trivially outer regular.) 

(iv) Conclude that the collection R of all regular Borel sets of finite measure with 
respect to J.l is a ring of sets, and that R is, in fact, a CT-ring if J.l(X) < + 00. (In 
particular, then, this is true if X is compact.) 

G. Provide a proof for Proposition 1003. (Hint: Use the results of the preceding problem 
to show that if E denotes anyone set in re/, then the collection of all Borel sets M 
such that M c E and M is regular with respect to J.l is a CT-ring containing the trace 
~E and therefore containing the CT-ring S(<'& E) = (S(re/))E (Prob. 6D). Recall that every 
set in S(re/) is contained in the union of some countable collection of sets in re/ 
(Prob. 61).) 

H. Derive Proposition 10.8 from Proposition 10.7. (Hint: See Example 7N.) 

I. Let ~ be a regular complex Borel measure on a compact Hausdorff space X. Prove 
that the total variation of ~ is given by 

where the supremum is taken over the collection of all continuous functions f 
on X such that I f I :::; 1. (The reader should compare this result with Problem 8Y.) 
(Hint: Use a partition of unity; see Example 3G.) 

J. Suppose we set a = 1 in Example C. Determine which Borel subsets of Ware regular 
with respect to the measure J.ll defined there, and which are not. Show that the Borel 
sets that are regular with respect to J.lt constitute aCT-ring. 

K. Let {XY}YEf be an indexed family of pairwise disjoint topological spaces, and let 
X denote the union X = Uy Xl" Verify that there exists a unique topology on X 
with respect to which each space X Y is an open subspace of X, and that a subset U 
of X is open in this topology if and only if U n X Y is open in X Y for each index y. 
The space X equipped with this topology is called the (topological) direct sum of the 
given family {Xy}' (If each space Xy is homeomorphic to some one fixed space Y, 
and if card r = c, then X is sometimes said to be the direct sum of c copies of Y 
indexed by r. It is clear that the resulting topological space is uniquely determined 
up to homeomorphism by Y and c.) Verify that the direct sum X is a locally compact 
Hausdorff space [a metrizable space] when and only when each of the subspaces 
X y is a locally compact Hausdorff space [a metrizable space]. Show further that if 
By denotes the CT-ring of Borel subsets of Xl' for each index y and (X, S) denotes the 
direct sum of the family of measurable spaces {(X;, B)}, then S ::J B where Bdenotes 
the CT-ring of Borel subsets of X. Show also that if J.ll' is a Borel measure on X;. for each 
index y, and if J.l = L;.EB J.l;., then the restriction J.loof J.l to B is a Borel measure on X(cf. 
Problem 7M). Conclude that an arbitrary countable direct sum of Borel measures is 
a Borel measure. (For a discussion of direct sums of measures, see Chapter 8.) 

L. Let r be an index family with card r = c, where c > l'{o, and let X be the topological 
direct sum of an indexed family {Xl'}l'Ef of open subspaces, each of which is homeo
morphic to the unit interval [0, 1] via a homeomorphism CPl" (In other words, 
X is the direct sum of c copies of [0, I] indexed by r.) For each index y let J.l l, de-
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note the Borel measure on X;. corresponding to Lebesgue-Borel measure on 
[0,1] under the mapping CPY' and let J-l denote the direct sum of the family of measures 
{J-ly}. According to Problem K the space X is a metrizable locally compact Hausdorff 
space, and the restriction 110 of J-l to the a-ring ofBorel subsets of X is a Borel measure 
on X. Determine which Borel sets in X are regular with respect to J-lo and which are 
not. (Hint: Every open subset of X that meets uncountably many of the subspaces X y 

has infinite measure.) Find a closed set F and an open set U in X, both of which are 
regular with respect to J-lo such that U c F but such that F\ U fails to be regular. 
Thus the regular sets with respect to a Borel measure need not form a ring, or even a 
quasi ring (Prob. 6J). 

This construction, which is essentially due to S. K. Berberian [7J, is really 
much more illuminating than the one given in Example C. Here we have a 
measure space that is simple and natural in every way, except of course that 
it is quite large, and yet there are many Borel sets that fail to be regular. The 
message is clear: For very large locally compact Hausdorff spaces (even 
metrizable ones), the requirement of regularity for a Borel measure, as we 
have defined it, is not only quite restrictive, it may even be unnatural. The 
following six problems introduce a notion that is less restrictive than 
regularity, but is still strong enough to yield useful results. 

M. A Borel measure J-l on a locally compact Hausdorff space X will be said to be serni
regular if every Borel set in X is inner regular with respect to J-l. Verify that if J-l is a 
semiregular Borel measure on X, then every Borel subset of X that is contained 
in some topologically bounded open set is regular with respect to J-l, and use this 
fact to conclude that every a-compact Borel subset of X is regular with respect to 
J-l. Thus a semiregular Borel measure on X is automatically regular if X is a-compact. 
Show also that the restriction to Borel sets of an arbitrary direct sum of semiregular 
Borel measures is semi regular. (Thus the restriction to Borel sets of a direct sum of 
regular Borel measures is always at least semiregular; in particular, the measure J-lo 
in Problem L is semiregular.) Show, finally, that if E is an arbitrary Borel set of finite 
[a-finite] measure with respect to a semiregular measure J-l, then E can be expressed 
(not necessarily uniquely) as the union of a nulI set and a a-compact set. 

N. Verify that a Borel measure J-l on a locally compact Hausdorff space X is semi
regular if and only if for each Borel set E in X there exists a Borel set F that is 
regular with respect to J-l such that FeE and J-l(F) = J-l(E). 

O. (i) Verify Proposition 10.7 for a semi regular Borel measure J-l. (Hint: According to 
the last part of Problem M, if E is a Borel set in X such that J-l(E) < + 00, then 
there exists a regular Borel set FeE such that J-l(E\F) = 0). 

(ii) Verify Proposition 10.8 for semiregular measures J.I. and v. 

P. Let J-l be a semiregular Borel measure on a 10calIy compact Hausdorff space X. 
Show that for each Borel set E in X there exists a unique smallest closed set F such 
that J-l(E\F) = O. (In other words, the set F is closed, Il(E\F) = 0, and if F 1 is any 
other closed set such that Il(E\F 1) = 0, then F c Fl') The set F is called the 
kernel of E with respect to J-l. The kernel of the entire space X is also frequently called 
the support of J-l. Show that the kernel of an atom with respect to a semi regular 
Borel measure J-l is necessarily a singleton. 
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Q. (Lusin's Lemma) Let 11 be a semi regular Borel measure on a locally compact 
Hausdorff space X, let E be a Borel subset of X that is O"-finite with respect to 11, let 
fbe a complex-valued function that is defined and Borel measurable on E, and let 
8 be a positive number. Show that there exists a Borel subset G of E such that 
I1(E\ G) < F. and such that fiG is continuous on the subspace G. Show also that 
G can always be taken to be the union of a countable collection of compact sets, and 
that G can even be taken to be compact when I1(E) < + 00. (Hint: First take care 
of the case of a Borel measurable simple function on a set of finite measure, then the 
case of a bounded Borel measurable function on a set of finite measure, recalling 
that such a function is the uniform limit of a sequence of simple functions (Prob. 6S). 
Finally, to take care of the general case, construct an increasing sequence {Un}:~1 
of topologically bounded open sets such that E is almost covered by {Un}, and set 
En = E () (Un \ U n- I)' n E N, where U 0 is taken to be the empty set.) 

R. Let X be a locally compact Hausdorff space, and let L denote the ring of all topologi
cally bounded Borel sets in X. A countably additive, nonnegative. real-valued set 
function 110 defined on L will be called a local Borel measure on X. Similarly, a 
count ably additive complex-valued set function defined on L is called a local 
complex Borel measure on X. 

(i) If (0 is a local complex Borel measure, and if K is a compact subset of X, then 
the restriction (K of (0 to K (i.e., the restriction of (0 to the Borel subsets of K) 
is a complex Borel measure on K, and the system {(K} of Borel measures thus 
obtained is coherent in the sense that if K and L are two compact subsets of X, 
and if E is a Borel set such that E c K () L, then (K(E) = (L(E). Show, con
versely, that if such a coherent system {(K} of complex Borel measures is given, 
then there exists a unique local complex Borel measure (0 on X such that (K 
coincides with the restriction of (0 to K for every compact set K in X. 

(ii) By the support of a continuous complex-valued function f on X is meant the 
closure of the set {x EX: f(x) =1= O}. (If there ever is any chance of confusion 
between this concept of support and the one introduced in Chapter 7 for a 
measurable function defined on a measure space, we shall refer to the present 
notion as the closed support.) Let ~o(X) denote the collection of all continuous 
complex-valued functions on X having compact support. Verify that 'lCo(X) is a 
linear space. Show also that if (0 is a local complex Borel measure on X, then 
there exists a unique linear functional qJ on ~o(X) satisfying the condition 

fE~O(X), 

where K denotes an arbitrary compact subset of X that contains the support 
of f. 

(iii) Let us take for X an open interval (a, b) (-oo:$; a < b:$; +00) of the (ex
tended) real line. Show that if (0 is an arbitrary local complex Borel measure on 
(a, b), then there exists a function (1 on (a, b) (unique up to an additive constant) 
such that (1 is right-continuous and of bounded variation on each (bounded) 
closed subinterval of (a, b) (Prob. I I), and such that ([c. dJ coincides on each such 
interval [c, d] with the Stieltjes-Borel measure " associated with (11 [c, d] (Ex. 
8K). Show conversely that if (1 is a function on (a, b) that is locally of bounded 
variation there, i.e., has the property that it is of bounded variation on each 
compact subinterval of (a, b), then there exists a unique local complex Borel 
measure on (a. b) that coincides with " on every compact subinterval of (a, b). 
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Thus the local complex Borel measures on a real interval may be satisfactorily 
identified as deriving from those functions on the interval that are locally of 
bounded variation there. 

(iv) Let J10 be a local Borel measure on a locally compact Hausdorff space X. 
Show that there exists a unique semiregular Borel measure J1 on X that ex
tends J10. 

S. Let X be a locally compact Hausdorff space, and let Cf/ o(X) denote the linear 
space of continuous complex-valued functions on X having compact support, as 
defined in the preceding problem. Show that if cp is a positive linear functional on 
Cf/o(X), then there exists a unique semiregular Borel measure J1 on X such that 

cpU) = f f dJ1, f E Cf/o(X). 

Thus Theorem 10.9 is valid, more generally, on locally compact Hausdorff spaces if 
we replace Cf/(X) by ~o(X) and admit semi regular measures in place of regular 
ones. 

The construction in Problem L shows that the measure Jl in Problem Sneed 
not be regular in general. 

T. If X is an arbitrary topological space, then the a-ring Bo of subsets of X generated 
by the collection of all those closed sets F such that F is a G b in X is the a-ring 
of Baire sets in X (or Baire subsets of X). Note that 8 0 c 8, where 8 denotes the 
a-ring of Borel subsets of X. Verify that 8 0 turns X into a measurable space in such 
a way that every continuous complex-valued function on X is measurable [80J. 
Verify also that the a-ring 8 0 is generated by the collection of all open F u's in X. 
Show, finally, that 8 0 = 8 when the space X is metrizable (cf. Example 6F). 

U. (i) If Cf/ is a collection of complex-valued functions on an arbitrary set X, then we 
say that Cf/ is closed in the sense of Baire if every functionfthat is the pointwise 
limit of a sequence {fn} of functions belonging to Cf/ is itself in Cf/. (Thus, according 
to Theorem 6.4, the collection of all measurable complex-valued functions on 
an arbitrary measurable space (X, S) is closed in the sense of Baire.) Show that 
for an arbitrary collection of functions Cf/ on X there exists a unique smallest 
collection Ii that contains re and is closed in the sense of Baire. (The collection 
Ii will be referred to as the Bairehull of re.) Verify that if re is a linear space 
[ algebra] of functions, then <2' is also a linear space [algebra J. 

(ii) For an arbitrary collection Cf/ of functions on a set X denote by re). the collection 
of all functions 9 such that 9 is the pointwise limit of some sequence {fn} in Cf/. 
(Thus Cf/ = Cf/). when and only when Cf/ is closed in the sense of Baire.) Consider 
the following construction. Set Cf/(O) = Cf/, and suppose Cf/(~) already defined for 
every ordinal number ( less than some countable ordinal number IX. Then, if IX 

is not a limit ordinal, we set Cf/(.) = (Cf/(~))., where IX = ( + 1, while if IX is a limit 
ordinal, we set «;(.) = U~<O (6 w. (See Problem IV for a discussion of such 
transfinite definitions.) Show that if Q denotes, as usual, the smallest non
countable ordinal number, then 

coincides with the 8aire hull of re. 
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V. Let X be a locally compact Hausdorff space. Verify in general that the Baire hull 
iZ (X) of the collection Cf,(X) of continuous functions on X is contained in the 
collection ~o of Baire measurable functions on X. Show also that if X is either 
metrizable or a-compact, then '/i(X) and PJo coincide. (Hint: One way is easy; the 
Baire measurable functions form a class that contains CC(X) and is closed in the sense 
of Baire. To go the other way, it suffices to show that the characteristic function of 
each Baire set belongs to ~(X). Show that the sets whose characteristic functions 
belong to ~(X) form a a-ring.) 

W. Let X be a locally compact Hausdorff space, let CC denote a collection of Borel sub
sets of X, and let A be a nonnegative extended real-valued set function defined on 
((!. A set E in CC will be said to be regular with respect to A and CC if 

A(E) = sup A(K) = inf A (V), 
KcE EcV 

where the supremum is taken over just those compact sets K in C(j that are contained 
in E. and the infimum is taken over just the open sets V in (& that contain E. In the 
same vein we say that ~. is regular on CC if every set in C(j is regular with respect to 
A and Cf" Show that if .~ 0 denotes the collection of all those compact subsets of X 
that are Go's, and if A is an arbitrary nonnegative, extended real-valued, countably 
additive set function defined on S(x 0) with the property that A(K) < + 00 for every 
K in X 0, then A is automatically regular on S( X 0)' (Hint: Show that the collection 
of sets that are regular with respect to A and S(X o) is a a-ring.) 

A set function such as A. is sometimes called a Baire measure on X, and in this 
terminology the foregoing result may be paraphrased by saying that every 
Baire measure on S(,!f'o) is regular. This usage will not be employed in this 
book, however, since (X, S(;('o» is not a measurable space except when X is 
a-compact. 

X. Let X be a locally compact Hausdorff space, let X 0 denote the collection of compact 
Go's in X, and let A be a countably additive, nonnegative, extcnded real-valued set 
function defined on S(X 0) with the property that A is finite on all of the sets in 
X o' Show that there exists a unique semi regular Borel measure on X that agrees 
with A on S(x 0)' 
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N ormed linear spaces 11 

We here commence our study of the fundamentals of the branch of mathe
matics known as functional analysis. In the course of this study and, indeed, 
throughout the balance of this book, we shall constantly be dealing with 
various linear spaces that are at the same time equipped with a topology. 
Frequently the topology will be induced by a metric. In this connection the 
following concept is useful. 

Definition. A value on a (real or complex) linear space l8' is a nonnegative 
real-valued function v on tt having the following properties: 

(i) vex) = ° if and only if x = 0, 
(ii) v( -x) = vex) for all x in tt, 

(iii) vex + y) ~ vex) + v(y) for all x, y in tt. 
(The inequality (iii) is known as the triangle inequality for v.) 

It follows from properties (ii) and (iii) in the above definition that 

vex - y) = v(y - x) and vex - z) ~ vex - y) + v(y - z) 

for all vectors x, y, z in a linear space tt equipped with a value v. Hence the 
function p(x, y) = vex - y) is a metric on tt, called the metric defined by v. 
This metric is invariant in the sense that p(x + z, y + z) = p(x, y) for all 
vectors x, y, z. In the converse direction we have the following elementary 
proposition. 

Proposition 11.1. If P is an invariant metric on a (real or complex) linear space 
tt, then 

vex) = p(x, 0), (1) 

defines a value on tt, and the given metric p is the metric defined by v. 
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PROOF. Suppose p is a given invariant metric on iff, and let v be defined as in 
(l).Thenv(x) > ° for all x =1= O,andv(-x) = p(-x,O) = p(O, x) = p(x, 0) = 
vex) for all x in iff, because p is invariant and symmetric. Likewise, if x and y 
are any two vectors in iff, then 

vex + y) = p(x + y, 0) ~. p(x + y, y) + p(y, 0) = vex) + v(y). 

This shows that v is a value on iff. That the metric defined by v on iff coincides 
with p follows at once from (1). D 

The topology induced by the metric defined by a value v on a (real or 
complex) linear space iff will also be said to be induced by v. The following 
elementary but important results concern this topology on iff and the 
corresponding product topology on iff x iff. (The reader must take care to 
distinguish between this notion of induced topology and the inversely induced 
topology introduced in Chapter 3 (see page 43).) 

Proposition 11.2. Let iff be a real or complex linear space and let v be a value on 
iff. Then (x, y) ~ x + y is a continuous iff-valued mapping on iff x iff. 
Likewise, the real-valued function x ~ vex) is continuous on iff. 

PROOF. The proposition results immediately from the following inequalities, 
which are themselves easy consequences of the defining properties of a value: 

P(XI + Yh Xz + Yl) = V«XI + Yl) - (xz + Yl» ~ v(x l - xz) + V(YI - Yz), 

Iv(x l ) - v(xz)1 ~ V(XI - xz). 0 

Corollary 11.3. If iff is any linear space equipped with a value v, then the map
ping x ~ x + Xo (translation by xo) is a homeomorphism of iff onto itself 
in the topology induced on 6 by v. 

We shall be principally interested in a special type of value satisfying a 
very strong homogeneity requirement. 

Definition. A norm on a linear space iff is a nonnegative real-valued function 
II lion iff having the following properties: 

(i) /I x II = ° if and only if x = 0, 
(iii) II AX II = I A III x II for all A in C and x in 6, 
(iii) II x + Y II ~ II x II + II Y II for all x, y in iff. 

A linear space possessing a norm is called a normed linear space or, more 
simply, a normed space. If iff is a real linear space, then a norm on 6 is a 
nonnegative function II lion 6 that satisfies (i) and (iii), and (iii) for all 
real scalars. A real linear space possessing a norm is a real normed space. 
A complex linear space becomes a real linear space if one refuses to 
multiply by any but real scalars, and it is evident that a complex normed 
space, when regarded as a real linear space, is a real normed space with 
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respect to the given norm. (According to the agreement adopted at the 
beginning of the book (see Chapter 2 or the preface), a normed space is 
understood to be complex if nothing is said concerning its scalar field.) 

A norm is clearly a value, so the foregoing observations concerning values 
apply equally well to norms. In particular, if ft is a normed space, then 
p(x, y) = II x - y II, x, y E ft, defines an invariant metric on ft with respect to 
which ft becomes a metric space, and consequently a topological space as 
well. Whenever, in the sequel, a normed space is regarded as a metric space, 
it is the metric II x - y II that is understood, and the topology induced by this 
metric will be referred to as the norm topology on ft (if it is necessary to make a 
distinction). The metrics defined by norms are easily characterized. 

Proposition 11.4. If ft is a normed space, then the metric p defined on ft by the 
norm is an invariant metric satisfying the condition 

p(AX, Ay) = IAlp(x, y), x, Y E lS', (2) 

Conversely, if p is an invariant metric on a linear space ft that satisfies (2), 
then there exists a unique norm II II I' on ft such that p is defined by II II 1" 

PROOF. One way is clear enough; if p is defined by a norm II lion ft, then 
p(AX, AY) = IIAx - Ayll = IAlllx - yll = IAlp(x,y) for all vectors x, y and 
complex numbers A. Moreover, if p is defined by II II, then II x II = p(x, 0) 
for every vector x in ft, so that II II is uniquely determined by p. On the other 
hand, if p is an invariant metric on ft, then, as we know, II xiiI' = p(x, 0) de
fines a value on ft. If p also satisfies (2), then II II I' is a norm. 0 

Example A. The usual metric on n-dimensional unitary space IC" (Prob. 4A) 
is defined by the norm 

Similarly, Euclidean space [Rn becomes a real normed space if we set 

and the usual metric on [Rn is the one defined by this norm. In particular, C 
itself is a normed space (and [R a real normed space) with respect to the 
norm IIA II = I A I· 

It is not hard to see that the space C equipped with the norm II A II = I A I 
more or less exhausts the class of one-dimensional normed spaces (Prob. J). 
Examples of normed spaces abound, however, in higher dimensions. Thus 
on the space IC" of complex n-tuples a = (1Xj, ... , IXn) the formula II a 111 = 
L? = 1 IlXi I clearly defines a norm distinct from the one given in Example A, 
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as does the formula II a 1100 = maxi 1 (Xi I. We next consider an interesting and 
important family of norms on en of which II 111 and II Iloc are special cases. 

Example B. For an arbitrary n-tuple a = «(Xl' ... ' (Xn) in en and an arbitrary 
positive real number p we write 

(The reader will note that this is consistent with the notation II 111 used above, 
and likewise that II 112 coincides with the quadratic norm on en introduced 
in Example A.) We shall see that the function II lip is a norm on en for every 
p ~ 1 (but not for 0 < p < 1; cf. Example C below). To show that this 
is so it clearly suffices to treat the case p > 1, and to each such number p 
there corresponds a unique positive number q satisfying the condition 
lip + llq = lor, equivalently, the condition p + q = pq. The number q 
is called the H older conjugate of p, and p and q are said to be Holder conjugates. 
As it turns out, if p and q are any two Holder conjugates, and if u and v denote 
arbitrary nonnegative numbers, then 

uP vq 

uv S - +-. (3) 
P q 

(The proof of (3) is an exercise in elementary calculus; see Problem A.) 
Using this fact it is an easy matter to verify the Holder inequality 

n 

I I (XJ3d s II a lip II b Ilq, (4) 
i= 1 

valid for all n-tuples a = «(Xb .•. , (Xn) and b = (fJb ... , fJn) and every pair 
p, q of Holder conjugates. Indeed, suppose II a lip = II b Ilq = 1. Then by (3) we 
have 

for each index i, whence we obtain 

But then (4) follows in the general case upon replacing a and b by ailiali p 
and bill b Ilq, respectively. (If either a = 0 or b = 0, then (4) is trivially valid.) 
Finally, the Holder inequality implies the triangle inequality for II II p 

(p > 1), which here assumes the form 

(5) 
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known as the Minkowski inequality, valid for all n-tuples a = «(Xl"'" (Xn) and 
b = (P 1, ... , Pn) (cf. Problem B). Since it is obvious that II II p satisfies the 
other two defining conditions for a norm, we see that II II p is indeed a norm on 
en for all p 2 1. (The reader may note that this argument is a straightforward 
generalization of the one used to derive the triangle inequality for II 112 from 
the Cauchy inequality, to which the Holder inequality reduces when 
p = q = 2; see Problem 4A.) It should be observed that a sequence {Xk} = 
{( ~\k), ... , ~~k))} of n-tuples converges to a limit a = «(Xl' ... , (Xn) with respect 
to the (metric defined by the) norm II lip, 1 ::; p ::; + 00, if and only if it 
converges termwise or coordinatewise to a, i.e., if and only if limk ~!k) = (Xi, 
i = 1, ... , n. Thus, while these norms differ from one another in numerical 
value, they all induce the same norm topology on en, namely, the usual 
product topology (Cor. 3.19, Prob. 31). Two norms on the same linear space 
that induce the same norm topology are said to be equivalent. Thus the norms 
II II p,l ::; p ::; + 00, are all equivalent norms on (n. 

Example C. The function II II p is not a norm on en for any p such that ° < p < 1 
(unless n = 1). Consider the case of the two pairs (1, 0) and (0, 1). Clearly 
II (1, 0) lip = II (0,1) lip = 1 for every p, while 11(1,0) + (0,1) lip = 21/p, and 
21/p > 2 whenever 0< p < 1. Thus the triangle inequality fails to hold even 
on (2 except when p 2 1. 

Example D. For each number p, ° < p < + 00, let (t p) denote the collection 
of all infinite sequences a = {(Xn}:'= 0 with the property that L:'= 0 I (Xn IP < + 00, 

and for each such a in (t p) set 

By virtue of the elementary inequality (u + v)p ::; 2P(uP + vP), valid for all 
u, v 2 0, it is easily seen that, with linear operations defined termwise, each 
(I p) is a linear submanifold of the linear space (m) of all bounded sequences 
(Ex. 2D). In the same vein we denote by (I ex) the vector space (m) itself 
equipped with the norm 

II a II ex = sup I (Xn I· 

Just as in the preceding examples, it is clear that II 111 and II Iloc are norms 
on the spaces (t 1) and (too), respectively, and that II lip is not a norm on 
(t p) for ° < p < 1. Furthermore, the only difficulty that arises in verifying 
that II II p is a norm on (t p) for 1 < p < + 00 comes in checking the triangle 
inequality. This inequality, exactly like (5) but stated for infinite series instead 
of finite sums, and still known as the M inkowski inequality, may be obtained 
simply by passing to the limit in (5) as n tends to infinity. It is rather more 
instructive, however, first to verify the HOlder inequality (4) for infinite 
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series (the same proof works), and then to use that inequality to obtain the 
Minkowski inequality for elements of (t p) (see Problem B). 

The justification for the notation II II x. is to be found in the relation 

Ilall~ = lim Iiall p ' 
p-+ + x 

valid for every sequence a = {lXn} belonging to any of the spaces (I pl, p < + CIJ. The space 
IC" equipped with the quadratic norm II 112 and its generalization (! 2) are examples. 

indeed prototypes, of a class of normed spaces called Hilbert spaces, the study of which 
we shall take up in earnest in Volume II. 

Notation and Terminology. The closed ball of radius r (r > 0) centered at 
the origin in a normed space ~ will be denoted by ~r.1t is easily seen that the 
open ball about ° with the same radius r is the topological interior of ~n 
and will accordingly be denoted by ~;. In this connection it should be ob
served that the balls ~~, r > 0, along with their various translates x + C;, 
X E~, form a base for the norm topology on ~. By the sphere of radius r 
centered at the origin is meant the set {x E ~ : II x II = r} = ~r \~:. In particu
lar, the unit sphere consists of the set of all unit vectors, i.e., vectors x such that 
II x II = 1. 

Proposition 11.5. fr ~ is a normed space with norm II II, then the ~-valued 
mappings (IX, x) --t IXX and (x, y) --t X + yare continuous. Likewise, the real 
function x --t II x II is continuous. Indeed, III x II - II y III ::::; II x - y II for any 
vectors x, y in ~. 

PROOF. The continuity of the mapping (x, y) --t X + Y and the facts con
cerning the function x --t II x II have already been established, more generally, 
for vector spaces equipped with a value (Prop. 11.2), and these assertions 
are included here purely for convenience of reference. The fact that the 
~-valued mapping (IX, x) --t IXX is continuous on C x ~ follows at once from 
the inequality 

IllXx - py II ::::; I IX - P III x II + I Pili x - y II , 

valid for all scalars IX, P and all vectors x, y in ~, and this inequality is, in 
turn, an easy consequence of the defining properties of a norm. 0 

Corollary 11.6. If Xo is an arbitrary vector in a normed space C, and IXo is an 
arbitrary nonzero complex number, then the mappings x --t x + Xo (trans
lation by xo) and x --t IXoX (dilatation by IXo) are both homeomorphisms of 
~ onto itself 

As has been noted (Ch. 4, p. 58) an important property that a metric space 
mayor may not possess is that of completeness. 

Definition. A [real] normed space that is complete as a metric space is called 
a [real] Banach space. 
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Example E. The space C" equipped with anyone of the norms II lip (1 ~ p ~ 
+ (0) is complete, and is therefore a Banach space. This is so for the simple 
reason that a sequence in C" is Cauchy [convergent] with respect to anyone 
of the norms II II p if and only if it is Cauchy [convergent] termwise, and the 
field C of complex numbers is complete in the usual metric I (X - PI. (As a 
matter of fact, every finite dimensional normed space is complete (Prob. J).) 
The spaces (I p), 1 ~ P ~ + 00, introduced in Example D are also Banach 
spaces, but here the verification of completeness is not so simple (except for 
p = + 00; the verification that (t oJ is complete is an easy exercise which we 
leave to the reader). The argument goes as follows. Fix p, 1 ~ p < 00, and 
suppose {Xn}~=l is a Cauchy sequence in (tp), where Xn = {~~)}~=o, nE N. 
Then {xn} is certainly Cauchy termwise, and therefore convergent termwise 
to some sequence x = {~m}~=O' Let e be an arbitrary positive number, and 
let N be a positive integer such that II Xn - Xm lip < e for all m, n ;::: N. Then 
for every positive integer k it is the case that 

k 

L 1~ln) - ~lm)IP < eP 

i=O 

for all m, n ;::: N. Hence, letting m tend to infinity, we see that 

k 

L I~ln) - ~ilP ~ eP 
i=O 

for every positive integer k and all positive integers n such that n ;::: N. But 
then, letting k tend to infinity, we see that 

(JJ 

L I~ln) - UP ~ f'p (6) 
i=O 

for every positive integer n such that n ::?: N. This shows, in the first place, that 
xn - x belongs to (I p) for n ::?: N, and hence that x belongs to (t p) as well. In 
the second place (6) shows that II Xn - x lip S e whenever n ;::: N, and hence 
that {xn} converges to x in the metric of(t p). (For an entirely similar argument 
in the special case p = 1, see Example 7D.) 

Example F. Let X be a nonempty compact Hausdorff space, and let Y§(X) 
denote the linear space of all continuous complex-valued functions defined 
on X (Ex. 3D). The space ~(X) becomes a Banach space when it is equipped 
with the norm II f II = SUPXEX If(x)l. (This supremum norm is known, 
affectionately, if somewhat inelegantly, as the" sup norm": by an obvious 
analogy with the norm on (! xc) it is also frequently denoted by II II if' That a 
continuous functionf on X is bounded, so that II f II is finite, and that there 
exists a point Xo in X such that II f II = I f(xo) I, so that we may equally well 
write II f II = maxXEX I f(x)l, are routine consequences of the compactness of 
X; see Proposition 3.3 and Corollary 4.5.) Indeed, it is clear that the function 
II II is a norm. Moreover, a moment's thought shows that the metric it defines 
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on <g(X) is simply the metric of uniform convergence, and <g(X) is complete 
in this metric (cf. Problem 40). Similarly, the collection <g [ffi(X) of all real
valued functions in ~(X) is a real Banach space in the sup norm. 

(The requirement that X be nonempty in this construction is necessitated 
by the reference to the sup norm. In the event that X is empty the space 
<g(X) reduces to the trivial linear space (0) consisting of the empty function. 
Hence there is but one possible norm on ~(0), viz., II ° II = 0, and in this norm 
<g(0) becomes the trivial Banach space. Thus we may and do regard <g(X) 
as a well-defined Banach space even when X is empty, and, by a slight abuse 
oflanguage, also refer to the "sup norm" in this trivial case.) 

A broad and frequently useful generalization of the above construction 
suggests itself at once. Suppose X is a compact Hausdorff space and iff is a 
given normed space. The collection <g(X; iff) of all continuous iff-valued 
mappings on X is a linear space with respect to pointwise linear operations, 
and a normed space in the sup norm 

II <I> II = sup II <I>(x) II· 
XEX 

It is easily seen that if X is nonempty then ~(X; iff) is a Banach space when and 
only when Iff is (cf. Problem D). The case X = 0 is covered as in the pre
ceding paragraph. 

In the study of linear algebra one becomes accustomed to thinking of the 
continuous scalar-valued functions on an abstract topological space as 
elements of various linear spaces of functions. As Example F shows, the con
tinuous complex-valued functions on a compact Hausdorff space are, in a 
natural way, elements of a Banach space. The following example shows that 
this point of view can lead to valuable economies in both thought and 
notation. 

Example G (Tietze Extension Theorem). Let X be a compact Hausdorff 
space, let F be a nonempty closed subset of X, and letfbe a continuous real
valued function defined on F such that II f 1100 :s; 1 (computed in <g(F». 
Set E1/3 = {x EX: f(x) ~ 1/3}, E- 1/3 = {x EX: f(x) :s; -1/3}, and let gl 
be a continuous real-valued function on X such that 9 1 = 1/3 on E 1/3, 

gl = -1/3 on E- 1/3, and II gl II cc = 1/3. (That such a function gl exists is an 
immediate consequence of Urysohn's lemma; cf. Proposition 3.5.) Then, as a 
consideration of cases shows, II f - gIll w :s; 2/3 (computed on F). Next set 

E2/9 = {xEX:f(x) - gl(X) ~ 2/9} 

and 

E- 2/9 = {xEX:f(x) - gl(X):S; -2/9}. 

If g2 is a continuous real-valued function on X such that g2 = 2/9 on E2(9' 
g2=-2/9 on E_ 2/9 , and Ilg211"" =2/9, then Ilf-gl-g21Ioc:s;4/9 
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(computed on F). Continuing in this fashion we obtain by mathematical 
induction an infinite sequence {gn}::"= 1 in 'fJ Ol1(X) such that 

2n - ' 
II gn II ro :s:; Tn in 'fJ Ol1(X), n EN, 

and such that 

n EN. 

From the first of these conditions it follows readily that the infinite series 
I::,,= 1 gn converges in 'fJOl1 (X) and that, if we set g = I::,,= 1 gn' then 

ro 1 1 
Ilgllro:S:; n~,llgnll s 31 _ 2/3 = 1 

in 'fJ Ol1(X) (cf. Problem G). From the second condition we conclude that 
g = f on F. Thus, except for a trivial normalization, we have proved the 
following theorem: If X is a compact Hausdorff space, F is a closed subset 
of X, andfis an element of the real Banach space 'fJOl1(F), then there exists an 
element g of 'fJOl1 (X) such that II g II rIC (computed on X) is equal to II f 1100 
(computed on F), and such that g I F = f. 

In order to extend this result to the case of complex-valued functions, we 
observe that for any radius R ~ 0 the complex plane IC admits a retraction 
onto the closed disc DR = {A E IC : I A I s R}. (That is, there exists a continuous 
mapping p of IC onto DR such that peA) = A for each A in DR' Indeed, the 
mapping 

{
RA 
-111' IAI>R, peA) = JI. 

.Ie, 1,.1,1 s R, 

is readily seen to possess both of the desired properties.) 
Now let X and F be as above, and letfbe an element of 'fl(F). Then there 

exists an extension g offin 'fleX), since the real and imaginary parts offmay 
simply be extended individually by virtue of what has already been proved. 
Set R = II f 1100 (computed on F, of course) and let p denote a retraction of 
IC onto the disc DR' Then composing p with g yields the following result, 
known as the Tietze extension theorem: If X is a compact Hausdorff space and 
F is a closed subset of X, then every element f of'fl(F) possesses a continuous 
extension g to X such that II g II 00 = II f II 00' 

If S is a normed space and j( is an arbitrary linear manifold in S, then it is 
clear that the restriction to.A of the norm II lion S is a norm on.A turning it 
into a normed space. It is also clear that the metric defined on j( by this re
stricted norm coincides with the restriction to j( of the metric defined on 
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g by II II, so that ,II is automatically a subspace of Iff as a metric space and as 
a topological space as well. Whenever a linear manifold in a normed space is 
regarded as a normed space in its own right, it is this restricted norm that is 
understood unless some other norm is stipulated. Since a subset of a complete 
metric space is complete if and only if it is closed (Prob. 41), a linear sub
manifold of a Banach space Iff is itself a Banach space if and only if it is closed 
in Iff. For this reason the closed linear manifolds are of particular importance. 
To emphasize this distinction we introduce the following terminology. 

Definition. A linear submanifold jl of a normed space Iff is called a subspace 
of Iff (sometimes, for special emphasis, a closed subspace of Iff) if and only 
if jl is closed in Iff. 

In any normed space Iff the linear submanifolds (0) and Iff are subspaces. 
Moreover, as will be seen below (Prob. P), unless Iff is one-dimensional, there 
are many other subspaces as well. The following results, while easily proved, 
are nonetheless of basic importance. 

Proposition 11.7. The intersection of an arbitrary nonempty collection of 
subspaces of a normed space Iff is again a subspace of Iff. Consequently, 
given an arbitrary subset M of Iff, there exists a smallest subspace ,$I of Iff 
that contains M. 

PROOF. An intersection of linear manifolds in a linear space is a linear mani
fold, and an intersection of closed sets in a topological space is a closed set. 
Hence an intersection of subspaces of Iff is a subspace of Iff. The smallest sub
space of Iff containing a given subset M of Iff is clearly the intersection of the 
collection of all those subs paces of Iff that contain M. (This collection is never 
empty since, as noted above, Iff is a subspace of itself.) 0 

Corollary 11.8. The collection of all subspaces of a normed space is a complete 
lattice in the inclusion ordering. 

Definition and Notation. If M is a subset of a normed space Iff, then the smallest 
subspace of Iff that contains M is called the subspace spanned by M, and 
is denoted by V M. (Thus a sharp distinction is drawn between the linear 
submanifold of Iff generated (algebraically) by M (which need not be closed) 
and the subspace V M spanned by M (which is closed by definition).) A 
subset M of a normed space Iff is a spanning set for Iff, or spans Iff, if 
V M = Iff. If {,$1"}"Er is an indexed family of subs paces of 0, the supremum 
of the family in the complete lattice of subspaces of Iff will be denoted by 
V ,'Er .$1), or, when no confusion can result, simply by V yAy. (Thus 
V ,,,$Ii' = V (Uy,$I).) It would also be appropriate, of course, to write 
1\ i"l(,.for the infimum of the family {.$ll'}' but since I\YEr.$ly = nYErAy 
whenever r is nonempty, this added notational complexity will be avoided. 
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Proposition 11.9. The topological closure 2- of a linear manifold 2 in a 
normed space re is again a linear manifold, and is therefore a subspace of re. 
Bence the subspace spanned by a subset M of re coincides with the closure 
of the linear submani{old generated (algebraically) by M. In particular, the 
supremum V ). eit), of an indexed family {eit y} of subspaces of 8 is the closure 
of the sum Ll' eit), (as defined in Chapter 2). 

PROOF. The second and third assertions are immediate consequences of the 
first. To prove the first, let x and y belong to 2- and let {xn} and {Yn} be 
sequences in 2 such that Xn ~ x and Yn ~ Y (Prop. 4.1). If IJ. and ~ are arbitrary 
complex numbers, then IJ.Xn + ~yn E 2 for all n, and IJ.Xn + ~yn ~ IJ.X + ~y. 
Hence IJ.X + ~y E 2-. 0 

Example H. Each of the Banach spaces (/ p), 1 ~ p ~ + 00, contains the 
sequence of vectors {en}~=o, where en = {bOn' bIn, ... } and bmn denotes, as 
usual, the Kronecker delta. (Cf. Example 2B; the sequence {en} of unit vectors 
will appear often in the sequel, and will consistently be denoted in this way.) 
The linear submanifold of each space (I p) generated algebraically by this 
sequence is the same, namely, the linear space (cp) consisting of all those 
sequences {~n} ~= 0 with the property that there exists a nonnegative integer 
N such that ~n = 0 for n > N. When 1 ~ P < + 00, this linear submanifold 
is dense in (/ p), so the subspace of (t p) spanned by the sequence {en} ~= 0 is 
(/ p) itself. (Hence (/ p) is a separable metric space for 1 < P < + 00; see 
Problem K.) 

In the space (/"J the story is quite different; the subspace of (I aJ spanned 
by the sequence {en} (which is also the closure in (I aJ of the submanifold 
(cp)) coincides with the space (co) of null sequences equipped with the norm 
II Iloc; cf. Example 2D. Thus the sequence {en} ~= 0 is a spanning set in (I p) for 
1 ~ P < + 00, but not in (/ cxJ Indeed, if E and F are any two distinct subsets 
of No, then IIxE - XF II (X, = 1, whence it follows that V,J is not separable as a 
metric space. On the other hand, the collection {XE} of all characteristic 
functions of subsets E of No is readily seen to span (I aJ (We also observe, 
for future reference, that the collection {XJ} of all characteristic functions of 
infinite subsets J of No suffices to span (I Of ).) 

Suppose now that 8 is a normed space and that eit is a subspace of 8. 
Writing [x] for the coset x + eit of the vector x in the quotient space 8/eit, 
we define 

II [x] II = inf II x + z II = infll x - z II. (7) 
ZEJI ZE.,lf 

(See Chapter 2 for basic definitions; that these two expressions for II [x] II 
are really equal follows at once from the fact that eit is a linear manifold.) 
Then it is easy to see that (7) defines a norm on 8/eit. Indeed, since 
{x + z; Z E (.It} and {x + Zo + z; Z E eit} are the same set of vectors for any 
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Zo in oil!, it is clear that the expressions in (7) depend only on the coset [x] and 
not on the representative x. Likewise, the second of the two expressions for 
II [x] II in (7) shows that II [x] II may also be described as the distance d(x, oil!) 
from x to the closed set oil!, so that II [x] II = 0 only when x E A, i.e., when 
[x] = 0 (Prob. 4D). To check that the function defined in (7) has the other 
properties required of a norm is equally easy, and will be left as an exercise. 
In the sequel it is this quotient norm that is understood whenever a quotient 
space is regarded as a normed space. Observe that 

II [x] II ~ II x II (8) 

for every x in g. The quotient norm topology on g /oiI! coincides with the 
quotient topology (see Problem 3H), and the natural projection x ~ [x] is a 
continuous open mapping of g in the norm topology onto g /oiI! in the 
quotient norm topology (see Problem H). The following fact concerning the 
quotient space g / A is considerably less elementary. 

Theorem 11.10. If g is a Banach space and oil! is a subspace of g, then g/.it is 
also a Banach space. 

PROOF. We must show that g/.it is complete. Accordingly, we suppose given 
a Cauchy sequence {[xn]};:'= 1 of cosets in g/.it. As noted (Prob. H) the natural 
projection of g onto g/.it is continuous, so it suffices to construct a con
vergent sequence {x~} in g such that [x~] = [xn] for every n, for then {[xn]} 
will converge to [limn xa Moreover, as always, one may assume that the 
given sequence is not merely Cauchy, but satisfies the stronger condition 

00 00 

I II [:Xn+ 1] - [Xn] II = I II[xn+ 1 - Xn] II < + 00 
n=1 n=1 

(Prob. 4E). But then for each n in N we may select a vector Zn in .it such that 
II Xn+ I - Xn + Zn II < II [xn+ I - xn] II + 1/2n, and it follows that the series 

XI + (X2 - XI + ZI) + ... + (xn+ I - Xn + zn) + ... 
is absolutely convergent, and therefore convergent (Prob. G). This means 
that the sequence {sn = Xn + Ii;; I zJ of partial sums is convergent, and to 
complete the proof we simply define x~ = Sn' 0 

If g and :F are two normed spaces, then it is easy to see that 

II(x,y)11 = Ilxll + Ilyll, (X,y)Eg +:F, 

defines a norm on the algebraic direct sum g + :F (see Chapter 2). The 
space g + :F equipped with this norm will be called the (normed space) 
direct sum of g and :F and will be denoted by 1%. EB I :F. More generally, if 
{fff I, ... , fff n} is any finite sequence of normed spaces, then 

n 

II (x I, ... , xn) II = I II Xi II , 
i=1 
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defines a norm on the algebraic direct sum ~ = ~ I + ... + ~ "' and the result 
of equipping ~ with this norm will be denoted by ~ I E9 1 ... E9 1 ~ II . (For a 
further exploration of this idea, along with some closely related concepts, 
see Problems Rand T.) 

Proposition 11.11. The direct sum ~ I E9 I ... E9 1 ~ II of a finite sequence 
{~I' ... , ~ II} of normed spaces is complete if and only if each space ~i is 
complete, i = 1, ... , n. 

PROOF. A sequence {(X\k), ... , X~k»)}k"= I is Cauchy [convergent] in 
~ I E9 1 ... E9 1 ~lIifand only if each sequence {xjk)}k"= I is Cauchy [convergent] 
in its respective space ~i. 0 

There is an interesting and frequently useful generalization of the concept 
of a normed space. The idea is to weaken radically the homogeneity require
ment in the definition of a norm. Consider a nonnegative function I I on a 
linear space ~ satisfying the following conditions: 

(i) I x I = ° if and only if x = 0, 
(ii") I AX I ~ I x I for every x in C and all complex numbers A such that 

1..1.1 ~ 1, 
(iii) I x + y I ~ I x I + IY I for all x, y in C. 

lt follows at once from (ii") that I AX I = I x I whenever I AI = 1, and there
fore that the function I I is a value on C. Hence p(x, y) = I x - y I defines 
an invariant metric on ~ with respect to which the functions x + y and I x I 
are continuous functions of their arguments (Proposition 11.2). There is no 
reason to suppose, however, that the mapping (a, x) -+ ax is continuous, 
and it is therefore appropriate to impose a further requirement. We shall say 
that I I is a quasinorm on C provided it also satisfies the condition 

(iv) a" -+ 0 implies I anx I -+ 0 

for every null sequence {an} of complex numbers and every x in C. A linear 
space C equipped with a quasinorm will be called a quasinormed space. (A 
quasinorm on a real vector space is defined by requiring (i), (ii"), (iii), and 
(iv) to hold, with real scalars instead of complex ones in (ii") and (iv). A real 
linear space equipped with a quasinorm is a real quasinormed space.) The 
topology induced on C by (the invariant metric defined by) a quasinorm on 
C is called the quasinorm topology. If C is a quasinormed space, we shall con
tinue to use the notation @n[ t&~] for the closed [open] ball in @ with center ° 
and radius r. The following characterization of the invariant metric defined 
by a quasinorm is easily verified and we omit the proof (cf. Proposition 11.4). 

Proposition 11.12. If C is a quasinormed space, then the metric p defined by 
the quasinorm is an invariant metric on p satisfying the condition 

p(AX, AY) ~ p(x, y), (9) 
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Conversely, if P is an invariant metric on a linear space 1% that satisfies 
(9), and if:Xn -+ 0 implies P(:Xnx, 0) -+ 0 jar every vector x in 8; then there 
exists a unique quasinorm I Ip on 1% such that P is defined by I Ip. 

It is an immediate consequence of condition (iv) in the definition of a quasi
norm that the 1% -valued mapping rx -+ :xx is continuous on C for each fixed 
vector x in 1%. Much more is true however. 

Lemma 11.13. If 1% is a quasinormed linear space and :x is a fixed complex 
number, then the dilatation x -+ :xx is a continuous mapping of 1% into itself. 

PROOF. It suffices to show that if I: is a given positive nUlll:ber, then there exists 
a positive number (j such that I x I < (j implies l:xx I < 1:. Moreover, for 
given I: > 0 we know that there exists (j > 0 such that I x I < (j and I y I < (j 

imply I x + y I < I: (since the mapping (x, y) -+ x + y is continuous at (0, 0». 
Hence, in particular, if I x I < (j, then 12x I < 1:. In other words, the very 
special dilatation x -+ 2x is continuous. But then (by induction) all of the 
dilatations x -+ 2nx are continuous. Choose n so that l:x I ~ 2", and for given 
positive I: choose a positive number (j such that I x I < (j implies 12"x I < 1:. 

Then l:xx I = I (rx/2")2"x I ~ 12"x I < I: whenever I x I < (j, and the lemma 
~~~. D 

Proposition 11.14. If 1% is a quasinormed linear space with quasinorm I I, then 
the I%-valued mappings (:x, x) -+ :xx and (x, y) -+ x + yare continuous. 
Likewise, the realfunction x -+ I xl is continuous. Indeed, II x I - I y II ~ 
I x - y I for any vectors x, y in 0. 

PROOF. Since I I is a value; the continuity of the mapping (x, y) -+ x + y 
and the facts concerning the function I I have already been established 
(Prop. 11.2), and these assertions are included here purely for convenience 
of reference. In order to see that the mapping (:x, x) -+ rxx is continuous on 
C x 1%, let us write 

:xx - f3y = (rx - (3)y + (rx - (3)(x - y) + f3(x - y). (10) 

With f3 and y held fixed, it is clear that we can make the first and third sum
mands in the right member of (10) as close to 0 as desired by taking rx suf
ficiently close to f3 and x sufficiently close to y (since rxx is known to be 
continuous in either variable separately by condition (iv) in the definition 
of a quasinorm and the preceding lemma). Moreover, if we simply require 
I rx - f31 ~ 1, then I(rx - (3)(x - y)l ~ I x - y L so the second summand 
can also be made as close to 0 as desired. Thus the mapping (rx, x) -+ rxx is 
continuous at (f3, y), and the proposition is proved. D 

Corollary 11.15. In a quasinormed linear space every translation x -+ x + Xo 

and every dilatation x -+ rxox, rxo =1= 0, is a homeomorphism of the space onto 
itself. 
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Example l. The function f(t) = tl(l + t) is a strictly increasing, continuous 
function on the ray [0, + (0) that vanishes at t = ° and satisfies the condition 

f(s + t) S f(s) + f(t). 
From these observations it follows at once that if I I is a given quasinorm 
on a linear space e, then 

Ixl 
I x I 0 = 1 + I x I' x E e, 

defines a new quasinorm on e. The metric defined on $ by I lois easily seen 
to be equivalent to the metric defined by the original quasinorm I I, so the 
topologies induced by these two quasinorms coincide. Two quasinorms on 
the same linear space that induce the same topology are said to be equivalent. 
Thus the quasinorm I lois equivalent to the given one. (The reader may 
wish to consult Example 4A in connection with this example.) 

Example J. If $1' ... , $ n are quasinormed spaces, then it is easily seen that 
n 

I(x I, ... ,xn)l = L I x;l (11) 

defines a quasinorm on e I + ... + en· Likewise, if {$ n}:~ 0 is an infinite 
sequence of quasinormed spaces, then 

00 00 1 I Xn I 
I{xn}n~ol =Jo2nl + Ixnl (12) 

defines a quasinorm on the full algebraic direct sum InENo + en. Indeed, 
in both the finite case and the infinite case, conditions (i), (ii") and (iii) in the 
definition of a quasinorm are trivial to verify directly (using the construction 
in Example I). To show that condition (iv) holds, one may either argue 
directly, or observe that the invariant metrics defined by the values in the 
left members of (11) and (12) metrize the product topology on 61 + ... + 0 n 

and LnENo + 0n , respectively (see Problem 4C and Example 4A). Thus the 
product topology on any countable product of quasinormed spaces is in
duced by a quasinorm. Similarly, if j{ is a linear submanifold of a quasi
normed space 0, then the relative topology on j{ is induced by a quasinorm 
(simply restrict the quasi norm on rf/ to jt), and so is the quotient topology 
on 0l~ provided o~ is closed (see Problem I). 

It is worth remarking that the construction in this example applies, in 
particular, when the spaces en are normed spaces. Thus, for instance, the 
formula 

I {~n}:~O I = nto 1 ~~I~nl 
defines a quasinorm on the linear space (0) of all complex sequences (Ex. 2D). 
The quasinorm topology on (0) induced by I I coincides with the product 
topology, that is, with the topology of term wise convergence. 
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Example K. Let (X, S, 11,) be a finite measure space (Ch. 7, p.118), let o~ denote 
the linear space of all complex-valued measurable functions on X, and let 
.4 be the quotient space of equivalence classes [fJ of functions in o~, where 
fandg are equivalent ifand only iff = 9 a.e. [,u] (see Chapter 7 for definitions). 
Using the same calculations as in Example I, it is easy to see that 

f If I 
I[fJ 1 = x 1 + I f I d,u, 

defines a quasinorm on 04. Iff and 9 are two functions in o~, and if we write 
Ee = {x EX: If (x) - g(x) I > ,,}, then straightforward computation shows 
that 

t:,u(E£) f If - gl -- < dl1 
1 + ,,- E 1 + If - gl 

r. 

and hence that 

It follows that if f is il function in o~ and {j,,} a sequence of functions in o~, 
then 1 [fJ - [fn] 1 -+ 0 if and only if Un} converges to f in measure (Prob. 
7X). For this reason the invariant metric defined on 04 by the quasinorm 
1 1 is known as the metric of convergence in measure. 

Just as in the case of a normed space, completeness is an important 
property for a quasinormed space to possess. 

Definition. A [real] quasinormed space that is complete as a metric space is 
called a [real] F -space. 

Example L. If {xn} is a sequence in the space ~ of Example I, then {xn} is 
Cauchy [convergent] with respect to the quasinorm 1 10 if and only if it is 
Cauchy [convergent] with respect to the quasinorm 1 I. Thus ~ is an F
space in the quasinorm 1 10 if and only if it was an F -space to begin with. 
Similarly, a sequence {Xk} in either of the direct sums of Example J is Cauchy 
if and only if its is termwise Cauchy. Indeed, it is clear that this is so for the 
quasinorm (11). Likewise, if {X d k= 1 is a Cauchy sequence with respect to the 
quasinorm (12), and if X k = {x~), X~k), ... } for each k, then the coordinate 
sequence {X~k)}k= 1 is Cauchy in ~n for each n. To complete the argument, 
suppose that the sequence {X~k)}k= 1 is Cauchy in ~"' n E No, and let t: be a 
positive number. If N is chosen large enough so that 

(f) 1 " 
2N L: 2" < -2' 

"=N+l 
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then 
N Ie' 

I X k - X m I < n~o I X~k) - x~m) I + ~ 

for all k, m in N, from which it follows at once that there exists a positive in
teger K such that I X k - Xm I < 8 whenever k, m :2 K. It results from this 
analysis (and that in Example J) that if each of the spaces Cn is complete, and 
if {Xk } is a Cauchy sequence with respect to the quasinorm (12), then {Xk } 

is term wise convergent, and therefore convergent with respect to the quasi
norm (12); consequently LnE No + C n is complete. Thus the direct sum of a 
finite or countably infinite number of F-spaces, as constructed in Example J, 
is an F-space. Finally, the space.it in Example K is complete in the quasinorm 
defined there by virtue of the properties of convergence in measure (see 
Problem 7X). 

It is important to know that every normed space can be embedded iso
metrically and isomorphically as a dense linear manifold in a Banach space, 
and likewise that every quasinormed space can be similarly embedded in an 
F-space. 

Theorem 11.16. If C is a quasinormed space, then there exists an F -space 
i and a linear isomorphism ep of C onto a dense linear manifold ep(C) in i 
such that Icp(x)l = I x I for every x in C. Furthermore, the pair (J", cp) 
is unique in the following sense: If J" 1 is another F -space and CP1 a linear 
isomorphism of C into J\ possessing the properties that epl(0'")- = il 
and I epl(X) I = Ixl for every x in C, then there exists a unique linear iso
morphism <I> of j onto j 1 such that I <I>(y) I = I y I for every y in j and such 
that <I> 0 ep = ep l' Finally, if the quasinorm on C is a norm (so that C is a 
normed space), then i is a Banach space. 

PROOF. Suppose first that (i, ep) and (81) cpd are two pairs satisfying the stated 
conditions. Setting <1>o(ep(x)) = epl(X), x E Iff, defines a linear isomorphism 
<1>0 of ep(C) onto epl (Iff) which is simultaneously an isometry of ep(lff) onto 
cp 1 (Iff). Hence <1>0 admits a unique isometric extension <1> mapping 8 onto 81 
(Prob. 4H), and <I> is also a linear transformation (and therefore a linear space 
isomorphism) because both <1> and the linear operations in i and 81 are 
continuous. Thus <I> exists and is uniquely determined by (i, ep) and (i b ep 1)' 

To complete the proof, consider the linear space Ct; obtained by defining 
linear operations termwise on the set of all Cauchy sequences {x n} ~= 1 of 
vectors in C. If {x n} is an element of !fl, then it is readily verified that the 
numerical sequence {I Xn I } is Cauchy and therefore convergent in IR, and 
we define 

n 

for every sequence {xn} in !fl. A brief check shows that Vo is nonnegative and 
satisfies conditions (ii") and (iii) in the definition of a quasinorm (and that 
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Uo also satisfies condition (iii) in the definition of a norm when I I is a norm 
on c&'} It follows from these observations that the set 

,41 = {{xn} Ert: UO({xn}) = O} 

is a linear manifold in g. Moreover, if two sequences {xn} and {Yn} in rt are 
congruent modulo ,41, that is, if there exists a sequence {zn} in .41 such that 
{xn} = {Yn + zn}, then UO({xn}) S UO({Yn}) + UO({zn}) = UO({Yn}). Similarly 
UO({Yn}) S uo({xn}), of course, so UO({xn}) = uo( {Yn}). Hence we may, and do, 
define 

where [{xn}] denotes the coset {xn} + .41 of {xn} in the quotient vector space 
rt j,.ft. Clearly I lois a value on rt /.41 that satisfies condition (ii") in the defini
tion of a quasinorm. Hence it is only necessary to verify condition (iv) in that 
definition to show that I lois a quasinorm on rt /.41. This we shall do by show
ing that if {C(k}k= 1 is a null sequence in C, if {Xn},':')= 1 is a Cauchy sequence in 
g, and if £ > 0, then there exists a positive integer K such that limn I C(kXn I S £ 

for all k ;:::: K. To this end we first choose a positive integer N such that 
I Xn - XN I < £/2 for all n ;:::: N, and then a second positive integer K such 
that I C(kXN I < £/2 and I C(k lsI for all k ;:::: K. Then for k ;:::: K we have 

£ £ 
lC(kXnl S lC(kXNI + IXn - xNI < 2 + 2 = £ 

for all n ;:::: N, so that limn I C(kXn I s £. (In the event that I I is a norm on g 
it is immediate that I lois also a norm on C(jj.4f, and the last portion of the 
proof is unnecessary.) 

F or each x in If we next define <p(x) to be the coset [{x, x, ... }] of the con
stant sequence {x, x, ... }. It is clear that <p is a linear transformation of g 
into C(jj,4f and that I <p(x) I 0 = I x I for all vectors x. Hence it suffices to 
prove that C6/.4f is complete with respect to the quasinorm I 10 and that 
<p(c&'') is dense in Cfij.1t (for then the proof may be completed by defining j to 
be C6j,4t). To see this we note that if {xn} E rt and if £ > 0, then there exists a 
positive integer N such that I Xn - x", I < £ for all m, n ;:::: N, from which it 
follows that I [{xn}] - <p(x",)1 0 s £ for all m ;:::: N. Thus lim", <p(xm ) = 
[{xn}] in rt/.4f. This shows, in particular, that <p(g) is indeed dense in rt/.4f. 
But also, if {xn} is any sequence in g such that the sequence {<p(xn)} is Cauchy 
in C(j/.4f, then {xn} is itself Cauchy in g (since <p is an isometry), and this in 
turn implies that {<p(xn)} converges in CfI/.4I (to [(xn}]). Since <p(g) is dense 
in rtj,4f, it follows that rtj,4f is complete (Prob. 4J), and the theorem is 
proved. 0 

We observe that this result can be paraphrased by saying that the com
pletion of a quasinormed [normed] space as a metric space can be taken to be 
a q uasinormed [normed] space, and therefore an F -space [Banach space]. 
In any event, the (essentially unique) space J of Theorem 11.16 is called 
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the completion of fJ. We shall regularly adopt the common practice of 
using the isometric isomorphism cp to identify fJ with cp(fJ). Thus we shall 
ordinarily regard fJ as a dense linear submanifold of its completion l (The 
reader may wish to compare the above argument with that sketched in Prob
lems 4H-4L.) 

Up to this point we have concerned ourselves exclusively with linear 
spaces that are equipped with some sort of invariant metric. Consideration 
of the role played by the function Vo in the proof of Theorem 11.16 suggests 
the desirability of considering yet other functions on linear spaces that, like 
quasinorms, are similar to but more general than norms, and experience 
shows that this is, indeed, frequently useful. 

Definition. A nonnegative real-valued function a on a [real] linear space fJ 
is a pseudonorm on g if it satisfies the following conditions: 

(i') a(O) = 0, 
(iii) a(Ax) = I A I a(x) for every x in g and every [real] scalar A, 
(iii) a(x + y) :::; a(x) + a(y) for all x, y in g. 

It is readily seen that if a is a pseudonorm on a linear space g, then 

Po(x, y) = a(x - y), X,yE$', 

defines a pseudo metric on fJ (Ch. 4, p. 56) that is invariant, i.e., satisfies the 
condition 

Po(x + z, y + z) = Po(x, y) 

for all vectors x, y, z in g". Conversely, it is clear that if Po is an invariant 
pseudometric on g, then a(x) = Po(x, 0) defines a pseudonorm on IS (that 
in turn defines the given pseudometric) if and only if Po satisfies the con
dition 

PO(Ax, AY) = IAlpo(x, y), 

(cf. Proposition 11.4). Furthermore, it is also easy to see that the topology 
induced by the pseudometric defined by a pseudonorm a on g (this topology 
is said to be induced by a) turns g into a topological space in such a way 
that the g-valued mappings (x, y) ~ x + y and (a, x) ~ ax are continuous 
on g x g and IC x g, respectively. Likewise the function a satisfies the 
inequality la(x) - a(y) I :::; a(x - y) for all vectors x, y in g, and is therefore 
continuous with respect to this topology (cf. Proposition 11.5). All of these 
facts work out exactly as in the earlier situation in which we dealt with norms, 
and to derive them in detail would be repetitious. The novel feature of a 
pseudonorm a is the possible existence of vectors x#-O such that a(x) = O. 
The set of vectors x with the property that a(x) = 0 is called the zero space 
with respect to a. Concerning this space we have the following elementary 
but useful result. 
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Proposition 11.17. Let 0' be a pseudonorm on a linear space iff, and let :!Z 
denote the zero space with respect to 0'. Then, in the topology induced on iff 
by 0', :!Z is a closed linear manifold in iff coinciding with the closure (0) - of 
the trivial linear manifold (0). If x and yare congruent vectors modulo :!Z 
(that is, if x - Y E :!Z), then O'(x) = O'(Y). Hence, if for each vector x in iff we 
denote by x the coset x + :!Z, then II x II = O'(x) defines unambiguously a 
nonnegative function on the quotient space g = iff/f!l', and this function is a 
norm on J. (The norm II II is called the norm associated with 0', and if equipped 
with the associated norm II II is called the normed space associated with the 
given space iff and pseudonorm 0'.) Finally, the metric defined by the associated 
norm II II coincides with the metric associated with the invariant pseudo
metric defined by 0' (Prob. 4G). 

PROOF. That :!Z is a linear manifold in iff is clear from the defining properties 
of a pseudonorm. If x ¢:!Z, then d = O'(x) > 0, and if O'(x - y) < d/2, then 
O'(Y) > d/2 by the triangle inequality. Thus the set {y E iff: O'(x - y) < d/2} 
is a neighborhood of x (in the topology induced by 0') that is disjoint from :!Z. 
Hence the complement iff\:!Z is open, and :!Z is closed, in that topology. 
Moreover, if Z E:!Z and if e > 0, then O'(z - 0) = O'(z) = 0 < e, so every neigh
borhood of Z in the topology induced by 0' contains O. Thus:!Z is contained in 
(0) - and, being closed, must equal (0) -. The rest of the proof is completely 
routine, and is omitted. 0 

Example M. Let fF be a normed space, and let T be a linear transformation 
of a linear space iff into fF. If we define 

O'(x) = II Tx II, x E 8, 

then it is a simple matter to verify that 0' is a pseudonorm on iff. The zero 
space of 0' is just the null space X( T) (Ch. 2, p. 18). Thus 0' is a norm if and only 
if T is one-to-one. (This example turns out to be universal. If 0' is a given 
pseudonorm on a linear space iff, if II II is the associated norm on S, and if 
n denotes the natural projection of iff onto g, then O'(x) = II n(x) II for every 
x in iff.) 

There are still other generalizations of the foregoing concepts that merit 
investigation. One idea is to omit any reference, direct or indirect, to any sort 
of metric or pseudo metric, and simply consider linear spaces that are 
equipped with a useful, compatible topology. The resulting notion of a 
topological linear space will not play a large or central role in this book, 
but it is certainly important in its own right, and is valuable for us because 
it unifies and clarifies the relations between those more special types of linear 
spaces in which we shall be principally interested. 

Definition. A topology on a [real] linear space ~ is called a linear topology 
on <ff if the mappings (a, x) -t ax and (x, y) -t X + Y of [IR x~] C x ~ 
and rff x rff, respectively, into rff are both continuous. A [real] linear space 
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equipped with a linear topology is a [real] topological linear space or 
[real] topological vector space. (If a (complex) topological linear space is 
regarded as a real linear space by refusing to multiply by any but real 
scalars, then it is clear that it is also a real topological linear space with 
respect to the given topology.) 

In this terminology it is the substance of Proposition 11.5 that a normed 
space is a topological linear space in its norm topology, and likewise the 
substance of Proposition 11.14 that a quasinormed space is a topological 
linear space in its quasinorm topology. The following proposition is an 
immediate consequence of the definition of a topological linear space. 

Proposition 11.18. If cff is a topological linear space, then all translations 
x -- x + Xo and all dilatations x -- ao x (lXo =1= 0) are homeomorphisms 
0{6" onto itself Thus, in particular, Xo + V is a neighborhood of Xo in cff if 
and only if V is a neighborhood ofO. 

Corollary 11.19. The weight of a topological linear space (Prob. 3A) is the 
same at everyone of its points. In particular, a topological linear space cff 
satisfies the first axiom of a countability if and only if there exists a countable 
neighborhood base at the origin 0 in cff. 

PROOF. According to Proposition 11.18, if Xo is any vector in cff, then 11" is a 
neighborhood base at the origin 0 if and only if Xo + 1/ = {xo + V: V E 1/} 
is a neighborhood base at Xo' D 

Definition. A topological linear space cff is said to be separated if cff is Hausdorff 
as a topological space. 

Proposition 11.20. The following conditions are equivalent for an arbitrary 
topological linear space cff : 

(i) cff is separated, 
(ii) Every singleton in cff is a closed set, 

(iii) At least one singleton in cff is a closed set, 
(iv) The origin 0 is not in the closure {x} - of any singleton {x}, x =1= O. 

PROOF. It is clear that (i) implies (ii) and that (ii) implies (iv). Moreover, 
Proposition 11.18 shows that (ii) and (iii) are equivalent in every topological 
linear space. To complete the proof, suppose (iv) holds and let x be a vector 
in cff such that x =1= O. Then there exists a neighborhood V of 0 such that 
x ~ V. Let W be a neighborhood of 0 such that W - W (= {u - v: u, v E W}) 
is contained in V. (Such a neighborhood exists because the mapping 
(u, v) -- u - v is continuous at (0, 0); cf. Problem L.) Then Wand x + W 
are disjoint neighborhoods of 0 and x respectively, and it follows from 
Proposition 11.18 that cff is separated. D 
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If ,g is a topological linear space and 2 is a linear manifold in ,g, then 
it is easily seen that 2 is itself a topological linear space in the relative 
topology. In this context the following elementary result is valid. 

Proposition 11.21. If 2 is a linear manifold in a topological linear space ,g, 
then 2- is also a linear manifold in ,g. 

PROOF. Let x and y be vectors in 2 - and suppose V is a neighborhood of 
x + y. There exist neighborhoods Wl and W2 of x and y, respectively, such 
that Wl + W2 c V. Since both Wl and W2 contain vectors belonging to 2, 
this shows that V contains a vector belonging to 2, and it follows that 
x + YE2-. Similarly, one shows that 2- is closed with respect to multi
plication by scalars. 0 

Proposition 11.22. Let ,g be a topological linear space and let At be a linear 
submanifold of ,g. Then the quotient topology on ,g/At (Prob. 3H) is a 
linear topology with the property that the natural projection n of,g onto 
,g/j/ is both open and continuous. The quotient space ,g/j{ (consisting of 
the quotient linear space ,g/At equipped with the quotient topology) is 
separated if and only if At is closed in ,g. 

PROOF. It is clear in general from the definition that the natural projection n is 
continuous. (Recall that a set U in ,g / At is only said to be open in the quotient 
topology when n-l(U) is open in ,g.) In the case at hand, if A is an arbitrary 
subset of ,g, then n-l(n(A» coincides with the set {x + Z : x E A, Z EAt}, 
and this set can be written either as a union of cosets (n-1(n(A» = 

UXEAX + At) or as a union of translates of A (n-1(n(A» = UZE.A{Z + A). 
The latter representation shows that n- 1(n(U» is open in ,g along with 
U, and hence that n is an open mapping. 

To see that the quotient topology is also a linear topology, let x and y 
be vectors in ,g, and suppose V is a neighborhood in ,g/At of [x] + [y] = 
[x + y]. Then n- 1(V) is a neighborhood of x + yin ,g, so there exist neigh
borhoods Wl and W2 of x and y, respectively, such that WI + W2 c n- 1(V). 
Since n is open, it follows that n(Wl ) and n(W2 ) are neighborhoods of [x] 
and [y], respectively, in ,g/At, and 

n(Wl ) + n(W2 ) = n(WI + W2 ) c n(n- 1(V» = V. 

Thus vector addition is continuous with respect to the quotient topology 
on,g /At, and an entirely similar argument shows that the mapping (a, x) ~ ax 
is continuous too. 

To complete the proof, we note first that if ,g/At is separated, then the 
singleton {[OJ} is closed in tff'/vIt and n-l({[O]}) = vIt. Thus the condition 
is necessary. On the other hand, if At is closed in ,g, then the complement 
,g\At is open, and this set projects onto the complement of {[OJ}. Since n 
is open, it follows that ,g/At is separated. Thus the condition is also suf
ficient. 0 
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Corollary 11.23. If C is an arbitrary topological linear space, then :!Z = (0)
is a closed linear submanifold of C with the property that the quotient space 
Cj:!Z is separated. (The linear man(fold :!Z is called the zero space of C; 
the space C j:!Z is called the separated space associated with C, and is custom
arily denoted by tff. Cf Proposition 11.17.) 

Regarding products of topological linear spaces, we have the following 
sweeping, but not very fruitful, result. The proof is elementary, and is left 
as an exercise (Prob. R). 

Proposition 11.24. If {CY}YEr is an arbitrary indexed family of topological 
vector spaces, then the product topology (Ex. 3N) is a linear topology on 
the full algebraic direct sum of the given family. (The full algebraic direct 
sum of the indexed family {C Y} equipped with the product topology is usually 
called the product of the family.) 

It is frequently necessary to deal simultaneously with several linear 
topologies on a space. In this connection the following easy result is of basic 
importance. 

Proposition 11.25. If C is a linear space and {.9"'l'}YEr is a family of linear 
topologies on C, then the topology .9"' = sup), .9"')' (Prob. 3G) is also a linear 
topology on C. 

PROOF. Let x and y be vectors in C, and let 

U=U1n .. ·nVn 

be a typical basic open set in .9"' containing the vector x + y, where U i E .9"' Y,' 

i = 1, ... , n (Ex. 3M). Then for each index i there are open sets J'i and Wi 
in .9"'Yi such that x E J'i, y E Wi, and J'i + Wi C Vi' But then V = V1 n ... n v" 
and W = W1 n ... n w,. are open sets in the topology .9"' containing x and 
y, respectively, and V + W is contained in V. This shows that addition is 
continuous as a mapping of C x C into C with respect to .9"'. An entirely 
similar argument shows that the mapping (IX, x) ~ x is also continuous, and 
the result follows, at least when the index set r is nonempty. The supremum 
of the empty family of topologies is the indiscrete topology on C, clearly 
a linear topology. 0 

The collections of linear topologies with which we shall be concerned will 
frequently be induced by some corresponding collection of pseudonorms, 
and the linear topologies that are obtained in this way are of particular 
importance. We conclude this chapter with a study of some oftheir properties. 
(A second, independent, characterization of this class of topological vector 
spaces will be given in Chapter 14.) Our first result in this direction facilitates 
the comparison of a pseudonorm topology with a given linear topology. 
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Proposition 11.26. Let rff be a topological vector space with linear topology 
,~ and let a be a pseudonorm on rff. The following conditions are equivalent: 

(i) The topology :Y refines the topology induced by a, 
(ii) For an arbitrary positive number e there exists in C a neighborhood 

Vof 0 with respect to :Y such that V c {x E C: a(x) < e}, 
(iii) The pseudo norm a is continuous on C with respect to :Y. 

PROOF. Since the ball {x E C : a(x) < e} is a neighborhood of 0 in the topology 
induced by a, it is clear that (i) implies (ii). To show that (ii) implies (iii) we 
observe that if x and Xo are vectors in C, then I a(x) - a(xo) I :::;; a(x - xo). 
Hence if V is a neighborhood of 0 with respect to :Y that is contained in 
{xEC:a(x) < e}, then XEXo + V implies that la(x) - a(xo) I < e. Since e 
is arbitrary, this shows that a is continuous at the arbitrary vector Xo, and 
hence that a is continuous on C with respect to :Y. Finally, to see that (iii) 
implies (i), let e be a positive number, and suppose y E {x E C: a(x) < e}. 
If (iii) holds, then there exists a neighborhood V of 0 with respect to :Y such 
that if Z E Y + V then I a(y) - a(z) I < e - a(y), and therefore a(z) < e. 
Thus {x E C: a(x) < e} belongs to :Y, and since both that topology and the 
one induced by a are linear, the result follows. D 

Suppose now that there is given an indexed family {ar}r Ef of pseudo
norms on a linear space C. According to Proposition 11.25, the supremum 
of the family of linear topologies induced by the various pseudonorms ay 
is a linear topology on C, and according to Proposition 11.26, this topology 
may also be characterized as the coarsest linear topology on tff with respect 
to which all of the pseudonorms a r are continuous. 

Definition. If {aY}YEf is a family of pseudo norms on a linear space C, then the 
supremum of the collection of linear topologies induced by them is called 
the topology induced by the given family ray}. 

The following facts are easy consequences of the foregoing definition, 
Proposition 3.20, and Example 3M. 

Proposition 11.27. If {aY})'Ef is an indexed family of pseudo norms on a linear 
space C, then the collection of all sets of the form 

U(Yl, ... ,Yn; e) = {XEC: a),/x) < e, i = 1, ... ,n}, 

where {y 10 ••• , Y n} runs over all finite subsets of rand e runs independently 
over all positive numbers, forms a base of open neighborhoods of 0 in the 
topology induced on C by the family {aJ, and the collection of all translates 
xo + U(YI, ... , Yn; e), Xo E C, of these sets forms a base for that topology. 
Moreover, if {x;.} is a net in C, then {x .. } converges to a limit x in the topology 
induced on C by the family {aJ if and only if lim .. ay(x - x .. ) = Of or every 
index y. 
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PROOF. According to Example 3M, the collection of all finite intersections of 
the form 

V = {x E tt: IT;,,(x - Xl) < el} n··· n {X E tt: IT).,,(x - xn) < en} 

constitutes a base for the topology induced on tt by the family {IT). To prove 
that the collection of all translates Xo + U(]ib"" ]in; e) also forms a base for 
this topology, it suffices to show that if Xo E V, then there exists a positive 
number r. such that the set 

W,= {XEI&":ITi'i(X - xo) < r., i = 1, ... ,n} 

is contained in V (since W, = Xo + U(]il, ... , ]in; e)). To this end, suppose 
Xo E V and let 6j = ITii(X O - Xj), i = 1, ... , n. Then i5 j < f. j, so e = 
infl <j<n {E j - i5J is positive, and if X E w" then 

i = 1, ... , n, 

so X E V and therefore W, c V. The assertion concerning a neighborhood 
base at 0 follows from this same calculation, and the assertion concerning 
convergence of nets is a consequence of Proposition 3.20. D 

Definition. A family {IT)"} of pseudonorms on a linear space I&" is said to be 
separating on tt if for each vector x =j: 0 in 6" there is a pseudonorm IT .. 
in the family such that IT/x) =j: O. 

Example N. Let I&" be a linear space, let :l' be a normed space, and let {~,} be 
an indexed family of linear transformations of I&" into :l'. If for each index ]i 

we write IT), for the pseudonorm IT/x) = II ~,x II, x E I&" (Ex. M), then the family 
{IT y} is separating on I&" when and only when the family {~,} of linear trans
formations is separating (Ex. 3R). 

Proposition 11.28. Let I&" be a vector space, and let {IT) be an indexed family 
of pseudo norms on 1&". Then the intersection 

AI = n {x E 1&": IT/x) = O} 
, 

is the zero space for the topology induced on I&" by the family {IT)"}. In particu
lar, the latter topology is separated if and only if the family {IT.)} is separating. 

PROOF. It is clear that AI is a linear manifold in I&" and that AI is contained 
in the zero space :?L = (0) - (see Proposition 11.17 and Corollary 11.23). 
If Xo ¢ .Af', and if, say, ITrCxo) = d > 0, then Xo + {x E 1&": IT),(x) < d/2} is a 
neighborhood of Xo in the topology induced on Iff by {IT)"} that does not 
contain 0, so Xo ¢ :?L. D 

It is important to note that the collection of all pseudonorms on a given 
linear space is a partially ordered set in the ordinary ordering of real-valued 
functions. In this connection we make the following elementary observation, 
an immediate Gonsequence of Proposition 11.26. 
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Proposition 11.29. If a and rare pseudonorms on a linear space ~, and if 
a ~ r, then the topology induced on ~ by r refines the one induced by a. 

If a and r are two pseudonorms on a linear space ~, then a trivial calcula
tion discloses that a + r and a v r are also pseudonorms. This observation 
clarifies the first assertion of the next result. 

Proposition 11.30. The collection of all pseudo norms on a given linear space 
~ is a directed set in the usual ordering of real-valued functions. If a I, ... , an 
are pseudo norms on ~, then both a I + ... + an and a I v ... van are 
pseudonorms that dominate aI' ... , an in that ordering. If flj denotes the 
topology induced on Iff by a io i = 1, ... , n, then both al + ... + an and 
al v··· v aninducethetopologyfl = fll v··· v fin. 

PROOF. As noted above, it is trivial to verify that a I + ... + an and 
a I v ... van are pseudonorms, and it is visible that they both dominate 
the given pseudonorms. Hence, by the foregoing proposition, both 
a I + ... + an and a I v ... van induce topologies on ~ that refine fl. 
Moreover, if s is a positive number, and if alx) < sin, i = 1, ... , n (equiva
lently, if x belongs to the intersection of the balls {x E Iff : aj(x) < f.ln}), then 
al(x) v .,. V an(x) ~ al(x) + ... + an(x) < s. Thus both pseudo norms 
are continuous with respect to fI, and the proof is complete by virtue of 
Proposition 11.26. D 

Definition. An indexed family fay} of pseudonorms on a vector space ~ is 
said to be saturated if it is a directed subset ofthe directed set of all pseudo
norms on ~, that is, if for any two pseudonorms all and aYl in the family, 
there is a a)' in the family such that ar, ~ ay, i = 1,2. 

Example O. Let ~ be a topological linear space whose topology is induced by 
an indexed family {ay} of pseudonorms, and let j{ be a linear submani
fold of ~. Each of the pseudonorms a~ obtained by setting 

a;(x) = inf a/x + z), XE~, 
ZEAt 

is continuous on 8/j! in the quotient topology (see Problem H), so the 
topology fI' induced on ~j.~ by the family {a;} is refined by the quotient 
topology according to Proposition 11.26. If the family {ay} is saturated, 
then it is readily seen that fI' coincides with the quotient topology. (If the 
requirement of saturation is not imposed, these two topologies may well be 
different. Consider the pair of pseudonorms 

a(~, 17) = I~I and r(~, 17) = 1171 

on (:2 with <~ = {(~, 1]): ~ = 1]}.) It should be remarked that the restrictions 
to <~ of the pseudonorms ay always induce the relative topology on .A, no 
matter whether the family {a y} is saturated or not. 
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The following result is an immediate consequence of Proposition 11.27. 

Proposition 11.31. Let {aY}YEr be a saturatedfamily of pseudo norms ona linear 
space lft. Then a base of neighborhoods of 0 in the topology induced on lft by 
the family is provided by the collection of open balls {x E lft: a/x) < E} (or 
by the collection of all closed balls {x E lft: a/x) ~ E}), Y E r, E > O. 

Note. If, starting from an arbitrary family {aJ of pseudonorms on a vector 
space @, we simply adjoin to that family the sums (or suprema) of all of its 
finite subsets, we obtain a larger saturated family that induces the same 
topology on lft as did the given family {ay}. Thus one may always assume, 
without loss of generality, that a given family of pseudonorms is saturated 
whenever that is convenient. 

We close this discussion with a useful criterion for the metrizability 
of a topology induced by a family of pseudonorms. (For a more general 
criterion for the metrizability of a linear topology see Problem Y.) 

Proposition 11.32. Let {a y} be a separating indexed family of pseudo norms on 
a linear space lft and let :Y denote the topology induced on lft by {a y}. If 
the family {aJ is countably determined (Prob. IP), then :Y is metrizable, 
and is, in fact, induced by a (suitably constructed) quasinorm. (A topological 
vector space whose topology is induced by a quasinorm is said to be quasi
normable.) Conversely, if :Y is metrizable, then a countable subfamily of 
the family {a y} suffices to induce .cY. 

PROOF. Suppose the family {a Y} is countably determined, and let the sequence 
{an = ai.J~= 1 be cofinal in {ay}, so that the topology induced on lft by the 
sequence {an} coincides with :Y (Prop. 11.29). Define 

Ixl = f ~ lTn(x) , xElft. 
n= 1 2n 1 + lTnCx) 

Ifx i= 0 in lft then a/x) > 0 for some index y, and if ay ~ aYm' then am(x) > 0 
and therefore I x I > O. Hence I I is a value on lft. Moreover, if {xp };'= 1 is a 
sequence in lft such that limp lTn(x p) = 0 for every positive integer n, and if 
E is a positive number, then we can choose a positive integer K such that 
1/2K = L~=K+ 1 1/2n < E/2, and then a second positive integer P such that 

i ~ an(xp) < ~ 
n=l 2n 1 + an(xp) 2 

for every p > P. Hence I xp I < E/2 + E/2 = E for all p > P, and it follows 
that limp IXpl = O. In particular, if {lXp };'=l is a null sequence in IC, then 
IlXpx I ~ 0 for each fixed vector x in lft, which shows that I I is a quasinorm. 
To see that the linear topology induced by I I coincides with that induced 
by the sequence {lTn} (and therefore with :Y), we note first that if I x I < 
E/2n(1 + E), then lTn(x) < E. From this it follows at once that the topology 
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induced by I I refines :Y (see Proposition 11.26). Next, let 8 be a positive 
number, and, as above, choose a positive integer K such that 1/2K < 8/2. 
If a n(x) < £/2K, n = 1, ... , K (i.e., if x belongs to the intersection of the balls 
{x E ~: an(x) < £/2K}, n = 1, ... , K), then I x I < £/2 + £/2 = £. Thus 
every neighborhood of 0 with respect to I I contains a neighborhood of 0 
in the topology:Y, and we have proved that:Y is the topology induced by I I. 

To go the other way, suppose :Y is metrizable, and let { Un}' be a countable 
neighborhood base at 0 with respect to :Y. For each n there exists a finite 
subset Dn of r and a positive number £n such that 

and if we set r 0 = Un Dn , then the countable subfamily {a;l l' E r 0 induces :Y. 
o 

PROBLEMS 

A. Verify inequality (3) of Example B. (Hint: One may use the techniques of elementary 
calculus to show that if c > 0, then the function cu - uP/p is bounded above on the 
ray u ~ 0, and has maximum cq/q there. Alternatively, (3) may be verified by means 
of Lagrange multipliers.) 

B. Verify the Holder inequality for the case in which a and b belong to (I p) and (I q), 
respectively (cf. (4», and use that result to derive the Minkowski inequality. (Hint: 
Since p exceeds one, we may write 

where, of course, p - 1 > 0.) 

C. Show that if 1 :-:;; p < p' < + 00, then (Ip) is a dense linear submanifold of (I p.). 
Conclude from this fact that the normed space obtained by equipping (I p) with the 
norm II II p' is not complete. 

D. Let X be an arbitrary nonempty topological space, let Cfo heX) denote the linear space 
of all bounded, continuous, complex-valued functions on X, and for eachfin rcb(X) 
set II f II C1c = SUPxEX I f(x) I· Show that with this definition rcb(X) becomes a Banach 
space. (Just as in the special case of a compact Hausdorff space X, where rcb(X) = 

rc(X) (Ex. F), this norm is known as the" sup norm ".) More generally, if,g is a given 
normed space, we write rc b(X; ,g) for the linear space of all bounded, continuous, 
,g-valued mappings on X, and for each <I> in rcb(X; ,g) we set II <I> II 00 = SUPXEX II <I>(x) II. 
Show that rcb(X; ,g) is a normed space, and that rcb(X; ,g) is a Banach space when 
and only when ,g is complete. Show also that if X 0 is a topological space obtained 
by replacing the given topology on X by some coarser topology, then rc b(X 0; ,g) is 
a subspace of rcb(X; ,g). 
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It is easily seen that the construction employed in Example G goes through 
without change in the Banach space ~b(X) provided only that the topolo
gical space X is normal so that Urysohn's lemma may be invoked. Hence 
the Tietze extension theorem is valid for bounded functions defined and 
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continuous on closed subsets of a normal space X, and, indeed, it is this 
more general result that is commonly known in the literature as the 
Tietze extension theorem. 

E. If X is an arbitrary nonempty set, then the space ~(X) of all bounded complex
valued functions on X is a Banach space in the sup norm. (cf. Problem 40). If X is a 
topological space, then the space if, heX) defined in Problem 0 is a subspace of /?8(X). 
Suppose now that X is a metric space. Show that the uniformly continuous functions 
in ~(X) form a linear manifold in ~(X). Show, likewise, that the same is true of the 
Lipschitzian functions in ~(X) (cf. Problem 4F). Are these linear manifolds closed? 

F. Consider the collection CC(k) = CC(k)([a, b]) of all those complex-valued functions 

I on the closed interval [a, b], a < b, that possess k continuous derivatives 
!"!,,, ... ,Pk). (See Example 2J; recall that we use right derivatives at a and left 
derivatives at b. By convention CC(O) coincides with CC([a, b ]).) Show that for every 
positive integer k the space CC(k) is a dense linear submanifold ofCC(O). Show also that 
in the norm 

II I II (k) = II! II oc + II !'II 00 + " . + II I(k) II oc 

CC(k) becomes a Banach space in its own right. 

G. (i) If {Xn};,"= 1 is an infinite sequence of elements of a normed space ic, then we say 
that the infinite series L;,"= 1 xn has sum s, or converges to s (notation: S = L;,"= 1 Xn), 
if s is the limit of the sequence {sn = D= 1 xd~= 1 of partial sums. Show that in a 
Banach space every absolutely convergent series is convergent. That is, show that 
if {Xn};,"= 1 is a sequence of vectors in a Banach space ic with the property that 
Ln II Xn II < + 00, then the series L;,"= 1 xn is convergent in ic. Show also that if the 
series L~= 1 xn is absolutely convergent, then 

(ii) More generally, suppose that g is a linear space that is complete with respect to 
an arbitrary invariant metric p, and let v denote the associated value on ic 
(v(x) = p(x, 0), x E iC; see Proposition 11.1). Show that if {xn };,"= 1 is a sequence 
of vectors in ic such that Ln v(xn)'< + oc, then the infinite series L,;"= 1 Xn is 
convergent in ic, that is, show that the sequence of partial sums is convergent 
in ic to some sum s (notation: s = L,;"= I xn). Show also that in this case 

H. (i) Let (J be a pseudonorm on a linear space ~, let -If be an arbitrary linear manifold 
in $, and let [x] denote the coset of x modulo .1/1. Show that 

(J'([X]) = inf (J(x + z), x E ic, 
=E-_-It 

defines a pseudonorm on the quotient space @"/,I/I, and that 

n({XE$ : (J(x) < r}) = {[X] EiC/,I/I:(J'([x]) < r} 

for every positive real number r (where n denotes the natural projection of 6 
onto g /,1/1). Conclude that n is both open and continuous with respect to the 
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topologies on tE and tE/ull induced by (J and (J', respectively, and that the latter 
topology coincides with the quotient topology on grit (Prob. 3H). Show, 
finally, that (J' is a norm on g rlll when and only when ./11 is closed in the topology 
induced on If by (J. 

(ii) Conclude, in particular, that if If is a normed space and .;/1 is a subspace of g, 
then the function defined on Ifrlt in (7) is a norm on If/II. 

I. (Generalization and converse of Theorem 11.10) Let v be a value on a linear space 
If, let uIt be a linear submanifold of If that is closed with respect to the invariant 
metric defined by v, and let [x] denote the coset in If/ult of a vector x in If. Show that 

v'([x]) = inf vex + z), (13) 
= E,;(1 

defines a value on If/uIt, and verify that If is complete if and only if uIt and If/ult 
are both complete (with respect to the metrics defined by v and v', respectively). 
(Hint: To go one way, just follow the proof of Theorem 11.10. To go the other way, 
show first that if {x n} is a Cauchy sequence in If, then {[x n]} is also a Cauchy 
sequence in If /uIt, and hence that there exists a vector y in If such that [xn] --> [y] 
in If / uIt, assuming that the latter is complete. The balance of the argument consists 
in employing the completeness of uIt to find a vector z in uIt such that Xn --> y + z; 
use (13).) Verify, in addition, that if v is a quasi norm on tE, then v' is a quasi norm 
on IS/.fl. 

J. Show that if :t? is a one-dimensional linear space, then any two norms on :t? are 
simply multiples of one another, and use this fact to prove that every one-dimen
sional normed space is complete and that every linear functional on a one-dimen
sional normed space is continuous. Conclude that every finite dimensional linear 
submanifold of a normed space is complete, and therefore closed in that space. 
Prove also that every linear functional on a finite dimensional normed space is 
continuous. (Hint: Use the two preceding problems, and recall that iff is a linear 
functional on a linear space If, then dim (o'/.%(f)) ::;; 1.) Show, finally, that any 
two norms on the same finite dimensional linear space are equivalent. (Hint: If 
X = {x 1, ... , xn} is an ordered basis for a normed space ,g, then the mapping that 
assigns to every vector in If its n-tuple of coordinates with respect to X is a homeo
morphism of If onto e.) 

K. An important property that a metric space mayor may not possess is that of 
separability (Ch. 3, p. 33). Show that for a normed space If the following conditions 
are equivalent: 
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(i) If is separable as a metric space, 
(ii) There exists a dense linear submanifold of If having Hamel dimension no greater 

than ~o, 
(iii) There exists a countable set of vectors in tE' that spans If. 

Show also that if If is a separable normed space and j denotes the completion of If, 
then j is separable. Show finally that a separable normed space satisfies the second 
axiom of countability (Prob. 3A). Which of the foregoing assertions are valid for 
quasinormed spaces? 
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L. (i) Let Iff be a topological linear space, and let Iffn denote the direct sum of n copies 
of Iff (indexed by {I, ... , n} and equipped with the product topology). Show that 

((A b ···, An), (XI"'" Xn)) -> AIXI + ... + AnXn 

is a continuous mapping of en x Iffn into Iff. In particular, the mapping 

(X I' ... , xn) -> X I + ... + Xn 

is a continuous mapping of Iffn into Iff. Conclude that if V is an arbitrary neighbor
hood of 0 in Iff, then there exists a neighborhood W of 0 in Iff such that 

n 
~ 

n 
~ 
W+···+Wcv. 

(Recall that W + ... + W denotes the set of all sums XI + ... + Xn' where 
Xi E W, i = 1, ... , n.) 

(ii) Show that if M is a dense set in a topological linear space Iff andr is a base of 
open neighborhoods of 0 in Iff, then the collection of sets {x + V: X E M, V E Y} 
is a base for the topology on Iff, and conclude that if 6' is separable, then Iff satisfies 
the second axiom of countability if and only if it satisfies the first. 

This last fact is but the first of a number of ways in which topological linear 
spaces resemble metric spaces. Not surprisingly, there exists a theory that 
englobes these two concepts, namely, the theory of uniform spaces. For an 
account thereof the reader may consult [40] or [65]. 

M. A subset G of a linear space Iff is said to be balanced if AX E G whenever X E G and 
I AI s; 1. Show that if D - denotes the closed unit disc in C, then a subset G of Iff is 
balanced if and only if D - G = G. (Recall that if A is a set of scalars and M a set of 
vectors, then AM denotes the set {ax: a E A, X EM}. A set G in a real linear space 
is balanced if x E G implies tx E G, - 1 :s; t :s; + 1.) Show that if Iff is a topological 

linear space and V is a neighborhood of 0 in Iff, then there exists a balanced neigh
borhood W of 0 such that W c V, and conclude that in every topological linear 
space there exists a neighborhood base at 0 consisting exclusively of balanced 
open [closed] sets. (Hint: There exist a neighborhood VI of 0 and a positive radius 
r such that D; VI c V, where Dr = {A.E C: IAI < r}. To show that W can be taken 
to be open, verify that the interior of a balanced set is balanced. To show that W 
can be taken to be closed, verify that the closure of a balanced set is balanced, and 
choose a balanced neighborhood W' of 0 such that W' + W' c W.) 

N. Show that there exists a unique separated linear topology on a one-dimensional 
linear space fE by showing that if fE is equipped with such a topology, and if Xo is 
a nonzero vector in fE, so that the mapping A -4 Axo is an algebraic isomorphism 
of the linear space e onto fE, then I is also a homeomorphism of e onto 5£. Con
clude that every linear functional on a separated one-dimensional topological 
linear space is continuous. (Hint: The mapping I is surely continuous, so it suffices 
to verify that I is open or, equivalently, that I-I is continuous. Choose a balanced 
open neighborhood V of 0 in fE such that Xo ¢ V.) Does fE admit any nonseparated 
linear topologies? 
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O. Let C be a separated topological linear space, and let !i' be a one-dimensional linear 
manifold in C. Show that !i' is automatically closed in C. Show also that if the 
topology on Iff is induced by some invariant metric, then !i' is automatically com
plete with respect to that metric. (Hint: If Xo is a nonzero vector in !i' and a net 
{a;.xOLE!\ converges in Iff, then for an arbitrary neighborhood V of 0 in g there 
exists an index Ao such that (aA - aA,)xo E V for all A, A' 2 Ao. Hence the net faA} 
is Cauchy in IC and is therefore convergent (Prob. 4M).) 

P. (i) Let.4t be a linear manifold in a topological vector space C, let Xo be a vector 
in {, that does not belong to .it, and denote by .4t 0 the linear submanifold of g 
generated (algebraically) by .4t and Xo. Show that Jlt 0 is closed whenever.4t is, 
and use this observation to prove that every finite dimensional linear submani
fold of a separated topological linear space is closed. In the same spirit, show 
that every finite dimensional topological linear space whose topology is in
duced by an invariant metric is complete with respect to that metric, 

(ii) Show that there exists a unique separated linear topology on each finite di
mensionallinear space, and hence that every linear space isomorphism between 
two finite dimensional separated topological linear spaces is automatically a 
homeomorphism. (Hint: Suppose {x I, ... ,xn} is a basis for the separated 
topological vector space C. Then <p(AI' ... , An) = Al XI + ... + Anxn defines 
a linear space isomorphism <p of IC" onto Iff, and it is easy to see that <p is con
tinuous (if IC" is given the usual topology). Show that <p is also open: see Prob
lem 1.) Conclude that every pseudonorm on a finite dimensional separated 
topological linear space is continuous. 

(iii) Let g be a separated topological vector space and suppose given a balanced 
compact neighborhood Vo of 0 in Iff, a closed linear manifold .4t in g, and a 
vector Zo in 8\,,1(. Prove that the set R = {t > 0: (zo + tVo) n .,1( #- 0} is a 
ray to the right in IR with d = inf R > O. (Hint: The sets of the form t Vo, t > 0, 
form a neighborhood base at 0.) Show also that if rno = Zo + (3d/2)vo with 
rno in ,4t and Vo in Vo (such vectors exist because of the definition of d), then 
Vo ¢ .,1( + ! Vo, and use this observation to prove that if Y I' ... ,Yk are so 
chosen that 

then the vectors YI' ... , Yk generate Iff algebraically. (Hint: Set .4t equal to 
the linear manifold generated by YI"'" Yk.) Conclude that a separated 
topological linear space is locally compact (Prob. 3V) if and only if it is finite 
dimensional. In particular, a Banach space g is finite dimensional if and only 
if g I is compact. 

Q. Every linear submanifold JIt of a topological linear space g is either dense in Iff or 
nowhere dense in C. (Hint: If .~- has nonempty interior, then JIt- contains a 
neighborhood of 0 and therefore coincides with g.) In particular, if g is separated 
and not finite dimensional, then every finite dimensional linear submanifold of 8 
is a closed nowhere dense subset of g. Show that no linear space of Hamel dimension 
~o can be normed in such a way as to make it complete. Are there any cardinal 
numbers c such that if g is a linear space of Hamel dimension c, then Iff cannot be 
normed at all? 
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R. (i) Show that if tff I, ... , g n are normed spaces, then the norm topology on the 
direct sum g I E±h ... (f) I g n coincides with the product topology. Show, more 
generally, that if g I' ... , g n are arbitrary topological linear spaces, then the 
product topology is a linear topology on the direct sum g I + ... + g n. 

(ii) Show likewise that if ~ is a topological vector space and T is a linear trans
formation of a linear space tff into ~, then the coarsest topology on 8 that makes 
T continuous (that is, the topology inversely induced on g by T; see Chapter 
3) is a linear topology. Develop these ideas to give a proof of Proposition 11.24. 

S. Let {8'}YEf be a nonempty indexed family of normed spaces. The full algebraic 
direct sum g = I).Ef + 8 y is a topological linear space in the product topology 
(Prop. 11.24), and can even be quasinormed if the index family is countable (Ex. J), 
but this space is too large in most cases to be of much interest. Various linear 
submanifolds of it are frequently of importance, however. Thus, for example, the 
bounded families {xJ in g, i.e., those such that sup, II Xy II < + 00, form a linear 
manifold!!4 in 8, and II {x y} II Q = sup, II Xy II defines a norm on !!4. Show that !!4 is 
complete in the norm II Iloc if and only if all the spaces 8, are. (If r = No and all 
spaces gn coincide with the scalar field C, then!!4 coincides with the space (t "j.) 

T. Continuing in the vein of the preceding problem, let {8)'}YEf be an indexed family 
of normed spaces, let 8 denote the full algebraic direct sum of the family, and let 
p be a positive real number. Show that the collection of elements {XY}YEf of g such 
that I), II Xy II p < + 00 (Ex. 3Q) is a linear manifold :£ p in g, and that, if p ~ 1, 
then II {x y} II p = [L II Xy II pr/p is a norm on :£ p. Verify that :£ p is complete if and 
only if each tff), is complete. (Note, once again, that if r = No and all of the spaces 
coincide with C, then :£p coincides with the Banach space (I p).) When r is the finite 
set {t, ... , n}, then all of the norms II lip, 1 ::;; p ::;; + 00, are defined on the 
full algebraic direct sum g. In this special case we shall employ the notation 
tffl (f)p···(f)ptff n for tff equipped with the norm II lip. (In particular, g equipped 
with the norm II III is what we have referred to earlier as the direct sum of the 
spaces tff 1, ... , ,g n .) 

U. (i) Consider the linear space r&(X) of all continuous complex-valued functions 
on a locally compact Hausdorff space X (Prob. 3V). If K is a nonempty compact 
subset of X then 

fEc&(X), 
XEK 

defines a pseudonorm on r&(X). Show that the family of pseudo norms {aKhEJI" 
where:£ denotes the collection of all non empty compact subsets of X, is separat
ing and saturated. Show also that the family {aKhEJI' is countably determined 
(Prob. I P) if and only if X is a-compact (Ch. 10, p. 193). Verify that a net (f;J in 
CC(X) converges to a limit f in the topology induced on CC(X) by the family 
{a K} if and only if {f;,} converges to f uniformly on every compact subset K 
of X (cf. Problem 40). For that reason this topology is known as the topology 
of uniform convergence on compact subsets of X. According to Proposition 11.32, 
the topology of uniform convergence on compact subsets of X is induced by a 
quasinorm when X is a-compact. Construct such a quasinorm and show that 
the topology of uniform convergence on compact subsets of X is not induced 
by any equivalent norm on CC(X) (unless, of course, X is compact). (Hint: If 
II II is a norm on CC(X) that induces the topology of uniform convergence on 
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compact subsets of X, then the open unit ball with respect to II II contains some 
neighborhood {f E ~(X) : (J K(f) < e} where K is a compact subset of X and e 
is some positive number.) 

(ii) Let ~ be a domain in the complex plane, and let s1 denote the linear space of 
all analytic functions on ~. Show that s1 is closed in ~(d) in the topology of 
uniform convergence on compact subsets of ~. 

V. Let U be a non empty open subset of Euclidean space IRn and let rn be a nonnegative 
integer. We denote by ~(m)(u) the linear space of all rn times continuously dif
ferentiable complex-valued functions on U (Ex. 3E) and by ~(OO)(U) the space of 
infinitely differentiable functions on U _1&(>:)( U) = n;:; ~ 0 1&(m)( U). If k 1, ... , kn are 
nonnegative integers such that kJ + ... + kn S; rn, and if f E ~(m)(u), we write 
Dh .... kjfor the (continuous) partial derivative off 
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ak1 + ... +k1 
ax~1 ... ax~n 

obtained by differentiating kj times with respect to the variable Xj, i = 1, ... , n. 
If K is a nonempty compact subset of the open set U, we shall also write, as in the 
preceding problem, 

XEK 

and, combining these two notational conventions, 

(JK.m(f) = sup (JK(Dkl ..... k,j), 
kt+ ... +kn 5m 

for each nonnegative integer rn. (Thus (J K. 0 coincides with (J K') 

(i) Verify that each (JK.m is a pseudonorm on each of the spaces ~(P)(U), p ;;:: rn, 
and conclude that all of the functions (JK.m (K a nonempty compact subset of U, 
rn a nonnegative integer) are pseudonorms on ~(oo l( U). Show also that the family 
of pseudonorms {uK.m} is separating, saturated, and countably determined on 
~(OO)(U) (cf. Example lOA), so that the topology this family induces on ~(OO)(U) 
is separated and quasinormable. Show, finally, that a sequence {fp}~~ 1 in 
~(oo)(U) converges in this topology to a limit f if and only if the sequence 
{Dk' ..... kjp}~=J converges to Dk' ..... kj uniformly on compact subsets of U 
for every sequence k 1, ... , kn of nonnegative integers. (When this is the case, we 
shall say of the sequence {fp} that it is D-convergent to f, and refer generally to 
the topology induced on ~(X)(U) by the family of pseudonorms {(JK.m} as the 
topology of D-convergence on ~(OO)(U).) 

(ii) The support of a continuous complex-valued function f on U is by definition 
the closure of the set {x E U : f(x) l' O}: see Problem lOR. A function f in 
~("')(U) is said to be a test junction on U if the support off is compact, or, 
equivalently, if there exists a compact subset K of U such that f vanishes on 
U\K. We denote by ~boo)(U) the collection of all test functions on U. While it 
is clear that there are many functions in ~(oo)(U) (all polynomials belong to 
~(OC)(U), for example), and it is likewise clear that ~boo)(U) is a linear manifold 
in '6'(OO)(U), it requires some ingenuity to show that there are any nontrivial 
test functions. To this end let r be a positive number, and let I/Ir denote the 
function defined on IR by 

{ 
rit 

I/IrCt) = ~,' t < 0, 

t ;;:: O. 
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Show that t/!r is infinitely differentiable on IR. (Hint: Show first by mathematical 
induction that t/!;k)(t) = Rk(t)er/t, t < 0, for all positive integers k, where Rk is a 
polynomial in IlL Use this fact to show that the limits 

lim t/!;k)(t) and lim t/!;k)(t)lt 
qo tl° 

are both equal to zero for every nonnegative integer k.) Next show that for each 
positive real number a the function 

It I < a, 

It I ~ a, 

is a test function on IR which is positive on the interval ( - a, + a), has support 
[ -a, +a], and also possesses the property that «({JaY is a test function for every 
positive number r. Conclude that for every closed cell 

in IRn (where aj < bj, i = 1, ... , n) there exist test functions on IRn that are 
positive on zo, have support Z, and possess the property that all of their 
positive powers are also test functions. Show similarly that if Xo is a point in 
IRn and r is a positive radius, then there exist test functions ({Jr on IRn having for 
support the closed ball Dr(xo)- and possessing the property that lGlln ({Jr dJ1n = 1, 
where lin denotes Lebesgue-Borel measure on IRn. 

W. There is a concept that relates to that of a quasinorm as pseudonorms relate to 
norms, and this notion plays a role of some importance in the general theory of 
topological vector spaces. A derninorrn on a linear space Iff is a nonnegative real
valued function b on Iff having the following properties: 

(i') b(O) = 0, 
(ii") b(Ax) ~ b(x) for every x in Iff and all complex numbers A such that 1,1.1 ~ 1, 
(iii) b(x + y) ~ b(x) + bey) for all x, y in Iff, 
(iv) IXn --+ 0 implies b(lXnX) --+ 0 

for every null sequence {lXn} of complex numbers and every x in Iff. 

(i) If b is a deminorm on a linear space Iff, then 

Po(x, y) = b(x - y), x, YEIff, 

defines an invariant pseudometric on t'. Show that t is a topological linear space 
in the topology induced by Po. (This topology is also said to be induced by 
the deminorm b.) Show also that if Po is a given invariant pseudometric on Iff 
and if we define 

b(x) = Po(x,O), x E Iff, 

then i5 is a deminorm on Iff if and only if the following conditions are satisfied: 

(a) The ball {x E Iff: Po(x, 0) < r} is a balanced set (Prob. M) for every positive 
number r, 

(b) The mapping IX --+ C(X is continuous at C( = 0 for every x in Iff with respect to 
the topology induced by Po. 
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(ii) Let b be a deminorm on a linear space Iff and let:!! denote the zero space of Iff 
in the topology induced by b. Verify that:!! = {x E Iff: b(x) = O}, and that if 
for each vector x in Iff we denote by x t~e coset x + :!!, then 

Ixl = b(x), xEIff, (14) 

defines unambiguously a quasinorm I I on Iffj:!!. Show also that this quasi
norm induces the topology of the associated space i (The quasinorm defined 
in (14) is said to be associated with b. See Corollary 11.23.) 

(iii) If {bY}YEr is a family of deminorms on a linear space Iff, then the supremum of 
the collection of linear topologies induced by them is called the topology 
induced by the given family. Similarly, {by} is said to be separating on Iff if for 
each vector x 1= 0 in Iff there is a deminorm by in the family such that b/x) 1= O. 
Verify that Propositions 11.26-11.32 are all valid for families of deminorms in 
place of families of pseudonorms. (Hint: The property (ii') of pseudonorms is 
not used in any of the proofs.) 

X. (i) Suppose given a nonnegative function W on a vector space Iff satisfying the two 
conditions w(O) = 0 and w( - x) = w(x) for every x in Iff. Using the function 
w, define Po on Iff x Iff by setting 
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• 
Po(x,y) = infIw(zi - Zi-1), 

;=1 

where the infimum is taken over all finite sequences {Zo, ZI> ... , z.} satisfying 
the conditions Zo = x and Z. = Y (and over all positive integers n). Show that 
Po is an invariant pseudometric on Iff, and that the associated function b(x) = 
Po(x,O) satisfies the condition b :;:; w. Show also that b is a deminorm on Iff if 
W satisfies the conditions 

(a) w(Ax) :;:; w(x) for every x in tS' and all complex numbersA. such that I AI :;:; 1, 
and 

(b) IX. -+ 0 implies W(IX.X) -+ 0 

for every null sequence {IX.} of complex numbers and every x in tS'. Show finally 
that if w satisfies the inequality 

w(x - y) :;:; 2 max[w(x - u), w(u - v), w(v - y)] (15) 

for all vectors u, v, x, y in tS', then b also satisfies the condition b ~ wj2. (Hint: 
It is necessary to show that 

• 
w(z. - zo) :;:; 2 I W(Zi - Zi-1) 

i=1 

for an arbitrary finite sequence {zo, ZI"'" Z.} of vectors in Iff. Choose an index 
j such that both 

I W(Zi - Zi-1) and I W(Zi - Zi-1) 
i<j i>j 

are less than or equal to iIi; 1 W(Zi - Zi-1)' and use induction on n.) 

(ii) Let tS' be a topological vector space and let {v,,}~; 1 be a nested sequence of 
neighborhoods of 0 in tS': 
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Set Vo = Iff, and define 

W(X) = inf{f.:XE Vn}. xEIff. 

Show that w(O) = 0 and that w satisfies condition (b) of (i). Show also that w 
satisfies condition (a) if the neighborhoods Vn are all balanced, and that w also 
possesses property (15) if the neighborhoods v" satisfy the additional condition 
that 

for every positive integer n. 
(iii) Put together the results obtained in (i) and (ii) (along with other foregoing 

results) to prove the following fundamental theorem: If {v,,}::,= 1 is an arbitrary 
sequence of neighborhoods of 0 in a topological linear space Iff, then there exists 
a deminorm b on Iff such that b is continuous on Iff and possesses the additional 
property that each of the sets v" is a neighborhood of 0 in the topology induced 
on Iff by b. Conclude that every linear topology on Iff is induced by some (possibly 
uncountable) family of deminorms. 

Y. Show that the following properties are equivalent for an arbitrary separated topo
logical linear space Iff: 

(i) Iff is quasinormable (Prop. 11.32), 
(ii) Iff is metrizable as a topological space, 
(iii) Iff satisfies the first axiom of countability. 

(Hint: Use Problem X.) 
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The presence of a topology on a linear space leads naturally to the extremely 
important classification of linear transformations into continuous and 
discontinuous ones. In normed spaces this distinction is facilitated by the 
existence of a very simple criterion for continuity. 

Definition. A linear transformation T of a normed space @ into another 
normed space :Y is bounded if there exists a scalar M ~ 0 such that 

II Tx II ~ M II x II, x E @. (l) 

(It should be noted that the norms on the two sides of (1) are to be 
computed, in general, in two different spaces. At no time will this 
notational ambiguity lead to any confusion.) 

If T is bounded, then, as it turns out, there is a smallest M satisfying (1) 
(Prob. A). This smallest bound is known as the norm of T and is denoted by 
II T II. Thus II T II is a nonnegative real number such that II Tx II ~ II T IIII x II 
for every vector x in @, and is the smallest number making this inequality 
valid. On the other hand, it is easy to verify that II T II may also be described 
in any of the following equivalent ways (provided that T is a bounded linear 
transformation and that @ # (0»: 

II Til = sup II Tx II = sup II Tx II = sup II Tx II = sup IIIITXIIII. (2) 
Ilxll!>1 Ilxll<1 Ilxll=1 x;tO X 

Proposition 12.1. The following conditions are equivalent for any linear 
transformation T of one normed space @ into another normed space :Y: 

(i) T is continuous, 
(ii) T is continuous at x = 0, 

(iii) T is bounded. 
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PROOF. Since it is clear that (i) implies (ii), it will suffice to show that (ii) implies 
(iii) and that (iii) implies (i). To see that (ii) implies (iii), choose 15 > 0 such 
that II x II = II x - ° II ~ 15 implies II Tx II = II Tx - TO II ~ 1. Then Tx 
belongs to the ball ff lja whenever x belongs to the unit ball g 1, and from this 
it follows at once that T is bounded. Finally, to see that (iii) implies (i), let Xo 

be a vector in g and let s be positive. Then for £5 = sl( II Til + 1) and 
II x - XO II < 15, we have 

II Tx - Txo II ~ II T IIII x - XO II < s. 

Thus T is continuous at Xo. 

The main point of the last part of the foregoing argument is that the inequality 

is valid for an arbitrary pair of vectors XI. X2 in Iff. Thus a continuous, and therefore 
bounded. linear transformation T between two normed spaces is automatically 
Lipschitzian. In particular, T is uniformly continuous (see Problem 4F). 

We deal here solely with continuous linear transformations between two normed 
spaces because that is the case of principal concern and because the simple criterion of 
boundedness is applicable in this situation. If 6' and .¥ are merely quasinormed spaces, 
then no similarly simple criterion for continuity exists. All the more, if Iff and :!i' are 
arbitrary topological linear spaces, then no such simple criterion for the continuity of a 
linear transformation of Iff into :!i' can be given. Nevertheless, appropriate counterparts 
of many of the results developed in this chapterfor bounded linear transformations can be 
obtained for continuous linear transformations between topological linear spaces other 
than normed spaces (see Problem U). 

D 

Example A. If g is a finite dimensional Banach space, and T denotes an 
arbitrary linear transformation of <ff into some normed space ff, then T is 
automatically bounded. Indeed, if T is one-to-one, it follows at once from 
Problem 11J that T is continuous, while if f(T) #- (0) we may factor T as 
T = f 0 Te, where Te denotes the natural projection of g onto gl:f{(T) 
(Ex. 2L), and both f and Te are continuous (Prob. 11 H). Thus, in any case, T 
is continuous and therefore bounded. It is important to note that only finite 
dimensional Banach spaces possess this property. Indeed, if g is an arbitrary 
infinite dimensional normed space, and if X is a Hamel basis for g (Prob. 2A), 
we may select from X an infinite sequence {xn}:= 1 of distinct vectors. Let X 0 

denote the collection of vectors in X that do not appear in the sequence 
{x n}, let ff be any nontrivial normed space, and let Yo be any nonzero vector 
in ff. Then 

cp(xn) = n II Xn II Yo, 
cp(x) = 0, 

n EN, 
x EXo, 

defines a mapping of X into ff, and the linear extension T of cp to g (Prob. 2E) 
is an unbounded, and therefore discontinuous, linear transformation of g 
into ff. Taking for ff the space C, we note specifically that if g is infinite 
dimensional, then there always exist unbounded linear functionals on C. 
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Example B. Let p be an extended real number, 1 ::;; p ::;; + 00. For any infinite 
sequence of complex numbers x = {~n}::"= 0 in (t p), set 

(3) 

Since II x II p = II VX II p for every x in (t p), it is clear that V is a bounded linear 
transformation on (tp) and that II V II = 1. The transformation V is known 
as the unilateral shift on (t p). 

Example C. Let d = {60 , 61> ... } be a fixed bounded sequence of scalars, 
and let p be an extended real number, 1 ::;; p ::;; + 00. Define Md by writing 

(4) 

for an arbitrary sequence x = {~n}::"= 0 in (t p). Once again, it is easily seen 
that M d is a bounded linear transformation on (t p), and that, in fact, II M d II = 
supn I 6n I = II d II 00' The linear transformation M d is known as multiplication 
byd. 

Example D. On each space (tp), 1 ::;; p::;; +00, the product S = VMd does 
the following: 

{~o, ~1""} ~ {O, 6o~0, 61~1'" .}. , 

This transformation, known as the weighted unilateral shift on (t p) with 
weight sequence d, is also bounded and again we have II S II = supn I 6n I. 

Example E. Let p be a real number, p ;;::: 1, and consider the linear space 
(t p) # of all those two-way infinite sequences x = {~n} ;;=00_ 00 with the property 
that I;;=oo_ 00 I ~n I p < + 00, and with the norm II x lip = (I;;=oo_ 00 I ~n I P)1 /P• 

(Similarly one defines (t (0)#' It is easy to see that (tp)# is a Banach space, 
just as is the space (t p), 1 ::;; p ::;; + 00. Indeed, it is possible to view this space 
and (t p) simply as two different versions of the same Banach space (Ex. Q).) 
On (t p)# let U denote the mapping defined by U {~n} = {17n}, where 17n = ~n-1 
for every integer n. Then U is a bounded linear transformation of norm one 
called, naturally enough, the bilateral shift on (t p) # . 

In order to see more clearly how such transformations as U act on a 
Banach space (t p) # of two-way infinite sequences, it is desirable to introduce 
some special notation. We shall systematically write 

{ ... , ~ - 2, ~ - 1, [~oJ, ~ 1> ~2' ... } 

for such a sequence, thus putting in square brackets the term in the sequence 
that is indexed by zero. In this notation we have 

Example F. There are also counterparts of the transformations of Examples 
C and D on the spaces (tp)#, 1 ::;; p::;; +00. Indeed, if d = {6n};;=00_00 is an 
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arbitrary element of (t (0) #, then multiplication by d is the transformation 
carrying each x = {~n}: =00_ 00 in (t p) # to the sequence 

MdX = dx = {Dn~n}:=oo_oo' 
and Md is a bounded linear transformation on (t p)# with II Md II = II d II 00' 

Likewise, the linear transformation T = U M d, where U denotes the bilateral 
shift of Example E, is a bounded linear transformation on (t p) # with II Til = 
II d II 00' The action of T can be better viewed using the notation introduced 
in that example: 

T 
{ ... , Cl' [~o], ~b"'} --t { ... , D-1C 1, [D-1Cl], Do~o,·· .}. 

The transformation T is called the weighted bilateral shift on (t p)# with 
weight sequence d. 

Example G. Let X be a nonempty compact Hausdorff space, let 10 be a fixed 
function in ~(X) (Ex. 3D), and define M fo by 

(M fog)(x) = Io(x)g(x) 

for all x in X and all g in ~(X). Then M fo is a bounded linear transformation 
on ~(X) known as multiplication by 10' Clearly 11M foil = II 10 II 00 • 

Example H. Choose a fixed point Xo in a compact Hausdorff space X, and 
define <p(f) = I(xo) for every I in ~(X). Then <p is a bounded linear func
tional on ct(X) with II <p II = 1. (This example has appeared before; recall 
Example 10E.) 

The following two examples have to do with some of the basic structural 
concepts relating to normed spaces; they will reappear regularly in the 
sequel. 

Example I. On any normed space S the dilatation x --t AX, XES, is a bounded 
linear transformation of S into itself. As was announced in Chapter 2, 
this transformation will consistently be denoted by A,c or, when no confusion 
is possible, simply by A. We observe that if A #- 0, then the dilatation A maps 
S onto itself, and if S #- (0), then II A,c II = I A I. 

Example J. Let S be a normed space and let A be a subspace of S. The natural 
projection n of S onto the quotient space SIA is a bounded linear trans
formation such that lin II ~ 1 (see Chapter 11 (8)). Since n carries the open 
unit ball S'1 onto the open unit ball in SIA (Prob. llH), it follows that 
lin II = 1. 

Notation and Terminology. If Sand .'F are normed spaces, the set of all 
bounded linear transformations of S into ff will be denoted by 2(S, ff). 
If S = ff we employ the simpler notation 2(S) for 2(S, S). The elements of 
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2(S) are properly known as bounded linear operators on S. In this book, 
however, we shall not be concerned with nonlinear analysis, and we shall 
have only a limited interest in unbounded transformations. Accordingly, 
we frequently refer to the elements of 2(S) simply as operators, or as bounded 
operators, on S. A bounded operator T on S with II Til ::; 1 is called a 
contraction on S. 

It is easily seen that if S and ~ are arbitrary normed spaces, then 2(S, ~) 
is a linear submanifold of the full space oflinear transformations of S into ~ 
(Ch. 2, p. 19), and is therefore a linear space in its own right. In order to verify 
this, it need only be checked that if Sand T are bounded, and if A is a scalar, 
then S + T and AS are bounded too. But for an arbitrary vector x in S 
we have 

II (S + T)x II ::; II Sx II + II Tx II ::; II S 1111 x II + II T 1111 x II 

and 

II (AS)X II = II A(SX) II ::; I Alii S 1111 x II, 

and from these inequalities it follows not only that S + T and AS are bounded, 
but also that 

II S + T II ::; II S II + II T II 

and 

II AS II = I Alii S II. 

Since it is clear that II S II = ° implies S = 0, we see that II II, as defined in 
(2), is, in fact, a norm on 2(S, g-). Is the normed space 2(S, g-) complete? 

Proposition 12.2. If S is a normed space and ~ is a Banach space, then 2(S, g-) 
is a Banach space. 

PROOF. Let {Tn} be a Cauchy sequence in 2(S, g-). The inequality 
II T,.x - Trnx II ::; II T,. - T,., 1111 x II shows that for each x in @o the sequence 
{T,.x} is a Cauchy sequence in~. Since ~ is complete there exists a vector 
in g--call it Tx-such that T,.x --+ Tx. This defines a mapping T of S 
into g-. That T is linear is clear: 

T(rtx + f3y) = lim(rtT,.x + f3T,.y) = rtTx + f3Ty. 

The proof that 2(S,~) is complete will be concluded by showing that 
T is also bounded and that liT - T,.II --+ 0. To see this, let e be a positive 
number, and choose N such that II T,. - Tm II ::; e for all m, n ~ N. Then 
II T,.x - Trnx II ::; e II x II for each x in S and, letting n tend to infinity, we 
obtain 
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for all m ~ N. (Recall that closed balls in a metric space are closed sets.) 
Thus we see that T - Tm is bounded and satisfies II T - Tm II ::;; I: for all 
m ~ N. From this it follows, in the first place, that T = (T - Tm) + Tm is 
also bounded, and, secondly, that liT - Tm II -> O. 0 

With the aid of the Hahn-Banach theorem (Th. 14.3) it can be shown, conversely, that 
if ff is not complete, and if tff "# (0), then 5t'(C, ff) is not complete. See Problem 14E. 

Bounded linear transformations can be multiplied as well as added and 
subtracted. 

Theorem 12.3. Let lC, gp, and rg be normed spaces, let T be a bounded linear 
transformation of lC into .'F, and let S be a bounded linear transformation of 
gp into rg. Then the product ST is a bounded linear tran~fiJrmation ofe into 
rg and II ST II ::;; II S IIII Til. 

PROOF. We have II STx II ::;; II S IIII Tx II ::;; II S IIII T 1IIIxii for every vector x 
~~ 0 

Corollary 12.4. If lC #- (0) is a normed space, then !l'(lC) is not only a normed 
space but is also an algebra (Ch. 2, p. 19) in which the conditions 

IISTII::;; IISIIIITII, S, T E !l'(lC), (5) 

and 

11 1e II = 1 (6) 

hold. If lC is complete, then !l'(lC) is a Banach space that is also an algebra 
in which (5) and (6) are satisfied. 

Conditions (5) and (6) are the essential ingredients in the definition 
of a normed algebra, a concept that is of the greatest importance in more 
advanced areas of functional analysis. 

Definition. A normed space d that is simultaneously a linear algebra with 
respect to a product (x, y) -> xy is a normed algebra if II xy II ::;; II xliii y II 
for every pair of elements x, y of d. A normed algebra d that is complete 
as a normed linear space is called a Banach algebra. If a normed algebra 
[Banach algebra] d possesses a unit 1, and if 11111 = 1, then d is said to 
be a unital normed algebra [Banach algebra]' 

Thus Corollary 12.4 says that if lC is an arbitrary normed space other than 
(0), then !l'(lC) is a unital normed algebra, and that !l'(lC) is a unital Banach 
algebra if lC is a Banach space. Other examples of Banach algebras abound. 
Indeed, many of the Banach spaces we have already encountered possess 
a natural multiplicative structure. 
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Example K. If x = {~n}:;O and y = {'1n}:;O are two elements of (tp) (for 
some fixed value of p, 1 ~ p ~ + 00) then the sequence xy = {~n '1n}:; 0 

also belongs to (t p), and it is readily verified that II xy II p ~ /I x /I p IIY /I p' 

(Indeed, /I xy /I p ~ /I x /I 00 /I y /I p' and it is clear that /I x /I 00 ~ /I x /I p.) Moreover, 
it is easily seen that (t p) is a linear algebra with respect to this product. Thus 
each of the spaces (t p) is a Banach algebra with respect to termwise or co
ordinatewise multiplication. The algebra (too) is unital, the algebras (t p), 
1 ~ p < + 00, are not. Similarly, the spaces (t p)#, 1 ~ p ~ + 00, are all 
Banach algebras with respect to coordinatewise multiplication. 

Example L. If X is a nonempty compact Hausdorff space, then C6'(X) is a 
unital Banach algebra with respect to pointwise multiplication. More 
generally, if X is an arbitrary nonempty topological space, and if C6' b(X) 
denotes the linear space of bounded continuous complex-valued functions 
on X equipped with the sup norm (Prob. 110), then C6'b(X) is a unital Banach 
algebra with respect to pointwise multiplication. (This example contains, 
as a special case, the Banach algebra (f ",J, which coincides with C6'b(N o) when 
No is equipped with the discrete topology.) 

Definition. If e and ff are normed spaces, then an element T of !£l(e, ff) 
is invertible if there exists an element T- 1 of !£l(ff, e) (called the inverse 
of T) such that TT- 1 = 19' and T- 1 T = 1&. (It is clear that the inverse 
of an element of !£l(e, ff) is unique if it exists.) More generally, if 
T E !£l(e, ff) and if there exists an element R of !£l(ff, e) with the property 
that RT = 1&, then R is called a left inverse of T and T is said to be left 
invertible. Similarly, if there exists an element S of !£l(ff, 8) having the 
property that TS = 19" then S is a right inverse of T and T is said to be 
right invertible. 

It is a trivial calculation to verify that if T has both a left inverse R and a 
right inverse S, then T is invertible and R = S = T- 1• It is likewise clear 
that when 8 = ff the notions of invertibility and inverse introduced above 
reduce to the usual ones appropriate to the (normed) algebra !£l(e). In 
connection with these concepts the following notion is quite useful. 

Definition. If T is a linear transformation of a normed space 8 into another 
normed space ff, then T is bounded below if there exists a positive number 
M such that 

/I Tx /I ~ M /I x 1/, X E 8. 

Moreover, if this inequality is satisfied, we shall say that T is bounded 
below by M. 

Proposition 12.5. Let 8 and ff be normed spaces and let T be an element of 
!£l(8, ff). If T is left invertible, then T is bounded below. If T is right 
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invertible, then ?1(T) = :F Moreover, T is invertible if and only if T is 
both onto and bounded below. 

PROOF. If RT = I",. then for each vector x in 1 we have x = RTx, and 
therefore 

Ilxll::;; IIRIIIITxll· 
Thus T is bounded below. (If II R II = 0 then 1 = (0), and T is trivially 
bounded below.) If TS = 1,Y' then for each vector y in ff we have y = T(Sy), 
so T maps 1 onto ff. To complete the proof it suffices to show that Tis 
invertible if 9P(T) = ff and T is bounded below by some positive number 
M. If these hypotheses are satisfied, then, in the first place, $'(T) = (0) 
so that T is one-to-one. Consequently T possesses a set-theoretic inverse S 
defined on 9P(T) = ff by S(Tx) = x, and S is a linear transformation of ff 
onto I. Finally, since II S(Tx) II = II x II ::;; (11M) II Tx II, we see that S is 
bounded and that II S II ::;; 11M, so that S = T- I is an element of 2(ff, I). 

o 
The foregoing result can be improved upon somewhat when the spaces 1 

and ff are complete. 

Proposition 12.6. If 1 and ff are Banach spaces, and if T is an element of 
2(1, ff) that is bounded below, then the range 9P = 9P(T) is closed in ff. 
Hence T is invertible if and only if 9P is dense in ff. 

PROOF. Let T be bounded below by M, M > O. It suffices to show that 9P 
is closed. Let {xn} be a sequence in 1 such that the sequence {Txn} is con
vergent in ff. Since M II Xm - Xn II ::;; II TXm - TXn II, it follows that the 
sequence {xn} is Cauchy, and therefore convergent-say to x. But then 
{Txn } converges to Tx, which belongs to fit, and we see that 9P is closed. 0 

Example M. Let p be an extended real number, 1 ::;; p ::;; + 00, and let S 
denote the weighted unilateral shift on (t p) with weight sequence d = 
{Do, D1, ••• } (Ex. D). Then S is bounded below on (tp) if and only if the 
sequence d is bounded away from zero. Moreover, if this is the case, then the 
range of S is readily seen to be the subspace of (t p) consisting of sequences 
x = {~n}:'=O with ~o = 0, and a left inverse for S is given by the backward 
weighted unilateral shift 

R 
{~o, ~b"'} --+ {~t!c5o, ~2/c51""} (7) 

with weight sequence {l/c5n}:'=o. (Observe that, while the inverse of an 
invertible linear transformation is uniquely determined, a left invertible 
transformation T may possess many left inverses, since the left inverse of T is 
determined by T only on the range of T. Thus the transformation R in (7) 
is the unique left inverse of the shift S that annihilates the sequence eo = 
{I, 0, 0, ... }. No forward unilateral shift can be right invertible since its 
range inevitably fails to contain eo.) 
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12 Bounded linear transformations 

The distinction between invertible and noninvertible linear transforma
tions gives rise to a number of important concepts. The simplest of these is 
new in name only. 

Definition. If rff and ~ are normed spaces, then an invertible element of 
2(rff, ~) is also known as an equivalence between rff and ~, and rff and 
~ are said to be equivalent if there exists an equivalence between them. 

It is clear that the inverse of an equivalence and the product of two 
equivalences are also equivalences so that this relation possesses the defining 
properties of an equivalence relation. 

Example N. Two finite dimensional Banach spaces are equivalent if and only 
if they possess the same dimension (see Problem 11J). 

Example O. Let rff be a linear space and let II 111 and II 112 be two norms on 
rff. Then II 111 and II 112 are equivalent norms (Ex. 11 B) if and only if the 
identity mapping on rff is an equivalence between rff equipped with II 111 
and rff equipped with II 112' 

Proposition 12.7. If rff and ~ are equivalent normed spaces, and if either 
rff or ~ is a Banach space, then both must be. 

PROOF. Suppose without loss of generality that rff is complete, and that 
T: rff --t ~ is an equivalence. Let {Yn} be a Cauchy sequence in ~, and let 
Xn = T-1Yn, n EN. Then Ilxm - xnll s II T-11111Ym - Ynll for all m and n, 
so {xn} is a Cauchy sequence in rff. But then {xn} is convergent in rff, whence 
it follows that the sequence {Yn = Txn} is also convergent. 0 

If rff and ~ are normed spaces, then it is easily seen that a linear trans
formation V of rff into ~ is an isometry of the metric space rff into the metric 
space ~ if and only if V preserves norms: 

II Vxll = Ilxll, X E rff. 

Such a linear transformation is accordingly known as a (linear) isometry, 
and it is in terms of this concept that we define the notion of isomorphism 
appropriate to the present context. 

Definition. If rff and ~ are normed spaces, then a mapping U : rff --t ~ of rff 
onto ~ is an isometric isomorphism if U is a linear space isomorphism 
that is also an isometry, and rff and .~ are said to be isometrically iso
morphic if there exists such a mapping between them. 

It is, once again, clear that the inverse of an isometric isomorphism and 
the product of two isometric isomorphisms are themselves isometric iso-
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12 Bounded linear transformations 

morphisms, so that this relation between normed spaces has the properties 
of an equivalence relation. It is also clear that an isometric isomorphism is an 
equivalence. 

Example P. The bilateral shift U of Example E is an isometric isomorphism 
of (I p)# onto itself for each value of p, 1 :::; p :::; + 00. The unilateral shift 
of Example B is an isometry of (I p) into itself that is not an isometric 
isomorphism of (I p) onto itself. 

Example Q. The mapping q> that assigns to each sequence {~n};:'=O in (Ip) 
the two-way infinite sequence 

{ ... ~4' ~2' [~o], ~I' ~3""} 

if an isometric isomorphism of (I p) onto the space (I p)#, 1 :::; p :::; + 00. 

Similarly the assignment of the sequence 

to each two-way infinite sequence {~n} :=00_ CfC. is an isometric isomorphism of 
(I p)# onto itself. 

Example R. Let p be fixed, 1 :::; p :::; + 00, and let <I> denote the mapping that 
assigns to each sequence d in (/00) the operator Md on (I p). Then, as was 
noted in Example C, <I> is a norm preserving mapping of (I (0) onto Pl = 
~(<I» c 2((lp». Much more is true, however; <I> is also a linear transforma
tion and therefore an isometric isomorphism of (I (0) onto Pl. (Since (/00) 
is not separable (Ex. 11 H), this observation shows that 2«1 p» is likewise 
not a separable Banach space, 1 :.::::: p :.::::: + 00.) Moreover, <I> also preserves 
the coordinatewise multiplication on (/ CD) (Ex. K). Thus <D is an isometric 
isomorphism of (/ aJ onto ~ that is simultaneously an algebra isomorphism 
between (/ ex,) and ~. Such a mapping is a Banach algebra isomorphism. 

There are some very important special facts concerning the iilVertibility 
of operators on a Banach space to which we now turn. 

Lemma 12.8. If $ is a Banach space and T is a bounded operator on $ such that 
II Til < 1, then 1 - T is invertible and (1 - T) -I = L;:'= 0 Tn. 

PROOF. If II Til = r < 1, then II Tn II :::; rn for every positive integer n, so the 
series L;:'=o Tn is absolutely convergent in 2($) (see Problem llG). If we set 

00 
S = L Tn, 

0=0 

then it is easy to see that ST = TS = S - 1, and hence that S(1 - T) = 
(1 - T)S = 1. D 
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12 Bounded linear transformations 

Lemma 12.8 may also be formulated by saying that if iff is a Banach space, 
then the open ball of radius one centered at Ie in 2(iff) consists entirely of 
invertible operators. The consequences of this fact are far-reaching. 

Proposition 12.9. Let iff and ff be Banach spaces, let T be a left [right] invertible 
element of 2(iff, ff), let R be a left [right] inverse of T, and let d = II R II. 
Then every linear transformation Sin 2(iff, ff) such that liS - Til < lid 
is also left [right] invertible. Thus the set of left [right] invertible elements 
of 2(iff, ff) is open. Hence the set .1/1 of invertible elements of 2(iff, ff) 
is also open. Moreover, T ...... T - 1 is a continuous mapping of ()7/ into 
2(ff, iff). 

PROOF. To verify the first part of the proposition it suffices to show that if R 
is a left inverse of T with II R II = d, and if II S - Til < lid, then S is left 
invertible. But in these circumstances we have 

II Ie - RS II = II R(T - S) II ::; II R IIIIS - Til < 1, 

so that RS is invertible by the preceding lemma. Thus (RS)-l(RS) = 1, 
and (RS) - 1 R is a left inverse of S. To complete the proof, let 0 < s < i and 
suppose that T E 0;1 and that liS - Til < sl II T - 1 II. Then, as we have just 
seen, T-l(T - S) = 1 - T-lS and r = II T-l(T - S)II < s. Hence, by 
Lemma 12.8, the series I:= 0 [T -leT - S)Y converges to 

[1 - (1 - T-lS)r l = (T-lS)-l = S-lT 

(Prob. J), so the inverse of S is given explicitly by the formula 

00 

S-l = I [T-l(T - s)]nT- l 
n=O 

= T- l + T-l(T - S)T- l + T-l(T - S)T-l(T - S)T- 1 + .... 

Hence 

and therefore 

00 

S-l - T- l = I [T-l(T - s)]nT- l, 
n= 1 

IIS-l _ T-111 ::; rll T-111 < 2sl1 T-111 
1 - r 

by Problem 11 G, whence the proposition follows. o 

Note. This argument actually proves more than is asserted. The mapping 
T ...... T- 1 is clearly uniformly continuous on some open neighborhood of 
any subset of 0;1 on which it is bounded. 

Two further important concepts relating to inverses and invertibility are 
those of the spectrum and resolvent of a bounded linear operator on a Banach 
space. 
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12 Bounded linear transformations 

Definition. Let Iff be a Banach space and let T be a bounded operator on Iff. 
Then the spectrum a'(T) of T is the set of those complex numbers A such 
that the operator A - T is not invertible. Furthermore, the set of those 
complex numbers A such that A - T is not left [right] invertible will be 
called the left [right] spectrum of T and will be denoted by a/(T) [arCT)]. 
(Clearly the spectrum of T is the union of the left and right spectra of T. 
We observe that A - T is [left, right] invertible if and only if T - A. is.) 
The complement C\a(T), consisting of the set of those scalars A such 
that A. - T is invertible, is called the resolvent set of T, and the 2(1ff)
valued mapping RT defined by setting 

A. ¢ aCT), 

is called the resolvent of T. (If Iff is the trivial space (0), then 00' = 10', and 
careful scrutiny of the definition shows that the spectrum of this operator 
is the empty set. As will be shown in Chapter 15, no bounded operator 
on a Banach space Iff =I- (0) has empty spectrum.) 

Each value RT(A.) of the resolvent of an operator T doubly commutes with 
A. - T, and therefore with T itself(Ch. 2, p. 20). In particular, the values of RT 
all commute with one another. Moreover, it is an immediate consequence 
of Proposition 12.9 that the resolvent RT is a continuous 2(1ff)-valued 
mapping on the resolvent set C\a(T). 

Example S. Let Iff be a finite dimensional Banach space, and let T denote 
an arbitrary linear transformation of Iff into itself. Then T is automatically 
a bounded operator on Iff (Ex. A), and T fails to be invertible only when 
X(T) =I- (0) (Prob. 2G). Thus aCT) coincides with the set of eigenvalues of 
T, i.e., with the set of solutions of the equation det(A. - T) = 0 (see Problem 
20). In general, it is clear that if A is an eigenvalue of an operator T (on an 
arbitrary Banach space) so that x(A. - T) =I- (0), then A. - T is certainly 
not invertible, and therefore A. E aCT). Thus the set of all eigenvalues of an 
operator T, usually known as the point spectrum of T (notation: ao(T)), is 
always a subset of aCT). (More precisely, ao(T) c a/(T).) On a finite dimen
sional Banach space the spectrum and point spectrum of an operator 
coincide; on infinite dimensional spaces that need not be the case. 

Example T. Fix an extended real number p, 1 ::; p ::; + 00, and consider the 
multiplication operator Md of Example C that multiplies each sequence 
{~n}:'= 0 in (t p) by the sequence d = {In}:'= o. Each of the terms of the sequence 
d is clearly an eigenvalue of Md (the eigenspace associated with I n contains 
the vector en), so the range W of d is contained in the point spectrum aO(Md)' 
Moreover, if A. ¢ W then it is easily seen that A. is not an eigenvalue of Md' 
Thus the point spectrum aO(Md) coincides with W. On the other hand, if 
A. ¢ W-, then d is bounded away from A., and it is readily verified that multi
plication by the (bounded) sequence {Ij(A - 6n)} is (A - M d) -1. Thus 
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12 Bounded linear transformations 

a(Md) C W-. Finally, if A E W-\ W then A - Md, which is just multiplica
tion by the sequence A - d, is not bounded below, and is therefore not 
invertible (Prop. 12.5). Thus a(Md) = W-, and any sequence d for which W 
and W- are different provides an example of an operator in 2'«/ p)) whose 
spectrum is properly larger than its point spectrum. (As noted, each value 
RM/A) of the resolvent of M d is given by multiplication by the sequence 
Ij(A - d); cf. Example R.) 

The notions of spectrum and resolvent of a bounded operator T on a 
Banach space Iff relate only to the properties Thas as an element of the Banach 
algebra 2'(Iff). As has already been observed, the algebras of all bounded 
operators on Banach spaces are special cases of a broad class of algebras 
known as unital Banach algebras. Many of the concepts of interest in algebras 
of the form 2'(Iff) are meaningful and equally important in the setting of an 
abstract unital Banach algebra. In particular, this is true of the notions of 
spectrum and resolvent. 

Definition. Let .91 be a unital Banach algebra and let x be an element of d. 
A complex number A is said to belong to the left spectrum of x with respect 
to .91 (notation: A E al,d(x)) if A - x( = AId - x) is not left invertible 
in .91, i.e., if there does not exist any element y ofd such that yeA - x) = 1. 
Similarly, the right spectrum ar,d(x) of x with respect to .91 consists of the 
collection of all scalars A such that A - x is not right invertible in .91, and 
the spectrum a d(X) of x with respect to .91 consists of the collection of 
all scalars A such that A - x is not invertible in d. (Clearly a ..... (x) = 

al d(X) u ar d(X) for every element x of d.) Finally, the complement , , 
C\ad(x) is the resolvent set of x with respect to .91, and the d-valued 
mapping Rx defined on the resolvent set of x with respect to .91 by 

Rx(A) = (A - X)-l, A¢ad(x), 

is the resolvent of x. 

Just as in the case of a bounded linear operator, each value Rx(A) of the 
resolvent of an element x of a unital Banach algebra .91 doubly commutes 
with x (i.e., commutes with every element y of .91 that commutes with x). 
In particular, the values of Rx all commute with one another. Moreover, 
the resolvent Rx is a continuous d-valued mapping on the resolvent set 
C\ad(x) (Prob. K). Another elementary but central fact about resolvents 
is set forth in the following proposition. 

Proposition 12.10. Let .91 be a unital Banach algebra, and let x be an element 
of d. Then for every pair IX, P of complex numbers in the resolvent set of x, 
the resolvent Rx satisfies the equation 

Rx(lX) - RAP) = -(IX - P)RAIX)RAP) 
(known as the resolvent equation). 
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PROOF. For arbitrary complex numbers rt and p we have 

(rt - x) - (P - x) = rt - p. 
If both rt and /3 belong to the resolvent set of x, then, multiplying by 
Rx(rt)R,(P), we obtain 

o 

Here, and again below, we note explicitly that whatever is true in general 
of spectra and resolvents of elements of an abstract Banach algebra is also 
true in particular for bounded linear operators. Thus if T is a bounded 
operator on a Banach space iff, then the resolvent RT satisfies the resolvent 
equation 

RT(rt) - RT(P) = -(rt - P)RT(rt)RT(P) 

identically for rt, fJ not belonging to a{T). 
Obtaining information about the behavior of the resolvent of an element 

of a unital Banach algebra would be an exercise in futility if that element 
had an empty resolvent set. The following result shows that this can never 
happen. (For a more precise result see Problem M.) 

Proposition 12.11. If d is a unital Banach algebra and x is an arbitrary element 
of d, then the series 

(8) 

converges to (A - x) - 1 for every complex number A such that I AI > II x II. 
Hence the spectrum (J' J1I(x) is bounded, being a subset of the disc 
{A E C: I A I ::; II x II}, and the resolvent set of x contains the complement 
of this disc. 

PROOF. If I A I > II x II and if we define r = II xl A II , then r < 1 and II xn I An II :::; rn 
for every positive integer n. Hence the series (8) is absolutely convergent and 
therefore convergent (Prob. 11 G). Moreover, multiplying this series (on 
either side) term by term by A - x gives rise to the difference 

I (~)n I (~)n+l = I J11 , 

n~O A n~O A 

and the result follows. 0 

The series expansion (8) may be thought of as the power series expansion 
of Rx about the point at infinity. A slight modification of the same argument 
shows that the resolvent Rx can be expanded in a power series about any 
point in its domain of definition. The following result is also an immediate 
consequence of the Banach algebra analog of Proposition 12.9; see Problem 
K. 
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Proposition 12.12. Let ,Jl/ be a unital Banach algebra, let x be an element 
of d, let Ao be a complex number in the resolvent set of x, and let d = 
II RxCAo)ll· Then every scalar A in the disc D = {A E IC: I A - Ao I < lid} 
belongs to the resolvent set of x, and for each A in D, 

00 

RAA) = L (Ao - AtRx(Aot+ I. (9) 
n=O 

In particular, no point of (Jd(X) lies in D. 

PROOF. If I A - Ao I < lid, then 

II (Ao - A)RxCAo) II = r < 1 

and 

for every n. Hence the series (9) is absolutely convergent and therefore 
convergent. Moreover, multiplying this series (on either side) term by term by 
A - x = (Ao - x) - (Ao - A) gives rise to the difference 

00 00 

L «Ao - A)RxCAo»n - L «Ao - A)RxCAo»n+1 = 1d · 0 
n=O n=O 

Corollary 12.13. For an arbitrary element x of a unital Banach algebra d, 
the spectrum (Jd(X) is a compact set in IC. 

PROOF. Proposition 12.12 shows that the complement of (J d(X) is open, 
and we have just seen that (Jd(X) is bounded (Prop. 12.11). 0 

Considered as a (set-valued) function of the elements of a unital Banach 
algebra d, the spectrum has some favorable properties and others that are 
not so agreeable. As an example of the former we note the obvious fact that 
for any complex number A and element x of d we have (J d(X + A) = 
(J d(X) + A. (For a noteworthy generalization of this fact see Problem 0.) 
As an example of a less desirable property of spectra, we observe that (J d(X) 
is not, in general, a continuous function of x in any reasonable sense of that 
term. 

Example U (G. Lumer). For each nonnegative number r let w,. denote the 
bilateral shift on (t 1)# having the weight sequence 

{ ... , 1, ... , 1, [r], 1, ... , 1, ... } 

(cf. Example F). According to Problems E and M, when r is positive the 
spectrum of w,. is contained in the closed disc with center at the origin and 
radius lim supn rl/n = 1. On the other hand, when r is positive the operator 
w,. is also invertible, and a very similar calculation discloses that the spectrum 
of W r- I is likewise contained in the closed disc with center at the origin 
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and radius lim supn (1jr)l/n = 1 (see Problem L). This, in turn, implies 
(Prob. 0) that the spectrum O'(w,.) lies on the unit circle, and therefore 
coincides with the unit circle for all r > ° (Prob. R). Moreover, we have 
lim,to w,. = Wo; indeed, it is easy to see that II w,. - Wo II = r, r > 0. But 
Wo has zero for an eigenvalue (Woeo = 0), so O'(Wo) contains a point at 
constant distance one from all of the sets O'(w,.), r > 0. (We note that the 
sequence {~n} :=00_ 00 defined by 

{
An 

~n = .1: 
0, 

n < 0, 

n = 0, 

n > 0, 

belongs to (t 1)# for every A such that I AI < 1, and that if we write X;. for this 
vector, then Wox;. = AX;.. Thus O'(Wo) contains the open unit disc, and since 
O'(Wo) is closed and is contained in the closed unit disc (Prop. 12.11 and 
Cor. 12.13), this shows that, in fact, O'(Wo) = {A E IC: IAI ::; I}. The choice 
p = 1 was made merely to fix ideas; the same calculations yield the same 
results on any of the spaces (tp)#, 1 ::; p::; +00.) 

The notion of the spectrum of an element of a unital Banach algebra 
permeates all of functional analysis, and we shall return to it over and over. 
For the present we conclude our discussion of spectra with the following 
result, which shows that the mapping X ~ 0' d(X) is at least semicontinuous 
in an appropriate sense. 

Proposition 12.14. Let d be a unital Banach algebra, let Xo be an element of .91, 
and let c be a positive number. Then there exists a positive number J such 
that if XEd and II x - XO II < <5, then 0' d(X) lies in the open set V, = 
{A E IC: dCA, O'd(XO)) < c}. 

PROOF. Let F denote the closed set of all those complex numbers A such that 
dCA, 0' d(XO)) ;?: c, and let K denote the compact set consisting of all 
those complex numbers A in F such that I AI ::; II Xo II + 1. The function 
II (A - XO)-l II is continuous along with (A - XO)-I on the resolvent set of Xo 
(see Problem K), and therefore assumes a maximum M on the compact set 
K. If II X - Xo II < 1jM, then II (x - Xo){A - XO)-I II < 1 for all A in K, so 
1 + (x - Xo){A - xo) -I is invertible (Prob. K), and since A - x = 
[1 + (xo - X)(A - XO)-I](A - xo), we see that A - x is invertible, AEK, 
whence it follows that O'd(X) is disjoint from K. If II x - Xo II is also less than 
one, then II x II < II Xo II + 1, and we conclude that O'd(X) is contained in the 
disc {A E IC: I A I ::; II xoll + 1}. Hence 0' d(X) C VI and we may take c5 to be 
1 1\ (1jM). 0 

Note. Both the statement and the proof of Proposition 12.14 assume the 
fact that 0' d(XO) is not empty. Consequently, until we prove in Chapter 15 
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that no element of d has empty spectrum, care must be taken to apply 
Proposition 12.14 only in circumstances where it can be shown that the 
spectrum of Xo is nonempty. Since our first application of Proposition 12.14 
comes in Chapter 17, this presents no difficulty. It may be noted that if we 
suppose (contrary to fact) that (J d(XO) is empty, then the proof of Proposition 
12.14 (slightly modified) shows that all of the elements of some open ball 
centered at Xo likewise have the property that their spectra are empty. 
The reader is reminded that the results developed here are valid, in particular, 
for bounded linear operators on a Banach space. 

When for some Banach space C the algebra !.f(C) is regarded as a Banach 
algebra, then it is the relations between the various operators in !.f(C) that 
are of paramount importance. It should be kept in mind, however, that a 
Banach algebra of the form !.f(C) has a richer theory than does the general 
(unital) Banach algebra because the elements of !.f(C) also interact with the 
vectors in C. (Thus, for example, there is no obvious counterpart of the very 
useful Proposition 12.6 in the general theory of Banach algebras.) We close 
this chapter with the first of several important applications of the Baire 
category theorem (Th. 4.8) to the theory of bounded linear transformations 
on Banach spaces. Observe that in this application the interaction between 
linear transformations and vectors is of central importance. In regard to 
terminology we note that since the elements of !.f(C, :l') are referred to 
individually as bounded, it has become customary to speak of a bounded 
subset of !.f(C, :l') as uniformly bounded. 

Theorem 12.15 (Uniform Boundedness Theorem). If !T is a collection of 
bounded linear transformations of a Banach space C into a normed space 
:l', and if for every vector x in C the set !Tx = {Tx: T E !T} is a bounded 
set of vectors in :l', then the collection !T is uniformly bounded, i.e., there 
exists a constant K such that II T II ~ K for every T in !T. 

PROOF. For each positive integer n let Sn denote the set 

Sn = {x E C: II Tx II ~ n, T E !T}. 

Since each Tin !T is continuous, it is clear that Sn is a closed set. Moreover, 
it follows from the hypothesis that the sequence {Sn} of closed sets covers 
the complete space @~. Hence by the Baire category theorem some Sn-say 
Sno -must have nonvoid interior. Thus there exists a vector Xo and a number 
e > 0 such that Xo + C, c Sno' Since every vector x in C can be written 
as x = (xo + x) - Xo, it follows that for every T in !T and every x with 
!Ix II < e, 

II Tx II ~ II T(xo + x) II + II Txo II ~ 2no· 

Hence II T II ~ 2no/£ for all Tin !T. D 
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Example V. Let {Tn},~)= 1 be an infinite sequence of bounded linear trans
formations of a Banach space Iff into a Banach space ~, and suppose that 
for every vector x in Iff the sequence {T" x}:'= 1 is convergent in ~ (briefly: 
{T,,} is pointwise convergent on Iff). Then for each x in Iff the set {T"x: n EN} 
is, a fortiori, a bounded set, and it follows that there exists a constant M 
such that II T" II ::; M for every n in N. From this it is a simple matter to 
conclude that the (linear) mapping of Iff into ~ defined by setting Tx = 

limn T"x is bounded (by M). Note that we do not assert that the sequence 
{T,,} converges to Tin !£(Iff, ~). 

PROBLEMS 

A. Let T be a linear transformation of a normed space Iff into a normed space :Y. 
Verify the fact that if the set 111 of all positive numbers M that satisfy (1) is not empty, 
then inf 111 E 111. 

B. If a linear transformation T of a normed space Iff into another normed space :Y 
is bounded on any nonempty open set, then T is continuous. Hence, in particular, 
if the function II Tx II is continuous (or even upper semi-continuous; Example 3K) 
at a single point Xo of Iff, then T is bounded. 

C. An m x n matrix A = (aij) defines, in a natural way, a linear transformation T 
from IC" into em according to the formula 

(Prab. 2H). Verify that T is bounded when IC" and em are equipped with the norms 
II II p and II lip" respectively, 1 < p, p' < + 00, by showing that, in fact, 

where ri = (ail, ... , ain) denotes the ith row of A and q is the Holder conjugate of p. 
Devise analogous estimates using the norms II 111 and II II x . 

D. Find the norm of the matrix 

(10) 

regarded as a linear operator on e2 when e2 is given the norm II 111' Do the same 
when e 2 is given the norm II II ex. • Try to calculate the norm of (10) when II 112 is used. 

E. Describe the action of S2 where S denotes the weighted unilateral shift of Example D. 
What is II S211 ? More generally, describe the action of sm, mEN, and show that 

IISml1 = sup l15n15n+1 .. ·15n+m- l l. 
I1E ~o 

What are the analogous facts regarding the weighted bilateral shift T of Example F? 
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F. Let iC be a normed space, let T be a linear transformation of iC into a normed space 
:F, and let .it be a subspace of iC contained in the kernel $'(T). Show that the result 
f of factoring T through ic/$' (Ex. 2L) is bounded if and only if T is, and that, 
when T is bounded, then II f II = II T II. Show likewise that f is open if and only 
if T is. (Hint: See Problem llH.) 

G. Let M be a subset of a normed space ~, let.l! be the subspace of ~ spanned by M, 
and let ffJ be a mapping of M into a normed space .'F. Show that there exists a 
bounded linear transformation T: j{ -> :F that extends ffJ if and only if there exists 
a positive constant K such that 

for every linear combination AI x I + ... + Anxn of vectors in M (and every positive 
integer n). 

H. Let ic and:F be normed spaces, and suppose that each is a direct sum of two normed 
spaces-say ic = ic I EEl I 6'2 and .'F = :F I EEl I .¥" 2 -so that every vector in ic is a pair 
(x], X2) where Xi E iCjo i = 1,2, and similarly for:F. 
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(i) If T E .P(ic, :F) and x is an arbitrary vector in ic I' then T(x, 0) can be written as 

T(x, 0) = (TIIX, T2IX) 

where Til and T21 are mappings of ic I into :F I and :F 2' respectively. Show 
that Til and T21 are bounded linear transformations satisfying II 'IiI II ::; II Til, 
i = 1,2. Similarly, if x is an arbitrary vector in ic 2, then setting 

T(O, x) = (T12 x, T22X) 

defines bounded linear transformations TI2 and Tn of ic 2 into :F I and :F 2, 

respectively, such that II 'Ii 2 II ::; II Til, i = 1,2. In this way we associate with 
every Tin .P(iC,:F) a unique matrix M = M(T) given by 

i,j = 1,2, (11) 

such that if T(x], x2) = (YI' Y2), Xi E ~i' i = 1,2, then 

YI = Tlixi + T12 X2 and Y2 = T2l X l + T22 X2' 

In other words, if we write (x], X2) and (y], Y2) as column vectors, then 

(;J = (~: ~:) CJ, (12) 

where the indicated formal matrix multiplication is performed according to 
the usual row by column rule. The matrix M(T) is called the operator matrix 
for T relative to the decompositions ic = ic I EEl I ic 2 and :F = :F I EEl I :F 2 . 

(ii) Show conversely that if M is a matrix of the form (11), then (12) defines an 
element T of .P(ic, :F) with the property that M(T) = M. Show also that the 
collection .it of all matrices of the form (11) constitutes a linear space under 
the operations (Sij) + ('Ii) = (Sij + 'Ii) and rx(Sij) = (rxSi), and that the 
mapping M : .P(ic, :F) -> .it of (i) is a linear space isomorphism of .P(ic, :F) 
onto .it. 
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(iii) Let rg be another normed space that is a direct sum rg = rg I EB I rg 2 and let 
S E !£,(.?', rg). Show that if the operator matrix for S relative to the decom
positions.?' = .?' I EB I .?' 2 and rg = rg I EB I rg 2 is 

and if T is as in (i), then the operator matrix for the product ST relative to the 
decompositions C = C I EB I C 2 and rg = rg I EB I rg 2 is the matrix 

(SllTII+SI2T21 SII T12+ S12 T22) = (SII S12)(Tll 1't2) (13) 
S21 Til + S22 T21 S21 T12 + S22 T22 S21 S22 T21 T22 

obtained by forming the formal product (Sij)(T;) by the row by column rule. 
(iv) If @"j = .?';, i = 1,2, so that ~ .. = .?' and !£'(tS,.?') = !£'(@'), show that the 

product defined by (13) turns the linear space j{ of (ii) into an algebra. Show 
also that the mapping M is an algebra isomorphism of !£'(C) onto j{ 

(v) Show, more generally, that if@' = Iff I EB I'" EB I C" and.?' = .?' I EB I'" EB I .?' m' 

then the above construction may be broadened to assign to each element T of 
!£'(C, .?') an m x n operator matrix 

i = 1, .... m, j = 1, ... , n, 

and that all of the foregoing assertions generalize to this setting. 

I. Let C be a quasinormed space and let T be a continuous linear transformation of a 
linear submanifold !£' of C into an F -space .?'. Show that T is uniformly continuous 
on C and hence that there exists a unique continuous linear transformation f of 
!£'- into.?' that extends T (Prob. 4H). (The linear transformation f is said to 
result from extending T by continuity.) In particular, every continuous linear 
transformation of a quasinormed space C into another quasinormed space .?' 
possesses a unique continuous extension mapping j into :J;, where & and :J; 
denote the completions of C and.?', respectively (Th. 11.16). Show also that if C is a 
normed space and fF is a Banach space, and if T is a bounded linear transformation 
of a linear submanifold !£' of C into .?', then II f II = II Til. 

J. Let C, .~, and rg be Banach spaces, and let Sand T be invertible elements of !£,(.?', rg) 
and !£'(C, .?'), respectively. Show that ST is invertible, and that, in fact, (ST) -I = 
T- I S-I. In particular, if Sand T are elements of the open set (fj of invertible 
operators in !£'(C) (cf. the note following Proposition 12.9), then ST belongs to (fj. 
Likewise, if TE (fj then T- I E (fj, since (T-I)-I = T. (These facts are expressed 
by saying that (fj forms a group.) Show also that if T is an element of(fj, then (T") -I = 
(T- I )" for each positive integer n. (This operator is customarily denoted by T-".) 
Verify, finally, that if Tlo ... , T" are pairwise commuting elements of !£'(C), then the 
product TI ... T" is invertible if and only if each T; is invertible. 

K. Let d be an arbitrary unital Banach algebra with unit 1. Show that if x and yare 
invertible elements of d, then (xy)-I = y-Ix-I and (X-I)-I = x. (Thus the set 
(fj,<1 of invertible elements of d forms a group.) Show too that if x E (fj,<1, then 
(x") - I = (x - I)" for every positive integer n. (Once again, this element is denoted 
by x-".) Prove that if x is any element of sl such that 111 - x II < 1, then x E (1),<1. 
Conclude that the set of left [right] invertible elements in d is open. Conclude 
also that the set (fj,<1 itself is open and that the mapping x -+ x - I of (fj,<1 onto itself 
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is continuous and is, in fact, uniformly continuous on (some open neighborhood 
of) any subset of (fig upon which it is bounded. (Hint: Follow the proofs of Lemma 
12.8 and Proposition 12.9.) Verify, finally that if x I, ... , x" are elements ofd that 
commute in pairs, then the product x I .•. Xll is invertible in .91 if and only if each 
Xi is. 

L. Let T be the weighted bilateral shift of Example F. Show that T is invertible on 
(I p)#, 1 :::; p :::; + 00, if and only if T is bounded below, and that this is true, in turn, 
if and only if the weight sequence d = {<>I1} is bounded away from zero. Verify also 
that if d is bounded away from zero, then 

mE N. 

(Hint: Construct T- I explicitly, and recall Problem E. An operator such as T- I 

is known as a backward weighted bilateral shift.) 

M. Let x be an element of a unital Banach algebra .91, and let s = lim sup" II x"ll lll1. 

Show that 0 :::; s :::; II x II. Show also that the power series 

x x" 
I-

11=0 A" 

converges for I A I > s and diverges for I A I < s (cr. Example 5A). Conclude that 

_ 1 oc' xn 
(A - x) = 1l~0 ..1."+1 

for all A such that 1..1.1 > s, and hence that the spectrum ag(x) is contained in the 
disc {A E c: 1..1.1:::; s}. (Hint: Use the root test and the Cauchy criterion.) In par
ticular, if T is a bounded operator on a Banach space iff, then aCT) is a compact 
subset of the disc {A E C : I A I :::; lim SUPIl II Til II I Ill} . These results should be contrasted 
with Proposition 12.11. 

N. Let .91 denote a unital Banach algebra, and let x be an element of d. 
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(i) Show that if p is any polynomial, then p(a,,(x» = a g(p(x». (Hint: Write 
peA) = CiriA" + ... + Cia as Ci,,(A - PI)'" (A - PIl) (Cill ¥- 0), so that p(x) = 
aix - pd··· (x - PI1), and use Problem K to conclude that zero belongs to 
ag(p(x) if and only if some one of the roots PI' ... , PIl of the equation peA) = 0 
lies in ag(x).) 

(ii) Let r be a rational function on C with the property that no pole of r lies in 
a..,(x) (briefly: let r be a rational function with poles off a..,(x». Then r can be 
expressed as p/q, where p and q are polynomials and q(x) is invertible. Show that 
setting rex) = p(x) (q(xW I defines an algebra homomorphism of the algebra 
of all rational functions with poles off a ..,(x) into .91, and verify that a ..,(r(x» = 

r(a..,(x» for every such rational function r. (Hint: For anyone fixed complex 
number a, A is a solution of the equation a = rCA) if and only if A is a solution 
of the equation Ciq(A) - peA) = 0; likewise, Ci - rex) fails to be invertible if 
and only if aq(x) - p(x) fails to be.) We observe that this shows, in particular, 
that if T is a bounded operator on a Banach space iff, and if r is any rational 
function with poles off aCT), then a(r(T» = r(a(T». Thus, for example, if T is 
invertible, then a(T-I) = {A-I: A E a(T)}. 
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O. A linear transformation N on a linear space is nilpotent if there exists a positive 
integer p such that NP = O. (The smallest such positive integer p is the index of 
nilpotence of N.) A bounded operator Q on a Banach space is quasinilpotent if 
O'(Q) = {O}. 
(i) Prove that a nilpotent operator on a Banach space is automatically quasinil

potent. (Hint: Use the preceding problem.) Show, conversely, that if Q is a 
quasinilpotent operator on a finite dimensional Banach space Iff, then Q is nil
potent with index of nilpotence no greater than dim 1&'. (Hint: Recall Problem 
2P.) 

(ii) Let p be an extended real number, I :::;; p :::;; + 00, let d denote the sequence 
d = {1/(n + I)}~=o, and let Q be the weighted unilateral shift on (lp) with 
weight sequence d (Ex. D). Show that Q is quasinilpotent. (Hint: Use Problems 
E and M, and recall Proposition 12.5.) Thus on an infinite dimensional Banach 
space it is quite possible for an operator to be quasinilpotent but not nilpotent. 

P. If T is a bounded operator on a Banach space g, then the spectral radius of Tis, 
by definition, the radius 

reT) = sup IAI 

of the smallest closed disc centered at zero that contains the spectrum of T. More 
generally, if d is an arbitrary unital Banach algebra, then the spectral radius with 
respect to d of an element x of d is the radius r ..,(x) of the smallest closed disc in IC 
that is centered at zero and contains O'",(x). Problem M shows that 

r<f(x) :::;; lim sup" II x" II Ii" :::;; II x II. 

Use Problem N to show that r.",(x") = (r",(x»" and hence that 

r.",(x) = (r",(x,,»II" :::;; II x" III!" 

for every positive integer 11. Thus 1',; (x) :::;; lim inf" II x" 11 1/". 

As we shall see in Chapter 15. the limit lim" II x" 111!1I always exists for an 
arbitrary element x of a normed algebra .vI. Hence 

lim inf" II x"111/11 = lim sup" II x" 111!1I, 

so the result of Problem P is not really any stronger than that of Problem M. 

Q. (i) If Rand S are bounded operators on Banach spaces tff and $', respectively, 
then Rand S are said to be similar if there exists an equivalence T of g onto $' 
such that R = T- 1 ST. Show that if Rand S are similar, then O'(R) = O'(S). 
More precisely, show that O'r(R) = O'r(S), O'/(R) = O'/(S), and O'o(R) = O'o(S) 
(Ex. S). 

(ii) If x and yare elements of a unital Banach algebra d, then x and yare said to 
be similar in d if there exists an invertible element z of d such that x = z - I yz. 
Show that similarity is an equivalence relation on d, and that, if x and yare 

similar elements in d, then 0' ..,(x) = 0' ..,(y). More precisely, show that O'r . ..,(x) = 

O'r . ..,(Y) and O'I . ..,(X) = 0'1. .. iCy). 

R. Let d = {b,,} ~= 0 and d' = {b~} ~= 0 be two weight sequences in (I x) such that the 
sequence of ratios {p" = (15 0 ... 15" _ 1 )/( b~ ... b~ _ I)} ~= I has the property that there 
exist numbers m and M such that 

0< m:::;; Ip"l:::;; M < +00 

269 



12 Bounded linear transformations 

for every positive integer n. Show that the weighted shifts V M d and V M d' (Ex. D) 
are similar on (I p), I .:5: p .:5: + 00. (Hint: Set r = {I, PI, ... , Pn' ... } and compute 
MIl' VMd M ,.) Show that the same criterion is sufficient to ensure the similarity 
of the backward weighted unilateral shifts with weight sequences d and d' (see 
Example M). Show, similarly, that if d = {t5n} and d' = {t5~} are bounded two-way 
infinite sequences such that the sliding ratios 

t5n t5n+ 1 ... t5n+k-1 

Pk. n = ~, ~, ~, 
UnUn+ 1 ... Un+k-l 

satisfy the condition that there exist numbers m and M such that 

o < m .:5: I Pk." I .:5: M < + 00 

for all k and n, then the weighted bilateral shifts (both forward and backward) 
having these weight sequences are all similar to one another. Conclude that if S 
is any weighted shift, unilateral or bilateral, forward or backward, then S is similar 
to yS for every complex number y of modulus one, and therefore that the spectrum 
of S possesses circular symmetry in the sense that if A E (J(S), then YA E (J(S) for every 
}' of modulus one. 

S. Let (Jl denote the collection of mUltiplication operators on (I p) for some fixed p, 

I .:5: P .:5: + 00 (see Example R). Show that if an operator T on (I p) commutes with 
every operator in (Jl, then T must belong to (Jl. Conclude that there does not exist 
any commutative subset of st«1 p» that contains (Jl as a proper subset. (This fact 
is usually expressed by saying that (Jl is a maximal abelian subalgebra of st((t p»') 
Conclude also that an operator on (I p) doubly commutes with a multiplication 
operator M d if and only if it is itself a multiplication operator. (Hint: Among the 
operators in .~ are the multiplications by sequences of zeros and ones.) 

T. Let {eL}'Ef be an indexed family of Banach spaces, and let <ff denote either the 
Banach space 2d of Problem II S consisting of the bounded indexed families {xJ ;'E f 

(with norm II {Xl} II C( = SUPi' II x;, II), or the Banach space % p of Problem II T for 
some p, I .:5: P < + 00 (with norm II {xJ II p = 0::;, II x; II pr lp). Verify that the 
Banach space st(lff) is not separable unless all of the spaces st(<ff) are separable 
and Iff; = (0) for all but a finite number of indices y. (Hint: Recall Example R.) 

U. Let <ff and ff denote arbitrary topological linear spaces, and let T be a linear trans
formation of <ff into ff. 
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(i) Show that the following conditions are equivalent: 

(I) T is continuous, 
(2) T is continuous at x = 0, 
(3) T is continuous at anyone vector Xo in Iff. 

Verify also that the collection st of all continuous linear transformations of <ff 
into ff is a linear submanifold of the linear space of all linear transformations 
of <ff into ff, and that, when <ff = ff, the linear manifold st is also an algebra 
with identity I g. 

(ii) Show that T is automatically continuous when <ff is separated and finite 
dimensional. Show, similarly, that if .~ is separated and finite dimensional, 
then T is continuous if and only if .Jf( T) is closed in 6. (Hint: Recall Problem 
IIP(ii).) 
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(iii) Suppose the topology on rff is induced by some indexed family {V'}.EA of 
deminorms and that ff is likewise topologized by a second indexed family 
{Vp}PEB of deminorms. (Recall that every linear topology can be so obtained 
(Prob. IIX).) Show that T is continuous if and only if, given a positive number 
f, and an index p, there exist a positive number b and indices lXI' ••• , IXn such 
that v,;(x) < b, i = I, ... , n, implies vP(Tx) < e. 

(iv) Suppose rff and ff are topologized by saturated indexed families of pseudo
norms {O"}.EA and {O'P}PEB, respectively. Show that T is continuous if and 
only if for every index p there exist a positive number M and an index IX such 
that 

O'p(Tx) ::;; MO',(x), xErff. 

V. Just as in the case of normed spaces, a continuous one-to-one linear transformation 
T of a quasinormed space rff onto another quasinormed space ff is called an 
equivalence between rff and ff if T is invertible, that is, if there exists a continuous 
linear transformation S: ff -> rff such that ST = Ie and TS = I",. (Since the set
theoretic inverse of a linear transformation is automatically linear. this is equivalent 
to requiring that T be open.) Show that if there exists an equivalence between two 
quasinormed spaces, and if either of them is complete, then both are. Conclude that 
if two quasinorms on the same linear space rff are equivalent (Ex. 11 I), and if rff is 
complete with respect to either quasinorm, then it is complete with respect to both. 
(In Chapter 13 we shall obtain a rather remarkable converse to the latter assertion; 
see Example 13A.) 

W. Let rff I, rff 2, and ff be normed spaces, and let qJ be a bilinear transformation of the 
algebraic direct sum rff 1 + rff 2 into ff. Let us say that qJ is bounded if there exists 
a positive number M such that 

II qJ(x, y) II ::;; M II xliii y II (14) 

for all vectors x in rff I and y in rff 2' Show that if qJ is bounded, then there exists a 
smallest number M satisfying (14). Show likewise that. if we denote this smallest 
bound (called the norm of c) by II qJ II (and if ~ I 1= (0) 1= Iff 2), then 

IqJ(x,y)1 
IlqJll= sup IqJ(x,y)l=sup . 

iixii.iiyii';l x*o Ilxllllyll 
y*o 

Show, finally, that qJ is continuous (with respect t.o the product topology on rff I + ~ 2) 
if it is bounded, and that this, in turn, is true if qJ is continuous at the origin (0, 0). 

X. Let rff I and rff 2 be normed spaces, let 21 and 22 be linear manifolds in rff I and rff 2, 
respectively, and let qJ be a bounded bilinear transformation of 2 I + 22 into a 
Banach space ff. Show that there exists a unique bounded bilinear transformation 
$ of 21 + 2:; into ff that extends qJ. 

Y. Let rff I and rff 2 be Banach spaces, and let qJ be a bilinear transformation of tff I + tff 2 

into a Banach space ff. Show that if qJ(x, y) is continuous in x for each y in tff 2 

and continuous in y for each x in tff I, then qJ is necessarily continuous on tff I + tff 2' 

(Hint: For each vector x in rff I, let Tx denote the linear transformation y -> qJ(x, y) 
of rff2 into ff, and consider the collection:Y = {T,: II x II ::;; I}.) 
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A distinguished role is played in mathematical analysis by the open mapping 
theorems, that is, by those theorems asserting that, under suitable hypotheses, 
a continuous mapping must be open. (For one-to-one mappings this is 
equivalent to the assertion that the inverse mapping is also continuous.) 
The reader is already familiar with one theorem of this type, viz., the theorem 
asserting that a continuous and one-to-one mapping of a compact topological 
space onto a Hausdorff space is a homeomorphism (Prop. 3.3). We shall 
here study an open mapping theorem peculiar to linear transformations. 
Although we are principally interested in linear transformations between 
Banach spaces, the results that follow are valid in F-spaces, and it is in this 
context that we present them. We single out the substance of what is to be 
proved in the form of two preliminary lemmas. (Recall that in an F-space 
C the closed ball with radius r centered at the origin is denoted by C" and the 
corresponding open ball by 6":.) 

Lemma 13.1. Let C and ~ be F -spaces, let T be a continuous linear transforma
tion of IS' onto /1', and let e be a positive number. Then (T(tff,»- is a neighbor
hood of 0 in ~. 

PROOF. For each x in C the mapping A -+ AX is continuous on IC. Hence 
x/n E C'/2 for all sufficiently large positive integers n, and it follows that the 
sequence of sets {n0"'IZ}~= 1 covers 0". Sincdl(T) = ~ the images T(nC,lz) = 
nT(tff'lz) cover ff. Since ff is complete, it follows by the Baire category 
theorem (Th. 4.8) that for some positive integer k the closed set (kT(0"'IZ» - = 

k(T(tffr.d)- has nonvoid interior. But then so does the set (T(tff'IZ»-' since 
multiplication by k is a homeomorphism on ~. Thus there exist a positive 
radius b and a vector IVo such that the balllVo+~b is contained in (T(C'lz»-. 
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In particular, Wo itself belongs to (T(tSe/z))-. Moreover, a moment's reflec
tion shows that by reducing 0 and perturbing Wo slightly we may arrange 
things so that Wo lies in the image T(0e/z), and we assume this done. 

Now let D denote the set of all differences of pairs of vectors belonging 
to T(C,/z): 

D = {Tx' - TX": Ix'l, Ix"l::; 1'./2}. 

Clearly D- contains the closure (T(C,/z) - wo)- of T(Ce/z) - woo But trans
lations are homeomorphisms on C, so (T(C,/z) - wo)- = (T(C,/z))- - wo, 
and therefore 

D- ::> (T(Cf./z))- - Wo ::> $'0· 

Finally, since Tx' - TX" = T(x' - x"), we have D c T(0,), and therefore 

D 

Lemma 13.2. Let C, $', and T be as in Lemma 13.1, and let V be a neighborhood 
of 0 in C. Then T( V) is a neighborhood of 0 in $'. 

PROOF. Choose a positive number I'. such that C, c V, and write I'.n = 1'./2n, 
n EN. According to Lemma 13.1, for each n there exists a positive number 
on such that 

(1) 

and it is clear that we may assume that on ~ O. Let Yo be a vector in $' such 
that I Yo I < 0 I. Then according to (1 ) (with n = 1) there exists a vector 
x I in C such that 

IXII ::; 1'.1 and Iyo - TXII < oz· 
Let YI = TXI· Applying (1) once again, this time to Yo - YI (with n = 2), 
we obtain a vector Xz in C such that, setting Yz = Txz, we have 

I xzl ::; I'.z and Iyo - YI - Yzi < 03 • 

Continuing in this manner, we obtain by mathematical induction a pair 
of sequences {Xn}:=1 and {Yn = TXn}:=1 in 0 and $', respectively, such that 

n EN. 

If for each n we define Zn = XI + ... + Xn, then YI + ... + Yn = TZn so 
TZn ~ Yo. Likewise 

pE N, 

so the sequence {zn} is Cauchy in C. Since C is complete there exists a vector 
Zo in C such that Zn --+ Zo. Moreover, since T is continuous, we have Tzo = 
limn TZn = Yo· Finally, since I Zn I ::; I'. for all n, it follows that I Zo I ::; 1'.. 
Thus Yo belongs to T(CJ, and we have shown that T(V) contains the open 
ball $'~I. D 
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Theorem 13.3 (Open Mapping Theorem). If T is a continuous linear trans
formation of an F -space ~ onto an F -space ff, then T is an open mapping 
of ~ onto ff. In particular, if T is one-to-one, then the inverse transforma
tion T- 1 is continuous. 

PROOF. It suffices to prove that T is open. Let U be an open set in ~, and 
suppose Yo is a vector belonging to T(U). There exists a vector Xo in U such 
that Txo = Yo, and since U is open, Xo is an interior point of U. It follows 
that the translate U - Xo is a neighborhood of the origin in ~, and, by the 
lemma just established, T(U - xo) = T(U) - Yo is a neighborhood of the 
origin in ff. Thus T(U) = (T(U) - Yo) + Yo contains Yo as an interior 
point, and the theorem follows. D 

Example A. If I 11 and I 12 are two quasinorms on the same linear space 
~, let us say that I 11 dominates I 12 if, whenever I Xn 11 ---+ 0 for a sequence 
{xn} in ~, then I Xn 12 ---+ 0. This is equivalent to saying that the topology 
induced on ~ by I 11 refines the one induced by I 12, or, what comes to the 
same thing, that the identity mapping on ~ is continuous from the quasi
normed space (~, I 11) obtained by equipping ~ with I 11 to the space 
(~, I 12) obtained by using I 12· (It is also easily seen that I 11 dominates 
I 12 if and only if the real-valued function I 12 is continuous on (~, I 11).) 
If ~ is complete with respect to both quasinorms, and if one of them dominates 
the other, then by the open mapping theorem the quasinorms must be 
equivalent, that is, must induce the same topology (Ex. 11 I). In particular, 
if a linear space ~ is a Banach space with respect to two norms, and if one 
norm dominates the other, then the norms must be equivalent. (Note that 
if II 111 and II 112 are norms on ~, then II 111 dominates II 112 if and only if 
there exists a positive constant M such that II x 112 ::; M II X 111 for every x 
in~; see Proposition 12.1.) 

Example B. On the Banach space ~(1 )([a, b]) of all continuously differentiable 
complex-valued functions on the nondegenerate interval [a, b] (Prob. 11 F), 
we consider the first order linear differential expression 

Ly = y' - py, 

where p denotes an arbitrary fixed coefficient in ~([a, b]). It is clear that 
L is a bounded linear transformation of ~(l)([a, b]) into ~([a, b ]), and 
hence that if c is any fixed point in [a, b], then the linear transformation 

Jy = (Ly, y(c)) 

of ~(1)([a, b]) into ~([a, b]) EEl 1 C is also bounded. The substance of the 
basic existence and uniqueness theorem for first order linear differential 
equations is that the mapping J is one-to-one and onto. Since both ~(1)([a, b]) 
and ~([a, b]) EEl 1 C are Banach spaces, it follows from Theorem 13.3 that 
J is invertible. In the language of differential equations we have arrived at 
the following result: There exists a positive constant M such that if (; > 0, 
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if ql and q2 are any two functions in ~([a, b]) such that II ql - q211 00 ~ B/2M, 
and if !Xl and !X2 are any two complex numbers such that l!Xl - !X21 ~ B/2M, 
then the solutions Yl and Y2 of the initial value problems 

Y' = py + ql' y(c) = !Xl' 

and 

Y' = PY + q2, y(c) = !X2 , 

respectively, satisfy the condition II Yl - Y211 00 + II y~ - y~ 1100 < B. This 
contains the following more conventional result: There exists a positive 
constant M such that if B > 0 and if I!X 1 - !X21 < B/ M, then the solutions 
Yl and Y2 of the differential equation 

y' = PY + q (2) 

satisfying the initial conditions Yl(C) = !Xl and Y2(C) = !X2 also satisfy the 
condition II Yl - Y211 00 ~ B. This is customarily expressed by saying that the 
solutions of (2) "depend continuously on their initial values." 

It should be noted, of course, that these facts may be obtained directly, 
without recourse to the open mapping theorem, since the general solution of 
(2) can be explicitly written down and examined. The method used here, 
however, applies with equal ease to the kth order linear equation 

y(k) = ak_ly(k-l) + .,. + aoY + q, 

where q and the coefficients Qo, ... , Qk-l are continuous complex-valued 
functions on the interval [a, b]. Moreover, the method can also be extended 
so as to deal with partial differential equations. 

The open mapping theorem has a surprising and extremely useful re
formulation in terms of the graph of a linear transformation. In order to 
develop this point of view, we recall that if fJ and ff are quasinormed spaces, 
then I (x, y) I = I x I + I Y I defines a quasinorm on the direct sum fJ + ff, 
and that the topology induced on fJ + ff by this quasinorm coincides with 
the product topology. (See Example I1J; when the quasi norms on fJ and ff 
are norms, the normed space given by this construction coincides with the 
normed space direct sum fJ EBl ff, and it will be convenient to use this 
notation in the quasinormed case as well.) If T is a linear transformation of 
one quasinormed space fJ into a second quasinormed space ff, then by the 
graph of T is meant, of course, the set 

~ = {(x, Tx): x E fJ}. 

Thus the graph of a linear transformation T: fJ ~ ff is a subset of fJ EB 1 ff. In 
fact, because of the linearity of T, the set ~ is a linear manifold in fJ EB 1 ff. 
(Conversely, it may be noted that if the graph of any mapping of fJ into ff 
is a linear manifold in fJ + ff, then the mapping must be a linear trans
formation.) When is the graph of T closed in fJ EB 1 ff? 
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Theorem 13.4 (Closed Graph Theorem). If T is a linear transformation of an 
F -space g into an F -space ~, then the graph of T is closed in g EEl I ~ 
if and only if T is continuous. 

PROOF. The sufficiency of the condition is easily established. To see this, let 
T be continuous, and let (xo, Yo) be a vector in g EEl I ~ that does not belong 
to ~, so that Yo =f:. Txo. Then there exist disjoint open sets WI and W2 in ~ 
such that Yo E WI and Txo E W2 • Moreover, since T is continuous, there 
exists a neighborhood V of Xo in g such that T(V) c It't, and it is readily 
seen that V x Wz is a neighborhood of (xo, Yo) in g EEl 1 ~ that is disjoint 
from '§. Hence "§ is closed. 

To prove the necessity of the condition we note, to begin with, that if ~ 
is closed in g EEl 1 ~, then "§ is itself an F-space (since a closed subset of a 
complete metric space is complete, and g EEl 1 ~ is complete by Example 
llL). Consider the mapping S of ~ into g defined by Sex, Tx) = x, X E g. 
Since S is the restriction to ~ of the projection 1t 1 of g EEl 1 ~ onto g, it is 
clear that S is a continuous linear transformation. But also, just as clearly, 
S is a one-to-one mapping of~ onto g. Hence the open mapping theorem may 
be invoked to conclude that S- 1 : g -+ "§ is also continuous. Since T = 
1t2 0 S- 1, where 1t2 denotes the projection (x, y) -+ y of g EEl 1 ~ onto ~, 
it follows that T is continuous too, and the proof is complete. D 

Example C. Let g and ~ be F -spaces with quasinorms I 11 and I 12, 
respectively, and let !7 0 be an arbitrary linear Hausdorff topology on ~ 
that is comparable with the quasinorm topology induced by I 12' If ~ 0 

denotes the topological linear space obtained by equipping ~ with !7 0, 

and if T: g -+ ~ 0 is an arbitrary continuous linear transformation, then 
T: g -+ ~ is also continuous when ~ is equipped with the quasinorm 
I 12' Indeed, if !7 0 refines the topology induced by I 12, this result is trivial. 
Suppose, on the other hand, that T: g -+ ~ 0 is continuous where !7 0 

is coarser than the topology induced by I 12' Then the graph "§ of T is 
closed in g x ~ 0 (this may be shown by exactly the same argument as the 
one given in the proof of Theorem 13.4), and the topology on g x ~ 0 

is clearly refined by the quasinorm topology on g EEl 1 ~. Hence "§ is also 
closed in g EEl I ~, and therefore T: g -+ ~ is continuous by the closed 
graph theorem. 

It is very instructive to examine the sequential implications of the closed 
graph theorem. In general, in order to prove that a linear transformation T 
of a quasinormed space g into a second quasinormed space ~ is continuous, 
one must verify that Xn -+ 0 implies TXn -+ O. However, when g is an F
space, the task is made significantly easier by the closed graph theorem. 

Corollary 13.5. Let T be a linear transformation of an F -space g into a quasi
normed space ~, and suppose that for every sequence {zn} in g such that 
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Zn ---> 0 and such that the sequence {Tzn} is Cauchy in :F, it is true that 
TZn ---> O. Then T is continuous. 

PROOF. Consider the graph rg of T as a linear submanifold of Iff ffi 1 ff, 
where ff denotes the completion of:F (Th. 11.16). If {(xn, Txn)} is a sequence 
in rg that converges in Iff ffi 1 ff to a limit (Xo, Yo), and if we set Zn = Xn - xo, 
then Zn ---> 0 and TZn - TZm = TXn - Txm, so {TzJ is Cauchy. Hence, 
by hypothesis, TZn ---> O. But {Tzn = TXn - Txo} tends to Yo - Txo. Thus 
Yo = Txo, so rg is closed in Iff ffi 1 ff, and therefore T is continuous as a 
mapping of Iff into ff. Since T takes its values in :F, it is continuous as a 
mapping of Iff into :F as well. 0 

Example D ([1; Ch. III, Lemme 1 ]). Suppose Iff, and Iff z are F -spaces, 
and T, and Tz are continuous linear transformations of Iff, and Iff z, respec
tively, into a quasinormed space :F. Suppose also that for each x in Iff 1 there 
is exactly one y in Iff z such that Tl x = Tz y. If we define Sx = y, then it is 
clear that S is a linear transformation of Iff 1 into Iff z such that T, = Tz S. 
Moreover, if {zn} is a sequence in Iff, such that Zn ---> 0 and such that {Szn} 
is Cauchy, then on the one hand, {Szn} converges in Iffz-say to Yo, and since 
Tz is continuous, we have Tz SZn ---> Tz Yo. On the other hand, Tz SZn = 
Tl Zn ---> 0 since Tl is continuous, so Tz Yo = O. Since 0 = T10 = Tz 0, this 
implies that Yo = O. Hence S is automatically continuous by Corollary 13.5. 
Note, in particular, that if Tz is one-to-one, then T, can be factored as 
T, = Tz S with S continuous if and only iLg{>(T,) c ,g{>(Tz). 

It is appropriate to devote some further attention to what it is that makes 
the proof of the closed graph theorem work. The crucial fact is that, under 
the hypotheses of Theorem 13.4, the graph of T is a complete metric space. 
For this reason it is customary to give a special name to such linear trans
formations. 

Definition. Let Iff and :F be quasinormed linear spaces, and let T be a linear 
transformation of Iff into :F. Then T is said to be closed if its graph is 
complete as a metric space (in the metric of Iff EEl, :F). 

When Iff is an F -space, the closed linear transformations defined on Iff 
coincide with the continuous ones-that is essentially the substance of the 
closed graph theorem proved above. When Iff is not complete, however, 
matters are quite different, and closed linear transformations on Iff need not 
be continuous. 

Example E. Let f» denote the linear space ~(1)([a, b]) of continuously 
differentiable functions on the interval [a, b], a < b, regarded as a linear 
manifold in the space ~([a, b ]). (In other words, f» is the linear space 
~(' )([a, b]) equipped with the sup norm rather than the norm introduced 
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in Problem lIF.) The linear transformation L of q; onto ~([a, b]) defined 
in Example B is clearly not bounded, but it is closed. (Recall from advanced 
calculus that if {fn} is a uniformly convergent sequence of continuously 
differentiable functions such that the sequence {f~} also converges uniformly, 
then limn f~ = (limn fn)'.) 

Theorem 13.6. Let Iff and g; be quasinormed spaces, and let T be a linear trans
formation of Iff into g;. Then any two of the following three conditions 
imply the third: 

(i) Iff is complete, 
(ii) T is continuous, 

(iii) T is closed. 

PROOF. That (ii) and (iii) imply one another in the presence of (i) is, once 
again, essentially the content of the closed graph theorem. Thus it need only 
be shown that if a quasinormed space Iff is the domain of a linear transforma
tion that is both closed and continuous, then Iff must be complete. Suppose 
that T: Iff ..... g; is such a transformation, and that {xn} is a Cauchy sequence 
in Iff. If 8 is a given positive number, if (j > 0 is chosen so that I x I < (j implies 
I Tx I < 8, and if N is chosen large enough so that I Xn - Xm I < (j for all 
m, n ~ N, then I TXn - TXm I = I T(xn - xm) I < 8 for all m, n ~ N. Hence 
{Txn} is also a Cauchy sequence in g;, and it follows at once that the sequence 
of pairs {(xn, Txn)} is Cauchy in $ EEl! g;. Since this sequence belongs to 
the graph of T, and T is closed by hypothesis, we conclude that there exists 
a vector y in $ such that I y - Xn I + I Ty + TXn I tends to zero. But then, 
in particular, {xn} converges to y. D 

Example F. Let X be a set, and let $ be a Banach space whose elements are 
complex-valued functions defined on X. If $ possesses the property that all 
point evaluations f ..... f(x), x E X, are bounded linear functionals on $, 
then $ is said to be a Banach function space. Important, but by no means 
exhaustive, examples of such spaces are e6'(X) in general, and '6'b(X) when 
X is a topological space, both in the sup norm (see Problem 11 D). Other 
examples are '6'(n)([a, b]) in the norm introduced in Problem IIF, and the 
spaces (lp) (where X = No). Suppose now that $ and g; are Banach function 
spaces on the same set X, and suppose given a complex-valued function m 
on X with the property that the product (mJ)(x) = m(x)f(x) belongs to g; 
whenever f belongs to Iff. Then the multiplication M: $ ..... g; defined by 
setting Mf = mf,J E $, is automatically bounded. Indeed, if {fn} is a sequence 
in Iff such that fn ..... fin $ and Mfn ..... 9 in g;, then {fn} converges pointwise 
to f and {Mfn} converges pointwise to g, since $ and!F are Banach function 
spaces. But {Mfn = mfn} obviously converges pointwise to nif. Thus 9 = MJ, 
so M is closed, and the desired result follows at once from the preceding 
theorem (or from the closed graph theorem itself). Frequently in this situation 
it is possible to conclude that the multiplier m is also bounded. Suppose, 
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for example, that {An }:'= 0 is a sequence of scalars with the property that for 
some fixed pair of real numbers p and pi, 1 ~ p, pi < + 00, the sequence 
Lx = {A'n(n}:~O belongs to (t' p.) whenever x = {(n}:'=O belongs to (t p). 
Then L is bounded, as we have just seen, and if II L II = r, then it is easily 
verified that II {An} II 00 = r. (Indeed, if the vectors en are as in Example 11 H, we 
have I An I = II Len II p' ~ r II en lip = r for every nonnegative integer n. The 
fact that II {An} 1100 = II L II can also be derived quite directly, of course, 
without recourse to any version of the closed graph theorem.) 

An important theme in Chapters 12 and 13 has been the application of the Baire category 
theorem (Th, 4,8) to obtain important information concerning linear transformations 
on F -spaces and Banach spaces, The main theorems in this context are certainly the ones 
already dealt with, viz" the uniform boundedness theorem, and the open mapping and 
closed graph theorems, There are other applications, however, and we close this section 
with one more such result. It is instructive to compare the following proposition with 

Problem 12B. 

Proposition \3.7. Let ,g be a Banach space, let T be a linear transformation oj Iff into a 
normed space ;#', and suppose the junction x --> II Tx II is lower semicontinuous on Iff 
(Ex, 3K), Then T is bounded, 

PROOF, The sets M n = {x E ,g : II Tx II :-::; n} are closed for all positive integers n and cover 
6, Hence, by the Baire category theorem, at least one M n must have nonempty interior, 
and T is bounded on that open set. But then T is bounded, 0 

PROBLEMS 

A. Let ~ and :#' be Banach spaces, and let T be a bounded linear transformation 
of t% onto:#' such that the range ~ = ~(T) is closed in :#" Show that there exists 
a constant M > 0 such that every y in ~ can be written as y = Tx with 
II x II :$; Mil y II, In particular, if T is one-to-one, then T is bounded below by 11M, 
(Hint: Factor out the null space of T.) 

B. Let Iff and g; be F-spaces, and let T be a continuous one-to-one linear transforma
tion of ~ into :#" The set-theoretic inverse T- 1 :~(T) -> ~ is a (one-to-one) linear 
transformation that is continuous if and only if ~(T) is closed in :#" 

e. Let ~ be an F-space, and suppose jl and ,AI' are closed linear submanifolds of ~ 
such that j{ n JV' = (0) and j{ + JV' = Iff, so that every vector x in ~ has a unique 
representation as x = y + z, where y E j{ and Z E JV', (Such linear manifolds 
are said to be complementary in ~ (Prob. 2C),) Show that the mapping (y, z) -> y + Z 

of j{ EB 1 .AI onto ~ is an equivalence, and conclude that the projections P and Q 
defined by Px = y and Qx = z are continuous linear transformations on ~, Show 
also that if ~ is a Banach space, and j{ and .AI are subspaces of ~ satisfying the 
stated conditions (so that P and Q are bounded operators on ~), then II P II, II Q II ~ L 
Show finally, by giving an example, that it is quite possible for II P II and II Q II both 
to exceed one, 

D. Let ~ be an F-space, and let P be a linear transformation of ~ into itself that is 
idempotent, i.e" satisfies the equation p 2 = P. Show that the kernel$' of P and the 
range ~ of P are complementary linear manifolds in ~, that is, satisfy the conditions 
$' n ~ = (0) and$' + ~ = ~, Show also that$' and ~ are closed in ~ if and only 
if P is continuous, 
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E. Let,g and §' be F -spaces, and let Sand T be continuous linear transformations of 
,g into §' and of §' into Iff, respectively, such that TS = If, (so that T is a left inverse 
of Sand S is a right inverse of T). Show that the range of S and the null space of 
T are necessarily closed complementary submanifolds of §'. (Hint: ST is idem
potent.) 

F. Show that the assumption that the space §' is complete cannot be omitted from the 
open mapping theorem, even when Iff and §' are both normed spaces. (Hint: 
Construct a bounded linear operator T on a Banach space ,g' so that T is one-to-one 
but is not bounded below. If qj = qj(T), then T: Iff --> qj is a bounded linear trans
formation of,g' onto qj, but this mapping is not open.} 

G. Let §' be an arbitrary infinite dimensional Banach space, and let {XY}YEr be an 
indexed Hamel basis for §' consisting of unit vectors. Consider the normed space 2' 
consisting of all similarly indexed families of complex numbers {AY}YEr with the 
property that Ay = 0 except for a finite number of indices y, equipped with the 
norm II {Ay} II = Iy I Ay I. (In connection with this construction the reader may wish 
to recall Problem lIT) The linear transformation T of 2' onto §' defined by 

is bounded but is not an open mapping. (Hint: Recall Proposition 12.7.) (This 
problem shows that the assumption that ,g be complete likewise cannot be delted 
from the statement of the open mapping theorem, even when Iff and §' are both 
normed spaces.) 

H. Show that the open mapping theorem remains valid if the assumptions that §' 

is complete and that Tmaps Iff onto §' are replaced by the single (apparently weaker) 
assumption that the range qj of T is of second category in :F. (Hint: Modifyappro
priately the proof of Lemma 13.1.) Show also that this result is not really stronger 
than Theorem 13.3 by verifying that if qj is of second category in §', then :F must 
be complete and qj must coincide with §'. 

I. Use the result of Example A to derive the open mapping theorem for a one-to-one 
linear transformation. 

J. Show that II! III = g If (t) I dt is a norm on '6'([0, 1]) that is dominated by the 
sup norm, and conclude that '6'([0, I]} is not complete in the norm II III' 

K. Let d denote the linear space of all holomorphic functions on the open unit disc D, 
and for every f in d and every radius r, 0 < r < 1, write 

M,(f} = max If(A}I. 
1.11,;r 

Show that each M, is a norm on d and that, if we set M" = M'n where r" = /li(n + 1), 
n E I\J, then 

00 1 Mn(f) 

I II = n ~I y. M /I(f) + 1 ' 
fEd, 

is a quasinorm on d turning d into an F-space. Show also that the topology in
duced by this quasinorm is the topology of uniform convergence on compact subsets 
of D (see Problem 11 U). Let j{ 0 denote the linear manifold consisting of all those 
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functionsJin d such thatj(O) = O. Use the open mapping theorem to show that the 
mapping of j{ 0 onto ,,1 consisting of multiplicati.on by the function meA) = I/A is 
continuous in the topology of uniform convergence on compact subsets of D. 

This last application illustrates very clearly a general principle concerning 
the open mapping theorem. It is, by its nature, restricted to yielding quali
tative as opposed to quantitative information. As a matter of fact, iff E d 
and f(O) = 0, then by the maximum modulus principle (Ex. 5M), 

1.11 :":: r, (3) 

for all 0 < r < 1, and from this quantitative estimate the asserted con
tinuity follows at once. (The inequality (3) is known as Schwarz's lemma.) 

L. In the text the open mapping theorem was used to deduce the closed graph theorem. 
Show, conversely, that the closed graph theorem can be used to prove the open 
mapping theorem. (Hint: First treat the case of a one-to-one linear transformation.) 

M. Suppose that a linear space Iff is complete with respect to each of two quasinorms 
I 11 and I I 2, and suppose also that there exists some separated linear topology 
on Iff that is refined by both of the topologies induced by I 11 and I 12' Show that 
I 11 and I 12 must be equivalent. (Hint: Use Example C.) 

N. Let.? and ffJ be quasinormed spaces, and suppose given a one-to-one continuous 
linear transformation S of ff into ffJ. Show that if T is a linear transformation of an 
F -space Iff into ff such that ST is continuous, then T is continuous. (Hint: Apply 
Corollary 13.5.) 

O. ([1; Ch. III, Th. 8]) Let ff and {ffJ)'})'Er be quasinormed spaces, and suppose given 
a separating family {S).} of continuous linear transformations S:. : .? --> (§)" Y E r 
(see Example 3R). Let T be a linear transformation of an F-space Iff into .? such 
that S) T is continuous for each index y. Show that T is continuous. 

P. Let Iff and .? be F-spaces, and let T be a linear transformation of @ into ff. Show 
that I xiI = I x I + I Tx I defines a quasinorm on Iff, and show that Iff is complete 
with respect to I 11 if and only if T is closed. Use these observations to show that 
the result of Example A implies the closed graph theorem. 

Q. Let Iff be an arbitrary quasinormed space that is of second category in itself. Show 
that if there exists a closed linear transformation T of Iff into some quasinormed 
space ff, then Iff must be complete and T must be continuous. (Hint: Use Problem 
H. This shows that if in the closed graph theorem we assume outright that T is 
closed, then even the hypothesis that Iff is complete can be weakened somewhat.) 

R. Let Iff and ff be quasinormed spaces, and let T be a one-to-one linear transformation 
of Iff onto ff. Show that T is closed if and only if its set-theoretic inverse is closed. 

S. A linear manifold ..It in an F -space ff is sometimes called paraclosed if there exists 
an F -space Iff and a continuous linear transformation T of Iff into ff such that..lt = 
9l(T). Show that a paraclosed linear submanifold of an F -space ff that is not closed 
in ff is necessarily of first category in its own closure, and therefore of first category 
in ff. (Hint: See Problem H.) 
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Problems Q and S raise the question whether it is possible for a linear 
submanifold of an F-space:F to be of second category in :F without coin
ciding with :F. That this is indeed always possible when :F is infinite 
dimensional is shown by the following construction (Hausdorff [35]). 

T. Let:F be an F-space, and let X be a Hamel basis for :F. Let {x,,},;'= 1 be an infinite 
sequence of distinct vectors in X, and let X 0 denote the subset of X consisting of 
those vectors that do not appear in the sequence {x,,}. Show that if for each positive 
integer 11, . #11 denotes the linear submanifold of .'¥ generated algebraically by 
X 0 U {x 1, ... , x,,}, then no ,J(" coincides with :F, but at least one ,J(" is of second 
category in .'F. 
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Many of the important applications of the theory of topological linear spaces 
concern the relations between a space tff and the space of continuous linear 
functionals on tff. This space is known as the conjugate space or dual space 
of tff and will be denoted by tff* in the sequel. (When tff is a normed space, 
tff* = 2(tff, q is a Banach space (Prop. 12.2); otherwise tff* will simply denote 
a vector space (Prob. 12U).) 

Example A. The most general linear functional on the space cn is given by 
the formula 

n 

fa<~I"'" ~n) = L lXi~i' (1) 
i= I 

where a = (IXI- ... , IXn) is an arbitrary but fixed element of C" (Prob. 2H(iii)). 
For any x = (~I"'" ~n) it is clear that 

n 

I fa(x) I s Ilallex:.LI~il = Iiallex:llxlil' 
i= I 

Hence, if C'j denotes the result of equipping C" with the norm II III (see 
Example 11 A), the norm of fa as a functional on C'j is no greater than II a II ex:' 
On the other hand, if an index io is chosen so that IlXio I = II a 1100 , and if y is a 
complex number of absolute value one such that ylXio = IlXio I, then the 
n-tuple Xo with the io-th entry equal to y and all other entries zero has the 
properties that II Xo 111 = 1 andfa(xo) = II a II 00' Thus II fa II = II a II oc' Similarly, 
it is easy to see that if c~ is the result of equipping C" with the norm II 1100' 
then II fa II on c~ is given by II a III' 
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Finally, let us find the norm offa on the space C; obtained by equipping 
en with the norm II lip, 1 < p < 00. In the first place, letting q denote the 
Holder conjugate of p, we have 

for every n-tuple x, by virtue of the Holder inequality (Prob. liB). Thus 
II fa II :S II a Ilq. We shall show that, in fact, II fa II = II a Ilq. To this end it suffices 
to treat the case II a Ilq = 1. For each i = 1, ... , n, let ri be a scalar of absolute 
value one such that riai = I ai I, and let 

i = 1, ... , n. 

Then the n-tuple x = «( I, ... , (n) has the property that 

n n 

Ilxll~ = l: laiIP(q-l) = l:lailq = 1, 
i=1 i= I 

so that II x lip = 1. But also 
n n 

fix) = l:lailq-l(ri a;) = l:lailq = 1, 
i=1 i= 1 

and therefore II fa II = 1. 

Example B. For each nonnegative integer m, let se m denote the linear space 
of all infinite sequences {(n}:O= 0 such that (n = ° for all n > m. Then .semis a 
subspace of (I p), 1 :S P :S 00, and the correspondence 

is an isometric isomorphism between se m and the space C; + 1 of Example A. 
Let us consider the case p = 1. Iffis a bounded linear functional on (II), then 
for each nonnegative integer m there is an (m + I)-tuple (al>m), a\m), ... , a!:;') 
such that I alm ) I :S II f II , i = 0, ... , m, and such that 

m 

f(x) = l: alm)(i' (2) 
i=O 

Moreover, if m < m', then f I semis the same as the restriction to se m of the 
functional f I se m', whence we conclude that there exists a single infinite 
sequence {an} with II {an} II ex: :S II f II such that a~m) = an for all nonnegative 
integers m and n. 

Now if x = {~n} E (11) and if we define, for each nonnegative integer m, 
_ {e(m) e(m) } h Xm - So , ... , Sn , ... ,were 
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then the sequence {xm} converges to x in (! I) and therefore {f(xm)} converges 
to f(x). But also 

m 

f(xm) = l>i~i 
i=O 

for every m, and since the sequence {C(n} is bounded, we see that 

Thus every elementfof(! 1)* is given by an element a = {C(n} of(! oc) according 
to the formula 

00 
f(x) = L C(n~n' x = {~n}E(/d, 

n=O 

where II a II ex: s II f II . On the other hand, it is quite obvious that if a = {C(n} 
is any element of (! ocJ, then 

00 
fa(x) = L C(n~n' x = {~n} E(!I), (3) 

n=O 

determines a bounded linear functional fa on (t I) with II fa II s II a II oc • 

Thus the correspondence a +-+ fa is an isometry, and since it is obviously 
linear, we have proved the following basic fact: The mapping a -+ .f~, where 
{" is defined as in (3), is an isometric isomorphism of (t oc) onto (!1)*' It is 
customary to identify these two Banach spaces via this canonical isomor
phism, and to write simply, by a slight abuse of language, (t 1)* = (/00)' 

Example C. The same device may be employed to study (I p)*, 1 < P < + 00. 

Letting q denote the Holder conjugate of p and using the results of Example 
A, we find that iff is a bounded linear functional on (! p), then there exists a 
sequence a = {C(n} with II a Ilq s II f II such that 

m 

f(x) = L C(i~i 
i=O 

for every x = {~n} in 2m. But then, of course, using the Holder inequality 
and the technique of Example B, we conclude that 

00 
f(x) = L C(n~n 

n=O 

for every x = {~n} in (! p). Finally, using the Holder inequality once again, 
we observe that if a = {C(n} is any element of (! q), then 

00 

fix) = L C(n ~n' X = {~n} E (! p), (4) 
n=O 
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defines a bounded linear functional j~ on (! p) with II fa II ~ II a Ilq. We have 
sketched the proof of the following fact: The mapping a ---+ fa' where fa is 
defined as in (4), is an isometric isomorphism of (t q) onto (t p)*' Here again it is 
customary to identify these two spaces, writing, by a slight abuse oflanguage, 
(t p)* = (t q). 

Since p = 2 is the unique positive number that is its own Holder conjugate, this identi
fication has special implications for the space (/2)' In particular. the relation (/ 2)* = (/ 2) 
permits the definition, by a slight modification of (4), of an inner prodllct 

ex 

({(nJ, {'1n}) = I ~n~n' {(n}' {'1.,} E(/ 2), 
n=O 

that turns (/ 2 ) into a Hilbert space. The study of Hilbert spaces and operators on them 

is undertaken in Volume" of this treatise. 

Examples A, B, and C give detailed description of some dual spaces. We 
shall have occasion as we go along to develop precise descriptions of the duals 
of other specific normed spaces. Concerning the dual g* of a general normed 
space g, we know not only that it is a normed space, but also that it is com
plete (even if g itself is not; see Proposition 12.2). What we do not know as 
yet is whether, in general, there are any linear functionals in g* other than 
the zero functional. The main purpose of this chapter is to establish the fact 
that bounded linear functionals always exists in abundance on a normed 
space. 

If f is a linear functional defined on a linear submanifold At of a linear 
space g, and if fo is a linear functional defined on a linear submanifold .410 
that contains At, then fo is a linear extension off if fo(x) = f(x) for every 
vector x in At. We shall be concerned with the extension of bounded linear 
functionals. Our first step in this direction deals with the extension of a real 
linear functional on a real normed space. 

Lemma 14.1. Let g be a real normed space, and let .41 be a linear manifold in g. 
Let f be a bounded linear functional on At, and suppose that Xo is a vector 
in g that does not belong to At. If At 0 denotes the linear manifold generated 
by At and xo, then there exists a linear extension fo of the functional f to 
.41 0 satisfying the condition II fo II = II f II. 

PROOF. It is clear that we may assume, without loss of generality, that 
II f II = 1. The linear manifold At 0 consists of all vectors of the form y + txo, 
where y is an arbitrary vector in At and t is a real number. If r denotes·a real 
number to be determined, and if we define 

fo(Y + txo) = fey) + tr (5) 

for all y in At and all real t, thenfo is clearly the most general linear extension 
off to At o. Thus the problem reduces to choosing r so that II fo II = 1. This 
condition amounts to the requirement that 

- II y + txo II ~ fey) + tr ~ IIY + txo II, (6) 
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or, equivalently, 

for all vectors Y in uIt and all real numbers t #- O. (The equivalence of(6) and 
(7) is most readily verified by separating the two cases t E: 0.) Moreover, 
since y/t belongs to uIt along with y, condition (7) will be satisfied if 

-IIY + xoll - fey) ~ r ~ Ily + xoll - fey) (8) 

for all y in .A. Thus if we write 

rl = sup { - II y + Xo II - fey)}, r2 = inf {II y + Xo II - fey)}, 
YE.;/{ YE.;/{ 

it suffices to show that r 1 ~ r 2, for the required extension will then be given 
by (5), where r is any number such that rl ~ r ~ r2' 

Let Yl and Y2 be any two vectors belonging to uIt. Then 

so that 

f(Y2) - f(Yl) ~ II Y2 - Yl II = II (Y2 + xo) - (Yl + xo) II 

~ II Y2 + Xo II + II Yl + Xo II, 

- II Yl + Xo II - feY!) ~ II Y2 + Xo II - f(Y2)· 

From this it follows that 

rl ~ II Y2 + Xo II - f(Y2) 

for every Y2 in uIt, and hence that rl ~ r2, as desired. o 

Theorem 14.2 (Real Hahn-Banach Theorem). Let j{ be a linear submanifold 
of a real normed space C, and let f be a bounded linear functional defined 
on uIt. Then there exists a linear extensionfo off to the entire space C satisfy
ing the condition II fo II = II f II. 

PROOF. Let !?J> denote the collection of all pairs (g, ~), where ~ is a linear 
submanifold of C containing uIt and 9 is a linear functional on ~ that ex
tends f and satisfies II 9 II = II f II. There is a natural partial ordering on !?J> 
obtained by setting (g b ~ l) -< (g2' ~ 2) when ~ 1 C ~ 2 and g2 is an extension 
of 9 b and it is clear that linearly ordered subsets of!?J> have upper bounds in 
flJ. Hence, by Zorn's lemma, flJ contains a maximal element (j~, $'0)' If ·'1'0 
were not all of C, then Lemma 14.1 could be applied to obtain an element of 
flJ dominating (fo, $'0), a manifest contradiction. Hence $'0 = C, and fo 
is the desired extension (better: is one such extension). 0 

The next step in the program is to extend Theorem 14.2 to complex spaces. 
To see how this goes, note first that if C is a (complex) normed space, then C 
can also be regarded as a real normed space (by refusing to multiply by any 
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but real scalars), and also that if A is a linear manifold in g, then A is also 
a (real) linear manifold in g regarded as a real space. Likewise, iffis a (com
plex) linear functional defined on A, and if g and h are defined by g(x) = 
Re f(x) and hex) = Imf(x) for all x in A, so that 

f = g + ih, (9) 

then g and h are real linear functionals on A regarded as a real space. But 
more than this is true. If, for a fixed vector x in A, y is a complex number of 
modulus one chosen so that yf(x) is real and nonnegative, then I f(x) I = 

f(yx) = g(yx), whence it follows thatfis bounded if and only if g is, and that, 
when both are bounded, II f II = II g II· Moreover, since f(ix) = if(x), it 
follows from (9) that g(ix) + ih(ix) = -hex) + ig(x), so that hex) = -g(ix) 
identically on .,It. Thus (9) assumes the form 

f(x) = g(x) - ig(ix), x E A. (10) 

Suppose now thatfis a given bounded, complex linear functional on A. 
We split f into its real and imaginary parts as in (10), and recall that g is a 
bounded real linear functional on A with II g II = II f II. Hence, applying the 
real Hahn-Banach theorem, we obtain a hounded real linear functional 
go on g that extends g and satisfies the condition II go II = II g II. Then, follow
ing (10), we use go to define a complex-valued functionalfo on g according 
to the formula 

(11 ) 

It is easily seen that fo is additive on g and that the set of complex scalars A 
such that!o(Ax) = A!o(X) for all x in iff is a real linear submanifold !l' of C 
that contains the real axis. Since direct calculation shows thatfoUx) = ifo(x), 
it follows that !l' coincides with C. In other words,fo is a complex linear func
tional. Finally, the same argument as above shows that II fo II = II go II , and 
hence that II fo II = II f II. We have proved the following result, in the state
ment of which the scalar field is, as usual, understood to be C once again. 

Theorem 14.3 (Hahn-Banach Theorem). Let A be a linear manifold in a 
normed space g, and letfbe a bounded linear functional defined on A. Then 
there exists a linear extension fo off to the entire space g satisfying the 
condition ~ fo II = II f II· 

Example D. Suppose qJ is a bounded linear functional on the space ~([O, 1J) 
of continuous complex-valued functions on [0, 1]. Since ~([O, IJ) is a linear 
submanifold of the normed space &1([0, 1]) of all bounded functions on 
[0, 1] (cf. Problem lIE), the Hahn-Banach theorem assures us of the 
existence of a linear extension rpo of rp to this larger space such that 
II rpo II = II rp II· Hence we may and do define a function rx by setting 

{O, 
rx(t) = 

qJo(X[o. tj), ° < t ~ 1. 

t = 0, 
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We shall show that rx is of bounded variation on [0, 1] (cf. Problem 11). Indeed, 
if ° = to < t 1 < ... < t N = 1 is an arbitrary partition of [0, 1], we wnte 
II = [0, t1] and I j = (t j- b tj] for j = 2, ... , N, and define Xj = Xli' j = 
1, ... , N. Then for eachj = 1, ... , N, 

rt(t) - rt(t j_1) = CPo(X), 

and it follows that there exist numbers rj of modulus one such that 

N 

I Irt(t) - rt(tj-1)1 = CPo(f), 
j= 1 

where f denotes the step function f = IJ= 1 rjXj' But f is a unit vector in 
91([0, 1 ]), and therefore 

N 

I Irx(t) - rt(t j- 1 )1 ~ II CPo II· 
j= 1 

Thus rx has total variation V no greater than II cP II. 
Suppose now that f is a continuous function on [0, 1], and let E be a 

positive number. Choose a positive number b small enough so that 
If(t) - f(t')1 < E for all ° ~ t, t' ~ 1 such that It - t'l < b, and let ° = 
to < t 1 < ... < tN = 1 be a partition with mesh less than b. Then the step 
function 

( ) {f (t 1), ° ~ t ~ t 1, 
gt = . 

f(t), tj- 1 < t ~ tj, } = 2, ... , N, 

has the property that II f - 9 II rJJ ~ E, so that I CPo (g) - rp(f) I ~ I:: II cP II. On 
the other hand, 

N 

CPo (g) = I f(t) [rt(t) - rt(tj-dJ, 
j= 1 

which is a Riemann-Stieltjes sum approximating the integral f6 f(t) drt(t). 
Indeed, according to standard estimates (see Problem 8L), 

I cpig) - ff(t) drt(t) I ~ 2E V ~ 2E II cP II· 

But then 

I cp(f) - f f(t) drx(t) I ~ 3E II cP II , 

and since E is arbitrary it follows that 

q>(f) = f f(t) drx(t). 
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Finally, we observe that for every f in cg([O, 1]) we have I cp(f) I ~ II f Ilw V, 
and hence that V = II cp II . This completes the proof of the following result: 
For every element cp of~([O, 1 ])* there exists a complex-valued function rJ, on 
[0, 1] having total variation equal to II cp II and satisfying the condition 

cp(f)= Lf(t)drJ,(t), fE~([O,I]). (12) 

It is also true, of course, that every complex-valued function rx of finite total variation 
Von [0,1] defines a bounded linear functional cp, on '(f([0, 1]) via formula (12), and for 
this functional we have II cp.11 :-s; V. Moreover, the assignment rx --> cp, is clearly linear. 
However, it is in general possible to have cp, = ° even when V"" 0. Thus we must resist 
the temptation to identify (6([0, 1 ])* with the space of functions of bounded variation on 
[0, 1]. We shall return to this point in Chapter 18. See also Problems F and G. 

For many applications it is important to know that the Hahn-Banach 
theorem is also valid for spaces equipped with pseudonorms in place of norms. 
In order to formulate the desired result, we define a linear functionalf on a 
linear space Iff to be bounded with respect to a pseudonorm a on Iff if there 
exists a number M such that If(x)1 ~ Ma(x) for every x in Iff (cf. Problem 
12U). Continuing the analogy, we likewise define the norm off with respect 
to a to be the smallest such number M. (That a smallest M does indeed exist 
whenever f is bounded with respect to a is easily verified as before; see 
Problem 12A.) 

Proposition 14.4. Let Iff be a linear space equipped with a pseudonorm a, and 
let f be a linear functional defined on a linear submanifold A of Iff such that 
f is bounded on A with respect to a. Then there exists a linear extension 
fo off to the entire space Iff such thatfo has the same norm asfwith respect 
to a. 

PROOF. We employ Proposition 11.17. If :1: = {z E Iff : a(z) = O} denotes the 
zero space of a, then it is clear that f must vanish on ..II n :1:. It follows at 
once that if we write .if = ..II + :1:, then there is a unique linear functional 
g on the space J( = .ii/:1: satisfying the condition 

g(x) = f(x), x E..II, 

and the norm of 9 (with respect to the norm on the associated space C 
obtained by factoring out :1:) coincides with the norm off with respect to 
a. Hence by the Hahn-Banach theorem there exists a linear functional 
io on C that extends 9 and has the same norm as f. But then the product 
fo = io 0 11: (where 11: denotes the natural projection of Iff onto C) satisfies 
both of the desired conditions. D 

Example E. Let (c) denote the linear space of convergent sequences x = 
{~n}:'=O (Ex. 2D). If we equip (c) with the sup norm, then it becomes a sub
space of the Banach space (t 00)' and 

f(x) = lim x = lim ~n 
n 
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defines a linear functional of norm one on (c). Hence by the Hahn-Banach 
theorem there exists a linear functional <p of norm one on (t ClJ with the 
property that <p(x) = lim x whenever x is convergent. Clearly any such 
functional has some claim to be called a "generalized limit". But how well 
behaved is such a notion of limit? One good point turns up at once. If <p is 
such a functional and if Co is a sequence tending to zero, then <p(x + co) = 
<p(x). In particular, <p(x) is unchanged if we modify the sequence x at any 
finite number of terms. Thus <p reflects only the "ultimate" behavior of each 
sequence, just as any respectable notion of limit should. But if <p is not 
selected with considerably greater care, it may fail in other ways to behave 
respectably. Suppose, for example, that Xo denotes the sequence {I, 0, 1,0, ... } 
of alternating ones and zeros and that A 0 denotes the linear manifold in 
(t aJ generated by (c) and Xo. Then A 0 consists of all sequences of the form 
x = Y + AXo, where Y is a convergent sequence and A is a complex number. 
For any such sequence it is clear that II x II CX' 2 max { I lim Y I, I A + lim y I}· 
Hence for any r such that ° s r S 1, the equation 

fo(Y + AXo) = lim Y + rA 

defines a linear functional fo of norm one on A 0 with the property that 
fo(Y) = lim Y for every y in (c). This calculation shows that a "generalized 
limit" <p as above can be constructed so that <p(xo) is any desired number r 
in the unit interval. For any such choice it is clear that the other sequence 
XI = {O, 1, 0, 1, ... } of alternating zeros and ones must have" limit" <p(x I) = 

1 - r, since Xo + x 1 is the constant sequence {I, 1, 1, ... }. But x 1 is actually 
a tail of Xo (obtained by deleting the first term), and we should, therefore, 
expect to have <p(xo) = <P(XI)' Hence the "right" choice for r is r = l 
Can a generalized limit <p be constructed so as to satisfy the extra condition 

(13) 

for every bounded sequence x = {(o, (I' ... } and every positive integer m? 
The answer is affirmative, but the construction is a little tricky and requires 
the use of Proposition 14.4. 

To begin with, let us write Xm for the mth tail {(m, (m + I, ... } of the sequence 
x = {(o, (I'" .}, so that, in particular, Xo = x, and then define 

~(x) = inf II~ ;~/m; t, 
where the infimum is taken over all finite sequences of nonnegative integers 
In» ... , InM (and all positive integers M). Then ~ is a pseudonorm on (I ",). 
Indeed, it is perfectly clear that ~(x) 2 ° and that ~(AX) = IAI~(x) for all 
sequences x in (t aJ and all scalars A. The hard work comes in verifying the 
triangle inequality. Note first that for any average 

1 M 

x' = - Ix 
M ;=1 m; 
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of tails of a sequence x, we have II xiii o£ ~ II x 110£' But then, of course, a second 
average 

1 N 1 M N 

x" = N L X~j = MN L L xm,+nj 
j=1 i=lj=1 

must also have the property that II x" 110£ ~ II xiii oc' It follows that for any 
average x' = l/M L~ I xm, of tails of x and any average y' = l/N L7= I Ynj 
of tails of a second sequence y, the" double average" 

1 M N 

Z = MN i~1 j~1 (x + Y)m;+nj 

of tails of x + y has the property that II z II ex: ~ II x' II,oc + II y' II 00' But then, of 
course, a(x + y) ~ II xiii oc + II y' II etC' and it follows that a(x + y) ~ 
a(x) + a(y). Thus a is a pseudonorm on (t o£)' and it is readily verified that 
for any convergent sequence y we have Ilim y I ~ a(y). Hence, by Proposition 
14.4, there exists a linear functional cp on (t ex') having norm one with respect 
to a and satisfying the condition that cp(y) = lim y whenever y is convergent. 
Finally, that cp satisfies (13) will be verified by showing that a(x - XI) = 0 
for an arbitrary bounded sequence x, for this will guarantee that cp(x d = 
cp(x), and hence that cp(x) = cp(xm) for all m. To see this, we simply note that 

a(x - XI) ~ II ~ i~/X - XI)i t = /I ~(XI - XM+I) L ~ 211~loc 
for every positive integer M. 

A linear functional <p on (t cxJ that satisfies (13), together with the con
dition that <p(y) = lim y whenever y is convergent, and that has norm one 
with respect to the pseudonorm a, is clearly also of norm one with respect to 
the sup norm II "W. Such a linear functional is called a Banach generalized 
limit. 

Proposition 14.4 has a useful consequence bearing on those topological 
linear spaces whose topologies are induced by a family of pseudonorms. 

Proposition 14.5. Let {aY}l'Ef be an indexed family of pseudo norms on a linear 
space g, let .A be a linear submanifold of g, and let f be a linear functional 
on .A that is continuous with respect to the linear topology induced on .A 
by the family ray}. Then there exists a linear extensionfo off to the entire 
space g that is continuous with respect to the topology induced by the 
family ray}. 

PROOF. By Problem 12U there exist indices YI' ... , Yn and a positive number 
I: such that if x E.A and if a),,(x) ~ 1:, i = 1, ... , n, then I lex) I ~ 1. If we set 
a = all v ... va)", then a is a pseudonorm on Iff (Prop. 11.30) with the 
property that if x E.A and a(x) ~ G then I f(x)1 ~ 1, and it follows that f 
is bounded on .A with respect to a by 1/1:. Hence by Proposition 14.4 there 
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exists a linear extensionfo off to If: that is also bounded (by 1M with respect 
to (J, and it is clear that fo is continuous on If: with respect to the topology 
induced by the family {(JJ. 0 

For real linear spaces there are other versions of the Hahn-Banach 
theorem that are extremely useful in certain situations. (See also Problems 
V and W.) 

Proposition 14.6. Let If: be a real linear space, and suppose given a real-valued 
function p on If: satisfying the following conditions: 

(i) p(x + y) s p(x) + p(y)for all x and yin If:, 
(ii) p(tx) = tp(x)for all x in If: and all t > O. 

Let A be a linear manifold in If:, and suppose given a linear functional f 
defined on A and satisfying the condition 

f(x) S p(x) (14) 

for all x in A. Then there exists a linear extensionfo off to the entire space 
If: satisfying (14) at every vector x. 

If p were nonnegative, and if p( - x) coincided with p(x) for every x, then p would be a real 
pseudo norm on ,g', and this proposition would just be the real version of Proposition 
14.4. It should be noted that in this formulation of the Hahn-Banach theorem it is not 
assumed that Iff possesses a topology. 

SKETCH OF PROOF OF PROPOSITION 14.6. We may suppose that .;/{ #- !S. Let 
Xo be a vector in If: that does not belong to ,;/{, and, as in Lemma 14.1, let ,;/{ 0 

denote the linear submanifold of If: generated by A and Xo. If we show that 
there exists an extension of [to A 0 satisfying (14), then the rest of the argu
ment will go exactly like the proof of Theorem 14.2. Thus, what is needed is 
to show the existence of a number r such that 

fey) + tr S p(y + txo) (15) 

for every y in A and every real number t. For t > 0, (15) reduces to the 
requirement 

for all y in A, or, since y/t belongs to A along with y, to the requirement 

fey) + r S p(y + xo) 

for all y in A. Thus if r2 = infYEAf {p(y + xo) - fey)}, then we must choose 
r so that r S r2' Similarly, for t < 0, (15) reduces to the requirement 

fey) - r S p(y - Xo), 

293 



14 The Hahn-Banach theorem 

so that, if rl = SUPYEAf {-p(y - xo) + fey)}, then we must also choose r 
so that r 2: r l' Hence it suffices to show that r 1 ::;; r 2, and the rest of the proof 
goes exactly like the proof of Lemma 14.1. D 

Example F. Let tS' be a real linear space, and let C be a convex subset of tS' 
with the property that for every vector x in tS' there exists a positive number 
tx such that txx E C. (This is customarily expressed by saying that 0 is an 
internal point of C; note that it follows that 0 belongs to C.) For each vector 
x in tS' the set of real numbers 

Mx = {t > O:fXEC} 
is a nonempty ray to the right in IR that is bounded below (by zero), and we 
may and do define p(x) = pcCx) = inf Mr The function p = Pc, known as 
the Minkowski function of C, possesses properties (i) and (ii) of Proposition 
14.6. Indeed, property (ii) follows immediately from the identity tMx = M tx , 
valid for all x in tS' and all t > O. To verify (i), suppose that x and yare vectors 
in tS' and that sand t are any real numbers such that p(x) < sand p(y) < t. 
Then x' = x/s and y' = y/t belong to C and, setting u = s/(s + t), so that 
1 - u = t/(s + t), we conclude that ux' + (1 - u)y' = (x + y)/(s + t) also 
belongs to C. But then p(x + y) ::;; s + t, and it follows that p(x + y) ::;; 
p(x) + p(y). Thus p possesses property (i). 

The relation between C and its Minkowski function p makes it clear that 
if p(x) < 1 then x E C, and likewise that if x E C then p(x) ::;; 1. Thus 

{XEtS':p(X) < I} c C c {XEtS':p(X)::;; I}. 

Suppose now that Xo is a vector in tS' that does not belong to C. If we define 
f(txo) = t on the linear manifold 2 = {txo: t E IR}, then f is obviously a 
linear functional on 2. Moreover,f(x) ::;; p(x) for every x in 2. Indeed, for 
t > 0 we have p(txo) = tp(xo) 2: t = f(txo), while for t < 0 we havef(txo) = 
t ::;; 0 ::;; p(txo) because p is nonnegative. Hence, by Proposition 14.6, there 
exists a linear functionalfo extending f to the entire space tS' and satisfying 
the condition fo(x) ::;; p(x) everywhere. Note that f~(xo) = 1 and that 
fo(x) ::;; 1 at every point of C. 

Thus, in summary, if C is a convex set having 0 as an internal point in a 
real linear space tS', and if Xo ¢ C, then there exists a (real) nonzero linear 
functional f on tS' such that f(x) ::;; f(xo) for every x in C. More generally, 
it is easy to see that if C is a convex subset of tS' possessing an arbitrary internal 
point Zo (that is, a point Zo such that for every vector x in tS' there exists a 
positive number tx such that Zo + txx belongs to C), and if Xo is any vector 
not belonging to C, then there exists a nonzero linear functional f on tS' such 
that f(x) ::;; f(xo) for every x in C (for if Zo is an internal point of C, then 
o is an internal point of the convex set C - zo). 

Example G. The construction of the preceding example admits a generaliz
ation that is of some importance. Let C 1 and C 2 be disjoint nonempty convex 
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sets in a real linear space g, and suppose that one of them-say C 1 -possesses 
an internal point. Let us denote by C the set of differences C I - C 2 = 
{u - v: u E C I, V E C 2}' If x and yare any two vectors belonging to C, then 
there exist vectors UI, U2 in CI and VI' V2 in C2 such that x = Ul - VI and 
y = U2 - V2' Hence if 0 ~ t ~ 1 then 

tx + (1 - t)y = [tUI + (l - t)U2] - [tVI + (1 - t)V2] 

belongs to C. Thus C too is a convex set. Moreover, if Vo is an arbitrary vector 
in C 2, and Zo is an internal point of C I, then Zo - Vo is an internal point of 
C (for if Zo + txx E C b then (zo - vo) + txx E C). Finally, 0 ¢ C since C I 
and C2 are disjoint. Hence, by Example F, there exists a nonzero linear 
functionalfon g such thatf(x) :::; f(O) = 0 for every x in C. But this says that 
feu) ~ f(v) for every vector u in C I and every vector V in C2. Thus we have 
established the following important fact: If C I and C 2 are arbitrary disjoint 
nonempty convex sets in a real linear space g, and if either of the sets C 1 or 
C 2 possesses a single internal point, then there exists a nonzero linear 
functionalfon g such thatf(u) ~ f(v) for all u in C I and V in C2 • 

The construction of Example F also leads to some very important con
sequences for complex linear spaces. (Recall that a complex linear space 
is also a real linear space.) The following concepts are pertinent. 

Definition. If g is a linear space and C is a subset of g that is both convex and 
balanced (Prob. 11M) then C is said to be absolutely convex (see Problem 
N). A subset A of g is said to be absorbing if for every vector x in g there 
is a disc Dr = {AE C: 1..1.1 < r} in C with positive radius r such that 
Drx c A. 

Suppose now that C is an absorbing convex subset of a linear space g. 
Then 0 is certainly an internal point of C in the sense of Example F, so C 
possesses a Minkowski function Pc satisfying (i) and (ii) of that example. 
If C is also balanced, i.e., if C is absolutely convex, then Pc(yx) = Pc(x) for 
every complex number y of modulus one and every vector x in g, and it 
follows at once that Pc is a pseudonorm. This observation leads to a very 
useful characterization of those topological linear spaces whose topologies 
are induced by pseudonorms. (It is instructive to compare the following 
result with Problem 11X.) 

Proposition 14.7. In any topological linear space g the following conditions are 
equivalent: 

(i) The topology on g is induced by afamily of pseudo norms, 
(ii) There is a base for the topology on g consisting of convex sets, 

(iii) There is a neighborhood base at the origin in g consisting of convex 
sets, 

(iv) There is neighborhood base at the origin in g consisting of absolutely 
convex sets 
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PROOF. If (J is a pseudonorm on C then every ball {x E C: (J(x - xo) < r} is 
convex, and it follows at once that (i) implies (ii). Moreover, it is clear that 
(ii) implies (iii). To see that (iii) implies (iv), let C be a convex neighborhood 
of 0 in C, and let V be a balanced neighborhood of 0 such that V c C (Prob. 
11M). Then 

W= n yC 
Ii'I = 1 

contains V, and is therefore a neighborhood of O. Since W is an intersection 
of convex sets, W is also convex, and it is obvious that W is balanced. Thus 
W is an absolutely convex neighborhood of 0 that is contained in C. 

It remains to verify that (iv) implies (i). To this end, suppose {VY})'Er is a 
neighborhood base at 0 in C such that each V;, is absolutely convex. Since a 
neighborhood of 0 is absorbing, each V;, has a Minkowski function (Jy (Ex. F), 
and, as noted above, (J), is a pseudonorm on C for each index y. Since 

{XEC:(J/X) < I} c V;, c {XEC:(J/X):::; I}, YEr, 

it is clear that the topology induced by the family of pseudonorms {(J)'})'Er 
coincides with the given topology on C (see Proposition 11.26), and the proof 
is complete. 0 

Note. For future purposes it is important to observe that the neighborhood 
bases referred to in conditions (iii) and (iv) of the foregoing proposition 
may be taken to consist exclusively either of open sets or of closed sets. To 
verify the former of these assertions, it suffices to take interiors (see Problem 
N). To verify the latter, it is advisable to replace each [absolutely] convex 
neighborhood W by an [absolutely] convex neighborhood W' such that 
W' + W' c W (cf. Problem 11M). 

Definition. A [real] topological linear space possessing one, and therefore 
all, of the properties set forth in Proposition 14.7 is said to he a [real] 
locally convex topological linear space or, more briefly, a [real] locally 
convex space. 

According to Proposition 14.7 the locally convex topological linear spaces 
are precisely the ones to which the discussion at the end of Chapter 11 (Prop. 
11.27-Prop. 11.32) applies. Thus if Iff is a locally convex space and ,,It. is a 
linear submanifold of C, then ,,It is a locally convex space in its relative 
topology, and C/uH is a locally convex space in the quotient topology (see 
Example 110). Similarly, it is not difficult to see that the full algebraic 
direct sum of any indexed family {C Y} Y Ef of locally convex spaces is a locally 
convex space in the product topology (cf. Problem llR). In the same vein, 
it is an easy consequence of Proposition 11.32 that a locally convex space is 
metrizable if and only if its topology is induced by a separating sequence of 
pseudo norms (cf. also Problem 11 Y). The following is little more than a 
summary of earlier results restated in terms of local convexity. 
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Proposition 14.8. In any topological linear space fff the following conditions 
are equivalent: 

(i) The topology on fff is induced by a countably determined separating 
family of pseudonorms, 

(ii) The topology on fff is induced by a countable separating family of pseudo
norms, 

(iii) fff is locally convex and quasinormable, 
(iv) fff is locally convex and metrizable. 

PROOF. If the given topology on fff is induced by some count ably determined 
separating family {O"Jl'Er of pseudonorms, and if {O"l'}l'ErO is a countable 
cofinal subfamily, then {O")'})'ErO also induces the given topology on fff (and 
is therefore also separating). Likewise. if a countable separating family 
{O",}'ErO of pseudonorms is arranged in a sequence {un}, then according to 
the proof of Proposition 11.32, 

Ixl = f ~ O"n(x) xEfff, 
n= 1 2n 1 + O"n(x)' 

(16) 

defines a quasinorm that also induces the given topology on If. Thus (i) 
implies (ii), (ii) implies (iii), and it is obvious that (iii) implies (iv). The proof 
will be completed by showing that (iv) implies (i). To this end it would 
suffice to invoke Propositions 11.32 and 14.7, but a direct proof is easy to 
give. Suppose If is locally convex and metrizable, and let { Un} ~= 1 be a 
countable neighborhood base at 0 in fff. It follows from Proposition 14.7 that 
for every positive integer n there exists an absolutely convex neighborhood 
v" of 0 such that v" c Un' and it is easily seen that the countable family 
{v,,} is also a neighborhood base at 0 in fff. Moreover, each v" has a Minkowski 
function O"n that is a pseudonorm on If (Ex. F), and, arguing as in Proposition 
14.7, we see that the family {O"n}~= 1 induces the given topology on fff. Finally, 
since every vector x¥-O in If lies outside some set Un' it follows that the 
sequence {O" n} is separating on If. 0 

According to Proposition 14.8 every metrizable locally convex space is 
quasinormable, and it is in these terms that the following definition is given. 
In this connection we recall (Prob. 12V) that if a topological vector space is 
complete with respect to anyone quasinorm that induces its topology, then 
it is also complete with respect to every such quasinorm. 

Definition. A locally convex topological linear space that is complete with 
respect to some one (and therefore every) quasinorm that induces its 
topology is a Frechit space. 

Example H. Let g; be a topological vector space whose topology is induced 
by an indexed family {O"Jl'Er of pseudonorms, and let T be a linear trans
formation of a linear space If into g;. If for each index y we define r l' = 0" y 0 T, 
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then {Tj'}i'Ef is a family of pseudonorms on Iff, and it may be seen that the 
topology induced on iff' by the family {TJ is simply the topology inversely 
induced by T, i.e., the coarsest topology on iff' making T : iff' ~ ff continuous. 
Indeed, if .'Y denotes this latter topology, then ff is a linear topology on iff' 
(Prob. II R), and every pseudo norm Tv is continuous on iff' with respect to 
ff. Hence ff refines the topology induced by the family {'y} (Prop. 11.26). 
On the other hand, if V is an arbitrary neighborhood of 0 with respect to 
.'Y, then it is a straightforward consequence of Proposition 11.27 (and the 
definition of ff) that there exist indices Yl, ... , Yn and a positive number e 
such that 

T-1({yEff:O'",(y) < e,i = l, ... ,n}) = {XEiff':T1,;(X) < e, i = l, ... ,n} 

is contained in V, which shows that ff is, in turn, refined by the topology 
induced by the family {T1,}. Thus, in particular, if T: iff' ~ ff is a linear 
transformation and if ff is a locally convex space, then iff' is also locally 
convex in the topology inversely induced by T. 

Next suppose given an indexed family {To}~EL\ of linear transformations 
of a linear space iff' into a (similarly indexed) family {ff,d of locally convex 
spaces, so that To: Iff ~ ff b, b E L1, and for each index b, let {O'\~)}:. E fo be an 
indexed family of pseudonorms that induces the topology on ff(j. Then 
from what has already been said it is clear that the topology inversely induced 
on iff' by the family {To} is locally convex and is, in fact, induced by the doubly 
indexed family of pseudonorms {T~~) = Y\~) 0 ToL'Ef o. ~EL\' If each of the spaces 
ff ~ is metrizable, and if the index family L1 is countable, then the topology 
inversely induced by the family {To} is also metrizable if and only if {To} is 
separating. 

Example I. If {iff' n},';"'= 0 is a sequence of metrizable locally convex spaces, then 
according to the preceding example the full algebraic direct sum iff' = 
L:=o + iff'n is also a metrizable locally convex space in the product topology 
(Ex. 3N). Moreover, the space iff' is a Frechet space if and only if each of the 
factors iff'n is (see Examples I1J and IlL). (If, for each nonnegative integer 
n, {O'~~)} ~= 1 is a sequence of pseudonorms that induces the topology on iff'n, 

and if for each element X = {xn}:=o of iff' we write 'm,n(X) = ()~)(xn)' then 
the doubly indexed family of pseudonorms {Tm• n} induces the product 
topology on iff'. Thus Proposition 14.9 below provides an alternate proof 
that iff' is complete.) In particular, the space (0) of all complex sequences is a 
Frech6t space in the topology of termwise convergence. If {iff'Y}YEr is an 
uncountable indexed family of Frech6t spaces, then the full algebraic direct 
sum Li'Ef + iff'l' is a locally convex topological linear space in the product 
topology, but this space is not metrizable, and is therefore not a Frechet 
space (unless all but countably many of the spaces iff'y are trivial). 

While the definition of a Frechet space is stated in terms of quasinorms, 
it is, generally speaking, a nuisance to have to choose anyone particular 
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quasinorm to work with. Moreover, in view of Proposition 14.8, it is by and 
large unnecessary to do so. The following criterion is frequently useful in 
verifying the completeness of a Frechet space. 

Proposition 14.9. Let S bea linear space and let {an}:::'= I be a separating sequence 
of pseudonorms on S. Then S is a Frechh space in the topology induced by 
the sequence {an} if and only if each sequence {xp}~= I in S that is Cauchy 
with respect to (the pseudometric defined by) every an is also convergent 
with respect to every an (to a limit that is independent ofn). 

PROOF. The quasinorn1 I I defined in (16) induces the same topology on S 
as does the sequence {an}. Hence a sequence {xp }';= I in S converges to a limit 
x with respect to I I if and only if it converges to x with respect to each of 
the pseudonorms an (Prop. 11.27). Consequently it suffices to verify that 
{xp };'= I is Cauchy with respect to I I if and only if it is Cauchy with respect 
to all of the pseudonorms an. Moreover, it is clear that if {x p } is Cauchy with 
respect to I I, then {xp } is also Cauchy with respect to every an. Suppose, 
on the other hand, that {xp } is Cauchy with respect to each an. Let 10 be a 
positive number, and choose a positive integer K such that 1/2K = 

I:::'=K+ I 1/2n < 10/2. Then there exists a second positive integer P such that 
an(xp - Xq) < e/2K for all p, q > P and n = 1, ... , K, whereupon it follows 
that I xp - Xq I < 10/2 + 10/2 = 10 for all p, q > P. Thus the sequence {xp} is 
Cauchy with respect to I I, and the result follows. D 

Example J. Let X be a locally compact Hausdorff space, let ~(X) denote, as 
usual, the linear space of continuous complex-valued functions on X, and 
suppose X is a-compact (Ch. 10, p.193). If {K n }:::'= I is a compact covering of 
X, and if, for each n, Vn is a topologically bounded open subset of X such 
that Kn c Vn (Prob. lOA), then, setting Ln = Vi u ... u V;; for each 
positive integer n, we obtain a sequence {Ln} of compact subsets of X with 
the property that the sequence {L~} is also a nested covering of X. Hence for 
any nonempty compact subset K of X there exists a positive integer n such 
that K c Ln , and it follows that the sequence of pseudonorms {a LJ induces 
the topology of uniform convergence on compact subsets of X. (See Problem 
11 U for notation and terminology.) Moreover, it is a routine matter to show, 
using the criterion of Proposition 14.9, that ~(X) is, in fact, a Frechet space 
in the topology of uniform convergence on compact subsets. (If X is not 
a-compact, then ~(X) is not even metrizable in the topology of uniform 
convergence on compact subsets. Indeed, if {Kn} is any sequence of non empty 
compact subsets of X, and if Xo is a point of X that is not in any Kn, then for 
each positive integer p there is a function fp in ~(X) such that fp(xo) = 1 
whilefp = 0 on Kp (Prob. 3V), and the sequence {fp};'=1 clearly tends to 0 
in the topology induced on ~(X) by the sequence of pseudonorms {aKJ.) 
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Example K. If U is a nonempty open subset of [Rn, then the topology of D
convergence introduced in Problem 11 V turns the linear space ~(OCJ)(U) into 
a Frechet space. Indeed, the results of Problem 11 V show that ~(OCJ)(U) is a 
metrizable locally convex topological linear space in the topology of D
convergence. To see that ~(OCJ)(U) is also complete with respect to this 
topology, we employ Proposition 14.9 and note that if a sequence {fp} ~= 1 

in ~(OCJ)(U) is Cauchy with respect to all of the pseudonorms G'K.m that induce 
the topology of D-convergence, then everyone of the derived sequences 
{Dkl ..... k"!p}~= 1 is convergent to some continuous limit in the topology of 
uniform convergence on compact subsets of U. But from this, via 
an easy mathematical induction, we conclude that if limpfp = f, then 
limp Dkl ..... k"!p = Dkl ..... k"! for all nonnegative integers kb . .. ,kn . (The central 
element in this argument is the fact, established in advanced calculus, that 
if a sequence {gn} of continuously differentiable functions of a single real 
variable converges uniformly to a limit g on an open interval (a, b), and if the 
derived sequence {g~} is uniformly Cauchy on (a, b), then {g~} converges 
uniformly to g' on (a, b). Cf. Example 13E.) 

Example L. Once again, let U denote a nonempty open subset of [Rn. The 
space ~bOCJ)(U) of test functions on U (Prob. 11 V) becomes a separated, 
metrizable, locally convex topological vector space if it is equipped with its 
relative topology as a linear submanifold of ~(OCJ)(U), but ~bOCJ)(U) is not a 
Frechet space in this topology. Equivalently, ~bOCJ>CU) is not a closed linear 
submanifold in ~(OCJ)(U). To see this, let {Kp}~= 1 be a sequence of compact 
subsets of U such that Ki =f. 0, such that K p C K~ + 1 for every positive 
integer p, and such that U = u~= 1 K~; see Example lOA. According to 
Problem 11 V(ii), there exists for each index p a test function fp on U with 
support contained in K~+ 'i\Kp (with Ko = 0), and the sequence of partial 
sums I:= 1 fp is D-convergent to the sum L~= 1 fp, an infinitely differentiable 
function on U that does not have compact support, and is therefore not a 
test function. 

We close this chapter with some particularly useful consequences of the 
Hahn~Banach theorem. 

Proposition 14.10. Let ~ be a (closed) subspace of a normed space ,ff, and 
suppose Xo is a vector in ,ff that does not belong to ~. Then there exists a 
functional f in ,ff* satisfying the conditions: 

(i) f(~) = (0), 
(ii) f(xo) = 1, 

(iii) II f II = lid, 

where d = d(xo,~) denotes the (positive) distance from Xo to~. 
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PROOF. Let A 0 denote the linear submanifold of fff generated by A and Xo. 

If we define a linear functional g on A 0 by setting 

for all vectors y in A and all scalars A, then g(A) = (0) and g(xo) = 1. If 
we show that 9 also satisfies the condition II gil = lid, then the result will 
follow at once from the Hahn-Banach theorem. To this end we observe that 
the set H = {z E A 0 : g(z) = I} coincides with the coset A + xo, and hence 
that the distance d(O, H) from the origin to H is the same as the distance 
d = d(xo, oil). It follows that if z E ,ito and II z II < d, then g(z) =P 1. Since 
the set of vectors D = {Az: I A I ~ I} is mapped by g onto the disc Do = 
fA E C: I A I ~ I g(z) I} in the complex plane, it is clear that, in fact, I g(z) I < 1, 
and the result follows. D 

Corollary 14.11. For each nonzero vector Xo in a normed space C there exists 
a linear functional fin C* such that II f II = 1 and f(xo) = II Xo II. Conse
quently, if x and yare distinct vectors in is', there exists a functional fin 
C* such thatf(x) =P fey). 

Proposition 14.4 may be used to obtain analogous results for pseudo
normed spaces. 

Proposition 14.12. Let C be a linear space equipped with a pseudo norm a, 
let A be a linear manifold in C, and suppose Xo is a vector in C such that, 
for some positive number e, the ball {x E C: a(x - xo) < e} is disjoint from 
A. Then there is a linear functional f on C that is bounded with respect to 
a (by lie) and satisfies the conditions 

f(A) = (0) and f(xo) = 1. 

In particular, if a(xo) > 0, then there is a linear functional f on C that is 
bounded with respect to a such that f(xo) = a(xo). Hence if x and yare 
vectors in C such that a(x - y) > 0, then there exists a linear functional 
f on C that is bounded with respect to a such that f(x) =P fey). 

The following is just a summary of Propositions 14.5 and 14.12 in the 
language of locally convex spaces. 

Proposition 14.13. Let C be a locally convex space and let A be a linear sub
manifold of C. For each linear functional f in A* there exists a linear 
functional fo in C* such that fo I A = I Moreover, if A is closed and if 
Xo is a vector in C that does not belong to A, then there exists a linear 
functional fin C* such that 

f(A) = (0) and f(xo) =P 0. (17) 
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Thus .4t is the intersection of the kernels of all of those linear functionals 
in rff* that vanish on A. In particular, if rff is separated, then rff* is separating 
on rff. 

PROOF. By Proposition 14.7 the given topology on rff is induced by a family 
{O" l'} of pseudonorms. Hence the first assertion is an immediate consequence 
of Proposition 14.5. Moreover, if A is closed and Xo ¢ A, then there exist 
indices Yl"'" Yn and a positive number e such that if we set 0" = O"YI v··· V O")'n' 
then the ball {x E A : O"(x - xo) < e} is disjoint from A. Hence there exists 
a linear functional f on rff such that (17) is satisfied and such that fis bounded 
with respect to 0". But thenfis continuous on rff. Finally, if rff is Hausdorff as a 
topological space, then (0) is a closed set in rff. Hence if Xo i: 0 there exists a 
functional f in rff* such that f(xo) i: 0, and the result follows. 0 

If the constructions of Examples F and G are used instead of Proposition 
14.4, a remarkable generalization of Proposition 14.13 is obtained. 

Definition. If rff is either a real or complex topological vector space, then a 
hyperplane in rff is any set of the form H = {xErff:f(x) = c}, where c 
is a real number and f is a continuous nonzero real linear functional on 
rff (regarded as a real topological vector space). (If rff is complex, then, 
as we have seen (cf. the proof of Theorem 14.3), a hyperplane may equally 
well be described as a set of the form H = {x E rff: Re g(x) = c}, where 
c is a real number and g is a continuous nonzero (complex) linear func
tional on rff.) The hyperplane H = {x E rff: f(x) = c} splits rff into two 
closed half-spaces: 

H_ = {xErff:f(x)::;; c} and H+ = {x Erff:f(x) :::::0: c}. 

The hyperplane H is said to separate two sets if one is a subset of H _ and 
the other a subset of H + . 

Proposition 14.14. Let rff be a topological linear space, and let C and D be non
empty disjoint convex subsets of $, one of which at least has non empty 
interior. Then there exists a hyperplane separating C and D. 

PROOF. Since an interior point of a convex set is certainly an internal point 
in the sense of Example F, it follows at once from Example G that there 
exists a nonzero real linear functionalf on rff such that f(u) ::;; f(v) whenever 
u E C and v E D. Hence c = sup{f(u) : u E C} is a real number such that 
f(u) ::;; c for all u in C, while[(v) :::::0: c for all v in D. To complete the proof, 
it suffices to show thatfis continuous, and hence that H = {x E rff: f(x) = c} 
is a hyperplane. But iffwere not continuous it would have to assume every 
real value on the interior of either C or D, whichever has nonempty interior 
(Prob. 0), and this is manifestly impossible. Hence f is continuous, and the 
proposition is proved. 0 
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Proposition 14.15. Let <ff be a locally convex topological linear space, let C be 
a closed convex set in <ff, and let Xo be a vector in <ff that does not belong to 
C. Then there exists a linear functional gin <ff* and a real number c such that 
Re g(x) S c for all x in C, while Re g(xo) > c. Thus C is the intersection 
of all of the closed half-spaces of <ff that contain C. 

PROOF. Let V be a convex open neighborhood of Xo that does not meet C. 
Then, as was seen in the proof of Proposition 14.14, there exists a continuous 
nonzero real linear functional f on <ff such that feu) s f(v) whenever u E C 
and v E V. If we set c = sup{f(u) : u E C}, and if g is the complex linear func
tional on <ff such that Re g = f (see the proof of Theorem 14.3), then g is 
continuous along withf, and the inequality Re g(x) S c holds for all vectors 
x in C. To complete the proof we note thatf(V) is an open set in IR. (This can 
be seen in many ways. The simplest way is to fix a vector Zo such thatf(zo) =1= 0, 
and to choose for each vector v in V a positive number 6 = 6v such that 
v + tzo E V for all -6 < t < +6. Then f(V) contains the interval 
{f(v) + tf(zo): -6 < t < + 6} about f(v).) Hence if V contained any 
vector v such thatf(v) = c, then V would also have to contain vectors v such 
thatf(v) < c, a contradiction. Thusf(v) > c for every v in V; in particular, 
f(xo) > c. D 

The foregoing results suggest that local convexity is closely connected 
with the abundance of continuous linear functionals on a topological linear 
space. The following two examples shed further light on this connection. 

Example M. Let 11 denote Lebesgue-Borel measure on the unit interval 
[0, 1], and let A denote the linear space of equivalence classes of Borel 
measurable functions on [0, 1] (with equivalence defined as equality a.e. 
[I1J) equipped with the quasinorm 

J1 If I 
I f I = 0 1 + I f I dl1 

(cf. Example 11K). Suppose <p is a continuous linear functional on A. 
Then there exists a positive number 6 such that I f I < 6 implies I <p([fJ) I < 1. 
Choose a positive integer N such that N > 1/6, and let Xk denote the character
istic function ofthe interval «k - 1)IN, kiN), k = 1, ... , N. Iffis an arbitrary 
Borel measurable function on [0, 1], and if we writefk = Nfxk' k = 1, ... , N, 
then l.h I < 1 IN < 6, and therefore I <P([fk]) I < 1 for every k. Since f = 

(f1 + ... + fN)IN a.e. [11], it is also the case that I <p([fJ) I < 1, and sincef 
is arbitrary, it follows that <p = 0. Thus the zero functional is the only continuous 
linear functional on A. 

(There is another way of viewing the situation in the space A that ties 
in with the notion of local convexity. Essentially the same argument as that 
presented above shows that if C is any convex subset of.it such that CC =1= 0, 
then C is dense in A.) 
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Example N.lfO < p < 1 the linear space (I p) (Ex. 11 D) is not (in any natural 
way) a normed space (cf. Example 11C), but 

I x I = L I (n IP, (18) 
n=O 

defines a useful quasinorm on (/ p) (see Problem U). If c is a positive number, 
then the ball (I p)c = {x E (f p) : I x I ::; c} contains all of the vectors cem , 

mE No (where em denotes the sequence {Jmn }::'= 0 as usual; cf. Example 11 H). 
Since Xn = c(eo + ... + en - I)ln is a convex combination of the vectors 
F.eo, ... ,F.en - I , and since I Xn I = cp/nP-l for each nonnegative integer n, 
we see that the convex hull of (t p)c is not contained in any ball (t p)" r > 0. 
Hence no bounded neighborhood of the origin ° in (/ p) contains a convex 
neighborhood of 0, so the space (/ p) equipped with the quasinorm (18) is 
certainly not locally convex. Nevertheless the linear functionals {(n}:= 0 ~ (m 
are all continuous on (/ p) with respect to the quasinorm (18), and this family 
oflinear functionals is separating on (t p). Thus the collection 1%'* of continuous 
linear functionals on a topological linear space I%' may be separating even 
when I%' is not locally convex. 

PROBLEMS 

A. Let,.it denote the linear submanifold of C" consisting of n-tuples of the form 
(~. O ..... 0), and let{be the linear functional whose value at (~, 0, ... ,0) is ~. If 
C" is given the norm II III (Ex. liB), what are the linear extensions 10 of I to en 
satisfying the condition 1110 II = II I II ? Discuss the same problem for the norms II II p' 

l<pS;+CX:. 

B. (i) The technique of Examples Band C may be applied to the study of the bounded 
linear functionals on (I ex), but the procedure fails to identify (I "J*. Explain what 
goes right and what goes wrong. 

(ii) Find the duals of the spaces (co) and (c) (Ex. 2D) equipped with the sup norm. 

C. If tf is a normed space and i is its completion, then every functional in tf* extends 
to a unique functional in (i)*. and this correspondence between tf* and (i)* is an 
isometric isomorphism. (It is customary simply to identify tf* with (J)* via this 
canonical isomorphism.) 

D. (i) Let tf l' ... , tf n be Banach spaces, and let tf = tf 1 EB 1 ... EB 1 tf n be their direct 
sum (Ch. II, p. 222). Show that tf* can be identified in a natural way via an 
isometric isomorphism with the Banach space consisting of the linear space 
gf + ... + g: equipped with the norm II (fl' ... , j~) II x = II 11 II v ... v II In II 
(cf. Problem II S). Show similarly that if I < P < + 00 and @ = @1 EB p ••• EEl p @n 

(Prob. II T), then tf* may be identified in a natural way with the Banach space 
@f EBq ... EBq tf:, where q denotes the Holder conjugate of p. 
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{x,} of the full algebraic direct sum of the family {6'J such that Li II Xi liP < + w, 
equipped with the norm 

[ ]
l!P 

II {xJ lip = I, II Xi' liP 

(see Problem lIT). Find the dual space X'~. 

E. Prove the converse of Proposition 12.2 by showing that if 6' and :F are normed 
spaces with ,g 1= (0), and if 2'(,g, :F) is complete, then :F is also complete. 

F. Let [a, bJ be a real interval, a :s:: b, and let 11 = 1I([a, bJ) denote the collection of 
all complex-valued functions rt. of bounded variation on [a, b]. Then 11 is a linear 
space and V(rt.) = V(rt.; a, b) (the total variation of rt. over [a, bJ) defines a pseudo
norm on 11. Show that the zero space :!l of V is the one-dimensional space consisting 
of the constant functions, and verify that the associated space f' is complete in the 
norm obtained by factoring out :!l (Prop. 11.17). (Thus the elements of the Banach 
space 'I: are really equivalence classes of functions differing by additive constants. 
Nevertheless it is customary to refer to them as functions, to write "r([a, b J) for 
.y, and also to refer to V as the total variation norm on 11. It should be noted that 
the ambiguity thus introduced places on the reader the rather trivial burden of 
determining, in some situations, just which meaning to assign to the symbol 11.) 
Show also that the mapping that assigns to each rt. in f' the linear functional CfJ. 
defined in (12) is a linear transformation of f' onto ~([a, b J)* having norm one. 

G. (i) Let rt. be defined on [0, 1 J as follows: 

rt.(t) = {O, 

1, 

Show that rt. has total variation two, but that the linear functional CfJ. defined 
by rt. according to (12) is the zero functional. 

(ii) Let {bn} be a sequence of positive numbers such that Ln bn < + w, and let 
{sn} be any similarly indexed sequence of distinct points in the open unit 

interval. Define rt. on [0, IJ as follows: 

Show that the total variation of rt. is given by 2 In bn , but that the linear func
tional CfJ. defined by rt. is again the zero functional. (Hint: First do the case of 
a finite sum; then, for t > 0, choose N so that In>N bn < t.) 

(iii) Show that if rt. is a continuous function of total variation V on [0, 1 J, then the 
linear functional CfJ. defined by rt. has norm V. 

A careful scrutiny of the arguments used in the preceding problem shows 
that a necessary and sufficient condition for II ({J,II in (12) to equal the total 
variation of the complex-valued integrator a is that, at every point to of 
discontinuity of a in (0, I), the value of a should lie in the rectangle in C 
having aCto +) and aCto -) as two diagonally opposite vertices. Thus it is 
possible to use formula (12) to identify '6'([0,1])* with various subspaces 
of r([O, I ])~for instance, with the subspace of r([O, I]) consisting of all 
functions that are right-continuous on (0, I); see Example 18A. 
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H. Suppose x = {~n}:=O is an ultimately periodic sequence of complex numbers, i.e., 
suppose there exist complex numbers lXI' .•• , IXp and a positive integer N such that 
~n = IXi whenever n is congruent to i modulo p and n > N, and let qJ be an arbitrary 
Banach generalized limit (Ex. E). Show that qJ(x) = (IXI + ... + IXp)/p. 

I. For an arbitrary infinite sequence x = {~n}:=O of complex numbers let us write 
Cx = {'1n}~=O' where 

(0 + ... + (n 
'1n=----

n + 1 

The sequence x is said to be limitable (in the sense of) Cesaro to Ao (notation: 
C-lim x = Ao) if the sequence Cx is convergent and lim Cx = Ao. Show that the 
collection 2 of all bounded sequences x that are limitable Cesaro forms a subspace 
of (I "J, and that qJ(x) = C-lim x is a bounded linear functional on 2. Show also 
that qJ may be extended to a Banach generalized limit on (I "J, (Hint: Show first 
that C acts as a contraction on (t ex,), and hence that qJ has norm one. Verify that if 
x = {~n} is limitable Cesaro, and if Xm denotes the tail {~m' (mH ... } of x, then 
C-lim Xm = C-lim x. Conclude that (c) c 2, that qJ extends the functional lim on 
(c), and that qJ has norm one with respect to the pseudo norm (J introduced in 
Example E.) 

J. If x = {~n}:=O is a bounded sequence, then the value at x of the pseudonorm (J in 
Example E is given by 
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(J(x) = infsupl~ I~mi+nl, 
n M i=1 

where the infimum is taken over all finite sequences of nonnegative integers 
ml , ... , mM' Suppose we restrict attention to real sequences only, and modify this 
definition, writing 

Po(x) = infsup {~ I ~mi+n}' 
n M i=1 

where the infimum is taken just as before, but where we have omitted the absolute 
value bars. Show that Po is also given by 

Po(x) = inflim sup{~ I (mi+n}. 
n M i=1 

Show further that Po possesses the properties (i) and (ii) of Proposition 14.6. Con
clude that there exists a linear functional qJo on the space (too)[I;l of all bounded 
real sequences that satisfies the condition 

(19) 

Show that any such functional qJo satisfies condition (13), and possesses the addi
tional property that if x ;::>: 0, i.e., if every term of x is nonnegative, then qJo(x) 2 O. 
(In other words, qJo is a positive linear functional on (t "J[I;l (Ch. 10, p. 197». Show, 
finally, that for any bounded real sequence x we have 

lim inf x ~ qJo(x) ~ lim sup x, 

and conclude that qJo(x) = lim x whenever x is convergent. 
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K. (i) Let cP be an arbitrary linear functional on (loc) that takes the value one at the 
constant sequence e = {I, 1, ... }. Show that cP is a positive linear functional 
when and only when II cP II = 1. (Hint: Show that if II cP II = 1 and if x is a sequence 
in (t 00) all of whose terms lie in some closed disc D - in C, then cp(x) E D - ; use 
this fact to conclude that Re cp(x) ~ 0 whenever Re x ~ 0.) 

(ii) Let cp be a Banach generalized limit on (l exJ as defined in Example E. Show that 
cp is the complexification of its restriction to (l ",)\ffi (Ex. 2M), and that if CPo 
denotes the restriction of cp to (t oo)\ffi, then CPo satisfies condition (13). Show 
conversely that if CPo is any linear functional on (loc)\ffi satisfying (13), then the 
complexification of CPo has norm one with respect to the pseudonorm (J of 
Example E, and is therefore a Banach generalized limit. (In other words, the 
real generalized limits generated by the procedure set forth in Problem J are 
precisely the restrictions to (l oo)\ffi of the Banach generalized limits of Example E.) 

L. The function Po introduced in Problem J has a number of interesting properties. 

(i) Verify first that if x = {~n}' then 

- poe - x) = sup inf{~ I ~mi + n} = sup lim inf{~ I ~mi +n}' 
n Mi=l n Mi=l 

where the supremum is taken, as before, over all finite sequences ml, ... , mM 

of nonnegative integers. 
(ii) Let CPo be a real Banach generalized limit, that is, a linear functional on (loo)\ffi 

satisfying condition (19) of Problem J, and suppose x E (t oo)\ffi' Show that 

lim inf x ~ - poe - x) ~ CPo(x) ~ Po(x) ~ lim sup x, 

and conclude that Po(x) = - poe - x) = lim x( = CPo(x)) whenever x is con
vergent. 

(iii) Show that if Xo E (t oo)\ffi and y denotes a convergent real sequence, then 
Po(xo + y) = Po(xo) + Po(y) (= Po(xo) + lim y), and conclude that if Xo ¢ (c), 
then 

Po(xo) = inf{po(xo + y) - lim y} 
}"E(C) 

and 

- poe -xo) = sup { - Po(y - xo) + lim y}. 
YE(C) 

Use this fact to show that there exist Banach generalized limits cp' and cpl/ such 
that cp'(xo) i= cpl/(xo) if and only if - poe - xo) < Po(xo). (Hint: The condition 
is clearly necessary by virtue of (ii). To see that it is sufficient, consult the sketch 
of the proof of Proposition 14.6.) 

It is customary to say of a bounded sequence x that it is almost convergent 
if <p(x) is the same for every Banach generalized limit <po Thus, for example, 
every ultimately periodic sequence is almost convergent (Prob. H). The 
foregoing result may be paraphrased by saying that a bounded real 
sequence is almost convergent if and only if poe - x) = - Po(x). Readers 
wishing to learn more about this phenomenon may consult [29] or [4], 
or the original paper [44]. 
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M. Show that there exist linear functionals qJ on the real Banach space Y6~([0, + 00» 

of all bounded real functions on the half-line [0, + 00) satisfying the following 
conditions for every fin Y6o;!([O, + 00 »: 
(i) If lim f(t) exists, then qJ(f) = lim f(t), 

t-+ + oc; t-+ + oc, 

(ii) Iff;:::: 0, then qJ(f) ;:::: 0, 
(iii) If we write !set) = f(s + t), then qJ(!s) = qJ(f) for all s ;:::: 0. 

Show also that if qJ is any such functional, then 

(iv) lim inf f(t) :<::; qJ(f) :<::; lim sup f(t) for every f in Y6~([0, + 00 », and 
t-+ +'1:; r-+ + oc 

(v) II qJ II = I. 

N. (i) Show that if a subset A of a topological linear space Iff is [absolutely] convex, 
then A - and A' are also [absolutely] convex. (Hint: If x, y E Iff and V is a neigh
borhood of 0, and if 0:<::; t :<::; 1, then t(x + V) + (l - t)(y + V) = 
(tx + (1 - t)y) + (tV + (l - t)V); recall Problem 11M.) Show also that a 
subset A of Iff is absolutely convex if and only if x, YEA and IIX I + IPI :<::; 1 
imply that IXX + /J yEA. (It is this characterization that led to the term 
"absolutely convex".) Verify that an arbitrary subset M of Iff is contained in a 
smallest absolutely convex set A, and that this set, known as the absolutely 
convex hull of M, consists of the collection of all linear combinations 
IXIXI + .,. + IXnXn of vectors XI, ... , Xn in M such that IIXII + ... + IlXnl :<::; 1. 
Show finally that an arbitrary subset M of Iff is contained in a smallest closed 
[absolutely] convex subset of Iff, and that this set is, in fact, the Closure of the 
[absolutely] convex hull of M. (The smallest closed [absolutely] convex set 
containing M is called the closed [absolutely] convex hull of M.) 

(ii) (Mazur) Let Iff be an F-space, and let K be a compact subset of Iff. Show that 
the closed convex hull of K is also compact. (Hint: If N, = {Xl> ... , xn} is an 
F.-net in K (Prop. 4.3), then the convex hull Co of N, is an e-net in the convex 
hull C of K. The set Co is a bounded subset of a finite dimensional subspace of 
(f, and is therefore totally bounded. If M, = {YI"'" Ym} is an e-net in Co, 
then M, is also a 2F.-net in C. Hence C is totally bounded. Use Problem 4Q.) 

It is also true, and sometimes useful to know, that the closed convex hull 
of any weakly compact subset of a Banach space (as defined in Chapter 15) 
is also weakly compact (cf. [23], p. 434). 

O. Let (f be a (real or complex) topological linear space, and letfbe a linear functional 
on (f. As we have already seen (Prob. 12U), a necessary and sufficient condition for 
f to be continuous is that its null space %(f) be closed. Show that, in fact, iff is 
discontinuous, then %(f) is dense in Iff. Conclude, more generally, that if f is 
discontinuous, then the set on which f assumes the value IX is dense in Iff for every 
scalar IX. (Hint: Show first that the linear submanifold of Iff generated by %(f) and 
any vector not in %(f) coincides with Iff, and use the fact that if f(xo) = IX, then 
{xEIff:f(x) = IX} = Xo + %(f).) 

P. Let Iff and.'Y' be separated locally convex topological linear spaces, let XI' ... , Xk 

be linearly independent vectors in Iff, and let YI, ... , Yk be arbitrary vectors in ff. 
Show that there exists a continuous linear transformation T of Iff into g; such that 
TXi = Yi' i = I, ... , k. 
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Q. Let IJ. be a domain in the complex plane, and let sf denote the space of all analytic 
functions on IJ.. Show that sf is a F recMt space in the topology of uniform conver
gence on compact subsets of IJ.. (Hint: See Problem 11 U.) 

R. Show that if iC is a normed space such that iC* is separable, then iC itself is separable. 
(Hint: Let {fn} be a countable dense subset of iC* and for each n let Xn be a unit 
vector in iC such that fixn) > II fn 11/2. Use Proposition 14. to to show that the 
countable set {xn} spans iC; then use Problem 11K.) Show by an example that the 
separability of iC does not imply that of iC*. 

S. Let C be a convex subset of a real linear space iC. A subset D of C is called an 
extreme subset of C if, for every line segment (J in C such that (J n D f- 0, either 
(J c D or else (J n D is a singleton consisting of an endpoint of (J. A point Xo such 
that the singleton {xo} is an extreme subset of C is called an extreme point of C. 

(i) Let C be a convex set in a real linear space iC, letfbe a (real) linear functional 
on iC, and suppose fis bounded above on C. Show that the set 

D = {x E C: f(x) = sup fey)} 
YEC 

is an extreme subset of C. 

(ii) Show that an extreme subset D of a convex set C has the property that both D 
and C\D are convex sets. Show also that if D is an extreme subset of a convex 
set C, and if E is an extreme subset of D, then E is also an extreme subset of C. 

(iii) Let C be a convex set in a real linear space iC, and let ~ be an arbitrary nonempty 
collection of extreme subsets of C that is simply ordered with respect to set 
inclusion. Show that the intersection n ~ is also an extreme subset of C. 

T. (Krein-Mil'man Theorem) Let iC be a real locally convex space, and let C be a non
empty compact convex subset of iC. 

(i) Show t'hat every closed nonempty extreme subset of C contains a minimal 
closed nonempty extreme subset of C (in the inclusion ordering). (Hint: 
Use Problem S(iii) and Zorn's lemma.) 

(ii) Show that a minimal closed nonempty extreme subset of C is necessarily a 
singleton, and conclude that C possesses an extreme point. (Hint: The set of 
continuous linear functionals is separating on iC by the real version of Propo
sition 4.13.) 

(iii) Show that, in fact, C coincides with the closed convex hull of the set of all extreme 
points of C. (Hint: Let C denote the closed convex hull of the set of all extreme 
points of C. The set C is a compact convex subset of C, so if C f- C, then there 
exists a continuous (real) linear functionalf on iC and a real number e such that 
f(x) :$ e for every x E C, while f(xo) > e for at least one point Xo of C. Set 
e" = SUPXEC f(x) and C" = {x E C: f(x) = c"}, and verify that every extreme 
point of C" is also an extreme point of C.) 

U. Let a, b, and p be positive numbers. Show that 

and conclude that the function I I p introduced in Example M is indeed a quasinorm 
on ({p) for 0 < p < 1. Show also that the linear manifold (q» of finitely nonzero 
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sequences (Ex. IIH) is dense in (t p) with respect to this quasinorm, and use this fact 
to verify that every continuous linear functional on (t p), 0 < p < 1, is of the form 

00 

J.(x) = L IXn~n' X = {~n}:'=oE«(), 
n=O 

where a = {lXn}:'=o is a bounded sequence of complex numbers. Show, finally, in 
the converse direction, that if {lXn} E «(,0>, thenf(x) = L:'=o IXn~ndefines a continuous 
linearfunctional on (tp), 0 < p < 1. (Hint: If I x Ip S 1, then II xiiI S Ix I p.) 

The following two problems are concerned with yet another version of the 
Hahn-Banach theorem, valid in the context of partially ordered linear 
spaces. 

V. If ~ is a real linear space that is equipped with a partial ordering S, then ~ is said 
to be a partially ordered linear space if the following conditions are satisfied: (1) if 
x s y in ~ then x + z S Y + z for every z in ~, and (2) if x s y and if t is a non
negative real number, then tx sty. 

(i) Show that if ~ is a partially ordered linear space, then the set P of positive 
elements of ~, that is, elements x of ~ such that x 2 0, is a convex subset of ~ 
with the property that if x E P and t is a nonnegative real number then tx E P. 
(Such a convex set is called a convex cone.) Show conversely that if P is a convex 
cone in an arbitrary real linear space ~, and if we define x S y to mean that 
y - x E P, then S turns ~ into a partially ordered linear space. A linear func
tional on a partially ordered linear space ~ is positive if it assumes only non
negative values on the convex cone P of positive elements of ~. Show that a 
linear functional on ~ is positive if and only if it is a monotone increasing 
mapping of ~ into III Show also that if ff is both a linear space and a function 
lattice of real-valued functions on a set X, then ff is a partially ordered linear 
space in its natural ordering, and a linear functional on ff is positive in the 
present sense if and only if it is a positive linear functional in the sense introduced 
in Chapter to. (Thus the present notion of positivity is a natural generalization 
of the former one.) 

(ii) Let ~ be a partially ordered linear space, and let .It be a cofinallinear submani
fold of ~, that is, let .It be a linear submanifold of ~ such that for every vector 
x in ~ there exists a vector y in .It such that x S y (Prob. IP). Show that it is 
also the case that for any vector x in ~ there exist vectors y in .It such that y S x. 

W. (i) Let.lt be a cofinallinear manifold in a partially ordered linear space~, and let 
fbe a positive linear functional defined on .It. Show that there exists a positive 
linear extension ofJto the entire space ~. (Hint: Suppose first that Xo is a single 
vector in ~ not belonging to .It, and write .Ito for the linear manifold generated 
by.lt and Xo. In order to extendfto a positive linear functionalfo on.lto it is 
necessary to choose a real number r such thaty + txo 2 Oimpliesf(y) + tr 2 0 
for every vector y in.lt and every real number t. Follow the pattern of the proofs 
of Lemma 14.1, Proposition 14.6, and Theorem 14.2.) 

(ii) Use the preceding fact to give new proofs of the results of Problems J and M. 

310 



Local convexity and weak 15 
topologies 

Along with its norm topology every normed space possesses a second 
topology of great importance known as its weak topology. 

Definition. If iff is a normed space, then the coarsest topology on iff making 
all of the linear functionals in iff* continuous is the weak topology on iff. 
(Equivalently, the weak topology on iff is the topology inversely induced 
on iff by the family of linear functionals in iff*; see Chapter 3, page 43.) 

This definition has the merit of brevity, and serves to show at once how the 
weak topology on {f compares with the norm topology. Since the functionals 
in iff* are all norm continuous by definition, the weak topology is clearly 
refined by the norm topology. (That is, in fact, what the term "weak" is 
intended to suggest.) To see more clearly what the weak topology on {f looks 
like, let us write 

a/x) = If(x)l, X E Iff,! E Iff*. (1) 

Lemma 15.1. For any normed space Iff and for each f in iff* the function a/ 
defined in (1) is a pseudonorm on Iff. Moreover, if :Y denotes an arbitrary 
linear topology on iff, then f is continuous with respect to :Y if and only 
if a/is. Hence f is continuous with respect to :Y if and only if :Y refines 
the pseudometric topology induced by a /' and the weak topology on iff 
coincides with the topology induced by the family of pseudo norms {aI}/e.g •. 

PROOF. The verification that a / is a pseudonorm is routine and is left to 
the reader (cf. Example 11M). Suppose that f is continuous with respect to 
some topology :Y on Iff and let Xo be a vector in Iff. Then for any given [; > 0 
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there exists a neighborhood V of Xo with respect to :Y such that x E V implies 
If(x) - f(xo) I < £. But then 

la/x) - a/xo) I = Ilf(x)I-lf(xo)lI:s; If(x) -f(xo)1 < c, 

and it follows that a J is also continuous with respect to :Y. (Observe that this 
part of the argument does not even require that the topology :Y be linear.) 

Suppose next that a J is continuous with respect to a topology :Y on fff. 
Then for any given c > 0 there exists a neighborhood V of the origin in fff 
with respect to:Y such that laJ(x) - a/O) I = If(x)1 < c for every x in V. 
Thus f is continuous at the origin, and if :Y is a linear topology on fff, this 
implies that f is continuous on fff with respect to :Y (Prob. 12U). Hence the 
weak topology on fff coincides with the supremum of the linear topologies 
induced by the various pseudonorms a J,f E fff*, or, in other words, with the 
topology induced by the family {a J} JErff* (Ch. II, p. 234). D 

Proposition 15.2. The weak topology on a normed space fff is a linear topology 
on fff turning fff into a separated locally convex space. The weak topology 
coincides with the norm topology when and only when fff isfinite dimensional. 

PROOF. The weak topology on fff coincides with the (linear) topology induced 
on fff by the family of pseudonorms {a J} JErff" and is therefore locally convex 
(Prop. 14.7). To see that the weak topology is also Hausdorff, note that fff* 
is separating on ~. (Cor. 14.11) and that {a J} J E 8* is therefore also separating 
on fff. The weak topology coincides with the norm topology when fff is 
finite dimensional because a finite dimensional linear space possesses only 
one separated linear topology (Prob. liP). That the weak topology is 
strictly coarser than the norm topology whenever fff is infinite dimensional is 
shown in Problem H. D 

All questions concerning the weak topology on a normed space fff can be 
settled, at least in principle, by Lemma 15.1 and Proposition 15.2. Never
theless it is frequently useful to know an explicit base for the weak topology. 
In order to describe one let us agree to write 

U(ft. ... , j" ; c) = {x E fff : I };(x) I < c, i = I, ... , n} (2) 

for every finite subset {ft. ... ,j,,} of fff* and every positive number c. 

Proposition 15.3. In any normed space fff the collection 11 of all sets of the 
form (2) constitutes a base of open neighborhoods of 0 in the weak topology 
on fff; the collection of all translates 

Xo + U(ft.".,fn; c) = {x E fff: I};(x - xo)1 < c, i = I, ... , n}, Xo E fff, 

of the sets in 11 is a base for the weak topology on fff. 

PROOF. It suffices to show that 11 is a base of open neighborhoods of 0 in the 
weak topology (Prob. IIL(ii». To see this we note that U(ft. ... , j,,; c) = 
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U(fl; e) n ... n U(fn; e) is the intersection of the open balls with center 0 
and radius e with respect to the pseudometrics defined by the pseudonorms 
(J fl' ••• , (J fn' Hence each set in "fI is a weakly open neighborhood of O. On 
the other hand, if U is any weakly open subset of ~ such that 0 E U, then 
there exist functionals fl' ... , fn in ~* and positive radii e1> ... , en such that 

U(fl; el) n··· n U(fn; en) C U 

(Ex. 3M) and hence such that 

U(fl, ... ,fn;el 1\ .•. 1\ en) cU. o 

Example A. Suppose II III and II 112 are two equivalent norms on a linear 
space ~, and let ~ I and Iff 2 denote the spaces obtained by equipping Iff with 
II III and II 112, respectively. Then the norm topologies on ~ I and ~ 2 are 
identical, and consequently ~ 1 and Iff 2 have exactly the same linear func
tionals in their dual spaces (though the norm of a functional in Iff I * need not 
be the same as its norm in Iff 2 *). Hence the weak topology on Iff 1 is identical 
with the weak topology on ~ 2' If the norm II III merely dominates II 112 
(Ex. 13A), then the norm topology on ~ 1 refines the norm topology on Iff 2, 

so every linear functional in Iff 2 * belongs to Iff 1 * (though, once again, not 
necessarily with the same norm), so the weak topology on ~ I refines the weak 
topology on ~ 2 . 

Proposition 15.4. A net {x),} in a normed space Iff converges to a limit Xo in the 
weak topology on Iff if and only if the net {f(x),)} converges to f(xo) for 
every f in ~*. 

PROOF. According to Proposition 11.27, a net {x),} in Iff converges to Xo 

with respect to the weak topology on Iff if and only if lim (J /xo - x),) = 0 
for every f in Iff*, i.e., if and only if limA I f(xo) - f(x A) I = 0 for every f in 
Iff*. 0 

Corollary 15.5. Let ff be a normed space and let ff ... denote the topological 
linear space obtained by equipping ff with its weak topology. Let Iff be an 
arbitrary topological linear space, and let T be a linear transformation of Iff 
into ff. Then T: Iff --+ ff ... is continuous if and only iff 0 T is continuous 
for every f in ff*. 

PROOF. It is enough to show that the condition is sufficient. Let {x),} be a 
net in 8' such that lim), x), = O. Then the net {f(Tx),)} converges to zero in 
C for each f in ff*, and it follows by Proposition 15.4 that the net {Tx...} 
converges to 0 in ff Vo" Hence T is continuous at the origin, and the result 
follows (Prob. 12U). 0 

Example B. Let {xn}~= I be a sequence of vectors in (11)' and let 

n EN. 

313 



15 Local convexity and weak topologies 

Since (/ 1)* = VeL) by Example 14B, the sequence {x n } converges weakly 
to zero if and only if 

C1J 

lim I ~~)ltm = 0 
n m=O 

for every element a = {lto, ltb ... } of (/"J. In particular, setting a = em 
(cf. Example IlH), we see that if {x n} converges weakly to 0 in (11), then 
limn ~~) = 0 for every m in No. Hence if {xn} converges weakly to a limit x 
in (f d, then {xn} also converges termwise to x. That this necessary condition 
is not sufficient can be seen by considering the sequence {en},~)=o itself, which 
converges termwise to zero, but does not converge weakly in (t 1) to anything. 
On the other hand, { en }:'= 0 does converge weakly to zero in (fp), 1 < p < + ex) 

(cf. Example 14C). 

In obvious analogy with the notion of weak convergence, it is customary 
to say that a set M in a normed space If is weakly bounded if f(M) is a bounded 
set of scalars for every f in 1&'*. As it turns out, however, this definition does 
not lead to anything new. This is a fact having many important consequences, 
and we pause to study the matter more closely. 

The central idea is that if x is a vector in a normed space 1&', then x defines 
in a natural way a functional F x on the dual space If* according to the formula 

FxCf) = f(x), fEIf*. (4) 

Since !FxCf)1 = If(x)1 s IIfllllxll, we see that Fx is, in fact, a bounded 
linear functional on If* and that II Fx II ~ II x II. Thus if we write 

thenj is a mapping of If into the dual space If** = (If*)* of If*-the second 
dual of If. It is obvious that j is a linear transformation: 

j(ltX + py)(f) = f(ltx + py) = rif(x) + Pf(y) = ltj(x)(f) + pj(y) (f). 

Since IIj(x) II = II F x II s II x II, the transformation .i is a contraction. In 
particular, .i is bounded. More precise information is supplied by the fol
lowing proposition. 

Proposition 15.6. If If is an arbitrary normed space, then the linear trans
formation.i of If into 1&'** defined by setting 

j(x)(f) = f(x), f E If*, xEIf, 

is an isometry. 

PROOF. Let x be a vector in If. By Corollary 14.11 there exists a linear func
tional fo in If* such that II fo II = 1 and such that .i(x)U~) = fo(x) = II x II· 
Thus IU(x) II :2: II x II, and the result follows. D 
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Definition. The linear isometry j of Proposition 15.6 is known as the natural 
embedding of the normed space g in the second dual g*'* of iff. (This 
mapping will playa central role in Chapter 16.) 

Using the natural embedding of a normed space g in g** we readily 
characterize the weakly bounded subsets of g. 

Proposition 15.7. A set M in a normed space g is weakly bounded if and only 
if it is bounded (in norm). 

PROOF. It is clear that if M is bounded, then M is weakly bounded. On the 
other hand, if M is weakly bounded, and if j denotes the natural embedding 
of g in g**, then j(M) is, by hypothesis, pointwise bounded on g*, and is 
therefore bounded in g** by the uniform boundedness theorem (Th. 12.15). 
Since j is an isometry, the proposition follows. (Note that we here use the 
fact that g* is always complete, whether g itself is complete or not; see 
Proposition 12.2.) 0 

Example C. Let {Xn}:= 1 be a weakly convergent sequence in a normed 
space g. Since convergent sequences in C are bounded, it follows that {xn} 
is weakly bounded, and therefore bounded. It is worth noting that this 
argument fails for more general nets, and that, in fact, it is possible for an 
unbounded net to be weakly convergent (cf. Problem A or Problem 3L). 

Example D. Let g and §' be normed spaces, and let g wand §' w denote the 
topological linear spaces obtained by equipping ~ and ~, respectively, 
with their weak topologies. Suppose T is a bounded linear transformation 
of ~. into §'. Iff E ~* then f 0 T E iff*, so f 0 T is continuous on iff", .. Hence 
T: iff w -t §' w is also continuous by Corollary 15.5. But then T: g -t §' w 

is certainly continuous too, since the norm topology on iff is finer than the 
weak topology. Finally, to close the circle, suppose T: g -t §' w is continuous. 
Then for each f in §'* the functional f 0 T is bounded on the unit ball g 1 . 

In other words, T(g d is weakly bounded in §'. But then T(g 1) is norm 
bounded as well, and it follows that T is bounded. Thus we see that the 
following three conditions are equivalent for an arbitrary linear transforma
tion T of iff into §': 

(i) T: g -t §' is bounded, 
(ii) T: g w -t §' w is continuous, 

(iii) T: g -t §' w is continuous. 

Example E. Let Ll be a domain in the complex plane, and let <I> : Ll -t ~ be a 
mapping of Ll into a Banach space g with the property that f 0 <I> is analytic 
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on ~ for every f in £9'*. (Such an £9'-valued mapping is said to be weakly 
analytic on ~.) If we write Q(<I>; (, ~) for the difference quotient 

Q(<I>; (, ~) = <1>«( + ~~ - <1>(0 
C; 

whenever it is defined (that is, for all ( in ~ and ~ =f 0 such that ( + ~ is 
also in ~), then it is clear from linearity that 

f(Q(<I>; (, m = QU 0 <1>; (, ~) 

for every f in £9'*. Hence if K denotes a compact subset of ~, then there exists 
a positive number E and, for each f in £9'*, a positive number M f, such that 

I" 1 I I QU n <1>: (, ~) - QU 0 <1>: (, '1) I ~ M f 
C; - '1 

for all (in K and all~, '1 such that 0 < I~I, I'll < E and ~ =f '1 (see Example 
51). In other words the set 

{-" _1_ [Q(<I>: C~) - Q(<I>: (, '1)]: (E K, 0 < I~I, I'll < E, ~ =f IJ} C;-IJ 
is weakly bounded in £9', and is therefore norm bounded. Hence there exists 
a single positive number M such that 

II Q(<I>; (,~) - Q(<I>; C '1)11 ~ MI~ - '11, (E K, 0 < I~I, I'll < 1:. (5) 

From this it follows at once that, if ( is any point of K and {(n} is an arbitrary 
sequence in ~\{O that converges to C then the sequence {Q(<I>; (, (n - m 
is Cauchy, and therefore convergent, in £9'. Moreover, it is readily seen that 

lim Q(<I>: (, (n - 0 

depends only on <I> and (, and not on the sequence {(n}. Since K can be taken, 
in particular, to be any singleton {O in ~, this shows that the limit 

I· Q('" Y ") = I' <1>«( + ~) - <1>(0 1m 'V, 1" C; 1m " 
~-o ~~o C; 

(6) 

actually exists in the norm sense at every point of A (This also shows that <I> 
is norm continuous.) The limit (6) is called the derivative of <I> at ( and is 
denoted by <1>'(0 just as in elementary calculus. If we agree to call an £9'-valued 
mapping analytic on ~ if it is differentiable, that is, if it possesses a derivative 
at every point of ~, then this argument shows that a weakly analytic Banach 
space valued mapping is automatically analytic. (In the converse direction, it 
is obvious that an analytic 0'-valued mapping <I> is weakly analytic, and that, 
in fact, if f E £9'*, then U 0 <1>)' = f 0 <1>'; cf. Problem E.) Finally, returning 
to (5) and letting '1 tend to zero, we learn that the difference quotient of <I> 
tends to <1>' uniformly on compact subsets of ~, whence it follows at once 
that <1>' is also (weakly) analytic on ~. 
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Example F. Let 0 and ff be two Banach spaces, and let 'I' be a mapping of 
a domain L1 in C into 2(0, ff). An argument entirely similar to the one pre
sented in the preceding example shows that if 'I' possesses the property 
that the mapping 'l'xCA) = 'I'(A)(x) is an analytic ff-valued mapping for 
every vector x in 0, then the mapping 'I' is automatically analytic as 
a mapping of L1 into 2(te, ff). The details are left to the interested reader. 

Example G. Analytic mappings taking their values in Banach spaces turn 
up frequently in functional analysis. We reconsider here one very important 
instance of such a mapping that has already appeared. Let d be a unital 
Banach algebra and let x be an element of d. We recall from Chapter 12 that 
the spectrum (J ",(x) is, by definition, the set of complex numbers A such that 
A - x is not invertible in d, and that if ,.1,0 ¢ (J ",(x), so that ,.1,0 - x is invertible 
in d, then 

(J: 

(A - X)-I = L (,.1,0 - ,.1,)"(,1,0 - x)-("+ 1) 

"=0 

for every complex number A such that 1,.1, - ,.1,01 < 1/11(,1,0 - x)-III (Prop. 
12.12). As was noted in Chapter 12, this shows that the spectrum (J ",(x) is 
closed, but it also shows that the resolvent Rx(A) = (A - X)-I is a locally 
analytic d-valued mapping on the resolvent set C\(J ",(x), i.e., Rx(A) is an 
analytic d-valued mapping on each component of the complement of 
(J ",(x) (see Problem F). In this connection we also recall that 

(f) x" 
RxCA) = (A - X)-I = "~O ,.1,"+1 

for all complex numbers A such that 1,.1,1> Ilxll, and hence that (J",(x) is 
bounded and therefore compact (Prop. 12.11). Moreover, this last expression 
for the resolvent shows that limj.l.I_ + ex; Rx().) = O. In particular, Rx is bounded 
outside of some sufficiently large disc centered at A = O. (Following the 
standard usage of complex analysis, this is frequently expressed by saying 
that the resolvent Rx has a removable singularity at 00.) Employing these 
observations we establish the following fact: If d is a unital Banach algebra 
and x belongs to d, then the spectrum (J ",(x) is nonempty. 

Indeed, suppose () ",(x) = 0. Then for each bounded linear functional f on 
d the complex-valued function q> J = f 0 Rx is an entire function on C with 
the property that limp.l_ + oc. q> /,.1,) = O. In particular q> J is bounded, and is 
therefore a constant by Liouville's theorem (Ex. SK). But then, since q> J 

tends to zero at infinity, we must have q> /,.1,) = f(Rx(A» = O. Finally, since 
this holds for every bounded linear functional f on d, we conclude (Cor. 
14.11) that RxCA) = 0, a manifest impossibility since Rx(A) = (A - x) - 1 is an 
invertible element of d for all A not belonging to (J ",(x). 

Finally, we note that this shows, in particular, that if T is a bounded linear 
operator on a Banach space 0 =f (0), then (J(T) =f 0 and the resolvent RT is a 
locally analytic 2(tff)-valued mapping on the complement C\()(T). 
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There is a natural and far-reaching generalization of the notion of the 
weak topology on a normed space. Suppose C is an arbitrary linear space 
and A is an arbitrary linear manifold of linear functionals defined on C. 
The coarsest topology on C making all of the functionals in A continuous, 
that is, the topology (inversely) induced on C by the family of functionals 
in A (see Chapter 3) will be called simply the topology induced on C by A. 
(There is no loss of generality in assuming A to be a linear manifold; if M 
is an arbitrary set of linear functionals on C, and if A denotes the linear 
submanifold of the full algebraic dual of C generated algebraically by M, then 
every functional in A is continuous with respect to the topology inversely 
induced by M (Prob. 12U), so the latter topology coincides with the topology 
induced by .,It.) If we continue to use the notation (l), writing a J for the 
pseudonorm 

a/x) = If(x)l, XEC, 

for each f in A, then by Lemma 15.1 the topology induced on C by A 
coincides with the (linear) topology induced on <%' by the indexed family 
{a J} J EAt· Thus we obtain the following result, whose proof is virtually a 
repetition of the proofs of Propositions 15.2 and 15.3 and Corollary 15.4, and 
is therefore omitted. 

Proposition 15.8. The topology induced on a linear space C by a linear manifold 
A of linear functionals on C is a linear topology on C that turns C into a 
locally convex topological linear space. This topology is separated if and 
only if.,II is separating on C. A net {x A} ). E A in C converges to a limit Xo in this 
topology if and only if the net U(x;J} converges in C to f(xo) for each 
functional f in .A. A linear transformation of a topological linear space :F 
into C is continuous with respect to this topology if and only if f 0 T is 
continuous on :F for every fin .,11. Finally, the collection of all sets of the 
form (2), where fl' ... ,fn are selected from .,11 and e denotes an arbitrary 
positive number, constitutes a base of open neighborhoods at 0, and the 
translates of these neighborhoodsform a base for this topology. 

An important property of the topology induced by a linear manifold of 
functionals is expressed in the following result. 

Proposition 15.9. Let C be a linear space, let A be a linear manifold of linear 
functionals on C, and let :F be a linear submanifold of C that is closed with 
respect to the topology induced on C by A. Then for any vector Xo in C that 
does not belong to :F there are functionals f in A such that f(:F) = (0) 
while f(xo) "# 0. 

PROOF. As noted above, the topology induced on C by A is the same as that 
induced by the family of pseudonorms {a J} J EAt, and is therefore locally 
convex. Hence Proposition 14.13 applies, and since every linear functional 
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on g that is continuous with respect to the topology induced by vi{ actually 
belongs to vi{ (Prob. J), the result follows. 0 

Example H. Let g be a linear space and take for ,it the full algebraic dual of 
@. The topology induced on g by vi{ in this case is a separated locally convex 
topology on g with respect to which every linear functional is continuous. 

Example I. If g is an arbitrary separated locally convex space, then the dual 
g* (the collection of all continuous linear functionals on g) induces a 
separated locally convex linear topology on g. It will be convenient to 
continue to call this the weak topology on g,just as when g is a normed space. 

Other examples of topologies induced by linear functionals will occupy 
us from time to time as we go along. For the present, however, the weak 
topology on a normed space and the following weak* topology on the dual 
of a normed space are the ones of greatest interest. 

Definition. If g is a normed space, then the topology induced on the dual 
space g* by the subspace j(g) of g** is the weak* topology on g*. 

The following is nothing more than a summary of Proposition 15.8 as it 
applies to the weak* topology. 

Proposition 15.10. For any normed space g the weak* topology on g* turns 
g* into a separated, locally convex, topological linear space. A net {f;.} 
in g* converges to a limit f in the weak* topology if and only iflim), f;.(x) = 
f(x) in C for every vector x in g. A linear transformation T of a topological 
linear space fi' into g* is continuous with respect to the weak* topology if and 
only if the mapping y ~ (Ty)(x) is a continuous linear functional on fi' 
F)I' every x in If. Finally, the collection of all sets of the form 

{f E g*: If(x;)1 < e, i = 1, ... , n}, 

where XI' .•. , Xn are selected from g and e denotes an arbitrary positive 
number, constitutes a base of open neighborhoods of 0 in the weak* topology, 
and the translates of these neighborhoods form a base for that topology. 

PROOF. It is obvious that j(g) is separating on g*. Everything else follows 
from Proposition 15.8. 0 

The most important single property of weak* topologies is stated in 
the following theorem. 

Theorem 15.11 (Alaoglu's Theorem). If g is a normed linear space, then the 
closed unit ball (g*)! in the dual space g* is compact in the weak* topology. 
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PROOF. For each vector x in rff set D; = {A E IC : I AI :S II x II }, and form the 
topological product 

n = n D;. 
XE€; 

Each D; is a compact disc in IC, and it follows by Tihonov's theorem 
(Theorem 3.15) that n is compact. Moreover, if we define 

then it is clear that <P is a continuous one-to-one mapping of (8*)1 into n. 
The proof will be completed by showing that the range R = <p((rff*)d of <P 
is closed in n (which will show that R is compact; cf. Proposition 3.2) and 
that the mapping <p- I : R -> (rff*)1 is continuous when rff* is given the weak* 
topology (which will show that <P is a homeomorphism between (rff*)1 and 
R). To that end, let {f;'};.EA be a net in (rff*)1 with the property that the net 
{<P(fi.)}hA is convergent in n. We must show that there exists a linear 
functional fo in (rff*)1 such that <P(f;.) -> <P(fo) (this will show that R is closed 
in n) and such that fi. -> fo in the weak* topology (this will show that <p- 1 

is continuous on R). But to say that the net {<p(f;.)} converges in n is the 
same as saying that all of the coordinate nets {<p(f)Jx = fix)} converge in IC 
(Prop. 3.20). Accordingly we may and do define fo by setting 

fo(x) = lim fix), 
). 

Ifwe knew fo to be a bounded linear functional with II fo II :S 1, then from this 
definition (and Proposition 15.10) it would be clear at once that f;. -> fo in 
the weak* topology on rff* and likewise that <P(f;.) -> <P(fo) in n. Thus it only 
remains to verify that fo is an element of (rff*)I' Suppose now that x and y 
are vectors in rff. Then 

fo(x + y) = lim fix + y) = lim fix) + lim fiy) = fo(x) + fo(Y), 
;. ;. ). 

which shows that fo is additive. Similarly, if rt is a scalar and x E rff, then 
fo(rtx) = rtfo(x), and we see that fo is a linear functional. Finally, since 
fo(x) E D; for every x in rff, it is clear that fo is bounded and that, in fact, 
II fo II :S 1. (The reader may wish to compare this construction with that 
employed in Example 3R.) 0 

Let {xn}~=O be a sequence in the unit ball (fp)' for some p, I < p < + 00, and let Xn = 

{(~71J:;;=0 for each n. The sequence {(~)};=o is bounded in C and therefore possesses 
a convergent subsequence. Hence there is a subsequence {Xko(n)};;"=o of {xn} that is con
vergent along the Oth coordinate to some complex number fin with I fin I :0; 1. That 
sequence in turn possesses a subsequence {Xkdnl},;'=o converging along its Oth co
ordinate to flo and also converging along its 1st coordinate to a complex number Ii, 
with I fi, I :0; I. Continuing in this manner, we obtain by mathematical induction an 
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infinite sequence {Xkrnlnl} of sequences, m = L 2, ... , each of which is a subsequence of 
the foregoing one, and with the property that {Xkrnlnl} converges along the first m + 1 
coordinates to the first m + 1 terms of a sequence h = {{im}:'=O belonging to (I, )1' 
But then the diagonal sequence {x~ = Xk"lnl}~=O is eventually a subsequence of everyone 
of the sequences {Xkrnlnl} and therefore converges coordinatewise to h. Hence, by Problem 
C, b belongs to (I P)1 and {x~} converges weakly to h. We have shown that every sequence 
in (I p)1 possesses weakly convergent subsequences, and since (I P)1 is weakly metrizable 
(Prob. M), this implies that (I P)1 is weakly compact. Thus, by the device of extracting a 
whole sequence of successively finer subsequences, and then extracting the diagonal from 
the resulting infinite tableau-that is, by employing the diagonal process: cr. Problem 
4P-we obtain an independent proof of the weak* compactness of the unit ball in the 
space (I p), 1 < p < + w. Historically it was this construction and others like it that led 
to the discovery of Alaoglu's theorem. 

The topologies induced on a linear space by various families of linear 
functionals are of interest by virtue of being the coarsest topologies satisfying 
certain conditions. There are also many situations in which a linear topology 
is interesting because it is the finest topology satisfying certain specified 
conditions. To see how this goes we need the following result. 

Proposition 15.12. If {3""")"Er is an arbitrary indexed family of locally convex 
linear topologies on a linear space g, then sup)' 3""")" is also a locally convex 
linear topology on g. 

PROOF. It suffices to show that the topology sup), 3"""), is locally convex 
(Prop. 11.25). If Vi = V;'i is an absolutely convex neighborhood of 0 in g with 
respect to 3""")'i' i = 1, ... , n, then VI (l ... (l v,. is also absolutely convex. 
Since sets of this form constitute a neighborhood base at 0 in the topology 
sup" 3""")" the result follows, at least when r =I- 0; the supremum of the 
empty family of topologies on g is the indiscrete topology, clearly locally 
convex and linear. 0 

Example J. The supremum of the collection of all locally convex linear 
topologies on a linear space g is a locally convex linear topology on g. If g 
is equipped with this topology, then every pseudonorm on g becomes 
continuous; equivalently, every absorbing absolutely convex subset of g is a 
neighborhood of the origin in <t. Likewise, an arbitrary linear transformation 
of g into a locally convex topological linear space is continuous on g with 
respect to this topology. In particular, the dual g* of g coincides with the 
full algebraic dual of g. 

Example K. Let g be a locally convex topological linear space, and let g* 
denote, as usual, the dual of g. In the collection of all those locally convex 
linear topologies on g with the property that, when g is equipped with that 
topology, the dual space of g is precisely the set g* (of which the given 
topology on g is one by hypothesis) we already know that there is a coarsest 
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topology-namely, the weak topology on 6. According to Proposition 15.12 
there is also afinest locally convex linear topology on 6 admitting 6* as the 
dual space. This topology is known as the Mackey topology on 6. 

Another application of Proposition 15.12 arises in connection with the 
notion of inductive limit. 

Definition. Suppose given a linear space 6, a directed set A of indices, and 
a monotone increasing net {A;.L.EA of linear submanifolds of 6 (in the 
inclusion ordering) such that 6 = UA j( ... = LA j( .... Suppose also that 
each A ... is equipped with a locally convex linear topology, and that these 
topologies are all coherent in the sense that A A is topologically a subspace 
of A ... , as well as a linear submanifold of A A' whenever A ::; A' in A 
(cf. Example 3L). Then the finest locally convex linear topology on 6 
with respect to which all of the inclusion mappings i ... : A ... --+ 6 are con
tinuous (the indiscrete topology on 6 is one such) is called the inductive 
limit topology on 6, and 6 equipped with this topology is known as the 
inductive limit of the net {A ... }. 

The notion of inductive limit introduced here is more restrictive than the usual definition. 
and corresponds to what many authors refer to as the strict inductive limit. 

It should be remarked that this inductive limit topology may equally 
well be described as the finest locally convex linear topology on 6 with the 
property that the relative topology induced by it on each of the submanifolds 
jt ... is refined by the given topology on jt i.' Concerning inductive limits we 
have the following basic result. 

Proposition 15.13. Suppose 6 is the inductive limit of a net of linear sub
manifolds {A..}. Then a pseudonorm (J on 6 is continuous if and only if the 
restriction of (J to each A ... is continuous with respect to the given topology 
on A A' Similarly, an absorbing absolutely convex subset A of 6 is a neigh
borhood of 0 in 6 if and only if A n A A is a neighborhood of 0 in A ... for 
every 1 Finally, if ff is any locally convex topological linear space and T 
is a linear transformation of 6 into ff, then T is continuous if and only if each 
restriction T I A ... is continuous. 

PROOF. A pseudonorm (J on 6 is continuous with respect to the inductive 
limit topology if and only if the topology .OJ (J induced by (J is refined by that 
topology, i.e., if and only if the inclusion mappings iA : oit ... --+ 6 all become 
continuous when 6 is equipped with the topology .OJ (J' But this, in turn, is 
true if and only if each restriction (J I A ... is continuous. (We have here used 
the results of Proposition 11.26.) If A is an absorbing absolutely convex 
set in 6, and if PA denotes its Minkowski function (Ex. 14F), then A is a 
neighborhood of 0 if and only if the pseudonorm PA is continuous, and it is 
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readily seen that this is the case if and only if A n j/ .l. is a neighborhood of 0 
in A.l. for every index .l Suppose, finally, that T is a linear transformation 
of Iff into some locally convex topological vector space §'. If T is continuous 
with respect to the inductive limit topology on Iff, then it is clear that T I A.l. is 
continuous on A.l. for every .l On the other hand, if the latter condition is 
satisfied, and if V is any absolutely convex neighborhood of 0 in §', then 
A = T- 1(V) is an absolutely convex subset of Iff, and, as is readily seen, A 
is also absorbing. Moreover, each intersection A n A.l. is a neighborhood 
of 0 in j(.l. by virtue of the hypothesis. Hence A is a neighborhood of 0 in 
Iff, so T is continuous. 0 

Example L. The (self-indexed) collection of all finite dimensional linear 
submanifolds of an arbitrary linear space Iff satisfies the requirements of 
the above definition if each finite dimensional submanifold is equipped 
with its unique separated (locally convex) linear topology (Prob. lIP). 
Since every pseudonorm (J on Iff becomes continuous when restricted to a 
finite dimensional linear manifold (see Problem 11 P again), it follows from 
Proposition 15.13 that every pseudonorm on Iff is continuous with respect 
to the inductive limit topology on Iff. Hence the inductive limit topology 
in this instance coincides with the finest locally convex linear topology 
on Iff (Ex. J). 

Example M. Suppose given an indexed family {IffY}YEf of locally convex 
topological linear spaces. For each subset r' of r it is clear that the full 
algebraic direct sum IYEP + Iffy can be identified in a natural way with a 
linear manifold in Il'Ef + Iff), (by identifying each element {Xl'}YEf' with the 
element of Iy E r + Iffy that agrees with it on r' and is equal to 0 elsewhere). 
In particular, if this is done for each finite subset D of r, then the net of finite 
direct sums {IYED + Iffy} is identified with a net of linear manifolds in 
IF r + If y indexed by the directed set of all finite subsets of r. The sum (or 
union) of this net consists of the collection y> of those elements of the full 
algebraic direct sum IYEr + Ifl, that vanish off some finite subset of r, and 
is known as the algebraic direct sum of the family {Iff J l' E r· 

Suppose now that for each finite subset D of r we equip the finite direct 
sum Il'ED + Iffy with its product topology. Then the conditions in the defini
tion of inductive limit are satisfied so there exists an inductive limit topology 
on the algebraic direct sum y> of the family {IffY}YEr of topological linear 
spaces. (The topology here defined on y> is known as the direct sum topology. 
If r is infinite it is definitely finer than the topology y> acquires as a linear 
manifold in the full algebraic direct sum of the family {!f' 1} J in the product 
topology (Prop. 11.24).) 

Example N. Let U be a nonempty open subset of Euclidean space [Rn, and 
write ~boo)(U) for the linear space of test functions on U (that is, the space of 
all those infinitely differentiable functions on U that have compact support; 
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see Problem 11 V). Let us write X for the collection of all non empty compact 
subsets of U, and for each K in X let us write ~K(U) for the set of all those 
test functions on U that are supported on K, i.e., vanish on U\K. Then 
~iU) is a linear manifold in cthOO)(U). Moreover, if, as before, we write (JK 
for the pseudonorm 

(JK(f) = sup I/(x)l, IE ct(OO)(U), 
XEK 

and Dkl, .... knl for the partial derivative of I obtained by differentiating kj 

times with respect to the variable Xi> i = 1, ... , n, then 

defines a sequence of pseudonorms on ~ K( U) that can be seen (by considering 
the convergence of sequences, for example) to induce on ~K(U) the same 
locally convex topology as the relative topology ~K(U) acquires as a linear 
manifold in the Frechet space ct(ool(U) of all infinitely differentiable functions 
on U in the topology of D-convergence (cf. Example 14K). Moreover, ~K(U) 
is a closed linear manifold in ct(OO)(U), and is therefore a Frechet space in its 
own right. The system {~K(U)} is a net of linear submanifolds of ct(oo)(U) 
indexed by X (directed in the inclusion ordering) and the union (or sum) 
of this net is the linear space cthCXJ)(U) of all test functions on U. Moreover, 
if K and K' are nonempty compact subsets of U such that K c K', then the 
various pseudo norms (J K·. m on ~ K'( U) agree with the corresponding pseudo
norms (J K. m on ~ K( U) for each nonnegative integer m. Hence the space 
~K(U) is topologically embedded in ~dU) whenever K c K'. Thus the 
conditions set forth in the definition of the inductive limit topology are all 
satisfied, and it results that there exists an inductive limit topology on the 
space cth (0)( U). A linear functional on cth 00)( U) that is continuous with respect 
to the inductive limit topology, i.e., an element of cthoo)(U)*, is called a dis
tribution on U. Thus, according to Proposition 15.13, a linear functional on 
cth <XC)( U) is a distribution on U if and only if its restriction to each space 
~K(U) is continuous there in the topology of D-convergence. It should be 
noted that for each fixed K in X the sequence {(J K. m},~) = 0 is saturated on 
~K(U), and hence that a linear functional Ton cthoo)(u) is continuous, and 
therefore a distribution on U, if and only if for each K in X there exists a 
nonnegative integer m such that T is bounded (and therefore continuous) 
with respect to (JK,m (see Problem 12U). In regard to this criterion it is im
portant to note that the integer m will depend not only on T but also, in 
general, on K. 

That the inductive limit topology is definitely finer than the topology of D-convergence on 
'fi'hOO)(U) may be seen as follows: If {ipn} is an infinite sequence in 'fi'hOO)(U) that converges 
to 0 in the inductive limit topology, then there exists a single compact subset K of V 
such that ipn vanishes on U\K for every n (cf. Example 14L). Indeed, if this condition 
is not satisfied, then it is a simple matter to construct by mathematical induction an 
increasing sequence {Kn} of compact subsets of V, a sequence {xn} of points, and a 
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subsequence {rpk) of the given sequence of test functions such that the following con

ditions are satisfied: 

eN 

(i) U = UK:, 
n=l 

(iii) rpdxn) # 0, 11 E N 

(cf. Example lOA). Let an = Irpdxn)l, and define 

Irp(x)1 
(J(rp) = I sup --, rp E (gbX)(U). 

n xeL fl an 

(By (i) only a finite number of terms in this series are nonzero for anyone test function rp.) 
It is clear that (J is a pseudonorm on ~beN)(U) and it is easily seen that the restriction of (J 

to each space ftJK(U) is continuous there. Hence (J is continuous on ~bCX)(U) in the in
ductive limit topology by Proposition 15.13. But for each positive integer 11, I S; 

sUPxel.,.irpdx)l/an S; (J(rpk.,). Thus the sequence {rpn} does not converge to 0 in that 
topology. 

Example O. Let U be as in the preceding example. Most ordinary complex
valued functions on U can be interpreted as distributions on U. To see how 
this goes, consider a Borel measurable function I on U that is integrable (with 
respect to n-dimensional Lebesgue measure fln) over every compact subset 
of U. (Such a function is customarily said to be locally integrable on U. 
Clearly every continuous function on U is locally integrable on U.) For 
every test function <P on U the integral J u <pI dfln exists, and setting 

Ti <p) = Iv <pI dfln, 

defines a linear functional Tf on ~bC())(U). Moreover, this functional is readily 
seen to be a distribution on U. (Indeed, Tf is bounded with respect to the 
pseudonorm O"K = O"K,O on every 9&K(U), K E $'; this fact is expressed by 
saying that the distribution Tf is of order zero on U.) Thus every locally 
integrable function on U defines in a simple and unique fashion a distribution 
on U. Moreover, the mapping that assigns. to each such function I on U 
the associated distribution Tf is clearly a linear transformation of the linear 
space of locally integrable functions on U into the space ~bC())(U)* of distri
butions on U. This mapping is not one-to-one, however. Indeed, it is obvious 
that Tf and ~ coincide whenever I = 9 a.e. [fln]. It is an important fact in 
the theory of distributions that the converse of this latter assertion is also 
valid, that is, if Tf = Tq for some pair of locally integrable functions I and 9 
on U, then I = 9 a.e. [fln]. To verify this it suffices to show that Tf = 0 
implies I = 0 a.e. [fln]. Suppose, accordingly, that I gives rise to the trivial 
distribution. Recall (Prob. 11 V) that for each nondegenerate closed cell Z 
contained in U there exists a test function <P having support Z that is strictly 
positive on ZO and has the property that <pr is also a test function for every 
positive power r. Moreover, we may also suppose that <p is bounded by one. 
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But then the sequence {cpl/p};'=l converges pointwise on U to the character
istic function of ZO and is uniformly bounded (by one). Hence 

lim f cpl/Pj dJ1n = f j dJ1n 
P Z Z 

by the bounded convergence theorem (Th. 7.13). But also 

{cpl/Pj dJ1n = Iv cpl/Pj dJ1n = T/cpl/P) == O. 

Thus Jz j dJ1n = 0 for every closed cell Z contained in U. 
Suppose now that V is an arbitrary open set such that V - is compact and 

contained in U. If we write 

for every Borel set E contained in V, then v J is a complex measure on the (1-

ring of Borel subsets of V such that vr(Z) = 0 for every closed cell Z contained 
in V, whence it follows at once that v J is the zero measure on V (see Problem 
8A). But then j must vanish a.e. [J1n] on V Finally, since U can be expressed 
as the union of a countable collection of open sets such as V, this implies 
that j vanishes a.e. [J1n] on U. 

This discussion shows that the ordinary (locally integrable) functions on U 
may be thought of as forming a linear submanifold of the space ~boo)(U)* 
of distributions on U (provided we agree to identify two functions that are 
equal almost everywhere [J1n]). Because of this fact, distributions on U are 
also frequently called generalized junctions on U. The distributions of the 
form TJ , that is, those that come from locally integrable functions on U, 
are known as the regular distributions on U. 

Example P. Let U and V be nonempty open subsets of [Rn such that V cU. 
A test function cp on V may be viewed in a natural way as a test function on U 
Gust extend cp to be zero on U\ V), and in this manner ~boo)(V) may be 
identified with a linear submanifold of ~boo\U). Consequently, if T is a 
distribution on U and cp is a test function on V, then it makes sense to evaluate 
T at cp, and the linear functional thus defined on ~bool(V) is called the 
restriction of T to V, denoted by T I V It is obvious that T is a distribution on 
V, and that if TJ is the regular distribution associated with a locally integrable 
function j on U as in Example 0, then TJ I V = TJjV . 

Consider now a distribution T on U and let U 0 be the union of the 
collection of all those nonempty open subsets V of U such that T I V = O. (If 
there are no such open sets, the union U 0 is empty, and the following discus
sion is rendered trivial.) We shall show that T I U 0 = O. Indeed, suppose K 
is an arbitrary compact subset of U 0 and cp is a test function on U 0 that 
vanishes on U 0 \K. We must show that Tcp = O. If K is empty there is nothing 
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to prove. If not, then, by the definition of U 0' there exist open subsets 
VI' ... , V", of U 0 that cover K and have the property that T I Vi = 0, 
i = 1, ... , m. But then there also exist test functions <P I' ... , <P'" constituting 
a partition of unity subordinate to the covering {VI"'" V",} (Prob. U). 
Since 

<P = <P<PI + ... + <P<P'" 

and since <P<Pi is supported on some compact subset of Vi, i = 1, ... , m, 
it follows that T<p = L!"= I T<P<Pi = 0. Thus T I U 0 = 0, as was asserted. 

This argument shows that for each distribution Ton U there is a smallest 
relatively closed subset S of U such that T I (U\S) = 0. The set S is called 
the support of T. 

Example Q. Let us take for U an open interval (a, b) in IR (a < b), and suppose 
that.f is a continuously differentiable function on U. If <P is a test function on 
U, then <P vanishes outside some closed subinterval [c, d] c (a, b), and, 
integrating by parts, we obtain 

Tr(<P) = f<P(t).f'(t)dt = [<p(d).f(d) - <p(c).f(c)] - f<P'(t).f(t)dt 

= - f<P'(t)f(t)dt. 

Thus, in brief, Tr( <p) = - T/ <p'). Inspired by this observation one defines 
the distributional derivative T of an arbitrary distribution Ton U by setting 

T( <p) = - T( <p'), 

It is easily verified that T, thus defined, is again a distribution on U. (If Tis 
bounded on some nonempty compact subset K of U with respect to aK. "" then 
T' is bounded on K with respect to a K. '" + I') Hence every distribution on U is 
infinitely differentiable in that it may be differentiated as often as desired 
in the distributional sense. A formula for the nth distributional derivative of a 
distribution T on U is readily computed: 

Moreover, according to the discussion that motivated the definition, if Tf is a 
regular distribution associated with a function f in ~(l)(U), then 

(Tf ), = Tr · 

An elementary induction argument shows that. in fact, if f E ~(m)(U), then 
(0.)<k) = 01kl for every k = I, ... , m. 

What can be said about the derivative of a regular distribution Tf when 
.f is not continuously differentiable on U? To shed some light on this question, 
let us suppose that rx. is a right-continuous function on U that is of bounded 
variation (Prob. 1 I) on every closed subinterval of U (such a function is said 
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to be locally of bounded variation on U; see Problem lOR). We shall show 
that if <P is a test function on U that is supported on the closed subinterval 
[e, d], then the value of the distributional derivative (T.), at <p is given by 

f<p d(. = f<p d(. 

where (, denotes the Stieltjes-Borel measure associated with rx on the interval 
[e, d] (see Example 8K). To this end we use the Fubini theorem (Prob. 9F). 
Let Q denote the square [e, d] x [e, d] equipped with the Borel measure 
/1 x (., where /1 denotes Lebesgue-Borel measure on IR. Consider the set 
D = {(t, u) E Q: t < u} and the integral J = SD rp'(t)d(/1 x (.)(t, u). Clearly 
the hypotheses of the Fubini theorem are all satisfied here, so this double 
integral may be computed as an iterated integral in either order. If we 
integrate first with respect to u, we obtain 

J = fd [<p'(t) f. d(.(U)]dt = fd <p'(t) [rx(d) - rx(t)Jdt, 
c (I. d) c 

and since S~ <p'(t)dt = 0, this simplifies to 

J = - f<P'(t)rx(t)dt = -T.(<p') = (T.)'(<P). 

If, on the other hand, we integrate first with respect to t, we obtain 

J = f [f<P'(t)dt]d(iU) = f<P(U)dUU), 

and our assertion is proved. 
Thus the distributional derivative (T.), is given by integration with respect 

to a local Borel measure on U (see Problem lOR), and it follows by the Radon
Nikodym theorem (Th. 9.6) that (T.), is again a regular distribution on U 
if and only if the measure C is absolutely continuous with respect to /1 on 
every closed subinterval of U. 

Finally, let us consider the special case of the Heaviside function H 
defined on ~ as follows: 

H(t) = {O, t < 0, 
1, t?: 0. 

If <P is a test function on ~, then 

f+OO f+oo 
- _ ex <p'(t)H(t)dt = - 0 <p'(t)dt = <p(0). 

Thus the distributional derivative of TH is integration with respect to the 
Dirac mass concentrated at the origin (cf. Example 71), which is, of course, 
the Borel measure on ~ associated with H. 
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PROBLEMS 

A. If {sn};,"= I is an arbitrary sequence of positive real numbers, then II Snen II p = Sn 
in (f p) for every value of p, 1 ~ p < + ex; (see Example 11 H). Hence iflimn Sn = + 00, 

then no subsequence of the sequence {snen} can be weakly convergent in (I p) for 
any value of p. Nevertheless, the countable set S = {snen: n E N} may have weak 
accumulation points. Show, for example, that 0 belongs to the weak closure of S in 
(I p) if we set Sn = nl/q, n EN, where p> 1 and q denotes the Holder conjugate 
of p (Ex. 11 B). (Hint: Show first that for each weak neighborhood V of 0 in (I p) 
there exists a single vector a = {O(n}::'= 0 in (I q) and a positive number £ such that 
V contains the set 

If V contained no point of S it would follow that I O(n I Sn ~ £ > 0, and hence that 
100ni ~ £/nl/q for every n in No.) 

The preceding exercise shows very clearly that the weak topology on 
(f p), I < p < + 00, does not satisfy the first axiom of countability, and is 
therefore not metrizable. As a matter of fact, the weak topology is never 
metrizable on an infinite dimensional Banach space (cf. Problems K and 
M below), and it follows that the convergence of infinite sequences cannot 
be used to characterize weak topologies (see Chapter 3). Nonetheless the 
study of weak convergence of sequences is frequently interesting and 
occasionally of critical importance. The following three problems concern 
this topic. 

B. Let {xn} be a sequence of elements of the Banach space (co) of null sequences 
(sup norm). Prove that {xn} converges weakly to an element x of (co) if and only if 
it converges termwise to x and the numerical sequence {II Xn II if} is bounded. 
Is the same true in the space (c) of all convergent sequences? (Hint: See Problem 
14B.) 

C. Let {xn} be a sequence of elements of (I p), 1 < p < + 00, such that the numerical 
sequence {II Xn II p} is bounded and such that the sequence {xn} converges term wise 
to some limit x. Show that x E (I p) and that {xn} converges weakly to x. 

D. Conditions for the weak convergence of a sequence in (II) are dramatically different 
from those found in Problem C for a sequence in (I p), 1 < P < + 00. Show that if 
{xn}:= I is a sequence in (II) such that II Xn II = 1 for every n, then there exists a linear 
functional f in (/ 1)* such that the sequence {f(xn)} does not converge to zero in IC. 
Use this fact to prove that a sequence {xn} converges weakly in (11) if and only if it 
converges in norm. (Hint: Recall (Ex. 14B) that (f 1)* = (I ",). Let {xn} be a sequence 
of unit vectors in (II)' and let Xn = {~~~)}~=o for each n. One may clearly assume 
that limn ~~) = 0 for every nonnegative integer m. Construct by induction a disjoint 
sequence {Dn} of finite subsets of No and a corresponding strictly increasing 
sequence {k n} of positive integers such that 

nE N. 
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For each n in N and for every min Dn let Wm be a complex number of modulus one 
such that Wm ~~n) = I ~~n) I, and set Wm = 0 if m does not belong to any of the sets 
Dn. Then {w".}~=o is a unit vector in (I cxJ such that 

I I W ~(kn) I > ~ 
m=O m m - 3 

for every positive integer n.) 

E. Let tff and ~ be Banach spaces, and let T be a bounded linear transformation of tff 
into ~. Show that if <1> is an analytic tff -valued mapping on a domain 6 in C, then 
To <1> is an analytic ~-valued mapping on 6, and verify that (T 0 <1>)' = To <1>'. 

F. Let tff be a Banach space, and let {an}~ =0 be a sequence of "coefficients" in tff. Show 
that if the sequence {rnan} is bounded in tff for some positive number r, then for an 
arbitrary complex number Ao the series 

(7) 

is absolutely convergent in tff for all I A - Ao I < r (Prob. 11 G). Conclude that, just 
as in the case of complex-valued functions, every power series of the form (7) 
possesses a radius of convergence R, 0:::; R :::; + 00, such that (7) converges 
absolutely for IA - Aol < R and defines an tff-valued mapping on the disc DR(Ao) = 
{A E C: I A - Ao I < R}. (If R = + 00, then (7) converges everywhere on C and 
defines an entire tff-valued mapping.) Show that if a series of the form (7) has a 
positive radius of convergence R, then the tff-valued mapping <1> defined by 

<J>(A) = I (A - Ao)"an 

n=O 

on the disc DR(Ao) is analytic on DR(Ao). (Hint: If f E tff*, then (.f 0 <1»(A) = 
I:,=o f(an)(A - Ao)"; use Example E.) Suppose, conversely, that <1> is a given analytic 
tff-valued mapping on some domain 6 in C, and let Ao be a point of t... According to 
Example E, <1> is infinitely differentiable on 6, so we may construct (formally) the 
Taylor series 

XJ <1>(n)(A ) I (A - Ao)" __ 0 
n=O n! . (8) 

of <1> at Ao (Ex. SA). Show that this series actually converges to <1> on the largest open 
disc about Ao contained in A Show, finally, that if <1> can be continued analytically 
onto some larger domain containing a disc DR(Ao), then the radius of convergence of 
the Taylor series (8) is at least R. (Hint: Iff E tff*, then (.f 0 <1>yn) = f 0 <1>(n) for each 
nonnegative integer n, so I:=o f(<1>(n)(Ao»)(A - Ao}"/n! is the Taylor series of the 
analytic function f 0 <1>.) 

G. Let x be an element of a unital Banach algebra d. Show that if 
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sequence {II x" 11 1/"};;,,= 1 is always convergent and that the spectral radius r d(X) 
is given by the formula 

rAx) = lim II x" 11 1/". 

Thus, in particular, if Iff is a Banach space and T is a bounded operator on Iff, then 

reT) = lim liT" 11 1/". 

(Hint: Review Problems 12M and 12P, and use Problem F.) 

H. Let Iff be an infinite dimensional linear space, and let 2 be a linear manifold oflinear 
functionals on Iff. Show that in the topology induced on Iff by 2 every neighborhood 
of the origin contains an infinite dimensional linear submanifold of Iff. Conclude 
that every neighborhood of an arbitrary vector Xo in this topology contains a line 
through Xo. Conclude also that the topology induced by 2 is not induced by any 
norm on Iff. (This is expressed by saying that the space Iff equipped with the topology 
induced by 2 is not normable.) (Hint: If {flo ... ,fp} is any finite set of linear 
functionals on Iff, then the linear manifold S = {x E Iff : fi(x) = 0, i = 1, ... , p} 
is infinite dimensional.) 

I. Let Iff be an infinite dimensional normed space, and let C be a closed bounded 
convex subset of tff. Show that C is the weak closure of the boundary ac (taken in 
the norm topology). Thus, for example, the closed unit ball Iff I is the weak closure 
of the unit sphere {xEIff: Ilxll = I}. (Hint: Use Problem H.) 

J. Let fl' ... , fp be linear functionals on a linear space Iff, and let 

.1"= {xErff:fi(x)=O,i= I, ... ,p}. 

Prove that a linear functional g on Iff is a linear combination of fl' ... ,fp if and 
only if g( .. Y') = (0). (Hint: Iffj.V is isomorphic to a linear submanifold of (P.) 
Use this fact to show that if M is a set of linear functionals on Iff, then a linear 
functional g on Iff is continuous with respect to the topology inversely induced on 
Iff by M if and only if g is a linear combination offunctionals in M. Thus. for example, 
if Iff is a normed space, then the weak* continuous linear functionals on Iff* are 
precisely the ones in j( Iff). 

K. (i) Let Iff be a linear space, and let g and flo ... ,fp be linear functionals on Iff. 
Show that a necessary condition for the existence of two positive numbers 
£5 and I: such that 

(9) 

(see (2» is that g be a linear combination of flo' .. , fp. Show also that if g is 
a linear combination of fl' ... ,fp, then for each I: > 0 there is a (5 > 0 such that 
(9) holds. 

(ii) Let Iff be a linear space, let 2 be a linear manifold of linear functionals on Iff, 
and suppose given a neighborhood base at 0 in the topology induced by 2 
consisting of sets of the form UU;, ... , j~; 1:), j; E 2, i = I, ... , p. Prove that 
the union of the finite sets {fl' ... , fp} used in forming the neighborhood base 
must generate 2 algebraically. Conclude that the weight of Iff at each vector x 

with respect to the topology induced by 2 (Prob. 3A) is at least as great as 
the Hamel dimension of 2. 
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(iii) Conclude that if Iff is an infinite dimensional normed space, then the weak 
topology on Iff fails to satisfy the first axiom of countability, and hence is not 
metrizable. Show further that if Iff is complete, then the weak* topology on Iff* 
also fails to satisfy the first axiom of countability. (Hint: Recall Problem II Q.) 

It is a surprising but useless consequence of Problems J and K that there 
is no weak neighborhood base at the origin of an infinite dimensional 
normed space $ (and therefore none at any point of $) that is simply 
ordered under inclusion. Indeed, suppose "Y is such a neighborhood base. 
Then each set V in "f' contains a special neighborhood U = UCtl" .. ,j~; r.). 
Using Problem J and the fact that "f/" is a neighborhood base, it is easy to 
construct inductively a sequence {v"l of neighborhoods belonging to "f/" 
and a sequence {U nl of special neighborhoods (2) such that 

and such that, if § n denotes the finite dimensional subspace of $* generated 
by the functionals used in defining Un' then the sequence {§nl is strictly 
increasing. It follows that Un §n is infinite dimensional, and therefore 
that nn v" contains no neighborhood of the origin. But then, since "Y is 
nested, every V in "Y must include some v" , which implies that the sequence 
{v"l is itself a neighborhood base, in contradiction of Problem K. 

L. Let Iff be a separated locally convex space. Show that all hyperplanes and all closed 
half-spaces of Iff are also weakly closed (see Example I). Use this fact to show that 
every convex set in Iff that is closed in the given topology is also weakly closed, and 
hence that the weak closure of every convex subset of Iff coincides with its closure 
in the given topology. (Thus, in particular, if Iff is a normed space and C is a convex 
set in Iff, then the weak closure and the norm closure of C are identical.) Is it true 
that all norm closed convex subsets of the dual $* of a normed space $ are weak* 

closed? 

M. Problem K shows that if Iff is an infinite dimensional normed space, then tff is not 
metrizable in its weak topology, but it is possible for subsets of tff to be (relatively) 
weakly metrizable. Let tff be a normed space with the property that its dual space 
tff* is separable, and let {fn}:~l be a sequence dense in Iff*. Then the sequence 
{an = afJ of pseudonorms induces a metrizable topology on tff (Prop. 11.32). 
Show that this metrizable topology coincides with the weak topology on every 
closed ball tff" r > 0, and conclude that the (relative) weak topology on any bounded 
subset of tff is metrizable. Show also that the (relative) weak topology satisfies the 
second axiom of countability on bounded subsets of tff. (Hint: The space Iff is separa
ble too (Prob. 14R) and therefore satisfies the second axiom of countability, so 
there is a sequence {Xn}:~ 1 in tff, that is norm dense in tff,. Show that sets of the form 

form a base for the relative weak topology on tff" where m, n, and N range inde
pendently over all positive integers.) 

N. Let tff be a separable Banach space, let {Xn}:~ 1 be a sequence dense in tff, and let 

JEtff*, n E N. 
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Show that the sequence {O"n};;"= 1 of pseudonorms on cC* induces the weak* topology 
on every ball (cC*),., r > 0, and use this fact to prove that the (relative) weak* 
topology on (cC*), is metrizable. Conclude that the (relative) weak* topology is 
metrizable and satisfies the second axiom of countability on bounded subsets of 
cC*. (Hint: The closed ball (cC*)" r > 0, is compact in the weak* topology by 
Alaoglu's theorem (Th. 15.11).) 

It is easy to give an explicit formula for a metric that induces the relative 
weak* topology on the ball (,g'*), of Problem N. Indeed, 

ex; I 1 f(x.) - g(x.) 1 
p(f,g) = I Y 1+ If(x.) - g(x.) 1 , 

f, g E (,g'*)" 

defines such a metric (see Proposition 11.32). Similarly the formula 

ex; 1 1J.(x-y)1 
P(X'Y)=L YI II.( _')1 .= 1 +. x y 

X, yE,g'" 

defines explicitly a metric on the ball ,g', of Problem M that induces the 
relative weak topology there. 

O. Let cC be a Banach space with the property that the dual cC* is separable. Show that 
a subset of cC is weakly compact if and only if it is weakly sequentially compact 
(Prob. 3U). (Hint: If K is a subset of cC that is either weakly compact or weakly 
sequentially compact, then K is (weakly) bounded, and the weak topology on K is 
therefore metrizable by Problem M. Use Problem 4Q.) Verify similarly that if cC is 
separable, then a subset of cC* is weak* compact if and only if it is weak* sequentially 
compact. 

There is a theorem more general and considerably deeper than the first 
assertion of Problem 0 that holds without any hypothesis of separability 
in an arbitrary Banach space. The following fact is known as the Eberlein
Smul'yan theorem: Let K be a subset of a Banach space g. Then K is weakly 

compact if and only if it is weakly closed and weakly sequentially compact 
[23; Part I, p. 430]. 

P. Let cC be a Banach space and let M be a subset Qf cC* that spans it as a Banach space. 
Show that if a net {x A} hA in cC is bounded, and if f(x A) --+ f(x) in C for every f in 
M, then {x A} converges weakly to x. Show, similarly, that if M is a subset of cC that 
spans cC, and if UALEA is a bounded net in cC* such that fix) --+ f(x) for every x 
in M, then lim" fA = fin the weak* topology on cC*. 

Q. Let us call a subset M of the dual cC* of a normed space cC weak* bounded if 
U(x): f E M} is a bounded subset of C for every vector x in cC. Prove that if cC is 
complete, then every weak* bounded subset of cC* is bounded. Conclude, in par
ticular, that if cC is complete, then every weak* convergent sequence Un} in cC* is 
bounded. Show also, by example, that the requirement of completeness cannot be 
omitted in this result. 

R. It is customary to say that a net {xAl .lEA in a normed space cC is weakly Cauchy if the 
net U(x A)} is Cauchy in C for every f in cC*. (Note that this is the same as saying 
that {x,d is Cauchy with respect to all of the pseudo norms 0" f,f E cC*.) Similarly, a 

333 



15 Local convexity and weak topologies 

net {fALEA in Iff* is weak* Cauchy if the net {fA(x)} is Cauchy in IC for every x in Iff. 
As usual it is obvious that every weakly [weak*] convergent net is weakly [weak*] 
Cauchy. Following established custom, we define Iff to be weakly complete if every 
weakly Cauchy net in Iff is weakly convergent. Similarly, we define Iff* to be weak* 
complete if every weak* Cauchy net in Iff* is weak* convergent. As it turns out, 
however, these concepts are not very interesting. 

(i) Show that if F is any linear functional on Iff, then there exists a net {fA} in Iff* 
such that J;Jx) --+ F(x) for every x in Iff, and verify that the net {fJ is weak* 
Cauchy. Conclude that Iff* is weak* complete when and only when @ (and 
therefore Iff*) is finite dimensional. (Hint: The restriction of F to each finite 
dimensional subspace fF of Iff is bounded on fF, and therefore possesses an 
extension!:f' belonging to Iff * . Use the fact that the finite dimensional subspaces 
of Iff form a directed set in the inclusion ordering, and also the fact (Ex. 12A) 
that there exist unbounded linear functionals on Iff if Iff is infinite dimensional.) 

(ii) Follow the line of argument used in (i) to show that if cp is an arbitrary linear 
functional on Iff*, then there exists a net {x A} in Iff such that limA !(xA) = cpU) 
for every! in Iff*. Conclude that j(lff) is weak* dense in the second dual Iff**, 
and also that Iff is weakly complete if and only if it is finite dimensional. (Hint: 
Recall Proposition 14.5.) 

(iii) Other conditions weaker than completeness are sometimes of interest. Show, 
for example, that for any normed space Iff, every bounded weak* Cauchy net in 
Iff* is weak* convergent. (Hint: Use Alaoglu's theorem and recall Problem 3R.) 
This fact is usually expressed by saying that Iff* is weak* boundedly complete. 
Frame a definition of the concept of a weakly boundedly complete Banach 
space, and show that (I p) is weakly boundedly complete for all 1 < p < + 00. 

(iv) If Iff is any Banach space, then every weak* Cauchy sequence in Iff* is weak* 
convergent. This fact is usually expressed by saying that Iff* is weak* sequentially 
complete. Frame a definition of the concept of a weakly sequentially complete 
Banach space, and show that (co) does not satisfy the conditions of the 
definition. 

S. Let @ be the inductive limit of a net {vltALEA of locally convex topological linear 
spaces, and suppose the net {vIt ,,J is countably determined (Prob. 1 P). Let {An} ~~ I 
be a cofinal increasing sequence in A, and let U be an open absolutely convex 
neighborhood of 0 in .it AI' According to the definition of inductive limits, there 
exists a sequence {U n} ~~ 1 of sets in Iff such that U 1 = U and such that Un is 
an open absolutely convex neighborhood of 0 in .it An with the property that 
Un + 1 n vIt An C Un' n EN. Prove that the union U;~ 1 Un is a balanced absorbing 
set in Iff, and deduce that the absolutely convex hull V of this union is simply the 
sum LnEI\J Un. Show also that V n vitAl = U, and hence that vitAl is topologically 
embedded in Iff, that is, is topologically a subspace of Iff as well as a linear sub
manifold of Iff. Conclude that the submanifolds vitA are all topologically embedded 
in Iff. (Hint: Each vector x # 0 in V can be written uniquely in the form x = 
XI + ... + Xn for some n, where Xl E U, Xi E .it,,\.it,,_I' i = 2, ... , n, and Xn # 0.) 

T. Let {fF)"})'Ef be an indexed family of locally convex topological linear spaces, let 
Iff be a linear space, and suppose given for each index ;. a linear transformation 
Y;,: Iff --+ fF),. The topology inversely induced on Iff by the family {T,} is called a 
projective limit topology on Iff, and Iff equipped with this topology is called the 
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projective limit of the family {g;y} via the linear transformations Ty- Verify that the 
projective limit topology is a locally convex linear topology on Iff that is separated 
if and only if the family {7;.} is separating on Iff. Verify also that if T is a linear 
transformation of some locally convex topological linear space Iff 0 into Iff, then Tis 
continuous with respect to the projective limit topology on Iff if and only if every 
composition 7:,. 0 T is continuous. 

The following problem introduces some technical equipment that is very 
useful in the theory of distributions. In particular, it is needed for the 
program set forth in Example P. 

U. If cP is a continuously differentiable function on [R that is supported on some closed 
interval [c, dJ, then cP' is bounded on IR. Use this fact to show that the difference 
quotient (cp(s + h) - cp(s»jh tends boundedly to cp'(s) on [R as h tends to zero. (Show, 
that is, that there exists a positive constant M such that I (cp(s + h) - cp(s»jh I :$: M 
for all h f- 0.) Conclude that if f is a locally integrable function on [R (Ex. 0), 
then the function 

g(s) = tI(t)CP(S - t)dt 

has derivative 

g'(s) = tI(t)CP'(S - t)dt 

at every point s of [R. (Hint: See Problem 7W).) 

(i) Let r be a positive number and let CPr be a nonnegative test function .on [R" 

that is supported on the ball ([R")r = {x E [R" : II x 112 :$: r} and satisfies the 
condition J~" CPr dp" = 1 (see Problem II V). Show that if I is an arbitrary 
locally integrable complex-valued function on [R", then the function 

g(x) = tJ(Y)CPr(X - y)dpnCy) 

belongs to '6'( 00 l([R"). (The function 9 is called the convolution of I and cP" 
and is denoted by I * CPr.) Verify that 9 is real-valued if I is, and that if 
c :$: I(y) :$: d a.e. [p"J on some ball x + ([R")" then c :$: g(x) :$: d. In particular, 
if I is constant and equal to c a.e. on x + (IR")" then g(x) = c. (More generally, 
if I(y) lies in some disc {A E C : I A - Ao I :$: a} for almost every y in x + ([R")" 
then Ig(x) - Ao I :$: a.) 

(ii) Let K be a nonempty compact subset of [R", and let e be a positive number. 
Show that if F denotes the compact set F = {x E [R": d(x, [R"\K) ;?:: e} and V 
the open set V = {x E [R": d(x, K) < e}, then there exists a test function cP 
on [R" such that 

XF :$: cP :$: Xu· 

(iii) Let K be a nonempty compact subset of [R", and let V t, ... , V m be an open 
covering of K. Show that there exist nonnegative test functions CPt, ... , CPm 
on [R" such that 

(I) CPt + ... + CPm :$: I on [R", 
(2) CPt (x) + ... + CPm(x) = I for every x in K, 
(3) cP;(x) = 0 for x ¢ V;, i = I, ... , m. 
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(Hint: This is just an infinitely differentiable version of Example 3G, qv. One 
may assume the open sets V h ... , V m to be bounded, and it is convenient to 
do so. There exists a closed covering of [R" consisting of a closed set F 0 that is 
disjoint from K and compact sets K l' ... , Km such that K; c V;, i = 1, ... , m 
(see Example 30). Let 1'/0 = d(K, Fo), let 1'/; = d(K;, [R"\V;), i = I, ... , m, and 
set 8 = 1'/0 !\ 1'/1 !\ ... !\ I'/m' (If any set K; is empty, we delete it from the list 
and set the corresponding cP; equal to zero.) If L; = {x E [R": d(x, K;) ~ 8/2}, 
Eo = {x E [R": d(x, F 0) ~ 8/2}, and if CPr is chosen as in (i) with r = 8/2, then the 
convolutions 1/10 = XEo * CPr and 1/1; = XL; * cP" i = I, ... , m, are nonnegative 
test functions on [R" such that 1/1 = 1/10 + 1/11 + ... + 1/1", ::::: I everywhere on 
[R", and it follows at once that the functions cP; = 1/1;/1/1, i = 1, ... , m, satisfy 
all the stated requirements.) 

V. Let V be a non empty open subset of [R". For each index i = I, ... , n and for each 
distribution T on V we define the distributional derivative D; T by setting 

( Ocp) D;T(cp) = -T -, 
ox; 

for each test function cp on V (cf. Example Q). Show that D; T is again a distribution 
on V, and that D; is a linear transformation of <&'Soo)(V)* into itself, i = I, ... , n. 
Show also that the linear transformations D1, ••• , D" commute in pairs, and hence 
that it makes sense to define the differential operator Dk' .... ,kn = D~' ... D~n on 

(6"SX)(V)*. (If k; = 0 then m; is taken, as usual, to be the identity operator.) Verify that 

Verify finally that if fE'C(m)(V), then, for any nonnegative integers k lo •.. , k" 
such that kl + ... + k" :::; m, the distributional derivative Dk , ..... knTf coincides 
with the regular distribution associated with the (continuous) function Dk , ..... knf. 

W. Let V be a nonempty open subset of IR", and let f be a locally integrable function 
on V (see Example 0). Prove that there exists a largest open subset V of V such 
that f = 0 a.e. [II"] on V, and show that V\ V coincides with the support of the 
regular distribution Tf on V (cf. Example P). 

X. Let V be a non empty open subset of [R". If v is a local complex Borel measure on V 
(see Problem lOR), then 
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defines a distribution 7;. on V. If v is absolutely continuous with respect to II", that 
is, if it vanishes on every topologically bounded Borel set in V that has Lebesgue 
measure zero, then v is the indefinite integral with respect to II" of some locally 
integrable function f on V (see Theorem 9.6). In this event the distribution Tv 
coincides with the regular distribution Tf . If v is not absolutely continuous [II"], 
then Tv is not a regular distribution. Thus integration with respect to the Dirac 
mass,) concentrated at the origin is a distribution T. on [R that is singular, i.e., not 
regular (see Example Q). Show that (T.), (the distributional derivative of T.) is a 
distribution on [R that is neither regular nor of the form Tv for any measure v. (Hint: 
Consider the support of (T.),: see Example P.) 



Duality 16 

In this chapter we continue our investigation of the interplay between a 
separated locally convex topological linear space tff and its dual tff*. The 
matters to be discussed here, however, are most useful and most easily under
stood in the context of Banach spaces (where a natural topology, viz., the 
norm topology, exists on tff*); accordingly, we shall focus our attention 
principally on that important special case. However, in order not to restrict 
unnecessarily our treatment of duality theory, we shall formulate both 
theorems and definitions in the general context of locally convex spaces 
whenever that is convenient. The following concept is of basic importance. 

Definition. Let <ff be a normed space with dual space <ff*, and Jetj denote the 
natural embedding of tff in the second dual tff** (Prop. 15.6). The space 
tff is said to be reflexive if j maps tff onto <ff**, i.e., if the only bounded 
linear functionals on tff* are those defined by elements x of tff according to 
the formula 

j ~ j(x), jE<ff*. 

If tff is reflexive then j is an isometric isomorphism between tff and tff** 
(Prop. 15.6), and it follows that tff is necessarily complete (Prop. 12.7). 
A reflexive Banach space tff may be viewed as being identical with its own 
second dual (that is, tff and tff** may be identified via the natural embed
ding j) so that tff and tff* become the dual spaces of one another. Reflexive 
Banach spaces constitute a special, particularly well-behaved, class of 
Banach spaces. 

Example A. Let tff be a finite dimensional Banach space, and let {x}j= 1 

be a basis for tff. For each i = 1, ... , n, there exists a unique (bounded) 
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linear functional j; on ,g such that j;(x) = (5ij,j = 1, ... , n (Ex. 2B), and it is 
easy to see that {ni= 1 is a basis for ,g*. (If! E ,g* then!(xj) = (Xi> i = 1, ... , n, 
if and only if! = Ii = 1 (Xi'/;· The basis U;} i = 1 is called the basis dual to the 
given basis {Xj}j= 1.) It follows that dim ,g* = n = dim fff. Hence, by the same 
token, dim fff** = n also, and since the natural embedding j of fff into fff** 
has rank n (Prob. 2G), it follows thatj is onto. Thus every finite dimensional 
Banach space is reflexive. 

Example B. If 1 < p < + 00, and if we use the formula set forth in Example 
14C to identify (Ip)* with (Iq), where q denotes the Holder conjugate of p, 
then we must simultaneously identify (t q)* = (t p)** with (t p). It is not very 
difficult to check that under these identifications the natural embedding 
of (t p) in itself becomes the identity mapping on (t p). (We shall return to this 
point in Example H.) Thus (t p) is reflexive for 1 < p < + 00. On the other 
hand, the dual of (11) may be identified with (t ",) (Ex. 14B), and the latter is 
not a separable space (Ex. IIH), whence it follows that (t 1)** = (t "J* is 
not separable either (Prob. 14R). Since (/1) itself is separable, this shows 
that (/1) is irreflexive, i.e., not reflexive. 

Example C. The dual of (co) may be identified in a natural way with (t 1) (see 
Problem 14B), so there is also a natural way of identifying (co)** with 
(! d* = (! ex,). Once again it is not difficult to verify that under these identifi
cations the natural embedding of (co) in (I Xl) becomes the inclusion mapping. 
Thus (co) is likewise irreflexive. 

We have already employed the notion of the weak topology on an arbitrary 
separated locally convex topological linear space fff (cf. Example 151). It is 
also convenient to introduce the appropriate generalization of the weak* 
topology on the dual space fff*. 

Definition. Let ,g be a separated locally convex topological linear space, and 
let,g* be its dual. For each vector x in,g the mapping F xU) = lex),! E ,g*, 
is a linear functional on fff*, and the topology induced on fff* by the 
collection of all linear functionals of the form F x' x E ,g, is known as the 
weak* topology on fff* (or as the topology induced on ,g* by fff). 

It is obvious that this topology on fff* coincides with the weak* topology 
introduced in Chapter 15 when ,g is a normed space, and that the mapping 
assigning the functional F x to each vector x in fff (the natural embedding j 
in the case of a normed space) is, in general, a linear space isomorphism of fff 
into the full algebraic dual of fff* (Prop. 14.13). It should also be noted that 
the weak* topology on fff* enjoys all of the properties set forth in Proposition 
15.10. 
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Definition. If M is any nonempty subset of a locally convex topological 
linear space g, then the annihilator of M is the set 

conslstmg of all the continuous linear functionals on g that vanish 
identically on M. Dually, if M is a non empty subset of g*, then the 
preannihilator of M is the set aM of all those vectors x in g such that 
f(x) = 0 for every f in M. (By convention the empty subset of g is assigned 
g* as its annihilator; similarly, the preannihilator of the empty subset of 
g* is taken to be the entire space g.) 

The following two propositions and accompanying corollary give a 
summary of the elementary properties of annihilators and preannihilators. 
Proposition 16.1 is self-evident and requires no proof; it is recorded here 
solely for convenience of reference. The lack of symmetry in the formulation 
of Proposition 16.2 stems from the fact that every closed convex subset of a 
locally convex space g is also weakly closed; see Problem 15L. 

Proposition 16.1. Let g be a locally convex topological linear space. If M 
and N are subsets of g such that MeN, then Ma ~ Na. Likewise, if 
{M)'})'Ef is a nonempty indexed family of subsets of g, then 

Dually, if M and N are subsets of g* such that MeN, then aM ~ aN, 
and if {M)'}j'Ef is a nonempty indexed family of subsets of g*, then 

Proposition 16.2. If M is a subset of a locally convex topological linear space 
g, then the annihilator Ma is a weak* closed linear submanifold of g*, and the 
preannihilator a(Ma) of Ma is the smallest closed linear manifold in g 
containing M. If M is a subset of g*, then aM is a closed linear manifold in 
g, and the annihilator (aM)a of aM is the smallest weak* closed linear 
manifold in g* containing M. 

PROOF. All parts of the proposition are trivially valid for M = 0; accord
ingly, we assume in what follows that M is nonempty. For each single vector x 
in g, the annihilator {x}a = {f E g* :f(x) = O} coincides with the null 
space of the functional F x defined on g* by x. Thus {x Y is a weak* closed 
linear manifold, and so therefore is 

Ma = n {x}a, 
XEM 
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whenever M c If. Similarly, iff E If* then au} is just the kernel off, whence 
it is clear that 

aM = n a{f} 
fEM 

is a closed linear submanifold of If whenever M c If*. 
Suppose now that M is a subset of If and that A is the smallest closed 

linear manifold in If that contains M. From what has already been shown it is 
clear that A c a(Ma). On the other hand, if Xo is any vector in If that does 
not belong to A, then there is an element fo of Ma such that fo(xo) i= 0 
(Prop. 14.13). But then Xo ~ a(Ma), and it follows that A and a(Ma) coincide. 

Similarly, if M c If* and A denotes the smallest weak* closed linear 
submanifold of If* that contains M, then it is clear that A c (aM)a. But 
again, if fo is any element of If* that does not belong to A, then there exists 
a vector Xo in aM such that fo(xo) i= O. Thus fo ~ eM)a, and it follows 
that A = eM)a. (Recall (Prob. 15J) that the weak* continuous linear 
functionals on If* are precisely the ones of the form F x' x Elf.) D 

Corollary 16.3. If M is an arbitrary subset of a locally convex space If, then 
(a(Ma))" = Ma. Furthermore if !l' is a linear manifold in If, then a(!l'a) 
coincides with the closure of!l'. In particular, if A is a closed linear manifold 
in If, then a(Aa) = A. Similarly, if M is an arbitrary subset of If*, then 
aw M)a) = aM. Likewise if !l' is a linear manifold in If*, then (a !l')a coincides 
with the weak* closure of !l', and CO!l')" = !l' if and only if !l' is itself weak* 
closed. 

The following assertions are nothing more than paraphrases of a portion 
of the foregoing results in the important special case in which If is a Banach 
space. 

Proposition 16.4. If M is a subset of a Banach space If, then the annihilator Ma 

is a weak* closed subspace of If*, and a(Ma) is the subspace of If spanned by 
M. If M is a subset of If*, then aM is a subspace of If, and CO M)a is the smallest 
weak* closed subspace of If* containing M. 

Corollary 16.5. If !l' is a linear submanifold of a Banach space If, then 
a(!l'a) = !l'-. In particular, if A is a subspace of If, then a(Aa) = A. 
Similarly, if !l' is a linear submanifold of If*, then (a !l')a coincides with the 
weak* closure of !l', and (a !l')a = !l' if and only if !l' is itself a weak* 
closed subspace of Iff*. 

Example D. Let ~ be a domain in the complex plane, let S be a Banach space, 
and let <I> be an analytic Iff-valued mapping defined on ~ (see Example 15E). 
Suppose j{ is a subspace of If and <I>(A) E j{ for all scalars A in some subset 
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M of ,1. Then f G <1> = 0 on M for every f in .Jta. If M has any points of 
accumulation in ,1, it follows that f <1> = 0 identically on ,1 for every f in 
Aa (Th. 5.2), and hence that the entire range <1>(,1) belongs to a(Aa) = A. 
Thus if <1>(A) E A for every A in some subset of ,1 possessing a single point 
of accumulation in ,1, then the entire range of <1> is contained in A. 

Suppose now, once again, that $ is a separated locally convex space, and 
let A denote a closed linear submanifold of $. As is well known (cf. Example 
2L), a linear functional f in $* can be factored through $/ A if and only if A 
is contained in the kernel off, that is, if and only iff E A a• Moreover, iff does 
belong to .Jta, and if j denotes the unique linear functional on $/A such 
that f = /0 TC, where TC denotes the natural projection of $ onto $/.Jt, 
then 1 is clearly a continuous linear functional on $ /.Jt (since TC is an open 
mapping; recall Proposition 11.22). Finally, if 1 denotes an arbitrary element 
of ($/ A)*, then f =1 0 TC belongs to A a. Thus if we write rt.{]) = 1 0 TC, 

1 E ($/A)*, then rt. maps ($/A)* onto A a, and it is a triviality to verify 
that rt. is, in fact, an isomorphism between these two spaces. 

Consider now the situation when $ is a Banach space. What more can 
then be said about rt.? The answer is immediate and is contained, in fact, in an 
earlier exercise (cf. Problem 12F). The spaces ($/A)* and Aa are themselves 
Banach spaces, and II rt.(/) II = II/II for every jin ($/,Jt)*. Briefly, the mapping 
rt. is an isometric isomorphism-a Banach space isomorphism-between 
($/A)* and A a. This result, formulated below as Proposition 16.6, is typical 
of those theorems in the duality theory of Banach spaces that do not have 
any obvious counterparts in the general context of locally convex spaces. 

Proposition 16.6. Let $ be a Banach space, let A be a subspace of $, and let 
TC denote the natural projection oj $ onto $ /.Jt. Then the mapping rt. of 
(rff/,4t)* onto .4ta defined by setting (1.(/) = /0 Jr, /E (rff/.4t)*, is an iso
metric isomorphism of ($/,4t)* onto ,4ta. 

The isomorphism rt. between ($/A)* and Aa defined in Proposition 16.6 
is known as the natural isomorphism between these two spaces. Similarly, 
the mapping fJ of the following theorem is the natural isomorphism of $*/ Aa 
onto A*. 

Proposition 16.7. Let cff be a locally convex space, and let A be a closed linear 
submanifold of cff. Then the mapping [3(!) = fl A is a linear transformation 
of cff* onto A* having the annihilator A a for its kernel. Hence there exists 
a unique one-to-one linear transformation /l of cff* /j{" onto .41* with 
the property that fJ(f + .Jta) = f: .,{{ for every fin $*. When cff is a Banach 
space, this mapping fJ is an isometric isomorphism. 

PROOF. It is obvious that [3 is a linear transformation of $* into A*, and that 
the null space of [3 coincides with A a• Moreover, it is an immediate con
sequence of Proposition 14.13 that [3 maps $* onto A*. Thus setting 
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Pu + Jla) = fiJI defines a linear isomorphism of C*/Jla onto JI*. 
Suppose next that C is a Banach space. Then, according to Problem 12F, 
P is bounded with II P II ~ 1. On the other hand, if f is any element of JI*, 
then by the Hahn-Banach theorem (Th. 14.3) there exists an extension fo 
of f to the entire space C such that II fo II = II f II, and for this functional we 
clearly have PUo + Jla) = .r But then II f II = II fo II ~ II fo + Jla II ~ II f II 
since IIPII ~ 1, which shows that P is an isometry. 0 

Propositions 16.6 and 16.7 show that subspaces and quotient spaces of 
Banach spaces are dual to one another. There is also a duality for linear 
transformations, and, here again, the basic definitions make sense in the 
general context of locally convex spaces. To see how this goes, let C and !F 
be locally convex topological linear spaces, and let T be a continuous linear 
transformation of C into !F. Then for each functional f in the dual !F* 
the composition f 0 T is an element of C*. Let us write f* for this functional, 
so that 

f*(x) = f(Tx), XEC, f E !F*. 

Thus, setting T*f = f*,f E !F*, defines a mapping T* of !F* into C*, and 
it is a triviality to verify that T* is a linear transformation. 

Definition. With C, !F and T as above, the linear transformation T* is 
called the adjoint of T. 

Proposition 16.8. Let C and !F be separated locally convex topological linear 
spaces, and let fI?(C, !F) denote the linear space of all continuous linear 
transformations of C into !F. Then the mapping T -+ T* is a linear space 
isomorphism of fI?(C, !F) into the linear space of all linear transformations 
of !F* into C*. Moreover, if T is a continuous linear transformation of C 
into !F and S is a continuous linear transformation of !F into some third 
separated locally convex space <'§, then (ST)* = T* S*. Finally, the adjoint 
(1s)* of the identity mapping on C is the identity mapping Is'. 

PROOF. The verification that the mapping T -+ T* is a linear transformation 
is routine, and will be left to the reader. To show that it is an isomorphism 
of fI?(C, !F) into the space of all linear transformations of !F* into C* it 
suffices to show that it has trivial kernel. Suppose, accordingly, that T* = O. 
Then for every f in !F* and x in C we have (T*f) (x) = f(Tx) = o. Since f is 
arbitrary, this implies that Tx = 0 (Prop. 14.13); since x is also arbitrary, 
it follows that T = O. 

Next let Sand T be as in the statement of the proposition. If x is an 
arbitrary vector in C and f an arbitrary functional in <'§*, then 

(T*S*f)(x) = (S*f)(Tx) = f(STx) = «S T)*f) (x). 

Thus T*S* = (ST)*. Finally, iffis an element of C*, then «(ls)*f)(x) = f(x) 
for every x in C, so (1s)* is the identity mapping on C*. 0 
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Example E. The most general (continuous) linear functional on C" is of the 
formh" where y = ('11> " , , '1n) is itself an element ofC" andfy(x) = L?= I ~i'1i 
for each x = (~I' ' , , , ~n)' Moreover, in this notation, the basis for (e n)* 
dual to the natural basis {el"'" en} (Ex. 2B) is the basis {f; = feJi= I 
(cf. Example A). 

Suppose now that A is an m x n complex matrix, and let T denote the 
(continuous) linear transformation of en into em defined by A, so that 
T(~I' ... , ~n) = «(1>"" (m), where 

((I) (~I) : = A : 

~'" ~n 

for each (~I' . , . , ~n) in en (Prob. 2H). Then A is the matrix of T with respect 
to the natural bases for em and en, Moreover, if y = ('11' ... , '1",) belongs to 
e'" and x = (~b"" ~n) to en, then 

'" n 

f/Tx) = (T*J;.)(x) = L L '1iCXij~j. 
i= I j= 1 

A straightforward calculation based on this formula shows that if B = ({3i) 
denotes the matrix of T* with respect to the bases dual to the natural bases 
for em and en, respectively, then {3ij = cx ji . In other words, B = At, the 
transpose of A (Ch. 2, p. 21). 

This observation suggests that it might be more appropriate to call T* the transpose 
of T, and this is, in fact, sometimes done, most notably in [12]. The terminology employed 
here, while somewhat unfortunate, is nevertheless quite standard in the literature. 

As usual, things go much better when there are norms around. 

Proposition 16.9. If $ and ~ are Banach spaces, then the mapping that 
assigns to each bounded linear transformation T in 2($,~) its adjoint 
T* is an isometric isomorphism of 2($,~) into 2(~*, $*). Hence, when 
$ = ~, the mapping T --+ T* is an isometric linear space isomorphism of 
the Banach algebra 2($) into 2($*) such that (10')* = 10'* and (ST)* = 
T*S* for all S, Tin 2($). (Such a mapping may be called a unital isometric 
Banach algebra anti-isomorphism.) 

PROOF. All that is needed is to prove that T* is bounded and II T* II = II T II 
for every T in 2($, ~), for everything else has already been established. 
Moreover, since II (T*f) (x) II $; II filii T IIII x II for every f in ~* and x 
in If, it is clear that T* is bounded and that II T* II cannot exceed II T II. On 
the other hand, for any given Tin 2($, ~) and I: > 0 there is a vector Xo in 
If with II Xo II = 1 such that II Txo II > II T II - 1:, and there exists a functional 
fo in ~* with II fo II = 1 such that fo(Txo) = II Txo II (Cor. 14.11). Thus 
(T*fo)(xo) > II Til - 1:, whence it follows that II T* II > II Til - 1:, and, 
since I: is an arbitrary positive number, this proves that II T* II = II Til. 0 
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Corollary 16.10. If T is an invertible element of !fCC, ~), then T* is invertible 
in !f(~*, C*) and (T*)-l = (T- 1 )*. 

Corollary 16.11. If T is an isometric isomorphism of fff onto ~, then T* is an 
isometric isomorphism of ~* onto fff*. 

PROOF. Since T is an isometric isomorphism we have II T II = II T - 1 II = 1, 
from which it follows, according to Proposition 16.9 and Corollary 16.10, 
that II T* II = II (T*)-l II = 1. Hence II f II ::;; II T*f II ::;; II f II for every f in 
~*, which shows that T* is an isometry. 0 

Example F. If 1 < p < + 00, and if V denotes the unilateral shift on (I p) 
(see Example 12B), then V* is the backward shift 

V*{~o, ~1""} = {~1' ~2""} 
on (tq), where q denotes the Holder conjugate of p (cf. Example 12M). 
Similarly, if U denotes the bilateral shift on (t p)*, 1 < p < + 00 (see Example 
12E), then U* is the backward bilateral shift on (tq)*. That is, if {~n}:=oo_oo 
is an arbitrary element of (I q) *, then 

U*{-" C j, [~o], ~I' ... } = {- .. ~o, [~I]' ~2""} 

(cf. Problem 12L). Likewise, the adjoint of the unilateral shift on (II) is the 
backward shift on (I ex:), and the adjoint of the bilateral shift on the space 
(11) # is the backward bilateral shift on (I ex:) # . 

Example G. It follows from Proposition 16.8 and Corollary 16.10 that if 
T E !f(fff), where fff is a Banach space, then A - T* is invertible on fff* 
if and only if A - T is invertible on fff. In other words, the spectra a(T) 
and a(T*) coincide. 

Example H. Let p and q be Holder conjugates, 1 < p, q < + 00, and let 'P p 

denote the isometric isomorphism of (t p)* onto (tq) via which we identify 
these two spaces (cf. Example 14C), so that 'P p fa = a for each sequence a 
in (tq). (In other words, 'Ppf = {f(en)}:'=o, fE(t p)*.) Then the adjoint 
'P; is an isometric isomorphism of (t q)* onto (t p)** via which these two 
spaces are likewise to be identified. Let a = {Il(n} denote an arbitrary sequence 
in (t p), and let fa = 'P;; I a be the corresponding element of (t q)*. Then for 
each element g of (Ip)* we have 

00 

('P;fa)(g) = fa('P pg) = L Il(ng(en) = j(a)(g). 
n=O 

Thus the composition 'P; 0 'P; 1, via which we identify (t p) with (tp)**, 
coincides with the natural embedding, as asserted in Example B. 

Similarly, if <I> denotes the isometric isomorphism of (co)* onto (t 1) 
via which one may identify these two spaces (Prob. 14B), and if 'PI denotes 
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the isometric isomorphism of (f 1)* onto (f x) used to identify the latter spaces 
(Ex. 14B), then a simple calculation shows that the mapping <1>* 0 'P II 
via which we identify (co)** with (100) has the property that <1>* 0 'PII(a) = 
j(a) whenever a E (co), as asserted in Example C. 

Example I. The mapping f3 of Proposition 16.7 is nothing other than the 
adjoint i*, where i denotes the inclusion mapping of vIt into tff. Similarly, 
if n denotes the natural projection of tff onto tff/vIt, then the mapping r:t. of 
Proposition 16.6 agrees with n* at every element of (tff / vIt)*, so r:t. is simply n* 
regarded as a mapping of (tff/vIt)* onto the range 9l(n*) = vita. 

By piecing together the natural isomorphisms of Propositions 16.6 and 
16.7 along with their adjoints, we can construct other natural isomorphisms. 
For example, if vIt is a subspace of a Banach space tff and if fi denotes the 
natural isomorphism of tff*/vlta onto vIt*, then fi* provides a natural iso
morphism of vIt** onto (tff* /vlta)*. But, according to Proposition 16.6, there 
is also a natural isomorphism r:t. of (tff* /vlta) * onto vltaa (the annihilator of vita 
in tff**). Thus the composition y = r:t. 0 fi* is an isometric isomorphism of 
vIt** onto vltaa that also deserves to be called natural. Here is a diagram that 
elucidates this construction: 

)' 

~ 
04/** !!..; (tff*/o4ta)* ~ <~aa 

<~* l- tff* /<~a. 

Care must be taken in computing the precise action of the isomorphism y. 
If <p is an element of vIt** and f an element of tff*, then (fi*<p)(f + vita) = 

<p(fi(f + vita)) = <p(f I vIt). But then (y<p) (f) = (fi* <p) (f + vita) = <p(f I vIt). 
Thus we have proved one half of the following result. The other half is 
similar and its proof is left to the reader (see Problem G). 

Proposition 16.12. If tff is a Banach space and vIt is a subspace of tff, then the 
mapping y of <~** into tff** obtained by setting 

(y<p)(f) = <p(flvlt), <p E vIt**, fEtff*, 

is an isometric isomorphism of vIt** onto vltaa. Similarly, the linear trans
formation (j of tff** onto (tff;.~)** obtained by setting 

«(jl/l)(]) = I/I(] 0 n), 1/1 E tff**, .1 E (tff/<~)*, 

has null space vltaa and the property that the mapping 3 obtained by factoring 
out vltaa, i.e., the mapping $(1/1 + vltaa) = (j(I/I), is an isometric isomorphism 
of tff**/vltaa onto (tff/vIt)**. (In this statement n denotes, as always, the 
natural projection onto the appropriate quotient space.) 
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It is only when g is a reflexive Banach space that g and g* may reasonably 
be thought of as duals of one another, so that even to use the terms "dual" 
and" duality" when g is not reflexive is a mild (but entirely standard) abuse 
of language. It is to be expected that the foregoing results should simplify 
somewhat when g is reflexive, and that is indeed the case. For example, 
when g is reflexive, every (norm closed) subspace of g* is weak* closed as 
well, so that Corollary 16.5 says in this case that (a:.ey = :.e for every sub
space :.e of g*. Similarly, when g is reflexive and ~ is a subspace of g, then 
~ and g/~ are reflexive too (Prob. H), and if we use the natural embeddings 
to identify g with g**, ~ with ~**, and g/~ with (g/~)**, then the 
mappings y and b of Proposition 16.12 become the inclusion mapping of ~ 
into g and the natural projection of g onto g /~, respectively (see Problems 
F and G). 

Reflexivity is clearly an important property for a Banach space to have, 
and it is desirable to have some criteria for determining if a given space 
possesses it. One such criterion is easily established. As we know (Prob. 
15J), two linear spaces of linear functionals on a linear space g coincide if 
and only if they induce the same topology on g. Applying this observation 
to the dual space of a normed space g we conclude that g is reflexive if and 
only if the weak and weak* topologies on g* coincide. This test, while easy to 
state and to derive, is awkward to apply in practice, and it is highly desirable 
to be able to check whether a space is reflexive without having to have 
recourse to its dual. Such a test-the Smul'yan criterion-will be obtained 
later as a by-product of our further study of locally convex spaces. (An 
alternate proof using only Banach space theory is outlined in the problem 
set; see Problems C and D.) 

The foregoing discussion constitutes a brief synopsis of the bare essentials 
of what is generally known as duality theory for Banach spaces. Let us turn 
now, at least briefly, to the problem of generalizing this useful and fairly 
compact circle of ideas to more general locally convex spaces. (This project 
is far from simple, and has generated an extensive literature. All we can 
hope to do here is to convey some feeling for the texture of the theory, along 
with, perhaps, a notion of how it is related to other areas of the study of 
topological linear spaces; readers wishing to pursue further the study of 
duality theory are advised to consult either [55] or [12].) 

The first difficulty confronting us in the program upon which we now 
embark is immediately apparent and, as it turns out, this obvious first 
difficulty is also a most serious one. If g is a normed space, then g* is also 
a normed space with respect to a norm the usefulness of which is not in 
doubt. If g is merely a separated locally convex topological linear space, 
then g* is nothing more than a linear space. It is true that we know of a linear 
topology on g* that is both interesting and useful, viz., the weak* topology, 
but the weak* topology never agrees with the norm topology on the dual g* 
of a normed space g except in the finite dimensional case (Prob. 15H), a 
trivial case that we may safely ignore. Consequently it is pointless to try 
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to base a generalized duality theory on the weak* topology alone, although 
we should expect it to playa significant role, to be sure. Not surprisingly, then, 
the generalization of duality theory requires yet one more consideration in 
depth of the whole idea of the topologization of locally convex spaces. The 
fundamental tool in this reconsideration is the following notion. 

Definition. Let Iff and:#' be linear spaces, and let ljI be a bilinear functional 
on Iff + :#'. The triple (Iff, :#', ljI) is a dual pair if the following two conditions 
are satisfied: 

(i) For each nonzero x in Iff there is a vector y in:#' such that ljI(x, y) =1= 0, 
(ii) For each nonzero y in:#' there is a vector x in Iff such that ljI(x, y) =1= O. 

When dealing with a dual pair (Iff, :#', ljI), it is customary to supress the 
symbol for the distinguished bilinear functionalljl, writing ljI(x, y) = (x, y) 
instead. Likewise it will be convenient to write (Iff, :#') for the dual pair 
consisting of Iff and:#' equipped with the bilinear functional (,). 

If (Iff,:#') is a dual pair then for each y in :#' the function fy defined on 
Iff by setting fix) = (x, y) is a linear functional, and it is the substance of 
condition (ii) in the above definition that the linear transformation y ---+ 1;. is 
an isomorphism of:#' into the full algebraic dual Iff' of Iff. It is both customary 
and convenient to identify :#' with this collection of linear functionals 
f y , y E :#', and we shall frequently make this identification without further 
comment. Thus the topology induced on Iff by the set of all functionals fy 
is called the topology induced on Iff by:#'. The topology induced on Iff by :#' 
is locally convex and is separated by condition (i). 

In the same vein, of course, the mapping x ---+ r, x E Iff, where r(y) = 

(x, y), y E:#', is a linear space isomorphism of Iff into the full algebraic dual 
:#" of:#' (which we frequently use to identify {f with a linear submanifold of 
:#,'), and the topology induced on :#' by this collection of linear functionals 
(called the topology induced on :#' by {f) is locally convex and separated. 
Indeed, it is clear from the symmetry of the definition that if ({f,:#') is a 
dual pair, then:#' and {f form another dual pair with respect to the bilinear 
functional (y, x) = (x, y). (We shall consistently employ the notation 
(:#', Iff) for this dual pair.) Thus every theorem concerning the relation 
between the spaces of a dual pair has a valid counterpart with the roles of 
the two spaces reversed. In the following discussion we shall ordinarily not 
even bother to state this dual result (unless, as above, useful notation or 
terminology is thereby introduced), but rather leave it to the reader to bear 
in mind at all times that an appropriate reformulation of each theorem is 
valid. 

Example J. Let {f be a separated locally convex space with dual space Iff*. 
Then ({f, Iff*) is a dual pair with respect to the bilinear functional (x, f) = 

f(x). The topology induced on {f by {f* is the weak topology; the topology 
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induced on ~* by ~ is the weak* topology. In the corresponding dual pair 
<8*,~) these topologies are reversed. (The notation <~, ~*) and <~*,~) 
will be used in this manner consistently in the sequel.) Dual pairs of the form 
<~, ~*) are by far the most important ones we shall consider, and it is 
convenient to borrow some of the terminology developed in this special case. 
Thus for an arbitrary dual pair <~, ff) we shall sometimes refer to the 
topology induced on ~ by ff as the weak topology on ~. 

Example K. Let ~ be an arbitrary linear space and let ~' be its full algebraic 
dual. Then it is clear that <~, ~') is a dual pair with respect to the bilinear 
functional <x, f) = f(x) (see Problem 20). 

An important tool in the study of duality and dual pairs is the following 
concept. 

Definition. Let <~, ff) be a dual pair and let M be a nonempty subset of~. 
Then the polar of M is the set 

M O = {YEff:supl<x,y)1 ~ I}. 
XEM 

Dually, if M is a nonempty subset of ff, then the prepolar of M is the set 
oM of all those vectors x in ~ such that I <x, y) I ~ 1 for every y in M. 
(By convention the empty subset of ~ is assigned ff as its polar; similarly 
the prepolar of the empty subset of ff is taken to be the entire space ~. 
The prepolar of a subset of ff is clearly just its polar in the reversed dual 
pair <ff, ~).) 

Example L. If <~, ff) is a dual pair, and ff' is a linear submanifold of ~, 
then the polar of ff' coincides with the annihilator 

ff'a = {YEff:<x,y) = O,xEff'}. 

Similarly, if ff' is a linear submanifold of ff, then the prepolar off' is also the 
preannihilator 

a ff' = {x E ~ : <x, y) = 0, Y E ff'}. 

Example M. Let ~ be a normed space. Then the polar (~1)0 of the closed unit 
ball in the dual pair <~, ~*) is the closed unit ball (~*)1' More generally, 
(~r)O = (~*)llr for each positive radius r. 

Example N. Let g be a separated locally convex topological linear space 
and let ~* be its dual. A subset E of g* is said to be equicontinuous on g if 
for each e > ° there exists a neighborhood Ve of the origin in g such that 
I f(x) I ~ e for all x in v" and all f in E. (Note that this implies that if Xo is an 
arbitrary point in ~, then If(x) - f(xo)! ~ e for every x in Xo + V and 
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every f in E; cf. Problem 4R.) If E is an equicontinuous subset of iff*, then 
it is clear that there is a neighborhood V of 0 in iff such that E is contained 
in the polar of V in the dual pair <iff, iff*) (set e = 1). On the other hand, 
if E c VO for some neighborhood V of 0 in iff, then I f(x) I ::-s; e for every f in 
E provided x E E V. Thus a subset E of $* is equicontinuous if and only if there 
exists a neighborhood V of 0 in $ such that E c Vo. 

Example M shows that the closed balls centered at 0 in the dual of a 
normed space $ are polars, and thus that polars, in a sense, generalize 
closed balls centered at O. Example L shows that polars are simultaneously 
analogs of the annihilators introduced earlier in our study of normed spaces. 
It is on the basis of this latter analogy that the following summary of the 
elementary facts about po lars is formulated (cf. Propositions 16.1 and 16.2, 
and Corollary 16.3). Proposition 16.13 is self-evident and requires no proof; 
it is recorded here solely for convenience of reference. The reader is reminded 
that the corresponding assertions concerning prepolars are also valid; 
their statements are simply suppressed as being redundant. 

Proposition 16.13. Let <6", ~) be a dual pair. If M and N are subsets of $ 
such that MeN, then MO :::> N°. Likewise if {MY}YEf is a non empty 
indexed family of subsets of $, then 

Proposition 16.14. If <$, ~) is a dual pair and if M is a subset of $, then the 
polar MO is an absolutely convex subset of ~ that is closed in the topology 
induced on ~ by iff, and the prepolar O(MO) of MO is the closed absolutely 
convex hull of M in the topology induced on $ by ~. 

The proof of Proposition 16.14 is so like that of Proposition 16.2 in every 
particular that we omit it. The trick is to recall Problem 15J and use the 
following lemma in place of Proposition 14.13. 

Lemma 16.15. Let $ be a separated locally convex topological linear space. 
If A is a nonempty, closed, absolutely convex subset of $ and ifxo is a vector 
in $ not belonging to A, then there exists a functional fo in $* such that 
I fo(x) I ::-s; 1 for all x in A and such that fo(xo) > 1. 

PROOF. Since Xo is a vector not belonging to A, then by Proposition 14.15 
there exists a functional g in 8* and a real number c such that 

Re g(x) ::-s; c, X E A, while Re g(xo) > c. (1) 

But A is balanced as well as convex, whence it is clear that g(A) is a disc in IC 
with center 0 and, according to (1), radius no greater than c (which must 
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be nonnegative). Thus, replacing g by a functional f of the form yg, where y 
denotes a suitable complex number of modulus one, we obtain 

If(x)l::::;c,xEA, while f(xo»c. 

Ifc > Owe have but todefiilefo = Jlc;ifc = Owemaysetfo = 2flf(xo). 0 

Corollary 16.16. If <~, ff) is a dual pair and M is an arbitrary subset of~, 
then (O(MO))O = MO. If A is an absolutely convex subset of ~, then O(AO) 
coincides with the closure of A in the weak topology. In particular, if A 
is an absolutely convex set in ~ that is closed in the weak topology, then 
O(AO) = A. 

If <~, ff) is a dual pair, then the polar MO of an arbitrary subset M of ~ 
is absolutely convex. It is natural to enquire when MO is also absorbing, or, 
what comes to the same thing, when the Minkowski function of MO is a 
pseudonorm on ff (cf. Example 14F and the discussion preceding Proposi
tion 14.7). The answer to this question involves a very important concept 
in the general theory of locally convex spaces. 

Definition. If M and N are subsets of a linear space ~, then M is said to absorb 
N if there exists a positive number k large enough so that N C AM for 
every A such that IAI ~ k. (Thus a subset A of ~ is absorbing in the sense 
defined in Chapter 14 if and only if it absorbs every singleton.) A subset B 
of a topological linear space Iff is said to be bounded if every neighborhood 
of 0 in Iff absorbs B. 

Example O. If ~ is a normed space, then a subset B of ~ is bounded if and 
only if B is contained in some balllffr' r > O. Thus B is bounded in Iff regarded 
as a topological linear space if and only if B is bounded in Iff regarded as a 
metric space. 

Example P. Let ~ be a separated locally convex space and suppose there 
exists a bounded neighborhood Vo of the origin in ~. If Wo denotes an 
absolutely convex neighborhood of 0 contained in V o (Prop. 14.7), then Wo 
is also bounded. Hence, if V is an arbitrary neighborhood of 0 in ~, there 
exists a positive number c such that cWo c V. In other words, if (J denotes the 
Minkowski function of Wo, then the balls Dr. = {x E ~: (J(x) < c} constitute 
a neighborhood base at O. Moreover, since ~ is separated, n: >0 Dr. = (0), so 
(J is actually a norm on ~. Moreover, it is clear that the norm (J induces the 
given locally convex topology on Iff. A topological linear space whose 
topology is induced by a norm is said to be normable (cf. Problem 15H). Thus, 
putting this example together with the preceding one, we see that a necessary 
and sufficient condition for a separated locally convex space to be normable is 
that it possess a bounded neighborhood of the origin. 
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Example Q. Every compact subset of a separated locally convex space C 
is bounded. Indeed, if V is an absolutely convex neighborhood of ° in C, 
then the sequence {n VO }:'= 1 is a nested open covering of C. Hence if K is a 
compact set in C, then some one set n V contains K. In particular, every 
convergent sequence in C is bounded. 

Example R. If C is an arbitrary separated locally convex topological linear 
space, then a subset B of C is bounded with respect to the weak topology on 
C if and only if it is weakly bounded, i.e., if and only if each functional f in C* 
is bounded on B. Indeed it is obvious that if B is bounded with respect to the 
weak topology on C, then this condition must be satisfied since the weak 
neighborhood U(f; 1) must absorb B for each f in C* (cf. Chapter 15(2)). 
Suppose, on the other hand, that B is weakly bounded. Every weak neighbor-
hood of ° in C contains a neighborhood of the form U = (fj, ... ,fn; e), 
and if K is chosen so that I h(x)1 :$ K for all x in Band i = 1, ... , n, then 
BeAU whenever IAI ~ Kle, which shows that U absorbs B. It should be 
noted that this example shows, in general, that if <C, ff) is a dual pair then 
a nonempty subset M of C is bounded in the weak topology if and only if 
SUpxEM I <x, y) I < + CfJ for each y in ff.) . 

The notion of boundedness leads at once to a simple answer to a question 
raised earlier. 

Proposition 16.17. Let <C, ff) be a dual pair. If M is a subset of C that is 
bounded in the topology induced on C by ff, then the polar MO is absorbing. 
Dually, if A is an absorbing subset of C, then AO is bounded with respect to 
the topology induced on ff by C. 

PROOF. IfSUPXEM l<x,y)1 = K < +00, then A.YEMo whenever 1..1.1 sIlK. 
Thus MO is absorbing whenever M is bounded in the topology induced by 
ff. Similarly, if A is absorbing and x E C, and if ex E A for some e > 0, then 
I<x, y)1 :$ lie for every y in AO, which shows that AO is bounded in the 
topology induced by C. D 

Corollary 16.18. !f <C, ff) is a dual pair, then a subset M of C is bounded in 
the topology induced on C by ff if and only if MO is absorbing. Likewise if A 
is a subset of C that is absolutely convex and closed in the topology induced 
by ff, then A is absorbing if and only if AO is bounded in the topology induced 
on ff by C. 

PROOF. It suffices to give the half of the proof that has not already been 
given. If M is a subset of C such that MO is absorbing, then O(MO) is bounded 
in the topology induced by ff (simply apply the foregoing result to the 
reversed pair <ff, C»), and since M c O(MO), we see that M is also bounded. 
Similarly, if AO is bounded in the topology induced on ff by C, then O(AO) 
is absorbing. But if A is as stated, then A = O(AO) by Corollary 16.16. D 
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The foregoing discussion shows that if <6, g;) is a dual pair and M is a 
subset of 6, then MO is an absorbing absolutely convex subset of g; if and 
only if M is weakly bounded. If M is a weakly bounded subset of 6, then the 
Minkowski function (J of MO is a pseudonorm on g; called the pseudonorm 
associated with M. A trivial calculation shows that if M =t- 0, then (J is given 
by the formula 

(J(Y) = sup 1 <x, y) I, Y E g;. 
XEM 

(The pseudonorm associated with the empty subset of 6' is identically zero.) 
Moreover, it is clear that MO is the closed unit ball with respect to (J, and that 
a net {y,.) in g; is convergent to a limit y with respect to (J if and only if 
{y;.} converges uniformly to y on M (with the elements of g; identified with 
functionals on 6' in the standard way). Thus we are lead to the following 
terminology. 

Definition. Let <6, ff) be a dual pair and let M be a weakly bounded subset 
of 6'. Then the topology induced on ff by the pseudonorm associated with 
M is called the topology of uniform convergence on M. More generally, if 
({j is a nonempty collection of weakly bounded subsets of 6', then the 
(locally convex, linear) topology:Y induced on ff by the family of pseudo
norms associated with the various sets in ({j is characterized by the property 
that a net {y;.} in ff converges to a limit y with respect to :Y if and only if 
{y J converges to y uniformly on each set M in ({j, and is called the topology 
of uniform convergence on the sets in ({j. All such topologies are known as 
polar topologies on g;. 

Example S. If 6 is a normed space, then the norm topology on 6* is the 
topology of uniform convergence on the unit ball 6' I in the dual pair <6',6*). 
This topology may also be described as the topology of uniform convergence 
on the collection of all balls 6 n r > 0, or as the topology of uniform con
vergence on all of the bounded subsets of 6 (see Example 0). 

Example T. For an arbitrary dual pair <6, ff) the topology of uniform 
convergence on the finite subsets of 6' (which coincides with the topology 
of simple pointwise convergence on 6, i.e., the topology of uniform con
vergence on the singletons in 6) is the topology induced on ff by 6'. In 
particular, if 6' is a given separated locally convex space, then the topology 
of uniform convergence on the finite subsets of 6' in the dual pair <6',6'*) 
is the weak* topology on 6*. 

As these examples show, it is possible for the same polar topology to be 
induced by quite disparate collections of weakly bounded sets. In this 
connection the following observations are to the point. 

Example U. Let <6, ff) be a dual pair and let ({jl and ({j2 be two collections 
of weakly bounded subsets of 6. Then a sufficient (not a necessary) condition 
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for the two to induce the same polar topology on $' is that each set in (6 1 be 
contained in the union of a finite number of sets belonging to '(/2' and con
versely. In the same vein we note that if'(/ is a collection of weakly bounded 
subsets of ft and if '(/0 denotes the collection {O(MO): ME '(/}, then '(/ and 
'(/0 induce the same polar topology on ,,#, by Corollary 16.16. 

F or our purposes it is desirable to impose a modest restriction on the 
collections of sets used to define polar topologies. 

Definition. If <ft, $') is a dual pair, then a collection .91 of weakly bounded 
subsets of ft is admissible if the following conditions are satisfied: 

(i) If M 1 and M 2 belong to .91, then there is a set N in .91 such that 
Ml u M2 eN, 

(ii) If M E .91 and A =1= 0, then AM E .91, 
(iii) U .91 generates ft algebraically. 

A polar topology is said to be admissible if there exists an admissible 
collection .91 of weakly bounded subsets of ft that induces it. 

Proposition 16.19. Let <ft, $') be a dual pair, and let .91 bean admissible 
collection of weakly bounded subsets of ft. Then the topology :Y of uniform 
convergence on the sets in .91 is a separated locally convex linear topology 
on $' in which a neighborhood base at ° is provided by the collection of all 
polars MO, ME .91, and with respect to which all of the vectors in ft are 
continuous when regarded as linear functionals on $'. 

PROOF. The topology :Y is automatically locally convex, being induced by 
a family of pseudo norms. That :Y is separated follows at once from condi
tion (iii) in the foregoing definition. Moreover, condition (i) implies that 
the family of pseudonorms inducing :Y is saturated, so a neighborhood 
base at ° is indeed provided by the sets MO, ME .91 (Prop. 11.31). Finally, if 
x is a vector belonging to some M in .91, then x is bounded on the polar MO 
and is therefore continuous in the topology induced on $' by d. Since the 
continuous linear functionals on $' form a linear submanifold of the full 
algebraic dual of $', the result follows by condition (iii) in the definition of 
admissibility. D 

If <rff, :F) is a dual pair and ~ is an arbitrary nonempty collection of weakly bounded 
subsets of rff, then it is always a simple matter to replace ~ by another collection ~' 
that induces the same polar topology on :F as ~ does and that also satisfies conditions 
(i) and (ii) in the definition of admissibility. Moreover, it is clear that (i) and (ii) imply 
that the polars MO, M E ~', form a neighborhood base at the origin in :F in the polar 
topology induced by~. Likewise, it may easily be seen that (iii) is satisfied in the presence 
of (i) and (ii) if and only if the sets O(MO), M E ~', cover rff, and therefore if and only if 
the vectors in rff are all continuous as functionals on :F in the topology of uniform con
vergence on the sets in ~. Hence a polar topology on :F is admissible if and only if this 
latter criterion is satisfied. 
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If <1f,:7) is a dual pair, then, according to Proposition 16.19, there is a 
coarsest admissible polar topology on :7, viz., the topology induced by If. 
There is likewise a finest admissible polar topology on :7, namely the 
topology of uniform convergence on all the weakly bounded subsets of If. 
(The collection of all weakly bounded subsets of If is readily perceived to be 
admissible.) This topology is frequently called the strong topology on :7. 
Every admissible polar topology on:7 with respect to the dual pair <1f,:7) 
lies between the topology induced by If and the strong topology. 

Example V. Let If be a Banach space with dual If*, and consider the dual pair 
< If*, If). According to Problem 15Q a subset of If* is bounded in the topology 
induced by If (i.e., is weak* bounded) if and only if it is bounded in norm. 
Hence the strong topology on If is identified as the topology of uniform con
vergence on the (norm) bounded subsets of If*. Thus the strong topology on If 
(with respect to the dual pair <If*, If» is simply the norm topology. 

Definition. If <If, :7) is a dual pair, then any locally convex linear topology 
on If with respect to which the dual space If* coincides with :7 (as a linear 
manifold in the full algebraic dual of If) is called a topology of the dual 
pair <If, :7). 

It is clear that such topologies always exist; the topology induced by :7 
itself is one example of a topology of the dual pair <1f,:7) (Prob. 15J). 
As it turns out, every topology of a dual pair <If, :7) is an admissible polar 
topology (with respect to the reversed pair <ff, rff». 

Proposition 16.20. If f7 is a topology of a dual pair <If, :7), then the collection 
d of all those subsets of:7 that are equicontinuous with respect to !Y is an 
admissible collection of weakly bounded subsets of :7 in the dual pair 
<:7, If), and !Y is the topology of uniform convergence on the sets in d. 
Likewise, !Y may be characterized as the topology of uniform convergence 
on the sets of the form Va, where V runs through an arbitrary neighborhood 
base at 0 in If. In particular, !Y is an admissible polar topology. 

PROOF. It is obvious that the topologies of uniform convergence on the polars 
of any two neighborhood bases at 0 in !r coincide (Ex. U). Let jI~ be a neigh
borhood base at 0 in If with respect to ,'1 that consists exclusively of closed 
absolutely convex sets (cf. Proposition 14.7) and let (!J denote the collection 

(!J= {tV:VEr,t>O}. 

If BE (!J, then BO is bounded in the topology induced on :7 by If (Prop. 
16.17), and B = O(BO). From this observation it will follow directly (Prop. 
16.19) that !Y is the polar topology induced by :160 = {Bo : BE :16}, and 
hence by r a = {Va: V E r}, once we have proved that :160 is admissible. 
To this end we note first that if Bl = tl VI and B2 = t2 V2 , with t 1, t2 > 0 
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and VI' V2 in'f/', and if V is a neighborhood in 11 such that V c VI n V2 , 

then B = (tl 1\ t2 ) Vc Bl n B2 , and B°:::) B? u B~. Thus condition (i) 
in the definition of admissibility holds. As for the other two conditions, (ii) 
is clearly satisfied, while (iii) follows at once from the fact that:F = UVE1CVO 
since :Y is a topology of the dual pair <Iff, :F). Finally, to verify that 11o 
may be replaced by the collection d of all equicontinuous subsets of :F 
with respect to :Y, we refer to Example N. 0 

The converse of Proposition 16.20 is false. 

Example W. Consider the normed space (<p), consisting of all sequences 
{~n};;"~ ° that are eventually zero, equipped with the sup norm (see Example 
11 H). The space (<p) is a dense linear manifold in (co) and therefore has dual 
(11) according to the standard identification (Probs. 14B and 14C). It follows 
from Example R that, in the dual pair «II)' (<p), a subset M of (t'l) is 
bounded in the topology induced by (<p) if and only if it is termwise bounded. 
It follows that for an absolutely arbitrary sequence A = {am}~~o of non
negative numbers, setting 

co 

(JA(X) = L anl~nl, x = {~n} E (<p), 
n~O 

defines a pseudonorm on (<p) which is continuous in the strong topology 
on (<p) (in the dual pair < (f 1)' (<p)). Thus the strong topology on (<p) is 
decidedly finer than the sup norm topology, and (! 1) is not the dual of (¢) 
in the strong topology. Indeed, the dual of (<p) in the strong topology is 
readily seen to be the space (0) of all complex sequences (the full algebraic 
dual of (<p)). 

It is an important problem to determine just which admissible polar 
topologies with respect to a dual pair (.'F, Iff) are topologies of the reversed 
pair <Iff, :F). The solution to this problem turns out to hinge on a couple 
of compactness arguments. 

Lemma 16.21. Let Iff be a separated locally convex space with duallff*, and let 
A be an absolutely convex compact subset of Iff. Then every linear functional 
on Iff* that is bounded on the polar A 0 is determined by a vector x in Iff (that 
is absorbed by A). 

PROOF. Let Iff*' denote the full algebraic dual of Iff * , and let k denote the 
natural mapping of Iff into Iff*'. Then k is a linear space isomorphism of Iff 
into Iff*' and is also clearly a homeomorphism of Iff onto k(lff) if Iff and Iff*' 
are both given the topologies induced by Iff* in the dual pairs <Iff, Iff*) 
and < Iff*, Iff*'), respectively. (The former of these topologies is just the weak 
topology on Iff, of course; cf. Example 151.) Since A is compact in Iff it is also 
weakly compact, so k(A) is a compact, and therefore a closed, subset of Iff*' 
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in the topology induced by C*. Thus k(A) is an absolutely convex subset of 
C*' that is closed in the topology induced by C*. Moreover, the prepolar 
of k(A) in C* coincides with the polar AO. Hence if <p is an element of C*' 
and if, say, SUPjEAO I <p(f) I = K < + 00, then <p/K E (Ok(A))O = k(A). Con
sequently there exists a vector x in A such that <p/K = k(x), and hence such 
that <p = Kk(x). D 

Theorem 16.22 (Mackey-Arens Theorem). A locally convex linear topology 
.'Y on the space C of a dual pair < C, ff) is a topology of that dual pair if and 
only if it is the topology of uniform convergence on the sets of some 
admissible collection of absolutely convex subsets of ff each of which is 
compact in the topology induced on ff by C. 

PROOF. Suppose first that the topology :Y is induced by such a collection of 
sets, and let <p be a linear functional on C that is continuous with respect to:Y. 
Then, since .s1 is admissible, there exists a set A in .s1 such that <p is bounded 
on ° A, and, by the preceding lemma (applied to the space ff in the topology 
induced by C), the functional <p is one of those defined on C by some vector 
in ff. Thus :Y is a topology of the dual pair <C, ff), and one half of the 
theorem is proved. In view of Proposition 16.20, to prove the other half it 
suffices to establish the following result, a fact of interest in its own right. D 

Theorem 16.23 (Alaoglu-Bourbaki Theorem). If C is a separated locally 
convex space and if V is an arbitrary neighborhood of the origin in C, 
then the polar VO is weak* compact. 

PROOF. Since V is a neighborhood of ° it is absorbing. For each vector x 
in C let t(x) be a positive number large enough so that x E t(x) V (in particular, 
set t(x) = 1 for each x in V), and form the product 

where D;(x) = {A E C : I A I :-s; t(x)}, X E C. Then IT is a compact Hausdorff 
space (Th. 3.15) and setting 'P(f) = {j(X)}XEtff,f E yO, defines a one-to-one 
mapping of VO into IT. The balance of the proof is a word for word repetition 
of the argument used to prove Theorem 15.11 and is omitted. D 

The facts discussed thus far do not by any means exhaust the theory of 
duality; indeed, it would be more accurate to say that they constitute its 
beginnings. Nevertheless, to pursue these matters at greater length would 
only take us further from the topics of central interest in this book, which 
primarily pertain to normed spaces. Consequently we close this chapter 
here with a second important application of Lemma 16.21 that shows that 
generalized duality theory can lead to results that are of great interest even 
in the context of normed spaces. 
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Theorem 16.24 (Smul'yan Criterion). A normed space Cf is reflexive if and 
only if its closed unit ball Cf 1 is weakly compact. 

PROOF. As was noted in the proof of Proposition 16.2 in a somewhat more 
general context, it is obvious that the natural embedding j of Cf in Cf** 
is a homeomorphism between Cf in its weak topology andj(Cf) in the (relative) 
weak* topology (see also Problem B). If Cf is reflexive, so that j maps Cf 
onto Cf**, then, since j is an isometry, it must also map Cf 1 onto (Cf**)l' and the 
latter set is weak* compact by Alaoglu's theorem (Th. 15.11). Hence Cf 1 

is compact in the weak topology on Cf. Suppose, on the other hand, that Cf 1 

is weakly compact, and consider the space Cf w consisting of Cf equipped with 
its weak topology. The set Cf 1 is compact and absolutely convex and has polar 
(Cf*)l' Hence by Lemma 16.21, a linear functional on Cf* is bounded on (Cf*)l 
if and only if it is of the form j(x) for some vector x in 0. In other words, j 
maps Cf onto Cf**. D 

PROBLEMS 

A. (i) Let ~ 1, ... , ~ n be Banach spaces, and let ~ = ~ I liB P ••• liB P ~ n for some number 
p, I < p < + 00 (Prob. lIT). Show that ~ is reflexive if and only if each ~;, 
i = 1, ... , n, is reflexive. (Hint: See Problem 14D(i).) Is the same result valid 
for p = I? 

(ii) Let {~Y}YEr be an indexed family of Banach spaces, let p be a number such 
that 1 < p < + 00, and let % p denote the Banach space of all those elements 
x = {xy} of the full algebraic direct sum of the family {~Y} such that II x II = 

[Ly II Xy II PJIIP is finite (see Problem 14D(ii». Show that % P is reflexive if and 
only if each ~ y is. 

B. Let ~ be a normed space and let} denote the natural embedding of ~ in ~**. Show 
that a net {j(X")}"EA inj(tS') converges to a functionalj(x) in the weak* topology on 
t&'** if and only if f(x,,) ...... f(x) for every f in t&'*, and conclude that j is a homeo
morphism between t&' in its weak topology andj(~) in its (relative) weak* topology. 
Conclude that the restriction of j to the unit ball t&' I is also a homeomorphism 
between t&'t in the weak topology andj(t&') n (t&'**)1 in the weak* topology on ~**. 
Show also that}(t&') is always weak* dense in.t&'**. tHint: Use Corollary 16.3.) 

C. Let ~ be a normed space and let ff denote a finite dimensional subspace of t&'*. 
Show that for a given linear functional ({J on ff and a given G > 0 there exists a 
vector x in t&' such that II x II < II ({J II + G and such that ((JU) = f(x) for every f in ff. 
(Hint: If ,;j! = a ff, then ff = JVa• Hence the mapping !X of Proposition 16.6 is an 
isometric isomorphism of (~/X)* onto ff. If we set$ (j) = ({J (!X(]» for each linear 
functional]on ~/X, then$ is an element of (t&'/X)** with 11$ II = II ({J II, and t&'/X 
is reflexive by Example A.) Conclude that the image under the natural embedding 
j of the open unit ball t&'~ is weak* dense in the open unit ball (~**)~. 

D. (Smul'yan Criterion) Prove that a normed space t&' is reflexive if and only if the closed 

unit ball ~ 1 is weakly compact. (Hint: To show the necessity of the criterion use 
Problem B and the theorem of Alaoglu (Th. 15.11); to show its sufficiency use 
Problems Band C. For an alternate argument see Theorem 16.24.) 
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E. Let iff be a reflexive Banach space and let T be a bounded linear transformation 
of iff into a normed space ff. Show that T carries an arbitrary closed, bounded, 
convex subset of Iff onto a closed, bounded, convex subset of ff. (Hint: Recall 
Example 15D and the fact (Prob. 15L) that a closed convex set is also weakly closed. 
Use the Smul'yan criterion.) 

F. Let iff and ff be normed spaces, let T be an element of .P(Iff, ff), and letjs andI~ 
denote the natural embeddings of Iff and ff, respectively, in their second duals. 
Show that commutativity holds in the diagram 

iff * * 1'''''' 
/~** ----+ 

;,1 1;' 
is r 

----+ ff 

(Thus if Iff and ff are reflexive. and if their natural embeddings are used to identify 
them with their respective second duals, then T** is identified with T.) 

G. Let A be a subspace of a Banach space Iff. 

(i) Verify that the mapping t5 described in Proposition 16.12 is given by the com
position 1>:* 0 fi as shown in the diagram 

~ Iff** ~ (Jta)* .:. (lffj,$i')** 

,,(t" .=- (iff /,$i')*. 

and complete the proof of the proposition. 
(ii) Let i and n denote. respectively, the inclusion mapping of A into Iff and the 

natural projection of Iff onto Iff/A. Show that the mapping t5 of Proposition 
16.12 also coincides with n**. Show similarly that the mapping yofProposition 
16.12 agrees with i** at every element of A**, so that}' is simply i** regarded 
as a mapping of A** onto the range Bl(i**) ... vltaa. Conclude that, in the 
sequence 

Jt** 
i"'''' 

----+ Iff * * n" 
----+ (lffj.$i')**. 

i** is one-to-one. n** is onto, and Bl(i**) = %(n**)( = Aaa). 

H. Let Iff be a Banach space and let A be a subspace of Iff. 
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(i) Show that if Iff is reflexive then A and Iff/A are also reflexive. (Hint: This can 
be proved using either Problems F and G or the Smul'yan criterion (Prob. D).) 

(ii) Show conversely that if A and Iff/A are both reflexive, then Iff is reflexive too. 
(Hint: Use Problems F and G.) 



16 Duality 

In the language of homological algebra Problem G says that 

(0) ~l{** ~ t** ~ (rffljl)** ~ (0) 

is an exact sequence. Likewise, Problem F says commutativity holds in 
the diagram 

(0) . {f** 
i** 

rff** 
," 

(rff/{f)** ~ (0) ~ ~ ~ 

! J! 
i 

J! J! ! 
(0) ~ .It ~ ri ~ rillt ~ (0) 

where thej's denote the appropriate natural embeddings. Thus the calcula
tions involved in Problem H all reduce to routine diagram chases. Indeed, 
we are looking at just one more version of the protean "five lemma" 
[47: p. 14]: see [67]. 

I. Let tC and :F be normed spaces and let T be an element of 5l'(tC, :F) having kernel 
.f = .f(T) and range gil = gIl(T). Show that the kernel of T* is gila and that 
.f = a(gIl(T*». Show also that T* is continuous when:F* and tC* are both equipped 
with their weak* topologies. 

J. Let tC and :F be Banach spaces, and let T be a bounded linear transformation of tC 
into :F such that gil = gIl(T) is closed in :F. Prove that the range of T* coincides 
with .fa where .f = .f(T). Thus if T has closed range, then the range of T* is 
weak* closed (and therefore norm closed as well). (Hint: If f denotes the mapping 
of tCI.f onto gil obtained by factoring T through tCI.f, then T factors into T = 

i 0 fen, where n is the natural projection of tC onto tCI.f and i is the inclusion 
mapping of d1t into iF Recall Example I and Corollary 16.10.) 

K. Let tC and :F be Banach spaces, and let T be an element of 5l'(tC, :F) such that T* 
is invertible. Show that T must also be invertible. (Hint: According to Problem I 
and Corollary 16.5, T is one-to-one and has dense range. Let S denote the linear 
transformation of gIl(T) onto tC that is the set-theoretic inverse of T, and show 
that S is both closed and bounded. Use Theorem 13.6 to conclude that 9l(T) = §'.) 

It is tempting at this point to conclude that the converse of Problem J also 
holds, i.e., that if T* has (norm) closed range, then T must have closed 
range too, and as a matter of fact, this is true. (This implies that, if an 
adjoint transformation T* has closed range, then its range is automatically 
weak* closed.) But the simple strategy of mimicking the technique used 
in Problem J fails, and a new approach must be sought: see, for example, 
[13]. 

L. Let tC and :F be Banach spaces, and let Sand T be elements of .<tttC, :F). Show that 
the range of S* is included in the range of T* if and only if there exists a positive 
constant k such that 

II Sx II :$; k II Tx II, x E tC. 

(Hint: Let M denote the set {x EtC: II Tx II :$; I}. If gIl(S*) c gIl(T*) and if f E :F*, 
then there exists a functional g in :F* such that g(Tx) = f(Sx), x E tC. Use this fact 
to show that SCM) is (weakly) bounded in :F, and hence that there exists a positive 
constant k such that II Tx II :$; 1 implies II Sx II :$; k. To go the other way, show that 
if the stated criterion is satisfied and if f E :F*, then Tx ...... f(Sx) defines a bounded 
linear functional on gIl(T), and use the Hahn-Banach theorem. See also Example 
13D.) 
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M. Let g be a normed space and let j" and j". denote, respectively, the natural em
beddings of gin g** and g* in 0'***. Verify that (jg)* is a left inverse ofjt,., and use 
this fact to show that Ut,(0'»" and jg.(0'*) are complementary subspaces in 0'***. 
(Hint: See Problem 13E.) 

N. Show that a Banach space 0' is reflexive if and only if 0'* is reflexive. (Hint: This 
fact is an immediate consequence of the preceding problem, but it may also be 
derived from the Smul'yan criterion.) 

O. Let (<p) denote the vector space consisting of all those complex sequences that are 
eventually zero, and let (d) denote the vector space of all complex sequences. Show 
that «<p), (d» is a dual pair with respect to the bilinear functional defined on 
(<p) + (d) by 

<x, y) = I ~nYJn' 
n=O 

where x = {¢n},:'~O and y = {YJn}:~O' Show also that if {Xm}~~1 is a sequence in 
(<p) and if Xm = {¢~m)}:~o for each index m, then the sequence {xm} i~ weakly con
vergent in (<p) if and only if the sequence {~~m)}~~1 is convergent III C for every 
nonnegative integer n and there exists a fixed nonnegative integer N such that 
~~m) = 0 for all n ~ N and all sufficiently large m. 

P. Let <0', Y;) be a dual pair, let !l' be a linear manifold in 0', and let !l'a be the an
nihilator of !l'. (See Example L for notation and terminology.) 
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(i) Show that <!l', Y;/!l'a) is a dual pair with respect to the bilinear functional 
obtained by setting <x, y + !l'a) = <x, y), x E!l', Y E Y;, and show that 
the topology induced on f£ by.? / f£U in this dual pair coincides with the 
relative topology induced on !l' by the weak topology on 0'. 

(ii) Show, similarly, that <0'/!l', !l'a) is a dual pair with respect to the bilinear 
functional <x + !l', y) = <x, y), X E 0', y E !l'a, if and only if !l' is weakly 
closed in 0'. Verify that, when this latter condition is satisfied, the topology 
induced on 0'/!l' by !l'a coincides with the quotient topology on 0'/!l' obtained 
from the weak topology on 0'. (Hint: Suppose !l' is weakly closed in 0', and 
let :Y denote the quotient topology on 0'/!l' obtained from the weak topology 
on 0'. The functionals defined on 0'/!l' by !l'a in the dual pair <0'/!l', !l'a) are 
clearly continuous with respect to :Y, so :Y refines the topology induced 
on 0'/!l' by !l'a. Thus the trick is to show that the latter refines :Y. Let U = 

U(Yl> ... , yp; e) be a typical weak neighborhood of 0 in 0', let % denote the 
linear submanifold of Y; generated algebraically by !l'a and the vectors 
Y I, ... , y r' and let At be an algebraic complement of !l'a in %, so that 
!l'a n .It = (0) and !l'a + .It = %. Note that .It is finite dimensional 
(dim .It :5: p), and use this fact and the fact that .It n !l'a = (0) to show 
that the linear functionals defined on .It by the vectors in !l' fill the entire 
(algebraic) dual of .It. Hence to each vector x in 0' there corresponds a 
vector Vx in !l' such that <x, z) = <vx, z), Z E .It. Write Yj = Wj + Zj, where 
Wj E!l'a and Zj E At, i = 1, ... , p. Show that <x - vx, y) = <x, w) for 
i = 1, ... , p, and every vector x in 0', and conclude that n(U(wI,"" wp; e» 
is a weak neighborhood of 0 in 0'/!l' for the dual pair <0'/!l', !l'a) that is 
contained in n(U). 
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(iii) Show, dually, that if .it is an arbitrary linear manifold in ff, and if a.it( = 0.it) 
is the preannihilator of.it in rff, then (rffr,~, .it) is a dual pair with respect 
to the bilinear functional (x + a.it, y) = (x, y), x E rff, y E.it, Verify also 
that the topology induced on rff r.it by .it coincides with the quotient topology 
on rff!""t obtained from the weak topology on rff when and only when "t is 
closed in the topology induced on ff by rff, (Hint: According to (ii) the quotient 
topology on rff/".It is induced by (a.loa,) 

Q. Let (rff, ff) and (rff', ff') be dual pairs, and let T be a linear transformation of 
rff into rff' Show that there exists a mapping T* : ff' --> ff satisfying the condition 

(Tx, y') = (x, T*y'), X E rff, y' E ff', (2) 

if and only if T is weakly continuous, i.e., continuous when rff and rff' are given the 
topologies induced by ff and ff', respectively. Show also that if T is weakly con
tinuous then T* is a uniquely determined linear transformation. (The mapping 
T* is called the adjoint of T.) In the remainder of this problem we suppose T to be 
weakly continuous. 

(i) Verify that the adjoint T* is in turn weakly continuous with respect to the 
reversed dual pairs ('F'. rff') and ('F, rff). and that the adjoint of T* coincides 
with T. State and prove analogs of Propositions 16.8 and 16.9 and Corollary 
16.10 for this "weak" notion of adjoint. 

(ii) Show that %(T*) = (i3l(T))a, and likewise that %(T) = a(i3l(T*)). 
(iii) Show that if %(T) = (0), then (rff, Bf(T*) is a dual pair, and that T is, in 

fact, a homeomorphism of rff onto T(rff) if rff is given the topology induced by 
9f(T*) and T(rff) is given the relative weak topology. (Hint: Use nets and the 
adjoint relation (2); see Corollary 3.19.) 

(iv) Prove that T is an open mapping of rff (in the weak topology) onto T(rff) 
(in the relative weak topology) ifand only if£~(T*) is closed in ff in the topology 
induced by rff. (Hint: Set Bf = Bf(T*) and let T = f 0 n be the factorization 
of T through rff/%(T) = rff/"Bf. According to (iii), f is a homeomorphism of 
lffj"f!iI onto T(lff) if lffj"f7l is given the topology induced by f7l. On the other hand, 
T is clearly open when and only when f is open in the quotient topology on 
rff /"Bf. Recall (Prob. P) that these two topologies on rff /"Bf agree if and only if Bf 
is closed in the topology induced on ff by rff. The reader should contrast this 
result with Problem J.) 

R. Let (rff, ff) be a dual pair and let C be a convex subset of rff. Show that if C is weakly 
closed, then C is closed in all of the topologies of the dual pair (rff, ff). Conclude 
that the closure of C is the same for every topology of the dual pair (rff, ff). (Hint: 
Use Proposition 14.15.) 

S. Let (rff, ff) be a dual pair. Show that the collection of all weakly compact 
[absolutely] convex subsets of rff is admissible. (Hint: Show first that if C 10 ••• , C p 

are arbitrary convex subsets of a linear space, then the convex hull of the union 
C I u··· u Cp is just the set of all convex combinations tixi + ... + tpxp, where 
Xi E C;, i = 1, ... , p. Show next that if rff is equipped with a linear topology with 
respect to which the sets Ci are all compact, then the convex hull of the union 
C I U··· U C p is also compact (Prop. 3.3). To complete the argument, show that 
the convex hull of a finite union of absolutely convex sets is balanced.) Conclude 
that there is always a finest topology of a dual pair (rff, ff), viz., the topology of 
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uniform convergence on the collection of all those absolutely convex subsets of :F 
that are compact in the topology induced by Cf. This topology is called the Mackey 
topology on Cf with respect to the dual pair <Cf, :F). Verify that if Cf is a separated 
locally convex space, then the Mackey topology on Cf with respect to the dual pair 
<,{f', Cf*) agrees with the Mackey topology as defined in Example 15K. 

T. (i) A subset B of a separated locally convex space Cf is called a barrel in Cf if B 
is closed, absolutely convex, and absorbing. Verify that a subset B of Cf is 
a barrel if and only if there exists a weak* bounded subset A of Cf* such that 
B = ° A in the dual pair <Cf, Cf*). (Hint: If B is a barrel, then B = o(BO); use 
Proposition 16.17.) 

(ii) A separated locally convex space Cf is said to be barreled if every barrel in Cf 
is a neighborhood of 0 in Cf. Show that Cf is barreled if and only if every subset of 
,g* that is weak* bounded is also equicontinuous on Cf. Conclude that the given 
locally convex topology on a barreled space Cf coincides with both the Mackey 
topology and the strong topology (in the dual pair <Cf, Cf*»). (Hint: Recall 
Example N.) 

U. Verify that every Frechet space is barreled. (Hint: If B is a barrel in a Frechet space 
Cf, then {nB} ~:~ 1 is a countable closed cuvering of the complete metric space Cf. Use 
the Haire category theorem (Th. 4.8) and the fact that the interior AG of an ab
solutely convex set A contains 0 whenever AO is not empty (Prob. 14N). 

V. Let Cf be a separated locally convex space, and let B be a barrel in Cf. 

(i) Let C be a bounded convex subset of,g that contains O. Show that if there exists 
a neighborhood V of 0 such that C (\ V is absorbed by B, then C itself is absorbed 
by B. (Hint: C is absorbed by V, and if C c k V for some k:2: 1, then 
C c k(C (\ V).) 

(ii) Let K be a compact convex subset of Cf. Show that there exists a point Xo in K 
and a neighborhood VofO in Cf such that K (\ (xo + V) is absorbed by B. (Hint: 
The sequence {K (\ nB};:'~ 1 is a closed covering of K. and K is a compact 
Hausdorff space; recall Problem 4W.) Use this and (i) to deduce that, in fact, 
B absorbs K. (Hint: The set K - Xo is compact, convex, and contains O. More
over, if K (\ (xo + V) c nB, then (K - xc) (\ V c nB - xo.) 

W. (i) (Mackey [46J) Show that every weakly bounded subset of a separated locally 
convex space Cf is bounded with respect to the given topology on Cf. Conclude 
that exactly the same sets are bounded with respect to all of the topologies of an 
arbitrarily given dual pair <Cf, :F). (Hint: Let A be a weakly bounded subset of 
Cf and let V be a closed absolutely convex neighborhood of 0 in the given 
topology on Cf. Then (Prop. 16.17) AO is a barrel in Cf*. while VO is compact 
and absolutely convex (Th. 16.23), both in the weak* topology. Hence AO 
absorbs VO (Prob. V), whence it follows at once that o(Vo) = V absorbs 
o(AO) => A.) 
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(ii) If the topology on a separated locally convex space Cf is metrizable (that is. 
if,g satisfies the first axiom of countability; cf. Proposition 14.8), then the given 
topology on Cf coincides with the Mackey topology on Cf (Ex. 15K). (Hint: 
Let {v,,};:,~ 1 be a nested neighborhood base at 0 in Cf, let W be an arbitrary 
neighborhood of 0 in the Mackey topology on Cf, and suppose W does not 
contain any neighborhood v". Conclude that for each positive integer n, n W 
does not contain v", and let Xn E v,,\nW, n EN. The sequence {xn} converges 



16 Duality 

to 0 in the given topology on rF but is unbounded with respect to the Mackey 
topology, a contradiction.) 

X. Let rF be a separated locally convex space. 

(i) Verify that the collection of all compact subsets of rF is admissible, and hence 
that the topology :Y of uniform convergence on compact subsets of rF is an 
admissible polar topology on rF*. Verify also that if {fALEA is a net in rF* 
and if there exists a neighborhood V of 0 in rF such that fA E Va, A E A, then 
{fA} converges to a (continuous linear) functional f in the topology :Y if and 
only if {fA} converges to f in the weak* topology, that is, pointwise. Conclude 
that :Y induces the same topology on equicontinuous subsets of rF* as does 
the weak* topology. (Hint: If {fJ converges pointwise to f, then f E Va. 
Hence, for a given positive s,f andf;. differ by no more than I fix) - f(x) I + 2<. 
on the set x + s V, and sets of this form cover rF. Recall Example N.) 

(ii) Let U and V be neighborhoods of 0 in rF such that U c V, let W be a sub
set of UO that is open in the relative weak* topology on UO, and suppose 
given a subset M of rF such that (M u V)O c W. Show that there exists 
a finite subset D of V such that (D u M)O n (UO\ W) = 0, and hence such that 
(D u M u U)O c W. (Hint: Let !!2 denote the collection of all sets of the form 
(D u M)o n (UO\ W), where D ranges over the finite subsets of V. The inter
section of!!2 is (V u M)O n (UO\ W) = 0, but, if the desired conclusion were 
false, !!2 would have the finite intersection property (Prob. 3Q).) Use this fact 
to prove that if rF satisfies the first axiom of countability, and if W is an arbitrary 
subset of rF* with the property that W n VO is open in the relative weak* 
topology on VO for every neighborhood V of 0 in rF, then W is open in the 
topology :Y of uniform convergence on the compact subsets of rF. (Thus the 
topology of uniform convergence on the compact subsets of a metrizable 
locally convex space rF is characterized as the collection of all those subsets 
W of rF* such that W n VO is relatively weak* open in VO for every neighbor
hood V of 0 in rF.) (Hint: Let U-;,}~= 1 be a nested neighborhood base at 0 
in 8, set Vo = 8, and let W be a subset of 8* having the stated property and 
containing the origin 0 in rF*. Use mathematical induction to construct 
finite subsets Dn of v" such that (Do u ... u Dn u v" + 1)° c W, n E No, set 
K = {O} u U::,= i Dn , and verify that KO c w.) 

(iii) Show that if rF is a Frechet space and if C is a convex subset of rF*, then C is 
weak* closed if and only if C n VO is weak* closed for every neighborhood V 
of 0 in rF (belonging to some specified neighborhood base at 0). (Hint: Recall 
Example U and the fact (Prob. 14N) that if K is a compact set in rF, then O(KO) 
is also compact. Conclude that the topology of uniform convergence on the 
compact subsets of rF is a topology of the dual pair <rF*, rF), and use Problem R.) 

(iv) Verify, in particular, that if rF is a Banach space and if'? is a linear manifold 
in 6'*, then !i' is weak* closed if and only if!i' n (rF*)1 is. 
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17 Banach spaces and integration 
theory 

In this chapter we introduce some topics that combine in different, but not 
unrelated, ways the theory of normed spaces discussed thus far in Part II 
and the theories of integration discussed in Chapters 6-10 of Part I. Our 
first observation is that there are natural and important generalizations of 
the (f p) spaces obtained by employing Lebesgue integration in place of 
summation. 

Proposition 17.1. If(X, S, f.1) is a measure space and ifp is an arbitrary positive 
number, then the collection Sf iX) = Sf p(X, S, f.1) of all those measurable 
complex-valued functionsf on (X, S) with the property that If IP is integrable 
[f.1] forms a linear space (with respect to pointwise linear operations). 
Moreover, ifp ~ 1 (and,for nontrivial X, only ifp ~ 1), 

(1) 

defines a pseudo norm on Sf iX). 

PROOF. That Sf iX) is a linear space for every value of p follows from the 
elementary inequality (u + vy ::; 2P(u P + vP), valid for u, v ~ 0 and all 
positive p. To show that the function defined in (1) is a pseudonorm on Sf p(X) 
it suffices to verify the triangle inequality, and this argument is exactly 
analogous to the one given in the case of the (t p) spaces; cf. Problem A. 
Finally, if 0 < p < 1 and if the measure space X contains any two disjoint 
measurable sets of positive finite measure, then it is a simple matter to verify 
that the function defined in (1) is not a pseudonorm on Sfp(X); cf. Example 
1IC. D 
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The counterpart of Proposition 17.1 for p = + CXI is also trivially valid; 
verification of the details is left to the interested reader. (The notions of 
essential boundedness and essential supremum are defined in Chapter 7.) 

Proposition 17.2. [f(X, S, J1) is a measure space, then the collection fi' oc(X) = 

fi' ex. (X, S, J1) of all essentially bounded, measurable, complex-valued func
tions on X is a linear space (with respect to pointwise linear operations), 
and setting 

II f II ex = ess sup I f I (2) 
x 

defines a pseudonorm on fi'x(X). 

Note. The spaces fi' p(X) really are generalizations of the spaces (Ip), 
1 ~ p ~ + 00. Indeed, fi' p(X, S, J1) coincides with (I p) if we take No for X and 
let J1 be the counting measure on No (Ex. 7J). 

If (X, S, J1) is a measure space, and if ~ denotes the linear space of all those 
measurable complex-valued functions on X that vanish outside of some set 
of measure zero [J1], then ~ is a linear manifold in fi' p(X) for 1 ~ p ~ + CXI ; 

indeed, ~ is the zero space of the pseudonorm II lip for all 1 ~ p ~ + 00. 

Thus the elements of the associated space i£ veX) (Prop. 11.17) are, in all 
cases, equivalence classes of functions equal a.e. [J1], and we confront a 
dilemma. The elements of fi' p are familiar objects, viz., functions, but II II p 
is only a pseudo norm ; the associated function II' lip on :i: v<X) is a norm, all 
right, but the elements of i£ v<X) are not functions but equivalence classes of 
functions. What we shall do about this distinction is, briefly, ignore it, and let 
the symbol fi'veX) stand for either the pseudonormed space or the associated 
normed space as the occasion demands. This practice, while it is the usual 
one, is more convenient than logical, and in all candor it must be admitted 
that it brings with it a certain amount of ambiguity. There are many places in 
the sequel where fi'V<X) must be thought of as a vector space of complex
valued functions equipped with the pseudonorm II lip, but there are also 
many others where fi'V<X) must be reg~rded as the associated space of 
equivalence classes, even though the elements of the space are spoken of just 
as if they were functions. (A standard way of describing this state of affairs 
is to say that the functions constituting fi'veX) are" only defined up to sets 
of measure zero ".) In defense of our convention it should be said that at no 
time will this ambiguity give rise to any genuine mathematical embarrass
ment, and also that the reader will soon learn to spot easily and unerringly 
which interpretation is required in any given case. 

(In actual practice matters are even a little more confused than the 
preceding explanation admits to, owing to the universal practice of regarding 
a function on a measure space as "defined" if its domain of definition con
tains the complement of some set of measure zero. Thus if (X, S, J1) is a 
measure space, then a function f that is defined on a subset A of X will be 
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regarded as an element of fi'iX, s, fl), 1 ::; p < + 00, if there exists a set 
DcA with fl(X\D) = ° such that f is measurable on D and such that 
SD If IP dfl < + 00. Likewise, ifJis a function defined on a subset A of X, and 
ifJis measurable on a set DcA such that fl(X\D) = 0, thenfandJwill be 
regarded as the same element of fi'iX) iff = J a.e. [fl] on D (\ D. Similar 
conventions are also observed concerning fi'",(X, S, fl).) 

Definition. For any measure space (X, S, fl) the normed spaces fi'iX, s, fl), 
1 ::; p ::; + 00, are known as the Lebesgue spaces on X. 

Example A. Let (X, S, fl) be a finite measure space, and suppose 1 ::; p ::; 
pi < + 00. Ufis an arbitrary element of fi' p,(X), and if we write 

E = {xEX:lf(x)1 < l}, 

then 

{I f IP dfl = (L + {,J If IP dfl ::; fleX) + {I f IP' dfl < + 00. 

Thus fi' p'(X) c fi'iX) when 1 ::; p ::; pi < + 00 and fleX) < + 00. More
over, it is clear that fi' oc(X) c fi'iX) for all p ~ 1 when fleX) < + 00. (This 
behavior contrasts sharply with the relation between the various spaces 
(lp) where, as we know, (1 1) c (tp) c (e» c (e oc ) whenever 1::; p::; 
pi ::; + 00 (Prob. llC). 

Example B. Let (X, S, fl) be the direct sum Ly EB (X 1" Sy, fly) of an indexed 
family {(Xl" SY' fl)')})'d of pairwise disjoint measure spaces (see Proposition 
8.3), and let p be a real number such that 1 ::; P < + 00. Then the normed 
space fi'iX, s, fl) is readily seen to coincide with the space .ff p formed as in 
Problem lIT from the family of spaces {fi'J'(X)" S)" fl),)}. (In particular, 
if r = {I, ... , n} then fi'iX) = fi' iX 1) EBp'" EBp fi'p(X n).) Likewise 
fi' ",(X, s, fl) coincides with the space ff6 formed as in Problem 11 S from the 
family {fi' ",,(X),)})'Er. (Note that this implies that fi'(fi'iX» is never sepa
rable for any p, 1 ::; p ::; +00, except when X is a finite union of atoms; see 
Problem 12T.) 

Examples A and B illustrate nicely the notational ambiguity alluded to 
above. In Example A the spaces fi' p(X) and fi' p'(X) are really the pseudo
normed spaces whose elements are complex-valued functions, while in 
Example B the symbols fi'p(X, S, fl) and fi'i~i" Si" fly) must ~e interpreted 
as standing for the associated normed spaces fi'iX, s, fl) and fi'iX )" Si" fly)· 

Example C. Suppose we take for (X, S, fl) the real interval [a, b] equipped 
with Lebesgue measure. Then for any p, I ::; p ::; + 00, the formula 

(Jf)(x) = r f(t)dt, a ::; x ::; b, 
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defines a bounded linear operator J on !f! i[a, b ]). Indeed, for p = + CIJ it is 
clear that J is bounded and that, in fact, II J II = b - a. To take care of the 
case t ::s; p < + CIJ we define the function 

{
I, a::S; t ::s; x ::s; b, 

V(x, t) = 0, b a ::s; x < t::s; , 

on the square [a, b] x [a, b]. Then 

(Jf)(x) = f Vex, t)f(t)dt, a ::s; x::s; b, f E !f! i[a, b ]). 

Hence for p = t we may use the Fubini and Tonelli theorems (Ths. 9.2 and 
9.3) to write 

II Jf III ::s; f[f Vex, t)1 f(t)ldX}t = flf(t)l(b - t)dt ::s; (b - a) II fill 

for an arbitrary element f of !f! I ([a, b ]), which shows that II J II ::s; b - a. 
(Here, once again, it is easy to verify that II J II = b - a.) Finally, for 
t < p < + CIJ we employ the Holder inequality (Prob. A). If q denotes the 
Holder conjugate of p, then 

I(Jf)(x)l::s; [f Vex, t)q dtT/q II flip = (x - a)l/q II flip, 

Hence II Jf lip ::s; m (x - a)p/q dX]l/p II f lip, which shows that 

III II ::s; (b - a)I/P+ I/q = b - a. 

(For t < p < + CIJ it is not true that II J II = b - a.) 

a ::s; x::s; b. 

It is time to verify that the Lebesgue spaces are complete. The following 
lemma is of some interest in its own right. 

Lemma 17.3. Let (X, S, f.1) be a measure space and, for an arbitrary p, 
t ::s; p ::s; + 00, let {gn} be a sequence offunctions in.2 iX) with the property 
that 

n=1 

Then the series of functions L:'= 1 gn converges a.e. [f.1] to a function 9 in 
.2iX) and 

00 

Ilgllp::S; L Ilgnllp. 
n=1 

PROOF. The case p = + 00 is trivial and will be omitted. For 1 ::s; p < + 00, 

we note first that it suffices to treat the case in which the functions gn are all 
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nonnegative (for we may simply replace gn by I gn I)· Set hn = 9 1 + ... + gn· 
Then II hn lip ~ II gl lip + ... + II gn lip by the Minkowski inequality (Prob. A), 
and consequently 

f}~dfl = Ilhnll~ ~ Ltl19kllpr ~ [J11lgnllpr < +00. (3) 

Since {h~};;o= 1 is a monotone increasing sequence, it follows from the mono
tone convergence theorem (Th. 7.9) that the sequence {h~} converges a.e. [fl]. 
Hence {hn} also converges a.e. [fl], and if we write 9 = limn hn' then h~ ~ gP 
a.e. as well. But then by (3) we have Ix gP dfl ~ ([L~= 1 II gn II p]P), and the 
lemma follows. (The function 9 is, in general, undefined on a set of measure 
zero; nevertheless, 9 represents a unique element of fE p(X) according to the 
convention announced above.) D 

Theorem 17.4. For any measure space (X, S, fl) the Lebesgue spaces fE iX, S, fl), 
I ~ p ~ + 00, are complete, and are therefore Banach spaces. 

PROOF. It suffices as always (see Problem 4E) to show that if a Cauchy sequence 
Un} satisfies the added condition 

00 

L Ilfn+1 - fnllp < +00, (4) 
n= 1 

then there exists a function f in fE iX) such that limn II f - fn II p = O. But if 
(4) holds, then, applying the preceding lemma to the series 

00 

f1 + L (fn+1 - fn), 
n= 1 

we ascertain that the sequence Un} does indeed converge a.e. [fl] to a limit 
fin fE iX). Moreover, if I: is a positive number, and if N is chosen large enough 
so that 

00 

L Ilfn+1 - fnllp < f., 
n=N 

then, applying the lemma once again to the residual series 

we see that II f - fm lip < e for all m ;::: N, so that the sequence Un} actually 
converges tofin fEiX). 0 

Example D. Let n be a fixed positive integer. Let B denote the a-ring of Borel 
subsets of Euclidean space ~n, and let fln denote Lebesgue-Borel measure on 
~n. Then the spaces fE p(~n, B, fln), 1 ~ P ~ + 00, are important instances 
of Lebesgue spaces. Throughout this book the notation fE p(~n), used without 
any further explanation, will denote the space fE r(~n, B, ;in)' (More generally, 
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if E is any Borel set in IRn, then ff! peE) will be understood to mean the Lebesgue 
space ff! iE, BE, I1n I E), where BE denotes the a-ring of Borel subsets of E.) 
For each complex-valued function I on IRn and each fixed element a of IRn 
let us write ha) for the translate of I defined by 

halx) = I(x + a), x E IRn. 

Since I1n is translation invariant (Prob. 8F), it is clear that iff E ff! ilRn) for 
some p, 1 S P S + 00, then ha) E ff! ilRn) too, and 11.~a) lip = II I lip. Thus if 
we write 7;, for the mapping defined by 7;, I = ha)J E ff! ilRn), a E IRn, then 
7;, is an isometric isomorphism of ff!ilRn) onto itself (with (7;,)-1 = La) for 
each point a of IRn and each p, 1 S P S + 00. Moreover, if <I> denotes the 
mapping a ~ 7;, of IRn into ff!(ff!/lRn», then <I>(a + b) = 7;,+b = 7;, 1/, = 
<I>(a)<I>(b)foralla,bin IRn,since 7;,+bI = ha+b) = (hb)(a) = TaC1/,f) for each 
I in ff! /lRn). (This fact is customarily expressed by saying that <I> is a rep
resentation of the additive group IRn on ff! /lRn).) 

Another, less obvious, but also useful, fact is that if I E ff! /lRn) and if 
1 S P < + 00, then 

lim II hh) - I lip = o. 
h~O 

To see that this is so, note first that it is true when I = XE is a characteristic 
function (see Example 9H), and hence when I is any simple function. Since 
the simple functions in ff! /lRn) are dense for 1 S P < + 00 (Prob. D), the 
result follows. Moreover, since II ha + h) - ha) II p = II 7;,(hh) - f) II p = II hh) - I II p 
for each I in ff! /lRn) and all a and h in IRn, this shows that the mapping 
a --+ ha) = 7;, I of IRn into ff! p(lRn) is continuous for each p, 1 S P < + 00, and 
for each fixed f. (The mapping a --+ ha) need not be continuous from IRn into 
ff! x (IRn). The mapping <I> of IRn into ff!(ff! p(lRn» is not continuous for any 
value of p.) 

Example E. A second important set of examples of Lebesgue spaces is ob
tained by taking for (X, S, 11) the unit circle Z equipped with its a-ring B of 
Borel sets and arc-length measure e (Ex. 8F). Throughout this book the 
notation ff! p(Z), used without any further explanation, will denote the space 
ff! iZ, B, e). If lis a function on Z and y E Z, we write~)') for the rotation of I 

h)'l).) = I(y).), ). E Z. 

Since e is rotation invariant, it follows that iff E ff! p(Z) for some p such that 
1 S P S + 00, then h).) E ff! /Z) too, and II.~)') II p = II I II p for all y in Z. Thus 
if we write R)' for the mapping defined by R). f = h)'), I E ff! /Z), y E Z, then 
R)' is an isometric isomorphism of ff! /Z) onto itself (with (R) -1 = R~) 
for each y in Z and each p, 1 S P S + 00. Moreover, if\fl denotes the mapping 
y ~ R). of Z into ff!(ff! p(Z», then \fI(yy') = Rn , = R).R)" = \fI(y)\fI(y') for 
all y, }" in Z, since Rn , I = 1;))',) = (1;)',»().) for all I in ff! p(Z). (Here again it is 
customary to express this fact by saying that \fI is a representation of the 
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multiplicative group Z on the space !I! iZ).) Just as in the preceding example 
it is readily verified that for each fixed fin !I! iZ), the mapping y -+ .~l') = R). f 
of Z into !I! iZ) is continuous on Z whenever 1 :s; p < + 00. (The mapping 
y -+ Ry f need not be continuous as a mapping of Z into !I! ex (Z). The mapping 
'I' of Z into !I!(!I! iZ)) is not continuous for any value of p.) 

Example F. Let f!J denote the linear space of all complex-valued Borel 
measurable functions f on the real line IR with the property that .~27r) = f, 
that is, the space of all measurable periodic functions with period 2n. Iff is 
such a measurable periodic function, and if, for some real number a, f is 
integrable with respect to Lebesgue measure over the period [a, a + 2n], 
then 

fa+27r (b+27r 

a f(t)dt = J
b 

f(t)dt 

for any real number b. In this case we shall say thatfis integrable over a period 
and write 

£ fa
+

27r J f(t)dt = a f(t)dt 

(where, as noted, a can be taken to be any real number). Using this termi
nology, we define the space f!J P' 1 :s; p < + 00, to consist of the collection of 
all those functions f in .OJ such that If IP is integrable over a period, and we 
write 

for all f in f!J p' Likewise, by fYJ ex we shall mean the linear space of essentially 
bounded functions in f!J, and we write 

II f Ilx = ess sup I f I 
[J;l 

for fin f!J oc . (No.te that it is a consequence of these definitions that f!J oc is a 
subspace of !I! oc(IR), while f!J p and !I! ilR) have only the origin in common 
for 1 :s; p < + 00.) The spaces fYJp are Banach spaces closely related to those 
of Example E. Indeed, if for each function f on Z we definej(t) = f(e it ), 

t E IR, then J E fYJ, and the mapping f -+ J is readily seen to be an isometric 
isomorphism of !I! p(Z) onto fYJ P' 1 :s; p :s; + 00. Using the results of either 
Example 0 or Example E, it is easy to see that the mapping t -+ .~t) of IR 
into f!J p is continuous on IR for each fixed functionf in fYJ p provided p < + 00. 

Example G. Let us take for (X, S, fl) the real interval [a, b] equipped with 
its a-ring S of Lebesgue measurable sets and linear Lebesgue measure. 
For each fixed p, 1 :s; P < + 00, let 1111. p = 1111. i[a, b]) denote the linear 
space of all those absolutely continuous functions{ on [a, b] with the property 
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that the derivative f' belongs to 2! i[ a, b ]) (see Problem 9N). It is easily seen 
that "if'1, p is a dense linear submanifold of 2! i[a, b ]). (Indeed, the poly
nomials are dense in 2!i[a, b]) by the Weierstrass theorem; cf. Example 
18C.) Moreover, while the linear transformation D: "if'l. p --+ 2! i[a, b]) 
defined by D(f) = f',fE "if'l.p, is not bounded, it is closed (see Chapter 13). 
To see why this is so, note that the null space of D is the space JV of constant 
functions, and let fj: "if' 1.2/ JV --+ 2! i[a, b]) be the linear transformation 
that results from factoring out JV. If J denotes the (bounded) integral 
operator 

Uf)(x) = ff(t)dt, a ~ x ~ b, fE 2!p([a, b]) 

(Ex. C), and if 1! denotes the natural projection of 2! i[a, b]) onto 
2!([a, b])/JV, then fj is the set-theoretic inverse of 1! 0 J. Since the graph of 
the bounded transformation 1! 0 J is certainly complete, it is clear that the 
graph of fj is also (Prob. 13R). But from this it follows readily that the 
graph of D is closed in 2! i[a, b]) EB I 2!i[a, b ]). Observe that what we have 
shown implies that "if'1.2 is complete (and is therefore a Banach space) 
in the new norm 

[fb fb ] lip 
II f II = a If(t)IP dt + a 1f'(t)IP dt . 

(See Problem 130 for a similar construction.) 
Like considerations show that if "if'n. p denotes the linear space of those 

(n - 1) times continuously differentiable functions f on [a, b] possessing 
the properties that pn-I) is absolutely continuous and pn) belongs to 
2! i[a, b ]), then the linear transformation Dn: "if'n. p --+ 2! p([a, b]) defined 
by Dn(f) = f(n) is closed, and hence that 

II f II = [fl f(t)IP dt + fl f'(t)IP dt + ... + flpn)(t)IP dtT/P 

is a norm on "if'n.p with respect to which "if'n.p is complete. (These are the 
Lebesgue space counterparts of the constructions of Problem 11 F. Spaces 
of this kind have come to be known as Sobolev spaces.) 

Duality relations among Lebesgue spaces are substantially the same as in 
the special case of the spaces (I p), except that p = 1 plays a somewhat sur
prising special role. 

Theorem17.5. If 1 < p < + OJ and if q denotes the Holder conjugate of p, 
thenjor any measure space (X, S, Ji) the space, 2!iX, S, Ji)* is isometrically 
isomorphic to 2!iX, S, Ji) under the correspondence CPg --+ g, where 

(5) 
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PROOF. It follows immediately from the Holder inequality (see Problem A) 
that for any function gin filiX) the functional q>g defined by (5) is bounded 
and satisfies the inequality II q>g II s II g Ilq. The hard part is to show that if 
q> is an arbitrary element of filiX)*, then there exists a function g in filiX) 
such that q> = q>g and II q> II = II g II q' 

We treat first the case in which Ji(X) < + 00. The set function veE) = 
q>(XE), E E S, is a complex measure on the measurable space (X, S). Indeed, 
the finite additivity of v follows at once from the additivity of q>, and the 
countable additivity of v is then a consequence of the continuity of ({J (see 
Problem D). Moreover, it is obvious that v is absolutely continuous [Ji]' 
Hence, by the Radon-Nikodym theorem (Prob. 9L), there exists a function 
g such that veE) = h g dJi for every measurable set E. Thus we have 

for characteristic functions of measurable sets, and therefore, by linearity, 

({J(S) = {Sg dJi 

for every measurable simple function S on X. 
Suppose now that g belongs to filiX) and that q>g is the functional 

defined in (5). By what has just been shown, we have q> = ({Jg on the dense 
linear manifold of simple functions in fil iX) (Prob. D), and therefore 
({J = ({Jg by continuity. Thus to complete the proof (in the case Ji(X) < + 00) 
it suffices to verify that g E LiX) and that II g Ilq s II q> II. Let M be a positive 
number, and let Eo = {x EX: Ig(x)1 S M}. If h is any bounded, measurable 
function that vanishes outside Eo, then there exists a sequence {sn} of mea
surable simple functions likewise vanishing outside Eo and converging 
uniformly to h (Prob. 6S), so limn II h - Sn II p = ° and therefore limn q>(sn) = 
q>(h). On the other hand, the sequence {sng} tends pointwise to hg and is 
uniformly bounded, so 

lim f sng dp = f hg dp 
n x x 

by the bounded convergence theorem (Th. 7.13). Hence we have 

q>(h) = {hg dp 

for every such function h. In particular, setting 

ho(x) = {lg(XW1g(X), g(x)"# 0, 
0, g(x) = 0, 
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we obtain 

and therefore 

From this it follows at once that II gXEo Ilq ~ II qJ II (recall that 1 - (lIp) = llq), 
and since this inequality holds independently of the choice of M, we conclude 
that II 9 II q ~ II cP II· Thus the theorem is proved in the case fleX) < + 00. 

Suppose now that (X, S, fl) is an arbitrary measure space. If E is a mea
surable subset of X, then the subspace fi' E of fi' p(X, S, fl) consisting of the 
functionsfin fi'iX) that vanish outside E may be identified with the Lebesgue 
space fi'iE,SE,flIE) (Prob. E). Consequently, if qJ is a bounded linear 
functional on fi'iX, s, /1) and if E is any measurable subset of X having 
finite measure, then by the case already treated there exists a function gE 
in fi'q(E, SE, /1IE) such that 

for allfin fi' E. Moreover, as has been shown, the function gE is unique up to 
a set of measure zero, so that if E and F are two sets of finite measure, then 
gE and gF are equal a.e. [/1] on En F. In addition, for every set E of finite 
measurewehavellgEi!q= Ilcplfi'Ei! ~ Ilcpll. 

Set Q = SUPE II gE Ilq, where the supremum is taken over all sets E of 
finite measure, and note that Q ~ II cp II. There exist sets of finite measure 
En,n = 1,2, ... ,suchthatE t c··· c En C ···andsuchthatlimnllgEJq = Q. 

Let Eo = Un En' and define 

Then for m < n we have 
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from which it follows that {gn} is Cauchy, and therefore convergent, in f£ iX). 
Let g denote the function in f£iX) to which {gn} converges, and suppose/ 
is a function in f£ p(X) that vanishes outside the set Em· Then RJn = RJm 
a.e. [Jl] for n ~ m, while 

It follows that <PgU) = <pU) provided only that/vanishes outside some one 
of the sets Em. Hence, by continuity, <pg and <P agree on f£ Eo (Prob. D). On 
the other hand, it is clear that g vanishes a.e. on the complement X\Eo 
(Prob. C). Thus the proof will be complete if we show that <P annihilates 
the subspace f£ X\Eo. 

Suppose, on the contrary, that there is some function / in f£ iX) such that 
/vanishes on Eo and <p(f) =1= 0. Since the support of/is IT-finite (Prob. 7J), 
it is easily seen that there is a set F of finite measure such that F is disjoint from 
Eo and such that <PUb) =1= 0, from which it follows that II gF Ilq > 0. Set 
Gn = En U F. Then for sufficiently large n we must have 

a manifest contradiction, and the proof is complete. D 

Example H. Let (X, S, Jl) be a measure space, and let p and q be Holder con
jugates (l < p, q < + (0). If we write 'I' p for the natural isomorphism of 
f£ iX)* onto f£ q(X) just established, so that (in the notation of Theorem 
17.5) 

then the adjoint '1'; is likewise an isometric isomorphism of f£ iX)* onto 
f£ p(X)**, and the composition '1'; 0 '1'; 1 is a natural isometric isomorphism 
of f£ p(X) onto f£ iX)** which is readily identified as the natural embedding 
j (cf. Example 16H). Thus the Lebesgue space f£ p(X) is reflexive. 

It is customary to identify f£ iX)* with f£ q(X) via the isomorphism 
'I' p. Thus (in the terminology of Chapter 16), in the dual pair <f£ p(X), f£q(X», 
equipped with the distinguished bilinear functional 

each Banach space is the dual of the other. Since p = 2 is the unique positive 
number that is its own Holder conjugate, among all of the Lebesgue spaces 
f£ iX), 1 :S p :S + 00, the space f£ iX) is special. In particular, the above 
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formula defines a distinguished bilinear functional on .P 2(X), and the exis
tence of this bilinear functional is of profound importance in the study of 
such spaces. 

A variation of the above formula obtained by writing 

defines a sesquilinear functional on!i' 2(X) (Ch. 2, p. 22), called an inner product, that turns 
!i' 2(X) into a Hilbert space. The study of Hilbert spaces and operators on them is under
taken in Volume II of this treatise. 

A brief examination of the argument employed in Theorem 17.5 shows that 
the proof goes through without substantial change for p = 1 when 
Il(X) < + 00, so that we may identify .P 1 (X, S, 11)* with .P oo(X, S, 11) in the 
usual way in this case. A standard argument permits us to improve on this 
result somewhat. 

Theorem 17.6. If (X, s, 11) is a (Jjinite measure space, then .Pl(X, S, 11)* is 
isometrically isomorphic to .P oo(X, s, 11) under the correspondence CPg -+ g, 
where 

g E.P oo(X). 

PROOF. Clearly if g is essentially bounded and f is integrable, then 

ILfgdll1 ~ Ilglloollflll' 

so that II <Pg II ::0:; II 9 II oc' Hence, as before, it suffices to show that for an 
arbitrary <P in .P 1 (X)* there exists a function g in .2 oo(X) with II gil 00 ~ II <P II 
such that cP = CPg. Let {En} be a partition of X into a countable sequence of 
disjoint sets of finite measure, and for each n let gn be the essentially bounded 
measurable function (II gn 1100 ::; II cP II) on En such that 

<p(f) = f. fgn dll 
En 

for all functions{ in the subspace .PEn consisting of those functions in .P 1 (X) 
that vanish outside En. If we define g(x) = gn(x) for all x in En, n = 1,2, ... , 
then g is measurable, II 9 II CXJ ::; II <p II, and cpU) = CPg(f) whenever fvanishes 
outside some one of the sets En. But then cP = CPg by continuity; see Problem 
n 0 

The above proof shows that if (X. S, fl) is an arbitrary measure space, and rp is a bounded 
linear functional on !i' 1 (X), then for every set E of finite measure in X there is a function 
9E on E that gives rise to rp on!i' E' Moreover, it is clear that the family {gd is uniformly 
essentially bounded, and "almost coherent" in the sense that 9E = 9F a.e. on En F for 

375 



17 Banach spaces and integration theory 

all E and F. What is needed to complete the proof of Theorem 17.6 is to patch these func
tions together, and a-finiteness is one simple hypothesis that makes such patching possible. 
As it happens, for locally finite measure spaces (see Proposition R,I) it is known that 
such patching is possible (and consequently Theorem 17.6 holds) precisely when the 
Radon-Nikodym theorem is valid in X (see [41] or [61]). For a simple example in which 
!i' x(X) does not yield all of !i' 1 (X)*, the reader may consult [60]. (A different example is 
given in [30: Problem 31 (9)].) 

It turns out that the Lebesgue spaces on a measure space (X, S, f.1) are 
separable if and only if the measure space itself is separable (i.e., if and only if 
the metric space Sy; associated with the measure space is separable; see 
Chapter 9, page 174). 

Theorem 17.7. For any measure space (X, S, f.1) the following conditions are 
equivalent: 

(i) !l? reX) is separable for some one p, t S P < + 00, 

(ii) (X, S, f.1) is separable, 
(iii) !l? reX) is separable for every p, t S P < + 00. 

PROOF. The collection S of all characteristic functions of sets of finite measure 
is a subset of !l? p(X), Consequently, if !l? reX) is separable for some one value 
of p, then S is also separable in the relative metric. (Recall (Prop. 4.1) that 
a metric space is separable if and only if it satisfies the second axiom of 
countability.) Let So be a countable subset of S that is dense in S, and let 
~o denote the corresponding collection of measurable sets. For any set F 
having finite measure there is a sequence {En} in ceo such that II XEn - XF II p = 

[f.1(En V F)] lip -+ O. But then f.1(En V F) -+ 0 too, and it follows that the sub
set of the metric space Sy; consisting of the equivalence classes of the sets in 
Cf, 0 is dense in S y. Thus Sy is separable, so (i) implies (ii). Suppose, on the 
other hand, that (X, S, f.1) is separable and ~o is a countable collection of 
measurable sets whose equivalence classes form a dense subset of the metric 
space Sy;. Let So denote the (countable) collection of characteristic functions 
of the sets in ~ o. Then the subspace of !l? p(X) spanned by So contains all 
characteristic functions of sets of finite measure, and therefore all integrable 
simple functions. But this subspace coincides with !l? p(X) by Problem D. 
Thus !l? reX) is separable for all p, 1 S P < + 00, so (ii) implies (iii), and 
since it is obvious that (iii) implies (i), this completes the proof of the theorem. 

It is unrealistic to expect !i' x (X) to be separable for any interesting measure spaces, since 
even (/ ex) = !l' oc (No) is nonseparable (Ex. II H). Indeed, it is not difficult to verify that 
the only circumstance in which !l' x (X) is separable is when (X, S, f.1.) is purely atomic and 
consists of a finite number of atoms. 

D 

Thus far in Chapter 17 we have considered spaces consisting of (equiva
lence classes of) scalar-valued functions on some measure space. It is of 
interest to note that these constructions generalize without difficulty to 
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spaces of Banach space valued mappings. In this connection we recall (cf. 
Chapter 6) that if (X, S) is a measurable space and tff a normed space, then 
an tff -valued mapping <I> defined on X is measurable if <1>- l(M) E S for every 
Borel set M in tff. 

Lemma 17.8. Let (X, S) be a measurable space, let tff be a normed space, and 
let <I> be a measurable tff-valued mapping on X. Then the function 

N((J(x) = II <I>(x) II, x E X, (6) 

is also measurable on (X, S). 

PROOF. The set {XEX: II <I>(X) II :::;; r} can be written as {XEX:<I>(X)Etffr }, 

r > 0, and the closed balls tffr are Borel sets in tff. (Recall Problem 6C.) 0 

Proposition 17.9. Let (X, S, /1) be a measure space, let tff be a normed space, 
and let p be a positive real number. Then the collection !l'iX; tff) = 

!l' p(X, s, /1; tff) of all those measurable tff -valued mappings <I> on X such that 
the function N((J defined in (6) satisfies the condition 

(7) 

is a linear space with respect to pointwise linear operations. (The integral 
indicated in (7) makes sense by virtue of the foregoing lemma.) Moreover, 
for p ;::: 1 (and,for nontrivial X and tff, in this case only), 

defines a pseudonorm on !l'iX ; tff). 

PROOF. If <I> and 'P are arbitrary tff-valued mappings, then N((J + 'I' ::; N((J + N'I' 
by the triangle inequality in tff, and since !l'iX) is a linear space, it follows 
at once that !l' p(X; tff) is also a linear space. Furthermore, to 'show that 
III Illp is a pseudo norm for p ;::: 1, it suffices to verify the triangle inequality, 
and this follows at once from the triangle inequalities in tff and !l'iX): 

III <I> + 'P Illp = II N((J + 'I' lip::; II N((J + N'I' lip::; II N((J lip + II N'I' lip 
= III <I> Illp + III'P Illp. 

Finally, if X contains two disjoint measurable sets, both having positive 
finite measure, and if tff contains any vector v i= 0, then it is a triviality to 
verify that III Illp is not a pseudonorm for 0< p < 1 (cf. Example Itc). 0 

The counterpart of Proposition 17.9 is also valid for the case p = + 00; 
the details of the proof of the following result are left to the interested reader. 
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Proposition 17.10. Let (X, S, /1) be a measure space and let 15' be a normed 
space. The collection 2? oo(X; g) = 2? oo(X, S, /1; g) of all those measurable 
mappings <I> of X into 15' such that 

III <I> III x = II N,d oc = ess sup II <I>(x) 11.< + 00 
x 

is a linear space with respect to pointwise linear operations, and III III (£ is a 
pseudo norm on 2? (£(X; g). 

For any measure space (X, S, /1) and normed space 15', the zero spaces of 
the various pseudonorms III Illp, 1 :::; p :::; + 00, are all the same, each coin
ciding with the linear manifold ~(X; g) of those measurable 15' -valued 
mappings on X that are equal to 0 a.e. [/1]. Just as before, we shall use the 
symbol 2?iX; g) to stand for both the linear space of g-valued mappings 
equipped with the pseudonorm III Illp and for the associated normed space 
if; p(X; g) (whose elements are cosets modulo ~(X; g)) equipped with the 
norm III' III p' In this same spirit we also continue to admit as an element of 
2? iX; g) any 15' -valued mapping <I> whose domain is a subset of X that con
tains the complement of some set Z such that /1(Z) = 0, provided the re
striction of <I> to X\Z belongs to 2? iX\Z; g). With these conventions 
in effect, the following result is readily established. 

Theorem 17.11. For any measure space (X, S. /1) and normed space 15', the 
Lebesgue spaces 2? iX; g), 1 :::; p :::; + 00, are complete, and are therefore 
Banach spaces, provided 15' is complete. Conversely, i{the measure space X is 
nontrivial, and if 2? iX; g) is complete for anyone value of p (p ~ 1), then 
15' must be complete. 

PROOF. To prove that 2? iX; g) is complete when 15' is, it suffices, as always, 
to show that any sequence {<I>n}~1 in 2?iX; p,") such that 

(1J 

I 111<I>n+1 - <l>nlilp < +00 
n=1 

is convergent (Prob. 4E). For each positive integer n and each x in X, set 
gnCx) = II <l>n+ I (x) - <l>n(x) II. Then by Lemma 17.3 we have I:,= I gnCx) < + 00 

for all points x in the complement of some set Z such that /1(Z) = O. Hence 
the series 

00 

<l>1(X) + I (<I>n+ I(X) - <l>n(X)), 
n= I 

and with it the sequence {<I>n(X)}:'=I' is pointwise convergent in 15' on X\Z. 
Moreover, if we define 

<I>(X) = lim <l>nCx), x E X\Z, 
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then cD is measurable on X\Z (Prob. 6R), and II cD(x) - cDN(x) II ~ L~= N gn(x) 
for all x in X\Z and all positive integers N. Hence, appealing to Lemma 17.3 
once again, we obtain 

III cD - cDk Illp ~ II n~/n t ~ n~} gn lip 

for all k ;::: N, and the completeness of !f! /X; g) follows. 
Suppose, conversely, that!f! /X; g) is complete for some value of p (p ;::: 1), 

and that X contains at least one measurable set E such that 0 < /1(E) < + 00. 

If {vn} is a sequence in g such that Ln II vn+ 1 - Vn II < + 00, then the sequence 
{XE vn} ~= 1 satisfies the condition 

in !f! /X; g), whence it follows, just as in the first part of the proof, that the 
sequence {XEVn}~= 1 is pointwise convergent in g almost everywhere on X. 
If Xo is anyone point of E at which this series converges, say to a limit w, 
then it is clear that the sequence {vn} converges to w, and it follows that g is 
complete. D 

The existence of the Lebesgue space !f! 1 (X; g) permits an interesting 
and useful extension of the theory of integration to Banach space valued 
mappings when g is a separable Banach space. The following lemma pro
vides a substitute in the context of Banach space valued mappings for the 
result of Proposition 6.6 (and Problem 6S). To facilitate the discussion it 
will be convenient to call an g-valued mapping on a set X simple ifit assumes 
only a finite number of values, and to call a measurable simple g-valued map
ping on a measure space X integrable if it vanishes outside some set of 
finite measure (or, in other words, if it belongs to !f! 1 (X ; g)). 

Lemma 17.12. Let (X, S, /1) be a measure space, let g be a separable Banach 
space, and let cD be a measurable g-valued mapping on X that vanishes out
side some subset of X having a-finite measure. Then there exists a sequence 
{Ln}:'= 1 of integrable simple g -valued mappings converging to cD a.e. [/1] 
and satisfying the condition II Ln(X) II ~ 211 cD(x) II at every point x of X and 
for every positive integer n. 

PROOF. Let {Vk}k'=l be a dense sequence of vectors in g, and let {Fn }:'=l 
be an increasing sequence of sets of finite measure in X such that cD(x) = 0 
for every x outside Un Fn. For each positive integer n, set 

En = {x E Fn : II cD(x) II ;::: ~}-
Then it is easily seen that {En} ~= 1 is also an increasing sequence of measurable 
sets of finite measure with the properties that II cD(x) II ;::: 1 In at every point of 
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En and cD(x) = 0 outside of E = Un En. For each pair of positive integers 
k and n we define Gk.n = {x EX: II cD(x) - Vk II ~ l/n}. Then, since the 
vectors Vk are dense in I, for each fixed n the sequence {Gk. nHlO= 1 covers X, 
whence it follows that for each positive integer n there exists a positive 
integer m = mn with the property that 

f.1(En\(G1.n u GZ. n U··· U Gm".n)) ~ 1/2n 

(Prop. 7.4). We write Gn = Gl.n U··· U G",,,.n' nEN, and for each 
k = 1, ... , mn , we define 

with the result that the sets H l.n' ..• , H "'n. n are pairwise disjoint, each 
H k. n is contained in the corresponding set Gk• n' and HI. n u ... u H "'n. n = 

En (\ Gn· Next we define ~n by setting ~n(x) = Vk for all x in Hk,n and de
fining ~n(x) = 0 outside En (\ G n' Then from the various definitions it is 
obvious that ~n is an integrable simple I-valued mapping on X for each n. 
Likewise, if x E En (\ Gn then x E Hk,n for some k, and we have ~.(x) = Vk' so 

1 
II cD(x) - ~n(X) II = II cD(x) - Vk II ~ -. 

n 

Hence if, for some positive integer N, x belongs to n;'=N (En (\ Gn), then the 
sequence {Ln(X)} converges to <I>(x). Let Z denote the set of those points z in 
X at which {~n(z)} fails to converge to cD(z). Clearly each point z of Z is 
contained in all but a finite number of the sets En (since cD and all of the map
pings ~n vanish outside of E), and must therefore, by what has just been said, 
fail to be contained in some infinite number of the sets Gn • Thus for every 
positive integer N we have 

00 

Z c U (En\Gn), 
n=N 

and therefore f.1(Z) ~ L.;'=N 1/2n = 1/2N-\ from which it follows at once 
that f.1(Z) = O. Hence {~J converges to cD a.e. [f.1]. Finally, if ~n(x) # 0 
for some x and n, then xEHj,n for some i = 1, ... , mn, and therefore 
xEEn (\ Gn. But then, as we have seen, IlcD(x) - ~n(x)11 ~ l/n, and since 
IlcD(x)II ~ l/n on En' it follows that II~n(x)11 ~ II cD(x) II + l/n ~ 21IcD(x)ll, 
so the proof is complete. 0 

Proposition17.13. If (X, S, f.1) is a measure space and I is a separable Banach 
space, then the integrable simple I-valued mappings on X constitute a 
dense linear manifold in :£ p(X .. I) for 1 ~ P < + 00. Furthermore, if 
(X, S, f.1) is separable then :£ iX; I) is also separable for 1 ~ p < + 00. 
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PROOF. That the collection !I' of integrable simple g -valued mappings 
constitutes a linear submanifold of 2 p(X; g) for all values of p is obvious. 
If <I> belongs to !l? /X; g) then the function N <II" in (6) vanishes outside some 
set having (J-finite measure, and so therefore does <1>. If {In} is a sequence of 
elements of !I' tending to <I> as in the preceding lemma, then the sequence of 
functions hn(x) = II <I>(x) - In(x) II tends to zero a.e. [,11] and is dominated 
by the function 311 <I>(x) II. Hence limn Ix h~ d,u = limn III <I> - In III ~ = 0 by 
the dominated convergence theorem (Th. 7.12). Thus !I' is dense in !l? /X; g). 
If Cf6 0 is any countable collection of measurable sets of finite measure whose 
corresponding equivalence classes form a dense subset of the measure ring 
(8,,11) of (X, S,,u) and Vis a countable dense subset of g, then the simple map
pings of the form ~J= 1 XEi Vj, where the sets Ej are selected from Cf6 0 and the 
vectors Vj from V, constitute a countable dense set in the linear manifold !I' 
and therefore a dense subset of !l? p(X; g), 1 ::; p < + 00, by what has 
already been shown. 0 

Theorem 17.14. Let (X, S, ,11) be a measure space, and let g be a separable 
Banach space. Then there exists a unique bounded linear transformation 
L of !l? 1 (X; g) into g satisfying the condition 

VEg, ,u(E) < + 00. (8) 

The value L(<I» of L at a mapping <I> belonging to !l? 1 (X; g) is called the 
Lebesgue integral of <I> with respect to ,11 and will be denoted by Ix <I> d,u 
or Ix <I>(x)d,u(x). The Lebesgue integral on!l? 1 (X; g) satisfies the inequality 

II Ix <I> d,u II ::; III <I> 1111' 

(In other words, L is a contraction.) 

PROOF. Suppose first that T is an arbitrary bounded linear transformation 
of !l? 1 (X; g) into g satisfying (8). If I is an integrable simple g -valued map
ping on X and 

(9) 
j= 1 

where ,u(E;) < + 00, i = 1, ... , N, then (8) and the linearity of T ensure that 
T(I) = ~J= 1 ,u(Ej)Vj. Since the set !I' of integrable simple mappings is 
dense in !l? 1 (X; g), it follows that there can be at most one bounded linear 
transformation L satisfying (8). On the other hand, if for each integrable 
simple g-valued mapping I on X represented as in (9), we define 

N 

Lo(I) = I,u(Ej)vj, 
j= 1 

then it is a simple matter to verify that Lo is a well-defined linear trans
formation of the linear space yo into g (see Problem lL) and that (8) is 
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satisfied. To complete the proof we note that if the sets Ei in (9) are chosen to 
be pairwise disjoint, as they always can be, then the function Nr. defined as in 
(6) is the simple function If= I II Vi II XEi' whence it follows that 

N 

II Lo(l:) II ~ I II Vi 1111(E) = II N rill = 111l: 1111' 
i= I 

ThusLo is bounded (by one) and therefore possesses a unique bounded linear 
extension to 2'1(X; Iff) (that is also bounded by one; see Problem 121). D 

Example I. If Iff is a separable Banach space and if, for some fixed n, <I> is a 
mapping of [Rn into Iff, then, just as when Iff = 1[, for each point a of [Rn we 
write <I>(a) for the translate 

<I>(a)(x) = <I>(x + a), x E [Rn 

(cf. Example D). If Iff is a separable Banach space and E is a Borel set in [R" 

having finite Lebesgue measure, then the translation invariance of Lebesgue 
measure I1n ensures that 

for each point a of [Rn and every vector v in Iff. Hence if l: is an arbitrary 
integrable simple Iff-valued mapping on [Rn, then 

r L dJ1n = r L(a) dJ1n, 
J~n J~n 

whence it follows at once that 

for every mapping <I> in 2' I ([Rn; Iff) and every point a of [Rn. Similarly, if 2 
denotes the unit circle and if for each y in 2 we denote by <I>()') the rotation 
<I>()')(O = <I>(yO, y E 2, of an Iff-valued mapping <I> defined on 2, then 

1<1> de = 1<1>(1') de 

for every mapping <I> in 2' 1 (2; Iff) and every y in 2 (where, as always, e denotes 
arc-length measure on 2; cf. Examples E and 8F). 

Proposition 17.15. Let (X, S, 11) be a measure space, let Iff be a separable 
Banach space, and suppose T is a bounded linear transformation of @" into 
a second separable Banach space ~. Then for any mapping <I> in 2' I (X; @"), 
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PROOF. The composition (T 0 <1»(x) = T<1>(x) is measurable along with 
<1>, and since II T<1>(x) II ~ II T 1111 <1>(x) II, x E X, it follows that To <1> belongs 
to fi'1 (X; 1#') whenever <1> belongs to fi' 1 (X; @"). A direct calculation shows 
that if L is a simple @"-valued mapping on X, say L = Lf= 1 XE; Vj, then To L 
is the simple I#'-valued mapping Lf= 1 XE; TVj. Hence if L is integrable and 
fJ.(EJ < + 00, i = 1, ... , N, then 

f (T 0 L)dfJ. = ,f fJ.(Ej)Tvj = r(,f fJ.(Ej)Vj) = T (f L dfJ.), 
x .=1 .=1 X 

so the proposition is valid for integrable simple @"-valued mappings. 
Finally, suppose <1> is an arbitrary element of fi'1 (X; @"), and let {Ln} be a 

sequence of integrable simple mappings converging to <1> as in Lemma 
17.12. Then, in the first place, {Ln} tends to <1> in fi'1 (X; @") by the dominated 
convergence theorem (see the proof of Proposition 17.13), and since 
II Ix <1> dfJ. - Ix Ln dfJ.11 = II Ix (<1> - Ln)dfJ.11 ~ III <1> - Ln 1111' this implies that 
the sequence {Ix Ln dfJ.} converges to Ix <1> dfJ. in @". Secondly, the sequence 
{T 0 Ln} converges a.e. [fJ.] to To <1> and 

II (T 0 <1» (x) - (To Ln)(X) II ~ II T 1111 <1>(x) - Ln(X) II ~ 311 T 1111 <1>(x) II 

at every point of X. Applying the dominated convergence theorem again, 
we conclude that the sequence Ux(To Ln)dfJ.} tends to the integral 
Ix (To <1»dfJ. in 1#', and it follows at once that Ix (To <1»dfJ. = T(Ix <1> dfJ.). 0 

Example J. Suppose (X, S, fJ.) is a measure space and @" is itself a Banach 
space of the form fi'iY, T, v) for some p, 1 ~ p < + 00, where (Y, T, v) is a 
separable finite measure space. Then integration with respect to v is a bounded 
linear functional on @" (Prob. J). Hence, according to the foregoing propo
sition, if <l> is a mapping belonging to 2" 1 (X; 2" iY)), then 

Example K. Iff E fi'iZ) for some fixed p, 1 ~ p < + 00, then, as noted in 
Example E, setting 

'P/Y)=h)'), YEZ, 

defines a continuous mapping '1' j of the unit circle Z into fi'iZ). It follows 
at once that '1' j belongs to fi' 1 (Z; fi'iZ)), and hence that 

n = {'PjdO 

exists (and belongs to fi' p(Z)). In order to compute n, we first note that if 
Ry denotes the rotation operator Ry f = hy) introduced in Example E, then 
Ryn = Jz Ry 0 '1' j dO for each Y in Z by Proposition 17.15. But for each point 
'in Z, R/'P /m = hy,) = ('1' j)(y)(O, so Ryn = Jz ('I' j)()') dO = n by Example 
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I. Thus Q is invariant under all rotations Rl" Y E 2, whence it follows that Q 
is constant a.e. [e]. That is, there exists a complex number w such that Q = w 
a.e. [e]. (This may be seen in various ways. Suppose, for example, that the 
real function g = Re(Q) is not essentially constant on 2. Then there exist 
real numbers m and m' where m < m' such that E = {( E 2 : g(O ::;; m} and 
E' = {( E 2: g(O ~ m'} both have positive arc-length measure. Thus there 
exist real numbers t and t' and a positive number h such that the intersection 
of E with the arc {e iu : t ::;; u ::;; t + h} has arc-length measure greater than 
h/2, while the intersection of E' with the congruent arc {eiu : t' ::;; u ::;; t' + h} 
likewise has arc-length measure greater than h/2 (see Problem 8F). But then 
it is impossible for Q and R)'Q to be equal a.e. if we take for y the number 
ei(t' - n.) Finally, to determine the value of w, we employ Example J to write 

Thus w = Sz f de, and, putting everything together, we see that 

LJ()') de(y) = J/ de 

for almost every y in 2 and for every fin 2/2). 

If l' ..... R)' denotes the representation of Z on Sf iZ) introduced in Example E. then for 
each( in 2'/Z) the mapping '¥ r of Example K may also be described as the mapping 
y ..... R.. (, i' E Z, Hence, on the basis of the observations of Example K, it is tempting to 
defindz R..d8(y) to be the rank-one operator 

where !lo denotes the function identically equal to one on Z, However, the notion of an 
integral of such a mapping as R;. transcends the scope of the present treatment, since the 
space Sf(Sf /Z)) is nonseparable, Readers wishing to pursue further the study of Banach 
space valued integrals are referred to [52] or the treatise [18]. 

We shall also have need of the analog of the Riemann-Stieltjes integral 
for Banach space valued mappings. This theory is developed almost exactly 
as in the classical case, and the following treatment will therefore be rather 
brief. (The reader is referred to Problems P, Q and R ofthis chapter, as well as 
Problems 8L and 5D, for omitted details.) 

Definition. Let [a, b] be a real interval, let <I> be a bounded mapping of 
[a, b] into a normed space 8, and let IY. be a bounded complex-valued 
function defined on [a, b]. Then for any partition 

fl> = {a = to <.,. < tN = b} 
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of [a, b] and any numbers Ti such that t(_1 ~ Ti ~ ti , i = 1, ... , N, the 
sum 

N 

S = L [~(ti) - ~(ti_I)]<l>(Ti) 
i= I 

is a Riemann-Stieltjes sum for <l> with respect to ~ based on flJ. Further, 
a vector r in tff is the Riemann-Stieltjes integral of <l> over [a, b] with 
respect to ~ (notation: r = S~ <l>(t)d~(t» if for each e > 0 there exists 
D > 0 such that II r - s II < e for every Riemann-Stieltjes sum s for <l> 
with respect to ~ based on an arbitrary partition [JJ of [a, b] such that 
mesh flJ < D. (See Problem IG for basic definitions.) 

It is obvious that the Riemann-Stieltjes integral of <l> over [a, b] with 
respect to ~ is unique if it exists, in which case we say that <l> is (Riemann
Stieltjes) integrable over [a, b] with respect to ~. Just as in the case of scalar
valued functions, the mapping <l> in the integral S~ <l>(t)d~(t) is called the 
integrand, the function ~ the integrator. 

Example L. Let ~(t) = t, a ~ t ~ b. Then the integral S~ <l>(t)d~(t) is called 
the Riemann integral of <l> over [a, b], and is denoted by 

f <l>(t)dt, 

whenever it exists. 

Example M. If either the integrand <l> or the integrator ~ is constant on the 
closed interval [a, b], then the Riemann-Stieltjes integral S~ <l>(t)d~(t) 
exists; indeed, J~ Vo dlX(t) = [1X(b) - lX(a)]vo for any integrator IX, while 
J~ <l>(t)d~(t) = 0 if the integrator ~ is constant. (In particular, if c is a point 
in the interval where <l> and ~ are defined, then J~ <l>(t)d~(t) = 0.) 

Example N. Let tff be a normed space, and suppose <l> and 'P are bounded 
tff-valued mappings defined on an interval [a, b] such that <l>(t) = 'P(t) for 
every t in [a, b] except at a single point to, a ~ to ~ b. Suppose further that 
to is a point of continuity of a bounded complex-valued function ~ defined 
on [a, b]. Let M be chosen so that II <l>(t) II, II 'P(t) II ~ M, a ~ t ~ b, and let 
e be a positive number. If (j is chosen so that I ~(t) - ~(to) I < e whenever 
It - to I < 15, and if .OJ is an arbitrary partition of [a, b] with mesh (JjJ < 15, 
then it is easy to see that for any Riemann-Stieltjes sum s for <l> with respect 
to ~ based on flJ there exists a Riemann-Stieltjes sum s' for 'P with respect 
to ~ based on the same partition [JJ such that II s - s' II ~ 4M e. Hence if <l> is 
integrable over [a, b] with respect to iX, then 'P is too, and S~'P(t)diX(t) = 

S~<l>(t)diX(t). It follows at once that the Riemann-Stieltjes integral of a 
bounded tff -valued mapping <I> over [a, b] is unaffected by changing the 
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value of <D at any finite number of points of the interval [a, b], provided the 
changes are made at points of continuity of the integrator rx. In particular, if 

f!J = {a = to < ... < tN = b} 

is a partition of [a, b] such that the function rx is continuous at each point 
ti , i = 1, ... , N, and L is a mapping of [a, b] into tff such that L is constantly 
equaJto some vector viin each interval (t i - 1, t i ), i = 1, ... , N, then (irrespective 
of the values of L at the points of f!J) L is Riemann-Stieltjes integrable with 
respect to rx and 

The following fact is easily verified (see Problem P). 

Proposition 17.16. Let tff and g; be Banach spaces and let T be an element of 
!l'(tff, g;). If an tff-valued mapping <D is integrable over an interval [a, b] 
with respect to an integrator rx, then the g; -valued mapping To <D is also 
integrable over [a, b] with respect to rx, and 

T(f <D(t)drx(t)) = f T(<D(t))drx(t). 

Considered as a function of the interval of integration, the Riemann
Stieltjes integral of a Banach space valued mapping is additive; the proof 
of the following formal assertion of that fact is elementary, and is likewise 
left to the reader (Prob. P). 

Proposition 17.17. Let tff be a Banach space, let <D be a norm-bounded tff -valued 
mapping defined on a real interval [a, b], and let rx be a bounded complex
valued function defined on [a, b]. If<D is integrable with respect to the inte
grator rx over [a, b], then <D is also integrable with respect to rx over every 
closed subinterval [c, d] of [a, b]. Conversely, if c is a point of [a, b] at which 
rx is continuous and.<D is integrable over both [a, c] and [c, b] with respect to 
rx, then <D is integrable over [a, b] with respect to rx, and 

f<D(t)drx(t) = (f + f)<D(t)drx(t). 

The entire theory of Riemann-Stieltjes integration carries over without 
any difficulty to Banach space valued mappings. In particular, the following 
result may be established in exactly the same manner as in the case tff = C 
(cf. Problem 8L). 

Proposition 17.18. Let <D be a continuous mapping of a real interval [a, b] into 
a Banach space tff, and let rx be afunction of bounded variation on [a, b] (see 
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Problem II). Then $ is integrable over [a, b] with respect to a, and 

II f $(t)da(t) II ~ f II $(t) II dL(t) ~ :~~ II $(t) II L(b) 

where L(t) denotes the total variation oj a on the interval [a, t], a ~ t ~ b. 

The following basic result is in turn an immediate consequence of Propo
sition 17.18 and the definition of the Riemann-Stieltjes integral. 

Proposition 17.19. Let $ be a Banach space, let [a, b] be a real interval, and 
let a be a complex-valued function of bounded variation on [a, b]. Then the 
mapping 

$ -+ f $( t)d a( t) 

is a bounded linear transformation of~([a, b]; $) into $ with norm no greater 
than the total variation of a over [a, b]. 

The principal role played in this book by Banach space valued Riemann
Stieltjes integrals will be in the form of the Banach space analogs of the line 
integrals used in complex analysis (cf. Chapter 5). 

Definition. Let $ be a Banach space, let a be a rectifiable arc in C defined on 
a real interval [a, b], and let $ be an $ -valued mapping that is defined 
and continuous on a subset M of the complex plane C containing the 
range of (1.. Then we define 

i $«)d( = f $(a(t))da(t). (10) 

(Just as in complex analysis, this integral is called the line integral of $ 
along the arc a. The Riemann-Stieltjes integral in the right member of (10) 
exists by Proposition 17.18, since $ 0 a is continuous and a is of bounded 
variation. To see that this concept really is a direct generalization of the 
line integrals employed in Chapter 5, consult Example 8K.) More gen
erally, if a = a1 + ... + an is any formal sum of rectifiable arcs (Prob. 
5H) each having range contained in M, then we define (unambiguously) 
the line integral of $ along a by setting 

f $«)d( =.I f$(Od( 
a ,:;:: 1 ill 

for each $ in ~(M; c9'). 
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The following is nothing more than a summary of Propositions 17.16-
17.19 in terms of line integrals, and no proof is required. 

Proposition 17.20. Let ~ be a Banach space and let K be a compact subset of 
C. The mapping 

<I> --> 1 <I>(Od ( 

is a bounded linear transformation of ~(K; ~) into ~ for each fixed finite 
formal sum IX of rectifiable arcs lying in K, the norm of the transformation 
being less than or equal to the length of IX. If IX and f3 are two such formal 
sums, then 

and if T is any bounded linear transformation of ~ into a second Banach 
space ff', then 

The fundamental theorem of all complex analysis is the Cauchy~Goursat 
theorem (see Theorem 5.7 and Problem 50). It is, consequently, gratifying 
to learn that the Cauchy~Goursat theorem is likewise valid for Banach 
space valued mappings. 

Theorem 17.21. Let V be an open set of complex numbers, let ~ be a Banach 
space, and let <I> be a locally analytic ~-valued mapping defined on V 
(Ex. 15G). If y is an arbitrary finite formal sum of closed rectifiable arcs in 
V such that y - 0 in V (that is, such that the winding number w). vanishes 
at every point ofC\U; see Problems 5H and 50), then 

PROOF. For any bounded linear functionalfon ~ the complex-valued function 
f 0 <I> is locally analytic on V, so L fC<I>CO)d( = 0 by the Cauchy~Goursat 
theorem for locally analytic scalar-valued functions. By Proposition 17.20 
this implies that fCL <I>(OdO = 0, and the theorem follows by Corollary 
14.11, a consequence of the Hahn~Banach theorem. D 

The potential applications of this result are numerous, but the only use 
we shall make ofTheorem 17.21 at present is to obtain the following corollary, 
in effect a uniqueness theorem. To facilitate its formulation we employ the 
notion of an oriented envelope; see Problem 5K. 
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Proposition 17.22. Let U be an open subset of C, let K be a compact subset of 
U, and suppose given two oriented envelopes YI and Y2 of K in U. Then 

f. <I>(Od' = f. <I>(Od' 
II 12 

for an arbitrary locally analytic Banach space valued mapping <I> defined on 
U\K. 

PROOF. The winding number ofYI - Y2 on C\U is zero since woo = Woo = 0 
11 12 

there. The winding number of YI - Y2 on K is likewise w" - W.o = O. 
I 1 12 

Hence YI - Y2 '" 0 in U\K, so 

f. _0 <I>(Od, = 0 
I I 12 

by Theorem 17.21. o 

We are now ready to define the concept of an analytic function of an opera
tor T on a Banach space g. Just as in Chapter 12, however, where a similar 
idea was introduced for rational functions (cf. Problem 12N), it turns out 
that the appropriate context in which to give this definition is that of a unital 
Banach algebra. In this connection we note that if a is an element of a Banach 
algebra sf, then multiplication by a (on either right or left) is a bounded 
linear transformation on sf (cf. Problem U). Hence if J~ <I>(Od' is a line 
integral of some sf -valued mapping <1>, then, according to Proposition 17.20, 

for every a in d. 

Definition. Let sf be a unital Banach algebra, let f be a complex-valued 
function defined and locally analytic on an open subset U of C, and let 
x be an element of sf with the property that its spectrum (Jow-(x) is contained 
in U. Then we define 

where Y denotes an arbitrary oriented envelope of (J ",(x) in U, and Rx 
denotes, as usual, the resolvent of x--Rx(A) = (A - X)-I. 

Note. Since Rx is locally analytic on the resolvent set C\(J",(x) (Ex. 15G) 
and f is locally analytic on U, it is a matter of elementary calculus to verify 
that the product f Rx is locally analytic on U\(J ",(x), and it results from the 
preceding proposition that this definition really depends only on x and f, 
and not on the choice of the oriented envelope y. By the same token, iffl 
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and f2 are locally analytic functions defined on open sets Uland U 2, re
spectively, and if f1 = f2 on some open subset V of U 1 n U 2 that contains 
a .. ix), then fl (x) = f2(X), since y can be chosen to be an oriented envelope 
of a ",,(x) in V. In particular, if a ",,(x) CUI C U 2 and if f1 = f21 U l' then 
fleX) = fix). 

The rationale of this definition is best seen by considering the special case d = C. If 
rx E C then O"cClX) = {IX} and RiA) = 1/(,1, - IX), A", IX. Hence 

.r(IX) = 2~i Jf(OR,COd( 

for any functionfthat is analytic on some open neighborhood U of IX and any oriented 
envelope y of {IX} in U by the Cauchy integral formula. Thus what we are doing in the 
present context is, in effect, turning the Cauchy integral formula into a definition. The use 
of line integration to define analytic functions of matrices dates back to the nineteenth 
century; the bold extension of the construction presented here is due, in substance, to 
F. Riesz [53], N. Dunford [21] and I. Gelfand [28]. 

An arrangement for defining various functions of the elements of a Banach 
algebra d in a systematic and useful manner is usually referred to as a 
functional calculus on d. The functional calculus introduced above is 
customarily known as the Riesz-Dunford fun~tional calculus. Our first 
result concerning this functional calculus is a useful technicality. 

Proposition 17.23. Let x be an element of a unital Banach algebra d, and let 
f be a locally analytic function on an open neighborhood U of a .. ix). Then 
f(x) doubly commutes with x, that is, f(x) commutes with every element 
y of d that commutes with x. In particular, any two analytic functions of 
x commute with each other. 

PROOF. If }.. ¢ a ",,(x) then it is clear that Rx(}..) doubly commutes with}" - x, 
and therefore with x. Hence if y is an oriented envelope of a ",,(x) in U, and 
y is an element of d that commutes with x, then 

yf(x) = -21 . ff(OYRx(Od( = -21 . f f(ORxCOY d( = f(x)y, 
m ). m )" 

so y also commutes withf(x). o 

The following important result concerns the dependence of f(x) on the 
locally analytic function f. 

Theorem 17.24. Suppose d is a unital Banach algebra and x is an element of 
d. Let f and g be locally analytic functions on open neighborhoods Uland 
U 2 of a",,(x), respectively, and let IX and fi be complex numbers. Then IXf + fig 
and fg are both locally analytic on an open neighborhood of a",,(x), and we 
have 

(lXf + fig)(x) = IXf(x) + fig(x) and (fg)(x) = f(x)g(x). (11) 
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PROOF. Clearly rtf + f3g and fg are locally analytic on U 1 n U 2' and if y is 
an oriented envelope of (J ".,(x) in U 1 n U 2, then 

{[ar(D + f3g(OJRxCDd( = a f,f(DRx(Od( + f3 f.g(ORxCDd( 

by Proposition 17.20. Hence (af + f3g)(x) = af(x) + f3g(x). To verify the 
second equation in (11) is more difficult. 

Let y be an oriented envelope of (J ".,(x) in U 1 n U 2 as above, let V denote 
the (open) set of those points A in ( such that the winding number W)'(A) is 
one, and let y' be an oriented envelope of V - in U 1 n U 2' (Since V - is a com
pact subset of U 1 n U 2, such an oriented envelope exists. Observe that if A 
lies in the range W;, of y then the winding number of y' at A is one, while if A 
lies in the range W;" of y', then the winding number of y at A is zero.) Then, as 
is easily seen, y' is also an oriented envelope of (J ".,(x) in U 1 n U 2, so 

Hence 

f(x)g(x) = ~! [f,f(ORx(Od(] [f,. g(A)Rx(A)dA] ' 

whence we conclude that -4n2f(x)g(x) is given by the iterated integral, 
with respect to ( along y and with respect to A along y', of the d-valued 
mappmg 

Since W;, and Wy, are disjoint by construction, the resolvent equation (Prop. 
12.1 0) permits us to transform <I> as follows: 

( E Wy, 

Moreover, a trivial calculation shows that both of the mappings 

f(Og(:1) R (r) d f(Og(:1) R (:1) 
( _ :1 x <, an ( -:1 x 

are continuous as functions of two variables on the set Wy x W;" in (2. 

Hence (Prob. R) the integrations of these mappings needed to calculate 
f(x)g(x) may be performed in either order. Thus 

(-4n 2)f(x)g(x) = f,.[g(:1)RxC:1) f, !~(~ d(}:1 
(12) 
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Furthermore the inner integrals in both summands in (12) are readily evalua
ted by the Cauchy integral formula. Indeed, 

f f(O . 
l' ( - A d( = (2m)w).(A)f(A) = 0, 

while 

(Recall that y' surrounds W;., but not vice versa.) Thus, putting everything 
together, we obtain 

-If f(x)g(x) = 4n2 /nifCOgCORxCOd( 

= 2~i JfC09CORxCOd(, 

and the theorem is proved. o 

Theorem 17.25. Let U be an open subset of C, and let ff u denote the unital 
algebra of all locally analytic complex-valued functions defined on U. !f 
d is a unital Banach algebra and x is an element of d such that a .J1Jf(x) c U, 
thenf ~ f(x) is an algebra homomorphism qf ff u into d with the property 
that p(1) = 1.J1Jf. Moreover, if K denotes an arbitrary compact neighborhood 
of a .J1Jf(x) contained in V, then p is bounded with respect to the pseudo norm 
a(f) = maxAEKlf(A)I,fEffu· In particular, ifa sequence Un} in ffu 
converges to a limit f uniformly on compact subsets of V (Prob. 11 V), then 
{fn(x)} converges tof(x) in d. 

PROOF. That p is an algebra homomorphism was established in Theorem 
17.24. To see that p is bounded with respect to a, note that there exists an 
oriented envelope y of a .J1Jf(x) in KO. If L denotes the length of y andf E ff u, 
then II f(x) II 5 La(.f) by Proposition 17.20. The proof that p(1) = 1.J1Jf is 
given in the following example. 0 

Example O. Let us take U = C, so that the algebra ff u = ff ((; is the algebra 
of all entire functions. Thenf(x) is defined for every fin ff ((; and for every ele
ment x of every unital Banach algebra. Moreover, in computing f(x) we 
may take for the oriented envelope y a circle Cr with center at ° and with 
arbitrary (sufficiently large) radius r parametrized in the standard manner; 
see Example SD. Consider, in particular, the functions ikeA) = A\ where k 
is a nonnegative integer. If d is any unital Banach algebra and xEd, the 
resolvent Rx has a power series expansion 
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about A = (fJ that is uniformly and absolutely convergent on any circle Cr 

with sufficiently large radius r (e.g., fOr r > II x II, see Proposition 12.11). 
Hence, choosing anyone such circle Cr , we have 

1 f (00 x.) fk(X) = -2' Ak L 1.+1 dA 
nl Cr .= 0 I\, 

00 [1 f dA] 
= ~ 2ni An-k+ I xn = Xk. 

n-O Cr 

In particular, if f(A) == 1, then f(x) = l..of' and if f(A) == A, then f(x) = x. 
Hence if peA) = !lo + ... + !lnAn is an arbitrary complex polynomial, then 
p(x) as defined by the Riesz-Dunford functional calculus coincides with 
the customary sense of p(x) (see Problem 2L). 

Example P. Suppose U denotes the open disc DR = {AE c: 1,11 < R}. If 
d is a unital Banach algebra and x IS an element of d, then 0' ..of(x) c U if 
and only if the spectral radius r ..of(x) is smaller than R (Prob. 12P). Moreover, 
if this is the case and if f E ff u, then f possesses a power series expansion 
f(A) = L~=o !ln An that converges to f uniformly on compact subsets of 
U (Th. 5.1). Hence, writingfN(A) = I~=o !lnAn, we see that 

N 00 
f(x) = lim fN(X) = lim L !ln Xn = L !lnxn. 

N--+rx n=O n=O 

(This power series expansion of f(x) is readily seen to be absolutely con
vergent, since r ..of(x) = limn-+oc II x· III/n < R.) 

Example Q. An element x of a unital Banach algebra d is, by definition, 
invertible in d if and only if 0 ¢ 0' ..of(x), which is to say, if and only if 0' ..of(x) is 
contained in the domain of the function l/l Moreover, if 0 ¢ 0' ..of(x) andf(A) = 
1/,1, thenf(x) has the property that xf(x) = f(x)x = 1..of. Thus x is invertible 
in d andf(x) = X-I is the inverse of x. It follows that if peA) and q(A) are 
polynomials, and if the zeros of q all lie outside 0' ..of(x), then 

(~)(X) = p(x)(q(X))-I. 

Hence the Riesz-Dunford functional calculus also extends the functional 
calculus introduced in Problem 12N. 

Proposition 17.24 tells us all we need to know about the dependence of 
f(x) on the functionj. It is also important to know something of howf(x) 
depends on x. 

Proposition 17.26. Let d be a unital Banach algebra, and let Xo be an element 
of d such that 0' ..of(xo) is contained in an open set U in the complex plane. 
Suppose given a sequence Un} of locally analytic functions on U converging 
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to a limit fo uniformly on compact subsets of U, and likewise a sequence 
{xn} in .91 converging to Xo (in norm). Then ,fn(xn) is defined for all suf
ficiently large n, and the sequence {fn(xn)} converges (in norm) to fo(xo). 

PROOF. Let y be a fixed oriented envelope of (J ".,(xo) in U, let Wy denote the 
range ofy, and let V = {A E U: w/.1.) = 1}. Then V is an open neighborhood 
of (J ".,(xo) so, by Proposition 12.14, (J ".,(xn) C V for all sufficiently large n, and 
,fn(xn) is defined for all such positive integers n (since y is also an oriented 
envelope of (J ".,(xn) in U). Moreover, the (continuous) function II Rxo(A) II is 
bounded on Wy , whence it foIlows (Prob. 12K) that for each positive number 
c there exists a positive () such that if II y - (A - xo)ll < () with A in Wy , 

then II y-l - Rxo(A) II < c. If no is chosen so that II Xn - Xo II < () for n > no, 
then II (A - xn) - (A - xo) II = II Xn - Xo II < () for all A, and therefore 
II RXn(A) - Rxo(A) II < c uniformly on Wy. Hence the sequence {fnRxJ 
converges uniformly to foRxo on WY' and therefore 

tends to 0 as n tends to infinity by Proposition 17.20. o 

The Riesz-Dunford functional calculus also transforms spectra correctly. 

Proposition 17.27. Ifd is a unital Banach algebra andfis a locally analytic 
function on some open neighborhood U of the spectrum of an element x of 
.91, then (J".,(f(x)) = f«(J".,(x)). 

PROOF. Since (IX - f)(x) = IX - f(x) it suffices to show thatf(x) is invertible 
in .91 when and only when the functionfhas no zero in (J".,(x). One way is 
easy enough. If f(A) fails to vanish on (J ".,(x), then {A E U : f(A) =1= O} is an 
open neighborhood of (J ".,(x) on which g(A) = 1If(A) is 10caIly analytic, and 
we have g(x)f(x) = f(x)g(x) = 1"." so g(x) is the inverse of f(x) in d. 
To go the other way, supposef(lX) = 0 for some IX in (J".,(x). Thenfcan be fac
tored as f(A) = (A - IX)g(A), where 9 is also 10caIly analytic on U. Hence 
f(x) = (x - IX)g(x) by Theorem 17.24, and if f(x) were invertible in .91, 
then x - IX would also be invertible (Prob. 12K), contrary to hypothesis. 0 

Our next result adds greatly to the flexibility of the Riesz-Dunford func
tional calculus and provides a suitable culmination of its discussion. 

Proposition 17.28. Let x be an element of a unital Banach algebra .91, let 9 be a 
locally analytic function defined on some open neighborhood U of (J ".,(x), and 
suppose given a second locally analytic function f defined on some open set 
U such that g«(J ".,(x)) C U. Thenf(g(x)) = (f 0 g) (x). 

PROOF. That the functionf(g(x)) is defined foIlows from the preceding result. 
Moreover, the set fA E U : g(A) E U} is an open neighborhood of (J ".,(x) on 
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whichf 0 g is defined and locally analytic, so (f 0 g)(x) is also defined. Finally, 
to establish the desired equality, we first choose an oriented envelope }'\ of 
g«(j .lAx)) in 0, and denote by V the (open) set {A EO: Wi',(A) = I}. Next we 
choose an oriented envelope }'2 of (j d(X) in the open set {A E V: g(A) E V}. 
Then (j d(g(X)) and the range of}'\ are disjoint, so 

1 f [1 f f(O ] 
= 2ni '12 2ni Y, ( - g(A) d( Rx(A)dA 

= -21 . f wy,(g(A))f(g(A))Rx(A)dA 
7rl Y2 

= (f 0 g)(x) 

since w)', (g(A)) = 1 for all A in the range of}'2' (The interchange of the order 
of integration is justified in Problem R.) 0 

The Riesz-Dunford functional calculus had its origin in the study of the 
algebra ICn. n of complex matrices, and was pursued further by Riesz, Dunford, 
and others, principally as a tool in the study of operators on Banach spaces. 
We close this discussion (and with it Chapter 17) with the consideration of a 
situation in which vectors once again play an indispensable role. 

Example R. Let ff be a Banach space, let T be an element of !t?(ff), and suppose 
the spectrum of T is disconnected. Let K and L be any two nonempty dis
joint compact sets in IC such that K u L = (j(T), and let U and V be disjoint 
open neighborhoods of K and L, respectively. Then V u V is an open neigh
borhood of (j(T) and the function 

f(A) = {I, A E U, 
0, A E V, 

is locally analytic on V u V. Let us write P = f(T). Then P is a bounded 
operator on ff such that p 2 = P (since F = n, and the idempotent P splits 
ff into the sum of two subspaces ,A = P(ff) and % = (l - P)(ff), so that 
each vector x in ff has a unique representation as x = y + z where y E ,A 

and z E % (see Problem 13D). Since (j(P) = {O, l} (Prop. 17.27), we have 
Oe #- P #- Ie, so neither oJ! nor % is trivial. Moreover, as an analytic 
function of T, the operator P doubly commutes with T. Hence if S is any 
bounded operator on ff that commutes with T and if Y E ,A, then Sy = SPy = 

PSy E,A also. This shows that S carries the subspace ,A into itself 
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(S(uH) c uH), a fact expressed by saying that uH is invariant under S, or is an 
invariant subspace of S. Thus uH is invariant under every bounded operator 
on g that commutes with T, a fact expressed by saying that uH is hyper
invariant for T, or is a hyperinvariant subspace of T. Similarly, of course, the 
subspace JV is hyperinvariant for T. Thus, for example, if S is any analytic 
function of T, then uH and JV are bOlh invariant under S. In particular, 
uH and JV are invariant under T itself, and we may and do define operators 
A and Bin 2(uH) and 2(JV), respectively, by setting 

A = TluH and B = TIJV. 

(Thus T(y + z) = Ay + Bz for all y in uH and z in JV.) 
Suppose now that a is a complex number such that a ¢ a(A) u a(B). Then 

setting 

S(y + z) = (a - A)-ly + (a - B)-lz, yEo/I, ZE JV, 

defines a bounded operator on g (indeed, 

IIS(y + z)11 :::; II(a - A)-llillyll + II(a - B)-lllllzll, 
so 

IISII :::; II(a - A)-lIIIIPII + II(a - B)-lllill - PII), 
and it is obvious that S = (a - T) - 1. Thus 

aCT) c a(A) u a(B). 

On the other hand, if a is a complex number such that a ¢ K, then the function 

giA) = {1/(0: - A), A E V, A # 0:, 
0, AE V, 

is locally analytic on (U\{a}) u V and satisfies the identity (a - A)giA) = 
f(A) there. Hence (a - T)ga(T) = giT)(a - T) = P, from which it follows 
at once that 

giT)luH = (a - A)-l, 

and therefore that a(A) c K. Similarly, of course, a(B) c L, and since 
K n L = 0, it follows that a(A) = K and a(B) = L. Thus the nontrivial 
splitting of the spectrum a(T) into the union of two relatively open subsets K 
and L actually gives rise to a nontrivial spatial splitting of the operator T, 
and permits one to construct a nontrivial hyperinvariant subspace for T. 

PROBLEMS 

A. Let p be a real number such that I < P < + 00, let q be the Holder conjugate of p, 
and let (X, S, 11) be a measure space. 
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(This inequality is also known as the Holder inequality.) (Hint: Review the 
proof of the Holder inequality in Example 11 B.) 

(ii) Use the preceding result to establish the triangle inequality for the pseudonorm 
II II p on !t? p(X). In other words, verify that 

1, 9 E !t? veX). 

(This inequality is also known as the Minkowski inequality.) 

B. Let (X, S, /1) be a measure space, and suppose p, q, and I" are positive real numbers 
such that I/p + I/q + 1/1" = 1. Show that iff, g, and h are elements of !t?/X), 
!t?iX), and !t?r(X), respectively, then 

II Igh III s II I lip II 9 Ilq II h Ilr· 

(Hint: If s = 1 - l/r, then ps and qs are Holder conjugates, as are rand l/s, and 
I I II/s and Ig II/s belong to !t? p,(X) and !t? q,(X), respectively.) Show, in general, that 

if j;E!t?p,(X), i = 1, ... , k, where I/PI + ... + I/Pk = 1, then IIII···.hlll s 
II II Il pl ... II Ik Il pk · 

C. Let (X, S, /1) be a measure space, let p be an extended real number such that 
1 s p s + 00, and let Un}:= I andlbe functions in !t? p(X). 

(i) Show that limn II I - In lip = 0 implies that {.f~} converges to lin measure (see 
Problem 7X), but does not imply that {In} converges tola.e. [/1] when p < + 00. 

(ii) Show, on the other hand, that if p < + 00 and if Un} converges to lin the norm 
II lip, then some subsequence of Un} converges to I a.e. [/1]. (Hint: Select 
{f~k} so that 

I II Ink+ I - Ink lip < + 00.) 
k 

(iii) Show that, in any case, if Un} converges to lin the norm II lip, and if all of the 
functionsfn vanish a.e. [/1] on some measurable set E, thenf = 0 a.e. [/1] on E. 

D. Let (X, S, Ii) be a measure space, let p be a real number, 1 s p < + 00, and let 
Ibe a function belonging to !t? p(X). Prove that if Un};;"= I is an arbitrary sequence 
of measurable functions on X that converges to I a.e. and satisfies the condition 
I In I s I I I a.e., n EN, then {In} converges to I in norm in !t? p(X). Use this fact to 
show that if I E!t? p(X) for some p, I s P < + r:f), and if {En} is an increasing sequence 
of measurable sets in X such that I vanishes outside Un En' then the sequence 
Uxd converges to I in !t? p(X). Conclude also that the linear manifold [I' of 
integrable simple functions on X is dense in !t? p(X) for every p, 1 s P < + 00. (Hint: 
Recall Problem 6S, and use the fact that every function I in !t? p(X) has a-finite 
support (Prob. 7J).) 

E. Let (X, S, /1) be a measure space, and suppose I s p s + r:f). 

(i) Let E be a measurable subset of X, and let !t? E denote the set of all those functions 
in !t? p(X) that vanish a.e. [/1] on X\E. Show that !t? E is a subspace of !t? /X), 
and thatr --+ I I E defines an isometric isomorphism of !t? E onto !t? peE, Sf:' /11 E). 
(It is frequently convenient to use this isomorphism to identify !t? E with!t? iE).) 

(ii) Let {E 1, ••• , Em} be a partition of X into disjoint measurable sets, and let the 
subspace !t? E, of !t? p(X) be identified with !t? peE;), i = I, ... , m, as in (i). Then 
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Sf p(X) is naturally isometrically isomorphic to the direct sum 

2'p(EI) EBp'" EBp2'p(Em) 

(see Problem II T). State and prove the analogous result for a countable par
tition of X. 

F. Show that if't is any countable covering of a measure space (X, S, /1) by measurable 
sets, then UEE'Ii 2' E spans 2' p(X) as a Banach space for aliI ~ p < + 00. Show also 
that this result is not true in general for p = + 00. 

G. Let (X, S, /1) be a finite measure space and suppose that I ~ P ~ + 00. Let 9 be a 
measurable function on X with the property that the product fg is integrable [/1] 
whenever f E 2' p(X). Show that 9 must then be an element of 2' q(X), where, as 
usual, lip + Ilq = I (if p = I, then q = +00; if p = +00, then q = I). (Hint: If 
the function 9 is bounded, and therefore does belong to 2'q(X), then the norm of the 
functional f ---+ Sfg d/1 on 2' p(X) is given by II 9 Ilq (cf. Theorem 17.5 for the case 
1< p < +(0). Let En = {xEX:lg(x)1 ~ n}, set gn = gXE", and recall Example 
12V.) Extend this result to a a-finite measure space. 

As a matter of fact the result of Problem G holds for any locally finite 
measure space (X, S, /1). To see this one may verify first that if a measurable 
function 9 on a locally finite measure space does not have IJ-finite support, 
then there exist a positive number eo and a disjoint sequence {En} of 
measurable sets of finite measure such that 1 ::; /1(En) < + OCJ for alln and 
such that Un En is contained in the set {x EX: Ig(x)1 :::0: eo}. From this 
point it is easy to see that a function having the property stated in Problem 
G for some p > 1 must have IJ-finite support, and the result then follows 
from Problem G itself. To take care of the case p = 1, one may verify 
directly that if 9 is an unbounded measurable function on a locally finite 
measure space, and if {An} is an arbitrary monotone increasing sequence 
of positive real numbers. then there exists a corresponding disjoint sequence 
{E,,} of sets of positive finite measure such that Ig(x)1 :::0: An for all x in En. 
and then use this observation to show that there exists an integrable 
function f on Un En such that jg is not integrable. 

H. Let (X, S, /1) be a measure space, and let p and q be an arbitrary pair of positive 
numbers. Show that if I/r = lip + Ilq, and iffand 9 belong to 2'p(X) and 2'iX), 
respectively, thenfg belongs to 2'r(X) and 

In particular, if p, q > I and if lip + Ilq ~ I, so that r ~ I, then setting 

<I{f, g) = fg 

defines a bounded bilinear to transformation of the Banach space 2' iX) EBI 2' q(X) 
into 2'r(X) (see Problem 12W for definitions). What is the norm of<l>? (Hint: plr and 
qlr are Holder conjugates.) 

I. Let (X, S, /1) and (Y, T, v) be a-finite measure spaces, and let f be a measurable 
function on the product (X x Y. S x T) with the property that the function 

II flip.)' = lLI f(x, y)IP d/1(X)TP 

398 



17 Banach spaces and integration theory 

is integrable [v] over Y. (Note that II f II p. y is a measurable function on Y by Lemma 
9.1.) Show that the function 

I f/(X, y)dv(y) IP 

is integrable [.u] over X, and that 

[Llf/(X,y)dV(y)IP d/l(X)r
p 

::; f)lfllp.rdV(y). 

(Hint: Show that it suffices to treat the case of a nonnegative simple function of the 
form 

I tijXEixFj 
Lj 

where {E 1, ••• , Em} and {F I, ... , F n} are disjoint collections of measurable subsets 
of X and Y, respectively.) Show also that this version of the Minkowski inequality 
implies Lemma 17.3. 

J. If(X,S, /l)is a finite measure space, and ifp and p' are extended real numbers such that 
I ::; p < p' ::; + 00, then 2 p.(X) is contained (as a subset) in 2 p(X) (Ex. A). Show 
that the inclusion mapping i of 2 p.(X) into 2 p(X) is bounded. Conclude that 
2 p.(X) is a dense, first category, linear submanifold of 2 p(X) (except when X 
consists entirely of a finite number of atoms, in which case 2 p(X) and 2 p.(X) are 
simply C" in two different norms). (Hint: Use the Holder inequality to show that 
II i II = /l(XYP' - p)jpp' and recall Problem SS.) Show, finally, that integration with 
respect to /l (f -+ Ix f d/l) is a bounded linear functional on 2/X) for all p, 1 ::; p 
::; + 00. 

K. Let (X, S, /l) be a measure space, let p and q be Holder conjugates, and let E be a 
measurable subset of X. If we identify 2/E) with the subspace 2 E of 2/X) as in 
Problem E, and also identify 2p(X)* with 2q(X) as in Example H, what subspace 
of fEiX) becomes the annihilator fElE)"? 

L. Let (X, S, /l) be a measure space, and let p be a real number, 1 ::; P < + 00. 

(i) SupposeR is a ring of sets of finite measure with respect to /l such that R gener
ates S as a O'-ring, and let 8 be a separable Banach space. Demonstrate that the 
collection of simple mappings of the form 

n 

L = IXEiVj, EjE R, vj E8, i = I, ... , n, 
i=l 

constitutes a dense linear manifold in 2/X; 8). In particular, then, this is 
true for 8 = C. (Hint: Recall Problem SM.) 

(ii) Suppose that X is a locally compact Hausdorff space (Prob. 3V) and that /l is a 
regular Borel measure on X (see Chapter 10), and let 8 be a separable Banach 
space. Prove that the continuous mappings in 2 p(X; 8) likewise form a dense 
linear manifold in 2/X; 8). (In particular then, this is true when 8 = C; 
cf. Proposition 10.7.) 

M. A mapping <1>: X -> 8 of a measurable space (X, S) into a Banach space 8 is said 
to be weakly measurable iffor each linear functional fin 8* the function x -> f(<1>(x)) 
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is measurable. It is obvious that a measurable mapping is weakly measurable. Show, 
conversely, that if ff is separable, then every weakly measurable ff-valued mapping 
is actually measurable. (Hint: Let {vn } be a sequence of vectors that is dense in ff, 
and for each n let In be a linear functional on ff with II In II = 1 andfn(vn) = II Vn II 
(Cor. 14.11). Show that for any vector v in ff we have II v II = supn I In(v) I, and note 
that if <I> is weakly measurable, then for any vector Uo in ff the function 
supn I In( <I>(x) - uo) I is measurable.) 

N. Let (X, S, J.1) be a measure space, and let ff be a Banach space. Prove that if <I> is a 
measurable mapping of X into ff and 'P is a measurable mapping of X into the dual 
space ff*, then x --> 'P(x)(<I>(x» is a measurable complex-valued function on X. 
Show also that if p and q are Holder conjugates, and if <I> and 'P belong to !l' /X; ff) 
and !l' q(X; ff*), respectively, then 

{I 'P(x)(<I>(x»I dJ.1(x) :-:;; 1II<I>llIplll'Plllq. 

Hence, setting Q(<I» = Ix 'P(x)(<I>(x»dJ.1(x) defines a bounded linear functional on 

!l' /X; ff) satisfying II Q II :-:;; III 'P Illq. Show that if ff* is separable, then II Q II = 
III 'P Illq. and verify the analogous facts for p = 1 and q = + 00. (Hint: Recall Problem 
14R.) 

The foregoing result, along with the absence of any obvious counter
examples, inspires the hope that it may be possible to identify!.£' iX; 6')* 
with ff' q( X; 6'*) just as is done in the special case 6' = 6'* = C. And with 
suitable restrictions on the measure space (X, S, /1) and the Banach space 
6', this is indeed the case, but the proof is surprisingly difficult. The in
terested reader may consult [37] or [15, 16, 17] for a full account of this 
matter. (There are, to be sure, special cases in which the verification is 
simpler.) 

O. Suppose (X, S, J.1) and (Y, T, v) are finite measure spaces (or O"-finite at worst; the 
Fubini theorem will be needed), and consider the space !l' p(X x Y, S x T, J.1 x v). 
Iffor eachfin !l'/X x Y) and each x in X we write fxCy) = f(x, y), thenfx E !l'p(Y) 
for almost every x. Show that setting <I> /x) = fx defines a measurable mapping 
<l>f of X into !l'p(Y) that satisfies III <l>f Illp = II f lip. Show also that the correspon
dence <I> f --> fis an isometric isomorphism between !l' /X; !l' p( Y» and !l' p(X x Y), 
and conclude that it is possible to identify !l'/X; !l'p(Y»* with !l'q(X; !l'p(Y)*), 
where q denotes the Holder conjugate of p (if p = 1, then q = + 00). (Hint: <I> f is 
clearly measurable if I is of the special form 

f = L Ai) XEi x Fj , 

i. j 

where {E 1, • •• , Em} and {F 1' ... , Fn} are disjoint collections of measurable subsets of 
X and Y, respectively.) 

P. Let,ff be a Banach space, let [a, b] be a real interval (a:-:;; b), and let <I> and ex be, 
respectively, a bounded g'-valued mapping and a bounded complex-valued function 
defined on [a, b]. 
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if [J}i and [J}i' are arbitrary partitions of [a, b J with mesh .of, [J}i' < b and if I: 
and I:' are arbitrary Riemann-Stieltjes sums for <1> with respect to rx based on 
,J}> and [J}i', respectively, then II I: - I:' II < e. Verify also that if the integral 
S~ <1>(t)drx(t) does exist, and if e and b are as stated, then 

II I: - f <1>(t)drx(t) II ~ f, 

for any Riemann-Stieltjes sum I: for <1> with respect to rx based on a partition 
{JI of [a, b J such that mesh [J}i < b. 

(ii) Use the foregoing Cauchy criterion to prove Propositions 17.16 and 17.17. 
(iii) Suppose rx is rectifiable, let '1 be a nonnegative number, and let <I> be a second 

g-valued mapping defined on [a, b J such that II <1>(t) - <I>(t) II ~ '1 for all 
a ~ t ~ b. Suppose also that for a given positive number e there exists a positive 
b with the property that II <1>(t) - <1>(t') II < e for all t, t' in [a, b J such that 
'1 t - t'l < b. Show that if [J}i and {JI' are partitions of [a, b] such that mesh 
[J}i, [J}i' < b and I: and I:' are Riemann-Stieltjes sums for <1> and <I> with respect 
to rx based on [J}i and [J}i', respectively, then II I: - I:' II < L(2e + '1), where L 
denotes the length of rx. (Hint: See Problem SD.) In particular, if I: and I:' are 
both Riemann-Stieltjes sums for <1> with respect to rx based on [J}i and [J}i', 

respectively, then II I: - I:' II < 2Le. Complete the proof of Proposition 17.18, 
and verify that if <1> is continuous on [a, b J, and if /; and b are related as above, 
then 

for any Riemann-Stieltjes sum I: for <1> [I for <1>] with respect to rx based on 
any partition .J}> of [a, b J with mesh .Jf' < b. 

Q. Let g be a separable Banach space, let [a, b J be a real interval (a ~ b), and let <1> 

and rx be, respectively, a continuous g-valued mapping and a rectifiable complex
valued function defined on [a, b]. Show that the Riemann-Stieltjes integral 
S~ <1>(t)drx(t) is equal to the Lebesgue integral I[a.h] <1> d(., where (, denotes the 
Stieltjes-Borel measure associated with the integrator rx (Ex. 8K). (Hint: If rx is 
right-continuous, then each Riemann-Stieltjes sum for <1> with respect to rx is the 
integral [(oJ of a step function that approximates <1>.) 

R. Let rJ. and (3 be functions of bounded variation on real intervals [a, b] and [c, d], 
respectively, and suppose'll is a continuous Banach space valued mapping defined 
on the rectangle [a, b J x [c, dl Show that 

f[{'¥(S, t)d{3(t)}rJ.(S) = f[f'¥(S' t)drx(S)}{3(t). 

(Hint: See Problem SL.) 

S. Let g be a Banach space, let T be an element of 2'(g), and let f be a locally analytic 
complex-valued function defined on some open neighborhood of (J(T). Show 
that (f(T))* = f(T*). (Hint: Recall Example 16G.) 

T. If.f1i and ~ are Banach algebras and if p is a bounded linear transformation of s1 
into ~ that is also an algebra homorphism (Prob. 2L), then p is called a Banach 
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alyehra homomorphism. Likewise, if d and ~ are both unital Banach algebras, then 
an algebra homomorphism p of d into ~ is called unital if p(1,<1) = 1@. Verify that 
if p is a unital Banach algebra homomorphism of d into ~ and if x is an arbitrary 
element of sf, then IT@(p(x» C IT ,<1(x). Show also that if a complex-valued function 
fis defined and locally analytic on some open neighborhood of IT ,<1(x), then[(p(x» = 
p(f(x». 

U. Let.vI be a Banach algebra, and for each element a of d let us write L(a)x = ax 
and R(lI)x = xa, x E .vI. (The operators L(lI) and R(a) are called left and right multi
plication by a, respectively.) 

(i) Show that L(a) and R(a) both belong to Y(d) for every a in .vI. Demonstrate 
also that if d is unital, then the collection of all right multiplications by elements 
of d constitutes the commutant in Y(d) of the collection of all left multipli
cations by elements of d. Show, that is, that a bounded operator Ton d is of 
the form R(b) for some (uniquely determined) element h of d if and only if T 
commutes with every operator of the form L(lI)' Show that the analogous 
assertions with "left" and "right" interchanged are also valid. (Hint: Consider 
right multiplication by the element TI,<1') 

(ii) Show that if .vI is a unital Banach algebra, then setting 

aEd, 

defines an isometric unital Banach algebra isomorphism of d into Y(d) that 
preserves spectra, and conclude that iffis locally analytic on some open neigh
borhood of an element a of d, then LUla» = J(L(a»' What are the analogous 
facts concerning right multiplications? 

V. If a and h are elements of a Banach algebra d, then an element x of d is said to 
intertwine a and b if ax = xb. Show that if x intertwines elements a and b of a unital 
Banach algebra d, and if a complex-valued function J is locally analytic on some 
open neighborhood of the union IT ,<1(a) u IT ,<1(b), then x also intertwinesJ(a) andJ(b). 
Conclude that if x is invertible in d, so that b = x-lax, and ifJis locally analytic 
on an open neighborhood of IT ,<1(a), then[(b) = x-l[(a)x. (In particular, if a and b 
are similar in d, then so aref(a) and[(b): cf. Problem 120.) (Hint: Show first that 
x intertwines the resolvents Ra(A) and Rh(A) whenever A fj: IT ,<1(a) u IT ,<1(b).) Conclude, 
finally, that if the spectra of a and h with respect to d are disjoint, then a and b 
are intertwined only by x = O. (Hint: Adapt the construction in Example R to 
show that if x intertwines two elements of d with disjoint spectra, then x also 
intertwines 1." and 0".) 

W. (Rosenblum [56J) Suppose that d is a unital Banach algebra and that a and bare 
elements of .vI such that IT.Aa) n IT,<1(b) =0. Show that for each element q of d 
the equation ax - xb = q has a unique solution in .vI, and that this solution is given 
by 

where i' denotes an oriented envelope of IT ,<1(b) in C\IT "..(a). (Hint: a = ( - «( - a) 
for every complex number (.) Conclude that the linear transformation x --> ax - xh 
is an invertible operator on .vI when a and h have disjoint spectra. (Hence, in 
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particular, if A and B are bounded operators on a Banach space ~, and if 
a(A) n a(B) = 0, then T ~ AT - TB is an invertible operator on 2'(6").) 

The notion of an invariant subspace for an operator on a Banach space 
(Ex. R) has played a major role in the development of operator theory for 
reasons that may be briefly stated. In the classically familiar setting of 
operators on finite dimensional spaces (where no serious topological con

siderations come into play) invariant subspaces always exist in adequate 
supply and are used extensively in studying the structure of such operators. 
(See, for example, Problem 2P.) It is natural to ask how much of the clas
sical programs can be carried over to the infinite dimensional case, and, 
in that connection. to inquire into the existence (and abundance) of in
variant su bspaces for operators on infinite dimensional spaces. Concerning 
this question little is known in the general case. In particular, the general 
invariant suhspace problem, that is, the question whether an ,]rbitrary 
(bounded, linear) operator 011 an arhitrary infinite dimensional Banach 
space g necessarily possesses a nontrivial invariant subspace, remains open 
as of this writing. (The subspaces g and (0) are trivially invariant under 
any operator T on 6'; any other invariant subspace is said to be non
trivial.) Moreover, there is no infinite dimensional Banach space of which 
it is known that every operator on that space has a nontrivial invariant 
subspace (though impressive progress has been made in the case of opera
tors on Hilbert space). But while the invariant subspace problem in general 
has proved to be intractable, there are many important classes of operators 
for which it has been solved, in the sense that it has been shown that every 
operator of that class possesses nontrivial invariant subspaces. Thus 
Example R itself may be viewed as a solution of the invariant subspace 
problem for the class of operators having disconnected spectra. 

As was noted at the time, the subspaces constructed in Example R, by 
integrating the resolvent of an operator T around some proper subset of 
its spectrum, are not just invariant for T -they are hyperinvariant. More
over, many other techniques employed to construct invariant subspaces 
actually produce hyperinvariant ones. For this reason interest has arisen 
in recent years in the hyperinvariant subspace problem: Does every non
scalar (bounded, linear) operator on an arbitrary infinite dimensional Banach 
space possess a nontrivial hyperinvariant subspace? (A scalar operator, 
that is, an operator of the form !Yo, on a Banach space g, is readily seen to 
have no hyperinvariant subspaces other than {f and (0); every nonscalar 
operator on a finite dimensional space possesses nontrivial hyperinvariant 
subspaces. Cf. Problem X below.) The purpose of the following two prob
lems is to permit the reader to employ a number of the facts and techniques 
he has been studying while acquainting himself with a solution of the 
hyperinvariant subspace problem for an important class of operators. 

X. Let ~ be a Banach space. If E is any subset of 6" and .Y any subset of 2'(6"), then E 
is said to be invariant under :Y (or jor :Y), and :Y is said to leave E invariant, if 
T(E) c E for every T in :Y. Show that if 2' is a linear submanifold of 6", then the 
collection of all elements of 2'(6") leaving 2' invariant forms a linear subalgebra of 
2'(6") containing the identity It,', and also that 2'- is invariant under every operator 
leaving 2' invariant. Show, in the converse direction, that if d is an arbitrary sub
algebra of 2'(6"), then the collection of all of the subspaces of 6" left invariant by d 
is a complete sublattice of the lattice of all subspaces of 6" (Cor. 11.8). (This lattice 
is the lattice of invariant subspaces of .91.) In particular, if 1,,0 E d, then the smallest 
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invariant subspace for d contammg a vector Xo is the closure of dxo = 

{Txo : TEd}. A subalgebra of :.t(tS') is said to be transitive if its lattice of invariant 
subspaces is trivial, i.e., consists only of tS' and (0). 

(i) Show that a subalgebra d of :.t(tS') is transitive if and only if dx is dense in tS' 
for every x # 0 in tS'. Show also that an element T of :.t(tS') fails to possess any 
nontrivial invariant subspaces if and only if the algebra £!lI(T) of all poly
nomials in T is transitive. (Such an operator T is also said to be transitive. 
Whether transitive operators exist or not is, of course, the substance of the 
general invariant subspace problem.) 

(ii) Show that for any subset ff of :.t(tS') the commutant ff' (Prob. U) is a sub
algebra of :.t(tS') containing the identity It, and that an element T of Y(tS') 
fails to possess any nontrivial hyperinvariant subspace if and only if the com
mutant {T}' is transitive. 

(iii) Prove that :.t(tS') and the subalgebra ICl t = {lXt : IX E IC} are commutants of 
one another. (Thus Clc is the center of :.t(tS').) Prove also that :.t(tS') is transi
tive, and conclude that the scalar operators IXc, IX E C, do not possess any non
trivial hyperinvariant subspaces. 

(iv) Show that for each element T of Y(tS') both the kernel .X'"(T) and the range 
8t(T) are invariant under the commutant {T}', and use this fact to show that 
if T is an element of :.t(tS') that does not possess any nontrivial hyperinvariant 
subspaces, and if T is not a scalar operator, then both T and T* must have 
empty point spectrum (Ex. 12S). (Hint: {IX - T}' = {T}' for every complex 
number IX; recall Problem 16I.) 

Y. (Lomonosov) A linear transformation K of a Banach space tS' into a Banach space 
g; is compact if K(tS'j) is totally bounded in g;, i.e., ifK(tS'])- is a compact subset 
of g; (in the norm topology). (See Problem 4Q.) Prove that every compact linear 
transformation of g into :F is automatically bounded, and possesses thl'" property 
that it carries every bounded subset of tS' onto a totally bounded subset of g;. Show 
also that a linear transformation K of tS' into g; is compact if and only if it possesses 
the property that for every bounded sequence {xn} in tS' the sequence {Kxn} has a 
convergent subsequence. 
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(i) Let K be a compact linear operator on an infinite dim~nsional Banach space 
<ff. Show that if IX is a nonzero complex number such that IX - K is not bounded 
below, then IX is an eigenvalue of K. (Hint: If {x n } is a sequence of unit vectors 
in <ff such that II (IX - K)xn II ..... 0, and if Kxn ..... Xo, then II Xo II = limn II KXn II = 

I IX I > 0, and Kxo = IXXo.) Use this fact to prove that every IX # 0 in (J(K) is an 
eigenvalue either of K or of K*, and conclude that a compact operator on tS' 
that does not have any nontrivial hyperinvariant subspace is necessarily 
quasinilpotent. (Hint: No scalar operator IXl. # 0 is compact on tS' since tS' is 
infinite dimensional (Prob. lIP); recall Problem 120 and Problem x.) 

(ii) Let K be a compact operator on an infinite dimensional Banach space <ff such 
that II K II = 1, and suppose K does not have any nontrivial hyperinvariant 
subspace. Show first that there is a vector Xo in <ff such that II Xo II > I and 
II Kxo II > 1, and hence such that neither the open ball U = Xo + tS'~ nor the 
compact set D = K(U)- contains the origin o. Then prove that there exists a 
finite set {T(l 1, ... , T(Pl} of operators belonging to the commutant {K}, such 
tha t the sets 

i = 1, ... , p, 
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cover D. (Hint: According to Problem X the sets WI = {x E 6": Tx E U}, 
T E {K}', cover 8\ to}, and 0 ~ D.) Next construct an infinite sequence of 
operators {T,,};~ I such that each T" is one of the special operators T(Il, ... , T(P), 

and such that if we write 

then PnXo E U for every positive integer n. Finally, use this sequence to show 
that there exist positive numbers Go and M such that Mn II Kn IIII Xo II ;:: Go > 0 
for all n, and conclude that lim infn II K n III/n is necessarily strictly positive. 
(Hint: Set 80 = II Xo II - 1, and use the fact that the sequence {T,,} is uniformly 
bounded.) 

(iii) Combine the results of (i) and (ii) to show that every nonzero compact operator 
on an infinite dimensional BanaCh space possesses a nontrivial hyperinvariant 
subspace. (Hint: Recall the formula for the spectral radius obtained in Problem 
\SG.) 
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Banach spaces of the form ~(X), where X denotes a compact Hausdorff 
space, have already appeared on numerous occasions (see, in particular, 
Example 11 F). In this chapter we develop some special information regarding 
these spaces that constitutes an essential part of the general theory of normed 
spaces. Our first project is to find the dual of such a space, and to this end 
we employ the material of Chapter to. 

Definition. Let X be a locally compact Hausdorff space, and let B denote the 
a-ring of Borel subsets of X. If e and ( are complex Borel measures on X 
the sum e + ( is defined setwise: 

(e + ()(E) = e(E) + ((E), E E B. 

Similarly, if IX is a complex number, then lXe is defined setwise: 

(lXe)(E) = lXe(E), E E B. 

The collection of all complex Borel measures on X, which is clearly a 
linear space with respect to these setwise linear operations, will be de
noted by A(X). 

There is a natural and useful norm on the space A(X). (In this connection 
we recall that the total variation of a complex measure e is denoted by 1 e I. 
For a discussion of the total variation of a complex measure see Chapter 8.) 

Proposition 18.1. The function II e II = I e I (X) is a norm on oh'(X) (called the 
total variation norm) with respect to which .h'(X) is a Banach space. 

PROOF. It is clear that II e II = 0 if and only if e is the zero measure, and that, 
if e is any complex Borel measure on X and IX is any complex number, then 
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II C(~ II = I C( III ~ II. Moreover, if ~ and ( are two elements of Jt(X), and if 
{E 1, ... , E p} is any partition of X into Borel sets, then 

p p p 

L I~(E;) + (Ei)1 ~ L I~(E;)I + L I(E;) \ ~ II ~ 1\ + 1\ (1\ 
i= 1 i= 1 i= 1 

and therefore II ~ + (II ~ II ~ II + II (II· Thus we have proved that II II is a 
norm on Jt(X). All that remains is to show that Jt(X) is complete in this 
norm. 

Let {~n} be a sequence of complex Borel measures that is Cauchy in the 
total variation norm. Then for anyone Borel set E we have I ~m(E) - ~n(E) I :$ 

II ~m - ~n II, so {~n} converges setwise to a set function ~ on the a-ring B of 
Borel subsets of X, and it is obvious that ~ is finitely additive. Hence, to prove 
that ~ is a complex Borel measure, it suffices to show that ~ is semicontinuous 
(see Problem 7E). Let {En} be an increasing sequence of Borel sets in X with 
union E, and let 8 be a positive number. Choose N such that II ~m - ~n II < 8/3 
for m, n ~ N, and then choose K such that I ~N(Ek) - ~N(E) I < 8/3 for all 
k ~ K. Then limn I ~N(F) - ~n(F) I = I ~N(F) - ~(F) I :$ 8/3 for every Borel 
set F, so we have I ~N(Ek) - ~(Ek) I ~ 8/3 and likewise \ ~N(E) - ~(E) I ~ 8/3. 
Thus altogether I ~(Ek) - ~(E) I < 8, and since this holds for all k ~ K, the set 
function ~ is a complex Borel measure. 

Finally, for any 8 > 0, if II ~m - ~n II < G for m, n ~ N, as above, and if 
{E 1, ... , E p} is a partition of X into Borel sets, then 

p 

L I ~m(E;) - ~n(Ei) I < 8 
i=1 

for all m, n ~ N. Letting n tend to infinity, we obtain 

p 

L I (",(E;) - (E;) I :$ G 
i= 1 

for all m ~ N. Thus II ~'" - ~ II :$ 8 for all m ~ N, and the proposition is 
proved. 0 

Among the complex Borel measures on a given compact Hausdorff 
space a special role is played by the regular ones, as we have seen (Ch. 10, 
p.194). 

Proposition 18.2. On any compact Hausdorff space X the collection jlo(X) of 
all regular complex Borel measures is a (closed) subspace of Jt(X). If X is 
metrizable then Jt o(X) = Jt(X). 

PROOF. A complex Borel measure ~ on X is regular if and only if for each 
Borel set E in X and positive number 8 there exist a compact set K and an open 
set V in X such that K c E c V and such that I ~ I (U\K) < 8. In view of 
this criterion it is obvious that if ~ is a regular complex Borel measure on X 
and IX is a complex number, then C(~ is also regular. To see that Jt o(X) is 
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closed with respect to the formation of sums, let ~ 1 and ~ 2 be regular complex 
Borel measures on X, let E be a Borel set, and let 10 be a positive number. 
Then there exist compact sets K 1 and K 2 and open sets V 1 and V 2 such that 
Ki c E C Vi and l~d(Vi\Ki) < 10/2, i = 1,2. But then K = Kl U K2 c E, 
E c V = VI n V 2, and we have 

Thus .,It o(X) is a linear manifold in .,It(X). We show next that .,It o(X) is 
closed. 

Let {~n}:'= 1 be a sequence in .,It o(X) that converges to some limit ~ in 
.,It(X). We must show that ~ is regular. To this end let E be a Borel set in X, 
let 10 be a positive number, and let N be a positive integer such that 
II ~n - ~ II < 10/3 for all n ~ N, so that II ~n - ~m II < 210/3 for all m, n ~ N. 
Choose a compact set K and an open set V such that K c E c V and such 
that I~NI(V\K) < 10/3. Then 1(I~nl - I~NI)(V\K)I < 210/3 for n ~ N (see 
Problem A) and, letting n tend to infinity, we find that 1(1 ~ I - I ~N I)(V\K) I :::;; 
210/3. Hence 

210 10 
I~I(V\K) < 3 +"3 = 10, 

which shows that .,It o(X) is closed. Finally, the fact that every complex 
Borel measure on a compact metrizable space is regular is a 'consequence of 
Corollary 10.6. 0 

The following theorem is one of the two main results of this chapter. 

Theorem 18.3 (Riesz Representation Theorem). Let X be a compact Hausdorff 
space. Thenfor each functional (fJ in ~(X)* there is a unique, regular, com
plex Borel measure ~ in .,It o(X) such that 

(fJ(f) = (fJ~(f) = Lf d~, f E ~(X). (1) 

Moreover, the correspondence ~ --+ (fJ~ in (1) is an isometric isomorphism 
between ~(X)* and the Banach space .,It o(X). 

PROOF. It has already been seen (Prop. 10.16) that for any complex Borel 
measure ~ on X, regular or not, the functional (fJ~ defined in (1) is linear and 
satisfies the inequality II <p~ II :::;; I ~ I (X) = II ~ II. Moreover (Prob. 101), we 
also know that II (fJ, II = II ~ II when ~ is regular (this establishes the uniqueness 
of ~, since it is clear that the correspondence ~ --+ (fJ ~ is linear). Thus the 
proof will be complete if we show that for each (fJ in ~(X)* there exists a 
regular complex Borel measure ~ on X such that (1) holds. To see that such a 
~ exists we note that qJl (f) = Re qJ(f) and qJ2 (f) = 1m qJ (f) are bounded 
real linear functionals on the space ~ [J;l(X) of continuous real-valued functions 
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on X. Moreover, if we assume that f.11 and f.12 are regular signed Borel 
measures on X such that 

Re cp(f) = If df.11 and 1m cp(f) = If df.12 (2) 

for every f in ~ Iffi(X), then c; = f.11 + if.12 is a regular complex Borel measure, 
and cp and cp~ agree on the real functions in ~(X) by (2). But then, of course, 
cp = ((J~ on all of ~(X). (It should be noted, here and below, that since the 
space X is compact by hypothesis, all (signed) Borel measures on X are 
finite-valued, and are therefore complex Borel measures.) Thus it suffices 
to prove the following real version of the theorem. 0 

Theorem 18.4. Let X be a compact Hausdorff space. Then for each bounded 
linear functional cp on the real space ~ Iffi(X) of continuous real-valued 
functions on X there is a unique signed measure f.1 in .It o(X) such that 

(3) 

Moreover, the correspondence f.1 -+ CPI1 in (3) is an isometric isomorphism 
of the real Banach space ~ Iffi(X)* onto the real Banach space .It Iffi, o(X) of all 
regular signed Borel measures on X. 

PROOF. As was noted above, all that is really necessary is to show that there 
exists a regular signed Borel measure f.1 such that (3) holds. To this end we 
define a new functional cp' on the collection (JJ> of nonnegative functions in 
~ Iffi(X) by setting 

cp'(f) = sup cp(g), f E flJ, (4) 
O$9$j 

where, as indicated, the supremum is taken over all those continuous real 
functions g on X such that 0 ::; g ::; f. Since g = 0 and g = I are two such 
functions, we see that cp'(f) ~ 0 and cp'(f) ~ cp(f) for every lin (JJ>. Moreover, 
we have cp'(f) ::; II cp IIII f II for every f in (JJ>. 

It is clear from the definition (4) that if I belongs to [1}J and if t is a non
negative number, then q/(tf) = «P'U). We show next that q/ is also additive. 
Indeed, if 0 ::; gj ::; i;, whereij, Yj E;J/, i = 1,2, then 0::; gl + g2 ::; II + 12' 
from which it follows that cp(g I) + cp(g 2) ::; ((J'(fl + f2), and hence that 
cp'(j;) + CP'(j2) ::; cp'(j; + i2)' On the other hand, if 0::; g ::; fl + f2 
where g E(JJ> , and if we write 

g' = g 1\ fl and gil = g - g', 

then it is readily verified that 0 ::; g' ::; II and 0 ::; gil ::; f2' Hence cp(g) = 
cp(g') + cp(g") ::; CP'(fI) + CP'(f2), and it follows that 

CP'(f1 + 12) ::; CP'(fI) + q/(f2)' 

Thus CP'(f1 + 12) = CP'UI) + q/(2)' 
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We next extend q/ to ~IRI(X) by setting 

q>'(f) = q>'(f+) - q>'(f-), 

and verify that q/ thus extended is a linear functional. Indeed, if t ~ 0, then 
(tf)+ = tf+ and (tf)- = tf-, so we have 

q/(tf) = tcp'(f+) - tcp'(f-) = tcp'(f). 

On the other hand, if t ~ 0, then (tft = -tf- and (tf)- = -tf+, so 

cp'(tf) = cp'( -tf-) - cp'( -tf+) = tcp'(f). 

Thus cp' is homogeneous. In order to verify additivity, let /1 and 12 be two 
functions in ~ IRI(X) and let us write h = It + Ii - (f1 + 12t. Then 
h ~ O,so 

cp'(ft) + cp'(fi) = cp'(ft + Ii) = CP'«(f1 + 12)+) + cp'(h). 

On the other hand, we also have h = II + I:; - (f1 + 12)-' and therefore, 
as above, 

CP'(fI) + cp'(f:;) = CP'«(f1 + 12)-) + cp'(h), 

whence it follows at once that CP'(f1 + 12) = CP'(f1) + CP'(f2)' 
Thus, summarizing, we see that cp' is a positive linear functional on ~ IRI(X), 

Hence, by Theorem 10.9 there exists a regular Borel measure )1' on X such 
that 

IE~O</(X). 

Moreover, if cp" = cp' - cp, then cp" is also a positive linear functional on 
~ IRI(X), so there is a second regular Borel measure )1" on X such that 

cp"(f) = Ixl dj1", IE~IRI(X), 

But then, of course, since cp = cp' - cp", we have cp(f) = f x I d()1' - )1") 

for every I in ~ IRI(X), and j1 = j1' - )1" is the desired regular signed Borel 
measure. 0 

Example A. It was noted in Chapter 14 (see Example 140) that, in the special 
case X = [a, b], the functionals in ~(X)* can be realized as integrals with 
respect to functions of bounded variation on [a, b]. In fact, the assignment 

r:x ~ CPa' where 

cpaCf) = f I(t)drx(t), I E ~([a, b ]), (5) 

is a contractive linear transformation of the Banach space 'f"([a, b]) of all 
functions of bounded variation on [a, b] in the total variation norm onto 
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~([a, b ])* (see Problem 14F). Theorem 18.3 permits us to shed further light 
on this relationship. In the first place, the interval [a, b] is a metric space, so 
uIt([a, b]) and uIt o([a, b]) coincide. Moreover, if for each element ~ of 
uIt([a, b]) we define 

{a, t = a, 
a~(t) = ~([a, t]), a < t ~ b, 

then a~ is a complex-valued function of bounded variation on [a, b], and it is 
easy to see that a~ is right-continuous on (a, b). From this it follows that ~ is, 
in turn, the (Stieltjes-) Borel measure associated with a~ (see Example 8K), 
that 

r f d~ = fb f(t)da~(t), 
J[a. b] a 

f E ~([a, b]) (6) 

(Prob. 8X), and also that if we define 

<I>(O=a~, ~EuIt([a,b]), 

then <1>, which is obviously a linear transformation of uIt([a, b]) into 1'([a, b ]), 
is in fact an isometry of uIt([a, b]) onto a subspace ~ of 1'([a, b]) (see Problem 
8W). Finally, we note that ~ consists precisely of those functions in 1'([a, b]) 
that are right-continuous on (a, b) and vanish at a. (If {3 is a function of bounded 
variation on [a, b] that is right-continuous on (a, b), and if ( = (p is the 
Stieltjes-Borel measure associated with {3, then {3 and a{ differ by an additive 
constant; hence if {3 also vanishes at a, then {3 = a{.) Thus we see that it is 
possible to identify the dual ~([a, b ])* with the Banach space ~ of all those 
functions of bounded variation on [a, b] that vanish at a and are right
continuous on (a, b). Indeed, the mapping \}I 0 = \}II ~ is an isometric iso
morphism of {!l onto ~([a, b])*. (For another view of the relationship between 
uIt([a, b]) and 1'([a, b]) see Problem e.) 

Example B. Let W denote the ordinal number segment consisting of all 
ordinal numbers less than or equal to Q (see Problem I W), and let l1a denote 
the nonregular Borel measure on W(Q) defined in Example lOe. Then W 
is a compact Hausdorff space (Prob. 3D), and it is easy to see that 

q>(f) = f. f dl1a' 
W(Q) 

defines a bounded linear functional on ~(W). Hence there must exist a 
regular Borel measure on W that yields this same functional, and it is easy 
to see that this measure is nothing other than the Dirac mass at Q multiplied 
by a. (See Problem 3D(ii) and recall Example lOE.) 

As was noted earlier (Ex. 12L), if X is a compact Hausdorff space, then 
~(X) is not only a Banach space but is also a Banach algebra, and we shall 
frequently have occasion to use properties of ~(X) that pertain to it by 
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virtue of its being an algebra. Among other things, we shall need some 
information concerning the subalgebras of~(X). In this connection we recall 
(Ex. 3R) that a subset M of~(X) is said to be separating on X iffor every two 
points Xl =1= X2 in X there exists a function J in M such that J(x 1) =1= J(X2)' 
We shall also say that M is strongly separating on X if M is separating and if 
for each x in X there is a functionJin M such thatJ(x) =1= 0. 

The central fact that we wish to verify is that if d is a self-conjugate, 
strongly separating subalgebra of ~(X), then d is dense in ~(X). (Recall 
(Ex. 2H) that a linear space of complex-valued functions on a set X is said 
to be self-conjugate if Jbelongs to the set whenever J does.) Since the closure 
of a self-conjugate subalgebra is again a self-conjugate subalgebra, this 
assertion is equivalent to the following theorem. 

Theorem 18.5 (Stone-Weierstrass Theorem). Let X be a compact Hausdorff 
space. Then the only (sup norm) closed, self-conjugate, strongly separating 
subalgebra oj ~(X) is the algebra ~(X) itself. Similarly, the only closed, 
strongly separating subalgebra oj the real algebra ~ [J;l(X) is ~ [J;l(X) itself. 

The proof of this theorem is fairly lengthy, and will be given in part as a 
sequence of preparatory propositions. Our first step is to elucidate the role 
of the hypothesis of self-conjugacy. 

Lemma 18.6. A self-conjugate subalgebra d oJ~(X) coincides with ~(X) if and 
only if the real algebra d [J;l of real-valued functions in d coincides with the 
real algebra ~ [J;l(X) oj continuous real-valued Junctions on X. Also, d is 
[strongly] separating on X if and only if d [J;l is. 

PROOF. All three assertions are immediate consequences of the fact that a 
functionfbelongs to d if and only if ReJand ImJdo (see Example 2H). 

o 

The effect of Lemma 18.6 is to reduce the proof of Theorem 18.5 to the real 
case, and there the most important fact we shall need is the following one. 

Lemma 18.7. There exists a sequence {Pn(t)} oj real polynomials that con

verges uniformly to the Junction jl-=t on the closed interval [0, 1]. 

PROOF. The power series 

I (t),A,n, 
n=O n 

where e~2) denotes, as usual, the binomial coefficient 

i(t - 1) ... (t - n + 1) 

n! 
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is the Taylor series of the function j1+1 and therefore converges to 
j1+1 for 1,11 < 1 (see Example 5J and Problem 5R). Since all of the 
factors (1 - k) in the numerator of e~2) are negative except the first, it is 
clear that if we define 

then 

(!) = (-It+ 1An 

for all n except n = O. Hence, if Sn denotes the nth partial sum of the series 
(7), and if we define Pn(A) = s/ - A), then 

n 

Pn(A) == 1 - L Ak Ak 
k=l 

and the sequence {Pn(A)} converges to jl=l: for all I AI < 1. In particular, 
if t is real and 0::; t < 1, then 

00 

1 - L Antn = )1 - t. 
n= 1 

It follows that Pn(t) ~ 0 for all n and all 0 ::; t < 1, and hence, by continuity, 
that Pn(1) ~ 0 for all n. Suppose now that e is a given positive number. We 

first choose a number to, 0 < to < 1, such that Jl=-to < e/2, and then 
a positive integer no such that Pno(tO) < e. Then for to ::; t ::; 1 and for all 
n 2 no, we have 

since Pno(t) is clearly a decreasing function of t and since, for fixed t, the 
numerical sequence {Pn(t)} is decreasing. In addition 

00 

Pno(t) - j1=t = L Akt\ 
k = no + 1 

and the right member of this equation is a monotone increasing function of 
t. Hence 

o ::; Pn(t) - j1=t < e, 

Thus {p/t)} converges uniformly to j1=t on the closed interval [0, 1]. 
o 

This lemma allows us to prove the following important result. (See 
Problem ID for the notion of a function lattice.) 
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Proposition 18.8 (Kakutani). Every closed subalgebra d of the algebra 
({j Iffi(X) is also a sublattice of ({j Iffi(X). 

PROOF. According to Problem 10 it suffices to verify that if fEd, then 
I fI E .91 also. To establish the latter assertion observe that if we set qn(t) = 
pnCi - t), where {Pn(t)} is a sequence of real polynomials converging uni

formly to ,j1=t on the interval [0, 1], then the sequence {qn(t)} converges 

uniformly to the function jt on [0, 1]. In particular, if an = qnC0), then 
an -+ 0. Hence ifrn(t) = qn(t) - an, then the sequence of polynomials {rn(t)} 

also converges uniformly to jt on [0, 1], and each rn has zero constant 
term. Note that r nO fEd whenever fEd by virtue of the fact that r nCO) = 0. 

Suppose now thatfis a nonzero element of d. Set g(x) = (f(x)/ II f II (xY 
for all x in X, and observe that g belongs to d and that the sequence {rn 0 g} 
does so too. But this latter sequence converges uniformly on X to the limit 

Jg = I f 1/ II f II ex' whence it follows at once that I f I belongs to d. 0 

Lemma 18.9. Suppose that d is a strongly separating subalgebra of ({j Iffi(X) 
and that Xl and Xz are distinct points of X. Thenfor any two real numbers 
t1 and tz there is afunctionfin d such thatf(x1) = t1 andf(xz) = tz . 

PROOF. To verify this, let!l' = {(f(xd, f(xz)):fEd}. Then!l' is a non
trivial subalgebra of IR z, and since d is stron~ly separating, it follows from 
Problem M that this sub algebra is all of IRz. 0 

With this preparation we are ready to prove the Stone-Weierstrass 
theorem. 

PROOF OF THEOREM 18.5. By virtue of Lemma 18.6 it suffices to show that a 
closed strongly separating real subalgebra d of the real algebra ~ Iffi(X) 
necessarily coincides with ({j Iffi(X). To this end, let g belong to ({j Iffi(X), let 
Yo be any fixed point in X, and let e be a given positive number. Then, by 
Lemma 18.9, for every x in X there exists a functionfx in d such thatfxCyo) = 
g(yo) and such that fx(x) = g(x). Since both f and g are continuous, there 
exists an open neighborhood U x of x such that fxCy) > g(y) - e for all y in 
U X' Thus we obtain an open covering {U x}x EX of X, and since X is compact, 
there exists a finite subset {Xl"'" x n } of X such that the sets UX1"'" UXn 

cover X. Furthermore, the functions fx, all belong to d, and d is a lattice 
by Proposition 18.8. Hence the function 

also belongs to d. Clearly Fyo(Yo) = g(yo) and Fyo(x) > g(x) - e for all x 
in X (since every x in X belongs to some U xJ Thus we have shown that for 
each y in X and each given e > ° there exists a function F y in d such that 
F y(y) = g(y) and such that F y > g - e. By continuity, there is an open 
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neighborhood Jt;. of y such that Fy(z) < g(z) + e for all z in Vy. Then, just 
as in the foregoing argument, there exist points Yl, ... , Ym in X such that 
the open sets Jt;'I' ... , Jt;.", cover X, and if we define 

G = FYI 1\ FY2 1\ .. , 1\ Fy"" 

then G E.sI, G > g - e (since each FYi has this property), and also G < g + e 
(since every point of X belongs to some Jt;.). Thus II G - gil ::s; e, and the 
theorem is proved. D 

Corollary 18.10. If X is a compact Hausdorff space, and if ~ is any strongly 
separating set of functions in ~(X), then the linear submanifold of ~(X) 
generated algebraically by the set of all finite products of elements of ~ and 
their complex conjugates is dense in ~(X). Likewise, if ~ is a strongly 
separating subset of ~D;l(X), the linear submanifold of ~D;l(X) generated 
algebraically by the set of all finite products of elements of ~ is dense in 
rtD;l(X). 

PROOF. In both cases the system described is a self-conjugate strongly 
separating subalgebra. D 

Example C. The pair {t, I} is strongly separating on any interval [a, b]. 
Hence the complex polynomial functions pet) are dense in ~([a, b]) and the 
real polynomial functions are dense in '6' D;l([a, b ]). Note that this may be 
paraphrased by saying that for any continuous function f on [a, b] there is a 
sequence of polynomials {Pn} converging uniformly to f on [a, b]. This is the 
original theorem of Weierstrass. 

Example D. The projections (x, y) -+ x and (x, y) -+ yare real-valued and 
separating on the plane [R2. Hence if K is any compact subset of [R2, the com
plex polynomial functions p(x, y) form a dense sub algebra of'C(K). Similarly, 
for substantially the same reason, if K is a compact subset of the complex 
plane C, then the functions ofthe form peA, A), where p is a complex polynomial 
in two indeterminates, constitute a dense subalgebra of~(K). 

If K is a compact subset ofC then the complex polynomials peA) (restricted 
to K) form a strongly separating subalgebra of ~(K), but this subalgebra is 
not (ordinarily) self-conjugate, and need not be dense in ~(K). In connection 
with this observation the following notions are pertinent. 

Definition. For any compact subset K of the complex plane C we shall write 
&>(K) for the closure in ~(K) of the algebra of (the restrictions to K of) 
all polynomials peA). (In other words, &>(K) is the subspace of ~(K) 
consisting of those functions on K that can be uniformly approximated by 
polynomial functions.) We shall also write .sI(K) for the algebra of func
tions f in ~(K) such that f is locally analytic on KO. (If KO is empty this 
requirement becomes vacuous and .sI(K) = ~(K).) 
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The relations between ~(K), &>(K) and siCK) are quite difficult to deter
mine in full generality, but certain elementary facts are easily established. 

Proposition 18.11. For every compact subset K of C, &>(K) and siCK) are 
closed subalgebras of~(K) such that &>(K) c siCK). 

PROOF. Since every polynomial function clearly belongs to siCK), it suffices 
to prove that &>(K) is a subalgebra of~(K) and that siCK) is closed. To show 
the former, letfand g be functions in &>(K), and let {Pn} and {qn} be sequences 
of polynomials such that Pn ~ fand qn ~ g uniformly on K. Then Pnqn ~ fg 
uniformly on K, so fg E &>(K). To show the latter, let Un} be a sequence in 
siCK) that converges in ~(K) to a limit g. If D = Dr(ex) is an open disc con
tained in KO, then {J,.} also converges uniformly to g on D, and since each of 
the functions fn is analytic on D, it follows that g is analytic on D (see Problem 
11 U). But this shows that g is locally analytic on KO, and hence that g E siCK). 

D 

Corollary 18.12.1f K is an arbitrary compact subset ofC, a necessary and suf
ficient condition for &> (K) to coincide with ~(K) is that the function X 
belong to &>(K). Similarly, siCK) = C(j(K) if and only if X E siCK). Con
sequently siCK) :f. "t(K) when KO :f. 0· 

PROOF. If X belongs to either &> (K) or siCK), then all polynomials peA, X) 
in A and X do so too; cf. Example D. If KG :f. 0, then X ¢ siCK) (Prob. 5B). 

Example E. If K is a compact subset ofe that is mapped onto K by some affine 
mapping of the form A 4 exA + f3 (ex :f. 0), then f ~ f 0 A maps ~CK) onto 
~(K) in such a way that siCK) is carried onto siCK) and &>(K) is carried 
onto &>(K). Thus if any two of ~(K), siCK) and &>(K) coincide, then the 
corresponding relation holds on K too. For example, since &>(K) = ~(K) 
when K is a compact subset of the real axis (Ex. C), the same is true for any 
compact subset of any line in C. 

Example F (The disc algebra). Let D = {AE C: IAI < I}, and set K = D-. 
Then siCK) (known as the disc algebra), may also be described as the algebra 
of all those analytic functions on D that possess continuous extensions to D - . 
Moreover, every functionfin siCK) is uniformly continuous on K (Prop. 4.6), 
from which it follows easily that, if we write!s(A) = f(sA) for each s such that 
0< s < 1, then the net {!s(A)}O<s<l converges uniformly in A to f on K 
as s i 1. On the other hand, iff (A) = L:'=o exnAn is the power series expansion 
off on D, then the series 

converges uniformly in A to!s on D - = K for every s, 0 < S < 1, and it follows 
at once thatfbelongs to &>(K). Thus siCK) = &>(K) when K is a closed disc. 
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The following idea is also useful in dealing with polynomial approximation. 

Definition. If K is a compact subset of C and if UCij denotes the unbounded 
component of C\K, then we shall write R for the compact set C\ V Cij , 

so that R consists of the union of K with all of the various holes in K. (See 
Chapter 3 for a discussion of this terminology.) The boundary of R (which 
is the same as the boundary of V",,) is called the outer boundary of K. 

Proposition 18.13. If K is a compact subset of C then the algebra &(K) co
incides with the restriction to K of the subalgebra P/(K) of ~(K). Thus the 
functions in &(K) are not only locally analytic on KO, but can be extended 
so as to be locally analytic on the interior of K. 

PROOF. A sequence {Pn} of polynomials converging uniformly on K auto
matically converges uniformly on the outer boundary of K. But then, by 
the maximum modulus principle (Ex. 5M), {Pn} converges uniformly on R, 
and the limit is therefore differentiable at each point of KO (see Problem l1U). 

o 

The foregoing discussion shows that for a compact subset K of C, the 
algebra &(K) may fail to be equal to ~(K) for two quite different reasons, 
either because KO i= 0, or because K has one or more holes. 

Example G. Let us take for K the unit circle Z. Then R is just the closed unit 
disc D- of Example F, so &(Z) consists of the restrictions to Z of all of the 
functions in f!J(D-) = .sI(D-). We observe that the mappingf ~ flZ is an 
isometric Banach algebra isomorphism of the disc algebra fYJ(D -) onto &(Z) 
by the maximum modulus principle (Ex. 5M). (The algebra & (Z) is also 
frequently called the disc algebra.) 

Example H. Let K be any compact subset ofC such that KO i= 0. Then,just 
as in the preceding example, the mappingf ~ f I (8K) is an isometric Banach 
algebra isomorphism of .sI(K) onto a subalgebra of~(8K), so any bounded 
linear functional cp on .sI(K) may be regarded as a functional on a subspace 
of ~(8K), which may then be extended to a bounded linear functional on 
~(8K) by the Hahn-Banach theorem (Th. 14.3). Hence, by the Riesz re
presentation theorem (Th. 18.3), there exists a complex Borel measure ~ 
on 8K such that 

cp(f) = r f d~, 
JfK 

fE .sI(K). 

(If .sI(K) is replaced by f!J (K), the boundary 8K may be replaced by the 
outer boundary of K.) 

Suppose, in particular, we take for K the closed unit disc D -, so that 8K 
is the unit circle Z. Then for each point lI. of D- evaluation at lI. is a bounded 
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linear functional on sI(D-), so there exists a complex Borel measure ¢a on 
Z such that 

Thus, for example, for IX = 0 we have 

f(O) = ~ r f(¢) d¢ = ~ f21[ f(eit)dt = ~ r jde 
2m J z ¢ 2n 0 2n J z 

(where e denotes arc-length measure; see Example 8F), so we may take ¢o 
to be 8/2n. (This use ofthe Cauchy integral formula is readily justified because 
of the uniform continuity off on D-.) 

Example I. Let rand R be radii such that 0 < r < R, let A denote the annular 
domain {AEC:r < IAI < R}, and let K = A-. Then the circle CR = 
{A E C : I AI = R} is the outer boundary of K and R is the closed disc DR = 
{A E C : I AI ~ R}. Thus every function f in [JlJ(K) is the restriction to K of a 
function 9 in the algebra sd(DR) = [JlJ(D R). 

Next let us consider the algebra sI(K). If f E d(K) then f possesses a 
Laurent expansion 

+00 

f(A) = L IXn An, A E A 
n= - ex. 

(Prop. 5.9), and we may write f = fl + f2 where 

00 -00 

fl(A) = L IXn An and f2(A) = I IXnAn. 
n=O n= -I 

The function fl can be extended to the closed disc DR by continuity (since 
f can be and f2 is already continuous in a neighborhood of C R), and there 
exists a sequence {Pn} of polynomials Pn(A) = f3~) + ... + f3~n) An converging 
uniformly to fl on DR, and therefore on K (Ex. F). Similarly,f2 can be ex
tended by continuity to the closed region C\Dr = {A. E C: IAI z r}, and an 
argument exactly like the one in Example F shows that there exists a sequence 
{qn} of functions of the form 

f3(tJ) I f3(~)n 
qnCA) = T + ... + Tn 

converging uniformly to f2 on C\D" and therefore on K. Thus, summarizing, 
we see that there exists a sequence of rational functions of the form 

f3(n) 
rn(A) = A~n + ... + f3~) + f3\n)A + ... + f3~n)An 

converging uniformly to f on K. 

418 



18 The spaces ~(X) 

The foregoing example suggests the introduction of yet one more Banach 
algebra. 

Definition. If K is a compact subset of ( we shall denote by ~(K) the closure 
in ~(K) of the algebra of all rational functions with poles off K. 

It is clear that ~(K) is a closed subalgebra of ~(K) and that 

.OJ (K) c ~(K) c d(K) 

for any compact set K of complex numbers. Example I shows that ~(K) may 
coincide with d(K) when K has a hole. But also in Example I every function 
in d(K) is approximable by means of special rational functions with poles 
only at 0 (and (0). As a matter of fact, a similar restriction on the poles of 
approximating rational functions can be effected whenever, as in Example I, 
the functions in 2£(K) can be uniformly approximated on K by functions that 
are locally analytic on some neighborhood of K. 

Proposition 18.14. Let K be a nonempty compact subset of(, let P be a subset 
of the Riemann sphere C (Prob. 3 W) with the property that P contains at 
least one point of each connected component of C\K, and let f be a locally 
analytic function on some open neighborhood U of K. Then there exists a 
sequence {rn} of rational functions converging uniformly to f on K such that 
each r n has poles only in P. 

PROOF. Let us denote by 2 the linear submanifold of ~(K) consisting of 
(the restrictions to K of) those rational functions having their poles in P. We 
are to show thatfbelongs to 2-, and by Proposition 14.10 (a consequence 
of the Hahn-Banach theorem) it suffices to show that if a bounded linear 
functional cp on rti(K) annihilates fIl, then cpU) = O. By virtue of Theorem 
18.3 this amounts to showing that if ~ is a complex Borel measure on K such 
that S K r d~ = 0 for every rational function r with poles in P, then S K f d~ = O. 
Suppose, accordingly, that SK r d~ = 0 for every rational function r with 
poles in P. Let V be a component of C\K, suppose a is a point of V (\ P 
such that a "# 00, and let d = d(a, K). Clearly d > 0, and for each A such that 
I A - a I < d the power series 

(fJ (A _ a)n 

Jo «( - a)n+ 1 
(8) 

converges to 1/«( - A) uniformly (in 0 on K. Hence the Cauchy transform 

h(A) = r d~(O 
JK ( - A 

(see Example 10F) may be computed by integrating the series (8) term by 
term, and since 
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by assumption, this shows that h vanishes identically on the disc Dirx), and 
hence on all of V by the identity theorem (Th. 5.2). Thus h = 0 on C\K. 
(If the only point of P in the unbounded component of t\K is the point at 
infinity, then the argument must be modified on that component in that the 
series (8) is replaced by 

00 (n 
- I In+ l' 

n=O 1\ 
JAJ > R, 

where R is chosen large enough so that K c DR') 
Now let y be an oriented envelope of Kin U (Prob. 5K), so that 

f(A) = ~ J f(O d( 
2m ;.( - A 

for all A in some neighborhood of K by the Cauchy integral formula (Prob. 
50). Then 

r f d~ = ~ r [f f(() d(]d~(A) J K 2m J K / ( - A 

= _1 . ff(O[ r d~(A)]d( 
2m y JK ( - A 

-Ii = -2' f(Oh(Od( = 0 
m ). 

by the Fubini theorem for complex measures (see Problem 9F). D 

Example J. Let K be a compact subset of the unit circle Z such that K =1= Z. 
Then the function A possesses an analytic extension (namely l/A) to a neigh
borhood of K, and C\K is connected. Hence we may set P = {oo} in Propo
sition 18.14, and it follows that A E £?P(K). But then, by Corollary 18.12, we 
see that £?P(K) = C(f(K). 

It is a theorem due to Lavrentiev [43] that the two obvious necessary conditions in order 
that :?Jl(K) coincide with ~(K), viz., that KO be empty and K have no holes, are actually 
sufficient. In other words, for any compact subset K ofthe plane C, the algebras :?Jl(K) and 
~(K) coincide if and only if KO is empty and the complement C\K is connected. 

Corollary 18.15. For any compact subset K of C the Banach algebra ~(K) 
contains every function in d(K) that can be continued analytically onto some 
open neighborhood of K. 

As a matter of fact, Corollary 18.15 can be proved much more simply and 
directly. Indeed, iffis locally analytic on an open set U containing K, and if 
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y is an oriented envelope of Kin U, then any suitably chosen Riemann sum 
approximating the Cauchy integral 

_1 J f(O d( 
2ni y( - A 

will approximate f as closely as desired in ce(K). The fact that Proposition 
18.14 permits us to place the poles of the approximating rational functions 
in a specified set (provided this set contains at least one point of each com
ponent of t\K) is particularly useful. 

Proposition 18.16 (Runge's Theorem). Let U be an open subset ofe and let P 
be a subset of t\ U with the property that P contains at least one point of 
each connected component of t\ U. Then for any locally analytic function 
f on U there exists a sequence {r n} of rational functions, each with poles 
confined to P, such that {rn} converges to f uniformly on compact subsets 
ofU. 

PROOF. If U = e then P = {oo },fis entire, and the partial sums of any power 
series expansion off may be used. Otherwise, for each positive integer n let 
D;; denote the closed disc {A E e : I A I :s: n}, and set 

Then {Kn} is an increasing sequence of compact subsets of U with the 
properties that Kn C K~ + 1, n EN, and U = u,~)= 1 Kn. Hence for any compact 
subset K of U there exists a positive integer n such that K c K~, so it suffices 
to show that for each n there exists a rational function r n with poles in P such 
that Irn(A) - f(A) I :s: lin for all A in Kn. Hence by Proposition 18.14 it suf
fices to verify that each connected component of t\Kn contains a point of 
t\ U, for it will then contain an entire component of t\ U, and therefore a 
point of P. But each component of t\Kn is the union of some subcollection 
of the collection consisting of the (connected) open set 

{OO}U{AEe:IAI>n} 

and the various open discs D1/n(rx), rx ¢ U, and every set in this collection meets 
t\U. (Recall that U c e, so that 00 ¢ U.) 0 

Example K. Suppose Ll is a simply connected domain in e, so that the comple
ment of Ll in the Riemann sphere t is connected (see Problem 5P). In this 
situation we may select P = {oo}, and we arrive at the following conclusion: 
Iff is an analytic function on a simply connected domain Ll in e, then there 
exists a sequence of polynomials that converges to f uniformly on compact 
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subsets of L1. (This special case of Proposition 18.16 is also sometimes referred 
to as Runge's theorem.) 

Precise (but quite complicated) necessary and sufficient conditions on the compact set 
K in order that ~(K) coincide with .sI(K) are known. The relevant theorems are due to 
Vituskin [64]. A nice account of them may be found in [27]. (Sample result: If K is a 
compact set in C and if every point of K has a neighborhood that meets only a finite 
number of components of C\K, then ~(K) = .sI(K).) On the other hand, a simple neces
sary and sufficient condition that f1J(K) coincide with .sI(K) may be stated at once: If K 
is a compact set in C, then f1J(K) = .sI(K) if and only if K does not separate the plane, that 
is, if and only if there are no holes in K. This is Mergelyan's theorem [48]. More readable 
accounts may be found in [27J or [57]. 

PROBLEMS 

A. Let ( and , be regular complex Borel measures on a locally compact Hausdorff 

space X. Verify that 

IIWE) -IWE)I ~ II( - (II 

for every Borel set E in X. 

B. Show that if [a, b] is a closed interval of real numbers, then 't([a, b ])* may not only 
be identified with the subspace fJ1l of 'Y([a, b]) consisting of those functions that 
are right-continuous on (a, b) and vanish at a, as in Example A, but may also be 
identified with a subspace of 'Y([a, b]) consisting of left-continuous functions. 

C. Show that if, for an arbitrary function IX of bounded variation on an interval [a, b], 
we denote by (. the complex Borel measure associated with IX (Ex. 8K), then setting 
a(lX) = 11(.11 defines a pseudonorm on the space 'Y([a, b]) (Prob. 14F), and find 
the zero space ofthis pseudonorm. Use this to identify 't([a, b ])* as a quotient space 
of 'Y([a, b ]). (Hint: See Problem 14G.) 

D. Show that if X is a compact Hausdorff space, then 't(X) is reflexive if and only if X 
is finite. (Hint: If E is any fixed Borel set, then /1 --> /1(E) defines a bounded linear 
functional on .It o(X). Recall Example WE.) 

E. If X is a compact Hausdorff space, then a sequence Un} in 't(X) converges weakly 
to a limit f if and only if {J,.} is uniformly bounded and converges pointwise tof. 
Similarly, a sequence {/1n} in J{ o(X) converges weak* to a regular complex Borel 
measure /1 if and only if {/1n} is uniformly bounded (in the total variation norm) and 
converges setwise to /1. 

F. Show that if X is a compact Hausdorff space, then 't(X) is separable if and only if X 
satisfies the second axiom of countability, or, in other words, if and only if X is 
metrizable (see Corollary 4.4). (Hint: If d/io is a countable base of open sets in X, 
and if, for each pair U, Vofsets in 0/10 such that U- c V,fu.v denotes some one 
continuous function such that Xu ~ Iu. v ~ Xv (Prob. 3V), then the system of all 
tinite suprema of the functions fu. v spans 't(X) as a Banach space. On the 
other hand, if Un} is any sequence dense in 't(X), and if for each n we set Un = 
{x EX: lIb) I > t}, then {Un} is a base of open sets in X.) 
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G. Let X and Y be compact Hausdorff spaces, and let F: X ..... Y be a continuous 

mapping. If we write <l>F(f) == f 0 F for every f in ,&,(Y), then <l>F maps ,&,(Y) into 
,&,(X). Show that <l>F is a contraction. Show also that if F is onto, then <l>F is an iso

metry, and that iff is one-to-one, then <l>F is onto. Consequently, if F is a homeo
morphism between X and Y, then <l>F is a unital Banach algebra isomorphism 
between ,&,(Y) and ,&,(X). (Hint: Use the Tietze extension theorem; see Example 
IIG.) 

H. Show that, for any Banach space $ whatever, there exists a compact Hausdorff space 
X == Xc and an isometric isomorphism of Iff onto a subspace of '6'(X). Show also 
that X can be taken to be metrizable if and only if $ is separable. (Hint: For each 

x in iC consider j(x)I($*)I') 

The results of the preceding problem are frequently expressed by saying 
that 'fi(X) is .. universal" for Banach spaces-meaning that every Banach 
space may be viewed as a subspace of some ~(X)- and that ~(X), with X 
a compact metric space, is universal for separable Banach spaces. It is 
interesting to pursue these ideas a bit further. According to a standard 
theorem in topology (see Problem 4T), if X is any compact metric space, 
then there exists a continuous mapping of the Cantor set C onto X. Hence, 
according to Problem G, ~(X) is isomorphic as a Banach space to some 
subspace of ~(C), so ~(C) all by itself is, in fact, universal for separable 
Banach spaces. Moreover, if for each continuous function f on the Cantor 
set C we define! to be the uniquely determined continuou~ function on the 
unit interval I = [0, 1] that agrees withf on C and is linear on each of the 
intervals complementary to C, then f ---> J is readily seen to be a linear 
isometry of ~(C) into ~(I). Thus ~(I) is also universal for separable 
Banach spaces. 

I. Let X be a locally compact Hausdorff space, and let'&' o(X)' denote the linear space 
of all continuous complex-valued functions on X with the property that for every 
£ > 0 there is a compact subset K of X such that I f(x) I < £ for all x in X\K (such 
functions are said to vanish at infinity). Show that '&'o(X) is a (closed) subspace of 
'&'b (X) in the sup norm (Prob. llD), What is the dual of'&' o(X)? Let us say, more 
generally, that a complex-valued function f on X has limit L at infinity if for every 
£ > 0 there is a compact subset K of X such that I L - J(x) I < £ for all x in X\K. 
Show similarly that the space '&',(X) of all continuous functions on X that have 
limits at infinity is a Banach space in the sup norm, and find the dual of '6',(X). 
(Hint: Use the one-point compactification (Prob. 3W).) 

J. Consider the Banach space '6'(1) == '6'(I)([a, b]) of continuously differentiable func
tions on the interval [a, b] introduced in Problem llF. Among the bounded linear 
functionals on '6'(1) there are the point evaluations J ..... J(to) and also integrations, 
such as 

J ..... fr d~ 
a 

for various complex Borel measures ~. Show that, in fact, the most general bounded 
linear functional cp on '6'(1) is of the form 

cpU) == rxf(to) + r r(t)d~(t), 
a 

(9) 
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where ~ is a complex Borel measure on [a, b], to denotes a fixed point of [a, b], and 
a is a complex number. Show also that this representation is unique in the sense that, 
once to has been chosen, the measure ~ and the coefficient a are completely deter
mined by cp. Likewise, find the most general bounded linear functional on the space 
<,&(k) of k times continuously differentiable functions. (Hint: If D: '6'(1) -> '6'(0) is 
defined by Df = .t, and V: '6'(0) -> <,&(1) is the transformation given by 

(Vf)(x) = r f(t)dt, a ..s; x ..s; b, 
a 

then D is a left inverse of V; use Problem 13E.) 

K. If ( is a complex Borel measure on the interval [a, b], then 

is a bounded linear functional on the space <,&(1) of the preceding problem, and must 
therefore be of the form (9) for some complex Borel measure ~. Find ~. (Hint: It 
is convenient to replace Lebesgue integration with respect to Stieltjes-Borel 
measures by Riemann-Stieltjes integration with respect to (suitably normalized) 
functions of bounded variation. It is also convenient to set to = a.) 

L. Let X be a compact Hausdorff space, let ~ be a regular complex Borel measure on 
X, and let cp denote the bounded linear functional on '6'(X) determined by ~. 

(i) Verify that cp is self-conjugate (Ex. 2H) if and only if ~ is real-valued, and like
wise that cp is positive if and only if ~ is a (nonnegative) measure. 

(ii) Verify, in the same vein, that cp is an algebra homomorphism of <,&(X) onto ( 
if and only if qJ is a point evaluation at some point of X, i.e., if and only if ¢ 
is the Dirac mass concentrated at some point of X (Ex. 71). (Hint: Prove that 
ifthere exist any two disjoint closed sets E and F in X such that ~(E) of- 0 of- ~(F), 

then cp does not preserve multiplication, and use this fact to show that the support 
of I ~ I (Prob. lOP) is a singleton.) 

M. Prove the Stone-Weierstrass theorem (Th. 18.5) directly for the case of a two point 
space by showing that the only strongly separating subalgebra of CZ[1R2] (with 
respect to termwise multiplication) is (2[1R2] itself. Conclude that every subalgebra 
of (2 is self-conjugate. (Hint: Aside from the whole two-dimensional algebra and 
the trivial subalgebra (0) there are but three (one-dimensional) subalgebras; 
find them.) 

N. Let X be a compact Hausdorff space, let .91 be a subalgebra of <,&(X), and let .91' 
denote the result of adjoining the constant functions to .91 (that is, .91' = 
{f + A. : fEd, A. E q). Show that .91' is a subalgebra of <,&(X) that is self-conjugate 
ifd is, closed ifd is, and strongly separating ifd is separating. Use these facts to 
describe the most general closed, separating, self-conjugate subalgebra of'6'(X). 

O. Verify that the trigonometric polynomials 

+N 

T(A.) = L anA.n 
n= -N 

are dense in '6'(Z) where Z denotes the unit circle. 
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P. Improve upon the theorem of Weierstrass (Ex. C) by showing that the polynomial 
functions pet) are actually dense in the Banach space Cf5(k)([a, b]) of Problem llF. 
(As a matter of historical fact, Weierstrass himself proved this version ofthe theorem.) 

Q. Let us say that a function f on a set X is constant on a nonempty subset E of X if 
there exists a scalar Ao such thatf(x) = Ao for all x in E. 

(i) Show that if X is a compact Hausdorff space, and if {EY})'EI is an arbitrary 
disjoint collection of nonempty subsets of X, then the collection d of all those 
continuous complex-valued functions on X that are constant on each Ey is a 
closed self-conjugate subalgebra of rc(X). Show too that the subset of d 
consisting of those functions in d that vanish on some one designated set 
Eyo is also a closed self-conjugate subalgebra of rc(X). 

(ii) The subalgebras described in (i) are the most general closed self-conjugate 
subalgebras of rc(X). To see this let d be an arbitrary closed self-conjugate 
subalgebra ofrc(X). We may use d to define an equivalence relation ~ on X, 
setting Xl ~ X2 iff(xd = f(X2) for everyfin d. Let us write [x] to designate 
the equivalence class of a point x with respect to this equivalence relation. There 
mayor may not be an equivalence class such that all the functions in d vanish 
on it; if there is, let us call this distinguished class the zero class and denote it 
by [x]o. Prove that d coincides with the collection of all those continuous 
functions on X that are constant on each equivalence class and that vanish on 
the zero class if there is one. (Hint: Start with the case in which there is no zero 
class, verify the counterpart of Lemma 18.9 directly for Xl ~ X2, and follow the 
proof in the text. Alternatively, one may use the quotient topology (Prob. 3H) 
to reduce this result to Theorem 18.5.) 

R. Let X be a compact Hausdorff space, and let M be an arbitrary nonempty subset of 
Cf5(X). Define Xl ~ X2 to mean, as above, thatf(xl) = f(X2) for every fin M. Show 
that the closed, self-conjugate, subalgebra of Cf5(X) generated by M, i.e., the smallest 
one containing M, is the algebra of all those continuous functions on X that are 
constant on all of the equivalence classes of the relation ~ and that vanish on the 
zero class if there is one. Show likewise that if Me rc ~(X), then the closed subalgebra 
of rc ~(X) generated by M coincides with the collection of all those continuous real 
functions on X answering the same description. 

S. What is the closed self-conjugate subalgebra of rc(lR) generated by the pair of func
tions {sin X, cos x}? What is the closed, self-conjugate, subalgebra generated by the 
function sin X alone? (Hint: Introduce a quotient topology.) 

T. It was shown in Problem M that every subalgebra ofU is self-conjugate. Show that 
this result holds for the algebra en for every n, and find the most general subalgebra 
of en. Use your results to improve upon Lemma 18.9 by showing that if d is any 
strongly separating subalgebra of rc(X), and if X 10 X2, ... , Xn are distinct points of 
X, then for an arbitrary n-tuple of scalars (AI, A2"'" An) there is a functionfin d 
such that f(xJ = Ai' i = 1,2, ... , n. (Hint: Use polynomial interpolation.) 

U. Let X be a locally compact Hausdorff space, and let rco(X) denote the space of 
continuous functions on X that vanish at infinity (see Problem I). Describe the most 
general closed, self-conjugate, subalgebra of rc o(X). Similarly, describe the most 
general closed subalgebra of the real algebra rco.~(X). (Hint: Use the one-point 
compactification (Prob. 3W).) 
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V. Let K be a compact subset of the complex plane, and let V denote the set of all those 
complex numbers IX such that the function I/(A - IX) belongs to the algebra £!I(K). 

(i) Show that each hole in K is either disjoint from V or wholly contained in V. 
Show also that the unbounded component U occ of C\K is always contained in 
V, and conclude that £!I(K) = ~(K). (Hint: Show that V is both open and closed 
relative to C\K. To verify that U c£ c V use the fact that the series ~:=o An/lXn+! 

converges uniformly in A on K for IIX I sufficiently large. Recall that K = C\ U 00') 
(ii) Use the fact that U oc c V to give a different proof of Runge's theorem on a simply 

connected domain (see Example K). (Hint: Recall the remark following 
Corollary 18.15.) 

The following problem outlines an alternate proof of the Stone-Weierstrass 
theorem (Th. 18.5) based on Theorem 18.4 and the Krein-Mil'man 
theorem (Prob. 14T). This proof is due to L. de Branges [14]. 

W. Let X be a compact Hausdorff space, let !l' be a linear submanifold of the real Banach 
algebra CC Oil(X), and let K denote the subset of the annihilator !l'a (in the dual space 
Jt Oil, o(X) of all regular signed Borel measures on X) consisting of the measures 
11 in !l'a such that II 1111 ~ 1. (In other words, K = !l'a n (Jt Oil, o(X»!.) 
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(i) Prove that K is a weak* compact convex subset of Jt Oil, o(X), and verify that 
if!l' is not dense in CC Oil(X), then K contains measures 11 such that II 1111 = 1. 

(ii) Let 11 be a measure belonging to K such that 111111 = I, and let 9 be a bounded 
Borel measurable function on X with the property that the indefinite integral v 
of 9 (with respect to 11; Problem 9M) belongs to !l'a. Show that if g' = Ag + B 
for any two real numbers A and B, then the indefinite integral v' of g' (with 
respect to 11) belongs to !l'a, and also that A and B can be chosen (with A > 0) 
so that g' is nonnegative-valued on X and satisfies the equation 

(10) 

Verify also that for any such choice of g' we have II v' II ~ 1, and therefore 
v'EK. 

(iii) Let g, g', and v' be as in (ii), and let M denote the essential supremum of g' 
with respect to 1111. Show, on the one hand, that if M ~ 1, then 9 is constant 
almost everywhere [1111], Show also, on the other hand, that if M > 1, and if 
we define t = 11M, so that 0 < t < 1, then the indefinite integral v" of the 
function 

1 - tg' 
g" = l-=-t 

(with respect to 11) also belongs to K, and 

tv' + (1 - t)v" = 11. 

(Hint: If M ~ 1 then 11 - g'l = 1 - g' a.e. [1111], and (10) implies that g' = 1 
a.e. [1111]; if M > 1 then 1 - tg' 2 0 and tg' + (1 - t)g" = 1 a.e. [1111],) 

(iv) Suppose next that!l' is not dense in CCOil(X) and that 11 is an extreme point of K 
(see Problem 14S). Show that if 9 is a continuous function on X whose in
definite integral with respect to 11 belongs to !l'a, then 9 is constant on the 
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support of III I (Prob. lOP). (Hint: Show first that 111111 = 1; then use the con
tinuity of g.) 

(v) Suppose, finally, that ft = d is a subalgebra of rc L\l(X), Conclude that if Il 
is an extreme point of K, then every function in d is constant on the support 
of III I , and use the Krein-Mil'man theorem to give a new proof of the real 
version of the Stone-Weierstrass theorem. 
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19 Vector sums and bases 

We conclude this introduction to the theory of normed spaces with a dis
cussion of two related topics. First we treat some notions of the sum of an 
infinite family of vectors in a normed space, and, secondly, we give a brief 
account of the corresponding notions of a basis for a Banach space. 

The simplest and most familiar concept of an infinite sum stems directly 
from classical analysis and has already been introduced (see Problem 11 G). 
If {xn} is a sequence in a normed space tff, indexed, say, by No, then we write 

00 

x = I Xn 
n=O 

to indicate that the sequence {I~=o Xn}~=O converges in tff to x (in the norm 
topology). In this case the irifinite series I:,= 0 Xn is said to converge and x 
is called its sum. If {xn} is indexed by N, this definition is, of course, modified 
in an appropriate fashion. If {xn} is a two-way infinite sequence, i.e., indexed 
by 7L, then we write 

+00 

X = I Xn 
n== - oc: 

to indicate either that the two infinite series I:,= I X-n = I;=I_ oc. Xn and 

I:,= 0 Xn converge, and that x = I;! -00 Xn + I:,= 0 Xn , in which case we 
say that I:=oo_ oc Xn converges to x in the primary sense, or else that 

+N 

x = lim I X n , 

N n=-N 

in which case we say that I:=oo_ ex: Xn converges to x in the secondary or 
Cauchy sense, or that x is the principal value of the series. (It is clear that a 
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two-way infinite series I,:=oo_ 00 Xn that converges to a sum x in the primary 
sense does so also in the Cauchy sense, but the converse is false. Thus, to 
avoid ambiguity, it is necessary to make clear in any given case just which 
sense of sum is intended.) The following observations are trivial consequences 
of the definitions; they are formally stated here mainly for the sake of sym
metry. 

Proposition 19.1. If {xn}:=o and {Yn}:=O are two sequences of vectors in a 
normed space Iff, and if 

00 00 

x = L Xn and Y = LYn, 
n=O n=O 

then for any pair of complex numbers a and p, 
00 

L (axn + PYn) = ax + Py. 
n=O 

Likewise, if T is any bounded linear transformation of Iff into some normed 
space $', then Tx = I:=o Txn· Moreover, the counterparts of these 
assertions are all valid, with appropriate notational changes, for sequences 
indexed by other systems of the same order type as No, such as N, and 
also for sequences indexed by 7L (in either sense of convergence). 

Proposition 19.2 (Cauchy Criterion for Infinite Series). If {xn}:=o is a 
sequence of vectors in a Banach space Iff, then the infinite series I:= 0 xn 
is convergent in Iff if and only if, for each given positive number e, there 
exists a positive integer K such that II I~tk Xn II < e for every positive 
integer p. (Suitably worded versions of the Cauchy criterion are also valid, ()f 
course, for infinite series of the form L;.x'= 1 xn and L,;=oo_ 00 xn.) 

Another notion of the sum of an infinite system of vectors is obtained 
simply by extending to indexed families of vectors the idea of the sum of 
an indexed family of scalars (Ex. 3Q). 

Definition. Let Iff be a normed space, and let {X1'}1'Ef be an indexed family of 
vectors in Iff. If for each finite set D of indices we write 

then {SD}DE@ is a net indexed by the directed set !!fi of all finite subsets of 
the index family r. The family {Xl'})'Ef is said to be summable, and to have 
sum x, if the net {SD} converges to x in the norm topology on Iff. In this 
case, we write 
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Note that this definition can be paraphrased as follows: The family 
{XJ)'Er has sum x if for every positive number /; there exists a finite subset 
Dr. of r such that II SD - x II < /; for every finite subset D of r such that 
D => Dr.. 

Proposition 19.3. If {xl'}"Er and {y"}l'Er are two summable families of vectors 
in a normed space rff', both indexed by the same index set r, and if 

x = LX" and y = LY", 
')'Er 'I'Er 

then,for any pair of scalars !Y. and /3, 

L (!Y.xl' + /3Yl') = !Y.X + /3y. 
I'Ef 

Furthermore, if T is any bounded +inear transformation of rff' into some 
normed space ff, then 

PROOF. These facts follow immediately from the definition of summability. D 

Proposition 19.4 (Cauchy Criterion). An indexed family {xJl'Er of vectors 
in a Banach space rff' is summable if and only iffor every /; > 0 there exists 
a finite set of indices Dc such that II SD = Ll'ED x,, II < /; for every finite 
set of indices D such that D and Dr. are disjoint. 

PROOF. The proof of the necessity of the condition is trivial, as usual, and will 
be omitted. Suppose then that rff' is a Banach space and that {XY}YEr is an 
indexed family in rff' satisfying the stated condition. Let /; be a positive number, 
let D" be chosen so as to have the property stated in the condition, and let 
D' and D" be any two finite sets of indices, both of which contain Dr.. Then 
II SD' - SD" II = II SD'VD" II < /; since D'VD" is disjoint from Dr.. Thus the net 
{SD} is Cauchy, and therefore convergent (see Problem 4M). D 

Corollary 19.5. If {Xl'}l'Er is a summable family of vectors in a normed space rff', 
then {y E r : x)' =I- O} is countable. 

PROOF. For each positive integer n, let Dn be a finite set of indices such that 
II SD II < lin whenever D n Dn = 0, and let 

n=1 

If y ¢ J, then {y} n Dn = 0, and therefore II x)' II < lin, for every positive 
integer n. Thus x,, = 0 except when y E J. D 

Thus, just as in the case of indexed families of scalars (Prob. 4N), an un
countable indexed family of vectors may be summable, but such a family 
can possess only a countable number of nonzero terms. 
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Corollary 19.6. Let g be a Banach space and let {XY}YEr be an indexed family 
of vectors in g. A sufficient condition for the family {Xl'} to be summable 
is for it to be absolutely summable, i.e., for the family of norms {II Xy II} 
to be a summable family of real numbers. 

PROOF. For any finite set of indices D c r we have 

IlsD11 ~ L Ilx),11 
j'ED 

and the result follows by Proposition 19.4. o 

Example A. Let Xn be the sequence whose nth term is lin and the rest of 
whose terms are all zero. Then the family {Xn}nEN is summable in (tp) for 
1 < p < + 00, but is not summable in (t 1)' On the other hand, {xn} is not 
absolutely summable in any of the spaces (I p). 

Note. In dealing with vector families {xn} indexed by N it is important to 
distinguish between the notion of the sum of the indexed family {Xn}nEN 

and the sum of the infinite series L:'= 1 xn· If the family {Xn} nE N is summable, 
then the series L:'= 1 xn is convergent, but the converse is false even for 
sequences of scalars (recall Problem 4N). Similar remarks are valid, of 
course, for the index systems No and 7L. 

As has already been noted several times, the sequence of unit vectors 
{en}:'=o plays a quite special role in the spaces (Ip), at least for finite values 
of p. One aspect of this role is the fact that if X = {~n}:'= 0 belongs to (I p) 
for some p, 1 ~ p < + 00, then 

(1) 

in (Ip). For this reason the sequence {en }:'= 0 is called a basis for (t p). We 
conclude this chapter with a brief account of some of the facts concerning 
such bases. 

The essential feature of a basis of any kind in a vector space is that every 
vector in the space should be uniquely expressible as a sum of scalar multiples 
of the basis vectors. If only ordinary (finite) algebraic sums are employed, 
the basis is simply a Hamel basis, a purely algebraic concept that does not 
reflect in any way the topological structure that a normed space possesses. 
Hence it is more appropriate to allow infinite sums, and, in principle at 
least, any notion of infinite sum gives rise to a corresponding notion of 
basis. In fact, however, for reasons both substantive and historical, by far 
the greatest attention has been paid to ordinary (norm) convergent series, 
and we shall therefore be principally concerned with bases that are sequences, 
indexed, for the most part, either by N 0 or by 7L. 
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Definition. A sequence X = {xn}~=O in a Banach space Iff is a (Schauder) 
basis for Iff if for each vector x in Iff there exists a unique sequence {Ctn} ~= 0 

of complex numbers such that 

(2) 

If X is a basis for Iff then the scalars Ctn appearing in (2) are the coefficients 
of x with respect to the basis X, the sequence {Ctn} ~= 0 is the coefficient 
sequence of x with respect to X, and the series (2) is the expansion of x 
with respect to the basis X. A basis for Iff indexed by N (or any other 
index system with the same order type as N 0) is defined in exactly the 
same fashion with the obvious changes in notation. A two-way infinite 
sequence X = {xn}:=C()_oc in Iff is a (Schauder) basis for Iff in the primary 
sense [Cauchy sense] iffor each vector x in Iff there exists a unique sequence 
{Ctn} :=C()_ cx .. of complex numbers such that 

+w 

X= I Ctnx" 
n= -·x' 

in the primary sense [Cauchy sense], and the terms coefficient and ex
pansion are employed accordingly. 

Example B. As noted above, the sequence {en} ~= 0 is a basis for (t p), 
1 ~ p < + 00. This basis has the special property that the coefficient sequence 
of each element x of (t p) with respect to it is the sequence x itself. Similarly, 
for each p, 1 ~ P < + 00, the two-way infinite sequence {en}:=co_ co is a basis 
for (f p)# (in the primary sense) having the property that the coefficient 
sequence of each vector in (t p)# with respect to it is that vector itself. 

Example C. Let Iff be a Banach space and let {xn}~=O be a Schauder basis for 
Iff. Then the set of all vectors of the form I~= 0 Ctnxn, where only finitely many 
Ctn are nonzero and all Ctn have rational real and imaginary parts, is a countable 
dense subset of Iff, so Iff is separable. Similar considerations apply to spaces 
with Schauder bases indexed by N or 7L. It follows that no nonseparable 
Banach space possesses a Schauder basis. 

Example D. Let the (piecewise linear, continuous) function g be defined on 
IR as follows: 

{
2t, 

g(x) = 2(1 - t), 

0, 

° ~ t ~ t, 
t ~ t ~ 1, 
t < 0, t > 1. 

For reasons that will be clear shortly we denote by f2 the restriction of g to 
[0, 1]. Similarly, we denote by f3 the restriction to [0, 1] of g(2t), and by 
f4 the restriction to [0, 1] of g(2t - 1). In general, for k = 1, ... , 2n, f2" + k 
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is defined to be the restriction to [0, 1] of the function g(2nt - k + 1), and 
in this way we obtain an infinite sequence {f2' 13, ... } of piecewise linear 
elements of ~([O, 1]) all of which vanish at both t = ° and t = 1. Moreover, 
an examination of the details of the construction discloses that for each 
nonnegative integer n, and for each dyadic number p/2n+ \ where p = 2q - 1, 
q = 1, ... , 2n (so that p is an odd integer between 1 and 2n + 1), there exists 
exactly one index m > 2n (viz., m = 2n + q) such that I",(p/2n+ 1) = 1, while 
j,.(p/2n+ 1) = ° for all other indices r > 2n. It follows, of course, that iff is an 
element of the Banach space ~ 0([0, 1]) consisting of those functions in 
~([o, 1]) that vanish at ° and 1, and if {C<n};."=2 is a sequence of complex 
numbers such that L;."= 2 C<n In converges uniformly to a function I, then the 
coefficients c<"" m = 2n + 1, ... , 2n + 2n, must be chosen so that the partial 
sum 

2"+q 

L C<nIn 
n=2 

agrees with I at (2q - 1)/2n+ 1. Thus C<2 must equal f(t), C<3 and C<4 must equal 
I(!) - tf(t) and fei-) - tfm, etc. 

This shows that the sequence {C<n};."= 2 possessing the stated property is 
uniquely determined by f if it exists. On the other hand, if the sequence 
{C<n} is chosen in the manner just described, then each partial sum s", = 
L~=2 C<nJ" is a piecewise linear function in ~o([o, 1]) obtained by inter
polating linearly between various values of the given function f, and if 
m > 2n, then the set of numbers in the interval [0, 1] at which s'" equals f 
contains all of the dyadic numbers p/2n, p = 0, 1, ... , 2n. Since every function 
f in ~ 0([0, 1]) is uniformly continuous on [0, 1], {s",} converges uniformly 
to J, and it follows that the sequence Un};."= 2 is a Schauder basis for ~ 0([0, 1 ]). 

Finally, the quotient space ~([o, 1])!~0([0, 1]) is generated by the cosets 
of the functions fo(t) = t and fl (t) = 1 - t. Hence a Schauder basis for 
~([O, 1]) is given by the sequence Un};."=O, where fo(t) = t, fl(t) = 1 - t, 
and Un};."= 2 is as above. This is a basis for ~([o, 1]) of the type originally 
defined by Schauder [59]. 

Since a basis for a Banach space $ is certainly linearly independent, the 
following result, while stated in somewhat more general terms than required 
for present purposes, is clearly pertinent to a discussion of bases. 

Proposition 19.7. Let $ be a Banach space, let {xn};."=o be a linearly independent 
sequence of vectors in $, and let 2 denote the collection of all those 
sequences a = {C<n};."=O of complex numbers such that the series L;."=o C<nxn 
is convergent in $. Then 2 is a linear submanifold of (0) (Ex. 2D), and setting 

(3) 
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defines a norm on 2 with respect to which 2 is complete. (Analogous results 
hold with appropriate notational changes when other index systems such as 
N or 7L are used in place of No.) 

PROOF. We treat only the case of sequences indexed by No; see Problem M. 
It is an immediate consequence of Proposition 19.1 that 2 is a linear space 
with respect to term wise linear operations. Likewise the function defined 
in (3) is finite-valued on 2 (since a convergent sequence is necessarily 
bounded; cf. Chapter 4) and is easily seen to be a pseudonorm. Moreover, 
if a = {an} =j:. 0, and if aN is the first nonzero term in a, then I~=o anXn =j:. 0, 
so II a II > 0. Thus II II as defined in (3) turns 2 into a normed space. It 
remains to show that 2 is complete in this norm. 

We begin with the observation that if a = {an} belongs to 2, and if M 
and N are arbitrary nonnegative integers such that M < N, then 

N N M 

I anXn = I anXn - I anxn, 
n=M+l n=O n=O 

and therefore III~=M+l anxnll :::; 211all. In particular, laNlllxNl1 :::; 211all 
for each N in No, and since XN =j:. 0, this shows that each coordinate function 
a ~ aN(a) is a bounded linear functional on 2. Suppose now that {a(q)};,= 1 is 
a Cauchy sequence in 2, so that limp •q II d P) - a(q) II = 0, and let a(q) = 
{a~q)}:= 0 for each q. Then, by what has just been shown, each numerical 
sequence {a~q)};o=l is convergent, so {a(q)} converges termwise to a sequence 
a = {an}:= 0 . We must show that a belongs to 2 and that limq II a - d q) II = 0. 
Let 8 be a positive number and let Q be a positive integer such that 
II d P) - d q) II < 8/2 for all p, q 2': Q. Then for every pair of nonnegative 
integers K and r, 

rt~ (a~P) - a~q))xn II < c, p, q 2': Q. 

Letting p tend to infinity in this inequality we find that 

II ~t~ (an - a~q))xn II :::; C (4) 

for all K and r and all q 2': Q. Thus the infinite series I:=o (an - a~q))xn 
satisfies the Cauchy criterion, and is therefore convergent, since {j is com
plete (Prop. 19.2). Hence a - d q ) belongs to 2, and so therefore does a. 
Moreover, setting K = ° in (4) we see that II a - a(q) II :::; F, for all q 2': Q. 
Thus the proof is complete. 0 

Example E. Let iff = (t cJ and let Xn = en, n E No. Then the space 2 of those 
complex sequences {an}:=o with the property that I:=o anCn converges in 
(I exJ is just the subspace (co), and the norm (3) coincides with II 1100 on 
that subspace. It follows at once that in (too) the sequence {eJ:= 0 is a basis 
for the subspace (co). Similarly the two-way infinite sequence {en} :=00_ ex' 
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is a basis in (t (0)# (in the primary sense) for the subspace of(t (0)# consisting 
of those sequences {~n}nt=oo_oo in (t ,J# such that limlnl--++oo I~nl = O. (Since 
(t (0) and (t cxJ# are not separable, neither can possess a Schauder basis 
(Ex. C).) 

Proposition 19.7 permits us to establish a very important property of 
bases. 

Theorem 19.8. Let lff be a (separable) Banach space, let {xn}:'=o be a basis for 
lff, and for each nonnegative integer n and vector x in lff let us write an(x) for 
the nth coefficient ofx with respect to the basis {xn}, so that 

X E lff. (5) 
n=O 

Then an is a bounded linear functional on lff. (Analogous results hold, 
with appropriate notational changes, when other systems such as N or 7L 
are used in place of No; see Problem M.) 

PROOF. As has been noted, the uniqueness requirement in the definition of 
a basis ensures that {xn} is linearly independent, so Proposition 19.7 applies. 
Hence the linear space 2 of all the coordinate sequences of vectors in lff 
(with respect to the given basis {xn}) is a Banach space in the norm (3). 
Moreover, it is clear that if we write <D(a) = L:'=o anxn for each a = {an} 
in 2, then II <D(a) II S SUPN IIL~=o anxnll = Iiali. Thus <D is a bounded 
one-to-one linear transformation of the Banach space 2 onto the Banach 
space lff, and it follows (Th. 13.3) that <D is an equivalence between 2 and lff. 
Hence it suffices to show that each coordinate map a ~ an (a) is a bounded 
linear functional on 2 in the norm (3), and this was demonstrated in the 
proof of Proposition 19.7. D 

The foregoing result shows that whenever a Schauder basis X = {xn} 
is given in a Banach space lff there corresponds to that basis a similarly 
indexed sequence A = {an} of coordinate functionals in lff* such that (5) is 
satisfied. Moreover, from the uniqueness requirement satisfied by X it is 
readily deduced that the two sequences {xn} and {an} satisfy the condition 

am(xn) = bmn 

for all values of m and n. This observation leads naturally to the following 
idea. 

Definition. Let lff be a Banach space. If X = {xn} and A = {an} are similarly 
indexed sequences in lff and lff*, respectively, then the pair (X, A) is a 
biorthogonal system for lff if am(xn) = bmn for all values of m and n. If (X, A) 
is a biorthogonal system for lff and x E lff, then the (formal) series Ln an(x )xn 
is called the series expansion of x in the system (X, A). It is customary to 
write x "" Ln an(x)xn to indicate this relationship. 
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Example F. The functions In(A) = An are continuous on the unit circle Z for 
every n in Z and therefore belong to 2 p(Z) for all p, 1 :::; p :::; + 00. Moreover, 

m,nEZ. 

Hence the two-way infinite sequence {un = In/ j2n} :=00_ 00 and the companion 
sequence {C(n = l-n/j2n = u_n}:=oo_oo (regarded as a sequence in 2 q(Z), 
where q denotes the Holder conjugate of p) constitute a biorthogonal system 
for 2 p(Z), 1:::; p < + 00 (for p = 1 set q = + (0). This trigonometric 
biorthogonal system is of the greatest importance both intrinsically and for 
historical reasons. The (formal) series expansion of an integrable function I 
in this system is the Fourier series of J, frequently denoted by S(f). The 
generic term of S(f) is C(n(f)Un(A) = (l/2n)An Jz ImC n dem, and it is 
customary to write Cn (or cn(f) when necessary) for the nth Fourier coefficient 
of I: 

Thus 

for each f in !l'1 (Z) (this calculation is the same for all values of p since 
2p(Z) c 2 1(Z); see Example 17A). Finally, for each N in No the Nth 
partial sum of the Fourier series S(f) is the symmetric sum 

+N 

SN(f)(A) = I CnAn. (6) 
n= -N 

Those who prefer to associate Fourier series with periodic functions on the real line 
may simply transplant this entire discussion into the Banach space fJ\ (consisting of 
those measurable functions on IR that are periodic with period 2n and integrable over 
a period) via the standard isomorphism f -+ J, where j(t) = f(e i') (see Example 17F). 
In that notation we have 

- ~ . I ~. i- . 
sU) = n=~ ro cnem' = 2n n=~ oc eon' j f(u)e- on" du 

for the Fourier series of], where the nth Fourier coefficient of j is given by 

I i - . 
Cn = 2n :r f(u)e- mU du, 

and the Nth partial sum of s(j) is given by 

+N 

SNU)(t) = L cnein'. 
,,= -N 
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It turns out that iff is a function in 2/Z) for any p such that 1 < p < + 00, 

then the sequence {SN(f)}N'=O converges to f in the norm II lip, but for p = 1 
the situation is quite different; there exist functions f in 21 (Z) such that the 
partial sums SN(f) do not converge to f in the norm II III' In other words, the 
sequence U = {un}:=oo_oo is a basis (in the Cauchy sense) for 2/Z), 
1 < p < +00, but is not a basis (even in the Cauchy sense) for 2 1(Z). The 
proofs of these assertions are quite deep, and well beyond the scope of this 
discussion; the interested reader may consult [3; Ch. VIII, §§20, 22]. 

Example G. Let U = {un}:=oo_oo and A = {lXn}:=oo_oo be as in the preceding 
example, and for each integer n write Pn for the Borel measure on Z that is the 
indefinite integral of IXn with respect to e. If we set R = {Pn} :=00_ 00' then 
the pair (U, R) is a biorthogonal system for ~(Z) (see Proposition 9.5 and 
Theorem 18.3), but the sequence U is not a basis (even in the Cauchy sense) 
for ~(Z). This is equivalent to saying that there exist continuous functions 
f on Z such that the partial sums SN(f) given by (6) do not converge uniformly 
to f, a fact that is well known, though a concrete counterexample is not 
easily constructed. (One may be found in [3; Chap. I, §44].) 

As the foregoing examples show, given a biorthogonal system (X, A) for 
a Banach space ct, so that X and A are similarly indexed sequences in ct 
and ct*, respectively, the question whether X is a basis for ct may turn out to 
be quite delicate. One obvious necessary condition is that X must span ct, 
but this condition is satisfied in every case by the trigonometric system 
discussed in Examples F and G (recall Problem 180), so this necessary 
condition is clearly not sufficient. The following definition makes it possible 
to formulate a criterion (Prop. 19.10) that is sometimes useful. 

Definition. Let ct be a Banach space and let X = {xJ~=o and A = {lXn}~=O be 
(similarly indexed) sequences in ct and tff*, respectively, such that (X, A) 
is a biorthogonal system. Then for each nonnegative integer N the 
equation 

N 

EN X = L IXn(X)Xn, X E ct, 
n=O 

defines a bounded linear transformation EN on ct called an expansion 
operator of the system (X, A). (If X and A are indexed by some other 
index set, such as N, with the same order type as No, this definition is 
to be modified by making the obvious changes in notation. For biorthog
onal systems consisting of sequences indexed by 7L there are two kinds 
of expansion operators corresponding to the two types of convergence 
of two-way infinite series; see Problem N.) 

437 



19 Vector sums and bases 

Lemma 19.9. Let (X, A) be a biorthogonal system for a Banach space C as in 
the foregoing definition. Then the expansion operators EN of the system 
(X, A) have the property that EMEN = ENEM = EM AN for every pair of 
nonnegative integers M and N. In particular, each EN is idempotent. 

PROOF. These assertions are immediate consequences of the biorthogonality 
relations. 

Proposition 19.10. Let C be a Banach space, let X = {xn}:'=o and A = {Ctn}:'=o 
be sequences in C and C*, respectively, such that (X, A) is a biorthogonal 
system for C, and let A denote the subspace of C spanned by X. Then X 
is a basis for j{ if and only if the sequence {EN}~=O of expansion operators 
is uniformly bounded on A. 

PROOF. If X is a basis for A, then for each vector x in A we have x = 
limN ENx, from which it follows at once (by the uniform boundedness 
theorem; Theorem 12.15) that the sequence {EN} is uniformly bounded on A 
(cf. Example 12V). Suppose, on the other hand, that there is a positive 
constant M such that II EN y II :s; Mil y II for all N in No and all y in A, 
and let x be a vector in A. Then for any positive number e there exists a 
linear combination x' = Aoxo + ... + AKxK of vectors belonging to X 
such that II x - x'il < e, and, by the preceding lemma, ENx' = x' for all 
N ~ K. Thus 

Ilx - ENxl1 :s; Ilx - x'il + Ilx' - ENx'l1 + IIENx' - ENxl1 :s; (1 + M)e 
for all N ~ K, and the proposition follows. 0 

Corollary 19.11. If (X, A) is a biorthogonal system for a Banach space C, 
then necessary and sufficient conditions for X to be a basis for C are that 
X span C and the system of expansion operators be uniformly bounded. 

Note. For biorthogonal systems (X, A) composed of sequences indexed 
by 7L there are two versions of this criterion, one for X to be a basis in the 
Cauchy sense, the other for X to be a basis in the primary sense; see Problem 
N. 

Example H. Corollary 19.11 may be employed to give a simple proof that 
the trigonometric sequence U = {un} :=00_ 00 introduced in Example F is a 
basis for ~(Z) in the (very special) case p = 2. To this end let us define 

(SD(f»(A) = I cn(f)An = 21 LAn r f(()cn d(}(() 
nED n nED Jz 

for each f in !l'1 (Z) and finite subset D of 7L. Then a straightforward calcula
tion, using the fact that 1/..1. = .A: on Z, shows that 

rfsD(f)d(}= Icn(f) r f(A)A-nd(}(A) =2nI Icn(f) I 2, 
Jz nED Jz nED 
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and similarly that 

J /sD(f)de = 2n L icn(f) I 2. 
Z nED 

In particular, setting I = SD(f), we obtain II SD(f) II ~ = 2n LnED I cn(fW. 
(We here use the fact that SD, like all expansion operators, is idempotent; 
recall that II g II ~ = Sz gg de for every function g in f£ 2(Z).) Hence, sum
marizing, we see that if I E f£ 2(Z), then 

II 1- SD(f) II ~ = J (f - SD(f)(f - sD(f»dG = II I II ~ - 2n L icn(f) I 2 

Z nED (7) 

= II I II ~ - II S D(f)ll3 . 

Thus SD (regarded as an operator on f£ zCZ» is a contraction for every choice 
of D. In particular, this is true for D = {- M, - M + 1, ... , N - 1, N}, 
where M and N are arbitrary nonnegative integers, and it follows (Prob. N) 
that U is actually a basis for f£ 2(Z) in the primary sense. (The sequence U 
is also an indexed basis for f£ zCZ), as defined in Problem R; these observa
tions are not of great importance since the sum of a Fourier series is invariably 
taken to be its principal value.) The inequality 

+N 

2n L icnCf) 12 5 II I IlL 
n= -N 

valid for all nonnegative integers N and every I in f£ 2(Z) according to (7), 
is known as Bessel's inequality. On the basis of this inequality we may also 
conclude that 

2n L icn(f) 12 ~ II I II ~ nE;l 

for every I in f£ 2(Z), an inequality also sometimes called Bessel's inequality. 
Finally, setting D = { - N, ... , + N} in (7), we find that 

III - sN(f)II~ = IIIII~ - IlsN(f)IIL 
and hence that 

+00 

II I 112 = 2n L icn(fW = 2n L icn(f) 12 
n= - 00 

for every function I in f£ 2(Z), an equation known as Parseval's identity. 

Note. In the Lebesgue spaces of the special form f£ 2(X, S, j1) it is possible 
to introduce an inner product by writing 

(f, g) = Ix fg dj1, I, 9 E f£ 2(X). 
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(The function jg is integrable [I1J by the Holder inequality; we are here 
using the fact that p = 2 is its own Holder conjugate.) This inner product 
is sesquilinear (that is, linear in the first variable f and conjugate linear in 
the second variable g; see Chapter 2) and is not to be confused with the bi
linear pairing of 2 2(X) with itself introduced in Example 17H, from which 
the inner product may be derived, to be sure, by writing (f, g) = <f, g), 
f, g E 2 z(X). In terms of the inner product ( , ) the norm II 112 is given by 

II f 112 = (f, f)1/2, f E 22(X), 

A Banach space in which the norm is given in this way by a sesquilinear 
functional is called a Hilbert space. Thus, in particular, 2 2(Z) is a Hilbert 
space, and in terms of inner products it is the substance of the calculations 
in Example H that 

(f, SD(f)) = (SD(f), f) = II SD(f) II ~ 

and therefore 

II f - SD(f) II ~ = (f - SD(f), f - SD(f)) = II f II ~ - II SD(f) II ~ 

for every function f in 2 z(Z). The theory of Hilbert spaces and operators 
thereon will form the principal subject matter of Volume II. 

The explicit construction of a basis for a given Banach space may present serious 
difficulties, and (as Example D shows) require considerable ingenuity. Nevertheless, 
within a few years of the publication of Schauder's original memoir [59], bases had been 
constructed for all of the classical separable Banach spaces, and as new separable Banach 
spaces were introduced and studied over the intervening years, bases for them were 
eventually found. Accordingly, the basis problem was formulated: Is it the case that every 
separable Banach space possesses a basis? This problem proved to be very deep. So deep, 
in fact, that for nearly fifty years every effort to solve it failed. Then in 1973, Per Enflo 
presented to the world [25] a very complicated example of a separable Banach space 
that does not possess any basis at all, and the basis problem was thereby finally solved 
in the negative. (It should be emphasized that the basis problem here referred to has to 
do with Schauder bases. Similar problems for other more restricted types of bases had 
been solved earlier; see Problem V and the note preceding it.) 

PROBLEMS 

A. Let (X,S, /1) be a measure space, and let {El'}YEf be a disjoint indexed family of 
measurable subsets of X, each of which has finite measure. If 1;, = XEy, determine, 
for each value of p, 1 :s; p :s; + 00, when {f;'}YEf is a summable family in !f'iX), 
and find the sum when it exists. 

B. Let f be an infinite index family, let {xl'} l' E f be a summable family of vectors indexed 
by f in a normed space tff, and let {Yn}~: 1 be an enumeration of any subset fo 
of indices such that Xl = 0 for all Y not in f o. (That such an enumeration exists 
is assured by Corollary 19.5.) Show that 

aJ 

I Xl' = I x,,,,, 
)'Er n== 1 
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C. If {x'}l'Er is a summable family of vectors in a Banach space tC, and iff' is any subset 
off, then {X'}"Er' is also summable. Show also that, if we set f" = f\f', then 

l'Er )'Er' YEr" 

Show, more generally, that if {fb}bEd is an arbitrary indexed partition of the index 
set f into disjoint subsets fa, then 

D. Show that if tC is a finite dimensional Banach space, and if {Xl'})'Er is an arbitrary 
indexed family of vectors in tC, then {x)'} is summable if and only if it is absolutely 
summable. (Hint: See Problem 4N for the one dimensional case. Recall (Prob, 111) 
that if tC is finite dimensional with basis {x I' ' .. , x,}, then II Al x I + ' .. + A,X, II 0 = 
I All + ... + I A, I defines a norm on tC that is equivalent with the given one.) 

Our experience to date with the differences between the finite and infinite 
dimensional cases would lead us to expect the converse of Problem D 
to be valid, i.e" to guess that in an infinite dimensional normed space there 
should exist summable families of vectors that are not absolutely sum
mabie. That this is indeed the case is the substance of the (surprisingly 
deep) Dvoretsky-Rogers theorem (see [24J), 

E. Let tC be a Banach space and let {xl'})',r be an indexed family of vectors in tC. 

(i) Show that {xl'} fails to satisfy the Cauchy criterion for indexed families (Prop. 
19.4) if and only if there exists a number 80 > 0 and a corresponding disjoint 
infinite sequence {Dn} of finite subsets of f such that 

II L Xl'll:2:: Eo 
}'ED" 

for every n, Conclude that the family {xl'} is summable in tC if and only if 
limn II I)'ED" xl' II = 0 for every disjoint infinite sequence {Dn} of finite subsets of 
f. 

(ii) Suppose tC is finite dimensional. Show in this case that {xl'} fails to satisfy the 
Cauchy criterion for indexed families if and only if there exists a sequence 
{Dn} of finite subsets of f such that 

lim II I Xl' II = + 00. 
n TEDn 

Conclude that the family {x)'} is summable if and only if 

sup II I xl' II < + 00, 
D )'ED 

where the supremum is taken over all finite subsets D of f. (In particular, 
then, this is true for tC = C.) 
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F. Let tff be a Banach space, and suppose given a sequence {xn};;'~O of vectors in tff. 

(i) The series I;;,~o Xn is said to be unconditionally convergent if it is convergent 
to a sum x and if, for every permutation (J of No, the series I~ 0 x~(n) also 
converges to x. (A permutation of an infinite set is defined, just as for finite sets, 
as a one-to-one mapping of the set onto itself. As a matter of fact, it is easy to 
see that if all of the permuted series I;;,~o xa(n) converge, then they all must 
converge to the same vector x.) Prove that I;;,~o Xn is unconditionally con
vergent if and only if the indexed family {Xn}nEN o is summable, and that, in this 
event, 

I Xn = I xn • 
n=O nef\:::Jo 

(Hint: Use Problem E(i).) 
(ii) A subseries of the series I;;,~o Xn is any series of the form Ik~O xnk where 

{xnk}k~O is a subsequence of {xn}. The series I~~o Xn is said to be subseries 
convergent if every subseries of the given series is convergent. Prove that I~~ 0 Xn 

is subseries convergent if and only if the indexed family {Xn}nENo is summable. 
(Hint: Use Problem E(i).) 

Problem F, together with Problem 4N, yields a proof of the classical 
result that an infinite series of scalars is unconditionally convergent if 
and only if it is absolutely convergent. 

G. Let tff be a Banach space and let {X)'L'Er be a summable family of vectors in tff, 
Then, according to Proposition 19.4, for any given e > 0 there is a finite set D, 
of indices such that II Ll'ED Xi' II < [; whenever D is a finite set of indices such that 
D (l D, = 0, and hence such that 

for any such D and any family {ej'} of zeros and ones. Show that, in fact, 

whenever D (l D, = 0 and all of the scalars ti' belong to the unit interval. (Hint: 
Each t y has a binary expansion 

_ ~ en• i , 

t;, - L.. 2n ' 
n=1 

where every en.)' equals 0 or 1. Hence 

Use this observation to prove that for an arbitrary bounded family of scalars 
{Je))'er, the family of vectors p"xJ is summable along with {xy}. Show also, in 
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the converse direction, that if an infinite series 

ex; 

in Iff has the property that I:,=o Anxn is convergent for every bounded sequence 
of scalars {An}, then {Xn}nENo is summable as an indexed family. 

H. Let us equip an index family f with the counting measure K. (See Example 7 J; 
it doesn't matter which u-ring of subsets of f we declare to be measurable so long 
as it contains all the singletons {y}.) Show that for any separable Banach space Iff 
the collection of all absolutely summable vector families {X1'},'Ef in Iff coincides with 
the Banach space !£ 1 (f; Iff) of Theorem 17.11, and that for any such family we have 

I x; = f Xl dK(Y) 
l'Er r 

(cf. Theorem 17.14 and Problem 7Q). 

I. An indexed family {X'}l'Ef of vectors in a Banach space Iff is said to be weakly 
summable if the family of scalars {f(XY)}l'Ef is summable in C for every f in Iff*. 
Likewise, {xJ is weakly summable to sum X if (for some x in Iff) 

I f(x l ,) = f(x) 

for every f in Iff*. 

(i) Show that {xJ is weakly summable if and only if the net {SD}DE9 of finite 
sums SD = Il'ED Xl' is weakly Cauchy in Iff. (See Problem 15R.) 

Oi) Show that the indexed family {en}nENo (Ex. I1H) is weakly summable in the 
space (co), but is not weakly summable to any sum in that space. Is the family 
{en} weakly summable (or weakly summable to a sum x) in any of the spaces 
(I p)? (Hint: The space (I cxJ contains (co) as a (weakly closed) subspace and the 
sequence {en} lies in (co).) 

(iii) If Iff is finite dimensional, then every weakly summable indexed family of 
vectors in Iff is (absolutely) sum mabie. 

J. Let {X1'}YEf be a weakly summable indexed family of vectors in a Banach space Iff. 
Prove that 

f E Iff*, 

defines a bounded linear transformation T of Iff* into the normed space (t 1 ; r) 
of all summable indexed families {AY}YEf of complex numbers. (Hint: The space 
(11; f) is complete by Problem H. Show that T is closed.) 

K. Let Iff be a Banach space. An indexed family {fY}l'Ef offunctionals in Iff* is said to 
be weak* summable if the family of scalars {f,(X)}YEf is summable in C for every x 
in Iff, and to be weak* summable to sum f if (for some f in Iff*) 

I fix) = f(x) 

for every x in Iff. Show, for an arbitrary Banach space Iff, that an indexed family 
{fy} in Iff* that is weak* summable is weak* summable to some f in Iff*. Conclude 
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that if rff is a reflexive Banach space, then every weakly summable indexed family 
in rff is weakly summable to a sum in rff. 

It is a remarkable result due to Bessaga and Pelczynski [9] that if,g is a 
Banach space in which there exists a single indexed family that is weakly 
summable but not summable (in norm), then ,g has a subspace that is 
equivalent to the space (co). (The converse result is obvious in view of 
Problem I(ii).) Thus in the presence of any condition on ,g that prevents it 
from having such a subspace, every weakly sum mabIe indexed family in ,g 
is necessarily summable. Reflexivity is one such condition, to be sure 
(Ex. 16C; Prob. 16H), but there are many others. Thus, for example (Orlicz 
[51]): If,g is weakly sequentially complete, then every weakly summable 
indexed family of vectors in,g is summable. 

In Problems F and G it was seen that several senses ofsummability are 
equivalent for families of vectors indexed by No (or any other index system 
with the same order type). Since the Cauchy criterion is the critical in
gredient in these arguments, and since the Cauchy criterion may fail for 
weak summability, as noted in Problem I, the fact developed in the fol
lowing problem comes as a distinctly pleasant surprise. 

L. (Orlicz-Pettis Theorem) Let rff be a Banach space, let X = {xn}~=O be a sequence 
in rff such that the series I~= 0 Xn is weakly convergent to a sum x, that is, such that 
I~=o f(xn) = f{x) for every f in rff*, and let Jt be the subspace of rff spanned by X. 

(i) Let {fp};'= 1 be a sequence in the unit ball (rff*)1 with the property that there 
exists a bounded linear functional fo on rff such that limp /pCz) = fo{z) for 
every z in Jt. Show that 

00 00 
lim I fiXn) = I fo(xn)· 

p n=O n=O 

(Hint: The vector x belongs to jt.) 
(ii) Suppose further that the series I~=o Xn is weakly subseries convergent in the 

sense that, for every infinite subset J of No, there exists a vector x) in rff such 
that I:=o xin)f(xn) = f{x) for every fin rff*. Show that the indexed family 
{xn}nel\!o is weakly summable as defined in Problem I. 

(iii) Let I~= 0 Xn be weakly subseries convergent as in (ii), and let T denote the 
bounded linear transformation of rff* into (t 1) introduced in Problem J 
{existent because of (ii». For each infinite subset J of No write Fl for the 
bounded linear functional on (t 1) defined by Xl (regarded as an element of(t 00»' 
and let the sequence {fp} in rff* be as in (i). Show that 
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lim FiTfp) = FiTfo) (8) 
p 

for every J, and conclude that the sequence {Tfp};'= 1 converges to Tfo in (t d. 
(Hint: To verify (8) one may simply replace the given series I:=o Xn in (i) by 
the series I~o xin)xn, weakly convergent because I:=o Xn is weakly subseries 
convergent. Since the sequence {Tfp};'= 1 is bounded in (t 1) (by II Til) and the 
functions Xl span (t 00) as a Banach space (Ex. llH), one may conclude that 
the sequence {fp} converges weakly to fo (Prob. 15P). Recall Problem 15D.) 
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(iv) Use (iii) to prove that ifI:=o Xn is weakly subseries convergent and if {fp}:= 1 is 
an arbitrary infinite sequence in (tS'*)1> then {fp} has a subsequence {fp) 
such that {T!Pk} is convergent in (t d, and conclude that T«tS'*)I)- is compact 
in (II)' (Hint: Since .It is separable, the sequence {fp 1.It}:= 1 has a weak* 
convergent subsequence {fPk I<Jt} (Prob. 15P). Use the Hahn-Banach theorem 
to extend limk UPk I.Jt) to a bounded linear functional fo in (tS'*) 1 , and invoke 
(iii) to conclude that T«tS'*)I)- is sequentially compact. Finally, recall 
Prob. 4Q.) Thus T is a compact linear transformation (Prob. 17Y). 

(v) (Pettis [52]) Prove that a weakly subseries convergent infinite series in a 
Banach space is actually subseries convergent and therefore summable (in 
norm) as an indexed family. (Hint: If for each nonnegative integer k we write 
Pk for the projection 

Pd~o""'~b~k+I""} = {O, ... ,O'~k'~k+J,···}, 

then II Pkx II --+ 0 for each x in (t I), and therefore, by a standard compactness 
argument, {Pdk=1 tends to zero uniformly on T«tS'*)I); in other words, 
limk II Pk Til = O. Use the fact that 

!!XJ - JoXin)xn !! s suPtJ+llf(Xn)I:!E(tS'*)I} 

M. (i) Let {xn} :=aJ_ oc be a two-way infinite linearly independent sequence in a Banach 
space tS', and let 2 denote the collection of all complex sequences {lJ(n}:=co... oo 

such that the series I:=oo_ oc IJ(nXn is convergent in tS' in the primary sense. Verify 
that 

defines a norm on 2 with respect to which 5l' is a Banach space, and conclude 
that if {xn} is a basis for tS' in the primary sense, then each IJ(n is a bounded linear 
functional on tS'. Show also that if 2 c denotes the (generally larger) collection 
of all complex sequences a = {lJ(n} :=00_ 00 such that the series I:=oo_ 00 IJ(nXn is 
convergent in the Cauchy sense, then 

defines a norm on 2 c with respect to which 2 c becomes a Banach space, and 
conclude that if {xn} is a basis for tS' in the Cauchy sense, then the functional 
!n(x) = IJ(nCx) + lJ(_n(x) is bounded for each nonnegative integer n. 

(ii) Use the results of (i) to derive appropriate versions of Theorem 19.8 for bases 
indexed by 7L. 

N. Let tS' be a Banach space, let (X, A) be a biorthogonal system for tS' such that X = 

{xn} and A = {lJ(n} are both indexed by 7L, and for each nonnegative integer N set 

+N 

ENX = I IJ(n(X)Xn, X E tS'. 
n== -N 
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Show that X is a basis in the Cauchy sense for the subspace At of $' that it spans if 
and only if the sequence {EN}~=O is uniformly bounded on At. (Hint: Show first 
that EMEN = ENEM = EMAN , and then adapt the proof of Proposition 19.10.) 
Show also that X is a basis in the primary sense for At if and only if the double 

sequence {EM.N}M.N=O is uniformly bounded on At, where 

+N 

EM.NX = I an(x)Xn, X E $', 
n~ -M 

for all nonnegative integers M and N. 

O. A sequence X = {xn};;"=o in a Banach space $' is said to be a weak basis for $' if 
for every vector x in $' there exists a unique sequence {an};;"=o of complex numbers 
such that the series I~o anxn converges weakly to x (see Problem L). Prove that 
a weak basis for a Banach space $' is actually a Schauder basis for $'. (Hint: Use 
Proposition 19.7 to show that X and the corresponding sequence A of coefficient 
functionals form a biorthogonal system; then use the uniform boundedness theorem 
to prove that the sequence of expansion operators is uniformly bounded.) Develop 
the analogous results for a weak basis indexed by 71.. 

P. If X = {xn};;"=o and A = {an};;"=o form a biorthogonal system for a Banach space 
$', then (A,j(X)) is a biorthogonal system for the dual space $'* (where j denotes, 
as usual, the natural embedding of $' in $'**; see Chapter 15). Moreover, if X 
is a basis for $', then A is a basis for the subspace of $'* spanned by A. (Hint: The 
expansion operators EN for the system (A,j(X)) are the adjoints of the expansion 
operators EN for (X, A).) Develop analogous results for biorthogonal systems 
indexed by 71.. 

Q. A sequence {!.};;"=o in the dual $'* of a Banach space $' is a weak* basis for $'* if 
for every element f of $'* there exists a unique sequence {an};;"=o of complex numbers 
such that the sequence {I~=o anfn}N=o converges to f in the weak* topology. 
Show that if X = {xn};;"=o is a Schauder basis for $' and A = {an};;"=o denotes the 
corresponding sequence of coefficient functionals, then A is a weak* basis for $'*. 
Develop analogous results for bases indexed by 71.. 

R. An indexed family X = {XY}l'Ef of vectors in a Banach space $' is an indexed basis 
for $' if for each vector x in $' there exists a unique indexed famil) tar}l'Ef of complex 
numbers such that 

(9) 

If X is an indexed basis for $' then the scalars {a) appearing in (9) are the coefficients 
of x with respect to the indexed basis X, the indexed family {aY}YEf is the coefficient 
family of x with respect to X, and the expression (9) is the expansion of x with 
respect to the indexed basis X. 
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(i) Let {Xl'L'Ef be an indexed basis for $', and for each index y write al' for the 
linear functional on $' that assigns to each vector x its coefficient with respect 
to X having index y, so that 

x = L: aix)x1" x E $', 

Prove that a1, is bounded for each index y, so that X and the indexed family 
A = {aY}YEf of coefficient functionals constitute an indexed biorthogonal system 
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for ~, that is, a pair of similarly indexed families X = {x)'} and A = {a)'} in ~ 
and ~*, respectively, satisfying the biorthogonality relation a),,(x,") = 15/),,, 
(the Kronecker delta) for all y', y" in f. (Hint: Let ft denote the linear space 
consisting of all those families of scalars {a,} indexed by f with the property 
that the family {ayxY}YEr is summable in ~. Use Problem 4N to show that the 
sum L)'Erl a).f(x),) I is finite for eachfin ~* and {a),} in ft. Then use this fact to 
show that 

II a II = sup II L a),x), II, 
D )'ED 

where the indicated supremum is taken over all finite subsets D of f, is a norm 
on ft turning it into a Banach space; follow the proofs of Proposition 19.7 
and Theorem 19.8.) 

(ii) Let (X = {X))'Er, A = {ay}l'Ed be an indexed biorthogonal system for a 
Banach space ~, and for each finite subset D of f set 

EDx = L al'(x)x)" XE~. 
}'ED 

Show that X is an indexed basis for ~ if and only if X spans ~ and the family of 
expansion operators {ED} is uniformly bounded. 

S. Let {X)l'Er be an indexed basis for a Banach space ~, and let {a).} be the corre
sponding family of coefficient functiona1s, Let f = UbEA fb be an arbitrary indexed 
partition of r, and for each index 15 let ,J{ b denote the subspace of ~ spanned by 
{x y : YEfb}' Prove that fb is an indexed basis for .J{~, bE~, and further that for 
each x in ~ there exists a unique indexed family {Xb} bEA with Xb in .J{ b, 15 E ~, such 
that x = LbEA Xb' Show too that for each index 15 in ~ 

.JIb = n Jf'(a,), 
i'fir" 

where Jf'(a),) denotes the null space of a)" What are the corresponding results for 
an ordinary Schauder basis? 

T. (i) Give an example of an uncountable indexed basis in a nonseparable Banach 
space. 

(ii) Let {X)'})'Er be an indexed basis for a Banach space ~, let M be a subset of ~ 
of ~ that spans ~ as a Banach space, and for each vector y in M set N v = 

{y E f: ay(y) 1= O}. Show that 

f = U Ny. 
)'EM 

Use this fact to verify that any two indexed bases for ~ have the same cardinal 
number. (Hint: Use Corollary 19.5, Problem IT, and the Cantor-Bernstein 
theorem (Prob. lR).) Conclude also that if ~ is separable, then an indexed 
basis for ~ must be countable. 

This last result shows that an indexed basis for a separable infinite dimen
sional Banach space can always be taken to be indexed by No, in which 
case the requirement that the indexed family {lXn(x)xn} be sum mabIe is 
equivalent to the requirement that the series L~~o IXn(x)xn converge un
conditionally (Prob. F). For this reason the notion we have called an 
indexed basis is also frequently called an unconditional basis. 
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U. Let Iff be a Banach space, let X = {xn}nENo be an indexed basis for Iff, and let A = 
{lXn} nE No be the corresponding sequence of coefficient functionals. 

(i) Show that (A,j(X)) is an indexed biorthogonal system for Iff* (Prob. R), and 
that the family of expansion operators 

Eo! = L f(xn)lXn 
nED 

of this system is uniformly bounded. Conclude that iff and ({J denote elements of 
Iff* and Iff**, respectively, then 

(10) 

(Hint: Recall Problem P.) 
(ii) Suppose now, in addition, that Iff* is weakly sequentially complete (see Problem 

15R). Show that for each f in Iff* the series 

is unconditionally convergent to f, and conclude that the sequence A is an 
indexed basis for Iff*. (Hint: If {Nd is an arbitrary strictly increasing sequence 
of nonnegative integers, then the subseries 

is weakly summable by (10). Since Iff* is weakly sequentially complete, it follows 
that I::,=o f(xn)lXn is weakly subseries convergent in Iff*. Use the Orlicz-Pettis 
theorem (Prob. L).) 

(iii) (Karlin [39J) Conclude, in summary, that if Iff is a separable Banach space 
that admits an indexed basis, and if Iff* is weakly sequentially complete, then Iff* 
is also a separable Banach space that admits an indexed basis. 

It is an immediate consequence of this last result that if a separable Banach 
space tff has a dual space tff* that is both nonseparable and weakly sequen
tially complete, then tff does not admit an indexed basis. As it turns out, the 
dual .;/t'([O, I]) of the space ~([O,I]) is weakly sequentially complete 
according to a result of Banach and Mazur [2; Satz 2]. Since .;/t'([O, I]) is 
visibly nonseparable, this shows that the familiar space ~([O, I]) is an 
example of a separable Banach space that does not admit an indexed, or 
unconditional, basis. (That ~([O, I]) possesses an ordinary Schauder 
basis was shown in Example D.) 

V. An indexed basis {XY}YEf for a Banach space Iff is called an absolute basis for Iff 
if, in the expansion 

x = I 1X,.(X)Xy 
)'Er 

of an arbitrary vector x in Iff, the indexed family {lXlx)xY}YEf is absolutely summable. 
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Let {X,} be such an absolute basis, let (/1; f) denote the Banach space of all 
absolutely summable families of scalars indexed by f (cf. Problem J), and define 

Tx = {1X1,(X) II x, II }YEr, x E If. 

Show that T is a linear transformation of If onto (11; f). Show further that T is 
bounded, and is therefore an equivalence between If and (/1; f). Thus, in particular, 
a separable Banach space admits an absolute basis if and only if it is equivalent to 
(11)' (Hint: Use the continuity of the coefficient functionals IX, to prove that Tis 
closed.) 
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Abel's theorem 89 
absolutely convex neighborhood of 0 295, 

296, 321, 323, 334, 362 
absolutely convex set 295, 308, 350, 362 

absorbing 322, 323, 352, 362 
closed 308,349-351, 354, 356, 362 
compact 355, 356, 362 
weakly compact 361 

absolutely summable family of vectors 431, 
441,443,448 

absorb 350, 351, 362 
accumulation point 49,51,57, 71, 341 
adherent point (of a collection of sets) 53, 

54 
adjoint 342-345, 361, 374, 446 
admissible collection of sets 156, 157, 160 
admissible collection of weakly bounded 

se~ 353-356, 361, 363 
Alaoglu-Bourbaki theorem 356 
Alaoglu's theorem 319,321,333,334,357 
algebra 253, 267, 270, 412 

abelian 20 
associative linear 19, 28, lIl, 207 
Banach, see Banach algebra 
commutative 20, 133 
homological 359 
normed, see normed algebra 
of polynomials 29, 415 
quotient 28, 29 
unital 20, 34, 106, 133,392 

analytic continuation 96-98, 330, 420 
along an arc 97,98 

analytic function 70, 77, 79-85, 87, 89, 
90,94-98,244, 309, 390, 416, 421 

of an operator 389, 395, 396 
annihilator 339, 340, 345, 348, 360, 399, 

426 

Index 

anti-isomorphism, Banach algebra 343 
arc 38, 73-75 

closed 73, 77, 80, 93, 95-98, 388 
opposite 73 
piecewise smooth 73, 78, 79, 91, 98 
polygonal 75, 79, 91-93, 97 
rectifiable 60, 74, 77, 80, 91-96, 387, 

388 
regular 74, 79, 98 
smooth 73, 98 
triangular 76, 77, 83, 97 

Ascoli's theorem 67 
atom 140, 161,205, 366, 399 

finite 140, 192 
infinite 13l, 140, 141, 185, 186, 189 

axiom of oountability, first 30,49, 51, 54, 
56,231,241,247,329,332,362,363 

second 30,35,49,50,56,59,68,107, 
164,195,202,203,240,241,332,333, 
376,422 

Baire categories 56,61,280-282 
Baire category theorem 61,264,272,279, 

362 
Baire hull 207, 208 
balanced 

collection of line segments 92 
set 241,295, 334 

ball 
closed 57,253 
open 57,60, 61 

Banach algebra 253,254,260-264,401, 
4l1, 419, 420 

unital 253,254,260-264,267,268,317, 
330, 389, 390, 392-394, 402 

Banach algebra homomorphism 401 
unital 402 
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Index 

Banach algebra valued mapping, locally 
analytic 317 

Banach function space 278 
Banach-Knaster-Tarski lemma 5 
Banach, S. 448 
Banach space 216-223,227,228,238,239, 

242,249,250,252,253,255-257,261, 
264-267,270-272,274,278-280,283, 
285,290,304,305,315,329,330,333, 
337,340-346,354,357,363,368,370, 
371,374,378,386-389,395,400,401, 
403-406,408-411,423,425,429-438, 
440-449 

finite dimensional 249, 256, 259, 269, 
337,441 

irreflexive 338 
reflexive 337,338,346,357,358,360, 

422,444 
separable 257,270, 332, 333, 338, 376, 

379-382,399-401,422,423,432,435, 
443, 447-449 

universal 423 
weakly boundedly complete 334 
weakly sequentiaIly complete 334, 444, 

448 
weak· boundedly complete 334 
weak· sequentiaIly complete 334 

Banach space valued mapping 316,377, 
379, 384, 388 

analytic 316, 317, 330, 340 
continuous 401 
differentiable 316 
entire 330 
infinitely differentiable 330 
integrable simple 379-383 
locaIly analytic 317, 388, 389 
simple 379, 399 
weakly analytic 316 
weakly measurable 399, 400 

barrel 362 
base of neighborhoods, see neighborhood 

base 
base of open sets 32,42,43, 59, 107,234, 

235,295, 312, 318, 319, 332, 422 
basis, see Schauder basis 

absolute 448, 449 
dual 338, 343 
for a Banach space 428 
for a linear space 14, 18,21, 26-30, 242, 

337,338 
for (~) 431 
Hamel 13, 16,25,26,249,280,282,431 
indexed 439, 446-448 
natural 15, 28, 343 
Schauder, see Schauder basis 
unconditional 447, 448 
weak 446 
weak· 446 

Berberian, S. K. 205 
Bessaga, C. 444 
Bessel's inequality 439 

456 

bilinear functional 22,347,348,360,361, 
374, 440 

distinguished 347,375 
bilinear transformation 22-24,30,271 

bounded 271, 398 
continuous 271 

biorthogonal system 435-438, 445, 446 
indexed 446-448 
trigonometric 436 

Boolean operations 173, 174, 191 
Borel, E. 137 
Borel measure 194,200-208,328,409,437 

complex 201-204,406-409,417-419, 
422-424 

local 206,207,328, 336 
nonregular 411 
regular 194-198,202,204,399,407-411, 

422,426 
semiregular 205-207 
signed 201, 202, 409, 410, 426 

boundary 30,93,331,417 
outer 417,418 

bounded, above [below] 3, 7, 8, 309 
bounded convergence theorem 129, 163, 

326,372 
bounded linear transformation 248-253, 

255,264-266,274,279,280,315,330, 
342,358,381,382,386-388,401,404, 
429,430,435,437,444,449 

invertible 254-256, 267, 268, 344, 359, 
403 

left [right] invertible 254, 255, 258 
bounded mapping 4, 59, 66, 86, 111 
bounded operator 252,260,261,264,268, 

279, 280, 331, 367, 371, 395, 403 
compact 404, 405 
quasinilpotent 269,404 
transitive 404 

bounded set 
in a metric space 39,52,56,59,81, 193, 

264,315, 316, 350, 354 
in a partiaIly ordered set 4 
in a topological linear space 350, 351, 

354, 355, 362 
de Branges, L. 426 

Cantor-Bernstein theorem 10,447 
Cantor set 41, 50, 67, 68, 157, 423 
cardinal number, see number 
Cauchy criterion 65,90, 159,268,400,401, 

430,434,441,444 
for infinite series 429 

Cauchy estimates 82, 83 
Cauchy-Goursat theorem 79, 95, 96, 388 
Cauchy inequality 62,215 
Cauchy integral 421 
Cauchy integral formula 80, 84, 95, 390, 

392,418,420 
Cauchy-Riemann equations 87-89 
Cauchy sequence 58,62-66, Ill, 114-117, 

121,129,134,217,222,223,226-228, 



240,252,256,273,277,278,299,300, 
368, 407, 434 

Cauchy transform 202,419 
cell 137, 156, 157, 175 

closed 35, 104, llO, 245, 325, 326 
haIf-open 103 
nneasurable 186 
open 33, llO 

center (of an algebra) 20,404 
chained 

arcs 73, 92, 99 
circle chains 97 
collection of sets 37 

chain rule 70 
characteristic equation 30 
circle 

chain 96,97 
of convergence 71, 89 

closed graph theorenn 276-281 
closed in the sense of Baire 207, 208 
closure 32, 37, 46 
cluster point 53 
coarser 

partition 8 
a-ring 103 
topoiogy 41,238 

coefficient 
Fourier, see Fourier coefficient 
with respect to a basis 432 
with respect to an indexed basis 446 

coefficient fannily, with respect to an indexed 
basis 446 

coefficient functional, with respect to an 
indexed basis 446-449 

coefficient sequence, with respect to a basis 
432 

cofinal (subset of a partially ordered set) 
9, 135, 310, 334 

COIDIDutant 402, 404 
connpact Hausdorff space 35,41,44,49, 

51,54,59, 197, 198,203,217-219,238, 
254, 356, 362, 406-409, 411, 412, 
422-426 

connplennent 26 
connplennentary (linear subnnanifolds) 279, 

280,360 
connplete, see nneasure space, nnetric space, 

normed space, quasinornned space 
connpletion 

of a nneasure (space) 160, 161 
of a nnetric space 58, 65, 228, 229 
of a normed (or quasinormed) space 229, 

240, 267, 277, 304 
connplexification 16, 34, 117, 130 

ofa linear transfornnation 18, 117, 130 
connplex sphere, see Riennann sphere 
connponent 

connected 37-41,51,78, 150, 151, 157, 
419,421 

unbounded 39, 78, 417, 426 
condensation point 50 

Index 

congruence (nnodulo a linear subnnanifold) 
16 

conjugate space, see dual space 
continuity, of a nnapping, see nnapping, 

continuous 
continuUID 109 
contraction 252,306,314,381,423,439 
convergence (see also series) 

alnnost everywhere 128, 129, 134, 135, 
154, 162, 163, 367, 368, 379, 397 

in nneasure 135, 226, 397 
in the nnean 135 
of nets 44-48, 58, 135, 234, 235, 243, 

313,315,318-320,352,357,363 
pointwise 67, 106, 107, 1l0-1l3, 115, 

117, 131, 132, 179, 184,278,326,352, 
363, 372, 378 

uniform, see uniform convergence 
convex connbination 13, 304, 361 
convex cone 310 
convex hull 13, 304, 361 
convex neighborhood of 0 295, 296 
convex set 13, 96, 294-2%, 302, 303, 

308-310,361,363 
balanced 295,348,361 
bounded 362 
closed 331, 332,339 
closed and bounded 331,358 
closure of 332,361 
connpact 309,361,362 
weakly closed 361 
weakly connpact 361 
weak· connpact 426 

convolution 335, 336 
coordinate functional (with respect to a 

basis) 435 
coordinates of a vector 14, 18, 19,27,29 
coset 16,239,240,246, 301,433 
countably deternnined 

net 134,334 
partially ordered set 9,237,244 

deconnposable elennent 23 
Dedekind postulate 4 
denninornn 245-247 
dense in itself (of a set in a topological space) 

49 
derivate 151, 152 
derivative 316, 335, 371 

distributional 327, 328, 336 
deternrinant 

of a linear transfornnation 30 
of a nnatrix 20 

diagonal process 66,67, 321 
dianneter 56, 60 
Dieudonne, J. 195 
differential equation 274 
differentiation 150, 152 
dilatation 216,224,231 
dinnension 

Hannel 14, 16,25-27, 240, 242, 331 

457 



Index 

dimension (cont.) 
of a linear space 14,21,26 

Dirac mass 122, 198,328,336, 411, 424 
direct sum 

algebraic 323 
full algebraic 14,26,225,233,243,296, 

298, 305, 323, 357 
internal 27 
of linear spaces 14, 15,222,223,241, 

271 
of measurable spaces 143 
of measures 143,204,205 
of measure spaces 143, 161, 177, 189, 

191,366 
of normed spaces 222, 223, 243, 266, 

275, 304 
of a-rings 143 
of topological spaces 204 

disc algebra 416, 417 
disc of convergence 71 
distribution 324-327, 335, 336 

infinitely differentiable 327 
of order zero 325 
regular 326-328, 336 
singular 336 

Dixon, J. D. 95 
domain (in C) 39,70,81,96,244,309,315, 

317,330,340,418 
exterior 40 
interior 40, 98 
Jordan 40 
simply connected 96, 98, 421, 426 

dominate (of norms or quasinonns) 274, 
280,313 

dominated convergence theorem 129, 134, 
149, 162, 184, 381, 383 

doubly commuting (elements of an algebra) 
20, 259, 260, 270, 390, 395 

dual, full algebraic 15,318,319,321,338, 
347, 348, 353, 355, 360 

duality 337, 341, 342, 346-348, 356 
dual pair 347-356, 360-362, 374 

reversed 347, 354, 355, 361 
dualspace 283,304,305,313,319,321, 

332,333,337,338,342,346-348,354, 
355,406, 41l, 423, 426, 446, 448 

Dunford N. 390 
Dvoretsky-Rogers theorem 441 

Eberlein-Smul'yan theorem 333 
Egorov's theorem 119, 127, 134 
eigenspace 30, 259 
eigenvalue 30, 259, 263, 404 
eigenvector 30 
elementary figure 104, 110 
Enflo, P. 440 
E-net 59, 67, 308 
equicontinuity 67,81,348,349,354,355, 

362, 363 
equiconvergent sequences 64 
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equivalence (of normed spaces) 256,435, 
449 

equivalent 
arcs 73 
measures 172, 180 
metrics 63, 225 
norms 215,240,256, 274, 313 
pseudometrics 58 
quasinormed spaces 271 
quasinorms 225, 271, 274, 281 

essential singularity 86 
expansion 

binary 177, 442 
Laurent 85,418 
Taylor 71 
ternary 51 
with respect to a basis 432 
with respect to an indexed basis 446 

extension of a mapping 6,30,31, 179, 181 
by continuity 64, 267 

exterior domain, see domain, exterior 
extreme 

point 309, 426, 427 
subset 309 

factoring 
of a bilinear transformation 23 
of a linear transformation 18,23, 124, 

249,266,277,341,345,359,361,371 
Fatou's lemma 128, 129, 133, 154 
finer 

partition 7, 8 
u-ring 103 
topology 41, 281 

finite intersection property 53, 54, 363 
five lemma 359 
Fourier 

coefficient 436 
series 439 

fraction 
dyadic 107, 178 
triadic 51 

Frechetspace 297-300,309,324,362,363 
~-space 226-228,267,272,274,276,277, 

279-282, 308 
Fubini theorem 165-167, 183, 185, 186, 

328,367,400,420 
full algebraic dual, see dual, full algebraic 
full space of linear transformations 19, 

252, 270 
function 

absolutely' continuous 188, 189,370,371 
.analytic, see analytic function 
argument 96 
Baire measurable 208 
Borel measurable 303, 426 (see also 

mapping, Borel measurable) 
characteristic 7, 106, 110, 1l6, 120,221, 

303, 326, 369, 376 
continuous 34-36,49,59,60,63,74-79, 



91,94,105,150-154,188,305,325,426 
(see also mapping, continuous) 

continuously differentiable 17,34,244, 
274,277,278,300,327,335,371,423 

distribution 160 
entire 83, 85, 86, 317, 392, 421 
essentially bounded 125, 131, 133,365, 

375 
generalized 326 
harmonic 87, 88, 96, 98 
having limit at infinity 423 
Heaviside 328 
holomorphic 70,280 (see also analytic 

function) 
infinitely differentiable 244, 300, 323, 

324 
integrable 114, 117, 120, 121, 124, 125, 

128-135, 141-143, 146, 148, 153, 160, 
162, 166,325,364, 370, 375 

integrable over a period 370, 436 
integrable simple 120, 121, 131, 132, 

149, 179, 196,376,397 
left [right] continuous 60, 139, 140, 149, 

160,162,206,305,327,401,411,422 
Lipschitzian 163,239 
locally analytic 70,94, 201, 389-392, 

394-396,401,402,415,417,419-421 
locally integrable 325, 326, 335, 336 
locally of bounded variation 206,207, 

328 
measurable 104, 107, lll, 113-115, 

121-129, 131-133, 143, 153, 159, 161, 
162, 164,364,365,400 

Minkowski, see Minkowski function 
monotone 139, 152, 153, 157-160, 162, 

413 
of bounded variation 7, 146, 147, 149, 

154, 159, 160, 162, 163, 188,202,206, 
289,305,327,386,387,401,410,411, 
422,424 

periodic 370, 436 
polynomial, see polynomial 
primitive 77, 80, 83, 96 
rational, see rational function 
rectifiable 8, 401 (see also function of 

bounded variation) 
semi-continuous 42, 263, 265, 279 
set, see set function 
simple 9, 106, Ill, 120, 130, 183,206, 

369, 372 
test, see test function 
uniformly continuous 60, 63, 94, 239, 

416,433 
vanishing at infinity 423, 425 
weakly analytic 316 

functional 
bilinear, see bilinear functional 
conjugate linear 22 
linear, see linear functional 
sesquilinear, see sesquilinear functional 

functional calculus 390 

Index 

Riesz-Dunford 390, 393-395 
function element 96-98 
function lattice, see lattice, function 

gauge 156, 157, 185, 198 
Gelfand, I. 390 
gene: invariant subspace problem 403, 

generalized limit 291, 307 
Banach 292, 306, 307 
real Banach 307 

graph 275, 277, 371 
greatest lower bound, see infimum 
grid 92 
group 267 

Hahn-Banach theorem 253,287,288,290, 
291,293,300,301,310,342,359388 
417,419,445 ' , 

Hahn decomposition 145, 146, 171, 188 
half-space 302, 303, 332 
Halmos-von Neumann theorem 181 192 
harmonic conjugate 88, 98 ' 
Hausdorff, F. 282 
Hausdorff space 35,36,41,44,46,49,52, 

53,231,272,302,312 
Heine-Borel theorem 35 
Hilbert space 216,286 375 440 
Holder ' , 

conjugate 214,265,284-286,304,329, 
. 338,344,367,371,374,396-400,436 
mequality 214,215,238,285,367 372 

396, 397, 399, 440 " 
hole (in a planar set) 39,417,419 420 

422, 426 ' , 
homeomorphism 34, 47-49, 58, 90, 204, 

240,27~,273,320,355,357,361,423 
homomorphism 

algebra 20,28,268, 392,401,424 
Banach algebra, see Banach algebra 

homomorphism 
complete Boolean 107 

hull 
absolutely convex 308, 334 
closed absolutely convex 308, 349 
closed convex 308, 309 
convex, see convex hull 

hyperinvariant subspace problem 403 
hyperplane 302, 332 

ideal 28 
left [right] 28 

ideal of sets 109, 131 
generated by a collection of sets 109 

identity 20 
identity theorem 73, 84, 420 
inclusion ordering 9,42,51,54,309,322 

324, 332, 334 ' 
index 

of a closed rectifiable arc 78 
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index (conI.) 
(see also winding number) 
of nilpotence 269 

inductive limit 322, 323, 334 
infimum 3, 173, 220, 306 

essential 126 
initial 

point 73, 77, 92 
value problem 275 

integral 113 
Cauchy 116 
Cauchy-Riemann 137, 138 
Darboux 158, 159 
double 166, 184,328 
indefinite 168-170, 187-190,336,426, 

437 
iterated 166, 184, 328 
Lebesgue, see Lebesgue integral 
Lebesgue-Stieltjes 139, 147, 149, 158 
line 73-78,90, 150,387, 389 
product 166, 184 
Riemann 116, 159, 385 
Riemann-Stieltjes 159, 160, 163, 

384-387, 400, 401 
with respect to a measure 120, 122, 123, 

125, 147 
integrand 159, 385 
integration by parts 189, 327 
integrator 159, 385, 386 
interior 

domain, see domain, interior 
of a set 32, 242, 290, 302 

internal point 294, 295, 302 
intertwine 402 
inverse 

element in an algebra 20 
left [right] of a bounded linear transforma-

tion 254, 255, 360, 424 
of a bounded linear transformation 254 
ordering 44, 46, 54 
set-theoretic 255,271, 279, 281, 359, 

371 
inclusion ordering 46 

invertible 
bounded linear transformation, see 

bounded linear transformation 
element of an algebra 20, 133,267,317, 

393,402 
linear transformation 27 
matrix 28 

inward tending 
normal 79, 100 
parametrization 98, 99 

isolated sulgularity 85 
isometric isomorphism 256,257,284-286, 

304,337,341,343-345,357,369,370, 
374, 397, 398, 400, 408, 409, 411 

Banach algebra 417,423 
isometry 58, 175, 178-182,256,314,315, 

342, 344, 357, 411, 423 
linear 256 
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isomorphism 
algebra 21, 28, 257, 267 
Banach algebra 257 
Banach space 341,423 
isometric, see isometric isomorphism 
linear space 18,21,28,31, 178, 180,266, 

338,341, 342, 347, 355 
measure ring, see measure ring isomor

phism 
measure space, see measure space isomor-

phism 
metric space 58 
natural 31, 341, 345, 374 
spatially implemented 29 

Jordan 
curve 39 
curve theorem 39,40, 76 
decomposition of a function 8, 146, 154, 

162 
decomposition of a signed measure 146, 

147 
domain, see domain, Jordan 
loop 39, 76, 79, 93, 98 
region 40, 93 

jump 52, 139 

Kakutani, S. 414 
Karlin, S. 448 
kernel 

of a linear transformation' 18, 124,266, 
279,340-342,359,404 (see also null 
space) 

of a set 205 
Krein-MiI'man theorem 309, 426, 427 
Kronecker delta 221,447 

Lagrange multipliers 238 
lattice 4, 6, 7, 414 

of sets 104, II 0, 173 
boundedly complete 4 
complete 4,6, 189,220 
function 6, 116, 197, 413 
of invariant subspaces 403 
a-complete 173 

Lavrentiev, M. 420 
least upper bound, see supremum 
Lebesgue 

decomposition 173 
integral 113-117, 119-123, 130, 132, 

136-138,142,167,196,197,381,401 
measure 136-138, 142, 150, 152, 157, 

174, 175, 192, 325, 336, 366 
outer measure 156, 157 
space 366-369,371,373,374,376-379, 

438 
length (of a rectifiable curve) 8,60,74, 

94, 162,388, 392,401 
limit 

of a mapping 52 
of a net 44, 46, 57 



one-sided 44 
ordinal 10, 33, 50, 207 

line 13,331,416 
linear combination 12, 331 
linear extension 267,286-288,293, 382 
linear functional 15, 16, 20, 31, 75, 92, 

113-115,149,167,203,206,304,308, 
347 

bounded 284,286,290,292,293,301, 
304,320,324,359,372,375,383,388, 
400,419,422,423,434,435,445 

continuous 283,302-304,308,310,324, 
341, 353 

positive 197, 198,207,306,307,310, 
410,424 

self-conjugate 16, 116, 424 
unbounded 249, 334 
weak· continuous 331,340 

linearly ordered set 6 (see also simply 
ordered set) 

linear operator, bounded 252 
linear parametrization 75, 92 
linear space 12-31,113-116,124,134,178, 

191,207,318,348,364,365,377,378, 
406 

finite dimensional 14,27 
free 14,22 
partially ordered 310 
self-conjugate 16, 117, 197,412 
topological, see topological linear space 

linear (sub)manifold 13,24,26, 124, 179, 
219,232,239,252,275,281,282,304, 
318, 322, 326, 403, 426, 433 

closed 232, 233, 242, 270, 275, 276, 279, 
340,341 

dense 240,371,372, 380, 397, 399 
paraclosed 281 
weakly closed 360 
weak· closed 339,340,363 

linear topology 230,232-234,247,281, 
298, 311, 312, 318, 346 

locally convex 321-324,335,347, 
353-356 

separated 335 
linear transformation 17-21, 133, 167, 179, 

180, 278, 336, 342, 345 
bounded, see bounded linear transforma-

tion 
bounded below 254, 255, 268, 279, 404 
closed 277,278,281,359,371,443,449 
compact 404, 445 
continuous 248, 265, 270-272, 274, 

276-278,280,281,308,313,315,318, 
319, 321-323, 335, 342 

defined by a matrix 28, 29, 343 
idempotent 279, 280, 395, 438, 439 
nilpotent 269 
weakly continuous 361 

line segment 13, 75, 80, 92, 309 
Liouville's theorem 83, 86, 317 
Lipschitz constant 64 

Index 

locally compact Hausdorff space 54, 55, 
69,193-196,201-208,243,299,399, 
406,422,423,425 

locally convex space 296-298,301,303, 
309,318,321,323,334,339-342,346, 
347, 350 

barreled 362 
metrizable 298, 300 
separated 308,312,318,319,332,337, 

338,341,342,346-353,355,356,362, 
363 

Lomonosov, V. J. 404 
Lusin's lemma 206 

Mackey-Arens theorem 356 
Mackey, G. W. 362 
mapping (see also function) 

affine 416 
Borel measurable 105, 108 
continuous 34, 46, 57, 59, 258, 277, 369, 

370,386,387,423 
identity 18, 43, 256, 338, 342 
inclusion 42, 322, 338, 345, 346, 358, 

359, 399 
integrable 385-387 
isometric, see isometry 
Lipschitzian 64, 249 
measurability preserving 176 
measurable 104, 130, 141, 377,400 
measure preserving 176, 178 
open 34, 271, 274, 341, 361 
uniformly continuous 57, 60, 249, 258, 

267, 268 
matrix 

adjoint 21 
change of basis 18, 21 
Hermitian 21 
identity 20 
normal 21 
of a linear transformation 21,22,27, 

30 
scalar 20 
self-adjoint 21 
symmetric 21 
transpose 21, 343 
unitary 21 

maximal element 3 
maximum modulus principle 84,281,417 
Mazur, S. 448 
measurable 

Borel 105, 159, 163, 165 
Lebesgue 137, 153, 154, 156, 157, 189 

(see also function, measurable and 
mapping, measurable) 

rectangle 164, 166, 167, 183, 184 
measurable space 102-106, Ill, 1I3-1I8, 

120, 122, 130, 131, 136, 141-147, 155, 
161, 162, 164, 169, 172, 173, 182, 186, 
189, 207, 208, 372, 377 

measure 1I7-120, 122-124, 129-133, 136, 
161 
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measure (cont.) 
absolutely continuous 169, 170, 172, 

187, 188, 190,328, 336, 372 
accessible 189, 190 
arc-length 142, 160, 195,369,382,384, 418 
atom-free 140, 181, 191 
Baire 208 
Borel, see Borel measure 
complete 161 
complex 144, 145, 147-149, 155, 162, 

183, 184, 187,326, 372, 406 
counting 122, 144, 155, 165, 186, 189, 

365,443 
defined by an outer measure 156, 157 
Dirac, see Dirac mass 
finite 118, 131, 145, 146, 169 
finitely additive 119 
induced 142, 160, 168 
Lebesgue, see Lebesgue measure 
Lebesgue-Borel 137-139, 142, 144, 165, 

167, 168, 178, 181, 186, 188, 191,205, 
245, 303, 328 

locally finite 141, 165, 169, 185, 186, 
189,190 

outer, see outer measure 
a-finite 131, 145, 146, 164, 165, 169, 170, 

172, 173, 180, 181, 188 
signed 144-148, 155, 161, 162, 171, 187, 

188,409 
Stielljes-Borel 139, 140, 147, 157-160, 

162,163,188,195,202,206,328,401, 
411,424 

measure ring 173, 174, 189, 191,381 
finite 173 

measure ring isomorphism 176-182, 191 
strong 176, 177 
weak 176, 179, 180 

measure space 1I8, 121, 124-126, 128-135, 
142, 156, 160, 161, 164, 166-171, 173, 
174, 182, 184-187, 191, 197,364-368, 
371, 374-383, 396-400, 440 

atom-free 140, 161, 181 
complete 161 
finite 118, 129, 130, 132, 134, 161, 186, 

189,191,192,226,366,383,398-400 
localizable 189, 190 
locally finite 141, 161, 186, 189-192, 

376, 398 
purely atomic 161, 192,376 
separable 174,181,191,192,376,383 
a-finite 131, 161, 165-167, 170, 180, 182, 

183, 186-189, 192, 375, 398, 400 
measure space isomorphism 176, 178-181, 

190, 191 
strong 176-178, 191 
weak 176 

Mergelyan's theorem 422 
mesh 

of a grid 92 
of a partition 7,60,75,90,91, 154, 181, 

201, 385, 401 
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method of exhaustion 141, 161, 189, 190 
metric 

associated with a pseudometric 64, 124, 
230 

defined by a norm 213,219 
defined by a quasinorm 223 
defined by a value 211,212 
invariant 211,223,225,226,229,239, 

240,242 
of convergence in measure 226 
of uniform convergence 66, 81, 218 
relative 58 
usual 58,62,213 

metric space 56, 110, 119, 130,239,241, 
411 

associated with a measure space 173-175, 
181, 190, 191, 376 

compact 59,60,66-68,423 
complete 58, 61, 65, 67, 68, Ill, 134, 

190,216,220,222,223,228,240,276, 
277,362 

countably compact 66 
separable 56, 59, 221, 240 
sequentially COll)pact 66, 445 
totally bounded 59,66, 81 

minimal element 3 
Minkowski function 294-297,322,350, 

352 
Minkowski's inequality 215,216,238,368, 

397, 399 
monodromy principle 98 
monotone convergence theorem 126, 129, 

134, 183,368 
monotone increasing [decreasing] 4,60, 

116, 127, 134, 368 
net 7, 44, 52, 158 

Morera's theorem 83 
Mukherjea, A. 185 
multiplication 

by a function 251,278,281 
by a sequence 250,251,257,259 
by an element of a Banach algebra 389, 

402 
row by column 27,266,267 

natural embedding 315,337,338,344,346, 
357-360,446 

negative parametrization 79 
negative part 

of a real number 4 
of a real-valued function 7 

negative variation 8 
neighborhood 32,34,35,44,46,47,52-54, 

231 
neighborhood base 49,231,234,235,237, 

241,295-297,312,318,319,321,331, 
332 .• 353, 354, 362, 363 

net 5, 7, 8, 44-48, 134, 135 
Cauchy, see Cauchy net 
of finite sums 9, 45 
uniformly convergent 66 



weakly Cauchy 333, 443 
weak· Cauchy 334 

nonn 212-223,228-230,240,245,280, 
290,331,350,406,407,434,445,447 

associated with a pseudononn 230, 290, 
365 

of a functional with respect to a pseudo
nonn 290, 292, 307 

of a linear transfonnation 248, 305, 306, 
387 

quadratic 214 
quotient 222 
sup 217,218,238,239,278,280,290, 

292,304,329,355,412,423 
total variation 305, 406 

nonned algebra 253 
unital 253 

nonned (linear) space 212-223,225,227, 
228,231,238,243,251-254,256,257, 
265-267,279,280,283,300-304,311, 
313,314,318,319,331-333,338,346, 
348,350,352,355,356,360,364,366, 
377,378,384,385,406,428,429,431, 
440 

associated with a pseudononned space 
230, 305, 365, 366, 378 

complete 216,243,305,315,332,333, 
337,371,378,407,434 (see also Banach 
space) 

finite dimensional 240, 334 
reflexive 337, 357 
separable 240, 309, 332, 366 
weakly complete 334 
weak· complete 334 

nullity 27 
null space 18,308,339,341,345, 371, 447 

(see also kernel) 
number 

cardinal 6, 10, 11, 14, 15,26,49, 109, 
182,204,447 

extended real 4, 5 
finite real 5 
initial II 
ordinal 6, 10, 11,33, 54, 109, 110, 182, 

195, 207 (see also ordinal number 
segment) 

winding, see winding number 

one-point compactification 55, 423, 425 
open mapping theorem 272, 274, 275, 

279-281 
operator 

bounded, see bounded operator 
differential 336 
expansion 437,438,446-448 
invertible 258, 402 
multiplication 270 
on a nonned space 252 
rotation 383 

operator matrix 266 
order 

Index 

of a pole 86 
of a zero 86 

ordinal number, see number 
ordinal number segment 6, 10, 11, 33, 50, 

208,411 
oriented envelope 93, 388-392, 394, 395, 

402,420,421 
Orlicz-Pettis theorem 444, 448 
Orlicz, W. 444 
oscillation 

at a point 68 
on a set 60 

outer measure 155-157, 161 
generated by a gauge 156, 157, 160, 185, 

199 
Lebesgue, see Lebesgue outer measure 

parameter interval 38, 73, 75, 90, 94, 98 
Parseval's identity 439 
partial differential equation 275 
partially ordered set 3-5, 9, 173, 235 
partial sum 239,300,413,421,433 

of a Fourier series 436 
partition 

determined by a collection of sets 9, 
108, 156, 179, 181 

of an interval 7,60,73-75,90,98, Ill, 
171, 384, 386, 401 

of a set 8, 148, 162, 190, 191,397,407, 
441,447 

of unity 36, 198,327 
Pelczynski, A. 444 
Pettis, B. J. 445 
point 

at infinity 55, 86 
evaluation 278, 423, 424 
of accumulation, see accumulation point 

point spectrum 259, 260, 404 
polar 348-351,353,355-357 
polar topology 352-354 

admissible 353-355, 362 
pole 86, 268, 419 
polynomial 17,29,70,86, 112,268,371, 

393, 404, 414-418, 421, 425 
interpolation 425 
trigonometric 424 

positive element 310 
positive orientation 99-10 I 
positive parametrization 79 
positive part 

of a real number 4 
of a real-valued function 7 

positive variation 8 
power class 10,54, 103, 107-109, 144, 155, 

189 
power series 70, 71, 85. 89, 202, 261, 268, 

330,392,412,416,419 
preannihilator 339,348, 361 
prepolar 348, 349, 356 
principal 

branch 96 
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principal (cont.) 
part 85 
value (of a two-way infinite series) 428, 

439 
problem of the existence of a measurable 

cardinal 189 
product 

algebraic tensor 12, 22-25, 31 
Cartesian (or set -theoretic) 5 
inner 286,375,439,440 
of linear transformations 19, 253 
of measurable spaces 164, 186 
of measures 165-167, 184, 186, 187 
of topological linear spaces 233 
of topological spaces 43,44,47,48,54, 

182,356 
row by column 20, 27 

projection 5,27,276,445 
natural 16, 18,29,222,230,232,239, 

249,251,290,341,345,346,358,359, 
371 

projective limit 335 
pseudometric 56,64, 117, 124,229,313 

invariant 229, 230, 245 
pseudonorm 229, 230, 233-237, 239, 

242-246,290,291,293,295-302,305, 
306,311,313,318,321-325,332,333, 
350,355,364,365,377,378,397,422, 
434 

associated with a weakly bounded set 
352 

punctured disc 85 

quasinorm 223-229,237,240,243,245, 
246,274-276,280,281,297-299,303, 
304, 309 

associated 246 
quasinormed (linear) space 223-228,231, 

240, 249, 267, 275-278, 281 
complete 226,271,278,281 (see also 

F-space) 
quasiring 109, 205 
quotient space of a normed space 222, 

249,251,266, 342, 345, 422, 433 

radius of convergence 70, 85, 89, 330 
Radon-Nikodym 

derivative 170, 187, 188, 190 
theorem 170, 172,190,328,372,376 

range 
essential 126, 133, 201 
of a linear transformation 17,279,359, 

404 
rank 

of a linear transformation 27,28,338 
of a matrix 28 

rational function 70,86,268,389,418, 
419,421 

with poles off a set 268,419,421 
rectifiable curve 8, 60, 40 I (see also 

function of bounded variation) 
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removable singularity 85, 86, 317 
representation (of a group) 369,384 
resolvent 

of a bounded operator 258-260,317, 
403 

with respect to a Banach algebra 260, 
317,389, 392,402 

resolvent equation 260, 261, 391 
restriction 

of a distribution 326 
of a mapping 6 
of a measure 123 

retraction 219 
Riemann sphere 53,96,419,421 
Ries~ F. 197, 390 
Riesz representation theorem 408, 417 
ring 

algebraic 108 
Boolean 108, 109, 174 
of sets 102, 103, 108, 119, 131, 156, 160, 

174, 175, 184,204-206,399 
of sets generated by a collection of sets 

102, 108, 191 
Rosenblum, M. 402 
rotation 369, 382 
rotation invariant 142, 369 
Runge's theorem 421,422,426 

saturated (family of pseudonorms) 236, 
237, 243, 244, 271, 324, 353 

scalar field 12 
Schauder basis 432-435, 438, 440, 446-448 

in the Cauchy sense 432, 437, 438, 445, 
446 

in the primary sense 432, 434, 438, 439, 
445, 446 

Schauder, J. 433, 440 
Schwarz's lemma 281 
second dual 314,315,334,337,358 
section 165, 182 
self-conjugate 

linear functional 16 
space of functions 16, 106 

separated sets 302 
separating 

collection of linear functionals 302, 309, 
312,318,319 

family of deminorms 246 
family of pseudonorms 235, 243, 244, 

297, 299, 312 
separating collection of mappings 48, 235, 

281, 298, 335, 412, 415 
strongly 412,415 

sequence 
almost convergent 307 
Cauchy,. see Cauchy sequence 
diagonal 321 
limitable Cesaro 306 
linearly independent 433, 435 
of measurable functions 106 
two-way infinite 250, 270, 436, 445 



ultimately periodic 306, 307 
weakly convergent 314,315,321,329, 

422,444 
weak· convergent 422 
weight 250,251,262,268-270 

series 
absolutely convergent 239,257,262, 

330 
convergent 239,428,431,433 
convergent in the Cauchy sense 428, 

429,445 
convergent in the primary sense 428, 

429, 445 
convergent in the secondary sense 428 
Fourier, see Fourier series 
subseries convergent 442 
two-way infinite 428, 429, 437 
unconditionally convergent 442,447, 

448 
weakly convergent 444, 446 
weakly subseries convergent 444, 445, 

448 
expansion with respect to a biorthogonal 

system 435, 436 
Taylor, see Taylor series 

sesquilinear functional 22, 375, 440 
symmetric 22 

set 
absolutely convex, see absolutely convex 

set 
absorbing 295,321-323,334,350-352, 

356 
Borel 104, 105, 1I0, Ill, 1I6, 137-139, 

142, 144, 149, 155, 157, 158, 164-168, 
175, 178,182,186, 193-196,206,326, 
369,407,408,422 

bounded, see bounded set 
Cantor, see Cantor set 
closed 32,34-36,49,51,53, 104, 105, 

110,157,193,205,218,219,276,296 
closed-open 36,41 
compact 34,50,81,93, 193-195,203, 

243,244,299,300,308,309,316,319, 
324-327,351,355,356,363,388,404, 
415-417,419-423,445 

connected 38, 39, 420, 421 
convex, see convex set 
dense 33,179,181,228,309,381,432 
derived 49 
directed 5-9,44,46,236,429 
inner regular 194, 195,203,205 
invariant 403 
Lebesgue measurable 136-138, 153, 156 
linearly independent 13, 25, 26 
linearly ordered, see linearly ordered set 
measurable 102, 155, 160-162, 199,200, 

440 
negative 145, 161 
nowhere dense 61,69 
null 123, 127, 140, 172, 173 
of first category 61, 69, 399 
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of second category 61,69 
open 32-43, 46, 90, 93, 110-112, 

150-153, 157, 193, 194, 198-200,205, 
258, 296, 303, 323, 326, 421 

outer regular 194, 195, 203 
partially ordered, see partially ordered 

set 
perfect 49, 68, 110 
positive 145 
regular 194, 195,203-205,208 
resolvent 259-261,263,389 
a-compact 193,203 
a-finite 127, 131, 132, 134, 185,206,374, 

381 
simply ordered, see simply ordered set 
topologically bounded 193-195,203, 

205, 206, 404 
totally bounded 308, 404 
weakly bounded 314-316,351,352,359, 

362 
weakly closed 332, 333 
weakly compact 308,321, 333, 355, 357 
weakly sequentially compact 333 
weak· bounded 333, 362 
weak· compact 333, 356, 357 
weak· sequentially compact 333 
well ordered, see well ordered set 

set function 1I7, 136, 155, 372 
countablyadditive 118, 130, 155, 156, 

160, 185 
countably subadditive 118, 119, 156, 

157 
finitely additive 1I7, 1I9, 130, 131, 185 
monotone 119 
regular 208 
semi-continuous 119, 130, 407 
subtractive 119, 130 

shift 
backward 344 
backward bilateral 268, 344 
backward weighted unilateral 255, 270 
bilateral 250, 251, 257, 344 
unilateral 250, 257, 344 
weighted bilateral 251,262,265,268, 

270 
weighted unilateral 250, 255, 265, 269, 

270 
a-ideal 103, 109, 1I4, 122, 131, 16J, 196, 

203 
generated by a collection of sets 109 

a-quasiring 109, 110, 155, 156, 183 
generated by a collection of sets 109 

a-ring 102-105, 107-111, 122, 132, 137, 
138, 143, 144, 149, 156, 161, 168,204, 
441 

generated by a collection of sets 102, 
108-1I0, 155, 160, 164, 174, 182, 186, 
194, 195, 207, 399 

of Baire sets 207, 208 
of Borel sets 104, 107, 110, 193-196, 

200,203,204,207,368,369,406,407 
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a-ring (cont.) 
of Lebesgue measurable sets 136, 137, 

157, 174, 370 
similar 

bounded operators 269, 270 
elements of a Banach algebra 269 
matrices 22, 30 

simple polygon 76, 79, 97 
simply ordered set 6, 309, 332 
~ingular measures 173, 187 
Smul'yan criterion 346, 357, 358, 360 
Sobolev space 371 
space (see also under appropriate name) 

Euclidean 62, 213, 368 
pseudometric 57 
quotient (modulo a linear manifold) 16, 

124,221,222,228,232 (see also quotient 
space of a normed space) 

quotient (modulo an equivalence relation) 
51,65 

uniform 241 
unitary 62, 213 
vector 12,31, 125 (see also linear space) 

spanning set in a normed space 220,221, 
240,309,333,398,422,437,438,444,447 

spectral radius 
of an operator 269 
with respect to a Banach algebra 269, 

331 
spectrum 

left [right] of a bounded operator 259 
left [right] with respect to a Banach algebra 

260, 268 
of a bounded operator 258-260, 344, 

395, 399 
with respect to a Banach algebra 260, 

261,263,264,317,330,389,394,402 
sphere (of radiusr) 216 

unit 216, 331 
standard parametrization 76, 78, 79, 93, 

392 
Stone, M. H. 108 
Stone-Weierstrass theorem Ill, 112,412, 

414,424,426,427 
subalgebra 28,404,412,416,424,426 

closed 412,414,416,419,424,425 
dense 412,415 
maximal abelian 270 
self-conjugate 412,415,424,425 
separating 412,424 
strongly separating 412,414,415,424, 

425 
transitive 404 

subarc 73, 74, 98-101 
subbase 32,42,43,107 
subinterval 7, III 
sublattice 414 

complete 403 
subnet 5, 9, 52, 53 
subring 108 
subseries 442, 448 
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subspace 
of a measurable space 103 
of a measure space 123, 143, 189 
of a metric space 57 
of a topological space 33, 35, 322 

subspace of a Banach space 342, 345, 358, 
407 

invariant 396, 403, 404 
hyperinvariant 396, 404, 405 
weak· closed 346 

subspace of a normed space 220-222, 238, 
239,341 

spanned by a set of vectors 220,221, 
266, 340, 376, 438, 444 

weak· closed 340 
sum 

Darboux 7, 158, 160 
of a family of numbers 45, 65 
of a family of vectors 429, 440 
of an infinite series of vectors 239, 428, 

431 
of arcs 73, 92, 93, 98, 387, 388 
of sets of vectors 12,221,323, 324, 334 
of vectors 428, 431 
partial, see partial sum 
Riemann 74,90,421 
Riemann-Stielljes 158, 159,289,385, 

401 
summable 

family of numbers 45, 133, 143,443 
family of vectors 429,431,440-442, 

445, 447 
support 

of a Borel measure 205, 424, 426 
of a distribution 327, 336 
of a regular distribution 336 
of a function (on a measure space) 127, 

131, 132, 134,374, 397 
of a function (closed) 206, 207, 244, 300, 

323,325 
supremum 3,7, Ill, 132, 148, 162, 173, 

189,204,220,221,307,321,373,409, 
441 

essential 125, 365, 426 
[p.] 189, 190 
of a collection of topologies 43,47,48, 

51,233,234 
system of generators (algebraic) 13,23-25 

tail of a sequence 291,292, 306 
Taylor series 330,413 
Taylor's theorem 82, 84, 86 
terminal point 73, 77, 92 
test function 244,245,300, 323-328, 335, 

336 
theorem of 

Beppo-Levi 128, 165, 183, 185 
CarathOOdory 155 
Weierstrass, see Weierstrass approximation 

theorem 



Tietze extension theorem 218,238,239, 
423 

Tihonov, A. 49 
Tihonov plank 54 
Tihonov's theorem 44, 320 
Tonelli theorem 166, 183, 185, 186,367 
topological embedding 49, 59, 334 
topological linear space 230-234,241,242, 

245,249,270,283,292,295,302,303, 
308, 313, 346 

associated 233 
finite dimensional 242, 323, 346, 360 
locally convex, see locally convex space 
metrizable 247, 297, 298, 300, 332 
normable 331, 350 
quasinormable 237, 247, 297 
separable 241 
separated 231-233,235,242,247 270 

302 ' , 
topological space 32,37,41-44,46-54, 

56,67,69, 104, 105, 107, 110, 164, 193, 
207,238,239 

arcwise connected 38 
compact 34,50,53,59,272,320,414 
compact Hausdorff, see compact Haus-

dorff space 
completely regular 36, 49, 54 
connected 36-38 
countably compact 34, 50, 53, 54 
Hausdorff, see Hausdorff space 
locally compact 54 
locally compact Hausdorff, see locally 

compact Hausdorff space 
metrizable 59,63,66, 195,203-205,207, 

247,332,333,407,422,423 
normal 35, 54, 56, 59, 238, 239 
regular 35 
separable 33, 56, 59, 66 
sequentially compact 54 
a-compact 193-195,203,205,243,299 
totally disconnected 41 

topology 32, 51, 110 
direct sum 323 
discrete 41, 51 
indiscrete 42, 51, 233, 321 322 
induced by a collection of linear function

als 318, 331, 338, 347, 354 355 
induced by a deminorm 245' 
induced by a family of deminorms 246 

271 ' 
induced by a family of pseudonorms 

234-237,243,271,292,295,298,302, 
311, 318, 332, 352, 353 

induced by a metric 59 
(induced by a) norm 213, 222, 243, 

311-313,337,346,352,354,404,429 
(induced by a) pseudometric 57 
(induced by a) pseudonorm 229, 230 

233-236 ' 
(induced by a) quasinorm 223 275 280 
induced by a value 212 " 
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inductive limit 322-325 
inversely induced 42, 43, 47-49, 298, 

311, 318, 331 
left [right] ray 42 
linear, see linear topology 
~ackey 322, 362, 363 
metric 56 
metrizable 332, 362 
of a dual pair 354-356, 361, 363 
of D-convergence 244, 300, 324 
of uniform convergence 66 
of uniform convergence on a collection 

of sets 352-354, 356 
of uniform convergence on compact 

subsets 243,244,280,281,299,309, 
363 

order 33,44, 50, 110, 182, 195, 208 
polar, see polar topology 
product 43,47,48,63,225,233,241, 

243, 275, 296, 298, 323 
projective limit 334, 335 
quotient 51,222,232,236,240,296,360, 

361,425 
relative 33, 110,232,236,296,300,333, 

360 
strong 354, 355, 362 
usual 32,33, 215 
weak 311-313,315,318,319,322,329, 

332,333,338,346-348,350,355,357, 
360,361 

weak- 319,320,332,333,338,346-348, 
352,357,359,362,363,446 

trace 
of a collection of sets 103, 108, 110, 144, 

155,204 
of a linear transformation 30 
of a matrix 20 

transfinite 
definition 10, 11, 109, 110, 207 
iliduction 10 

translation 175, 212, 231, 273 
translation invariant 136, 138, 369, 382 
transpose of a linear transformation 343 
triangle inequality 211,215,291,364,377, 

397 
triangular region 76, 77, 97 

ultrafilter 54 
uniform boundedness theorem 279,315, 

438,446 
uniform convergence 134,352,372,394, 

412,414-419,433 
on compact subsets 392-394,421 

uniformly bounded 264, 438, 446-448 
unit (of an algebra) 20 
unit circle 142,369,382,383,417,420, 

424,436 
upper bound 3 
upper triangular form 30 
Urysohn, P. 59 
Urysohn's lemma 35, 59, 196, 238 
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value 211,213, 223, 224, 240 
variation (see also function of bounded 

variation) 
over a partition 7 
positive and negative 8, 146, 162,202 
total 7, 60, 148, 160, 162, 184,204,289, 

290,305,387,406 
vertex 93 
vector space, see linear space 

topological, see topoJogicallinear space 
Vituskin, A. G. 422 

weakly summable family of vectors 443, 
444,448 

with sum 443, 444 
weak· summable family of functionals 443 

with sum 443 
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Weierstrass approximation theorem III, 
112, 371, 415, 425 

weight (of a topological space) 49,231, 
331 

well ordered set 6 
well ordering principle 6 
winding number 78-80,92,93, 101,388, 

391 

Zermelo's theorem 6 
zero 

class 425 
of an analytic function 86 
space 229,230,233,235,246,290,305, 

365, 378, 422 
Zorn's lemma 5, 10,25, 190,287,309 
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