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Preface 

The aim of this book is to introduce the reader to the fascinating world of 
convex polytopes. 

The highlights of the book are three main theorems in the combinatorial 
theory of convex polytopes, known as the Dehn-Sommerville Relations, the 
Upper Bound Theorem and the Lower Bound Theorem. All the background 
information on convex sets and convex polytopes which is m~eded to under­
stand and appreciate these three theorems is developed in detail. This 
background material also forms a basis for studying other aspects of polytope 
theory. 

The Dehn-Sommerville Relations are classical, whereas the proofs of 
the Upper Bound Theorem and the Lower Bound Theorem are of more 
recent date: they were found in the early 1970's by P. McMullen and D. 
Barnette, respectively. A famous conjecture of P. McMullen on the charac­
terization off-vectors of simplicial or simple polytopes dates from the same 
period; the book ends with a brief discussion of this conjecture and some of 
its relations to the Dehn-Sommerville Relations, the Upper Bound Theorem 
and the Lower Bound Theorem. However, the recent proofs that McMullen's 
conditions are both sufficient (L. J. Billera and C. W. Lee, 1980) and necessary 
(R. P. Stanley, 1980) go beyond the scope of the book. 

Prerequisites for reading the book are modest: standard linear algebra and 
elementary point set topology in [R1d will suffice. 

The author is grateful to the many people who have contributed to the 
book: several colleagues, in particular Victor Klee and Erik Sparre Andersen, 
supplied valuable information; Aage Bondesen suggested essential improve­
ments; students at the University of Copenhagen also suggested improve­
ments; and Ulla Jacobsen performed an excellent typing job. 

Copenhagen 
February 1982 

ARNE BR0NDSTED 
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Introduction 

Convex polytopes are the d-dimensional analogues of 2-dimensional convex 
polygons and 3-dimensional convex polyhedra. The theme of this book is 
the combinatorial theory of convex polytopes. Generally speaking, the com­
binatorial theory deals with the numbers of faces of various dimensions 
(vertices, edges, etc.). An example is the famous theorem of Euler, which states 
that for a 3-dimensional convex polytope, the number fa of vertices, the 
number II of edges and the number 12 of facets are connected by the relation 

1 a-II + 12 = 2. 

(In contrast to the combinatorial theory, there is a metric theory, dealing 
with such notions as length, angles and volume. For example, the concept 
of a regular polytope belongs to the metric theory.) 

The main text is divided into three chapters, followed by three appendices. 
The appendices supply the necessary background information on lattices, 
graphs and combinatorial identities. Following the appendices, and preceding 
the bibliography, there is a section with bibliographical comments. Each of 
Sections 1-15 ends with a selection of exercises. 

Chapter 1 (Sections 1-6), entitled "Convex Sets," contains those parts of 
the general theory of d-dimensional convex sets that are needed in what 
follows. Among the basic notions are the convex hull, the relative interior 
of a convex set, supporting hyperplanes, faces of closed convex sets and 
polarity. (Among the basic notions of convexity theory nol touched upon 
we mention convex cones and convex functions.) 

The heading of Chapter 2 (Sections 7-15) is "Convex Polytopes." In 
Sections 7-11 we apply the general theory of convex sets developed in 
Chapter 1 to the particular case of convex polytopes. (It is the author's 
belief that many properties of convex polytopes are only appreciated 
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when seen on the background of properties of convex sets in general.) In 
Sections 12-14 the important classes of simple, simplicial, cyclic and neigh­
bourly polytopes are introduced. In Section 15 we study the graph determined 
by the vertices and edges of a polytope. 

Chapter 3 contains selected topics in the "Combinatorial Theory of 
Convex Polytopes." We begin, in Section 16, with Euler's Relation in its 
d-dimensional version. In Section 17 we discuss the so-called Dehn­
Sommerville Relations which are "Euler-type" relations, valid for simple 
or simplicial polytopes only. Sections 18 and 19 are devoted to the celebrated 
Upper Bound Theorem and Lower Bound Theorem, respectively; these 
theorems solve important extremum problems involving the numbers of 
faces (of various dimensions) of simple or simplicial polytopes. Finally, 
in Section 20 we report on a recent fundamental theorem which gives 
"complete information" on the numbers of faces (of various dimensions) 
of a simple or simplicial polytope. 

The following flow chart outlines the organization of the book. However, 
there are short cuts to the three main theorems of Chapter 3. To read the 
proof of the Dehn-Sommerville Relations (Theorem 17.1) only Sections 
1-12 and Euler's Relation (Theorem 16.1) are needed; Euler's Relation 
also requires Theorem 15.1. To read the proof ofthe Upper Bound Theorem 
(Theorem 18.1) only Sections 1-14 and Theorems 15.1-15.3 are needed. 
To read the Lower Bound Theorem (Theorem 19.1) only Sections 1-12 
and 15, and hence also Appendix 2, are needed. It is worth emphasizing that 
none of the three short cuts requires the somewhat technical Appendix 3. 
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CHAPTER 1 

Convex Sets 

§1. The Affine Structure of [Rd 

The theory of convex polytopes, and more generally the theory of convex 
sets, belongs to the subject of affine geometry. In a sense, the right framework 
for studying convex sets is the notion of a Euclidean space, i.e. a finite­
dimensional real affine space whose underlying linear space is equipped 
with an inner product. However, there is no essential loss of generality in 
working only with the more concrete spaces [Rd; therefore, everything will 
take place in [Rd. We will assume that the reader is familiar with the standard 
linear theory of [Rd, including such notions as subspaces, linear independence, 
dimension, and linear mappings. We also assume familiarity with the stan­
dard inner product (, -> of [Rd, including the induced norm 11-11, and elemen­
tary topological notions such as the interior int M, the closure cl M, and 
the boundary bd M of a subset M of [Rd. 

The main purpose of this section is to give a brief survey of the affine 
structure of [Rd. We give no proofs here; the reader is invited to produce 
his own proofs, essentially by reducing the statements in the affine theory to 
statements in the linear theory. It is important that the reader feels at home 
in the affine structure of [Rd. 

For dEN, we denote by [Rd the set of all d-tuples x = (lXI' ... , IXd) of 
real numbers IX), ... , IXd • We identify [Rl with [R, and we define [R0 := {O}. 

We recall some basic facts about the linear structure of [Rd. Equipped 
with the standard linear operations, [Rd is a linear space. When the linear 
structure of [Rd is in the foreground, the elements of [Rd are called vectors. 
The zero vector is denoted by o. 
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A linear subspace is a non-empty subset L of !Rd such that 

(a) AlX l + A2x2 is in L for all Xl' X2 ELand all ,.1,1, ,.1,2 E!R. 

5 

A linear combination of vectors X b ... , Xn from !Rd is a vector of the form 
AlXl + ... + Anxn' where ,.1,1' ... ' An are in R Corresponding to n = 0, 
we allow the empty linear combination with the value o. (In the definition 
of a linear combination there is a certain ambiguity. In some situations 
when talking about a linear combination AlXl + ... + Anxn we not only 
think of the vector X = AlX l + ... + Anxn' but also of the particular co­
efficients ,.1,1' .•. , An used to represent x.) The condition (a) expresses that 
any linear combination of two vectors from L is again in L. Actually, (a) 
is equivalent to the following: 

(b) Any linear combination of vectors from L is again in L. 

(Strictly speaking, (a) and (b) are only equivalent when L 1= 0. For L = 0, 
condition (a) holds, whereas (b) is violated by the fact that we allow the 
empty linear combination. Note, however, that we did require L 1= 0 in 
the definition of a linear subspace.) 

The intersection of any family of linear subspaces of !Rd is again a linear 
subspace of !Rd. Therefore, for any subset M of !Rd there is a smallest linear 
subspace containing M, namely, the intersection of all linear subspaces 
containing M. This subspace is called the linear subspace spanned by M, 
or the linear hull of M, and is denoted by span M. 

One has the following description of the linear hull of a subset M: 

(c) For any subset M of !Rd, the linear hull span M is the set of all linear 
combinations of vectors from M. 

(Note that our convention concerning the empty linear combination 
ensures that the correct statement span 0 = {o} is included in (c).) 

An n-family (Xl' ... , xn) of vectors from!Rd is said to be linearly independent 
if a linear combination A1X l + ... + Anxn can only have the value 0 when 
,.1,1 = ... = An = 0. (Note that the empty family, corresponding to n = 0, 
is linearly independent.) Linear independence is equivalent to saying that 
none of the vectors is a linear combination of the remaining ones. When a 
vector X is a linear combination of Xl' ... ' X n, say X = A1X, + ... + Anxn' 
then the coefficients ,.1,1, ... , An are uniquely determined if and only if 
(Xl' ... , xn) is linearly independent. An n-family (Xl, ... , xn) which is not 
linearly independent is said to be linearly dependent. 

A linear basis of a linear subspace L of !Rd is a linearly independent n­
family (Xl' ... , xn) of vectors from L such that L = span{xb ... , xn}. The 
dimension dim L of L is the largest non-negative integer n such that some 
n-family of vectors from L is linearly independent. A linearly independent 
n-family of vectors from L is a basis of L if and only if n = dim L. 

Let M be any subset of !Rd, and let n be the dimension of span M. Then 
there is actually a linearly independent n-family (x 1, ... ,xn) of vectors 
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from M, i.e. there is a basis (Xl, ... , xn) of span M consisting of vectors from 
M. We therefore have: 

(d) For any subset M of [Rd, there exists a linearly independent family 
(Xl' ... , Xn) of vectors from M such that span M is the set of all linear 
combinations 

This statement is a sharpening of (c). It shows that to generate span M we 
need only take all linear combinations of the fixed vectors Xl' ... , Xn from 
M. Furthermore, each vector in span M has a unique representation as a 
linear combination of Xl' ... , X n • 

A mapping qJ from some linear subspace L of [Rd into [Re is called a linear 
mapping if it preserves linear combinations, i.e. 

When qJ is linear, then qJ(L) is a linear subspace of [Re. Linear mappings are 
continuous. 

A one-to-one linear mapping from a linear subspace Ll of [Rd onto a 
linear subspace L z of [Re is called a (linear) isomorphism. If there exists an 
isomorphism from L I onto Lz , then L land Lz are said to be isomorphic. 
Two linear subs paces are isomorphic if and only if they have the same 
dimension. An isomorphism is also a homeomorphism, i.e. it preserves the 
topological structure. 

We next move on to a discussion of the affine structure of [Rd. An affine 
subspace of [Rd is either the empty set 0 or a translate of a linear subspace, 
i.e. a subset A = X + L where X E [Rd and L is a linear subspace of [Rd. (Note 
that L is unique whereas X can be chosen arbitrarily in A.) By an affine 
space we mean an affine subspace of some [Rd. When Al and Az are affine 
subspaces of [Rd with Al c A z , we shall also call Al an affine subspace of 
A z . The elements X = Crt l, ... , rtd ) of some affine subspace A of [Rd will be 
called points when the affine structure, rather than the linear structure, is in 
the foreground. (However, it will not always be possible, nor desirable, 
to distinguish between points and vectors.) 

A subset A of [Rd is an affine subspace if and only if the following holds: 

Ca') AIX I + AzxzisinAforallxl,xzEAandallAI,AzE[RwithAl + Az = 1. 

For any two distinct points Xl and Xz in [Rd, the set 
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is called the line through x I and x 2' The condition (a') then states that the 
line through any two points of A is contained in A. 

An affine combination of points Xl' •.• , Xn from ~d is a linear combination 
AIXI + ... + Anxn' where Al + ... + An = 1. We shall write 

to indicate that the linear combination AIXI + ... + Anx. is in fact an 
affine combination. (The empty linear combination is not an affine combina­
tion. Therefore, in an affine combination AIXI + ... + Anxn we always have 
n ~ 1.) The condition (a') states that any affine combination of two points 
from A is again in A. Actually, (a') is equivalent to the following: 

(b') Any affine combination of points from A is again in A. 

The intersection of any family of affine subspaces of ~d is again an affine 
subspace of ~d. (Here it is important to note that 0 is an affine subspace.) 
Therefore, for any subset M of ~d there is a smallest affine subspace containing 
M, namely, the intersection of all affine subspaces containing M. This 
affine subspace is called the affine subspace spanned by M, or the affine hull 
of M, and it is denoted by aff M. 

One has the following description of the affine hull of a subset M: 

(c') For any subset M of ~d, the affine hull aff M is the set of all affine 
combinations of points from M. 

An n-family (XI> ... , xn) of points from ~d is said to be affinely independent 
if a linear combination AIX I + ... + Anxn with Al + ... + ;In = ° can only 
have the value 0 when Al = ... = An = 0. (In particular, the empty family, 
corresponding to n = 0, is affinely independent.) Affine independence is 
equivalent to saying that none of the points is an affine combination of the 
remaining points. When a point X is an affine combination of XI>"" Xn , 

say X = AIX I + ... + Anxn' then the coefficients AI,"" A,. are uniquely 
determined if and only if (x I> ... , xn) is affinely independent. An n-family 
(XI' ... , xn) which is not affinely independent is said to be ajjinely dependent. 

Affine independence of an n-family (XI> ... ,xn) is equivalent to linear 
independence of one/all of the (n - 1 )-families 

(XI - X j , ••• , Xj_1 - Xj, Xj+1 - Xj,"" Xn - xJ, i ,= 1, ... , n. 

An affine basis of an affine space A is an affinely independent n-family 
(x 1, ... , xn) of points from A such that A = aff {x I> ... , xn} .. The dimension 
dim A of a non-empty affine space A is the dimension ofthe linear subspace L 
such that A = X + L. (Since L is unique, dim A is well defined. When A is a 
linear subspace, then the affine dimension and the linear dimension are the 
same by definition, and therefore we may use the same notation.) When 
A = 0, we put dim A = - 1. The dimension of A is then n - 1 if and only 
if n is the largest non-negative integer such that there is an affinely independent 
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n-family of points from A. An affinely independent n-family of points from 
A is an affine basis of A if and only if n = dim A + 1. 

Let M be any subset of ~d, and let the dimension of aff M be n - 1. 
Then there is actually an affinely independent n-family (Xl, ... , Xn) of 
points from M, i.e. there is an affine basis (Xl' ... , xn) of aff M consisting of 
points from M. We therefore have: 

(d') For any subset M of ~d, there exists an affinely independent family 
(Xl' ... ,xn) of points from M such that aff M is the set of all affine 
combinations 

This statement is a sharpening of (c'). It shows that to generate aff M it 
suffices to take all affine combinations of the fixed points Xl' ... , Xn from M. 
Furthermore, each point in aff M has a unique representation as an affine 
combination of Xl' ... , X n• 

The O-dimensional affine spaces are the I-point sets. The I-dimensional 
affine spaces are called lines. When Xl and X2 are two distinct points of ~d, 
then the 2-family (Xl' X2) is affinely independent. Therefore, aff{xl' X2} 

is I-dimensional, i.e. a line, and it is in fact the line through Xl and X2 in 
the sense used earlier in this section. Conversely, the line through two points 
Xl and X2 in the earlier sense is in fact a I-dimensional affine space, i.e. a 
line. 

An (n - I)-dimensional affine subspace of an n-dimensional affine 
space A, where n ~ 1, is called a hyperplane in A. If A is an affine subspace 
of ~d, then the hyperplanes in A are the sets H n A where H is a hyperplane 
in ~d such that H n A is a non-empty proper subset of A. 

A mapping qJ from an affine subspace A of ~d into ~e is called an affine 
mapping if it preserves affine combinations, i.e. 

qJ(t: AiXi) = it: AiqJ(XJ 

When qJ is affine, then qJ(A) is an affine subspace of ~e. When A = X + L, 
where L is a linear subspace of [Rd, then a mapping qJ: A -> [Re is affine if and 
only if there exists a linear mapping <l>: L -> ~e and a point y E ~e such that 
qJ(x + z) = y + <l>(z) for all z E L. Affine mappings are continuous. 

An affine mapping qJ: A -> ~ is called an affine function on A. For each 
hyperplane H in A there is a (non-constant) affine function qJ on A such that 
H = qJ-l(O). Conversely, qJ-l(O) is a hyperplane in A for each non-constant 
affine function qJ on A. We have qJ -1(0) = IjJ - 1(0) for two affine functions 
qJ and IjJ on A if and only if qJ = AIjJ for some non-zero real A. 

When qJ is a non-constant affine function on an affine space A, we shall 
call the sets qJ - l(] - CO, OD and qJ - 1(]0, + co D the open half spaces bounded 
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by the hyperplane H = cp-1(0), and we shall call the sets cp-1(] - 00, 0]) 
and cp -1([0, + ooD the closed hal[spaces bounded by H == cp -1(0). Open 
halfspaces are non-empty open sets, closed halfspaces are non-empty closed 
sets. If H = cp - teO) is a hyperplane in A, then two points from A \ Hare 
said to be on the same side of H if they both belong to cp - 1(] .- CfJ, 0D or both 
belong to cp-1(]0, + ooD; if each of the two open halfspaces contains one 
of the two points, we shall say that they are on opposite sides of H. 

A halfiine is a halfspace in a line. 
Let A be an affine subspace of IRd, and let K be a closed halfspace in IRd 

such that A n K is a non-empty proper subset of A. Then A n K is a closed 
halfspace in A. Conversely, each closed halfspace in A arises this way. 
The same applies to open halfspaces. 

For y E IRd and IY. E IR we let 

H(y,IY.):= {XElRdl<x,y) = IY.}. 

Note that H(o, IY.) = IRd when IY. = 0, and H(o, IY.) = 0 when IY. -:f- 0. The 
fact that the affine functions on IRd are precisely the functions 

X 1--+ <x, y) - IY., 

implies that the hyperplanes in IRd are precisely the sets H(y, IY.) for y -:f- o. 
If y -:f- 0, then y is called a normal of H(y, IY.). 

For y E IRd and IY. E IR we let 

K(y, IY.) := {x tt IRd I <x, y) 5 IY.}. 

Note that K(o, IY.) = IRd when IY. 2: 0, and K(o, IY.) = 0 when IY. < 0. For 
y -:f- 0, the set K(y, IY.) is one of the two closed halfspaces in IRd bounded by 
H(y, IY.). The other closed halfspace bounded by H(y, IY.) is K( - y, -IY.). 
Note that 

when y -:f- o. 

bd K(y, IY.) = H(y, IY.), 

int K(y, IY.) = K(y, IY.) \ H(y, IY.), 

cI(int K(y, IY.» = K(y, IY.), 

A one-to-one affine mapping from an affine space Al onto an affine 
space A2 is called an (affine) isomorphism. If there exists an isomorphism 
from Aj onto A 2, then Al and A2 are said to be (affinely) isomorphic. Two 
affine spaces are isomorphic if and only if they have the same dimension. 
An isomorphism is also a homeomorphism, i.e. it preserves the topological 
structure. 

From what has been said above, it follows that any d-dimensional affine 
space A is affinely isomorphic to the particular d-dimensional affine space 
IRd. In other words, A may be "identified" with IRd, not only in an affine 
sense but also in a topological sense. Note also that any given point of A 
can be" identified" with any given point of [Rd. 
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Finally, we should like to point out that this section does not include all 
the necessary information about the linear and affine structure of [Rd needed 
in what follows. Some important additional information is contained in 
Exercises 1.1-1.5. 

EXERCISES 

1.1. Let (x)' ... , xn) be an n-family of points from [Rd, where 

i = 1, ... , n. 

Let 

i = 1, ... , n. 

Show that the n-family (x)' ... , xn) is affinely independent if and only if the n-family 
(XI' ... , xn) of vectors from [Rd+ I is linearly independent. 

1.2. For any subset M of [Rd, show that 

dim(aff M) = dim(span M) 

when 0 E aff M, and 

dim(aff M) = dim(span M) - I 
when 0 rt aff M. 

1.3. Let A be an affine subspace of [Rd, and let H be a hyperplane in [Rd. Show that 

dim(A n H) = dim A-I 

when A n H =F 0 and A ¢ H. 

1.4. Let A I = XI + LI and A z = X2 + L z be non-empty affine subspaces of [Rd. Then 
A) and Al are said to be parallel if LI c L z or Ll c L), complementary if LI and 
Ll are complementary (and orthogonal if LI and Ll are orthogonal). 

Show that if Al and Al are parallel and Al n A z =F 0, then A) cAlor 

Al cAl' 

Show that if A) and A z are complementary, then A I n A 1 is a I-point set. 

1.5. LetA) = XI + LI andA l = Xl + L z be complementary affine subspaces of[Rd, and 
let Xo be the unique common point of Al and A l , cf. Exercise 1.4. Then A) = 

Xo + L I and A 1 = Xo + L l. Let fl: [Rd --> L) denote the projection in the direction 
of L z. For any X E [Rd, let n(x) := Xo + fl(x - xo). Show that n(x) is the unique 
common point of A I and (x - xo) + A 2. (The mapping n is called the projection 
onto A I in the direction of A 2 . When A I and Al are also orthogonal, then n is called 
the orthogonal projection onto AI.) 

1.6. An n-family (x)' ... , x n) of points from [Rd is said to be in general position if every 
subfamily (Xi" ... , Xip) with p:::; d + 1 is affinely independent. Verify that 
(x)' ... , xn) is in general position if and only if for each k with 0 :::; k :::; d - 1 and 
for each k-dimensional affine subspace A of [Rd, the number of i's such that Xi E A 
is at most k + 1. 

1. 7. Let x I' ... , Xn be distinct points in [Rd. Show that there is w =F 0 such that for each 
ex E [R, the hyperplane H(w, :x) contains at most one of the points X), ... , Xn" 
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§2. Convex Sets 

In this section we shall introduce the notion of a convex set and we shall 
prove some basic facts about such sets. In Section 1 we demonstrated a 
strong analogy between linear concepts and affine concepts. This analogy 
carries over to convex concepts, though not in a complete fashion. 

A subset C of [Rd is called a convex set if Alxl + A2x2 belongs to C for all 
XIo X2 r= C and all AI, ,12 E [R with Al + Az = 1 and ,110 ,12 ;;::: o. 

When XI and Xz are distinct points from [Rd, then the set 

[xIoX Z]:= PIX I + A2x2IAI,Az;;::: 0, Al + ,11 = I} 

= {(l - A)xI + AX21AE [0, I]} 

is called the closed segment between XI and X2' Half-open segments ]XI' Xl], 
[XI, Xl[ and open segments ]XIo X2[ are defined analogously. With this 
notation, a set C is convex if and only if the closed segment between any two 
points of C is contained in C. 

The affine subspaces of [Rd, including [R0 and 0, are convex. Any (closed 
or open) halfspace is convex. 

The image of a convex set under an affine mapping is gain convex. In 
particular, translates of convex sets are again convex. 

By a convex combination of points XI' ... , Xn from [Rd we mean a linear 
combination Alx l + ... + Anxn' where Al + ... + An = 1 and ,110 ... , An ;;::: 
O. Every convex combination is also an affine combination. We shall write 

to indicate that the linear combination Alxl + ... + Anxn is in fact a convex 
combination. The definition of a convex set expresses that any convex 
combination of two points from the set is again in the set. We actually have: 

Theorem 2.1. A subset C of [Rd is convex if and only if any convex combination 
of points from C is again in C. 

PROOF. If any convex combination of points from C is again in C, then, in 
particular, any convex combination of two points from C is in C. Therefore, 
C is convex. 

Conversely, assume that C is convex. We shall prove by induction on n 
that any point from [Rd which is a convex combination of n points from C 
is again in C. For n = 1 this is trivial, and for n = 2 it follows by definition. 
So, let n be at least 3, assume that any convex combination of fewer than n 
points from C is in C, and let 

n 

X = LC AiXi 
i=1 
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be a convex combination of n points Xl> ••. , Xn from C. If Ai = 0 for some i, 
then x is in fact a convex combination offewer than n points from C, and so x 
belongs to C by hypothesis. If Ai "# 0 for all i, then Ai < 1 for all i, whence, 
in particular, 1 - Al > O. Therefore, we may write 

Here 

n 

X = LC AiXi 
i= 1 

n 

= A1 X 1 + L AiXi 
i=2 

n X 
Y'= L-'-X. 

i=2 1 - A1 ' 

is in fact a convex combination since A2 + ... + An = 1 - AI' and so Y 
is in C by hypothesis. By the convexity of C then AIX1 + (1 - Al)Y is also 
in C, i.e. x is in C. D 

It is clear that the intersection of any family of convex sets in [Rd is again 
convex. Therefore, for any subset M of [Rd there is a smallest convex set 
containing M, namely, the intersection of all convex sets in [Rd containing M. 
This convex set is called the convex set spanned by M, or the convex hull of 
M, and it is denoted by conv M. 

It is clear that conv(x + M) = x + con v M for any point x and any set 
M. More generally, it follows from Theorem 2.2 below that conv(cp(M» = 
cp( conv M) when cp is an affine mapping. 

We have the following description of the convex hull of a set: 

Theorem 2.2. For any subset M of [Rd, the convex hull conv M is the set of 
all convex combinations of points from M. 

PROOF. Let C denote the set of all convex combinations of points from M. 
Since M c con v M, each x E C is also a convex combination of points from 
the convex set conv M; the "only if" part of Theorem 2.1 then shows that 
C c conv M. To prove the opposite inclusion, it suffices to show that C 
is a convex set containing M. Since each x EM has the trivial representation 
x = Ix as a convex combination of points from M, it follows that M c C. 
To see that AIX l + A2X2 is in C for each Xl' X2 E C and each A l , A2 ~ 0 
with A.l + A.2 = 1, note that by definition Xl and X2 are convex combinations 
of points from M, say 

n 

Xl = LC J1.iYi, 
i=l 

m 

""C X2 = L... J1.iYi· 
i=n+ 1 
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But then 
n m 

A1X l + A2 X2 = L AllliYi + L A21liYi' 
i=l i=n+l 

and 
n m 

L Alili + L A21li = 1. 
i~l i~n+l 

This shows that A1Xl + A2X2 is a convex combination of the points Yb ... , Ym 
from M, whence A1Xl + A2X2 is in C, as desired. D 

Up to now we have had complete analogy with Section 1. The concept 
of a basis of a linear or affine subspace, however, has no analogue for convex 
sets in general. Still, we have the following substitute: 

Theorem 2.3. For any subset M of ~d, the convex hull con v M is the set of 
all convex combinations 

such that (Xl' ... , xn) is an affinely independent family of points from M. 

In other words, in order to generate conv M we need not take all convex 
combinations of points from M as described by Theorem 2.2; it suffices to 
take those formed by the affinely independent families of points from M. 
On the other hand, no fixed family of points from M will suffice, as in the case 
of span M or aff M, cf. (d) and (d') of Section 1. 

PROOF. We shall prove that if a point x is a convex combination of n points 
x b ... , Xn such that (x b ... ,xn ) is affinely dependent, then x is already a 
convex combination of n - 1 of the points x b ... , X n • Repeating this argu­
ment, if necessary, it follows that there is an affinely independent subfamily 
(Xi" ... , Xi) of (X b ... , xn) such that x is a convex combination of 
Xi" ... , x;p' The statement then follows from Theorem 2.2. 

So, suppose that we have 

n 

X = LC AiXi, 
i~ 1 

(1) 

where (Xl' ... , xn) is affinely dependent. If some Ai is 0, then x is already a 
convex combination of n - 1 of the points Xl' .. " x n . Hence, we may 
assume that all Ai are > O. The affine dependence means that there are reals 
Ill' ... , Iln' not all 0, such that 

n 

L lliXi = 0, 
i~ 1 

n 

L Ili = O. (2) 
i~ 1 
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Combining (1) and (2) we see that for any real t we have 

n 

X = L (Ai - tf.1;)Xi (3) 
i= , 

and 

L (Ai - tf.1;) = 1. 
i= , 

We now simply seek a value oft (in fact, a positive value) such that Ai - tf.1i 2 
o for all i, and Ai - tf.1i = 0 for at least one i; then (3) will be a representation 
of x as a convex combination of n - 1 of the points Xl> ..• , X n • We have 
Ai - tf.1i > 0 for any t > 0 when f.1i :s; O. When f.1i > 0, we have Ai - tf.1i 2 0 
provided that t :s; ,1,;/ f.1i' with Ai - tf.1i = 0 if and only if t = ,1,;/ f.1i' Noting 
that we must have f.1i > 0 for at least one i, we see that 

t:= min {A;/f.1i I f.1i > O} 

fulfils the requirements. D 

The following two corollaries are both known as Carathcodory's Theorem: 

Corollary 2.4. For any subset M of [Rd with dim(aff M) = n, the convex hull 
con v M is the set of all convex combinations of at most n + 1 points from M. 

PROOF. For any affinely independent m-family (Xl"'" Xm) of points from M, 
we have m :s; n + 1 by the assumption. Therefore, the set of all convex 
combinations of n + 1 or fewer points from M contains conv M by Theorem 
2.3. On the other hand, it is contained in conv M by Theorem 2.2. D 

Corollary 2.5. For any subset M of[Rd with dim(aff M) = n, the convex hull 
con v M is the set of all convex combinations of precisely n + 1 points from M. 

PROOF. In a convex combination one may always add terms of the form OX. 
Therefore, the statement follows from Corollary 2.4. D 

By a convex polytope, or simply a polytope, we mean a set which is the 
convex hull of a non-empty finite set {Xl"'" x n }. If P is a polytope, then any 
translate X + P of P is also a polytope; this follows from the fact that X + 
con v M = conv(x + M). More generally, the image of a polytope under an 
affine mapping is again a polytope; this follows from the fact that 
cp(conv M) = conv cp(M) when cp is an affine mapping. 

A polytope S with the property that there exists an affinely independent 
family (x" ... , xn) such that S = conv{x" ... , xn} is called a simplex (and 
the points x" ... , Xn are called the vertices of S; cf. the remarks following 
Theorem 7.1). 

One might say that simplices have a "convex basis," cf. the remark 
preceding Theorem 2.3. In fact, if x" ... , Xn are the vertices of a simplex S, 
then by the affine independence each point in aff {x 10 •.• , x n } has a unique 
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representation as an affine combination of Xl' ... , Xn, whence, in particular, 
each point in conv{xl,"" xn} has a unique representation as a convex 
combination ofxt. ... , X n, cr. Theorem 2.3. 

Convex sets having a "convex basis" in the sense described above must, 
of course, be polytopes. The following theorem shows that simplices are the 
only polytopes having a "convex basis": 

Theorem 2.6. Let M = {Xl' ... , xn} be a finite set of n points from [Rd such 
that the njamily (Xl' ... ,xn) is affinely dependent. Then there are subsets 
MI and M2 of M with MI n M2 = 0 and MI U M2 = M such that 

conv MI n conv M2 -# 0. 

PROOF. By the affine dependence there are reals AI' ... , An' not all 0, such that 
n 

L AiXi = 0, 
i= 1 

n 

Denoting the set {I, ... , n} by I, we let 

11 := {iEIIAi > O}, 12 := {iEIIAi:S;; O}, 

and we let 

Now, take 

where 

(4) 

(5) 

(It is clear that 11 -# 0, whence A > 0.) The right-hand side of (5) is in fact a 
convex combination, whence x is in con v M 1 by Theorem 2.2. However, 
using (4) we see that we also have 

and again we actually have a convex combination. Therefore, x is also in 
conv M 2' Consequently, conv M I and conv M 2 have the point x in common. 

D 

The following corollary of Theorem 2.6 is known as Radon's Theorem: 

Corollary 2.7. Let M = {Xl, ... , x n } be a finite set of n points from [Rd such 
that n 2: d + 2. Then there are subsets M I and M 2 of M with MIn M 2 = 0 
and Ml U M2 = M such that 

conv Ml n conv M2 #- 0. 
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PROOF. The maximum number of members in an affinely independent 
family of points from [Rd is d + 1. Therefore, (Xl' ... , xn) must be affinely 
dependent, whence Theorem 2.6 applies. D 

We conclude this section with an important application ofCaratheodory's 
Theorem. 

Theorem 2.8. For any compact subset M of [Rd, the convex hull conv M is 
again compact. 

PROOF. Let (Y'>vEN be any sequence of points from conv M. We shall prove 
that the sequence admits a subsequence which converges to a point in conv M. 
Let the dimension of aff M be denoted by n. Then Corollary 2.5 shows that 
each Yv in the sequence has a representation 

n+ I 

Yv = Ie AviXvi' 
i= 1 

where Xvi E M. We now consider the n + 1 sequences 

of points from M, and the n + 1 sequences 

(AvILEN,···' (Av(n+ 1»vEN 

(6) 

(7) 

of real numbers from [0, 1]. By the compactness of M there is a subsequence of 
(xvI)VEN which converges to a point in M. Replace all 2(n + 1) sequences 
by the corresponding subsequences. Change notation such that (6) and (7) 
now denote the subsequences; then (Xvl)veN converges in M. Next, use the 
compactness of M again to see that there is a subsequence ofthe (sub )sequence 
(X v2 )VE N which converges to a point in M. Change notation, etc. Then after 
2(n + 1) steps, where we use the compactness of M in step 1, ... , n + 1, 
and the compactness of [0, 1J in step n + 2, ... , 2n + 2, we end up with 
subsequences 

of the original sequences (6) which converge in M, say 

lim xVmi = XOi' i = 1, ... , n + 1, 
m~oo 

and subsequences 

(Avml)mEN"'" (AVm(n+ l)mEN 

of the original sequences (7) which converge in [0, 1J, say 

lim AVmi = AOi' i = 1, ... , n + 1. 
m-Ct.) 

Since 
n+1 

"A . = 1, ~ Vml 
mE N, 

i= 1 
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we also have 

Then the linear combination 

n+l 

I AOi = 1. 
i= 1 

n+l 
Yo:= I AOiXOi 

i= 1 

17 

is in fact a convex combination. Therefore, Yo is in conv M by Theorem 2.2. 
It is also clear that 

lim YVm = Yo· 

In conclusion, (YvJmEN is a subsequence of (Y.)VE R>I which conv4~rges to a point 
inconv M. 0 

Some readers may prefer the following version of the proof above. With 
n = dim(aff M) as above, let 

S:= {(Al, ... ,An+l)ElRn+IIAb ... ,An+1 ~ O,A1 + ... + A.n+l = 1}, 

and define a mapping cp: Mn + 1 X S -+ IRd by 
n+l 

CP«Xl, ... , Xn + 1), (AI' ... , An+ 1»:= I AiXi· 
i= 1 

By Corollary 2.5, the set cp(Mn+ 1 X S) is precisely conv M. Now, M n+ 1 X S 
is compact by the compactness of M and S, and cp is continuous. Since the 
continuous image of a compact set is again compact, it follows that conv M 
is compact. 

Since any finite set is compact, Theorem 2.8 immediately implies: 

Corollary 2.9. Any convex polytope Pin IRd is a compact set. 

One should observe, however, that a direct proof of Corollary 2.9 does not 
require Caratheodory's Theorem. In fact, if M is the finite set {Xl' ... , xm}, 
then each Yv (in the notation of the proof above) has a representation 

m 

Yv = Ie AviXi· 
i= 1 

Then we have a similar situation as in the proof above (with m corresponding 
to n + 1), except that now the sequences corresponding to the sequences (6) 
are constant, Xvi = Xi for all v. Therefore, we need only show here that the 
sequences (7) admit converging subsequences (which is proved as above). 

EXERCISES 

2.1. Show that when C1 and C2 are convex sets in /Rd, then the set 

C! + C2 :={x! +x2 Ix!EC!,X2 EC2 } 

is also convex. 
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2.2. Show that when C is a convex set in ~d, and A. is a real, then the set 

A.C:= {A.xlx E C} 

is also convex. 

2.3. Show that when C is a convex set in ~d, and q>: ~d --+ ~e is an affine mapping, then 
q>(C) is also convex. 

2.4. Show that conv(M) + M 2) = con v M) + conv M 2 for any subsets M) and M 2 

of ~d. 

2.5. Show that when M is any subset of ~d, and q>: ~d --+ ~e is an affine mapping, then 
q>(conv M) = conv q>(M). Deduce in particular that the affine image ofa polytope 
is again a polytope. 

2.6. Show that when M is an open subset of ~d, then conv M is also open. Use this fact 
to show that the interior of a convex set is again convex. (Cf. Theorem 3.4(b).) 

2.7. Show by an example in ~2 that the convex hull of a closed set need not be closed. 
(Cf. Theorem 2.8.) 

2.8. An n-family (XI"'" xn) of points from ~d is said to be convexly independent ifno 
Xi in the family is a convex combination of the remaining x/so For n ;::: d + 2, show 
that if every (d + 2)-subfamily of (XI' ... , xn) is convexly independent, then the 
entire n-family is convexly independent. 

2.9. Let (Ci)iEI be a family of convex sets in ~d with d + 1 ::; card I. Consider the 
following two statements: 

(a) Any d + 1 of the sets C i have a non-empty intersection. 
(b) All the sets Ci have a non-empty intersection. 

Prove Reily's Theorem: If card I < 00, then (a) => (b). (Hint: Use induction 
on n := card I. Apply Corollary 2.7.) 

Show by an example that we need not have (a) => (b) when card I = 00. 

Prove that if each Ci is closed, and at least one is compact, then we have 
(a) => (b) without restriction on card I. 

2.10. Let a point X in IRd be a convex combination of points X), •.. , X n , and let each Xi 

be a convex combination of points Yil' ... , Yin,' Show that X is a convex combina­
tion of the points Yiv" i = 1, ... , n, Vi = 1, ... , ni. 

2.11. Let (C;)jEI be a family of distinct convex sets in ~d. Show that 

conv U Ci 

ieI 

is the set of all convex combinations 

n 

Ie A.ivXiv' 
v=1 

where Xiv E Civ ' 
Deduce in particular that when C) and C2 are convex, then conv(C) u C2 ) is 

the union of all segments [x)' x 2] with XI E C) and X2 E C 2 • 
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§3. The Relative Interior of a Convex Set 

It is clear that the interior of a convex set may be empty. A triangle in !R 3 , 

for example, has no interior points. However, it does have interior points in 
the 2-dimensional affine space that it spans. This observation illustrates the 
definition below of the relative interior of a convex set, and the main result of 
this section, Theorem 3.1. We shall also discuss the behaviour of a convex 
set under the operations offorming (relative) interior, closure, and boundary. 

By the relative interior of a convex set C in !Rd we mean the interior of C 
in the affine hull aff C of C. The relative interior of C is denoted by ri C. 
Points in ri C are called relative interior points of C. The se:t cl C \ ri C is 
called the relative boundary of C, and is denoted by rb C. Points in rb C 
are called relative boundary points of C. (Since aff C is a dosed subset of 
!Rd, the "relative closure" of C is simply the closure of C. Hence, the relative 
boundary of C is actually the boundary of C in aff C.) 

It should be noted that the ri-operation is not just a slight modification 
of the int-operation. Most striking, perhaps, is the fact that the ri-operation 
does not preserve inclusions. For example, let C1 be a side of a triangle 
C2 . Then C 1 c C2 , whereas ri C 1 ¢ ri C2 ; in fact, ri C 1 and ri C2 are non­
empty disjoint sets. 

By the dimension of a convex set C we mean the dimension dim(aff C) 
of the affine hull of C; it is denoted by dim C. The empty set has dimension 
-1. The O-dimensional convex sets are the I-point sets {x}. The I-dimen­
sional convex sets are the (closed, half-open or open) segments, the (closed 
or open) halftines, and the lines. 

For a O-dimensional convex set C = {x}, we clearly have ri C = C, 
cl C = C, and rb C = 0. 

We have ri C = int C for a non-empty convex set C in !R" if and only if 
int C # 0. In fact, if int C =f. 0 then aff C = !Rd, whence ri C = int C by 
the definition of ri C. The converse is a consequence of the foHowing: 

Theorem 3.1. Let C be any non-empty convex set in !Rd. Then ri C =f. 0. 

We first prove Theorem 3.1 for simplices: 

Lemma 3.2. Let S be a simplex in !Rd. Then ri S # 0. 
PROOF. When dim S = k, there is a (k + 1)-family (Xl' ... , Xk+ 1), affinely 
independent, such that 

S = conv{xl'.'·' xk+d. 

Then (x 1, ... , Xk + d is an affine basis of aff S; hence, aff S is the set of points 
of the form 

k+ 1 

X = La AiXi, 
i= 1 
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and for each x E aff S, the coefficients Ai> ... , Ak + 1 are unique. Therefore, 
we may define a mapping 

qJ: aff S -+ ~k+ 1 

by letting 

This is actually an affine mapping; in particular, it is continuous. Let 

i= 1, ... ,k+ 1. 

Then K l' ... , Kk + 1 are open halfspaces in ~k + 1, and therefore, by continuity, 
the sets qJ -1(K 1), ... , qJ -1(Kk+ 1) are open (in fact, open halfspaces) in 
aff S. The set 

k+l n qJ-l(KJ, (1) 
i= 1 

is therefore also open in aff S. Now, note that 

:O>-l(KJ = rt: AiXi/A1, •.. , Ak+l > o} 
This shows in particular that the set (1) is non-empty. And since affine 
combinations A1X1 + ... + Ak + lXk+ 1 with all Ai > 0 are convex combina­
tions, we see that the set (1) is a subset of S. In other words, the set S contains a 
non-empty set which is open in aff S, whence ri S # 0. (The proof shows 
that the set (1) is a subset of ri S. Actually, the two sets are the same.) D 

With Lemma 3.2 at hand we can now pass to: 

PROOF (Theorem 3.1). Let 

k := dim C (= dim(aff C». 

Then there is an affinely independent (k + I)-family (x1, ... ,Xk+l) of 
points from C (but no such (k + 2)-family). Let 

S:= conv{x1, ... , Xk+ d· 
Then S is a simplex contained in C. By Lemma 3.2, S has a non-empty 
interior relative to aff S. Since 

aff Scaff C 

and 

dim( aff S) = k = dim( aff C), 

we actually have 

aff S = aff C. 
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Therefore, S has a non-empty interior relative to alI C. But since S is a subset 
of C, it follows that C has a non-empty interior relative to alI C, as desired. 

o 
The following theorem shows that any point in the closure of a convex set 

C can be "seen" from any relative interior point of C "via" relative interior 
points: 

Theorem 3.3. Let C be a convex set in ~d. Then for any Xo E ri C and any 
Xl E cl C with Xo t= Xl we have [xo, X1[ c ri C. 

PROOF. It is easy to prove the statement in the particular case where we have 
Xo E int C and Xl E C. For A E ]0,1[, let x;.:= (1 - A)Xo + Ax1. From 
Xo E int C it follows that there is a ball B centred at Xo with B c C. From 
Xl E C and the convexity of C it next follows that 

B;.:=(l - A)B + Ax1 

is contained in C. But B;. is a ball centred at X;., whence X;. E int C, as desired. 
The proof below covering the general case is an elaborate version of this 
idea. Of course, the main difficulty is that Xl need not be in C. 

So, consider Xo E ri C and Xl E cl C with Xo t= Xl' For any .~ E ]0,1[, let 

X;.:= (1 - A)Xo + AX1' 

We shall prove that X;. E ri C. Since Xo is a relative interior point of C, 
there is a (relatively) open subset U of alI C such that Xo E U c C. Let 

V:= A -l(X;. - (1 - A)U). 
Since 

A - 1 - A - 1(1 - A) = 1, 

it follows that V is a subset of alI C, and it is, in fact, (relativdy) open. And 
since 

Xl = A -l(X;. - (l - A)Xo), 

we see that Xl E V. Therefore, by the assumption that Xl E cl C, there is a 
point Y1 E V n C. Let 

W:= (l - A)U + AY1' 

Then W is a (relatively) open subset of alI C, and since we have both U c C 
and Yt E C, it follows that We C by the convexity of C. We complete the 
proof by showing that X;. E W. From the definition of V it follows that there 
is a point Yo E U such that 

Y1 = A -l(X;. - (l - A)yo). 
Then 

X;. = (1 - A)Yo + AY1 

E (1 - A)U + AYt = W, 
as desired. o 
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Theorem 3.3 is a useful tool. Among other things, it is crucial for the proofs 
of all the statements, except (a), in the following theorem. The theorem 
brings out the nice behaviour of convex sets. 

Theorem 3.4. For any convex set C in IRd one has: 

(a) cl C is convex. 
(b) ri C is convex. 
(c) cl C = cl(cl C) = cl(ri C). 
(d) ri C = ri(cl C) = ri(ri C). 
(e) rb C = rb(cl C) = rb(ri C). 
(f) aff C = aff(cl C) = aff(ri C). 
(g) dim C = dim(cl C) = dim(ri C). 

PROOF. For C = 0, there is nothing to prove. So, we may assume that C 
is non-empty, whenever necessary. 

(a) Let xo, Xl E cl C, and let A E ]0,1[. We shall prove that the point 

x). := (1 - A)Xo + Axl 

is also in cl C. Now, there are sequences 

of points from C such that 

lim Xo\" = X O, 

By the convexity of C, the points 

(1 - A)Xo,· + AX b" V EN, 

are all in C. Furthermore, 

lim «1 - A)Xo,. + AXh) = (1 - A)Xo + Ax j = x).. 

This shows that x). E cl C. 
(b) We shall prove that for any Xo, Xl E ri C and any A E ]0,1[, the point 

x). := (1 - A)xo + AXI 

is also in ri C. This follows immediately from Theorem 3.3. 
(c) The statement cl C = cl(cl C) is trivial. It is also trivial that cl(ri C) c 

cl C. To prove the opposite inclusion, let Xl E cl C. Take any point Xo E ri C, 
cf. Theorem 3.1. If Xo = Xl' then we have 

Xl E ri C c cl(ri C), 

as desired. If Xo '" Xl' then we have 

[xo, x I [ c ri C, 
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cf. Theorem 3.3. Since each neighbourhood of Xl contains points from 
[xo, X I [, it follows that X I is in cl(ri C). 

(d) To prove that ri C = ri(cl C), we first note that 

aff C = aff(cl C), (2) 

since aff C is closed. Then it is clear that ri C c ri( cl C). To prove the opposite 
inclusion, let x be in ri(cl C). Take any point Xo E ri C, cf. Theorem 3.1. If 
Xo = x, then we have x E ri C, as desired. If Xo i= x, then aff{xo, x} is a 
line, and we have 

aff{xo, x} c aff(cl C) = aff C. 

Since x E ri( cl C), there is a point x I E aff {xo, x} such that x I E cl C and 
x E ]xo, X I [. Application of Theorem 3.3 then yields x E ri C. Hence, ri C = 
ri(cl C). 

To prove that ri C = ri(ri C), we first verify that 

aff C = aff(ri C). 

Applying (2) to ri C instead of C and using (c), we obtain 

aff(ri C) = aff(cl(ri C» 
= aff(cl C) 

= aff C. 

Now, using the notation intaffc C for ri C, we have 

ri(ri C) = intaff(riC)(ri C) 

= intaffdri C), 

where we have used (3). But 

intaffdri C) = intaffdintaffc C) 

= intaffc C 

= ri C, 

(3) 

where we have used the standard fact that int(int M) = int M for any set M. 
This completes the proof of (d). 

(e) By definition we have 

rb C = cl C \ ri C, 

rb(cl C) = cl(cl C) \ ri(cl C), 

rb(ri C) = cl(ri C) \ ri(ri C). 

The statement then follows using (c) and (d). 
(f) This has already been proved, cf. (2) and (3) above. 
(g) This follows from (f). o 
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The next theorem also depends on Theorem 3.3. It shows that the relative 
interior points of a convex set C may be characterized in purely algebraic 
terms: 

Theorem 3.5. For any convex set C in IRd and any point x E C the following 
three conditions are equivalent: 

(a) x E ri C. 
(b) For any line A in aff C with x E A there are points Yo, Yl E An C such 

that XE]YO,Yl[' 

(c) For any point Y E C with Y #- x there is a point Z E C such that x E ]y, z[, 
i.e. any segment [y, x] in C can be extended beyond x in C. 

PROOF. The implications (a) ==> (b) and (b) ==> (c) are obvious. Therefore, 
we need only prove (c) ==> (a). By Theorem 3.1 there is a point Y E ri C. If 
Y = x, there is nothing more to prove. If Y #- x, then by (c) there is a point 
Z E C such that x E ]y, z[. But then x is in ri C by Theorem 3.3. 0 

We conclude this section with an application of Theorem 3.4(a). Let M 
be any set in IRd. Then there is a smallest closed convex set containing M, 
namely, the intersection of all closed convex sets containing M. We call this 
set the closed convex hull of M, and denote it by clconv M. As might be 
expected, we have: 

Theorem 3.6. Let M be any subset of IRd. Then 

clconv M = cl(conv M), 

i.e. the closed convex hull of M is the closure of the convex hull of M. 

PROOF. Using Theorem 3.4(a) we see that cl(conv M) is a closed convex set 
containing M. Since clconv M is the smallest such set, it follows that 

clconv Me cl(conv M). 

On the other hand, clconv M is a convex set containing M, whence 

clconv M ::J cony M. 

Since clconv M is also closed, this implies 

clconv M ::J cl(conv M), 

completing the proof. 

EXERCISES 

o 

3.1. Let P = conv{x" ... , xn } be a polytope in (Rd. Show that a point x is in ri P if and 
only if x is a convex combination of x" ... , Xn with strictly positive coefficients, i.e. 
there are A" ... , An such that 

and Ai > 0 for i = 1, ... , n. 

x = Ie AiXi 
i= 1 
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3.2. Let C 1 and C 2 be convex sets in [Rd. Show that riC C 1 + C 2) = ri C 1 + ri C 2' 

3.3. Let C be a convex set in [Rd, and let r.p: [Rd --+ [Re be an affine mapping. Show that 
ri r.p(C) = r.p(ri C). 

3.4. Let (Ci)iEl be a family of convex sets in [Rd such that 

n ri Ci -=I 0· (4 ) 
i E I 

Show that 

cl n Ci = n cl Ci · (5) 
iE liE I 

Show that if (4) does not hold, then (5) need not hold. 

3.5. Let (Ci)i~ 1. . .. n be a finite family of convex sets in [Rd such that 

n ri Ci -=I 0· (6) 
i= 1 

Show that 

ri n Ci = n ri Ci · (7) 
i= 1 i== 1 

Show that jf (6) does not hold, then (7) need not hold. 

§4. Supporting Hyperplanes and Halfspac(~s 

It is intuitively clear that when x is a relative boundary point of a convex set C, 
then there is a hyperplane H passing through x such that all points of C not in 
H are on the same side of H. One ofthe main results ofthis section shows that 
it is in fact so. 

Let C be a non-empty closed convex set in [Rd. By a supporting halfspace of C 
we mean a closed halfspace K in [Rd such that C c K and H n C "# 0, where 
H denotes the bounding hyperplane of K. By a supporting hyperplane of ewe 
mean a hyperplane H in [Rd which bounds a supporting halfspace. 

In the definition of a supporting hyperplane H of C we allow C c H 
(in which case both closed halfspaces bounded by H are supporting halfspaces). 
If C is not contained in H we shall call H a proper supporting hyperplane. 

Analytically, a hyperplane H(y, IX) is a supporting hyperplane of a non­
empty closed convex set C if and only if 

IX = max <x, y) (1) 
XEC 

or 

C( = min <x, y). (2) 
XEC 
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If (2) holds for H(y, IX), then (1) holds for H( - y, - IX). Since H( - y, - IX) = 
H(y, IX), it follows that any supporting hyperplane H of C has the form H(y, IX) 
such that (1) holds, whence C c K(y, IX). Note, by the way, that if H(y, IX) is a 
supporting hyperplane such that C c K(y, IX), then H(y, IX) is proper if and 
only if 

inf (x, y) < max (x, y). 
XEC XEC 

We first prove: 

Theorem 4.1. Let C be a non-empty convex set in [Rd, and let H be a hyperplane 
in [Rd. Then the{ollowing two conditions are equivalent: 

(a) H n ri C = 0. 
(b) C is contained in one of the two closed half spaces bounded by H, but not in H. 

PROOF. Assume that (a) holds. Let Xo E ri C, cf. Theorem 3.1. Then Xo rI- H by 
(a). In particular, C is not contained in H. Suppose that there is a point Xl E C 
such that Xo and x 1 are on opposite sides of H. Then there are y and IX such 
that H = H(y, IX) and 

Taking 

A:= IX-(xo,Y) 
(Xl' y) - (xo, y) 

and 

x A := (l - A)Xo + AXlo 

we have A E ]0, 1 [, and so x A E ]xo, Xl [. Furthermore, an easy computation 
shows that (x A' y) = IX, whence x A E H. On the other hand, since Xo E ri C and 
x" E ]xo, x l [, it follows from Theorem 3.3 that we also have x" E ri C, whence 
x" E H n ri C, a contradiction. In conclusion, C is contained in that closed 
halfspace bounded by H which contains the point Xo. 

Conversely, assume that (b) holds. Suppose that there is a point 
x E H n ri C. By (b) there is a point y E C\H. Then by Theorem 3.5, (a) ~ (c) 
there is a point Z E C such that x E ]y, zL whence 

x = (1 - A)y + AZ 

for a suitable A E ]0, 1 [. Now, there are u and IX such that H = H(u, IX) and 
C c K(u, IX). Then (y, u) < IX and (z, u) :$; IX, whence 

(x, u) = «1 - A)y + AZ, u) 
= (1 - A)(y, u) + A(Z, u) 
< (1 - A)IX + AIX = IX. 

At the same time we have (x, u) = IX since x E H, a contradiction. Therefore, 
H n ri C is empty. 0 
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We immediately get: 

Corollary 4.2. A supporting hyperplane H oj"a non-empty closed convex set C in 
[Rd is a proper supporting hyperplane of C if and only if H n ri C = 0. 

The following result is fundamental: 

Theorem 4.3. Let C be a closed convex set in [Rd, and let x be a point in rb C. Then 
there is a proper supporting hyperplane H of C such that x E H. 

We shall build the proof of Theorem 4.3 upon the following: 

Lemma 4.4. Let C be a non-empty open convex set in [Rd, and let x be a point 
oj" [Rd not in C. Then there is a hyperplane H ill [Rd such that x E H alld 
HnC = 0. 

PROOF. We shall use induction on d. The statement is trivially true for d = 0, 1. 
We also need a prooffor d = 2, however. So, let C be a non-empty open convex 
set in [R2, and let x E [R2 \ c. We shall prove that there exists a line L in [R2 such 
that x ELand L n C = 0. Let S be a circle with its centre at x, and for each 
point u E C let u' be the unique point of S where the halfiine 

{(1 - A)x + AulA> O} 

from x through u meets S. Then the set 

C:= {u'luEC} 

is an open arc in S. Since x ¢ C and C is convex, two opposite points of S can­
not both be in C. Therefore, the angle between the two halfiines from x 
through the endpoints of C is at most It. Any of the two lines determined by 
one of these halfiines can then be used as L. (If the angle is It, then, of course, L 
is unique.) 

Next, let d > 2, and assume the statement is valid for all dimensions less 
than d. Let C be a non-empty open convex set in [Rd, and let x E [Rd\C. (See 
Figure 1 which illustrates the "difficult" situation where x E cl C.) Take any 
2-dimensional affine subspace A of [Rd such that x E A and An C i' 0. Then 
A n C is a non-empty open convex set in A with x ¢ A n C. Identifying A with 
[R2 and using the result on [R2 proved above, we see that there exists a line L 
in A such that x ELand 

L n (A n C) = L n C = 0. 
Let B be any hyperplane in [Rd orthogonal to L, and let n: [Rd ~ B denote the 
orthogonal projection. Then n( C) is a non-empty open convex set in B. More­
over, since n- 1(n(x» = L, we see that n(x) ¢ n(e). Then, by hypothesis, there 
is a hyperplane H' in B such that n(x) E H' and H' n n(C) = 0. But then 

H := aff(H' u L) = n-l(H') 

is a hyperplane in [Rd with x E Hand H n C = 0. o 
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We can now prove Theorem 4.3: 

1. Convex Sets 

PROOF (Theorem 4.3). When dim C = -1,0, there is nothing to prove. So, let 
dim C ~ 1, and let C and x be as described. We Shlll apply Lemma 4.4 to the 
convex set ri C and the point x in the affine space afT C. (Here we need to 
identify afT C with ~e where e := dim(afT C).) To see that Lemma 4.4 applies, 
note that ri C is non-empty by Theorem 3.1, convex by Theorem 3.4(b), and 
open in afT C; furthermore, x is in afT C. Application of Lemma 4.4 then yields 
the existence of a hyperplane H' in afT C such that x E H' and H' II ri C = 0. 
Clearly there is a hyperplane H in ~d such that H II afT C = H'. (If already 
afT C = [Rd, then H = H'.) Then we also have x E Hand H II ri C = 0. 
Theorem 4.1, (a) = (b) finally shows that H is in fact a proper supporting 
hyperplane. D 
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The following theorem is also fundamental: 

Theorem 4.5. Let C be a non-empty closed convex set in IRd. Then C is the inter­
section of its supporting halfspaces. 

PROOF. When dim C = 0, the theorem is clearly true. When C = IRd , there 
are no supporting halfspaces; hence, the theorem is also true in this case. 
So, let dim C ;::: 1, and let x be a point of IRd outside C; we shall prove that 
there is a supporting halfspace K of C such that x ¢ K. If x ¢ aff C, there is a 
hyperplane H in IRd with aff C cHand x ¢ H. The closed halfspace bounded 
by H which does not contain x then has the desired property. If x E aff C, let z 
be a relative interior point of C, cf. Theorem 3.1. Then [z, x] n C is a closed 
segment [z, u], where u E rb C and [z, u[ is in ri C, cf. Theorem 3.3. Now, by 
Theorem 4.3 there is a proper supporting hyperplane H of C such that u E H. 
The supporting halfspace K bounded by H then has the desired property. In 
fact, suppose that x E K. As we have z E ri C, it follows from Corollary 4.2 that 
z ¢ H, whence z E int K. But then Theorem 3.3 shows that ]z, x[ is in int K, 
which is contradicted by the fact that the point u belonging to ]z, x[ is in 
H = bd K. 0 

One may say that Theorem 4.5 describes an "external representation" of a 
closed convex set. In thenext section we shall meet an "internal representation" 
of a compact convex set. 

EXERCISES 

4.1. Let C 1 and C 2 be convex sets in [R;d. A hyperplane H in [R;d is said to separate C 1 and 
C 2 if C 1 is contained in one of the two closed halfspaces bounded by Hand C 2 is 
contained in the other closed halfspace bounded by H. Note that we allow C 1 C H 
and C 2 C H. If at least one of the two sets eland C 2 is not contained in H, then H 
is said to separate properly. Show that there exists a hyperplane H separating C 1 

and C 2 properly if and only if ri C 1 n ri C 2 = 0. (Hint: Consider the convex set 
C ,= C 1 - C2 . Use Exercise 3.2.) 

4.2. Let eland C 2 be convex sets in [R;d. A hyperplane H(y, ex) is said to separate C 1 

and C 2 strongly if for some [; > 0 both H(y, ex - s) and H(y, (J. + £) separate C 1 

and C 2, cf. Exercise 4.1. Show that there exists a hyperplane H separating eland 
C 2 strongly if and only if 0 ~ cl( C 1 - C 2)' Deduce, in particular, that if eland C 2 

are disjoint closed convex sets one of which is compact, then there is a strongly 
separating hyperplane. 

§5. The Facial Structure of a Closed Convex Set 

In this section we shall study certain" extreme" convex subsets of a closed 
convex set C, called the faces of C. We shall prove, among other things, that 
when the set C is compact, then it is the convex hull of its O-dimensional faces. 
This is the" internal representation" mentioned in Section 4. 
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In the following, let C be a closed convex set in [Rd. A convex subset F of C 
is called aface of C iffor any two distinct points y, Z E C such that ]y, z[ (1 F is 
non-empty, we actually have [y, z] c F. Note that in order to have [y, z] c F 
it suffices by the convexity of F to have y, z E F. 

The subsets 0 and C of C are both faces of C, called the improper faces; all 
other faces are called proper faces. 

A point x E C is called an extreme point of C if {x} is a face. This means, by 
definition, that x is not a relative interior point of any segment [y, z] in C, 
or, equivalently, that C\ {x} is again convex. The set of extreme points of C is 
denoted by ext C. 

A face F of C is called a k1ace if dim F = k. Thus, the O-faces are the extreme 
points. (Strictly speaking, {x} is a face if and only if x is an extreme point.) A 
facet of C is a face F with 0 s dim F = dim C - 1. 

It is clear that the intersection of any set d of faces of C is again a face of C. 
Hence, there is a largest face of C contained in all the members of d, namely, 
the intersection of all the members of d. However, we can also conclude that 
there is a smallest face of C containing all the members of d, namely, the 
intersection of all faces of C containing all the members of d. (Note that C 
itself is such a face.) Denoting the set of all faces of C by .?F( C), we may express 
this by saying that the partially ordered set (.?F(C), c) is a complete lattice 
with the lattice operations 

inLd:= n {F E .?F(C) IF E .d}, 

sup d:= n {G E .?F(C)IVF E .d: Fe G}. 

(For lattice-theoretic notions, see Appendix 1.) We shall call (.?F(C), c) the 
face-lattice of C. (The partially ordered set (.?F(C), ~) is, of course, also a 
complete lattice. However, when speaking of the face-lattice of C we always 
mean .?F(C) equipped with c.) 

When C is a closed convex set with dim C ~ 1, then certain faces of Cbave 
a particular form: If H is a proper supporting hyperplane of C, cf. Corollary 
4.2, then the set F := H (1 C is a proper face of C. In fact, F is a non-empty 
proper subset of C by definition, and being the intersection of two convex 
sets it is also convex. To see that it has the face property, let y and z be two 
points of C such that ]y, z[ (1 F is non-empty. Then (1 - A)y + AZ is in H for 
some A E ]0, 1[. Now, there are u and IX such that H = H(u, IX) and C c 
K(u, IX). We then have <y, u) S IX, <z, u) S IX and «1 - A)Y + AZ, u) = IX, 

whence <y, u) = <z, u) = IX, i.e. y andz are inH, and therefore in F, as desired. 
A face F of C of the form F = H (1 C, where H is a proper supporting hyper­
plane of C, is called a (proper) exposed face. For any closed convex set C 
(including sets C with dim C = -1, 0) it is convenient also to consider 0 and 
C as exposed faces of C; we shall call them improper exposed faces. 

(There is a formal problem in connection with the definition of a proper 
exposed face of C, namely, that it depends on the choice of the particular 
affine space containing C. If C is "initially" lying in [Rd, we would like to be 
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free to consider it as a subset of any affine subspace A of [Rd containing 
aff C. We can, however, easily get away with this difficulty, since the hyper­
planes in A are just the non-empty intersections H n A, where H is a hyper­
plane in ~d not containing A.) 

A point x E C is called an exposed point of C if {x} is an exposed face. The 
set of exposed points of C is denoted by exp C. Thus, exp C is a subset of ext C. 

The set of exposed faces of C is denoted by S(C). The order-theoretic 
structure of (S( C), c) will be discussed later in this section. 

In order to illustrate the notions introduced above, consider the following 
example. Let C be the convex hull of two disjoint closed discs in [R2 having the 
same radius. Then the boundary of C consists oftwo closed segments [Xl' X2] 

and [x 3, X4], and two open half-circles. The I-faces of C are the two segments 
[Xl' X2], [X3' X4]; these faces are in fact exposed. The extreme points (i.e. the 
O-faces) are the points Xl' X2, X3, X4 and the points belonging to one of the 
open half-circles. Clearly, each point belonging to one of the open half-circles 
is even exposed. The extreme points Xl' X2' X3' X4 are not exposed however; 
in fact, a supporting hyperplane of C containing one of the points Xl' X 2 , X3' 

X4 must also contain one of the two segments. In particular, this shows that 
in general there are non-exposed faces. 

Any proper exposed face is the intersection of two closed sets, and there­
fore it is closed itself. We actually have: 

Theorem 5.1. Every face F of a closed convex set C in ~d is closed. 

PROOF. For dim F = -1, 0 there is nothing to prove. Assume that dim F ~ 1, 
and let X be any point in cl F. Let Xo be a point in ri F, cf. Theorem 3.1. If 
X = xo, we have X E F as desired. Ifx "# xo, then [xo, x[ is a subset ofri F by 
Theorem 3.3. In particular, ]xo, x[ n F "# 0, whence X is in F by the defini­
tion of a face. 0 

Theorem 5.1 shows among other things that it makes sense to talk about 
"a face ofa face" (ofa closed convex set): 

Theorem 5.2. Let F be aface of a closed convex set C in [Rd, and let G be a subset 
of F. Then G is aface ofC if (and only if) G is aface of F. 

PROOF. It follows immediately from the definition that if the set G is a face of 
C, then it is also a face of F. Conversely, suppose that G is a face of F, and let 
y and z be points of C such that Jy, z[ intersects G. Since G c F, the segment 
]y, z[ also intersects F. This implies y, z E F since F is a face of C. But then we 
also have y, z E G, as desired, since G is a face of F. 0 

One should note that the" if" part of Theorem 5.2 is not valid in general 
with "face" replaced everywhere by "exposed face." In fact, in the example 
above Xl is an exposed point of [Xl> X2J, and [Xl' X2J is an exposed face of C, 
but Xl is not an exposed point of C. 
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Theorem 5.3. Let F be a face of a closed convex set C in [Rd such that F =1= e. 
Then Fe rb e. 

PROOF. For dim C = -1,0 there is nothing to prove. So, assume that we 
have dim C ~ l. Let F be a face of C such that some point x from F is in ri e. 
We shall complete the proof by showing that F = e. Let y be an arbitrary 
point in C. If y = x, then y is in F, as desired. If y =1= x, then there is a point 
z in C such that x E Jy, zL cf. Theorem 3.5, (a) => (c). Since x is in F, and F 
is a face, it follows that y is in F. 0 

Corollary 5.4. Let F and G be faces of a closed convex set C in [Rd such that 
G f:E F. Then G c rb F. 

PROOF. First note that G is a face of F, cf. Theorem 5.2. The statement then 
follows immediately from Theorem 5.3. 0 

Corollary 5.5. Let F and G be faces of a closed convex set C in [Rd such that 
G f:E F. Then dim G < dim F. 

PROOF. First note that we have aff G c aff F since G c F. Suppose that 
aff G = aff F. Then ri G c ri F since G c F. Combining with Corollary 5.4 we 
obtain ri G = 0. By Theorem 3.1 this implies G = 0, whence also F = 0 
since aff F = aff G, contradicting that G =1= F by assumption. In conclusion, 
we must have aff G f:E aff F, whence dim G < dim F. 0 

For any subset M of a closed convex set C in [Rd there is a smallest face of C 
containing M, namely, the intersection of all faces containing M. Theorem 5.3 
shows that when M contains a point from ri C, then the smallest face con­
taining M is C itself. 

Theorem 5.6. Let C be a closed convex set in [Rd, let x be a point in C, and let F 
be a face of C containing x. Then F is the smallest face of C containing x if and 
only ifx E ri F. 

PROOF. If x E ri F, then F is the smallest face containing x by Corollary 5.4. If 
x E rb F, then by Theorem 4.3 there is a face G (in fact, exposed) of F such that 
x E G f:E F. By Theorem 5.2, G is also a face of C, and therefore F is not the 
smallest face containing x. 0 

Corollary 5.7. Let C be a closed convex set in [Rd. Then the sets ri F, where 
FE ff(C)\{0},form a partition ofe. 

PROOF. The statement amounts to saying that for each x E C there is a unique 
face F of C such that x E ri F. However, Theorem 5.6 gives such a unique face, 
namely, the smallest face of C containing x. 0 
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Next, we shall study the exposed faces. We first prove: 

Theorem 5.8. Let F be afacet of a closed convex set C in /Rd. Then F is an exposed 
face. 

PROOF. By the definition of a facet we necessarily have dim F 2 0, whence 
by Theorem 3.1 there is a point x E ri F. Then, by Theorem 5.6, F is the 
smallest face of C containing x. On the other hand, Theorem 4.3 shows that 
there is an exposed face G of C such that x E G. It then follows that F c G £E C. 
Using Corollary 5.5 we obtain 

dim C - 1 = dim F ::s;; dim G < dim C, 

whence dim G = dim F. Corollary 5.5 then shows that F = G, and therefore 
F is exposed. 0 

At the beginning of this section we noted that the intersection of any set of 
faces of a closed convex set C is again a face of C. The following theorem 
shows that a similar result holds for exposed faces: 

Theorem 5.9. Let {Fi liE l} be a set of exposed faces of a closed convex set C in 
/Rd, and let 

F:= nFi' 
iEI 

Then F is also an exposed face of C. 

PROOF. When F is 0 or C, there is nothing to prove. So, in the following we may 
assume that F is a non-empty intersection of proper exposed faces Fi , i E I. 

We shall first consider the case where I is a finite set, say I = {I, ... , n}. 
Now, for each i E I there is a hyperplane H(Yi' a;) such that 

(1) 

and 

(2) 

We may assume without loss of generality that 0 E int C. Then 0 is interior for 
all the K(Yi' a;)'s, and therefore each a i is > 0. Letting 

for i = 1, ... , n, (1) and (2) become 

Let 

Fi = H(zi' 1) n C, 

C c K(zi' 1). 

n 

zo:= Ln-1zi. 
i= 1 
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Then for any x E Cwehave 

implying that 

<x, zo> = / x, .± n- 1z i ) 
\ ,=1 

n 

= Ln- 1<x,z;) 
i= 1 

n ::; ~>-1. 1 = 1, 
i= 1 

C c K(zo, 1). 

1. Convex Sets 

(3) 

Furthermore, we have equality in (3) if and only if X E H(Zi' 1) for i = 1, ... , n. 
This shows that 

H(zo, 1)n C = F. 

Hence, F is an exposed face. 
When I is infinite, it suffices by the preceding to prove that there exist 

i1, ... , in E I such that 

n 

nFi,. =F. 
v=1 

Let i1 be any of the i's in I. If F = Fi" we have the desired conclusion. If 
F ~ F;" then there is i2 E I such that 

From Corollary 5.5 it follows that 

dim(Fi, n Fi,) < dim Fi,. 

If F = Fi, n Fi2 , we have the desired conclusion. If F ~ Fi, n Fb , then there 
is i3 E I such that 

Again from Corollary 5.5 it follows that 

dim(Fi, n Fi2 n Fi) < dim(Fi, n Fi,). 

If F = F;, n Fiz n Fi3 , we have the desired conclusion. If F ~ Fi, n Fi2 n F iJ , 

there is i4 E I, etc. Since the dimension in each step is lowered by at least 1, we 
must end up with i1, ... , in E I such that 

n 

F = nF-l,,' 
v= 1 

as desired. D 
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It follows from Theorem 5.9 that the partially ordered set (~( C), c) of 
exposed faces of a closed convex set C in [p;d is a complete lattice with 

inLJ4i":= n {F E ~(C)IF E .d} 

sup.d:= n {G E 0'(C)IVF E .d: Fe G} 

for d c ~(C). It is interesting to note, however, that in general (~(C), c) is 
not a sublattice (d. Appendix 1) of (g;(C), c). In fact, when d is a subset of 
~(C), then sup.d computed in (~(C), c) may be different from sup d 
computed in (..'#'( C), c). (The inf-operation, however, is the same in 
(g( C), c) as in (g;( C), c).) For example, it is not difficult to construct in [p;3 

a closed convex set C with the following properties. Among the extreme 
points of C there are three, say XI' X2' X3' such that conv{x[, X2, X3} is an 
exposed face, X I and X 2 are exposed points, but the face [x I, X2] is not 
exposed. (See Figure 2.) Then if we consider the subset d of ~(C) consisting 
of the two exposed faces {xd and {X2}, we see that sup.!-# in (g;(C), c) 
is [XI' X2], whereas sup d in (g(C), c) is conv{x l , X2' X3}' 

Figure 2 

I 

.L-----

The final theorem of this section deals with extreme points. Closed half­
spaces and affine subspaces are closed convex sets without extreme points. 
We shall prove that compact convex sets are "spanned" by their extreme 
points. This result is known as Minkowski's Theorem: 

Theorem 5.10. Let C be a compact convex set in [p;d, and let M be a subset ofe. 
Then the following two conditions are equivalent: 

(a) C = conv M. 
(b) ext C c M. 

In particular, 

(c) C = conv(ext C). 

PROOF. Suppose that there is an extreme point X of C which is not in M. Then 
M is a subset of C\{x}, and since C\{x} is convex by the definition of an 
extreme point, it follows that conv M is also a subset of C\ {x}. This proves 
(a) = (b). 
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To prove (b) => (a) it suffices to show that 

C c conv(ext C). (4) 

(In fact, suppose that (4) holds. Since the opposite inclusion of (4) is obvious, 
it then follows that C = conv(ext C). But then we also have C = conv M for 
any subset M of C containing ext C.) We shall prove (4) by induction on the 
dimension of C. For dim C = -1,0 there is nothing to prove. For dim C = 1 
the statement is clearly valid. Suppose that the statement is valid for all com­
pact convex sets of dimension < e, where e ~ 2, and let C be a compact 
convex set of dimension e. Let x be any point in C; we shall prove that x is a 
convex combination of extreme points of C, cf. Theorem 2.2. If x itself is an 
extreme point, there is nothing to prove. If x is not an extreme point, then 
there is a segment in C having x in its relative interior. Extending the segment, 
if necessary, we see that there are in fact points Yo, Y 1 E rb C such that 
x E ]Yo, Yl[· Let F 0 and F 1 be the smallest faces of C containing Yo and Yl' 
respectively. Then F 0 and Flare proper faces of C, cf. Corollary 5.7. They are, 
in particular, compact convex sets, cf. Theorem 5.1, and they both have 
dimension < e, cf. Corollary 5.5. Then, by the induction hypothesis, there are 
points xo1 , ... , xOp E ext F 0 and XII' ••• ' X 1q E ext F 1 such that Yo is a convex 
combination of the xo/s and Y 1 is a convex combination of the X !j's. Since X is 
a convex combination of Yo and Yb it follows that X is a convex combination 
ofthe xo/s and x I/S. To complete the proof, we note that the xo/s and x I/S are 
in fact extreme points of C; this follows from Theorem 5.2. 0 

Corollary 5.11. Let C be a compact convex set in [Rd with dim C = n. Then each 
point of C is a convex combination of at most n + 1 extreme points of C. 

PROOF. Combine Theorem 5.1O(c) and Corollary 2.4. 

EXERCISES 

5.1. Show that ext C is closed when C is a 2-dimensional compact convex set. 

5.2. Let C be the convex hull of the set of points (ai' (X2, (X3) E [R3 such that 

(X3 E [ -1, 1], 

or 

Show that ext C is non-closed. 

o 

5.3. Let C be a closed convex set in [Rd. Show that if a convex subset F of C is a face 
of C, then C\F is convex. Show that the converse does not hold in general. 

5.4. Let C be a non-empty closed convex set in [Rd. An affine subspace A of [Rd is said to 
support C if A n C "# 0 and C\A is convex. Show that the supporting hyperplanes 
of C in the sense of Section 4 are the hyperplanes that support C in the sense just 
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defined. Show that for a non-empty convex subset F of C, the following three 
conditions are equivalent: 

(a) F is a face of C. 
(b) There is a supporting affine subspace A of C such that A II C = F. 
(c) aff F is a supporting affine subspace of C with (aff F) II C =, F. 

(The equivalence of (a) and (b) throws some light upon the difference between faces 
and exposed faces.) 

5.5. Let C be a compact convex set in [Rd, and let M be a subset of ext C. Show that 
con v M is a face of C if and only if 

(aff M) II conv((ext C)\M) = 0. 

5.6. Show that there are compact convex sets C such that 

C -=I conv(exp C). 

Prove Straszewicz's Theorem: For any compact convex set C one has 

C = cJconv(exp C). 

(Warning: This is not easy.) 

§6. Polarity 

Duality plays an important role in convexity theory in general, and in poly­
tope theory in particular. Actually, we shall be working with two duality 
concepts: a narrow one called polarity and a broader one which we shall 
simply refer to as duality. The notion of polarity applies to convex sets in 
general, whereas duality in the broader sense will only be applied to polytopes. 

This section deals with polarity. With each subset M of [Rd, we shall 
associate a certain closed convex subset MO of [Rd, called the polar of M. When 
C is a compact convex set having 0 in its interior, then the pollar set CO has the 
same properties, and C is the polar of CO. For such a pair of mutually polar 
compact convex sets having 0 as interior point, the polar operation induces 
a one-to-one inclusion reversing correspondence between g(C) and g(CO). 

One should note that the notion of polarity is a linear concept, while in the 
preceding Sections 2-5 we worked within the framework of affine spaces. In 
particular, the polar operation is not translation invariant. 

For any subset M of [Rd, the polar set is the subset MO of [Rd defined by 

Equivalently, 

MO:= {YE[RdIVXEM:<x,y) ~ 1} 

= {YE[RdlsuPXEM<X,y) ~ I}. 

MO = n K(x, 1). 
XEM 

(1) 



38 1. Convex Sets 

Since y is in K(x, 1) ifand only if x is in K(y, 1), it follows from (1) that we have 

Y E MO <='> M c K(y, 1). (2) 

It also follows from (1) that MO is a closed convex set containing 0, since each 
K(x, 1) is such a set. Furthermore, it is clear that 

We shall prove the following: 

Theorem 6.1. For any subset M of~d one has: 

(a) If M is bounded, then 0 is an interior point of MO. 
(b) If 0 is an interior point of M, then MO is bounded. 

(3) 

PROOF. For z E ~d and r > ° we denote by B(z, r) the closed ball centred at z 
with radius r, i.e. 

B(z, r):= {x E ~dllix - zll :s; r}. 

Here 11·11 denotes the Euclidean norm, i.e. 

Ilull = J<u, u). 
Now, it is an elementary standard fact that 

sup <x, y) = r11Y11 
xEB(o,r) 

for all y E ~d and r > 0. This shows that 

B(o, rt = B(o, r- 1 ). (4) 

Therefore, if M is bounded, i.e. M c B(o, r) for some r > 0, then using (3) and 
(4) we see that B(o, r- 1) c MO, showing that 0 is an interior point of MO. 
This proves (a). Next, if 0 is an interior point of M, i.e. B(o, r) c M for some 
r > 0, then again using (3) and (4) we obtain MO c B(o, r- 1), showing that 
MO is bounded. This proves (b). 0 

The polar operation can, of course, be iterated. We write MOO instead of 
(MO)o. The set MOO is called the bipolar of M. It can be described as follows: 

Theorem 6.2. For any subset M of~d we have 

MOO = clconv( {o} u M), 

i.e. MOO is the smallest closed convex set containing 0 and M. 

PROOF. We have 

MOO = n K(y, 1) = n K(y, 1), 
)"EMO McK(y,1) 

(5) 

cf. (1) and (2). This formula immediately implies that MOO is a closed convex 
set containing 0 and M, whence MOO contains clconv({o} u M). To prove 



~6. Polarity 39 

the opposite inclusion, let z be a point not in clconv( {o} u M); we shall prove 
that there is a closed halfspace K(u, 1) containing M such that z 1= K(u, 1), cf. 
(5). By Theorem 4.5 there is a supporting halfspace K(y, a) of clconv( {o} u M) 
such that z 1= K(y, a). We then have 

max{ <x, y) Ix E clconv({o} u M)} = a < <z, y). 

Since 0 is in clconv({o} u M), we have a ~ O. Therefore, there exists (3 > 0 
such that 

max{<x, y) Ix E clconv({o} u M)} ::; (3 < <z, y). 

Taking u:= {3-1y, we obtain from (6) 

max{<x,u)lxEciconv({o} uM)}::; 1 < <z,u), 

implying Me K(u, 1) and z 1= K(u, 1), as desired. 

From Theorems 6.1 and 6.2 we immediately get: 

(6) 

o 

Corollary 6.3. Let C be a compact convex set in [Rd having 0 as an interior point. 
Then Co is also a compact convex set having 0 as an interior point. Furthermore, 
Coo = C. 

In the following, C is assumed to be a compact convex set in [Rd with 
o E int C. To emphasize the completely symmetric roles played by C and Co, 
as explained by Corollary 6.3, we denote CO by D. 

The assumption 0 E int C implies that every supporting hyperplane of C is 
a proper supporting hyperplane, and has the form H(y, 1) for a unique 
yE [Rd\{O}. We then have C c K(y, 1), and hence YED. The following 
theorem gives more information about this situation: 

Theorem 6.4. For any y E [Rd, the following two conditions are equivalent: 

(a) H(y, 1) is a supporting hyperplane of C. 
(b) y E bd D. 

Similarly,for any x E [Rd, the following two conditions are equivalent: 

(c) H(x, 1) is a supporting hyperplane of D. 
(d) XEbd C. 

PROOF. If (a) holds, then y E D and 

sup <x, Y) = 1. 
XEC 

(7) 

(Actually, the supremum is a maximum.) If we had Y E int D, then we would 
also have AY E D for a certain A > 1. Since D is the polar of C, we would then 
have 

sup <x, AY) ::; 1, 

contradicting (7). Hence Y E D\int D = bd D, as desired. 
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Conversely, if (b) holds, then, in particular, y is in D\{o}. Since D is the 
polar of C, we then have 

o < sup <x, y) :.:::::: 1. (8) 

Now, if in (8) we had < 1, then we would have 

sup <x, Ay) = 1 
xcc 

for a suitable A > 1, whence AY would be in CO (= D). Since 0 E int D and 
y E ]0, AY[, this would imply y E int D by Theorem 3.3, a contradiction. 
Therefore, 

sup <x, y) = 1. 
XcC 

Finally, this supremum is actually a maximum by the compactness of C and 
the continuity of C y). Hence, H(y, 1) is a supporting hyperplane of C, as 
desired. 

As explained earlier, C and D play completely symmetric roles. Therefore, 
the equivalence of (c) and (d) is a consequence of the equivalence of (a) and (b). 

o 

Corollary 6.5. For any x, y E [Rd, thefollowingfour conditions are equivalent: 

(a) H(y, 1) is a supporting hyperplane ofC at x. 
(b) H(x, 1) is a supporting hyperplane of D at y. 
(c) <x,y) = l,xEbd C,YEbdD. 
(d) <x, y) = 1, x E C, Y E D. 

PROOF. The equivalence (a) ¢:> (c) follows immediately from Theorem 
6.4, (a) ¢:> (b). The equivalence (b) ¢:> (c) then follows by symmetry, or from 
Theorem 6.4, (c) ¢:> (d). It is trivial that (c) = (d). We shall complete the proof 
by showing that (d) = (a). From Y E D (= CO) it follows that C c K(y, I), and 
from <x, y) = 1 it follows that x E H(y, 1). Since x E C, it then follows that 
H(y, I) is a supporting hyperplane of Cat x. 0 

Now, for an exposed face F of C, proper or improper, we define 

F":= {YEDIVXEF: <x,y) = I}. 

Similarly, for an exposed face G of D we define 

G6 := {xECIVYEG: <x,y) = I}. 

The motivation for this concept is the fact that when F is a proper exposed 
face of C, then a point Y E [Rd is in F" if and only if H(y, 1) is a supporting 
hyperplane of C with F c H(y, 1); this follows immediately from Corollary 
6.5, (a) ¢:> (d). The same holds for a proper exposed face G of D. For the 
improper exposed faces C and 0 of C, we have C" = 0 and 0" = D. And 
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for the improper exposed faces D and 0 of D, we have D" = ~?5 and 0" = C. 
(The unpleasant feature that 0" may have different" values" is, of course, 
due to the fact that we use the same notation for different mappings.) 

Theorem 6.6. Let F be a proper exposedface ofe. Then F" is a proper exposed 
face of D. Similarly for a proper exposed face G of D. 

PROOF. By definition, 

p'" = n D n H(x, 1). 
XEF 

When F is proper, then each x E F is in bd C, whence H(x, 1) is a supporting 
hyperplane of D, cf. Theorem 6.4, (d) ::;. (c). Therefore, each set D n H(x, 1) 
is a proper exposed face of D, implying that F" is an exposed face of D, 
cf. Theorem 5.9. Furthermore, F" is proper or empty. But since F is a proper 
exposed face, there is a supporting hyperplane H(y, 1) of C such that 
F = C n H(y, 1). From the remark above following the dt:finition of F", 
we then see that Y E F", whence F" #- 0. 0 

By Theorem 6.6, it makes sense to iterate the .6.-operation. Writing F"" 
instead of (F")", we see that for the improper exposed faces C and 0 of C we 
have C"" = C and 0"" = 0. Moreover, by Theorem 6.6, F"" is a proper 
exposed face of C when F is a proper exposed face of e. We actually have: 

Theorem 6.7. Let F be a proper exposedface ofe. Then F"" = F. Similarly for 
a proper exposed face G of D. 

PROOF. By definition, 

F"" = n CnH(y, 1). 
yE FII. 

But since y is in F" if and only if H(y, 1) is a supporting hyperplane of C with 
F c H(y, 1), we see that P"''' is the intersection of all proper exposed faces of 
C containing F. This intersection, of course, is simply F itself. 0 

For an exposed face F of C, we call the exposed face F" of D the conjugate 
face of F; the same applies to an exposed face G of D. Theorems 6.6 and 
6.7 show that the exposed faces of C and D go together in pairs F, G of 
mutually conjugate faces, both proper or both improper. 

It is clear that the .6. -operation reverses inclusions. Thc! following is, 
therefore, a consequence of Theorems 6.6 and 6.7: 

Corollary 6.8. The mapping F 1--+ F", where F E $( C), is an anti-isomorphism 
from($(C), c ) onto ($(D), c), and the mapping G 1--+ G", where G E$(D), is an 
anti-isomorphism from ($(D), c) onto ($(C), c). The two mappings are 
mutually inverse. 



42 I. Convex Sets 

Anti-isomorphisms reverse inf and sup. Therefore, Corollary 6.8 yields: 

Corollary 6.9. Let {F;I i E I} be a set of exposed faces of C, let F 0 denote the 
largest exposedface ofC contained in all the F;'s (i.e. F 0 is the intersection of the 
F;'s), and let F 1 denote the smallest exposedface ofC containing all the F;'s. Then 
F~ is the smallest exposed face of D containing all the F~'s, and F~ is the largest 
exposed face of D contained in all the Fts (i.e. F~ is the intersection of the 
Fts). Similarly for a set of exposed faces of D. 

We remind the reader that for some time we have been working under the 
general assumption that C and D are mutually polar compact convex sets in 
~d having 0 as an interior point. This assumption is maintained in the follow­
ing theorem. (Among other things, this explains the meaning of d in the 
formula.) 

Theorem 6.10. Let F and G be a pair of mutually conjugate faces of C and D, 
respectively. Then 

dim F + dim G ~ d - 1. 

PROOF. The conjugate face of the improper exposed face 0 of C is the im­
proper exposed face D of D. Similarly, the conjugate face of the improper 
exposed face C of C is the improper exposed face 0 of D. Since dim 0 = -1, 
dim C = d and dim D = d, we see that the formula holds when F is improper, 
in fact with equality. Consequently, we need only consider the case where F is 
a proper exposed face of C; then the conjugate face G of D is also proper, cf. 
Theorem 6.6. Now, by the definition of the .0,-operation, 

G = D n n H(x, 1). 
XEF 

Therefore, G is a subset of the affine subspace nXEF H(x, 1), whence 

dim G ~ dim n H(x, 1). 
XEF 

(9) 

By (9), the affine subspace nXEF H(x, 1) is non-empty; therefore it is a 
translate of the linear subspace nXEF H(x, 0), and so 

dim n H(x, 1) = dim n H(x, 0). (10) 
XEF XEF 

But 

XEF 
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Therefore, 

dim n H(x, 0) = dim«span F).1) 
XEF 

= d - dim(span F) 

= d - (dim(aff F) + 1) 

= d - 1 - dim(aff F) 

= d - 1 - dim F, 

where we have used the fact that 0 f/: aff F to obtain 

dim(span F) = dim(aff F) + 1. 

43 

(11) 

Combining now (9), (10) and (11), we obtain the desired formula. 0 

EXERCISES 

6.1. Show that (AM)" = A-I MO when A -# O. 

6.2. Show that (Moo)" = MO. 

6.3. Show that (UiE/Mit = niEIMi. 

6.4. Show that 

(.n Ci)O = clconv U Ci 
lEI ieI 

when the sets C j are closed convex sets containing o. 

6.5. For e < d, identify [W with the subspace of [Rd consisting of all (XI' •.• , x d) E [Rd 

such that xe + I = ... = Xd = O. Let IT denote the orthogonal projection of [Rd onto 
[Re. Show that for any subset M of [Rd we have 

IT(M)" = MO n [Re, 

where IT(M)O denotes the polar of IT(M) in [Re and MO denotes the polar of M in 
[Rd. 

6.6. Let C and D be mutually polar compact convex sets. Let F be a proper exposed 
face of C, and let G := F6. Show that 

G = D n n H(x, 1), 
XE extF 

and show that 

G = D n H(xo, 1) 

for any relative interior point Xo of F. 

6.7. Let C and D be mutually polar compact convex sets. Extend the definition of the 
6-operation by allowing it to operate on arbitrary subsets of C and D. Show that 
when M is a subset of C, then M66 := (M6t is the smallest exposed face of C 
containing M. 



CHAPTER 2 

Convex Polytopes 

§7. Polytopes 

A (convex) polytope is a set which is the convex hull of a non-empty finite set, 
see Section 2. We already know that polytopes are compact. We may, 
therefore, apply Section 5 on the facial structure of closed convex sets to 
polytopes. As one might expect, the facial structure of polytopes is consider­
ably simpler than that of convex sets in general. 

A polytope P = conv{xl' ... , xn} is called a k-polytope if dim P = k. 
This means that some (k + I)-subfamily of (x l' ... ,xn) is affinely independent, 
but no such (k + 2)-subfamily is affinely independent. By a k-simplex we mean 
a k-polytope which is a simplex. A simplex is a k-simplex if and only if it has 
k + 1 vertices, cf. Section 2. A I-simplex is a closed segment. A 2-simplex is 
called a triangle, a 3-simplex is called a tetrahedron. 

We have the following description of polytopes in terms of extreme points: 

Theorem 7.1. Let P be a non-empty subset of~. Then thefollowing two condi­
tions are equivalent: 

(a) P is a polytope. 
(b) P is a compact convex set with afinite number of extreme points. 

PROOF. When P is a polytope, say P = conv{xl, ... , xn}, then P is compact 
by Corollary 2.9. Next, Theorem 5.10, (a) => (b) shows that ext P is a subset of 
{Xl"'" xn}, and hence is a finite set. The converse follows immediately from 
Theorem 5.10, (b) => (a). D 
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Following common usage, we shall henceforth call the extreme points, i.e. 
the O-faces, of a polytope P the vertices of P. We shall continue to denote the 
set of vertices of P by ext P. The I-faces are called the edges of P. 

The vertices of a simplex S in the sense used in Section 2 are, in fact, the 
extreme points (i.e. vertices) of S. This follows immediately from Theorem 
5.10 or Theorem 7.2 below. 

The set {Xl' ... , xn} spanning a polytope P = conv{xl, ... , xn} is of 
course not unique (except when P is a I-point set); in fact, one may always 
add new points x n+ 1, ..• already in P. However, there is a unique minimal 
spanning set, namely, the set ext P of vertices of P: 

Theorem 7.2. Let P be a polytope in IRd, and let {Xl, ... , xn} be afmite subset 
of P. Then the following two conditions are equivalent: 

(a) P = conv{x l , ... , xn }. 

(b) ext P C {Xl' ... , X n }. 

In particular, 

(c) P = conv(ext P). 

PROOF. Noting that polytopes are compact, the statement follows immedi­
ately from Theorem 5.10. 0 

We shall next study the facial structure of polytopes in general. 

Theorem 7.3. Let P be a polytope in IRd , and let F be a proper face of P. Then F 
is also a polytope, and ext F = F next P. 

PROOF . We begin by noting tha t P and F are compact, cf. Theorem 7.1, (a )=>(b) 
and Theorem 5.1. Now, Theorem 5.2 shows that the extreme points of Fare 
just those extreme points (vertices) of P which are in F, i.e. ext F = F next P. 
Since ext P is a finite set by Theorem 7.1, (a) => (b), it follows that ext F is a 
finite set. Application of Theorem 7.1, (b) => (a) completes the proof. 0 

Corollary 7.4. Let P be a polytope in IRd. Then the number of faces of P is 
finite. 

PROOF. The number of extreme points of Pis finite by Theorem 7.2, (a) =>(b). 
Each face of P is the convex hull of extreme points of P by Theorem 7.3 and 
Theorem 7.2( c). Therefore, the number of faces is finite. 0 

The following is a main result: 

Theorem 7.5. Let P be a polytope in IRd. Then everyface ofP is an exposedface. 

PROOF. It suffices to prove the statement for d-polytopes in IRd. We shall use 
induction on d. For d = 0 there is nothing to prove, for d = 1 the statement 
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is trivial, and for d = 2 it is obvious. Suppose that the statement is valid for 
all polytopes of dimension < d, where d ~ 3, and let P be a d-polytope in 
IRd. For improper faces of P there is nothing to prove, so let F be a proper face 
of P. Let x be a relative interior point of F, cf. Theorem 3.1, and let H be a 
proper supporting hyperplane of P at x, cf. Theorem 4.3. Then H n P is a 
proper exposed face of P containing x. Using Theorem 5.6, we see that 
Fe H n P. If F = H n P, then F is exposed, as desired. If F ~ H n P, 
then F is a proper face of H n P, cf. Theorem 5.2. (See Figure 3.) Since 
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dim(H n P) < d, and H n P is a polytope, cf. Theorem 7.3,. it follows from 
the induction hypothesis that there is a proper supporting hyperplane H' 
of H n P in aff(H n P) such that F = H' n (H n P). This hyperplane H' we 
may extend to a hyperplane A in H such that 

F = AnP. (1) 

Note that dim A = d - 2 ~ 1. Let B be a 2-dimensional afline subspace of 
[Rd which is orthogonal to A, and let n denote the orthogonal projection of 
[Rd onto B. Then n(A) is a I-point set. Furthermore, n(P) is a 2-polytope in B. 
We claim that n(A) is a vertex of n{P). If not, then there are: points y and z 
in P such that n(y) # n(z) and 

n(A) = (1 - A)n(y) + An(z) 

for some A E ]0, 1[. Let 

u .= (1 - A)y + Az. 

Then u is in P, and n(u) = n(A), whence u is in A since n- 1(n(A» = A. 
Therefore, u is in F, cf. (1). Since F is a face of P, it follows that y and z are 
in F. But F is a subset of A, whence n(v) = n(A) for all v E F. In particular, 
n(y) = n(z), a contradiction which proves that n(A) is a vertex of n(P). By 
the 2-dimensional version of the theorem we then see that there is a line 
L in B such that 

L n n(P) = n(A). 

Then 

HI .= aff(A u L) = n- 1(L) 

is a supporting hyperplane of P in [Rd with HI n P = F, as desired. 0 

Corollary 7.6. Let P be a polytope in [Rd. Then the two lattices (.?F(P), c:) and 
(tC(P), c:) are the same. 

We shall finally introduce two particular classes of polytopes, the pyramids 
and the bipyramids, and we shall describe their facial structure. 

A pyramid in [Rd is a polytope-cf. Theorem 7.7(a)-ofthe form 

P = conv(Q u {xo}), 

where Q is a polytope in [Rd, called the basis of P, and Xo is a point of [Rd\aff Q, 
called the apex of P. (Note that basis and apex need not be unique: a simplex 
is a pyramid where any facet may be taken as the basis, or, equivalently, 
any vertex may be taken as the apex.) A pyramid P is called an e-pyramid 
if dim P = e. Clearly, a pyramid P is an e-pyramid if and only if its basis Q 
is an (e - 1)-polytope. 
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The facial structure of a pyramid is determined by the facial structure of 
its basis as follows: 

Theorem 7.7. Let P be a pyramid in ~d with basis Q and apex Xo' Then the 
following holds: 

(a) P is a polytope with ext P = (ext Q) u {xo}. 
(b) A subset F of P with Xo ¢ F is aface of P if and only ifit is aface ofQ. 
(c) A subset F of P with Xo E F is aface of P if and only if there is aface G 

ofQ such that F = conv(G u {xo}), i.e. F = {xo} or F is a pyramid with a 
face G ofQ as the basis and Xo as the apex. For each suchface F of P, the 
face G is unique, and dim G = dim F - 1. 

PROOF. (a) The set 

Pi := conv«ext Q) U {xo}) 

is a convex set containing Q and xo, cf. Theorem 7.2(c). Therefore, it contains 
P. On the other hand, it is clear that Pie P, whence 

P = conv«ext Q) U {xo}). 

This shows that P is a polytope and also implies that 

ext P c (ext Q) U {xo}, 

cf. Theorem 7.2, (a) = (b). To prove the opposite inclusion, we first remark 
that P is the union of all segments [y, xoJ, where y E Q. It is then clear that if 
H 0 is a hyperplane with Xo E H ° and H 0 n aff Q = 0, then H 0 is a supporting 
hyperplane of P with H 0 n P = {xo}, implying that Xo E ext P. To prove also 
that every x E ext Q is in ext P, we prove more generally that every proper 
face of Q is a face of P. Let F be a proper face of Q. Then there is a supporting 
hyperplane H of Q in aff Q such that H n Q = F. Let Hi be a hyperplane in 
~d such that Hi n aff Q = Hand Xo is on the same side of H 1 as Q\F. Then, 
again using the remark above that each point of P belongs to some segment 
[y, xo] with y E Q, we see that Hi n P = F, whence F is a face of P. This 
completes the proof of (a). (A more direct way of showing that every (proper) 
face of Q is a face of P goes via the observation that Q is a facet of P. Our 
motivation for preferring the proof given above is the fact that after an 
obvious modification it also applies to the situation needed in the proof of 
Theorem 7.8 below.) 

(b) During the proof of (a) it was proved that every proper face of Q is a 
face of P. Since Q itself is also a face (in fact, a facet) of P, it follows that every 
face of Q is a face of P. 

Conversely, let F be a non-empty face of P not containing Xo' By Theorem 
7.5 there is a supporting hyperplane H of P such that H n P = F. Using 
(a) and Theorem 7.3 we see that ext F c ext Q, whence F c Q. But then 
trivially F is a face of Q. 
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(c) We first prove that every set F of the form 

F = conv(G u {xo}), 
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where G is a face of Q, is a face of P. We need only consider the case where G 
is a proper face of Q. For any such face G there is a supporting hyperplane H 
of Q in aff Q such that H n Q = G. Let HI be a hyperplane in ~d such that 
HI n aff Q = Hand Xo E H l' Then clearly HI is a proper supporting hyper­
plane of P, whence 

Fl :=H1 n P 

is a proper (exposed) face of P. Moreover, 

ext F 1 = HI next P 

= (H next Q) u {xo} 
= (ext G) u {xo}, 

where we have used Theorem 7.3 and (a). Then using Theorem 7.2(c) we get 

Fl = conv((ext G) u {xo}) 
= conv(G u {xo}) 
=F, 

whence F is a face of P, as desired. 
To prove the converse, we need only consider the case where F ¥ {xo} 

and F ¥ P. Let H be a supporting hyperplane of P such that F = H n P, 
cf. Theorem 7.5. Since P is the union of all segments [y, xoJ, where y E Q, we 
see that F is the union of all segments [y, xoJ, where y E 1:1 n Q. Letting 
G := H n Q, it follows that 

F = conv(G u {xo}), 

and it is clear that G is a face of Q. 
Finally, the uniqueness of G and the dimension formula are obvious. 0 

A bipyramid in ~d is a polytope-cf. Theorem 7.8(a)-of thl~ form 

P = conv(Q u {xo, xd), 

where Q is a polytope in ~d with dim Q ~ 1, and xo, x 1 are two points of 
~d\aff Q such that 

Jxo, x 1 [ n ri Q ¥ 0. 

(Then actually ]XO, x 1 [ has precisely one point in common with ri Q.) The 
set Q is called the basis of P, and xo, x 1 are called the apices of P. (As in the 
case of pyramids, basis and apices are, in general, not unique.) A bipyramid 
P is called an e-bipyramid if dim P = e. Clearly, a bipyramid P is an e­
bipyramid if and only if its basis Q is an (e - 1 )-polytope. 
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The facial structure of a bipyramid is determined by the facial structure 
of its basis as follows: 

Theorem 7.8. Let P be a bipyramid in IRd with basis Q and apices Xo and Xl' 
T hen the following holds: 

(a) P is a polytope with ext P = (ext Q) u {xo, xd. 
(b) A subset F of P with xo, Xl ¢ F is aface of P if and only ifit is aface ofQ 

with F =1= Q. 
(c) A subset F of P with Xo E F and Xl ¢ F is aface of P if and only if there is a 

face G ofQ with G =1= Q such that F = conv(G u {xo}), i.e. F = {xo} or F 
is a pyramid with a face G of Q with G =1= Q as the basis and Xo as the 
apex. For each such face F of P, the face G is unique, and dim G = 
dim F - 1. Similarly for subsets F of P with Xl E F and Xo ¢ F. 

(d) A subset F of P with xo, Xl E F is aface ofP if and only ifF = P. 

PROOF. The proof follows the same lines as the proof of Theorem 7.7. The 
details are left to the reader. 0 

EXERCISES 

7.1. Show that every polytope P with n vertices is the orthogonal projection of an 
(n - I)-simplex. (This is to be understood as follows: "Embed" P in !Rn-I; con­
struct an (n - I)-simplex in !Rn-I whose orthogonal projection onto aft' Pis P.) 

7.2. Let I :s; n :s; d. Starting with a (d - n)-polytope Q in !Rd, we may successively build 
up pyramids PI' P 2 , ••• , Pn by taking PI to be a (d - n + I)-pyramid with Q as a 
basis, taking P 2 to be a (d - n + 2)-pyramid with P I as a basis, etc. The d-pyramid 
Pn is then called an n{old d-pyramid with Q as a basis. Show that a (d - I)-fold 
d-pyramid is also ad-fold d-pyramid; it is, in fact, ad-simplex. 

7.3. Copying Exercise 7.2, define the notion ofa n-fold d-bipyramid. Show that a (d - 1)­
fold d-bipyramid is also ad-fold d-bipyramid. 

(A particular type of d-fold d-bipyramids are the d-crosspolytopes; these are the 
convex hulls of 2d points ai' ... , ad' b l , ... , bd such that all segments [ai' bJ have 
a common midpoint, and no [ai' bJ is contained in the affine hull of [ai' b l ], ... , 

[ai-I' bi-I]. If the segments [ai' b;] are orthogonal and have the same length, then 
the d-crosspolytope is said to be regular. A 3-crosspolytope is called an octahedron.) 

7.4. A prism in !Rd is a polytope of the form 

P = conv(Q u (a + Q)), 

where Q is a polytope in !Rd with dim Q < d, and a + Q ¢. aft' Q. Show that this 
definition is equivalent to the following: A prism in !Rd is a polytope of the form 

P = Q + [0, a], 

where Q is a polytope in !Rd with dim Q < d and a is a point in !Rd\ {o} such that 
the line through 0 and a is not parallel to aft' Q. 

Show that 
ext P = ext Q u ext(a + Q). 
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Show that the faces of P are the faces of Q, the faces of a + Q .. and the prisms 

F = conv(G u (a + G», 

where G is a face of Q. 

7.5. Copying Exercise 7.2, define the notion of an n{old d-prism. Show that a (d - l)-fold 
d-prism is ad-fold d-prism. 

(A d-fold d-prism is also called a d-parallellotope; equivalently, a d-parallellotope 
is a polytope of the form 

a + [0, bl] + ... + [0, bd], 

where bi is not contained in the affine hull of a + [0, bl] + ... + [0, bi-I]. If the 
segments [0, b;] are orthogonal and have the same length, then the d-parallellotope 
is called ad-cube.) 

§8. Polyhedral Sets 

In previous sections we have proved that every compact conv{:x set C has an 
"external representation" as the intersection of closed halfspaces, namely, the 
supporting halfspaces, and an "internal representation" as the convex hull 
of a (unique) minimal set, namely, the set of extreme points. (Actually, for the 
external representation compactness is not needed, closedness. suffices.) The 
sets which have a "finite" internal representation are the polytopes. In this 
section we shall study the sets which have a "finite" external representation, 
i.e. sets which are intersections of a finite number of closed halfspaces. These 
sets are called polyhedral sets. The main basic fact in polytope theory is that 
the polytopes are precisely the non-empty bounded polyhedral sets. Part of 
this statement will be proved at the end of this section; the n:maining part 
will be proved in the next section. 

A subset Q of /Rd is called a polyhedral set if Q is the intt:rsection of a 
finite number of closed halfspaces or Q = /Rd. 

Every hyperplane H in /Rd is the intersection of the two closed halfspaces 
which are bounded by H, and every affine subspace A of /Rd with A t= /Rd is 
the intersection of a finite number of hyperplanes. Therefore, every affine 
subspace of /Rd is polyhedral. 

Let Q be a polyhedral set in /Rd, and let A be an affine subspace of /Rd 
such that Q c: A oF /Rd. Then Q is the intersection of a finite number of closed 
halfspaces in A or Q = A. This follows from the fact that if K is a closed 
half space in /Rd such that A (') K t= 0, then A (') K is a closed halfspace in A 
or A (') K = A. 

Conversely, let A be an affine subspace of ~d with A t= ~d, and let Q be a 
subset of A such that Q is the intersection of a finite number of closed half­
spaces in A or Q = A. Then Q is the intersection of a finite number of closed 
halfspaces in /Rd and hence polyhedral. This follows from the fact that for 
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every closed halfspace K in A there is a closed halfspace K' in [Rd such that 
An K' = K. 

Every polyhedral set is closed and convex. The intersection of a finite 
number of polyhedral sets is again polyhedral. Any translate of a polyhedral 
set is again polyhedral. The image of a polyhedral set under an affine mapping 
is again polyhedral. 

The facial structure of a (non-empty) polyhedral set Q in [Rd is trivial when 
Q is an affine subspace of [Rd, the only faces being 0 and Q. When Q is an 
e-dimensional polyhedral set in [Rd which is not an affine subspace, then Q 
is affinely isomorphic to a polyhedral set Q' in [Re with dim Q/ = e and 
Q/ # [Re. Therefore, when studying facial properties of polyhedral sets, it 
suffices to consider polyhedral sets Q in [Rd with dim Q = d and Q # [Rd. 

Every polyhedral set Q in [Rd has a representation 
n 

Q = n K(x;, ex;). (1) 
;~ 1 

In the following, when talking about a representation (1) ofQ, we shall always 
implicitly assume that no two K(x;, ex;)'s are identical. For Q # [Rd we may 
always assume that each K(x;, a;) is a closed halfspace, i.e. each Xi is #0. For 
Q = [Rd there is only one representation, namely, Q = K(o, a), where a ;? O. 
Note that when Q # [Rd there are infinitely many representations (unless 
d = 0); new closed halfspaces containing Q may always be added. 

We shall call a representation (1) irreducible if n = 1, or n > 1 and 
n 

Q ~ n K(Xi' ai), 
i~ 1 
i*j 

j = 1, ... , n. 

A representation which is not irreducible is called reducible. Clearly, any 
reducible representation may be turned into an irreducible representation 
by omitting certain of the sets K(Xi' a;). It follows from Theorem 8.2 below 
that there is only one irreducible representation of each polyhedral set Q 
which is not an affine subspace. 

Theorem 8.1. Let Q be a polyhedral set in [Rd with dim Q = d and Q # [Rd. 

Let 
n 

Q = n K(Xi' ai) 
i~ 1 

be a representation ofQ with n > 1, where each K(Xi' a;) is a closed half space. 
Then the representation is irreducible if and only if 

for eachj = 1, ... , n. 

n 

H(x j , a) n int n K(Xi' ex i ) # 0 
i~ 1 
;*j 
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PROOF. For j = 1, ... , n, we let 
n 

Mj:= n K(Xi, lXi)' 
i= 1 
i*j 
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Then Q = K(xj, IX)" M j for each j, and since dim Q = d by assumption, 
we see that int M j "# 0; consequently, ri M j = int M j and M j ¢ H(xj , IX). 

The condition of the theorem reads 

j = 1, ... , n. 

By Theorem 4.1 and the observations above, (2) is equivalent to 

j = 1, ... , n. 

Now, M j C K( -Xj, -lXj ) would imply 

Q c K(xj, IX)" K( -Xj, -IX) = H(Xj, IX), 

a contradiction. Hence, (3) is equivalent to 

j = 1, ... , n. 

But (4) is just a rephrasing of irreducibility. 

(2) 

(3) 

(4) 

o 

The following theorem shows that the boundary of a polyhedral set is 
built up in the expected way: 

Theorem 8.2. Let Q be a polyhedral set in ~d with dim Q = d and Q "# ~d. Let 

i=1 

be a representation of Q, where each K(x;. lXi ) is a closed half space. Then the 
following holds: 

(a) bd Q = Ui= 1 H(Xi, lXi)" Q. 
(b) Each facet ofQ is of the form H(xj, IX)" Q. 
(c) Each set H(xj , IXj)" Q is afacet ofQ if and only if the representation (*) is 

irreducible. 

PROOF. (a) We have 
n 

int Q = int n K(Xi, lXi ) 
i= 1 

n 

= n int K(Xi, lXi) 
i=1 

n 

= n K(x;. lXi)\H(Xi, (Xi) 
i= 1 

which implies (a). 
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(b) Let F be a facet of Q. Let x be a relative interior point of F. Then F 
is the smallest face of Q containing x, cf. Theorem 5.6. By (a), there is j such 
that 

But then we must have 

implying 
F = H(x j , !Y.) n Q, 

cf. Corollary 5.5. 
(c) For n = 1 there is nothing to prove. So assume that n > 1. 
If (*) is irreducible, then each H(x j , !Y.) supports Q, whence H(xj' !Y.j) n Q 

is a proper face of Q. We prove that H(xj'!Y.) n Q has a non-empty interior 
in H(x j, !Y.); this will imply that H(x j, !Y. j) n Q is a facet. We have 

n 

H(xj' !Y. j) n Q = H(xj' !Y.) n n K(Xi' !Y.;) 

cf. Theorem 8.1. Since the set 

;= 1 

n 

= H(Xj'!Y.) n n K(x;,!Y.J 
i= 1 
i*j 

n 

::J H(Xj'!Y.) n int n K(x;, !Y.;) 

n 

;= 1 
;*i 

H(xj' !Y.) n int n K(x;, !Y.;) 
;= 1 
;*j 

is open in H(x j, !Y.), the desired conclusion follows. 
Conversely, if (*) is reducible, then 

n 

Q = n K(Xh !Y.;) 
;= 1 
i#:j 

for some j. Suppose that H(xj' !Y.j) n Q is a facet of Q. Let x be a relative 
interior point of H(xj' !Y. j) n Q. Using (a) we see that there is an i with i -.f. j 
and x E H(x;,!Y.;) n Q. But then we must have 

H(x j, !Y.) n Q = H(x;, !Y.;) n Q, 

cf. Corollary 5.5. This, however, implies 

K(x j , !Y.) = K(x;,!Y.;), 

a contradiction. Hence, H(xj' !Y.) n Q is not a facet of Q. o 
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The preceding theorem shows that most polyhedral sets have facets, the 
only exceptions being affine subspaces. 

Theorem 8.3. Let F be a proper face of a polyhedral set Q in /Rd. Then there is a 
facet G of Q containing F. 

PROOF. We may assume that dim Q = d. Choose an irreducible representa­
tion 

n 

Q = n K(Xi, IX;). 
i= 1 

Let x be a relative interior point of F. By Theorem 8.2(a), there isj such that 

x E H(xj, IX) n Q. 

Now, F is the smallest face containing x, cf. Theorem 5.6, and H(x j , IX) n Q 
is a facet containing x, cf. Theorem 8.2(c). Therefore, with 

G := H(xj' rl,) n Q 

we have the desired conclusion. o 

Corollary 8.4. Let Q be a polyhedral set in /Rd. Then every face of Q is also a 
polyhedral set. 

PROOF. We need only prove the statement for proper faces of Q .. Theorem 8.3 
shows that any proper face of Q is a face of a facet of Q. Facets of Q, however, 
are polyhedral sets by Theorem 8.2(b). The statement then follows by induc­
tion on the dimension. 0 

Corollary 8.5. Let Q be a polyhedral set in /Rd. Then the number of faces of Q 
is finite. 

PROOF. The number of facets ofa polyhedral set Q is finite, cf. Theorem 8.2(b). 
Each proper face of Q is a face of a facet of Q by Theorem 8.3. The statement 
then follows by induction on the dimension. 0 

Corollary 8.6. Let Q be a polyhedral set in /Rd with dim Q = d. Let F j and Fk 
be faces of Q with 

and 

dim Fk = k, 

where 

o ~ j < j + 1 ~ k - 1 < k ~ d. 
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Then there are faces F j + b ... , Fk - 1 of Q with 

Fj c F j + 1 C ... C Fk - 1 C Fk 
and 

dim F; = i, i = j + 1, ... , k - 1. 

PROOF. By Theorem 5.2, Fj is a proper face of Fk • And by Corollary 8.4, Fk 
is polyhedral. Theorem 8.3 then ensures the existence of a facet Fk- 1 of Fk 
with F j C Fk - 1 . Ifj = k - 2, we have the desired conclusion. Ifj < k - 2, 
we argue as above with F k - 1 replacing F k • Continuing this way, we obtain 
faces Fi with the desired properties. 0 

In Corollary 8.6, note that we actually have 

F j ~ F j + 1 ~ ..• ~ Fk - 1 ~ Fk • 

Note also that the statement is not valid in general withj = -l. 
We conclude this section with the following: 

Corollary 8.7. Let Q be a non-empty bounded polyhedral set in (Rd. Then Q is a 
polytope. 

PROOF. By assumption, Q is a compact convex set. By Corollary 8.5, ext Q 
is a finite set. The statement then follows from Theorem 7.1, (b) => (a). 0 

The converse of Corollary 8.7 is also valid, see Section 9. 

EXERCISES 

8.1. Show that the image of a polyhedral set under an affine mapping is again a poly­
hedral set. 

8.2. Show that every face of a non-empty polyhedral set is exposed. 

8.3. Show that every non-empty polyhedral set not containing any line has at least one 
vertex. (Here, of course, a vertex of a polyhedral set means a O-dimensional face, 
exposed by Exercise 8.2.) 

§9. Polarity of Polytopes and Polyhedral Sets 

In this section we shall apply the polarity theory of Section 6 to polytopes and 
polyhedral sets. We shall show that the polar of a polytope with 0 as an 
interior point is a bounded polyhedral set with 0 as an interior point, and 
conversely. As promised in Section 8, we shall deduce that every polytope is 
a bounded polyhedral set (whence polytopes can also be described as non­
empty bounded polyhedral sets). Furthermore, we shall improve a result 
of Section 6 by showing that dim F + dim G = d - 1 when F and G are 
conjugate faces of mutually polar d-polytopes. 
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The following theorem explains in detail the polarity of convex polytopes 
and polyhedral sets. Note that the polyhedral sets Q having a representation 
of the particular form 

n 

Q = n K(xi' 1) 
i= I 

are precisely the polyhedral sets which have 0 as an interior point. 

Theorem 9.1. Let x I' ... , X n , where n ~ 1, be distinct points .of ~d, and let 

p:= conv{xl> ... , x n }, 

n 

Q:= n K(xio 1). 
i= I 

Then we have: 

(a) po = Q. 
(b) QO = conv{o, XI' ... ' xn }. 

(c) P and Q are mutually polar sets if and only if 0 E P. 
(d) P and Q are mutually polar sets with Q bounded if and only if 0 E int P. 
(e) Suppose that P and Q are mutually polar sets with Q bounded (i.e. 0 E int P, 

c! (d». Then we have 

extP= {Xl, ... ,Xn} 

if and only if the representation 
n 

Q = n K(xi' 1) 
i= 1 

is irreducible. 

PROOF. (a) Formula (1) of Section 6 shows that 

and formula (2) of Section 6 shows that 

{Xl> ... , xn}O = (conv{x l ,·.·, Xn})O 

(1) 

(2) 

since M c K(y, 1) if and only if con v Me K(y, 1). Combining (1) and (2) 
we obtain (a). 

(b) Using (a), Theorem 6.2 and Corollary 2.9 we have 

QO = poe 

= clconv{o, XI' ... ' Xn} 
= conv{o, Xl, ... , Xn} 

which proves (b). 
(c) This is an immediate consequence of (a) and (b). 
(d) This follows from (c) and Theorem 6.1. 
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(e) By assumption we must have n 2: 2. For j = 1, ... , n, let 

n 

Qj:= n K(Xi' 1). 
i= 1 
i*j 

Note that application of (a) to {Xl> ... , Xj_ l> Xj+ b ... ,xn } instead of 
{Xl' ... , xn} gives 

Pj = Qj. (3) 

Furthermore, Theorem 7.2. (a) => (b) shows that we always have 

ext P C {XI' ... , xn }. (4) 

Now, if ext P is a proper subset of {XI' ... , xn}, then P = Pj for some j by 
Theorem 7.2(c). Then also po = Pj, whence po = Qj by (3). But po = Q 
by (a), and therefore we have Q = Qj. This shows that the representation of 
Q is reducible. 

Conversely, if the representation of Q is reducible, then Q = Qj for some j, 
and so also QO = Qj. Application of (b) to {XI, ... , Xj-I, Xj+ I, ... , xn} 
instead of {XI' ... , xn} gives 

Since QO = P by assumption, and QO = Qj, as we just have seen, it follows 
that 

Now, Theorem 7.2, (a) ¢> (b) shows that here any non-extreme point of P 
among the points 0, XI' ... , Xj-I' X j + I, ... , Xn may be omitted. It follows 
from (4) and the assumption that 0 is such a point. Therefore, 

Theorem 7.2, (a) => (b) then shows that 

ext Pc {Xl' ... , Xj-I, X j + 1, ... , Xn}, 

whence ext P is a proper subset of {XI' ... , xn }. o 

We are now ready to prove the following main theorem: 

Theorem 9.2. A non-empty subset P of [Rd is a polytope (l and only if it is a 
bounded polyhedral set. 

PROOF. We have already proved the "if" statement in Corollary 8.7. Con­
versely, let P be a polytope in [Rd, say 

P = conv{xl' ... , x n}. 
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To prove that P is a bounded polyhedral set it causes no loss of generality 
to assume that 0 E int P. Theorem 9.1(a) shows that po = Q, where Q 
denotes the polyhedral set defined by 

n 

Q:= n K(x;, 1). 
;= I 

It follows from Theorem 9.1 (d) that Q is bounded and that QC = P. Applying 
now Coronary 8.7 to Q, it follows that Q is a polytope, say 

Q = conv{YI, ... , Ym}· 

We next apply Theorem 9.1 to {YI, ... , Ym} instead of {XI" .. ,xn}. Statement 
(a) shows that QO = R, where R denotes the polyhedral set defined by 

m 

R:= n K(Yj, 1). 
j= I 

But we have already seen that QO = P, whence 
m 

P = n K(Yj' 1), 
j= 1 

i.e. P is a polyhedral set. o 

We may now use the results of Section 8 on polyhedrall sets to obtain 
results on polytopes. 

Corollary 9.3. Let PI and P 2 be polytopes in [Rd such that PI (\ P 2 i= 0. 
Then PI (\ P 2 is also a polytope. 

PROOF. The intersection of any two polyhedral sets in [Rd is polyhedral. The 
statement then follows from Theorem 9.2. 0 

Corollary 9.4. Let P be a polytope in [Rd, and let A be an affine subspace of [Rd 
such that P (\ A i= 0. Then P (\ A is also a polytope. 

PROOF. Any affine subspace A of[Rd is polyhedral. The statement then follows 
as in the proof of Corollary 9.3. 0 

Corollary 9.5. Let P be a d-polytope in [Rd. Then P has at least d + 1 facets. 

PROOF. Let 

P = conv{x b ... , x n }, 

and assume without loss of generality that 0 E int P. Let 
n 

Q:= n K(x;, 1). 
i =1 
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Then by Theorem 9.1(d), P and Q are mutually polar sets with Q bounded 
(and 0 E int Q). Corollary 8.7 next shows that Q is a d-polytope. Let Yl'· .. ,Ym 
be the vertices of Q, and let 

m 

R:= n K(Yj' 1). 
j=l 

Then Q and R are mutually polar by Theorem 9.1(d), whence R = P. More­
over, Theorem 9.1(e) shows that the representation 

m 

P = n K(Yj' 1), 
j= 1 

is irreducible. But then the number offacets of Pis rn by Theorem 8.2(b), (c). 
On the other hand, the number of vertices of the d-polytope Q is at least 
d + 1, whence rn :?: d + 1, as desired. D 

In the next corollary, note that when F is a facet of a d-polytope in IRd, 

then aff F is a supporting hyperplane of P. 

Corollary 9.6. Let P be a d-polytope in IRd, let F 1, ... ,Fn be thefacets of P, and 
let K(Xi' eli) be the supporting halfspace of P bounded by aff FJor i = 1, ... , n. 
Then 

n 

P = n K(Xi' eli), 
i= 1 

and this representation is irreducible. 

PROOF. By Theorem 9.2, P is polyhedral. Let 
m 

P = n K(Yi' 13) 
j= 1 

be an irreducible representation of P. By Theorem 8.2(b), (c), the facets of P 
are the sets H(Yj' 13) n P. But the facets of P are also the sets H(x;, eli) n P by 
assumption. Therefore, rn = n and there is a one-to-one correspondence 
between the i's and j's such that 

H(x;, eL;) = H(Yj' {3) 

for corresponding i and j. Then of course also 

K(Xi' eli) = K(Yj' {3j) 

for corresponding i and j. This shows that 
n 

P = n K(Xi' eL;), 
i= 1 

and that this representation is irreducible. D 
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Corollary 9.7. Let P be a d-polytope in [Rd. Let F j and Fk befaces of P with 

F j c Fk 

and 

dim Fj = j, dim Fk = k, 

where 

-1~j<j+l~k-l<k~~ 

Then there are faces F j + b ... , Fk - l of P with 

F j C F j + l c··· C Fk - l C Fk 

and 

dim F; = i, i = j + 1, ... , k - 1. 

PROOF. With Theorem 9.2 in mind, the statement follows immediately from 
Corollary 8.6 when j ~ O. For j = -1, let F 0 be any vertex of F k. If k = 1, 
we have the desired conclusion. If k ~ 2, apply Corollary 8.6 to the faces 
Fo and Fk • 0 

We shall finally improve the inequality of Theorem 6.10. Note that when 
P is a d-polytope in [Rd with 0 E int P, then P and po form a pair of mutually 
polar d-polytopes, and each pair of mutually polar d-polytopes arises in this 
way; this follows from Theorem 9.l(a), (d) and Theorem 9.2. We also remind 
the reader that any face F of P is a member of a pair F, G of conjugate faces 
since all faces of P are exposed, cf. Theorem 7.5. 

Theorem 9.8. Let P and Q be mutually polar d-polytopes in [Rd and let F and G 
be conjugate faces of P and Q, respectively. Then 

dim F + dim G = d - 1. 

In particular, vertices of P are conjugate to facets of Q, and facets of Pare 
conjugate to vertices of Q. 

PROOF . We shall appeal to the proof of Theorem 6.10. As expllained there, we 
need only consider the case where F and G are proper faces. Let Xl' ... , Xn 

be the vertices of P, and let Xb ... , Xk be the vertices of F. Then by Theorem 
9.1(a), 

n 

Q = n K(x;, 1). (5) 
;= I 

Moreover, by the definition of the 6-operation, we have 

G = Q (\ n H(x, 1). (6) 
XEF 
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Now, note that 
k n H(x, 1) = n H(x;, 1). (7) 

XE F i= 1 

In fact, if y is in H(x;, 1) for i = 1, ... , k, then Xl>' .. ,Xk are in H(y, 1), whence 
every x E F must be in H(y, 1), showing that y is in H(x, 1) for every x E F. 
Combining now (5), (6) and (7) we obtain 

n k 

G = n K(x;, 1) n n H(x;, 1). (8) 
;=k+l ;=1 

Let 
k 

A:= n H(x;, 1). 
;= 1 

Then A is an affine subspace containing G. In fact, A = aft' G. To see this, 
note first that (8) shows that G is a polyhedral set in A with the representation 

n 

G = n K(x;, 1) n A 
;=k+ 1 

(where, of course, we may have K(x;, 1) n A = A for certain values of i). 
Now, it is clear that the non-empty intersection G of closed halfspaces in the 
affine space A can only have a smaller dimension than A itself if G is con­
tained in a hyperplane bounding one of the halfspaces K(x;, 1) n A, i = 
k + 1, ... , n. But if G is a subset of H(x;, 1), then x; E G" = F, a contradiction. 
In conclusion, A = aft' G, whence in particular 

dimG = dim A 

= dim n H(x, 1). 
xeF 

Hence, in the proof of Theorem 6.10 we have equality in (9). The rest of the 
proof of Theorem 6.10 then yields the desired formula. 0 

For another proof of Theorem 9.8, see Section 10. 
Note that the proof of Corollary 9.5 could also have been based on 

Theorem 9.8. 

EXERCISES 

9.1. A section of a polytope P in [Rd is the intersection of P and some affine subspace of 
[Rd. Show that every polytope P with n facets is a section of an (n - 1 )-simplex. 
(This is to be understood as follows: "Embed" P in [Rn-l; construct an (/1 - 1)­
simplex S in [Rn-l such that S n aff P = P. Hint: One may use Exercises 6.5 and 
7.1.) 

9.2. Let P and Q be mutually polar convex polytopes in ~d, and let F and G be conjugate 
faces of P and Q, respectively. Show that G = Q n H(x, 1) if and only if x E ri F, 
cf. Exercise 6.6. 
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§lO. Equivalence and Duality of Polytopes 

It may be said that the combinatorial theory of convex polytopes (which is 
the subject of Chapter 3) is the study of face-lattices of convex polytopes. So, 
from this point of view, there is no need to distinguish between polytopes 
whose face-lattices are isomorphic. This leads to the notion of equivalent 
polytopes. 

In Section 6 we developed a polarity theory of convex sets, and in Section 9 
we applied it to obtain basic properties of convex polytopes. It is a funda­
mental fact that for a pair P, Q ofmutuaUy polar polytopes, the L:,.-operation 
induces an anti-isomorphism of the face-lattices. Accepting the point of view 
explained above (leading to the notion of equivalence), it follows that there 
is no need to distinguish between Q and any polytope whose face-lattice is 
isomorphic to that of Q. These polytopes, however, are just the polytopes 
whose face-lattices are anti-isomorphic to that of P. This leads to the notion 
of dual polytopes. 

Two polytopes are said to be equivalent (and each is said to be an equivalent 
of the other) if their face-lattices are isomorphic. Clearly, this is an equiva­
lence relation. The image <p(P) of a polytope P under an affine isomorphism 
<p is an equivalent of P; but in general there are many other equivalents of P. 

Theorem 10.1. Let P and Q be equivalent polytopes with dim P = d, and let 

<p: (JF(P), c) ~ (JF(Q), c) 

be an isomorphism. Then 

dim Q = d, 

and 

dim <p(F) = dim F 

for any face F of P. 

PROOF. By Corollary 9.7, each face F of P is a member of a chain 

0= F -1 ~ ... ~ F; ~ ... ~ Fd = P 

of faces of P with 

dim F; = i, 

Since <p is an isomorphism, (1) yields 

i = -1, .. . ,d. 

o = <p(F -1) ~ ... ~ <p(FJ ~ ... ~ <P(Fd) = Q. 

Now, (2) implies 

dim <p(F;+ 1) ~ dim <p(F;) + 1, i = -1, ... , d - 1, 

(1) 

(2) 

(3) 
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cf. Corollary 5.5. This clearly implies dim cp(F d) ~ d, i.e. 

dim Q ~ d = dim P. 

But P and Q play completely symmetric roles, and therefore we must actually 
have 

dim Q = d, 

as desired. This, in turn, implies that we must have equality in (3) for all i, 
enforcing 

dim cp(F;) = i, 

This completes the proof. 

i = -1, ... , d. 

D 

Two polytopes are said to be dual (and each is said to be a dual of the 
other) if their face-lattices are anti-isomorphic. We note that when P and Ql 
are dual, then P and Q2 are also dual if and only if Ql and Q2 are equivalent. 

The question of existence has almost been settled by Corollary 6.8: 

Theorem 10.2. For any polytope P, there is a dual polytope Q. 

PROOF. For any d-polytope P there is ad-polytope PI in [Rd with 0 E int PI 
such that P and PI are equivalent. Corollary 6.8 shows that Q 1 := P~ is a dual 
of PI. But then Q 1 is also a dual of P by the equivalence of P and PI. D 

The next theorem is closely related to Theorem 9.8, see the remarks below: 

Theorem 10.3. Let P and Q be dual polytopes with dim P = d, and let 

1jJ:(ff(P), c)--(ff(Q), c) 

be an anti-isomorphism. Then 

dim Q = d, 

and 
dim IjJ(F) = d - 1 - dim F 

for anyface F of P. 

PROOF. As in the proof of Theorem 10.1, we use the fact that each face F of P 
is a member of a chain 

0= F -1 ~ ... ~ F; ~ ... ~ Fd = P (4) 

of faces of P with 

dim F; = i, i = -1, ... , d. (5) 

Since IjJ is an anti-isomorphism, (4) yields 

Q = IjJ(F-l) ~ ... ~ IjJ(F;) ~ ... ~ IjJ(Fd) = 0· (6) 
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Now, (6) implies 

dim IjJ(F;) 2 dim IjJ(F i + I) + 1, 

This clearly implies dim IjJ(F _ I) 2 d, i.e. 

i = -1, ... , d - 1. 

dim Q 2 d = dim P. 

The symmetry of P and Q then ensures that we must have 

dim Q = d, 
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(7) 

proving the first statement. This, in turn, implies that we must have equality 
in (7) for all i, whence 

dim IjJ(F;) = d - 1 - i 

= d - 1 - dim Fi , i = -1, ... , d, 

completing the proof. D 

It is clear that Theorem 9.8 is an immediate consequence of Theorem 10.3. 
On the other hand, Theorem 10.3 could also have been deduced from Theorem 
10.1; just observe that when P and Q are dual with dim P = d, then there is a 
pair PI' Q 1 of mutually polar d-polytopes such that P is equivalent to PI 
and Q is equivalent to QI. 

We next prove two important theorems on the facial structure of poly­
topes; their proofs depend on Theorem 10.3. 

Theorem 10.4. Let P be a d-polytope, and let F be a proper face of P. Then F 
is the intersection of the facets of P containing F. If F is a kjace, then for 
k = 0, 1, ... , d - 3 there are at least d - k such facets,for Ie = d - 2 there 
are exactly 2 (= d - k) such facets, and for k = d - 1 there is exactly 1 
(= d - k) such facet. 

PROOF. Let Q be a dual of P, and let IjJ be an anti-isomorphism from (JF(P), c) 
onto (JF(Q), c). Let F be a k-face of P, and let G := IjJ(F). Then 

dim G = d - 1 - k 

by Theorem 10.3. But then G has at least 

(d - 1 - k) + 1 = d - k 

vertices. For k = d - 2 and k = d - 1, the number of vertices is exactly 
d - k, since I-polytopes have two vertices and O-polytopes have one vertex. 
We now apply the anti-isomorphism IjJ-I from (ff(Q), c) onto (ff(P), c). 
The dimension formula of Theorem 10.3 shows that vertices of Q correspond 
to facets of P. Therefore, since G is the smallest face of Q containing the 
vertices of G, it follows that F is the intersection of the facets of P containing F. 
This proves the statement. D 
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Theorem 10.5. Let P be a d-polytope, and let x be a vertex of P. Then there are 
at least d edges of P containing x. 

PROOF. Let Q be a dual of P, and let Ij; be an anti-isomorphism from (g;(P), c) 
onto (g;(Q), c). Let G:= Ij;({x}); then by Theorem 10.3, G is a (d - I)-face 
of Q. Corollary 9.5 next shows that the number of (d - 2)-faces of G is at 
least d. But then by duality the number of I-faces of P containing x is at 
least d, cf. Theorem 10.3. D 

Using terminology from graph theory (cf. Appendix 2 and Section 15), 
we shall say that two distinct vertices of a polytope P are adjacent if the seg­
mentjoining them is an edge of P, and we shall say that a vertex and an edge 
are incident if the vertex is a vertex of the edge. With this terminology, 
Theorem 10.5 states that the number of vertices adjacent to x, or the number 
of edges incident to x, is at least d. 

For any d-polytope P, let fi(P) denote the number of j-faces of P, where 
j = -1,0, .... Thusf_1(P) = fiP) = 1 andfi(P) = 0 for j > d. For d Z: 1, 
the d-tuple 

f(P):= (fo(P), ... ,fd-1(P» 

of positive integers is called thef-vector of P. This concept will playa central 
role in Chapter 3. Here we note an immediate corollary of Theorems 10.1 
and 10.3: 

Corollary 10.6. Let P be a d-polytope (where d Z: 1). Then for any polytope 
P 1 equivalent to P we have 

f(P 1) = (fo(P), ... ,fd-l (P», 

i.e. f(P 1) = f(P), and for any polytope Q dual to P we have 

f(Q) = (fd-1(P)"" ,fo(P». 

EXERCISES 

10.1. Show that an equivalent of a d-pyramid is again ad-pyramid. 

10.2. Show that a dual of a d-pyramid is again ad-pyramid. 

10.3. Show that if QI and Q2 are equivalent polytopes, then any pyramid PI with QI 
as a basis is equivalent to any pyramid P 2 with Q2 as a basis. 

10.4. Show that the statement of Exercise 10.1 is not valid in general for bipyramids. 

10.5. Show that any bipyramid has prisms as well as non-prisms as duals. 

10.6. Let PI and P 2 be polytopes, let q/ be a one-to-one mapping from the vertices of 
PI onto the vertices of P 2. and let q/' be a one-to-one mapping from the facets of 
PI onto the facets of P 2' Assume that cp'(x) is a vertex of q/'(F) if and only if x 
is a vertex of F. Show that there is an isomorphism cp from (,~(P I), c:) onto 
(.?(P 2). c:) which extends both cp' and cp". In particular. PI and P 2 are equivalent. 

State and prove an analogous dual statement. 
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10.7. Use a duality argument to show that no vertex of a polytope P is contained in all 
the facets of P. 

10.8. Let F 1 and F 2 be faces of ad-polytope P such that F, c F 2 and dim F, < 
dim F 2 :<=;; d - 1. Show that there is a face F 3 of P such that dim F 3 = dim F 1 + 1, 
F, C F3 and F3 ¢ F 2 • (Hint: Exercise 10.7 may be useful.) 

10.9. Let P be a d-polytope. Show that for j < k :<=;; d - 1, any j-face F of P is the 
intersection of the k-faces of P containing F. 

10.10. Let P be an octahedron and let Q be a 3-polytope obtained by" adding pyramids" 
over two of the facets of a 3-simplex. Show that f(P) = f( Q). Show that P and Q 
are non-equivalent. 

§11. Vertex-Figures 

The vertex-figures of ad-polytope P are certain (d - I)-polytopes, each 
containing information about the "local" facial structure of P "near" one of 
its vertices. In this section we have collected some results dealing with or 
related to vertex-figures. 

We first study the facial structure of a non-empty intersection H n P of a 
d-polytope P in !Rd and a hyperplane H in !Rd. Note that when H does not 
intersect int P, then H must be a supporting hyperplane by Theorem 4.1, and 
H n P is then simply a face of P (whose facial structur~ is known when the 
facial structure of P is known). 

Theorem 11.1. Let P be a d-polytope in !Rd, and let H be a hyperplane in !Rd 
such that 

H n int P ¥- 0. 

T hen the Jollowing holds: 

(a) The set pi := H n P is a (d - I)-polytope. 
(b) Let F be aJace oj P. Then F' := H n F is aJace oj P', and dim F' ::; dim F. 

IJ F ¥- 0 and H is not a supporting hyperplane oj F (i.e. F' is not aJace oj F 
and hence not aJace oj P), then dim F' = dim F - 1. 

(c) Let F' be a Jace oj P'. Then there is at least one Jace F oj P such that 
F' = H n F, andJor each suchJace F we have dim F ~ dim F'. 

(d) Let F' be a Jace oj P'. IJ F' is not aJace oj P, then there is one and only 
oneJace F oj P such that F' = H n F, andJor thisJace F we have dim F = 

dim F' + 1. 

PROOF. (a) The set pi is a polytope by Corollary 9.4. It is clear that the 
dimension of pi is d - 1. 
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(b) It follows immediately from the definition of a face that F is a face of 
pi, and it is clear that dim F s dim F. If F i= 0 and H is not a supporting 
hyperplane of F, then we have F ¢. Hand H n ri F i= 0, cf. Theorem 4.1. 
But then H n aff F is a hyperplane in aff F intersecting the interior of F in 
aff F, whence dim(H n F) = dim F - 1. 

(c) For F = 0, the statement is obvious. For F i= 0, we first note that 
it is trivial that dim F ;?: dim F when F is a face of P such that F = H n F. 
To prove the existence of such a face, let Xo E ri F and let F 0 be the smallest 
face of P containing Xo. Then Xo E ri F 0, cf. Theorem 5.6. We shall complete 
the proof by showing that 

F = HnFo. (1) 

Let y E F with y i= Xo. Then there exists a point Z E F such that Xo E ]y, z[, 
cf. Theorem 3.5, (a) = (c). Since F 0 is a face of P containing xo, it follows that 
YEFo (and zEFo). Since Fe H, this proves c in (1). Conversely, let 
Y E H n F 0 with y i= Xo. Then there exists a point Z E F 0 such that Xo E ]y, Z[, 
cf. Theorem 3.5, (a) = (c). Since Xo and yare in H, then Z must also be in H, 
whence y, Z E P'. Since F is a face of pi containing xo, it follows that y E F 
(and Z E F). This proves :::J in (1). 

(d) For F = 0, there is nothing to prove. For F i= 0, we refer to the 
proofof(c). Let F be any face of P such that F = H n F. Then F must contain 
the point xo, and hence Foe F by the definition of F o. Corollary 5.5 next 
shows that if F 0 ~ F, then dim F 0 < dim F. We shall complete the proof by 
showing that 

dim Fo = dim F 
= dim F + 1. 

Let G be any face of P such that F = H n G. Since F is not a face of P by 
assumption, statement (b) applied to G gives dim G = dim F + 1. Since this 
applies to both G = F 0 and G = F, we have the desired conclusion. 0 

Let Xo be a vertex of ad-polytope P in ~d (where d ;?: 1). Then there is a 
supporting hyperplane H(y, 0:) of P such 

H(y, 0:) n P = {xo}. 

Assuming that P c K(y, 0:), it then follows that for some 13 < 0:, all the 
vertices of P except Xo are in K(y, f3)\H(y, 13), whereas Xo is in ~d\K(y, 13). 
In other words, there is a hyperplane H which separates Xo from the remaining 
vertices of P in the sense that Xo is on one side of H and the remaining 
vertices are on the other side of H. By a vertex-figure of Pat Xo we mean a 
set H n P (in fact, a (d - i)-polytope, cf. Theorem 11.2), where H is a hyper­
plane separating Xo from the remaining vertices of P. 

When Xo is a vertex of P, we denote by !F(P/xo) the set of faces of P 
containing Xo. It is clear that (!F(P /xo), c) is a sublattice of (!F(P), c). This 
lattice is "essentially" the face-lattice of the vertex-figures of Pat Xo: 
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Theorem 11.2. Let P be a d-polytope in [Rd, let Xo be a vertex of P, and let 
P' = H n P be a vertex-jigure of P at Xo. Then P' is a (d - I)-polytope. 
Furthermore, the mapping 

F~F':=HnF 

is an isomorphism from the sublattice (g-(P/xo), c) of (g-(P), c) onto the 
lattice (g-(P'), c). 

PROOF. The hyperplane H intersects P and is not a supporting hyperplane. 
Therefore, 

H n int P i= 0 
by Theorem 4.1. Then P' is a Cd - I)-polytope by Theorem 11.1(a). 

It follows from Theorem 11.1(b) that the mapping 

F~F':= H n F 

maps g-(P/xo) into g-(P'), and it follows from Theorem l1.1(d) that the 
mapping is one-to-one and onto. Finally, it is trivial that the mapping 
preserves inclusions. D 

Corollary 11.3. Let P be a d-polytope in [Rd, and let Xo be a vertex of P. Then 
any two vertex-figures of Pat Xo are equivalent. 

PROOF. In fact, if P' and P" are vertex-figures of Pat xo, then (.'#P(P'), c) and 
(g-(P"), c) are both isomorphic to (g-(P/x o), c), and therefore mutually 
isomorphic. D 

Of course, Corollary 11.3 can also be proved by an argument based 
directly on Theorem 11.1. 

Now, let F 1 and F 2 be faces of ad-polytope P such that F 1 c F 2' Then the 
set of faces F of P such that 

F 1 cFcF2 

will be denoted by g-(F 2/F 1)' When F 1 = {xo} and F 2 =: P, we recover 
g-(P /xo). It is clear that (g-(F 2/F 1), c) is a sublattice of (g-(P), c). It follows 
from Theorem 11.2 above that in the particular case where F I is a vertex and 
F2 = P, the lattice (g-(F 2/F 1 ). c) can be "realized" as the face-lattice of a 
suitable polytope. This is true in general (except, of course, when Fl = F 2 ): 

Theorem 11.4. Let P be a polytope, let F 1 be aj-face of P, and let F 2 be a k-face 
of P such that F 1 ~ F 2' Then there is a (k - 1 - j)-polytope Q such that 
(g-(F 2/F d, c) is isomorphic to (g-(Q), c). Furthermore, for every isomor­
phism cp from (g-(F 2/F 1), c) onto (g-(Q), c) we have 

dim cp(F) = dim F - 1 - j 

for any face F E g-(F 2/F 1). 
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PROOF. We consider F 1 as a j-face of the k-polytope F 2; the faces F of P 
belonging to f7(F 2/ F 1) are then the faces F of F 2 such that Fie F. Let G2 
be a dual polytope of F 2, and let Ij; be an anti-isomorphism from (§'(F 2), c) 
onto (.Jl'(G 2 ), c). The faces of G2 corresponding under Ij; to the faces F of 
F 2 with FIe F are then the faces G = Ij;(F) of G2 such that 

0= Ij;(F2) C G = Ij;(F) C Ij;(FI)' 

This shows that the restriction oflj; to (f7(F 2/F 1), c) is an anti-isomorphism 
from (f7(F2/F 1 ), c) onto the face-lattice (f7(Ij;(F 1», c) of the polytope 
Ij;(F 1)' Therefore, if we take Q to be any dual polytope of Ij;(F 1), we see that 
(f7(F2/F 1 ), c) is isomorphic to (f7(Q), c). 

To determine the dimension of Q, note that 

by Theorem 10.3. But 

dim Q = dim Ij;(F I) 

dim Ij;(F d = k - 1 - dim F 1 

=k-l-j 

by the dimension formula of Theorem 10.3. Hence, 

dim Q = k - 1 - j, 

as desired. 
Finally, let <p be any isomorphism from (f7(F 2/F I), c) onto (f7(Q), c). 

Every face FE f7(F 2/F I) is a member of a chain 

F 1 = Gj S;; ... S;; Gi S;; ... S;; Gk = F 2 

of faces Gi E f7(F 2/F I) with 

dim Gi = i, i =j, ... , k, 

cf. Corollary 9.7. Application of <p yields the chain 

o = <p(F I) = <peG) S;; ... !::E <peG;) S;; ... !::E <p(Gk) = <p(F 2) = Q. 

This implies 

-1 = dim <peG) < ... < dim <p(G i) < ... < dim <p(Gk) 

= dim Q = k - 1 - j, 

where we have used Corollary 5.5 and the expression for dim Q found above. 
This in turn enforces 

dim <peG;) = i-I - j, 

whence 

dim <p(G i) = dim Gi - 1 - j, 

This completes the proof. 

i = j, ... , k, 

i =j, ... , k. 

D 
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We note the following: 

Theorem 11.5. Let P and Q be dual d-polytopes, and let 

ljJ: (ff(P), c) -+ (ff(Q), c) 

be an anti-isomorphism. Let Xo be a vertex of P, and let pi be a vertex-figure 
of Pat Xo. Then the facet ljJ({xo}) ofQ is a dual of P'. 

PROOF. We know by Theorem 11.2 that (ff(P'), c) and U1i(Pjxo), c) are 
isomorphic. Taking F I = {xo} and F 2 = P in the proof of Theorem 11.4, we 
see that (ff(P jxo), c) is isomorphic to (ff(R), c), where R is any polytope 
dual to ljJ( {xo}). (This polytope R is denoted by Q in the proof of Theorem 
11.4.) Therefore, (ff(Pjx o), c) is anti-isomorphic to (ff(t/I( {xo})), c), as 
desired. D 

Let Xo be a vertex of ad-polytope P. Vertex-figures of Pat Xo arise from 
hyperplanes H separating Xo from all the remaining vertices of P. We shall 
prove that in order to have H separating Xo from all the remaining vertices of 
P it suffices to have H separating Xo from those vertices of P that are adjacent 
to Xo. We first prove: 

Theorem 11.6. Let P be a d-polytope in [Rd, let Xo be a vertex of P, and let 
x I, ... , X k be the vertices of P adjacent to Xo. Let H(y, a) be a hyperplane in [Rd 

such that Xo E H(y, a) and Xl> ... , Xk E K(y, a). Then P c K(y, IX) i.e. H(y, a) 
is a supporting hyperplane of P. If, in addition, we have Xl' ... , Xk ¢ H(y, IX), 
then H(y, IX) n P = {xo}. 

PROOF. Let pi = H' n P be a vertex-figure of Pat xo, determined by a hyper­
plane H' separating Xo from the remaining vertices of P. Theorem 11.1(b), 
(d)-or Theorem 11.2-tells that the vertices of pi are the I-point sets 
[xo, xJ n H', i = 1, ... , k. Since both Xo and Xl' ... , Xk are in K(y, IX) by 
assumption, it follows that the vertices of pi are in K(y, a), and, therefore, pi 
is in K(y, IX). 

Let X be any vertex of P with x "# Xo. Then x and Xo are on opposite sides 
of the hyperplane H', whence [xo, xJ n H' is a 1-point set, say {x'}. Since 
x' E pi and pi c K(y, IX), it follows that x' E K(y, IX). This, in turn, clearly 
implies x E K(y, a). In other words, all the vertices of P are in K(y, IX), whence 
Pc K(y, IX). 

If, in addition, Xl>'" ,Xk do not lie in H(y, a), then Jxo, Xi[ c int K(y, a) 
for i = 1, ... , k. So, all the vertices of P' belong to int K(y, a), and therefore 
P' c int K(y, IX). For any vertex x of P, x "# xo, we then have x' E int K(y, a), 
implying that x E int K(y, a). (Here, as above, x' denotes the single point in 
[xo, xJ n H'.) This shows that the only vertex of P in the exposed face 
H(y, a) n Pis xo, implying that H(y, a) n P = {xo}, cf. Theorem 7.3. D 
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Corollary 11.7. Let P be a d-polytope in !Rd, let Xo be a vertex of P, and let 
Xl' ... , X k be the vertices of P adjacent to Xo' Then 

aff{xO,xl, ... ,xd = !Rd. 

PROOF. If the desired conclusion is not valid, then there is a hyperplane H 
containing Xo, x b ... , Xk' Then both of the two closed halfspaces bounded 
by H contain Xo, x I, ... , X k . By Theorem 11.6 this implies that P is contained 
in both of these halfspaces, whence P c H. This contradiction completes 
the proof. 0 

We can now prove: 

Theorem 11.8. Let P be a d-polytope in !Rd, let Xo be a vertex of P, and let 
Xl> ... , Xk be the vertices of P adjacent to Xo. Let H be a hyperplane in !Rd 

separating xofrom Xl"'" Xk' Then H separates xofrom any other vertex of P, 
whence H n P is a vertex-figure of P at Xo' 

PROOF. Given the vertex Xo and its adjacent vertices Xl, ... , Xk, let X be any 
other vertex of P. Let L denote the line through Xo and x. We first prove that 
Jxo, x[ intersects the set 

Ql := conv{x l, ... , xd· 

Let HI be a hyperplane in IR1d orthogonal to L, and let n: !Rd ~ HI denote the 
orthogonal projection. Letting 

it is clear that 
n(Qo) = conv{n(xo), n(xd, ... , n(xk)}' 

In particular, n(Qo) is a polytope with 

ext n(Qo) c {n(xo), n(x I), ... , n(xk)}, 

cf. Theorem 7.2, (a) => (b). Suppose that n(xo) is a vertex of n(Qo). Then there 
is a supporting hyperplane H 2 of n(Qo) in HI with H 2 n n(Qo) = {n(xo)}, cf. 
Theorem 7.5. But then n- I(H 2) = aff(H 2 u L) is a supporting hyperplane 
of Qo in !Rd with X b ... , X k ¢ n- I(H 2) and X E n- I(H 2), contradicting the 
second statement of Theorem 11.6. Hence, n(xo) is not a vertex of n(Qo). 
This implies that 

n(xo) E conv{ n(x I), ... , n(xk)} , 

cf. Theorem 7.2, (b) => (a). Since 

conv{n(x l),···, n(xk)} = n(conv{xl,"" Xk}) 
= n(QI), 

it follows that n(xo) E n(QI), implying that L intersects Ql' However, since 
Xo and X are vertices of P, and Ql is a subset of P, every point of Lin Ql must 
lie between Xo and x. 
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To complete the proof, let H be a hyperplane separating Xo from Xl>' .. ,Xb 
and let K be that closed halfspace bounded by H which contains Xl' ... , Xk' 

Then Xl"'" x k belong to int K, whence also Ql c int K. Let x be any other 
vertex of P. Using what we have proved above, we see that at least one point 
of ]xo, x[ is in int K. By the convexity of [Rd\int K we must then also have 
X E int K, as desired. 0 

The next theorem has an interesting application in the proof of Theorem 
11.10. 

Theorem 11.9. Let P be a d-polytope in [Rd (where d ;?: 1), and let Xo be a 
vertex of P. Then there is a point Xo E int P such that the hyperplane through 
Xo with Xo - Xo as a normal separates xofrom the remaining vertices of P. 

PROOF. We may assume that Xo = o. Let Xb"" Xn be the remaining vertices 
of P, and let 

p ' := conv{xl,···, x n }. 

Then P' is a polytope with vertices Xl, ... , X n , and Xo is not in P'. Let v E P' 
be such that 

<v, v) = min{ <x, x) I x E P'}. 

The existence of v follows by noting that the mapping 

x f---+ <x, x) = IIxI12 

(2) 

is continuous on the compact set P'. (The point v is in fact the unique point 
of P' nearest to 0.) Since 0 f/= P', it follows that 

° < <v, v). (3) 

We claim that 

<v, v) = min{ <v, x) Ix E Pi}. (4) 

(Hence H(v, IX) with IX:= <v, v) is a supporting hyperplane of P' at v.) To see 
this, let x E P' and let A E ]0,1[. Then Ax + (1 - A)V is in pi, whence by (2) 

<v, v) ::;; <AX + (1 - A)V, Ax + (1 - A)V) 
= <v, v) + 2A«V, x) - <v, v») + A2 <V - x, v - x). 

Re-arranging and dividing by 2A yields 

<v, v) - <v, x) ::;; (A/2)<v - x, v - x). 

This holds for A E ]0, 1[. By continuity it must also hold for A = 0, i.e. (4) 
holds. Now, (3) and (4) imply 

<v, Xi) > 0, 

By continuity we then have 

<u, x) > 0, 

i = 1, ... , n. 

i = 1, ... , n (5) 
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for all u belonging to some ball B(v, 8). In particular, 0 is not in B(v, 8). Let 
Uo be a point in B(v, 8) n int P, cf. Theorem 3.4(c). Then H(uo, 0) is a hyper­
plane through 0 with all the vertices XI' ... , Xn strictly on one side. Therefore, 
for A sufficiently small, 0 < A < 1, the hyperplane H parallel to H(uo, 0) 
through Xo := AUo separates 0 from XI' ... , X n • Finally, it is clear that H has 
Xo - Xo (= Xo = AUo) as a normal, and it follows from Theorem 3.3 that 
Xo E int P, since Xo E Jo, uo[. 0 

The next theorem is an application of Theorem 11.9. The theorem illu­
strates how the polar operation can be used to produce polytopes equivalent 
to a given polytope with desirable properties. The proof is based on the 
observation that if P and X + P both have 0 as an interior point, then po 
and (x + P)O must be equivalent since po is a dual of P, (x + Pt is a dual 
of X + P, and P and X + P are equivalent. Theorem 11.1 0 is needed in Section 
19. 

Theorem 11.10. Let P be a d-polytope in [Rd, and let F be a facet of P. Then 
there is ad-polytope PI in [Rd equivalent to P such that the orthogonal projection 
of [Rd onto the hyperplane spanned by the facet F 1 of P 1 corresponding to the 
facet F ofP maps P1\F1 into ri Fl' 

PROOF. We may assume that 0 E int P. Let Q:= po; then QC = P. Let Yo 
be the vertex of Q conjugate to F, cf. Theorem 9.8. Let YI' ... , Yn be the re­
maining vertices of Q. Use Theorem 11.9 to get Yo E int Q such that 

i = 1, ... , n. 

Take Q I := Q - Yo; then Q I is a d-polytope with 0 in its interior. The vertices 
ofQI are the points Yi - Yo, i = 0, ... , n. Take P I := Q~. Since Q and QI are 
equivalent, it follows that P and PI are equivalent (under an obvious lattice 
isomorphism). The facet F I of PI corresponding to F, of course, is the facet 
of P I conjugate to the vertex Yo - Yo of QI' Hence, 

aff FI = H(yo - Yo, 1). 

For x E [Rd, the orthogonal projection of x onto aff F I is the point x' = 
x + A(Yo - Yo), where A is determined by 

I.e. 

1 = <x', Yo - Yo) 
= <x, Yo - Yo) + A<Yo - Yo, Yo - Yo). 

A = 1 - <x,Yo - Yo) 
Ilyo - Yol12 

Now, by Theorem 9.l(a), 
n 

PI = n K(Yi - Yo, 1). 
i=O 
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Hence, for x E P 1 we have (x, Yi - Yo) ~ 1 for i = 0, ... , n, and we have 
(x, Yo - Yo) < 1 for x E P1 \F1. For x E P1 \F1 and x' as above we then get 
for i = 1, ... , n, 

(x', Yi - Yo) = (x, Yi - Yo) + Jc(Yo - Yo, Yi - Yo) 
~ 1 + Jc(Yo - Yo, Yi - Yo) 
< 1, 

since Jc > ° and (Yo - Yo, Yi - Yo) < 0. This shows that 

x' Eint K(Yi - Yo, 1) 

for i = 1, ... , n, whence 
n 

x'EintnK(Yi - Yo, 1). 
i= 1 

Since 
n 

F1 = H(yo - Yo, 1) n n K(Yi - Yo, 1), 
i= 1 

it follows that x' E ri F 1, as desired. D 

In Theorem 11.1 we described in great detail the facial structure of a 
polytope of the form P' = H n P, where H is a hyperplane and P is a polytope 
whose interior is intersected by H. In a similar way we can describe the facial 
structure of a polytope of the form P' = K n P, where K is a dosed halfspace 
and P is a polytope whose interior is intersected by the hyperplane H 
bounding K. We mention a particular case. 

Theorem 11.11. Let P be a d-polytope in [Rd, let H be a hyperplane in [Rd with 

H n int P # 0, H next P = 0, 

and let K be one of the two closed halfspaces bounded by H. Then we have: 

(a) The set P' := K n P is a d-polytope, and H n P is afacet of P'. 
(b) Let F be aface of P such that K n F # 0. Then F':= K n F is aface of 

P', and dim F' = dim F. 
(c) Let F' be aface of P'. Then either F' is aface ofthefacet H n P, or there is a 

unique face F of P such that F' = K n F. 

PROOF. (a) This is obvious, cf. Corollary 9.4. 
(b) It is obvious that F' is a face of P'. IfF c K, then the dimension formula 

is trivial. If F ¢ K, then there must be points of F on both sides of H; for if 
not, then H would be a supporting hyperplane of F with F ::: ([Rd\K) U H, 
contradicting the assumption that H contains no vertex of P. But then H 
must intersect ri F, cr. Theorem 4.1, (a) =- (b). This in turn clearly implies 
dim F' = dim F. 
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(c) Suppose that F' is not a face of H n P. Then F' is not a subset of 
H n P, cf. Theorem 5.2, whence H n ri F' = 0, cf. Theorem 4.1, (b) => (a). 

We first prove uniqueness of F. If F land F 2 were faces of P such that 
F' = K n Fl = K n F2, then we would also have F' = K n (Fl n F2)' 
By (b) we would then have dim F 1 = dim F 2 = dim(F 1 n F 2), implying 
that F 1 = F 2, cf. Theorem 5.2 and Corollary 5.5. 

To prove existence of F, take Xo E ri F'; then Xo E P n int K since 
H n ri F' = 0. Let H' be a supporting hyperplane of P' such that H' n P' = F'. 
Then H' is also a supporting hyperplane of P. For if some point y of P not in 
K were on the wrong side of H', then the entire segment ]xo, y] would be 
on the wrong side; but ]xo, y] contains a whole segment of points from 
K n P = P', whence H' could not be a supporting hyperplane of P'. Hence, 
H' is a supporting hyperplane of P. But then F := H' n P is a face of P with 
K n F = F', as desired. 0 

If in Theorem 11.11 the set of vertices of P not in K are the vertices of a 
face F, then the polytope P' is said to be obtained from P by truncation 
of the face F. The operation of truncation produces one "new" facet. 
The old facets of Pall" survive ", except of course F itself, if F is a facet. The 
dual operation of truncating a facet is called pulling a vertex. It consists in 
taking the convex hull of the polytope and one "new" vertex (outside the 
polytope) such that one "old" vertex disappears. The dual operation of 
truncating a vertex is that of adding a pyramid over one of the facets. A precise 
description of the duality can be given in terms of polarity as explained in 
Theorem 9.1. 

EXERCISE 

11.1. Let F l' F 2, and F 3 be faces of a polytope P such that F 1 ~ F 2 ~ F 3' Let Q be a 
polytope such that (9'(F 3/F 1), c) is isomorphic to (9'(Q). c) under the iso­
morphism cpo Verify that (9'(Fz/Fl)' c) is isomorphic to (.?(cp(F 2», c), and 
(9'(F3/FZ)' c) is isomorphic to (9'(Q/cp(F z», c). 

§12. Simple and Simplicial Polytopes 

In this section we introduce two important classes of polytopes, namely, the 
simple polytopes and the simplicial polytopes. Both classes are defined by 
"non-degeneracy" conditions; actually, the conditions are dual. The "non­
degeneracy" makes these polytopes much easier to handle than polytopes in 
general; in fact, with one important exception, the combinatorial theory to 
be developed in Chapter 3 deals only with simple and simplicial polytopes. 

Because of the duality there is no formal reason to prefer one of the two 
classes to the other. However, certain problems are treated most conveniently 
in terms of simple polytopes. 
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We remind the reader that an e-polytope is an e-simplex provided that its 
vertices form an affinely independent (e + I)-family, cf. Sections 2 and 7. We 
begin with a discussion of the facial structure of simplices. 

Theorem 12.1. Let S be an e-simplex in [Rd, and let F be a proper face of S. 
Then F is also a simplex. 

PROOF. The vertices of F are those vertices of S which are in F, d. Theorem 7.3. 
Any subfamil¥ of an affinely independent family of points :is itself affinely 
independent. Therefore, since F is the convex hull of its vertices, cf. Theorem 
7.2(c), it follows that F is a simplex. 0 

Theorem 12.2. Let S be an e-simplex in [Rd, let X be a non-empty subset of 
ext S, and let F := conv X. Then F is a face of S, and ext F = X. 

PROOF. Let ext S = {XI, ... , xe + d, and let us assume that X = {Xl> ... , xd: 
To prove that F is a face of S, we shall show that if Yo and YI are two points 
of S such that for some t E ]0, 1 [, the point 

Yt := (1 - t)yo + tYI 

is in F, then Yo and YI must be in F. Each X in S has a unique representation 

e+ I 

X = Ie AiXi . 
i= I 

(1) 

Points x from S actually belonging to F are characterized by the property 
that Ai = 0 for i = k + 1, ... , e + 1. Now, we have 

and 

whence 

e+1 

Yo= Ie AOiXi 
i= I 

e+ I 

YI = Ie AIiXi , 
i= I 

e+ I 

Yt = IC ((1 - t)AOi + tAI;)X i· 
i=l 

But we also have Yt E F, i.e. 

k 

Yt = Ic AuXi · 
i= I 

By the uniqueness of representations (1) we then get 

(1 - t)AOi + tAu = 0, i = k + 1, ... , e + 1. 
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This clearly implies 

AOi = Ali = 0, i = k + 1, ... , e + 1, 

whence Yo and Yl are in F, as desired. 
Finally, Theorem 7.2, (a) => (b) shows that 

ext F C {Xl' ... , Xk}' 

The opposition inclusion is clear, cf. the" only if" part of Theorem 5.2. 0 

The two theorems above contain the basic information about faces of 
simplices. We have the following corollaries: 

Corollary 12.3. Let S be an e-simplex in ~d, and let F be a jlace of S, where 
- 1 :S j :S e. Then for k = j, ... , e, the number of klaces of S containing F 
equals 

( e - ~). 
k - ] 

PROOF. By Theorems 12.1 and 12.2 there is a one-to-one correspondence 
between the k-faces of S containing F, and the choices of (k + 1) - U + 1) 
vertices from the (e + 1) - U + 1) vertices of S not in F. This proves the 
assertion. 0 

Corollary 12.4. Let S be an e-simplex in [Rd. Thenfor -1 :S k :S e, the number 
of k-jaces of S equals 

( e + 1) 
k+1' 

PROOF. Take j = -1 in Corollary 12.3. o 

Corollary 12.5. Let S be an e-simplex in [Rd, and let F be a klace of S, where 
- 1 :S k :S e. Then the number of facets of S containing F equals e - k. 

PROOF. It follows from Corollary 12.3 that there are 

( e - k ) -e-k 
(e - 1) - k -

facets of S containing a given k-face F. This proves the assertion. 0 

In Corollary 12.5, note that F is the intersection of the e - k facets con­
taining F, cf. Theorem 10.4. Conversely, the intersection of e - k facets is a 
k-face: 

Corollary 12.6. Let S be an e-simplex in [Rd, and let F 1, ... , F e- k be e - k 
facets of S, where -1 :S k :S e - 1. Then F 1 n ... n Fe - k is a klace of s. 
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PROOF. Let Xl> ... , Xe + 1 be the vertices of S. By Theorems 12.1 and 12.2, each 
Fj is the convex hull of certain e of the e + 1 vertices. We may assume that 

Fj = conv({xl, ... , xe+d\{xj}), j = 1, ... , e -- k. 

Then a point x in S is in F j if and only if in the (unique) representation 
e+ 1 

X = l:c AiXi 
i= 1 

we have Aj = O. Therefore, x is in Fin· .. n Fe - k if and only if Al = ... = 
Ae-k = 0, i.e. if and only if x is in the set 

conv{Xe_k+ 1, •.• , xe + d· 
But this set is a face of S by Theorem 12.2, and its dimension is k by 
Theorem 12.1. D 

Corollary 12.7. Let S be an e-simplex in ~d, and let T be a dual e-polytope. 
Then T is also an e-simplex. 

PROOF. It follows from Corollary 12.4 that S has e + 1 facets. Dually, T has 
e + 1 vertices, cf. Theorem 10.3. But e-polytopes with e + 1 vertices are 
simplices. D 

Corollary 12.8. Let P be an e-polytope in ~d. Then P is an e-simplex if and only 
if the number oj Jacets oj P is e + 1. 

PROOF. If P is an e-simplex, then P has e + 1 facets by Corollary 12.4. Con­
versely, if P is an e-polytope with e + 1 facets, then any dual Q of P is an 
e-polytope with e + 1 vertices, cf. Theorem 10.3. Hence, Q is an e-simplex, and 
therefore, by Corollary 12.7, P is also an e-simplex. D 

We shall move on to the simplicial and simple polytopes. 
Ad-polytope P is said to be simplicial if for k = 0, ... , d _. 1, each k-face 

of P has precisely k + 1 vertices (i.e. each proper face of P is a simplex). 
Any simplex is simplicial, cf. Theorem 12.1, but of course there are many 

other simplicial polytopes. 
In the definition of a simplicial polytope it suffices to require that all facets 

are simplices: 

Theorem 12.9. Ad-polytope P is simplicial if(and only if) eachJacet oj P is a 
simplex. 

PROOF. Let F be a proper face of P. By Corollary 9.7 there is a facet G of P 
containing F. Then F is a face of G, cf. Theorem 5.2, and since G is a simplex 
by assumption, F is a simplex by Theorem 12.1. D 

Let F be a k-face of ad-polytope P, where 0 :::; k :::; d - 1. Then by 
Theorem 10.4 there are at least d - k facets of C containing F (and F is the 
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intersection of these facets). Ad-polytope P with the property that for 
k = 0, ... , d - 1, the number offacets of P containing any k-face of P equals 
d - k, is called a simple polytope. 

Any simplex is simple, cf. Corollary 12.5, but of course there are many 
other simple polytopes. 

The two notions introduced above are dual: 

Theorem 12.10. Let P and Q be dual d-polytopes. Then P is simple if and only 
if Q is simplicial. 

PROOF. Let F and G be proper faces of P and Q, respectively, corresponding 
under some anti-isomorphism from (g;(P), c) onto (g;(Q), c). Then 

dim G = d - 1 - dim F, 

cf. Theorem 10.3. Furthermore, by the duality, saying that F is contained in 
j facets of P is equivalent to saying that G contains j vertices of Q. Therefore, 
saying that each k-face of P is contained in precisely d - k facets is equivalent 
to saying that each (d - 1 - k)-face of Q has precisely d - k vertices, 
k = 0, ... , d - 1, i.e. each proper face of Q is a simplex. This proves the 
statement. 0 

The following, in a sense, is a dual of Theorem 12.9: 

Theorem 12.11. Ad-polytope P is simple if (and only if) each vertex of P is 
contained in precisely dfacets. 

PROOF. Let Q be a dual of P. If each vertex of P is contained in precisely d 
facets, then each facet of Q has precisely d vertices, cf. Theorem 10.3. There­
fore, each facet of Q is a simplex, whence Q is simplicial by Theorem 12.9. 
But then P is simple by Theorem 12.10. 0 

The following characterization of simple polytopes should be compared 
to Theorem 10.5: 

Theorem 12.12. Ad-polytope P is simple if and only if each vertex of P is 
incident to precisely d edges of P. 

PROOF. Let Q be a dual of P, and let Ij; be an anti-isomorphism from (g;(P), c) 
onto (g;(Q), c). Let x be a vertex of P. Then the number of edges of P 
incident to x equals the number of (d - 2)-faces of the (d - I)-face Ij;( {x}) 
of Q, cf. Theorem 10.3. Therefore, the number of edges incident to a vertex 
of P is d for each vertex of P, if and only if the number of (d - 2)-faces of a 
(d - 1)-faceofQ is d for each (d - 1)-faceofQ.A(d - l)-polytope,however, 
has d facets if and only if it is a simplex, cf. Corollary 12.8. The statement then 
follows from Theorems 12.10 and 12.9. 0 
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In Theorem 12.12, note that" incident to precisely d edges" is equivalent 
to "adjacent to precisely d vertices." 

Here is one more characterization of simple polytopes: 

Theorem 12.13. Ad-polytope P is simple if and only if each vertex-figure of P 
is a simplex. 

PROOF. Let Q be a dual of P. Then the facets of Q are duals of the vertex­
figures of P, cf. Theorem 11.5. The statement then follows from Theorems 
12.10 and 12.9. D 

We shall next establish some properties of simple polytopes that will be 
needed later. 

Theorem 12.14. Let P be a simple d-polytope, and let F I, ... , Fd - k be d - k 
facets of P, where 0 ~ k ~ d - 1. Let 

d-k 

F:= nFi' 
i= I 

and assume that F =1= 0. Then F is a k~face of P, and F I , ••• , Fd - k are the 
onlyfacets of P containing F. 

PROOF. Let Q be a dual of P, and let I/J be an anti-isomorphism from (g;(P), c) 
onto (g;(Q), c). By its definition, F is the largest face contained in the F/s, 
whence I/J(F) is the smallest face containing the I/J(FJ's. It follows from 
Theorem 10.3 that I/J(F) is a proper face and that the I/J(Fi)'S are vertices of Q. 
Then I/J(F) is a simplex, cf. Theorem 12.10, and therefore the ~'t(FYs must be 
all the vertices of I/J(F), cf. Theorem 12.2. Since the number of F/s is d - k, 
we see that 

dim I/J(F) = (d - k) - 1. 

This implies by duality that the F/s are all the facets of P containing F, and 
that 

dimF = k, 

cf. Theorem 10.3. D 

Theorem 12.15. Let P be a simple d-polytope. Then every proper face of P is 
also simple. 

PROOF. Let F be a proper face of P, and let x be a vertex of F. Letting 
k := dim F, we shall prove that there are precisely k facets of F containing x, 
cf. Theorem 12.11. Let Q be a dual of P, and let I/J be an anti-isomorphism 
from (g;(P), c) onto (g;(Q), c). Then by Theorem 10.3, the number of 
facets of F containing x equals the number of (d - 1 - (k - l»-faces of Q 
contained in the facet I/J( {x}) of Q and containing the (d - 1 - k)-face 
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IjJ(F) of Q. Now, by Theorem 12.10, Q is simplicial, whence 1jJ({x}) is a 
(d - I)-simplex. Therefore, we are seeking the number of (d - k)-faces of a 
(d - I)-simplex containing a given (d - 1 - k)-face of that simplex. 
Corollary 12.3 tells that this number is 

as desired. 

( d - 1) - (d - 1 - k)) = (k) = k 
(d - k) - (d - 1 - k) 1 ' 

D 

Theorem 12.16. Let P be a simple d-polytope. Then for 0 :$; j :$; k :$; d there 
are precisely 

( d - j) 
d-k 

k-faces of P containing a given jjace of P. 

PROOF. For k = d, there is nothing to prove. For k < d, let Q be a dual of P, 
and let IjJ be an anti-isomorphism from (~(P), c) onto (~(Q), c). Let F 
be a given j-face of P. Then IjJ(F) is a (d - 1 - j)-face of Q, and the number 
of k-faces of P containing F equals the number of (d - 1 - k)-faces of IjJ(F), 
cf. Theorem 10.3. By Theorem 12.10, IjJ(F) is a simplex. The desired number 
therefore equals 

( d - 1 - j) + 1) = (d - j) 
(d - 1 - k) + 1 d - k ' 

cf. Corollary 12.4. D 

Theorem 12.17. Let P be a simple d-polytope, let Xo be a vertex of P, let 
Xl"'" xk be certain k vertices of P adjacent to xo, and let F be the smallest 
face of P containing [Xo, Xl], ... , [Xo, Xk]. Then the following holds: 

(a) dim F = k. 
(b) [xo, Xl],.·., [Xo, Xk] are the only edges of F incident to Xo' 

PROOF. Let Q be a dual of P, and let IjJ be an anti-isomorphism from (~(P), c) 
onto (~(Q), c). Let G := IjJ(F). Then, by duality, G is the largest face of Q 
contained in the (d - 2)-faces 1jJ([xo, Xl])' ... , 1jJ([xo, xk]) of the (d - I)-face 
1jJ( {xo}) of Q, cf. Theorem 10.3. Since Q is simplicial, cf. Theorem 12.10, 
1jJ({xo}) is a (d - 1)-simplex. Corollary 12.6 then shows that 

dim G = d - 1 - k. 

However, by Theorem 10.3 we also have 

dim G = d - 1 - dim F, 

whence dim F = k, proving (a). 
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To prove (b), note that by Corollary 12.5 the number of (,1 - 2)-faces of 
the (d - I)-face 1jJ( {xo}) containing G is only k. By duality, this means that 
there are only k edges of F containing Xo' This proves (b). D 

Note that once (a) of Theorem 12.17 has been proved, (b) also follows from 
Theorems 12.15 and 12.12. 

In Theorem 12.17, note that F may also be described as the smallest face 
of P containing xo, x 1, ... , Xb and (b) is equivalent to saying that x 1, ... , Xk 

are the only vertices of F adjacent to Xo' 

Theorem 12.18. Let P be a simple d-polytope in ~d, and let Xo be a vertex of P. 
Let P' be a d-polytope obtained from P by truncating the vertex Xo' Then P' is 
also a simple d-polytope. Moreover, 

fo(P') = fo(P) + d - 1 

and 

Jj(P') = .fj(P) + C: I} j = 1, ... , d - 1. 

PROOF. Let K denote the closed halfspace in ~d such that P' = K " P, and 
let H denote the bounding hyperplane of K. 

To see that P' is simple, we shall show that each vertex of P' is incident to 
precisely d edges of P', cf. Theorem 12.12. A vertex x of P' is either a vertex 
of the facet H " P, or a vertex of P not in H, cf. Theorem 11.11(d). If the latter 
holds, then there are precisely d edges of P' incident to x by Theorems 12.12 
and 11.11(c), (d). If the former holds, then x is the point where: a certain edge 
F of P crosses H, cf. Theorem 11.1(d). The edges of P' incident to x are then 
the edge K " F plus the edges of H " P incident to x. But H " P is a (d - 1)­
simplex by Theorem 12.13, and therefore the number of edges of H " P 
incident to x equals d - 1, cf. Corollary 12.3. 

As already noted, H " P is a (d - I)-simplex. Therefore, the number of 
j-faces of H " P equals 

j = 0, ... , d - 1, 

cf. Corollary 12.4. The expressions for Jj(P'), j = 0, ... , d - l, then follows 
by easy applications of Theorem 11.11. D 

A d-simplex is both simple and simplicial. We conclude this section by 
proving that the converse is also true when d i= 2. (The statement is trivially 
true for d = 0, 1. Any 2-polytope is simple and simplicial, but not all 2-
polytopes are simplices. Therefore, the statement is not true for d = 2.) 

Theorem 12.19. Let d i= 2, and let P be a d-polytope which is both simple and 
simplicial. Then P is a simplex. 
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PROOF. As noted above, we need only consider d :::: 3. Let Xo be a vertex of P, 
and let Xl"'" Xd be the vertices of P adjacent to xo, cf. Theorem 12.12. Let 

Corollary 11.7 implies that S is a d-simplex with vertices xo, Xl' ... , X d • 

Let Xi and Xj be any two of the vertices Xl' ... , Xd' and let F be the smallest 
face of P containing [xo, xJ and [x o, Xj]. Then F is a 2-face by Theorem 
12.17(a). Moreover, since P is simplicial, F is a simplex. In other words, F 
is a triangle, and since x o, Xi and X j are vertices of F, cf. Theorem 5.2, it 
follows that ext F = {xo, Xi, Xj}' In particular, [Xi' xJ is an edge of F, and 
therefore [Xi' xJ is also an edge of P, cf. Theorem 5.2. Now, let K be a 
supporting halfspace of S, and let X k be a vertex of S in the bounding hyper­
plane H of K. Then trivially all the d edges of S incident to Xk are in K. But as 
these edges are also edges of P (as we have proved above), and the number of 
edges of P incident to Xk equals d by Theorem 12.12, it follows that all edges 
of P incident to X k are in K. Application of Theorem 11.6 next shows that K 
is also a supporting halfspace of P. Hence, every supporting halfspace of S 
also supports P. Since S is the intersection of its supporting halfspaces, cf. 
Theorem 4.5, it follows that PeS. On the other hand, it is clear that S c P, 
whence P = S, showing that P is a simplex. 0 

EXERCISES 

12.1. Give a direct proof of Theorem 12.2 when X is an e-subset of the (e + I)-set 
ext S. Apply this result to prove Theorem 12.2 by induction. 

12.2. Show by counting incidences of vertices and edges that we have dfo(P) = 211 (P) 
for any simple £I-polytope P. (This relation is equivalent to the Dehn-Sommerville 
Relation corresponding to i = 1, cf. Theorem 17.1.) 

12.3. Let F be a face of a simple £I-polytope P. Show that the facets of F are the faces 
F n G such that G is a facet of P with F n G oF 0 and F ¢. G. 

12.4. Let P be an arbitrary £I-polytope, and let P' be a £I-polytope obtained by successive 
truncations of all the facets of P. Show that P' is simple. Verify thatfJ_ 1 (P') = 

fd-l (P) and fj(P') :::: fj(P) for j = 0, ... , £I - 2. Show that if some k-face F of P 
is contained in more than d - k facets, thenfj(P') > .fj(P) for j = 0, ... , k + 1. 

12.5. Ad-polytope P is said to be k-simplicial if each k-face of P is a simplex, and k-simple 
if each (d - I - k)-face is contained in precisely k + I facets. 

Verify the following: If P and Q are dual, then P is k-simplicial if and only if Q 
is k-simple. Every £I-polytope is O-simplicial, I-simplicial, O-simple and I-simple. 
A £I-polytope is simplicial or simple if and only if it is (£I - 1 )-simplicial or (d - 1)­
simple, respectively. If P is k-simplicial or k-simple, then P is also h-simplicial or 
h-simple. respectively, for h < k. 

Prove that if ad-polytope P is k I-simplicial and k2 -simple with k 1 + k2 :::: 
£I + I, then P is a simplex. 
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§ 13. Cyclic Polytopes 

It is easy to see that the 3-simplices are the only 3-polytopes with the property 
that any two vertices are adjacent. Surprisingly enough, the same statement 
with 3 replaced by any d ~ 4 is not true; counter-examples are provided by 
polytopes of the type to be introduced in this section. 

For d ~ 2, the moment curve AId in IRd is the curve parametrized by 

t f-+ x(t):= (t, t2 , ••• , td ), t E IR. 

This curve has the following interesting property: 

Theorem 13.1. Any hyperplane H in IRd contains at most d points from Ald' 

PROOF. Let H = H(y, IX), where 

y = (PI, ... , Pd)' 

Then x(t) E H(y, IX) if and only if 

Pit + ... + Pdtd = IX. 

By the Fundamental Theorem of Algebra there are at most d values of t 
satisfying this equation, which proves the assertion. 0 

Corollary 13.2. Let t 1, ... , t. be distinct real numbers, where n ::; d + 1. 
Then the n-family (x(t 1), ... , xCt.)) of points from IRd is affinely independent. 

PROOF. If (x(t 1), ... ,xCt.)) is affinely dependent, then all the points 
x(t 1), ... , x(t.) belong to some affine subspace A with dim A ::; n - 2. If 
n < d + 1, choose tn+ b ... , td + 1 such that ti i= tj for i,j = 1, ... , d + 1 and 
i i= j. Then x(t 1), ... , x(td+ 1) all belong to some affine subspace of dimension 
at most 

(n - 2) + (d + 1 - n) = d - 1. 

This shows in particular that x(t 1), ... , x(td + 1) all belong to some hyper­
plane, contradicting Theorem 13.1. 0 

By a cyclic polytope of type C(n, d), where n ~ d + 1 and d ~::: 2, we mean a 
polytope of the form 

where t 1 , ... , tn are distinct real numbers. 
Note that a cyclic polytope of type C(d + 1, d) is a d-simplex by Corollary 

13.2. 

Theorem 13.3. Let P = conv{x(td, ... , x(t.)} be a cyclic polytope of type 
C(n, d). Then P is ad-polytope. 
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PROOF. By Corollary 13.2, any (d + 1)-family formed by distinct points x(t;) 
is affinely independent. Therefore 

aff{x(td, ... , X(td+ 1)} = [Rd, 

implying that dim P = d. D 

Theorem 13.4. Let P = conv{x(t 1), ... , x(tn)} be a cyclic polytope of type 
C(n, d). Then 

ext P = {x(t\), ... , x(tn)}. 

PROOF. The inclusion c follows from Theorem 7.2, (a) => (b). Conversely, to 
show that x(t;) is a vertex of P, consider the polynomium pet) of degree 2 
defined by 

p(t):= -(t - t;)2 

= -tf + 2t;t - t 2 . 

Let 

y := (2t;, -1,0, ... ,0) E [Rd. 

Then 

pet) = <x(t), y) - tf. 

Since pet) ::; 0 for all t E [R, and pet) = 0 if and only if t = t;, it follows that 
K(y, tf) is a supporting halfspace of P with 

H(y, tf) n P = {x(t;)}, 

showing that x(t;) E ext P. D 

Theorem 13.5. Let P = conv{x(t 1), ... ,x(tn)} be a cyclic polytope of type 
C(n, d). Then P is simplicial. 

PROOF. Since P is ad-polytope, cf. Theorem 13.3, it suffices to show that any 
facet of P is a (d - I)-simplex, cf. Theorem 12.9. Let F be a facet of P. Then the 
vertices of F are certain of the vertices of P, say x(t;,), ... , x(t;J, cf. Theorem 
13.4. Then k ?: d, with k = d if and only if F is a (d - I)-simplex. Now, note 
that aff F is a hyperplane containing the k points x(t;), ... , x(tiJ. Theorem 
13.1 then shows that k ::; d, whence k = d, as desired. 0 

Theorem 13.5 shows that if certain k vertices of a cyclic polytope P form 
the set of vertices of a face of P, then that face must be a (k - I)-face. In the 
following we shall describe which sets of k vertices of P are the vertex sets of 
faces of P. 

We need some notation. Let 

P = conv{x(td,.··, x(tn)} 
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by a cyclic polytope of type C(n, d), and assume that 

t1 < ... < tn' 

(This, of course, is no restriction at all.) Let X be a non-empty subset of 
{x(t 1), ... , x(tn)}· By a component of X we shall mean a non-empty subset Y 
of X of the form 

Y = {x(t), x(t j + 1), ... , X(t k - 1), x(tk )} 

such that x(t j _ 1) rf. X (if j > 1) and x(tk + 1) rf. X (if k < n). A component Y is 
called a proper component if x(t 1) rf. Y and x(tn) rf. Y. A component containing 
an even (or odd) number of points is called an even (or odd) component. 

With this notation we can now handle the case k = d; the remaining 
values of k will be treated below. The condition of the theorem is known as 
Gale's Evenness Condition. 

Theorem 13.6. Let P = conv{x(t 1), •.• , x(tn)} be a cyclic polytope of type 
C(n, d), where t1 < ... < tn' Let X be a subset of{x(t 1), ... , x(tn)} containing 
d points. Then X is the set of vertices of a facet of P if and only if all proper 
components of X are even. 

PROOF. Let 
X = {x(t i ), ••• , x(t i.)}, 

and note that aff X is a hyperplane by Corollary 13.2. Then Theorem 13.1 
shows that x(t i ), ••• , x(t i.) are the only vertices of Pin aff X. Let 

d 

pet) := - n (t - t i ,). 
v= 1 

Then pet) is a polynomium of degree d, and therefore there are real numbers 
ao,a1, ... ,ad(withad = -1) such that 

pet) = ao + a1t + ... + ad td. 

Let 

Then 

pet) = <x(t), y) + ao. 

Since 

P(ti) = ... = P(ti) = 0, 
we see that 

x(ti ), ••• , x(ti ) E H(y, -aD) 

whence 

H(y, -aD) = aff X. 
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Now, saying that X is the set of vertices of some facet of P is equivalent to 
saying that there is a supporting hyperplane H of P such that 

H next P = X. 

But we have seen that H(y, - ao) is the only hyperplane containing X. There­
fore, X is the set of vertices of a facet of P if and only if H(y, - ao) supports 
P, i.e. if and only if all points from the set 

(ext P)\X = {X(t1), ... , x(tn)}\{x(ti ,), ••• , x(t i.)} 

are on the same side of H(y, - ao). 
Suppose that not all the points from (ext P)\X are on the same side of 

H(y, -aD). Then there are, in fact, x(t) and x(tk ) from (ext P)\X such that 
tj < tk , all points x(t/) with j < 1< k are in H(y, -ao), and x(t j ) and x(tk) 

are on opposite sides of H(y, -aD). Saying that x(t) and x(tk) are on opposite 
sides of H(y, -aD) is equivalent to saying that p(t) and P(tk) have opposite 
signs. Now, pet) changes sign exactly at the values t = ti" ... , tid. Therefore, 
there must be an odd number of values ti ,. between tj and tk • In other words, 
the set 

Y = {x(t j + 1), ... , x(tk _ d} 

is an odd proper component of X. This proves the "if" statement. 
To prove the "only if" statement, we reverse the argument above. In fact, 

suppose that there is an odd proper component of X, say 

Y = {x(t j + 1), ... , X(tk - 1)}· 

Then, by the definition of a proper component, x(t) and x(tk) are in 
(ext P)\X. Therefore, p(t) and P(tk) are ;60, and since pet) changes sign at 
t = tj + 1, ... ,tk - 1 when t increases from tj to tk , we see that p(t) and P(tk) 
must have opposite signs, showing that x(t j) and x(tk) are on opposite sides 
of H(y, -aD). This completes the proof. 0 

We next use Theorem 13.6 to treat the remaining values of k. 

Theorem 13.7. Let P = conv{x(t1), ... , x(tn)} be a cyclic polytope of type 
C(n, d), where t1 < ... < tn. Let X be a subset of {x(t 1), ... , x(tn)} containing 
k points, where k ::; d. Then X is the set of vertices of a (k - l)-face of P if and 
only if the number of odd proper components of X is at most d - k. 

PROOF. The set X is the set of vertices of a face of P if and only if there is a 
facet G of P such that 

X c ext G. (1) 

In fact, if X = ext F for some face F of P, then by Corollary 9.7 there is a facet 
G of P containing F, whence (1) holds. Conversely, if (1) holds for a certain 
facet G, then X = ext F for some face F of G since G is a simplex, cf. Theorems 
13.5 and 12.2; but then F is also a face of P. 
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Now, by Theorem 13.6, the existence of a facet G such that (1) holds is 
equivalent to the existence of a (d - k)-subset Z of (ext P)\X such that all 
proper components of X u Z are even. This, in turn, is clearly equivalent to 
saying that the number of odd proper components of X is at most d - k, as 
desired. D 

For small values of k, Theorem 13.7 takes the following form: 

Corollary 13.8. Let P = conv{x(t1), ... , x(tn)} be a cyclic polytope of type 
C(n, d), and let k be an integer such that 

1 S k S Ld/2J. 

Then any k of the points x(t1), ... , x(tn) are the vertices of a (k - 1)1ace of P. 
Hence, 

PROOF. As in Theorem 13.7, we assume that t1 < ... < tn' When k S Ld/2J, 
then d - k ;;::: k. Since the number of (odd proper) components of X cannot 
exceed the number of points in X, the conclusion follows immediately from 
Theorem 13.7. D 

Corollary 13.8 is really striking. It shows, for example, that for any d ;;::: 4 
there are d-polytopes P with as many vertices as desired such that any two 
vertices of P are adjacent. 

We conclude this section with the following: 

Corollary 13.9. Let P = conv{x(t1),"" x(tn)} and Q = conv{x(s1),"" x(sn)} 
be cyclic polytopes, both of type C(n, d). Then P and Q are equivalent. 

PROOF. We may assume that t1 < ... < tn and S1 < ... < Sn' For any face 
F of P with vertices x(t i ,), ••• , X(t ik), define 

cp(F) .= conv{x(si,), ... , X(Si)}' 

Theorem 13.7 then shows that cp is in fact an isomorphism from (ff(P), c:) 
onto (ff(Q), c:). D 

EXERCISES 

13.1. Use Theorem 13.6 to show that for any cyclic polytope P of type C(n, d), the 
number of facets of P is given by 

d even; 

dodd. 
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Verify that in both cases, 

/len, d) = (n - L(d + 1)/2J) + (n - L(d + 2)/2J). 
n-d n-d 

(After reading Section 18, this should be compared to the casej = 0 in Theorem 
18.2.) 

13.2. Show that if P is a cyclic polytope of type C(n, d), where d is even, then each 
vertex-figure of P is equivalent to a cyclic polytope of type C(n - I, d - 1). 

13.3. Verify that if P is a cyclic polytope of type C(n, d) such that each vertex-figure of P 
is equivalent to a cyclic polytope of type C(n - 1, d - 1), then 

n . /l(n - 1, d - 1) = d· /len, d), 

cf. Exercise 13.1. Use this to show that if d is odd and n ~ d + 2, then not every 
vertex-figure of P ;s equivalent to a cyclic polytope. 

13.4. Give a direct proof of Corollary 13.8 by expanding the idea of the proof of Theorem 
13.4. 

§14. Neighbourly Polytopes 

In Section 13 we met examples of d-polytopes P with the property that for 
certain values of k, every k-subset of ext P is the set of vertices of a face of P. 
In this section we shall study general properties of such polytopes. 

Let k be a positive integer. We shall say that ad-polytope P with at least 
k + 1 vertices is k-neighbourly if every k-subset of ext P is the vertex set 
of a proper face of P, i.e. conv X is a proper face of P for every k-subset 
X of ext P. For d 2:: 1, every d-polytope is I-neighbourlyand every d-simplex 
is k-neighbourly for all k ~ d. 

We would like to comment on the condition that P should have at 
least k + 1 vertices. If P has k vertices, then there is only one k-subset of 
ext P, namely, ext P itself; this set, however, is not the vertex set of a proper 
face. If P has fewer than k vertices, then there are no k-subsets of ext P, 
and therefore formally every k-subset of ext P is the vertex set of a proper 
face of P. So, without the condition that P should have at least k + 1 vertices, 
P would be k-neighbourly for all k > card(ext P). 

For k-neighbourliness of ad-polytope P, only k ~ d is possible. In fact, 
if k 2:: d + 1, then (assuming that P has at least k vertices) we can find a k­
subset X of ext P such that a certain (d + I)-subset of X forms an affinely 
independent (d + I)-family; the convex set spanned by X must then have 
dimension d, and therefore it cannot be the vertex set of a proper face. 
Actually, we shall prove below (cf. Corollary 14.4) that except for simplices 
only k ~ Ld/2J is possible. 

Theorem 13.5 and Corollary 13.8 imply: 

Theorem 14.1. Any cyclic polytope P of type C(n, d) is a simplicial k-neighbourly 
polytope for all k ~ Ld/2J. 
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We shall next study k-neighbourly polytopes in general. 

Theorem 14.2. Let P be a k-neighbourly d-polytope, and let 1 ~ j < k. Then 
P is also j-neighbourly. 

PROOF. Let X be any j-subset of ext P. Since 

card«ext P)\X) ~ d + 1 - j 

~ (k - j) + 1, 

we see that for any vertex x of P not in X there is a k-subset Y(x) of ext P 
with X c Y(x) and x ¢ Y(X). Let 

F := n conv Y(x). 
XE(extP)\X 

Since each conv Y(x) is a face of P, it follows that F is a face of P containing 
X, but not containing any vertex of P not in X. This shows that 

ext F = X, 

whence P is j-neighbourly. D 

Theorem 14.3. Let P be a k-neighbourly d-polytope, and let X be a subset of 
ext P containing at least k + 1 points. Then Q := con v X is also k-neighbourly. 

PROOF. Let Ybe a k-subset of ext Q = X.1t follows from the k-neighbourliness 
of P that the set conv Y is a (proper) face of P. Being a proper subset of Q, 
it must then also be a proper face of Q. D 

The next theorem has important implications. 

Theorem 14.4. Let P be a k-neighbourly d-polytope. Then every face F of P 
with 

o ~ dim F ~ 2k - 1 

is a simplex. 

PROOF. Let j := dim F. Suppose that F is not a simplex. Then F has at least 
j + 2 vertices. Let M be a (j + 2)-subset of ext F. By Radon's Theorem, 
Corollary 2.7, there are non-empty complementary subsets M J and M 2 of M 
such that 

conv M J n cony M2 #- 0. (1) 

At least one of the two sets M J and M 2 contains at most k points. In fact, if 
both contained more than k points, then we would have 

j + 2 = card M J + card M 2 ~ (k + 1) + (k + 1) 

= 2k + 2 ~ dim F + 3 

=j + 3, 
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a contradiction. We may assume that card M 1 :s;; k. Then by Theorem 14.2 
and the k-neighbourliness of P, the set conv M 1 is a proper face of P. Let H 
be a supporting hyperplane of P such that 

H n P = con v Mb 
and let 

Y E conv Ml n con v M 2 , 

cf. (1). Then, in particular, y is in H, and therefore at least one vertex of 
conv M 2 must be in H. Such a vertex must then be a vertex of conv M 1, 

which is contradicted by the fact that M 1 and M 2 are disjoint. This completes 
the proof. 0 

Corollary 14.5. Let P be a k-neighbourly d-polytope, where Ld/2J < k. Then 
P is a simplex. 

PROOF. Since Ld/2J < k implies d :s;; 2k - 1, we can apply Theorem 14.4 
withF = P. 0 

Note that, as a consequence, the only 2-neighbourly and 3-neighbourly 
3-polytopes are the 3-simplices. So, the notion of k-neighbourly d-polytopes 
is only of real interest for d ;:::: 4. 

Corollary 14.6. Let P be a (d/2)-neighbourly d-polytope, where d is even. 
Then P is simplicial. 

PROOF. Let F be a facet of P. Then dim F = d - 1 = 2k - 1 with k = d/2. 
Theorem 14.4 next shows that F is a simplex, whence P is simplicial, cf. 
Theorem 12.9. 0 

Theorem 14.7. A simple d-polytope P is a dual of a k-neighbourly polytope if 
and only if any kfacets ofP have a non-empty intersection. 

PROOF. Let Q be a dual of P. Then Q is a d-polytope by Theorem 10.3, and 
Q is simplicial by Theorem 12.10. By the duality, any k vertices of Q belong 
to a proper face of Q if and only if any k facets of P have a non-empty inter­
section. But since Q is simplicial, then any k vertices of Q belonging to a 
proper face of Q are actually the vertices of a proper face. This proves the 
statement. 0 

Theorem 14.1 and Corollary 14.5 show that except for simplices, no 
polytopes are" more neighbourly" than the cyclic polytopes. In the following, 
Ld/2J-neighbourly d-polytopes will simply be called neighbourly polytopes. 
The duals of such polytopes are called the dual neighbourly polytopes. 

There are neighbourly polytopes other than those equivalent to cyclic 
polytopes. This is trivial for 3-polytopes since every 3-polytope is neighbourly. 
However, higher-dimensional examples are known. 



*15. The Graph ofa Polytope 93 

Finally, let us remark that for odd d ~ 3 there are non-simplicial neigh­
bourly polytopes, cf. Corollary 14.6. In fact, let P be a d-pyramid in IRd whose 
basis Q is a neighbourly (d - I)-polytope. Then P is neighbourly, cf. Theorem 
7.7. On the other hand, if Q is not a simplex, then P is not simplicial. 

EXERCISES 

14.1. Let P be a k-neighbourly d-polytope. Show that each vertex-figure of Pis (k - 1)­
neighbourly. 

14.2. Show that every neighbourly d-polytope is (d - 2)-simplicial, d. Exercise 12.5. 

§15. The Graph of a Polytope 

The vertices and edges of a polytope P form in an obvious W:l)' a non-oriented 
graph which we shall denote by C§(P). (For graph-tt,coreltic notions, see 
Appendix 2.) In this section we shall obtain information about connectedness 
properties of C§(P). The proofs will be based on a technique for turning C§(P) 
into an oriented graph C§(P, w) by means of an "admissible" vector w. This 
"oriented graph technique" will also be used in later sections. 

In the following, let P be a d-polytope in IRd, where d ~ 1. A vector WE [Rd 
is said to be admissible for P if <x, w) =I <y, w) for any two vertices x and y 
of P. Geometrically, this means that no hyperplane in IRd with w as a normal 
contains more than one vertex of P. 

Concerning the existence of admissible vectors we have: 

Theorem 15.1. For any d-polytope P in [Rd, the set of admissible vectors is 
dense in [Rd, i.e. for any y E IRd and any 8 > 0 there is an admissible vector w 
with Ily - wll < 8. 

PROOF. We first remark that the union of a finite number of hyperplanes in 
IRd has no interior points. This follows by repeated application ofthe observa­
tion that for any non-empty open set 0 in IRd and any hyperplane H in [Rd, 
the set O\H is again non-empty and open. 

Now, let 

and let 

V:= {Xj - x;li,j = 1, ... , k; i #- n. 
From the remark above it follows that the open ball 

{z E IRdllly - zll < 8} 
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is not contained in the union of the hyperplanes H(v, 0), v E V. In other words, 
there is aWE ~d such that Ily - wll < e and (Xj - Xi> w) "# 0 for i"# j. This 
proves the statement. 0 

Any vector w which is admissible for P induces an orientation of the edges 
of P according to the following rule: An edge [x, y] is oriented towards x 
and away from y if 

(x, w) > (y, w). 

The oriented graph thus defined will be denoted by f'§(P, w). 
Let w be admissible for P. Calling w the "down direction," we see that 

the edges of f'§(P, w) are oriented "downwards." In the following, we shall 
maintain this terminology which enables us to state that one vertex is 
"above" or "below" some other vertex, etc. We can also speak about the 
"top" vertex and the" bottom" vertex of P. 

Given an admissible vector w for P, it is clear that the top vertex of P has 
in-valence 0 in f'§(P, w) and that the bottom vertex of P has out-valence 0 in 
f'§(P, w). We actually have: 

Theorem 15.2. In a graph f'§(P, w), the top vertex is the only vertex of P whose 
in-valance is 0, and the bottom vertex is the only vertex of P whose out-valence 
is O. 

PROOF. Let x be a vertex of P whose in-valence is O. Then all the vertices of 
P adjacent to x are below x. This implies that there is a hyperplane H with w 
as a normal such that x is above H and all the vertices adjacent to x are below 
H. Using Theorem 11.8 we then see that all vertices of P except x are below 
H, showing that x must be the top vertex. 

The statement about the bottom vertex can be proved in a similar manner, 
or by observing that when w is admissible, then - w is also admissible, and, 
moreover, the in-valence of a vertex x in f'§(P, - w) equals the out-valence of 
x in f'§(P, w). 0 

Theorem 15.3. Let P be a d-polytope in ~d, and let F be a proper face of P. 
Then there is an admissible vector w such that each vertex of F is above each 
vertex of P not in F. 

PROOF. Let H(y, oc) be a supporting hyperplane of P with H(y, oc) n P = F, 
cf. Theorem 7.5. We may assume that (x, y) ;;::: tx for all x E P. Let 

y := min{ (x', y) I x' E ext P\ext F} 
and let 

f>:= max{llx' - x"lllx' E ext P\ext F, x" E ext F}. 

Note that y > tx. Take 

e := (y - tx)/2f>. 
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Now, by Theorem 15.1 there is an admissible vector w such that Ily - wll < E. 

Let z:= y - w. Then for any x' E ext P\ext F and any x" E ext F we have 

<x' - x", w) = <x' - x", y - z) 

= <x', y) - <x", y) - <x' - x", z) 

~ y - rt - Ilx' - x"llllzll 
> y - rt - be = (y - rt)/2 

> 0, 

from where the statement follows immediately. o 

Theorem 15.4. Let P be a d-polytope in [Rd, let F be a proper face of P, and let 
M be a subset of ext F. Then there is an admissible vector w for P such that for 
any vertex x of P not in M there is a path in qj(P) joining x and the bottom 
vertex v ofqj(P, w) without entering M. 

PROOF. By Theorem 15.3 there is an admissible vector w such that each vertex 
of F is above each vertex not in F. Let x be any vertex not in M. When x is 
the bottom vertex v, there is nothing to prove. When x ¥- v, it follows from 
Theorem 15.2 that there is at least one edge going downwards from x. Let 
this edge be [x, Xl]. If Xl = v, we have a path from x to v. If Xl ¥- v, then 
Theorem 15.2 takes us one step further down. Continuing this way, we obtain 
a "descending" path joinint x and v. It remains to be shown that we can stay 
outside M. Note that once we are outside F, we are below F, and therefore 
we stay outside M from that point on. So, if we can choose the first edge 
of the path in such a manner that the edge is not an edge of F, we have the 
desired conclusion. If x is not in F, this is automatically fulfilled. If x is in F, 
we apply Corollary 11.7 to see that at least one edge of P with x as an end­
point is not in F. This completes the proof. 0 

Theorem 15.5. Let P be a d-polytope, let F be a proper face of P, and let M be 
a (possibly empty) subset of ext F. Then the subgraph of qj(P) spanned by 
(ext P)\M is connected. In particular, qj(P) is connected. 

PROOF. Denoting by r the subgraph ofqj(P) spanned by (ext P)\M, Theorem 
15.4 shows that there is a vertex v of r such that any vertex of r can be joined 
to v by a path in r. This implies that any two vertices of r can be joined by a 
path in r via v, showing that r is connected. Taking M = 0 shows that 
qj(P) is connected. 0 

Theorem 15.5 showed that qj(P) is connected. A much stronger result is the 
following: 

Theorem 15.6. Let P be a d-polytope. Then qj(P) is d-connected. 
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PROOF. It suffices to show that for any set N of d - 1 vertices of P, the sub­
graph r spanned by (ext P)\N is connected, cf. Appendix 2, Theorem A2.1. 
If there is a proper face F of P such that N c ext F, then the connectedness 
of r follows from Theorem 15.5. If no such face F exists, then-assuming 
that P c IRd-any hyperplane containing N must intersect int P. Choose 
such a hyperplane H containing at least one more vertex Xo of P. Let K 1 

and K2 be the two closed halfspaces bounded by H, and let PI := Kl n P 
and P 2 := K2 n P. Then PI and P 2 are d-polytopes, cf. Theorem 9.2. More­
over, the set F := H n P is a facet of both. The vertices of F are the vertices 
of Pin H and the I-point intersections of H and edges of P crossing H, cf. 
Theorem 11.1(b), (d). Let 

M := N u (ext F\ext P). 

Let r 1 denote the subgraph of '§(P 1) spanned by (ext P 1)\M, and let r 2 

denote the subgraph of'§(P2 ) spanned by (ext P 2)\M. Theorem 15.5 states 
that r 1 and r 2 are connected. Now, let x be any vertex of P not in N. Then 
x is a vertex ofr lor r 2 (or both); assume that x is a vertex ofr l' Then by the 
connectedness of r 1 there is a path in r 1 joining x and Xo' This is a path in 
,§(P) not entering N. Hence, any two vertices of P not in N can be joined by a 
path in ,§(P) not entering N via the vertex xo, showing that the subgraph 
of ,§(P) spanned by (ext P)\N is connected. D 

By afacet system in a polytope P we mean a non-empty set Y' of facets of 
P. Each '§(F), FEY', is then a subgraph of'§(P). The union of the subgraphs 
'§(F), FEY', is denoted by ,§(Y'). We shall say that a facet system Y' is 
connected if ,§(Y') is a connected graph. 

Theorem 15.7. Let Y' be a connected facet system in a simple d-polytope P, 
where d ~ 2. Then ,§(Y') is a (d - I)-connected graph. 

PROOF. We prove the statement by induction on the number n of members 
of Y'. For n = 1, the statement follows immediately from Theorem 15.6. 
For n ~ 2, we may number the members F b ... , F n of Y' in such a manner 
that the subsystem Y" formed by F 1, ... , F n- 1 is also connected. (Take F 1 

arbitrary, use the connectedness of Y' to find F 2 such that {F 1, F 2} is 
connected, use the connectedness of Y' to find F 3 such that {F 1, F 2, F 3} is 
connected, etc.). Then use the induction hypothesis to deduce that ,§(Y") is 
(d - I)-connected. Now, by the connectedness of Y' there is an F j with 
j s n - 1 such that F j n Fn #- 0. It then follows from Theorem 12.14 that 
F j n Fn is a (d - 2)-face of P. Therefore, F j and Fn have at least d - 1 
vertices in common. Hence, the graphs ,§(Y") and '§(Fn) have at least d - 1 
vertices in common. Since both graphs are (d - I)-connected, it follows that 
their union, i.e. <;§(Y'), is (d - I)-connected, cf. Appendix 2, Theorem A2.2. 

D 
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EXERCISES 

15.1. A semi-shelling of ad-polytope P is a numbering F l' F 2, ... , F k of the facets of P 
such that for i = 2, ... , k, the set 

i-I 

Fi rl U Fj 
j~ 1 

(1) 

is a non-empty union of (d - 2)-faces of Fi • Show by a duality argument that every 
d-polytope admits semi-shellings. 

Verify that any facet can be taken as F l' Verify that the facets containing a given 
face can be taken to precede all the remaining facets. 

(A semi-shelling is a shelling if, in addition, for i = 2, ... , k - 1 the set (1) is 
homeomorphic to a (d - 2)-ball. If P is simplicial, then this condition is auto­
matically fulfilled.) 

15.2. A graph is said to be planar if, loosely speaking, it can be drawn in the plane with 
non-intersecting (not necessarily rectilinear) edges. Show that the graph <§(P) of 
any 3-polytope P is planar. (Along with Theorem 15.6, this proves the easy part of 
Steillitz's Theorem: A graph r is (isomorphic to) the graph <§(P) of a 3-polytope P 
if and only if it is planar and 3-connected.) 



CHAPTER 3 

Combinatorial Theory 
of Convex Polytopes 

§16. Euler's Relation 

At the beginning of Section 10 it was indicated that the combinatorial theory 
of convex polytopes may be described as the study of their face-lattices. When 
it comes to reality, however, this description is too ambitious. Instead, we 
shall describe the combinatorial theory as the study ofJ-vectors. For d ;::: 1, 
the J-vector of ad-polytope P is the d-tuple 

J(P) = (fO(P)J1(P), ... Jd-1(P». 

where liP) denotes the number of j-faces of P, cf. Section 10. Equivalent 
polytopes have the same J-vector, but the converse is not true in general. 

It may be said that the basic problem is as follows: Which d-tuples of 
positive integers are the J-vectors of d-polytopes? Denoting by ~ the set of 
all d-polytopes and by J(~) the set of allJ-vectors of d-polytopes, the problem 
amounts to determining the subsetJ(~) of [Rd. This problem has only been 
solved completely for d ~ 3, the cases d = 1,2 being trivial. 

In this section we shall determine the affine hull affJ(&1Jd) of the setJ(&1Jd). 
This partial solution to the basic problem is a main general result in the area. 

We first prove that there is a linear relation which is satisfied by the 
numbers./j(P),j = 0, ... , d - 1, for any d-poJytope P. For technical reasons, 
we prefer to include the numbersJ_1(P) = 1 andJiP) = 1. The relation is 
known as Euler's Relation: 

Theorem 16.1. For any d-po[ytope P one has 
d 

L: (-I)1j(P) = O. 
j~ -1 
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Note that Euler's Relation may also be written as 
d 

. L ( -l)iJ'/P) = 1, 
j=O 

or 
d-I 

L ( -l)l,{P) = 1 - ( _l)d 
j=O 

= 1 + ( - l)d - I. 

Since./j(P) = ° whenj > d = dim P, we may also write 

L (-I)iJiP) = 0, 
j~ -I 

thus avoiding reference to the dimension of P. 
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PROOF. We use induction on d. For d = 0, 1 there is nothing to prove and 
for d = 2 the statement is obvious. So, let d be at least 3, assume that the state­
ment is valid for all polytopes of dimension:::; d - 1, and let P be a d­
polytope. Assuming that P c IRd, we choose an admissible vector w for P, 
cf. Theorem 15.1. Let XI' ... , Xn be the vertices of P, numbered such that 

i = 1, ... , n - 1. 

Calling w the down direction as we did in Section 15, this means that Xi+ I is 
below Xi' Let 

i = 1, ... , n. 

Noting that !X2i-1 < !X2i+ I, we next choose !X2i such that 

i = 1, ... , n - 1, 

and define 

k = 1, ... , 2n - 1. 

Then the Hk'S form a collection of parallel hyperplanes with Hk+1 below Hk 

such that the H k'S with odd values of k pass through the vertices of P. Let 

k = 1, ... , 2n - 1. 

Then Pk is a (d - I)-polytope for k = 2, ... , 2n - 2, whereas PI = {xd 
and P 2n-1 = {xn}. By the induction hypothesis, Euler's Relation is valid for 
the polytopes Pk , whence 

k = 1, ... ,2n - 1. 
j~ -I 

Multiplying by ( _1)k+ I and adding, we get 
2n- I 

L (_1)k+ I L (-I)jfj(Pk) = 0, 
k=1 j:;'-I 
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which we may rewrite as 

2n- 1 

L (-I)j+ 1 L (-IHj(Pk) = O. 
j~-l k=l 

We shall prove that 

j = -1; 

j = 0; 
j= I, ... ,d-l. 

Combining (1) and (2), we obtain the desired relation. 

(1) 

(2) 

To prove (2) for j = -1, note that f- 1 (Pk) = 1 for all k, whence the left­
hand side is an alternating sum of the form -1 + 1 - ... + 1 - 1, which has 
the value - 1. 

To prove (2) for j 2::: 0, we define for FE ff(P) and k = 1, ... , 2n - 1, 

tf;(F k):= {I if Hk 11 ri F #- 0; 
, 0 if Hk 11 ri F = 0. 

Furthermore, we denote by ~(P) the set of j-faces of P. 
Let us first consider the case 1 s j s d - 1. Here a j-face of P has at 

least two vertices, and since each Hk contains at most one vertex of P, it 
follows that no j-face of Pk is a face of P. Theorem 11.1(d) then shows that 
for eachj-face F' of Pk there is a unique face F of P such that F' = Hk 11 F, 
and this face F is a U + I)-face. Under these circumstances, it is clear that 
Hk 11 ri F #- 0. Conversely, if F is a U + I)-face of P with Hk 11 ri F #-
0, then F':= Hk 11 F is a j-face of Pk , cf. Theorem 1 1.1 (b). In conclusion, 
for fixed j and k, the mapping 

F f--T F':= Hk 11 F 

is a one-to-one mapping from the set of U + I)-faces F of P with tf;(F, k) = 
1 onto the set of j-faces of P k. Therefore, 

L tf;(F, k). (3) 

Having established (3), we may rewrite the left-hand side of (2): 

2n-l 2n-l 

L (-l)kf/Pk) = L (_l)k L tf;(F, k) 
k=l k=l Fe'?j+dP) 

2n-l 

L L (-lltf;(F, k). (4) 
FE .9'J + ,(P) k = 1 

Now, let us consider a fixed U + I)-face F of P. Let Xi, be the top vertex of F, 
and let x i2 be the bottom vertex of F. Then the values of k such that tf;(F, k) = 1 
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are the values k = 2i1 , 2i1 + 1, ... , 2i2 - 3, 2i2 - 2. Here the number of 
even values is 1 larger than the number of odd values, whence 

2n-1 

L (-llljJ(F, k) = 1. (5) 
k= 1 

Combining (4) and (5) we then get 
2n-1 

L (-I)kIiPk) = L 1 
k= 1 FE9'j+ ,(P) 

proving (2) for 1 ~ j ~ d - 1. 
The case j = 0 requires a little more care. For k even, Ilk contains no 

vertex of P. It then follows that for k even, no O-face of Pk is a face of P. We 
can then argue as above and we obtain 

k even. (6) 

For k odd, the situation is slightly different. In this case, Ilk contains one 
vertex of P which is then also a vertex of Pk • For the remaining vertices of Pk 

we can next argue as above, thus obtaining 

Io(Pk) = L ljJ(F, k) + 1, kodd. 
FE9',(P) 

Using (6) and (7), the left-hand side of (2) may be rewritten as 
2n-1 2n-1 2n-1 

L (-l)%(Pk) = L (_I)k L ljJ(F,k)+ L (_I)k 
k= 1 k= 1 FE9',(P) k= 1 

kodd 

2n-1 

(7) 

L L (-I)kljJ(F, k) - Io(P), (8) 
FE9',(P) k=1 

where we have used the fact that the number of odd values of k equalsIo(P). 
We next argue as in the case 1 ~ j ~ d - 1 to obtain 

2n-1 

L (-llljJ(F, k) = 1 
k=1 

for any FE§" 1 (P). Combining (8) and (9) we then get 
2n-1 

L (-1)%{Pk ) = L 1 - fo{P) 
k=1 FE9',(P) 

= I1 (P) - fo(P), 

proving (2) for j = O. This completes the proof. 

Now, for d ~ 1 let 

(9) 

D 
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Then H(s, 1 - (_l)d) is a hyperplane in IRd which we shall call the Euler 
Hyperplane. Note that 0 E H(s, 1 - (_l)d) if and only if d is even. Theorem 
16.1 shows thatf(g>d) is contained in the Euler Hyperplane. We shall prove: 

Theorem 16.2. The Euler Hyperplane H(s, 1 - (_l)d) is the only hyperplane 
in IRd which contains f(g>d). 

PROOF. We use induction on d. For d = 1, 2, the statement is obvious. So, 
let d be at least 3 and assume that the statement holds for all dimensions 
:s d - 1. Let H = H(y, O() be any hyperplane in IRd such that[(g>d) c H(y, a). 
We shall prove that H(y, O() = H(s, 1 - ( _1)d) by showing that there is a real 
c "# 0 such that y = C[; and a = c(1 - ( _1)d). 

Let Q be any (d - 1)-polytope, and let Q' be an equivalent of Q in IRd. 
Let PI be a d-pyramid in IRd with Q' as a basis, and let P z be a d-bipyramid 
with Q' as a basis. We can expressf(P 1 ) andf(Pz) in terms off(Q') = f(Q). 
In fact, it follows from Theorem 7.7 that 

f(P 1 ) = (fo(Q) + l,Jl(Q) + fo(Q),··· ,Jd-iQ) + fd-3(Q), 1 + fd-iQ», 

and it follows from Theorem 7.8 that 

f(P z) = (fo(Q) + 2,Jl(Q) + 2fo(Q), ... ,Jd-iQ) + 2fd-3(Q), 2fd-Z(Q»· 

Now, writing 

we have 

O(I(fO(Q) + 1) + 0(2(f1(Q) + fo(Q» + ... 

... +O(d-l(fd-2(Q) + fd-3(Q» + (ld(l + fd-2(Q» =0( (10) 

sincef(P I) E H(y, O(), and we have 

O(l(fO(Q) + 2) + a2(flCQ) + 2foCQ» + ... 

. " + ad- l(fd-2CQ) + 2fd-3(Q» +O(d 2fd-2(Q) = a (11) 

sincef(p 2) E H(y, a). Subtraction of (10) from (11) yields 

a l +0(2foCQ) + ... + O(d-dd-3CQ) + aifd-2(Q) - 1) = O. (12) 

We reqrite (12) as 

0(2fo(Q) + 0(3flCQ) + ... + O(d-lj~-iQ) + adfd-iQ) = ad - a l · (13) 

Letting 

it follows from (13) that 

(14) 
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Since y =F 0 by assumption, we have IX j =F 0 for at least one j = 1, ... , d. But 
then also IXj =F 0 for at least onej = 2, ... , d, implying that H(z, IXd - 1X 1) is a 
hyperplane in IRd- 1. As Q is arbitrary, we see that H(z, IXd - 1X1) is a hyper­
plane in IRd - 1 containingf(~-l), cf. (14). By the induction hypothesis, this 
implies that 

and 

IXd - 1X1 = 1'(1 - ( _1)d-1) 

for a suitable l' =F O. Taking e'= - 1', we then see that y = ee and IX = 
e(l - ( _l)d), as desired. 0 

An immediate consequence of Theorems 16.1 and 16.2 is the following 
main result: 

Corollary 16.3. The affine hull afff(~) of f(~) is the Euler Hyperplane 
H(e, 1 - (_l)d). 

We conclude this section with a variant of Euler's Relation. For faces 
F 1 and F 2 of ad-polytope P with FIe F 2 we shall write f~F 2/F 1) for the 
number of j-faces F of P such that FIe F c F 2' Note that jj(F 2/F 1) = 0 
for -1 S j < dim F 1 and for dim F 2 < j. We shall establish a linear relation 
between the numbers jj(F 2/F 1) when F 1 ~ F 2' 

Theorem 16.4. Let F 1 and F 2 be faces of a polytope P with F 1 ~ F 2' Then 

L (-l)iJj(F 2/F d = O. 
j", -1 

PROOF . We know by Theorem 11.4 that there is a polytope Q with 

dim Q = dim F 2 - 1 - dim F 1 

such that the lattice (ff(F 2/F 1), c) is isomorphic to the face-lattice (ff(Q), c), 
and, moreover, 

dim G = dim F - 1 - dim F 1 

when FIe F c F 2 and G is the face of Q corresponding to F. In particular, 

when 

k = j - 1 - dim Fl' 

Euler's Relation for Q may be written as 

L (-I)~MQ) = O. 
k", -1 

(15) 
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Using (15), we next obtain 

L (-1)j-1-dimF1iF2/F1) = 0, 
j2! -1 

which is clearly equivalent to the desired relation. o 

Of course, in Theorem 16.4 we recover Euler's Relation by taking F 1 = 0 
and F2 = P. 

§ 17. The Dehn-Sommerville Relations 

In the preceding section we showed that the affine hull off(qJd) has dimension 
d - 1. Denoting by ~ the set of all simple d-polytopes, and by f(~) the 
set of allf-vectors of simple d-polytopes, we shall prove that the dimension 
of afff(~) is only Ld/2J Moreover, we shall find "representations" of 
afff(~)· 

(There is no standard notation for the set of simple d-polytopes. Our 
notation ~ is inspired by the standard notation ~ for the set of simplicial 
d-polytopes.) 

We first exhibit a set of linear relations which are satisfied by thef-vectors 
of all simple d-polytopes. These relations are known as the Dehn-Sommerville 
Relations: 

Theorem 17.1. For any simple d-polytope P we have 

it ( -l)i(~ = ~)Jj(P) = fi(P) 

for i = 0, ... , d. 

Note that, effectively, we only sum from j = 0 to j = i. For i = d we get 
Euler's Relation. For i = 0 we get the trivial reJationfo(P) = fo(P). 

For d ~ 2, everything is trivial. For d = 3, the relations are 

fo{P) 

3fo{P) - f1 (P) 

= fo{P), 

= f1(P), 

3fo(P) - 2f1 (P) + f2(P) = f2(P), 

fo(P) - f1 (P) + f2(P) - 1 = 1. 

These four relations are equivalent to the following two: 

3fo(P) - 2f1 (P) = 0, 

fo(P) - f1 (P) + f2(P) = 2. 
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It is interesting to note that if one of the three numbers fO(P)J1 (P), and fiP) 
is known, then the remaining two are determined by the Dehn-Sommerville 
Relations. In particular, we can expressfo(P) andf1(P) by fiP): 

fo(P) = 2fiP) - 4, f1 (P) = 3f2(P) - 6. 

(See Theorem 17.6 and Corollary 17.7 below for a d-dimensional version.) 

PROOF. For any non-empty face F of P, Euler's Relation states that 

L (-I)~(F) = O. (1) 
j2!: -1 

Using the notation ,9F;(P) for the set of i-faces of P as we did in the proof of 
Euler's Relation, it follows immediately from (1) that for i = 0, ... ,d we have 

L L (-I)~(F) = 0, 
Fe",(P) j2!:-1 

or, equivalently, 

L (-I)j L fj(F) = O. (2) 
j2!: -1 Fe",(P) 

The value of the sum 

L Jj(F) 
Fe",(P) 

is the number of pairs (G, F) of faces of P such that dim G = j, dim F = i 
and G c F. Therefore, 

L Jj(F) = L j;(P/G). (3) 
Fe",(P) Ge"j(P) 

For dim G = j 2 0, the number j;(P/G) was determined in Theorem 12.16; 
in fact, we showed that 

( d - j) 
j;(P/G) = d _ i . (4) 

Note that for i <j $; d,both sides of (4) are 0, and so (4) is valid forO $;j $; d. 
For dim G = j = -1, it is clear that 

j;(P/G) = j;(P). (5) 

Combining now (2), (3), (4), and (5), we get the desired relation. 0 

As mentioned in the beginning, we aim to show that the dimension of 
afff(~) is Ld/2J. It will follow from Theorem 17.1 that the dimension is at 
most Ld/2J. To see that it is at least Ld/2J, we need the lemma below. To ease 
the notation, we shall write 

m:= L(d - 1)/2J, 

Note that d = m + n + 1. 

n:= Ld/2J. 
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Lemma 17.2. For i = 0, ... , n, let Pi be a cyclic polytope of type C(p + i, d) 
for some fixed p ~ d + 1. Then the J-vectors f(Pi), i = 0, ... , n, form an 
affinely independent family in [Rd. 

PROOF. TheJ-vector of Pi has the form 

f(P,) ~ ((p 7 i) •...• (p : i).f.(PJ •.. JH(P,)} 

cf. Theorem 13.5 and Corollary 13.8. Saying that the f(Pi),s are affinely 
independent is equivalent to saying that the J(P;),s defined by 

/(P J ,~ (1. (p 7 '). ... , (" : i),f.(p,). . . • f., - ,(P,)). 

are linearly independent. In terms of matrices, this is equivalent to saying 
that the (n + 1) x (d + 1) matrix whose rows are formed by the J(P)'s has 
rank n + 1. Consider the submatrix A formed by the first n + 1 columns, i.e. 

A := ((P + i)) . 
j i=O, ... ,n;j=O, ... ,n 

We shall complete the proof by showing that A is invertible. Let 

and let 

C := AB = (c. ')·-0 . ·-0 . l) 1- , ... ,n,J- •...• n 

Then 

Cij = £ (p + i)(-P + j) = (i + j), 
k=O k n - k n 

cf. Appendix 3, (7). Hence, C has only 1 's in the" skew diagonal" (i.e. the 
positions (i,j) with i + j = n) and only o's above. Therefore, 

Idet CI = 1, 

implying that A is invertible. o 

It is easy to prove by induction on n that the matrix A in the proof above 
has determinant 1. Hence, one can prove that A is invertible without referring 
to Appendix 3, (7), if desired. 

We shall next prove: 

Theorem 17.3. The affine hull afff(&'~) off(~) has dimension Ld/2j. 

PROOF. Consider the system of d + 1 (homogeneous) linear equations 

d .(d _ j) I (_1)1 d . Xj = xi> 
j=o - I 

i = 0, ... , d, (6) 
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with unknowns Xo , ... , Xd-l' Xd' Assigning the value 1 to Xd we obtain a 
system of d + 1 linear equations with d unknowns Xo, ... , Xd-l' (Note that 
for d odd, the equation corresponding to i = d is inhomogeneous.) Theorem 
17.1 tells that for each polytope P E~, 

(xo, ... , Xd-l) = (Jo(P), ... ,Jd- 1 (P» 

is a solution. In other words, denoting the set of solutions by S, we have 
f(~) c: S, whence 

afff(~) c: aff S = S, 

and so 

dim(afff(~» ~ dim S. 

Now, it is easy to see that the equations (6) corresponding to odd values of i 
are independent. Since the number of odd values of i is m + 1, it follows that 

dim S ~ d - (m + 1) 
= n, 

implying that 

dim(afff(~» ~ n. 

To prove the converse, we apply Lemma 17.2. Let P; be as described there, 
and let Q; be a dual of Pi' i = 0, ... , n. Thenf(Q;) Ef(~) by Theotems 13.5 
and 12.10. Moreover, since the f(P;),s are affinely independent, cf. Lemma 
17.2, it follows that the f(Q;)'s are affinely independent. The number of 
f(Q;)'s is n + 1, and therefore the dimension of afff(PJ~) is at least n. This 
completes the proof. 0 

For i = 0, ... , d, let H; denote the set of points (xo, ... , Xd _ 1) E [Rd such 
that 

d (d') L (-1)j d - ~ Xj = X;, 
j=O - I 

where, as in the proof above, it is understood that Xd = 1. Then H 0 = [Rd, 

and for i ~ 1, each H; is a hyperplane in [Rd. During the proof above, we 
showed that 

d d 

n = dim n H; ~ dim n Hi ~ dim(aff f(~» ;;0: n. 
;=0 ;=0 
iodd 

We also have 
d d 

afff(PJ~) c: n H; c: n Hi, 
;=0 i=O 

;odd 
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and we can therefore conclude that 
d d 

afff(~) = n Hi = n Hi· 
i=O i=O 

iodd 

Thus, we have obtained "representations" of afff(gtl~) as intersections of 
families of hyperplanes. (Since Ho = [Rd, this set can be omitted.) Actually, 
the "representation" of afff(gtl~) as the intersection of the odd-numbered 
H;'s is "minimal" in the sense that it includes the smallest possible number of 
hyperplanes. In the following, we shall establish other such "representations." 
We shall, however, prefer to formulate the results in terms oflinear equations, 
rather than using a geometric terminology. 

A system of linear equations with d unknowns xo , ... , Xd _ 1 will be called 
a Dehn-Sommerville System for the simple d-polytopes if its set of solutions is 
precisely afff(~). A Dehn-Sommerville System containing a minimal 
number of equations is said to be minimal. It follows from Theorem 17.3 that 
this minimal number is 

d - Ld/2J = L(d + 1)/2J. 

Any subsystem of a Dehn-Sommerville System which is formed by 
L(d + 1)/2J independent equations is necessarily again a Dehn-Sommerville 
System (and hence minimal). 

It follows immediately from the remarks above that we have: 

Theorem 17.4. The equations 

d .(d - j) 
I(-l»)d .Xj=Xi' 

j=O - I 
i = 0, ... ,d, 

where Xd = l,form a Dehn-Sommerville System. The equations corresponding 
to odd values ofiform a minimal Dehn-Sommerville System. 

In dealing with Dehn-Sommerville Systems it is convenient to use matrix 
notation. We shall write 

where it is always understood that Xd = 1. If we let A be the (d + 1) x (d + 1) 

matrix defined by A'~ (Hl'(~ =~) )'~",,"j~",,' 
then we may write the Dehn-Sommerville System of Theorem 17.4 as 

Ax = x. (7) 
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Now, once we know this Dehn-Sommerville System, it is easy to produce 
new ones: any system obtained from (7) by multiplying from the left on both 
sides by an invertible matrix will again be a Dehn-Sommerville System. We 
shall apply this procedure below. 

Theorem 17.5. The equations 

± (-l)j(~)Xj = ± ( _1)d+ j( j .)Xj' 
j=O 1 j=O d - 1 

i = 0, ... ,d, 

where Xd = l,Jorm a Dehn-Sommerville System. The equations corresponding 
to the values i = 0, ... , mform a minimal Dehn-Sommerville System. 

PROOF. Let B be the (d + 1) x (d + 1) matrix defined by 

B:= ( -lY+ j(~)) . 
1 i=O ..... d;j=O ..... d 

Note that B is invertible, cf. Appendix 3, (11). Since x = Ax is a Dehn­
Sommerville System, it follows that 

Bx = BAx (8) 

is also a Dehn-Sommerville System. Except for the factor (-lY, the ith 
entry on the left-hand side of(8) is the left-hand side of the ith equation in the 
theorem. In order to evaluate the right-hand side of (8), we first calculate the 
element of BA in the ith row and jth column. This element is 

I (_lY+k(~)( _ly(d - j) = (-lY+ j I (_l)k(~)('d - j) 
k=O 1 d - k k=O 1 d - k 

= (-lY+ j(-l)d(d ~ J 
where we have used Appendix 3, (12). Then the ith entry on the right-hand 
side of (8) becomes 

± (-lY+ j+d( j .)Xj = ( _l)i ± ( _l)d+ j( j .')Xj' 
j=O d - 1 j=O d - I, 

which - except for the factor ( -l)i-is the right-hand side of the ith equa­
tion. This completes the proof of the first statement. 

To see that the first m + 1 equations form a minimal Dehn-Sommerville 
System, if suffices to show that they are independent. We have proved above 
that-except for the factor (-l)i-the equations of the theorem may be 
written as 

Bx = BAx. 

We rewrite this as 

(B - BA)x = 0, 
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where 0 on the right-hand side denotes the (d + 1) x 1 zero matrix. Now, 
note that the calculation above shows that the element of BA in the ith row 
and jth column is 0 for i, j ::; m. In other words, the (m + 1) x (m + 1) 
submatrix of B - BA in the upper-left corner is the matrix 

This matrix, however, is invertible, cf. Appendix 3, (11), and therefore the 
first m + 1 equations are independent. D 

Theorem 17.6. The equations 

Xi = ± (_I)j(m + ? + j)(m - i ~ j)Xm +1+ j 
j=O I m - I 

+ (-l)'J, (-l){t, (-ll'(~)(m ; ~ : j))xmw j. 

where Xd = l,form a minimal Dehn-Sommerville System. 

PROOF. Let B2 be the (m + 1) x (d + 1) matrix defined by 

B2 := (( -lY+ j(~)) 
I i=O, ... ,m;j=O, ... ,d 

and let C be the (m + 1) x (d + 1) matrix defined by 

C:= (( _1)d+i+ j( j .)) . 
. d - I i=O, ... ,m;j=O,., .• d 

i = 0, ... , m, 

Then the minimal Dehn-Sommerville System of Theorem 17.5 may be 
written as 

B 2 x = Cx. (9) 

Let Bo and Bl be the submatrices of B2 formed by the first m + 1 and the 
last (d + 1) - (m + 1) = n + 1 columns of B2 , respectively. (Then Bo 
denotes the same matrix as in the proof of Theorem 17.6.) In a similar way, 
let Co and C 1 denote the submatrices of C formed by the first m + 1 and the 
last n + 1 columns of C, respectively. Then we may rewrite (9) as 

(10) 

Now, note that Co is a zero matrix, whence Bo - Co = Bo. Let 

((j)) Do:= . . 
'. I . i=O, ... ,m;j=O,., .• m 
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Then Do is in fact the inverse of Bo, cf. Appendix 3, (11). Therefore, multiplica­
tion by Do in (10) gives the new minimal Dehn-Sommerville System 

elDO(e, -B{T) 
To see that this is the system in the theorem, we calculate the elements of 
Do( C 1 - B 1)' Note first that 

C1 - B1 = 

( _It+i+j(m + ~ :- j) + (_l)m+i+ j(m + .1 + j)). . . 
d I I '''O ..... m;j=O ..... n 

Then the element of Do(C1 - B 1) in the ith row andjth column is 

= (_l)j(m + .1 + j)(m - i -: j) + f (_l)n+k+ j(~)(m + 1 + j), 
I m - I k=O I d - k 

cf. Appendix 3, (10). From this the statement follows immediately. 0 

We note an interesting corollary of Theorem 17.6: 

Corollary 17.7. Let P be a simple d-polytope. Then the numbersfo(P), . .. ,fm(P) 
are determined uniquely by the numbersfm+1(P), ... ,fd-1(P), 

Of course, all the preceding results have dual counterparts for simplicial 
polytopes. We only mention the dual of Theorem 17.1, the Dehn-Sommer­
ville Relations for the simplicial d-polytopes: 

Corollary 17.8. For any simplicial d-polytope P we have 

dI,1 (_1)d-1-j(~ + 1)np) =fi(P) 
j= -1 I + 1 

for i = - 1, ... , d - 1 

For an entirely different approach to the Dehn-Sommerville Relations, 
see the remark at the end of Section 18. 
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§18. The Upper Bound Theorem 

In this section we shall answer the following question: What is the largest 
number of vertices, edges, etc. of a simple d-polytope, d ~ 3, with a given 
number of facets? Moreover, we shall find out which polytopes have the 
largest number of vertices, edges, etc. The result which is known as the Upper 
Bound Theorem is a main achievement in the modern theory of convex 
polytopes; it was proved by McMullen in 1970. 

Let us begin by noting that all simple 3-polytopes with a given number of 
facets have the same number of vertices and the same number of edges; 
this follows from the" reformulation" of the Dehn-SommervilIe Relations 
mentioned at the beginning of Section 17: 

(1) 

So, the following is only of significance for d ~ 4. 
Recall from Section 14 that for any simplicial neighbourly d-polytope 

P with p vertices we have 

fj(P) = C: I} j = 1, ... , n - 1. 

(As in Section 17, we write m:= L(d - 1)/2J and n:= Ld/2J) Moreover, for 
these values of j, no simplicial d-polytope with p vertices can have a larger 
number ofj-faces. So, for 1 :-:; j :-:; n - 1, the least upper bound for the num­
ber of j-faces of simplicial d-polytopes with p vertices equals 

and this upper bound is attained by the neighbourly polytopes. Conversely, 
if P is a simplicial non-neighbourly d-polytope with p vertices, then 

Jj(P) < C: 1) 
for j = n - 1, and possibly also for smaller values of j. 

In the dual setting, the discussion above shows that for m + 1 :-:; j :-:; d - 2, 
the least upper bound for the number of j-faces of a simple d-polytope with 
p facets equals 

and that this upper bound is attained by the dual neighbourly polytopes; 
moreover, if P is a simple d-polytope with p facets which is not dual neigh­
bourly, then 

Jj(P) < C ~ J 
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for j = m + 1, and possibly also for larger values of j. The main result of 
this section includes these statements. 

In order to state the main result, we define for j ~ 0 

<1>id, p):= ± (i.)(P - d ~ i-I) + i (d -:- i)(P - d -: i-I). (2) 
i=O } I i=O} I 

With this notation the Upper Bound Theorem may be stated as follows: 

Theorem 18.1. For any simple d-polytope P with pfacets we have 

Jj(P) ~ <1>id,p), j = 0, ... ,d - 2. 

If P is dual neighbourly, then 

fiP) = <1>id, p), j = 0, ... , d - 2. 

If P is not dual neighbourly, then 

Jj(P) < <1>id, p), j = 0, ... , m + 1, 

(and possibly also for larger values ofj). 

It is easy to verify that Theorem 18.1 holds for d = 3. Recall that any 
3-polytope is neighbourly, and therefore any 3-polytope is also dual neigh­
bourly. So, for d = 3 the statement of the theorem amounts to saying that 
for any simple 3-polytope P with p facets we have fo(P) == <1>0(3, p) and 
fl(P) = <1>1(3, p). Noting that <1>0(3, p) = 2p - 4 and <1>1(3, p) = 3p - 6, this 
follows immediately from (1). 

Since<1>d_l(d,p) = pand<1>Jd,p) = l,thefirst two statements of Theorem 
18.1 also hold for j = d - 1 and j = d. The proof below actually covers 
these values of j. 

The discussion preceding Theorem 18.1 shows that we must have 

<1>#, p) = (d ~ J, j = m + 1, ... , d - 2. 

We shall return to this matter after the proof of Theorem 18.1. 
Let us also remark that Theorem 18.1 shows that the dual neighbourly 

polytopes are remarkably well equipped with faces: Among all simple 
d-polytopes with p facets, any dual neighbourly has the largest possible 
number of j-faces for all values of j between ° and d - 2. 

Finally, let us remark that the upper bound inequality fj(P) ~ <1>id, p) 
actually holds for any (i.e. not necessarily simple) d-polytope P with p 
facets; this is due to the fact that for any d-polytope P then: is a simple d­
polytope P' with the same number of facets as P and as least as many j-faces 
for ° ~ j ~ d - 2, cf. Exercise 12.4. 

PROOF. The proof is divided into three parts. In Part A we shall introduce 
certain numbers glP) associated with a simple d-polytope P. In Part B we 
shall obtain relations between the numbers gi(P) and the corresponding 
numbers glF) for facets F of P. Finally, in Part C we shall combine the results 
of Part A and Part B to obtain the desired conclusions. 
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A. In the following, let P be a simple d-polytope in [Rd, and let w be any 
vector in [Rd which is admissible for P, cf. Theorem 15.1. As described in 
Section 15, the vector w turns the non-oriented graph <;§(P) into an oriented 
graph <;§(P, w). (For graph-theoretic notions, see Appendix 2.) The following 
is an immediate consequence of Theorem 12.12: 

(a) For each vertex x of P, the sum of the in-valence ofx and the out-valence 
of x equals d. 

We shall need some more definitions. A k-star, k = 0, ... , d, is a set formed 
by a vertex x of P and k edges of P incident to x; the vertex x is called the 
centre of the k-star. A k-star whose edges are all oriented towards the centre 
is called a k-in-star, and a k-star whose edges are all oriented away from the 
centre is called a k-out-star. 

There is a close relationship between k-faces and k-in-stars (or k-out-stars): 

(b) Let x be the centre of a k-in-star, and let F be the smallest face of P con­
taining the k-in-star. Then F is a kjace, F is the only kjace containing the 
k-in-star, and x is the bottom vertex of F. The same statement with k-in-star 
replaced by k-out-star and bottom vertex replaced by top vertex is also 
valid. 

To prove (b), we first note that F is a k-face by Theorem 12.17(a). Any other 
face containing the k-in-star must therefore have dimension> k, cr. Corollary 
5.5. To see that x is the bottom vertex of F, note that the only vertices of F 
adjacent to x are the endpoints Xl' ... , X k of the edges [x, Xl], ... , [x, x k] 

belonging to the k-in-star; this follows from Theorem 12.17(b). This implies 
that x is separated from the vertices of F adjacent to x by a suitable "hori­
zontal" hyperplane H. Theorem 11.8, applied to F, then shows that x is 
the bottom vertex of F. For k-out-stars the statement is proved in a similar 
way. 

We shall next use (b) to prove the following: 

(c) The number Jj(P) ofjjaces of P equals the number ofj-in-stars,j = 0, ... ,d. 

We shall prove (c) by showing that each j-face contains one and only one 
j-in-star, and eachj-in-star is contained in somej-face. Let F be aj-face. Then 
each vertex of F is the centre of a unique j-star in F; this follows from Theorems 
12.15 and 12.12. The particular j-star whose centre is the bottom vertex of F 
is clearly a j-in-star. On the other hand, the centre of any other j-in-star in F 
must also be the bottom vertex of F by (b). Hence F contains precisely one 
j-in-star. Finally, it follows immediately from (b) that each j-in-star in P is 
contained in some (in fact, a unique) j-face of P. This completes the proof 
of (c). 

Now, for i = 0, ... , d, let gi(P) denote the number of vertices of P whose 
in-valence equals i. The top vertex of P has in-valence 0, and it is, in fact, the 
only vertex whose in-valence equals 0, cf. Theorem 15.2. Therefore: 

(d) go(P) = 1. 
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It follows immediately from the definitions that the number ofj-in-stars of 
P equals 

Using (c), we then obtain: 

(e) .fiCP) = ± (~)9i(P) .for j = 0, ... , d. 
i=O } 

Letting 

A:= (C) )i=O, ... ,d;j=O, ... ,d 

we can rewrite (e) as a matrix identity, 

(fo~P») = A(gO~P»). 
fiP) giP) 

Now, A is invertible. In fact, we have 

A-I = ((-ly+j(~)) , 
I i=O, ... ,d;j=O, ... ,d 

cf. Appendix 3, (11). Therefore, the matrix identity above is equivalent to 

whence 

(f) gi(P) = ± (_I)i+ j(~)jj(P) for i = 0, ... , d. 
j=O I 

In the relations (f), the right-hand sides are certainly independent of w. 
It then follows that, although the definition of the numbers glP) apparently 
depends on the particular choice of w, we actually have: 

(g) The numbers glP), i = 0, ... , d, are independent ofw. 

It is trivial that if w is admissible for P, then - w is also admissible for P. 
When one replaces w by - w, then all orientations of the edges of Pare 
reversed. In particular, vertices having in-valence i with respect to w will 
have in-valence d - i with respect to -w, cf. (a). Bearing in mind (g), it 
follows that 

(h) gi(P) = gd-i(P) for i = 0, ... , d. 
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Rewriting (e) as 

fi(P) = i (i.)gi(P) + ± (i.)glP) 
i=O } i=n+1 } 

L I. glP) + L -:- 1 gd-i(P), n (.) m (d .) 
i=O } i=O } 

it then follows using (h) that 

(i) fi(P) = L I. gi(P) + L -:- 1 glP) for j = 0, ... , d. n (') m (d ") 
i=O } i=O } 

This relation shows that the numbers fiP) can be expressed as non-negative 
linear combinations ofthe numbers gi(P) with i ranging only up to n. Actually, 
forj ~ m + 1 the coefficient of each g;(P) is >Oinat least one of the two sums 
in (i). 

B. When P is a simple d-polytope, then every facet F of P is also simple, 
cf. Theorem 12.15. Therefore, there are numbers gi(F), i = 0, ... , d - 1, 
associated with F, as defined in Part A. 

In the following, let F be a facet of a simple d-polytope P. Let w be admis­
sible for P. Then, for each vertex x of F, let the relative in-valence of x in F 
be the in-valence of x in the subgraph of~(P, w) spanned by the vertices of F; 
in other words, the relative in-valence of x is the number of edges [x, yJ of F 
oriented towards x. Now, when the vector w is admissible for P, it is also 
admissible for F. Therefore, for any vertex x of F, the in-valence of x in 
~(F, w) equals the relative in-valence of x in F. Hence: 

(j) gi(F) equals the number of vertices of F whose relative in-valence is i for 
i = 0, ... , d - 1. 

Let w be admissible for P such that each vertex of P not in F is below any 
vertex of F, cf. Theorem 15.3. Then the relative in-valence of a vertex x of F 
is simply the in-valence of x in ~(P, w). By (j), this implies 

(k) gi(F) ~ gi(P) for i = 0, ... , d - 1. 

Suppose that for some i, we have strict inequality in (k). Then there is at 
least one vertex x of P not in F such that the in-valence of x is i. Therefore, 
the out-valence of x is d - i, cf. (a). It then follows that x is the centre of a 
unique (d - i)-out-star. Let G be the smallest face of P containing this 
(d - i)-out-star. Using (b), it follows that G is a (d - i)-face, and x is the top 
vertex of G. Since x is not in F, and each vertex of F is above any vertex of P 
not in F, we see that G and F are disjoint. Now, note that G is the intersection 
of the facets containing G, cf. Theorem 1004, and the number of such facets 
equals i since P is simple. Let these facets be F 1> ••• , Fi . Then the i + 1 facets 
F, F 1, ... , Fi have an empty intersection since F and G are disjoint. By 
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Theorem 14.7, this implies that i + 1 > n, provided that P is a dual neigh­
bourly polytope. In other words: 

(I) If P is a dual neighbourly polytope, then gi(F) = g;(P)for i =, 0, ... ,n - 1. 

We remind the reader that in the preceding discussion, F is any facet of P. 
The following, therefore, is the converse of (1): 

(m) If P is not a dual neighbourly polytope, then there is afacet F of P such that 
g;(F) < gi(P)for at least one i = 0, ... , n - 1. 

To prove (m), we reverse the proof of (1). If P is not a dual neighbourly 
polytope then there is a k ~ n such that certain k facets of P, say F 1, ..• , F k' 

have an empty intersection, whereas any k - 1 facets intersect, cf. Theorem 
14.7. Let G denote the intersection of F 1, ... , F k - 1 • Then G is a face of P 
whos~ dimension equals d - (k - 1), cf. Theorem 12.14. Let w be admissible 
for P such that any vertex of P which is not in Fk is below any vertex of Fk, 
cf. Theorem 15.3. Let x be the top vertex of G. Then the out-valence of x is at 
least d - (k - 1), cf. Theorems 12.12 and 12.15, and the in-vaknce, therefore, 
is at most k - 1, cf. (a). Denoting the in-valence of x by i, it then follows 
that i ~ n - 1 and g;(Fk ) < gi(P), 

C. Let P be a simple d-polytope with p facets, and let w be admissible 
for P. By an i-incidence, where i = 0, ... , d - 1, we shall mean a pair (F, x), 
where F is a facet of P and x is a vertex of F whose relative in-valence in F 
equals i. We denote the total number of i-incidences by Ii' It follows from 
(j) that 

I gi(F) for i = 0, ... , d - 1. 

Combining (n) and (k), we obtain: 

(0) Ii~pgi(P)fori=O, ... ,d-l. 

Combining (n) and (I), we obtain: 

(p) If P is a dual neighbourly polytope, then Ii = pg;(P)for i =, 0, ... , n - 1. 

And combining (n) and (m), we obtain: 

(q) If P is not a dual neighbourly polytope, then Ii < pgi(P)for at least one 
i = 0, ... , n - 1. 

We shall next prove: 

(r) Ii = (d - i)g;(P) + (i + l)gi+ l(P) for i = 0, ... , d - 1. 

To obtain this, we shall determine Ii by summing over the vertices of P, 
rather than summing over the facets as we did in (n). Let x bt! a vertex of P. 
Then there are precisely d facets of P containing x, and by Theorem 12.12 
there are also precisely d edges of P containing x. Since each facet is simple, cf. 
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Theorem 12.15, it follows that for each facet containing x, precisely one of the 
d edges containing x is not in the facet, cf. Theorem 12.12; we shall call this 
edge the external edge ofthe facet. Note that, conversely, each edge containing 
x is the external edge of some facet containing x; this follows immediately 
from Theorem 12.17. Now, for a facet F containing the vertex x, the pair 
(F, x) is an i-incidence if and only if one of the following two conditions hold: 

(IX) x has in-valence i in P, and the external edge of F is orlmted away from x. 
(fJ) x has in-valence i + 1 in P, and the external edge ofF is oriented towards x. 

If x has in-valence i, then there are d - i facets F such that (IX) holds. If x has 
in-valence i + 1, then there are i + 1 facets F such that (fJ) holds. This 
proves (r). 

We next combine (0) and (r) to obtain: 

p-d+i 
gi+ I(P):::; i + 1 gi(P), i = 0, ... , d - 1. 

Since go(P) = 1, cf. (d), it follows by induction that 

(P-d+i-l) , . 
(s) g;(P) :::; i for I = 0, ... , d. 

In a similar way, combining (p) and (r), we obtain: 

(t) If P is a dual neighbourly polytope, then 

( p - d + i-I) g;(P) = . 
I 

for i = 0, ... , n. 

And, combining (q) and (r), we get: 

(u) If P is not a dual neighbourly polytope, then 

( p - d + i-I) gi(P) < . 
I 

for at least one i = 0, ... , n. 

We can now complete the proof. Combining (i) and (s) we obtain 

j = 0, ... , d, 

proving the first statement of the theorem. Combining (i) and (t) we get 

fi(P) = C:Pid, p), j = 0, . .. ,d, 

when P is a dual neighbourly polytope, proving the second statement of the 
theorem. Finally, as remarked earlier, for ° :::; j :::; m + 1 the coefficient of 
each g i(P) is > 0 in at least one of the two sums in (i). Therefore, combining 
(i) and (u) we obtain the third statement of the theorem. 0 
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The proof above of the Upper Bound Theorem only contains one compu­
tation, namely, the use of formula (11) from Appendix 3 leading to (f). 
However, in the proof we do not really need (f), we only need to know that 
g;(P) can be expressed by the numbers fJ(P) in some way. To see this it 
suffices to know that the matrix A is invertible, and that follows immediately 
from the fact that A is an upper triangular matrix with l's in the diagonal. 
The explicit formula (f) is only included here because of its relevance to the 
discussion in Section 20. 

As mentioned just after the statement of Theorem 18.1, the expression 
for cD/d, p) can be simplified for m + 1 S j s d - 2. Moreover, for j = 0 
we have a very simple expression for cD/d, p), and for the remaining values ofj 
we have a reformulation which may occasionally be useful: 

Theorem 18.2. (a) The value ofcDo(d, p) equals 

(b) For j = 1, ... , n, the value ofcD/d, p) equals 

(c) For j = m + 1, ... , d - 2, the value ofcDid, p) equals 

PROOF. (a) By the definition (2) we have 

cDo(d, p) = ito (p - d 7 i-I) + ito (p - d 7 i -- 1). 
The desired expression then follows easily using Appendix 2, (9). 

(b) We can rewrite the first sum in (2) using identities from Appendix 3 as 
indicated: 

t (i.)(P - d + i-I) 
.=0 } I 

<,;! .f (_ly(i.)(d ~ p) (~)( _1)" (d -. P)(d - P - ~ - 1) 
,=0 } I } n - } 

<,;! ( _ 1 )"( _ 1 )j( - d + Pj + j - 1) ( _ 1)" - j ( - d + P + j n+ _1/ n - j - 1) 

= (p - d ; j - 1 )(p ~ ~ ; n). 
Hence, we have the second term in the desired expression. 
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We next prove that for 0 :s; j :s; d we have 

di i (d ~ i)(P - d :- i-I) = ( P .). 
i=O ) I d - ) 

(3) 

The validity of (3) is proved using identities from Appendix 3 as indicated: 

~ dI i( _ V-i-i( -l.-_l.)( -IY(-P.+ d) 
i=O d I ) I 

= (-I)d-/f (-p.+ d)( -j ~ 1 .) 
i=O I (d - J) - I 

~ (_l)d-i(-P + d -/ - 1) 
d-J 

~ ( P ) d - j , 

as desired. 
Using (3) we can now rewrite the second sum in (2): 

.f(d ~ i)(P - d:- i-I) 
.=0 ) I 

= ~ii (d ~ i)(P - d :- i-I) _ . dIi. (d ~ i)(P - d :- i-I) 
.=0 ) I .=m+l ) I 

= ( P .) _ di! (d ~ i)(P - d :- i-I). 
d - ) i=m+l ) I 

Hence, we have the two remaining terms in the desired expression. 
(c) Although we already know that the statement is true, we would like to 

give a direct proof. For j ~ n + 1, each term in the first sum in (2) has the 
value O. In the second sum, all terms corresponding to values of i that are 
> d - j also have the value O. Therefore, 

<l>id, p) = d£i (d ~ i)(P - d :- i-I) . 
• =0 ) I 

Combining with (3) above, we then get 

<l>id, p) = (d ~ J. 
When m = n, this completes the proof. When m = n - 1, it remains to 
consider the value j = m + 1 = n. However, this is easily handled by 
returning to the expression for <l>J{d, p) in case (b). The details are left to the 
reader. 0 
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By duality, we also have an Upper Bound Theorem for the simplicial 
d-polytopes. It may be stated as follows: 

Corollary 18.3. For any simplicial d-polytope P with p vertices we have 

~{P) ::;; <l>d-l- /d, p), 

If P is neighbourly, then 

j = 1, ... , d - 1. 

Jj(P) = <l>d-l-id, p), 

If P is not neighbourly, then 

j = 1, ... , d - 1. 

HP) < <l>d-l- /d, p), 

(and possibly also for smaller values ofj). 

j = n - 1, ... , d - 1, 

Finally, it is interesting to note that (f) and (h) in the proof of Theorem 
18.1 show that 

.± (-l)j(~)Jj(P) = .f (_l)d+ j(d ~ .)HP), 
)=0 I )=0 I 

i = 0, ... ,d, 

i.e. (fo(P), ... ,fd-l(P» satisfies the Dehn-Sommerville System of Theorem 
17.5. Hence, we have an independent proof of the Dehn-Sommerville 
Relations which does not rely on Euler's Relation. 

§ 19. The Lower Bound Theorem 

In the preceding section we determined the largest number of vertices, edges, 
etc. of a simple d-polytope, d ~ 3, with a given number offacets. In this section 
we shall find the smallest number of vertices, edges, etc. The result which is 
known as the Lower Bound Theorem was proved by Barnette in 1971-73. 
Like the Upper Bound Theorem, it is a main achievement in the modern 
theory of convex polytopes. 

As we saw at the beginning of Section 18, all simple 3-polytopes with a 
given number of facets have the same number of vertices and the same 
n umber of edges. So, as in the case of the Upper Bound Theorem, the problem 
is only of significance for d ~ 4. 

We define 

{
Cd - l)p - (d + l)(d - 2), j = 0; 

({Jj(d, p):= ( d ) _ (d + l)(d _ 1 _ .) 
j + 1 p j + 1 J, j = 1, ... , d - 2. 



122 3. Combinatorial Theory of Convex Polytopes 

Note that 

( d + 1) CfJd-2(d, p) = dp - d _ 1 

= dp - (d2 + d)/2. 

With this notation the Lower Bound Theorem may be stated as follows: 

Theorem 19.1. For any simple d-polytope P with p facets we have 

j = 0, ... , d - 2. 

Moreover, there are simple d-polytopes P with p facets such that 

liP) = CfJ/d, p), j = 0, ... , d - 2. 

Since ({Jo(3, p) = 2p - 4 and ({JI(3, p) = 3p - 6, we see immediately as in 
the case of the Upper Bound Theorem that the theorem is true for d = 3, in 
fact, with equality for all simple polytopes. 

Before proving Theorem 19.1 we need some notation and some pre­
paratory lemmas. 

We remind the reader that a facet system in a polytope P is a non-empty set 
Y offacets of P. When Y is a facet system in P, we denote by ,§(Y) the union 
of the subgraphs ,§(F), FEY, of ,§(P), and we say that Y is connected if 
,§(Y) is a connected graph. These concepts were introduced in Section 15, 
where we also proved some important results about connectedness prop­
erties of ,§(Y). 

When Y is a facet system in P and G is a face of P, then we shall say that 
G is in Y or G is a face of Y, if G is a face of some facet F belonging to Y. 
In particular, the vertices of Yare the vertices of the facets in Y. 

In the following, we shall restrict our attention to facet systems in simple 
polytopes. Let Y be a facet system in a simple d-polytope P, and let x be a 
vertex of Y. Then x is a vertex of at least one member F of Y. Therefore, the 
d - 1 edges of F incident to x are edges of Y. If the remaining edge of P 
incident to x is also in Y, we shall say that x is internal in Y or that x is 
an internal vertex of Y. If, on the other hand, the remaining edge of P 
incident to x is not in Y, we shall say that x is external in Y or that x is an 
external vertex of Y. In other words, a vertex x of Y is external if and only if 
it is a vertex of only one member of Y. 

The first lemma ensures the existence of external vertices under an obvious 
condition. (In the following, we actually need only the existence of just one 
external vertex.) 

Lemma 19.2. Let Y be a facet system in a simple d-polytope P such that at 
least one vertex of P is not in Y. Then Y has at least d external vertices. 
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PROOF. If all vertices of!/ are external, then each member of !/ contributes 
at least d external vertices. Suppose that some vertex z of !/ is internal. By 
the assumption we also have a vertex y not in !/. We then use the d-con­
nectedness of <'§(P), cf. Theorem 15.6, to get d independent paths joining y 
and z. Traversing the ith path from y to z, let Xi be the first vertex which is in 
!/. Then the preceding edge is not in!/, and therefore Xi is external in!/. Since 
the x;'s are distinct, we have the desired conclusion. D 

During the proof of Theorem 15.7 it was shown that if!/ is a connected 
facet system in P and !/ has at least two members, then there is a member F 0 

of!/ such that !/\ {F o} is again connected. When P is simple, we have the 
following much stronger result: 

Lemma 19.3. Let !/ be a connected facet system in a simple d-polytope P. 
Assume that at least one vertex of P is not in !/, and that !/ has at least two 
members. Then there is a pair (xo, F 0) formed by an external vertex Xo of !/ 
and the unique member F 0 of !/ containing Xo such that the facet system 
!/\ {F o} is again connected. 

PROOF. We know from Lemma 19.2 that!/ has external vertices. Let (Xl, F 1) 
be a pair formed by an external vertex Xl of!/ and the unique member F 1 
of!/ containing Xl' Suppose that !/\{Fd is not connected. Let !/1 be a 
maximal connected subsystem of !/\{Fd. We shall prove that then there is 
another pair (X2, F 2) such that !/ 1 u {F d is a connected subsystem of 
!/\ {F 2}. In other words: if !/\ {F d is not connected, then we can replace 
(Xl, F 1) by some (X2' F 2) in such a manner that the maximum number of 
members of a connected subsystem of !/\ {F 2} is larger than the maximum 
number of members of a connected subsystem of !/\ {F 1}. Continuing this 
procedure eventually leads to a pair (xo, F 0) with the property that !/\ {F o} 
is connected. 

Now, let (Xl, F 1) and !/ 1 be as explained above. We fIrst prove that 
!/ 1 u {F d is connected. Let y be any vertex of!/ 1; note that y ¥- Xl since F 1 
is the only member of !/ containing X 1 and F 1 ¢ !/ l' By the connectedness of 
!/ there is a path in <'§(!/) joining y and Xl' Traversing this path from y to Xl' 
let F be a member of !/ containing the first edge of the path not in !/ 1. 
(Since Xl is not in !/ 1, such an edge certainly exists.) Then ckarly !/ 1 u {F} 
is connected. By the maximality property of !/1 we must have F = F 1, 

whence 9'1 u {F d is connected, as desired. Let 9'~ := 9'\(9'1 u {F d). Then 
9'/1 is non-empty, possibly disconnected. By Lemma 19.2, ~'''t has external 
vertices. Not every external vertex of !//1 can be in Fl' For then every path 
joining a vertex of 9'/1 and a vertex of P not in !//1 would have to pass through 
a vertex of F 1, whence the subgraph of <,§(P) spanned by ext P\ext F 1 would 
be disconnected, contradicting Theorem 15.5. Let X2 be an external vertex of 
9'/1 not in F 1, and let F 2 be the unique member of 9'/1 containing X2. Then 
actually X2 is external in 9'. For if not, then X2 would have to be a vertex of 
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some member F of Y' b since F 2 is the only member of Y'~ containing X 2 , 

and X2 is not in F I; but then Y'I U {F 2} would be connected, contradicting 
the maximality property of Y'I' Hence, X2 is external in Y', the facet F 2 is the 
unique member of Y' containing X2, and Y'I u {F I} is a connected subsystem 
of .'1'\ {F 2}, as desired. D 

Lemma 19.4. Let Y be a connected facet system in a simple d-polytope P. 
Assume that at least one vertex of P is not in ,'1', and that .'1' has at least two 
members. Let (xo, Fo) be as in Lemma 19.3. Then at least d - 1 vertices ofP 
are internal in Y' but external in ,'1'\ {F a}. 

PROOF. By the cunnectedness of Y', there is a mem ber F of,'l' with F =1= F 0 and 
F Ii F 0 =1= 0. Then by Theorem 12.14, the face F Ii F 0 has dimension d - 2, 
whence F and F 0 have at least d - 1 vertices in common. Being vertices of 
two members of Y', such d - 1 vertices are all internal in Y'. So, if they are 
all external in Y'\{Fo}, we have the desired conclusion. If they are not all 
external in .5"\ {F o}, one of the vertices, say y, is internal in Y'\ {F o}. In 
particular, y =1= Xo' Then by Theorem 15.7 there are d - 1 independent paths 
in qj(Y') joining Xo and y. Traversing the ith path from Xo to y, let Xi be the 
first vertex which is in Y'\ {F o}. Then the preceding edge [Ui' xa is not in 
Y'\ {F oL and therefore Xi is external in ,'1'\ {F a}. In particular, Xi =1= Xo and 
Xi =1= y. Moreover, since [u i , xa is not in ,'1'\ {F oL it must be in F 0, whence Xi 

is a vertex of F o. Since Xi is also a vertex of Y'\ {F a}, we see that Xi belongs to 
at least two members of Y', showing that Xi is internal in Y'. In conclusion, 
the d - I vertices X I, ... , Xd _ I are internal in ,'I' but external in Y'\ {F o}. 

D 

Lemma 19.5. Let Y' be a facet system in a simple d-polytope P such thaL at 
least one vertex of P is not in .5". Then there are at least dfacets G I , ... , Gd of 
P such that GI , .... , Gd are not in Y' but each contains a (d - 2Hace which 
is in Y'. 

PROOF. Let x be a vertex of P not in .'1'. Let Q be a dual of Pin [p1d, and let t/I 
be an anti-isomorphism from (ff(P), c) onto (ff( Q), c). Writing 

.5" = {F I , ... , F m }, 

X is not a vertex of any of the F;'s, whence the facet t/I( {x n of Q does not con­
tain any of the vertices t/I(F i ) of Q, cf. Theorem 9.8. Let z be a point of [p1d 

outside Q but" close" to t/I( {x n such that every vertex of Q is also a vertex 
of Q':= conv(Q u {z}); then the vertices of Q' are the vertices of Q plus the 
vertex z and the edges of Q' are the edges of Q plus the edges [z, u], where 
u E ext t/I( {x n. (Supposing that 0 E int P, one may take Q' to be the polar of a 
polytope obtained by truncating the vertex X of P, cf. Section 11.) By Theorem 
15.6 there are d independent paths in qj(Q') joining the vertices z and t/I(F I)' 
Traversing the ith path from z to t/I(F 1), let Yi be the vertex preceding the 
first of any of the vertices t/I(F d, ... , t/I(F m) on the path. Then by duality, 
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I/I-l( {yd), ... , I/I-l( {Yd}) are d facets of P not in !/', each having a (d - 2)­
face in common with some member of Y. 0 

We are now in position to prove the Lower Bound Theorem: 

PROOF (Theorem 19.1). We divide the proof into four parts. In Part A we 
prove the inequality for j = 0, and in Part B we prove the inequality for 
j = d - 2; here the lemmas above are used. In Part C we cover the remaining 
values of j; the proof is by induction. Finally, in Part 0 we exhibit polytopes 
for which we have equality. 

A. We choose a vertex x of P and let 

Y:= {F E ~d-l(P)lx ~ F}. 

Then <§(Y) is the subgraph of <§(P) spanned by ext P\{x}, whence, by 
Theorem 15.5, Y is a connected facet system. The number of members of Y 
isp - d. 

Only one vertex of P is not in Y, namely, the vertex x. The d vertices of P 
adjacent to x are external vertices of Y, and they are the only external vertices 
of Y. Hence, the number of internal vertices of Y isfo(P) - (d + 1). 

If p = d + 1, then P is a d-simplex and the inequality holds with equality. 
If p ;::: d + 2, we remove facets from Y one by one by successive applications 
of Lemma 19.3. At each removal, at least d - 1 vertices change their status 
from internal to external by Lemma 19.4. After p - d - 1 removals, we end 
up with a one-membered facet system. The total number of vertices which 
during the removal process have changed their status is therefore at least 

(p - d - 1)(d - 1). 

Since the number of internal vertices equals fo(P) - (d + 1), it follows that 

fo(P) - (d + 1) ;::: (p - d - 1)(d - 1), 

whence 

fo(P) ;::: (d - l)p - (d + 1)(d - 2), 

as desired. 

B. This part is divided into two steps. We first prove that if there is a 
constant K depending on d only such that 

for all simple d-polytopes P, then the desired inequality 

fd- 2(P) ;::: dfd- 1 (P) - (d 2 + d)j2 

(1) 

(2) 

must hold. Then, in the second step, we show that (1) holds with K = d2 + d. 
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Suppose that the inequality (2) does not hold in general. Then there is a 
simple d-polytope P in [Rd such that 

fd-iP) = dfd-t(P) - (d2 + d)/2 - r 

for some r > O. Let Q be a dual of P in [Rd. Then Q is a simplicial d-polytope 
with 

ft (Q) = dfo(Q) - (d 2 + d)/2 - r. 

By Theorem 11.10 we may assume that there is a facet F of Q such that the 
orthogonal projection of [Rd onto the hyperplane afT F maps Q\F into ri F. 
Let Q' denote the polytope obtained by reflecting Q in afT F. Then Qt := 

Q U Q' is again a d-polytope by the property of F. It is clear that Qt is 
simplicial. Since F has d vertices, we have 

and since F has 

(~) = (d 2 - d)/2 

edges, we have 

We then get 

ft(Qt) = 2(dfo(Q) - (d 2 + d)/2 - r) - (d2 - d)/2 
= dfo(Qt) - (d2 + d)/2 - 2r. 

Let P t be a dual of Qt. Then P t is a simple d-polytope with 

h-iPt ) = dfd-t(P t ) - (d2 + d)/2 - 2r 

This shows that P 1 fails to satisfy (2) by at least 2r faces of dimension d - 2. 
Continuing this construction we conclude that no inequality of the form (1) 
can hold for all simple d-polytopes. This completes the first step. 

To carry out the second step, let P be any simple d-polytope, and let 
p := j~ _ t (P). Let x and!/' be as in Part A. If p = d + 1, then P is ad-simplex, 
whence 

fd-2(P) = (~ ~ !) 
= d(d + 1) - (d2 + d)/2 

= dp - (d2 + d)/2 

> dp - (d 2 + d), 

as desired. For p ~ d + 2, we shall remove the facets in !/' one by one by 
successive applications of Lemma 19.3 as we did in Part A. Let Fi denote the 
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ith member of f/ to be removed, let Xi denote a corresponding external vertex 
of f/\ {F 1> ••• ' Fi- 1 } contained in F;, and let 

i = 1, ... , p - d - 1. 

Then f/i is a facet system in F i , cf. Theorem 12.14. 
Now, let us say that a (d - 2)-face G of Fi is of type 1 in Fi if G is not in 

f/i but some (d - 3)-face of G is in f/i. Lemma 19.5 can be applied to the 
facet system f/i in Fi, for Xi is a vertex of Fi not in f/i. As a result we get d - 1 
(d - 2)-faces of Fi of type 1. Note that a (d - 2)-face of type 1 in Fi is not a 
face of any F j withj > i. 

For i = 1, ... , p - d - 1, let 

qi:= max{jli < j, Fi n Fj =I 0}· 

Then Gi := Fi n Fqi is a (d - 2)-face of Fi which we shall call a (d - 2)-face of 
type 2 in Fi. Note that F; and Fqi are the only facets of P containing Gi , 

cf. Theorem 12.14, that Gi is not at the same time of type 1 in F i , and that Gi 

is neither of type 1 nor type 2 in F qi. 
The discussion above now shows that for i = 1, ... , p - d - 1, the 

number of (d - 2)-faces contributed by Fi is at least d, namely, d - 1 of 
type 1 and one of type 2. Therefore, the total number of (d - 2)-faces of P 
is at least 

(p - d - 1)d = dp - (d2 + d), 

as desired. 

C. Using induction on d we shall prove that the inequality holds for the 
remaining values of j, namely, j = 1, ... , d - 3. We first note that for d = 3 
there are no such remaining values; this ensures the start of the induction. 
So, let d ~ 4 and assume that the inequality holds for dimension d - 1 and 
j = 1, ... , (d - 1) - 3. Let P be a simple d-polytope with p facets, and let j 
have any of the values 1, ... , d - 3. By a j-incidence we shall mean a pair 
(F, G) where F is a facet of P and G is a j-face of F. (This notion of incidence 
differs from the one used in the proof of the Upper Bound Theorem.) It is 
clear that the number of j-incidences equals 

I jj(F). 
FE~d-l(P) 

Moreover, since each j-face of P is contained in precisely d - j facets, the 
number of j-incidences also equals (d - j)fj(P). Hence, 

(d - j)jj(P) = I fiF). (3) 
FE~d- ,(P) 

We next note that for any facet F of P we have 

HF) ~ e ~ :)fd-2(F) - C ~ l)(d - 2 - j); (4) 
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in fact, for j = 1, ... , d - 4 this follows from the induction hypothesis 
applied to F, and for j = d - 3 it follows from the result of Part B applied to 
F. Combining (3) and (4) we obtain 

(d - j)jj(P) ~ I ('.(~ +- II)fd-2(F) - (. d 1)(d - 2 - j)) 
FEffd - 1(P) , } } + 

=. I fd-2(F) -. (d - 2 - j) I 1 ( d - 1) ( d ) 
} + 1 FEffd-l(P) } + 1 FEffd-dP) 

Here 

since each (d - 2)-face of P is contained in precisely two facets. Hence, 

(d - j)jj(P) ~ e: :)2f d- i P) - C ~ 1)(d - 2 - j)p. 

We next apply the result of Part B to P, obtaining 

(d - j)f/P) ~ e: :)2(dP - (~~ D) -C ~ 1)(d - 2 - j)p. 

An easy calculation shows that the right-hand side of this inequality may be 
rewritten as 

(d -j)(C ~ l)P - G: nCd - 1 -j)} 
Cancelling the factor d - j, we obtain the desired inequality. 

D. It is easy to see that we have equality for allj when P is ad-simplex. 
Truncation of one vertex of a simple d-polytope P with p facets produces a 
simple d-polytope pi with p + 1 facets, with 

more j-faces than P for 1 ::;; j ::;; d - 2, and with d - 1 more vertices than P, 
cf. Theorem 12.18. It is easy to see that if we have equality for P, then we also 
have equality for P'. Hence, the desired polytopes may be obtained from a 
d-simplex by repeated truncation of vertices. This completes the proof of 
Theorem 19.1. 0 

It would be desirable to have a more direct proof of the Lower Bound 
Inequalities than the one given in Parts A, Band C above. As a beginning, one 
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could think of a direct proof of the inequality for j = d - 2, replacing the 
two-step proof of Part B. In the second step we proved that (1) holds with 
K = d2 + d. Compared to the desired inequality, the deficit amounts to 
(d 2 + d)j2. However, when counting the (d - 2)-faces we did not count 
those containing x; the number of such (d - 2)-faces equals 

(d ~ 2) = Cd 2 - d)j2. 

This improvement does not yield the desired inequality, but it reduces the 
deficit to d. 

In Part D of the proof of Theorem 19.1, we showed that w~: have equality 
for the truncation polytopes, i.e. the polytopes obtained from simplices by 
successive truncations of vertices. For d ~ 4it is known that ifjiP) = <pid, p) 
for just one value of j, then P must be a truncation polytope. For d = 3 the 
situation is different. As we know, all simple 3-polytopes yield equality. 
On the other hand, there are simple 3-polytopes which are not truncation 
polytopes, for example, the parallellotopes. 

In Section 18 it was indicated that the upper bound <ll;(d, p) is also valid 
for non-simple polytopes. In contrast to this, little seems to be known about 
lower bounds for non-simple polytopes. 

In its dual form, the Lower Bound Theorem may be stated as follows: 

Corollary 19.6. For any simplicial d-polytope P with p vertices we have 

fj(P) ~ CfJd-l- jed, p), j = 1, ... , d - 1. 

Moreover, there are simplicial d-polytopes P with p vertices such that 

.fj(P) = CfJd-l- ld, p), j = 1, ... , d - 1. 

Equality in Corollary 19.7 is attained by the duals of the truncation 
polytopes, and, for d ~ 4, only by these. They are the polytopes obtained from 
simplices by successive addition of pyramids over facets; they are called 
stacked polytopes. 

It is interesting to note that the Lower Bound Inequalities are closely 
related to inequalities between the numbers glP) introduced in Section 18. 
For details, see Section 20. 

§20. McMullen's Conditions 

At the beginning of Section 16 it was indicated that it is not known how to 
characterize the j~vectors of d-polytopes among all d-tuples of positive 
integers. However, the more restricted problem of characterizing the f­
vectors of simple (or simplicial) d-polytopes has recently been solved. It was 
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conjectured by McMullen in 1971 that a certain set of three conditions would 
characterize the f-vectors of simplicial d-polytopes. In 1980, the sufficiency 
of McMullen's conditions was established by Billera and Lee, and the 
necessity was established by Stanley. We shall briefly report on these funda­
mental results, but we shall not be able to include the proofs. As in the 
preceding sections, we shall express ourselves in terms of simple (rather than 
simplicial) polytopes. 

We begin by introducing some notation. For any d-tuplef = (fo,· .. ,Jd-l) 
of positive integers we define 

g;(f):= ± (-lY+ j(~)jj, 
j=O I 

i = 0, ... , d, 

where, by convention, we always putfd = 1. Note that whenfis thef-vector 
of a simple d-polytope P, then g;(f) is just the well-known number g;(P), cf. 
statement (f) in the proof of Theorem 18.1. Note also that by the argument 
leading to this statement, 

jj = f (i.)g;(f), 
;=0 ] 

j = 0, . .. ,d. (1) 

We need some more notation. Let hand k be positive integers. Then using 
induction on k, it is easy to see that there exist uniquely determined positive 
integers ro, rl, ... , rq such that 

ro > r 1 > ... > rq ~ k - q ~ 1 

and 

h = (ro) + ( r 1 ) + ... + ( rq ). 
k k-l k-q 

(2) 

In fact, ro is the largest integer such that 

(3) 

r 1 is the largest integer such that 

(unless we have equality in (3) in which case q = 0), etc. The representation 
(2) is called the k-canonical representation of h. 

Given the k-canonical representation (2) of h, we define the kth pseudo­
power h(k) of h by 

h(k):= (ro + 1) + (rl + 1) + ... + ( rq + 1 ). (4) 
k+1 k k-q+l 
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Note that at the same time, (4) is the (k + I)-canonical representation of 
h<k). It is easy to see that the kth pseudopower is monotone: 

hi < h2 => hik) < h~k). 

The definition of h<k) is extended to h = ° by letting 

O<k):= 0. 

We can now formulate the characterization; recall that m:= L(d - 1)/2J 
and n := Ld/2J. The conditions (a)-(c) are McMullen's Conditions. 

Theorem 20.1. Ad-tuple f = (fo, ... ,fd- 1) of positive integers is the f-vector 
of a simple d-polytope if and only if the following three conditions hold: 

(a) gi(f) = gd-i(f)for i = 0, ... , m. 

(b) gi(f) S gi+ l(f)for i = 0, ... , n - 1. 

(c) gi+ 1(f) - gi(f) s (gi(f) - gi-l(fWi) for i = 1, ... , n -- 1. 

We know from the preceding sections that the Dehn-Sommerville 
Relations, the Upper Bound Inequalities and the Lower Bound Inequalities 
hold forf-vectors of simple polytopes. Therefore, it follows from Theorem 20.1 
that if (a)-(c) hold for somef = (fo, ... ,fd-l), then the Dehn-Sommerville 
Relations, the Upper Bound Inequalities and the Lower Bound Inequalities 
must also hold for f We shall see how this can be demonstrated. (This may 
give the reader some idea of the significance of the conditions (a )-( c).) 

We first note that by the definition of g;(f), condition (a) is equivalent to 
saying that (fo, . .. ,fd-l) satisfies the Dehn-Sommerville System of Theorem 
17.5 which in turn is equivalent to saying that (fo, ... ,fd'-l) satisfies the 
Dehn -Sommerville Relations. 

To deduce the Upper Bound and Lower Bound Inequalities we need the 
observations that 

gif) = 1 

and 

By (a), we then also have 

and 

We begin with the Lower Bound Inequalities. By (a) and (b), 

i = 1, ... , d - 1. (5) 
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Using (1), (5) and the observations above, we have 

d-l 

= go(f) + 2: gi(f) + gif) 
i= 1 

;e:: go (f) + (d - l)gl(f) + gif) 

= 1 + (d - l)(fd-l - d) + 1 

= (d - I)Jd-l - (d + 1)(d - 2), 

as desired. For j = 1, ... , d - 2 we have in a similar manner 

d-l (i) (d) 
= ,2:, . glf) + . gif) 

I=J ) ) 

;e:: ,L, I. gl(f) + . gif) d-l (') (d) 
I=J ) ) 

d-l (i) (d) 
= (Jd-l - d),L, . + .' 

I=J) ) 

Now, by Appendix 3, (9) 

= (j + (d - 1 - j! + 1) = (, d ), 
d-l-) )+1 

whence 

h;e::(fd-l-d)C~ 1) + G) 
= C ! 1 )fd- 1 - (~ : :)(d - 1 - j), 

as desired. Hence, the Lower Bound Inequalities hold. 
To deduce the Upper Bound Inequalities, we first prove that 

( ,(f) - , (f»<i> < (fd- 1 - d + i-I) 
gl gl-l - ;+1 ' i = 1, ... , n - 1. (6) 

For i = 1, we have 

gl(f) - go(f) = fd-l - d - 1. 
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The I-canonical representation offd-l - d - 1, of course, is given by 

Hence, 

(gl(f) - go(f))<l> = (fd-12 - d), 
proving (6) for i = 1. To prove (6) in general, we use induction. Suppose 
that (6) holds for i. Using (c) and the monotonicity of the pseudopower we 
then have 

(gi+l(f) - 9i(f))<i+l> ~ (g;(f) - 9i_l(f))<i))<i+l> 

< (fd-l - d + i - 1)<i+l>. 
- i + 1 

To find the (i + 1)th pseudopower of 

( fd - 1 - d + i-I) 
i + 1 ' 

we need the (i + 1 )-canonical representation. This, of course, is given by (!) 

Hence 

( fd - 1 ~ d + i-I) = (fd - 1 -. d + i-I). 
1+1 1+1 

( fd-I - d + i - 1)<i+l> = (fd-I - d + i) 
i+l i+2 ' 

proving (6) for i + 1. 
Using (6) we shall next prove that 

9i(f) ~ (fd-l - ~ + i-I). i = 0, ... , n. (7) 

This is certainly true for i = 0, 1, in fact with equality. We prove it in general 
by induction. Supposing that it holds for i, we have by (c) and (6), 

gi+l(f) s gi(f) + (g;(f) - gi_I(f»<i) 

~ e~-l -di + i-I) + (fd-l ~ ! : i -- 1) 

= (fd - 1 - d + i) 
i + 1 ' 

as desired. 
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To complete the proof, note that using (1) and (a) we have 

jj = L I. glf) + L -:- 1 glf) n (.) m (d .) 
i=O } i=O } 

for j = 0, ... , d. Combining with (7), we get 

jj ~ .f (i.)(fd-l - ~ + i - 1) + .f (d -:- i)(fd-l - d. + i - 1) 
,=0 } 1 ,=0 } I 

for j = 0, ... , d, which is the desired inequality. 
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Lattices 

A relation '< on a non-empty set M is called a partial order if it is reflexive, 
anti-symmetric and transitive, i.e. if 

x~x, 

x ~ Y /\ Y ~ X = X = y, 

and 

x~y/\y~z=x~z 

for all x, y, Z E M. A partially ordered set is a pair (M, ~), where M is a non­
empty set and ~ is a partial order on M. 

In the following, let (M, ~) be a partially ordered set, and let N be a 
subset of M. An element x E M is called a lower bound of N if x ~ y for all 
YEN. Similarly, x is called an upper bound if y ~ x for all YEN. An element 
x E M is called the greatest lower bound of N if x is a lower bound of Nand 
Z '< x for any other lower bound z. The greatest lower bound of N is unique 
if it exists; it is denoted by inf N. Similarly, x is called the least upper bound 
of N if x is an upper bound of N and x ~ z for any other upper bound z. The 
least upper bound is unique if it exists; it is denoted by sup N. 

A partially ordered set (M, '<) is called a lattice if inf N and sup N exist 
for each non-empty finite subset N of M. If inf N and sup N exist for any 
subset N of M, then the lattice (M, ~) is called a complete lattice. 

Any finite lattice is complete. 
If (M, ~) is a partially ordered set such that inf N exists for all subsets N 

of M, then, in fact, (M, '<) is a complete lattice. The same applies to sup N. 
Let (M, '<) be a lattice, and let M' be a non-empty subset of M. Then the 

partial order ~ on M induces a partial order on M' which we shall again 
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denote by ~. We shall say that the partially ordered set (M', ~) is a sub­
lattice of the lattice (M, ~) if inf N E M' and sup N E M' for each non-empty 
finite subset N of M'. (Here, of course, inf N and sup N mean the greatest 
lower bound and least upper bound, respectively, of N in (M, ~).) Then 
(M', ~) is also a lattice. Note that in the definition of a sub lattice, we require 
more than just (M', ~) being a lattice. 

A mapping cp from one lattice (M[, ~) onto another lattice (Mz, ~) is 
called an isomorphism when it is one-to-one and we have x ~ y if and only if 
cp(x) ~ cp(y) for all x, y EM l' I[ there exists an isomorphism from (M b ~) 

onto (M2' ~), then we shall say that (MJ,~) and (Mz,~) are isomorphic. 
A mapping IjJ from (M 1, ~) onto (M 2, ~) is called an anti-isomorphism when 
it is one-to-one and we have x ~ y if and only if ljJ(y) ~ ljJ(x) for all x, y E M [. 
I[ there exists an anti-isomorphism from (M[, ~) onto (M2' ~), then we 
shall say that (M 1, ~) and (M 2, ~) are anti-isomorphic. 

Note that an isomorphism cp preserves inf and sup, i.e. cp(inf N) = inf cp(N) 
and cp(sup N) = sup cp(N), whereas an anti-isomorphism IjJ reverses inf and 
sup, i.e., ljJ(inf N) = sup IjJ(N) and ljJ(sup N) = inf IjJ(N). 
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Graphs 

The intuitive picture of a (non-oriented) graph is that of a finite set of "ver­
tices" and a finite set of" edges," each edge" joining" two distinct vertices and 
each two distinct vertices being joined by at most one edge. Formally, this 
may be expressed as follows: a (non-oriented) graph is a triple r = (V, E, y), 
where V (called the set of vertices of r) is a non-empty finite set, E (called 
the set of edges of r) is a set (necessarily finite), and y (called the incidence 
relation of r) is a one-to-one mapping from E onto a subset of the set of all 
sets {x, y} of two distinct elements of V. 

When x and yare distinct vertices of a graph r = (V, E. y) and e is an 
edge of r such that y(e) = {x, y}, then we shall say that e joins x and y, that x 
and yare the end vertices of e, that x and yare incident to e, and that e is 
incident to x and y. When x and yare distinct vertices of r joined by an edge, 
then we shall say that x and yare adjacent. The number of edges incident to a 
vertex x, i.e. the number of vertices adjacent to x, is called the valence of x. 

A path in a graph r is a finite sequence of the form 

where the x;'s are vertices of r, and the e;'s are edges of r such that each ei 
joins Xi and Xi + 1. The path is said to join x 1 and x n , and x 1 and Xn are called 
the endvertices of the path. For technical reasons we allow n = 1, i.e. we allow 
trivial paths consisting of one vertex and no edges. A collection of paths 
joining two vertices x and y is called independent if x and yare the only 
vertices common to any two of the paths in the collection. 

Two non-adjacent vertices x and y of a graph are said to be separated by a 
set W of vertices if every path joining x and y must contain a vertex of W. 

A graph is said to be connected if any two distinct vertices can be joined 
by a path. A disconnected graph is one which is not connected. A graph is said 
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to be k-connected (where k is a positive integer) if it has at least k + 1 vertices 
and any two distinct vertices can be joined by at least k independent paths. 
(Except for the trivial graphs with just one vertex, I-connectedness is the 
same as connectedness.) 

By a subgraph of a graph r = (V, E, y) we mean a graph r ' = (V', E', y') 
such that V' c V, E' c E and iCe) = y(e) for e EE'. In general, each non­
empty subset V' of the vertex set V of r is the vertex set of several subgraphs 
of r: each subset E' of the edge set E of r with the property that it only 
contains edges of r joining vertices in Viis the edge set of a subgraph with 
V' as the vertex set. If E' contains all the edges of r joining vertices in V', we 
call the resulting subgraph the subgraph spanned by V'. 

Two non-adjacent vertices x and y of a graph r = (V, E, y) are separated 
by a set W of vertices (in the sense described above) if and only if the subgraph 
of r spanned by V\ W is disconnected. 

A path in a graph r may be considered as a subgraph. In general, it is not 
spanned by its set of vertices. 

Let r; = (V;, E i , y;), i = 1, ... , n, be subgraphs of a graph r = (V, E, y). 
Let 

n n 

V':= UV;, E:= U Eb iCe) := y(e), e E E. 
i= I i= I 

Then r ' = (V', E', y') is a subgraph of r; we shall call it the union of the sub­
graphs r i and denote it by r, u r 2 u··· urn. 

In the main text we shall use the following two important connectedness 
results: 

Theorem A2.1. A graph r = (V, E, y) with at least k + 1 vertices is k-con­
nected if and only iffor each k - 1 vertices XI' ... , X k - I ofr, the subgraph r ' 
ofr spanned by 

is connected. 

Theorem A2.2. Let r I and r 2 be k-connected subgraphs of a graph r. If r I 

and r 2 have at least k vertices in common, then their union r 1 u r 2 is also 
k-connected. 

The proofs of these two theorems will be given below. Theorem A2.2 is an 
easy consequence of Theorem A2.l. The main difficulty in proving Theorem 
A2.1 is taken care of by the following lemma: 

Lemma A2.3. Let X and y be non-adjacent vertices ala graph r. lIthe number oI 
vertices ofT needed to separate X and y equals k, then there are k independent 
paths in r joining x and y. 
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PROOF. It is trivial that the statement is true when k = 1. Suppose that it is 
not true for all k. Let ko be the smallest value of k for which the statement is 
not true. Let robe a graph with the minimum number of vertices such that 
for appropriate non-adjacent vertices Xo and Yo of r 0' the number of vertices 
needed to separate Xo and Yo equals ko, whereas the maximum number of 
independent paths joining Xo and Yo is at most ko - 1. By removing "super­
fluous" edges from r 0, if necessary, we may, in addition, assume that any 
graph r~ obtained from r 0 by removing one edge has the property that only 
ko - 1 vertices are needed to separate Xo and Yo in r~. 

We first prove: 

(a) No vertex ofro is adjacent to both Xo and Yo. 

Suppose that a vertex v is adjacent to both Xo and Yo. Let rev) denote the 
subgraph of r 0 spanned by all vertices of r 0 except v. Then clearly ko - 1 
vertices are needed to separate Xo and Yo in rev). By the minimality property 
of ko we then see that there are ko - 1 independent paths in rev) joining Xo 
and Yo. Along with the path whose vertices are xo, v, Yo, this makes a total of 
ko independent paths in r 0 joining Xo and Yo, a contradiction. 

We next prove: 

(b) Let W be any set of ko vertices of r 0 separating Xo and Yo' Then either 
every vertex in W is adjacent to x o, or every vertex in W is adjacent to Yo. 

If for some v E W, every path joining Xo and Yo passing through v contained 
at least one more vertex from W, then already W\{v} would separate Xo and 
Yo, a contradiction. Therefore, for each v E W there is at least one path joining 
Xo and Yo such that v is the only vertex from Won that path. In particular, for 
each v E W there is a path joining Xo and v such that v is the only vertex from 
Won the path. The union of all such paths is a subgraph of r o. Adding to this 
subgraph the vertex Yo plus ko "new" edges, each joining Yo to a vertex in 
W, we obtain a new graph which we shall denote by r(xo). Changing the 
roles of Xo and Yo, we obtain in a similar manner another new graph r(yo). 
Note that both r(xo) and r(yo) have the property that ko vertices are needed 
to separate Xo and Yo; for any separating set in r(xo) or r(yo) must also be a 
separating set in r o. Supposing that neither Xo nor Yo is adjacent to all 
vertices in W, it follows that both r(xo) and r(yo) have less vertices than 
r o. By the minimality property of rowe then see that in both r(xo) and 
rcVo) there are ko independent paths joining Xo and Yo' Removing from the 
paths in r(xo) the vertex Yo and the (new) edge incident to Yo, we get ko paths 
in r 0, each joining Xo to a vertex in W such that no vertex except Xo belongs 
to more than one of the paths. In a similar way, removing from the paths in 
r(Yo) the vertex Xo and the (new) edge incident to xo, we get ko paths in r 0, 

each joining Yo to a vertex in W such that no vertex except Yo belongs to more 
than one of the paths. Now, these 2ko paths go together in pairs, each pair 
having some vertex from W in common. Each such pair determines a path 
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joining Xo and Yo' The resulting ko paths joining Xo and Yo are in fact in­
dependent. To see this, first note that each vertex in W belongs to exactly one 
of the paths. However, it is also impossible for a vertex not in W to belong to 
two of the paths. Suppose that z was such a common vertex of two paths PI 
and P2' Then by the independence of the ko paths in l(xo) and the inde­
pendence of the ko paths in rcYo), z had to lie between Xo and a VI E Won one 
of the paths, say PI' and between Yo and a V2 E W on the other path P2. But 
then we could construct a path joining Xo and Yo via z not entering W, which 
is a contradiction. 

To complete the proof of the lemma, let 

(1) 

be a path in r 0 joining Xo and Yo. By the non-adjacency of Xo and Yo, and (a), 
we must have n ~ 2. Let r~ denote the subgraph ofr 0 obtained by removing 
from r 0 the edge e I. By one of our initial assumptions, only ko - 1 vertices 
are needed to separate Xo and Yo in ro. Let W' be such a separating set of 
vertices in ro. Then clearly both 

W'I := W' U {u I } 

and 

W~:= W' U {U2} 

separate Xo and Yo in r o. It follows from (a) that UI is not adjacent to Yo and 
U2 is not adjacent to Xo. Application of (b) to W'I then shows that each vertex 
in W' is adjacent to xo, and application of (b) to W~ shows that each vertex 
in W' is adjacent to Yo. Since the number of vertices in W' is ko - 1 which is at 
least 1, we get a contradiction by appealing to (a). This completes the proof 
of the lemma. 0 

PROOF (Theorem A2.l). Suppose first that r is k-connected. Let XI' ... ' Xk-I 

be any k - 1 vertices of r, and let X and y be any two vertices from 

V':= V\{x l , ... , xk-d. 

By assumption, X and y can be joined by k independent paths in r. None of 
the vertices X I, ... , Xk _ 1 belongs to more than one of these paths by the 
independence. Hence, at least one of the paths does not pass through any Xi. 

This shows that there is a path in the subgraph r' spanned by V' which joins 
X and y. In conclusion, r' is connected. 

To prove the converse, let x and y be any two distinct vertices of r. If x 
and yare non-adjacent, it follows from the assumption that at least k vertices 
are needed to separate x and y. Lemma A2.3 next shows that there are at least 
k independent paths joining x and y, as desired. If x and yare adjacent, we 
argue as follows. Remove from r the edge joining x and y, and call the re­
sulting graph r". In r", the vertices x and y are non-adjacent. Suppose that 
certain k - 2 vertices x I, ... , X k _ 2 would separate x and y in r". In r" there 
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is at least one additional vertex z. Since x and yare separated, z must also 
be separated from at least one of the vertices, say y. But then the k - 1 
vertices Xl' ... , Xk- 2, X separate y and z, which contradicts the assumption. 
Hence, in r" at least k - 1 vertices are needed to separate x and y. Lemma 
A2.3 then tells that there are k - 1 independent paths in r" joining X and y. 
Together with the path x, e, y, where e denotes the edge joining X and y 
in r, this makes k independent paths in r joining x and y. 0 

PROOF (Theorem A2.2). We use Theorem A2.1. Let Xl' • •. ,Xk-l be any k - 1 
vertices of r 1 u r 2 , i.e. Xl' ... , Xk-l belong to V1 u V2 , where V1 and V2 

denote the vertex set of r 1 and r 2, respectively. Let 

V' := (Vl U V2 )\ {Xl' ..• , Xk-l}, 

and let r' denote the subgraph of r 1 u r 2 spanned by V'. Since at least k 
vertices are common to r 1 and r 2, at least one common vertex, say xo, is 
distinct from all the x;'s, i = 1, ... , k - 1. Application ofthe "only if" part of 
Theorem A2.1 to r 1 shows that the subgraph r~ of r 1 spanned by 

V~ := V1 \{Xl,.·., xk-d 

is connected. In the same manner, the subgraph r 2 of r 2 spanned by 

is connected. Since r'l and r 2 have Xo as a common vertex, it follows that 
r'l u r 2 is connected. Since r'l u r 2 = r', the desired conclusion follows 
from the" if" part of Theorem A2.1. 0 

Finally, we shall say a few words about oriented graphs. The intuitive 
picture of an oriented graph is that of a (non-oriented) graph as described 
above where, in addition, each edge is equipped with an "orientation". 
Formally, this may be stated as follows: an oriented graph is a triple r = 
(V, E, y), where V (called the set of vertices of r) is a non-empty finite set, E 
(called the set of edges of r) is a set (necessarily finite), a.nd y (called the 
incidence relation of r) is a one-to-one mapping from E onto a subset of the 
set of all ordered pairs (x, y) of two distinct elements of 11; moreover, we 
require that if x and yare distinct vertices with y(e) = (x, y) for some edge 
e, then y(e') # (y, x) for all edges e'. 

Each oriented graph r = (V, E, y) has an underlying non-oriented graph 
r' = (V, E, y'), whereby y'(e) = {x, y} when y(e) = (x, y) or y(e) = (y, x). 
Therefore, everything that we have said above about non-oriented graphs 
also applies to oriented graphs, in the sense that it applies to the underlying 
non-oriented graph. 

When r = (V, E, y) is an oriented graph, and y(e) = (x, y), then we say 
that the edge e is oriented towards y and away from x. The number of edges 
oriented towards x is called the in-valence of x, and the number of edges 
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oriented away from x is called the out-valence of x. Hence, the sum of the 
in-valence of x and the out-valence of x equals the valence of x. 

Each non-oriented graph may be turned into an oriented graph by 
choosing for each edge of the graph one of the two possible orientations of 
that edge. Formally, this means that if r = (V, E, y) is a non-oriented graph, 
then we get an oriented graph r' = (V, E, y') by choosing y' such that y'(e) = 
(x, y) or y'(e) = (y, x) whenever y(e) = {x, y}. Of course, y' is not unique 
(unless r has no edges at all). 



APPENDIX 3 

Combinatorial Iden ti ties 

In the main text we shall need certain identities involving binomial coefficients. 
The purpose of the present section is to give a unified exposition of these 
identities. 

In the following, a, band c always denote integers. Moreover, we always 
assume b ~ 0, whereas a and c may be negative. 

Recall that 

( a):= a(a - 1) .. ·(a - b + 1) 
b b! ' b ~ 1, 

and 

In particular, 

( a) a! 
b = b!(a - b)!' 

b::;; a, 

and 

(:) = 0, 0::;; a < b. 
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If a ~ 0, then 

equals the number of choices of b elements among a elements. 
We shall leave it to the reader to verify the following: 

(~) = (a ~ b). (1) 

(~) = (_I)b(-a +bb - 1). (2) 

(~) = (_I)a-b( ~b_-/). (3) 

(a+l)=~(a). b+l b+l b (4) 

(~ : D = (b: 1) + (~). (5) 

(~)(:) = (~)(: = ~). (6) 

(In (1), (3) and (6) it is understood that a ~ b.) 
The combinatorial identities that we need in the main text are all con­

sequences of the following basic identity, known as the Vandermonde 
Convolution: 

f (a) ( c ) = (a + c) 
k=O k b - k b' 

(7) 

For a, c ~ 0, this is easy to prove. In fact, 

is the number of choices of b elements among a + c elements such that k 
elements are chosen among certain a elements and the remaining b - k 
elements are chosen among the remaining c elements; summing over k then 
yields (7). However, we need (7) for arbitrary integers a and c. We prove it by 
induction on b. For b = 0, it is trivial. Suppose that it holds for b. Then, 
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using also (4), we have 

b+l (a)( c ) 
k~O k b + 1 - k 

b + 1 (k b + 1 - k) (a) ( c ) 
= k~O b + 1 + b + 1 k b + 1 - k 

b + 1 k (a) ( c ) b b + 1 - k (a) ( c ) 
= k~l b + 1 k b + 1 - k + k~O b + 1 k b + 1 - k 

b h + 1 ( a)( c ) b b + 1 - k (a)( c ) 
= h~O b + 1 h + 1 b + 1 - (h + 1) + k~O b + 1 k b + 1 - k 

_ f a (a - 1)( c) ± c (a)(c - 1) 
- h=O b + 1 h b - h + k=O b + 1 k b - k 

= _a (a - 1) + c) + _c (a + (c - 1)) 
b+l b b+l b 

=~(a+c-l) 
b + 1 b 

= (::~) 
Hence, (7) holds for b + 1, as desired. 

Taking c = - 1 in (7) and using the fact that by definition 

(b -=-\) = (-I)b-k, 

we get 

(8) 

Since 

cf. (2), we see that (8) is equivalent to 

(9) 
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We shall next prove: 

0::;; a::;; b. (10) 

The proof of this uses (6) and (8). We have 

completing the proof of (10). 
A particular case of (10) is the following: 

o ::;; a ::;; b, 0::;; c ::;; b. (11) 

In fact, if a = c, then 

(_It(C)(C - a-I) = (-I)b.l. ( -1 ) 
a b-a b-a 

= ( _1)b( _1)b-a 

= (-It; 

if a > c, then 

(:) = 0; 

and if a < c, then 0 ::;; c - a-I < b - a, whence 

( c - a-I) = 
b O. 

-a 

This completes the proof of (11). 
Our final identity is the following: 

t (_I)k(k)( c ) = (_I)b(b - c), 
k=O a b - k b - a 

0::;; a::;; b. (12) 
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Using (3), (7) and (2), we have 

t (_I)k(k)( C ) = t (_I)k(k)( C ) 
k=O a b - k k=a a b - k 

kta (_I)k( _1)k-a( ~a_-a 1 )(b ~ k) 
( l/ia (-a -1)( C ') 

= - h=O h (b - a) - h, 

= (_1)a( -a - 1) + c) 
b-a 

= (_l)a( _1)b-a(-( -a - 1) - c + (b - a) - 1) 
b-a 

= (_I)b(~ = :), 
completing the proof of (12). 

The combinatorial identities of this section may be interpreted as state­
ments about products of matrices. As an important example, let us consider 
the identity (11). Let Band D denote the (b + 1) x (b + 1) matrices 

B:= (-lrj(~)) , 
I i=O •.•.• b;j=O ..... b 

D ,~ (G) L. ,,;=,.. .. 
Then the identity (11) tells that Band D are mutually inverse matrices. 
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case d = 3. For the interesting history of Euler's Relation, see [12, Section 
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more details about the history of the Upper Bound Theorem up to 1967, see 
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exposition is based on [2,3] and V. Klee [14]. For the history of the Lower 
Bound Theorem up to 1967, see [12, Section 10.2]. The fact that for d ;;::: 4, 
the truncation polytopes are the only polytopes for which equality holds was 
proved by L. J. Billera and C. W. Lee [5]. 

Upper and lower bound inequalities for simple unbounded polyhedral 
sets have been obtained by V. Klee [13], A. Bjorner [7], L. J. Billera and C. W. 
Lee [6] and C. W. Lee [15]. 

Theorem 20.1 was conjectured by P. McMullen [17] (in the setting of 
simplicial polytopes). He also proved the theorem for certain particular cases 
and showed that the conjecture would imply the Upper Bound Theorem. 
Another paper (preceding [17]), related to Theorem 20.1, is by P. McMullen 
and D. W. Walkup [19]; here the necessity of condition (b) of Theorem 20.1 
is conjectured and it shown that (a) and (b) imply the Lower Bound Theorem. 

The sufficiency of McMullen's conditions was established by L. J. Billera 
and C. W. Lee [4, 5]. In their proof (which is formulated in the setting of 
simplicial polytopes) they produce a simplicial d-polytope with a given 
f = (fo, ... ,fd- d as its f-vector by taking the vertex-figure at z ofa (d + 1)­
polytope of the form conv(Q u {z}), where Q is a suitably chosen cyclic 
(d + I)-polytope and z is a suitably chosen point outside Q. 

The necessity of McMullen's conditions was established by R. P. Stanley 
[22]. Stanley's proof (which is formulated in the setting of simplicial poly­
topes) uses advanced algebraic geometry; it would be very desirable to have a 
more elementary proof. 

A conjecture on the characterization of f-vectors of simple unbounded 
polyhedral sets has been formulated by L. J. Billera and C. W. Lee [6]. 

It has been conjectured that the f-vectors of simplicial (or simple) d­
polytopes P are unimodal, i.e. 
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for some k. (The necessity of (a) and (b) in Theorem 20.1 shows that 
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!t3(d-l)/4J(P) > ... > fd-2(P) > k-l(P). 

These inequalities immediately imply unimodality for d ::; 8. It is even 
possible to show unimodality for all d ::; 15 by checking each d separately, 
cf. [8]. But unimodality does not hold in general: one knows 20-dimensional 
simplicial polytopes P (with on the order of 1013 vertices) such that 
fll (P) > fI2(P) < f13(P), cf. [5], [8]. 

To conclude the comments on Chapters 1-3, let us mention, without going 
into detail, that many combinatorial results about convex polytopes admit 
extensions to more general geometric objects. 
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