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Preface* 

Up until recently, Riemannian geometry and basic topology were not 
included, even by departments or faculties of mathematics, as compulsory 
subjects in a university-level mathematical education. The standard courses 
in the classical differential geometry of curves and surfaces which were 
given instead (and still are given in some places) gradually came to be viewed 
as anachronisms. However, there has been hitherto no unanimous agreement 
as to exactly how such courses should be brought up to date, that is to say, 
which parts of modern geometry should be regarded as absolutely essential 
to a modern mathematical education, and what might be the appropriate 
level of abstractness of their exposition. 

The task of designing a modernized course in geometry was begun in 1971 
in the mechanics division of the Faculty of Mechanics and Mathematics 
of Moscow State University. The subject-matter and level of abstractness 
of its exposition were dictated by the view that, in addition to the geometry 
of curves and surfaces, the following topics are certainly useful in the various 
areas of application of mathematics (especially in elasticity and relativity, 
to name but two), and are therefore essential: the theory of tensors (including 
covariant differentiation of them); Riemannian curvature; geodesics and the 
calculus of variations (including the conservation laws and Hamiltonian 
formalism); the particular case of skew-symmetric tensors (i.e. "forms") 
together with the operations on them; and the various formulae akin to 
Stokes' (including the all-embracing and invariant" general Stokes formula" 
in n dimensions). Many leading theoretical physicists shared the mathe
maticians' view that it would also be useful to include some facts about 

* Parts II and III are scheduled to appear in the Graduate Texts in Mathematics series at a later 
date. 
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manifolds, transformation groups, and Lie algebras, as well as the basic 
concepts of visual topology. It was also agreed that the course should be given 
in as simple and concrete a language as possible, and that wherever practic
able the terminology should be that used by physicists. Thus it was along these 
lines that the archetypal course was taught. It was given more permanent 
form as duplicated lecture notes published under the auspices of Moscow 
State University as: 

Differential Geometry, Parts I and II, by S. P. Novikov, Division of 
Mechanics, Moscow State University, 1972. 

Subsequently various parts of the course were altered, and new topics 
added. This supplementary material was published (also in duplicated form) 
as 

Differential Geometry, Part III, by S. P. Novikov and A. T. Fomenko, 
Division of Mechanics, Moscow State University, 1974. 

The present book is the outcome of a reworking, re-ordering, and ex
tensive elaboration of the above-mentioned lecture notes. It is the authors' 
view that it will serve as a basic text from which the essentials for a course in 
modern geometry may be easily extracted. 

To S. P. Novikov are due the original conception and the overall plan 
of the book. The work of organizing the material contained in the duplicated 
lecture notes in accordance with this plan was carried out by B. A. Dubrovin. 
This accounts for more than half of Part I; the remainder of the book is 
essentially new. The efforts of the editor, D. B. Fuks, in bringing the book 
to completion, were invaluable. 

The content of this book significantly exceeds the material that might be 
considered as essential to the mathematical education of second- and third
year university students. This was intentional: it was part of our plan that 
even in Part I there should be included several sections serving to acquaint 
(through further independent study) both undergraduate and graduate 
students with the more complex but essentially geometric concepts and 
methods of the theory of transformation groups and their Lie algebras, 
field theory, and the calculus of variations, and with, in particular, the basic 
ingredients of the mathematical formalism of physics. At the same time we 
strove to minimize the degree of abstraction of the exposition and termin
ology, often sacrificing thereby some of the so-called "generality" of 
statements and proofs: frequently an important result may be obtained in 
the context of crucial examples containing the whole essence of the matter, 
using only elementary classical analysis and geometry and without invoking 
any modern "hyperinvariant" concepts and notations, while the result's 
most general formulation and especially the concomitant proof will neces
sitate a dramatic increase in the complexity and abstractness of the exposition. 
Thus in such cases we have first expounded the result in question in the setting 
of the relevant significant examples, in the simplest possible language 
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appropriate, and have postponed the proof of the general form of the result, 
or omitted it altogether. For our treatment of those geometrical questions 
more closely bound up with modern physics, we analysed the physics 
literature: books on quantum field theory (see e.g. [35], [37]) devote 
considerable portions of their beginning sections to describing, in physicists' 
terms, useful facts about the most important concepts associated with the 
higher-dimensional calculus of variations and the simplest representations 
of Lie groups; the books [41], [43] are devoted to field theory in its geo
metric aspects; thus, for instance, the book [ 41] contains an extensive 
treatment of Riemannian geometry from the physical point of view, in
cluding much useful concrete material. It is interesting to look at books on 
the mechanics of continuous media and the theory of rigid bodies ([ 42], [ 44], 
[ 45]) for further examples of applications of tensors, group theory, etc. 

In writing this book it was not our aim to produce a "self-contained" 
text: in a standard mathematical education, geometry is just one component 
of the curriculum; the questions of concern in analysis, differential equations, 
algebra, elementary general topology and measure theory, are examined in 
other courses. We have refrained from detailed discussion of questions drawn 
from other disciplines, restricting ourselves to their formulation only, since 
they receive sufficient attention in the standard programme. 

In the treatment of its subject-matter, namely the geometry and topology 
of manifolds, Part II goes much further beyond the material appropriate to 
the aforementioned basic geometry course, than does Part I. Many books 
have been written on the topology and geometry of manifolds: however, 
most of them are concerned with narrowly defined portions of that subject, 
are written in a language (as a rule very abstract) specially contrived for the 
particular circumscribed area of interest, and include all rigorous founda
tional detail often resulting only in unnecessary complexity. In Part II also 
we have been faithful, as far as possible, to our guiding principle of minimal 
abstractness of exposition, giving preference as before to the significant 
examples over the general theorems, and we have also kept the interde
pendence of the chapters to a minimum, so that they can each be read in 
isolation insofar as the nature of the subject-matter allows. One must 
however bear in mind the fact that although several topological concepts 
(for instance, knots and links, the fundamental group, homotopy groups, 
fibre spaces) can be defined easily enough, on the other hand any attempt to 
make nontrivial use of them in even the simplest examples inevitably 
requires the development of certain tools having no forbears in classical 
mathematics. Consequently the reader not hitherto acquainted with ele
mentary topology will find (especially if he is past his first youth) that the 
level of difficulty of Part II is essentially higher than that of Part I; and for 
this there is no possible remedy. Starting in the 1950s, the development of 
this apparatus and its incorporation into various branches of mathematics 
has proceeded with great rapidity. In recent years there has appeared a rash, 
as it were, of nontrivial applications of topological methods (sometimes 
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in combination with complex algebraic geometry) to various problems 
of modern theoretical physics: to the quantum theory of specific fields of 
a geometrical nature (for example, Yang-Mills and chiral fields), the 
theory of fluid crystals and superfluidity, the general theory of relativity, 
to certain physically important nonlinear wave equations (for instance, the 
Korteweg-de Vries and sine-Gordon equations); and there have been 
attempts to apply the theory of knots and links in the statistical mechanics of 
certain substances possessing "long molecules". Unfortunately we were 
unable to include these applications in the framework of the present book, 
since in each case an adequate treatment would have required a lengthy pre
liminary excursion into physics, and so would have taken us too far afield. 
However, in our choice of material we have taken into account which topo
logical concepts and methods are exploited in these applications, being aware 
of the need for a topology text which might be read (given strong enough 
motivation) by a young theoretical physicist of the modern school, perhaps 
with a particular object in view. 

The development of topological and geometric ideas over the last 20 
years has brought in its train an essential increase in the complexity of the 
algebraic apparatus used in combination with higher-dimensional geo
metrical intuition, as also in the utilization, at a profound level, of functional 
analysis, the theory of partial differential equations, and complex analysis; 
not all of this has gone into the present book, which pretends to being 
elementary (and in fact most of it is not yet contained in any single textbook, 
and has therefore to be gleaned from monographs and the professional 
journals). 

Three-dimensional geometry in the large, in particular the theory of 
convex figures and its applications, is an intuitive and generally useful 
branch of the classical geometry of surfaces in 3-space; much interest 
attaches in particular to the global problems of the theory of surfaces of 
negative curvature. Not being specialists in this field we were unable to 
extract its essence in sufficiently simple and illustrative form for inclusion in 
an elementary text. The reader may acquaint himself with this branch of 
geometry from the books [1], [4] and [16]. 

Of all the books on the topology and geometry of manifolds, the classical 
works A Textbook of Topology and The Calculus of Variations in the Large, 
of Seifert and Threlfall, and also the excellent more modern books [10], 
[11] and [12], turned out to be closest to our conception in approach and 
choice of topics. In the process of creating the present text we actively mulled 
over and exploited the material covered in these books, and their method
ology. In fact our overall aim in writing Part II was to produce something 
like a modern analogue of Seifert and Threlfall's Textbook of Topology, 
which would however be much wider-ranging, remodelled as far as possible 
using modern techniques of the theory of smooth manifolds (though with 
simplicity oflanguage preserved), and enriched with new material as dictated 
by the contemporary view of the significance of topological methods, and 
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of the kind of reader who, encountering topology for the first time, desires 
to learn a reasonable amount in the shortest possible time. It seemed to us 
sensible to try to benefit (more particularly in Part I, and as far as this is 
possible in a book on mathematics) from the accumulated methodological 
experience of the physicists, that is, to strive to make pieces of nontrivial 
mathematics more comprehensible through the use of the most elementary 
and generally familiar means available for their exposition (preserving 
however, the format characteristic of the mathematical literature, wherein 
the statements of the main conclusions are separated out from the body of 
the text by designating them "theorems", "lemmas", etc.). We hold the 
opinion that, in general, understanding should precede formalization and 
rigorization. There are many facts the details of whose proofs have (aside 
from their validity) absolutely no role to play in their utilization in applica
tions. On occasion, where it seemed justified (more often in the more dif
ficult sections of Part II) we have omitted the proofs of needed facts. In 
any case, once thoroughly familiar with their applications, the reader may 
(if he so wishes), with the help of other sources, easily sort out the proofs of 
such facts for himself. (For this purpose we recommend the book [21].) 
We have, moreover, attempted to break down many of these omitted proofs 
into soluble pieces which we have placed among the exercises at the end of the 
relevant sections. 

In the final two chapters of Part II we have brought together several items 
from the recent literature on dynamical systems and foliations, the general 
theory of relativity, and the theory of Yang-Mills and chiral fields. The 
ideas expounded there are due to various contemporary researchers; 
however in a book of a purely textbook character it may be accounted 
permissible not to give a long list of references. The reader who graduates 
to a deeper study of these questions using the research journals will find 
the relevant references there. 

Homology theory forms the central theme of Part III. 
In conclusion we should like to express our deep gratitude to our colleagues 

in the Faculty of Mechanics and Mathematics of M.S.U., whose valuable 
support made possible the design and operation of the new geometry courses; 
among the leading mathematicians in the faculty this applies most of all to 
the creator of the Soviet school of topology, P. S. Aleksandrov, and to the 
eminent geometers P. K. Rasevskil and N. V. Efimov. 

We thank the editor D. B. Fuks for his great efforts in giving the manu
script its final shape, and A. D. Aleksandrov, A. V. Pogorelov, Ju. F. 
Borisov, V. A. Toponogov and V.I. Kuz'minov who in the course of review
ing the book contributed many useful comments. We also thank Ja. B. 
Zel'dovic for several observations leading to improvements in the exposition 
at several points, in connexion with the preparation of the English and French 
editions of this book. 

We give our special thanks also to the scholars who facilitated the task 
of incorporating the less standard material into the book. For instance the 
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proof of Liouville's theorem on conformal transformations, which is not to 
be found in the standard literature, was communicated to us by V. A. Zoric. 
The editor D. B. Fuks simplified the proofs of several theorems. We are 
grateful also to 0. T. Bogojavlenskii, M. I. Monastyrskii, S. G. Gindikin, 
D. V. Alekseevskii, I. V. Gribkov, P. G. Grinevic, and E. B. Vinberg. 

Translator's acknowledgments. Thanks are due to Abe Shenitzer for much 
kind advice and encouragement, and to Eadie Henry for her excellent typing 
and great patience. 



Contents 

CHAPTER I 

Geometry in Regions of a Space. Basic Concepts 
§ 1. Co-ordinate systems 

l.l. Cartesian co-ordinates in a space 
1.2. Co-ordinate changes 

§2. Euclidean space 
2.1. Curves in Euclidean space 
2.2. Quadratic forms and vectors 

§3. Riemannian and pseudo-Riemannian spaces 
3.1. Riemannian metrics 
3.2. The Minkowski metric 

§4. The simplest groups of transformations of Euclidean space 
4.1. Groups of transformations of a region 
4.2. Transformations of the plane 
4.3. The isometries of 3-dimensional Euclidean space 
4.4. Further examples of transformation groups 
4.5. Exercises 

§5. The Serret-Frenet formulae 
5.1. Curvature of curves in the Euclidean plane 
5.2. Curves in Euclidean 3-space. Curvature and torsion 
5.3. Orthogonal transformations depending on a parameter 
5.4. Exercises 

§6. Pseudo-Euclidean spaces 
6.1. The simplest concepts of the special theory of relativity 
6.2. Lorentz transformations 
6.3. Exercises 

1 
2 
3 
9 
9 

14 
17 
17 
20 
23 
23 
25 
31 
34 
37 
38 
38 
42 
47 
48 
50 
50 
52 
60 



xii Contents 

CHAPTER 2 

The Theory of Surfaces 61 
§7. Geometry on a surface in space 61 

7 .1. Co-ordinates on a surface 61 
7 .2. Tangent planes 66 
7.3. The metric on a surface in Euclidean space 68 
7.4. Surface area 72 
7.5. Exercises 76 

§8. The second fundamental form 76 
8.1. Curvature of curves on a surface in Euclidean space 76 
8.2. Invariants of a pair of quadratic forms 79 
8.3. Properties of the second fundamental form 80 
8.4. Exercises 86 

§9. The metric on the sphere 86 
§10. Space-like surfaces in pseudo-Euclidean space 90 

10.1. The pseudo-sphere 90 
10.2. Curvature of space-like curves in ~~ 94 

§11. The language of complex numbers in geometry 95 
11.1. Complex and real co-ordinates 95 
11.2. The Hermitian scalar product 97 
11.3. Examples of complex transformation groups 99 

§12. Analytic functions 100 
12.1. Complex notation for the element of length, and for the differential 

of a function I 00 
12.2. Complex co-ordinate changes 104 
12.3. Surfaces in complex space 106 

§13. The conformal form of the metric on a surface 109 
13.1. Isothermal co-ordinates. Gaussian curvature in terms of conformal 

co-ordinates 109 
13.2. Conformal form of the metrics on the sphere and the Lobachevskian 

plane 114 
13.3. Surfaces of constant curvature 117 
13.4. Exercises 120 

§14. Transformation groups as surfaces inN-dimensional space 120 
14.1. Co-ordinates in a neighbourhood of the identity 120 
14.2. The exponential function with matrix argument 127 
14.3. The quaternions 131 
14.4. Exercises 136 

§15. Conformal transformations of Euclidean and pseudo-Euclidean spaces of 
several dimensions 136 

CHAPTER 3 

Tensors: The Algebraic Theory 145 
§16. Examples of tensors 145 
§ 17. The general definition of a tensor 151 

17 .1. The transformation rule for the components of a tensor of arbitrary 
rank 151 



Contents XUI 

17 .2. Algebraic operations on tensors 157 
17.3. Exercises 161 

§18. Tensors of type (0, k) 161 
18.1. Differential notation for tensors with lower indices only 161 
18.2. Skew-symmetric tensors of type (0, k) 164 
18.3. The exterior product of differential forms. The exterior algebra 166 
18.4. Exercises 167 

§19. Tensors in Riemannian and pseudo-Riemannian spaces 168 
19.1. Raising and lowering indices 168 
19.2. The eigenvalues of a quadratic form 170 
19.3. The operator * 171 
19.4. Tensors in Euclidean space 172 
19.5. Exercises 173 

§20. The crystallographic groups and the finite subgroups of the rotation group 
of Euclidean 3-space. Examples of invariant tensors 173 

§21. Rank 2 tensors in pseudo-Euclidean space, and their eigenvalues 194 
21.1. Skew-symmetric tensors. The invariants of an electromagnetic field 194 
21.2. Symmetric tensors and their eigenvalues. The energy-momentum 

tensor of an electromagnetic field 199 
§22. The behaviour of tensors under mappings 203 

22.1. The general operation of restriction of tensors with lower indices 203 
22.2. Mappings of tangent spaces 204 

§23. Vector fields 205 
23.1. One-parameter groups of diffeomorphisms 205 
23.2. The Lie derivative 207 
23.3. Exercises 211 

§24. Lie algebras 212 
24.1. Lie algebras and vector fields 212 
24.2. The fundamental matrix Lie algebras 214 
24.3. Linear vector fields 219 
24.4. The Killing metric 224 
24.5. The classification of the 3-dimensional Lie algebras 226 
24.6. The Lie algebras of the conformal groups 227 
24.7. Exercises 232 

CHAPTER 4 

The Differential Calculus of Tensors 234 

§25. The differential calculus of skew-symmetric tensors 234 
25.1. The gradient of a skew-symmetric tensor 234 
25.2. The exterior derivative of a form 237 
25.3. Exercises 243 
§26. Skew-symmetric tensors and the theory of integration 244 

26.1. Integration of differential forms 244 
26.2. Examples of integrals of differential forms 250 
26.3. The general Stokes formula. Examples 255 
26.4. Proof of the general Stokes formula for the cube 263 
26.5. Exercises 265 



XIV Contents 

§27. Differential forms on complex spaces 
27.1. The operators d' and d" 

266 
266 
269 
271 
271 

27.2. Kahlerian metrics. The curvature form 
§28. Covariant differentiation 

28.1. Euclidean connexions 
28.2. Covariant differentiation of tensors of arbitrary rank 280 

§29. Covariant differentiation and the metric 284 
29 .I. Parallel transport of vector fields 284 
29.2. Geodesics 286 
29.3. Connexions compatible with the metric 287 
29.4. Connexions compatible with a complex structure (Hermitian metric) 291 
29.5. Exercises 293 

§30. The curvature tensor 295 
30.1. The general curvature tensor 295 
30.2. The symmetries of the curvature tensor. The curvature tensor defined 
~~~~ ~ 

30.3. Examples: the curvature tensor in spaces of dimensions 2 and 3; the 
curvature tensor defined by a Killing metric 302 

30.4. The Peterson-Codazzi equations. Surfaces of constant negative 
curvature, and the "sine-Gordon" equation 307 

30.5. Exercises 310 

CHAPTER 5 

The Elements of the Calculus of Variations 313 
§31. One-dimensional variational problems 313 

31.1. The Euler-Lagrange equations 313 
31.2. Basic examples of functionals 317 

§32. Conservation laws 320 
32.1. Groups of transformations preserving a given variational problem 320 
32.2. Examples. Applications of the conservation laws 322 

§33. Hamiltonian formalism 333 
33.1. Legendre's transformation 333 
33.2. Moving co-ordinate frames 336 
33.3. The principles of Maupertuis and Fermat 341 
33.4. Exercises 344 

§34. The geometrical theory of phase space 344 
34.1. Gradient systems 344 
34.2. The Poisson bracket 348 
34.3. Canonical transformations 354 
34.4. Exercises 358 

§35. Lagrange surfaces 358 
35.1. Bundles of trajectories and the Hamilton-Jacobi equation 358 
35.2. Hamiltonians which are first-order homogeneous with respect to the 

momentum 
§36. The second variation for the equation of the geodesics 

36.1. The formula for the second variation 
36.2. Conjugate points and the minimality condition 

363 
367 
367 
371 



Contents XV 

CHAPTER 6 
The Calculus of Variations in Several Dimensions. Fields and 
Their Geometric Invariants 375 
§37. The simplest higher-dimensional variational problems 375 

37 .I. The Euler-Lagrange equations 375 
37.2. The energy-momentum tensor 379 
37.3. The equations of an electromagnetic field 384 
37.4. The equations of a gravitational field 390 
37.5. Soap films 397 
37.6. Equilibrium equation for a thin plate 403 
37.7. Exercises 408 

§38. Examples of Lagrangians 409 
§39. The simplest concepts of the general theory of relativity 412 
§40. The spinor representations of the groups 50(3) and 0(3, I). Dirac's 

equation and its properties 427 
40.1. Automorphisms of matrix algebras 427 
40.2. The spinor representation of the group 50(3) 429 
40.3. The spinor representation of the Lorentz group 431 
40.4. Dirac's equation 435 
40.5. Dirac's equation in an electromagnetic field. The operation of charge 

conjugation 437 
§41. Covariant differentiation of fields with arbitrary symmetry 439 

41.1. Gauge transformations. Gauge-invariant Lagrangians 439 
41.2. The curvature form 443 
41.3. Basic examples 444 

§42. Examples of gauge-invariant functionals. Maxwell's equations and the 
Yang-Mills equation. Functionals with identically zero variational 
derivative (characteristic classes) 449 

Bibliography 455 

Index 459 



CHAPTER 1 

Geometry in Regions of a Space. 
Basic Concepts 

§ 1. Co-ordinate Systems 

We begin by discussing some of the concepts fundamental to geometry. In 
school geometry- the so-called "elementary Euclidean" geometry of the 
ancient Greeks-the main objects of study are various metrical properties 
of the simplest geometrical figures. The basic goal of that geometry is to 
find relationships between lengths and angles in triangles and other polygons. 
Knowledge of such relationships then provides a basis for the calculation 
of the surface areas and volumes of certain solids. The central concepts 
underlying school geometry are the following: the length of a straight line 
segment (or of a circular arc); and the angle between two intersecting straight 
lines (or circular arcs). 

The chief aim of analytic (or co-ordinate) geometry is to describe geo
metrical figures by means of algebraic formulae referred to a Cartesian 
system of co-ordinates of the plane or 3-dimensional space. The objects 
studied are the same as in elementary Euclidean geometry: the sole difference 
lies in the methodology. Again, differential geometry is the same old subject, 
except that here the subtler techniques of the differential calculus and linear 
algebra are brought into full play. Being applicable to general "smooth" 
geometrical objects, these techniques provide access to a wider class of such 
objects. 



2 I. Geometry in Regions of a Space. Basic Concepts 

1.1. Cartesian Co-ordinates in a Space 

Our most basic conception of geometry is set out in the following two para
graphs: 

(i) We do our geometry in a certain space consisting of points P, Q, .... 
(ii) As in analytic geometry, we introduce a system of co-ordinates for the 

space. This is done by simply associating with each point of the space 
an ordered n-tuple (x 1, ••• , xn) of real numbers-the co-ordinates of the 
point-in such a way as to satisfy the following two conditions: 
(a) Distinct points are assigned distinct n-tuples. In other words, points 

P and Q with co-ordinates (x 1 •... , xn) and (yl, ... , yn) are one and 
the same point if and only if x; = y;. i = 1, ... , n. 

(b) Every possible n-tuple (x\ ... , xn) is used, i.e. is assigned to some 
point of the space. 

1.1.1. Definition. A space furnished with a system of Cartesian co-ordinates 
satisfying conditions (a) and (b) is called ann-dimensional Cartesian space.t 
and is denoted by !Rn. The integer n is called the dimension of the space. 

We shall often refer somewhat loosely to then-tuples (x 1, ..• ,xn) them
selves as the points of the space. The simplest example of a Cartesian space 
is the real number line. Here each point has just one co-ordinate x 1, so that 
n = 1, i.e. it is a !-dimensional Cartesian space. Other examples, familiar 
from analytic geometry, are provided by Cartesian co-ordinatizations of 
the plane (which is then a 2-dimensional Cartesian space). and of ordinary 
(i.e. 3-dimensional) space (Figure 1). These Cartesian spaces are completely 
adequate for solving the problems of school geometry. 

We shall now consider a less familiar but extremely important example 
of a Cartesian space. Modern physics teaches us that time and space are not 
separate, non-overlapping concepts, but are merged in a 4-dimensional 
"space-time continuum." The following mathematical formulation of the 
natural ordering of phenomena turns out to be extraordinarily convenient. 

The points of our space-time continuum are taken to be events. We assign 
to each event an ordered quadruple (t, xi, x2, x3 ) of real numbers, where 
t is the "instant in time" when the event occurs, and x 1, x2 , x 3 are the co
ordinates of the "spatial location" of the event. With this co-ordinatization, 
the space-time continuum becomes a 4-dimensional Cartesian space, and 
we then set aside our interpretation of the co-ordinates (t, x1, x 2 , x3 ) as 
times and locations of the events. The 3-dimensional space of classical 
geometry is then simply the hyperspace defined by an equation t = const. 
The course, or path, in space-time, of an object which can be regarded 
abstractly at every instant of time as a point (a so-called "point-particle"), 

t This terminology is perhaps unconventional. We hope that the reader will not find it too 
disconcerting. 
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is then identified with a curve segment (or arc) xa(t), IX= I, 2, 3, t 1 :::; t:::; t2 , 

in 4-dimensional space. We call this curve the world-line .of the point
particle (Figure 2). We shall be considering also 3-dimensional and even 
2-dimensional space- time continua, co-ordinatized by triples (t , x 1, x 2 ) and 
pairs (t , x 1) respectively, since for these spaces it is easier to draw intelligible 
pictures. 

1.2. Co-ordinate Changes 

Suppose that in an n-dimensional Cartesian space we are given a real
valued functionf(P), i.e. a function assigning a real number to each point 
P of the space. Since each point of the space comes with its n co-ordinates 
we can think off as a function of n real variables : if P = (x 1, ... , xn), then 
.f(P) = .f(x 1, . •• , xn). We shall be concerned only with continuous (usually 
even continuously differentiable) functions f(x 1, ••• , xn). At times the 
functions we consider will not be defined for every point of the space !Rn, but 
only on portions, or, more precisely, "regions " of it. 
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1.2.1. Definition. A region, or region without boundary ("open set" in other 
terminology), is a set D of points in !Rn such that together with each of its 
points P 0 , D also contains all points sufficiently close to P 0 ; more precisely, 
for each point P 0 = (x6, ... , x~) in the region D, there is a number B > 0 
S~fCh that all points P = (x 1, ... , xn) satisfying the inequalities 

[xi- x~[ < B, i = 1, ... , n, 

also lie in D. 

1.2.2. Definition. A region with boundary is obtained from a region D (without 
boundary) by simply adjoining all boundary points (i.e. points not in D, yet 
having points of D arbitrarily close to them). The boundary of the region is 
just the set of boundary points. 

The simplest example of a region without boundary is the whole space 
!Rn. Another simple example is afforded by the set of points (x 1, x 2 ) of the 
plane for which xf + x~ < p2 (the open disc of radius p > 0). The cor
responding region with boundary consists of those points (x ~> x 2 ) satisfying 
xf + x~ s p2 . The manner of definition of this region is typical in the 
specific sense indicated by the following theorem. 

1.2.3. Theorem. Let .f1 (P), ... , j~(P) (P = (x 1, ... , xn)) be contimwusfunc
tions defined on the space !Rn. Then the set D of all points P satisfying the 
inequalities 

j~ (P) < 0, f~(P) < 0, ... , .fm(P) < 0 

is a region without boundary. 

PROOF. Suppose P 0 = (x6, ... , x~) lies in D, i.e . ./1 (P 0 ) < 0, ... , j~(P 0 ) < 0. 
By the property of "preservation of sign" of continuous functions we have 
that for each j there is a number B.i > 0 such that fj(P) < 0 for all P = 
(x 1, •.. , xn) satisfying I xi - x~ I < B.i, i = 1, ... , n. Putting£ = min(1: 1, ... , Bm), 
we then see that D certainly contains all points (x 1, ... , xn) satisfying 
I xi - x~ I < s. Hence D is a region without boundary. D 

Remark. If a segment of a continuous curve is such that all of its interior 
points are in the region D: jj(P) < 0, j = 1, ... , m, then in view of the con
continuity of the _/j, its end-points must satisfy jj(P) s 0; i.e. travel along 
such a segment will only get us to points P satisfying/j(P) s O,j = 1, ... , m. 
If the functions .f1, ... , f~ satisfy certain simple analytic conditions (which 
we shall specify in Part II), then it follows that every point P satisfying 
jj(P) s 0, j = 1, ... , m, can be reached in this way. Thus under these con
ditions the solutions of the inequalities jj(P) s O,j = 1, ... , m, form a region 
with boundary. 
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We mention here also the frequently encountered and very important 
idea of a bounded region of a space, i.e. a region all of whose points are less 
than a certain fixed distance from the origin of co-ordinates. 

Cartesian co-ordinates (x 1, •.. , xn) assigned to !Rn obviously furnish, in 
particular, a co-ordinatization of each region D, except that if D is not the 
whole space !Rn, then of course the n-tuples corresponding to points of D 
will not take on all possible values; it still makes sense of course to talk 
about the continuity and differentiability of functions defined only on the 
region D. 

Suppose another system of co-ordinates (z1, ••. , zn) is given for the same 
region. We can write 

i = 1, 2, ... , n, 
(1) 

j = 1, 2, ... , n. 

These equations mean simply that each point of the region has associated 
with it both its "old" co-ordinates (xl, ... , xn), and its "new" co-ordinates 
(z 1, •.. , zn), so that the new co-ordinates can be thought of as functions of 
the old ones, and conversely. 

We first of all investigate linear changes of co-ordinates of the space: 
n 

xi= I a}zj, 
j= 1 

i = 1, ... , n (2) 

(or more briefly x; = a}zj, where here (as in the sequel) it is understood that 
repeated indices (here j only) are summed over). From linear algebra we 
know that the z; are expressible in terms of the X; if and only if the matrix 
A = (a}) has an inverse B = A - 1 = (b}). This inverse matrix is defined by 
the equations b}al = JL where again summation over the repeated index 
j is understood, and the Kronecker symbol Ji is defined by 

Ji = {1 for i = k, 
0 fori =f. k. 

In (2) the Cartesian co-ordinates x 1, .•. , x" of the point Pare expressed in 
terms of the new co-ordinates z 1, .•. , z" by means of the matrix A = (a}); 
the equations (2) can be rewritten more compactly as 

X= AZ, 

(where in the first equation, X and Z are written as column vectors). The 
equations (2) tell us that if x1, •.. , xn are the co-ordinates assigned to P in 
the original co-ordinate system, then in the new co-ordinate system, P is 
assigned co-ordinates z1, ... , zn satisfying those equations. We have seen 
that A must be invertible (or in other words be nonsingular, or, in yet other 
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words, have nonzero determinant), so that the new co-ordinates can be 
expressed in terms of the old: 

Z=BX, (3) 

(where summation over k is implicit). 
We return to the general situation where xi = xi(z 1, ••• , z"). i = 1, ... , n, 

except that now we shall assume that the functions xi(z 1, ... , z") are con
tinuously differentiable (i.e. have continuous first-order partial derivatives, 
or, more briefly, are "smooth"). 

We assume that every point of the region under scrutiny gets assigned 
new co-ordinates, or, in other words, that to each n-tuple (xb, .... x0) of the 
region there corresponds at least one n-tuple (zb, ... , z0) such that 

X~ = Xi(z6, ... , Zo), i = 1, ... , n. 

1.2.4. Definition. A point P = (xb, ... , x0) is called an ordinary or non
singular point of the co-ordinate system (z 1, ... , z") if the matrix 

A = (a~) = (Jxi·) (4) 
iJzl zl=zi>·····z"=zn 

(where zb, ... , z0 satisfy xi(zb, ... , z0) = x~, i = 1, ... , n) has nonzero 
determinant (i.e. is nonsingular). 

The matrix A is called the Jacobian matrix of the given transformation 
of co-ordinates, and is denoted by 1 = (oxjoz). The determinant of the 
Jacobian matrix is called simply the Jacobian, and is denoted by J: 

(ax) . 
J = det oz = det J. 

The following theorem, known as the "Inverse Function Theorem" 
(a particular case of the general "Implicit Function Theorem"), should be 
familiar from courses in mathematical analysis. 

1.2.5. Theorem. Suppose we have a change of co-ordinate systems where, 
as above, the old co-ordinates are expressed in terms of the new by xi = xi(z), 
i = 1, ... , n, and let x~ = xi(zb, ... , z0), i = 1, ... , n, be the co-ordinates 
of some point with the property that J = det(oxjoz) -=I 0 at z 1 = zb, ... , z" = 
z0. Then for some sufficiently small neighbourhood of (i.e. region about) the 
point (xb, ... , x0) we shall have that: the co-ordinates z 1, .•. , z" of points of 
that neighbourhood are expressible in terms of x 1, ... , x", say zi = zi(x ), where, 
in particular, z~ = zi(xb, ... , x0), i = 1, ... , n; and at each point of the 
neighbourhood the matrix (bD = (ozijfJxj) (the Jacobian matrix of the inverse 
transformation) is the inverse of the matrix (a7) = (oxk/oz1); i.e. 

ozi oxj . 
oxj ozk = <5;. 

(with, as usual, summation over the repeated index understood). 

(5) 
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For the case n = I this becomes the following simple statement: If x = 
x(z), and if x 0 = x(z0 ) is such that dxjdz #- 0 at z = z0 , then on some suffi
ciently small interval about x 0 , z can be expressed in terms of x, say z = z(x), 
with in particular z0 = z(x0 ), and, throughout the interval, (dzjdx)(dxjdz) = 
l. 

What does Theorem 1.2.5 convey in the special case, already considered, 
where the transformation of co-ordinates is linear? Here the transformation 
is given by X = AZ, i.e. xi= ajzi, so that since oxWJzk = aL the Jacobian 
matrix oxjoz is just the constant matrix A. Thus in this case Theorem 1.2.5 
reduces to the previously mentioned well-known fact that if det A #- 0, then 
the transformation is invertible on the whole space, and Z = BX where B 
is the inverse of A. 

The three further examples which follow are all taken from analytic 
geometry of two and three dimensions. 

1.2.6. Examples. (a) It is often convenient to use polar co-ordinates r, cp, of 
the plane. Rectangular Cartesian co-ordinates are expressed in terms of these 
by 

x 1 = r cos cp, x2 = r sin cp. (6) 

(Here we allow only r 2': 0.) Thus for all integers k the pairs (r, cp) and 
(r, cp + 2kn) represent the same point P = (x1, x 2). Thus in order that there 
be a unique cp for each P we impose the requirement that 0 $;; cp < 2n. Note 
also that the pairs (0, cp) all represent a single point, namely the (common) 
origin; thus at the origin we might expect the transformation (6) to behave 
badly. Let us verify that the origin is indeed a singular (i.e. non-ordinary) 
point of the system of polar co-ordinates. The Jacobian matrix is 

or 
A= (

oxt 

ox2 

or 
Hence the Jacobian is 

oxt) 
ocp = (c~s cp 
ox2 sm cp 

ocp 

J = det A = r 2': 0, 

- r sin cp )· 
r cos cp 

(7) 

so it is zero only at the origin. Expressing rasa function of x 1 and x 2 , we get 

r = j(x1) 2 + (x2) 2 , which is not differentiable at x1 = 0, x 2 = 0. On the 
other hand, in the region { (r, cp) I r > 0, 0 < cp < 2n}, there are no singular 
points, and the new co-ordinates correspond one-to-one to the points. 

(b) The rectangular Cartesian co-ordinates xl, x 2 , x3 of 3-dimensional 
"Euclidean" space are expressed in terms of the cylindrical co-ordinates 
z1 = r, z2 = cp, z3 = z by 

x 1 = r cos cp, x 2 = r sin cp, (8) 
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Here the equation r = 0 defines the z-axis, and it is along this straight line 
that the co-ordinate system "misbehaves," in the sense that the Jacobian 
matrix 

(
cos t.p 

A= si~ t.p 

-rsin<p 0) 
r cos t.p 0 

0 I 

(9) 

has zero determinant there (and only there). In the region r > 0 this co
ordinate system has no singular points. As in 1.2.6(a) the co-ordinate t.p is 
single-valued provided we impose the restriction 0 ::::;; t.p < 2n. 

(c) Finally we consider spherical co-ordinates z 1 = r, z2 = 0, z3 = t.p in 
Euclidean 3-space (Figure 3). In this case 

x 1 = r cos t.p sin(), x 2 = r sin t.p sin fJ, 
x 3 = r cos (); r :2: 0, 0 ::::;; () ::::;; n, 0 ::::;; t.p < 2n. 

Hence the Jacobian matrix is 

(
cos t.p sin 0 r cos t.p cos 0 

A = sin <p sin () r sin t.p cos 0 
cos 0 - r sin () 

r sin t.p sin (1) 
r cos~ sin 0 , 

( 10) 

(II) 

and the Jacobian J = det A is J = r2 sin 0. Thus the Jacobian is zero only 
when r = 0, or () = 0, n. We conclude that in the region r > 0, 0 < (J < n, 
0 < t.p < 2n, the spherical co-ordinates are single-valued and there are 
no singular points of the system. The points defined by r = 0 ((J, t.p arbitrary), 
and by (J = 0, n (r , t.p arbitrary) are singular points of the spherical co-ordinate 
system. 

Figure 3 
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§2. Euclidean Space 

We now supplement the rudimentary idea of geometry considered in the 
preceding section with the two concepts basic to geometry, namely the 
length of a curve segment in space, and the angle between two curves at a 
point where they intersect Our intuitive ideas of length and angle are 
determined by the fact that we live in a space which is (to a certain approxi
mation) 3-dimensional Euclidean, i.e. which can be co-ordinatized by 
Cartesian co-ordinates with special properties. We shall now describe these 
special properties. 

2.1. Curves in Euclidean Space 

Suppose we have a 3-dimensional Cartesian space where the square of the 
length I of a straight line segment joining any point P = (x 1, x 2 , x 3 ) to any 
point Q = (yl, /, y 3 ) is given by 

1z =(xi _ y1)z + (xz _ yz)z + (x3 _ .rJ?. 

We call such a Cartesian space Euclidean (of 3 dimensions) and call these 
Cartesian co-ordinates Euclidean co-ordinates. 

The reader will recall from courses in linear algebra that it is often con
venient to associate vectors with the points of Euclidean space. With each 
point P we associate the vector (or ''arrow") with its tail at 0 (the origin 
of co-ordinates), and its tip at P. This vector is called the radius vector of the 
point P, and the co-ordinates (x 1, x 2 , x 3 ) of Pare the co-ordinates or com
ponents of the vector. Vectors~ = (x 1• x 2 • x 3 ), 11 = (y 1, y2 , y3 ) can be added 
co-ordinate-wise to yield the vector ~ + 17 with co-ordinates (x 1 + i, 
x 2 + /, x 3 + y3 ). A vector can also be multiplied (co-ordinate-wise) by 
any real number (called a "scalar" in this context). The unit vectors e1, e2 , e3 

with co-ordinates (1, 0, 0), (0, I, 0), (0, 0, 1) respectively, clearly have length 
1; we shall see later on that they are also mutually perpendicular. Any vector 
~ = (x 1, x 2 , x 3 ) can be expressed as a unique linear combination of these 
unit vectors:~= x 1e1 + x 2e2 + x 3e3. 

We define n-dimensional Euclidean space analogously. Thus an n

dimensional Euclidean space may be regarded as a linear space (i.e. vector 
space) for which the square of the distance I between any two points (or tips 
of radius vectors)~ = (x 1, ..• , xn) and 17 = (y 1, ••• , Jn is given by 

i= 1 

As we have seen, the case n = 3 corresponds to "ordinary" Euclidean space. 
The case n = 2 corresponds to the Euclidean plane, while the Euclidean 
spaces of dimension n > 3 are simply generalizations to higher dimensions. 

Of fundamental importance is the scalar product of a pair of vectors in 
Euclidean n-space. 
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2.1.1. Definition. The Euclidean scalar product of two (real) vectors ~ = 
(x 1, ••• , x") and YJ = (yi, ... , y") is the number 

n 

(~, YJ) = L xiyi. (1) 
i= 1 

The quintessential properties of the scalar product are the following: 

(i) <~. YJ) = (YJ, 0; 
(ii) (A. 1 ~ 1 + A.2 ~, YJ) = A. 1 (~ 1 , YJ) + A.2 (~2 , YJ) for any real numbers A. 1 , A. 2 ; 

(iii) <~. 0 > 0 if~# 0. 

As noted above, Cartesian co-ordinates x1, ... , x" in terms of which the 
scalar product has the form (1), are called Euclidean co-ordinates. 

We shall now see that lengths and angles in Euclidean n-space are ex
pressible in terms of the scalar product. Thus the length (or norm) of a 
vector ~. which we denote by I~ I, is given by I~ I = J<f,O. Similarly the 
square of the distance between the points P and Q with radius vectors 
~ = (x\ ... , x") and YJ = (y\ ... , y") respectively is just the scalar product 
of the vector ~ - YJ with itself. Hence property (iii) can be interpreted as 
saying that any non-zero vector has positive length. 

The reader is no doubt familiar from analytic geometry with the formula 
for the angle between two vectors ~ = (x 1, ••• , x") and YJ = (y 1, ••• , y"), 
namely 

coscp= (~,YJ) 
J<~. 0(YJ, YJ) 

0::;; cp::;; n. (2) 

We conclude from this that the two basic geometrical concepts, namely 
length and angle, can be expressed in terms of a single concept, namely the 
scalar product. Subsequently, when we come to deal with general spaces, 
we shall take some scalar product satisfying (i), (ii) and (iii) as the basic 
concept, in terms of which the geometrical structure is defined. 

Suppose now that we have a segment (i.e. an arc) of a curve in Euclidean 
n-space given in parametric form: 

(3) 

where the parameter t varies from a to b, and the fi(t) are smooth functions 
of t. The tangent or velocity vector of the curve at the instant t is the vector 

v(t) = (d~tt, ... ' d~:). 

2.1.2. Definition. The length of this curve segment (or arc) is 

l= fJ<v(t),v(t))dt= flv(t)ldt. 

(4) 

(5) 
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In words: the length of the arc is defined as the integral from a to b of the 
norm of its velocity vector. t 

We next define the angle between two curves at a point where they inter
sect. Suppose the curves are given as xi = fi(t), i = I, ... , n, and xi = gi(t), 
i = I, ... , n, and that they intersect when t = t0 (i.e. fi(t 0 ) = gi(t0 ), i = 
I, ... , n). Denote the respective tangent vectors to the curves by 

v = (ddlf 1 , ... , ddr) I , 
t t t=to 

w = (ddgl' ... 'ddg") ,_ . 
t l t-to 

(6) 

2.1.3. Definition. The angle between the two curves at the point of their 
intersection (at t = t0 ) is that angle cp satisfying 0 ::::;; cp ::::;; nand 

(v, w) 
cos (/) = TVTiWT. (7) 

In courses in mathematical analysis Definitions 2.1.2 and 2.1.3 are usually 
treated as important results which have to be inferred from simpler facts. On 
the other hand one can, as in our treatment here, simply regard them as 
definitions; of course we must then check that these definitions fall into line 
with our previous ideas of arc length and of angle between two curves, in 
Euclidean space. Such verification will incidentally also provide further 
support for the modern point of view of geometry, namely that the appro
priate initial concept on which to base all geometry is that of the scalar 
product operation on pairs of tangent vectors. 

What do our earlier ideas of length and angle amount to? Careful re
collection reveals that for us the elemental concept of length was that of a 
straight line. Proceeding from there we took for the length of a polygonal 
arc (i.e. a "broken straight line segment") the sum of the lengths of the 
straight line segments composing it. Thence, imitating the definition (en
countered, perhaps, in high school) of the circumference of a circle, we arrived 
at the definition of arc length for more general curves: we represent the arc 
we are studying as the limit of a sequence of polygonal arcs, and define its 
length as the limit (when it exists) of the lengths of those approximating 
polygonal arcs. From analytic geometry we know that the length of a 
straight line segment joining the origin to the point (y 1, ••• , y") (i.e. the norm 
of this as a vector) is J(y1)2 + · · · + (y")2 (this is in essence Pythagoras' 
theorem). At school we were taught that the circumference of a circle of 
radius R is 2nR. Direct use of Definition 2.1.2 yields the same answers, as 
we shall now see. 

t We make no attempt at an axiomatic treatment of concept of length. Rather than deduce the 
uniqueness of this definition from a set of axioms for length, we simply regard the definition 
itself as an axiom. 
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2.1.4. Examples. (a) The straight line segment. For simplicity we suppose 
(as above) that one end of our segment is at the origin. Its (simplest) equations 
are then xi = yit, i = 1, ... , n, 0 :::;; t :::;; 1. When t = 0 the co-ordinates xi 
are all zero, while when t = 1 we have xi = yi for all i, i.e. we are at the tip 
of the vector. According to our definition (2.1.2), the length I of our straight 
line segment is given by 

I= f 
which is the usual formula for the length of a straight line segment. 

(b) The circle. The usual parametric equations of the circle (in the plane) 
of radius R and with centre the origin, are: x1 = R cos t, x2 = R sin t, where 
0 :::;; t :::;; 2n. Here the tangent vector v(t) = (- R sin t, R cost), and so by 
Definition 2.1.2, the circumference is 

12" 
I =J

0 
jR2 sin2 t + R 2 cos2 t dt = 2nR. (8) 

Thus for the circle also, our definition of length gives the answer it should. 

It is clear that our definition also satisfies the requirement that the length 
of an arc made up of several non-overlapping segments, be the sum of the 
lengths of those segments. 

The formula (5) for arc length has one apparent flaw: it seems to depend 
on the parametrization xi = ,t(t), i = 1, ... , n, a :::;; t :::;; b, of the curve 
segment. To put it kinematically, if (f 1(t), ... , .f"(t)) represents our position 
on the curve at timet, then our speed at timet is I v(t) I, which enters into the 
formula (5). What will happen if we trace out the same curve segment 
(from the point P = Crt(a), ... , f"(a)) to the point Q = (f 1(b), ... , f"(b))) at 
different speeds? Will our arc length formula (5) give us the same number? 

To be more precise, suppose we have a new parameter r varying from a' to 
b' (a' :::;; r :::;; b'), and that our old parameter t is expressed as a function 
t = t(r) of r, where t(a') = a, t(b') = b, and dt/dr > 0. (The last condition is 
the natural one that, whichever of the two parametrizations we use, we should 
move along the curve in the same direction.) Then our curve has the new 
parametrization: 

i = 1, ... , n. 

The rate at which we trace out the curve relative to the parameter r is: 

( dg 1 dg") 
w(r)= d;'"''--;h, a' :::;; r :::;; b'. 

With the new parametrization our arc length formula (5) gives 

l' = f' lw(r)l dr. 

(9) 

(10) 

(11) 
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We shall show that 

l'= s:·lw(r)ldr=l= flv(t)ldt. 

The norm of the vector w(r) is: 

lw(r)l = ± (dgi)2 
i= I dr 

I -- =- I - =-lv(t)l, n (dP dt) 2 I dt I n (dfi)l dt 
i=l dt dr dr i=l dt dr 

since dtjdr > 0. Hence 

Jb' Jb' dt Jb 
[' = a' lw(r)ldr = a' lv(t(r))ldrdr = a lv(t)ldt, 

as required. 
We conclude that: The length of an arc of a curve is independent of the 

speed at which the arc is traced out. 
Thus our definition of length (2.1.2) satisfies all the requirements imposed 

by our intuitive ideas of that concept. 

2.1.5. Example. Suppose a curve in the plane happens to be the graph of a 
function x 2 = f(x 1 ). Then x 1 will serve as parameter: x 1 = t, x 2 = f(t). The 
tangent vector is then v = (1, 4f/dx 1), and the length of the segment of the 
graph above the interval a ~ x 1 ~ b is 

(12) 

A curve given by x 1 = x 1(t), ... , xn = xn(t) is called smooth if 
x 1(t), ... , xn(t) have continuous derivatives and v(t) -=F 0 for all t in the 
specified interval of values oft. For any smooth arc there is a natural para
meter, namely the length l traced out from some point. Since for any pair of 
numbers a, bin the range of values of l we have J~ I v(l) I dl = b - a, it follows 
that I v(l) I = l. 

Suppose that in Euclidean n-space with Euclidean co-ordinates 
(x 1, •.• , xn), we are given a new system of (not necessarily Euclidean) co
ordinates (z 1, ... , zn), and that xi = xi(z\ ... , zn), i = 1, ... , n. Suppose also 
that we are given a curve whose parametric equations in terms of the new 
co-ordinates are: zi = zi(t), i = 1, ... , n. Then we can get from these a 
parametrization of the curve in terms of the original, Euclidean, co-ordinates, 
namely 

j = 1, ... , n. 

We define the velocity or tangent vector of the curve relative to the co
ordinates (z 1, ... , zn) to be the vector vz(t) = (v;, ... , v~), where 

. dzj 
vJ =-

z dt ' j = 1, ... , n. (13) 
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Relative to the original co-ordinates (x\ ... , x"), the tangent vector is 
v = vx = (dh 1 /dt, ... , dh"/dt). The vectors v.(t) and vx(t) are actually the 
same vector since each of them is the velocity (relative to t) at which the 
curve is being traced out, evaluated at the point P, represented by 
(z1(t), ... , z"(t)) in the new co-ordinate system, and by (h 1(t), ... , h"(t)) in 
the old. 

The n-tuples (dz 1 /dt, ... , dz"/dt) and (dh 1 /dt, ... , dh"/dt) are simply the 
representations of this vector relative to the two different co-ordinate 
systems (z) and (x). Let us now see how the co-ordinates of the velocity 
vector transform under the given co-ordinate change. We have 

. dhi iJxi dzi iJxi . 
v~ = - = -.- = -. v{, 

dt oz' dt oz' 
(14) 

where, as always, summation over the repeated indexj is understood. Hence 
the square of the length of the tangent vector is 

where the symbol gik is defined by 

n oxi iJxi 
g,.k = '\' -.-k. 

L., "'-' a-. i=l u"' "' 

(15) 

(16) 

To summarize: For any system of co-ordinates (z 1, ••• , z"), where x = x(z) 
(x being Euclidean co-ordinates), the scalar square of the tangent vector vz = 
(dz 1 /dt, ... , dz"/dt) to the curve zi = zi(t), i = 1, ... , n, is given by 

dzi dzk 
lvzl2 = lvxl2 = gjkdtdt' 

where gik = D= 1 (iJxi/iJzi)(iJxi/iJzk). 

(17) 

The definition of arc length (2.1.2) and the equations (17), together yield 
a general formula for arc length in any system of co-ordinates (z 1, ... , zn). 

2.2. Quadratic Forms and Vectors 

We have just seen (in (14)) that the components of the tangent vector to a 
curve transform under a co-ordinate change x = x(z) according to the rule 

or, more briefly, 

iJxi . 
vi --v' x - iJzi " (18) 
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where A = oxjoz is the Jacobian matrix of the co-ordinate change, defined 
in §I. Note that in arriving at the rule (18) no use was made of the assumption 
that the co-ordinates (x 1, .•• , x") were Euclidean. Using (18) as a model, we 
now give a definition, superseding any previous ones, of what we shall mean 
by a vector. 

2.2.1. Definition. A vector at the point P = (x6, ... , x0) is, relative to an 
arbitrary co-ordinate system (x 1, ..• , x"), ann-tuple (~1, ... , ~")of numbers, 
which transforms under a co-ordinate change x = x(z) from the co-ordinates 
(xl, ... , x") to co-ordinates (zl, ... , z"), according to the rule 

(19) 

where x;(z6, ... , z0) = x~, i = 1, ... , n, and (( 1, ... , (")is the representation 
of the vector relative to the co-ordinates (z 1, .•• , z"). 

It should be emphasized that the "meat" of this definition is in the form 
of the rule of transformation (19). 

By way of contrast, we now consider another frequently encountered 
geometrical object, namely the gradient of a function. According to the usual 
definition the gradient of a real-valued function f(x 1, ... , x") is the "vector" 
represented by 

. (~r of) grad.f = ox1' 0 0 0' ox" (20) 

in the Cartesian co-ordinates x 1, •.. , x". What does the gradient look like 
in terms of different co-ordinates z1, ... , z", where x = x(z)? We have 

1 n (~r of) grad f(x (z), ... , X (z)) = OZl, · · ·, oz" , 

of ~f oxi 
i = 1, ... , n. 

Writing briefly ~i = ofjoxi, 1J; = ofjoz;, i = 1, ... , n, we get 

oxi 
17; = oz; ~i· (21) 

We thus see that under a co-ordinate change the gradient of a function 
transforms differently from a vector; we call such an entity a covector. 

We now turn to quadratic forms. Suppose the system of co-ordinates 
(x 1, ... , x") is Euclidean, and that ~ 1 = GL ... , ~'i) and ~2 = (~L ... , ~i) 
are two vectors both originating from the point P = (x6, ... , x0). If in a new 
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system of co-ordinates (z 1, ... , z") with x = x(z), x(z0 ) = x0 , these vectors 
have components (17), ... , 11D and ('1L ... , 17'2) respectively, then the re
lationship between the old and new components is, by the very definition 
of vector (2.2.1), given by the equations 

where (a;·) is the Jacobian matrix evaluated at zk = zt, k = 1, ... , n. The J • 
scalar product of the vectors c; 1 and ( 2 in the original (Euclidean) co-ordmate 
system is 

<(1, (2) = L (;1(~ = bijt1c;~. (22) 
i= 1 

In terms of the components relative to the new co-ordinate system this is 
n 

<(~o (2) = L (a)'1{)(a)'1~) = 9ik'1{'1t (23) 
i= 1 

where 

(24) 

The coefficients g ik occurring here are the same as those which we encountered 
in the preceding subsection (see (15)), in solving the problem of calculating 
arc length in any system of co-ordinates. (This is not surprising as there 
the matrix G = (gii) occurred in the expression for the scalar square of a 
certain vector in terms of new co-ordinates.) In the language of matrices 
formula (24) can be rewritten as 

(25) 

where T denotes the operation of transposition of matrices. Let us now see 
how the components or entries gii of the matrix G transform under a further 
change of co-ordinates. Thus let y 1, •.. , y" be yet other co-ordinates for the 
same region, and let zi = zi(y\ ... , y"), j = 1, ... , n. Write C = (c)) = 
(ozijoyi). Then by Definition 2.2.1 the components((), ... , (D, en, ... ,(~) 
of the vectors ( 1, ( 2 relative to the co-ordinates yl, ... , y", satisfy 

'1 ; -c·iri 
2- jS2· (26) 

Denote by (hu) the matrix which arises in expressing the scalar product 
< c; 1 , c; 2 ) in terms of these co-ordinates; then 

<(1, (2) = hk,(1(~ = %'1;'1~· 
Substituting for the 11L '1~ from (26), this gives us 

hkl(~(~ = (C~9;jcf)((1(~), 
whence 

(27) 

(28) 

(29) 
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since (28) holds for any vectors e1, e2 (originating at P). In matrix language 
(29) becomes H = CTGC. 

2.2.2. Definition. Let z1, ••• , z" be co-ordinates for a region of a space. A 
quadratic form (on vectors) at a point P = (z6, ... , z~) of the region, relative 
to these co-ordinates, is a family of numbers gii• i, j = 1, ... , n, satisfying 
gii = gii• and transforming under a change to co-ordinates yl, ... , y" where 
z = z(y) and zb = zi(yb, ... , y~), according to the rule 

hkt = ~z: I gii ~z~ I , 
oy y•=y8 uy y•=y8 

(30) 

where the hk1, k, I= 1, ... , n, hk1 = h1k, are the "components" (or "co
efficients") of the quadratic form relative to the new co-ordinates yl, ... , yn. 
(As already noted, (30) can be rewritten in matrix notation asH= CTGC.) 

If we are given at a point P a quadratic form gii which transforms in 
accordance with (30), then we can define a bilinear form { e, 17} on pairs of 
vectors originating at P, by setting 

{e, 11} = gijeir[j. 

(We obtain from this a quadratic form on individual vectors, given by 
{e, e} = gijeiei.) It follows from the transformation rule (30) that this 
bilinear form (and so also its quadratic restriction) does not depend on the 
choice of co-ordinate system, but only on the point p and the pair e, r[ of 
vectors (cf. (27)). 

§3. Riemannian and Pseudo-Riemannian Spaces 

3.1. Riemannian Metrics 

We have already discussed the concept of length, or, as they say, "metric," 
in a space or region of a space: The length of an arc of a smooth curve xi = 
x;(t) in n-dimensional space with co-ordinates (x 1, .•• , x") is defined (by 
analogy with 2.1.2.) to be 

I= s: lx(t)l dt, 
. dx 
X= V = dt. (1) 

This definition assumes beforehand that we know what is meant by the 
length of the tangent vector .X(t) to the curve at each point of the curve. For 
the metric to be "Riemannian" we shall require first of all that the formula 
for the square of the length of a vector e originating from a point p take the 
form 

(2) 
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where ~ 1 , ... , ~" are the components of~ relative to the given co-ordinate 
system, and the numbers g;i depend on P (and on the co-ordinate system). 
Thus I~ 12 is a quadratic function of the vector ~ in the sense of the last 
paragraph of the preceding section. In order that the length of a vector should 
not depend on the choice of co-ordinate system, the g;i must perforce trans
form under a co-ordinate change like the coefficients of a quadratic form, i.e. 
according to the rule (30) of the preceding section. We are thus led to the 
following definition. 

3.1.1. Definition. A Riemannian metric in a region of the space IR" is a positive 
definite quadratic form defined on vectors originating at each point P of 
the region and depending smoothly on P. 

If, using 2.2.2, we spell out what is meant by "positive definite quadratic 
form," then this definition takes on the following more explicit form: 

3.1.1'. Definition. A Riemannian metric in a region of a space, relative to 
arbitrary co-ordinates (z 1, ... , z"), is a family of smooth functions gii = 
g ii(z 1, ... , z"), i,j = I, ... , n, with the following two properties: (i) the matrix 
(g;) is positive definite; (ii) if (yl, ... , y") are new co-ordinates for the region, 
and z; = z;(y1 , ... , y"), i = I, ... , n, then relative to these new co-ordinates 
the Riemannian metric is represented by the family of functions g;i = 
gj;(yl, ... , y"), i,j = I, ... , n, given by 

azk az1 

g;i = fij YkL clyj. (3) 

("Positive definiteness" of the matrix (g;) means simply that gij ~i~j > 0 
for non-zero vectors ~. i.e. that the quadratic form is positive definite.) 

Given a Riemannian metric as in 3.1.1 ', we define arc length of a curve 
z; = z;(t) by 

fb r-:;- dz; dzi 
I = " ~ g;j(z(t)) dt ~lt dt. (4) 

Before proceeding to the definition of angle, we define the" scalar product" 
of a pair of vectors originating at a single point. 

3.1.2. Definition. Let~= (~ 1 , ... , ~")and IJ = (1] 1, ... , IJ") be two vectors at 
the point P = (z6, ... , zZ). Their scalar product < (, IJ) is defined by 

< J: ) _ ( 1 n )~'i j 
<,, IJ - gij Zo' ... , Zo "' IJ . (5) 

Note that the transformation rules ( 19) and (30) of §2 ensure that the 
scalar product of two vectors attached to a point is independent of the choice 
of co-ordinate system. Our definition of angle now takes on the familiar 
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form: If we have two curves zi = P{t) and zi = hi(t) which intersect when 
t = t0 , then the angle between the curves (at t = t 0) is the unique cp satisfying 
0 ~ cp ~ n, and 

< ~. 17 > 
cos (/) = ITif11T' 

where ~. 17 are the respective tangent vectors to the curves at t = t0 , and 

1~1 = J<[O. Note that cp is real since 1(~. 17)1 ~ 1~11171 (a form of the 
"Cauchy-Bunjakovskii inequality"). To see this observe first that for any 
real number a, 

so that since our quadratic form is positive we must have the discriminant 
(~ry)2- <~·~)(~ry) ~ Q 

3.1.3. Example. What form does the metric take in the various co-ordinate 
systems for a Euclidean space? 

(i) n = 2. Relative to Euclidean co-ordinates x 1 = x, x 2 = y, we have: 

_ c5 _ {1 fori = j . 
gij - ij - 0 for i =1= j' 

Relative to polar co-ordinates z1 = r, z2 = cp, where, as usual, x 1 = 
r cos cp, x 2 = r sin cp (see 1.2.6(a)), we have, after a little computation, 

g;j = G ~). 
Thus the length I of an arc given by r = r(t), cp = cp(t), a ~ t ~ b, is 

I= f (dr) 2 + ,.z(d(/))2 dt dt dt 
(ii) n = 3. Relative to Euclidean co-ordinates x 1, x2 , x 3, we have as before 

gij = bij. 
Relative to cylindrical co-ordinates y 1 = r, y2 = cp, y3 = z (see 1.2.6(b)) 

we get 

whence 
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In spherical co-ordinates yl = r, y2 = e, l = cp (see 1.2.6(c)), we get 

Often the metric is given via the formula for the square of the differential 
dl, serving as a suggestive mnemonic: 

d/2 = gij dzi dzi. (6) 

(Strictly speaking, dzi is defined by dzi = zi dt (and similarly for dl), where 
zi = z;(t) is the curve under study.) 

Returning to our examples of co-ordinate systems in the Euclidean plane 
and space, we have: 

n 

In rectangular Cartesian co-ordinates, d/2 = L (dxi) 2 ; 

i= I 

In polar co-ordinates, d/2 = (dr)2 + r2(dcp )2 ; (7) 

In cylindrical co-ordinates, d/2 = (dr)2 + r2(dcp) 2 + (dz?; 

In spherical co-ordinates, d/2 = (dr)2 + r2 [(d()) 2 + sin2 ()(dcp) 2 ]. 

3.1.4. Definition. A metric gii = gj;(z) is said to be Euclidean if there exist 
co-ordinates x 1, ... , xn, xi = x;(z), such that 

(ox;) 
det 02; =F 0, 

It follows from (3) that relative to the co-ordinates x 1, ... , xn, we shall 
have at all points of our region g;i = (jij· These co-ordinates are termed 
Euclidean co-ordinates. In Example 3.1.3 we were merely representing the 
Euclidean metric relative to various co-ordinate systems. In Chapter 2 we 
shall see examples of Riemannian metrics which are not Euclidean. 

3.2. The Minkowski Metric 

If in the definition (3.1.1') we replace the requirement that the matrix (gii) 
be positive definite by the conditions that at all points the quadratic form 
gii~i~i be indefinite (i.e. take both positive and negative values), but have 
fixed index of inertia (see below) and still have rank n (i.e. det(gii) =F 0), we 
then arrive at the definition of a pseudo-Riemannian metric. 
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Let gz be the values of gii at a particular point P = (zA, ... , z0), i.e. 
gz = gii(zb, ... , z0). It is a well-known fact of linear algebra that there is 
a linear "change of variables" ~i = A.~11k, under which the quadratic form 
gz~i~i takes on the canonical form 

11i + · · · + 11~ - 11~+, - · · · - 11~. 

where p depends only on the quadratic form gz~i~i. (This is Sylvester's 
"Law of Inertia." As an exercise, prove it! It can be found in most elementary 
text-books on linear algebra.) By assumption (or considerations of continuity) 
the integer p, the so-called "index of inertia" of the quadratic form, is the 
same for all points P of our region, so that we can define unambiguously the 
type of the (variable) quadratic form 9ii~i~i to be the pair (p, q) where 
p + q = n. Note that in general it will not be possible to change co-ordinates 
so that in terms of these co-ordinates, gii~i~i is in canonical form at all 
points of a neighbourhood of P. 

3.2.1 Definition. Let gii = giz) be a pseudo-Riemannian metric. We shall 
say that this metric is pseudo-Euclidean if there exist co-ordinates x 1, ••• , x", 
xi = x;(z), det(ox;fozi) -::1 0, such that 

OX 1 OX 1 OXP OXP OXp+ l OXp+ I OX" OX" 
gij = ozi ozi + ... + ozi ozi -·~--a;;- ... - azi ozi. 

It follows from (3) that, relative to these co-ordinates, 

g;i = 0 for i =1 j, 

The co-ordinates x 1, ••• , x" are called pseudo-Euclidean co-ordinates of type 
(p, q), where q = n- p. We can define a pseudo-Euclidean metric of type 
(p, q) on the space ~n of ordered n-tuples (x\ ... , xn) of reals by setting 

G. l1>v.q = ~1 11 1 + ... + ~v11v _ ~v+t 11v+l _ ... _ ~"11", (S) 

for vectors~= (~ 1 , •.• , ~n) and 11 = (11 1, ..• , 11"); the "natural" co-ordinates 
x 1 , ••• , x" will then be pseudo-Euclidean. The space ~n equipped with this 
metric is also referred to as pseudo-Euclidean, and is denoted by ~;.q. 

Note that we may suppose p ~ [n/2] since for our purposes the quadratic 
form - gii does not differ in any essential way from 9ii· 

The space ~i, 3 has special significance. This is the "Minkowski space" 
of the special theory of relativity. In that theory it is postulated that the 
space-time continuum, which we considered at the beginning of §1, 
be the Minkowski space ~i. 3 . Recall that in §1 we assigned to each point 
of the space-time continuum Cartesian co-ordinates t, xi, x2 , x3, where the 
co-ordinate t has the dimension of time, and the xi the dimension of length. 
The pseudo-Euclidean co-ordinates are then taken to be x 0 = ct, x 1, x 2 , x3 , 

where c is a constant (the speed of light in vacuo) with the dimensions of 
velocity, namely length/time. 
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Thus the square df of an element of length is given by 

df = (dxo)2 - (dxl)2 - (dx 2)2 - (dx3)2. (9) 

Given two points (or "events") P 1 = (x?, xl, xi, xi) and P2 = 

(x~, x1, x~, xD, we define their separation in space- time, or the space-time 
interval between them, to be the quantity 

IP1 - P2 l2 = (x?- x~)2 - (xl - xD2 -(xi - x~? -(xi - xi)2 . 

(10) 

The space-time separation of two distinct events P 1, P 2 can be positive, 
negative, or even zero (see §6). 

We conclude this section by considering a useful co-ordinatization of a 
region of the space !Rf ,2 , namely by pseudo-spherical co-ordinates, which are 
defined as follows. Let x 0 , x 1, x 2 denote pseudo-Euclidean co-ordinates in 
1Rli.2 . Then pseudo-spherical co-ordinates p, x, cp are defined by 

Hence 

x 0 = p cosh x, } 
x 1 = p sinh x cos cp, 

x 2 = p sinh x sin cp, 

- ex.·< p < 00 , 

0 ::; X < oo, 

0 ::; cp < 2n. 

(xo)2 _ (x 1 )2 _ (x2)2 = pz ~ O. 

(II) 

Consequently co-ordinates p, x, cp are assigned only to points in the region 
defined by (x0 ) 2 - (x 1 ) 2 - (x2)2 > 0, i.e. in the interior of the cone (x0 ) 2 = 
(x 1) 2 + (x2)2 (Figure 4). All points of this region except those on the x 0-axis 
are ordinary points of the pseudo-spherical co-ordinate system. In that 
region (with the x0-axis removed) the square of an element of length is given 
by 

(12) 

JJO 

Figure 4 
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One can also assign pseudo-spherical co-ordinates to points outside the 
cone by means of the formulae 

x 0 = p sinh x, } 
x 1 = p cosh x cos qJ, 

x 2 = p cosh x sin qJ. 

p>O 

This is, however, less important for applications. 

§4. The Simplest Groups of Transformations of 
Euclidean Space 

4.1. Groups of Transformations of a Region 

(13) 

Suppose that Qx and Qz are two regions of an n-dimensional Cartesian 
space, and that we co-ordinatize these regions anew with co-ordinates 
xl, ... , xn and z1, ..• , zn respectively. Suppose further that with each point 
(z 1, .•• , zn) Of Qz We associate a point (x 1, .•. , Xn) in a one-to-one and onto 
manner, so that both xi = xi(zl, ... , zn) and zi = zi(x1, ... , xn), i = 1, ... , n. 
We call such a one-to-one map from the region Qx onto the region Qz a 
transformation of nx onto nz, if the functions xi(z1, ..• ' zn), zi(x 1, .•. ' xn) 
satisfy the usual requirement of smoothness. The bijectivity (one-to-oneness) 
then entails that the matrix (oxjoz) (with inverse (ozjox)) is non-singular at 
all points of Qz (cf. Theorem 1.2.5). 

If the regions nx and nz are one and the same, say nx = nz = n, then we 
speak simply of a transformation of the region Q. One may in this case think 
of the transformation as merely a change of co-ordinates for the region n, 
with the property that the old co-ordinates x 1, .•• , xn are (smooth) functions 
of the new co-ordinates z1, ••• , zn, and conversely. 

We now recall for the reader the concept of a "group." Consider a set G 
together with two operations: one binary, associating with each ordered 
pair g, h of elements of G an element of G (called their product) denoted by 
go h; and one unary, associating with each element g of G an element of G 
denoted by g- 1 (the inverse of g). This is called a group if the following 
conditions hold: 

(i) (fog)oh =fo(goh); 
(ii) there exists an element 1 E G (the identity element of G) such that 

1 o g = g o 1 = g for all g E G; 
(iii) go(g- 1) = 1 forallgEG. 
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The importance of this concept for us lies in the fact that the totality 
of all transformations of a given region Q forms a group under the operation 
of composition of functions. Thus if <p is the transformation 

x = x(z), (1) 

and ljJ is the transformation 

z = z(y), 

then <p a ljJ is defined to be the composite transformation 

x = x(z(y)). 

The transformation <p- 1 is defined by 

z = z(x), 

(2) 

(3) 

(4) 

i.e. the solution of (1) for the z.i in terms of the xi. The role of 1 is played by 
the identity transformation 

i = 1, ... , n. (5) 

It is then easy to verify that conditions (i), (ii), (iii) are satisfied. 
In what follows our attention will be centered not on the group of all 

transformations of Q, but on certain subgroups which preserve geometrical 
quantities. (A subgroup of a group is a subset forming a group under the 
same (i.e. restricted) operation.) Suppose that our region Q is endowed with 
some Riemannian or pseudo-Riemannian metric, given relative to the co
ordinates x 1, •.. , x" as a symmetric non-singular matrix (g;) where gii = 

( I ") I f d" I n • h i g.ii x , ... , x . n terms o new co-or mates z , ... , z , wit x = 
xi(z 1, ••• , z"), the same metric is given by the functions gj.i = g/iz 1, .•• , z"), 
where 

(6) 

4.1.1. Definition. The transformation xi = x;(z 1 , •.• , z") is called an isometry 
(or a motion of the given metric) if 

(7) 

Thus an isometry preserves the form of the scalar product (Definition 
3.1.2). The following simple fact is almost immediate. 

4.1.2. Proposition. The set of all motions ofa given metric is a group. 

(Indeed, if two transformations <p and ljJ preserve the metric, then so does 
their composite, and so do their inverses. That the identity transformation 
preserves the metric is obvious.) 

This group is called the group of motions, or isometries, ofthe given metric. 
This concept ranks in importance with that of the scalar product. It is in a 
sense the group of symmetries of the metrized region. 
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4.2. Transformations of the Plane 

(a) Let x 1, x 2 be Cartesian co-ordinates of a space (i.e. of the plane). The 
simplest example of a transformation of the plane is that of a translation of 
the plane as a whole along some vector ~ = ( ~ 1, ~2 ). Thus in terms of co
ordinates this transformation is given by 

(8) 

The product of two translations, one along the vector ~. and the other 
through Yf, has the form 

which is again a translation (along the vector~ + Yf). The inverse of the trans
formation (8) is 

(9) 

which is just the translation along the vector -~-The identity transformation 
is also a translation (along the zero vector). Thus the translations of the plane 
form a group. We have just seen that there is a one-to-one correspondence 
between translations and vectors, with the property that to the product of 
two translations corresponds the sum of the corresponding vectors, and to 
the inverse of a translation corresponds the negative of the corresponding 
vector. In the language of groups, such an operation-preserving correspond
ence is called an isomorphism; we have, therefore, that the group of all 
translations of the plane is isomorphic to the (additive) group of vectors in 
the plane (i.e. as far as their group-theoretical properties are concerned, the 
two groups are identical). This group is abelian (i.e. commutative) since 

~ + Yf = Yf + ~-
(b) We next describe dilations (or homotheties) of the plane; these are, 

except for the identity transformation, not isometries. In terms of co-ordinates 
a typical dilation has the form 

(10) 

where A. is any non-zero real number. The product of two dilations with 
factors A. and f.1. respectively, has the form 

x1 = Af.1.y1, x2 = Af.l.i. (11) 

The inverse of the transformation (10) is given by 

x2 
2-z - A. ' (12) 

which is again a dilation (by a factor 1 I A.). It follows that the set of all dilations 
of the plane is once again a group, and that this group is isomorphic to the 
(abelian) group of non-zero reals under multiplication. 
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(c) If we follow a translation by a dilation, or the other way around, then 
we obtain a transformation of the form 

(13) 

If we follow the transformation (13) by one ofthe same form, say z1 = py 1 + 
17\ z2 = py2 + 1] 2, then we obtain as the product of these transformations 

xi = (A.p)yl +(~I + AIJI), 

x2 = (A.p)y2 + (~2 + AIJ2), 
(14) 

a transformation of the same form as those composing it. If we denote the 
transformation (13) by the ordered pair (A., ~)determining it, and the second 
transformation, similarly, by (p, 17), then the rule for composing transforma
tions, given by (14), translates into the following rule for multiplying pairs: 

(A.,~) o (p, 17) = (A.p, ~ + AIJ). (15) 

(Note that the first member of each pair is restricted to being a non-zero 
real, while the second member is a vector in the plane.) It is easy to sec that 
the inverse of a transformation (A., ~) is a transformation of the same form, 

in fact the one represented by the pair (1/A., - (1/A.)O. Consequently those 
transformations which are dilations followed by translations form a group. 
This group is not abelian since if we calculate the product (p, IJ) o (A., 0 using 
(15), we get (A.p, IJ + J.10, which for suitable choice of A., p, IJ, ~differs from the 
right hand side of (15). 

Remark. The group G say, which we have been considering, contains as 
subgroups both the group of translations and the group of dilations of the 
plane. The former subgroup is normal in G, with factor group isomorphic 
to the group of dilations. The multiplication rule ( 15) shows that G is a 
semi-direct product of the group of translations of the plane by the multi
plicative group of non-zero reals, i.e. by the group of dilations. 

(d) We next turn to linear transformations of the plane. These have the 
form 

or (16) 

Each such transformation is determined by its matrix (: ! ). The trans

formation is invertible (i.e. z1, z2 can be expressed in terms of x 1, x 2 ) precisely 
if this matrix is non-singular (or, in other words, if its determinant ad - be 
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is non-zero). If we have another non-singular matrix ( ;: 

to the linear transformation 

27 

b') d' corresponding 

(17) 

then as the result of composing the transformations (16) and (17), we get 
the transformation 

x 1 = (aa' + bc')y 1 + (ab' + bd')y2 , 

x 2 = (ca' + dc')y 1 + (cb' + dd')y2 , 

(18) 

which is again linear, with matrix the product (: ~) ( ;.: ~}We conclude 

that the group of linear transformations of the plane is isomorphic to the 
group of all 2 x 2 non-singular matrices with real entries (the general 
linear group of degree 2 over IR, denoted by GL(2, IR)). This also is a non
abelian group. 

(e) If we combine the linear transformations and the translations (i.e. 
form the subgroup generated by these) we obtain the affine group. Thus the 
general affine transformation has the form 

(19) 

where det A = ad - be ¥- 0, and ~ = (~ 1 ' e) is a vector. The importance 
of the affine transformations resides in the fact that they are precisely those 
transformations which preserve collinearity. (We leave it as an exercise for 
the reader to prove that such a transformation necessarily has the form (19).) 
Clearly the affine transformation (19) is determined by the pair (A,~) con
sisting of the matrix A and the planar vector ~. With this representation of 
affine transformations, the rule for composing them becomes 

(A, ~) · (B, IJ) = (AB, ~ + AIJ). (20) 

It follows from this that the planar affine group is a semi-direct product of 
the additive group of planar vectors by the group GL(2, IR). 

(f) Suppose now that there is defined on the plane a Euclidean metric 
with respect to which x 1, x 2 are Euclidean co-ordinates; thus relative to these 
co-ordinates the metric is given by gij = bij. It is not difficult to show that 
an isometry of the Euclidean plane, being distance-preserving, is necessarily 
a collineation, i.e. affine. The converse question of which of the affine trans
formations are isometries is thus of great interest, and we shall now answer it. 
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With respect to the new co-ordinates zl, z2 (as in (19)) the metric is given 
by the matrix (g;), where 

axk ax1 2 axk axk 
g;j = -a i l5kl -a j = L: -a i -a j . (21) z z k= 1 z z 

The Jacobian matrix of the affine transformation (19) is just A = (: ~); 
hence 

( a2 + c2 ab + cd) 
(g;) = ab + cd b2 + d2 • 

The condition for (19) to be an isometry is that g;i = ()ii• i.e. that 

a2 + c2 = 1, ab + cd = 0, b2 + d2 = 1. (22) 

In matrix notation these equations can be expressed compactly as AT A = 1, 
which is just the defining condition for orthogonality of A. We conclude, 
therefore, that an affine transformation is an isometry precisely if its matrix 
A is orthogonal. 

To find a more explicit form for A we now solve the equations (22). Since 
a2 + c2 = 1 we can find an angle cp, 0 ~ cp < 2n, such that a = cos cp, 
c = sin cp. The remaining two equations then yield the two possibilities 

d =cos cp, b = -sin cp, or d = -cos cp, b = sin cp. 

Thus to each value of cp there correspond two orthogonal matrices: 

A = ( cos cp sm cp) (l3) 
-sm cp cos cp ' 

A=(-~:s: :!::)(~ -~)· (24) 

The first of these matrices represents a rotation about the origin of the plane 
as a whole through the angle cp; it has determinant l. The second matrix, 
which has determinant -1, corresponds to a rotation through the angle cp, 
followed by a reflection in one of the co-ordinate axes: 

zl = yl, 

z2 = _ y2. 

The transformations represented by matrices of the first type (23) form a 
subgroup of the group of all isometries. We shall call them proper or direct 
isometries. (The term "orientation-preserving" is also used of them.) 

4.2.1. Lemma. (i) Every proper isometry of the Euclidean plane is either a 
rotation about some point, or a translation. 

(ii) Every isometry oftheform z f-+ Az + ~.with det A = - I, can be realized 
as a reflection in some straight line followed by a translation along the 
axis of reflection (i.e. a "glide-reflection"). 
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PROOF. (i) A proper isometry has the form 

x = Az + ~. A= , ( cos cp sin cp) 
- sin cp cos cp 

(25) 

If cp = 0, then A = 1, and we get a translation. Suppose that A i= 1. Since we 
wish to show that in this case we have a rotation, with the centre of rotation 
in mind we look for a fixed point, i.e. for a point z0 such that z0 = Az0 + ~. 
or, equivalently, 

(1 - A)z0 = ~. (26) 

From the form of A given in (25) and from the fact that cp i= 0, it follows that 
the matrix (1 - A) is non-singular, so that the equation (26) has a unique 
solution z0 • By transferring the origin of co-ordinates to z0 (by means of a 
translation) we then see that the transformation is a rotation about z0 , 

establishing (i). 
(ii) Consider now an isometry (19) with det A = -1. By rotating the 

axes suitably we may assume (see (24)) that 

A=(~ -~), (27) 

i.e. that A is the matrix of the reflection in the first co-ordinate axis (axis of 
abscissas). Thus with respect to these rotated co-ordinate axes the original 
transformation becomes 

(z1) ~--------+ ( z1 + ~1). 
zz -zz + ~2 (28) 

We now make a further change in the co-ordinate system, introducing new 
co-ordinates yl, y2 given in terms of z1, z2 by 

z1 = yl, z2 = y2 + te. (29) 

i.e. we translate our system of axes a distance t e along the axis of ordinates. 
With respect to the translated axes the isometry is given by 

(y1) ~ (i +~1), 
y2 -y2 

where the fact that the isometry is a glide-reflection (in the y1-axis) is now 
evident. (Note that in particular when ~ 1 = 0 we get a reflection.) This 
completes the proof of the lemma. D 

To summarize: there are three types of isometries of the Euclidean plane, 
namely translations, rotations, and glide-reflections (including in particular 
reflections). 

(g) To conclude we consider the group generated by the isometries 
together with the dilations. To be more specific, we shall examine the effect 
on the Euclidean metric of transformations of the form 

x = A.Bz + ~. where BBT = 1. (30) 
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In this case the Jacobian matrix has the form A = AB where B is orthogonal. 
It is easy to calculate that, relative to the co-ordinates zl, z2 , the Euclidean 
metric beomes 

(31) 

i.e. the components 9u of the metric are all multiplied by the same number. 
Such affine transformations are called cmiforma/. It is not difficult to see that 
every conformal transformation has the form (30). For suppose that the 
affine transformation (19) is conformal; then arguing as in (f) we deduce that 
the matrix (1/A)A is orthogonal. Setting B = (1/A)A we arrive at the form 
(30), as desired. 

Suppose that in (30) det B = 1. Then as before there is a cp, 0 :::;; cp < 2n, 
such that 

B = ( c~s cp sin cp)· 
-sm cp cos cp 

In terms of the complex variables v = z1 + iz2 and w = x 1 + ix 2, equation 
(30) can be rewritten as 

w = (x 1 + ix2 ) = A(cos cp- i sin cp)(z 1 + iz2 ) + (~ 1 + i~2 ), 

or, equivalently, 

W = ct.V + {3, (32) 

where ct. = Ae-i"', f3 = ~ 1 + i~2 • From this equation we see that the proper 
conformal transformations of the Euclidean plane (i.e. those with det B = 1) 
can be regarded as the complex affine transformations 

of the complex "line" C = C 1• 

Next we consider the case det B = - 1. We saw in (f) above that such a 
matrix corresponds to a transformation realizable as a rotation of the plane 
about the origin followed by a reflection in the axis of abscissas: 

In terms of the complex variables v and w this reflection can be expressed as 

Putting this together with the previous case, we conclude that the general 
affine conformal tran~formation of the Euclidean plane has (in terms of the 
complex variables v, w) either the form 

w = cxv + f3 or w = cxv + {3, (33) 
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where a and f3 are arbitrary complex numbers with a# 0. Moreover the 
transformations (33) with I a I = 1 are just the isometrics of' the Euclidean plane, 
while those with a real are the "translations followed by dilations" analysed 
in (c) above. 

4.3. The Isometries of 3-Dimensional Euclidean Space 

As in the planar case it follows without difficulty from their distance-pre
serving property that the isometries of Euclidean 3-space also are affine. Thus, 
in particular, those fixing the origin are linear; we shall therefore first 
distinguish from among the linear transformations of Euclidean 3-space 
those that are isometries. Let A = (a~) be the matrix (of degree 3) of a linear 
transformation which is also an isometry: 

x = A2; (34) 

(We are assuming the co-ordinates x 1, x 2 , x 3 to be Euclidean; i.e. that 
relative to these co-ordinates the metric is given by% = bii.) As before, the 
Jacobian matrix (iJxijiJ2j) coincides with A. Hence in terms of the co-ordinates 
2\ 2 2, 2 3 the metric is (g;) where 

' k~ l I I 2 2 3 3 gij =a; uk1aj =a; aj +a; aj +a; aj. 

Thus the assumption that the transformation (34) is an isometry, is equivalent 
to the condition 

(35) 

Equation (35) signifies simply that, given that the unit vectors e 1 = (1, 0, 0), 
e2 = (0, 1, 0), e3 = (0, 0, 1) are orthonormal (i.e. (e;, ej) = 6;;. or, in yet 
other words, that the co-ordinates x 1, x 2, x 3 are Euclidean), then so must the 
vectors Ae; = a~ ek be orthonormal. 

In matrix notation (35) can be rewritten as AT A = .1. Thus, analogously 
to the planar case, we have that the transformation (34) is an isometry 
precisely if A is orthogonal. Since det AT = det A, it follows that det A = ± 1. 
It is easy to verify that the orthogonal matrices are exactly the matrices 
leaving invariant the quadratic form (x 1 ) 2 + (x2 ) 2 + (x 3 ) 2 ; i.e. the matrices 
A for which (x, x) = (Ax, Ax) for all x. Using this we can prove the follow
ing 

4.3.1. Lemma. A linear transformation with orthogonal matrix A leaves at 
least one straight line invariant. Such an invariant straight line is either fixed 
pointwise, or reflected (in the origin) by the linear transformation. 

PROOF. If v is a direction-vector for an invariant straight line, then we must 
have 

Av = A.v (36) 
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for some (non-zero) real A. In the language of linear algebra, (36) means that 
v is an eigenvector of A corresponding to the eigenvalue A. The latter is a 
root of the characteristic polynomial of the matrix A; i.e. the number A 
satisfies 

det(A - A.l) = 0. (37) 

The left-hand side of this equation is a cubic polynomial in A with real 
coefficients, and therefore has at least one real root Ao say. (Note that A0 # 0 
since otherwise from (37) we would have det A = 0.) Let v0 be any eigen
vector corresponding to Ao. Then 

<vo, v0 ) = <Av0 , Av0 ) = A6<v0 , v0 ), 

whence Ao = ± 1. This completes the proof. D 

Let w be any vector orthogonal to the eigenvector v0 , i.e. <w. v0 ) = 0. 
Then the vector Aw will also be orthogonal to v0 since 

<v0 , Aw) = ± <Av0 , Aw) = ± <v0 , w) = 0. 

We conclude that: The plane through the origin normal to a straight line 
invariant under the transformation corresponding to the orthogonal matrix 
A, is also invariant under that transformation. 

We now choose Euclidean co-ordinates x 1, x2 , x3 so that the x3 -axis is 
invariant, i.e. is parallel to the vector v0 . We see from 4.3.1 that relative to 
these co-ordinates the transformation has matrix 

(
a b 

A= c d 
0 0 

~). 
± 1 

where of course, for the same reasons as before, A is orthogonal. It follows 

that (; :) is orthogonal, and therefore (see (23), (24) above) has the form 

( a b) ( cos <p sin <p) ( cos <p 
c d = - sin <p cos <p or - sin <p 

-sin <p). 
-cos <p 

Thus depending on the signs of Ao and of ad -be we have the following two 
types of isometries fixing the origin. 

(i) Rotations about some axis. With the x 3-axis as the axis of rotation, the 
matrices of such isometries have the form 

( 
cos qJ 

A= - si~ <p 

sin <p 

cos qJ 

0 
det A = A0 (ad - be) = 1. (38) 
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This in essence includes the case Jc 0 = -1, ad - be = -1, since by choosing 

the co-ordinates x 1 , x 2 suitably we may assume (: ~) = (~ _ ~} and 

then relative to the co-ordinates x 1 , x 2 , x 3 , the matrix of the transformation 
will be 

0 
-1 

0 
~), 

-1 

which represents the rotation about the x 1-axis through the angle n. 

(ii) Rotatory reflections. An isometry of this type is the composite of a 
rotation about some axis (passing through the origin) followed by the re
flection in the plane through the origin normal to that axis. By choosing 
co-ordinates suitably it can always be arranged that the matrix of such a 
transformation have the form 

( 
cos cp sin cp 0) 

A = - sin cp cos cp 0 , 

0 0 - 1 
det A = - 1. (39) 

We halt for a moment our discussion of the isometries of Euclidean 
3-space, to introduce some standard notation. The group (under matrix 
multiplication) of all 3 x 3 orthogonal matrices is normally denoted by 
0(3). Those orthogonal matrices of determinant + 1 form a subgroup of 
0(3), the special orthogonal group, denoted by S0(3). Note incidentally that 
every matrix in S0(3), since it fixes at least one non-zero vector, has 1 as an 
eigenvalue. By (i) above the matrices in S0(3) correspond to all possible 
rotations of the space about all possible axes through the origin. 

We now resume our development, and consider general (i.e. not neces
sarily origin-preserving) isometries of Euclidean 3-space. As remarked above, 
such an isometry is necessarily affine, i.e. of the form 

z f-> Az + (. (40) 

That the matrix A is orthogonal follows as before. We now translate our 
system of co-ordinates along a vector y0 , thereby obtaining a new system of 
co-ordinates yl, y2 , y 3 , linked to the old by z = y + y0 . In terms of the new 
co-ordinates the transformation (40) takes the form 

y f-.> Ay +(A - l)y0 + (. (41) 

We first consider the case that A is as in (39), i.e. corresponds to a rotatory 
reflection. In this case the matrix (A - 1) is non-singular, so that there is a 
vector Yo such that 

(1 - A)y0 = (, (42) 
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With this choice of y0 , the transformation ( 41) is simply a rotatory reflection: 

y ~---> Ay, A --(- COS(/) sinqJ 
0 

sin (/) 
cos(/) 

0 
~). 

-1 

Next suppose A has the form (38), i.e. corresponds to a rotation about an 
axis. Suppose also that A # 1, i.e.(/) # 0 (the contrary case corresponds to a 
simple translation). In this case the matrix (A - 1) is singular. The equation 
(42) for the unknown vector y0 , when written out in terms of components, 
becomes 

{
(1- cos ({))YA- sin({) Y6 = ~ 1 , 

sin(/) YA + (1 - cos ({))y6 = ~2 , 

0 = ~3. 

If ~3 # 0 this system of equations has no solutions. However since by 
assumption ({) # 0, the first two equations of the system do have a unique 
solution for YA and Y6. If we then choose the third co-ordinate y5 of Yo 
arbitrarily, the transformation (41) takes the form 

y t--> Ay + (0, 0, ~3 ), ( 
cos (/) sin (/) 0) 

A = - sin ({) cos 0 0 , 
0 0 I 

where 17 = (0, 0, ~ 3 ) is directed along the axis of the rotation represented by 
A, so that A17 = Yf· It follows that in this case the motion can be likened to 
that of a screw. We conclude that: The proper isometries (i.e. those with 
det A = + 1) of Euclidean 3-space are the screw-displacements (which 
include, in particular, as "extreme" cases, the rotations and translations). 

Thus the screw-displacements together with the rotatory reflections ac
count for all isometries of Euclidean 3-space. 

4.4. Further Examples of Transformation Groups 

(a) Having dealt with dimensions 2 and 3, we now proceed to dimension n, 
and consider the group of isometries of Euclidean n-space fixing the origin. 
As before we find that these isometries are just those linear transformations 
whose matrices (which now have degree n) are orthogonal. The group of 
these matrices (which is of course isomorphic to the group of isometries they 
represent) is denoted by O(n). Thus an isometry fixing the origin has the form 

z 1--> Az, ATA = 1, det A= ± 1. (43) 

As before, the matrices A with determinant + 1 (or the corresponding 
isometries) form a subgroup, the special orthogonal group of degree n, denoted 
by SO(n). By analogy with the 2-dimensional case the group SO(n) is also 
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called the n-dimensional rotation group, and its elements rotations (though 
they are not all rotations in any common-sense meaning of the word). 

We shall limit ourselves here to showing that the group SO(n) is connected, 
i.e. given any two rotations A 0 , A1 E SO(n), there is in the space SO(n) a 
curve segment A(t), 0 ~ t ~ 1 (i.e. a continuous family of orthogonal 
matrices of determinant 1, or, in other words, with entries continuous 
real-valued functions oft, and det A(t) = 1 for 0 ~ t ~ 1), such that A(O) = 
A0 and A(l) = A 1. 

It clearly suffices to prove this in the case A 0 = 1, the identity matrix. It 
is a well-known fact of linear algebra that after a suitable (linear) change of 
co-ordinate systems, the matrix A in (43) will have the following form: 

D 

0 

where the ith block has the form 

D = ( C~S({J; 
-sm ({J; 

D 
±t 

sin ({J;)' 

cos ({J; 

0 

(44) 

±t 

0 ~ ({J; < 2n. 

(Note that we established this canonical form for real orthogonal matrices 
of degrees 2 and 3 in §§4.2, 4.3.) 

We may therefore assume that the matrix A(l) has the form (44), with an 
even number of the diagonal entries -1 since det A(l) = 1. We then define 
A(t) to be the matrix obtained from A(l) by replacing ({J; in each block in 
(44) by tcp;. By re-indexing the co-ordinates appropriately, the matrix A(O) 
can be brought into the form 

D 0 

A(O)= D (45) 

0 
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where each block has the form 

It only remains to show that the matrix (45) can be connected to the identity 
matrix. This is not difficult: if we replace each block in ( 45) by 

( cost sin t) 
-sin t cost ' 

then when t = n we obtain the matrix (45), while putting t = 0 gives us the 
identity matrix. This essentially completes the proof of connectedness of 
SO(n). 

It is not difficult to see that the full orthogonal group O(n) is not connected, 
since if A0 and A 1 have determinants 1 and -1 respectively then they cannot 
be joined by a continuous arc in O(n): if they were so joined, by say A(t), 
0 ~ t ~ I, then det A(t) would be a continuous real-valued function of t 
taking only the values I and - I, and with det A(O) = I, det A (I) = - l. 

(b) The Galilean group. Galileo's famous principle of relativity, funda
mental to classical mechanics, asserts the following: Under replacement of a 
fixed (rectangular) system of co-ordinates x 1, x 2 , x 3 (or" frame of reference") 
by a frame of reference x-t, x' 2, x' 3 moving in a straight line and uniformly 
(i.e. with constant velocity) relative to the fixed frame, all the laws of classical 
mechanics preserve their form. In other words (and more precisely) the laws 
of classical mechanics are invariant under Galilean transformations: 

(46) 

t' = t. 

Here the moving frame is assumed to be moving with speed v in the direction 
of the positive x 1-axis (Figure 5). A frame of reference related to a fixed frame 

Figure 5. The frame (xi, x2, x3 ) is fixed, while the frame (x'i, x' 2 , x'3 ) moves with 
constant velocity along the xi-axis. 
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via a transformation like (46), i.e. moving with constant velocity relative to 
the fixed frame, is called an inertial fi·ame of" r~f"erence. We now make an 
important remark concerning the physical interpretation of the last equation 
t' = t of (46): In classical, as opposed to relativistic, mechanics, the time t 
(as also the pervading space IR 3) has attributed to it a quality of absoluteness, 
i.e. the time interval ,1.t between two events is assumed to be the same when 
measured by any observer equipped with a clock, no matter how that ob
server moves through space. It is as if there were a clock at each point in 
space in synchrony with all the other clocks, from which the time can be 
read simultaneously. However from a purely geometrical point of view the 
physical interpretation is irrelevant: a Galilean transformation is just a set 
of equations like (46) for changing from one co-ordinate system (t, x 1, x 2 , x3 ) 

to another system (t', xrt, x' 2 , x' 3). The general Galilean transformation, 
preserving the form of the laws of classical mechanics, is given by 

x' =Ax+ x 0 - vt, 
(47) 

t' = t, 

where A is an orthogonal matrix, and vis a velocity vector. The Galilean group 
is then the group of all such transformations. (It is easy to see that they do 
indeed form a group.) 

(c) A less obvious example of a transformation group, arising again from 
mechanics, is afforded by: 

X~()(X, 

t ~ [Jt, 
(48) 

The group consisting of these transformations arises in connexion with 
Kepler's third law, which states that the squares of the periods of revolution 
of planets about the sun are directly proportional to the cubes of their 
shortest distances from the sun (i.e. distances at perihelion). This law can 
be regarded as a consequence oft he fact that the behaviour of such a mechan
ical system, consisting of a particle moving in a Newtonian attractive field 
of potential <p = ajr, is invariant under the transformation (48), in the sense 
that under such a transformation any possible trajectory or orbit goes into 
another. (Here x = (x 1, x 2, x3 ) is the position of a planet at timet.) 

4.5. Exercises 

1. Let Q(x) = biixixi, where bii = bii• be a quadratic form, and B(x, y) = biixiyi the 
corresponding bilinear form. Show that a linear transformation A preserves the 
bilinear form (in the sense that B(Ax, Ay) = B(x, y) for all vectors x, y) if and only if 
it preserves the quadratic form (in the sense that Q(Ax) = Q(x) for all x). 

2. An isometry of Euclidean n-space is necessarily affine. 
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3. The n-dimensional affine group is isomorphic to the group of all matrices of degree 
n + I of the form 

where A is an n x n non-singular matrix, and ~ is a column n-vector. 

4. Find a matrix representation of the Galilean group. 

§5. The Serret-Frenet Formulae 

5.1. Curvature of curves in the Euclidean Plane 

Let x, y be Euclidean co-ordinates for the Euclidean plane, and let e 1, e2 

denote, as usual, the unit basis vectors (1, 0), (0, 1). With each point P = 
(x, y) we associate its radius-vector r = xe 1 + ye 2 with tail at the origin and 
tip at P. The length of the vector r is given by the Euclidean formula 

lri=~=Jx2 +y2 . 
Suppose we are given a smooth curve 

r = r(t); x = x(t), y = y(t), 

where what is intended by this notation is that the point of the curve cor
responding to the value t of the parameter, has radius-vector r(t) = x(t)e 1 + 
y(t)e 2 • The length of the curve segment between t = a and t = b is, according 
to our definition (2.1.2), 

fb fb dx dy 
l = a j(.x? + (.y? dt = a dl, where .X = dt , y = dt, 

where the differential of length dl = I vI dt. (Recall that I vI = ~.where 
v = xe1 + ye2 is the tangent or velocity vector.) We shall now change our 
notation slightly, and for v = drjdt write v" indicating explicitly thereby the 
parameter with respect to which the tangent vector is calculated. We shall 
often find it convenient to consider curves parametrized by the natural 
length parameter l: 

x = x(l), y = y(l). 

In this case v = v1 = (dxjdl)e 1 + (dyjdl)e 2 , and lv11 = 1 (see §2.1). In what 
follows, in addition to the velocity v, = drjdt, the acceleration w, = d2rjdt2 = 
v, will play an important role. The following simple lemma will find much use 
later on. 
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5.1.1. Lemma. In Euclidean space, a variable vector v = v(t) of constant 
length I vI = const., has the property that v and v are orthogonal. (And con
versely if v and v are orthogonal for all t, then I v(t) I is constant.) 

PROOF. Writing v = v1e1 + v2e2, we have that (v, v) = lvl 2 = (v 1) 2 + (v2 ) 2 , 

whence 

d 2 d . . . 
0 = dt I vi = dt (v, v) = (v, v) + (v, v) = 2(v, v), 

so that (v, v) = 0, as claimed. We leave the proof of the converse to the 
reader. D 

Remark. It is worth noting separately the fact revealed here that in Euclidean 
space the formula 

d 
dt (v, w) = (v, w) + (v, w) (1) 

holds for any two vectors v(t), w(t). 

Applying Lemma 5.1.1. to a curve parametrized by the natural parameter 
t = l, and taking v = dr(/)/dl, so that I vI = 1, we get 

5.1.2. Corollary. In Euclidean space the velocity vector v(t) and the acceleration 
vector w(t) = dv/dt are orthogonal if t = l, the natural parameter. 

5.1.3. Definition. The curvature k(t) of a curve r(t) is the magnitude of the 
acceleration vector, i.e. k(t) = I w(t) I, under the condition that the curve is 
parametrized by the natural parameter, i.e. t = I. 

It is immediate that 

dv _ k _ d2r 
dl - n- dl2 ' (2) 

where n = n(t) is the unit vector normal to the curve (i.e. normal to v), in the 
direction of w(t) if w(t) i= 0, i.e. 

w I (d 2x d2y ) 
n = fWI = j(d2x/dl2)2 + (d2y/dl2? df2 et + dlz ez . (3) 

We define the radius ofcurvature R of the curve at t to be 1/k(t). 
Does this precise definition of curvature chime with our intuitive ideas 

of that concept? The following two simple examples support an affirmative 
answer. 



40 I. Geometry in Regions of a Space. Basic Concepts 

5.1.4. Examples. (a) The curvature of a straight line is zero. To see this note 
first that the parametric equations of a straight line in terms of the natural 
parameter have the form x = x 0 + al, y = y0 + bl (where 1 = I v 12 = 
a 2 + h2 ). Thus in this case 

dx dy 
v = dl e1 + di e2 = ae 1 + be2 

is a constant vector, so that w = dv/dl = 0, i.e. k = 0, R = oo. 
(b) The curvature of a circle of radius R is the constant 1/R. For the natural 

parametric equations of a circle of radius R and centre (x0 , y 0 ) are: 

x = x 0 + R cos(*), y = Yo + R sin(*), 

Since R is constant, it follows that 

d2x 
df2 

whence lwl = 1/R = k. 

cos(I/R) 

R 
sin(I/R) 

R 

Formula (2) is one of the two "Serret-Frenet formulae" for plane curves: 

5.1.5. Theorem (Serret-Frenet Formulae). Given the parametric equation 
r = r(l) of a curve, in terms of the natural parameter!, the .following formulae 
hold: 

dv 
di = w = kn, 

dn 
- =- kv 
dl ' 

where n( = w /I w I if w #- 0) is the unit normal vector. 

(4) 

PROOF. We have only to prove the second of the formulae (4). Since n, being 
a unit vector, has constant length 1, Lemma 5.1.1 tells us that nand dn/dl are 
orthogonal. Since by definition of n the vectors v and n are also orthogonal 
(and since our underlying space is the Euclidean plane), it follows that dn/dl 
and v have the same or opposite directions (or else dn/dl = 0), so that in any 
case 

dn 
dl = lXV, 

where, since I vi= lv11 = 1, we must have lo:l = ldn/dfl. What is o:? By (1) we 
have 

0 = :I ( v, n) = ( (~~ , n) + ( v, ~~) = k + a ( v, v) = k + :;.. 

Since (v, n) = 0, we deduce that IX= - k, completing the proof. 0 
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What is the geometrical import of the Serret-Frenet formulae? From those 
formulae and Taylor's theorem we have 

dv 
v + ,1v = v + (,11) dt + 0(,1/2) = v + k(,1l)n + 0(,1/2), 

dn 
n + ,1n = n + (,11) dt + 0(,1[2) = n - k(,1/)v + 0(,1/2). 

Writing ,1cp for k ,1/, and using 

we get from ( 5) that 

cos(,1cp) = 1 + 0(,1cp 2), 

sin(,1cp) = ,1cp + 0(,1cp 2), 

v + ,1v ~ cos( ,1cp )v + sin( ,1cp )n, 

n + ,1n ~ - sin( ,1cp )v + cos( ,1cp )n, 

(5) 

(6) 

for small ,1/, i.e. in going from the orthonormal frame (v, n) to the frame 
(v + ,1v, n + ,1n), the first frame is rotated (approximately) through the 
small angle ,1cp = k ,1[. In other words the Serret-Frenet formulae (4) can 
be thought of as embodying the fact that the orthonormal frame (v, n) 

undergoes a rotation as we move from the point on the curve corresponding 
to I to the nearby point corresponding to I + ,1/, with accuracy of the order 
of the second power of small quantities (,1/2 ). This is sometimes also expressed 
by means of the formula 

k = I dcp I dl ' 
(7) 

where cp denotes the angle through which the vector v (and also n) is rotated 
in moving along the curve. 

In the definition of curvature, as also in the Serret-Frenet formulae and 
their geometrical interpretation above, the parameter was for good reason 
always taken to be the natural one. It is however natural to ask how one 
goes about calculating the curvature of a plane curve parametrized as r(t) = 

(x(t), y(t)) where t is not necessarily natural. (It is easy to choose the para
meter t so that I v1 I is not constant, so that in view of Lemma 5.1.1 we cannot 
expect that for all parameters t the velocity and acceleration vectors v1 and 
u1 = w, will be perpendicular.) We want first an expression for v1 = dr(t(l))jd/ 
in terms of derivatives with respect to t. From earlier (2.1.2) we know that 
dl = I v, I dt. Hence dt/dl = 1/l v1 I (assuming, as in §2.1, that v, # 0), and so 

dr dr dt v, 
vl = dl = dt . dl = ~' (8) 
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a not unexpected conclusion, since v1 is the unit tangent vector. Now by 
definition the curvature k = I w1 1, where w1 = d2rjdl2 = dv1/d1• From (8) we 
have 

using r = v,. Hence by (I) 

1 (·· (r, r) ·) w1 = lfT2 r - W r . (9) 

Hence 

k = lr11zl r- <lr;? r I· (10) 

In terms of the components x(t), y(t) of r(t), (9) becomes 

1 (.. .xx + y5') 1 (" .xx + .Ji.i') 
W1 = ·2 + ·2 X- x ·2 + ·2 e1 + ~+ ·2 Y- Y ·2 + ·2 e2. 

X y X y X y X,}' 
(11) 

From this (or from (10)) we get, after a little manipulation, 

2 2 (x.Ji - 5'x)2 
I w1l = k = (x 2 + l? . (12) 

Extraction of the non-negative square root then gives us the desired formula 
fork. We formulate this important result as 

5.1.6. Theorem. Let x = x(t), y = y(t) be the equations of a curve in terms of 
any parameter t.for which x2 + / i= 0. Then (under obvious conditions on the 
junctions x(t), y(t)) the curvature is given by 

lx.Ji- _i'xl 
k = (xz + .Ji2)3/2 · (13) 

Notice that in the numerator of (13) stands the absolute value of the 

determinant of the matrix (~ ~) . 
X J' 

5.2. Curves in Euclidean 3-Space. Curvature and Torsion 

From the definition of length (2.1.2), we have that for any curve in Euclidean 
space given in terms of Euclidean co-ordinates by parametric equations 
x = x(t), y = y(t), z = z(t) (i.e. r = r(t)), 

( 14) 
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We shall assume (as initially in the planar case) that t = I, the natural 
parameter, since it is in terms of I that the basic concepts of curvature and 
torsion are most conveniently defined. Thus our curve is given by r = r(l), 
or x = x(l), y = y(l), z = z(/), and we shall use the dot to indicate, for the 
time being, derivatives with respect to I; thus 

We define curvature as in the planar case: 

5.2.1. Definition. The curvature k of a space curve is the absolute value of the 
acceleration with respect to the natural parameter I; i.e. k = lw11 = lrl. The 
radius of curvature is the reciprocal of the curvature, i.e. R = 1/k. 

We know from Lemma 5.1.1 that since 1 v11 = I, the velocity vector v1 and 
acceleration vector w1 are orthogonal. Thus for each value of I for which 
w1 ~ 0, the vectors v1 and w1, when supplemented by a third vector perpen
dicular to both ofthem, will provide a natural orthogonal reference frame for 
the whole of Euclidean 3-space. It is in terms of this third vector that we shall 
shortly define the concept of" torsion" of a space curve. It is clear that some 
additional concept is needed, since in general the curvature is by itself not 
sufficient for characterizing a space curve. Consider for example the curve 
which winds itself round a cylinder, the familiar circular helix (Figure 6): 

X= R cost, y = R sin t, z = t. 
In addition to its curvature this curve also undergoes a twisting (or "torsion") 
about its (continually changing) tangent line. 

Before proceeding, we recall for the reader the operation, familiar from 
the linear algebra of Euclidean 3-space, of the vector, or cross, product of an 
ordered pair of vectors. If (, 17 are space vectors: 

Figure 6 



44 1. Geometry in Regions of a Space. Basic Concepts 

where e~> e2 , e3 form an orthonormal basis (ei _l ej, lc'il = 1), then we define 
the vector product y = [~, IJ], y = ·/ei, by setting 

This definition is easiest recalled by expanding the matrix 

(whose first-row entries are vectors, while those of the other two rows are 
numbers) about the first row, as for conventional matrices: 

It is easy to verify that 

and also "Jacobi's identity" 

e) (e ~3 ez + ~~ (15) 

[A~, 1]] = A[~, 17], 
(16) 

[[~, IJJ, (] + [[C ~J, IJJ + [[IJ, (], ~J = o. ( 17) 

Recall also the following two facts from analytic geometry: The vector[~, IJ] 
is perpendicular to the plane spanned by the vectors ~, IJ, i.e. to all vectors of 
the form A~ + f11J; and, secondly, its length is given by 

1[~, IJ]I = 1~11'11 sin cp, (18) 

where <P is the angle between ~ and 17 if these are non-zero; this angle can of 
course be calculated from 

<~,I]) 
cos <P = IITG1I ' 0 ::;; <P ::;; rr. (19) 

Thus, in particular, if ~, 1J lie in the (x, y)-plane, then their vector product 
is perpendicular to that plane, i.e. is directed along the positive or negative 
z-axis, and then[~, IJ] = (~ 1 1] 2 - ~ 2 1J 1 )e 3 . Thus in this case we have from 
(18) that 1[~,,7]1 = l~ 1 17 2 -1] 1 ~ 2 1 = I~II1Jisincp, so that in terms of the 
vector product, we can rewrite the formula (13) for the curvature of the plane 
curve x = x(t), y = y(t), where t is any parameter, as 

(20) 

Thus the general formula (13) for the curvature of a plane curve relates the 
curvature k to the length of the vector product [f, r]. 



§5. The Serret-Frenet Formulae 45 

As we saw in the preceding subsection (§5.1) the curvature of a curve 
x = x(l), y = y(l) lying in the (x, y)-plane is; by virtue of the Serret-Frenet 
formulae, naturally related to the angular velocity of the frame (v1, n1) in a 
direction (i.e. with axis of rotation) perpendicular to the (x, y)-plane (see (7)). 
With this in mind we return to our space curve r = r(l), r = (x, y, z), x = x(l), 
y = y(l), z = z(l). Since I is natural we have I v1 1 = 1 and v1 l_ w1• We shall 
suppose also that w1 t= 0 (and call points where w1 = 0 singular points of the 
curve). Write briefly w = w1, v = v1, and, as before, write n = w/1 wl. We now 
introduce the promised third vector b orthogonal to both v1 and n: define 
b = [v, n]. We call n the principal normal to the curve, and b the binormal. 
Note that lbl = lvllnl sin ({J = 1, and, as already remarked, b l_ v, b l_ n. We 
thus have an orthonormal basis (v(l), n(l), b(l)) at each point of the curve 
where w1 t= 0, i.e. at each non-singular point of the curve. 

We shall find useful the following simple lemma, the analogue for vector 
products of the formula (1). It follows almost immediately from the usual 
formula of Leibniz for differentiating a product of two real-valued functions: 
(fg)' = f'g + fg'. 

5.2.2. Lemma. For any two vectors ~(t), 1'/(t) in Euclidean 3-space, the following 
analogue of the Leibniz product rule holds: 

d [d~ J [ dl'/ J dt [~, 1'/] = dt' '1 + ~. dt . (21) 

(Since the vector product is a non-commutative operation, attention must 
be paid to the order of the factors in the three vector products in (21 ). ) 

5.2.3. Theorem (Serret-Frenet Formulae for Space Curves). For any curve 
r = r(l) in Euclidean 3-space, where I is the natural parameter, the following 
formulae hold: 

dvjdl = kn, 

dnjdl = - xb - kv, 

dbjdl = xn. 

(22) 

Before giving the proof we make a few remarks. To begin with, note that 
the first of these formulae is just the definition of k. Secondly, the number 
x(l) (which may be positive, negative or 0) is called the torsion of the space 
curve (at the value I of the natural parameter). From the third ofthe equations 
(22) we see that its magnitude I xI = I dbjdll. If the curve is planar (lies in 
some plane), then b is a constant vector, so that dbjdl = 0, and therefore x = 0. 

PROOF OF THEOREM 5.2.3. We begin by proving the third formula dbjdl = xn. 
Since b = [v, n], we have by Lemma 5.2.2 that 

b = [tl, n] + [v, n]. (23) 
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Since In I = I, Lemma 5.1.1 (which holds in Euclidean space of any dimension) 
tells us that n .ln. Hence li = o:v + (Jb for some numbers o:, (J. Hence 

[v, li] = [v, o:v + (Jb] = o:[v, v] + fJ[v, b] = (J[v, b] = - {Jn. 

(To see that [v, b] = - n, i.e. [[v, n], v] = n, show that [[eb e2], e1] = e2 .) 

What is [v, n]? From the first of the formulae, namely v = kn (which needs 
no proof since it is just the definition of k), we deduce that [v, n] = k[n, n] = 
0. Thus substituting in (23) we get 

db 

dl 
- (Jn = xn, 

i.e. x is defined as - (J. 
To establish the second formula in (22) we calculate li. Since n = [b, v], 

it follows that 

d . 
li = dt [b, v] = [b, v] + [b, v] = [xn, v] + [b, kn] 

= x[n, v] + k[b, n] = - xb - kv, 

and the theorem is proved. D 

The operation of differentiation with respect to /, of the vectors v, n, b, 
described by the Serret-Frenet formulae (22), can be expressed in matrix 
form relative to the basis v, n, b. If we take eb e2, e3 to be v, n, b respectively, 
then we have 

de; . -- bJ(, dl - i j' 

where the matrix B = (b{) is given by 

i,j =I, 2, 3, 

B ~ H ~ -~) (24) 

Note that this matrix is skewsymmetric, as is its analogue in the planar case. 
(The significance of this formulation of the Serret-Frenet formulae will be 
revealed in the next subsection (§5.3).) We conclude by bringing to the reader's 
attention the fact that the curvature and torsion of a space curve form a 
complete set of invariants for the curve. More precisely, we have: 

(i) A curve in the Euclidean plane is determined up to an isometry of the 
plane by the equation k = k(l) expressing curvature as a function of 
length. This equation is called the natural or intrinsic equation of the 
planar curve. 

(ii) A curve in Euclidean 3-space is determined up to an isometry of 3-space 
by the equations k = k(l), x = x(l), the natural or intrinsic equations of 
the space curve. 

Proofs of these theorems may be found in the textbook of P. K. Rasevskii 
[19]. (Alternatively, see [28], p. 29 et seqq.) 
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5.3. Orthogonal Transformations Depending on a Parameter 

Let A = (a;), i, j = 1, ... , n, be an orthogonal matrix, i.e. A r A = 1, or, 
equivalently, 

n 

L aiiaik = bjk• (25) 
i= 1 

where in addition the aii are all functions of a parameter t (so that what we 
really have is a family of orthogonal matrices, one for each value oft). (We 
saw the importance of orthogonal matrices in §4-they represent the isom
etrics of Euclidean spaces fixing the origin.) We shall further assume that 
a;j(O) = bii, i.e. A(O) = 1. 

5.3.1. Lemma. rf A(O) = 1, then the matrix B = dA/dtlr=o is skewsymmetric. 

PROOF. On differentiating both sides of equation (25) with respect to t, we 
obtain 

Putting t = 0 and using the hypothesis aii(O) = b;j, we get 
n 

o = l: (aijbik + bijaik) = bkj + bjk• 
i=1 

completing the proof. 0 

Using this lemma and the result of §4 that an isometry of Euclidean space 
fixing the origin is an orthogonal linear transformation, we can give a quick 
proof of the Serret-Frenet formulae (Theorem 5.2.3). Let r = r(l) be a curve 
in Euclidean 3-space, where lis the natural parameter, and take e1(l) = v(l), 
ez(l) = n(l), e3(l) = b(l), where v, n, b are as in the preceding section. If we 
think of the frames e1(l), e2(l), e3(l) and e1(l + M), e2(l + I'll), e3(l + I'll) as 
being attached to the origin, then since they are both orthonormal there is 
an orthogonal transformation taking the first into the second. Hence there 
is a matrix (a;) (whose entries depend on both 1 and I'll) such that 

3 3 

e;(l + I'll) = L a;/f, L'll)e/f), L aii(l, L'll)a;k(l, I'll) = bjk· (26) 
j= 1 i= 1 

On differentiating the first of these equations with respect to I'll, and then 
setting I'll = 0, we obtain 

3 

e;(l) = I biiej(l), 
j= 1 
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where by Lemma 5.3.1 (with til playing the role oft), the matrix B = (hij) is 
skewsymmetric, i.e. B has the form 

bl2 
0 

-b23 

By the definition of the curvature k, and since e1 = v(l), e2 = n(l), we have 
that 

Hence h 12 = k and b13 = 0, so that 

B~ ( ~k 
Writing x for b32 , we obtain the Serret-Frenet formulae (22) (in the matrix 
form (24)). 

The Serret-Frenet formulae for the planar case can be proven similarly. 

5.4. Exercises 

1. Find the "Serret-Frenet basis" v, n, b, and the curvature and torsion of the circular 
helix r = (a cost, a sin t, ct), a > 0, c =!= 0. 

2. Find the curvature and torsion of the curves: 
(i) r = e'(sin t, cost, 1); 

(ii) r = a (cosh t, sinh t, t ). 

3. Find the curvature of the ellipse x 2 ja 2 + y2 jb 2 = 1, at the points (a, 0), (0, b). 

4. Find the curvature and torsion of the curves: 

(i) r = (t2 Jt 2-t, t 3); 

(ii) r = (3t-t\ 3t2 , 3t + t 3). 

5. Prove that a curve with identically zero curvature is a straight line. 

6. Prove that a curve with identically zero torsion lies in some plane. Find the equation 
of the plane. 

7. Describe the class of curves with constant curvature and torsion: k(l) = const, 
x(l) = const. 

8. Describe the class of curves with constant torsion: x(/) = const. 

9. Prove that a curve r = r(t) is planar if and only if (f, r, 'i') = 0. (Here(~, IJ, 0 denotes 
the "scalar triple product"<~. [IJ, (]),which can be shown to be zero if and only 
if the vectors ~. IJ, (are coplanar.) 
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10. Let S be the area (if finite) of the region bounded by a plane curve and a straight 
line parallel to the tangent line to the curve at a point on the curve, and at a distance 
h from it. Express limh-o (S2 fh 3 ) in terms of the curvature of the curve. 

11. Show that for a smooth closed curve C: r = r(l) 

L (rk - xb) dl = 0. 

12. Show that the Serret-Frenet formulae can be put into the form 

v = [(, v], n = [(, n], h=[(,b], 

where (is a certain vector (called "Darboux' vector"). Find this vector. 

13. Solve the equation drfdt = [w, r] where r = r(t) and w is a constant vector. 

14. Prove that the curvature and torsion of a curve r = r(l) are proportional (i.e. k = ex 
for some constant c) if and only if there is a constant vector u such that (u, v > = const. 

15. Suppose that r = r(l) is a curve with the property that every plane orthogonal to the 
curve (i.e. spanned by n(l) and b(l)) passes through a fixed point x0 • Show that the 
curve lies on (the surface of) a sphere with centre at x0 . 

16. Prove that a curve r = r(l) lies on a sphere of radius R if and only if x and k satisfy 

17. Show that 

(i·, i', i') 
x = - (·U. ;:] . (Cf. Exercise 9.) 

18. With any smooth curve r = r(l) we can associate the curve r = n(l) (where, as usual, 
n(l) is the principal normal to the curve at the point on it corresponding to the value 
I of the parameter.) If I* denotes the natural parameter for the latter curve, show that 

dl* 
~= Jkz + xz. 
dl 

19. Let r = r(l) be a space curve. Write 

k(l) 

0 

-x(l) 

Let the vectors ri = rj(l) be the unique solutions of the system of equations 

j = I, 2, 3, 

satisfying the initial condition that r 1(0), r2(0), rJCO) coincide with a fixed ortho
normal basis. 

(i) Show that the basis r 1 (/), rz(l), r3(1) is orthonormal for alii. 
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(ii) Define r*(l) = r0 + J~r 1 (1) dl. Show that then r1(1) = v*(l), r2(l) = n*(l), 
r3(1) = b*(l), where v*, n*, b* are the tangent, normal and binormal to the 
curve r = r*(l), and show that the curvature and torsion of this curve are the 
same as those of the original, namely k(l), x(l). 

20. Show that if a curve lies on a sphere and has constant curvature then it is a circle. 

§6. Pseudo-Euclidean Spaces 

6.1. The Simplest Concepts of the Special Theory of Relativity 

Recall that the pseudo-Euclidean space ~R;,q, p + q = n, is by definition 
(3.2.1) the space equipped with co-ordinates x\ ... , x" in terms of which the 
square of the norm of a vector ~ = ( ~ 1, ... , ~") is given by the formula 

p q 

1~12 = <~. o = I <~i)2- I <~p+i)z. (1) 
i= 1 i= I 

As already noted (in §3.2) for n = 4, p = 1, this space is termed space-time 
of the special theory ofrelativity, or Minkowski space. We denote this space by 
!Rj' rather than IRi ,3 . We shall extend this term to cover also the spaces 
IR~.n-l = IR~, i.e. we shall call these spaces also Minkowski spaces (one for 
each dimension n). 

By (1) the square of the length of a vector~ = (~0, ~ 1 , ~ 2 , ~ 3 ) in !Rj' is given 
by 

(2) 

which quantity, as already noted in §3.2, may be positive, negative or zero. 
Those vectors ~ for which I~ I = 0, form in IRi a cone called the isotropic or 
light cone (in Figure 7 the analogous cone in ~Ri is shown). Vectors inside 
this cone are just those whose squared length is positive, I~ 12 > 0; they are 
called time-like vectors. Those outside the cone are the ones with negative 
squared length, I~ 12 < 0, and are said to be space-like. In Figure 7 the time
like vectors are denoted by ~ +, and the space-like vectors by ~ _ ; vectors 
which, like ~0 , lie on the light cone, have zero length and are called isotropic 
or light vectors. 

We now consider the world-line of an arbitrary material point-particle 
(see §1.1 ). Such a particle will have a world-line in !Rj' of the form 

x 0 = ct, x' = x 1(t), x 2 = x2(t), x3 = x3(t). (3) 

Here the curve x 1 = x 1(t), x2 = x2(t), x3 = x3(t) is just the usual trajectory 
of the point-particle in Euclidean 3-space IR 3 • The tangent vector to the 
world-line (3) is given by 

(4) 
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Figure 7. The isotropic cone (x0 ) 2 - (x 1 ) 2 - (x2) 2 = 0, in the space IR~. 

(Note again that xl, .X2 , .X3 are just the components of the velocity of the 
particle through ordinary space.) It is one of the basic postulates or assump
tions of the special theory of relativity that it is impossible for a material 
object to have speed greater than the speed of light, i.e. I vI ~ c. Hence 

c2 - (x')2 - (x2)2 - (x3? ;;:: 0, (5) 

or, in other words, the vector ¢ has either to be time-like or isotropic. For 
the world-line of a photon of light the vector ¢ is isotropic since I vI = c. This 
is the reason for using the name "light" cone synonymously with "isotropic" 
cone. It turns out that the only particles which can have world-lines with 
isotropic tangent vectors, are those with zero mass, like photons, neutrinos, 
and others among the elementary particles. The world-lines of particles with 
mass always have time-like tangent vectors. It follows that the world-line 
of a particle with mass must lie wholly inside the light cone (see Figure 8; 

th i are impossible. 

Figure 8. World-lines of particles with and without mass. 
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each point of the space is to be thought of as being the apex of a light cone). 
For time-like curves (i.e. for those curves whose tangent vector is always 
time-like) the concept of length can be defined analogously to that in Euclid
ean geometry. Thus if a curve in IRi is given by the equations 

where the condition corresponding to being time-like is satisfied, i.e. 

1 ~ 1z = (xo)z _ (.XI? _ (xz)z _ (x3)2 > o, 

then the length l of the curve between r = a and r = b is given by 

I= r 1~1 dr = r J(x0 ) 2 - J
1 

(xa) 2 dr. (6) 

In the special theory of relativity the quantity ljc, with I defined as in (6), is 
called the proper time elapsed for the particle. As in the Euclidean case we 
have I v(l) I = 1, and call the parameter I the natural parameter for the time
like world-line. 

If a point-particle moves through Euclidean 3-space with constant velocity 
( v\ v2 , v3 ), i.e. 

(7) 

then, writing briefly v for I vI, we have from (6) that 

whence 

1 = x0J~- ~- (8) 

Thus in particular if v = 0, i.e. if the particle does not move relative to the 
frame x 1, x 2 , x 3 , then its proper time is 1/c = x 0 /c = t. 

6.2. Lorentz Transformations 

In §4.4(b) we noted that in Newtonian (i.e. classical) mechanics, time is 
assumed to have an absolute character, so that in particular the time interval 
between two events is the same when measured with respect to any inertial 
reference frame; in other words, for any two observers (equipped with clocks) 
moving uniformly and in a straight line relative to a fixed frame, the time 
interval between the events will turn out to be the same. We used the term 
"Galilean transformation" for transformations associated with changes 
from one inertial frame of reference to another which, firstly, have the 
property just described of preserving time intervals, and, secondly, preserve 
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the Euclidean metric d[Z = (dx 1 ) 2 + (dx 2? + (dx 3) 2 (see equations (46), 
or the more general (47), in §4). 

In the special theory of relativity, which is our present interest, the 
"Lorentz transformations" assume the role which in classical mechanics 
is played by the Galilean transformations. Thus a Lorentz transformation 
tells us how to change from one reference frame ct, x 1, x 2 , x 3 for the Min
kowski space ~t to another ct', x' 1, x' 2 , x' 3 , where the system (x') moves 
relative to (x) with constant velocity. The form of the Lorentz transformation 
is determined by the fact that it is required to preserve the Minkowski metric, 
i.e. to preserve the quadratic form d/2 = c2(dt? - (dx 1 ) 2 - (dx2 ) 2 - (dx3 ) 2 , 

and also (but this is not so important) to fix the origin (i.e. when t = x1 = 
x 2 = x 3 = 0, then also t' = x' 1 = x' 2 = x<J = 0). 

We wish to know what the Lorentz transformations look like. To this end 
we first investigate the isometry group of ~i (the Poincare group). We begin 
by considering the space ~i; thus initially we want to discover the general 
form of an isometry of ~f which fixes the origin of a given pseudo-Euclidean 
co-ordinate system x 0 , x 1 (i.e. a co-ordinate system with respect to which the 
metricg~pisgivenatallpointsbyg00 = l,g11 = -1,g12 = g21 = O).Once 
again we leave it as an exercise to show that such isometries are necessarily 
linear transformations, i.e. if x 0 ~ x'0 , x 1 ~ x' 1 is an origin-fixing trans
formation of ~f for which, always, (x0 ) 2 - (x 1) 2 = (x'0 ) 2 - (x<~)2 , then it is 
linear. This assumed, we can write our isometry as 

(9) 

Since the transformation (9) is supposed to be an isometry, we have as 
before (§4.1) 

(10) 

where A= (~ :). Since det A~'= det A, and the determinant of a product 

is the product of the determinants of the factors, we deduce from (10) that 
(det A)2 = 1, whence det A = ± 1. Since we know the g~p, we can rewrite 
(10) as a system of three equations: 

ab- cd = 0, {11) 

It is clear from these that a #- 0. If we set f3 = cja, then direct solution of (11) 
yields 

a= ±~, c = af3, d = ± j1 - [32' 
b = df3. (12) 
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Hence the matrices A corresponding to Lorentz transformations of !Rf are 
just those of the form 

A=± 
J t - {32' 

f3 
J t - {32' 

(13) 

In terms of a new parameter ljJ defined by f3 =tanh 1/J, (13) takes the form 

A = + (cosh ljJ ± sinh 1/J) 
- sinh ljJ ± cosh ljJ ' 

(14) 

whence it is clear that the group of isometries of !Rf fixing the origin, is just 
the group of hyperbolic rotations through angles 1/J. Every hyperbolic 
rotation fixes (i.e. maps onto itself) the set of points satisfying I ~ 12 = con st., 
i.e. (x0 ) 2 - (x 1 ) 2 = const. In particular therefore the hyperbolic rotations 
fix the isotropic cone I~ 12 = 0, and the" unit pseudo-sphere" (x0 ) 2 - (x 1 ) 2 = 
1, which is, of course, a hyperbola (see Figure 9). 

Figure 9 

Recall that the group of orthogonal transformations of Euclidean space 
is not connected, but has two connected components, one consisting of the 
proper (or direct) transformations, and the other of the improper (or opposite) 
transformations (see §4.4(a)). The group of isometries of the pseudo-Euclid
ean plane !Rf fixing the origin, is more complicated in the sense that it falls 
into four maximal connected pieces, consisting respectively of the matrices 
of the following four types: 

(cosh ljJ sinh 1/J) (cosh ljJ - sinh 1/J) 
sinh ljJ cosh ljJ ' sinh ljJ - cosh ljJ ' 

(-cosh ljJ sinh 1/J) ( - cosh ljJ - sinh 1/J). 
-sinh ljJ cosh ljJ ' -sinh ljJ -cosh ljJ 

(15) 
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Thus in particular each of these matrices can be connected by a (continuous) 
arc to that one of the four matrices 

~), p = (~ - ~), 

T= (
-I 

0 ~), PT = (- ~ _ ~), 
in its component (but there is no arc connecting any two of the matrices 
I, P, T, PT). 

The transformations in the first two connected components represented 
in (15), in contrast with the last two, do not change the direction of flow of 
time t (interpreting x 0 as ct); for this reason these transformations are said 
to be orthochronous. Thus the connected component containing the identity 
transformation consists of just those isometrics (fixing the origin) which 
are both orthochronous and proper (i.e. whose matrices have determinant 
+ 1). 

We shall denote the group we have just been considering, i.e. the group 
of isometrics of IRi which fix the origin, by 0(1, 1). More generally we shall 
use the notation O(p, q), p + q = n, for the group of all pseudo-orthogonal 
transformations of the space IR;.q; thus O(p, q) is the group of linear trans
formations A (or matrices relative to an appropriate basis) preserving the 
pseudo-Euclidean scalar product: 

<A¢, AIJ) = <¢, '1) = ¢1'11 + ... + (PIJP _ ... _ ¢n1Jn. 

Of particular importance are the groups 0(1, n - 1) of isometries of n
dimensional Minkowski space, fixing the origin. It turns out that the above
mentioned decomposition of 0(1, I) as the union of exactly four pieces 
(i.e. maximal connected components) is typical: all of the groups 0(1, n - 1) 
have this property. We shall not prove this here, but rather limit ourselves 
to the following weaker result. 

6.2.1. Lemma. There is an epimorphism cpfrom the group 0(1, n- 1) onto 
the group C 2 x C 2 , the direct product of the cyclic group { + 1, - 1} (under 
multiplication), with itself: 

PROOF. Let e0 be the unit vector in the direction of the positive x0-axis, and 
for each A in 0(1, n - I) set 

cp(A) = (det A, sgn<e0 , Ae0 )). (16) 

For this definition of cp to make sense, we need to show that <e0 , Ae0 ) -:/- 0. 
Since <Ae0 , Ae0 ) = <e0 , e0 ) = 1, the x0 -component of Ae0 (call it a) 
cannot be zero. Hence <eo, Ae0 ) = a -:/- 0, as required. That the map cp is 
onto and a homomorphism (i.e. cp(AB) = cp(A)cp(B))t is easily verified; we 
leave it to the reader. D 

t It follows from this defining property that if r:p is a homomorphism from a group G1 to a group 
G2 , then r:p(l) =I, and r:p(g- 1 ) = r:p(g)- 1 forallg in G1• A homomorphism r:p:G 1 ---> G2 is often 
called a "representation" of the group G1 in the group G2 • 
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If, by analogy with the planar case, we define a transformation A in 
0(1, n- 1) to be proper if q>(A) = (1, 1), where q> is as in (16), then we can 
say that the kernel of q> consists of just the proper isometries. It turns out that 
this kernel is precisely the maximal connected component of 0(1, n - I) 
containing the identity transformation, but we shall not prove this here. 
What can be inferred from the lemma is that the group 0( 1, n - 1) has at 
least four connected components. 

As in the planar case the transformations A in 0(1, n - 1) for which 
sgn <eo, Ae0 ) = 1, are called orthochronous (since they do not change the 
direction of flow of time t = x 0 /c). 

We obtain the full group of isometrics of the pseudo-Euclidean space 
IR~ by combining the isometrics in 0(1, n - 1) with the translations. 

As promised, we now apply our knowledge of the isometrics of the 
pseudo-Euclidean spaces (or more particularly of 0(1, 1)) to the special 
theory of relativity. Our particular aim is to find the form of a Lorentz 
transformation, i.e. of a transformation arising from a change from a refer
ence frame ct, x 1, x 2 , x 3 to another ct', x11 , x' 2 , x' 3 (where the system (x') 
moves with constant velocity relative to the system (x)), which fixes the 
origin, and (more significantly) preserves the quadratic form (ct? - (x 1 ) 2 -

(x 2? - (x 3?. For simplicity (so as not to obscure the essential nature of 
the general Lorentz transformation) we suppose that the primed system 
x' 1, x' 2 , x' 3 , moves in the positive x 1-direction with (constant) speed v. We 
then have x 2 = x' 2 , x 3 = x' 3 ; hence the transformation has the form 

where A = ('1 1~) belongs to 0(1, 1 ). 
y () 

( 17) 

If the speed v is reduced to zero, then the transformation ( 17) should 
become the identity, so that the matrix A must lie in the connected component 
of the identity of 0(1, 1), i.e. must have the form 

A . . = (cosh 1j; sinh !/J) 
smh tjJ cosh tjJ 

Hence 

ct = ct' cosh tjJ + x11 sinh !/J, 
( 18) 

x 1 = ct' sinh tjJ + x11 cosh !/J. 

We wish to investigate the motion of the origin of the (x') system relative 
to the system ct, x', x 2 , x 3 . Thus let 0' denote the origin of the frame x' 1, x' 2 , x'3 
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at various times t'. (Note that 0' is not a point in ~i. but the whole ct'-axis.) 
Then for 0', since x' 1 = 0, the equations (18) simplify to 

ct = ct' cosh 1/J, 
(19) 

x 1 = ct' sinh t/J, 

i.e. the point with co-ordinates (ct', 0, 0, 0) in the primed system has co
ordinates (ct' cosh t/J, ct' sinh t/J, 0, 0) in the unprimed system. On dividing 
the second equation in (19) by the first, we get x 1 jet = tanh t/J. But x 1 jt is 
just v, the speed of 0' along the x1-axis, so that 

tanh t/J = vjc, 

whence 

. h .t, vjc 
sm "' = -----;====;;==;;: Jt - v2jc2 ' 

Substituting in (18) we get finally 

t _ (t' + ( v) x•l) 1 
- c2 j1- v2 jc2 ' 

1 
x 1 = (x' 1 + vt') ----r===:===;;: J1 - v2 jc 2 

(20) 

Transformations of the form (20) (supplemented by x 2 = x' 2, x 3 = x' 3 ) are 
what are generally known as Lorentz transformations. 

Let us now consider the physical consequences of the form (20) taken 
by the Lorentz transformations. Suppose that the speed v is small in com
parison with the speed of light c, i.e. vjc ~ 1. From (20) it follows that as 
vjc - 0, the Lorentz transformation goes into the Galilean transformation 
(46) of §4: t = t', x 1 = x' 1 + vt, x 2 = x' 2 , x 3 = x' 3 . In other words, for 
frames moving with small velocities relative to one another, the relativistic 
formulae are approximately classical. However for relative speeds compar
able with the speed of light, the two theories will have radically different 
consequences. We shall now illustrate these large differences in the two 
theories by contrasting (in the manner of most popularizations of Einstein's 
special theory of relativity) some of the predictions of the relativistic theory 
with the expectations of common sense (which is rooted in the classical 
theory). The effects in question are the shortening of the dimensions of 
uniformly moving objects in the direction of their motion, the retardation 
of moving clockst (and the related effect that events which are simultaneous 
relative to one reference frame, can occur at different times as observed from 
other frames). 

t The reader curious about these "popular" effects might wish to ponder their exact physical 
meaning, and the extent to which they are observable. 
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Denote the two frames by K(ct, x 1, x 2 , x 3 ) and K'(ct', xtl, x' 2 , x' 3 ). 

Suppose that we have a rod fixed relative to the frame K and lying along the 
x 1-axis, and which has ordinary (i.e. Euclidean) length I (as measured by an 
observer also fixed relative to K). Thus if xl and x~ are the x1-co-ordinates 
of the ends of the rod (at any time t), then I = xi - xl. It seems reasonable 
to take as the "ordinary" length I' of the rod in K' (i.e. its length as it appears 
to an observer fixed relative to K') to be the difference between the xtl
co-ordinates, x'/ and x~1 say, of the ends of the rod at the same time t' (as 
measured in K'). By (20), at time t' we have 

(21) 

where we are using the fact that xl and x~ are the x1-co-ordinates of the ends 
of the rod at all times t, i.e. that the rod is fixed relative to K. Since I' = x~1 

x'11, we get from (21) that 

(22) 

(Note that I' is not an invariant 4-dimensional pseudo-Euclidean length, 
except in the sense that it is the distance between the projections of the two 
events (ct', x'/, 0, 0), (ct', x21, 0, 0) onto the hyperplane (i.e. 3-dimensional 
subspace) co-ordinatized by xtl, x' 2 , x' 3 .) From (22) we conclude that the 
rod has greatest length relative to a frame of reference in which it does not 
move. To an observer in a frame relative to which the rod moves with speed 
v (uniformly and in a straight line), its length will appear to be reduced by 
the factor J 1 - v2 /c2 (the "Lorentz contraction"). 

We next deduce from (20) that a clock moving relative to an observer will 
appear to go more slowly than a fixed one. Suppose we have a clock fixed at 
the origin 0' of the co-ordinate system x' 1, x' 2 , x' 3 . Let t'1 and t~ be two read
ings taken from this clock in K'; thus relative to an observer fixed in K', the 
time interval elapsed between the two readings will be !1t' = t~ - t'1• Con
sidering the two readings as events (with K' -co-ordinates (t'1, 0, 0, 0) and 
(t~, 0, 0, 0), we can calculate from (20) their co-ordinates relative to K; in 
particular their time co-ordinates relative to K are, since x' 1 = 0 for both 
events, 

t' 1 t' 
t - 2 . 
2- ~) >' 

vl- v-;c 
whence 

!1t' 
t 2 - t 1 = !1t = ~~----. Jt- v2 /c 2 

(23) 

Thus !1t > !1t', i.e. to an observer in the frame K the clock moving with the 
frame K' appears to be retarded. 
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Thirdly we deduce from (20) that it is possible for two events to be simul
taneous in the reference frame K', yet not simultaneous relative to K. Thus 
let A1 and A 2 be two events which are simultaneous relative to K' (both 
occurring at time t'), and have different x-~-co-ordinates x'/, x~1 , x'/ # x~1 ; 
for simplicity we may suppose that the co-ordinates relative to K' of these 
events are (t', x'/, 0, 0) and (t', x~1 , 0, 0) respectively. Then the co-ordinates 
relative to K of these events are (t 1, xL 0, 0) and (t 2 , xL 0, 0) where, by the 
first equation in (20), 

tl = t~ + (v/cz)x~l 
Jt- v2jc2 ' 

Since t'1 = t~ = t', it follows that 

tz = t~ + (vjcz)x~l. 
Jt - v2 jc2 

v;cz ( rj d) 0 
t 1 - t 2 = J x 1 - x 2 # , 

1 - v2/c 2 

(24) 

i.e. to an observer in the frame K, the two events will not be simultaneous. 
Note that if t'1 > t~ then for sufficiently large x~1 - x'/, we shall get from 

(24) that t 1 < t2 , i.e. the order of occurrence of the two events is reversed 
in the two reference frames; superficially this might suggest that the order 
of cause and effect may be reversed relative to a suitably chosen reference 
frame. We invite the reader to attempt to resolve this apparent paradox. 

Finally we deduce the rule for "addition" of parallel velocities. If a point 
Pis moving along the xr1-axis of the frame K' with speed w' relative to K', 
then what is the speed w of P relative to the frame K? Since w' = dxrl/dt', 
w = dx 1 /dt, and, by (20), 

we have that 

d _ dt' + (v/c 2 ) dx' 1 

t- ~z}c2 , 

dx 1 v + w' 
W=-=---~ 

dt 1 + vw'jc2 • 
(25) 

If v, w' <:g c, then w ;:::::: w' + v, i.e. for small speeds we get (approximately) 
the usual formula of classical mechanics for addition of relative (parallel) 
speeds. Note also that if w' = c, then for any v < c, the formula (25) gives 
the speed w of the point P relative to the frame K as 

v + c 
----co=C 
1 + vcjc 2 ' 

and we have come full circle to one of the original starting points of Einstein's 
special theory of relativity, namely that the speed of light is the same relative 
to all frames of reference moving with constant velocities relative to one 
another. 
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6.3. Exercises 

1. Define a "vector product" in the space ~i by 

~ X Yf = (~1'12 _ ~2'11, ~0'12 _ ~2Yf0, ~1'10 _ ~0'11), 

where~= W, ~1, ~2), 11 = c11o, 11 1, 11 2). 

(i) Verify that for the basis vectors e0 , e1, e2 (where e0 is time-like) we have 

(ii) Show that x is a bilinear antisymmetric operation and that Jacobi's identity 
holds: 

(iii) Show that this vector product is preserved by the proper transformations in 
0(1, 2). 

2. Let r = r(l) be a time-like curve in ~i such that (r(/))2 = (r0 ) 2 - (;t}2 - (r2) 2 = 1, 
and r0 > 0. Define vectors v, n, b by v = r, iJ = kn, b = n x v. Prove the pseudo
Euclidean analogues of the Serret-Frenet formulae: 

iJ = kn, 

iJ = kv- xb, 

b = xn. 

3. Establish a result analogous to that of Lemma 5.3.1, for the derivative of a transform
ation in 0(1, 2) depending on a parameter. 

4. Solve in ~i the equation ; = w x r, where w is a constant vector. 

5. Show that an orthogonal complement in ~i+ 1 of a time-like vector is a space-like 
hyperplane (a hyperplane is an n-dimensional subspace). What are the possible 
orthogonal complements of a space-like vector? Of a light vector? 



CHAPTER 2 

The Theory of Surfaces 

§7. Geometry on a Surface in Space 

7.1. Co-ordinates on a Surface 

A surface in a 3-dimensional space is the simplest object having its own, 
internal or "intrinsic," geometry. What exactly do we mean by this? 

In our investigation (in Chapter 1) of curves in Euclidean space, we were 
led to the metrical invariants curvature and torsion of a curve; it is clear 
however that these are invariants rather of the way the curve is situated in 
space, than internal to the curve, i.e. they are extrinsic invariants. A curve 
r = r(t) has no internal metrical invariants, since essentially the only candi
date for this status is arc length /, the natural parameter, defined by 

V1 = f = (X, y, z), 

and clearly this is by itself inadequate for distinguishing the curve from, for 
instance, a straight line, i.e. we can co-ordinatize a straight line with the 
same parameter I in such a way that distances along both curve and straight 
line are measured in the same way. 

For surfaces the situation is different: it is impossible to co-ordinatize 
the sphere (or even a piece of the sphere) so that the formula for distance on 
the sphere in terms of these co-ordinates, is the same as the usual distance 
formula in the Euclidean plane. 
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What mathematical guises do surfaces assume? Surfaces in a 3-dimen
sional Cartesian space are given in three different ways: 

(i) (the simplest) as the graph of a function of two variables 

z = f(x, y); 

(ii) more generally as the graph of the equation 

F(x, y, z) = 0; 

(iii) by parametric equations (analogous to those for a curve) 

r = r(u, v); 

or, in more detail, 

x = x(u, v), y = y(u, v), z = z(u, v), 

where the pair (u, v) ranges over some region in the plane, the domain of 
values of the parameters u, v. We shall often refer suggestively to the para
meters u, v as "co-ordinates" for the surface. 

As in Chapter 1, unless expressly stated otherwise, all functions will be 
assumed to be continuously differentiable. 

7.1.1. Definition. We say that the surface given by the equation F(x, y, z) = 0 
is non-singular at the point P = (x0 , Yo, z0 ) on it (i.e. satisfying F(x0 , Yo, z0 ) = 
0), if the gradient ofF at P is non-zero: 

aF aF aF 
ox e1 + dy e2 + 02 e 3 ¥- 0 at x = x0 , y = y0 , z = z0 • 

By the Implicit Function Theorem, if say oF/oz lxo. Yo. zo ¥- 0, then near the 
point P(x0 , y0 , z0 ) on the surface, the equation F(x, y, z) = 0 can be solved 
for z as a (once again continuously differentiable) function of x andy; i.e. 
there exists a (continuously differentiable) function z = f(x, y), such that 
z0 = f(x 0 , y0 ), and, in a neighbourhood of (i.e. region containing) the point 
(x0 , y0 ), F(x, y, f(x, y)) = 0. Formulae for the partial derivatives off are 
obtained as follows. On differentiating the identity F(x, y, f(x, y)) = 0 im
plicitly with respect to x, we obtain (using the "chain rule," and bearing in 
mind that z = f(x, y)): 

oF of oF ax 0 ~-+~--
oz OX OX OX- ' 

whence 

of oF/ox 
ax - oF/oz · (1) 

Similarly 

of oF/oy 
ay - aFjoz· (2) 
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(Alternatively one may derive (1) and (2) as follows: It can be shown that, 
under our prevailing assumptions, 

dF = F(x + dx, y + dy, z + dz) - F(x, y, z) 

= Fx dx + FY dy +F. dz + o( Jdx 2 + dy2 + dz2 ), 

where F x• FY, F. are evaluated at (x, y, z). (This is what is usually taken to be 
the definition of"differentiability" of the function Fat the point (x, y, z), the 
geometric idea being that the function F is "locally" almost affine.) Then 
if (x, y, z) and (x + dx, y + dy, z + dz) are both on the surface F(x, y, z) = 0, 
we get 

(3) 

which tells us that the surface is "locally" approximable by the plane 
("tangent" plane-see below) through (x, y, z) with normal (Fx, FY, F.). 
Setting dy = 0 in (3), using the fact that F(x, y, z) = 0 defines a function 
z = f(x, y) in a neighbourhood of (x, y, z), dividing both sides of (3) by dx, 
and, finally, letting dx-+ 0, we get the formula (1).) 

From Definition 7.1.1 and the Implicit Function Theorem it follows that 
around each non-singular point of a surface given by F(x, y, z) = 0, there is 
a neighbourhood such that the piece of the surface enclosed by that neigh
bourhood is the graph of a function (where if not z, then either x or y may 
serve as the dependent variable). Hence locally, i.e. in a neighbourhood of a 
non-singular point, the surface is given by the parametric equations z = 
f(u, v), x = u, y = v (around the point x 0 = u0 , Yc =-= v0 ). This is often 
expressed as follows: In a neighbourhood of a non-singular point of a surface 
there exist local co-ordinates u, v. 

Suppose now that a surface is given parametrically: 

r = r(u, v); x = x(u, v), y = y(u, v), z = z(u, v). (4) 

7.1.1'. Definition. A point P = (x0 , y0 , z0 ) = (x(u0 , v0 ), y(u0 , v0 ), z(u0 , Vo)) 

on the surface given by ( 4 ), is said to be non-singular if the matrix 

A=(~: ~~ ~:) 
OX iJy oz 

ov ov i!v •o. vo 

has rank 2. 

The next theorem tells us that Definitions 7.1.1 and 7.1.1' are "locally" 
equivalent, but, more significantly, we can conclude from it that locally, i.e. 
in a neighbourhood of a non-singular point of a surface, the above three 
ways of presenting a surface equationally are equivalent. 
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7.1.2. Theorem. !la surface is given parametrically (as in (4)) and the point 
P(x0 , Yo, z0 ) corresponding to (u 0 , v0 ) is non-singular, then there is an equation 
F(x, y, z) = 0 which defines the surface in a neighbourhood of P, and has the 
property that (grad F)x0 , yo. zo #- 0. 

PRooF. Since Pis non-singular, by 7.1.1' the matrix A has rank 2; hence, by 
renaming x, y, z if necessary, we may suppose that the determinant 

ox oy ox Dy 
----- #- 0. 
ou OV OV ou 

However this determinant is the Jacobian of the transformation (x, y) H 

(u, v), evaluated at the point (u 0 , v0 ). Since it is non-zero we deduce from the 
Inverse Function Theorem (1.2.5) that there is a neighbourhood of the point 
(x0 , y0 ) (where x 0 = x(u0 , v0 ), Yo = y(u0 , v0 )), on which the restriction of 
the transformation (x, y) H (u, v), has an inverse and on which, in addition, 

the matrix (ux vx) is the inverse of (xu Yu.)· If we define f(x, y) by 
Uy Vy XV y,. 

f(x, y) = z(u(x, y), v(x, y)), 

then the equation z = f(x, y) (or rather z - f(x, y) = 0) will fulfil the claims 
of the theorem. D 

7.1.3. Examples. (a) The ellipsoid x2 ja2 + y2 jb2 + z2 jc2 = 1 has no 
singular points, but is not globally the graph of a function (though of course 
locally it is). It has no global parametrization with respect to which all its 
points are non-singular. 

(b) The hyperboloid of one sheet x 2 ja2 + y2 jb2 - z2 jc2 = 1 is not 
globally the graph of a function, but does have global parameters u = z, 
v = cp (where cp is the usual polar angle defined in terms of x andy) yielding 
a parametrization with no singular points. 

(c) The two-sheeted hyperboloid- x 2 ja2 - y2 jb2 + z2jc2 = 1. Each 
sheet is the graph of a function of the form z = f(x, y) (and therefore has a 
parametrization with no singular points). 

(d) The cone x2 ja2 + y2 jb2 - z2 jc2 = 0 has (0, 0, 0) as a singular point. 

We now turn to the general n-dimensional Cartesian space where we 
shall understand a surface to be given by a system of equations 

(5) 

defined in a region of the space. 
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7.1.4. Definition. A point P(x6, ... , x~) of the surface (5) 1s said to be 
non-singular if the (n - k) x n matrix 

(aJ;) 
oxi x'=x~ 

has rank (n - k). 

7.1.5. Lemma. Local co-ordinates may be defined in a neighbourhood of a 
non-singular point of the sur{ace (5). 

PROOF. By re-indexing x 1, ••. , x", if necessary, we may assume that the 
(n - k) x (n - k) minor 

(aJ;) a q ' q = k + 1, ... ' n, 
X xq = x~ 

has non-zero determinant. Hence by the general form of the Implicit Function 
Theorem, as applied to the transformation ,t;(x 1, ... , x") from IR" to IR"-k, 
there exist (n - k) functions 

defined on a neighbourhood of (x6, ... , x~), with 

x~+ 1 = gk+ 1(x6, ... , x~), ... , x~ = g"(x6, ... , x~), 

and having the property that 

j;(xl, ... , xk, gk+ 1, ... , g") = O, i = 1, ... , n- k, 

throughout the neighbourhood. Thus we may take as parameters 
u 1 = x 1, ... , uk = xk, in terms of which the desired parametric equations 
for a neighbourhood of the surface about the point P are 

x 1 = u 1 ••.• , xk = tl. xk + 1 = gk + 1 ( u 1, .•. , tl), ... , x" = g"( u 1, ..• , uk). 
D 

An important special case is that of a hypersurface in an n-dimensional 
space, defined as the set of points whose co-ordinates satisfy a single equation 

f(x\ ... , x") = 0. (6) 

Analogously to the 3-dimensional case, the defining condition for non
singularity of a point (x6, ... , x~) on the hypersurface ( 6) (i.e. satisfying 
f(x6, ... , x~) = 0) is taken to be 

. (of of) 
grad j = ~1' ... , -" # 0. 

OX OX x• =x~ 
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7.2. Tangent Planes 

Suppose a surface in IR 3 is given in parametric form r = r(u, v), r = (x, y, z). 
where u, v are the parameters, or, in other terminology, co-ordinates on the 
surface. A curve u = u(t), v = v(t) in the (u, v)-region defines a curve r(t) = 
r(u(t), v(t)) lying on our surface in IR 3 • The tangent vector f(t) to the curve, 
has the form 

or or 
r" = ou ' r v = ov · (7) 

By Definition 7.1.1' a non-singular point of the surface is one at which the 
vectors ru =(xu, Yu• zu) and rv = (xv, Yvo Zv) are linearly independent. 
Putting this together with (7), which tells us that every vector tangent to 
our surface is a linear combination of the vectors ru and rv, we deduce that 
the totality of vectors tangent to our surface at a given non-singular point 
P forms a 2-dimensional subspace having the pair ru, rv as a basis. We call 
this subspace the tangent plane to the surface at the given point. (Note that 
in terms of the basis r", r,. the components of the tangent vector f are the 
quantities u, v.) 

Suppose now that a surface in IR 3 is given to us instead via the equation 
F(x, y, z) = 0. If r = r(t) = (x(t), y(t), z(t)) is a curve on this surface, i.e. if 
F(x(t), y(t), z(t)) = 0 for the specified interval of values oft, then ( djdt)F(x(t), 
y(t), z(t)) = 0 for those t, whence, applying the chain rule yet again, (or using 
(3)), we get 

(8) 

At a non-singular point P(x0 , y0 , z0 ) of the surface we have (by definition), 
grad F = (Fx, FY, Fz) #- 0. Hence writing A, B, C for Fx, FY, Fz respectively, 
evaluated at P, we see from (8) that every vector (.X, y, z) tangent to the 
surface at P is in the plane Ax + By + Cz = 0. Hence there is a tangent 
plane to the surface at the non-singular point P: it is the 2-dimensional 
subspace consisting of all vectors (x, y, z) satisfying Ax + By + Cz = 0. We 
now repeat these two arguments (showing that a unique tangent plane exists 
at each non-singular point of a surface) inn dimensions. 

Thus firstly suppose that in n-dimensional Cartesian space with co
ordinates x 1, ... , x", we are given a k-dimensional surface in parametric 
form: 

(9) 

(We call this surface "k-dimensional" since we think of the k parameters 
z1, ... , zk as co-ordinates for it.) As in the case n = 3, a family of functions 
zi = zi(t), j = 1, ... , k (defining a curve in a space co-ordinatized by 
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z1, ... , zk) yields, on substitution into (9), a curve lying in the surface (9) 
with tangent vector 

v = (x 1, ... ,x") = z1b1 + ... + zkbk, 

where the vectors bj are given by 

bj = (~::' ... '~:~)' j = 1, .. 'k. 

(10) 

(11) 

By analogy with Definition 7.1.1' (which applies when n = 3, k = 2), we shall 
say that a point lying on the surface (9) is a non-singular point of the surface 
if the k vectors in (11) are linearly independent. Continuing this analogy with 
the 3-dimensional case, we then define the tangent plane to the surface (9) at a 
non-singular point P, to be the k-dimensional subspace of IR" spanned by the 
k independent vectors in (11); from (10) we then see that all vectors tangent 
to the surface at the non-singular point P, lie in the tangent plane to the 
surface at P, so that this definition of the tangent plane is the appropriate one. 
If on the other hand a k-dimensional surface is given to us in terms of a 

system of (n - k) equations 

f~-k(x 1 , ... , x") = 0, 
(12) 

then the components of a vector (x 1, ... , :X") tangent to the surface (i.e. 
tangent to a curve x 1 = x 1(t), ... , x" = x"(t) lying in the surface) will 
satisfy the system of (n - k) linear equations 

f ofJI xl = o, 
I= 1 OX 

j = 1, ... , n- k. (13) 

If we now define (by analogy with 7.1.1 and as in 7.1.4) a non-singular point of 
the surface to be one at which the coefficient matrix (ofj!ox1) of the system (13) 
has rank (n - k), then at such a point P the subspace of IR" made up of all 
solutions of ( 13), will have dimension k and will contain all vectors (x 1, ... , :X") 
tangent to the surface at P; hence we take that subspace to be the tangent 
plane to the surface at the non-singular point P. 

The reader will be prepared to believe that Theorem 7.1.2 has an analogue 
in n dimensions, so that "locally" the above two definitions of a non-singular 
point of a surface are the same, and of course the two ways of arriving at the 
tangent plane at such a point yield the same plane! 

To summarize: the geometric significance of the property of being non
singular lies in the fact that the tangent plane to a surface at a non-singular 
point has dimension the same as that of the surface. This is the number of 
parameters in a parametric representation of the surface, or, if the surface is 
given by a system of equations (12), then it is the difference between the 
dimension of the underlying space and the number of these equations. 
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7.3. The Metric on a Surface in Euclidean Space 

Up to this point our study of surfaces has been completely metric-free. We 
shall now assume that the spaces in which our surfaces lie are Euclidean. 

To begin with we shall work in Euclidean 3-space, with Euclidean co
ordinates x, y, z (see 3.1.4). Thus suppose we wish to study a surface in this 
space which (or at least a relevant piece of which) is given parametrically by 
r = r(u, v), r = (x, y, z), where u, v are co-ordinates on the surface. In what 
follows any points of the surface which come up for consideration will be 
tacitly assumed to be non-singular (see 7.1.1'). 

If we think of the surface as a space co-ordinatized by u, v, then it is natural 
to ask how one goes about measuring length in this space, i.e. in terms of the 
co-ordinates u, v. To be more precise, suppose we have a curve r = r(t) = 
(x(t), y(t), z(t)) on our surface. Since this curve lies in Euclidean space, by its 
length we shall naturally mean its length in that space, given by 

(14) 

Since the curve lies on the surface, we can find a pair of functions u = u(t), 
v = v(t), such that 

x = x(u(t), v(t)) = x(t), 

y = y(u(t), v(t)) = y(t), 

z = z(u(t), v(t)) = z(t); 

(15) 

i.e. the equations u = u(t), v = v(t) determine the curve. If we regard the 
surface as a space co-ordinatized by u, v, then these equations (u = u(t), 
v = v(t)) take on the role of parametric equations of the curve (15) in that 
space, in terms of the co-ordinates u, v. From this point of view our question 
becomes: In the space co-ordinatized by u, v (i.e. in the surface) what metric 
gii = gii(u, v) will give us the same result for the length of the curve u = u(t), 
v = v(t), as the formula (14)? In other words we are asking for the metric 
gii = gu(u, v) on the surface, for which, for all a, bin the interval of values oft, 

f I vi dt = f jx2 + y2 + i 2 dt, (16) 

where lvl2 = giixixj, x1 = u, x2 = v, and x, y, i are as in (14). (Note that for 
(16) to make sense, the metric gii must be Riemannian (see 3.1.1)). It follows 
from (16) that for all t 

(17) 
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where we have put g 11 = E, g 22 = G, g 21 = g 12 =F. Since from (15) we 
have .X= xuu + xvvetc., on substituting in (17) we obtain 

Using 

g12 = F = XuXv + YuYv + ZuZv, 

g22 = G = XvXv + YvYv + ZvZv• 

we can rewrite (18) briefly as 

(18) 

(19) 

We have thus arrived at the desired metric gu(u, v) = (E, F, G) (where 
E, F, G are given in (18)) in the co-ordinates u, v of the surface. This Riemann
ian metric on the surface, which in terms of differentials has the form 

g;j dx; dxj = E(du)2 + 2F(du dv) + G(dv)2 , 

is often also called the first fundamental form on the surface. We shall also 
say that this metric is induced on the surface. 

It follows that if the surface is given to us in the form z = f(x, y), then by 
(18) the metric induced on the surface, in terms of the co-ordinates u = x, 
v = y, is given by 

gll = 1 + f~, (20) 

Thirdly, and finally, how do we calculate the induced metric, and with 
respect to what co-ordinates do we calculate it, on a surface given by 
F(x, y, z) = 0? In this case we confine ourselves to a neighbourhood of a 
non-singular point P of the surface (i.e. grad F # 0 at P). We may suppose 
without loss of generality that oF/oz # 0 at P. Then as we showed at the 
beginning of §7.1, the equation F(x, y, z) = 0 defines a function z = f(x, y) 
implicitly in a neighbourhood of P, and in that neighbourhood,Jx = - F xiF z, 

j~ = -Fy/Fz (see (1), (2)). Substituting in (20) we find that, in this neigh
bourhood of P, the induced metric on the surface in terms ofthe co-ordinates 
x, y is given by 

p2 
gtt = 1 + F~' 

z 

p2 
gzz = 1 + F~. 

z 
(21) 

We conclude that, however a surface is defined, we can calculate the 
metric induced on the surface with respect to appropriate co-ordinates 
defined on it, and then, if so desired, calculate in terms of that metric, lengths 
of segments of curves lying on the surface. We emphasize that these lengths 
are simply the ordinary Euclidean lengths as measured in Euclidean 3-space, 
the space in which the surface is situated. 
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Note that if the surface is given in the form r = r(u, v), i.e. x = x(u, v), 
y = y(u, v), z = z(u, v), then one often expresses (17) in the brief form 

(22) 

where g11 = E, g12 = g21 = F, g 22 = G are given by (18), and where dl is 
an element of arc length of a curve on the surface. 

It is possible for the induced metric gii(x 1 , x2 ) on the surface to be itself 
Euclidean (of dimension 2, naturally); i.e. that there exist a system of co
ordinates ii = ii(x 1, x 2), v = v(x 1, x 2 ) on the surface, such that 

7.3.1. Example. The metric induced on a cylinder is Euclidean. For, suppose 
the cylinder given by the equation f(x, y) = 0 (in which z does not appear); 
then the surface co-ordinates ii = z, v = l, where l is arc length measured 
along the curve f(x, y) = 0 in the plane z = 0, are Euclidean co-ordinates 
for the cylinder, i.e. 

(dx 2 + dl + dz 2 ) IJ<x, Yl = 0 = dz2 + dl2 . 

(This is easy to see intuitively by imagining the cylinder unrolled flat onto a 
plane.) 

We digress briefly to introduce the concept of the unit normal to a surface 
at a point. By (8), if a surface is given in the form F(x, y, z) = 0, then at any 
point the vector grad F = (F x, F Y, F z) is perpendicular to every tangent 
vector to the surface at that point. Thus at a non-singular point of the surface, 
grad F is a non-zero vector normal to the surface at that point. If on the 
other hand the surface is given to us in parametric form r = r(u, v), r = (x, y, z), 
then the vectors 

are both tangent to the surface (see (7)), so that if they are linearly independ
ent (as they will be at a non-singular point of the surface~see 7.1.1') then 
their vector product[~, ry] furnishes us with a non-zero vector perpendicular 
to the surface (at that non-singular point). 

In equipping our surface with the Riemannian metric gij in the manner 
described above, we have conferred on it, as it were, the status of a self
contained metric space; thus we can (as already mentioned) use this metric 
to calculate arc length of a curve u = u(t), v = v(t) on the surface, and we 
can also use it to measure the angle between two such curves at a point where 
they intersect. Thus if (u 1(t), v1(t)) and (u 2(t), v2(t)) are two curves on the 
surface, and if ry 1 = (u1, v1), ry 2 = (u 2 , v2 ) are the tangent vectors to these 
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curves at a point where they intersect, then the angle q>(O ~ q> ~ n) between 
the curves at that point is given by 

where the scalar product ( , ) is defined (as usual for a metric space) by 

It is clear from (17) that this angle q> will be the same as the Euclidean angle 
between the curves r = r(u 1(t), v1(t)) and r = r(uz(t), vz(t)) (assuming our 
surface given in the form r = r(u, v)) in Euclidean 3-space. 

We now derive the formula for the metric on a k-dimensional surface 
lying in n-dimensional Euclidean space. Since, at least in a neighbourhood 
of a non-singular point of such a surface, co-ordinates (i.e. parameters) may 
be defined on it (this was shown at the end of §7.1), we may assume that our 
surface is given in parametric form xi = x;(z1, ... , zk), i = 1, ... , n. As before 
a curve zi = zi(t), j = 1, ... , k, in the k-dimensional parameter-space, 
defines a curve 

i = 1, ... , n, (23) 

in Euclidean n-space, lying on the surface. Arc length along the curve (23) 
is given by the formula 

l = f lildt = f n 

L: (xi)2 dt 
i= 1 

=f n oxh oxh .. 
'\' 'I'J dt £..., ::;-T -;-} z z . 

h= 1 uz uz 

Thus as the metric defined on the surface we take 

(24) 

As in the 3-dimensional case, we shall say that the metric defined by (24) is 
induced on the surface by the Euclidean metric of the ambient Euclidean 
space. The induced metric is in general not Euclidean. 

Finally, note that in a region of a hypersurface F(x 1, ••• , x") = 0, where, 
say, oF/ox" ¥= 0, the induced metric (24) takes the form 

_ tJ (oFjox;)(oFjoxi) 
gij - ij + (oF jox") 2 

We leave the verification of this to the reader. 
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7.4. Surface Area 

From a second course in the calculus the reader will recall that the area of 
a region U of the Euclidean plane with Euclidean co-ordinates x, y, is given 
(or rather defined) by the double integral 

a(U) = JJ dx dy (25) 

u 

(if this integral exists, i.e. if the boundary of the region is not too "wild"), 
and also that given a one-to-one change of co-ordinates 

x = x(u, v), y = y(u, v), (26) 

the formula for a(U) in terms of the new co-ordinates u, vis 

a(U) = ff IXuYv- XvYul du dv, (27) 

v 

where Vis the region of the (u, v)-plane corresponding to the region U of the 
(x, y)-plane. Of course the integrand in (27) is just the absolute value IJ I of the 
Jacobian of the transformation (25), so that (27) can be rewritten as 

a(U) = JJ IJI du dv. 

v 

The question we wish to consider is the following one: How does one go 
about calculating the area of a region not necessarily in a plane, but on an 
arbitrary surface in Euclidean 3-space? To be more precise, given a surface 
r = r(u, v), r = (x, y, z) in Euclidean 3-space, and its induced Riemannian 
metric 

(28) 

we want a formula analogous to (25) for the area of a region on the surface. 
The determinant g of the matrix (g;j) will play a leading role in our answer. 
We know that g > 0 since the metric (28) is Riemannian. As for arc length 
(see §3.1(4)), so also for surface area we simply present the definition as a 
.fait accompli, and then after the fact show that it is the appropriate one. Let 
U be a region (whose boundary is not too "wild") of a surface r = r(u, v), 
r = (x, y, z) in Euclidean 3-space. Since each region of the surface is deter
mined by a region in the (u, v)-plane it will occasionally be convenient (as it 
was when we were considering curves on a surface) to think of U rather as the 
region in the (u, v)-plane which determines it. With this flexible interpretation 
of U our definition of surface area is as follows. 
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7.4.1. Definition. The area of the region U on the surface r = r(u, v), r = 
(x, y, z) is given by 

a(U) = JJ Jg du dv, (29) 

u 

where the integral is taken over the region in the (u, v)-plane which determines 
v. 

By analogy with (28) we introduce the useful abbreviated expression 

da = Jg du dv, 

where da is called the "element" or "differential" of area on the surface with 
metric gii. 

We now turn to the promised justification of Definition 7.4.1. 
To begin with, let ~. 17 be vectors in the Euclidean plane, and consider 

the parallelogram consisting of all (tips of) vectors A.~ + f.l.I'J, 0 ~ A., f.1. ~ 1. It 
is easy to verify that the area a of this parallelogram is given by 

(~1 e) a= ldet A 1. where A = 171 172 , (30) 

and where ~ 1 ' e and '7\ '7 2 are the components of~ and '1 relative to an 
orthonormal basis el, e2, i.e.~= eel+ ~2e2, '1 = I'J1el + I'J 2e2. 

Now suppose we are working in any 2-dimensional inner product space 
(over the reals), i.e. in any 2-dimensional vector space equipped with an inner 
(i.e. scalar) product. Let e1, e2 be an orthonormal basis for this space. (Such 
bases always exist.) It is then natural to define the area of the parallelogram 
determined by two vectors ~. 17 by analogy with the Euclidean situation; 
thus we shall take (30) as defining the area of this parallelogram in our 
present more general context of an inner product space. Write(~, 17) = g12 , 
<~. 0 = g11 , (17, 17) = g22 . For reasons which will appear later, we wish 
now to express the area a ofthe parallelogram determined by~. I'J, in terms of 
these gii. To this end observe first that 

911 = <~1)2 + <e)2, 

912 = ~ 1 '7 1 + e11 2 • 

922 = (1'/1? + (1'/2)2, 

which can be expressed compactly in matrix notation as 

(gij) = AAT, 

where A is as in (30). Taking determinants of both sides, we get det(gii) = 
(det A)2 • From this and (30) we obtain our desired result, which we state as 

7.4.2. Lemma. The area of the parallelogram determined by the vectors ~. '7 
of the inner product space, is Jg where g = det(g;) = g11g22 - gi 2. 
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Now the integrand in the definition (7.4.1) of surface area is also denoted 
by Jg. What is the connexion with Lemma 7.4.2? In order to answer this 
(and complete our justification of 7.4.1) we first recall, without proofs, the 
essential ideas underlying the concept of the double integral, and the related 
concept of area of a planar region. 

Thus let U be a region in a plane which we shall suppose for the moment 
to be Euclidean, with Euclidean co-ordinates x 1 = u, x2 = v. Suppose also 
that the boundary of U is a piecewise smooth curve. Partition the whole 
plane into small non-overlapping rectangles by means of lines parallel to 
the x 1-axis and x 2-axis, and denote by Au the largest width, and by Av the 
largest height, of rectangles in the partition. Clearly the area of U is then 
greater than (or equal to) the sum of the areas of those rectangles whose 
interiors are in U; call them "interior" rectangles. Repeat for all possible 
partitions. 

7 .4.3. Definition. The area of the region U is the limit of the sum of the areas 
of all interior rectangles as Au + Av --+ 0, if this limit exists. 

Suppose next that we are given in addition a function f(u, v) which is 
continuous on U. We shall now sketch the definition of the double integral 
ofjover U. Partition the plane into rectangles as before, and for each interior 
rectangleS,, take the value f(u, va) off at the centre of S,, and with these 
values form the "Riemann sum" 

over all rectangles Sa interior to U. (Here p denotes the particular partition.) 
Repeat for all possible partitions p. 

7.4.4. Definition. The limit of SP(f, U) as Au + Av--+ 0 (if this limit exists), 
is called the double integral off over U, and is denoted by JSuf(u, v) du dv. 

(In particular if f(u, v) = 1, then JSv du dv is clearly just the area of U 
as defined in 7.4.3, in terms of the Euclidean co-ordinates u, v.) 

Now suppose that in the above the (u, v)-plane is not necessarily Euclidean, 
but rather has defined on it a more general Riemannian metric, which, 
relative to the co-ordinates u = x t, v = x2, has the form dl2 = g 11 du 2 + 
2g 12 du dv + g22 dv 2 • In this more general situation we partition the (u, v)
plane into parallelograms the directions of whose sides are given by the 
vectors ~ = (1, 0), IJ = (0, 1). If a parallelogram Sa has sides Au,, Av,, then 
by Lemma 7.4.2 its area is approximately (for small Au, Av) Jg Au,Av,, 
where g is evaluated at the centre (u,, v,) of S,. Hence 

a a 
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(where the summations are over parallelograms interior to U), and this 
makes it very plausible (and indeed it is true) that as Au + Av-+ 0, 

~Sa-+ JJJg du dv, 
u 

provided the limit exists. This completes the justification of Definition 7.4.1. 
We conclude the section by re-expressing the formula (29) for surface 

area in three ways, corresponding to the three ways of presenting a surface. 

7.4.5. Theorem. (i) If a surface is given in the form z = f(x, y), and if U is a 
region on this surface with projection onto the (x, y)-plane V, then the formula 
for surface area can be put into the form 

a(U) = JJ j1 + f~ +I; dx dy. (31) 

v 

(ii) If a surface is given by the equation F(x, y, z) = 0, and if U is a region on 
the surface which projects in a one-to-one fashion onto a region V of the 
(x, y)-plane, then the formula for the area of U becomes 

a(U) = JJ I grad Fldx d 
IFzl y, (32) 

v 

provided Fz = oFjoz =I Ofor all (x, y, z) in V. 
(iii) If a surface is given in parametric form r = r(u, v), then 

a(V) = J J1 [ru, rv] I du dv, (33) 

v 

where Vis the region in the (u, v)-plane giving rise to U, and [r., rv] is 
the vector product of r" and r v. 

PRooF. (i) By (20) the metric gii induced on a surface z = f(x, y) is given by 

g11 = 1 + f;, g12 = f~f~, g22 = 1 +I;, u = x, v = y. 

Hence Jg = jg11g22 - gi2 = j1 + f~ + f;, and (31) is then immediate 
from 7.4.1. 

(ii) For a region of a surface F(x, y, z) = 0 throughout which Fz =F 0, we 
have, by (21), 

F2 
g11 = 1 + F~, 

z 

Hence 

F2 
g22 = 1 + F~, 

z 

r.g = 1 F~ F; _ I grad Fl 
v y + F2 + F2 - IF I z z z 

U =X, V = y. 
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(iii) By (19), the induced metric gii on a surfacer = r(u, v) is given by 

It is then easy to verify that g = g11g22 - gi 2 = l[r.,rvJI 2 , whence the 
result. 0 

Using Definition 7.4.1 to give us a definition of area in an arbitrary 
2-dimensional space with a Riemannian metric, we see that the concept of 
area, like arc length and angle, is defined in terms of the scalar product 
of vectors attached to each point, or, what amounts to the same thing, the 
metric gii· 

7.5. Exercises 

1. The torus T 2 in Euclidean 3-space can be realized as the surface of revolution ob
tained by revolving a circle about a straight line which it does not intersect, and which 
lies in the same plane. Find parametric equations for this torus, and calculate the 
induced metric on it. 

2. Find the first fundamental form of the ellipsoid of revolution 

xz y2 + z2 
az + _b_z_ = l. 

3. Find the metric induced on the surface of revolution 

r(u, cp) = (p(u) cos cp, p(u) sin cp, z(u)). 

Verify that its meridians (cp = const.) and circles of latitude (u = const.) form an 
orthogonal net. Find those curves which bisect the angles between the meridians 
and circles of latitude. 

4. Find those curves on a sphere which intersect the meridians at a fixed angle rx (" loxo
dromes "). Find the length of a loxodrome. 

5. Let F (x, y, z) be a smooth homogeneous function of degree n (i.e. F (ex, cy, cz) = 

c"F(x, y, z)). Prove that away from the origin the induced metric on the conical 
surface F(x, y, z) = 0 is Euclidean. 

§8. The Second Fundamental Form 

8.1. Curvature of Curves on a Surface in Euclidean Space 

Suppose we are given a surface in Euclidean 3-space and a non-singular 
point (x0 , y0 , z0 ) on it. We shall assume initially that the z-axis is perpen
dicular to the tangent plane to the surface at the point (x0 , y0 , z0), in which 
case the x-axis andy-axis will be parallel to it. The surface may then be given 
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locally about (i.e. in a neighbourhood of) the point (x0 , Yo, z0 ) by an equation 
of the form z = f(x, y), where z0 = f(x 0 , y0 ) and 

of I =of I = 0 
OX x=xo oy x=xo ' 

i.e. grad f lx=xo = 0. (1) 
y= Yo 

We now consider the second differential of the function z = f(x, y) (which we 
now assume has continuous second derivatives), i.e. d2 l = f~x dx 2 + 
2j~Y dx dy + j~Y dy 2 • The matrix of this quadratic form, i.e. the matrix (a;) 
where aij = j_~'xh x 1 = x, x 2 = y, is known as the Hessian of the function J 

8.1.1. Definition. Given a surface z = f(x, y), and a point (x0 , y 0 , z0 ) on it 
at which grad f = 0, we define the principal curvatures of the surface at the 
point to be the eigenvalues of the matrix (a;) evaluated at the point. (These 
eigenvalues are real since (aii) is symmetric.) In addition we call det(a;) at 
the point the Gaussian curvature K, and the trace of (a;), tr(a;i), at the point, 
the mean curvature, of the surface at (x0 , Yo, z0 ). 

Thus the eigenvalues k 1, k2 say, of (a;) evaluated at (x0 , y0 , z0 ) are the 
principal curvatures, while the Gaussian curvature is K = k1k2 = a11a22 -

a12 a2 b and the mean curvature is a 11 + a22 = k 1 + k2 • As we shall see 
later (in Chapter 4), the Gaussian curvature of the surface is an "intrinsic" 
invariant of the surface, i.e. depends only on the internal metrical properties 
of the surface; this is Gauss' famous "Theorema Egregium." 

The disadvantage of Definition 8.1.1 is that it tells us what the curvatures 
at a point of the surface are in terms of a rather special co-ordinate system, 
influenced by the point under scrutiny in that the z-axis was chosen perpen
dicular to the surface at the point. To define these quantities in terms of 
arbitrary co-ordinates, we turn to the theory of the curvature of curves lying 
in the surface. 

Thus suppose the surface given in parametric form 

r = r(u, v). (2) 

We saw in §7.3 that the vector [r", rvJ is normal to the surface at each non
singular point; hence if m denotes a unit vector in the same direction, then 
[ru, rvJ = l[ru, rvJim. If now r = r(u(t), v(t)) is a curve on the surface, then 
we haver= ruit + rvv, and 

r = (ruuit 2 + 2ruvitv + rvvv2 ) + (ruii + r)j). 

Using ru j_ m and rv j_ m, we deduce that 

(r, m) = (r""' m)it2 + 2(ruv' m)itv + (r,."' m)v2 = b11 it2 + 2b 12 itv + b22 v2 . 

(3) 

From (3) we conclude that: In terms of local co-ordinates u = x 1, v = x 2 

the projection (r, m) of the acceleration vector ron the normal to the surface, 
is a quadratic form in the components it, v of'the tangent vector. 
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If we put b11 = L, b12 = M, b22 = N, then in terms of differentials (3) 
can be rewritten as 

(f, m) dt2 = bii dxi dxi = L(du)2 + 2M du dv + N(dv)2 • (4) 

We call this expression for (f, m) dt 2 , the second fundamental form of the 
surface (2). (Note that its coefficients L, M, N depend only on the point of 
the surface under scrutiny, and not on the curve r = r(u(t), v(t)).) 

Suppose now that the curve r = r(u(t), v(t)) is parametrized by the natural 
parameter, i.e. t = I, where l is arc length. (Thus with this parametrization 
the curve is a "unit -speed curve.") By the first of the Serret-Frenet formulae 
(see 5.2.3), we have 

where n is the principal normal to the curve, and k is its curvature. Hence 
(f, m) = k(n, m) = k cos 0, where () is the angle between the unit vectors 
m and n. From this and (4) we obtain 

k cos O(dl)2 = (i', m) dl2 = L(du)2 + 2M du dv + N(dv)2 = bii dxi dxi. 

Comparing this with the formula for the induced metric on the surface: 

where u = x 1, v = x2, we conclude that 

where here the dots denote differentiation with respect to any parameter t. 
In the convenient differential notation we may rewrite this as 

k () _ b;i dx; dxi 
cos - . ., 

gii dx' dx1 
(5) 

(although, as usual with this notation, we need to bear in mind that strictly 
speaking here dx; is not an independent differential, but just xi dt). 

We restate ( 5) in words, as a 

8.1.2. Theorem. The curvature at a point of a curve on a surface in Euclidean 
3-space, when multiplied by the cosine of the angle between the normal to the 
surface and the principal normal of the curve at the point, is the same as the 
ratio of the second and .first fundamental forms in the components of the tangent 
vector to the curve at the point. 
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8.1.3. Corollary. If the curve is obtained by sectioning the surface with a 
plane normal to the surface at the point, then (since cos() = ± 1) the correspond
ing "normal curvature" is given by 

(6) 

(where here we allow k to be negative ifm and n have opposite directions). 

8.2. Invariants of a Pair of Quadratic Forms 

Our main achievement so far in this chapter, is the association with each 
point of a surface in Euclidean 3-space, of the pair of quadratic 
("fundamental") forms 

d/2 = g .. dxi dxi 
I) ' 

<;: m) dt 2 = b .. dxi dxi 
' l) ' 

(7) 

(8) 

the first of which is positive definite. Our aim is to deduce from these quad
ratic forms invariants ofthe surface. What are the known algebraic invariants 
of a pair of quadratic forms? 

To answer this, consider any pair of quadratic forms in the plane with 
co-ordinates x, y, having matrices relative to these co-ordinates 

G = (gll ~12)' Q = (bu b12)' (9) 
g21 g22 b21 b22 

(using the same symbols as in (7) and (8)), where G is positive definite and 
g12 = g21 , b 12 = b21 • (Note that in contrast with the general context of(7) 
and (8), the gii and bii are assumed here to be fixed numbers.) Next consider 
the equation 

det( Q - A. G) = 0, (10) 

which, when written out in detail, becomes 

(bu - A.g11)(b22 - A.g22)- (b 12 - Ag 12)2 = 0. (11) 

We call the roots A. 1, A.2 of this equation the eigenvalues of the pair of quadratic 
forms. 

For each i = 1, 2 we look for solutions of the system of equations 

(bll - A.igll)~t + (b12 - A.;g12)~r = o.} 
(bl2 - A.;gt2)~f + Cb22 - A.;g22)~r = 0, 

(12) 

in the unknowns ~l, ~f. Since A.1, A.2 satisfy (11), the coefficient matrix of 
each of the systems (12) is singular, so that there exist non-trivial solutions, 
say 
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and all solutions will be scalar multiples of the appropriate one of 1~, 1~ (i.e. 
the solution space of (12) has dimension 1). The directions of the vectors 
f 1 and 12 are called the principal directions in the plane of the pair of quadratic 
forms, that of / 1 corresponding to A.1, and that of 12 to A.2. 

We now equip our plane with a scalar product defined in terms of the 
positive definite quadratic form with matrix G, by setting (ei, ei) = gii• 
where e1 = {1, 0), e2 = (0, 1). 

8.2.1. Lemma. If the eigenvalues of the pair of quadratic forms (9) are distinct, 
then the principal directions are orthogonal. 

PRooF. We wish to show that the two vectors 1~ = ¢~e 1 + ¢ie2 and f 2 = 
¢ie1 + ¢~e2 are orthogonal, i.e. that 

<1~, 12> = gij¢il ¢~ = 0. 

Multiplying the first ofthe equations (12), with i = 1, by ¢i, and the second 
by ¢~, we obtain 

(bll - A.lg11)¢~¢i + (b12 - A.lg12)¢i¢1 = 0, 

(b 11 - A.lg 12)¢ ~ ¢~ + (b22 - A.lg 22)¢i ¢~ = 0. 

On adding these equations we get 

bij¢~¢~- A.lgij¢il¢~ = 0. (13) 

If now we take i = 2 in the equations (12), and multiply the first of them by 
¢~ and the second by ¢i, and again add the resulting equations, we obtain 

(14) 

Finally, subtracting (13) from (14), and using the hypothesis that ..1 1 -::f ..12 , 

we obtain the desired conclusion. D 

This lemma may be regarded as a variant of the theorem from linear 
algebra which states that a real quadratic form assumes diagonal form 
relative to a suitable orthogonal basis; hence a real quadratic form can be 
brought to diagonal form by a rotation of the given orthogonal co-ordinate 
system. 

8.3. Properties of the Second Fundamental Form 

We now return to the first and second fundamental forms of a surface 
r = r(u, v) in Euclidean 3-space: 

dl2 = g. -dxi dxi 
'1 ' 

(i', m) dt 2 = biidxi dxi, x 1 = u, x 2 = v. 

(15) 

(16) 
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Recall that the ratio of these quadratic forms in the components ofthe tangent 
vector to the section of the surface by a plane orthogonal to the surface at a 
point (i.e. a "normal section"), gives the curvature of the section (i.e. 
"normal curvature") at that point (Corollary 8.1.3). 

Having at our disposal the concepts introduced in the preceding sub
section, we can now formulate the general definition of the principal, Gaus
sian, and mean curvatures of a surface at a point. 

8.3.1. Definition. The eigenvalues of the pair of quadratic forms (15) and 
(16) (see §8.2) are called the principal curvatures of the surface at the point 
under investigation. The product of the principal curvatures is called the 
Gaussian curvature K of the surface at the point, and their sum the mean 
curvature. t 
8.3.2. Example. As at the beginning of §8.1 (see especially 8.1.1), we suppose 
we are given our surface in the form z = f(x, y), and further that at the point 
(x0 , y0 , z0 ) of it under study,j~ = j~ = 0 (i.e. that the z-axis is perpendicular 
to the tangent plane to the surface at (x0 , y0 , z0)). Putting x = u, y = v, the 
first and second fundamental forms at the point (x0 , y0 , z0 ) are given by 

L = htt = (ruu• m) = f~ixo, Yo), 

M = b12 = (ruv• m) = f~y(xo, Yo), 

N = b22 = (rvv• m) = f~y(Xo, Yo). 

(17) 

(18) 

(Here of course the unit normal m to the surface at (x0 , y0 , z0 ) is in the direc
tion of the positive z-axis.) Thus at the point under scrutiny, the second 
fundamental form of the surface is 

bu dx2 + 2bl2 dx dy + b22 dy2 = fxx dx 2 + 2fxy dx dy + JYY dy2 = d2J, 

so that since gii = bii, the principal curvatures are the eigenvalues At, A2 of 
the matrix 

(f~x J~Y) 
fxy J~Y ' 

(19) 

i.e. the roots of the equation U~x - A)(j~Y - A) - (j~y)2 = 0, and the 
Gaussian curvature is fxxf~Y - Uxy)2 , the determinant of the Hessian (19) 
of the function f The mean curvature is f~x + j~Y = At + A2. Thus our 
general Definition 8.3.1 does agree with the earlier one (8.1.1) where the 
various curvatures were defined in terms of a co-ordinate system dependent 
(as in the present example) very much on the particular point under con
sideration. 

t It is perhaps more usual to define the mean curvature as the arithmetic mean of the principal 
curvatures. 
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Continuing with our example, let us now consider the principal directions 
at our point, of the pair of quadratic forms given by (17) and (18). As defined 
in the preceding subsection (see (12)), these are (the directions of) the non
zero vectors in the (x, y)-plane j~ = (~L ~D and j~ = (~L ~D. where ~l, ~f 
are non-trivial solutions of the following system of linear equations (i = 1, 2): 

U~x - A.;bll)~l + (J~y - A.;b12)~f = 0, 

(J~y - A.;b 12)(J + (j~y - A.;b 22)~f = 0. 

If we assume that the eigenvalues ..1. 1, ..1.2 are distinct, then by Lemma 8.2.1, 
we have j~ j_ j~ (in the usual Euclidean sense since gii = b;)· Hence we can 
replace the co-ordinate system x, y by a new system x', y', with axes in the 
principal directions, obtained from the old system by means of a rotation 
of the (x, y )-plane through an angle cp. Then in terms of the new co-ordinates 
x', y', z, we have 

z = f(x(x', y'), y(x', y')), 

where x = x' cos cp + y' sin cp, y = - x' sin cp + y' cos cp. Relative to these 
new co-ordinates, the second fundamental form becomes (at the point 
(xo. Yo, Zo)) 

A. 1(dx')2 + A.z(dyY. 

By Corollary 8.1.3, the curvature at our point (x 0 , y0 , z0 ) of a normal section 
of the surface through that point (i.e. the "normal curvature" at the point) 
is therefore 

k = A.! (x')z + A.zCY'? 
(x')z + <Y')z • 

(20) 

where we are taking the normal section to have parametric equations 
x' = x'(t), y' = y'(t), z = z(t). 

Clearly the tangent vector to this normal section at the point (x0 , y0 , z0 ) 

is e = (x', j', 0). Hence the angle rx between this tangent vector and the x'
axis satisfies 

. z <YY 
sm rx = (x')z + (j')z . (21) 

From (20) and (21) we deduce that at the point (x0 , y0 , z0 ), at least for 
our special choice of co-ordinates, 

k = ..1. 1 cos 2 a + ..1.2 sin 2 rx. 

This formula, called "Euler's formula," holds in any system of co-ordinates. 
We shall now prove this. (Thus our example ends here, although the argument 
we have used actually comprises the bulk of the proof.) 

8.3.3. Theorem. The curvature ofa normal section (i.e. the" normal curvature") 
through a point on a surface, is given by the .formula 

(22) 
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where A. 1, A.2 are the principal curvatures of the surface at the point, and oc is 
the angle between the tangent vector to the normal section at the point, and 
the principal direction corresponding to At· 

PRooF. In Example 8.3.2 above we deduced Euler's formula in the case 
where the surface is given in the form z = f(x, y), and the z-axis is perpendic
ular to the surface at the point (x0 , y0 , z0) being studied. However since 
nothing of this special co-ordinate system is involved in the formula, for any 
particular (non-singular) point of the surface we simply choose a co-ordinate 
system with these properties (as we can, locally at least, by §7.1), i.e. so that 
the z-axis is normal to the surface at the point, and the x- andy-axes mutually 
orthogonal, and parallel to the tangent plane through the point (we may 
even choose them parallel to the principal directions). Then in a neighbour
hood of the point the surface can be given by a function z = f(x, y), with, 
of course, fx = fY = 0 at the point. Moreover if the x-axis and y-axis are 
chosen in the principal directions then fxy = fyx = 0, and A. 1 = fxx• A.2 = }~y 
at the point. We may then argue as in the example, provided At # A.2 (which 
is assumed implicitly in the theorem since otherwise the principal directions 
remain undefined). This completes the proof. D 

Note that if we reverse the direction of the z-axis in the above, then the 
signs of the principal curvatures are also reversed. 

8.3.4. Corollary. If At and A.2 are the principal curvatures of a surface at a 
point and A.t > A.2 , then At and A.2 are respectively the greatest and smallest 
values of the normal curvature (i.e. curvature of a normal section) at the point. 
(Here the signs are taken into account-see Corollary 8.1.3.) 

We next derive useful formulae for the second fundamental form and the 
Gaussian curvature in the case that the surface is given in the form z = f(x, y) 
(but where we are no longer assuming a particular direction for the z-axis at 
any point). In that case, with x = u, y = v, and r(u, v) = (u, v, f(u, v)) we have 

ru = (1, O,j~), rv = (0, l,j~), 

[ru, rvJ = ( -J~, -J~, 1), 

r uu = (0, 0, f~x), r "" = (0, 0, }~y), r vv = (0, 0, }~y), 

(23) 

L = bll = f~x ' 
Jl +f~ +f; 

M = b12 = b21 = fxy ' 
Jl +f~ +f; 

/, N- b - YY 
- 22- Jl + f~ + f; 
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Hence 

. . 1 . . 
bij dx' dx1 = J 2 .2 . f~•xJ dx' dx1), 

1 + .f x' + J xl 

(24) 

x 1 = u = x, x 2 = v = y. 

Recall also the formulae (20) of §7 for the gij: 

gll = 1 + f~, g22 = 1 + J;, 
(25) 

2 1 .f"2 !2 g = g!Jg22 - g!2 = + X + y• 

We shall use formulae (24) and (25) in the proof of the following 

8.3.5. Theorem. The Gaussian curvature of a surface is equal to the ratio of 
the determinants of the second and the first fimdamental.forms: 

b,,b22 - bL K=___c_c_e:..::.__....:...::. 
gllg22 - giz 

(26) 

In particular, if the surface is given in the form z = f(x, y), then we have 

f . !" f"2 K _ xx. yy xy 
- (1 +I~ + f;)2. 

(27) 

PROOF. By definition, the principal curvatures A.,, A. 2 are the solutions of 
equation (1 0) above: 

det(Q - A.G) = 0, 

where Q = (bij) is the matrix of the second fundamental form, and G = (gij). 
Since the first fundamental form is positive definite, its matrix G is non
singular. Hence 

det(Q - A.G) = det G det(G- 1Q - A.· 1), 

from which it follows that A. 1 and A.2 are just the eigenvalues of the matrix 
G - 1Q. Since the product of the eigenvalues of a matrix is the same as the 
determinant (a fact we have used before!), we deduce that 

which proves (26). 

_ 1 det Q 
K = A. 1 A.2 = det(G Q) = d--, 

et G 

To get formula (27), simply substitute in (26) the expressions for the bij 
and gij given in (24) and (25). D 

8.3.6. Corollary. !fa surface is given in the .form z = f(x, y), then the sign of 
the Gaussian curvature K is the same as the sign of the determinantf~xf~Y - f~Y 
of the Hessian of f(x, y). 
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8.3.7. Example. Suppose that we are given a surface in the form z = f(x, y), 
where the function f(x, y) is a solution of Laplace's equationf~x + /yy = 0. 
Then for all points of the surface we shall have f~xf~Y - flY ~ 0, since 
f~x = - j~y· Hence by Corollary 8.3.6, at all points of the surface where at 
least one of the partial derivatives f~x• fxy is non-zero, we shall have that the 
Gaussian curvature K < 0. 

Finally we explain the geometric significance of the sign of the Gaussian 
curvature at a point. As usual we choose a co-ordinate system x, y, z, with 
mutually orthogonal co-ordinate axes, such that the z-axis is perpendicular 
to the surface at the point (x0 , y0 , z0 ). Then locally (about the point) the 
surface is given by a function z = f(x, y), where j~ = j~ = 0. We consider 
three cases: 

(i) K > 0; A- 1 > 0, A-2 > 0. Since the smallest value of the normal curvature 
is positive, all values of it are positive, i.e. at the point the surface bends 
upwards in all directions, so the function f(x, y) has a local minimum 
at the point (x0 , y0 ) (see Figure I O(a)). 

(ii) K > 0; A- 1 < 0, A. 2 < 0. The function f(x, y) has a local maximum at 
(x0 , y0 ) (see Figure IO(b)). 

(iii) K < 0. In this case we must have A- 1 > 0, A-2 < 0, or A., < 0, A-2 > 0. The 
function has a "saddle" or "pass" at the point (Figure IO(c)). 

We conclude that: If K > 0 there is a neighbourhood of the point through
out which the surface lies on one side of the tangent plane at the point. lfK < 0 
then the surface intersects the tangent plane at the point arbitrarily close to 
the point. 

If the Gaussian curvature is positive at every point of a surface, then we 
say that the surface is strictly convex. 

Note that in the above, by using Corollary 8.3.6, and the fact that A- 1, A- 2 

are the eigenvalues of the Hessian of f(x, y) (since gii = bii at the point), it 
is easy to see that cases (i) and (ii) are respectively equivalent to: K > 0; 
f~x• j~Y > 0, and K > 0; f~x• j~Y < 0. In this form, (i), (ii) and (iii) comprise 
the familiar "second-partials test" for determining the nature of a surface 
in a neighbourhood of a point at which the tangent plane is "horizontal." 

l 

(a) (b) 

Figure 10 

l 

(c) 
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8.4. Exercises 

1. Find the surface all of whose normals intersect at a single point. 

2. Calculate the second fundamental form for the surface of revolution 

r(u, qy) = (x(u), p(u) cos qy, p(u) sin qy), p(u) > 0. 

3. Calculate the Gaussian and mean curvatures of a surface given by an equation of 
the form 

z = I(x) + g(y). 

4. Prove that if the Gaussian and mean curvatures of a surface (as usual in Euclidean 
3-space), are identically zero, then the surface is a plane. 

5. Show that for the surface z = I(x, y), the mean curvature is given by 

H = div( grad I ) . 
jl+lgrad I 1

2 

6. Let S denote the surface swept out (i.e. "generated") by the tangent vector to a given 
curve with curvature k(l). Prove that if the curve is twisted, but in such a way as to 
preserve k(l), then the metric on the surfaceS is also preserved. 

7. If the metric on a surface has the form 

A= A(u, v), B = B(u, v), 

then its Gaussian curvature is given by 

8. Show that the only surfaces of revolution with zero mean curvature are the plane and 
the catenoid (which is the surface obtained by revolving the curve x = [cosh(ay + b)]/a 
about they-axis). 

§9. The Metric on the Sphere 

The equation of the sphere S2 c IR 3 of radius R with centre at the origin is 

(1) 

In spherical co-ordinates r, e, cp the sphere has the simple equation r = R 
(with e. cp arbitrary). It follows that each point on the sphere is determined 
by the corresponding values of f) and cp(O ~ f) ~ n, 0 ~ cp < 2n), so that 
e, cp will serve as local co-ordinates of the sphere; however we shall need to 
exclude two points of the sphere from consideration, namely the north and 
south poles (where f) = 0, n) since these are singular points of the spherical 
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Figure 11. The (8, q>)-plane. The arc AB of the circle of radius n(8 = n) has zero length 
as measured using the metric (3); i.e. the boundary 8 = n of the disc, is pinched to a 
point, yielding the 2-sphere. 

co-ordinate system (see 1.2.6(c)). We know from §3.1(7) that in terms of 
spherical co-ordinates the Euclidean metric takes the form 

d/ 2 = dx 2 + d/ + dz 2 = dr 2 + r2(d(J2 + sin 2 () dq> 2 ). (2) 

On the surface r = R, the differential dr is zero, so that the metric induced 
on the sphere is given by 

d/2 = R 2(d() 2 + sin 2 () d(l) (3) 

(i.e. this is the square of an element of arc length of a curve p = p(t) on the 
sphere). Here 0 ~ () ~ n, 0 ~ q> < 2n (see Figure 11). 

Note that, since sin () ~ () for small (), around the north pole the metric 
(3) is given approximately by 

~: = d()2 + ()2(dcp?, 

i.e. near the north pole the metric on the sphere is approximately Euclidean, 
with polar co-ordinates(), q> (as in Figure 11). 

We now consider the stereographic projection of the sphere onto the 
plane (see Figure 12 which shows a section of the sphere by a plane through 
its centre). The stereographic projection sends a point ( (), q>) on the sphere 
to the point with polar co-ordinates (r , q>) in the plane, as shown in Figure 12, 
from which it is clear that q> = q>, r = R cot(()j2). Rewriting the metric (3) 

H 

Figure 12. The stereographic projection: (8, q>) r-+ (r, q>). 
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in terms of these new co-ordinates r, <p, and then in terms of the usual Euclid
ean co-ordinates x, y of the plane, we obtain 

2 4R4 2 2 2 4R4 2 2 
dl = ( 2 2 ) 2 (dr + r d<p ) = ( 2 2 2? (dx + dy ), (4) 

R +r R +x +y 

i.e. the metric on the sphere is obtained from the Euclidean metric on the 
plane by multiplying the latter by the function 4R4 j (R 2 + x 2 + i)2 : 

4R4 

d/2 spherc= (R2 2 2)2d/2planc· +X + y 
(5) 

Example. We shall now calculate (in terms of the metric on the sphere) the 
circumference of a circle, and the area of a disc on the sphere, both of radius 

p. We may suppose that centre of our circle-on-the-sphere is at the north 
pole N, i.e. at the point() = 0 (see Figure 13). Then the radius p of the circle 
is equal to R80 , so that the equation of the circle is () = pjR, 0 ~ <p < 2n. 
The disc of radius p is the set of points 8, <p satisfying () < pj R, 0 ~ <p < 2n. 

We first calculate the circumference of the circle. On the circle,() = p/R 
( = const.) so we have 

d/ 2 = R 2(d8 2 + sin 2 () d<p 2 ) = R 2 sin 2 *(d<p)2 , 

and then its circumference IP is 

[P = frr R sin(*) d<p = 2nR sin(*). (6) 

As expected, we see that the equator (where p = R(n/2)) has the greatest 
length, and that when p = Rn, the circle has become a point (the south pole), 
and has length zero. From the formula (6) it follows that the ratio of the 
circumference of the circle to its radius p is always less than 2n: 

!.e_ = 2n sin (p/R) < 2n 
p p/R 

(since p > 0). 

z 

Figure 13. The disc of radius p on the sphere. 
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We next calculate the area of the disc of radius p. From (3) we see that 
g = g11g22 - gf 2 = R4 sin 2 8, so that by Definition 7.4.1 the area uP of the 
disc is 

= 2nR2 ( 1 -cos j), 
0,; O,;p/R 

(7) 

where we have used the fact that p ~ nR, and also the standard result that 
a double integral is equal to the corresponding repeated integral, provided 
only that both integrals exist. 

Note that in particular when p = nR, the disc is the whole sphere, whence 
we obtain the familiar formula 4nR 2 for the surface area of the sphere. 

Note also that for small p we have sin(p/R) ~ p/R, and 1- cos(p/R) ~ 
p2/2R 2 , whence 

IP = 2nR sin ji ~ 2np, 

uP= 2nR 2 (1 - cosji) ~ np2 , 

i.e. for small circles on the sphere the formulae for circumference and area 
are approximately the same as those for circles in the Euclidean plane 
(which is no surprise to earth-dwellers!). With this we conclude our example. 

We next calculate the Gaussian and mean curvatures for our sphere of 
radius R. Observe first that the normal sections are the circles of radius R on 
the sphere (the so-called "great circles" on the sphere). It follows that the 
normal curvature is everywhere and in all directions just the constant 
R- 1 (see 5.1.3). Hence the two principal curvatures are both equal to R- 1 

everywhere, so that the Gaussian curvature is 1/R2, and the mean curvature 
is 2/R. 

Finally we investigate the group of motions of the metric on the sphere 
(i.e. the group ofisometries of the sphere). Any orthogonal transformation of 
Euclidean 3-space maps our sphere onto itself. It is clear that an isometry 
of Euclidean 3-space preserving the sphere must induce an isometry of the 
sphere (since arc length on the sphere is a special case of arc length in the 
ambient 3-space). Hence the group of isometries of the sphere S2 contains 
0(3), the full group of orthogonal transformations of Euclidean 3-space 
(see §4.3). It turns out to be the case that 0(3) is the full isometry group of 
S2, i.e. every isometry of S2 is induced by an orthogonal transformation of 
IR 3. (A strict proof of this requires, however, the concept of a geodesic, which 
we shall introduce in Chapter 4.) We note finally that it can be shown that 
the values of three parameters need to be given for an orthogonal transform
ation to be fully determined; in other words the orthogonal group 0(3) is a 
3-dimensional space (see §14.1). 
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§10. Space-like Surfaces in Pseudo-Euclidean Space 

1 0.1 . The Pseudo-Sphere 

Consider the 3-dimensional pseudo-Euclidean space IRi, with co-ordinates 
(t, x, y) in terms of which the pseudo-Euclidean metric has the form 

(1) 

By the pseudo-sphere of radius R in the space IR i, we mean the set of points 
satisfying the equation 

(2) 

Figure 14 shows this surface (the "two-sheeted hyperboloid") as it is usually 
represented in ordinary space. The pseudo-sphere lies in the interior of the 
light cone t2 - x 2 - l = 0, and in terms of the pseudo-spherical co
ordinates p, x, <P (see §3.2(11)), has equations 

p = R (upper half), 

p = - R (lower half). 

For most of what follows we shall restrict our attention to the upper half 
only of the hyperboloid, for which p = R. Recall (from §3.2(12)) that in 
pseudo-spherical co-ordinates the metric (1) takes the form 

(3) 

z 

Figure 14 
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Since p is constant ( = R) on the (upper half of the) hyperboloid, the metric 
induced on it by that of the ambient pseudo-Euclidean space is given by 

- d/2 = R 2(dx2 + sinh2 x d<p 2 ). (4) 

Thus the quadratic form defining the metric induced on the pseudo-sphere 
is negative definite, so that the pseudo-sphere t 2 - x2 - y2 = R2 in IRi is 
a space-like hypersurface, by which we mean that the tangent vectors to this 
surface are all space-like (see §6.1 ). 

Analogously to the stereographic projection of the sphere onto the plane, 
described in the preceding section, one can define a stereographic projection 
of the pseudo-sphere onto the plane. (We define the centre of the pseudo
sphere to be the origin, and the. north and south poles to be the points with 
co-ordinates (R, 0, 0) and (- R, 0, 0) respectively.) The stereo graphic 
projection;; defined in Figure 15, maps the upper half of the pseudo-sphere 
onto the open disc x 2 + i < R 2 • If the point P on the pseudo-sphere has 
co-ordinates (t, x, y) (where t > 0), and the point f(P) on the plane has 
co-ordinates (u, v), then from Figure 15 it is easy to see that 

X t + R y t + R 

u R v R 

whence 

On substituting for x and y in the equation of the pseudo-sphere t 2 - x 2 -

y2 = R 2 , and solving the resulting quadratic equation fort > 0, we get 

( 2R 2 
) t = - R 1 + 2 z R z ' u + v -

(5) 

t 

Figure 15 



92 2. The Theory of Surfaces 

whence 

(6) 

Formulae (5) and (6) for the stereographic projection, give us the co-ordinates 
(t, x, y) of a general point on the surface, in terms of the parameters u, v. 
Analogously to the case of the sphere, we now express the induced metric 
in terms of the co-ordinates (u, v). To this end, first recall (from §3.2(11)) that 

t = R cosh x, x = R sinh x cos cp, y = R sinh x sin cp. (7) 

From the first equation of (7) together with (5), we get, putting r2 = u2 + v2 , 

whence 

4R 2r 
sinh x dx = (r 2 _ R2 ) 2 dr, (8) 

while from (6) and (7) we have 

. 2 x2 + / 4R2r2 
smh X = 2 = 2 2 2 · 

R (R - r ) 
(9) 

Using (8) and (9) it is then straightforward to get from ( 4) to 

2 4R4 2 2 2 
- dl = ( 2 2 ) 2 (dr + r dcp ), R - r 

that is, 

2 4R4 2 2 
- dl = 2 2 2 /du + dv ). 

(R - u - v 
(10) 

We see that, as in the case of the sphere (see (5) of the preceding section), in 
terms of the co-ordinates u, v, the metric on the pseudo-sphere is obtained 
from the metric on the Euclidean plane by multiplying the latter by a function 
(of u and v ), i.e. in the obvious extended sense of the word, these metrics are 
"proportional." 

If we drop the minus sign from the right-hand side of (4) we obtain the 
metric 

dl2 = R2(dx2 + sinh 2 x dcp 2 ) 

on the upper half of the hyperboloid (2). 

(11) 

10.1.1. Definition. The metric (11) on the upper half of the hyperboloid (2) 
is called the Lobachevsky metric. 
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In terms of the co-ordinates u, v, the metric (11) takes the form 

2 4R4 2 2 
dl = ( 2 2 2 ) 2 (du + dv ), R - u - v 

(12) 

where u2 + v2 < R 2 , since the upper half of the hyperboloid projects 
stereographically onto the open disc defined by u2 + v2 < R 2 • That open 
disc equipped with the metric (12), is called the Poincare model of Lobachev
sky's geometry. 

For the sake of comparison, we gather together the different forms of 
the metrics on the sphere S2 and the Lobachevskian plane L 2 in the following 
table (where R = 1) : 

s2 L2 

d8 2 + sin2 8(dcp) 2 dl + sinh2x(dcp)2 

4 
dx 2 + dyl 

4 
dx 2 + dyl 

x2 + Y 2 < 1 
(1 + x2 + y2)2 (1 - x2 - yl)2 , 

We shall now express the Lobachevsky metnc m terms of yet other 
co-ordinates (or, to put it differently, we shall give yet another model of the 
Lobachevskian plane). It is a well-known fact of the theory of functions of a 
complex variable, that there is a linear-fractional transformation of the 
complex plane which sends the upper half-plane onto the unit disc ; for 
instance the transformation z = (1 + iw)/(1 - iw) will do the trick (see 
Figure 16). If we write z = u + iv, w = x + iy, then this linear-fractional 
transformation can be regarded as introducing new co-ordinates x, y (y > 0) 
on the open unit disc. Direct computation shows that in terms of these new 
co-ordinates the Lobachevsky metric takes the form 

y > 0. (13) 

Figure 16 
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Regarded as a metric on the open upper half-plane, (13) is known as the 
metric of Klein's model of Lobachevskian geometry. 

To conclude this subsection, we consider the group of isometries of the 
Lobachevskian plane. Every pseudo-orthogonal transformation of the space 
~i (i.e. element of 0(1, 2)-see §6.2) preserves the quadratic form t2 - x 2 -

y2 , and therefore maps the pseudo-sphere onto itself. However since the 
Lobachevskian plane consists of the upper half of the pseudo-sphere only, 
we must exclude those transformations in 0(1, 2) which interchange the two 
halves. We conclude that the group of motions of the Lobachevskian plane 
contains the group of orthochronous (see §6.2) transformations in 0(1, 2). 
We shall show in Chapter 4 of Part II that in fact these exhaust the isometries 
of L 2• It follows that the Lobachevskian plane, like the sphere, has a 3-para
meter group of motions. 

10.2. Curvature of Space-like Curves in~~ 

As mentioned above (in §10.1), when we say that a surface in ~i is "space
like" we mean that every vector tangent to it is space-like (in the sense of 
§6.1), or, what comes to the same thing, that the metric induced on the 
surface by the Minkowski metric dl2 = dt 2 - dx 2 - dx 2 , is negative 
definite. 

We shall assume that our space-like surface is given to us in the form 
t = f(x, y). Then since dt = fx dx + fY dy, the metric induced on the surface 
is given by 

-dl2 = -(dt2 - dx2 - dy2 ) = (1 - fD dx 2 - 2jJY dx dy + (1 - f;) dy2 

whence det(g;j) = 1 - f; - f;. The eigenvalues of the matrix (g;j) are 
easily calculated to be 1 and 1 - f; - f;, so that for the quadratic form 
dl2 = gii dxi dxi to be negative definite, we require 

1 - f; - f;c = det(gu)) > o. 
The unit normal to the surface is then 

(Note that this is a time-like vector. We leave it to the reader to verify that 
it is indeed normal to the surface.) As for the case of a surface situated in 
Euclidean space, so also for a space-like surfacer = r(x 1, x 2) in Minkowski 
space, we define the second fundamental form of the surface, by 

i,j=1,2, 
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where m is the unit normal to the surface (at the point under study). Then 
by partial analogy with Theorem 8.3.5, we define the Gaussian curvature K 
of a space-like surface in IRi by 

K= 
det (b;) 
det (g;j} · 

(14) 

(The minus sign is explained below.) It follows that if the surface is given in 
the form t = f(x, y), with 1 - f~ -I; > 0 (see above), then (cf. §8.3 (27)) 

K = I~Y - fxxf~Y 
(t -I~- J;)2 • 

(15) 

In particular for the hyperboloid t 2 - x2 - y 2 = 1, we obtain K = - 1. 

Remarks. 1. In Chapter 4 we shall compute the curvature of the Lobachev
skian plane in terms of its intrinsic geometry. We shall again arrive at 
K = -1, vindicating the choice of sign in the definition (14). 

2. By analogy with the definition given in §8.3, we shall say that a space
like surface in IRi is convex if K < 0 at all points of the surface. 

§11. The Language of Complex Numbers 
in Geometry 

11.1. Complex and Real Co-ordinates 

Many geometrical problems are most conveniently formulated and solved 
in terms of the language of complex numbers. We therefore expound here 
the simple facts about complex numbers that we shall be needing. 

We denote by en the vector space of dimension n over the field of complex 
numbers C. (A vector space is determined up to isomorphism by its dimen
sion.) If e1, ..• , en form a basis for this vector space, then every vector e E l[;n 

has the unique form 

e = zkek, zk = xk + iy\ (1) 

where the zk are the (complex) components. 
We can regard en also as a 2n-dimensional vector space IR2n over the 

reals; as a basis for this space we might then take 

(2) 

Since 

(3) 



96 2. The Theory of Surfaces 

the real components of the vector ~ relative to the basis (2), are the numbers 
x 1, ... , x", i, ... , yn. This process of going from a complex vector space 
to a real one is called realization. 

The non-singular (i.e. invertible) linear transformations of the vector 
space en form a group, called the genera/linear group of degree n over C, and 
denoted by GL(n, C). This group is of course isomorphic to the group of 
n x n non-singular matrices with complex entries (so that, as usual, we shall 
often think of GL(n, C) as consisting of matrices). Upon realization of en, 
each of these transformations becomes a linear transformation of the real 
vector space IR2 n. This defines a monomorphism (i.e. one-to-one homo
morphism) 

r: GL(n, C)--+ GL(2n, IR), 

called the realization map. 

(4) 

11.1.1. Example. In the case n = 1, our space is just the one-dimensional 
complex vector space IC co-ordinatized by z = x + iy. The invertible linear 
transformations are just multiplications by a complex number A. ¥ 0 (one 
such A. for each linear transformation): 

z H A.z. (5) 

Writing A. = a + ib, a2 + b2 ¥ 0, this takes the form 

z = x + iyH(a + ib)(x + iy) =(ax- by)+ i(bx + ay). 

Hence the corresponding linear transformation of !R2 has matrix 

( _: ~) = r(A.), (6) 

Thus we see that certainly not all (invertible) linear transformation of IR 2 are 
obtained in this way from the complex linear transformations of IC; in other 
words, r is not onto. 

This example generalizes to the n-dimensional case: It is not difficult to 
show that if A is a matrix in GL(n, C), and A = A + iB where A and Bare 
real matrices, then 

r(A) = ( A B). 
-B A 

(7) 

11.1.2 Exercise. Prove that det(r(A)) = jdet Aj 2 • 

Here is a quick proof of (7) which incidentally yields an alternative 
characterization of the matrices ofthe form r(A), i.e. of the matrices occurring 
as images under the map r: GL(n, C)--+ GL(2n, IR). If A is any element of 
GL(n, C), and~ is any vector in en, then 

A(i~) = iA(~). (8) 
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Now the linear transformation of IC" which simply multiplies each vector by 
the scalar i, goes under r to a linear transformation I of ~2", given by 

r(i) = I = , w ere 1 = n x n 1 entity matnx. ( 0 1) h 'd . . 
-1 0 

(9) 

(To see this consider the action of i on the basis vectors ek, iek.) It follows 
from (8) that the matrix I commutes with the matrix r(A) (since e was arbi
trary). But then it is straightforward to check that matrices commuting with I 

must have the form ( A 8 ). We leave to the reader the verification that 
-B A 

a matrix of this form does indeed arise from a "complex operator" on en. 
We conclude by mentioning an important subgroup of GL(n, C), namely 

that consisting of all matrices of determinant 1, called the special linear 
group qf'degree n over C, and denoted by SL(n, C). 

11.2. The Hermitian Scalar Product 

We define a scalar product on the space iC" as follows: 
n 

<e~. e2>(; = I z~:z~. (10) 
k=l 

where el = z;e;, e2 = z~e;, and the bar indicates the complex conjugate. 
It follows that if e = zie;, then 

n 

<e. e)q:; = I lzkl2· 
k=l 

This scalar product has the following main properties: 

<Ae,~>(; = A<e.~>q:;, 

<e,A~>(; = X<e.~>q:;, 
<e.~>(;=<~. e>q:;, 

<e~ + e2.~>(; = <e~.~>(; + <e2.~>q:;. 
<e. o(; > o if e -:F o. 

(11) 

(12) 

Any scalar product on iC" with the properties (12) is called an Hermitian 
scalar product, or Hermitianjorm. 

If on the realized space ~2" we introduce the usual Euclidean scalar 
product, defined for a pair of vectors 

el = (xL ... ' x'l, YL ... ' YD. e2 = (xL .. 'xi, YL .. 'Yi) 
by 

n 

<e~, e2>~ = I <x~x~ + y~y~), (13) 
k=l 
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then the Hermitian scalar product is related to this one in the following way: 

(14) 

where Re indicates the real part of a complex number. To see (14), simply 
compute directly: 

n n 

Re(~ 1 , ~ 2 )c = Re I (x~ + iy~)(x~ - iA) = I (x~x~ + Y~A). 
k=1 k=1 

It follows in particular from (14) that since(~, Oc is real (see(ll)), 

(~, ~)c = <~. ~>~· (15) 

11.2.1. Definition. If A E GL(n, IC) (i.e. A is a non-singular linear transform
ation of e) then we say that A is unitary if for all vectors ~ 1, ~ 2 , 

(16) 

Thus, analogously to §4, the unitary linear transformations are just the 
motions of the Hermitian metric on en which fix the origin, i.e. the origin
fixing isometries of en equipped with the Hermitian scalar product. We 
denote the group of unitary linear transformations, called the unitary group, 
by U(n). 

We now derive a necessary and sufficient condition for a linear transforma
tion A to be unitary. Let e1, ••• , en be a basis for en, with respect to which 
the Hermitian scalar product has the form (10). If our linear transformation 
A has matrix (A.L) relative to this basis, then for A to be unitary means that 

n 

I A.iXf = Jll', 
k=1 

or, in matrix notation (identifying A with its matrix), 

A/F = 1 <o> iF = A- 1, (17) 

where as usual T denotes transposition. (Compare (17) with the orthogonality 
condition AAT = 1 (see §4.4), characterizing origin-fixing isometries of the 
Euclidean space !Rn.) We call matrices satisfying (17) unitary matrices, and 
identify the unitary group U(n) with the group of unitary matrices. We also 
obtain from (17) that 

det(A/F) = (det A)(det A)= [det A[ 2 = 1, 

whence we have that the determinant of a unitary matrix has modulus 1. 
Those matrices in U(n) with determinant 1 form a subgroup called the special 
unitary group, denoted by SU(n). 

We now characterize the image r(U(n)) of U(n), in the group GL(2n, IR). 
It follows from (14) that a linear transformation A E GL(n, C) preserves the 
Hermitian form (~, Oc if and only if r(A) preserves the quadratic form 
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(~, Ol];l· This and the fact that det(r(A)) is positive (Exercise 11.1.2), together 
imply that 

r(U(n)) = S0(2n) n r(GL(n, C)). (18) 

We conclude this subsection by mentioning the complex analogues of 
the pseudo-Euclidean spaces. These are the pseudo-Hermitian spaces c;,q, 
p + q = n, in which the square of the length of a vector ~ = (zl, ... , z") is 
given by 

(19) 

The group of complex linear transformations of C" preserving the form (19) 
is denoted by U(p, q), and the subgroup of matrices with determinant 1, 
by SU(p, q). 

11.3. Examples of Complex Transformation Groups 

(a) As noted above, the group GL(1, C) is (isomorphic to) the group of non
zero complex numbers under multiplication. By (17), the subgroup U(1) 
consists of all unimodular complex numbers (the "circle group"): U(l) = 

e"" . Smce by (6) r(e'"') = . , we see that the realizatiOn { . } . . ( cos cp sin cp) . . 
-sm cp cos cp 

map r defines an isomorphism between the groups U(l) and S0(2). 
(b) We now consider the group SL(2, C). With each matrix 

A = (: ! ) E SL(2, C) 

(i.e. such that ad - be = 1), we associate the following linear-fractional 
transformation of the extended (i.e. with the "point at infinity" adjoined) 
complex plane C: 

, az + b 
z = --. (20) 

cz + d 

If A' = (a' b') is another matrix from SL(2, C), then by substituting from 
c' d' 

(20) we get for the composite of the transformations corresponding to A and 
A': 

a'z' + b' 
z"=--

c'z' + d' 
(a'a + b'c)z + a'b + b'd 
(c'a + d'c)z + c'b + d'd' 

in other words our association of linear-fractional transformations with 
elements of SL(2, C), is a homomorphism 

cp: SL(2, C)--. L, (21) 
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where L denotes the group of linear-fractional transformations. It is easy 
to verify that the kernel of this homomorphism consists of the two matrices 

(~ ~) and (- ~ _ ~), and also that cp is in fact an epimorphism (i.e. is 

onto L). Thus we have an isomorphism: 

L ~ SL(2, C)/{± 1 }. (22) 

(c) Next we consider U(2).1t follows from (17) that a matrix(; ;) lies 

in U(2) precisely if: 

lal 2 + lhl2 = 1, lcl2 + ldl 2 = 1, ac + bJ = 0, (23) 

while the matrices in the subgroup SU(2) are characterized by these condi
tions with the further condition ad - be = 1. After a little algebraic manipula
tion we deduce that SU(2) consists of all matrices of the form 

(24) 

By an analogous argument it can be shown that SU(1, 1) consists of all 
matrices of the form 

(~ d) 
d c ' (25) 

Note that here c i= 0 (since I c I :2::-: 1 ). This fact allows us to define a one-to-one 
map SU(l, 1)--+ SU(2) by means of the formula 

( ~ ~) ~ ( H) = ( _ ~ ~) . (26) 

c c 
Note that the only matrices of SU(2) which are not images under this map, 
are those with a = 0. This map is not a group homomorphism; its significance 
will appear later. 

§12. Analytic Functions 

12.1. Complex Notation for the Element of Length, and 
for the Differential of a Function 

Suppose we are given a curve 

zk = zk(t) = xk(t) + i/(t), k = 1, ... , n, (1) 

in the space C" with co-ordinates zk. In terms of the real co-ordinates xk, l 
(where zk = xk + i/), this becomes the curve 

x 1 = x 1(t), ... , x" = x"(t), y1 = y 1(t), ... , y" = y"(t), 
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in IR2n, and considering IR2 n as Euclidean with Euclidean co-ordinates x\ y\ 
the length of an arc of this curve is given by 

fl! 

l= 
to 

We write (2) succinctly as 

n 

d/2 = L dzk dz\ 

where dzk and dzk are defined by 

dzk = dxk + dy\ 

k=l 

(2) 

(3) 

(4) 

We shall in what follows often need to change (as we did above) from the 
co-ordinates xk, l of IR 2 n to complex co-ordinates z\ zk, k = 1, ... , n, and 
back. The equations governing these co-ordinate changes are: 

zk = xk + iy\ 

xk = !<zk + zk), 

zk = xk- iy\ 
1 l = 2i (zk - zk). 

(5) 

Having introduced complex notation for the element of arc length in IR2n, 

we now introduce similar notational conventions in connexion with the 
space of complex-valued functions on IR 2n. We first define two linear opera
tors on that space: 

-=- --i-a 1( a a) 
azk 2 axk ayk ' 

(6) 

Obviously we then have 

a a a 
axk = azk + azk ' 

a~k = i (a~ -a~)· 
(7) 

It is also easy to verify that 

a k a -k 
azdz ) = azk (z ) = 0, 

(8) 

a k a -k 
azk (z ) = azk (z ) = 1. 
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The following lemma is almost immediate from (4) and (7). 

12.1.1. Lemma. The differential of" an arbitrary complex-valued fimction 
f(x 1' ••. 'xn, y1' ... 'yn) is equal to 

of 1 of n of -1 of -n 
df = oz1 dz + ... + ozn dz + oz1 dz + ... + dzn dz . (9) 

We now consider a special class of complex-valued functions, namely 
polynomials in the real variables x 1, ... , xn, yl, ... , yn, but with complex 
coefficients. If P(x 1, .. , xn, y1, ... yn) is such a polynomial, then on making 
the change of variables (5), P takes the form of a polynomial 

We shall say that a polynomial is independent of a particular one of its 
variables, if it has no non-zero terms having a positive power of that variable 
as a factor (i.e. if the variable does not appear). 

12.1.2. Theorem. A polynomial 

Q( 1 n -1 -n) P( 1 n 1 n) z , ... ,z,z , ... ,z = x , ... ,x,y , ... ,y 

is independent of a variable zq if and only if 
oP 
ozq = o. (10) 

PROOF. It is easy to verify that for our operators ojoz\ ojozk, Leibniz' formula 
holds: 

o of of 
ozk (fg) = o:zk g + f o:zk 

This and (8) together imply that 

~ [(-k)m] _ (-k)m-1 ozk z - m z . 

(11) 

(12) 

From this and the linearity of our operators, we get immediately that if 
Q(z, z) is independent of any particular zq then oQjozq = 0. 

For the converse, suppose that P depends on zq, and let (zqr be the largest 
power of zq occurring with non-zero coefficient. We shall show that oP jozq ¥= 
0. To this end we write Pin the form 

P = A 0(zq)m + A1(zq)m- 1 +···+Am, 



§12. Analytic Functions 103 

where A0, ... , Am are polynomials in z1, •• , z" and those z.k other than zq. 
Then by the first part of the proof, we have iJA;/(Jzq = 0, i = 0, ... , m. 
Consequently 

Therefore since A0 ;f:. 0, we have that iJP/ozq ;f:. 0, as required. D 

Note that this proof is valid not just for polynomials, but also for power 
series in the z\ z.k: thus the condition that such a power series fhave no terms 
with zq as a factor (i.e. that zq not figure in the power series) is equivalent to 
the condition ofjozq = 0. 

12.1.3. Definition. A complex-valued function f(x 1, i, ... , x", y") is said 
to be analytic in a region if the following n identities hold in the region: 

of 
az.k = o, k = 1, ... , n. (13) 

Thus in the case of a function f(x, y) of two variables, the condition for 
analyticity (which might alternatively be called "independence of z") is 

2 of = of + i of = o. 
az. ax ay (14) 

If we denote by u and v the real and imaginary parts of j; i.e. f(x, y) = 
u(x, y) + iv(x, y), then in terms of u, v, the condition (14) becomes 

au OV 
ax oy' 

au OV 
ay -ax· (15) 

These are the familiar "Cauchy-Riemann equations." (Thus we see that our 
condition (13) for analyticity is equivalent to the traditional one (assuming, 
as always, that the partial derivatives in (15) are continuous).) From (15) 
we obtain 

(16) 

from which we draw the significant conclusion that the real and imaginary 
parts of a complex analytic function are solutions of Laplace's equation 
(i.e. they are "harmonic" functions). In the conventional notation, (16) 
appears as ~u = 0, ~v = 0, where~ = o2 jox2 + o2 joy2 = 4(o2 joz oz) is the 
"Laplace operator." 
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12.2. Complex Co-ordinate Changes 

Suppose that some region of n-dimensional complex space en has defined 
on it two systems of complex co-ordinates 

z1 = x 1 + iy\ ... , z" = x" + iy", 

w1 = u1 + iv 1, ... , w" = u" + iv". 
(17) 

Then, as usual, we can regard the co-ordinates wk = uk + ivk as functions of 
the zk = xk + i/: 

wk = wk(x\ y1, •.. , x", y"). (18) 

12.2.1. Definition. The complex co-ordinate change (18) is said to be 
analytic if the functions wk(x1, yl, ... , x", y") are all analytic, i.e. if 

owk 
a:zl = 0, k, l = 1, ... ' n. (19) 

As for real co-ordinate changes in IR", so also for complex analytic co
ordinate changes (18), do we define the Jacobian matrix (aD by 

owk k __ 

al- ozl' k, l = 1, ... , n, (20) 

and call its determinant the (complex) Jacobian of the co-ordinate change: 

Jc = det(aD. (21) 

In the realized space IR 2", (18) yields the co-ordinate change 

k = 1, ... , n, 

(22) 
whose (real) Jacobian o(u, v)jo(x, y) we denote by J'J8.. 

The relation between the complex and real Jacobians J c and J 'J8. turns 
out to be very simple. 

12.2.2. Lemma. For a complex analytic co-ordinate change we have 

J'J8. = IJc 12• 

PRooF. Writing A = (aD = (owkjoz1) for the complex Jacobian matrix of 
the co-ordinate change (18), we have det A = J c· As a first step towards 
calculating J'J8., we find the 2n x 2n Jacobian matrix of the change in IR 2 " 

from co-ordinates z1' .•. ' z", z1' ••• ' z" to co-ordinates w1 ' ••• ' w", w1 ' ••. ' w". 
Since the complex co-ordinate change from z1, ••• , z" to w1, ..• , w" is, by 
hypothesis, analytic, we have owkjozl = 0 = owkjoz1• This together with 
owkjoz1 =a~, owkjozl =a~, implies that the 2n x 2n matrix we are seeking 

is ( ~ ~)· which has determinant I det A 12 = lie 12 • 
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It is clear that the Jacobian matrix of the co-ordinate change in ~zn from 
the system x 1' .•• ' xn, y\ ... ' yn to the system zl, ... ' zn, z1' .•• ' zn is 

· .. ~)· 
-I 

det B = ( -2it, 

and that this matrix B is also the Jacobian matrix of the change from 
u1, .•• , un, v1, •.• , vn to w1, .•. , wn, w1, ••• , wn. Since the change from co
ordinates x 1, ... , xn, y1, ••• , yn to co-ordinates u1, ••• , un, v1, •.. , vn is the 
composite of the above three changes (from x, y to z, z tow, w to u, v ), we have 

that the Jacobian matrix of that change of co-ordinates is B- 1 ( ~ ~) B, 

which has determinant IJ c 12, as required. 0 

12.2.3. Corollary (Inverse Function Theorem for Complex Analytic Co
ordinate Changes). If the (complex) Jacob ian of an analytic co-ordinate change 
(18) is non-zero at a point, then locally (i.e. in a neighbourhood of the point) 
the zk can be expressed as functions of the w1: 

zk = zk(w 1, ••• , wn), 

which are also analytic. 

k = 1, ... , n, 

PROOF. In the preceding proof we saw that the Jacobian matrix of the co
ordinate change in ~Zn from x 1, •.. ' xn, y1' ••• ' yn to u1' •.• ' un, v1' ••• ' vn is 

B- 1 ( ~ ~) B. Since this matrix has determinant I J c 12, which is non-zero 

by hypothesis, it follows from the Inverse Function Theorem for real co
ordinate changes (1.2.5) that locally this change has an inverse with Jacobian 
matrix 

Since B and B- 1 correspond to explicit well-behaved co-ordinate changes, 
it is clear that the change from z,z to w,w has an inverse locally, with Jacobian 
matrix 

(23) 

Hence the change from z to w has an inverse locally, and from the form of 
(23), we see that this inverse co-ordinate change is analytic. This completes 
the proof. 0 

Thus for example in the case n = 1, the change (18) has the form w = w(z), 
the analyticity condition is fJwjfJz = 0, and the corollary tells us that the 
function w = w(z) is invertible wherever fJwjfJz :f. 0. 
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In the context of a complex space en, by a transformation we shall under

stand a one-to-one map from one region of en to another where the functions 

defining the transformation are analytic. 

12.2.4. Examples of Complex Transformations in the Case n = 1. (a) The 
complex affine transformations 

w(z) = az + b, a =/= 0. (24) 

For these transformations dwjdz = a =/= 0. 
Recall that, upon realization, (24) yields a transformation of the real 

plane which is the composite of a Euclidean isometry and an orientation
preserving dilation (see the conclusion of §4.2). 

(b) The linear~fractional transformations 

W(z) __ az + b , 
cz + d 

ad - be =/= 0. (25) 

We may suppose that ad - be = 1, since each of the coefficients a, b, c, d can 

be divided by a square root of ad - be without altering the transformation. 

This assumed, we have 

dw 
dz 

1 
- (ez + d? =/= O. (26) 

Strictly speaking the transformation (25) is not defined for z = - d/e. 
However this inconvenience can be avoided by regarding (25) as a trans
formation of the extended complex plane, obtained from C by adjoining 
to it (for the time being in a purely formal way) an extra point "at infinity," 
denoted by oo, postulated to behave under the transformation (25) as follows: 

d a 
- - f--+ 00, 00 f--+-. (27) 

( c 

As an example of a linear-fractional transformation, consider the one 
given by 

1 + iz 
w=~~. 

1 - iz 
(28) 

This maps the upper half-plane Im z > 0 onto the unit disc I w I < 1; we used 
this transformation in §10.1 to construct Klein's model of the Lobachevskian 
plane. 

12.3. Surfaces in Complex Space 

We shall consider only the simplest case, namely that of a one-dimensional 
surface (or complex curve) in 2-dimensional complex space C2 . If the space 
C2 is co-ordinatized by co-ordinates w, z, then we shall assume that the curve 
is given by an equation 

f(w, z) = 0, (29) 
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where f(w, z) is complex analytic in the arguments w, z. Writing/ = u + iv 
we see that (29) is equivalent to the two real equations u = 0, v = 0, so that 
it defines a 2-dimensional surface in ~4( = C2 ). By analogy with the real 
case (see §7.1), we define the complex gradient, gradeJ, of the function f, by 

. (of of) grade j = ow' oz ' (30) 

(see (6)), and we say that a point (w0 , z0 ) on the curve (29) is non-singular if 
grade flwo.zo # 0. The following theorem (whose proof we omit) is the 
complex analogue of the Implicit Function Theorem. 

12.3.1. Theorem (The Complex Implicit Function Theorem). Let f(w, z) he 
a complex analyticfimction of the variables w, z and let (w0 , z0 ) be a point at 
which grade f # 0. Iffor instance ojjow # 0 at the point, then in a sufficiently 
small neighbourhood (in C2 ) of the point (w0 , z0 ), the equation f(w, z) = 0 has 
a unique solution w = w(z) (i.e. f(w(z), z) = 0 in the neighbourhood); moreover 
this (unique) solution is analytic, i.e. aw;az = 0 in the neighbourhood (where 
ojaz is defined in (6)). 

As an (important) example, consider the case that f(w, z) is a polynomial 
in the variables w, z. We call the totality of all solutions in the form w = w(z), 
of the equation f(w, z) = 0, a multiple-valued algebraic function, and the 
surface (i.e. complex curve) f(w, z) = 0 the graph or Riemann surface of this 
multiple-valued function. t 

An important special case is that of a hyper-elliptic curve, defined as the 
Reimann surface given by an equation of the form 

f(w, z) = w2 - Pn(z) = 0, (31) 

where PnCz) is a polynomial of degree n. In this case the corresponding multi
valued function may be written as w = J?Ji>, where the square root sign 
is to be interpreted ambiguously. 

12.3.2. Lemma. The surface (31) is free of singularities if and only if the 
polynomial Pn(z) has no multiple roots. 

PROOF. Calculating the gradient of the function fin (31 ), we obtain 

. (aJ of) ( dPnCz)) grade.!= ow' oz = 2w,-~ 0 

Thus a point (w0 , z0 ) is a singular point of the curve if and only if 

2w0 = 0, dPn(z) I = 0, w6 - P"(z0 ) = 0, 
dz zo 

t This is a simplified variant of the usual definition of a Riemann surface (see, for example. 
[26]). Our definition is equivalent to the usual one. in the case that the surface .f(w, z) = 0 has no 
singular points or self-intersections. 
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i.e. if and only if w0 = 0, and z0 is a root both of the polynomial Piz) and its 
derivative. The lemma then follows from the well-known equivalence of this 
condition on z0 , with the condition that z0 be a multiple root of Pn(z). (Note 
that for this equivalence we need the "power rule" (12).) 0 

The Complex Implicit Function Theorem 12.3.1 allows us to introduce 
the local co-ordinate z on the surface (31), at (i.e. in neighbourhoods of) 
those points where of/ow = 2w =F 0, i.e. where Pn(z) =F 0. At those points 
z for which Pn(z) = 0, we may take was local co-ordinate, provided that we 
do not also have ~fjoz = - dPn(z)/dz = 0, i.e. provided that z is not a 
multiple root of Pn(z). 

We now return to the general situation of an arbitrary complex analytic 
curve f(w, z) = 0. Suppose that (w0 , z0 ) is a point on the curve at which 
ofjow =F 0, and let w = w(z) be the analytic function (defined locally around 
(w0 , z0 )) guaranteed by 12.3.1. By (3) the Hermitian metric in the co-ordinates 
w, z for IC2 is given by 

d/ 2 = dw dw + dz dz. (32) 

What is the induced metric on the surface w = w(z)? To answer this write as 
usual w = w(x, y) = w(i(z + z), (l/2i)(z - z)), i.e. re-co-ordinatize the surf
ace by z, z; then by Lemma 12.1.1, dw = (owjoz) dz + (ow/oz) dz = (owjoz)dz, 
since by analyticity ow/oz = 0. Hence (by (6), (7)) dwjdz = ow/oz. Similarly 
dw = (ow/oz) dz, and dw/dz =ow/oz. Substituting for dw and dw in (32) we 
arrive at the following formula for the metric induced on the surface: 

(33) 

whence we see that the square of an element of arc length on the surface 
f(w, z) = 0, in a neighbourhood of(w0 , z0 ), has the form 

dl2 = h(z, z) dz dz = g(x, y)(dx2 + dy2 ), (34) 

where h(z, z) = {J(X, y) = 1 + ldw/dzl 2, and z = x + iy. 

12.3.3. Definition. If the metric on a real 2-dimensional surface has the form 
dl2 = g(x, y)(dx2 + dy2 ) in terms of real co-ordinates x, yon the surface, then 
we call these co-ordinates coriformal. 

12.3.4. Lemma. Suppose we are given a metrized surface on which conformal 
co-ordinates are defined. Then the co-ordinate changes which preserve the 
conformal form of the metric (i.e. change it to another conformal form), are 
precisely those corresponding to complex analytic co-ordinate changes, and 
the composites of these with complex conjugation. 

PRooF. By hypothesis there are co-ordinates x, yin terms of which the metric 
is given by 

dF = g(x, y)(dx2 + dy2 ) = h(z, z) dz dz. 
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Let z = z(w) define a complex analytic co-ordinate change, so that ozjow = 0. 
Then as in the derivation of (33) we have 

whence 

-~dzl2 d/2 = h(z, z) dz dz = h(z(w, w), z(w, w)) dw dw dw, 

which still has conformal form. That complex conjugation preserves the 
conformal form, is easily verified. 

For the converse, suppose that we have a co-ordinate change z = z(w) = 
z(w, w), which is neither analytic (so that ozjow ¢. 0), nor the· composite of 
an analytic function and complex conjugation (so that ozjow ¢. 0). It 
follows from our underlying assumption of continuity of the partial deriva
tives of z(u, v) (where w = u + iv), that there exist points at which ozjow # 
0 # ozjow (since otherwise from (6) we should have, at every point, ozjou = 

± i(ozjov) with neither equality holding everywhere). Now by Lemma 
12.1.1, dz = (ozjow) dw + (ozjow) dw; hence 

I ~
 ;:) 12 2 UZ GZ _ 2 2 

dl =h ;-dw+~dw =h(a 11 du +2a 12 dudv+a 22 dv), 
uw cw 

where w = u + iv. Calculation of the aij shows that the equations a 11 = a22 , 

a12 = 0 imply that either oz/ow = 0 or ozjow = 0. Since there are points at 
which neither of these hold, we deduce that our transformation does not 
preserve the conformal form, completing the proof. D 

§13. The Conformal Form of the Metric 
on a Surface 

13.1. Isothermal Co-ordinates. Gaussian Curvature in Terms 
of Conformal Co-ordinates 

Suppose that we have in Euclidean space IR 3 , a 2-dimensional surface with 
parametric equations 

x = x(p, q), y = y(p, q), z = z(p, q), (1) 

where (p, q) ranges over some region of IR 2 • Then, as we saw in §7.3, the 
Euclidean metric in IR 3 induces on this surface a Riemannian metric 

d/2 = E(dp) 2 + 2F dp dq + G(dq)2 , (2) 
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where g = EG - F 2 > 0 (since the form given by (2) is positive definite). It 
turns out that by means of a change of the local co-ordinates p, q, this metric 
can be brought into conformal form. (We have already seen this in the case 
of the sphere (~9).) We state this result precisely as 

13.1.1. Theorem. Wtth the above notation, suppose that E, F, G are real
valued analytic jimctions of the real variables p, q (i.e. are representable as 
power series in p, q). Then there exist new (real) local co-ordinates u, v for the 
surface in terms of which the induced metric (2) takes the form 

(3) 

Co-ordinates with this property are called isothermal or conformal (cf. 
Definition 12.3.3). Thus for local co-ordinates on a surface to be isothermal 
the induced metric must have conformal form (i.e. the form (3)) in those 
co-ordinates. 

PROOF OF THEOREM 13.1.1. Factorizing the right-hand side of (2), we obtain 

dl2 = ( fi dp + F Jf dq) ( fi dp + F -;t dq) . 

We are seeking new co-ordinates u, vas functions u = u(p, q), v = v(p, q) of 
p and q, with the property that in terms of u, v the metric (2) takes the form 
(3). We shall certainly have achieved this if we can find an "integrating 
factor," i.e. a complex-valued function A = A(p, q) such that 

( fD F + i-}g ) A v E dp + fi dq = du + i dv, 

(4) 
-( fD F- i-}g ) A v E dp + fi dq = du - i dv, 

since on multiplying these two equations together, we obtain 

IAI2 dl2 = du2 + dv2, dlz = IAI-z(duz + dvz), (5) 

so that as f(u, v) the function I A 1- 2 will serve. Since the second of the equa
tions ( 4) is just the complex conjugate of the first, our problem has now be
come that of finding functions u(p, q), v(p, q), A(p, q) satisfying the equation 

( rD F + iJg ) (au av) (au av) A v E dp + ~ fi dq = du + i dv = ap + i ap dp + aq + i aq dq, 

(6) 

or, equivalently, 

AjE =au+ iav 
ap ap • 

(7) 
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Eliminating A., we get 

r:. (811 ov) (811 ov) 
(F + i..,; y) op + i op = E oq + i oq . (8) 

which is equivalent to 

Fau _ Jgav = Eau 
ap ap aq • 

Jg ou Eov = Eov 
ap + ap aq · 

Hence 

av 
Fau _ Eau 

op aq OV 
Gau _ Fau 

ap oq 
-
ap Jg aq Jg 

(9) 

au 
Eav _ Fav 

oq ap au 
F ov- G OV 

oq op 
-= -
ap Jg aq Jg 

where the two equations on the right-hand side of (9) follow on multiplying 
equation (8) by (F - iJg)jE. If we now also demand of the functions u, v 
that their second partial derivatives be continuous, we shall have o2ujap oq = 
a2ujoqop and a2vjopaq = a2vjoqop, and then from (9) we get L11 = 0, 
Lv = 0 where the differential operator Lis given by 

[ F~- E~l [F!__- G!__l L _ ~ op aq + i_ oq ap 
- oq JEG- F 2 op JEG- F 2 • 

(10) 

The partial differential equation Lf = 0 is known as "Beltrami's equation," 
and the operator Las the "Beltrami operator." Thus the upshot is that u, v 
are solutions of Beltrami's equation. Now it is known from the theory of 
partial differential equations (but we shall not prove it here) that if the func
tions E, F, G are real analytic, then Beltrami's equation always has solutions 
of the type we seek, namely functions u, v such that in the region over which 
(p, q) ranges, the map (p, q) 1--+ (u(p, q), v(p, q)) is one-to-one. (Note that once 
u, say is chosen (as a solution of Betrami's equation) then the equations in 
the first row of(9) determine grad u, and therefore (essentially) u. The function 
A. is then determined using (7).) With this we conclude the proof. 0 

Hence (assuming E, F, G real analytic) isothermal co-ordinates always 
exist on a surface in Euclidean 3-space. Lemma 12.3.4 then tells us exactly 
which local co-ordinate changes lead to other isothermal co-ordinates p, q 
on the surface. For if we write z = p + iq, w = u + iv, then regarding was 
usual as a function of z,z, i.e. w = w(z, z), we know from 12.3.4 that p, q 
are isothermal co-ordinates on the surface if and only if w(z, z) is analytic 
in either z or z. 
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13.1.2. Example. Consider the complex plane (or line) C with complex 
co-ordinate z = x + iy. The Euclidean metric d/2 = dx 2 + dy2 = dz dz 
certainly has conformal form. Since linear-fractional transformations are 
analytic, we should expect (in view of 12.3.4) that they will preserve the con
formal form of the Euclidean metric; and indeed if 

az + b 
W=---, 

cz + d 
ad- be= 1, 

is any linear-fractional transformation, then dw = [ -1/(cz + d)2] dz, so that 

dF = dz dz = lcz + dl4 dw dw, 

as expected. 

We next compute the Gaussian curvature of a surface in Euclidean 3-
space, in terms of conformal co-ordinates on the surface. 

13.1.3. Theorem. ~( u, v are cmiformal co-ordinates on a surface in Euclidean 
3-space, in terms of which the induced metric has the form 

d/2 = g(u, v)(du2 + dv 2 ), 

then the Gaussian curvature of the surface is given by 

1 
K = - -2 ( ) A In g(u, v), 

g u, v 
(11) 

where A = o2 jou 2 + o2 jov2 is the Laplace operator. 

PROOF. Suppose that in terms of the conformal co-ordinates u, v, the surface 
is given (locally) by r = r(u, v); r = (x, y, z) (where x, y, z are Euclidean co
ordinates for IR 3). Since the metric on the surface in terms of these co
ordinates is given by d/2 = g(u, v)(du2 + dv2 ), we have (by §7.3 (19)) that 

(12) 

On differentiating these equations with respect to u and v (and, as usual, 
assuming enough continuity and differentiability), we obtain 

1 og(u, v) 
----

2 au 
1 og(u, v) 
2 OV 

<ruu• rv> + <ru, ruv> = 0 =<ruv• rv> + <ru, rvv>· 

Define unit vectors e1, e2 , n by 

(13) 

(14) 
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By (12) and the properties of the vector product the frame e1 , e2 , n is ortho
normal at each point of the surface; in addition the vectors e1, e2 are tangent 
to the surface, and the vector n normal to it. By definition (§8.1(3)), the 
coefficients of the second fundamental form of the surface are 

(15) 

It follows from (13) and (15) that relative to the basis e1, e2 , n, the components 
of the vectors r uu, r uv, r vv are as follows: 

where of course g = g(u, v). Hence 

From this and (13) we obtain 

1 o2g 
2 OU2 = (rUUV' rV> + <rUV' rUV> 

= - --- (LN - M ) +- - + - , 1 o2g 2 1 [(ag) 2 (ag) 2
] 

2 ov 2 2g ou OV 

(16) 

whence it follows (using §8(26) and a little manipulation) that the Gaussian 
curvature is given by 

1 
--2 ( )illn g(u, v), g u, v 

concluding the proof of the theorem. 0 

Note finally that in complex notation the metric dZZ = g(u, v)(du 2 + dv 2 ) 

becomes (setting z = u + iv) 

dZZ = g(z, z) dz dz, 
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and the formula (11) for the Gaussian curvature of the surface with this 
metric becomes (again after a little calculation) 

2 82 
K = - - -_ (In g). 

g oz oz 

13.2. Conformal Form of the Metrics on the Sphere 
and the Lobachevskian Plane 

(17) 

We have already found (in §9) conformal co-ordinates x, y for the sphere: 
they were obtained by means of the stereographic projection of the sphere 
onto the plane with Euclidean co-ordinates x, y. Thus for the sphere of 
radius R = 1, the induced metric was found to have the form (see §9(4)) 

2 dx2 + dy2 
dl = 4 2 2 2. (l+x +y) 

(18) 

Setting z = x + iy, this takes the form 

(19) 

where z co-ordinatizes the complex plane C. 
In §10 we derived (again by means of a stereographic projection) the 

following formula for the metric of the Lobachevskian plane (with R = 1; 
see §10(10)): 

2 4 2 2 
dl = (1 - (x2 + i))2 (dx + dy ), (20) 

In complex notation this formula becomes 

2 4 -
dl = (1 _ /z/ 2) 2 dz dz, /z/ < 1, (21) 

where the complex co-ordinate z ranges over the open unit disc. Recall that 
the open unit disc with metric (21) (or (20)) is known as the "Poincare model" 
of the hyperbolic (i.e. Lobachevskian) plane. If we map the unit disc onto the 
the upper half-plane Im w > 0 by means of the map z = (1 + iw)/(1 - iw), 
then we obtain the metric in "Klein's model" of the hyperbolic plane (see 
§10(13)): 

2 4 -
dl = - ( _)2 dw dw, w-w 

Im w > 0. (22) 

We shall now determine in terms of complex co-ordinates, the isometry 
groups of the sphere and the Lobachevskian plane. As we saw in the preceding 
section (Lemma 12.3.4), the conformal form of a metric on a surface is 
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preserved by analytic co-ordinate changes, and therefore certainly by 
linear-fractional transformations. We shall therefore look for the isometries 
of our metrics (19) and (21) among the linear-fractional transformations 

aw + b 
Z=---

CW + d' 
ad- be= 1. (23) 

(We shall prove in. Chapter 4 of Part II that in fact all motions of the metrics 
(19) and (21) are, up to complex conjugation, linear-fractional transforma
tions.) 

We begin with the sphere. Under the co-ordinate change (23) the metric 
(19) becomes 

dl2 = 4 dz dz 4 dw dw 
(1 + lzl 2) 2 [law+ bl 2 + lew+ di 2J2 

4dwdw 
(24) 

Hence for the transformation (23) to be an isometry it is necessary and suffi
cient that 

ao + ca = 0, (25) 

Since these are just the conditions for the matrix (: ; ) to be unitary 

(see §11(17)), and since ad- be= 1, we deduce that (: !) belongs to 

SU(2). This and the fact that the group of linear-fractional transformations 
is isomorphic to SL(2, C)/{± 1} (see §11(22)), together give us 

13.2.1. Theorem. The group of all direct motions (i.e. direct isometries) of 
the sphere S2, is isomorphic to the group SU(2)/{± 1}. 

(Note that we are assuming here the as yet unproved result that all direct 
(i.e. proper-cf. §4.2) isometries of the sphere are linear-fractional trans
formations.) 

From this theorem and the remark at the end of §9 concerning the isometry 
group of the sphere we obtain the following result. 

13.2.2. Corollary. The groups S0(3) and SU(2)/{ ± 1} are isomorphic. 

(As an exercise the reader may like to prove this directly using the stereo
graphic projection!) 

As mentioned above, the full isometry group of the sphere is obtained 

from the group of rotations (i.e. of transformations (23) with(: !) E SU(2)) 
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by supplementing these with the reflection z ~ z (as a generator). Thus the 
rotation group has index 2 in the full isometry group. 

We now turn to the Lobachevskian plane, beginning with the Poincare 
model. Proceeding as in the case of the sphere we calculate that the metric 
(21) transforms under the linear-fractional transformation (23) to 

d/2 = 4 dz dz 
(1 - lzl 2) 2 

4dwdw 
- [ldl2 - lbl 2 + (ca- alJ)w + (ab- ed)w + (lel 2 - lal 2)lwl 2] 2 ' 

so that (23) is an isometry precisely if 

ea- ab = 0. (26) 

It is easy to verify that these conditions are exactly those under which the 

matrix (: ~) preserves the quadratic form <~. 01. 1 = (z 1) 2 - (z2 ) 2 

(where ~ = (z 1, z2 ) is a vector in C2), i.e. under which (~ ~) E U(l. I) 

(see the conclusion of §11.2). Since we also have ad - be = 1. it follows that 
the isometries among the transformations (23), are precisely those for which 

(: ~) E SU(l, 1). (Note that the conditions (26) also ensure that the 

transformation (23) maps the open unit disc onto itself. since its boundary 
lzl = 1 goes onto lwl = 1, and w = 0 is the image of z = hfd, which has 
modulus < 1.) 

Finally we consider the Klein model. To begin with we characterize those 
linear-fractional transformations (23) which map the upper half-plane 
Im z > 0 onto itself. Since the boundary will then have to be mapped onto 
itself we shall require that 

Im w = 0 => Im z = 0. (27) 

A straightforward calculation shows that if w is real (w -:f. - dfe) and 
z = (aw + b)/(ew +d), then 

Im z = w2 lm(ac) + w lm(bc + aa) + Im(ba) 
lew+ dl 2 

Since w is allowed to be any real number (with the possible unimportant 
exception of -dfe), it follows that for (27) to hold we need 

Im ac = lm(bc + aa) = lm(ba) = 0. (28) 

Now assume that none of a, b, e, dis zero. (We leave the easier contrary case 
to the reader.) Since ac is real it follows that a = IXC where IX is real; similarly 
b = f3d where f3 is real. Then since be + aa is real, we get that f3dc + pea is 
real. Hence either IX = {3, which contradicts ad - be = 1, or ea is real, so 
that e = yd where y is real. Hence a, b, e, d are all real multiples of some 
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complex number k say. Then from ad - be = 1 it follows that we may take 
k = 1 or i. However if k = i, then it is easy to see that, for example, (ai + b)/ 
(ci + d) is in the lower half-plane. The upshot is that the transformation 
(23) maps the upper half-plane onto itself precisely if a, b, c, d are all real. 

It turns out that all transformations (23) with a, b, c, d real are in fact 
isometries of the Klein model of the Lobachevskian plane, i.e. they all 
preserve the metric 

4 dz dz 
dl2 =---~ 

-(z-z)2 . 

We shall omit the verification of this, which is similar to that of the preceding 
two cases. It is noteworthy that in both models of the Lobachevskian plane, 
all linear-fractional transformations preserving the region of the complex 
plane on which the metric is defined, turn out to be isometries. 

We gather the above results together in the following 

13.2.3. Theorem. The group of direct isometrics of the Lobachevskian plane 
is isomorphic to: 

(i) SU(1, 1)/{ ± 1} (using the Poincare model); 
(ii) SL(2, IR)/{± 1} (using Klein's model); 

(iii) the connected component of the identity of SO(!, 2) (see §6.2). 

Again we are assuming the result (to be established in Chapter 4 of Part 
II) that these groups do indeed account for all direct isometries of the 
Lobachevskian plane. The statement (iii) follows in part from the fact that 
the connected component of the identity of SO(!, 2), consists of just those 
isometries of IRi preserving the upper sheet of the pseudo-sphere (see §1 0.1 ). 

Note also that, analogously to the case of the sphere, the full isometry 
group of the Lobachevskian plane is generated by all the direct isometries 
ofthe Poincare model (i.e. by SU(1, 1)/{±1}) together with the map z~z, 
which sends the unit disc onto itself, and is obviously an isometry of that 
model. In terms of Klein's model, the full isometry group is obtained by 
including (as a generator) the map z ~ - z, along with the transformations 
(23) with a, b, c, d real (forming a group isomorphic to SL(2, IR)/ { ± 1} ). 

13.2.4. Corollary. The groups SU(!, 1)/{± 1}, SL(2, IR)/{± 1}, and the 
connected component of the identity ofS0(1, 2), are isomorphic. 

As an exercise, prove this directly by using appropriate co-ordinate 
changes! 

13.3. Surfaces of Constant Curvature 

Before broaching the theme of this section, we need to answer the following 
natural question: Are there surfaces in Euclidean 3-space whose induced 
metrics are hyperbolic (i.e. Lobachevskian)? It turns out that the answer is 
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affirmative: there are surfaces in Euclidean 3-space which are, as they say 
"locally isometric" to the hyperbolic plane. (However there is no such surface 
that is globally isometric to the hyperbolic plane; i.e. from which there is a 
one-to-one metric-preserving map onto, say, the Poincare model of the 
hyperbolic plane.) An example is provided by the following hornshaped 
surface of revolution (to which the name "pseudo-sphere" was first applied): 

x = sech u cos v, y = sech u sin v, z = u- tanh u, u ~ 0, 

where x, y, z are Euclidean co-ordinates for IR 3• The induced metric is easily 
calculated to be given by 

dtz = (tanh2 u) du 2 + (sech2 u) dv 2, 

which by a change of local co-ordinates can be brought into one of the usual 
forms for the Lobachevskian metric (we omit the verification of this). It is 
also easy to calculate that the Gaussian curvature K = - 1 ( cf. the first of 
the remarks at the end of §10). 

To return to our theme, suppose we are given a surface in Euclidean 3-
space whose metric (in terms of certain local co-ordinates) has complex 
conformal form dl2 = g(z, z) dz dz. (By 13.1.1 the metrics of many surfaces 
in Euclidean 3-space can (locally) be brought into this form. By the preceding 
remarks there are such surfaces locally isometric to the Lobachevskian 
plane.) Since g(z, z) > 0, we can define a new function <p(z, z) unambiguously 
by g(z, z) = e'fJ. In terms of <p, the formulae ( 11) and ( 17) for the Gaussian 
curvature become 

(29) 

If K is constant, then in the following form these equations are known as 
"Liouville's equations": 

fl<p = - 2Ke'fJ, (30) 

13.3.1. Theorem. A surface in Euclidean 3-space with metric dl2 = g(z, z) dz dz, 
and with constant Gaussian curvature K is locally isometric to: 

(i) the sphere if K > 0; 
(ii) the Euclidean plane if K = 0; 

(iii) the Lobachevskian plane if K < 0. 

PRooF. From (29), with K assumed constant, we have 

a ( K) a ( _ a2<p) _ ( a3<p a<p a2<fJ) 0 = az - 2 = az e (/) az az = e (/) az2 az - ai az az 

= e-q> :z (~:;- ~ (~~r)' 



§13. The Conformal Form of the Metric on a Surface 119 

so that the function o2 q;joz2 - !(oq>joz? = t/J(z) say, is analytic. Under a 
complex analytic co-ordinate change z = f(w) the metric takes the form 
(see Lemma 12.1.1) 

dl 2 = g(z, z) 1 :~ r dw dw = g(w. w) dw dw. 

If we then define if>( w, w) by g( w, w) = e ii>, it follows that 

- - - df df 
<p(w, w) = <p(z, z) +In dw +In dw· (31) 

Of course since if> was defined completely analogously to <p, the function 
o2 ij>jow2 - t(oij>jow)2 = ~(w) say, will also be analytic (as a function of w). 
From this and (31) (and a little computation), we obtain 

- I 2 Ill/ 3 (I") 2 

t/J(w) = t/J(z)(f) + F - 2 f' , 

where f' = djjdw. We wish to choose the function/ so that ~(w) is identically 
zero, i.e. we seek an analytic function I satisfying the differential equation 

f'" 3 (I") 2 T - 2 T = - t/JUCw))UY (32) 

It can be shown using the theory of differential equations that (32) has 
an analytic solution; we shall not give the proof. (In the theory of functions 
of a complex variable, the left-hand side of (32) is known as the "Schwarz 
derivative.") 

With f chosen to satisfy (32), we have ~(w) = 0, whence 

02;~:12 = -! e-ii>/ 2(~;- ~(:~r) = 0. (33) 

If we put w = u + iv, and analyse the meaning of (33) in terms of the original 
definition of the operator o2(ow 2 (see §12(6)), we find that (33) is equivalent to 

o2e-ii>l2 a2e-ii>l2 

ou 2 ov2 

It follows easily from these equations that 

e- ii>12 = a(u2 + v2) + a linear function of u and v, (34) 

which in complex notation takes the (anticipated) form 

e-<P;z = aww + bw + bw + c, 

where a, c are real. Hence in terms of the new co-ordinates w, w, our metric 
is given by 

d/2 _ dw dw 
- (aww + bw +ow+ c? · 

(35) 
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From the first of the formulae (29) (with ip replacing <p), and (34), it follows 
that the Gaussian curvature is K = 4(ac - bo). By means oflinear-fractional 
transformations (which the reader may like to construct), the formula (35) can 
be brought into the forms: 

4R4 dz dz 
(i) (1 + lzl 2) 2 if K = 4(ac- bo) > 0; 

(ii) dz dz if K = 4(ac - bo) = O; 

... 4R4 dz dz 'f br 
(m) (l _ lzl 2) 2 1 K = 4(ac- u) < 0, 

which are the familiar forms of the metrics of the sphere, Euclidean plane, 
and hyperbolic plane respectively. D 

13.4. Exercises 

1. Suppose the metric on a surface has the form 

dl2 = dx 2 + f(x) dy 2, 

where f(x) is a positive (real-valued) function. Prove that this metric can be brought 

into conformal form dzl = g(u, v)(du 2 + dv2). 

2. Prove that a 2-dimensional pseudo-Riemannian metric (of type (1, I)) with real 
analytic coefficients, takes the form 

d/ 2 = .l.(t, x)(dt 2 - dx 2) 

after a suitable co-ordinate change. 

§ 14. Transformation Groups as Surfaces in 
N-Dimensional Space 

14.1. Co-ordinates in a Neighbourhood of the Identity 

Consider the group GL(n, IR) of invertible matrices A, i.e. 

A= (a}), det(a}) # 0. (1) 

Condition (1) defines a region in the space M(n, IR) of all n x n real matrices. 
If we regard M(n, IR) as a vector space (under matrix addition, and multi
plication of matrices by scalars), then from this point of view the general 
linear group is a region of the vector space IR1" 2 = M(n, IR). There is a natural 
system of co-ordinates for this space, namely the entries a~ of the general 
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n x n matrix. If A = (aj), B = (bj) are two matrices of degree n over IR, then 
of course their product C = AB is given by C = (c}) where 

i, j = 1, 2, ... , n. (2) 

For our present purposes the importance of (2) lies in the fact that it expresses 
each entry in the product C as a smooth (i.e. continuously differentiable) 
function (in fact as a quadratic polynomial!) of the 2n 2 entries of A and B. 
In other words (and restricting attention to GL(n, IR)) matrix multiplication 
defines a smooth map of the direct product: 

GL(n, IR) x GL(n, IR)--> GL(n, IR), 

where (A, B) ~----> AB. 
If we introduce the Euclidean metric into the space M(n, IR), taking the 

co-ordinates a} as Euclidean, then the square of the norm of a matrix A will 
be given by 

IA12 =I laW, A =(a}), (3) 
i, j 

and we shall of course have the triangle inequality: 

lA + Bl s lA I+ IBI. (4) 

With respect to multiplication of matrices this Euclidean norm behaves 
analogously: 

14.1.1. Lemma. For all A, BE M(n, IR), we have 

IABI s !AliBI. (5) 

PRooF. It is easy to check (by expanding the right-hand side) that for any 
2m real numbers x 1 , ... , xm; y 1 , ••. , Yrn• 

Hence 

from which (putting m = n2 ) the lemma follows. 

(6) 

D 

We shall now construct another useful (local) co-ordinate system in a 
neighbourhood in GL(n, IR) of the identity matrix 1. To this end consider 
first the open unit ball! X I < 1, X = (x}), in the space M(n, IR) of all matrices 
X. 

14.1.2. Lemma. If I X I < 1, then the matrix A = 1 + X is invertible, i.e. 

A = 1 + X E GL(n, IR). 
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PROOF. We first show that the matrix series 

B = 1 - x + X 2 - X 3 + ... (7) 

converges (in our Euclidean norm). Using the inequalities (4) and (5) we have 

IXm _ xm+ 1 + xm+2 _ ... ±Xm+k-1l 

1 IX lk 
::;; I xm 1·11 + I X I + ... + I X lk- 1 I = I X lm 1 - I X I 

Hence if I X I < 1, the sequence of partial sums of the series is a Cauchy 
sequence, and therefore converges (in our norm). It follows that the n2 series 
formed from the entries in the terms of (7) all converge, so that B is well
defined as a matrix. In fact, more generally, the space M(n, IR) is complete 
with respect to our norm: every Cauchy sequence has a limit. Hence 

AB = (1 + X)(l - X + X 2 - X 3 + · · ·) = 1, 

so that A- 1 = B, completing the proof. 0 

We shall now define co-ordinates on the neighbourhood in GL(n, IR) of 
the identity consisting of all matrices A satisfying 

IA-11<1. 

(By Lemma 14.1.2 all such A are in GL(n, IR).) Thus if A = (a), then its n2 

co-ordinates x~ are taken to be 

where, as usual, 

x~(A) = a~ - 6~, 

. {1 fori = j, 
6] = 0 for i i= j. 

(8) 

Thus in particular the co-ordinates of the identity matrix are all zero: 
x~(1) = 0. 

Remark. Using this co-ordinatization of a neighbourhood of the identity, 
we can define co-ordinates in a neighbourhood in GL(n, IR) of any point 
B0 E GL(n, IR) as follows. The neighbourhood of B0 in question consists 
of all matrices B satisfying 

IB-Boi<IBo 1 l- 1 - (9) 

By multiplying both sides of (9) on the left by 1 B0 1 1 and using Lemma 
14.1.1, we see that for such B, IB01 B- 11 < 1, i.e. B0 1 B is in the above
defined neighbourhood of the identity. We then define the co-ordinates of 
B to be those of B0 1 Bin our above co-ordinatization of the neighbourhood 
of the identity; in other words, if B0 1 = (c~), B = (b~), then the co-ordinates 
y~ of Bare given by 

(10) 
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In particular yiB0 ) = 0. In this way we can define local co-ordinates around 
any point. 

We now return to our initial co-ordinatization of the matrics in M(n, ~) 
by their entries. In terms of these co-ordinates, GL(n, ~) is a region of the 
space M(n, ~).It turns out that there is a natural identification of the tangent 
space of the group GL(n, ~) at the identity, with the space of all matrices of 
degree n. To see how this arises (and to see what the tangent space is), con
sider an arbitrary curve A(t) in GL(n, ~) (i.e. a family of matrices A(t) 
depending on the parameter t), which passes through the identity when t = 0 
(i.e. A(O) = 1). The tangent or velocity vector to this curve at t = 0 is the 
matrix 

A(t)lt=O• (11) 

and the tangent space is the vector space spanned by all such matrices. 
On the other hand, let X be any (constant) matrix of degree n. Then by 
Lemma 14.1.2 the curve A(t) = 1 + tX lies in GL(n, ~),provided we restrict 
the domain of values of t to a sufficiently small interval about 0. Since, 
obviously, A(O) = 1, A(O) = X, it follows that every matrix X occurs in the 
form (11), i.e. occurs as a tangent vector at the identity. Hence the tangent 
space to GL(n, ~)at the identity, coincides with the vector space M(n, ~). 

Most of the transformation groups which we considered in §§4, 6 were 
defined by equations which singled out the relevant matrices from within 
the space M(n, ~) of all n x n matrices over ~- From our present point of 
view therefore, we may regard these transformation groups as surfaces in 
the space M(n, ~). 

To begin with, consider the group SL(n, ~). It is defined in M(n, ~) by 
the single equation 

det A= 1, 

so that in our present context it is a hypersurface in the n2-dimensional 
space M(n, ~),lying entirely in the region GL(n, ~). (Here we are regarding 
the matrices in M(n, ~)as co-ordinatized by their entries.) 

14.1.3. Theorem. The points of SL(n, ~)form a non-singular surface in the 
space M(n, ~). 

PROOF. Let x}, i,j = 1, ... , n, be the entries (or co-ordinates from the other 
point of view) of a general matrix A E M(n, ~),and write f(x}) = det A - 1. 
(Hence f is a function of n2 variables.) Then by definition (see the end of 
§7.1), non-singularity of the hypersurface f(x}) = 0 means that at every 
point of the hypersurface grad f # 0. Now ~fjox} ( =(o det A)/ox}) is just 
the cofactor of x~ in the matrix A, so that if grad f is zero at some point 
(i.e. matrix), then all co factors of that matrix will be zero, and the matrix will 
not be invertible. Hence at any matrix A satisfying det A = 1, we must have 
grad f # 0, as required. 0 
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The truth of this theorem is also revealed by the fact that the tangent 
space to the hypersurface SL(n, ~)at the identity (and therefore at any point), 
has dimension n2 - I (see end of §7.2). This follows from the fact that this 
tangent space coincides with the subspace of all zero-trace matrices. To see 
this, let A(t) be a curve in SL(n, ~)passing through the identity when t = 0; 
i.e. such that det A(t) = I, A(O) = I. It is easy to verify that 

0 = dd det A(t) I = tr(!!__ A(t)) I . 
t t = 0 dt t= 0 

Hence the tangent vector A(O) has zero trace. Conversely if X is any matrix 

with zero trace, then for the curve A(t) = I + tX, we have 

det A(t) = det(l + tX) = 1 + t(tr X)+ o(t) = 1 + o(t). 

Hence this line is tangent to the hypersurface at the 'identity (when t = 0), 

so that its direction (i.e. tangent) vector at t = 0, namely X, is in the tangent 
space to SL(n, ~) at the identity. 

We now consider the group O(n) of orthogonal matrices of degree n. This 
group is defined as a surface in ~"2 by the equations 

I aiai = c5ij, or AAT = I, A = (aj). (12) 
k 

Among these n2 equations there are duplications, obtained by interchanging 
the indices i, j. After discarding these we are left with n(n + I )/2 equations. 
It turns out that O(n) is also a non-singular surface in the space M(n, ~).To 
prove this one might show that if the n(n + 1 )/2 defining equations of 
the surface O(n) are written as tj(a~) = 0, 1 S: i S: j S: n, where 

fij(a~) = I aLa{ - (jij, 
k 

then the n2 x n(n + 1)/2 matrix with entry ~f'ij/oa~ in the (i,jth column and 
(h, l)th row, has rank n(n + 1)/2 at every point of O(n) (see the definition 
immediately following (13) of §7.2). This is feasible since 

ofij . . . 
~ = 0 If h #- l,J, 
ua1 

but we shall not pursue it. We shall instead prove that the tangent space to 
the surface O(n) at the identity, has dimension n(n - 1 )/2 = n2 - n(n + 1 )/2; 
by the comment concluding §7.2 this is a geometrical indicator of non
singularity. 

We shall in fact show that the tangent space to O(n) at the identity co
incides with the space of all skew-symmetric matrices. As before we let 
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A(t) be a curve in O(n) passing through the identity when t = 0; i.e. A(O) = 1. 
By Lemma 5.3.1, under these conditions the matrix 

is skew-symmetric, i.e. 

XT +X= 0. 

Conversely, if X is any skew symmetric matrix, then for the curve A(t) = 
1 + tX, we have 

A(t)AT(t) = (1 + tX)(l +tXT) 

= 1 + t(X + XT) + o(t) = 1 + o(t), 

so that, as in the case of SL(2, IR) above, the line A(t) is tangent to the surface 
O(n) at the identity, whence X is in the tangent space to O(n) at the identity. 
It is clear that the subspace of M(n, IRO consisting of all skew-symmetric 
matrices has dimension n(n - 1)/2, since each such matrix is specified by 
its n(n - 1)/2 above-diagonal entries. 

It follows from the non-singularity of O(n) that its connected component 
SO(n) is also a non-singular surface in the space M(n, IR). 

14.1.4. Example. Consider the group S0(3) of rotations of Euclidean 3-
space. One system of local co-ordinates for this non-singular surface is 
provided by the "Euler angles" (perhaps familiar to the reader from analytic 
geometry), which one associates with a rotation as follows. A rotation 
moving the co-ordinate frame x, y, z to the position of the frame x', y', z' 
(as shown in Figure 17), can be achieved by carrying out in succession the 
following three rotations: 

(i) the rotation through angle <p about the z-axis, bringing the x-axis into 
coincidence with the "nodal line," i.e. the line of intersection of the 
(x, y)-plane and the (x', y')-plane; 

;c 

~ I 
nod/llinc 

I 

Figure 17 
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(ii) the rotation through angle e about the nodal line, which takes the z-axis 
into the z'-axis; 

(iii) the rotation through angle t/1 about the z' -axis taking the nodal line into 
the x' -axis. 

Another co-ordinatization of S0(3) is obtained in the following way. 
Each rotation of Euclidean 3-space is determined by its axis of rotation, and 
the angle <p, 0 :s;; <p :s;; n, through which the space is rotated about that axis. 
If from the two possible directions of the axis of rotation, we choose the one 
for which the rotation through <p is counter-clockwise, then our element of 
S0(3) is completely specified by the vector ifJ whose direction is that chosen 
for the axis of rotation, and whose magnitude I ifJ I is <p. (This is of course 
essentially the usual way of construing rotations as vectors.) Thus to each 
point of S0(3) we have associated a point of the (closed) ball of radius n, 
namely the tip of the vector ifJ (when its tail is at the centre of the ball). This 
correspondence is not one-to-one since diametrically opposite points of the 
surface of this ball correspond to rotations through n about the same axis 
but in opposite directions, and these rotations define the same element of 
S0(3). With this co-ordinatization, the identity of S0(3) corresponds to the 
origin (i.e. centre of the ball), and the tangent space to S0(3) at the identity, 
corresponds to the whole 3-dimensional vector space. (We leave the verifi
cation of this to the reader.) 

We now turn our attention to the complex transformation groups. The 
group GL(n, C) is a region of the space M(11, C) of all matrices (i.e. in the 
space C"2 of dimension n2 ), or, from the real point of view, of the space IR 2" 2

• 

The group SL(n, C) is a complex hypersurface of dimension 112 - 1 (or of 
dimension 2112 - 2 in IR 2" 2

). As in the real case, the tangent space to SL(n, C) 
at the identity coincides with the vector space of (complex) zero-trace 
matrices. 

We shall now consider the unitary group U(11). This group is defined in 
M(11, IC) by the equations 

n 

Pi(A) = L aial = Jii, or AAT = 1 (where A = (a~)). (13) 
k=l 

It follows that ojiijoal ¥= 0, so that Jii is not analytic. Hence the group U(11) 
is not a complex surface (see the beginning of §12.3). However as a surface 
in IR2" 2

, defined by a set of real equations equivalent to (13) (there remain 11 2 

such equations after discarding the obviously redundant ones-see below), 
it turns out to be non-singular. We again omit the details (which the reader 
may like to attempt to supply, along previous lines). 

We shall, however, establish the real dimension of the tangent space to 
U(n) at the identity, as being 2n2 - n2 = n2• Note first that each equation 
Jii = Jii gives rise to the two real equations 

Imjii = 0. (14) 
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Now since pi = Jii (by inspection of (13)), the equations pi = 0 and fii = 0 
are equivalent when i # j. This and the fact that the equation Imp; = 0 is 
automatically fulfilled (since Lkaiai is real), together imply that we may 
discard [2n(n - 1)]/2 + n = n2 of the equations (14), leaving 2n2 - n2 = n2 

real equations defining the surface U(n). Let A(t) be a curve in U(n) with 
A(O) = 1. Then by an argument entirely similar to that in Lemma 5.3.1, it 
follows from the conditions that A(t) _AT(t) = 1 and A(O) = 1, that 

X+ _XT = 0, (15) 

where X = dAjdt lr=o. We call matrices X satisfying (15) skew-Hermitian. 
It can be shown (much as before) that, conversely, every skew-Hermitian 
matrix X is in the tangent space to U(n) at the identity, so that the tangent 
space coincides with the space of all skew-Hermitian matrices. Since a 
skew-Hermitian matrix (x~) is determined by specifying the n2 real numbers 
(Cartesian co-ordinates) (1/i)x~, k = 1, ... , n; Rex~, Im x~, 1 ~ i < j ~ n, 
it follows that the tangent space has dimension n2 , as claimed. 

It follows from the non-singularity of U(n) that its subgroup SU(n) con
sisting of the unitary matrices with determinant 1, is also a real non-singular 
surface in IR 2" 2

• Its dimension is n2 - 1, and its tangent space at the identity 
coincides with the space of all skew-Hermitian matrices with trace zero. 

14.1.5. Example. Consider the group SU(2). In §11.3, we saw that the matrices 
in SU(2) are just those of the form 

If we write a = x + iy, b = u + iv, it is clear that the equation 1 a 12 + 1 b 12 = 1 
is just the equation of the 3-dimensional sphere of radius 1 in the 4-dimen
sional space co-ordinatized by x, y, u, v. 

14.2. The Exponential Function with Matrix Argument 

Let T denote the tangent space to the group GL(n, IR) at the identity. We 
define a map 

exp: T-+ GL(n, IR), exp(O) = 1, 

from this tangent space to the group itself, by setting 

x X 2 

exp X = 1 + 1! + 2 ! + · · · , 

(16) 

(17) 

for any matrix X. (This definition of exp X is intended to embrace complex 
X also.) 
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14.2.1. Lemma. (i) The series (17) converges for all matrices X (real or 
complex). 

(ii) If the matrices X, Y commute, i.e. XY = Y X, then 

exp(X + Y) = (exp X)(exp Y). 

(iii) For all matrices X, the matrix A = exp X is invertible, and 

A- 1 = exp(- X). 

(iv) For all X, exp(XT) = (exp X?. 

(18) 

(19) 

PROOF. Note first that since the realization map is an algebra monomor
phism from M(n, IC) to M(2n, IR), it suffices to prove the lemma for real 
matrices. 

(i) Using the inequalities (4) and (5), we have, for any real matrix X, 

l
xm xm+l xm+k-1 I IXIm IXIm+k-1 
-;;;! + (m + 1)! + ... + (m + k- 1)! :-:::;--;;:;! +. · · + (m + k- I)!· 

Since the series 

x2 
1+x+-+··· 

2! 

converges for all numbers x (to ex), it follows that the series (17) is Cauchy 
in the Euclidean norm, so that the norms of the partial sums of the series 
(17) tend to a limit. As mentioned before, it is then clear that the entries in 
the (matrix) partial sums of the series (17) each tend to a limit. This proves (i). 

(ii) Using the permutability of X and Ywe have: 

L - L ~· xkyz = I -ex+ nrn 00 1 ( ml ) ro 1 
m=O m! k+l=m k! I! m=O m! 

= exp(X + Y). 

(iii) This follows from (ii) since X and Y = -X commute, and exp(O) = 1. 
Since (iv) is obvious, the proof of the lemma is complete. D 

Now let G be any one of the matrix groups considered in the previous 
subsection (i.e. G = SL(n, IR), O(n), U(n), etc.), and let Tbe the tangent space 
toG at the identity, in the appropriate space (IR" 2 or IR 2 " 2

). We shall show that 
exp always maps T to G. 

14.2.2. Lemma. (i) JfG = SL(n, IR) and X E T, i.e. tr X = 0, then A = exp X E 

SL(n, IR), i.e. det A = 1. 
(ii) JfG = O(n) and X E T, i.e. X is skew-symmetric, then A= exp X E O(n), 

i.e. the matrix A is orthogonal. 
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(iii) If G = U(n) and X E T, i.e. X is skew-Hermitian, then A = exp X E U(n), 
i.e. the matrix A is unitary. 

PRooF. (i) Let X have zero trace, and consider the family of matrices 

A(t) = exp(tX), 

where tis a parameter. By part (ii) of Lemma 14.2.1, we have 

A(t1 + tz) = A(tl)A(tz) 

(since the matrices t 1X and t2 X commute). Write f(t) = det A(t). Then 
f(t 1 + t 2 ) = f(t 1)f(t2 ). It is known that the only solution of this functional 
equation is f(t) = ect (at least under suitable conditions on f, which are 
here ensured by the definition of f). We shall show that the constant c = 0. 
Now 

f(t) = det exp(tX) = det(1 + tX + o(t)) = 1 + t(tr X) + o(t); 

thus since tr(X) = 0, we have 

c = df I = lim f(h) - f(O) = lim 1 + o(h) - 1 = O. 
dt t=O h~o h h~o h 

Hence det A(t) = 1; so, in particular, det A = 1. 
(ii) Suppose X is skew-symmetric, i.e. XT = -X. Then X and XT com

mute so that, putting A = exp X. we have by parts (ii) and (iv) of 14.2.1, 

AAT = (exp X)(exp Xf = exp(X + xr) = 1, 

whence A E O(n), as required. 
(iii) Finally, suppose X is skew-Hermitian, i.e. _XT = -X. Then appealing 

to parts (ii), (iv) of 14.2.1 we have (setting A = exp X): 

AAT = (exp X)(exp X)T = (exp X)(exp X? 
= (exp X) exp(XT) = exp(X + _XT) = 1. 

(We have used here also the easy fact that exp X = exp X.) Hence A is 
unitary, and the proof of the lemma is complete. 0 

As for SL(n, IR), so for any group G of unimodular matrices will the tangent 
space T at the identity consist of zero-trace matrices. Hence by mimicking 
the proof of part (i) of the above lemma, we shall have that for all X E T, 
det(exp X) = 1. This proves the 

14.2.3. Corollary. For G = SO(n). SU(n). we also have exp(X) E G whenever 
XET. 

14.2.4. Lemma. In some neighhourhood of the origin (the zero matrix of 
M(n. IR)), the map exp is one-to-one. 
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PRooF. By the Inverse Function Theorem (1.2.5), it suffices to show that the 
Jacobian of the mapping exp (from IRn 2 to itself) is non-zero at 0. Write 
X = (xD, and A = exp X = (a~). It is easy to see from the definition of exp 
X, that 

where the (infinitely many) terms represented by the dots become zero if we 
put X = 0. (In fact they are all monomials of positive degree in the x}.) 
Hence the n2 x n2 Jacobian matrix of the transformation exp is 

where the rows are indexed by the pairs (k, I) and the columns by the pairs 
(i, j). Since this is just the identity matrix of degree n2 , the lemma follows. 0 

Lemmas 14.2.2 and 14.2.4 (and Corollary 14.2.3) allow us to use the map 
exp to define another useful local co-ordinate system in a neighbourhood 
of the identity of each of our matrix groups G, namely the Cartesian co
ordinates (i.e. entries) of the matrices in a neighbourhood ofO in the tangent 
plane T. Thus (to be explicit) the co-ordinates x} of a matrix A in a neighbour
hdod of 1 of G on which the inverse function (In) of exp exists, are given by 

. . [ (A - 1)2 (A - 1)3 ]; 
xj(A) = (In A)j = (A - 1) - 2 + 3 - · · · i. (20) 

Note that as a mapping from Tto G, exp need not be one-to-one. It may 
also fail to map Tonto G-see Exercise 3 below. 

Remark. Let T be, as usual, the tangent space to the matrix group G at the 
identity, and consider a straight line in T passing through the origin, i.e. a 
family of matrices tX, where t is a parameter taking all values in IR, and X 
is fixed. Then the family of matrices A(t) = exp(tX) forms a one-parameter 
subgroup of G. That this family is indeed a group follows from 

A(s)A(t) = A(s + t), A(O) = 1, 

A( - t) = A- 1(t). 
(21) 

For instance in the group S0(3), the subgroup of rotations about a fixed 
axis is a one-parameter subgroup. In this case A(t + 2n) = A(t). If the 
fixed a:~ds is for example the z-axis, then 

( 
cost 

A(t) = - ~n t 

sin t 

cost 

0 

0) ( 0 1 0) 0 = exp t - 1 0 0 . 
1 0 0 0 
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14.3. The Quaternions 

The set IHI of quaternions consists of all linear combinations 

q E IHI, q = a + bi + cj + dk, (22) 

where the coefficients a, b, c, dare real, and 1, i,j, k are linearly independent. 
(Alternatively, write q =(a, b, c, d), i = (0, 1, 0, O),j = (0, 0, 1, 0), k = (0, 0, 0, 1).) 
We introduce a multiplication in IHI by defining how i, j, k multiply among 
themselves: 

ij = k = - ji, jk = i = - kj, ki = j = - ik, 

i2 =/ = p =- 1, 
(23) 

and then extending the definition to all of IHI using the distributive law 
(assuming that those quaternions with b, c, d = 0 are central, i.e. commute 
with all quaternions). It is easy to see that with this definition of multiplica
tion (and the usual addition of linear combinations), IHI is an associative 
(but not commutative) algebra over the field of real numbers. The following 
lemma tells us that this algebra is isomorphic to a subalgebra of M(2, IC). 

14.3.1. Lemma. For each quaternion q = a + bi + cj + dk, define A(q) E 

M(2, IC) by 

A(q) = ( a + b~ c + d~) . 
-c + dz a- bz 

(24) 

(Nate that we may identify the two roles played by the symbol i !) Then the map 
q r--. A(q) is one-to-one, and 

(25) 

so that this map is an algebra monomorphism (since it is obviously also linear). 

PROOF. We shall verify only (25), as the rest of the lemma is trivial. However, 
once it is pointed out that (25) needs to be verified only for q1, q2 = i,j, k, 
this part also becomes obvious. Thus 

A(i) = (~ ~)' -I A(j) = (-~ ~), A(k) = (~ 

so that A(i)AU) = A(k), and similarly for the other products. D 

Remark. The matrices 

(Jx = - iA(k), ay = - iA(j), (Jz = - iA(i) (26) 

are often called the Pauli matrices. They satisfy 

(27) 
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We define an operation of conjugation on IHl by 

q = a - bi - cj - dk (for q = a + bi + cj + dk). (28) 

14.3.2. Lemma. The map q r--+ q is an anti-isomorphism of the algebra IHI, i.e. 
it is linear, and 

q1qz = iizii1· 

PROOF. The lemma follows immediately from 14.3.1, the fact that 

A(q) = iF(q), 

(29) 

(30) 

and the fact that the map A r--+ AT is an anti-isomorphism of the matrix 
algebra M(2, C). (Alternatively, it may easily be verified directly.) D 

We define the (Euclidean) norm I q I of a quaternion by 

lql 2 = qq = a2 + b2 + c2 + d2 (for q =a+ bi + cj + dk). (31) 

From this it follows that if lql 2 # 0, i.e. q # 0, then q(q/lql 2 ) = 1, so that 
each non-zero quaternion q has multiplicative inverse q- 1 = q/lql2 • We 
formulate this as a 

14.3.3. Lemma. The algebra IHl of quaternions is a division algebra; i.e. for 
each non-zero quaternion q there is a quaternion q- 1 inverse to it: 

qq-1=1, 

From (24) it is immediate that for all quaternions q 

I q 12 = det A(q), 

whence 

(32) 

(33) 

From (33) we deduce that the set of quaternions with norm 1 forms a group 
under multiplication; we shall denote this group by IHI 1. From (31) it follows 
that for q E IHI 1, we have q- 1 = q. 

If we regard IHl as a 4-dimensional space with co-ordinates a, b, c, d, then 
IHI 1 is the hypersurface defined by the equation 

az+bz+cz+dz=lqlz=1, (34) 

i.e. IHI 1 is just the 3-sphere in IR 4 . Thus as a surface in IR 4 , IHI 1 is familiar to us. 
From the group-theoretical point of view it is also familiar, since, as we shall 
now see, as a group IHI 1 is isomorphic to SU(2). Thus let q =a+ hi+ cj + 
dk E IHI 1, and put x =a+ bi, y = c + di. Then in terms of x and y, A(q) 
takes the form 

A(q) = = ( a + bi c + di) = ( x }x~) . (35) 
-c + di a- bi - y 
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Moreover, since I q 12 = 1, we have I x 12 + I y 12 = 1. It follows that (35) 
defines an isomorphism between IHI 1 and SU(2) (see §11.3(24)). 

We shall now use this fact (that IHI 1 ~ SU(2)) to give an alternative proof 
of Corollary 13.2.2 (which states that S0(3) ~ SU(2)/ { ± 1 }). 

To begin, let IHI 0 denote the 3-dimensional space consisting of all quatern
ions x satisfying the condition x = -x, i.e. with real part zero. We turn this 
space into Euclidean 3-space by equipping it with the above-defined norm. 
We then have lx 12 = xx = -x2• We shall need the following fact. 

14.3.4. Lemma. /flql 2 = 1, then the transformation defined by 
-1 aq : x 1--+ qxq , 

is a rotation of3-dimensional Euclidean space IHI 0 = IR 3. 

PRooF. Since x = -x and q = q-1, we have (using 14.3.2) that 

qxq-1 = ii-1xq = -qxq-1. 

(36) 

Hence the map aq sends IHI 0 to itself. Since I qxq- 11 = I xI, i.e. the lengths of 
vectors in IHI 0 are preserved, it follows that aq is a isometry of IHI 0 • Finally, 
writing q = a + bi + cj + dk, we see that if q = a(i.e. b = c = d = 0) then 
aq is the identity map, while if q # a, then (q - a) is fixed by aq. Hence aq 

is a rotation, and the proof is complete. D 

It follows easily that the map q 1--+ aq is a homomorphism from IHI 1 ~ SU(2), 
to the group of rotations of Euclidean 3-space. It is also easy to verify that 
aq is the identity map precisely when q is real, i.e., since I q 12 = 1, when 
q = ± 1. It is not too difficult to verify also that every rotation has the form 
(36) (we leave the details to the reader; to begin with knowledge of the axis 
of rotation may prove useful). The upshot is the promised isomorphism 
S0(3) ~ SU(2)/{±1}. 

The isomorphism IHI 1 ~ SU(2) can also be used to prove that 

S0(4) ~ (SU(2) X SU(2))/{ ± 1}. 

We give an indication only of how this is done. Thus suppose p, q E IHI 1. Then 
the map 

-1 
ap,q: x 1--+ pxq , X E IHI = IR\ (37) 

clearly preserves the quaternion (i.e. Euclidean) norm, so that it is an isometry 
of Euclidean 4-space, and therefore, since it fixes the origin, belongs to 0(4). 
It follows that the map (p, q) 1--+ ap,q is a homomorphism from SU(2) x SU(2) 
to 0(4). It is easy to check that the kernel of this map consists of the pairs 
(1, 1), ( -1, -1) only, so that we have a monomorphism from (SU(2) x 
SU(2))/{±.1} to 0(4). The fact that the ap,q actually lie in S0(4) is a conse
quence of the connectedness of (SU(2) x SU(2))/{ ± 1}, (which follows from 
that of S0(3)), and the fact that the map (37) is continuous and so maps 
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connected sets to connected sets. We omit the proof of the fact that every 
motion in S0(4) occurs as some cxv.q· 

We now turn to the consideration of the n-dimensional quaternion space 
W, with basis e 1, ... , en (e.g. e1 = (1, 0, ... , 0), e2 = (0, 1, 0, ... ,), etc. will 
serve), and co-ordinates ql, ... , q". For this the following preliminary fact 
will be important: Any quaternion q = a + bi + cj + dk can be expressed as 

q = X + yj = X + jy, x =a+ bi, y = c + di, (38) 

where here x andy can be regarded simply as complex numbers. The follow
ing straightforward identity tells us how to multiply two such expressions 
x + yj and u + vj: 

(x + yj)(u + vj) = (x + yj)(u + jv) = (xu - yv) + (xv + yii)j. (39) 

It follows that the space IHI" can be regarded as the 2n-dimensional complex 
space IC 2", with basis el, ... ' en, jel, ... ,jen, and with complex co-ordinates 
x 1, ... , x", i, ... , y", where qk = xk + /j. This is clear from 

(40) 

We now introduce the group GL(n, IHI) of invertible transformations of 
IHI", linear over IHI. Each transformation A E GL(n, IHI) is determined in the 
usual way (relative to the basis e 1, •.. , en) by an n x n matrix (Jc7), whose 
entries Jc7 lie in IHl; thus the co-ordinates q 1, ... , q" transform according to 
the rule 

(41) 

where, since IHl is non-commutative, the order of the factors is important. 
From this and (39), it follows that the corresponding complex co-ordinates 
of IC 2" transform according to the rule 

xk--+ (xi a~ - yllJf) = x'\ 

l-+ (x1bf + iaf> = y'k, (42) 

Jcf = a7 + bU, 
Hence we have that each IHI-linear transformation of the space IHI" corresponds 
one-to-one to (or can be regarded as) a IC-linear transformation of the 
corresponding space IC 2". Thus, as an analogue of the realization map 
(see §11.1(4)), we obtain a group monomorphism 

c: GL(n, IHI) __. GL(2n, C), (43) 

In view of ( 42), the explicit action of this map c on an element A = A + Bj 
of GL(n, IHI) is given by 

c(A) = ( ~ i!_) . 
-B A 

(44) 

(Here the matrix is taken to act on the right of vectors (x 1 , ... , x", y1, ... , y").) 
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Remark. The matrices occurring as images under c can be characterized 
in a manner reminiscent of the characterization (in §11.1) of the images 
of the realization map, namely: The image of GL(n, IHl) under c consists 
of just those 2n x 2n complex matrices which commute with the operator 
J = c(j), i.e. with the linear transformation of C 2" induced by multiplication 
by j. 

We next introduce a form (analogous to the Hermitian form-see 
§11.2(10)) defined on pairs of vectors in IHl" by 

n 

<~1· ~2>~ = L: q~ ii~. (45) 
k=1 

Then the norm of a vector in IHl" is defined, as usual, by 
n n 

1~1 2 = <~. o~ = L: qkiik = L: ll1 2 • (46) 
k=1 k=1 

Writing q = x + yj, we have lql 2 = lxl 2 + l.vl 2 • so that if~ is regarded as a 
vector in C2 ", with components x 1, ... ' x", i, ... ' y", then 

1~1 2 = Dqkl 2 = L:lxkl 2 + D/1 2 • 

i.e. the norm of~ as a vector in C2 " is the usual Hermitian norm (see §11.2(11)). 

14.3.5. Definition. The symplectic group Sp(n) is the subgroup of GL(n, IHl) 
consisting of all invertible IHl-linear transformations of IHl" which preserve the 
form (45). 

In terms of complex co-ordinates the form ( 45) becomes 
n 

<~1• ~z>~ = L (x~ + YU)(x~ + Aj) 
k=1 

(47) 

From this it follows that the transformations in Sp(n) are just those pre
serving the Hermitian form on C 2", given by 

n 

<;; ~'> 'ck-k k-k> S1• s2 c = L. X1X2 + Y1Y2' 
k=1 

and also the skew-symmetric form Lk (y1x~- x~y~). In other words, c(Sp(n)) 
consists of those unitary transformations of C2" (i.e. elements of U(2n)), 
which preserve the above skew-symmetric form. 

We end the section by sketching a proof of the fact that S p( 1) is isomorphic 
to SU(2). From the preceding paragraph we know that c(Sp(l)) is that sub
group of U(2) consisting of those matrices preserving the form y 1 x 2 - x 1y 2 . 

But since this is just the area of the complex parallelogram in C2 having as 
sides the vectors (x 1, y 1), (x2 , y 2 ), it follows that c(Sp(l)) consists of just the 
unimodular matrices in U(2). 
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Alternatively this isomorphism can be inferred directly by simply showing 
that the unitary matrices which preserve y1x2 - x1y2 , are precisely those 

of the form ( _ ~ :) where 1 a 12 + I b 12 = 1; the isomorphism then follows 

from the fact that this also characterizes the matrices in SU(2) (see §11.2(24)). 

14.4. Exercises 

1. Prove that the groups GL(n, C), U(n), Sp(n) are connected (see §4.4). 

2. Prove the formula 

det(exp X) = e"x 

where X is any complex matrix. 

3. Show that the image under exp of the tangent space to SL(2, IR) at the identity, is 
not the whole of SL(2, IR) (see Lemma 14.2.2(i)). 

4. Determine the tangent spaces at the identity, of the groups U(n), SU(n), SO(p, q), 
SU(p, q). 

5. Determine all one-parameter subgroups of SL(2, IR). 

§15. Conformal Transformations of Euclidean and 
Pseudo-Euclidean Spaces of Several Dimensions 

Suppose we have two metrics g~p and g~p defined on a region U of the space 
IR" with co-ordinates x 1, ... , x". We are interested in the situation where 
these metrics differ only by a (variable) factor, i.e. g~p(x) = A.(x)g~p(x), for 
some real-valued function A.(x) > 0. In this situation we shall say that the 
two metrics define the same conformal structure on the region U, or are 
conformally equivalent. Thus a metric g;p(Y) given to us in terms of co
ordinates yl, .. , y", is conformally equivalent to g~p(x), if after expressing 
the two metrics in the same co-ordinates (x or y), they differ only by a factor 
A.(x) = A.(x(y)), i.e. if they are proportional (in an extended sense of that 
word). 

15.1. Definition. A map cp from the region U with metric g~p relative to 
co-ordinates x 1, ... , x", to a region V with co-ordinates y 1, ... , y", is said 
to be conformal, if the metric g~p = (oxkjay~)gk 1(ox1joyP) is proportional to 
the original: 

A. = A.(x) > 0. (1) 

In this section we shall be concerned only with the Euclidean and pseudo
Euclidean metrics on IR". We shall moreover suppose that the co-ordinates 
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x 1, ... ' xn for !Rn are Euclidean (i.e. gij = {jij), or pseudo-Euclidean (i.e. 
gij = 0 for i ¥- j, g;; = 1 for 1 ~ i ~ p, 9;; = -1 for p < i ~ n), as the case 
may be. Among the latter the case p = 1, q = n - 1 (i.e. Minkowski space 
IR~. n _ 1) will be of particular interest for us. 

We wish to find all conformal transformations of the above spaces. It is 
clear from our investigations in §§4, 6 of the isometry groups of Euclidean 
and pseudo-Euclidean spaces, that the only conformal transformations 
of these spaces that are linear, are as follows: 

(i) the isometries, forming the groups O(n) or O(p, q); A(x) = 1; 
(ii) the dilations x H AX, A = const.; 

(iii) more generally, combinations of dilations and isometries: x H AA(x), 
A E O(n) or O(p, q), A = const. 

As well as these, we also have the translations (also isometries) x H x + x 0 . 

These (and their composites) account for all the "obvious" conformal 
transformations. However there are others, namely the inversions 

(iv) 
x"- x~ 

x"-+~------~----
<x- x 0 ,x- x 0 )' 

(2) 

where the denominator is just the scalar square defined by the metric in 
question, i.e. 

<x- x0 , x- x0 ) = (x"- x~)(xP- xg)g,p(x). 

Note that the map (2) is not defined for x = x 0 ; we can however remove this 
defect by adjoining to !Rna point "at infinity" to serve as image of x 0 . 

To see that (2) defines a conformal transformation, observe first that if 
we write y for the image of x under (2), then assuming g,p = c5,p, we have 

L (/)2 = <x- x 0 , x- x 0 )- 1, 
k=l 

provided that x ¥- x 0 . Hence 

a y" a 
x = L (/)2 + Xo. 

From this we can calculate ox" joy1, and thence in turn g~p. After this computa
tion, it turns out that indeed the map (2) is conformal, with 

A(x) = <x - x0 , x - x 0 ) 2 . 

Let us now consider the conformal transformations of !Rn, ~R;,q for various 
n. For n = 1 all maps trivially qualify as conformal. The case n = 2 is 
covered by Lemma 12.3.4, according to which conformality of a transforma
tion u + iv = w = f(x, y) is essentially equivalent to analyticity. Thus for 
n = 1, 2, we have a large variety of conformal transformations. However 
for n ~ 3, the situation is radically different, as the following theorem shows. 
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15.2. Theorem (Liouville). EFery sufficiently well-behaved conformal trans
formation of a region o{ Euclidean (pseudo-Euclidean) space of dimension 
:2:: 3, is a composite of isometries, dilations and inversions. 

(For the purposes of this theorem, the transformation is certainly "suffi
ciently well-behaved" if its fourth-order derivatives are continuous.) 

PROOF. We give the proof for n = 3 only, indicating at its conclusion how it 
can be augmented to yield the general case (and to provide for this, we shall 
throughout use the symbol n rather than 3). We shall assume also that the 
metric is Euclidean (with Euclidean co-ordinates x 1, •.• , x"), since the proof 
in the pseudo-Euclidean case is essentially the same. 

Thus let y" = y"(x 1, ... , x") be a (sufficiently well behaved) conformal 
transformation from a region U to a region V, both in IR". (We may regard 
this transformation as a change of co-ordinates for U.) Let ~' 1J be any two 
vectors at the (arbitrary) point (x 1, ... , x") of U, with components~~, ... , ~~ 
and IJ.~, ... , '1~ respectively, relative to the system x, and components 
~!, ... , ~~ and '1!, ... , '1~ respectively, in the co-ordinates y. Then in view 
of the conformality of our transformation, we have by (1) that 

(3) 

Hence if g,p~~IJ~ = 0 (i.e. if<~. '1) = 0), then since A.(x)-:/= 0, we shall have 
also g a/3 ~~ IJ~ = 0, i.e. ( ~~) and ( '1~) are othogonal regarded as vectors expressed 
in the system x (which is in any case the only co-ordinate system for IR" 
involved). Since by Definition 2.2.1 (or earlier), (~~) = A(~~), (IJ~) = A(IJ~), 

where A is the matrix (oyijoxi), it follows that if the vectors(~~) and (IJ~) are 
orthogonal, then so also are the vectors A(~~), A(IJ~), regarded as vectors 
expressed in the system x. 

Now let 1J 1 = CIJn, IJz = (1]2), 1] 3 = (1]'3) be any three fixed, mutually 
orthogonal vectors at the (arbitrary) point (x 1, .•• , x") of U. By the above, 
it follows that then the three vectors A(IJ~), A(IJ~), A(IJ~) are also mutually 
orthogonal; we write them briefly as AIJ 1 , AIJ 2 , A1J 3. Differentiating 
(AIJ 1, A1J 2 ) = 0 with respect to xr, we obtain (using the fact that the scalar 
product is the usual Euclidean one): 

a I azy ) I azy ) 
0 = oxY (AIJl, AIJz> = \axP oxY IJ1, Al]z + \ AIJi, axP oxY IJ~ ' 

whence, multiplying by IJ1 (and summing over y), we get 

I__!]___ [3 y A ) I A az y [3 y) - 0 
\axPaxyiJiiJ3, IJz +\ IJi'axPox'IJziJ3 -. (4) 

By permuting the indices 1, 2, 3 in (4), we obtain altogether three such equa
tions. By adding the appropriate two of these, and subtracting the third, 
we arrive at 

(5) 
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(and again we obtain from this two further such equations by permuting the 
symbols I, 2, 3)0 

Since n = 3, and Ary 1, Ary2 , Ary3 , are mutually perpendicular, it follows 
from (5) that 

0:r2~yP 11~1'/g = ,u(x)(Ary 1) + v(x)(Ary2)o (6) 

From this we obtain the following expressions for the coefficients .u and v: 

1 I o2y ) 
v = rA.I'/212 \oxY oxP 11il11. Ary2 0 

(7) 

Since by (3) we have 117 1 12 = A.(x)IAry 1 l2 , we can rewrite (7) as 

.u = 117~ 1 2 D 112 0~, (Ary~> A111> J 

= 117:12 D 172 o~a (11/;:) J = -;A 112 :~a' (8) 

1 a ()), 

v = - 2..1. I'll ox" 0 

Substituting these expressions for .u and v in (6) (and rewriting), we obtain 

o2 y r P _ 1 ( oA. oy P r oA. oy p r) 
ox' oxP 1'/ 11'/ 2 - - 2..1. ox' oxP 1'1!1'12 + oxP ox' 1'1!1'12 0 

(9) 

If we write p = .}):, then 

o2(py) op oy op oy o2y o2p 
ox' oxP = ox' oxP + oxP OX 1 + pox' oxP + y ox' oxP 

- _1_ (~ !!Y___ + ~ !!Y___ + 2A ~) + y o2 p - 2fl OXY OXP OXP OXY ox' OXP ox1 oxP 0 

From this together with (9) it follows that 

02 ( y P) - ( ()2 p y P) 
oxY ()xP PYI'/1112 - ()xY oxP 1'111'12 y. (10) 

Differentiating this equation with respect to x'\ and then multiplying through
out by 17~ and summing over the index 6, we get 

(11) 
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Since the first and last of the three expressions in (11) are invariant under 
permutations of the indices 1, 2, 3, so must also the middle expression; hence 
in particular 

Since none of A1] 1, A1] 2 , Af/ 3 is zero (the Jacobian of our transformation 
being assumed non-zero, at least at the point we are considering), their 
mutual orthogonality implies that 

o2p y /j - 0 
OXY 0X0 fiJIJ 2 = ' 

(12) 

i.e. the bilinear form (12) is zero for any pair of orthogonal vectors. It follows 
easily (by considering (12) for various particular orthogonal f/ 1, f/ 2 ) that the 
coefficient matrix of such a form must be scalar, i.e. a multiple of the identity. 
Hence 

i]2p 
iJxYiJxo = a(x)gyo· (13) 

We shall now show that in fact a(x) = const. Let ~ 1 , ~ 2 , ~ 3 be any fixed 
vectors (at the point (x1, ... , x")). If we differentiate (13) (keeping in mind 
that the Euclidean metric gyo is constant), and then multiply by ~i ~~ ~~, and 
sum over the repeated indices, we obtain 

o3 p -r ;;P ;;o _ (oa -;·) <- - ) 
iJxYiJxPiJxo.;i-,2'o3- iJx1.s1 s2,<;3 · 

Subtracting this equation from the one obtained by interchanging ~ 1 and 
~2 , we see that 

(14) 

Since ( 14) holds for all vectors ei, it follows that a = con st., as claimed. Hence 

iJ2p {(J 
iJxPiJxY = m5py = 0 

if f3 = )', 
.f f3 a = const. 
1 =f. y, 

One then readily deduces that 

p = fl = allx- Xo 12 + bl, a 1, h 1 const. (15) 

Now since the inverse y f---+ x, from the region V of Euclidean space IR", 
to U, is clearly also conformal (with factor 1/A.(x)), we must have that also 

1 2 
--_ = a2IY- Vol + h2, j.Vx) - a2 , h2 const. (16) 
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From (15) and (16) we obtain 

(a1lx- Xol2 + b1)(a2IY- Yol 2 + b2) = 1. (17) 

From this it follows that our transformation maps (the intersection of U 
with) any sphere I x - x 0 12 = const., to a sphere I y - Yo 12 = const. Now 
take any fixed straight line passing through x 0 and intersecting U, and let 
x 1, x be two points in U on this line, x 1 fixed, x variable, such that the segment 
joining x 1 and x lies entirely within U. Since this straight-line segment is 
perpendicular to all spheres centred at x 0 which intersect it, it follows from 
the angle-preserving property of conformal transformations (namely that 
the angle between two curves in U at their point of intersection is the same 
as the angle between their images in V-this follows immediately from con
formality (and is in fact equivalent to it)) that it must go into a curve in V 
perpendicular to all spheres centred at y0 which intersect it. We conclude 
that the image of the segment x 1x is also a straight-line segment y 1y, say. 
Now since by (17) 

a2IY- Yol 2 + b2 = a2[1y- Y1l2 + 21y- Y1IIY1- .Vol 

+ IY1- Yol 2] + h2 

1 
(18) 

we have that I y - y 1 I is an algebraic function of I x - x0 I· On the other hand 
if we parametrize the segment yy1 by a parameter r, t 1 .::;; r .::;; t, then, using 
Lidy2 ) 2 = (1/A.) L~(dx~)2 , we have that 

ft Mf:Jdy~)2 ft 
I Y - Y 1 1 = L d dr = 

It ~ "[ It 

(19) 

If we choose r to be arc length along the segment x0 x, with t 1 = I x 1 - x0 I, 
t = lx - x 0 I, (19) becomes 

l lx-xol dr ilx-xol dr 
IY- Y11 = - = 2 . 

lxt-xol ~ lx,-xol(aiT +hi) 

However if neither a 1 nor b1 is zero, then this is a transcendental function 
of I x - x 0 I, contradicting (18). Hence either a 1 = 0 or b 1 = 0. 

If a 1 = 0 then A. = const., and our transformation is an isometry followed 
by a dilation. If b1 = 0 (in which case a 1 # 0), then by following the trans
formation y = y(x) with the inversion 

* X- X0 
X = 2' 

lx- Xol 

we obtain (since lx*l = 1/lx- x 0 1) the equation a2IY- Yol 2 = a1lx*l2, 
which brings us back to the preceding case of an isometry followed by a 
dilation. This completes the proof for the 3-dimensional Euclidean case. 0 
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As mentioned at the beginning of the proof, with the obvious minor 
changes the proof holds also for the pseudo-Euclidean case. No major 
changes are required for the proof to go through also for n > 3; the condition 
n = 3 was used only in deducing equation (6) for the triple of mutually 
orthogonal vectors 1'1!, 172, 17 3 . We leave it as an exercise for the reader to 
establish (6) for arbitrary n > 3. This done, we shall have the theorem as 
stated. 

In connexion with this theorem, note finally that it deals with (conformal 
transformations of) regions (by implication perhaps not the whole of IR") of 
Euclidean or pseudo-Euclidean space; as transformations of the whole 
space, inversions have singular points. Thus for the inversion (2), in the 
Euclidean case the only singular point is x = x0 , while if the metric is pseudo
Euclidean, then all points satisfying (x - x 0 , x - x0 ) = 0, are singular, 
i.e. all points of the light cone with apex at x 0 . 

We turn now to the consideration of the group of all conformal trans
formations of a space with metric gap. Clearly this group is the same for all 
metrics differing from gafJ by a scalar factor, i.e. for all metrics of the form 
A(x)gafJ· It follows that we can model the conformal transformations of, in 
particular, the Euclidean metric gafJ = 6afJ• on any space with metric con
formally equivalent to the Euclidean metric, i.e. with metric of the form 
A(x)6,p. For instance then-dimensional sphereS", defined by the equation 

u=O 

can be co-ordinatized in such a way that in terms of these co-ordinates its 
metric is conformally equivalent to the Euclidean metric; for the 2-sphere, 
i.e. for n = 2, we found such co-ordinates in §9. For larger n conformally 
Euclidean co-ordinates on S" (with the "pole" x 0 = 1, x 1 = 0, ... , x" = 0 
removed) can be defined, similarly to the case n = 2, by means of a stereo
graphic projection on the "plane" co-ordinatized by x 1, .•. , x" (S" is situated 
in IR" + 1 with co-ordinates x 0 , ••. , x"). In this way the co-ordinates x 1, ... , x" 
become co-ordinates on the sphere. It follows as in the 2-dimensional case 
that in terms of these co-ordinates the metric induced on S" has (to within a 
constant factor) the form 

(20) 
R = const. 

To obtain the group of conformal transformations of the Euclidean metric 
(in IR"), we may therefore work with the co-ordinates x 1, .•. , x" on S", i.e. the 
group can be regarded as consisting of those transformations of S" generated 
by the elements of O(n), translations, and dilations, all applied to the co
ordinates x 1, ... , x". 

We shall now indicate how the above can be used to show that the group 
of conformal transformations of the Euclidean metric 67 p in IR", is isomorphic 
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to 0(1, n + 1)(:::: O(n + 1, 1)). To begin, note that the sphereS" of radius R 
is the boundary of the (n + I)-dimensional open ball I xI < R, of radius R, 
denoted by D"+ 1. (In symbols S" = oD"+ 1.) On this ball we can define 
(analogously to §10) a metric, the Lobachevskian metric, by 

rz = I (xi)2 < Rz. 
i=O 

(21) 

It can be shown that the isometry group of D"+ 1 with this metric (which we 
call Lobachevsky space, and denote by u+ 1) is 0(1, n + 1) (cf. end of §10.1). 
Clearly O(n + 1) is a subgroup of 0(1, n + 1) (namely the subgroup con
sisting of those transformations fixing x0 and orthogonal on x 1, ... , x" + 1 ). 

Note that, as in the case n = I, the space L n+ 1 can be realized as the quadric 
surface defined by the equation 

n+ I 

(z0)2 - I (za)2 = 1, 
a=! 

situated in the Minkowski space IR~ + 2 with co-ordinates z0 , .•• , z" + 1, and 
with metric 

n+ I 

dF = (dz 0 ) 2 - I (dza) 2 . 

a= 1 

(The relationship between the two systems of co-ordinates z\ .. , z"+ 1 and 
x0 , ... , x", is as follows (cf, §10.1(6) where x0 = u, x 1 = z·, z 1 = x, z2 = y): 

tx = 1, ... , n + 1, 

(22) 
n+ I 

rz = I (x"-1?.) 
a=1 

With this preamble, we are now able to state the following result (whose 
proof we omit). 

15.3. Theorem. The group 0(1, n + I) acting on the Lobachevsky space 
u+ 1, induces transformations on the sphere S" (as for instance in the model 
of u+ 1 as the ball D"+ 1 with boundary S" and metric (21)). These induced 
tran!!formations qf' S" are all distinct, conformal in the standard metric (20) on 
S", have no singularities, and include the basic conformal transformations 
(i.e. the elements of O(n), the inversions, dilations, and translations). Conse
quently the group of conformal transformations qf the standard Euclidean 
metric on IR" (or the sphereS"), n ;:::: 3, is isomorphic to 0(1, n + 1). 
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If we were to prove this theorem, we should need to find a suitable corre
spondencebetweentheelementsofO(l,n + l)orO(n + 1, l)andthetransla
tions, dilations and inversions of !Rn. In the simplest case, namely n = 1, this 
can be done as follows: 

az az 
~+ 1 a 
2 2 

translation(x f---> x + a) <--> a -a E 0(2, 1), 

az az 

2 
a 1- ~ 

2 

Jc 2 + 1 Jc2 - 1 

2Jc 
0 

2Jc 

dilation(x f---> ± Ax, A > 0) <--> 0 ±1 0 E 0(2, 1), 

Jc2 - 1 
0 

Jc 2 + 1 
--- --

2Jc 2Jc 

;nvc,;on(x ~ ~)- (~ 
0 

~) E 0(2, \) 1 

0 -1 

These matrices are conformal on S1, and generate the whole of 0(2, 1 ). 
It can be shown that, analogously to Theorem 15.3, the group of con

formal transformations of rR;.q is isomorphic to O(p + 1, q + 1 ). Thus in 
particular the group of conformal transformations of Minkowski space 
~Ri is isomorphic to 0( 4, 2). 

We conclude by leaving the reader to conjure with the following remark 
(also offered without proof): The group 0( 4, 2) is "locally isomorphic" to 
SU(2, 2). 



CHAPTER 3 

Tensors : The Algebraic Theory 

§16. Examples of Tensors 

The fact that many physical entities find mathematical expression as numer
ical functions of points in space, will by now be familiar to the reader; the 
distance from a fixed point to a variable point is one among many examples. 
If we have several such entities, then their mathematical counterparts form 
a collection of functions from the points of space to the numbers (or, in other 
words, a (single) vector-valued function on the points). Thus for instance to 
fully determine the position of a point in 3-dimensional space, we need the 
values at that point of (at least) three functions (and of course we call these 
values "co-ordinates" of the point): each co-ordinate xi is a function of the 
point, and together they form an ordered triple (x 1, x 2 , x3) which specifies 
the point completely. In Chapter 1 we encountered various kinds of co
ordinate systems (i.e. triples of functions); for example in the plane we 
introduced Cartesian co-ordinates x 1, x 2 , and polar co-ordinates r, <p, 
where x 1 = r cos <p, x 2 = r sin <p; and in space Cartesian co-ordinates, 
cylindrical co-ordinates r, z, <p, and spherical co-ordinates r, (J, <p. 

Thus a co-ordinate system is a family of numerical functions of points of 
space, determining precisely the locations of the points. In the same way 
when we speak of the co-ordinates of a physical system, we mean a family 
of numerical functions defined on the states of the system, whose values at 
any particular state fully determine that state. (A "state" of a system is to 
be thought of as a point in the "space of all possible states" of the system.) 
For example to specify the state (at an instant), of a moving point-particle 
we need six numbers, namely three co-ordinates, and the three components 
of its velocity vector; thus in this case we are dealing with a 6-dimensional 
space of states. 
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It turns out, however, that these concepts of a numerical or vector-valued 
function are by themselves inadequate for many purposes. The point is that 
many geometrical and physical quantities may only be assigned a specifying 
collection of numerical functions on points, subsequently to co-ordinates 
having been assigned to the points; to put it briefly (and familiarly), the 
specifying collection of functions may be dependent on the particular co
ordinatization of space. To make perfectly clear how this can happen, let 
us recapitulate an example already considered in §2 (see Definition 2.2.1). 
Thus suppose we have two co-ordinate systems x 1, x 2 , x3 and z1, z2 , z3 linked 
by 

i = 1, 2, 3, 

and let us examine how the components of the velocity vector of a curve 

j = 1, 2, 3, 

change with the change in co-ordinate systems. In terms of the co-ordinates 
z1, z2 , z3 , the components of the velocity vector are given by 

On the other hand in terms of the co-ordinates x 1, x 2 , x 3, the equations for 
the curve are 

i = 1, 2, 3, 

so that in those co-ordinates the components of the same velocity vector are 
given by 

( dx 1 'dx2 'dx3) = (~\ e, ~3). 
dt dt dt t=to 

By the "chain rule", the components in the two systems are linked by 

dxi 3 oxi dzi 
=I,-, 

dt j= 1 oz dt 
i = 1, 2, 3. 

Hence we deduce, as before (see §2.2(18)), that the components of a vector 
attached to a point (z 1(t0 ), z2{t0 ), z3(t0 )), transform under a co-ordinate 
change x; = x;(z1 , z2 , z3) according to the rule 

. 3 .ax; 
):1- "nJ
<, - j~l ., ozi' i = 1, 2, 3, (1) 

where ~1, e, ~3 , and 1]\ 1] 2 , 1]3 are respectively the components of the vector 
in the systems x 1, x 2 , x 3 and z1, z2 , z3 . 

Among the families of functions (of the points of space) which depend 
on the particular co-ordinate system in use, and which arise as quantitative 
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representations of the various physical entities, the most frequently en
countered, and the most important, are what are known as "tensors". A 
(point-dependent) vector is the most obvious non-trivial instance of a tensor 
(the trivial instance being that of a scalar function of the points of space, 
which does not change under co-ordinate transformations). Before giving 
the precise mathematical definition of a tensor, we give a few more examples, 
most of which we have already seen. 

(a) The gradient of a numericaljimction. We are accustomed to regarding 
the gradient of a real-valued function f(x 1, x2, x3) of the Cartesian co
ordinates x 1, x2 , x3, as a vector whose components are given by 

. ( of of of ) 1 2 3 
grad j = ax~' ax2 'ax3 = (~ '~ '~ ). 

We wish to see how the components of the gradient of this function (as a 
function on the points of the Cartesian space) transform under a change to 
co-ordinates z1, z2 , z3 , where 

We have 

i = 1, 2, 3. 

. 1 2 3 ( of of of) gradj(X (z), X (z), X (z)) = OZ1, oz2' OZ3 = (1'/1, '12, '73); 

of _ 3 of oxi 
oz; - i~1 oxi oz; ' i = 1, 2, 3. 

We conclude, therefore, that the components of the gradient change according 
to the rule 

(2) 

where ~ 1 , ~ 2 , ~ 3 , and 17 1,172 ,17 3 , are respectively the components of the grad
ient computed in terms of the co-ordinates xl, x2, x3, and zl, z2, z3• 

Comparing this formula with the transformation rule (1) for the com
ponents of the tangent vector to a curve: 

for the tangent vector: 
. 3 . oxi 

)'<- " )_ 
'o - L.... '1 :l j' 

j= 1 uZ 

3 oxi 
for the gradient: '1; = L ~ i-;-~ , 

j= 1 uz 

we see that the transformation rules are different ! 

(3) 

To highlight this difference, and for other reasons which will appear in 
§ 17, we shall now see what the conditions are for coincidence of the two rules 
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in (3). To this end we introduce the Jacobian matrix A = (a~), where a~ = 
axijiJzi, and its transpose AT = (b{) (where b{ = a~). The transformation 
rules (3) can then be rewritten briefly as 

~ = A17 (tangent vector), 

'1 =AT~ (gradient). 
(4) 

If A is invertible, then so is AT, and therefore in this case the transformation 
rule for the gradient can be rewritten again as 

( 
3 iJzi) 

or ~i = .L '1i -0 i • 
J= 1 X 

(5) 

From the first equation in (4), together with (5), we see that the transforma
tion rules (3) will be the same at every non-singular point precisely if 

A=(AT)- 1, or AAT=1, 

i.e. precisely if A is orthogonal at every non-singular point (see §4). (We 
mention parenthetically, and without proof, the fact that for a sufficiently 
smooth co-ordinate change x = x(z), if the Jacobian matrix A = (iJxifiJzi) 
is orthogonal at each point of a region, then the co-ordinate change is (up to 
a translation) a linear transformation, i.e. A = const.) 

In any case it is clear that the gradient of a function transforms differently 
under a general co-ordinate change, than does the tangent vector to a curve. 
For this reason, in the present context of "tensors" (the gradient being 
another special kind of tensor) we distinguish the gradient from quantities 
transforming like tangent vectors, by calling it rather a "co vector." 

(b) Riemannian metrics. We saw in §3 that the "metrical" concepts of 
length of a curve segment and angle between two curves in a Cartesian space 
(with co-ordinates x 1, ... , x"), or in a region of such a space, are most 
appropriately defined in terms of the more primitive concept of a "Rieman
nian metric," i.e. a positive definite quadratic form gii(x) defined at each 
point (x) = (x 1, ..• , x") (see Definition 3.1.1 et seqq.). Given such a quadratic 
form, the length of a vector ~ = ( ~ 1, ... , ~")attached to the point (x 1, •.. , x") 
was then defined by 

1~1 2 = l:gij~i~i. 
i,j 

(6) 

Applying this definition in particular to the tangent vector (x 1, ••• , .\:")to a 
curve xi = xi(t), i = 1, ... , n, and taking arc length along this curve from 
t = a to t = b to be the integral with respect to the "time" t of the magnitude 
of the "velocity" or tangent vector, we arrived at the following formula for 
arc length: 

I= f I gij(x(t))xixi dt, 
i.j 

(7) 
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The transformation rule for the coefficients g;j(x) of the metric under a 
co-ordinate change 

i = 1, ... , n, 

is (see Definition 2.2.2) 

(8) 

Recall that this rule was forced upon us by the form of the transformation 
rule (1) (with n replacing 3) for the components of a vector, and the very 
natural requirement that arc length be independent of the co-ordinate 
system (which serves merely as a means to its calculation). Thus the formula 
for arc length in terms of the co-ordinates z 1, ••• , z", namely 

l = f 
i, j 

where the z;(t) are given by x;(t) = x;(z 1(t), ... , z"(t)), is required to yield 
the same result as the formula (7). In view of the definition of arc length as 
the integral with respect to time of the length of the velocity vector, this latter 
requirement comes down to the condition that the square of the length of 
a vector, given by (6), be invariant under changes of co-ordinate systems. 

The point of the rule (8) for us in our present context, is that it makes the 
quadratic form gij(x) (defined on vectors) a tensor (more specifically, a 
particular kind of"' tensor of the second rank"). 

(c) The length of a covector is, as for vectors, most appropriately defined 
in terms of a quadratic form gij(x), given at each point (x) of the space. Thus 
if¢ = ( ¢1 , ... , ¢") is a co vector (i.e. if it transforms according to the formula 
(2) with n in place of 3) at the point (x 1, ... , x"), then we define 

1¢1 2 = Igij¢i¢j· 
i,j 

It is not difficult to see that the transformation rule (2) and the natural 
requirement that the length of a covector be invariant under co-ordinate 
changes, together imply the following transformation rule for the coefficients 
gij(x): 

(9) 

where the co-ordinate change is given by xi = x;(z), i = 1, ... , n. Thus with 
this transformation rule we shall have 

1¢1 2 = IrFrp]j = Igij¢i¢j, 
i, j i, j 

where 171, ... , IJn are the components of the same covector (and at the same 
point), in terms of the new co-ordinates z 1 , .•. , z". 
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The transformation rule (9) defines gi1(x) as another kind of second-rank 
tensor. 

(d) Linear operators on vectors (or on covectors) furnish examples of a 
third (and last) kind of second-rank tensor. Suppose that at each point 
(x 1, ... , x") of a space we are given a matrix (a~(x)) = A(x). This matrix then 
of course determines a linear transformation of the vector space of dimension 
n (where the vectors are regarded as emanating from (x) = (x 1, ... , x")). 
Thus if~= (~ 1 , ... , ~")is a vector at (x) then the linear transformation A(x) 
maps it to the vector (¢1, ... , ¢")(also at (x)), where 

n 

¢; = L a~(x)~i. (10) 
j= 1 

It is not difficult to verify that (10) and the rule (1) for transformation of the 
components of a vector, together imply that the entries of the matrix A(x) 

transform according to the formula 

. ozi ox1 
aj = L -;-J; a~ -;J , 

k.l uX uz 
(11) 

under the co-ordinate change xi = xi(zl, ... , z"), i = 1, ... , n (which we 
assume non-singular at the point under consideration). 

Similarly, the matrix A(x) determines a linear transformation of the space 
of covectors at the point (x), defined by 

n 

¢J = L a~~i· (12) 
i= 1 

If the components of the two co vectors ( ~ 1, ... , ~") and ( ¢1, ... , ¢") relative 
to the new co-ordinates z1, ... , z", are given by (1] 1, ... , Yfn) and (~ 1 , ... , ~") 

respectively, then we have from (2) (with n in place of 3), and (12) that 

A oxk oxk ozioxk 
~J = L~k-;-J = l:ai~l-;-J = L aiYJi-;L-;-J· 

k uz k.l uz i.k.l uX uz 

Comparing this with 

we deduce (since the above equations hold for all covectors) that 

-i ozi k oxl 
aj = I axk al azj, 

which is the same as the rule (11). (Note that once again we are assuming 
that the co-ordinate change is non-singular at the point under scrutiny.) 

Finally we tabulate the above examples of tensors and their rules of trans
formation. 

(1) Scalars (zero-rank tensors) are invariant under co-ordinate changes. 
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Tensors of rank 1 : 

(2) Vectors ~ = (~;)(e.g. the tangent vector to a curve) transform according 
to the formula 

(3) Covectors ~ = (0 (e.g. the gradient of a function) transform according 
to the formula 

Second-rank tensors: 

(4) The coefficients gii of a scalar product of vectors transform according 
to the formula 

(5) The coefficients gii of a scalar product of covectors transform according 
to the formula 

-ij - ' kl ozi ()zi 
g - L. g oxk ox1 . 

k,/ 

(6) Linear operators A = (a~) on vectors (or covectors) transform according 
to the formula 

In the above 

§17. The General Definition of a Tensor 

17 .1. The Transformation Rule for the Components of a 
Tensor of Arbitrary Rank 

In the preceding section we considered examples of rank-one tensors (vectors 
and covectors), and of rank-two tensors (quadratic forms gii on vectors, 
quadratic forms gii on covectors, and linear transformations (a~)). These 
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important examples (among others) naturally prompt the following general 
definition. 

17.1.1. Definition. A tensor (or tensor field) of type (p, q) and rank p + q, is, 
relative to a system of co-ordinates x 1, ... , xn, a family of numbers 
T~: :::~~'one such family being given for each point of the space (or region of it) 
in question; furthermore these numbers or components transform under 
a co-ordinate change xi = xi(z 1, ... , zn) (with inverse zi = zi(x 1, ••• , xn)) 
according to the formula 

. . - 0Xi 1 (Jxip ozh oz1• 
T'·'"''P = " Tk, ... kp_,, ·----·· ·--

j) ... j. L... t, ... t. :l k, :l kp;:) h :l j•' 
(k), (I) vz vZ vX vX 

(1) 

where the f~,' ::}:are the components of the tensor relative to the co-ordinates 
z 1, ... ,z", and where the indices i~> ... ,iP;j1, ... ,jq, and k 1, ... ,kP; 11 ... ,/q, 
all range from 1 to n (the dimension of the underlying space on which the 
tensor is defined). Thus the tensor may be regarded as the totality of its 
representations as point-dependent families of numbers relative to all 
co-ordinate systems. 

Returning to the examples of the previous section, we have, in the light 
of this definition, that: 

a velocity vector is a tensor of type (1, 0); 
a co vector is a tensor of type (0, 1); 
a quadratic form on vectors is a tensor of type (0, 2); 
a quadratic form on co vectors is a tensor of type (2, 0); 
a linear operator on vectors or covectors is a tensor of type (1, 1). 

The following theorem tells us that the concept of tensor is well-defined 
(by 17.1.1). 

17.1.2. Theorem. The components Tf/.'.'.'t~v are given in terms ofthe T~:·::.J. by 
the formula 

(2) 

PROOF. We shall use the equations 

which are consequences of the fact that the transformations x = x(z), 
z = z(x) are mutual inverses: 
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If we regard (1) as a system of linear equations with constant terms the 
T~~ ·::. yq, and unknowns f~,' ::.tp, then our problem is to show that this system 
has the unique solution (2). Now from (I) we have 

as required. 0 

We now indicate some of the simplest properties of tensors. At each point 
of the underlying space the set of all tensors of the same type forms a linear 
space: Thus if T = (Ti.' ··· ip) and S = (S;l ··· ;P) are both tensors of type l!···lq }!···lq 
(p, q), then any linear combination ). T + J1S = U, is also a tensor of type 
(p q)' with components U ;, ··· ;.P = ). T;, ··· ;P + flS~' ··· ip (at each point of the 

' )t ... )p )l···lq ]l···lp 

underlying space). (We should emphasize that this linear combination is 
formed from the corresponding components of the respective tensors at the 
same point of the space; in other words if we regard tensors as (families of) 
functions defined on the points of the underlying space, then we form linear 
combinations of them as one normally does for functions.) 

The dimension of this linear space of (values of) tensors of type (p, q) at 
each point, is clearly nv+q. If we denote by e 1, ... , en the usual (canonical) 
basis vectors in the space co-ordinatized by xl, ... , x", and, regarded as 
co vectors, by e 1, ... , e", then the tensors we encountered in the preceding 
section can be rewritten conveniently as follows: 

. ( dx dx; ) Vectors: ~ = f ~~ e; for example dt = f dt e; ; 

"' . ( "' 8f ·) Covectors: ~ = 7 ~; e' for example grad f = 7 ax; e' ; 

Quadratic forms on vectors: (g;) = Igiie; (8) ei; 
i, j 

Quadratic forms on covectors: (gii) = I giie; ® ei; 
i.j 

Linear operators: A = I a~ e; ® ej; 
i, j 

and the general tensor T = (T~~ ·.·:.~)can be rewritten as 

T = "'y;_, ... iPe. (8) ···®e. (8) eh ® .. ·@ eiq. L..., }1 ... )q l 1 lp 
(3) 

i. j 
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Here the expressions 
ei, ® · · · ® eip ® eit ® · · · ® ei•, (4) 

where the i's and j's take (independently) all values in {1, ... , n}, represent 
basis elements for the linear space of tensors of type (p, q) at the given point 
(x) of the underlying Cartesian space. It is important to note that in (3) and 
( 4) the order of the indices is essential: interchanging ei, and ei2 for instance, 
will yield a different basis element whenever i 1 # i2 • Thus the basis elements 
number altogether np+q, as indeed they should. Under a co-ordinate change 
xi = xi(z 1, ••• , z") we go over to a different basis for the linear space of 
tensors attached to a given point, namely to that basis expressed as in (4), 
only in terms of the canonical basis vectors in the system z1, ••• , z". The 
formulae (1) and (2) allow one to express each of these bases in terms of the 
other, and thence to re-express in terms of the co-ordinates z1, .•• , z" any 
tensor written (as in (3)) in terms of the co-ordinates x1, ••. , x". (Note that 
the basis elements (4) could equally well have been written as ordered (p + q)
tuples (ei,• ... , ei•) or even as np+q_tuples with one entry equal to l, and 
all other entries 0. The notation (4) is, however, conventional (in addition 
to being useful).) 

We now consider some examples from the theory of elasticity. 

(a) The stress tensor (3-dimensional case). At each point of a continuous 
medium the force on an element of area /'iS, in the direction of the unit 
normal n to the area element, is given by l'lSP(n), where P = (P~) is a linear 
operator. (Clearly P~ is the jth component of the force per unit area acting 
on a small area perpendicular to ei.) The tensor P~ is called the stress tensor 
for the medium. If n = n1e 1 + n2e2 + n3e3 , then 

P(n) = it1 (J1 niP~) ei, 

i.e. the ith component of P(n) is L,j= 1 niP}. In particular if the medium 
satisfies Pascal's law, i.e. if the force per unit area on an area element in a 
direction orthogonal to the area element, has the same magnitude p for all 
directions (at a point), then P~ = J}p; the quantity p is, in this case, called 
the pressure at the point. 

(b) The strain tensor. Suppose we have a continuous medium on which 
co-ordinates x1, •.. , x" are defined. We say that the medium has undergone 
a deformation (or strain) if each point (xl, x 2 , x3) is displaced to the nearby 
point (x 1 + ul, x2 + u2 , x3 + u3), i.e. 

xi f--+ xi + ui. 

If the co-ordinates xl, x2 , x3 are Euclidean, then before the deformation, 
the distance I'll between two points (x) = (x 1, x 2 , x3) and (x + l'lx) = 
(x 1 + l'lxl, x 2 + l'lx 2, x3 + l'lx3 ) is given by 

3 

(1'11)2 = L (Axi)Z, 
i= 1 
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while after the deformation their separation A/' is given by 
3 3 

(M)2 = L [ui(x) - Axi - ui(x + Ax)] 2 = L [Aui + AxiY 
i= 1 i= 1 

Hence 

3 3 

(M)2 = (A/)2 + 2 L Axi Aui + I (Aui) 2 • 
i= 1 i= 1 

Using 

we may formally express the situation in the limit as A/ --+ 0 in terms of 
differentials as follows: 

oui . . ouk ouk . . 
(dl'? = (dl? + 2 L -i dx' dx1 + L -i -i dx' dx1• (5) 

i,j ox i,j,k OX OX 

Since 

" oui . . " oui . . 
L.. -. dx' dx1 = L.. -. dx' dx1, 
i,j OX1 i,j ox' 

the middle term on the right-hand side of (5) is equal to LIJii dxi dxi, where 

Thus rewriting (5), we obtain 

(6) 

17.1.3. Definition. The coefficients (1'/ii + Lk(oukjoxi)(oukjoxi)) in (6), where 
1'/ij = ouijoxi + ouijoxi, are the components of the strain tensor of the medium 
(at the point (x\ x2 , x 3)). 

If the change in the ui per unit change in the xi is small, i.e. if the displace
ments of nearby points are similar (this will occur for instance if the medium 
is "elastic"), then the quadratic terms in the strain tensor are often neglected, 
yielding the strain tensor for small deformations 
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According to Hooke's law such "small deformations" cause stresses to be 
set up in the medium, depending linearly on the deformations. More pre
cisely, the stress tensor P and the strain tensor 1J are linked by the linear 
system 

p = U(IJ), 

or, in index notation, 

(7) 

where P = (P~), '1 = (1Jk 1), U = (U~k 1). Thus U is a tensor of rank 4, and 
therefore has 81 components. Surely Hooke's law (for a 3-dimensional 
continuous medium) does not always require for its specification 81 inde
pendent parameters, i.e. 81 numbers at each point of the medium! We shall 
now indicate how one can in the case of an "isotropic" medium reduce this 
number to 2. 

Recall first the simplifying fact, noted in the preceding section, that under 
an orthogonal co-ordinate change, vectors and covectors transform in the 
same way. It is not difficult to show that, more generally, if we restrict our
selves to orthogonal co-ordinate changes, then the distinction between 
the upper and lower indices of a tensor disappears; i.e. under an orthogonal 
co-ordinate change the transformation rule for a tensor of type (p, q) is the 
same as that of a tensor of type (p + q, 0). 

The condition that our continuous medium be isotropic means that the 
components U~kl of the tensor U at each point are invariant under rotations 
about that point and reflections in planes through that point, i.e. under 
orthogonal transformations fixing the point. This condition, which is fulfilled 
in fluids but by no means always in solid media, allows us to apply the follow
ing important result, which we state without proof. (Note that by the above 
simplifying remark, since the result in question is concerned with orthogonal 
transformations only, we may ignore the distinction between upper and 
lower indices.) 

17.1.4. Theorem. A tensor of rank four which is invariant under orthogonal 
co-ordinate transformations necessarily has the form 

uijkl = ltb;kbjl + f.lb;;bkl + vbubjk; 

thus such a tensor is determined by three parameters It, p, 1'. 

Hence assuming isotropy of the continuous medium, (7) simplifies to 

P;; = AIJ;; + p(tr ry)b;; + VIJ;;· 

where tr 1J = L; '1u. Since the tensor '7 is by its very definition symmetric, 
i.e. '1ii = '1;;, we see that in fact P depends on only two parameters, namely 
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A.+ v and 11· We have thus arrived at the conclusion we sought: In an iso
tropic medium any linear law linking two (physical) symmetric, second-rank 
tensors which is given by a .fourth-rank tensor, can be specified by two param
eters, i.e. by two numbers at each point of the medium. 

In view of Theorem 17.1.4, it is natural to ask what form "isotropic" 
tensors of ranks 1, 2 and 3 can take. 

It is clear that only the null vector or covector is invariant under all 
rotations. 

A tensor (hii) say, of rank 2, defined on a 2-dimensional space with co
ordinates x, y, goes under the reflection x 1--+ x, y 1--+ - y to (h;) say, where 
(by 17.1.1) h'11 = h11 , h~ 2 = h22 , h'12 = -h12 , h~ 1 = -h21 , and under the 
transformation x 1--+ y, y 1--+ x, to (h;j) where h'{ 1 = h22 , h'{ 2 = h21, h~ 1 = h 12. 

In variance of the tensor under these transformations means that hii = h;i = 
h;j, whence h 11 = h22 , h 12 = h 21 = 0, i.e. hii = A.<5ii. This, and the analogous 
argument for higher dimensions, shows that the only isotropic second-rank 
tensors are the scalar matrices (A.<5;)· 

It can be shown that the only isotropic tensor of rank 3 is the zero tensor. 
Note that the general concept of isotropy of a medium (or space) in

volves an isometry group, and hence presupposes the presence of a 
(Riemannian) metric on the medium. (Above we assumed that the metric 
was Euclidean.) (Of course the concept of tensor does not in itself rely on 
the presence of any metric on the underlying space; indeed a metric on a 
space is itself just one kind of tensor.) For this reason it is worthwhile ex
amining the question of which tensors are invariant not just under orthogonal 
co-ordinate changes, but under the full linear group. 

One can quickly reduce the field of candidates for such invariance as 
follows. If we subject our space to a dilation with factor A. # 1, then the 
components of a tensor of type (p, q) will each be multiplied by the factor 
A.q- P, and so a non-zero tensor can be invariant under such a linear co
ordinate change only if p = q. Thus in particular an invariant tensor must 
have even rank. It follows that the only invariant rank-two tensors are those 
of the form h~ = A.<5~, since indeed the only rank-two tensors invariant under 
orthogonal transformations are of this form (as we showed above). It turns 
out that the tensors of rank 4 invariant under the full linear group form a 
two-parameter family: VM = A.<5~<5{ + 11<5i<5( 

17.2. Algebraic Operations on Tensors 

We begin by introducing some useful (and conventional) notation. Let 
T~~ ·:.: i'. be the components of a tensor of type (p, q) in terms of the co-ordinates 
x 1, ••• , xn for the underlying space, and suppose we have a co-ordinate 
change 

k' = 1', ... , n', 
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to new co-ordinates x 1', ... , x"'. (The primes apply to the indices.) We shall 
denote the components of our tensor in terms of the primed system by 
T~\·::.t- In this notation the transformation rules (2) and (1) take the form 

. . ., ., oxit oxip ()xi'' oxj~ 
T'.'···'p = ' T'-~···'r: __ , ·----· · ·--Jt ... }q L. }l .•. }q ~ i't ~ i' ~ h ~ j ' 

(i') (j') OX uX P uX uX q 

(8) 

(9) 

We introduce now also the following convenient notational rule, already 
employed in §1.2: If in an expression an index occurs twice, once as a lower 
index and once as an upper index, then summation over that index from 
1 ton (where n is the dimension of the underlying space) is assumed implicitly, 
i.e. the symbol L may be omitted. Thus in the formula (8) summation is 
taken over the indices i'1, ... , i~; j'1, ... ,j~, each of which appears twice, 
once in a lower position, and once in an upper position, while in (9) the 
indices i 1 , ... , iv;j1, ... ,jq are summed over (from 1 ton). This rule, together 
with the" primed-indices" notation, makes it easier to avoid errors in working 
with the formulae of tensor analysis. 

We now define three very important algebraic operations on tensors. 
To begin with, we assume that the tensors are expressed in terms of a fixed 
system of co-ordinates x 1, ... , x". 

(i) Permutation of indices. Let CJ be some permutation of the integers 
1, 2, ... , q; in conventional notation we write 

( 1 ... q) 
(J = CJ(l) ... CJ(q) ' 

We define an action of CJ on the ordered n-tuple (j 1, •.• ,jq) by 

CJ(j!, '· · ,jq) = Ua(l)' · · · ,ja(q)). (10) 

We shall say that a tensor f~~ ·.·.:f. is obtained from a tensor T~~ ·:.:/.by means 
of a permutation CJ of the lower indices if at each point of the underlying space, 

fil ... iv = T;, ._.. ;, . 
}l···jq <1(]l·····Jq)" 

(11) 

Permutations of the upper indices are defined similarly. In general the 
interchange of upper with lower indices is not permissible since such an 
operation is not invariant (i.e. does not commute with) co-ordinate changes 
(see Lemma 17.2. 1 and Exercise 1 below). In the case of a second rank tensor 
(I;), interchanging i and j is the same as transposing the matrix. 

(ii) Contraction (or taking "traces"). By the contraction of a tensor 
T~~·:.:J. of type (p, q) with respect to the indices ik,j1 we mean the tensor 

(12) 



§17. The General Definition of a Tensor 159 

of type (p - 1, q - 1 ). (Note that in (12) summation over the repeated index 
i from 1 to n is implicit.) Thus contraction essentially amounts to setting 
an upper and lower index equal and summing over that index. For example 
the contraction of a tensor Tj of type ( L 1) yields a scalar TL the trace tr T 
of the matrix Tj. 

(iii) Product of" tensors. Given two tensors T = (T j; :::J;) of type (p, q), and 
P = (Pj: ·.·.·. j~) of type (k, /),we define their product to be the tensorS = T@ P 
of type (p + k, q + /) with components 

(13) 

It is important to note that this multiplication is not in general commutative, 
since if the components (at any point) are multiplied in the other order, 
the products will be associated with different values of the indices i 1 , ... , iP +k ; 

j 1, ... ,jq+l; the multiplication is, however, associative. 

17.2.1. Lemma. The results of applying the operations (i), (ii), (iii) above to 
tensors are again tensors, which moreover are independent of the co-ordinate 
system in terms of" which the operations are performed. 

PROOF. (i) It suffices in this case to prove the lemma for a permutation a 

which interchanges k and I, and leaves the remaining integers fixed: 

a = (1. .. k ... I ... q) . 
1 ... / ... k ... q 

Then 

fil···ip . . = yi.l ... ip . . 
)l .. ·}k···ll···lq }l···il···lk···lq. (14) 

Changing to another (primed) system of co-ordinates and applying the 
transformation rule (8), we have 

fi.~ ... i!' = yh ... i!' . . 
}I ···)q }I ... )l· .. )k ···)q 

where to obtain the last expression from the preceding one we have simply 
rearranged the factors Jxi'joxi. Hence (fj: ·:.·.f.) is a tensor of rank (p, q) 
(by 17.1.1). 
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(ii) The contraction of the tensor T~~ :·:.~~ with respect to the indices ik and 
j 1 transforms under the usual co-ordinate change as follows: 

(15) 

which gives the desired conclusion. (To arrive at (15) we used the equalities 
(8xi;axi")(8xj1;axi) = c5{[.) 

Since (iii) is immediate, the proof of the lemma is complete. D 

We now give examples of the above tensor operations. 

17.2.2. Examples. (a) Given a vector ~i and a covector IJj, we can form their 
tensor product T~ = ~i1Jj, which is a tensor of type (1, 1). We can then 
perform the contraction, obtaining TL the trace of T~. The trace r; is a 
scalar, the "scalar product" of the vector and covector. 

(b) Given a vector ~i and a linear operator A~, we can form their tensor 
product Tlk = A~~i, a tensor of type (2, 1). The contraction 

is again a vector, which we of course recognize as the result of applying the 
linear transformation A~ to the vector ~i. 

Remark. Using the scalar product of a vector with a covector, defined in 
Example (a) above, we can associate with each vector ~ = (~i), a linear 
differential operator (on functions defined on the points of the underlying 
space) as follows: Since the gradient (8jj8xi) of a functionf is a covector, 
the quantity 

(16) 
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will be a scalar, called the directional derivative off in the direction ~- In 
particular, if e1, ••. , en are the canonical basis vectors (which is to say that 
the ith component of ek is <51}, then from (16) we obtain 

. of 
aekU) = axk · 

Thus under this correspondence between vectors and differential operators, 
the canonical basis vectors e1, •.. , en correspond to the operators 
o/ox 1, ••• ' a;axn respectively, while an arbitrary vector ~ corresponds to 
the operator 

17.3. Exercises 

. a 
a~= ~· axi. 

1. Produce an example to show that in general the interchange of an upper with a 
lower index of a tensor is not an operation on tensors (i.e. the result depends on the 
co-ordinate system in which the interchange is carried out). 

2. A second-rank tensor is called non-singlllar if as a matrix it is non-singular (at every 
point of a region). Show that for such a tensor, the inverse of the matrix is also a 
tensor (i.e. that taking the inverse is a tensor operation). 

§18. Tensors of Type (0, k) 

18.1. Differential Notation for Tensors with 
Lower Indices Only 

We consider to begin with tensors of type (0, 1) (i.e. covectors) of which 
our standard example is, of course, the gradient (o.fjoxi) of a function .t: 
Recall that in analysis the differential of a function of x 1, ... , xn, correspond
ing to increments dxi in the xi, is defined by 

(1) 

Let xi = xi(x 1', ••• , xn) be a co-ordinate change. The differentials dxr 
corresponding to the dxi satisfy 

whence 

. axi .. 
dx' = -.,dx', 

ox' 

dfl" - of d i - (of axi ) d i' - of d r 'J - . X - . ., X - ., X , 
ox' ox' ox' ox' 

(2) 

(3) 



162 3. Tensors: The Algebraic Theory 

i.e. the expression dfis invariant under co-ordinate changes. More generally, 
given any covector (7;) (in place of the particular covector (ojjoxi)) it follows 
in the same way that the differentia/form I; dxi is invariant under co-ordinate 
changes. This suggests that it might be convenient to write the covector in 
the differential notation I; dxi. (Note that the above formulae (1), (2), (3) 
are meant to be suggestive of the relationship between the change in f and 
the dxi, dxr, for "vanishingly small" dxi.) 

We pursue further the representation of a covector (7;) by the differential 
form I; dxi. Thus let e1, ••• , e" be the canonical basis co vectors at the point 
under scrutiny (i.e. the kth component of e; is i>D. Then for any covector 
(7;) we may write 

by which we mean simply that the components of the covector in the un
primed and primed systems are respectively I; and 7; .. From the transforma
tion rule for covectors, it is clear that in terms of the primed co-ordinate 
system, the components of e; are ox;jox 1 ', •.• , ox;jox"', which we may express 
by 

" i 
i vx j' e =-.. e. 

Ox' 
(4) 

The similarity between this formula and the transformation rule (2) for the 
dxi, shows the appropriateness of the differential notation I; dxi for the co
vector T;ei; in particular we shall use the symbols dx; to denote the basis 
covectors e;. As we saw in Example 17.2.2(a) it is natural to regard a covector 
as a linear form on vectors. From this point of view, the value taken for 
instance by the linear form df = (~{/ox;) dxi (representing the gradient 
covector) on the vector ,1~ = dx;e; is defined to be 

( ~r_ dxi, u) = !!f t1xi. 
ox' - ex' 

(5) 

Note that the latter expression is just the linear part of Taylor's formula 
for the change in I in traversing the vector d~. 

We now examine various aspects of a second important case, namely 
that of tensors of type (0, 2). As in §17.1 we take as a basis for the space of 
such tensors (at a given point) the products 

In terms of this basis an arbitrary tensor T;i has the form 

T;iei ® ei. (6) 

A tensor T;i of type (0, 2) can be regarded as a bilinear form on vectors, 
since if ~, ry are vectors then the scalar 

T;j ~iY!j 
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can be considered as the value of the bilinear form on those vectors. Thus does 
the tensor Tu become at each point a bilinear function on pairs of tangent 
vectors at the point. 

Any tensor 7fj of type (0, 2) can be expressed as the sum of a symmetric 
and a skew-symmetric tensor; indeed if we set 

Tt)' = ~( I;j - 7};), (7) 

then 

T. = ys~m + ralt. 
l) l) IJ ' 

yait = _ yalt 
IJ jl ' 

(8) 

From (6) and (7) we obtain as a basis for the space of symmetric tensors 

of type (0, 2) at a point the set of tensors of the form 

e; ® ej + ej ® e; 

2 
i ~j, (9) 

and for the space of skew-symmetric tensors of type (0, 2) the basis consisting 
of the tensors 

i < j. (10) 

Thus in terms of the basis elements (9), a symmetric tensor 7jj has the form 

I;je; ® ej = L I;jei ® ej + L I;je; ® ej 
i~j i> j 

(11) 

while if 7jj is skew-symmetric, then in terms of the basis elements (10) it has 
the form 

i<j i>j 

(12) 

i<j 

In differential notation we write the basis elements (9) in the form dx; dxj = 

dxj dx;, and the basis elements (10) in the form 

dxi 1\ dxj = - dxj 1\ dx;. 

This notation ties in with our previous notation 

dl 2 = g .. dx; dxj 
!] 

(13) 

for the square of the element of length with respect to a Riemannian metric 
9u· Such a metric is a symmetric tensor of type (0, 2), and (13) gives its 
decomposition relative to the "basis" dx; dxj. 
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18.2. Skew-Symmetric Tensors of Type (0, k) 

We first define such objects. 

18.2.1. Definition. A skew-symmetric tensor of type (0, k) is a tensor T;, ... ik 

satisfying 

(14) 

for all permutations a. (Here sgn a is + 1 or -1 according as a is an even or 
odd permutation.) 

In view of the fact that permutation of the indices is a tensor operation 
(Lemma 17.2.1), this definition is independent of co-ordinate changes. Thus 
if (T;, ... ;J is a skew-symmetric tensor (relative to a particular co-ordinate 
system), then given a component T;, ... ;k, the components corresponding to 
even permutations of i 1, •.. , ik, are the same, while those corresponding to 
odd permutations are just the negative of T;, ... ik. Hence in particular if k 
exceeds n, the dimension of the underlying space, then the skew-symmetric 
tensor (T;, ... ;J must be the zero tensor (since for each component at least 
two of the indices i 1, ... , ik will then coincide). In what follows we assume 
k::;; n. 

For skew-symmetric tensors it is convenient to use the notation of differ
ential forms. Thus we shall denote the elements of the standard basis for the 
space of all skew-symmetric tensors of type (0, k) at a given point, by 

il < ... < ik, (15) 

where 

dxi' 1\ · · · 1\ dxik = I (sgn a)e"<itl ® · · · ® e"U"l. (16) 
aeSk 

Here Skis the symmetric group on 1, ... , k, i.e. the group of all permutations 
of 1, ... , k. (Recall that by a(i1) we mean i .. (l).) Then, as in the special case 
k = 2 treated in the preceding subsection (see (12)), we obtain the following 
representation of the skew-symmetric tensor (T;, ... ;J as a differential form: 

7i, ... ikei' ® ... ® eik = L (17) 
it< ... <ik 

From (16) it is clear that the expression dxi' 1\ · · · 1\ dxik is skew-symmetric, 
i.e. for any permutation a 

dx"<itl 1\ · · • 1\ dx"Ukl = (sgn a) dxit 1\ · · • 1\ dxik. (18) 

18.2.2. Examples. (a) A skew-symmetric tensor T;, ... ;"of type (0, n) in n
dimensional space, is determined by the single component T12 ... n, since 
those components with repeated indices are zero, while the remainder are 
given by 

T .. o .... ,nJ = (sgn a)T1 ... n· 
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It follows that the space of skew-symmetric tensors of type (0, n) at a given 
point is one-dimensional, since the basis (15) contains just the single element 
dx 1 1\ · · · 1\ dxr.. In the physics literature, the components of the basic skew
symmetric tensor of type (0, n) given by T12 ... n = 1 (i.e, of the differential 
form (16) with k = n) are denoted by c;h ... in· Thus si, ... in = 0 whenever two 
or more of the indices coincide, and otherwise is given by 

{ + 1 
c· . = 

lt ... ln _ 1 
if sgn(i 1, ... , in) = + 1, 

if sgn(i 1, ... , in) = -1. 
(19) 

This tensor is often called the "Levi-Civita tensor" of rank n, Clearly 

7i, ... in = T12 ... nci, ... in· 

We include as part of this example the following result, which tells us 
how skew-symmetric tensors of type (0, n) transform. 

18.2.3. Theorem. Skew-symmetric tensors of type (0, n), where n is the dimen
sion of" the underlying space, transform under co-ordinate changes xi' = 
xi'(x 1, ... , xn) according to the rule 

T12 ... n = Tl'2' ... n'J, (20) 

where, as usual, J is the Jacobian of the co-ordinate change, i.e. J = det(oxi' joxi). 

PROOF. It clearly suffices to prove (20) for the basis tensor si, ... in. From 
the general transformation rule for tensors (17.1.1) we have 

oxi', Dxi~ oxi" oxi~ 

Btz ... n = ci·, ... i~~O 1 ···~0 n = L (sgna)~O 1 ···~0 n' (21) 
X X aESn X X 

where a is the permutation (.~ 
It 

~ · · · 1 ~,)- The last expression in (21) is 
lz ••. ln 

just J, as required. 0 

(b) Suppose that we have a tensor gii of type (0, 2), which, regarded as 
a quadratic form, is non-singular, i.e. g = det(Y;j) i= 0, at the point under 
scrutiny. Under a co-ordinate change xi' = xi'(xl, ... , xn), the tensor 
transforms according to the rule 

axi Dxi 
gi'i' = giiaxi' oxi'' 

or, in matrix notation, G' = ATGA, where A = (oxijoxi'), G = (gi), G' = 
(grr). Hence the determinant g = det G transforms according to the rule 

g' = det G' = det(ATGA) = (det A)2 det G. (22) 

Thus if det A > 0, we shall have 

JWI = Jfgl det A. 

Comparison of this rule with (20), yields the following corollary of 18.2.3: 
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18.2.4. Corollary. The expression Jf9l dx 1 1\ ... 1\ dx" behaves like a 
tensor under co-ordinate changes for which the Jacobian J = det A = 
det(ox;joxi') is positive. 

The differential form vfgl dx 1 1\ ... 1\ dx" is called the volume element 
for the metric gij. (This name is justified intuitively by §7.4 and the fact that 
the form dx 1 1\ dx 2 evaluated at a pair(~, 1J) of tangent vectors at any given 
point, gives the Euclidean area of the parallelogram determined by ~ and 1J 
(and analogously for higher rank forms dx 1 1\ dx 2 1\ dx 3 , etc.).) 

We now consider briefly the complex case. Thus suppose the underlying 
space to be complex n-space with co-ordinates z1, ... , z"; 21, ... , z", where 
za = x" + iya, z" = xa- iya (see §11 et seqq.). A tensor on this space is then 
defined, in terms of these co-ordinates, analogously to 17.1.1. In complex 
notation a skew-symmetric differential form corresponding to a tensor of 
type (0, k) may be written as 

T = L y<p.q)' 
p+q =k 

where the summands are given by 
y<p,q) = T . . . . dz; 1 " • • • " dzip " d:zh " · · · " dzjq' (23) l} ... lp,Jl···lq 

it< ... <ip 
it< ... <jq 

the T; 1 ••• ip;h ... jq being the (complex) components of a tensor in terms of the 
co-ordinates za, z", with appropriate properties with respect to permutations 
of i 1, ... , iP and of j 1, ... , jq. These y<p.q) are called "forms of type (p, q)." 

For example consider a form of type (1, 1): 

Q = T,p dz" 1\ dzP. 

If the components T,p satisfy Tpa = - T,p, then we shall have 

iTpa = iTa/3• 

so that the iT,p are the coefficients of an Hermitian form L iT,p dza dzP (see 
§11.1). Thus we can regard an Hermitian metric as a form of type (1, 1), in the 
above sense. 

18.3. The Exterior Product of Differential Forms. 
The Exterior Algebra 

As an application of the algebraic tensor operations introduced in §17.2, we 
now define the "exterior product" of two skew-symmetric tensors of types 
(0, p) and (0, q) (or, equivalently, of two differential forms of ranks p and q). 
Let the two forms in question be 

it< ... <ip (24) 
S. . dxh 1\ · · · 1\ dxjq. 

]1 ... ]q 

it< ... <jq 
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Their exterior product (or wedge product) w = w 1 1\ w2 is then defined to be 
the form of rank (p + q) given by 

where 

w = w1 1\ w2 = '\' R dxk' 1\ · · · 1\ dxkp+o, i..J kl···kp+q 
k, < ... <kp+q 

_ sgn(a) T S 
Rk, ... kp+q- L ' ' a(k, ... kp kp+!oo•kp+q)' aeSp+q p.q. 

(25) 

(26) 

Thus the Rk, ... kp+o are the components of a tensor obtained from the tensors 
7;, ... ip and Sj, ... j. by means of the operations oftensor product and permuta-
tion of indices (followed by the taking of a linear combination). Hence the 
definition (26) is independent of the co-ordinate system, i.e. yields the same 
tensor whatever co-ordinate system is used as context for carrying out the 
operation. It is clear from (26) that this tensor is again skew-symmetric. 

18.3.1. Lemma. The exterior product of skew differential forms is a bilinear 
associative operation. Moreover ifw1, w2 are skew forms of ranks p and q, then 

(27) 

PROOF. The bilinearity is obvious from (26). The associativity, though not 
quite so obvious, follows easily from (26). The formula (27) is immediate 
from the fact that the sign of the permutation 

( 1 ... q q + 1 ... p + q) 
p+1 ... p+q 1 ... p 

is ( -l)Pq. (Verify it!) D 

We conclude with the remark that the exterior product of the basic forms 
w 1 = dx; and w2 = dxj as given by (26), coincides with the previous definition 
of the symbols dx; A dxj (at the end of §18.1). More generally if w 1 = 
dx;' 1\ · · • 1\ dxip and w2 = dxil 1\ • · • 1\ dx\ then (cf. (16)): 

w 1 1\ w2 = dx;, 1\ • • • 1\ dxip 1\ dxil 1\ • · · 1\ dxj•. (28) 

The exterior algebra at a given point of the underlying space is the linear 
space of all skew forms at the point, equipped with the operation of exterior 
multiplication. 

18.4. Exercises 

l. Let o} = a{ dxi. Establish the formula 

where J): ·:.:~~ is the k x k minor of (a{) formed by the intersections of the rows 
numbered i 1, ..• , ik with the columns numberedj1, ... ,jk. Thus in particular 

w1 A · · · A w" = det(a{) dx 1 A • • • A dx". 
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2. Calculate the dimension of the space of (skew-symmetric) k-forms (at a given point). 

3. Prove that 

La{kt:it···ik-t)ik-..t···in = f:;J ... i,l tr(a-{). 
k 

where tr(a{) = a: (i.e. the trace of the matrix (a{)). 

§19. Tensors in Riemannian and 
Pseudo-Riemannian Spaces 

19 .1. Raising and Lowering Indices 

Let gij be a tensor of type (0, 2) defining either a Riemannian or a pseudo
Riemannian metric on the underlying space. Recall that relative to such a 
metric we define the scalar product of two vectors ( ~;). (IJj) by 

< ~ > _ vi j 
<,, IJ - l; IJ %· (I) 

Note that the resulting scalar tensor may be regarded as being obtained from 
the three tensors entering into it, by means of the operations of forming the 
tensor product and of contraction. 

Similarly, given a tensor gij of type (2, 0), we define the scalar product 
(relative to this tensor) of covectors (~).(I];) by 

(2) 

In terms of a given metric gij one defines the fundamentally important 
tensor operation of" lowering" of indices as follows: If T}~ :·.·_'f; is a tensor of 
type (p, q), then by the operation of lowering the index i 1 using the metric gij 
we obtain the tensor of type (p - 1, q + 1) given by 

(3) 

Clearly the result is indeed a tensor, and is co-ordinate-independent, as it is 
obtained by forming the product of two tensors, and then performing a 
contraction. 

For example if we lower the index of a vector ~;. we obtain the covector 

(4) 

Thus the operation of lowering the index of vectors (using a fixed metric g;) 
yields, for each point, a linear map from the tangent space of vectors attached 
to the point, to the space of covectors at the point. This correspondence 
between vectors and co vectors can be described alternatively as follows: If 
< , ) denotes the scalar product of vectors in the metric gij• then to the 
vector IJ corresponds that covector which, regarded as a linear form on 
vectors, takes the value < ~- IJ) on each vector~-
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We now turn to the related operation of "raising" of indices. Again the 
operation is performed in the context of a given metric gij. To define the 
operation we need the inverse of the matrix (gij) (which exists by virtue of the 
definitions of a Riemannian and a pseudo-Riemann metric, since in either 
case det(g;) # 0). Denote the inverse by gij; thus 

(5) 

Then by raising the indexj 1 of the tensor T~: ·.·.J;, using the metric giJ• we obtain 
the tensor 

(6) 

19.1.1. Lemma. If we lower an index and then raise it, we obtain the original 
tensor. 

PROOF. Lowering the index i 1 in the tensor Tjt,·:.·.'r"' we obtain the tensor 
{f;,k T);':.·it If we now raise the same index i 1 in the latter tensor we obtain 

g;,tg Tk;, ... ip = (5;, Tki, ... iv = Ti.t ... ;I' 
lk }l···}q k }l···}q }l···)q' 

where we have used (5). This completes the proof. 0 

As we have just seen (in (2)), given a matrix (gij), we can define a scalar 
product of covectors. If the matrix (gij) arises as the inverse of the matrix 
of a metric gij. then we can regard this scalar product as proceeding from the 
metric. The following simple lemma tells us that the value of this scalar 
product on any two covectors, is the same as the scalar product of the two 
vectors obtained by lowering the indices of those co vectors. 

19.1.2. Lemma. The scalar products c>f a pair of vectors ~ = (~i), IJ = (IJi), 
and oft he corresponding pair ofcovectors ~ = ( 0 = (giJ ~J). q = (17;) = (gijiJJ), 
coincide; i.e.<~- q) = <~. IJ). 

PROOF. Since<~- 17) = gij~iiJJ and<~, q) = giJ~iiJJ, We have 

<~- q) = giJ~JIJi = gijgJk~kYuiJ 1 

= c5~eYuiJ 1 = ~iYuiJ 1 = <~- IJ), 

as required. 0 

Remark. In the above we have used only the non-singularity of the matrix of 
the metric gij; neither the positive definiteness (which holds in the Riemannian 
case), nor the symmetry (which holds for both kinds of metric), was involved. 
In Chapter 5 we shall consider skew-symmetric metrics in connexion with 
"Hamiltonian formalism." 
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19.2. The Eigenvalues of a Quadratic Form 

Suppose that we have a linear operator T~, or, in other words, a tensor of 
type (1, 1). We cannot ab initio say of such a tensor that it is symmetric or 
skew-symmetric, since interchanging the indices i, j is not permitted, i.e. 
such an interchange is not in general a tensor operation. If however our 
underlying space comes equipped with a metric gii• then we can define 
symmetry and skew-symmetry of the tensor T~ relative to this metric, by 
first using the metric to lower the index i, thereby obtaining the tensor 
Tii = gik T' of type (0, 2). The latter tensor gives rise in the usual way to a 
bilinear form { , h on pairs of vectors, defined by 

{~, 11h = ~;TiiiJi, 

where~ = (~;), 17 = (17;).1fwe denote by ( , ) the scalar product afforded by 
the metric gii• then 

(7) 

19.2.1. Definition. A linear operator T{ defined on a space with a metric gii• 
is said to be symmetric if the bilinear form Tii = gik T~ is symmetric, i.e. if 
Tii = ~;;and skew-symmetric if T;i = - ~;· 

19.2.2. Theorem. A linear operator T = (T~) defined on a space with a 
Riemannian or pseudo-Riemannian metric gii• is symmetric if and only iffor 
all vectors ~. 11 we have 

(8) 

and is skew-symmetric if and only if 

(9) 

again for all vectors ~. 11· 

This follows easily from (7) and the symmetry (skew-symmetry) ofT 
Suppose now that we are given a bilinear form T;i defined on a Riemannian 

or pseudo-Riemannian space with metric gii· In order to define in a coherent 
manner the "eigenvalues" of such a bilinear form we need to turn it into a 
linear operator, or, more precisely, to raise its index i, obtaining thereby the 

i - ik ij i operator Ti - g Iki (where, as before, g gik = bk). 

19.2.3. Definition. By the eigenvalues of a quadratic form T;i relative to the 
metric gii• we shall mean the eigenvalues of the linear operator T~ = gik7ki, 
where (gii) = (g;)- 1• 

Let A. be an eigenvalue of the above linear transformation T~, and (~;) a 
corresponding eigenvector, i.e. T~~i = A_~i, (~;) # 0. By the definition ofT~, 

(10) 
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so that the eigenvector en is a (non-zero) solution of the linear system of 
equations 

k = 1, ... , n. (11) 

It is clear that the trace tr T) = T~ = gikT;k, and determinant det T) of the 
linear operator T} = gik"J,.j, are metrical invariants of the form T;j, i.e. they are 
invariant under co-ordinate changes, but of course depend on the metric 
gij. As the following example will recall to the reader, we have met these 
invariants before, albeit in a slightly different guise. 

19.2.4. Example. In Chapter 2 we associated with (each point of) a surface 
r = r(u, v); r = (x, y, z), x 1 = u, x 2 = v, in Euclidean 3-space, two quadratic 
forms: 

(i) the induced metric gij ck dxj, or tensor gij; 
(ii) the second fundamental form bij dxi dxj, or tensor bij. 

(Here the summation is from 1 to 2, since the surface is 2-dimensional.) 
In §8 we obtained the following formulae expressing the Gaussian and 

mean curvatures of the surface in terms of these two tensors: 

det(b.) 
Gaussian curvature K = -d ( '1); 

et gij 

mean curvature H = b~ = gijbij· 

Thus we see that, in our present terminology, the mean curvature is just the 
trace of the tensor bij relative to the metric %• while since 

K = (det(gi))- 1 det(bi) = det(gikbk) = det(b)), 

the Gaussian curvature is the second of the above-mentioned metrical 
invariants of the second fundamental form bij· 

19.3. The Operator * 

The presence of a metric gij allows us to derive from any skew-symmetric 
tensor Tof type (0, k) a skew-symmetric tensor * Tof type (0, n - k ), defined 
as follows. 

19.3.1. Definition. Given a skew-symmetric tensor T of type (0, k), with 
components T;, ... ik' we define the skew-symmetric tensor* Toftype (0, n - k) 
by the formula 

1 r:-; . . 
( T) - ;1,11 c T'' .. ·'k * ik+l···in- k!V g i1 ... in ' (12) 
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where g = det(gii), and T; 1 ••• ik is obtained from Y; 1 ••• ;k by raising the indices, 
i.e. 

(13) 

By Corollary 18.2.4 the expression J[glt:; 1 ••• i"• defined on n-dimensional 
space, behaves like a tensor under co-ordinate changes with positive Jacobian. 
It follows that* Talso behaves like a tensor under such co-ordinate changes. 
Its skew-symmetry is clear from the definition. 

Note finally that if we apply the operator * twice, we obtain 

* (* T) = ( -lt<•-kl sgn(g)T. (14) 

We leave this to the reader to verify. 

19.4. Tensors in Euclidean Space 

In a Euclidean space with Euclidean co-ordinates, the metric is given by 
gii = b;i· It follows that if the co-ordinates of the underlying space are 
Euclidean, then raising or lowering of indices does not affect the components 
of an arbitrary tensor T;_1 ... ;P : 

}l ... }q 

(15) 

Hence in this case the distinction between upper and lower indices disap
pears, so that they may all be regarded as lower indices, provided of course 
that we restrict ourselves to co-ordinate changes preserving the metric, i.e. 
to combinations of orthogonal transformations and translations. 

In particular, therefore, in terms of Euclidean co-ordinates the entries 
of the matrix of a linear operator coincide with the coefficients of the corres
ponding quadratic form (see §19.2), and under Euclidean isometrics the 
components of the gradient of a function will transform like those of a vector, 
and so on. 

We conclude by considering the effect of the operator * when the under
lying space is Euclidean, with Euclidean co-ordinates x, y, z. The reader will 
easily verify that 

* dx = dy 1\ dz, * dy = - dx 1\ dz, dz = dx 1\ dy. 

It follows that on an arbitrary 1-form (i.e. covector) w = P dx + Q dy + 
R dz, the effect of the operator * is as follows: 

* w = P dy 1\ dz + Q dz 1\ dx + R dx 1\ dy, 

Iff is a scalar then * f is a 3-form, namely 

*f = fdx 1\ dy 1\ dz, 

* (* w) = w. 
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19. 5. Exercises 

1. Let D,p; be the skew-symmetric tensor defined in §18.2(19), in the case where the 
underlying space is 3-dimensional Euclidean. Prove the following formulae: 

b,). b,~ b,.. 
(i) Dapyf:;.J1v = bp;, bpi' bp,. 

b)' A bj'JI by, 

(ii) I:>Pl'l:;,~y = b,!.{)p~- b,~{){Ji.; 

(iii) r.,pyl:!.py = 2b,).; 

(iv) <-,prl:,1h. = 6. 

(Here b, 11 is the Kronecker delta, and summation is to be taken over all repeated 
indices.) 

2. For 

define 

W1 = I 1; 1 ... ip dx' 1 1\ .. · 1\ dx'v, 
it< ... <ip 

I 

I . . . . 
{wl, m2} = -~ g'Ul · · · g'plvT;l .. ir,Sh .. Jp· 

p. 

Show that w 1 1\ * w2 = {w 1• w2 ) JIYI dx 1 1\ · · · 1\ dx". 

§20. The Crystallographic Groups and the 
Finite Subgroups of the Rotation Group of 
Euclidean 3-Space. Examples of Invariant 
Tensors 

In this section we shall first study the crystallographic groups, and shall then 
classify the finite subgroups of the rotation group S0(3). (Tensors will make 
a brief appearance at the very end of the section.) 

We shall consider a "crystal lattice" of points spaced apart in some 
regular (i.e. finitely defined) fashion throughout the whole of the Euclidean 
plane or Euclidean 3-space. This model for a crystal is a standard one: the 
crystal is regarded as consisting of a few types of atoms fixed rigidly in space 
(or in the plane), and distributed throughout space (or the plane) in a regular 
fashion. Of course a real crystal has boundaries; however by imposing the 
condition of "periodicity" on the crystal (which condition we shall explain 
below), it becomes clear that the study of such a" finite" crystal is equivalent 
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to the study of infinite lattices of points, i.e. of" infinite" crystals. Thus it is 
appropriate to define a crystal lattice as the totality of points (in Euclidean 
3-space or in the Euclidean plane) giving the locations of the atoms of an 
infinite crystal. 

We shall confine our attention to a rather narrow class of such lattices, 
namely those invariant under certain translations. (See below for the precise 
conditions.) This restriction is justified by the fact that most real crystals 
correspond (approximately) to just such lattices. We shall suppose that our 
crystal lattice always contains as a subset the set of all points with position 
vectors of the form a= n1a 1 + n2 a2 + n3 a3 (or, if the lattice is planar, then 
all points with position vectors of the form a = n1a1 + n2 a2 ), where n 1, n2 , n3 

are arbitrary integers, and the vectors a 1, a2 , a 3 are the vectors corresponding 
to the "basic translations." The vectors a 1, a2 , a 3 are called the primitive 
vectors of the lattice, and are always assumed to be linearly independent. 

We now impose on our lattice (L say) the fundamental requirement 
foreshadowed above, that it go into itself under translations along the vectors 
a~> a2 , a 3 , and consequently under the translations corresponding to all 
linear combinations of a 1, a2 , a 3 , with integer coefficients, and that the latter 
are the only translations preserving the lattice. In other words we require 
that our lattice L be invariant under all translations generated (over the 
integers) by the vectors a 1, a2 , a3 , and under these only. As we mentioned 
above, this property is satisfied (essentially) by most real "infinite" crystals. 

If we denote the translations along a 1, a2 , a 3 by r 1, r 2 , r 3 respectively, 
then the general translation of the type we have been considering has the 
form 

T = n1r1 + n2r2 + n3r3, 

where n1, n2 , n3 are integers. 

20.1. Definition. The (spatial) lattice Lis called translation-invariant if there 
exist primitive translations r 1, r 2 , r 3 such that Lis sent to itself by all transla
tions of the form T = n 1 r 1 + n2 r 2 + n 3 r 3 , and by no other translation. 
(Translation-invariant planar lattices are defined analogously.) 

Thus, to repeat, we shall henceforth consider only translation-invariant 
lattices (in the plane or in space). 

Remark. Many expositions of the mathematical theory of crystals begin 
by defining a crystallographic group to be a discrete subgroup r of the group 
G3 of all motions of Euclidean 3-space, with compact quotient G3jr. It is 
then proved that the subgroup of translations in r has finite index in r. As 
atoms one then takes the points in one of the orbits of r; for this purpose 
one of the most symmetrical of the orbits is chosen. A detailed account along 
these lines may be found in the book [39]. (Alternatively, see Chapter 4 
of [38].) 
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Figure 18 

20.2. Definition. A parallelepiped with sides the vectors ex 1, cx 2 , cx 3 , is called 
a primitive cell or fundamental region of the lattice L. 

We remark that it is often assumed that the primitive translation vectors 
ex 1, cx 2 , cx 3 (or ex 1, cx 2 in the planar case) are such that the volume of the parallel
epiped formed from them is smallest possible. 

In Figure 18 the simplest kind of 2-dimensional lattice is depicted, with 
one of its primitive cells shaded in. It is clear that in this case the condition 
of translation-invariance entails that the whole crystal lattice is simply the 
union of the primitive cells, which are all obtained by applying translations 
to any particular one of them. In fact the lattice of Figure 18 has the property 
that any one of its atoms (i.e. of its points) can be obtained from any other 
atom by means of one of the permitted translations T = n 1 r 1 + n2 r 2 . This 
is usually expressed by saying that the set (in fact it is a group) of all permitted 
translations is transitive on the lattice. However this happy situation by no 
means obtains for all lattices, in particular for the following reason. In general 
a crystal la ttice is comprised of several different types of atoms, so that it is 
natural to require (at least as far as our model is concerned) that under 
basic translations atoms of one type are sent to (the former positions of) 
atoms of the same type, and not to points occupied by atoms of a different 
type. Thus it is clear that if there is more than one type of atom in the crystal 
we are modelling, then it is entirely possible that the set of all translations 
generated by the basic ones will not be transitive on the lattice. Such a lattice 
is shown in Figure 19, where atoms of type A may not be translated to the 

@ ~::. ::.:~ 
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~141 

Figure 19 
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positions of type B atoms, and vice versa. While the set of all permitted 
translations is transitive on each of the two sets of atoms of the same type, 
it is not transitive on their union, the set of all atoms of the lattice. (In other, 
more technical, terminology, the set of type A atoms and the set of type B 
atoms are the orbits of the group of permitted translations of the lattice.) 

It follows that in order to specify a crystal lattice completely it is in general 
not enough to give only the basic translations. On the other hand it is clear 
that if in addition to the basic translations we know the positions of the 
atoms of the lattice in any particular primitive cell, then since the lattice as a 
whole is the union of its primitive cells, we shall be able to reconstruct it. 
Thus from amongst the class of all translation-invariant lattices it is natural 
to single out those which arc determined by their basic translations, i.e. all 
points of which are translates, under permitted translations, of a single point. 

20.3. Definition. A lattice L (in the plane or in space) is termed a Bravais 
lattice, if all of its atoms have position vectors of the form n 1 a 1 + n2 a2 + 11 3 :x 3 

(n 1a 1 + n2 a2 in the planar case), where 11 1, 11 2 ,11 3 are integers. 

In other words, a Bravais lattice is one on which the set of permitted 
translations is transitive. It is clear from the definition that different Bravais 
lattices will differ only in the shapes of their primitive cells, so that any 
Bravais lattice can be transformed into any other (of the same dimension) 
by means of a suitable affine transformation. In other words, from the point 
of view of affine geometry there is only one Bravais lattice. Bravais lattices 
which differ metrically (i.e. are not transformable one into the other by 
means of combinations of orthogonal transformations and translations) will 
in general have primitive translation vectors of different lengths with different 
angles between them. 

20.4. Definition. Let X I• ... ' xn be all the atoms of a lattice Llying inside a 
primitive cell with one boundary atom at the origin of co-ordinates 0 (as in 
Figure 20). Then the vectors from 0 to X I' . .. ' X n together form a basis for 
the lattice (relative to the given set of primitive translation vectors). 

20.5. Proposition. A lattice is completely determined by a set of primitive 
translation vectors a 1, a2 , a 3 (or a 1, a2 in the planar case), together with the 
corresponding basis for the lattice. 

Figure 20 
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Figure 21 

This proposition is (at least intuitively) clear from our definition of basis 
and of translation in variance. 

We digress for a moment to give a more detailed justification for modelling 
a finite, real crystal by means of translation-invariant infinite lattices. 
Figure 21 represents a (somewhat idealized) real, perfect, 3-dimensional 
crystal with boundary. The positive integers N 1, N 2 , N 3 count the numbers 
of primitive cells stacked along the corresponding edges of the parallelepiped 
(i.e.ofthecrystal);thusAB = N 1a 1, BC = N 2 a2 ,AD = N 3 a 3 • 

We now apply to our real crystal the permitted translations (in particular 
translations along the primitive translation vectors a 1, a 2 , a 3), but with the 
following modification: If for instance we translate the crystal along a 1, 

we then slice off the layer protruding beyond the original parallelepiped, 
and glue it to the opposite (i.e. the left) face of the crystal which has now 
moved into the parallelepiped along the vector a1 ; by this procedure we 
have made the crystal ' ' periodic" in the direction of a 1 , Essentially the same 
effect can be obtained by imagining the opposite faces of the crystal identified. 
The introduction of such a periodic model is vindicated by the fact that 
most physical constructions and calculations involving crystals are not 
altered by the imposition of periodicity. Moreover, it is clear that the periodic 
model (where the same procedure is applied in all three directions) is equiv
alent to our infinite crystal lattice. 

The condition of periodicity may be elucidated by considering, in geo
metrical terms, what the basic translations become when applied to the 
periodic crystal. In the case of a !-dimensional crystal, consisting of N 
aligned atoms, with the two atoms numbered 1 and N comprising the 
boundary, the imposition of periodicity amounts to glueing the two ends to 
form a circular chain, so that a permissible translation, as applied to the 
'"glued" crystal (i.e. to the !-dimensional crystal with the condition of 
periodicity on its ends), becomes a rotation of the circle through an integral 
multiple of 2n/ N . In the planar case periodicity is equivalent to the formation 
of the surface T 2 , the 2-dimensional torus, by identifying the opposite 
edges of the parallelogram occupied by the crystal. Finally the 3-dimensional 
periodic crystal corresponds to the 3-dimensional torus T 3 . 

We now return to the mainstream of our development. With each (transla
tion-invariant) lattice there is associated in a natural way a'" symmetric cell" 
(not to be confused with a primitive cell), having an atom at its centre. 
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cell 

20.6. Definition. For each atom of a lattice L, the symmetric cell with that 
atom at its centre, is the set of points of space (or of the plane if the lattice is 
planar) nearer to that atom than to any other atom of the lattice. 

Symmetric cells are sometimes called also "Wigner-Seitz cells", and in 
the theory of discrete groups are known as" Dirichlet regions ". In Figure 22, 
which represents the so-called plane "hexagonal" lattice, a primitive cell 
and a symmetric cell are indicated. (The reader will notice that they are 
different!) In general the boundary of a symmetric cell of a planar lattice is 
formed, as in Figure 22, from segments of the perpendicular bisectors of 
the "edges" of the lattice joining the central atom of the cell to its nearest 
neighbours. 

We now transfer our attention to the Euclidean motions preserving a 
given lattice, i.e. mapping the lattice onto itself. As before we shall denote 
by G3 the group of all motions (i.e. isometries) of Euclidean 3-space. (The 
isometry group of the Euclidean plane will be denoted by G2 .) 

20.7. Proposition. Every element g of the group G3 (and also of G2) can be 
expressed in exactly one way as a product g = T o r:t., Where Tis a translation, 
and r:t. is an orthogonal transformation. 

PROOF. In §4.3 it was shown that every motion g of Euclidean 3-space is of 
one of the following two types: 

(1) a screw-displacement g = Tr:t. , where r:t. is a rotation (so that det a = 1) 
and Tis a translation along the axis of rotation; 

(2) a rotatory reflection g = r:t., where a E 0(3) and det a = - 1. 

The uniqueness of the expression follows easily from the fact that the elements 
of 0(3) fix the origin, while a non-trivial translation does not. The proof for 
the planar case, i.e. for G2 , follows similarly (from §4.2). 0 
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Remark. In general the translations do not commute with rotations, i.e. it is 
not true that Trx = rxTfor all rotations rx and translations T. (We leave it to 
the reader to give an example.) 

The set of all translations of IR 3 is a subgroup of G3 , the translation sub
group. It is easy to verify that in fact it is a normal subgroup of G3 , i.e. for 
all translations T and all g E G 3 , g T g- 1 is again a translation. (In view of 
Proposition 20.7 it suffices to verify this forgE 0(3).) On the other hand the 
group 0(3) is not a normal subgroup of G3 . (Analogous statements hold 
for the translation subgroup of G2 , and for 0(2).) 

In our present context we are interested in those transformations in G3 

(or G 2 as the case may be) which preserve a given lattice. It is easy to see that 
for a given lattice the set of all such transformations is a group. 

20.8. Definition. The subgroup consisting of all the motions in G3 (resp. G2 ) 

preserving a given lattice L, is called the crystallographic space group of the 
lattice, and is denoted by G3(L) (resp. G2(L)). 

From now on we shall state definitions and propositions for the 3-
dimensional case only, with the understanding that the corresponding 
definitions and facts hold good in the planar case. 

20.9. Definition. The subgroup of G3(L) consisting of all translations of the 
lattice L, is called the translation group of L, and is denoted by T3(L). 

Thus T3(L) consists of all translations T of the form T = n1 r 1 + n2 r 2 + 
n3 r 3 , where 11 1, n2 , n3 are integers, and r 1, r 2 , r 3 are the primitive, or basic, 
translations of our translation-invariant lattice L. 

It is easily verified that the subgroup T3(L) is normal in the group G3(L). 
For it is easy to show that if tis any translation and g is any element of G;(L), 
then the element gtg- 1 is again a translation (in G3(L)), and therefore lies 
in T3(L). 

We may obviously assume (and shall do so from now on) that the origin 
of co-ordinates, denoted by 0, is a vertex of a primitive cell of our lattice L, 
and we shall imagine the primitive vectors emanating from 0. Then of course 
all orthogonal transformations will fix the atom 0 of the lattice. 

By Proposition 20.7 each transformation g E G3 can be expressed in 
exactly one way as a product g = Trx where Tis a translation and rx E 0(3). It 
is sometimes useful to frame this decomposition of the elements of G3 (or 
more generally of G") in matrix terms, as follows. Recall first that an arbitrary 
motion g of the Euclidean space IR" may be uniquely written in the form 
y = Ax + b, where y, x are vectors in IR", A E O(n), and b is a fixed vector in 
IR". (Here b is the vector along which the translation T above moves the space; 
thus Proposition 20.7 and the normality of the translation subgroup hold, 
more generally, for G".) Using this we can represent such a transformation 
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J) /1 +1 

Figure 23 

g of IR1" uniquely by the following non-singular transformation of IR1"+ 1 

( cf. Exercise 3 in §4.5): 

hl 

§= 
A 

h" 

0 ... 0 1 

The linear transformation g acting on IR1"+ 1, induces on the hyperplane IR1" 
through the point (0, ... , 0, 1) parallel to the co-ordinate hyperplane 
x" + 1 = 0, a non-singular transformation which coincides with the original 
motion g of IR1" (see Figure 23). This matrix representation of g makes it 
particularly evident how it is that G" is a semidirect product of the group of 
translations, which correspond to matrices 

b) 

0 
h" 

0 ... 0 I 

by the subgroup of orthogonal transformations, which correspond to 
matrices of the form 

We now make a further remark in connexion with our earlier one con
cerning the usual abstract mathematical definition of a crystallographic 
group. In §4.4 we showed in particular that the group 0(3) has two connected 
components, namely the rotation subgroup S0(3) whose transformations 
correspond to matrices of determinant 1, i.e. the subgroup of proper (or 
direct) motions, and the coset consisting of transformations with determinant 
-1, the improper (or opposite) orthogonal transformations of Euclidean 
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3-space. The translation subgroup of G3 is also connected, since clearly it 
may be identified in a natural way with IR 3 itself. In contrast with this it is 
not difficult to see that the space group G3(L) of a crystal lattice Lis discrete. 
(A transformation group is defined to be discrete if it does not contain 
transformations arbitrarily close to, but different from, the identity trans
formation. (Cq§18.4, 20 of Part II.)) 

Narrowing our sights to the subgroup G3(L) of G3 , where Lis the transla
tion-invariant lattice we are investigating, we see that by Proposition 20.7 
every element g of G3(L) is expressible in exactly one way as a product 
g = Trx, where Tis a translation and rx E 0(3). It is important to emphasize 
that since G3(L) is a proper subgroup of G3 it may (and does) happen that 
for some g E G3(L) the corresponding Tand rx do not lie in G3(L), i.e. that T 
and rx do not preserve the lattice L, though their product g = Trx does. An 
example of this (in the planar case) is given below. As in the case of the full 
group of motions G3 , the order of composition of the T and rx composing 
an element g E GiL) is important, i.e. in general Trx =lrt.T. 

20.10. Definition. The set of all orthogonal transformations rx E 0(3) such 
that for some translation Tthe product Trx lies in G3(L), is called the crystallo
graphic point group of the crystal lattice L, and is denoted by S 3(L). 

(We shall show below (Proposition 20.11) that this set is indeed a group.) One 
sometimes hears the point group of a lattice referred to as the "symmetry 
group" of the crystal, and its elements as "symmetry operations" on the 
crystal. To recapitulate the definition: An orthogonal transformation rx 
belongs to the point group precisely if on following it by some translation 
T (i.e. on forming Trx) we obtain a lattice-preserving motion, i.e. an element 
of G3(L). 

20.11. Proposition. The set SiL) qftran~formations is a group. 

PROOF. It follows from the normality of the translation group T3 in G3 and 
the uniqueness of the expression Trx for each element g of G3 , that the pro
jection map n: G3 --> 0(3) defined by n: g = Trx--> rx, is a homomorphism. 
Hence nG 3(L), the image under n of the subgroup G3(L) of G3 , is a subgroup 
of 0(3). But from their definitions it is clear that the image is just the set 
S3(L). Hence S3(L) is indeed a group, as required. 

Remark. By the "homomorphism theorems" of group theory, the group 
nG 3(L) is isomorphic to the quotient group G3{L)/(G 3(L) n Kern), where 
Ker n denotes the kernel of the homomorphism n (i.e. the subgroup of G3 

consisting of those elements sent under n to the identity). Since clearly 
Kern = T3, and since T3(L) = GiL) n T3 , we have 

S3(L) ~ nG 3(L) ~ G3(L)/G 3(L) n T3 = G3(L)/T3(L), 

i.e. the point group of the crystal is isomorphic to the quotient G3(L)/T3(L). 
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Proposition 20.11 prompts the following question (whose answer is some
times useful): Given two elements a 1, a2 of the point group of a crystal lattice 
L, and translations T1, T2 guaranteed by the definition of the point group, i.e. 
satisfying T1a 1, T2 a2 E G3(L), what explicit translation Twill serve for the 
composite a.= a. 1a.2 , i.e. will have the property that TaEG3(L)? The 
answer is not difficult to find : since T1a. 1 and T2a2 belong to G3(L), so does 
T1a 1 T2 a2 = T1a 1 T2 a~ 1• a 1a 2 , so that for Twe may take (among other pos
sible candidates) the translation T1a 1 T2 a~ 1 • In more explicit terms, if the 
orthogonal transformations a 1, ~2 have matrices A~> A 2 respectively, and if 
T1, T2 are translations along vectors b1, b2 respectively, then for any vector r 
in IR 3 , we have 

(where it is clear that in applying T;rx; to r, the orthogonal transformation 
has been applied first , followed by the translation). It is easy to calculate 
that then 

(T1rx 1 T2rx~ 1)(r) = r + (A 1h2 + h1), 

so that for Twe may take the translation along the vector A 1b2 + b1• 

We now give the promised example of a 2-dimensional crystal lattice L 
and an element g E G2(L) whose (unique) expression in the form Trx has 
the property that both T, rx t G2(L). The lattice in question is depicted in 
Figure 24, where the primitive vectors rx 1, a2 are indicated. It is clear that 
neither the reflection rx (E 0(2)) in the straight line /, nor the translation T 
along the vector f3 (which is half the primitive vector a 1) preserves the lattice, 
i.e. neither rx nor Tbelongs to GiL). On the other hand it is easy to see that 
the composite transformation Trx (a glide-reflection) does preserve the 
lattice. Thus in particular a is in S3(L), the point group of L, even though it 
does not preserve L, a situation which serves to underline the fact that, 
generally speaking, the point group is not a subgroup of the group of motions 
of a crystal. 

The point group is of first importance in the theory of crystalline struc
tures. It is not for nothing that it bears the alternative name of "symmetry 
group" of the lattice, since as well as containing the "genuine" symmetries 
of the lattice, it includes those motions of Euclidean space which preserve 

f :: .... . . 
~1 • . . . . . . . . . 

• • • ·fi • • • 
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. . . . . . . 
Figure 24 
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the lattice only after the application of translations (also not lattice-pre
serving). 

As we have seen, the lattice of Figure 24 has a glide reflection as one of its 
"basic" symmetries. In three dimensions, one frequently meets also with 
crystals preserved under screw-displacements. (Recall from §4.3 that a 
screw-displacement is a rotation followed by a translation along the axis 
of rotation.) We recommend to the reader that he construct an example of a 
3-dimensional lattice having a screw-displacement as one of its "basic" 
symmetries. 

In crystallography, the following natural group of transformations of 
a lattice, consisting of the above-mentioned "genuine" symmetries, is also 
commonly considered. 

20.12. Definition. The stationary group H 3(L) of a lattice Lis the subgroup 
of G3(L) consisting of those motions of the lattice fixing the origin 0. In 
other words H 3(L) = G3(L) n 0(3). 

Thus H 3(L) is a subgroup of S3(L) (since in the unique expression of 
a E H 3(L) as a translation T following an element of 0(3), we shall have 
T = 1, the identity transformation). (As the lattice of Figure 24 shows, 
H 3(L) will in general be a proper subgroup, i.e. will not be equal to S3(L). 
However it is easy to see that if the lattice is Bravais then H 3(L) = S3(L).) 
We therefore obtain immediately the following 

20.13. Proposition. The stationary group H 3(L) is the intersection of the 
space group G3(L) with the point group SiL), i.e. HiL) = S3(L) n G3(L). 
(The groups involved are all regarded as subgroups of G3 .) 

By no means all subgroups of 0(3) can occur as point groups of lattices. 
It turns out that the requirement that the lattices be translation-invariant 
greatly narrows the field of possible candidates for the groups G3(L), S3(L) 
and H 3(L). This is borne out (in the case of H 3(L) at least) by the following 
theorem, which is fundamental in the theory of crystal lattices. Before 
stating the theorem, we introduce the notation H 3(L)(o) for the group 
consisting of the proper motions in H /L), i.e. we define H 3(L)(oJ = S0(3) n 
G/L). 

20.14. Theorem. IfLis a translation-invariant lattice, then the group H 3(L)(o) 
is finite, and each of its (finitely many) elements is a rotation about an axis 
through 0, through an anyle which is an integer multiple ofn/3 or ofn/2. 

PROOF. (i) We consider first the case that Lis a Bravais lattice, i.e. that every 
atom of Lis a translate of 0 by means of an integrallinear.combination of 
the primitive translations a 1, a2 , a 3 . By §4.3 a transformation 11> E H 3(L)(Ol• 
being a proper orthogonal transformation, is a rotation through some angle 
q> say, about an axis l passing through the point 0 (which we are assuming, 
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n 

Figure 25 

as always, to be an atom of the lattice). Denote by n the plane through 0 
perpendicular to the straight line /. Our lattice L , being Bravais, consists 
precisely of the points with position vectors of the form rx = n 1 a1 + n2a2 + 
n3 rx 3 . We now consider the projections parallel to the axis I of all of these 
points onto the plane n, and choose one point A 1 say, from among those of 
the projected points closest to, but different from, the point 0 (see Figure 25). 
Since the lattice Lis symmetric about 0, together with each of its points B 1 

it will have as an atom the diametrically opposite point B'1, the reflection 
of B1 in the point 0. Upon rotating the space through the angle r.p about the 
axis /, the point B 1 will go into a point B2 of the lattice, and the line segment 
OA 1 will swing through the angle r.p to take up the position of the segment 
OA 2 • (See Figure 25, where B 1 is taken to be the atom of which A 1 is the 
projection.) Since the vectors OB 1 and OB2 correspond to permitted transla
tions of the lattice, so will their difference B 1 B 2 correspond to a permitted 
translation. Since the latter vector is parallel to the plane n, on translating 
along this vector, the point 0 will, as in Figure 25, go into a point A in the 
plane n, and this point A will again be an atom of the lattice. Since A 1 and 
A 2 are closest (among all projections of atoms of the lattice) to 0 , the length 
of OA cannot be less than the length of 0A 1 (which is the same as that of 
0 A 2 ). Since I 0 A I = I B 1 B2 1 = I A 1 A 2 1, it follows that the base of the isosceles 
triangle A 10A2 is at least as long as the sides OA 1 and OA 2 of equal length, 
whence r.p :;::: rr/3, i.e. any lattice-preserving rotation must rotate the lattice 
through at least rr/3. It follows that if the angle of rotation is less than rr, 
then it must be 2rrj3, rr/3 or rr/2, since otherwise some power a" of the rotation 
rx would correspond to a rotation through an angle less than rr/3. Hence the 
only possible angles of rotation are integer multiples of rr/2 or rrj3. This 
completes the proof for the special case of a Bravais lattice. 

(ii) Having established the theorem for Bravais lattices we might now 
prove it in general by showing that every translation-invariant lattice 
contains as a sublattice a Bravais lattice preserved by any particular rotation 
<1>. We shall however not follow this avenue of proof, preferring a different 
method which illustrates another idea of considerable importance in the 
study of crystal lattices. 

We first consider the case of a planar lattice, with primitive translation 
vectors a 1, :x2 . As before let <1> denote a lattice-preserving rotation of the 
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Figure 26 Figure 27 

plane about 0 through an angle <p. To the vector 1)( 1 we apply successive 
powers of <1>, obtaining 1)( 1 , <1>1)( 1, <l> 2 ()(t, .... Since a primitive cell contains 
only a finite number of atoms, this sequence of images of 1)( 1 under successive 
rotations through the angle <p must eventually repeat, i.e. <1>"1)( 1 = 1)( 1 for 
some n, or, what amounts to the same thing, <p = 2mn/n for some integral 
m, n (see Figure 26). It is easy to check that if r 1 denotes the translation along 
the vector 1)( 1, then the translations along the vectors <1>1)( 1 , <1>2 1)( 1, .•. , are 
given respectively by <l>r 1 <1>- 1, <l> 2 r 1 <l>- 2 , .•. , which clearly all lie in the 
translation subgroup of the lattice. It follows that the vectors 1)( 1, <1>1)( 1, 

<1> 2 1)( 1, ... , must all be integral linear combinations of the primitive vectors 1)( 1 

and 1)( 2 . If 1)( 1 and <1> 2 1)( 1 are linearly dependent (over the reals) then since <l> 
merely rotates 1)( 1 through the angle <p, this angle must be an integer multiple 
of n/2. Thus we may assume from now on that 1)( 1 and <1> 2 1)( 1 are linearly 
independent over the reals. Since in this case these two vectors span the whole 
of2-dimensional space, in particular <1>1)( 1 will be a linear combination of them 
(over the reals). However since all three of the vectors 1)( 1, <1>1)( 1, <1> 2 1)( 1 are 
integral linear combinations of 1)( 1 and 1)( 2 , it follows that in fact <1>1)( 1 is a 
rational linear combination of 1)( 1 and <1> 2 1)( 1. (Alternatively this follows from 
the fact that if either of the coefficients in the expression of <1>1)( 1 as a linear 
combination of 1)( 1 and <1> 2 1)( 1, is irrational, then by repeated translations of 
the lattice along the vector <1>1)( 1, we should obtain infinitely many atoms in a 
primitive cell, contradicting the assumed discreteness of the space group of a 
crystal lattice.) 

The fact, established above, that the vector <1>1)( 1 is a rational linear com
bination of 1)( 1 and <1> 2 1)( 1, implies that cos <pis rational. To see this we express 
<1>1)( 1 explicitly in terms of 1)( 1 and <1> 2 1)( 1 ; thus, referring to Figure 27, we see 
that 

OB 2 
<I>()( I =~(I)( I + <l> I)( I), 

so that OB/ 11)( 1 1 is rational. However from Figure 27 it is clear that 

OB = 11)( 1 1 cos <p- OB cos 2<p, 
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whence 

OB 

I o: 1 I 2 cos cp 

Hence cos cp is rational, so that cp is restricted to being an integer multiple 
of n/2 or n/3. 

(iii) Finally we drop all restrictions, and consider a general 3-dimensional 
translation-invariant lattice. As before we let <l> be an arbitrary lattice
preserving rotation through an angle cp, about an axis I, and denote by n 
the plane through 0 orthogonal to I. As in (ii) above we concentrate our 
attention on (any) one of the three primitive vectors, say o: 1. If this vector 
lies in the plane n then the argument given in (ii) applies without change. 
If on the other hand o: 1 does not lie in n, then application of <l> moves it 
along the cone with apex at 0 and axis I. If we then project this cone (together 
with the various vectors <l>no: 1 lying on it) onto the plane n, then the argument 
in (ii) can be applied to the projected vectors to give the desired conclusion. 
This completes the proof of the theorem. D 

Theorem 20.14, which of course holds also for planar lattices, allows us 
to give immediately a complete list of all the possibilities for the group 
H iL)<o)• where Lis any planar, translation-invariant lattice. 

20.15. Classification Theorem for the Groups H 2 (L)<o>· For n = 1, 2, 3, 4, 6, 
let en denote the group consisting of the n elements 

( 

2nk . 2nk) 
COS ·--;;- Sill ---;-- ' 

. 2nk 2nk 
-Sill- cos-

n n 

0 ~ k ~ n- l, 

i.e. en is the cyclic group generated by the rotation of the plane about 0 through 
the angle 2n/n. Then for any planar, translation-invariant lattice L, the group 
H 2 (L)<o> is one of the en, n = 1, 2, 3, 4, 6. 

Thus if a group of rotations preserves a plane lattice, then it must be one of 
these five groups. (Note that C 1 is the trivial group.) 

We may easily derive from this list a complete list of all possibilities for 
H iL), i.e. for the full group of othogonal transformations preserving a plane 
lattice L, by allowing for the possibility that some origin-fixing reflection 
preserves L, i.e. by adjoining to H iL)<o> such a reflection (if there is one), 
together with all of its composites with elements of H 2(L)<o>. In this way we 
obtain the following complete list of possible stationary groups H 2(L): 
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Here D; is obtained from C; by forming the semi-direct product of C; with the 
cyclic group of order 2 generated by the lattice-preserving reflection; in each 
case the effect of conjugation of the elements of C; by the reflection is to in vert 
them. Thus D;/C; c::::: 7!.. 2 , the cyclic group of order 2.; in particular it follows 
that D 1 c::::: C2 . (The D; are called "dihedral" groups.) 

It is not difficult to construct for each of these 10 groups a plane lattice 
having that group as its stationary group. We leave this to the reader as an 
exercise. 

It is noteworthy that C 5 does not appear in the above list of possible 
orthogonal symmetry groups of a plane lattice. Since plane translation
invariant lattices correspond closely to the possible ornamental repeating 
patterns, they have been for centuries. in one guise or another, the objects 
of study by specialists in ornamental design. In Arabic artwork, in particular, 
one can observe the results of attempts to make a repeating pattern based 
on the number 5 (i.e. with rotation group isomorphic to C 5). Though in the 
strictest sense these attempts proved vain, they resulted in so-called "com
promise variants," based on the number 5, but inevitably having their sym
metry flawed in places. 

Having completely classified the stationary groups H 2(L) of a plane 
translation-invariant lattice, it is natural to ask next what the possibilities 
are for the full group G2(L) of motions of such a lattice. It turns out that 
such a group G2(L) is isomorphic to one of 17 (pairwise non-isomorphic) 
possible groups (corresponding to each of which there is a lattice having 
that group as its space group). It is interesting to note that all of the cor
responding 17 types of ornamentation occur in antique decorative patterns 
(chiefly Egyptian). 

We now return to 3-dimensionallattices. As might be expected, the prob
lem of classifying the groups H 3(L) and G3(L) is markedly more complex 
than in the planar case. We shall therefore not carry out this classification 
in full detail, but shall confine ourselves to drawing up a complete list of all 
the possible finite subgroups of rotations of Euclidean 3-space, i.e. the finite 
subgroups of S0(3). Since the stationary group (as also the symmetry group 
S3(L)) of an arbitrary translation-invariant 3-dimensionallattice is discrete, 
and therefore, as is not too difficult to see, finite, it follows that once having 
obtained a complete list of the finite subgroups of S0(3), we shall have at 
least significantly narrowed the field of candidates for the groups H 3(L)col 
and S3 (L)coJ· 

Before actually listing the finite subgroups of S0(3) and then proving that 
there are no omissions, we need to describe the finite subgroups in question. 
To this end let l be some straight line through the origin 0 of IR 3 , and denote 
by n the plane through 0 orthogonal to l. For each n = 1, 2, 3, ... , there is 
an obvious (and unique) rotation of 3-space about las axis, which induces 
on the plane n the rotation about 0 (in one direction or the other) through 
the angle 2njn. In keeping with our previous notation, we denote by C" the 
cyclic subgroup generated by this rotation of the plane n, and then by C~ 
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the cyclic subgroup generated by the corresponding rotation of 3-space 
about /; thus e~ induces the group en on II. (In particular C'1 consists of 
just the identity transformation.) As well as the en, the groups Dn (see above) 
act on the plane II. Recall that Dn is obtained from en by adjoining to it a 
reflection of II in some straight line q lying in II and passing through 0, 
together with the composites of that reflection with the elements of en. 
(As noted before, Dn is a semi-direct product of en by a 2-cycle with an invert
ing action.) Such a reflection of the plane II is induced by the rotation of 3-
space through the angle n about q as axis of rotation. Thus the improper 
orthogonal transformations ofthe plane II are induced by proper orthogonal 
transformations, i.e. by rotations, of 3-dimensional space. We denote by 
D~ the resulting group of rotations of 3-space inducing the group Dn on II. 
It is easy to see that the group D~ consists of the following rotations: those in 
en, and a further n rotations through the angle n with their n respective axes 
of rotation lying in the plane II and passing through 0, each such axis 
making an angle of 2nj2n = n/n with its immediate neighbours. In particular 
D'1 has just two elements (namely the identity transformation, and a rotation 
of space about a straight line lying in II), and is therefore isomorphic to e 2 • 

Hence if we wish our list to have on it just one group from each isomorphism 
class of finite subgroups of S0(3), then we should exclude the duplicate D'1. 

Thus so far our (incomplete) list contains the following groups: en, n = 
1, 2, 3, ... ; D~, n = 2, 3, 4, .... 

Apart from these two infinite sequences of subgroups, there are a few 
rather more exotic discrete subgroups of S0(3). These arise in connex
ion with the five regular (or "platonic") polyhedra (the tetrahedron, cube, 
octahedron, dodecahedron and icosahedron). With each of these polyhedra 
(imagined with its centre at 0) there is associated the finite group of motions 
of 3-space sending the polyhedron to itself (i.e. the symmetry group of the 
polyhedron). Among the five finite groups obtained in this way there are 
however isomorphic ones; in fact only three of them are distinct (in the 
sense of being non-isomorphic), since the symmetry groups of the cube and 
octahedron are isomorphic, as are those of the dodecahedron and icosa
hedron. This is due to the fact that the cube and octahedron on the one hand, 
and the dodecahedron and icosahedron on the other, are "dual" pairs of 
polyhedra. To see what this means, consider a sphere inscribed in a cube, 
and inside the sphere an octahedron whose vertices touch the sphere at those 
points where the sphere touches the cube, i.e. at the centres of the faces of the 
cube (see Figure 28). It is clear that with these two polyhedra in this relative 
position, any motion which moves the cube into itself is also a symmetry 
of the octahedron, and conversely; hence the symmetry groups of the cube 
and octahedron coincide when they are as in Figure 28, and they will there
fore be in general isomorphic. Entirely similar considerations show that the 
icosahedral and dodecahedral groups are isomorphic. 

We denote by T, W, P the respective groups of proper (i.e. direct) sym
metries of the tetrahedron, cube (and octahedron), dodecahedron (and icosa-
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Figure 28 

hedron). We leave it to the reader to verify that the orders of these three 
groups are 12, 24, 60 respectively, and that they are distinct from the groups 
e~ and D~. By adjoining to each of the groups T, W, P a reflection preserving 
the corresponding polyhedron, together with the composites of that reflection 
with the elements of the group (i.e. by including the improper symmetries), we 
obtain the full symmetry groups f, W, P of the polyhedra, having orders 
24, 48, 120 respectively. 

It turns out that the above finite groups of rotations of 3-space exhaust 
the possibilities. 

20.16. Theorem. Every finite subgroup of the rotation group S0(3) of 3-
dimensiona/ Euclidean space is isomorphic to one (){ the .following groups: 

en (n = I, 2, 3, . .. ), 

D~ (n = 2, 3, . . . ), 

T, W, P; 

where en is the (cyclic) group consisting()[ then rotations through the angles 
2knjn, k = 0, I, ... , n - 1 about a fixed axis I passing through 0 ; D~ consists 
of the rotations inC~ , together with n rotations through n about n axes passing 
through 0, perpendicular to 1, with a uniform angular spacing ofnjn; and T, W, P 
are respectively the groups of rotations preserving the regular tetrahedron, 
cube (or octahedron), and dodecahedron (or icosahedron). 

PROOF. We saw in §4.3 that every transformation in S0(3) is a rotation of 
3-space about some axis through the origin 0 . We associate with each rota
tion of 3-space the pair of diametrically opposite points of the unit sphere in 
which the axis of rotation meets that sphere, calling the pair of points of the 
unit sphere associated with a given rotation in this way, the poles of the 
rotation. 

Suppose that r is a finite group consisting of N rotations of 3-space. 
Consider the poles of the N - 1 non-identity transformations in r. It is 
easy to see that r acts (faithfully) as a permutation group on this set of poles. 
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We call the number v of transformations in r which fix a pole P the multi
plicity (relative tor) of that pole. (In other words vis the order of the stabilizer 
in r of the point P.) It is clear that the stabilizer of Pis just the cyclic group 
of order v generated by the rotation through the angle 2n/v about the axis 
through 0 and P; we denote this subgroup of r by rp. We shall show that 
the orbit of the point P under the group r has size N jv. (This is a particular 
case of a general result in the theory of permutation groups, i.e. the statement 
holds for any permutation group r whatever, as indeed is shown by the 
general nature of the proof which follows.) Thus with each point Q of the 
orbit in question (i.e. the orbit containing P) we associate the set of all 
motions in r which map P to Q. It is easy to see that this set is simply the 
coset gr P where g is any motion in r sending P to Q, and that this association 
of orbit elements with left cosets of rl' in r is one-to-one and onto. Since 
the co sets g r pare pairwise disjoint, and they all have 1 r p 1 elements, we have 
the desired conclusion. (We have here also indicated the proof of Lagrange's 
theorem, according to which the order of a subgroup of a finite group always 
divides the order of the whole group.) We conclude that for any pole P of 
the finite group r, if Vp is the multiplicity Of the pole and np the size Of the 
pole's orbit, then I r I = N = np Vp. 

We now calculate in two different ways the number of pairs (S, P) where 
P is a pole and S is a non-identity transformation in r, fixing P. In view of 
the fact that each of the N - 1 non-identity motions in r fixes just two poles, 
the number of such pairs is 2(N - 1). On the other hand since the stabilizer 
of a pole P has order Vp, there are exactly Vp - 1 non-identity motions in 
r fixing P; hence the number of pairs (S, P) is also given by L (vp - 1), where 
the summation is over the set of all poles P. Since vQ = Vp for all poles Q in 
the same orbit as P (the stabilizer of Q being simply the conjugate of the 
stabilizer of P by any motion gin r which sends P to Q), after numbering the 
orbits (from 1 to however many there are), we obtain the equation 

2(N - 1) = L (v; - l)n;, (1) 

where n; is the size of the ith orbit, and v; is the multiplicity of an element in 
the ith orbit. Since, as we have already shown, N = n; v; for all i, on dividing 
(1) by N, we obtain 

2 - ~ = L (1 - .!.) . 
N i V; 

(2) 

We shall now see that (2) places severe restrictions on the possible values 
for the v;, N, and the number of orbits. Since the trivial group is on our list, 
we may assume that r is non-trivial, i.e. that the left-hand side of (2) lies 
between 1 and 2 (and cannot equal 2), so that on the right-hand side there 
must clearly be no fewer than 2 orbits. On the other hand since by definition 
each pole is stabilized by at least one non-trivial transformation in r, i.e. since 
v; > 1, we cannot have more than 3 summands on the right-hand side of (2). 
Thus there are either 2 or 3 orbits. 
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In the case that there are 2 orbits equation (2) takes the form 

This forces n1 = n2 = 1, which means that there are but two poles each of 
which is stabilized by r. Hence r is a cyclic group of order N consisting of 
rotations about the axis through these poles, i.e. r is isomorphic to c~. 

If there are 3 orbits, equation (2) can be rewritten as 

(3) 

We may assume (by renumbering the orbits if necessary) that v1 s v2 s v3 . 

Not all of v 1, v2 , v3 can exceed 2, since if they did then the left-hand side of 
(3) would be less than or equal to t + t + t = 1, whereas the right-hand 
side is greater than 1. Hence v 1 = 2, and from (3) we obtain 

1 1 1 2 
-+-=-+-. 
v2 v3 2 N (4) 

Again we cannot have both v2 , v3 ~ 4 since the left-hand side of (4) would 
otherwise be at most!. Hence v2 = 2 or 3. 

Consider first the case v1 = v2 = 2, N = 2v 3 . Put n = v3 . In this case 
we have 2 orbits of size n, the stabilizers of whose elements have order 2, 
and a further orbit of size 2 with stabilizer of order n. The latter stabilizer is 
clearly isomorphic to C~, and it is easy to see (from the definition of the di
hedral groups given above) that in fact r in this case is isomorphic to D~. 

Suppose next that v1 = 2, v2 = 3, in which case 1/v3 = i + 2/N. Since 
v3 ;;:: v2 = 3, we have only three possibilities: v3 = 3, N = 12; v3 = 4, 
N = 24; v3 = 5, N = 60. We shall now see that corresponding to these 
three cases we have r ~ T, W, P respectively. 

In the case v3 = 3, N = 12, two of the orbits each have 4 poles all of 
multiplicity 3. It is clear that the poles in either one of these orbits are the 
vertices of a regular tetrahedron, with those in the other orbit diametrically 
opposed to them. Thus in this case r is the group of proper motions preserving 
a tetrahedron, i.e. r ~ T. (The 6 poles of multiplicity 2 comprising the re
maining orbit will be the projections onto the unit sphere of the midpoints 
of the 6 edges of the tetrahedron.) 

In the case v3 = 4, N = 24, the third orbit contains 6 poles of multiplicity 
4, which are clearly the vertices of a regular octahedron inscribed in the 
unit sphere, so that r is the group of proper motions preserving that octa
hedron, i.e. r ~ W (The 8 poles of multiplicity 3 of the second orbit are the 
projections of the centres of the faces of this octahedron onto the unit sphere, 
while the 12 poles of multiplicity 2 of the first orbit are the projections onto 
the unit sphere of the midpoints of the 12 edges of the octahedron.) 

In the final case v3 = 5, N = 60, the 12 poles, each of multiplicity 5, of 
the third orbit are the vertices of a regular icosahedron inscribed in the unit 
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sphere. The first and second orbits contain respectively 30 poles of order 2 
(the projections of the midpoints of the 30 edges of the icosahedron), and 20 
poles of order 3 (the projections of the centres of the 20 faces of the icosa
hedron). 

Since we have enumerated all possibilities, the theorem is proved. D 

This theorem can be used for compiling a complete list of all the possible 
stationary groups of 3-dimensional crystal lattices. As a preliminary to 
giving this list (without the details of the proof) we need to define the new 
groups that will appear in it. 

To begin with let B denote the reflection of 3-space in the origin 0, i.e. the 
transformation sending each point X to -X. Since the matrix of B is just 
the negative of the identity matrix, it follows both that B is an improper 
orthogonal transformation, and that it commutes with every element of 
0(3); in fact it is not difficult to show that B generates the centre of 0(3) 
(essentially because it is the only non-identity scalar matrix in 0(3)). Hence 
if H is any subgroup of S0(3), then the subgroup f1 of 0(3), generated by H 
together with the element B, is the direct product of H with the cyclic group 
of order 2 generated by B; thus H has index 2 in fl. 

We next describe another way in which finite subgroups of 0(3) are 
built up from certain subgroups of S0(3) by the adjunction of plane reflec
tions. Let r be a subgroup of index 2 in a subgroup <1> of S0(3). Denote the 
coset <1>\r by S; thus S is just the set of elements of <1> outside r. if we 
replace in <1> the subset S by the set BS, i.e. if we form the union r u BS, it is 
easy to see that we obtain a group different from, but isomorphic to, the 
group <1>. (We are making heavy use here of the centrality of B.) This new 
group, which we denote by <I>r, contains r, and has its other half made up 
of plane reflections. For example we can form a group WTsince the group T 
of proper motions of the tetrahedron occurs as a subgroup of index 2 in the 
group W of proper motions of the octahedron. 

20.17. Theorem. The following is a complete list of" all possible stationary 
Y!·oucs o[ 3-dime~iona/, translation-ill_!;'Cll"i(.!_nt If!ttic!s: C'lo c~. C3. c~' c~; 
C'1, C~, C3. C. C~ ;D~, D3, D~. D~ ;D~, D3, D~. D~; C~ C'1, C~ C~, C~ C3; 
D~D~. D~D3; D~C~, D3C3, D~C~. D~C~; T, W, f, W, WT. Each ofthese 
groups actually arises as the stationary group of some translation-invariant, 
3-dimensionallattice. (Note that the 32 groups in the list are not all isomorph
ically distinct.) 

The proof of this theorem involves combining Theorems 20.16, which 
gives (up to isomorphism) a complete list of the finite subgroups of S0(3), 
with the above-described procedure for "incorporating" plane reflections 
with groups of rotations, and by exploiting the fact that poles can have only 
the multiplicities 2, 3, 4 or 6. We omit the details. 
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Figure 29 

We conclude this section by considering crystallographic groups in 
connexion with concrete tensor fields. We shall limit ourselves to one simple 
example of a macroscopic property possessed by crystals, namely their 
electrical conductivity, which determines the precise relationship between 
the strength 1-: of the ambient electric field and the current density vector j 
in the crystals. This relationship is given by the empirical equation 

where j = (jk), F. = (~:,), and (a-f) is the electrical conductivity tensor of the 
medium. If the medium is isotropic then a~ = abf, i.e. in this simplest of 
cases the electrical conductivity is determined by the single scalar a. In the 
general case (aD will be more complicated. 

In our present context we wish to consider as medium a cubic crystal, 
represented by the cubic lattice in IR 3 depicted in Figure 29. We shall assume 
that the crystal is perfect and fills the whole of 3-space. It is clear that the 
symmetry group of this crystal contains the following three orthogonal 
transformations: 

P. ~ H 
1 

~} p, ~ ( ~ 
0 

~} 0 I 

0 - 1 0 

p, ~G 
0 

~} 0 
-1 

these are rotations through rr/2 about the z-axis, y -axis and x-axis respectively. 
Since these three rotations preserve the lattice, they must also preserve 

the electrical conductivity tensor (aD of the crystal. If we denote by A the 
matrix (aD then under the transformation {J;, A goes into A; = /]; A{J;- 1 which, 
since the tensor is preserved, is again equal to A. If we calculate A 1 explicitly, 
we obtain 

a~) 
a~ . 

a~ 
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Hence a~ =a~. Explicit calculation of A 2 and A 3 yields similarly a~ =a~. 
The three equations A = A 1 = A 2 = A 3 also give that a} = 0 for i # j. 
Alternatively this follows by calculating explicitly the matrices f3f A/3;- 2 and 
setting them equal to A; for instance 

gives a~ = a~ = ai = a~ = 0. We conclude that 

(1 0 0) 
A = (aD = a 0 1 0 , 

0 0 1 

i.e. af = ab%, where a is a scalar. We have thus shown that the electrical 
conductivity of a cubic crystal is like that of an isotropic medium, i.e. is 
independent of direction. It is not physically obvious that this should be the 
case, since one might expect that for instance the conductivity of a cubic 
crystal in directions parallel to the edges would differ from that in the 
diagonal direction. Thus we have used our knowledge of the symmetry 
group of the crystal in a significant way to establish the number of inde
pendent components of the tensor (an. 

§21. Rank 2 Tensors in Pseudo-Euclidean Space, 
and Their Eigenvalues 

21.1. Skew-Symmetric Tensors. The Invariants of an 
Electromagnetic Field 

Of great importance in physics are the skew-symmetric rank 2 tensors 
defined on Minkowski space. In particular the electromagnetic field F;k is a 
tensor of this kind. (We shall in this physical context adopt the concomitant 
terminology, calling tensors "fields," etc.) 

21.1.1. Definition. The invariants of a field F;k (defined on ~Ri. 3 ) are the 
coefficients of the characteristic polynomial 

(1) 

where 9;k is the Minkowski metric. 
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Given any skew-symmetric rank 2 tensor Fik• we define the (electric and 
magnetic) vector fields E and H by 

IX = 1, 2, 3; 
(2) 

where E = (E 1, E2 , E 3), H = (H 1, H 2 , H 3)(at each point of 3-space). Hence 
in terms of these the matrix (F;k) takes the form 

E 1 E2 

0 H 3 

-H 3 0 

H 2 -H1 

(3) 

21.1.2. Lemma. The characteristic polynomial of a skew-symmetric, rank 
2 tensor F;k has the.form 

(4) 

where IEI 2 = Ei + E~ + EL IHI2 = (H1) 2 + (H2 ) 2 + (H 3) 2 and (E, H)= 
E;H;. 

This can be proved by simply expanding the right-hand side of (1), and 
recalling that in terms of Minkowski co-ordinates for 1Ri.3 (which we are 
assuming), the metric gii is given by: Yoo = l, g 11 = g22 = g33 = -I, 
gii = 0 for i # j (see §3.2). Alternatively, we may appeal to Theorem 21.1.5 
below, which gives the canonical form of a rank 2 skew-symmetric tensor in 
pseudo-Euclidean space. 

Remark. There is a theorem of linear algebra to the effect that a skew
symmetric matrix can be brought into a standard block form by a suitable 
orthogonal co-ordinate change; however in the present context the Lorenz 
transformations are the pertinent ones, and they will not in general serve 
for bringing the matrix into this particular canonical form. 

In the language of differential forms (see §18.1), (2) becomes 

F = 'F .. dx; 1\ dxi L. lj 
i<j 

In saying above that the entities E and H are "vectors," we meant only 
that they behave like vectors under orthogonal changes of the co-ordinates 
x 1, x2 , x 3 • Since F;k is a tensor, and therefore must transform as stipulated 
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in the definition (17.1.1 ), we calculate that in particular under the Lorentz 
transformation 

x1' + vt' 
X1=n; v 

2 

I V 1' t +-x cz t=R 
2 

(6) 

where x0 = ct, x 0 ' = ct', the components of E and H transform as follows: 

E' VH2' 3--

£1 = £'1; 

H 2 ' - ~ E~ H 3 ' + ~ E~ 
(7) 

Hz= ~; H3= ~· 
.Jl-? .Jl-? 

The set of all skew-symmetric tensors F ik of type (0, 2) forms at each point 
a 6-dimensional linear space. The following lemma describes the action of 
the operator* (see 19.3.1) on each such linear space. 

21.1.3. Lemma. Given a skew-symmetric tensor F of type (0, 2) which as a 
differential form is given by 

F = Ea dx 0 1\ dxa + H 1 dx 2 1\ dx 3 + H 2 dx 3 1\ dx 1 + H 3 dx 1 1\ dx 2 , 

we have 
3 

L Ha dx0 1\ dxa + £ 1 dx 2 1\ dx 3 

a=1 

+ E2 dx 3 A dx 1 + E3 dx 1 A dx2 • (8) 

PRooF. By Definition 19.3.1, the operator* acts on F as follows: 

(9) 

Here g;j is the Minkowski metric, i.e. in terms of our assumed pseudo
Euclidean co-ordinates, 

g .. =(1 • !] 

0 

-1 _} -1 

and also (gu) = (g;)- 1. Hence the tensor Fikis given by 

F 0a = -Fo. = -E.; F"P = F.p. a, f3 = 1, 2, 3. (10) 
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The lemma now follows by direct calculation from this, (9) and the definition 
of the tensor eiklm. 0 

21.1.4. Corollary (cf. §19.3(14)). Wtth F as in the lemma, we have 

*(*F)= -F, 

i.e. the square of the operator * as applied to skew-symmetric rank 2 tensors, 
is just multiplication by -1. 

This corollary, together with the fact that * preserves addition of tensors, 
allows us to introduce on the set of skew-symmetric rank 2 tensors, the 
structure of a complex linear space. We do this by defining 

(a + bi)F = aF + b * F, (11) 

for any such tensor F and any complex number a + bi. In this way we obtain 
at each point a 3-dimensional complex space C3. 

Remark. We may then regard E and Has the "real" and "imaginary" parts 
of the tensor F, i.e. we may write formally F = E + iH. This fits in with (11) 
since multiplication by i gives 

i(E + iH) = - H + iE, 

which accords with the action of the operator * as described in Lemma 
21.1.3. This leads naturally to the complex co-ordinates 

()( = 1, 2, 3, (12) 

for the space C3 attached to each point of the underlying space. Since the 
transformations in S0(1, 3) have Jacobian 1, it follows from 18.2.4 that they 
preserve the operator *• i.e. with respect to these transformations, the 
operator * is a tensor operation. Hence S0(1, 3) acts on C3 as a group of 
complex linear transformations. We now define a quadratic form <F, F) on 
skew-symmetric tensors F = (Fik), which is preserved by S0(1, 3). To this 
end note first that F A F and F A ( * F) are skew-symmetric tensors of type 
(0, 4). Since the underlying space has dimension 4, it follows (as in Example 
18.2.2(a)) that each of these tensors has all its non-zero components equal 
up to sign. It is a straightforward calculation from the definitions to show 
that 

It follows from the definition of the operator * that * (F A F) and 
* (F A (*F)) are scalars, so that any linear combination of them will also be 
a scalar. We take one such linear combination as defining our quadratic form, 
namely: 

<F, F) = - * (F A (*F)+ i(F A F)) = -t(FikFki + ieiiklFiiFk1). (13) 
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(There would appear to be no possibility here of confusing the complex 
number i with the index i.) Since this is a scalar, it is invariant under co
ordinate changes, and so in particular is preserved by SO( 1, 3). Using (2) and 
(10) to express this quadratic form in terms of the co-ordinates z1, z2 , z3 

given by (12), we obtain 
3 

(F,F) = -IHI 2 + IEI 2 + 2i(E, H)= I (z') 2 . (14) 
a=l 

Thus the form defined in (13) is just the "scalar square" (i.e. the sum of the 
squares of the components) of the complex 3-vector E + iH. The complex 
linear transformations of C3 preserving this scalar square of vectors are 
called complex orthogonal transformations by analogy with the real case, 
where this scalar square defines the Euclidean metric. The group of all 
complex orthogonal transformations of C3 is denoted by 0(3, C). (It must 
not be confused with V(3).) We now come to the point of our remark, namely 
that since the transformations in S0(1, 3) act like complex linear trans
formations on the space of skew-symmetric rank 2 tensors at a point, i.e. on 
C3 , our introduction of a complex linear structure on that space yields a 
monomorphism from SO(l, 3) to 0(3, C). Note finally the additional conse
quence that the quantities Re(F,F) = IEI 2 -IHI 2 , and 1Im(F,F) = 
(E, H), are invariants of the electromagnetic field, i.e. are preserved by 
Lorentz transformations. (This also follows from Lemma 21.1.2.) 

We turn now to the question of reducing a skew-symmetric tensor F of 
rank 2 to canonical form by means of Lorentz transformations. 

21.1.5. Theorem. Let (F, F) be as in (14), i.e. 

(F, F)= IEI 2 - IHI 2 + 2i(E, H). 

(i) (a) lf(F, F)# 0 and (E, H) # 0, then there is a Lorentz transj(Jrmation 
of co-ordinates such that the vectors E and H defined in terms of the 
transformed components ofF are parallel and both non-zero. 

(b) lf(F, F)# 0 and (E, H)= 0, then IEI 2 - IHI 2 # 0, and there is a 
Lorentz transformation yielding co-ordinates in terms of which: if 
IEI 2 - IHI 2 > 0 then E # 0, H = 0: while if IEI 2 - IHI 2 < 0, then 
E = 0, H # 0. 

In both cases (a), (b), the canonical.fiJrm of the tensor F is 

(-~' F= 
0 

0 

E' 0 
0 0 
0 0 
0 -H' 

so that E' 2 - H' 2 = IEI 2 - IHI 2 • E'H' = (E, H). 

(15) 

(ii) If (F, F) = 0, then IE 12 - I H 12 = 0, (E, H) = 0, and these equations 
are preserved by Lorentz transformations, i.e. after any Lorentz trans
formation of co-ordinates, the vectors E and H will remain perpendicular 
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and of equal length. In this case the tensor F can, by a suitable Lorentz 
transformation of co-ordinates, be brought into the form 

(-~ F= 
0 
0 

E 
0 

-E 
0 

0 
E 
0 
0 

(16) 

PROOF. (i) Suppose (F, F) #- 0. Treating F as a vector in C3 , as in the above 
remark, we write F = dn where d = J (F, F) and (n, n) = 1. It is easy to 
see that, analogously to the real case, the unit vector n is taken to any other 
unit vector, and so in particular to the unit vector n' = (1, 0, 0) in the direction 
of the z1-axis, by a suitable transformation from S0(3, C). Writing d = 
E' + iH', it is clear that in terms of the transformed co-ordinates F has the 
form (15) (since F = (E' + iH', 0, 0)). It is also obvious that E' = (E', 0, 0) 
and H' = (H', 0, 0) are parallel. Since (F, F) is preserved by S0(3, C) we 
have that 

d2 = IE 12 - I H 12 + 2i(E, H) = (F, F) = E' 2 - H' 2 + 2i(E', H'), (17) 

whence if (E, H) #- 0, then (E', H') = E'H' #- 0, and neither E' nor H' can 
be zero. This proves (i)(a). On the other hand if (E, H) = 0, then again by 
(17) we must have E'H' = 0 while E' 2 - H' 2 = IEI 2 - 1HI2 #- 0. Hence if 
E' 2 - H' 2 > 0 we shall have E' #- 0, H' = 0, while if E' 2 - H' 2 < 0 then 
E' = 0, H' #- 0, which is the claim of (i)(b). To complete the proof of (i) we 
need to know that the transformations in S0(3, C) are Lorentz transforma
tions. We omit the verification of this; the above remark makes it at least 
plausible. 

(ii) By means of a (real) transformation from S0(3) c S0(1, 3), we can 
arrange the co-ordinates z1, z2 , z3 so that E has the form (E, 0, 0), i.e. is 
directed along the z1-axis. Then H will lie in the (z2 , z3)-plane. By rotating 
this plane, if necessary, we may then assume that H has the direction of the 
z3-axis, i.e. H = (0, 0, H). Then since IHI =lEI, we must have H = E, 
whence we obtain the form (16) for F. D 

21.2. Symmetric Tensors and Their Eigenvalues. 
The Energy-Momentum Tensor of an 
Electromagnetic Field 

Let ~k be a symmetric tensor of type (0, 2) defined on Minkowski space 
IR'i, 3 with the Minkowski metric g ik. 

21.2.1. Definition. The eigenvalues of' the tensor ~k are the roots of the 
characteristic equation 

(18) 
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As noted previously, it is clear that the eigenvalues of I;k are just the 
eigenvalues, in the usual sense, of the linear operator T~ = gii~k• where 
(gii) = (g;i)- 1• The eigenvectors corresponding to an eigenvalue A are the 
non-zero vectors ( ~k) satisfying 

(19) 

It is a well-known result of linear algebra that a symmetric matrix can 
always be brought into diagonal form by a suitable orthogonal trans
formation of co-ordinates; however, since our underlying space is not 
Euclidean, but pseudo-Euclidean, this is not relevant to our present situation. 
We should instead like to know what canonical forms a symmetric matrix 
I;k can be brought into under Lorentz transformations of co-ordinates. The 
following theorem gives us the answer to this question in the case of the 
2-dimensional Minkowski space !Rf. 

21.2.2. Theorem. Let I;k be a symmetric tensor defined on 2-dimensional 
Minkowski space IRi. 

(i) If the roots A0 , A1 of the characteristic equation P(A) = 0 are real and 
distinct, then after a suitable Lorentz tran~formation of co-ordinates, the 
matrix I;k transforms to 

(~ -~J (20) 

(ii) If the roots A0 , A1 of P(A) = 0 are complex conjugates, say Ao = IY. + i/3, 
A1 = IY. - i/3, f3 #- 0, then by means of a Lorentz transformation of co
ordinates, the matrix Iik can be brought into the form 

(21) 

(iii) IfA0 = A1 = A, then in any co-ordinate system the matrix Iik has theform 

( A + ,u 
-,u 

-,u ) 
-A+ ,u ' 

(22) 

where if ,u #- 0 then ,u is not an invariant of the tensor I;k, and cannot be 
made 0 by applying a Lorentz transformation. 

PRooF. Suppose first that Ao #- A1, and let ~ 0 , ~ 1 be corresponding eigen
vectors defined as in (19), necessarily linearly independent since the eigen
values .:1.0 , .:1. 1 are distinct. Since 

~~ Iik ~1 = A.ogik ~~ ~~ = A1 gik ~~ ¢~, 

it follows from the assumption Ao #- A1 that (~0 , ~ 1 ) = gik~~~1 = 0, i.e. 
that the vectors ~ 0 , ~ 1 are orthogonal. 
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Suppose now that in addition to being distinct Ao and A1 are real. A little 
explicit calculation then shows that since ~0 , ~ 1 are orthogonal and (because 
A0 # A1) independent, one of them will be time-like and the other space-like 
(see §6.1).11 follows that we can take these as the directions of the co-ordinate 
axes, i.e. there is a co-ordinate change making these the co-ordinate axes, 
and preserving the metric (see §6.2). This completes the proof of (i). 

We now prove (ii). (Note that this case can arise, since although (gij) and 
(T;k) are symmetric, the matrix (gij1jk) in general need not be symmetric, and 
may therefore have complex eigenvalues.) Thus suppose A.0 = IJ( + i/3, 
A.1 = IJ( - i/3. From (19) it follows that if ~0 = a + ib is an eigenvector 
corresponding to A.0 , then ~ 1 = ~0 = a - ib will be an eigenvector corre
sponding to the eigenvalue A. 1 • Since any scalar multiple of ~0 =a + ib is 
also an eigenvector we may assume that its pseudo-Euclidean norm satisfies 

<a + ib, a + ib) = 2, 

i.e. (a 1 + ib 1 f - (a2 + ib2) 2 = 2. From this condition and the ortho
gonality of ~0 and ~ 1 we deduce that 

<a, b)= 0, <a, a)+ <b,b) = 0, <a, a)- <b,b) = 2. 

It follows that I a 12 = 1, 1 b 12 = - 1. In terms of the basis vectors a, b, the 
matrix (T;k) takes the form (21). Since these are real, orthogonal vectors, the 
same reasoning as in the proof of (i) shows that the change from the original 
co-ordinate system to one based on a and b, can be effected by a Lorentz 
transformation. This completes the proof of (ii). 

Finally, suppose A0 = A. 1 = A.. The characteristic polynomial is given by 

det( 7ik - A.g ik) = I Too- A. To1 I 
Tol Tll + A 

= - {A2 + A(T11 - Too)+ T61 - Too T1 J}. 

Since this polynomial has only one root, its discriminant must be zero~ i.e. 

(Til - Too)2 - 4(T61 - Too T11) = (Til + Too) 2 - 4 T61 = 0, 

whence 
(23) 

The unique root is 

, = Too- T11 
II. 2 . (24) 

Solving (23) and (24) for T11 and T00 in terms of A. and f1. = T01 we see that 
the matrix (T;k) has the form (22). The case fl. = 0 corresponds to the situation 
that the space spanned by the eigenvectors of A. has dimension 2. We leave it 
to the reader to show that f1. can be altered by suitable Lorentz transforma
tions of co-ordinates. This completes the proof of (iii), and therefore of the 
theorem. D 
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Suppose now that Fikis a skew-symmetric tensor defined on the Minkowski 
space !Rj. From F;k we construct a symmetric tensor (T;k), defining (see 
§37.3(24)) 

(25) 

If F;k is an electromagnetic field tensor, then T;k is called the energy-momentum 
tensor of that electromagnetic field. In terms of the real 3-vectors E, H defined 
in (2), the components of (T;k) are given by 

(' 

T0 , = - 4n [E, HL 

1 1 2 2 I'ap =- { -E,Ep- H,Hp + 2b,p(E +H)}, 
4n 

a, fj = 1, 2, 3, (26) 

where E = IE I, H = I HI, and [E, H] denotes the cross product of E and H. 
The quantity W = T00 is called the energy density of the electromagnetic 

field F;k, the vector (S,) = -(T0 ,) is Poynting's vector, and the 3-dimensional 
tensor 'T,p(l ::;; a ::;; 3, 1 ::;; f3 ::;; 3) is Maxwell's electromagnetic stress tensor. 

We conclude this section by exhibiting the canonical forms of the energy
momentum tensor (25), i.e. the forms taken by the energy-momentum tensor 
when the electromagnetic tensor F;k is brought into one or another of the 
canonical forms (15), (16) given in Theorem 21.1.5. Thus when F;k has the 
form (15), i.e. when E = (E, 0, 0), H = (H, 0, 0), we have from (26) that 

-W 
(27) 

+W 

whence we see that its eigenvalues are all ± W. When F;k has the form (16), 
i.e. when 

E = (E, 0, 0), H = (0, 0, H), E=H, 

then from (26) we obtain 

(7;,) ~ ( : 

0 -W 

~) 0 0 £2 Hz 
(28) W=-=-. 

-W 0 w 4n 4n 
0 0 0 

This is analogous to the third case in Theorem 21.2.2 (see (22)), with f.1 = W, 
and corresponds to the situation of electromagnetic waves of the form 
f(x - ct) propagated in a single direction --see §37.3. The energy-momentum 
tensor in this case does not reduce to diagonal form; its eigenvalues are all 
zero. 
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§22. The Behaviour of Tensors Under Mappings 

22.1. The General Operation of Restriction of Tensors 
with Lower Indices 

203 

Suppose we are given a mapping F from a region of an m-dimensional 
Cartesian space with co-ordinates x 1', .•. , x"'', to a region of ann-dimensional 
Space with CO-ordinates X I, ... , Xn: 

i = 1, ... , n. (1) 

Then with each tensor ~ 1 ... i" of type (0, k) defined on the range-space (i.e. the 
region of the space co-ordinatized by x 1, ... , xn), we can associate the tensor 
F* T defined on the domain ofF (i.e. on the primed space) whose components 
are given by 

* I' m' X X i I' m' [ a it a i"] 
(F T)i1 ... i;/X ' .. , ' X ) = ~~ ... ik axi1 ... a xi" (X (x ' ... ' X )). (2) 

We leave to the reader the verification that as defined by (2), F*T is indeed a 
tensor of type (0, k ). Thus the operation F* maps tensors of type (0, k) in the 
opposite direction, so to speak, to that of the map F of the underlying spaces. 
We call such an operation a restriction (or pullback) of the tensor T. 

22.1.1. Example. Suppose that in ann-dimensional space with metric gii we 
are given an m-dimensional surface 

i = 1, ... , n. 

Then restriction of the tensor (gii) to this surface yields the tensor 

axj axj 
Yi'j' = Yij axi' axY' i',j' = 1, ... , m, 

(3) 

which is just the metric induced on the surface by the metric gii of the space 
containing it (see §7.3). 

We shall now consider the restriction of a skew-symmetric tensor ~ 1 ... ;" 

of type (0, k) to a k-dimensional surface xi = xi(x 1 ·, .•• , xk') in an n-dimen
sional space. The following explicit formula for such a restriction of such a 
tensor will be useful to us later on in the theory of integration of skew
symmetric forms. 

22.1.2. Theorem. The restriction of the skew-symmetric j(mn 

T (lx it 1\ · · · 1\ dxi" it ... ik 
it <···<ik 
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to the k-dimensional surface x; = xi(x 1 ', .•. , xk') is given by 

where Ji' ··· ;k is the k x k minor ofthe matrix (axijaxi')formedfrom the columns 
numbered i 1, ... , ik. It follows that on the surface we have 

PROOF. By the definition of restriction (see (2)), 

(5) 

In view of the skew-symmetry of 7;, ... ik• the right-hand side of (5) can be 
rewritten as 

it <···<ik 

Alternatively, (4) can be proved by expressing the dxi in terms of the 
dxi'. 0 

22.2. Mappings of Tangent Spaces 

It is in general not possible to define a strict analogue of the above operation 
of restriction for tensors with upper indices. However, given as before a map 
F: xi = x;(x 1 ', •.. , x"''), i = 1, ... , n, we can define a map F *from the space 
of vectors T (i.e. tangent space) at a particular point (x t', ... , x"'') to the space 
of vectors at the point x;(x 1 , ... , x"' ), i = 1, ... , n, by setting 

(F * T)i I = yi' axii' I (6) 
xk=xk(xl', ... ,xm') Ox (xl', ... ,xm')• 

(One can clearly extend this definition to obtain an analogous map F * of 
the space of tensors of type (k, 0) at any particular point (x 1 ', ... , x"'').) Thus 
the tangent spaces are mapped by F * in the "same direction" as the original 
map F. This map F * of the tangent spaces at each point is often called the 
d(fferential of the mapping F. 

For general F the map F * cannot be extended to a map of vector fields 
(as wholes), since ifF maps distinct points P 1, P2 to the same point P, then 
the right-hand side of (6) may yield different vectors according as x 1 ·, ... , x"'' 

are the co-ordinates of P 1 or P 2 ; thus in this case ( 6) may define two vectors 
at the point P for each vector field T. This difficulty disappears ifF belongs 
to the important class of functions called "diffeomorphisms ": a smooth 
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mapping F is a diffeomorphism if it is one-to-one and onto, and its inverse 
p-t is also smooth (i.e. has continuous partial derivatives). It is well known 
that in this case m = n. IfF is a diffeomorphism then F * is an isomorphism 
between the tangent spaces at corresponding points. 

If F is a smooth real-valued function on ~n (i.e. if F is a continuously 
differentiable function from ~n to ~). then F * defines for each point a linear 
transformation from the space of vectors attached to the point (i.e. from the 
tangent space at the point), to the real line ~. i.e. a linear functional, or linear 
form, on vectors. From the definition (6) the reader will recognize this as the 
differential dF = (oF/oxi) dxi in the more familiar sense of that word. 
(Recall also that, as noted previously, we often consider dxi as the map on 
the tangent space at the point (xi) which picks out the ith component of each 
tangent vector.) 

EXERCISE 

Show that if w 1, w 2 are differential forms, and F, as defined above, is smooth, then 

F*(w1 1\ w2 ) = F*(w1) 1\ F*(w2 ). 

§23. Vector Fields 

23.1. One-Parameter Groups of Diffeomorphisms 

Let x 1, •.• , x" be co-ordinates for an n-dimensional Cartesian space. With 
each vector field ~i = ~i(x 1 , ..• , x") defined on a region of that space, there 
is associated the following autonomous system of differential equations: 

·i dxi 
X =-;u· 

i = 1, ... , n, 
(1) 

The solutions xi = xi(t) of this system are called the integral curves of the 
vector field ~i; the latter is comprised of tangent vectors to the integral curves. 
We denote by 

(2) 

the integral curve of the vector field ~i, satisfying the initial conditions 

(3) 

(It is kJ;J.own from the theory of ordinary differential equations that if the 
functions ~i(x 1 , •.. , x") are smooth, then there is exactly one solution (2) 
satisfying (3).) 
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Formula (2) defines a self-map 

F,: (xfj, ... , x~) 1--+ (x 1(t, xfl, ... , x~), ... , xn(t, xfl, ... , x~)) (4) 

of our region, depending on the parameter t. (In visual terms, F, applied to 
a point P(xfj, ... , x0) gives the new position of a particle at that point after 
a time interval t, as the point-particle moves along the integral curve through 
P.) The theory of ordinary differential equations tells us that given any point 
(xfj, ... , x0) at which (~;) =F 0, there is a neighbourhood of that point on 
which, for all sufficiently small t, the map F, is a diffeomorphism (see §22.2). 
(In other, briefer, words F, is locally a diffeomorphism.) We express the fact 
that F 0 is the identity map of our region, and that for sufficiently small values 
of the parameter the functions F, are, locally, diffeomorphisms satisfying 

(5) 

by saying that the diffeomorphisms F, define a local group. In this way our 
original vector field ~; gives rise to a local one-parameter group of diffeo
morphisms. 

We note parenthetically, for later use, that for small t, Taylor's theorem 
gives us the following more explicit form for the maps F,: 

xi(t, xfl, ... , x~) = xb + t~i(xfj, ... , x~) + o(t). (6) 

Hence the entries in the Jacobian matrix ofF, satisfy 

oxi(t) . ()~i 
~ = c5j + t ;;--J + o(t), 
vx0 vx0 

(7) 

so that the entries in the inverse matrix satisfy 

ox~ . ()~i 
oxi = c5j - t oxi + o(t). (8) 

The above construction can be reversed: Given a one-parameter local 
group of diffeomorphisms F 1 = (F!, ... , F~) we define its velocity field to be 
the vector field 

i = 1, ... , n. (9) 

23.1.1. Example. Consider the one-parameter group of rotations through 
the angle t about the origin of the Euclidean plane with Euclidean co
ordinates x, y. In this case F, is given by 

x = x 0 cos t + y0 sin t, 

y = - x0 sin t + Yo cos t, 

whence 

dxl 
dt t=O =Yo, 
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Figure 30 

Hence in terms of the co-ordinates x, y, the velocity field ~;' i = 1, 2, has the 
form 

~(x, y) = (y, -x), 

and the integral curves of this vector field are the circles x 2 + y2 = const. 
(see Figure 30). 

23.2. The Lie Derivative 

Let ~ = (~i) denote a vector, with associated one-parameter local group of 
diffeomorphisms F0 and let Tj: :::f. be a tensor of type (p, q). We restrict our 
attention to a region of the underlying space on which the F1 are one-to-one 
(for all appropriately small t). In view of this one-to-oneness, each F1 defines 
on the region a change from the co-ordinates xi(t) to the co-ordinates x~. If 
Tj: :::~:are the components of our tensor relative to the co-ordinates xi(t), 
then by the definition of tensor (17.1.1), its components relative to the co
ordinates x~ are given by 

. . 0Xk 1 oxk• oxa oxip 
(F T)'-' ···~P _ yi, .. . Ip __ • •• _ _ __ ••• _ o_ 

I }I · ··}q - k, . .. kq ;:) it ;:) jq ;:) It ;:) lp. uXo uX0 uX uX 
(10) 

23.2.1. Definition.t The Lie derivative of a tensor (Tj: :: :].) along a vector 
field ~ is the tensor L~ T given by 

L P•···~p = -(F T)'.I· ··'.P . . . [d . . J 
~ }l· · ·lq dt I }I · · · Jq 1=0 

(11) 

Thus if we regard the F1 as defining a time-dependent deformation of the 
underlying space, then the Lie derivative measures the rate of change of the 
tensor Tj: :::J: resulting from this deformation. It is clear that L~ Tis a tensor 
(of the same type (p, q) as T). 

t In the theory of the mechanics of continuous media the expression dTjdr = oTj ih + L~ T, where 
T = T(r, x) is an arbitrary tensor field, is called the "full derivative " ofT along the velocity 
field~-
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We shall now obtain an explicit formula for the Lie derivative. Using (7) 
and (8) to rewrite (10) we get 

. . [ . . a~k . . a~k = T~·oo·'.v + t T''· 00
•

1P. --. + 0 00 + T'.loo• 1p --. }loo•}q k}2ooo}q ::1 }l }loo•}q-lk::l J 
ux0 uX~ 

. . a~i, . . a~ip] 
- Tl.'2oo•.'P-- 0 00- T'.looolp-11_ + o(t). 

)looo)q oxl )loo•)q iJxl 

(12) 

Differentiating equation (12) with respect to t and setting t = 0 (so that 
x~ =xi) we obtain the desired formula: 

. . oT!• 000 !v . . o~k . . o~k 
LT~loo•IJ'=~S }loo•}q+T'l,ooolp, --, +•••+T'}oo•lp --. e )loo•)q ox• k}2ooo)q iJxll }loo•}q-lk iJxl• 

. . a~i, . . a~ip 
- Th2 000 .'P - - 0 0 0 - T'.l 000 lp- ,I -

it oo•}q oxl )loo•Jq oxl 0 

(13) 

We now give some important (and illustrative) examples. 

23.2.2. Examples. (a) In the case of a zero-rank tensor f (i.e. a scalar) we have 
from (11) 

(14) 

the directional derivative of the function fin the direction ~ (i.e. along the 
vector field). Thus if Lef = 0, then the functionfis constant on the integral 
curves of the field ~. Such a function is called an integral of the field (or of the 
corresponding system of differential equations xi = ~i( x 1, ... , xn) ). Thus in 
Example 23.1.1 the functionf(x, y) = x 2 + y2 is an integral. 

Iff is an integral of the vector field ~' then the integral curves of the field 
all lie entirely in one or another of the surfaces with equations of the form 
f(x 1 , ••• , xn) = const.; clearly the field itself is tangent to these surfaces. 
We can exploit this to reduce from n ton - 1 the order of the original system 
of differential equations xi = ~i(x 1' 0 0 0 ' xn), since if we have such an integral, 
then it suffices (for finding the general solution) to consider instead the 
restriction of this system (i.e. the restriction of the vector field ~) to any 
particular hypersurface f(x 1, ••• , xn) = const., which has dimension n - 1. 
This brings out the connection between the simple geometric procedure of 
forming the restriction of a vector field, and the well-known result concerning 
the general solution of a system of differential equations, to the effect that 
knowledge of a solution leads to a reduction by 1 of the order of the system. 
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(b) We next consider tensors of type (1, 0), i.e. vectors. Thus let 11 = (1'/i) 
be another vector field. From (13) we obtain 

L i = )'j oryi - j o~i 
~1'/ "' oxi 1'/ oxi' (15) 

whence 

(16) 

23.2.3. Definition. If ~, 11 are two vector fields, then we call the vector field 
L~ry the commutator of~ with ry, and denote it by[~, I'll (Thus from (16) we 
have [~, ry] = - [ry, G) Similarly the commutator [o~, o~] of the operators 
o~, o~ on functionsf(i.e. on scalars) is given by 

(17) 

The following important theorem tells us that the action of the vector field 
L~ 11 = [ ~, 11] on functions (defined by the forming of the directional derivative 
along this vector field) is the same as that of [o~, o~l 

23.2.4. Theorem. Given two vector fields ~, ry, we have 

oL<~f = or~.~d = [o~, o~J.f' 

for all (twice continuously differentiable) functions f Thus the commutator of 
the operators o~ and o~ is again a .first order operator, namely directional 
differentiation along the vector field L~ry = - L~~ = [~,I'll 

PROOF. Explicit evaluation of the commutator [o~, o~] yields: 

where ~il'/i(o 2f!ox; oxi) - ~il'/i(o 2flox; oxi) = 0 since, by the smoothness of 
f, o2f/oxi oxi = o2 f/oxi ax;. This completes the proof. D 

By direct computation using (15) one can verify the following analogue 
of Leibniz' formula: 

L~(fry) = JL~ry + ry(od). (18) 

From this formula the following theorem readily follows. 
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23.2.5. Theorem. Let ~ 1 , ••• , ~m be m vector fields in IR". In order for there to 
exist a system of co-ordinates yl, ... , y" such that at every point the vector ~j 
is tangent to the co-ordinate axis determined by i, j = 1, ... , m, the vector 
fields must satisfy the condition 

[;; ;; J - j'(l);; 1'(2);; 
Sj, Sk - jk Sj + jk Sb (19) 

where the fW are scalars (i.e. real-valued jimctions on the points of!R"). 

PROOF. As usual we write e1 = (1, 0, ... , 0), ... , e, = (0, ... , 0, 1) for the 
standard basis vectors in the system of co-ordinates y1, ... , y". Clearly if the 
components of the vectors ~j, ~k are constant relative to this system of co
ordinates then by (15) (with yj in place of xj) we have [~j, ~k] = 0. Hence in 
particular if ~j = ej, ~k = ek at every point (y1, ... , y"), then [~j' ~k] = 0. 
Now tangency of the ~j to the corresponding co-ordinate axes of the system 
yl, ... , y", means simply that ~j = .fj(y)ej, j = 1, ... , m, where the .fj(y) are 
scalars. Hence in this case since oe, = o/oyi, we have from (18), (16) and the 
fact that [ej, ek] = 0, that 

[ " " J [ 1. 1. J 1. of~ 1. ofj 
Sj, Sk = . jej,. kek =. j oi ek-. k ol ej. 

The desired equation (19) now follows by setting IW = -(fJfj)(ofj/o/) 
andfj~) = (fj/.f~)(o.fdoyj). 0 

(c) For a tensor~ of type (0, 1), i.e. for covectors, the formula (13) yields 

ar. ac_k 
(L~ T)j = e a) + 7;, a;r (20) 

In particular if we take Tto be the gradient of a sufficiently smooth function 
j; i.e. ~ = of/Dxj, we obtain 

(21) 

It is easy to see that the right-hand side of (21) is also the ith coefficient in 
d(L~ f). We conclude therefore that: 

The operation of taking the Lie derivative commutes with that offorming 
the differential: 

Lldf) = d(L~ f). (22) 

(d) For a tensor % of type (0, 2), i.e. for a bilinear form, we have (from 
(13)) 

(23) 
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The tensor uii is called the strain tensor (for small deformations).lt describes 
how the metric g;i of the underlying space changes under the small de
formation F1 defined by the vector field e. In particular if the space is 
Euclidean, so that gii = ~ii (relative to suitable co-ordinates) then the tensor 
uii takes the form (cf. 17.1.3 et seqq.) 

(24) 

(e) Finally, we calculate the Lie derivative of the volume element 

Jjgf8;1 ••• in (or Jjgfdx 1 1\ ... 1\ dxn), where g = detgii· From formula 
(13) we obtain 

L~Jjgl8;, ... i" = ek o~ 8;. ... in 

( ar ar) 8· ·- ···+8· · - .. + jfgl k12 ••• In OXit + II ··• In -1k OX'n (25) 

It is not difficult to see that the bracketed expression in (25) is just 
(oe;/ox;)8;, ... i" (this was Exercise 3 in §18.4). Using this, equation (25) 
becomes 

(26) 

(Here, as usual, (gii) = (g;j}- \ and we are using the fact that ogjoxk = 
Aim(og;m/oxk), where Aim is the cofactor of 9im in det(g;j).) However by com
parison with (23) we see that the last bracketed expression in (26) is just the 
trace of the strain tensor (relative to the given metric), i.e. tr U;m = gimuim; 
hence our final expression for the Lie derivative of the volume element is 

L( lf='gl8· ·) = -z1 gimu. lf=igl8· · ~:. '\/ IYI lt···rn 1m'\/ IYI 't···'n" 

In the Euclidean case, when gii = ~ii• the trace of the strain tensor is 

im 2 aei 
g U;m = OXi' 

and (27) simplifies accordingly. 

23.3. Exercises 

1. Prove Leibniz' formula for the Lie derivative: 

L;(T ® R) = (L; T) ® R + T® L;R. 

where T, R are arbitrary tensors. 

(27) 
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2. Let w 1, w 2 be differential forms. Show that 

L~(w 1 1\ w2 ) = L~w 1 1\ w2 + w 1 1\ L,w2 • 

3. Let F be a diffeomorphism from the region U to the region V. let X 1 , X 2 be vector 
fields defined on U, and let Y; = F *X;, i = L 2, be the corresponding vector fields 
on V. Prove that F *[X 1 , X 2 ] = [Y1, Y2 ]. 

4. Let F,, G s be elements of one-parameter groups of diffeomorphisms with correspond
ing vector fields X, Y respectively. Show that F, and G, commute for all r, s if and only 
if the commutator of the fields X and Yis (identically) zero. 

5. Let X 1, ... , X, be linearly independent vector fields on a region of n-di;nensional 
space, satisfying [X;, X j] == 0. Show that there is a (local) system of co-ordinates 
x 1, .•• , x" such that for all i the field X; is tangent to the ith co-ordinate axis, i.e. such 
that c x,(xk) = b~. 

§24. Lie Algebras 

24.1. Lie Algebras and Vector Fields 

We begin with the definition. 

24.1.1. Definition. A linear space V on which there is defined a skew
symmetric bilinear operation [ , ], is called a Lie algebra if Jacobi's identity 
holds, i.e. if 

[~, [IJ, (]] + [IJ, [(, ~]] + [(, [~. IJ]] = 0 (1) 

for all~. IJ, ( E V. The bracket operation [ , ] is called commutation. 

Remark. For each ~ E V we define a linear transformation ad ~: V ..... V by 
ad ~(IJ) = [~, 1]]. Considering commutation from this point of view, Jacobi's 
identity signifies that each map ad ~ is, as they say in algebra, a" derivation" 
of the Lie algebra V, meaning that the following analogue of Leibniz' formula 
holds: 

ad ~([IJ, (]) = [ad ~(IJ), (] + [IJ, ad~(()]. (2) 

24.1.2. Examples. (a) Three-dimensional Euclidean space is a Lie algebra 
under the operation of the vector (or cross) product. 

(b) An algebra V of linear operators can be made into a Lie algebra by 
defining 

[A, B] = AB - BA. (3) 
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To see that Jacobi's identity holds for this bracket operation we calculate: 

[A, [B, C]] = A[B, C] - [B, C]A 

= ABC - ACB - BCA + CBA, 

[C, [A, B]] =CAB- CBA -ABC+ BAC, 

[B, [C, A]] = BCA - BAC- CAB+ ACB. 

On adding the three right-hand side expressions we obtain zero, as required. 

24.1.3. Corollary. The space M(n, IR) of all real n x n matrices forms a Lie 
algebra under the bracket operation 

[A, B] =AB-BA. (4) 
In the light of our present example, Theorem 23.2.4 implies the following 

24.1.4. Corollary. The space of all vector fields on !R" is a Lie algebra with 
respect to the bracket operation given by 

a i a ·i 
[): Ji - ):j _!]_ - j _5_ 

<.,, IJ - <., axj IJ axr (5) 

(Such Lie algebras of vector fields will of course be infinite-dimensional.) 

24.1.5. Theorem. If vector fields ~ and IJ are both tangent to a given smooth 
surf'ace, then their commutator is also tangent to the surf'ace. 

PROOF. Since an arbitrary surface (of dimension < n) is locally the inter
section of hypersurfaces, it suffices to prove the theorem when the surface in 
question is a hypersurface f(x 1, ... , x") = 0. We may without loss of 
generality further suppose that our hypersurface has as its equation 

x" = 0, (6) 

since locally (in a neighbourhood of a non-singular point of the surface) this 
can be arranged by choosing suitable co-ordinates. Tangency of the fields 
~. 1J to the surface (6) means that at each point of the surface 

~"lx"=O = 0, IJ"ix"=O = 0. (7) 

The nth component of[~, IJ] is given by 

(8) 

From (7) it follows that on the surface x" = 0, we have fork =I= n that a~"jaxk = 
aiJ"jaxk = 0. Substituting in (8) with x" = 0 we then obtain[~. IJJ"ix"=O = 0, 
completing the proof. D 

24.1.6. Corollary. The linear space consisting of all vector fields tangent to a 
given smooth surf'ace, is a subalgebra of the Lie algebra of all vector fields. 
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24.2. The Fundamental Matrix Lie Algebras 

With each of the linear groups previously considered (see especially §§14.1, 
14.2), there is associated a Lie algebra of matrices, namely the tangent space 
at the identity of the group, with the usual (as in ( 4)) commutation of matrices. 

We begin by listing the most important matrix groups, together with their 
tangent spaces at the identity (which we shall denote by the same letters, but 
in lower case). 

(1) The special linear groups SL(n, IR), SL(n, C) are the groups of all 
n x n (respectively real or complex) matrices of determinant 1. We saw in 
§14.1 that the tangent spaces sl(n, IR), sl(n, C) at the identity are just the spaces 
of all n x n matrices with zero trace (in M(n, IR), M(n, C) respectively). 

(2) The rotation groups SO(n, IR), SO(n, C) are the groups of (respectively 
real or complex) n x n orthogonal matrices A with determinant 1: 

AAT = 1, det A= 1, A E SO(n, IR) or SO(n, C). (9) 

As indicated in §§14.1, 14.2, the tangent spaces so(n, IR), so(n, C) at the 
identity of these groups are the algebras of all (real or complex as the case 
may be) skew-symmetric matrices X: 

X E so(n, IR), so(n, C). (10) 

(3) If G = (g;) is the pseudo-Euclidean metric in the space ~R;,q, then 
SO(p, q) is the group of all real n x n matrices with determinant 1, preserving 
the metric G = (gii), or, as we saw (essentially) in §6.2, SO(p, q) is the group 
of all n x n real matrices A such that 

AGAT = G, det A = 1. (11) 

It follows without too much difficulty that so(p, q) consists of all real 
n x n matrices X = (xj) satisfying. 

XG + GXT = 0, 

or in terms of entries, 

giixi + x{gik = 0. 

This is equivalent to the condition that the matrix 

GX = (giixD = (u;k) 

(12) 

(13) 

(14) 

be skew-symmetric. Hence the map X r--. GX defines a one-to-one and onto 
linear map (i.e. a vector space isomorphism) from so(p, q) to the space of all 
real n x n skew-symmetric matrices. 

(4) The unitary group U(n) is the group of all unitary matrices of degree 
n, i.e. of all complex n x n matrices A preserving the Hermitian form, or, in 
other words, satisfying 

AAT = 1. (15) 
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In §14.1 we saw that the tangent space u(n) at the identity of U(n), is the 
algebra of all skew-Hermitian matrices, i.e. complex n x n matrices X 
satisfying 

_XT =-X. (16) 

(5) The special unitary group SU(n) is the subgroup of U(n) formed by 
the unitary matrices of determinant 1. As indicated in §14.1, the algebra su(n) 
consists of all zero-trace skew-Hermitian matrices, i.e. of all n x n matrices 
X such that 

_XT =-X, tr X= 0. (17) 

(6) The pseudo-unitary group U(p, q) is the group of linear transforma
tions of complex n-dimensional space (where n = p + q), which preserve the 
pseudo-Hermitian scalar product 

P n 

(~, 1'/) = 2:X;.Y; _ L xiyi = giixiyi, 
i= 1 i=p+ 1 (18) 

~=(x 1 , ... ,x"), ry=(yl, ... ,y"); n=p+q. 

Writing as before G = (gii) (the usual pseudo-Euclidean metric of type 
(p, q)), one sees in the usual way that U(p, q) consists of those n x n complex 
matrices A satisfying 

AG/F = G, (19) 

and that the tangent space u(p, q) consists of all n x n complex matrices X 
satisfying 

XG + GXT = 0. (20) 

Since G is real and symmetric, it follows from (20) that GX is skew-Hermitian, 
so that the map X ~----+ G X defines a vector space isomorphism between 
u(p, q) and the space of all skew-Hermitian matrices. 

(7) The group SU(p, q) is the subgroup of U(p, q) consisting of those 
matrices of the latter having determinant 1. The algebra su(p, q) consists of 
those matrices X in u(p, q) with trace zero. If we write X = (x~) and GX = 
(u;k) = g;ix{, then the condition that tr X = 0, i.e. that x~ = 0, is equivalent 
to the condition gikuik = 0, i.e. that the corresponding skew-Hermitian 
matrix (u;k) have zero trace relative to the metric%· 

24.2.1. Theorem. The spaces sl(n, IR), s/(n, IC), so(n, IR), so(n, C), so(p, q), u(n), 
su(n), u(p, q), su(p, q) are Lie algebras under the usual commutation ofmatrices. 

PROOF. Since each of these sets of matrices certainly forms a linear space, it 
remains to show only that each of them is closed under commutation. For 
this it clearly suffices to prove the following three assertions concerning 
arbitrary matrices X, Y and arbitrary real symmetric matrix G: 

(i) for any matrices X, Y, tr[X, Y] = 0; 
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(ii) if X, Y both satisfy condition (12) (for arbitrary real symmetric G) then 
so does their commutator [X, Y]; 

(iii) if X, Y both satisfy (20) (with arbitrary real symmetric G), then so does 
[X, Y]. 

Assertion (i) follows from the easy fact that for any matrices X, Y, we have 
tr(XY) = tr(YX). To see (ii), suppose that X, Y both satisfy (12), i.e. 

GXT = -XG, GYT = - YG. 

Then 

G[X, YJT = GYTXT- GxTyT = YXG- XYG = -[X, Y]G. 

The proof of (iii) being similar, we omit the details. D 

24.2.2. Definition. Let G be any of the transformation groups (1) through 
(7) above. The tangent space at the identity of G, equipped with the operation 
of commutation of matrices, is called the Lie algebra of the group G. 

24.2.3. Examples. (a) As we have seen, the Lie algebra so(3, IR) of the rotation 
group S0(3, IR), is the algebra of all 3 x 3 real skew-symmetric matrices. If 
we take as a basis for so(3, IR) the matrices X 1, X 2 , X 3 given by 

X, ~G 
0 -!} x, ~ ( ~ 

0 

~} 0 0 

-1 0 

x,~G 
-1 

~} 
(21) 

0 

0 

then we find that 

[XI, X2J = X3, [X 2, X 3] =X t. [X3, X1J = X2, (22) 

which brings us immediately to the following conclusion: 
The Lie algebra of the group S0(3, IR) is isomorphic to the Lie algebra of 

vectors in Euclidean 3-space with commutation taken to be the vector (or cross) 
product. 

(This justifies our earlier use of the bracket notation for the cross product.) 

(b) Consider the Lie algebra so(p, q). As usual we assume a co-ordinate 
system in terms of which the pseudo-Euclidean metric has the standard 
form 

£; = ± 1. 

In (3) (see in particular (14)) we saw that the map defined by (xD = X H 

GX = (g;ix{) = (u;k) = u, is a vector space isomorphism from so(p, q) to the 
space of all skew-symmetric matrices. If we compute the effect of this map 
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on commutators, we find that the corresponding commutation on skew
symmetric matrices is not the usual commutation of matrices, but is given 
instead by 

[u, v ]ii = L ek(u;k vkj - V;k uk), 
k 

u = (u;), v = (v;), uji = -uii, vji = -vii. 
(23) 

(c) The Lie algebra su(2) consists of all 2 x 2 skew-Hermitian matrices 
with trace zero. It is easy to see that the matrices 

(24) 

form a basis for the space su(2). The pairwise commutators of these elements 
are found to be 

(25) 

It follows from Lemma 14.3.1 that this Lie algebra is isomorphic (as Lie 
algebra) to the Lie algebra of purely imaginary quaternions (i.e. those 
quaternions x such that .X= -x) under the commutation [x, y] = xy- yx. 
Under the isomorphism given in that lemma, 

j <--> Sz, (26) 

The following fact is obvious from (22) and (25); however we give an 
alternative proof with a geometric flavour. 

24.2.4. Theorem. The Lie algebras su(2) and so(3, IR) are isomorphic. 

PROOF. With each matrix X E su(2) we associate the linear transformation 
ad X of the 3-dimensional space su(2), defined by 

ad X: Z ~ad X(Z) = [X, Z], 

It follows from Jacobi's identity that 

X, Z E su(2). 

[ad X, ad Y] = ad[X, Y], 

(27) 

(28) 

which means that the map X ~ad X from su(2) to the algebra of linear 
transformations of the vector space su(2), preserves commutation; since 
(as is easily seen) this map is also linear, it follows that it is a Lie algebra 
homomorphism. In order to obtain from this map a homomorphism from 
su(2) to so(3, IR), we need to realize each transformation ad X as an element 
of the tangent space at the identity of S0(3, IR). 

To this end we first make su(2) into Euclidean 3-space by defining the 
square of the length of a vector Z = bs 1 + cs2 + ds 3 (<->hi + cj + dk 
under the map defined by (26)) to be b2 + c2 + d2 • Then since b2 + c2 + 
d2 = det Z, and det Z = det(AZA -I), it follows that for each A E SU(2), the 
self-map of the Euclidean 3-space su(2) defined by 

z~AzA- 1 , (29) 
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is orthogonal. Now let A = A(t) be a smooth family of transformations in 
SU(2) satisfying 

dA(t)l =X 
dt t=O ' 

A(O) = 1, 

where X E su(2). Then the derivative with respect to t of the family of trans
formations 

Z H- A(t)ZA(t)- 1 , 

evaluated at t = 0, is given by 

Z E su(2), 

ZH-XZ- ZX =ad X(Z), 

(30) 

i.e. ad X is tangent to the curve A = A(t) at A(O) = 1. Since by (29) this can 
be regarded as a curve in S0(3, !R), it follows that we have realized ad X as 
an element of so(3, !R). 

Hence the map 

su(2) -+ so(3, IR); X H-ad X, (31) 

is a homomorphism. Its kernel is zero (since if ad X(Z) = 0 for all Z then 
X = 0), and therefore, the dimensions of the linear spaces su(2) and so(3, IR) 
being the same (namely 3), it follows that the homomorphism (31) is in fact 
an isomorphism. This completes the proof. 0 

Remark. One can calculate that the matrices of the transformations ad s 1, 

ad s2 , ad s3 (where s1, s2 , s3 are given by (24)) are 

ad s1 = 2X 1, ad s2 = 2X2 , (32) 

where the basis elements X 1, X 2 , X 3 for the space so(3, !R) are as in (21). 
(d) As a basis for the Lie algebra s/(2, IR) we take the matrices 

Yo= ( 0 
-1 

(33) 

The commutators of these matrices are 

(34) 

24.2.5. Theorem. The Lie algebras s/(2, !R) and so(l, 2) are isomorphic. 

PRooF. As in the proof of the preceding theorem, we associate with each 
matrix Y in s/(2, IR) the linear transformation ad Y of the 3-dimensional 
space s/(2, IR). As before this defines a Lie algebra homomorphism. The 
self-transformations of the space s/(2, IR) of the form 

Y H-AY A- 1 (35) 

preserve the quadratic form 

I Yl 2 = det Y. (36) 
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By imitating the proof of the preceding theorem (24.2.4), it can be seen that 
ad Y is tangent at the identity to the group of transformations of sl(2, ~) 
preserving the metric (36). However this metric is the Minkowski metric 
since 

det Y = det(yD Y0 + yl Y1 + y2 Y2 ) 

- det( Y1 Yz + Yo) - 2 2 2 - -Yo-Y!-Y2· 
Y2 -Yo - Y1 

(37) 

Hence we have realized ad Y as an element of so(1, 2), and the theorem 
follows as before. D 

24.3. Linear Vector Fields 

Let X = (XL) be a fixed real (or complex) n x n matrix. For each such X we 
construct a vector field Tx on IW (or en) by taking its value at each point 
x E ~" (or en) to be the negative of the result of applying the matrix X to the 
vector x, i.e. 

Tx(x) = -Xx, 

or, in terms of components, 

(38) 

We call such a field Tx a linear vector field. 
The following theorem tells us what the integral curves of a linear vector 

field are, i.e. it gives the solutions of the system of equations 

x = -Xx. (39) 

24.3.1. Theorem. The integral curve x(t) of the vector field (38), satisfying the 
initial condition x(O) = x 0 , is given by 

x(t) = exp(- tX)x0 . (40) 

(Note that when x 0 = 0, the integral curve is just a point.) 

PROOF. Since the functions on the right-hand side of our system (39) are as 
well behaved as could be desired, we know from the appropriate uniqueness 
theorem of the theory of ordinary differential equations that there is at most 
one solution of (39) satisfying the given initial condition. Hence we need 
merely show that ( 40) is indeed a solution of the system (39). 

Recall (from §14.2(17)) that the exponential function applied to matrices 
is defined as the sum of a series: 

tX t2 X 2 
exp(- tX) = 1 - - + -- - .. · 

1! 2! . 
(41) 
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Since this series converges for all t (see Lemma 14.2.1) we can differentiate it 
term-by-term to obtain 

d tX2 

dt exp( -tX) = -X+ 1T- · · · = -X exp( -tX). (42) 

Hence on differentiating both sides of (40) we have that 

dx d 
dt = dt (exp( -tX)x0 ) = -X exp( -tX)x0 = -Xx, 

which shows that (40) is a solution of (39), as required. D 

It follows from this theorem that the one-parameter group of diffeo
morphisms associated with the linear field Tx consists simply of applications 
of the matrices exp(- tX). 

24.3.2. Example. The matrices X 1, X 2 , X 3 given in (21), which form a basis 
for the Lie algebra so(3), give rise, in the above way, to three linear vector 
fields defined on (Euclidean) 3-space. These three linear fields are usually 
denoted respectively by Lx, Ly, Lz. The respective values of these vector 
fields at the point (x, y, z) are given by 

Lx = (0, +z, - y), Ly = ( -z, 0, +x), Lz = ( + y, -X, 0). (43) 

By calculating the matrices exp(- tX;), i = 1, 2, 3, we see that, as might be 
expected, the three one-parameter groups corresponding to the vector fields 
Lx, Ly, Lz are the groups of rotations of IR1 3 about the x-, y-, z-axes respectively. 

Returning to the general situation, we take an arbitrary pair of n x n 
matrices X and Y, and calculate the commutator of the two linear vector 
fields Tx and Ty. 

24.3.3. Theorem. The commutator of two linear vector fields Tx and Ty has 
the form 

(44) 

PROOF. From the formula §23 (15) for the components of the commutator of a 
pair of vector fields we have 

[T T, Ji = xk I o(Y~xm)- Ykxl o(X~x"'l = XkxiYki - yklxlxki 
X• y IX OXk I OXk I 

= (-[X, Y]x/ 

Since the last expression here is the ith component of the linear vector field 
T[x. YJ• the theorem is proved. D 
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24.3.4. Corollary. A Lie algebra of n x n matrices (under the usual commuta
tion of matrices) is isomorphic to the Lie algebra of linear vector fields defined 
by those matrices. 

Thus in particular if G is any one of the "classical" groups of transforma
tions of (real or complex) n-dimensional space, considered in §24.2 above, 
and g is its Lie algebra, then the linear vector fields Tx, X E g form a Lie 
algebra isomorphic to g. Since by Lemma 14.2.2 (and its extension to the 
cases it does not include) X E g entails exp(- tX) E G, it follows that the 
one-parameter group of diffeomorphisms corresponding to each of the 
vector fields Tx, consists simply of applications of the elements of some 
one-parameter subgroup of G. 

Remark. Let G and g be as in the preceding paragraph. Corresponding to 
each linear vector field Tx, X E g, we have the differential operator orx on 
smooth functions defined on !Rn. These differential operators are called 
generators of the action of the group G. If we know these generators, we can 
reconstruct the action of G on functions, i.e. the action given by 

f(x 0)-+ f(x(t)) = f(exp( -tX)x0 ) = F(t, x0 ), (45) 

by solving the differential equation 

F = orxF. (46) 

(To see this use .X = Tx(x) to get 

F = !!._ f"(x(t)) = a f(x(t)) _xi = oF Ti = a F 
dt" OX1 OX1 X Tx ' 

which gives ( 46). Alternatively, use geometric intuition!) The solution of ( 46) 
can be expressed formally as 

F(t, x) = exp(t orJf(x), (47) 

where exp(t orx) is the following formal power series in the differential 
operator t orx: 

, t Orx t2 Ofx 
exp(t urx) = 1 + - 1 ,- + 2! + · · · . (48) 

Thus the right-hand side of (47) is 

exp(t orx)f(x) = f(x) + t orxf(x) + !t2 o}xf(x) + · · ·. (49) 

It is clear that this will indeed satisfy the original differential equation (46) 
whenever it is defined, i.e. for all functionsf(x) for which the right-hand side 
of (49) converges (for some interval of values oft). 
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We now give two examples illustrating this. (Note that clearly formula 
( 47) for the solution of equation ( 46) is valid for all vector fields, not just the 
linear ones (cf. the first example below).) 

24.3.5. Examples. (a) The generator of the action f(x)-> f(x + t) of the 
group of translations of the real line is the operator djdx. In this case the 
formula ( 4 7) takes the familiar form 

f(x + t) = e'<d!dxJ f(x) = f(x) + _!_ f'(x) + ~ f"(x) + · · · 
1! 2! 

of Taylor's formula for the function f(x). 

(b) The generators corresponding to the matrices X 1 , X 2 , X 3 (see (21 )), 
of the action of the group S0(3, IR) of rotations of Euclidean 3-space, are the 
following differential operators (cf. (43) where the same symbols are used 
for the corresponding linear vector fields): 

a a 
Lz = y~- X-. ax ay (50) 

By Theorem 24.3.3 and (22), the commutators of these differential operators 
are given by 

[L 2 , LxJ = LV. (51) 

24.3.6. Application (Left-invariant Fields Defined on Transformation 
Groups). Let X be a fixed n x n matrix (for definiteness assumed to be real). 
To each such X there corresponds the linear transformation 

AHAX (52) 

of the space IR" 2 of n x n real matrices A. We denote by Lx the linear vector 
field on the space IR"2 which at the point (i.e. n x n matrix) A, takes the value 

Lx(A) =AX. (53) 

(Note that this differs from the previous definition (see (38)) in that the point 
A is on the left of the matrix X.) The integral curves of the field Lx are the 
solutions of the system of differential equations (or single matrix equation) 

A = Lx(A) = AX. (54) 

By closely imitating the proof of Theorem 24.3.1, we find that the unique 
solution of (54) satisfying the initial condition A ic=o = A 0 is 

A = A 0 exp(tX). (55) 

Thus the one-parameter group of diffeomorphisms determined by the vector 
field Lx, consists of right multiplications by the matrices exp(tX) (i.e. of 
right translations by exp(tX)). 
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A computation similar to that occurring in the proof of Theorem 24.3.3 
shows that the conclusion of that theorem holds also for commutators of 
vector fields of the form Lx: 

[Lx, Ly] = L[x.n· (56) 

From their definition (see (53)) it is clear that fields of the form Lx possess 
the important property of left invariance (or invariance under left translations): 

BLx(A) = Lx(BA). (57) 

As before, let G be any one of the ''classical" groups which we considered 
in §24.2, regarded, as usual, as a smooth surface in the space ~n> of all n x n 
real matrices, and Jet g be the tangent space to Gat the identity. Recall that 
if X E g, then the matrices exp(tX) belong to G for all t (forming therefore a 
one-parameter subgroup of G). (See 14.2.2 where this was verified for several 
of the groups G in question.) 

24.3.7. Lemma. For each X E g, the vector field Lx is tangent to the surface 
G; hence its restriction to G is a vector field on G. 

PROOF. From (53) and (54) we see that the vector Lx(A0 ) where A 0 E G, is the 
velocity vector at t = 0 of the curve A 0 exp(tX), which lies in the surface G. 
This gives the lemma. D 

We shall use the same symbol Lx (where X E g) to denote also the restric
tion of the field Lx to the surface G. Note that by the definition of Lx, its 
value at the identity is X, and also that the vector field Lx on the space G is 
left-invariant under left translations by elements of G. 

24.3.8. Definition. A vector field of the form Lx on a (classical) group G, 
where X is an element of the Lie algebra g of G, is called a left-invariant field 
on the group G. 

The following theorem follows readily from Theorem 24.2.1 and the 
formula (56). 

24.3.9. Theorem. The left-invariant vector .fields on a (classical) group G 
form a Lie algebra isomorphic to the Lie algebra g of the group G. 

The following result will also be of use. 

24.3.10. Lemma. The values of all the left-invariant vector fields at an arbitrary 
point of the group G together comprise the whole of the tangent space to G at 
that point. 

PROOF. If X 1, ••• , X N form a basis for the Lie algebra g, then the vectors 
Lx 1(A), ... , LxN(A) are linearly independent and tangent to the surface Gat 
the point A E G. Hence the space which they span, having the right dimension, 
must be the whole of the tangent space at A. 
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24.4. The Killing Metric 

We first define a Killing metric on an arbitrary Lie algebra !."J. 

24.4.1. Definition. A Euclidean or pseudo-Euclidean scalar product < , ) 0 

on a Lie algebrag is called a Killing metric (or Killingjorm) if all the operators 
ad X, X Eg, are skew-symmetric in that metric, i.e. if 

(ad X(Y), Z)0 = -(Y, ad X(Z)) 0 • (58) 

We have already seen examples of Killing metrics on the Lie algebras 
su(2) (where in the proof of Theorem 24.2.4 we defined the length-squared of 
a vector Z in su(2) to be det Z) and s/(2, ~)(see (36) above). (These metrics 
were used in the proofs of Theorems 24.2.4 and 24.2.5.) Note that the Killing 
metric on su(2) was Euclidean, while the Killing metric (36) on s/(2, ~) was 
pseudo-Euclidean (of type (1, 2)). 

Now let g be the Lie algebra of a transformation group G, and suppose a 
Killing metric< , ) 0 is given on g. We shall now use this Killing metric and 
the left-invariant fields on G defined in the preceding subsection, to introduce 
a metric on the surface G itself. Thus let A be any point (i.e. matrix) in G; 
then by Lemma 24.3.10 every vector tangent to Gat A has the form Lx(A) 
for some (unique) X E g. It follows that in setting 

(Lx(A), Lr(A)) = (X, Y) 0 , (59) 

for all X, Y E g, we shall have defined the scalar product of any pair of vectors 
tangent toG at the arbitrary point A, i.e. we shall have defined a metric on G. 
This metric is called the Killing metric on the group G (determined by the 
given Killing form on g). Thus relative to the Killing metric on G, the scalar 
product of a pair of vectors Lx(A), Lr(A) tangent to G at A, is the scalar 
product (afforded by the Killing form on g) of the corresponding left trans
lates (by A-t) X, Yin the tangent space gat the identity of G, i.e. the scalar 
product of the values of the vector fields Lx, Ly at the identity. 

24.4.2. Example. Consider the case G = SO(n, ~). We shall show that the 
Euclidean metric on the space ~"2 of all n x n real matrices induces a Killing 
metric on the group SO(n, ~). The Euclidean metric on the space of n x n 
matrices is, of course, defined by 

(X, Y) = L xjyj, X = (xj), Y = (yj), (60) 
i,j 

which may be rewritten ast 

(X, Y) = tr(XYT), 

t Cf. the usual definition of the" Killing form'' on a finite-dimensional Lie algebra as <A, B) = 
-tr(ad A ad B). (See Exercise 9 of §24. 7 below, and §3.1 of Part II.) 
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where tr denotes the trace. Note incidentally that with respect to this metric 
the surface SO(n, IR) is contained in the sphere of radius Jn, since for ortho
gonal n x n matrices A we have 

(A, A) = tr(AAT) = tr(1) = n. 

Now (as noted before) by Lemma 24.3.10 any vector tangent to SO(n, IR) 
at A has the form Lx(A) for some (unique) X E so(n, IR). Hence the metric 
induced on SO(n, IR) by the Euclidean metric (60) is completely determined 
by the values of (Lx(A), Ly(A)), X, Y E so(n, IR), A E SO(n, IR). Now 

(Lx(A), Ly(A)) = tr(AX(A Y)T) = tr(AXYT AT) 

= tr(ATAXYT) = tr(XYT), 

where we have used the invariance of the trace under conjugation, and so 
under cyclic permutation of the factors in a product of matrices, and also 
the fact that AT A = 1. Hence 

(Lx(A), Lr(A)) = (Lx(l), Lr(1)), 

which accords with the definition (see (59)) of a Killing metric on SO(n, IR), 
assuming the yet-to-be-established fact that the Euclidean metric on so(n, IR) 
is a Killing form. 

Thus it remains to show that the operators ad X, X E so(n, IR), are skew
symmetric in the Euclidean metric on so(n, IR). To this end let Y, Z E so(n, IR), 
i.e. let Y, Z be such that yT = - Y, zT = - Z. Then 

Hence 

(Y, Z) = tr(YZT) = -tr(YZ). 

(ad X(Y), Z) = tr(YXZ)- tr(XYZ), 

(Y, ad X(Z)) = tr(YZX)- tr(YXZ). 
(61) 

Since the right-hand sides in (61) differ only in sign, it follows (from 
Definition 24.4.1) that the Euclidean metric on so(n, IR) is a Killing form, 
so that the induced metric on SO(n, IR) is a Killing metric on that group (and 
therefore also on each of its subgroups). 

If a group G is given as a subgroup of the unitary group V(n), then a 
Killing metric on G may be obtained by exploiting the embedding of V(n) 
in S0(2n, IR) given by the operation of realization (see §11.2), and the method 
of the foregoing example. The explicit form of the resulting Killing metric 
can be calculated to be given by 

(X, Y) = Re tr(XYT) = -Re tr(XY), X, Y E u(n). 
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24.5. The Classification of the 3-Dimensional Lie Algebras 

Let L denote a 3-dimensional Lie algebra, with basis elements e1, e2 , e3 say. 
The operation of commutation in L determines (and is determined by) 
"structural constants" cji defined by 

i,j = 1, 2, 3. (62) 

(We note parenthetically that if Lis the Lie algebra of a classical group G, then 
the cji behave like the components of a tensor on G.) 

From the skew-symmetry of commutation we have 

(63) 

and from Jacobi's identity 

(64) 

We wish now to choose a basis e1, e2 , e3 in terms of which the "tensor" (cj) 
takes its simplest form. From (63) we see that the commutation operation 
on L is determined by the 9 constants cji with i < j. Consider the following 
system of 9 linear equations in the 9 unknowns a1, a2 , a3 and bk1 = b1\ 

k, I = 1, 2, 3: 

i < j. (65) 

It is easily seen that this system always has solutions; thus we regard (65) as 
expressing the tensor cji in terms of the symmetric tensor (bii) and the vector 
(aJ We have already taken the condition (63) into account in (65). On 
writing out the condition (64) in terms of the right-hand sides in (65), it 
follows without difficulty that 

(66) 

i.e. that the vector (a;) is either the zero vector, or else an eigenvector of the 
matrix Wi) corresponding to the eigenvalue 0. Since the matrix (bii) is 
symmetric it can be brought into diagonal form (b<ilc)ii) by means of a suitable 
change of basis. Moreover since (a;) is an eigenvector, this change of basis 
can be arranged that in terms of the new basis (a;) takes the form (a, 0, 0). 
Then from (66) it follows that b(lla = 0, so that either a or b< 1 > is zero. In 
terms of such a (new) basis e1, e2 , e3 , the commutation operation is given by 

If we take into account the latitude still remaining us of replacing e1, e2, e3 
by any (non-zero) scalar multiples, we end up with the following table of 
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possible (isomorphism classes of) 3-dimensional Lie algebras ("Bianchi's 
classification"): 

Type a b(l) b(2) b(3) Type a b(l) b(2) b(3) 

0 0 0 0 v 0 0 0 
II 0 0 0 VI 0 0 
VII 0 0 VII a 0 
VI 0 -1 0 III (a = 1) a 0 -1 
IX 0 1 VI (a -# 1) 
VIII 0 -1 

Note that the "abelian" Lie algebra of type I is the Lie algebra of the 
group of translations of 3-dimensional space, while the Lie algebra of 
S0(3, IR) is of type IX. 

24.6. The Lie Algebras of the Conformal Groups 

We shall now investigate the vector fields associated with conformal 
transformations of Euclidean and pseudo-Euclidean space. By Theorem 
15.2, in dimensions ~ 3 the conformal transformations are, in contrast to 
the 2-dimensional case, of a very restricted nature, being combinations of 
isometrics, dilations and inversions. Each of the three groups G of (pseudo-) 
rotations, of translations, and of dilations, gives rise to vector fields. By the 
remark in §24.3 (see in particular the parenthetical observation preceding 
24.3.5) each such field is determined by a differential operator (the generator 
of the action of G), which in the above cases, for suitable basis vectors X of 
the space g, is given by the first three of the following four first-order differ
ential operators (the fourth will be explained subsequently): 

(pseudo-) rotations (cf. Example 24.3.5(b)): 

c a c a 
Qab = gacX axb - 9bcX axa' a, b = 1, ... ' n; 

a 
translations (cf. Example 24.3.5(a)): Pa = axa; 

d.l . a 
1 ations: D = xa axa; (67) 

If the metric is Euclidean, i.e. if 9ac = bac• then the operator exp(tnab) (see 
the remark in §24.3) defines a rotation fixing the (xa, xb)-plane. If the metric is 
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pseudo-Euclidean (so that gac = Aaban Aa = ± 1), the operator exp(tnab) 
defines either a rotation (if Aa = .lcb) or an elementary Lorentz transformation 
(if Aa = - Jcb), of the (xa, xb)-plane. The transformations exp(t(Jjaxa)) define 
(or, with a slight abuse of language, "are") translations along the X 0-axis, 
and the transformations exp(txa(ajaxa)) "are" the dilations D(x) = tx. It is 
a more complicated matter to identify the one-parameter group of trans
formations of the form exp(tKa), since the field corresponding to Ka is 
non-linear; however we shall later (see Theorem 24.6.2) at least show that 
they are conformal on IR". Conversely, it can be shown, (using Liouville's 
theorem (15.2) among other things) that for n ;::,:: 3 any conformal trans
formation of IR" (or, equivalently, of S"- see 915) sufficiently close to the 
identity transformation, can be put into the form exp(tA) where 

11 n n 

A = L Aabnab + L f.l"Pa + yD + L baKa, (68) 
a, b= 1 a=! a=! 

(with the analogous result holding for IR~. q). 
The linear space spanned by the vector fields (67) is a Lie algebra under 

the usual bracket operation on vector fields (see 24.1.4 and 23.2.4). It is not 
difficult to verify the following commutator relations: 

[nab• D] = [Pa, Pb] = [Ka, Kb] = 0; 

[Pa, Kb] = 2(gabD + nab); [Pa, D] = Pa; 

Consider the correspondence 

f.1 =a= 1, ... , n; 

Ka f--+ na,n+ 1 + na,n+2• 

D f--+ n" + 1 , n + 2 , 

v = b = 1, ... , n, 

(69) 

(70) 

where the nab• Pa, K,, D on the left-hand sides are given by (67) with the 
metric gab assumed Euclidean (i.e. gab = bab), while on the right-hand sides 
the n/lV' f.l, V = 1, , , . 'n + 2, COrrespond to the basic pseudo-rotations of 
IR~!f.t,sothatg 11v = ..1. 11 .5 11vwith.A.11 = 1 for f.1 = 1, ... , n + 1 and.A.n+l = -1. 
It is not difficult to show that (70) extends to a Lie algebra isomorphism. 
(The bijectivity follows by comparing dimensions.) From (68) we can deduce 
therefore the following important 

24.6.1. Proposition. The correspondence (70) extends to an isomorphism 
between the Lie algebra defined by (69) with the metric gab Euclidean (i.e. the 
Lie algebra of' the group of conformal transformations of'IR", 11 ;::,:: 3), and the 
Lie algebra of the group SO(n + 1, 1 ). 
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Thus the transformations of Euclidean space IR" of the form exp(tA.) with 
A in the Lie algebra defined by (69) can (in virtue of the map defined by (70)) 
be identified with the pseudo-rotations of IR~! f. 1. 

Remarks. 1. From among the multifarious conformal transformations 
of the Euclidean plane (or rather of the 2-sphere S2 ) we previously singled 
out for special attention the (subgroup of) linear fractional transformations 

az + b 
zr--+~~-

cz + d' 
ad- be# 0. 

(We used various subgroups of this group in our investigations of the motions 
of the Euclidean plane IR2 , the Lobachevskian plane e, and the sphere S2 

(see §§9, 10.1, 13.2).) We saw earlier that this group is isomorphic to 
SL(2, C)/{± 1}, and is generated precisely by the rotations, translations, 
dilations and inversions of IR 2 (after projecting S2 onto IR2 by means of the 
stereographic projection). It follows that in this case (70) defines an iso
morphism between the Lie algebra of complex, zero-trace, 2 x 2 matrices 
(the tangent space at the identity of SL(2, C)), and the Lie algebra of the 
Lorentz group S0(3, 1), the group of pseudo-rotations, given in the form 
exp(tA). This isomorphism is called the "semi-spinor" representation of the 
Lie algebra of the Lorentz group S0(3, 1) by complex 2 x 2 matrices. 
Complex conjugation of the entries in the matrices yields of course another 
such representation. 

2. Proposition 24.6.1 can be generalized as follows: The Lie algebra of the 
group of conformal transformations of the pseudo-Euclidean space IR;,q is 
isomorphic to so(p + 1, q + 1). (Prove it!) 

We end the chapter by fulfilling our earlier promise to indicate the proof 
in the Euclidean case of the conformality of the transformations exp(tA) 
with A as in (67) (or, equivalently, as in (68)). 

24.6.2. Theorem. !f 9ab = (jab• then any transformation of the form exp(tA), 
where A has the form 

A = ;_abnab + J.lapa + yD + (j"Ka, 

is (locally) a conformal transformation of Euclidean space IR". 

(The need for the adverb "locally" here is a consequence of the fact that 
inversions are not defined at every point of IR". Note also that the theorem 
clearly holds if the (j" are all zero, since, as we already know, exp(tA) is con
formal for A = nab• Pa, D.) 

PROOF OF THEOREM 24.6.2. We wish to prove that the group of transforma
tions S1 = exp(tA) is locally conformal. Observe first that if a vector field 
u = (u") defines a local group of Euclidean isometries, then the strain tensor, 
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which measures the distortion of distance under the transformation (see 
Example 23.2.2(d)), must be zero, i.e. 

(where in this case there is no summation over repeated indices). If, more 
generally, the local group of the vector field u = (ua) is conformal, then for 
similar reasons the strain tensor must be proportional to the metric, i.e. 

oua oub 
oxb + oxa = y(x)bab' (71) 

where y(x) is a smooth function. We note parenthetically that in this case 
the effect on the tensor gab = bab' of the local group of the vector field u is 
given by 

S7(gab)ij = [1 + tj1(x)]bij + O(t 2 ). 

(To see this note first that by §22.1(2) 

oxa axb n axa axa 
S:Cbab)ij = bab -. -. = I -. -. · 

oy' Oy1 a= 1 oy' oy1 

By §23.1(6) the transformed co-ordinates yi satisfy 

yi = xi + tui(x 1' ... ' xn) + o(t), 

whence 

This and the condition (71) together imply that 

n oyi ayi 2 J
1 

axa axb = [1 + ty(x)] bab + O(t ). 

By inverting this and substituting in (73) we arrive at the desired (72).) 

(72) 

(73) 

By direct verification it can be seen that all four of the vector fields (67) 
satisfy the condition (71). (For instance setting au ( = ui(ojoxi)) = Ka yields 

u1 = 2xaxJ, j # a; ua = 2(xa)2 - I (xi) 2 , 

from which (71) is immediate.) Hence the theorem will follow if we can show 
that condition (71) implies conformality of the transformations Sr defined 
by the vector field u = (ux). The proof of this, which is based on the analogous, 
though simpler, argument for the more restricted case of isometries, is as 
follows. 

A co-ordinate shift along the integral curves of the system 

_xa = ux(xl' ... ' xn), r:t. = 1, ... , n, (74) 
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through a time interval At, may be broken up into N consecutive shifts 
through intervals At/N: 

s/!11 = s(firtN> o • • • o s(fittN> = s~rtN>· 

By §23.1(7), the Jacobian of the transformation S,(r = At/N) satisfies (for 
small r) 

axi(r) = s:i. oui 0( 2) 
0Xj UJ + ! 0Xj + ! . 

Hence if ~ = (~0) is a vector at the point x0 = (x6, ... , x0), then by the 
transformation rule for vectors, its components in the shifted co-ordinates 
will be given for small At/N by 

)!a )!a J!a (At) OUa b (Af) 2 

'oo = ., --+., + N oxb (xo)~ + 0 N = ~f, 

J! )!a ·a (M) ou" ( )f!b o(At)2 
.,1--+ '>2 = <;1 + N oxb X1 .,1 + N ' 

(75) 

J!a J!u J!u (At) oua ( )J!b o(At)2 
'oN-1- .. N='oN-1+ N oxb XN-1'oN-1+ N . 

Here the points xq, q = 1, ... , N -1, which lie on the integral curve (x"(t)) 
of the system (74) satisfying xa(O) = xg, are defined by 

xu(At) =xu N 1• 

xa((N- 1)~) = x~_ 1 . 

From (75) together with condition (71) we obtain the following expressions 
for the scalar squares of the vectors ~i: 

(~1• ~1) = ( 1 + Jl(Xo) ~) (~o' ~o) + o(~r' 

(~2• ~2) = (1 + /l(X1) ~)<~1• ~1) + o(~r' 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (76) 
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Hence 

In the limit as N-> CJJ the right-hand side of this becomes 

[1 + LJl(X(t)) dt] <~ 0 , ~ 0 ) = p(x0)<~ 0 , ~ 0 ), 
so that the transformation stl.t is conformal, as claimed. D 

Remarks. 1. It follows from this proof that if the strain tensor is zero then 
st is an isometry (since in (76) we shall have Jl(X) = 0). Hence for each t, st 
is, modulo a translation, a constant linear transformation exp(tB) where 
B = B~' and u = Bx (see §24.3). From this it follows that the matrix B1 

(which may be written as s,- 1(dS1jdt)) is (oua;axb). Clearly the condition that 
S, be an isometry is equivalent to skew-symmetry of the matrix (ouajoxb) = 
B(x) at all points x. 

2. It can happen in some cases that the subspace spanned by the set of 
all B(x) = (ou"joxb) (with x ranging over IRl") is a subalgebra of the Lie 
algebra of all n x n real matrices. In particular in certain cases with n even, 
it turns out to be the subalgebra of all n/2 x n/2 complex matrices. 

24.7. Exercises 

1. Prove that if the situation of the last sentence of the preceding remark obtains, then 
S, defines a holomorphic transformation C"12 --> C"' 2 • (In general for n/2 > 1 such 
transformations need not be conformal.) 

2. Prove that if all B(x) (see the first of the preceding remarks) have zero trace, then 
the transformation S, is volume-preserving. 

3. Establish the following Lie algebra isomorphisms: 

(i) su(l, 1) ~ s/(2, IR); 
(ii) su(2) x su(2) ~ so(4); 

(iii) s/(2, C) ~ so(l, 3); 
(iv) so( I, 2) ~ algebra of vectors in 1Ri. 2 with the "vector product" bracket opera
tion defined in Exercise I, §6.3. 

4. Compute the left-invariant vector fields on the group of unimodular quaternions. 

5. Express the Killing metric on the group S0(3, IR) in terms of the Euler angles (see 
Example 14.1.4). 

6. Letg~ be a Killing metric on a Lie algebrag with basis X 1, ... , X". Write [Xi,X1] = 

c71Xk, ckiJ = g~1 cL. Show that the tensor ckiJ is skew-symmetric. 

7. The inner antomorphisms B ,__.ABA- 1 of the group SO(n, IR) are motions of the 
Killing metric on that group. 
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8. A Killing metric on the group SO(p, q) can be obtained as the restriction to this 
group of the pseudo-Euclidean metric 

(X,Y) = tr(GXGY-r), 

where G is the matrix of the pseudo-Euclidean metric of type (p, q). What is the 
type of the resulting pseudo-Riemannian metric on SO(p, q)? 

9. All of the examples of Killing metrics mentioned in the text (see §24.4) are given to 
within a constant factor, by tr(ad X ·ad Y). 

10. We saw in §13.2 that the group PSL(2, IR) is the (direct) isometry group of(the upper 
half-plane (or Kleinian) model of) the Lobachevskian plane. Hence to each one
parameter subgroup of SL(2, IR) (see Exercise 5 of §14.4) there corresponds a one
parameter group of diffeomorphisms of the Lobachevskian plane. Find the corre
sponding vector fields in (Klein's model of) the Lobachevskian plane. Calculate 
their commutators. 

11. Compute the Lie algebras of: 
(i) the affine group on IR" (see Exercise 3,§4.5); 
(ii) the isometry group of Euclidean n-space; 

(iii) the isometry group of the Minkowski space IR i ,2 

Calculate the respective generators of the actions of these groups. 

12. Show that the linear vector fields Lx, LY, Lz in !R 3 , corresponding to the action of 
S0(3, IR) (see §24.3(43)) are tangent to every sphere with centre at the origin. Find 
the form taken by the corresponding first-order differential operators on the unit 
sphere in terms of spherical co-ordinates. 

13. Define a right-invariant field on a matrix group G to be the restriction to G of a 
vectorfieldoftheformRx(A) = -X A. Prove that [Rx, Rr] = R1x. Yl' [Lx, Rr] = 0. 

14. Identify the types of the Lie algebras so(l, 2) and sl(2, !R) in the classification given 
in §24.5. 



CHAPTER 4 

The Differential Calculus of Tensors 

§25. The Differential Calculus of 
Skew-Symmetric Tensors 

25.1. The Gradient of a Skew-Symmetric Tensor 

Most physical laws find mathematical expression as relationships between 
derivatives of one kind or another of various physical quantities. Many of 
these physical quantities are most appropriately represented as tensor (in 
particular vector) fields throughout space, or a region of space. We are 
therefore naturally interested in the question of what differential operations 
on tensors there exist, which are (in a sense to be made precise) independent 
of the co-ordinate system in terms of which we calculate their effect. The 
simplest example of such an operation is the following one: If we have a 
function f(x, (1(), or a tensor field T~~ :::f'. (x, (1(), depending as usual on the 
point x = (x1, x2 , x3) of space, but also on some parameter (I( independent 
of the points, then we can take the partial derivative with respect to that 
parameter: 

oif ayi_, ... il! (x (I() 
-(x, (I() or 1'···J• ' 
00( 00( 

at each point x. (In classical mechanics the time t plays the role of an inde
pendent parameter.) This operation is not connected with the geometry 
of the underlying space co-ordinatized by xl, x2, x3 , being carried out separ
ately, in effect, at each point of that space. Another familiar example of a 
differential operation not related in any way to whatever Riemannian metric 
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the underlying space may have on it, is that of forming the gradient of a 
function (i.e. of a scalar field): 

( of of of) 
ox1, ox2, ox3 = gradf 

The result is a covector constructed from the function .f, which is invariant 
in the sense that under co-ordinate changes its components transform 
according to the transformation rule for tensors: 

x = x(z), 
of of oxi 
ozi oxi ozi. 

The reader will probably be familiar with special cases of the following 
generalization of the concept of gradient to arbitrary skew-symmetric 
tensors defined on n-dimensional Cartesian space. 

25.1.1. Definition. Let 7;, ... i" be a skew-symmetric tensor defined on an 
n-dimensional space with co-ordinates x 1, ... , xn (so that the iq range from 
1 to n). By the gradient or differential d1j, ···ikik+, of this tensor we shall 
mean the skew-symmetric tensor of type (0, k + 1) with components 

k+1 oT . . . 
(dT)h···ik+l = L )l···)q-l}?+l···lk+l.(-l)q-1. 

q= 1 ox1• 
(1) 

Before verifying that dT is indeed a tensor we consider some special 
(and perhaps familiar) cases of it. 

25.1.2. Examples. (a) If T = .f(x) is a function, so that k + 1 = 1, then by 
definition 

oT 
(dT)i = oxi' 

which is just the usual gradient off 

(b) If T = (7;) is a covector, then 

oT oT 
(dT)ij =OX;- ox;= -(dT)ji· 

This tensor is called the curl (or sometimes rotation) of the co vector field 
(7;), and is denoted also by curl T(or sometimes rot(T)). Thus the curl is a 
skew-symmetric tensor of type (0, 2). 
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Remark. When the ambient space is 3-dimensional Euclidean, with Euclidean 
co-ordinates x 1, x 2, x3, it is customary to use the notation curl Tto refer to 
the vector (1l) = * dT(see §19.3); thus,_.,;= !sii\dT)ik' so that 

1 oT3 oT2 
IJ = ox2 - ox3 = (dT)23 = - (dTh2' 

2 oT1 oT3 
IJ = OX3 - oxl = (dTht = -(dT)13' 

3 oT2 oT1 
IJ = oxt - ox2 = (dT)12 = -(dT)n. 

(c) Let n = 3, and let Tii = - 7Ji be a skew-symmetric tensor of type (0, 2). 
Then the skew-symmetric tensor dTof rank 3 is given by 

oT12 oT13 aT23 
(dT)t23 = ~-~ + ~· 

UX OX uX 

Remark. If the co-ordinates x 1, x 2, x 3 are Euclidean, and if (in the manner 
indicated in the preceding remark) we define the vector (IJi) in terms of the 
skew-symmetric tensor T by setting 1J 1 = T23 , 1J 2 = - T13 , 1J 3 = T12 
( . i t iikT ) h b · I.e. 1J = zF- ik , t en we o tam 

In the present context (i.e. when the co-ordinates x 1, x 2, x 3 are Euclidean) the 
scalar OIJifoxi is called the divergence of the vector field (IJi) = IJ, and is 
denoted by div IJ. 

We now turn to the justification of Definition 25.1.1, i.e. to the verification 
that dTis a tensor. 

25.1.3. Theorem. The gradient dTofa skew-symmetric tensor 4type (0, k) is 
a skew-symmetric tensor of type (0, k + 1). 

PROOF (for k = 0, 1 only). Suppose we are given a co-ordinate change 

i = 1, ... , n. (2) 

Write T;, ... ik for the components of the tensor T relative to the co-ordinate 
system x, and T;; ... i" for the components relative to the primed system x'. 
Since Tis a tensor we have by the very definition that 

(3) 



§25. The Differential Calculus of Skew-Symmetric Tensors 237 

In the definition of gradient (25.1.1) the co-ordinate system was arbitrary; thus 

(dT)· . = 'C-l)q-1 ar;, ... iq-liq+l···ik., 
lt ... lk+l 7 Oxiq (4) 

(5) 

From the formulae (3), (4) and (5) we wish to deduce that the d~n and d~i) 
are related according to the transformation rule for tensors of type (0, k + 1 ). 
In view of the notational complexity of this deduction, we shall content 
ourselves with carrying it out for the case k = 1 only. (The case k = 0 was 
verified earlier-see for instance §16.) 

Thus let T; be a co vector; in this case, the formulae (3), ( 4), (5) simplify to: 

(dT)-. = a~- ar;_ 
I) 0X1 OX)' 

a7;. a1;,. 
(dT)k'l' = oxk' - ox~'. 

Hence 

a~ oxj o2xj oT; oxi o2x' 
= rJxk' ox1' + ~ oxk' ax1' - ax1' oxk' - T; axk' ax1' 

completing the proof for this case. D 

25.2. The Exterior Derivative of a Form 

We now give an alternative definition of the gradient of a skew-symmetric 
tensor, in terms of its associated differential form. Corresponding to a skew
symmetric tensor 7;, ... ik' we have as usual the form 

w = L T;, ... ;kdx;' 1\ ... 1\ dxik_ 
it< ... <ik 

(6) 
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The exterior derivative (or differential) of this form is the form of rank k + 1 
given by 

dw = (7) 
io 

it< ... <ik 

In particular if w = f, a scalar, then dw = df = (of/ox;) dx; is just thefamiliar 
differential of the function f 

The connexion with our earlier concept of gradient (or differential) is 
revealed in the following 

25.2.1. Theorem. For any skew-symmetric tensor 1;1 ... ik' we have 

dw = (dT)· . dxh 1\ · .. 1\ dxik+ 1• 
)1 ... )k + 1 

(8) 
h< ... <ik+1 

PROOF. From the definition (25.1.1) of dTit follows that 

(dT). . dxh 1\ ... 1\ dxik + 1 
)1 ... )k + 1 

h < ... <ik+ 1 

ar. . . . . L L ( -l)q-1 JI···Jq-1}?+ I ···Jk+ I dxJI 1\ ... 1\ dxik+ ~. 
h< ... <jk+l q ox)q 

Using 

dxh 1\ · · · 1\ dxi• + 1 

= (-l)q- 1 dxiq 1\ dxh 1\ ··· 1\ dxiq-l 1\ dxiq+l 1\ ··· 1\ dxik+l, 

the last expression becomes 

:L :L 
ar. . . . 

}1 ···lq-l}q+ 1 ···lk+l 

q h < ... <ik+ 1 
oxjq 

If in the qth summand we putj1 = i1, ... ,jq- 1 = iq- bjq+ 1 = iq, ... ,jk+ 1 
ik, this sum becomes 

:L :L 
q it< ... <ik 

iq-1 < jq < iq 

ar. . . . . ---'-'-=-"' dxJq 1\ dx 11 1\ · · · 1\ dx'", 
oxJq 

which can be seen without much difficulty to be the same as the defining 
expression for dw given in (7). D 

25.2.2. Theorem. Two successive applications of the gradient operation to a 
skew-symmetric tensor T result in the zero tensor: 

d(dT) = 0 or d(dw) = 0. (9) 
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PROOF. If 

then we have 

dw = 

d(dw) = 

W= 

p 
it< ... <ik 

p,q 
it< ... <ik 
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(10) 

Since under our blanket smoothness assumptions the expression 
o2 'f; 1 ... i)oxq OXP is symmetriC in the indiceS p and q, While dXq 1\ dxP is SkeW
symmetriC, it follows that the sum in (10) is zero, as required. D 

Remark. The formula (7) for the exterior derivative of a form may be re
written as 

I ( 11) 
it< ... <ik 

where by dT;, ... ;. we mean the differential of the component T;, ... ;. regarded 
as a scalar function. This yields the following alternative proof of the fact 
that dTis a tensor: Since dT;, .. ,;. is a tensor (corresponding as it does to the 
gradient of a scalar function), it follows that its exterior product (see §18.3) 
with dx;' 1\ · · · 1\ dxi• is also a tensor; however this exterior product IS 
just the right-hand side of (11). 

In terms of the operation of commutation of vector fields (see Definition 
23.2.3) yet another expression can be given for the exterior derivative of a 
form. 

25.2.3. Theorem (Cartan's Formula). Let w be a differential form of rank k, 
and let X 1, ... , Xk+ 1 be smooth vector fields. Then the value of theform dw 
on the fields X 1, ... , X k + 1 is given by the following formula: 

(k + 1) dw(X I• ... , Xk+ 1) 

=l:(-1)iox,w(X1 , •• ,X;, ... ,xk+l) 

"' i+j ~ ~ + '-- ( -1) w([X;, Xj], X I• ... , X;, ... ' X; •... ' xk+ 1). 
i<j 

(12) 
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(Here the hat over a symbol indicates that that symbol is omitted. Note 
also that of course the value of a form 7;, ... ;k dxi' A · · · A dxik on vectors 
X 1, ... , Xk, is by definition just 7;, ... ;kX;1' • · · Xlk.) 

We again give the proof for the case k = l only. (In the case k = 0 it is 
immediate.) Thus suppose w = I; dx;. Then from (8) we have that 

dw = L - 1· - -. dx' A dx1, (aT ar;) . . 
i<j ox' ox1 

whence 

2.:: (aT a7;) . . 2 dw = - 1 - -. dx' A dx1 • 
. . ox' ox1 
'· J 

Hence the value taken by the form dw on the vector fields X = (Xi), Y = 
(Yi), is given by 

_ i j(rm 27;) 2 dw(X, Y) - x Y ~ - -0 . . 
ox' x1 

(13) 

Now in the case k = 1, the formula (12) becomes 

2 dw(X, Y) = oxw(Y) - oyoJ(X) - w([X, Y]) 

. . ( kayi kvxi) = ox(1i Y')- oy(J;X')- I; X ~- Y -;;;-"'< 
uX (;X 

=X y; -~- -.' i ·(u7J ar;) 
ox' ox1 

which is the same as the right-hand side of (13). This completes the proof. 
D 

How does the differential operator d act on the exterior product of two 
differential forms? The following theorem supplies the answer. 

25.2.4. Theorem. Let w~> w 2 be differentia/forms of degrees p and q re
spectively. Then 

(14) 

PROOF. It suffices to carry out the proof in the case where w 1 and w 2 are 
"monomials": 

w2 = g dxh A · · · A dxiq. 

Then we have 
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whence by the definition of d (see (7)) 

d(w 1 1\ w2) 
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ar k . . og k . . = -·-g dx 1\ dx'' 1\ · · · 1\ dx1• + f- dx 1\ dx 1 ' 1\ · · · 1\ dx1• oxk oxk 

= dw 1 1\ w2 + (-l)Pw 1 1\ dw 2 , 

where we have used the fact that 

dxk 1\ dxi' 1\ · · · 1\ dxip 1\ dxh 1\ · · · 1\ dxj• 

= (- 1 )P dx;' 1\ · · · 1\ dxip 1\ dxk 1\ dxh 1\ • · · 1\ dxj•. 

This completes the proof. 0 

The presence of a metric gij on the underlying space, allows us to define 
another important differential operation on forms which reduces their 
ranks by 1. The operation we have in mind is called the divergence (of a 
skew-symmetric tensor), and is denoted by 6; it is defined by 

(j = *-I d *, (15) 

where * is the metric-dependent operation on skew-symmetric tensors, 
defined in §19.3. A more explicit formula for the operation (j will be derived 
in §29. Since the operation* is a tensor operation in general only if we restrict 
the permitted co-ordinate changes to those with positive Jacobian, it follows 
that this also is the most we can claim (on the face of it at least) for the opera
tion 6. 

25.2.5. Examples. In the first three of these examples the underlying space 
is assumed to be 3-dimensional Euclidean, with Euclidean co-ordinates 
xl, xz, x3. 

(a) In the case of a scalar field f(x) the exterior derivative is the usual 
differential df, which is a covector. If we restrict the co-ordinate changes to 
being orthogonal then we need not distinguish upper and lower indices, so 
that dfbecomes the vector grad.f = (ofjox 1' o.f/ox 2 ' ofjox3 ). 

(b) Suppose w = T1 dx 1 + T2 dx2 + T3 dx 3 . Then by (8) 

( oT2 oTt) 1 2 
dw = ox! - dx2 dx 1\ dx 

(oT3 _ oT2 ) d 2 d 3 (oT1 _ oT3) d 3 1\ dx1. 
+ ~2 ;-,3 X/\X+;-,3 :11 X ox ux ux ux 
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If we apply the operation * to the 2-form dw (see §19.3), we obtain the co
vector (or 1- form) 

If, as in (a), we identify vectors and covectors, then the operation* d may be 
described as sending each vector Tto the vector * dT = curl T, the curl of 
the vector field T. 

(c) Suppose again that w = T1 dx 1 + T2 dx2 + T3 dx3, and let us compute 
Dw = * -l d * w. This, as we shall see, is a form of rank zero (i.e. a scalar) 
(which is to be expected since D reduces the rank by 1). Thus 

w = T1 dx 1 + T2 dx2 + T3 dx3 

~ T1 dx2 1\ dx3 + T2 dx 3 " dx 1 + T3 dx 1 " dx2 

a (oT1 oTz oT3) d 1 d 2 d 3 *-1 oT1 oT2 oT3 
~ OX 1 + OX 2 + OX 3 X 1\ X 1\ X ~ OX 1 + OX 2 + OX 3 • 

We conclude that 

. oT1 oTz oT3 
D(T) = dlV T = ox I + ox2 + ox3 . (17) 

Note that in deriving this formula for the divergence of a vector field we 
have made heavy use of our assumption that the co-ordinates are Euclidean; 
the formula (17) does not hold in general in other co-ordinates. 

(d) We now take the underlying space to be 4-dimensional space-time 
with co-ordinates x 0 = ct, x 1, x 2 , x 3 (where cis the speed of light), equipped 
with the usual pseudo-Euclidean metric 

or, equivalently, 

-1 J -1 

Recall (from §21.1) that an electromagnetic field is a rank 2 skew-symmetric 
tensor Fa.fl• where()(, f3 = 0, 1, 2, 3. From the physics of electromagnetic fields 
we know that the tensor F a.fl must satisfy Maxwell's equations. The first 
"pair", one might say, of Maxwell's equations are given by 

(d ) oFjk _ oF;k oF;j = 0 
F iik = ox; oxi + oxk ' (18) 



§25. The Differential Calculus of Skew-Symmetric Tensors 243 

or, more briefly, dF = 0, where F = La<P Fap dxa 1\ dxP. In terms of the 
electric field E = (Ea), Ea = F Oa• and the magnetic field H = (Ha), H 1 = F 23 , 

H2 = - F 13 , H 3 = F 12 , those of the equations (18) with i, j, k = 1, 2, 3 in 
some order, are equivalent to the equation 

8F 12 _ 8F 13 + 8F 23 __ O 
8x3 8x 2 8x 1 

or div H = 0, (19) 

and the remaining equations in (18) are equivalent to 

8H l8H 
curl E + ::1xo = 0 or curl E = - - -. 

u c ot 
(20) 

Thus the system (18) is equivalent to the system consisting of the two equa
tions (19) and (20), the first a scalar equation, and the second a vector 
equation. It is for this reason that (18) is referred to as the first "pair" of 
Maxwell's equations. Note that there is no connexion between these equa
tions and the pseudo-Euclidean metric. 

On the other hand, as we shall now see, the second pair of Maxwell's 
equations involve the metric in an essential way. In terms of the electro
magnetic field tensor F this second "pair" takes the form 

_ 1 4n. 
f>F = * d * F = - J<4l, c 

(21) 

wherej<4 l denotes the 4-dimensional current vector,j<4 l = (pc, pv 1, pv2 , pv3 ), 

(where in turn p is the electric charge density at each point of 3-dimensional 
space, and v = ( v 1, v2 , v3) is the usual velocity of charge at each point of the 
3-dimensional space with co-ordinates x 1, x 2 , x 3). By using Lemma 21.1.3, 
where* F is expressed in terms of E and H, we can rewrite (21) as the pair of 
equations (writing j = pv, the current) 

divE= 4np, 

l8E 4n 
curl H + --- = -j, 

c ot c 

again consisting of a scalar equation and a vector equation. 

25.3. Exercises 

(22) 

(23) 

I. Let X 1, ••• , X" be vector fields defined on an n-dimensional space, linearly indepen
dent at each point of a region of that space, and let w1, •.. , w" be (at each point) the 
dual basis of 1-forms, i.e. linear functionals defined by wi(X) = b~. Show that 

where the quantities c7i are defined by 

[X;, xj] = c~jxk. 
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2. The operations of taking the differential and taking the Lie derivative of forms, 
commute; i.e. L, dw = d(L,w). 

3. For each vector field X define a linear operator i(X) on forms by 

[i(X)w](X 1, ... , Xk_ 1) = w(X, X b ••• , Xk_,), 

where w is any form of rank k, and X 1, ..• , X k _ 1 are arbitrary vector fields. 

(i) Prove that i(X) is "anti-differentiation", i.e. 

i(X)(w 1 1\ w2 ) = (i(X)w 1 ) 1\ w 2 + ( -ltw, 1\ i(X)w2 , 

where k is the rank of the form w 1. 

(ii) Establish the formula 

i(X) d + di(X) = Lx, 

where Lx denotes the operation of taking the Lie derivative along the field X. 

§26. Skew-Symmetric Tensors and the 
Theory of Integration 

26.1. Integration of Differential Forms 

From a second course in calculus the reader will recall the definition (anal
ogous to that for the case n = 2 sketched in §7.4) of the multiple integral 

r~. ft(z) dz 1 ... dzn (1) 

of a (suitably well-behaved) functionf(z 1, ••. , zn) over a (suitable) region U 
of n-dimensional Cartesian space. For reasons soon to be made apparent 
(see also the remark following Corollary 18.2.4 ), we shall use the alternative 
notation 

f.~. ff'(z) dz 1 1\ · · · 1\ dzn (2) 

for the integral ( 1 ). The reader may also recall that, given a co-ordinate change 
z = z(y), the integral (1) can be evaluated using the new co-ordinates 
y1 , ... , yn via the formula 

r ~. Jt(z) dz 1 1\ ... 1\ dzn = r ~ -f Jf(z(y)) dyl 1\ ... 1\ dyn, (3) 

where J = det(Dzi/c!/) is the Jacobian of the co-ordinate change, and Vis 
the same region U, but co-ordinatized by the new co-ordinates y\ ... , yn. 
(We shall confine ourselves throughout the remainder of this section to co
ordinate changes with positive Jacobian.) 
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By Theorem 18.2.3 the transformation rule for a skew-symmetric tensor 
T of rank 11 is given by T~ ... " = J · T1 ... ". From this and (3) it follows that we 
may regard the expression following the integral signs in (2) as a skew
symmetric tensor T of rank 11, where T1 ... " = f(z) (whence the appropriate
ness of the notation in (2)). 

26.1.1. Example. If g;1 is a (pseudo-) Riemannian metric. then under a co
ordinate change z = z(y), its determinant g = det(g;) transforms as follows: 

( azk azt) 
g' = det(gi) = det gkl oyi oyl = 1 2g. (4) 

Thus, as indeed we saw in 18.2.4, under co-ordinate changes with positive 
Jacobian, the expression j[g[ comports itself like a skew-symmetric tensor 
of rank 11. Recall that by Definition 7.4.1 the area of a region U of a surface is 

cr(U) = JJ jig~ du dv; (5) 

u 

(where g;1 is the metric on the surface). Thus we now see that this definition 
of surface area is independent of the co-ordinates on the surface. 

Suppose we are given a surface x; = x;(z 1, z2 ) in Euclidean 3-space with 
Euclidean co-ordinates x 1, x 2• x 3 , and a functionf(x(z)) (which might typi
cally be in some essential way related to the surface- such as for instance its 
Gaussian curvature). The swface integral of this function over a region U of 
the surface is defined to be 

JJf(x(z))j[g[ dz 1 A dz 2 , (6) 

u 

where JSu <p(z) dz 1 1\ dz 2 is the usual double integral. (The motivation for 
this definition of surface integral is given in §7.4.) The expression j[gf dz 1 dz 2 

is sometimes called the element of area (or element of measure) on the surface. 

The following 7 conclusions summarize (and extend) the above. 

(i) For any bounded region U (with nice enough boundary) of n-dimen
sional Cartesian space, and any skew-symmetric tensor T = (7;, ... ;J of 
type (0, n), the multiple integral J · · · J Tis defined. 

u 

(ii) In the notation of differential forms the tensor Tcan be written as 

T = Tl ... n dz I 1\ . . . 1\ dz" 

(or, without the wedges, as T1 ... n dz 1 • • • dz"). 
(iii) Although f(z) is given initially as a scalar function on points, for the 

purposes of integration, in view of the equality 

r~· frcz)dz 1 1\ ... 1\ dz" = r~JJf(z)dyl 1\ ... 1\ dy", 
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we change our point of view of f(z), regarding it instead as the component 
T1 ... n = f(z) of a skew-symmetric tensor of rank n. 

(iv) To integrate a function cp(z) over a region U of a space (i.e. to form 
what might be called, by analogy with the term "surface integral," a "space 
integral") we need to be given beforehand the volume element (or element 
of measure), which is a skew-symmetric tensor (at least under certain rele
vant co-ordinate changes) of rank equal to the dimension of the space. If 
we denote this tensor by T, then the integral of cp(z) over U is defined to be 

r~· f cp(z) T= r~· f cp(z) T1 ... n dz 1 A··· A dzn. (7) 

(v) If in (iv) the space is (pseudo-) Riemannian with metric gii(z), then 
the tensor T (the volume element) is given by 

T = da = .jig~ dz 1 !\ · · · !\ dzn, 

so that in this case, by (7) the integral of a function cp(z) over a region U is 

r ~ · f cp(z)T = r ~ · f cp(z)jfgi dz 1 A · · · A dzn. 

(Note once again that here Tis a tensor relative only to co-ordinate changes 
with positive Jacobian.) 

(vi) Given a co-ordinate change z; = z;(y), it follows from the equalities 
dz; = (8z;/8i) di and dyi !\ di = -di !\ di, that 

dzi' !\ · · · !\ dzi" = " f' ··· i~ dyit !\ · · · !\ dy'·· (8) L.... ]1 ... }k ' 

where J~;J> denotes the appropriate minor of the Jacobian matrix (8z;/8yi). In 
particular when k = n we get the expected formula 

dz 1 !\ · · · !\ dzn = 1 dyl !\ · · · !\ dyn, (9) 

where J is, as usual, the Jacobian. 
(vii) If the co-ordinates zl, ... , zn are Euclidean, then .jig~ = 1, so that 

the volume element is given by da = dz 1 !\ · · · !\ dzn. 

This completes our list of conclusions. We emphasize in particular the 
need to distinguish between the two kinds of integrals of a function arising 
above: 

1. The integral of the second kind of a function (or, from the other point of 
view, of a rank n skew-symmetric tensor) over a region. This the integral 
occurring in (i), (ii) and (iii) above; it is just the multiple integral of the 
function and is independent of any metric which may be defined on the 
n-dimensional Cartesian space. 
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2. The integral of the .first kind of a function over a region. This is the integral 
in (iv) and (v), for whose evaluation one needs to know the volume 
element or measure with respect to which the integration is to be carried 
out. It is the ordinary multiple (n-fold) integral of the product of the given 
function with the volume element, taken over the specified region. (In 
this sense this integral reduces to an integral of the second kind.) 

Having given appropriate definitions(s) of the integral of a tensor of type 
(0, n) over regions of n-dimensional Cartesian space, we now address the 
analogous problem for tensors of type (0, k), k < n. 

To begin with we consider the case k = 1; thus let ~be a covector defined 
on IRn. As noted in §18.1, we can associate with each such tensor the differ
ential form w = ~ dzi, of degree 1. The phrase "differential form" as applied 
to the expression ~ dzi, suggests that we have in mind some useful inter
pretation of the symbol J ~ dzi. Indeed we do! Given a segment of a curve: 
zi = zi(t), a :::;; t :::;; b, then we define 

(10) 

(where ~i = zi = dzijdt is the velocity vector), and we call this integral the 
line integral of the form w along the curve segment. (This is another instance 
of an "integral of the second kind" (to borrow once again from the termin
ology of analysis).) 

As previously, we now consider the corresponding "integral of the first 
kind", which involves whatever metric the underlying space may carry. This 
integral arises typically when we wish to integrate (along the curve segment 
zi = zi(t), a :::;; t :::;; b) a scalar function f(z) bearing some relation to the 
curve, in such a way that we need to introduce the element of measure 
(or, equivalently, element of length) dl = I :i I dt, on the curve. Thus our line 
integral of the second kind is defined to be 

f f(z(t)) dl = f f(z(t)) I :i I dt. (11) 

Note that the element of length on the curve, namely dl = I :i I dt, may be 
regarded as just a !-dimensional version of the n-dimensional volume 
element d(J = jig~ dz 1 1\ · · · 1\ dzn which we met with earlier, since when 
n = 1 we have lgl = lg11 l and~ dt = d/, where g11 = 121 2 , t = z1 . 

The line integral of the second kind of a covector (or first-degree differ
ential form) along a curve segment, has the following invariance properties: 
(i) it is independent of the particular parametrization of the curve; i.e. 

if t = t(r), where r varies from a' to b' as t varies from a to b, then 

fb dza Jb' dza 
7;, -d dt = 7;, -d dr; 

a t a' r 
(12) 
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(ii) it is also independent of the co-ordinatization of the ambient space; 
i.e. if z = z(y) is a co-ordinate change, so that T/J = 'fa(ozajayP), then 
writing zi(t) = zi(y(t)), we have 

fb dza - fb ' dyf3 
'fa d dt - T 13 dt. 

a t a dt 

To see this observe that at every point of the underlying space 

T ' d fJ - T. oza d ,P - T. d a 
p y - a oyf3 } - a z ' 

(13) 

i.e. T'p j:P = T,.za, so that the two integrands (and therefore their integrals) in 
( 13) are the same. 

To summarize our progress thus far: We have defined integrals (of each 
of the two kinds) of skew-symmetric tensors of rank n over regions of n-space, 
and of covector fields (i.e. skew-symmetric tensors of rank 1) along arbitrary 
arcs. We now proceed to the general rank k case ( 1 ::; k ::; n ). 

It turns out that, as in the cases k = 1, n, it is appropriate to define the 
integral of a skew-symmetric tensor of rank k over (a region of) a k-dimension
al surface in the ambient n-dimensional Cartesian space. Thus let 

i = 1, ... , n, (14) 

be parametric equations of a k-dimensional surface in the space with co
ordinates x 1, ... , xn, and let U be a region of that surface, i.e. a region of the 
k-dimensional space with co-ordinates z1, ... , zk. How then do we define the 
integral of a rank k skew-symmetric tensor T defined on an n-space with 
co-ordinates x 1, ... , xn, over a region U of a k-space with co-ordinates 
z1, ... , zk, given an embedding (i.e. a surface) xi = xi(z 1 , ••• , zk)? Before 
giving the definition we remark first that we shall for convenience' sake use 
the differential form notation for skew-symmetric tensors, and second that 
by restricting Tto the surface (14) (see §22.1) we may regard it as a tensor 
defined on the surface, i.e. as a rank k tensor defined on a k-dimensional 
space (i.e. the surface). Recall that by Theorem 22.1.2 this restriction is 
given by 

f 1 ·•· i" T · dz 1 1\ · · · 1\ dzk = 1 ... k li ... lk 

it< ... <ik 

(15) 

where the right-hand side is the original differential form of degree k (i.e. 
tensor of rank k) considered at the points of the surface. 

26.1.2. Definition. The integral of the second kind of a skew-symmetric tensor 
T = (T; 1 ••. iJ of rank k over a region U of a k-dimensional surface xi = 

xi(z 1 , •.. , zk), i = 1, ... , n, is defined to be the ordinary k-fold multiple 
integral ( cf. (15)) 

f.·· JT = f· · · J( " T . Ji!···kik) dz 1 1\ · · · 1\ dzk. (16) ~ l} ... lk 1 ... 
u u it< ... < ik 
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This integral has the following two invariance properties (noted earlier 
fork = 1): 

(i) The integral is invariant under changes of co-ordinates on the surface. 
This follows from the fact that by 18.2.3 under such a change, say zq = zq(z1

), 

q = 1, ... , k, the restricted tensor 

S dz 1 1\ · · · 1\ dzk = ( '\ T . Ji, ... ik) dz 1 1\ · · · 1\ dzk, (17) !. .. k L. ''···'k !. .. k 
it< ... <ik 

whose rank k is the same as that of the space on which it is defined, becomes, 
in terms of the new co-ordinates Z 1, 

S 1. .. k J dZ 11 1\ · · · 1\ dz1k, (18) 

where J = det(8zi/8z1i). However by (3) the multiple integrals over U of 
the expressions (17) and (18) are equal. 

(ii) The integral remains unchanged under changes of the co-ordinates of 
the n-dimensional space. To see this, let xi = xi(X1

), i = 1, ... , n, be such a 
co-ordinate change. Then since dxi = (8xij8x 1i) dx 1i, and since by the rule 
for transforming the components of a tensor, 

axlit axljk 
T . =T'- . -···-''···'k )l···)k axi' axik' 

it follows that 

" Tl d I it d I ik L., it ... ik X 1\ . . . 1\ X • 
it< ... <jk 

The in variance of the integral then follows from (15). 

We now turn to integrals of the first kind. We shall assume that the n
dimensional space is Euclidean with Euclidean co-ordinates x 1 , ... , x". The 
metric induced on the surface xi = xi(z 1, ... zk), i = 1, ... , n, will be denoted 
by gii dzi dzi. Thus gii dzi dzi = L~=t (dxq) 2 , where dxq = (8xqjaza) dza (see 
§7.3). Recall also that gii = gii and dzi dzi = dzi dzi. The element of volume on 
the surface is given as usual by 

da = jig[ dz 1 1\ · · · 1\ dzk; g = det(%). (19) 

26.1.3. Definition. The integral (of the first kind) of a function f(z 1, ••• , zk) 
on the surface xi = xi(z 1, ... , zk), over a region U of that surface, is defined to 
be the integral of the function with respect to the volume element da; i.e. 
the following multiple integral: 

r ~. ff(zl, ... ' zk)jfg[ dz 1 1\ ... 1\ dzk. (20) 

It is important to note that while the integral of the second kind is not 
connected with any Riemannian geometry which may be present on the 
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surface, or in the ambient space, on the other hand the integral of the first 
kind is connected with the geometry via the volume element 

jfgl dz 1 1\ · · · 1\ dzk. 

This last is a skew-symmetric tensor of rank k (under co-ordinate changes 
with positive Jacobian), which is determined by the Riemannian metric% 
on the surface, which metric is in turn determined (i.e. induced) by the 
Euclidean metric assumed on the space in which the surface is embedded. 

26.2. Examples of Integrals of Differential Forms 

(a) Our first example is the trivial one of the integral of a tensor of rank 0 
(i.e. of a scalar f(z)) over a surface of dimension 0 (i.e. a single point P). By 
definition this integral is just the value off at the point P, i.e. f(P). We have 
an ulterior motive for mentioning this "trivial" example-it will be useful 
when we come to discuss the general Stokes formula. 

(b) We have already discussed (in the preceding subsection) the integral 
of a co vector field (i.e. of a differential form of degree 1) ( 7;.) = I;. dxa along 
an arc xi = x;(t), a :S; t :S; b. Thus: 

fb dxa 
the integral of the second kind along the arc = I;.- dt. 

a dt 
(21) 

(c) The integral of a tensor field (I;) = Li<j I;j dxi 1\ dxj (i.e. of a differ
ential form of degree 2) over a region U of a 2-dimensional surface xi = 
x;(z 1, z2), i = 1, ... , n, is given by: 

the integral (of the second kind) _ JJ " ; j 

over the surface - L I;j dx 1\ dx 
i<j 

u 

= J J [~j I;;11z J dz 1 1\ dz 2 , (22) 

u 

where I;j = I;j(x(z)). dxi = (oxWJzj) dz< dzi 1\ dzj = - dzj 1\ dz;. 
Before proceeding to our third example we examine (b) and (c) in detail in 

the case where n = 3, and the co-ordinates x 1, x 2, x 3 are Euclidean. 

(b') In this (Euclidean) context the integral of a covector field along an arc 
is usually written as 

fb dxa rQ 
a 'I;.dtdt = Jp T~dt, 

where~= :i:, T = (7;,) = (Ta), P = (x 1(a), x 2(a), x 3(a)), Q = (x 1(b), x\b), 
x 3(b)). a :S; t :S; b. and T~ = (T. 0. the Euclidean scalar product. (Recall 
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that, provided we restrict ourselves to co-ordinate changes which are Euclid
ean isometries, the distinction between lower and upper indices disappears.) 

(c') By §7.2 the vectors 

~ = (~i) = (~::) = !:~ ei, 

~ = (~i) = (!:~) = ~:~ ei, 

form a basis for the tangent plane at each (non-singular) point of the surface 
xi= xi(z 1, z2), i = 1, 2, 3. If the co-ordinates x 1, x 2 , x3 are Euclidean, then 
the vector product [~, ~] will be normal to the surface at each point. The 
vector product [~, ~] is really the tensor Sij = (~i~j- ~j~i), with which we 
customarily associate in a one-to-one fashion the vector Si defined by 

st = sz3, sz = -S13, S3 = stz. 
It is clear that Sij = Jij2 , the indicated minor ofthe Jacobian matrix (Jx"jJzP). 
It is also clear that the length of the vector [~, ~] is Jg, where g = det(gi), 
the determinant of the metric gij induced on the surface by the Euclidean 
metric (see §7.3): 

3 

gij dzi dzj = L (dxi?; 
. axi . 

dx' = -.dz1• 
Jzl i= 1 

It follows from all this and (22) that when the co-ordinates x\ x 2 , x3 are 
Euclidean, the integral of a differential form Tij dxi dxj of degree 2, over a 
region U of a surface xi = xi(z 1, z2) (sometimes called the "flux" of Tthrough 
the region U), is given by 

If i j ff("" ij ) 1 2 Tij dx A dx = /;:j TijJ 12 dz A dz 

u u 

u u 
where n is the unit normal vector: 

[~, ~] [~, ~] 
n=---=--. 

1[~, ~JI jig~ 

We formulate this result as a theorem. 

26.2.1. Theorem. In Euclidean 3-space the integral (of the second kind) of a 
form T of degree 2 over a region U of a surface xi = xi(z 1, z2), reduces to the 
following integral of the first kind: 

ff Tij dxi A dxj = ff <T, n) jig~ dzl A dzz, 
u u 
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where x 1, x2 , x3 are Euclidean co-ordinates, n is the unit normal to the surface, 
Tis the vector associated in the usual way with the tensor Tij, and gii dzi dzi = 
L;= 1 (dxi)2 , dxi = (8xijazi) dzi. 

Remark. It can be shown that, in contrast with this result, if the space is 4-
dimensional then in general the evaluation of the integral of a form of degree 
2 over a region of a 2-dimensional surface does not reduce to performing 
operations on vectors only, even in the Euclidean case. 

In the case when (as at present) the space is 3-dimensional Euclidean 
with Euclidean co-ordinates x 1, x2 , x3 , so that, as already observed, rank 2 
skew-symmetric forms reduce in a certain specific sense to vectors, and the 
distinction between vectors and covectors disappears, there are two integrals 
of a vector field (7;,) = (Ta) of special importance. These are: 

(i) the "line" integral of (Ta) around a closed curve r: ~r 7;, dxa; 
(ii) the "surface" integral of(Ta) over a closed surface U: 

Jf (1-; n) jlgj dz 1 A dz 2 

u 

(with the same symbolism as in the above theorem). 

The integral (i) around the closed curve r: xi= xi(t), a :::;; t :::;; b, xi(a) = 
xi(b), i = 1, 2, 3, which, as we have seen may be written as 

~T,~a dt, 

r 

is called in analysis the circulation of the field around the closed curve r. 
In the case of the integral (ii) by "closed surface" we mean the boundary 

of a bounded regionf(x 1, x 2, x 3):::;; 0. The surface integral of (7;,) over the 
closed surface U, which by Theorem 26.2.1 is just 

J J Tij dxi A dxi, 

u 
where, as usual, T1 = T23 , - T2 = T13 , T3 = T12 , is called the total or net 
flux through the surface U of the tensor field (7;) = -(1);), or (in our present, 
Euclidean, context) of the vector field T = (T\ T 2 , T 3 ). 

In connexion with the latter integral, recall that if a non-singular surface 
U is given by an equation.f(x 1, x 2, x3 ) = 0, then there may not exist a set of 
parametric equations xi = xi(z 1, z2 ), i = 1, 2, 3, for the whole of U. However 
in a neighbourhood of each (non-singular) point of U there does exist such 
a parametrization (see §7.1 ). Thus since the integral is independent of the 
co-ordinates on the surface, in order to evaluate it over the whole of U 
(i.e. to extend the definition of integral to surfaces which are not globally 
parametrizable ), we may resort simply to subdividing U into non-overlapping 
pieces (or "patches") on each of which a parametrization exists, evaluating 
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the integral over each piece using local co-ordinates defined on that piece, 
and then summing these integrals over the pieces. For example if U is the 
sphere (x 1) 2 + (x2) 2 + (x3 ) 2 = 1, then as the pieces we may take the upper 
and lower hemispheres. 

We now turn to our fourth and final example. 

(d) Suppose that in Euclidean n-space with Euclidean co-ordinates 
x 1, ••. , x" we are given a hypersurface M"- 1 defined by 

F(x 1, ••• , x") = 0, grad F -:1- 0, 

or, locally, by x~ = x~(y 1 , ••• , y"- 1 ). Consider the form 

K da = KJf91 dyl A · · · A dy"- 1, 

(23) 

(24) 

on the surface (called the "curvature form" of the surface). Here if n = 2, K 
is the curvature of the curve (23), while if n = 3, K is the Gaussian curvature 
of the surface (23); we shall not give the definition of K for n > 3, since our 
main interest lies with the cases n = 2, 3. 

Let S"- 1 denote, as usual, the unit (n - I)-dimensional sphere I;i(x~)2 = 
1. We denote by Qn_ 1 the (n - I)-dimensional volume element on the sphere 
s"- 1, invariant under orthogonal co-ordinate transformations, given by: 

nn-1 = dqJ, for n = 2; 

Qn- 1 = sin 0 dO dqJ, for n = 3. 
(25) 

We define the Gauss map (or "normal spherical map") tjJ of the surface 
M"- 1 to the sphere S"- 1 to be the map sending each point P of the surface 
to the tip of the unit normal np to the surface at P after the vector np has been 
transported so that its tail is at the origin of co-ordinates. Since the tip of the 
unit vector np is indeed a point of the unit sphere S"- 1 when its tail is at the 
origin, this does define a map (the Gauss map) 

(26) 

The following theorem links the curvature form (24) and the volume element 
(25) in a natural way via the Gauss map (26). Specifically, it tells us that the 
restriction (using the restriction (or "pullback") operation tjJ*- see §22.1) 
of the form (volume element) Qn_ 1 on S"-1, is just the curvature form K da 
on M"- 1. (Although we have not supplied the appropriate definitions for 
n > 3 we nonetheless give the general statement. Alternatively, we may 
regard formula (27) of the theorem as defining K for hypersurfaces M"- 1, 

n > 3.) 

26.2.2. Theorem. If x~ = x~(yl, ... , y"- 1) is a h ypersurface in Euclidean 
n-space with Euclidean co-ordinates x 1, ... , x", then for all n ~ 2 

(27) 
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Thus in the cases n = 2, 3, we have: 

for n = 2, K dl = l/J*(dcp ), where K is the curvature of the curve; 
for n = 3, K.jg dyl A di = l/1*(0.), where K is the Gaussian curvature of 
the surface, and 0. = sin () d() dcp. 

PRooF. We give the proof for the case n = 3 only. (The proof is similar in the 
case n = 2, and, once given the definition of K, for n > 3 also.) 

Thus let P be a point on the surface M"- 1 = M 2 , and take x 1 = x, 
x2 = y, x3 = z to be Euclidean co-ordinates with P = (1, 0, 0) and the x-axis 
normal to the surface at P (so that the y- and z-axes are tangent to M2 at P). 
In terms of these co-ordinates the surface will in a neighbourhood of P 
be given by an equation x = f(y, z), with JY = fz = 0 at P. By Definition 
8.1.1 the Gaussian curvature of the surface in that neighbourhood is 

K = det(JYY fyz). (28) 
fzy fzz 

As before, we take S"- 1 = S2 to be the sphere x 2 + y2 + z2 = 1. Thus 
l/J(P) = P, and in a neighbourhood of P the sphere has equation 

x = J 1 - y2 - z2 , 

so that y, z may also be regarded as local co-ordinates about P on the sphere 
S2• In terms of spherical co-ordinates these local co-ordinates on S2 are 
given by y = sin () sin cp, z = cos 8, whence 

d y A dz = (cos cp sin () dcp + sin cp cos () d()) A (-sin () d()) 

= cos cp sin2 () d() A dcp. 

Hence at P, where cp = 0, () = n/2, we have 

dy A dz = d() " dcp = sin () d() dcp = 0.. (29) 

Now let P' be a point near P on the surface M 2 • By §8.3(23) the normal 
to M 2 at P' is 

( 1 -fy -fz ) 
nr= Jl+J;+JI'Jl+J;+JI'Jl+J;+JI' 

so that under the map l/J, P' goes to the point 

CP. z) = (j1 + 1; +!I' jl +-A+ .r;) (30) 

on the sphere (in the co-ordinates y, z on the sphere). Now by (29) and the 
definition of the tensor operation l/1* (see §22.1), we have 

I (ayaz oyez) I l/1*(0.) = --- -- dy A dz. 
p ay az az ay p 

It follows from this and (28) by explicitly calculating the expression 
(oyjoy)(ozjoz) - (oyjoz)(ozjoy), and then settingfx = h = 0 (since we wish 
to evaluate it at P), that l/1*(0.) IP = K dy A dz, where K is the Gaussian 
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curvature of M 2 at P. Now by §7.3(20), the induced metric gii on M 2 is just 
15u at P, so that g = 1 at P. We thus finally arrive at the desired formula 

KJg dy 1\ dz = t/1*(0.2), 

completing the proof (for n = 3 at least). (Note that when n = 2, we have 
Q = d<p, and, since the surface is in this case a curve x 1 = x 1(y), x 2 = x 2(y), 

KJg dy becomes K dl where dl is the element of length.) D 

26.3. The General Stokes Formula. Examples 

As remarked in the preceding subsection (at the end of Example (c')) we can 
extend the definition (26.1.2) of the integral of a form of degree k over a 
k-dimensional surface in an n-dimensional space, to surfaces U which are 
not parametrizable as wholes in the form xi = xi(z1, ... , zk). Since the 
integral as defined is invariant under changes of the spatial co-ordinates 
and also of the co-ordinates on the surface, and since the integral over a 
union of non-overlapping regions is the sum of the integrals over the indi
vidual regions (i.e. the integral is "additive"), we may extend the definition 
appropriately to such surfaces U by subdividing U into several patches each 
of which admits a parametrization, evaluating the integral on each patch, 
and adding the results. 

Before broaching the theme of this subsection we make the further paren
thetical remark that one often wishes to integrate over surfaces which, 
though they may indeed admit global systems of co-ordinates, suffer from 
the defect that such systems have singular points (see Definition 1.2.4). 
For instance, as we saw in §1.2, the polar co-ordinate system r, <p on the plane 
has the singular point r = 0, while in 3-space co-ordinatized by cylindrical 
co-ordinates r, <p, z, all points on the z-axis (r = 0) are singular, as is also the 
case if spherical co-ordinates r, <p, 0 are used (the z-axis being characterized 
by r = 0 (the origin), and() = 0, n (points on the z-axis other than the origin)). 
On a sphere centred at the origin the system of co-ordinates 0, <p has the 
north and south poles(() = 0, n) as singular points. (The sphere is the simplest 
surface which does not admit a global parametrization without singular 
points.) However in all of these examples the set of singular points is "small" 
(in technical terms, "of measure zero"), making no contribution to the 
integral, so that we can ignore them. 

We now turn to "Stokes' formula". From a second course in calculus 
the reader will recall various formulae equating integrals over k-dimensional 
surfaces (or regions of them) in n-dimensional space (n = 2, 3) to related 
integrals over the boundaries of the surfaces (or regions). (The results in 
question go under the following names: for n = 2, k = 2, "Green's formula"; 
for n = 3, k = 3, the "Gauss-Ostrogradskii formula"; and for n = 3, k = 2, 
"Stokes' formula".) We shall now see how these various formulae are sub
sumed in a single "general Stokes formula", couched in the language of 
differential forms. 
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As mentioned before, in view of the additivity of the multiple integral, 
we may in our treatment of integrals restrict the discussion to suitable 
components of the surface over which we are integrating. Set U be a region 
of a k-dimensional space with co-ordinates z1, ... , zk, defined by an inequality 
of the form f(z 1, ... , zk) :::;; C, let r denote its boundary, defined by the 
equationf(z1 , ... , zk) = C, and finally, suppose we have an embedding 

i = 1, ... , n, 

of the region U with its boundary into an n-dimensional Cartesian space 
with co-ordinates x 1, ... , xn. This embedding turns U into a parametrically 
defined surface of dimension k, and its boundary r into a surface of di
mension (k - 1), situated inn-dimensional space. 

Stokes' formula equates the integral over the surface U of the differential 
of a form defined on n-space, with the integral of the form itself over the 
boundary r of U. Before stating the general formula we consider the very 
simplest case of it, namely k = 1. In that case xi = xi(t) (putting z 1 = t) is 
a curve, of which U is a segment defined by a :::;; t :::;; b, with boundary r 
consisting of the two end-points t = a, t = b. In order for the Stokes' formula 
to have the correct interpretation in this case, we need to define a 0-dimension
al surface to be a finite set of points to each of which a positive or negative 
sign is attached in a purely formal way. The integral of a functionf(x) over 
such a 0-dimensional surface is then defined to be simply the sum of the 
values of the function at the points, taken with the corresponding signs 
(cf. Example 26.2(a)); in other words the integral is Li ± .f(P;), where + or 
- is taken according as + or - is assigned toP;. Thus as an 0-dimensional 
surface the boundary r of U consists of the two points a, b where we assign 
- to a and + to b, and the integral off over r is just f(Q) - f(P), where 
P = (x;(a)), Q = (xi(b)). Now the "Fundamental Theorem of Calculus" of 
Newton and Leibniz tells us that 

(31) 

Formula (31) is indeed the simplest case of Stokes' formula, equating as it 
does the integral over the boundary r, with an integral over the region U. 
The general Stokes formula can be regarded simply as a direct generaliza
tion of the formula (31) of Newton and Leibniz to several dimensions, and, 
moreover, in essence reduces to the formula (31 ). 

We now return to the general situation of a region U of a k-dimensional 
surface xi= xi(z 1, ... , zk), where U is defined byf(z1, ... , zk):::;; C, and has 
boundary r given by f(z 1, ... , zk) = C. Suppose that we are given a form of 
degree (k - 1) (i.e. a skew-symmetric tensor of type (0, k - 1)) defined on our 
n-dimensional space with co-ordinates x 1, ... , xn, which is to be integrated 
over the (k - !)-dimensional boundary r of U. 
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26.3.1. Theorem (The General Stokes Formula). For any differential form 

T= 
it< ... < ik-1 

with smooth coefficients T;, ... ik-l (x), and for any bounded region U of a 
smooth surface xi = xi(z1, ••• , zk), where the boundary r of U is piecewise 
smooth and simple (i.e. has no self-intersections), the following formula holds: 

± f T = t dT. (32) 

(The simplest case qfthis.formula, namely k = 1, is given in (31) above.) Here 
the form dT(of degree k) is the gradient or differential of the form T(of degree 
k- 1). 

The various 2- and 3-dimensional cases (i.e. n = 2, 3) of this formula 
(named after Green, Gauss-Ostrogradskii, and Stokes, as we noted earlier) 
are usually given separate proofs in analysis courses. We shall now examine 
these important special cases in detail. 

(i) The planar case (n = 2). Here r is a simple, closed, piecewise smooth 
curve xi = xi(t), xi( a) = xi( b), bounding the region U of the plane. If (7:) is 
a smooth covector field (i.e. form of degree 1) defined on U (and its boundary 
f) then the integral of 7;. around r is defined, and by Stokes' formula (32) 

± f 7: d;~ dt = ff (~~~ _ ~~~) dxt "dxz, 
u 

or, putting x 1 = x, x 2 = y, 

r JJ(oT2 oT1) ± Jr T1 dx + T2 dy = ax - oy dx A dy. (33) 

u 

(It can be shown that the appropriate sign is + provided the curve r is 
traversed by tin the counter-clockwise direction.) This particular case of the 
general Stokes formula is known as "Green's formula". 

We now digress a little in order to show how from Green's formula (33) 
one can obtain the well-known "Residue Theorem" of complex function 
theory. For this purpose we regard our plane with co-ordinates x, y, as the 
complex plane co-ordinatized by z = x + iy. Let.f(z) = f(x, y) = u(x, y) + 
i v(x, y) be a complex-valued function of the complex variable z. The integral 
off around r may be defined by 

ff(z) dz = f<u + iv)(dx + i dy) = f (u dx- v dy) +if (v dx + u dy). 

Applying Green's formula (33), we obtain (assuming .f smooth on U) 

ff(z) dz = JJ(~~ + ~:) dx A dy + i JJ(~~- ~~) dx A dy. 
u u 
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From this we conclude that if the functions u, v are smooth on U (including the 
boundary r), i.e. ifjis smooth on U, and if they satisfy the Cauchy-Riemann 
equations (see §12.1(15)) 

au 
ay 

ov 
ax' 

uv ou 
oy ax' 

then the formf(z) dz has zero integral around r (i.e. satisfies the conclusion 
of Cauchy's Integral Theorem). It follows in particular that for any non
negative integer n, and any simple closed path r, we have ~r z" dz = 0; for 
negative integers n the same is true provided only that 0 does not lie in the 
interior of r, while in the contrary case the integral is independent of r 
provided that it is specified in which direction (counter-clockwise, say) r is 
to be traversed in evaluating the integral. Thus to calculate the integral 
around such closed paths r we may choose at our convenience any particular 
one. Taking therefore the unit circle z(t) = ei', 0 :::;; t :::;; 2n, as our simple 
closed path, after a simple calculation we obtain 

z" dz = f {0, 

r 2ni, 

if n #- - 1, 

if n = - 1, 
(34) 

for any simple, closed path r enclosing the origin. From this we can now 
easily deduce the important" Residue Theorem". Supposef(z) is rep-resented 
by a power series on its region of convergence. 

00 

f(z) = I cn(z - at. 
n=- oo 

Then if r is any simple closed path enclosing the point a and lying in the 
interior of the region of convergence of the series (where the series converges 
uniformly and so can be integrated term-by-term), it follows from (34) that 

~rf(z)dz = 2nic_ 1 , 

(35) 

These formulae for the "residues" of the left-hand side integrals are useful 
for computing the coefficients of the Taylor series (the case en = 0 for all 
n < 0), or Laurent series of an analytic function f(z), and, conversely, 
knowledge of the coefficients in the series allows calculation of the integrals. 

We now turn to the two 3-dimensional cases (n = 3). As usual we let 
x 1, x 2 , x 3 be co-ordinates on the underlying space. 
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(ii) The three-dimensional case with k = 3. Here U is a bounded region 
of 3-space and r its boundary. By the general Stokes formula (32) we have 

± sr~j Tijdxi 1\ dxj = fffCa;32 + aa:213- aa;z3) dxl 1\ dx2 1\ dx3. 

r u 

We shall now assume that x 1, x 2 , x 3 are Euclidean co-ordinates. Then by 
Theorem 26.2.1 

Jfi~j Tij dxi 1\ dxj = JJ (T, n) j[gJ dz 1 1\ dz2, (36) 

r r 

where Tis the vector defined by T 1 = T23 , T 2 = - T13 , T 3 = T12 , n is the 
unit normal to the surface r at each point, z1, z2 are co-ordinates on r, and 
g = det(g;) where gij is the induced metric on r. Since 

we finally obtain (putting da = j[gJ dz 1 1\ dz2, the element of area on r) 

r r u (37) 

which is the well-known "Gauss-Ostrogradskii formula" in 3-dimensional 
Euclidean space. 

(iii) The three-dimensional case with k = 2. Here U is a region on the 
surface xi = xi(z 1, z2), i = 1, 2, 3, and r is its boundary. Thus in this case 
the general Stokes formula (32) becomes 

± fr 4 dx" = ff[ (~~~ - ~~~) dx 1 1\ dx 2 

u 

3 (oT3 oTz) 2 3] 
1\ dx + OX2 - ox3 dx 1\ dx . 

(38) 

When the underlying space is Euclidean with Euclidean co-ordinates 
x 1, x2 , x3 , then (as already noted on more than one occasion) the distinction 
between covectors and vectors disappears (provided we restrict the co
ordinate changes to being Euclidean isometries), and there is a one-to-one 
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correspondence between tensors (7;) and vectors T = (T;) (see e.g. (ii) 
above). Taking this (and 26.2.1) into account in (38) we arrive at the following 
Euclidean version of that formula ("Stokes' formula"): 

PrJ: dxa = JJ ( curl T, n)Jjgj dz 1 1\ dz 2 . (39) 

u 

Here curl Tis, as usual, the vector corresponding to the skew-symmetric 
tensor Sap = oTp/oxa - oJ:/oxP, i.e. 

We have thus seen that in the three cases (i), (ii), (iii) the general Stokes 
formula (32) reduces (with the aid of Theorem 26.2.1) to staple formulae 
from a second course in calculus. (We may therefore consider the general 
Stokes formula as proved for n = 2, 3, by simply appealing to those known 
formulae.) 

In conclusion we mention that for the general Stokes formula to hold it is 
not essential that the boundary r consist of a single connected component. 
If r consists of several connected pieces (as for instance in Figure 31), then 
the integral over the whole of r is the sum of the integrals over the separate 
components, each such integral being taken with the correct sign ( ±) 
prefixed. In connexion with choosing the correct signs for these integrals, we 
mention only that in the case of the integral J.fr <T. n) JfYI dz 1 1\ dz2 , the 
signs to be prefixed are determined by the direction of the normals n to the 
components of r (or, as they say, the" orientation" of the boundary compon
ents is taken to be that induced by the "orientation" of U--see §26.4 for an 
explanation of this). 

We turn now to an important application of the general Stokes formula 
to electromagnetic field theory. As usual, the underlying space will be 4-

r 
Figure 31 
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dimensional Minkowski space with co-ordinates x0 = ct, x 1, x 2, x 3 (where c 
is the speed of light and t the time), with metric 

-1 _} -1 

and we shall denote the electromagnetic field tensor by F ik = - F ki, i, k = 
0, 1, 2, 3. We wish now to examine the behaviour of this tensor under co
ordinate transformations which do not change the time co-ordinate x0 = ct, 
i.e. under under transformations of the form 

In §21.1 we defined, in terms of the tensor Fik• the electric field covector 
Ea = F oa., r:x = 1, 2, 3, and the magnetic field tensor H a.fJ = - H fJa = F a.fJ, 
r:x, {3, = 1, 2, 3. Since the co-ordinates x 1, x 2, x 3 for fixed x 0 are (essentially) 
Euclidean, the magnetic field tensor may be regarded (as it was in §21.1) as 
a vector field H" defined (in the usual way) by 

Recall from Example 25.2.5(d) that in the differential form notation the first 
pair of Maxwell's equations may be written as 

d(Fii dxi A dxi) = 0, 

which in classical notation, in terms of the electric and magnetic fields, 
comes down to the following pair of equations (see (19) and (20) of §25.2): 

a Hi 
divH = -. = 0 ox' ' 

1au 
curl E + -- = 0. 

c at (40) 

From the first of these equations and the Gauss-Ostrogradskii formula 
(37) we obtain 

JJJ div H dx 1 A dx 2 A dx 3 = JJ <H, n) da = 0, 

u r 

where r is the boundary of a region U in 3-space. This result is usually 
stated in words as follows: The flux of a magnetic field through a closed 
surface is always zero. 

From the second equation in (40) and Stokes' formula (39), which with 
T= E becomes 

JJ <curl E, n) da = fr Ea. dx", 

u 
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where r is the boundary of a region U of a (2-dimensional) surface, we 
obtain 

This classical formula can be stated in words as follows: The time rate of 
change of the flux of a magnetic field through a surface is equal to the circulation 
of the electric field around the boundary of the surface. 

The second pair of Maxwell's equations has the form (cf. §25.2(21)) 

I oF~_! oF0 i = 4n j<4 li' 

k= 1 ox c ot c 
(41) 

wherej(4) = (cp,jbjz,j3), p being the charge density, and j = ul,j2,h) the 
3-dimensional current vector. In 3-dimensional form (41) becomes the pair 
of equations (see (22), (23) of §25.2) 

divE= 4np, 
1 oE 4n. 

curl H + -- = - J. 
c ot c 

The first of these and the Gauss-Ostrogradskii formula (37) give 

u r 

(42) 

or, in words: The flux of an electric field through the boundary of a region of 
space is equal to 4n times the total charge contained in the region. 

From the second of the equations (42) and Stokes' formula (39) we obtain 

which can be read as follows: The net current through a surface less the time 
rate of change of the flux of the electric field through the surface equals the 
circulation of the magnetic field around the boundary of the surface. 

Thus by means of the general Stokes formula, the geometric content of 
Maxwell's equations is made evident. 

We end this section by repeating the significant fact that in the first pair 
of Maxwell's equations the metric is not involved in any way, while the second 
pair cannot be formulated without it. (This is most easily perceived when 
Maxwell's equations are written in the notation of differential forms-see 
(18) and (21) of §25.2.) 
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26.4. Proof of the General Stokes Formula for the Cube 

In the preceding subsection we showed that the classical integral formulae 
of Green, Gauss-Ostrogradskii, and Stokes, are special cases of the general 
Stokes formula (32). In the present subsection we shall prove the general 
Stokes formula for arbitrary k and n (k ~ n) indeed, but assuming U to be 
rather a special surface, namely a k-dimensional cube. (Though special, this 
case is nonetheless germane to the proof of the general formula.) 

A singular cube a in IR" is defined to be a smooth map a: Jk-+ IR", where 
Jk is the k-dimensional Cartesian cube 

Jk = {(xl , ... ,xk)IO ~ xa ~ 1}. 

For each rx, the equations xa = 0, xa = I define two (k - I)-dimensional 
faces of I\ denoted by I;, I: respectively (see Figure 32). We denote by 
o]k the boundary of the cube: 

oik = U Ua+ u Ia-). 
a 

Before we state the general Stokes formula for the cube in IR", we indicate 
briefly how the sign ( ±) is determined in (32), at least in the present simple 
situation. We say that two (ordered) bases for a finite-dimensional vector 
space V define the same orientation of V if the determinant of the matrix 
transforming one to the other is positive. An orientation of the cube Ik is then 
understood to be defined, if at each (non-singular) point x of the cube an 
orientation f.lx of the tangent space to Jk at x is given in such a way that the 
(representative) frame f.lx varies continuously as x varies over Ik. (For Ik 
we can take the standard basis {e 1, ••• , ed as defining fJ.x for all x.) The 
induced orientation on the boundary oik is then defined as follows. Let n(x) 
denote the unit outward normal to the cube at x E oik. Then the tangent 
space to aik at xis given that orientation {v~> ... , vk - d such that 

{n(x), V1, ... , vk- d 
is f.lx , the given orientation of Ik , i.e. such that the matrix of the change from 
{ e 1, • .• , ed to { n(x ), v ~> ... , vk _ 1 } has positive determinant. (Thus in the 
2-dimensional case depicted in Figure 32, the induced orientation of the 
boundary is the counter-clockwise one, so that for calculating the integral 
the boundary is to be parametrized so that it is traversed in the counter
clockwise direction as the parameter increases. The reader may like to ponder 

" 

.',: Ik .' 
. . . . . ~~ .. - --~ ... 
~:\:-:··:::·: ·: ... ·~ .... 
0 1 ~a 

Figure 32 
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the question of how in higher dimensions the appropriate parametrization 
of the boundary is determined by the induced orientation.) 

Having adumbrated the concept of orientation, we now state the theorem. 

26.4.1. Theorem. Let <pk-l be a (k - 1){orm in !R", and let a: Jk--+ IR" be 
a singular cube in !R". Then 

r <pk-1 _ r d<pk-1 
Ja(iJik) - Ja(lk) ' 

where d<pk-l is the differential of <pk- \ and where the orientation on the 
boundary oJk is taken to be that induced by the standard orientation of the 
cube Jk. 

PROOF. We first remind the reader that of course the left-hand side integral 
(over a(oJk)) is just the sum of the integrals over the faces of the cube. 

Write w = a*(<p), the restriction of <p = <pk-l to Jk (see §22.1 for the 
definition of the restriction (or pullback) operation). One can show, much as 
in paragraph (i) immediately following Definition 26.1.2, that 

r d<p = r a*(d<p), r <p = r a*(<p). 
J a(lk) J [k J a(iJik) J 8Jk 

From this and the fact that dw = d(a*(<p)) = a*(d<p) (which can be verified 
directly from the definitions of the operations d and a*), we see that it 
suffices to show that 

Lk w = ik dw. 

We now write the (k - 1)-form w defined on Jk explicitly as 

w = a2 (X 1, ... , xk) dx1 A · · · A ;&a A · · · A dx\ 

where the hat over the symbol dxa indicates that it does not appear, and where 
the functions aa(x\ ... , xk) are smooth. (As always we assume tacitly 
enough continuity and differentiability to make the proof work.) Then by 
§25.2(7) 

d ~ Oaad" d I d/'-/1. d k ~( 1)"-1 Oa"dk W = i..-- X A X A · · • A X A · · · A X = i..- - - X, 

"~ " ~ 
where dkx = dx1 A · · · A dxk. Now there is a well-known theorem of analy
sis to the effectthat any smooth function a(x\ ... , xk) on a closed and bounded 
region of [Rk can be uniformly approximated by linear combinations of 
products TI:= 1 bq(xq) of smooth functions of one variable. Taking this 
result as given, it is easy to see that we may without loss of generality assume 
that the functions aa(x\ ... , xk) have the form 

k 

aa(x\ ... , xk) = fl b~(xq). 
q=l 
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This assumed, we now calculate the integral J1k dw explicitly (using the well 
known equivalence of multiple and iterated integrals): 

=If ···f ···f ((-l)a-1ba(x1)···b~-1(xa-1)b~+1(x"+1) 
a (x') (x•) (x") 

bk( k) [< l)a- 1 f ab~(xa) d "] d 1 /'---/ a d k ... aX - --aa X X 1\···1\iX /\···/\X 
(x•) X 

=If ... f_ ... f (b;(x1) ... h~(xa) ... b~(xk) 
a (x') (x") (xk) 

x [b~(l) - b~(O)]) dx 1 1\ · · · 1\ ;ha 1\ · · · 1\ dxk 

=If ... f ... f (b;(x1) ... b~(J) ... b~(xk) 
a (x') (x•) (xk) 

/'---
- b;(x 1) · · · b~(O) · · · b~(xk)) dx 1 1\ • • • 1\ dx" 1\ · · · 1\ dxk 

=If ···f ···f (aa{x 1, ... ,xk)lx•=1 
a (x') (x•) (xk) 

- aa(x1, ... ,xk)lx•=odx1 1\ ... 1\ ;&a 1\ ... 1\ dxk = f w. 
CJk 

This completes the proof of the theorem. D 

26.5. Exercises 

1. Calculate the volumes of the groups S0(3. IR) and SU(2) endowed with a Killing 
metric as in ~24.4. 

2. Let Xi be a vector field in Minkowski space IR i. We define the integral of this vector 
field over a 3-dimensional hypersurface (i.e. the "flux" of the vector field through the 
hypersurface) as the integral of the 3-form Xi dSi, where 

dSi = iJIYI <;ikli dxi 1\ dxk 1\ dx1 

(sikli being as defined in ~18.2). From the general Stokes formula deduce the following 
equality: 

J . J axi 
X' dSi = ~i dV. 

DV vOX 
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3. Let U be a bounded region with smooth boundary in an n-dimensional space with 
metric %• and let Q~ be the space of all smooth p-forms on that space, which vanish 

outside U. Define a scalar product on the space Q~ by 

(w1, w2 ) = fuw 1 A* w2 

for every pair of p-forms w~> w 2 in Q~. 

(i) Show that the space Q~ with this scalar product is Euclidean (cf. Exercise 2 in 
§19). 

(ii) The operator * is orthogonal: 

(* W 1, * W 2 ) = (Wb W 2). 

(iii) The operators b( =( -l)"P+n+ 1 * d *)and dare "conjugate", i.e. 

(dw~> w2 ) = (w 1, c'iw2 ). 

(iv) The square of the operator c5 is zero: bb = 0. 

(v) Write d =db + bd. Show that the operator don the space Q~ is self-conjugate: 
(dw1 , w2 ) = (w 1, dw2 ). Verify the following commutativity relations: 

dd = dd, db=M, d *=*d. 

§27. Differential Forms on Complex Spaces 

27 .1. The Operators d' and d" 

Let D be a region of the complex space C" with complex co-ordinates 
z1, .. z". We shall denote by DIFI!. the "realization" of the region D, with 
co-ordinates x 1, ... , x", y1, ... , y", where 

zk = xk + iy\ k = 1, ... , n. (1) 

The tangent space at each point of DIFI!. may be identified (see §18.1) with the 
space of operators (on functions DIFI!. ~ IR) with basis 

a a a a 
ox 1 ' ... 'ox", ay~' · · ·' ay" · 

We shall consider complex tangent vectors, i.e. linear combinations 

n a n a 
2: ak~+ 2: bk~· 

k=l uX k=l uy 
(2) 

where the a\ bk are allowed to be complex. It will be convenient to introduce 
a complex basis a;azk, a;azk for this space, defined by (cf. §12.1(6)): 

-=- ~-i-a 1(a a) 
azk 2 axk ol ' k = 1, ... , n. (3) 
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For maximum clarity in the formulae of this section, we shall use the 
following notational convention. The index (on a tensor) corresponding to 
a "barred" co-ordinate z1 say, will itself be written with a bar over it, i.e. as 
l, unless the bar already appears in the symbol involving l (as it does in z1). 

Thus in an expression like akizkz1 (as in many of the formulae to follow) it is 
understood that summation takes place over both indices. 

Thus in terms of the basis (3) an arbitrary complex vector (in the tangent 
space at a point of D can be written as 

(4) 

It is straightforward to check that ( is real (i.e. ( is a linear combination of 
the operators ajaxk, a;al with real coefficients) precisely if f!' = (;;. The 
1-forms (or covectors) 

k = 1, ... , n, (5) 

form the dual basis to the basis (3). (To see this observe that for each 
k = 1, ... , n the values of the 1-forms dz\ dzk on a vector ( at a point of D 
are just (\ (;; respectively; thus dzk and dzk may be regarded as functionals 
projecting each vector ( onto the corresponding components, i.e. they are 
elements of the dual basis.) 

Any complex k-form w, 1 :::;; k :::;; 2n, may be written as a linear combina
tion of the forms dz;' 1\ ... 1\ dzip 1\ dzit 1\ ... 1\ dzi•(p + q = k) over the 
complex numbers. Thus 

w = wk,o + wk-1,1 + · · · + Wo,k> (6) 

where (cf. end of §18.2, where wp,q is written T(p,ql) 

w = - 1- L T . c c dz;' 1\ ... A dzip A dzit A · · · 1\ dziq. (7) 
p.q p!q! i;, .... i" lt ... lp]l .. ·}q 

}I' ... , }q 

Here the components~ .... ip], ... ]q are skew-symmetric in the indices i 1 , ... , iP 
and j 1, ... , ]q separately. We call the form wp, q a form of type (p, q). The 
decomposition ( 6) of w is independent of the complex co-ordinates on D; 
i.e. in terms of new co-ordinates w 1, ... , wn, which are complex analytic 
functions of z 1, ... , zn, the same tensors wp.q will occur as summands in 
(6) (though expressed in terms of the new co-ordinates). This is clear from 
the fact the dwi are linear combinations of the forms dz 1 , ... , dzn, while the 
dwi are linear combinations of the forms dz 1 , •.• , dzn. 

27.1.1. Lemma. The differential operator d on complex .forms w can be 
uniquely written as 

d = d' + d", (8) 
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where d'wp.q has type (p + 1, q) and d"wp,q has type (p, q + 1). The operators 
d', d" are invariant with respect to complex analytic co-ordinate changes. 

PROOF. For the form wp,q as written in (7), we have 

1 ar . , , . . . . . 
dw = -- ' '' .... p]! ... 1• dz' 1\ dz'' 1\ ... 1\ dz'P 1\ dz1' 1\ · · · 1\ dz1• 

p.q I I .. L. . oz' p.q .•. _.,, .. .,_.p 
j,' .... jq 

(-1)P 
+-~~~ I 

p .q • ~~~ . .,II' 
),}I· .. ., ./q (9) 

Denote the first summand in (9) by d' wp,q and the second by d" wp,q. The 
uniqueness of the decomposition (6) (as applied to both wp,q and w) implies 
that the operators d' and d" are well-defined and that the decomposition 
(8) is unique. By the invariance of the summands in (6) (again as applied 
to both wp,q and w) the definition of d' and d" is consistent with respect to 
complex analytic co-ordinate changes. 0 

27.1.2. Corollary. The squares of the operators d', d" are zero: 

(d'? = (d? = 0; (10) 

and they satisfy the "anti-commutativity" relation: 

d" d' = - d' d". (11) 

PROOF. From d2 = 0 (Theorem 25.2.2) and d = d' + d" it follows that 

0 = cflwp,q = (d') 2 wp.q + (d"?wp.q + (d'd"wp,q + d"d'wp,q). 

Since the first term (d') 2wp,q has type (p + 2, q), the second (d") 2 wp,q has 
type (p, q + 2), and the third has type (p + 1, q + 1 ), it follows that all three 
forms are zero, whence (10) and (11). 0 

27.1.3. Definition. A form w of type (p, 0) is called holomorphic if 

d"w = 0. (12) 

27.1.4. Example. A form w of type (0, 0) is a complex-valued function 
.f(z 1, ... , z", 21, ... , z"). In this case the condition d'f = 0 is just the condition 
that f be complex analytic: 

ar _ 
azi = o, i = 1, ... , n. 

It is clear that in the general case, a form w of type (p, 0) is holomorphic 
precisely if its coefficients are complex analytic functions. 
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27.2. Kahlerian Metrics. The Curvature Form 

An Hermitian metric on a region D of complex n-space with co-ordinates 
z 1, ... , zn, is given (in terms of these co-ordinates) by a family of functions 
g1;. with the following three properties (cf. the definition in §11.2): 

(i) gjk = gk]; 

(ii) under co-ordinate changes zi = zi(z 1 ', ... , zn') which are complex 
analytic (i.e. azij(J"?.k' = 0) we have 

gj'k' = gjk ~:; G::} 
(iii) the form g1;; ~J~k is positive definite. (Note that by (i) it is real-valued.) 

The complex scalar product of a pair of complex vectors (~k), (1l) is 
defined in terms of the Hermitian metric g Jk by: 

<~. 11>c = gjk~V. (13) 

By virtue of (ii) it follows that this inner product is independent of the par
ticular co-ordinate system in which it is calculated, i.e. is the same for all 
co-ordinate systems (obtainable from zl, ... , zn by means of analytic co
ordinate changes). As in the particular case considered in §11.2, so also in the 
present general case does the complex scalar product (13) define a Rieman
nian metric ( , )Q;ll on the realized region DQ;ll, given by 

(~,1'/)Q;~~ = Re(~,IJ)c. 

Clearly the scalar product (13) has the Hermitian property 

(~.1'/)c = (ry, Oc, 

so that the expression 

(14) 

is real and skew-symmetric in ~ and ry, and therefore by the co-ordinate
independence of the scalar product, yields a (real) differential form n of 
degree 2 on DQ;ll, namely 

i . k n = 2 gjk dz1 1\ dz . (15) 

(Note that if we write 0" = (i/2) gJfi• then 0" = T,J, so that in the co
ordinates x\ /, the form Q is real.) Clearly Q is of type (1,1) (see the pre
ceding subsection). 

27.2.1. Definition. An Hermitian metric gil< on a region D of ten is said to be 
Kiihlerian if the form Q defined by (15) is "closed", i.e. dQ = 0. 
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We shall elucidate the geometrical meaning of this condition on a Herm
itian metric in §29.4. 

27.2.2. Example. Suppose that Dis a region of a (real) 2-dimensional surface 
endowed with a metric, and let x, y be conformal co-ordinates on the surface 
(see Theorem 13.1.1), so that in terms of these co-ordinates the metric has 
the form 

ds2 = g dz dz. 

In this case the form Q is given by 

Q = ~ Jg (dx + i dy) A (dx - i dy) = Jg dx A dy, 

i.e. Q is the element of area on the surface. The metric is certainly Kiihlerian 
since the degree of Q is the same as the dimension of the space on which it 
is defined (namely 2). 

27.2.3. Lemma. Let gpi be a Hermitian metric on a region D ofC". Define 

1 
w = -: d" d' In g. 

l 

where d', d" are as in 27.1.1, and g = det(gili). Then w is a.form of type (1, 1). 

PRooF. By d'.f(zl, ... , z", zl, ... , z") we mean (ofjoz;) dz;, and by d''.f we 
mean (o.fjozi) dzi. The only thing to verify is that the definition of w is con
sistent, i.e. is independent of the choice of complex co-ordinates. Thus let 

ozi 
awk = o, (16) 

be a complex analytic change of co-ordinates, and write J = det(ozijowk). 
Let g denote the determinant of the Hermitian metric in the new co-ordinates 
w1 , ... , w". From (ii) above it follows easily that 

g =Jig. 
Hence 

~ng=~~J+~~J+~~g=~~J+~~~ 

since d' In J = 0 by the analyticity of the function J. Applying d" we then 
obtain 

d" d' In g = d" d' In J + d" d' In g = - d' d" In J + d" d' In g = d" d' In g, 

where we have used d' d" = -d" d' (see Corollary 27.1.2), and the fact that 
d" J = 0, which again is immediate from the analyticity of J. This completes 
~~~ D 
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In the context of the above example (27.2.2) of a 2-dimensional real 
surface, the form w is related to the Gaussian curvature as follows. 

27.2.4. Theorem. On a region of a real 2-dimensional surface with a metric 
given in terms of conformal co-ordinates by ds 2 = g dz dz, the form w = 
(1/i) d" d' In g is given by 

w = - KQ., (17) 

where K is the Gaussian curvature of the surface, and Q. = (i/2) g dz 1\ dz is 
the element of area. 

PROOF. It is immediate that 

02 
d' d" In g = ~In g dz 1\ dz. 

cz uz 

By Theorem 13.1.3 the Gaussian curvature is given in terms of conformal 
co-ordinates by K = - (2/g) [(o 2 In q)/oz oZ], whence the desired equality 
(17). 0 

§28. Covariant Differentiation 

28.1. Euclidean Connexions 

In §25 we introduced the operation d of taking the differential or gradient of 
a skew-symmetric tensor (field) T = (7;, ... i.): 

k+ 1 oT ~ . 
(dT)· . = '\' (-l)q+l "···'•···'•+• 

lJ ••• lk+l ~ ~xi• 
q=l u 

(1) 

where the hat indicates an omitted symbol. In particular for k = 1 this 
becomes 

ar oT 
(dT)ij = ox: - ox;. (2) 

We indicated there that dTis indeed a skew-symmetric tensor, of rank one 
greater than that of the original tensor T. (This we proved rigorously for 
k = 0, 1 only.) It was also made apparent that the operation d is the only 
differential operation independent of whatever geometrical structure the 
underlying space may possess, in the sense that all other known such tensor 
operations involving differentiation may be defined in terms of d and the 
purely algebraic tensor operations (permutation of indices, addition, multi
plication, taking the trace, etc.). We shall now introduce another sort of 
differentiation depending (as we shall ultimately see) on some additional 
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structure on the space. Suppose to begin with that we attempt a more direct 
generalization of the concept of the gradient of a function to arbitrary tensors 
Ti-1 •• · ip by defining 

}1 .•• )q' 

. . ari_l ... ip 
T'.•··· 'P. = }1 ···Jq 

}1 ••. }q;k oxk (3) 

The result turns out not to behave like a tensor under arbitrary co-ordinate 
transformations. However since this operation is encountered rather fre
quently, we shall delineate a class of co-ordinate changes under which the 
components (3) do transform like the components of a tensor. 

28.1.1. Theorem. If" Tj~ ·.·.·-~ is a tensor .field on a space with co-ordinates 
X 1, •.. , Xn, then the quantitieS 

. . tJTi' ... ip 
T'.'···'P = _l1···Jq 

}1 •.. jq;k oxk 

transform like the components of" a tensor of" type (p, q + I) under all linear 
co-ordinate changes 

xi=ajz< i,j=l, ... ,n, (4) 

i const zi = bixi bi aj ,;i a j = ., j ' j k = uk. 

PROOF. From (4) we have 

tJxi . 
-0 . = aj = const., 

zl 

azxi 
c)zi(Jzk = 0, 

From the transformation rule for tensors we have 

where (i) = (i 1 · · · ip), (k) = (k 1 • • • kp), (j) = (j 1 • · ·jq), (1) = (/ 1 · · ·lq). Since 
the aj and b{ are constants, on differentiating (5) with respect to z' we obtain 

:1y-<k) ar<•l ar<i) a ' 
-(k) _ _ u _(_!) = __jj)_ b(k) (j) _ (j) X b(k) (j) _ yUl s Ulb(k) 
TuJ;' - t!z' oz' <•la<n - c!x' oz' Ula<n - Ul; ,a,aul <il. (6) 

Since this is the transformation rule for such co-ordinate transformations 
(compare (6) with (5)), the theorem is proved. 0 

Note that in this proof the fact that o2xijozj ozk = 0 was crucial. Let us 
consider for instance tensors of type (0, I) or ( 1, 0): 

ari . 
- T' ~- ·k· ux . 
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We know from the above theorem that these quantities transform like the 
components of tensors under linear co-ordinate changes. How do they trans
form under more general co-ordinate changes xi = x;(z 1, ... , zn), i = 1, ... , n, 
where a2x;jazk azi may not be identically zero? The answer is obtained by 
calculating: 

- a f:. a ( ax;) aT ax; a2x; 
1);q = az: = azq T; azi = az: ~]zi + T; azq azi 

aT axP axi a2 xi axP axi a2xi 
=ax~ azq azi + T; Dzq Dzi = T;;p azq ozi + T; ozq ozF 

Here the symbols f; denote the components of the tensor T in the co
ordinates z 1, ... , zn, while the T; are the components in the co-ordinates 
x 1, ... , xn. Thus the general transformation rule for the quantities T;; P is 

0 fj - UXP OXi 02Xi 
-= T =T --+T--ozq j; q t; p azq (Jzi ! ozq (Jzi" (7) 

The term T; (o 2x;/Dzq ozi) is not a tensor. The skew-symmetric part of (7) is, 
however, a tensor since it is just the differential (or gradient) of T(see §25.1): 

- - - OXP OXi OXP OXi 
(dT)iq = ~;i- 1};q = (Tp;; - T;;p) ozq azi = (dT);p ozq ozi. 

On the other hand the symmetric part of T;; P has as its transformation rule 

and therefore clearly does not behave like a tensor with respect to arbitrary 
co-ordinate changes. 

Similarly, for a tensor T; of type (1, 0) we have: 

(8) 

From this we see that the r: P are in general not the components of a tensor 
(on account of the term T;(o 2zijox; oxq)(oxqjoz1) in (8)). Putting I= j in (8) 
(and summing) we obtain 

-· c]fi oTi oxP oz1 . cJ 2 zi oxq 
Tl. =- = - --. + T'-.----. 

;j Dzi oxP oz1 Dx' ox' axq oz1 

. . o2 zi oxq . . axq o2 zi 
= rp6f+ r-.--. = T;+ r-.~a .8 . · Dx' oxq Dz1 • oz1 x' xq 

(9) 
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Remark. As we have mentioned before (see the second remark in §25.1), 
in contexts where the co-ordinates x 1, .•. , xn are Euclidean, the quantity 
fJT;jox; = r;; is called the divergence of the vector field (T;). As is evident 
from (9), r;; is not a scalar (i.e a tensor of type (0, 0)) under non-linear 
co-ordinate changes (but by Theorem 28.1.1 does behave like a scalar under 
linear transformations ofthe co-ordinates). The significance of the divergence 
may be explained as follows: Under a small displacement of the points of 
the underlying space: 

the Euclidean volume element dx 1 1\ · • · 1\ dxn is (up to second-order quanti
ties in the partial derivatives of the T;) altered by the amount 
r;; dx 1 1\ • • · 1\ dxn (cf. §22.2). This follows from Theorem 18.2.3. 

We now return to our "generalized gradient" 

. . (Jyi_, ... ip 
T'·' ···'.v = Jt ···J• 

11 ···Jq;k fJxk (10) 

In view of Theorem 28.1.1 and the discussion following it, it is reasonable 
to agree to henceforth apply this operation only when the co-ordinates 
x1 , ..• , xn are either Euclidean or obtainable from Euclidean co-ordinates 
z1, ... , zn by means of a linear transformation 

a~= const. 

We saw above (in the case of tensors of types (0, 1) and (1, 0)) that if we apply 
the operation as defined by (10) in a co-ordinate system which is not linearly 
related to the system x 1, .•. , xn, we obtain quantities T'f.':::l';, related to the rm; s by a transformation law which is not tensorial. 

Let us now take a different view of the situation. Why should we expect 
that the operation of taking our new "generalized gradient" be defined by a 
single formula which works uniformly in all co-ordinate systems? We might 
take a different tack, and admit instead the following possibilities: 

(i) the operation is intimately linked to Euclidean geometry; 
(ii) it assumes the simple form (10) only in Euclidean co-ordinate systems 

(and their linear transforms); 
(iii) the operation is nonetheless a tensor operation (necessarily defined 

differently from (10) in co-ordinates not linearly related to Euclidean 
co-ordinates). 

What are the consequences of these assumptions? What formula is to be 
used in applying the operation in terms of co-ordinates not linearly related 
to Euclidean co-ordinates? To answer these questions we must first calculate, 
in terms of Euclidean co-ordinates x 1, ... , xn, the effect of our operation 
on a tensor T, and then apply the transformation rule for tensors to the re
sulting expression to see what form our hypothetical tensor should take in a 
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different system of co-ordinates z1, .•• , z" (where xi = x;(z 1, ••• , z")). This 
we shall now do. We rewrite (10) briefly as 

::1 (i) 
(i) _ uTu> 

Tu>; • - ox• ' 

Since we are now regarding 1t});s as a fully-fledged tensor, it follows that 

::lxU> :'lz<k> ::lx• 
-(k) - (i) u u u 
T<o;' - Tu>; • oz<ll ox<il oz'' (11) 

where 

ox<i> oxil oxi• oz<kl 0Zk1 ozkp 
oz<ll = oz11 ••• oz1• ' ox<i) = oxh . .. oxip. 

We now seek the operation which yields the components T~f/;q from the 
components fl~/; i.e. the appropriate analogue of(lO) in the new co-ordinates 
z1, •.. , z". 

Again for simplicity we consider first the cases of a vector field (T;) and a 
covector field (7;). From (11) we have 

-k - i ozk ox• 
T.q- T.s-;---'-;-q, 

' · ux'uz 
- oxi ox• 
7;., = TJ··s -;-z -;--- · ' · uz uz' 

Since r; s = oT;jox•, it follows from (12) that 

-k oT; ox• ozk oT; ozk 
T =---=--;q ox• ozq oxi ozq oxi . 

(12) 

(13) 

Since (T;) is a vector, we have that fk = T;(ozk/ox;). Hence from (13) we 
obtain 

(14) 

If we write 

(15) 

then (14) becomes 

(16) 
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We have thus proved the following 

28.1.2. Theorem. Let (Ti) be a vector field, and let (T\) be a tensor (with 
respect to arbitrary co-ordinate changes) given in terms of Euclidean co
ordinates X 1, ... , Xn by theformu[a 

. aTi 
T'-;k - uxk. 

Then in terms of arbitrary co-ordinates z1, ... , zn the transformed components 
f\ are given by theformula 

where the coefficients r~, are defined as in ( 15). 

We now calculate in the same manner the formula for the components 
f;;, in terms of a given covector field (T;), on the assumption that (T,; ,) 
transforms tensorially under arbitrary co-ordinate changes: 

f: = T axJ oxs =_rJ~ axs axJ =a~ axJ 
l; r ]; s oz1 oz' axs oz' az1 oz' oz1 

where, as before, n, = -(oxJjoz1)(ox'jaz')(a2zkjoxJ Dx'). We again formulate 
this result as a theorem. 

28.1.3. Theorem. Let (T;) be a covector field, and let (T;; k) be a tensor (with 
respect to arbitrary co-ordinate changes) given in terms of Euclidean co
ordinates X 1, ... , Xn by theformu[a 

aT 
r;.k =~a~-. X 

Then in terms of arbitrary co-ordinates z 1, ..• , z" the transformed components 
f;;k are given by 

- af; r -T; k = ~k - rik I;., . az 
(17) 

where the coefficients rrk are the same as in the preceding theorem, i.e. are as 
in (15). 
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Thus, to summarize, in insisting that our" generalized gradient" transform 
tensorially under arbitrary co-ordinate changes x = x(z), we are led to the 
following two (different) formulae for (the "generalized gradients" of) 
covectors and vectors respectively: 

_ afj _ 
T;;k = iJxk- rrk T,.; 

where the coefficients r~k are the same in both formulae. 
We shall forego the calculation of the analogue of the formulae (16) and 

(17) for the general case of a tensor of type (p, q), and simply state the result 
without proof. 

28.1.4. Theorem. Let Tl)l be the components of a tensor of type (p, q), and let 
(Tl'l>;k) be a tensor (with respect to arbitrary co-ordinate changes) given in 
terms of Euclidean co-ordinates x\ ... , xn by the formula 

:1 0 
'Tfi) _ uT(~) 
1 (j);k- oxk . 

Then in terms of arbitrary co-ordinates z 1, ••. , zn the transformed components 
T[f/; r are given by the formula 

af<k> p q 
T-<k> __ <_l> + "'fk, ... (k.-i) ... kpr~· _ "'fk, ... kp . ri (18) 

(l);r- :1Xr L... l 1 ••• lq <r L... l, ... (l.-•) ... lq lsn 
U s=1 s=l 

where the .family offunctions [fq are defined by (15) (and where the notation 
k 1 • • • (k,-+ i) · · · kP indicates that in the p-tuple k 1 • • • kP the symbol k, is to be 
replaced by i. 

For second-rank tensors the formula (18) becomes: 

-· at~ _ . -· 
T);k = axk + T)f~k - T~f)k, 

T-ii - ofii T-Pi[i T-;P[i 
; k - axk + pk + pk. 

Note that the notation T[1>;k> (i) = (i 1 • • • ip), (j) = (j1 • · ·jq), will henceforth 
be used to denote the components of the tensor of Theorem 28.1.4 (whatever 
the co-ordinates may be), rather than the expression arm;axk. 

We emphasize the important fact that our new tensor operation is linked 
in an essential way with the Euclidean metric with which we assume the 
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underlying space to be endowed. This is clear from the second ofthe following 
two defining conditions of the operation: 

(i) the result of applying the operation should be a tensor; 
(ii) in Euclidean co-ordinates the components are given by 

:1 (i) 
(i) _ uT(j) 

Tul;k - oxk . (19) 

(We might turn condition (ii) on its head, and define co-ordinates x 1, ••. , xn 
to be Euclidean (to within a linear co-ordinate change), if in terms of those 
co-ordinates the components of our "generalized gradient" tensor are given 
by (19).) 

It remains (before giving our culminating definition) to see how the 
quantities nj = niz) transform under an arbitrary co-ordinate change 
z; = z;(z'), i = 1, ... , n. As before we let x 1, ... , xn denote Euclidean co
ordinates, with xi = x;(z) = xi(z(z')). By (15) we have 

(20) 

and in the system z', 

k' oxi oxj o2zk' o2xm ozk' 
rp'q' = - OzP' Ozq' OXi 0Xj = OzP' Ozq' OXm· (21) 

(The final equalities in (20) and (21) come from 

o2zk(x(z)) 0 (Ozk OXi) 02Xi OZk OXj OXi o2zk ) 
0 = OzP OZq = ozP OXi OZq = OzP OZq OXi + OzP 0Zq OXi OXj· 

From (20) and (21) we obtain 

OzP OZq 02zk OXi OXj OzP OZq 
r~q ozP' Ozq' = - OXi OXj OzP 0Zq OzP' Ozq' 

o2zk OXi OXj 02Zk OZk 02Xj 
- OXi OXj ozP' Ozq' = - ozP' Ozq' + OXj ozP' Ozq' ' 

where we have used 

Hence 
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Multiplying both sides of this equation by ozk'jozk and summing, we obtain 

Ozk' ( k (}zP OZq 02zk ) Ozk' OZk 02Xj 02Xj Ozk' k' 

OZk fpq (}zP' Ozq' + (}zP' Ozq' = OZk OXj (}zP'(}zq' = (}zP' Ozq' OXj = fp'q'• 

whence we obtain finally the desired transformation rule: 

k' ozk' ( k (}zP OZq o 2zk ) 
f p'q' = OZk f pq (}zP' Ozq' + (}zP' Ozq' . (22) 

The foregoing discussion (culminating in equation (22)) serves as motiva
tion for the following general definition, independent of any initially given 
Euclidean co-ordinates, of the concept of "covariant differentiation" of 
tensors. 

28.1.5. Definition. An operation of covariant differentiation of tensors (of 
arbitrary type) is said to be defined if we are given, in terms of any system 
of co-ordinates z1, ••• , z", a family of functions f~q(z) which transform under 
arbitrary co-ordinate changes z = z(z') according to the formula (22). The 
quantities r~q are called Christoffel symbols. 

(Thus "covariant derivative" is now the official name of our "generalized 
gradient" tensor. We reemphasize, however, that this definition is inde
pendent of any metric which may be present.) 

Hence for vectors and covectors the covariant derivatives (relative to 
given Christoffel symbols) are given by (cf. (16), (17)): 

. ari . . 
T, - + r· T 1 • 

;k - oxk jk ' 

or more generally for tensors of arbitrary type (p, q) by the formula (18). It 
turns out that the transformation rule (22) for the quantities nj is determined 
by the requirement that the covariant derivative of a tensor be again a tensor, 
i.e. that covariant differentiation be a tensor operation. (Note however that 
in general the ni are not the components of a tensor.) We shall prove this 
in the next subsection. 

Remarks. I. An operation of covariant differentiation is often called a 
differential-geometric connexion, or simply a connexion. 

2. A connexion is said to be Euclidean (or affine) if there exist coordinates 
x 1, .•• , x" in terms of which rt = 0, i.e. such that, in those co-ordinates, 
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Such co-ordinates are for this reason often called'' Euclidean" (stretching our 
former definition of Euclidean co-ordinates somewhat; the perhaps more 
appropriate term "affine co-ordinates" is also used). 

3. Covariant differentiation is often denoted by the symbol V: 

28.2. Covariant Differentiation of Tensors of Arbitrary Rank 

In the preceding subsection (see 28.1.5) we defined covariant differentiation 
of (in particular) vector and covector fields, as the tensor operation given, 
in any system of co-ordinates x 1, ••• , x", respectively by 

(23) 

(24) 

where the rii are previously given functions ("Christoffel symbols") on the 
points (x 1, ... , x"), which transform according to the rule (22). 

Now suppose that we are given a family of functions f't(x) (no longer 
presupposed to satisfy (22)) in terms of an arbitrary system of co-ordinates 
x 1, ... , x". We shall show that for the quantities T/i, T;;i defined in terms of 
these rvx) by (23) and (24) to transform tensorially under arbitrary co
ordinate changes, i.e. for the operation of covariant differentiation determined 
by the given r~j(x) to be a tensor operation, the functions nj must necessarily 
transform according to the rule (22). 

28.2.1. Theorem. Let rvx) be afamily offimctions. In orderfor the operation 
of covariant differentiation defined in terms of this family to be a tensor 
operation, it is necessary that under arbitrary co-ordinate changes xi = 
xi(x 1·, .•.• x"'> the rL tran~form according to the rule 

PROOF. Since our hypothesis is that the quantities 

aTi . k . 
-~ + rLT = T~i 
(Jxl 

(25) 
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whence the desired conclusion. D 

28.2.2. Corollary. Functions r,.J determining a tensorial covariant differentia
tion, themselves transform like tensors only under co-ordinate changes which 
are combinations of linear transformations and translations; i.e. affine co
ordinate changes. 

PROOF. If a co-ordinate change xi = xi(x 1 ', ... , xn') is such that 
o2xijoxk' oxi' = 0 for all i, k', /,then it is easy to see that it must be affine. 

28.2.3. Corollary. With the rL as in the preceding corollary, the alternating 
(i.e. skew-symmetric in i and j) expression 

TL = rL - nk = qkj] 
is a tensor (the "torsion tensor"). 

(26) 

PROOF. The transformation rule (25) differs from that of a tensor of type (1, 2) 
only by the presence of the summand (oxi'joxi)(o 2xijoxk' oxi'). Since this 
summand is (under our usual smoothness assumptions) symmetric in the 
indices k' andj', it follows that it will cancel in the difference r;;.i' - rh· = 
Tb, so that the latter is a tensor, as required. D 

28.2.4. Definition. A connexion rL (which we now define to be a family of 
functions transforming according to (22)) is said to be symmetric or torsion
Fee if the torsion tensor TL = r[kJJ is identically zero, i.e. if rL = r)k. 

28.2.5. Example. If there exist Euclidean co-ordinates x 1, ••• , xn (by which 
we mean that in terms of these co-ordinates rL = 0), then the torsion tensor 
is identically zero. Thus a Euclidean connexion is symmetric. (In other co
ordinates x 1·, ... , xn·, where xi = xi<x'), the symbols rL. will have the form 

ox'' 02Xi r t' 

k'j' - oxi oxk' oxi'. 
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(This follows as in an earlier argument.) We see that these quantities are 
(as indeed they must be) symmetric ink' and f.) 

Turning now to the consideration of tensors of arbitrary type, we list 
four conditions which determine uniquely the tensor operation of covariant 
differentiation corresponding to a given connexion rL: 

(i) the operation is linear, and commutes with the operation of contraction 
(i.e. of taking traces); 

(ii) the covariant derivative of a zero-rank tensor (i.e. of a function) is the 
usual gradient of the function: 

V'd (27) 

(iii) the covariant derivatives of vector and covector fields are given by the 
formulae (23) and (24) respectively. (It is here that the connexion 
Cri;) enters the picture.) 

(iv) the covariant derivative of a product Tl~ltJ> = Rl~>Sl~\ of tensors is 
calculated using the usual Leibniz product rule: 

(28) 

We formulate as a theorem the fact that these four properties fully character
ize the covariant derivative, singling out for special attention the important 
case of rank-two tensors. 

28.2.6. Theorem. Let rL be a connexion (i.e. afamily offunctions transform
ing according to (22)). lfa tensor operation satisfies conditions (i), (ii), (iii), (iv) 
above, then it is the operation of covariant differentiation determined by the rL. 
In other words it coincides with the operation V'b given for rank-two tensors in 
particular, by theformulae 

V Tij = aTii + r; yu + r 1 Til 
k axk lk lk ' 

(29) 

(30) 

(31) 

and more generally for tensors Tl~, (i) = (i 1 · · · i P), (j) = (j 1 · · · j q), of arbitrary 
type (p, q), by the.formula (18), i.e. by 

(32) 
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PROOF. We give the proof for tensors Tij of type (0, 2) only; the proof in the 
general case is completely analogous. 

Thus let e 1 , ... , e" be the standard basis vector fields, and e1, •.. , e" the 
dual basis of covector fields; the components of these tensors are given by 

(e;)i = 6{ = (ei);. 

By the formulae (23), (24) (i.e. by condition (iii)) we have 

\\e; = r{kej, 

\\ei = - nkei. 
(33) 

(34) 

(From a slightly different point of view, one might regard these equations as 
defining the r~k .) 

Now every tensor T with components T}~ ·.:·.J. has the form (see §17.1(3)) 

T = Ti., ... ;Fe. ® ·· · ®e· ®eil® · ·· ®eiq. 
)l ···Jq lJ lp 

In particular if Tis of type (0, 2) then T = T;iei ® ei. From conditions (i), 
(ii) and (iv) together with (33) and (34), we obtain 

V'k(T) = V' k(Tij)ei ® ei + Tii'V'k ei ® ei + Tije; ® V' k ei 
aTij . · · 1 · · · 1 

= -k e' ® e1 - T;ir;ke ® e1 - T;ie' ® r{ke ax 

Hence the components of the tensor V'k Thave the form 

aT;j I rl T 
-k - rik Tlj - jk i~> ax 

as claimed in the theorem. 0 

Remark. If (T;) is a vector field and (~) a covector field then (see §17.2) the 
trace T;T; of the tensor product of (T;) with (~) is a scalar. Hence by the 
conditions (i) through (iv) above we have 

a . . . . . 
= ~k (T'T;) + rjk PI; - r{k ~ T'. ax 

Since the last two terms cancel (after re-indexing) this provides confirmation 
of the compatibility of conditions (i) through (iv). 
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ExERCISES 

Let¢ denote the velocity vector of the curve y = y(t), i.e. ¢ = y, and let I] be any vector 
field. Define the "covariant derivative of the field I] along the curve y" by V~l] = ¢iV'i'7· 
Show that the field V ~I] depends only on the values of the vector I] on the curve y. 

§29. Covariant Differentiation and the Metric 

29.1. Parallel Transport of Vector Fields 

Let ~ be a vector at an arbitrary point P, and let T = (T~i)l) be a tensor of 
type (p, q). The directional derivative of Tat P relative to (or along) the vector 
~. is defined by 

(1) 

and is thus a tensor of the same type (p, q). In the case of a rank-zero tensor 
(i.e. scalar)./; the directional derivative as defined by (1) becomes 

v l = ~k af =a I 
~- axk ~ ' 

(2) 

and so coincides with our former concept of the directional derivative of a 
function at a given point in the direction ~-As we saw in Example 23.2.2(a), 
if we are in motion along some curve xi = xi(t), i = 1, ... , n, in space, and if 
the directional derivative of a function fin the direction of the velocity vector 
of that curve is zero at all points of the curve, then the function is constant 
on the curve; i.e. if ~k(8f/8xk) = (djdt)f(x 1(t), ... , xn(t)) = 0, where ~k = 
dxk/dt is the velocity vector (or tangent vector to the curve), then 

f(x 1(t), ... , xn(t)) = con st. 

along the curve. 
Can we draw a similar conclusion for vector or, more generally, tensor 

fields? As it stands this question has no clear meaning, since a vector (or 
more generally a tensor of rank > 0) has different components in different 
co-ordinates; in particular the components of a vector might well be constants 
in one system of co-ordinates, and yet variable in another. Thus we require 
some additional geometric structure on the underlying space, which will 
allow us to compare two vectors (or more generally tensors) attached to 
different points of the space. It turns out that a prescribed connexion, i.e. 
covariant differentiation, is just the "additional structure" on the space 
appropriate for this purpose. 

29.1.1. Definition. Suppose we have a connexion rL defined on a space 
co-ordinatized by x 1, ... , xn, and let xi(t), a :::::; t :::::; b, be a segment of an 
arbitrary curve. We shall say that a vector (or more generally, tensor) field T 
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is covariantly constant or parallel along the given curve segment if the direc
tional covariant derivative of Tin the direction of the tangent vector~ to the 
curve is zero at all points of the curve segment: 

dxk 
V~ T = ~kVk T = 0, a :-:::; t :-:::; b, ~k = dt. (3) 

In particular for vector fields equation (3) takes the form 

. k . k(oT; . ·) V ~ T' = ~ V k T' = ~ oxk + r]k P = 0. (4) 

It is clear from this definition that the concept of parallelism in general 
depends on the particular given curve segment. However the situation where 
the co-ordinates x 1, ... , x" are Euclidean, is in this respect exceptional; 
in terms of such co-ordinates we might define a parallel vector field Tas one 
whose components Ti are constant (in the Euclidean co-ordinates), since 
the field will then be parallel along any curve whatever. Since covariant 
differentiation is a tensor operation (whence the co-ordinate independence 
of the concept of parallelism) the vector field Twill then be parallel with 
respect to any co-ordinates z 1, ... , z", though its components will not in 
general be constants in terms of such co-ordinates, but may vary with the 
points. 

We see from the definition that the concept of parallelism of two vectors 
attached to distinct points depends on the covariant differentiation (i.e. on the 
differential-geometric connexion), and on the path joining the two points. 
In order to link up our present geometrical ideas with the most basic concepts 
from school geometry, we recall the famous "fifth postulate" of Euclid: 
"Given a line through a point P, and a point Q not on the line, there is exactly 
one line through Q parallel to the given line". For our present purposes it 
will be convenient to use this postulate in the following (not completely 
formal) interpretation of it: If in Euclidean geometry we are given at the 
point P a non-zero vector (Ti)p, then at any point Q there is (up to scalar 
multiples) one, and only one, parallel vector (Tii)Q. 

It is pertinent at this point to ask: What exactly do we mean when we 
say that two vectors, one at each of two distinct points, are parallel? (As 
always, of course, a vector (or more generally (a value of) a tensor) is under
stood as being attached to a given point.) The answer is furnished by the 
important concept of "parallel transport" of a vector (T;) from a point P 
to a point Q along an arc joining P and Q. 

29.1.2. Definition. Let (Ti)p be a vector at a point P(x6, ... , x~) and let 
xi= x;(t), 0 :-:::; t :-:::; 1, be a curve segment joining P to a point Q = (xL ... , xl). 
The unique (see below) vector field (Ti) defined at all points ofthe given curve 
segment, taking the value (Ti)p at P(t = 0), and parallel along that segment 
(i.e. satisfying (dxk/dt)Vk Ti = 0 for all 0 :-:::; t :-:::; 1) is said to result from 
parallel transport of the vector (T;)p along the given curve to Q(t = 1). The 
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value of the field (T;) at Q, i.e. when t = 1, is denoted by (Ti)Q, and is called 
the result of parallel transport of (T;)p along the given curve xi = xi(t) from 
P to Q, relative to the given connexion. 

The vector field (T;) is determined by the equation of parallel transport 

dx V T; = oT dx + Tiri. dx = dT + dx ri. yi = O k ik k i (k) 
dt k oxk dt jk dt dt dt jk , 

(5) 

and the initial conditions 

T;(O) = T;, i = l, ... , n. (6) 

Since (5) is a system of n linear ordinary differential equations we can appeal 
to the theory of the existence and uniqueness of solutions of such systems 
(with the initial conditions (6)) and to the continuability of their solutions, 
to obtain the following result. 

29.1.3. Theorem. The result of parallel transport along any smooth curve 
segment exists, is uniquely determined by the curve, the assumed connexion, 
and the initial vector (Ti)p, and depends linearly on (Ti)p. 

In the particular case when the connexion is Euclidean, i.e. rjk = 0 in 
Euclidean co-ordinates, the component form (5) of the equation of parallel 
transport simplifies to dT;/dt = 0. 

29.1.4. Corollary. If the co-ordinates x 1 , ••• , xn are Euclidean, then vectors 
attached to different points are parallel (with respect to parallel transport 
along no matter what arc joining the points) precisely if they have the same 
components. In terms of arbitrary co-ordinates (for Euclidean n-space) the 
result of parallel transport of a vector from one point to another is independent of 
the path. 

Here the intmtive difference between Euclidean geometry and the 
"curved" non-Euclidean spaces is emerging: If we parallel transport a single 
vector from P to Q along different curves, then in the presence of non-zero 
curvature (i.e. if the space is not Euclidean) we may end up with different 
results. 

We address the question of calculating the "curvature" of a space in the 
next subsection 

29.2. Geodesics 

We now turn to the following interesting (and fundamental) question: Given 
an arbitrary connexion, which curves play (with respect to this given con
nexion) the role played by straight lines when the connexion is Euclidean? 
The curves in question are called "geodesics''. 
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29.2.1. Definition. A curve x; = xi(t) is called a geodesic (with respect to a 
given connexion r}k) if the vector field defined by its tangent vector T; = 
dxi/dt, is parallel along the curve itself, i.e. if the curve parallel transports its 
own tangent vector: 

V'y(T) = 0. (7) 

Rewriting (7) in component form we obtain 

whence the equations for the geodesics: 

d2xi . dxk dx; 
dt 2 + [f; dtdt = O, j = 1, ... , n. (8) 

Note that if rt = 0, then the solutions of (8) are just the straight lines, as 
they should be when the geometry is Euclidean. For an arbitrary connexion 
r}k the equations (8) form a (non-linear) system of second-order ordinary 
differential equations; the theory of the existence and uniqueness of the 
solutions of such equations tells us that this system in particular has a unique 
solution satisfying the initial conditions 

dxil - ·i ~ -Xo, 
dt l=O 

j = 1, ... , n, (9) 

for each choice of xb, xb. We make this a little more precise in the following 
theorem. 

29.2.2. Theorem. Let f'}k be a connexion defined on a space. Then for any point 
P and any vector (T;)p attached to the point, in some neighbourhood ofP there 
exists a unique geodesic (of the connexion 1}k) starting from P and with initial 
tangent vector (Ti)p. 

Remark. It is clear from (8) that the geodesics of a given connexion depend 
only on the "symmetric part" q ik) = r}k + rL of the connexion. 

29.3. Connexions Compatible with the Metric 

By definition, co-ordinates x 1, .. , xn are said to be Euclidean if in terms of 
these co-ordinates the metric % is given by 

(10) 
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On the other hand, as we have seen above, the idea of a connexion naturally 
leads one to an alternative criterion for co-ordinates to be Euclidean (with 
respect to a given connexion), namely that in terms of those co-ordinates 
the given connexion be identically 0: 

rt = o, i,j,k=1, ... ,n. (11) 

(Note that condition (11) is less restrictive than (10) in the sense that if (11) 
holds in one frame, then it holds in all affine transforms of that frame. Note 
also that we might alternatively (and even more generously) take the criterion 
r7i = - qi as signalling the Euclideanness of the co-ordinates.) 

Our aim in the present section is to find a natural relationship linking the 
two conditions (10) and (11). It behoves us to reiterate that the concepts of 
a connexion and of a Riemannian metric are, a priori, in no way related; 
neither concept was used to define the other (not to speak of motivations); 
they are two separate and independent structures on the region of the space 
under scrutiny. Hence conditions (10) and (11) are logically quite unrelated. 
However there is a natural way of splicing the two concepts so that (11) 
becomes (with accuracy up to application of affine co-ordinate transforma
tions) equivalent to (10) as a criterion for co-ordinates to be Euclidean. 

29.3.1. Definition. A connexion r7i is said to be compatible with a metric gii 
if the covariant derivative of the metric tensor (g ii) is identically zero: 

k, i,j = 1, ... , n. (12) 

We mention two properties enjoyed by a connexion compatible with a 
metric. 

(i) If a given connexion is compatible with the metric on a space then the 
corresponding operation of covariant differentiation commutes with the 
operation ()f lowering any index of a tensor. 

PROOF. It follows from the condition (iv) in §28.2 (the Leibniz product 
formula) and the defining condition (12) of compatibility, that 

for any tensor rm of type (p, q). The desired conclusion now follows from the 
linearity of covariant differentiation (condition (i) in §28.2) and the defini
tion of the operation oflowering an index of a tensor (see §19.1 (3)). D 

(ii) If vector fields Ti(t) and Si(t) are hath parallel along a curve xi = xi(t), 
then their scalar product is constant along the curve (provided the connexion 
is compatible with the metric). 
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PROOF. We have 

d d . . dxk . . d xk . . - <T. S) =-(g.· T'S 1) =-Vk(g· · T'S 1) = -- g .. Vk(T'S 1) 
dt ' dt • I} dt ' I) dt ' I} 

whence the result. 0 

We may paraphrase property (ii) as follows: If the connexion is compatible 
with the metric, then parallel transport of vectors from a point P to a point 
Q along a given curve, defines an orthogonal (since inner product preserving) 
transformation from the tangent space at P to the tangent space at Q. 

If a symmetric connexion is compatible with a metric then it is uniquely 
determined by the metric, and there is a simple formula for the connexion 
in terms of the metric; this is the substance of the following 

29.3.2. Theorem. If the metric % is non-singular (i.e. !( g = det(g;) # 0) on 
the region of n-space under consideration, then there is a unique symmetric 
connexion which is compatible with the metric. This unique connexion is given 
in any system of co-ordinates x 1, ... , x", by" Christoffel's formula": 

n. = 1 kl (aglj + agil _ agij)· 03) 
I) 2 g dX 1 ax} ax{ 

PRooF. By hypothesis we have ni = fJ;. From §28.2(31) and the compatibil
ity we obtain 

(14) 

Our aim is to solve these equations for the rt. By definition of the operation 
of lowering indices we have 

rk .. = gklrt 
,l] . l)' 

so that (14) may be rewritten as 

where by the assumed symmetry ri.jk = ri.ki' ri.ik = ri.ki· By permuting 
the indices i,j, k we obtain 
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If we subtract the first of these three equations from the sum of the last two, 
we obtain, after taking the assumed symmetry into account, 

ogkj ogik ogij 1 
2rk,ij = oxi + oxi- oxk = 2 gklrij. 

The desired formula (13) now follows by dividing by 2 and raising the 
~~~ D 

29.3.3. Corollary. Let ni be a symmetric connexion compatible with the 
metric. If the co-ordinates x1, .•. , xn are such that at a given point all first
order partial derivatives of the components gii of the metric are zero, then at 
that point the Christoffel symbols ni are zero. 

29.3.4. Examples. (a) Consider a surface 

in Euclidean 3-space with Euclidean co-ordinates x 1 = x, x 2 = y, x3 = z. 
We shall suppose (as we did in §8) that our Euclidean co-ordinate system 
has been chosen so that the z-axis is perpendicular to the surface at P and 
the x-axis andy-axis tangent to the surface at P. Then in some neighbourhood 
of P the surface is given by an equation of the form (see §§7, 8) 

z =f(x, y), 

so that we may take as parameters (i.e. local co-ordinates) z1 = x, z2 = y; 
moreover the perpendicularity of the z-axis to the surface implies that 
0 f/ox 1(0,0) = 0 f joyl(o·O) = 0, i.e. the gradient off, grad.f. is zero at p = (0, 0). 
By §7.3(20) the induced metric on the surface is given by 

Thus at the point P, where ofjoz; = 0, we have gii = b;i, and 

ogij a (of of) o2f of a~t ~f' 
ozk = ozk o:z; ozi = oz; ozk ozi + ozi ozk oz; = O. 

Hence by the above corollary, in terms of the co-ordinates x, y for the neigh
bourhood of P on the surface, the (symmetric and compatible) connexion 
rt (i,j, k = 1, 2) will be zero at P. 

(b) In the remark following (9) in §28.1 we used the term "divergence" 
of a vector field (T;) for the scalar 

. . ari . k 
div T = V; T' = T;; = ox; + r~; T . (15) 
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Now if the connexion rjk is symmetric, and compatible with a (pseudo-) 
Riemannian metric g;j assumed on the underlying space, then 

ri. = .l il (oglk + ogli _ ogki) = 1 u ogil =_!__~=~In ( lf-::il) 
kl 2 g oxi oxk ox1 2 g oxk 2g oxk oxk v' lgl' 

where g = det(g;). Hence from (15) 

i ari 1 og k 1 a ~~::~ i 
Y'; T = --;;--y + -2 -;!( T = 11::1 ~ (y I g I T ). (16) 

uX g ux v' 1 g 1 uX 

We conclude from this that: The divergence V; T; of a vector field (T;) is 
given by the simple formula V; T; = oT;jox; precisely in those co-ordinate 
systems where the volume element J[gl dx 1 A · · · A dx" has (to within a 
constant scalar factor) the same form as the Euclidean volume element, i.e. 
J[gl = 1, where g = det(g ;;). 

We conclude this subsection with the following summarizing remark: We 
have now linked together the hitherto separate structures of a connexion 
(i.e. a covariant differentiation) and a Riemannian metric; the Riemannian 
geometry gives rise to a uniquely defined symmetric connexion (i.e. covariant 
differentiation of tensors) relative to which the metric itself is constant 
(see property (ii) above). 

29.4. Connexions Compatible with a Complex Structure 
(Hermitian Metric) 

Let D denote a region of complex n-space with complex co-ordinates 
z1, ... , z", zk = xk + i/; as before we write Dlf?. for the realization of D, 
co-ordinatized by the real co-ordinates x 1, ... , x", i, ... , y". Suppose that 
there is defined on D a Hermitian metric (see §27.2) 

(17) 

(Recall that, as in §27, when necessary we place a bar over an index ito indi
cate that it corresponds to dz;.) We saw earlier (in §11.2) that the Hermitian 
metric gives rise to a Riemannian metric on Dlf?. defined by 

(18) 

We know from the preceding subsection that there is a unique symmetric 
connexion on D~ compatible with the metric (18). Generally speaking this 
connexion will not however be compatible with the original complex stri}C
ture (i.e. Hermitian metric) on D given by (17), i.e. parallel transport of a 
vector along an arc in D will not in general be a unitary transformation 
(cf. the remark following (ii) in the preceding subsection). The precise 
situation is as follows. 
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29.4.1. Theorem. The symmetric connexion on D~ compatible with the metric 
ds~, is compatible with the Hermitian metric ds 2 if and only if the latter metric 
is Kiihlerian. 

PROOF. Recall that by Definition 27.2.1 the Hermitan metric ds2 is called 
Kahlerian if the form n defined by 

(19) 

is closed, i.e. 

dn = 0 ¢> ohj~ _ oha, = o, 
oz' oz1 

(20) 

(For the right-hand side of this double implication, see §25.2(7) or §27.1(9).) 
We may take the operators 

-=- --i-o 1(o o) 
iJzk 2 oxk ol , k = 1, ... , n, 

as representing a (complex) basis for the tangent space to the region D~ (see 
the beginning of §27.1), so that an arbitrary tangent vector e can be repre
sented as (cf. §27.1(4)) 

and e is real (i.e. is a real linear combination of the operators ojox\ o/ol) 
precisely if e" = ~- It is easy to see (by rewriting (18) in terms of dzk, dz") 
that the scalar product of tangent vectors defined by ds~ is given, in terms of 
the basis ojoz\ ojoz\ by gaP• ()(, p = 1, ... , n, I, ... , n, where 

gij =% = 0; 

so that the matrix G = (gap) has the form 

G = (~ ~) , H = (hi;). 

The inverse matrix G- 1 is given b.y 

c-1 = ( o 
H-1 

n-1) 
0 . 

(21) 

(22) 

(23) 

We shall now compute the components rpr of the symmetric connexion 
compatible with the metric gap· From Christoffel's formula (13) and (21) we 
obtain: 

rL _ 1 mi (oglim + ogmJ) = ri. 
jk - 2 g \ az.i ozk jk. 
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We also have (using also (23)) 

ri,_ = 1 im (ogmk + 09]m - og]ii) = 0 
jk 2 g iJzi azk a-zm ' 

and, for similar reasons, rjk = 0. Finally, bringing in the hypothesis in the 
form given by (20), we have 

ri- - 1 im (ogjm - ogjk) = 1 im (ohjm - ohjk) - 0 
jk - 2 g i)zk azm 2 g ozk a-zm - 0 

From the hypothesis that the metric ds 2 be Kahlerian it follows in a similar 
fashion that the components r}b r~"' r}k also vanish. Thus the upshot is that 
th_e only possible non-zero compcnents among the rpY are the r}k and the 
r}", and that these are complex conjugates of one another. 

Consider now the change effected in a real vector~ = (~i, ~1) by parallelly 
transporting it through the infinitesimal real interval (()zi, (jzi), ()Zi = &I. 
It follows from §29.1(5) and what we have just proved about the components 
rpY, that (to within second-order expressions in the infinitesimals) 

~i -+ ~i _ ~k rL()zi, 

~~ -+ ~~ - ~" rJ r.Dzi. 

Hence if we write A = (aD for the matrix with entries 

i ri 1: j 
ak = kjUZ, 

then the Jacobian of the transformation (24) is 

(1- A 0 -). 
0 1- A 

(24) 

(25) 

Since by (ii) in §29.3 the realization of the transformation defined by the paral
lel transport is orthogonal, it follows that the transformation we are ap
proximating in (24) is actually linear (over IR), and in terms of the co-ordinates 

. . . . f h " (B 0) z', z' has the form (25). Now 1t is easy to see that matnces o t e .arm 0 B 
define transformations of the co-ordinates zi, -zi which are linear over C 
(cf. §12.2). This and the orthogonality then together imply that parallel 
transport along an arc in DR defines a unitary transformation. This completes 
the proof of the theorem. (We leave the easy converse to the reader.) D 

29.5. Exercises 

1. Prove that a connexion is compatible with the metric if and only if for arbitrary 
vector fields 1J, ~ ~o ~ 2 

a~<~ •. ~2> = <V~~·· ~2> + <~ •. v~~2>· 
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2. Show that if a vector(~;) is parallelly transported through a small interval (bxk), 
then its components change as follows: 

~i --> ~i - ~j r~k bxk + a( I bx 1). 

3. Express the stain tensor (defined in §22.3(23)) in terms of covariant derivatives. 

4. Let U be a region of a space on which there is defined a connexion. Denote by 
T = Tp the tangent space to U at an arbitrary fixed point P of U. Define a map 
E: T--> U as follows: associate with each vector~ from T the geodesic y~(t) originat
ing at P and with initial velocity vector~; then define E(O = y~(l). 

(i) Show that the map E is defined in some neighbourhood of the origin of the space 
T, and is (locally) a diffeomorphism. 

(ii) Show that in terms of the co-ordinates on U defined by the map E, the com
ponents ni of the given connexion all vanish at the point P. 

5. The equation of motion of a point electric charge in the field of a magnetic pole has 
the form 

.. [r, r] 
r=a--

1 rl 3 ' 
a = const. 

Prove that the trajectory of a point charge is a geodesic on a circular cone. 

6. Find all the geodesics of the Lobachevskian plane. 

7. Show that the geodesics of the sphere are just the great circles. 

8. Show using geodesics that an isometry of a space (endowed with a metric) which 
leaves fixed a point and a reference frame at the point, is necessarily the identity map. 

9. Prove that the level curves of the function 

f du f dv z(u, v) = + 
Jf(u)- a- jg(v) +a 

are geodesics with respect to the metric 

f > 0, g > 0. 

10. Prove that the inner automorphisms X 1-> AX A- 1, X, A E S0(3, IR), are exactly the 
motions of the Killing metric on S0(3, IR) which leave the identity element fixed. 

11. Given that rjk is a symmetric connexion compatible with the metric, establish 
the following identities: 

(ii) ri - _1__ ag
ki- 2g axk" 

12. Prove that given two points in a Riemannian space sufficiently close to one another 
there is a geodesic joining them which is locally unique. 
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13. Given a metric in the form d/2 = grr dr2 + r2 dcp2, show that the line cp = cp0 

through the point r = 0 (the origin) is a geodesic. 

14. Given a metric (gii) on an n-dimensional space, establish the following formula 
(cf. Exercise 2 of §26.5): 

1 xi dS; = Jl' V;Xij[gl dx 1 A ••. A dx", 
'Yo, v 

where 

1 jig[ . . dS. = --- lgle· · -dx'' A··· A dx'·-•. 
' (n- 1)! '•·····-•• 

15. Let M be a surface in Euclidean n-space IR1", let n be the linear operator which projects 
IR1" orthogonally onto the tangent space toM (at an arbitrary fixed point of M), and 
let X, Y be vector fields in IR1" tangent to the surface M. Show that the connexion 
on M compatible with the induced metric on M. satisfies 

( 
k iJY) V x y = n X iJxk . 

§30. The Curvature Tensor 

30.1. The General Curvature Tensor 

As noted in §29.1, in a non-Euclidean space the result of parallel transport 
of a vector is in general path-dependent. We saw in that subsection that to 
obtain the result of parallelly transporting a vector Talong an arc of a curve 
x(t), we need to solve the differential equation 

dT; ; k dxi-
Tt + rjk T Tt - o. (1) 

Clearly it would be more convenient if instead of solving this equation, we 
could find a simpler way of measuring the departure of the given connexion 
qk from being Euclidean. What measure of this kind is available? What 
simple criterion is there for the existence or otherwise of co-ordinates in 
terms of which the qk vanish? (Of course if we have on our hands a connexion 
which is not symmetric then the answer is easy, since then it cannot be 
symmetric in any co-ordinate system, and so, in particular, we cannot have 
qk = 0. However in this case it is appropriate to define Euclidean co
ordinates as those in terms of which the symmetric part r)k + rL of the 
connexion vanishes identically.) 

The key to the solution of this problem turns out to be the familiar 
"equality of mixed partials": if f is a sufficiently smooth function then 
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If there do exist Euclidean co-ordinates relative to a given (symmetric) 
connexion, then we know that in terms of those co-ordinates covariant 
differentiation is just ordinary partial differentiation: 

so that by the "equality of mixed partials" 

or, equivalently, 

(i) - (i) 
TuJ;k:l- TuJ;l;k· (2) 

Since the T~i}J;k;l are the components of a tensor, equation (2) will then hold 
in all co-ordinate systems. 

If on the other hand our connexion is arbitrary (and so not necessarily 
Euclidean), then for a vector field (Ti) we have 

From this one easily obtains 

. (ar~~ ar~k) . . (V\VI- VlVk)T' = oxk - axT P + (r~kr~1 - r~~r~k)P 

aTi 
- (rfk - rkl) OXP · 

If we introduce the notation 

(3) 

then the above becomes 

(4) 

(where we have also written Tf1 for the torsion tensor rg1 - rr,. (see 28.2.3)). 
It is not difficult to see that the R~kl are the components of a tensor, called 
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the Riemann curvature tensor. In the case we were considering the given 
connexion is symmetric, so that Tf:1 = 0. 

30.1.1. Theorem. For any symmetric connexion qk and any vector field T, 
we have 

(VkV1 - V1Vk)Ti = - R~kl Tq, 

where R~kl is a tensor (the Riemann curvature tensor) given by 

i _ i7r~~ ar~k ri rv ri rv 
- Rqkl - oxk - oxl + pk ql - pl qk · 

It follows that if the connexion is Euclidean then R~kl = 0. At those points 
where r~q = 0, we have 

From this theorem and the fact that the R~kl are the components of a 
tensor, we obtain immediately the following significant result. 

30.1.2. Corollary. If the Riemann curvature tensor determined by a given 
symmetric connexion is not identically zero then the connexion is not Euclidean, 
i.e. there do not exist co-ordinates in terms of which the components rL of the 
connexion vanish identically. 

Remark. As noted, this result follows immediately from the fact that the 
R~kl are the components of a tensor, and that the components of a zero tensor 
are zero in all co-ordinate systems. Alternatively it may be proved directly 
without recourse to the tensorial nature of the R~kl as follows. We are looking 
for a co-ordinate change x = x(x') to co-ordinates x' in terms of which 
n:r = 0. Now by the transformation rule for the rt (see §28.1(22)) we have 

k' oxk' ( k oxi oxi o2xk ) 
ri'j' = oxk rij oxi' axr + oxi' axr . 

This and the hypothesis n~> = 0 yield the following equation for the xi': 

o2xk oxi oxi 
-~~- rk -oxi' oxi' - - ij oxi' axr' (5) 

Assuming the co-ordinate change to have continuous third-order partial 
derivatives we have 
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Exploiting this as a condition on the right-hand side of (5) and bringing in 
the assumed symmetry of the nj, we obtain finally (after some calculation 
involving in particular elimination of the primed co-ordinates) 

R~kt == 0. 

We shall now derive co-ordinate-free formulae for the curvature and 
torsion tensors. For arbitrary vector fields ~. Yf, (we set 

[T(~. YfH = T,/,~kYf 1 , 

[R(~. 11KJ; = R~kteYf'(j. 

(6) 

(7) 

In the following lemma the vector fields T(~, Yf) and R(~, YfK are expressed 
in terms of the fields ~. Yf, (. 

30.1.3. Lemma. For arbitrary vector fields~. Yf, (,the/allowing equations hold: 

T(~, Yf) = V~Yf- V~~ - [~, Yf], 

R(i:;, 11K = V~V~(- V~V~( + V1~.,11 C 

where[~, Yf] is the commutator of the vector fields~. Yf· 

(8) 

(9) 

PROOF. We first show that the right-hand sides in (8) and (9) are linear in 

<:;, Yf, (. Thus if in the right-hand side of (8) we replace ~ by I~ where I is a 
smooth function, we obtain 

V1~Yf- V~(f~)- [f~, 11J = .nv~Yf- v,1 ~- [~. 11JJ - (a~tX + (o,J)¢ 

= f[V~Yf- v~~- [~. 11JJ, 
where a~f is the directional derivative off along the field Yf. 

If we replace~ byi~ in the right-hand side of(9), we obtain 

V~V1~- VgV~ + V1n~1 =fV~V~ + (o~f)V~- fV~V~ + Vn~.,11 - (o,J)V~: 

=f[V,1V~- v~v~ + V1~_,11l 

The linearity in Yf follows similarly. Finally, replacing ( byf( we have: 

V~[(odX + fV~(] - V~[(o~.fX + fV~(] + (o1~.~JfK + IV1~.~ 1 ( 

= (D,/!~fX + (o~f)V,I( + (il~f)V~( + fV~ V~(- (il~D~fX 

-(a~nv~(- ca~nv~'- fV~V~( + (o~o~f- a~odX + fV1~.~ 1 ( 

= I[V~V~(- V~V~( + V1~.~ 1 G 

Having shown that the right-hand side expressions of equations (8) and 
(9) are linear in ~. Yf, ((that they respect sums being immediate), it suffices to 
verify (8) and (9) for the basic vector fields ~ = ek. Yf = e1, ( = ej (in which 
case~; = il~, Yf; = ili. (; = il}). However for these fields (8) and (9) follow im
mediately from the definitions of Tt1 and R}kt· 0 
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30.1.4. Application (Tetrad Formalism). Suppose that a region of an n

dimensional space is endowed with a metric gij· At each point of the region 
the metric defines a quadratic form gij~i~j on tangent vectors~ at the point. 
From linear algebra we know that at each point there is a basis ~ 1, ... , ~n 

for the tangent space in terms of which the matrix of this quadratic form is 
diagonal. It is not difficult to see that if the gij are smooth functions on the 
points of the region, then the preferential frame ~ 1 , ... , ~n can be chosen 
to also depend smoothly on the points. Hence (locally) there exist n linearly 
independent smooth vector fields ~ 1, •• , ~n such that 

(10) 

(For example in the general theory of relativity it is convenient for technical 
reasons to take at each event an orthonormal "tetrad" of vectors ~0 , ~ 1, ~ 2 , 

~ 3 , where ~0 is time-like, and~~> ~ 2 , ~ 3 are space-like vectors.) 
Consider the pairwise commutators [~;, ~j] of these vector fields (see 

23.2.3). We may express each of these commutators in terms of the basis 
~ 1, •.• , ~n obtaining, say, 

(11) 

Note that the "structural constants" c~j are determined by the definition of 
commutation of vector fields and by the basis ~ 1 , ... , ~n ( cf. §24.5). The 
symmetric connexion compatible with the metric is determined by the 
quantities t~k defined by 

(12) 

30.1.5. Theorem. In terms of" the structural constants defined in (11) the 
quantities fjk (de_fined in ( 12)) determining the symmetric connexion compatible 
with the metric are given by 

~i _ I i j k 
rjk- 2(ckj + B;C:jCik + B;C:kci) (13) 

(where here there is no summation over repeated indices). 

PROOF. The symmetry of the compatible connexion implies that T(~;, O = 0. 
From this, (8) and (12) it then follows that 

(14) 

From (10), the compatibility condition, and (12), we obtain 

0 = V' ~k ( ~i' ~j) = V' ~Jgrs ~~ ~}) = Bj f'{k + Bi f'jk 

(where in the last expression we do not sum over the indices i,j). Permuting 
the indices i,j, k cyclically we obtain from this the following three equations: 

~. ~k c:;rL + c:krij = o, 
~k ~ . 

skrji + c:jrti = 0, 

1:/{k + c;f~k = 0. 
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On solving these equations supplemented by (14), we arrive at the desired 
formula (13), completing the proof. D 

We note finally that by using the formula (9) one can express the curvature 
tensor (in the form (R( ~ i, ~)~b ~ 1 )) in terms of the functions c~j and their 
derivatives. 

30.2. The Symmetries of the Curvature Tensor. 
The Curvature Tensor Defined by the Metric 

What symmetries do curvature tensors have? 

30.2.1. Theorem. (i) We always have R~kt = - R~tk· 
(ii) If the connexion is symmetric then 

(15) 

(iii) If the connexion is compatible with the metric, and we define Riqkt = 
gipR~kto then the tensor Riqkt is skew-symmetric in the indices i and q: 

Riqkt = - Rqikt· (16) 

(iv) !f'the connexion is both symmetric and compatible with the metric gik' then 

Riqkt = Rktiq · (17) 

PROOF. (i) is obvious. 
(ii) Let ei, i = 1, ... , n, denote the standard basis vectors (at every point) 

and write in the usual way [v\, V'1] = VkV1 - V1Vk (cf. §24.1). By formula 
(4) and the symmetry of the given connexion, we have that 

Hence (15) will follow once we have shown that 

(18) 

Expanding the left-hand side of (18), we obtain 

Now 
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From this and the symmetry of r~, it follows that (V'1eq - V' qe1) = 0, and 
similarly for the two other bracketed expressions in (19). 

(iii) It follows from (4) that for each k, I and any vector~' 

<[Vb V',]~, 0 = -guR~k~~q~j + 9u Tf:, :;: ~j 

- R HJ'j TP o~i ;;j 
- - jqkl s s + Yij kl oxP s · 

Thus if we can show that <[Vk, V' 1]~, 0 = 0 for all~' then the desired equality 
(16) will follow (by letting ~ be some suitable specific vector). Now from 
Leibniz' rule for covariant differentiation (see §28.2(28)), and the assumed 
compatibility of the connexion with the metric gij' we have 

02 . . 
OXk OX/<~, 0 = VkV/<~, 0 = V'kV'/(gij~I~J) 

= 2(<V'kV',~, 0 + <V,~, V'k0), 

and similarly, 

On subtracting these two equations and using o2 j iJx1 oxk = o2 /oxk ox', we 
obtain <[Vk, Y' 1]~, 0 = 0, as required. 

(iv) Referring to the octahedron shown in Figure 33, we see that by virtue 
of Parts (i), (ii), (iii), the sum of the quantities standing at the vertices of each 
shaded face is zero. The desired equation (17) follows by adding these van
ishing three-term sums for the faces labelled q and i and subtracting from this 
the sums for the faces k and l. D 

Figure 33 
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30.3. Examples: The Curvature Tensor in Spaces of 
Dimensions 2 and 3; the Curvature Tensor 
Defined by a Killing Metric 

The curvature tensor R~kl is a tensor of rank 4, skew-symmetric in the indices 
k and I. We obtained it in a natural way as an operator on vector fields: 

. . . oTi 
-R~kt P = R~zk Tq = (VkVz- V'1Vk)T'- Tf1 JxP, 

where Tf1 = r{:1 - rfk is the torsion tensor. 
If the connexion is symmetric then Tf1 = 0. If it is both symmetric and 

compatible with the given metric g;i, then, as we have seen, the components 
r7i and R~kl are expressible in terms of the% and their derivatives, and satisfy 
the following symmetry conditions: 

R ; R; . qkl = - qlk' 

R;qkt = g;mR;kt = - Rq;kt; 

R;qkt = Rktiq ; 

R~kt + Rjqk + Rltq = 0. 

(20) 

In this subsection we consider the Riemann curvature tensor (determined 
by the symmetric connexion compatible with the metric) in low-dimensional 
spaces, and also when the metric is a Killing metric on a matrix group. In 
particular we shall be concerned with the number of independent components 
the Riemann tensor has in these various spaces. 

The following definitions apply in all dimensions. 

30.3.1. Definition. The trace (or contraction) Rq1 = R~il of the Riemann 
curvature tensor is called the Ricci tensor. 

30.3.2. Definition. The scalar 

(21) 

is called the scalar curvature of the underlying space with metric gii. 

(i) The two-dimensional case. From the symmetry conditions (20) and the 
assumption that the underlying space has dimension 2, it follows that the 
tensor (R;qkz) is determined by the single component R 1212 ; the other com
ponents are either zero or obtained from R 1212 by permuting the indices 
and using (20). 

The following important result yields Gauss' "Theorema Egregium" (so 
we now fulfil the promise given in §8.1 to prove that celebrated theorem). 
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30.3.3. Theorem. For a 2-dimensional surface in a 3-dimensional space 
endowed with a Riemannian metric, the scalar curvature R is twice the Gaussian 
curvature. It follows that the Gaussian curvature of a surface (in contrast with 
the mean curvature) is expressible in terms of the induced metric on the surface 
alone, and is therefore an intrinsic invariant of the surface. 

PROOF. Let P be any non-singular point of the surface. As on several earlier 
occasions we choose co-ordinates x, y, z such that Pis the origin, the z-axis 
is normal to the surface at P, and the x- and y-axes are tangent to the surface 
at P. Then in a neighbourhood of P the surface is given by an equation of the 
form z = f(x, y) where grad fiP = 0. By ~7.3(20) the induced metric on the 
surface is given in that neighbourhood of P by 

(22) 

It follows from this and grad f IP = 0 that at p = (0, 0) we have ogjozk = 0, 
i, j, k = 1, 2. Hence by Theorem 29.3.2 the (unique) symmetric connexion 
r}j on the surface compatible with the induced metric, is zero at P, so that 
by (3) above at the point P we shall have 

-Rikl = ar~~ _ ar~k 
q ozk oz1 . 

From this and again from Theorem 29.3.2, we obtain 

R. kl = ~ ( o2g;, + o2gqk - o2gik - o2gql) 
•q 2 ozq ozk ozi oz1 ozq oz1 ozi ozk , 

which specializes to 

R - ~ (o2g12 o2g12 - o2g11 - azg22) 
1212 -2 oxoy + oxoy oy2 ox2 . (23) 

Now from (22) and grad fiP = 0 we infer 

o2g111 =2(j·)2 a 2 xy ' y p 
~ = 2(j. )2 02 I ox2 p xy , 

This and (23) then yield, at the point P, 

R 1212 = fxxf~Y - ./]y = det (~: j::) = K, 

where K is the Gaussian curvature of the surface at the point P (see Definition 
8.1.1). Now the scalar curvature R is defined by R = gq1R~u; hence, using 
Ri _ isR h qkl - g sqkl> we ave 

l 2 2 
R = 2 det(gq )R 12 12 = d ) R 1212 = - R 1212. 

et (g;1 g 
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Since in terms of the co-ordinates x, y we have at the point P that g = 1 and 
R1212 = K, it follows that R = 2K. Since Rand K are scalars, and so co
ordinate-independent, we conclude that R = 2K at every point. 0 

Remark. It is worth noting that in the course of the above proof we obtained 
a formula for the components of the Riemann tensor on the surface: 

R 2 Rg 
R1212 =2(g11g22- gd = 2 =Kg, g = det(g;J 

30.3.4. Examples. (a) In the Euclidean plane we have 

R 
K =- = 0. 

2 

(24) 

(b) The metric on the sphere in Euclidean 3-space is given by (see §9(3)) 

d/2 = dp 2 + sin2 :
0 

dcp 2 , 

where R 0 is the radius of the sphere and p = R 0 (}. Here we have constant 
positive curvature: K = R/2 = 1/R6 > 0 (cf. §9). 

(c) The metric on the Lobachevskian plane has the form 

d/2 = dr2 + sinh2 _!_ dm2 
Ro "~"' 

where r = R 0 x (see §10.1(11)). Here we have constant negative curvature: 
K = R/2 = - 1/R6 < 0. 

(The geometrical significance of the sign of the Gaussian curvature was 
noted in §8.3.) 

(ii) The three-dimensional case. Here the situation is somewhat more 
complicated. At each point of the underlying 3-dimensional space the 
Riemann tensor 

may by virtue of these symmetry relations be regarded as a quadratic form 
on the linear space of all skew-symmetric rank-2 tensors at the point. To 
see this denote the symbol [i, q] = - [q, i] by A and the symbol [k, I] = 
-[I, k] by B; then the symmetry relations imply 

Since R;qkt = 0 when either k = I or i = q, it follows that the Riemann 
tensor is determined by the six components RAB where A, B = [1, 2], [1, 3], 
[2, 3]. 
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The Ricci tensor R~u = Rq1 = R1q, which is symmetric of rank 2, also 
requires six components for its determination, namely the Rq1 with q > l. 
The scalar curvature R = tr(Rq1) = gq1Rq1 = gq1R~u, in contrast with the 
2-dimensional case, does not determine the curvature tensor R~kl· However 
the Ricci tensor does determine the Riemann tensor, as is shown by the 
following formula: 

R 
R,pyb = R,ygflb - R,bgfly + Rpbgay - Rpygab + 2 (g,bgfly- g,ygpb). (25) 

We leave the verification of this to the reader. (Try raising the indices a and 
{Jon both sides.) 

Note also the invariants ..1. 1 , ..1.2 , ..1. 3 , the eigenvalues of the Ricci tensor, 
defined as usual by 

det(Rq1 - A.gq1) = 0. 

Since R is the trace of the Ricci tensor, we have ..1. 1 + ..1. 2 + ..1. 3 = R. 
To conclude we remark that the standard phrase "a space of positive 

curvature" refers to a 3-dimensional space whose Riemann tensor RAB 

defines a positive definite quadratic form on skew-symmetric rank-2 tensors. 
(On the other hand a space of dimension n > 3 is said to have positive 
(resp. negative) curvature if R,pyb~a'1f1C'1~ > 0 (resp. < 0).) 

(iii) The jour-dimensional case. In four dimensions the Ricci tensor in 
general no longer determines the curvature tensor; however it continues to 
be of great importance, for example in the general theory of relativity. In 
that theory the underlying space is of course taken to be 4-dimensional 
space-time, and the gravitational field to be the metric gii• i,j = 0, 1, 2, 3. The 
properties of matter are combined in the "energy-momentum tensor" Tij 
(see §21.2(25)). Einstein was led by various criteria to the following equations 
for the metric gii of space-time: 

Rij- !Rgii = A.T;i, 

In the absence of matter these become 

or Rij = 0. 

The metric has also to satisfy the requirement that its diagonal form have 
one positive and three negative entries. (For details and explanations see 
§37.4.) 

(iv) The curvature tensor defined by a Killing metric. Let G be one of the 
"classical" groups of matrix transformations and let g be its Lie algebra, 
which we assume to be endowed with a Killing metric (or form) < , )0 

(see §24.4). As in §24.3 for each X, Y E g we denote by Lx, Ly the left-invariant 
vector fields on G defined at each point A of G by L x(A) = AX, Ly A = A Y. 
We introduce a connexion on G by defining 

(26) 
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Since by Lemma 24.3.10 for each A E G the tangent space to G at A is com
prised of the matrices of the form Lx(A), X E g, it follows that formula (26) 
does indeed fully determine a connexion on G. (To see that (26) defines a 
covariant differentiation we need to verify conditions (i) to (iv) of §28.2; we 
shall, however, omit the details.) 

30.3.5. Lemma. The connexion defined by (26) is symmetric and compatible 
with the Killing metric on G (determined by the given Killing form on g). 

PROOF. For the symmetry we need to show that T(Lx, Lr) = 0 for all X, 
Y E g (see (6)). Now by (8) 

T(Lx, Lr) = VLxLr- VLyLx- [Lx, Lr] = tLrx. YJ- tLrr.x1 - Lrx.YJ = 0. 

We now prove the compatibility of the connexion. It is easy to see that 
the compatibility of a connexion with a metric determining at each point a 
scalar product < , ) of tangent vectors, is equivalent to the condition that 
for all vectors ~. 1], ((at each point) we have 

a~<11. o = <V~1], o + <11. v~o. (27) 

Recall that the Killing metric on G is given at each A E G by 

(Lr(A), Lz(A)) = (X, Y) 0 , 

Lr(A), Lz(A) being typical tangent vectors to Gat A. We see from this that 
(Lr(A), Lz(A)) is independent of A, so that oLx(Ly, Lz) = 0, i.e. in the 
present context the left-hand side of (27) is identically zero. The right-hand 
side is 

(VLxLy, Lz) + (Ly, VLxLz) = t{(Lrx.YJ• Lz) + (Ly, Lrx.z])} 

= t{([X, Y], Z)0 + (Y, [X, Z])0 } = 0, 

where in the last line we have used the defining property of a Killing form, 
namely that with respect to such a form the linear operator ad X is skew
symmetric (see 24.4.1 ). This completes the proof of the lemma. 0 

The following result is an easy consequence of this lemma, formula (9), 
and Jacobi's identity. 

30.3.6. Corollary. The curvature of the symmetric connexion compatible 
with a Killing metric< , ) on a matrix group G is given by the formula 

R(Lx, Ly)Lz = ±Lrrx.r].ZJ· 

It follows from the definition of a Killing metric that 

(R(Lx, Lr )Lz, Lw) = t([X, }], [Z, W]). (28) 

Finally we characterize the geodesics corresponding to the symmetric 
connexion compatible with a Killing metric on the group G. Since translations 
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(i.e. multiplications of G by fixed matrices from G) are motions of the Killing 
metric on G, it suffices to characterize the geodesics passing through the 
identity of G. 

30.3.7. Theorem. The geodesics with respect to a Killing metric on a matrix 
group G, which pass through the identity ofG, are precisely the one-parameter 
subgroups of G. 

PROOF. The velocity vector of a one-parameter subgroup A(t) = exp(tX) 
where X E g and t is a real parameter, is the left-invariant vector field Lx 
(or rather its restriction to the curve A(t)). Hence 

(29) 

which proves that the one-parameter subgroups are geodesics. 
Conversely, since for any matrix X E g there always exists a one-parameter 

subgroup of G with initial velocity vector X, it follows from the uniqueness 
of the geodesic with specified initial conditions, that all geodesics are one
parameter subgroups. 0 

30.4. The Peterson-Codazzi Equations. Surfaces of Constant 
Negative Curvature, and the "sine-Gordon" Equation 

Let r = r(xl, x 2) be a surface in Euclidean space ~3 , with induced metric 
gij. By §8.1(3), the second fundamental form bijdxi dxi on the surface is 
defined by 

bij = (o~i (:;;), n), (30) 

where n denotes the unit normal to the surface and < , ) denotes the 
Euclidean scalar product in ~3 . 

The following result provides means for calculating the components of 
the symmetric connexion compatible with the induced metric gii· 

30.4.1. Proposition. The components of the symmetric connexion compatible 
with the metric induced on the surface r = r(x 1 , x2) by the Euclidean metric 
in ~3 , are given by the following formulae: 

k I o2r or) lk 

rij = \oxi oxi' ox1 g (i,j, k = 1, 2), (31) 

or, equivalently, 

(32) 
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PROOF. By §7.3(19), 9u = (rx'' rxj ), whence 

The equation (31) follows easily from this, Christoffel's formula (§29.3(13)), 
the symmetry relation nj = rJ;' and the fact that there are only two variables 
xl, xz. 

To see (32) note first that n is perpendicular to orjax 1, c!rjox2 • It follows 
from (30) that the component of o2rjoxi oxi in the direction of n is bu. If 
we then write 

we obtain 

It is then immediate from (31) that x7i = rt, as required. This completes 
the proof of the proposition. 0 

Writing briefly or/ox;= r;, we have (at each point of the surface) a refer
ence frame (r ll r 2 , n ), with n perpendicular to r 1 and r 2 , which depends 
smoothly on the points of the surface. Since n is a unit vector in Euclidean 
3-space, we have by 5.1.1 that on/ox; is perpendicular to n. Differentiating 
the equation (n, ri) = 0, we obtain (using (30)) 

whence (taking into account that n l_ onjoxi) 

(33) 

From this and (32) (and the equality of the mixed partials) we obtain 
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whence it follows (using the independence of r~> r 2 ) that 

arL ar:k rs rt rs rt b bl b bl ~- ~ + ij ks- ik js = ij k- ik j' 
uX ux1 

(34) 

(35) 

The equations (34) are called the "Gauss equations". Note that the left
hand side of (34) is just the general component of the curvature tensor 
R~jk; it is not difficult to see that the equations (34) are simply a reformulation 
of the equality of the scalar curvature with the double of the Gaussian 
curvature (Theorem 30.3.3). (Verify this!) 

The equations (35) are the "Peterson-Codazzi equations". In deriving 
these equations, we have shown that they provide necessary conditions for a 
form bij(x 1, x 2 ) to be the second fundamental form of a surface in Euclidean 
IR 3 with induced metric gij (the nj occurring in (35) being given by 
Christoffel's formula). It can be shown that in fact they are also sufficient 
conditions. 

Finally, suppose our surface has negative Gaussian curvature: K < 0. 
By §8.3(26) this implies that at each point of the surface we have bf 2 -

b 11 b22 > 0, so that the discriminant of the quadratic form bijdxi dxj is 
positive; it follows that this quadratic form factors as a product of two 
linear forms. Hence there exist (locally) co-ordinates p, q on the surface in 
terms of which the quadratic form is 

(36) 

i.e. the terms in dp2 and dq 2 vanish. If in addition to being negative, K is 
constant, then by differentiating the equation K(gppgqq- g~q) = - b;q, 
and using the Peterson-Codazzi equations and Christoffel's formula 
(§29.3(13)), one obtains (we leave the details to the reader) 

(37) 

Now it is easy to see that there is enough latitude in the choice of local co
ordinates p, q satisfying (36) for them to be adjusted so that, locally, gpq i= 0. 
Then from (37) it follows that 

ogpp = o 
oq , 

ogqq = o 
up , 
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so that gPP is a function of p only, and gqq is a function of q only. This allows 
us to define new local co-ordinates x, y on the surface, by 

X = r ..;g;;, dp, 
Po 

y= fq ~dq. 
qo 

(38) 

In terms of these new co-ordinates the first and second fundamental forms 
are: 

(39) 

We now put gxy = cos w. (Here w is the angle between the tangent vectors 
(at the point) parallel to the co-ordinate axes.) From the Gauss equations 
(34) (or from (24)) with K = -1, it follows that R 1212 = (bxy)2 = - sin2 w. 
By the definition of the curvature tensor (see the left-hand side of (34)) 

If one uses Christoffel's formula to express the right-hand side of this equation 
in terms of the derivatives of g12 and g, one eventually ends up with (we 
again leave the details to the reader!) 

wxy = sin w. (40) 

This equation is known in the physics literature as the "sine-Gordon" equa
tion. The change of variables x = (r + ~);J"i, y = (r - ~)/}2, brings it 
into the form 

(41) 

30.5. Exercises 

1. Show that the solutions of equation (41) above which are independent of ~ and 
decrease as 't" --> + oo, correspond to the surface of revolution of curvature K = -1, 
given by 

1 + J1- x 2 - y2 

z =- j1- x 2 - i + ln---'--===-
Jxz + yz 

(This is sometimes called "Beltrami's pseudosphere"; cf. beginning of §13.3.) 

2. Prove formula (25) of §30.3. 
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3. Let xi(t), i = 1, 2, be a piecewise smooth, closed curve bounding a region U of a 

surface in Euclidean 3-space. Show that !'J.cp = SJu KJg dx 1 A dx 2 (where K is 
the Gaussian curvature) is the angle through which a vector rotates in being parallel
transported around the curve xi(t). 

4. If in the preceding exercise the curve consists of three geodesic arcs, and if K is 
constant, show that the sum of the angles of this geodesic triangle is n + Ku where 
u is the area of the triangle. Consider the cases of the sphere and Lobachevskian 
plane. 

5. Let ~ 1, ••• , ~"be vector fields defined on ann-dimensional Riemannian (or pseudo
Riemannian) space, such that (~i• ~j) = gij. Write [~i• ~j] = c~j~k· Compute the 
components r~j determining the symmetric connexion compatible with the metric. 
(Here V';j~i = ft~k• as in Theorem 30.1.5.) 

6. Denote by ~(e) the result of parallel-transporting a vector ~ = W) around the 
boundary of a square of side e with its sides parallel to the co-ordinate xi- and 
xj-axes. Prove that 

7. Establish "Bianchi's identities" for the curvature tensor of the symmetric connexion 
compatible with a given metric: 

8. From the preceding exercise deduce the following equation for the divergence of 
the Ricci tensor: 

9. Let X 1, •.. , X" be orthonormal vector fields in an n-dimensional Riemannian 
space, and denote by w 1, ..• , w" the dual basis of 1-forms: w;(X)=bij. Define 1-forms 
wij and 2-forms Qij by 

(Here V'xkXj = r~kXi, (R(Xb X 1)Xj, Xi)= Rijkl• and summation is understood 
to take place over repeated indices.) 

(i) Prove that wij = - wji· 
(ii) Deduce the following "Cartan structure equations": 

dwi = - wj A wij• 

dwij = wil A wlj - Qij• 

dQij = - Qil A W1j + Wil A Qlj· 
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10. In the notation of the preceding exercise, define forms Q<kl and (in even dimensions) 
Qby: 

Q = ei, ... inQ. · A··· A Q. · 
ltl2 ln-lln (n =2m). 

(i) Prove that the forms Q<kl• Q are independent of the original orthonormal 
basis X 1, ••. , x •. 

(ii) The forms n(k)• n are closed (i.e. dQ(k)• dQ = 0). 
(iii) Find expressions for these forms in terms of co-ordinates. 
(iv) When n = 2, the form n becomes n = Kj{;dx 1 A dx 2, where K is the 

Gaussian curvature. 
(v) Find formulae analogous to those of this and the preceding exercise when the 

metric is pseudo-Riemannian. 



CHAPTER 5 

The Elements of the Calculus of 
Variations 

§31. One-Dimensional Variational Problems 

31.1. The Euler-Lagrange Equations 

In §29.2 we defined the geodesics x; = xi(t) relative to a given connexion qk 
by means of the equation 

VT(T) = 0, 

where T; = dx;/dt is the velocity vector of the curve; in other words the 
geodesics are the solutions of the equations 

d2x; . dxi dxk 
df + r]kdtdt = O. (1) 

If the underlying space is endowed with a metric gii• and if the connexion qk is 
symmetric, and compatible with that metric, then as we have seen the qk are 
expressible in terms of the gii• so that the geodesics are determined by the 
metric. Apart from their defining property (that parallel transport of the 
tangent vector to a geodesic along the geodesic results again in the tangent 
vector), what other geometrical properties are possessed by geodesics? 
Everyone is familiar with the common-sense idea of a geodesic arc joining 
two points as having the shortest length of all arcs joining the points (at least 
locally, i.e. for points sufficiently close together). We shall now clarify this 
idea. 

In examining this expected "extremal" property of geodesics we shall find 
it useful to take a more general stance. Thus suppose L(x, ~) is a function 
defined on pairs (x, ~)where xis any point x = (xl, ... , x") of the underlying 
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space and ~ is any tangent vector at x. Let P = (xL ... , x1) and Q = 
(xi, ... , x2) be any two (fixed) points, and consider the set of all smooth arcs 
y: xi= xi(t),a :$; t :$; b(whereaandbarearrangedtobethesameforallarcs), 
joining these two points: xi(a) = xL xi(b) = x~. For each arc y define 

S[y] = LQ L(x(t), x(t)) dt. (2) 

Thus Sis a functional; it associates with each arc y from P to Q, a number S[y ], 
called the action. The question of interest to us is: For which y is the action 
S[y] least? 

31.1.1. Examples. (a) Take L(x, 0 to be g;;~i~j. Then S[y] = J~ L(x, .X) dt = 
J~ g;jxixj dt = J~I.XI 2 dt. For which arc(s) y:x=x(t) does the functional S[y] 
take its least value? 

(b) Take L(x, ~) = .J%f[1 = J<[0 = I~ 1. Thus here L(x, ~)is just the 

length of the vector ~' and S[y] = J~ J g;jxixj dt is the length of the arc y. 
Hence in this case the above question becomes that of finding the arc(s) from 
P to Q of shortest length. 

(c) Suppose the metric is Euclidean, i.e. gij = b;j· Set L = (m/2)b;j~i~j -
U(x), where m is a constant and U(x) is a function of the points of the space; 
then 

S[y] = LQ [ ~ ~ (x;)2 - U(x)J dt. 

The arc y along which S[y] is least in this case is just the trajectory of a point
particle of mass min a force field!;= -oUjoxi. 

The following classical theorem gives necessary conditions (in the form of 
partial differential equations-the "Euler-Lagrange equations") for an arc y 
to minimize S[y]. 

31.1.2. Theorem. If the functional S[y] = J~ L(x, .X) dt attains its minimum 
over all smooth arcs y at the smooth arc Yo: xi = xi(t), i.e. ifS[y0 ] :$; S[y ]for all 
smooth arcs y from P to Q, then along the arc y0 the following equations hold: 

:t (~~i) - ~~i = 0, i = 1, ... , n, (3) 

where 

oL = oL(x, ~) I 
"'·i ::>J;i •• ' uX U<., .;=x 

(Here in L = L(x\ ... , xn, ~ 1, ... , ~n), the variables x and ~ are regarded 
as independent; only after completing the calculation of the derivatives do we 
put~; = dx;/dt, i.e. do we take~ to be the tangent vector to Yo.) 
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PROOF. Let IJ; = IJ;(t), a :-:::; t :-:::; b, be any n smooth functions satisfying 
IJi(a) = 0 = IJi(b). Consider the expression 

I. S[y0 + EIJ] - S[y0 ] _ !!_ S[ ] I . 1m - Yo + EIJ e=O, 
t:~O £ dD 

here y0 + BIJ is the arc xi = xi(t) + eiJi(t) which also joins P to Q and which is 
close to y0 for small c. Since as a real-valued function of the real variable e, 
S[y0 + eiJ] takes on a minimum value at s = 0, elementary differential 
calculus tells us that 

d 
de S[yo + eiJ]I,=o = 0. 

On the other hand, by differentiating the expression for S[y0 + eiJ] under the 
integral sign we obtain 

d Jb{aL . aL ·} 0 = de S[yo + f.IJ] le=O = a axi IJ'(t) + a~i ry' dt, (4) 

where the integral is taken along the arc y0 , i.e. xi = x;(t), ~i = xi(t). 
Integrating by parts we find that 

J b aL . (aL ·) (aL ·) Jb . d (aL) 
a a~i ry' dt = a~i IJ' t=b - a~i IJ' t-a - a IJ' dt a~i dt, 

whence, recalling that IJi(a) = IJi(b) = 0, we obtain 

J
b 8L . Jb d (aL) . 
a a~i ry' dt = - a dt a~i IJ' dt. 

Substitution from this into (4) yields the following equation, valid for any 
smooth vector function IJ(t) vanishing at the ends of the time interval [a, b ], 
under our hypothesis that the curve y0 : xi = xi(t) minimizes the functional 
S[y] on the set of all smooth arcs joining P to Q: 

d Jb [aL d aL] . ds S[yo + r.IJ]I,=o = a axi- dt a.xi '1' dt = o. (5) 

It follows almost immediately that 

. aL d aL 
1/J'(t) = axi - dt a.xi = O, i = 1, ... , n, 

since if this were not so, i.e. if we had 1/J;(t) i= 0 for some i and some t = t0 , 

a :-:::; t0 :-:::; b, then (assuming as usual sufficient smoothness) we should have 
1/Ji(t) i= 0 on an interval of values oft, and then by choosing IJi(t) suitably (for 
instance by taking IJ; = 1/J;(t)f(t) where .f(a) = f(b) = 0 but f(t) > 0 for 
a < t < b, so that the integrand in (5) is positive on a subinterval of [a, b ]) we 
could force the integral in (5) to be non-zero. This completes the proof of the 
theorem. 0 
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The solutions of the equations (d/dt)(iJLjiJxi) = iJLjiJxi are called the 
extremal arcs, or extremals of the functional S. 

We conclude this subsection by introducing some conventional termin
ology.t 

(i) The function 

L = L(x, ~) = L(x, :X) 

whose integral we seek to minimize is called the Lagrangian. 
(ii) The energy E is defined by 

(6) 

. iJL . iJL 
E = E(x, :X) = E(x, ~) = ~· 0~; - L = :X' ox; - L. (7) 

(iii) The momentum is the covector defined by 

iJL iJL 
Pi = axi = 0~;· (8) 

(To see that this is a covector use the transformation rule (i = (iJzijiJxi)~' for 
vectors.) 

(iv) The force, also a covector, is defined by 

iJL 
/; = ox;· (9) 

(v) The Euler-Lagrange equation is the (covector) equation (3) of Theorem 
31.1.2, i.e. the equation for the extremal curves: 

(vi) The expression 

JS iJL d iJL 
Jx; ox; - dt ox; (10) 

is called the variational derivative of the functional S[y]. From (5) we see 
that the variational derivative may alternatively be defined as that quantity 
JSjJxi satisfying, for all smooth rJ vanishing at a and b, the following 
equation: 

(11) 

t Note that the extremals corresponding to a Lagrangian L will also be the extremals correspond
ing to the Lagrangian i(t, x, .X) = L + (d/dt)f(x, t), where f is any suitably well-behaved 
function. The corresponding energy and momentum are then given respectively by E = E -
(d/dt)f(x, t)andft = p +of/ox. 
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31.2. Basic Examples of Functionals 

(a) If L = [(m/2) L; (~;) 2] - U(x), where U is a function of the points x of the 
underlying space, then_[; = - oU joxi, Pi = mxi, and 

and the Euler-Lagrange equations become 

that is, 

whence, using gkmgik = c5j, we obtain 

··m + km _J + _--'.!. •i •j _ 0 ( ag .k 1 ag. ·) 
X g OXi 2 OXk X X - . 

Now it is easily verified that 

ogjk ·i ·j- l. ·i ·j(agik + ogjk) . X X - 2x X . . . 
ox' ox1 ox' 

Substituting from this in (14) we obtain finally 

where 

··m + rm . i . j - 0 X ijX X - , 

(12) 

(13) 

(14) 

(15) 

(16) 

whence we see that the q; are just the components of the symmetric con
nexion compatible with the metric gij! We frame this result as a 

31.2.1. Theorem. If L = gijxixi = <x,x)= lxl 2 , S[y] = J~ lxl 2 dt, then the 
Euler-Lagrange equation for the extremal (in particular minimal) arcs is 
equivalent to the equation for the geodesics relative to the metric gii. 
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(c) If L =~=I .XI, then as we know the expressionS= J~ I .XI dt, 
the length of the arc of the curve x = x(t) joining P and Q, is independent of 
the parameter t. The Euler-Lagrange equations (djdt)(8Lj8xk) = 8Lj8x\ 
take on in this case the form 

(17) 

If we parametrize our curve x = x(t) by a parameter proportional to the 
natural parameter /, i.e. if t = const. x I, then ~ = I .X I = con st., and 
(17) becomes 

which has the same form as equation (13) in example (b) above, but in the 
present case holds only under the assumption that the curve x = x(t) is 
parametrized by a parameter proportional to the natural one. Henceforth 
in this chapter we shall give the term "natural parameter" a wider meaning 
than hitherto, allowing it to embrace also parameters which are merely 
proportional to the natural parameter. Note that in the present example we 
may indeed restrict the parameter to being natural since arc length is inde
pendent of the parametrization of the arc. 

We summarize the above in the following 

31.2.2. Theorem. The Euler-Lagrange equation for the extremal (in particular 
minimal) arcs of the functional corresponding to the Lagrangian L = ~' 
is equivalent to the equation for the geodesics relative to the metric gii• provided 
the curves are parametrized by natural parameters. Thus a smooth arc of smallest 
length among all smooth arcs joining P and Q, will, provided it is parametrized 
by a natural parameter, satisfy the equation defining the geodesics. 

We now consider two properties of the energy and momentum correspond
ing to an arbitrary Lagrangian. 

The first property is the celebrated "law of conservation of energy": 
Along an extremal the energy E is constant: 

(Recall there that L = L(x, 0 depends only implicitly on t.) 
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The second property is the "law of conservation of momentum": 

If the co-ordinates x 1, .•. , x" are chosen so that oLjoxi = 0, then along an 
extremal we shall have Pi = (d/dt)(oLjoxi) = 0. This is immediate from the 
Euler-Lagrange equations. Co-ordinates xi for which oLjfJxi = 0, are called 
cyclic co-ordinates. 

We now give two examples illustrating these "laws". 

(ex) (Cf. example (b).) If L = !giixixi, then E = L = !lxl2• The law of 
conservation of energy tells us that along every extremal of the functional 
S = J L dt, we shall have dE/dt = 0. Hence the speed I xI with which extremals 
(which are all geodesics-see (b)) are traversed, is constant, so that the 
parameter t is natural. 

Remark. If the Lagrangian L(x, x) is homogeneous in ~ = x, ,.Q!_$gree of 
homogeneity 1, i.e. if L(x, A.~) = A.L(x, ~)(for instance if L = v' <~. 0 ), then 
the energy E is identically zero along all curves, and there arise no restrictions 
on the parametrization of the extremals. 

(p) If a surface in Euclidean 3-space is given in cylindrical coordinates by 
an equation of the form f(z, r) = 0 (so that it is a surface of revolution), then 
we may take as local co-ordinates on the surface the angle qJ together with 
either r or z. As we know, the Euclidean metric is given in terms of cylindrical 
co-ordinates by 

dl2 = dz2 + dr2 + r2 dqJ 2 • 

If the surface is given locally by an equation r = r(z), then the induced metric 
is 

(Here gzz = 1 + (dr/dz)2 .) The Lagrangian for the geodesics is then 

L = !(gzzZ2 + r2 (z)<iJ2) 

(or L = !{g,,r2 + r2 4J 2 ) in terms of the local co-ordinates r, qJ on the surface 
z = z(r)). From the conservation laws we know that the energy E = L, and 
the components p"' = oL/o<P = r 24J, Pz = oLjoz = gzzz, are constant along 
each geodesic. Let ez, e"' be the standard basis vectors at the point (z, qJ) of the 
surface; the various scalar products of these vectors at that point are as 
follows: 

Let z = z(t), qJ = qJ(t) be the parametric equations of a geodesic (i.e. solutions 
of the equations defining geodesics on the surface). The angle t/1 between the 
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velocity (or tangent) vector v = (z, ciJ) to this geodesic, and the vector e"', is 
given by 

Hence r cos 1/1 = p"'ffi, and so r cos ljJ is constant along the geodesic. We 
have by these means thus proved the following 

31.2.3. Theorem (Clairaut). The quantity r cos 1/1 is constant along each 
geodesic of any surface of revolution in Euclidean ~3 . 

We note finally that since p"' = r 2 ciJ and 2£ = gzzz2 + r 2 ciJ 2 = gzzz2 + 
p~/r2 are constant along each geodesic on the surfacer = r(z}, it follows that a 
geodesic z = z(t}, cp = cp(t) corresponding to prescribed values of E and p"', 
will be a solution of the following "completely integrable" pair of differential 
equations: 

dcp = rf(z) dt, (18) 

EXERCISES 

Suppose that higher derivatives enter into the Lagrangian; for instance let 

L = L(t, x, x, x, ... , x<k)); 

S[y] = f L(t, x, ... , x<k)) dt. 
y 

Prove that the extremals of the functional S[y] satisfy the "Euler-Lagrange" equation 

bS oL d oL d2 oL k dk oL 
-=----+--- ···+(-1) --=0. 
bx ox dt ox dt2 ox dtk ox<k) 

§32. Conservation Laws 

32.1. Groups of Transformations Preserving a Given 
Variational Problem 

The law of conservation of momentum, which was derived in the preceding 
section, can be given a more convenient invariant form by utilizing the con
cept of a one-parameter group of transformations (see §23). 
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Suppose that in the space IR" we are given a local one-parameter group of 
local transformations S" - oo < T < oo; recall from §23 that such a group 
has the following properties: 

(i) corresponding to each point P of IR" there is a real number To > 0 and a 
neighbourhood U of P on which for IT I < To the transformations 
Sr: U--+ IR" are defined (and smooth); 

(ii) S0 = 1 (the identity transformation) and 

(1) 

wherever these transformations are simultaneously defined. 

Recall from §23 also that there is associated with each local one-parameter 
group of transformations a vector field (Xi) tangential to the trajectories 
Six): 

. d 
(X')= X(x) = dT Six)lr=o' (2) 

and that, conversely, from the vector field (Xi) the group of transformations 
Sr can be recaptured via a standard theorem on the existence and uniqueness 
of solutions of ordinary differential equations. In fact for each point x E IR" 
where (Xi) is non-zero it is at least intuitively clear that there is a neighbour
hood U of the point, on which co-ordinates yl, ... , y" can be introduced with 
the property that for all small enough T the transformation Sr has the form 

Sii, ... ' y") = (y 1 + T, y2 , ••. 'y"). (3) 

This version of the existence theorem for solutions ofthe appropriate ordinary 
differential equations will be useful to us in what follows. 

32.1.1. Definition. We shall say that a one-parameter group of transformations 
Sr preserves a Lagrangian L(x, 0 where ~ is attached to (i.e. tangent at) the 
point x, if 

(4) 

where (Sr)* is the map between tangent spaces defined as in §22.2(6). 

If we write x(T) =Six) (so that x = x(O)), and ~(T) = (Sr)*~ (so that 
~ = ~(0)), then the left-hand side of (4) becomes 

dL = xi(T)~ + ~ d~i(T). 
dT OX 1(T) 0~ 1(T) dT 

Now by §22.2(6), we have ~i(T) = ~i(oxi(T)/oxi) (regarding xi(T) as also a 
function of the xi(O), j = 1, ... , n), whence 

dL = Xi(T) ~ + ~ ~j ~ (dxi(T))· 
dT ox'( T) 0~ 1( T) OX1 dT 
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Putting r = 0 we obtain as a consequence of (4) that 

(5) 

which is thus a necessary condition for the Lagrangian to be preserved by the 
group of transformations Sr. (Note that the left-hand expression in (5) might 
naturally be called the Lie derivative of L(x, ~)along the field (Xi)-cf. 23.2.1.) 

32.1.2. Theorem. If a Lagrangian Lis preserved by a one-parameter group of 
transformations Sr then on any extremal ofL the" component" of the momentum 
along the associated vector field is conserved: 

d ( . aL) d . 
dt X' a xi = dt (X'pJ = o, (6) 

where (Xi) is the vectorfield defined (as above) by X(x) = (d/dr)Sr(x)lr=o· 

PROOF. Let x E !Rn be such that X(x) # 0; then as noted above (see (3)) there is 
a neighbourhood U of x on which there exist co-ordinates y1, ... , yn in terms 
of which the action of Sr takes the simple form Sii, ... , yn) = (y1 + r, 
y 2 , •.• , yn). Since by hypothesis L is preserved by the transformation S" it 
follows that changes in y1 have no effect on L, i.e. 

8L(y, y) = O 
ay~ - . 

It follows from the Euler-Lagrange equations that on an extremal y = y(t) 
of L, we shall have 

:t (:~) = 0. 

Now in terms ofthe co-ordinates y 1, ... , yn the vector field X calculates out as 
(1, 0, ... , 0), i.e. as the unit vector in the direction of the y 1-axis. Hence 8Lj8yt 
is the "partial" directional derivative (with respect to the tangent vector 
variable Ji) of L along the vector field X. Since in terms of the original co
ordinates x\ ... , xn this directional derivative is given by Xi(8Lj8xi), the 
desired conclusion (6) follows. 0 

32.2. Examples. Applications of the Conservation Laws 

(a) According to the general physical principle known as the "Principle of 
Least Action," the world-line of a relativistic, free particle of positive mass m 
should be a time-like curve in Minkowski space JRi, 3 with co-ordinates 
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x0 = ct, x 1, x 2 , x 3 , extremizing one or the other of the following two actions: 

me Jfdx dx) sl = 2 \d-c:' d-c: d-c:, 
j dx, dx) = (dx0

)
2 

\d-c: d-c: d-c: 
(7) 

s2 = -mel= -me f \~~· ~~) d-c: = -me f dl. (8) 

It is easy to verify (see §31.2) that the extremals of the two functionals in (7) 
and (8) coincide. It turns out that for purposes of comparison with classical 
mechanics it is more convenient to work with the action S2 given by (8). 

Although in (8) any parameter -c: may be used, the fact that the world-line 
is time-like leads one to the obvious choice -c: = t = x0 /c. With this parameter, 
(8) becomes 

s2 = -mel= -me2 f J1- (~r dt, 
(9) 

(Thus w is the 3-dimensional speed of the particle. The quantity 1/e is called the 
proper time.) Following the usual convention we write 

R L = -mc2 
' e 

(10) 

so that S2 = J L dt; note that the Lagrangian Lis in (10) expressed in terms of 
3-dimensional entities. The energy and momentum corresponding to this 
Lagrangian are given by (see §31.1) 

aL 2 
E= ""'--L= me 

x ox" R2' 1--c2 

Pcx=R2' 1--
e2 

dx"' 
where w"' = dt' IX= 1, 2, 3. 

We therefore have 

E = me2 ( 1 + ~: + · ·} 

Pcx = mw"'(l + .. ·). 

(11) 

(12) 

Thus for small wjc, we obtain to a first approximation the classical formula 
for the momentum, since then 

IX= 1, 2, 3 

(see Example (a) of §31.2), while for the energy we obtain 

mw2 
E::::::: me2 + - 2-, 

(13) 

(14) 
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which differs from the classical formula by the constant me2. Note also the 
identity 

From this we see that as E runs through the positive reals, the point (E, ep1, 

ep2 , ep3) traces out a 3-dimensional surface, the so-called "mass hyperboloid" 
of the particle, in Minkowski space ~Ri. 

The above treatment (which might be called "3-dimensional formalism") 
has two shortcomings: the energy and momentum of the particle seem quite 
disparate concepts, and the time co-ordinate plays a very special role. In 
order to eliminate these special features we now turn to the action (7) given by 

me f/dx dx) sl = 2 \dr' dr dr. 

It follows from Example (tx) of§31.2 that the parameter r will automatically be 
natural (in the broader sense of §31.2) for the extremals corresponding to this 
action. As in the general definition (§31.1(8)) of momentum, we define the 
4-momentum P; =(Po. Pt• Pz, P3) by 

Hence 

oL 
Pi= ox'i' 

- oL tO 
Po = oxto = mex ' 

i = 0, 1, 2, 3, 

oL 

. dx; 
where x" = dr . 

P- -mexta, a= oxta = (l = 1, 2, 3. 

If, using the Minkowski metric, we raise the index of the covector P;. we obtain 
the vector 

i = 0, 1, 2, 3. 

As noted above, we know that along an extremal r is a constant multiple of l; 
if we make the (modest) assumption that r = i, i.e. if we make the (mild) 
change of parameter ensuring this along a particular extremal, then we obtain 

~ dl = e...; 1 - C2- dt, 

-o tO me E 
p =mex =n=-c· 

2 

(16) 
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where w, E, p~ = p~ are defined as before. We conclude that: 

(i) The (vector) 4-momentum (pi) of a particle is linked to its 3-dimensional 
energy and momentum by the equations 

Po= E/c, (17) 

(ii) Under co-ordinate changes (in particular Lorentz tran~formations) the 
energy-momentum vector (E/c, p 1, p2 , p3) transforms like a 4-vector; the 
possible 4-momenta of a particle of mass m > 0 lie on the mass hyperboloid 

Ez 3 

2 _ pz = (p-o)z _ L (p~)z = mzcz, 
c ~=1 

(18) 

which has induced on it (in the usual way) a Lobachevskian metric. 

In particular if we change to a co-ordinate frame x' moving uniformly with 
speed v in the direction of the x 1-axis, then from §6.2(20) and the transforma
tion rule for vectors we obtain: 

E' v _11 - + -p 
c c E 

c F-~' LC. 

Pz = Pz, P3 = P~· 

E'v 
-2 +p; 
c 

I.e. Pl =n2; 
1--cz 

(19) 

For small v/c these yield (approximately) E :::::: E' + p 1 v, p1 :::::: E'v/c2 + p'1 

(:::::: mv + p'1 if w /c is also small). 

(b) The most fundamental of the postulates of the general theory of 
relativity is the hypothesis ("Einstein's hypothesis") whereby the gravita
tional field is identified with a metric gij (of signature ( + -:- - -) at each 
point) on 4-dimensional space-time. To put it more precisely, it is assumed 
that in the absence of other (i.e. non-gravitational) forces, a test particle of 
arbitrary mass m > 0 in a gravitational field will move along a time-like 
geodesic extremizing the action 

sl = ~c f (x, .X) dr, (20) 

while a particle of zero-mass will move along a null geodesic, i.e. one along 
which (.X, .X) = 0 (see §6.1). 
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A weak gravitational field is defined to be a metric g~b which can be ex
pressed as a series in powers of 1/c of the form 

_ (0) -2 (2) 0(1) gab - gab + c gab + c3 ' 

where g~l' is the Minkowski metric( 
-1 

-1 

(21) 

0
)(so that the field is 

-1 

almost "flat"), the terms in 1/c are zero, and where the scalar cp(x0 , x), 
x 0 = ct, x = (x 1, x 2 , x 3 ), is the classical gravitational potential. (The reason 
for defining a weak field in this way will appear in Proposition 32.2.2 below. 
See also §39.2.) 

32.2.1. Definition. A time-like geodesic x" = x"(t), t = x 0 /c, of a weak 
gravitational field is said to be slow if I dx"/dt I ~ c, a = 1, 2, 3. 

Taking the parameter r to be the proper time 1/c, we have 

dl 
dr =- = 

c 

I dxa dxb 
-zgab -d -d - dt, c t t 

so that in the case of a weak field we shall have 

dr = [1 + oU2)] dt. 

Hence in the equation for the geodesics 

xo 
t = --

c ' 

(22) 

(23) 

where, as we have seen, the parameter is natural, we may to within an error 
O(l/c2 ) replace dr by dt. 

32.2.2. Proposition. In a slowly varying weak field the equation for the slow 
geodesics has theform 

tJ. = 1, 2, 3, (24) 

which approximates Newton's equationfor the motion of a particle in a classical 
gravitational field with potential cp. 
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PRooF. By "slowly varying" we mean that the quantities ogab/ot, ogab/oxa, 
o: = 1, 2, 3, are small (in absolute value) relative to c. The Christoffel symbols 
are given by 

Now from (21) and the above condition on ogab/ot, ogab/oxa, it follows that the 
partial derivatives 8gab!ox0 = (ljc)(ogab/ot) are of order 0(1/c3), while the 
partial derivatives ogab!oxa, o: = 1, 2, 3, are of order O(ljc2). Since, again by 

(21), gab ~(I -I -I 0
),it follows that in (23) (with t replacing r) all 

0 -1 
terms involving a Christoffel symbol are of order at most 0(1/c) except 
r~0 x0x0 = r~0 c2 + 0(1/c). (It is here that the slowness condition is ex
ploited.) For r~o we have 

= :z ~=a+ o(:3). 0: = 1, 2, 3. 

The desired conclusion now follows from (23) (with tin place of r). D 

(c) The behaviour of a classical system of n mutually interacting particles 
is described by the Lagrangian (in IR 3") 

n m-xz 
L = i~l T - U(xl, ... , Xn), X; = (xf, xf, Xf), (25) 

where U =! L;,ei V(x;, x), and by xf we mean (#)2 + (xf)2 + (#)2• We 
shall assume that the system is translation-invariant, or, in other words, that 
the Lagrangian L is not altered by transformations of the form 

X;~ X;+~' 

For this it suffices that the function V be a function of the difference in its 
arguments: 

V(x;, x) = V(x; - x). 

It follows in this case from the law of conservation of momentum that: 
The total momentum of the system is conserved, i.e. 

dPtotal = O 
dt ' 

n 

where Ptotal = L m;X;. 
i= 1 

(26) 

(27) 
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PROOF. Consider the three one-parameter groups S~, a = 1, 2, 3, whose action 
on IR 3" is given by 

S~: xf---> xf + r, xf ---> xf for [3 # a, a, {J = 1, 2, 3. 

The corresponding vector fields x<"l = (djdr)S~(x) l.=o are then 

X(ll = (1, 0, 0, 1, 0, 0, ... , 1, 0, 0), 

x<z> = co, 1, o, o, 1, o, ... , o, 1, O), 

x<3> = co, o, 1, o, o, 1, ... , o, o, 1). 

From Theorem 32.1.2 it then follows that each of the components 

n 

Ptotal,, = L m;xf, 
i= 1 

i = 1, 2, 3, 

(28) 

(29) 

is conserved, so that the total momentum is conserved. This completes the 
proof. D 

In the particular case n = 2, we have (with Vnot quite the same function 
as before) 

In view of the conservation of total momentum we can choose our co
ordinate frame (moving uniformly relative to the original one) so that P 101a1 

= 0, i.e. so that 

(30) 

and then, since in this frame m1x 1 + m2 x 2 = const., we can adjust its origin 
to be at the centre of mass of the system, i.e. so that m 1 x 1 + m2 x 2 = 0. Hence 

Newton's equations applied to the particle of mass m1 take the form 

a= 1, 2, 3. (31) 

Writing m* = m1(1 + mtfm2 ), U(x 1 ) = V(x 1 + (mtfm 2)x 1), these equations 
become 

ox~ . (32) 
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We frame our conclusion as a 

32.2.3. Theorem. The problem of describing the motion of a classical two
particle system in a field with a translation-invariant potential V(x 1 - x 2 ) 

relative to a coordinate frame with its origin at the centre ofmass of the system, 
is equivalent to the problem of describing the motion of a single particle of' 
mass m* = m1(1 + mtfm2 ) in a field with potential U(x 1) = V(x 1 - x 2 ) 

where m1x 1 + m 2 x 2 = 0. 

Thus utilization of the translation group led us to the law of conservation 
of total momentum, and thence to the reduction of the classical two-particle 
problem to that of one particle. 

(d) We shall now consider Lagrangians preserved by the rotation group 
S0(3). Let x, y, z be Euclidean co-ordinates for Euclidean 3-space. 

32.2.4. Definition. We shall say that a Lagrangian L(x, y, z, x, y, z) iss phericall y 
symmetric if it is preserved by all rotations of IR 3 . 

We single out the following three important subgroups of S0(3): 

(i) S~l-the rotations about the x-axis through the angles <p; 
(ii) S~l-the rotations about they-axis through the angles <p; 

(iii) S~l-the rotation about the z-axis through the angles <p. 

In §24.3 we calculated the associated vector fields Lx, Ly, Lz in IR 3 to be given 
by 

Lx = (0, -z, y), Ly = (z, 0, -x), Lz = (- y, X, 0). (33) 

By Theorem 32.1.2, for a spherically symmetric Lagrangian L(x, y, z, x, y, z), 
the following quantities (the components of the" angular momentum", cor
responding to rotations about the three axes) are conserved along extremals: 

where P~ = oLjox~. Thus in explicit form we have: 

(34) 

Hence the vector 

(35) 

where .X = (x, y, z), is conserved. The vector [.X, p ], the cross product of .X with 
p, is called the angular momentum. 

Consider now a (classical) system of two particles invariant under the full 
isometry group of Euclidean 3-space. The appropriate Lagrangian will then 
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have the form L = mt.XT/2 + m2xV2- V(xl - Xz) where V(xl - Xz) = 
V( I x 1 - x2 1 ). Since Lis in particular invariant under the translation group 

we can invoke Theorem 32.2.3 to reduce the problem to that of a single 

particle of mass m* = m at the point x 1 in a field U(r), where r = I x 1 1, 
x 1 - x 2 = x 1(1 + mt/m2 ). Since the Lagrangian of this one-particle system 

will be invariant under S0(3), it follows from (35) et seqq. that the angular 

momentum [x 1, p] is conserved. Since U is time-independent it follows from 

the law of conservation of energy that the energy E = mv2 j2 + U(r) is also 
conserved. 

32.2.5. Lemma. The motion of the particle is confined to the plane spanned by 
the vectors x 1 and p. 

PROOF. Since the angular momentum is conserved and x1 = pjm, it follows 

that the direction of [x~> x1] = Mjm is fixed. The lemma now follows from 

the fact that this vector is perpendicular to the plane determined by x 1 and p. 

D 

In view of this lemma it is convenient to change to cylindrical co-ordinates 

(z, r, q;) where now the z-axis is in the direction of M. If our particle of mass m 
is at the point (z, r, q; ), then the square of its speed v is 

2 (d(r cos q;)) 2 (d(r sin q;)) 2 (dz) 2 •2 2 . 2 v= + +~ =r+rq; 
dt dt dt , 

since z = 0. Hence 

mv 2 m 
L = 2 - U(r) = l (f2 + r2q/) - U(r), 

aL 2 . 
Pep = acp = mr q;. 

Since z = 0 = p., we have from (34) that 

IMI = Mz = xpy- YPx =Pep= mr2 cp = const. (36) 

Thus cp = IMI/mr2, and 

m ( 2 IMI 2
) E = 2 r + m2r2 + U(r), 

or 

(37) 



§32. Conservation Laws 331 

where U eff(r) = U(r) + I M 12 /2mr2 . Thus the problem of describing the 
motion of the particle has been reduced to a one-dimensional problem (in r) 
with potential Ueff(r); the solution can be carried out in the following steps: 

·2 2 ( r =- E- Ueff); 
m 

<p- ({Jo = JlMI dt. 
mr2 

(38) 

Using the second equation to eliminate t from the third, we end up with a 
solution <p = <p(r) or r = r( cp) for the trajectory of the particle. 

In the two important special cases U = rxjr, U = rxr 2 , it can be shown that 
there is a region of the 6-dimensional space co-ordinatized by x, x, which is 
completely filled by closed trajectories (orbits) (i.e. for every (x0 , ~0) in the 
region there is a closed orbit x = x(t) such that for some t0 we have x 0 = 
x(t0 ), ~0 = x(t0 )). These regions are as follows: 

IY. 
for U =- with rx < 0, the region E < 0; 

r 

for U = rxr2 with rx > 0, the region E z 0. 

(In the case U = IY./r, the region E < 0 is that of the Keplerian ellipses.) Note 
that for an orbit to be closed the non-trivial condition that 

r(cp + 2rcn) = r(<p) (39) 

for some positive integer n, needs to be imposed. 
It is also known that the potentials of the form U(r) = rx/r, rxr 2 , are the only 

spherically symmetric, analytic potentials for which condition (39) holds 
throughout some region (of positive measure) of phase space (see the book 
[ 47]); in general the subset of phase space determined by the closed orbits 
has measure zero. For the motion of a particle to determine a bounded region 
of phase space for - oo < t < oo (i.e. for the particle to stay in a bounded 
region of space and take on only a bounded set of velocities) it suffices that 
in the solution set of the inequality 

E- Ueff(r) :::; 0 

there is a maximal finite interval 0 :::; r min :::; r :::; r max < 00' containing the 
initial position r 0 . 

(e) Let L(x, x), x = (x0 , x 1, x 2 , x3 ), be a Lagrangian defined on Minkowski 
space, preserved by the Lorentz group 0(3, 1). 

By §24.2(14) and Theorem 24.3.1 (with the matrix acting on the right rather 
than the left), for each fixed skew-symmetric matrix (Aki) the linear vector 
field 

(40) 
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where g~1 = ( 
1 

- 1 _ 1 °) is the Minkowski metric, determines a 

0 -1 
one-parameter subgroup of 0(3, 1). Hence along extremals we have by 
Theorem 32.1.2 the following conservation law: 

(41) 

where Pi = oLjoxi is the 4-momentum. In view of the skew-symmetry of the 
matrix (Aki), the conservation law (41) may be rewritten as 

Since the matrix (Aki) is otherwise arbitrary we deduce that the following 
tensor is conserved along the extremals: 

(42) 

This skew-symmetric tensor is called the moment 4-tensor. 
It is illuminating to consider in the context of Example (a) the correspond

ing tensor Mik (obtained from Mik by raising the indices relative to the 
Minkowski metric g?k). From (17) it follows that the spatial components 
M~fl, ll., f3 = I, 2, 3, of this tensor are given by 

(43) 

where the vector p = (p 1, p2 , p3 ) is given by (12). Thus these spatial com
ponents coincide with the components of the moment 3-vector (or angular 
momentum-d. (35)) 

M = [x,p]. (44) 

It also follows from (17) that M 01 , M 02 , M 03 are the components of the 
3-vector ctp - (E/c)x, i.e. 

(45) 

Consider next a system of n relativistic particles with positions x 1, ... , xn, 
xi = (x?, xf, xf, xf). Suppose that the Lagrangian L(x 1, ... , x", x1 , ... , x") 
of this system is preserved by the Poincare group, i.e. the full group of motions 
of Minkowski space. Then from the above we obtain the following con
servation law: 

n 

I Mf1 = const., 
i~l 
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where M~1 is the moment tensor of the ith particle, while by arguing much as in 
Example (c), we also have that the total momentum is conserved: 

Hence in particular, using (45), we deduce that 

(46) 

Since by the law of conservation of energy the total energy L E; is also con
served, we deduce from (46) that 

"E·X· "c2p· _£..._•_• = t · _L.. __ , + canst. 
LEi LEi 

Hence the point 

(47) 

moves with constant velocity v where 

(48) 

The point xis the relativistic analogue of the centre of mass; if the particles 
move with speeds small compared with c, then as we have seen (in Example 
(a)) E; ~ m;c2, so that from (47) we obtain 

Lm;X; 
X~~-, 

L.mi 

which is (approximately) the classical formula for the centre of mass. We 
remark that the relativistic centre of mass is in general not invariant under co
ordinate changes. 

§33. Hamiltonian Formalism 

33.1. Legendre's Transformation 

Recall that the energy and momentum were defined for a Lagrangian L(x, .X) 
by 

E = Xa ;~a- L, 
aL 

Pa = a.xa· (1) 



334 5. The Elements of the Calculus of Variations 

33.1.1. Definition. A Lagrangian Lis called non-singular on a region of values 
of (x, .X) if 

(2) 

on that region, and strongly non-singular if the equations Pa = oL(x, x)/oxa 
determine the _xa uniquely as smooth functions va(x, p) on the region. 

The space with co-ordinates (x, p) is called the phase space (corresponding 
to L). For strongly non-singular Lagrangians, the change from co-ordinates 
(or variables) (x, .X) to the co-ordinates (x, p) is smoothly invertible; this co
ordinate change is called the Legendre transformation of co-ordinates. In terms 
of these new variables the function L cedes its central role to the function 
H(x, p) = H = pv - L, called the Hamiltonian. (Here pv denotes pixi.) 

33.1.2. Theorem. Let L(x, .X) be a strongly non-singular Lagrangian and let 
H(x, p) denote the corresponding Hamiltonian, p = oL(x, x)jox, x = v(x, p). 
Then the Euler-Lagrange equation 

aL _ ~ (aL) = 0 
OX dt ox 

(3) 

and the equation oLjox = p, are together equivalent to the following equations 
in phase space ("Hamilton's equations"), in which x and pare regarded as 
independent variables: 

. oH 
x = op' (4) 

PROOF. Writing as before v = x we have 

oH I a av aL av - = - (pv - L) = v + p- - -- = v, 
op xfixed op op ov op 

since p = oLjov. This establishes the second equation in (4). 
The first of Hamilton's equations is obtained as follows: 

m a & u a& M 
- - = -- (pv - L) = - p- + - + -- = - = p, 

ox OX ox ox ov ox ox 

where in the last step we have used the Euler-Lagrange equation (3). 
For the proof in the opposite direction note first that L = px - H where 

x is given by the second of Hamilton's equations. Then 

aL . ap oH op aH aH . 
--x----------p 
ax - ax op ax ax - ax - ' 
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using the first of Hamilton's equations. Finally 

oL . op oH op 
ox = P + x ox - op ox = p, 

completing the proof. D 

The action S = J L dt can now be rewritten as 

s = J L dt = J [px- H(x, p)] dt, (5) 

where x = oHjop. 
If x = x(t) is any curve and if we define p(t) = oL(x, x)fox, then the 

"integrability condition" 

dx oH 
v(t) = dt' where v = op' (6) 

holds along the curve; this follows from the fact that the second of Hamilton's 
equations holds independently of the Euler-Lagrange equation. 

On the other hand it is clear that for an arbitrary curve x = x(t), p = p(t) 
in the phase space, the integrability condition dxfdt = oHjop need not hold. 
We now consider the Lagrangian 

L(x, p; x, jJ) = px- H(x, p) (7) 

defined on phase space. 

33.1.3. Lemma. The Euler-Lagrange equations for the Lagrangian L defined 
on the 2n-dimensional space with co-ordinates x, p, are exactly Hamilton's 
equations (4), and therefore imply the integrability condition (6). ' 

PRooF. Write L(x, p; x, p) = L(y, y) where y = (x, p). The Euler-Lagrange 
equations for L are as follows: 

Putting first y" = xi, these become 

. oH 
p = - ox. 

Putting ya = Pi• they become 

0 ·i oH 
=X--. 

opi 
D 
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p 

Figure 34 

Remark. At the very beginning of this chapter we derived the Euler- Lagrange 
equations as necessary conditions for an arc to be extremal among all arcs 
withcommonend-pointsP,Q(i.e. in that" variational class"). The correspond
ing variational class of arcs in the phase space consists of arcs with only the 
x-co-ordinates of their end-points necessarily in common (see Figure 34). 

33.2. Moving Co-ordinate Frames 

We now consider the more general situation of a Lagrangian L in IRn which 
varies with time: L = L(x, .X, t ). We wish to discover how various entities (in 
particular energy and momentum) transform under co-ordinate changes of 
the form x = x(x', t'), t = t'. 

It is clear that as our new Lagrangian we may take any function [ of the 
form ( cf. the footnote to §31.1) 

L(x', .X', t) = L(x(x', t), .X, t) + dd f(x, t) ; t . 

the extremals (joining a given pair of points) corresponding to this Lagrangian, 
i.e. extremizing the action J [ dt , will then be as prior to the change. 

We first consider the case that the co-ordinate change does not involve t, 
i.e. x = x(x'). Then, as we have seen several times before, the velocity x(t) is, for 
any curve x(t ), a vector; i.e. its components transform according to the rule 

;::') i "' i 
·i ex ·i ' i ox i ' x = ~ x , or v = ~ v . 

ex' ux' 
(8) 

The transformation rule for the components of the momentum is derived as 
follows: Taking 

L(x', .X', t) = L( x(x'), : ;, v', t ). 

we have 

oL oL oxi oxi 
Pi· = ovi' = ovi oxi' =Pi oxi' ' (9) 
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so that (as already noted in the definition of momentum in §31.1) the mo
mentum is a covector. It is then immediate that the energy E = pi vi - Lis a 
scalar, i.e. is unaltered: 

E = pivi- L = Pi·vi'- L = E'. 

We now turn to the consideration of co-ordinate changes x = x(x', t), 
t = t' which do involve the timet. (The reader may find the following easier to 
understand if he visualizes the frame x as fixed, and the primed frame x' as 
moving.) In this more general situation we have 

•i 0Xi •i' 0Xi 0Xi •i' i( 1 ) 

X = OXi' X + fu = oxi' X + a X ' t . (10) 

Since we have already dealt with the case x = x(x') we might as well suppose 
that at the particular instant t = t0 of interest the frame x coincides with the 
frame x', i.e. x = x(x', t0 ) = x'. We shall call this frame instantaneous. Thus at 
the instant t = t0 we have from (10) that 

. ., oxi ., . ., . 
v' = v' + - = v' + a'(x' t ) = v' + a'(x t ) ot , o , o, t = t0 • 

Hence as a result of changing to the moving frame we have (at the instant of 
interest t = t0 ): 

L--+ L' = L, L(x, v, t) = L(x', v' + a, t); 

v--+ v' = v - a(x', t); 

, . oL oL' 
p --+ p = p, smce ov ov' ' 

(11) 

E --+ E' = p'v' - L' = Pi(vi - ai) - L = E - pid(x', t). 

Thus the momentum is not changed, but the energy is increased by the amount 
- pid = (p, v' - v). The Hamiltonian therefore is transformed as follows 
(at t = t0 ): 

E = H(x, p)--+ E' = H(x', p') - p;ai(x', t) = H'(x', p', t), (12) 

where we have used the assumption that at t = t0 we have x = x' (whence 
also p = p'), and where a= oxjotlr=to· Finally we compare Hamilton's 
equations in the two frames (at t = t0 ). In the frame x the equations are 
x = oHjop, p = -oHjox, and in the moving frame x', they are x' = oH'jop', 
p' = - oH'/ox'. Since at t = t 0 we have x = x', p = p', we obtain from (12) 
that 

., oH' oH . 
x =-=--a=x-a 

op' op ' 

., oH' oH I oai . ad 
p = - ox' = - ox +Pi ox'= p +Pi ox'' 

(13) 
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Thus the relationship between the two pairs of equations is a reasonably 
simple one. 

33.2.1. Theorem. Under the change to an instantaneous moving co-ordinate 
frame, the co-ordinates (by definition of such a frame) and the momentum are not 
altered (x' = x, p' = p), while the energy (i.e. Hamiltonian) is increased by the 
amount - <P. a): 

H ~ H' = H- <P. a), a = a(x', t) = ox I 
ot r~ro· 

Remark. In the special case (of a classical particle) where the change is to a 
uniformly moving frame, i.e. where a = const., L' is always taken to be 
m(v')2 /2 ( = L + (djdt)f(x, t)), whence p' = p + rna and H' = H - pa + 
ma 2 /2. In this as in the more general situation the equations ( 11) are often 
regarded as holding only to within a constant (cf. Example (a) below). 

We now consider three important examples. 

33.2.2. Examples. (a) As our first example we take the Lagrangian to be 
L = mx2 /2 - U(x), and a moving frame which moves" translationally ",i.e. 
one for which x = x(x', t) has the form 

x(x', t) = x' + b(t), 

so that a = a(t) = oxjot is independent of x'. In this case we have 

p = mv = m(v' + a) = mv' + rna = p'( + const.), 

H' = H - <p', a) ( + const.). 

The Euler-Lagrange equation for the extremals (i.e. in this case Newton's 
equation) takes the form 

d 
-d (mv) = f = mti' + rna, t . 

whence 

mil = I - rna = .f'. 

Thus from the point of view of the moving frame a classical particle of mass m 
will experience an additional (inertial) force equal to -rna. 

(b) Consider a Euclidean frame x' in Euclidean IR 3 rotating with constant 
angular velocity Q relative to a frame x. Suppose that the x3-axis and x3 '-axis 
coincide with the axis of rotation and that at t = 0 the frames coincide; then 

-sinlill t 

coslillt 
0 

(14) 
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whence it follows easily that a = Jxjat = [0, x]. From Theorem 33.2.1 we 
then obtain (at t = 0) 

HI= H- <P1
, a)= H- <P1

, [0, x]), 

p1 = p, X 1 = x, t = 0, 

so that at t = 0, Hamilton's equations take the form (see (13)) 

• 1 oHI oH a < I [ J> JH [pi OJ 
p = - 0X 1 = - f}; + OX p ' Q, X = - OX + ' ' 

• 1 oHI oH a < I [,..... J JH [ . 
X = 7ii1 = Jp - Op1 p, H, X ) = ap- Q, X]= X- a. (15) 

If we take the Lagrangian to beL = mx2 j2 - U(x) (where as usual x2 is 
brief notation for lxl 2) then p =mi. Hence by (10) 

( Jx ., ) 
p = m Jxi' x' + a , 

so that 

. (d ( Jx) ·i' Jx ··i' d ) p = m dt Jxi' x + Jxi' x + dt [Q, x] , (16) 

From (14) we have that 

0~~· = (cosiOit, siniOit, 0), a~~· = (- sin I 01 t, cosiOI t, 0), 

Jx 
Jx 3 , = (0, 0, 1). 

From this and (16) it follows readily that at time t = 0 

jJ = m[Q, X1
] + mX 1 + m[Q, x], t = 0, 

or, putting x = x' + a (see (15)), 

mxl = 2m[i1
, Q] + f + m[[Q, x], Q], t = 0, (17) 

where f is the force relative to the fixed frame. The last term on the right-hand 
side of (17) represents a small force provided I Q 1 is small and I xI is not large. 
The force 2m[i1

, Q] is the well-known "Corio lis force". With these conditions 
we have 

mV1 = 2m[V1
, Q] + f + 0(02). (18) 
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Remark. If L = mx2 /2 - U(x), then under the change to an (instantaneous) 
moving co-ordinate frame, we have (see the previous remark) 

H ~ H' = H- piai( + const.), 

where 
2 

H = pivi- L = ~m + U(x), 

, (p')2 i (p' - rna )2 ma2 

H = ~ + U(x) - p. a = + U(x) - ~. 
2m ' 2m 2 

Thus the change to the instantaneous co-ordinate frame is equivalent to two 
(classically intuitive) operations: 

(i) a change in momentum p ~ p- rna ( = p'- rna); 
(ii) a change in potential U ~ Ueff = U(x)- ma 2 j2. 

(c) Inclusion of an electromagnetic field. Given a Lagrangian L(x, .X), we 
define a new Lagrangian L by the formula 

- e . 
L = L + -Aix', 

c 

where Ai is the vector-potential of the electromagnetic field, and e is the 
amount of charge (for instance on a (relativistic) particle of mass m). For the 
respective actions we write as usual 

S = f L dt, 

This supplementing of the Lagrangian L by the term (ejc)Aixi, is described as 
"inclusion of the electromagnetic field". 

Writing as usual H(x, p) = pv - L and fi(x, P> = pv - L, where 
p = oLjov, p = oLjov (and where, as before, pv, etc. is shorthand for 
<P. v) =pi vi, etc.), we have 

- e Pi= Pi+- Ai> 
c 

- e Pi= Pi-- Ai, 
c 

fi(x, ff) = H( x, p- ~A). 
(19) 

Hence inclusion of the electromagnetic field is equivalent to replacement of p 
in the original Hamiltonian H(x, p), by p- (ejc)A, and so in this respect 
resembles the change to a moving system of co-ordinates (see (i) in the remark 
immediately preceding the present example). 

The Euler-Lagrange equations for the Hamiltonian L are 

"' oL oL e vAj .. 
Pi = -. = -. + - -. X 1. 

ox' ox' c ox' 
(20) 
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From the first equation in (19) we have Pi = Pi + (efc)(oA;/oxi)xi. Sub
stituting from this in (20), we arrive at the equations 

P·. = r. = aL 
I Ji OXi (in the absence of the electromagnetic field); 

Pi = /; + ~ Fiixi (in the presence of the field). 

The tensor Fii = oA )oxi - oAijoxi is the electromagnetic field tensor (see 
§21.1). In view of the skew-symmetry of this tensor the scalar Fiixixi is 
identically zero, whence 

• • i • i I' i PiX = PiV = Jiv, 

where f is the force in the absence of the field, i.e. f = oLfox. 

(21) 

Remark. In 3-dimensional formalism, the component A0 = ccp, where cp is the 
familiar electric potential, and (A 1, A2 , A3 ) is the magnetic vector potential. 
In this notation the term added to the Lagrangian L takes the form ecp + 
(efc)Aaxa, where x0 = ct, oc = 1, 2, 3. 

33.3. The Principles of Maupertuis and Fermat 

Before stating Maupertuis' principle we rephrase the law of conservation of 
energy in terms of the Hamiltonian: Along any trajectory x(t), p(t) in 2n
dimensional phase space (i.e. any solution of Hamilton's equations) the 
Hamiltonian H(x(t), p(t)) is constant. (This constant is the "energy level" for 
the extremal or trajectory.) 

33.3.1. Theorem (Maupertuis' Principle). Let H(x, p) be a time-independent 
Hamiltonian. Then any arc x(t), p(t) extremizing S = J L dt = J (px - H) dt, 
with a particular energy level E, will also extremize, over the class of arcs with 
the same constant energy level E, the" truncated" action S0 = J px dt = J p dx. 

PROOF. If a curve (x(t), p(t)) in phase space, of energy level H(x(t), p(t)) = 
const. = E, extremizes 

S = f L dt = f (px - H) dt, 

thep. it certainly extremizes J (px - E) dt over the narrower class of all arcs 
with the same constant energy level E, and therefore, since J E dt is constant, 
also extremizes S0 = J px dt over that class of arcs. This completes the proof. 

0 



342 5. The Elements of the Calculus of Variations 

We now consider two important examples. 

(a) If L = mx2j2- U(x) (so that H = p2j2m + U(x)), then p = mx, 
whence for a fixed energy level Ewe have 

IPI = J2m(E- U(x)). 

By Maupertuis' principle, any extremal (with energy level E) corresponding 
to the Lagrangian L, will (among all curves with energy level E) be an extremal 
also for the action 

where 
gii = 2m(E - U(x))t5ii, 

(assuming that the co-ordinates x are Euclidean). We have thus proved the 
following result. 

33.3.2. Theorem. Curves x(t) in Euclidean space which are extremals cor
responding to the Hamiltonian H = p2 j2m + U(x), and have fixed energy 
level E, are geodesics (with non-natural parameter) with respect to the new 
metric 

gii = 2m(E - U(x))t5ii. (22) 

(b) The appropriate Hamiltonian for the trajectories of light rays in a 
continuous, isotropic medium (i.e. a medium in which the (variable) velocity 
of light c(x) at each point x is direction-independent) in Euclidean space, 
turns out to be H = c(x)lpl. (This choice of Hamiltonian is justified by its 
consequences, e.g. by Fermat's principle below.) 

If the energy level E is fixed, then by Maupertuis' principle any extremal 
(with that energy level) will also be an extremal (among all curves with that 
energy level) for the truncated action S0 = J (p, x) dt. Now along such an 
extremal we have H(x, p) = E, whence 

and we also have 

E 
IPI = c(x), 

x = oH = c(x) ]!_ (whence lxl = c(x)). 
op IPI 

(23) 

(24) 

(Note that we are assuming E =1= 0, so that p =1= 0.) From (23) and (24) it 
follows that 

(p, x) = lpllxl = c~) I xi. 
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Hence along an extremal arc y of energy level E, we have 

So= J<p, x> dt = Jlxl (E) dt = E J 1(xl) dt = E fJgiixixi dt, 
l' 1 C X y C X y 

whereg;i = [1/c2(x)]oii. Since L [lxl/c(x)] dt = L dtisjust the time it takes 
for the light to traverse the arc y, we deduce the following celebrated result 
(which in its original formulation stated that the path taken by a light ray 
between two points is always shortest). 

33.3.3. Theorem (Fermat's Principle). In an isotropic medium the paths 
taken by light rays in passing from a point P to a point Q are extremals cor
responding to the traversal-time (as action). Such paths are geodesics with 
respect to the new metric 

(25) 

Remark. As we have seen (in §31.2), the geodesics determined by a metric g;i 
are the extremals corresponding to the particular Lagrangian L = g;ivivi (or, 
equivalently, to the Hamiltonian giip;pi regarded, as in Lemma 33.1.3, as a 
Lagrangian defined on the phase space; to see this equivalence note that 
p, = aLjav' = g,ivi, whence grsp,p. = grs(g.ivi)(g;,vi), etc.). In fact the extre
mals (in phase space) corresponding to the Hamiltonian H'(x, p) = JH = 

J(liP;P;, coincide with the extremals with respect to H. This is a con
sequence of the fact that at a particular (constant) energy level E, the re
spective vector fields (on the phase space) determined by H and H' are 
proportional (with the constant proportionality factor 1/2j£). To see this, 
observe that the vector field determined by H in phase space is given by 
Hamilton's equations 

. aH 
p = - ax, 

. aH 
X= ap' 

while the corresponding equations for H' = JH are 

. __ afo _ -=.!..._ aH 
p - ax - 2jE ax , 

Applying this argument to the latter example, with H' = c(x)IPI = 

Jc 2(x)p 2 , we can deduce immediately that the metric gii = c2(x)c5ii (i.e. 
gii = [1/c2(x)]c5;j) will have the property described in Theorem 33.3.3. 

We mention in conclusion that in an anisotropic medium the analogous 
tensor g;i (or gii), which determines the velocity oflight in the medium, will no 
longer be conformally Euclidean. 
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33.4. Exercises 

1. Consider the differential equation 

a bs u=-
ax bu' 

on the space of functions u(x) periodic with period T, and satisfying 

fxo+T 

u(x) dx = 0, 
xo 

where S = S[u] is a functional of the form 

fxo+T 

S[u] = L(u, u', ... ) dx. 
xo 

Transform the differential equation into standard Hamiltonian form. (Hint. 
Work with the Fourier coefficients un of the function u, determined by u = 

L:=- 00 une(2rr:inx)JT.) 

2. Suppose we have a Lagrangian L depending on derivatives higher than the first: 
L = L(u, u', ... , u("l), S[u] = J L dx. Then the Euler-Lagrange equation bSjbu = 0 
for the extremals of the functional S can be rewritten in Hamiltonian form as 

aH 
q;=-a , 

Pi 
i = l, ... , n, 

where 

oL n-i d' aL 
Pi= ~a (i) + I ( -1)' -d sa (i+s)' 

U s= I X U 
1 ~ i ~ n, 

provided the equation Pn = oLjaq~ can be uniquely solved for q~ = uf"l. 

§34. The Geometrical Theory of Phase Space 

34.1. Gradient Systems 

Let f = f(yl, ... , ym) be a function defined on a space IRm with co-ordinates 
i, ... , ym, endowed with a (no longer necessarily symmetric) metric gii. We 
define the gradient (or vector gradient) V f off relative to the metric gij by 

(Vf)i = gii 8f. 
8yJ 

(1) 

Thus the vector gradient is obtained from the usual (covector) gradient by 
means of the tensor operation of raising the index (see §19.1). 
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As in §23.1 we associate with the vector field V f the system of autonomous 
differential equations 

(2) 

which in this case we call a gradient system. 

34.1.1. Lemma. Let y = y(t) be an integral curve of the gradient system 
(2), and let h = h(y) be any jimction. Then the derivative ofh with respect tot 
(or" relative to the gradient system") is given by 

. d .. 8h 8f 
h = dt h(y(t)) = <Vh, Vf> = g'1 ayi ayr (3) 

PROOF. We have 

whence the lemma. 0 

In what follows we shall be mainly concerned with the case that gi.i is a skew
symmetric "metric"; we can then write gi.i as a skew form 

(i < j), (4) 

where gij = -gij' det(gi.i) = g =I= 0. This last condition, that gi.i be non
singular, forces on us the requirement that m be even, say m = 2n (since a 
skew-symmetric matrix of odd degree has zero determinant.) It follows also 
that g > 0. 

34.1.2. Lemma. Thefollowingformula holds: 

-1 r: - n 1\ ... 1\ n = v g di 1\ ... 1\ dy2n. 
n! '-v-' 

n times 

It follows that Jg is a polynomial in the gi.i (called the" Pfaffian "). 

(5) 

PROOF. It suffices to prove that (5) holds at each particular point P (at which 
(gi.i) is non-singular). At a particular point P, the tensor gi.i is a skew-sym
metric (or "alternating") form on the tangent space at P. Just as a symmetric 
form is diagonal relative to a suitable basis of the tangent space, so the skew-

symmetric form (gi.i(P)) takes the form ( 0 " In ) relative to a suitable basis 
-In On 

of the tangent space, where In is then X n identity matrix and on then X n 
zero matrix. Hence we can choose new co-ordinates 

(6) 
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which are linearly related to the old, i.e. y = Az, where A = Ap, such that at 
the point P 

Thus in terms of the new co-ordinates (6), we have at the point P 

n = I dxi " dp;, 
i 

whence by definition of the exterior product (see §18.3) 

n 1\ ... 1\ n = - n! dz 1 1\ .. 0 1\ dz2 n, 

(7) 

at P. Since J§ = 1, this establishes (5) at the point P in the system of co
ordinates z. However by Corollary 18.2.4 (which did not depend on the sym
metry of g;i) the expression on the right-hand side of (5) transforms like a 
tensor with respect to transformations with positive Jacobian. Hence if A has 
positive determinant, then since the left-hand side of (5) is a tensor, it follows 
that (5) holds also in terms of our initial co-ordinates y 1, .•• , y2n. This com
pletes the proof in the case where det A > 0; in the case det A < 0, a modifica
tion of the proof yields the desired conclusion. D 

Remark. Note the consequence of this lemma that the non-singularity 
condition g i: 0 is equivalent to the condition nn i: 0. 

34.1.3. Definition. Let gii be a skew-symmetric metric defined on a 2n
dimensional space. If there are co-ordinates x, p for the space in terms of 
which 

then we call the space with its metric gii an (abstract) phase space, and the 
special co-ordinates we term canonical. A gradient system (2) defined by such 
a metric is said to be Hamiltonian. 

Writing H(x, p) instead ofj(x, p) for the initially given function, we see that 
in terms of the canonical co-ordinates x, p for a skew-symmetric metric on a 
phase space, the Hamiltonian system (2) takes the form 

or, more explicitly, 

·i oH 
x = op;' 

i = 1, ... , 2n, 

. oH 
P; = - iJxi' i = 1, ... , n, (8) 
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which the reader will recognize as having the same form as Hamilton's 
equations. This is of course no coincidence! Hamiltonian systems derive their 
importance from the equivalence of Hamilton's equations in phase space with 
the Euler- Lagrange equations (at least in the case of a strongly nonsingular 
Langrangian- see Theorem 33.1.2). 

The following result is immediate from Lemma 34.1.1. 

34.1.4. Lemma. The derivative of an arbitraryfunction f(x, p, t) relative to the 
Hamiltonian system (8) is given by 

. of 
f = ot + <Vf, VH), 

where 

In particular taking f = H = H(x, p, t), we have 

. . oH 
E=H=ot ' 

since <VH, VH) = - <VH, VH) = 0. 

(9) 

We now consider functions (Hamiltonians) H = H(x, p, t) possibly 
depending explicitly on the time t. The corresponding Hamiltonian system is 

. oH . oH 
x = op' p = -ox. 

These equations taken in conjunction with the equation E = oH/ot which 
they imply (see the preceding lemma), and the trivial equation i = 1, conduce 
to the introduction of an extended phase space with co-ordinates 

(xt, Pt, x2, pz, ... , x", Pn• xn+t, Pn+d, xn+l = t, 

where the metric is (naturally, as we shall see) given by 

0 1 
-1 0 

0 

-1 0 

0 

0 -1 
0 0 

Pn+t = E, 

(11) 
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or, expressed as a form, by 

n 

Q = 'L.dxi A dpi- dt A dE. (12) 
i= 1 

If we define a new Hamiltonian fi = fi(x, p, t, E) on this extended phase 
space by 

fi(x, p, t, E) = H(x, p, t) - E, 

then the Hamiltonian system corresponding to this new Hamiltonian is 

. ofi oH 
X= op =iii' 

. __ ofi _ 1 
t- oE- ' 

whence we have the following 

. ofi oH 
p =-OX =-ox' 

. ofi oH 
E =at= at' (13) 

34.1.5. Corollary. Let gii be a metric on IR 2n with canonical co-ordinates 
x, p, and let H(x, p, t) be any function (Hamiltonian). Then the Hamiltonian 
system corresponding to the new Hamiltonian fi = fi(x, p, t, E) = H(x, p, t) 
- E defined on the extended phase space with co-ordinates x, p, t, E with the 
metric {Jii given by ( 11 ), is equivalent to the original Hamiltonian system supple
mented by the equations i = 1, E = oHjot. 

Note finally that if the original Hamiltonian H does not depend explicitly 
on the timet, i.e. if oHjot = 0, then t = xn+ 1 is a cyclic co-ordinate (see §31.2) 
for the Hamiltonian fi, and consequently the corresponding component of 
the momentum, namely Pn+ 1 = E, is conserved, i.e. we find ourselves back 
again at the law of conservation of energy along extremals. 

34.2. The Poisson Bracket 

Let gii be a skew-symmetric metric on 2n-dimensional phase space with 
(canonical) co-ordinates x, p. 

34.2.1. Definition. The Poisson bracket (or Poisson commutator) of two 
functions f(x, p), g(x, p) defined on 2n-dimensional phase space with metric 

gii = ( 0 n In). is defined to be the scalar product of their gradients: 
-In On 

- - ij of og - n of og og of u, g} - <vf, vg> - g -;I-;-]- I. -;I-;-- :11 8 , (14) 
uy uy i= 1 uX upi uX Pi 

where (VfY = gii( of joyi), etc. 
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34.2.2. Theorem. The Poisson bracket has the following properties: 

(i) {f,g} = -{g,f}, P/1 + llfz,g} = A{f1,g} + Jl{fz,g}, 

where A, J1 are arbitrary constants; 

(ii) {f, {g, h}} + {h, {f, g}} + {g, {h, f}} = 0 (Jacobi's identity); (15) 

(iii) 
(iv) 

{fg, h} = f{g, h} + g{f, h}; 
V{f, g} = -[Vj, Vg], 

(16) 

where [ , ] is the operation of taking the commutator of vector fields. 

PROOF. Since properties (i) and (iii) are almost immediate, we need to prove 
only (ii) and (iv). 

Consider the map f ~ Vf, from the set of all (smooth) functions on the 
phase space, to the set of vector fields. Property (iv) and the easy fact that this 
map is linear, together imply that it is an algebra homomorphism from the 
algebra of functions f under the Poisson bracket operation, to the Lie algebra 
of vector fields with the usual bracket operation. It is in fact a monomorphism 
from the algebra of equivalence classes of functions with the same gradient 
(and so differing by a constant) to the Lie algebra of vector fields. Since the 
latter algebra satisfies Jacobi's identity, so does the former. Hence (ii) will 
hold if (iv) does, so that we need verify only (iv). 

To this end we compute the commutator of the vector fields Vf, Vg, which 
in terms of the co-ordinates x, p are given by 

V'f = (of _ of) 
op' ox ' Vg = (::, - :~). 

Recall from §23.2 that the commutator of vector fields X and Y is in terms of 
co-ordinates (yi) given by the formula 

Using this formula to calculate the x 1-co-ordinate of [Vf, Vg], we obtain 
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where we have at several points used the interchangeability of the order of 
differentiation. For the remaining xi-co-ordinates and the p;-co-ordinates of 
[Vf, Vg] the verification is similar. D 

34.2.3. Corollary. The set of smooth functions f(x, p) defined on phase space 
forms a Lie algebra with respect to the Poisson bracket. 

(As noted at the beginning of the above proof, this Lie algebra is "es
sentially" isomorphic to the Lie algebra of gradient vector fields determined 

by the skew-symmetric metric gii = ( 0
n In).) 

-In On 

It turns out that the converse of Corollary 34.2.3 is true: If for any non
singular skew-symmetric metric gii on IR 2n we define the Poisson bracket in the 
same way by 

- ij of og 
{.f, g} - g oyi oyi' (17) 

then the set of smooth functions on !Rn forms a Lie algebra with respect to the 
commutation operation only if" there exist local co-ordinates x 1, ... , xn, 

. . ( On In) p1, ••. , Pn zn terms of whzch (g;) takes the form _In On · 

We give only a partial proof of this converse. We begin by proving the 
following result. 

34.2.4. Theorem. The smooth functions on IR 2"form a Lie algebra with respect 
to the commutation operation { , } d~ ned by (17) if and only if the form 
0 = g;i dy; A dyi is closed, i.e. dO = 0. 

PROOF. Recall from Definition 25.1.1 that 

(do) .. = ogjk _ og;~ + ogij 
•;k ol oyJ ol· (18) 

Thus we wish to show that the Jacobi identity (15) is equivalent to the vanish
ing of the right-hand side of (18). From (17) we have 

{f {f f } } = gpq oft (ogij ofz_ of3_ + ij o2fz of3 + ij of~ o~f3 ·)· 
1 ' 2 ' 3 oyP oyq oy' oy g oyq oyi oyi g oy' oyq oy 

Permuting 1, 2, 3 cyclically and adding (and using repeatedly grs = -g" and 
the interchangeability of order of differentiation) we find that Jacobi's 
identity is equivalent to 
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which is the same as 

In view of the arbitrariness of the functions f 1 ,.f2 ,.f3 , this is equivalent to 

ogij . ogpi . ogiP 
gpq_ + gJq_ + g•q_ = 0 

ayq oyq ayq ' i, j, p = 1, ... , 2n. (19) 

If we multiply (19) by grpg.,1g,i (and as usual sum over appropriately placed 
repeated indices) then after using the equation 

ogij - ij ogri 
gri oyq - -g ayq' 

and the like, we obtain finally 

og,. - ag,r + agsr - 0 
ayr ay• ay~ - ' 

as required. This completes the proof. 

(20) 

D 

(Note that it can be shown by a similar sort of calculation that the con
dition (iv) in Theorem 34.2.2 is also equivalent to (20), so that (ii) and (iv) 
are actually equivalent.) 

Our touted converse of Corollary 34.2.3 now follows from the preceding 
result together with the following theorem, which we state without proof. 
(A proof may be found beginning on p. 230 of the book [29].) 

34.2.5. Theorem (Darboux). Let Q be a differentia/form of rank 2 satisfying 
Q" = Q A · · · A Q =F 0 (cf 34.1.2). If Q is closed then there exist local co
ordinates x 1, ... ' x", P!, ... ' Pn in terms ofwhich n is given by 

n =I dxi 1\ dp;. 
i 

Returning to the main thread of our development, suppose that in phase 
space we are given a Hamiltonian H(x, p); the corresponding Hamiltonian 
system is then 

i = 1, ... , 2n, (yi) = (x, p ). (21) 

By Lemma 34.1.4 the derivative of an arbitrary functionf(x, p) relative to this 
system satisfies 

J = {.f, H}. (22) 

(Hence in particular xi= {xi, H} = oHjop;, Pi= {p;, H} = -oHjoxi.) We 
shall say that the function f(x, p) is an integra/function of the Hamiltonian 
system (or integral of motion) iff is constant along the trajectories of the 



352 5. The Elements of the Calculus of Variations 

Hamiltonian system. From (22) and Theorem 34.2.2 we obtain immediately 
the following 

34.2.6. Corollary. A function f(x, p) is an integra/function of the Hamiltonian 
system (21) precisely if it commutes with the Hamiltonian: {f, H} = 0. The 
totality of integral functions of a given Hamiltonian system forms a Lie algebra 
with respect to the Poisson bracket, which Lie algebra is also closed under 
multiplication of functions. 

Suppose that we are dealing with a Hamiltonian H(x, p) which is not 
explicitly dependent on the timet, i.e. oHjot = 0. Then the law of conservation 
of energy applies, so that every extremal (or "trajectory") lies in some level 
surface H(x, p) = E ( = const.). Now by the above corollary a function f = 
f(x, p) is an integral function of the corresponding Hamiltonian system if and 
only if {J; H} = 0. However then {H, f} = 0, so that H(x, p) is, mutatis 
mutandis, constant on each integral curve of the vector field Vj: Hence this 
vector field is parallel to all level surfaces H(x, p) = E, so that by Theorem 
24.1.5, the restriction to a particular surface H(x, p) = E of all integral 
functions of a given Hamiltonian system forms a Lie algebra (the Lie algebra 
of integralfunctions on that surface). 

34.2.7. Examples. (a) Let L(x, y, z, x, y, i) be a spherically symmetric 
Lagrangian in Euclidean IR3 (see Definition 32.2.4). As we saw in Example 
(d) of §32.2, along extremals the three functions (components of the moment) 
Mx, My, Mz given by 

. oL 
Mx = L~ ox;= YPz- zpy, 

(23) 

are conserved, where here Lx, Ly, Lz are the three linear vector fields cor
responding to three particular one-parameter groups (see the above
mentioned example). Thus in our present terminology the functions M x• MY' 
M z are integral functions of the Hamiltonian system determined by L. In 
§24.2 we saw that the various commutators of these vector fields calculate out 
as 

(24) 

From (23) and (14) one finds by direct computation that 

From this (and Example 24.2.3(a)) we conclude that: 

The functions Mxo My, Mz on the phase space of a Hamiltonian system with 
a spherically symmetric Lagrangian L(x, y, z, x, y, i), generate with respect to 
the Poisson bracket a Lie algebra isomorphic to the Lie algebra so(3). 
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(b) In the Keplerian problem the Hamiltonian (in ~6) has the form 

p2 0( 

H(x,p) =2m+ N' 0( < 0. (26) 

As in the preceding example spherical symmetry yields the three integral 
functions M 1, M 2 , M 3 ( = M x, MY' M z respectively) where 

M = (M 1, M 2, M 3) = [x, p] = const. 

It turns out that there are a further three functions W1, W2 , W3 which are 
integral for this Hamiltonian; they are given by 

[ p J ocx W = (W1, W2 , W3) = m' M + fXI = const. (27) 

(The vector W is the "Laplace-Runge-Lenz vector".) We wish now to 
compute the Poisson brackets {M;, Wj}, {W;, Wj}. To begin with, it is easy to 
verify from (23) and the definition (14) that 

{pi> M;} = 0, {p1, M2} = P3• 

{P2• Md = -p3, {p2, M3} = P1• 

{p3, M2} = -P1· 

{pi, M3} = -p2, 

{p3, Md = P2• 

(Verify these!) We know that (writing xi= X;, i = 1, 2, 3) 

(28) 

Using properties (i) and (iii) of Theorem 34.2.2 together with (25) and (28), we 
obtain: 

1 { x1} {M1, Wd = m {M1,p2M3- p3M2} + oc M1,fXI 

1 
=-[{M1,p2}M3 + {M1,M3}p2- {M~oP3}M2 

m 

- {M1, M 2}p3] + l:l {M1, x 1} + ocx 1{Mt, I~ I} 
1 

=- {p3M3- M2P2 + P2M2- p3M3} = 0; 
m 

1 { x2} {M~o W2} = m {M1,p3M1- PtM3} + oc Mt,fXI 

1 0( 

= m [{M 1• P3}M I - {M I• M 3}P1] + lXI {M 1• x2} 
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After calculating in a similar fashion the remaining brackets {Mi> »)},one 
arrives at the following table: 

{Mi> »}} wl W2 w3 

MI 0 w3 -W2 
(29) 

M2 -w3 0 Wt 

M3 w2 -WI 0 

Analogous, though lengthier, calculations lead to the following expressions 
for the {W;, »}}: 

2E 
{WI, W2} = - -M3, 

m 

(30) 

It is clear from this that the structure of the Lie algebra generated by the 
functions W;, Mi restricted to a surface H(x, p) = E = const., i.e. at a con
stant energy level (see the paragraph following Corollary 34.2.6), will depend 
on that energy level (see Exercise 3 below). 

34.3. Canonical Transformations 

Suppose we have a Hamiltonian system 

·i oH 
X=-

op/ 
. aH 

P; =- oxi' i = 1, ... , n, 

arising from an arbitrary Hamiltonian H(x, p). 

34.3.1. Theorem. The form n = :D= I dxi 1\ dp; is preserved along the 
integral curves (extremals) of any Hamiltonian system, i.e.for any Hamiltonian 
H = H(x, p) the Lie derivative of!l along the vector field VH is zero: 

n = LvHn = o. 

PROOF. In tensor notation the form Q is just the tensor {g;i) = ( -~: In) 0 . 
n 

Hence by formula (23) of §23.2 we have 

k og ii o(V H)k o(V H)k 
LvHgii = (VH) oxk + gki ----aT+ gik ----aT" 
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Since gii = const., and (VHf = gk•(oHjoy•), it follows that 

()2H o2H 
L ks + ks vHgij = gkjg oi ay• gikg oyi ays 

()2H ()2H 
= -.-.- -.-. = 0, 

oy' ay1 ai oy' 

where we have used also the skew-symmetry of g;jand the fact thatgkigks = bJ, 
~ D 

34.3.2. Corollary (Liouville). The "volume element" of phase space 

.j{j dx 1 1\ · · · 1\ dx" 1\ dp 1 1\ · · · 1\ dpn 
= dx 1 1\ · · · 1\ dx" 1\ dp 1 1\ · · · 1\ dpn 

with respect to the metric (gii) = ( -~: ~J, is preserved relative to any 

Hamiltonian system (in the sense that its Lie derivative along the vector field 
VH is zero). 

PRooF. Since LvHQ = 0 by the preceding theorem, and since for any two 
forms !21, 0.2 we have (see Exercise 1 of §23.3) 

LvH(Ql 1\ Q2) = (LvHQI) 1\ Q2 + nl 1\ (LvHQ2), 

it follows that the Lie derivative along VH of Q 1\ · · · 1\ Q is also zero. The -._.,-
ntimes 

corollary is now immediate from Lemma 34.1.2. 0 

34.3.3. Definition. A map <D: IR 2"---+ IR 2" is a canonical transformation of 
phase space (with co-ordinates x, p) if it preserves the form Q = dx; 1\ dp; (or, 

equivalently, the metric (gii) = ( -~: ~J). 

Thus a canonical transformation is an "isometry" of phase space (or 
"motion" of the skew-symmetric metric). In these terms Theorem 34.3.1 tells 
us that the self-transformations of phase space which effectively slide it along 
the trajectories of some Hamiltonian system, form a one-parameter group of 
canonical transformations. The converse statement is also true; this is the 
import of the following theorem. 

34.3.4. Theorem. Let <D1(x, p) be a local, one-parameter group of canonical 
tran~formations of phase space, and let X denote the corresponding vector 
field: X = d<D1/dt lr = 0 . Then there exists (locally) a function H(x, p) such that 
X= VH, i.e. 

X= (aH, _ oH)· 
op ox 
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PRooF. Suppose that in terms of the co-ordinates x, p the components of X 
are given by X= (Ai, B;), i = 1, ... , n. For small time intervals fit we have 

{
xi-> xi + Ai(x, p)M + O(L'1t2 ) = xit, 

<!>A,: Pi-> Pi + B;(x, p)M + O(fit2 ) =Pi· 

It follows (from the transformation rules for rank-one tensors, if you like) that 

whence 

dxi' 1\ dpi = (dxi + (dAi)fit) 1\ (dpi + (dBi)fit) + O(fit2 ) 

. [Mi . Mi ~ . = dx' 1\ dpi + fit ~ dx' 1\ dpi + -01 - dpi 1\ dpi + ~ dx' 1\ dpi 
ux1 opj upj 

oBi . ·] 2 + oxi dx' 1\ dx' + O(fit ). 

Now we have from the assumption that the transformations <!>, preserve the 
metric, that 

I, dxi' 1\ dpi = I, dxi 1\ dpi. 
i 

It follows from this and the expression for dxi' 1\ dpi preceding it, that: 

aAi 
whence 

aAi aAj 
8 dp; 1\ dpj = o, 

apj opi ' Pj 

8B; . . oBi aB. 
-. dx' 1\ dx' = 0 whence _J. 

ox' ' axj axi' 

oA; . oBi . oA; 
axj dx' 1\ dp; = - opj dx' 1\ dpj, whence oxi 

op/ 

These are precisely the conditions for the form - B; dx; + A; dp; to be closed 
(see Example 25.1.2(b)). From the general Stokes formula (26.3.1) it follows 
that throughout some neighbourhood of each point (x0 , p0 ) where X =f. 0 the 
integral 

f' (- B;xi + A;p;) dt, 
to 

x 0 = x(t0 ), Po = p(to), 

is independent of the path x(t), p(t). Hence on that neighbourhood we may 
define a function H(x, p) unambiguously by 

f (x,p) 

H(x, p) = (- Bi dx; +A; dp;), 
(xo,po) 

whence it follows that oHjox; = - Bi, oHjop; = Ai. This completes the proof. 
0 
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Remark. Although a Hamiltonian H(x, p, t) depending explicitly on the time 
t yields in the same way a one-parameter family of canonical transformations 
ell, it can be shown that in general this family need not form a local group, i.e. 
it can happen that Cl>1, + 12 i= Cl>r, o Cl>r2 • 

Observe that when n = 1 the form Q is just Q = dx A dp, so that preserva
tion of Q is equivalent to preservation of area in phase space; in other words 
the set of canonical transformations of phase space coincides, in this case, 
with the set of area-preserving transformations. For n > 1 however, it turns 
out that the former set is properly contained in the latter, i.e. there are trans
formations of phase space preserving n 1\ .•. 1\ n, but not preserving n. 

~ 
n times 

Those canonical transformations of phase space (x, p) which are linear 
transformations of IR2n are called symplectic (cf. Definition 14.3.5). It is easy to 
see that in the case n = 1 the group of symplectic transformations is just 
SL(2, IR). 

Finally we investigate the Lie algebra of the group of symplectic transforma
tions. A typical matrix K of this Lie algebra is of the form K = (d/dt)A(t)ir=o• 
for some smooth family of symplectic transformations A(t) with A(O) = I 2n" 

By Theorem 34.3.4 (which, as its proof shows, holds for any smooth family of 
(local) canonical transformations), there exists a Hamiltonian H(x, p) such 
that 

Ky = (~;,- ~~). (31) 

where y = (x, p). It follows that to within an additive constant such a 
Hamiltonian must have the form 

(32) 

whose associated (symmetric) matrix is ~ (:T ~). where A =(a;), B = 

(b;j), C = (c;j), and the matrices A and Care symmetric. It then follows further 
from (31) that 

K = ( -~T -~). (33) 

Thus the matrices of the Lie algebra of the group of symplectic transforma
tions are precisely those of the form (33) where A and C are symmetric. A 
direct computation shows that this Lie algebra is isomorphic to the Lie 
algebra of quadratic Hamiltonians of the form (32) with the Poisson bracket 
as commutation. The classical harmonic oscillator furnishes the simplest 
example of such a quadratic Hamiltonian: H = p2j2m + mw2x2 , where w is 
the frequency. For this reason quadratic Hamiltonians of the form (32) are 
often called "generalized oscillators". 
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34.4. Exercises 

1. With each vector field X on configuration space (i.e. on the space with co-ordinates x ), 
we associate a function F x on phase space by defining F x = Pi Xi. Show that { F x, F r} 
= -F[x.Yl' 

2. Let f = f(x) be a function on phase space independent of the momentum p. Show that 
{f, Fx} =ax f. 

3. Prove that in the Keplerian problem (Example 34.2.7(b)) the Lie algebras generated 
by the integral functions W;, M j at various fixed energy levels E are isomorphic to the 
following Lie algebras: 

(i) forE < 0, to so(4); 
(ii) for E = 0, to the Lie algebra of the full isometry group of Euclidean IR3 • 

(iii) for E > 0, to so(1, 3) 

4. Let Q = gij dyi A df = dxi A dpi, and Jet X= (Xk) be a vector field. Show that the 
form g ikXk dyi is closed if and only if the Lie derivative of the form Q along the field X 
is zero: LxQ = 0. 

5. Let Mx, My, Mz be as in Example 34.2.7(a) (the components of the angular momen
tum), and write M 2 = M; + M; + M;. Verify that 

{M2, Mx} = {M2, My} = {M2, Mz} = 0. 

6. With the same notation as in the preceding exercise, show that the Lie algebra with 
respect to the Poisson bracket, generated by the functions Px• pY, p., Mx, My, M., is 
isomorphic to the Lie algebra of the full isometry group of Euclidean 3-space (see 
Exercise 11 of §24. 7). 

7. Let(%) be a non-singular skew-symmetric matrix. Such a matrix defines in the usual 
way a "skew" scalar product on the 2n-dimensional vector space IR2". Prove that any 
subspace on which the restriction of this skew scalar product is identically zero, has 
dimension :;;; n. 

§35. Lagrange Surfaces 

35.1. Bundles of Trajectories and the Hamilton-Jacobi 
Equation 

For various purposes it is essential to know the properties not just of in
dividual trajectories of a Hamiltonian system, but of whole bundles of such 
trajectories. In more precise terms the problem is as follows. Consider at 
time t = 0 an n-dimensional surface r = rn in 2n-dimensional phase space 
with canonical co-ordinates x, p, whose equations are given in the" graphical" 
form 

P; = fi(x 1, •.. , x"), i = 1, ... , n. (1) 
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p 

Figure 35 

This surface is imagined to move so that each of its points slides along a 
trajectory of a given Hamiltonian H(x, p, t); at time t > 0, the resulting sur
face is denoted by r, so that r 0 = r. It is convenient to regard the family of 
surfaces rr in phase space as an (n + I)-dimensional surface rn+ 1 in the 
extended phase space (of 2(n + 1) dimensions) with co-ordinates x, p, t, E 
(see Corollary 34.1.5). The surface p + 1 is comprised of the points (x(t), p(t), 
t, E(t)) where E = H(x, p, t), plt) = ./;(x(t)), and x(t), p(t) is a generic tra
jectory, starting at the surfacer, of the original Hamiltonian H(x, p, t). (Note 
that the surface r is the intersection of p+ 1 with the hyperplane t = 0 in 
extended phase space.) 

However we need to consider a wider class of surfaces r = r" in phase 
SpaCe (and COnComitant SUrfaceS rn + I in extended phaSe Space) than thOSe 
which can be given graphically. For instance if we taker = r 0 to be the sur
face x = x 0 , with p arbitrary (see Figure 35), then we obtain as p+ 1 the 
bundle of all trajectories emanating from the surface x = x 0 . For t = 0 the 
surface r 0 is not of the graphical form p = f(x ), yet for t > 0, rr may be of 
that form (at least locally). It turns out that the surfaces in phase space and in 
extended phase space appropriate for our purposes, are as specified in the 
following definitions. 

35.1.1. Definition. Ann-dimensional surfacer = r" in the phase space with 
co-ordinates x, p is said to be a Lagrange surface if fo r each point Q E r", the 
(truncated) action S(P) = Jr p dx is (locally) independent of the arc y in 
r, joining Q to P, or in other words if in some neighbourhood of Q we have 
that S(P) is a (single-valued) function of P, depending only on the end-point 
of y. 

Now let p+ 1 be the surface in extended phase space defined (analogously 
to the above) in terms of a given Lagrange surface r in phase space and a 
given Hamiltonian H(x, p, t). 

35.1.1 '. Definition. The surface p+ 1 is called a Lagrange surface in extended 
phase space if for each point Q E p + 1, the action S(P) = f Y (p dx - Edt) 
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(note that E = H(x, p, t) on the surface p+ 1) is (locally) independent of the 
arc yin rn+ 1 joining Q toP, so that S(P) is locally a well-defined function of 
the points P of p+ 1. 

With regard to these definitions, note that if r is given in graphical form 
asp= f(x), then Sis a function of the x-co-ordinates (of P) alone, i.e. S = 
S(x ), and the analogous statement holds for the action in the second definition: 
Sis a function of x 0 ( = t), x 1, ... , xn alone, i.e. S = S(x, t). 

35.1.2. Lemma. 

(i) If r is a Lagrange swjace in phase space given in graphical form as 
Pi= .h(x 1, ..• ' xn), i = 1, ... ' n. then 

as(x) 
axi = Pi• i = 1, ... , n. (2) 

Conversely if r has graphical .form and (2) holds for some function S(x), 
then r is a Lagrange surface. 

(ii) lfr"+ 1 is a Lagrange surface in extended phase space given (graphically) 
by Pi = .flx0 , x 1, ... , xn), i = 0, 1, ... , n (where x0 = t, Po = E), then 

as(x, t) as(x, t) 
axi = p;, and at- = - H(x, p, t). (3) 

Conversely ifr" + 1 has graphical.form and (3) holds .for some.function S(x, t), 
then rn+ 1 is a Lagrange surface in extended phase space. 

PROOF. We prove (ii) only; the proof of (i) is similar (and simpler). 
Suppose S(x, t) = Jr (p(dx/dr) - H(dt/dr)dr is single-valued, where y(r) is 

any arc in p+ 1 joining Q to P(x, t). Then the Fundamental Theorem of the 
Calculus tells us that for all such y we have 

dS(x(r), t(r)) = ( ) dx(r) _ ( ( ) ( ) ( ) dt(r)) d pr H xr,pr,tr d , 
r dr r 

whence dS(x, t) = p dx - H dt, yielding p = as;ax, - H = as;at. 
For the converse, suppose p = as;ax, - H = as;at for some single-valued 

function S(x, t). Then 

~ as as 
dS = -- dx + - dt = p dx - H dt. 

ax at 

It is then immediate from the general Stokes formula (26.3.1) that 
Jr (p dx- H dt) is independent of the path y from Q toP. This completes the 
proof. 0 
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The function S(x, t) is called the action of the trajectory bundle, and the 
equation 

as ( as ) at + H X, ox' t = 0, (4) 

which follows from (3), is the Hamilton-Jacobi equation. 
Note that if we know the function S(x, t) of part (ii) of the above lemma, 

then we can retrieve the surface rn+ 1 since it is given by the equations (3): 
p = oSfox, E = -oS/ot. Then by intersecting this surface with any hyper
plane of the form t = t0 , we shall have come back to the surface r~o obtained 
from rn = ro by sliding the points of the latter along the trajectories of the 
Hamiltonian system p = -oHfox, x = oHfop, on which they lie. 

We give now an alternative definition of a Lagrange surface in phase space 
co-ordinatized by x, p (which can be easily adapted also to extended phase 
space with co-ordinates x, p, E, t). This definition has the advantage that it 
makes evident the fact that under canonical transformations of phase space, 
Lagrange surfaces go into Lagrange surfaces. 

35.1.3. Definition. An n-dimensional surface r in phase space is called a 
Lagrange surface if at each of its points P the skew-symmetric scalar product 
of any pair of vectors tangent at P is zero, i.e. if the restriction to the surface r 
ofthe form Q = Li dxi A dpi yields the zero (rank-two) tensor on the spacer. 

The simplest Lagrange surfaces (according to either definition) are as 
follows: 

(i) r xo = { (x, p) I x = x0( = con st.), p arbitrary}; 
(ii) rPo = {(x, p)lp = p0(= const.), x arbitrary}. 

Under the transformation x-> p, p-> -x we have 

Q = dxi A dpi -> - dpi A dxi = dx' A dpi = Q, 

so that this transformation, which interchanges the families of surfaces 
{rx0 } and {rp0 }, is canonical. 

35.1.4. Theorem (cf. Lemma 35.1.2). A surface given in graphical form as 
Pi = fi(x) is a Lagrange surface in the sense of the latter definition (35.1.3) if and 
only if there exists a function S(x) such that fi = oS(x)foxi, i = 1, ... , n (and 
the analogous statement holds in extended phase space). 

PRooF. If a surface r is given by equations Pi = fi(x ), then the restriction to r 
of the form Q = dxi A dpi (i.e. the induced skew-symmetric metric) is cal
culated in terms of the co-ordinates x 1, ••. , x" on r as follows: 

' . ' i ofi . ' ( ofi ofj) d i d j illr = L.... dx' A dpi(x) = L... dx A~ dx1 = L.... ~--;-; x A x. 
i i,j ux i<j ux ux 
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It follows from Example 25.1.2(b) that Q lr is the differential dw of the form 
w = /; dxi. Hence the condition that Q lr = 0 is equivalent to the condition 
dw = 0, i.e. that the form w (defined on r) be closed. By the general Stokes 
formula (26.3.1), this implies that the integral S(x) = J~o /;(x) dxi is inde
pendent of the path on r joining Xo tO X. 

The proof is completed by the observation that the converse follows from 
the equality of mixed partials. D 

35.1.5. Theorem. Let H = H(x, p) be a Hamiltonian not explicitly dependent 
on the time t. Then the following hold: 

(i) The vector VH = (8H/8p, - 8Hj8x) is tangent to the surface H = E0 = 
const., at each point (x, p) on that surface. 

(ii) At each point of the surface H = E0 the vector V H has zero (skew
symmetric) scalar product with every vector tangent to the surface at that 
point. 

(iii) If an n-dimensional Lagrange surface r has constant energy level, i.e. 
if H(x, p) = E0 for all (x, p) E r, then V H is tangent to r at every point 
(x, p) E r. Thus in particular any trajectory of the Hamiltonian system 
corresponding to H which intersects the surface r, lies entirely in r. 

PROOF. For a vector~ to be tangent to the surface H = E0 at a point on it, it is 
necessary and sufficient that at that point ~i(8H/8yi) = 0, where y = (x, p). 
From this (i) is immediate. To see (ii) let~ be any vector tangent to the surface 
H = E0 at (x, p). Then 

. . . .kaH .aH 
(~, VH) = ~·gii(VH1) = ~·gijg1 ayk = ~· ayi = 0. 

Finally we prove (iii). Let P be any point of the Lagrange surface r (of 

dimension n) entirely at the energy level H(x, p) = E 0 , and let { ~ 1 , ••• , ~"} 

be a basis for the tangent space to r at P. By the (second) definition of a 

Lagrange surface we have that <~i' ~k) = 0, i, k = 1, ... , n, and by Part (ii), 
already proven, we have that at the point P, (V H, ~) = 0, i = 1, ... , n. 
Hence the skew-symmetric scalar product vanishes on the space spanned by 
the ~i together with V H. Since by Exercise 7 of §34.5 such a vector space can 
have dimension at most n, it follows that VH = Li A.i~i' which proves the 
first statement in (iii). The second statement now follows since any trajectory 
intersecting r must then be tangent to r at each point of intersection, and 
consequently must lie in r. D 

The following corollary (and its notation) pertains to the latter part of the 
next subsection. 

35.1.6. Corollary. Let S"- 1 be an arbitrary (n - !)-dimensional Lagrange 
surface (in the sense that the skew-symmetric scalar product vanishes on it), 
with constant energy level H(x, p) = E0 , and consider the surfacer formed by 
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all trajectories of the Hamiltonian system y = VH, y = (x, p), which intersect 
S"- 1• If the surface r = r" is n-dimensional then it also is a Lagrange surface 
with constant energy level E0 . If in addition the surfacer" is given (locally) by 
equations of the form 

oS0 
P; = /;(x) = ox; (5) 

(where S0(x) is as in Theorem 35.1.4), then the jimction S0(x) satisfies the 
"truncated" Hamiltonian-Jacobi equation (see (2)) 

( oSo) Eo= H x, ox . (6) 

Finally, if rn+ 1 is the surface in extended phase space defined, as b~fore, in 
terms ofT", and ifS(x, t) is as in Lemma 35.1.2 (ii), i.e. S(x, t) = L (p dx - Edt) 
where y is any arc in rn+ 1 joining (x0 , 0) to (x, t), then we have 

S(x, t) = - E0 t + S0 (x), 

35.2. Hamiltonians Which Are First-Order Homogeneous 
with Respect to the Momentum 

In this subsection we consider separately the important special case of 
a Hamiltonian which is first-order homogeneous with respect to the momen
tum: 

H(x, A.p) = A.H(x, p), (7) 

(For instance for the trajectories of a light ray in an isotropic medium the 
appropriate Hamiltonian is (as we saw in Example (b) of §33.3) given by 
H(x, p) = c(x)lpl, which is first-order homogeneous in p.) 

Such Hamiltonians are generally not considered at p = 0 ( cf. the case 
H(x, p) = c(x)IPI just mentioned, which is not smooth at p = 0). Note that 
once we know the trajectories of such a Hamiltonian of any particular energy 
level H = E0 (e.g. E0 = 1), then those at other energy levels can be obtained 
by simply applying the appropriate similarity transformation p --+ A.p, x --+ x, 
under which H becomes A.H. 

Recall that while earlier in the present chapter we obtained the geodesics 
of a metric gii(x) as the extremals of the Lagrangian L = giidvi (with cor
responding Hamiltonian H = giiP;Pi), the same purpose is served by using 
instead the Hamiltonian H = JH = ~- (See the remark towards 
the end of §33.3 where in particular it is shown that at a constant energy level, 
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the respective Hamiltonian systems are proportional, with constant propor

tionality factor.) The relevance of this to our present context resides in the 

fact that the latter Hamiltonian fi is first-order homogeneous in p: 

H(x, Ap) = AH(x, p), 

35.2.1. Theorem. If H(x, p) is such that H(x, Ap) = AH(x, p) for A> 0, then 
the one-parameter group of transformations <1>1 arising from H (i.e. determined 
by the vector field X= (.X, p) = (oHjop, -oHjox), preserves the form 
p dx = Pi dxi, i.e. the Lie derivative along X of the phase-covector (p, 0) 
is zero. 

PROOF. By the formula (20) of §23.2, if (7}) is any covector in 2n-dimensional 

phase space, then its Lie derivative along the vector field X is given by 

koTJ axk 
(LxT)i = X oyk + 1k oyi ' y = (x, p). 

Taking T= CP~o ... , Pn, 0, ... , 0), it follows that for j = 1, ... , n, 

k opj ax~ I r 1 ) (Lx T)i = X ;;t; + Pr-:.,1 (summing over rom ton 
uy OX 

(8) 

= Xi+n + Pl _o 2 H = _ oH + ~ (p oH) 
ox1 opl oxi oxj l opl . 

Now since H(x, Ap) = AH(x, p), it follows that 

aH oH(x, Ap) 
p1 op1 = oA H(x, p), (9) 

so that the last expression in (8) is zero, whence the first n components of 

L\ T vanish. For j = n + 1, ... , 2n, we have 

ax1 a ( aH) aH 
(LxT)i = P1~ = ~ P1;1 - ~' 

upi upj up1 upj 

which again vanishes in view of (9). This completes the proof. D 

This result prompts the following definition. (See §22.1 for the precise 
definition of the restriction operation on tensors.) 

35.2.2. Definition. A surface r in phase space is said to be a conical Lagrange 
surface if the restriction to r of the form p dx is identically zero. 

With this definition we deduce immediately the following 

35.2.3. Corollary The set of conical Lagrange surfaces is preserved by 
Hamiltonian systems for which H(x, Ap) = AH(x, p), A> 0. 
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Observe that the Lagrange surface r Xo (defined by X = Xo = con st., p 
arbitrary) is conical since the restriction of the form p dx to it is zero, while 
on the other hand the surfacer Po (defined by p = p0 =I= 0, x arbitrary) is not, 
since clearly the restriction to it of p dx is not identically zero. 

Given any Hamiltonian H(x, p) satisfying H(x, A.p) = A.H(x, p), ..1. > 0, 
the bundle of all trajectories emanating from a particular point x 0 , and of a 
particular energy level E0 , is of obvious importance (e.g. in studying light 
emitted from a point source). We define the "wave front" of such a trajectory 
in terms of the surface r xo as follows. Consider the (n - I)-dimensional 
phase-surface contained in r xo satisfying the additional equation H = £ 0 ; 

we denote this surface by S~~ 1. If we now imagine each point of S~~ 1 slid 
along the trajectory emanating from it, then after a time interval t we shall 
have obtained a new surfaceS~~ 1(t). 

35.2.4. Definition. The wave front at an instant t > 0 of the trajectory bundle 
of constant energy level E0 emanating (at timet = 0) from a point x 0 , is the 
projection of the phase-surfaceS~~ 1(t) onto the x-space (i.e. onto the surface 
p = 0). 

Thus the wave front at time t > 0 is a surface of dimension n - 1 in 
ordinary x-space (p = 0). (Clearly at time t = 0 the projection of the surface 
S~~ 1 onto the X-Space is just the single point Xo.) 

If one knows the wave front at any particular time t0 > 0, then one can 
(obviously) employ what is known as "Huygens' principle" to obtain the 
wave front at a later time t 1 > t0 > 0. This works as follows: Regarding 
each point on the known wave front (corresponding to time t0 ) as a new centre 
of emission, one considers the wave front corresponding to the time t 1 -

t0 > 0, emanating from that point. The envelope of all such wave fronts 
(centering on the points of the known front) is then the desired wave front 
corresponding to the time t 1 (see Figure 36). 

t-t, 

t-to 

Q 
Figure 36 
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We now consider more general conical Lagrange surfaces. 

35.2.5. Lemma. lfr" is an arbitrary (n-dimensional) conical Lagrange surface 
in phase space, then the projection ofr" onto the x-space (p = 0) has dimension 
::;n - 1. 

PROOF. If the projection in question were (even locally) of dimension n, then 
we could use x 1, ••. , x" as local co-ordinates for the surface rn; but then if 
~ 1 , ... , ~n were the components, in terms of these local co-ordinates, of any 
tangent vector to r" at any point, it would follow from the defining condition 
p dxlrn = 0, that Pi ~i = 0, whence it would follow in turn that the tangent 
plane at the point has dimension < n. This contradiction completes the proof. 

0 

Hence our conical Lagrange surface r" cannot, even locally, be given in 
the graphical form Pi = /;(x), so that we cannot associate with it (in the 
manner of Theorem 35.1.4) a function S(x). We therefore proceed as for the 
above special surface r xo. We consider the surface S"- 1 defined by the re
quirements that it be contained in rn and satisfy H(x, p) = E0 . By Corollary 
35.1.6 the surface 

fn = u sn-1(t) 
-oo< t<c:o 

consisting entirely of the trajectories intersecting S"- 1, is a Lagrange surface 
of constant energy level E 0 . It is reasonable to assume that this surface 
might be given (locally) in the form p; = iJS0(x)jiJxi, where S0 is as in Theorem 
35.1.4. This assumed, S0 satisfies the "truncated" Hamilton-Jacobi equation 
(see (6)) 

( iJS0(x)) 
E0 = H x, ----ax . (10) 

Note that this is all possible provided only that rn is Lagrange and the 
Hamiltonian is not explicitly time-dependent; we now bring into play the 
additional assumption that the surface rn is conical. 

Since r" is conical the restriction of the form p dx to its subspace S"- 1 

is zero. Theorem 35.2.1 the implies that the restriction of p dx to every surface 
S"- 1(t) is zero. It follows that the function S0(P) = J~oP dx (which we are 
assuming exists for the Lagrange surface f") is constant on each of the surfaces 
S"- 1(t). Thus the level surfaces S0 (x) = const. (in ordinary space) must 
coincide with the projections of the surfaces S"- 1(t) onto the x-space. We 
restate this conclusion as a 

35.2.6. Theorem. The wave fronts (i.e. projections of the surfaces S"- 1(t) onto 
the x-space) are just the level surfaces S0 (x) = const., where S0(x) is the 
truncated action of the trajectory bundle f". 
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EXERCISES 

Suppose that in phase space IR2" we are given n independent functions f 1 (x, p ), ... , J.(x, p) 
(i.e. having linearly independent vector-gradients) which pairwise commute: {fi, jj} = 0. 
Show that the surface in IR2" defined by the n equations f 1 = 0 .... , j~ = 0, is Lagrange. 

§36. The Second Variation for the Equation 
of the Geodesics 

36.1. The Formula for the Second Variation 

In §31.1 we showed that the extremals y: x = x(t) of the functional 

S[y] = L L(x, x) dt, 

needs must satisfy the Euler-Lagrange equations 

;~ = ~~i- :t (~~) = 0, i = 1, ... , n; 

(1) 

(2) 

i.e. that these equations provide necessary conditions for an arc y:x = x(t) 
joining a given point P to a given point Q to minimize S[y] (over all arcs 
from P to Q). We shall now address the problem of finding sufficient condi
tions, i.e. conditions ensuring that an arc y: xi = xi(t) satisfying the Euler
Lagrange equations actually gives S[y] a minimum value (at least among 
arcs "close" to y ). 

As the reader knows from "advanced calculus" courses, a necessary con
dition for a function f(xl, ... , xN) of several variables to assume a (local) 
minimum value at a point P is that 

i = 1, ... , N, (3) 

while a sufficient condition (under the assumption that P satisfies (3)) is 
that the quadratic form (o2fjoxi oxi) dxi dxi be positive definite at the point 
P (i.e. as a form on tangent vectors at P). Thus as a first step in the search for 
sufficient conditions for S[y] to attain a "local" minimum at y, where y 
satisfies the Euler-Lagrange equations, it is natural to consider the following 
analogous bilinear form (called the second variation of the arc y): 

[a:;Jl S[y +A.~+ Jl11] l=o = Gy(~, 17) = Gy(J1, ~), (4) 
u=O 
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where rJ, ~are vector fields defined along the arc y(t), a :::::; t :::::; b, which vanish 
at the end-points y(a) = P, y(b) = Q. It can be shown without too much 
difficulty that for S[y] to be a minimum (given that y satisfies the Euler
Lagrange equations), it is necessary that Gy(~. ~) ;;::: 0 for all~. and sufficient 
that Gy(~. ~) > 0 for all nonzero~. 

36.1.1. Lemma. If y: xi = xi(t) (i = 1, ... , n) satisfies the Euler-Lagrange 
equations, then the following formula holds: 

G <;: ) = a2s[y + A.~ + ,uryJ I = Jb(J .. J:i) i dt 
r ... 11 aA.a '1 '" 11 • ,U .\=0 a 

(5) 

~<=0 

where 

. d ( 82 L . . o2 L ·) 82 L . . o2 L . 
Jij~J = dt oxi ox/~1 + oxi oxi~J - oxi oxi~J- oxi oxi~J. (6) 

PROOF. Using the formula for the first variation (formula (11) in §31.1) we 
have 

where y(t) = x(t) + A.~(t), and L = L(y, y). Then, by using the same trick 
as was used in the derivation of the Euler-Lagrange equations (Theorem 
31.1.2), the last expression converts to 

ib a (aL d oL) i _ Jb(oM; k oM; .k oM; ··k) j 

oA. iJi- dt a ·,i rJ (t) dt - ~ ~ + a··.k ~ + a··k ~ rJ dt, 
a Y } .\=0 a Y Y Y .\=0 

where 

M ( ... ) oL d oL oL o2L ;J o2L ··i 
i = M; y, y, Y = o/- dt a .vi= o/- ayi a_yiJI - of a .vi Y · 

The latter integral is clearly just 

ib (oM; k oM; ·k oM; ··k) ; 
a oxk ~ + oxk ~ + oxk ~ rJ dt, (7) 

where here M; = M;(x, .X, x). Explicit calculation of the integrand in (7) 
yields finally 

ib ( 82 L . 82 L . . d ( 82 L . o2 L . ·)) . 
Gy(~. rJ) = a ox; oxi~1 + ox; oxi~1 - dt ox; oxi~1 + ox; oxi~1 ry' dt, 

as required. D 
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36.1.2. Definition. The linear operator J which acts on vector fields ~(t) 

defined along the curve y, is called the Jacobi operator (corresponding to 
the given Lagrangian L). 

We shall now consider (as our only example) the important special case 
where the extremals coincide with the geodesics of a given metric. For this 
purpose it will be convenient to employ the Lagrangian L = !giixixi, i.e. to 
take as the action 

(8) 

(rather than the length functional I = J ~ dt, although, as we know 
from §31.2, for both of these actions the extremals coincide with the geodesics 
of the metric gii). 

36.1.3. Theorem. In the case when S = J~ !giixixi dt, and y: xi = xi(t) is any 
geodesic of the metric gii• with t a natural parameter, the bilinear form (second 
variation) 

becomes 

Gy(~, 17) = - f(V~~i + xixk~1R;k1)rJmgim dt, 
a 

(9) 

or 
b 

Gy(~, 17) = - i (J~, 17) dt, (10) 

where 

(11) 

R~kl denoting the curvature tensor. 

PRooF. From Example (b) of §31.2 we have, for any arc y, 

~s - ( ook rk . i . i) - n ( . )k 
~XI - - X + ij X X gkl - - v x X gkl> 

where V x T denotes the covariant derivative of the vector Tin the direction 
of the tangent vector x (see §§29.1, 29.2). Hence by formula (11) of§31.1 

aS[ J Jb< .. k rk ·i·j) zd - y + Jl.1] !l=O = - X + ij X X gkl1'J t. 
OJl. a 
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Hence 

[ az S[ 1)! ]] - [ o fbc··k rk ·i·i) 'd J oA. Of.l y + ~~.., + WI ).=o - - oA. a y + ij y y gkl'1 t ;.=o' 

Jl=O 

where y(t) = x(t) + A.~(t), ni = niy), gk1 = gkb), '1 = '7(t). Arguing once 
again as in the derivation of the Euler-Lagrange equations, the last expres
sion becomes 

where 
D D ( · ··) v ( . )k ( ) < .. k rk . i . j)g I = I X, X, X = x X gkl X = X + ijX X kl· 

Now 

oD1 _ani ·i ·i + V ( ')k ogkl _ani .; ·i 
ox' - ox' X X gkl x X ox' - OX' X X gkl• 

since Vx{x) = 0 along the geodesic y. We also have 

Hence 

Gy(~, rl) = - f (~~~ xixi ~, + 2r~j xi~, + ~k)gk1 '71 dt. (12) 

We now compare this with the right-hand side of (9). By the definition of 
covariant differentiation (see §29.1) we have 

vxe~Y = ~i + rl,xk~'. 
whence 

By using the formula for R~kl given in Theorem 30.1.1, together with the fact 
that y is a geodesic, it follows after a little calculation that 

V~(~)i + R~k1 xqxk~1 = e·; + 2r~.xkx• + 0Jx~k xqxk~1. (13) 

This together with (12) now yields the desired result. D 
(Note that if ~ (or '7) is a constant multiple of x then the right-hand 

side of(13) is that same constant multiple of(d/dt)(xi + n.xkx•) = 0, whence 
Gy(~, '7) = 0.) 
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36.1.4. Example. Let y(t), a ~ t ~ b, t natural, be a geodesic arc in a 2-
dimensional space with metric gii. In a neighbourhood of the arc we introduce 
special co-ordinates x, y with the following properties: 

(i) the x-axis, i.e. the set of points (x, 0), is just the geodesic arc y itself, and 
in addition xis the natural parameter, i.e. x = t. 

(ii) the curves x = canst. are arranged to be orthogonal to the arc y, with 
moreover the y-eo-ordinates scaled so that in terms of the co-ordinates 
x, y we have g;1{x, 0) = bii. 

If now ~(t), ry(t) are vector fields normal to y (and therefore with zero x
components) then in view of the fact that on y we have q1 = - r{1 (which 
follows from §29.3(14)) we infer that V~(~) = ¢. From this and §30.3(i) it is 
then easy to see that the formula for Gy(~, '1) given in the preceding theorem 
simplifies to 

lb (d2 . ·) Gy(~. 17) = - u dt 2 ~· + K(t)~' Y/; dt, 

where K is the Gaussian curvature. (Note that the summand with i = 1 is 
zero.) 

Remark. The formula (10) for the second variation can be generalized so as 
to apply to "broken" vector fields, i.e. vector fields ~ for which V x ~ has jump 
discontinuities (only). 

EXERCISE 

Show that if ~ is a broken vector field defined on the geodesic y, then the following 
analogue of formula (10) is valid: 

Gy(~, '7) = - ~ ('7, Ap,(V_.O)- s: (J~, '7) dt, (14) 

where Ap(V _. ~) denotes the size of the jump in the covariant derivative at the point P, 
and the summation is over all points Pi of discontinuity ofV_.~ on y. 

36.2. Conjugate Points and the Minimality Condition 

We noted above, in connexion with the definition of Gy(~, ry), that for S[y] 
to be a minimum (given that y satisfies the Lagrange-Euler equations), it 
is sufficient that the quadratic form Gy(~, ~)be positive definite, and necessary 
that G y( ~. ~)be non-negative, for all ~vanishing at the end-points of the arc y; 
we shall in what follows assume this result. We shall also suppose that L = 
tgiixij_;i (as in Theorem 36.1.3), and further that the metric 9ii is Riemannian. 
We wish to examine further the question of when a geodesic arc between 
two points is actually the shortest arc joining the points. To begin with we 
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establish a criterion for the bilinear form Gy(~, IJ) (where y is now a geodesic 
arc) to be non-degenerate. (We remind the reader that the bilinear form 
Gy(~, IJ) (on fields ~. IJ) vanishing at the end-points P, Q of y) is said to be 
degenerate if there exists a non-zero field ~ such that Gy(~, IJ) = 0 for all 
fields IJ.) The following definition applies to the general situation of an arbi
trary Lagrangian L (as dealt with in Lemma 36.1.1). 

36.2.1. Definition. A vector field~ defined on an extremal arc y (correspond
ing to a Lagrangian L) is said to be a Jacobi field if it satisfies "Jacobi's 
equation" J~ = 0, and vanishes at the end-points P, Q of}'. 

Thus for the particular Lagrangian L = t(x, .X) we are considering, 
Jacobi's equation has the form 

i = 1, ... , n. (15) 

36.2.2. Definition. Points P, Q of a geodesic y are called conjugate points of y 
if there exists a non-zero Jacobi field on the arc of y joining P to Q. 

36.2.3. Lemma. Let y be a geodesic arc joining P and Q. The bilinear form 
Gy(~, IJ) is non-degenerate if and only if the endpoints P and Q of y are not 
conjugate points of y. 

PROOF. If~ is Jacobi, then from Theorem 36.1.3 we have that Gy(~, IJ) = 0 
for all vector fields IJ (defined on y and vanishing at P and Q). 

For the converse, suppose that for some non-zero field~. we have Gy(~, IJ)= 
0 for all fields IJ. Then in particular if we take IJ = a(t)J ~ where a(t) is any 
(smooth) function vanishing at t = a, t = b (the values oft at P and Q), then 
once again we obtain from Theorem 36.1.3 that 

b 

Gy(¢, IJ) = - i a(t)(J¢, J¢> = 0. 

Since this holds for all functions a(t) and since the metric is Riemannian, it 
follows that J ~ = 0. This concludes the proof. D 

We are now in a position to establish "Jacobi's minimality condition", 
an important necessary condition for a geodesic arc y to minimize S[y ], 
i.e. to be "minimal". 

36.2.4. Theorem. If a geodesic arc y joining points P and Q contains in its 
interior a pair of conjugate points P', Q', then the arc y is not minimal. 

PRooF. We shall give the proof only under the additional assumption that 
the end-points P, Q ofy are not conjugate. From this assumption and Lemma 
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(l 

Figure 37 

36.2.3, it follows that the bilinear form Gy(~, YJ) is nondegenerate. This non
degeneracy and the necessary condition that Gy(~, ~) be non-negative 
(for y to be minimal) together imply that Gy(~, ~) is positive definite, i.e. 
that Gr( ~, ~) > 0 for all non-zero~ . We shall show that the assumption of the 
presence of interior conjugate points P', Q' leads to a contradiction of this 
positive definiteness. Since P', Q' are conjugate points of y, there exists a 
non-zero Jacobi field ~ ' defined on y', the sub-arc of y joining P' to Q', which 
by definition vanishes at P' and Q'. We define a "broken" field ~ on the 
full arc y by setting ~ = ~' between P' and Q', and ~ = 0 on the remainder of 
y (see Figure 37). Then from formula (14) (where the contribution of the 
two "jumps" is zero since ~ = 0 at the corresponding points) we deduce that 

Gy(~, ~) = 0, 

contradicting the positive definiteness of Gy(~, ~). D 

36.2.5. Theorem. Any sufficiently short arc y of a geodesic minimizes the action 
S[y] over all smooth arcs (with the same end-points as y). Hence any sufficiently 
short arc of a geodesic is locally the shortest of all smooth arcs sharing its end
points. 

PROOF. As noted at the beginning of this subsection, to establish the mini
mality of a geodesic arc y it suffices to show that Gr( ~ , ~) is positive definite 
(where ~ ranges over all vector fields on y which vanish at its end-points). 
From Theorem 36.1.3 we have 

Gy(~, ~) = - f[<V~~, 0 + <R(x, ~)x, OJ dt 

= f<vx~• V;; O dt- f[<R(x, ~)x, O + V;;<Vx~,O]dt 

= f <Vx~• VxO dt- f <R(x, ~)x, 0 dt, 

where we have used firstly 

(16) 
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which holds by virtue of the compatibility of the metric, and secondly that, 
since (V.x(, 0 is a scalar, and since ((a)= ((b)= 0, 

rb rb d 
Ja V.x(V.x(, 0 dt = Ja dt (V.x(, () dt = 0. 

It is not difficult to see that for segments whose length Ill is sufficiently small, 
we have (see the exercise below) 

If (R(x, ()x, 0 dt I< c(lll) f (V.x(, V.xO dt, (17) 

where c(lll) depends only on the metric g;j and the length Ill, and moreover 
tends to zero as Ill --+ 0. Since V .x ( cannot be identically zero on y unless ( 
is also (this follows from §29.1(5) et seqq., taking into account that ((a) = 
((b)= 0), we have 

f (V.x(. V.xO dt > 0. 

The positive definiteness of G y( (, () now follows from this, (16) and (17). 
D 

EXERCISE 

Prove the inequality (17). (Hint. Show that on an interval of length d/, we have/~/< 
const. x (max IV.;;~ I )dl.) 



CHAPTER 6 

The Calculus of Variations in Several 
Dimensions. Fields and Their 
Geometric Invariants 

§37. The Simplest Higher-Dimensional 
Variational Problems 

37.1. The Euler-Lagrange Equations 

Let D denote a region with piecewise smooth boundary oD, of the Euclidean 
space IR" with Euclidean co-ordinates x 1, ... , x". Consider the linear space 
F of smooth vector-functions f(x 1 , ... , x") = (f 1, ... ,fk) defined on D, 
i.e. with domain D. Let L(xfl; pj; q~) be a smooth real-valued function of the 
three arguments xfl, 1 ~ {3 ~ n; pj, 1 ~j ~ k; q~, 1 ~ i ~ k, 1 ~a~ n 
(making altogether n + k + nk real arguments); we call such a function a 
Lagrangian, and from a given such Lagrangian we construct a functional 
J[f] defined on F, as follows: 

I[f] = L L(xfl;.fj(xfl); f~.(xfl))dx 1 1\ · · · 1\ dx", 

where the integral is the multiple integral (see §26) over the region D (which 
we shall later assume to be bounded), and where f~.(xfl) = (ojox")t(xfl). 
We shall often write J[f] more briefly as J[f] = Jv L(xfl;Jj;f~.) d"x. 

The simplest case, namely that of !-dimensional variational problems 
(n = 1), formed the subject of the preceding chapter. There we paid particular 
attention to the arc-length functional /(y) = J6 J gij(y)y\;j dt, and the 
"action" functional S(y) = JA gij(y)yiyi dt, these functionals being defined on 
the set of all piecewise smooth arcs y(t) = (yl(t), ... , yk(t)), 0 ~ t ~ 1, in the 
k-dimensional Riemannian space with metric gij. 
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In the present chapter however, we shall be concerned with the case 
n > 1, i.e. with higher-dimensional variational problems. The simplest 
instance of such a problem is provided by the area functional, which associ
ates with each 2-dimensional surface in IR 3 its area (over D). Thus if 

.f(x, y) = (u 1(x, y), u2(x, y), u3(x, y)) 

is a surface in Euclidean IR 3(u 1, u2, u3), defined for all (x, y) ED <;; IR 2, and if 
the induced metric on the surface is given by d/2 = E dx 2 + 2F dx dy 
+ G dy2 , then the area .functional is (see §7.4) 

I[.f] = JJ jEG- F2 dx dy. 
D 

Here the Lagrangian is (see §7.3(18)) 
;------=-

L(x, yJJx,.fy) = L(.fx,.fy) = )EG - F2 = J <fxJx)<.fy,.fy) - <fx,fy) 2. 

We return now to the general case. What questions of interest arise in the 
first instance in connexion with a functional J[.f]? Since J[.f] may be 
regarded as a function defined on the infinite-dimensional space F, it is 
natural to turn for an answer to this to the analogous though much simpler 
situation of functions of only finitely many variables. Consider a function 
a(u, v) of two variables; to a large extent the behaviour of e< is determined by 
the nature of its critical points (u 0 , v0 ) (i.e. the points where grad a = 0). At 
each of these points the graph of the function a will have a local maximum, 
or a local minimum, or a ("non-degenerate") saddle point, or of course may 
exhibit the more complicated behaviour appertaining to a "degenerate" 
saddle point (see Figure 38). 

Hence in studying functionals J[f] it is natural to look for those functions 
[ 0 at which J[f] attains a (local) maximum or minimum value, or has a 

degenera te add le 

Figure 38 
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saddle point of one sort or another. Now since in the finite-dimensional case 
the critical points are obtained as the solutions of the equation grade ll( = 0, 
we shall first need to find the appropriate analogue of this equation in the 
case of a functional J[f], i.e. in the infinite-dimensional case. 

In the finite-dimensional case the condition grad il( = 0 is equivalent to 
the condition that o0 (1l() = 0 for all vectors a at the (critical) point. Here by 
oa{ll() we mean of course the directional derivative 

toil( z oil( 
oa{il() = a -;- + a -;- = (a, grad il(> 

uu uv 

in the direction a. The reader will recall that oa{ll() can be defined alternatively 
by 

00 (0() = lim~ [ll((U + w 1, v + r.a2) - 0((!1, v)]. 
e-tO E 

It is on this form of the definition of oa{il() that we shall model the concept of 
the "directional derivative" of a functional J[.f]. 

Consider a "point" fin F, the domain of the functional /, and let YJ E F 
be a function vanishing on oD; such functions YJ will be used as increments or 
"perturbations" off The perturbation YJ = bf determines the "direction of 
change" in going from f to f + cYJ, where £ is a small (real) parameter (just 
as above in the latter definition of ou(ll((u0, v0)) the vector a determined the 
direction of displacement from the point (u, v) = (u 0 , v0 )). If we now form 
the expression (1/r.)(J[f + EYJ] - J[f]) and proceed to the limit as <:--. 0, 
we obtain a function (off and YJ) which it is natural to call the "derivative of 
the functional I at the point f in the direction YJ ". Thus this directional 
derivative is given by 

dl[f d+ cYJ] I = lim~ (l[f + cYJ] - J[.f]) = J~ifl Jf d"x, (1) 
£ e=O e~o£ u 

where the final expression has been obtained by taking the limit under the 
integral sign. In the integrand (M /6/") Jl( = (M /Jfi)Jp), Jf is just YJ, while an 
explicit expression for the vector M/bf = (M/Jt), called the variational 
derivative of the functional I[f], is given below. 

The analogy with the finite-dimensional case prompts the following termin
ology. 

37.1.1. Definition. A functionf0 E F is said to be stationary (or extremal, or 
critical) for a functional /, if M[f0]/bf = 0 for every perturbation Jf = YJ 

identically zero on the boundary of D. 
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We now derive an explicit expression for M[JJ/.:5f, yielding a necessary 
and sufficient condition for a functionf0 to be extremal. Thus 

M[JJ = I[f + e17]- J[J] = L [L(xP;fj + e17j;f~. + e17~.) 

- L(xP; fj; f~.)] d"x. 

Expanding the first term in the integrand in a Taylor series we obtain 

Integrating by parts, we obtain from 

that 

Since all functions involved are assumed to be piecewise smooth (as also 
the boundary of D), the multiple integrals are the same as the corresponding 
iterated integrals, and the order of integration in the latter is immaterial. 
Hence we may integrate first with respect to any variable x", obtaining for 
a typical term of the first integral above 

l a ( oL ·) J [ JQ a ( aL ·) J 1 - -. 17' d"x = - -. 17' dx" d"- x 
D OX" ~{',c. xt, ... ,x•, ... ,xn p OX" of~• ' 

where as usual the hat over a symbol indicates that that symbol is omitted, 
where P and Q depend on x 1, ..• , ~", ... , x", and where d"- 1x = 

dx 1 " • • • " d~" " · · · " dx". Since in the inner integral (from P to Q) the 
variables x 1, •.• , ~" •..• , x" function merely as independent parameters, it 
follows that 

l fJ ( fJL ·) f [ fJL ., fJL ., J 1 - -. 17' d"x = -. 17' - -. 17' d"- x = 0, 
D OX" of',c. xt,. .. ,x•,. . .,xn of~. Q of~• p 
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where in deducing that the integral is identically zero, we have used the fact 

that P and Q are on oD where the perturbation IJ vanishes. Thus 

Since 

we obtain finally the desired expression for MjfJj: 

M[f] oL " o ( oL ) 
~ ofi - a~l oxa of~. . 

(2) 

From Definition 37.1.1 we immediately obtain the following theorem. 

37.1.2. Theorem. A function foE F is extremal for the functional I[f] if and 
only if it satisfies the system of equations 

M[f] 

oP 
oL 

of~ 
n o ( oL ) 2:--.-=0 

a=loxa of~.x· 
(1 sis k). (3) 

The equations (3) are called the Euler-Lagrange equations for thefunctiona/ 
I. If J[fJ has a minimum (or maximum) atf0 E F, then from (1) it is clear 
that we must have 

f fJI . 
(JI'i IJ' d"x = 0 

D .10 

for all perturbations IJ (IJ = 0 on oD). It follows readily that for I[f] to have 
a minimum or maximum at fo, the function fo must be an extremal, i.e. 
must satisfy the Euler-Lagrange equations (3). (This was of course the reason 
for Definition 37.1.1.) 

37.2. The Energy-Momentum Tensor 

Consider a functional of the form 

I[f] = L L(f i, j~.) d"x, 

where the Lagrangian L does not explicitly depend on the variables xi, 
1 s i s n. The corresponding extremal functions f (determining the "be
haviour of the system") are, as we have seen, just the solutions of the Euler
Lagrange system of equations 

;~- o~k (:r~J = o (4) 

(where as usual summation takes place over the index k). 
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Imitating the derivation in mechanics of the law of conservation of 
energy we substitute from (4) in the equation 

aL _ aL ar aL au~k) 
axi - ar axi + aj~k axi ' 

to obtain 

Using 

this becomes 

Since aL;axi = J~(aL;axk), the last equation can be rewritten as 

or equivalently, 

aL k _ a ( aL a) 
axk Ji - axk aj~k f xi ' 

a ( k a aL) axk JiL - f Yl a{~k = 0. (5) 

If the co-ordinates x 1, ... , xn are Euclidean then the distinction between 
upper and lower indices disappears, and if we then write 

aL 
Iik = f~, af~k - JikL, (6) 

equation (5) takes the form 

(7) 

i.e. the divergence of the tensor T;k (and tensor it is) is zero ~t all points of 
the region D. 

If on the other hand the co-ordinates are pseudo-Euclidean then we 
define the tensor T;k by 

(8) 
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37.2.1. Definition. The tensor T;k is called the energy-momentum tensor of the 
given system (with Lagrangian L(j; }~a)). 

Note that equation (7) does not define the energy-momentum tensor 
uniquely, since if we supplement any tensor T;k satisfying (7) by a summand of 
the form "'f.,(ojox')t/l;kz, where t/J;k1 is any tensor skew-symmetric in the indices 
k and 1, then clearly the new tensor 

will also satisfy (7), in view of the fact that Lk,l (o 2 t/J;k1jfJxk ox') = 0. The 
tensor T;k defined by ( 6) or (8) is in general not symmetric; however if we 
take instead (7) as defining T;k, then we can often select a symmetric solution 
by adding to the appropriate one of (6), (8) a suitable tensor of the form 
L 1 (ot/J;k1jox1). (For instance a tensor t/J;k1 skew-symmetric in k and 1, and 
satisfying 

(9) 

(where T;k is given by (6) or (8)) would suffice.) The definition of the energy
momentum tensor as a symmetric tensor is important in several physical 
questions (see below). In what follows our main concern among the applica
tions of the concept of the energy-momentum tensor, will be with variational 
problems in 4-dimensional pseudo-Riemannian spaces, or more particularly 
in Minkowski space IR'i with the usual co-ordinates x0 , x 1, x2 , x\ where x 0 

is proportional to t (the time), and x 1, x2 , x3 are spatial co-ordinates. 
Assuming therefore that the underlying space is IR'i, we now define the 

4-dimensional "momentum vector" of a system with Lagrangian L, in terms 
ofthe energy-momentum tensor. To begin with consider for each k = 0, 1, 2, 3, 
the "standard" 3-form 

defined on the hypersurface xk = 0 ( cf. Exercise 2 of §26.5). From these forms 
we construct the 3-form Tik dSk defined on D £ IR'i, and thence in turn the 
momentum vector. 

37.2.2. Definition. The momentum 4-vector of a system with Lagrangian L 
is the vector P = (P0 , Pl, P2 , P 3 ) where 

pi = A f yik dSk = A f yw dS0 
xO ==const. xO=const. ' 

i = 0, 1, 2, 3, A = const. 

(Here we have used the fact that the restriction of the form dSk to any hyper
surface x 0 = const., is zero if k -=!= 0.) 
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Remark. By analogy with formula (7) of §31.1 for the energy of a system in the 
one-dimensional case, we shall call the component T 00 = Ja(oLjo]a)- L 
(where the dot indicates differentiation with respect to x0 = ct) the energy 
density, so that Jxo=const. T 00 d3x (where d3x = dx 1 A dx2 A dx 3) represents 
the total energy of the system at that particular time. From Definition 
37.2.2 we then see that the "time"-component P0 is just the total energy 
multiplied by the constant A., which is usually taken to be 1/c. (Cf. §32.2(17) 
where the same conclusion was reached for the time-component of the 4-
momentum of a free relativistic particle.) 

37.2.3. Proposition. The condition oTikjoxk = 0 is (under certain general 
assumptions) equivalent to the conservation of the momentum vector P. 

PRooF. We shall prove only half of the equivalence, namely that the conser
vation of P follows from the condition oTikjoxk = 0. For this we shall 
assume that the components Tik approach zero at least as fast as 1/R2 as 
R--+ oo, where R = J(x1) 2 + (x2) 2 + (x3) 2 . 

Let x? and xg be any two values of x 0 , and denote by C the cylinder 
in IRt with "lid" D 1 and "base" D2 in the hyperplanes x0 = x?, x 0 = xg 
respectively, and with "lateral" surface II of radius R. From the condition 
oTik/oxk = 0 and the general Stokes formula, it follows that fc Tik dSk = 0 
(see Exercise 2 of §26.5). Thus we have · 

( r - r + r ) Tik dsk = o. 
Jv2 Jih Jn 

If we now let R --+ oo, the integral over II tends to 0 by virtue of our assump
tion, while the integrals over D1 and D2 tend to P;(x?) and P;(xg) respectively. 
Hence 

as required. 0 

37.2.4. Lemma. The momentum vector of a given system (suitably behaved 
out towards oo) remains unaffected if we replace T;k by the symmetrized tensor 
T;k = T;k + l.,lot/J;k1/ox1), where t/Jikl is a tensor skew-symmetric in the indices 
k and I. 

PROOF. It is immediate from the definition (37.2.2) of the momentum vector 
that we need to prove that 

J ot/Jikl 
~xl dSk = 0. 

xO :::consf. U 

(10) 
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Since t/J;oo = 0 (by the skew-symmetry), and since the restriction of dSk to 
the surface x0 = const. is zero if k i= 0, it follows that the left-hand side of 
(10) is equal to 

L div (t/Jiot, t/J;oz, t/J;o3)dxt 1\ dxz 1\ dx3, 

where S is the Euclidean space x 0 = const. Now from the Gauss-Ostro
gradskii formula (see §26.3(37)) we have 

r div(t/JiOl, t/Ji02, t/Ji03)dxl 1\ dx2 1\ dx3 = r <t/J;, n) dCJ, (11) 
Jlxi<:R Jlxi=R 

where t/J; = (t/1;01 , t/Ji0 2, t/1;03 ), n is the unit outward normal to the 2-sphere 
(x 1)2 + (x 2) 2 + (x3)2 = R2 in S, and dCJ is the element of area on that 
sphere. Assuming that the components t/J;oi approach zero sufficiently 
quickly as the radius R-+ oo (which is what is meant by "suitably behaved 
out towards oo "),we see that as R -+ oo the right-hand side of (11 ), and there
fore also the left-hand side, approach zero, i.e. the integral (10) is zero, as 
required. D 

We thus see that (at least in the cases of interest to physics) given a Lag
rangian, we may assume that the energy-momentum tensor is symmetric 
without thereby altering the momentum vector. We shall suppose in what 
follows, therefore, that T;k is symmetric. 

It is a consequence of the symmetry (assumed) of T;k that the "angular 
momentum" is conserved. 

37.2.5. Definition. The angular momentum is the tensor 

Mik = J(x; dPk - xk dP;) = ~ f (xiTk' - xkTil) dS,. 
C xD =const. 

This is the natural generalization of the classical formula for the angular 
momentum, defined for a system of particles by (cf. §32.2, Example (d)) 

Mik = L(Pixk - Pkxi), 

where the summation is over all particles in the system. 

37.2.6. Lemma. If the energy-momentum tensor Tik is symmetric, then (jor 
suitable Lagrangians) the angular momentum (the tensor Mik) is conserved.t 

t A more appropriate statement would be that the formula that we have taken as defining the 
angular momentum follows, under the assumption that the energy-momentum tensor is sym
metric, from a more general physical definition of the angular momentum which incorporates 
its conservation. 
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PROOF. If we imitate the proof of Proposition 37.2.3 (with the expression 
xiTk1 - xkTil in the role of Tik) to show that 

is equal to 

Mik(x?) = ! f (xiTkl - xkTu) dS, 
c Jv, 

Mik(x~) = ! f (xiTkl - xkTu) dS,, 
c Jv2 

where D1 and D2 are given respectively by x 0 = x?. x 0 = x~. then our task 
reduces to showing that the integrand in the formula for the Mik has zero 
divergence, i.e. 

iJ~' (xiTkl - xkTil) = 0. 

Calculating out the left-hand side of this, we obtain 

~ (xiTkl _ xkTil) = yki _ yik = 0 ox1 . ' 

where we have used, in turn, the identity iJTk1ji3x1 = 0, and the symmetry 
of the tensor Tik. D 

We now consider some concrete examples of higher-dimensional varia
tional problems. 

37.3. The Equations of an Electromagnetic Field 

The equations describing electromagnetic fields (i.e. Maxwell's equations) 
turn out to be just the Euler-Lagrange equations corresponding to the 
particular action (i.e. functional) s = sf + sm + smf• which we shall now 
elaborate. 

We begin with the term Sm. This is that part of the action due to the 
particles (i.e. charges) considered separately from the field through which 
they move, i.e. the action of the charges assuming the field absent. The 
appropriate action, as it is usually defined, is given by 

Sm = - ~m;C ib d/, 
1 a 

where the sum is taken over all of the particles in the field, of masses m;, cis 
the speed of light, and the integral J: dl (where l denotes arc length) is taken 
over the arc of the world-line of the particle in 1Ri,3 between the two fixed 
events corresponding to the positions of the particle at an initial time t 1 and 
a later time t 2 • As we saw in Example (a) of §32.2, the action -me J;, dl of 
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each particle can be expressed in the 3-dimensional form J:~ L dt where 
L = - mc2 J 1 - (v2 jc2), v being the 3-dimensional velocity of the particle. 

The term Smf• representing that part of the action determined by the 
mutual interaction of the particles and the field, is usually defined by 

Smf = - t ~ f A~jl dxk, 

where again the summation is over all particles (indexed by j), where ej is 
the charge on the jth particle, where, as for Sm, the integral is taken along 
an arc of the world-line ofthejth particle, and where (Ai) is a given 4- covector 
defined on IRi (the so-called "4-potential ") which characterizes the field. 
(In the above defining expression for Smf the superscript (j) indicates merely 
that the integral is to be taken along the world-line of the jth particle, i.e. 
that for the calculation of the integral only the values of (Ai) on the jth 
particle's world-line are relevant.) Note that the interaction of the particles 
with the field is registered in the expression for Smf only by the presence of 
the single parameter ej. 

Thus the appropriate action insofar as it involves a charged particle in an 
electromagnetic field is given by 

Sm + Smf = s: ( -mcdl- ~Akdxk). 
Finally, the term Sf is that part of the action depending on the properties 

of the field alone, i.e. the action due to the field in the assumed absence of 
charges. If we are interested only in the motion of the particles in a given 
electromagnetic field, then the term Sf need not be considered; on the other 
hand this term is crucial if our interest lies rather in finding equations charac
terizing the field. By way of preparing for the definition of Sf we introduce 
some already familiar concepts of electromagnetic-field theory, defining them 
in terms of the basic 4-potential (AJ 

The three spatial components A I, A 2 , A3 of the 4-vector (Ai) obtained by 
raising the index of the tensor (Ai) (for this purpose resorting, of course, to 
the Minkowski metric), define a 3-vector A called the vector-potential of the 
field. The remaining component A 0 , perhaps more familiarly denoted by cp, 
is called the scalar potential of the field. The electric field strength is then the 
3-vector 

toA 
E = -- - grad rn c ot '~"' 

while the magnetic field strength is by definition the 3-vector H = curl A. An 
electromagnetic field (defined by a given 4-covector (Ai)) is said to be an 
electric field if E =P 0, H = 0, and a magnetic field if E = 0, H =P 0. Finally 
the electromagnetic field tensor (Fik) is defined by 

oAk oAi 
Fik = fJxi - oxk' 
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We are now ready for the definition of S 1 : we set 

S1 =a f2(E 2 - H2 )d4 x, 

where H 2 = (H, H), E2 = (E, E) are the (Euclidean) scalar squares of the 
3-vectors Hand E, where a is a constant (usually taken as 1/16cn), and where 
with respect to the spatial co-ordinates xl, x2 , x 3, the integral is taken over 
the whole of 3-space, while with respect to the variable x0 (proportional to 
the time) it is taken over the interval between two fixed instants. Recalling 
(from §21.1) that Ffk = F;kpik = 2(H2 - E2 ), and substituting for a its 
customary value, we have 

If 2 24 1Jz4 S1 =- 16cn 2(H - E )d x = - 16cn F;kd x. 

Putting this together with the formulae for Sm and Smf we obtain the 
formula for the total action S of an electromagnetic field containing charged 
particles: 

s = - L fmcdl- L s~Akdxk- - 1- fFl,.d4 x. (12) 
c 16cn 

We have hitherto regarded the charge as a totality of point-charges. It is 
however sometimes convenient to regard the total charge as being distri
buted continuously throughout space. In this case the amount of charge 
contained in the 3-dimensional volume element dV = dx 1 A dx2 " dx 3 is 
given by p dV, where p denotes the point-density of charge (thus p depends on 
x 1, x 2, x 3 and the timet). 

We may parametrize the world-line in ~Rt of a (variable) point-charge by 
the time: x0 = ct, xi= xi(t), i = 1, 2, 3. Then (dxi/dt) is the 4-dimensional 
velocity vector of the point-charge, and it is natural to call the 4-vector 
(f) defined by f = p(dxi/dt), the current 4-vector. The three spatial compon
ents of this 4-vector define the usual current 3-vector j = pv, where v is the 
charge velocity at the given point, while the component l is just cp. Direct 
calculation shows that in terms of the current vector(/) the total action (12) 
takes the form (verify it!) 

"f 1f ·i4 1 J24 S = - L. me dl - - A") d x - -- P.k d x 
c2 ' 16cn ' · 

(13) 

(Here in the second and third terms the integrals are over the same region of 
IRt-see above. Note also that the summation in the first term might also 
be more appropriately replaced by an integral.) 

Having defined the action S for an electromagnetic field we are now ready 
to show that it is an appropriate one, in the sense that Maxwell's equations 
for the field are just the Euler-Lagrange equations corresponding to S. 
Since we are interested only in the field, we may take the motion of the charges 
(i.e. the current) as predetermined, i.e. known in advance. Thus since we are, 
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as it were, given the trajectories (i.e. world-lines) of the charges in advance, we 
can restrict our attention to the actionS = Smf + S J. Our problem is therefore 
that of finding the conditions (in the form of the Euler-Lagrange equations) 
which the 4-potential (A;) must satisfy for S to have an extreme value. Taking 
into account the assumption that in the term Smf the current (f) is not to be 
regarded as subject to variation, we have from (13) that the corresponding 
Lagrangian is 

( oA;) 1 (1 ·i 1 2 ) L = L A;, axa = -'C ~J A;+ 16nF;k , (14) 

where F;k = 8Akj8x;- oA;/oxk. With Lgiven by (14), the Euler-Lagrange 
equations (3) become 

:~i- a~k (a~~XJ = o, i = 0, 1, 2, 3, (15) 

where A;,xk = 8A;/oxk. (Note here that the derivation of the Euler-Lagrange 
equations (3) carries over to the case where the region of integration D is 
unbounded, under appropriate restrictions on L and the perturbations.) 

From (14) it follows that 

8L 
8A; 

and (after a little calculation) that 

1 ·i 
- 2], 

c 

~=-1-Fik. 
8A;,xk 4cn 

Hence (15) may be rewritten as 

8Fik 4n . 
--=--j' oxk c . i = 0, 1, 2, 3. 

(16) 

(17) 

Thus these are the Euler-Lagrange equations obtained by variation of the 
4-potential in the action s = smf + s J. 

If we write these four equations in their 3-dimensional form, they will 
reveal themselves as Maxwell's equations (in their familiar classical guise). 
Recall first (from §21.1) that in terms of the co-ordinates x0 = ct, x 1 = x, 
x 2 = y, x 3 = z, the tensor (Fik) has the form 

F·~e' 
-Ex -Ey 

0 Hz 
Ey -Hz 0 

Ez By -Hx 

(This can also be calculated easily from the definitions of E, Hand F;k above.) 
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In terms of these explicit components, the first (i = 1) of the equations (17), 
namely 

I oF 10 oF 11 DF 12 oF 13 4n 
-~-+ -- +--- + -- =- --/ c ot ax oy oz c ' 

becomes 

I oEx ()Hz ilHy 4n. 
~a(+ a;;-- a;:=- ~Jx· 

This together with the second (i = 2) and third (i = 3) of the equations (17) 
yields 

1 oE 4n. 
curl H = - -- + -- J. 

c at c 

The zero-th equation becomes 

il(Ex) il(Ey) il(Ez) 4n 
~- + ~- + ~- = -cp 

ox ay az c ' 

that is, 
divE= 4np. 

(18) 

(19) 

Equations ( 18) and ( 19) comprise the "second pair" of Maxwell's equations. 
The "first pair", namely 

I oH 
curl E = 

c at ' 
div H = 0, 

(20) 

(21) 

follow from the definitions (above) of H and E. Thus we have retrieved 
Maxwell's equations ((18)-(21)) for the electromagnetic field; these are the 
fundamental equations of electrodynamics. 

To conclude the subsection we find an explicit expression for the energy
momentum tensor of an electromagnetic field under the condition that 
there are no charges present. In this case the action is just S I which we 
defined as -(1/16cn)JF[kd4 x, so that the corresponding Lagrangian L 
takes the simple form 

1 2 I (oA 1 ()Ak) 2 

L = - 16cn Fkl = - 16cn oxk - ox1 

From the defining equation (8) for the energy-momentum tensor T;k, with 
the above particular Lagrangian L and with (Ai) in place of (p), we obtain 

k oAl ilL k 

Ti = ()xi a(oAl) - r5iL, 
oxk 
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The same calculation as yielded (16) gives 

~- __ 1_pkl 
a(oA1) - 4cn ' 

axk 

whence 

Tk - _1_ oA~ pkt + _1_ <l,. F,m ptm. 
i = 4nc ox' 16nc 
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Raising the index i (by means of the Minkowski metric gik), we then obtain 

Tik = gim oA, pkt 1 ik F ptm 
- 4- -a m + -16 g lm . nc x nc 

(22) 

However this tensor is not symmetric. To rectify this we proceed as outlined 
above (in the paragraph following Definition 37.2.1). Thus to symmetrize 
the right-hand side of (22) we add to it the term 

_1_ gim oAm pkt = _1_ oAi pkt 
4nc ax' 4nc ax' ' (23) 

which can be expressed in the requisite form (ojox1)(t/likt). This can be seen 
as follows: 

where we have used 8Fk1/ox1 = 0, this being just the form taken by Maxwell's 
equations (17) under our current assumption of zero charge (whence(/) = 0). 
(By Lemma 37.2.4, under suitable conditions the momentum vector is un
affected by such symmetrization of the energy-momentum tensor.) Thus 
adding the expression (23) to the right-hand side of (22) and using Fit = 
oA1joxi - oA;/ox1, we finally obtain the formula for the symmetric energy
momentum tensor of a charge-free electromagnetic field (cf. §21.2(25)): 

(24) 

EXERCISES 

1. Suppose that the charge density p is zero and that the components A; of the vector
potential are ofthe form A;(x1 - ct), i = 0, 1, 2, 3. Prove that if each A;(x) is a smooth 
function, bounded for all x, then the field invariants (i.e. the eigenvalues of (1ik)) are 
zero. (This is the case of electromagnetic waves propagated in a single direction 
(see the conclusion of §21.2).) 
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2. Sometimes "non-local" invariants of the field are considered. For example for a 
monochromatic field of (fixed) frequency w, but whose dependence on the spatial 
coordinates x, y, z is arbitrary, the following integral is considered: 

i E(r 1)E(r2) + H(r 1)H(r2) 3 3 
I= dr 1 dr 2 • 

o;!6 lr1 - r2l 

Show that this quantity is invariant under Lorentz transformations. (It, or some 
constant multiple of it, is called the "photon number" of the field.) 

37.4. The Equations of a Gravitational Field 

Let gii be a pseudo-Riemannian metric of the same type (1, 3) as the Minkow
ski metric, on 4-dimensional space-time ~4, and let r~k be the connexion 
compatible with this metric. In Einsteinian general relativity this metric 
(with corresponding element of length given by d/2 = gii dxi dxi) is intended 
to be identified with the gravitational field. With respect to an "inertial" 
reference frame employing Euclidean spatial co-ordinates x 1 = x, x 2 = y, 
x 3 = z, and the time x0 = ct, we have d/2 = (dx0 ) 2 - (dx 1 ) 2 - (dx2 ) 2 -

(dx3) 2. (We called such co-ordinates "pseudo-Euclidean" or, more par
ticularly, "Minkowski ".) A space-time with the Minkowski metric defined 
globally on it is called fiat. 

We shall however be interested both here and in the sequel in the more 
general situation of a so-called curved space-time, i.e. one where the pseudo
Riemannian metric varies from point to point. Of course in some neighbour
hood of each individual point x 0 E ~4 co-ordinates can be chosen in terms of 
which the quadratic form gii(x0 ) becomes Minkowskian. 

Since gii has type (1,3) we ha~ = det(gii) < 0. The standard 4-form for 
the volume-element is dO. = .J-g d4 x. In §30.1 we introduced the Riemann 
curvature tensor R}k1 defined in terms of the (compatible) affine connexion 
qk (and so ultimately in terms of the metric). (Note that the definition of a 
connexion compatible with a pseudo-Riemannian metric is the same as that 
for a Riemannian metric (Definition 29.3.1 ), and Christoffel's formulae 
follow as in the latter case.) In §30.1(3) we defined the curvature tensor 
essentially by the following formula 

R _ I ( o2g;m o2gkl 02gu 02gkm ) (P rP p rP) 
iklm - 2 oxk ox' + oxi oxm - oxk oxm - oxi ox' + gnp kl im - km il 0 

From this, one immediately obtains the following formula for the Ricci tensor 
Rik = R?qk = g1mRlimk (see 30.3.1): 

R or:k or:Z r' rm rm r' 
ik = oxT- oxk + ik lm - il km· (25) 

Recall also that we defined the "scalar curvature" R by R = gik R;k = 
gilgkmRiklm· 
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We shall obtain Einstein's equations for a gravitational field as the Euler
Lagrange equations corresponding to an action S = S9 + Sm. The action 
S9 contributed by the field in the absence of matter, is taken to be the "Hilbert 
action" of the field, which is given simply by 

where the integral is taken over the region of ~4 determined by x? ::;; x0 ::;; x~ 
where x?, x~ are fixed (thus the spatialco-ordinates take all real values inde
pendently of one another). 

The Euler-Lagrange equations DSg/(Jgii = 0 corresponding to the action 
S9 alone, are given by the following 

37.4.1. Theorem. The variational derivative DSg/(Jgii is given by 

that is, 

PROOF. To begin with we show that the contributions to DS9 of all terms 
involving the second derivatives o2g;k/iJxP oxq, are zero, whence we obtain 
a formula for DS9 (see (28) or (31) below) involving explicitly only the com
ponents gik of the metric, and the Christoffel symbols r~k· From (25) we 
have 

R r-: r-: ikR r-: ( ikorlk ikorl, ikrt rm ikrmrt ) v - g = v - g g ik = v - g g ox' - g iJxk + g ik lm - g il km . 

(26) 

The first two sums in the last expression can be rewritten as 

r-: ik ar:k _ a r-: ik , , a r-: ik 
v -yg ox' - ox'(y -gg r;k)- rikaxz(y -gg ), 

r-: ik ar:, a r-: ik , , a r-: ik 
v -y g iJxk = iJxk (y -g g ru)- ril iJxk (y -g g ). (27) 

By applying the general Stokes formula to the integrals of each of the diver
gences (ojox1)(J -g gikrlk) and (ojiJxk)(~ gikrl1) (initially over a bounded 
subregion ultimately allowed to expand to the full region of integration), 
and then arguing as in the derivation of the Euler-Lagrange equations (3), 
it is readily shown that, with appropriate restrictions on the perturbations, 
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the contributions to bS9 from these divergences are zero. From this, (26) 
and (27) it follows that 

where 

(28) 

which involves explicitly only the gii and (via the r~k) their first derivatives. 
From Christoffel's formula (Theorem 29.3.2) expressing the compatible 

connexion qk in terms of the metric, it follows that (see Exercise ll(i) of 
§29.5) 

kli t a r-:ik 
g rkl = - r-:~<v -g g ). 

v' -g uX 

Substituting from this in the first term in the right-hand side of (28), and 
dividing by ~. we obtain 

G - rt ri kp rt 1 a ( r-: ik) crm rt rt rm ) ik 
- - il kpg - ik r--:_~ v' -g g - il km- ik lm g · 

v' -g ux 

Differentiating the product in the second term, we get 

"k 
- rt ikrp rl og' 
- - ikg lp - ik ox! ' 

(29) 

where the last equality follows from the fact that ni = (1/2g)(ogjoxk) (see 
Exercise ll(ii) of §29.5). From the compatibility of the connexion we also 
have ogikjox1 = - r~1 gmk - r~1 gim. Substituting from this in the last 
expression in (30), we obtain 

a ik 
r l rp ik rt g - rt rp ik + rt ri mk + rt rk im - ik lpg - ik oxl - - ik lpg ik mig ik mig 
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whence (29) becomes 

G = 2rlk r~l gmk - rjk r1m gik - r:, ql gk1 - gik(r'(l qm - rlk rb,.) 
= gik(2r~kru- rlkri'm- ri'mrL)- gik(runm- rlkri'm) 
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= 2gik(r~k ru - nk rb,.) - gik(r'(l nm - r:k rb,.) = gik(rur~k - nk rb,.). 

Thus the upshot of these calculations is that the variation of our integral has 
the following simple form: 

Since the integrand L say, in the right-hand side of (31) can be expressed 
as a function of the gij and ogiijox", we might now seek to establish the 
theorem by taking, in the formula (2) for M/bt, the function Las the Lagrang
ian, and the gij in the role of the .t. However since the computations are 
rather formidable we abandon this line of argument and begin the proof 
anew in a more geometrical vein. 

To begin with, note that since g is a function of the gii alone, we have by 
Taylor's theorem that 

b JR~d4x = b JgikR;k~d4x 

= f ( R;k~ r5gik + R;kgik a~ bgrs) d4x 

+ f gik ~ (bR;k) d4x, (32) 

where the bR;k denote the changes in the R;k resulting from the changes bgrs 
in the grs. 

We first find an expression for o~jogrs in terms of the g,s· Since the 
(i,j)th cofactor Cij of the matrix (grs) does not involve the entry gij (note that 
for i =1= j we are considering gij and gii as independent), and since gikCa = 

b~g, it follows that ogjogrs = c,s = gg,s (where in the last equality we are 
using g;kgi1 = bi). Thus 

1 ag 
-----

2~agrs 

whence (32) becomes: 

~ f r-: 4 f 1 'k r-: 4 f 'k ;- 4 u Ry -g d X= (R;k- -zRg;k)bg' v -g d X+ g' (bR;k)y -g d x. 

(33) 
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Thus the theorem will follow if we can show that the second integral on the 
right-hand side of (33) is zero. To this end we first show (with a view to apply
ing the general Stokes formula) that the function gik(jR;k is the divergence of 
some vector. Let P be any particular point of the underlying space. By 
Exercise 4 of §29.5, there exist in some neighbourhood of P co-ordinates 
("inertial co-ordinates") in terms of which the (ajax"")(gik) and therefore 
also the ni vanish at P. Thus in terms of such co-ordinates we have that at 
the point P 

whence 

Now it is immediate from Theorem 28.2.1 that if r~k> f~k are two symmetric 
connexions on a space, compatible with metrics 9;;. Y;; respectively, then 
although neither the r~k nor the f~k transform like the components of a 
tensor under arbitrary co-ordinate changes, the differences qk - f}k do 
transform like the components of a tensor; thus by taking gii = gii + i5gii, it 
follows that the <5r~k are the components of a tensor. Hence (gik(jrlk -
gubr~k) is a tensor (or, more particularly, a vector). If we denote this vector 
by (W1) then from (34), we have that at the point P 

ik awl l 
g bR;k = ax1 = V1 W, 

where in the second equality we have used once again the fact that in terms 
of the inertial co-ordinates defined on a neighbourhood of P, the ni vanish 
at P. Since covariant differentiation is a tensor operation and since P was 
arbitrary, it follows that 

(35) 

holds true at all points and in terms of any co-ordinates. Now by equation 
(16) of §29.3 we have (in any co-ordinates) 

l 1 a r-:l vlw = r-::>ICv -g W). v -gux 

From this and (35) we obtain 

Jgik<5R;k~d4x = Ja:~(~W~)d4x, 
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whence, essentially by applying (as before) the general Stokes formula to the 
right-hand side integral and then arguing as in the derivation of the Euler
Lagrange equations(3), we infer that 

completing the proof of the theorem. D 

The action S9 is usually taken with the constant factor c3 j16rcG, where cis 
the speed of light and G is the "gravitational constant", in which case the 
statement of Theorem 37.4.1 amends to 

f>S9 = ~ f(Rik- tRg;k)f>gik~ d4x. 
16rcG 

If matter is present then the total action is Stotai = S9 + Sm; here the 
supplementary action sm is usually taken to have the form 

where A is a function determined by the properties of the matter (i.e. by the 
fields defining it), and by the metric, and where the integral is taken over the 
same region (defined by x? ~ x0 ~ x~) as was the integral defining S9 • Given 
A, we can find f>Sm/f>gik, and obtain thence the equations for the gravitational 
field in the form 

(36) 

Note that these equations are non-linear, so that in general the sum of two 
solutions (for the field gii) need not be a solution. 

In relativity theory the Lagrangian is chosen so that the quantities 

- (2/cJiil)(f>Sm/f>gik) coincide with the components T;k of the energy
momentum tensor of the material system. For instance in the case of an 
electromagnetic field, taking A= A.F;kF;\ (cf. the expression for Sf in the 
preceding subsection) we obtain directly from (2) that 

and it can be shown from this that 
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coincides (to within a constant factor) with the expression (24) for the 
energy-momentum tensor of an electromagnetic field. 

In the case of so-called "empty" space, i.e. in the absence of matter, we 
have Iik = 0, so that the gravitational field equations take the form R;k -
tRgik = 0, or more simply R;k = 0 (this was noted in §30.3(iii)). To see how 
the latter equations are arrived at, note first that (36) may be rewritten as 

On contracting the indices ex and k this yields R - 2R = (8nG/c4 )T, where 
T= T:, whence 

Substituting for R from this into the original equations (36) for the general 
gravitational field we obtain 

Thus if I;k = 0, then R;k = 0, as claimed. 
It does not follow from the equations Rik = 0 that empty space-time is 

flat: the vanishing of the Ricci tensor does not in general entail the vanishing 
of the Riemann curvature tensor. (Recall that on the other hand if our space 
were 3-dimensional then R}kz = 0 would follow from Rik = 0, since in this 
case the Riemann curvature tensor is expressible in terms of the Ricci tensor 
(see §30.3(ii)). 

From Theorem 37.4.1 (or, more precisely, its proof) we obtain the follow
ing consequence for 2-dimensional spaces. 

37.4.2. Theorem. Let gii• i,j = 1, 2, be a Riemannian metric on a 2-dimensional 
space, and let K denote as usual the Gaussian curvature of the space. Then the 
integral S[g] = J K dS, where dS = Jg dx 1 A dx 2 , is invariant under smooth 
local perturbations of the metric. 

PRooF. From Theorem 30.3.3 and its proof we obtain: K = R/2, Rii = tRgii• 
whence Rii- !Rg;i = 0. Hence from Theorem 37.4.1 (whose proof was, in 
essence, independent ofthe number of dimensions and the fact that the metric 
was pseudo-Riemannian), we have 

which yields the desired conclusion. 0 
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Since a closed surface in Euclidean IR 3 is by definition compact (and 
without boundary), we deduce immediately the following celebrated result 
of Gauss and Bonnet. 

37.4.3. Corollary (Gauss-Bonnet). The integral over a closed surface in 
3-dimensional Euclidean space of the Gaussian curvature of the surface, is not 
changed by smooth dl!formations of the surface: 

J K dS = const. 

The value of this constant, and its significance, will be discussed in Part II. 

37.5. Soap Films 

Consider a smooth hypersurface vn-l in Euclidean !Rn with Euclidean co
ordinates x 1, ... , xn, which we shall assume to be given in the graphical 
form xn = f(x 1, •.. , xn- 1), where the domain of definition of the function 
fis a bounded region D of !Rn- 1. In this subsection our concern will be with 
the area functional S[JJ defined on the space of all functions/with the fixed 
domain D. Thus 

where A = (g;/x)), xED, is the induced Riemannian metric on the surface 
vn-l defined by_{, and dn-l X= dx 1 1\ .. · 1\ dxn- 1. 

We shall now express jdetA explicitly in terms of the function f We 
might for this purpose appeal directly to formula (31) of §7.4 (or rather to its 
generalization to surfaces of (n - 1) dimensions). Alternatively we may 
proceed as follows. Denote by d,n- 1 the form representing the (n - I)
dimensional volume element of vn- 1 ; thus S[f] = Jv d,n-l. For each point 
p of vn- I' let !Y.(P) denote the angle between n(P), the unit normal to vn- 1 

at P, and en = (0, ... , 0, 1). Then as Figure 39 suggests (at least in the case 
n = 3), we have 

S[JJ= ( d,n-1= ( dn-lx. 
Jv Jvcos!Y.(P) 

Now since n(P) is given by (cf. the formula for the unit normal in the case 
n = 3 given in §8.3(23)): 

n(P) = ---;====;====(-j~,, ... , - fx"-'' 1), n-1 
t + I Ux;)2 

i= I 
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;c" 

e, 

Figure 39 

it follows that 

cos rx(P) = <e,, n(P)) = -----,======;:== 
n- 1 

1 + I U~Y 
i= 1 

whence 
n- I 

I+ I (j~;) 2 dx 1 1\ ··· 1\ dx"- 1• 
i; 1 

S[fJ = L 
Hence the Euler- Lagrange equations for the extremal surfaces x" = 
.f(x1 , •.• , x" - 1) over D, take in the present case the form 

(This follows by substituting in (3); note that here k = 1.) 

37.5.1. Definition. Surfaces which are extremal with respect to the area 
functional S, are called minimal surfaces. 

Remark. In IR 3 the minimal surfaces can be modelled by thin soap films (thin 
in order to render negligible their weight) adhering to closed contours made 
for instance out of wire. 

It is easy to see from (37) that for the two-dimensional minimal surfaces 
in IR 3 (x, y, z) of the form z = .f(x, y), the Euler- Lagrange equations have the 
form (verify it!) 

(38) 

From the Euler- Lagrange equations (37) for a minimal surface we can 
obtain a characterization of such a surface in terms of one of its embedding 
invariants (namely its mean curvature) in IR". 
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37.5.2. Theorem. The mean curvature H of a smooth hypersurface V"- 1 in 
n-dimensional Euclidean space is identically zero if and only if in some neigh
bourhood of each of its points the surface vn- 1 can be represented in graphical 
form by a function extremal with respect to the area functional (i.e. by a solution 
of the equations (37)for a minimal surface). 

(Thus the condition H = 0 is equivalent to (local) minimality of a surface 
V"- 1 in IR".) 

This theorem is proved by simply calculating directly the mean curvature 
H of a surface x" = f(x 1, .•• , x"- 1 ), and then checking that the equation 
H = 0 is equivalent to the Euler-Lagrange equations (37). (For the calcula
tion of Hone uses the definition H = tr(A- 1 Q), where A and Q are respective
ly the matrices of the first and second fundamental forms of the surface; 
this definition of the mean curvature is the exact n-dimensional analogue of 
Definition 8.3.1.) 

We shall content ourselves with carrying out this programme of proof 
only in the case n = 3, i.e. the case of a 2-dimensional surface V2 in !R3 . 

Thus let P be any non-singular point of the surface and choose (as several 
times earlier) Euclidean co-ordinates x, y, z in a neighbourhood of Pin IR 3 

by taking the origin to be P, the z-axis to be perpendicular to V2 at P, and 
the x-axis and y-axis tangent to the surface at P. Then in this neighbourhood 
the surface V2 is given in terms ofthese Euclidean co-ordinates by an equation 

of the form z = f(x, y). By §8.3(25) the entries in the matrix A = (; ~) of 

the first fundamental form are (in this neighbourhood of P) then given in 
terms of the co-ordinates x, y, z by 

(39) 

and by §8.3(23) the entries in the matrix Q = (~ ~) of the second funda
mental form are given by 

N = fyy 
Jt + f; + .r; 

(40) 

The mean curvature is 

1 
H = tr(A - 1Q) = EG _ pz (GL- 2FM +EN). (41) 

Hence the equation H = 0 is equivalent to GL - 2FM +EN= 0; substi
tuting in the latter from (39) and (40) we obtain the Euler-Lagrange equation 
(38), as required. D 
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We wish next to investigate the form taken by the Euler~Lagrange 
equations for a minimal2-dimensional surface V 2 in Euclidean ~3 , in terms 
of co-ordinates u, v which are locally conformal. By Theorem 13.1.1 such 
co-ordinates exist, at least provided that E, F, G are real analytic functions 
(i.e. are representable as power series in u and v on D(u, v) the region of 
variation of u and v). Let then r = r(u. v) be (locally) the equation of our 
surface V2 , where u, v are conformal co-ordinates (and r is the radius-vector 
at some fixed point). Then (whether u, v are conformal or not) 

S[r] = J jEG- F2 du dv, 
D(u,v) 

where by §7.3(19) 

(42) 

and by §8.1(4) the coefficients of the second fundamental form are given by 

L = (r""' n), N = (rvv• n), 

where n is the unit normal vector to the surface. Since our co-ordinates 
u, v are conformal, we have F = 0, E = G, whence 

S[r] = J J J (,~"' ~5(,~v: ~·:) du dv 
/) 

= J J j(x~ + y~ + z~)(x~ + y~ + z~) du dv, 

D 

and also, from (41), 

1 1 1 
H = E (L + N) = E (ruu + rvv' n) = E (L\r, n), (43) 

where L\ is the Laplace operator. Now by the case n = 3 of Theorem 37.5.2 
(which we have just proved) the condition H = 0 is equivalent to the Euler~ 
Lagrange equations (37) (for locally defined f). Thus in view of (43) we may 
regard the equations (L\r, n) = 0 as the Euler~Lagrange equations of a 
minimal surface in terms of conformal co-ordinates. 

We now show that the equations (L\r, n) = 0 are in fact equivalent to 
L\r = 0, i.e. to the radius-vector's being as they say "harmonic". It is trivial 
that L\r = 0 implies (L\r, n) = 0. For the reverse implication it suffices to 
show that both (L\r, r11 ) = 0 and (L\r, r") = 0, since at a non-singular point 
of V 2 the vectors r u, r v• n are linearly independent, so that from these equations 
together with the additional equation (L\r, n) = 0, it will follow that the 
inner product of L\r with every vector is zero, whence L\r = 0. Now the equa
tions E = G, F = 0 (which hold by virtue of the conformality of the co-
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ordinates u, v) can by (42) be written more explicitly as (r", r") = (rv, rv), 
(r", rv) = 0. On differentiating with respect to u and v we obtain 

(rUV' ru) = (rVV' rV), 

(r""' rv> + (ru, ruv> = 0, 

(r""' rv> + (ru, rvv> = 0, 

from which it follows that 

(rUU' ru) + (rVV' ru) = 0, 

(rUU' rv> + (rVV' rv> = 0, 

i.e. that !t.r = 0. We have thus proved 

37.5.3. Proposition. In terms of conformal co-ordinates the radius-vector 
defining a minimal surface is harmonic. 

Remark. We may speak of the harmonicity of the radius-vector r(u, v) only 
with respect to a particular co-ordinate system; generally speaking harmoni
city is not preserved by co-ordinate transformations. 

The actual structure of 2-dimensional minimal surfaces in IR.J can be 
rather complicated; thus for a given boundary contour S 1 c IR 3 , there are, 
generally speaking, many "soap films" with that boundary. (In other words 
there is no uniqueness theorem for the solutions of the differential equation 
H = 0 (or equivalently !t.r = 0).) Figures 40 and 41 depict examples of this. 

contour 

igure 40 

contour 

Figure 41 
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contour l film 

~sect ion 
Figure 42 

The solutions of the differential equations H = 0 (or Llr = 0) may have 
singularities. An example (of a" Mobius trefoil") is shown in Figure 42; this 
particular surface is homeomorphic to the surface with singularities shown 
in Figure 43. 

We now consider a different functional whose Euler- Lagrange equations 
turn out to be once again equivalent to harmonicity of the radius vector, 
i.e. for which the extremal surfaces are defined (this time however in terms of 
arbitrary co-ordinates) by harmonic radius-vectors. Let V 2 be any surface 
in Euclidean IR 3 determined by the 3-dimensional radius-vector r(u, v) 
(where the (local) co-ordinates u, v are now arbitrary). The Dirichlet functional 
D[r] is defined by 

i E + G 
D[r] = - 2- du dv, 

D(u, v) 

where as before E, G are the coefficients of du 2 and dv2 in the first fundamental 
form of the surface r(u, v). By (42) the Lagrangian is, more explicitly, 

E+G 1 2 2 2 2 2 2 L(r., rv) = --2- = 1(x. + Yu + Zu + Xv + Yv + Zv). 

It follows by specializing the general formula (3) that the Euler-Lagrange 
equations corresponding to this Lagrangian are given in vectorial notation 
by Llr = 0; thus the extremal surfaces are precisely those with harmonic 
radius-vector. 

Since (£ + G)/2 ~ J EG - F2 , with equality precisely when both E = G 
and F = 0, it follows that for any piecewise smooth radius-vector r(u, v) we 

I \ 

cJdo . 
~-------------~ 
~ ~ 

Figure 43 
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have D[r] ;;::: S[r ], with equality occurring precisely if E = G, F = 0, i.e. if 
the co-ordinates u, v are conformal. Thus any extremal surface of the func
tional D[r] for which the co-ordinates u, v happen to be conformal, will 
automatically be an extremal surface for the functional S[r]. (The converse 
of this is in general false.) Hence (assuming the existence of conformal 
co-ordinates) the extremals corresponding to S[r] can all be obtained by 
selecting from among all harmonic radius-vectors (i.e. extremals correspond
ing to D[r]) those for which the co-ordinates u, v are conformal (and then, if 
you like, applying any non-singular co-ordinate transformation). (See 
Proposition 37.5.3 and the discussion preceding it.) 

Harmonic radius vectors r(u, v) for which the co-ordinates u, v are not 
conformal will, by the above, not determine minimal surfaces. As an example 
consider the radius-vector r(u, v) = (u, v, Ref(u + iv)), the graph of the real 
part (the imaginary part would serve equally well) of a non-linear complex 
analytic function f(u + iv). 

The relationship between the functionals D[r] and S[r] is in many ways 
analogous to that between the length functional/![}'] and the action S~[y] = 
J~ I y 12 dt, of a path y (see §31.2). It is clear that 

(lg[y ])2 s (b - a)S~[y ], 

with equality occurring precisely when the parameter tin terms of which the 
path y is parametrized is proportional to arc length on y. (Recall from 
Theorem 31.2.2 that the extremals of /g[y] satisfy the equation for the geo
desics provided the parameter is natural in this sense.) This similarity of 
relationships is connected with the fact that the functionals tg[y] and S[r] 
are invariant under arbitrary transformations of the parameters (co-ordin
ates), while the functionals S~[y] and D[r] are not. 

37.6. Equilibrium Equation for a Thin Plate 

We now consider a particular example from the theory of the equilibrium 
of elastic bodies, namely the equilibrium of a thin elastic plate under bending. 
By "thin" we mean that we assume the plate's thickness to be negligible by 
comparison with its other two dimensions. We shall assume also that in its 
undeformed state the plate is planar, and that the deformation (or strain) is 
small, i.e. that the amounts by which the points of the plate are displaced are 
negligible by comparison with the thickness of the plate. Our object is to 
obtain the equations for equilibrium under bending of such a plate by 
applying our variational method to the functional representing its free (or 
elastic) energy. 

Under bending, those parts of the plate closer to the convex side undergo 
stretching, while those nearer the concave side undergo compression. The 
amount of compression (or stretching) decreases with depth (or height) into 
the plate, until the so-called "neutral surface" is reached, where there 
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occurs neither compression nor stretching. The neutral surface separates 
the plate into two halves each of thickness half the original (see Figure 44). 

We introduce a rectangular Cartesian (i.e. Euclidean) co-ordinate system, 
taking the origin 0 to be on the neutral surface, the z-axis to be perpendicular 
to that surface, and the (x, y)-plane to coincide with the plane of the neutral 
surface when the plate is in its undeformed state. Denote by ( (x, y) the vertical 
displacement of the points of the neutral surface of the deformed plate. It 
can be shown that if h denotes the thickness of the plate, then the free energy 
of the deformed elastic plate is given by 

where the integral is taken over the domain of definition of the displacement 
function ( = ((x, y), E is Young's elastic modulus, and a is the Poisson 
coefficient. (The constants E and a are calculated from 

E = 9Kp 
3K + 11 ' 

13K- 2p 
a= --,----

2 3K + f.1 ' 

where K and f.1 are respectively the compression and shearing moduli of the 
material from which the plate is made.) 

We now calculate the variation in the functional F due to a perturbation 
<5( (which in this case is permitted to be non-zero at the edge of the plate). 
Note first that in view of the assumption that the deformation is "small ", 
we may in what follows , without undue sacrifice of accuracy, use interchange
ably dS, the element of area on the neutral surface, and dx dy, the element of 
area on the (x, y)-plane. We begin by rewriting F as a sum of two integrals : 
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(Here L'l denotes, as usual, the Laplace operator.) We shall calculate the 
variations in each of these two integrals separately. Beginning with the first 
integral on the right-hand side of (44), we have 

£5 ~ JJcL'l02 dS = JJcL'lO(L'l£50 dS = JJ(L'l()(div grad £50 dS 

= J J div(L'l( grad £50 dS - J J (grad £5(, grad L'l() dS. ( 45) 

Denote by y the (closed) boundary oD of the domain of the function 
((x, y). (A natural choice for}' would be the closed curve bounding the neutral 
surface when the plate is in its undeformed state.) Then using Green's formula 
(§26.3(33)), it is easy to verify that 

J J div(L'l( grad £5() dx dy = f, L'l( (n, grad £5() dl, 

D 

where dl is the element of arc length along y, and n is the unit normal vector 
to y. Since (n, grad £50 = (ojon)(60, the directional derivative of £5( in the 
direction n, it follows that (to within acceptable limits of accuracy) 

JJ div(L'l( grad £50 dS = ~ L'l( ;n (60 dl. (46) 

D 

Similarly 

D D D 

= f, 6((n, grad L'l() dl- JJ(60 L'l2 ( dS 
D 

From this, (46) and (45) we obtain 

£5~ If<L'l02 ds = If<60L'l2( ds-! £5( o(L'lO dt +! L'l( o(60 dt. (47) 
2 ~- iJn 1r on 

D D 

Transferring our attention to the second integral on the right-hand side 
of (44), we have (neglecting, as usual when applying the variational technique, 
second-order terms in the first and second partial derivatives of £50 

-If~( 02, )2 02, 02'] If[ 02, a2£5' a2, a26' o26' 02'] 
(j Ll ox oy - ox2 Dy2 dS = 2 ax ay ax oy- ox2 oy2 - ox2 oy2 dS. 

D D 
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y 

0 
Figure 45 

The integrand in the right-hand side integral can be expressed as the diver
gence of a vector T: 

~ (ofJ ( _!j_ - ofJ ( a2() + ~ ( ofJ ( _!j_ - ofJ ( o2( ) = div T. 
ax ay ax ay ax oy2 oy ax ax oy ay ox2 ' 

whence we obtain (as before via Green's theorem) 

(48) 

= i [cos e(ofJ( _!j_ - ofJI_ 02' ) + sin e(ofJ( _!j_ - ofJ ( 02' )] dl, 
~ oy ax oy ax oy2 ax ax oy oy ox2 

where e denotes the angle between the positive x-axis and the unit normal n 
(see Figure 45). 

Denoting by ojon the operator o", and by ojol the operation of taking 
the directional derivative with respect to the unit tangent vector to the curve 
y, we have 

a 8 a . 8 a 
OX = cos on - Sin ol ' 

a . 8 a 8 a 
oy =Sin on+ COS of' 

whence (48) can be rewritten as 

1 ofJ ( [ . o2( . 2 a2( 2 a2' ] (49) = ~ ~ 2 sm e cos e ox oy - sm e OX2 - cos e oy2 dl 

1 ofJ ( [ . ( a2( a2' ) 2 . 2 a2( J + ~ Ti sm e cos e oy2 - OX2 + (cos e - sm 8) OX oy dl. 

We now integrate by parts the second integral in the right-hand side of 
(49). Its integrand, which we denote briefly by (ofJ(jo l)B can be written as 

ofJ ( B = o(fJ(B) _ fJ ( aB 
a1 a1 az · 
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Now from the definition of the line integral (see §26.2) it follows that the line 
integral of the directional derivative (ojol)(b(B) over an arc is just the differ
ence of the values of the function b(B at the arc's end-points; thus since y is 
closed, we have fr (ojol)(b(B) = 0, whence the second integral in (49) is 
equal to 

!. ~ a [ . (82
( 82

() 2 . 2 ()) 82
( J - Yr u( o[ Sill() COS() oy2 - OX 2 + (cos () - Sill OX oy d/. 

Putting this and (47) together we obtain finally 

bF = ll(~~ a2 ) { JJ(b0A2
( dS 

D 

(50) 

+ (cos2 () - sin2 ()) 0~2;y) J dl + i 0~~) 

Now the work done by the external forces acting on the plate in "perturb
ing" it by an amount b( is given by JJD P b( dS, where P = P(x, y) is the 
external force on the plate per unit area (of the neutral surface) in the direction 
perpendicular to the (x, y)-plane. The equilibrum equation for the plate 
therefore takes the form 

bF- ffPb(dS = 0, (51) 

D 

where bF is given by (50). Note that this equation involves both surface and 
' contour integrals. Since the equation holds for all perturbations b(, which 

therefore may assume any prescribed values on oD and yet be non-zero only 
on arbitrarily small areas of D, it follows that those two parts of the left-hand 
side of equation (51) comprised on the one hand of the surface integrals and 
on the other hand of the contour integrals, must vanish separately. Taking 
the surface integrals first we obtain 

ff( Eh 3 
2 A2(- P)b(dS = 0. 

12(1 - 0" ) 
D 

Since b( is arbitrary it follows that 

HA2(- P = 0, (52) 
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where the constant H, which is determined by the material of the plate, is 
given by H = Eh 3 /12(1 - 0" 2 ). This constant is called the rigidity of the plate 
under bending (or its cylindrical rigidity). Equation (52) is thus the equation 
for equilibrium of a thin elastic plate deformed by the action of external 
forces. 

From the vanishing of that part of the left-hand side of (51) made up of 
contour integrals, we obtain supplementary "boundary conditions" for 
equilibrium. In this connexion it is usual to single out various important 
special cases. 

(a) Suppose that part of the edge y = oD of the plate is free, i.e. that no 
external forces act on it. Then along this portion of the boundary 6( and 
6(8(/on) are arbitrary, so that the corresponding factors in the integrands 
of the contour integrals in (50) must sum to zero, yielding: 

o(L\0 a ( (82( (} 2() i3 2 ( ) - a;;- + (1 - 0") a! sin(} cos(} ox2 - oy2 + (sin2 (} - cos2 8) ox oy 

= 0; 

A ( · 02 ( . 2 02 ( 2 02() L.l' + (1 - 0") 2 sill e coso ax ay - sill e axz - cos e ayz = o. 

(b) Suppose that the boundary of the plate is fixed (for instance embedded 
in some rigid material). In this case the boundary of the plate cannot be 
displaced vertically, nor can its direction be altered; consequently 6( = 0 
and 6(i3(/on) = 0 (so that certainly the contour integrals in (50) all vanish). 
In this case the boundary conditions take the form ( = 0, o(/on = 0. The 
import of the first condition is that the points of the plate's boundary do 
not move vertically, while the second signifies that the edge of the plate 
remains flat. 

3 7. 7. Exercises 

1. Consider the set of skew-symmetric tensors Fik defined on Minkowski space !Rj 
which satisfy the condition d(Fik dxi 1\ dxk) = 0. Show that the extremals with respect 
to this set, of the functional S(F) = J F 1\ * F = -! J Fikpik d4 x, satisfy Maxwell's 
equations (in vacuo). 

2. Prove that in the case of curved space-time the covariant divergence of the energy
momentum tensor is zero, i.e. vk n = 0. 

3. Let V be a bounded region of the hypersurface x 0 = const. in !Rj. With reference to 
§37.2, prove the following: 

(i) !_ f T 00 d3x = - c rJ: T 0" da,, at v 'Yav 
where T 0" da, = T 01 dx2 1\ dx3 + T 02 dx3 1\ dx 1 + T03 dx 1 1\ dx 2 ; 
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(ii) 

(As noted in §37.2, the component T 00 is called the energy density of the system; 
the 3-vector with components (1/c)T10, (1/c)T20, (1/c)T30, is called the momentum 
density of the system. The 3-dimensional tensor y•P, oc, f3 = 1, 2, 3 (which by (ii) 
represents the density of the flux of momentum) is called the stress tensor.) 

4. Consider the functional S[l] = .f Rjjgl dV, where R = gikRik• R;k = ar:k;ax1 -

ar:Jaxk + r:kr~- r11r~m• and g;k is a fixed metric. Show that the extremals 
r = (rt) of this functional satisfy Christoffel's formulae expressing the r~i in terms 
of the components of the metric tensor. 

5. What form does the energy-momentum tensor of a gravitational field take? 

6. Let F = F;k dx; " dxk, i, k = 0, l, 2, 3, denote the electromagnetic field tensor in a 
4-dimensional space-time with metric%· Show that in this case Maxwell's equations 
take the form dF = 0, {>F = 4njjc, where j is the current, and {> = *-I d *· 

7. Consider in an even-dimensional Riemannian (or pseudo-Riemannian) space the 
functional 

S[gJ = Jn. 
where the form Q is as defined in Exercise 10 of §30.5. Show that bSjbg = 0. 

§38. Examples of Lagrangians 

38.1 

Let <p(x) denote a complex scalar fieldt in the space ~i with metric 

-1 _} -1 

and consider the following action 

S = const. J[n2(~~' ~:)- m2c2<p(x)<p(x)] d4 x = J A d4 x, (1) 

where the bar denotes complex conjugation, his Planck's constant, and cis 
the speed of light. Here m( ~ 0) is the mass of the particle described by the 

t It should be noted that the fields in question in this section, as also in §§40, 41 (where non
abelian gauge groups are considered), represent from their inception quantum objects having no 
direct classical analogues (i.e. are not modelled after antecedent classical fields). 
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field (or "wave function") q>. Thus the Lagrangian under consideration is 
A = A(cp, ip, acp;ax, aipjax), where q> and ip are formally regarded as inde
pendent variables. (This Lagrangian corresponds to the situation of a free 
relativistic particle.) It is almost immediate from (3) of §37.1 that the Euler
Lagrange equations JSjbq> = 0, JS/bip = 0, reduce to the single "Klein
Gordon equation" 

(2) 

where 

It follows easily from this and the definition of the energy-momentum 
tensor (§37.2(8)) that 

Tba = Tab= nzgaegbd(aip acp + _acp aip) _ gabA (3) 
axe axd axe axd ' 

whence the energy density is given by 

acp acp roo = :nz 2: - - + mzczipq>. 
e axe axe 

The action (1) is clearly invariant under transformations of the form 

(a = const.), 

which give rise to a "current" 

a . ab(- acp aip) J = zg q> axb - q> axb ' 

(4) 

(5) 

(6) 

which is conserved, i.e. ar;axa = 0. (We leave the deduction of this fact 
from the Euler-Lagrange equations as an exercise for the reader.) The 
quantity Q = Jr; const. ] 0 d3 X is Called the "charge" of the field q>. 

The presence of an electromagnetic field given by a vector potential 
A = A(x), is taken into account by replacing the operator in(ajax) by 
in(a;ax) + (e/c)A, i.e. by replacing 

a a e 
i axa by i axa + en Au(x), (7) 

where e is the charge on the particle. The full Lagrangian for the case of a 
particle of mass m in an electromagnetic field has the form (putting n = 1 for 
simplicity): 

- I acp ie - acp ie ) 2 2 - 1 ab 
A(cp, q>, A) = \axa + ~ Aaq>, axa - ~ Aaq> - m c q>q> - 16nc FabF . 

(8) 
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EXERCISE 

Show that the corresponding action is invariant under the "gauge transformations" 

(X = (X(x); S-+ S, (9) 

(assuming for simplicity h = c = 1). 

If the scalar field is real, or as they say "neutral", i.e. cp : cp, then the 
Lagrangian and the Euler-Lagrange equations take the form 

A _ ~ I ocp ocp) _ 2 2 2 
- 2 \ox' ox m c cp ' (10) 

and the current vector J" is identically zero. In this case it is not possible to 
incorporate the electromagnetic field (as above) since the resulting Euler
Lagrange equations then turn out not to have real solutions. 

It is easy to verify that the "free" equations (2) and (10) have the solution 
cp = canst. x ei<k.x>, where k is a vector independent of x satisfying 

(11) 

Such a solution is taken as describing a free particle of mass m and momentum 
p = hk. Thus the momentum lies on the mass hyperboloid (p, p) = m2c2 

(cf. §32.2(18)). 

38.2 

If the state of the particle (of non-zero mass) is described in terms of a complex 
vector field cp = (cp0 , cp1, cp2, cp3) then the appropriate action isS= J A d4x, 
where 

and where the field is required to satisfy the supplementary condition 

By §37.2(8) the energy-momentum tensor is in this case given by 

Tab= Tba = _ ac bd kl(ofPk ocp, + ocp, ocpk) _ abA 
g g g axe oxd oxd axe g . 

(12) 

(13) 

(14) 
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The group of action-preserving transformations qJ -+ ei~qJ, if5 -+ e- i~iP gives 
rise to a conserved current 

(15) 

EXERCISES 

1. Deduce the conservation of current (i.e. ar;ax• = 0) from the Euler-Lagrange 
equations bSjbijj = 0, bSjbcp = 0 (which in the present context reduce to 
(0 + m2 )cp = 0). 

2. Show that in the absence of the supplementary conditions (13) the energy J T 00 d3x 
need not, in general, be positive. 

As in the case of a scalar field, for the solutions (for the components of qJ) 
of the free equation (see Exercise 1 above) of the plane-wave type, namely 
const. x ei<k,x>, we must have <k, k) = m2 (where we have put h.= c = 1 
for simplicity), and again the inclusion of an electromagnetic field given by a 
vector-potential A is achieved by replacing the differential operator i(cljax•) 
as indicated in (7). The total Lagrangian (including an "electromagnetic" 
term) is again invariant under the gauge transformations (9) (with of course 
qJ now denoting a vector). 

The case of a vector field of zero mass (m = 0) which we encountered 
earlier (in the form of an electromagnetic field) is of special interest. Here if 
the field is real then the Lagrangian has the same form as that of an electro
magnetic field (cf. §37.3), namely 

()(/) a(/Jb 
A= const. X F.bFab, where Fba = a)- ax•' (16) 

which is invariant under the gauge transformations 

aiX(x) 
({). -+ ({). - -ax• · (17) 

Later in this chapter (in §40) we shall consider yet another kind of field, 
namely "spinor" fields t/1 taking their values in a space of" spinors ". 

§39. The Simplest Concepts of the General 
Theory of Relativity 

39.1 

We first recall (from §6) the basic assumptions of Einstein's special theory of 
relativity (STR). (It is interesting to note that in the creation of that theory, 
apart from the physicists Einstein and Lorentz (whose participation is 
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widely known), the foremost geometers of that time, Poincare and 

Minkowski, also took part.) According to that theory with each "event" 
occurring at a particular point of space at a particular instant there is 
associated a point in the 4-dimensional Minkowski space-time !Rj, with 

metric given by df2 = (dx 0? - L~= 1 (dxa) 2 in terms of pseudo-Euclidean 
co-ordinates x0 , x 1, x 2 , x 3, where x 0 = ct, t being the time and c the speed 
of light in vacuo (c ~ 299,793 kilometres per second). A vector ¢ is said to 

be respectively time-like, light (i.e. isotropic) or space-like, according as 

<¢, 0 > 0, <¢, 0 = 0 or<¢, 0 < 0, and then a curve y(r) in !Rj is time-like, 
light, or space-like according as its velocity vector v = dyjdr is, at all of its 
points, time-like, light or space-like. The world-line of a particle of mass 
m > 0 is time-like (since its speed should not exceed that of light), while 
that of a particle of zero mass (m = 0) is isotropic. In developing STR as it 
applies to a free particle of positive mass, either of the following two 
Lagrangians may be used (see Example (a) of §32.2): 

s<l) = f L< 1l dr = r:x f <v v) dr· 
free ' ' 

y(r) y(r) 

s<2 l = f Lt;~e dr = {J J ~ dr. 
y(r) y(r) 

Here y(r) is the world-line of the particle in !Rj, v = dy(r)/dr is as before its 

4-velocity, and r.x, {3 are the particular constants r:x =!me, {J = -me. In the 
physics literature the Lagrangian one usually finds employed is the second 

one: Lt;~e = fJ~<-;,~), whose corresponding functional S(2) is proportional 
to the 4-dimensional arc length l of the world-line y(r). Since this functional 
is independent of the parameter r, we may taker= x0/c = t ("ordinary" 
time), thence obtaining the Lagrangian in terms of "3-dimensional 
formalism": 

L(2l _ a< )1;2 _ a ~1 lwl 2 

free - fJ V, V - fJC ~ l - 7' (1) 

where v = dy/dt, i.e. v" = dx"/[d(x0 /c)] = c(dx"/dx0 ), (so that in particular 
v0 = c), and wa = va, rx = 1, 2, 3, i.e. w is the "ordinary" 3-dimensional 

velocity vector. This 3-dimensional form of the Lagrangian is useful in that 
it allows ready comparison with the analogous classical system. Thus if 

I w I ~ c, then writing briefly w = I w I, we have 

(2) - 1/2 - - ' w w R ( 2 ( 4)) Lrree- fJ<v,v) - {Jc -- {Jc 1- 2c2 + 0 c4 · (2) 

Giving {J its value {J = -me, and letting I w 1/c --> 0, we arrive (to within a 
constant (namely mc 2 )) at the Lagrangian of a classical free particle (see 
Example (c) of §31.1). 
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As we saw in (11) and (12) of §32.2 the energy and (3-dimensional) momen
tum of our free relativistic particle are given by 

oL<2l me2 oV2l mwa 
E- ~- L<Zl - a--~~- - (j"P (3) 

-WOW free-R2' p-ow" -p;2- Pp· 
1-- 1--

e2 ez 

(Recall that in "3-dimensional formalism" indices are raised using the 
Euclidean metric + bap .) Setting E/e = p0 we obtain the momentum 4-vector 
p = (pa), a = 0, 1, 2, 3. It is immediate that the 4-momentum of a free particle 
of mass m satisfies the equation 

3 

papbgab = (p, P > = (po)z _ I (pa)z = mzez, (4) 
a= I 

which defines the" mass surface" in the space co-ordinatized by the momenta 
(pa), and endowed with the Minkowski metric gab· This surface (or rather 
half of it) is isometric to 3-dimensional Lobachevskian space (see §10), and 
its volume element is easily seen to have the form da = const. x d3pjp0 (in 
terms of the co-ordinates p 1, p2 , p3 ). 

If we use instead the first Lagrangian, namely L}~~e = ex(v, v), then the 
energy (see §31.1) is given by 

oL}~~e Lol - L<tl - ( ) v -~- - free - free - ex v, v . 
ov 

Thus along each extremal the quantity (v, c) is conserved, i.e. is constant, 
so that the extremals must in particular be such that r is a natural parameter 
for them, i.e. dl = const. x dr (and the constant factor may clearly be chosen 
arbitrarily, i.e. its value does not affect the class of extremals). We choose r 
to be the proper time, r = ljc, for reasons which will soon appear. The 
components of the 4-momentum as defined in §31.1 are given by 

oL}~~e h . 0 Pa = -"-, t at IS Po = 2exv , uva 
f3 = 1, 2, 3, 

where now va = dxajdr = e(dxa/dt)(dtjdl) (using r = l/e). Since 

d_l_ = e Jl -wz 
dt e 2 ' 

it follows, on putting ex =!me and raising the index of Pausing the Minkowski 
metric, that this 4-momentum coincides with the previous one defined in 
terms of the Lagrangian L};~e (see (3) above). Thus it follows in particular 
that the 4-momentum (pa) is indeed a 4-vector under co-ordinate transforma
tions of IR{. The vector v = (va), where va = dxajdr, r = ljc, is usually called 
the invariant 4-ve/ocity to distinguish it from the 3-velocity w = (w 1, w 2 , w3). 

It is easy to see that the two velocities are related by wil = e(vP jv0 ), f3 = 1, 2, 3. 
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The effect on the particle of an external electromagnetic field given by a 
vector-potential A.(x) is taken into account by adding a term to the respective 
Lagrangians: 

Ol _ (1) e dx" 
L - Lrree + - Aa -d ' c r 

r = -· 
' c 

(5) 

(2 ) _ (2) e dx" _ (2 ) e dxa 
L - Lrree + - A. -d - Lrree + - A a -d + eAo' 

c t c t 

xo 
t = -. (6) 

c 

Thus the incorporation of the external electromagnetic field is equivalent to 
the addition of the term (e/c)A.(x) to each component Pa of the momentum 
4-covector of the free particle. 

In terms of Hamiltonian formalism (see §33) the Hamiltonian of a free 
relativistic particle is in view of (4) given by 

H = E(p) = cJp2 + m2c2 = cp0 , 

where p2 = _L;; 1 (Pa) 2• In the presence of an electromagnetic field A. = 

(A 0 , A 1, A 2 , A 3) = (A 0 , A a), the Hamiltonian is rather 

H(x, p) = c J~ (Pa + ~ Aa r + m2c2 + eA 0(x). 

Recall from §37.3 that the electromagnetic field tensor is given in terms of 
the vector-potential by Fba = oA./oxb - oAb/ox", and that the appropriate 
action of the field by itself is 

1 f ab 4 S{A} = - 16nc F.J d x. 

We know that Fab satisfies the following conditions: 

(i) d(Fabdxa 1\ dxb) = ((}Fab- DFac + DFbc) dx" 1\ dxb 1\ dxc = 0 
axe oxb axa 

(constituting the "first pair" of Maxwell's equations-see §25.2(18)); 
(ii) in the absence of charge, oF"h/oxb = 0 (which constitutes the "second 

pair" of Maxwell's equations-see §25.2(21) or §37.3). 

If we haveN particles in IR1j with masses m1, ... , mN, charges e1, ... , eN, 

and world-lines y1, ... , rN' in the presence of a field A.(x), then for the total 
action of particles and field we can use one or the other of the following: 

s(l) = I rJ.; f (v;, V;) dr + I f ~ (A.(x)vf) dr- -161 fF.bFab d4 x; 
i;1 Yi i;1 l'i c nc 

(7) 
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Here w; and v; are respectively the ordinary 3-velocity and the 4-velocity of 
the ith particle. Taking the Lagrangian in (7) in the case of a single particle, i.e. 

we find that the energy is given by 

oL0 > e 
va -- - L0 > = 2a(v v) + -A va - L<'> = a(v v) ova ' c a ' . 

Hence for a particle in an external electromagnetic field we have that (v, v) 
is constant along each trajectory, whence, as in the case of a free particle, 
the extremals again have the property that the parameter r is natural for 
them. 

39.2 

The above procedure for including an electromagnetic field in STR turns 
out not to work for gravitational fields. More precisely, suppose that, on the 
basis of Poincare's hypothesis to the effect that gravitational interactions are 
propagated with the speed of light, we introduce into the Lagrangian a 
4-dimensional scalar potential ofthe form cp(x - ct) representing the gravita
tional field, or a term corresponding to a "gravitational vector-potential" 
A~, with now the masses m; in the roles of the charges e; (the idea being that 
the mass of a particle is just its "gravitational charge"); experiment shows 
that in terms of suitable local co-ordinates this vector-potential would have 
to be of the form A G = ( cp, 0, 0, 0), where cp is the usual gravitational poten
tial. Thus the (tentative) procedure would be to consider the action given by 
the first two terms in the right-hand side of (7) with A replaced by AG and 
the e; by them;, and hope that the corresponding extremals turn out to be 
the correct trajectories. However (as was shown already by Poincare) the 
resulting correction to Newton's law of gravitation leads to a value for the 
amount of precession of the perihelion of the orbit of the planet Mercury, 
which does not agree with observation (though it has the right order of 
magnitude). Hence a different approach is needed for incorporating gravita
tion into the theory of relativity. This problem was solved by Einstein, who 
proposed the following as the basic hypothesis of his general theory of 
relativity (GTR): The gravitational field is simply a metric gab of signature 
( + - - -)in four-dimensional space-time M4 (x0, x 1, x 2 , x3), this metric 
being such that the curvature is non-zero. (The magnitude of the curvature 
at each point characterizes the strength of the gravitational field at the point.) 
Thus a test particle in an external gravitational field is from this point of view 
simply a free particle in a space with metric gab• and therefore such a particle 
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will (if its mass m is positive) move along a time-like geodesic y(r) = (xa(r)), 
i.e. along an extremal corresponding to the Lagrangian 

01 _ _ dxa dxb 
Lrree- m<v, v) - m -~- -d 9ab· 

CT T 
(9) 

(If m = 0 the particle moves along a light geodesic.) As above we have 
I vI = con st. along each extremal, and we take r to be the proper time, i.e. 
r = 1/c. 

The inclusion of an electromagnetic field Aa(x) follows the same scheme 
as before, except that the Minkowski metric is now replaced by the metric 9ab: 

S = f Ull dr = f L}~~e dr + ~ f Aa dxa (10) 
y(r) y(r) C y(r) 

The action of the field alone is in this more general context given by 

_ 1 J ab/-:4 Srield- - 16nc FabF y -g d X, (11) 

where of course d(J = FfJ d4 x is the volume element, g = det(gab), and 
pb = gacldFcd· It follows without difficulty that Maxwell's equations 
bSrietct/bAa = 0 (in the absence of charge), now take the form 

d(Fabdxa 1\ dxb) = 0 ("first pair"); 
(12) 

V b pb = 0 ("second pair"). 

Before investigating the equations for the gravitational field 9ab itself, we 
point out a simple consequence of Einstein's hypothesis. (This consequence 
has in fact already been examined (in Example (b) of §32.2) but bears re
capitulation.) Consider a "weak" (in a sense to be made precise) gravitational 
field-metric 9ab• and a "slow" particle of positive mass moving through the 
field along a geodesic x( r); thus 

a, b, c = 0, 1, 2, 3, (13) 

where the ri:c are the Christoffel symbols, i.e. the components of the sym
metric connexion compatible with (and so determined by) the metric 9ab 
(see §29.3), and the derivatives are taken with respect to r, the proper time 
along the geodesic (i.e. r = 1/c). As in STR we write t = x0 /c. By a weak 
metric 9ab we shall mean a metric which can be represented as a power series 
in 1/c of the form 

g = g(O) + C~2g(2) + C~3g(3) + ... = g<Ol + o(~) (14) ab . ab ab . ab ab C 2 ' 

where gW = 0, g~~l is the Minkowski metric, and for n ;:::: 3 the g~~(x) and 
their first partial derivatives with respect tot= x 0/c, x 1, x 2 , x 3 are (for all 
relevant points x) small in comparison with c. In saying that the particle is 
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slow we mean that dx"/dt ~ c. Since -r is assumed to be the proper time along 
the geodesic, it follows that 

whence 

d-r = dl 
c 

1 dx" dxb 
2-d -d 9abdt c t t 

d-r = J 1 + a Uz) dt = [ 1 + a c2) J dt. 

By Theorem 29.3.2 the Christoffel symbols are given by 

ra = .l ad(ogbd + ogcd - ogbc) 
be z9 axe iJxb iJxd . 

(15) 

(16) 

(17) 

It follows from (14), (16), (17) and the conditions on the g~'2 and their first 
derivatives that in (13) (with a = 1, 2, 3) all terms involving a Christoffel 
symbol are of order at most a(l/c) except for f10 x0x0 = r~0 c2 + a(1/c), 
(X = 1, 2, 3 (the details are given in the proof of Proposition 32.2.2). Now by 
(14) (and the Condition On Og~'2/iJt, n :<:: 3) the quantities 09ab/OX0 have Order 
a(l/c3) whence 

P' = .lg""(- ogoo) + a(_!_) 
00 2 ox" c3 ' 

so that 

(X= 1, 2, 3. 

Thus (for a = 1, 2, 3) equation (13) takes the form 

d2x" = -! 09oo c2 + a(!). 
dt2 2 ox" c 

(18) 

(19) 

For a slow particle in a weak field these equations should approximate 
(to within a(1/c)) Newton's equations d2xa./dt2 = -o<pfoxa. for a particle in 
a classical gravitational field with potential <p(x). It follows that we must have 

whence (cf. §32.2(21)) 

2<p(x) ( 1) 
9oo = 1 + ~ + a c3 • (20) 
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Thus, turning Proposition 32.2.2 on its head, we have 

39.2.1. Proposition. It is a consequence of Einstein's hypothesis that the 
component g00 of a weak gravitational field gab must have the form 

2q>(x) ( 1 ) 
goo= 1 + Cl + 0 c3 ' 

where <p(x) is the Newtonian gravitational potential. 

From (20) we can obtain in particular a more accurate relationship (than 
(16)) between the proper time r = 1/c and the "world" time t of a fixed 
particle. Thus since x\ x 2, x 3 are constant we have from (15) that 

c · dr = g00 (dJro) 2 dt = c)i;;; dt, 

whence by (20) 

dr ~ dt(1 + <p:~)). (21) 

Since it is always the case that q>(x) :-::;; 0, we conclude that: In a weak gravita
tional field the proper time between two events corresponding to a particle 
fixed in space is less than the world time: 

r < t if <p < 0. 

(The two events may be taken as having co-ordinates respectively x0 = x?, 
xa = 0, and x0 = xg, xa = 0; the proper timer = 1/c where lis the length of 
the world-line joining the two events.) 

39.3 

Consider now the case of a gravitational field (gab) (i.e. a metric of signature 
( + - - - )) in an otherwise empty region of 4-dimensional space M 4 , i.e. 
free of particles and of all other fields. We make the further basic assumption 
that our theory of gravitation should be "universally covariant", as they say, 
meaning that the equations for the gravitational field should have the same 
form in all co-ordinate systems. We shall not go into the details of Einstein's 
derivation of his equation for the gravitational field (in the form of conditions 
on the curvature tensor R'bcd corresponding to the metric gab) but shall simply 
state it. (See however §37.4 where we derived Einstein's equation from 
Hamilton's principle.) The equation(s) in question are: 

(22) 

where Rbc = R'bac is the Ricci tensor and R = gab Rab is the scalar curvature. 
(Alternatively we may use the equivalent equation Rab = 0; this equivalence 
was shown at the end of §37.4.) 
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It follows from Bianchi's identities (see Exercises 7 and 8 of §30.5) that 
the expression Rab - !Rgab ("Einstein's operator"), where gab is here arbitrary, 
has the following important property: 

(23) 

Einstein's equation (22) as an equation in the components gab (in terms of 
which, of course, the components of the Riemann curvature tensor can be 
expressed-see §30.1(3)) has the following three properties: 

(i) It is a second-order partial differential equation; 
(ii) In the case of weak fields (for which, as we saw above, g00 = 1 + 

2q>(x)jc2 + O(ljc3)) from Einstein's equation one can deduce (we shall 
show how below) the familiar Poisson equation for the potential q>: 

3 ozq>(x) 
Aq> = L (:1 ")2 = 0. 

ac=l vX 
(24) 

(iii) By Theorem 37.4.1 Einstein's equation (22) is equivalent to the Euler
Lagrange equations for the extremals of some action; in fact (as Hilbert 
showed) the following action will serve: 

R = R~, (25) 

where the integral is taken over the region of M 4 defined by x? :::;; x0 :::;; x~. 
Thus according to Theorem 37.4.1 the variational derivative ()Sj()gab is 
given by 

EXERCISE 

1 DS 1 r-: , ab = Rab - zRgab· 
V -g ug 

(26) 

Show that for an expression of the form Rab - yRgab to be a variational derivative it is 
necessary (as well as sufficient) that y = t. (Use the fact that the divergence of a varia
tional derivative vanishes-cf. (23).) 

Remark. The above three conditions are also satisfied by any equation of the 
form 

(27) 

where A. is a constant (the so-called "cosmological constant"). However up 
to the present time no reason has emerged for supposing A. =/= 0, so that it is 
generally assumed that in fact A. = 0; cosmological considerations suggest 
that A.< w- 56 cm- 2• 
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The simplest non-trivial solution of Poisson's equation t1cp = 0 (which 
holds for the classical gravitational potential throughout the region of space 
outside the bodies whose masses are responsible for the gravitational field) 
is the stationary, spherically symmetric solution 

const. 
qJ = ~~, 

r 

3 

r2 = L (xa)2, 
a= I 

which corresponds to the situation of a spherically symmetric distribution of 
mass. If the tot a! mass is M then the constant is - G M where G ( ~ 6.67 x 
w- 8 cm3 /gram sec2 ) is Newton's universal constant of gravitation, so that 

M 
cp=-G-. 

r 
(28) 

What is the analogue in GTR of this Newtonian potential? To answer this 
question it is clearly appropriate to consider a spherically symmetric metric 
gab which is independent of the timet= x0jc (i.e. is "stationary"), and has 
the form 

(29) 

where g00 > 0, g 11 < 0, g00 and g 11 depend only on r, and dQ2 = (d0)2 + 
sin 2 0( dcp )2 is the element oflength on the unit sphere in terms of the spherical 
co-ordinates 0, cp. 

In order to see what explicit form Einstein's equation Rab = 0 takes in 
this case we first need to calculate the components rgc of the connexion, 
since Rab is defined in terms of them: 

(30) 

We write for simplicity g00 = v, g11 = -A.. From Christoffel's formula 
(§29.3(13)) with x 0 = ct, x 1 = r, x 2 = 0, x 3 = cp, keeping in mind that 
ogabfox0 = 0, and denoting differentiation with respect to r by a prime, we 
obtain by direct calculation that: 

v' ro -
IO- 2v' 

v' rl -
00- 2A.' 

n3 = -sin(} cos 0, 

2 3 1 
r12 = r13 = -, r 

n3 =cot(}, 1 r.2 0 r 33 = - 1 sm , 
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and that all remaining components are zero. From this and (30) it follows, 
again by direct calculation, that the only non-zero components of the Ricci 
tensor are R00 , R 11 , R 22 , R33 , and that these are given by: 

v" (v'? v'A' v' 
Roo= 2..1.- 4v 2 - 4 .. F + r.A.' 

v" (v'f v' A' A' 
R 11 = - 2-; + 4v2 + 4v.A. + r.A.' 

rA' rv' I 
Rzz = 2A.2 - 2v.A.- ~ + 1, 

It is not difficult to see (for example by putting v = e11 , A. = e") that of the 
resulting four equations Rii = 0, only two are independent, and that their 
solution is given by 

' r 
-1 

-A.= Ytt = 1- (ajr); v = Yoo = 1 
a 

where a is a constant of integration. Hence the metric (known as the 
Schwarzschild metric) outside a spherically symmetric body has the form 

d/2 = 1 -- c2 dt 2 - ---~ dr 2 - r2 dQ2 . ( a) I 
r 1 - (ajr) 

(31) 

For larger the metric is weak, i.e. 

~ (O) 1 (2) ( I ) 
Yab ~ Yab + c2 Yab + 0 c3 ' 

where from (31) we have g62J = - ac 2 jr. Comparing this with (20) and taking 
into account the fact that (p = - GM/r, we obtain a = 2GM/c2 . This con
stant (of the body of mass M) is called the gravitational Schwarzschild radius. 
(For bodies of the mass of the earth a ~ 0.44 em, while for the sun a ~ 3 km.) 
From (31) it is evident that as the radius of a body decreases through the 
value a some fundamental change occurs. We shall consider this phenomenon 
in greater detail in §31 of Part II. For the time being we shall rest content with 
the validity of formula (31) in the region r >a (outside the body). 

Since for appropriate (and obvious) co-ordinates x 1, x 2, x 3 we have 
dr 2 + r2 dQ 2 = (dx 1) 2 + (dx 2 ) 2 + (dx 3) 2 , and since for large enough r 

1 
~-~-

1 - (a/r) 
a (a 2

) 1+-+0-, 
r r2 
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it follows from (31) and the fact that - ac2 jr = 2cp, that for large r the 
Schwarzschild metric has the following form (in terms of the co-ordinates 
x0 = ct, and the new x 1, x 2 , x 3 just chosen): 

(dl) 2 =gab dxa dxb = (dx0? _ ,t (dxa) 2 + ~~ Ct (dx") 2 ) + oe:} (32) 

where a = 2GMjc 2 • 

Remark. It can be shown that this formula, with O(a 2 jr2 ) replaced by O(ljc3), 

holds for weak gravitational metrics generally, and not just for the 
Schwarzschild metric. (We showed part of this in the preceding subsection, 
namely that the coefficient of (dx 0 ) 2 has the form 1 + 2cpjc2 + 0(1/c3 ); this 
was a consequence of the expected agreement to within 0(1/c) of the equation 
for the trajectory of a slow relativistic particle in a weak field, with that of a 
classical particle in a field of potential cp.) 

It is of interest to note that in (32) the correction to the Minkowski metric 
is (to within 0(1/c3)) proportional to the 4-dimensional Euclidean metric 
(with variable proportionality factor 2cpjc 2 ). Thus to within O(ljc3) the 
metric (32) corresponding to a weak gravitational field is not invariant with 
respect to the Lorentz group but only with respect to its subgroup S0(3), 
and is calculated (to within O(ljc3)) in terms of the classical Newtonian 
potential. 

The above-mentioned fact that formula (32) holds generally for the metric 
of a weak gravitational field, can be used to obtain a correction to the classical 
trajectories of fast-moving particles, in particular of particles of zero mass. 
The trajectory x = x(IJ) of a photon satisfies two equations, namely the 
equation for the geodesics: 

a= 0, 1, 2, 3, 

and the equation gab(dxajdiJ)(dxbfdiJ) = 0, corresponding to the fact that the 
photon moves with the speed oflight. We shall omit the details ofthe solution 
of these equations, contenting ourselves with stating the formula for the 
light paths in a (spherically symmetric) Schwarzschild metric. The formula 
in question is, in terms of polar co-ordinates r, (jJ for the plane in which the 
particular trajectory lies, as follows (here the hat serves to distinguish the 
angular co-ordinate (jJ from the potential cp): 

A f dr (33) cp = p = const. 

r2 J_!_ - ~ (1 - ~)' pz rz r 

Note that in the limit as a ~ 0 (i.e. as the mass of the spherical body 
approaches zero) the paths are given by r cos (jJ = p, i.e. they are straight 
lines. For small a one can calculate from (33) the correction to the classical 
straight-line trajectory of a light r.ay. 
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39.4 

In GTR it is assumed that the interaction between any system of particles or 
any field (apart from the gravitational field!) and the metric gab• i.e. the 
gravitational field, is determined by the so-called energy-momentum tensor 
T,b in accordance with an equation (the full Einstein equation) of the following 
form: 

(34) 

or 

R~ - !Rb~ = canst. x T~, (35) 

where the constant is assumed to be a universal constant. 
The value of this constant can be found by considering the situation of a 

static dust-cloud of zero pressure in the presence of a weak gravitational 
metric (as given by (32)). The energy-momentum tensor is in this case given 
by (see (43) below) 

(36) 

where pis the density of the dust-cloud. It follows by direct calculation from 
Christoffel's formula and the formula (32) (with a2 jr2 replaced by 1/c3) for a 
weak metric, that among the Christoffel symbols rgc occurring in the formula 
for R00 (given in §37.4), the only non-zero ones (i.e. non-zero to within 
0(1/c3)) are given by 

roo= c~ :; + o(c~). a= 1, 2, 3, 

whence 

1 ( 3 a2 cp ) ( 1 ) 1 ( 1 ) Rg = cz J~ (ax~)z + 0 c3 = cz !l.cp + 0 ~3 . 
(37) 

Now from (35) we have R~ - !Rb~ = canst. x T~, whence it follows, since 
R~ = R, that -R =canst. x T~. Hence (35) with a= b = 0 becomes 

Rg = canst. x (T8 - ! T~), 
which by (36) and (37) yields in our present context 

1 ( 1) 0 pc2 
c2 l'l.cp + 0 c3 = R0 =canst. x 2 . (38) 
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From classical physics we know that the classical gravitational potential cp 
satisfies Poisson's equation 

Acp = 4nGp. 

Comparing this with (38) and bringing in the assumption that the constant 
we are seeking is universal, we deduce that its value is 8nG/c4 • Thus the full 
Einstein equation is 

(39) 

Note that in view of (23) the following identity must hold (cf. §37.2(8)): 

(40) 

This identity represents the law of conservation in GTR, replacing the 
analogous conservation laws of classical mechanics and special relativity. 

We now give the explicit forms of two particular energy-momentum 
tensors of the very first importance, namely that of an electromagnetic field 
(the form of the energy-momentum tensor in this case was derived in the 
context of special relativity at the end of §37.3), and that of a dense isotropic 
medium. 

(i) The energy-momentum tensor of an electromagnetic field is given by 
(cf. §37.3(24)): 

yab = _1_ ( _ pac pb + l.gab F pcd) 
4nc c 4 cd • 

(41) 

(ii) The energy-momentum tensor of an isotropic dense medium (or in other 
words the "hydrodynamic" energy-momentum tensor) is given by 

(42) 

where p and s are respectively the pressure and energy density at each 
point of the medium, in terms of a co-ordinate system "accompanying" 
or "attached to" the medium, i.e. relative to which the medium does not 
move (spatially), or, more precisely, in terms of which u0 = l, u1 = u2 = 
u3 = 0, where u = vjc, v being the 4-covector of velocity of the medium 
at each point. From (42) it is clear that in terms of such an attached co
ordinate system 7;,b has the form 

( s PoP)· T.,~ 0 p (43) 

In order to completely specify the Einstein equation (39) for a given dense 
isotropic medium, we need to know the "state equation" of the medium, i.e. 
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the relationship between p and £. In the case of the dust-nebula considered 
above, we had p = 0, s = pc 2• The so-called "ultra-relativistic" state equation 
is p = sj3, i.e. T~ = 0. 

ExERCISE 

Prove that the energy-momentum tensor of an electromagnetic field satisfies (cf. 
§37.4(36) et seqq.) 

where 

I 1 c5S 
2 T.b = ---r-:. <at;, 

y -g ug 

S = - _1_ IF F g"cgbd C:g d4x 16nc ab cd y - y , g = det(gab). (44) 

Remarks. 1. It is usual in expositions of GTR for the symmetric energy
momentum tensor T,b of a material system (which term is understood to 
subsume (non-gravitational) "field") to be defined by 

(45) 

where the action of the fields comprising the system are supposed given 
beforehand in the form of a functional depending both on those fields and on 
the underlying gravitational metric. (For example in the Lagrangians of 
scalar and vector fields (see (44) above or the examples in §38) the metric 
enters explicitly in particular in terms involving scalar products of gradients. 
The situation for "spinor" fields (whose role in GTR will be discussed in 
§41) is more complicated. Note that the formula (42) for the energy-momen
tum tensor of a dense isotropic medium also directly involves the metric.) 
The combined action of a material system and the underlying gravitational 
field is then 

(46) 

Thus if for instance the "material system" is an electromagnetic field Fab, 
then 

Stotai = J(R~-g + const. x Fabpab~)d4x. (47) 

The full system of equations (Maxwellian and Einsteinian) can in this case 
be written as 

(48) 



§40. The Spin or Representations of the Groups S0(3) and 0(3, I) 427 

2. The question has been much debated as to whether a precise meaning 
can be given to the term "energy-density of a gravitational field" (or indeed 
to the full concept of a gravitational energy-momentum tensor as a "univer
sally covariant" entity). From the standpoint which views (45) as the general, 
physically valid definition (for all material systems) of the energy-momentum 
tensor, the gravitational field plays a special role, distinguished by the fact 
that the use of(45) as a definition presupposes a metric. (Here we are of course 
assuming the truth of Einstein's basic postulate that the gravitational field 
is the metric; this assumption is supported, however, by a whole series of 
successful experimental verifications.) The upshot of this debate seems to be 
that there most probably does not exist any universally covariant gravita
tional energy-momentum tensor (apart from the left-hand side of Einstein's 
equation). However there is one important exceptional situation (not 
examined in the present text), namely that of a "localized gravitational 
packet" in an ambient Minkowski space. Comparison with the Newtonian 
gravitational theory shows that the amounts by which the components of the 
metric differ from constants must decrease in a sufficiently regular manner at 
a rate of the order of r- 1 (but no faster!) as r ~ oo. This allows the definition 
of the total "mass of the field" in a manner analogous to the classical defini
tion of the mass of a body in terms of the asymptotic behaviour at spatial 
infinity of the potential of the body's own gravitational field. This quantity 
(the "mass of the field"), considered as a functional defined on a certain 
3-dimensional metric, turns out to be the Hamiltonian of the system, and can 
therefore be regarded as the physical energy of the gravitational packet. 
This "gravitational energy" is invariant under arbitrary (internal) co
ordinate changes, provided that the changes attenuate sufficiently rapidly 
towards infinity. Thus in this formalism a gravitational field is considered as 
a new object situated in an underlying Minkowski space, in relation to 
which (i.e. to the Minkowski metric) its energy is defined. 

§40. The Spinor Representations of the Groups 
S0(3) and 0(3, 1). Dirac's Equation 
and Its Properties 

40.1. Automorphisms of Matrix Algebras 

Consider the full matrix algebra M(n, C) acting on the n-dimensional 
complex space IC". Recall that an automorphism of an algebra (or any other 
algebraic structure) is just an isomorphic self-map, and that an inner auto
morphism of an algebra A is an automorphism h of the form h(x) = gxg- 1 

where g is any fixed unit (i.e. invertible element) in A. Thus if A = M(n, C) 
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then g E GL(n, C).) The construction of the spinor representations of S0(3) 
and 0(3, 1) rests on the following property of the matrix algebra M(n, C). 

40.1.1. Lemma. Every automorphism of the associative algebra M(n, C) is 
inner. 

PROOF. Recall that an element P of an algebra M(n, C) is called an idempotent 
(or projector) if P2 = P, and that two idempotents P, Q are orthogonal if 
PQ = QP = 0. It is easy to see that the images (under their action on en) 
of two orthogonal idempotents intersect in the nullspace of en. An idempotent 
Pis said to be one-dimensional if the image subspace P(en) is one-dimensional. 
The matrices P 1, •••• P" defined as follows, form a set of one-dimensional, 
pairwise orthogonal idempotents: 

(Pf = {1, if k = I = i, 
' 1 0, if k "/= i or I "/= i. 

(1) 

Thus P; has entry 1 in its (i, i)th place and zeroes elsewhere. Clearly 

Pf = P;, P;Pj = 0 if i "/= j, PI + · · · + Pn = 1. (2) 

Consider now an arbitrary automorphism h: M(n, C)-+ M(n, C), and 
write h(P;) = P;. Since his an isomorphism (so that in particular h(l) = 1), 
the relations (2) must hold also for the P; : 

P;Pj = 0 if i i= j, P'1+···+P~=l. (3) 

Hence the P'1 are also (nonzero) pairwise orthogonal idempotents. Since 
(by the last relation in (3)) they also satisfy P'1 (en) + · · · + P~(en) = en, 
and since their images have null intersection, they must also be one-dimen
sional. Write P;(en) = c;. 

For each i, j, 1 ~ i ~ n, 1 ~ j ~ n, denote by t;; the matrix with entry 1 
in the (i, j)th place and zeroes elsewhere (i.e. (tii)~ = 1 if i = k, j = /,otherwise 
(t;)7 = 0). (These matrices are sometimes called "transvections ".) It is 
immediate that t;j(e) = e; and tii(e,) = 0 if r "/= j, where e~o ... , en are the 
standard basis vectors for the space C". Clearly 

(4) 

Writing h(t;) = t;.i, and applying the automorphism h to the relations (4) 
we obtain 

t;.it~s = 0 if j "/= r, (5) 

Since P~ t;.i = 0 if k "/= i, and 

en= P't(en) EB · · · EB P~(en) = C~ EB · · · EB C~, 

it follows that the image space t;_;(C") is one-dimensional, and in fact must 
co-incide with c;. Since 
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it follows that t;i restricts to an isomorphism from Cj to c;. Let e'1 be any 
fixed vector in C 1, and define e; = t; 1 ( e'1 ). The vectors e'1, ... , e~ are then 
non-zero vectors in C1, ... , C~ respectively, and therefore form a basis for 
IC". Define a linear transformation g: en --+ en by 

g(eJ = e;. 

We shall now verify that for all x E M(n, C) we have 

h(x) = gxg- 1• 

To this end note first that 

t;j(ej) = t;A1(e'1) = t; 1(e'1) = e;, 

t;j(e~) = t;it~ 1 (e;) = 0 if r ¥- j, 

(6) 

(7) 

whence it is easily verified that t;j(e~) = gtiig- 1 (e~) for all r. Since thee~ form 
a basis for IC" it follows that 

h(ti) = gtiig-1, for all i,j. 

Since every matrix x is a linear combination over e of the tii• it follows 
finally that h(x) = gxg- 1 for all x, completing the proof. 0 

In the following two sections we shall be concerned initially with presenta
tions of the matrix algebras M(2, C), M( 4, C) in terms of particular matrices, 
called respectively the Pauli and Dirac matrices. 

40.2. The Spinor Representation of the Group S0(3) 

Consider the following generators of the algebra M(2, C): 

1' Ux = U1 = (~ ~). Uy = U2 = e -~). 
Uz = U3 = (~ -~). 

(8) 

As was noted in §14.3 the matrices u 1, u 2 , u 3 are called the Pauli matrices. 
Together with the identity matrix they form an additive basis for M(2, C) 
as a 4-dimensional vector space. They satisfy the following relations (which 
yield a presentation of the algebra M(2, C)): 

(i) uqu1 - u1uq = 2iuk where (q, /, k) is an even permutation; 
(ii) UqUI + U1Uq = 2bql· 

We rewrite these relations as follows: 

(i) [uq, rr1] = 2iuko (q, /, k) an even permutation; 
(ii) {uq, u 1} = 26q1· 
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It follows from the relations (i) and §24.2(22) that the Lie algebra generated 
by the matrices (i/2)ai is isomorphic to the Lie algebra of the group S0(3) 
(and therefore, by Theorem 24.2.4, also to the Lie algebra of SU(2)). 

We now derive an important consequence of the relations (ii). For this 
purpose we first endow the 3-dimensional subspace of M(2, IC) spanned by 
a 1, a 2 , a 3 , with the Euclidean metric with Euclidean co-ordinates xI, x 2 , x 3 

where (x 1, x2, x3) is the "point" x 1a 1 + x 2a2 + x 3a 3 • Let A E 0(3) be an 
orthogonal transformation of this 3-dimensional Euclidean space 
IR3(xl, xz, x3): 

(9) 

Write 

(10) 

thus the a~ are the transforms of the basis vectors (points) aq. It follows 
almost immediately from the orthogonality of A that the relations (ii) are 
preserved: 

{a~, al} = 21\1 • 

On the other hand for the relations (i) we have 

[a~, a/J] = [A.~aY, A.~a0] = A.~A.~[ay, a0] = 2i(A.~A.~s~0 a1), 

where as usual 

{ 
1, if (y, 6, t) is an even permutation, 

s;.0 = Byor = - 1, if (y, b, t) is an odd permutation, 

0, if y, 6, t are not all distinct. 

It is not difficult to see (verify it for instance in the case a = 1, f3 = 2) that 

where C~ is the (t, r)th cofactor of the matrix A = (A.7). Hence if A E S0(3), 
then C~ = A.~, and 

We have thus shown that the relations (i) are also preserved by orthogonal 
transformations (10) with determinant + 1. 

It is clear that the two sets of relations (i) and (ii) together form a full set 
of defining relations for the matrix algebra M(2, IC), since they allow any 
product a;ai to be expressed as a linear combination of the basis elements 
1, a 1, a 2 , a 3 . We therefore have the following result. 

40.2.1. Theorem. If the linear transformation of M(2, IC) defined by (10) has 
its matrix A in S0(3), then it is an algebra automorphism. 
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From Lemma 40.1.1 we then obtain the 

40.2.2. Corollary. rf the linear tran~formation h of M(2, C) defined by (10) 
has its matrix A in S0(3), then there is an invertible linear tran~formation 
g = g(A) ofC2 such that h(x) = gxg- 1 for all matrices x in M(2, C), i.e. his an 
inner automorphism of M(2, C). 

40.2.3. Definition. The map A 1-+ g(A) is called the spinor representation of 
S0(3) in GL{2, C). 

Since an inner automorphism determines the conjugating matrix only 
modulo the centre of GL(2, C), which centre is comprised of the non-zero 
scalar matrices, it follows that g(A) is not uniquely defined, in fact is defined 
only to within a non-zero factor A. E C. The spinor representation is, strictly 
speaking, the homomorphism from S0(3) to the group SL{2, C)/{± l}, 
determined by the many-valued relation A 1-+ g(A). 

EXERCISES 

1. Show that the image of S0(3) under this homomorphism is precisely SU(2)/{ ± l }, 
and deduce that S0(3) ~ SU(2)/{± 1}. (This was the content of Corollary 13.2.2.) 

2. Show that "the" transformation g(A) corresponding to the rotation A through an 
angle qJ about an axis with direction vector n = (n.,, ny, n,), n~ + n; + n; = l, has 
the form 

40.3. The Spinor Representation of the Lorentz Group 

We now transfer our attention to the algebra M(4, C). We seek matrices 
y0 , y1, y2, y3 whiah generate the algebra M(4, C), and which satisfy the 
relations 

(11) 

where gab is the Minkowski metric. The essence of the next lemma is that the 
following four matrices fulfil these requirements, and that the relations (11) 
form a full set of defining relations for M(4, C): 

0 (1 0) 
y = 0 -1 ' 

Cit) 
0 ' 

2 ( 0 y -
-(j2 

3 ( 0 y -
-(j3 

(12) 
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(Here what appear as entries are 2 x 2 blocks, so that the matrices are 4 x 4, 
as they should be; the 2 x 2 matrices a 1, a 2 , a 3 are as defined in (8) above.) 
It is straightforward to verify that these matrices satisfy the relations (11). 

40.3.1. Lemma. All of the 4 x 4 matrices 1, ·t, y"yh(a <b), y•yhyc(a < b <c), 
and yDy 1yly3 , are linearly independent. It follows that y0 , y1, y2 , y3 generate the 
algebra M(4, C), andfurther that the relations (I1)jorm afull set of defining 
relations for that algebra. 

PROOF. It is clear that by means of the relations ( 11) any products of the y• of 
arbitrary length and with repetitions allowed, can be expressed as linear 
combinations of the 16 particular products figuring in the statement of the 
lemma. Since M(4, q has dimension 16, the lemma will follow once we have 
established the linear independence of those 16 products. We leave to the 
reader the laborious but straightforward task of computing these 16 matrices 
and verifying their linear independence. D 

Having found appropriate generators of M(4, q we are now in a position 
to construct the spinor representation of the group 0(3, 1) by exploiting once 
again Lemma 40.1.1. Consider the Minkowski space !Rj(x0 , x 1, x 2, x 3) and an 
arbitrary matrix A E 0(1, 3), A = (A.n. Define primed matrices y'" by 

(13) 

From the relations (11) and the fact that by definition the matrix A preserves 
the Minkowski metric, it follows that the "primed" analogues of those 
relations also hold: 

{y'", y'b} = 2g"b. l. 

Hence by Lemma 40.3.1 the map h = h(A): M(4, q ~ M(4, C), defined by 
1~---+ 1, y• 1---+ y'", is an automorphism of the full matrix algebra M(4, C). 
Therefore by Lemma 40.1.1 there exists g = g(A) E GL(4, C) such that 
h(x) = gxg- 1 for all x E M(4, q. The correspondence A 1---+ g(A) is called the 
spinor representation of the group 0(1, 3) in the group GL(4, C). As in the case 
of the spinor representation of S0(3), this correspondence is many-valued, 
since for each A E 0(1, 3) the matrix g(A) is defined only to within a non-zero 
scalar factor. If we require that g(A) be in SL( 4, q then the correspondence is 
two-valued: 

A 1---+ ±g(A) E SL(4, C). 

40.3.2. Definition. The 4-dimensional complex space IC4 with the above 
spinor representation (i.e. 0(1, 3) via SL{4, C)) acting on it, is called the 
space of (4-component) spinors. Thus the elements of this space, written as 
column vectors, are spinors. 

Note that the representation of the subgroup S0(3) of 0( 1, 3) obtained by 
restricting the above spinor representation, decomposes as the direct sum 
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of two irreducible representations (i.e. without proper invariant subspaces) 
each equivalent to the spinor representation of S0(3) defined in the preceding 
subsection. We invite the reader to show this. (Hint: Consider the action 
on the "semi-spinors" defined below and note that here S0(3) is taken to be 
the group of transformations y1 H y1, y" H A.l:y\ oc, k = 1, 2, 3, where (A.}) is a 
3 x 3 special orthogonal matrix.) 

Remark. In terms of the generators y0 = y0 , y" = iy", IX = 1, 2, 3, the relations 
(11) become 

Thus using these new generators one can construct an analogous spinor 
representation of S0(4). 

EXERCISES 

l. If A E S0(3)( c: 0(1, 3)) is the rotation of !R3 through an angle cp about an axis with 
unit direction vector n = (n 1, n2 , n3), then its image g(A) under the spinor representa
tion of 0(1, 3) is (up to a scalar factor) given by 

g(A) = g(cp, n) = exp{ -i ~ (n 1 ~1 + nz~z + n3~3)}. 

(
(J. 0) where ~i = J • 
0 (Jj 

2. For the hyperbolic rotation in the plane (x0 , an) through an imaginary angle icp, 
where n is a fixed unit 3-vector (i.e. the elementary Lorentz transformation (corre
sponding to cp) preserving the quadratic form (x0)2 - a2((n1)2 + (n2)2 + (n3)2) in 
x0 and a-see §6.2), the value of the spinor representation is given (up to a scalar 
factor) by 

g(cp, n) = exp{- ~ (n11X1 + n21X2 + n31X3)}. 

where IX·= ( 0 ai) 
J (Jj 0 . 

3. Show that the value of the spinor representation at a spatial reflection P(x0, x) = 
(x0 , -x), where xis a (variable) 3-dimensional vector, has (in SL(4, C)) the form 

g(P) = l]p"l, where l]p = ±i or± l. 

4. Show that under the spinor representation the time-inversion operator T(x0 , x) = 
( -x0, x) is represented in SL(4, C) by 

g(T) = '1rY0 y1y3, where 1'1rl = 1. 

We now introduce the" semi-spinor" representations of SO(l, 3). Note first 
that from the way in which the matrices y0 , yl, y2, y3 are formed out of the 
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"blocks" ± 1, ±a 1, ±a 2 , ±a 3 , (see ( 12) ), it follows that in the decomposition 
of the vector space C4 in the obvious way as C2 EB C2, which we indicate by 

(14) 

the two summands are each invariant under y0 (in fact y0 fixes each vector in 
the first summand, and sends each vector in the second to its negative), and 
are interchanged by yt, y2 , y3. Hence if we decompose C4 instead into the two 
2-dimensional subspaces of vectors 11, ~ respectively, where 

cp+x 
11= .Ji' 

cp-x 
~=--

.Ji 
(by which we mean that we choose the bases 

{ (fi· 0, - fi· 0 ). 

(15) 

( 0, fi· 0, - fi)} (16) 

for the respective summands), then it follows that each of these summands 
is invariant under y1, y2 , y3 , and that they are interchanged by y0 , and there
fore, in view of Exercise 3 above, also by the matrix representing the spatial 
reflection: 

g(P): 11 ~ ~. ~ ~ 11· 

P(x0 , x) = (x0 , -x). 

It follows without difficulty that these two 2-dimensional subspaces of 
"semi-spinors" are acted on independently by the direct subgroup SO(l, 3) 
of the Lorentz group 0(1, 3) (and are interchanged by the spatial reflection). 

40.3.3. Definition. The actions induced by the spinor representation of the 
group S0(1, 3) on the two subspaces of semi-spinors 11 and (, are called the 
semi-spinor representations of that group. They are denoted by g + and g _ 
respectively. (In §41.3 we shall give an alternative definition of the semi
spinor representations.) 

Note that neither of the semi-spinor representations extends to a (2-
dimensional) representation of the full Lorentz group 0(1, 3). 

The spinor representation of the Lorentz group 0(1, 3) is not unitary. 
However it does preserve the indefinite scalar product defined by 

(17) 
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where t/1* = (i/i1, i/i2 , i/i3 , i/i4 ) is the complex-conjugate row-vector derived 
from the column-vector t/J. In terms of the basis comprised of the vectors in 
(16) (in order), the matrix of y0 becomes 

0 (0 1) y = 1 0 . 

Hence in terms of the semi-spinors 17, ~'we have that for t/1 = (~). (t/1, t/1) = 

~*17 + 17*~. (Verify it!) (The in variance of the form (17) under 0(1, 3) follows 
easily from this.) 

40.3.4. Definition. The row-spinor i/i = t/J*y0 is called the Dirac conjugate 
of the spinor t/J. (Thus the form < t/J, t/1) which as we have just seen is invariant 
under the spinor representation, can in this notation be rewritten as i/it/1.) 

EXERCISES (continued) 

5. Show that the quantities lfiy"I/J transform (under the action of 0(3, 1)) like the com
ponents of a vector, the quantities 1/i·l·li/J like the components of a rank-two tensor, 
the 1/i·t·l'll/l like those of a rank-three tensor, and 1/i·li/J = l[iy0y1y2y31/J like a rank
four tensor (or "pseudo-scalar"). 

6. Prove that there is no (non-zero) scalar product on C2, invariant under either of the 
semi-spinor representations g+ or g_ of the group SO(l, 3) in GL(2, IC). (Hint. This 
can be inferred from the fact that one of the semi-spinor representations is isomorphic 
to the standard representation of SL(2, IC), and the other to the representation ob
tained from the standard one by means of complex conjugation.) 

Finally we note that the isomorphism between the Lie algebras of the 
groups SL(2, C) and S0(1, 3) is the particular case n = 2 of Proposition 
24.6.1 where the Lie algebra of conformal transformations of the sphere S2 is 
shown to be isomorphic to the Lie algebra of S0(1, 3). (Cf. Exercise 3(iii) of 
§24.7.) 

40.4. Dirac's Equation 

The presentation of M(4, C) in terms of the generators y0 , yl, y2, y3 defined 
by (12), with relations (11), arises naturally in connexion with the following 
question: Can the Klein-Gordon operator 0 + m2, where 

b 8 8 
0 = ga 8xa 8xb 

(see §38), be expressed as a product of two first-order operators as follows: 

-(0 + m2) = (iya 8~a + m)(il8~b + (-m))? (18) 
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EXERCISE 

Show that the existence of this decomposition is equivalent to the relations (11), i.e. is 
possible if and only if 

(19) 

Thus we can achieve the decomposition (18) by taking in particular our 
y-matrices (12) as the coefficients. 

40.4.1. Definition. The equation (for the 4-spinor 1/J) 

(
• b a ) IY axb - m 1/1 = 0, (20) 

is called Dirac's equation. 

EXERCISE 

Show that the Dirac conjugate lfi = I/J*y0 of a solution 1/J of(20), satisfies the "conjugate" 
equation 

· olfi a X Q 1-;-Y + m'f' = . 
uxa 

(21) 

Dirac's equation turns out to be the Euler-Lagrange equation corre
sponding to the action 

S = - 1/Jya--- y"I/J - m'l'l/l d X, f[ i (- iN al{i ) .T, J 4 

2 axa axa 
(22) 

where 1/1 and lfi are regarded as independent (and of course 1/il/l = I/J*y0 1/J). 
It follows easily from its definition (see §37.2(8)), taking into account the 
obvious fact that Dirac's equation (20) and its conjugate (21) imply the 
vanishing of the Lagrangian in (22), that the energy-momentum tensor is 
given by 

Tab = ~ gae(l{iyb aljJ _ ~l{i li/J) = Tba. 
2 axe axe 

The current vector has components 

a = 0, 1, 2, 3. 

The charge density is the first component of the current: 

1o = l{iyoi/J = 1/!*(yo?l/l = 1/1*1/1. 

The total charge is therefore 

Q = f 1/1*1/1 d3x = f 1o d3x, 

(23) 

(24) 

(25) 
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which is clearly non-negative (Q ~ 0), since l/J*l/1 is positive definite. On the 
other hand the energy density T 00 need not in general be positive definite; 
this leads to several difficulties, which we shall not however examine here. 

Analogously to §38, for the solutions (for the components of l/1) of Dirac's 
equation of the plane-wave type, i.e. of the form const. x ei<k.x>, we must 
have (k, k) = m2 (where here, as throughout, we are setting for simplicity 
h = c = 1). In the case k0 > 0, such a solution is taken as describing a free 
particle of mass m, whose momentum k lies therefore on the upper half of the 
mass surface (k, k) = m2 • The condition k0 > 0 follows from the require
ment that the energy of the particle be positive. 

If we rewrite Dirac's equation in terms of the semi-spinors Yf and ~ (see 
(15)), using the simple actions on these of yl, y2 , y3 and the interchanging 
action of y0 , then we obtain easily the following two equations: 

. OYf 
I Ot = (a, p)Yf + m~, 

. a~ 
I Ot =-(a, p)~ + mYf, 

(26) 

where p = i(ojox), and (a, p) = i(a 1(ojox 1) + a2(ojox 2 ) + aiofox3 )). If 
the mass m = 0, then these become two independent equations ("Weyl's 
equations"). If Weyl's equations are taken as describing physical particles, 
then these particles must be such that their laws of motion are not invariant 
under spatial reflections (since the semi-spinor representations do not 
extend to representations of the full Lorentz group), and they must have 
zero mass (since by Exercise 6 of the preceding subsection no invariant 
scalar product of semi-spinors exists; if there did exist an invariant scalar 
product it could be used to furnish the Lagrangian with a mass-related term). 

40.5. Dirac's Equation in an Electromagnetic Field. 
The Operation of Charge Conjugation 

The inclusion of an electromagnetic field given by its vector-potential A, is 
effected by the standard rule (cf. §38) whereby Pais replaced by Pa + eAa in 
the Lagrangian (here hand c have been put equal to 1), i.e. ojoxa is replaced 
by ojoxa- ieAu(x), where e is the charge. The Euler-Lagrange equation (or 
"Dirac's equation in an electromagnetic field") is 

[ra(a~a- ieAa(x)) + m]l/1 = 0, (27) 

and the conjugate equation is then 

V![W)T(a~a + ieAa(x)) - m] = 0, (28) 
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where y0 = y0 , ya = - iya (see the remark in §40.3), and T denotes as usual the 
operation of taking the transpose. 

Direct calculation using (11) and (12) shows that the matrix C = y2y0 

satisfies 

a= 0, 1, 2, 3. (29) 

Substituting in (27) for ya (from (29)), we obtain 

[ CW)Tc-l (a~a- ieAa(x)) - cc-lm]t/1 = 0, 

whence 

[w)T(a~a- ieAa(x))- m]C- 11/1 = o. (30) 

Now from (12) it follows easily that the conjugate transpose of ya is -ya 
(a = 0, 1, 2, 3). On taking the complex conjugate of equation (30) we therefore 
obtain 

(31) 

where here 1/i = t/J*y0 is written as a column-vector. Write 1/Jc for the column 
vector c- 11/i. Comparison of equations (27) and (31) finally yields the follow
ing 

40.5.1. Theorem. If the vector field 1/J(x) satisfies Dirac's equation (27) for a 
chargee in afield A(x), then the field 1/Jc(x) = c- 11/i satisfies the same equation 
with e replaced by -e. 

The transformation 1/J - 1/Jc is called "charge conjugation", since it 
entails the reversal of the sign of the charge on the particle described by the 
field 1/J. This theorem has the important consequence that Dirac's equation 
for the spin or field 1/J describes simultaneously two sorts of particle, one with 
charge e and the other with charge -e. A single solution of Dirac's equation 
(27) yields the wave function 1/J(x) of an electron, and the wave function 
1/Jc(x) of a positron. 

ExERCISE 

Verify that the operation of charge conjugation on spinors: 

(i) commutes with the action of the direct group SO( I, 3) of Lorentz transformations; 
(ii) commutes with the action of the spatial reflection g(P) = '7/ii0 if '7P = ± i, and 

does not so commute if '7P = ± 1 (see Exercise 3 in §40.3); 
(iii) commutes with the time-inversion operator provided '7T = ± 1 (see Exercise 4 in 

§40.3). 
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41.1. Gauge Transformations. Gauge-Invariant Lagrangians 

We begin with an important special case, exemplified in §38.1. Consider a 
complex scalar field 1/1 and a Lagrangian of the form 

( oi/J oiP) L = L 1/J, jp, oxa.' oxa. ' oc = 1, ... , n, (1) 

where the bar denotes complex conjugation, and 1/J, iP are regarded as formally 
independent. We suppose that the Lagrangian is invariant under the group 
of all transformations of the form 

(q> = (real) const.). 

Thus 

L ( itp,J, _ itp.T. itp oi/J _ itp oiP) _ L (·1• .-r. oi/J oi/i) 
e 'I'• e 'I'• e oxrx' e ox"' - 'I'• 'I'• ox"'' oxa. . 

(For example the Lagrangian 

L = hzga.fl oi/i oi/J - mzczi/il/1, 
ox"'oxfl 

which we considered in §38.1, is invariant under such transformations.) 

(2) 

(3) 

(4) 

In keeping with the general "local principle", we wish now to construct 
from the given Lagrangian (1) a new Lagrangian invariant under the more 
general transformations 

(5) 

where q> is now permitted to vary with x. (Thus the group oftransformations 
(2) will now act independently at each point.) We describe in three steps a 
procedure for arriving at such a Lagrangian: 

Step 1. We introduce n supplementary variables in the form of components 
of a covector field A,., and the following n supplementary (to (5)) "gradient" 
transformation rules for these new variables: 

(6) 

(Our context being implicitly quantum-mechanical, normally the constants 
hand c would appear; we have set them equal to 1 for simplicity.) 



440 6. The Calculus of Variations in Several Dimensions 

Step 2. We define a new Lagrangian L by 

(7) 

where 

(8) 

(Note that since 'V a lj; is a covector, definition (7) is valid.) 

Step 3. The full Lagrangian of our invariant theory then has the form 
L(lj;, If/, 'Vlj;, 'Vlj;) + L 1(A, oAjox), where the term L 1 is "gradient-invariant", 
i.e. invariant under the transformations (6). We shall consider a particular 
form of this term in §42. 

41.1.1. Theorem. The Lagrangian (7) is invariant under the (local) trans
formation given by (5) and 6). 

PROOF. We first see how our new "covariant derivative" 'Val/J transforms 
under the transformation defined by (5) and (6): 

'V a lj; ~ a~a (eie<p(x)lj;) + ie( A a - :; )eie<p(x)lj; 

= eie<p(x)[::a + ieAal/J J = eie<p(x)'Val/J· 

In view of the assumed invariance of L given by (3) (where, as usual, lj;, If/, 
olj;/oxa, ol/fjoxa are regarded as formally independent variables), we have 

L(eie"'lj;, e-ie"'l/f, eie"''Val/J, e-ie"''Val/J) = L(lj;, IJI, 'Val/J, 'Val/J), 

so that the new Lagrangian L is invariant as claimed. 0 

We now turn to the general situation of a vector field lj;(x) = 
(lj;\x), ... ,lj;N(x))defined on IR" and taking its values in a (real) N-dimensional 
vector space (i.e., in IRN). Suppose we are given a Lagrangian L(lj;, olj;joxa) 
which is invariant under some (standard) group G of N x N matrices: 

gEG. (9) 

Our aim (as in the above special case N = 1) is to construct from this L a 
Lagrangian invariant at each point x under matrices g(x) E G which depend 
on x. 
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Let A«(x), ex = 1, ... , n, ben (matrix-valued) functions from ~n to the Lie 
algebra of the group G, which transform under co-ordinate changes on the 
underlying space ~n like the components of a covector: 

ayP 
A«(x) = Ap(y) ox«' y = y(x). (10) 

We then define the covariant derivative of the vector field 1/J: ~n-+ ~N, relative 
to the A« by 

(11) 

41.1.2. Theorem. Under transformations of the form 

1/J(x) -+ g(x)t/J(x), (12) 

A«(x)-+ g(x)Aa(x)g- 1(x) - a;;~) g- 1(x), (13) 

(g(x) E G) the covariant derivative (11) transforms according to the rule 

V«t/1 -+g(x)V«t/1. (14) 

It follows that the Lagrangian L defined by 

is invariant under such tran~formations. 

PRoor. From (11), (12) and (13) we have 

a [ og(x) J V«t/J(x)-+ oxa (g(x)t/J) + gA«g-t- oxa g-t gt/J 

= g(x>[:~ + A«t/1 J = g(x)V«t/1, 

establishing (14). As to the invariance of L, note first that the covariant 
derivative of a vector-function 1/J is a covector: 

y = y(x); 

this is a consequence of ( 10), and the fact that the gradient ( ot/J 1 axil.) transforms 
like a covector. Hence by virtue of the in variance of L (see (9)), and the formal 
independence of 1/J and ot/Jjox« in L(I/J, ot/Jjox«), it follows that 
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The desired invariance of lis now immediate from this and the already
established (14). 0 

The field A" is called a gauge (or compensating) field, or a connexion. 
Transformations of the form given by (12) and (13) are termed gauge trans
formations, and the group which (as is easily seen) they comprise, a gauge 
group. 

Thus the requirement of in variance of the Lagrangian under the group of 
local transformations (12) leads in the manner described to a Lagrangian 
l corresponding to the mutual interaction of the field t/J and the gauge 
field A. The question of the definition of the Lagrangian of the gauge field 
alone will be considered in §42. 

Remark. Consider the special case of a vector-valued field B(x) taking its 
values in the Lie algebra of a given matrix group G. Given a gauge field 
A"(x) whose values lie in the same Lie algebra, we define the covariant de
rivative of the field B relative to the connexion A" by the formula 

(15) 

where [A"' B] = A"B- BA" is the commutator in the Lie algebra. 

EXERCISES 

1. Verify that under the "gauge transformations" 

B(x) --+ g(x)B(x)g(x)- 1, 

A.(x) --+g(x)A.(x)g- 1(x)- iJ~(x) g- 1, 
ux• 

the covariant derivative V.B transforms as follows: 

2. Show that infinitesimal gauge transformations (of the form given by (12) and (13) 
above) can be expressed in the form 

ljl(x) -+ ljl(x) + B(x)ljl(x), 

A.(x) ->A.(x) + V.B(x), 

where B(x) is a field whose. values lie in the Lie algebra of G. 
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41.2. The Curvature Form 

The commutator of a pair of components of a covariant differential operator 
calculates out as follows: 

If we denote the resulting operator briefly by F 11 v: 

oAv oA 11 ] 

F/lV = oxll - axv + [All, Av ' (16) 

then we can state our conclusion as follows: The commutator of the operators 
V11 , Vv is just (left) multiplication by the matrix F 11 v. 

41.2.1. Theorem. Under the gauge transformations (13) the quantities F 11" 

transform as follows: 

Under co-ordinate changes the F 11v tran~form according to the rule 

aya ol 
F/lV(x) = Fap(Y) oxll axv' Y = y(x). 

(17) 

ltfollows (from this and the definition (16)) that the F11v are the components of a 
skew-symmetric, rank-two tensor (taking its values in the Lie algebra of' the 
group G). 

The proof of ( 17) consists in directly applying the transformation ( 13) to the 
right-hand side of the defining formula ( 16). The fact that F 11" is a tensor is an 
easy consequence of (10). The detailed calculations are left to the reader. 

The form Q = L11 <v F 11" dx11 1\ dx", with its coefficients in the Lie algebra 
g of the group G, is called the curvature form of the connexion A a. (Compare 
(16) with the formula (3) given in §30.1 for the curvature tensor.) 

A connexion A 11 is called trivial if there exists a function g0(x) from IR1" to the 
group G, such that 

-1 ogo(x) ( age; 1 ) 
A 11(x) = g0 (x) a;Jl = - ox11 go · (18) 



444 6. The Calculus of Variations in Several Dimensions 

41.2.2. Theorem. The curvature form of a trivial connexion is zero. Conversely 
if the curvature form is zero, then the connexion is (locally) trivial. 

We prove only the first part of the theorem, leaving the converse as an 
exercise for the reader. Applying the gauge transformation (13) with g = g0 

to A.u, we obtain 

- -1 ogo -1 
A.u--+ A.u = goA.ugo - ox.u go ' 

whence, substituting from (18) for A.u, we deduce that A.u = 0. Hence by (16) 
the transformed components F.u• ofF .u• also vanish identically. Since by (17), 
F.u• = g0 F.u.g0l, it follows that F.u• = 0, as required. 

EXERCISE 

Define the "covariant differential" of a 2-form Q by 

DQ = L (V).F~· + V.F).~ + VI'F.).)dx). A dx~' A dx•. (19) 
..l<,u<v 

Show that ifQ is the curvature form of some connexion then "Bianchi's identity" holds: 
DQ = 0. (Cf. Exercise 7 of §30.5.) 

41.3. Basic Examples 

(a) The case G = U(1) ~ S0(2). As noted in §38, the interaction of an electro
magnetic field A.u with a complex scalar field t/1 is taken into account by 
replacing in the Lagrangian all derivatives ot/Jjoxa. by the corresponding 
covariant derivatives Va.t/1 = ot/Jjoxa. + ieAa.t/1· (In fact we began this sec
tion with what was essentially just this example.) Here the group G is the 
one-dimensional abelian group G = U(l) = {eierp}. Its Lie algebra is also 
one-dimensional, and is commutative (i.e. the Lie commutators of pairs of its 
elements are all zero); in fact it consists of all the purely imaginary complex 
numbers. The connexion is ieA,u(x), which takes its values in this Lie algebra. 
From ( 16) it follows that the curvature form of this connexion is (omitting the 
constant factor ie) given by F .u• = oA.jox.u - oAJox•, which is the familiar 
(from §37.3) electromagnetic field tensor. Bianchi's identity (see the exercise 
immediately preceding this subsection) is in this context equivalent to the 
closure of the form Q = L.u<• F.u• dx.u 1\ dx• = d(A.u dx.u). (Recall that by 
Theorem 25.2.2, d2 = 0.) 

The gauge groups of the succeeding examples are all non-abelian. 

(b) Linear connexions (G = GL(n, IR)). Given a region U of IR" with co
ordinates xl, ... 'x", we may consider the operators ojoxl, ... 'ojox" as form
ing a basis for the tangent space at each point of U (cf. §7.2). Thus a tangent
vector field ~ defined on U is just a function from U to IR": ~( x) = ( ~ 1, .•. , ~"). 
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Under a change from the co-ordinates x• on U to new co-ordinates x•' = 
x•'(x), the components of the vector ~(x) transform (locally) according to 
the usual rule 

:l v' ' ux 
~·-+ ~· =- ~· = g(x)~, 

ax· 
(20) 

where the matrix g(x) = (axv·;axv) is invertible (with inverse g - 1(x) = 
(axv;axv'))), and so lies in GL(n, ~).As we saw in §14.1, the Lie algebra (i.e. 
tangent space at the identity) of the group GL(n, ~) comprises all n x n 
matrices, i.e. coincides with M(n, ~). Hence in this context the components 
A~'(x) of a connexion will be arbitrary n x n matrices. Given a connexion All 
we denote its entries by (A~')l = r).w By definition (see (11) above) the 
covariant derivative of a tangent-vector field ~ with respect to such a con
nexion is given by 

V~'~ =:;~'+A~'~' i.e. (V~'~y = ;~: + r).~t~". (21) 

The gauge transformation (13) with g(x) = (ax··;ax•) is given by (note here 
that -(agjax~')g- 1 = g(ag- 1jax~'), since gg- 1 = 1): 

v v' ax•' v ax" ax•' a (ax·) 
r All -+ r '-'ll = ax• r All ax'-' + ax• axil ax'-' . (22) 

Since aconnexion is by definition a co vector we must have All. = (ax~' ;ax~'')Aw 
Hence on multiplying both sides of the equality in (22) by ax~'jax~'' (and 
summing over Jl.) we obtain 

v' axil ax•' v ax'- ax•' a2x• 
r '-'~t' = axil' ax• r All ax'-' + ax• ax'-' axil'" (23) 

We have thus arrived at the transformation law for the Christoffel symbols 
(see §28.1(22)). It can be verified also that the entries in the matrix values of 
the curvature form F ~t• of the connexion A~' = (r).~') are given by 

(24) 

where R~ll• is the Riemann curvature tensor corresponding to the connexion 
n.ll (see §30.1). 

Suppose next that U is a region of ~n endowed with a Riemannian metric 
g~~.11(x). At each non-singular point of U choose as a basis for the tangent 
space a set of pairwise orthogonal, unit vectors ~ 1 , ••• , ~n: 

<~~~.. ~~~> = b~~.p. 

and COnsider the quantitieS r fi«Y (determining the COnnexion COmpatible With 
the metric) given by 

(25) 
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where V'¢, ~P is the usual (directional) covariant derivative (with respect 
to the symmetric connexion compatible with the metric) defined in §29.3. 
(Recall that in Theorem 30.1.5 we derived a formula for the coefficients 
t P>Y in terms of the vector fields (, .) Here the connexion has the form 

(Aa)py = f Pay· 

It follows from §30.1(13) that for each a the matrix Aa is skew-symmetric. The 
group G in this situation consists of the transformations preserving the 
inner product (17 1, rt 2 ) = bap'l~IJt where rt; = rti~a' i = 1, 2; thus G is the 
orthogonal group, and the action of the gauge transformations on a tangent 
vector rt(x) is in this context given by 

IJ(X) ---+ g(x )rt(x ), 

where g(x) is for each x an orthogonal n x n matrix. Since, as already noted, 
Aa is a skew-symmetric n x n matrix, it lies in the Lie algebra of G, as re
quired. The values of the curvature form (F ~'') are also skew-symmetric (for 
instance because they also lie in the Lie algebra of G). In the case n = 2, the 
curvature form can be shown to be 

Q = KJg dx 1 11 dx 2 , 

where K is the Gaussian curvature. 

(26) 

These considerations carry over analogously to the case of a pseudo
Riemannian matric. 

(c) Cartan connexions. Here G is the affine group (consisting of combina
tions of linear transformations and translations). Let A~' be any linear con
nexion, and V' ~' the corresponding covariant differential operator (on vector 
fields ~(x) tangent to some region U of !Rn). The corresponding Cartan con
nexion is defined by the formula 

(27) 

EXERCISES 

1. Show that the connexion defined by V~' is invariant with respect to local affine trans
formations of the form 

¢--> g¢ + y, (28) 

where g = (ox"/ ox") is the Jacobian matrix of a co-ordinate change x' = x'(x), and 
y = (y 1(x), ... , y"(x)) is an arbitrary vector. 

2. Show that the curvature form of the Cartan connexion defined by V ~' (with its values 
in the Lie algebra of the affine group-see Exercise 3 of §4.5 and Exercise 11 of §24.7) 
is given by 

(29) 

where R~.~tv is the curvature tensor, and T~v the torsion tensor, of the connexion Aw 
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(d) Covariant differentiation of spinors with respect to a metric. Let M4 

denote 4-dimensional space-time, endowed with a metric g~p of type (1, 3). In 
terms of the connexion compatible with this metric one can define a covariant 
derivative of spinors. We shall consider in detail only the semi-spinor repre
sentation of S0(1, 3) defined in §40.3 (it was noted there that the two semi
spinor representations are conjugate). That representation can be obtained 
explicitly as follows. An arbitrary 2 X 2 Hermitian matrix u (i.e. ur = U) 
can be written in the form 

_ (u0 + u3 u1 + iu 2 ) _ ~ u - 1 . 2 0 3 - u (J~, 
U - IU U - U 

(30) 

where a0 = (~ ~).and a 1, a 2 , a 3 are the Pauli matrices (see §40.2(8)). Thus 

the four matrices a 0 , a 1, a 2 , a 3 form a basis for the real linear space of all 
Hermitian matrices. The determinant det U is clearly preserved under 
transformations of the form U 1---+ gU"{/, where g lies in SL(2, C). Since 

such transformations of the linear space of Hermitian matrices may be 
regarded as isometries ofMinkowski space (with co-ordinates u0 , u1, u2, u3), 

i.e. as elements of SO(l, 3). In this way we obtain a homomorphism (which 
turns out to be onto) from SL(2, C) to S0(1, 3), under which g and -g have 
the same image. The inverse map S0(1, 3)--+ SL(2, C) is two-valued; it turns 
out to be (up to conjugacy) the semi-spinor representation. 

We shall call the elements of the space C2 acted on by the group SL(2, C), 
(two-component) spinors (rather than "semi-spinors" as we termed them in 
§40.3). A field ~(x) taking its values in this space is then a spinor field. The 
action of SL(2, C) on spinors is the usual one: 

~{x) -+ g(x)~(x), g(x) E SL(2, C), (31) 

and corresponding to each g(x) there is the conjugate action ~-+ g~. The 
covariant derivative of a spinor field ~(x) with respect to a connexion Aa{x) 
(whose values of course lie in the Lie algebra of SL(2, C), i.e. are complex 
zero-trace matrices) is by definition (see (11)) 

(32) 

Associated with the conjugate action ~ -+ g~, there is the corresponding 
covariant derivative 

(33) 
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Similarly we define the covariant derivative relative to the connexion 
AIX of a Hermitian matrix U(x) via Leibniz' rule: 

(34) 

We can identify each (point-dependent) Hermitian matrix U(x) with the 
vector (uiX) defined by (30), i.e. by U = uiXaiX, where (uiX) is regarded as a 
tangent vector at x (to the space M4 with metric 9a.fJ), and the ua. as the com
ponents of that vector relative to a "tetrad" of basis vectors which at each 
point are pairwise orthogonal and satisfy ~~ = -~I = - ~~ = - ~~ = 1 
(cf. the "application" in §30.1). We impose the requirement that the covariant 
derivative V, U of the form (34) relative to a spinor connexion A, have the 
form 

(35) 

where V a. ufl is the usual covariant derivative with respect to the symmetric 
connexion compatible with the metric g11v. 

EXERCISE 

Show that the connexion A. defined by (35) (in accordance with (34)) is given by 

where both repeated indices y and fJ are summed over, but in summing over fJ the 
summands corresponding to fJ = 1, 2, 3 are taken with negative signs (while that corre
sponding to fJ = 0 is taken with positive sign). 

As noted in §40.3 (in the hint to Exercise 6), the 4-dimensional spinor 
representation of SO(l, 3) (acting on the space C4 of 4-spinors) decomposes 
as the direct sum of two 2-dimensional representations, one given by the 
standard representation of SL(2, C), and the other obtained from this one by 
complex conjugation. It follows that (32) and (33) together define a covariant 
differention of 4-spinors. 

EXERCISE 

Derive Dirac's equation in the case when a metric is present. 

Remark. With each 2-spinor ~ = (~0, ~ 1 ) one can associate the Hermitian 
matrix U = (~a.[fl). Since U is singular (i.e. det U = 0), the corresponding 
vector uk = o-!11 ~a.(ll is isotropic. 
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EXERCISE 

Choose a basis~ = (~0 , ~ 1 ), 11 = (1'/0 , 11 1) for the space C2 of 2-spinors, satisfying ~011 1 -

e11o = 1. Show that with such a basis there is associated in a canonical manner a basis 
("tetrad") for the tangent space of Minkowski space, in terms of which the metric has 
the form 

§42. Examples of Gauge-Invariant Functionals. 
Maxwell's Equations and the Yang-Mills 
Equation. Functionals with Identically Zero 
Variational Derivative (Characteristic Classes) 

We now consider Lagrangians L = L(A~') corresponding to a gauge field 
A~' alone (and to a prescribed matrix group G). Such a Lagrangian must 
satisfy the following two conditions: 

(i) L(A~') is a scalar. 
(ii) L(AI') is invariant under gauge transformations. 

The simplest functional satisfying these requirements has the form 

L _ 1. llA v"(F F ) - -4g g llV' AX , (1) 

where F JtV is the curvature form of the connexion AI' (see §41.2(16)), 9~tv is an 
arbitrary metric on the region of interest of the underlying space, and < , ) 
denotes the Killing form on the Lie algebra of the group G, defined by 

(X, Y) = -tr(ad X ad Y), (2) 

ad X being the linear transformation ofthe Lie algebra defined by ad X(A) = 
[X, A] (see the footnote to §24.4). (We shall assume in what follows that this 
form is non-degenerate.) 

This Lagrangian is a scalar since it is constructed by means of permitted 
algebraic operations on tensors. To see that it is gauge-invariant, recall first 
from Theorem 41.2.1 that under gauge transformations the curvature form 
FJtv is sent to gF~'vg- 1 , whence 

<F JtV' FAx> -> (gF JtVg-1, gFA"g-1 ). 

Hence the gauge-in variance of the Lagrangian ( 1) follows from the in variance 
of the Killing form (which is in turn obvious from its definition (2)). Thus 
the Lagrangian (1) does indeed have the desired properties (i) and (ii). 
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Suppose that the metric 9pv is Euclidean or pseudo-Euclidean, i.e. that 
(after choosing co-ordinates suitably) 9pv = eP()P•• eP = ± 1. We shall now 
derive the Euler-Lagrange equations corresponding to this case of the 
Lagrangian (1), i.e. the equations for the extremals of the functional 

S[Ap] = f- !(Fpv• Fp.) d"x, (3) 

where here the subscripts J.l, v are summed over, and moreover with the 
signs e., eP = ± 1 taken into account. 

42.1. Theorem. The extremals of the functional (3) satisfy the equations 

VpFpv = 0, (4) 

where VPFP• = oFP.foxP + [AP, FP.] (cf the remark concluding §41.1), and 
where J.l is summed over as before. 

Proof For a small local variation ()AP we have (as usual to within quantities 
of the second-order of smallness, i.e. in the conventional formalism of the 
calculus of variations) 

()S = - ~ f (F pv• ()F pv) d"x, 

where 

Using integration by parts and invoking the assumption that ()AP vanishes 
on the boundary of the region of integration (or behaves suitably towards oo ), 
we obtain 

(6) 

From the skew-symmetry of the Killing form ( cf. §24.4(58)) we also have that 

(Fpv• [()AP, AJ) = -([Fpv• A.], ()Ap). (7) 

Equations (5), (6) and (7) together imply that 

+ ([FP•• A.], c5Ap)- ([Fp•• Ap], ()A.)} d"x, 

which after a rearrangement of the indices yields finally 

c5S = f \a::,: + [Ap, Fp.], c5A.) d"x = f (VPFP•' ()A.) d"x. 
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Provided the Killing form is non-degenerate it follows in the usual way 
(see §37.1) from this and the arbitrariness of the variation c5A. that the 
extremals of the functional (3) satisfy the equation V 11 F 11 , = 0. This completes 
~~ci 0 
Remark. One may of course consider the equations V 11 F 11, = 0 (and Bianchi's 
identity VA F 11 ,. + V 11 F >A + V,. F AJl = 0) even if the Killing form is degenerate. 
However they will not in this case arise, as they did above, from a Lagrangian 
(or at least not from one of such simple form). 

ExERCISE (from the recent literature) 

For the Cartan connexion (with G the affine group-see Example (c) of §41.3) defined 
by the connexion compatible with the metric, the equations (4) take the form of Einstein's 
equations: 

(8) 

Examples. (a) In the case of the abelian group G = U(l) (see Example (a) of 
§41.3) the Lagrangian becomes 

(9) 

which the reader will recognize from §37.3 as the standard Lagrangian for an 
electromagnetic field. (Here as usual by F;. we mean the trace F1 .. P".) The 
Euler-Lagrange equations (4) take the form (also familiar from §37.3) 

(10) 

(b) Gauge fields corresponding to the group SU(2) are generally known 
as Yang-Mills fields. 

EXERCISE 

Derive the Euler-Lagrange equations f>S/f>A = 0 corresponding to the Lagrangian 
L = - tg~•g•x(F ~·· F J.x>• where the metric g~.(x) is arbitrary (and fixed, i.e. not subject 
to variation, representing for instance an external gravitational field). 

The action S[A] = J F;. d4x (in Euclidean ~4 or in ~i. 3) has additional 
symmetry: it is invariant under the group of all conformal transformations of 
Euclidean ~4 (or of ~i. 3 as the case may be). (These transformations are 
described in §15.) To see this, note first that it can be shown (on the basis of 
§§15, 22.2) that the differential of a conformal transformation involves dila
tions and isometries only. Since F;. is a trace (relative to the prevailing metric 
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-Euclidean or Minkowskian), it is invariant under isometries. On the other 
hand under an arbitrary dilation x - A.x, the quantities F ,.. , being the com
ponents of a tensor, transform as follows: 

F,n ~ ;._-zF,. •. 

Since d4 x transforms to A.4d4x under this dilation, it follows that F~. d4 x is 
preserved by dilations and isometries. Hence the above action S[A] is 
invariant under all conformal transformations of IR4 (or IR1, 3), as claimed. 
Since by the exercise at the end of§15 the group of conformal transformations 
of IR1, 3 is isomorphic to 0( 4, 2), we conclude that: 

The functional (3) and Maxwell's equations or the Yang-Mills equations 
(4) (depending on whether the group in question is U(l) or SU(2)) in Minkowski 
space, are conformally invariant, i.e. have symmetry group isomorphic to (at 
least) 0(4, 2). 

Also of importance are scalar-valued gauge-invariant differential forms 
defined in terms of a given gauge-field A,.. For example the rank-two form 

c1 = tr Q = L tr F,.. dx,. 1\ dx" (11) 
p,<v 

is (clearly) gauge-invariant, i.e. tr(g Q g- 1) = tr Q. (Here tr denotes the 
operation of taking the trace of a matrix.) The form c1 is (locally) exact (i.e. a 
differential), since 

( (aA. oA) ) tr Q = ,.~. tr ox,. - ox: + [A,., A,] dx,. 1\ dx" 

(aA. oA) L tr ~ - :l : dx,. 1\ dx" = d tr A, 
p,<• uX uX 

where we have used the fact that the trace of a commutator of matrices is 
zero. 

Under a local variation A,.~ A,. + c5A,. of the gauge field, the variation 
of the form tr Q is given by tr Q + tr c5Q. Since tr c5Q is a differential 
(tr c5Q = d tr c5A), it follows that, since the variation is local, the variational 
derivative of the functional S1[A,.] = JR2 tr Q (over a 2-dimensional space) 
is identically zero: 

(12) 

42.2. Definition. Closed gauge-invariant forms w whose functionals J w have 
identically zero variational derivatives, are called (differential-geometric) 
characteristic classes. 
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The following are all characteristic classes: 

ci = tr(Q A · · · A Q) = tr Qi, i :?: 1. 

(Here the components of the form Q multiply like matrices.) Thus ci is a 
gauge-invariant form of rank 2i. 

EXERCISE 

(i) Prove that all of the forms ci are closed. 
(ii) Prove that the variational derivative of the functional SJA,.] = SIRu C; (over a space 

of dimension 2i) vanishes identically: bS;[A]/bA,. = 0. Prove this also for functionals 
of the forms SIR• (oc(c 1 A cd + {3c 2 ), SIR• (1Xd + P(c 1 A c2) + yc3), and so on, for 
arbitrary (appropriate) polynomials in the c;. 

For the group S0(2n) the odd-indexed ci are all zero: c1 = c3 = c 5 = ··· = 0. 
Apart from those of the c li = Pi that are nonzero, there is the further charac
teristic class 

(13) 

. . ( i · · · 2n ) where e' 1 ••• ' 2 " is the sign of the permutation . . , and the Qii are the 
lt · · · l2n 

matrix entries in the curvature form Q = Lll< v F~'' dx~' A dxv. 

Examples. (a) In the case n = 1 we obtain (cf. §41.3(26)) 

(14) 

By Theorem 37.4.2 the variational derivative with respect to the metric, of 
the functional 

vanishes identically. 

(b) In the case n = 2 we have of course only c2 (and x2 ) possibly non-zero. 
For a Riemannian metric these are given by 

X - ~ijktR R d ~' d v d P d a 
2 - " ijJlv klpa X 1\ X 1\ X 1\ X , 

C2 = RijJlvR~a dx~' A dxv A dxP A dx". 
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EXERCISE 

Prove that each of the forms Xn is closed and is a characteristic class. 

The general characteristic class for G = S0(2n) has the form of a "poly
nomial" in Xn• c2 , c4 , ... , Czn-2· 

EXERCISE 

Show that for G = S0(4) the functionals 

i Cz, 
llll' 

i xL 
1Jll8 

i XzCz, ( d 
!JiB J(li8 

have identically zero variational derivative, i.e. that the forms Xz, c2 , xL Xz c2 , d are 
characteristic classes. 
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cosmological constant 420 
covariant differentiation 279, 442 
- of spinors with respect to a metric 447 
covector 15, 148 
critical function (see stationary function) 
cross product 43 
crystallattice 174 
-,basic translations of 174 
-,basis for 176 
-,classification of group of motions of 

187, 192 
-,point group of 181 
-,primitive vectors of 174 
-,space group of 179 
curl 236 
current four-vector 386 
curvature 
- of a curve 39, 43 
-,Gaussian 77. 81, 84,253-254, 303, 

396-397 
-,mean 77,81 
-,normal 79, 81 
- -, Euler's formula for 82 
-,principal 77, 81 
-, radius of 39, 43 
-,Riemannian 297 

Darboux' theorem 351 
-vector 49 
diffeomorphism 205 
differential 
- of a form (see exterior derivative) 
- of a general tensor (see gradient of a 

tensor) 
- of a mapping 204 
differential form 162, 164 
-,exterior product of 167 
-,scalar-valued gauge-invariant 452 
dilation' 25 
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Dirac's equation 436 
- and the current vector 436 
- in an electromagnetic field 437 
- and the energy-momentum tensor 436 
-as Euler-Lagrange equation 436 
- in terms of semi-spinors 437 
directional derivative 161, 284 
Dirichlet functional 402 
- region (see symmetric cell) 
discrete group 181 
divergence of a vector field 236, 274 

Eigenvalues of a pair of quadratic forms 79 
- of a rank-two tensor 199 
Einstein's equations for the space-time 

metric 305,419-420 
-as Euler-Lagrange equations 395-396 
Einstein's postulate 325, 416 
electric field 195, 385 
- strength 385 
electrical conductivity 193 
electromagnetic (tensor) field 194, 202, 

341, 385 
-,canonical forms of 198 
-, energy density of 202 
-,four-potential of 385 
-,inclusion of 340,415-416,417 
-,invariants of 198 
-,scalar potential of 385 
- stress tensor 202 
-, vector-potential of 385 
electromagnetic waves 202 
element of area 73, 245 
-of volume 166,246 
elementary Euclidean geometry 
energy 316 
- density 202, 382 
-level of an extremal 341 
energy-momentum tensor 202, 305, 381 
- of a charge-free electromagnetic field 389 
-- of a dense isotropic medium 425 
energy-momentum vector 325 
equilibrium equation for deformed elastic 

plate 407 
Euclidean metric in various co-ordinates 20 
Euclidean plane, isometries of 27 
Euclidean space 9 
-,arc length in 10 
-,scalar product in 10 
Euler angles 125 
Euler-Lagrange equations 314, 316, 320 
-- for area functional 398 
-,full system of 426 
- in several dimensions 379 
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extended complex plane 106 
exterior algebra 167 
- derivative of a form 238 
extremal 316, 377 
extremal function (see stationary function) 

Family of matrices 35, 47 
Fermat's principle 343 
flat and curved space-times 390 
flux 251, 252 
force 316 
four-momentum 324 
free energy of deformed elastic plate 404 
functional 314 

Galilean group 37, 38 
-transformation 37, 52 
Galileo's principle of relativity 36 
gauge field 442 
-group 442 
- transformation 411, 442 
Gauss equations 309 
-map 253 
Gauss-Bonnet theorem 397 
Gauss-Ostrogradskii formula 259 
Gaussian curvature 77, 81, 84, 253-254, 

303,396-397 
- in conformal co-ordinates 112 
- of a space-like surface 95 
general Stokes formula 257 
generalized gradient 274 (see also covariant 

derivative) 
generators of the action of a group 221 
geodesic 287 
gradient 
- of a general tensor 235 
-system 345 
gravitational field 
-,energy density of 427 
-as metric 416 
-,weak 326,417 
gravitational wave-packet 427 
Green's formula 257 
group 23 
-, affine 27, 38 
-of conformal transformations 142 
-,general linear 27, 96 
-, Lorentz 55 
-,orthogonal 33, 34 
-,Poincare 53 
-,special linear 97 
-,special orthogonal 33, 34 

Hamiltonian 334 
- of a free relativistic particle 415 
- in the Keplerian problem 353 
-system 346 
Hamilton-Jacobi equation 361 
-, truncated 363 
Hamilton's equations 334 
Hermitian form 97 
- scalar product (see Hermitian form) 
Hessian 77 
Hilbert action of a gravitational field 

391 
holomorphic form 268 
homomorphism 55 
homothety (see dilation) 
Hooke's law 156 
Huygens' principle 365 
hypersurface 65 

Idempotent 428 
-,one-dimensional 428 
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Implicit Function Theorem 62, 65 
independence of a variable (for polynomials) 

102 
inertial frame 37 
instantaneous moving co-ordinate frame 

337 
integral 
- curve of a vector field 205 
-,double 74 
- of a field 208 
- of the first kind 247, 249 
- function of a Hamiltonian system 

351 
- of motion (see integral function) 
-,multiple 244 
- of the second kind 246, 248 
Inverse Function Theorem 6 
- for complex analytic co-ordinate 

transformations I OS 
isometries of Euclidean 3-space 31 
- of the sphere 89 
isometry 24 
-,direct (see proper isometry) 
-group 24 
-,proper 28, 56 
isomorphism 25 
isothermal co-ordinates (see conformal 

co-ordinates) 
isotropic cone 50 
-curve 413 
-medium 156 
-vector 50, 413 
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Jacobi field of a Lagrangian 372 
- operator of a Lagrangian 369 
Jacobian 6 
-,complex 104 
-matrix 6, 104 
Jacobi's identity 44, 60, 212 
- minimality condition 372 

Kepler's third Jaw 37 
Killing form 224, 449 
- metric on a Lie algebra 224 
- metric on a matrix group 224 
Klein-Gordon equation 410 
- operator 435 
Kronecker delta 5 

Lagrange surface 
-,conical 364 
- in extended phase space 359-360 
- in phase space 359, 361 
Lagrangian 316, 375 
--of a free relativistic particle 322-323, 

410 
- of mutual interaction of field and gauge 

field 439-442 
-,non-singular 334 
-, spherically symmetric 329 
-,strongly non-singular 334 
-, translation-invariant 327 
Lagrangians of a gauge field alone 449 
-for STR 323,413-416 
Laplace operator 103 
Laplace-Runge-Lenz vector 353 
Laplace's equation 85 
least action, principle of 322 
left-invariant field on a group 223 
Legendre transformation 334 
length 1 0, 18 
- and independence of parametrization 13 
Levi-Civita tensor 165 
Lie algebra 212 
-,derivation of 212 
-, structural constants of 226 
-, of the symplectic group 357 
Lie derivative of a general tensor 207 
- of a co vector 210 
- of a rank -two tensor 210 
- of a scalar 208 
- of a vector 209 
-of the volume element 211 
light cone (see isotropic cone) 
- curve (see isotropic curve) 

- vector (see isotropic vector) 
line integral 24 7, 252 
linear combination of tensors 153 
- fractional transformation 99, 106 
- transformations of the plane 25 
- vector field 219 
Liouville's equations 118 
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- theorem on conformal transformations 
138 

Lobachevskian plane 93 
-, isometries of 94, 117 
-,Klein's model of 94 
-,Poincare model of 93 
local co-ordinates 63, 65 
- group of diffeomorphisms 206 
- principle 439 
Lorentz contraction 58 
Lorentz transformation 53, 57 
-,matrix of 54 
-,physical consequences of 57 
lowering of indices of a tensor 168 
Joxodrome 76 

Magnetic field 195, 385 
- strength 385 
mass hyperboloid 324, 411, 414, 437 
Maupertuis' principle 341 
Maxwell's equations 242-243 
- as Euler-Lagrange equations 386-388 
-,geometric content of 261-262 
metric 
-,Euclidean 20 
-induced on the sphere 87, 115 
- -,conformal form of 114 
-, Kiihlerian 269 
-, Lobachevsky 93 
--,conformal form of 114 
-, Minkowski 21 
-,motion of (see isometry) 
-,pseudo-Euclidean 21 
-,pseudo-Riemannian 20 
-,Riemannian 18 
Mobius trefoil 402 
moment four-tensor 332 
momentum 316 
-,angular 329,332,383 
- four-vector 325, 381 

Natural parameter 13, 52, 318 
neutral surface of a thin plate under bending 

403-404 
nodalline 125 
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non-singular point 6, 62, 63, 65, 67 
-second-rank tensor 161 
normal section 81 
-spherical map (see Gauss map) 
- to a surface 70 

One-parameter group of diffeomorphisms 
206 

- of matrices 130 
-,velocity field of 206 
operation • on tensors 171 
- of contraction of indices 158 
- of permutation of indices 158 
orbit of a group 176 
ordinary point (see non-singular point) 
orientation of a cube 263 

Parallel tensor along a curve 284-285 
parallei transport 285-286 
- equation of 285 
Pauli matrices 131,429 
periodic crystal 177 
perturbation of the arguments of a functional 

377 
Peterson-Codazzi equations 309 
Pfaffian 345 
phase space 334 
-,abstract 346 
-, canonical co-ordinates for 346 
-, canonical transformation of 355 
-,extended 347 
-,skew-symmetric metric on 346 
photon number 390 
plane transformations 25 
Platonic polyhedra 188 
Poincare group 53 
Poisson bracket 348 
- coefficient 404 
- commutator (see Poisson bracket) 
Poisson's equation 420 
Poynting's vector 202 
principal curvatures 77, 81 
- normal to a curve 45 
- directions of a pair of quadratic 

forms 80 
product of tensors 159 
proper time 52, 323,414 
pseudosphere 54, 90 
-, metric induced on 92 
--in conformal form 114 
pullback (see restriction of a tensor) 

Quadratic form 17, 37 
-,eigenvalues of 170 
-,index of inertia of 21 
quadratic Hamiltonian as generalized 

oscillator 357 
quaternions 131 

Raising of indices of a tensor 169 
real analytic function 110 
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realization map of a complex vector space 
96 

-,analogue for quaternions 134 
region 4 
-,bounded 5 
-,boundary of 4 
relativistic analogue of centre of mass 333 
- correction to straight-line trajectory of 

light ray 423 
Residue Theorem 257 
restriction of a tensor 203 
Riemann curvature tensor 297 
-surface 107 
right-invariant field 233 
rigidity of an elastic plate 408 
rotation of a covector field (see curl) 
rotation group (see special orthogonal 

group) 

Scalar curvature 302 
-product in a Riemannian metric 18 
- - of vector and covector 160 
Schwarz derivative 119 
Schwarzschild metric 422 
-radius 422 
second variation of an arc 367-368 
semi-direct product 26, 27 
semi-spinor representations of SO( I, 3) 434 
Serret-Frenet formulae 40, 45, 60 
- in matrix form 48 
sine-Gordon equation 310 
skew-symmetric tensor 164, 165 
-,canonical form of 198 
-,divergence of 241 
slow particle 417 
- time-like geodesic 326 
smooth function 6 
-curve 13 
space 
-, Cartesian 2 
-,configuration 358 
-, Euclidean 9 
-, Minkowski 21, 50 
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space, pseudo-Euclidean 21, 50 
-,pseudo-Hermitian 99 
-,pseudo-Riemannian 21 
-, Riemannian 17 
space-like curve 413 
- vector 50, 413 
space-time continuum 2, 21, 50 
-interval 22 
special unitary group 98 
spin or 
-, Dirac conjugate of 435 
-,four-component 432 
- representation of 0(1, 3) 432 
--of S0(3) 431 
-,two-component 429-431 
stationary function for a functional 377 
- group of a crystal lattice 183 
stereographic projection 87, 91 
Stokes' formula 260 
strain tensor 155 
-for small deformations 155,211 
stress tensor 154 
structural constants 299 
summation convention 158 
surface 62, 64 
-area 73,74 
- - formula 75 
-, closed 252 
-,convex space-like 95 
-,curvature form of 253 
-,first fundamental form of 69 
-,induced metric on 69 
- integral 245, 252 
-, k-dimensional 66 
-,local parameters on 62 
-,minimal 398 
-,non-singular point of 62, 63, 65, 67 
-, second fundamental form of 78 
-,strictly convex 85 
-,unit normal to 70 
symmetric tensor 163 
symmetry group of a crystal (see 

crystallographic point group) 
symplectic group 135 
- transformation 357 

Tangent plane 66, 67 
-vector 10 
tensor 152 
-, covariantly constant (see parallel tensor) 
-,Ricci 302 
-,torsion 281 
-,trace of 158 

-,transformation rule for 152 
tetrad 299, 448 
Theorema Egregium 77,302 
three-dimensional formalism 324, 413 
time-like curve 413 
-vector 50, 413 
torsion of a curve 45 
trajectory bundle 358-359 
-,action of 361 
transformation 23 
-, affine 27, 33 
-, complex affine 30 
-,conformal 30 
-,Galilean 37, 52 
-, Lorentz 53, 57 
-, orthochronous 55 
-,orthogonal 28 
transformation rule 
-for an arbitrary tensor 152 
-for gradient of a function 15, 147 
- for linear operators 150 
-for quadratic forms 17, 148 
-for vectors 14, 15, 146 
transitive group 175 
translation 25 
-group 179 
- subgroup 179 
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translation-invariant crystal lattice 174 

Unitary group 98 
-matrix 98 
- transformation 98 
unit-speed curve 78 
universal gravitational constant 395, 421 

Variational class 336 
-derivative 316, 377 
vector field 15 
- gradient 344 
- product (see cross product) 
velocity vector (see tangent vector) 
-field 206 

Wave front 365 
wedge product (see exterior product) 
Weyl's equations 437 
world time 419 
world-line of a point particle 3, 50 

Yang-Mills field 451 
Young's elastic modulus 404 




