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Preface 

Up until recently, Riemannian geometry and basic topology were not 
included, even by departments or faculties of mathematics, as compulsory 
subjects in a university-level mathematical education. The standard courses 
in the classical differential geometry of curves and surfaces which were given 
instead (and still are given in some places) have come gradually to be viewed 
as anachronisms. However, there has been hitherto no unanimous agreement 
as to exactly how such courses should be brought up to date, that is to say, 
which parts of modern geometry should be regarded as absolutely essential to 
a modern mathematical education, and what might be the appropriate level 
of abstractness of their exposition. 

The task of designing a modernized course in geometry was begun in 1971 
in the mechanics division of the Faculty of Mechanics and Mathematics of 
Moscow State University. The subject-matter and level of abstractness of its 
exposition were dictated by the view that, in addition to the geometry of 
curves and surfaces, the following topics are certainly useful in the various 
areas of application of mathematics (especially in elasticity and relativity, to 
name but two), and are therefore essential: the theory of tensors (including 
covariant differentiation of them); Riemannian curvature; geodesics and the 
calculus of variations (including the conservation laws and Hamiltonian 
formalism); the particular case of skew-symmetric tensors (i.e. "forms") 
together with the operations on them; and the various formulae akin to 
Stokes' (including the all-embracing and invariant "general Stokes formula" 
in n dimensions). Many leading theoretical physicists shared the mathemati
cians' view that it would also be useful to include some facts about manifolds, 
transformation groups, and Lie algebras, as well as the basic concepts of 
visual topology. It was also agreed that the course should be given in as 
simple and concrete a language as possible, and that wherever practicable the 
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terminology should be that used by physicists. Thus it was along these lines 
that the archetypal course was taught. It was given more permanent form as 
duplicated lecture notes published under the auspices of Moscow State 
University as: 

Differential Geometry, Parts I and II, by S. P. Novikov, Division of 
Mechanics, Moscow State University, 1972. 

Subsequently various parts of the course were altered, and new topics 
added. This supplementary material was published (also in duplicated form) 
as: 

Differential Geometry, Part III, by S. P. Novikov and A. T. Fomenko, 
Division of Mechanics, Moscow State University, 1974. 

The present book is the outcome of a reworking, re-ordering, and extensive 
elaboration of the above-mentioned lecture notes. It is the authors' view that 
it will serve as a basic text from which the essentials for a course in modern 
geometry may be easily extracted. 

To S. P. Novikov are due the original conception and the overall plan of 
the book. The work of organizing the material contained in the duplicated 
lecture notes in accordance with this plan was carried out by B. A. Dubrovin. 
This accounts for more than half of Part J; the remainder of the book is 
essentially new. The efforts of the editor, D. B. Fuks, in bringing the book to 
completion, were invaluable. 

The content of this book significantly exceeds the material that might be 
considered as essential to the mathematical education of second- and third
year university students. This was intentional: it was part of our plan that 
even in Part I there should be included several sections serving to acquaint 
(through further independent study) both undergraduate and graduate 
students with the more complex but essentially geometric concepts and 
methods of the theory of transformation groups and their Lie algebras, field 
theory, and the calculus of variations, and with, in particular, the basic 
ingredients of the mathematical formalism of physics. At the same time we 
strove to minimize the degree of abstraction of the exposition and terminol
ogy, often sacrificing thereby some of the so-called "generality" of statements 
and proofs: frequently an important result may be obtained in the context of 
crucial examples containing the whole essence of the matter, using only 
elementary classical analysis and geometry and without invoking any 
modern "hyperinvariant" concepts and notations, while the result's most 
general formulation and especially the concomitant proof will necessitate a 
dramatic increase in the complexity and abstractness of the exposition. Thus 
in such cases we have first expounded the result in question in the setting of 
the relevant significant examples, in the simplest possible language appro
priate, and have postponed the proof of the general form of the result, or 
omitted it altogether. For our treatment of those geometrical questions more 
closely bound up with modern physics, we analysed the physics literature: 
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books on quantum field theory (see e.g. [35], [37]) devote considerable 
portions of their beginning sections to describing, in physicists' terms, useful 
facts about the most important concepts associated with the higher
dimensional calculus of variations and the simplest representations of Lie 
groups; the books [41J, [43J are devoted to field theory in its geometric 
aspects; thus, for instance, the book [41J contains an extensive treatment of 
Riemannian geometry from the physical point of view, including much useful 
concrete material. It is interesting to look at books on the mechanics of 
continuous media and the theory of rigid bodies ([ 42J, [44J, [45J) for further 
examples of applications of tensors, group theory, etc. 

In writing this book it was not our aim to produce a "self-contained" text: 
in a standard mathematical education, geometry is just one component of the 
curriculum; the questions of concern in analysis, differential equations, 
algebra, elementary general topology and measure theory, are examined in 
other courses. We have refrained from detailed discussion of questions drawn 
from other disciplines, restricting ourselves to their formulation only, since 
they receive sufficient attention in the standard programme. 

In the treatment of its subject-matter, namely the geometry and topology 
of manifolds, Part II goes much further beyond the material appropriate to 
the aforementioned basic geometry course, than does Part I. Many books 
have been written on the topology and geometry of manifolds: however, most 
of them are concerned with narrowly defined portions of that subject, are 
written in a language (as a rule very abstract) specially contrived for the 
particular circumscribed area of interest, and include all rigorous founda
tional detail often resulting only in unnecessary complexity. In Part II also we 
have been faithful, as far as possible, to our guiding principle of minimal 
abstractness of exposition, giving preference as before to the significant 
examples over the general theorems, and we have also kept the inter
dependence of the chapters to a minimum, so that they can each be read in 
isolation insofar as the nature of the subject-matter allows. One must 
however bear in mind the fact that although several topological concepts (for 
instance, knots and links, the fundamental group, homotopy groups, fibre 
spaces) can be defined easily enough, on the other hand any attempt to make 
nontrivial use of them in even the simplest examples inevitably requires the 
development of certain tools having no forbears in classical mathematics. 
Consequently the reader not hitherto acquainted with elementary topology 
will find (especially if he is past his first youth) that the level of difficulty of 
Part II is essentially higher than that of Part I; and for this there is no possible 
remedy. Starting in the 1950s, the development of this apparatus and its 
incorporation into various branches of mathematics has proceeded with 
great rapidity. In recent years there has appeared a rash, as it were, of 
nontrivial applications of topological methods (sometimes in combination 
with complex algebraic geometry) to various problems of modern theoretical 
physics: to the quantum theory of specific fields of a geometrical nature (for 
example, Y-ang-Mills and chiral fields), the theory of fluid crystals and 
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superfluidity, the general theory of relativity, to certain physically important 
nonlinear wave equations (for instance, the Korteweg-de Vries and sine
Gordon equations); and there have been attempts to apply the theory of 
knots and links in the statistical mechanics of certain substances possessing 
"long molecules". Unfortunately we were unable to include these applications 
in the framework of the present book, since in each case an adequate 
treatment would have required a lengthy preliminary excursion into physics, 
and so would have taken us too far afield. However, in our choice of material 
we have taken into account which topological concepts and methods are 
exploited in these applications, being aware of the need for a topology text 
which might be read (given strong enough motivation) by a young theoretical 
physicist of the modern school, perhaps with a particular object in view. 

The development of topological and geometric ideas over the last 20 years 
has brought in its train an essential increase in the complexity of the algebraic 
apparatus used in combination with higher-dimensional geometrical in
tuition, as also in the utilization, at a profound level, of functional analysis, 
the theory of partial differential equations, and complex analysis; not all of 
this has gone into the present book, which pretends to being elementary (and 
in fact most of it is not yet contained in any single textbook, and has therefore 
to be gleaned from monographs and the professional journals). 

Three-dimensional geometry in the large, in particular the theory of convex 
figures and its applications, is an intuitive and generally useful branch of the 
classical geometry of surfaces in 3-space; much interest attaches in particular 
to the global problems of the theory of surfaces of negative curvature. Not 
being specialists in this field we were unable to extract its essence in 
sufficiently simple and illustrative form for inclusion in an elementary text. 
The reader may acquaint himself with this branch of geometry from the 
books [1], [4] and [16]. 

Of all the books on the topology and geometry of manifolds, the classical 
works A Textbook of Topology and The Calculus of Variations in the Large, of 
Siefert and Threlfall, and also the excellent more modern books [10], [11] 
and [12], turned out to be closest to our conception in approach and choice 
of topics. In the process of creating the present text we actively mulled over 
and exploited the material covered in these books, and their methodology. In 
fact our overall aim in writing Part II was to produce something like a 
modern analogue of Seifert and Threlfall's Textbook of Topology, which 
would however be much wider-ranging, remodelled as far as possible using 
modern techniques of the theory of smooth manifolds (though with simplicity 
of language preserved), and enriched with new material as dictated by the 
contemporary view of the significance of topological methods, and of the 
kind of reader who, encountering topology for the first time, desires to learn a 
reasonable amount in the shortest possible time. It seemed to us sensible to 
try to benefit (more particularly in Part I, and as far as this is possible in a 
book on mathematics) from the accumulated methodological experience of 
the physicists, that is, to strive to make pieces of nontrivial mathematics more 
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comprehensible through the use of the most elementary and generally 
familiar means available for their exposition (preserving, however, the format 
characteristic of the mathematical literature, wherein the statements of the 
main conclusions are separated out from the body of the text by designating 
them "theorems", "lemmas", etc.). We hold the opinion that, in general, 
understanding should precede formalization and rigorization. There are 
many facts the details of whose proofs have (aside from their validity) 
absolutely no role to play in their utilization in applications. On occasion, 
where it seemed justified (more often in the more difficult sections of Part II) 
we have omitted the proofs of needed facts. In any case, once thoroughly 
familiar with their applications, the reader may (if he so wishes), with the help 
of other sources, easily sort out the proofs of such facts for himself. (For this 
purpose we recommend the book [21].) We have, moreover, attempted to 
break down many of these omitted proofs into soluble pieces which we have 
placed among the exercises at the end of the relevant sections. 

In the final two chapters of Part II we have brought together several items 
from the recent literature on dynamical systems and foliations, the general 
theory of relativity, and the theory of Yang-Mills and chiral fields. The ideas 
expounded there are due to various contemporary researchers; however in a 
book of a purely textbook character it may be accounted permissible not to 
give a long list of references. The reader who graduates to a deeper study of 
these questions using the research journals will find the relevant references 
there. 

Homology theory forms the central theme of Part III. 
In conclusion we should like to express our deep gratitude to our 

colleagues in the Faculty of Mechanics and Mathematics of M.S.U., whose 
valuable support made possible the design and operation of the new 
geometry courses; among the leading mathematicians in the faculty this 
applies most of all to the creator of the Soviet school of topology, P. S. 
Aleksandrov, and to the eminent geometers P. K. RasevskiI and N. V. Efimov. 

We thank the editor D. B. Fuks for his great efforts in giving the 
manuscript its final shape, and A. D. Aleksandrov, A. V. Pogorelov, Ju. F. 
Borisov, V. A. Toponogov and V. I. Kuz'minov, who in the course of reviewing 
the book contributed many useful comments. We also thank Ja. B. Zel'dovic 
for several observations leading to improvements in the exposition at several 
points, in connexion with the preparation of the English and French editions 
of this book. 

We give our special thanks also to the scholars who facilitated the task of 
incorporating the less standard material into the book. For instance the proof 
of Liouville's theorem on conformal transformations, which is not to be 
found in the standard literature, was communicated to us by V. A. Zoric. The 
editor D. B. Fuks simplified the proofs of several theorems. We are grateful 
also to O. T. BogojavlenskiI, M. I. MonastyrskiI, S. G. Gindikin, D. V. 
Alekseevskii, I. V. Gribkov, P. G. Grinevic, and E. B. Vinberg. 
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Translator's acknowledgments. Thanks are due to Abe Shenitzer for much 
kind advice and encouragement, to several others of my colleagues for 
putting their expertise at my disposal, and to Eadie Henry for her excellent 
typing and great patience. 
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CHAPTER 1 

Examples of Manifolds 

§ 1. The Concept of a Manifold 

1.1. Definition of a Manifold 

The concept of a manifold is in essence a generalization of the idea, first 
formulated in mathematical terms by Gauss, underlying the usual procedure 
used in cartography (i.e. the drawing of maps of the earth's surface, or 
portions of it). 

The reader is no doubt familiar with the normal cartographical process: 
The region of the earth's surface of interest is subdivided into (possibly 
overlapping) subregions, and the group of people whose task it is to draw the 
map of the region is subdivided into as many smaller groups in such a way 
that: 

(i) each subgroup of cartographers has assigned to it a particular subregion 
(both labelled i, say); and 

(ii) if the subregions assigned to two different groups (labelled i and j say) 
intersect, then these groups must indicate accurately on their maps the 
rule for translating from one map to the other in the common region (i.e. 
region of intersection). (In practice this is usually achieved by giving 
beforehand specific names to sufficiently many particular points (i.e. 
land-marks) of the original region, so that it is immediately clear which 
points on different maps represent the same point of the actual region.) 

Each of these separate maps of subregions is of course drawn on a flat 
sheet of paper with some sort of co-ordinate system on it (e.g. on "squared" 
paper). The totality of these flat "maps" forms what is called an "atlas" of the 
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region of the earth's surface in question. (It is usually further indicated on 
each map how to calculate the actual length of any path in the subregion 
represented by that map, i.e. the "scale" of the map is given. However the 
basic concept of a manifold does not include the idea of length; i.e. as it is 
usually defined, a manifold does not ab initio come endowed with a metric; we 
shall return to this question subsequently.) 

The above-described cartographical procedure serves as motivation for 
the following (rather lengthy) general definition. 

1.1.1. Definition. A differentiable n-dimensional manifold is an arbitrary set M 
(whose elements we call "points") together with the following structure on it. 
The set M is the union of a finite or countably infinite collection of subsets U q 

with the following properties. 
(i) Each subset U q has defined on it co-ordinates x:' rx = 1, ... , n (called 

local co-ordinates) by virtue of which U q is identifiable with a region of 
Euclidean n-space with Euclidean co-ordinates x:. (The U q with their co
ordinate systems are called charts (rather than "maps") or local co-ordinate 
neighbourhoods. ) 

(ii) Each non-empty intersection Up n U q of a pair of such subsets of M 
thus has defined on it (at least) two co-ordinate systems, namely the 
restrictions of (x~) and (x:); it is required that under each of these co
ordinatizations the intersection Up n U q is identifiable with a region of 
Euclidean n-space, and further that each of these two co-ordinate systems be 
expressible in terms of the other in a one-to-one differentiable manner. (Thus 
if the transition or translation functions from the co-ordinates x~ to the co
ordinates x~ and back, are given by 

rx=1, ... ,n; 
(1) 

rx = 1, ... , n, 

then in particular the Jacobian det(ax~/ax~) is non-zero on the region of 
intersection.) The general smoothness class of the transition functions for all 
intersecting pairs Up, U q' is called the smoothness class of the manifold M 
(with its accompanying "atlas" of charts U q). 

Any Euclidean space or regions thereof provide the simplest examples of 
manifolds. A region of the complex space en can be regarded as a region of 
the Euclidean space of dimension 2n, and from this point of view is therefore 
also a manifold. 

Given two manifolds M = Uq Uq and N = Up Up, we construct their 
direct product M x N as follows: The points of the manifold M x N are the 
ordered pairs (m, n), and the covering by local co-ordinate neighbourhoods is 
given by 

M x N = U U q x Vp , 

P.q 
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where if x: are the co-ordinates on the region Uq , and y~ the co-ordinates on 
Vp' then the co-ordinates on the region U q x Vp are (x:' y~). 

These are just a few (ways of obtaining) examples of manifolds; in the 
sequel we shall meet with many further examples. 

It should be noted that the scope of the above general definition of a 
manifold is from a purely logical point of view unnecessarily wide; it needs to 
be restricted, and we shall indeed impose further conditions (see below). 
These conditions are most naturally couched in the language of general 
topology, with which we have not yet formally acquainted the reader. This 
could have been avoided by defining a manifold at the outset to be instead a 
smooth non-singular surface (of dimension n) situated in Euclidean space of 
some (perhaps large) dimension. However this approach reverses the logical 
order of things; it is better to begin with the abstract definition of manifold, 
and then show that (under certain conditions) every manifold can be realized 
as a surface in some Euclidean space. 

We recall for the reader some of the basic concepts of general topology. 
(1) A topological space is by definition a set X (of "points") of which 

certain subsets, called the open sets of the topological space, are distinguished; 
these open sets are required to satisfy the following three conditions: first, the 
intersection of any two (and hence of any finite collection) of them should 
again be an open set; second, the union of any collection of open sets must 
again be open; and thirdly, in particular the empty set and the whole set X 
must be open. 

The complement of any open set is called a closed set of the topological 
space. 

The reader doubtless knows from courses in mathematical analysis that, 
exceedingly general though it is, the concept of a topological space already 
suffices for continuous functions to be defined: A map f: X --. Y of one 
topological space to another is continuous if the complete inverse image 
f- 1(U) of every open set U £; Y is open in X. Two topological spaces are 
topologically equivalent or homeomorphic if there is a one-to-one and onto 
map between them such that both it and its inverse are continuous. 

In Euclidean space IRn, the "Euclidean topology" is the usual one, where 
the open sets are just the usual open regions (see Part I, §1.2). Given any 
subset A c IRn, the induced topology on A is that with open sets the 
intersections An U, where U ranges over all open sets of IRn. (This definition 
extends quite generally to any subset of any topological space.) 

1.1.2. Definition. The topology (or Euclidean topology) on a manifold M is 
given by the following specification of the open sets. In every local co
ordinate neighbourhood U q' the open (Euclidean) regions (determined by the 
given identification of Uq with a region ofa Euclidean space) are to be open in 
the topology on M; the totality of open sets of M is then obtained by 
admitting as open also arbitrary unions of countable collections of such 
regions, i.e. by closing under countable unions. 
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With this topology the continuous maps (in particular real-valued func
tions) of a manifold M turn out to be those which are continuous in the usual 
sense on each local co-ordinate neighbourhood U q' Note also that any open 
subset V of a manifold M inherits, i.e. has induced on it, the structure of a 
manifold, namely V = Uq ~, where the regions ~ are given by 

(2) 

(2) "Metric spaces" form an important subclass of the class of all 
topological spaces. A metric space is a set which comes equipped with a 
"distance function", i.e. a real-valued function p(x, y) defined on pairs x, y of 
its elements ("points"), and having the following properties: 

(i) p(x, y) = p(y, x); 
(ii) p(x, x) = 0, p(x, y) > ° if x "# y; 

(iii) p(x, y):s; p(x, z) + p(z, y) (the "triangle inequality"). 

For example n-dimensional Euclidean space is a metric space under the 
usual Euclidean distance between two points x = (xl, ... , xn), y = (y!, ... , yn): 

n 

p(x, y) = L (xa - ya)2. 
a=l 

A metric space is topologized by taking as its open sets the unions of 
arbitrary collections of "open balls", where by open ball with centre Xo and 
radius e we mean the set of all points x of the metric space satisfying p(xo, x) 
< e. (For n-dimensional Euclidean space this topology coincides with the 
above-defined Euclidean topology.) 

An example important for us is that of a manifold endowed with a 
Riemannian metric. (For the definition of the distance between two points of 
a manifold with a Riemannian metric on it, see §1.2 below.) 

(3) A topological space is called Hausdorff if any two of its points are 
contained in disjoint open sets. 

In particular any metric space X is Hausdorff; for if x, yare any two 
distinct points of X then, in view of the triangle inequality, the open balls of 
radius 1-p(x, y) with centres at x, y, do not intersect. 

We shall henceforth assume implicitly that all topological spaces we consider 
are Hausdorff. Thus in particular we now supplement our definition of a 
manifold by the further requirement that it be a Hausdorff space. 

(4) A topological space X is said to be compact if every countable 
collection of open sets covering X (i.e. whose union is X) contains a finite 
subcollection already covering X. If X is a metric space then compactness is 
equivalent to the condition that from every sequence of points of X a 
convergent subsequence can be selected. 

(5) A topological space is (path-)connected if any two of its points can be 
joined by a continuous path (i.e. map from [0, 1] to the space). 

(6) A further kind of topological space important for us is the "space of 
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mappings" M -+ N from a given manifold M to a given manifold N. The 
topology in question will be defined later on. 

The concept of a manifold might at first glance seem excessively abstract. 
In fact, however, even in Euclidean spaces, or regions thereof, we often find 
ourselves compelled to introduce a change of co-ordinates, and consequently 
to discover and apply the transformation rule for the numerical components 
of one entity or another. Moreover it is often convenient in solving a (single) 
problem to carry out the solution in different regions of a space using 
different co-ordinate systems, and then to see how the solutions match on the 
region of intersection, where there exist different co-ordinate systems. Yet 
another justification for the definition of a manifold is provided by the fact 
that not all surfaces can be co-ordinatized by a single system of co-ordinates 
without singular points (e.g. the sphere has no such co-ordinate system). 

An important subclass of the class of manifolds is that of "orientable 
manifolds". 

1.1.3. Definition. A manifold M is said to be oriented if for every pair 
Up, Uq of intersecting local co-ordinate neighbourhoods, the Jacobian 
J pq = det(ax~/ax~) of the transition function is positive. 

For example Euclidean n-space IR" with co-ordinates Xl, ... , x" is by this 
definition oriented (there being only one local co-ordinate neighbourhood). If 
we assign different co-ordinates yl, ... , y" to the points of the same space IR", 
we obtain another manifold structure on the same underlying set. If the co
ordinate transformation x~ = x~(l, ... , y"), a. = 1, ... , n, is smooth and non
singUlar, then its Jacobian J = det(ax~/ayP), being never zero, will have fixed 
sign. 

1.1.4. Definition. We say that the co-ordinate systems x and y define the same 
orientation of IR" if J > 0, and opposite orientations if J < O. 

Thus Euclidean n-space possesses two possible orientations. In the sequel 
we shall show that more generally any connected orientable manifold has 
exactly two orientations. 

1.2. Mappings of Manifolds; Tensors on Manifolds 

Let M = Up Up, with co-ordinates x;, and N = Uq Vq, with co-ordinates y~, 
be two manifolds of dimensions nand m respectively. 

1.2.1. Definition. A mapping J: M -+ N is said to be smooth oj smoothness 
class k, if for all p, q for which J determines functions y~(x!, ... , x;) 
= J(x!, ... , x;)!, these functions are, where defined, smooth of smoothness 
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class k (i.e. all their partial derivatives up to those of kth order exist and are 
continuous). (It follows that the smoothness class of f cannot exceed the 
maximum class of the manifolds.) 

Note that in particular we may have N = IR, the real line, whence m = 1, 
and f is a real-valued function of the points of M. The situation may arise 
where a smooth mapping (in particular a real-valued function) is not defined 
on the whole manifold M, but only on a portion of it. For instance each local 
co-ordinate x~ (for fixed IX, p) is such a real-value function of the points of M, 
since it is defined only on the region Up. 

1.2.2. Definition. Two manifolds M and N are said to be smoothly equivalent 
or diffeomorphic if there is a one-to-one, onto map f such that both f: M -+ N 
and f -1: N -+ M, are smooth of some class k ~ 1. (It follows that the 
Jacobian J pq = det(oy:/ox~) is non-zero wherever it is defined, i.e. wherever 
the functions y: =f(x;, ... , x;): are defined.) 

We shall henceforth tacitly assume that the smoothness class of any 
manifolds, and mappings between them, which we happen to be considering, 
are sufficiently high for the particular aim we have in view. (The class will 
always be assumed at least 1; if second derivatives are needed, then assume 
class ~ 2, etc.) 

Suppose we are given a curve segment x = x(,), a:5 ,:5 b, on a manifold 
M, where x denotes a point of M (namely that point corresponding to the 
value r of the parameter). That portion of the curve in a particular co
ordinate neighbourhood Up with co-ordinates x~ is described by the 
parametric equations 

x~ = x~(,), IX = 1, ... , n, 

and in Up its velocity (or tangent) vector is given by 

x=(x;, ... ,x;). 
In regions Up ("\ U q where two co-ordinate systems apply we have the two 

representations x~(,) and x:(r) of the curve, where of course 

x~(xi('), ... , x~(r)) == x:(r). 

Hence the relationship between the components of the velocity vector in the 
two systems is expressed by 

.a _" ox~ .p xp - L. :;-pxq. 
p uXq 

(3) 

As for Euclidean space, so also for general manifolds this formula provides 
the basis for the definition of "tangent vector". 

1.2.3. Definition. A tangent vector to an n-manifold M at an arbitrary point x 
is represented in terms of local co-ordinates x~ by an n-tuple W) of 
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"components", which are linked to the components in terms of any other 
system x~ of local co-ordinates (on a region containing the point) by the 
formula 

n (ox.) ~~ = L :l ~ ~~. 
fJ=! uXq x 

(4) 

The set of aH tangent vectors to an n-dimensional manifold M at a point x 
forms an n-dimensional linear space Tx = TxM, the tangent space to M at the 
point x. We see from (3) that the velocity vector at x of any smooth curve on 
M through x is a tangent vector to M at x. From (4) it can be seen that for any 
choice of local co-ordinates x' in a neighbourhood of x, the operators %x' 
(operating on real-valued functions on M) may be thought of as forming a 
basis e. = %x' for the tangent space Tx. 

A smooth map f from a manifold M to a manifold N gives rise for each x, 
to an induced linear map of tangent spaces 

f*: Tx -+ Tf(x), 

defined as sending the velocity vector at x of any smooth curve x = x(t) 
(through x) on M, to the velocity vector at f(x) to the curve f(x(t)) on the 
manifold N. In terms of local co-ordinates x' in a neighbourhood of x E M, 
and local co-ordinates yfl in a neighbourhood of f(x) E N, the map f may be 
written as 

yfl = ffJ(xi, ... , xn), {3= 1, ... ,m. 

It then foHows from the above definition of the induced linear map f* that its 
matrix is the Jacobian matrix (oyfl /ox')x evaluated at x, i.e. that it is given by 

offJ 
~. -+ '1fJ = -~'. (5) 

ax' 

For a real-valued function f: M -+ IR, the induced map f* corresponding to 
each x E M is a real-valued linear function (i.e. linear functional) on the 
tangent space to Mat x;from (5) (with m = 1) we see that it is represented by 
the gradient of f at x and is thus a covector. Interpreting the differential of a 
function at a point in the usual way as a linear map of the tangent space, we 
see that f* at x is just df. 

1.2.4. Definition. A Riemannian metric on a manifold M is a point-dependent, 
positive-definite quadratic form on the tangent vectors at each point, 
depending smoothly on the local co-ordinates of the points. Thus at each 
point x = (x!, ... , x;) of each region Up with local co-ordinates x~, the metric 
is given by a symmetric matrix (gW(x!, ... , x;)), and determines a (sym
metric) scalar product of pairs of tangent vectors at the point x: 

<~, '1) = gW~~'1! = <'1, 0, 
1~12 = <~, 0, 
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where as usual summation is understood over indices recurring as superscript 
and subscript. Since this scalar product is to be co-ordinate-independent, i.e. 

g (P)):"'1{J = g(q)):v'16 
.. {J ... P P y6"'q q' 

it follows from the transformation rule for vectors that the coefficients gW of 
the quadratic form transform (under a change to co-ordinates x;) according 
to the rule 

(6) 

The definition of a pseudo-Riemannian metric on a manifold M is obtained 
from the above by replacing the condition that the quadratic form be at each 
point positive definite, by the weaker requirement that it be non-degenerate. 
(It then follows from the smoothness assumption that, provided M is 
connected, the index of inertia of the quadratic form is constant (cf. §3.2 of 
Part I).) 

1.2.5. Definition. A tensor of type (k, I) on a manifold is given in each local co
ordinate system x; by a family of functions 

(p) T.! ... i~(X) 
J! ... J, 

of the points x. In other local co-ordinates x: (embracing the point x) the 
components (q)1';: ::::,k(X) of the (same) tensor are related to its components in 
the system x; by the transformation rule 

ox" OX"k oxil oxi , .. 
(q)r. ..... k = -q- ... -q_ --p- ... -P (p)T', .... lk 

" ... " OXi. OX ik ax'l OX" J .... i,· 
P P q q 

(7) 

All ofthe definitions and results of Chapter 3 of Part I pertaining to tensors 
defined on regions of Cartesian n-space, now apply without change to tensors 
on manifolds. 

A metric g"{J on a manifold provides an example of a tensor of type (0, 2) 
(compare (6) and (7)). On an oriented manifold such a metric gives rise to a 
volume element 

T.. ...... " = M 6 ........ ", g = det(g .. {J)' 

where 6 ........ " is the skew-symmetric tensor of rank n such that 612 ... n = 1 (see 
§18.2 of Part I). It follows (as in §18.2 of Part I) that the volume element is a 
tensor with respect to co-ordinate changes with positive Jacobian, and so is 
indeed a tensor on our manifold-with-orientation. As in Part I, so also in the 
present context of general manifolds, it is convenient to write the volume 
element in the notation of differential forms (in arbitrary co-ordinates 
defining the same orientation): 

n = JfgI dx 1 1\ ••• 1\ dxn. 
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A Riemannian metric dl 2 on a (connected) manifold M gives rise to a 
metric space structure on M with distance function p(P, Q) defined by 

p(P, Q) = min f dl, 
y y 

where the infimum is taken over all piecewise smooth arcs joining the points 
P and Q. We leave it to the reader to verify that the topology on M defined by 
this metric-space structure coincides with the Euclidean topology on M. 

It follows from the results· of §29.2 of Part I, that any two points of a 
manifold (with a Riemannian metric defined on it) sufficiently close to one 
another can be joined by a geodesic arc. For points far apart this may in 
general not be possible, though if the manifold is connected such points can 
be joined by a broken geodesic. 

1.3. Embeddings and Immersions of Manifolds. 
Manifolds with Boundary 

1.3.1. Definition. A manifold M of dimension m is said to be immersed in a 
manifold N of dimension n ~ m, if there is given a smooth map f: M -+ N 
such that the induced map f. is at each point a one-to-one map of the tangent 
plane (or in other words if in terms of local co-ordinates the Jacobian matrix 
of the map f at each point has rank m). The map f is called an immersion of 
the manifold M into the manifold N. (In its image in N, self-intersections of M 
may occur.) 

An immersion of Minto N is called an embedding if it is one-to-one. 
Abusing language slightly, we shall then call M a submanifold of N. 

We shall always assume that any submanifold M we consider is defined in 
each local co-ordinate neighbourhood Up of the containing manifold N by a 
system of equations 

.. ~ ~.(~~ '. : : : : .~~~ .~.~:} 
f "-m( 1 ") - 0 

p X P"'" Xp - , 

(or) where rank ox~ = n - m, 

with the property that on each intersection V q n Up, the systems (f; = 0) and 
(f; = 0) have the same set of zeros. It follows that throughout each 
neighbourhood Up of N we can introduce new local co-ordinates y!, ... , y; 
satisfying 

m+ 1 _fl( 1 ") ,,n -f"-m( 1 ") yP - P X P' ••• , Xp , ••• , YP - P X P ' ••• , Xp • 
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In terms of these co-ordinates the submanifold M is in each V p given by the 
equations 

m+I_O "-0 yp - , ... ,yp- , 

while y!, ... , y; will serve as local co-ordinates on the submanifold M. 

1.3.2. Definition. A closed region A of a manifold M, defined by an inequality 
of the form f(x)::;; ° (or f(x) ~ 0) where f is a smooth real-valued function on 
M, is called a manijold-with-boundary. (It is assumed here that the boundary 
8A, given by the equation f(x) = 0, is a non-singular submanifold of M, i.e. 
that the gradient of the function f does not vanish on that boundary.) 

Let A and B be manifolds with boundary, both given, as in the pre
ceding definition, as closed regions of manifolds M and N respectively. A map 
cp: A -> B is said to be a smooth map of manifolds-with-boundary if it is the 
restriction to A of a smooth map 

ljJ: V -> N, 

of an open region U of M, containing A. (If A is defined in M by the inequality 
f(x)::;; 0, then V is usually taken to be V. = {xlf(x) < B} where B > 0. 

We conclude this section by mentioning yet another widely used term: a 
compact manifold without boundary is called closed. 

§2. The Simplest Examples of Manifolds 

2.1. Surfaces in Euclidean Space. 
Transformation Groups as Manifolds 

A non-singular surface of dimension k in n-dimensional Euclidean space is 
given by a set of n - k equations 

J;(x l , ... , x") = 0, j = 1, ... , n - k, (I) 

where for all x the matrix (8J;j8xi) has rank n - k. If at a point (xA, ... , xZ) on 
this surface the minor Jh ... i"-k made up of those columns of the matrix 
(8J;j8xi) indexed by jl"" ,j"-k> is non-zero, then as local co-ordinates on a 
neighbourhood of the surface about the point we make take 

(yt, ... , yk) = (xt, ... , xii, ... , Xi "-", ... , x"), (2) 

where the hatted symbols are to be omitted (see §7.l of Part I). Since the 
surface is presupposed non-singular, it follows that it is covered by the 
regions of the form Vj, ... i" -k' where this symbol denotes the set of all points of 
the surface at which the minor Jh ... j" _ k does not vanish. 
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2.1.1. Theorem. The covering of the surface (1) by the regions 

each furnished with local co-ordinates (2), defines on the surface the structure of 
a smooth manifold. 

PROOF. Throughout the region Uh ... in - k of the surface (1) equations of the 
following form hold: 

i = 1, ... , n - k, 

where the cpi are (smooth) functions. Similarly, in the region US, .•. Sn_k with 
coordinates 

we have 

i = 1, ... , n- k, 

where again the tjJi are smooth functions. Throughout the region of 
intersection of Uit ... in - k and US, ... Sn-k' we have the following smooth 
transition functions y -+ z and z -+ y (where for ease of expression we are 
assuming 1 <jl < SI <j2 < ... ; the general case is clear from this): 

yi,-1 = zh-l 

cpl(yt, ... , l) = zit 

yi' = zh+ 1 

yS, - 2 = Zs,-1 

yS, = Zs, 

(= Xh -I), 

(= Xit), 

(= Xit + I), 

(= XS, -1), 

(= X S ,), 

(= Xs, + 1), 

(= x"). 

(3) 

It is immediate that the two transition functions displayed here are mutual 
inverses, completing the proof of the theorem. 0 

Remark 1. It is not difficult to calculate the Jacobian of the transition 
function y -+ z: it is given (up to sign) by 

J - + JS1 ... sn-k..J.0 
(y)-(z) - - j. . ..,-. 

J,· .. Jn-k 
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Remark 2. It is easy to see (much as in §7.2 of Part I) that the tangent space to 
the manifold (1) is identifiable with the linear subspace of IRn consisting of the 
solutions of the system of equations 

afl j;" =0 
ax"'> , 

afn-k e" = o. 
ax" 

(4) 

The (co)vectors grad Ii = (a};/axIJ ), i = 1, ... , n - k, are orthogonal (in the 
sense of the standard Euclidean metric on IRn) to the surface at each point. 

Our next goal will be that of showing that a non-singular surface in 
Euclidean space can be oriented. For this purpose we need to introduce an 
alternative definition of an orientation of a manifold. 

To begin with, consider at any point x of an n-manifold M the various 
frames (i.e. ordered bases) t for the tangent space to M at x each consisting, of 
course, of n independent tangent vectors in some order. Any two such frames 
t I, t 2 are linked to one another via a non-singular linear transformation A 
which sends the vectors in t2 to those in tl in order. We shall say that the 
ordered bases tl' t2 lie in the same orientation class if det A > 0, and lie in 
opposite orientation classes if det A < O. (Thus at each point x of the manifold 
M, there are exactly two orientation classes of ordered bases of the tangent 
space at x.) Since a frame t for the tangent space at x can be moved 
continuously from x to take up the positions of frames for the tangent spaces 
at nearby points, it makes sense to speak of an orientation class as depending 
continuously on the points of the manifold. We are now ready for our 
alternative definition of orientation. 

2.1.2. Definition. A manifold is said to be orientable if it is possible to choose 
at every point of it a single orientation class depending continuously on the 
points. A particular choice of such an orientation class for each point is called 
an orientation of the manifold, and a manifold equipped with a particular 
orientation is said to be oriented. If no orientation exists the manifold is non
orientable. (Imagine a frame moving continuously along a closed path in the 
manifold, and returning to the starting point with the opposite orientation.) 

2.1.3. Proposition. Definition 1.1.3 is equivalent to the above definition of an 
orientation on a manifold. 

PROOF. If the manifold M is oriented in the sense of Definition 1.1.3, then at 
each point x of M we may choose as our orienting frame the ordered n-tuple 
(ell' ... , en)) consisting of the standard basis vectors tangent to the co
ordinate axes of the local co-ordinate system xJ, ... , xj on the local co
ordinate neighbourhood Uj in which x lies. If x lies in two local co-ordinate 
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neighbourhoods V j and V k then we shall have two orienting frames chosen at 
x; however, since M is oriented in the sense of Definition 1.1.3, the Jacobian of 
the transition function from the local co-ordinates on Vj to those on V k is 
positive, so that (in view of the transformation rule for vectors) the two frames 
lie in the same orientation class. 

Conversely, suppose that M is oriented in the sense of Definition 2.1.2 
above, and that there is given at each point x a frame lying in the orientation 
class of the given orientation of M. Around each point x there is an open 
neighbourhood (in the Euclidean topology on M, and of size depending on x) 
sufficiently small for there to exist (new) co-ordinates Xl, ... , x" on the 
neighbourhood with the property that at each point of it the standard 
(ordered) basis (e l , ... , en) of vectors tangent to the axes of Xl, ... , x" in order, 
lies in the given orientation class; this is so in view of the continuity of the 
dependence ofthe given orientation class on the points of M. If we choose one 
such neighbourhood (with the new co-ordinates introduced on it) for each 
point of M, then their totality forms a covering of the manifold by local co
ordinate neighbourhoods; furthermore, the transition functions for the 
regions of overlap all have positive Jacobians, since at each point of such 
regions the standard frames lie in the same orientation class (namely the one 
given beforehand on M). This completes the proof. 0 

2.1.4. Theorem. A smooth non-singular surface Mk in n-dimensional space IR", 
defined by a system of equations of the form (1), is orientable. 

PROOF. Let T denote a point-dependent tangent frame to the surface Mk. 
Obviously the (ordered) n-tuple i = (T, grad fl, ... , grad f"-k) of vectors is 
linearly independent at each point (since the (co)vectors grad /; are linearly 
independent among themselves and orthogonal to the surface). Now choose T 

at each point of the surface Mk in such a way that the frame i (for the tangent 
space of IR") lies in the same orientation class as the standard frame 
(e I' ... ,e"). Since this orientation class is certainly continuously dependent 
on the points of IR", so also will the orientation class of T depend continuously 
on the points of Mk. This completes the proof. 0 

The simplest example of a non-singular surface in IR" + 1 is the 
n-dimensional sphere S", defined by the equation 

xt+· .. +X;+l = 1; 

it is a compact n-manifold. Convenient local co-ordinates on the n-sphere are 
obtained by means of the stereographic projection (see §9 of Part I). Thus 
let V N denote the set of all points of the sphere except for the north pole 
N = (0, ... ,0, I), and similarly let Vs be the whole sphere with the south pole 
S = (0, ... ,0, -1) removed. Local co-ordinates (u1, ... , u~) on the region V N 

are obtained by stereographic projection, from the north pole, of the sphere 
onto the hyperplane x" + I = 0; similarly, projecting stereographically from 
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;c n+1 

H 

Figure 1. Local co-ordinates on the sphere via stereo graphic projections. 

the south pole onto the same hyperplane yields co-ordinates (u~, ... , us) for 
the region Us (see Figure 1). It is clear from Figure 1 that the origin and the 
two points UN(X) and us(x) in the plane xn + 1 are collinear, and that the 
product of the distances of UN(X) and us(x) from the origin is unity. From this 
and a little more it follows easily that the transition function from the co
ordinates (u~, ... , u~) to the co-ordinates (u~, ... , us) is given by (verify it!) 

1 n (U~ u~ ) 
(us,···, us) = atl (UN)2"'" Jl (UN)2 ' 

(5) 

while the transition functions in the other direction are obtained by 
interchanging the letters Nand S in this formula. 

The n-sphere bounds a manifold with boundary, denoted by Dn + land 
called the (closed) (n + I)-dimensional disc (or ball), defined by the inequality 

f(x) = xi + .. . +x;+ 1 - 1 ~ O. 

Note finally that the sphere sn separates the whole space IRn + 1 into two non
intersecting regions defined by f(x) < 0 and f(x) > O. 

Finally (before turning to the consideration of the classical transformation 
groups) we introduce the concept of "two-sidedness". 

2.1.5. Definition. A connected (n - I)-dimensional submanifold of Euclidean 
space IRn is called two-sided if a (single-valued) continuous field of unit 
normals can be defined on it. We shall call such a submanifold a two-sided 
hypersurface. (See the remark below for the justification of this.) 

2.1.6. Theorem. A two-sided hypersuiface in IRn is orientable. 

PROOF. Let v be a continuous field of unit normal vectors to a two-sided 
hyper surface M. At each point of M choose an ordered basis 'to for the tangent 
space in such a way that the frame (-r, v) and the standard tangent frame 
(e l , ... , en) of IRn lie in the same orientation class of IRn. It follows that the 
orientation class of -r must be continuously dependent on the points of M, 
yielding the desired conclusion. 0 
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Remark. It will be shown in §7 that any two-sided hypersurface in IRn is 
defined by a single non-singular equation f(x) = 0 (and hence is indeed a 
hypersurface), whence it follows that such a hypersurface always bounds a 
manifold-with-boundary. Somewhat later, in Chapter 3, it will also be proved 
that any closed hypersurface in IRn is two-sided. 

The transformation groups introduced in §14 of Part I constitute import
ant instances of manifolds defined by systems of equations in Euclidean 
space. Thus in particular: 

(1) the general linear group GL(n, IR), consisting of all n x n real matrices 
with non-zero determinant, is clearly a region of IRn2; 

(2) the special linear group SL(n, IR) of matrices with determinant + 1 is the 
hypersurface in IRn2 defined by the single equation 

det A = 1; 

(3) the orthogonal group O(n, IR) is the manifold defined by the system of 
equations 

AAT = 1. 

(4) the group U(n) of unitary matrices is defined in the space of dimension 
2n2 of all complex matrices by the equations 

Al-F = 1, 

where the bar denotes complex conjugation. 

In §14 of Part I it was shown that these groups (and others) are smooth 
non-singular surfaces in IRn2 (or 1R2n2); we can now therefore safely call them 
smooth manifolds. 

Note that all of these "group" manifolds G have the following property, 
linking their manifold and group structures: the maps <p: G ---+ G, defined 
by <p(g) = g-l (i.e. the taking of inverses), and 1jJ: G x G ---+ G defined by 
ljJ(g, h) = gh (i.e. the group multiplication), are smooth maps. 

2.1.7. Definition. A manifold G is called a Lie group if it has given on it a 
group operation with the property that the maps <p, IjJ defined as above in 
terms of the group structure, are smooth. 

All of the transformation groups considered in Part I are in fact Lie 
groups. 

2.2. Projective Spaces 

We define an equivalence relation on the set of all non-zero vectors of IRn + 1 

(regarded as a vector space) by taking two non-zero vectors to be equivalent if 
they are scalar multiples of one another. The equivalence classes under this 
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relation are then taken to be the points of (real) projective space of dimension 
n, denoted by IRpn. (Each projective space comes with a natural manifold 
structure, which will be precisely defined below.) 

We now give an alternative (topologically equivalent) description of IRpn. 
Consider the set of all straight lines in IRn + 1 passing through the origin. Since 
such a straight line is completely determined by any direction vector, and since 
any non-zero scalar multiple of any particular direction vector serves equally 
well, we may take these straight lines as the points of IRpn. Now each of these 
straight lines intersects the sphere sn (with equation (yO)2 + ... + (yn)2 = 1) at 
exactly two (diametrically opposite) points. Thus the points of IRpn are in 
one-to-one correspondence with the pairs of diametrically opposite points of 
the n-sphere. We may therefore think of projective space IRpn as obtained 
from sn by "glueing", as they say, that is by identifying, diametrically opposite 
points. (We note in passing the consequence that functions on IRpn may be 
considered as even functions on the sphere sn: f(y) = f( - y).) 

Examples. (a) The projective line IRpl has as its points pairs of diametrically 
opposite points of the circle S I. Since every point of the upper semicircle 
(where y > 0) has its partner in the lower semicircle, we can obtain (a 
topologically equivalent space to) IRpn by taking only the bottom semicircle 
(together with the points where x = ± 1) and identifying its end points 
x = ± 1. Clearly the result is again a circle; we have thus constructed a one-to
one correspondence (which is in fact a topological equivalence) between IRpl 
and the circle Sl (see Figure 2). 

The analogous construction can be carried out in the general case, i.e. for 
IRpn. One takes the disc Dn (obtained as the lower half of the sphere sn) and 
identifies diametrically opposite points of its boundary. (The case n = 2 is 
illustrated in Figure 3.) 

-1 

/ 
/ , 

Ij 

/",-- -, '. 

l 
-1=1 
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Figure 3 
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(b) In §14.3 of Part I a homomorphism from the group SV(2) onto the 
group SO(3) was constructed, under which each matrix A of SV(2) has the 
same image as - A (i.e. having kernel {± 1}), or, in other words, identifying 
the points A and - A of the manifold SV(2) in the image manifold SO(3). We 
saw in §14.1 of Part I that there is a homeomorphism between the manifold 
SV(2) and the 3-sphere S3 under which matrices A and - A are sent to 
diametrically opposite points of S3. Hence we obtain an identification (in fact 
topological equivalence) of SO(3) with projective 3-space IRp3 . 

We now introduce explicitly a (natural) manifold structure on the 
projective spaces IRP". 

For this purpose we return to our original characterization of IRP" as 
consisting of equivalence classes of non-zero vectors in the space IR"+ 1 with 
co-ordinates yO, ... , y". For each q = 0,1, ... , n, let Vq denote the set of 
equivalence classes of vectors (yO, ... , y") with yq ¥- O. On each such region V q 
of IRP" we introduce the local co-ordinates x!, ... , x; defined by 

1 yO yq-l 
Xq = -q, ... ,x:=-q-' 

y y 
Y4+ 1 y" q+l _ "_ 

Xq -7""'Xq - yq 
(6) 

Clearly the regions V q, q = 0, 1, ... , n, cover the whole of projective n-space. 
We next calculate the transition functions. For notational simplicity we do 

this for the particular pair V 0, VI: the general formulae for the transition 
functions on V j ("\ V k can be obtained from those for Vo ("\ V 1 by the 
appropriate replacement of indices. Now the co-ordinates in V ° are given by 

yl y2 y" 
Xl - X2 - x"-0-0' 0-0"'" 0-0' y y y 

and in VI by 
yO y2 y" 

Xl - X2 - x"-1-1' 1-1"'" 1-1' Y Y Y 
Hence in the region Vo ("\ VI' where both yO, yl ¥- 0, the transition function 
from (xo) to (x.) is obviously 

1 X02 X3 x" 
1 2 3 0 n ° Xl =l'Xl =1,X1 =1"",X1 =1' 

Xo Xo Xo Xo 
(7) 

(Note that xA = yl/yO is non-zero on Vo ("\ VI') The Jacobian of this 
transition function is given by 

1 
0 0 - (xA)2 

1 
J(xo)->(x,) = det Xo 1 =- (XA)"+1 ¥-O. 

- (XA)2 xA 
0 0 
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Since, as noted above, the general transition functions on U j n U hare 
obtained similarly, it follows that IRP" with the U q as local coordinate 
neighbourhoods is indeed a smooth manifold. The manifold IRp 2 (with n = 2) 
is called the projective plane; in this case the region U ° is called the finite part 
of the projective plane. 

Finally we note that, as is easily shown, the one-to-one correspondences 
Sl -+ IRp l and SO(3) -+ IRp3 described in the above examples, are in fact 
diffeomorphisms. 

We define complex projective space CP" similarly; its points are the 
equivalence classes of non-zero vectors in cn+ 1 under the analogous 
equivalence relation (i.e. scalar multiples are identified), and the local co
ordinate neighbourhoods, with their co-ordinates, are defined as in the real 
case, making CP" a 2n-dimensional smooth manifold. 

By way of an example, we consider in detail the complex projective line 
Cpl. Its points are the equivalence classes of non-zero pairs (ZO, Zl) of 
complex numbers, where the equivalence is defined by (ZO, Zl) "" (AZO, AZ1) 
for any non-zero complex number A. Consider the (complex) function 
wo(ZO, Zl) = Zl/Z0; this function is defined (and one-to-one) on all of Cpl 
except (the equivalence class of) (0, 1): we shall formally define Wo as taking the 
value 00 at this point. Thus via the function Wo the complex projective 
line Cpl becomes identified with the "extended complex plane" (i.e. the 
ordinary complex plane with an additional "point at infinity"). 

2.2.1. Theorem. The complex projective line Cpl is diffeomorphic to the 
2-dimensional sphere S2. 

PROOF. On the region U ° of the complex projective line consisting of all 
equivalence classes of non-zero pairs (i.e. non-zero pairs determined only up 
to scalar multiples) (ZO, Zl) with ZO .;: 0, we introduce local co-ordinates Uo, Vo 
defined by Uo + ivo = Wo = Zl/Z0. (These local co-ordinates may be regarded 
as defining a one-to-one map from U ° onto the real plane IR 2.) Similarly, 
Ul' VI' defined by Ul + iVl = WI = ZO /Zl, will serve as co-ordinates on the 
region U 1 consisting of pairs (ZO, Zl) (up to scalar multiples) with Zl .;: 0. 
Clearly the regions U ° and U 1 cover Cpl. The transition function from 
(uo. va) to (Ul' VI) on the region of intersection is given by 

( 
Uo vo ) 

(Ulo VI) = ---r--+ 2' - ---r--+ 2 ' Uo Vo Uo Vo 

or, in complex notation, by 
. 1 Uo - ivo 

Ul + 1V1 = WI = - = 2 2 • 
Wo Uo + Vo 

Since this formula coincides with the formula (5) (in the case n = 2) for the 
transition functions for the stereographic co-ordinates on the sphere S2, the 
theorem follows. 0 
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It is on account of this result that the extended complex plane is often 
called the "Riemann sphere". Note that if w = u + iv provides local co
ordinates u, v for the finite part of the extended complex plane (i.e. for the 
ordinary complex plane), then 1/w provides local co-ordinates of a (punc
tured) neighbourhood of the "point at infinity" 00. 

We now return to the consideration of the general complex projective 
space cpn. From each equivalence class of (n + I)-vectors we may choose as 
representative a vector whose tip lies on the unit sphere s2n+ \ i.e. satisfying 

Izol2 + ... + Izn l2 = 1, 

by simply multiplying any vector z = (ZO, ... , zn) in the class by the scalar 
A=(2::=olz"'j)-1 12. The resulting vector (with tip on s2n+l) is then clearly 
unique only up to multiplication by scalars of the form ei"', i.e. by complex 
numbers of modulus 1. We therefore conclude that: 

Complex projective space cpn can be obtained from the (unit) sphere 
s2n+1 = {zl:L:=olz"'1 2 = I}. by identifying all points ei"'z on the sphere (cp 
variable) with z. i.e. by identifying all points differing by a scalar factor of the 
form ei"'. 

Thus we have a map 

S2" + 1 -+ cpo, (8) 

such that the pre-image of each point of cpn is (topologically equivalent to) 
the circle SI = {ei",}. In particular, in view of Theorem 2.2.1, we obtain thence 
a map 

2.3. Exercises 

1. Prove that the odd-dimensional projective spaces IRp 2k+ 1 are orientable. 

2. Prove that the connected component containing the identity element of a Lie 
group, is a normal subgroup. 

3. Prove that a connected Lie group is generated by an arbitrarily small neighbour-
hood of the identity element. 

4. Prove that every Lie group is orientable. 

5. Prove that the projective spaces IRP" and Cpo are compact. 

6. Quaternion projective space IHlP" is defined as the set of equivalence classes of non
zero quaternion vectors in 1Hl"+ 1, where two (n + I)-tuples are equivalent if one is a 
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multiple of the other (by a non-zero quaternion). Define a manifold structure on 
!HlP", and verify that !Hlp 1 is diffeomorphic to S4. 

7. Construct a mapping S4.+ 3 -+ !HlP', analogous to the mapping (8), and identify the 
complete inverse image of a point of !HlP' under this map. 

§3. Essential Facts from the Theory of Lie Groups 

3.1. The Structure of a Neighbourhood of the Identity of a 
Lie Group. The Lie Algebra of a Lie Group. 
Semisimplicity 

Every Lie group G (see Definition 2.1.6) has a distinguished point go = 1 E G 
(the identity element), and, being by definition a smooth manifold, has a 
tangent space T = 7(1) at that point. For each hE G the transformation G 
-+ G, defined by g H hgh - 1, is called the inner automorphism of G determined 
by h. Any such transformation of G clearly fixes the identity element go = 1 
(since hgoh -1 = go), and therefore the induced linear map of the tangent space 
T to G at the identity (see §1.2 above) is a linear transformation of T, denoted 
by 

Ad(h): T -+ T. 

From the definitions of the inner automorphism determined by each element 
h, and the linear map of the tangent space T which it induces, it follows easily 
that Ad(h- 1) = [Ad(h)r l and Ad(h1h2) = Ad(hd Ad(h2 ), for all h, hI' h2 in G. 
Hence the map h H Ad(h) is a linear representation (i.e. a homomorphism to a 
group of linear transformations) of the group G: 

Ad: G -+ GL(n, IR), 

where n is the dimension of G. (Note that for commutative groups G the 
representation Ad is trivial, i.e. Ad(h) = 1 for all hE G.) 

We shall now express the group operation on a Lie group G in a 
neighbourhood of the identity, in terms of local co-ordinates on such a 
neighbourhood. We first re-choose co-ordinates in a neighbourhood of the 
identity element so that the identity element is the origin: 1 = go = (0, ... ,0). 
We then express in functional notation the co-ordinates of the product g1g2 
(if it is still in the neighbourhood) of elements gl = (Xl, ... ,x") and 
g2 = (yl, ... ,yO) by 

IX = 1, ... , n, 

and the co-ordinates of the inverse g-l of an element g = (Xl, ... , x") by 

IX = 1, ... , n. 
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The functions I/I(x,y) (=glgZ) and cp(x) (=g-l) obviously satisfy the 
following conditions (arising from the defining properties of a group): 

(i) I/I(x, 0) = 1/1(0, x) = x (property of the identity); 
(ii) I/I(x, cp(x» = 0 (property of inverses); 
(iii) I/I(x, I/I(y, z» = 1/1 (1/1 (x, y), z) (associative property). 

Given sufficient smoothness of the function I/I(x, y), it follows from condition 
(i) (and Taylor's theorem) that 

I/III.(x, y) = xII. + yll. + bpyxP yy + (terms of order ~ 3) (1) 

(where of course bpy = oZI/III./oxfJoyy evaluated at the origin). 
Now let e and '1 be tangent vectors to the group at the identity, i.e. 

elements of the space T, and as usual denote their components, in terms of 
our co-ordinates xII., by ell., '111. respectively. The commutator [e, '1] E T of 
tangent vectors e, '1 is defined by 

(2) 

This commutator operation on T has the following three basic properties: 

(a) [ , ] is a bilinear operation on the n-dimensional linear space T (where n 
is the dimension of G); 

(b) [e, '1] = - ['1, e]; 
(c) Ere, '1], G + [[C, e], '1] + [['1, G, e] = 0 ("Jacobi's identity"). (3) 

(The first two of these properties are almost immediate from the definition of 
the commutator operation. Here is a sketch of the proof of (c) as a 
consequence of the associative law (iii) above: From (1) we obtain that 

I/III.(I/I(x, y), z) = I/III.(x, y) + zll. + bpyl/lfJ(x, y)zy 

+ (terms of degree ~ 3 in I/Ii, zi). 

Substitution in this from (1) yields an expansion of 1/1 11.(1/1 (x, y), z) in terms of 
x"', y., zy in which the coefficient of x"'y·zY is bpyb~ •. Repeating this procedure 
for I/III.(x, I/I(y, z» and comparing the coefficient of x'" y·zy with that obtained in 
the case of 1/1 11.(1/1 (x, y), z), we find that 

bll.bfJ-bll.bfJ py ,... - ,..fJ .y 

On the other hand from the definition of the commutator we obtain 

Ere, '1], C]II. = (bpy - b~fJ)[e, '1]fJCY = (bpy - b~fJ)(b~. - be,..)e"''1"cy. 

It follows that Jacobi's identity is equivalent to 

(bpy - b;fJ)(b~" - be,..) + (bp" - b~fJ)(b~,.. - b~y) + (bp,.. - b:fJ)(bey - b~v) = 0, 

which is easily seen to be a consequence of (4), as required.) 

(4) 

Thus the tangent space to G at the identity is with respect to the 
commutator operation a Lie algebra; since it arises from G it is called the Lie 
algebra of the Lie group G. (Cf. §24.1 of Part I.) 
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If el' ... , en are the standard basis vectors of T (in terms of the co-ordinates 
Xl, ..• , xn) then since [ell' ey] is again a vector in T, we may write 

[ell' eJ = c~AI' 

whence by bilinearity 

(5) 

for all vectors e, 11 in T. The constants C~y, which clearly determine the 
commutator operation on the Lie algebra, and which are skew-symmetric in 
the indices p, y, are called the structural constants of the Lie algebra. 

A one-parameter subgroup of a Lie group G is defined to be a parametrized 
curve F(t) on the manifold G such that F(O) = I, F(tl + t2) = F(tdF(t2)' 
F( - t) = F(t) -1. (Thus the one-parameter subgroup is determined by a homo
morphism t H F(t) from the additive reals to G.) 

(Before proceeding we note parenthetically that left multiplication by a 
fixed element h of an abstract Lie group G defines a diffeomorphism G 
-+ G (g H hg); the induced map of tangent spaces is defined as before to send 
the tangent vector g(t) to a curve g(t), to the tangent vector (d/dt)(hg(t» to the 
curve hg(t).) Now if F(t) is a one-parameter subgroup of G, then 

dF = dF(t + e) I = ~(F(t)F(e»I.=o = F(t) dF(e) I ' 
dt de .=0 de de .=0 

where the last equality follows from the preceding parenthetical definition of 
the tangent-space map induced by left multiplication on the group by the 
element F(t). Hence F(t) = F(t)F(O), or F(t)-1 F(t) = F(O), i.e. the induced 
action of left mUltiplication by F(t)-1 sends F(t) to F(O) = const. Conversely, 
for each particular tangent vector A of T, the equation 

(6) 

is satisfied by a unique one-parameter subgroup F(t) of G; to see this note first 
that (6) is (when formulated in terms of the function y,(x, y) defining the 
multiplication of points x, y of G) a system of ordinary differential equations, 
and therefore by the appropriate existence and uniqueness theorem for the 
solutions of such systems, has, for some sufficiently small e > 0 a unique 
solution F(t) for It I < e. The values of F(t) for all larger It I can then be 
obtained by forming long enough products of elements F(c5) with 1c51 < e. 

In the case that G is a matrix group it follows from (6) that F(t) = exp At 
(see §§14.2, 24.3 of Part I). We shall use this notation also for the one
parameter subgroup arising from A via (6) in the general case of an arbitrary 
Lie group. 

EXERCISE 

Let F I(t) and F 2(t) be two one-parameter subgroups ofa Lie group G with Al = F 1(0), 
A2 = F 1 (0), whence F 1 (t) = exp Al t, F 2(t) = exp A2t. Prove that 

t 2 [A .. A z] = F I (t)F 2(t)Fi l (t)F2"I(t) + O(t 3 ). (7) 
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Let F(t) = exp At be a one-parameter subgroup of a Lie group G. For each 
t the inner automorphism g1-+FgF- 1 induces (as we saw above) a linear 
transformation Ad F(t) of the Lie algebra T = 1(1)' which, since T is n
dimensional, lies in GL(n, IR). It follows that Ad F(t) is a one-parameter 
subgroup of GL(n, IR), whence the vector (dldt) Ad F(t)lt=o lies in the Lie 
algebra of the group GL(n, IR), and so can be regarded as a linear operator. 

EXERCISE 

Prove that, as operator, (dldt) Ad F(t)Lo is given by B f--+ [A, B] for B in the Lie 
algebra (which is identifiable with IR"). (As in §24.l of Part I, we denote the map 
B f--+ [A, B] by ad A: IR" -> IR".) 

We next use the one-parameter subgroups to define canonical co
ordinates in a neighbourhood of the identity of a Lie group G. Let AI' ... , An 
form a basis for the Lie algebra T (which we may identify with IR·), the 
tangent space to G at the point go = 1. We saw above that to each vector 
A = L Aixi in T there corresponds a one-parameter group F(t) = exp At. To 
the point F(l) (which it is natural to denote also by exp A) we assign as co
ordinates the coefficients Xl, .•. ,xn; in this way we obtain a system of co
ordinates (by "projecting down from the tangent space" as it were) in a 
sufficiently small neighbourhood of the identity element of G. (Verify this!) 
These are called canonical co-ordinates of the first kind. 

Alternatively, writing Fi(t) = exp Ait, we have that each point g of a 
sufficiently small neighbourhood of the identity element can be expressed 
uniquely as 

for small t 1, ... , tn' Assigning co-ordinates t 1 = Xl' ..• , tn = x. to the point g, 
we thus obtain the co-ordinates of the second kind in a neighbourhood of the 
identity. 

EXERCISES 

1. Given a curve in the form g(r)=F1(-rt1) ... F.(rt.), prove that 

2. Show that the "Euler angles" (jJ, 1/1, e (see §14.1 of Part I) constitute co-ordinates of 
the second kind on SO(3). 

Co-ordinates of the first kind are exploited in the proof of the following 
result. 

3.1.1. Theorem. If the functions t/Ja(x, y) defining the multiplication of points 
x, y of a Lie group G are real analytic (i.e. are representable by power series), 
then in some neighbourhood of 1 E G, the structure of the Lie algebra of G 
determines the multiplication in G. 
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(Here the condition that 1/1 be real analytic (or, as they say, that G be 
analytic) is not crucial; however, the proof under weaker assumptions about 
1/1 is more complicated.) 

PROOF. Define auxiliary functions vp(x) by 

«( ) _ al/l«(x, y) \ 
vp x - !l P , 

uX Y='I'(x) 

where as before qJ(x) is the function defining (in terms of co-ordinates) the 
inverse of x. It follows from properties (i), (ii) and (iii) of 1/1 and qJ (towards the 
beginning of this section) that the functions I/I«(x, y) satisfy the following 
system of partial differential equations in x: 

«(,/.( » al/lp(x, y) «() 
vp 'I' x, Y ax1 = v1 X , (8) 

with the initial conditions 

1/1(0, y) = y. 

(To see (8), note first that the left-hand side is 

al/l"(x, y) \ • al/lp(x, y) 
:lxP x = o/I(x, Y) !lx1' 
u Y='I'(o/I(x, Y)) u 

which is the same as 

al/l"(I/I(x, y), Z)\ 
a 1 ' X % = 'I'(o/I(x, Y)) 

and then apply properties (i), (ii) and (iii) of qJ and 1/1.) 
It can be shown that the system (8) has a solution precisely if 

(9) 

EXERCISE 

Taking the invertibility of the matrix (tt,("'» into account, show that (9) is equivalent 
to 

02", 02", 

ox"oxY = oxYox'" 
the condition for solubility ofthe system of "Pfaffian" equations (8) (cf. (5), (6) in §29.1). 

Since (8) does indeed have a solution, namely the 1/1 defining the 
multiplication in G, it follows that equation (9) must hold. 

On the other hand, if x = x(t) represents the one-parameter subgroup 
determined by the initial velocity vector A = (A'), then, putting equation (6) 
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into functional notation, we have 

A'" = !x,"(e)I.=o= :e",,"(x(e+t),x(-t))I.=o 

_ o"''"(x, Y) I dxP(e + t) I _ '"( (» dxP(t) 
- P - vp x t . 

ox y=<p(x) de 0=0 dt 

If we now take the x'" to be canonical co-ordinates of the first kind (in some 
neighbourhood of 1) then by definition of such co-ordinates, x'"(t) = A'"t, 
whence by the above 

yielding 

x'" = vp(x)xp• (10) 

Our aim is to show that the functions IJp(x) are fully determined (in some 
neighbourhood of 1) by these canonical co-ordinates. Differentiating the last 
equation with respect to xP, we obtain 

ov'" 
OIX - xY _ Y + v'" 
P- oxP P' (11) 

By multiplying equation (9) by xP (and summing with respect to P), and then 
substituting from (10) and (11), we obtain 

whence, on replacing x by At, 

ovl1. 
tAP ox~ + v~(x) = o~ + c:.A ·tlfy. (12) 

In terms of the new functions w~(t) = tv~(At) (also dependent on A) the 
equations (12) take the form 

d~ 
_1 = 011. + c'" A'w" 
dt 1 ". Y' 

(13) 

which is a system of ordinary linear differential equations for the functions 
w~(t), with initial conditions w;(O) = O. Hence for each fixed A the functions 
W;(t) are uniquely determined by the Lie algebra structure (since the system 
(13) is determined by the structure constants c:. (as well as A». The w; in turn 
determine the functions v;(x), and thence the multiplication operation ",(x, y) 
as the solution of the system (8) with the given initial conditions. (It is here 
that the assumption of analyticity of the "''"(x, y) enters the picture, via for 
instance the Cauchy-Kovalevskaja theorem on (existence and) uniqueness of 
solutions of certain systems of partial differential equations.) This completes 
the proof of the theorem. 0 
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3.1.2. Corollary. If the Lie algebra of a connected analytic Lie group G is 
commutative (i.e. [A, B] == 0), then the group G is commutative (i.e. abelian). 

PROOF. Setting c:. = 0 in (13), yields that vp(x) = c5p, and then from (8) with the 
initial condition 1/1(0, y) = y, that I/I(x, y) = x + y on some neighbourhood. 
The corollary then follows from the connectedness of G, since this implies 
that G is generated as a group by the elements in any (arbitrarily small) 
neighbourhood of the identity. 0 

3.1.3. Definition. A Lie algebra L = {IR", c~,,} is said to be simple if it is non
commutative and has no proper ideals (i.e subspaces I =F L, 0, for which [I, L] 
c I), and semisimple if L = 11 Ee ... Eel k where the I j are ideals which are 
simple as Lie algebras. (It follows that these ideals are pairwise commuting, 
i.e. [Ii' II] = 0 for i =F I). A Lie group is defined to be simple or semisimple 
according as its Lie algebra is respectively simple or semisimple. The Killing 
form on an arbitrary Lie algebra L is defined by 

(A, B) = -tr(ad A ad B), 

where the operator ad A on L is in turn defined by 

uH[A, u], U E L. 

(14) 

(15) 

Earlier in this section we defined for each g in a Lie group G an 
automorphism Ad(g) of the Lie algebra of G (namely, that induced by the 
inner automorphism of G determined by its element g); it is thus n,atural to 
call the automorphism Ad(g) an inner automorphism of the Lie algebra. 

3.1.4. Theorem. (i) If the Lie algebra L of a Lie group G is simple, then the 
linear representation Ad: G --+ GL(n, IR) is irreducible (i.e. L has no proper 
invariant subspaces under the group of inner automorphisms Ad (G». 

(ii) If the Killingform of a Lie algebra is positive definite then the Lie algebra is 
semisimple. 

PROOF. (i) Suppose on the contrary that the representation Ad is reducible, 
and let I be a proper invariant subspace of L invariant under Ad G. Let X, Y 
be any elements of L, I, respectively, and let x(t), yet) be the one-parameter 
subgroups determined by the tangent vectors X, Y. The invariance of I means 
in particular that for all t, the vector 

d 
Ad(x(t»(Y) = dt (x(t)y(t)X(t)-l )1,=0 

lies again in I. We shall use canonical co-ordinates of the first kind, so that in 
some neighbourhood of 1 we have x(t) = Xt, y(t) = Yt. From (1) applied 
twice in succession it follows easily that the IXth component of x(t)y(t)X(t)-l 
= x(t)y(t)x( -t) is given by 

Y'"t + [X, YJ"'tt - bpyXfI X Yt 2 - bpy yfl Pt 2 + higher-order terms in t, t. 
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(From (1) and the fact that I/I(x(r), x( - r)) = ° = I/I(y(t), y( - t)), it follows that 
the two negative terms vanish.) On differentiating with respect to t and then 
setting t = 0, we obtain for all sufficiently small r that 

Ad(x(r))(Y) = Y + [X, YJr + O(r2). 

It follows that 

[X, YJr + O(r2) E I. 

Dividing by r and letting r -+ 0, we get finally that [X, Y] E 1 (since with 
respect to the Euclidean norm every subspace of a finite-dimensional vector 
space is closed). Hence [L. 1] c I, so that I is an ideal of L, contradicting the 
assumed simplicity of L. 

(ii) Let I be any ideal of the Lie algebra L, and let J be the orthogonal 
complement of 1 in L with respect to the Killing form (i.e. J is the subspace of 
all vectors in L orthogonal to I). We first prove that J is also an ideal of L. 

To this end let X, Y, Z be arbitrary elements of L, J, I, respectively; we 
wish to show that [X, Y] is orthogonal to Z, i.e. that tr(ad[X, Y]ad Z) = O. 
Now it is easily verified from the Jacobi identity that 

ad [A, B] = ad A ad B - ad B ad A. 

Hence 

tr(ad[X, Y] ad Z) = tr(ad X ad Yad Z - ad Yad X ad Z), 

and since a trace of a matrix product is invariant under cyclic permutations of 
the factors, it follows that 

tr(ad[X, Y] ad Z) = tr(ad X ad Y ad Z - ad X ad Z ad Y) 
= tr(ad X ad[Y, Z]). 

Since [Y, Z] Eland X E J, the final expression above is zero, as required. 
The positive definiteness of the Killing form implies both that L = I E£) J, 

and that no non-zero ideals of L can be commutative (since the restriction of 
the Killing form to a commutative ideal is zero). This completes the proof. 

o 

Remark. There is a stronger result than (ii), due to Killing and E. Cart an: A 
Lie algebra is semisimple if and only if its Killing form is non-degenerate. In 
addition to the above argument, the proof of this stronger result uses the fact 
that the Killing form of a (non-commutative) simple Lie algebra cannot be 
identically zero. This is in turn a consequence of a theorem of Engel which 
states that the Killing form of a Lie algebra L is identically zero if and only if 
the Lie algebra is "nilpotent"; i.e. if there exists a positive integer k such that 

for all A 1, ... ,Ak EL. 
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EXERCISES 

1. (i) Prove that the isometries of a connected Riemannian manifold form a Lie 
group. 

(ii) Prove the analogous result for the group of all conformal transformations of a 
Riemannian manifold (see §15 of Part I). 

2. Decide which of the Lie algebras encountered in Part I (see especially §24) are 
simple or semisimple. 

3.2. The Concept of a Linear Representation. 
An Example of a Non-matrix Lie Group 

We begin with a definition: 

3.2.1. Definition. A (linear) representation of a group G is a homomorphism 
p: G ~ GL(n, IR) or p: G ~ GL(n, q, from G to a group of real or complex 
matrices. Given a representation P of G, the map Xp: G -+ IR (or G ~ q 
defined by Xp(g) = tr p(g), g E G, is called the character of the representation p. 
As noted above, a representation P of G is said to be irreducible if the vector 
space IRft (or eft) contains no proper subspaces invariant under the matrix 
group p(G). 

3.2.2. Theorem ("Schur's Lemma"). Let Pi: G ~ GL(ni, IR), i = 1,2, be two 
irreducible representations of a group G. If A: IRftl ~ IRR2 is a linear transform
ation changing PI into P2 (i.e. satisfying Apl(g) = P2(g)A), then either A is the 
zero transformation or else a bijection (in which case of course nl = n2)' 

PROOF. If x is an element of the kernel of A, i.e. Ax = 0, then for all g E G 

ApI (g)x = P2(g)Ax = 0, 

whence the kernel of A is invariant under Pl(G) and so by the irreducibility of 
PI must be either the whole of IRftl (in which case A = 0) or else the null space. 
Similarly the image space A(lRftl) c IRft2 is invariant under P2(G), and must 
therefore either be the null space or the whole of IRft2. This completes the 
~& 0 

Note that if G is a Lie group and we have a representation 
p: G ~ GL(N, IR) which is a smooth map, then the differential (i.e. induced map) 
P. is a linear map from the Lie algebra 9 = 1(1) to the space of all N x N 
matrices: 

P.: 9 ~ M(N, IR). 

We leave it to the reader to verify that P. is actually a representation of the Lie 
algebra g, i.e. that it is a Lie algebra homomorphism: as well as being linear, it 
preserves commutators: 
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(We note that it can be shown that if p is continuous, then it will 
automatically be smooth.) 

A representation p: G -. GL(N, IR) (or G -. GL(N, C) is called faithful if it 
is one-to-one, i.e. if its kernel is trivial: p(g) i= 1 unless g = 1. A matrix Lie 
group trivially has a faithful Lie representation (i.e. a representation which is 
also a topological equivalence). However, as we shall now show (by means of 
an example) not every Lie group can be realized (i.e. has a faithful Lie 
representation) as a matrix Lie group. As our example we take the group 
G = S1(2, IR) consisting of all transformations of the real line of the form 

1 l-ze- ix 
x 1-+ x + 2rca + ~ In 1 - i ' 

I -ze X 
(16) 

where x E IR, a E IR, z E C, Izl < 1, and In denotes the main branch of the 
natural logarithmic function, i.e. the continuous branch determined by 
In 1 = 0. (Note that in (16) the argument of the function In is a fraction whose 
numerator and denominator are complex conjugates; hence the fraction has 
modulus 1, so that its natural logarithm is either zero or purely imaginary, 
and therefore the image of x in (16) is indeed real (in fact between - rc and rc).) 

It is not difficult to see that the group S1(2, IR) is a connected 
3-dimensional Lie group (with the obvious co-ordinates a and the real and 
imaginary parts of z). The subgroup isomorphic to 7L consisting of those 
transformations (16) with a E 7L and z = 0, is easily seen to be central in the 
whole group S1(2, IR) (i.e. each of its elements commutes with all elements). 
(We shall see below that in fact it coincides with the centre of S1(2, IR).) Note 
also for later use that the transformations (16) with a E IR and z = ° form a 
one-parameter subgroup of SL(2, IR). 

Each transformation (16) has the property that if x 1-+ y under the 
transformation, then x + 2rck 1-+ y + 2rck for all k E 7L. Hence each such 
transformation yields a transformation w = eix 1-+ eiy of the unit circle I wi = 1. 
It is easily verified that the latter transformation has the explicit form 

w-z . wl-+ ___ e21t1a 

l-iw 
(17) 

If one conjugates this by the linear fractional transformation z = i[(1 - w)/ 
(1 + w)), which maps the unit circle (with one point removed) to the real line 
(and the interior of the unit circle to the open upper half-plane) then one finds 
that the group of such transformations is isomorphic to SL(2, IR)/ {± I}. 
(Alternatively one may use the results of §13.2 of Part I to get that the group 
of transformations (17) is isomorphic to SU(I, 1)/{±1} ~SL(2, 1R)/{±I}.) 
We thus have a homomorphism from our group S1(2, IR) onto SL(2, IR) with 
kernel the above central subgroup isomorphic to 7L. Since SL(2, IR)/ { ± I} has 
trivial centre, it follows that the centre of S1(2, IR) is precisely that infinite 
cyclic subgroup. 
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3.2.3. Theorem. The group Sl(2, IR) has no faithful Lie representation. 

PROOF. While the above-mentioned one-parameter subgroup (consisting of 
the transformations (16) with a E IR arbitrary and z = 0) clearly has infinite 
intersection with the centre of Sl(2, IR) (which consists, as just shown, of the 
transformations (16) with a E Z and z = 0), it is obviously not contained in the 
centre. We shall show that this is incompatible with the existence of a faithful 
Lie representation of Sl(2, IR). 

Thus suppose that there is a subgroup G of GL(n, q which is identical with 
Sl(2, IR) as far as its Lie group structure is concerned. Denote by H the one
parameter subgroup of G corresponding to the one-parameter subgroup of 
Sl(2, IR) just mentioned. It follows from §14.2 of Part I and §3.l above that 
H has the form {exp tAlt E IR}, where A is some fixed n x n matrix. By 
conjugating, if need be, by a suitable matrix from GL(n, q we may bring A 
into its Jordan canonical form; hence we may assume that A is in block 
diagonal form, with blocks each of the type 

(18) 

where ai = 0 or 1. (We are supposing here that different blocks correspond to 
different A., i.e. that the degree of each block is equal to the multiplicity of the 
eigenvalue A..) The matrix exp(tA) (see §14.2 of Part I) will then also be in 
block diagonal form with blocks of the same size as those of A, and with the 
block corresponding to (18) having the form eAIB),(t) where 

1 a1 t 1a1aZtZ !a1aza3 t3 1 k 
k!a 1 ... ak t 

0 azt 1aZa 3tZ 1 k-1 
(k _ I)! az · .. ak t 

B),(t) = 
1 k- 2 0 0 a3 t (k _ 2)! a3 ... akt 

o o 

Since for infinitely many t the matrix with blocks eAI B ),(t) lies in the centre of 
G, it follows that every element of G also has the same block diagonal form as 
A, i.e. has blocks of the same degree in the same order. The set P of all n x n 
matrices (including the singular ones) which commute with every element of 
G, clearly forms a linear subspace of the vector space en' of all n x n matrices; 
the intersection P n G is the centre of G. For reasons similar to before, every 
element of P again has the same block diagonal form as the matrices in G. 
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The condition that any given n x n matrix of that block diagonal form lie in P 
is equivalent to the condition that its image in the quotient space en2/P be 
zero, and is therefore expressible as a homogeneous system of linear 
equations in the entries in the diagonal blocks of the given matrix, which can 
be so arranged that any single equation involves only those entries in a single 
block. Applying this to the matrix exp tA with blocks eAtBit), we obtain, on 
mUltiplying each equation bye-AI for the appropriate A, a system of 
polynomial equations in t. Since such a system is satisfied by either all or else 
only finitely many values of t, this contradicts the fact that the group H 
= {exp tA} is not contained in the centre of G but has infinite intersection 
with it. 0 

EXERCISES 
"" 1. Calculate the Lie algebra of the Lie group 8L(2, IR). 

2. Verify that the above-described group homomorphism SL(2, IR) -+ 8L(2, IR)/ {± I} 
is a local isomorphism in some neighbourhood of the identity. 

§4. Complex Manifolds 

4.1. Definitions and Examples 

We now introduce the concept of a complex manifold. 

4.1.1. Definition. A complex analytic manifold of complex dimension n is a 
manifold M of dimension 2n, for which the charts UiM = Uq Uq) with their 
local co-ordinate systems z: = X; + iy:, (X = 1, ... ,n, are identifiable with 
regions of n-dimensional complex space en, It is further required that on each 
region of intersection U q n Up, the transition functions from the co-ordinates 
z: to the co-ordinates z: and in the reverse direction, be complex analytic (see 
§12.1 of Part I): 

f}z: =0' 
~-p - , uzp 

(1) 

We define a holomorphic map between complex manifolds to be one which 
is complex analytic (in terms of the given complex local co-ordinates on the 
manifolds). Holomorphic maps from a complex manifold to the complex line 
e will be called analytic or holomorphicfunctions on the manifold. A bijection 
between complex manifolds will be said to be biholomorphic if both it and its 
inverse are holomorphic. If two complex manifolds are such that there exists 
a biholomorphic map between them, we shall say that they are biholomorphi
cally equivalent or complex diffeomorphic. 
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One important property of a complex manifold is that it always comes 
with an orientation. 

4.1.2. Theorem. A complex analytic manifold is oriented. 

PROOF. Let M be a complex manifold and let z: = x: + i~, z: = x: + i~ be 
local co-ordinates on charts U q' Up, respectively. By Lemma 12.2.2 of Part I, 
on the region of overlap of each such pair of neighbourhoods, the (real) 
Jacobian of the transition function from the co-ordinates x:' y: to the co
ordinates x:' ~, satisfies 

JR = IJe l2 = Idet(;;DI2. 

Since such Jacobians are therefore all positive, the theorem follows. 0 

The complex projective spaces CP", introduced in §2.2 above, provide 
examples of complex analytic manifolds. Complex local co-ordinates on CP" 
are defined as in the real case; the transition functions, exemplified by formula 
(7) of §2.2 (with the xl replaced by the complex co-ordinates z/) are clearly 
complex analytic. The manifolds CP" are compact (see Exercise 5 of §2.3). It 
follows from the discussion in §2.2 that the complex manifold Cpl is 
biholomorphic to the extended complex plane with complex local co
ordinates w = liz in the neighbourhood of the point at infinity (and with 
w = 0 at (0). 

The simplest examples of complex manifolds are furnished by regions of 
C". Further important examples are provided by the non-singular complex 
surfaces in C". Such a manifold is defined by a system of equations 

"~~~~~'.:::~.~?~~}, (2) 

f"_k(zl, ... , z") = 0 

where the functions fl"'" f,,-k are all complex analytic, and at every point 
the rank of the matrix (o/;/ozl) is largest possible (namely n - k). The 
verification that a non-singular complex surface in C" is indeed a complex 
analytic manifold is carried out in a manner analogous to that of the real case 
(see the proof of Theorem 2.1.1), with the aid of results from §12 of Part I. 

In contrast with the real case (see §9), compact complex analytic manifolds 
are not realizable as non-singular complex surfaces in some C". This is a 
consequence of the following theorem. 

4.1.3. Theorem. A holomorphic function on a compact, connected complex 
manifold is necessarily constant. 

PROOF. If f: M ~ C is a holomorphic function on a compact, connected 
complex manifold M, then it follows by means of a well-known argument 
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(using the continuity of If I and the compactness of M) that If I attains a 
largest value; i.e. there is a point Po of M such that If(P)I::;; If(Po)1 for all 
points P of M. The constancy of f on M follows from the connectedness 
assu~ption, and the following basic result of complex function theory (to 
state and prove which, we now interrupt the present proof). 

4.1.4. Lemma ("Maximum-Modulus Principle"). Let f be a function 
holomorphic on some region U of n-dimensional complex space en. If the 
function If I has a local maximum at some point Po ofU, i.e. iflf(P)I::;; If(Po)1 
for all points P of U sufficiently close to Po, then f is constant in some 
neighbourhood of Po· 

PROOF. Since the function If I will clearly have a local maximum at Po on any 
complex line through Po, it suffices to prove the lemma for the case n = 1. We 
may also assume without loss of generality that Po = 0, and that f(O)"# 0 
(since if f(O) = 0, the assertion of the lemma is trivial). By multiplying the 
function f, if necessary, by an appropriate complex number we may further 
suppose that f{O) is a positive real number. 

In §26.3 of Part I we gave a proof of the "Residue Theorem" of complex 
function theory; the well-known "Cauchy integral formula" for holomorphic 
functions of a complex variable is an almost immediate corollary of that 
result: 

f(O) = ~ J, f(z) dz , 
2m Jy z 

where y is any circle enclosing the origin. Putting z = rei'!' where r is any 
constant small enough to ensure that both y and its interior are contained in 
U, this becomes 

1 f2" f(O) = 2n 0 f(re i,!,) dcp, (3) 

which formula obviously must also hold if in it f is replaced by Re f (or 
1m!). 

The function g(z) = Re(f(O) - f(z)) is non-negative on some neighbour
hood of the origin, since, by hypothesis, for all z sufficiently close to 0 we have 
f(O) -If(z)1 2:: 0, and since also IRe f(z) I ::;; If(z)l. On the other hand since 
formula (3) continues to hold with f replaced by g, it follows that 

for all sufficiently small r. Hence throughout some neighbourhood of the 
origin g(z) must be identically zero, i.e. Re f(z) =f(O). Since If(z)1 ::;;f(O) on 
some neighbourhood of the origin, we deduce that f(z) = f(O) on some such 
neighbourhood, as required. 0 
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The proof of Theorem 4.1.3 is now completed as follows. Recall that 
If(Po) I is the maximum modulus of f: M -+ e on the compact, connected 
complex manifold M. If we denote by M' the set of all points P of M such that 
f(P) = Po, then by the maximum-modulus principle, M' is open. The set M' 
has no boundary, since by continuity any hypothetical boundary point would 
have to lie in M', contradicting the fact that M' is open. Hence the 
complement of M' is also open, whence M is the union of two disjoint open 
sets. Since M is connected this is impossible unless M' is empty (which it 
certainly is not) or the whole space M. This completes the proof of the 
theorem. 0 

4.1.5. Corollary. Any complex analytic submanifold of en, of dimension greater 
than zero, is non-compact. 

PROOF. Suppose that M is a compact complex analytic manifold which can be 
embedded in en for some n and let f: M -+ en be an holomorphic embedding. 
Then in view of the above theorem, on each connected component of M, each 
co-ordinate function l of f, being an analytic function on that connected 
component, is constant. Hence f maps each connected component of M to a 
single point, which proves the corollary. 0 

The classical complex transformation groups constitute important 
examples of non-singular complex surfaces: 

(1) GL(n, C), the set of all non-singular, complex, n x n matrices, is an open 
region of the space en2 = IR 2n2 of all complex matrices; 

(2) SL(n, C), the surface in en2 of all unimodular complex n x n matrices (i.e. 
of determinant 1). 

(3) O(n, C), the surface in enl whose points comprise all complex orthogonal 
matrices, i.e. complex matrices A satisfying AAT = 1. 

The non-singularity of these surfaces is verified much as it was for their real 
analogues (see §14.1 of Part I). 

Each of these manifolds is a Lie group (see Definition 2.1.6). In fact the 
maps t/I and cp defining the group structure: 

t/I: G x G-+ G, 

cp: G -+ G, 

t/I(g, h) =gh; 

cp(g) =g-l, 

are everywhere complex analytic (i.e. holomorphic). Thus the above groups 
are examples of matrix "complex Lie groups". 

4.1.6. Definition. A Lie group G which is a complex analytic manifold, is 
called a complex Lie group if the above maps t/I and cp are complex analytic. 

4.1.7. Theorem. Every compact, connected, complex Lie group G is 
commutative. 
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PROOF. As usual we denote by g the Lie algebra of the group G. It is not 
difficult to see that the adjoint representation Ad: G -4 GL(n, q is a complex 
analytic map (between complex manifolds). Since G is compact and connec
ted, Theorem 4.1.3 implies that Ad is a constant map; since Ad is a 
homomorphism, we must in fact have that Ad(g) = 1 for all g E G. 

If g(t) is any (smooth) curve in G passing through the identity element, with 
g(O) = X say, and if Y is any element of g, then, as we showed in the proof of 
part (i) of Theorem 3.1.4, 

Ad(g(t))(Y) = Y + t[X, Y] + 0(t 2 ). 

Since Ad(g(t))(Y) = Y, we conclude that [X, Y] = 0 for all X, Y E g, whence 
by Corollary 3.1.2, G is commutative, as required. 0 

It can be shown that in fact the only compact, connected, complex Lie 
groups are the "complex tori", which we shall now consider. As usual let 
e l , ... , e2n denote the standard basis vectors in !R 2n = en. (In fact for our 
purposes any basis for !R 2n will serve.) The complex torus T 2n is defined to 
have as its points the equivalence classes of vectors, where two vectors are 
equivalent if they differ by an integral linear combination of the given basis 
vectors: 

2n 

Z - Z + L n.e., 
.=1 

(Such integral linear combinations form a subgroup r of en called the 
integral lattice determined by the given basis el"'" e2n .) Thus T 2n is the 
quotient group of en by r: 

T 2n = en/r. 

Obviously two integral lattices rand r', determined by bases e l ,· .. , e2n 

and fl"'" f2n, respectively, coincide precisely if the vectors /; lie in r and the 
ej in r': 

Since the matrices (n{) and (m~) have integer entries and are mutual inverses, it 
follows that their determinants are both ± 1. 

Thus far we have defined the group structure of the torus T2n. We now 
endow it with its manifold structure by taking as local (complex) co-ordinate 
neighbourhoods the images of appropriately chosen open subsets of en under 
the natural map 

en -4 T2n = en/r, 

where these open subsets are chosen on the one hand sufficiently small for the 
restriction to each of the natural map to be one-to-one, and on the other hand 
so that their images cover T2n. We leave to the reader the details of the 
verification that with this manifold structure and the above abelian group 
structure, T 2 n is indeed a complex Lie group. 
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Functions on TZn may obviously be regarded as 2n-fold periodic functions 
on en: 

f( z + "~1 nueu) = f(z). 

It follows from Theorem 4.1.3 that: A holomorphic 2n101d periodic function on 
en is constant. 

By way of an interesting example we consider the special case n = 1. A 
complex torus TZ is determined by a basis for IR z = e, i.e. by a pair of non
zero complex numbers ZI,Z2 such tha t ':: 1 ¢lRzz. Multiplying by z1 1 we 
obtain a pair of the form (1, 1:) where 1:( = Z2/Z 1 E q is non-real (since 1 and 1: 
are linearly independent over IR). Since, as it is easy to see, the multiplications 
of e by z 1 and z 11 induce hoi om orphic maps between the tori determined by 
the pairs (ZI' zz) and (1,1:), it follows that those tori are biholomorphically 
equivalent. Hence each one-dimensional torus is determined, at least up to 
biholomorphic equivalence, by a complex number 1: with non-zero imaginary 
part.. 

4.1.8. Lemma. If 1: and 1:' are two non-real complex numbers related by a 
linear1ractional transformation of the form 

, m1:+n 
1:=---, 

P1:+q 

where the matrix (; :) is integral and has determinant ± 1, then the tori 

determined by 1: and 1:' are biholomorphically equivalent. 

PROOF. In view of the conditions on the coefficients m, n, p, q, the integral 
lattices determined by the pairs of vectors (1,1:) and (p1: + q' 1, m1: + n' 1) 
coincide. The lemma now follows from the fact that the second pair defines a 
torus which, by the remark preceding the lemma, is biholomorphically 
equivalent to that determined by (1, 't'). 0 

Remark. It can be shown (using the theory of elliptic functions) that tori 
determined by complex numbers 1:, 1:' sufficiently close to one another, are not 
biholomorphically equivalent. 

Regarded as merely a (2-dimensional) real manifold, the torus T2 is 
diffeomorphic to the familiar 2-dimensional real torus SiX S 1, where one of 
the two circles is obtained by identifying points on the straight line 
determined by 0 and ZI which differ by an integral multiple of ZI' and th~ 
other circle is obtained by carrying out a similar identification of points 
on the line through 0 and Z2' Similarly, the torus T 2n is diffeomorphic to the 
2n-dimensional real torus SI x ... X SI (2n factors). 

Returning to the complex case, suppose we have a torus T 2n determined by 
a basis el' ... , eZn (not necessarily standard) for 1R 2n = en. Among these 2n 
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vectors there will be n which are linearly independent over C; by re-indexing if 
necessary, we may suppose that el' ... , e" are linearly independent over C. If 
we express the remaining vectors e"+ I, ... ,e2" in terms of the first n, say 

" e,,+k = L bkjej, k= 1, ... , n, 
j=l 

we obtain a complex matrix B = (bkj), which (as in the particular case n = 1 
examined above) determines the torus up to a biholomorphic equivalence. It 
is easy to see that the imaginary part of the matrix B must be non-singular, 
since otherwise the vectors el , ••. , e2" would be linearly dependent over IR. 

4.1.9. Definition. A complex torus T2n is said to be abelian if for some basis 
el' ... , e2" of its integral lattice, the above-defined matrix B = (bkj) is 
symmetric and its imaginary part H = (hk) = (1m bk) is positive definite; i.e. if 

bjk = bkj and hkj~k~j > 0, 

for all non-zero real vectors (~1, ... , ~n). 

For example, the one-dimensional complex torus determined (up to a 
biholomorphic equivalence-see above) by a complex number'! with 1m '! 
> 0, is abelian; since the tori determined by '! and -'! clearly coincide, it 
follows that in fact all one-dimensional complex tori are abelian. However 
even for n = 2 non-abelian tori exist. 

EXERCISE 

Show that almost all 2-dimensional complex tori T4 are non-abelian. 

On an abelian torus the Jacobi-Riemann 81unction 8(Zl"'" z,,) of n 
complex variables, is defined by 

8(Zl' ... , z,,) = L exp i {~ t bkjmkmj + L. mkzk} , (4) 
ml ... ·.m" J.k It 

where the summation is over all n-tuples (m l , .•. , m,,) of integers. The 
condition that the imaginary part of the matrix B = (bltj ) be positive definite, 
guarantees convergence of the series. 

4.2. Riemann Surfaces as Manifolds 

A Riemann surface is defined (cf. §12.3 of Part I) as a non-singular surface in 
C 2 given by an equation of the form 

f(z, w) =0, (5) 

where f(z, w) is an analytic function of z and w (for instance a polynomial in z 
and w). The condition for non-singularity, which makes the surface a one-
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dimensional complex manifold (i.e. complex curve), is as follows (see §12.3 of 
Part I, especially Theorem 12.3.1): 

( of Of) 
grade f = oz' ow :F O. 

If we solve equation (5) for w it may happen that we obtain a multi-valued 
function; for instance: 

(i) if f(z, w) = w2 - Piz) where p.(z) is a polynomial without mUltiple roots 
(see 12.3.2 of Part I), we obtain the two-valued function w = J Pn(z) (a 
"hyperelliptic" Riemann surface); 

(ii) if f(z, w) = eW - z, we obtain w = In z = Inlzl + i arg z + 27rin. 

(The geometric meaning of multi-valuedness of w(z) is that (some of) the 
surfaces z = const. meet the surface f(z, w) = 0 in more than one point.) 

Consider the case where f{z, w) is a polynomial of degree n in the variables 
z, w. On making the substitution z = / /yO, w = y2/yO, we obtain 

f{ 1 ° 1 2 
Z, w) = (yO). Q.{y ,y ,y ), 

where Q. is a homogeneous polynomial in three variables. This furnishes a 
device for re-realizing our surface I(z, w) = 0 in C2, as the surface in the 
projective space Cp2 given by the equation 

(6) 

except that the points of the latter surface for which yO = 0 correspond to 
"points at infinity" on the original Riemann surface (5). The adjunction of 
these points at infinity has compactified our surface: 

4.2.1. Lemma. The Riemann surface in complex projective space CP2 defined 
by equation (6), is compact. 

PROOF. The set of zeros of Q. is clearly a closed set in Cp2, Since CP2 is 
compact, and any closed subset of a compact space is compact, the lemma 
follows. 0 

Thus the original Riemann surface f(z, w) = 0 gives rise to a compact 
2-dimensional real manifold. What do these manifolds actually look like in the 
case where f(z, w) = w2 - P .(z), i.e. when f{z, w) is as in (a) above? We first 
examine cases oflow degree, and from these infer a general result. (It turns out 
that the points at infinity on such a surface are singular points, so that they 
may not all appear on the manifolds which we are about to construct (as 
realizations of such surfaces), while those which do appear should strictly 
speaking be removed from the manifolds.) 
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Examples. (a) Let I(z, w) = w2 - z; then Qz(yO, y1, i) = (y2)2 - y1 yO. We join 
the points z = 0, z = 00 in the domain of the (extended) multiple-valued 

function w = Jz by a line segment (I. (or to put it more vividly, we "cut" the 
Riemann sphere S2, diffeomorphic to CPl, to obtain the sphere with the 
segment (I. removed, depicted in Figure 4). It is not difficult to see intuitively 
that the restriction of the (extended) surface I(z, w) = 0 to those z of S2 off the 
slit oc, consists of two disjoint connected components, each of which can be 
seen, by projecting onto the extended z-plane, to be diffeomorphic to the 
sphere S2 with the line segment (I. removed (see Figure 5). (These connected 
pieces are called the "branches" of the multi-valued function.) At the points 0 
and 00 the (extended) function w = Jz is single-valued. The desired surface is 
obtained by identifying the boundary segment (1.1 of the component denoted I 
in Figure 5, with the boundary segment fJ2 of the region II, and the boundary 
segment fJ 1 of region I with the boundary segment OC2 of region II of the 
surface (as indicated in Figure 5). It is intuitively plausible that as a result of 
this cutting and pasting, we obtain a manifold diffeomorphic to S2. 

(b) We next consider the case I(z, w) = w2 - P2(Z), where P2(z) is a 
polynomial of degree 2 with simple roots z = Z1' Z = Z2, Z1 #- Zz. Join the 
points Z1' Z2 by a straight line segment on the z-plane. For z outside that line 
segment the surface I(z, w) = 0 falls into two disjoint connected parts. If we 
adjoin a point at infinity to each of these connected parts, they will be as 
shown in Example (a), with the difference that here Z1 =f 00 (see Figure 6). As 
in that example, on identifying the appropriate boundary segments (oc 1 "" fJ2 
and fJ 1 "" (1.2), we see that the Riemannian manifold is in this case also 
diffeomorphic to S2 (with two points removed). 

Figure 4 II 

Figure 5 

I II 

Figure 6 
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Z2~ 
00 

Figure 7 

II 

Figure 8 

ODO,:(J) 
= O .' 

Figure 9 

(c) Consider f(z, w) = w2 - P3(z) where P3(z) is a polynomial of degree 3 
with distinct roots zo, Z1' Z2' Make cuts on S2 as indicated in Figure 7; for z 
off these slits the extended surface f(z, w) = 0 again falls into two disjoint 
connected pieces, as shown in Figure 8. On identifying the appropriate edges 
of the slits on these two pieces (0(1 with P2' 0(2 with P1' Y1 with O2 , Y2 with 01, as 
indicated in Figure 8), we obtain the 2-dimensional torus (or "sphere-with
one-handle" -see Figure 9) with one point removed. 

(d) As a final example, consider f(z, w) = w2 - P 4(Z), where P 4(Z) is a 
polynomial of degree 4 with distinct roots Zo, Z1' Z2' Z3' By cutting and 
pasting as in Example (c) (with Z3 playing the role of co), we again obtain the 
2-dimensional torus. 

4.2.2. Proposition. The Riemann surface of a function of the form w = J Pn(z), 
where p.(z) is a polynomial of degree n without multiple roots, is diffeomorphic 
to a sphere with g handles where n = 2g + 1 or n = 2g + 2 (strictly speaking with 
certain points removed, namely those corresponding to the points at infinity of 
the original surface.) 

PROOF. Suppose first that n is even, and write n = 2g + 2. Pair off the roots of 
p.(z) arbitrarily, and join the members of each pair by an arc in such a way 
that no two arcs intersect (see Figure 10). If we cut the z-plane along each of 
these g + 1 arcs, i.e. if we remove the points on these arcs, then the surface falls 
into two disjoint connected parts Uland U 2' (If we move around any pair of 
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(l,t/lZ 

~/5, 

41 

Figure 10 

roots on the original surface, we stay on the same branch.) The edges rJ.i' f3i of 
the ith cut lie on (or rather are boundary segments of) different connected 
pieces U 1, U 2' We now glue these edges back together as follows: 

(This is justified by the fact that if on the original surface we move along the 
piece U 1 approaching the edge rJ.i, then on crossing it we pass smoothly over 
onto the branch U 2 (with corresponding edge f3i), and similarly if we 
approach on U 1 the edge f3i' we cross over onto U 2 (with corresponding edge 
~ 0 

For odd n the construction is similar, with z"+ 1 = 00 taken as the (n + 1)st 
branch point. 

§5. The Simplest Homogeneous Spaces 

5.1. Action of a Group on a Manifold 

We begin with the definition of such an action. 

5.1.1. Definition. We say that a Lie group G (e.g. one of the matrix Lie groups 
considered in §14 of Part I) is represented as a (Lie) group of transformations of 
a manifold M (or has a left (Lie)-action on M) if there is associated with each of 
its elements g a diffeomorphism from M to itself 

X 1-+ Yg(x), XEM, 

such that Ygh = Yg Th for all g, h E G (whence Tl = 1), and if furthermore ~(x) 
depends smoothly on the arguments g, x (i.e. the map (g, x) 1-+ ~(x) should be 
a smooth map from G x M to M). 

The Lie group G is said to have a right action on M if the above definition 
is valid with the property Tg T" = Tgh replaced by Tg T" = T"g. 

If G is any of the Lie groups GL(n, IR), O(n, IR), O(p, q), or GL(n, q, U(n), 
U(p, q) (where p + q = n), then G acts in the obvious way on the manifold IR" 
or 1R2" = e"; moreover, in these cases the elements of G act as linear 
transformations. (Note that if, more generally, a Lie group has a Lie action on 
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the manifold [R", which is linear, then that action yields a Lie representation 
of the Lie group.) 

The action of a group G on a manifold M is said to be transitive if for every 
two points x, y of M there exists an element g of G such that ~(x) = y. 

5.1.2. Definition. A manifold on which a Lie group acts transitively is called a 
homogeneous space of the Lie group. 

In particular, any Lie group G is a homogeneous space for itself under the 
action ofleft multiplication: ~(h) = gh; in this context G is called the principal 
(left) homogeneous space (of itself). (The action Tg{h) = hg- 1 makes G into its 
own principal right homogeneous space.) 

Let x be any point of a homogeneous space of a Lie group G. The isotropy 
group (or stationary group) Hx of the point x is the stabilizer of x under the 
action of G: 

5.1.3. Lemma. All isotropy groups H x of points x of a homogeneous space, are 
isomorphic. 

PROOF. Let x, y be any two points of the homogeneous space and g be an 
element of the Lie group such that ~(x) = y. It is then easy to check that the 
rna p H x -> H y defined by h ~ ghg - 1 is an isomorphism (assuming a left 
action). 0 

5.1.4. Theorem. There is a one-to-one correspondence between the points of a 
homogeneous space M of a group G, and the left cosets gH of H in G, where His 
the isotropy group (and G is assumed to act on the left). 

PROOF. Let Xo be any point of the manifold M. Then with each left coset 
gHxo we let correspond the point ~(xo) of M. It is straightforward to verify 
that this correspondence is well defined (i.e. independent of the choice of 
representative of the coset), one-to-one, and onto. 0 

For right actions the analogous result holds with right cosets instead ofleft 
co sets. 

Remark. It can be shown under certain general conditions that the isotropy 
group H is a closed subgroup of G, and that the set G/H of left cosets of H 
with the natural quotient topology can be given a unique (real) analytic 
manifold structure such that G is a Lie transformation group of G/H. 

5.2. Examples of Homogeneous Spaces 

(a) The group O(n + 1) clearly acts (in the natural way) of the sphere S" 
(defined as the surface in Euclidean space [R"+ 1 given by the equation 
(Xl)2 + ... + (x"+ 1)2 = 1). It is easy to see that this action is transitive, so that S· is 
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a homogeneous space for the Lie group O(n + 1) of orthogonal transform
ations of IR" + 1. The isotropy group of the point x = (1, 0, ... , 0) E S" is 
comprised of all matrices of the form 

A E O(n). 

Hence by Theorem 5.1.4 above S" can be identified with O(n + l)/O(n) (where 
the quotient denotes merely the set of left co sets of the isotropy group, which 
is not normal in O(n + 1». In fact S" ~ O(n + 1)/O(n), where ~ denotes 
diffeomorphism (cf. the above remark). 

The group SO(n + 1) is also transitive on sn, and, analogously to the 
above, the isotropy group is isomorphic to SO(n), so that we may identify 
S" with SO(n + 1)/SO(n), and again S" ~ SO(n + 1)/SO(n), as quotient space 
of SO(n + 1). 

(b) From the definition of real projective space IRP" as consisting of the 
straight lines through the origin in IRn+ 1, we obtain a transitive action of 
O(n + 1) on the manifold IRpn. The subgroup of orthogonal transformations 
fixing the straight line through 0 with direction vector (1,0, ... ,0) is 
comprised of all matrices of the form 

(±1 0) 
o A ' 

A E O{n). 

Hence the isotropy group is isomorphic to the direct product 0(1) x O(n), 
and, again essentially by Theorem 5.1.4, we have 

IRpn ~ O(n + 1)/0(1) x O(n). 

(c) The additive group of reals IR acts (transitively) on the circle 
Sl = {e 27tjq>} in the following way: 

From the equality e27tj = 1 it follows that the isotropy group is exactly the 
group of integers. 

More generally the group of all translations of IRn (which group it is 
natural to denote also by IRn) acts transitively on the n-dimensional torus Tn 
=(Sl)", in the following way: if y = (t 1 , ••• , tn) E IRn, and z=(e27tiq>., ... , e27ti",") 

is a point of the n-dimensional torus, define 

Clearly the isotropy group consists of all vectors y with integer components, 
i.e. the isotropy group of this homogeneous space is the integral lattice r of 
IRn. Hence (cf. §4.1) 

Tn ~IR"/r. 



44 1. Examples of Manifolds 

(d) Stiefel manifolds. For each n, k (k ~ n) the Stiefel manifold v", k has as its 
points all orthonormal frames x = (e 1 , ••• , ek) of k vectors in Euclidean n
space (i.e. ordered sequences of k orthonormal vectors in Euclidean IRn). Any 
orthogonal matrix A of degree n sends any such orthonormal frame x to 
another, namely Ax = (Ae1 , ... , Aek); this defines an action of O(n) on v", k 
which is transitive. (Verify this!) 

Each Stiefel manifold v", k can be realized as a non-singular surface in the 
Euclidean space IRnk in the following way. Fix on an orthonormal basis for IRn 
(e.g. the standard basis), and introduce the following notation for the 
components with respect to this basis of any orthonormal k-frame (e 1, ••• , ek) 
(i.e. point of v", k): 

i = 1,.,., k. 

The nk quantities xij' i = 1, ... , k;j = 1, ... , n, (in lexicographic order, say) are 
now to be regarded as the co-ordinates of a point in nk-dimensional 
Euclidean space IRn\ related by the following k(k + 1)/2 equations: 

n 

<ej, ej) = bij- L xj.xjs = bij, i,j = 1, ... , k, i ~j. ( 1) 
s= 1 

5.2.1. Lemma. The Stiefel manifold Vn, k is (embeddable as) a non-singular 
surface of dimension nk - k(k + 1)/2 in IRnk. 

PROOF. In view of the transitive action of the group O(n) on v", k, it suffices to 
establish the non-singularity at any particular point. For convenience we 
choose the point Xo = (xij) where Xj} = bjj, i = 1, ... , k; j = 1, ... , n. Thus we 
wish to show that at Xo the rank of the Jacobian matrix of the system of 
equations (1) is largest possible, namely k(k + 1)/2, or, equivalently, that the 
tangent space at the point Xo, to the surface defined by that system, has 
dimension nk - k(k + 1)/2. 

To this end let xij = xij(t) be a curve on the Stiefel manifold (as defined by 
(1)), passing through Xo when t = 0: 

n 

L Xis(t)Xjs(t) = bjj , i,j = 1, ... , k; 
s=l 

i = 1, ... , k; j = 1, ... , n. 

It follows that the components 

~ij = i Xij(t)i 
dt 1=0 

of the velocity vector at the point Xo, satisfy 

0= dd ( t XjS(t)XiS(t)) = ~jj + ~ji' 
t .=1 1=0 

i,j = 1, ... , k. 

Hence the tangent space at the point Xo to the surface Vn,k consists of all 
nk-component vectors (~jJ, i = 1, ... , k; j = 1, ... , n, satisfying ~ij = - ~ji> 
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i,j = 1, ... ,k. Since the dimension of this space is clearly nk - k(k + 1)/2, 
the lemma is proved. 0 

Thus v", k is indeed a smooth manifold. We now investigate the isotropy 
group of this homogeneous space. Take any orthonormal k-frame el , ... , ek 
and enlarge it to an orthonormal basis e I, ... , en for the whole of Euclidean n
space. Any orthogonal transformation fixing the vectors e l , ... , ek must 
(relative to the above basis for IRn) have the form 

AeO(n-k), 

o 

whence the isotropy group is isomorphic to O(n, k), and v", k can be identified 
with O(n)/O(n - k). (In fact Vn•k ~ O(n)/O(n - k).) 

The Stiefel manifolds v", k for k < n are also homogeneous spaces for the 
group SO(n). From this point of view the isotropy group is clearly (isomor
phic to) SO(n - k), and therefore also 

v", k ~ SO(n)/SO(n - k). 

In particular, we have 

v". n ~ O(n), v", n - 1 ~ SO(n), 

(e) Grassmannian manifolds. The points of the Grassmannian manifold 
Gn, k are by definition the k-dimensional planes passing through the origin of 
n-dimensional Euclidean space. The usual action of the group O(n) on IRn 
yields a transitive action of that group on the set of all k-dimensional planes 
through 0, i.e. on Gn , k' To find the (isomomorphism class of the) isotropy 
group, choose any k-dimensional plane 11: through 0, and then choose an 
orthonormal frame for IR n with its first k vectors in the plane 11: (whence the 
remaining n - k, however chosen, will be perpendicular to it). In terms of such 
a basis an orthogonal matrix fixing 11: (as a whole) will necessarily have the 
form 

A e O(k), BeO(n-k). 

It follows that 

Gn• k ~ O(n)/(O(k) x O(n - k». 

Note finally that there is an obvious identification of the manifolds Gn• k 

and Gn .• -k, and that, by its very definition G •. I is the same manifold as 
IRp·-I. 
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(f) The following manifolds are homogeneous spaces for the unitary group 
U(n): 

(i) The odd-dimensional sphere S2ft -t, defined in n-dimensional complex 
space Cn by the equation 

Iztl2 + ... + Iznl2 = 1. 

It is not difficult to show that in this case 

s2n-t ~ U(n)/U(n - 1) ~ SU(n)/SU(n - 1). 

(ii) The complex projective space Cp,,-t. In this case we have 

cpn-t ~ U(n)/(U(l) x U(n -1)). 

(iii) The complex Grassmannian manifold G~.k consisting of the k-di
mensional complex planes in en passing through the origin. Here 

G~. k ~ U(n)/(U(k) x U(n - k». 

5.3. Exercises 

1. Let M be a homogeneous space of a Lie group G, and let H be the isotropy group. 
Prove that the dimension of the manifold M is the difference in the dimensions of G 
and H: 

dim M =dim G-dimH. 

Compute the dimension of the Grassmannian manifold Gn• k' 

2. Prove the compactness of the manifolds v.. k and Gil. k' 

3. Let m = (m lo ••• , mk) be a partition of the integer n, i.e. 

A collection of linear subspaces 7to, 7t 1, ••. , 7tk of the space IR" is called an m-flag if: 

(i) dim 7tj - dim 7tj-l = mj; 

(ii) 7to = 0, 7tk = IR"; 
(iii) 7tj _ 1 C 7tj. 

Show how the totality of all m-flags F(n, m) can be made to serve as a homogeneous 
space for the group O(n), and calculate its isotropy group. 

§6. Spaces of Constant Curvature 
(Symmetric Spaces) 

6.1. The Concept of a Symmetric Space 

Of great interest are those manifolds endowed with a metric gab whose 
curvature tensor (defined in §30.l of Part I in terms of the connexion 
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compatible with the metric) has identically zero covariant derivative (see §§28, 
29 of Part I): 

(1) 

In any metrized space the components of the covariant derivative of the 
curvature tensor satisfy certain relations (namely Bianchi's identities-see 
Exercise 7, §30.5, Part I). However condition (1) places further severe 
restrictions on those components; thus, in particular, it follows from (1) that 
the scalar characteristics of the curvature are constant: 

R = R~ = const.; 

It turns out also that under certain global conditions on a manifold, 
condition (1) implies the homogeneity of the metric gab; this is the case if the 
manifold is "simply connected" (see §17 below). Any manifold satisfying (1) is 
obtainable from some simply connected such manifold M as the quotient 
space (Le. by identification) under some discrete group of motions. In this 
construction it can happen that the discrete group r in question is not central 
in the full isometry group of M, in which case the space M /r will not be 
homogeneous; such spaces are sometimes called "locally homogeneous" or 
"locally symmetric". 

However our approach to symmetric spaces will be via the following 
definition. 

6.1.1. Definition. A simply connected manifold M with a metric gab defined on 
it, is called a symmetric space (or symmetric manifold) iffor every point x of M 
there exists an isometry (motion) Sx: M -+ M with the properties that x is an 
isolated fixed point of it, and that the induced map on the tangent space at x 
reflects (i.e. reverses) every tangent vector at x, i.e. ~I--+ -~. Such an isometry 
is called a symmetry of M at the point x. 

The significance of the requirement in this definition that the manifold be 
simply connected will appear below (in §§17, 18). In the present section we 
shall not make use of the properties of simply connected manifolds; the reader 
not familiar with these properties may wish to attempt the appropriate 
exercises in §6.6 below, after he has studied the relevant sections of Chapter 4. 

6.1.2. Lemma. Every symmetric space satisfies condition (1). 

PROOF. Let x be any particular point of the symmetric space M and let Sx be a 
symmetry of M at the point x. We can choose co-ordinates in some 
neighbourhood of x such that at x itself we have (see §29.3 of Part I) 

xlZ=O, ogab = 0 
OXIZ • 

(Here we are making the (inessential) assumption that the metric IS 

Riemannian.) 
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Under the symmetry sx, at the point x the tensor V.Rabcd goes into its 
negative (and the tensors gab and R abcd go into themselves) simply by virtue of 
the symmetry property of Sx and the transformation rule for tensors. On the 
other hand, since Sx is actually an isometry it is clear that VsRabcd must go into 
itself at x. The only way out is for VsRabcd to vanish at x, as required. D 

Remark. The converse of this statement (under the assumption of simple
connectedness) is also true; however, in view of the greater technical 
complexity of its proof, we shall not prove it here. The following discussion 
may, however, be illuminating. In some neighbourhood of each point x of a 
Riemannian manifold we can define a local symmetry Sx as follows: Consider 
the pencil of geodesics on M passing through the point x (and assumed 
parametrized so that for each geodesic y we have y(O) = x); then for 
sufficiently small r set 

sAy(r)) = y( -r). 

(Recall (e.g. from §29.2 of Part I) that in a sufficiently small neighbourhood of 
x the geodesics through x will intersect nowhere else.) 

EXERCISE 

Prove that such local transformations Sx are for all x isometries of the manifold 
precisely if condition (1) holds on the manifold. (Hint. The simplest case is n = 2, when 
the curvature tensor is determined by a single scalar R. For the general case it is easiest 
to deduce the preservation of the curvature tensor by the transformations sx, from the 
preservation of Jacobi's equation along a geodesic.) 

The existence of the "symmetries" Sx for all points x of a manifold M 
guarantees a sufficiently large supply of isometries for M to be (locally at 
least) homogeneous. 

6.1.3. Lemma. A symmetric space M is locally homogeneous; i.e. around each 
point x E M, there is a neighbourhood such that for each point x in that 
neighbourhood (i.e. for each x sufficiently close to x) there exists an isometry of 
M sending x to X. For each pair of points x, y E M which can be joined by a 
geodesic, there exists an isometry g of M such that g(x) = y. 

PROOF. The first statement of the lemma follows from the second since around 
every point x there is a neighbourhood with the property that every point x in 
that neighbourhood is joined to x by a geodesic, i.e. the geodesics through x 
sweep out the whole neighbourhood. 

For the second statement, let y be a geodesic arc joining the points x and y, 
and parametrized by the natural (length) parameter r, with 0::;; r ::;; T, 
y(O) = x, y(T) = y. Let Sz be a symmetry of the manifold M at the point z = y(T /2). 
It follows from its symmetry property, together with the fact that it is an 
isometry of M, that Sz must send y to y, and therefore interchange x and y. (If 
the metric is pseudo-Riemannian of type (1, n - 1), and y is an isotropic 
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geodesic, then we may take as r the "affine" (called also "natural" in Chapter 
5 of Part I) parameter yielded in solving the equation for the geodesics (see 
§29.2 of Part I). 0 

Remark. Since any two points of a (connected) Riemannian manifold can be 
joined by a broken geodesic, it follows almost immediately that a symmetric 
Riemannian manifold is always homogeneous. 

6.2. The Isometry Group of a Manifold. 
Properties of Its Lie Algebra 

Henceforth in this section we shall consider only homogeneous, symmetric 
manifolds M (hence satisfying (1)), with metric gab' The Lie group of all 
isometries of M will be denoted by G, and the isotropy group by H, so that we 
may identify M with the set of left cosets of H in G (i.e. M = G/H, in the 
notation of the preceding section). 

Let y = y(r) be a geodesic on M parametrized by a natural parameter r, 
and write Xo = y(O). For each appropriate real T we define a map 
fT,y: M -+ M by setting 

f -1 
T, y = S",o S"" 

where x = y( - T/2) (see Figure 11), This map has the following three 
important properties: 

(i) fT, y moves each point of y through a time-interval T along the geodesic 
(as indicated in Figure 11): 

y(T)t-+y(r + T); 

(ii) fT, y parallel transports vectors along the geodesic; 
(iii) for any fixed geodesic y, the transformations fT, y with T variable, form a 

one-parameter subgroup of the isometry group G: 

fT, + T2, y = fT', yfT2' y' 

f- T, y = (fT, y)-l. 

From the last of these properties and §3.l above, it follows that for each 
geodesic y the one-parameter subgroup fT, y of G has the form 

fT, y = exp(TBy), 

-T - 2 __ :_Q __ ~_ T 

Figure 11 
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where By is a certain vector in the Lie algebra 9 of G (namely the tangent 
vector to the curve fT. y at T = 0). We denote by Lithe linear subspace of the 
algebra 9 spanned by the vectors By E 9, where Y ranges over all geodesics 
through xo, and by L ° the Lie algebra of the isotropy group H %0 of the point 
xo. It follows (essentially from the fact that corresponding to each direction 
on the tangent plane to M at Xo there is a geodesic through Xo with that 
direction (see §29.2 of Part I)) that 

9 = LO + LI (direct sum of subspaces). (2) 

IfYI' Y2 are two geodesics through the point Xo then it can be shown that 
for small e the product 

f.. Y1f.. yJ- •. yJ-•. Y2 

sends Xo to a point whose distance from Xo is of order e3• (This follows 
without difficulty from the properties of the Riemann curvature tensor. 
Verify!) We deduce from this (e.g. using formula (7) of §3.1) that we must have 
[By" By2] E Lo, whence [LI, LI] c: LO. 

Suppose now that gT = exp(T A) is a one-parameter subgroup of G leaving 
Xo fixed (so that A E Lo)' Let Y be any geodesic through xo, and denote by y 
the image of Y under the map g •. It then follows, again from the isometric 
property of the maps involved, that for small enough e the map gefT. yg-t 
translates the points of the geodesic y along that geodesic (which of course 
also passes through xo). Hence the tangent vector to the one-parameter 
subgroup g.fT. yg _I (with parameter T), is in L I. We now look for this tangent 
vector. From the basic facts about Lie algebras described in §3.1 it follows 
that for any two elements X, Y of the Lie algebra of a Lie group we have 

exp(tX) exp(tY) = exp(t(X + Y) + t; [X, Y] + higher-order terms)' 

(This is a weak form of the "Campbell-Baker-Hausdorff formula".) It is an 
easy consequence of this that 

exp(tX) exp(tY) exp( -tX) = exp(tY + t2[X, Y] + higher-order terms). 

Putting t = 1, X = eA, Y = TBy , we deduce that the desired tangent vector 
is By + erA, By]. Since By E LI, it follows that [A, By] ELI, whence 
[LO, LI] c: LI. 

We include these facts in the following 

6.2.1. Lemma. With G and 9 = L ° + Lias above, we have 

[LO, LO] c: LO, [Li, LO] c: Ll, [LI, LI] c: LO. (3) 

A Lie algebra which decomposes as the direct sum of two subspaces 
satisfying (3) is called a Z2-graded Lie algebra, since (3) can be rewritten as 

(4) 
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6.2.2. Corollary. With G as above, and 9 = LO + LI (direct) its Lie algebra, the 
linear operator 

(1: 9 ~ 9 

whose restriction to LO is the identity map 1, and whose restriction to L I is the 
reflection - 1, is a Lie algebra automorphism (i.e. also preserves commutators). 
(The map (1 is an "involution", i.e. (12 = 1.) 

(The converse is also true. To each involuntary automorphism (J of a Lie 
algebra g, there corresponds a Z2-grading 9 = LO + LI (direct sum of spaces) 
of the Lie algebra, where LOis the set of elements fixed by (1 and Lithe set of 
elements which (1 negates.) 

In view of the homogeneity of the manifold M, the local geometry around 
any point Xo is determined by a scalar product on the tangent space lR~o at the 
point. (Here n = dim M.) We now elicit a certain property (familiar from Part 
I) which this scalar product must have. 

Note first that the tangent space lR~o can be identified naturally with the 
space LI c g. Let A be any element of LO, and consider the one-parameter 
subgroup gT = exp(T A). For each T we have the map 

Ad(gT): ~H~T' ~ ELI. 

As was shown in the course of proving part (i) of Theorem 3.1.4, we have 

~T = Ad(gT)<e) = ~ + T[A, ~J + O(T2 ), 

whence 

~~IT=O = [A, ~] = (ad A)(~). (5) 

In view of the fact that g T is an isometry of M the inner product on L 1 should 
be invariant under Ad(gT), i.e. 

<~T' "T) = <~, ,,), 
whence on differentiating with respect to Tat T= 0, and using (5), we obtain 

([A, eJ,,,> + (e, [A,,,J > = o. (6) 

This is the condition on the metric (i.e. scalar product) on LI = lR~o' that we 
were seeking. (Cf. the definition of a Killing metric in §24.4 of Part I.) 

6.3. Symmetric Spaces of the First and Second Types 

In the preceding subsection we obtained what might be called the algebraic 
model of a symmetric space. In principle all symmetric spaces can be 
classified (in the framework of the classification of compact Lie groups). In 
the present subsection we consider the most important examples of such 
spaces. 
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The simplest examples of (simply-connected) symmetric spaces are 
provided of course by the Euclidean spaces IR" and pseudo-Euclidean spaces 
IR;. q (where the curvature is zero). Here the group G is the full isometry group 
of IRn (or IR;. q)' (For the structure of some of these groups see §4 of Part I.) The 
isotropy group H is O(n) (or O(p, q)), and the space L1 = IRn consists of the 
translations. We have, as in the general case, 9 = LO + L1, with the usual 
commutator relations between LO and L1 (as in Lemma 6.2.1), and with the 
additional relation [L1, L1] = O. Non-simply-connected symmetric spaces 
(earlier called "locally symmetric") can be obtained from these simply
connected ones by identification under various discrete groups r consisting 
of translations (and possibly also involving certain reflections, as for instance 
in the case of the Klein bottle-see §18 below). 

In the remainder of our examples the group G will be semisimple. Recall 
from §3.1 that semisimplicity is equivalent to non-degeneracy of the Killing 
form on the Lie algebra g. Recall also that the Killing form < , ) on 9 is 
defined by: 

<A, B) = -tr(ad A ad B), 

where (ad X)@ = [X, eJ. (We shall also restrict G to being the connected 
component of the identity of the full isometry group.) 

There are two distinct important types of simply-connected symmetric 
spaces with such G (even assuming the metric positive definite, i.e. Rieman
nian), namely: 

Type I: the group G is compact and the Killing form on 9 is positive 
definite. (We note here the result that a Lie group is compact if and only if it is 
a closed subgroup of some O(m).) 

Type II: the group G is non-compact and the Killing form on the Lie 
algebra 9 is indefinite. 

We consider the simplest (non-trivial) example of each type. 

(a) The sphere S2 is of type I. Here G = SO(3), which is compact, and 
H = SO(2). 
(b) The Lobachevskian plane L2 is of type II. Here G is the connected 
component of the identity of SO(1, 2) (shown in §13.2 of Part I to be 
isomorphic to SL(2, IR», and H = SO(2). The Lie algebra 9 consists of all 
2 x 2 matrices with zero trace, and the Killing form is given by 

<A, B) = -tr(AB). 

As a basis for the Lie algebra we may take 

A1=(~ ~). (-1 0) 
A3 = 0 1 . 

We then have 

Af =A~ =0, A~ = 1, 
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and 

(A1' A2) = -1, 

(A3' A3) = -2, 

(AI' A 3 ) = (A2' A 3 ) = 0, 

(AI, AI) = (A2' A2) = o. 
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It follows essentially from the fact that the matrices in H = SO(2) have the 
form 

(
COS q> sin q» 

- sin q> cos q> , 

that the subalgebra LO c: 9 is comprised of the matrices of the form 
A(AI - A2)' The subspace Ll of 9 is spanned by the vectors A1 + A 2, A3 • It is 
easy to check that the inclusions (3) hold. 

The restriction of the Killing form to the subspace Ll is positive definite; 
this reflects the positive definiteness of the metric on the Lobachevskian 
plane. 

EXERCISE 

Investigate the general cases sn and Ln. 

6.4. Lie Groups as Symmetric Spaces 

A Lie group Q endowed with a Riemannian metric invariant under left and 
right multiplications by group elements, can itself be regarded as a symmetric 
space. The isometry group of Q has a subgroup isomorphic to Q x Q, whose 
action on Q is defined by 

(gt>g2): ql-+g1qgi 1• 

The isotropy group of this action is clearly the diagonal subgroup 
H = {(q, q)lq E Q}. which is isomorphic to Q: clearly H(I) = 1. For each q in Q 
the corresponding symmetry is defined by 

-1 
Sq: x 1-+ qx q. 

(Verify that this does indeed define a symmetry.) In particular, SI(X) = x- 1• 

We shall examine in detail the case where Q is a compact connected 
subgroup of SO(m), with the Euclidean metric 

(A, B) = tr(ABT), (7) 

where BT denotes the transpose of the matrix B. (Recall that it can be shown 
that a Lie group is compact if and only if it is a closed subgroup of some 
O(m).) 

EXERCISE 

Show that the scalar product (7) is the Killing metric on SO(m) determined by the 
Killing form on its Lie algebra (cf. §24.4 of Part I). 
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(The formula for the curvature of the Killing metric was derived in §30.3 of 
Part I. It follows from that formula that the Ricci tensor Rab is positive 
definite. In the same subsection it was shown that the geodesics through the 
identity are precisely the one-parameter subgroups of Q.) 

As noted in §24.4 of Part I, the group SO(m) lies on the sphere of radius 

jm (in the Euclidean space IRm2 of all m x n matrices with the metric (7)), 
since for A E SO(m), we have AAT = 1, whence (A, A) = m; thus 

SO(m) c sm2 - 1 

6.4.1. Lemma. The (Euclidean) scalar product (7) is invariant under right and 
left translations (i.e. multiplications) by elements of SO(m). 

PROOF. Let g E SO(m), and let A, B be any m x m matrices. Then 

(gA, gB) = tr(gABT gT) = tr(gABTg- 1) = tr(ABT) = (A, B), 

and 

(Ag, Bg) = tr(AggT BT) = tr(ABT) = (A, B), 

whence the desired conclusion. o 

6.4.2. Corollary. The metric (7) restricted to any subgroup Q of SO(m) is 
invariant under right and left multiplications Qf-+Q1Qq2' 

We call such a metric bi-invariant or two-sided invariant. 

6.4.3. Lemma. Every bi-invariant metric on a simple Lie group is proportional 
(with constant proportionality factor) to the Killing metric. 

PROOF. Let Q be a simple Lie group with bi-invariant metric ( , ). The bi
invariance implies that for all elements A, B, C of the Lie algebra L of Q, and 
all gT = exp(AT), we have 

(Ad(gT)(B), Ad(gT)(C) = (B, C), (8) 

whence it follows, just as in the derivation of (6) above, that 

([A, B], C) + (B, [A, C]) = O. (9) 

Now let gab' Kab be two metrics on Q satisfying (8), (9). Then any linear 
combination gab - )"Kab will also be Ad-invariant (or equivalently skew ad
invariant). Let),,1 be any eigenvalue of the pair of quadratic forms gab' Kab, i.e. 
det(gab - ),,1 Kab) = O. (The symmetry of gab' Kab implies that ),,1 is real.) The 
subspace R", of all eigenvectors corresponding to the eigenvalue ),,1 is easily 
seen (from (9)) to be a (non-zero) ideal of L, whence by the assumed simplicity 
of L, we must have R", = L. Hence gab = )"dab' Since the Killing metric 
satisfies (9), the desired result follows. 0 
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6.4.4. Corollary. Every simple subgroup Q of the group SO(m) endowed with the 
Killing metric, can be isometrically embedded in the sphere sm1 -l endowed with 
a metric proportional to the usual metric on the sphere. 

6.4.5. Corollary. Since the Ricci tensor Rab (determined by the Killing metric 
gab on a group) also satisfies (8), (9), itfollows thatfor simple groups, Rab = Agab 
where A = const. 

Note finally that, as remarked above, it follows essentially from §30.3 of 
Part I that Rab is positive definite for compact connected Lie groups. This is 
true also for semisimple groups, since each such group is (locally) a direct 
product G1 x ... x Gt of simples, and the sign of Ai is easily determined for 
each of the simple factors Gl . 

6.5. Constructing Symmetric Spaces. Examples 

We now return to general symmetric spaces. In the notation of §6.2 above 
write 

M=G/H, 9 = LO + Ll (direct sum of subspaces), 

where M is a given symmetric space, G is its isometry group, LO is the Lie 
algebra of the isotropy group H, and L 1 is identifiable with the tangent space 
lR~o to M at the point Xo (fixed by H, i.e. H = Hxo)' Recall also that by virtue 
of the homogeneity of M, its metric is determined locally by a metric on L 1 

satisfying (6); in what follows we shall assume the metric on M to be obtained 
from the Killing form on 9 (see below). 

6.S.1. Lemma. The subspaces LO and Ll of the Lie algebra 9 are orthogonal 
with respect to the Killing form. 

PROOF. From Lemma 6.2.1, it is immediate that for all A E LO, BELl we have 

ad A(Lo) c LO, ad A(Ll) eLl, 

It follows readily (using a basis of 9 which is the union of bases for L ° and L 1) 

that tr(ad A ad B) = 0, as required. 0 

We deduce at once from this that in terms of a basis for 9 of the kind just 
mentioned, the Killing form on 9 has the form 

( toO) 0) 
(gab) = ~ (1)' 

gy6 
(10) 

where IX, P range over the indices of the basis for LO, and y, ~ over the indices 
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of the basis for LI. (The form gW is often called the Killing form of the 
symmetric space M.) 

Since the Killing form (10) on 9 satisfies (9), so also does the form g~~) on 
LO. Hence by the proof of Lemma 6.4.3, if LO is simple then the form g~~) will 
be a constant multiple of the Killing form on the algebra LO. However, in the 
important examples the algebra LO is not simple, but rather semisimple of the 
form LO = L~ 63 L~ where L~ and L~ are simple. From Lemma 6.5.1 (with now 
LO in the role of g), we see that in this situation the restrictions of the form g~~) 
to the factors L~, L~ will be constant multiples (by A. I , A.2 say) of the Killing 
forms on those factors. 

It can be seen that if H is compact and the metric g~~) is positive definite, 
then with respect to suitable bases for LO and U the matrices ad A, A E LO, 
are skew-symmetric. Hence (A, A) = -tr(ad A)2 is positive, and therefore in 
view of 

-tr(ad A)2 = - [tr(ad A)to + tr(ad A)tl], 

it follows that 

(11) 

Hence for compact H (and positive-definite metric on the symmetric space 
M) the restriction to L ° (namely g~p) of the Killing form on the Lie algebra g, 
is positive definite. (Cf. the fact that the Killing form on the Lie algebra of a 
compact Lie group (e.g. on the Lie algebra LO of H) is non-negative.) 

We see that in order to construct a symmetric space it essentially suffices to 
choose a suitable subalgebra L ° of 9 on which the restriction of the Killing 
form of the enveloping algebra 9 is non-degenerate; then U is defined as the 
orthogonal complement of LO in g. However the inequality (11) greatly 
restricts the choice of LO: If the Killing form on 9 is indefinite (type II) then 
for symmetric spaces with Riemannian metric the subalgebra LO c 9 must be 
such that the restriction of the Killing form to its orthogonal complement is 
either positive or negative definite, and at the same time LO must be the Lie 
algebra of a compact group, and therefore of a subgroup of SO(m). 

Remark. A given symmetric space can be realized as a submanifold of the 
group G in such a way that the geodesics of M are geodesics also in the 
manifold G. This embedding can be obtained in anyone of the following three 
(equivalent) ways: 

(i) by considering all one-parameter subgroups of G emanating from the 
identity in the direction of vectors BELl (show that these geodesics 
sweep out a submanifold of G dIifeomorphic to M); 

(ii) via the map cp: M ..... G, defined by cp(x) = s;o I Sx (where sXo' Sx are the 
appropriate symmetries); 

(iii) by means of an "involution" iT: G -+ G (by which we mean an anti
automorphism of the group (i1(glg2) = i1(g2)i1(gd) such that the map 
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induced on 9 is the identity map on LO and the negative of the identity 
map on U); MeG is then the image under the map g 1-+ gi1(g - 1 ). 

EXERCISE 

Show the equivalence of these embeddings. 

What follows is a list of the basic examples of connected symmetric spaces 
of type I. (As an exercise, find in each case the corresponding direct 
decomposition 9 = L ° + U.) 

(1) SO(2n)/U(n). 
(2) SU(n)/SO(n). 
(3) SU(2n)/Sp(n). 
(4) Sp(n)/U(n). 
(5) SO(p + q)/(SO(p) x SO(q».} 
(6) SU(p + q)/(SU(p) x U(q». 
(7) Sp(p + q)/(Sp(p) x Sp(q». 

Grassmannian manifolds (including 
the projective spaces and spheres). 

The following are examples of symmetric spaces of type II (with positive
definite metric). (The simply-connected ones among such spaces turn out to 
have the topology of Euclidean space IR".) 

(1) SO(p, q)/(SO(p) x SO(q». (For q = 1 this is the Lobachevsky 
space LP.) 

(2) SU(p, q)/(U(p) x SU(q». (For q = 1 this is the unit ball in (;P, 

(3) Sp(p, q)/(Sp(p) x Sp(q». 
(4) SL(n, 1R)/SO(n). 
(5) SL(n, C)/SU(n). 
(6) SO(n, C)/SO(n, IR). 

as a complex manifold; if also p = 1, 
this manifold is identifiable with 
L2 ~ SU(1, 1)/U(1).) 

We conclude with a list of symmetric spaces of dimension 4 with metric of 
signature (+ - - -). (These spaces are of potential importance for the 
general theory of relativity since (by Corollary 6.4.5) the metric gab satisfies 
the equation Rab - Agab = 0 (see §37.4 of Part I). 

I. Spaces of constant curvature with isotropy group H = SO(1, 3): 

(1) Minkowski space 1Rt, 3' 

(2) The de Sitter space S + = SO(1, 4)/SO(1, 3); note that S + is 
homeomorphic to IR x S3. Here the curvature tensor R is the identity 
operator on the space of bivectors A2(1R4): R = 1. 

(3) The de Sitter space S _ = SO(2, 3)/SO(1, 3); this space is homeomorphic 
to S1 x 1R3, and its "universal covering space" S _ = S'O(2, 3)/S'O(1, 3) (see 
§18) is homeomorphic to 1R4. Here the curvature tensor R = -1. 
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II. Reducible spaces (products of spaces of constant curvature): 

(1) H = SO(3); M = IR+ x M:: __ , where M:: __ is a space of constant 
curvature, with signature (- - -). 

(2) H = SO(I, 2); M = IR_ x Mt __ , where Mt __ is a space of constant 
curvature with signature ( + - -). 

(3) H = SO(2) x SO(1, 1); M = M~ _ x M~ _, the product of two 2-dimen
sional spaces of constant curvatures. 

III. The symmetric spaces Mr of plane waves. (For these the isotropy 
group is abelian, and the isometry group is soluble.) In terms of a certain 
system of global co-ordinates the metric has the form 

dl2 = 2 dX 1 dX4 + [(cos t)x~ + (sin t)xD dx! + dx~ + dx~, 
, y~ __ ~1 

K 

cos t ~ sin t. 

In terms of the tetrad (see §30.1 of Part I) given by the I-forms 

the curvature tensor is constant, of the form 

R = -4[cos t(p 1\ x) ® (p 1\ x) + sin t(p 1\ y) ® (p 1\ y)]. 

Remarks. 1. A simply connected symmetric space is uniquely determined by 
its curvature tensor at a point. To see this let R: A 2(V) ~ A 2(V) be the 
curvature tensor, and denote by ~ the Lie algebra of skew-symmetric linear 
operators on the space V generated by those operators of the form R(x, y), 
x, Y E V. (Then ~ is the Lie algebra of the isotropy group (previously denoted 
by LO).) Let 9 denote the Lie algebra V +~, where the commutator operation 
on this direct sum of spaces is defined by 

[(u, a), (v, b)] = (av - bu, [a, b] + R(u, v)). 

Then in terms of the pair g, ~ the structure of the original symmetric space is 
naturally reproduced on the symmetric space M = G/H. 

2. The problem of classifying all curvature tensors of symmetric spaces 
with a given isotropy group H reduces to that of finding the H-invariant 
tensors R of the type of the curvature tensor, for which R(x, y) belongs to the 
Lie algebra of H for all x, y in V. 

6.6. Exercises 

1. Show that for symmetric spaces of type II with positive-definite metric, the 
dimension of the subalgebra LO of 9 is equal to the number of positive squares in 
the Killing form on g. 
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2. Show that in the complex case (e.g. where G = SL(n, C) or SO(n, C)) the numbers of 
negative and positive square terms in the complex Lie algebra 9 are equal, and 
dim LO = ! dim g. Find the subalgebra LO of the Lie algebra 9 of the group 
G = SL(n, C). 

3. Show that for symmetric spaces of type II with positive-definite metric one always 
has M ~ G/H, where H is a maximal compact subgroup of G. Investigate the 
particular cases SL(n, 1R)/SO(n), SL(n, C)/SU(n). 

4. Show that a simply-connected, symmetric space of type II always has the 
topology of Euclidean IR". 

For the next few exercises, note that, as for Lie groups (see §30.3 of Part I), so 
also for symmetric spaces do we have 

5. Show that for spaces of type I, the Ricci tensor Rub is positive definite, and the 
"sectional curvature" <R(~, YJ)~, YJ> (where~, YJ span a parallelogram of unit area) is 
non-negative. 

6. Show that for spaces of type II the sectional curvature is non-positive. Deduce 
from this that a simply-connected, symmetric space of type II is topologically the 
same as IR" (assuming the metric Riemannian). 

7. Decide which of the 7 symmetric spaces of type I and 6 spaces of type II listed 
above have non-vanishing sectional curvature. Investigate the spaces So, Cpo, IHIP" 
of type I, and the spaces L", SU(n, l)/U(n), SL(n, 1R)/SO(n), SL(n, C)/SU(n) of type 
II. 

8. Prove that in dimensions n = 2, 3 the only simply-connected, symmetric spaces 
with positive-definite metric are L", So, IR". (Hint. Show that the isotropy group 
H c: G must be SO(n) (n = 2, 3), and thence deduce (for n = 3) the constancy of all 
sectional curvatures.) 

9. Prove that a simply-connected symmetric space M with semisimple G = G1 X •.. X Gk 

(where the Gj are simple) has the form 

M = (GdH tl x ... x (Gk/H k ), 

with the metric decomposing as a direct product of metrics on the factors 
M j = GdH j , each of which is proportional to the Killing metric on the subspace Ll of 
the corresponding Lie algebra gj = L? + Lf . 

§7. Vector Bundles on a Manifold 

7.1. Constructions Involving Tangent Vectors 

From any n-dimensional manifold M we can construct a 2n-dimensional 
manifold, called the tangent bundle L(M) of M as follows. The points of the 
manifold L(M) are defined to be the pairs (x, ~) where x ranges over the points 
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of M and ~ ranges over the tangent space to M at x. Local co-ordinates are 
introduced on L(M) in the following way. Let U q be a chart of M with local 
co-ordinates x:. Then in terms of the usual standard basis el% = a/ax: (of 
operators on real-valued functions on M), any vector ~ in the tangent space 
to M at a point x of U q can be written in terms of components as ~ = ~:el%' As 
a typical chart U~ of L(M) we take the set of all pairs (x, ~) where x ranges 
over U q' with local co-ordinates 

(Y~, ... , Y:") = (x~, ... , x:' ~~, ... , ~:). 

The transition functions on the region of intersection of two charts U~ and 
U~ (with co-ordinates x=) are then of the form 

( 12ft) _ ( II ):f1) _ ( f1( 1 ") ax~ ):1%) Yp' ... , Yp - xP' "'p - xp Xq, ... , Xq , ax: "'q . 

The Jacobian matrix of such a transition function is then clearly 

( :~ ) = (~ ~) , A = (:~D' H = (a~;~~~ ~;). 
whence the Jacobian is (det A)2 > O. This gives immediately the 

7.1.1. Proposition. The tangent bundle L(M) is a smooth. oriented 2n-di
mensional manifold. 

Note by way of an example that the tangent bundle on a region U of 
Euclidean space IRft is diffeomorphic to the direct product U x 1R". 

If the manifold M comes with a Riemannian metric, then we can delineate 
in L(M) a submanifold, the unit tangent bundle L1 (M), consisting of those 
points (x, ~) with I~I = 1. The dimension of L1 is 2n - 1. (It is defined in L(M) 
by the single non-singular equation I(x, ~) = gl%f1~l%efl = 1.) 

Example. Each tangent vector ~ at a point of the n-sphere S" (defined in 
Euclidean space 1R" + 1 by the equation L: = 0 (XI%)2 = 1) is perpendicular to the 
radius vector x from the origin to the point x. Hence in the case M = S", the 
unit tangent bundle L 1(M) of pairs (x,~) with I~I = 1, is (intuitively) 
identifiable with the Stiefel manifold v" + 1,2 (see §5.2). In particular for n = 2, 
the unit tangent bundle L 1(S2) is identifiable with V3 , 2 ~ SO(3) (which is in 
turn diffeomorphic to IRp3-see §2.2). 

A smooth map I: M -+ N from a manifold M to a manifold N, determines 
a smooth map of the corresponding tangent bundles: 

L(M) -+ L(N), 

where I. is the induced map of the tangent spaces (see §1.2). 
We note briefly a few other constructions similar to that of the tangent 

bundle. 
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(i) One often meets with the manifold Lp(M) whose points are the pairs 
(x, r) where r ranges over the straight lines through the origin, in the 
tangent space IRn to M at the point x E M. 

(ii) Given any n-dimensional manifold M, we may construct from it the 
tangent n1rame bundle E = E(M) having as points the pairs (x, r) with 
x E M and r = (e l' ..• , en) any ordered basis (i.e. frame) for the tangent 
space to M at x. 

(iii) If M is oriented then E = E(M) is defined as in (ii) except that the frames 
r are required to be in the orientation class determining the orientation of 
M. 

(iv) If M is a Riemannian manifold, then Eo = Eo(M) is defined as in (ii) with 
the frames r restricted to being orthogonal. 

Further examples of such constructions will be considered in Chapter 6. 
We now define the cotangent bundle L*(M) on a manifold M. The points of 

L*(M) are taken to be the pairs (x, p) where p is a covector (i.e. I-form on 
M) at the point x. Local co-ordinates x; on a chart Up of M determine the 
local co-ordinates (x;, pp",) on the corresponding chart of L*(M), where the 
PP'" are defined by 

p= pp",dx; 

(i.e. they are the components of p with respect to the standard dual basis of 
I-forms on Up). 

The transition functions from co-ordinates (x;, pp",) to co-ordinates 
(x:,PqfJ) on Upn Uq are as follows: 

fJ (fJ 1 n ox; ) (Xq, pqfJ) = xq(xp,"" xp), ox: PP'" . (1) 

The Jacobian matrix is then 

(A~l~). A = (::D, n = (o~;~~{p",). 
whence the Jacobian is 1, and the manifold L*(M) is oriented. 

The existence of a metric g"'fJ on the manifold M gives rise to a map 
L(M)-+L*(M), defined by 

(x"', e"') 1-+ (x"', g"'fJ(x)e fJ ), 

i.e. by means of the tensor operation of lowering of indices (see §I9.I of Part I). 
Since the expression w = PIll dx'" (a differential form on M) is invariant 

under transformations of the form (1), it can be regarded as a differential form 
on L *(M). Its differential 0 = dw = L: = 1 dp", 1\ dx'" (see §25.2 of Part I) is a 
non-degenerate (skew-symmetric) 2-form on L*(M), which is, obviously, 
closed, i.e. dO = O. We conclude that: The manifold L*(M) is symplectic. 
(Recall that in Part I we defined a symplectic space to be one equipped with a 
closed (skew-symmetric) 2-form.) 
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7.2. The Normal Vector Bundle on a Submanifold 

Let M be an n-dimensional Riemannian manifold with metric g"P' and let N 
be a smooth k-dimensional submanifold of M. The normal (vector) bundle 
vM(N) on the submanifold N in M, is defined to have as its points the pairs 
(x, v) where x ranges over the points of N, and v is a vector tangent to M at the 
point x, and orthogonal to N at x (i.e. orthogonal to the tangent space to N at 
x, which is a subspace of the tangent space to M at x). Assuming (as always
see §1.3) that the submanifold N is defined by a non-singular system of (n - k) 
equations, then (as noted in §1.3) in terms of suitable local co-ordinates 
yl, ... ,y" on M these equations take the simple form l + 1 = 0, ... , y" = 0, 
and yl, ... , l serve as local co-ordinates on N. In terms of such local co
ordinates yl, ... , y" on M, the normal bundle vM(N) is then determined as a 
submanifold of L(M) by the system of equations 

yk+ 1 = 0, ... , y" = 0, g"p(Y)vP = 0, IX = 1, ... , k. 

Since this system is non-singular (verify it!), it follows that vM(N) is an 
n-dimensional submanifold of L(M). 

Examples. (a) Let M be Euclidean n-space IR", and suppose N is defined by the 
non-singular system of (n - k) equations 

fl(y) = 0, ... ,1"-k(Y) = 0, y = (yl, ... , y"), 

where yl, ... , y" are Euclidean co-ordinates on IR". Then the vectors 
grad fl' ... , grad In-k are at each point of N perpendicular to the surface N 
and linearly independent (see §7.2 of Part I). Hence we see that vR'(N) has the 
structure of a direct product: 

vR.(N);;;E N x IR"-k. 

More generally if N is defined as a submanifold of a manifold M by a non
singular system of equations 

fl(x) = 0, ... , In-,,(x) = 0, 

then at each point x of N the vector fields 

i = 1, ... , n - k, 

are orthogonal to N and linearly independent, whence any vector normal to 
N at x EN has the form v = viei(x). The correspondence (x, v)-(x, vi, ... , vk) 
is then a diffeomorphism: 

vM(N);;;E N x IR"-k. 

An important special case arises from the consideration of a manifold A 
with boundary, defined by an inequality I(x) ~ ° in M. Here N is the 
boundary 8A of A defined by the single equationf(x) = 0, and of dimension 
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n - 1. The normal bundle to the boundary then decomposes as a direct 
product: 

(b) Suppose M = N x N where N is a Riemannian manifold. A typical 
tangent vector to M at a point is then a pair (~, '1) of tangent vectors to N. 
Define a Riemannian metric on M by setting 

Consider the diagonal A = {(x, x)lx E N} of M; this is a submanifold of M 
manifestly identifiable with N. The tangent vectors to A at any point will have 
the form ((,0; hence a tangent vector v = (~, '1) will be perpendicular to A 
precisely if 

for all tangent vectors ( to N. since this is possible if and only if ~ = -'1, 
it follows that the vectors normal to the diagonal A ~ N have the form 
v=(~, -~). Hence we conclude that: 

VN x N(A) ~ L(N). 

(c) Let vM(N) be the normal bundle on the submanifold N of the 
Riemannian manifold M. We define a map h, the geodesic map from vM(N) to 
M as follows. Let (x, v) be any point of vM(N) and let yet) be the geodesic of M 
emanating from x with initial velocity vector v; thus yeO) = v. Then define h by 
h(x, v) = y(1). 

7.2.1. Lemma. The Jacobian of the map h is non-zero at every point ofvM(N) of 
the form (x, 0). 

PROOF. We give the proof only for the case when M is the space IR" with the 
usual Euclidean metric, and N is a hypersurface in IR" given (locally) by 
parametric equations Xi = Xi(U 1, ... , U"-I), i = 1, ... , n. Then as local co
ordinates for the points (x, v) E vR.(N) we may take the n-tuples 
(u 1, ••• , u" -1, t), where x = x(u), v = tn(u); here n(u) is the unit normal to the 
surface N at the point x(u). In terms of these co-ordinates the geodesic map h 
is clearly given by 

h(u 1, ••• , U"-I, t) = x(u) + tn(u). 

Hence its partial derivatives are as follows: 

ah 
at = n. 

On putting t = 0 we obtain the non-singular Jacobian matrix (ah/au, ah/at) 
= (ax/au, n), whence the lemma. 0 



64 I. Examples of Manifolds 

7.2.2. Corollary. Suppose that the submanifold N is compact. Then the geodesic 
map h maps the region 

VM = {(x, v)llvl < e} 

diffeomorphically onto some neighbourhood U.(N) of N in M. 

PROOF. In view of the preceding lemma the map h is a diffeomorphism on 
some neighbourhood of any point of vM(N) of the form (x, 0). Since N is 
compact, some finitely many of these neighbourhoods cover the subset (N, 0) 
of vM(N). Then the union of these finitely many neighbourhoods contains 
some e-neighbourhood vM(N) of (N,O), and on this neighbourhood h is 
diffeomorphic. D 

Remark. Let U.(N) be, as in the corollary, the (diffeomorphic) image of vM(N) 
under h. Then emanating from each point x in U.(N) there is a (locally 
unique) "perpendicular geodesic" arc y to N. We shall call the length of this 
"perpendicular" the distance from x E U.(N) to the submanifold N, and 
denote it by p(x, N). Clearly the function p(x, N) depends smoothly on the 
points x of the region U.(N) of M. 

7.2.3. Theorem. If M is a compact, two-sided hypersurface in Euclidean IR" (see 
§2.l), then M is given by a single non-singular equationf(x) = O. 

PROOF. Let c;o(t) be a smooth function with graph something like that shown 
in Figure 12. Define a function f: IRO --+ IR by: 

f(x) = {±e if x¢U.(M), 
c;o(±p(x, M)) if x E U.(M), 

where U.(M) is the region of M appearing in the corollary, and where the plus 
sign is taken if x lies in a particular one of the two disjoint connected regions 
comprising IRO - M, and the minus sign if x is in the other. (It is here that we 
are using the two-sidedness of M in IR".) Then M is defined in IRO by the 
equation f(x) = O. D 

-e 

Figure 12 



CHAPTER 2 

Foundational Questions. Essential Facts 
Concerning Functions on a Manifold. 
Typical Smooth Mappings. 

The present chapter is devoted to foundational questions in the theory of 
smooth manifolds. The proofs of the theorems will play no role whatever in 
the development of the basic topology and geometry of manifolds contained 
in succeeding chapters. Consequently in this chapter the reader may, if he 
wishes, acquaint himself with the definitions and statements of results only, 
without thereby sacrificing anything in the way of comprehension of the later 
material. 

The subject matter of the chapter falls into two parts. In the first part 
"partitions of unity", so-called, are constructed, and then used in proving 
various "existence theorems" (which are in many concrete instances self
evident): the existence of Riemannian metrics and connexions on manifolds, 
the rigorous verification of the general Stokes formula, the existence of a 
smooth embedding of any compact manifold into a suitable Euclidean space, 
the approximability of continuous functions and mappings by smooth ones, 
and the definition of the operation of "group averaging" of a form or metric 
on a manifold with respect to a compact transformation group. 

The second part, beginning with "Sard's theorem", is concerned with 
making precise ideas of the "typical" singularities of a function or mapping. 
This part will be found very useful in subsequent concrete topological 
constructions, so that the definitions and statements of results contained in it 
merit closer study. 

§8. Partitions of Unity and Their Applications 
We first introduce some notation. The space of all (real-valued) functions on a 
manifold M, with continuous partial derivatives of all orders, will be denoted 
by COO(M) (these will be our "smooth" functions); the supremum (i.e. least 
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upper bound) of the values f(x) taken by a function f will be denoted by 
supf(x); and supp fwill denote the support off, i.e. the closure ofthe set of all 
points x at whichf(x)#O. 

8.1. Partitions of Unity 

We begin with a lemma concerning Euclidean space IR". 

8.1.1. Lemma. Let A, B be two non-intersecting, closed subsets of Euclidean 
space IR", with A bounded. Then there exists a COO-function cp on IR" such that 
cp(x) == 1 on A and cp(x) == 0 on B (see Figure 13). Moreover such a cp can be found 
satisfying 0::;; cp(x)::;; l. 

PROOF. Let a, b be two real numbers with O<a<b. It is easy to verify that the 
function on IR 1 defined by 

f() {
exp (~b - _1_) for a<x<b, 

x = x- x-a 
o for all other x, 

is smooth (i.e. is COO). (Verify it!) In terms of f we define a new smooth 
function F by 

F(x) = (f f(t) dt) I r f(t) dt. 

It is readily seen that this smooth function F has the following properties: 

{

-O for x:?:.b, 

F(x) : 1 for x::;; a, 

decreases from 1 to 0 for a::;; x::;; b. 

Jj i1 / 
A 6 pn 

Figure 13 
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Figure 14 
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disc 1I1/(tii) 

Figure 15 

We next define a function t/I on IR", by the formula 

t/I(x l , ... , x") = F((X1)2 + ... +(X")2)=FCtl (Xi)2). 

It is again clear that t/I is a smooth function with the following properties (see 
Figure 15): 

{ 

- 0 for r2 ~ b, 

t/I(x) : 1 for r2:s; a, 

decreases from 1 to 0 for a:s; r2 :s; b. 

(Here of course r2 = 1:7= I (Xi)2.) We have thus shown that, given any two 
concentric spheres Sand S' in IR", with S the larger, there exists a COO-function 
t/I which vanishes identically outside S, and is identically 1 on the ball 
bounded by S'. 

Consider now the sets A, B (as in the lemma). Since A is compact, B closed, 
and All B = 0, there exists a finite collection of spheres St (1:s; i:S; m) such 
that the open balls Dt which they bound (oDt = St, where the bar denotes the 
closure operation), cover the set A (i.e. A c Ui= 1 Da, and have the further 
property that Dt l1B = 0 for all i. It is clear that for each i we can find a 
strictly smaller S; concentric with St such that the open balls D; which they 
bound still cover A (i.e. A c Ui= I D;). For each i = 1, ... ,m, let t/lt be a 
function in COO(IR") such that O:s; t/I t(x):s; 1 and 

{
Ion D;, 

t/lt(x) = 0 outside Di> 

and set cp(x) = 1- ni= 1 (1- t/lt(x». It is then immediate that cp(x) E COO(IR"), 
and that cp(x):= 1 on A and cp(x):= 0 on B, completing the proof. 0 

8.1.2. Lemma. Let C be a compact subset of a smooth manifold M, and let V be 
any open subset of M containing C. Then there exists a function cp E COO(M) 
such that O:s;cp(x):S;l on M, cp(x):=1 on C, and cp(x):=O outside V. 
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PROOF. In the case M = IR" this follows from Lemma 8.1.1. For general M, let 
(Va' ({la) be a chart of M, where ({la: Va-+IR" is the identification of Va with a 
region ({l1Z(VIZ) of Euclidean IR". Let SIZ be any compact subset of VIZ' Since 
((la(Va) is an open subset of IR", there exists by Lemma 8.1.1 a smooth function 
fa on IR" such that f(x) =: 1 on ({liSa) and supp fa c: ((liVa), i.e. fix) = 0 
outside ((l1Z(Va), Consider the function Fa(P) on M defined by 

F (P)= {fa«({lIZ(P)) for P EVa, 
a 0 for P rI. Va' 

Clearly Fa E C<Xl(M), FiP) = 1 on Sa, and Fa(P) =0 outside Va' 
We are now ready to turn our attention to the compact subset C of M 

contained in the open subset V (as in the lemma). In view of the compactness 
of C we can find a finite collection of (possibly new) local co-ordinate 
neighbourhoods Vb"', VN and compact subsets SI"'" SN' such that 

By what we have just shown, for each (X = 1, ... , N there exists a function 
FaEC<Xl(M) such that Fa=1 on Sa and Fa=O outside ua. The function 
F = 1 - n~ = 1 (1 - F,,) then belongs to C <Xl( M), is identically 1 on C, and 
vanishes outside U~=1 V"' so that certainly F(P) =:0 outside V. 0 

8.1.3. Theorem (Existence of "Partitions of Unity"). Let M be a compact, 
smooth manifold and let { V,,} (1 ~ (X ~ N) be an arbitrary finite covering of M by 
local co-ordinate regions (for instance by open balls). Then there exists afamily 
of functions ({l,. E C<Xl(M) with the following properties: 

(i) supp CPa c: Va for all (X; 

(ii) 0~cpa(x)~1forallxEM; 

(iii) L" ({l,,(x) = 1 for all x E M. 

PROOF. There always exists a "constricted" family of open sets Jt;., 1 ~ (X ~ N, 
such that v,. c: Va and {Jt;.} still covers M. By Lemma 8.1.2 applied to each 
pair Va, Jt;., there exists a function t/!" E C<Xl(M) such that O~t/!a(x)~ 1 on M, 
t/!a(x) = 1 on V"' and t/!ix) = 0 outside Va' It is immediate that the function 
t/! = L~= 1 t/!" belongs to C<Xl(M) and is positive on M, i.e. t/!(x) > 0 for all 
x E M. If we take CPa = t/!alt/!, then these CPa satisfy the requirements of the 
theorem. This completes the proof. 0 

The family of functions ({l" is called a partition of unity subordinate to the 
covering {V,,}. 

Remark. The assumption that the manifold M be compact is not essential. It 
is readily seen that the proof of the existence of partitions of unity carries over 
to manifolds having suitable "locally finite" coverings (such a covering being 
one for which there is a neighbourhood of each point intersecting only finitely 
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many regions of the covering). Recall that a Hausdorff topological space is 
called paracompact if every open covering has a locally finite refinement which 
covers the space. Thus the above proof of the existence of partitions of unity 
works more generally for any manifold which is paracompact. 

8.2. The Simplest Applications of Partitions of Unity. 
Integrals Over a Manifold and 
the General Stokes Formula 

The theorem on the existence of partitions of unity has useful consequences; 
we shall now consider some of these. For the sake of simplicity we shall 
assume throughout that the manifolds we deal with are compact. 

8.2.1. Corollary. On any compact manifold a Riemannian metric can be defined. 

PROOF. Let {U .. }, 1 ~ ex ~ N, be any finite covering of a compact manifold M 
by open balls U .. with local co-ordinates x~. In each U .. take any Riemannian 
metric (g~~) (e.g. g~~ = (Jab); we then need somehow to combine the g~~ to 
obtain a metric on M. This is done by defining 

N 

gab= L g~~ (x) "' .. (x), 
11=1 

where {"'II} is a partition of unity subordinate to the covering {UII }. Clearly 
the gab are smooth. Since "'II(X)~O for all x, and since the set of Riemannian 
metrics on any space forms a "convex cone" (i.e. for any Riemannian metrics 
g1' gz and any positive reals c, d, the linear combination cg1 +dgz is again a 
Riemannian metric), it follows that (gab) is indeed a Riemannian metric. 0 

It follows immediately that 

8.2.2. Corollary. On any compact manifold there exists a Riemannian 
connexion. 

The existence of partitions of unity is similarly exploited in defining the 
integral of an exterior form w of degree n = dim M over a manifold M. As 
before let {UII }, ex = 1, ... , N, be a finite covering of the (compact) manifold M 
by charts U,. with local co-ordinates x~, ., ., x:. In terms of these local co
ordinates the form w(n) can in each U,. be written as 

w(n)(x)=a1 ... n(X) dx! A ••• A dx:, 

and the integral of w(n) over the region UII is, as usual, just the multiple 
integral: 

i w(n) = i a1 (x) dx1 A ... A dxn . ... n« « 
U. U. 
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To define the integral over the whole of M = M" we need to piece these 
integrals together. With this in view, we take a partition of unity {"'IZ} 
subordinate to {VIZ}' The desired integral is then defined by: 

fM" ai") = fM" (JI "',.(X») ai")(x) = IZtl L. ",,,(x) (nI")(x). 

(Recall that "',,(x)=O outside V".) The verification that this definition is 
independent of the particular finite covering {VIZ} and the partition of unity, 
presents no essential difficulty, and we omit the details. 

As our next application of the existence of partitions of unity we give a 
rigorous proof of the general Stokes formula. Let D c IR" be a bounded 
region with smooth boundary aD, given in terms of Euclidean co-ordinates 
xl, ... ,x" by an equation f(xl, ... ,x")~O, where gradflaD:;CO; thus the 
boundary of D is a smooth, non-singular hypersurface in IR". An orientation 
of IR" determines the order of the co-ordinates Xl, ... , x" (up to an even 
permutation), since the orientation is prescribed by the frame (Le. ordered 
basis for the tangent space) (e l , •.• , en) consisting of the standard basis 
vectors in the natural order, which frame moves smoothly from point to point 
in IR". For each point P in aD, denote by n(P) the outward normal to aD. In 
some neighbourhood of each point P of aD we can define smooth local co
ordinates yl, ... , y" - I, which can be ordered so as to define an orientation of 
aD; recall that this orientation is said to be induced by the orientation on D if at 
each point of aD the frame (alay1, ... , alay"-l, n(P» is obtained from the 
frame (e l , .•. , en) by means of a linear transformation with positive 
determinant. 

8.2.3. Theorem. Let w be an exterior differential form of degree n - 1 on the 
region D of IR". Then 

f dw= r i*(w), 
D JaD 

where i: aD-+ D is the embedding, i*(w) is the restriction of the form w to the 
boundary aD of D (see §22.1 of Part I), and the orientation on aD is that induced 
by the orientation on D. 

(Note that the orders of the co-ordinates Xl, ... , x" and y1, ... , y"-l, 
which are determined (up to even permutations) by the orientation, must be 
stipulated in calculating integrals of forms, since the order determines the sign 
of the integral.) 

PROOF. Let {V,,}, 1 S; (X s; N, be a finite covering of the region D by open balls, 
and let h,,: B"-+IR"; h,,(B") = V"' be fixed co-ordinate maps, where B" is the unit 
open ball in IR" (with fixed co-ordinates Xl, ... , x"). Thus hlZ assigns co
ordinates to the chart V". By choosing the VIZ sufficiently small and arranging 
the co-ordinatization appropriately, we may assume (by virtue of the Implicit 
Function Theorem) that every intersection aD n VtA which is non-empty is 



§8. Partitions of Unity and Their Applications 71 

given by the equation x:=O, where x!, ... , x: are the local co-ordinates on 
U«. 

Now let {cp«} be a partition of unity subordinate to the covering {U«}; thus 
{q>«} has the following properties: 

(i) supp cp« C U« for alia; 
(ii) cp«(x)~ 0 for all x E U« U«; 
(iii) L« q>«(x) = 1 for all x E U« U«. 

From (iii), and since the q>« are scalars, we have in view of the linearity of 
integrals that 

Hence it suffices to show that for each a (1 ~ a ~ N), 

r i*(cp«w)= f d(cp«w). 
JOD D 

(1) 

If in terms of the local co-ordinates x!, ... , x: on U«, we write 

cp«w=ro«= t (-I)k-l ak(x) dx! A ..• A d~ A ••. A dx: (2) 
k=1 

(where ak(x) E COO(D), and the hatted symbol is understood as omitted), then 
(see §25.2 of Part I) 

(3) 

First case: U« n aD = 0. Since supp cp« C U«, it follows that supp (q>«w) 
C U«; hence if U« n aD= 0, then cp«(x) =0 on aD, whence JaD i*(cp«w) =0. We 
therefore wish to show that also J D d( CPIIW) = O. 

Since UII n aD = 0, we must have either U« c D or UII c: IR" - D. In the 
latter case certainly JD d(cp,.w) = 0, so we may suppose U,. c D. Our problem is 
then to show that (see (3» 

r (t aa~) dX! A .•• A dx:=O. Ju. k=1 ax,. 

Via the co-ordinate function h« we may identify UII with the unit open ball 
B" c IR". With this understood, we extend the region of definition of 
the integrand in the integral 
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to the whole of IRft by defining it to be zero outside Bft. (Recall that 
supp ak C U ~ = B".) Let C" be the cube of side 2R in JRft defined by 

en={(xl, ... ,x")llxkl ~R, l~k~n}, 

large enough to contain B". Then 

r (t ~a:) dx~ /\ ... /\ dx: = t r ~a: dx~ /\ ... /\ dx: J B" k = 1 ux~ k = 1 J C" ux~ 

= t r ( _1)k-1 (fR oa: dX:) dx~ /\ ... /\ ax: /\ ... /\ dx:. 
k=1 JC"-I -R ox~ 

(Here en- l denotes the appropriate (n-l)-dimensional cube.) Up to sign, the 
kth term of this sum can be evaluated as follows: 

f (f R oak d k)d 1 d"k d " - x X /\ ... /\ X /\ ... /\ X 
C"-I -ROX: ~ ~ ~ ~ 

-+f {(1 k- 1 R k+1 ") - _ ak x~, ... , x~ , , x~ , ... , XII 
cn - I 

/'0.. 

( 1 k - 1 R k + 1 n)} d 1 d k d n - ak x~, ... , X~ ,- ,X~ , .•• , X~ X" /\ ••• /\ X" /\ ..• /\ X~ 

=0, 

Second case: U~ n oD =F 0. We wish to establish (1). In view of the 
supports of the integrands it suffices to verify that 

(4) 

From (2) and our initial provision that oD n U~ be given by the equation 
x: = 0, it follows that 

Thus the equality we seek to establish, namely (4), becomes 

r (_1)"-1 a dx 1 /\ ... /\ dxn - 1 = t r oak dx1 /\ ... /\ dxn (5) 
JODnU. ft" "k= 1 Jo. ox: " ~. 

As in the first case we now identify U~ with the unit open ball Bft, and extend 
the domain of the ak to all of IRft by defining them to be zero outside Bn. Then 
with the cube Cft as before, the right-hand side of (5) becomes 

f f a~ 1 n f..., -;-r dx~ /\ ... /\ dx~. 
k=1 C" ux~ 

(6) 
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For k~n, certainly oak/ox~ is a continuous function of x!, so that by the 
"Fundamental Theorem of Calculus" 

- dx 1\ ••• 1\ dxn f oak I 

en aX! .. II 

f (fR oak k) I ~ = -;-;; dx.. dx.. 1\ ••• 1\ dx.. 1\ ••• 1\ dx: = 0, 
en -' -R vX .. 

since ak(x!, ... , ± R, ... , x:) = o. On the other hand the nth summand in (6) is 

r oa: dx! 1\ ... 1\ dx:=(-I)"-1 r (fR oa:dX:)dX! 1\ ... 1\ dx:- l len ax.. len-, -R aX .. 
(7) 

Now as a function of x" alone (i.e. for any particular fixed values of 
Xl, ... , Xn - I) an is continuous on each of the intervals - R:s;; Xn < 0 and 0 
< x" :s;; R (with a possible jump discontinuity at x" = 0); hence it follows by 
integrating over each of these intervals and adding that 

fR oa 
!:l : dx"=anloD' 

-R vX .. 

Substituting from this in the right-hand side of (7) we get finally 

i dw = i (_1)"-1 a dx l 1\ ••• 1\ dX"-1 « " « « , 
Bn cn- 1 

as required. This completes the proof in the second case, and thereby the 
proof of the theorem. 0 

Remark. The fact that the orientation on aD was taken to be that induced by 
the given orientation of D, was used in applying the "Fundamental Theorem 
of Calculus" in the form J: df(x)=f(b)-f(a), with b > a, which inequality was 
determined by the direction of the outward normal n(P) to aD; if we had used 
instead the inward normal we would have obtained the negative of the 
integral in question. For fixed x! •.... X:-l. the function an(x:) has graph 
something like that shown in Figure 16. 

.. 
n(P) 

Figure 16 
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EXERCISE 
Prove the general Stokes formula for compact manifolds M with boundary (see §1.3): 

r dw= r w. 
JM J8M 

(Here the orientation on the boundary aM of M is again chosen to be that induced by 
the given orientation of M.) 

8.3. Invariant Metrics 

We shall now show that the existence of partitions of unity allows the 
construction of a Riemannian metric on a manifold, invariant under the 
action of a given compact group of transformations. 

We begin with the case of a finite group acting on a smooth, closed (Le. 
compact and without boundary) manifold. 

8.3.1. Theorem. Given a smooth closed manifold M and a jinitf: group G of 
transformations of M, there exists a Riemannian metric on M invariant under G. 

PROOF. We have already shown (Corollary 8.2.1) that, as a consequence of the 
existence of partitions of unity, there exists a Riemannian metric gab(X) say, on 
M. Denote by ( , )x the scalar product on 1'x (the tangent space to M at each 
point x), defined by the metric gab(X), and denote by N the order of the finite 
group G. We define a new scalar product ( , )x (and thereby a new 
Riemannian metric on M), by means of the procedure of "group averaging" of 
the old metric, with respect to the group G: 

1 
(~, I])x= N L (g.m, g.("»g(X), 

gEG 

Here (, I] are arbitrary vectors in Tx , and g * is the map of tangent spaces 
induced by g. It is clear that this new metric is invariant under the action of G, 
i.e. that 

(g*(~), g.("»g(X)=(~' ")x, 

for all x E M, ~, " E Tx , g E G. This completes the proo[ o 

An analogous procedure allows the construction ot a Riemannian metric 
on M invariant under a (suitably restricted) Lie group of transformations of 
M. Thus let G be a compact, connected Lie group of transformations of M, 
and let t 1, ... , tm be local co-ordinates in a neighbourhood of the identity of 
G. These co-ordinates yield (via, for instance, right translations, i.e. right 
multiplications by group elements) local co-ordinates in some neighbour
hood of every point of G. In view of the smoothness of multiplication on G, 
this collection of co-ordinatized neighbourhoods forms an atlas on the 
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manifold G. In this sense the local co-ordinates t 1, •.. , tm serve (via right 
translations) for all of G. 

8.3.2. Lemma. On a compact, connected Lie group G, there exists a "volume 
element" invariant under right translation, and any such form is expressible as 
dlJ.(rx)=n dt 1 A •.• A dtm, where rx E G, n is constant, and t1 , ••. , tm are local 
co-ordinates in a neighbourhood of rx, obtained by means of right translations 
from a system of co-ordinates for a neighbourhood of the identity. 

(Note that such a differential form is often said to define a "right-invariant 
measure" on G.) 

PROOF. Consider the volume m-form at the identity of G defined in the usual 
way (i.e. the form whose value at an ordered m-tuple of tangent vectors is the 
determinant of the matrix whose rows are made up of the components of 
those vectors). This form is then extended to the whole group by means of 
right translations. This shows the existence of a right-invariant volume 
element. That any such volume element must be expressible as indicated is 
immediate from the fact that up to a constant factor there is only one skew
symmetric form of rank m on m-dimensional space (in this case on Tl (G». 
This proves the lemma. D 

(Note that a change of variables leads to a multiplication of the volume 
element by the Jacobian of the change, and also that a left-invariant 
measure on G can be constructed similarly.) 

There is a standard notation used to express right-invariance of the 
measure, namely dlJ.(ggo) = dlJ.(g). In terms of integrals the right-in variance of 
the measure dlJ.(rx) is expressed by 

where f(g) is any function on G for which the integrals exist. 
Suppose now that G is a Lie group of transformations of a manifold M. 

8.3.3. Theorem. Let G be a compact, connected Lie group of transformations of 
a smooth, closed manifold M. Then there is a Riemannian metric on M invariant 
under G. 

(We note that if G is not transitive on M, then there will in general exist 
many such G-invariant metrics on M.) 

PROOF. The construction of the desired metric is again carried out by means 
of the procedure of group averaging of a given metric with respect to the 
action of the group G. As before let gab(X) be any Riemannian metric on M 
(guaranteed by Corollary 8.2.1), with corresponding scalar product < , >x on 
T", the tangent space to M at x. Define a new scalar product ( , )x on Tx (and 
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thereby a new metric on M) by setting 

(~, t/)x = ~(~) L <g *(~), g *(t/)g(X) d~(g), 
where x E M, ~, t/ E Tx , g E G, g * is the induced map of tangent spaces, d~(g) is 
a right-invariant measure on G, and ~(G) is the volume of the whole group G. 
We then have 

(go*(e), go*(t/))go(X)= ~/G) L «ggo)*(~), (ggo)*(t/)ggo(X) d~(ggo) 

= ~(~) L <g~(e),g~(t/)g'(x)d~(g')=(~,t/)x' 
which shows the G-invariance of the new metric under the action of G. 0 

§9. The Realization of Compact Manifolds 
as Surfaces in lRN 

Let M and N be smooth manifolds of dimensions nand p respectively. Recall 
(from §1.3) that a smooth map f M -+N is called an "immersion" if the rank of 
the induced map dfl x: Tx -+ TJ (x) at each point x, is equal to n, i.e. if the 
induced map of tangent spaces is at each point an embedding. (Hence in 
particular we must then have p ~ n.) It follows from the Implicit 
Function Theorem that around each point x there is a neighbourhood V(x) 
on which the restriction of f is a diffeomorphism from V(x) to its image 
f(V(x)) eN. It is easy to give examples of immersions which are, however, 
not "globally" one-to-one. Recall that a one-to-one immersion is called an 
"embedding". 

Theorem. Any compact, smooth manifold M can be smoothly embedded in 
Euclidean space IRk for sufficiently large k. 

PROOF. Let { Vi}' 1 ~ i ~ s, be a fixed finite covering of the manifold M by open 
neighbourhoods diffeomorphic to IRn (where n = dim M), and for each i let 
<Pi: M -+S" c IRn+l, be a map sending M\Vi to a single point, and filling the 
rest of S" out with Vi' i.e. mapping Vi onto the sphere S· with the point 
removed. It is intuitively clear (especially in the cases n = 1, 2) that the map <Pi 
can be so constructed that its restriction to V j is an embedding of manifolds. 
We now define <P: M-+lRk, where k = s(n + 1), by 

<p(X)=(<Pl(X), ... , <Ps(x)). 

The fact that <P is an embedding now follows from the construction of each 
<p;l u, as an embedding of V j , and the fact that the V j cover M. 0 
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We note in conclusion that the dimension k of the containing Euclidean 
space IRk can be reduced to 2n + 1 (see §11.1). It can, moreover, be shown that 
any continuous map M -+1R2"+ 1 is approximable by smooth embeddings (see 
below); for n = 1 this is intuitive. 

§ 1 O. Various Properties of Smooth Maps 
of Manifolds 

10.1. Approximation of Continuous Mappings 
by Smooth Ones 

We first establish, on the basis of a result concerning functions on regions of 
IR", that any continuous map between manifolds can be approximated (in a 
precise sense which we shall now define) by smooth maps. Mainly for the sake 
of simplicity, we shall assume our (smooth) manifolds to be connected and 
closed (i.e. compact and without boundary). Let M and N be two such 
manifolds. As we saw above (in §8.2) on such manifolds there exist Rieman
nian metrics; let p denote the distance function on N defined (as in §1.3) by 
any particular Riemannian metric on N. In terms of p we can define the 
distance between any two continuous maps J, g: M -+ N by 

p(J, g) = max p(f(x), g(x)). 
xeM 

This turns the space of all continuous functions from M to N into a metric 
space. 

As noted above, we shall need the following result, perhaps familiar from 
courses in analysis. We omit its proof. 

10.1.1. Proposition. Let f(x 1 , ••• , x") be a continuous function on the (open) 
region U oflR". Then corresponding to any e>O, and any open set V c U such 
that also V c U, there exists a continuous function g(Xl, ... , x") with the 
following four properties: 

(i) the function g is smooth on V; 

(ii) gl U\Y = fl U\Y; 

(iii) maxxevlf(x)-g(x)1 ~ e; 
(iv) the function g is smooth at every point where f is smooth. 

We can now proceed to the following important approximation theorem. 

10.1.2. Theorem. Let M. N be connected, closed smooth manifolds. Then any 
continuous map f M-+N, can be approximated arbitrarily closely by smooth 
maps; i.e.for each e > 0 there exists a smooth map g: M -+ N, such that p(J, g) < e. 
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w' s' 

f -

Figure 17 

PROOF. Let U c N be an open set homeomorphic to a region V of Euclidean 
space IR" (where n = dim N), and let cp: U -+ V be a homeomorphism (for 
instance, we may take U to be any local co-ordinate neighbourhood of the 
manifold N, and cp to be the co-ordinate map identifying U with a region Vof 
IR"). Let S, W be open sets such that S eSc We We V c IR", and set 
W"=cp-l(W), S"=cp-l(S), V'=1- 1(U), W'=1- 1(W"), and S'=1- 1(S") (see 
Figure 17). Since S" c WI' C W" C U, there exists a positive number ,,< e 
such that p(W", N\U»,,>O, and p(S", N\W"»,,>O. By applying Propo
sition 10.1.1 to the co-ordinate functions of the map cp a f: V' -+IR", we deduce 
the existence of a continuous map g: V' -+ IR", which is smooth on S' and at all 
points of V' where f is smooth, and which has the further properties that 

glnw' ==(cpo f)lv'\W', p(J, cp-l og)~,,<e. 

It follows that (cp -1 0 g)(V') C U. Hence we have a continuous map 
g' = cp -log: V' -+ U, which is smooth on S' and agrees with/on V'\ W'. We 
deduce that the map g: M-+N, defined by: f=g on M\W', and g=g' on V' 
(i.e. the extension of g' to all of M obtained by defining it to agree with 1 
outside W'), is continuous, is smooth on S' and at all points where f is 
smooth, and satisfies p(J, g) < e. By covering the manifold N suitably with 
finitely many open sets homeomorphic to regions of IR", and approximating 
the given continuous function 1 successively on the inverse image of each 
open set of the cover, in the manner described above, we arrive at the desired 
conclusion. 0 

Remarks. 1. The proof of the theorem brings out the local character of the 
approximation: the map 1 is successively approximated by functions smooth 
on (large) open subsets of the charts of M. Hence if the given map f happened 
to be already smooth on some open region U c M, then for any closed subset 
V c U we could arrange that g == 1 on V. 

2. In the sequel (§12.1 below) it will be shown that if M, N are connected, 
closed smooth manifolds, then there exists an eo> 0 such that the inequality 
p(J,g)<eo (where J,g: M-+N are continuous maps) implies that the maps f 
and g are "homotopic" (see §12.1 for the definition of a homotopy between 
maps). In view of this we may assume (by restricting e) that in the above 
theorem the smooth map g approximating 1 is homotopic to f. 
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10.2. Sard's Theorem 

For each smooth map f: M-+N, between smooth manifolds M, N, let 
C = C(f) c M denote the set of all x E M at which the differential dfx: 1',,-+ T,(x) 
has rank strictly less than n = dim N. The set C is called the set of critical 
points of the map f, and f( C) the set of critical values of f. 

Before stating the theorem, we recall the concept of a set of "measure zero". 
A subset B c IR" is said to have (n-dimensional) measure zero if for each e > 0 
it can be covered by a countable collection of n-dimensional cubes, the sum of 
whose volumes is less than e. (It is usually shown in courses in analysis that 
then the complementary set IR"\B is an everywhere dense subset of IR".) This 
definition is extended in the following way to subsets of an n-dimensional 
manifold N: a subset B of N has measure zero if for each co-ordinate map 
<p: U -+ IR", where U ranges over the charts of N, the set <p(U n B) has measure 
zero in IR". 

10.2.1. Theorem (Sard). Let f. M -+ N be a smooth (i.e. of class COO) map 
between smooth manifolds M and N. Then the set f( C) of critical values off has 
measure zero in N. 

PROOF. In view of the countability requirement on the collection of charts 
making up an atlas for a manifold, it suffices to prove that if U is any (open) 
region of IRm (identifiable with a chart of M) and f. U -+ IR" is any smooth map, 
then the set f(C) has measure zero in IR". The proof will be by induction on 
the sum m + n of the dimensions m, n of the manifolds M, N. Since the 
theorem is obvious if either m = 0 or n = 0, we may assume m, n ~ 1. 

Denote by C, the subset of M consisting of those points x of M at which ail 
of the partial derivatives of f of order ~ i are zero. We then have a 
descending sequence of closed subsets of M: 

C::) C1 ::) C2 ::) .... 

We split the proof up into three lemmas. 

10.2.2. Lemma. The set f(C\Cd has measure zero. 

PROOF. Since clearly C = C 1 for n = 1, we may assume that n ~ 2. We shall 
need the following special case of "Fubini's theorem" (whose proof can be 
found in most analysis textbooks): a set A c IR" = IRI X IR" -1 has zero 
n-dimensional measure if it intersects each hyperplane q x IR" -1 (q E 1R1) in a 
set of zero (n - I)-dimensional measure. 

Our aim is to find, for each x' E C\C 1, an open set V c IRm, containing x', 
such thatf(V n C) has zero measure. The lemma will then follow since C\C 1 

can be covered by countably many such V. 
Since x' rt C 1, at least one of the first partial derivatives of f at x' must be 

non-zero; without loss of generality we may suppose of do x 1 #0 at x', where 
fl is the first co-ordinate function of the map f. Define a map h: U -+ IRm by 
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Figure 18 

h( x) = (It (x), X 2, ..• , xm). Since the rank of dh at x' is clear! y m, it follows (from 
the Implicit Function Theorem) that there is a neighbourhood V = V(x') c U, 
such that the restriction of h to V is a diffeomorphism from V onto some open 
neighbourhood V' of the point h(x'). Hence the set C of critical points of the 
composite mapping g = f 0 h - 1: V' -+ IR" is just h( V (\ C), i.e. g( C) = f( V (\ C) is 
the set of critical values of g (see Figure 18). 

From the definition of the map g it follows that the image under g of each 
point of V' of the form (t, x 2 , ••• , xm) lies in the hyperplane t x IR" - 1, so that g 
sends hyperplanes in V' to hyperplanes in IR". (Incidentally, rather than 
introduce the map h, we could have worked directly with curved hyper
surfaces.) 

Consider the family of smooth maps 

gI: (t x IRm - 1) (\ V' -+ t x IR" - 1, 

obtained by restricting g appropriately. Then since 

( ;!~ ) = (: o~:.) 
ax} 

at each point IX = (t, X 2, ... , xm) of V', it follows that IX is a critical point of g if 
and only if it (or rather the (m-l)-tuple (x 2, ••• , xm)) is a critical point of gr. 
By the inductive hypothesis the set of critical values of gt has measure zero in 
t x 1R"-1; hence the intersectiong(C) (\ (t x 1R"-1) has zero (n - I)-dimensional 
measure. It now follows from the special case of Fubini's theorem stated at 
the beginning of the proof, that g(C') has measure zero, as required. 0 

10.2.3. Lemma. For all i2! 1 the sets C i \Ci + 1 have measure zero. 

PROOF. The argument will in part resemble that of the previous lemma. Thus 
let x' E Ci \ Ci + 1; then at the point x' all partial derivatives of orders ~ i of the 
co-ordinate functions of the mapping f vanish, while for some family of 
indices r; Sl, S2"'" Si+ 1, we have 

ai + if, 
----'--'-#0 at x'. 
ax., ... ax" + , 
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Denoting the function iJi/,/ox.2 .. • Ox.i + J by W, we have 

W(x' ) = 0, oW I #0 
ox., ,,' . 

We may without loss of generality assume that S1 = 1. The map h: U-+lRm 
defined by h(x) = (W(x), x 2 , " • ,xm), is (for the usual reasons) when restricted 
to some neighbourhood V of x', a diffeomorphism from that neighbourhood 
onto an open set V' c: IRm. Consider now the image of the set C/ n V under the 
mapping h. Since the first co-ordinate function of his W(x), which is a partial 
derivative of f of order i, and since all such partial derivatives vanish on the 
set C/, it follows that h sends C1 n V to the hyperplane 0 x IRm - 1. 

As in the preceding lemma we now form the composite map g = f 0 h - 1: 
V' -+ IR". By the inductive hypothesis the set of critical values of its restriction 
g': (0 x IRm - 1) n V' -+ IR", has measure zero in IR". Now all points of the set 
h(C/ n V) (which is contained in the domain of g') are critical for g' since the 
set C/ n V consists of points at which all partial derivatives of order:::;; i of f 
vanish, so that (by the chain rule) all partial derivatives of g' of order :::;; i 
vanish at all points of h(C/ n V) (or for the simpler reason that the rank of f is 
less than n). Hence the set g' 0 h (C/ n V) = f( C/ n V) has measure zero in IR". 
The lemma now follows (as in the proof of the previous one) by covering 
C/\C/+ 1 by countably many such open sets V. 

(Note that the difference in the proofs of the above two lemmas resides in 
the fact that in the first lemma we were, generally speaking, unable to arrange 
(via a suitable diffeomorphism h) for C n V to lie in the hyperplane 0 x IRm- 1, 
since the definition of C as the set of points at which f has rank < n, did not 
allow the selection of any such hyperplane in the way this was effected in the 
proof of the second lemma.) 0 

10.2.4. Lemma. For sufficiently large k the set f(Ck ) has measure zero. 

PROOF. Cover Ck with a countable collection of cubes of (small) side b. Let 1m 

be anyone of these cubes contained in U; we shall show that for k sufficiently 
large the set f(Ck n 1m) has measure zero. By Taylor's theorem and the 
definition of Ck we have that for x E Ck n 1m, X + hElm, 

f(x + h):= f(x) + R(x, h), 

with IR(x, h)l:::;; (Xlhlk+1, where (X depends only on f and 1m, and I I denotes 
Euclidean length of vectors. Subdivide 1m into rm subcubes each of side b/r, 
and let 11 denote a cube of the subdivision containing the point x. Then every 
point of the cube 11 has the form x + h, where Ihl:::;; jrn b/r. Consequently 
f(ld is contained in the cube of side a/~+l with centre at the point f(x), 
where a = 2(X(jrn b)k + ,1. Hence f( Ck n 1m) is contained in the union of rm cubes 
whose total volume is at most rm(a/rk+ 1 )"=a"rm-n(k+ 1). If k+ 1 >m/n then this 
volume approaches zero as r-+oo. This proves the lemma. 0 

As noted earlier, Sard's theorem now follows from the above three lemmas. 
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10.2.5. Corollary. Let f M -+N be a smooth map of smooth manifolds M, N, 
with set of critical points C. Then the set N\f(C) is everywhere dense in N. 

10.2.6. Corollary. If f M-+N is a smooth map of smooth manifolds M, N, 
where dim M < dim N, then the image f(M) has measure zero in N. Hence, in 
particular, f cannot map M onto N, i.e. f(M) is properly contained in N. 

We shall later on (in §11.1) use Sard's theorem to prove "Whitney's 
theorem" on embed dings and immersions of smooth manifolds. For the 
present we turn our attention to the non-critical or "regular" points of a 
mapping. 

10.2.7. Definition. A point x E M is called a regular point of a smooth map 
f M -+ N, if it is not critical, i.e. if the rank of the map dfx is equal to n = dim N. 
A point YEN is called a regular value of a smooth map f M -+ N, if all of its 
preimages are regular points off(so that, in particular, y will be a regular value 
of f if f -l(y) is empty). If y is a regular value of the map f, then we shall say 
also that the map f is regular with respect to the point y. 

Thus given a smooth map f M -+ N, the sets of regular points and critical 
points are complementary in M, while the sets of regular values and critical 
values are complementary subsets of N. 

Note that if f M -+ N is a smooth map of smooth manifolds, and YEN is a 
regular value of f, then it follows from the Implicit Function Theorem that 
f -l(y) is a smooth submanifold of M. 

In the sequel we shall find useful the following easy consequence of Sard's 
theorem. 

10.2.S. Corollary. Let M, N be smooth manifolds and let y be a (fixed) point of 
N. Then the set of smooth maps f M -+N, for which y is a regular value, is 
everywhere dense in the space of all smooth maps from M to N. 

PROOF. We wish to show that given any smooth map g: M -+N, there is 
arbitrarily close to it a smooth map f M -+ N for which y is a regular value. 
By Sard's theorem the set of regular values of the map g is everywhere dense 
in N, so that a regular value y' of g can be found in every open 
neighbourhood U c N of the point y. We may choose U to be diffeomorphic 
to the open ball Bn (or disc Dn), with co-ordinate map cp: U -+ B". Write 
z = cp(y), Z' = cp(y'). It is intuitively clear that there exists a diffeomorphism h: 
B" -+ B", which maps points near the boundary identically, and has the further 
properties that h(zl) = z, and I h(t) - t I < e = p(z, Zl) for t E Bn. Extend h to a 
diffeomorphism h': N -+ N of the whole of N (identifying B" with U) by 
defining h' to be the identity outside U. Then the map f = h' 0 g has the desired 
properties. 0 

For our later purposes (hinted at prior to the corollary) we shall actually 
require a somewhat stronger result than this one. We shall need the fact that 
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the diffeomorphism h': N -+ N obtained in the course of the above proof, can 
be chosen so that not only is the map f = h' 0 g close to g in the former sense 
(namely p(J, g)=max p(f(x), g(x»<e), but also each pair of corresponding 
first derivatives are close. We place on the reader (as an exercise) the onus of 
proving the existence of such a diffeomorphism. 

10.3. Transversal Regularity 

We now turn to the important concept of t-regularity (t for "transversal"). 

to.3.t. Definition. Let P be a smooth submanifold of a smooth manifold N, of 
codimension k (where by "codimension" is meant simply dim N -dim Pl. 
Then a smooth map f: M -+ N from a smooth manifold M to N is said to be 
transversally regular on P if the rank of the map 

df: Yx-+ T,(x)N 11j(,,) P 

is k whenever f(x) E P, i.e. ifthe rank of the induced map of tangent spaces is, 
modulo the tangent space T,(x)P to P at f(x), equal to k, or, in yet other 
words, if the subspaces df(Tx) and T,(x)P together span the whole of the 
tangent space 1j(x)N to N at f(x), or if, as they say (somewhat imprecisely) 
"the image f(M) is transverse to P at the jloint f(x)" (see Figure 19). 

We note an important property of t-regular mappings: the complete 
inverse image f-l(p) eM is a smooth submanifold of M of the same co
dimension k as P, i.e. of dimension m + p - n; this follows from the Implicit 
Function Theorem. (Cf. the special case when P is a single point representing 
a regular value of f) 

10.3.2. Theorem. Let M, N be smooth manifolds, and PeN a smooth 
submanifold. Then the set of maps g: M-+N which are t-regular on P, is 
everywhere dense in the space of all smooth maps from M to N; i.e. in every 
neighbourhood of any smooth map M-+N, there exists a map t-regular on P. 

PROOF. We wish to show that given any smooth map f: M-+N, we can find 
arbitrarily close to f a map g which is t-regular on P. 

f 

Figure 19 
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We begin with the following observation, whose validity is essentially 
immediate from the definition of t-regularity: Let p: M --+ N be a smooth map, 
x a point of M, U an (open) neighbourhood of x and V::) J(U) an open 
neighbourhood of p(x) in N, and let P be a submanifold of N; then if the 
restriction p: U --+ V is t-regular on P (i.e. on P () V), then this will be true also 
of all smooth maps which, together with all their first partial derivatives, are 
sufficiently close to p and its respective first partial derivatives. (This in 
essence follows from the fact that p and its first derivatives at x determine how 
dp(Tx) is situated in Tp(x)N.) 

In view of this observation it is appropriate (as we shall see at the end of 
the proof) to first prove the theorem locally, i.e. for each open neighbourhood 
U (which we may identify with /Rm), corresponding V (identified with /R"), and 
P (identified with /RP c IR", where IRP consists of the points of IR" with their last 
(n - p) co-ordinates zero). Then writing J in terms of its co-ordinate functions 

J(x1, ... , xm) =(ft (x), ... , !v(x),!v+ 1 (x), ... , .t,;(x)), 

the t-regularity of J along P at the original point of interest, becomes 
equivalent to the condition that the point ° be a regular value of the map 
IX: IRm--+lRn- p , defined by IX(X)=(!v+l(X), ... , .t,;(x)). 

By Corollary to.2.8 above (or rather by the remark immediately following 
its proof) the set of smooth maps IRm--+ IR" - P for which ° is a regular value is 
everywhere dense (in the stronger sense of that remark) in the space of all such 
smooth maps. Hence there exists a smooth map IX': IRm--+lRn- p, such that IX' 
and its first partial derivatives are arbitrarily close to IX and its first partials, 
and such that also (denoting by gp+ l' ... , gn the co-ordinate functions of IX') 
the map 

g(xl, ... , xm)=(ft(x), ... , !v(x), gP+1(X), ... ,g"(x)) 

is t-regular on P. Assuming that the original function f IRm--+lR" has already 
been made t-regular on P at (relevant) points near the boundary av of V, let cp 
denote a suitable smooth function on V with the property 

cp= {o on av, 
1 on K, 

where K is suitable compact subset of V, and put p = J(1 - cp) + cp. g. The map 
p is then t-regular on P and has the properties that p(x) =J(x) on av and 
p(x) = g(x) on K; the t-regularity follows from our observation at the begin
ning of the proof since the maps J and g are close not only in the sense that 
p(f, g) = max p(f(x), g(x)) is small, but in the stronger sense that their 
respective first partials are also close: this secures the t-regularity of 
p = J(1 - qJ) + qJg = J + qJ(f - g) near the boundary of V in view of the fact 
that the perturbation cp(f - g) together with its first partials are small there. 
This completes the proof of the theorem. 0 

The concept of t-regularity allows the introduction of the important 
concept of "transversely intersecting submanifolds". Let M and P be two 
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smooth submanifolds of a smooth manifold N; we shal1 say that M and P 
intersect transversely if the inclusion map iM : M -. N is t-regular on P. This 
means that at each point x of the intersection M n P the tangent spaces TxM 
and TxP together span the whole of T"N. (Note that the relation of 
intersecting transversely is symmetric; i.e. in the above definition the map iM 
might equivalently have been replaced by the inclusion ip : P-.N (verify this!) 
Note also that the intersection M n P of a pair of transversely intersecting 
smooth submanifolds is a smooth submanifold.) 

The preceding theorem (which ultimately derives from Sard's theorem) 
tel1s us that transversal1y regular maps are so abundant that they can be 
found in arbitrarily smalI neighbourhoods of any smooth map; in this sense 
we may perhaps say that t-regular maps are "typical" among smooth maps. 
Thus Sard's theorem permits us, by means of an arbitrarily small perturb
ation (within the class of all smooth maps) of a given smooth map, to bring it 
into "general position" relative to the submanifold P (i.e. make it t-regular); 
theorems of the above type form the basis for the kind of procedure referred 
to generally as bringing a map into general position. 

(The last several results have been concerned with the existence of what 
might be cal1ed "small perturbations" in the class of alI smooth mappings 
between two manifolds; we note that it is sometimes of use to be able to bring 
a map into general position by means of variations (i.e. perturbations) within 
a narrower class of mappings.) 

The following result will prove useful to us. 

10.3.3. Theorem. Let A, M, N be smooth manifolds, let P be a submanifold of 
N, and let fAx M -. N be a smooth mapping which is t-regular on P. Then the 
set of all points a of A for which k=f(a,x):M-.N, is t-regular on P, is 
everywhere dense in A. 

(The manifold A may be regarded as an auxiliary "manifold of parameters" 
by the aid of which an initial map f(ao, x): m -. N, can be brought into 
general position.) 

PROOF. Denote the manifold f-l(P) by Q. If a layer (or "fibre") axM 
intersects Q transversely then (by definition) we have T(A x M)= T(Q)+H, 
where He T(a x M) (see Figure 20). (Here T( ) denotes the tangent space at a 
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relevant point of the bracketed manifold.) It follows from this and the 
assumption that fAx M -+ N, is t-regular on P, that df sends H to a subspace 
of T(N) supplementing T(P), i.e. thatfa is t-regular on P. The converse of this 
is clearly also true: if fa is t-regular on P, then the manifolds a x M and Q 
intersect transversely. 

Now a fibre a x M intersects Q transversely if and only if the point a E A is 
a regular value of the restriction to Q c A x M of the projection map p: A 
x M -+ A. Since by Corollary 10.2.5 of Sard's theorem the set of such regular 
values is everywhere dense in A, we have reached the desired conclusion.D 

Remarks. 1. This theorem is in fact equivalent to Corollary 10.2.5. The above 
proof shows it to be a consequence of that corollary. For the converse 
implication, let f M -+ N be a smooth map, and consider the map F: N x M 
-+N x N, defined by F(x, y)=(x, f(y». It is easily seen that x E N is a regular 
value of f if and only if F is t-regular on the submanifold N x x, whence by 
the above theorem (with N in the role of A) the set of regular values of f is 
everywhere dense in N. 

2. An important case of transverse intersection is that where the sub
manifolds M and P of N have "complementary dimensions", i.e. m + p = n, 
where m=dim M, p=dim P, n=dim N. Then from the very definition of 
transverse intersection of submanifolds it follows that M n P consists of 
isolated points only. Hence if N is embedded in a manifold N 1 of dimension 
> n, then M and P can be brought into general position in N 1 (i.e. perturbed 
by an arbitrarily small amount) so that their intersection is empty; i.e. M and 
P can be separated in N l' 

10.4. Morse Functions 

In §1O.2 we introduced the important concept of a critical point of a smooth 
map f: M -+ N of smooth manifolds. Consider now the special case when 
N = 1R1, the real line, so that f is just a smooth (scalar) function on M. 
Since dim Tf(JC) 1R1 = 1, a point x of M is critical (i.e. rank dfJC is less than 1) 
if and only if df" = O. Thus the critical points of a smooth function f(x) on 
M are obtained by solving the system of equations of 10 Xi = 0, 1 ~ i ~ m, 
i.e. grad f(x) = O. (Of course all this was familiar beforehand!) 

10.4.1. Definition. A critical point Xo E M of a smooth function f(x) on M is 
called non-degenerate if the matrix (02 f(xo)lox i oxi) is non-singular. A 
smooth function f on a manifold M is called a Morse function if all of its 
critical points are non-degenerate. 

Remark. This definition is valid in the sense that the non-singularity of the 
matrix (02 f(xo)loxiox i ) (which is, by the way, called the Hessian of the 
function f at the point xo) is independent of the choice of local co-ordinates 
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in a neighbourhood of the critical point Xo' This is a consequence of the fact 
that the Hessian is the matrix of the symmetric bilinear form d2 f on TxoM 
defined as follows. Let ~, '1 E TxoM; we may suppose that ~, '1 are, respectively, 
the values at Xo of smooth vector fields X, Y defined on M. Then set d2 f(~, '1) 
= aXay(f)xo, where ax, ay denote the operations of taking the directional 
derivatives of functions in the directions X, Y. It is then easily verified that 
d2 f is indeed a symmetric bilinear form, and that its matrix relative to the 
basis e1 = a/ax 1 , .•. , em = a/axm of TxoM is precisely (a 2 f(xo)/ax i ax}). 

10.4.2. Definition. By the index of a non-degenerate critical point Xo of a 
function f on a manifold M, we shall mean the largest dimension attained by 
subspaces V c TxoM on which the Hessian d2 f is negative definite, i.e. the 
number of negative squares in the bilinear form d2 f after it has been brought 
into canonical (diagonal) form. 

The question now naturally arises as to whether Morse functions always 
exist on a manifold M, and if so, how many, i.e. whether they are everywhere 
dense in the space of all smooth functions on M. The answers to these 
questions are in the affirmative (for compact M): this forms the substance of 
the next theorem. As before we may express this everywhere-denseness of 
Morse functions by saying that an arbitrary smooth function can be changed 
to a Morse function by bringing it into "general position", or again that 
Morse functions are "typical" among smooth functions. 

10.4.3. Theorem. (i) On any compact smooth manifold M there exist Morse 
functions. 

(ii) The Morse functions on M are everywhere dense in the space of all smooth 
functions on M. 

(iii) Every Morse function on M has only finitely many critical points 
Xl"'" xn (which are therefore certainly isolated points of M). 

(iv) The subset of Morse functions f on M with the property that each critical 
value of f corresponds to exactly one critical point on M (i.e. such thatfor 
any pair of distinct critical points x, y EM of f, we have f(x) -:/= f(y» is 
everywhere dense in the set of all Morse functions on M. 

PROOF. It is almost immediate from the definition that the non-degenerate 
critical points of a smooth function f on M are isolated (since if Xo is a non
isolated critical point, then by choosing local co-ordinates suitably in a 
neighbourhood of Xo it can be arranged that, for instance, a2 f(xo)/ax l axi = 0 
for all i). The compactness of M then implies that they are finite in number. 
This proves (iii). 

We now turn to (i) and (ii). Thus we wish to show that given any smooth 
function f on M we can find a Morse function g arbitrarily close to it (i.e. 
such that max If(x)-g(x)1 <8 for arbitrarily prescribed 8>0); hence we shall 
consider the "small perturbations" of f, and endeavour to detect among them 
a Morse function. 
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Consider the map af: M-+T*M, defined by af(x)=dfx, where T*M 
denotes the cotangent bundle on the manifold M, i.e. the 2m-dimensional 
smooth manifold consisting of all pairs (x, e) with x E M and e a covector at 
the point x (i.e. e E T! M) (see §7.l above). (Note that the linear functional dfx 
belongs to T!M; strictly speaking a,(x)=(x, dfx).) We shall now describe a 
construction whereby a f is included as a member of an s-parameter family A 
of maps which are perturbations of af' To this end we first cover M with a 
finite collection {Uj }, 1::;; j ::;; k, of open balls, and enclose each of these balls 
Uj in a larger one lj such that Vj c lj. We then choose on each lj a set of m 
independent linear functions l~j(x), ... , lVj(x) of local co-ordinates on lj; e.g. 
the local co-ordinates Xl, ... , xm themselves will serve. By Lemma 8.1.2, 
corresponding to each pair lj, Uj there exists a smooth function CPj on M, 
such that CPj(x) = 1 on Vj, CPj(x)=O outside lj, and O::;;CPj(x)::;; 1 on lj\Uj . 
The existence of such a function cP j for each j allows us to define new smooth 
functions l~j' i = 1, ... , m, which are defined on the whole of M and agree with 
l~j on Vj, by 

l~(x)= {1~j(X) CPj(x) for x E lj, 
J 0 for x E M\ lj. 

Denote by A the linear space of smooth functions on M of the form 

g(x, a)= f(x)+ L. a~j l~j(x), 
JI jta 

where f(x) is our initially given smooth function on M, and the a~j are real; 
clearly dim A = mk where k is the number of open balls Uj in our covering of 
M, and we may take the a~j' 1::;; i::;; m, l::;;j::;; k, as co-ordinates for A. 
Consider the map 1/1: M x A -+ T* M, defined by I/I(x, g) = dg,,; clearly this map 
is smooth. The n-dimensional submanifold P of T* M, defined by 
P = {(x, O)lx E M} (the so-called "zero-th cross-section of the cotangent bundle") 
is obviously diffeomorphic to M. We claim that the map 1/1: M x A -+ T* M, is 
t-regular on P. To see this, note first that a typical element of 1(".o)(M x A) 
has the form (C, h(x», where , is an arbitrary tangent vector M at x, and 
h(x) is an arbitrary linear combination of the functions l~. (Recall that we 

• J 

may use the a~j as co-ordinates for A; the partial derivatives of g(x, a) 
with respect to the a~j are just the l~j') It follows that a typical element of 
dl/lTc".o)(M x A) has the form (t'f, I), where t'f is an arbitrary tangent vector to 
M at x an~ I is an arbitrary linear combination of the gradients of the l~j' 
Since the l~j were chosen to be linearly independent on Vi' we deduce that 
dl/lTc".o)(M x A) does indeed supplement in T*M the tangent space to the 
submanifold P, i.e. 1/1 is t-regular on P, as claimed (see Figure 21). 

It now follows from Theorem 10.3.3 that the set of ao E A for which the 
map I/I(x, ao): M -+ T* M is t-regular on P, is everywhere dense in A. Hence 
arbitrarily close to the original map af: M -+ T* M (which is equal to I/I(x, 0) 
sincef(x)=g(x, 0) corresponds to the zero values of the parameters a~ .), there 

J 

exists a map I/I(g, x) = dg" = aix), which is t-regular on P. The function g then 
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Figure 21 

Figure 22 

represents a small shift in the original function f by means of linear functions, 
having the property that !Xg: M -+ T* M is t-regular on P (see Figure 22). 

Now t-regularity of !Xg on P means precisely that !Xg(M) and P intersect 
transversely at each point (X o, 0) of their intersection !Xg(M) n P, i.e. the 
tangent space to T* M at (xo, 0) is the sum of the tangent spaces to P and to 
tXg(M). Now a typical element of !Xg(M) has the form (x, dgx ) where dgx can be 
written as (og/ox l , ... , og/oxm ); hence a typical tangent vector to !Xg(M) at 
(x, dgx ), will have the form (~, (d/dt)(og(x(t))/ox)!t=o), where ~ is a tangent 
vector to M at x, and x(t) is a curve in M with x(O) =x.1t follows that tangent 
vectors to tXiM) are of the form (~,(02g/oxj oxi)t/), where ~, t/ are arbitrary 
tangent vectors to M at x. Now since, as just observed, the tangent space to 
T* M at (xo, 0) is the sum of the tangent spaces to P and to !Xg(M), it follows 
that the matrix (02g(XOVox i ox i ) must define an isomorphism, i.e. must be 
non-singular at Xo. Since the Xo such that (xo, 0) E !Xg(M) n P are precisely the 
critical points of g (satisfying dgxo == 0), we infer that the critical points of g are 
non-degenerate, i.e. that g is a Morse function. 

Thus we have established parts (i), (ii) and (iii) ofthe theorem. It remains to 
prove (iv), i.e. that the set of Morse functions having precisely one critical 
point on each critical "fibre" (i.e. in each complete inverse image of a critical 
value) is everywhere dense in the set of all Morse functions. 

Thus letf(x) denote an arbitrary Morse function on M with critical points 
Xl"'" XN' Let U, W be two open neighbourhoods of the point Xl with the 
properties that a c w, a and Ware compact, and Xi ¢ W for i> 1. By 
Lemma 8.12 there exists a smooth function A(X) on M such that A(X) == 1 
on 0, A(X) == 0 outside W, and 0:::;; A(X) :::;; 1 on W\ U. The subset 
supp An supp(1- A) = K, being a closed subset (by definition) of the compact 
space W, is itself compact; it follows from this and the fact that none of the critical 
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points Xl' ... , XN is in K, that there exist positive constants a, b such that on 
K the following inequalities hold: 0 < a:5; Igrad fl:5; b. Let " be any 
positive real satisfying" < alb, and not equal to any of the differences 
If(xd - f(x;)l· Then the function f1 = f + 1]A is a Morse function having 
the same critical points as f, and possessing in addition the property that 
f1(X;) 01= f1(X 1) for i> 1. The latter property is immediate. That f and f1 
have the same critical values follows from the facts that grad A. == 0 outside K, 
that f1 = f + I] (where I] is constant) on U, and that on K 

Igrad(f + 1]A)1 ~ I grad f I-I I] grad AI ~a -"b > O. 

It is then also clear that it is a Morse function. 
Essentially by repeating this procedure for the critical points x2, ••• , XN in 

succession (beginning with it in place of f), we finally obtain the desired 
Morse function. 0 

§11. Applications of Sard's Theorem 

11.1. The Existence of Embeddings and Immersions 

In §9 above we showed that any smooth, closed manifold can be smoothly 
embedded in Euclidean space IRN for N sufficiently large. Our next result, the 
so-called "weak form of Whitney's theorem", gives us an idea of how large an 
N will suffice. 

11.1.1. Theorem (Whitney). Any smooth, connected, closed manifold M of 
dimension n can be smoothly embedded in 1R2n + 1, and smoothly immersed in 1R2n. 
Every continuous map M --+ 1R2n + 1 (resp. M --+ 1R2n) can be approximated 
arbitrarily closely by smooth embeddings (resp. smooth immersions). 

PROOF. We shall prove only the first statement of the theorem. By the theorem 
of §9 we can regard M as a submanifold of IRN for some sufficiently large N. 
The basic idea of the following proof consists in the construction of successive 
projections of the submanifold M c IRn onto hyperplanes, at each step 
reducing by 1 the dimension of the ambient Euclidean space. Recall from §2.2 
that the straight lines in IRN passing through the origin 0 are by definition the 
"points" of the (N -l)-dimensional projective space IRpN -1. For each 
I E IRpN - 1, let ttl be the orthogonal projection of IRN onto the hyperplane 
IRf -1 orthogonal to I and containing the point O. 

Our aim is in essence to find a straight line I such that the projection ttl(M) 

of M is again a smooth manifold (now in IRf - 1). Considering first the case of 
immersions, we seek projections ttl with the property that for every x E M the 
differential dnl: T"M --+ IRf - 1, has zero kernel. Those directions I E IRpN - 1 for 
which dttl has non-zero kernel for some x, we shall call prohibited directions of 
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Figure 23 Figure 24 

the first kind. (If, for example, a smooth curve)' c 1R3 is projected onto a 2-
dimensional plane 1R2 along a prohibited direction, the result of the 
projection will be a curve having singularities of the form shown in Figure 23, 
usually called "cusps".) It is clear that the prohibited directions I are 
characterized by their having the property that for at least one point x EM 
some parallel translate of I is in YxM (see Figure 24). In terms of the set of 
prohibited directions we define a smooth manifold Q as follows: the points of 
Q are the ordered pairs (x, I) where x E M and 1 is any straight line (in IRpN-1) 
parallel to a vector in TxM. (Show that Q is indeed a smooth manifold!) Since 
the x need n parameters for their determination and the 1 need n-I, it follows 
that Q is (2n - I)-dimensional. In view of the smoothness of the embedding 
M c IRN, the map tx: Q ..... IRpN - 1, defined by tx(x, I) = I, is also smooth. By 
Sard's theorem the set tx(Q) consisting precisely of the prohibited directions, 
has (N - I)-dimensional measure zero if N - 1 > 2n - 1, i.e. if N > 2n. Hence if 
2n < N, then the set tx(Q) of all prohibited directions certainly fails to exhaust 
IRpN -1 , so that there exists an element 10 of IRpN -1 outside tx(Q). Hence in this 
case we have a smooth immersion (namely 1t,o: M ..... lRro-1) of Minto IRro- 1. 

Clearly this argument remains valid if from the beginning we assume only 
that M is immersed (rather than embedded) in IRN; hence the above procedure 
of projecting M onto a hyperplane can be re-applied in the new situation 
where M is immersed in IRN - 1, and in fact successively repeated k times 
provided 2n5:, N - k. At the commencement of the final (say (k + I)st) step we 
shall have M immersed in IRN - k where N -k=2n+ 1; a final projection will 
then achieve an immersion of Min 1R2., after which the above procedure is no 
longer applicable. This concludes the proof that M can be immersed in 1R2 •. 

We now turn to the problem of embedding M in 1R2• + 1. Thus we seek a 
straight line 1 in IRpN-1 such that the projection 1t" in addition to being an 
immersion of M, is one-to-one on M, i.e. 1t,(M) involves no self-intersections 
of M. A straight line 1 E IRpN-1 will be called a prohibited direction of the 
second kind if the corresponding projection 1t,: M ..... lRf - 1 is not one-to-one. 
(If, for example, a smooth curve)' c 1R3 is projected onto a 2-dimensional 
plane 1R2 along a prohibited direction of the second kind, then the image will 
have self-intersections as illustrated in Figure 25.) 

It is clear that the prohibited directions of the second kind are just those 
1 E IRpN -1 some parallel translate of which intersects M in at least two points. 
The set of all prohibited directions gives rise to a 2n-dimensional, smooth 
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Figure 25 

manifold P consisting of all ordered pairs (x, y), x, y E M, where x #- y; i.e. 
P = (M x M)\L\, where L\ = {(x, x)\x E M} is the diagonal subset of M x M. 
The map 13: P --+ IRpN - 1, where f3(x, y) is defined to be the straight line through 
o parallel to the straight line segment joining x and y, is easily seen to be 
smooth. Hence Sard's theorem tells us that if 2n < N -1, then the set f3(P} 
c IRpN - 1, has (N - 1 }-dimensional measure zero. 

Hence the union et(Q) U f3(P} (which incidentally coincides with the closure 

f3(P) of f3(P), since et(Q) consists essentially of tangent lines to M, while f3(P} 
consists of chords) has (N -1)-dimensional measure zero. Thus if N > 2n+ 1 
there certainly exist straight lines in IRpN- 1 which are not prohibited 
directions of either kind. If 10 is any such straight line, then the projection 
1t,o: M --+ IR~ - 1, will be a smooth embedding of M in IR~ - 1. As in the case of 
immersions, we iterate this procedure of projecting M onto a hyperplane until 
the argument just given no longer applies; with the final iteration we shall 
have achieved an embedding of Minto 1R2n+ 1, as required. 0 

Remark. In connexion with this proof we note that there is in general no 
possibility of refining the argument to produce further projections onto 
hyperplanes, which are still embeddings of M. For suppose that M is the 
circle Sl initially embedded in 1R3 as a non-trivial knot (as, for example, in 
Figure 26); here n = 1, N = 3 = 2n + 1. It is intuitively clear that all projections 
of this knotted circle onto 2-dimensional planes in 1R3 will result in self
intersecting curves. This counterexample shows that any attempt to reduce 
the dimension of the ambient Euclidean space which uses the "projection 
method" of the above proof, will necessarily be unavailing. Nonetheless by 
means of a subtler argument the dimension can be reduced: there is a more 
difficult result (whose proof we omit) to the effect that any compact n
manifold M can be smoothly embedded in 1R2n; however the embeddings 

Figure 26 
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M -+ 1R2n, are no longer everywhere dense in the space of all smooth maps 
M -+ 1R2n. In general no further reduction of the dimension is possible: we 
invite the reader to prove that a non-orientable, closed 2-manifold is not 
embeddable in 1R3 (see §2.1). However in particular cases, i.e. for more 
restricted classes of manifolds, the dimension can be further reduced; for 
instance, it can be shown on the basis of the known classification of compact, 
orientable, 2-dimensional manifolds, that any such manifold can be embedded 
in 1R3. 

11.2. The Construction of Morse Functions 
as Height Functions 

With the aid of an embedding M --+ IRN, we shall now give a different proof of 
the existence of Morse functions on a compact smooth manifold M. We shall 
show that Morse functions can be found in a rather narrow class of functions 
on manifolds, called "height functions", which we shall now define. 

Let M be smoothly embedded in IRN, and let (in distinction to the previous 
subsection) el(t) denote a (parametrized) straight line through the origin of IRN 
with direction vector I. Define a function hi on M by setting hl(x) equal to tx 
where tx is that value of the parameter t at the point of orthogonal projection 
el(tx) of x E M onto the line e/(t). (Thus if t is distance (positive or negative) on 
el(t) from the origin, then h,(x) is the distance of x E M from the origin (or 
"height above the origin") in the direction I. Such functions h, are called 
height functions on M c:: IRN. 

The reader will easily verify the following two properties of height 
functions: 

(i) The set of height functions on M is (neglecting the particular para
metrizations of the e,(t» in one-to-one correspondence with the set 
of pairs of diametrically opposite points of the (unit) sphere SN - 1, or, 
equivalently, the points of IRpN-l; 

(ii) A point Xo of M is a critical point of a height function hi if and only if the 
vector I is orthogonal to the manifold M at the point Xo (i.e. 11- T,.,oM). 

Our next task is to discover conditions under which a critical point Xo E M 
of a height function hi is non-degenerate. We shall at this point restrict our 
considerations to manifolds M embedded in IRm+l, where m=dim M, i.e. to 
hypersurfaces in IRm + 1 (but see the "Important Remark" below). Recall (from 
§26.2 of Part I) that for hypersurfaces M c:: IRm + 1 the Gauss map r: M --+ sm 
--+lRpm is defined by r(x)=n(x), where n(x) is the unit normal vector to M at 
the point x (translated back to the origin, i.e. with its tail at the origin). 

11.2.1. Lemma. A point Xo of the hypersurface M c:: IRm + 1 is a non-degenerate 
critical point of a height function hi if and only ifit is a regular (i.e. non-critical) 
point of the Gauss map r: M --+ IRpm (and of course also 11- TxoM). 
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PROOF. By means of a suitable orthogonal change of co-ordinates on IRm + I we 
can arrange that the xm + I-axis is parallel to I (so that the other m-axes are 
perpendicular to I). The hyperplane IRm(x l , ... , xm) can then be regarded as 
the tangent space to M at xo, and in some sufficiently small neighbour
hood of Xo the manifold M will be given by an equation of the form 
xm+ l = cp(xt, ... , xm), with dcplxo = 0, and xl, ... , xm will serve as local co
ordinates. Then on that neighbourhood the "height" hl(x) is just the function 

( 1m) m + I B d fi" f I m + I . th f f cp x , ... , x = x . y e mng m terms 0 x , ... , x , as m e proo 0 

Theorem 26.2.2 of Part I, suitable local co-ordinates y1, ... , ym on the sphere 
sm in a neighbourhood of the image point r(xo), and repeating the argument 
given there (with m + 1 in place of 3) leading to the formula K d<T = r*(n), 
where K is the Gaussian curvature of M (which may be taken to be defined by 
the equation below), and d<T, n are the (induced) volume elements on M and 
sm, respectively, we obtain the following equations: 

( 02hl(XO») = (02cp(xo») = (Oya.1 ); 
oxa. ox fJ oxa. ox fJ ox fJ 

Xo 

d (02hl(XO») =K 
et oxa. oxfJ ' 

where here K is the Gaussian curvature of M at xo, and ya. = ra.(xl, ... , xm), 
1 !5: 1X!5: m, is the Gauss map expressed in terms of the local co-ordinates 
Xl, ... , Xm; yl, ... ,ym. It is immediate from the first of the above equations 
that the condition that the Gauss map r be regular at xo, namely 
det(oya./oxfJlxo) =I: 0, is equivalent to the defining condition for non
degeneracy of the critical point Xo of h" namely det(02h,(xo)/oxa. oxfJ) =I: 0. 
This completes the proof of the lemma. 0 

11.2.2. Theorem. A height function hi on a hypersurface Me IRm+1 
(m=dim M) is a Morse function precisely if the point {±I} of IRpm is a 
regular value of the Gauss map r: M -+ IRpm. It follows that the Morse 
functions are everywhere dense in the set of height functions on M. 

PROOF. The first statement is immediate from the lemma. The second follows 
from Sard's theorem, which tells us that the regular values of the Gauss map 
are everywhere dense in IRpm. 0 

Important Remark. This theorem is valid without the restriction that M be a 
hypersurface in IRm, i.e. it holds quite generally for any smooth embedding 
Me IRq (q ~ m + 1). We now sketch an argument allowing us to deduce this 
general result from Lemma 11.2.1. Thus suppose Me IRq with q>m+ 1, 
where m=dim M. We shall now define a (q-l)-dimensional manifold N, as 
the boundary of a so-called "tubular neighbourhood" of the manifold M. To 
this end consider the set of (q-m)-dimensional discs D~-m in IRq (i.e. balls) 
orthogonal to the submanifold M, of radius 8>0, and with centres at the 
points x of M. For sufficiently small 8>0, the union of these discs is a q-
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Figure 27 

dimensional submanifold of IRq (a "tubular neighbourhood" of M), whose 
boundary we denote by N (see Corollary 11.3.3 below). Since N has 
dimension q -1, it can be mapped via the Gauss map r to sq -1. 

Now let hl(x) be any height function defined for points x in M or N (i.e. on 
M uN). It is intuitively clear that with each critical point Xo E M of the 
function hl(x) there are associated exactly two critical points Yo and yo·of hi 
restricted to N, namely the two points of intersection with N of the straight 
line parallel to I passing through Xo and orthogonal to M at Xo (see 
Figure 27). 

It may be shown that a critical point Xo E M, of the function hi restricted to 
M, is non-degenerate precisely if the points Yo, Yo are non-degenerate for hi 
restricted to N. (They are always either both degenerate or both non
degenerate.) Hence if hi is a Morse function on N, then it is also a Morse 
function when restricted to M. The existence and everywhere denseness (in 
the set of all height functions on N) of Morse functions on N, guaranteed by 
Theorem 11.2.2, therefore implies the analogous conclusion for M. We have 
thus shown that the restriction that M be a hypersurface in IRm + 1 was 
inessential. 

11.3. Focal Points 

There exist yet other simple methods of obtaining a plentiful supply of Morse 
functions on a smooth manifold. Without going into great detail, we describe 
one such method. 

Consider a smooth m-manifold M smoothly embedded as a submanifold 
of IRq. With each point p E IRq, we associate a smooth function L" on the 
submanifold M, defined by L,,(x)=!p-X!2, where x E M and !p-x! is the 
Euclidean distance between the points p, x E IR". We shall show that for 
almost all points p E IRq (i.e. for all points except those in a set of measure 
zero) the function L" is a Morse function on M. (Clearly the set of functions of 
the form L,,(x) is different from the set of height functions hl(x).) 

For the proof we first define the "focal points" for M c IRq; our ultimate 
aim will then be to show that the set of focal points, which has measure zero, 
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coincides with the set of points p E IRq for which Lp is not a Morse function 
onM. 

Denote by N the set of ordered pairs (x, v), where x E M, and v (E IRq) 
ranges over the set of vectors orthogonal to M at the point x. We leave to 
the reader the straightforward verification of the fact that N is a smooth 
q-dimensional manifold. Denote by f: N -+lRq the (smooth) map sending each 
pair (x, v) E N to the end-point (tip) of the vector v (assumed to have its tail at 
x). 

11.3.1. Definition. A point P of IRq is called a focal point of multiplicity jJ. for M 
if for some (x, v) E N, we have P = f(x, v) and the Jacobian of the map f has 
rank q-jJ.<q at (x, v). 

It is immediate from Sard's theorem that the set of focal points P for 
Me IRq has measure zero in IRq. 

We next define (analogously to the definition in the case q = 3, m = 2, given 
in §8.1 of Part I) the "second fundamental form" of the submanifold M c IRq. 
Let Xo E M. We may suppose that in some neighbourhood of Xo the 
submanifold M c IRq is defined by a parametric system x = x( U 1, ••• , um) of 
equations, where the u" are local co-ordinates on M and x=(x 1, ••• , xq). 
Write x/j=a2x/aui au j, denote by va unit normal to M at the point xo, and 
consider the (Euclidean) scalar product (at xo) (v, Xi}) = (v, nlj(xo», where 
njj(xo) is the component of the vector Xij in the direction ofthe normal v at the 
point Xo. The matrix Qv with entries (v, xi}) is then by definition the matrix of 
the secondfundamentalform of M with respect to the normal v. Let G = (gij) be 
the matrix of the first fundamental form of M c IRq, i.e. of the metric on M 
induced by the Euclidean metric on IRq. We may suppose the local co
ordinates ul, ... , um so chosen that G(xo) is the identity matrix, so that at the 
particular point Xo we have G -1Qv = Qv' Analogously to the definition given 
in §8.3 of Part I, we define the principal curvatures of M at the point Xo in the 
direction v to be the eigenvalues A" ofthe matrix G- 1Qv (which in terms of our 
specially chosen local co-ordinates is just Qv at xo). 

11.3.2. Lemma. The focal points on the straight line Xo + tv (through the point 
Xo and parallel to v) in IRq, are precisely the points where t = A; 1, 1 ~ IX ~ m, i.e. 
where t takes on as values the reciprocals of the principal curvatures of M c IRq 
at the point xo, in the direction v. 

PROOF. Since N has the same local manifold structure as the product 
M x IRq-m, we may introduce on some neighbourhood of the point (xo, v) 
local co-ordinates of the form ul, ... , um, tl, ... , tq - m, where u1, ... , um are local 
co-ordinates on M. In terms of such co-ordinates f has the form 

f(x(u), t)=x(u)+ L t"aiu), 
" 

where (a,,(u» is a frame for the space of all vectors orthogonal to M at the 
point x(u), which frame is assumed to depend smoothly on u. Hence in terms 
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of these co-ordinates df is given by the q x q matrix 

(1) 

The effect of df on a tangent vector to N is then computed by premultiplying 
the vector by this matrix. Since for x near Xo we may take as a basis for TxM 
the set of vectors ox/oua, 1::s; IX::S; m, the set 

forms a basis for the tangent space to N at each point in the neighbourhood 
of (xo, v). In view of (1), the image under df of this basis is given by the 
columns of the matrix 

(2) 

where here 1 denotes the (q-m) x (q-m) identity matrix. The rank of this 
matrix will therefore be equal at each point to the rank of the map f, i.e. the 
rank of the Jacobian matrix (1) of f 

Now clearly the rank of the matrix (2) is equal to (q-m)+rank A, where 

whence A can be rewritten as 

A = (gij-~ ta <aa, O~i2:U~ ). 

Thus for points of the form (xo, tv) we have 

A = (gij - t~, o~i2~j> ) =(gij- t(v, xij»)' 

Hence at such points the rank of f is the same as the rank of the matrix 
(gij - t(v, xij»), whence the lemma is immediate. 0 

With this lemma we can now quickly reach our objective. Thus consider 
the function Lp(x)=lx-pI2=(X-p,x-p), where pE IRq. Then 
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aLp\x) =2<ax.,X) _2<ax.,p\ =2 <~~,x-p). 
au' au' au' '/ vu 

Hence the critical points of the function Lp on M are precisely those points 
x E M such that < ox/ au i, p - x) = 0, i.e. such that as a vector, x - p is 
perpendicular to TxM. Thus if x is critical, p has the form x + tv for some (unit) 
normal vector to YxM. To examine non-degeneracy we need to consider the 
second partial derivatives: 

~:7~~1=<a~2~j'X-~ + <:;,::j) =-<a~2~j,t~ +gij, 
where we have put p = x + tv. It is now immediate, in view of the above lemma, 
that the degenerate critical points of Lp occur precisely when p is a focal point 
for M; this is what we were seeking to prove. 

The following important consequence is usually called the "theorem on the 
existence of a tubular neighbourhood". 

11.3.3. Corollary. Let Me IRq be a smooth, closed submanifold. Then there exists 
an e > 0 such that the tubular neighbourhood N.(M) = {y E IRqlp(y, M) < e} 
is a smooth q-dimensional submanifold of IRq, with boundary aN.(M) a 
smooth (q-l)-dimensional submanifold of IRq. The manifold N.(M) fibres into 
(q -m)-dimensional discs D:-m(x), with centres x (only) on M, and the manifold 
aN.(M) fibres into spheres s:-m-l(x), x E M. 

PROOF. It suffices to take e < min j •x Aj- 1(X), where x ranges over the closed 
manifold M, and 1 ~ i ~ m; then in N.(M) there will be no focal points for 
M c IRq, and the corollary follows from the definition of focal points. 0 



CHAPTER 3 

The Degree of a Mapping. 
The Intersection Index of 
Submanifolds. Applications 

§ 12. The Concept of Homotopy 

12.1. Definition of Homotopy. Approximation of Continuous 
Maps and Homotopies by Smooth Ones 

Let M and N be two smooth (for simplicity of class COO) manifolds and let 
f M-+N, be a smooth map between them. 

12.1.1. Definition. A smooth (resp. piecewise smooth, continuous) homotopy (or 
deformation) of a map f M -+N of manifolds, is a smooth (resp. piecewise 
smooth, continuous) map 

F: MxI-+N (I = [0, 1]) 

of the cylinder M x I to N, with the property thatf(x, 0)= f(x) for all x E M. 
Each of the maps fr: M -+N defined by J,(x) = F(x, t) is said to be homotopic to 
the initial map f = fo, and the map F of the whole cylinder is called a 
homotopy (or "homotopy process"). 

Since clearly the relation of homotopy between maps is an equivalence 
relation, the set of all maps M -+N homotopic to a particular map f, consists 
of pairwise homotopic maps; such a set is called a homotopy class of maps 
M-+N. 

For each I ~ 0, one defines in the obvious way the smoothness class C' of a 
smooth homotopy; in particular corresponding to 1=0 we have the class of 
all continuous homotopies. However for suitable manifolds M, N we shall 
now establish (on the basis of Theorem 10.l.2 above, on the approximability 
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of continuous maps by smooth ones) the following two properties of 
homotopies: 

(i) Any continuous map f: M -+ N can (for suitable M, N) be approximated 
arbitrarily closely by maps of class Coo which are (continuously) 
homotopic to f; 

(ii) If two smooth maps M -+ N are continuously homotopic, then they are 
smoothly homotopic. 

We now turn to the details. 

12.1.2. Theorem. Let M, N be smooth, compact manifolds, and let f, g: M --+ N 
be continuous maps. Then given any Riemannian metric on the manifold N, 
there exists a number e > 0 with the property that whenever f, g satisfy p(f, g) 
<e (where p denotes the distance between maps-see §10.l), then the maps f 
and g are homotopic. 

PROOF. Let p denote also the distance between points of N, defined (as in §1.2) 
in terms of the given Riemannian metric on N. It follows from the 
compactness of N and the local uniqueness of geodesics (see §29.2 of Part I) 
that there exists an e > 0 with the property that whenever two points p, q E N 
satisfy p(p, q)<e, there is a unique geodesic arc,}, joining p, q (and whose 
length is least among all continuous arcs from p to q so that the length of the 
geodesic arc is p(p, q)-see §36.2 of Part I). Now let f,g: M-+N, be con
tinuous maps satisfying p(f, g) < e (i.e. maxxeM p(f(x), g(x» <e); we wish to 
construct a homotopy F: M x I--+N with F(x, O)=f(x), F(x, l)=g(x). Thus 
we seek to define F(x, t) appropriately for all (x, t) E M x I. For each x E M, 
since p(f(x), g(x» < e, there is, by choice of e, a unique (shortest) geodesic arc 
'}'f(x),g(xlr) joining f(x) to g(x). As the image point F(x, t) we choose that 
point on this (directed) geodesic arc which divides it in the ratio t: (1- t) (see 
Figure 28). The continuity of F follows from the result (of the theory of 
ordinary differential equations) stating that the solution of a system of 
ordinary differential equations (in particular of the system of such equations 
defining the geodesics in N) depends continuously on the initial conditions. 
This completes the proof. 0 

1 I1x 1 (iC,1) _ _ g(iC) 

:~ ____ !_r ______ __ 

I1xO (iC,o) ___ f friC) 

Figure 28 
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12.1.3. Theorem. Any continuous map f: M-+N between compact, smooth 
manifolds M and N, is homotopic to some smooth map g: M -+ N. 

PROOF. Since by Theorem 10.1.2 the map f can be approximated arbitrarily 
closely by smooth maps, this result follows immediately from the preceding 
theorem. 0 

EXERCISE 

In connexion with the latter theorem, prove that if the continuous map f is smooth on 
some submanifold X c M, then the smooth approximating map g homotopic to it, 
may be so chosen as to coincide with f on X (see the proof of Theorem 10.1.2). 

From this exercise and the result (Theorem 10.1.2) on the approximability 
by smooth maps of any continuous map (in this case the continuous 
homotopy F: M x I-+N constructed in the proof of Theorem 12.1.2) we 
deduce immediately the following 

12.1.4. Theorem. If f, g: M -+ N are two smooth maps between the compact, 
smooth manifolds M, N, which are continuously homotopic, then they are 
smoothly homotopic. 

A similar line of argument leads to the following result: Any continuous 
map from a compact, smooth manifold M to a compact, smooth manifold N of 
sufficiently large dimension, is homotopic to a smooth embedding. If the initial 
map is smooth (rather than just continuous) then the homotopy (with the 
embedding as terminal map) can be made smooth. 

12.1.5. Definition. Two smooth embeddings f, g: M -+ N are said to be 
(smoothly) isotopic, if there exists a smooth homotopy F: M x 1-+ N, between 
the maps f and g, such that for all t E [0, 1] the map fr: M -+ N defined by 
fr(x) = F(x, t), is a (smooth) embedding. 

12.1.6. Theorem. Any two smooth embeddings f, g of a smooth, closed manifold 
M into Euclidean space IRq are isotopic provided q is sufficiently large. (Infact 
q;;:: 2m + 2 suffices, where m = dim M.) 

PROOF. It can be shown that for sufficiently large q the embeddings f and g 
are homotopic via a continuous (and hence by a smooth) homotopy 
F: M x I -+ IRq. (This can be achieved for instance by showing that for q large 
enough both maps f, g are continuously homotopic to a map of M onto a 
single point of IRq.) In view of the second assertion of Theorem 11.1.1, the 
smooth homotopy F can then be smoothly deformed to a smooth embedding 
of M x I into IRq again provided q is large enough; moreover, it can be 
arranged that this embedding of M x I agrees with F on the "base" M x 0 and 
the "lid" M x 1 of the cylinder M x I. This smooth embedding of M x I into 
IRq then serves as the desired smooth isotopy between f and g. 0 
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The above theorems permit us largely to ignore the difference between 
continuous and smooth homotopies; thus in the sequel we shall employ 
whichever sort of homotopy-continuous, piecewise smooth, or smooth of 
class coo-is most appropriate in the particular context. 

We shall in what follows denote the homotopy class of a map f. M ~ N by 
[n, and the set of all homotopy classes of maps M ~ N by [M; N]. 

12.2. Relative Homotopies 

We shall subsequently need to consider homotopies and homotopy classes of 
maps satisfying certain additional conditions. We note here the most 
important such conditions. 

(i) Let Xo E M and Yo E N be particular points of manifolds M and N. We 
shall sometimes be interested in the restricted class of maps M ~ N which 
send Xo to Yo' The homotopies between maps from M to N where all maps are 
restricted in this way are termed homotopies relative to the distinguished points 

Xo E M, Yo E N. 
(ii) Suppose that M and N are manifolds with boundaries aM and aN. A 

homotopy involving exclusively maps M -+ N which send aM to aN, is called 
a homotopy relative to the boundaries. 

(iii) Suppose that M, N are (not necessarily compact) manifolds. If we 
restrict our consideration to maps M ~ N with the property that the complete 
preimage of each point of N is compact, then homotopies F: M x I ~ N which 
also have this property, are called proper. 

(iv) The most general kind of relative homotopy is that where the 
permitted maps M ~ N are those which send a specified subset A of M to a 
specified subset B of N. The totality of corresponding relative homotopy 
classes is in this context denoted by [(M, A); (N, B)]. 

§13. The Degree of a Map 

13.1. Definition of Degree 

In this subsection our basic interest will be the theory of homotopy classes of 
maps between closed, oriented manifolds M and N of the same dimension n, 
especially in the case where N is a sphere. Let f. M ~ N be a smooth map, and 
let Yo E N be a regular value of f (see §1O.2). This means that the complete 
inverse image of Yo consists of only finitely many points Xl> ••• , X m , and that if 
xf are local co-ordinates in a neighbourhood of Xi> and Yo are local co
ordinates in a neighbourhood of Yo. then the Jacobian det (aYo/axf) is non
zero at Xi for each i = 1, ... ,m. (The finiteness of f -l(yO) follows from the 
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second (i.e. the defining) condition for regularity.) Note that since we are also 
assuming our manifolds M, N to be oriented, the lacobians of the transition 
functions between co-ordinates on the intersection of local co-ordinate 
neighbourhoods are always positive. 

13.1.1. Definition. By the degree of smooth map f M -+ N of connected, 
oriented, closed manifolds, with respect to a regular value Yo E N, we mean 
the number 

degf = L sgn det (~Y~), 
f(x;)=yo uXi 

(1) 

where the Xi' i= 1, ... , m, are the preimages of Yo under f (Note that in view 
of the orientations prescribed on M and N, the signs of the lacobians are 
uniquely defined on regions of overlap of charts.) 

The degree has important invariance properties. 

13.1.2. Theorem. The degree of a map f (as above) is independent of the choice 
of the regular value Yo, and invariant under homotopies. 

PROOF. We show first that the degree of f M -+ N is independent of the choice 
of the regular value Yo. (For regular values sufficiently close to Yo this is 
immediate since the number of pre images will be the same and the signs of the 
lacobians will correspond.) 

Let Yo, YI be any distinct regular values of f, and join them by a smooth 
non-self-intersecting path y in N, with non-zero tangent vector at each point. 
By the sort of argument used to prove Theorem 10.3.2 it can be shown that 
the path y can be chosen so that f is t-regular on y. The t-regularity of f on y 
then implies that the complete inverse image f -I(y) of y, is a smooth one
dimensional manifold in M, with boundary made up of the two sets f -l(yO) 
andf-I(y 1)' (See Figure 29, where n = 2, the points x iO are the preimages of Yo, the 

f 

Figure 29 
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t=1 

f 
~ -

!fo N -- ........... 

t=o 

+ + 
f! x /(0,1) 

Figure 30 

points Xi! are the preimages of Yl' and where each of these points is labelled 
with the sign of the corresponding Jacobian. Note that different points of the 
arc y may have different numbers of preimages.) If two points of f- 1(yo) (or 
f - l(yd) are the end-points of a connected component of f - l(y) (in Figure 29 
the points XIO and X30 are such), then by tracing out the image of that 
connected component in y and taking into account the orientations on M and 
N, it is not difficult to see that these end-points must have opposite signs 
associated with them (as do XI0 and X30 in Figure 29). If on the other hand a 
connected component of f -1(y)joins a point in f- 1(yo) to a point in f -1(yd 
(as the points X20 and X 31 are joined in Figure 29), then those points will have 
the same sign attached. The first statement of the theorem now follows. 

We now turn to the second statement, namely that the degree of f is 
invariant under homotopies. Let F: M x [ -+ N be any smooth homotopy 
between f(x)=F(x,O) and g(x)=F(x, 1); by Corollary 10.2.8 (or more 
precisely a slight extension of it), we may suppose that Yo is a regular value of 
the whole homotopy process F, whence, as noted in §1O.2, the complete 
inverse image F -1 (Yo) is a smooth submanifold of M (see Figure 30, where n 
= 1). Since F -1(yO) is a one-dimensional, non-singular submanifold of M x [, 
with boundary the disjoint union of the two subsets f -l(yO) (corresponding 
to t = 0) and g - 1 (Yo) (corresponding to t = 1), the situation closely resembles 
that depicted in the previous figure (Figure 29). An argument similar to the 
one based on that figure then yields the desired conclusion, namely that the 
maps f and g have the same degree. 0 

13.2. Generalizations of the Concept of Degree 

We shall now describe two useful "relativizations" of the definition of degree, 
and its adaptation to non-orientable manifolds. 

(i) In the context of the class of relative mappings between manifolds-with
boundary M and N, of the same dimension n, the degree is defined in the 
following natural way. Consider such a map f: (M, aM)-+(N, aN). Since f 
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maps boundary to boundary, the complete inverse image of an interior point 
of N must consist solely of interior points of M, and of course this is also true 
for any mapping relatively homotopic to f. Hence if we define the degree of 
the map f as in Definition 13.1.1 with respect to a regular value Yo in the 
interior of N, then it follows by imitating the proof of Theorem 13.1.2, that 
this degree is independent of the choice of the interior regular value Yo, and is 
invariant under relative homotopies of f (for compact, connected, oriented M 
and N). 

The boundaries aM and aN of M and N are closed, oriented (with the 
orientations induced from those on M and N) (n -I)-dimensional manifolds. 
If we suppose them to be also connected (though this is not a really crucial 
requirement), then we obtain the following result. 

13.2.1. Theorem. The degree of the boundary map flaM: oM-+oN, is the same 
as the degree of f; i.e. deg fl,m =deg f 

PROOF. We first of all by means of a small (smooth) relative homotopy deform 
the map f: M -+ N, into one sending no interior point of M into the boundary 
aN. This is achieved in the following way. Denote by U, a (small) e
neighbourhood in N of the boundary aN (where distance on N is defined in 
terms of some Riemannian metric), and let n(y) be a unit vector field on U" 
consisting of tangent vectors to N. Let <p(y)~O be a real COO-function on U" 
taking the value e at all points of aN, vanishing on the "opposite" boundary 
of U" and decreasing monotonically with distance from aN. Extend <p to all of 
N by defining it to be zero outside U,. Write v., = f -1 (U,) c M. The function 
<p* on M, defined for all x E M by <p*(x) = <p(f(x)), clearly vanishes outside v." 
and attains its largest value (namely e) at the points of the complete inverse 
image of aN. Let IjJ be a COO-function on M, vanishing on the boundary aM, 
taking the value 1 outside a (small) b-neighbourhood of aM, and monotoni
cally increasing with distance from aM. 

We are now in a position to define the desired homotopy off. Let the image of 
each point x E M move (in N) a distance ljJ(x) <p(f(x)) along the trajectory 
through it (if f(x) E U,) of the vector field n(y). Clearly the points of the image 
of the boundary oM do not move (since ljJ(x) =0 on aM), and neither do the 
images of the points outside v., (since for those points <p(f(x))=O); all other 
points move through a (small) positive distance. Hence the result of this 
arbitrarily small deformation of f is a map g agreeing with f on aM such that 
for interior points x E M with f(x) close to (or on) aN, we have g(x) further 
from aN (assuming the vector field n(y) suitably chosen). 

We can now proceed to the proof of the theorem. Let Yo be a regular value 
of the map f, lying in the boundary oN. Then by applying a homotopy like 
the one just described, we may suppose that the complete inverse image 
f- 1(yo) is contained in aM. If we imagine this regular point moved along a 
smooth path into the interior of N through a sufficiently small distance, then 
we shall observe that both the number of pre images and their associated signs 
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are preserved, since the number of preimages or their signs can change only 
on passing through a critical value, and the orientation on the boundary is 
induced by that on N. Hence the degrees of f and of its restriction to the 
boundary of M coincide, as required. 0 

(ii) The definition of degree and the proof of its independence of the 
regular value and its invariance under homo to pies, carryover without 
essential change to the class of proper maps and homotopies between 
connected, oriented, but not necessarily compact manifolds (see §12.2(iii)). 

(iii) The degree with respect to a regular value of a map f: M --+ N, where 
Mis non-orientable, is not well-defined by the formula (1) since the lacobians 
of the transition functions will vary in sign; however, the residue modulo 2 of 
the integer furnished by (1) is well defined for such maps, and so we take this 
residue (0 or 1) as defining the degree of a mapping between non-orientable n
manifolds. 

13.3. Classification of Homotopy Classes of Maps from 
an Arbitrary Manifold to a Sphere 

In the case where the image manifold N is the n-sphere S", the degree of a map 
f: M --+S", turns out to characterize the homotopy class of f completely. 

13.3.1. Theorem. A pair of smooth maps f, g: M --+S" from a closed, oriented 
n-dimensional manifold M to the n-sphere, are homotopic precisely if their 
degrees coincide. 

PROOF. We wish to show that if deg f = deg g, then f and g are homotopic. To 
begin with we consider the simple situation where there exists a regular value 
Yo E S" such that the number of its preimages under each of f and g is exactly 
deg f( = deg g). Assuming this to be the case, we construct a homotopy 
between f and g as indicated in the following three steps. 

Step 1. By means of a homotopy, deform f so that the complete inverse 
images f -l(yO) and g-l(yO) coincide. 

Step 2. Since by assumption the signs of the respective lacobians of f and g 
coincide at the points of the set f-1(yo) =g-l(yO), we may further deform f 
to a map whose differential (i.e. induced map of tangent spaces) coincides with 
the differential of g at each point of that set. 

Step 3. For sufficiently small e> 0 we can deform both f and g in such a 
way that their restrictions to the e-neighbourhood (with respect to some 
metric on M) of each point of f -l(yO) =g-l(yO)' are (coincident) linear maps 
(in terms of suitable local co-ordinates on that neighbourhood). By means of 
further deformations we can then clearly arrange for the boundaries of these 
e-neighbourhoods to be mapped by both f and g to the point y* antipodal to 
Yo. Since the complement in S" of the point Yo is diffeomorphic to Euclidean 
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1/' 

Figure 31 

n-space IR", we may then arrange by means of yet further homotopies that the 
whole of the complement in M of the union of all of these e-neighbourhoods 
is sent by both I and g to the point y*. 

Upon completion of Step 3, i.e. after applying all of these successive 
homotopies, we see that I and g coincide, as required. Hence the theorem will 
follow if we can show that any map I: M ~S", is homotopic to a map g having 
a regular point Yo satisfying Ig-I(Yo)1 =deg f. This we shall now do. Thus let 
Yo E S" be a regular point of I such that the number of preimages of Yo under 
I exceeds Ideg II = m. We can still apply Step 3 above to arrive at a function 
(which we also denote by I even though it is merely homotopic to f) with the 
following canonical properties: the regular value Yo has m + 2q preimages 
x 10 ••• , Xm + 2q' say; for some (sufficiently small) e > 0, the !:-neighbourhoods of 
these preimages are mapped linearly by I onto the punctured sphere 
S" - {y*}, where y* is diametrically opposite Yo, while the complement of 
the union ofthese neighbourhoods is mapped to the point y*; and, finally, the 
signs of the lacobians at the points Xl' ... ' Xm are all the same, while for 
each i = 1, ... , q, the lacobians at the points X m + i , x m + q + i have opposite signs. 
We now define a homotopy F: M x I ~S", between I and a map having 
exactly m preimages of the regular value Yo. To this end, for each i = 1, ... , q, 
let Yi be a path in M x I joining X m + i to xm + q + i (as shown in Figure 31, where 
m = 1, q = 1), and on some sufficiently small neighbourhood of each Yi define F 
so that it sends the boundary of that neighbourhood to the point y*; this is 
possible in view of the difference in sign of the 1 acobians at Xm + i and Xm + q + i 
(consider in Figure 31 the images in S" of the segments shading the 
neighbourhood of y). Define F on the !:-neighbourhoods of the points 
XIo ••• , Xm, as the identity homotopy (as indicated in Figure 31 for the point 
Xl), and let F map the rest of M x I to the point y*. Clearly the homotopy F 
eliminates the preimages Xm + I, ... , Xm + 2q' as req uired. 0 

Remark. In the case n = 1 some care has to be exercised in defining the 
homotopy F; we invite the reader to fill in the details. 

EXERCISE 

As noted in §13.2(iii), the degree of a map from a non-orientable n-manifold M to the 
sphere S', is defined only as a residue modulo 2. Prove the analogue of the above 
theorem in this case. 
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13.4. The Simplest Examples 

(a) Any polynomial of degree n with real coefficients defines a proper (since a 
polynomial has at most finitely many roots) map IR~IR, whose degree (as a 
mapping) is 1 (or -1) if n is odd, and 0 if n is even. (This is made clear by 
Figure 32.) From this we deduce the familiar (and not very difficult) result 
that a real polynomial f of odd degree has at least one real root: for if there 
were a real number with no preimages under f, then we should have (by 
definition) deg f =0. 

(b) We shall now consider maps S1~S1, from the unit circle to the unit 
circle. We picture the unit circle as arising from the real line by identification 
of the points of the form x + 2nn, for each fixed x and all integral n (and 
similarly the image circle is obtained by identifying the points y + 2nn); then a 
function y= f(x) from IR to IR defines a map S1 to S1 precisely if it has the 
property that, for all x, f(x + 2n) = f(x)+ 2nk for some fixed integer k. 
Examination of the graph of f then makes it clear that the degree of the map 
S 1 ~ S 1 defined by f is just k (see Figure 33, where k = 2). This may be 
expressed in terms of an integral thus: 

1 f2"(df ) k = deg f = 2n 0 dx dx. 

If we think of the unit circle as the curve in the complex plane defined by the 

!J 

(a) 

Figure 32 

471' 9-------.., 

Yo + 2fr 

71' 

Yo 

!J 

(k-Z) 

sgnx, c+, sgnxz--,sgnx3~+,sgnx",-+, deg f-l 

Figure 33 

(b) 



§13. The Degree of a Map 109 

equation Izl = 1, then every map SI--+SI of degree k is homotopic to the 
canonical map Zl---+Zk. 

(c) A complex polynomial w=J(z) of degree n, determines a map 
J: 1R2-+1R2 of the complex plane, or (if we adjoin the point at infinity) of the 
Riemann sphere S2 (;;;;:CP1) to itself. We show firstly that the degree oJJas a 
mapping is (in absolute value) equal to the degree of f as a polynomial. This is 
obvious when the polynomial is a monomial, i.e. of the form aozn, ao #0; it 
then follows for any polynomial aozn + a 1zn - 1 + ... + an of degree n (ao#O), 
since the latter polynomial is homotopic to aozn via the homotopy F defined 
by 

F(z, t)=aoz"+(1-t)[a 1z"-1 + '" +anJ, 

where t ranges from 0 to 1. 
We obtain as a corollary (of this (essential) equality of the two kinds of 

degree of a complex polynomial) the so-called "Fundamental Theorem of 
Algebra". 

13.4.1. Theorem (Gauss). A complex polynomial of degree n > 0 has at least one 
root. 

PROOF. If J(z)=O has no solutions, then the complete inverse image 1-1(0) is 
empty, whence J has degree zero (as a mapping) and hence degree zero as a 
polynomial. D 

(As an exercise show that the degree of a rational map S2-+S2 is (in 
absolute value) the larger of the (polynomial) degrees of the numerator and 
denominator.) 

We next turn our attention to holomorphic (i.e. complex analytic) maps 
J: M-+N between closed, complex manifolds M and N. 

13.4.2. Theorem. If the degree off is q, then q ~ 0 and any regular value Yo E M 
oj J has exactly q preimages (which then oj course all correspond to positive 

Jacobians). 

PROOF. It was shown (in essence) in §12.2 of Part I, that the determinant of a 
complex linear transformation A is never negative, since 

detR A = Idete AI2 ~O. 

Hence at the preimages of the regular value Yo, the lacobians are all positive. 
The theorem is now immediate from the definition of the degree of a map. 

D 

We obtain as a corollary of this theorem (and our previous discussion) the 
familiar result that a complex polynomial of degree n > 0 for which zero is a 
regular value, has exactly n distinct roots. 
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Another example of a holomorphic map is the projection of the Riemann 
surface of an n-valued algebraic function onto the z-plane or the Riemann 
sphere (i.e. onto the manifold on which the map is defined). Clearly the degree 
of such a map is the number n of sheets of the Riemann surface. 

(d) A map f from a closed n-dimensional manifold to IR" is obviously 
proper (in fact independently of the image space). Hence the degree of such a 
map is defined. It is easy to see that this degree is zero, since f(M) is a 
compact subset of IR", so that in view of the non-compactness of the latter 
space, there must exist a point Yo sufficiently far out in IR" for which f -l(yO) is 
empty. 

From the vanishing of the degree of such a map f we infer immediately 
that any regular point of f must have an even number of preimages. 

(e) Consider a map f. (M, aM)--.(N, oN) between compact, connected, 
oriented manifolds-with-boundary M and N, whose restriction to oM is a 
diffeomorphism: oM -;: oN; and suppose also that this diffeomorphism re
spects the orientations induced on the boundaries. It follows from Theorem 
13.2.1 that for such a map we must have deg f = 1. Hence, in particular, if we 
are given a co-ordinate change y= f(x) on a region V of IR" with smooth 
boundary av, which is one-to-one on av, then f has degree ± 1 (on the 
whole of V). 

§ 14. Applications of the Degree of a Mapping 

14.1. The Relationship Between Degree and Integral 

We shall here investigate the behaviour under a mapping M -+ N (whose 
degree is defined) of the integral of a differential form of rank n defined on the 
image n-manifold N; i.e. we seek the relationship between the integral of the 
given form over N and the integral over M of the pullback (via the mapping 
M-+N) of the form to M. Thus let f; M-+N be a smooth map of degree q 
between connected, closed, oriented manifolds M and N, and let n be a 
differential form on N, of rank n=dim M =dim N, expressed as 
cpj(Y) dyt /\ ... /\ dyj in terms of local co-ordinates Yi on the ith local co
ordinate neighbourhood of N. The integral IN n of the form n over N is 
defined as in §8.2 (in terms of a partition of unity), as is also the integral 
IM f*n of the restricted form f*n over M. By definition of the restriction 
or pullback operation (see §22.1 of Part I), we have 

j*n=cpj(f(x»dx] /\ ... /\ dXjdet(:~~). (1) 
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where the x~ are local co-ordinates on M, or, more precisely, on that region of 
M which is mapped under I to the chart of N with local co-ordinates y~. 

14.1.1. Theorem. With I: M-+N, and n as above, we have 

fMI*n=(degj) L n. 

PROOF. For each regular value Yo (E N) ofthe map j, there is a neighbourhood 
V say of Yo which contains only regular values of f If Xl> ••• , Xm are the 
(necessarily only finitely many) distinct preimages of Yo under j, then, 
provided V is sufficiently small, its complete inverse image I- 1(V) will have 
the form 

I- 1(V)=V1 u .. ·uUm, XjEVj' 

where this union is disjoint, i.e. the Vj are pairwise disjoint. Let Yo be local co
ordinates on V c N, and for eachj= 1, ... , m let xj be local co-ordinates on 
Uj c M. Since all points in the regions Uj are regular points of j, we have by 
the Inverse Function Theorem that the restriction of I to each Uj is one-to
one. Hence for each such restriction we may apply the formula for changing 
the variables of integration, obtaining 

LJ cp(y(x)) det (:~~ ) dxJ A .•. A dxl 

=sgn det (:~;) L cp(y) dyA A ••. A dyo· 

By virtue of (1) (and the additivity of integrals over disjoint regions) this 
immediately yields 

f j*n= (L sgn det (aay~)) r n=(deg j) r n. (2) 
J-'(U) j Xj Ju Ju 

Since by Sard's theorem (§10.2) the set of critical values of I has measure 
zero in N, their contribution to the integral IN n is zero. On the other hand, at 
the preimages of such points (i.e. at the critical points of j) the form j*n 
vanishes since the Jacobian in (1) is zero; hence the contribution of the critical 
points to JM I*n is also zero. The theorem now follows from (2) and the 
additive property of integrals. (Note that the set ofregular values is an open, 
everywhere dense subset of N.) D 

Remarks. 1. This theorem is valid in the non-compact case, provided that the 
map I is proper and the form n is "finitary" (i.e. has compact support in N), 
and also when M, N are manifolds-with-boundary (and I maps aM to aN). 

2. If I is a boundary-preserving mapping between compact regions of IRn, 

which is one-to-one between the boundaries, then (see Example (e) of §13.4) 
we have Ideg II = 1, whence by the above theorem, the integrals of j*n and n 
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over the respective regions are equal in absolute value (which is not surprising 
if f is one-to-one, i.e. if f is a co-ordinate change). 

14.2. The Degree of a Vector Field on a Hypersurface 

Let ~ = W(x», (X = 1, ... ,n, denote a smooth, non-vanishing vector field 
defined on a region U of n-dimensional Euclidean space IRn with Euclidean 
co-ordinates Xl, ... ,xn. Since ~(x) # 0 at all points of U, the vector field ~ 
gives rise to a unit vector field n(x)= ~(x)/I~(x)1 on U, which leads in turn to 
the spherical (Gauss) map f: U--.Sn- 1, where for each point x E U, f(x) is the 
tip of the unit vector n(x) when its tail is at the origin. (Thus f(x) is a point on 
the unit (n -I)-sphere, as required.) If now Q is any hypersurface entirely 
within U, then the degree of the restriction map fI Q :Q--.sn-1, is called the 
degree of the vector field ~ on the hypersurface Q. 

Consider the following closed (n -l)-form 0 on sn - 1 (or, if you like, on 
IRn\ {O}): 

f (_1)i+ 1 Xi dx l /\ ... /\ (b;i /\ ... /\ dxn 
o = ~.:...' =....:1~ ___ :-;:-____ -=--=-___ _ 

Yn «X1)2 + ... + (Xn)2)"/2 
(3) 

Here the hatted symbols are to be omitted, and Yn is the normalizing constant 
chosen so that Jsn- I 0 = 1. (It is not difficult to verify that the form 'YnO is just 
the volume element on the unit sphere sn -1, whence 'Yn is the volume of sn -1.) 
For instance in the plane 1R2\ {O} with Euclidean co-ordinates x, y, we have 

O=~(XdY-YdX) 
2rr x2 + y2 ' 

or, in polar co-ordinates, 0=dcp/2rr. In 1R3\{O} with Euclidean co-ordinates 
x, y, z, we have 

O=~(XdY /\ dz-ydx /\ dz+zdy /\ dX) 
4rr (X 2+y2+Z2)3/2 ' 

or, in spherical co-ordinates, 0=(1/4rr)lsin 01 dO dcp. 
From Theorem 14.1.1 we deduce the following 

14.2.1. Corollary. The degree of a non-vanishing vector field ~(x) on a closed 
hypersurface Q in Euclidean n-space, is equal to the integral SQ f*O, where f Q 
--.sn-1 is the Gauss map determined by the vector field, and 0 is the (n -I)-form 
on sn-1 defined in (3). It follows that if Q is given locally by a system of 
equations 

x"=x"(u1, ... , un- 1), (X = 1, ... , n, 

(where xl, ... , xn are Euclidean co-ordinates in IRn), then 
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(The first statement is immediate from Theorem 14.1.1. The second follows 
easily from the definitions of n, of f (via f(x)=(1/Ie(x)1) (e 1(x), ... , en(x))), 
and of rn (see §22.1 of Part I).) 

In the case n = 2, the formula (4) becomes: 

1 J, dt (de2 de 1 ) 
degf=2n j lel 2 ~ldt-~2dt ' 

where t is a parameter on the closed curve over which the integral is taken, 
and ~(t)=(~l(t), ~2(t)) is a non-vanishing vector field on the curve. In the case 
n=3, we have Y3=4n whence (4) becomes: 

~2 

1 f f du dv 
O~2 

degf= 4n W det OU (5) 

Q O~2 

OV OV 

1 f fdU dv ~ [o~ o~J> 
= 4n W~' ou' ov ' 

Q 

where [ , ] denotes the vector (or cross) product. 
A particular situation of interest is that where the vector field ~(x) is a unit 

field (i.e. I ~ I = 1), and at every point of the closed manifold Q has the direction 
of the exterior normal to Q. We know (from §26.2 of Part I) that in this case 

(6) 

where K is the Gaussian curvature ofthe hypersurface (defined as the product 
of the principal curvatures), and du = Jg du 1 A ... A dun - 1 is the standard 
volume element on the hypersurface Q determined by the metric induced on 
Q by the Euclidean metric on the ambient space IRn. (Recall that when n = 2 
we have du = dl, the element of length on the curve Q, and K = k, the 
curvature of the curve, while for n = 3, K is the usual Gaussian curvature of a 
2-dimensional surface, and du = J EG - F2 du A dv is the usual element of 
area (see §7 of Part I). 

Combining (6) with the first statement of Corollary 14.2.1, we obtain 
immediately the following 
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14.2.2. Theorem. The integral of the Gaussian curvature over a closed 
hypersurface in Euclidean n-space is equal to the degree of the Gauss map of the 
surface, multiplied by YII (the Euclidean volume of the unit (n -I)-sphere). 

14.3. The Whitney Number. The Gauss-Bonnet Formula 

Our aim in this subsection is to discover the relationship between the degree 
of the Gauss map of a hypersurface in Euclidean n-space and certain striking 
geometrical features ofthe hypersurface (or at least of the way it is embedded 
in 1R"). We shall restrict attention to the most important cases n = 2, 3. 

The case n=2: curves in 1R2. Let y=(x(t), y(t)) be a closed curve "in general 
position" in Euclidean 1R2; by this we mean that: for all t, x(t+2n)=x(t), 
y(t+2n)= y(t); the tangent vector (i, y) is non-zero for all t; and finally every 
self-intersection (if there are any) is double and has the property that the two 
tangent vectors at the point of intersection are linearly independent (as for 
instance in Figure 34). 

To each point of self-intersection of the closed curve y we attach a sign 
(± 1) in the following way. Fix on any point to of the curve which is not a 
point of self-intersection. Denote by [1, 2] an orienting frame on 1R2 (e.g. that 
determined by the given Euclidean co-ordinates x, y, in that order). We now 
trace out the curve yonce starting from the point to in the direction of 
increase of the parameter; when any particular point of self-intersection is 
first encountered we label with the numeral 1 the tangent vector at that point 
to the branch we are on, and when we meet that point of self-intersection 
again we label the tangent vector to the second branch (on which we now find 
ourselves) with the numeral 2 (see Figure 34). Once our tour is completed, 
each point of self-intersection of y has associated with it a frame whose 
orientation class of course coincides either with that of the prescribed frame 
[1,2], or its opposite; in the former case we attach the sign + 1 to the point, 
and in the latter case the sign -1. We then define the Whitney number W(y) of 
the plane closed curve y (in general position} to be the sum of the signs of all 
its points of self-intersection. 

The following result links the degree of the Gauss map to the Whitney 
number. 

Figure 34 

zL 
1 

e+e+~+$=o 

Invariant W(y)=O 
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(b) 

14.3.1. Theorem. Let y be a non-singular, plane closed curve in general position. 
Then the parity of the number of self-intersections ofy (which is the same as the 
parity of the Whitney number ofy) is opposite to that of the degree of the Gauss 
map f ofy· 

PROOF. For a simple (i.e. non-self-intersecting) plane closed curve y it is easy 
to see that deg f = 1 (assuming the curve y and SI traced in the same sense), 
while clearly W(y) =0; hence the theorem is true in this case. With this as our 
point of departure we shall prove the theorem by induction on the number of 
self-intersections. Suppose first that our curve y has a loop with the properties 
that the "starting point" to is not on the loop, and no points of yare in its 
interior (see Figure 35). Enclose this loop in a region D which excludes all 
points of y not on the loop (as in Figure 35); subsequent alterations of y will be 
carried out entirely in the region D. The (direction-preserving) alterations in 
question are depicted in Figure 36(a) or (b) (depending on the sense in which 
the loop is traced). The operation of replacing y by Yl U Y2 and then removing 
Y2, decreases the degree of f by 1 in case (a), and increases the degree by 1 in 
case (b); clearly the Whitney number is affected in the same way. Thus the 
inductive step is completed in the situation where y has such a "minimal" 
loop. 

Suppose now that y has no "minimal" loops. It can be shown that there 
will still be a loop Y2 say (see Figure 37) which does not have the point to on it, 
but which intersects the remainder of the curve (denoted by Yl in Figure 37). If 
we now alter the curve y appropriately within some sufficiently small 
neighbourhood of the point of self-intersection of our loop we shall arrive 

~ Y-)',+Jl " 0 (a)~- ';/ Yz 

W~1l 

~ Y-)',+Yz 
(b) /"---/ -

W= +1 

Figure 36 
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(a) (b) 

Figure 37 

again at the situation depicted in Figure 36(a) or (b), except that now the 
simple closed curve }'2 of that figure will intersect ')11' However since the 
number of such points of intersection will of course be even, the argument 
concerning parities goes through as before. This completes the proof of the 
theorem. 0 

Remark. It can be shown that under the above-described alteration of ')I and 
subsequent removal of the simple closed component ')12' the Whitney number 
and the degree of f change by the same amount (and not just modulo 2). This 
leads to the more precise result that the Whitney number W(')I) is equal to either 
deg f-l or deg f + 1. Whether 1 is to be added or subtracted depends on the 
initial choice of the starting point to (as illustrated in Figure 38). 

The case n = 3: surfaces in 1R3. Our aim is to express the degree of the Gauss 
map f: Q-+S2, of a smooth, closed, oriented surface Q in 1R 3, more directly in 
terms of the geometry of Q. Let Yo E S2 be a regular value of the map f By 
applying a suitable orthogonal transformation we may clearly arrange for the 
point Yo to be at the north pole of S2, i.e. to have co-ordinates (0,0, 1), and, by 
means of a suitable, small deformation (Le. homotopy), we may further 
arrange for the south pole y~ =(0,0, -1) to be also a regular value of f (The 
simultaneous regularity of two diametrically opposite points of S2 is 
equivalent to the regularity of their common image point in the real 
projective plane IRp2 under the composite map 

from Q to IRp2.) 

f 
Q -+ S2-+lRp2, 

W-O-degf-1 
degf-+1 

Figure 38 

W-2=degf+1 
degf-+1 
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14.3.2. Lemma. Let Q be a hypersurface in Euclidean 3-space, with f (the 
Gauss map of Q), Yo, y~ as above, and let cp be the height function on Q (i.e.for 
each P E Q, cp(P) is the z-co-ordinate of Pl. Then the set of critical points of the 
function cp coincides with the union f - 1 (Yo) U f - 1 (y~), and the critical points 
are all non-degenerate. 

PROOF. In some neighbourhood of each critical point of cp: Q-+IR, the surface 
Q is defined by an equation of the form z = q>(x, y), and the critical points in 
that neighbourhood are just those satisfying grad cp = O. Now the gradient of 
cp(x, y) is zero at precisely those points of Q where the direction of the z-axis is 
perpendicular to Q; but by definition of the Gauss map f of Q, the latter are 
exactly the points sent by f to the north or south poles of S2. Hence the set of 
critical points of cp is f -l(yO) U f - l(y~). 

It is immediate from the proof of (6) above given in §26.2 of Part I, that at 
each point of f- 1(yo) the Jacobian of the Gauss map f: Q-+S2 (in terms of 
suitable local co-ordinates on S2) coincides with the determinant of the 
Hessian of the function z = cp(x, y) (and hence with the Gaussian curvature). 
Since Yo is a regular value of the map f it follows (from the definition (10.4.1) 
of non-degeneracy of critical points of a function) that the points of f- 1(yo) 
are indeed non-degenerate (critical) points of cp. (Alternatively this could have 
been inferred immediately from Lemma 11.2.1.) By applying the same 
argument with the z-axis reversed, we draw the same conclusion for the 
points in f-1(y~), completing the proof of the lemma. 0 

In connexion with this proof note the obvious equality 

( 02cp ) n-1 (02(_cp») 
det oui ou j =(-1) det oui ou j , 

(7) 

where u1, ••• , un - 1 are local co-ordinates in some neighbourhood of any 
point of the surface Q; this equality is crucial in the distinction arising 
between the cases of odd and even n. Since in our case n - 1 = 2, it follows 
from (7) and the above proof that at every point of the set f -l(yO) U f -l(y~) 
the Jacobian of the map f agrees in sign with the Gaussian curvature K 
(independently of the choice of the direction of the z-axis, i.e. of whether we 
work with cp or - cp). This, the above lemma, and the definition of the degree 
of a map, together yield immediately the following 

14.3.3. Lemma. With f: Q-+S2 as above, we have 

2 deg f = L (-l)~(PJ), 
Pj 

(8) 

where the summation is over the set of critical points Pj of the height function 
z = cp, and where (X(Pj ) = Of or those critical points where cp has a local maximum 
or minimum (where sgn K = + 1), and (X ( P j) = 1 for saddle points (where sgn K 
= -1). 
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;=1 

Figure 39 

We shall now show that when Q is the sphere-with-g-handles, the number 
on the right-hand side of (8) is 2 - 2g. It is easy to imagine this surface 
embedded in 1R3 in such a way that the height function qJ has exactly one 
minimum point, one maximum point, and 2g saddle points (see Figure 39, 
where the critical points are indicated). For such an embedding we have by (8) 
together with Theorem 14.2.2 that 

2 deg f = 21n L K da = 2 - 2g. 

Of course other embeddings of the surface Q in 1R3 are possible. However at 
the conclusion of §37.4 of Part I we showed that the quantity JQ K da is not 
altered by smooth variations in the metric on Q. Let g\Jl and glJl be any two 
Riemannian metrics on the surface Q, and consider the family of metrics 

gij(t) = tgU) + (1- t)g!J), 0 ~ t ~ 1. 

Clearly gjj(O)=gIJl, gij(l)=g!Jl, and gij(t) is positive definite for all t E [0,1]. 
Hence the integral JQ K da'is the same for both metrics. We have thus proved 
(in more precise form than Corollary 37.4.3 of Part I) the following celebrated 
result. 

14.3.4. Theorem (Gauss-Bonnet). For the sphere-with-g-handles Q endowed 
with any Riemannian metric we have 

~ r K da=2-2g. 
2n JQ 

14.4. The Index of a Singular Point of a Vector Field 

In this subsection we shall study the Gauss map of a vector field in a 
neighbourhood of an "isolated singular point" of the vector field. We first 
need to define these terms. Thus let ~ = ~(x) be a vector field defined on some 
neighbourhood of a particular point Xo of Euclidean space IR". In the 
conventional terminology, the point Xo is called a singular point of the field ~ if 
~(xo) = 0, and an isolated singular point of the field if it is a singular point but 
at all other points of some (small) neighbourhood of it ~(x) does not vanish. A 
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singular point Xo is said to be non-degenerate if 

det (!!: Ix=xJ #0. 

14.4.1. Lemma. A non-degenerate singular point of a vector-field is necessarily 
isolated. 

PROOF. Consider ~(x) as a map from IRn to IR". Since the derivative 
det (O~II/0X/l)#0 at the non-degenerate singular point Xo. the Inverse Func
tion Theorem tells us that ~ is one-to-one on some neighbourhood of Xo. 
Hence Xo is an isolated singular point. as claimed. 0 

By the roots of a non-degenerate singular point Xo of a vector field ~ we 
shall mean the eigenvalues A1 •...• An of the matrix (O~II/0X/l)x=xo' and by the 
index of such a point the sign 

sgn det (~~: I ) = sgn(A1 .. ·An)· 
uX X=Xo 

Note that if the vector field ~ happens to be the gradient field of some 
function f, i.e. ~1I=ofloXIl. then the index of a non-degenerate singular point 
Xo coincides with the sign of the determinant of the Hessian: 

sgndet(~~:1 )=sgndet(o ~2~ 11\ )=(_I)I(XO), 

uX X=Xo x x X=Xo 

where i(xo) denotes the number of negative squares occurring in the 
quadratic form d2flx=xo when brought into canonical form. 

Let Qe ~ sn - 1 be a sphere with centre an isolated singular point Xo of a 
vector field ~, and with radius B > 0 sufficiently small for the field ~ to be non
vanishing on Q. and its interior. We can then define, as in §14.2 above, the 
spherical Gauss map on Q, (relative to the field ~): 

ko: Q.-+S"-l. 

14.4.2. Definition. The index of an isolated singular point Xo of a vector field ~ 
is the degree of the Gauss map ko: 

indxo(~)=deg ko' 

If the point Xo is non-degenerate, then this definition of index is equivalent 
to the previous one; this is the import of the following result. 

14.4.3. Theorem. For a non-degenerate singular point Xo of a vector field ~(x), 
we have 

deg ko = sgn det ( ~~: I ), 
uX x=xo 

(9) 

where ko is the Gauss map defined above. 
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PROOF. In some neighbourhood of Xo we have by Taylor's theorem that 

~(x) = ~(1)(x) + ~(2)(X), 
where ~(l)/I(x)=a~/I/axYlx~xo (xY-xl»), and 1~(2)(x)1 =o(l~(l)(x)l). The homo
topy ~(x, t) defined by 

~(x, t)=~(l)(x)+(1_t)~(2)(X), O:s; t:s; 1, 

clearly has the properties that ~(x, 0)= ~(x), ~(x, 1)= ~(I)(X), and in some 
sufficiently small neighbourhood of xo, for all t, O:s; t:s; 1, ~(x, t) vanishes only 
at Xo. We have thus shown that in some neighbourhood of Xo of the field ~ is 
smoothly homotopic to the linear vector field ~(l) via fields for which Xo is the 
only singular point (in the neighbourhood). Let e be small enough for the 
sphere Q. with centre Xo to be entirely contained in this neighbourhood. In 
the course of the above-defined deformation of ~ into ~(1), the linear part of 
~(x, t) remains fixed, and the map ho: Q ...... S"-1 undergoes a smooth 
homotopy; hence both sides of equation (9) remain constant throughout the 
homotopy, and it therefore suffices to verify (9) for the linear field ~(1), and the 
corresponding map 

f (I)( )_ ~(l)(x) 
Xo x -1~(1)(x)I' 

Since ~(1) is a non-singular linear transformation (from a neighbourhood 
of Xo to a neighbourhood of the origin of IR"), it follows that it is one-to-one, 
and that the map f~~: Q ...... S"-I, is also one-to-one and without critical 
points. Hence each point Yo on the sphere S"-1 is a regular value with exactly 
one preimage, and it is clear that the sign of the determinant of the linear 
transformation ~(1) determines whether the orientation is preserved or 
reversed by f~~). This completes the proof. 0 

We now list the possible types of non-degenerate singular points in the 
simplest cases n = 2 and 3. 

(i) (n = 2). The non-degenerate singular points of vector fields on the plane 
will be of one of the following types (note that in this case the index of a 
singular point is independent of the direction of the field): 

(a) (b) (c) (d) 

Figure 40 
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a centre (when both eigenvalues are purely 
imaginary) 

a node (eigenvalues real and of the same sign) 
a focal point (complex conjugate eigenvalues, not 

purely imaginary) 
a saddle point (eigenvalues real and of opposite 

signs) 
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Index 
Figure 4O(a) +1 

Figure 40(b) +1 
Figure 40(c) +1 

Figure 40(d) -1 

If the field happens to be the gradient of some two-variable function / then 
the possible singularities are restricted to the following types: 

Index 
a local minimum point of / (Figure 40(b) with the + 1 

arrows reversed-a "source") 
a saddle point of / (Figure 4O(d» -1 
a local maximum point of / (Figure 40(b)-a + 1 

"sink") 

(ii) (n = 3). If the field is a gradient W = all oxll ), a non-degenerate singular 
point is of one of the following types: 

Index 
a local minimum point of / ("source") + 1 
a saddle point of type 1 (when the form d2/ has -1 

only one negative square) 
a saddle point of type 2 (when the form d2/ has + 1 

two negative squares) 
a local maximum of / ("sink") -1 

The classification of non-degenerate singular points of a general vector 
field in a region of 1R3 is as follows (note that either all three eigenvalues Ai are 
real, or else one is real and the other two are complex conjugates): 

Index 
a source (Re Ai ~ 0, i = 1, 2, 3) + 1 
a saddle of type 1 (Re Al ~ 0, Re A2 ~ 0, A3 real and -1 

negative) 
a saddle of type 2 (Al real and positive, Re A2 :::;; 0, + 1 

Re A3 :::;;0) 
a sink (Re Ai:::;; 0, i = 1, 2, 3) -1 

14.4.4. Theorem. Let e = e(x) be a vector field in IR" having only isolated 
singular points Xl>' •• , x"" and let Q be a closed oriented hypersur/ace in IR" 
avoiding the singular points 0/ the vector field, and bounding a region D 0/ IR". 
Then the degree o/the vector field e on the surface Q, i.e. the degree o/the Gauss 
map Q-+S"-l determined by thefield, is equal to the sum o/the indices o/the 
singular points Xi" ••• , Xik lying in the region D. 
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PROOF. For each j = 1, ... , m let QjE be the sphere of radius e > 0 about the 
point Xj' choosing e sufficiently small for the closed balls bounded by the Qj. 
to miss the hypersurface Q and each other. The 15 obtained from D by 
removing from it all open balls bounded by those spheres Qj. in D, clearly has 
boundary 

a15=Q u Qi,t U··· U QikE' 

Consider now the form f*o. on 15, where f 15-+sn - 1 is the Gauss map 
relative to e, and 0. is the form defined by the formula (3). Dimensional 
considerations yield immediately that dO. = 0 on the sphere sn -1, whence also 
dj*o.=f*(do.}=O on sn-1. Hence by the general Stokes formula (see §8.2) 
(and the additivity property of integrals) we have 

0= f- dj*o.= f _ j*o.= - f f*o.+ t r f*o., 
D oD a q-1 Ja." 

where the difference in sign in the final expression is accounted for by the fact 
that in applying the general Stokes formula, the "external" component Q of 
the boundary 015 of 15 is taken with orientation opposite to that on the 
boundaries of the Qi ••. The theorem now follows from Definition 14.4.2 and 
Corollary 14.2.1. 0 

14.5. Transverse Surfaces of a Vector Field. 
The Poincare-Bendixson Theorem 

A situation of particular interest is that where the hypersurface Q is itself a 
sphere (of large radius) with the property that at no point of it is the vector 
field e(x} tangential to it (or zero on it). We call a closed surface with the latter 
property a transverse surface to the vector field e. In this situation the 
following simple result holds. 

14.5.1. Lemma. The degree of a vector field e on a transverse hypersurface in 
IR" is (up to sign) equal to the (normalized) integral of the Gaussian curvature 
over the surface. (If the transverse surface is a sphere then this (normalized) 
integral is (in absolute value) unity.) 

PROOF. A vector field which is transverse to a closed hypersurface Q c IRn is 
homotopic (in the class of fields on Q nowhere tangent to Q) to one or the 
other of the unit normal vector fields ±n(x) to Q, so that, degree being a 
homotopy invariant, we may assume our vector field on Q to be ±n(x}. We 
know from Theorem 14.2.2 that the degree of the Gauss map (determined by 
±n(x» is ±(1IYn) Sa K du, where K is the Gaussian curvature on Q, du is the 
volume element on Q, and Yn is the volume of the unit (n - i)-sphere. If Q is a 
sphere then it is easy to calculate that (llYn) Sa K du = 1. This completes the 
proof of the lemma. 0 
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From this lemma and Theorem 14.4.4 we deduce immediately the 
following result. 

14.5.2. Corollary. Any (n-l)-dimensional sphere transverse to a vector field ~(x) 
in IR" (in particular, any (appropriate) circle in 1R2) contains in its interior at least 
one singular point of ~. 

Remark. It is appropriate to mention at this juncture a further situation 
arising in the planar case (n = 2). It can happen that an integral curve of a 
planar field ~(x) is periodic, forming a simple closed curve Q. Since the degree 
of the field on Q is easily seen to be ± 1, it follows (again from Theorem 14.4.4) 
that there must be at least one singular point of ~ in the interior of Q. 

Information about singular points and transverse surfaces of a vector field 
~(x) is of great importance for obtaining a qualitative picture of the behaviour 
of the integral trajectories of the vector field, especially in the planar case. 
Consider for instance the situation where we have a planar field ~(x) and a 
simple closed curve Q transverse to it such that at each point x of Q the field 
~(x) is directed towards the interior of Q, and there is exactly one singular 
point xo, say, of ~ in the interior of Q, which happens to be a "source" (as 
shown in Figure 41). Any integral curve y=(x(t), y(t)) of the field~, beginning 
at some point of Q (as in Figure 41) cannot reach the point Xo since that point 
is a source. Denote by w+(y) the "limit set" of this trajectory, consisting of the 
limit points in 1R2 of all sequences of the form {y(t 1), y( t 2), ... } where tj < tj + 1 
and tr-+oo as i-+oo. Clearly the set w+(y) is compact, closed, and does not 
contain any singular points of the field ~. 

14.5.3. Theorem (Poincare-Bendixson). The limit set w +(y) is a periodic 
integral curve of the field ~ (called a "limit cycle"), onto which the curve y winds 
itself from the outside. 

Figure 41 
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t, -

Figure 42 

We split the proof up into three lemmas 

14.5.4. Lemma. For every point P in the set w+(,V), the whole integral trajectory 
y through P is contained in w+(y). 

PROOF. If P = Po = limi'" 00 y(ti), then every other point P, ( - 00 < t < 00) on the 
integral curve through P is given by P,=limi .... oo y(ti+t). 0 

14.5.5. Lemma. Let y be an integral trajectory of e which is not periodic, butfor 
which the set w+(j) is compact and contains no singular points of e (as is the 
case for the y of the preceding lemma). Then there exists a closed curve 
transverse to the field e which crosses y. 
PROOF. The hypotheses guarantee the existence on y of points y(tl), y(t2) 
arbitrarily close to one another in 1R2 but distant from one another along y, 
i.e. such that 1 t 1 - t 21 ~ 1. Join these points by a (short) curve segment I 
transverse to e, and consider the closed curve S = I U [y(tl' t2)]; it is not 
difficult to see (cf. Theorem 10.3.2) that the curve S can be approximated by a 
closed curve which is transverse to e, and cuts y (see Figure 42). 0 

14.5.6. Lemma. Let the set w+(y) be as in the Poincare-Bendixson theorem.IfY 
is an integral trajectory of ~ contained in w+(y), then there is no closed curve 
transverse to e which crosses y. 

PROOF. Suppose on the contrary that there is a transverse curve S intersecting 
j. Since j intersects S (at x say), and consists entirely of limit points of w + (y), it 
follows that the vector ~(x) must be directed towards the interior of the 
(simple, since transverse) curve S, and therefore that the vector field e is so 
directed at all points of S. Hence once entered into the interior of S, the paths 
y and y never again leave it. However, this means that that portion of y 
outside S cannot be contained in w+(y), contradicting the first lemma. 0 

The theorem now follows from the second and third lemmas: any integral 
curve y contained in w +(y) must be periodic, whence there is only one such 
integral curve, and the curve y spirals towards y from the outside. 0 

Example. Consider the second-order differential equation 

x+ax+bx= f(x), 
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Figure 43 

where f is a monotonic odd function (i.e. f( - x) = - f(x» (see Figure 43), and 
a, b are positive. Define a vector field ~ on the "phase plane" with co
ordinates x, y = x by 

~(x, y)=(x, y)=(y, -ay-bx- f(y». 

It is easy to see that all sufficiently large circles with centre the origin are 
transverse to ~ with the field directed towards their interiors. The origin is the 
only singular point of ~ in the finite plane, and there the matrix (a~rz/ax{J) has 
the form 

(~ -b ) 
-a +1'(0) , 

which has eigenvalues 

P [02 A1 2= - + --b , 2 - 4 ' 

where p = 1'(0) - a. The collection for the origin (0,0) to be a source is that 
A1, A2 be real and positive, i.e. in the present context that 1'(0) > a and 
(1'(0) - a)2 ~ 4b. Hence if these conditions are satisfied then by the 
Poincare-Bendixson theorem the differential equation (i.e. the corresponding 
field ~) has a limit cycle. 

§15. The Intersection Index and Applications 

15.1. Definition of the Intersection Index 

Let P and Q be two (smooth) closed submanifolds of degrees p and q, 
respectively, of a (smooth) n-dimensional manifold N (e.g. IR"). Recall (from 
§10.3) that the submanifolds P and Q intersect transversely (or, as we shall 
sometimes say, are in general position in N) if at each point x E P n Q the 
tangent spaces to P and Q together span the whole of the tangent space to N. 
As was noted in §10.3, the basic property of transversely intersecting 
submanifolds P, Q c N, is that their intersection P n Q is a (smooth) 
(p + q - n)-dimensional submanifold of N. 
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In the case p + q = n, which will be of particular interest to us, the 
intersection P ("'\ Q consists of finitely many points Xl' ... ,X",. Given orient
ations on the manifolds N, P, Q (assuming them orientable), we attach a sign 
to each point Xj E P ("'\ Q in the following way. Let .ril be a tangent frame at 
the point Xj to the submanifold P, belonging to the given orientation class on 
P, and define .5) similarly in terms of Q and its orientation. Then we attach to 
the point Xj the sign + 1 if the frame • = (·rj)' .5» (which is linearly 
independent by virtue of the fact that P and Q intersect transversely) belongs 
to the given orientation class on N, and -1 if not; we denote the sign 
attached to Xj in this way by sgn Xj(P ° Q). 

15.1.1. Definition. The intersection index of transversely intersecting oriented 
submanifolds P, Q of an oriented manifold N, where p + q = n, is the integer 

'" poQ= L sgnxiPoQ). 
j=1 

(If any of the manifolds P, Q, N is non-orient able we define po Q to be the 
residue modulo 2 of the number m of points in the intersection.) 

15.1.2. Lemma. With P, Q, N as above, we have po Q = ( -1 )pq Q ° P. 

PROOF. This is immediate from the fact that if .p, .a are ordered bases (Le. 
frames) for p- and q-dimensional subspaces of a vector space, which together 
span a (p + q)-dimensional subspace V, then the determinant of the linear 
transformation of V taking the frame (.p, .a) to the frame (.a, .P) is just 
(-1)PQ. 0 

15.1.3. Theorem. If two submanifolds Q .. Q2 c N are homotopic (i.e. are the 
images of homotopic pair of embeddings of Q into N), then their intersection 
indices with any (appropriate) submanifold P coincide: 

Q1 oP=Q2° P. 

PROOF. Let F: Q x 1-+ N, be a smooth homotopy such that F( Q x 0) = Q I and 
F(Q x 1)= Q2' In view (essentially) of Theorem 10.3.2 and the fact that each of 
Q1' Q2 intersects P transversely, we may assume that F is t-regular on P. 
Hence its complete inverse image F- 1(P) is a one-dimensional submanifold 

t-1 

fl.-I 

Figure 44 
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of the cylinder Q x 1, moreover with boundary the (finite) set 
(Ql n P) u (Q2 n P), where Ql n P lies in the base Q x 0, Q2 n P in the lid Q 
x 1 of the cylinder, and the curve segments comprising F -l(P) approach the 
base and lid transversely (as illustrated in Figure 44). The desired conclusion 
now follows exactly as in the proof of the in variance of the degree of a map 
under homotopies (Theorem 13.1.2). (Compare Figure 44 with Figure 30.) 0 

15.1.4. Corollary. The intersection index of two (transversely intersecting) 
closed submanifolds P, Q of Euclidean n-space is zero. 

PROOF. By translating Q along a vector a E IR" whose length is sufficiently 
great, we obtain a (homotopic) manifold Q2 = Q + a, which has empty 
intersection with P. (This is made possible by the compactness of P and Q.) 
Then obviously Q2 0 P = 0, whence by the above theorem, Q 0 P = 0 also. 0 

15.1.5. Corollary. Any connected, closed (n-l)-dimensional submanifold M of 
IR" separates IR" into two disjoint parts (and hence is orientable). 

PROOF. Suppose the contrary. Let x be any point of M and let Yl' Yz be two 
points of IR" close to x and on opposite sides of M on the straight line normal 
to M at x. (This makes sense locally since locally M is identifiable with a 
region of IR"-l). Join the points Yl and Yz by a path y which does not intersect 
M and close the gap in y (between Yl and Yz) by means of a short straight-line 
segment perpendicular to M and intersecting M in exactly one point. (This 
will be possible if Yl' Yz are sufficiently close to x.) Denote the resulting closed 
curve (after suitable smoothing) by C. Then since C intersects M in exactly 
one point, the intersection index CoM = ± 1, contradicting the above 
corollary. 0 

Remarks. 1. Note in connexion with this proof that we are not assuming 
beforehand that M is orientable; if M is non-orientable then the intersection 
index CoM = 1, the residue modulo 2 of the number of points in en M, so 
that the argument is still valid. 

2. The latter corollary ceases to hold if we weaken the hypothesis by 
demanding only that M be immersed in IR", i.e. if we allow self-intersections of 
M in IR". For instance there exist immersions (necessarily involving self
intersections) of the non-orientable 2-manifold IRp2 in 1R3 (see [8]). 

15.2. The Total Index of a Vector Field 

Let ~ be a tangent-vector field on a smooth closed manifold P of dimension p, 
and denote by N the tangent-bundle manifold of P (of dimension n=2p). 
(Recall from §7.l that the points of N are the pairs (x, ,,) where x ranges over 
the points of P, and rr over the tangent space to P at x.) The vector field ~ gives 
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rise to an embedding f~: P ...... N, defined by the rule fix)=(x, e(x)). We shall 
denote the image submanifold under f~ by pm, and shall in the usual way 
identify the submanifold P(O) c N, corresponding to the identically zero 
vector field, with our original manifold P. 

15.2.1. Definition. A tangent vector field e on the manifold P is said to be in 
general position if the submanifolds pm and P = P(O) are in general position 
in the tangent bundle N. 

It follows easily (from the definition of transversely intersecting submani
folds) that a vector field in general position on a manifold P can have at worst 
isolated singularities. Note also that if P is oriented by a frame rP at the 
(variable) point x, then the frame (rP, r P) at the point (x, 11) determines a 
natural orientation on N. 

15.2.2. Lemma. All singular points xi of a vector field in general position on a 
smooth, closed oriented manifold P, are non-degenerate. The sign ± 1 con
tributed by each singular point xi (regarded as a point of the intersection 
P(O) ('\ P( e)) to the intersection index P(O) 0 P( e), coincides with the index of the 
singular point, i.e. with sgn det (oeajoxP)xj' 

PROOF. A typical point of the intersection P(O) ('\ pm has the form (Xi' 0) 
where xi is a singular point of e. The tangent space to P(O) at this point 
consists of all vectors of the form (11, 0), while the tangent space to P( e) at the 
point consists of all vectors of the form (l1a, (oeajoxf)I1P), where the xf are 
local co-ordinates on P in a neighbourhood of Xj' and in both cases 11 ranges 
over the tangent space to P at xi' Thus if we write J =(oeajoxf)x=x j , and 
denote by r P an orienting frame for P at the point Xj' then the frames 
ri = rP x 0 and r~ = r P x h P, will be orienting for P(O) and P(~), respectively, 
at their point of intersection (xi' 0). To obtain the sign to be attached to that 
point we need to compare the two frames (ri, r~) and (ri, rf) for the tangent 
space to the tangent bundle N at (Xi' 0), the latter frame determining the 
orientation on N. Since these two frames agree in their first p vectors (namely 
those of rf), it is clear that the sign to be attached to (Xj,O) is that of the 
determinant of the p x p matrix sending the frame rP to the frame J r P, i.e. of 
the determinant of J. This completes the proof of the lemma. 0 

15.2.3. Theorem. For any closed, oriented manifold P, the sum of the indices of 
the singular points of any vector field e in general position on P coincides with 
the intersection index P(O) 0 P(~) in the tangent-bundle manifold N, and is the 
same for all such vector fields ~. 

PROOF. The equality between the intersection index P(O) 0 p(e) and the sum of 
the indices of the singular points of e is immediate from the preceding lemma. 
To see that this number is actually independent of the field ~, observe first 
that any vector field is homotopic to the zero field (via a homotopy of the 
form ~(x, t) = t~(x)) so that any two vector fields ~, 11 on P are homotopic to 
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one another. Hence the embeddings P-4P(~) c N, P-4P('1) eN determined 
by the fields ~, '1, are homotopic. Assuming each of these fields to be in general 
position on P, an appeal to Theorem 15.1.3 now gives us the desired equality 
P(O) 0 P(~) = P(O) 0 P('1). 0 

15.2.4. Corollary. lfp is odd then the sum of the indices of the singular points of 
a vector field in general position on a closed, orient able p-manifold, is zero. 

PROOF. Let ~ be a vector field in general position on the p-manifold P. By 
Lemma 15.1.2 we have P(0)oP(~)=(_1)P2 P(~)oP(O)= -P(~)oP(O). On the 
other hand, in view of the fact that ~ is homotopic to the zero field it follows 
from Theorem 15.1.3 that P(O) 0 P(~) = P(~) 0 P(O). Hence P(O) 0 P(~) = 0, as 
required. 0 

15.2.5. Corollary. Let f be any smooth function on a closed, orientable manifold 
P, having only non-degenerate critical points. Then the sum 

m L (_I)i(Xj), (1) 
j=l 

(where XI>"" Xm are the critical points off and i(xJ is the number of negative 
squares in (the standardform of) the quadratic form (d 2 fk) is independent of f, 

J 

and is zero if p is odd. 

This is immediate from Theorem 15.2.3 (and the preceding corollary) with 
grad f in the role of ~. (Note that the field grad f is in general position on P 
since by Lemma 14.4.1 non-degenerate singular points are isolated.) 

The integer defined by (1) above is called the Euler characteristic of the 
manifold P. The reader may possibly be more familiar with the alternative 
definition of the Euler characteristic by means of generalized "triangulations" 
of P. We shall content ourselves with examining this alternative definition 
only in the case p = 2. Thus suppose that our manifold P is a closed, 
orientable (2-dimensional) surface, subdivided into (curvilinear) closed 
triangles in such a way that any two distinct triangles intersect in the empty 
set, or exactly one vertex, on a single (whole) edge (i.e. have at most a single 
vertex or a single edge in common). 

15.2.6. Definition. The Euler characteristic of a closed orientable surface P is 
the integer ao -a1 + a2 , where ao is the number of vertices, a, the number of 
edges and a2 the number of triangles, in any triangulation. 

The equivalence of this definition with our earlier one (in the case p = 2) is 
shown by the following result. 

15.2.7. Theorem (Hopf). The Euler characteristic of a closed orientable surface 
P coincides with the sum of the indices of the singular points of any vector field ~ 
in general position on P. 
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Figure 45 

PROOF. In view of Theorem 15.2.3 the result will follow if we can produce any 
particular vector field on P for which it is valid. We construct such a 
particular field ~ as follows. Its singular points are to be comprised of: the 
vertices (of any given triangulation of P) which are all to be sinks; exactly one 
point in the interior of each triangle (all of which points are to be sources); 
and finally one point in the interior of each edge (which points are to be 
saddles) (see Figure 45 where some of the integral curves of the field are 
indicated; note also that the edges are intended to be (made up of) integral 
curves of the field, so that the integral curves are formed "independently" in 
the separate triangTes of the triangulation). Since in the case p = 2 sources and 
sinks have index + 1 and saddles index -1 (see §14.4), the theorem now 
follows. 0 

For a sphere-with-g-handles the Euler characteristic is 2 - 2g (verify it!). In 
particular the (2-dimensional) sphere has Euler characteristic 2. 

15.3. The Signed Number of Fixed Points of a Self-map (the 
Lefschetz Number). The Brouwer Fixed-Point Theorem 

Let f: M-+M be a smooth self-map of a closed, oriented n-manifold M. In 
this subsection we shall investigate the "fixed points" of such maps, i.e. the 
solutions of equations of the form f(x) = x. Let x J be a fixed point of J, and let 
xj be local co-ordinates in some neighbourhood of that fixed point; then the 
co-ordinates of Xj satisfy the system of equations xj = f"(xJ, ... , xj), 
IX= 1, ... , n. 

15.3.1. Definitions. A fixed point Xj of a self-map f: M -+ M, is said to be non
degenerate if the matrix 
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is non-singular. We then define the sign of a non-degenerate fixed point Xj to 
be sgn det(l-df)xj' and if all of the fixed points Xl"'" xm of J are non
degenerate (there are only finitely many of them since each of them is isolated 
and M is compact) we call the sum Ij sgn det(l-df)xj of their signs the 
signed (or algebraic) number oJfixed points of J (or the LeJschetz number of J), 
denoted by L(f). (We shall say also that a self-map J is in general position if all 
of its fixed points are non-degenerate.) 

Consider now the direct product M x M and two submanifolds of it of 
particular interest to us here: 

(i) the diagonal d, consisting of all pairs of the form (x, x); 
(ii) the graph d(f) of J, consisting of all pairs (x, J(x». 

If M is smooth, then it is easy to see that each of these is a smooth 
submanifold diffeomorphic to M, of the (smooth) manifold M x M. 

15.3.2. Theorem. Let J: M -+ M be a smooth self-map oj the smooth, closed, 
oriented n-manifold M. Then the intersection index d(f) 0 d coincides with the 
LeJschetz number oj f 
PROOF. Obviously the intersection d n d(f) consists precisely of the fixed 
points Xl"'" xm of f Let r =(v l , .. ·, vn) be an orienting frame for M at the 
point Xj' Then the frame (r, r) at the point (Xj, Xj) determines an orientation 
of M x M, the frame at (x j, Xj) consisting of the vector-pairs 
(v l , Vl), ... , (Vn, vn) in order, which frame we denote by r x r, determines an 
orientation of the diagonal d, and, finally, we orient the graph d(f) by 
choosing at the point (x j, J(Xj»=(Xj, Xj), the frame r x dJ(r) consisting of the 
pairs (Vl, dJ(v l», ... , (vn , dJ(vn» in that order, where dJ denotes the differential 
of the map J at the point x j. The 2n x 2n matrix of the change from the frame 
(r, r) (consisting of the vectors (Vl' 0), ... , (vn, 0), (0, vd, ... , (0, vn) in that 
order) on M x M to the frame (r x dJ(r), r x r) composed of the orienting 
frames on d(f) and d is easily seen to be 

(:J !) - (:J 1 ~dJ). 
which has determinant det(1 - df). The theorem is now immediate from the 
definitions of Lefschetz number and of the intersection index. D 

15.3.3. Corollary. IJ the map J: M -+ M is homotopic to a map to a single point, 
then L(f) = ± 1 (whence the map J has at least one fixed point). 

PROOF. The assumed homotopy of J induces a homotopy between the 
embeddings M-+d(f) c: MxM, and M-+Mxxo c: MxM (where Xo is a 
particular point of M) via embeddings which are t-regular on d. Writing M 0 

= M x xo, we therefore have by Theorem 15.1.3 that d(f) 0 d = Moo d; 
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however since M 0 (l /.'J. clearly consists of just one point (namely (xo, xo)), the 
latter intersection index is ± 1, whence the corollary. 0 

15.3.4. Corollary (Brouwer). Any continuous self-map f of the closed disc D" 
(i.e. closed ball) has a fixed point. 

PROOF. We may identify the disc with the lower hemisphere of sn c IRn + 1. Let 
1/1: sn~Dn be the map which leaves fixed the points of the lower hemisphere 
and projects the upper hemisphere onto the lower one. Then the composite 
map 

'" f sn~Dn~Dn c sn, 

is a nuB-homotopic map s"~ sn (i.e. homotopic to a map to a single point) since 
the image is contained in D" which we can shrink to a point in S". By Theorems 
10.1.2 and 12.1.2 the composite map fa 1/1: sn~s" can be approximated 
arbitrarily closely by smooth maps homotopic to it. By the preceding 
corollary such smooth maps will have fixed points, and a short argument 
(involving nested compact subsets of S") then shows that f a 1/1 must also have 
a fixed point. Since (f a I/I)(S") cD", any such fixed point must lie in D", and is 
therefore a fixed point of f. 0 

Examples. (a) As we saw in Example (b) of §13.4, the map z~z" (or cp~ncp) of 
the unit circle Izi = 1 to itself has degree n. The fixed points are the solutions of 
the equations z" = z, I z I = 1, i.e. of z" - 1 = 1; they are therefore just the (n - 1 )th 
roots of unity. It foBows that (for n> 1) the Lefschetz number of this map is 
-(n -1). Since every map Sl ~Sl of degree n is homotopic to the map Zl-+Z" 

(see §13.4, Example (b)), and the Lefschetz number is invariant under 
homotopies (see the proof of Corollary 15.3.3), we deduce that for any map 
f: Sl~Sl of degree n, the Lefschetz number L(f)= -(n-1). 

(b) The map S2~S2 defined (for each n> 1) by ZI-+Z" (identifying as usual 
the 2-sphere with the extended complex plane or Riemann sphere) has n fixed 
points in the finite plane IC 1 = 1R2, and has the point at infinity as a further 
fixed point. We leave to the reader the verification that all of these fixed 
points are non-degenerate of sign + 1. Thus the Lefschetz number of this map 
is n + 1. 

EXERCISES 

1. Show that for any map f: sm-+sm of degree n, the Lefschetz number UJ) is (in 
absolute value) n + 1 or n - 1 according as m is even or odd. (In particular, the 
"antipodal" map ~I-> -~, which has no fixed points, has degree (_1)m-i.) 

2. Calculate L(f) for the linear self-map f of the m-dimensional torus Tm, defined by 
an integral matrix of degree m. (Recall the definition of T m (given in §5.2) as the 
quotient space of IRm by the integer lattice.) 
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15.4. The Linking Coefficient 

Consider a pair of smooth, closed, regular directed curves Yl and Y2 in 1R 3, 

which do not intersect one another. We may assume them to be parametrized 
in the form y;(t) = r;(t), 0::;; t::;;2n, where r denotes the radius-vector of points 
in 1R3. 

15.4.1. Definition. The linking coefficient of the two curves Yl' Y2 parametrized 
as above is defined (in terms of the "Gauss integral") by 

(2) 

where r12=r2-rl' 

Intuitively speaking the linking coefficient gives the algebraic (i.e. signed) 
number of loops of one contour (imagine a wire lead) around another. This 
interpretation is justified by the following result. 

15.4.2. Theorem. (i) The linking coefficient {Yl' Y2} is an integer, and is 
unchanged by deformations of the closed curves Y l' Yz, involving no 
intersections of the curves with each other. 

(ii) Let F: D2-+1R3 be a map of the disc D2 which agrees with Yl: tf-+r 1(t), 
0::;; t::;; 2n, on the boundary SI = aD2, and is t-regular on the curve Y2 c 1R3. 
Then the intersection index F(D2) 0 Y2 is equal to the linking coefficient 
{Yl, Y2}' 

PROOF. The closed curves y;(t)=r;(t), i= 1, 2, give rise to a 2-dimensional, 
closed, oriented surface 

Yl X h (tl, t2)f-+(rt(td, r2(t2» 

in 1R6. Since the curves are non-intersecting the map q>: Yl X Y2-+S2, given by 

r 1 (t 1) - r 2( t 2) 
q>(tl' t2)= !rl(tl)-r2(t2)1' 

is well defined thereby. From §14.2 (formula (5» we see that the degree of the 
map q> is equal to the integral on the right-hand side of (2) above; hence the 
linking coefficient is indeed an integer. Under deformations of the curves 
Yt. Y2 involving no intersections with one another, the map q> undergoes a 
homotopy, so that its degree, and therefore also the linking coefficient, are 
preserved. 

We now prove (ii). If the curves are not linked (i.e. if by means of a 
homotopy respecting non-intersection they can be brought to opposite sides 
of a 2-dimensional plane in 1R 3) then it can be verified directly that 
{Yl,Y2}=degq>=O. Hence by applying a homotopy as indicated in 
Figure 46(a) and (b), we reduce the general case of the problem of calculat
ing the linking coefficient essentially to the simple situation shown in 
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Figure 46 

Figure 46(c). The calculation in this case is made especially easy by letting the 
radius of one of the circles go to 00; thus we suppose Yl and Yz to be given 
respectively by r1(t 1)=(0,0,t1), -oo<tl<oo, and rz(tz)=(costz, sintz,O), ° ~ t z ~ 2n. By (2) the linking coefficient for these two curves is 

1 fOO en dtl A dt z 
{Yl,Yz}=4n -ooJo (1+ti)3/Z 

1 foo dt 1 foo dz 1 
=-2 (1 ~)3/Z =-2 hZ =-2tanhzl~00=1, 

- 00 + t 1 - 00 cos z 

where we have used the substitution t1 =sinh z. Hence for these two directed 
curves statement (ii) of the theorem holds. The general result now follows 
easily from this and the already-noted fact that linking coefficient of a pair of 
unlinked curves is zero. 0 



CHAPTER 4 

Orientability of Manifolds. 
The Fundamental Group. 
Covering Spaces (Fibre Bundles with 
Discrete Fibre) 

§16. Orientability and Homotopies of Closed Paths 

16.1. Transporting an Orientation Along a Path 

According to the simplest of the definitions of an orientation on a manifold 
given above (see Definition 1.1.3), a manifold M is oriented if the local co
ordinate systems xj given on the members U j of a covering collection of local 
co-ordinate neighbourhoods (or charts) for M, are such that the transition 
functions from one local co-ordinate system to another on the regions of 
overlap Uj 0. Uk' have positive Jacobian: 

det(::D > O. 

The second definition (2.1.2) of an orientation (on an n-manifold M) was as 
follows: The set of tangent n-frames (for the tangent space) at each point 
x E M is divided into two "classes", two frames being in the same class if the 
linear transformation taking one into the other has positive determinant; an 
orientation is then said to be given on M if with each point x E M there is 
associated one of its classes of tangent frames in such a way that the class 
varies continuously with x (as x ranges over M). 

We found these definitions convenient for establishing the orientability of 
various kinds of manifolds, for instance complex manifolds, and surfaces in 
IR" defined by non-singular systems of equations It = 0, ... , J,.-k = O. 
However our aim in the present subsection is to establish the non-orientability 
of certain manifolds, for which purpose the concept of "transporting an 
orientation along a path" in a manifold M, will be useful. 
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We now define this concept. We assume our n-manifold M to be 
connected, and for the sake of convenience we endow it with a metric gab' Let 
")' = ")'(t). 0 ~ t ~ 1, be a piecewise smooth path (i.e. curve segment) in M, and at 
each point ")'(t) of the path, let t"(t) be a linearly independent tangent n-frame 
to M, depending continuously on t. 

16.1.1. Definition. The orientation class of the frame t"(t)lt= 1 at the point "),(1), 
will be called the result of transporting the orientation class ofthejrame t"(O) at 
the point ")'(0) along the path ")'. 

The operation of transporting an orientation along a path has the 
following three basic properties. 

(i) For each point x E M, there is a (sufficiently small) neighbourhood of x 
with the property that for any point y in that neighbourhood, the result of 
transporting an orientationfrom x to y along any path entirely contained in the 
neighbourhood, is uniquely defined. 

This property is immediate from the fact that in any manifold each point 
has a neighbourhood contained in a chart of the manifold (and therefore 
identifiable with a region of IR"). 

(ii) For any given piecewise smooth path ")" the result of transporting an 
orientation class along"), exists, and is independent of the frame t"(t) along the 
curve (subject of course to the conditions that the frame depend continuously 
on t, and that the initial frame t"(O) be in a specific orientation class). 

The existence follows from the fact that it is always possible to parallel 
transport a frame along a smooth or piecewise smooth curve segment on a 
manifold endowed with a Riemannian metric (see §1.2 above, and §29.1 of 
Part I). That the result of transporting an orientation class along a path")' is 
independent of the choice offrame t"(t) along")" is proved as follows. Let ti{t) 
and ti(t) be two fields of frames on ")' which at t = 0 belong to the same 
orientation class. Denote by A(t) the matrix transforming the frame ri(t) to 
the frame ri(t) at time t. Then det A(t) :f:. 0 for all t, and sgn det A(O) = + 1. In 
view of the continuity of the dependence of the orientation classes of ti and ri 
on t, it follows that sgn det A(t) = + 1 for all t. 

(iii) If two piecewise smooth paths Yl(t) and ")'2(t) have the same initial 
and terminal points, and one can be deformed into the other by means of a 
piecewise smooth homotopy holding fixed the end-points Xo = 1'1 (0) = 1'2(0) and 
Xl =")'1 (1) = ")'2(1), then the results of transporting an orientation class along the 
two paths, coincide. 

This can be seen as follows. Let F(t, s), 0 ~ t ~ 1, 0 ~ s ~ 1, be a homotopy 
of the kind assumed in the above statement; thus F(t, 0) = Yl(t), F(t, 1) = Y2(t), 
and for each fixed t, the path F(t, s), 0 ~ s ~ 1, is piecewise smooth. Let t"(t) be 
a (continuously varying) field of frames on the curve Yl(t) = F(t, 0), and for 
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each fixed t parallel transport the frame t"(t) along the path F(t, s), 0 ~ s ~ 1. 
(The metric on M x I in terms of which this parallel transport is carried out, 
is the natural one defined by the inner product < (~, 1/), (~, 1/) > = gab~a~b + 11/12, 
where ~ is a tangent vector to M at x, and 1/ is a tangent vector to 
tEl = [0, 1].) It follows from the definition of parallel transport (see §29.1 
of Part I) that the result of such parallel transport (carried out for every t) 
will be a continuously varying field of frames on the curve 'Yit) = F(t, 1), 
and that moreover since the (common) end-points of the two paths are held 
fixed during the homotopy, the orientation classes of the initial and final 
frames of this field are respectively the same as the initial and final frames of 
the field offrames t"(t) on 'YI' 

From these properties we derive the following 

16.1.2. Theorem. A connected manifold M is orientable if and only if transport 
around any closed path (i.e. one having coincident initial and terminal points, also 
called a "loop') preserves the orientation class. 

PROOF. If there is a closed path beginning and ending at a point Xo which 
reverses the orientation (i.e. such that the result of parallel transporting a 
frame t n around the path from Xo back to Xo is a frame in the opposite 
orientation class), then the manifold is non-orientable since clearly it is not 
possible to associate with each point of the manifold (or, more particularly, 
with each point of this closed path) a continuously varying orientation class. 

For the converse, suppose that all closed paths beginning and ending at Xo 

preserve the orientation. We now define an orientation of the manifold M by 
choosing arbitrarily an orientation class at the point xo, and assigning to 
every other point x I the orientation class resulting from transporting the 
orientation class at Xo along a path from Xo to Xl' This procedure will yield 
an orientation of M provided the assignment of orientation class to the 
(arbitrary) point Xl is independent of the path 'Y. Now if 'YI' 'Y2 are two paths 
from Xo to XI' then transport of the initially chosen orientation class at Xo 

along them will necessarily result in the same orientation class at Xl' since 
otherwise the closed path 'Yil 0 'YI would reverse the orientation. (Here 'Yil 
denotes the path 'Y2 traced in the opposite direction, and the product path 
'Yi I 0 'Y I is (by definition) the path q(s), 0 ~ s ~ 2, where q(s) = Y I (s) for 
o ~ s ~ 1, and q(s) = Y2(2 - s) for 1 ~ s ~ 2.) 0 

16.2. Examples of Non-orientable Manifolds 

(a) The Mobius strip (or band) is the manifold with co-ordinates (qJ, t), 
o ~ qJ ~ 21t, -1 ~ t ~ 1, with the identification (0, t) - (21t, - t), -1 ~ t ~ 1 
(see Figure 47). 

It is easy to see that the closed curve Y = {( qJ, 0) I 0 ~ qJ ~ 21t} interchanges 
the orientation classes. (Check it!) 
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t 

1~----""'" 

o 1-------;Z ... 1t:t-~9' 

-1 "-------' 
(O,t) ~(2 re, -tJ 

Figure 47. The Mobius strip in 1R3 (a "one-sided surface"). 
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Figure 48 

(b) As we saw in §2.2, the projective plane IRp 2 can be realized as a disc D2 
with each pair of diametrically opposite points of the boundary oD2 = Sl 
identified. It is intuitively clear that a small neighbourhood of the projective 
line IRp1 c IRp2 (shown in Figure 48, with the neighbourhood shaded) 
through the origin of co-ordinates, will then be a Mobius strip. Hence the 
closed curve IRp1 interchanges the orientation classes, whence by the above 
theorem the surface IRp2 must be non-orientable. 

EXERCISE 

Prove that the manifold IRP' is orientable for odd n, and non-orientable for even n. 

(c) The Klein bottle is the 2-manifold with co-ordinates (t, f), 0 ~ t ~ 1, 
o ~ f ~ 1, where for each t the points (t, 0) and (1 - t, 1) are identified, and for 
each f the points (0, f) and (1, f) are identified (see Figure 49 where the sides of 
the square to be identified are labelled with the same letter, and the manner of 
identification is indicated by the arrows). We leave it to the reader to show 
that the Klein bottle is non-orientable. 

b 

a d 

b t 
Figure 49 
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§ 17. The Fundamental Group 

17.1. Definition of the Fundamental Group 

Let M be an arbitrary connected manifold (or more generally a path-wise 
connected topological space). Given any two continuous (or piecewise 
smooth) paths Yl(t), 0 ~ t ~ 1, and Y2(t), 1 ~ t ~ 2, such that the terminal point 
of Yl coincides with the initial point of Y2' we can (as we have already seen) 
"multiply" them as follows. 

17.1.1. Definition. The product of the paths Y1 and Y2 is the path Y2 0 Y1 = q(t), 
o 5 t 5 2, defined by 

q(t) = Y1 (t), 

q(t) = Y2(t), 

05 t 51, 

15t~2. 

17.1.2. Definition. The inverse y-1(t) of a path y(t) in M is the path y(t) 
traversed in the reverse direction; thus Y -1(t) = y(1 - t) if 0 5 t 5 1. 

17.1.3. Definition. We say that two paths Y1(t), Y2(f) are equivalent if they 
differ only by a strictly monotonic change of parameter: t = t(f). dt/df > 0, 
Yl(t(f)) = Y2(f). 

Henceforth by a (directed) path we shall mean. strictly speaking, a class of 
equivalent paths; in practice we shall choose whichever parametrization is 
most convenient for the purpose at hand. 

Consider the totality of all closed paths beginning and ending at a 
particular point Xo of M. This set is usually denoted by n(xo• M). while more 
generally the set of all paths in M from Xo to some other point x 1 is denoted 
by .Q(xo, x I> M). The loops in n(xo, M) can be multiplied in accordance with 
Definition 17.1.1, with the product path remaining in n(xo. M); furthermore, 
n(xo, M) contains an identity element e (or 1) under this product operation, 
namely the constant (or nUll) path, defined by e(t) = Xo for all t. 

Observe that if in a product Y2 0 Y1 of two directed paths, we replace the 
component paths Y1 and Y2 by paths Yl and Y2, respectively, homotopic to 
them via homotopies fixing the end of Y1 and the beginning of Y2 (which 
coincide), then the new product Y2 0 YI> is homotopic to the original product 
Y2 °Yl· Hence in particular it makes sense to speak of the product of (relative) 
homotopy classes of (directed) loops beginning and ending at a particular 
point Xo of M. 

17.1.4. Theorem. Let M be a connected manifold (or more generally a pathwise 
connected topological sp,ace), and let Xo be a point of M. Then the (relative) 
homotopy classes of (directed) paths in .Q(xo• M) form a group under the 
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Figure 50 

operation of multiplication of these classes. The group-theoretical inverse of a 
homotopy class is the homotopy class of the inverse of any path from that class, 
and the identity element is the homotopy class of the null path. 

Anticipating the validity of this result we stop to bestow on this group a 
name and a notation. It is called the fundamental group with respect to the 
base point Xo of the manifold M, and is denoted by 1tl (M, xo). (We emphasize 
again that during all homotopies the beginnings and ends of paths are 
assumed fixed at xo.) 

PROOF OF THEOREM 17.1.4. We first show that given any path y(t), 0:::; t :::; 1, 
beginning and ending at xo, the path I' - 1 a I' is homotopic to e (see Figure 50). 
The deformation of the path I' - 1 a I' to e is performed essentially by shrinking 
it along itself all the way back to the point xo, in the following precise manner. 
Let q = q(t) be the map of the interval [0,2] onto the interval [0, 1] which 
folds the former interval in two at the point t = 1: 

q(t)=t, t:::;l, 

q(t}=2-t, t~ 1. 

The map q can by means of an obvious homotopy be deformed into the 
constant map q(t) == 0, moreover in such a way that the end-points (corre
sponding to t = 0, t = 2) are throughout the homotopy process fixed at ° 
(note that t = 1 does not, of course, correspond to an end-point). Now clearly 
1'-1 0 1' is by definition just y(q(t»; hence by applying the above homotopy 
from q to the constant map ij, we induce a homotopy of I' - 1 a I' to the null 
path in M. 

It remains to show only that the multiplication on n(xo, M) is associative. 
However, this is easy since if we define the "triple" product 1'1 a 1'2 a 1'3 of three 
given (suitably parametrized) paths 1'1,1'2,1'3' to be the path q(r), 0:::; t:::; 3, 
with q = 1'3 for r:::; 1, q = 1'2 for 1 :::; r:::; 2, and q = 1'1 for t ~ 2, then clearly this 
path coincides (as usual to within monotonically increasing changes of 
parameter) with each of the paths (1'1 0 1'2) 0 1'3 and 1'1 0 (1'2 a 1'3)' This completes 
the proof of the theorem. 0 

Finally in this subsection, we consider the effect on the fundamental group 
(with base point xo) of our manifold M, ofa continuous map! M ~N from M 
to another manifold N. Under such a map each path I' = y(t) in M is sent to 
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the path f(y(t» in N, and under this induced mapping of the set of paths in 
M, a product of paths goes to the product of the image paths, and homo
topic paths in M go into homotopic paths in N. Furthermore any homotopy 
F(x, t) = f" of the map f(i.e.fo =1) with fixed image ofthe distinguished point Xo 
(i.e. such that F(xo, t)=f(xo» induces a homotopy of the image f(y) c N of any 
loop y in M beginning and ending at Xo. From this the following facts are 
readily inferred. 

17.1.5. Theorem. Any continuous map f: M --. N between manifolds M and N 
(or more generally between pathwise connected topological spaces) induces a 
homomorphism between fundamental groups: 

which is unaltered by homotopies off throughout which Xo is sent to Yo. Hence in 
particular if M = N and the map f is homotopic to the constant map M --. xo, 
then the homomorphismf* is trivial (i.e. sends every element to 1). If on the other 
hand the map fis homotopic to the identity map 1M , then the homomorphismf* is 
an isomorphism. 

17.2. The Dependence on the Base Point 

Our next result elucidates the dependence of the fundamental group n(M, xo) 
on the base point Xo. The essential ingredient in this theorem is an operation 
(to be described below) yielding the group nl(M, xd from the group 
nl(M, xo) via a path y joining Xo to Xl; we shall refer to this operation as that 
of transporting the fundamental group of M along y. 

17.2.1. Theorem. Any path y from a point Xo to a point Xl of M, determines an 
isomorphism 

y*: nl(M, Xl) --. nl(M, xo), 

which depends only on the (relative) homotopy class ofy (relative to homotopies 
leaving fixed the initial and terminal points Xo and X I, i.e. to homo to pies which 
only involve pathsfrom Q(xo, Xl' M». If the path y is closed, i.e. ifxo = XI' (so 
that y itselJrepresents an element ofnl(M, xo), which element we denote also by 
y), then the isomorphism y* is an inner automorphism: 

y*(a) = y -I ay. 

PROOF. The map y* is defined as follows. If YI is a path representing an 
element of the group nl(M, XI)' then Y*(YI) is to be the homotopy 
class containing the path y-I 0 YI 0 Y (see Figure 51). Since under this map 
the class of a product YI 0 Y2 is sent to the class containing the path 
Y*(YI 0 Y2) = Y -I 0 YI 0 yo Y -I 0 Y2 0 y, which is clearly in the homotopy class 
containing Y*(Yd 0 Y*(Y2)' we have that the mapping y* is a homomorphism. 
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Figure 51 

To see that 1'* is one-to-one and onto, consider in place of the path 1', its 
inverse 1'-1, joining Xl to xo, and in place of 7tl(M, Xl) the group 7tl(M, xo). 
We are led as before to a homomorphism 

(1'-1)*: 7t1(M, Xo) -t 7tl(M, Xl)' 

It is then easily verified that the composite maps 1'* 0 (1' - 1)* and (1' - 1)* 01'* are 
the identity maps (of 7t 1(M, xo) and 1t1(M, xJl respectively). 

The proof is completed by noting that the second statement of the 
theorem, relating to the situation where Xo = Xl' is now immediate from the 
definition of 1'*. 0 

17.3. Free Homotopy Classes of Maps of the Circle 

We consider next the problem of classifying the "free" homotopy classes of 
maps of the circle Sl to a connected manifold M (or pat~wise connected 
topological space). Here by "free" we mean that no "initial" point of the circle 
is distinguished. 

17.3.1. Theorem. The set [Sl, M] of homotopy classes of maps Sl-t M, is in 
one-to-one correspondence with the classes of conjugate elements (or "conju
gacy classes") of the group 7t l (M, xo) (for any base point xo, in view of the 
preceding theorem). 

PROOF. On the circle Sl (locally) co-ordinatized by cP, O:s; cP:S; 27t, denote by 
CPo the point corresponding to cP = 0, and let Xo be any particular point of M. 
As a first step we show that every map 1': Sl -t M is homotopic to a map 
sending CPo to Xo. Let 1'1 be a path in M joining Xo to the point 1'(CPo), and 
consider the closed path q(t) = 1'1 11'1'1' O:s; t :s; 3, beginning and ending at Xo: 

q=Yl' O:S; t :s; 1, 

1 :s; t :s; 2, 

2:s; t :s; 3. 

As a map of the circle the closed path q is clearly homotopic to y, and 
moreover has the property that it sends the point CPo to Xo' 

Thus each homotopy class of maps Sl -t M, includes at least one element 
of 1tl(M, xo). Suppose now that !Xl>!X2 are two (representative paths of) 
elements ofn 1(M, xo), which are homotopic as maps Sl -t M; in the course of 
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such a homotopy F«({J, t) say, 0 $ ({J $ 2n, 0 $ t $ 1, between them, the image 
of the initial point ({Jo moves along a closed path p say, beginning and ending 
at Xo: 

F«({J, 1) = (X2, F«({Jo, t) = p(t). 

It is not difficult to see that the paths (Xl and P- 1r:t.2P are homotopic via a 
homotopy fixing xo, i.e. that they define the same element of nl(M, xo) (see 
Figure 52). 

For the converse, suppose we are given loops r:t. 1, r:t.2 and p all beginning 
and ending at xo, such that (X2 = P -1 (Xl p. Then the paths (Xl and r:t.2 = P -1 r:t.l P 
are freely homotopic (i.e. as maps from S 1 to M); this can be seen from Figure 
53 where there is depicted a region of the plane with two points a, b removed, 
which points are encircled by the paths p and (Xl' respectively. It is intuitively 
clear that the path r:t.2 = P - 1 r:t.l p, indicated by the dotted curve, can be 
deformed around the puncture a, into the path r:t. 1 , by pushing the point where 
it both begins and ends around the path p. (Imagine the path r:t.2 to be a 
contractible thread or elastic band.) 0 

17.4. Homotopic Equivalence 

An "open" manifold M of dimension n (e.g. a region of Euclidean space IR") 
can often be deformed within itself into a subset of smaller dimension (which 
need not in general be a submanifold), whose fundamental group (as well as 
other invariants) is significantly easier to calculate. The precise formulation of 
this idea involves the concept of "homotopic equivalence" of manifolds, 
which we now define. Let M and N be two manifolds (or, more generally, 
topological spaces), and let f, g be two continuous maps (smooth or 
piecewise smooth in the case of manifolds) between them (in opposite 
directions): 

f: M -+N, g:N-+M. 

The composite maps go f: M -+ M, and fog: N -+ N, are then self-maps of M 
and N. As usual we denote by 1M and IN the identity maps on M and N 
respectively. 
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17.4.1. Definition. Two manifolds (or topological spaces) M and N are said to 
be homotopically equivalent (or of the same homotopy type) if there exist maps 
f, g (as above) such that the composite maps go f and fog are homotopic to 
1M and IN' respectively. The relation of homotopic equivalence between M 
and N is denoted by M "" N. 

The fundamental property of homotopic equivalence consists in the 
following: If M and N are homotopically equivalent manifolds (or topological 
spaces), then given any manifold (or topological space) K, there is a natural one
to-one correspondence between the sets [K, M] and [K, N] of homotopy 
classes of maps. 

PROOF. The maps f and g (as in the definition) determine in a natural way (via 
composition) maps between the sets of homotopy classes: 

f.: [K, M] -+ [K, N], g.: [K, N] -+ [K, M]. 

It is immediate from the fact that g of and f o g are homotopic to the 
respective identity maps, that (g 01). and (f o g). are the appropriate identity 
maps. Since, as is easily shown, (g 01). = g. of. and (fog). = f. 0 g., it follows 
that f. and g. are mutual inverses, whence the desired conclusion. D 

The concept of homotopic equivalence is amenable to the mild modific
ation (or "relativization") wherein distinguished points xo, Yo of the mani
folds M, N, respectively, are specified. It is demanded that the maps f and g 
send Xo to Yo and Yo to xo, and also that all maps involved in the homotopies 
from go f to 1 M, and f o g to 1 N, fix Xo or Yo, as the case may be. It can be 
shown that for sufficiently "nice" topological spaces, such as for instance 
connected manifolds, the condition that M, N be homotopically equivalent in 
this relative sense, is no more stringent than the condition that they be 
"freely" homotopically equivalent (i.e. in the former sense). 

For this relativized version of homotopic equivalence, the above funda
mental property becomes: If the spaces M and N with distinguished points Xo 
and Yo are homotopically equivalent (relative to those points), then given any 
space K with distinguished point ko, there is a natural one-to-one corre
spondence between the sets of relative homotopy classes of maps K -+ M and 
K -+ N, sending ko to Xo and Yo respectively. 

The proof of this is as in the case of free homotopic equivalence. By taking 
K to be the circle Sl it readily follows that in this situation M and N have 
(naturally) isomorphic fundamental groups. 

17.5. Examples 

(a) Euclidean n-space IR", and any null-homotopic region of it (i.e. continu
ously contractible over itself to a point), is homotopically equivalent to a point 
Xo E IR"; in symbols IR" "" xo. This is easily proved as follows. 
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Figure 54. (Part of) a tree A - xo. 

Consider the embedding f: {xo} ~ IRn, and the constant map g: IRn ~ {xo}. 
On the one hand we obviously have g of = l xo ' while on the other hand the 
composite map fo g: IRn ~ IR", which sends every point of IRn to X o, is 
homotopic to the identity map 1,," via the homotopy F(x, t) = tx + (1 - t)xo. 
This proves the above statement for IRn. We leave to the reader the details of 
the (analogous) prooffor an arbitrary subset A of IRn contractible within itself 
to a point Xo E A. 

Examples of such contractible subsets are furnished by the (open or closed) 
disc Dn or any region homeomorphic to it, and by any tree A (i.e. one
dimensional complex (or "graph") without cycles-see Figure 54). (Note that 
a tree is not in general a manifold.) All of these spaces are homotopically 
equivalent to a point, and therefore have trivial fundamental group: 

1t 1(lRn, x o) = 1, 1t 1(D", xo) = 1, 1t 1(A, xo) = 1. 

(b) Consider the plane 1R2 with k points ai' ... , an removed. The resulting 
region 1R 2 \{a l , ... , ad is homotopically equivalent to a "bouquet" of k 
circles, all joined at a single point (which space is again not, generally 
speaking, a manifold). (See Figure 55, where it is intuitively clear how 
IR 2 \ {a 1, a2} can be deformed to the bouquet A.) In particular the region 
1R 2 \{a}, obtained by removing from 1R2 a single point a, is homotopically 
equivalent to the circle S I. (As an exercise write down a formula for the 

Figure 55. A bouquet of two circles. 
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relevant homotopy.) From the homotopy equivalence between 
1R2\{a1, ••• , at} and the bouquet of k circles (for k = 2 a "figure eight") we infer 
an isomorphism between the fundamental groups: 

1tl(1R2\{al, ... ,ad)~1tI(S~ v ... vS~), 

where S~ v ... v S~ denotes the bouquet of k circles. In particular, 

where Z here denotes the additive group of integers (i.e. the infinite cyclic 
group); the second isomorphism (1t 1(SI) ~ Z) follows from §13.4, Example (b). 

(c) The region obtained by removing a single point a from 1R 3, is 
homotopically equivalent to the 2-sphere S2. More generally if we remove k 
points ai' ... , at from 1R3 we obtain a region homotopically equivalent to a 
bouquet of k 2-spheres. The region 1R3\1R 1 is homotopically equivalent to the 
circle SI. (Verlfy these statements!) These homotopic equivalences yield the 
following isomorphisms between fundamental groups: 

(See Example (e) below for the triviality of 1t 1(Si v ... v S~).) 

(d) Consider the 3-sphere S3 :;;;; 1R3 U {oo}, and the region U of S3 obtained 
by removing some (non-self-intersecting, i.e. embedded) circle S \ thus we 
may write U = S3\SI. As an exercise show that if SI is un knotted in S3 
(for instance, if it is embedded as the circle x 2 + y2 = 1 in the plane 
1R2 c 1R3 C S3), then the region U = S3\SI is homotopically equivalent to 
the circle S1, and the region V=U\{point}:;;;;1R 3 \SI, is homotopically 
equivalent to the bouquet (or "wedge product") formed from the circle SI and 
the sphere S2 (which incidentally is not of course a manifold) (see Figure 56). 
Show also that (provided SI is unknotted in 1R 3 ) 

1t1(1R 3 \Sl) ~ Z. 

(e) We conclude by proving that for all n > 1 the fundamental group of the 
n-sphere sn is trivial: 

Figure 56. The bouquet SI v S2. 
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PROOF. Let f: SI - S· be any piecewise smooth map. Since n> 1 every 
regular value Yo E sn of f, must be without preimages. Since by Sard's 
theorem (see §1O.2) f must have regular values, it follows that the image of Sl 
under f lies in sn\ {Yo} for some point Yo' Since sn\ {Yo} ~ IRn, it follows that 
f(SI) is contractible to a point in sn. 0 

Remark. A similar argument shows that for any manifold K of dimension 
< n, the set [K, sn] of homotopy classes is trivial (i.e. contains just one 
element). 

In the sequel we shall calculate the fundamental groups of various other 
concrete manifolds (and topological spaces), in particular of bouquets of 
circles (or, equivalently, the punctured plane), of the closed 2-dimensional 
surfaces, and of regions of the form 1R 3 \SI where Sl may be knotted in 1R3. 

17.6. The Fundamental Group and Orient ability 

From the results of §16.1 it is immediate that given any (relative) homotopy 
class of closed paths beginning and ending at the base point Xo of a connected 
manifold M, either every path in that class preserves the orientation of a 
tangent frame transported around the path, or every path in the class reverses 
the orientation, i.e. the homotopy class as a whole preserves or reverses the 
orientations of tangent frames. If we assign the number + 1 to those 
homotopy classes preserving orientation and - 1 to those reversing it, we 
obtain a homomorphism 

0': 7t1 (M, xo) - {± I} ~ 2 2 , 

where {± I} denotes the obvious multiplicative group, and 22 is the group of 
additive integers modulo 2 (i.e. the cyclic group of order 2): O'(y) = sgn y = ± 1. 
By Theorem 16.1.2 this homomorphism is trivial if Mis orientable, and non
trivial if M is non-orientable, since in the latter case there exist closed paths 
reversing the orientation of tangent frames. Hence that theorem leads to the 
following 

17.6.1. Corollary. The fundamental group of a non-orientable manifold is non
trivial, and in fact can be mapped homomorphically onto the cyclic group of 
order 2. 

For the Mobius strip we have 7tl (M) ~ 2, since it can be contracted within 
itself to the circle S 1 along its middle (see Figure 47). For the projective plane 
IRp 2 we deduce that 7tl (lRp2) '# 1; we shall subsequently show (in §19.2) that 
in fact 1tl (lRp2) ~ 2 2 , 
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§ 18. Covering Maps and Covering Homotopies 

18.1. The Definition and Basic Properties of Covering Spaces 

The concept of a covering map derives from the study of the graphs of 
multivalued functions having a fixed number of values (i.e. m-valued for fixed 
m), and whose branches cannot be separated. 

Let M, N be manifolds of the same dimension and consider a map 
f: M --+ N with the following two properties: 

(i) The map f is to be non-singular; i.e. its Jacobian is non-zero at every 
point x of the manifold M: 

(OY") det oxfJ #- 0, 

where the xP are co-ordinates in a neighbourhood of x, and the y" are co
ordinates in a neighbourhood of the point y = f(x) E N. 

(ii) There should exist around each point YEN, a neighbourhood Vj C N 
whose complete inverse image 1- 1(V) is the union V1j U V2j U··· of a set of 
pairwise disjoint regions Y,.j' k = 1, 2, ... , with the property that the restric
tion Ilvk}: Y,.j --+ Vj , of 1 to each region Y,.j is a diffeomorphism between Y,.j 
and Vj • It is further required that N be covered by finitely or countably many 
such regions Vj and in such a way that each point YEN lies in only finitely 
many of the V j • (Sometimes the more stringent requirement is imposed that 
each compact subset of N intersect only finitely many of the Vj .) The 
analogous property is required to hold also for the covering of the manifold 
M by the regions y"j. 

IS.I.1. Definition. A map f: M --+ N (M and N of the same dimension) with 
properties (i) and (ii) above, is called a covering map (or simply covering). (In 
fact property (ii) suffices for the definition since clearly (i) follows from (ii).) 
The manifold N is called the base of the covering map, and M its covering 
space. The complete inverse image 1 -1(y) of any point YEN is called a fibre 
of the covering. The number of regions Y,.j in the complete inverse image 
f -1(Vj ) (or, what amounts to the same thing, the number of points in f -l(y) 
for Y E V j } is referred to as the number 01 sheets (corresponding to V j) of the 
covering; if this number is finite and constant for all Vj , say equal to m, then 
the covering is said to be m-sheeted. 

We shall suppose from now on that the manifold N is connected. We say 
that a given covering is indecomposable if the manifold M is also connected. 
The covering with M ~ N x F where the fibre F is (necessarily) a finite or 
countable discrete topological space (i.e. consists of finitely or countably many 
isolated points) and f is (essentially) the projection map, is called the trivial 
covering. 
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18.1.2. Lemma. If the base space N is connected then the number of sheets of a 
covering is independent of the choice of the point YEN. 

PROOF. Let Yo and Y1 be any two distinct points of N and join them by a 
piecewise smooth, non-self-intersecting path y(t), 0::;; t::;; 1. Subdivide the 
interval [0, 1] into K equal subintervals, denoting by bk the subinterval 
k/ K ::;; t ::;; (k + 1)/ K, for k = 0, 1, ... , K - 1. Choose K sufficiently large for each 
of the corresponding segments y(Ok) of the path y(t) to lie entirely within one 
of the regions Ujk of N specified in defining the given covering. By definition 
of a covering, for each k the complete preimage f - 1 (y(Ok» is a union 

f- 1(y(bk» = Ojk. 1 U Ojk, 2 U ... , 

of pairwise disjoint path segments, where the segment 0 jk, q is contained in the 
region J.jk. q' and is mapped by the covering map f homeomorphically onto 
the path segment y(bk ). Hence as a point moves continuously along 
any particular segment y(bk ), each point of its complete preimage moves 
continuously along whichever of the path segments bjk• 1 , Ojk.2"'" it 
lies on, without merging with any other point in the complete preimage. 
It follows that the points of the (closed) segment y(bk ) all have the 
same number of preimages under f. Now having reached the end of the 
segment y(Ok)' we apply the same argument to the next segment y(Ok+ 1) lying 
within the region Uj(k+ 1)' After K repetitions of the argument, starting from 
Yo, we reach Y1' Hence Yo and Y1 have the same number of pre images and the 
lemma is proved. D 

From this proof we deduce the following 

18.1.3. Lemma. Letf: M ~ N be a covering map with connected base space N. 
The complete inverse image of a piecewise smooth, non-self-intersecting path y 
(with distinct end-points Yo and yd is (diffeomorphic to) the direct product of the 
path y with any fibre F, i.e. is the union of as many pairwise disjoint copies of the 
path y as there are sheets in the covering: f-1(y) ~ Y x F. Each of these 
component paths is projected by f diffeomorphically onto the path y in the base 
space N. 

PROOF. If we label the points of the fibre corresponding to the point Yo = y(O) 
(t = 0) with the positive integers 1,2, ... , then we can introduce on the set 
f-1(y) co-ordinates t, n, 0::;; t::;; 1, n = 1,2, ... , in the following way: for t = 0 
the points of the fibre f- 1(Yo)=f- 1(y(0» are assigned co-ordinates (O,n) 
according to the labelling. As we move continuously along y towards Y1' i.e. 
as t varies continuously from 0 to 1, for each t we label the points of the fibre 
f-1(y(t» with the integers 1,2, ... , in a continuous manner made clear by 
the preceding proof. Then ifa point of f -l(y(t» is labelled with n, we assign it 
the co-ordinates (t, n). This completes the proof. D 
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18.1.4. Definition. With f: M -+ N as above, we say that a path J.l(t) in M 
covers a path 1'(t) in N if f(J.l(t)) = 1'(t). 

From Lemma 18.1.3 we deduce the following 

18.1.5. Corollary. Given any piecewise smooth path 1'(t) in the base space N, 
there exists a covering path J.l(t) in M, which is uniquely determined by 
specifying a single point J.l(to) say, in M such that f(J.l(to)) lies on l' (i.e. by 
specifying a point in the fibre over any point of 1'). 

(For the proof it essentially suffices to subdivide 1'(t) into non-se\f
intersecting segments, and apply Lemma 18.1.3 to each of these segments.) 

Let K be a manifold (or more generally a topological space), let q: K -+ N 
be a (piecewise smooth, say) map from K to the base space N of a covering 
map f: M -+ N, and let F: K x 1-+ N be a (piecewise smooth) homotopy of 
the map q (so that F(x, 0) = q(x) for all x E K). 

18.1.6. Theorem (On the Covering Homotopy). Let q, f and F be as above, 
and let q: K -+ M be a map which "covers" q, in the sense that fa ij = q. Then 
there is a unique homotopy F: K x I -+ M of ij which covers the given homotopy 
F: K x 1-+ N of q, i.e. such that fa F = F, and F(x, 0) = ij(x) for all x E K. 

PROOF. Under the homotopy F of the map q, each point q(x) is moved in N 
along the path defined by 1'At) = F(x, t). The initial point 1'AO) = q(x) of each 
such path is covered by the point ij(x) EM (i.e. ij(x) is in the fibre above q(x)). 
The theorem now follows from Corollary 18.1.5 together with the observ
ation that the (recipe for obtaining the) covering path depends continuously 
(even smoothly) on the initial point 1'AO) = q(x) of the path in the base N. 

o 

18.2. The Simplest Examples. The Universal Covering 

The examples are as follows. 

(a) Let M = 1R1 (the real line) and N = sl, and define the covering f by 
f(t) = e2nil , where t co-ordinatizes IR 1. Here the number of sheets is infinite. 

(b) Let M = S1 and N = sl, and define the covering map by f(z) = z" (for 
all z such that Izl = 1); this covering clearly has n sheets. The same formula 
z ~ z" defines a covering with the roles of base N and covering space M both 
filled by the space 1R2\{0} ~C*. 

(c) Let M = S", N = IRP", and define the covering map f: S" -+ IRP" to be 
the obvious one identifying each pair of diametrically opposite points of S". 
Here the number of sheets is 2. The group epimorphism SU(2) -+ SO(3) (noted 
in §§13.2, 14.3 of Part I) represents a particular case of this covering map: 

SU(2) ~ S3 -+ IRp 3 ~ SO(3). 
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Another example of a 2-sheeted covering is furnished by the group 
epimorphism S3 x S3 ~ SU(2) x SU(2) -+ SO(4), with kernel {(1,1), 
(-1, -I)} (see §14.3 of Part I). 

(d) Let M = IRn and consider the (additive) subgroup zn consisting of 
those vectors in IRn with integer components. As defined in §4.1, the torus Tn 
is the quotient group IRnj7Ln with the natural manifold structure. (When n = 1 
we obtain just the circle S 1.) The natural map IRn -+ Tn is a covering map 
(verify it!). 

(e) Consider the Euclidean plane 1R2 with Euclidean co-ordinates x, y, and 
the subgroup G of the isometry group of 1R2, generated by the two 
transformations T1 , T2 defined by: 

T1(x, y) = (x, y + I), T2(x, y) = (x + 1, - y). 

By identifying all points mapped to one another by elements of the group G 
(i.e. the points in each orbit under the action of G on 1R2), it is intuitively clear 
that we obtain the Klein bottle K2, since the group G identifies opposite sides 
of the 1 x 1 rectangle depicted in Figure 57, in the manner indicated by the 
arrows. The projection map f 1R2-+K2 is then an infinite-sheeted covering 
map. It is not difficult to see that the generators T1 , T2 are linked by the single 
defining relation Til Tl T2 Tl = 1, whence (or alternatively by direct calcu
lation) it follows that the subgroup G1 of index 2 in G, generated by the 
transformations Tlo n, is isomorphic to Z2. Identification under the action 
of the group G1 on 1R2 yields the torus T2 (see Example (d)) since T~(x, y) = 
(x + I, y), i.e. the orbit space 1R2jG 1 (or quotient group from another point of 
view) is the torus T2, which furnishes a 2-sheeted covering space for the Klein 
bottle since each orbit of 1R2 under the action of G splits into two orbits under 
the action of G1 ~ Z2. 

(f) We indicate by visual means covering spaces for the figure eight (or 
bouquet of two circles), and the bouquet Sl v S2 formed from the circle and 
2-sphere. (Note incidentally that neither of these spaces is a manifold.) The 
covering spaces in question are shown in Figure 58; the covering maps, both 
denoted by j, are to be understood as the projections downwards. 
In particular, it is clear from that diagram that the covering space of 
N = Sl V S2 depicted there is topologically just a collection of 

1/2 
b 

(1/2. 1/2) 

!J 

0 --------- /(2 

a a 

-1/2 
b 

(1/2. -1/2) :c 
Figure 57 
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N-~ 

Figure 58 

2-spheres attached to the points with integer co-ordinate of the real line IR 1 

(depicted as a helix). 

(g) We conclude our examples in this subsection (they will continue in the 
next) with a further example of a covering space for the figure eight Sl v Sl 
(see Figure 59). (This covering is "universal" in the sense of the definition 
below.) Here M is an infinite tree of "crosses", i.e. having exactly 4 edges 

--3--P---¢---=---4-cE-tf 

b t f 11 

OON 
Xo 

Figure 59. Here M is an infinite tree of "crosses", i.e. with exactly 4 edges incident with 
each vertex. Being a tree, M has no "cycles", and is therefore contractible to a point. 
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emanating from each vertex. Being a tree, M has no "cycles", and is therefore 
contractible (over itself) to a point. The centres ofthe crosses (i.e. the vertices of 
the tree) are all preimages of the single point Xo of SI v Sl. Each ofthe edges of 
the tree projects onto either the circle a or the circle b of SI v Sl, and of the 4 
edges at each vertex, two projects onto a and two onto b. 

We conclude this subsection by introducing the following important 
concept, which we shall exploit in calculating certain fundamental groups. 

IS.2.1. Definition. A covering f: M -+ N is said to be universal if 7tl(M) = 1 
(i.e. if the space M is simply-connected). 

Of the coverings considered in the above examples, the following are 
universal: 

(a) IRI-+S1; 

{sn -+ IRpn for n > 2' 
(c) SU(2) x SU(2) : S'0(4); 

(d) IRn -+ Tn; 
(e) 1R2 -+ K 2; 
(f) M -+ Sl V S2 (see Figure 58(b»; 
(g) the tree M -+ SI V Sl. 

The remaining coverings fail to be universal in view of the fact that the 
respective covering spaces are not simply-connected. 

18.3. Branched Coverings. Riemann Surfaces 

In this subsection we continue our list of examples. Before doing so however 
we prove two theorems showing how to obtain covering maps from general 
maps of closed manifolds. 

Thus suppose that M and N are closed smooth manifolds of the same 
dimension n. We first show that under these conditions any regular map 
f: M -+N (i.e. a map with nowhere vanishing Jacobian) is automatically a 
covering map. 

18.3.1. Theorem. A regular map! M -+N of closed smooth manifolds (of the same 
dimension) is a finite-sheeted covering map. 

PROOF. By the Inverse Function Theorem, around each point x of the 
manifold M there is a neighbourhood ~ such that the restriction of f to V", is 
a diffeomorphism. Hence in view of the compactness of the manifold M, each 
point YEN can have only finitely many preimages. Let Xl"'" xm be the 
distinct preimages under f of any particular YEN, and let VI"'" Vm be 
respectively pairwise non-intersecting neighbourhoods ofthese preimages, on 
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each of which f is a diffeomorphism. Then for some sufficiently small 
neighbourhood U, of y we shall have f-1(U,) C VI U··· U Vm, whence 
f - 1 (U ) is the disjoint union of the regions contained in the l-/, the restriction 
of f to' each of which is a diffeomorphism between that region and U,. This 
completes the proof. 0 

Now suppose that while M and N are as before closed smooth manifolds 
(of the same dimension n), the map f M -+ N is no longer everywhere regular, 
i.e. its Jacobian vanishes on some non-empty set A c M. Generally speaking 
the set A will have dimension n-1; however, it can happen that its dimension 
is less than n - 1. An important situation where this occurs is that where n is 
even, the manifolds M and N are both complex analytic, and the map 
f M -+ N is complex analytic (i.e. holomorphic). In this case the vanishing of 
the Jacobian is expressible by means of a single complex (analytic) equa
tion in terms of complex local co-ordinates, whence the (real) dimension of 
the set A of singular points cannot exceed n - 2 (and therefore A cannot 
separate M into disjoint parts). 

This condition on the dimension of A leads to the following conclusion. 

18.3.2. Theorem. Suppose that the dimension of the set A of zeros of the 
Jacobian of a map f M -+ N between smooth, closed, connected n-dimensional 
manifolds does not exceed n-2 (so that the set f(A) does not separate N into 
disjoint parts). Then setting N' = N\f(A) and M' = M\f -l(f(A)), it follows 
that M' is connected, and that the map f: M' -+ N' (obtained by restricting 
f M -+ N) is a finite-sheeted covering map. 

Before giving the proof we introduce the concomitant terminology: The 
initial map f: M-+N is called a covering map branched along f(A), and the 
points of the set f(A) are called the branch points of the (branched) covering f 
PROOF OF THE THEOREM. For (small) e>O denote by U. the (open) 
e-neighbourhood of the subset f(A) of N, and write N.= N\U., 
M.=M\f-1(U.). Then for sufficiently small e, M. and N. are compact, 
connected manifolds-with-boundary, and f induces a regular map 
/.: M.-+N •. By arguing exactly as in the proof of Theorem 18.3.1 it follows 
that /. is a finite-sheeted covering map, and then the desired conclusion is 
obtained by letting e-+O (which does not alter the number of sheets). 0 

Note in connexion with this proof that the assumption that A has 
dimension at most n - 2 was used solely to ensure the connectedness of M' 
and N'. (Recall that our underlying assumption is that the base space, at least, 
is connected.) 

These theorems are relevant to the important class of examples provided 
by non-singular Riemann surfaces r defined by non-singular, complex 
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analytic, in particular algebraic, equations in the (z, w)-plane C2. Thus for 
instance the equation 

$(z, w)=w"+al(z)wn- I + ... +an(z)=O, 

where ai' ... , an are polynomials in z, determines the Riemann surface of the 
n-valued function w(z) (see §4.2). 

Let r be a Riemann surface defined by such a function $. The projection 
f r -.C extends to a projection (which we also denote by f) of the closed 
Riemann surface t (which may include "points at infinity" in Cp2-see §4.2) 
onto the Riemann sphere Cpl ~ S2. Put M = t and N = S2. In this situation 
the set f(A) of branch points of the Riemann surface t, consists of points in 
the plane C possibly together with the point 00. Denote by N' the plane 
C ~ 1R2 ~ S2 \ { oo} with the branch points Za removed. The complete pre
image f - I (za) of each branch point consists of points (za, wa) = Pai of the 
surface r such that (see the remark below) 

- -0 0$1 
oW Z=Za.. W=WClj - • 

Denote by M' the manifold obtained by removing from tall preimages of the 
Za (for all IX), and all the points of f - I( (0). Then by Theorem 18.3.2 the map 
f: M' -. N' is an n-sheeted covering map. 

Remark. It is not difficult to see (essentially from the complex analogue of the 
Implicit Function Theorem-see §12.3 of Part I) that the preimages on the 
surface r under the map f (z, w) 1-+ z, of the branch points Za' satisfy the pair 
of equations 

$(Z, w)=O, 
o$(Z, w) 

ow =0. (1) 

We now consider more specific cases (resuming our list of examples of 
covering maps from where it left off). 

Examples (continued). (h) Consider the case $(z, w)=w2 -Pn(z)=0 (of a 
hypereIIiptic Riemann surface). It was shown in §12.3 of Part I that in this 
case the Riemann surface is non-singular if and only if Pn(z) has no multiple 
roots. Here 

where the Za are the branch points (and by (1) satisfy Pn(za)=O), and the 
covering map f M' -.N' is 2-sheeted. 

(i) In the slightly more general case $(z, w)= wk _ Pn(z)=O, we obtain in a 
similar manner a k-sheeted covering map f M' -. N'. 
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(j) Consider next any polynomial of degree n in the two variables z, w; 
assuming the coefficient of w" is non-zero, such a polynomial may be brought 
into the form 

«1>(z, w)=w"+ L ai(z)w"-i, 
i> 1 

where for each i the degree of the polynomial ai(z) does not exceed i. For the 
"general" such polynomial the corresponding Riemann surface will have 
n(n-l) branch points z~, obtained by solving the system «1>=0, o«1>/ow=O in 
(} (see (1). Then with M' and N' as before we obtain an n-sheeted covering 
map f: M' ~ N'. 

(k) Suppose finally that the function «1>(z, w) is not algebraic (though 
complex analytic), and, as always, that the surface $=0 in C2 is non-singular. 
It can be shown that the branch points z~ in the z-plane are at most countable 
in number; we need to impose the requirement that they form a discrete 
subset of C. The resulting covering with base N' = C\ {z~} will generally 
speaking have infinitely many sheets. The simplest example of this kind is 
provided by the equation z - eW = O. Here w = In z, and z" = 0 is the only 
branch point. Hence we obtain the "logarithmic" covering map 

f M'~N'=C\{O}. 
We leave it to the reader to show that M' is diffeomorphic to the plane C. 

18.4. Covering Maps and Discrete Groups of 
Transformations 

Our aim in this subsection is to introduce an important class of coverings 
related to so-called "discrete groups of transformations" of a manifold. We 
begin with the definition of the latter term. 

18.4.1. Definition. Let M be a smooth manifold (or more general topological 
space) and let G be a group of diffeomorphisms of M (homeomorphisms if M 
is a more general topological space). The group G is called a discrete group of 
transformations of M if the points of each orbit of M under the action of G are 
"discretely distributed" (meaning that around each point y of M there exists a 
neighbourhood U containing no other point of the orbit G(y), with the 
property that each of its images g(U) under the elements g of G either 
coincides with or is disjoint from U), and if furthermore the number of 
elements of G fixing any point y is finite (i.e. the stabilizer in G of each point of 
M is finite). We shall further say that a discrete group acts freely on M if for 
every y EM the stabilizer of y in G is the identity subgroup (i.e. g(y) = y 
implies g = 1). (Thus a freely acting discrete group G of transformations of M 
is characterized by the property that around each point y of M there is a 
neighbourhood U such that g(U) n U is empty for all g# 1 in G.) 
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In the case where M is a manifold, the transformations comprising the 
discrete group G will in practice often (though not always) be isometries of M, 
endowed with some Riemannian metric. 

18.4.2. Definition. We say that a covering map f: M -+ N is determined by a 
freely acting discrete group G of transformations M -+M, if the fibre F= f-l(y) 
above each point y E N,is an orbitofG. The base space N can then be identified 
with the orbit space of M under (the action of) G, and we write N = MIG. Such 
a covering is said to be regular, or a principaljibre bundle with respect to the 
discrete group G. (In Chapter 6 below we shall consider principal fibre bundles 
also with respect to non-discrete groups of transformations.) 

The first nine (from (a) to (i)) of the above examples of covering maps are 
indeed determined by various discrete groups of transformations. On the 
other hand the covering spaces of Example (j) (general algebraic Riemann 
surfaces) and of Example (k) (excepting the simple logarithmic branched 
covering considered there) are generally speaking not determined by freely 
acting discrete groups of transformations. 

§19. Covering Maps and the Fundamental Group. 
Computation of the Fundamental Group of 
Certain Manifolds 

19.1. Monodromy 

We now introduce the important concept of the "monodromy represent
ation" u arising from a covering space, and the associated "monodromy 
group" (also called the "group of holonomies"). Thus let Yo be a point in the 
base N of a given covering map t M -+ N, and let {Xl' X2""} be the fibre 
F = r l(yO) above Yo, with its elements enumerated arbitrarily. Let y be a 
closed path in N beginning and ending at Yo, which with permissible 
looseness oflanguage we may regard as an element of 7r,(N, Yo). By Corollary 
18.1.5, for each point Xl E F there is a unique path Jl in M beginning at Xj and 
covering the path y; we can assume y and Jl parametrized with the same 
parameter t so that f(Jl(t)) = y(t) for all t, i.e. as y is traced out in the base N, Jl 
is traced out above in M, beginning at Xj' Once y is traced out, we shall have 
come back to the point Yo = y(l), so that on the covering path Jl the 
corresponding end-point will be again a point of the fibre F; we denote this 
point by x.,(j)=Jl(I). Thus corresponding to our path y we have obtained a 
permutation u(y) of (the subscripts of) the points of the fibre F: 

u(y): x/-+x.,(j)' 
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By Theorem 18.1.6 (appropriately relativized) the permutation a(y) depends 
only on the homotopy class in n1(N, Yo) to which y belongs. Since, as is 
readily seen, we have also a(y-l)=a(y)-l and a(y 1 oY2)=a(ydoa(yz), it 
follows that a defines a homomorphism from the fundamental group 
n1(N, Yo) to the group of permutations of the fibre F (or in other words a 
representation of nl(N, Yo) by permutations on F). The representation a is 
called the monodromy or discrete holonomy of the covering, and the image 
group a(nl(N, Yo)) is the monodromy group. 

We shall now investigate the monodromies of the covering spaces 
considered in the examples in §§18.2, 18.3. 

(a) Here we have f IR I ..... S I, t ....... e21tit• As we saw in §17.5, the group nl(SI) 
is isomorphic to 7L. The complete inverse image of the point qJo = 0 of the 
circle, consists of the integer points 0, ± 1, ± 2, ... of the real line, so that the 
points of the fibre f - 1(0) come ready-labelled with the integers. It is then easy 
to see that the monodromy a represents the obvious generator a of n 1 (S 1, 0) 
by the translation 

a(a):n ....... n+l, nE7L. 

(b) Here f: SI ..... SI was defined by z ....... zn (where Izl = 1). The preimages of 
the point 1 are the points Zk =exp(2nki/n), k = 0, 1, ... , n - 1. The element of 
the monodromy group corresponding to the obvious generator a of n1(Sl, 1) 
is readily seen to be the cyclic permutation 

( 0 1 
a(a) = 1 2 n-l) o . 

(c) Under the map f Sn ..... lRpn, each point Yo E IRpn has as its preimages 
antipodal points XI and X2 of sn. Let a E n1(lRpn) denote the homotopy class 
containing the projection in IRpn of a path yin sn joining the points X I and X 2. 
Then the transformation a(a) interchanges these points: X I ....... X2' X2 ....... X 1' so 
that a maps n1(IRP·) onto 7L 2 , the cyclic group of order 2. (In the next 
subsection we shall show that in fact 1t1(lRpn)::::7L2.) 

In a similar manner it can be shown that under the monodromy 
representation afforded by the covering f SU(2) x SU(2) ..... SO(4), the funda
mental group n1(SO(4)) is mapped onto 7L 2• (In this case also the fundamental 
group is in fact isomorphic to 7L 2 .) 

(d) Here the covering map is f IRn ..... Tn. For eachj = 1, ... , n, we denote by 
Yj the straight-line path in IRn joining the origin 0 to the point (0, ... , 1, ... ,0) 
with jth co-ordinate 1 and the remaining co-ordinates all zero. The projec
tions aj = f(y), which are clearly closed paths in Tn, have their homotopy 
classes represented under the monodromy by the (infinite-degree) 
permutation 

a(aj ): (ml' ... , mj, ... , m.) ....... (ml' ... ,mj + 1, ... , mn), 

where here (ml' ... , m.) denotes a typical integral lattice point of IR" (i.e. a 



§19. Covering Maps and the Fundamental Group 159 

typical point of the fibre above 0). Given that (the homotopy classes of) the a· 
• J 

actually generate 7t1(T", 0), it follows that u maps 7t1(T", 0) onto 71.", the direct 
product of n copies of the additive integers. (We shall see in the next 
subsection that in fact 7t1(T")~71.".) 

Of the remaining examples we examine explicitly the monodromy repres
entation in (g) and U) only. (The reader may like to investigate for himself the 
monodromy in the rather simple examples (e) and (f).) 

(g) Here f: M --+ N is the universal covering of the figure eight N = Sl V Sl. 
Write a1 = a E 7t1(Sl v Sl), a2 = bE 7t1(Sl V Sl), where the paths a and bare 
as in Figure 59. Then in the monodromy group the element u(a1) is the graph
isomorphism of the tree M (shown in Figure 59) which sends every vertex to 
the position of the adjacent vertex to the right, and u(a2) that which moves 
each vertex into the position of the vertex immediately above it. It follows 
easily that the image in the monodromy group of any non-empty word of the 
form 

(where k?1, the integers nq are non-zero, the iq are either 1 or 2, and iq#iq+1) 
leaves no vertex of the tree fixed, and so in particular must be non-trivial. 
Since a1 and a2 generate 7t1(Sl v Sl), we infer that the monodromy group 
(and hence, in this case, 7t1(Sl v Sl) also) is isomorphic to the free group on 
two free generators. 

(j) It was noted previously that for a general type of 2-variable 
polynomial (monic, of degree n in wand of total degree n) there are n(n-1) 
non-degenerate branch points of the associated covering map f of the 
Riemann surface, which we shall denote by Zjt, wherej= 1, ... , n; k= 1, ... , n, 
and j # k. As before we take N' = C \ { Z jk}' the complex plane with the branch 
points removed. Choosing a base point Yo arbitrarily in N', let Xl' ••• , X" 

denote the points in f -l(yO)' the fibre above Yo, and for each pair j, k U # k) 
let ajk denote a simple closed path enclosing the branch point Zik (see 
Figure 60). It can be shown (cf. §4.2) that the branch points Zjk can be paired 
off in such a way that, after suitable re-indexing (of the aik and the x q ), both ajk 
and akj are sent under the monodromy representation u to the permutation 
which transposes xi and Xk and leaves the remaining points of the fibre fixed. 

Figure 60 
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Hence the monodromy group of the covering is the group of all n! 
permutations on n symbols, i.e. the symmetric group of degree n (since that 
group is generated by its transpositions and the ajk generate 1t1(N', Yo». (That 
each of the permutations O'(ajd moves only two of the points of the fibre is a 
consequence of the fact that for a Riemann surface of this general type the 
degenerate points of the projection r ..... c have low "order of degeneracy"; we 
leave to the reader the precise investigation of these details.) 

The conclusion that the monodromy group of the general algebraic 
Riemann surface coincides with the full symmetric group (of degree equal to 
the number of sheets) turns out to have an important consequence. The 
reader might like to attempt the proof of the following result: If a multi-valued 
function w=w(z) is given by an expression in z involving only the usual 

arithmetic operations in combination with arbitrary radicals ;:;t, then 
the corresponding Riemann surface has soluble monodromy group. (Recall 
that a group G is soluble if it has a finite chain of normal subgroups 
{1}<G I < ... <Gr=G, beginning with the identity subgroup and ending 
with G, all of whose factors Gi + dGi are abelian.) 

Since, as is well known, no symmetric group of degree ~ 5 is soluble 
(having as its only proper normal subgroup the "alternating group", 
consisting of the even permutations, which is non-abelian), we deduce the 
following celebrated result. 

19.1.1. Theorem (Abel). For the roots of the general polynomial of degree ~ 5 
in one indeterminate, there is no formula in the coefficients involving only the 
usual arithmetic operations (+, -, x, -:-) in combination with (arbitrary) 
radicals ;:;to 

19.2. Covering Maps as an Aid in the Calculation of 
Fundamental Groups 

Let f: M--+N be a covering map, choose Yo E N arbitrarily, and let Xl' X 2, ••• 

denote the points of the fibre f - l(yO) above Yo' As usual we denote by 0' the 
monodromy representation afforded by the covering map f; thus via 0', the 
fundamental group 1t l(N, Yo) acts on the fibre F = f - I (Yo): 

O'(a): Xj 1-+ xa(j) (a E 1t 1(N, Yo»' 

It is clear that for each j, the covering map f induces a homomorphism f .. 
from the fundamental group 1t 1(M, Xi} (with base point Xi) to the group 
1t 1(N, Yo). 

19.2.1. Theorem. For each Xi in the fibre f-l(yo}, the homomorphism 
f .. : 1t1 (M, Xj) ..... 1tI(N, Yo), induced by a covering map f M ..... N, is an embedding 
(i.e. a monomorphism). The subgroup f.1t I(M, Xj) of1t I(N, Yo) consists precisely 
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of those elements a of 1t 1(N, Yo) whose images a(lX) under the monodromy 
representation, leave the point xi fixed (i.e. which act trivially on Xi)' The 
subgroups f*1t 1(M, Xi) and f*1t 1(M, xd corresponding to distinct points Xi and 
Xk of the fibre, are conjugate to one another by means of any element y of 
1t 1(N, Yo) which sends Xi to xk, i.e. 

y- 1f*1t 1(M, xJy = f*1t 1(M, Xk), 

for any y E 1t 1(N, Yo) such that a(y) maps Xi to Xk. 

PROOF. We first show that f* is one-to-one. To this end let lX=a(t) E 1t 1(M, xJ 
be such that f*(a) = 1; we wish to show that then a=1. Write y(t)=f(a(t)); 
then by assumption y(t) is contractible to the point Yo in N by means of a 
homotopy keeping the end-points fixed at Yo (for all r); let F(t, r) denote such 
a homotopy. Since f(a(t)) = y(t) = F(t, 0), we are in a situation where the 
"theorem on the covering homotopy" (18.1.6) can be applied (with y and IX in 
the roles of q, ij, respectively); we can therefore conclude from that theorem 
that in particular there is a homotopy which contracts the path a(t) in M to 
the point Xi' Hence f. is a monomorphism, as claimed. 

Leaving to the reader the easy second statement in the theorem, we 
proceed to the third and last. Let a be any path in 1tl(M, Xi)' and let y(t) be 
any path, also in M,joining the point Xk=Y(O) to the point Xj=Y(1). Then by 
Theorem 17.2.1 the map a I----> y- 1 IXY defines an isomorphism between the 
groups 1t1(M, Xi) and 1t 1(M, Xk)' Write y(t) = f(y(t)); then y, being a closed path 
in N, represents an element of1t1(N, Yo), and further, by construction ofy, has 
the property that a(y) sends Xi to X k . It is clear that the above isomorphism 
1t 1(M, xi)-+1t 1(M, Xk) induces (via the covering map) an isomorphism 
f*1t 1(M, x j )-+f*1t 1(M, Xk), given by 

f*(a) I----> y -1 f*(IX)y E f*1t 1(M, xk), 

Since, essentially by reversing the order of construction of y and y, this 
conclusion holds for any y E 1t 1(N, Yo) for which a(y) maps Xj to Xk' the proof 
is complete. 0 

EXERCISES 
1. Show that corresponding to any subgroup H of the fundamental group 7r 1(N) of an 

arbitrary manifold N, there is a covering map f M-+N such that f.7rl(M)=H; 
hence in particular every manifold has a universal covering. 

2. Prove that if two covering maps f M -+ Nand f': M' -+ N, with the same base 
manifold N, are such that the subgroups f*7r 1(M) and f~7rl(M') coincide, then the 
coverings are "equivalent", i.e. there exists a homeomorphism qJ: M -+ M' such that 
f' 0 qJ = f (This explains the use of the definite article in the phrase "the universal 
covering".) 

Remark. In both of these exercises the requirement that N be a manifold can 
be significantly relaxed; for instance, as we have seen, such spaces as the figure 
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eight, and the bouquet of the circle and the 2-sphere, possess universal 
coverings (see Figures 58 and 59). 

19.2.2. Theorem. If a covering map f: M-+N is determined by afreely acting 
discrete group G of transformations M -+ M, and the manifold (or topological 
space more generally) M is simply-connected (i.e. 1t1(M) = 1), then 

1t 1(N)z.G. 

PROOF. Let Yo be any point of N, and fix on any point Xo in the fibre f-1(yo) 
above Yo. We shall establish a one-to-one correspondence between the points 
of the fibre (each of which has the form g(xo) for some g e G) and the elements 
of the group 1tl(N, Yo). With this our aim, take any path Yl e 1tl(N, Yo), and 
consider the (unique) path in M covering Yl and beginning at the point xo; 
this covering path will terminate at that point Xl which is the image of Xo 
under the permutation q(YI)' Let gl be such that gl(XO)=XI; the corre
spondence Y I ~g 1 is then the one we are seeking. We now show that this does 
indeed define a one-to-one correspondence between f-l(yO) and 1t1(N, Yo). 
Suppose first that YI' Y2 e 1tl(N, Yo) both correspond to gl; then the path 
Yl 1Y2 has the property that q(Yl 1Y2) fixes Xo, whence by the simple
connectedness of M and the second statement in Theorem 19.2.1, the paths YI 
and Y2 are homotopic to one another in M. The one-to-one-ness in the other 
direction is an almost immediate consequence of the freeness of the action of 
G. That every gl e G corresponds to some YI e 1t1(N, Yo) follows easily from 
the connectedness of M. Thus we have our desired one-to-one corre
spondence; that it is an isomorphism follows from the facts that q is a 
homomorphism of1tl(N, Yo), and that the action of the permutation q(Yl) on 
the fibre is identical with the action of the corresponding g leG. 0 

The following result generalizes the preceding one to the situation where 
the covering space M is not necessarily simply-connected, i.e. is not the 
universal covering space. 

19.2.3. Theorem. Given (as in the preceding theorem) a covering map f: M-+N 
which is a principal fibre bundle with respect to a discrete group G, i.e. is 
determined by afreely acting discrete group G of transformations M-+M, then 
the group G, regarded as a group of permutations of any fibre F =f-1(yo), 
coincides with the monodromy group q(7tI(N, Yo». Furthermorefor any Xj e F, 
the subgroup f.1t 1(M, Xj) is independent of X), and is a normal subgroup of the 
fundamental group 1t1(N, Yo), and the quotient group 1t1(N, Yo)/f.1t(M, Xl) is 
isomorphic to the monodromy group. 

PROOF. Exactly as in the proof of the preceding theorem we associate with 
each Yl e 1t1(N, Yo) a unique element gl e G, in such a way that the map 
qJ: 1t1(N, yo)-+G defined by YI~gl is an epimorphism, and the map q(Yl)~gl 
is an identification of the monodromy group q1tl(N, Yo) with G regarded as a 
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group of permutations of the fibre f-l(yO)' By the second statement in 
Theorem 19.2.1, the subgroup f*1T. 1(M, Xj) (for Xi in the fibre) consists ofthose 
elements IX of 1T.I(N, Yo) such that a(lX) fixes Xi; now since the actions of the 
monodromy group and the group G on the fibre f -1(yO) are the same, and 
since G acts freely, it follows that a(lX) is the identity element, i.e. that 
f*1T. 1(M, x) is precisely the kernel of the epimorphism <po Hence the subgroup 
f*1T. 1(M, Xi) is the same subgroup for all Xi in the fibre, is normal in 1T. 1(N, Yo), 
and the quotient 1T. 1(N, Yo)/h1T. I (M, xJ is isomorphic to G. This completes the 
proof of the theorem. 0 

EXERCISE 

Prove that for a general (not necessarily regular as in the preceding two theorems) 
covering map, the monodromy group is isomorphic to the quotient group 7C,(N, Yo)!P, 
where P is the normal subgroup nJ*7C1(M, Xj)' 

We now examine anew some of our examples, in the light of the above 
results. 

Examples. (a) 1R1 ..... S1. Here the covering is determined by the action of the 
discrete group lL (~1T.l (SI)) on IRI by means of translations through integer 
distances. (See Example (a) of §§18.2 and 19.1.) 

(b) The covering map S" ..... IRP" is determined by the action of the group 
G ~ lL2' whose non-trivial element is the reflection x f-+ - x of the sphere 
S" c IR" + I. Since the sphere is simply connected for n> 1, Theorem 
19.2.2 applies to yield 1T.I(IRP")~lL2' (See Example (c) of§§18.2 and 19.1.) 

(c) The covering IR" ..... T" is determined by the discrete group G ~ lL", which 
acts on the n-tuples of IR" via translations. Since the covering is universal, 
Theorem 19.2.2 again applies to give 1T.l(T")~lL". (See Example (d) of §§18.2 
and 19.1.) 

(d) The covering 1R2 ..... K2 is determined by the group G generated by the 
transformations TI , T2 of 1R2 given by T1(x, y)=(x, y+ 1), T2(x, y)=(x+1, - y) 
(see Example (e) of§18.2). (The group G, which has a simple structure, is defined 
abstractly by these two generators T1 , T2 together with the single relation 
Ti 1 TI T2 TI = 1.) Since 1R2 is simply connected, it follows as before that 
1T.I(K2) ~ G. 

(e) The universal covering of Sl v Sl is determined by the discrete free 
group on two free generators acting in the manner described in Example (g) 
of §19.1. Hence 1T.l(SI v Sl) is isomorphic to the free group of rank 2. 

It can be shown similarly that the fundamental group 1T.l (Sl v ... V SI) of 
a bouquet of k circles is the free group on k free generators. Consequently the 
fundamental group of a region oftheform 1R2 \ {x 1, ..• , Xk}' i.e. the plane with 
k distinct points removed, is also free of rank k (since such a region is 
contractible to (i.e. homotopically equivalent to) a bouquet of k circles). 
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(f) The fact that TC1(SI v S2)C!:::Z can be established using the universal 
covering of Example (e) of §18.2 (see Figure 58(b)). The covering space has the 
form of a line IRI at the integer points of which 2-spheres are attached. The 
discrete group G C!::: Z moves this line through integer distances, thereby 
sending the attached spheres into one another. (Recall also (from § 17.5) that 
the space Sl v S2 is homotopically equivalent to the region 1R 3 \Sl, provided 
the circle is unknotted in 1R3; and also to 1R3\(IRI U {xo}).) 

19.3. The Simplest of the Homoksy Groups 

19.3.1. Definition. The one-dimensional (or first) homology group H l(M) of a 
(connected) manifold (or more general topological space) M is the quotient 
group of the fundamental group of M by its commutator subgroup: 

H dM)=TC1(M)/[TC[, TC 1], 

where [TC 1, TCl] denotes the subgroup of TC1(M) generated by all "commu
tators" aba-1b- l , a,bETC1(M). The group operation in Hl(M) is usually 
written additively; thus a t-+ [a], ab t-+ [a] + [b] under the natural homo
morphism TC 1 -+ H I' 

Now let w be any closed I-form on a manifold N (so that dw=O on N), and 
suppose that Yl(t), Y2(t) are two closed paths in N both beginning and ending 
at a point Yo E N. Then if Y 1 and Y2 are homotopic (as usual via a homotopy 
throughout which Yo is held fixed), we shall have 

J, w= J, w; 
JYI JY2 

this follows from an application of the general Stokes formula (see the 
exercise at the end of §8.2) in essence to the integral of dw over the image set in 
N under the map F: [0,1] x [0, 1]-+N, which has (oriented) boundary 
Yl UYil, taking into account the assumption dw=O. Hence for each closed 
form w on N, the map 

(1) 

is well defined as a map of the group nl.1t follows from the familiar properties 
of integrals that 

J, w= J, w + J, w= J, W 

J1'1}'2 JYl 1"12 JY2Yl' 

J, _ w= - J, w, Jy 1 Jy 
whence the map (1) defines a linear function on the first homology group 
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H I(N)=n l (N)/[7r I , 7r 1], with real or complex values. Thus the standard 
procedure whereby a circuit integral is calculated by deforming the path 1', is 
seen here to amount to replacing the closed path I' by one equivalent to it in 
the homology group (i.e. in the same "homology class"). 

Suppose now that [1'] E HI (N) is a torsion element ("homology class"), i.e. 
has finite order m, say, in HI(N). Then m[y]=O in Hl(N), whence 

0= ~ OJ=m ~ OJ 
Jm[y) J[y)' 

and therefore ,[y) OJ = O. It follows that the map (l) defining a linear function 
on the homology group, is actually perhaps more appropriately regarded as 
defining a linear function on the group fi I (N) obtained as the quotient group 
of HI (N) by its torsion subgroup (i.e. by the subgroup consisting of all finite
order elements). The group fi 1 (N) is called the reduced homology group. 

Examples. (a) As noted in Example (f) of the preceding subsection, the 
fundamental group 7r 1 (N) of the planar region N = 1R2 \ {x l' ... , xd is the free 
group of rank k. Hence the first homology group HI (N) is isomorphic to the 
free abelian group 7L k (of integer lattice points), which is torsion-free. 

(b) The fundamental group 7r 1(lRpn) of real projective n-space is iso
morphic to 7L2 (by Example (b) of the preceding subsection). Hence HI (lRpn) 
is also 7L 2 , and the reduced homology group fi 1 (lRpn) is trivial. 

(c) We saw in Example (d) of the preceding subsection that the funda
mental group 7rl (K2) of the Klein bottle is isomorphic to the abstract group 
on two generators Tlo T2 defined by the single relation Ti 1 Tl Tz Tl = 1. In the 
abelianized group HI (K 2) this relation takes the form 2[T1] = O. Hence 
HI (K 2) ::: 7L 2 EB 7L, and fi 1 (K 2)::: 7L. 

We now resume our discussion, the upshot of which to this point was that 
each closed I-form on a manifold N determines a linear function on the 
reduced first homology group with values in IR or IC. 

Sometimes it is useful to consider linear functions taking values other than 
real or complex ones (for instance the so-called "characters" whose values lie 
in the set of reals modulo 1, i.e. on the circle Sl). Generally speaking we are 
compelled in such cases to work with the full homology group HI (N) as 
domain, the group fi 1 (N) not sufficing. As an example we may take the 
homomorphism defined in §17.6: 

0': 7rl(N)-+(± I):::7L 2 , 

where for each path (class) I' E 7r 1 (N), the image 0'(1') is + 1 or -1 according as 
transport around I' preserves or reverses an orientation. As noted in §I7.6, for 
every non-orientable manifold this homomorphism is non-trivial. In parti
cularfor IRp2, for which 7r 1 ::: 7L 2, we have 0'(1') = - 1 for all I' :;i:l. For the Klein 
bottle K2, whose fundamental group is as we have seen generated by two 
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Figure 61 Figure 62 

generators T1 , T2 such that 2[T1J=O in the group H 1(K 2), the above 
"orientation" function a is given by 

a(Td= + 1, 

We note in conclusion that a technique for calculating the fundamental 
group of the complement of a knotted circle embedded in 1R 3, will be 
described below (in §26). 

19.4. Exercises 

1. The orientable closed surface M;, known as the "sphere-with-g-handles", can be 
obtained by identifying appropriate pairs of edges of a 4g-gon (as indicated in 
Figure 61 where g=2). Prove that the group 1tt(M;) is defined abstractly by the 
presentation in terms of generators at, bt , ... , ag, bg, and the single relation 

2. The non-orientable surface N; is obtained by glueing edges as indicated in 
Figure 62 (for the case 11=2). Prove that 1tt(N;) is presented by generators 
c" ... , cp with the single relation rid··· c; = 1. 

3. Calculate the fundamental group of the unit tangent bundle of the manifold M; 
(see §7.l). 

§20. The Discrete Groups of Motions of 
the Lobachevskian Plane 

A description of all possible discrete groups of motions of the Euclidean plane 
and of Euclidean 3-space can easily be gleaned from §20 of Part I. (For 
instance in order to obtain aJl the orientation-preserving discrete subgroups 
of the isometry group of the Euclidean plane, we need merely add to the list of 
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such groups which preserve "translation-invariant" lattices of points, given in 
§20 of Part I, the finite cyclic subgroups of arbitrary order.) There the close 
connexion between many of these groups and "crystal" lattices of points in 
the plane and in space was made evident enough. A classification of the 
discrete subgroups of the isometry group of the Lobachevskian plane (see 
§10.1 of Part I) can be carried out along similar lines; it is our aim in the 
present section to describe this classification (for the finitely generated 
discrete groups at least), for the most part suppressing proofs in view of the 
greater complexity of the arguments than in the Euclidean case. (To describe 
the discrete groups of motions of 3-dimensional Lobachevskian space is a 
much more difficult problem, which we shall eschew altogether.) 

OUf interest in the discrete groups of motions of the Lobachevskian plane 
stems from the close connexion they have with the 2-dimensional closed 
manifolds and their fundamental groups. We have already seen examples of 
the analogous such connexion in the Euclidean case: Recall (from among the 
various 2-dimensional surfaces hitherto described) the realization of the 2-
dimensional torus T2 as the quotient space 1R2 III EEl 1L of the Euclidean plane, 
obtained by identifying the points mapped to one another under the action of 
the discrete group lL(a) EEl lL(b), where a, b denote the translations of 1R2 along 
the vectors (1, 0), (0,1), respectively (see §§4.1, 18.2). We saw in §19.2 that since 
this discrete group acts freely on the (simply-connected) space 1R2, it is 
isomorphic to the fundamental group of the torus: 1t 1 (T2) ~ 1L EEl 1L. On the 
other hand in view of the simple-connectedness of the sphere S2, and perhaps 
the fact that its Gaussian curvature is positive, it is not surprising that the 2-
sphere can not be realized as an orbit space of the plane (as unbranched 
covering) under the action of any discrete group. It turns out that the 
remaining closed orientable surfaces (namely those of genus> 1, the spheres 
with more than one handle) can however be obtained as quotient spaces of 
the Lobachevskian plane under the action of suitable finitely generated, freely 
acting, discrete subgroups of the isometry group, isomorphic to the respective 
fundamental groups. Since in each case the discrete group consists of 
isometries of the Lebachevskian plane, it follows that the resulting quotient 
manifold will he automatically endowed with a metric, "induced" in this sense 
by the Lobachevskian metric arid so defining a constant negative curvature 
on that manifold. (Note that in the case of the torus the fundamental group 
also acts as a group of (Euclidean) isometries of 1R2.) 

Before embarking on the promised classification we make the further 
remark that groups acting discretely on the Lobachevskian plane arise also in 
connexion with the problem of classifying the one-dimensional complex 
analytic manifolds. Every connected complex analytic manifold X can be 
obtained as a quotient giG where g is a simply-connected complex manifold 
(the universal covering space of X), and the group G acts discretely and freely 
on g as a group of self-biholomorphisms (see §4.l), whence by Theorem 
19.2.2 it is isomorphic to the fundamental group 1t 1(X) of the manifold X. (It 
can be shown that all such groups G yielding a given complex manifold X as 
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the quotient space XjG of its universal covering space X, are conjug~te to one 
another in the group of all self-biholomorphisms of the manifold X.) Now it 
turns out that up to biholomorphic equivalence there are in all only three 
connected, simply-connected, one-dimensional complex manifolds, namely: 

(i) the complex projective line cpt (see §2.2); 
(ii) the affine complex line C1, i.e. the complex plane; and 
(iii) the open unit disc 

{ZIZE c, Izi < I} 

in the complex plane. 

Hence the aforementioned problem (of classifying the one-dimensional 
complex manifolds) reduces to that of describing the groups of self
biholomorphisms which act freely and discretely on each of these three 
complex manifolds. The connexion which we have been leading up to, 
between this and discrete groups of isometries of the Lobachevskian plane, is 
revealed in the third statement of the following proposition (whose proof we 
omit). 

20.1. Proposition. (i) Every self-biholomorphism of the manifold cpt has afixed 
point. 

(ii) Every discretely and freely acting group G of self-biholomorphisms of the 
complex plane Cl such that the quotient space CljG is compact, consists 
of translations Z 1-+ Z + a, where a ranges over the vectors of some 
2-dimensionallattice of points in Cl. 

(iii) Every selJ-biholomorphism of the unit disc has the form 

z-a 
z1-+O-1 -, 

-az 

where 101 = 1 and lal < 1; it follows that the group of all self
biholomorphisms of the unit disc coincides with the group of orientation
preserving isometries of the Poincare model of the Lobachevskian plane 
(see § 13.2 of Part I). 

We now return to our main concern, namely the description of the (finitely 
generated) discrete groups of isometries of the Lobachevskian plane L2. We 
begin by associating with each such discrete group a (Lobachevskian) convex 
polygon, called the "fundamental region" for the group. We shall throughout 
this section use one or the other of the following two models of 
the Lobachevskian plane: the upper half-plane (of the complex plane), 
endowed with the metric dl2 = (dx2 + dy2)jy2, and the unit disc with 
metric dl2 = (dr2 + r2 dc(2)j(l-r2)2. (See §1O.1 of Part I for the derivation of 
these metrics.) A "discrete group oftransformations" (i.e. diffeomorphisms) of a 
manifold (in the present context the Lobachevskian plane), which we defined 
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in §18.4 above, is readily seen to be characterized also by the following property: 
Each pair of (not necessarily distinct) points x, y of U (the Lobachevskian 
plane) have (open) neighbourhoods Ux , Uy and that the intersection 
g(Ux ) n Uy is non-empty for only finitely many g E G. Hence in particular, 
as in the definition given in §18.4, for each x E L2, the stabilizer G x of x in 
the group G is a finite subset (in fact subgroup). 

20.2. Definition. Let G be a discrete group of transformations of the 
Lobachevskian plane L2, consisting of Lobachevskian isometries. A subset D 
of L2 is called a fundamental region for the group G if: 

(i) D is a closed set; 
(ii) the images G(D) of the set D together cover the entire plane L2; 

(iii) some (sufficiently small) neighbourhood of each point of L2 intersects 
only finitely many of the image sets g(D), g E G; 

(iv) the image of the set of interior points of D under any non-identity 
element of G, intersects D trivially, i.e. g(lnt D) n Int D = 0 for all 
l:;6gEG, where IntD=D\8D. 

It can be shown that for any finitely generated discrete group of isometries 
of L2, there exists a fundamental region which is a (Lobachevskian) convex 
polygon with a finite number of sides (together, of course, with the polygon's 
interior). 

Now let G be any finitely generated discrete group of motions of L2, and 
let D be a convex "polygon" serving as fundamental region for G. By 
definition of the fundamental region the images g(D) for distinct g E G, do not 
overlap, and together cover the whole of L2; thus these regions form a 
"tessellation" of the Lobachevskian plane, with "cells" the g(D). We shaH say 
that two cells are adjacent if their intersection is a one-manifold, i.e. a curve
segment. By suitably adding (as indicated schematicaHy in Figure 63) further 
vertices to the polygonal boundary of the fundamental region D (the angle at 
all such vertices being then of course 11:), we can arrange that the intersection 
Dl n D2 of any pair D1, D2 of adjacent cells is exactly a common side of these 
two polygons. This done, we shaH have for each side a of the cell D, a unique 

L£] 
t 

added vertex 

Figure 63 
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Figure 64 

cell Dl adjacent to D with the side a in common; we denote by y(a) the unique 
group element which sends D onto DI . Under this transformation there will 
be a side a' say, of D which is sent to the side a of DI, i.e. y(a)a' =a. It follows 
that y(a') = y(a) - I, and a" = (aT = a (see Figure 64); thus the map y(a) gives rise 
to an involuntary (i.e. of order two) permutation a H a' of the set of sides of 
the fundamental region D, unless a = a' for all a. Hfor any particular a we have 
a = a' then y(a) fixes the side a (as a whole), and hence must either reflect D in 
the side a, or else rotate D through the angle n about the mid-point of the side 
a; in either case it follows that (y(a))2 = l. 

The following lemma is an immediate consequence of the fact that two 
cells YI(D) and Y2(D) are adjacent precisely if Yi l YI(D) and D are adjacent. 

20.3. Lemma. Two cells YI(D) and Y2(D) are adjacent if and only iffor some 
side a of D we have Y2 = YI y(a). 

We shall call a finite sequence 

D=Do, D1,···, Dk 

of cells a chain, if D;_I is adjacent to D; for i = 1, ... , k. Take any such chain of 
cells, and for each i = 1, ... , k, define Yi E G by Di = YiDO. Since Di -I and Di are 
adjacent we have by the above lemma that Yi = Yi _ 1 y(a;) for some side ai of 
D; similar successive decompositions of Yi - I, Yi - 2' ... , Y I yield finally 
Yk=y(a l )y(a2)·· ·y(ak) for some finite sequence ai' a2' ... ' ak of sides of the cell 
D. Since there is for every cell 15 a chain of cells beginning with D and 
terminating with 15, we deduce immediately the following result. 

20.4. Theorem. The group G is generated by the transformations y(a) where a 
ranges over the sides of the fundamental region. 

We shall now give a geometric description of a set of defining relations for 
G on these generators. Let y(a l )·· . y(ak) = 1 be any relation on the generators 
y(a); then the last member of the corresponding chain of cells will coincide 
with the initial cell D of the chain, so that the geometric counterpart of the 
relation is a closed chain of polygons, usually called a cycle (see Figure 65). 
We shall call any relation of the form y(a)y(a') = 1 (corresponding to a cycle 
Do, D I' Do) an elementary relation of the first kind. Consider next any vertex 
of D, and the (finitely many) cells sharing this vertex. These cells, taken in 



§20. The Discrete Groups of Motions of the Lobachevskian Plane 171 

Figure 65 Figure 66 

order around the vertex, form a cycle (see Figure 66); the relation correspond
ing to such a cycle will be called an elementary relation of the second kind. It 
can be shown that these two kinds of "elementary" relations actually suffice 
to define G: 

20.5. Theorem. The elementary relations of the first and second kind together 
form a set of (abstract) defining relations for the group G on the generators yea); 
i.e. every relation between the yea) is a group-theoretical consequence of them. 

Thus this result (whose proof we omit) gives a geometric description, of a 
sort, of the finitely generated groups which can occur as discrete groups of 
isometries of the Lobachevskian plane. 

We now turn our attention to the converse problem, namely that of 
constructing a discrete group G from a given fundamental polygon. Thus 
suppose that we are given in L2 a convex Lobachevskian polygon with a 
finite number of sides. We shall assume to begin with that our polygon has no 
vertices "at infinity", meaning that, while the polygon may be unbounded (as 
for instance in Figure 67), it should not have two sides with a common "vertex 
at infinity" (as in Figure 68). (Since the points of the boundary circle (in the 
Poincare model of L2) do not actua\1y belong to L2, we regard an unbounded 
Lobachevskian straight line segment (forming a side of the polygon, like AB 
in Figure 67), as not having on it a vertex at infinity; however, for polygons 
like that shown in Figure 68, having two sides which meet "at infinity", we do 
regard the polygon as having a vertex at infinity.) Note that, as before, we 
allow our polygon to have vertices at which the angle is n. 

Figure 67 Figure 68 
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Denote the given polygon by D, and choose any permutation a H a', of its 
sides, either involutory or trivial, such that a and a' have the same length. It 
can readily be shown that corresponding to each side a of the polygon there 
exists an isometry y(a) such that y(a)a' = a (i.e. y(a) acts on a' as does the 
chosen permutation), and y(a)D (') D = a. We shall require that our polygon D 
satisfy (for some choice of the involutory permutation of its sides) the 
following two conditions: (i) y(a)y(a') = 1; (ii) for each vertex A of the polygon 
there should exist a finite sequence a1, .•• , ak of sides such that firstly, 
y(a 1 )·· • y(ak) = 1, and secondly the sequence 

D, y(a1)D, y(a1)y(a2)D, ... , y(at>· .. y(ak)D 

of polygons is a "cycle of the second kind" about the vertex A in the sense that 
all the polygons in the sequence share the vertex A, each is adjacent to its 
successor, they do not overlap, and together they cover some neighbourhood 
of A. The result we have in mind (whose proof we omit) states that these 
conditions, which are clearly necessary, are also sufficient for there to exist an 
appropriate discrete group: 

20.6. Theorem. If the preceding conditions (i) and (ii) are satisfied by the 
polygon D (and the chosen involutory permutation of its sides), then the y(a) 
generate a discrete group of isometries of the Lobachevskian plane,for which the 
given polygon D is a fundamental region. 

By way of an example, we now consider the discrete groups arising in this 
way from the simplest sort of such polygon. 

Example. Let D be a polygon without any vertices at all (like that shown in 
Figure 69). We pair off the edges arbitrarily (allowing pairing of some edges 
with themselves), and for each pair a, a' we select isometries y(a), y(a') 
satisfying y(a)a' = a, y(a)y(d) = 1, y(a)D (') D = a: such isometries always exist, 
since given any two straight lines I, l' there is an isometry interchanging them, 
and sending either of the half-planes determined by I onto an arbitrarily 
prescribed one of the half-planes determined by 1'. If no side of our given 
polygon-without-vertices is paired with itself, then it is not difficult to see that 
the discrete group generated by the y(a) (where a ranges over all sides) is a free 
group. On the other hand if some sides are paired with themselves (as 

Figure 69 
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indicated in Figure 69), then we shall obtain some non-trivial relations (of the 
form (y(C»2 = 1). If every side is paired with itself, i.e. a' = a for all a, then we 
obtain a free product of 2-cycles (choosing for instance y(a) for each a to be 
the reflection in a). 

We now turn to the case where the given polygon D (with, as before, 
finitely many sides) has a vertex at infinity (as in Figure 68). We choose some 
involutory (or trivial) permutation a 1-+ a' of the sides D, and corresponding 
to each side a a Lobachevskian isometry y(a) satisfying y(a)a' = a, y(a)D n D 
= a, y(a)y(a') = 1 (cf. the previous case). For any vertex A of the polygon D 
(including the vertex at infinity) these conditions imply the existence of a 
sequence a1 , •.• , aq , •.• of sides of D such that the polygonal regions 

D, y(a 1 )D, y(ady(a2)D, ... 

are as shown in Figure 70. (Note that in that diagram the symbol ai' which 
denotes a certain side of D, is used also to denote its image under 
y(ad' .. y(ai~ d·) Let 

be the corresponding sequence of vertices, obtained by taking successive 
images of A under the same transformations; we shall say that the two 
sequences (of sides and of vertices) are generated by the vertex A. Since our 
polygon has only finitely many sides (and each side joins at most two 
vertices), it follows that both of these sequences will be periodic; we call the 
smallest common period p of the two sequences the period of the vertex A. 
(Note that we might instead have proceeded in the counterclockwise 
direction around A, starting with the other side of D incident with A.) We 
shall say that the sequence A l' A 2, ... , Ap~ 1 constitutes a cycle generated by 
the vertex A. (Note that this discussion all makes sense even if A is the vertex 
a t infinity.) 

We now suppose that the isometries y(a) generate a discrete group having 
D as a fundamental region. Then if A is an ordinary vertex of the polygon D 
(i.e. not the vertex at infinity) the sequence of cells around A depicted in 
Figure 70, must close up, whence (see below) there exists a positive integer m 
such that 

(1) 

Figure 70 
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(Note that even though the vertex A will (by definition of p) be back in its 
original position after p steps of the sort indicated in Figure 70, it does not 
necessarily follow that all cells having A as a vertex will then have been 
exhausted.) The number m is called the multiplicity of the vertex A (not 
to be confused with the period of A). Clearly in order for the word 
[y(a l )y(a2)' .. y(ap)]m to correspond precisely to the full cycle of all cells with A 

as a vertex, we must have 

f-, 2n 
L (LAJ=-, 
;;1 m 

(2) 

where L A; denotes the size of the angle of D at the vertex A;. If we impose the 
condition that the transformation [y(a l )· .. y(ap)]m be orientation-preserving, 
then the relation (1) will follow from (2). It is easy to verify that the relations 
resulting in this way from other vertices of the cycle generated by the vertex A 
(as well as that obtained by proceeding around A in the counterclockwise 
direction) are all equivalent to the relation (1). 

Since it is, obviously, impossible for a cycle of cells sharing the vertex at 
infinity to close up, no relation is yielded in the above-described manner by 
that vertex. There is however the following result, given without proof. (Recall 
from §13.2 of Part I that the orientation-preserving isometries of the 
Lobachevskian plane are, in the Klein model, just the linear fractional 
transformations z 1---+ (az + b )/(cz + d) where a, b, c, d are real and ad - bc = 1.) 

20.7. Lemma. For t,.e vertex at irifinity the transformation y(a l )··· y(ap) 

(defined as above) is a parabolic motion, i.e. the real matrix (; ~) (or its 

negative) corresponding (in the Klein model of the Lobachevskian plane) to the 

transformation y(ad' .. y(ap), is similar (i.e. conjugate) to the matrix (~ ! ). 
We are now in a position to state (without proof) the result we have been 

aiming at, which tells us essentially that the above necessary conditions for 
the given polygon D to be a fundamental domain for the discrete group 
generated by the y(a), are in fact also sufficient. 

20.8. Theorem. Suppose we are given in the Lobachevskian plane a polygon D 
with finitely many sides, together with an involutory (or trivial) permutation 
a 1---+ a' of its sides, and corresponding to each side a an isometry y(a) satisfying 
y(a)a' = a, y(a)D n D = a, and y(a)y(a') = 1. Suppose further that for each 
ordinary vertex A, the cycle of vertices it generates satisfies condition (2) above 
for some m (depending on A) and that the transformation [y(a l )··· y(ap)r is 
orientation-preserving (whence the relation [y(a l )· .. y(ap)r = 1). Suppose fin
ally that for each vertex of D at irifinity the corresponding transformation 
y(ad' .. y(a p) is a parabolic isometry. Then the group generated by the y(a) is 
discrete and has D as a fundamental region. 
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A Jl 

(a) (b) 

Figure 71 

Examples. (a) Consider the (2-sided) polygon of Figure 71(a), and the group 
generated by the reflections in each of the sides. Here the vertex A has period 
2 and multiplicity m. 

(b) With the polygon D as in Figure 71(b), suppose that the angle at each 
As is 2n/ms where ms is a positive integer, and that the two edges meeting at 
each As are of equal length. Suppose further that 

~k LB.= 2n 
I , 

i= m 

for some positive integer m. For each s the clockwise rotation )Is of the plane 
through the angle 2n/ms about the vertex As sends one of the two edges 
incident with As, to the other. A direct verification shows that the Ys satisfy the 
hypotheses of Theorem 20.8, whence we conclude that they generate a 
discrete group with D as fundamental region. Corresponding to each vertex 
As we obtain the relation y;" = 1, while the vertices Bs yield relations 
equivalent to (y 1 •.• Yk)m = 1 (and these constitute a fuB set of defining relations 
for the discrete group). 

(Note that there are very few analogous such polygons in the Euclidean 
plane, since (as is readily verified) the equation 

k 1 1 L -+-=k-l 
i=l mi m 

holds for such (Euclidean) polygons, whence k:o:;; 4. On the other hand there 
are infinitely many essentially different such polygons (and consequently such 
discrete groups) in the Lobachevskian plane.) 

(c) Consider the 4k-gon in the Lobachevskian plane shown in 
Figure 72(a), where it is assumed that the angle-sum is 2n, and that for each i 
the sides at and a; have the same length, as also do bi and b;. We then have the 

20.9. Proposition. The orientation-preserving isometries !Xi' Pi of the Loba
chevskian plane, uniquely defined by the conditions !Xi: ai--+a;, Pi: bi--+b;, 
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(a) (b) 

Figure 72 

generate a discrete group which acts fixed-point freely, is defined abstractly by 
the single relation 

ct.1/31 ct.11 /31 1 ... ct.k/3kct.k- 1 /3;; 1 = 1, 

and has the given 4k-gon as fundamental region. 

This discrete group is isomorphic to the fundamental group of a Riemann 
surface of genus k, i.e. of the sphere-with-k-handles, and the given 4k-gon 
affords a canonical diagrammatic representation of that surface-see Exer
cise 1 of §19.4. From that exercise and the definition of a covering defined by a 
freely acting discrete group (18.4.2), we deduce the 

20.10. Corollary. The universal covering space of the closed, orientable surface 
of genus g> 1 (i.e. the sphere-with-g-handles M;) is the Lobachevskian plane. 

EXERCISE 

Show that if in Example (c) above we consider instead the polygon in Figure 72(b) 
(rather than that of Figure 72(a)), the resulting orientable surface is the same. 

We conclude this particular discussion with the statement (without proof) 
of a "finiteness" result for discrete groups. 

20.11. Theorem. If a convex fundamental polygon of a discrete group of motions 
of the Lobachevskian plane has finite area, then it has finitely many sides (and if 
there are excursions to infinity, then there are only finitely many of them). 

We now turn to the consideration ofthe so-called "Mobius group" and the 
classification of linear-fractional transformations. (The relevance of this to 
the Lobachevskian plane will be recalled below.) 
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The set of all linear-fractional transformations of the Riemann sphere, or 
extended complex plane cpt ~ C U {oo} ~ S2, forms a group which is 
sometimes called the Mobius group, denoted by "Mob". There is an obvious 
isomorphism 

Mob~SL(2, c)/{ ± 1}. 

(Recall that the centre of SL(2, C) is precisely {± 1 }.) From the theory of the 
Jordan normal form of matrices, we know that every matrix a from SL(2, C) 

" . . h f h &' (A 1) . IS conjugate to a matrIX elt er 0 t e lorm 0 A ' correspondmg to the 

linear-fractional transformation z H z + II A (A = ± 1), or of the form (~ ~) 
(where of course fl = II A), which corresponds to a linear-fractional transform
ation of the form z H cz. A non-identity transformation a of the former 
conjugacy type is called parabolic, while if of the latter type it is called elliptic 
iflcl = 1 and hyperbolic if c E IR and c>O; the remaining possible non-identity 
linear-fractional transformations are lumped together under the term lox
odromic transformations. Note that this taxonomy (from which incidentally 
the identity transformation and its negative are excluded) is to be applied 
indifferently to matrices in SL(2, IR) and to the corresponding Iinear
fractional transformations (i.e. elements of the Mobius group). 

20.12. Lemma. A matrix a from SL(2, C), not equal to ± 1, is: 

(i) parabolic if and only iftra= ±2; 
(ii) elliptic if and only if tra is real and I tr a 1< 2; 

(iii) hyperbolic if and only if tr a is real and I tr a I > 2. 

(Hence the matrix a#- ± 1 will be loxodromic if and only if tr a is not real.) 

It is clear from this lemma that the group SL(2, IR) does not contain 
loxodromic elements. We now restrict our attention to this group, giving a 
characterization of its elements in terms of the fixed points of the correspond
ing linear-fractional transformations. (Every non-identity Mobius transform
ation has two fixed points (sometimes "merged" into a single fixed point).) 

Before describing this characterization we recall the connexion between 
SL(2, IR) and the Lobachevskian plane: The orientation-preserving isometries 
of that plane are, in the Klein model, precisely the linear-fractional transform
ations z H (az+b)/(cz+d) with a, b, c, d real (and ad-bc= 1) (see §13.2 of 
Part J). Hence there is a homomorphism from SL(2, IR) to the full isometry 
group of the Lobachevskian plane (in fact onto the connected component of 
the identity of that group), with kernel the centre {± 1} ~ 71..2 of SL(2, IR). 

We begin our promised geometric characterization of the elements of 
SL(2, IR) with the following result (again omitting the proof): 
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20.13. Lemma. A matrix (J from SL(2, IR), not equal to ± 1, is: 

(i) parabolic if and only ifit has only one fixed point (which must then be on 
the extended real line IR U { 00 }); 

(ii) elliptic if and only if it has one fixed point in the open upper half-plane 
H = {z E (:11m z > O}, and one in the open lower half-plane; and 

(iii) hyperbolic if and only ifit has two distinct fixed points on the extended real 
line IR U { 00 } . 

Let G be a discrete subgroup of SL(2, IR). A point Z E H is called an elliptic 
point of the group G, if z is a fixed point of some elliptic transformation in G; 
similarly a point of IR U { oo} is a parabolic point of G if it is the fixed point of 
some parabolic transformation in G. We now list the simplest geometric 
properties of the linear-fractional transformations in SL(2, IR) (with the usual 
permitted imprecision of statement) of the three types. 

1. Hyperbolic Transformations. (i) Every circle passing through both fixed 
points of a hyperbolic transformation is sent onto itself under that transform
ation, and each of the two connected segments of such a circle having the 
fixed points as end-points, is also sent onto itself by the transformation. 

(ii) Each of the two connected regions into which the extended complex 
plane is divided by a circle through the fixed points, is sent onto itself by the 
hyperbolic transformation. 

(iii) Every circle orthogonal to a circle through the fixed points is sent to 
another such circle. 

(iv) The fixed points of a hyperbolic transformation are inverse points 
with respect to any such circle, i.e. to any circle orthogonal to some circle 
through the fixed points. (Points A, B are inverse points with respect to a 
circle with centre 0 and radius R if the points 0, A, B lie on a (Euclidean) half
line emanating from 0, and 10AI'IOBI =R2.) 

Figure 73 
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Two such orthogonal systems (or "pencils") of circles are depicted in 
Figure 73, where it is also indicated how the regions into which the circles 
subdivide the plane move under the hyperbolic transformation: each shaded 
region is sent onto the neighbouring (unshaded) region in the direction of the 
arrows. 

2. Parabolic Transformations. (i) Each circle C passing through the fixed 
point of a parabolic transformation, is sent by that transformation onto a 
circle tangent to it (i.e. to C) at the fixed point. 

(ii) There is a family of circles all tangent to one another at the fixed point 
(i.e. a "tangent pencil" of circles) and defined by a single parameter, each of 
which is sent onto itself by the parabolic transformation. 

(iii) The interior of every circle preserved (i.e. sent onto itself) by a 
parabolic transformation is mapped onto itself (i.e. is also preserved). 

The effect of a parabolic transformation is conveyed by Figure 74; again 
each shaded (un shaded) region is to be imagined as moved over onto the 
neighbouring unshaded (shaded) region in the direction indicated by the 
arrows. 

Figure 74 

3. Elliptic Transformations. (i) Each circular arc joining the two fixed 
points of an elliptic transformation, is sent by that transformation to another 
such circular arc. 

(ii) Every circle orthogonal to the circles through the fixed points is 
preserved. 

(iii) The interior of each such circle is preserved. 
(iv) The fixed points are inverse points with respect to every such circle 

(orthogonal to the circles through the fixed points). 

The effect of an elliptic transformation of the plane, may be gathered from 
Figure 75. 
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Figure 75 

For the finitely generated discrete groups of isometries of the Lobachev
skian plane with fundamental region of finite (Lobachevskian) area, explicit 
general forms of the presentations (in terms of generators and defining 
relations) are known; we now give these presentations and look at some of 
their properties. 

Among such groups those which are orientation-preserving are of parti
cular importance; they are generally termed Fuchsian groups. We begin by 
giving the possible presentations of these groups. It turns out that for any 
given Fuchsian group G we can find generators Xl"'" X r ; ai' bl , ..• , ag, bg 

(for some r ~ 0, g ~ 0) in terms of which a set of defining relations for the group 
is given by 

xT' = 1, ... , x~· = 1, 

where ml , ... , mr ~ 2, and some or all of the mj may be 00 (in which case the 
corresponding relations xi = 1 may be deleted). The integer g is called the 
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genus, the mi the periods, the number of occurrences of any particular period 
in the sequence ml , ... , m., the multiplicity of that period, and the (r + 1 )-tuple 
(g; ml , ... , m.) the F-signature of the Fuchsian group. As the introduction of 
this terminology might lead the reader to suspect, these are, essentially, 
invariants of the group; this is the substance of the following result. (Again we 
content ourselves with the statement alone; the invariance of g is easily seen, 
however, since it is the rank of the commutator quotient group G/[G, G].) 

Proposition. If a Fuchsian group with F-signature (g; m l , ... , m.) is isomorphic 
to another Fuchsian group with F-signature (g'; m~, ... , m~.), then g=g', r=r', 
and there is a permutation cp of the set {1, ... , r} such that m; = mrp(i) for 
i= 1, ... , r. 

(The converse statement is also valid: If cp is any permutation of the set 
{t, ... , r}, then any Fuchsian group with F-signature (g; ml , ... , m.) is 
isomorphic to any group with F-signature (g; mrp(I)' ... , mrp(.))') 

It is natural to ask for the conditions a sequence (g; ml , ... ,m.) with 
g, r ~ 0, mi ~ 2, must satisfy for it to be the F -signature of some Fuchsian 
group. The precise condition turns out to be 

It can be shown that in fact the (Lobachevskian) area of the fundamental 
region of a Fuchsian group of F-signature (g; ml"'" m.) is just 
1t{L(g; ml , ... , m.). 

It can also be shown that every element of finite order of a Fuchsian group 
G of F-signature (g; ml , ... , m.) with generators as above, is conjugate in G to 
a power of one of the elements XI' ... , x. (which are of orders mh"" m., 
respectively), and furthermore that no two non-trivial powers of distinct x;'s 
are conjugate in G. 

We now consider the wider class consisting of those (finitely generated, 
discrete) groups whose fundamental region has finite area; these are called the 
non-Euclidean crystallographic groups. 

As a preliminary to giving the possible presentations of such groups, we 
define an NEC-signature to be an ordered quadruple of the form 

(g, e, [m l , ..• , m.], {CI"'" cd), 

where: g, called as before the genus, is a non-negative integer; e = ± 1; 
ml , ... , m., the periods, take their values from among the positive integers 
~ 2 or 00; and the Ci' called cycles, are finite sequences of integers ~ 2: 
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(Note that r (the number of periods) or k (the number of cycles) may be zero.) 
Thus the generic NEe-signature may be written in more detailed fashion as 

(g, ± ,[mi' ... , m,]; {(n11' ... , nls ,), .•. , (nu, ... , nksk )})' 

Given any NEe-signature, we define a corresponding NEe-group in terms 
of generators and relations, as follows. 

(i) In the case of an "orientable" signature (8= + 1) the generators and 
relations of the corresponding NEe-group are as in the following table. 

Element of the signature Generators Defining relations 

the period mi Xi xj'=1 

the cycle Ci = ei 
-I 

Cis, = ei ciOe;. 

(nil' ... , nls.) em, Cih ... , Cis, ctj-I =Cfj=(Ci,j_ICijt'J= 1 

g, +1 al> bl> ... , ai' b, 
xI",x,el,,·etalblailbil ... 

... a,b,a; Ib; 1 = 1 

(ii) In the case 8= -1, the generators and defining relations of the 
corresponding NEe-group are obtained by replacing the last row of the 
above table by the following one: 

g, -1 al>"" a, 

The significance of these presentations lies in the fact that every non
Euclidean crystallographic group has a presentation as an NEe-group. 

We conclude by giving a specific example (ofa discrete group of motions of 
the Lobachevskian plane) of the type considered in Example (c) above. We 
take as fundamental region a regular 4g-gon with each of its angles equal to 
1C/2g, and with centre at, say, the centre of the unit circle (assuming that we are 
working in Poincare's model), as shown in Figure 76 in the case g = 2. We pair 
oft' each side of this 4g-gon with the side diametrically opposite to it, and 
denote by AI"'" Alg (Lobachevskian) translations each of which shifts 
one side (of each pair of diametrically opposed sides) into the position 
of the other, and where for each k= 1, ... , 2g-1, the direction along 
which the translation Ak+ I is performed, is obtained from the direction 
of Ak by rotating the latter through the angle 1C - 1C/2g (or in other 
words by conjugating Ak by the transformation B, which rotates the plane 
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Figure 76. The transformations Al and A2 translate the centre of the octagon to the 
positions indicated by the arrows. 

through the angle n -n/2g about the centre of the circle). (The relation
ship between A1 and A2 (typical of that between Ak and Ak+ d can be seen 
from Figure 76.) The transformations A 1 , ••• , A 2g satisfy the relation 
A1 ... A 2g A l 1 ••• Ai/ = 1 (verify!) 

It is not difficult to obtain explicit matrices in SL(2, IR) corresponding to 
the transformations AI, ... , A 2g (now of course considered as acting on the 
upper half-plane model). Under the transformation z = (1 + iw)/(I- iw) be
tween the Poincare model (in the z-plane) and the Klein model (the upper half 
of the w-plane), the centre of the unit circle corresponds to the point i; hence 
we may assume, by choosing our polygon so that in the upper half-plane 
model it has a side perpendicular to the imaginary axis, that A I preserves the 
imaginary axis, whence it needs must have the form w 1--+ AW, where A = el , 

with { the double of the length of a leg of the triangle with angles n/2, n/4g, 
n/4g (this is clear from Figure 76). A straightforward calculation of the length 
of such a leg yields (verify it!) 

{_ I cos f3 + JroS27i 
-2 n . f3 ' sm 

As already noted, the matrices A 2 , ••• , A 2g are obtained from Al by 
successive conjugation by Bg , the matrix of the rotation of the plane through 
the angle n[(2g-l)/2g] about the point i; thus 

k=2, ... ,2g, 

where 

( 

2g - 1 . 2g - 1 ) cos n -- sm n -4-
4g g 

B= 
g 2g-1 2g-1 

-sinn4g- cosn4g-
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Hence finally 

(
COS 0( 

A= 
k -sin 0( 

EXERCISE 
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(
cos p + JCOO2P 

sin O() - k+ 1 sin p 
cosO( 0 

o ) sin p 
cos p+Jcos 2P 

(
COS 0( sin 0( )k -1 

X. , 

2g-1 
(X=1t--4g , 

-SIO (X cos 0( 

1t p=-, 
4g 

k= 1, ... , 2g. 

Show that the group with generators Ai>"" A2, and defining relation 
AI'" A2,Ai l ••• Ai,1 = 1, is isomorphic to the group on generators ai' bl>"" a"b, 
with defining relation a l bl ail bi l ... a,b,a; I b; I = 1. 



CHAPTER 5 

Homotopy Groups 

§21. Definition of the Absolute and Relative 
Homotopy Groups. Examples 

21.1. Basic Definitions 

The homotopy groups of a manifold or more general topological space M, 
which we shall shortly define, represent (as will become evident) the most 
important of the invariants (under homeomorphisms) of the space M. The 
one-dimensional homotopy group of M is, by definition,just the fundamental 
group 1tl(M, xo). The zero-dimensional homotopy group 1to(M, xo) does not, 
generally speaking, exist: its elements are, by somewhat loose analogy with 
the general definition of the homotopy groups given below, the pathwise 
connected components of the space M, from amongst which there is 
distinguished a "trivial" element, namely the component containing the base 
point Xo; however only in certain cases does this set come endowed with a 
natural group structure. The two most important such instances are as 
follows: 

(a) If M is a Lie group (see §2.l for the definition) then the component 
M 0 of the identity element Xo = 1, is a normal subgroup, so that the set 
1to(M, xo)=M/Mo does have a natural group structure, namely that of the 
quotient group. 

For example if M = O(n), then 1to(M, xo)::::O; 7..2, since two matrices from 
O(n) are connected precisely if their determinants are equal (see §4.4 of Part I). 
In the case M = 0(1, n), we have 1to(M, xo)::::O; 7..2 EB 7..2 since two elements of 
0(1, n) are connected precisely if their determinants are equal and either they 
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both preserve or both reverse the direction of flow of the time (cf. §6.2 of 

Part I). 

(b) The loop space M = !l(xo, N) of a space N (relative to a point xo) has as its 
points the paths y in N beginning and ending at the point xo, with the natural 
topology on them (defined for instance by the maximum distance between 
such paths with respect to a metric on N (cf. §10.l». From §12.l (see in 
particular Theorem 12.1.2) it follows that two points (i.e. loops in N with base 
point xo) in the loop space are connected if and only if they are homotopic, so 
that the set 7to(M, e) (where e denotes the constant path yet) == xo) coincides with 
the group 7t 1(N, xo) (by definition of the fundamental group). 

We are now ready to embark on the definition of the "higher" homotopy 
groups 7ti(M, xo); the reader will see that it is simply a generalization of the 
definition of 7t 1(M, xo), with the i-dimensional closed disc (or closed ball) Di in 
the role played by the interval [0, 1] ~ Dl in the definition of the fundamental 
group. 

21.1.1. Definition. An element of the homotopy group 7ti(M, xo) is a homotopy 
class of maps Di -+ M, which send the boundary Si - 1 of the disc, to the point 
Xo (and where the homotopies permitted are all relative to the point xo, i.e. Si-l 
is to be sent to Xo throughout such homotopies). 

It follows that each element of 7t i (M, xo) is determined by a homotopy 
class of maps Si -+ M which send a prescribed point So of the sphere Si to Xo; 
clearly this provides an equivalent characterization of the elements of 
7t i(M, xo). (By analogy with the case of the loop space introduced above, we 
may therefore say that the elements of the group 7t i(M, xo) are just the 
connected components of the "mapping space" of maps Si-+M for which 
So 1-+ xo.) 

Having defined the "carrier" of the group 7ti(M, xo), the next step is to 
introduce the operation justifying our calling it a "group". Consider the 
i-dimensional sphere Si and identify Si - 1 in the normal way with the equator 
of Si. Choose the point So to be on the equator Si-l, and consider the obvious 
map'" from Si to the bouquet of two spheres si v S~, sending the equator to 
the single point (also denoted by so) at which the bouquet is gathered, i.e. to 
the point common to Sil and S~ (see Figure 77). It is clear that at all points of 
Si except those on the equator, '" is one-to-one and orientation-preserving. If 
now we are given two maps ex: Sil-+M, ex(so)=xo, and p: S~-+M, P(so)=xo, 
then we define the product map exp to be the map Si -+ M coinciding with ex 0 '" 

on the upper hemisphere D +, and with po", on the hemisphere D -: 

exP(x) = {ex",(X) for xED+, 
P",(x) for xED-. (1) 

It is obvious that exP(so) = xo, and easy to see that the product of two maps 
homotopic to ex and P respectively, is homotopic to exp (where the permitted 
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Figure 77 

homotopies are, as usual, those throughout which So 1-+ xo). Hence we may 
define the product of two homotopy classes of maps Si-+M, Sol-+Xo, as the 
homotopy class containing the product of any two representative maps from 
the respective classes. 

21.1.2. Theorem. Under the operation of multiplication of homotopy classes of 
maps Si--.M, So 1-+ x o, the set ni(M, x o) of such classes is a group, which is, 
moreover, commutative for i> 1. 

PROOF. Since we have already proven this result for i = 1 (Theorem 17.1.4), we 
may assume that i> 1. 

(i) We first prove that the operation is commutative, i.e. that rJ.p is 
homotopic to PrJ.. As usual we consider the i-sphere Si to be the hypersurface 
L~~ ° (xi)2 = 1 in lR i + 1 (XO, Xl, ... ,Xi). We take the equator to be the set of 
points on this sphere with XO = 0, and take So = (0, 1,0, ... , 0). Consider the 
rotation };p of the sphere through the angle q>, 0 ~ q> ~ n, which rotates the 
(XO, x2)-plane (through q» and leaves the orthogonal complement of that 
plane pointwise fixed. For q> = 0 this is of course the identity map, while the 
rotation corresponding to q> = n interchanges D + and D - . Hence the family of 
maps};p, O~q>~n, determines a homotopy F:lxSi--.M (where I=[O,n]) 
given by F(q>, x) = rJ.P(};P(x)) which in essence interchanges the two maps rJ. and 
p. Hence rJ.p and pCl. are homotopic. 

(ii) We next establish associativity, i.e. that (rJ.P)y is homotopic to a.(py). 
With the sphere Si as in part (i) above, divide the lower hemisphere D - (XO ~ 0) 
into two halves: D - = Dl u D 2', where Xl ~ 0 on Dl and Xl ;::: 0 on Di. Define 
in the intuitively obvious way a map'" from Si to a bouquet of three i-spheres, 
and then map these in turn to M via the given maps rJ., p, Y respectively (see 
Figure 78). It is then readily seen that the resulting composite map Si-+M is 

-
Figure 78 

f) _~ 
(!J\o 
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Figure 79 

in the homotopy class of both (rx.P)y and rx.(py). (We leave the precise details to 
the reader.) 

(iii) Finally we prove that inverses exist. Given any map rx.: (Si, so)-+(M, xc), 
we shall show that the homotopy class of the map a: (Si, so)-+(M, xc), defined 
by 

is inverse (with respect to the above-defined operation on ni(M, xc)) to the 
class containing rx.. To do this we compute the product rx.(i using, as before, the 
map I/!: Si-+Sil v S~. The map rx.I/! is considered on the upper hemi
sphere D + (Xo ~ 0), while the map al/! is considered on the lower hemisphere D
where it is given by the formula al/!(xO, Xl, ... , xi)=rx.I/!( _xc, Xl, ... , Xi) (see 
Figure 79). The maps rx.I/! and al/! combine (as in (1)) to yield the product 
rx.(i = f Si-+M, which sends the points y =(XO, ... , Xi) and y* = (-XO, ... , Xi) 
to the same point of M, i.e. f(y)= f(y*). It follows that f can be expressed as 
a composite f =go n, where n: Si-+Di is the projection map, so that n(y) =n(y*) 
(see (Figure 80), and g = rx.I/!: Di -+ M (identifying D + with Di). Hence f is 
homotopic to the constant map (by means of a homotopy throughout which 
So is mapped to xo). This completes the proof of the theorem. 0 

At this stage there will, naturally enough, be only a few spaces whose 
higher homotopy groups ni(M, xo), i> 1, we can calculate. For instance: 

(a) nj(M, xo)=O (in additive notation since the groups are abelian for i> 1) 
for any contractible topological space (e.g. for M = IRn, D", a tree, etc.); 

(b) nj(S")=O for i<n (see the remark in §17.5), and niS"):::::il (see §13.3). 

We may however easily enlarge our supply of examples by means of the 
following simple result. 

8---- 8i 
",- - ...... 

So 
.. 

Figure 80 
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21.1.3. Proposition. For a direct product M x N of topological spaces we have 

7r:j(M x N) ~ 7r:j(M) x 7r: j(N). 

PROOF. Any map f Si~M x N is determined by its component maps 
J;:Si~M and h:Si~N, obtained by projecting; thus f=(ft, h)· The 
desired conclusion is in essence a consequence of the fact that under a homo
topy of the map f, the components ft and h undergo deformation 
independently. 0 

21.2. Relative Homotopy Groups. 
The Exact Sequence of a Pair 

Given a topological space, a non-empty subset A of M, and a point Xo of A, 
the ith relative homotopy group 7r: j(M, A, xo), i';?1, is defined as fol1ows. Its 
elements are the (relative) homotopy classes of maps ct: Di-+M, which send 
the boundary Si - 1 of Di to A, and a prescribed point So of that boundary to 
Xo; thus we might denote such maps more explicitly by 

ct: (D i , Sj-I, so)-+(M, A, xo). 

We shal1 now define for i';? 2 a binary operation on the set 7r: j(M, A, xo) under 
which it is a group, in fact for i ~ 3 an abelian group. (In the case i = 1, i.e. for 
7r: 1(M, A, xo), there is, general1y speaking, no natural group operation.) The 
definition of the operation in question is completely analogous to that of the 
group multiplication in the "absolute" homotopy groups 7r: i(M, xo), given in 
the preceding subsection. Thus if ct, {3 E 7r: i(M, A, xo), then the product ct{3 is 
the map of the disc Di (given in lR i by the inequality L~= 1 (xi)2 ~ 1) defined as 
fol1ows. As before we denote by I/J the map Dj~D~ v D~ which pinches the 
"waist" Di-I(X I =0) of the disc Di to the single point So (see Figure 81). If, as 
indicated in that diagram, we realize ct and {3 as maps of the discs Dj

l and D~ 
respectively, then the composite map 

. ",. . 
D'~D'I v D~~M 

(cf. (1) above) is taken as defining the product ct{3 (which clearly does represent 

Figure 81 
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an element of 1ti(M, A, xo». (Note that this definition does not work in the 
case j = 1.) 

In the case i = 2 the boundary aD2 = SI is one-dimensional. Hence for 
appropriate A, essentially since S1 is always to be mapped to A (i.e. essentially 
for the same reason that 1tl(M, xo) need not be commutative), the above
defined operation on 1t2(M, A, xo) may also fail to be commutative. However 
by imitating the proof of Theorem 21.1.2 it can without difficulty be shown 
that under the operation, for each i 2: 2 the set 1ti( M, A, xo) is a group, which is 
commutative for i 2: 3; we leave the precise details to the reader. (Note 
incidentally that if A = {xo} then the relative groups 7li(M, A, xo) become just 
the "absolute" homotopy groups 1ti(M, xo).) 

Analogously to the case of the fundamental group (see Theorem 17.1.5), 
any continuous map 

f M-+N, 

A-+B, 

between manifolds (or more general topological spaces) M and N induces in 
the natural way a homomorphism 

(2) 

associating with (the homotopy class of) each map Di-+M, (the homotopy 
class of) the composite map 

. f 
D'-+M -+ N. 

It is easy to see (as it was for the fundamental group) that this homomorphism 
is unaffected by homotopies of f M -+ N throughout which A continues to be 
mapped to Band Xo to Yo. 

Each map Di -+ M under which the boundary aD i = Si - 1 is sent to the point 
xo, determines, of course, an element of 1ti(M, xo), and also determines an 
element of 7ti(M, A, xo). Since two such maps defining the same element of 
7ti(M, xo) (i.e. homotopic via a homotopy throughout which Si -1 is sent to 
x o) certainly define the same element of 7ti(M, A, xo), we obtain a 
homomorphism 

j: 7ti(M, xo)-+71i(M, A, xo). 

(Note however that in general two such maps Di-+M may define the same 
element of 7li(M, A, xo) yet distinct elements of 7ti(M, xo), since the homotopy 
classes comprising the latter group are more restrictive; thus the homo
morphism j need not in general be one-to-one.) 

On the other hand each map f: Di-+M representing an element (X of 
7l i(M, A, xo), determines a map from the boundary of Di to the subspace A: 

SoHXo· 
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It is clear that homotopies of f throughout which Si-l continues to be sent to 
A and So to Xo (i.e. which keep f in the homotopy class IX), induce homotopies 
of the restricted map fleD' throughout which So continues to be sent to Xo. 

Hence restriction of the maps f Di-+M representing elements of 1ri(M, A, xo) 
yields a mapping 

a: 1ri(M, A, XO)-+1ri -1 (A, xo), 

which is in fact a homomorphism (called the the "boundary homomorph
ism") since, as is easily seen, the restriction of a product of maps f, g: Di-+M 
(sending Si - 1 to A and So to xo) is the product of the restrictions f leD' and 

gliJD" 
Finally, the inclusion map i: A-+M, which maps A identically, gives rise in 

the usual way (see (2» to a corresponding "inclusion homomorphism" 

i.: 1ri(A, xo)-+1ri(M, xo). 

Before formulating our result concerning the homomorphisms j, i., a, we 
remind the reader that the kernel, denoted by Ker ep, of a group homomorph
ism ep: G-+H is the normal subgroup of G consisting of those elements IX of G 
such that ep(IX) = 1, while 1m ep denotes the image group ep(G) (a subgroup 
of H). 

21.2.1. Theorem. The homomorphisms j, i., a satisfy the following "exactness" 
conditions: 

Kerj=lmi.; 

Ker i.=Im a; 
Ker a=lmj; 

or, in other words, the sequence 

... 1. 1ri(A, xo) ~ 1ri(M, xo) .4 1r;(M, A, xo) 1. 1ri-l (A, xo)-+ ... 

of groups and homomorphisms, is "exact". 

PROOF. (i) Ker j = 1m i •. We show first that Ker j c 1m i •. Each element of 
1ri(M, xo) is represented by a map IX: Di-+M satisfying lX(aDi)=xo. The 
condition for such an element to lie in Ker j is (by definition) that there exist a 
homotopy IXr(O:$;;t:$;; 1) with IXo=1X and IX 1(D i ) c A (and throughout which of 
course aDi-+A and So f-+ xo). By restricting this homotopy, we get a 
homotopy aD i x [0, 1]-+A, which, since IXo(aDi)=xo, yields a map Di-+A (by 
pinching the base of the cylinder aD i x [0, 1] to the single point so). By 
combining this map with the map 1X1: Di-+A (i.e. by re-capping the (pinched) 
cylinder with Di and applying 1X1 to this cap), we obtain a map Si-+A which 
sends So to Xo, and also represents an element ofIm i •. Since this map also (as 
is not difficult to see) represents the same element of 1ri(M, xo) as does IX, the 
desired inclusion follows. 

The reverse inclusion is a consequence of the fact that any map f Di-+A 
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satisfying !(aDi)=xo, represents the identity element in 1ti(M, A, xo), since 
clearly! is homotopic to the map sending Di to the point xo, via a homotopy 
throughout which aDi (in fact Di) continues to be mapped to A (and So to xo) 
(i.e. since the disc can be contracted within A to the point xo)· 

(ii) Ker a = 1m j. To see that Ker a c 1m j, consider any element of Ker a. 
A representative map ex: Di--+ M (for which of course Si - 1--+ A, So 1-+ xo) of 
such an element will have the property that its restriction exls. - ,: Si - I --+ A to 
the boundary of Di is null-homotopic, i.e. there is a homotopy ex,: Si - I --+ A 
(O::;t::;l) with ao=als'-I, a,(so)=xo, al(Si-I)=xo' Since al(Si-I)=xo, this 
homotopy yields a map from a disc Di (obtained by pinching to the point 
so=(so, 1) the top rim Si-I x 1 of the cylinder Si-I x [0,1]) to A. By com
bining this map with the map ex: Di --+ M (i.e. by filling in the base of the 
(pinched) cylinder with Di and applying a to it), we obtain a map Si--+M 
sending the distinguished point So to xo, and therefore representing an 
element of 1m j. Since this map clearly represents the same element of 
1ti(M, A, xo) as does ex, the desired inclusion follows. 

The reverse inclusion is easy since under any map a: Di--+M representing 
an element of Imj, the boundary of Di is mapped to a point, so that the 
boundary map applied to such an element yields the identity element of 
7t i _ I (A, xo)· 

(iii) 1m a=Ker i •. Consider an element of Ker i. c 1ti(A, xo), represented 
by a map a: Si--+A, with So 1-+ Xo' By definition of Ker i. there must exist a 
homotopy a,: Si--+M (O::;t::; 1) such that ao=a, a,(so)=xo, and al(Si)=xo' 
Since a I (Si, 1) = Xo (i.e. a l pinches the top of the cylinder Si x [0, 1] to a point), 
this homotopy yields a map F: Di + 1--+ M of the (i + 1 )-dimensional disc, under 
which the boundary aDi+ 1= Si = (Si, 0) goes (via a = ao) to A, and So to Xo. 
Hence F represents an element of 1ti + I (M, A, xo), and since of is just a, we 
conclude that Ker i. c 1m a. 

For the reverse inclusion observe that if FE 1ti+ I (M, A, xo), then aF: Si 
--+ A is homotopic (in M) to the constant map to the point xo, via a homotopy 
throughout which So 1-+ Xo. This concludes the proof of the theorem. 0 

Example. Taking M=D' and A=aD'=S,-I, we have 7t,(D', S·-t, xo)==.Z, 
and for i < n, 1t i(D', S,-I, xo)=O. 

To see this consider the exact sequence 

7tn(D') .41tn(D', S·-I) ~ 7t._ 1(S·-I) ~ 7tn _l(D,-I). 

Since for all i;;?: 0 the ball Di is contractible, we have for n> 1 

7t.(D'} = 7t. -1 (D' -1) = 0, 

which forces 1m j = 0 and 1m i. = O. Since by the above theorem 1m j = Ker a, 
we deduce that also Kera=O, i.e. the homomorphism a:7t.(Dn,S·-I} 
--+7tn -1 (sn -1) is actually a monomorphism (i.e. one-to-one). Since, again 
invoking the above theorem, 1m a = Ker i. = 1tn _ 1 (S' - 1), the map a is onto, 
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and is therefore an isomorphism between 7t,(D', S' - 1) and 7t, -1 (S' -1). Since 
7t'_I(S'-I)~l' (see §13.3) it follows that 7t,(D', S'-l)~l' as required. We 
leave the proof of the (easy) second statement to the reader. 

A similar argument shows that, more generally, if M is contractible then 
since 7tiM)=O for all j~O, we have 7tn(M, A)~7tn-l(A) for n~ 1. (Verify!) 

§22. Covering Homotopies. The Homotopy Groups 
of Covering Spaces and Loop Spaces 

22.1. The Concept of a Fibre Space 

Let X and Y be topological spaces and f X --. Y a continuous map. (In some 
of the examples considered below X will be an infinite-dimensional function 
space of a certain kind, called a "path space".) For any smooth manifold (or 
more general topological space) K and mappings 

<P: K--. Y, 

we say that if> covers <P if j(iJ = <po 

if>: K--.X, 

22.1.1. Definition. Given a continuous map f X --. Y between topological 
spaces X and Y, we call the triple (X,f, Y) ajibre space (or Serrejibration) 
with respect to a topological space K, if for any homotopy <I> = {<pt}: K x 1--. Y 
(0 ~ t ~ 1) of any map <P: K --. Y covered by a prescribed map if>: K --. X, there 
exists a homotopy <l> = {cPt}: K x I --.X, of if> (i.e. if>o = if», which covers <I> (Le. 
I if>t = <Pt, 0 ~ t ~ 1), and which has the further property that it is "stationary" 
whenever <P, is; i.e. any k E K which is held constant by <P, for some segment b of 
[0,1] (in symbols <p,(k) = const. for t E <5), is also held constant by <Pt for t in that 
segment (i.e. <p,(k) = const. for all t E <5). Such a homotopy <l> is called a covering 
homotopy for <1>, and we say also that the map f has the covering homotopy 
property with respect to K. The space Y is called the base space, the space X the 
total space, and f the projection of the fibre space. For each point y E Y the 
complete inverse image Fy = f-l(y) is called the jibre above y. 

In those cases of a map with the covering homotopy property which 
actually arise in practice, there is usually given a precise prescription for 
obtaining the points of X covering the positions of a point moving in the base 
space Y; this prescription is required to depend continuously and multipli
catively (i.e. must respect multiplication of paths) on the path traced out by 
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the point moving in Y (under the influence of some homotopy), and on the 
initial position of the point. The conditions are more precisely as follows. 

(i) With each continuous path y(t): [0, 1] -+ Y in the base space Y, and initial 
point Xo E X satisfying f(xo)= Yo =y(O), there is associated a unique 
continuous path f(t, xo): [0, l]-+X, satisfying f(O, xo)=xo and 
fy(t, xo)=y(t). The path Y(t, xo) (obtained by "lifting" y(t)) is required to 
depend continuously on the path y(t) and the choice of the initial point 

Xo' 
(ii) The prescription should respect multiplication of paths; i.e. the product 

of two paths Yl' Y2 in the base space Y (with initial point Xo E X, say) 
should lift under the prescription to the product 'Mt, xo) 0 fl., Xl) 
(where O:5t, .:51), provided the initial point Xl given along with Y2 is 
Xl = 'rt(I, xo). (Note that we have now changed over to writing a product 
of paths in the order left-to-right.) 

(iii) The lift f of the constant path y( t) = Yo, 0:5 t:5 1, should be the constant 
path f(t) = xo, 0:5 t:5 1. 

Observe that (given a prescription satisfying these three conditions) for 
each path y(t) joining Yo to YI in Y, the totality of paths y(t, x) where X ranges 
over f-l(yo), affords us in the obvious way a map (denoted by y:f-l(yo) 
-+f-I(YI)) which "transports" the points of the fibre f-l(yO) to those of 
f-I(YI), and which has the properties that (~)=y 0 Y2, and the self-map 
yoy-l of the fibre F=f- 1(yo) is homotopic to the identity map IF' 

EXERCISE 

Prove that this "transport" map between fibres is a homotopy equivalence (so that if X 
and Yare path-connected spaces the fibres of the fibre space are all homotopically 
equivalent). 

22.1.2. Definition. A prescription satisfying the above three conditions is 
called a homotopy connexion for the fibre space. 

Examples (a) A covering map (see §18.1) defines a fibre space having all of its 
fibres discrete. The covering homotopy property and transport between 
points of fibres were discussed for this case in §§18.1 and 19.1 respectively. 

(b) Given a (connected) smooth manifold M (or more general topological 
space) and a point Xo of M, we denote by X = E(xo) the space of all paths yet), 
0:5 t :51, beginning at Xo and ending at any point of M (i.e. y(l) is to vary 
arbitrarily with y). (We leave it to the reader to furnish the precise definition of 
the natural topology on E(xo) in terms of that on M (see § 1 0.1 ).) Taking M = Y 
we obtain (as shall be proved below) a fibre space (X, f, Y) where f: E(xo)-+ M 
(i.e. X -+ Y) is defined by fey) = y(l). For each point Y of M the fibre f-l(y) 
above y is called the path space (between Xo and y), denoted by n(xo, y, M). 
(Recall that this notation for the set of paths from Xo to yin M was introduced 
in §17.1.) As promised we now prove the 
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fJ<:. r<:. " 
t=1 

'" t" Z 
Figure 82 

22.1.3. Lemma. The triple (E(xo), j, M) is a fibre space. 

PROOF. It suffices to construct a homotopy connexion for the map f Thus let 
y(t) be any path in M from Yo to YI' where we may suppose y is parametrized 
so that 1 ~ t ~ 2 (with y(l) = Yo and y(2) = YI)' Take as prescribed initial point 
of X = E(xo) covering Yo, any path YIC.), O~ r ~ 1, beginning at Xo (since it 
belongs to E(xo» and ending at Yo (since it belongs to f -1(yO))' Our 
prescription for obtaining the covering of the path y(t) by a path in the space 
X = E(xo) is as follows: for each t, 1 ~ t ~ 2, we take as the point in X covering 
the point y(t), the path (i.e. point of E(xo))Yt(t') E n(xo, y(t), M), 0 ~ t' ~ t, 
defined by the formulae 

Yt(t')=YI(t'), 

y,( t') = y( t'), 

O~t'~I, 

l~t'~t. 

(See Figure 82 where the path Yt(t') is indicated by the dotted line.) For each 
particular value of t (1 ~ t ~ 2), we can re-parametrize the path Yt(t') by the 
parameter t" = t'/t; then as t' varies from 0 to t, the parameter t" varies from 0 
to 1. 

Since this covering of the path y( t) in the base space Y = M by the path Yt in 
the space X = E(xo) clearly depends continuously on the initial point (i.e. on 
the path YI(r) above Yo) and on the path y(t) in the base space, and since the 
other two properties of a homotopy connexion are easily verified, the lemma 
follows. D 

22.2. The Homotopy Exact Sequence of a Fibre Space 

Let (X, j, Y) be a fibre space, let Yo E Y, and choose any point 10 in the fibre 
F = f-l(yO} above Yo' Then (see §21) the homotopy groups 7rj(X, 10), 
7rj(F,fo), 7rj(X, F,fo) can be arranged naturally in the exact sequence 
(corresponding to the pair X, F) 

(1) 

Since under the projection f: X -+ Y, the fibre F = f-I(yo) is of course sent to 
the single point Yo, we obtain a homomorphism 

f.: 7rj(X, F, fo)-+7rj( Y, Yo)· 
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Figure 83 

22.2.1. Theorem. The homomorphism j~ is an isomorphism: 1ti(X, F, 10) 
::::: 1t i ( Y, Yo). (Hence the exact sequence (1) above yields thefollowing "homotopy 
exact sequence of the fibration" (X, f, Y): 

... -+1ti(F) ~ ni(X).kLni(y) ~ ni-l(F)-+···, 

where ni(X, F) has been identified with ni( Y).) 

(2) 

PROOF. We first show that the kernel of f* is trivial (whence f* is one-to-one). 
Thus consider any element & E ni(X, F, 10) such that f*(&) is the identity 
element of ni(Y, Yo), and let IX: Di-+X (with aDi-+F, So f-+ 10) be a map 
representing the relative homotopy class &. If we write {3 = fIX, then since (3 
represents f*(&) which is the identity element of 11:i( Y, Yo), there must exist a 
homotopy {3,: Di-+ Y satisfying (3,( aDi) = Yo, {30 = {3, and fJ 1 (Di) = Yo. By defi
nition of a fibre space, we can cover the homotopy {3, with a homotopy 
IX,: Di-+X, satisfying 1X0 = IX, IX,(SO) =10· Since fJ,(oDi)=yo and (3l(Di)=yo, we 
must then have 1X,(oDi) c F (for all t) and 1X 1(D i ) c F, so that IX represents 
the identity element of the group 11:i(X, F), as required. 

To show that f* is onto we construct for each fJ: Di-+ Y with (3(ODi) = Yo, a 
map IX: Di-+X (with lX(oDi) c F, IX(So) = fo) such that fJ=fIX. Now since the disc 
is contractible, there exists a homotopy fJ,: Di -+ Y (0:$ t:$ 1) satisfying fJo = fJ, 
(3,(so) = Yo, and fJ 1 (Di) = Yo (see Figure 83). (Note that we certainly cannot 
have fJ,(aDi)= Yo throughout this homotopy unless (3 represents the identity 
element of 11:i(Y, Yo).) We now cover the map {3l: Di-+ Yo, by the map IXl: Di-+fo, 
and with this as starting point cover the whole homotopy fJ, (in reverse) by a 
homotopy IXt, 1;;:: t 2 0, at the conclusion of which we shall have a map 
1X0: Di-+X satisfying IX(So)=!o, andfIXo ={3o={3. (Here we are invoking the 
properties of a fibre space.) Since (3(ODi) = Yo, we must have 1X0(oDi) c F, 
whence we see that we have found an element of ni(X, F) (namely that 
represented by IXo) which is a preimage of fJ underk This completes the proof 
of the theorem. 0 

Remark. In view of this theorem we can define a convenient group structure 
on the set nl(X, F,fo) by means of the bijection!*: nl(X, F,fo)-+n 1(Y, Yo). 
Note also that in the final few terms of the exact sequence (2), namely 

... -+nl(F, 10) ~ 11: l(X, 10) I,oj 11: l (Y, Yo) ~ 1to(F), 
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(where X and Yare assumed connected), it can happen that the image of the 
homomorphismf* 0 j: 7rt(X,fo)-+7rt(l'; Yo), not necessarily being the kernel of 
any succeeding group homomorphism, fails to be a normal subgroup of 
7r 1 (Y, Yo), so that on the set of (right, say) cosets of that image group in 
7r 1 (Y, Yo), no natural group structure is defined. 

In the case where f X -+ Y is a covering map, the fibre F = f -1(yO) is 
discrete, so that for i:2!2 any (continuous) map Di-+X, with aDi-+F, so-+fo, 
must in fact send aDi tofo, whence 7ri(X, F, fo) = 7ri(X, 10). This and the above 
theorem together yield the 

22.2.2. Corollary. If f X -+ Y is a covering map, then the discreteness of the 
fibre F = f -1(yO) implies that 

7rj(X, F, 10) = 7ri(X, 10) for i:2!2, 
whence 

(The relationship between the fundamental groups 7r 1(X, 10) and 7r 1(Y, Yo) 
was examined in §19.2.) 

22.2.3. Corollary. For the fibre space (E(xo), f, M) where E(xo) is the space of 
paths in M beginning at Xo E M, and the fibre f -1 (y) above each y E M is the 
path space Q(xo, y, M), we have 7ri(E(xo)) =0, whence 

7ri(Q(XO' y, M))~7ri+ I(M). 

PROOF. The space E(xo) can be contracted over itself to a point (i.e. is 
contractible) by means ofthe homotopy CPr: E(xo) -+ E(xo)(1 :2! t :2! 0) defined by 

cply(r)) = y/r), 

where Yr is the segment of the path y(r) (0:::; r:::; 1) from 0 to t (with parameter 
r' = r/t, 0:::; r' :::; 1). At the conclusion of this homotopy we obtain the con
stant path yo(r) == y(O) = X o, whence CPo(E(xo)) is indeed a point (of E(xo)). 

Hence 7ri(E(xo), xo) = 0 for all i:2! 0, and the relevant segment of the 
homotopy exact sequence of the fibre space (E(xo), f, M) then looks like 

fiJi 
7ri(E(xo)) .::...; 7ri(M, y) -+ 7ri -1 (Q(xo, y, M)) 4 7ri -1 (E(xo))· 

II II o 0 

The exactness of this sequence implies that a is an isomorphism, since 
1m f* = Ker a = 0, and 1m a = Ker i* = 7ri _ 1 (Q(xo, y, M)). This completes the 
proof of the corollary. 0 

Examples. By applying Corollary 22.2.2 to the examples of covering maps 
considered in §18.2, we obtain the following isomorphisms of homotopy 
groups for i:2! 2: 

(a) 7r;(St, SO)~7ri(!Rt, xo)=O (Example (a) of §18.2). 
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(b) 1tj(lRp2, xo)~1tj(S2, so) (Example (c) of §18.2). In particular, therefore, 
1t2(lRp2, xo) ~ Z (see the conclusion of §21.1). 

(c) 1tj(T", xo) = 0 (Example (d) of §18.2). 
(d) 1tj(K2, xo)=O (Example (e) of §18.2). 
(e) 1tj(SI v st) = 0 (Example (g) of §18.2). Since in fact the universal 

covering space of a bouquet of any number of circles is a tree, we have more 
generally 1t;(SI v··· V st)=O (for i~2). If U=1R2 \{at , ... ,ad, the plane 
with k punctures, then since U is homotopically equivalent to a bouquet of k 
circles, we have (for i ~ 2) 1ti( U) = 0 also. 

(f) From Example (f) of §18.2 it follows that for i~2 

1tj(S2 v St)~1ti(··· V S2 V S2 v···), 

since the universal covering space (described in that example) is the real line 
with 2-spheres attached at the integer points. Since the space V = 1R3 \st (i.e. 
1R3 with an unknotted circle removed) is homotopically equivalent to S2 v Sl 
(see §17.5), its homotopy groups will be isomorphic to those of S2 v Sl. 

(g) For all 2-dimensional surfaces (both closed and non-closed) except IRP2 
and S2, the universal covering space is (to within a homeomorphism) 1R2. (The 
proof of this for the sphere-with-g-handles (g ~ 1) was adumbrated in §20; see 
also Exercise 1 of § 19.4.) Hence for all of these surfaces 1ti = 0 for all i ~ 2. 

22.3. The Dependence of the Homotopy Groups 
on the Base Point 

We shall now elucidate the manner in which the higher homotopy groups 
1tj(M, xo) (i~ 2) depend on the choice ofthe base point Xo E M. Let Xo and Xl 
be two points of M, and y(t), 1 S; tS;2, a path from X t to Xo (i.e Xo =y(2), 
Xl =y(l». Let Ii be any element of 1ti(M, xd, and let a: Di1-+M, SOf-+XI be 
any map of the unit disc Di1, representing Ii. We shall now define a 
corresponding map y*(a): D~ -+M, of the disc of radius 2 (see Figure 84). On the 
region 1 S; L (Xj)2 S; 4 between the discs (which region can clearly be identified 

Figure 84 

So=(l,O,···,O) 

S;=(2,O, ... Il) 
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with Si-l X [I, 2]) we define a map j: S'-1 x [I, 2]-+M, by setting j(y, t)=y(t) 
for all y E Si - I, 1 $; t $; 2. We then define y*(o:): D~ -+ M by setting 

y*(o:) = 0: on D~ c D~, 

y*(o:) = j on the region {I $; L (XJ)2 $; 4} = Si-l x [I, 2]. 

(Thus y*(o:) maps oD~ (see Figure 84) to xo.) We are now in a position to state 
the result we have been aiming at. 

22.3.1. Theorem. (i) The mapping 0: 1-+ y*(o:) Uust defined) depends only on the 
homotopy class of the path y joining Xo and Xl. and defines an isomorphism 

y*: 1tj(M, xd-+7t,(M, xo). 

Thus in particular for simply-connected spaces this isomorphism is 
independent of the path y. 

(ii) If the path y is closed, representing therefore an element of1t1(M, xo), then 
the correspondence 0: 1-+ y*(o:) defines an action of the group 7tl (M, xo) on 
the group 7t,(M, xo) (by means of automorphisms of the latter). Iff: X-+M 
is the universal covering map, determined by afreely acting, discrete group 
r of homeomorphisms of X (see §18.4), then the action ofr on X induces an 
action of r on the group 1tj(X)~7ti(M), which coincides (under the natural 
isomorphism r~7tl(M, xo)) with the action of 1tl(M, Xo) on 7ti(M, xo). 
(Note also that in view of (i) above and the simple-connectedness of X (so 
that 7t 1(X)= I), the group 7ti(X, x) is independent of the choice of the base 
point X in the sense that for any two points x' and x" the isomorphism 
7tj(X, X')-+7t,(X, x") of part (i) is independent of the path y joining x' and 
x".) 

(iii) There is a natural one-to-one correspondence between the set of free 
homotopy classes of maps S'-+M, and the set of orbits of the action of the 
group 7tl(M, xo) on 7tj(M, xo). (Thus in particular if7t1(M, xo)= I, there is 
a one-to-one correspondence between the free homotopy classes of maps 
Si-+M and the elements of7tj(M, xo).) 

PROOF. Part (i) and the first statement of (ii) are established by an argument 
similar to that used in proving Theorem 17.2.1, while the argument for (iii) is 
similar to that of Theorem 17.3.1. (These two theorems are the analogues (for 
the fundamental groups) of the corresponding parts of the present theorem; 
the proofs used for the case i = 1 here carryover to the cases i> 1.) We shall 
therefore give the proof only of what is essentially new in the theorem, namely 
that part of (ii) concerned with the universal covering map f X -+ M and the 
action of the discrete group r on the groups 7tj(X)~7tj(M, xo). 

The isomorphism between rand 1tl(M, xo) was established in Theorem 
19.2.2. The action of ron 7tj(X, x') is defined as follows: The action of each 
element g E r on X gives rise in the obvious way to an isomorphism 
g*: 1tj(X, x' )-+1tj(X, x"), where x" =g(X'); and then the desired action is 
obtained by mapping 7tj(X, x") back to 7tj(X, x') by means of the canonical 
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isomorphism y~: 7ti(X, Xfl)-+7ti(X, x'), which is independent of the path Yx 
joining Xfl and x' since X is simply-connected. (Here we are using (i) with 
y x' X, Xfl, x' in the roles of y, M, Xl' xo.) This action of r is then transferred to 
7ti(M, xo) via the isomorphism f~: 7t i(X, x')-+7ti(M, xo) (where f(x')=xo) of 
Corollary 22.2.2. Thus the action of g E r on 7ti(X, x') is given by the 
automorphism y~g*, and the action of g on 7ti(M, xo) by the automorphism 

f~ y!g*(f~)-1 = f~y!(f;)-lf;g*(f~)- 1, 

where f;: 7ti(X, xfl)-+7t;(M, x o) is the canonical isomorphism of Corollary 
22.2.2. Now t:g*(f~)-1 is just the identity automorphism of 7ti(M, xo) 
(essentially since the points of M can be identified with the orbits of X under 
the action of r), and f~ y!(/;) - 1 is easily seen to be just y*, where y is the 
closed path in M (beginning and ending at xo) obtained from Yx by 
projecting. Hence the action of g E ron 7ti(M, xo) coincides with the action of 
the element of 7tl(M, xo) represented by y. This completes the proof. 0 

Examples. (a) For the covering f: S2 ..... lRp2 we have r::::7t l(lRp2)::::Z2' 
where the generator of r is the map g: S2-+S2 defined by g(x)= -x, which 
reverses orientation. Hence the action of the element g on the group 
7t2(lRp2)::::7t2(S2)::::Z (see Example (b) of the preceding subsection) with 
generator 1 E Z is given by g*(1) = - 1. 

Note that for IRp3 ~ SO(3) (see Example (b) of §2.2), we have again 
r::::7tl ::::Z2' with generator g say (g2= 1), and 7t3(IRP3)::::7t3(S3)::::Z (see 
the conclusion of §21.1) with generator 1 E Z. However here the action of r 
on 7t3(lRp3) is trivial: g(l) = 1. (Verify this!) 

(b) For the universal covering X ..... S2 v sl, with the space X realized as 
the real line IR 1, - 00 < t < 00, with a copy S; of the 2-sphere attached at each 
integer point t = n, n = 0, ± 1, ± 2, ... (see Figure 58(b)), the group r:::: Z is 
generated by the transformation g defined by 

g: t 1-+ t + 1, 

n=O, ±1, ±2, .... 

It is intuitive that the group 7t2(X) is the direct sum of infinitely many copies 
of Z (indexed by the integers 0, ± 1, ±2, ... ), with generators an: S2 ..... S;, 
where each of the maps an has degree 1. By definition of the action of r on 7t2, 
we have 

n=O, ± 1, ±2, .... 

Since r::::7tl(S2 v SI) and 7t2(X)::::7t2(S2 v SI), we may write a typical 
element a of the group 7t2(S2 v SI) in the form 

i= - 00 

where the Ai are integers all but finitely many of which are zero. 
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Note finally that since the bouquet S2 v SI is homotopically equivalent to 
1R3 \SI, where the circle removed was unknotted in 1R3, the same conclusions 
hold for it. 

EXERCISE 

Let U c 1R3 be a solid torus with a single interior point removed. Calculate the groups 
7t 1(U), 7t2(U), and the action of 7t1 on 7t2' 

22.4. The Case of Lie Groups 

We now investigate the homotopy groups 11:i(M) in the case that the manifold 
M is a Lie group (see §§2.l, 2.3 for the definition and basic properties). 

22.4.1. Theorem. If M is a Lie group then 11: 1 (M) is abelian, and the action of 
11:1(M) on every group 11:i(M) is trivial. 

PROOF. Any two maps f, g: K --+ M (where K is any manifold) may be 
multiplied by using the group operation on M: fg(k) = f(k)g(k). 
If f(ko)=g(ko)= 1, then of course we also have fg(ko)= 1; furthermore the 
continuity of the multiplication in M implies that if f and g are homotopic to f' 
and g' respectively, then fg is homotopic to f'g'; hence the above multiplica
tion of maps defines a group structure on the set [K, M] of homotopy classes 
of maps (and also on the set of(relative) homotopy classes of maps sending ko 
to 1). 

If we take K = SI, so that now f, g: SI--+M represent elements of 11:1 (M, 1), 
then, as we shall now show, the product fg defined by fg(x) = f(x)g(x) 
represents the product in 11:1 of (the classes of) f and g, i.e. the product 
determined by the Lie multiplication coincides (to within a homotopy) with 
the product in the fundamental group 11:1 (M, 1). 

To see this observe first that by means of suitable homotopies we can 
deform the given maps f and g so that 

f(x)=1 for xeD-, 

g(x)=1 for xeD+, 

where D+ is the upper semicircle y;:::: 0 of the circle SI c 1R2 defined by 
x2 + y2 = 1, and D - the lower semicircle y:::; O. (We may also suppose that 
the distinguished point So of SI is the point (1,0).) This done, it is almost 
immediate that the product of these two paths f and g in the fundamental 
group 11:1 (M, l)(i.e. in the usual sense according to which one path is followed 
by the other), coincides with the Lie product of the maps f and g, namely 

{ 
g(x), 

fg(x) = f(x)g(x) = f(x), 



202 5. Homotopy Groups 

Figure 85 

Since for these particular representatives f and g we obviously have 
f(x)g(x)=g(x)f(x), the commutativity of 7t 1(M, 1) now follows. 

We now turn to the second claim, that the action of 7t1(M) on the 
7ti(M) (i > 1) is trivial. As a means to proving this we shall express this action 
in terms of the Lie multiplication on M. As before we write D~ for the disc of 
radius 2, defined by the inequality L~= 1 (X j )2 ~ 4, Dil for the disc of radius 1 
concentric with it, and denote by Si - 1 X 1 the region between the discs, 
defined by 1 ~ L (X j )2 ~ 4. The proof is now carried out in two steps, each of 
which involves the definition of a map D~-+M. 

(i) Each path y(t), 1 ~ t ~ 2, representing an element of n 1 (M, 1) determines 
a map y<p: Si-I x 1-+M: 

Si -I X 1 -'41 -4 M, 

where <p is defined by <p(s, t) = t. Since y<p(s, 1) is the identity element 1 of M, 
we can extend this map to a map I/Iy: D~-+M of the whole disc D~, by setting 
I/Iy(DD= 1; thus the map I/Iy: D~-+M maps D~ (including of course its 
boundary) to the point 1 E M, and so is clearly homotopic to the map 
D~-+1 EM via a homotopy throughout which aD il (in fact D~) continues to 
be sent to 1. (Note that the image under 1/1 y is a one-dimensional subspace of 
M; see Figure 85.) 

(ii) Next let tx: Di1 -+ M, tx( aD il ) = 1, be a representing map for any element of 
7ti(M, 1), and extend tx to a map Ii: D~-+M, by setting Ii(D~ \DD= 1 EM. 
Consider the (Lie) product map Ii 1/1 y(x) = li(x)I/Iy(x), x E D~. (Since 
Ii(D~\Dil)=1=I/Iy(DD, it follows that li(x)I/Iix)=I/Iy(x)li(x).) It is clear 
from the definitions of these two maps that this product li(x)I/Iix) is just 
the map y*tx: D~-+M (defined in the preceding subsection) since lil/l y restricts 
to tx on Dil and projects the annular region Si -I x 1 outside Dil onto the path 
y. Now as noted in (i), I/Iy is homotopic to the map D~ -+ 1 EM, via a homotopy 
1/1. say, where 1/10 = I/Iy, I/II(X) = 1, and I/I.(aD~)= 1, O~!~ 1. The (Lie) product 
1il/l.(x)=Ii(x)I/I.(x) therefore defines a homotopy between the maps 
y*tx and tx (throughout which aD~-+I). Hence the action of 7tl(M, 1) on 
7ti(M, 1) is trivial, as claimed. 0 

EXERCISES 

1. Prove that if M is a Lie group then as for i = 1 so also for i> 1 is the group 
operation in TCi(M) given by the Lie multiplication of maps fg(x) = f(x)g(x). 
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2. Extend Theorem 22.4.1 to the more general situation of "H-spaces". (An H-space is 
a topological space H on which there is defined a continuous multiplication (i.e. 
binary operation) "': H x H --+ H, with respect to which there is an identity element 
1 E H, i.e. an element satisfying ",(x, 1)= "'(1, x) = x for all x E H.) 

In connexion with the latter exercise we note that in fact the conclusions of 
Theorem 22.4.1 hold under the even weaker hypothesis that the multipli
cation in the space H has a "homotopic identity element", i.e. an element 1 
such that the maps H -H defined by x 1--+ ",(x, 1) and x 1--+ "'(1, x) are each 
homotopic to the identity map. The loop space H =O(xo, M) (see the 
beginning of §21.1) provides an example of such a generalized H-space (as the 
reader will readily be able to verify). In fact the loop space H = O(xo, M) is a 
"generalized H-group" in the sense that it has the following two properties: 

(i) under the operation "': H x H -+ H, ",(h, g) = hg (the path-product of hand 
g) there is corresponding to each element hE H a "homotopic inverse", 
i.e. a path h - I = cp( h) such that the map H -+ H defined by h 1--+ hh - 1, is 
homotopic to the constant map of H to the homotopic identity element 
of H, i.e. to the constant path H -+ Xo EM; 

(ii) the multiplication "': H x H ..... H is "homotopically associative", i.e. the 
maps H x H x H ..... H defined by 

(hi' h2' h3) 1-+ ",(",(hi, h2), h3)=(h 1 h2)h3 , 

(hi' h2' h3) 1--+ ",(hi' ",(h2, h3»=h l (h 2h3 ), 

are homotopic. It is clear that in the loop space O(xo, M) we may take as 
homotopic inverse to h=y(t) the path y-l(t). The homotopic associativ
ity of path-multiplication in the loop space is a consequence of the 
following fact. 

EXERCISE 

The space (it is also a group) of all self-homomorphisms of the interval [0, 1] which fix 
the end-points (i.e. of all monotonic continuous changes of parameter t E [0, 1]) is 
contractible. 

By Corollary 22.2.3 (with y=xo) we have 

7ti+ I (M, xo) ~ 7ti(O(XO' M), e), i~ 1, (3) 

where e denotes the constant path y(t)=:xo. The group 7to(O(xo, M» of 
connected components ofO(xo, M) (which as we saw at the very beginning of 
this chapter is the same as 7t I (M, xo», acts on 7ti(O, e), (where 0 = O(xo, M» 
via the map determined by 

IXl-+y-1IXY, 

where IX represents an element of 7ti(O, e), y an element of 7to(O) = 7tl (M, xo), 
and y -lIXY: Di ..... O is defined at each point x of Di to be the path product of the 
three paths y- 1, IX(X), y. (Cf. Figure 51.) 



204 S. Homotopy Groups 

EXERCISE 

Show that this action IX 1-+ y-11XY of 7to(O) on 7ti(O, e) coincides with the standard 
action (defined in Theorem 22.3.l(ii)) of 7t 1(M) on 7ti+l(M) (under the canonical 
isomorphism (3)). 

For Lie groups, or, more generally, H-spaces with a homotopic identity, 
the dependence of the homotopy groups on the choice of base point is of little 
importance, since, essentially, in view ofthe triviality of the action of 1t I on the 
1ti' transfer to a new base point is independent of the path from the old to the 
new one. (This is of course the case also-for simpler reasons-for any 
simply-connected topological space.) It follows that in such cases the set 
[Si, M] of free homotopy classes of maps is in one-to-one correspondence 
with (the underlying set of) 1ti(M), or in other words that the base point need 
not be specified, being in the above sense inessential. 

22.5. Whitehead Multiplication 

We shall now describe an interesting multiplication between the elements of 
the various homotopy groups of a space X, called "Whitehead 
multiplication". 

Consider the direct product M = Si X Si of spheres and the bouquet (or 
"co-ordinate cross") A = Si V Si =(Si x so) u (so x Si), where So E Si, So E Si 
are distinguished points of Si, Si respectively. (As distinguished point of 
M = Si X Si we shall take the point So = (so, so).) Consider further the natural 
map/ 

defined to be the direct product of the standard maps (of degree + 1) 
a: Di-+Si, oDi-+sO' and {3: Di-+Si, oDi-+s'Q. (Note that these maps represent 
generating elements of the groups 1ti(Si, so)~Z, and 1ti(S), so)~Z.) 
Since a(oDi)=so and (3(oDi)=so, the map / sends the boundary 
oDi+i=o(Di x Di)=[(oDi) x Di] U [Di x (oDj)] onto the co-ordinate cross 
A = Si V S} c M = Si X S i. Hence the map / represents an element of the 
relative homotopy group 1ti+ j(Si x Si, Si v S}, so). The image 0/ of / 
under the boundary map (see §21.2) 

O:1ti+i(SiXS},Si v S},SO)-+1ti+i_I(Si v Si,so), 

will be crucial in our definition of "Whitehead multiplication", which 
definition we are now in a position to embark on. Given a space X, and base 
point Xo E X, the Whitehead product of an element a of 1ti(X, xo) with an 
element b of 1t}(X, xo) is a certain element [a, b] of 1ti+ i-leX, xo), defined as 
follows. Let a: (Si, so)-+(X, xo) and b: (S), so)-+(X, xo) be maps representing 
their namesakes in the homotopy groups. The maps a, b combine to yield a 
map a v b: Si v Si-+X, sending soC =(50, so), the point at which the bouquet 
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S i+j-1 

Figure 86 

Si V sj is gathered) to the base point Xo of X (see Figure 86). The Whitehead 
product [a, b]: Si+ j -1_X, is now defined as (the representative of) the 
composite of a v b and the previously defined map of (as indicated in 
Figure 86): 

[a, b]: Si+ j-1 £4 Si V sj~X. 

This completes the definition of [a, bJ as an element of 1ti+ j-1(X, xo). 

If we define orientations on Di and Dj by means of (fields of) frames ri and 
r j respectively, then the orientation on Di x Dj = Di+ j determined by the 
frame (ri, rJ) differs by the sign (-l)iJ from that defined on Dj x Di by the 
frame (r j , r i ). From this can be inferred the following property of Whitehead 
multiplication: 

[a, b] = (-l)iJ[b, a]. (4) 

(Note that here we are using additive notation for the group operation in 
1ti + j-1 (X, xo).) 

We shall be chiefly concerned with Whitehead multiplication when i,j"~ 2. 
In such cases the groups 1th 1tj are abelian, and we shall therefore write them 
additively. (It can be shown that, in additive notation, the Whitehead product 
[a, bJ is bilinear in a and b.) To begin with however we examine the situation 
when i= l. 

In the case i = 1,j = 1, the product [a, bJ coincides with the ordinary group 
commutator [a, b] = aba- 1b -1 in the group 1t1 (X, xo). (Prove it!) 

When i = l,j~ 2, the product [a, bJ is expressible in terms of the action of 
1t 1 (X, xo) on 1tj (X, xo): 

[a, bJ =a*(b)-b, (5) 

where a E 1t1' bE 1tj. (Prove this also!) 
Proceeding to the case i,j~2, we form the direct sum of the (additively 

written) odd-indexed groups 1tk , k ~ 2, and the direct sum of the even-indexed 
ones: 

rO=1t3(X)+1t5(X)+1t7(X)+ ... + 1t2q+1(X)+", 

r 1 =1t2(X)+1t4(X)+1t6(X)+", + 1t 2q(X) + .... 
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The Whitehead product, extended in the obvious way to these groups (or 
rather to their direct sum) clearly satisfies 

and, in view of (4), also has the property 

[a, b] =( _1)(m+ l)(n+ 1)[b, a], 

where a E r m' bErn, m, n=O, 1. 

EXERCISE 

Show that any three elements a E r m' bE r n' C E r p' m, n, p = 0, 1, satisfy the 
"generalized Jacobi identity" 

(-1)(P+ l)(m+ 1)[[a, b], c] +( _l)(m+ l)(n+ 1)[[C, a], b] +( _1)(n+ 1)(p+ 1)[[b, c], a] =0. 

(In the current literature, the "Z2-graded" algebra r 0 EEl r 1 (with the operations of 
addition and Whitehead multiplication), and algebras with similar properties, have, 
since their appearance in quantum physics, come to be called "Lie hyperalgebras".) 

Computation of Whitehead products in specific cases can be difficult. In 
the case of the sphere s2n (n~ 1), the Whitehead square [a, a] ofa generator a 
of the group 7t2n(S2n)::::: Z, turns out to be an element of infinite order in, of 
course, 7t4n -1 (s2n); we shal1 compute this element explicitly for n = 1 in the 
next section. On the other hand for the odd-dimensional spheres s2n + 1, it 
fol1ows from (4) that a generator a of 7t2n + 1(S2n+l):::::Z has 
Whitehead square of order 0 or 2, since 

[a, a] =( _1)(2n+ 1)(2n+ 1) [a, a] = - [a, a], 

whence 2[a,a]=0 in the group 7t4n + 1(S2n+l). 

Proposition. Whitehead multiplication on H-spaces (and so, in particular, on Lie 
groups) is trivial: [a, b] = 0 for all a E 7ti, bE 7tj . 

PROOF. If i = j = 1 then the theorem fol1ows from the commutativity of 1t 1 (M) 
(where M is any H-space), since as noted above, the Whitehead product 
coincides with the ordinary group commutator. If i= 1, j~2, the theorem 
fol1ows from (5) in view of the triviality of the action of 1t 1(M) on 7tj (M) (see 
Theorem 22.4.1). 

Thus we may suppose i,j~2. Represent a and b by maps a: Di-+M, 

aD i-+ 1, and fJ: Dj-+ M, aDj-+ 1, and consider their "H-space" product 

afJ: Di x Dj-+M, 

defined by afJ(x, y)=a(x)fJ(y). A direct verification shows that the restriction 
of afJ to the boundary O(Di x Di) = Si + i-I is just the map [a, fJ]: Si+ j-l-+ M 

used above to define the Whitehead product. Since afJ is homotopic to the 
map Di+j-+l, it follows that the map [IX, fJ] is homotopic to the map 
Si+ j -l-+1, i.e. [a. b]=O in 7ti+j-l(M). 0 
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In our investigation (in §14.4) of non-degenerate singular points of vector 
fields and the invariants associated with them, a substantial part was played 
by the degrees of maps S"-+S", or, what amounts to the same thing (in view of 
Theorem 13.3.l), the fundamental groups 1t"(S"), which, as noted earlier (in 
§21.1), are all isomorphic to 71.. (It was also noted in §21.1 that for i < n, 1t;(S") 
is trivial.) Our aim in the present section is to identify some of the groups 
1t"+k(S") for k"2! 1. These groups arise in connexion with the problem of 
classifying up to homotopies the non-singular (i.e. non-vanishing) vector 
fields n(x) in Euclidean space IR", satisfying the condition n(x)-+no as Ixl--+ 00 

(see §§25.5, 32 below). If we impose the further requirement that I n I = 1, then 
such a vector field determines (and is determined by) a map (the Gauss 
map-see §14.2) 

where ool-+no E S" -1. Since IR" u {oo} ~ S", the classification problem natur
ally reduces to that of computing 1t"+l(S"), More generally if n(x) is any 
vector-function satisfying the same condition at infinity but where now 
n(x) = (e 1(x), ... , em(x» with m permitted to be different from n, then assuming 
Inl = 1, we again obtain a map s"-+sm-1, so that the homotopy classification 
problem for such vector-functions comes down to that of computing 
1t"(sm-1). 

Thus so far (in this book) our knowledge of the homotopy groups of 
spheres stands as follows: 1tj(S1)=0, i> 1 (Example (a) of §22.2); 1t"(S")~71.; 
1tj(S") = 0, i < n. We shall now sketch a geometric method of identifying the 
homotopy groups of spheres in cases other than these, by considering the 
complete inverse images of regular points of the maps of interest. 

Let f S"+k-+S"(k"2! 1) be any map, which by Theorem 12.1.3 we may 
assume to be smooth, and let So E S" be any regular value of f Choose a 
system of local co-ordinates lP1' .•. , lP" for a neighbourhood of So E S", such 
that So is the origin with respect to these co-ordinates and the gradients 
grad lPb i = 1, ... , n (with respect to whatever co-ordinates are initially given 
on some chart containing so) are linearly independent at So. The regularity of 
1 with respect to the point So implies (via the Implicit Function Theorem and 
the fact that S"+k is closed) that the complete preimage 1-1(so) is a smooth 
k-dimensional closed manifold: 
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J- 1(So)= W k C snH. 

To be more explicit, the manifold W k is given equationally by 

IPl =0, ... , IPn=O, 

where the functions IPi are defined on a certain neighbourhood of W k (namely 
the complete preimage of the neighbourhood of So co-ordinatized by the q>i) 
by IPi(X) = J*epi(X) = q>J(x), and, in view of the regularity of J with respect to 
So, have the property that at every point of J - 1 (So) = Wk, their gradients 
grad IPi are linearly independent. It is then intuitively clear that with respect 
to a suitably chosen Euclidean metric on sn H \ { 00 } ~ IRn H (where the point 
00 is taken outside Wk), these gradients will be orthogonal to Wk. We have 
thus associated with our given map J the pair (Wk, Tn) 
where Wk (= J-l(SO)} is a closed submanifold of snH, and 
t n (=(grad IPl, ... , grad IPn), where IPi = J*epi= epJ(x) with epi as above) is a 
field of frames defined on W k c S"H\ {oo} ~ IR"H, and normal to W k with 
respect to some Euclidean metric on IR"H. 

23.1.1. Definition. A pair (W\ to) consisting of a closed k-dimensional 
manifold W k C IRnH, on which there is defined a non-degenerate field t" of 
normal n-frames, is called a Jramed normal bundle (without boundary), or 
manifold equipped with a field oj normal Jrames. 

Note that the field t" in combination with the standard orientation of 
IR"H, determines an orientation of W k (namely that corresponding to a field 
t k of tangent frames such that (t\ Tn) defines the standard orientation of 
IR"H). 

Consider next a smooth homotopy F: S"H x I-+S", regular with respect to 
the point So E sn, between two maps fo,ft: S"H-+S". The complete preimage 
Vk + 1 = F- 1(so) of So in S"H x 1, is, analogously to the above, given equation
ally in snH X / by 

$1 =0, ... , $"=0, 

where $j= F*epj = epjo F, and, by virtue of the regularity of F with respect to 
So, the gradients grad $j are linearly independent at every point of Vk+ 1. 
Thus corresponding to the given homotopy F, we have constructed the pair 
( V k + 1 C S" H X /, Tn), where the field offrames r" = (grad $1' ... , grad $") is 
normal to Vk + 1 (relative to some Euclidean metric on IRnH x 1). The 
intersections W~=Vk+1n(S"HxO) and W~=Vk+1n(S"Hxl), of Vk+1 
with the respective boundary components of S"H x /, are manifolds equipped 
with (induced) fields of normal frames, namely those obtained by restricting 
to; in fact these are just the framed normal bundles obtained, as above, from 
the maps fo,k S"H-+S". The regularity of F (with respect to So E SO), in 
particular on the boundary of S"H x /, implies that at no point of W~ or W~ 
is the tangent space to Vk + 1 contained in the tangent space to the boundary 
of S" H x 1 (Le.to whichever of the components S" H x 0 or S" H x 1 the point 
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happens to lie in); or, in other words, Vk+ 1 is not tangential to the boundary 
of snH X I (at t=O, 1). It follows, again by choosing Euclidean co-ordinates 
suitably in IRnH, that we may suppose that Vk+ 1 "approaches the boundary 
of snH X I at right angles", meaning that at each point of W~ and W~ there is 
a tangent vector to Vk+ 1 which is normal to the boundary of sn H X I at that 
point. (We met with a similar, though simpler, situation in §13.1; there we had 
k = 0, so that the manifolds W~, W~ were finite sets of points, the orientation
determining field of frames Tn at those points reduced to an assignment of 
signs ± 1, and this orientation was continued from those points onto the one
dimensional manifold Vk+ 1.) 

23.1.2. Definition. A pair (Vk + 1 C sn H xl, T") consisting of a manifold-with
boundary Vk+ 1 embedded in such a way that (with respect to the Euclidean 
metric on snH\ {oo} ~ IRnH) it "approaches the boundary of snH X I at right 
angles" (see above), together with a normal, non-degenerate field Tn of n
frames on Vk + 1, is called a framed normal bundle with boundary. 

This definition allows us to introduce a natural "equivalence" between 
framed normal bundles. 

23.1.3. Definition. Two framed normal bundles (wt T1), (W~, Ti) (where 
W~ c IRn H, j = 1, 2) are said to be equivalent if there exists a framed 
normal bundle (Vk + 1, Tn), Vk + 1 C sn + k X I, whose respective boundary 
components (equipped with the restrictions of the field of frames T") are 
precisely the given framed normal bundles: 

w~ = vk + 111=0' 

W~ = Vk+ 1 11=1, Ti =Tnl l = 1. 

Alternatively we may define (W~, T1) and (W~, Ti) to be equivalent if the 
framed normal bundle (W\ Tn) where W k = W~ u W~ (W~ and W~ being 
assumed disjoint), and Tn coincides with T1 on W~, and on W~ is obtained 
from Ti by replacing the first vector of Ti by its negative, is equivalent (in the 
sense of the definition) to the empty framed normal bundle (so that in 
particular the Vk + 1 ofthe above definition avoids snH X 1 and meets S"H x 0 
in W~ u W~). 

The relevance of these definitions to the problem of finding the homotopy 
groups of spheres is made evident by the following theorem. 

23.1.4. Theorem. There is a natural one-to-one correspondence between the 
equivalence classes of (closed) framed normal bundles (Wk, Tn), Wk C IRnH, and 
the elements of the group 7tnH(S"). 

PROOF. Any map f S"H-+S", regular with respect to the point So of So, gives 
rise, in the manner described above, to a closed framed normal bundle 
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(Wk, tn), and any homotopy F: snH X I--+sn between two such maps deter
mines an equivalence between their corresponding framed normal bundles. 

As the first step in establishing the converse we show that any (closed) 
framed normal bundle (Wk, tn), Wk C IRnH, determines, in an appropriate 
fashion, a map snH--+sn. With this aim in mind, we observe first that in view 
of the presence on W k of the normal field of frames tn, for sufficiently small 
I: > 0 the I:-neighbourhood W. of the manifold W k C IRn H is diffeomorphic to 
Wk x D:, where D: denotes the n-dimensional disc of radius I: and (variable) 
centre x E wk, contained in the n-dimensional plane orthogonal to Wk at x, 
determined by tn. We now "extend" the projection W. ~ Wk X D:--+ D: to a 
map f snH--+sn by identifying the boundary of D: with a point (thus turning 
it into an sn), and mapping the whole of the complement of W. ~ Wk x D: in 
snH to that point. It is then not difficult to see that the framed normal bundle 
constructed from the map f in the prescribed manner is essentially just the 
initially given one (Wk, tn). 

We leave to the reader the (analogous) construction of an appropriate map 
F: sn H X 1--+ sn from a given framed normal bundle-with-boundary 
(vk+ 1, tn), vk+ 1 C sn H X I. This concludes the proof of the theorem. 0 

Note that in §13.3, in the course of showing (in effect) that 7tn(sn) ~ 7L (see 
Theorem 13.3.1) we made tacit use offramed normal bundles in the particular 
case k=O. 

Remark. The addition of any two elements of the homotopy group 7tnH(sn) 
can be interpreted in a natural way as taking the union of two non
intersecting (in fact bounded away from each other) framed normal bundles 
in IRnH. (This follows from the respective definitions; verify it!) 

In the next result we establish a general property of equivalence classes of 
closed framed normal bundles. 

23.1.5. Theorem. For each pair n, k ~ 1, every equivalence class of closed 
framed normal bundles (Wk, t n), contains a connected framed normal bundle. 
(This is false for k = 0.) 

PROOF. In view of the assumed compactness, it suffices to show that a (non
connected) closed framed normal bundle (Wk, tn) of the form 
(WL t~) u (W~, til where W~ n W~ is empty, and WL W~ are connected 
(and where, as usual, W k C IRnH c snH), is equivalent to a connected one. 
To this end consider a smooth non-self-intersecting path yet), 0 ~ t ~ 1 (i.e. a 1-
dimensional submanifold-with-boundary) from some point Xo of W~ to some 
point Xl of W~; we shall require of this path that it both leave W~ and 
approach W~ at right angles, in fact in the directions of the first vectors 
mu , m12 of the respective frames tj =(m lj, ... , mnj), j = 1, 2. For each t, 
0::;; t ~ 1, let IRk(t) be a k-dimensional plane (varying continuously with t) 
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Figure 87 

orthogonal to the path y at the point y(t), and at t =0,1 coinciding with 
the tangent planes to W~(t=O) and W~(t= 1) (see Figure 87). Writing 
t n =(ml' ... , mil) (=tj=(mlJ' ... , mil}) on W" j = 1, 2), we extend the field of 
frames t n - 1 =(m2' ... , mn) from the end-points y(O), y(l) along the path y in 
such a way that at each point y(t) it is normal to the plane Rk(t). We next let 
U! + I denote the "k-dimensional thickening" of the path y in the directions 
determined at each of its points y(t) by the plane Rk(t); i.e. U:+ 1 is the union 
of the k-dimensional e-neighbourhoods in Rk(t) of the points y(r), O~t ~ 1 (see 
Figure 87). (Since Rt(O) and Rk(l) are the tangent planes at the points y(O), y(l) 
of W~, W~ respectively, it follows that at these points the thickening of y 
occurs in those tangent planes.) As indicated in Figure 87, we also thicken the 
manifolds W~ and W~ in the direction of the first vector ml (which is mil on 
W~ and m12 on W~) of the field t n( =ti on W~ and ti on W~), obtaining 
manifolds V~+I and V~+l, say. The union 

Vk+l = V~+l U U~+l U V~+1 

is then a (k + I)-dimensional manifold, with boundary 

OVk+1 = W~ u W~ u W~, 

where since W~ and W~ are connected, the component W~ is also connected. 
By means of small adjustments of the above thickenings (i.e. by means of a 
modest homotopy) we can arrange that the manifold Vk+ I is smooth, i.e. 
without sharp corners (or, equivalently, that its boundary component W~ is 
smooth (assuming W~, W~ smooth to begin with». 

The field of frames tn-I =(m2, .. . , mn), normal to Wk and to the path y, 
obviously extends to a field of frames normal to the whole of Vk+ I, spanning 
at each point of Vk+ I the orthogonal complement in Rn +II: of the tangent 
space to Vk+ I at that point. Our situation is thus at present as follows: We 
have a manifold-with-boundary Vk+1 c R"+II:, and defined on it a field of 
frames t"- I normal to Vk + I in Rn + k; on the boundary of Vk + I we have a field 
of frames t"=(ml' tn-I), where ml is an internal normal to the boundary 
OVk+I, tangent to Vk + 1 • Thus the boundary OVk+l together with the field of 
frames til constitutes a framed normal bundle (OVk+l, til) in Rn+ll:. We now 
split off part of the proof as a lemma concerning this particular framed 
normal bundle. 
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23.1.6. Lemma. The framed normal bundle (avk+ 1, rn) constructed above is 
equivalent to the empty bundle. 

PROOF. Let t(x) be a (numerical) function on Vk+l such that t(x)=O on the 
boundary avk+ 1, 1 > t(x) > 0 in the interior of Vk+ 1, and the graph (x, t(x)) is 
a smooth submanifold j!k+ 1 C Vk+ 1 X I c sn+k X I, approaching the bound
ary aj!k+l =avk+l x o=avk+l normally (see Figure 88). We now define on 
j!k+ 1 a field offrames in normal to j!k+ 1 in IRn+k x I. With this aim in view, we 
first lift the field of frames rn -1 = (m2' ... , mn) from Vk + 1 to j!k+ 1 "trivially", 
i.e. we parallel transport the vectors m2' ... , mn from each point x E vk+ 1 

C IRn+k x 0 to the corresponding point x=(x, t(x)) E j!k+ 1 C IRn+k x I, verti
cally above it. This furnishes us with a field of frames i n - 1 =(m2' ... , mn) on 
j!k+ 1, and it only remains to define a first vector field m 1 on j!k + 1. Now the 
manifolds Vk+ 1 = vk+ 1 X 0 and j!k+ 1 together bound a region U c vk+ 1 xl, 
so we take the field ml to be the unit vector field normal to j!k+ 1 in Vk+ 1 X I, 
directed into the interior of U, and furthermore such that at t=O, i.e. at the 
points of aj!k+ 1 = avk+ 1 x 0= avk+ 1 this field coincides with the unit field m1 

normal to a vk+ 1 and internal to vk+ 1 (i.e. with the (normalized) first vector 
of the field of frames rn on avk+ I-see Figure 88). The resulting framed 
normal bundle-with-boundary (j!k+ 1, in) then has as its boundary (equipped 
with the restriction of in) the framed bundle (a vk + 1, rn). Since j!k + 1 C IRn + k X I 
avoids the opposite boundary IRn+ 1 X 1 of IRn+k x I, it follows that 
(avk + 1, rn) is equivalent to the empty bundle, as required. 0 

The theorem is almost immediate from this lemma, since the equivalence 
with zero of the framed normal bundle avk+ 1 =(W~ U W~) u W~ (framed 
as above), amounts to the equivalence of the framed normal bundles 
(Wk = W~ u W~, rn) and W~ (framed appropriately), and then the connected
ness of W~ finally yields the desired conclusion. 0 

23.2. The Suspension Map 

In what follows we shall need the following facts about the homotopy groups 
of the special orthogonal groups: 

(i) 1t1(SO(2»~Z, since SO(2)~SI; 



§23. Facts Concerning the Homotopy Groups of Spheres 213 

(ii) 7t 1 (SO(3» ~ il2, since SO(3) ~ IRp3 (see §2.2); 
(iii) 7tl(SO(n»~il2 for n~3 (see §24.4 in Chapter 6); 
(iv) The homomorphism lt j(SO(n})-+7tj(SO(n + I}} induced by the obvious 

embedding SO(n) -+ SO(n + 1) is for i < n - 1 an isomorphism, 
while for i = n - 1, it is merely an epimorphism (i.e. homomorphism 
onto) which for even n has infinite cyclic kernel. (This is easily 
seen in the case n = 2; the general case will be established in 
Chapter 6, §24.3. In fact it will be shown there that, more generally, 
for any smooth manifold (or complex) M of dimension i, the 
map [M, SO(n)]-+[M, SO(n+ I)J induced by the natural embedding 
SO(n)-+SO(n+l), is bijective if i<n-l, and remains surjective in 
the case i = n - 1.) 

By Theorem 12.1.6 any embedding of a smooth closed k-dimensional 
manifold Minto 1R 2k+q where q~2, is "unknotted", by which we mean that 
any two smooth embeddings j, g: M -+ 1R2k+ q (q ~ 2) are isotopic. Such an 
isotopy fr: M -+1R2k+q (where 0::;; t::;; 1, fo = f, it =g, and by definition of 
isotopy each fr is an embedding) can of course be regarded as a smooth 
embedding F: M x 1-+1R2k +q x I, defined by F(x, t)=(fr(x), t}. If, as is natural, 
we take paths in 1R2k +q x I of the form x x I, x E 1R2k+ q, to be perpendicular to 
the cross-section 1R2k +q X t for every t (i.e. if we take the sides of the cylinder 
1R 2k +q x I to be perpendicular to these cross-sections) then we can clearly 
extend any field of frames rk + q normal to M x 0 = M (regarded as a 
suhmanifold of 1R 2 k+ q ) to a field of frames rk+q normal to M x I in 1R2k+q x I. 
Hence in considering framed normal bundles (M, rk+ q), Me 1R2k +q (q~2), 
the particular manner in which M is embedded will in the present context be 
immaterial since any such framed normal bundle is equivalent to one with M 
embedded in an arbitrarily prescribed manner. 

Thus the question of classifying (up to equivalence) the framed normal 
bundles (M, rn), M c IRn+k, reduces, at least for large enough n, to that of 
classifying for any fixed embedding M c IRn+k, the possible fields of normal 
frames rn on Min IRn+k. Now given any particular field of normal frames rn, 
any other defining the same orientation on M can be obtained from rn (to 
within an equivalence) by means of a rotation at each point. Thus with each 
map M -+SO(n) there is associated in this wayan equivalence class of 
"equipages" of fields of normal frames for M c IRn +k; this correspondence is 
not however one-to-one, since homotopic maps M -+SO(n) will clearly yield 
equivalent framed normal bundles over M c IRn+k. 

The upshot of the preceding discussion, together with fact (iv) (or rather 
the more general parenthetical statement following it) is, therefore, that 
provided n ~ k + 2 neither the embedding M c IRk + n, nor the homotopy 
classes of maps M -+SO(n) (to which correspond classes of normal frames on 
Me IRn+k), depends on n. In order to make this somewhat vague statement 
precise we now introduce the suspension homomorphism E: 7tn+k(sn) 
-+7tn+k+l(sn+l). Let (M, rn) be a k-dimensional framed normal bundle in 



214 5. Homotopy Groups 

/R" H, and consider the embedding M c /R" H C /R" H + 1. We adjoin to the 
given frame t" an additional vector mo normal to /R" H in /R" H + 1, and then 
define the suspension map E by E(M, to) = (M,(mo, to)). In view of the natural 
one-to-one correspondence guaranteed by Theorem 23.1.4, this does indeed 
define a map E: n"H(S")-+nnH+ 1 (S"+ 1); that this map is a homomorphism is 
a consequence of the remark following the proof of that theorem. (The 
suspension map for framed normal bundles-with-boundary is defined analog
ously.) From the statement preceding this definition it now plausibly follows 
that for n;;:: k + 2 the suspension homomorphism is actually an isomorphism: 

n;;::k+2. 

These are the so-called "stable" homotopy groups of spheres. 
In the case n = k + 1 we have: 

(i) Any closed k-dimensional manifold can be embedded in /R2k+ 1 
(Whitney's theorem (11.1.1)); 

(ii) given any particular embedding M c /R2k+ 1 there is a natural surjection 
from the set of homotopy classes of maps M -+SO(k + l)(or, equivalently, 
the set of equivalence classes of normal frames on M c /R 2k + 1) onto the 
set of homotopy classes of maps M-+SO(k+l+q), q>1 (or, equiva
lently, the set of classes of normal frames on M c /R 2k + 1 +q). (This follows 
from the more general parenthetical statement following (iv) above.) 

These facts imply that in this case the suspension homomorphism 

E: n2k+1(Sk+1)-+n2k+2(Sk+2) 

is in fact an epimorphism. 
We conclude this subsection by redefining the suspension map E more 

directly as follows. Let S" H be the equator of sn H + 1, and S" the equator of 
sn+ 1. Then given any map f: snH-+sn, we define Ef: S"+k+l-+s"+ 1 to be the 
most natural extension map of f; i.e. for each point x of S" H we simply map 
the points of the "line of longitude" on S" H + 1 passing through x to the 
corresponding points of the line of longitude on S"+ 1 passing through f(x); 
thus in particular the north pole of S" + k + 1 goes under Ef to the north pole of 
S" + 1, and the south pole to the south pole. 

23.3. Calculation of the Groups 'Ttn + 1 (8 n) 

We are now in a position to calculate the groups n" + 1 (S") using Theorems 
23.1.4 and 23.1.5. By those theorems each Q( E nn+ 1 (S") can be represented by 
a one-dimensional, connected, closed framed normal bundle in /Rn + 1, i.e. by a 
circle Sl C /Rn+ 1 equipped with a field of normal frames tn. 

(i) The case n > 2. In this case all embeddings S 1 C /Rn + 1 are isotopic, so 
that we may assume Sl is the unit circle (x 1)2 + (X 2)2 = 1 in the plane 
/R 2 defined by X 3 =X4 = ... =X"+l=O. This circle Sl c /R2 C /Rn+1 can in 
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particular be equipped "trivially" with the field of normal frames 
rZ = (m, e3, e4, ... , e. + d where m is the external unit normal vector to Sl in 
1R2, and the e j are the standard basis vectors in IR' + 1. From the resulting 
framed normal bundle (S1, rZ), which clearly corresponds to the zero element 
of the group 1t. + 1 (S"), every framed normal bundle over Sl can, up to 
equivalence, be obtained by means of a rotation rZ~A(x)rZ ofthe frame rZ at 
each point x E Sl, so that here for each x, A(x) denotes an element of SO(n) 
(and the map x H A(x) may be assumed smooth). Since the map A: Sl ~ SO(n) 
represents an element [AJ of 1t l (SO(n)), this yields (see the preceding 
subsection and the exercise below) a one-to-one correspondence between the 
equivalence classes of framed normal bundles over Sl and the elements of 
1tl (SO(n)). Since by (iii) of the preceding subsection 1tl (SO(n)) ~ Z2 for n > 2, it 
follows that there are precisely two framed normal bundles over SI, whence 
(by Theorem 23.1.4) 1t"+I(S")~Z2 for n>2. 

EXERCISE 

Verify that the above-described correspondence is indeed one-to-one; i.e. that the pair 
(Sl, T~) where T~ is a field of normal frames afforded by the non-trivial element of 
7r 1(SO(n», is not equivalent to the trivial framed normal bundle over the circle. 

(ii) The case n = 2. Here the manner in which SI is embedded in 1R3 might 
be expected on the face of it (since knots exist in 1R 3 ) to have some influence 
on our problem. However as it turns out, it does not: It can be shown (we 
omit the proof) that every framed normal bundle over SI c 1R3 is equivalent 
to some framed normal bundle over an unknotted circle SI c 1R3. Thus in this 
case also we may take our circle in 1R3 to the unit circle (X l )2 + (X 2)2 = 1 in 
1R2 c 1R3. Then, as in case (i), up to equivalence every field of normal frames r2 
on SI c 1R2 C 1R3 is obtained from the trivial one r6 by means of a rotation 
A(x) of r6 at each point x E Sl, so that once again we can associate with each 
homotopy class of maps 

A: SI-+S0(2)~SI 

an equivalence class of framed normal bundles over SI c 1R2 C 1R3 in a well
defined manner which moreover ensures that every equivalence class of 
bundles is associated with some class of maps. Since 1tl (SO(2)) ~ Z, we index 
in the natural way particular fields of normal frames on Sl c 1R2 C 1R3 arising 
as above from the elements of 1tl (SO(2)), denoting them by rfm), m E Z. It can 
be shown (cf. the exercise above) that the framed normal bundles (Sl, rfm)), 
Sl c 1R2 C 1R3, are pairwise inequivalent, whence certainly 1t3(S2) is infinite. It 
is not difficult to show further (using the remark following the proof of 
Theorem 23.1.4) that the union of (SI, rfm)) and (S1, rfq)) is equivalent to 
(S1, rfm+q)), so that in fact 1t3(S2)~Z. (This will be given an alternative proof 
in Chapter 6.) 

We conclude this subsection by introducing an important invariant of a 
smooth map f: S3~S2. If Yo, Yl E S2 are regular values of f, and we write 
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Mo=f-l(yO)' MI=f-I(YI)' then the Hopf invariant H(f) of the map 
f is defined to be the linking coefficient of the preimages of Yo and YI, i.e. 
H(f)={Mo, M d (see §15.4 for the definition). We leave it as an exercise 
for the reader to show that H(Sl, t;;"j)=m. 

EXERCISES 

1. Show that H(f) is a homotopy invariant. Find H(f) for a Serre fibration f: 83 ..... 82• 

Prove that H([a, a]) is always even (see §22.5). 

2. Find the appropriate generalization of the Hopf invariant to the elements of 
7t4n_I(82n), and construct elements of these groups for which it is non-trivial. 

3. Let W be a volume 2-form on the 2-sphere 82 satisfying Is> W = 1, and let f 8 3 ..... 82 

be any smooth map. Verify that the form f*(w) on the 3-sphere 83 is "exact", i.e. 
there exists a I-form WI such that f*(w)=dwi' Show that the number 
Is. f*(w) A WI is an integer which is in fact equal to the Hopf invariant H(f). 

We shall restrict our attention to the "stable" case n > 3. (For n:=:; 3 it turns out 
that both 1t4 (S2) and 1ts(S3) are isomorphic to Z2; we shall prove this for 
1t4(S2) only, in Chapter 6.) 

By Theorem 24.1.5 every element of 1t.+2(S") is represented by a connec
ted, 2-dimensional, closed framed normal bundle (M, to), M c IR" + 2. Since by 
our assumption n+2~6, the embedding Me 1R"+2 is "unknotted". Now it is 
a well-known theorem (which we have hinted at earlier) that every orientable 
closed surface is homeomorphic to a sphere-with-g-handles for some g ~ 0 
(see § 17 of Part III). Since for our purposes the manner in which M is embedded 
in IR" + 2 is immaterial, we may therefore suppose that M c 1R3 C IR" + 2, where 
x4 = ... =X"+2=O on 1R3. Proceeding somewhat as earlier we first equip M 
"trivially" with the field offrames TO =(ml' e4"'" e"+2) where ml is the unit 
internal normal to M in 1R3 and the ej are the standard basis vectors in 1R"+2. 
It follows as in the proof of Lemma 22.1.6 that the pair (M, To) represents the 
zero element of 1t"+ 2(S"), since the field To-I = (e4, ... , e"+ 2) is defined also on 
the region V of 1R3 bounded by the surface M. Hence, as before, any field of 
normal frames T" on Me 1R3 c 1R"+2 (determining the same orientation of 
M) is, up to equivalence, obtained by rotating To at each point of M: 

t"=A(x)to· 

In this way each element of [M, SO(n)] is made to correspond to an 
equivalence class of framed normal bundles over M, or, in view of Theorem 
22.1.4, to an element of 1t"+2(S") (and the correspondence is "onto"). 

Now let IX be an element of1tl(M) representable by a smoothly embedded 
(i.e. non-self-intersecting) directed circle SI c M, and denote by nl a normal 
vector field on SI in M such that the frame (t, nl)' where t is the tangent 
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vector to SI in M, determines the same orientation as that initially prescribed 
on M. In terms of such representatives for (appropriate) elements of 7r1(M) we 
now define the Arf function $ (on the set of such elements IX of 7r 1(M) 
and taking its values in Z2) corresponding to a given framed normal bundle 
(M,r") in 1R"+2, as follows: For each IXE7r1(M) representable by 
Sl eM c 1R"+2 as above, restrict the field of frames r" to this Sl. The framed 
normal bundle (Sl,r"+l) in IRn+2, where rn+1=(n1,rn) with n1 as above, 
corresponds (by Theorem 23.1.4) to a unique element of 7r"+2(S"+ 1); we then take 
$(IX) to be the image of that element under the isomorphism 7r"+2(S"+ 1) ~ Z2' 

EXERCISES 

1. For IX, 13 E 7r1 (M2) such that IX, 13 and IXp are all representable by embedded circles 
Sl c M2, we have 

\ll(lXp)=\ll(IX)+\ll(p)+IXOP (mod 2), 

where IX 0 13 is the intersection index (see §15.1) of the circles representing (as 
described above) IX and p. 

2. Let IXI"'" IXg , 131>"" Pg be 2g embedded circles on the sphere-with-g-handles M;, 
representing generators of the group 7r I (M;), and satisfying the (defining) relation 
IX I p I IX,lp,I ... IXgpglX; 113;1 = 1. (We note that it follows that the various intersec
tion indices are then given by IX; 0 pj=o;j, (1,; 0 IXj = 13; 0 Pj=O.) Prove that the sum 

is independent of the choice of such circles IX;. 13; on M;. Prove then that the 
condition <IJ(M;, r) =0 is both necessary and sufficient for there to exist such circles 
1X 1,·.·, IXg, PI"'" Pg for which also <IJ(lXd=<IJ(1X2)= ... =<IJ(lXg)=O. 

If IX is a non-trivial element of 7r 1 (M) for which $(IX) = 0, then by performing 
suitable "surgery" on M = Mi, we can change it to a surface with a smaller 
number of handles; i.e. we can find an equivalent framed normal bundle over 
a surface of smaller genus. This process involves in essence sewing in a 
thickened disc (of thickness 2&) across one of the g "holes" of M (namely that 
determined by IX), and then taking as our new surface M ... the surface M 
together with the top and bottom of the disc, but with the vertical boundary 
of the disc (now identified with a band in M) removed from M. (It can be 
shown that the condition $( IX) = 0 is both necessary and sufficient for the 
resulting bundle over M ... to be equivalent to the original one (see Exercise 3 
below). 

In more precise terms the procedure is as follows. Let IX denote also the 
unknotted, embedded, directed circle SI eM used to represent IX E 7r 1(M) 
in the course of defining the Arf function $ above. We define a map 
(j): Sl x (-e, e)-+M, of the "thickened circle" or "band" Sl x (-&, e)= 
aD2 x ( - e, e), by taking in the obvious way (j)( aD2 x 0) = IX C M, and as 
images of the vertical segments x x (-e, e), segments of length 2e of geodesics 
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in M normal to ex. We now form the 3-dimensional smooth manifold-with
boundary 

W =(M x /) U (D 2 X (-e, e», 

'" 
where the two pieces are glued together using the function 

cp: OD2 x (-e, e)-+M x!. 

The boundary oW is then the (disjoint) union of M x 0 and the manifold M * 
we were seeking to construct. It is not difficult to see that M * does indeed 
have genus g - 1. 

We now embed Win 1R"+2 x [0, 1] in such a way that it approaches the 
boundaries 1R"+2 x 0 and 1R"+2 x 1 orthogonally, and intersects them in M 
and M*: 

W n (1R"+2 x 0)= M, 

The desired equivalence of the initial framed normal bundle (M, ,") with 
some framed normal bundle over M *' we leave as an 

EXERCISE 

The given field of normal frames r" on M c IR" + 2 can be extended to WeIR" + 2 X [0, 1] 
if and only if <1>(cx) = o. 

It follows from Exercise 1 that provided g:?: 2 there does exist a non-trivial 
element ex of 1tl (M) (representable by an embedded circle) for which <I>(a) = O. 
Hence after performing a succession of surgeries of the above kind, we shall 
arrive finally either at a framed normal bundle over the sphere S2, or a framed 
normal bundle over the torus T2 c 1R3 C 1R"+2. (That there exists no non
trivial element of 11:1 (T2) ~ 71.. EEl 71.. at which the Arf function takes the value 0, 
follows from Exercise 1 and the facts: (1) that if a, f3 denote the obvious 
generators of 1I: 1(T2 ), then <I>(ex)=<I>(f3)=a o f3=1; and (2) that the elements 
representable by embedded circles in T2 are precisely those of the form ak f31 
with (k, 1)= 1.) Now since 1t2(SO(n»=0 (see Chapter 6, §24.4) it follows that 
every framed normal bundle over S2 c 1R"+2 is equivalent to the empty 
bundle, i.e. corresponds to the zero element of 1t"+2(S"); hence assuming 
our original framed normal bundle (M, to), Me 1R"+2, non-trivial, the 
above-described reduction process must end with an equivalent framed 
normal bundle over Tl. It can be shown (again we omit the details) that over 
T2 c IR" + 2 there is up to equivalence just one non-trivial framed normal 
bundle, whence we infer that 1t" + 2 (S") ~ 71.. 1 for n> 3. (We note that by 
bringing to bear the highly-developed techniques of the theory of 3- and 4-
dimensional manifolds, the method outlined here can be made to yield also 
the groups 1t"+ 3(S"),) 
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In conclusion we mention a few further facts, obtainable by means of 
complicated algebraic methods: 

(i) All of the groups 7tn +k(sn) are finitely generated (abelian); except for the 
cases k=O and n=21, k=21-1, they are all finite, and the exceptional 
groups 7t41- 1 (S21) are each isomorphic to the direct sum of 7L. and some 
finite group. 

(ii) We list most of the known "stable" groups 7tn+k(sn), n>k+1, in the 
following table (k=O, ... , 15): 

0 Z 8 Z2$Z2 
1 Z2 9 Z2 $ Z2 $ Z2 
2 Z2 10 Z2 
3 Z24 11 ZS04 

4 0 12 0 
5 0 13 Z3 
6 Z2 14 Z2$Z2 
7 Z240 15 Z480 $ Z2 



CHAPTER 6 

Smooth Fibre Bundles 

§24. The Homotopy Theory of Fibre Bundles 
(Skew Products) 

24.1. The Concept of a Smooth Fibre Bundle 

A smooth fibre bundle is a composite object, made up of: 

(i) a smooth manifold E, called the total (or bundle) space; 
(ii) a smooth manifold M, called the base space; 

(iii) a smooth surjective map p: E - M, the projection, whose Jacobian is 
required to have maximal rank n = dim M at every point; 

(iv) a smooth manifold F, called the fibre; 
(v) a Lie group G of smooth transformations (self-diffeomorphisms) of the 

fibre F (where by definition of "Lie transformation group" the action 
G x F -+ F is smooth on G x F); this group is called the structure or bundle 
group of the fibre space; 

(vi) a "fibre bundle structure" linking the above entities, and defined as 
follows. The base space M comes with a particular system of local co
ordinate neighbourhoods U« (called the co-ordinate neighbourhoods or 
charts of the fibre bundle), above each of which the co-ordinates of the 
direct product are introduced via a diffeomorphism CfJ«: F X V«-+p-l(V«) 
satisfying PCfJ«(y, x)=x; each map CfJ« will thus induce from the natural 
co-ordinatization of the direct product F x V«, a co-ordinatization of the 
complete inverse image p-l(V,,) of V". The transformations 
A«p=CfJi1CfJ«:FxV«p-FxV«/l> where V«p=V«r'lVp, are called the 
co-ordinate transformations (or transition functions) of the fibre bundle. 
In view of the above condition on the CfJ", every transformation A."p has 
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the form A.IIII(y, x) = (TIIII(x)y, x); it is further required that for all ex, p, x, 
the transformation TIIII(x): F ~ F is an element of G. Consequently each 
transition function A.IIII gives rise to a smooth map from the region UIIII to 
G: 

Observe also that from the definition of the functions TIIII(x) it follows that 

rll(X) = (TIIII(x))-l and TIIII(X) Tlly(x) PIl(X) = 1, (1) 

where the second equation is understood as holding on the region of 
intersection UII nUll n Uy. This noted, the definition of fibre bundle is 
complete. (We remark that for a general fibre bundle, it is required only that 
E, M, F be topological spaces and G a topological transformation group.) 

The simplest example of a fibre bundle is furnished by the projection of the 
direct product of two manifolds onto the first factor, with trivial structure 
group; we call such fibre bundles trivial. 

Among all fibre bundles, the "principal fibre bundles" and "vector 
bundles" are of particular importance. A principalfibre bundle is defined to be 
a fibre bundle whose fibre F coincides with the bundle group G, which acts on 
the fibre F = G by multiplication on the right, i.e. by means of the right 
translations Rg: G~G, Rg(x)=xg. 

24.1.1. Theorem. For any principal fibre bundle there is a natural smooth,free, 
left action of the bundle group G on the total space E with the property that the 
orbits of E under this action coincide with the fibres p-l(X), x e M (and so are in 
natural one-to-one correspondence with the points of the base space M). It 
follows that every principal fibre bundle is obtained from the free left action of a 
Lie group of transformations on a manifold E (with '1ree left action" as defined 
below). 

Before giving the proof we make the following remark. We first remind the 
reader yet again that a smooth, left action of a Lie group G on a manifold E, 

(g, Y)I-+ g(y), yeE, ge G, 

is by definition one which is smooth in both the arguments g and y (see §5.l), 
and that a group action is free if for each y we have g(y) = y only if g = 1. In the 
present context all smooth actions which occur will tacitly be assumed to 
satisfy the following two additional conditions: 

(i) the orbits should be "uniformly distant" from one another relative to 
some metric on E (and so not as in Figure 89(c)); 

(ii) around each point Yo e E there should be an n-dimensional disc D= 
(where n = dim M) not tangential to the orbit containing Yo, which 
intersects each orbit sufficiently close to the orbit of Yo in exactly one 
point (cf. Figure 89(b) where this is not the case). 

(In Chapter 4 (see especially §19) we were concerned with the particular 
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(b) Each transverse disc at Yo intersects every 
neighbouring orbit in more than one point. 

(c) Orbits not uniformly 
distant from one another. 

Figure 89 

case (of covering spaces) where the manifolds E and M have the same 
dimensions n, the group G is discrete, and the orbits of the action of G on E 
are discrete sets of points. The second of the above two conditions is in that 
situation clearly satisfied since each point Yo E E has a neighbourhood D: 
containing no other points of the orbit of Yo, and exactly one point of every 
orbit sufficiently near to it.) 

PROOF OF THEOREM 24.1.1. Crucial to the argument will be the fact that left 
and right translations commute: 

Rg.Lg2(y) = Lg2Rg.(Y) =g2ygt· 

We define a left action of G on the set F x Va = G x Va above each co-ordinate 
neighbourhood Va, by the formula 

Lg.(g, x) =(glg, x); 

this action (which is clearly free) then transfers to an action on the region 
p-l(Va) C E via the diffeomorphism lfJa: G X Va-+p-l(Va) (see part (vi) of the 
definition of a fibre bundle). For these actions (of G on each of the regions 
p-l(Va)) to extend to a single action of G on the whole of E, they will have to 
coincide on the regions of overlap p-l(Vap) (where VaP= Va n Vp); we now 
verify this. We have two left actions of G on p-l(Vap ), given by 

_ 1 <pi • Lg. <p. - 1 
P (Va;p)--G x Vap---+G x Vap--+P (Vap ), 

- 1 <Pi I Ls. rp~ - 1 
P (Va;p)--'---+G x Vap---+G X Vap-P (VaP)· 

Thus we need to show that for any point y E p-l(Vap), 

lfJaLg. lfJa-1(y) = lfJpLg, lfJi l(y), 

or, equivalently, applying lfJi 1 to both sides, 

AapLg. lfJ; l(y) = Lg. lfJi l(y). 

Since for each fixed x E Vap, Aap is a right translation of G (see (vi) in the 
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definition of fibre bundle), and since as noted above left and right translations 
of G commute, it follows that A«/iLg, = Lg,A«/i' and then the above equation 
follows from AfI.(J£P; 1 = £Pi 1. Hence the left actions of G on the regions p-1(U«) 
agree on the regions of overlap, and therefore combine to yield a left action of 
G on E, as required. (It is easy to see that this action is free.) 0 

The structure of a fibre bundle with base space M, bundle group G and 
fibre F is determined essentially by the transition functions AfI.{J' or, equiva
lently, by the prescription of maps TfI.{J: UfI./i-+G satisfying the conditions (1). It 
follows that the fibre F is a feature of the fibre bundle which is readily variable 
in the sense that if we are given a representation of G as a group of 
transformations of a different fibre F', then the same maps T«{J: UfI./i-+G, will 
define a new fibre bundle with fibre F' (and the same base M), which we shall 
say is associated with the original fibre bundle. In particular the right regular 
representation of G acting on itself as fibre yields a principal fibre bundle 
associated with the original fibre bundle; we conclude from this that: 

Every fibre bundle can be obtained as a fibre bundle associated with some 
(unique) principal fibre bundle; hence the problem of classifying fibre bundles in 
general, reduces to that of classifying the principal fibre bundles. 

Important classes offibre bundles. (a) Coverings. Here the fibre is discrete (a 
set of isolated points), and the group G is the monodromy group of the 
covering. As noted earlier (in § 18.4) the principal fibre bundles are in this case 
called also "regular coverings"; they were defined in §18.4 in terms of the free 
action of a discrete group G = u(1t1(M» on the covering space. For examples 
of coverings see §§ 18, 19. 

(b) Vector bundles (see §7.1). Here the fibre is /Rn, and the group G acts on F 
as a subgroup of GL(n, /R). Naturally distinguished from among these are the 
orthogonal vector bundles (G c O( n)), and the complex bundles (F = en, 
G c GL(n, C), including the unitary vector bundles (G c U(n». 

(c) Fibre bundles related to the tangent bundle. In §7.1 we introduced in 
passing the concept of the tangent nframe bundle E over a given manifold M, 
consisting of pairs (x, rn) where x ranges over the points of M, and for each 
x, rn ranges over the ordered bases for the tangent space to M at the point x. 
This clearly defines a fibre bundle with projection p: E -+ M and bundle 
group taken to be GL(n, /R). Since the fibre can be naturally identified with G, 
with right multiplication as the action, the tangent n-frame bundle with base 
space M is actually a principal fibre bundle. The corresponding action of the 
group G=GL(n, /R) on E (see Theorem 24.1.1) is then easily seen to be given 
by: 

for A E GL(n, /R), (x, rn) E E. 
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If the manifold M is endowed with a Riemannian metric (gij), then it is 
natural for us to restrict the tangent frames t n at each point to be 
orthonormal with respect to this metric, thereby obtaining a principal fibre 
bundle Eo-+M with group O(n). If in addition the manifold M is orientable, 
then by further restricting the permitted frames at each point to belong to the 
orientation class determined by a particular orientation of M, we obtain a 
principal fibre bundle Eso-+ M with group SO(n). If on the other hand M is a 
complex manifold of complex dimension n, then it is natural to restrict the 
frames at each point to complex ones, thence obtaining a principal fibre 
bundle Ec-+M with group GL(n, C), and the presence on the manifold M of 
an Hermitian metric gives rise in the analogous way to a principal fibre 
bundle Eu-+M with group U(n). 

Other fibre bundles related to tangent bundles, including those mentioned 
in §7.1, are obtained via association with the above principal ones. The best
known of these have fibres as follows: 

(i) F = IR" (the tangent bundle); 
(ii) F = S" - 1 (where each point of M is paired with unit tangent vectors, or, 

equivalently, rays); 
(iii) F = IRP" -1 (where each point is paired with straight lines or 

"directions" ); 
(iv) F = v...k (where each point is paired with orthonormal k-frames in IR"); 
(v) F = N(IR")* (skew-symmetric k-forms at each point); 

(vi) F = IR" ® ... ® IR" ® (IR")* ® ... ® (IR")* (tensors of type (p, q ». 
(d) Homogeneous spaces. For any closed subgroup H of a Lie group G 

we defined (in §5) the corresponding homogeneous space M = G/ H of right 
co sets of H in G, as the quotient space of G determined by the projection 
p: G-+G/H = M. This yields a principal fibre bundle with group H acting on 
the bundle space G by left multiplication: 

gHhg (ge G, h e H). 

The orbits of this action are then the right cosets of H, i.e. the points of the 
base space M. Thus a homogeneous space is the base space of a principal fibre 
bundle. Various examples of homogeneous spaces were considered in §5. (See 
also some of the examples in §§18, 19.) 

(e) Normal bundles over a submanifold. Let M be an n-manifold smoothly 
embedded in an (n+k)-manifold endowed with a Riemannian metric. We 
define (as in §7.2) the normal bundle over M to consist of pairs (x, t) where x 
ranges over M, and t ranges over the vectors normal to M at the point x. 
Clearly this yields a fibre bundle with group O(k) and fibre IRk. 

Occasionally the structure group of a fibre bundle will play no essential 
role, or we shall be led to the consideration of objects which, though like fibre 
bundles in every other aspect, lack a structure group G, so that the transition 
functions A.d are determined by arbitrary self-diffeomorphisms of the fibre F. 
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In such cases we shall simply assume as structure group the group of all self
diffeomorphisms of F, denoted by diff F. (If F is orientable, then we can 
distinguish in diff F the subgroup diff + F of orientation-preserving self
diffeomorphisms of F.) 

We now turn to the natural question of the most appropriate definition of 
a "map (or 'morphism') between fibre bundles". 

24.1.2. Definition. If (E, M, p: E~M, F, G) and (E', M', p': E' ~M', F, G) are 
two fibre bundles with common fibre F and common group G, then we say 
that a map J E~E' between the total spaces is a fibre bundle map (or 
"morphism") if it preserves the fibre bundle structure, i.e. if: 

(i) the map! "respects fibres"; in other words there is a map f M -+ M' such 
that p'! = fp (and then f will be uniquely determined by this condition); 

(ii) on the fibre above each point x of E, the map ,h.: F ~ F (obtained 
essentially by restricting !) is a transformation belonging to the structure 
group G. The precise definition of the maps h is as follows: according to 
part (vi) of the definition of a fibre bundle, above each co-ordinate 
neighbourhood V/1. c M we are given a diffeomorphism CP/1.: F x V/1. 
-+p- 1(V/1.) c E, and above each co-ordinate neighbourhood Vp' c M' a 
diffeomorphism CPP': F x V P'-+ p'-'(Vp'); hence above each region of the 
form w..II,=V",nf- 1(V p,) we have the composite map 

F W. <Po -1(V) J '-'(V') (<p/l')-' F V' x "'II'-P /1.~P II' I X II" 

which (again in view of part (vi) of the definition of a fibre bundle) 
for each point x E w..II , has the form (y, x) 1-+ (Ty,f(x», where T= Tx is 
some transformation of the fibre F. It is this transformation T (denoted 
above by h) which for each x E M is required to belong to the structure 
group G. 

24.1.3. Definition. A map between two fibre bundles with common base 
M' = M is called a fibre bundle equivalence if the induced map f: M -+ M of 
the base is the identity map. 

Below (see §24.4) we shall investigate the problem of classifying fibre bundles 
up to equivalence, particularly in some cases of special interest (e,g. when the 
base space is a sphere). We shall in particular show that every fibre bundle over 
the n-dimensional disc Dft (or over IRft) is equivalent to the direct product, i.e. to 
the trivial fibre bundle over Dft (or IRft). 

24.2. Connexions 

We now introduce the concept of a "connexion" on a fibre bundle with total 
space E, base M, projection p: E~M, fibre F, and structure group G. To begin 
with we shall disregard the given structure group G, i.e. as our structure 
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group we shall take instead, as noted above, the group diff F consisting of all 
self-diffeomorphisms .of the fibre. 

A fibre bundle equipped with a connexion can be thought of intuitively as 
follows: we have a family {Fx} of spaces (fibres) (where the parameter x ranges 
throughout the base space M), whose union UJx is the total space E. Given 
any path y(t), a ~ t ~ b, in the base M, the "connexion" provides us with a rule 
for "parallel transporting" the fibre F along the path y from one end to the 
other, i.e. a map (in fact a diffeomorphism) 

xo=y(a), x 1 =y(b), 

satisfying the following natural requirements: 

(i) ({Jy should depend continuously on the path y; 
(ii) ({JY1Yl = ({JYI ({JY1; ({Jy - I = «({Jy) - 1; if the path y is constant, then ({Jy should be 

the identity map; 
(iii) ({Jy should be independent of the parametrization of the path y. 

We now give the precise definition of a connexion on a fibre space, and 
then show how, starting from this definition, one arrives at the maps ({Jy. 

24.2.1. Definition. Given a fibre bundle with base space M of dimension n, a 
connexion of general type on the fibre bundle (with structure group disregar
ded) is a "distribution on E" which associates with each point y of the total 
space E an n-dimensional tangential "direction" (i.e. an n-dimensional 
subspace of the tangent space to E at y) which varies smoothly with y, and is 
transverse to the fibre through y (i.e. is mapped one-to-one under the map of 
tangent spaces induced by the projection p: E -4 M). These n-dimensional 
"directions" at each point of E are called the horizontal directions of the 
connexion. A smooth curve y = Y(t) in E is said to be horizontal iffor every tits 
tangent vector belongs to the horizontal direction at the point Y(t). 

24.2.2. Lemma. Any smooth fibre bundle can be endowed with a connexion of 
general type. 

PROOF. Let (gij) be any Riemannian metric on the total space E of our 
(arbitrary) fibre bundle. (That such a metric exists was shown, at least for 
compact manifolds, in §8.2.) A connexion on the fibre bundle is then obtained 
by taking the n-dimensional horizontal direction at each point y E E to be the 
n-dimensional subspace of the tangent space to E at y, orthogonal to the fibre 
containing y. 0 

24.2.3. Lemma. Given a general connexion on a fibre bundle (E, M, p, F) with 
compact fibre F, then corresponding to each piecewise smooth path y(t), 
o ~ t ~ 1, in the base M, and each point Yo E E in the fibre above y(O), i.e. such 
that p(Yo) = y(O), there is precisely one horizontal path y(t) in E covering y(t) and 
beginning at Yo, i.e. with the properties py(t)=y(t), O~t~ 1, and y(O) = Yo' 
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PROOF. For any sufficiently small, non-self-intersecting segment J of the path 
y, the complete inverse image p -1 (J) will be the total space Ed of a fibre 
bundle with fibre F and base space J. The horizontal directions of the given 
connexion, in the total space E of the original fibre bundle, will determine a 
unique one-dimensional horizontal direction at each point of Ed' The integral 
curves on Ed of the vector field obtained by taking for example a unit vector 
in the horizontal direction at each point of Ed, will then be horizontal curves. 
The conclusion of the lemma as it applies path segment J now follows from 
the existence and uniqueness (given sufficient smoothness) of an integral 
curve with a prescribed initial point, and then the full conclusion is obtained 
by repeating the above argument for a (finite) succession of segments 
exhausting the path y. (Note that the compactness of the fibre was used 
(implicitly) to ensure that the integral curves above the segments J do not 
make "excursions to infinity".) 0 

Remark. Without the assumption of compactness of the fibre, the conclusion 
of the lemma does not in fact necessarily hold; to ensure that it does one needs 
to place restrictions on the general connexion to ensure that the horizontal 
curves above path segments in the base space, obtained as in the above proof, 
do not make excursions towards infinity. For "differential-geometric" con
nexions (see §2S.1), which do take into account the structure group G, this 
condition is fulfilled automatically. 

Thus given a smooth fibre bundle on which there is defined a general 
connexion, and which has compact fibre (or for which at least the conclusion 
of Lemma 24.2.3 holds) then in view of that lemma there is, corresponding to 
any piecewise smooth path y(t), a5t5b, in the base, a map 

from the fibre above xo=y(a) to the fibre above Xl =y(b), defined by 
cp/Yo) = y( b) for each Yo E Fxo' (That CPy is smooth is a consequence 
of the smoothness of the dependence of the horizontal curve y on its initial 
point Yo; see the proof of Lemma 24.2.3.) It is obvious that the map CPy is 
independent of the parametrization of the path y, and that 

CPY1Y2 = CPY1CPY2' CPy-l =(cpy)-l. 

Thus we have constructed from the definition of a general connexion the 
promised maps CPy between fibres; as was noted earlier they are called parallel 
transporting maps of the fibre, determined by the connexion. 

An assignment to each path y in M, of a map CPy between the fibres above 
the end-points of y, satisfying the above three conditions, is termed an 
abstract connexion on the fibre bundle. It follows from those conditions that, 
given any point Xo of M, the correspondence cP under which each closed path 
y in M beginning and ending at xo, is associated with the map CPY' is a 
homomorphism from the "H-group" Q(xo, M) (see §22.4) to the 
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group G = diff F: 
({J: n(xo, M)-.G=diff F, 

')11-+ ({Jy: F -.F. 

The image ({J(n), which is a subgroup of G, is called the group of holonomies of 
the given connexion; it generalizes the concept of the monodromy group of a 
covering, introduced in §19.1. 

24.2.4. Definition. A G-connexion (or connexion compatible with the action of 
G) on a fibre bundle with structure gr')up G, is a family (or "field") of 
horizontal directions in the total space E (i.e. a general connexion) with the 
property that the corresponding parallel transporting maps ({Jy all belong to 
the group G. 

(The existence of G-connexions on fibre bundles will be established in §25; 
see especially Lemma 25.1.4.) 

In practice the structure group of a fibre bundle usually coincides with the 
group ofholonomies. In the next section (§25) we shall give a global definition 
in differential-geometric terms of the concept of a G-connexion. 

24.3. Computation of Homotopy Groups by 
Means of Fibre Bundles 

Like coverings, fibre bundles (with compact fibre) have the "covering 
homotopy property" (see §18.1). 

24.3.1. Theorem. A smooth fibre bundle with compact fibre has the covering 
homotopy property with respect to piecewise smooth maps of any manifold K 
into the base space M and the total space E, and piecewise smooth homotopies 
of such maps. 

PROOF. Let F: K x 1-. M be a piecewise smooth homotopy of the map 
10: K -+ M, and suppose that 10 is covered by the map 10: K x 0-+ E, 
i.e. plo = FIK x 0 = fo. By Lemma 24.2.2 we may assume that our fibre bundle has 
defined on it a general connexion. By Lemma 24.2.3 such a connexion affords 
a well-defined procedure for covering a piecewise smooth path 'l' (traced out 
by a point moving in the base M) by a path in E depending continuously on 
the path ')I and the initial point of the covering path. By covering in this way 
the paths traced out in M by the image points of K during the homotopy F, 
we obtain the desired homotopy of 10 covering the given homotopy of fo. 

o 

It follows that a fibre bundle has the defining property of a "Serre 
fibration" (see Definition 22.1.1), so that 21.2.1 and 22.2.1 apply to yield 
immediately the 
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24.3.2. Corollary. The homotopy groups 7t)(E, F, Yo) and 7tiM, xo), where 
Xo = p(Yo), are isomorphic, and the sequence 

... -+7t)(F) ~ 7t)(E) -4 7t)(E, F) .!!. 7t)-1 (F)-+ ... 
~ Ii 

p. "'-..7t j(M). 
(2) 

is exact. 

Remark. We indicate an alternative construction of the homomorphism 
0: 7tn(M)-+7tn_l(F) determined by this corollary, which does not involve the 
relative homotopy group 7tn(E, F). Let f Dn-+M be a map representing the 
element 0( of 7tn(M, xo), and so sending the boundary S"-1 of the disc to the 
point Xo. Let ao be a fixed point of the boundary sn - 1 of the disc, and denote 
by [ao, a] th.: chord in Dn joining ao to any other point a of the boundary 
sn-l; then ![ao, a] will be a closed path in M beginning and ending at Xo. Lift 
this path to a covering path in the total space of the fibre bundle, beginning at 
the point Yo (where p(yo) = xo); the terminal point b of this path will also be a 
point of the fibre p-l(XO) above Xo. We now define a map]: sn-l-+F by 
setting !(a) = b, and leave it as au exercise to show that this map is homotopic 
to 00( where 0 is the "boundary homomorphism" determined by Theorem 
22.2.1. 

From this alternative definition of the boundary homomorphism 
0: 7tn(M)-+7tn -1 (F), it easily follows that in particular for a trivial fibre bundle 
o is the zero homomorphism. (Verify this!) 

We now apply the "fibre bundle exact sequence" (2) to the computation of 
certain homotopy groups. (Recall that in §22.2 from such homotopy exact 
sequences we were able to obtain information about the homotopy groups of 
covering spaces and path spaces.) 

Examples. (a) Among the simplest principal fibre bundles are the following 
two: 

(i) IRp3 ~ SO(3) .£. S2 (with fibre SO(2) ~ SI); 
(ii) S3 ~ SU(2) .£. S2 (with fibre SI). 

(For the diffeomorphisms IRp3 ~ SO(3), S3 ~ SU(2), see Example (b) of §2.2.) 
The first of these is the principal fibre bundle SO(3)-+ SO(3)/SO(2) ~ S2, with 
homogeneous base space (see §5.2(a)); alternatively it can be interpreted as the 
unit tangent bundle over the 2-sphere S2. The fibre bundle (ii) is the 
analogous principal fibre bundle SU(2)--+SU(2)/U(1)~S2, where U(l) is 
identified with the subgroup of SU(2) consisting of the diagonal matrices; this 
is known under the name of the Hop! jibering, or Hop! bundle. Since by the 
results of §22.2 we have 7tj(IRP3)~7tj(S3) for j> 1, it follows that as far as the 
higher homotopy groups are concerned the fibre bundles (i) and (ii) yield the 
same information; we shall therefore confine our attention to (ii), for which 
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the homotopy exact sequence (2) takes the form 

.. . 1tj(S1) ~ 1tj(S3) ~ 1tj(S2) .2.1tj_l(Sl) ~ ... 

Since by Example (a) of §22.2 we have 1tAS1)=1tj_l(S1)=0 for j>2, this 
yields the exact sequence 

0-+1t}(S3) ~ 1tj(S2)-+0 U>2), 

whence 1tiS3)~1tj(S2) for all j>2. Thus in particular 1t3(S2)~1t3(S3)~Z. 
(That 1t1(S")~Z for n~ 1 was noted towards the conclusion of §21.1.) 

(b) We now turn to the principal fibre bundle known as the (general) Hop! 
bundle, which has fibre F = Sl, and projection map 

p: S21+1-+CP" 

defined as follows. We take the unit sphere S211+1 in 1R2n+2(=C'+1) to be 
given by the complex equation D=olzjl2 = I, and then define the action of 
the circle group Sl on this sphere by 

Since the orbits of this action are just the points of CP" (essentially by 
definition of the latter-see §2.2), this gives the desired projection map p. 

As already noted (in part) in the preceding example, we know (see the end 
of §21.1) that 

1tl (S1) ~ 1t211+ 1(S211+ 1) ~ z, 
1tAS1)=0 for j>1 and 1tq(S211+1)=0 for q<2n+1. 

Hence from the exact sequence (2) as it applies to the (general) Hopf bundle 
we deduce that (verify it!) 

whence in particular 1t211+1(CP")~Z. 

(c) We next consider the tangent n-frame bundle on the sphere S", which 
may be identified (see §S.2, Example (a» with the principal fibre bundle given 
by 

(i) SO(n + 1)-+SO(n + 1)/SO(n)~ S", with fibre SO(n) and homogeneous base 
space. 

We shall consider also the associated fibre bundle of k-frames given by 
(ii) v,,+1,k+l-+S" (with fibre v",k)' 

(Recall from §S.2, Example (c) that v",k is by definition the manifold whose 
points are the orthonormal k-frames in an n-dimensional Euclidean (i.e. 
inner product) space, and that v" + 1.k+ 1 ;::SO(n+ 1)/SO(n-k+ I), whence the 
definition of the fibre bundle (ii) as associated with that given by (i).) In the 
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case k= 1, this becomes the fibre bundle with projection v" + 1.2-+S" and fibre 
v".1 ~ S" - 1, i.e. the fibre bundle of unit tangent vectors on S". 

To begin with we consider the exact sequence (2) as it applies to the fibre 
bundle given by (i). That exact sequence takes in this case the form 

.. ·1tj+l(S").2. 1tj(SO(n)) ~ 1tj(SO(n+ 1)) ~ 1tiS")-+"" 

whence for j<n-l (using 1ti(sm)=o for i<m; see §21.1) we infer that 
1t j (SO(n)) ~1tj(SO(n + 1)). On the other hand for j = n-l we obtain the exact 
sequence 

from which we conclude that when j = n -1 the homomorphism i* is an 
epimorphism (i.e. is "onto"), and has cyclic kernel o(1t"(S")). If the tangent 
bundle over the sphere S" happens to be trivial, as for instance turns out to be 
the case when n = 3 (since S3 can be given a group structure making it a Lie 
group), then the boundary map 0 in the above sequence is zero (see the 
observation following the remark above); hence in particular SO(4) is 
topologically equivalent to SO(3) x S3, so that 1tj(SO(4))~1tj(SO(3)) ffi 1tj(S3). 

It is convenient at this point to deduce from Theorem 24.3.1 (applied to the 
fibre bundle (i)) the following proposition, of which we made substantial use 
in §23. 

24.3.3. Proposition. Let M be a manifold of dimension q. If q < n, then every 
map M-+SO(n+ 1) is homotopic to a map M -+SO(n) c SO(n+ 1); if q<n-l 
then the inclusion map SO(n)-+SO(n + 1) determines a one-to-one 
correspondence 

[M, SO(n)]~[M, SO(n + 1)]. 

PROOF. Let q < n and let I M -+SO(n + 1) be any map. The projection of this 
map f = pI M -+S" (with p as in (i)) is contractible to a constant map, i.e. is 
homotopic to a map to a single point of S" (see the remark towards the end of 
§ 17.5); let F = {J,}: M x 1-+ S" be a homotopy effecting this, i.e. such that !o = f 
and it (M) = So E S". Then the covering homotopy F = {J,} with 10 = 1. guaran
teed by Theorem 24.3.1, deforms J to a map 1:.: M-+SO(n)=p-1(so)' This 
proves the first assertion of the proposition. 

Now suppose q < n -1, and let 10,1:.: M -+SO(n) be two maps homotopic 
as maps to SO(n+l), via a homotopy F:MxI-+SO(n+l). The pro
jection F=pF: M x I-+S" of this homotopy will map the boundary 
(M x 0) u (M x 1) to the point So E S". Since M x I has dimension q + 1 < n, 
there is a homotopy <lit deforming the map pF = F = <110: M x 1-+ S", to the con
stant map M x I -+ so, throughout which the base M x 0 and lid M x 1 of the 
cylinder continue to be mapped to the single point so. The covering homotopy 
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cl>r: M X I -+SO(n + 1) then yields at time t = 1 a homotopy between 10 and !t 
during which the image of M is contained in the single fibre SO(n)=p- 1(so)' 
The desired one-to-one correspondence now follows from this together with 
the first assertion of the proposition. 0 

We now turn to the fibre bundle given by (ii), with fibre v".k' Consider first 
the case k = 1: 

p: v" + 1.2 -+ sn (with fibre v".1 ~ sn - 1). 

For this fibre bundle the homotopy exact sequence (2) takes the form 

... ~ 7tisn) ~ 7tj - 1 (sn -1 )-+7tj - 1 (v,,+ 1.2)-+7tj - 1 (sn)-+ . .. . 

If j ~ n -1, then 7tj - 1 (sn-l) =0= 7tj _ 1(sn), whence 7tj-l (v,,+ 1.2)= O. If j = n, 
then 7tj(sn)~1'~7tn_1(sn-l), 7tj_1(sn)=0, and we obtain the exact sequence 

7tn(sn) ~ 7tn_1(sn-l)-+7tn_1(v,,+1.2)-+0. 
I~ Il 
l' l' 

Thus in order to deduce from this the structure of 7tn -1 (v" + 1.2), we need to 
find a. To this end we consider a tangent vector field ~ on the sphere sn with 
exactly one singular point, which we denote by So. (This singular point will of 
necessity be degenerate in view of the results of § 15.2; its index, in the sense of 
Definition 14.4.2, can be seen to be zero if n is odd and 2 (up to sign) if n is 
even.) In terms of this vector field we define a map 1 ~y 

J sn\ {so} ~ Dn-+ v" + 1.2' 

where r is any unit vector in IRn+ 1 save that one whose tip is at So, and ~ is 
evaluated at the tip of r. We leave to the reader the verification that the map 
pl=f Dn-+sn can be extended to the boundary aDn by defining f(aDn)=so, 
and has degree 1 (so that f represents a generator of 7tn(sn)), and also the 
verification of the fact that restriction of the closure of lto the boundary aDn 

yields a map from aDn to the fibre p - 1(SO) = Vn•1 ~ sn - 1, which has degree 
equal to the index of the vector field at the singular point So. It then follows 
from the above direct construction of the image of f under the boundary 
homomorphism (see the remark following Corollary 24.3.2), that as a 
homomorphism 1'-+1', a is just multiplication by the integer equal to the 
index of the vector field ~ at the singular point So. Hence 

7t _ (sn-l)/an (sn)~ {l ~f n ~s odd, 
n 1 n l2 If n IS even, 

so that 

{
1' if n is odd, 

nn-l(v,,+l 2)~ 71 'f . 
• 1L2 1 n IS even, 
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and, as we saw earlier, 

1tj(v,,+I,2)=O for j<n-1. 

By considering in succession the fibre bundles given by 

p: v,,+I,k+l-.sn (with fibre v",k), 

one readily infers from the exact sequence (2) that, more generally, 

1tiv,,+1.k+tl=O for j<n-k, 

and that 1tn _ .. ( v" + I, k+ 1) is cyclic. (Verify this!) 

233 

The fibre bundles over spheres for the unitary and symplectic groups: 

U(n)-.s2n-l (with fibre U(n -1)), 

Sp(n)-.S4n-l (with fibre Sp(n -1)), 

can be exploited in a similar way. (That s2n - 1 can be realized as the 
homogeneous space U(n)/U(n-l) was noted in §5.2(e).) The exact sequence 
(2) for the first of these fibre spaces readily yields 

1tj(U(n))~1tj(U(n-l)) for j < 2n-2, 

and for the second 

1tj(Sp(n)) ~ 1tj(Sp(n -1)) for j <4n - 2. 

Thus the homotopy groups 1tj(SO(n)) for j < n-l, the groups 1tj(U(n)) for 
j<2n-2, and the groups 1tj(Sp(n)) for j<4n-2 are independent of n; they 
are for this reason denoted simply by 1tj(SO), 1tiU), 1tj(Sp), and (as for the 
homotopy groups of spheres) termed stable. 

(d) We next consider the unit tangent bundle over a closed orientable 
surface (i.e. over a sphere-with-g-handles): 

p: E-.M: (with fibre SI). 

Thus the points of E are the pairs (x, t) where x E M: and for each x, t 
runs over the unit tangent vectors to M: at x. For g=O we have, as noted 
already in Example (a) above, E ~ SO(3), while for g = 1 it turns out that 
E ~ SI x M: = SI x T2 = T3; hence we shall restrict attention to the cases 
g~2. The homotopy exact sequence for our fibre bundle has the form 

... -.1t,(SI) ~ 1ti(E) ~ 1ti(M:) ..E. 1ti -1 (SI)-. . .. . 

For i> 1 we have 1ti(SI)=1t,(M:)=O, since the universal covering spaces for 
SI and M: are contractible, i.e. homotopically equivalent to a point (see 
Corollary 22.2.2 and Corollary 20.11). Hence 1ti(E)=O for i> 1. For i= 1 we 
have the short exact sequence 

1 i P. 2 (3) 0-.1t1(S ) ~ 1t1(E) -.1tl(Mg)-'O. 
Ii 
Z 
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0, 

Figure 90 

Denote the natural generator of the infinite cyclic group 1tl(SI) by 't, and the 
canonical generators of the group 1[1(M:) by al"'" ag, bl , ... , bg; the latter 
satisfy the relation 

b -lb-l b -lb- l 1 all a 1 1 ... a g gag g = , (4) 

and all relations on these generators are consequences of this one. The paths 
aj' bj determine "canonical cuts" of the surface M:, as a result of which the 
surface is transformed into the 4g-gon Q4g depicted in Figure 90 (cf. 
Figures 61, 76). Write i.('r)=r E 1t l (E), and choose elements al , .•• , ag, 
01, ... ,Og in 1[1(E) such that P.(aj)=aj, P.(oj)=bj . By the exactness of the 
sequence (3) we have that i.1[1(51) is a normal subgroup of 1[1(E), and that 
1tl(E) is generated by its elements r,~, Dj . In view of the normality of the 
subgroup generated by r, and the fact that 1[1(M:) is defined by the single 
relation (4), it follows that 1tl(E) is presented by the defining relations 

(1) aj raj-l=rllj , 

(2) ojroj-l = 'ill;, 
(3) al 01 all 011 ... agOg a; 10; 1 = rY, 

where the integers rlj' {3jU = 1, ... ,g) and yare to be determined. 
We shall now show that in fact rlj ={3j=1 and y=2-2g. To see that 

rlj = {3j= 1, observe first that by §17.2 the conjugation h-+ aj raj- 1 amounts to 
"parallel transporting" the fibre 51 (representing the element r of 1[1 (E)) along 
the path aj=p(aj ) in the base M:. The orientability of M: ensures that the 
resulting self-diffeomorphism of SI (as the set of unit tangent vectors to the 
(single) end-point of the path aj) is orientation-preserving, whence rlj = {3j= 1 
for all j. 

We now indicate why it is that y = 2 - 2g. Let e be any (tangent) vector field 
on the surface M: with exactly one zero (i.e. singular point) xo, not lying on 
any of the paths aj' bj , and write n(x)=e/lel for x#xo. Remove from the 
surface M: a small disc D with centre Xo (as shown in Figure 90). The field 
n(x) determines a map from K = Q4g - D ~ SI X I to E (defined by 
x 1-+ (x, n(x))), and if we take the lifts ai' OJ to E of the paths ai' b j' to be those 
obtained by means of the vector field n(x) (i.e. if we take f(t) = (y(t), n(y(t))) for 
y(t) any of the paths aj' bj), then this map K-+E serves as a homotopy 

al 01 a11011 ... agbga; 10; 1 -nloD-rY 
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between the product path (the boundary of Q4g) and the image of the 
boundary aD of D. It follows that y is the degree of the Gauss map of aD 
determined by the vector field nlao' which is, by Definition 14.4.2, just the 
index of the singular point So. Since by Hopfs theorem (not quite in the form 
we gave it in §15.2) that index is 2-2g, we conclude that y=2-2g, as 
claimed. 

(e) We conclude with the particular example known as the "Hopf 
quaternion fibre bundle", which is defined as follows. We first endow 1R4 n+4 

with the structure of the (n + 1 )-dimensional quaternion space IHI n + 1 with 
quaternion co-ordinates qo, ... ,qn' In terms of these co-ordinates the unit 
sphere S4n+3 in 1R4 n+4 is given by the equation :L:=olqaI 2 = 1. There is 
a natural (left) action of the group SU(2)=Sp(1)~S3 of unit quaternions 
q (Iql = 1) on this sphere, defined by 

q( qo, ... , q.) = (qqo, ... , qq.). 

The resulting orbit space s4n + 3/SU(2) is clearly just the quaternion 
projective space IHIp· (see Exercise 6 of §2.3); hence we obtain a principal fibre 
bundle with group (and fibre) SU(2), and projection 

S4.+ 3_S4.+ 3/SU(2) ~ IHIpn. 

Since IHIpl ~ S4 (§2.3, Exercise 6), when n = 1 this becomes a fibre bundle over 
S4 with total space S7: 

S7 _S4 (with fibre S3); 

this is what is called the Hop! quaternionfibre bundle. The exact sequence (2) 
for this fibre bundle, breaks up into segments of the form 

0_1t;(S7)_1t;(S4)_1t;_1 (S3)_0, 

since, in view of the fact that the embedding of the fibre S3 in S7 is homotopic 
to a constant map, the inclusion homomorphisms i*: 1t;(S3)_1ti(S7) are all 
zero. It follows at once that 1t7(S4) is an infinite group. 

24.4. The Classification of Fibre Bundles 

By way of leading up to the classification theorem we first consider the 
following principal fibre bundles over the Grassmannian manifolds G.,k and 
their analogues (see §S.2): 

(a) projection v",k-G.,k, fibre O(k), where G.,k is the Grassmannian mani
fold whose points (the reader will recall) are the k-dimensional planes in 
IR· passing through the origin, and the projection is defined via the 
realizations (given in §5.2) of v",k and G.,k as the homogeneous spaces 
O(n)/O(n-k) and O(n)/(O(k) x O(n-k» respectively; 

(b) projection v",k-Gn,k' fibre SO(k), where Gn,k is the manifold whose points 
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are the oriented k-dimensional planes in IR" passing through the origin 
(so that the manifold C •. k forms a 2-sheeted covering space for G •. k ), and 
the projection is defined analogously to that of the fibre bundle (a); 

(c) projection V~.k-G~.k' fibre U(k), where G;.k is the manifold of complex k
dimensional planes in en passing through the origin, V~.k is the manifold 
of unitary k-frames in C·, and the projection is analogous to the 
preceding ones; 

(d) projection V~.k-G~.k' fibre Sp(n), where G~k is the manifold of k
dimensional quaternion planes in IHI· through the origin, V~k is the 
manifold of orthogonal quaternion k-frames, and the projection is 
analogous to the preceding ones. 

In Example (c) of the preceding subsection we showed that 1tj ( v...k) =0 for 
j < n - k; a similar argument shows that the analogous result holds over C 
and IHI. Thus 

1t j(v...k)=O for j<n-k, 

1tj(V~.k)=O for j<2(n-k), 

1tj(V~.k)=O for j<4(n-k). 

(5) 

If we now fix k and let n-oo (i.e. take the union of the ascending sequence 
v...k C v.. + 1.k C ... ,and of each of its analogues), then from (5) it follows that 
the resulting (infinite-dimensional) total spaces Voo •k, V~.k' V:.k have all their 
homotopy groups zero (and consequently are contractible, i.e. homotopically 
equivalent to a point; verify this!). These constitute important examples of the 
following concept, crucial to the classification of fibre bundles. 

24.4.1. Definition. A principal fibre bundle E-Bo (where we now admit 
"infinite-dimensional manifolds") with structure group G, is called universal 
for the group G if E is contractible (or, equivalently, if all1tj (E) are zero). (It 
can be shown that universal bundles always exist, and that the base Bo of a 
universal G-bundle is unique up to a homotopy equivalence.) If 1tj (E) = 0 for 
all j:S; n + 1, the fibre bundle is said to be n-universal for G. 

The classification theorem (whose proof we omit) then asserts the 
following: There is a natural one-to-one correspondence between the set of 
(equivalence classes of) principal fibre bundles with given base M and structure 
group G, and the set [M, Bo] of homotopy classes of maps from M to the base 
Bo of a universal fibre bundle for G. (If dim M < n, then in this statement Bo 
may be replaced by the base space of any n-universal fibre bundle.) 

In fact each principal fibre bundle with structure group G and base M can 
be obtained from a map f: M - Bo, as the "induced fibre bundle" correspond
ing to that map; we now define this important concept. Given a fibre bundle 
with projection p: E-M, fibre F, and structure group G, together with a map 
f M' - M, the corresponding induced fibre bundle (induced via the map f) has 
the same fibre F and group G, and has projection p': E' - M' defined as 
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follows: if the structure of the original fibre bundle is determined by a 
covering M = UaVa together with transition functions Aa/l: F x Var~F x Vall' 
VaP = Va n Vp, then the structure of the induced fibre bundle (with fibre F, 
group G and base M') is defined by taking the regions V~ = f-l( Va) as local 
co-ordinate neighbourhoods covering M', and as transition functions the 
maps A~p: F x V~r-+ F x V~/l' given by 

A~/l(Y' x) = (ya/l(x)y, x), y E F, 

yap(x) = Ta/l(f(x)). 

(Thus the co-ordinate neighbourhoods V~ eM', and in a certain sense the 
maps A~Il' are just the complete preimages (under the inducing map f) of the 
corresponding entities defining the structure of the original fibre space 
p: E--+M.) This completes the definition of the induced fibre bundle 
p': E' --+ M'. (Note incidentally the obvious map E' --+ E covering the map 
1': M'--+M of the bases.) 

Returning to the classification theorem we see from it that the problem of 
classifying the fibre spaces (with prescribed structure group G) over the 
sphere sq reduces to that of determining the set [sq, BG ] (where the 
"classifying space" BG is as before the base space of a universal fibre bundle 
for G), or, equivalently, to the determination of the homotopy group 1tq(BG)' 
Now it follows from the fibre bundle exact sequence (2) as applied (infinite
dimensionality notwithstanding) to a universal fibre bundle for G, that 
1tj(G)~1tj+l(BG) (verify this!). Hence considering in particular the above 
examples of universal fibre bundles we have: 

1ti O(k)) ~ 1tj+ 1 (G ro.d; 

1tj( V(k)) ~ 1tj + 1 (G~.k); 

1t j(SO( k)) ~ 1tj + 1 (G ro.k); 

1tiSp(k)) ~ 1tj+ 1 (G:.d. 

Similarly, from (5) and the exact sequences corresponding to the initial four 
examples, we obtain 

1tiSO(k)))~1tj+l(G •. k) providedj+ 1 <n-k, 

and analogous isomorphisms for 1tj (O(k)), 1tj (V(k)), 1tj(Sp(k)). These isomor
phisms and the preceding ones then yield 

1tj { G ro.k) ~ 1tj{ G •. k), 1tj{ G ro.d ~ 1tj { G •. k ) if j < n - k, 

1tj { G~.k) ~ 1tj { G~.d if j < 2(n - k), 

1tj ( G:.k) ~ 1tj{ G~.k) if j < 4(n - k). 

We conclude this particular discussion by listing universal fibre bundles 
and noting the relevant homotopy groups 1tj(BG) in a few simple cases. 

(a) If G=O(1)~£:2' then we may take 

BG= lim (sn/£:2) = lim IRpn=lRpoo, 
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(where, as already noted, the "limit" is the direct limit, i.e. union, of the 
sequence IRp 1 c IRp2 c ... ). It is easy to see that here we have 1t1(IRPOO)~7l..2 
and, for j> 1, 1tj(IRPOO )=O. 

(b) Let G = 7l..m, the cyclic group of order m, acting on each odd
dimensional sphere S2"+1 (given in C"+1 by the equation I:=olz .. 12 = 1) 
according to the formula 

( ) _ ( 2xi/m 2xi/m ) a zo, ... ,Z" - e zo, ... , e Zn 

where a is any particular generator of 7l..m. The corresponding BG is given by 

BG= lim s2n+1/7l..m= lim L!.::t 1 =L~). 
n .... 00 n .... oo 

(The orbit spaces Lt'::)+ 1 = s2n + 1/7l..m are called lens spaces.) Here (as indeed 
quite generally for any discrete group) covering space theory shows that for 
j> 1, we have 1tj(BG)=O. (Use Corollary 22.2.2 or alternatively the above
mentioned general isomorphism 1tA G) ~ 1tj + 1 (BG)') 

(c) Consider G=U(1)~SO(2)~S1 acting on the sphere s2n+1 (given in 
cn+ 1 as in the preceding example) according to the formula 

(zo, ... , zn) 1-+ (ei'Pzo, ... , el'Pzn ). 

The base of the corresponding universal fibre bundle for G is then 

Ba= lim S2n+1/S1= lim cpn=cpoo. 
n .... 00 n .... 00 

Since 1t1(S1)~7l.. and for j> 1, 1tj(S1)=O, it follows (again from 
1tj(G) = 1tj+ 1(BG)) that 

1tj(Ba)=1tj(CpOO)=O for j>2, 

1t2(CpOO) ~ 7l... 

(d) For the group G=SU(2)~Sp(1)~SJ acting on each sphere s4n+3 

(defined in IHI n+ 1 by the equation I:=o Iq .. 12 = 1) according to the formula 

(qo,···, qn)l-+(qqo,···, qqn), 

where q denotes any unit quaternion (i.e. point of S3), the base space of the 
corresponding universal fibre bundle is 

BG= lim 84"+3/83 = lim IHIpn= IHIpoo. 
n .... oo 

(The universality of the fibre bundle here follows from the fact that the 
homotopy groups 1tj(84n + 3) are trivial for j <4n+ 3.) 

The classification of G-bundles over the sphere 8n can also be achieved 
directly, without invoking the concept of a universal fibre bundle. However 
while the above classification procedure applies to more general fibre bundles 
(with E, M, F more general topological spaces, and G a topological trans-
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formation group), we shall now make definite use in particular of our 
assumption that G is a Lie group of transformations of F. As noted earlier (see 
§24.l) it suffices to classify the principal fibre bundles. We begin by describing 
the principal fibre bundles over the disc D". 

24.4.2. Lemma. Every principal fibre bundle over the disc D" with Lie structure 
group G is trivial. 

PROOF. Let p: E~D" be the projection map of a principal G-bundle, and 
choose arbitrarily a G-connexion on this fibre bundle, i.e. for each pair of 
points xo, Xl ED" and each path y joining them, choose a transformation 
({Jy: Fxo ~ F"'I of the fibre Fxo ~ FXI ~ G, satisfying the requisite conditions (see 
Definition 24.2.4), in particular the condition that all ({Jy belong to the 
transformation group G. (As noted earlier, the existence of G-connexions (on 
fibre bundles with Lie structure group G) will be established in §25.) 

Now take Xo to be the centre of the disc, and for each point XED" denote 
by Yx the obvious "line segment" [xox] joining Xo to x. It is then 
straightforward to verify that the map $: D" x Fxo ~ E, defined by 

(6) 

determines an equivalence (see 24.1.3) between the trivial fibre bundle and the 
given one. This completes the proof of the lemma. 0 

Suppose now that we have a principal G-bundle over S" with projection 
p: E~S". Writing S" as the union of its upper and lower hemispheres D"t and 
D"-, intersecting in the equator S"-l, we obtain from the given fibre bundle 
over S" two fibre bundles over D", with respective total spaces p-1(D"t) and 
p-1(D"-). Then each of the regions of E above D"+ and D"- can be re-co
ordinatized (as in the above lemma) with the co-ordinates of the 
direct product D" x F (via maps defined as in (6)). Hence the structure of our 
original fibre bundle over S" may now be regarded as determined by the 
two co-ordinate neighbourhoods V 1 = D"+ and V 2 = D"-, together with 
the appropriate transition function A.12 defined on F x U12 ' where 
Ul2 =U1 r1U2 =S"-1, or, equivalently, a map Tl2:S"-l~G, in terms of 
which A.l2 is given by 

XE U12 , YEF. 

24.4.3. Lemma. Replacement of the map T12: S"-l~G by a map homotopic to 
it, yields a G-bundle equivalent to the original one. 

PROOF. We may assume that the homotopy in question has the form 

T: S"-l x [ -e, e]~G, 

where the restriction of T to S"-l X { -e} is Tl2. Using this homotopy we 
construct a third G-bundle as follows. Within S" extend the hemispheres D"
and D"t respectively above and below the equator a distance e, obtaining discs 
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D~. _ and D~. + with intersection the cylinder sn-l X [ -e, e]; this allows us to 
define a new fibre bundle (with the same projection map p: E-+sn as the 
original two) by taking D:.+ and D~._ as its co-ordinate neighbourhoods and 
as transition function above their intersection the map determined by T. It is 
then not difficult to verify that this fibre bundle is equivalent to each of the 
original ones (with transition functions determined respectively by T12 and 
the map homotopic to it via T). (These equivalences follow in essence by 
taking as co-ordinate neighbourhoods for the new fibre bundle on the one 
hand the two discs intersecting in the (n -I)-sphere a distance e below the 
equator, with transition function determined by T12, and on the other hand 
the two discs intersecting in the (n -I)-sphere a distance e above the equator.) 
This completes the proof of the lemma. 0 

We conclude that: All G-bundles over sn are determined up to equivalence by 
the elements of 1tn -1 (G). In view of this the following list, wherein the groups 
1tn -1 (G) are identified for G = SO(k), U(k), and n = 2,3,4, allows the classifi
cation of G-bundles (for G = SO(k), U(k» over spheres sn of dimension n ~ 4. 
(Some of the isomorphisms listed were established earlier, the remainder we 
give without proof.) 

For q ~ 5, we have 

{z for i=l, 
1t;(U(1»)~1ti(SO(2»~ 0 for i> 1. 

for i= 1, 

for i=2, 

for i=3. 

for 

for 
for 

for i= 1, 

for i =2, 

for i= 3. 

i=l, 

i=2, 
i=3. 

Since (topologically) U(q)~SI x SU(q), we have 

For q ~ 2, we have 

fori=l, 
for i=2, 

for i=3. 
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24.5. Vector Bundles and Operations on Them 

We shall now investigate vector bundles in greater detail. (Recall from §24.l 
that a vector bundle is a fibre bundle having as fibre real or complex n-space 
and as structure group a subgroup of the appropriate general linear, 
orthogonal or unitary group.) Since the essential structure of a fibre bundle 
with given projection map p: E ~ M, is determined by its transition functions 
A.~p defined above the intersections U~p = U~ n UfJ , or, equivalently, by 
the corresponding maps T~fJ: U~p~G satisfying the conditions (1) (namely 
T~/l(x)=(T/l~(X))-I, and T~P(x)TfJY(x)TY~(x)=l on the intersection 
U~py = U~ n Up n Uy), the "operations on fibre bundles" appropriate for con
sideration will be those which preserve the latter conditions. One example of 
such an operation is that of taking a (smooth) real or complex representation 
p: G~GL(n, IR) or G~GL(n, q (more particularly, orthogonal or unitary) 
or indeed any (smooth) homomorphism p: G~G/. Such a homomorphism 
yields a new fibre bundle with structure group G/ and new transition 
functions determined by p( T~P) = P 0 T~P in place of the former T~P; we call 
this new fibre bundle a representation (via p) of the original one, and if the 
original fibre bundle is denoted by some symbol 11 say, then we denote the 
new one by P(l1). Another example is provided by the direct (or Whitney) sum 
111 $112 of two vector bundles with fibres IR"' and IRn, groups GI and G2 , and 
projections PI: EI ~M and P2: E2~M onto the same base M covered by the 
same co-ordinate neighbourhoods U~ c M: this is the vector bundle over M 
with group GI x G2 , fibre IR"' $ IRn = 1R",+n, bundle space E the union over all 
xEM of the sets Pl 1(x)$pi 1(x) (so that E is a subspace of E l xE2 ), 

projection P defined by P(Pl l (x)$pi 1(x»=x, and, finally, co-ordinate maps 
({l~: U~ x 1R",+n~p-l(u~) defined by 

where Y=(YI' Y2), Yl E IR"', Y2 E IRn, and ({l~: U~ x 1R"'~PII(U~), cp;: U~ x IRn 
~pil(U~), are the co-ordinate maps of 111,112 respectively. Yet another 
important operation is the tensor product 111 ® 112 of vector bundles '11' '12 
(with the same base M, etc., as above), defined as the vector bundle over M 
with the same group G1 x G2 , with fibre IR"' ® IRn = lR",n, bundle space E the 
union over all x E M of the sets Pl l (x) ® pi1(x), and with appropriate 
projection P and co-ordinate maps ({lit (whose definition we leave to the 
reader). (Note that those definitions extend to complex vector bundles.) 

In fact, as the latter examples suggest, a quite general argument shows that 
corresponding to each of the familiar operations on vector spaces (i.e. on the 
fibres of vector bundles) there is a naturally corresponding operation on 
vector bundles. We now list the most important of these operations: 

(i) the determinant, det 11, of a real (or complex) vector bundle 11; this is the 
line bundle (i.e. with one-dimensional fibre) whose transition functions 
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are given by the maps det T~/J: X 1-+ det (TIZ/J(X», on the regions of 
overlap UIZ/J c M; 

(ii) the dual bundle '1* with fibre the dual space of linear forms on the fibre of 
'1, and transition functions determined by (TcZ/J)*: X 1-+ (TcZ/J(x»*, where 
(T~/J(x»* denotes the dual of the transformation TcZ/J(x). 

(iii) the complex conjugate If of a complex vector bundle '1. 
(iv) the complexification c('1) of a real vector bundle '1 (with fibre space the 

complexification C ®R F of the original fibre, and structure group G x G 
acting in the natural way), and the realization r('1d of a complex vector 
bundle '11; as for the corresponding operations on vector spaces we have 
cr('1d='11 EEllf1 and rc('1)='1 EEl '1 (verify this!); 

(v) the (k-fold) tensor power '1 ® ... ® '1 of a vector bundle '1, and its (k-fold) 
exterior power A"'1 (the skew-symmetric part of the tensor power), and 
(k-fold) symmetric power Sk'1 (the symmetric part of the tensor power) (cf. 
§18.1 of Part I). 

In terms of vector bundles and the above operations on them, several 
earlier concepts now re-emerge as special cases of the following single 
concept. 

24.S.1. Definition. A cross-section of a fibre bundle with projection p: E -+ M, 
is a (smooth) map t/!: M-+E satisfying pt/!(x)=x for every x E M. (Thus a 
cross-section is a map t/! defined on M and taking at each point x E M a value 
in the fibre F", above x; in particular a cross-section of the trivial bundle is 
essentially just an ordinary "scalar" function or map from the base M to the 
fibre F.) 

If t is the tangent bundle of some manifold M, then a cross-section oft is 
what we have hitherto called a vector field on M, and similarly a cross-section 
of the dual bundle t* is just a covector field on M. More generally a tensor 
(field) of type (k, I) on M can now be regarded as a cross-section of the vector 
bundle 

t® .. ·®t ® t*® .. ·®t*; 
\ .. I "----y---J 
upper indices lower indices 

thus in particular a general tensor of type (0, k) on M is from this point of 
view a cross-section ofthe tensor power ®kt*, and a differential k-form on M 
is a cross-section of the exterior power Nt*. A symmetric bilinear form on 
vectors (e.g. a metric (glj» becomes a cross-section of the symmetric square 
S2t*. (Note incidentally that, essentially by Theorem 18.2.2 of Part I, if the 
base M is n-dimensional then the vector bundle Nt* coincides with the 
determinant of t (see (i) above), and also that the triviality of this bundle is 
equivalent to the orientability of M (verify this!).) 

Among fibre bundles (especially vector bundles) over complex analytic 
manifolds, the complex analytic fibre bundles, defined as those with complex 
analytic transition functions, are of particular importance. Such for instance 
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are the tangent bundles of complex analytic manifolds, and the vector 
bundles obtained from these by means of the above operations. We remark 
that "algebraic fibre bundles" over complex algebraic varieties (especially 
compact subvarieties of cpn) are defined similarly. (Note that by "Chow's 
theorem" every complex analytic submanifold of cpn is an algebraic variety, 
i.e. the set of common zeros of a finite set of homogeneous polynomials in 
n + 1 variables.) For instance the general Hopf bundle, which we considered 
earlier (see Example (b) of §24.3) without bringing in its complex analytic 
structure (taking U(l)~ SO(2) ~ Sl as bundle group and Sl as fibre), furnishes 
(once recast in suitable form) an important example of an algebraic, complex 
line bundle over cpn, with bundle group (as for all complex line bundles) the 
multiplicative group C* of non-zero complex numbers; the bundle space E is 
the set of pairs (I, x) where 1 ranges over the points of CP" in homogeneous 
co-ordinates, i.e. regarded as straight lines in Cn + 1, and x ranges over the 
points in I, and the projection is defined by p: (I, x) f-+ I; the fibre is thus C. 

The (equivalence classes of) complex analytic line bundles over a complex 
manifold form an abelian group under the operation of tensor product, 
which, equipped with a suitable complex structure, is called the "Picard 
variety" of the manifold. The connected component of the identity of this 
group can be shown to be a complex torus. 

In the first two of the following exercises r(M) denotes the (complex) 
tangent bundle of a complex manifold M, and rJ denotes the Hopfbundle over 
cpn. 

EXERCISES 

1. Prove that ,(Cpn) ® 1 = " ® ... ®", where 1 denotes the trivial complex line 
~ 

bundle over Cpo. n+1 

2. Prove that 

where the equals sign denotes equivalence. 
(Note that these exercises have (simpler) analogues for the real line bundle Y/R 

over IRP" with group O(1)~Z2' (The total space of Y/R' defined analogously to the 
complex case, is called the "generalized (unbounded) Mobius band", diffeomorphic 
to IRP"+ 1 with a point removed.» 

3. Prove that ~* = C 1 for every complex line bundle ~. 

24.6. Meromorphic Functions 

An interesting class of "fibre bundles with singularities" is afforded by the 
families of level curves of meromorphic functions on compact complex 
manifolds M (in particular algebraic functions defined on projective algebraic 
varieties Me cPq). (Recall that by definition a meromorphicJunction isjust a 
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complex analytic map f M ~Cpl;:: C U {oo}; this is equivalent to the usual 
function-theoretic definition of a meromorphic function as a complex-valued 
function analytic on M except for some points all of which are "poles" of the 
function (and which comprise f -l( 00 )).) 

On any local co-ordinate neighbourhood U" c M with co-ordinates 
z!, ... , z: (where n is the complex dimension of M) a merom orphic function 
W = f(z) can, as usual, be written as f(z!, ... , z:) and the induced map df of 
tangent spaces defined (see §1.2 where df is denoted by f.); a singular fibre is 
then defined to be the complete preimage f -l(f(ZO)), where Zo =(z~o, ... , z:o) 
is a point in (for instance) U" such that dflz:zo =0 (cf. §1O.2). The non-singular 
fibres, denoted by F,,={xlf(x)=a}, are then (non-singular) submanifolds of 
M. 

The compactness of M and the analyticity of f together imply that if f is 
not constant, then it has only finitely many singular points, say Zl"'" Zm' If 
we write Wi = f(Zl), ... , Wm = f(zm) for the images (assumed distinct) of the 
singular points (i.e. its singular values), then over the planar region Uf c 1R2 
defined by 

Uf = [S2;:: Cpl;:: C U {oo}J\{w l , ... , wm}, 

we have a smooth fibre bundle with fibre F;::F ... =f-1(w), WE Ufo As 
structure group of this bundle we may take the fundamental group 1t 1 (U f)' 
which is generated by (the homotopy classes of) the loops at> ... , am indicated 
in Figure 91; each of these loops aj determines in the normal way (see §19.1) a 
monodromy transformation (i.e. a self-map CPa): F -+F, of the non-singular 
fibre). Our ultimate aim is to determine the effect of such transformations on 
the first homology group of F. 

Consider the (in a sense typical) case where the singular points Zl"'" Zm 

are non-degenerate, i.e. the symmetric bilinear form d2flz) is non-degenerate 
for each j (see §10.4); in this case the topological structure of the fibres in a 
sufficiently small neighbourhood Uj of each singular point Zj' is determined 
by the "quadratic part" of the function f - f(Zj) = ~f This is a consequence of 
the existence in some neighbourhood of each z) of a local co-ordinate system 
zl, ... , Z" (with Zj as origin, and the indexj implicit) in which the function ~f 
(by virtue of Taylor's theorem and the fact that the bilinear form d2fl,) is 

Figure 91 
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diagonal relative to a suitable system of co-ordinates) takes the form 

!if(z) = L(Z")2+0(l zI3 ); 
a 
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hence in a sufficiently small neighbourhood Nt(Zj) = {zi Izl <6} of Zj' as far 
as the topology of the fibres is concerned, the remainder O(lzI 3 ) may be 
neglected: 

Af(z)~ L(Z,,)2=q(Z). 
a 

The equation q(z)=O (a complex cone) may thus be taken as defining 
topologically that part of the singular fibre through Zj within the 
6-neighbourhood Nt(zj), while for sufficiently small fJ:;eO (bounded in terms of 
6) equations of the form q(x) = fJ define those portions of nearby non-singular 
fibres in Nt(zJ We denote these (portions of) so-called "quadrics" by K6; thus 

K6= {Zl at (za)2 =fJ} n Nt(zj)' 

For each (sufficiently small) fJ we now define a sphere S:;-l c K6 as follows. 
If fJ is real and positive set 

S:;-l= {ZI~(xj)2=(j,y1= ... =yo=O,Z"=xa+iya }; 

if on the other hand fJ = I (j I eitp with 0 < cP < 2n:, we take S:;- 1 to consist of those 
points of Kd satisfying ya = 0 for (X = 1, ... , n, where the r are given by 

L (za)2 = fJ = IfJleitp• 
a 

(Note that in terms of the new co-ordinates i a, Kd is defined by L (i")2 = IfJl.) 
In view of the equations defining S:l- 1, it is clear that for fJ sufficiently small 
S:;- 1 will indeed be a whole sphere contained wholly within K d• 

EXERCISE 

Show that Kd is diffeomorphic to the tangent bundle on the sphere S' - 1 (consisting, as 
the reader will recall, of pairs (s, t) where s E so-1 and t ranges over the tangent space 
to S·-1 at the point s). 

If we now let (j-+O, then the non-singular fibre Kd "collapses" onto the 
singular fibre K o, in a manner expressed precisely by a map (or family of 
maps) 

CPd: K r ·+ Ko· 

Under this map the sphere S:;-l is sent to a point; thus it "vanishes" so to 
speak, and for this reason it (or strictly speaking the family of spheres S:;- 1) is 
called a vanishing cycle of the singular point. 
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We wish to investigate the monodromy transformation K,,-+K d deter
mined by the path IXj(t) = be iI, 0::;; t::;; 27t, around the singular point Zj; the fibre 
K"e" deforms as this path is traced out, yielding finally, when t = 2n, a 
monodromy transformation 0': K,,-+ K". 

We shall from now on restrict ourselves to the case n = 2. We begin by 
considering the purely quadratic function (on Cp1 x CP1) given by 

W= f(Z)=(Zl)2 +(Z2)2=U2 +v2, U=Zl, V=Z2, 

since (as may be gathered from the above) this special case provides the key to 
the solution in the general case of our problem (which incidentally is that of 
determining the action of the monodromy group on the first homology group 
Hi (Fw)-see below). Here for each b the quadric surface K" has equation 
u2 + v2 = b = I b I eitp, and the corresponding sphere sA is the circle defined in 
KII by the equations 1m u=Im V=O, where u=ue- itp /2, v=ve- itp/2. Each non
singular (part-) fibre KII is easily seen to be (diffeomorphic to) the cylinder 
SA x 1R1 (cf. the above exercise). 

The map of fibres K1"1-+ K 11I1e", determined in the usual way via liftings of 
the path lX(t)=lble il , O:S;t:s;2n, where we may suppose that initially b is real 
and positive (h= Ihl), can be written as 

(7) 

Hence putting t = 27t we obtain the desired monodromy transformation in the 
form 

Our immediate aim is now (for reasons given below) to apply a suitable 
deformation ofthe fibres, having the effect of changing the family of transform
ations K1"I-+KI1IIe;' (determined by traversal of the paths from Ibl to Ihleil for 
various b) into a family of "traversal" transformations coinciding with (7) in 
some small neighbourhood of the vanishing cycle SA, but transforming 
"canonically" the region of K" outside some larger (though still small) 
neighbourhood of SA c K". (Here by "canonical" transformations we mean 
the diffeomorphisms between the various KlI \SJ defined by the "degenerate" 
maps fPlI: K lI -+ Ko (see above), each of which is one-to-one off the circle SA.) 
We need the family of traversal transformations to be of this form in order to 
be able to apply the local information in the neighbourhood of each singular 
point, framed in terms of quadrics, to the solution of the global problem of 
calculating the action of the monodromy group on the one-dimensional 
homology group H l(F w) = 7t 1(F w)/[n 1 , 7t1] of a non-singular fibre F = F w' 
for an arbitrary map f: M -+ Cp1 of a compact, complex 
2-manifold M (see the proof of Theorem 24.6.2 below for the details). 

Thus, to repeat, we wish in effect to deform the family of traversal maps 
K11I1-+K1"le" so that they coincide with the corresponding canonical maps 
between the manifolds KlI \Sl outside a small neighbourhood Ull => Sl, and 
with the maps defined by (7) inside a smaller neighbourhood VlI (so that 
KlI => U ll => V" => SA)· 
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With this aim in mind, we introduce convenient co-ordinates on each K6 
as follows. Observe first that since the singular fibre Ko is defined by the 
equation u2 + v2 =0 or u= ± iv, the manifold Ko \ {OJ falls into two disjoint 
identical pieces: 

Ko \ {O} ~(S1 X IR+) U (S1 x IR-). 

On each of these pieces we introduce co-ordinates (p, lJ) as follows: 

p>O, 
p<O, 

u=peilJ, 

u= _pe ilJ, 

v = iu (on the first piece); 

v = -- iu (on the second piece). 

For non-zero b the manifold K6 \Sl has the same form: 

K6 \Sl ~(S1 x IR+) U (S1 x IR-), 

and the restriction of the map qJ,: Ka--+Ko, is a diffeomorphism 

K6\Sl~Ko\{0}, 

(8) 

(9) 

by means of which the co-ordinates p, lJ can be introduced onto each K, \Sl. 
The co-ordinate lJ is taken as starting from zero at the line of intersection of 
K, with the 3-dimensional hyperplane 1m u = O. (The direction of increase of () 
on the respective pieces is determined by (8) and the diffeomorphism (9).) We 
co-ordinatize the vanishing cycle of each non-singular fibre K, by extending 
the co-ordinates p, lJ continuously from the first piece of K, to sl; we then 
have p=O on each vanishing cycle. With this co-ordinatization of K 6 , the 
level curves of the form p = constant are the orbits under the action of the 
group of transformations of the form (cf. (7» 

u-+u cos (J + v sin (J ( = ueill on the first piece), 

v -+ - u sin (J + v cos (J ( = veilJ on the first piece), 

(with similar formulae for the second piece). With respect to the obvious 
metric on K" the vanishing cycle is the shortest of these orbits, and Ipl 
measures the distance of a point (u, v) E K, from the vanishing cycle. 

24.6.1. Lemma. For every e > 0 the traversal maps KI'I-+ KI'lelt can be arranged 
(via a suitable deformation of the fibres of the fibre bundle over 1R2\{0} 
defined by the function w = u2 + v2 ) to be such that: 

(i) for I pi> 2e they are canonical (in the sense defined above); 
(ii) for Ipi <e they are as in (7); 

(iii) the final (t = 2n) monodromy transformation 

a: KI'I-+KI61 

has on both pieces of Kldl the form (after replacing the co-ordinate () by 2n - (J on 
the second piece) 

a: (p, lJ)-+(p, lJ+ lJ(p», 
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Figure 92 

where the function O(p) has graph as shown in Figure 92. (Thus O(p)=n for 
I p I ~ 8; O(p) = 0 for p ~ 28 (i.e. on the first piece) and O(p) = 2n for p ~ - 28 (i.e. 
on the second piece), and as p varies from - 28 to 28 the curve (p, O(p)) winds 
once round the cylinder KI~I') 

PROOF. From the way in which the co-ordinate 0 was introduced on Kd \Sl 
(via (8) and (9)), it follows that 0 increases in opposite senses on the respective 
pieces, i.e. an increase in e corresponds to rotations of the respective halves 
of the cylinder in opposite directions. Hence by (7) the transformation 
Kldl ..... Kldl;' due to the traversal of the path IX from Ibl to Ibleil is given by 

e ..... o+ I (on the first piece), 

0 ..... 0- I (on the second piece). 

If we now change the co-ordinate 0 on the second piece, letting it vary from 
2n to 0 instead of 0 to 2n (so that the new co-ordinate is 2n less the old), and if 
we then patch together (in the manner indicated in Figure 93) the resulting 

O'(P) 
First piece 

t/21---_ ..... 

e Ze ,D 

Zrr 
2n - t/21----~ 

Second piece 

e 28 

Figure 93 
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transformation restricted to the region I pi < e, then we obtain a map 
K 1dl -+ K1d1eit given for 0:::;; t:::;; 2n by the formula 

(p, (})-+(p, (} + (}I(p)) 

where (}I(p) has graph as shown in Figure 93. (The continuity of this map on 
the circle sHp =0) follows from the fact that the (new) co-ordinate (} on the 
second piece now increases in the same sense around the cylinder as the co
ordinate (} on the first piece, but is out of phase with it by the amount 2n.) 

o 

24.7. The Picard-Lefschetz Formula 

We shall now apply the foregoing to the original (global) problem. Thus we 
have a complex analytic map f: M -+ Cpl :;: S2, where M is a compact 
manifold of complex dimension 2, and all of the singular points 
Zl"'" Zm E M of f (with corresponding singular values Wj= f(zj)) are non
degenerate, and we wish to compute the action of the monodromy transform
ation determined by a closed path aj' on the fibre 

F=Fw=f-l(w) eM 

above a regular value WE S2 (where aj and ware as in Figure 91). 
For each j = 1, ... , m, denote by 

qj E H 1 (Fw) = n d[n 1, nl] 

the cycle obtained by transporting the vanishing cycie Sl corresponding to 
the singular point Zj (and some sufficiently small (j) from the fibre above Wj - (j 

containing it, to the fibre above the general regular value w, via the 
appropriate lifts of the path Yj (indicated in Figure 91). 

24.7.1. Theorem. For eachj = 1, ... , m, the action on H 1 (Fw) of the monodromy 
transformation CPa,: Fw-+Fw, determined by the path aj=Yj-1IXjYj (where 
IX j( t) = (jell is the closed path around W j) is given by the following "Picard
Lefschetz formula": 

(cpa).: Hl(Fw)-+Hl(Fw), 
(CPa).(P) = p + (p 0 qj)qj, 

(10) 

where p is any cycle (i.e. element of the group Hl(Fw)), qj is the vanishing cycle 
(transported to the fibre F w) of the singular point Zj' and p 0 qj is the intersection 
index of these cycles (or more precisely of any maps of circles in general position 
in Fw representing these cycles). It follows that the transformations (CPa). 
preserve intersection indices; i.e. for any Pl' P2 E Hl(Fw), 

(11) 

PROOF. Consider the cycle p (the result of transporting p above Yj-l) in the 
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fibre F wr d' transversely intersecting the cycle ijj = sl (where c5 < e and e is 
sufficiently small for the topological picture of the fibre bundle determined by 
f in the e-neighbourhood of the singular point Zj E FWj to be determined by 
the quadratic form (d2f). ~ Ilf (see the beginning of the preceding subsection). 
In view of this and since it can be seen that the effect of traversal of the small 
circle (Xj on the homology class of the cycle p is determined by its effect in the 
vicinity of the singular point Zj (i.e. near the vanishing cycle contained in 
F"'j-d)' we may for our present purpose assume the monodromy transform
ation of Fw - d to be as described in Lemma 24.6.1. It is then not difficult to see 

J 

that in a neighbourhood of each point of (transverse) intersection of p and 
sl, such a monodromy transformation changes p by adding or subtracting a 
cycle homologous to sl according as the contribution of that point of 
intersection to the intersection index po Sl is + 1 or -1. (The transformation 
in effect winds p around the cylinder in one sense or the other exactly once for 
each point of intersection.) Hence the map of homology classes on F",.-d 

J 

induced by traversal of (Xj is given by 

[p] t--> [p] +(p a SA)[Sn 

(In particular from sA a sA = 0 (or more directly) we have [SA] t--> [SAl) 
Transporting all cycles from the fibre F"'r d to the fibre Fw (above the path Yj), 
we obtain the Picard-Lefschetz formula. 

We now verify (11). Write briefly qJ = qJaj; then we have 

qJ*Pl = Pl + (Pl a qj)qj, 

qJ*P2 = P2 +(P2 0 qj)qj, 

whence 

(qJ*Pl) a (qJ.P2) =(Pl + (Pl a qj)qj) 0 (P2 + (P2 0 qj)qj) 

= Pl a P2 +(Pl 0 qj)(qj 0 P2) + (Pl 0 qj)(P2 a qj) 

+(Pl oqj)(P2 oqj)(qjoqj), 

and the latter expression is equal to Pl a P2 by virtue of the skew-symmetry of 
the intersection index: P q = - q a p (see § 15.1). This completes the proof of the 
theorem. 0 

EXERCISE 

Find the analogue of the Picard-Lefschetz formula in dimensions n > 2. (The cases of 
even and odd n show an essential difference. What is it?) 

We conclude by considering briefly the following special case. Let 
M = Cp2 (=C2 U CP~, where CP~ is the one-dimensional complex projec
tive line "at infinity" in CP2), and take our function to be that determined by 
a polynomial Pn in two variables: 

Pn(Zl' Z2): C2 ..... C. 
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The fibre bundle with fibres the level surfaces Pn(Zl, Z2) = const. can be 
extended in the usual way to a bundle with bundle space all of CP2 (and base 
CP1) using homogeneous co-ordinates uo, ul , U2 where Zl = ut/uo, Z2 = U2/UO' 

EXERCISE 

Find all singular fibres and compute the monodromy transformations in the 
hyperelliptic case PI (ZI' Z2)= z~ - Q.(Z2)' 

Here (i.e. in the hyperelliptic case) the non-singular fibres are just the 
orientable surfaces of genus g (this much follows from Theorem 2.1.4 and the 
classification theorem for surfaces), where n=2g+ lor 2g+2. Hence (see for 
instance §19.4) the fundamental group of a non-singular fibre is defined by the 
presentation on generators ai' bi>"" ag, bg with the single relation 

b -lb-l b -lb- l 1 a1 1 all' .. ag gag g = , 

and the group Hl = nt/[nl' nl ] (isomorphic to £:2 g) can be thought of 
as the 2g-dimensional integral lattice (with generating "vectors" 
[al], [b l ], ... , rag], [bg]) on which the monodromy transformations act by 
translation; this is a consequence of the Picard-Lefschetz formula and the 
following formulae for the intersection indices (valid for the natural choice of 
generating cycles ai' bi): 

§25. The Differential Geometry of Fibre Bundles 

25.1. G-Connexions on Principal Fibre Bundles 

Already in Chapter 6 of Part I we began what was in essence the local study 
of connexions and curvature on fibre bundles. In order to proceed to the 
study of connexions and curvature (and the associated topological invariants) 
in the more general context of a non-trivial fibre bundle over an arbitrary 
manifold rather than a region of Euclidean space, we now define these 
concepts anew in appropriate invariant (i.e. co-ordinate free) and more 
general form. 

25.1.1. Definition. A connexion (or G-connexion) on a principal fibre bundle 
with total space E, base M, group G and projection p: E-+M, is a smoothly 
varying family of horizontal n-dimensional directions (where n = dim M) 
invariant under the natural left action of the group G on E. 

("Horizontal n-dimensional directions" on E were defined above (see 
Definition 24.2.1), as was the "natural left action" of G on E (see Theorem 
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24.1.1). We shall show below that the parallel transporting maps determined 
(as described in §24.2) by such an invariant family of horizontal directions 
necessarily belong to the group G, whence the equivalence of this definition of 
a G-connexion with the earlier one (Definition 24.2.4).) 

The simplest differential-geometric method of obtaining a G-connexion on 
a fibre bundle is that which (analogously to the proof of Lemma 24.2.2) 
exploits the existence of a left-invariant metric (gjj) on the manifold E (i.e. a 
metric with respect to which the transformations in G are all isometries). If 
such a metric exists (and we showed in §8.3 that it does exist at least in the 
case where the Lie group G is compact (and E also is compact)), then the G
connexion is defined by taking as horizontal direction at each point of E the 
n-dimensional subspace of the tangent space orthogonal to the fibre through 
that point. 

An alternative method, convenient for the definition of curvature and for 
other applications of connexions on fibre bundles, consists in defining the 
field of horizontal directions on E by means ofan equation of "Pfaffian" type, 
i.e. by means of a collection of differential I-forms on E (or, equivalently, a 
single vector-valued I-form). We shall now describe this method in detail. 

Generalizing the definition given in Exercise 13, §24.7 of Part I, we define 
for each element 't in the Lie algebra 9 of a Lie group G, a right-invariant 
tangent vector field ~. on G, by 

~.(g)= -(Rg).'t, gEG, 

where Rg: Y""'" yg, Y E G, denotes right multiplication by g. Each such vector 
field is preserved by the maps of tangent spaces induced by the right 
multiplications in G (and conversely each tangent vector field which is right
invariant in this sense clearly has the above form ~. for some 't E g. The map 
~.""'" 't defines a linear bijection, which is in fact a Lie algebra isomorphism, 
between the Lie algebra of right-invariant tangent vector fields on Gunder 
the bracket operation (i.e. commutation-see §23.2 of Part I) on vector fields 
on the one hand, and the Lie algebra of G on the other. (This isomorphism 
was noted in the context of the classical matrix Lie groups in Part I, §24.3 and 
Exercise 13 of §24. 7.) In view of this we may identify the Lie algebra of G with 
the Lie algebra of right-invariant vector fields on G. 

In terms of this realization of the Lie algebra 9 of G we now define a 
canonical I-form Wo on G, with values in 9 (so that it is strictly speaking a 
collection of I-forms), as follows: if ~ is any right-invariant tangent vector 
field on G, then Wo evaluated at the tangent vector ~(y) to the point y E G, is 
defined by 

where, in the manner described above, ~ is regarded as an element of g. (We 
shall also use the suggestive notation - (dg)g -1 for the form Wo; here dg is 
intended to denote a typical tangent vector ~(g) (where ~ is any right
invariant vector field and g any element of G), and right multiplication by g - 1 
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the translation of ~(g) back to the identity, yielding W) E g; see also below.) 
The form Wo has the following two properties: 

(i) wo(y, ~(y» =I 0 if ~ =I 0; 

(ii) dwo(y, ~l(Y)' ~2(Y»=WO(Y' [~1' ~2](Y»=[wo(Y, ~l(Y»' wo(y, ~2(Y»] 

= [~l' ~2]. 

The first of these is obvious, while the second follows directly by specializing 
Cartan's formula (25.2.3 of Part I). 

We now examine the effect on the form Wo of left translations of the Lie 
group G. Via the induced map, a left translation y 1-+ gy (y, g E G) sends each 
right-invariant vector field ~ on G to another such vector field lJ=g*~, 
denoted also by Ad (g)~. If G is a matrix Lie group then the induced map of 
tangent spaces sends the tangent vector ~(1) = y'(O) (where y(t) is an integral 
curve of ~) at the point y(O) = 1, to the tangent vector gy'(O) at the point g 
(where here the products are ordinary matrix products). On translating this 
tangent vector back to the identity, we obtain the vector gy'(O)g -1; it follows 
that the right-invariant vector field Ad (g)~ =g*~ is determined by g~(l)g- 1, 

just as ~ is determined by ~(1) = y'(O). Hence when G and 9 are given in matrix 
form, then as the notation suggests (see §3.l), the transformation Ad (g) is 
determined by the corresponding inner automorphism of G, i.e. is given by 
~I-+g~g- 1, for all ~ (representing the elements of g), where the multiplication 
is ordinary matrix multiplication. (In this case the notation Wo = _(dg)g-l 
also takes on a more literal meaning.) The effect of a left translation y 1-+ gy on 
the form Wo is given by 

25.1.2. Definition. A differential-geometric G-connexion on a principal fibre 
bundle p: E~M with group G, is a I-form w on E taking its values in the Lie 
algebra 9 of G, with the following two properties: 

(i) the "normalization" property: restriction of the form w to the fibre G 
yields the above-defined form Wo= _(dg)g-l; 

(ii) invariance property: under the natural left action of the group G on E (see 
Theorem 24.1.1) we have that 

g*w=Ad (g)w=gwg- 1, (1) 

where we are now using the notation gwg- 1 (for Ad (g)w), somewhat 
loosely for general (i.e. not necessarily matrix) Lie groups. 

25.1.3. Lemma. (i) Given any differential-geometric G-connexion w on a 
principal fibre bundle p: E ~ M with group G, the equation w = 0 defines a 
G-invariant family of horizontal directions on E (i.e. a G-connexion in the 
sense of Definition 25.1.1). 

(ii) Conversely, any G-invariant family of horizontal directions on E is defined 
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by an equation of the form w=o, for some differential-geometric G
connexion w. 

PROOF. (i) Since the restriction of the given form w to G is the form Wo which, 
as noted above, does not vanish on non-zero tangent vectors to G, it follows 
that at each point y E E, the solutions of the equation w(y, t)=O for the 
unknown tangent vector t to E at y, form a subspace of dimension n (the 
dimension of the base M) of the tangent space TyE to E at y, transversal to 
the tangent space to the fibre through y (i.e. modulo the latter, spanninr the 
whole of 1',E). Hence the equation w=O does indeed define a family of 
horizontal n-dimensional directions on E. The G-invariance of the family thus 
defined is immediate from the invariance property in Definition 25.1.2. 

(ii) For the converse, given a G-invariant family of horizontal 
n-dimensional directions on E, we wish to construct from it a I-form w which 
at each point y E E is a linear map from 1',E to the Lie algebra g of G, and has 
properties (i) and (ii) of Definition 25.1.2. Now since the structure group G 
acts on each fibre via the right multiplications R,: y ...... yg, and since by its 
definition the form Wo on G is right-invariant: 

R;wo=wo, 

it follows that the form Wo can be defined as a form on the fibre F" above any 
point x E M(F" = p-l(X)~ G) independently of the choice oflocal co-ordinate 
neighbourhoods of E with the appropriate direct-product structure (as in the 
definition of fibre bundle (in §24.I ». By its definition, the form wo, now 
regarded as a form on an arbitrary fibre F", determines at each point y E F" an 
isomorphism between the tangent space 1',F to that fibre at y, and the Lie 
algebra g: 

wo: 1',F-+g. 

The inherent transversality property of the given family {IR~} of horizontal n
dimensional directions is equivalent to the following direct decomposition of 
the tangent space 1',E at each y E E: 

1',E = IR~ ~ 1',F, 

furnishing the projection 

ll: T,E-+ T,F, ll(IR~)=O. 

We may then take as the desired form w the composite map Woll: 

1',E~ 1',F~g. 

This ensures that the restriction of w to each fibre F is wo. That the formula 
(1) holds for this w is a consequence of the facts that under the natural left 
action g: E-+E, g E G, we have firstly g*(llWo}=ll(g*wo) (in vi~w of the G
invariance of the given family {IR~} of horizontal directions), and secondly 
that the set of values of the form Wo transforms according to the formula (1) 
(see the discussion immediately preceding Definition 25.1.2). 0 
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25.1.4. Lemma. Any principal fibre bundle can be endowed with a differential
geometric G-connexion (in the sense of Definition 25.1.2). 

PROOF. Suppose that the structure of the given principal fibre bundle 
p: E-+M, is given (in the usual way; see the definition in §24.1) by specifying 
local co-ordinate neighbourhoods V" covering M, and diffeomorphisms 
cp,,:Gx V,,-+p-l(V,,). We may assume (by choosing if necessary a finer 
covering of M by charts) that there exists a partition of unity {t/I II} on M 
corresponding to this covering, i.e. smooth functions t/I II: M -+ IR such that 
O~t/I,,(x)~ 1, L"t/I,,(x) = 1, and t/I,,(x)=O for x outside V" (see the remark 
following Theorem 8.1.3 for conditions on M ensuring the existence of a 
partition of unity). On each product G x V" ~ p-l(V,,), choose any 
differential-geometric G-connexion w" (for instance by taking the horizontal 
n-dimensional direction at each point cp,,(g, x) of cp,,(G x V,,) to be the tangent 
space to cp,,(g x V,,) at cp,,(g, x)). The desired G-connexion w on the whole of E 
may then be taken to be 

where the functions p*t/I,,: E-+IR are defined for each y E E by 
(p*t/I ,,)(y) = t/I ,,(P(y)), i.e. are obtained by "lifting" the t/I" from the base. 
Clearly p*t/I" vanishes identically outside p-l(V,,), so that the value of the 
form w at a tangent vector r to a point Y E E is given by 

w(y, r)= L (p*t/I,,)(y)w,,(y, r), 
" 

where it is understood that if y ¢ p-l(V,,), then since (p*t/I,,)(y) =0, the 
contribution of the ath summand is zero. Since each w" yields Wo on 
restriction to the fibre G, the restriction of w to any fibre Fx is 

L t/I,,(x)wo=wo· 
" 

That w has property (ii) in Definition 25.1.2 is similarly immediate from the 
fact that each W II has that property (by definition). This completes the proof of 
the lemma. 0 

EXERCISE 

Show that the set of connexions on a fibre bundle is path-wise connected. 

Locally (i.e. above each local co-ordinate neighbourhood V" of the base M, 
with co-ordinates x!, ... , x: say) a G-connexion w on E (or rather its 

'I' 
restriction to the trivial principal bundle E,,=p-l(V,,) ~ F x V" (F=G)) can 
be given in terms of a 1-form A defined on the base V" (or any particular 
cross-section of E,,), taking its values in the Lie algebra 9 of G, as follows: In 
terms of the co-ordinates (g, x) on E" the relationship between the form 
A = A I' dx~ and the form wi E. is given by 

w(g, x)=wo(g)+gAix)g-l dx~, (2) 
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where roo is the above-defined canonical I-form on G with values in g, and 
where the form of the term gA,,(x)g - 1 dx~ = (Ad g)A,,(x) dx~ is determined by 
condition (1), which ro, as a G-connexion, must satisfy. In "invariant" (i.e. 
co-ordinate-free) notation (2) may be re-expressed as follows. The product 
structure of E,. is defined by a pair of "co-ordinate" maps 

U,.?E,.~G=F 

(yielding "co-ordinates" (p(y), q(y» for each y e E,.); in terms of these maps 
the formula (2) may be re-written invariantly as 

rolEa = q*(roo) + qAq - 1, 

or 

ro(y) = roo(q(y)) + q(y)A(p(y»q(y)-l, 

We wish to discover the transformation rule for the various I-forms A, 
determined by a change of cross-section over the regions of overlap of the 
various Ua on which they are defined. Each cross-section (see Definition 
24.5.1) 

pI/! = 1, 

of the fibre bundle Ea over Ua, determines a distinct co-ordinatization of the 
bundle Ea as a product, in the sense that for each x e Ua we may take 
I/!(x)(e F,J, regarded as an element of G, as the origin of co-ordinates on F,,; a 
general point y of F", will then be assigned, under the co-ordinatization 
determined by I/!, the co-ordinates (g, x) where gl/!(x) = y (so that in particular 
I/!(x) will be assigned co-ordinates (1, x». Thus the corresponding projection 
map q: Ea-G, will for each y E Ea be given by q(y)=g e G, where g is defined 
by gl/!(x) = y, ye F",. It follows that two different cross-sections I/! 1 and I/! 2 of 
Ea will give rise to two different co-ordinatizations of Ea as a product, the 
distinction being determined for each point x E Ua by the transformation 
g(x) e G defined by 

(3) 

Suppose now that the two cross-sections I/! I' I/! 2 are cross-sections of the 
trivial bundle E,.p=p-l(U,.p) where Uap=Ua.r'I Up, and that as before the 
change of sections is achieved as in (3) by means of transformations g(x) E G, 
x e Uap, where now we are thinking of g-l(X) as given by the transi
tion function T"P: UIlP-G. Then denoting by qi: E,.p-G the projection 
onto G corresponding to the co-ordinatization of EIlP as a product, afforded 
by I/!;, i = 1, 2, it follows that on the region E,.p the form ro (our original 
G-connexion on E) can be expressed in two ways: 

roiEIl/l =qt(roo)+qIA~1)ql1 dx" 

=q~(roo)+q2A~2)q21 dx". 

(4) 
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From the equality of these two expressions we deduce the following 
transformation rule (or "gauge transformation"; cf. §41 of Part I) for the 
components A" on (cross-sections above) each region of overlap Ua.P: 

(5) 

Thus this formula determines how the local "connexions" A are to be "glued" 
together to give the global G-connexion ill. (We invite the reader to carry out 
the detailed derivation of the formula (5) from (4).) 

Note that if the cross-section 1/12 can be chosen so that A~2)=0, then the 
formula (5) simplifies to 

A(1)( )=_ og(x) -1( ) 
"x ox" g x. 

Those G-connexions ill for which this can be achieved are called trivial 
connexions. 

25.1.5. Theorem. Let ill be any differential-geometric G-connexion on a prin
cipal fibre bundle p: E --+ M with group G, and let y be a piecewise smooth path in 
the base M. Then each right translation of G determines a parallel transport of 
the fibre along the path y. 

PROOF. Suppose the arc y has the form x = x(t), a 5, t 5, b. Corresponding to 
each point go of the fibre p-l(x(a»~G, we seek a horizontal path y in the 
total space, beginning at go and covering y. We may confine ourselves to the 
case where y lies wholly in a single chart Ua. of M (for which we have of course 
p - 1 (Ua.) ~ G x Ua.): in the general case the path y is obtained by piecing 
together the arcs above the Ua. by means of the transition functions Aa.p. In 
terms of the local co-ordinates (g, x), g E G, x E Ua.' for the space Ea. = P - 1 (Ua.), 
the desired curve y will be given by (g(t), x(t» where g(t) is yet to be 
determined. Since y is to be horizontal (i.e. to have horizontal tangent vector 
(g(t), x(t»), and since by Lemma 25.1.2 the horizontal directions are given by 
ill = 0, we must have, using (2), that 

illC~(t), x(t» = - g(t)g-l(t)+ x"(t)g(t)Aix(t»g-l(t) =0. 

Denoting by B(t) the function with values in the Lie algebra g, defined by 
B(t)=x"(t)A,,(x(t», we conclude that the desired function g(t) is a solution 
of the ordinary linear differential equation 

g-gB=O. 

Since the theory of ordinary differential equations guarantees (under con
ditions fulfilled by the present context) the existence and uniqueness of a 
solution g(t) of this equation, defined for all t E [a, b] and satisfying the initial 
condition g(a) =go E G, we at once infer that the desired parallel transport 
exists. It remains however to show that such parallel transports are 
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determined by the right translations of the group G; this is immediate from 
the following lemma. 0 

25.1.6. Lemma. Given a function B: [a, b] ..... g, the (unique) solution g(t), 
a~ t ~ b, of the equation g- gB=O, satisfying the initial condition g(a)=go E G, 
has the form g(t) =gof(t), where f: [a, b] ..... G is independent of go. 

PROOF. If B(t) does not depend on t, i.e. B(t) = const. E g, then the 
equation g=gB has the explicit solution (with the prescribed initial con
dition) g(t)=go exp[(t-a)B], where exp: g ..... G is the exponential map (see 
§3.l), and this solution is of the required form. 

If on the other hand B(t) is not constant we can nonetheless exploit 
the above explicit solution in the following way. For arbitrary t we subdivide 
the interval [a, t] into N small subintervals with end-points denoted by 
a=tO<tl < ... <tN=t. We then have 

g(t1)=gO+g(tO)(t1-tO)+0(tI-tO) 

=g(to)+go(tl-to)B(to)+O(t1 -to) 

=g(to) exp[(t 1 -to)B(to)] +o'(tl -to). 

Iterating this for the N intervals [ti-I, tJ, we obtain the following N 
approximations, valid to within o(t j - ti - I ), i = 1, ... , N: 

g(tN) ~ g(tN - tl exp[(tN - tN- tlB(tN- 1)]. 

It follows that g(t)=gof(t) where 

f(t) = lim exp[(tN - tN- ilB(tN - ill .. exp[(t1 - to)B(to)]. 
N .... oo 

II, -/j-11 .... 0 

Since each factor of the expression under the limit sign belongs to G, so does 
the product, and therefore also the limit. This completes the proof of the 
lemma and with it the theorem. 0 

25.1.7. Corollary. For differential-geometric G-connexions on principal fibre 
bundles, Lemma 24.2.3 (on the existence of (unique) horizontal covering paths) is 
valid without the assumption that the fibre be compact. 

We conclude' by noting that the presence of a G-connexion allows the 
definition of the group of holonomies (cf. §19.1) of the bundle as the image 
under a homomorphism associating with the loops in O(xo, M) certain (in 
general not all) right translations of G. 
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25.2. G-Connexions on Associated Fibre Bundles. Examples 

We shaH now discuss, in invariant terminology, connexions on arbitrary fibre 
bundles. Thus suppose we are given a fibre bundle PF: Er-+M with structure 
group G acting as a group of transformations of the fibre F, and let p: E--+M 
be the principal fibre bundle with which it is associated. Given a G-connexion 
W on E we wish to define in terms of it an "associated" connexion W F on 
EF. The form WF' which is to take its values in the tangent spaces at the 
points of F, is constructed as follows. We first define a form w~ on F by setting 
w~(y, r) = r for all Y E F and all tangent vectors r to F at y. We then require 
of the form WF that its restriction to each fibre F be just w~, whence it follows 
that in each region pi l(Va) ~ F x Va, in terms of the product co-ordinates 
(y, x), Y E F, x E Va' X = PF(Y), the form WF needs must be given (invariantly) 
by 

(6) 

where the form A is yet to be defined, and where IJ is an arbitrary tangent 
vector to pi l( Va) c EF at(y, x), with components lJy and IJx(1J = lJy + IJx) in the 
tangent spaces to F and Va respectively. In terms of co-ordinates Xa on the 
chart Va C M, we may write the form A as AIl(y, x) dx~. 

It remains to define A, or, equivalently, the components AIl(y, x). Observe 
first that each element of the Lie algebra 9 of G naturally determines, via the 
given action of G on the fibre F, a tangent vector field on F (or in other words 
a (directional) differential operator on scalar functions defined on F); for if 
g(t) is a one-parameter subgroup (see §3.1) of G with g(O) = 1, the identity 
transformation of F, then the vector field ~on F determined by the one
parameter group g(t) of diffeomorphisms (see §23.1 of Part I) is for each Y E F 
given by 

d 
~(y)= dt [g(t)(Y)]lr=o, 

which is determined by the element (d/dt)g(t)lr=o of g. (To put it intuitively, 
each element of 9 can be regarded as an infinitesimal transformation of F, 
naturally determining a tangent vector field on F.) 

We need to define each of the components AIl(y, x) as a tangent vector to 
F. In the notation of the preceding subsection, let A/l(x) denote the 
"connexion" on Va determined by the form W on the principal bundle (the 
similarity of the notation A/l(Y' x) with this being intentional!); then for each 
x EVa, A/l(x) is an element of g, and so determines, in the manner just 
described, a tangent vector field ~ on F. We define Aiy, x), where PF(Y)=X, 
to be the value of ~ at y: 

A/l(y, x) = ~(y), (7) 

thereby completing the definition of W F in terms of w. 
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Analogously to the case of the principal bundle (see Lemma 25.1.2), the 
equation (OF=O (with (OF defined invariantIy by (6» defines an n-dimensional 
horizontal direction JR~ at each x E EF , the total space of the associated 
bundle. 

We now examine in detail the case of vector bundles, i.e. fibre bundles 
whose fibre F ~ JRm has the additional structure of a vector space, on which 
the bundle group G acts linearly. In this case the elements of the Lie algebra 9 
become identified (in the manner described above) with linear vector fields e 
on F, and can therefore be regarded as linear transformations A~: JRm--.JRm. 
Hence in terms of any basis for JRm, yieldinf co-ordinates til, ... , tim, A~ can be 
expressed as a matrix (a~), and the field e is given at tI = (til, ... , tim) by 

ei =a~tlj. 

It follows that by their definition (see (7)) each of the fields A,,( , x) (with value 
A,,(tI, x) at tI E JRm) can in this context be put into matrix form: 

Ai ,x)=[A,,( ,x)D=(a},,). 

The upshot is that in a vector bundle with fibre JRm a G-connexion is defined 
(locally) by a matrix depending on x and p.: 

[A,,( ,x)]~=a}", i,j= 1, ... , m; Jl.= 1, ... , n=dim M, 

or as a matrix-valued form a}" dx". 
The particular case where our vector bundle is the tangent bundle over M 

(which has fibre JR", i.e. m = n) was considered (though of course over less 
general base spaces) in Part 1. In line with the terminology introduced there 
(see in particular §§28.2, 41.3 of Part I) we speak of the torsion tensor on M: 

and say that the connexion is symmetric if T~/=O. Given a connexion on the 
tangent bundle over M, the corresponding parallel transport of the fibre 
along a path in M turns out to be a linear transformation (cf. Theorem 29.1.3 
of Part I). In terms of local co-ordinates on each chart V« c M, a connexion 
on the tangent bundle determines operations of covariant differentiation on 
the sections '" of the bundle: 

.I,i a",i(x) i J 
V"." (x)= ~ +aj"(x),,, (x), (8) 

and thence the operation of directional covariant differentiation Va = t5"V" in 
the direction of any tangent vector 15 = (15 1, .•. , 15") to the base M (cf. §29.1 of 
Part I). The fact that in general the operators V" do not commute amongst 
themselves leads to the curvature/orm fl,,, = [V" V,,] (cf. §§30.l, 41.2 of Part I). 

Given a smooth path y(t), O::;;t::;; I, in M, and a connexion on the tangent 
bundle over M, the linear operator defined by the corresponding parallel 
transport of the fibre along the path from y(O) to y(l) is sometimes called (for 
reasons to be given below) the "chronological exponential operator" and 
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denoted by 

Texp{f: (-V~t)+ :t)dt. (9) 

Here T[Al(t)A2(t')··· J is the so-called "chronological product" of two or 
more non-commuting, time-dependent operators: 

T[A (t)A (t')J= {A 1(t)A 2(t') for t>t', 
1 2 A 2(t')A 1 (t) for t < t'. (10) 

The expression (9), with an arbitrary time-dependent linear operator 
A(t) in place of - V ~t) + d/dt, is defined as follows: subdividing the path y(t) 
into a variable number N of (small) subintervals with end-points 
0= to < tl < t2 < ... < tN = 1, we set 

Texp { fl A(t) dt} = lim T{exp[(tl -to)A(to)] Jo N"'oo 
11,-/,_,1-+0 

(11) 

x exp[(t2 - tdA(t1)]··· exp[(tN - tN - 1)A(tN - dJ}. 

On putting A(t) = - V M + d/dt, we obtain, as will be shown below, the linear 
operator defining parallel transport along y(t). 

EXERCISES 

1. Establish the following series representation for a continuously time-dependent 
linear operator A(t): 

T exp {t A(t) dt} = 1 + f: A(t) dt + ~ f: t T(A(t')A(t"» dt' dt" + .. . 

+2. CI ... CI T(A(ttl ... A(t.»dtl ... dt.+ .... (12) 
n! Jo Jo 

2. Show that the operator T exp J~ A( t) dt = B( t) say, satisfies the equation 

dB dt = [A(t), B(t)], 

and that the vector "(t)=B(t),,o satisfies the equation 

d,,(t) = A(t),,(t). 
dt 

(13) 

(14) 

Resuming the justification of our claim that the expression (9) is just the 
parallel transport operator, we recall first that as we formerly defined it (in 
§29.l of Part I) the result of parallel transport is given by the vector (field) '7(t) 
determined by 

'7(0)= '70' 
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or, equivalently, by 

d'1i(t). . -at + aj,,(t)x"(t)'1J(t) = 0, 1'/(0) = 1'/0' 

where y(t) = (x1(t), ... , xn(t)). Thus the operator VHI) has the form 
d/dt + a~,,(t)x"(t), so that I'/(t) satisfies equation (14) with 

A(t)= - Vy(t)+ :t = -a}ll(t)xll(t). 

Hence by Exercise 2 above the operator (9) is the parallel transport operator, 
as claimed. 

We now illustrate both this section and the preceding one by consi
dering the simplest (but none the less important) sort of example, namely 
that of a fibre bundle with group G= U(I)~SI (or, equivalently, the 
isomorphic group SO(2)). The Lie algebra 9 is in this case just !R1 (with trivial 
commutation), and in terms of the angular co-ordinate cp, 0:$ cp < 21t, on 
SI=U(I)={eiq>105cp<21t}, the I-form Wo defined in the preceding sub
section is given by Wo = -(1/21t) dcp (where the 1/21t is merely a normalizing 
factor). The locally-defined forms gAllg- 1 dxll (i.e. defined on (the cross
sections above) each chart Ua of the base M) simplify to A" dx", so that 
the corresponding G-connexion w on our bundle is given by 

-1 
w=wo+gA"g-1 dxll=-r,;dcp+Alldxll. (IS) 

Of course as in the general case this G-connexion w enjoys the invariance 
property (1), and the equation w=o (which since w is scalar-valued represents 
just a single equation of Pfaffian type) defines hyperplanes in E transverse to 
the fibres. By (5) above the gauge transformation is given by 

og(x) 
AIl(x)-+A,,(x)- -::)- g(x)-l, 

uxll 

where here (og(x)/oxll)g(x) - 1, like A,,(x), is for each x an element of 9 = !R 1 • 

Putting g(x) = eiq>(x), we calculate that (og(x)/oxll)g(x) -1 = i(Ocp/OXIl), yielding 
the co-ordinate ocp/oxll E 9 under the co-ordinatization of G by cpo Hence in 
the present context the gauge transformation reduces to the subtraction of a 
gradient term: 

Taking the group G in the form U (1) = {eiq> I 0:$ cp < 21t }, we find that the 
covariant differential operator, operating on complex scalar fields (i.e. on 
cross-sections of fibre bundles with one-dimensional complex fibre CIon 
which U(l) acts by multiplication) has the form 

o . 
V Il = axil + IA,,(x), (16) 
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where here A,,(x) is real. (The factor i appears for the simple reason that the 
Lie algebra of V(I), realized as above, consists of the purely imaginary 
complex numbers (which act on C1 via multiplication).) The "curvature form" 
of the connexion is obtained, as in the general case, by taking the commu
tators of the operators V" and V v for all jJ. and v (cf. the conclusion of §25.3). 

25.3. Curvature 

We consider first the case of a complex analytic fibre bundle with one
dimensional fibre C 1, structure group G = C*, and base an n-dimensional 
complex manifold M on each of whose charts Va there are given local co
ordinates z~, ... , z:. The structure of the bundle is determined (as usual) by 
transition functions, in turn given by functions 

(17) 

defined on the regions of intersection VaP = Va II V(J' and taking their values 
in G = C*; these functions are, by assumption, complex analytic. 

Digressing for a moment, we take the logarithms of the functions (17) 
(defined only to within an integer mUltiple of 27ti): 

(18) 

If we assume (as we shall both here and subsequently) that the regions of 
intersection VaP are simply-connected (i.e. 7t 1(Vap)= 1), then we may take 
aaP=ln TaP(z) as defined unambiguously on each VaP' by fixing on a single 
branch of the logarithm. On the intersection Va(Jy = Va II Vp II Vy of three 
charts we have (by §24.l(1)) TaPT(Jypa = 1, whence 

aap + apy + a ya = 27tina(Jy' 

for some integer naPr (Note that in defining these integers we did not use the 
assumed analyticity ofthe function TaP.) We shall later show how to construct 
from the family { naPy} (called a "cochain"), where (1.f3y runs over all triples for 
which Vapy is non-empty, a certain topological invariant of the fibre bundle. 
In the case that the base M is one-dimensional this topological invariant is 
defined simply as the residue modulo 2 of the integer 

n= " n 1..- apy' (19) 
a<(J<y 

where the charts Va have been arranged arbitrarily in a sequence V 1, V2 , ••• , 

and it is assumed that no four distinct Va intersect (i.e. Va, II Va, II Va, II Va. 
is empty for distinct (1.1' (1.2' C(3, (1.4)' 

EXERCISE 

Prove that the residue modulo 2 of the integer defined in (19) is indeed independent of 
the particular data (i.e. local co-ordinate neighbourhoods and transition functions) 
determining the structure ofthe fibre bundle (or, in other words, that it is preserved by 
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fibre bundle equivalences). Calculate this invariant for the Hopf bundle" over Cpl 
and for its tensor powers "k (see Example (a) of §24.3, and §24.5). 

Resuming the main line of development of our topic, we first observe that 
the Lie algebra of the structure group G = C + ~ SI X IR + of our complex 
analytic line bundle is just the (commutative) Lie algebra C1; for if 
w(t)=a(t)ei,,(tl, a(t»O, is a curve in G such that w(O) = 1, i.e. a(O) = 1, qJ(O) =0, 
then W(O) = d(O) + iqj(O). This also shows that the form 000 defined in §25.1 is 
given by -d In w, WE C*. A G-connexion on our fibre bundle will by defini
tion be given locally (i.e. in terms of the co-ordinates ZIl' ill on the regions Ull of 
the base M) by 

(20) 

If in the present context we impose the additional requirement that the 
connexion be given locally in the form 

d'f. oj,. d 1 
00 = 000 + Il = 000 + ozl z, (21) 

for some complex-valued function j,. (where d' (and the cognate operator d" 
satisfying d' + d" = d) are as defined in Part I, §27.1), i.e. that 

A"() oj,. 
/J Z =-;-;t, 

uZIl 

(22) 

then by the formula (5) the difference d'fll-d'ffJ on the region of overlap 
UllfJ=UllnUp must be given by 

(23) 

If the regions UllfJ are simply-connected, then as above we can choose on each 
one a particular branch of the logarithm function to ensure that In T"fJ is 
single-valued; then using (dT"fJ)(T"fJ) - 1 = d (In T"fJ), equation (23) takes on the 
"gradient" form 

d'j,. - d'/p = d In T"fJ = dallfJ' (24) 

where, as before, allfJ=ln T"fJ. Thus a G-connexion of the form (21) will be 
determined once we have chosen (not necessarily analytic) functions j,. 
(assuming they exist) satisfying (24). 

Now since the functions T"fJ are by assumption analytic, so also are the 
aIJP' i.e. d"alJfJ =0 (by definition of analyticity; see Part I, §12.1). This and (24) 
together yield 

d'd"j,.-d'd"/p= -d"(d' +d")alJfJ=O, 

where we have used (d')2 =(d")2=(d' +d")2 =0 and d'd" = -d"d' (see Part I, 
Corollary 27.1.2). Hence the form n=d'd"j,. is independent of the particular 
index ex, i.e. this expression defines n as a form on the whole of M; we call n 
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the "curvature form" (or simply "curvature") determined by the connexion w. 
Thus the curvature is given locally by 

" a2ia . . 0= L...;l i ;l_' dz~ /\ di~. 
i.j uz~ uz~ 

In the 2-dimensional case (i.e. the case n = 1 of one complex dimension) this 
becomes (on each chart V~) 

(25) 

Since a2/az az is just the real operator .6 (the Laplace operator), and 
dz /\ di = - 2i dx /\ dy, it follows that for n = I the real and imaginary parts 
of the form 0 are defined unambiguously, and moreover since dO==O, as 
closed forms. It will subsequently be made clear that Re 0=d(01) for some 
(real) form 0 1, whence by the general Stokes formula (see §8.2) 

fM ReO=O. 

Finally we note the obvious fact, obtaining for every n, that if the functions 
ia are analytic then 0 == O. 

We turn next to the case of a fibre bundle over a real manifold M, with 
structure group G=V(l)~st and fibre ct. The transition functions on the 
regions of overlap here have the form T~II(x)=eif/>.p(X). It follows much as in 
our previous examination of fibre bundles with group V(l) (at the end of the 
preceding subsection) that a G-connexion w on such a bundle is determined 
by I-forms Wa on the charts V«, whose differences on the regions of overlap 
Vap are given by 

where qaP(x) = iCPaP(x) = In Tall(x). The "curvature" 0 is then defined on each 
Va by 

2niO = dwa, (26) 

(where 2ni is simply a "normalizing" factor). Then (somewhat as in the 
previous case) since we have on each region of overlap Vall that 

dWa - dwp = ddqaP == 0, 

we see that the curvature 0 is well defined by the formula (26). 
The curvature form 0 may be defined alternatively, in invariant fashion, 

by the formula 
I 

p*O= -2 .dw, 
7tI 

(27) 

where p: E-+M is the projection map of the fibre bundle. To verify that this 
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definition of fl is equivalent to that given by the formula (26), it suffices to 
recall (from the end of the preceding subsection) that locally, i.e. above each 
chart UIZ' we have w=WO+P*WIZ' where Wo= -(1/2n) dqJ, whence by (26) (and 
since d2 =0) 

dw = dp*wo = p*(2nifl). 

Having defined the curvature form for two rather special (though 
important) kinds of fibre bundles we now define curvature and investigate its 
properties in the general situation of an arbitrary (real or complex) fibre 
bundle p: E-+M (with group G and fibre F), on which there is given a 
connexion w. As has been noted before, via the n-dimensional horizontal 
direction IR; which it determines at each point Y E E, the connexion gives rise 
to the direct decomposition T,E = T,F (B IR; of the tangent space T,E at y, and 
consequently to the projection map 

H(T,F) =0. (28) 

25.3.1. Definition. Let Wq be any q-form on the total space E of a fibre bundle 
endowed with a connexion w. The horizontal part of the q-form Wq is the q
form HWq whose value on a q-tuple ('t'l"'" 't'q) of tangent vectors to E at a 
point is given by 

(29) 

It is clear from this definition that if one or more of the vectors 't'; is 
"vertical" (i.e. tangent to a fibre), then HWq('t'l"'" 't'q)=O. Thus certainly the 
restriction of HWq to a fibre is always zero. 

25.3.2. Definition. The curvature form flE on the total space E of a (principal) 
fibre bundle endowed with a connexion w, is defined by 

(30) 

25.3.3. Theorem. If W is a connexion on a principal fibre bundle and flE the 
corresponding curvature form, then the following "structural equation" holds: 

(31) 

where the commutator [w, w] is as defined below. The curvature form has the 
same invariance property as W under the natural left action of the structure 
group G on the total space E: 

(32) 

Before giving the proof we need to define the commutator of a pair of 
forms taking their values in a Lie algebra. (Recall that the forms OJ and flE 
figuring in the theorem take their values in the Lie algebra 9 of G, or rather in 
the algebra of right-invariant vector fields on G, which we identified with 9 
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(see §25.1).) Thus the commutator of a pair wP' Wq of such forms, ofranks p and 
q respectively (or more generally the product of a pair of forms with values in 
any algebra equipped with a bilinear multiplication) is defined by 

(33) 

where t 1> ••• , t p +q are tangent vectors at an arbitrary point of the underlying 

space (in our case E), (p ; q) is the binomial coefficient (p + q)!/p! q!, and (1 is 

the permutation of indices given by 

p-:q). 
Jq 

(34) 

In particular the commutator of a pair of I-forms w, 6J (p=q= 1) is defined 
by 

and if w = 6J this simplifies further to 

[w, w ](t 1> r2) =t([w(r d, w(r 2)] - [w( r2), w(r 1)]) = [w(r d, w( rz)]. (36) 

PROOF OF THE THEOREM. To verify the structural equation (31) it suffices to 
show that it holds on each of the regions Em = p-1(Um) above the charts Um. In 
terms of a local system of co-ordinates x~ (on Um), the connexion is, in the 
notation of (2), given on the region Em C E by the formula 

(37) 

where A=A"dx" and Wo= _(dg)g-1. For convenience of calculation we 
assign to Em, via the identification €Pm: G X Um -+ P - 1 (U,,) = Em' the co-ordinates 
(g, x) of the product G x U". In terms of these co-ordinates a basis for the 
tangent space to Em at the point (1, x) is furnished by the basis vectors A" 
(interpreted as usual as elements of the Lie algebra of G) for the tangent space 
to Gat 1, and o,,=O/ox" for the tangent space to Um at x; a typical tangent 
vector to E" at (1, x) will then be represented in the form (e" A,., r,"o,,). 

Now by Lemma 25.1.3 the n-dimensional horizontal direction 1R(1,xj at 
(1, x) is the subspace of tangent vectors r to E satisfying w(r)=O. Since at the 
point (1, x) we have by (37) that 

w(A", o,,)=wo(A,,)+A,,= -A,,+A,,=O, 

it follows that the vectors (A", 0,,) form a basis for lR('l,Xj, and further that, by 
definition of the projection H, 
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Hence 

HWo(A", 0) = wo(H(A", 0»= -AI" 

HA(O, o,,)=A(H(O, 0,,»= A", 

so that we may write Hwo= -A, HA=A. If we now calculate dw from (37) 
(assuming if you like that G and 9 are comprised of matrices) we obtain the 
following formula (appropriately interpreted): 

dw =dwo +(dg)g-l(gAg-i )_(gAg- i )(dg)g-i + g(dA)g-l. 

In view of the definition of the commutator of a pair offorms (see above), and 
the fact (established at the beginning of §25.1) that dwo = [wo, wo], this 
becomes 

dw= [wo, wo] - [wo, gAg-i] + [gAg-i, wo] +g dAg- i, (38) 

whence, putting g= 1, applying H, and using -Hwo=A =HA, we obtain 

Hdw=[Hwo, HWo]-[Hwo, HA] +[HA, HWo]+H dA=[A, A]+dA. 
(39) 

Now since the operators Hand d preserve the invariance property of w 
(under the left action of G on E), so that g*(Hdw) = Ad (g)H dw, it follows 
from (39) that for all g (not just g= 1) 

H dw=nE=g(dA + [A, A])g-i. (40) 

From this and (37) we obtain finally 

dw= -[wo, wo] -2[wo, gAg-i] -g[A, A]g-i +nE=nE-[W, w], 

as required. The proof is completed by observing that the second statement of 
the theorem is a consequence of the aforementioned preservation of the 
invariance property of w by the operators Hand d. 0 

If we "lower" (i.e. project) the curvature form nE onto the base M, we 
obtain as a result a form n, which in view of(39) is given locally (on each chart 
Va of M) by 

_ (OA. oA" )". - ox" - ox. + [A", A.] dx 1\ dx , (41) 

whence it follows easily (as in §41.2 of Part I) that the coefficients n". are just 
the commutators [V"' V.] of the appropriate covariant differential operators 
(cf. §25.2). Under a gauge transformation g(x) we see from (40) that 

(42) 

Applying the operators d and H to the form nE on E we obtain (via the 
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structural equation OE=dw+ [w, w]) the "Bianchi identities" (cf. §30.5 of 
Part I) 

dOE=2[w,OE]' 

HdOE=O. 
(43) 

For the projected form 0 it is also a straightforward calculation to show that 
on each chart U~ of the base M we have the further "Bianchi identity" 

DO=dO+ [A, 0] =0. (44) 

25.4. Characteristic Classes: Constructions 

For the one-dimensional complex fibre bundles p: E--M with (commutative) 
structure group G=U(I)~Sl or G=C*, considered in the preceding two 
subsections, the structural equation (31) reduces to OE=dw (and the Bianchi 
identities (43) reduce to the consequent closure of the curvature form, i.e. 
dOE=O) since here the commutativity of the Lie algebra 9 entails the vanish
ing of commutators of forms taking their values in g. For the same reason the 
equation (44) simplifies to dO = 0; moreover since in this context gOg-l == 0, 
the form 0 is unambiguously (i.e. gauge-invariantly) defined on M. (We shall 
refer to 0 also as the "curvature form", since OE can be retrieved from it: 
p*O = 0E') Although as just noted 0 is here closed (and OE exact) it can (and 
often does) happen that 0 is not exact (this will be discussed in the sequel). 
The difference between two such forms will always however be exact, as we 
shall now see. 

25.4.1. Lemma. If wand ware two connexions on afibre bundle with structure 
group G= U(l)~Sl or G=C*, then the difference between the corresponding 
curvature forms 0 and n on the base M, is an exact form; i.e. there is a form u 
such that 

O-n=du. 

PROOF. We have p*O=OE=dw and p*n=nE=dw. From the formula (2) or 
(6) (with the commutativity of G taken into account) we obtain 

w-w=(wo+AI' dxl')-(wo + All dxl') = (All-AI') dx", 

which expresses w-w in the form p*u with u a form on M. Hence O-n=du, 
completing the proof. 0 

25.4.2. Corollary. Let 0 and n be as in the lemma and suppose that P is a two
dimensional, closed (i.e. compact and without boundary), oriented submanifold 
of the base M. Then the integrals Jp 0 and Jp n are equal; consequently 
the quantity J pO is independent of the choice of connexion on the fibre bundle 
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p: E-+M (with group U(1) or 1[*), and is thus a topological invariant of the 
bundle (and P). 

PROOF. By the general Stokes formula (§8.2), since P has no boundary we have 

r (0-0)= r du= r u=O. 
Jp Jp JoP 

o 

Having prepared the ground somewhat with these particular groups, we 
now turn our attention to the general situation of a fibre bundle with 
structure group an arbitrary matrix Lie group. As before we suppose that a 
connexion OJ is given on the fibre bundle, giving rise to a "curvature form" 0 
on each chart Ua of M (with co-ordinates Xi), which transforms under gauge 
transformations as in (42): 

O-+g(X)Og-l(X). 

It follows from this that since the trace of a matrix is unaffected by 
conjugation, so that in particular 

tr 0 = tr(gOg-l), 

the scalar-valued 2-form tr 0 is defined gauge-invariantly on the whole 
base M. 

It is readily verified that d(tr!l) = tr(dO) (in fact that this holds for 
any matrix-valued form). From this and the Bianchi identity (44), namely 
dO = - [A, 0] (on each chart Ua of M), we deduce that the form tr 0 is closed: 

d(tr 0) = tr(dO) = -tr[A, 0] =0, 

where the final equality follows from the simple fact that the commutator of a 
pair of matrices has zero trace. 

Given another connexion w on the fibre bundle, we obtain from the 
structural equation (31) that 

d(OJ-w)=dOJ-dw=OE-OE-[OJ, OJ] + [w, w], 

whence, taking traces of the various matrix-valued forms appearing here, and 
using the fact that for such forms the taking of traces commutes with the 
operator d and with the pullback p*, we deduce that 

d(tr OJ-tr w)= tr OE-tr OE= p*(tr n-tr (1). 

From this and the local equations 

tr OJ = tr OJo + tr(p* A), tr w = tr OJo + tr(p* it), 

valid on each Ua C M, we finally infer, as in the proof of Lemma 25.4.1, the 
exactness of the form tr n - tr (1: 

tr n-tr (1=du 

for some form u on M. We conclude that the integral of the 2-form tr n over a 
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given 2-dimensional, closed, oriented submanifold of M is a "topological 
invariant" (of the fibre bundle and the given submanifold of M) since it is 
independent of the connexion w. 

We next express our locally-defined, matrix-valued 2-form n in the usual 
differential notation, in terms of co-ordinates x" on each chart Va of M: 

n=n dx" 1\ dXV=(qi.) dx" 1\ dxv , IlV J IlV , 
(45) 

similarly the locally-defined, matrix-valued I-form A (for which we may use 
the term "connexion", since this local form defines the connexion W with 
which the fibre bundle is assumed to be endowed) is given in differential 
notation, on each Va, by 

A = A" dx" = (a~)" dxl'. (46) 

The differential forms (45) and (46) are linked by the following equations (see 
(41) or Part I, §41.2) 

oAv oA" 
n"v = ax" - oxv + [All' A.J. (47) 

In the preceding subsection (see (33» we defined the "product" (actually 
commutator) of a pair of forms taking their values in a Lie algebra; we now 
define analogously the product (or "exterior product") wp 1\ Wq of a pair of 
matrix-valued forms with respect to the ordinary product of matrices (as 
opposed to the commutator), by setting 

where as before, l' ... , 'p+q are tangent vectors at an arbitrary point of the 

underlying space, (1 is the permutation (34), and (p; q) is the usual binomial 

coefficient. (This definition of the matrix-valued form wp 1\ Wq is the obvious 
generalization of the definition of exterior product for scalar-valued 
forms given in Part I, §18.3; however though associative (essentially because 
matrix multiplication is associative), the operation defined by (48) will not 
in general be skew-commutative (i.e. it will not in general be the case that 
wp 1\ Wq = ( -l)pQWq 1\ w p).) 

Armed with this "exterior product" of matrix-valued forms, we can now 
introduce further "characteristic classes" (the general definition of which we 
defer for the moment). The "characteristic classes" in question are defined by 
(cf. Part I, §42) 

Ci=tr(n 1\ ... 1\ n)=trn i , i~ 1. (49) 

(Note that we have already considered the characteristic class Cl = tr n (see 
above) without explicit mention of the name.) We now show that, as we have 
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already established in the particular case i = 1, the Ci are for all i gauge
invariant closed forms on the base M of our (principal) fibre bundle, yielding 
in a like manner certain topological invariants. 

Under a gauge transformation determined by g(x) on a region of 
intersection Ua.fI = Ua. (") Ufl of a pair of charts of M, we have 

(50) 

so that the form Ci is well defined on the whole base M. 
To see that Ci = tr Qi is closed, note first that by elementary properties of 

the operator d and the operation of taking traces of matrices, we have 

i 

dtrQi=trdQi= L tr(Qi- 1 A (dQ) A Qi-i). 
i:1 

That the last expression represents the zero (2i + I)-form is, as before, a 
consequence of Bianchi's identity dQ = - [A, Q], and the vanishing of the 
trace of the commutator of a pair of matrices; we content ourselves with 
exemplifying the general argument by that for the case i = 2, where the 
problem reduces to that of showing that tr(Q A dQ) = O. Here the component 
(Q A dQ)1234S, for instance, of the 5-form Q A dQ will (after suitably 
grouping the terms in pairs and applying the above Bianchi identity) be a sum 
of expressions similar to 

const. x (Q12 [A3' Q45] +Q4s[A 3 , Q12]), 

which can be re-expressed as 

const. x ([Q12 A3' Q45] + [Q4s A3' Q12]), 

which clearly makes zero contribution to tr(Q A dQ). (Here the Qil. and All 
are as in (45) and (46).) In the general case a similar argument yields the 
desired conclusion: for all i ~ 1 the form Ci is closed. 

Finally, if w is another connexion on the fibre bundle, then by an argument 
similar in essence to the earlier one (for the case i = 1), it follows that 

tr Qi-tr Oi=dui, 

where 

i 

p*ui= L (-I)itr(Qi- 1 A (A-A) A Qi-i). 
i: 1 

(We leave the detailed verification to the reader.) As earlier we conclude that, 
given a closed, oriented 2i-dimensional submanifold P of M, the integral Jp Ci 
is for each i a topological invariant of the bundle (and P). 

In the case G = 80(2n) we can define further "Euler" characteristic classes 
Xn (i.e. scalar-valued forms of rank 2n on the base M, enjoying certain 
desirable properties) by means of the following formula for the value of such a 
form at a 2n-tuple ('1"", '2n) of tangent vectors at an arbitrary point of M: 
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p(n}Xn= L X[O(Til' Ti,),···, O(Ti2n _l, Ti2)]' 
il <i2 

(51) 

i3 < i4 

where (J is the permutation (.1 ~ ~n), p(n} is a numerical coefficient 
'I '2 '2n 

to be determined subsequently by certain normalizing requirements, and X is 
a certain (scalar-valued) multi-linear form in n skew-symmetric, 2n x 2n 
(variable) matrices L(l)=(~J)}, ... , vn)=(~j» (i.e. elements of so(2n)}, defined 
as follows: each skew-symmetric matrix Vk) = (lW) determines an associated 
2-form I(k) = I\~) du i 1\ du j on !R2n with co-ordinates u l , ... , U2n; X is given in 
terms of these forms by the equation 

1(1) 1\ ... 1\ l(n) = X[L(1), ... , Vn)] dU l 1\ ..• 1\ dU2n' (52) 

(Thus X is a general analogue of the so-called "Pfaffian".) 
When n = 1, X(L} is just the usual isomorphism between the Lie algebra of 

the group SO(2};:: Sl and the real line !R l . (Note that for G = U(I) (~SO(2}), 
i.e. G in its complex guise, the form Xl was considered (implicitly) in §§25.2, 
25.3, and at the beginning of the present subsection.) 

When n=2 the formula (51) becomes 

1 . i .. 
P(2)X2 = 4! ell 213140( Til' Ti,) 1\ O( Ti3' Ti.). (53) 

EXERCISES 

1. Prove that the form X. is as expected a well-defined, closed form on the base M of 
the fibre bundle with group SO(2n). (The gauge-invariance of X. is a consequence of 
the invariance of X under conjugation by elements of SO(2n), which in turn follows 
from the transformation rule for forms of rank equal to the dimension of the 
ambient space (see Part I, Theorem 18.2.2).) Show further that if M is a Riemannian 
manifold of dimension 2n with metric gij' and the fibre bundle is the tangent bundle 
over M endowed with the symmetric connexion compatible with the metric, then 
(cr. Part I, §43): 

for n= 1, 

where g = det (gij) and K is the Gaussian curvature of M (and we have put jJ(l) =1); 
and 

for all n~ 1, (54) 

where Oij= L<I R,jk, dxk A dx', R ijkl denoting as usual the Riemannian curvature 
tensor on M (see Part I, §30). 

2. Show that for fibre bundles with structure group SO(n) the forms C2i+ 1 = tr 02i+ I 

are globally exact, i.e. exact on the whole base (and therefore do not yield (when 
applicable) significant topological invariants). (Note also that in particular, since 
the Lie algebras of the groups SO(n), SU(n) consist of zero-trace matrices ~e have 
c, =tr 0=0.) 
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For a fibre bundle with group SO(4) and base M of dimension 4 the only 
(non-trivial) characteristic classes (arising as above) are X2 and C2 = tr(02) 
(since the remaining Ci are trivial). If the bundle is as in the second part of 
Exercise 1 above, i.e. if it is the tangent bundle over a Riemannian 4-manifold 
M endowed with the connexion compatible with the metric, then it follows 
from (54) (and the formula for Oij following it) that, with appropriate P(2), 

C2 = -R~"Rijvll dx). A dx" A dxV A dxll, (55) 

- 1 i,izi3i.R R d v d Il d). d" 
X2 - 4! e i,izVIl i3i.).,. X A X A X A X. 

The integrals SM C2 and SM X2 are clearly functionals of the metric gij given on 
M, with identically zero variational derivatives (i.e. stable under perturb
ations of the metric; see the exercise concluding §43 of Part I). 

For the groups SO(n) and U(n) the above-defined characteristic classes 
are, for reasons which will appear in the next subsection, the most important. 
One can define characteristic classes bj (analogous to the Cj) as forms of rank 
2j on the bases of fibre bundles with structure group Sp(n) (see Part I, §14.3), 
where Sp(n) and its Lie algebra are realized as quaternion matrices (unitary 
and skew-Hermitian respectively). It turns out that only the b2i are non
trivial. (We invite the reader to frame the definition of the bj and prove the last 
statement.) These characteristic classes are however of lesser importance. 

We shall next describe a general construction of characteristic classes. It 
may be deemed appropriate however to preface this description with the 
general definition: Given a Lie group G, a differential-geometric characteristic 
class for G is a class of closed, scalar-valued forms on the bases M of G
bundles, which are "uniformly defined" in terms of the connexions on such 
bundles, and have the further property that if one connexion (on any 
particular G-bundle) is replaced by another, then the corresponding form 
(representing the characteristic class) is altered only by the addition of an 
exact form. (It follows that the integral of (a representative form of) the 
characteristic class over a closed, oriented submanifold P of M of the 
appropriate dimension, will be a "topological invariant" of the bundle (and 
P).) 

The promised general construction is as follows. As we well know, for each 
element g of an arbitrary Lie group G the inner automorphism x 1--+ gxg - 1, 

X e G, determines an isomorphism Ad g of the Lie algebra g, which for a 
matrix group G (with corresponding matrix Lie algebra g) has the form 

Ad g: 11--+ g Ig - 1, leg. 

25.4.3. Definition. A scalar-valued, symmetric, multilinear form 1/I[i1' ... , 'm] 
in variables with provenance the Lie algebra 9 of G, is said to be Ad-invariant 
if it is unchanged by the application of every map Ad g, g e G, i.e. if for all 
geG, 

(56) 
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Each such Ad-invariant form '" gives rise to a characteristic class ct/I 
defined as follows: if Q denotes as usual the (local) curvature form on the base 
M (determined by a given connexion on the fibre bundle), then we set 

ct/I( t I, ... , t 2",) = Ct/I(Q) = L sgn a'" [Q( ti,' ti2)' ... , Q( ti2'" _.' ti2"')]' 
it <i2 

(57) 

where (t l' ... , t 2",) is an arbitrary 2m-tuple of tangent vectors at any point of 

(1 .. '2m) M, and a is the permutation. . . Clearly the Ad-invariance of '" 
II" '12", 

ensures that the scalar-valued form ct/I(Q) is well defined on the base M. 

EXERCISE 

Show that the form c\II(Q) has the properties of a characteristic class, i.e. that it is 
closed, and up to the addition of an exact form is independent of the given connexion 
on the fibre bundle (so that integrals over closed, oriented sub manifolds of Mare 
topological invariants). 

It is easy to relate this general construction to our previous special ones; 
for, in the case G = SO(2n), if we take 1/1 = X in the formula (57) (the Ad
invariance of X forming part of Exercise 1 above), we obtain, to within a 
constant factor, the Euler characteristic class X.; and if for each q ~ 1 we take 
I/I=I/I q where 

(58) 

then we obtain (again to within a constant factor) the characteristic class cq • 

25.4.4. Examples. (a) If we take G to be any of the (abelian) groups T· or IRn, 
then 9 = JRn, and the operators Ad g are all trivial, so that every symmetric 
multi-linear form "'[iI' ... , I",J determines a characteristic class ct/I. Hence in 
these cases for each m the totality of classes ct/I(Q) forms an algebra under the 
operations associating with each pair ct/I(Q), ciQ) the classes ct/l+~(Q) and 
ct/l~(Q) where ("'~)[lI"'" I",J = "'[II,·.·, 1",]~[11"'" 1",], and", + iii is de
fined analogously. Note also that each 1/1 of rank m (whence also the 
corresponding ct/l(Q» can be identified in a natural way with a homogeneous 
polynomial of degree m in the n "elementary" forms I/Ij(l) = <1, ej), where 
{el"'" en} is the standard basis for the Lie algebra 9 = JR., and < , ) denotes 
the Euclidean scalar product. If we denote the characteristic classes ct/liQ) by 
t j(Q) (forms of rank 2 on the base of the underlying fibre bundle), then each class 
ct/I(Q), where 1/1 = ",[11' ... , I",], can be expressed in the form 

(59) 

where n1 + ... +nq=m. 
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(b) G= U(n). In this case (as we know from Part I, §24.2) the Lie algebra 9 
is comprised of all skew-Hermitian matrices. Here and in the succeeding 
examples we shall need the following general concepts and facts concerning 
them. We define a Cartan subalgebra of a Lie algebra to be a maximal 
commutative subalgebra. We shall make use of the result (whose proof we 
omit) that any Ad-invariant form on a Lie algebra is completely determined 
by its restriction to a Cartan subalgebra. (It can also be shown, at least when 
the ground field is C, as it is here, that given any pair of Cartan subalgebras of 
a Lie algebra there is an automorphism of the Lie algebra sending one to the 
other.) For matrix Lie groups G, those automorphisms of the Lie algebra of 
the form I ~ gig -1, g E G, preserving a Cartan subalgebra, form a finite group 
called the Weyl group of G. 

It is not too difficult to see that in the present case (G= U(n)) the 
subalgebra H of 9 consisting of the diagonal skew-Hermitian matrices (i.e. 
diagonal matrices with purely imaginary diagonal entries) is a Cartan 
sub algebra. If we choose as a basis for this subalgebra the diagonal matrices 
IJ with jth diagonal entry (lJ)jj = i, and the rest zero, then the Weyl group 
turns out to be just the group Sn of all permutations of these basis elements 
(verify this!). If we denote by tj the corresponding linear forms in the dual 
space g*, i.e. defined by tj(/~)=c5jk' then in view of the fact that the Weyl 
group is Sn, the restriction of any symmetric Ad-invariant form t/I to the 
subalgebra H c 9 will correspond in the natural way to a symmetric 
polynomial in t 1, ••• , tn' It is easy to see that for each k the symmetric Ad
invariant form on H defined by the (multiplicatively) basic symmetric 
polynomial 

(60) 

coincides with the restriction to H of the t/lk defined in (58). (For example 
t/I\U) = tl + ... + tn, is clearly the trace operator on matrices in H, while for 
alII, m E H, t/I~U)(l, m)=t1(l)t 1(m)+ ... +tn(l)tn(m)=tr(lm).) Hence the poly
nomials t/I~U) can be extended from the Cartan subalgebra to the whole of 9 
via formula (58), and therefore correspond to the characteristic classes Ck' 

(c) G = SO(2n). The Lie algebra here consists of a1l2n x 2n skew-symmetric 
matrices. It can be shown that the "infinitesimal rotations" in the planes 
1R12 , 1R34, ••• , 1R2n - l • 2n generate a Cartan subalgebra H c g, where the 
indices indicate the pair of standard basis vectors in 1R2n determining the 
plane in question. Hence as a basis for H we may take the matrices I~, ... , l~ 
defined by 

IJ= 

o 

o 1 
-1 0 

o 

(61) 
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where the only non-zero entries are 

(lJ)2j-l, 2j = 1, (lJh i , 2j-l = -1. 

The reader might like to verify that the Weyl group of automorphisms of H of 
the form h-+ gig-I, g E G, is generated by the following transformations: 

(i) all permutations of I?, ... , I~; 
(ii) all simultaneous negations of pairs of the IJ; i.e. maps given by I? H -I?, 

l~H -l~, lJH1J for j #= i, k (there being one such map for each pair i, k, 
i#=k). 

Hence the (symmetric) polynomials corresponding (as in the preceding 
example) to symmetric multilinear forms on H invariant under the Weyl 
group, are as follows: 

q<n; (62) 
-(SO) .1. =t ... t 'I'n 1 n' 

Much as in the preceding example, we see (via (58» that the form ",~SO) extends 
to the whole of g, yielding (to within a constant factor) the characteristic class 
C2q' It is similarly easy to verify that the form .p~SO) is essentially the restriction 
to H of X (defined in (52», and so corresponds to Xn' 

(d) G = SO(2n + 1). The Lie algebra 9 again consists of all skew-symmetric 
matrices (here of degree 2n+ 1). With SO(2n) embedded in SO(2n+ 1) in the 
most obvious way (so that SO(2n) fixes the x2n +l-axis), it turns out that the 
Cartan subalgebra H of the previous example (where G was SO(2n» is also a 
Cartan subalgebra of our present Lie algebra g=so(2n+ 1). (It is also, 
incidentally, a Cartan subalgebra for U(n) c SO(2n), where the containment 
is defined via the realization map. In fact in all of our examples, including the 
commutative groups of Example (a) (where we had H = 9 and trivial Weyl 
group), the Cartan subalgebras were of the same sort.) Thus we may take the 
same basis vectors I?, ... , l~ for H as before (or, more precisely, we obtain 
these basis vectors by augmenting those defined in (61) with a zero (2n+ l)st 
row and column), and corresponding elementary forms tj defined by 
til~)=c5jk' However the Weyl group for SO(2n+ 1) is larger than for SO(2n); 
in addition to the generating transformations (i) and (ii) above, the Weyl group 
for SO(2n + 1) requires for its generation those transformations reversing the 
direction of a single I?, each of which thereby induces a corresponding 
transformation of the space spanned by the tno given by tjH -t j, tjHtj,j #= i. 
Hence among the symmetric forms on H invariant under the Weyl group, the 
multiplicatively basic ones (i.e. the algebra generators) will be just the 
following: 

"'~SO) = tfq + ... + t:q. 

As before these forms extend to the whole of 9 to yield the characteristic 
classes Clq' Thus in this as in the preceding two examples every symmetric 
form on the Cartan subalgebra, invariant under the Weyl group, extends to 
an Ad-invariant form on the whole Lie algebra. 
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25.5. Characteristic Classes: Enumeration 

It turns out that for the groups G = U(n), SO(n) there are essentially no 
characteristic classes other than those constructed above; to put it more 
precisely, every "natural" or "covariant" construction (see below for the 
meaning of this term) which associates with each fibre bundle endowed with a 
connexion, a closed form on the base space M of the bundle with the property 
that integrals of the form over cycles (i.e. closed, oriented submanifolds of M) 
are topological invariants of the bundle (i.e. are not altered by changes of the 
connexion on the (same) fibre bundle), is "equivalent" to some polynomial in 
the characteristic classes C j , Xn (in the algebra of differential forms on M). 
(Closed forms a, b, of the same rank, on a manifold M are said to be equivalent 
if their difference is exact, i.e. 

a=b+du 

for some form u; if a and b are equivalent then their integrals over any cycle 
(see above) of the ambient manifold M coincide: 

for every cycle Pc M.) 
We shall now explain what is meant by a "natural" or covariant" 

construction. Earlier (see 21.4.2) we defined a "fibre bundle map" or 
"morphism" between two bundles with the same fibre and structure group, as 
a map J E -+ E' between the total spaces, which respects fibres (i.e. fp = p'l. 
where f: M -+ M' is uniquely defined by this condition), and induces on each 
fibre F a diffeomorphism belonging to G. The reader will also recall (from 
§24.4) the construction of the "induced" fibre bundle p: E -+ M, determined by 
a given fibre bundle p': E'-+M' and a map f M-+M', yielding a fibre bundle 
map J E-+E'. In connexion with this definition the "classification theorem" 
was stated (without proof): Every fibre bundle with base M and structure 
group G (e.g. a principal bundle) is induced from a universal (principal) fibre 
bundle PG: EG-+BG (i.e. one with contractible total space EG; see Definition 
24.4.1) via a map M-+BG unique up to a homotopy. (In §§24.3, 24.4 universal 
(and N-universal) fibre bundles were constructed for the groups O(n), SO(n) 
and U(n), having smooth manifolds as bases for all N: 

BG=GN,n for SO(n), N-+oo; 

BG=GN,n for U(n), N-+oo; 

BG=CpN for U(I)=SO(2), N-+oo; 

BG= IHipN for SU(2) = SP(l), N-+oo, 

where the manifolds GN,n, G~,n are as defined in §24.4.) 

Suppose now that we have a fibre bundle map l: E-+E', giving rise (as 
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above) to a map f: M ..... M' of bases, and that the bundle E' is endowed with a 
connexion w'. Applying to the form w' the restriction operation (i.e. pull
back) J* determined by the map 1. we obtain a form w =J*w' on E which will 
in fact be a connexion on E. Since the operators d and H commute with the 
restriction operator J*, the corresponding curvature form nE will be 
"covariant", i.e. 

From this and the details of their construction, it follows that all of the 
characteristic classes c;, Xn' and the general classes (see the preceding sub
section) behave "naturally" or "covariantly" or, in the language of category 
theory, "functorially", with respect to bundle morphisms, by which we mean 
simply that for each Ad-invariant form", (see 25.4.3) we have 

f *' c."=c.,,, (63) 

where c~ and c'" are respectively the characteristic classes of the bundles E' 
and E determined by the forms w' and w. (Of course as noted before (see the 
last exercise of the preceding subsection), the forms c~ and c." are closed, and, 
up to the addition of exact forms, independent of the choice of w (and hence 
w') on E (and E').) 

25.5.1. Definition. Given a Lie group G, a closed form c (more precisely a 
class of forms) on the bases of fibre bundles is called a topological 
characteristic class for G if it has the following two properties: 

(i) The form c is defined ("uniformly") for every principal fibre bundle with 
structure group G (and therefore in particular for every (base) manifold 
M); 

(ii) Under bundle maps! E ..... E', the pullback operator f* determined by 
the induced map f M ..... M' of bases, acts on c according to the formula 

f*(c') = c + du, 

for some exact form duo (Thus if we interpret c as the equivalence class of 
forms, defining two forms to be equivalent if they differ by an exact form, 
then the requirement is that c be covariant.) 

It turns out that there are relatively few topological characteristic classes. 
In order to make this somewhat vague assertion more precise we require the 
notion of the qth cohomology group Hq(M; IR) ofa manifold M(q=O, 1,2, ... ): 
the elements of Hq(M; IR) may be defined to be the equivalence classes a of 
real-valued closed forms a (da=O) on M, of rank q, (where two such forms 
are, as before, understood to be equivalent if they differ by an exact form, so 
that a is equivalent to a + du); the additive operation on these classes is taken 
to be that induced by ordinary addition of forms. Thus the groups Hq(M; IR) 
are abelian (and Hq(M; IR) = 0 for q > dim M); their direct sum 
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H*(M; IR) = Lq Hq(M; IR) clearly forms an associative algebra if we take as the 
multiplicative operation (that induced by) the exterior product of (closed) 
forms. The following result provides a classification of topological character
istic classes. 

25.5.2. Theorem. Let BG denote, as above, a classification space for G, i.e. the 
base of a universal principal G-bundle. Each element c of each cohomology 
group Hq(BG; IR) determines a topological characteristic class (of rank q) 
defined (as it should be) on all principal G-bundles. Conversely, each topological 
characteristic class of rank q determines a unique element c of Hq(BG; IR). (In 
other words there is a (natural) one-to-one correspondence between the elements 
of Hq(BG; IR) and the topological characteristic classes of rank q.) 

PROOF. Given a topological characteristic class c as a closed form of rank q 
defined for all principal G-bundles (as in Definition 25.5.1) then in particular 
taking as bundle a universal one with base BG, we shan have c E Hq(BG; IR). 

For the converse, suppose that we are given an arbitrary element (i.e. 
cohomology class) c E Hq(BG; IR). By the classification theorem (see above or 
§24.4) each principal G-bundle 11 with base M is induced by a smooth map 
f: M ~ BG unique up to a homotopy; if we define c on the (arbitrary) bundle 11 
by setting 

Cl1 = f*(c), 

then the form C(I1) is closed (since df* = f*d) and so represents an element of 
W(M; IR). Since homotopic maps ft, h. yield equivalent closed forms 
fi(c), g(c), i.e. fi(c) = g(c) + du (see Part III), this concludes the proof. 0 

25.5.3. Examples. In the following examples we identify (without proofs) the 
cohomology algebras of classification spaces BG for various G. 

(a) We begin by considering certain discrete groups G. 

(i) G=Z, BG=Sl, Hi(BG; IR)=IR, Hq(BG)=O for q> 1. 
(ii) G = Zm, m finite, with BG the corresponding lens space (see §24.4, 

Example (b»; here W(BG; IR) = 0 for an q > O. (In fact for any finite group 
G, we have Hq(BG; IR) = 0 for q > 0.) 

(iii) G = 7l. EB ... EB 7l. (n summands), BG = Tn (the n-dimensional torus); here 
H*(BG; IR) is the exterior algebra in n one-dimensional generators (i.e. 
rank-one forms). 

(iv) G=1ti(M;) where M; is the closed, orientable surface of genus g; 
BG=M;; here H*(BG; IR) is the algebra on n one-dimensional (i.e. rank
one) generators ai' bi, ... , ag , bg with relations a1 1\ bi = .. , =ag 1\ bg , 

aj 1\ bj=O for i#j, ak 1\ al=bk 1\ bl=O. 
(v) G the free group on p free generators; BG the (punctured) plane 1R2 (with 

p points removed); here Hl(BG; IR)=IRP, Hq(BG; IR)=O for q>1. 

(b) In this our second example we consider the various abelian groups 
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G = IRk X Tm. In the case G = IRk the space BG is just a single point (or a space 
contractible to a point). For G = Tl = S1 = U(1) ~ SO(2), we have BG = cpro 
(see above). More generally for G = IRk X T m = IRk X S1 X .,. X S1 (m factors 
SI), we have 

BG ~ Bs. X • " X Bs. = cpro X ... X cpro 
'---y---J '---y---J 

m Jactors m factors 

The cohomology algebra H*(BG; IR) then turns out to be the algebra of 
polynomials in m generators t l' ... , tm from H2(BG; IR). 

(c) For G = U(n), we have BG = G'?o,n (see §24.4), and H*(BG; IR) is the 
algebra of polynomials in the n generators cl , .•. , cn; Ci E H2i(BG; IR). For 
G = SU(n), H*(BG, IR) is the algebra of polynomials in the (n -1) generators 
c2, . , ., cn; Ci E H2i(BG; IR). 

(d) For G = SO(2n), H*(BG; IR) is the algebra of polynomials in the 
generators C2i E H4i(BG; IR), i= 1, .. " n-l, together with Xn E H2n(BG; IR). 

(e) For G=SO(2n+ 1), H*(BG; IR) is the algebra of polynomials in the n 
generators C2i E H4i(BG; IR), i = 1, ... , n. 

From the last few ofthese examples (and Theorem 25.5.2 above) we deduce 
that for the important (compact) groups all the topological characteristic 
classes are (essentially) just the characteristic classes constructed earlier. 

For a non-compact Lie group G the problem of classifying the topological 
characteristic classes (as cohomology classes of classifying spaces) reduces to 
the same problem for a maximal compact subgroup KeG; this is a 
consequence of the fact (whose proof we omit) that the base spaces BK and BG 
are homotopically equivalent (since this implies that H*(BK ; IR) is (naturally) 
isomorphic to H*(BG; IR), whence by Theorem 25.5.2 the topological charac
teristic classes of the groups K and G coincide). If the Lie group G is 
semisimple (see §3.l) then we may also proceed as follows: Using the 
semi simplicity it can be shown that the complexification gc = C ® 9 of the Lie 
algebra 9 is identifiable with the complexification g~ of the Lie algebra g' of 
some compact Lie group G' (called the compact real form of the complex Lie 
algebra g~ = gr). Given this, it is then clear that the constructions of 
differential-geometric characteristic classes from a connexion on a bundle (for 
instance as in the preceding subsection by means of "elementary" operations 
on the curvature form n) will lead to exactly the same results (locally on the 
base) for G' as for G (since it is essentially in terms of the Lie algebra 9 that the 
form n on the base space was defined locally); thus for the groups G and G' we 
shall obtain locally the same closed forms, and consequent functionals of the 
connexion with identically zero variational derivative (i.e. integrals of the 
closed forms over submanifolds of the base). However these closed forms 
often turn out to be exact, in which case the corresponding functionals are 
"topologically trivial" (and the corresponding topological characteristic class 
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is the zero class). For instance in the case G = IRk we have G' = Tk for which, 
locally, the differential-geometric characteristic classes on any particular base 
space are the same; however for G = IRk (as might be expected from the 
opening sentence of this paragraph) all integrals of characteristic classes over 
cycles (i.e. closed, oriented submanifolds of the base) vanish. Similarly, 
although for G = SO(p, q) the constructions of differential-geometric charac
teristic classes are (locally) exactly the same formally as for G' = SO(p + q), yet 
non-trivial integrals of characteristic classes over cycles are again obtained 
only as for a maximal compact subgroup (here SO(p) x SO(q) c SO(p, q». 

Thus, to repeat the above in the narrower (though important) context of 
the tangent bundle over a pseudo-Riemannian manifold of type (p, q) (where 
p + q = dim M), although we can define locally on M the same differential
geometric characteristic classes as for Riemannian manifolds (where the 
metric is positive definite), with integrals over cycles of appropriate dimen
sions having, as in the Riemannian case, identically zero variational derivat
ives with respect to the metric, it will nonetheless often happen that many of 
these classes have no topological significance in the sense that their integrals 
over all cycles are zero. Consider for example the direct Lorentz group 
SO(3, 1) = G; its Lie algebra has the same complexification as the group 
G' = SO(4) (and also the group 6' = SU(2) x SU(2». For G' (and also 6') there 
are two generating differential-geometric characteristic classes of dimension 
(i.e. rank) 4, namely 

c2, X2 E H4(BG'; IR). 

Thus by the above, for the group G = SO(3, 1) there will be a corresponding 
pair of generating differential-geometric characteristic classes. However since 
on the other hand SO(3), which is embeddable in SO(3, 1) as a maximal 
compact subgroup, has only the one topological characteristic class of rank 
~4=dim M (see Example (e) above) 

C2 E H4(BG; IR), 

it follows (from the opening sentence of the preceding paragraph) that 
SO(3, 1) has also but one topological characteristic class. 

Characteristic classes can be shown (using the method of universal 
bundles) to have the following important property: The algebra of topological 
characteristic classes of a given group G has a multiplicative basis consisting of 
classes whose integrals over all cycles (i.e. closed, oriented submanifolds of the 
base manifolds of arbitrary G-bundles) are integer-valued. 

The validity of this general assertion follows, as we shall now show, from 
its truth for universal bundles: The algebra H*(BG; IR) (where BG is the base of 
a universal G-bundle) has an algebra basis of elements dl , .•• , dk whose integrals 
are all cycles in BG of appropriate dimensions, are integer-valued. To see how 
the general statement follows from this, let M be the base of any G-bundle, let 
P be any closed, oriented q-dimensional manifold, and let <p: P -+ M be a 
smooth map. (The pair (P, <p) is often called a "singular cycle" of M.) By the 
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classification theorem, each G-bundle over M is induced from the universal 
bundle over BG by a map f: M -+ BG (unique to within a homotopy). 
Composing the maps rp and f we obtain a singular cycle of dimension q in BG: 

(P, frp); frp: P -'4 M ~ BG • 

Corresponding to each basis element ds of H*(BG; IR) we have a characteristic 
class d~=f*(ds) on M. If ds has rankq=dimP, then integrating over the 
singular cycle (P, rp) of M, we obtain (using the analogue of the formula for 
change of variable of integration (see Part I, §22.1 )): 

r d~= r rp*(d~)= r rp*f*(ds )= r d., 
J(P,tp) Jp Jp J(P,ftp) 

which is an integer by assumption (being the integral over the cycle (P,frp) of 
the special basis element ds). 

25.5.4. Examples. (a) We first consider the commutative Lie groups G = 1R1 
and G'=SO(2)~U(1). The curvature form on the base of any fibre bundle 
with G or G' as structure group is, as we know, a closed, scalar-valued form 
n = n/lV dx/l 1\ dxv. The following question naturally arises: What conditions 
on a closed 2-form on the base of a G-bundle or G'-bundle will enable it to 
qualify as a curvature form? (In the language of physics this is equivalent to 
the question of the possibility of defining globally a "vector potential" A on 
the total space, essential for quantization.) It turns out that the precise 
conditions (different for the two groups G and G') are as follows (in both cases 
we omit the proof of sufficiency; the necessity follows from various earlier 
remarks): 

(i) For the group G = 1R1, a closed 2-form n on the base M of a G-bundle is a 
curvature form if and only if we have Jp n=o for every 2-dimensional 
cycle P c M (or, equivalently, if and only if n = dA for some I-form on 
the base M; cf. the concluding sentence of the proof of Theorem 25.5.2). 

(ii) For the group G' = SO(2) ~ U(l), a closed form n on M is a curvature 
form if and only if n can be normalized so that the integrals of n over all 
2-cycles Pc M are integer-valued. (The vector-potential A (w in earlier 
notation) will then be definable globally above M as a I-form on the total 
space E, satisfying dA = n E; see the beginning of the preceding 
subsection.} 

In the physical context of an electromagnetic field, the role of the curvature 
form n is played by the electromagnetic field tensor F: 

F/lv=n/lV> d(F,..v dx'" 1\ dxV)=O, 

defined on a region of Minkowski space IRt l' (Here the closure of the 
curvature form is equivalent to Maxwell's equations (see Part I, §25.2).) If 
physical reality is such that the electrodynamics of a physical situation may 
be "compact" (in the sense that the group is SO(2) rather than 1R1), then as 
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was shown by Dirac, "magnetic monopoles" are possible. To see this consider 
the stationary (i.e. time-independent) situation of a magnetic field of strength 
n = FJLV dxJL 1\ dx v (where now jJ., v = 1, 2, 3) in, for instance, a region of the 
form U = 1R3 \ {xo}, i.e. 1R3 with the single point Xo removed, where the field 
has a singularity at Xo. If S2 =S; c U is the sphere in U given by the equation 
L~; 1 (x ll - Xb)2 = p2 > 0, then in view of (ii) above we may have 

f n=n 
S2 

for a non-zero integer n. Physically this means that the magnetic field flux 
through the surface S2 can have non-zero (integer) values (i.e. there can exist a 
"magnetic monopole" at xo), without there arising thereby any conflict with 
the possibility of defining a vector-potential (and quantizing the field in 
accordance with the general principles of the quantum theory of gauge fields). 
There may exist several monopoles, at points xo, ... , Xk E 1R3; there will then 
be a corresponding collection of "independent" cycles in the region 
1R 3 \{xo,"" xd· 

(b) As our second (and final) example we consider fibre bundles over the 
sphere Sk (for various k), with various structure groups G. By Lemma 24.4.3, 
for each k, G, the G-bundles over Sk are determined (up to equivalence) by the 
elements of 1tk - 1 (G). 

(i) k= 1, G=O(n), SO(n), U(n). Since the groups SO(n) and U(n) are 
connected, all fibre bundles over S1 with these as structure groups will be 
trivial. However since 1to( O(n))::; 2 2 , for G = O(n) there does exist a non
trivial G-bundle over S1. We shall later (in Chapter 7) encounter bundles 
with one-dimensional base (actually 1R1) as homogeneous models in the 
general theory of relativity. There is however no curvature theory for 
such bundles. 

(ii) k = 2. In this case, for the group G = SO(2) we have one G-bundle for 
each integer mE 1t1(SO(2»::;2; for positive m these are just the Hopf 
bundle '7 (with fibre I(}; see §25.3), and its tensor powers '7m (see §24.5). If 
n is the (suitably normalized) curvature form on S2 determined by any 
connexion on '7m, then we shall have 

m=f n, 
S2 

i.e. the integer m is given by the integral of n over the base S2. An 
alternative characterization of m may be obtained in the following way. 
Since S2\ { oo} ~ C1 ~ 1R2, above the region S2\ {oo} any bundle over 
S2 is trivial (cf. Lemma 24.4.2), whence it follows that the bundle is 
determined by specifying a connexion A = AI' dxll = Az dz + Az dz on 
S2\ { oo} ~ C, with the "boundary" condition that as 1 x 1-+ 00 the 
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connexion becomes (asymptotically) trivial, i.e. for some g(x) (see below) 

og(x) 
A,,-- ox" g-I(X) as Ixl-+oo. 

If the structure group G is U(l) (~ SO(2», then g(x) has the form eiq>(x), 
whence (og/OX")g-1 =i(o<p/ox") (cf. end of §25.2); the map g(x) (and 
hence also <p(x» is defined only asymptotically as Ixl-+ 00 on the rays 
with direction x/lxi, regarded as comprising SI, and then g(x) is given by 

xl-+eiq>(X) (Ixllarge). 

The degree of this map can then be seen to coincide with m (ifthe bundle 
in question is that determined by the integer mE Z ~ 7tl (SO(2»). 

(iii) k=3. Since 7t2(G)=0 for all the Lie groups we have encountered (in fact 
for all Lie groups!), all fibre bundles over S3 are topologically trivial. 
Any connexion yielding zero curvature form (i.e. any trivial connexion; 
cf. Part I, §41.2) will for some map g: S3-+G, be given by 

A = _ og(x) g-I(X). 
" ox" 

Thus here each homotopy class of maps S3-+G, i.e. each element of 
7t3( G), determines a "homotopy class" of trivial connexions (cf. Lemma 
24.4.3), though all fibre bundles are as noted, trivial. (Recall that: 
7t3(SO(2» =0; 7t3(SO(3» ~ 7t3(SU(2» ~ 7t3(SU(n» ~7t3(SO(m» ~ Z for 
n ~ 3, m ~ 5; 7t3(SO(4» ~ Z <!l Z.) 

(iv) k=4. There are many inequivalent G-bundles over S4, and a large 
collection of topological invariants. Since S4\ {oo} ~ IR\ each bundle 
over S4 is determined (as in (ii) above) by specifying a connexion A" on 
the region 1R4 (above which the bundle is trivial), with the boundary 
condition 

og(x) _ 
A,,(x)-- ox" g I(X) as Ixl-+oo, 

for some (asymptotically defined) map g(x) (which determines the 
bundle). The map g(x) is as before defined asymptotically on the rays 
x/lxl which may be regarded as points of S3; thus each G-bundle is 
determined by a map g: S3-+G, so that each homotopy class of such 
maps (i.e. each element of 7t3(G» forms a topological invariant of the 
bundle. 

Of particular interest are the groups G = SU(2), SO (4), SO(3). For 
G=SO(4) there are exactly two basic, integer-valued characteristic 
classes (while for each of SU(2), SO(3) there is only one), namely: 

C2 = f. tr(F "vF ,,~) dx" " dxv " dx" " dxx; 
R4 

X2 = r tr(F"v(.F"x)) dx" " dxv " dx" " dxx, 
JR4 

(64) 
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where F". = oA,,/ ax' - oA./ox" + [A", A.J. (For the definition of the 
operator * see Part I, §19.3. We leave to the reader the verification of the 
validity of the above expression for X2') 

EXERCISE 

Show that for G=SO(4) the total space E of a G-bundle over S4 with fibre S3, for 
which X2 = 1 (but C2 is arbitrary) is homotopically equivalent to the sphere S7, (Such a 
bundle will be principal for G=SU(2), but merely associated for G=SO(4).) 

Remark. It has been shown by Milnor that the total spaces E of certain of 
these bundles (namely those for which cz, Xz = 1) are homeomorphic, but not 
diffeomorphic, to the sphere S7. 

§26. Knots and Links. Braids 

26.1. The Group of a Knot 

The concept of the fundamental group has an important application in the 
theory of knots and links in 3-dimensional space. We define a knot to be a 
smooth, closed curve y=y(t) (O~t~21t, y(O)=y(21t» in (Euclidean) 1R3, which 
does not intersect itself, and for all t has non-zero velocity vector; such a curve 
may indeed be "knotted" in 1R3 (see Figure 94). 

By an isotopy of a knot y we shall mean a "motion" of the knot through the 
ambient space 1R3 achieved by means of a deformation (i.e. homotopy) of the 
identity map of 1R3, in the class of self-diffeomorphisms of 1R3.t A knot is 
defined to be trivial if there is such an isotopy bringing it into the position of 

(a) Unknotted 
("trivial") knot 

(b) The simplest knot (c) "Figure-eight knot" 
("trefoil knot") 

Figure 94 

t Usually an isotopy of a knot is defined as a deformation (in the class of smooth embeddings) of 
the embedding of the circle (in space) which defines the knot. However it is then normally shown 
that such a deformation of the embedded circle extends to a deformation (of the requisite kind) of 
the whole space. 
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the particular (trivial) knot Y={z=0,x2+y2=1}. It will be convenient to 
assume that our knot y lies in S3 ::J 1R3; this obviously does not affect the knot, 
nor does it require any essential modification of the definition of an isotopy of 
the knot (since a self-diffeomorphism of S3 permutes the 2-dimensional 
simple closed surfaces in S3, so that, by enclosing the knot in the interior of 
some region with such a surface as boundary, we can change any isotopy of 
S3 so that it fixes some point of S3 while determining essentially the same 
"motion" of the knot). For suitably small B > ° consider an B-neighbourhood 
(i.e. "tubular" neighbourhood) V. of the knot y; the boundary av. is a torus 
T2, and V. ~ D; X Sl where D; represents a disc normal to y of radius B. If we 
remove from S3 the interior of the tubular neighbourhood V., we are left with 
manifold-with-boundary Vy c S3 whose boundary aVy = av. is diffeomorphic 
to the torus T2. It is clear that Vy is homotopically equivalent to the open 
region S3\y = Wy, the complement of the knot. 

26.1.1. Definition. The fundamental group 1t l (Wy)=1t l (Vy) is called the knot 
group of the knot y. 

We mention two simple properties of the knot group 1t l (Wy}=1t l (Vy): 

(i) If the knot y is trivial then 1t 1 (Wy) ~ Z. (This follows from the homotopy 
equivalence of Vy C S3 (or Wy C S3) where y = {z =0, x2 + l = I}, with 
the circle Sl; see §17.5, Example (d).) 

(ii) By definition of the regions Vyand Wy, the knot group 1t l (Vy}=1t l (Wy) 
(and in fact, to within a diffeomorphism, the topology of these regions) is 
unchanged by isoto pies of the knot. Hence in particular the isomorphism 
1t 1 (Wy) ~ Z represents a necessary condition for the knot y to be trivial. 
(Note that in fact this is also a sufficient condition; this however is a 
difficult result.) 

We now describe the algorithm for calculating the knot group 1t l (Wy}. We 
first project the knot in a direction d onto a plane 1R2 (or "screen") 
perpendicular to d. We may suppose (by applying an isotopy of the knot if 
need be) that the knot is in general position with respect to the direction d; i.e. 
that all points of self-intersection of the image yon the screen 1R2 are double, 
and the angles of intersection are non-zero. Thus on the screen our image y is 
a planar, oriented graph (with orientation determined by that of y=y(t), 
0:s;t:s;21t) having exactly 4 edges incident with each vertex. Besides the 
orientation of y we need to indicate at each vertex (i.e. point of intersection) 
which of the intersecting arcs is "above" the other; we do this by labelling the 
"upper" (i.e. overcrossing) arc with a plus sign ( +), and the "lower" with a 
minus sign ( - ). (In Figure 95 at the intersection B on the screen the preimage 
of the arc labelled + is indeed above the preimage of the one labelled -, if we 
regard the screen as horizontal with the knot suspended above it.) Taking the 
point 00 as base point for the purpose of calculating 1t l (Wy), the representat
ive closed paths may be assumed to approach the knot from 00 along the 
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Figure 95 

direction d perpendicular to the screen 1R2 (from the left in Figure 95). We now 
number the arcs on the screen in an order determined by tracing out the knot 
in the direction given by its orientation. (Thus in Figure 95 we have on the 
screen three vertices A, B, C and arcs [B(-)C+]=Yl' [C(+)A(-)]=Y2' 
[A(_)B(+)] =Y3, [B(+)C(_)] =Y4, [C(_)A(+)] =Y5, [A(+)B(_)] =Y6, in order as 
Y is traced out.) With each indexed arc Yj we associate in the following way a 
loop a} representing a generator of 7tl(l~,): the path a} comes from 00 along 
the direction d almost to the midpoint of the arc Yj, goes around that arc and 
returns to 00; in Figure 95 the path a3 is indicated, corresponding to the arc 
Y3 = [A(_)B(+)J. 

It is easy to see (intuitively at least) that the paths aJ do indeed generate the 
group 7t1(Wy). We now show how to obtain a full set of defining relations on 
these generators. With each vertex there are incident four arcs Yh' Yh' YiJ, Yj4' 
where we may suppose that the arc Yh immediately follows Yj, (as the knot is 
traced out) and Yjo follows Yh' so that j2 =j1 + 1, j4 =h + 1. We may also 
suppose that the pair of arcs with indicesj1,il is "above" the pair with indices 
h,j4 (or, in terms of Figure 95. that the segment comprised of the (preimages 
of) Yh and Y12 lies to the left ofthat comprised ofYh and Y}.). It is then easy to 
see that corresponding to the vertex we are considering we obtain the 
following relations: for the upper segment 

(1) 

and for the lower segment 

(2) 

(Verify this!) (Note that there is some ambiguity here in that we have not 
specified the orientation of the a), so that the aj are defined only to within 
replacements of the form ar+aj 1; however the relations (1) and (2) are not 
altered in any fundamental way by such replacements.) 

EXERCISE 

Show that the set of all relations of the form (1), (2) (obtained by considering in turn all 
vertices of the image of the knot on the screen) comprise a full set of defining relations 
for the knot group (i.e. that every relation is a consequence of these). 
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Note that it follows from the form of the relations (1), (2) that the 
commutator quotient group of the knot group (i.e. the knot group abelian
ized) is always isomorphic to ?L. 

Example. For the trefoil knot (Figure 95) we obtain the following defining 
relations: 

a=a 3 =a4, -1 
al =a3 a6a3 (vertex B), 

b=al =az, 
-1 

as =a1 a4al (vertex C), 

c=aS=a6' 
-1 

a3 = as azas (vertex A); 
or, 

b=a- 1ca, c=b- 1ab, a=c- 1bc. 

26.2. The Alexander Polynomial of a Knot 

The group of a knot often turns out to be rather complex. There is however a 
simpler invariant (actually defined in terms of the group of the knot) which 
though a considerably coarser invariant than the group, nonetheless provides 
a relatively straightforward test successfully distinguishing many knots. We 
shall now define this invariant. Let aI' ... , a. be generators of our knot group 
(for instance as defined above), and let r;( a I, ... , a.) = 1 (i = 1, ... , m) be 
defining relations for the group in terms of these generators. Let G denote the 
free group with free generators aI' ... , a. (so that now we regard the knot 
group as the quotient of G by the normal subgroup generated by the elements 
r;(a 1 , ••• , a.), i= 1, ... , m). For each free generator a; we define the free 
differential operator oloa; on the free group G by 

oa· oa;- 1 _ 1 a ob oC 
_J ={);j, -:)-=-a;, ;;-(bc)=;;-+b;;-. 
oai ua; ua; ua; ua; 

It is clear from this that the value of the derivative of any element of G is an 
element of the group ring ?L[GJ, i.e. is a formal linear combination of 
elements of G with integer coefficients. We now form the m x n matrix 
(or;/oaj), with entries from the integral free group ring, and replace each 
generator occurring in these entries by a variable t, the same for all generators 
(thus a~ is replaced by tk for allj, k). This yields an m x n matrix whose entries 
are polynomials in t and t- 1 with integer coefficients; the Alexander 
polynomial of the knot is then the highest common factor ~(t) of all 
(n-1) x (n-1) minors of this matrix, defined to within a factor of the form 
± t\ k any integer. 

EXERCISES 

1. Prove that if the groups of two knots (or more generally any two finitely presented 
groups) are isomorphic, then (to within a factor of the form ±tk ) their Alexander 
polynomials &(t), &'(t) either coincide, or satisfy &'(t)=&(t- 1 ). 
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2. Show that the Alexander polynomial of the trefoil knot is L\(t)=I_t+tl. 

3. Calculate the Alexander polynomial of the figure-eight knot, depicted in 
Figure 94(c), and deduce that that knot is not equivalent to the trefoil knot (i.e. 
isotopic neither to the trefoil knot nor to its reflection). 

26.3. The Fibre Bundle Associated with a Knot 

Since, as was noted above, Hl(Wy)~l, the embedding OVy~Tl-+Vy""Wy 
(where ,.., denotes homotopy equivalence), determines a homomorphism (cf. 
§21.2) 

Hl(OYy)~Hl(Tl)~l EF> l-+l ~Hl(Wy). 

It follows that there is a generator i on the torus oYy ~ T2 (i.e. member of a 
generating pair for 1t1(oVy» which is homologous to zero in the complement 
Yy of the knot 1'. Clearly the generator y is represented by the path traced out 
by the tip of a variable vector normal to I' and of constant length 8 as its tail 
traces out I' (i.e. the path consisting of all end-points of vectors of a suitable 
normal vector field on I' of constant length e). Consider any smooth map 
qJ: T2-+81, with the property that y is the complete inverse image qJ -1(SO) ofa 
regular value So E 81 of the map qJ (see §1O.2), and satisfying the further 
condition that its restriction to a representative of the other (meridional) 
generator of 1tl(OVy) has degree one as a map 8 1 -+81 (see §13.1). By the 
exercise below any such map qJ can be extended from T2 ~ a Yy to the whole of 
the knot-complement Y,., yielding a smooth map 

iP: Yy-+81, iPlovy=qJ· 

The complete preimage iP -1(SO) of the regular point So will then be a 2-
dimensional bordered surface P with boundary oP=y on the torus oYy~ T2. 
By letting the radius 8 of the tubular neighbourhood U. of the knot (of which 
Vy is actually the complement) approach zero, we obtain a surface P in 1R3 (or 
83) with boundary the knot y itself. 

EXERCISE 

Prove that the above map cp: T1->Sl can indeed be extended to all of Vy• (Hint. Use the 
facts that y is homologous to zero, that Hl(l';')~l, and that 7ti(Sl)=O for i> 1. 
Decompose Vy as a "cell complex" (consisting of "O-cells" (points), "I-cells" (each 
homeomorphic to [0, 1], with boundary consisting of O-cells), 2-cells (topological 
closed discs with boundaries consisting of I-cells), and 3-cells (topological closed balls 
with boundaries consisting of 2-cells», and extend the map cp first to the I-skeleton 
(made up anI-cells) (this is easy), then from the I-skeleton to the 2-skeleton (this step 
requires some analysis), and thence to the 3-cells (invoking the fact that 7tl(Sl)=O).) 

26.3. Definition. The genus of a knot I' is the smallest possible genus that a 
non-self-intersecting surface Pin 1R3 (or 83) with boundary 1', can have. 
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(a) g= 1 (b)g=2 

Figure 96 

(Note that the genus of a closed surface, which by the classification 
theorem for surfaces is a "connected sum" of copies of T2 or of IRp2, is the 
number of such components; if the surface has boundary y then its genus is 
defined to be that of the closed surface obtained by attaching a disc to y.) 

For many of the simplest knots,), the knot-complement Jt;" with boundary 
oVy~ T2, turns out to be a fibre bundle (with group taken to comprise all self
diffeomorphisms of the fibre) over a circle, with the property that above the 
toroidal boundary oVy the bundle cp: T2 -+Sl is the trivial one, having as fibres 
the small circles (of radius e) encircling the knot once and lying in planes 
perpendicular to it. 

Reversing the order in which the ingredients of this topological picture are 
given, we arrive at the following construction: We start with a smooth fibre 
bundle p: V -+ Slover the circle having as fibre P a bordered surface of genus 
g ~ 0 with boundary Sl (see Figure 96), such that the restriction of p to the 
boundary OV~T2 defines the trivial bundle OV~T2=Sl XS1-+S1. We then 
take the solid torus D2 x Sl and identify its boundary (via the diffeomorphism 
oV ~ T2) with that of V, thereby obtaining a closed 3-manifold M. If M ~ S3 
then V will indeed be a knot-complement, namely the complement of the 
knot y = 0 X Sl running along the middle of the solid torus. 

We consider the two simplest cases: 

(i) If g = 0, then P = D2, V = Si X D2, and the resulting knot y is trivial; 
(ii) If g = 1 (as in Figure 96(a», then the manifold V is obtained as the product 

of the surface P by the interval [0, 1], with identifications of the form 
(x, O)=(h(x, l)(x E P) for some self-homeomorphism h: P-+P, which is 
not orientation-reversing on the boundary Sl (in order that OV be, as 
required, the trivial bundle over Sl: oV~ Sl x Sl). The map h will induce 
on the group H1(PuD2)~H1(T2)~Z$Z an automorphism of the 
form a 1--+ rna + nb, b 1--+ la + kb, rnk - nl = 1, where a, b are generators of 
H 1(T2 ). 

EXERCISE 

With reference to (ii), calculate the groups 7t1( V) and 7t1(V u (D 2 x SI)). Show how to 
choose the identification map h so that M = V U (D 2 X SI) is a sphere S3 (in which case 
the construction yields a knot y c S3). Show in particular how to obtain the trefoil 
knot in this way (by taking m = 2, n = 3). 
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We conclude by describing an interesting related construction. Consider 
the polynomial f(z, w) = zm + wn (m, n relatively prime) defined on C2 , and the 
3-sphere Sl={lzI2+lwI2=c5>O} c: C2 ; the pair of equations 

zm+wn=o, 
(3) 

define a curve y c: sl. 

EXERCISE 

Show that the relative primality of rn and n implies that the curve y defined by (3) is 
connected (and non-self-intersecting), and is therefore a knot. 

We now define a fibre bundle 

p: Sl\y--.sl, 

with total space the knot-complement wy=Sl\y, and base s1, by setting 

EXERCISES 

f(z, w) 
p(z, w)= If(z, w)I' f(z, w):;60. (4) 

1. Verify that the map (4) has rank one at every point, and, as claimed, defines a fibre 
bundle over SI. Calculate the genus of the fibre. 

2. Prove that the knot y defined by the equations (3) is a "torus knot" y c T2 c s1 
(i.e. that y can be represented as a non-self-intersecting closed curve on the torus 
T2, as for instance in Figure 97), which in the homology group H 1(T2) represents 
the element rna + nb, where a, b are the natural generators. 

3. Show that the figure-eight knot (see Figure 94(c» is not a torus knot. 

26.4. Links 

We now turn to the consideration of the more general concept of a "link" in 
1R3 or S3. A link is defined to be a collection of embedded (possibly knotted) 

-
o 1 Z .3 

m-Z,Il=3 

(a) T2=1R2/l EB l 

Figure 97 
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(a) Trivial link (b) A non-trivial link 

Figure 98 

circles 1'1"'" Yk C S3, which are pairwise non-intersecting, non-self
intersecting, and have nowhere vanishing tangent vectors. (Examples of 
trivial and non-trivial links are depicted in Figure 98.) 

As for knots, so also for links is the fundamental group 
7t1 (S3 \(Y1 U ... U Yk)) of the complement of a link a natural and useful 
invariant; we call it the group of the link. One calculates the group of a link 
using the same algorithm as for knots, i.e. by projecting the link suitably onto 
a "screen" and choosing generators and computing the relations between 
them very much as described in §26.l. 

EXERCISE 

Calculate the group of each of the three links (for all of which k = 2) shown in 
Figure 99. 

We encountered earlier another invariant of a link, namely the collection 
of "linking coefficients" {Yi' 1'i}' i=f:j (see §15.4). However even for k=2 
this invariant fails to distinguish inequivalent links; in Figure 99(c) (where 
each of the two component circles is individually unknotted) we have k = 2, 
{1'1,1'2}=O as for the trivial link (a), yet, as computation of the group of 
the link shows, its components cannot be "unlinked". 

Interesting examples of links are afforded by pairs of equations of the form 

f(z, w)=O, 

where f is a polynomial. 

aa "OR 
(1, ·lz}=O 

(a) 

(1,. lz)=1 
(b) 

Figure 99 

(11, Yz)-tJ 
(c) 

(5) 
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EXERCISES 

1. If f has the form f(z, w) = zm + w' (where now m, n need not be relatively prime), 
how many components does the corresponding link have? 

2. Show that, as in the case of knots, the map 

S3\(y, U··· U yd-+S 1 

given as in (4), defines a fibre bundle. Calculate the genus of the fibre. Find the 
group of such a link. Examine the particular examples (i) f(z, w) = Z3 + w6 , (ii) 
f(z, W)=Z2W+W4. 

26.5. Braids 

Finally in this section we consider "braids" and their associated groups. Let 
P 1, ... , p. be n (fixed) points in 1R2, and consider the product space 1R2 x I 
where 1=[0, 1]. 

26.5.1. Definition. An n-braid b is a collection of n smooth arcs Y1, ... , Y. in 
1R2 x I which do not intersect one another, are non-self-intersecting, 
have nowhere vanishing tangent vectors (Yj#O), are transverse to the planes 
1R2 x t, and begin and end at the points P 1, ... , p. on the respective planes 
1R2 x 0 and 1R2 x 1, i.e. 

Yj(O)=(Pj , 0), j= 1, ... , n, 

Yil) = (P"'(j)' 1), j=I, ... ,n, 

where a=a(b) is a permutation of {I, ... , n}. (See Figure 100.) A pure or 
unpermuted n-braid is one for which a is the identity permutation aU) = j, 
j= 1, ... , n. 

For each n the isotopy classes of n-braids form a group B., called the braid 
group on n threads, under the operation defined as follows: the product K 1 K 2 

of two braids K 1 and K 2 is obtained by laying the lower plane 1R2 of K 1 on 
top of the upper plane of K 2 (so that the points corresponding to P 1> ••• , p. 
in the two planes coincide, and the threads go from the lower plane of K2 
through to the upper plane of K 1; see Figure 101(b»; the inverse of a braid K 
is then essentially just the braid obtained from K by tracing its threads out in 

Z J) 
1 J. 

Figure 100 
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f} Pz 

~ 
f} Pz 

(a) Trivial braid 

Xf 
Pt P3 

)H'H2 Xz 
Pf P3 

Pf P2 P3 

(b) The product of braids K 1 and K2 

Figure 101 
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the direction opposite to that determined by t, and the identity or trivial braid 
is as shown (for n=2) in Figure 101(a). 

Clearly the map defined by 

bf--+ u( b ), 

is an epimorphism from the braid group Bn onto the symmetric group Sn of 
permutations of n symbols; its kernel obviously consists precisely of the pure 
braids. It is easy to see that Bn is generated by the n - 1 braids f3 10 ••• , f3n - 1 

defined by Figure 102; these correspond in the obvious way to the n - 1 
transpositions 

( ... (1;= 
i+ 1 "'), ... i=I, ... ,n-l, 

i+l 

in Sn. One readily verifies the relations 

i=I, ... ,n-2, (6) 

li-jl> 1; i,j= 1, ... , n-1. 

EXERCISE 

Prove that the relations (6) form a full set of defining relations for the braid group B •. 

Also of interest is the concept of a closed braid: This is defined as a knot or 
link "transversely" embedded in the solid torus D2 x Sl c: 1R 3, or, to be more 
precise, as a collection of pairwise non-intersecting, individually non-self
intersecting, smooth closed curves Yl, ... , Yk in the region D2 x Sl of 1R3, with 
the further property that for no t, 0::; t ::; 2n, do the tangent vectors Y j( t) either 
vanish or lie in the plane of the disc D2 x t; i.e. the knot or link is transverse to 
the sections D2 x t. 

i-1 i i+1 i+2 

I X ) p; 
i-1 i i+1 i+Z 

Figure 102 
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EXERCISE 

Show that each closed braid (i.e. transverse knot or link in D2 x SI c: 1R 3 ) naturally 
determines a conjugacy class in a certain one of the braid groups. Show further that 
the classes of such knots and links with respect to "transverse isotopies" within 
D2 x SI (i.e. isotopies of the embedding YI U ... U Yk c: D2 X Sl c: 1R3 preserving the 
defining properties of a closed braid) are in natural one-to-one correspondence with 
the conjugacy classes of the braid groups. 

Remark. It can be shown that any knot or link in 1R3 can by means of an 
isotopy be brought into the form of an equivalent transverse knot or link in 
D2 x SI C 1R3 (i.e. closed braid). However this is not of great utility for the 
problem of classifying knots and links in 1R 3 , since in particular each knot is 
equivalent to many distinct closed braids. 

The braid group arises in yet another interesting context. Consider the set 
Un of all complex monic polynomials f = zn + a1 Zn -1 + ... + an of degree n, 
having n distinct roots. We indicate briefly how one proves that the group 
1t 1(Un) (where the topology on Un is defined by, for instance, the norm 
I f I = D = 1 I ad) is isomorphic to the braid group Bn· 

Consider the space v" c en = 1R2n defined by 

v" = 1R2 X ••• x 1R2\~, 
'--y----J 

n 

where ~ consists of those complex n-tuples (Zb"" zn) with at least two of the 
z/s equal. 

EXERCISES 

1. Prove that the group 1t 1(v,,) is isomorphic to the subgroup of pure braids of some 
braid group. 

2. Prove that the orbit space V JSn (~U n) has fundamental group isomorphic 
to the braid group B •. (Here S. denotes the symmetric group of degree n, acting 
on V. according to the rule (z 1, ... , Z.)I--+(za(l)' ... , Za(n»)' O"ESn.) 



CHAPTER 7 

Some Examples of Dynamical Systems 
and Foliations on Manifolds 

§27. The Simplest Concepts of the Qualitative 
Theory of Dynamical Systems. 
Two-dimensional Manifolds 

27.1. Basic Definitions 

What is a dynamical system? 

27.1.1. Definition. A dynamical system (or as they sayan autonomous 
dynamical system) on a manifold M, is a smooth vector field ~ on M. 

In terms of local co-ordinates on M, a dynamical system ~ gives rise to the 
system of (autonomous) ordinary differential equations 

(1) 

whose solutions are termed (as in Part I, §23.l) the integral curves or integral 
trajectories of the dynamical system; thus an integral trajectory is a curve y(t) 
on M whose velocity vector y(t) coincides at each instant with ~(y(t». In view 
of the appropriate existence and uniqueness theorems for systems of ordinary 
differential equations of the form (1), integral trajectories exist locally (if ~ is 
continuous), and are uniquely determined by initial conditions if ~ is smooth 
(as of course we normally assume it to be). On non-compact manifolds M it 
can happen that an integral trajectory "goes to infinity" in a finite amount of 
time, so that it is defined of course only for some finite interval of values of t. 
On the other hand on closed manifolds (i.e. compact manifolds (without 
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boundary)), every trajectory can be extended without bound as far as the time 
is concerned, and is therefore defined for all values of t, - 00 < t < 00. 

Each vector field ~ on M determines a linear differential operator on real
valued functions f on M, namely the directional derivative of f in the 
direction of ~ at each point x of M (cf. the remark in §24.3 of Part I): 

It is not difficult to see (cf. loc. cit.) that the exponential map applied to this 
operator, i.e. the operator defined by 

(2) 

determines a shift of each function f along the integral trajectories of the 
given field ~, i.e., for each x E M 

(3) 

where S,(x)=y(t), y=~, and y(O)=x. Recall also (from Part I, §23.2) the 
definition of the commutator [~, ,,] of two vector fields ~, "on M, as the field 
given locally by the formula 

[ ;: ]a _ ;:y ort y o~a 
,"," - '" oxy -" oxy ' 

or 

(4) 

We now introduce some of the general terminology associated with 
dynamical systems. 

27.1.2. Definition. (i) The limit sets w +(y) and w -(y) of an integral trajectory y(t) 
of a dynamical system ~, are the respective sets of all limit points of 
sequences of the form {y(t j )}, where t j -+ ± 00 (cf. §14.5). The union 
w+(y)uw-(y), denoted by w(y), is called the w-limit set of y. 

(ii) A positive (resp. negative) invariant set (or invariant manifold) of a 
dynamical system (1) is a subset (or manifold) N c M with the property 
that for every point x E N the integral trajectory y(t) with y(O) = x, lies in N 
for all t ~ 0 (resp. t ~ 0) (i.e. S,(x) c N for t ~ 0 (resp. t ~ 0)). Especially 
important are those subsets N which are both positively and negatively 
invariant; we call such sets (or submanifolds) simply invariant. 

(iii) An invariant closed set N c M is said to be minimal if N contains no 
proper (non-empty) invariant closed sets. (For example, a singular point 
Xo (i.e. a point where the field vanishes: ~(xo) = 0) will by itself form a 
minimal set, as will any periodic trajectory of the field ~. We shall meet 
with more exotic examples of minimal sets in the sequel.) 
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(iv) We shall say that an integral trajectory is captured by a subset N c M if 
for some to, y(t) lies in N for all t ~ to. 

(v) A hypersurface Pc M is a transversal for a dynamical system ~ if the 
restriction of the field to P is nowhere tangent to P, and is a closed 
transversal if in addition P is a closed submanifold of the manifold M. 

(In the latter case we have the following two possibilities: (1) the closed 
transversal P separates M into two parts WI and W2 (i.e. M = WI U W2 , 

Wt () W2 = P), in which case one of the components Wt , W2 will capture all 
integral trajectories of the field ~, and the other component will capture all 
integral trajectories of the field - ~ (verify this!); (2) the closed transversal P 
does not separate M into two components. Here of particular interest is the 
situation where for all points x E P the trajectory starting from x returns after 
a finite amount of time t(x) (depending on the point) to the submanifold P 
(and intersects it); clearly the dependence on the point x of the function t(x) 
giving the shortest time of return to P is smooth, so that the map 1/1: P-+P 
defined by I/I(x) = y(t(x)) where y(O) = x, will be a smooth map of manifolds.) 

EXERCISE 

With reference to the preceding remark, prove that the whole manifold M is 
diffeomorphic to the indicated quotient manifold: 

M;;;;PxI(O, l)/(x,O)-(t/I(x), 1). 

Deduce that M is diffeomorphic to a fibre bundle over Sl with fibre P. 

Besides dynamical systems the (cognate) qualitative theory of "one
dimensional foliations" on a manifold is also of great utility. A one
dimensional foliation on a manifold M is a field of directions (or "directors") 
~(x) at each point, where the vector ~(x) is specified only up to a non-zero 
scalar multiple, so that in particular ~(x)~ -~(x). (In other words the 
foliation is given by specifying at each point of M a one-dimensional (or 
possibly null) subspace of the tangent space to M at the point, varying 
smoothly with the point.) It is not difficult to see that locally, in some 
neighbourhood of a non-singular point Xo of the foliation (i.e. a point Xo such 
that ~(xo) ;60), it makes sense to express the foliation in the form (1), since for 
suitably well-behaved scalar-valued functions f on M the system x = ~(x) has 
locally the same integral curves as the system x = f(x)~(x). (Multiplication by 
f(x) corresponds to a change of time-scale t = t(r) satisfying dt(r)/dr 
= f(x( t( r))).) However globally the foliation may not be expressible in the 
form (1); in fact (as Figure 103 shows) it can even happen that there is no 
consistent time-direction definable. The reasons for considering one
dimensional foliations on a manifold, rather than vector fields, are various. 
For instance in the theory of "fluid crystals" the role of the "director" ~ ~ - ~ 

at each point of the medium is filled appropriately by the axis of symmetry at 
the point of a certain axially symmetric rank-two tensor embodying the 
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Figure 103. The points A and B are singular, with the point B on the boundary r a 
saddle; on the segment BA no time-direction is definable. 

optical properties of the medium. One-dimensional foliations also arise 
naturally in studying the behaviour far from the origin of the integral 
trajectories of dynamical systems on IR", where the components of the right
hand side of (1) (i.e. of ~(x)) are algebraic functions of the co-ordinates 
Xl, ... , xn of IR". For this purpose it becomes necessary to supplement IRn with 
points infinitely distant from the origin, i.e. to enlarge IR" to IRP"; it turns out 
that such a dynamical system on IR" does extend to IRP", at the cost of 
foregoing the possibility of specifying a direction of flow of time. In the case 
n = 2 for instance, a one-dimensional foliation on a 2-manifold M2 will be 
given locally, on some region U c M2 (U ~ 1R2) with co-ordinates x, y, by a 
I-form w = P(x, y) dx + Q(x, y) dy, since in this case the system (1) can be 
brought into the form 

w=P(x, y) dx+Q(x, y) dy=O. (5) 

A point (x, y) is clearly non-singular precisely if at least one of P(x, y) and 
Q(x, y) is non-zero. Suppose now that P and Q are polynomials of degree m. If 
we carry out the usual change to homogeneous co-ordinates uo, U 1, U2' given 
by 

i.e. if we enlarge U ~ 1R2 in the usual way to IRp2, then from the I-form w we 
obtain a i-form n on IRp2 given in terms of these co-ordinates by 

f"\ m+2 m+2 p (U l U 2 )( d d) H=UO W=Uo -,- Uo U1-U 1 Uo 
Uo Uo (6) 

m+2 (U 1 U2) +uo Q -,- (UOdU2-U2duo)· 
Uo Uo 

The equation n = 0 then defines a one-dimensional foliation on all of IRp 2 • 

EXERCISE 

Show that the line at infinity IRpl c IRp2 (given by Uo = 0) is an integral trajectory of 
the one-dimensional foliation n = O. Show also that this foliation is such that no 



§27. The Simplest Concepts of the Qualitative Theory of Dynamical Systems 301 

T-transverse segment 

Figure 104. The Poincare function f: T -+ T is defined for each rET in terms of the 
trajectory y starting at y(O) = r: we set f(r) = y(t), where y(t) E T is the first point where 
the curve y again meets T. In particular if rET is on the limit cycle Yo, then f(r) = T. 

consistent direction of flow of time can be chosen. Investigate the singular points at 
infinity of the foliation n=o, in the case m=2. 

27.1.3. Definition. A limit cycle of a dynamical system (or one-dimensional 
foliation) on a 2-dimensional manifold, is a periodic integral trajectory with 
the property that in some sufficiently small neighbourhood of it there are no 
other periodic trajectories. (It follows that the situation near a limit cycle will 
be essentially as shown in Figure 104.) 

The situation where integral trajectories of a dynamical system on 1R2 
enter a closed disc D2 containing a "repellor" (i.e. a source), across the 
transversal r=oD2 , was considered in §14.5, where we proved the 
Poincan!-Bendixson theorem; that theorem in fact applies to one
dimensional foliations on the sphere S2, where, as in Figure 105, the north 
pole for instance is a repelling singular point (i.e. a source). From the equality 
between the Euler characteristic of a closed orientable manifold and the sum 
of the indices of the singular points of a vector field in general position on the 
manifold (see Theorem 15.2.7), it follows that every such vector field on the 
sphere S2 must have a source or sink, which fact, together with the 
Poincare-Bendixson theorem, implies that limit cycles always exist for one
dimensional foliations on the 2-sphere. This represents the only significant 
result of any generality concerning the existence of limit cycles. Even in the 

Figure 105 
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case of dynamical systems e(x) on 1R2 (or foliations on IRp2) where the 
components of e(x) are quadratic polynomials in the co-ordinates x, yon 1R2, 
there is no general result about the number of limit cycles; in each individual 
case finding the limit cycles seems to present a separate non-trivial problem. 
A special (degenerate) case is that of a divergence-free dynamical system 
e=(e 1, e2 ) on the plane 1R2 (i.e. one satisfying ae"/ax" = 0), where the 
transformations SI are Euclidean area-preserving (see Part I, conclusion of 
§23.2); such a system is Hamiltonian with one degree offreedom and therefore 
an "energy" integral exists (see §28 below and Part I, §23.2, Example (a), for 
the meaning of this), and the system can be completely integrated. 

27.2. Dynamical Systems on the Torus 

From the classification theorem for surfaces together with the above
mentioned equality between the Euler characteristic of a closed oriented 
manifold and the sum of the indices of any vector field in general position on 
the manifold (Theorem 15.2.7), it follows that the torus T2 is the only closed, 
orientable surface on which a nowhere vanishing vector field can be defined. 
One is led to consider such systems on the torus by for instance the question 
of the qualitative nature of the solutions of certain differential equations with 
periodic coefficients. Thus a differential equation of the form 

x=f(x, t), (7) 

where f is periodic in both arguments (i.e. f(x + 1, t) = f(x, t) = f(x, t+ 1» 
defines on the torus T2, with co-ordinates x (modulo 1) and t (modulo 1), the 
dynamical system 

x=f(x, t), i= 1, (8) 

so that our original problem concerning the differential equation (7), is 
transformed into that of investigating the behaviour of the solutions of the 
system (8) on the torus. The system (8) has the obvious closed transversals SI 
c T2 (see Definition 27.1.2(v)) each defined by an equation of the form t = to 
(x arbitrary). Such a transversal does not separate the torus into two 
components, and clearly the trajectory y(t)=(x(t), t) starting at any point 
(x, to) of the closed transversal SI given by t = to, returns to that transversal 
after one unit of time has elapsed: t(x) = 1; we are thus led naturally to a map 
1/1: SI--+SI (in fact a diffeomorphism of degree 1) defined by 1/I(x)=y(to+ 1), 
y(to)=(x, to) E SI C T2. Given such a map 1/1: SI--+SI, we define a corre
sponding real-valued diffeomorphism tp: IR--+IR by the conditions tp(x)=1/I(x) 
mod 1 and tp(x + 1) = tp(x) + deg 1/1 = tp(x) + 1 (see Figure 106). We may clearly 
suppose (by shifting the axes appropriately) that tp(O) > O. Write 

tpix)= tp(tp( ... tp(x) ... » 
,-' ----.vr----' 

n times 

for n>O, 
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and tf -n =(tfn)-l, the function inverse to tfn, and consider the expression 

(9) 

(whose numerator in essence represents (geometrically speaking) the angle 
through which the point x is revolved by n applications of the map t/I). 

27.2.1. Lemma. 
(i) The quantity (tfn(x)-x)/n has a limit as n-+oo which is independent of the 

point x. 
(ii) This limit, called the "winding number" of the map t/I, is rational if and only 

ift/l possesses a "periodic point", i.e. a point Xo satisfying,Jor some integer n, 
t/ln(xo)=xo (or, equivalently, tfn(xo)=xo+mfor some integer m). 

PROOF. (i) Write briefly (Xn(x) = tfn(x)-x; thus, as noted above, (Xn(x) is 
essentially the angle through which x is revolved by n successive applications 
of the diffeomorphism t/I. For any Xl' x 2 E IR, we have 

(10) 

this follows easily from the definition of tf(x) when IXI -x21 < 1, and thence 
for any Xl' X2 using the periodicity of (Xn(x). If for each n we write mn for the 
integer part of (Xn(O), i.e. if we define mn to be the integer satisfying the 
inequalities mn~(Xn(O)<mn+ 1, then from (10) we infer that l(Xn(x)-mnl <2, 
whence 

/
(Xn(X) mn/ 2 r -- - - < - lor all x. 

n n n 
(11) 

A direct verification from the definition of (Xn(x) shows that 

(Xnl( x) = (Xn( X ) + (Xn( tf n< x» + (Xn( tf 2n( x» + . . . + (Xn( tf n(l- 1)( x», 

whence it follows that (Xnk(x)/nk is the arithmetic mean of the k quantities 
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(Xn(,frni(x»/n, i=O, ... , k-l (where we take ,fro(x)=x). Since by (11) each of 
these k numbers is within the distance 21n of mnln, it follows that for all k, n 
and x, 

l(Xnk(X) _ mnl <~, 
nk n n 

i.e. for all k the quantities (Xnk(x)/nk lie in the interval [(mn - 2)/n, (mn + 2)/n], 
This and the symmetry of the expression (Xnk(x)/nk in nand k, together imply 
that every pair of intervals of the form [(mn - 2)/n, (mn + 2)/n] has non-empty 
intersection. Since the lengths of these intervals approach zero as n-+ 00, it 
easily follows that there is exactly one point contained in all of them, which 
point is the desired winding number. 

(ii) We now turn to the converse. Thus suppose that the winding number 
of 1/1 is (X = min where m and n are integers. We define a function A(x) by 

,frix)=x+m+A(x). 

In view of the periodicity of A(x) (i.e. in essence the compactness of SI), 
if A(x) > 0 for all x, then A(x) must be bounded away from zero, say 
A(x) > Ao > O. However then 

,frn(x) ~ x + m + Ao, 

whence, in view of the fact that ,fr(x) is increasing, 

,frnk(x)~x+km+kAo for k>O, 

yielding in turn 

(Xnk(X) ,frnk(X)-X m Ao 
n;z-= nk ~n+n' 

Letting k-+ 00, we obtain (X ~ min + Aoln > min, contradicting the hypothesis 
that (X = min. A similar argument disposes of the possibility that A(x)::s; Ao < O. 
Hence A(xo)=O for some point Xo which will then be periodic for 1/1. 0 

Clearly there will exist periodic solutions of the system (8) if and only if the 
map 1/1 possesses periodic points; hence in view of the above lemma the 
existence of periodic solutions of the system (8) on the torus is equivalent to 
the rationality of the winding number (X of the map 1/1. 

We now consider the situation where the winding number (X is irrational, 
i.e. where the system (8) has no periodic solutions. We begin with a corollary 
of (the proof of) Lemma 27.2.1. 

27.2.2. Corollary. If the winding number of the map 1/1 is irrational thenfor each 
x, and arbitrary N, the order of the points x, I/I(x), 1/1 2(x), ... , I/IN(x) around the 
circle S1 is the same as that obtained by replacing 1/1 by the rotation of SI 
through the angle (x. 
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PROOF. In the proof of part (ii) of Lemma 27.2.1, we showed essentially that 
tlio(x) > x + m for all x if and only if a > min, i.e. if and only if x + na > x + m for 
all x, which shows that for each x the correspondence x + na (mod 1) +-+ l{!°(x), 
n = 0, 1, ... , N, does indeed preserve order around the circle. 0 

In the following lemma, the "limit sets" w±(x) are defined for each x E Sl 
(where Sl is as before the circle defined by t = to) as the sets of limit points of 
the sequences of points I/!°(x) as n~ ± 00; obviously these sets are just the 
intersections w ± (y) n Sl where y is the integral trajectory of the system (8) on 
the torus, passing through the point x at time t = to. 

27.2.3. Lemma. If the winding number of I/! is irrational thenfor each point x of 
Sl (t=to), the limit sets w+(x) and w-(x)just defined, coincide, are invariant 
under the diffeomorphism I/!, and are independent of the point x. 

PROOF. We begin by establishing the invariance of each of the sets w±(x) 
under the respective maps I/!±I. For each YEW±(X) there is by definition of 
the sets w±(x) a sequence nl, n2,'" of integers such that nk~ ± 00 and 
l{!0k(X)-+y. It is then immediate that the sequence l{!±I(l{!0k(X))=I/!ndl(x) 
converges to the point I/! ± I(y), so that I/!± I(y) E w±(x), as required. 

For the justification of the remaining assertions of the lemma, we need to 
establish the following auxiliary fact: If we denote by a and a the arcs into 
which the two image points I/!"(x), l{!m(x) (m"# n) of our arbitrarily given point 
x, separate the circle (as shown in Figure 107), then for every YES I, each of 
the "half-orbits" {I/!q(y)1 q ~ O} and {I/!q(y)1 q::; O} contains points of both arcs. 
To see this consider to begin with the half-orbit {I/!q(Y)lq~O}, and suppose 
for instance that m > nand yEa. Form the sequence of arcs 

a, l{!0-m(a), l{!2(o-m)(a), ... , I/!S(O-m)(a), ... , s>O; (12) 

clearly these arcs are successively contiguous (i.e. a joins l{!m(x) and l{!"(x); 
I/!0-m(a) joins I/!°(x) and l{!2o-m(a), etc., as indicated in Figure 107), and their 
successive (common) end-points comprise a monotonic sequence of points of 
the circle (i.e. proceed around the circle in a single direction). It is not difficult 
to see that the arcs of the sequence (12) cover the circle; for if they did not then 

Figure 107 

ft' 2 n - m(oX) 

rpJn-2 m(X) . 
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their end-points, i.e. the points of the form tjJs(n-mltjJn(x), s=O, 1, ... , would 
form a monotonic, "bounded" sequence of points on the circle (i.e. a 
monotonic sequence on the arc of the circle which they do cover), and would 
therefore converge. Their limit would then however represent a fixed point of 
the map tjJn-m, which in view of the assumed irrationality of the winding 
number of tjJ, is ruled out by Lemma 27.2.1. Thus the images of the arc a in 
(12) do cover the circle, so that y E tjJs(n-m'(a) for some s, i.e. tjJs(m-n,(y) E a. The 
argument for the other half-orbit {tjJ9(Y)lq ~O} being essentially identical, this 
completes the proof of the fact that for every y E SI each of the arcs a and ii 
contains points (and hence infinitely many points) of both of the above half
orbits of y. 

The remaining assertions of the lemma now follow easily. We content 
ourselves with showing that for any two points x, Y E SI, we have w+(x) 
c: w-(y); the reverse inclusion, and the equality w+(x)=w+(y) are es
tablished by very similar arguments. Thus suppose Xo E w+(x), and let qk be a 
sequence of integers tending to 00 such that tjJ9k(X)-+XO' In view of the above 
"auxiliary fact" each arc ak=[tjJ9k(x), tjJ9k+l(X)] contains infinitely many 
points of the half-orbit {tjJq(Y)lq~O}; let Sk be a sequence of integers tending 
to - 00 such that tjJSk(y) E ak' Since the lengths of the arcs ak approach zero as 
k-+oo, we must have tjJSk(y)-+XO as k-+oo, whence Xo E w-(y). Hence w+(x) 
c: w - (y), as claimed. 0 

Before proceeding to the main consequences of the above two lemmas, we 
remind the reader of the definitions of a few relevant concepts from 
elementary point-set topology. A point y of a topological space T is a limit 
point of a subset X c: T (as opposed to a sequence) if every open set 
containing y contains a point of X other than y. A subset X c: T is then 
defined to be closed if it contains all of its limit points (which turns out to be 
equivalent to the requirement that its complement be open), and to be perfect 
if it coincides with the set of its limit points (or equivalently, if it has no 
isolated points). Finally a subset X c: T is nowhere dense in T if X has empty 
interior, i.e. if every non-empty open set of T contains a point outside X. 

27.2.4. Theorem. If the winding number of the map tjJ is irrational then the limit 
set w(x) = w(y) (defined prior to Lemma 27.2.3, and, by that lemma, independent 
of the point and whether n-+ ± (0) is either the whole of S1, or else a nowhere 
dense, perfect set (i.e. a "Cantor set"). 

PROOF. The set w(x)=w±(x)=w(y) is closed, essentidlly by definition. It is 
not difficult to see that it is even perfect. To this end let Xo be any point of 
w(x). By Lemma 27.2.3 all points tjJ9(XO) also belong to w(x), and w+(xo) 
=w(xo)=w(x). Hence there is a sequence of integers qk-+oo such that tjJ9k(XO) 
-+Xo. Since the winding number is by hypothesis irrational, by Lemma 27.2.1 
for no qk can we have tjJqk(XO) = Xo; hence the arbitrary point Xo E w(x) is a 
limit point of w(x), i.e. w(x) is perfect. 
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What are the possibilities for perfect subsets w(x) c Sl? Either W(X)=Sl 
(the case where the perfect subset is everywhere dense) or there are points of 
Sl outside w(x). If w(x) contains some open arc b of Sl then since for each 
point Xo E b we have w(xo)=w(x), there will certainly exist an integer m>O 
such that also I/!m(xo) E b; denote by a the closed sub-arc of b with end-points 
Xo and I/!m(xo). By arguing as in the preceding lemma it follows that the 
successive arcs of the sequence 

a, I/!m(a), ... , I/!sm(a), ... 

are contiguous and together cover the whole circle, whence w(x) = Sl. Hence 
either w(x) = Sl, or w(x) contains no open arcs of Sl, i.e. is nowhere dense. 

o 

Remark. There do in fact exist examples of C1-maps I/!: Sl-+Sl, arising from 
systems of the form (8) on the torus (with the right-hand side f(x, t) of class 
Cl ) for which the limit set w(x) is a Cantor set. However if the map I/!: Sl-+Sl 
is of class C2 (which it certainly will be for instance if f(x, t) is a (real) analytic 
function of two variables, in particular a trigonometric polynomial), then 
there is a theorem of A. Denjoy to the effect that this cannot happen: If the 
map I/! is of class C2 , and its winding number is irrational, then the limit set w( x) 
coincides with the whole circle Sl (i.e. the integral trajectories of the system (8) 
are everywhere dense on the torus y2). This result (in dimension 2) notwith
standing, the phenomenon of limit sets of trajectories of non-trivial dynam
ical systems which are Cantor sets, turns out to be inescapable in general, 
since in dimensions ~ 3 such limit sets may occur even when the components 
of the right-hand side of the dynamical system are algebraic functions. 

27.2.5. Theorem. Suppose that the winding number tx of the map I/! arising from 
a system oftheform (8) on the torus, is irrational. If the limit set w(x) ofl/! is the 
whole circle Sl (i.e. if the integral trajectories of the system are everywhere 
dense on the torus), then the map I/!: Sl -+ Sl is "topologically equivalent" to a 
rotation; more precisely, there exists a homeomorphism h: Sl-+Sl (not neces
sarily smooth in general) such that 

(13) 

PROOF. By Corollary 27.2.2, for each x E Sl, the points Xn = I/!n(x) are placed 
around the circle in the same order as the points ntx (mod 1) (the points of an 
orbit under the rotation of the circle through the angle tx). In view of this, and 
since by hypothesis the points Xn form an everywhere dense subset of Sl (i.e. a 
set whose limit points exhaust the circle), it follows that we can extend (by 
continuity) the map h defined by 

h(xn ) = ntx (mod 1), 

to a self-homeomorphism of Sl. It is easy to verify that this homeomorphism 
satisfies (13). 0 
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Remarks. 1. We emphasize that the homeomorphism h serving to "linearize" 
the map "': Sl-.Sl, may not in general be smooth; it can fail to be smooth for 
'" of arbitrary smoothness class, or even (real) analytic. The question of the 
degree of smoothness of h is not, as it turns out, an easy one. 

2. Throughout the present subsection we have been preoccupied with 
dynamical systems on the torus, in which case as we have seen the whole 
surface may represent a minimal set (see Definition 27.1.2(iii». For orientable 
surfaces of genus > 1 on the other hand, the following result is known: A 
minimal set of a vector field of class C2 on an orientable surface of genus > 1 
either consists of a single singular point, or is a periodic integral trajectory. This 
extends the above-mentioned theorem of Denjoy in the sense that it excludes 
Cantor sets. (However for dynamical systems of class C1 it is easy to construct 
examples having minimal sets which are Cantor.) 

§28. Hamiltonian Systems on Manifolds. 
Liouville's Theorem. Examples 

28.1. Hamiltonian Systems on Cotangent Bundles 

Variational problems on arbitrary manifolds are posed exactly as in the 
(special) case of Euclidean space (see Part I, §31.1). Thus (in the case of one
dimensional variational problems) one starts with a Lagrangian, i.e. a scalar
valued function L(x, v) of the points x of the manifold M and the tangent 
vectors v to M at the point x, and, exactly as in Part I, §31.1, one shows that 
the corresponding extremals, i.e. smooth arcs y(t) joining a given pair of 
points of M, which extremize the action 

S= f L(x, x) dt, 
1(t) 

x=y(t), v=y=x, 

satisfy a condition which locally takes the form of a second-order system of 
Euler-Lagrange equations on M: 

. d (OL) oL 
p,,= dt Tv" = ox'" (1) 

Furthermore it can be shown just as in Part I, §33.1, that provided the 
"Legendre transformation" is "strongly non-singular", i.e. the local system of 
equations p,,=(oL/ov") (x, v) has a unique solution of the form v"=v"(x, p), 
then the Euler-Lagrange equations (1) can be transformed into the equiva
lent local Hamiltonian form 

. oH 
p,,= - ox'" 

." oH X=-. 
op" 

(2) 
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The Hamiltonian system (2) can clearly be regarded as a dynamical system on 
the cotangent bundle T*(M), whose points are just the pairs (x, p) where x 
varies over M, and for each x, p varies over the space of covectors at x; it is 
thus clear that T*( M) has dimension 2n where n = dim M. (In Part I, §§33, 34, 
we called T*(M) "phase space".) 

The differential form n= La dxa " dPa is closed (in fact even exact, since 
n = dO) where 0) = Pa dxa), is defined globally on the whole of T*(M), and is 
clearly non-degenerate. (As in Part I, §34.l, it follows from this non
degeneracy that 0"=0" ... " 0 is proportional to the volume element 
determined by the "skew-symmetric metric" on T*(M) afforded by the given 
form n.) Regarding 0 as defining a skew-symmetric metric on T*(M), we 
obtain from it a non-degenerate, skew-symmetric scalar product of vectors: 

(3) 

where a, b = 1, ... , 2n, and n = Jab dya " dl, the co-ordinates yl, ... , y2" on 
T*(M) being given by ya = xa, y"+a = Pa' IX = 1, ., ., n. In terms of these co
ordinates the Hamiltonian system (2) takes the "skew-symmetric gradient" form 

ya _ Jab aR )Db Jbc = O~. (4) 
- al' 

As in Part I, §34.2 we define the Poisson bracket {I. g} of two functions I. g 
defined on phase space T*(M), as the (skew-symmetric) scalar product of 
their "gradients" (see (4) or (6)) with respect to the co-ordinates yl, ... , y2": 

ab aJ ag 
{f,g}=J aya al = (VI. Vg). (5) 

By virtue of the fact that n is closed, it follows that the space of functions on 
T*(M) forms a Lie algebra with respect to the Poisson bracket (cf. Part I, 
Theorem 34.2.4). It can also be shown (essentially as in Part I, §34.2) that the 
"gradient" of the Poisson bracket {I. g} of two functions I. g, is the negative 
of the commutator of their "gradients": 

J-+VJ= (rb :~b). g-+Vg= (Jab :~). (6) 

{I. g}-+V{f,g} = -[VI. Vg]. 

The extension of these concepts and results (introduced in the context of 
Euclidean space in Part I, §§33, 34) to general manifolds, is automatic in view 
of their local character. 

28.2. Hamiltonian Systems on Symplectic Manifolds. 
Examples 

Before introducing the general concept of a symplectic manifold and its accom
panying Hamiltonian system, we make the following two motivating remarks: 
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(i) Any closed i-form w = H a dy" on the manifold T*(M) determines via 
the system y" = J"bHb a local group of canonical transformations St, since 
locally, i.e. on each chart (diffeomorphic to 1R2n), a closed i-form is the 
differential of some function (although globally there may not exist a single
valued function of which w is the differential). 

(ii) There are interesting systems of Hamiltonian type which happen not 
to be defined on manifolds of the form T*(M), and where the analogue of the 
form 0 (see the preceding subsection), though closed, is not exact. 

28.2.1. Definition. A symplectic manifold is an even-dimensional manifold M 
endowed with a non-degenerate, closed 2-form 0 given locally by 

Corresponding to each closed i-form w = H" dy" on M the form 0 determines 
a gradient or Hamiltonian system y"=J"bHb; each closed 1-form w is locally 
the gradient of a real-valued function H on M, called a Hamiltonian: 
oH/oy" = H". (In connexion with this definition it is appropriate to remind the 
reader of Darboux' Theorem (see Part I, §34.2) according to which the above 
form 0 can locally be brought into the canonical form Li dxi A dpi by means 
of a suitable co-ordinate change.) 

It is easy to see that the Poisson bracket 

{f, } = J"b of og 
,g oy" oyh 

of pairs of functions on a symplectic manifold continues to enjoy in this more 
general context the same properties as before (see above). 

28.2.2. Examples. (a) A non-degenerate, closed form 0 can be defined on any 
2-dimensional orientable manifold endowed with a Riemannian metric (see 
§8.2): any 2-form proportional to the element of area with respect to such a 
metric will serve; such a form is obviously non-degenerate, and is closed for 
the simple reason that it has maximal rank. A wider class of examples is 
afforded by Kiihlerian manifolds: Recall from Part I, §27.2 that a complex 
manifold is called Kiihlerian if it comes endowed with an Hermitian metricg./l 
with the property that the form 0= (i/2)g./l dz· A dz-fJ, which is a real 2-form 
on the realized manifold, is closed. (See also Part I, §29.4.) As in Lemma 34.1.2 
of Part I it follows that the form on, where n is the complex dimension of the 
given complex manifold, is proportional (with non-zero constant factor of 
proportionality) to the form representing the volume element. (Verify this!) 
(Cf. in particular the example in Part I, §27.2.) Hence if the manifold is closed 
(i.e. compact and without boundary), then the form 0 is not exact. Thus we 
see that Hamiltonian systems are defined in a natural way on Kiihlerian 
manifolds. Riemann surfaces (the simplest of which is cpt ;;:S2), once 
equipped with the metric induced from their universal cover (U in most 
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cases; see §20), become Kahlerian manifolds. We end this example by leaving 
it as an exercise for the reader to show that Hamiltonian systems on (2-
dimensional) surfaces are precisely those systems for which the corresponding 
transformations S, are area-preserving (cf. Part I, Corollary 34.3.2). 

(b) Another interesting class of examples is afforded by semisimple Lie 
algebras (see §3.1), equipped with an Ad-invariant scalar product. Consider 
for example the Lie algebra so(n) (of the Lie group SO(n)), consisting of all 
skew-symmetric n x n matrices. Since so(n) is a linear space, as a manifold it is 
identifiable with IRn(n -1)/2, so that its tangent vectors can be identified (in the 
usual way for the spaces IRm) with its points. We define a 2-form n on pairs 
A, B of "tangent vectors" to so(n) (identified with the appropriate elements of 
so(n)) at each point C e so(n), by (cf. §6.4(7)) 

nc(A, B)= <[A, B], C) =tr(C[A, B]). 

Recall that, as has been noted before, for each q e SO(n), the operator Ad q on 
so(n) is given in terms of matrix multiplication by the formula 

Cl-+qCq-l, qeSO(n), Ceso(n). (7) 

EXERCISES 

1. Verify that the form n on so(n) is Ad-invariant, i.e. is invariant under transform
ations of the form (7). 

2. Prove that the restrictions of the form n to the orbits of so(n) under the action of 
SO(n) defined by (7), yield non-degenerate, closed forms (at least on those orbits of 
largest possible dimension). 

In the particular case n = 3, we have so(3) = 1R3 and commutation is just the 
familiar cross product [~, 11], ~,11 E 1R3 (see Part I, §24.2). At each x e 1R3 the 
form n is in this case given by 

or 

n=const.x(x 1 dx 2 " dx 3 -x2 dx 1 " dx 3 +x3 dx 1 " dx 2 ). 

This form is invariant under rotations of 1R3 , and its restriction to each sphere 
La(x«)2 =const. is non-degenerate. 

The "Euler equations" of classical mechanics for the behaviour of a freely 
rotating rigid body in 3-space, have the form 

M=[M,w], w=w(M); (8) 

here w is the angular velocity vector, M is the angular momentum, and nand 
M are linked by the equation M=Jw+wJ, where J=(Jij)=(A/jij), Aj>O, is 
the "moment tensor of inertia" of the rigid body. In view of this we say of an 
equation of the form (8) on the Lie algebra so(n), that it is of "Euler type". 
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EXERCISES 

1. Show that an equation of Euler type on so(n) defines a Hamiltonian system on each 
of the orbits of maximal dimension under the action (7) of SO(n) on so(n). 

2. Prove that the orbits of maximal dimension are Kiihlerian manifolds. 

28.3. Geodesic Flows 

From a geometrical point of view the most important Hamiltonian systems 
are those known as "geodesic flows": A geodesic flow on a smooth manifold 
M endowed with a Riemannian metric ga.P' is the Hamiltonian system 
Pa.= -8H/8xa., xa.=8H/8pa., on the tangent bundle T(M) of M, with Hamil
tonian given locally by 

H(x, p)=iga.Ppa.Pp, ga.Pgpy=J~. (9) 

(This Hamiltonian arises from the Lagrangian L=iga.p va. vP whose extremals 
are the geodesics parametrized by the natural parameter (see Part I, §§31.2, 
33.3). Note also that the above Hamiltonian system (with Hamiltonian (9» 
can be regarded as being defined on T(M) (as here) rather than T*(M) (as in 
§28.1), by simply raising the index: pP=gPa.pa.') 

As in §33.3 of Part I it follows from Maupertuis' principle (extended to 
arbitrary smooth manifolds) that, in particular, a particle on a manifold M 
with metric ga.p(x), in a field of potential Vex), x E M, and confined to a fixed 
energy level E = H(x, p) =t<p, p) + Vex), moves along the geodesics of the 
new metric 

ga.p(x, E) = const. x (E - V(x»ga.p(x), (10) 

so that the investigation of this physical situation is in this way subsumed 
under the general study of geodesic flows. (Note however that, as was 
observed in Part I, §33.3, the parameter arising in solving the extremal 
problem with respect to this new metric will not in general be natural (in the 
sense of being a constant multiple of distance travelled on M). In view of this, 
when Maupertuis' principle is exploited in this way, the resulting geodesic 
flow is of interest only as a one-dimensional foliation on M (rather than a 
vector field; see §27.1).) 

We shall in the remainder of this subsection restrict our attention to 
geodesic flows on closed manifolds M (endowed with a Riemannian metric). 
Corresponding to each fixed energy level 

E=H(x, p)=t<p, p) =tga.p pa.pp=iga.ppa.pP 

(where the final equality results from raising indices), we obtain a dynamical 
system (derived from (2) by raising indices in the first equation) on the 
(compact) bundle over M of tangent vectors of constant length .j2E. (This 
bundle manifold is clearly a fibre bundle over M with fibre S· - 1 where n 
=dim M.) Two facts particularly relevant to the qualitative theory of such 
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Figure 108 

systems are the folJowing: (i) they have no critical points; and (ii) their periodic 
trajectories may be investigated using the topological theory of critical 
points, applied to the length functional defined on the space of all closed 
curves in the bundle manifold. A case of particular interest is that of compact 
manifolds having negative curvature in every 2-dimensional direction (i.e. 
intuitively speaking, manifolds in which at every point the geodesics with 
coplanar tangent vectors diverge locally). For the sake of simplicity we here 
(briefly) describe the situation only for 2-dimensional surfaces endowed with 
a Riemannian metric of constant negative Gaussian curvature. At the fixed 
energy level H(x, p)= 1, the geodesic flow on such a surface M can be 
represented by a dynamical system (i.e. a vector field ~) on the unit tangent 
bundle Tl of M. It turns out that corresponding to each conjugacy class of 
elements of the fundamental group 1tl (M), there is precisely one periodic 
trajectory. A characteristic feature of metrics of negative curvature is the 
"exponential" behaviour of their geodesics: if y(t) denotes any particular 
integral trajectory of the field ~ on Tl (i.e. in essence a geodesic on M), then 
the collection of geodesics which approach y(t) "exponentially quickly" as 
t-+ + 00 forms a surface in Tl (or in M) containing y(t), which surface we 
denote by R+(y); the surface R_(y) is defined analogously (for t-+ - (0) (see 
Figure 108). (The surfaces R ± (y) can be defined more precisely as the 
projections of those surfaces in the universal covering space (the Lobachev
skian plane L2) of M, consisting of the geodesics in L2 converging on the 
respective "end-points at infinity" of y (i.e. points on the boundary of the disc 
in the Poincare model of L 2 ; see Figure 109). It is at least intuitively clear that 
the intersection R _ (y) (\ R + (y) of these surfaces is then precisely the geodesic 

Figure 109 
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y, so that we have revealed the interesting phenomenon that each trajectory y 
c Tl is the intersection of two surfaces in T1, i.e. the manifold T! is "foliated" 
by the two families of surfaces R + and R _. The dynamical system is not 
however integrable (i.e. does not have a "prime" integral of motion-see Part I, 
§23.2, Example (a), or below); in fact everyone of the surfaces R+(y) and 
R _ (y), and "almost every" trajectory y of the geodesic flow, constitutes an 
everywhere dense subset of T!. (We omit the proof of these facts.) The two 
families R +, R _ of surfaces in Tl furnish a rather curious example of a "2-
dimensional foliation", which concept we shall consider in greater detail 
below (in §29). 

EXERCISE 

Prove that the "leaves" R+(y) and R_(y) of the foliations are topologically either 
planes!R2 or cylinders SI x !R I . (The appropriate topology on each of the leaves R+(y) 
and R_(y) is that having as open base the collection of all finite intersections of the 
connected components of the subsets of R+(y) (resp. R_(y)) open in the relative 
topology on R+(y) c TI (resp. R_(y) c Ttl.) 

28.4. Liouville's Theorem 

Geodesic flows sometimes admit "spare" integrals of motion. (Recall from 
Part I, §§23.2, 34.2 that an "integral of the field" or "integral of motion" is a 
function on the manifold carrying the field, which is constant along each 
integral trajectory.) This will occur if the metric on the manifold M has a non
discrete group of isometries (as for example when M is a homogeneous space, 
or a surface of revolution in Euclidean space), and in certain other special 
cases. Of course if there are such integrals then no trajectory can be 
everywhere dense on the bundle manifold T of tangent vectors to M of 
constant length (given by E = 1< p, p> = const.). The analogous situation 
arises also in more general Hamiltonian systems having extra integrals of 
motion, i.e. integrals of motion other than the energy. The following theorem 
of Liouville is concerned with such systems, or, more precisely, with 
Hamiltonian systems with n degrees offreedom (i.e. on 1R 2n, or more generally 
on any symplectic 2n-dimensional manifold M endowed with a non
degenerate closed 2-form n; see §28.2), having precisely n "functionally 
independent" integrals of motion H = h ,h, ... ,/., whose pairwise Poisson 
brackets are all zero: {fa,.fP} =0 (cf. Part I, Corollary 34.2.6). 

28.4.1. Theorem (Liouville). Let M be a 2n-dimensional, symplectic manifold 
with non-degenerate closed 210rm n given locally by n = Jab d~ " dl, in terms 
of local co-ordinates ya, and suppose that the Hamiltonian system on M 
determined by a given Hamiltonian H has n integrals of motion h = H, f2' ... ,/. 
whose pairwise Poisson brackets are all zero, and whose "skew-symmetric" 
vector-gradients ~i = W) = (Jab( aJi/ al)), where (Jab) = (Jab) - t, are (pointwise) 
linearly independent. We then have that: 
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(i) Every (n-dimensional) level surface defined by n equations of the form 
h =al>'" ,J,,=an (where the aj are constants), is non-singular, and each of 
its connected components can be obtained as a quotient group (and quotient 
space at the same time) oflRn by a (discrete) lattice of rank :::;; n; itfollows in 
particular that the non-singular, compact (connected) surfaces among these 
level surfaces are n-dimensional tori. 

(ii) Given any compact, connected level surface (as defined in (i», there is a 
neighbourhood (in M) of that surface in which there can be defined co
ordinates s l' •.. , Sn; CPl> ... , CPn (0:::;; CPi < 21t) ("action-angle" co-ordinates) 
with the following three properties: (1) in terms of these co-ordinates 
we have Cl=I."ds"l\dcp", i.e. {s", s/l}= {cp", CP/l}=O, {s", CP/l}=«>,,/l; 
(2) s" = s,,(fl' ... ,fIlHi.e. the s" are defined in terms ofthefunctionsfl' ... , fn), 
and the cP" define co-ordinates on each surface (in the neighbourhood in 
question) of the form jj = const. U = 1, ... , n); (3) in terms of these co
ordinates the original system takes on the eqUivalent form 

i,,=o-::;.s,,=O, (11) 

in the neighbourhood of the given surface. 

PROOF. (i) In view of the linear independence of the gradients of the /;, 
i = 1, ... , n, each set of equations h = al, ... ,J" = an defines a smooth (non-
singular) n-dimensional submanifold Mn(a l, ... , an) say, of M. By Part I, §7.2, 
for each i the gradient (o/;I oxQ) is at each point perpendicular (in the 
Euclidean sense) to the level surface /; = const. through that point; it follows 
from this together with the condition 

0= { I: fi} = rb o/; ojj =):~ ojj 
Jj, j o~ ol ... ol' 

that the vector fields ei are all tangential to the surface M"(al' ... , an). From 
the condition {/;,jj} =0 we also infer (via Theorem 34.2.4 of Part I) that the 
fields ei are pairwise commuting: [ei' ej ] = O. It follows that the n linearly 
independent fields ei can be used to generate an action of the group IR" on M, 
which restricts to an action of IRn on the sub manifold Mn(al> ... , an) (and a 
neighbourhood of it). Choosing as "initial" point Xo any point of 
Mn(a1, ... , an), we define a lattice {d} to consist of all vectors d E IRn which fix 
Xo under this action of IRn. It is then not difficult to see that {d} is indeed a 
lattice in IRn (i.e. a discrete subgroup) and it is at least intuitive that (assuming 
Mn connected) we have M"(al, ... , an) ~ IR"I {d} (cf. §5.l). Being a lattice, {d} 
will be spanned by k:::;; n vectors; obviously the quotient space IR"I {d} will be 
compact if and only if k=n (in which case M"(a 1, •.. , a,,)~ 1R"/{d} ~ T"). 

(ii) Given a level surface Mn(al> ... , an) ~ Tn (as in (i», we first of all choose 
an origin of co-ordinates Xo = xo( (X 1, ... ,(Xn) on each level surface 
M"«(Xl,"" (X,,)~ Tn (defined by h =(Xl,'" ,J" = (Xn) in a neighbourhood of 
Mn(a 1, ••• , an), such that XO«(Xl, ... , (Xn) depends smoothly on (Xl> ... , (Xn' It is 
clear that on any particular level surface Mn«(Xl> ... , (Xn) in this neighbour-



316 7. Some Examples of Dynamical Systems and Foliations on Manifolds 

hood, there exist linear combinations f/j= 2:7; I b~¢i of the fields ¢i, with the 
property that the co-ordinates defined on IR" (acting on the level surface 
M"(a l , ... , an) ~ T", as in Part (i) of the proof) by means of the fields '1j, are 
the usual angles 0::;(,Oj<2n, j=I, ... ,n (with (,OJ=O at xo). Here the 
coefficients b~ depend on the (variable) ai' ... , a", i.e. on the particular values 
of ft, ... ,/. defining the surface; thus 

'1i=b~(fI"'" fn)¢i, 

so that our neighbourhood of the torus M"(a l , ... , a") is co-ordinatized by 
ft, ... ,/., (,01, ... ,(,On' Note that the matrix of Poisson brackets of these co
ordinates is 

(12) 

where det A #0 at each point of the neighbourhood (essentially since for each 
j the gradient (0(,0 i! oyQ) is parallel to the field '1i' which is a linear combination 
of the ¢i=(Jab(ojJo/))). 

We now introduce the "action" co-ordinates Si = Si(ft, ... ,/.), i = 1, ... , n. 
In the special case of phase space 1R2" with canonical co-ordinates qh"" q", 
PI' ... ,p", the Si are defined for each torus Mn(a l , ... , an) by (cf. Part I, §35.1) 

i=I, ... ,n, (13) 

where }'i is the ith generating cycle of the torus: 

}'i = }'i( (,Oi), 0::; (,Oi::; 2n, (,OJ = const. for j # i. 

We leave it to the reader as an exercise to verify (using Ui,jj} = 0) that these 
action co-ordinates satisfy {Si' Sj} = 0 for all i,j, and also that they are 
canonically related to the angular co-ordinates (,01, ... , (,0": 

i,j=I, ... ,n. 

Returning now to the more general situation of our given 2n-dimensional 
simplectic manifold M and the closed 2-form n defined on it, we observe first 
that the form n vanishes on the torus M"(al"'" an) (since in view of the 
condition {!;,jj} =0, the value of the form n on any pair ¢i' ¢j of the above
defined basic tangent vector fields to M"(al' ... , an), is zero (cf. also Part I, 
Corollary 35.1.6)), whence it follows that in some neighbourhood of this torus 
n is exact: n = dw. The action co-ordinates 81 are then defined for each torus 
Mn(a b ... , an) in that neighbourhood, analogously to (13): 

S.=~~ W 
, 2n JYi ' i = 1, ... , n. (14) 

Finally we set 

(15) 
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where the bl (which vanish at xo) are chosen so that the condition {({Ji> ({JJ} =0 
is fulfilled. (This is always possible in view of the fact that {Sj' cP J} = c5lj ; we 
again leave the details to the reader.) Thus on each level surface 

11 = 0: 1, •.• , In = O:n in our neighbourhood, the co-ordinates ({Jh ••• ' ({In are 
obtained from the earlier (Pi by means of a change of scale (ensuring 
o =:;; ({Ji < 21t). 

The co-ordinates Sl' •.. , Sn; ({Jl' ... , ({In on our neighbourhood have thus 
been constructed to satisfy 

(16) 

as required. In view of(13) we also have that the Hamiltonian H =/t is at each 
point determined solely by the "action" co-ordinates: 

(17) 

That the original Hamiltonian system takes the form (11) in terms of the co
ordinates Sh ..• , Sn; ({Jh .•• , ({In is a consequence essentially of the fact that the 
jj are integrals of motion (i.e. jj=const. along each trajectory) and the 
definition of the Sj. 0 

28.5. Examples 

The first three of the following examples represent instances of Liouville's 
theorem. (Two of these we met with earlier (in Part I, §§31, 32, 34)). 

(a) Consider a Hamiltonian system of one degree of freedom (i.e. n= I), 
with Hamiltonian H(x, p), and suppose that the surface 
(i.e. curve) H(x, p) = E( = const.) in 2-dimensional phase space, is compact (as in 
Figure 110). Then as canonical "action-angle" co-ordinates s, ({J in a neigh
bourhood ofthat curve, we may take s(E) = §H=E P dx (the "truncated" action; 
see Part I, §33.3), and as ({J the obvious angular co-ordinate scaled so that n 
=ds A d({J. Clearly then H=H(s). 

p 

Figure 110 
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(b) The situation of a particle in a spherically symmetric potential field 
U(r) in Euclidean 3-space with Euclidean co-ordinates x, y, z, where 
r2 = x 2 + y2 + Z2, was considered in Part I, §32.2, Example (d), and §34.2, 
Example (a), where it was observed that the angular momentum M = [x, p] 
=(Mx, My, M.) is constant on each extremal, so that Mx , My, M. represent 
integrals of motion of the appropriate Hamiltonian system. It is easy to check 
(using various of the results of Part I, §34.2) that the three integrals of motion 

h=H, h=M., (18) 

satisfy the hypotheses of Liouville's theorem. (Verify that U;,fj} =0.) 

(c) In Part I, §31.1, we investigated the geodesics on a surface of revolution 
(about the z-axis) in Euclidean 1R3 , in terms of cylindrical co-ordinates r, qJ, z. 
In this context we have the two integrals of motion 

( x1-r X2 - rn) and I' =p -, -..", J2 cpo (19) 

Recall that as a consequence of the corresponding conservation laws we 
deduced (in Part I, §3l.1) Clairaut's theorem, and the complete integrability 
of the geodesic flow on such a surface. 

In our next (and last) two examples, we examine two relativistic problems 
with (as in (b) above) spherically symmetric Lagrangians, namely that of 
finding the trajectories of a charged particle moving through a central force 
field with potential rx./r in STR (the Special Theory of Relativity), and the 
problem of the motion of a test particle of positive mass in a Schwarzschild 
gravitational field in GTR (the General Theory of Relativity) (see Part I, 
§39.1). (Other examples of systems with Lagrangians having a high degree of 
symmetry are afforded by the metrics on the 2-sphere and the Lobachevskian 
plane (where of course the trajectories are the geodesics on these surfaces; see 
Part I, §29.5, Exercises 6 and 7).) 

(d) In Part I, §§32.1, 39.1, in the context of the problem of describing the 
behaviour of a free relativistic particle of positive mass m in STR, we 
considered (in 3-dimensional formalism) the Lagrangian 

( W2)1/2 (2) _ 2 
Lcree - -me 1-"?" ' 

where w is the 3-dimensional velocity of the particle (and we have written w2 

for Iwl2 for simplicity). In the presence of a potential field ofthe form rx./r, the 
appropriate Lagrangian is 

L=-me2 1-- --. ( W2)1/2 rx. 
e2 r 

(20) 

It follows (much as in Part I, §32.1) that the energy, or in other words the 
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Hamiltonian, of the particle is given by 

(21) 

where P=(PI' P2' P3) is the 3-dimensional momentum (p2 denoting IpI2), and 
x=(x l, x 2, x3) (Xl, x 2, x 3 being the spatial Minkowski co-ordinates on IRt3)' 

Since the angular momentum is conserved (cf. Part I, §32.2, Example (e», 
the motion of the particle will be confined to a plane in space, which we may 
suppose co-ordinatized by Xl, x 2 , or by the corresponding polar co-ordinates 
r, qJ (where r has the same meaning as before). In terms of the latter co
ordinates we have w2 = ;-2 + r2ip2, whence Pip = aL/aip = r2ip (cf. Part I, §32.l, 
Example (b'»; writing M = Pip, it fol1ows that p2 = P; + M2/r2 (p = (Pr' Pip»' 
whence 

H=c (22) 

In the case of an attractive field (i.e. 0( < 0), if Me> 10(1 then the expression in 
(22) approaches 00 as r ..... O whence it fol1ows (using the constancy of H) that, 
as in the analogous classical situation, the particle cannot reach the centre of 
attraction (r = 0). (If on the other hand Me < 10(1 then under suitable 
conditions the particle may fal1 into the origin.) 

For the exact solution of spherical1y symmetric, planar problems of this 
sort, it is convenient for technical reasons to use the Hamilton-Jacobi 
equation (introduced in Part I, §35.l) 

- ~~ =H (x, ~~). (23) 

where (in the general situation of n degrees of freedom) S is defined on the 
Lagrange surface m+ l given by the equations Pi = as/axi, E(=Pn+d= 
-as/at in extended phase space with co-ordinates x, p, E, t (E=Pn+l, t 
= Xn + I), by means of integrals J L dt = J P dx - E dt over paths from a fixed 
point Q to a variable point P of m + I (see Part I, loco cit.). 

In our present special context we have n = 2 and co-ordinates r, qJ, t; 
Pro Pip' E. We seek a solution of (23) in the form 

S=-Et+MqJ+f, f=f(r,M,E}. (24) 

(Thus we are taking our Lagrange surfaces each to be defined by equations of 
the form E=const., M =const., 'Pr as in (26) below.) Given such a solutiori 
each integral trajectory r(qJ) will be defined by an equation of the form as/aM 
= const., while the dependence of r on t will be given by an equation of the 
form as/ aE = const. To find f explicitly, observe first that since Pr = as/ ar, we 
have from (22) that 

E=c (25) 
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whence 

(26) 

From this and (24) we obtain finally 

S= -Et+Mcp+ fJ~(E- ~)2 _ M2 _m2 c2 dr, (27) 
c2 r r2 

whence we derive the equation of the trajectory in the form 

as af 
8M =cp+ aM =const. (28) 

(As noted above the dependence of r on t is for each trajectory given by an 
equation of the form aSj aM = const.) 

EXERCISES 

1. Prove that for oc<O, Me<locl, the above solutions are spirals which reach the 
origin in a finite amount of time. 

2. Show that if oc < 0 and E < me2, then in general the trajectories are not closed. Find 
the correction to the elliptic orbits of classical mechanics. 

(e) As our final example we consider the problem of describing the motion 
of a free particle of positive mass m > 0 in the Schwarzschild metric. In Part I, 
§39.2, we obtained that metric (as a stationary, spherically symmetric solution 
of Einstein's equation) in terms of the co-ordinates t, r, cp, e, in the form 

ds2 = ( 1- ;) c2 dt2 -~ dr2 - r2(de2 + sin2e dcp2). (29) 
1--

r 

The Hamiltonian (corresponding to the usual Lagrangian L=!gabxaxb) is 
H=t~bPaPb(=Xa(aLjaxa)-L: see Part I, §33.l); here a,b=0,1,2,3, and 
XO = ct, Xl = r, x 2 = cp, x 3 = e. Since the motion is again planar we may, by 
choosing the spherical co-ordinates suitably, assume e = nj2, whereupon in 
(29) the term in de2 drops out, and the remaining (i.e. non-zero) ~b are given 
by 

a 
gl1 =g"=(g,,)-l = 1--, 

r 

In terms of such co-ordinates the Hamilton-Jacobi equations aSj iJxa = Pa, 
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together with the constancy of the Hamiltonian along each trajectory, yield 

oS oS ab oxa oxb g = const. 
(30) 

=_1 (~)2_(1_~)(OS)2_~(OS)2 =~bpaP' 
a cot r or r2 ocp b 

1- -
r 

(Note that we have used here the "truncated" Hamilton-Jacobi equations 
(see Part I, §35.1) in view of the fact that the time t functions essentially as one 
of our x-co-ordinates.) The constant in (30) may be taken to be m2c2 since we 
expect that, as in the case of flat (Minkowski) space (see Part I, §§32.2, 39.1), 
the 4-momentum of the free particle will lie on the mass surface ~bpaPb 
= m2 c2 . As in the preceding example, we seek a solution of (30) in the form 

S= -Et+Mcp+ f(r, M, E), (31) 

where M = P"" and E = cpo (the usual energy of the particle in 3-dimensional 
formalism (E>mc 2 )), and then the functions r(t), r(cp) defining the trajectory 
will be given by equations of the form 

oS 
oE =const., 

oS 
oM =const. (32) 

Substituting the expression (31) for S in (30) (where the constant is now taken 
to be m2 c2 ), we obtain 

(33) 

From this and the second of the equations (32) we obtain the equation of the 
trajectory in the form 

(34) 

Remark. On letting m go to zero in (34) we obtain the equation for the path of 
a particle of zero mass (the path of a light ray for instance) in the 
Schwarzschild metric. 

The way in which r varies with t along a trajectory is given by the first of 
the equations (32); thus from that equation together with (33) we obtain 
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Figure 111 

whence 

(35) 

where 

U (r) = me2 [ ( 1 - ; ) ( 1 + m~: r2 ) J/2 (m#O). (36) 

The quantity U(r) is called the "effective potential" at a given angular 
momentum M; the inequality U(r)~E defines for each given M and E the 
possible regions in which the motion can take place (i.e. the possible values of 
r). From Figure Ill, in which the graph of U(r)/me2 is indicated for various 
M, we see that, depending on M, the effective potential may have a maximum 
when r is of the order of 2a. From the definition «36» of U(r) it is immediate 
that U(r)/me2 .... 1 as r .... oo. From these facts (in conjunction with (35» it 
follows in particular that it is possible for the particle to be "captured" by the 
gravitational field, i.e. for r( t) to be such that r( - 00) = 00 while r( + 00) is 
finite. 

§29. Foliations 

29.1. Basic Definitions 

We precede the definition of a "foliation" with that of an "integrable 
distribution" on a manifold. 
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29.1.1. Definition. 

(i) A k-dimensional distribution on an n-dimensional manifold M is a 
smooth field of k-dimensional tangential directions on M, i.e. a map 
associating with each point x E M a k-dimensional subspace of the 
tangent space TxM. 

(ii) A distribution on a manifold M is said to be integrable if through each 
point of the manifold M there is a k-dimensional "integral" surface in M, 
i.e. a k-dimensional submanifold of M whose tangent space at each of its 
points is the k-dimensional subspace assigned to that point by the given 
distribution. 

(iii) A manifold M is said to have a k-dimensionalfoliation defined on it ifit is 
"foliated" into k-dimensional surfaces, i.e. if for each point of M there is 
specified precisely one smooth k-dimensional submanifold passing 
through that point, in a manner depending smoothly (or continuously) 
on the points of the manifold. (These specified surfaces are called 
the leaves of the foliation.) It is further required that in some neighbour
hood of each point of M there can be introduced co-ordinates 
x 1, ... ,Xk, yI, ... , yn - k with the properties that the level surfaces 
i = a I ,···, yn-k = a k are just the leaves of the foliation in that neigh
bourhood(oneleafforeach(n - k)-tuplea I , ... , an-k),and thatx1, ... , Xk 

are local co-ordinates for each leaf. (We remark that foliations most often 
arise as integrable distributions.) 

29.1.2. Examples. (a) We have already encountered (in §27.l) one
dimensional foliations, defined in terms of non-vanishing vector fields or 
fields of (one-dimensional) directions. A smooth one-dimensional distri
bution is always integrable, yielding a foliation, in view of the local theorem 
on the existence and uniqueness of solutions of systems of ordinary 
differential equations. Thus smooth one-dimensional distributions always 
give rise to (unique) foliations. 

(b) Suppose there is given on a complex n-dimensional manifold M a 
(non-vanishing) complex vector field (or field of complex one-dimensional 
directions). If the vector field is holomorphic (i.e. if the map M --C" defining 
the field is complex analytic; see §4.l), then as in the preceding example the 
associated distribution is always integrable, yielding a one-dimensional 
complex foliation on the complex manifold M. Consider for example the case 
n = 2, and the vector field on (;2 defined by the complex differential equation 

dz P(z, w) 

dw Q(z, w)' 
(1) 

where P and Q are polynomials both of degree m; this equation, or its 
equivalent formulation Q dz-P dw=O, defines (away from the common 
zeros of P and Q) a one-dimensional complex distribution, and thence, as just 
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observed, a one-dimensional complex foliation on 1(:2. By introducing in the 
usual way homogeneous co-ordinates Uo, U J , U2 by means of the substitutions 

U2 
W=-, 

Uo 

we can extend this to a foliation of the complex manifold I(:p2 ::::> 1(:2, namely 
to the foliation defined by the form (V = Q dz - P dw (cf. §27.l where the 
analogous extension from 1R2 to IRP2 was carried out). As already noted, the 
points where P = Q = 0 will be "singular" points of the foliation, i.e. strictly 
speaking the foliation is defined only on the complement in I(:p2 of these 
points. 

EXERCISE 

Find the singular points on the complex line at infinity. 

It is of interest to examine the arrangement of the leaves of such a complex 
foliation near a non-degenerate singular point (see §14.4 for the definition of 
non-degeneracy). The system defining the foliation may be written as 

dz = P(z, w) dt, 

dw=Q(z, w) dt, 

i=P, 

w=Q. 
(2) 

We may clearly assume without loss of generality that the singular point in 
question is the origin z = w = 0; thus P(O, 0) = Q(O, 0) = O. The non-degeneracy 
of the singular point (0,0) means that the linear parts of P and Q, given by 

i=az+bw+··· , 

w=cz+dw+··· , 
(3) 

satisfy ad-bc#O. Assuming that the eigenvalues of the matrix (: ~) are 

distinct (which situation can clearly be achieved by means of an arbitrarily 
small perturbation of our system), we can, via a linear co-ordinate change, 
bring our system into the form 

i= A.Jz+ "', 

w=A.2 w+ .... 
(4) 

Writing A. = At! A2 , we now turn our attention to the related purely linear 
system defined by dz/dw=A(Z/W). (The question that arises here of the 
reducibility of the system (3) to purely linear form by means of a complex 
analytic co-ordinate change in some neighbourhood of the singular point 
(0, 0), is a difficult one, which we shall not enter into.) This linear system has 
the obvious general solution z = awl, a = const., and the two particular 
solutions z == 0, w arbitrary; w == 0, z arbitrary; hence the corresponding 
foliation has one leaf for each non-zero choice of the constant a, and the two 
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additional leaves A. B defined respectively by z == 0 and w == o. If we remove 
the singular point (0.0). we obtain a (non-singular) foliation of (:2 \ {(O. O)}. 
whose leaves A and B are not simply-connected (having each the topology of 
C \ {(O, Om. 
EXERCISE 

Let)'1 E 1t 1(A) and)'2 E 1t 1(B) be generators of these fundamental groups. Show that 
both )'1 and)'2 are (represented by) limit cycles of the foliation (see Definition 27.1.3). 
Calculate the "holonomy representation" )'i f-+ R y, (see Example (c) below, and the 
next subsection). 

(c) Consider a fibre bundle with base space M. structure group G. fibre F. 
total space E, and projection p: E -+ M. In §24.2 we defined a connexion (or G
connexion) on a fibre bundle in terms of a family of horizontal n-dimensional 
"planes" 1R"(y) (where n = dim M) associated with the points y E E; these 
"planes" were required to vary smoothly with the points of E. to be transverse 
to the fibre through y. and to satisfy a further condition involving the group 
G. 

EXERCISE 

Show that the distribution of horizontal n-dimensional directions afforded by a 
connexion on a fibre bundle, is integrable if and only if the curvature tensor of the 
connexion (see §25.3) is identically zero. (Hint. Use the integrability conditions below.) 

It is immediate from the above-quoted definition of a connexion on a fibre 
bundle. that if the connexion determines a foliation of E, then the projection 
onto M of each leaf W of that foliation is locally a diffeomorphism, so that 
each leaf W constitutes a covering space for M. The monodromy group of 
each of these covering spaces is called in this context the "discrete group of 
holonomies" (cf. §19.l). If the base M is simply-connected. then it is its own 
universal cover. and each ofthe leaves W will be globally diffeomorphic to M. 

Our examples concluded we now give two (equivalent) necessary and 
sufficient conditions for integrability of a k-dimensional distribution (to yield 
a foliation). 

Firstformulation. In view of the final requirement of Definition 29.1.1(iii). 
the integrability problem is equivalent to that of solving (locally) a system of 
partial differential ("Pfaffian") equations of the form 

oya 
oxfJ = fP(x. y). 1X=1 •...• n-k. fJ=1 •...• k. (5) 

for the functions ya(xl • ...• Xk) defining (locally) the leaves of the foliation; 
here Xl •...• x\ yl •...• y"-k are local co-ordinates on the given manifold M. 
and the k vectors (f~ •... .!"p - k). fJ = 1 •...• k. form a basis for the k
dimensional subspace attached (via the given distribution) to the point 
(Xl, ... , x\ yl, ...• y"-k) of M. The equality of mixed partial derivatives 



326 7. Some Examples of Dynamical Systems and Foliations on Manifolds 

furnishes the desired integrability condition: 

a2ya a a 
axllax1 = axyfp(x, y)= axil f~(x, y). (6) 

Second formulation. Given a k-dimensional distribution on a manifold M, 
let ~, '1 be two vector fields on M whose values e(x), '1(x) at each point x E M 
lie in the specified k-dimensional subspace attached to the point x via the 
given distribution. If the distribution can be integrated to yield a foliation, 
then at each point x the fields ~ and '1 will be tangential to the leaf through x, 
whence so will their commutator [~, '1] (see Part I, §24.I). This condition 
(namely that the commutator [~, '1] of such vector fields should likewise have 
its values at each point in the k-dimensional "plane" attached to that point) 
turns out to be also sufficient for integrability. 

EXERCISE 

Prove that the above two formulations of the condition for integrability of a 
distribution are indeed equivalent. 

We shall not give the proof of the sufficiency of each of these two 
conditions. (Their necessity is obvious.) 

We conclude this subsection by considering the special case of (n-l)
dimensional foliations (i.e. of "codimension 1") of an n-manifold, i.e. foli
ations whose leaves each have dimension k=n-l. Such a foliation is given 
locally by a I-form (or equation of "Pfaffian type"; cf. §25.1 or Part I, Lemma 
34.1.2) 

(7) 

(Note that of course at a non-singular point not all of the Pi(x) will vanish.) If 
the form w is closed then a distribution defined by an equation of the form (7) 
will be integrable, since then, as is. well known, w will be locally exact, i.e. 
w = dH locally, for some scalar-valued function H, and the leaves of the 
foliation will be defined locally as the level surfaces H =const. If, more 
generally, there exists a nowhere-vanishing function f(x) which is an 
"integrating factor" for w, i.e. is such that the form f(x)w is closed, then again 
the distribution defined by the Pfaffian equation w = 0 is integrable since it is 
equivalent to f(x)w=O, which is integrable for the same reason as before. 

Remark. It follows (to generalize further) that a foliation of codimension 1 
can be defined on a manifold M with a given atlas of charts Uj , by means of 
equations wj=O (analogous to (7)) on the Uj (one equation for each Uj), 
where on the regions of overlap Ui n UJ the forms Wi' Wj satisfy ftj(X)Wi = w) 

for some function ftj:FO on Ui n Uj • 

In connexion with the discussion preceding this remark, observe that if 
d(jw)=O, then dw= -(dflf) A w, whence it follows that: (i) w is a factor of 
dw (with respect to the wedge product of forms); and (ii) w A dw = O. 
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EXERCISE 

Show that the integrability condition (in either of the above formulations) for a (non
singular) distribution given by a Pfaffian equation w = 0, is equivalent to each of the 
conditions (i) and (ii). 

Note finally that in the case of 3-dimensional space 1R3 the form w is in the 
customary manner written as a covector field P=(P,,), and dw as curl P; in 
this notation the condition (ii) takes the form 

<P,curl P)=O. (8) 

29.2. Examples of Foliations of Codimension 1 

Let w be a closed I-form on a compact (connected) manifold M. As we have 
just seen (in the preceding subsection), the equation w = 0 defines a foliation 
of codimension 1 on M. Given any basis of one-dimensional cycles Z 1, ..• , Zq 

(i.e. (equivalence classes of) closed paths in M) for the group Ii 1 (M) 
= H dTors, where Tors denotes the subgroup of all torsion elements (see 
§I9.3), the form w determines a corresponding collection of "periods" 

j= 1, ... , q. 

If M.r. M is the universal cover for M, then 1t 1(M}= 1, whence it follows that 
the pullback p*(w) of the I-form w to M is (globally) exact, i.e. p*(w) = d/for 
some function f. There is however a "lower" covering space M 1 ~ M, with 
non-trivial fundamental group, such that the form p!(w) is still exact; we now 
indicate the construction of an appropriate such covering space M l' Thus let 
A<1t1(M) be the subgroup of 1t1(M) consisting of all elements Z of 1t 1(M) 
such that 

1 w=O; 

it is easy to see that A contains the commutator subgroup of 1t1 (M), so that A 
is certainly a normal subgroup. By §I9.2, Exercise 1, there exists a covering 

PI 
space M 1 -+ M such that 

(9) 

and, essentially by Theorem 19.2.3, the monodromy group B of this covering 
is isomorphic to the quotient group of 1t1(M) by A: 

B= a1t1 (M);::,: 1t1 (M)/A. (10) 

It follows readily from the definition of A that B is free abelian. 
It is immediate from (9) (and the definition of A) that the form P1 *(w) on 

M 1 has all periods zero, so that it is (globally) exact: p!(w) = dg where g is a 
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real-valued function on MI' Clearly we may take g to be given by 

g(x)= IX p!(w), 
Xo 

(11 ) 

where Xo is any fixed point of M 1, and the integral, being by the above path
independent, may be taken along any path joining Xo to x. The upshot is that 
by lifting the defining distribution to the covering space M 1, the original 
foliation has been transformed, as it were, into the family of level surfaces of 
the function g(x) on M 1 (which furthermore as a covering space for M has 
free abelian monodromy group). 

The first of the following examples represents a particular instance of this 
situation. 

29.2.1. Examples. (a) Take M to be the n-dimensional torus Tn furnished with 
angular co-ordinates qJl, ... , qJn, 0 $; qJi < 2n, and consider any form of the 
type 

bj=const. (12) 

EXERCISE 

Show that the "minimal" covering PI: M I ~ Tn for which p!( w) = dg, has monodromy 
group isomorphic to I $ ... $ I where the number of summands is equal to the rank 
of the set {b j , ••• , bn } over the field (l of rational numbers (i.e. the dimension of the 
vector space over IQ spanned by the bJ 

(b) Let M be a compact Riemann surface (i.e. a (compact) one-dimensional 
complex manifold defined as in §4.2) and let w be a holomorphic differential 
given locally by w = fez) dz where fez) is analytic (without poles). The 
differential Re w is then given locally by 

Re w = Re(f(z) dz) = Re(u + iv)(dx + i dy), (13) 

where z = x + iy, f = u + iv; the equation Re w = 0 clearly defines a one
dimensional foliation on the (realized) manifold M. 

EXERCISE 

Under the assumption that the singular points of this one-dimensional foliation are 
non-degenerate, show that they are all saddles, and deduce that they are equal in 
number to the Euler characteristic of the manifold M (see §§14, 15). Investigate the 
integral trajectories (i.e. the leaves) of this one-dimensional foliation when M is a 
hyper elliptic Riemann surface, i.e. is given by an equation of the form 

2n 

w2 = P2n+ I (z) = TI (z - z«), (14) 
1%=0 

On such a surface a holomorphic differential w (without poles) can be shown to have 
the form 

(15) 
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where Q(z) is a polynomial of degree ::s; n-1. Show that corresponding to almost 
every choice of the 2n + 1 (distinct) complex numbers z. in (14), and almost every OJ of 
the form (15), there exists an integral trajectory which is everywhere dense on M. 
Investigate the foliations defined by forms with poles, i.e. by forms OJ as in (15) where 
now Q is a rational function. Given such a form OJ, what singular points of the 
corresponding foliation arise from the poles of OJ? 

(c) We have already encountered (in §28.3) foliations with a more involved 
structure which lift (in the sense defined above) to families oflevel surfaces of 
functions defined on some (no longer "abelian") covering space. To recapitulate 
somewhat, let Tl denote, as in §28.3, the unit tangent bundle over the closed 
surface M; (the sphere-with-g-handles) endowed with a metric of constant 
negative Gaussian curvature (inherited via its construction (for g> 1) as the 
orbit space of its universal cover L2 (the Lobachevskian plane) under the 
action of a discrete group of isometries of L 2 ; see Coro1\ary 20.11). In §28.3, in 
the course of our discussion of geodesic flows, we defined two 2-dimensional 
foliations R + and R _ of T1 : each leaf of the foliation R + was defined to 
consist of a1\ geodesics on M; which approach each other asymptotically as 
t --+ + 00 (and analogously for R _ with t --+ - 00). (Of course strictly speaking it 
is not the geodesics on M; which make up the leaves of R + and R _. but 
rather the corresponding curves in Tl obtained by pairing off each point of 
each geodesic with the unit tangent vector to the geodesic at that point.) Each 
pair of leaves, one from R+ and one from R_, then intersects in exactly one 
geodesic; this is made especia1\y clear by lifting the geodesics on M; onto its 
universal cover, the Lobachevskian plane L 2, where each of the leaves of R + 

(for instance) becomes a co1\ection of geodesics approaching a single point at 
infinity (i.e. a point on the boundary of the disc in the Poincare model of L 2 ; 

see Figure 109). The corresponding covering space 1'1 4 T1• the unit tangent 
bundle over L2, is not universal, since it is contractible to its fibre SI, and so 
has fundamental group 7t 1 (td ~ z. 

EXERCISE 

Using the fact (mentioned in §28.3) that the conjugacy classes of 7t1(M;) are in natural 
one-to-one correspondence with the closed geodesics, show that each of the foliations 
R+ and R_ lifts to a family of level surfaces of a real-valued function on a covering 
space T2 -+ TI only if T2 covers fl' (Recall from §24.3, Example (d), that the group 
7t1(Td has the presentation with generators al"'" ag , bl>"" bg,! and defining 
relations 

g 

TI b - I b -I - 2 - 2g ai iai i -t , 
i= 1 

(16) 

From that example together with Theorem 19.2.3, it follows that the monodromy 
group of the covering 1'1 -+ TI is isomorphic to the group 7t I (TI )/(!) ~ 7t I (M;), which is 
non-abelian for g> 1. (Here (T) denotes the (normal) subgroup generated by T.) 

The foliations R + and R _ clearly have no singular points. Their leaves 
may have different topologies: it follows essentia1\y from the contractibility of 
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each leaf of R + to any geodesic comprising it (which can be seen by letting t--+ 
+ 00), that a leaf will be topologically equivalent to Sl x IRl if among the 
geodesics defining it there is a periodic one, and to 1R2 otherwise. (Note that 
there are only countably many periodic geodesics in view of the above
mentioned one-to-one correspondence between such geodesics and the 
conjugacy classes of 1t l (M;).) 

Remark. As already noted in §28.3 the existence of foliations R + and R _ with 
the above properties turns out to be a characteristic feature of geodesic flows 
on compact manifolds of negative curvature (and for certain other spaces), 
and is of great importance for the general theory of dynamical systems, 
having as it does several remarkable consequences; we shall however not 
pursue this particular avenue further. 

(d) We conclude our examples with a geometric construction of a 2-
dimensional foliation (the "Reeb foliation") of the solid torus 
D2 x Sl, of which the boundary torus T2 = O(D2 X Sl) constitutes a single leaf. 
To this end consider first the solid cylindrical region V c 1R3 consisting of 
those points (x, y, z) for which y2+Z2~1, -oo<x<oo; thus U~D2xlRl. 
We foliate this solid cylinder as indicated in Figure 112: a single leaf is 
obtained by revolving about the x-axis an arc in the (x, y)-plane asymptotic 
to the lines y= ± I, and then all leaves (except for the boundary) are obtained 
by means of arbitrary translations of this one in the direction of the x-axis. 
(Clearly these leaves are invariant under the transformation y--+ - y, z--+ - z, 
x --+ x.) On performing the identification (x, y, z) '" (x + 1, y, z) we obtain from 
this foliation of the solid cylinder the desired Reeb foliation of the solid torus 
D2 x Sl. Note that since the boundary T2 = O(D2 X Sl) is a leaf, we can obtain 
a foliation of the 3-sphere 

S3=(D 2 XS1)U(Sl XD2) 

by identifying the boundaries of two such foliated solid tori. 

We end this section by introducing two important topological invariants 
of foliations, namely "limit cycles" and "vanishing cycles", and examining 
these concepts as they pertain to some of the above examples offoliations. Let 
Xo be a point of a leaf W of a k-dimensional smooth foliation of a compact n

dimensional manifold M, and let y be a smooth closed path representing an 

z 

Figure 112 
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(a) A limit cycle (b) Not a limit cycle 

Figure 113 

element of 1t1(W, xo). Corresponding to each point x on y choose in M a 
(small) (n-k)-dimensional (closed) disc (or ball) D~-k centred on x, which is 
transverse to y and varies smoothly with x (as shown in Figure 113 for n - k 
= 1). By intersecting the neighbouring leaves ~ with the family of discs D~ - k 

we obtain curves in terms of which there is defined a "transporting" map of 
the disc D~;k with centre Xo (assumed sufficiently small) around y: 

R Dn-k Dn-k y: Xo ~ Xo • 

It is not difficult to see that, provided the discs are sufficiently small, the map 
Ry is unchanged by deformations of the family of discs D~-k or of y, which 
leave Xo and D~;k fixed. The correspondence y 1-+ Ry therefore defines a map 
from the group 1t I (W, xo) to the group of "germs" of self-maps of the disc 
D~;k. (A germ of such maps is an equivalence class where two maps are 
equivalent if they are identical on some neighbourhood in D~;k of Xo; by 
resorting to germs of self-maps of D~;\ the size of that disc is made 
irrelevant.) This representation of 7r1 (W, xo) is called the holonomy group of 
the foliation on the leaf W. If y E 1t1 (W, x o) is such that Ry does not represent 
the identity map germ, we call y a limit cycle of the foliation (see Figure 113). 
(Cf. Definition 27.l.3.) 

In the case k = n -1, the disc D~;k = D;,o = I is a path segment (i.e. a closed 
interval), separated into two pieces by the point xo, as a consequence of which 
there arise in this case the two possibilities (a) and (b) illustrated in 
Figure 114. If the cycle y is as in Figure 114(a), it is called a two-sided limit 

(a) For all x E 1= D;o 
close to the point 
Xo = 0, we have 
Ry(x)#x. 

Figure 114 

(b) For x E I = D~o' we 
have Rix)#x for 
x>O, Ry(x)=x for 
xsO. 
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cycle, and if as in Figure 114(b), one-sided. Since the degree of smoothness of 
the map Ry is determined by that of the foliation, it follows that for (real) 
analytic foliations of codimension 1 the situation (b) is impossible (see the 
caption of Figure 114(b)). 

The situation (as far as limit cycles are concerned) in some of our examples 
of foliations is as follows. (We leave the verifications of the following 
statements to the reader.) 

(IX) A non-singular foliation defined by a closed 1-form ill (see the 
conclusion of the preceding subsection) has no limit cycles. 

(fJ) For the foliations R+ and R_ of the unit tangent bundle over a 
compact surface (see Example (c) above), every leaf W is either simply
connected or else 1t 1 (W) ~ Z, and in the latter circumstance the generator of 
the group 1t1(W) is a two-sided limit cycle. 

(y) Returning to the Reeb foliation of the solid torus D2 x Sl (Example (d) 
above), let Yl' Y2 denote generators of the fundamental group 1t1(T2)~Z EB Z 
of the boundary torus T2, as indicated in Figure 112. Here the element Yl is a 
one-sided limit cycle (from the inside), while Y2 is not a (one-sided) limit cycle. 

On the other hand for the foliation of the 3-sphere S3 = (D2 X Sl) U (Sl X D2) 
obtained by glueing together two Reeb-foliated solid tori, the cycles Y1 and Y2 
are both one-sided limit cycles (since now Y2 on one of the solid tori is 
identified with the Y 1 of the other). It follows that this foliation of the 3-sphere 
cannot be real analytic (although it may be infinitely differentiable). 

Returning to the general situation of a k-dimensional smooth foliation of a 
manifold M, observe that if Y E 1l: 1(W) (where W is any leaf of the foliation) is 
not a limit cycle (i.e. if Ry represents the identity map), then it can be "nudged" 
onto leaves sufficiently close to it and still remain a closed curve (see 
Figure 113(b)). (If k=n-1 and Y is a limit cycle on one side then it can be 
moved intact onto neighbouring leaves on the other side.) 

We single out for special attention from among such cycles the "vanishing" 
ones. 

29.2.2. Definition. A non-trivial element Y of 1t 1 (W) (where W is, as above, any 
leaf of a given smooth foliation) is called a vanishing cycle of the foliation if 
when it is moved in the manner just described to any leaf sufficiently close to 
W, it becomes homotopic to the null path on that leaf. 

For example in the Reeb foliation (Figure 112) on the path Y2 on the leaf W 
= T2, when shrunk by an arbitrarily small amount onto a leaf in the interior 
of the solid torus D2 x S 1 , yields a closed curve homotopic to zero on that leaf 
(since all leaves other than T2 are diffeomorphic to 1R2). 

Remark. The following facts are known (we offer them without proof): 

(i) Any smooth foliation of S3 of codimension 1 has a one-sided limit cycle 
and is therefore not analytic. 
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(ii) Every smooth foliation of S3 of codimension 1 possesses a closed leaf 
which is diffeomorphic to T2 and bounds a region D2 x Sl with the Reeb 
foliation induced on it. 

(iii) If the universal covering space M of a 3-manifold M is neither 
contractible, nor diffeomorphic to S2 x IR, then every foliation of 
codimension 1 of M possesses (non-trivial) vanishing cycles. 

(iv) If a foliation of codimension 1 of a 3-manifold M has no limit cycles, 
there is an abelian cover PI: M 1-' M where M 1 = W X IRl, with the 
property that the foliation of M I obtained as above by "lifting" the given 
foliation of M, has as its leaves the surfaces W x {const.}, whence it 
follows that M ~ W x (1R/1:' EB ... EB 1:'). Such foliations share the top
ological structure offoliations defined by closed non-degenerate I-forms 
(cf. (IX) above). 

§30. Variational Problems Involving 
Higher Derivatives 

30.1. Hamiltonian Formalism 

On any manifold, in principle, one can formulate the variational problem of 
finding the extremal arcs of the functional S = J L dt arising from a Lagran
gian L which is a (scalar-valued) function not only of the points x and the 
velocity v = X, but also of the higher derivatives of x with respect to the time, 
i.e. where locally, on each chart of M with co-ordinates Xl, ... , Xn 

(n=dim M), the Lagrangian has the form L=L(x, x, x, ... , x(m» for some 
m> 1. (Note that this generalizes the "one-dimensional variational problem" 
introduced in Part I, §31.1, in the (usual) sense that the extremals sought are 
one-dimensional (in contrast with §37.1 of Part 1).) The following lemma 
gives the generalized "Euler-Lagrange equations", which the extremals must 
satisfy in this more general situation. 

30.1.1. Lemma (cf. Part I, Theorem 31.1.2). The equation c5S=O is eqUivalent 
to the following Euler-Lagrange equations: 

f (-1)q d: (8~ ) = 0, 
q=O dt 8vq 

(1) 

where v~ = dqxi/dtq, i = 1, ... , n, q =0, ... , m. 

PROOF. In the conventional notation of the calculus of variations we have 

f m (8L .) c5S = ~ -8 i c5v~ dt, 
q-O Vq 

(2) 
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where <5v~=(dq/dtq) (<5xi(t)), and we are assuming that the variation (or 
"perturbation") <5xi(t) is differentiable infinitely often, and vanishes outside 
the relevant interval of values of t. Integrating by parts q times (for each q) the 
summand (oL/ov~)<5v~ (analogously to the proof of Theorem 31.1.2 of Part I), 
we obtain from (2) 

<5S = f[~ (-I)q :t: (;~) ] <5xi(t) dt, (3) 

whence in turn, by exploiting the arbitrariness of the variation <5xi (again 
essentially as in the proof of Theorem 31.1.2 of Part I), the desired 
Euler-Lagrange equations (1) follow. 0 

Analogously to the earlier situation we call the entity (<5S/<5xi(t)) defined by 

oS (OL)(q) 
<5xi(t) = ~ (-I)q ov~ , (4) 

the variational derivative. 

Remark. In Part I, §37.4 we showed, using Hilbert's variational principle, how 
Einstein's equations for the metric defining a gravitational field could be 
obtained as the Euler-Lagrange equations corresponding to the action 

S= f R~d4x. 
Here the scalar curvature R, expressed in terms of the gravitational metric 
gab(x), involves the second derivatives of the gab' (We showed however (in the 
first part ofthe proof of Theorem 37.4.1 of Part I) that, essentially by adding a 

term to the Lagrangian R~ making zero contribution to the total 
variation ~S, we could remove those second derivatives). We also considered 
earlier other Lagrangians involving the curvature, namely those arising from 
characteristic classes (defined in Part I, §42 as certain closed forms whose 
integrals have identically zero variational derivatives; see also §25.4 et seqq.); 
second derivatives will therefore also figure in these. (Of course in most of 
these cases the variational problems are higher dimensional in the sense that 
the manifolds comprising the appropriate variational classes have dimension 
> 1; see Part I, §37.1.) 

Returning to the Euler-Lagrange equations (1), we observe that in general 
they will have order 2m where m is the number of derivatives figuring in L. It 
turns out that there is in the present more general context an analogue of the 
"Legendre transformation" (see Part I, §33.1) by means of which in the "non
singular" case the Euler-Lagrange equations (1) can be transformed into 
equivalent Hamiltonian form on a space of dimension 2mn (where n is as 
before the dimension of the original manifold M). (This is "Ostrogradskii's 
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theorem".) Having in view certain interesting applications of the variational 
method to particular problems involving derivatives higher than the first, we 
shall prove Ostrogradskii's theorem only in the case n = 1. Thus we have but a 
single (local) co-ordinate, which we shall denote by u. We shall use x (rather 
than t) to denote the independent time variable, and shall accordingly denote 
the derivatives of u by u', u//, ... , u("'); our Lagrangian (on the real line) will 
then be of the form 

L=L(u, u', ... , u("')). 

We introduce canonical variables qj and Pj (j = 1, ... , m) defined by 

ql =u, q2 =u', ... , q",=u("'-1); 

aL (aL)' (aL)("'-I) 
PI = au' - au" +. . . + ( -1)'" - 1 ad"') , 

aL (aL)' ( aL )(m-2) 
P2 = au/! - au"' + ... +( _1)",-2 au(m) , 

and then set 

(5) 

(6) 

(7) 

30.1.2. Definition (cf. Part I, Definition 33.1.1). A Lagrangian L(u, u', ... , d m ) 

is said to be (strongly) non-singular if the equations (6) can be uniquely solved 
in the form 

u = u(p, q), u' = u'(p, q), ... , u(2m-l) = u(2m-l)(p, q). 

30.1.3. Lemma. If the Lagrangian L has the form 

L=a(u("'))2+L(u, u', ... , U("'-l), 

then it is non-singular. 

(8) 

PROOF. Observe first that the uta) with a. = 0, ... , m - 1, are trivially expressible 
in terms of P and q since for these a. by definition qa + 1 = ua. With L as in (8) the 
last of the equations (6) becomes 

Pm = 2au(m), 

from which u(m) can be obtained in terms of Pm' We next show how to express 
d m + 1 ) in terms of P and q. To this end consider 

aL ( aL )' _ af ,_ af (m+ 1) 
Pm-l = au(m 1) - au(m) - aut'" 1) -Pm- au(m 1) -2au , 
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whence we have 

(m+1)_ ~( oL _ ) 
u - 2a ou(m - 1) Pm - 1 • 

Since L involves only those u(") with C«m, this yields (on replacing 
u, u', ... , u(m-1) by q1' ... , qm in oLjou(m-1» an expression for u(m+ 1) in terms 
of P and q. An easy iteration of this procedure completes the proof. 0 

30.1.4. Theorem (Ostrogradskii). For non-singular Lagrangians 
L(u, u', ... , u(m» the Euler-Lagrange equation is equivalent to the Hamiltonian 
system 

, oH 
q"=a-' 

p" 
C(= 1, ... , m, 

where H(p, q)= -L+U'P1 +U"P2 + ... +u(m)Pm' 

(9) 

PROOF. For ease of calculation we restrict ourselves to the case m = 2; thus 
L=L(u, u', u"). The Euler-Lagrange equation is then 

oL _ ~ oL + ~ oL -0 
ou dx ou' dx 2 ou" - , 

(10) 

and the canonical variables are given by 

q1 =u, 

oL d oL (11) 

P1 = ou' - dx ou'" 

Since the last of these equations (namely P2 = oLjou") expresses P2 as a 
function of q1' q2 and u", it follows from the non-singularity assumption that 
u" can be expressed in the form 

u" = f(q1' Q2' P2)' 

Hence the Hamiltonian has the form 

From this and (11) it follows that 

" oH '" oH 
q1=U =Q2= OP1' q2=U = OP2' 

P2 = :x (:~, ) = - P1 + :~ = - :: . 

(12) 

Finally from (10) and (11) we have dpt/dx = oLjou, whence P'1 = -OHjOQ1' 
With this we have completed the deduction from (11) (and (12» of the 
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Hamiltonian system (9) on the phase space with co-ordinates ql' q2' PI' P2' 
We leave the inference in the reverse direction to the reader. 0 

30.2. Examples 

Consider the "Sturm-Liouville operator" ft' = - d2 j dx 2 + u(x), where the 
function u(x) (the "potential") is smooth. The following two situations are of 
particular interest (see below): 

(i) u(x)-+O as Ixl-+ 00. (If the stronger condition J.:? 00 lu(x)I(1 + Ixl) dx < 00 

obtains, the potential is said to approach zero rapidly.) 
(ii) u(x+ T)=u(x), the case of a periodic potential. 

Consider, for the moment purely formally, the ordinary differential 
equation 

t/I=t/I(x, .Ie), (13) 

where .Ie is a parameter (the "spectral" parameter). On making the substi
tution X(x, A) = i(d In t/I jdx) in (13), that equation is transformed into the 
"Riccati equation" 

(14) 

Assuming A large positive and writing .Ie = k2 , we seek a solution of the Riccati 
equation in the form of a (formal) power series in fi = k: 

" X.(x) 
X(x, k)=k+ .~1 (2k).· (15) 

To determine the functions X.(x) we substitute (15) into the Riccati equation, 
obtaining 

"iX~(x) k2 2k" X.(x) (" ~)2 _ k2 _ 

.~1 (2k)· + + .~l (2k)· + .~1 (2k). - u, 

whence, equating like powers of 2k on both sides, we are led to 

XI = -u; 
.-1 

iX~+X.+l + L XiX.-i=O, 
i=1 

From this the following facts emerge concerning the X.: 

n;;;::' 1. (16) 

(i) Each X. is a polynomial (with constant coefficients) in u, u', ... , u(· -1). 

(ii) Each of the X2q+ I is real, while each ofthe X2q is purely imaginary and an 
(exact) derivative (of a polynomial in u, u', ... ). (This reflects the fact, 
following directly from Riccati's equation, that 

Xlm = -1(ln XRe)', (17) 
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(iii) The first few odd-indexed Xn calculate out (using (16)) as follows: 

Xl = -u, 
(18) 

X~ = _u(lV) + 5(U')2 +6uu" -2u3. 

For each q~ -1 we now cast X2q+3 in the role of a Lagrangian Lq: 

Lq(u, u', u",. ,,)=X2q+3' (19) 

It can be shown that all of these Lagrangians are non-singular (in the sense of 
Definition 30.1.2). Moreover for q~O they have the following remarkable 
property: for each q (~ 0) there exists a differential operator Aq of order 
2q + 1 having polynomials in u, u', u", ... as coefficients, with the property that 
the commutator [.P, Aq] =.P Aq- Aq'p is the operator which simply multi
plies by the scalar-valued function /q(u, u', u", ... ) given by 

/q(u, u', u", .. . )= :x b~~;)' Sq= f Lq dx; (20) 

thus we may write [.P, Aq] =/q with /q given by (20). We shall not establish 
this in general here; in the cases q = 0, 1 it can be verified by direct calculation: 
from 

d bSo 
[.P, Ao] =.P Ao - Ao.P = fa = dx bu(x)' 

we obtain 

similarly from 

we obtain 

d 
fo = -2u', whence Ao= -2 dx; 

d bS1 
[.P, A 1] =.P A1 - A1.P = It = dx bu(x), 

s 1 = f (_u(lV) + 5(U')2 + 6uu" - 2u3) dx, 

f1 = 2u'" -12u'u, and thence A1 = -8 ::3 +6( u :x + :x u)

(Verify that indeed [.P, Ao] = fa and [.P, A 1] = fd 

EXERCISE 

Calculate 'X.7 and thence verify that to within a constant factor 

A2=16~-20(U~ +~u) +30U~U+5(U"~ +~U"). 
dx 5 dx3 dx 3 dx dx dx 
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In view of the general result (that for each q~O there is an operator Aq 
such that [!t', Aq] = /q), the following "commutativity equation" 

[!t', Aq+c1Aq- 1 + ... +cqAo] =0 (21) 

reduces to an ordinary differential equation in the potential u. (The reason for 
considering such commutativity equations will emerge in the following 
subsections. We remark that already in the 1920's there had been brought to 
light a curious property of pairs of commuting operators, namely that they 
are related by an algebraic equation R(!t', A) = 0, determining in turn a 
Riemann surface.) From the form of the functions /q given by (20) it is 
immediate that the commutativity equation (21) has the equivalent "Lagran
gian" form 

!!..-~ -0 where S S +C S + +C S dx (ju(x) - , = q 1 q-l .. , q 0, 

S] = f l,2j+3 dx. 

(22) 

It follows that to within an additive constant the commutativity equation is 
equivalent to the Euler-Lagrange equation 

(and where S _ 1 = - J u dx). We investigate this equation in the cases q = 0, 1. 
It is immediate from (18) that the corresponding Lagrangians are given 
respectively by 

(q=O) L=Lo +c1L_ 1 =u" _u2 -C1U, 

(q = 1) L = Ll + C1LO +c2L_ 1 = _U(iV) + 5 (U')2 + 6uu" 

- 2u 3 + c1(u" - U2)-C2U, 

so that the respective commutativity equations (in the form (23)) become 

(q=O) -cl -2u=0, or U= -cd2, 

(q=l) u"=3u2+C1U+C2/2. 

In the latter case, writing v = u' we obtain 

dv d (3 C1 2 c2 ) 
v dx = dx U + 2 U + 2 U , 

whence v2/2=u 3 +(cd2)u2 + (c2/2)u + d/2, and then 

(24) 
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which (to within a constant factor and an additive constant) defines u as a 
Weierstrass elliptic function t<J(x). (Note that here by means of a change of 
variable of the form u-+u +const., we may without loss of generality suppose 
C1 =0.) 

In the next case, q = 2, it turns out to be convenient to recast the equation 
(23) in Hamiltonian form (in accordance with Theorem 30.1.3). To integrate 
the resulting system fully an additional integral (i.e. integral of motion) apart 
from the Hamiltonian H, is needed; it happens that the equation (22) 
possesses a "latent symmetry" which does permit the system to be fully 
integrated in this case also. We pursue this in more detail in the following 
subsection. 

30.3. Integration of the Commutativity Equations. 
The Connexion with the Kovalevskaja Problem. 
Finite-zoned Periodic Potentials 

We continue our investigation of the commutativity equation (22). Thus 
suppose u = u(x) to be such that the differential operator 

~ d2q+ 1 

A =Aq+ L eiAq-i = const. x -d 2 +1 
i=1 X q (25) 

q d2q+1 - i 

+ L Qi(U, u', ... ) d 2q+ l-i' 
i=l X 

of order 2q + 1, commutes with the Sturm-Liouville operator !E = -d2/dx2 
+u(x). Let e=e(x, Xo, A.), s=s(x, Xo, A.) form a basis for the space of solutions 
of the Sturm-Liouville equation (13), satisfying the initial conditions 

e= 1, e'=O, s=O, s' = 1, when X=Xo' (26) 

Since A commutes with !E, it acts as a linear transformation on this solution 
whose matrix A=(aij ) relative to the chosen basis is given by 

Ae = all e + a12s, 

As=a21 e+a22s, 
(27) 

where the entries aij depend only on Xo and A.. By (26) elxo = 1, e'lxo = 0, 
and since e" = (u(x) - A.)e, we have further e"lxo = -A. + u(xo), ellli xo = 
(u'e + (u - A.)e')lxo = u'(xo), and so on; thus for all n the dependence of 
e(O)lx=>:o (and similarly s(O)lx=xo) on A. is polynomial. It follows from this (and the 
definition of A in (25» that Ac, As and their derivatives, evaluated at x = xo, 
depend polynomially on .A., and therefore, in view of 

(28) 
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that the dependence of the (Xij in (27) on A. is likewise polynomial. This and the 
fact that the coefficients Qi appearing in the operator A (see (25» are 
polynomials in u, u', u", ... , together imply that the entries (Xij in the matrix A 
are polynomials in A., u(xo), u'(xo), u"(xo), .... Explicit calculation of the 
matrix Aq of the operator Aq in the cases q = 0, 1, yields respectively (using (28) 
together with the results of our calculations of Ao and Al in the preceding 
subsection) 

-2) o ' 
(29) 

A _ (-2U'(Xo) -2u"(xo) +4u2(xo)+ 4A.U(XO)-SA.2 ). 

1 - 4u(xo) + 8A. 2u'(xo) 

(The calculation of the matrix A2 of the operator A 2 (q = 2) is similarly 
straightforward, though more cumbersome.) 

Returning to the general situation (with A as in (25», we note first that the 
trace tr A is always zero, so that the characteristic polynomial of A has the 
form 

det( w·l- A(A.» = w2 + det A = w2 + P2q+ I (A.), 

where, as it turns out, P2q + 1 is a polynomial in A. of degree 2q + 1 of the form 

2q+ I 

P 2q +I(A.)=const.xA.2q+l+ L CPi(U(XO),u'(xo),u"(xo), .. ·)A.2q+l-i. (30) 
i= I 

Since the characteristic polynomial is of course independent of the choice of 
basis for the solution space of the Sturm-Liouville equation !!'I/I = A. 1/1 , it 
follows that the coefficients cp/(u(xo), u'(xo), ... ) in (30) of P 2q+ I (A.) = det A, are 
independent of the point Xo, i.e. are unaffected by replacement in them of 
u(xo) by u(x) (where u(x) is some solution of the commutativity equation (22»; 
thus these coefficients furnish integrals of the commutativity equation. 

In the case q= 1, we have A=AI +cIAo' As noted in the preceding 
subsection we may without loss of generality suppose CI = O. This assumed, it 
follows from the expression for Al in (29) that 

P3(A.) =det A =det Al = 64A.3 -(4Su3 -16u")A. 

- (4( U')2 + 16u3 - 8uu"), 

yielding the two integrals 

3u2 - u" = const., (u')Z + 4u 3 - 2uu" = const. 

The first of these (in the form u"=3uz+c l u+cz/2) was exploited in the 
preceding section to obtain an explicit solution of the commutativity 
equation. Putting u" = 3uz + C2/2 in the second integral, we obtain 
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(u,)z - 2u3 - CzU, which is just the negative of the Hamiltonian 

H = _(u')Z +2u3 +CIUZ +czu= -L+U'PI +u"pz +U lll p3 +U(iv)P4 (31) 

(with C1 =0). 
In the case q=2, we have A=A2 +c 1 A1 +czAo. Again we may without 

loss of generality arrange that C 1 = 0 by means of a transformation of the form 
u-+u + const. (verify this!) It can be shown that in this case the coefficients of 

yield, in addition to the Hamiltonian H = J1 , a further non-trivial integral J2 • 

If we introduce variables Yl' Y2 defined by 

u= -2(Yl +Yz), 

i(3u2 - u")= Yl Yz -1<1, 
(32) 

where <1 is the coefficient of )..3 in the polynomial Ps()..) made monic, then the 
following assertion can be verified by means of elementary calculation. 

30.3.1. Proposition. On the level surface defined by the equations H(Pi' q) 
= const., J2(Pj, qj) = const., the commutativity equation (22) with q = 2 takes 
the form 

, 2i}PJYJ 
Yl = , 

YI-Y2 
(33) 

where Yl and Y2 are as in (32). 

The equations (33) have the same form as the Kovalevskaja equations for a 
spinning top in a gravitational field (see [31]); the potential u(x) can be found 
in terms of theta-functions, and then angular variables introduced via "Abel's 
transformation" (see [26, 31 ]). In the terminology of Riemann surfaces we can 
say the following concerning the above proposition: It follows from the 
equations (33) that each level surface defined by the two integrals H( =Jtl and 
J2 (i.e. by equations of the form H =const., J2 =const.) is a "Jacobian variety" 
J(r) of a Riemann surface r of genus 2 (see [26]), i.e. a 2-dimensional 
complex abelian toroidal variety T4 defined by a 4-dimensional (real) lattice 
in 1C2 = 1R4 (and so determined by four independent (real) vectors). (The 
analogous statement in the case q = 1 would be that a level surface given by 
H =const., corresponding to the single integral H, is a Riemann surface of 
genus 1, i.e. a torus T2; this is in fact obviously true since in view of (32), the 
equation H=const. has the form q~=R3(ql) where R3 is a polynomial of 
degree 3 (see §4.2).) 

Thus in the case q = 2 also, the Hamiltonian system defined by (22) (or (23)) 
is fully integrable. It follows from Liouville's theorem (28.4.1) that the open 
region of the space of solutions u(x) of the commutativity equation (22) (with 
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q = 2), corresponding to an open neighbourhood in phase space (with co
ordinates qt, q2' PI> P2) of a closed, connected component of a level surface 
H = const., J 2 = const. (which by that theorem will be a torus T2), will consist 
of periodic and almost periodic functions obtained essentially by restricting 
certain functions of two variables (defined on the neighbouring toroidal level 
surfaces) to trajectories of the Hamiltonian system defined by (22). 

We now turn our attention to the Sturm-Liouville equation itself (i.e. to 
the ordinary differential equation .!i't/I=At/I where as usual .!i'= -d2 /dx 2 

+ u(x)) in the case of periodic potential u(x) (with period T). (Note that in this 
case it is often called instead the "Hill equation".) It is convenient for this 
purpose to introduce the operator t which "translates by the period" the 
solutions of .!i't/I=At/I, i.e. is defined by tt/l(x) = t/I(x + T). It turns out to be 
appropriate to look (for each A) for a pair of linearly independent solutions 
t/I ± satisfying 

(34) 

and the further norm requirement that t/I ± = 1 for x = Xo; for each A such a 
pair of functions will then clearly constitute a pair of eigenfunctions (called 
Floquet (or Bloch) functions) for the translation operator t. 

EXERCISES 

1. Deduce from the existence of such a pair of eigenfunctions that the operator t has 
determinant 1. 

2. Show that for real A. the "quasi-momentum" p = p(..1.) (see (34)) is always either real 
or purely imaginary. 

30.3.2. Definition. The set of (real) A for which p(A) is real is called the zone of 
stability (or permissible zone) of the pair of eigenfunctions t/I ±. (Its complement, 
i.e. the set of A for which p(A) is purely imaginary, is called the zone of in stability 
(or impermissible zone or zone of parametric resonance).) 

EXERCISE 

Show that those A. for which 1/1 + (x,..1.) = 1/1- (x, A.), are boundary points of the zone of 
stability. 

For each pair of values of x, Xo (considered as parameters) we may 
alternatively regard the pair t/I ± (x, xo, A) as defining a single two-valued 
function of A, with the boundary points of the zone of stability as branch 
points; in this way we are led to a Riemann surface r on which the pair 
t/I ± (x, xo, A) is defined as a single-valued Floquet function of A. 

30.3.3. Definition. The potential u(x) is said to bejinite-zoned if the Riemann 
surface r determined by a Floquet function t/I ±(x, xo, A) has finite genus. (We 
remark that the genus of r coincides with the number of finite "lacunae", i.e. 
intervals of finite length contained in the zone of instability with end-points 
which are boundary points of the zone of stability.) 
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We state without proof the following fact: The finite-zoned potentials u(x) 
are precisely the periodic solutions of the commutativity equations (22). (The 
Riemann surface r corresponding in the above-defined manner to such a 
potential, is then given by w2 = - det A = - P2q + I (A), in the notation of the 
preceding subsection (see in particular (30», and for each x, Xo the boundary 
points of the zone of stability are given by det A = 0.) 

This is a consequence of the fact (whose proof we also omit) that a pair of 
Floquet eigenfunctions 1/1 ± (x, X o, A), regarded, as above, as a single-valued 
function defined on the Riemann surface r, is an eigenvector also of the 
operator A (or corresponding matrix A) defined in (25). (Note that for each 
x, Xo, the eigenvalues and eigenvectors of the matrix A(A) can clearly be 
regarded as having as domain of definition the Riemann surface given by 

0= P(w, A) = det( W' 1-A(A» = w2 + det A(A).) 

30.4. The Korteweg-deVries Equation. Its Interpretation as 
an Infinite-dimensional Hamiltonian System 

The investigation of finite-zoned potentials (in connexion with the corre
sponding Sturm-Liouville equation-see above) turns out to be useful as an 
aid to finding solutions periodic in x, of the Korteweg-deVries (KdV) 
equation for dispersive waves in a non-linear medium, well known in 
mathematical physics: 

ou = 6u ou _ 03U _ ~ ~ 
ot ox ox3 - ox Ju(x)' 

u=u(x, t). (35) 

(Here Sl is, to within a constant factor, as in (20), and JSI/Ju(x) denotes the 
"partial" variational derivative with t held fixed.) In view of (20) et seqq., we 
can rewrite the KdV equation in operator form as 

. 02 OU 03U 0 JS I 

U= Tt = [AI, 2] =6u ox - ox3 = ox Ju(x)' (36) 

where 

03 (a a) AI=-4-+3 u-+-u . 
ox3 ox ax 

EXERCISE 

Prove that the quantities S _ l' So, S 1, S 2 (defined essentially as in §30.2) are integrals of 
the equation (36), i.e. that the KdV equation implies that 

a 
aiSq=O for q=-1,O,1,2. (37) 

It is not difficult to see that the KdV equation has solutions of the form 
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u(x - ct) (representing "cnoidal waves"), which necessarily satisfy 
[Al +c Ao, 2]=0, or, equivalently (cf. (24» 

Y-Yo= f du , 
J2u 3 +cu2 +C2u+ d 

y=x-ct. 

(To see this, note first that since 

au au 
-=-c-
at dy' 

au du 
ox - dy' 

03U d3u 
ox3 = dy3' 

the KdV equation becomes 

du du d3u 
-c--6u- +-=0 

dy dy dl ' 
or 

d2u 2 C2 
dy2 =3u +cu+ 2' 

(38) 

whence follows (38) exactly as in the derivation of (24).) Thus such a solution 
u(x - ct) ( = u(y» will, to within a constant factor, be of the form p(y) + const., 
where p(y) is a Weierstrass elliptic function. 

EXERCISE 

Show that the KdV equation has rapidly decreasing (see §30.2) solutions of the form 
u(x-ct) (i.e. rapidly decreasing for each t as Ixl-+oo). (The corresponding waves are 
called "solitons".) Find the analytic form of these solutions, and in particular the 
relationship between the speed c and the amplitude max"lul. Find also solutions of the 
form u(x-ct) having poles at real values of x. Show that in particular there is a 
rational stationary solution of the form 

2 
u(x)=-( )2' x-a 

c=O, a=const. 

(All of these solutions represent degenerate cases of the above-noted solution in terms 
of a Weierstrass function p(y).) 

Solutions of the KdV equation of greater complexity can be investigated as 
follows: One considers the commutativity equation [2, A2 +CIAl +c2Ao] 
= 0, in the form (cf. (23» 

0= ~ = b(S2+ Cl Sl +C2S0 +c3 L l ), 

bu(x) bu(x) 
(39) 

and takes the solutions u(x) of this equation as initial data for the following 
Cauchy initial-value problem: 

u(x, 0) = u(x), 

au 6 au 03u 
-= U---' 
at ax ox3 ' 
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for each u(x) satisfying (39), the solution u(x, t) of the latter problem can then 
be investigated using the fact that u(x, t) will satisfy (39) not just for t = 0 but 
for all t. 

EXERCISES 

1. Deduce this fact from the preservation of Sq for q = -1, 0, 1,2 (see (37». 

2. Show that if u(x) is a solution of the equation (22) with q = 1, then 3u(x) is a 
solution for q = 2. (RecaJl from §30.2 that (to within an additive constant) u(x) wi11 
be a constant multiple of the appropriate Weierstrass function p(x) or some 
degenerate case of it, as for example u(x) = 2/X2.) Show that more generally 
equation (22) with q= 2 has a solution of the form u(x-a)+u(x-b)+u(x-c) for 
appropriate a, b, c; find the conditions needed on a, b, c. 

The KdV equation (35) constitutes (in a certain sense to be made precise) 
an "infinite-dimensional Hamiltonian system" on the space offunctions u(x). 
We define the Poisson bracket of two fun ctiona Is J, I on that space by means of 
the formula (cf. §28.1 (5), and see §30.5 below) 

f bJ d (jJ 

{J, I} = <5u(x) dx <5u(x) dx. (40) 

EXERCISE 

Prove that this Poisson bracket satisfies the Jacobi identity, and that the correspond
ing Hamiltonian system has the form (cf. §28.l (4» 

. d lJJ 
u=---

dx lJu(x)' 
(41) 

where J is some functional of u. 

It is now immediate that the KdV equation can be interpreted as a 
Hamiltonian system in this sense (see §30.5 below). It turns out that the 
properties of this Hamiltonian system very much depend on the space of 
functions u on which the system is defined; the classes of functions of most 
interest are (as before-see §30.2) those of rapidly decreasing functions, and of 
periodic functions of fixed period T. 

EXERCISES 

1. Find the simplest "canonical" variables P., q., oc = 1, 2, ... , among the elementary 
trigonometric functions, in terms of which the Hamiltonian system (41), defined on 
the space of periodic functions with period T, takes the form 

. aH . aH 
P.= - a' q.= a' oc=o, 1,2, ... ; H =J. (42) 

q. P. 

2. Show that the KdV equation is equivalent to the matrix equation 

aA I aAo ax - at = [Ao, AI], (43) 

where the matrices Ao, Al are as in (29) (with Xo replaced by x). 
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3. Show that the commutativity equation (22) with q = 2, is equivalent to the matrix 
equation 

d/\ 
dx = [/\0' /\], (44) 

where /\=/\2+CI/\1 +C2/\0, the matrices /\0, /\1' /\2 being as in (29) et seqq., 
except that in them Xo is to be replaced by x. (It follows in particular that, as noted 
in §30.3, the coefficients of the polynomial det /\=Ps().), are integrals of the 
commutativity equation (22) with q = 2.) 

4. Show that for the solutions u(x) of the commutativity equation (22) with q = 2 (or 
equivalently (44)), the dependence on the time t, as given by the KdV equation, is 
determined equivalently by the equation 

(45) 

30.5. Hamiltonian Formalism of Field Systems 

In the absence of thermodynamical non-reversibility, a physical system from 
which there is no energy-loss is said to be "conservative". The modern view is 
that among the systems of physical origin, the conservative ones should be 
Hamiltonian. (However as examples show the resulting Hamiltonian formal
ism will not always be "trivial", in the sense of reducing to Lagrangian 
formalism.) In this subsection we present a few results concerning the 
Hamiltonian formalism of "field systems". The basic concept here, as in the 
finite-dimensional case, is the important "Poisson bracket" operation. The 
underlying space will here be a function space consisting of COO-functions 
Ui(XI, ... , xn) of n variables (cf. end of the preceding subsection). (We shall not 
specify precisely the domain of these functions, nor the boundary conditions 
on them; since all variations will be finite and we do not wish to become 
involved in a discussion of the appropriate boundary conditions, we shall 
instead make the conventional assumption that the integral of the total 
derivative of our functions over the whole of the space co-ordinatized by 
Xl, ... , x", is always zero.) 

The Poisson bracket operation is defined between functionals of m 
"function-fields" u l , ... , um (i.e. COO-functions). We shall adopt the convenient 
formalism of the theoretical physicists wherein the result of the Poisson 
bracket operation is expressed in terms of "point-functionals", i.e. via the 
individual fields considered at each point x. (Thus for each point x and each ui 

we have the functional whose value on (u i ) is the number ui(x).) Using this 
notation we now formally define a Poisson bracket { , } by means of a 
formula of the form 

(46) 
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(where the n-tuples x, yare regarded as independent "continuous variables") 
with the following properties: the Poisson bracket should be skew-symmetric, 
linear in each argument, and should satisfy Leibniz' condition ({fg, h} 
= f {g, h} + g{f, h}) and the Jacobi identity (cf. Part I, Theorem 34.2.2, and 
§28.l above). 

Consider an arbitrary functional of the form 

J = f P(u, Vu, ... ) dny; 

we shall now derive a formula for the Poisson bracket {ui(x), J}. Note first 

that in view of the linearity condition we have 

{ u'(x), f P dny } = f {ui(x), P(y)} d"y 

(where we have written P(y) for P(u(y), Vu(y), ... ), and 

{ui(X), O~k V(Y)} = O~k {ui(x), v(y)}. 

In the following calculations we shall assume, purely for the sake of 
notational simplicity, that u is a single field (rather than an m-tuple of fields) 
and that n = 1, i.e. that the space co-ordinatized by Xl, ... , x" is one
dimensional, co-ordinatized by Xl =X. One can show (or at least infer from 
known facts) that the linearity condition and the Leibniz condition together 
imply that for some r, 

oP oP 
{u(x), P(y)} = {u(x), u(y)} ou (y) + {u(x), u'(y)} ou' (y) + ... 

{ (rJ} oP + u(x), u (y) ou(rJ (y). 

Thus 

oP 0' 
{u(x), P(y)} = L :l (sJ (y) -;s {u(x), u(y)}, 

s~o uU uy 

whence, using (fg)' = f'g + fg', and our underlying assumption about in
tegrals of total derivatives (see above), we obtain 

{u(x), f P dy} = f {.~o {u(x), u(y)}( -1)' :;. (:;») } dy 

f oj 
= {u(x), u(y)} OU dy, 

where (jJ lou is (the appropriate generalization of) the variational derivative 
(cf., e.g. §29.2(4». In the general case of m function-fields ui and n variables xi, 
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a completely analogous argument yields 

. f { . } fJJ {u'(x), J} = u'(x), US(y) fJuS(y) d"y. (47) 

A further argument along similar lines yields the following formula for the 
Poisson bracket of a pair of functionals J 1, J2 : 

{Jl' J2 } = f fJ~~~) O~~~) {u'(x), US(y)} d"x d"y. (48) 

(Note that, in the formalism of the calculus of variations, we have as usual 

f ()J 1 " fJJ = fJuJ(x) fJu (x) d x, 

with the variations fJu i all restricted to being finite.) 

30.5.1. Definition. A Poisson bracket as defined by (46) et seqq. is said to be 
local if each {ui(x), uj(y)} can be expressed as a finite sum of the form 

{ul(x), u1(y)} = FIJ(X, y) = L B~ o~ fJ(x - y), (49) 
k 

where the "local principle" prevails, i.e. the families Bk of coefficients depend 
on the values of the fields u and at most finitely many of their derivatives only 
at the point x; here k=(k1, ••• , k"), kj ~ 0; 

o 0" . . OJ,,=!ij; and fJ(x-y)= fJ(x'-y') 
UX 1=1 

denotes as usual the Dirac fJ-function, i.e. the kernel of the identity operator: 

f f(x)fJ(x-y)d"x=f(y)· 

(In the present context we shall operate with this symbolism purely formally, 
i.e. algebraically, avoiding any discussion of function spaces.) 

Assuming we have a local Poisson bracket given by (49), we shall now 
derive an expression for {J1, J2 } in terms of the differential operator 

A =(A~)= r B~(u(x))o~. 
k 
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where we have used the fact that the differential operator A~ (regarded as 
operating on t5(x- y) (t5J/t5uJ(y))) depends only on x and so can be taken 
outside the integral sign. Thus 

{ i }_ IJ~ 
U (x), J -Ax t5uJ(x)' 

whence we have immediately from (48) that 

{ } -f~ IJ~d" J1> J2 - t5u i (x) Ax t5u j (x) x. 

(50) 

(51) 

The verification of the Jacobi identity for an arbitrary Poisson bracket of 
the form (51) (determined by a general matrix differential operator A = (Aij» 
is difficult. However the verification for the particular case where the 
coefficients of A are "constant" (in the sense of being independent of the fields 
u and their derivatives, though possibly depending (explicitly) on x) is easy; 
this case represents the direct analogue of the finite-dimensional case of a 
Poisson bracket with constant coefficients (see §28.1 above, or Part I, §34.2). 

We now consider two of the simplest examples (with constant coefficients). 

(a) Lagrange brackets. Suppose we are given fields Ph ... ,p", ql, ... , q", 
with Poisson bracket defined by (cf. §28.4) 

{PI(X), Pj(Y)} = {qi(X), qj(y)} =0, 
(52) 

{qi(X), Pi(Y)} = t5ft5(x - y). 

Such a bracket arises from non-singular functionals (cf. Definition 30.1.2) of 
the form 

with 

(Analogously to §30.1 (see in particular (6), (7) et seqq.) this and what follows 
may readily be extended to Lagrangians involving higher derivatives than the 
first.) If we take as Hamiltonian the usual one 

H=Po= f Tgd"x= f(Pj(P-A)d"X, (53) 

then (cr., e.g. Part I, §34.2) the Euler-Lagrange equations take on the explicit 
Hamiltonian form (verify!) 

Pj(x) = {Pj(x), H} = - t5:J%) , 
qi(X) = {qJ(x), H}=~. 

t5pix) 

(54) 
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(Note that if instead we take as Hamiltonian any other component of the 
total momentum, namely (cf. Part I, Definition 37.2.2) 

1 f 0" 1 f oqi " p~=c T~dx=c PJox~dx, (55) 

then we obtain (in the analogous way) merely a field generating (via the 
Poisson bracket) the action of the group of translations of the fields in the 
direction of the x~-axis. Verify this!) 

(b) The Korteweg-de Vries (KdV) equation. (Cf. §30.4.) Here we have but a 
single field u(x) defined on one-dimensional space (and also dependent on the 
time t), with Poisson bracket given by 

{u(x), u(y)} = ~'(x - y) (56) 

(where ~' is the "derivative" of the ~-function, and so has the property 

f ~'(x)f(x) dx = - f ~(x)f'(x) dx = -1'(0), 

for every function f.) This bracket has non-trivial annihilator, i.e. there exist 
non-zero functionals I such that 

{u(x),I}=O; 

in fact 10= J u(y) dy has this property, as is easily verified. 
The momentum P is defined in this context by 

f~ ( ~) P= T dx , whence {u(x),P}= ox ; (57) 

thus, analogously to the preceding example, the momentum functional P is a 
generator (via the Poisson bracket) of the action of the group of translations 
of the x-axis. 

A Hamiltonian of the form 

H = - f (~ + u3 + C~2) dx, c=const., (58) 

gives rise to the KdV equation (as the corresponding Hamiltonian system; cr. 
Part I, §34.2(22) et seqq.): 

o ~H 
u(x)= {u(x), H} = - ox ~u(x) =u""",+6uu"+cu,,. (59) 

EXERCISE 

Show that each of the entities L, defined in §30.2(19) yields a conservation law for the 
KdV equation; i.e. (to be explicit) that the KdV equation implies that the functionals 
1,= J L, dx, satisfy 

1,=0. 

Show also that {I" I,,} =0, and H =11 +cIo· 
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Returning to the general discussion, we note the following fundamental 
property of the Poisson bracket, non-trivial in the sense that (in the finite case 
as in the present more general context) it depends crucially on the Jacobi 
identity (as well as the other, simpler, defining conditions of a Poisson 
bracket). Let J l , Jz be any two functionals, and form from them the third 
J3 = PI' J2 }· These three functionals determine three "Hamiltonian" vector 
fields (or "currents") on the function space, via the formula 

ouj(x) 
-!)- = {Uj(x), Jcr}, 

utcr 
0:= 1,2,3; 

it follows readily from the Jacobi identity for the Poisson bracket that the 
vector field commutator of the first two of these fields is equal to the third. (To 
see this write Ocr for the operator [ ,Jcr], and calculate [01,02](U j(X)) 
=01(OZUj (X»-02(01Uj (X».) Hence in particular if PI' J2} =0, then the 
corresponding currents commute. 

Note also that the annihilator of a Poisson bracket is defined to be the 
totality offunctionals whose Poisson bracket with every functional, is zero. A 
Poisson bracket is non-degenerate if its annihilator is trivial (i.e. zero). 

Interesting examples of Poisson brackets occur in hydrodynamics (fluid 
mechanics); we shall now consider some of these. To begin with we consider a 
Lie algebra L" of vector fields on IR" and its subalgebra L~ c L" consisting of 
those fields w=wie j in L" with identically vanishing divergence: OjWi=O. By 
definition of the commutator of a pair of vector fields (see Part I, Definition 
23.2.3), we have 

where 

If in terms of the field components vj(x), wj(y) of an arbitrary pair of vector 
fields v, w, we define "structural constants" ct(x, y, z) by 

[v, w](z)= f f c~ix, y, z)vi(x)wJ(y)ek d"x d"y, (60) 

then it is readily verified that 

c~ix, y, z) = 15~I5(x - z)l5 t(x - y) -15~I5(y - z)l5j(y - x), (61) 

where OJ(x) = (ojoxi)O(x). Denoting by Pj(x) the components of an element 
p(x) of the dual space L:, we have that the scalar Pj(x)vi(x) (i.e. real-valued 
function of the points of IR") is invariant under smooth changes of the co
ordinates x (see Part I, Example 17.2.2(a». It follows that the "scalar product" 

f Pj(x)vi(x) d"x (62) 
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will, from the tensorial point of view, be invariant under such co-ordinate 
changes, provided we regard each pEL: as the "density" of a covector (rather 
than just a co vector) which under a co-ordinate change x = x(x') is multiplied 
by the Jacobian of the change. We shall in fact use the term momentum density 
for such p. Note that for each P, the scalar product (62) defines a functional on 
L" (the totality of which functionals we also denote by L:); the corresponding 
dual L~* will then be a quotient of 

L:/((pj=Oj([J)), (63) 

since for densities of the form (Pj=Oj([J) we have 

f (0 j([J )v j d"x = - f ([J(Ojvj) d"(x) = 0 

'f;:' j -0' 'f LO I U j V = , I.e. I v E " . 

The Poisson bracket of momentum densities is taken to be 

{Pi(X), Pj(Y)} = f ct (x, y, Z)Pk(Z) d"z 

= Pj(x)t5 i(x - y) - p;(y)t5iY - x). 
(64) 

The hydrodynamical equations for an incompressible fluid flow, in the case of 
constant density P, arise from the Hamiltonian 

H= r~~2d"X' (65) 

where Pi = pvi (v = v(x) being the velocity of the fluid at each point, assumed to 
satisfy OiVi == 0), and where the metric on the phase space L~* is taken to be 
Euclidean (so that Vi = v;). These equations are generally formulated on the 
whole of L: in the form 

. ·i { H} ;:, P k;:,;;:, ( P1 V 12 p) Pi = pv = Pi' +Ui =pv Uk V +u; -2- + , (66) 

where P = P(x) is the pressure (which may from one point of view be taken to 
be defined by (66)). 

For a compressible fluid on the other hand it is necessary to enlarge the 
algebra L" by means of "internal variables". In the language of fields this 
means adjoining two new field variables, the "mass density" P and the 
"entropy density" s, with Poisson brackets given by 

{Pi(X), p(y)} = p(x)t5;(x - y), {p;(x), s(y)} = s(x)t5 i(x - y), 

{s(x), s(y)} = {p(x), p(y)} = {s(x), p(y)} =0. 
(67) 

Here the Hamiltonian has the form (assuming as before the Euclidean metric) 

f[ 'P, 2 
] H= 2p +eo(p,s) d"x 

where eo is the energy density. 
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EXERCISES 

1. Show that 

2. Assuming n=2, consider "Clebsch variables" t/I, a satisfying 

Pi =POit/l +SOia. 

Show that 

{p(x), t/I(y)} = {s(x), a(y)} =b(X- y), 

while all the other possible brackets vanish. Examine the question of the global 
introduction of Clebsch variables. 

3. In the case n = 3 consider field variables t/I, a, p, y satisfying 

PI= POIt/l +soja+ pOi''!, 

with (as the only non-zero brackets) 

{p(x), t/I(y)} = {s(x), a(y)} = {P(x), y(y)} = b(X - y). 

Show that this bracket accords with (67). Investigate the "gauge group" arising 
from the non-uniqueness of the Clebsch variables p, t/I, s, a, p, y. 

4. Suppose n = 3 and that the fluid is "barotropic", i.e. eo = eo( p) and the entropy plays 
no role as a field variable in the process under investigation. Examine the question 
of the global introduction of Clebsch variables p, t/I, a, P satisfying 

Pi = POit/l + aOiP, 

Given any tensor field T(x) on IRft, one may extend the Poisson bracket to 
the field T(x), i.e. define the brackets {Pi(X), T(y)} (setting {T(x), T(y)} =0), in 
a manner suggested by the condition for a tensor field T to be "frozen in", 
which for each vector field w takes the form 

T(x) = LwT(x), 

where Lw T is the Lie derivative of the tensor field in the direction of w. Thus 
for each Hamiltonian 

we set 

(68) 

This, together with the condition {T(x), T(y)} =0, then uniquely determines 
the extension of the Poisson bracket to include T(x). 

Of particular interest here is the case where T is a magnetic field (or, 
abstractly, a closed 2-form in 1R3): 

T=(Hij )· 
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The mass density p and the entropy density s will here be 3-forms in 1R 3, since 
under a transformation of co-ordinates they are multiplied by the Jacobian (see 
Part I, Theorem 18.2.3), and consequently the quotient sp -1 will be a scalar 
in 1R3. It turns out that the Hamiltonian 

(69) 

together with the above-defined bracket (see (68», yield the equations of 
magnetic hydrodynamics in the situation where the field is "frozen in" the 
fluid. 

The Poisson bracket defined in (64) is a special case of the more general 
"differential-geometric" bracket. 

30.5.2. Definition. Given a family of fields u1(x), .. , , um(x), we call a bracket 
operation of the form 

{ui(x), ui(y)} =gii.a(u(x»oa£5(x - y) 

+ W·a(u(x»u:£5(x - y) 
(70) 

(where u: = oauk(x); X =(Xl, ... , x"); IX = 1, ... , n; i,j= 1, ... , m) a homogeneous 
dif.ferential-geometric bracket. An inhomogeneous dif.ferential-geometric 
bracket has the form 

{ui(x), ui(y)} = gij.a(u(x))Oa£5(x - y) 

Functionals of the form 

+ W,a(u(x»u:£5(x- y) 

+ cij(u(x»£5(x - y). 

H = f h(u) d"x, 

(71) 

where the "density" h(u) (cf. (65), (69» is independent of the fields ui, are 
naturally said to be of "hydrodynamical type". In conjunction with a Poisson 
bracket of the form (70) such a Hamiltonian gives rise to a "system (of 
equations) of hydrodynamical type": 

(72) 

It is not difficult to see that the classes of Poisson brackets of the form (70), of 
functionals of hydrodynamical type, and of concomitant equations of the 
form (72), are each invariant under local changes u = u( v) of the variables u, 
not involving any derivatives. The precise way in which the bracket (70) 
transforms is given by the following result, a straightforward consequence of 
the Leibniz condition. 
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30.5.3. Lemma. Under local changes of variables of the form u = u( v), the 
components gij,a (in theformula (70)for a Poisson bracket) transform (for each 
fixed ex) like those of a tensor of type (2, 0) on the u-space, while for each fixed ex 
for which (gij,a) is non-degenerate, the components w,a transform (after 
appropriate lowering of an index using the "metric" gij,a) like Christoffel 
symbols; thus we may write 

In the case where the x-space is one-dimensional (i.e. n = 1, so that 
gi j,a=ii,l =gii say) more detailed facts are known. (Their proof, which we 
omit, involves a certain amount of calculation.) 

30.5.4. Theorem. In the case n = 1 and under the assumption that det(gil) does 
not vanish, the expression (70) satisfies all the conditions of a Poisson bracket 
(including the Jacobi identity) if and only if the "metric" (gii) is symmetric, and 
(r{k) is the symmetric connexion compatible with this metric, yielding zero 
curvature (see Part I, §§29.3, 30). 

30.5.5. Corollary. In the case n = 1, a Poisson bracket of the form (70) is 
determined (locally) by a single invariant, namely the signature of the "metric" 
gij = gii (det(gii) #- 0). There exist local co-ordinates for the u-space in terms of 
which gij == const., W == o. 

In the case n = 1, it turns out that if a system of the form (72) is 
Hamiltonian and diagonalizable (i.e. the matrix (a~(u)) can be diagonalized on 
the whole region of interest) then the system is integrable in a certain precise 
"Liouvillian" sense. About the subcase where in addition m = 2 (the case of a 
2-component system) several facts had already been discovered in the 
nineteenth century, beginning perhaps with Riemann; these are summarized 
in the following 

EXERCISES 

1. Prove that for functions x = x(u 1 , u2 ), t = t(u 1, u2 ), the system (72) (defining a so
called "hodograph" transformation) is linear. (Note. The "hodograph" of a 
particle's motion is the curve described by the tip of the velocity vector of the 
particle, laid off from the origin.) 

2. Show that for m = 2 there is a local co-ordinate change u = u( v) which diagonalizes 
the system (72). 

For m>2 (i.e. for more than two fields) there has been discovered quite 
recently a generalization of the "hodograph" method, which, however, in 
contrast with the classical case m = 2, relies heavily on the assumption that 
the system is Hamiltonian. Assuming as before that n = 1, one considers a pair 
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of commuting Hamiltonian systems of the form (72): 

i i j ur=v/u)ux , 

u; = wj(u)u~, 

357 

(73) 

where (vj) is diagonal, i.e. vj= lijvi(u), and where furthermore the diagonal 
entries Vi are all distinct. Then (wj) is also diagonal, say wj = lijwi (verify!) The 
system of equations 

Wi(U)=Vi(U)X+t 

determines a family of functions (as solutions) 

u1(x, t), ... , um(x, t), 

which, as it turns out, satisfy the original system u; = vj( u )u~. 

(74) 

We conclude by stating a result for the inhomogeneous bracket (71). (Its 
proof under the stated assumptions is not complicated.) 

30.5.6. Theorem. Suppose n = 1 and det(gil.«) = det(gii) -:f: 0, and that we are 
given co-ordinates Uk in terms of which gil == const., W == 0. If the formula (71) 
defines a Poisson bracket, then in terms of such co-ordinates Uk the quantities 
ciJ(u) must have the form 

(75) 

where cV == const., c~ == const., and where moreover the cV are the structural 
constants (see Part I, §24.5) of a semi-simple Lie algebra with Killing metric gij, 
and (c~) represents a cocycle on that Lie algebra, i.e. satisfies 

(76) 

We shall not broach here the higher-dimensional case or other generaliza
tions of this theory. 



CHAPTER 8 

The Global Structure of Solutions of 
Higher-Dimensional Variational 
Problems 

§31. Some Manifolds Arising in the General 
Theory of Relativity (GTR) 

31.1. Statement of the Problem 

Geometrically speaking the fundamental problem of GTR is that of finding 
4-dimensional manifolds M4 endowed with a metric gab of signature 
(+ - - -), satisfying Einstein's equation (see Part I, §§37.4, 39) 

(1) 

where T..b is the energy-momentum tensor of the medium. From the most 
general point of view there is only one restriction on the tensor T..b, namely 
that the "energy density" be non-negative, which comes down to the 
condition that for every time-like vector e = (ea) (i.e. such that gabeaeb > 0) at 
each point of M4, we have T..beaeb ~ O. However in the present chapter we 
shall for the most part concern ourselves with the so-called "hydrodynamical 
energy-momentum tensor" of an isotropic dense medium (forming a "perfect 
fluid"), already introduced in Part I, §39.4, important in the investigation of 
the gravitational fields of macroscopic bodies: 

(2) 

where U = (ua) is the 4-velocity «u, u) = 1), p is the (isotropic) pressure, and e 
is the energy density (see loco cit.). 

A general analysis of the Einstein equation (1) presents problems of a 
complexity which might be termed transcendental. However in several special 
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situations, where a metric is sought which possesses a large group G of 
isometries, equation (1) reduces, in suitable systems oflocal co-ordinates, to a 
comparatively simple form, allowing precise solutions to be found, or at least 
making qualitative investigation possible. In such cases there always arises 
the question of the extent to which any solution we have found is a full 
solution, i.e. whether it represents the whole manifold M4 or just some region 
of it. The simplest, as well as most fundamental, of these special cases, where 
the purely co-ordinate approach yields only a region of M 4 , is the relativistic 
analogue of the field of a point-mass, i.e. the "Schwarzschild solution", which 
we derived in Part I, §39.3. 

We conclude this introduction with the following definition (in essence 
encountered several times in Part I). 

31.1.1. Definition. A function j(x) on M4 is said to be respectively: (i) time
like; (ii) space-like; (iii) light-like (or isotropic) according as: 

(i) ab oj oj 0· <Vi Vi) 0· g oxa oxb > ,l.e. , >, 

(ii) gab :~a :~b < 0, i.e. <Vj, Vj) < 0; 

(iii) gab :~a :~b = 0, i.e. <Vj, Vj) = 0. 

(Here Vj = grad j; thus if for example j(x) = xa, then <Vj, Vj) = ~a.) 

We shall often denote the scalar square <Vj, Vj) by gff. 

31.2. Spherically Symmetric Solutions 

We begin with the definition 

31.2.1. Definition. A manifold M4 endowed with an Einstein metric gab is said 
to be spherically symmetric if it admits among its isometries those of the group 
SO(3), having 2-dimensional orbits S2. (Think of the simple case where the 
transformations in SO(3) fix the "time"-co-ordinate, and rotate the "spatial" 
co-ordinates.) 

The orbits S2 of M4 under the action of SO(3) will of necessity be space
like (i.e. their non-zero tangent vectors e = (e a) at each point will all satisfy 
gabeaeb < 0) in view of the fact that each stationary subgroup of SO(3) (i.e. 
each stabilizer in SO(3) of a point) acts isotropically on the tangent space to 
the orbit S2 through that point, while on the other hand the set of non-space
like tangent vectors (i.e. of time-like and isotropic vectors) to M4 at each 
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point, forming the 3-dimensional light cone together with its interior (i.e. 
given by gab~a~b > 0), does not contain a 2-dimensional subspace (essentially 
since gab has signature (+ - - -». 

We denote the orbit space M4jSO(3) by M2; this will be a 2-dimensional 
"space of parameters" where the parameters in question index the orbits. We 
thus obtain a fibre bundle with the natural projection 

(3) 

and with fibres p-l(X), x E M2, the orbits S2. There is a naturally defined 
connexion (in fact a G-connexion; see §24.2), namely that afforded by the 2-
dimensional planes at the points of M\ orthogonal (with respect to the 
metric gab) to the fibres, i.e. to the orbits S2 of the action of SO(3). Let H y 

denote the stationary group (i.e. the stabilizer in SO(3)) of an arbitrary point 
y E M4. From the fact that on its orbit the point y is isolated among the 
points fixed by Hy, together with the above-noted isotropic action of Hy on 
the tangent plane to the orbit through y, it follows that the set of fixed points 
of M4 under the group H y forms a 2-dimensional submanifold of M4 
orthogonal to the fibres; we have thus established the following: 

31.2.2. Lemma. The connexion on the fibre bundle (3) whose horizontal planes 
at each point are orthogonal (with respect to the metric gab) to the fibres 52, is 
"trivial", i.e. as a 2-dimensional distribution on M 4 , is integrable (in the sense of 
Definition 29.1.1). 

Given any metric of signature ( + -) on the base M 2 of the fibre bundle (3), 
there always exist on some neighbourhood U of each point x E M2, 
"orthogonal" co-ordinates t, R, i.e. co-ordinates in terms of which the metric 
takes the form 

(4) 

(There would seem to be little risk of confusing this R with the scalar 
curvature R in (I)!) Let e, cp be the standard spherical co-ordinates on the unit 
sphere S2; the usual spherical metric d02 = de2 + sin2 e dcp2 is then invariant 
under 50(3), and is essentially the only such invariant metric on S2. It follows 
from this together with the above lemma that on the region p - 1 (U) c: M4 
there are co-ordinates t, R, e, cp in terms of which the Einstein metric has the 
form 

(5) 

where goo, gl1 depend only on t and R, and the "radius" r is some measure, 
invariant under SO(3), ofthe "size" ofthe orbit S2 through each point. Thus the 
expression (5) gives the local form of an arbitrary SO(3)-invariant metric on 
M4. 

In the particular case of the Schwarzschild solution of the Einstein 
equation (1) with Tab == 0 (derived in Part I, §39.3), we took (putting the 
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velocity of light c = 1 for simplicity) 

r = t, R=r, (6) 

(where t is the time and r the radial co-ordinate, i.e. spatial distance from the 
"centre"), and obtained the solution in the forpl (see loco cit.) 

a 
goo = 1 --, 

r 

1 
gil = --1--/' -ar 

a = const. > O. (7) 

This solution is physically significant only for r > a, i.e. in the "region of an 
external observer". Considering it formally for r < a we see that, in the 
terminology of Definition 31.1.1: 

(i) the function r (the radial co-ordinate) is time-like for r < a, i.e. grr = 
gil> 0; 

(ii) the function t (the time co-ordinate) is space-like for r < a, i.e. gil = 
gOO <0. 

As r -+ a from the outside (i.e. from above), we have g' -+ 0, gil -+ 00, so that 
by (ii) the function t has no reasonable meaning for r = a, while by (i) if the 
function r on M4 is meaningful, then it is isotropic (in the sense of 31.1.1). 

It is in any case clear from (7) that the above co-ordinates t, r, 0, <p are not 
appropriate when r = a. However as we shall now see there is a choice of the 
co-ordinates r, R, different from that yielding the Schwarzschild solution (7), 
whose region of application is larger than that of an "external observer". In 
solving the Einstein equation in empty space, i.e. the equation 

(8) 

or, equivalently, Rab = 0 (see Part I, §37.4), we may assume without loss of 
generality that locally the co-ordinate r can be chosen so that goo = 1; this can 
be shown to follow from the above-mentioned fact that any metric of 
signature (+ -) on M2 takes the form (4) in terms of suitable local co
ordinates, and thence the form dr 2 + g 11 dR 2, gil < 1, after a further change 
of co-ordinates. Thus in terms of local co-ordinates r, R, 0, <p we may suppose 
the metric given by 

(9) 

where rand gil each depend only on Rand r. The solution of the system (8) 
(or equivalently the system Rab = 0) for gil and r (in (9» in terms of rand R, 
can be obtained without great difficulty. One first needs to calculate the 
Christoffel symbols nc and thence the Ricci tensor Rab using the appropriate 
formulae (see Part I, Theorem 29.3.2 and §39.3(30», in order to obtain the 
specific form taken by the equations (8) as they apply to a metric of the form 
(9). These calculations are facilitated by the introduction of the new 
parameters v, A, J1. defined by 

(10) 
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of course in the present context we have goo == 1 so that v == O. We shall give 
the results of these calculations below (in the more general situation where 
v =1= 0 and Tab =1= 0; see the right-hand sides of equations (16), where differenti
ation with respect to f is indicated by a dot, and with respect to R by a prime). 
It turns out that the solution for r in terms of f and R is as follows (here ,.., 
denotes a further convenient parameter defined by the two equations): 

r 1 (R2 ) a = 2 ~ + 1 (1 - cos '1), 

~ = ~ (~: + 1 y/2 (1t - '1 + sin '1), (11) 

o ~,.., ~ 21t. 

The (local) structure of the resulting "Kruskal manifold" M4 (as reflected in 
the function r(R, f)) is indicated in Figure 115. Note that the point r = 0, 
where the orbits under the group SO(3) reduce to a point, is a singularity of 
the metric (i.e. of M 4 ). By drawing the light cones at various points of the 
(f, R)-plane (we recommend that the reader attempt this exercise), the 

world-line of an 

R 

Figure 115. The (R, t)-plane. The "meaningless" region r ~ 0 is shaded. The solid 
curves represent the level curves r(R, t) = const., and the dotted lines the level curves 
t(R, t) = const. (Here t is the time co-ordinate in the Schwarzschild region r > a; see 
(6).) At r = a we have It I = 00 except for the origin R = t = 0, where the time is 
undefinable since all of the level curves t = const. converge there. At that point we 
have arlat = arlaR = 0; it is in fact a saddle point. On the curves r = a we have 
(Vr, Vr) = O. The regions I and I' are isometric (under the map R+-+ -R), as are the 
regions II and II' (t+-+ -t). 
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following assertions can be verified. Note first that the world-line indicated in 
Figure 115, of an external observer in the region I (the "Schwarzschild" 
region) is given by 

r = ro > a, - 00 < t < 00, cP = CPo· (12) 

Signals can reach the external observer from the region II', but signals from 
the observer cannot enter that region (a "white hole"). On the other hand for 
the region II the reverse situation obtains: the observer can send signals into 
that region, but no signal can reach the observer from it. (Thus that the region 
II represents a so-called "black hole".) Communication between the regions I 
and I' in either direction is impossible. 

The solutions of Schwarzschild and Kruskal have an important applic
ation to the situation of a collapsing spherically symmetric mass (a collapsing 
star or "collapsar"). Consider the time-like world-line 'Y of each point of the 
star's boundary (i.e. for each fixed pair of values of e and cp), of the form 
shown in Figure 116. Together all such world-lines (for all values of e and cp) 
form a 3-dimensional surface Sy C M 4 , separating M4 into two regions, an 
"external" region A and an "internal" region B (as in Figure 116). We expect the 
process of collapse of the star to be described by a spherically symmetric 
solution of Einstein's equation (1) with the following properties: 

(i) in the external region A the metric gab should be that given by the Kruskal 
solution of Rab = 0; 

(ii) in the internal region B the metric gab should satisfy the Einstein 
equation (1) with Yab the hydrodynamical energy-momentum tensor 
given by (2) where the pressure p and energy density 6 are linked by an 
appropriate "state equation" 6 = 6(p); 

(iii) the boundary of the star (represented by the curve 'Y in the (r, R)-plane) 
should intersect (as t -+ + 00) the "horizon line" r = a where ft' = 0, 
without having done so earlier (as t -+ - 00). 

A 

R 

Figure 116 
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In view of (ii) we need to solve the Einstein equation in the region B, where 
Tab ::F O. As noted in Part I, §39.4, in terms of an attached co-ordinate system 
(i.e. a "co-moving" frame accompanying the star), i.e. one for which the 
4-velocity satisfies <u, u) = 1, Ua = 0, a: = 1, 2, 3, we shall have (see (2)) 

T8=e, T: = - p (a: = 1, 2, 3), T;: = 0 for a::F b, (13) 

and in view of the assumed spherical symmetry of the star the metric will in 
terms of suitable such co-ordinates still have the form (5). 

Remark. Generally speaking an attached co-ordinate system with the 
property that the "time" -co-ordinate r is orthogonal to the co-ordinates 
R, 8, cp, will not be "synchronous", i.e. in general it cannot be arranged (as it 
was in Kruskal's solution above) that goo == 1. 

Continuing with our solution in the region B, note first that the 
conservation law Va T;: = 0 (see Part I, §§37.2, 39.4) yields (in terms of the 
parameters v, A., /J defined as in (10» 

, 2p' 
v =---, 

p+e 

whence we obtain immediately 

. 2p 
(A.+2jL)= --, 

p+e 

-gllr4 = exp { -2 f p ~ e} exp x(R), 

goo = exp { -2 f p d: e} exp I/I(r), 

(14) 

(15) 

where the right-hand side integrals are to be interpreted suitably, and where 
x(R) and I/I(r) are arbitrary functions. The latitude in choosing these functions 
reflects that remaining in the choice of the co-ordinates r, R; by choosing x, 1/1 
appropriately, thereby finally fixing on the co-ordinates r, R, the quantities 
p, e can be eliminated from the equations (1). 

After explicit calculation of the Christoffel symbols r;:c (using the formula 
in Theorem 29.3.2 of Part I), and thence the components Rab of the Ricci 
tensor (using §39.3(30) of Part I), the Einstein equations (1), in terms of the 
parameters v, A., /J defined in (10) and the co-ordinates X O = r, Xl = R, x 2 = 0, 
x3 = cp, reduce to the following four equations (where differentiation with 
respect to R is denoted by a prime, and with respect to r by a dot): 

-8:~ Tl = te-)-(/J~2 + /J'V') - e-V(ji - tjLv + ijl2) - e-I'; 

~ -v(l ... i· 2'~ 12 2" '2) + 4e A v + /JV - A/J - A. - A - /J - /J ; 
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We define a = a(t, R) by <Vr, Vr) = g" = 1 - air. In the Schwarzschild 
solution (Part I, §39.3) we had a = const. = 2MGlc 2 where M is the mass of 
the body, and G Newton's universal gravitational constant. In the present 
more general context (of a hydrodynamical energy-momentum tensor which 
is not necessarily zero) the equation 

a(t, R) = r(t, R) (17) 

defines the "horizon", where <Vr, Vr) = g" = 0, i.e. where the function r(t, R) 
becomes light-like. 

Remark. The Einstein equations (16) (after elimination of n = n = - p and 
Tg = e by means of equations (15) with x == tjJ == 0, and a further elimination of 
v, so that they then involve only A, J1. (and their derivatives with respect to t 

and R)) can be obtained alternatively via the following action of "2-
dimensional field theory": 

s= f AdRdt, 

where the Lagrangian A is defined by 

A = A(A, J1., ~, /l, x, J1.') = Tl + T2 + U, 

{ k 1 }(J1.'2 ) T1 = - exp -2- A + (k + 1)J1. 2 + Jl(kA.' + 2kJ1.') , 

{ k - 1 } (/l2 .) T2 =exp --2-A+(1-k)J1. 2+/lA , { k + 1 } U = 2 exp -2 - A + kJ1. , 

where k is constant. On calculating the formal energy-momentum tensor (as 
defined in Part I, §37.2(8» on the 2-dimensional space co-ordinatized by t and 
R, we obtain the following expressions for its components: 

-0 'l'. oA .0A 
To = -/\ + Aar + J1. oil = T2 - Tl - U, 

"1'01 'l' ,,0A ,0A T T U 
J 1 = -/\ + II. OA' + J1. 0J1.' = 1 - 2 - , 

n = ~ :~ + /l ::, = te -A (2/l' + /lJ1.' - ~J1.' - (kA' + 2kJ1.')/l), 

"1'00_ ,,0A +J1.,oA _ T 1 e-(k-l)A-2k/i 
J 1 - II. ar oil - - 0 • 
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It can be shown that the Einstein equations (16) for a spherically symmetric 
body with hydrodynamical energy-momentum tensor, are equivalent to the 
Euler-Lagrange equations oS = 0 arising from the Lagrangian A, subject to 
the constraints fA = f? = O. This avenue of approach (i.e. via the functional 
S) turns out to be convenient for the investigation of solutions independent of 
one or the other of rand R. We note also that if ~:F 0, A' :F 0, iJ. :F 0, J1.' :F 0, 
then the equations n = f? = 0 can be solved, and thence the Einstein 
equations (16) reduced to the first-order system (23); we shall now indicate how 
to carry out this reduction, but via a more direct route. 

From the definition of a(r, R) above, we have 

a = r(l- <Vr, Vr») = r( 1_g00(~: Y _gll(:;Y), 
whence, setting as usual goo = e", gll = -e\ ,2 = ell, we obtain 

Using this together with the Einstein equations (16) (with T~ = T~ = - p, 
rg = B) one verifies by direct calculation the following two equations: 

oa(r, R) 2 or 811:G 
- -pr ---or - or c4 ' 

oa 2 or 811:G 
oR = Br oR 7 

(18) 

(Note that since B is the energy density, the energy of the body when r = ro 
= const. is given by 

1: = 1=to BJlgllg22g331 dR dO dcp = 1=to eA/2411:r2B dR; 

on the other hand in view of the second of the equations (18) the quantity 
defined by 

f 2 f 2 or 
Etotal = t=to 411:Br dr = t=to 411:Br oR dR 

is an integral of the system (18) and turns out to be in fact the Hamiltonian of 
the system determined by the Lagrangian A under the supplementary 
conditions n = f? = 0 (see the above remark). Thus arises the so-called 
"gravitational energy defect": Etotal :F 1:.) 

Consider first the case p == 0 (obtaining for instance in a dust-cloud). It 
follows immediately from the first equation in (18), and the second equation 
of the pair (15) (linking Band p to the metric), that in this case 

a = a(R), goo = const., (19) 
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whence in particular we may assume without loss of generality that goo == 1. It 
follows easily from the first equation in (15) that gll = -1/r4 e2, whence, 
substituting for e from the second equation in (18), we obtain 

__ (r')2 (8nG )2 
gil - (a')2 c4 . 

Hence by definition of a (and invoking gOO == 1), 

1 _ ~ = gOO(;)2 + gll(r')2 = (;)2 _ (a')Z (8nG )-2, (20) 
r c4 

so that finally 

;= ± (21) 

This equation can by means of a single "quadrature" be integrated to yield 
the well-known "Tolman solution", from which we conclude that the dust
like matter will either collapse or expand indefinitely. This conclusion is in 
fact clear from (20) since in the region outside the horizon (i.e. where g' = 
1 - air > 0) we have from (20) that 

;= ±Jg'+lg11 r'21 #0, 

so that, in the absence of singularities of the metric and the energy density 
(0 < e < 00) outside the horizon, the sign of ; cannot change. 

We now turn to the more general case where the state equation has the 
form p = ke, k = const., 0:::;; k :::;; 1. From (15) with x == 1/1 == 0, we obtain 

e - 2/(k + 1) 

g 11 = - --r4-:-- (22) 

The equations (18), together with (20) (modified using (22)), form the system 

.8nG 
d= -pr2r-4-, 

c 

8nG 
a' = er2r'-4-' 

c 

1 - ~ = ;2e2k/(k+ 1) _ r,2 r 4 e2/(k+ 1). 

r 

(23) 

From the last of these equations and the result of eliminating e between the 
first two, we obtain 

r = ± J<l>(r, r', a, a') = ± J(g' + Ir'2 r4 e2/(k+ 1)l)e 2k/(k+ 1) 

a' (24) 
d = - k -; ft, 0 :::;; k :::;; 1. 

r 
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It is clear that, apart from the sign of f, any solution of this system will be 
completely determined by specifying r(O, R) and a(O, R). We see also that the 
same conclusion as in the earlier case p = 0 can be drawn here (and for 
essentially the same reason); namely, that since CI» ~ grr > 0 in the region 
outside the horizon, the sign of f cannot change there; thus if neither the 
metric nor the energy density e (> 0) possesses singularities outside the 
horizon, there will occur either monotonic collapse or expansion of the 
matter. 

Remarks. 1. The last of the equations (23) takes on an especially simple form 
in the case of a state equation of "limiting rigidity" (i.e. when k = 1), namely 

(25) 

2. It is easy to verify that the system of partial differential equations (23) is 
invariant under the group of "scaling transformations" 

r -+ er, a -+ ea, , -+ at, 
(26) 

R -+ PR, e -+ ye, p -+ yp, 

where a2/p 2 = e -8k/(k+ 1), Y = e -2. If one looks for so-called "self-similar" 
solutions, i.e. solutions of(23) invariant under the one-parameter subgroup of 
this group defined by the further relations 

a = ps, e = {JY, 
(1 - s)(1 + k) 

y= 4k 

(where s is the parameter, determining e, a, p, y via these relations and the 
earlier ones), which can be shown to have the form 

r = RYr 1 (A.), 
t 

where A. = R S ' (27) 

then one finds that for the particular value s = (1 - k}/(1 + 3k) of the 
parameter, the system (23) reduces to the following (dynamical) system of 
ordinary differential equations (verify!): 

(28) 



§31. Some Manifolds Arising in the General Theory of Relativity (GTR) 369 

Figure 117 

We remark also that the investigation of stationary solutions (i.e. solutions 
independent of r), and solutions independent of R, also leads to dynamical 
systems. 

We conclude this subsection by listing the conditions generally imposed in 
connexion with the boundary problem (at r = 0) for the system (23). 

(i) It is required that the solutions satisfy the condition r' > 0 (correspond
ing to the requirement that the spherical fibres be ordered appropriately by 
their "radii" r), and a' > 0 (which follows from the first condition r' > 0 and 
the second of the equations (24) together with the general condition e > 0). 

(ii) As the (co-moving) co-ordinate R varies over its domain of variation 
Ro:5: R < Rl (where Rl may be infinite), r is required to vary from 0 to 00 

(0 ~ r < 00) and a from 0 to ao; thus r(Ro, 0) = r(Ro) = aeRo) = aeRo, 0) = 0, 
and r -+ 00, a -+ ao, as R -+ R l . Noting that the system (23) is equivalent to 
the Einstein equations (16) only under the conditions e #- 0, r' #- 0, r #- 0 (and 
of course p = ke), it then follows from the second equation in (23) that 

ao = -4- er2 - dR = Etota • x const. < 00, 
8n:G fR' or 

C Ro oR 
so that as r -+ 00 we must have e -+ 0 in such a way that this integral 
converges. 

(iii) Finally, the requirement that when T = 0 the whole of the material 
body be observable, translates into the condition r(R) = reO, R) > a(R) for 
R> Ro (see Figure 117). 

31.3. Axially Symmetric Solutions 

In this subsection we shall examine the stationary, axially symmetric solution 
of the Einstein equations (1), the "Kerr solution", which describes the 
gravitational field of a "rotating black hole". 
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31.3.1. Definition. A metric gab of signature (+ - - -) on a manifold M4 is 
said to be stationary and axially symmetric if in some local system of co
ordinates it is independent of the "time" t and an "angular" space-like co
ordinate cp, 0 ::;; cp < 2n; or in other words if there is given an action on M4 of 
the abelian group G = IR X ~l leaving the metric invariant, and having the 
further property that the orbits of the subgroup IR x {so} are time-like and the 
orbits of the subgroup {to} x Sl are space-like. 

The Kerr solution of the Einstein equations (1) in empty space (Tab == 0), 
turns out to have the following form (in terms of suitable local co-ordinates 
t, r, (), cp, where cp, t are as in the above definition): 

ds2 = dt2 - [dr2 + 2a sin2 () dr dcp + (r2 + a2) sin 2 () dcp2 

+ p2 d()2 + 2;r (dr + a sin2 () dcp + dt)2} 
(29) 

where m = const. (the mass of the rotating body), p2 = r2 + a2 cos2 (), 

a = const., and we have put c = 1 and G = 1 for simplicity. Note also that, as 
we shall see below, the co-ordinate r may be negative. The local co-ordinates 
r, (), cp (at t = to) are related to Cartesian (i.e. standard) co-ordinates x, y, z on 
the local co-ordinate neighbourhood 1R3 (t = to) by the equations 

x = J r2 + a2 sin () cos ( cp - arctan ~ ) , 

y = Jr2 + a2 sin () sin( cp - arctan ~), 
z = r cos (), 0 ::;; () ::;; n, 0 ::;; cp < 2n. 

(30) 

It follows easily that in terms of the co-ordinates x, y, z, the level surfaces 
r = const., t = to, are oblate spheroids, i.e. ellipsoids which depart from being 
spherical in being flattened in the z-direction. On the other hand each of the 
level surfaces defined by () = ()o, t = to, is a one-sheeted hyperboloid defined 
by 

If we introduce new co-ordinates t*, cp* by defining 

dr 
dt* = dt - 2mr~, 

adr 
dcp* = dcp + A' 

(~ = r2 - 2mr + a2), 

(31) 

(32) 
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then in terms of the co-ordinates t*, r, q>*, (J, the metric (29) takes the form 
(verify this!) 

- 2~r (a sin 2 (J dq>* + dt*)2 + (dt*)2. 
P 

(33) 

(Note that the group G still acts via transformations of the form t*-+ 
t* + const., q>* -+ q>* + const.) It is easily verified that when a = 0 the metric (33) 
reduces to the Schwarzschild metric (see (7», with 2m in the role of the 
constant (which is appropriate since we have taken c = 1, G = 1 for 
simplicity). 

EXERCISE 

Show that in the case m = 0 the metric (33) is equivalent to the Minkowski metric. 

Inverting the matrix (gab) of the metric (33), we find that the non-zero 
components ~b are as follows (with c = 1, G = 1): 

88 1 
-g =2' 

P 

• • 1 ( 2mr) 
- glP lP = A sin2 (J 1 - 7 ' 

•• 4mra 
g'P' = p2A . 

(34) 

As for the Schwarzschild solution, we define the horizon by means of the 
equation g' = 0, which in view of (34) is equivalent to the condition A = 
r2 - 2mr + a2 = 0, i.e. to 

(35) 

We consider now the implications of the two possibilities: (i) a> m (in which 
case the roots r ± are complex); and (ii) a < m (when the roots r ± will both be 
real positive). 

(i) In the case a> m (which may be described as that of "rapid rotation" 
since in fact ma is a measure, in some sense, of the angular momentum), A is 
positive for all real r, so that there is no horizon (g' < 0). From the first 
equation in (34) we see that gOo> O. The metric (33) is defined (and has non
vanishing determinant) everywhere except where p = 0, i.e. both r = 0 and 
cos (J = 0; in view of the fact that these singularities are observable from the 
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outside (i.e. from the region ° < r < (0), they are called "naked singularities". 
In terms of the co-ordinates x, y, z defined by (30), they are given by 

z=o, t* arbitrary. (36) 

The equation g"""" = 0 is, by (34), equivalent to 

r2 - 2mr + a2 cos2 (J = 0 or r = m ± Jm2 - a2 cos2 0; (37) 

this equation defines the "ergosphere", inside which (i.e. at those points 
satisfying r2 - 2mr + a2 cos2 0 < 0) we have g"""" > 0, so that the co-ordinate 
cp* is time-like there (see Definition 31.1.1), while outside the ergosphere it is 
of course space-like. It is an easy calculation to verify that the region defined 
by 

. 2 2 2 mra sm ( 2 2'2(J) 
g",.",. = - sm (J r + a + p2 > ° (38) 

is contained within the ergosphere so that those of the curves t* = const., 
r = const., (J = const., cp* variable (which from (30) we see to be closed) 
contained in the region (38), will be time-like. If on such a curve the constant 
value of (J satisfies cos (J = ° (i.e. if (J = n/2), then the (constant) value ro ( < 0) 
of r on the curve must satisfy r~ < rna; this follows easily from (38). 

(ii) In the case a < m, the region (which we label I) of the external observer 
is given by 

(I) r > m + J m2 - a2 = r + , (39) 

and we also have regions II and III given respectively by 

(II) (40) 

where r is time-like, and 

(III) (41) 

where r is again space-like. By the first equation in (34), as r -+ r + from within 
the region I, we have gOO -+ 00, so that an external observer's time t* pertains 
only to that region. Of course by definition of r ± (see (35)), the co-ordinate r is 
light-like on the horizon r = r ±. Since r ± > 0 the singularities of the metric 
(which as noted above occur at the points r = 0, cos (J = 0, t*, cp* arbitrary) all 
lie in the region III. In that region the curves defined by r = ro < 0, (J = const., 
t* = const., cp* variable, are closed and time-like (verify this!). 

The construction in this case of the full manifold M4, by pasting together 
regions of types I, II and III, can be carried out in a manner modelled on the 
Kruskal manifold (see (11) and Figure 115). Thus to a region of type I "at" 
r -+ r +, can be joined two regions of type II (a "white hole" at t -+ - 00, and a 
"black hole" at t -+ + 00; cf. the Schwarzschild-Kruskal manifold as depicted 
in Figure 115). Similarly, to a region of type II we can join up (i) two regions of 
type III at r -+ r _ , and (ii) two regions of type I at r -+ r + . Finally, to a region 
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Local co-ordinate systems 
v,., W. are defined on the 
interiors of the (subdivided) 
"squares": 

~Region v,. 
WOf type I-II 

Vz 

~ Region W. ~ 
JIll of type II-III Z 

V, 

w., 

JI 
Region of type I ,.-*,..,.+ 
(indicating schematically ,..,.+ 
level surfaces r = const.) "-00 ll"·"+ 

,.-,.-
~

1Il 
Region of type II ,..,.- ,. .. ,.-
(level surfaces of r) ,.-,.+ ,.&,.+ 

I I 
"."+ 

(a) II ,.- -*,.=,.-"-"-"--00 ,.-,._ 
Region of type III 11 
(level surfaces of r) (b)~,. __ co 

,.-,.-
I ".-00 

Figure 118 

of type III we can join on two regions of type II at r -+ r _. (The permitted 
conjunctions are indicated schematically on the right in Figure 118.) 

On each of the resulting composite regions of types I-II and II-III (as on 
the left in Figure 118), there will then be defined co-ordinates analogous to 
the Kruskal co-ordinates (see Figure 115). Although the requisite analysis is 
more difficult, it can be shown that these composite regions can also be 
pasted together, as shown schematically in the centre of Figure 118. Suitable 
iteration of such pastings yields a manifold M4 with an obvious isometry B 
sending Y,. to Y,. + 1 and w" to w" + 1 , n = 0, ± 1, ... , and we can obtain thence 
a manifold M4 by means of the usual identification of the points of M4 under 
the action of the isometry B: 

M 4 =M4/B. 

The following is a list of the possible transitions or passages from one type of 
region to another in M4 along future-directed, time-like world-lines. (Here we 
use for instance "region (Y,., I)" to mean "some region of type I in the 'square' 
co-ordinatized by the system y"", with reference to the diagram in the centre 
of Figure 118; and we use ~ to denote identification under B. 

region (Y,., I) -+ region (w,,+ 1, II) ~ region (Y,., II); 

region (w", II) -+ region (Y,., I); 

region (w", III) -+ region (w", II) = region (Y,., II). 
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One readily draws the interesting conclusion that in the non-simply
connected manifold !Vi4 there are closed, time-like world-lines beginning and 
ending in a region I of an external observer. 

Remark. Both the Schwarzschild solution and case (ii) of the Kerr solution 
have the property that on and outside the horizon in M4 the metric is non
singular, i.e. there are no directly observable "naked" singularities, as they 
say. There exist theorems establishing the uniqueness of these metrics within 
certain classes of solutions of Einstein's equations Rab = 0, with this property. 
Thus the Schwarzschild metric is unique among the stationary metrics which 
in terms of suitable co-ordinates x, y, z, t satisfy gOa = 0, IX = 1,2,3, are 
asymptotically trivial as r -+ 00, and have non-singular horizon-surface in the 
(x, y, z)-hypersurface, outside which they are defined. On the other hand, case 
(ii) of the Kerr metric is the only solution among the stationary ones with 
(goa) 'I' 0, which is non-singular outside the horizon. (We omit the proofs of 
these results.) 

There is a well-known hypothesis to the effect that in the region of an 
external observer around any collapsing mass of finite size, as the time t -+ 00 

the metric will assume asymptotically the form of either the Schwarzschild 
metric or the Kerr metric (assuming that initially (at t = 0) the metric has no 
singularity). 

31.4. Cosmological Models 

Another type of problem of GTR is concerned with the construction and 
investigation of evolutionary models which might afford definite ideas of the 
manner of evolution of the global metric of the universe as a whole. Such 4-
dimensional manifolds M4 (with metric gab of signature (+ - - -)) are 
called cosmological models. In view of the difficulties arising from the 
impossibility of formulating universal boundary conditions for the Einstein 
equations for such a manifold, we shall restrict ourselves to the so-called 
homogeneous cosmological models, where it is assumed that at each moment 
of time the metric is in a certain sense the same at each point of space. We 
make this more precise in the following. 

31.4.1. Definition. A 4-dimensional manifold M4 endowed with a metric gab 
satisfying Einstein's equation (1) is called a homogeneous cosmological model if 
there is also given a group G of isometries whose orbits are all 3-dimensional 
and space-like. 

Throughout the remainder of this section we shall choose our local co
ordinates xo, Xl, x 2 , x 3 so that the Xl_, x 2_, and x3-axes (or, more precisely, 
the curves X O = const., x 2 = const., x 3 = const., Xl variable, etc.) are at each 
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point tangential to the orbit of G through that point (so that the co-ordinates 
Xl, x 2 , x3 might then be appropriately termed "spatial"), and the xO-axis, or 
"time" axis (more precisely each curve of the form Xl = const., x2 = const., x 3 

= const., X O variable) is transverse to the orbits of G. If in addition the 
conditions that goo == 1 and that the time co-ordinate X O = ct be actually 
orthogonal to the orbits, are satisfied, we call the co-ordinate system 
synchronous. Our investigation of homogeneous models will largely be 
carried out in terms of synchronous co-ordinate frames. Note that since the 
orbits of the (Lie) group G are required to be 3-dimensional, it is clear that in 
the most general homogeneous models that group will have dimension 3 (i.e. 
G cannot have dimension < 3). 

The totality of G-orbits (as points), i.e. the orbit-space, becomes, via the 
natural identification map p, a one-dimensional manifold N I (which might be 
called the "global time-axis") forming the base of the fibre bundle with 
projection map 

p: M4 ..... N I 

sending each point of M4 to its orbit; thus the fibres p -1(tO) are the orbits. 
The local choice of a time axis, for instance one yielding a synchronous local 
frame, determines a connexion on the fibre bundle; the corresponding 
curvature will however be zero in view of the one-dimensionality of the base 
N I (see §§24.2, 25.3). In the case that G is 3-dimensional it is convenient to 
represent the metric on M4 by means of a "tetrad", i.e. a quadruple of 
(pointwise linearly independent) left-invariant vector fields X 0, X I' X 2, X 3 

on M4 (i.e. invariant under the map of tangent spaces induced by the (left) 
action of G on M 4 , and not to be confused with left-invariant fields on G as 
defined in Part I, §24.3), with X 0 transverse to, and X I, X 2, X 3 tangential to, 
the orbits of G, and with pairwise commutators satisfying 

(42) 

where the coefficients c~p are the structural constants of the Lie algebra of G 
(independent of the time). (The classification of the 3-dimensional Lie 
algebras was given in Part I, §24.5.) It is intuitive that such a tetrad exists. We 
shall usually impose the further conditions (analogous to those defining a 
synchronous co-ordinate frame) that the field X 0 be orthogonal to the orbits, 
and that <X 0, X 0> == 1; in this case the local synchronous co-ordinate system 
may clearly be chosen with the respective axes directed along the vector fields, 
and suitably scaled so that the components of the metric are given by: 

goo = 1, gOa = 0 for IX = 1,2, 3. (43) 

Note that in view of the homogeneity of the model the components gap(t) 
depend only on the time t (whose axis is by the above directed along the 
vector field X 0)' 

In terms of a synchronous local co-ordinate frame the Einstein equations 
(1), with, as is appropriate in the present context, the hydrodynamical energy-
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momentum tensor T"b = (p + e)UaUb - pgab, take the form of a system of 
second-order ordinary differential equations in the components gIlP(t), of 
which there are at most 6 distinct in view of the symmetry (gllP = gPIl)' We can 
eliminate u, e and p from these equations (much as earlier) by means of the 
conservation law and the other natural conditions: 

(U, u) = 1, p = pee). (44) 

(In fact, as in the latter part of §31.2 we shall take p = ke, 0 :s;; k :s;; 1, the cases p 
= 0 (see §31.2) and p = e/3, in both of which we have T: = 0, being of 
particular interest.) This done we end up with a dynamical system on the 
phase space of dimension 12 co-ordinatized by gIlP(t), gIlP(t), or rather on that 
region of it determined by the following two conditions: 

(i) gllP ~1l~P < 0 for every non-zero 3-vector ~ (i.e. tangent vector to an orbit). 
(This is the condition that the orbits under G be space-like.) 

(ii) e(gIlP' gllP) ~ 0 (the condition that the energy density be non-negative). 

We call this region the "physical region" of the phase space 1R12 co
ordinatized by the gllP' gllP' and denote it by S. Thus in the context of a 
homogeneous cosmological model, Einstein's equations reduce to a dynam
ical system on the physical region S of the phase space 1R12. Each integral 
trajectory of the system represents a possible metric gIlP(t), or in other words a 
possible homogeneous cosmological model of the Einsteinian manifold M4 
with the prescribed 3-dimensional group G of isometries. 

Of particular interest among these solutions gIlP(t), i.e. among the collec
tion of (general) homogeneous models, are those for which there is a properly 
larger group of isometries of M4 having the same orbits as G. For each 
solution gIlP(t) we denote by G (~G) the largest group of isometries of M4 
having the same orbits as G. Since the (Lie) group G acts transitively as a 
group of isometries of each orbit M 3(t), the latter can be represented as the 
homogeneous space (see §5.l) 

(45) 

where H is the stabilizer of a point of the orbit. The assumed 3-dimensionality 
of the (Lie) group G (and of the orbits) clearly implies that the intersection 
G n H is discrete (i.e. zero-dimensional); in fact we have (essentially from (45)) 
that 

dim G = 3 + dim H. 

Remark. It is theoretically possible for a homogeneous model to possess a 
group G of isometries of dimension > 3 with 3-dimensional space-like orbits, 
yet having no 3-dimensional subgroup G with the same orbits; we shall not 
pursue this, however. (In the general case, involving the largest number of 
parameters, and embracing the most interesting examples, such groups G do 
in fact turn out to contain such 3-dimensional subgroups G.) 
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EXERCISE 

Investigate the subgroups of the isometry group of a 3-dimensional (Riemannian) 
manifold which do not contain 3-dimensional transitive subgroups. 

If dim G> 3 then for each fixed t the corresponding metrics g.p(t) on the 
homogeneous space (or orbit) M 3(t) will form a proper subset of the set of all 
Einsteinian metrics gap(t) corresponding to the given group G, since the 
action of the (non-discrete) group H < G, fixing a point of M 3(t), entails 
additional restrictions on the metric gap(t), and also on g.p(t). If we regard H 
as acting on the tangent space 1R3 to M3(t) at the fixed point, then it follows 
from the condition g.p(a(P < 0 (see (i) above) that H =:; SO(3). Since (as is not 
difficult to see) the only (non-trivial) proper Lie subgroups of SO(3) are all 
isomorphic to SO(2), there can arise only the two situations 

H ~ SO(3) (complete isotropy), 

H ~ SO(2) (axial isotropy in planes), 

in the first of which the group G wi\1 have dimension 6, and in the second 
dimension 4. We shall now examine in more detail the first of these situations. 

31.5. Friedman's Models 

The investigation of homogeneous and isotropic cosmological models 
("Friedman's models"), where the group G defined above has dimension 6 
(the case of full isotropy), presents no special difficulty, and yet is of 
fundamental significance for relativistic cosmology. Astronomical observ
ations show that at the present stage of evolution of the universe the 
distribution of matter throughout the universe is such as to make it "on the 
average" homogeneous and isotropic, if the averaging is carried out over 
sufficiently large distances which are at the same time negligible in com
parison with the "metagalactic", i.e. with that part of the universe observable 
at present. (The present size of the metagalactic is of the order of 1028 cm; as 
far as the isotropy of the distribution of matter is concerned it is appropriate 
to average over distances of the order of the size of galactic clusters, i.e. from 
1025 to 1026 cm. We remark that investigation of the residual background 
radiation, whose energy density in the early stages of the evolution of the 
universe must have exceeded the density of matter, has so far revealed no 
anisotropy.) 

It can be shown that there are only three homogeneous, isotropic, simply
connected, 3-dimensional Riemannian manifolds M3 with isometry group G 
of dimension 6, namely the 3-sphere S3, Euclidean space 1R 3 , and 3-
dimensional Lobachevskian space U. (The 2-dimensional analogues S2 and 
L 2 were considered in Part I, §§9, 10.) The metrics of these three spaces maybe 
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written respectively as follows: 

{
dX2 + sin 2 X d02 (S3), 

dI 2(t) = a2(t) dl6 = a2 dX2 + X2 d02 (1R3), 

dX2 + sinh2 X d0 2 (C), 

(46) 

(d0 2 = d02 + sin2 () dq(2), 

where a2 is the scaling or averaging factor. (Note that d0 2 is the usual metric 
on the unit sphere S2.) Hence in terms of a synchronous co-ordinate system 
the metric on the corresponding manifold M4 has the form 

ds2 = c2 dt 2 - dF(t) = (dXO)2 - a2(t) d/6, 

where dl6 is given by one or another of the formulae in (46). If we change to a 
new time co-ordinate I] defined by 

edt = a dl], (47) 

then the metric on M4 becomes 

(48) 

(Note incidentally that the metric of our homogeneous, isotropic model is 
thus "conformally flat" (i.e. conformally equivalent to the Minkowski metric; 
see Part I, §15). It is also clear from (48) that the metric has a singularity at 
a=O.) 

From the general formula for the components Rab given in Part I, §39.3(30), 
applied to the metric (48), one finds (after some calculation and invoking the 
homogeneity assumption) that the Einstein equations reduce to the single 
equation 

RO lR _ 8nG TO 
0-2 -7 o· (49) 

Since a non-zero spatial velocity at any point would contravene the 
prevailing assumption of complete isotropy at each time t, it follows that the 
4-velocity must be trivial, i.e. u == (1, 0, 0, 0) (in terms of the old time
co-ordinate XO), whence T8 = t:. The conservation law Va Ti, = 0 yields in the 
present context 

f dE 
3 In a = - -- + const. 

P+E 
(50) 

Knowledge of the state equation P = p(t:) together with (50) then allows T8 = E 

to be eliminated from equation (49), which can then be completely solved for 
the function a(t) (or rather for the functions a(I]) and t(I])) determining (via 
(48)) the metric ds2• We now carry out this solution explicitly in the case p = 0 
for each of the three possibilities S3, L 3, 1R3 in turn. (Note that if p = 0 then 
t: = J.1.C2 where J.1. is the mass density, and it follows from (50) that Ea3 =const., 
so that M = J.1.a 3 is an integral of the equation (49).) 
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(a) For the sphere S3, calculation (using the formula for Rab given in Part I, 
§39.3(30)) yields 

6 
R = - 3(a + a"), 

a 
Rg = 34 (a'2 - aa"), 

a 

where the prime denotes differentiation with respect to r,. Hence the Einstein 
equation (49) (with Tg = 6) becomes in this case 

8nG 3 
-6 = _(a'2 + a2). (51) 

c4 a4 

Assuming p = 0, it follows, as noted above, that 6a3 = const., whence (as is 
easily verified) we obtain the solution 

a = ao(l- cos r,), 

From this and (47) we then obtain 

ao = const. 

ao ( .) t=- r,-smr,. 
c 

(52) 

(53) 

We shall now examine the behaviour of the mass density Jl. for small t (or r,). 
From (51) and (52) we have 

while from (53) (and the Taylor series for the sine function) we obtain 
t'" aor,3/6c. Since, similarly, (1 - cos r,)3 '" r,6/8, we deduce that 

t- 2 

Jl. '" 6nG as t -+ o. (54) 

(b) For Lobachevskian 3-space L 3 , the Einstein equation (49) can be 
shown, by means of the analogous calculations of Rg and R, to take the form 

8nG 6 = ~(a'2 _ a2), 
c4 a4 

whence we obtain (in the case p = 0) 

a = ao(cosh r, - 1), t = ao (sinh r, - r,), 
c 

ao = const., 

and we find that the mass density Jl. has the same asymptotic behaviour as 
before: Jl. '" t - 2/6nG as t -+ o. 

(c) If the orbits are Euclidean (i.e. 1R3) then the Einstein equation (49) 
(together with the usual condition (50)) gives 
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Figure 119 

whence 

a = const. x t 2/ 3• 

The asymptotic behaviour of J1. as t -+ 0 is then easily verified to be essentially 
as in the previous two cases; in fact 

The graph of a as a function of t is given in this and the other two cases in 
Figure 119. (Note that in all three cases the transformation '1 -+ - '1, t -+ - t 
preserves the solution.) 

Remark. It is assumed that as 8 -+ 00 (i.e. for small t) the state equation p = 8/3 
is the appropriate one (rather than p = 0); the analogous formulae for this 
case can be obtained in a manner similar to the above, one difference being 
that the condition (50) yields ea4 = const. (rather than ea3 = const.). 

It is immediate from (48) that in our homogeneous isotropic model the 
paths of light rays satisfying e = const., cp = const., will be given by 

X = ± '1 + const. (cp = const., e = const.). (55) 

Since the metric is not stationary, the frequency ro of a (monochromatic) light 
ray will not be an integral of the Einstein equation, i.e. will not be constant; it 
turns out that along a light ray we shall have rather roa = const., as the 
following exercise shows. 

EXERCISE 

Consider Maxwell's equations as/aA. = 0 with respect to a metric of the form (48), 
where a(,,) is arbitrary. (Here S is as in the last exercise of §39.4 of Part I, and A = (A 0) 
is the 4-potential (cf. Part I, §37.3).) Find (complex) solutions of the form 

A(x, t) = ei""A(x), 

and show that wa = const. 

(cdt = ad,,), 
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Thus if (1)0 is the frequency of the light ray at the instant Yfo = Yf - X of its 
emission, then at the (present) time Yf we shaH have 

a(Yf - X) 
(1) = (1)0 a(Yf) . (56) 

Astronomical observations show that the universe is expanding. The 
quantity 

H = c d(Yf) = d In a 
a2 dt' 

(57) 

known as the "Hubble constant" is directly observable; its reciprocal H-l, 
which has the dimensions of time, has the present-day estimate 

H ~ 13 X 109 years ±25%. 

From (57) and the solutions obtained above under the assumption p = 0 in 
each of the cases S3, 1R 3, L3, it follows easily that 

S 3 ao ( .) 1 () 1 sin Yf(Yf - sin Yf) 
: t = - Yf - sm Yf = - g Yf = - , 

c H H (1 - cos Yf)2 

1R3: t=iH-l, (58) 

3 ao ( . h ) 1 f() 1 sinh Yf(sinh Yf - Yf) L : t = - sm Yf - Yf = - Yf = - ---,,--..,.----:-:-c.-----
C H H (cosh Yf - 1)2 

Since it can be shown that 0 < g(Yf) < i for 0 < Yf < 271: (at the endpoints of 
which interval a = 0), and i <f(Yf) < 1 for aH Yf, we conclude that: 

In the isotropic Friedman model of the universe (with p = 0) the time interval 
from the instant to when a = 0, till the present, does not exceed the present value 
of H- 1. 

EXERCISES 

1. Show that for the state equation p = £/3, this estimate of the age of the universe is 
still essentially valid (within the given framework of assumptions). 

2. Verify (directly from the various forms taken by the Einstein equation in the above 
three cases, together with the definition (57) of H) that, assuming p = 0, the 
possibilities 

correspond respectively to orbits S3, 1R 3 , L3. 

31.6. Anisotropic Vacuum Models 

There naturally arises the question of the extent to which the most important 
of the conclusions obtained in the preceding subsection in the context of 
homogeneous and isotropic models, remain valid for more general models. 
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Various classes of "perturbations" of the isotropic models have been studied 
with just this question in mind. The only class of "large" perturbations of the 
isotropic models which has been thoroughly investigated up till now is that 
consisting of the general (non-isotropic) models; the two most important 
questions posed in connexion with this class are the following: 

(i) Does there always exist a singularity, or is this specific to the isotropic 
models? 

(ii) Is it possible to find sufficiently general initial conditions guaranteeing 
that the metric, as it evolves, will in some sense "isotropify" into its 
currently observed isotropic state? 

Concerning the first of these questions, it is not difficult to establish the 
following fact: Write g(t) = det(glZ/l(t» (IX, fJ = 1,2, 3), where gab is a metric of 
signature (+ - - -), in terms of synchronous local co-ordinates X O = ct, 
Xl, x 2, x 3 on any homogeneous model M4, so that in particular since goo = 1, 

golZ = 0, the volume element on M4 is given by du = r-g d4 x; it then follows 
from the Einstein equations (1) together with the condition that the energy 
density be non-negative (i.e. Tg ~ 0) that there is a value to of the time co
ordinate such that g(to) = O. However, this does not necessarily imply that the 
metric gab on M4 has a corresponding singularity, as we shall now see. 

The above synchronous frame X O = ct, Xl, x 2, x 3 has the property that the 
time axis is orthogonal to the "spatial hypersurfaces", each of which is an 
orbit under the given group G. We may instead choose a new "time" co
ordinate XO transverse, but not orthogonal, to the orbits, with respect to 
which the metric takes the form 

gab = (~:: ~:: ~~2 ~~3), 
o g21 g22 g23 

o g31 g32 gn 

(59) 

where goo == 0, gOl "# O. We can describe in greater detail how to make this 
choice appropriately, in terms of the corresponding new left-invariant vector 
fields X a satisfying the relations (42); if the integral curves of the field X 0 are 
for instance null geodesics (i.e. light geodesics), then we shall have goo == 0, 
and by choosing X 2 and X 3 orthogonal to X 0 and scaling X 1 appropriately, 
we can arrange that <X 0, Xl> = gOl = const. "# 0, g02 == g03 == O. If at t = to 
we then have g 11 = g 12 = g 13 = 0, the restriction of the metric to the orbit 
M3(tO) will be singular, and on reverting to a synchronous frame the metric 
(gab) will change to one with zero determinant at to, even though det(gab) "# 0. 
Points where this phenomenon occurs are called fictional (or removable or co
ordinate) singularities since they are accidents of a particular co-ordinate 
system. (Cf. the Schwarzschild as against the Kruskal co-ordinates in §31.2.) 
Fictional singularities may arise even in axially symmetric perturbations of 
the isotropic models. 
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The anisotropic homogeneous case differs from that of full isotropy in 
having several (as opposed to essentially just one) non-trivial "vacuum" 
solutions, i.e. under the assumption e = O. We shall no~ consider the simplest 
of these. 

(a) Kasner's solution. Here G = 1R 3, which has commutative Lie algebra 
(of type I in the classification given in Part I, §24.5, of the 3-dimensional Lie 
algebras). Thus the fields X Q (forming a "tetrad"-see §31.4) directed 
"parallel" to the respective co-ordinate xQ-axes, commute. The metric has the 
following form (putting c = 1 for simplicity): 

3 

ds2 = dt 2 - L t2P·(dxll )2. (60) 
11= 1 

For a metric of this form the following two conditions turn out to be 
equivalent to Einstein's equation Rob = 0 in empty space: 

3 3 

Rob = O<=> L PII= 1, L P~ = 1. 
11= 1 11=1 

EXERCISE 

Show that in the case PI == P2 == 0, P3 == 1, the Kasner metric (60) transforms under a 
suitable co-ordinate change into the Minkowski metric (whence it follows that the 
singularity t = 0 is fictitious). How does the group G = 1R3 act in terms of the 
Minkowski coordinates? 

(b) The Taub-Misner solution. Here G = SU(2) (which has Lie algebra of 
type IX in the classification given in Part I, §24.S). It is assumed that with 
respect to some synchronous local co-ordinate system the matrix gIlP(t) is 
diagonal: gllP = q~oIlP' The Taub solution is then determined by the following 
two conditions: 

(i) qf = q~ (this is the condition of axial isotropy; thus the full group G of 
isometries is isomorphic to SU(2) x SO(2), and so is 4-dimensional). 

(ii) e = O. 

Under these conditions the Einstein equations Rob = 0 are exactly integrable; 
in terms of our synchronous co-ordinate system the solution turns out to 
have the form (writing a = qf, b = qn 

2 2q c - ------'----:--
- cosh(2qr + <>1) , 

dr 1 
dt = abc' 

(61) 

where q, <>1' <>2 are constants. 
For the space-like orbits M3(t) we have M3(t) ~ S3 ~ SU(2). From (61) it is 

not difficult to see that as t --+ 0, we have r --+ - 00, whence c --+ 0; thus in one 
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particular direction distances contract to zero as t -+ O. Hence in terms of our 
synchronous frame we obtain a corresponding projection map 

(t -+ 0), 

with fibre SI; this is just the Hopf fibre bundle over S2 (see §24.3). It would 
appear, therefore, that the sphere M3(0) is singular in our Einsteinian 
manifold; however it is only fictitiously so since there is a pair of co-ordinate 
frames, with corresponding tetrads of fields X:- satisfying (42), in terms of 
which the metric is non-singular at t = 0, having the form 

( 
0 ±1 0 0 ) 

:;i±) _ ± 1 gW 0 0 _ - ± - ± 
(gab) - 0 0 gW 0 - «Xa , Xb »), 

o 0 0 gW (62) 

1 
g-<±) -g-<±) - Bt 2 +-

22 - 33 - 4B' 

This is what is known as the Taub-Misner metric (or alternatively the 
Taub-NUT metric, for Newman, Unti and Tamburino). 

EXERCISES 

1. Show that the regions t> 0 of the Einsteinian manifolds endowed respectively with 
the metrics (61) and (62), are isometric. 

2. Find the matrix A(t) transforming the tetrad (X:) into (X,;-). 

3. Show that on the orbit M3(0);;;;; SU(2) (i.e. that corresponding to t = 0) the integral 
curves of each of the fields X r are closed, light-like curves. Show that the curves 
"parallel" to the former synchronous time co-ordinate XO = ct (i.e. those defined by 
Xl, x 2 , x 3 = const.) wind themselves as t! 0 (i.e. from within the region t > 0) onto 
these closed light-like curves, as onto limit cycles (thus constituting topologically 
infinite curves of finite length, revealing a kind of "incompleteness" of the indefinite 
metric). 

Remark. The Taub-Misner metrics g1i" which are both analytic continu
ations ofthe Taub metric (expressed in (61) in terms of a synchronous time co
ordinate t) beyond the region t > 0, have the interesting property that the 
change of co-ordinates in the region t > 0 transformingg:" into g;;i" can not be 
continued analytically throughout the whole manifold. In fact, the metrics g:" 
and gab are not (analytically) equivalent on the whole of M4 in view of the fact 
that there is only one isometry between them on the region t > 0, while the 
matrix A(t) of the change from the tetrad (X a+) to (Xa-) is not analytic at t = O. 
We conclude from this that the Taub metric has essentially distinct analytic 
continuations beyond the fictionally singular surface M 3 (0). 

The property of the Taub-Misner metric described in Exercise 3 above 
should not really cause any great surprise. To see why, consider the simple 
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Figure 120. The (u, v)-cylinder, showing a curve x = In u_ + v_ = const. 

example of a metric on a 2-dimensional manifold with co-ordinates x, r, given 
in the region r > 0 by 

(63) 

This metric admits the group G of transformations of the form x -+ x + Xo; if 
we assume the co-ordinate x to be "cyclic", i.e. if we identify x with x + 2n, 
then G = SO(2). In these, obviously synchronous, co-ordinates the metric is 
apparently singular when r = O. However the following two co-ordinate 
changes enable us to extend the metric beyond the region r > 0 in two ways: 

r = 2y'i4, 

r=2F, 

In terms of these new co-ordinate systems the metric takes the form 

ds~ = ±2du± dv± - u±(dV±)2, 

so that the corresponding matrices g~t) are given by 

~(+)_ (0 1) ~(_)_ ( 0 
gab - 1 _ u +' gab - - 1 

-1 ). 
-u_ 

Confining our attention for the moment to the metrics ds~ as given here in 
terms of the co-ordinates u±, v± (and ignoring their source in (63)), we take 
the co-ordinates v± to be cyclic and allow u± to take all real values. It is then 
easy to see that in the respective co-ordinate systems the curves u ± = 0 are 
limit cycles for the curve x = const. "parallel" to the synchronous r-axis and 
orthogonal to the orbits of the group G = SO(2) (see Figure 120). 

Note that in this example the co-ordinate change u + = u _, v + = - v_ 
transforms g~t) to g~;;); there is however no correspondingly simple change in 
the case of the Taub-Misner solution. 

31.7. More General Models 

In the situation of non-empty space (8 =I: 0) there are known several other, 
more complex, homogeneous models also possessing fictional singularities, 
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beyond which they extend to regions where the orbits are no longer space
like (and where the behaviour of the solutions can be exceedingly complex). 
Among these models the most interesting are those whose (3-dimensional) 
groups G have Lie algebras of types I, V, VII or IX in the classification given 
in Part I, §24.5; the defining relations of these Lie algebras are as follows: 

1R3(typeI): [Xa,Xp] =0; 

95 (type V): [X I ,X2]=X2 , [X 2 ,X3] =0, [X3,X 1]= -X3; 

97 (type VII): [Xl' X 2 ] = aX2 + X 3, [X2 , X 3] = 0, 
[X 3,X1]=X2 -aX3; 

99 (type IX): [X 1,X2]=X3, [X 2,X3]=X 1 , [X 3,X1]=X2 · 

These models are of primary interest among the general homogeneous 
models because they include the isotropic Friedman models (see §31.5) as 
special cases, and also because the idea of the universe "isotropifying" as it 
expands can be given precise meaning for them. The simplest example of the 
latter kind of solution, affording in a particular case a "naive" solution to the 
"isotropification" problem, is the Heckmann-Schiicking solution (having 
associated Lie algebra of type I): 

3 
ds 2 = dt2 - L CJ2pj(t + to)(4/3) - 2pj dx?, 

i= I 

Ci>O, 

(64) 

where the Ci and Pi are constants. It is clear that as t - 00 this solution is 
asymptotic to the isotropic Friedman solution with orbits 1R3 (see §31.5(c)), 
and is asymptotic as t - 0 to the Kasner solution (§31.6(a)). 

For Friedman's isotropic models the Lie algebras of the full groups of 
isometries have the following form: 

orbitS3;G =G~; [Xi,X j] = BijkXk, [li, Y;J =Bijkl"k, [Xi' lj]=O; 

orbit 1R3; G = G8; [Xi' Xj] = BijkXk' [Xi' Y;J = Bijk Yk> [li, lj] = 0; 

orbit L3; G = G~; Lie algebra isomorphic to sl(2, C). 

In these Lie algebras one can find subalgebras of dimension 3 of types I, V, 
VII and IX which are the Lie algebras of Lie subgroups of dimension 3 acting 
transitively on each orbit (S3, 1R3 or L3); for instance, the Lie subalgebra 
generated by YI , Y2 , Y3 in the second of the above three cases (i.e. with orbits 
1R 3) is a type I Lie algebra of this sort. Thus as noted above, Friedman's 
isotropic models are indeed particular cases of the general homogeneous 
models with associated Lie algebras of types I, V, VII and IX, and 
consequently these latter models are useful for investigating homogeneous 
perturbations of the isotropic models. (Note incidentally that, as represented 
by their sets of structural constants, the Lie algebras of types I and V are 
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"limiting" for those of types VII and IX. (Thus for instance for each a -# 0 the 
Lie algebra defined by [X 1, X 2] = aX 3, [X 2, X 3] = aX 1, [X 3, XI] = aX 2, 

is easily seen to be of type IX; on letting a become zero however we obtain a 
type I Lie algebra.)) 

It turns out that fictional singularities are not a typical feature of models of 
types I, VII or IX (nor, in all likelihood, of those of type V), and can be made 
disappear by means of small perturbations. From these homogeneous models 
there arises a whole series of non-trivial asymptotic solutions (as t -+ 0), the 
most complex of which is the so-called "oscillatory regime" discovered 
relatively recently; although this particular theme has been intensively 
developed over the past 10 years, we shall not consider here the most recent 
questions concerning "oscillatory regimes", nor the associated problem of 
reformulating the theory of Einstein's equations as a qualitative theory of 
dynamical systems.t 

For the model of type IX (with group G ~ SU(2)), if the matter is assumed 
to be at rest "on the average", so that we may take u = (1, 0, 0, 0), then, as 
noted earlier, by choosing a suitable synchronous local co-ordinate system 
the metric may be assumed to be at all times diagonal (with goo == 1); thus we 
seek the metric in the form 

IX, P = 1,2, 3. 

If we further suppose P = ke, where k is a constant between 0 and 1, then in 
terms of a new time co-ordinate t, satisfying qkdt = dt (where q = ql q2q3), 
and appropriately defined Pa.' IX = 1,2,3, (not related to the pressure p!) the 
Einstein equations take the Hamiltonian form Pa. = - oH/opa., 4a. = oH/opa., 

_ 1 2 2 2 
H- 4( )1 k(P2(Plql,P2q2' P3q3)+ P2(Ql, Q2' q3)), (65) 

Ql q2Q3 

where the Pi are defined by Pi = (d/dt)(qjq,) = q-k(d/dt)(qjq,), i,j, I all distinct, 
and P2 (x, y, z) is the quadratic expression 

P2(x, y, z) = 2(xy + yz + zx) - (x2 + y2 + z2). 

(We invite the reader to verify this!) 

Remark. The analogous solution corresponding to the Lie algebra of type I 
also reduces after diagonalization to a Hamiltonian system, with Hamil
tonian of the form 

1 
HI = k P2(PI Ql' P2q2' P3Q3)' 

4(Ql Q2 Q3)1 

t Throughout the 1970's, the early stages in the evolution of homogeneous models of the 
universe were studied using the methods of the modern qualitative theory of multi-dimensional 
dynamical systems; these investigations have made possible a precise formulation and solution of 
the problem of the "typical initial states" of the metric in relation to the expansion process, and 
furnished us with an answer (within the framework of the theory of homogeneous models) to the 
question as to what they can be in fact. (See the discussion below, concluding §31.) 
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Returning to our type IX solution, we note that the usual conditions 
(conservation of energy-momentum, non-negativity of energy density) yield 
the constraints 

(66) 

It is therefore natural to take as the "physical region" S c 1R6(p~, q~) of phase 
space, that defined by the conditions 

q~ > 0, H(p~, q~) ~ O. (67) 

For arbitrary k (0 ~ k ~ 1) it follows easily from the Hamiltonian equation 
q~ = oH/oPa and the definition (65) of H, that 

(68) 

where q is (as above) the volume element: q=J=i=q1q2q3' It can be 
shown using this (in particular), that if to is such that 4(to) < 0 then q(t) < 0 for 
all t> to, and also that (d 2/dt 2)(q1/3) < O. 

EXERCISE 

Establish the following equations: 

d2 

d-r: 2 (ql/3) = - R8ql/3/3; Rg = Tg -! T: = e + 3p/2 (assuming u = (1, 0, 0, 0)). 

Hence if we let the time vary in the direction of contraction (which 
happens to be the positive direction for this time co-ordinate) we shall 
inevitably reach a time t1 at which q(td = 0 (where the metric will thus be 
either singular or at least fictionally singular). We shall now examine this 
situation in detail under the additional condition of axial isotropy q2 = q3' 
P2 = P3 (i.e. on the phase surface defined by these equations). We first reverse 
the direction of flow of the time co-ordinate (by replacing it by t 1 - t) so that 
the problem becomes that of the behaviour of the trajectories of the above 
system as t! 0, where here t is the new time co-ordinate in terms of which now 
q > 0 (and q > 0 as before). It is easily verified that our Hamiltonian system 
admits the "scaling" transformations q~ ~ J..q~, P~ ~ J..p~, H ~ J.. 3k-1 H; by 
means of these transformations the Einstein equations, in the guise of the 
above Hamiltonian system (and under the assumption q2 = q3' P2 = P3) can 
be reduced to the 3-dimensional dynamical system 

du . 
dt = U = _w2 + 2v2 - 2uv2 + (2u -1)H2' 

W = w(u - 1 + 2H 2 - 2v2), 

v =!v( -k -(1- k)(u _1)2 -(1- k)w2 -4kv2), 
(69) 

1-k 2 2 2 
H 2 =-4-(1-(U-l) -w +4v), 
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where the co-ordinates u, W, v and the time co-ordinate t are given by 

PI qi PIqI 
U = P2Q2 + P3Q3 = 2P2Q2' 

(70) 

The following conditions are imposed on this system: 

W<O, v<O; (71) 

the first of these is easily seen (via (66» to be equivalent to non-negativity of 
the energy density, while the other two represent a choice of region where the 
metric has no singularity. That portion of the "boundary" of this region 
where v = 0 is an invariant manifold of dimension 2 with co-ordinates u, v, on 
which the system (69) obviously reduces to the following one: 

U= -w2+(2u-l)H2, w=w(u-l+2H2), 

R l-k 2 2 
2 = -4-(1 - (u - 1) - W ). (72) 

It is almost immediate that as a vector field this system has exactly four 
singular points cI>, C, N, T, given by 

Cl> (saddle): u = 1. W = 0, v = 0; 

C (saddle): u = 2, W = 0, v = 0; 

3 + k 1 r-----::-----

N (focal point): u = 5 _ k' W = - 5 _ k J(l + 3k)(1 - k), v = 0; 

T (node): u = w=v=o. 

The behaviour of the trajectories of the dynamical system (72) with respect to 
these singular points is indicated in Figure 121. 

Returning to the 3-dimensional system (69) we observe that since vlv < 0, 
the trajectories of this system will approach the surface v = 0 as t -+ 0, i.e. as 
time flows in the direction of contraction. As a typical such trajectory 
approaches the boundary v = 0, its behaviour will approximate that of a 
trajectory of the 2-dimensional system (72) (see Figure 121). It can be shown 
that the separatrices (or "arms") of those trajectories which approach in this 

Figure 121 
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way the singular points of the three possible types cD, N or T from within the 
physical region (71), represent solutions of Einstein's equations which are 
asymptotic (as t ~ 0) to the following metrics: 

(cD) qi '" Cit4/13(1-kll, 

(which in the case q1 = q2 = q3 yields what is essentially Friedman's solution 
with orbits 1R3; see §35.1(c)); 

(N) q. '" C1 t(1- kl/(1 Hl, 

(T) q1 '" Cl t2, 

(cf. the example of a 2-dimensional metric concluding §31.6). 

(73) 

It can be inferred from (73) that there are many solutions (namely, those 
corresponding to trajectories approaching a singular point of type T) which 
are fictionally singular when t = 0 in the weak sense that although they can be 
extended smoothly beyond t = 0, such continuation will not be twice 
differentiable. The energy density e of a "type T" solution will also have 
a "weak" singularity when t = 0, since in view of (66) and (73) we have 
e '" const. x t - 2(1 H). We remark incidentally also that without the condition 
of axial isotropy "type T" solutions turn out to be no longer "typical" among 
models with associated Lie algebra of type IX. 

We now turn briefly to the comparatively simple homogeneous models 
with corresponding Lie algebras of types I and V. As before, on the 
assumption that the matter does not move (on the average), the metric takes 
diagonal form (with goo == 1) in terms of a suitable synchronous frame: 

gaP = q;(t)~aP' IX, f3 = 1;2,3. 

In each of the two cases in question the Einstein equations, without the 
condition of axial isotropy, reduce to a 2-dimensional dynamical system. 

Type I. In terms of co-ordinates 

U= P1q1 V=P2q2-P3q3, 
P2q2 + P3q3 ' P2Q2 + P3Q3 

(where P., P2' P3 are suitably defined in advance), the Einstein equations 
reduce to the following system (with time increasing in the direction of 
contraction): 

du 
dt =(2u-l)H2 , 

dv 
dt = 2vH2 , 

1- k 2 2 
H 2 =-4-(I-(u-l) -v), 

dt qt 
dt = - (P1Q1 + P2Q2 + P3Q3)(Q1Q2Q3)· 

The singular points of this system are clearly given by 

S1: (u-l)2+v2=1, 

cD: u = t, v = 0, 
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v 

2 u 

Figure 122 

and the integral trajectories are as indicated in Figure 122. 

Type V. In terms of co-ordinates 

V=2Plql-P2q2, 

PIQl + P2Q2 

r = 2Q1Q2 

PIQl + P2Q2' 

the Einstein equations reduce to the system 

dv 
dt = v(H 2 + 4r2), 

1- k 2 2 
H2 =-4-(3-v -12r), 

dt Plql +P2Q2 

dt = - 2Q1Q2Q3 ' 

which has singular points 

i . r - 0 v - + fi3· i· -, - - v' .1, cJ)o: r=v=O; 

The integral trajectories are sketched in Figure 123. 

391 

Remark. A more general investigation of homogeneous models of types VII 
and IX leads to asymptotic regimes which already at an early stage of their 
expansion "isotropify" in a certain weak sense. 

A more detailed exposition of these and other results from the theory of 
homogeneous cosmological models can be found in the book [36] (see also 

-Vi 
L\~::::::--___ 

o 

-1/2 4i, 
r 

Figure 123 

+v'J 
v 



392 8. The Global Structure of Solutions of Higher-Dimensional Variational Problems 

[37]). The various important physical aspects of relativistic cosmology are 
discussed in the books [42], [51], [44]. 

The above qualitative investigation of the dynamics of the homogeneous, 
axially isotropic model of Bianchi type IX at an early stage in its evolution, is 
of great interest from the point of view of its methodology. We may infer from 
that investigation that the "typical" state of the model during a process of 
contraction (occurring near a singularity of type T) differs from the "typical" 
state during an expansion (in the neighbourhood of a singularity of type N). 
(This is clearly brought out in Figure 121, where the arrows point in the 
direction of contraction.) The strict meaning here of the expression "typical 
state" (during contraction) is as follows: If we choose initial conditions 
randomly and solve Einstein's equations in the direction of contraction, then 
sufficiently near to the singularity we shall (in the model in question) with 
probability 1 find ourselves in a phase region of the type in the vicinity of T. 
The exact definition of a "typical state" during an expansion process is more 
complex; here it is particularly appropriate to use the three-dimensional 
phase manifold introduced above, co-ordinatized by u, W, v, where "infinitely 
early" states occur, namely on the piece of plane defined by v = 0, il2 ~ 0 
(since v -+ 0 as the spatial volume contracts to zero). This set of "infinitely 
early" states (which strictly speaking lies outside the "physical" region v > 0 
(or v < 0), H 2> 0, of the phase space) furnishes us with a natural approach to 
defining the "typical state" of the metric of our model of the universe during 
an expansion (and not during a contraction, contrary to one's expectations!). 
To see how this is, one imagines initial conditions prescribed randomly at a 
small distance e > 0 from the boundary v = 0, i.e. at the points of the phase 
space where Ivl = e; then, solving the Einstein equations in the direction of 
expansion, one observes how the components of the metric vary. It may 
happen that after a small amount to(e) of time has elapsed (where to(e) -+ 0 as 
e -+ 0) the metric has become "concentrated" in a narrow region of phase 
space representing a neighbourhood of a "regime". It is such regimes that we 
define (under natural, not excessively wild assumptions on the distribution of 
initial values on Ivl = e) to be "typical early states" of an expansion process. 
Thus, referring to Figure 121 (with the arrows reversed) we see that in the 
axially isotropic, homogeneous model of type IX, a typical state during an 
expansion will occur in the vicinity of a singularity of type N, in contrast with 
the situation of a contraction, where a typical state occurs in the vicinity of a 
singularity of type T, as noted above. 

The analysis of fully anisotropic homogeneous cosmological models 
requires the consideration of more complex dynamical systems. The outcome 
of such an analysis (as well as the analysis itself) is discussed in the book [36]. 
It turns out that in all sufficiently complex homogeneous models the typical 
state in a contraction process is with probability 1 an oscillatory regime of 
type "BLH" (for Belinski!, LifSic, Halatnikov) (see also the conclusion of the 
book [42]), which in the qualitative theory is associated with a very 
interesting, in a certain sense "strange", attract or of the Einsteinian dynam-
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ical system, lying on the boundary of the physical region of the phase space 
(suitably co-ordinatized), and to which all trajectories converge with con
tracting volume (i.e. as the singularity is approached). 

We note that in GTR (assuming the value zero for the cosmological 
constant; see Part I, §39.3) it is known that a contraction process cannot 
continue isotropic, and also that any fluctuations inevitably lead to complex 
regimes of the type BLH, associated with analytically complicated singular
ities beyond which no continuation of solutions is possible. From this follows 
in particular the impossibility of investigating any "previous" stage of the 
universe, where a contraction may have preceded the present expansion. 

It turns out that an expansion process (in an anisotropic homogeneous 
model) has completely different, more regular "typical early states" in its 
evolution than does a contraction. (The definition of these "typical states" is 
analogous to that given for the axially isotropic case of a type IX model 
considered above, though more complex.) These typical states are all 
asymptotic merely to "powers"; they include quasi-isotropic regimes of types 
11> and of types Nand T, among others (cf. (73)). In a few cases these "power" 
asymptotes are of a transitory character and successively replace one another 
in the early stages of the evolution of the model, depending rather feebly on 
the type of the homogeneous model. In sum it may be asserted that with large 
probability a regime of type 11> will be established at a quite early stage (in the 
exact sense indicated above), with the rate of expansion "almost" (i.e. as 
reflected by the dominant term of the asymptote) isotropic, although the 
components of the metric need not themselves be isotropic. A "real", "exact", 
isotropification of the universe (by which we mean a convergence at an early 
stage to Friedman's model with overwhelming probability) is not an 
inevitable consequence of classical GTR. Such are the present conclusions of 
the theory of homogeneous cosmological models. 

§32. Some Examples of Global Solutions of the 
Yang-Mills Equations. Chiral Fields 

32.1. General Remarks. Solutions of Monopole Type 

Let p: E --+ M be a principal fibre bundle with Lie structure group G, and let 
U. be an arbitrary chart of the base M with local co-ordinate system x; thus 
above U. the bundle decomposes as a product: p - 1 (U.) ~ G x U o' A (general) 
Yang-Mills field Aa(x) is then just (the local expression for) a G-connexion on 
the fibre bundle (cf. the definition in Part I, §42). Thus, recalling (from §25.l) 
the definition of a G-connexion (for a matrix Lie group G), Aa(x) is for each 
a = 1, ... , n = dim M, a field on M (strictly speaking on an arbitrary cross
section of the bundle E) with values in the Lie algebra of G, which under the 
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transition from one cross-section to another undergoes a "gauge 
transformation" 

(1) 

where the map g(x): M ~ G is such that above each chart U <l the map G x U <l 

~ G x U <l defined by (h, x)l-+(hg(x), x), interchanges the two cross-sections. 
(This rule determines in particular how Aa(x) transforms under the transition 
maps of the fibre bundle defined above the regions of overlap U <l n Up.) 

We shall in fact assume (essentially as in Part I, §42) that G = SU(2), 
M = IRn = U <l (so that the bundle is trivial), and n = 3 or 4. We shall also 
suppose that the connexion "trivializes" as Ixl ~ 00 (cf. the examples 
concluding §25.5), i.e. that 

og(x) 
Aa(x) '" - oxa g-l(X) as Ixl ~ 00, (2) 

(or equivalently that on some cross-section Aa(x) ~ 0). 
Apart from the field AAx) we shall be considering another field I/!(x) on M 

with values in a vector space V which comes with a representation of G by 
means of linear transformations: G ~ GL(V); we shall for simplicity take V to 
be (the vector-space structure of) the Lie algebra of G. Recalling that the 
adjoint representation of a Lie algebra by means of self-transformations is 
defined by 

A ~ ad A: B ~ [A, B], 

we choose our Lagrangian of the field I/! in the absence of any connexion in the 
form (cf. Part I, §41.1) 

(3) 

where 1I/!(xW = <I/!(x), I/!(x» is defined at each x E M via the Killing form on 
the Lie algebra: (A, B> = -tr(ad A ad B); and (aI/!, al/!> is defined by 

ab<ol/! ol/!) (aI/!, a I/! > = g axa 'oxb ' (4) 

where gab(X) is a metric given on the base M and again (ol/!;axo, al/!;axb> is 
defined by the Killing form; the function u (the "potential") is assumed to be 
non-negative with graph as indicated in Figure 124. On the other hand in the 
presence of a connexion Aa(x), we replace the operator oa = a;axa as follows 
(cf. Part I, §41.1): 

oa ~ aa - ad Aa(x) = Va, 

and define the full Lagrangian of the field I/! in the presence of the connexion A 
by (cf. §§41.1, 42 of Part I) 

L(I/!, A) = t(VI/!, VI/!> - u(ll/!12) +! tr(Fabrb), (5) 
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1)tIi Z 

(a) Degenerate vacuum (the sphere S2). (b) Non-degenerate vacuum (a point). 

Figure 124 

where 

OAb oAa 
Fab = oxa - oxb + [Aa' AbJ. 

In order to formulate the global problems in which we are interested, we 
need the field 1/1 to be a cross-section of a vector bundle with fibre V and 
structure group G; the base, if not a region of !R", will be specified according to 
the context. 

For the remainder of this subsection we shall assume n = 3, relegating the 
case n = 4 to the following subsection. Thus the structure group is G = SU(2) 
(as always), the base is Euclidean 3-space !R 3, I/I(x) is a vector field with three 
real components, and the Lie algebra operation is the ordinary vector or 
cross product. We are interested in the stationary problem for the quantity 

S {I/I, A} = r d3 x {t<VI/I, V 1/1 > - u(l 1/1 12) + i tr(FabFab)}, (6) JRl 
the action corresponding to the Lagrangian L(I/I, A). 

32.1.1. Definition. A vacuum solution of the Yang-Mills equation (jS = 0 is a 
pair (1/1, A) of fields satisfying: 

(i) Fab = 0; 
(ii) u(II/I12) = min., 1/1 = 1/10 = const.; 

(iii) <VI/I, VI/I> = 0. 

Since the condition (i) implies that the connexion Aa(x) is trivial (this is 
Exercise 1 of Part I, §41.2), it follows that for a vacuum solution we must have 

og(x) 1 
Aa(x) = - oxa g- (x), a = 1,2,3, (7) 

for some map g:!R3 ..... G. Conditions (ii) and (iii) together imply that 
~b<[AAx), I/IJ, [Ab(X), I/IJ> == 0, where the scalar product is given by the 
Killing form, which in the present context defines the Euclidean metric (see 
Part I, §24.4), and where the metric gab is also Euclidean (by assumption); it 
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follows that for a vacuum solution we must have also 

[A Ax), 1/1] == 0, (8) 

so that AAx) is for all x parallel to the constant vector 1/1 = 1/10' i.e. A .. (x) 
= lJ..a(x)l/Io, where for each a = 1,2,3, lJ..a is a real-valued function. It then 
follows from (7) that the g(x), x E 1R 3, all lie in a one-dimensional rotation 
subgroup {eitp(X)}, whence we infer that the vector-valued function IJ.. is a 
gradient: lJ..a = orp/oxa. Thus A .. can be made to vanish on M (~{O} x M) 
simply by adding to it a gradient term. It follows that in the situation of a so
called "degenerate vacuum", where u is as indicated in Figure 124(a), the set of 
all vacuum solutions is essentially in one-to-one correspondence with the set 
of vectors 1/10 E V ~ 1R3 satisfying 11/1012 = 1, so that they form a "vacuum" 
sphere S2. 

In the variational problem JS = 0 for the functional (6), as it is usually 
posed, the variational class of pairs (1/1, A) is restricted by the requirement that 
as Ixl-+ 00 an admissible pair (1/1, A) should approach a vacuum solution with 
A == 0,1/1 = 1/10' where, however, the vector 1/10 may depend on the manner in 
which x -+ 00. If we allow x to approach 00 only along rays from the origin, so 
that x = Ixlv where v is a unit vector independent of x, then 1/10 will depend 
only on the direction v of the ray, i.e. 1/10 = I/Io(v), which in view of the 
condition 11/1012 = 1 (see above) defines a map 

1/10: S2 -+ S2, 

where the value of 1/10 at each point (or, equivalently, unit vector v) of S2, 
namely I/Io(v), can be identified with a point of the "vacuum" manifold defined 
by u(ll/IoI 2 ) = min. Thus a given map 1/10 can be regarded as specifying the 
boundary conditions at infinity on the admissible pairs (1/1, A), and its degree 
(see §13) affords an integral topological invariant of our variational problem 
in 1R3. 

It can be verified directly that the Lagrangian (5) is invariant under gauge 
transformations, i.e. under transformations of the form 

A .. (x)-+g(x)A .. (x)g-l(X)- ~g g-l(X), 
uX" (9) 

1/1-+ gl/lg-l = 1',(1/1), 

where it is required that for each unit vector v, the map g(x) (from 1R3 to G) 
have a limit as Ixl-+ 00 along the ray defined by v, i.e. x = Ixlv: 

g(x) -+ g",(v): S2 -+ G. (10) 

(Note that goo is homotopic to a constant since, as mentioned in example (iii) 
of §25.5, 1t2(G) = 0 for all Lie groups G.) The latitude afforded by the 
invariance of the Lagrangian under the gauge transformations defined by (9) 
and (10), allows us to obtain the precise condition under which two sets of 
boundary conditions are equivalent. 
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32.1.2. Lemma. If t/lh1): S2 -+ S2 and t/lh2): S2 -+ S2 are homotopic maps, then 
(and only then) there exists a map goo: S2 -+ G homotopic to a constant (or, 
equivalently, extendible to the whole of 1R 3 ) such that 

t/I\f)(v) = ~JV)t/lh1)(V) = g 00 (V)t/lh1)(V)g(~/(v), (11) 

for every unit vector v (i.e. point of S2). 

PROOF. The action of G = SU(2) on its Lie algebra (~ 1R3 equipped with the 
cross product), defined for each g E G by a 1-+ gag - 1 (where gag - 1 is the 
ordinary matrix product of the matrices g, a, g-1), induces a (transitive) 
action of G on the set S2 c 1R3 of unit vectors v; for the latter action we shall 
use the notation v 1-+ gv. 

Consider the fibre bundle n: G x S2 -+ S2 X S2 defined by n(g, v) = (gv, v), 
where gv is as just defined. Define maps 'Po, 'P 1: S2 -+ S2 X S2 by 

'P 1(V) = (t/I~)(v), t/I~)(v)). 

Ift/lhl) and t/lh2) are homotopic, via a homotopy t/ll say, then the family of maps 
'P I defined by 

'PI(v) = (t/lI(V), t/I~)(v)) 

constitute a homotopy between 'Po and 'P l' Let 'PI: S2 -+ G X S2 be a covering 
homotopy for 'PI (see §24.3), with the initial map 'Po, covering 'Po, given by 

'Po(v) = (1, t/I~)(v)), n'Po = 'Po· 

If we now define goo: S2 -+ G by 

'P 1(V) = (goo (v), t/lhl)(V)), 

then it is clear from the choice of the initial map 'Po covering 'Po that goo is 
homotopic to a constant. That goo satisfies (11) follows from 

n('P 1 (v)) = n(g 00 (v), t/lh1)(V)) = (g 00 (V)t/lhl)(V), t/I~)(v)) 

= 'P 1(V) = (t/lh2)(V), t/lhl)(V)). 

We leave the converse to the reader. o 

This lemma tells us that a set of boundary conditions at infinity, as 
represented by a map t/lo: S2 -+ S2, may be replaced by any homotopic map, 
or, more precisely, that the boundary conditions correspond essentially to the 
homotopy classes 

[t/lo] E n2(S2) ~ 7L, 

which, in view of Theorem 13.3.1, are determined in turn by their degrees. 

Examples. (a) If deg t/lo = 0, then by the above lemma we can arrange, via a 
gauge transformation, that t/lo(v) = (0,0, 1) E S2 for all v E S2, or in other 
words that for every t/I in the corresponding variational class (of pairs (t/I, A) 



398 8. The Global Structure of Solutions of Higher-Dimensional Variational Problems 

with the given boundary conditions) we have t/J-+ (0, 0, 1) as Ixl-+ 00. Thus in 
this case there is what they call a "symmetry loss" in the theory, in the sense 
that since the vector (0,0, 1) must be preserved, the symmetries reduce to 
those in the subgroup SO(2) c G of rotations of the plane spanned by the 
vectors (1,0,0) and (0, 1,0) (the "small group of the vacuum"). With the aim 
in view of developing a theory of perturbations of the vacuum state, the 
following notation is usually introduced: 

in terms of which the Lagrangian is written as 

- 1 2:7. L(/., B ,B ,'I') = L(t/J, A). 

We confine ourselves here to the remark that if the potential u(e) (assumed, as 
hitherto, to be as in Figure 124(a)) satisfies u~~(1) = m2 > 0, then on setting 
"'1 = ",2 = ° (see the exercise below), and expanding the function uW in a 
power series in e about the point It/Jol 2 = 1(0, 0, lW = 1, we obtain 

L = 1 L (oa",3)2 - 2m2(", 3)2 + 1(IB112 + IB212) 
a 

-1(1cur! B112 + Icur! B212 + Icur! 112) + ... , 

where the remainder involves only terms of degree ~ 3 in the fields I, Band 

'" = (0, 0, "'3). 

EXERCISE 

Show that by means of a suitable gauge transformation it can be arranged that 
i{J1 =iP =0. 

(b) If deg t/Jo = 1, then by Lemma 32.1.2 we may assume that t/Jo: S2 -+ S2 
is the identity map, so that the corresponding boundary conditions at infinity 
might be termed "spherically symmetric". Physicists have discovered an 
interesting spherically symmetric solution of the Yang-Mills equation 8S = ° 
(with S as in (6)), of the following form: 

where 

u(r) -+ uoo ' 

A~ = a(r)8aijx j, 

t/Ji = xiu(r) , 
r 

r=lxl, 

1 
a(r) - - - as r -+ 00, 

gr2 

u(r) - const. x r, a(r) -+ const. as r -+ 0. 

(12) 

Since the boundary conditions at infinity are given by the identity map 
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it follows (essentially) from Corollary 14.5.2 that any vector field t/!(x) on 1R3 
satisfying these boundary conditions must have a singular point in 1R3; thus in 
our present situation we are forced to the conclusion that every field t/!(x) 
figuring in a solution (t/!, A) of the Yang-Mills equation, must vanish at some 
point Xo of 1R3 (which we shall suppose in what follows to be unique). 

There exists an interesting correspondence between solutions (t/!, A) of the 
Yang-Mills equation and vector-valued fields f = (fa) on 1R3 satisfying 
Maxwell's equations (i.e. behaving like the vector potential of an electro
magnetic field) in empty space everywhere except where t/! = 0 (i.e. away from 
xo): 

This correspondence in fact associates each pair (t/!, A) (where t/! satisfies the 
above boundary conditions at infinity) with a fibre bundle over the region 
1R3 \ {xo} (where Xo is the point, assumed unique, where t/! vanishes) with 
abelian structure group SO(2) ~ Si, in such a way that solutions of the 
Yang-Mills equation become matched with solutions of Maxwell's equations 
for a stationary magnetic field H = (Hab) = (ofaloxb - Ofb/OXa). It can be 
deduced from this correspondence that in the case of the solution (12), the 
surface integral of the corresponding stationary magnetic field (Hi) = curl f 
over a sphere of sufficiently large radius is 4n (in contrast with one of the 
geometric consequences of Maxwell's equations given in Part I, §26.3). In this 
way one is led via a non-singular solution of the Yang-Mills equation to the 
theoretical possibility of a "magnetic monopole" (cf. §25.5, Example (f)). 

32.2. The Duality Equation 

We now turn to the case n = 4. Properly speaking the investigation of the 
Lagrangians arising in physics requires the solution of equations of 
Yang-Mills type (c5S = 0) (for fields A, t/!, where t/! may be a tensor or spinor 
field) in Minkowski space IRt. However even in their "purest" form (i.e. in the 
absence of external fields t/!) the Yang-Mills equations in IRt are non-linear 
and rather complex (in contrast with the Maxwell equations); in fact no non
trivial real solutions of these equations in IRt are known. On the other hand 
in the physics literature there have appeared, on the grounds that they may 
prove to be physically relevant, several solutions in 4-dimensional Euclidean 
space 1R4 (some of which we shall describe below). Whether or not these 
solutions in 1R4 do find a use in physics, they are in any case, in view of their 
deep geometrical content, highly interesting from a purely mathematical 
point of view. 
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Thus we shall in this subsection consider the Yang-Mills functional (cf. 
Part I, §42) 

(14) 

corresponding to the situation of a gauge field A alone, in the Euclidean space 
1R4 with Euclidean co-ordinates xo, Xl, x 2 , x 3• (Here Fab is defined in terms of 
the field A as before.) We shall impose the requirement that 

og(x) 
Aa(x) -- - oxa g-I(X) as Ixl-+ 00, (15) 

or equivalently that Fab -+ 0, and further, that in adjoining a point at infinity 
to 1R4 to obtain S4 (with the north pole in the role of the point at infinity), the 
field A(x) extends smoothly to S4, i.e. once A(x) is defined to be trivial at the 
north pole we have a gauge field A(x) smooth on the whole of S4. Thus now 
the fields A(x) which we shall be considering, represent the local expressions 
of connexions on the trivial principal fibre bundle over S4 with structure 
group G = SU(2), from which the former bundle over 1R4 can be obtained by 
restricting to that part of the bundle over 1R4 c S4. 

The Lagrangian in (14) is as before invariant under gauge transformations 
of the form (9). In view of the asymptotic condition (15) the field A(x) on S4 
will depend on the limit goo(v) of the map g(x) in (15) as Ixl-+ 00 (as before 
along half-lines x = lxiv, Ivl = 1, emanating from the origin of 1R4 ), i.e. on the 
naturally associated map goo: S3 -+ G. However unlike the case n = 3 where 
we had only one homotopy class of maps S2 -+ G, here, since 1t3(G) ~ 7L (see 
§24.4), there are many homotopically distinct maps goo, and the degree of goo 
affords a topological invariant of the connexion A on the bundle over S4, 
from which it arose. It can be shown that the degree m of the map goo 
coincides (essentially) with a characteristic class (see §25.5(64)): 

or in the notation of forms, 

m{F} = 412 r tr(F /\ .F). 
1t JR' 

(Recall from Part I, §19.3, that .F, the "dual" of F = Fab dxa /\ dxb, is given by 
.F = !BabcdFab dxc /\ dxd.) Since for any non-zero matrix X in the Lie algebra 
of SU(2) (see Part I, §24.2) we have tr(X2) < 0, and since the metric on 1R4 is 
Euclidean, it follows that the quantity 

(17) 
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is non-positive (T:::; 0), and is zero precisely when the "duality equation" 
holds: 

Fob = (*F)ob' 

Now from (17) and (16) we have 

T = 1- fRo tr(Fob FOb ) d4x + 1- fRo tr(*F)Ob(*F)ob d4x 

- r tr Fob(*F)ob d4 x = S{F} - 41t2m{F} :::; o. 
JR' 

(18) 

Since m{ F} is a characteristic class, and so has identically zero variational 
derivative (see Part I, §42 or §§25.4, 25.5), we infer from the equality T = 
S{ F} - 41t2m{ F} that: 

(i) the equations c;T = 0 and c;S = 0 are equivalent. Secondly, since 
S{ F} - 4n2m{ F} :::; 0, with equality precisely if Fob = (*F)ob, it follows that 

(ii) the duality equation Fob = (*F)ob holds precisely if S{F} is an absolute 
maximum value of the function S (among the class of all F with the given 
value of m{F} = m), and this absolute maximum value is equal to m. 

Thus if corresponding to each integer m we can find at least one solution of 
the duality equation, we shall thereby have fully established that under any 
given set of boundary conditions at infinity the functional S {F} does indeed 
attain the above upper bound. (Note that any solution of the duality equation 
will automatically be a solution of the corresponding Yang-Mills equation.) 
We now list particular solutions of the duality equation. 

(a) For m = 0 we have the "trivial" solution, i.e. Fob = 0, or, equivalently, A 
a trivial connexion. 

(b) In the case m = 1 it is natural to seek a "spherically symmetric" 
solution in one or another of the forms 

(A~) E 80(4). (19) 

It turns out that the following form of the A~ yields a solution (representing a 
so-called "instanton"): 

EXERCISE 

A~ = f(r)(xi<5~ - xj<5~), 

r=lxl, 
1 

f(r) = r2 + A. 2 ' A. = const. 
(20) 

Show that for each a = 0, 1,2,3, the 4-vector A.(x) = (A~(x)) is determined by only 3 
parameters (as it should be since G = SU(2) has dimension 3). 
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(c) For each m> 1 the following solution is known: 

1 m A~ 
A" = - - L I J 12 (O"Wj)Wj-!, 

P j=1 X - Xj 
(21) 

where 
m A~ 

P= L I J 12' 
j=! X-Xj 

the Uk (k = 1,2,3) being the Pauli matrices (see Part I, §§14.3, 40.2), and 
(x - Xj)O x 1 denoting the identity 2 x 2 matrix mUltiplied by the first 
component of x - Xj. (Here the Xj are m particular points and the Aj are m 
constants.) 

A satisfactory form of the general solution (which will depend on 8m - 3 
parameters) has not yet been found. However there do exist several deep 
results, some of which we shall now briefly describe. 

Observe first that since (as noted in Part I, §42) the Yang-Mills functional 
S, like the analogous Maxwellian functional, is conformally invariant (i.e. 
invariant under co-ordinate changes on 1R4 transforming the Euclidean 
metric into one proportional to it (with variable proportionality factor)), we 
may consider in place of 1R4 the whole of the 4-sphere S4 with its usual 
(conformally Euclidean) metric, induced in the usual way from the Euclidean 
metric on IRs ;:) S4. (Note incidentally that the group of conformal transfor
mations of S4 is isomorphic to 0(5, 1); see Part I, §15.) Thus we may regard a 
solution of the duality equation (18) as defining a connexion on a principal 
fibre bundle over S4 with structure group SU(2). 

We shall require in our further discussion a certain natural fibre bundle 

p: Cp3 -+ S4, (22) 

with fibre S2, constructed as follows. Define an action of the group SU(2) on 
C4 = C2 E9 C2, by letting it act on each summand C2 in the usual way: 

(zl, Z2, WI, w2)...4 (g(ZI, Z2), g(w1, w2», g E SU(2). (23) 

From the very definition of CP3 it then follows that 

(24) 

where the right-hand side is the orbit space under the action (23) restricted to 
the subgroup SO(2) c: SU(2) (and the obvious action of the group IR + of 
positive reals). We then have further, essentially by Example (e) of §24.3, that 

S4 ~ (C4\ {O} )/(IR + x SU(2)). 

This and (24), together with the inclusion SO(2) c: SU(2), now yield the 
desired fibre bundle projection p: Cp3 -+ s4, with fibres p-l(X) ~ Cpl c: CP3 
situated in CP3 as projective lines. 

We now return to the duality equation, each of whose solutions defines, as 
noted above, a connexion on a principal fibre bundle over S4. By endowing 
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the (naturally) associated vector bundle with the "associated" connexion in 
the manner described in §2S.2, we may consider each such solution as 
corresponding to a connexion on a fibre bundle rt over S4 with fibre C 2 and 
structure group G = SU(2). We now "lift" the fibre bundle rt in the natural 
way using the projection (22), to obtain a bundle p*(rt) over the complex 
manifold Cp3, endowed with the "lift" of the given connexion on rt. (This 
lifted connexion will thus be trivial above each of the fibres p -l(X) c CP3 of 
the original bundle rt.) Now a connexion on any complex (not necessarily 
holomorphic) fibre bundle over a complex manifold (see §4.l), gives rise to a 
"quasi-complex structure" on the total space, meaning (in our present 
context) that in terms of the horizontal directions on the total space E of the 
bundle p*(rt), determined by the connexion (see §25.l), there are defined 
certain "covariant" differential operators on functions on E. Let U be any 
chart of the base CP3 of p*(rt), with complex co-ordinates z1, Z2, Z3; z« = 
x« + ixd 3, which of course determine the differential operators a/azl, a/az2 , 

a/az3 ; then by definition of a fibre bundle we have E :::> q-l(U) ~ C 2 X U, 
where q: E --+ CP3 is the projection map of the bundle p*(rt). Denoting the co
ordinates of C 2 by wI, w2 , we then define the aforementioned "quasi-complex 
structure" on p*(rt) to be given locally by the set of five operators 

a a D D D 
(25) 

awl' aw2 ' DZl' DZ2' Dz 3 ' 

where 
D a c a.a . 

-Da=-aa+Aa=-a a-la a+3+ Aa- 1Aa+3, Z Z X X . 

Aa being the given connexion on p*(rt) (obtained originally as the lift of a 
connexion satisfying the duality equation). 

EXERCISE 

Show that the condition that the connexion on the fibre bundle t/ over S4 satisfy the 
duality equation (18), is equivalent to the commutativity of the operators (25) on 
functions defined on the total space E of the bundle p*(t/) over CP3. 

It can be shown that if the operators (25) commute, then in fact E is a 
complex manifold with complex local co-ordinates z, w, and that the fibre 
bundle p*(rt) over CP3 is then holomorphic. Thus in view of the above 
exercise, the problem of finding the solutions of the duality equation reduces 
to that of classifying the holomorphic fibre bundles over CP3, where the 
methods of algebraic geometry can be successfully applied. 

32.3. Chiral Fields. The Dirichlet Integral 

Among the non-linear fields which are of physical interest and involve 
topological considerations, there figure the so-called "chiral" fields. In its 
most general (local) form a chiral field is a map defined on IRk and taking its 
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values in some (non-Euclidean) manifold M; globally, the most general chiral 
field is a cross-section of a fibre bundle with fibre M. 

For those chiral fields of interest the manifold M is actually a homo
geneous space of a Lie group: 

M=GjH, 

where the points of M are identified with the left cosets gH of a closed 
subgroup H, on which cosets G acts by left multiplication (see §S.1). (We shall 
assume throughout that G is compact, and moreover that it comes endowed 
with a two-sided invariant metric.) A chiral field of this sort is called principal 
if H = {1}, i.e. if M is a Lie group. Of particular importance are chiral fields of 
this type where M = Gj H is a symmetric space of the (compact) group G, with 
stationary group He G (see Definition 6.1.1). The simplest family of 
examples is given by 

sq 2:: M = SO(q + 1)jSO(q). 

In this context if the points of the sphere sq are represented as usual by the 
unit vectors n in IRq + l, chiral fields taking their values in sq are referred to as 
"n-fields". 

Chiral fields arise in connexion with certain Lagrangians, of which we 
shall now consider (at length) the two most important kinds. 

(i) Let g(x) E G (where G is a matrix Lie group) be a principal chiral field on 
IRk, and set 

a= 1, ... , k. 

(For each x E 1R1c, Aa(x) will then be an element of the Lie algebra of G.) The 
first type of functional we wish to consider is given by 

S = atl fl<"' t(AII(x), AII(x» dx l A dx2 A •.• A dxk, (26) 

where the scalar product is given by the Killing form on the Lie algebra of G 
(cf. §32.1(S». 

Thus in the case G = SO(2) = {eitpIO::;;; cp < 2x}, the field A takes the form 
(essentially) of the gradient of a scalar-valued function cp(x) (cf. §2S.2(lS) 
et seqq.): 

g(x) = exp {icp(x)} , 

.oCP 
Aa(x) = I oxll ' 

(27) 

and the equation {)S = 0 is here equivalent to Laplace's equation 
L 02cpjO(XIl)2 = O. 

In the case G = SU(2) the equation {)S = 0 does not have so simple a form. 
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For each a we introduce scalar-valued functions A~(x), i = 1,2,3, defined by 
Aa(x) = A~(X)Xi' where Xl' X 2, X 3 form a basis for the Lie algebra of SU(2), 
satisfying 

[X 1 ,X2]=X3 , [X2 ,X3]=Xt> [X3 ,X1]=X2 · 

The equation (jS = 0 then reduces to the equation 

oA~ =0 
oxa ' 

i= 1,2,3, (28) 

(verify this!) together with the equation 

OAb oAa 
Fab = Oxa - oxb + [Aa, Ab] = 0, (29) 

which arises from the fact that the connexion defined by the fields Aa is trivial, 
and therefore has zero curvature. 

On any non-abelian group G (of arbitrary dimension) one can define a 
standard two-sided invariant 3-form 0 by specifying its value on an ordered 
triple of tangent vectors at the identity of G (i.e. on a triple of elements of the 
Lie algebra of G) to be the "mixed" or "triple" product of those vectors: 

O(X, Y, Z) = ([X, y], Z) 

where [ , ] denotes as usual the Lie commutator and ( , ) the Killing form. 
The form 0 is closed (this follows directly from Cartan's formula (see Part I, 
Theorem 25.2.3), or alternatively from the two-sided in variance of 0), but can 
be shown to be never cohomologically equivalent to zero (i.e. 0 is never exact: 
there is no 2-form 0 such that 0 = dO). (Note that in the case G = SU(2) the 
form 0 clearly defines (to within a constant scalar factor) the volume element 
on SU(2) ~ S3 and can be normalized so that JS3 0 = 1.) 

For the remainder of our discussion of the Lagrangian in (26) we specialize 
to the case k = 3. Thus we now consider a principal chiral field g(x) on 1R3, on 
which we impose the requirement that as Ixl ~ 00, g(x) ~ goo E G in such a 
way that the field g(x) extends to a smooth field on S3 = 1R3 U {oo}. With each 
such chiral field we can then associate the topological invariant afforded by 
the homotopy class [g] E 1t3(G). (Note that in the case G = SU(2), by 
Theorem 13.3.1 this invariant reduces to the degree of the map g: S3 ~ SU(2) 
~ S3, which in view of Theorem 14.1.1 and the above-mentioned property 
JS3 0 = 1, is given by the formula 

deg g = r g*(O), (30) JR' 
g*(O) being the pull-back of the form 0 to S3 = 1R3 U {oo }.) 

The functional (26), in the present context sometimes called the "Dirichlet 
integral" (cf. Part I, §37.5, and below), becomes (in brief notation) 

S{g} = ~ JR' (A, A) d3 x, (31) 
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(where as before A,,(x) = (og(x)/OX")g-I(X)), and 
equation ~S = 0 is given by 

~(Og(X) -1()) = 0 
ax" ax" g x , 

or, equivalently (cf. (28) and (29)), 

the Euler-Lagrange 

(32) 

(33) 

For the Dirichlet functional (31) it turns out that (unlike the situation for n
fields on 1R2 to be considered below) there is no "topological" criterion 
ensuring the attainment of the absolute minimum for a given [g]. 

We now turn to the "adjusted" chiral Lagrangian (ofthe "Skyrme model"), 
with functional 

S,,{g} = ~ JR' «A, A) + 1X2 ([A, A], [A, A]») d3x, (34) 

where IX is a non-zero real constant, and [A, A] is regarded as a 2-form (with 
components [A, A]"b = [A", Ab]) taking its values in the Lie algebra of G (so 
that in more detailed notation the integrand in (34) is actually L" (A", A,,) 
+ 1X2 L. b( [A, A]"b' [A, A]"b).) The question of interest here is the following 
one: In the case G = SU(2) how does one find a field g(x) of prescribed degree 
d = deg[g: 1R2 U {oo} ~ G], minimizing the functional S" (among all chiral 
fields of degree d)? In attempting to answer this one might consider 
(analogously to the preceding section) the functional 

S" + T = ~ ~ JR' (A" + lXe"bc[Ab, Ac], A" + lXe"bc[Ab, Ac] > d3 x, 

which is obviously non-negative: S" + T ~ O. From this and the formula (30) 
we obtain 

Hence a chiral field g(x) of degree d for which the lower bound of zero is 
attained, must satisfy the equations 

that is, 

Al = -1X[A2, A 3 ], 

where 

A" + 1X6"bC[Ab, Ac] = 0, 

og(x) -1 
A" = ax" g (x), (37) 
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It follows that A = 0( curl A, whence Aa(x) == O. From this we conclude that if 
for a prescribed degree d an adjusted chiral Lagrangian of the form (34) 
actually attains its absolute minimum at some g: S3 --+ SU(2) (of degree d) 
then that absolute minimum exceeds the lower bound given by (35). (This 
situation contrasts with those of the Yang-Mills fields on 1R4 considered in 
the preceding subsection, and the n-fields on 1R2 to be considered below.) 

Finally we note also that, in further contrast with the Yang-Mills 
Lagrangian, the adjusted chiral Lagrangian in (34) is not conformally 
invariant, so that different solutions of the variational problem are obtained 
for this Lagrangian depending on whether it is considered over S3 or 1R3; for 
instance over S3 the equations (36) are satisfied by the identity map 
g: S3 --+ S3 ~ SU(2), so that the lower bound afforded by (35) is attained if we 
work over S3 rather than 1R3 (verify this!). 

(ii) The second type of Lagrangian that we wish to investigate involves n
fields, i.e. chiral fields n(x) on IRk with values unit vectors n(x) E sq c IRq+ I (see 
the beginning of this subsection). The functional in question (also called the 
"Dirichlet integral") is given by 

r / an an) k 
S{n(x)} = JUi' \ox.' ax. d x, (38) 

where < , ) denotes the Euclidean scalar product in IRq+ I (and where the 
index a is summed over). The requirement is usually imposed on the n-fields 
n(x) that as Ixl--+ 00, n(x) --+ noo in such a way that n(x) extends smoothly to 
Sk = IRk U {oo }, thus yielding a map n: Sk --+ sq, whose degree will then afford a 
topological invariant of the n-field. In view of Theorem 14.1.1, when k = q the 
degree of this map n: sq --+ sq is given by 

d = deg(n) = r n*(Q), (39) 
JUi' 

where Q is the volume element of sq c IRq + I (normalized so that Jso Q = 1). 

For the remainder of this section we shall be concerned only with the case 
q = k = 2. As always our interest lies in the problem of finding the n-fields of 
prescribed degree d for which the above Dirichlet functional assumes its 
absolute minimum (among all n-fields of degree d). Let ua (0( = 1,2) be local 
co-ordinates on the sphere S2, and x· (a = 1,2) be Euclidean co-ordinates on 
the plane 1R2; in terms of such co-ordinates the functional (38) has the form (cf. 
Part I, §37.5) 

(40) 

where g.b = J.b is the Euclidean metric on 1R2, ga(J is the metric on S2 (c 1R 3 ) in 
the co-ordinates ul , u2 , and the map n(x) is written as 

0( = 1,2. 
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Remark. The formula (40) extends in the obvious way to give the Dirichlet 
integral S{n} corresponding to any map n: M -+ N of manifolds M and N 
endowed respectively with me tries gab and g,,(J in terms of local co-ordinate 
systems (X4) and (u"). 

EXERCISE 

Show (with reference to this remark) that if we take N to be a Lie group G, then the 
Dirichlet integral (40) takes the form (31) of the action of a principal chiral field (which 
explains the use of the term "Dirichlet integral" in both situations). 

Returning to the case M = 1R2, N = S2 of present interest, let ul , u2 now be 
conformally Euclidean co-ordinates on S2 \ {oo}, in terms of which the metric 
on S2 \ { oo} has the form (derived in Part I, §9) 

~ ,,(J_ 4«du 1 )2+(du2)2) _ 4dzdz 
g"(J du du - (1 + (UI)2 + (U2)2)2 - (1 + IzI2)2' (41) 

where z = ul + iu2 , w = Xl + ix2. In terms of z and w the functional (40) 
becomes 

. 1::12 

+ I:~r -
S{n} = 41 fRo (1 + Iz12)2 dw 1\ dw, (42) 

(where the operators iJj8z, 8/8w are defined as usual; see Part I, §12.1(6», and 
the formula (39) for the degree of a map n: S2 -+ S2, becomes 

deg(n) = fRo n*(Q) = ;n~ fRo n* Cld: ~Z~2~2 ) = ~ fRo ~;v~ ~z~i)~x dx dy, 

(43) 

where we have now set u = ul, v = u2, X = Xl, Y = x 2• From (42) and (43) it 
follows immediately that 

S - 2 d () = r (ux - Vy)2 + (uy + vx)2 dx d > 0 (44) 
n eg n JR' (1 + Iz12)2 Y - , 

whence we draw the following conclusions: 

(1) For any n-field of degree d, we have S - 2nd ~ 0, where S is the functional 
(40); 

(2) For an n-field n(x) of degree d ~ 0 to be such that the functional S attains 
at n(x) the lower bound 2nd given by (44), it is necessary and sufficient 
that 

Ux = vy , uy = -Vx , 

i.e. that u and v satisfy the Cauchy-Riemann equations. 

Thus the absolute minimum of the functional S (on the variational class of 
all smooth n-fields of prescribed degree d) is attained for precisely those n-
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fields n: S2 -+ S2 which are hoi om orphic (and therefore of the form 
z = P(w)/Q(w) where P and Q are polynomials). This important result, which 
was obtained first in a geometrical context, and then in physics, has 
application to the theory of ferromagnetism. 

We shall now consider the same example from a different angle. The 2-
sphere S2 can of course be realized as a homogeneous space 

S2 ~ SO(3)/SO(2) ~ SU(2)/U(1) = G/R, 

and moreover is clearly symmetric (see Definition 6.1.1). Hence by Lemma 
6.2.1 the Lie algebra L of G decomposes as a direct sum L = Lo + L1 of 
subspaces (Lo being the Lie algebra of the stationary subgroup ReG) with 
the following properties: 

and from these properties it follows that the subspaces Lo and L1 are 
orthogonal with respect to the Killing form on L. The theory of n-fields (on 
1R2 with values in S2) described above, can be alternatively expounded as 
follows. Consider the totality of fields g(x) on 1R2 with values in G = SU(2); we 
shall regard fields g(x) and eitp(X)g(x), differing by a factor eitp(x) (which for each 
x is regarded as lying in R = SO(2) c SO(3» as being equivalent. (Transform
ations of a field g(x) of the form g(x) -+ eitp(X)g(x) are "gauge transformations" 
in the nomenclature first introduced in Part I, §41.1.) The corresponding 
equivalence classes may then be identified with the n-fields n(x) with values in 
G/R. Consider the following functional of the field g(x) (the "chiral func
tional"; cf. (38»: 

(45) 

(with summation over a understood) where Aa(x) = (iJg(x)/iJxa)g-1(X), and 
< , ) L 1 denotes the scalar product on L determined by the Killing form on 
the subspace L1 and zero on Lo. Direct calculation (bearing in mind that for 
each x, eitp(x) represents an element of SO(2) c SO(3), and g(x) E SO(3» shows 
that under a gauge transformation 

g(x) -+ eitp(x)g(x) = g(x), 

we have 

(46) 

where the term i VqJ(x) lies in Lo. From this it follows easily that the 
functional (45) is gauge-invariant: 

S{g(x)} = S{g(x)}, 

so that it is well defined as a functional of the equivalence classes of fields g(x), 
i.e. of the n-fields with values in SO(3)/SO(2). 

Since the fields Aa (a = 1,2) take their values in the Lie algebra L of SO(3), 
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they each have three components, say Aa = A~eo + A;el + A;e2' where 
eo, el' e2 form a canonical basis for L: 

(47) 

chosen so that eo generates Lo, el , e2 span L I, and el, e2 are of length 1 
with respect to the scalar product < , > L,; thus 

i i= j. 

Regarding A as defining a trivial connexion on the principal G-bundle over 
1R2, we deduce (as earlier) that Fab = 0 (see e.g. Part I, §41.2), i.e. 

oAg oA~ P _ b 2 f3 0 1 2 (48) oxa - oxb + [Aa, Ab] - 0, a, = 1,; =". 

Setting 

A~ = i/a, a, b = 1,2, 
(49) 

we obtain from (48) by direct calculation (using (47)) that 

(50) 

and also 
oBI OB2 
ox2 - ox l = Bdl - Bd2' (51) 

Defining a "covariant" differential operator D = (Dl' D2 ) in the usual way by 
(cf. §25.3 and Part I, §41.1) 

(51) becomes 

D1 B2 -D2 Bl =0. 

The Euler-Lagrange equations for the functional (45) turn out to have the 
form 

a = 1,2. (52) 

Since the field fa = - iAo is a gauge field (which, using (46), can be shown to 
have its transformation rule (under gauge transformations g(x) -+ eiq>(X)g(x)) 
of the purely gradient form fa -+ fa + o({J/oxa), and since B = (Ba) can be shown 
(again via (46)) to transform according to the rule 
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it follows that we have reduced our variational problem for n-fields to that of 
solving the equations (52) for the complex vector field (Ba) and the gauge field 
flJ' on whose stress tensor fab there is imposed the constraint 

Ofl Of2 i - -
f12 = OX2 - OXI = '2(B 1 B2 - B2Bd· (53) 

It can be shown that for any n-field n we have 

n*(O) = const. Xf12 dXl A dx2, (54) 

where as before 0 is the SO(3)-invariant 2-form on S2 given by the element of 
area on S2, normalized so that Is> 0 = 1. (Thus 

dz A di 
0= const. x (1 + Izl2l (55) 

in terms of a suitable complex co-ordinate z on S2 \ {oo} (cf. (41).) Hence the 
homotopy invariant d, the degree of the n-field, is also given (to within a 
constant factor) by the integral of the stress tensor: 

d = r n*(O) = const. x r f dXl A dX2 JR' JR' 12 
= const. x rf, (fl dXl +12 dx2) = A. r (Bl E2 - B2Ed dXl A dX2, (56) 

Jrur~ JR' 
where A. is a constant depending only on the degree d, and where to obtain the 
second equality we have used Stokes' formula (see Part I, §26.3), r <Xl denoting 
a circle in 1R2 of sufficiently large radius Rand r = UI r j consisting of 
appropriately oriented circles of small radius B around the singular points XI 

of the fields B or f. (Fields B, f with finitely many singular points in the 
"finite" part of S2, i.e. in 1R2, must be admitted for consideration in order for 
the present formulation of the theory (of n-fields) to be valid, since in the 
present formalism the points Xi such that n(x;) = 00, will be singular for 
(Ba, fa). A given map n: S2 -+ S2 need not be globally covered by a map g: S2 
-+ S3, so that at one point (00) of S2 the corresponding cross-section (defining 
g) of the bundle S3 -+ S2 may be many-valued, i.e. g(x) may be many-valued 
at the points XI in n -1( (0), and consequently B or f will fail to be defined at 
these Xi') (Note also that the form II dXl +12 dx2 appearing in (56) can be 
regarded as a connexion on the standard Hopf bundle S3 -+ S2 with group 
G ~ SI, and projection given by the natural map SU(2) -+ SU(2)/U(1); see 
§24.3, Example (a).) 

We conclude the present discussion by finding an explicit expression for 
the BIJ in terms of a holomorphic field n. Let w be the complex co-ordinate on 
1R2 given by w=x 1 +iX2; if the function n=z(w) defined by a given n-field is 
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holomorphic, then by (55) and Part I, Lemma 12.2.2, 

1 
dz 12 dw" dw 

n*(n)=const. x dw (1 + IZ(WW)2' (57) 

Since 

(58) 

it follows (via 56) that 

s+!.. r n*(n)= r (BIBI +B2B2+i(BIB2-B2Bd) dx 1 "dx2 
A. JI12 JR2 

(59) 

Since we are assuming n =z(w) to be holomorphic, it follows (essentially from 
the result established earlier to the effect that the functional (58) attains the 
lower bound given by (59) precisely for the holomorphic n-fields of degree d) 
that 

BI +iB2 =0. 

Equations (53), (54), (57) and (60) together give 

1 
dz 12 dw " dw --
dw (1+lzI2)2 =const. x(B l B2-B2B l )dw" dw 

whence finally 
=const. x Hi dw " dw, 

const. dz 
B 1 = 1 + 1 Z 12 dw' 

(60) 

(61) 

We end this section with a proof of the following recent result: The 
Lagrange-Euler equation bS = 0 for the extremals of the functional S given by 
(40), with the metric gab taken to be the Minkowski metric (so that the n-jields 
are dejined on 1Ri) rather than the Euclidean one, is equivalent to the 
"sine-Gordon equation". (The latter equation was derived in Part I, §30.4, as a 
necessary and sufficient condition for a surface of constant negative Gaussian 
curvature to be embeddable in Euclidean space 1R3.) 

To prove this we first change from the usual Minkowski co-ordinates x, y 
of lRi, in terms of which the metric has the form ds2=dx2-dy2, to the co
ordinates '1 = x + y, e = x - y, in terms of which the metric is given by ds 2 

=d'1 de. If we write as before nl, n2 , n3 for the components ofn(x) E 1R3 ::> S2, 
where (n 1)2 +(n2 )2 + (n 3 )2 = 1, the functional (40) (with gab now given by the 
Minkowski metric) becomes 

(62) 
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To obtain the explicit form of the Euler-Lagrange equation <5S = 0 for this 
functional (subject to the constraint (n l )2+(n2)2+(n3)2=1), let Jl be an 
arbitrary real-valued function of 1] and ~, to be determined subsequently (i.e. a 
"Lagrange multiplier"), and consider the functional 

S" {n} = t2 Ctl n~n~ + Jl JI (n~)2) d1] d~ 

= r A/l(n, n~, n~) d1] d~. 
JR2 

The general Euler-Lagrange equations given in Part I, §37.l, become in the 
present context 

a= 1, 2, 3, 

(to be taken together with the constraint (nl)2 + (n2)2 +(n3f = 1), which 
simplify to 

a=1,2,3. 

Bringing in the condition ~)n~)2 = 1 (or (n, n> = 1 where ( , > denotes the 
Euclidean scalar product on 1R3 ), we obtain from this 

(63) 

It follows that 

1 0 
2 01] (n~, n~> = (n~~, n~> = (n~~, n~> = (n~~, n>(n~, n> =0, 

(invoking the orthogonality of n~ and n in 1R3), and similarly that 
(%~)(n~, n~> = O. Hence the functions In~1 and In~1 are "integrals", in the sense 
that 

oln~1 =0, 
01] 

and therefore depend respectively on ~ and 17 alone: 

In~1 =f(~), 

If we define the angle w by 

(n~, n~> 
cos W= f(~)g(1])' 

then the second equation in (63) is equivalent to 

02W 
o~ 011 = fg sin w, 

which by means of a local change of co-ordinates of the form ~-+e(~), 1]-+~(11), 



414 8. The Global Structure of Solutions of Higher-Dimensional Variational Problems 

can be brought into the form of the "sine-Gordon" equation 

qJ{it = sin qJ. (64) 

(However the investigation of this equation presents difficulties significantly 
greater than those encountered above in finding the n-fields of prescribed 
degree for which the functional (40) attains its absolute minimum.) 

§33. The Minimality of Complex Submanifolds 

Recall from Part I, §27.2 that a complex manifold M is called Kiihlerian if it 
comes endowed with a Hermitian metric (see loco cit.) gij dz i dij with the 
property that the associated form 

is closed. 

33.1. Theorem. Let M be a Kiihlerian manifold of n complex dimensions, and let 
Xc M be an arbitrary complex k-dimensional submanifold. (By Theorem 4.1.2 
the manifolds M and X automatically have orientations defined on them by 
virtue of their complex structure; we may assume that the complex co-ordinates 
on X are such that its orientation is induced from that on M.) Consider the 
variational class consisting of all those real 2k-dimensional submanifolds Y of 
the 2n-dimensional (realized) manifold M, which coincide with X outside a 
compact region of X, and with each of which it is possible to associate a "region 
of deformation" in the form of a real oriented (2k+ I)-dimensional submanifold 
Z c M with boundary az = X u ( - Y) where - Y is the manifold Y with 
orientation opposite to that induced on it from M (see Figure 125). Then every 
such Y has volume v(Y) at least as large as v(X) (and if X is not compact this 
remains true with v(X) and v( Y) denoting instead the volumes of those regions of 
X and Y respectively, where they differ). Furthermore if v(X) = v( Y), then Yalso 
is a complex manifold. 

y 

X 
(a) (b) 

Figure 125 
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Thus for a Kiihlerian manifold the compact complex submanifolds are in 
this sense globally smallest among the submanifolds of the same real 
dimension (or in other words they are precisely the extremals for the "least
volume" problem of the higher-dimensional calculus of variations). In 
particular since the manifolds epn and en are Kiihlerian (once endowed with 
naturally defined Hermitian metrics), any complex submanifold of either of 
them will have least volume among all perturbations leaving it fixed outside a 
compact region. (Recall incidentally from §4.l that all complex submanifolds 
of en of positive dimension one non-compact.) 

For the proof of the above theorem we shall need the following two 
lemmas. 

33.2. Lemma. Given any skew-symmetric, bilinear form W on the vector space 
1R2n (equipped with the Euclidean scalar product), there exists an orthonormal 
basis {e h ... , e2n} for 1R2n in terms of which w has the form 

(1) 

where At, ... , An are non-negative real numbers, and {wt> ... , w211 } is the dual 
basis to {e t, ... , e2n}. 

PROOF. Let et, ... , e211 be any orthonormal basis for 1R2n and form the matrix 
A = (ai) with entries aij =w(ei, ej). Since the form w is completely determined 
by its values on ordered pairs of basis vectors, it is determined by its 
associated matrix A (together with the basis {e t, ... , e2n})' Since A is skew
symmetric there is (by a standard result of linear algebra) an orthonormal 
basis {e t , ... , e2n } in terms of which the linear transformation defined by A 
has matrix of the form 

o 
with At, ... , An non-negative, and then relative to this basis the form w will be 
as in (1). 0 

33.3. Lemma. Let < , > be a Hermitian scalar product on the space en = 1R2 n, 
and let w be the skew-symmetric bilinear form on 1R2n determined by this metric, 
i.e. given at each point of 1R2n by the formula 

w{Vt, v2)=<iv1 , V2>' 
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for arbitrary vectors VI' V2 E 1R2n. Writing 

1 k 1 
Uk = - W = - W 1\ W 1\ •.• 1\ w, 

k! k!, y I 

k~n, 

we shall then have 
k 

(2) 

for every orthonormal 2k1rame (VI' ... , Vlk) of vectors in IRZn, with equality 
precisely when the subspace of IRZn spanned (over the reals) by VI' ... , Vlk, is 
actually a complex subspace ofCn (which condition reduces to the preservation 
of that linear span under multiplication by the complex scalar i). 

PROOF, We first deal with the case k = 1. Thus let VI' Vz be a pair of orthogonal 
vectors in IR Zn of length 1. Then 

IW(Vl' v1)1 = I<iv;, v2)1 ~ livll"lv21 = 1, 

establishing the first claim. Here equality obtains precisely when ±vz = iVl> 
i.e. when the (2-dimensional) IR-linear span of vIand Vz is a (one-dimensional) 
complex subspace. 

Turning now to the general case, let V c IRZn be any subspace of dimension 
2k, let {VI"'" VZk} be an orthonormal basis for V, and denote by w the 
restriction wlv of the form W to V. By Lemma 33.2 we can find an 
orthonormal basis {e l" .. , elk} for V in terms of whose dual basis 
WI' ... , WZk> the form w is given by 

W=AIW I 1\ wz+'" +AkWZk-l 1\ WZk' 

where AI"'" Ak are non-negative reals. Since then w(eZp - l , ezp) = Ap for 
p = 1, ... , k, we infer from the case k = 1 already treated above that Ap ~ 1 for 
all p, and moreover that Ap = 1 precisely if ieZp-l = ± ezp' Denoting the 
restriction of the form Uk = (1/k!)wk to the subspace V by Uk, we then have 

IUk(el,···, elk)! = I;! wk(el>"" e2k)1 =A l ,., Ak~ 1, 

with equality precisely if ie2p-l = ± e2p' which clearly implies that V is a 
complex subspace of Cn, (We leave the reverse implication to the reader.) 

o 
PROOF OF THEOREM 33.1. Let cp be a skew-symmetric multilinear form of 
degree I on the vector space IRln, let V be any I-dimensional subspace of IR Zn, 
and let (VI' .. " VI), (VI, .. " VI) be a pair of orthonormal frames for V in the 
same orientation class, From the transformation rule for a skew-symmetric 
multilinear form of degree I on a vector space of dimension I under a linear 
transformation (namely multiplication by the determinant of the linear 
transformation), we infer immediately that cp(v l "", VI) = CP(Vh .. " VI), so that 
the restriction of the form cP to V gives rise to a well-defined function of the 
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;:.-........ -y-X--

Figure 126 

two orientation classes of orthonormal frames for V. If we now allow V to 
vary, we see that the I-form q> on 1R2n determines in this way a function (also 
denoted by q» defined on the Grassmannian manifold (]2n., whose points are 
the oriented I-dimensional subspaces of 1R2n (cf. §5.2). For each I-dimensional 
subspace V C 1R 2n we shall denote by V the subspace taken together with the 
orientation induced on it by a specified orientation of 1R2n. (Thus V is 
identifiable with a point of (]2n.,.) 

Now let X, a complex submanifold (of a given complex manifold M), Y, a 
permitted perturbation of X, and Z, having boundary az = Xu ( - Y), all be 
as in the theorem (see Figure 126). As usual we denote by T"X and 1'y Y the 
respective tangent spaces to the submanifolds X and Y at the points x and y. 
We denote by w the closed 2-form (i/2)gii dzi /\ dii on M, afforded by a given 
Hermitian metric gij' and write (jk = (II k!)wk. The closure of w implies that of 
Uk: duk=O (see Part I, §25.2), whence by the general Stokes formula (Part I, 
§26.3) 

yielding 

(3) 

Denoting by dx and dy the 2k-dimensional volume elements (induced from 
the given metric gi) on the submanifolds X and Y, respectively, we have (see 
Part I, §26.1) 

(4) 

The fact that the complex manifold M contains X as a complex submanifold 
is equivalent to the containment (for each x E X) of TxX as a complex 
subspace Qf TxM::!:' en; hence by Lemma 33.3 we have (jkCfxX) = 1, while 
Uk( 1;, Y):$; 1 (since the submanifold Y is not necessarily complex). Consequent
ly, in view of (3) and (4) we have 

v(X) = Ix dx = Ix Uk( tX) dx = L (jk( 1;,y) dy:$; L dy = v( Y). (5) 

whence the first assertion of the theorem. 
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To see that Y must be complex for the equality v(X)=v(Y) to hold, note 
first that by (5) this equality is equivalent to the condition that for aU y in a 
subset of Y of the same 2k-dimensional measure as Y (i.e. almost everywhere 
on Y), we have (/k(7;, Y) = 1. By Lemma 33.3 this in turn is equivalent to the 
condition that I'y Y be a complex subspace of I'yM for almost all y in Y, and 
therefore, by continuity, for all Y E Y. Hence Y is complex and the proof of the 
theorem is complete. 0 

It is clear from this proof that the (implicit) assumption that the 
submanifold X c M have no singularities is not crucial; the proof (in terms of 
subsets of "full measure") goes through for complex algebraic surfaces 
X c M (i.e. for surfaces defined by systems of polynomial equations on M), 
even though such surfaces may possess singular points (for example, cones 
over smooth manifolds). In this situation the assumption in the above 
theorem that X and Yare "cobordant", needs to be replaced by the more 
general requirement that X be homologous to Y in the "homology group" 
H 2k(M, aX) (see Part III for the definition of these groups), i.e. that X and Y 
define the same element of this group. 

We conclude by mentioning some facts, offered without proof, concerning 
the Kiihlerian manifolds <cp. (obtained in the usual way as a quotient space of 
<[,"+ 1 \ {O}; see §2.2). In <cp. the submanifold <cpk (defined in the natural way for 
each k = 1, ... , n) represents a generator of the homology group H 2k(<CP·, Z) 
~ Z, and is globaUy of smaUest volume in its homology class. It can also be 
shown (though with greater difficulty) that if Y c <cp. is any (real) 2k
dimensional submanifold representing the same generator of H 2k(<CP·, Z) ~ Z 
and having the property that v( Y) = V(<cpk), then there is a transformation in 
SU(n + 1) which transforms Y into <cpk. Consequently the submanifold <cpk 
c <cp. is, to within an isometry of <CP", the unique solution of the higher
dimensional variational problem of finding, among the 2k-dimensional 
submanifolds in a generating homology class for H 2k(<CP", Z)~Z, one with 
absolute minimum volume. Furthermore, it turns out that if Y is a 
submanifold of dimension 2k representing a non-generator of H 2k(<C p., Z) 
~ Z (i.e. corresponding to an integer m,= ± 1), then v( Y) > v( <C pk). 
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