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To Gabriella 



There is no permanent place in the 
world for ugly mathematics. 

G. H. Hardy 
A Mathematician's Apology 



Preface 

This book is intended for the young student who is interested in graph 
theory and wishes to study it as part of his mathematical education. Ex­
perience at Cambridge shows that none of the currently available texts meet 
this need. Either they are too specialized for their audience or they lack the 
depth and development needed to reveal the nature of the subject. 

We start from the premise that graph theory is one of several courses 
which compete for the student's attention and should contribute to his 
appreciation of mathematics as a whole. Therefore, the book does not 
consist merely of a catalogue of results but also contains extensive descriptive 
passages designed to convey the flavour of the subject and to arouse the 
student's interest. Those theorems which are vital to the development are 
stated clearly, together with full and detailed proofs. The book thereby 
offers a leisurely introduction to graph theory which culminates in a thorough 
grounding in most aspects of the subject. 

Each chapter contains three or four sections, exercises and bibliographical 
notes. Elementary exercises are marked with a - sign, while the difficult 
ones, marked by + signs, are often accompanied by detailed hints. In the 
opening sections the reader is led gently through the material: the results 
are rather simple and their easy proofs are presented in detail. The later 
sections are for those whose interest in the topic has been excited: the theorems 
tend to be deeper and their proofs, which may not be simple, are described 
more rapidly. Throughout this book the reader will discover connections 
with various other branches of mathematics, including optimization theory, 
linear algebra, group theory, projective geometry, representation theory, 
probability theory, analysis, knot theory and ring theory. Although most 
of these connections are nQt essential for an understanding of the book, the 
reader would benefit greatly from a modest acquaintance with these SUbjects. 

vii 



viii Preface 

The bibliographical notes are not intended to be exhaustive but rather to 
guide the reader to additional material. 

I am grateful to Andrew Thomason for reading the manuscript carefully 
and making many useful suggestions. John Conway has also taught the 
graph theory course at Cambridge and I am particularly indebted to him for 
detailed advice and assistance with Chapters II and VIII. I would like to 
thank Springer-Verlag and especially Joyce Schanbacher for their efficiency 
and great skill in producing this book. 

Cambridge 
April 1979 

Bela Bollobas 
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CHAPTER I 

Fundamentals 

The purpose of this introduction is to familiarise the reader with the basic 
concepts and results of graph theory. The chapter inevitably contains a 
large number of definitions and in order to prevent the reader growing 
weary we prove simple results as soon as possible. The reader is not expected 
to have complete mastery of Chapter I before sampling the rest of the 
book, indeed, he is encouraged to skip ahead since most of the terminology 
is self-explanatory. We should add at this stage that the terminology of 
graph theory is far from being standard, though that used in this book is 
well accepted. 

§1 Definitions 

A graph G is an ordered pair of disjoint sets (V, E) such that E is a subset 
of the set of unordered pairs of V. Unless it is explicitly stated otherwise, we 
consider only finite graphs, that is V and E are always finite. The set V is 
the set of vertices and E is the set of edges. If G is a graph then V = V(G) 
is the vertex set of G and E = E(G) is the edge set. An edge {x, y} is said to 
join the vertices x and y and is denoted by xy. Thus xy and yx mean exactly 
the same edge; the vertices x and yare the end vertices of this edge. If x y E E( G) 
then x and yare adjacent or neighbouring vertices of G and the vertices x 
and yare incident with the edge xy. Two edges are adjacent if'they have 
exactly one common end vertex. 

As the terminology suggests, we do not usually think of a graph as an 
ordered pair, but as a collection of vertices some of which are joined by 
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Figure 1.1. A graph. 

edges. It is then a natural step to draw a picture of the graph. In fact, some­
times the easiest way to describe a graph is to draw it; the graph G = 
({I, 2, 3, 4,5, 6}, {12, 14, 16,25,34,36,45, 56}) is immediately comprehended 
by looking at Figure 1.1. 

We say that G' = (V', E') is a subgraph of G = (V, E) if V' c V and 
E' c E. In this case we write G' c G. If G' contains all edges of G that join 
two vertices in V' then G' is said to be the subgraph induced or spanned by 
V' and is denoted by G[V']. A subgraph G' of G is an induced subgraph if 
G' = G[V(G')]. These concepts are illustrated in Figure 1.2. 

We shall often construct new graphs from old ones by deleting or adding 
some vertices and edges. If We V(G) then G - W = G[V\W] is the sub­
graph of G obtained by deleting the vertices in Wand all edges incident with 
them. Similarly if E' c E(G) then G - E' = (V(G), E(G)\E'). If W = {w} 
and E' = {xy} then this notation is simplified to G - wand G - xy. 
Similarly, if x and yare non-adjacent vertices of G then G + xy is obtained 
from G by joining x to y. 

If x is a vertex of a graph G then instead of x E V(G) we usually write 
x E G. The order of G is the number of vertices; it is denoted by I G I. The 
same notation is used for the number of elements (cardinality) of a set: I XI 
denotes the number of elements of the set X. Thus IGI = IV(G)I. The size 
of G is the number of edges; it is denoted by e(G). We write Gn for an 
arbitrary graph of order n. Similarly G(n, m) denotes an arbitrary graph of 
order n and size m. 

2 6 

3~ 
3 

4 4 

Figure 1.2. A subgraph and an induced subgraph of the graph in Figure 1.1. 
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Figure 1.3. Graphs of order at most 4 and size 3. 

Two graphs are isomorphic if there is a correspondence between their 
vertex sets that preserves adjacency. Thus G = (V, E) is isomorphic to 
Gf = (V', E') if there is a bijection ¢: V -> V' such that xy E E iff ¢(x)¢(y)EE'. 
Clearly isomorphic graphs have the same order and size. Usually we do 
not distinguish between isomorphic graphs, unless we consider graphs with 
a distinguished or labelled set of vertices (for example, subgraphs of a given 
graph). In accordance with this convention, if G and H are isomorphic 
graphs then we write either G ~ H or simply G = H. In Figure 1.3 we show 
all graphs (within isomorphism) that have order at most 4 and size 3. 

The size of a graph of order n is at least 0 and at most (2). Clearly for 
every m, 0 S m S (2), there is a graph G(n, m). A graph of order n and size 
(2) is called a complete n-graph and is denoted by Kn; an empty n-graph En 
has order n and no edges. In K" every two vertices are adjacent, while in En 
no two vertices are adjacent. The graph Kl = El is said to be trivial. 

The set of vertices adjacent to a vertex x EGis denoted by r(x). The 
degree of x is d(x) = 1 r(x) I. If we want to emphasize that the underlying 
graph is G then we write r G(x) and dG(x); a similar convention will be adopted 
for other functions depending on an underlying graph. Thus if x E H = G[ W] 
then 

The minimum degree of the vertices of a graph G is denoted by <5(G) and 
the maximum degree by ~(G). A vertex of degree 0 is said to be an isolated 
vertex. If <5( G) = ~(G) = k, that is every vertex of G has degree k then G 
is said to be k-regular or regular of degree k. A graph is regular if it is k­
regular for some k. A 3-regular graph is said to be cubic. 

If V(G) = {Xl' X2, ... , xn} then (d(xJ)~ is a degree sequence of G. Usually 
we order the vertices in such a way that the degree sequence obtained in 
this way is monotone increasing or monotone decreasing, for example 
<5(G) = d(xl) S ... S d(xn) = ~(G). Since each edge has two endvertices, 
the sum of the degrees is exactly twice the number of edges: 

n 

I d(x;) = 2e(G). (1) 
1 

In particular, the sum of degrees is even: 

n 

L d(x;) == 0 (mod 2). (2) 
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This last observation is sometimes called the handshaking lemma, since it 
expresses the fact that in any party the total number of hands shaken is 
even. Equivalently, (2) states that the number of vertices of odd degree is 
even. We see also from (1) that b( G) ~ L 2e( G)/n J and ~(G) 2 f2e( G)/n 1-
Here LxJ denotes the greatest integer not greater than x and r x 1= - L - xJ. 

A path is a graph P of the form 

V(P) = {Xo, Xl"'" Xl}, E(P) = {XOXl, XlX2,"" XI-lXI}' 

This path P is usually denoted by xox 1 ... Xl' The vertices Xo and Xl are the 
endvertices of P and I = e(P) is the length of P. We say that P is a path 
from Xo to Xl or an XO-Xl path. Of course, P is also a path from Xl to Xo or an 
XZ-Xo path. Sometimes we wish to emphasize that P is considered to go 
from Xo to Xl and then call Xo the initial and Xl the terminal vertex of P. A 
path with initial vertex X is an x-path. 

The term independent will be used in connection with vertices, edges and 
paths of a graph. A set of vertices (edges) is independent if no two elements 
of it are adjacent; a set of paths is independent if for any two paths each 
vertex belonging to both paths is an endvertex of both. Thus PI, P 2, ... , Pk 

are independent x-y paths iff V(P;) n V(P) = {x, y} whenever 1 =F j. Also, 
W c V(G) consists of independent vertices iff G[W] is an empty graph. 

Most paths we consider are subgraphs of a given graph G. A walk Win G 
is an alternating sequence of vertices and edges, say Xo, (Xl' X2, (X2, ... , (Xz, Xo 

where (Xi = Xi-IX;, 0 ~ i < I. In accordance with the terminology above, 
W is an XO-Xl walk and is denoted by XOXI ... Xl; the length of W is l. This 
walk W is called a trail if all its edges are distinct. Note that a path is a walk 
with distinct vertices. A trail whose endvertices coincide (a closed trail) is 
called a circuit. If a walk W = XOXI •.. Xl is such that 12 3, Xo = Xl and 
the vertices Xi' 0 < i < I, are distinct from each other and Xo then W is said 
to be a cycle. For simplicity this cycle is denoted by XIX2 ... Xl' Note that 
the notation differs from that of a path since X 1 Xl is also an edge of this 
cycle. Furthermore, XlX2'" Xl' XIXI- l '" Xl> X2X3'" XIX l , XiXi-l'" 

XlXIXI- l ••. Xi+ 1 all denote the same cycle. 
The symbol pi denotes an arbitrary path of length I and C l denotes a 

cycle of length I. We call C3 a triangle, C4 a quadrilateral, C5 a pentagon, etc. 
(See Figure 1.4). A cycle is even (odd) if its length is even (odd). 

Given vertices x, y, their distance d(x, y) is the minimum length of an 
x-y path. If there is no x-y path then d(x, y) = 00. 

A graph is connected if for every pair {x, y} of distinct vertices there is a 
path from X to y. Note that a connected graph of order at least 2 cannot 
contain an isolated vertex. A maximal connected subgraph is a component 

DO 
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t lY 
Figure I.5. A forest. 

of the graph. A cutvertex is a vertex whose deletion increases the number of 
components. Similarly an edge is a bridge if its deletion increases the number 
of components. Thus an edge of a connected graph is a bridge if its deletion 
disconnects the graph. A graph without any cycles is a forest or an acyclic 
graph; a tree is a connected forest. (See Figure 1.5.) The relation of a tree to a 
forest sounds less absurd if we note that a forest is a disjoint union of trees; 
in other words, a forest is a graph whose every component is a tree. 

A graph G is a bipartite graph with vertex classes VI and V2 if V(G) = 
VI U V2, VI n V2 = 0 and each edge joins a vertex of VI to a vertex of V2. 
Similarly G is r-partite with vertex classes VI' V2, ... , V. if V(G) = VI U V2 U 

... U v., V; n J.j = 0 whenever 1 ::; i < j ::; r, and no edge joins two 
vertices in the same class. The graphs in Figure 1.1 and Figure 1.5 are bi­
partite. The symbol K(n!, ... , nr ) denotes a complete r-partite graph: it 
has ni vertices in the ith class and contains all edges joining vertices in 
distinct classes. For simplicity we often write Kp,q instead of K(p, q) and 
K,(t) instead of K(t, ... , t). 

We shall write G u H = (V(G) u V(H), E(G) u E(H» and kG for the 
union of k disjoint copies of G. We obtain the join G + H from G u H 
by adding all edges between G and H. Thus, for example, K2,3 = E2 + E3 
and Kr(t) = Et + ... + Et. 

There are several notions closely related to that of a graph. A hypergraph 
is a pair (V, E) such that V n E = 0 and E is a subset of .?l(V), the power 
set of V, that is the set of all subsets of V. In fact, there is a simple 1-1 cor­
respondence between the class of hypergraphs and the class of certain 
bipartite graphs. Indeed, given a hypergraph (V, E), construct a bipartite 
graph with vertex classes V and E by joining a vertex x E V to a hyperedge 
SEE iff XES. 

By definition a graph does not contain a loop, an "edge" joining a vertex 
to itself; neither does it contain multiple edges, that is several "edges" 
joining the same two vertices. In a multigraph both multiple edges and 
multiple loops are allowed; a loop is a special edge. 

If the edges are ordered pairs of vertices then we get the notions of a 
directed graph and directed multigraph. An ordered pair (a, b) is said to be 
an edge directed from a to b. or an edge beginning at a and ending at b, and 
is denoted by a6 or simply abo The notions defined for graphs are easily 
carried over to multigraphs, directed graphs and directed multigraphs, 
mutatis mutandis. Thus a (directed) trail in a directed multigraph is an 
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alternating sequence of vertices and edges: Xo, el' Xl' e2' ... , ez' Xl' such that 
ei begins at Xi-l and ends at Xi. 

An oriented graph is a directed graph obtained by orienting the edges, 
that is by giving the edge ab a direction ab or liii. Thus an oriented graph is 
a directed graph in which at most one of ab and bQ occurs. 

§2 Paths, Cycles and Trees 

With the concepts defined so far we can start proving some results about 
graphs. Though these results are hardly more than simple observations, 
and our main aim in presenting them is to familiarize the reader with the 
concepts, in keeping with the style of the other chapters we shall call them 
theorems. 

Theorem 1. Let X be a vertex of a graph G and let W be the vertex set of a 
component containing x. Then the following assertions hold. 

1. W = {y E G: G contains an x-y path}. 
ii. W = {y E G: G contains an x-y trail}. 

iii. W = {y E G: d(x, y) < co}. 
IV. For u, v E V = V(G) put uRv iff uv E E(G), and let R be the smallest 

equivalence relation on V containing R. Then W is the equivalence class 
~x. 0 

This little result implies that every graph is the vertex disjoint union of its 
components (equivalently, every vertex is contained in a unique component), 
and an edge is a bridge iff it is not contained in a cycle. 

Theorem 2. A graph is bipartite iff it does not contain an odd cycle. 

PROOF. Suppose G is bipartite with vertex classes VI and V2 . Let X I X2 ... Xl 

be a cycle in G. We may assume that Xl E VI. Then X2 E V2 , X3 E Vb and 
so on: Xi E VI iff i is odd. Since Xl E V2 , we find that I is even. 

Suppose now that G does not contain an odd cycle. Since a graph is 
bipartite iff each component of it is, we may assume that G is connected. 
Pick a vertex X E V(G) and put VI = {y: d(x, y) is odd}. There is no edge 
joining two vertices of the same class since otherwise G would contain an 
odd cycle. Hence G is bipartite. 0 

Theorem 3. A graph is a fores! iff for every pair {x, y} of distinct vertices it 
contains at most one x-y path. 

PROOF. If XIX2 ... Xl is a cycle in a graph G then XIX2 ... Xl and XIXI are 
two Xl-Xl paths in G. 
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Conversely, let PI = XOXI ... X, and P2 = XOYlY2 ... YkX, be two 
distinct XO-X, paths in a graph G. Let i + 1 be the minimal index for which 
Xi+l #- Yi+l, and letj be the minimal index for whichj ~ i and Yj+l is a 
vertex of PI' say Yj+l = Xh' Then XiXi+1 ... XhYjYj-1 .. , Yi+l is a cycle in G. 

o 

Theorem 4. The following assertions are equivalent for a graph G. 

i. G is a tree. 
n. G is a minimal connected graph, that is G is connected and if xY E E(G) 

then G - xY is disconnected. [In other words, G is connected and every 
edge is a bridge.] 

iii. G is a maximal acyclic graph, that is G is acyclic and if X and yare non­
adjacent vertices of G then G + xY contains a cycle. 

PROOF. Suppose G is a tree. Let xy E E(G). The graph G - xy cannot contain 
an X-Y path XZ IZ2 ... ZkY since otherwise G contains the cycle XZtZ2'" ZkY' 
Hence G - xy is disconnected and so G is a minimal connected graph. 
Similarly if x and yare non-adjacent vertices of the tree G then G contains a 
path XZIZ2 ... ZkY and so G + xy contains the cycle XZIZ2 ... ZkY' Hence 
G + xy contains a cycle and so G is a maximal acyclic graph. 

Suppose next that G is a minimal connected graph. If G contains a cycle 
XZIZ2 ... ZkY then G - xy is still connected since in any u - v walk in G 
the edge xy can be replaced by the path XZIZ2 ... XkY' As this contradicts 
the minimality of G, we conclude that G is acyclic so it is a tree. 

Suppose finally that G is a maximal acyclic graph. Is G connected? Yes, 
since if x and Y belong to different components, the addition of xy to G 
cannot create a cycle XZIZ2 ... ZkY since otherwise the path XZIZ2 ... ZkY is 
in G. Thus G is a tree. 0 

Corollary 5. Every connected graph contains a spanning tree, that is a tree 
containing every vertex of the graph. 

PROOF. Take a minimal connected spanning subgraph. There are several 
simple constructions of a spanning tree of a graph G; we present two of 
them. Pick a vertex x and put V; = {y E G: d(x, y) = i}, i = 0,1, .... Note 
that if YiE V;, i > 0, and XZIZ2'" Zi-IYi is an x - Yi path (whose existence 
is guaranteed by the definition of V;) then d(x, z) = j for every j, ° < j < i. 
In particular, l'j #- 0 for ° ::s; j ::s; i and for every Y E V;, i > 0, there is a 
vertex Y' E V;-t joined to y. (Of course, this vertex Y' is usually not unique but 
for each Y #- x we pick only one y'.) Let T be the subgraph of G with vertex 
set V and edge set E(T) = {yy': Y #- x}. Then T is connected since every 
yE V - {x} is joined to x by a path yy'y" ... x. Furthermore, T is acyclic 
since if W is any subset of V and w is a vertex in W furthest from x then w is 
joined to at most one vertex in W. Thus T is a spanning tree. 0 
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The argument above shows that with k = maxy d(x, y) we have Vi # 0 
for 0 :::; i :::; k and V = V( G) = U~ Vi. At this point it is difficult to resist 
the remark that diam G = maxx,y d(x, y) is called the diameter of G and 
rad G = minx maxy d(x, y) is the radius of G. 

If we choose x E G with k = maxy d(x, y) = rad G then the spanning 
tree T also has radius k. 

A slight variant of the above construction of T goes as follows. Pick 
x E G and let Tl be the subgraph of G with this single vertex x. Then TI is a 
tree. Suppose we have constructed trees Tl C Tz C ... C 7;, C G, where 
T; has order i. If k < n = I G I then by the connectedness of G there is a 
vertex y E V(G) - V(7;,) that is adjacent (in G) to a vertex z E 7;,. Let 7;,+ I 
be obtained from 7;, by adding to it the vertex y and the edge yz. Then 7;,+ 1 

is connected and as yz cannot be an edge of a cycle in 7;,+ b it is also acyclic. 
Thus 7;,+ I is also a tree, so the sequence To C Tl C ... can be continued 
to T". This tree T" is then a spanning tree of G. 

The spanning trees constructed by either of the methods above have 
order n (of course!) and size n - 1. In the first construction there is a 1-1 
correspondence between V - {x} and E(T), given by y -> yy', and in the 
second construction e(I;C> = k - 1 for each k since e(T1) = 0 and 7;,+ I 
has one more edge than 7;,. Since by Theorem 4 every tree has a unique 
spanning tree, namely itself, we have arrived at the following result. 

Corollary 6. A tree of order n has size n - 1; a forest of order n with k com­
ponents has size n - k. 0 

The first part of this corollary can be incorporated into several other 
characterizations of trees. In particular, a graph of order n is a tree iff it is 
connected and has size n - 1. The reader is invited to prove these character­
izations (Exercise 9). 

Corollary 7. A tree of order at least 2 contains at least 2 vertices of degree 1. 

PROOF. Let d l :::; dz :::; ... :::; dn be the degree sequence of a tree T of order 
n 2:: 2. Since T is connected, (j(T) == d1 2:: 1. Hence if T had at most one 
vertex of degree 1, by (1) and Corollary 5 we would have 

n 

2e(T) = 2n - 2 = L d; 2:: 1 + 2(n - 1). o 
1 

A well known problem in optimization theory asks for a relatively easy 
way of finding a spanning subgraph with a special property. Given a graph 
G = (V, E) and a positive valued cost function f defined on the edges, 
f: E -> IR +, find a connected spanning subgraph T = (V, E') of G for which 

f(T) = L f(xy) 
xyeE' 
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is minimal. We call such a spanning subgraph T an economical spanning 
subgraph. One does not need much imagination to translate this into a 
"real life" problem. Suppose certain villages in an area are to be joined to a 
water supply situated in one of the villages. The system of pipes is to consist 
of pipelines connecting the water towers oftwo villages. For any two villages 
we know how much it would cost to build a pipeline connecting them, 
provided such a pipeline can be built at all. How can we find an economical 
system of pipes? 

In order to reduce the second problem to the above problem about 
graphs, let G be the graph whose vertex set is the set of villages and in which 
xy is an edge iff it is possible to build a pipeline joining x to y; denote the 
cost of such a pipeline by f(xy) (see Figure 1.6). Then a system of pipes 
corresponds to a connected spanning subgraph T of G. Since the system has 
to be economical, T is a minimal connected spanning subgraph of G, that is a 
spanning tree of G. 

The connected spanning subgraph T we look for has to be a minimal 
connected subgraph since otherwise we could find an edge a whose deletion 
would leave T connected and then T - IX would be a more economical 
spanning subgraph. Thus T is a spanning tree of G. Corresponding to the 
various characterizations and constructions of a spanning tree, we have 
several easy ways of finding an economical spanning tree; we shall describe 
four of these methods. 

(1) Given G and f: E(G) ---+ ~, we choose one of the cheapest edges of G, 
that is an edge a for which f(a) is minimal. Each subsequent edge will be 
chosen from among the cheapest remaining edges of G with the only re­
striction that we must not select all edges of any cycle, that is the subgraph of 
G formed by the selected edges is acyclic. 

The process terminates when no edge can be added to the set E' of edges 
selected so far without creating a cycle. Then Tl = (V(G), E') is a maximal 
acyclic subgraph of G so, by Theorem 4(iii) it is a spanning tree of G. 

(2) This method is based on the fact that it is foolish to use a costly edge 
unless it is needed to ensure the connectedness of the subgraph. Thus let us 
delete one by one those costliest edges whose deletion does not disconnect 
the graph. By Theorem 4(ii) the process ends in a spanning tree T2 • 

4 

Figure 1.6. A graph with a function f: E --+ IR+ ; the number next to an edge xy is the 
cost f(xy) of the edge. . 
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(3) Pick a vertex x 1 of G and select one of the least costly edges incident 
with Xl' say X 1X2' Then choose one of the least costly edges of the form Xi."t. 

where 1:::; i :::; 2 and X ¢ {Xl, X2}' Having found vertices Xl> X2,··" X k 

and an edge XiX j' i < j, for each vertex X j with j :::; k, select one of the least 
costly edges of the form XiX, say XiXk+ 1 where 1:::; i :::; k and 
Xk+l ¢ {X 1X 2 ,.··, xd· The process terminates after we have selected 
n - 1 edges. Denote by T3 the spanning tree given by these edges. (See 
Figure 1.7.) 

Figure I.7. Three of the six economical spanning trees of the graph shown in Figure 1.6. 

(4) This method is applicable only if no two pipelines cost the same. The 
advantage of the method is that every village can make its own decision and 
start building a pipeline without bothering to find out what the other villages 
are going to do. Of course, each village will start building the cheapest 
pipeline ending in the village. It may happen that both village X and village y 
will build the pipeline xy; in this case they meet in the middle and end up 
with a single pipeline from X to y. Thus at the end of this stage some villages 
will be joined by pipelines but the whole system of pipes need not be con­
nected. At the next stage each group of villages joined to each other by pipe­
lines finds the cheapest pipeline going to a village not in the group and begins 
to build that single pipeline. The same procedure is repeated until a connected 
system is obtained. Clearly the villages will never build all the pipes of a 
cycle so the final system of pipes will be a spanning tree (See Figure 1.8.) 

Theorem 8. Each of the four methods described above produces an economical 
spanning tree. If no two edges have the same cost then there is a unique econo­
mical spanning tree. 

1+£ 

4+£ 

Figure I.8. The graph of Figure 1.6 with a slightly altered cost function (0 < e < 1) 
and its unique economical spanning tree. 
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PROOF. Choose an economical spanning tree T of G that has as many edges 
in common with TI as possible. (T1 is the spanning tree constructed by the 
first method.) 

Suppose that E(T1) =f. E(T). The edges of TI have been selected one by 
one; let x y be the first edge of TI that is not an edge of T. Then T contains a 
unique x-y path, say P. This path P has at least one edge, say uv, that does 
not belong to T1, since otherwise TI would contain a cycle. When xy was 
selected as an edge of T1 , the edge uv was also a candidate. As xy was chosen 
and not uv, the edge xy can not be costlier than uv, that isf(xy) ~ f(uv). Then 
T' = T - uv + xy is a spanning tree and since f(T') = f(T) - f(uv) + 
f(xy) ~ f(T), T' is an economical spanning tree of G. (Of course, this 
inequality implies that f(T') = f(T) and f(xy) = f(uv).) This tree T' has 
more edges in common with TI than T, contradicting the choice of T. Hence 
T = TI so TI is indeed an economical spanning tree. 

Slight variants of the proof above show that the spanning trees T2 and 
T3 , constructed by the second and third methods, are also economical. We 
invite the reader to furnish the details (Exercise 19). 

Suppose now that no two edges have the same cost, that it f(xy) =f. f(uv) 
whenever xy =f. uv. Let T4 be the spanning tree constructed by the fourth 
method and let T be an economical spanning tree. Suppose that T =f. T4, 
and let xy be the first edge not in T that we select for T4. The edge xy was 
selected since it is the least costly edge of G joining a vertex of a subtree 
F of T4 to a vertex outside F. The x-y path in T has an edge uv joining a 
vertex of F to a vertex outside F so f(xy) < f(uv). However, this is impos­
sible since T' = T - lIl' + xy is a spanning tree of G and f(T') < f(T). 
Hence T = T4. This shows that T4 is indeed an economical spanning tree. 
Furthermore, since the spanning tree constructed by the fourth method is 
unique, the economical spanning tree is unique if no two edges have the 
same cost. D 

§3 Hamilton Cycles and Euler Circuits 

The so-called travelling salesman problem greatly resembles the economical 
spanning tree problem discussed in the preceding section, but the similarity 
is only superficial. A salesman is to make a tour of n cities, at the end of which 
he has to return to the head office he starts from. The cost of the journey 
between any two cities is known. The problem asks for an efficient algorithm 
for finding a least expensive tour. (As we shall not deal with algorithmic 
problems, we leave the term "efficient" undefined; loosely speaking an 
algorithm is efficient if the computing time is bounded by a polynomial in 
the number of vertices.) Though a considerable amount of work has been 
done on this problem, since its solution would have important practical 
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Figure 1.9. A Hamiltonian cycle in the graph of the dodecahedron. 

applications, it is not known whether or not there is an efficient algorithm 
for finding a least expensive route. 

In another version of the travelling salesman problem the route is required 
to be a cycle, that is the salesman is not allowed to visit the same city twice 
(except the city of the head office). A cycle containing all the vertices of a 
graph is said to be a Hamilton cycle of the graph. The origin of this term is a 
game invented in 1857 by Sir William Rowan Hamilton based on the 
construction of cycles containing all the vertices in the graph of the dode­
cahedron (see Figure 1.9). A Hamilton path of a graph is a path containing 
all the vertices of the graph. A graph containing a Hamilton cycle is said to 
be Hamiltonian. 

In fact, Hamilton cycles and paths in special graphs had been studied well 
before Hamilton proposed his game. In particular, the puzzle of the knight's 
tour on a chessboard, thoroughly analysed by Euler in 1759, asks for a 
Hamilton cycle in the graph whose vertices are the 64 squares of a chessboard 
and in which two vertices are adjacent if a knight can jump from one square 
to the other. Figure 1.10. shows two solutions of this puzzle. 

If in the second, more restrictive version ofthe travelling salesman problem 
there are only two travel costs, 1 and 00 (expressing the impossibility of the 
journey), then the question is whether or not the graph formed by the edges 
with travel cost 1 contains a Hamilton cycle. Even this special case of the 
travelling salesman problem is unsolved: no efficient algorithm is known 

Figure 1.10. Two tours of a knight on a chessboard. 
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Figure 1.11. Three edge-disjoint Hamilton paths in K6. 

for constructing a Hamilton cycle, though neither is it known that there is 
no such algorithm. 

If the travel cost between any two cities is the same, then our salesman has 
no difficulty in finding a least expensive tour: any permutation of the n - 1 
cities (the nth city is that of the head office) will do. Revelling in his new found 
freedom, our salesman decides to connect duty and pleasure and promises 
not to take the same road xy again whilst there is a road uv he hasn't seen yet. 
Can he keep his promise? In order to plan a required sequence of journeys 
for our salesman we have to decompose K n into the union of some edge 
disjoint Hamilton cycles. For which values of n is this possible? Since K n is 
(n - I)-regular and a Hamilton cycle is 2-regular, a necessary condition is 
that n - 1 is even, that is n is odd. This necessary condition also follows 
from the fact that e(Kn) = !n(n - 1) and a Hamilton cycle contains n edges, 
so K n has to be the union of !(n - 1) Hamilton cycles. 

Let us assume now that n is odd, n ~ 3. Deleting a vertex of K n we see that 
if Kn is the union of !(n - 1) Hamilton cycles Kn- 1 is the union of !(n - 1) 
Hamilton paths. (In fact n - 1 has to be even if K n - 1 is the union of some 
Hamilton paths since e(Kn- 1) = !(n - 1)(n - 2) and a Hamilton path in 
K n - 1 has n - 2 edges.) With the hint shown in Figure 1.11 the reader can 
show that for odd values of n the graph K n - 1 is indeed the union of !(n - 1) 
Hamilton paths. In this decomposition of K n - 1 into !(n - 1) Hamilton 
paths each vertex is the end vertex of exactly one Hamilton path. (In fact, 
this holds for every decomposition of K n - 1 into !(n - 1) edge-disjoint 
Hamilton paths since each vertex x of K n - 1 has odd degree so at least one 
Hamilton path has to end in x.) Consequently if we add a new vertex to 
Kn- 1 and complete each Hamilton path in K n- 1 to a Hamilton cycle in Kn 
then we obtain a decomposition of K n into !(n - 1) edge disjoint Hamilton 
cycles. Thus we have proved the following result. 

Theorem 9. For n ~ 3 the complete graph K n is decomposable into edge 
disjoint Hamilton cycles iff n is odd. For n ~ 2 the complete graph K n is decom­
posable into edge disjoint Hamilton paths iffn is even. D 

The result above shows that if n ~ 3 is odd, then we can string together 
!(n - 1) edge disjoint cycles in K n to obtain a circuit containing all the edges 
of Kn. In general a circuit in a graph G containing all the edges is said to be 
and Euler circuit of G. Similarly a trail containing all edges is an Euler trail. 
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Figure I.12. The seven bridges on the Pregel in Konigsberg. 

A graph is Eulerian if it has an Euler circuit. Euler circuits and trails are 
named after Leonhard Euler, who in 1736 characterized those graphs which 
contain them. At the time Euler was a professor of mathematics in St. 
Petersburg, and was led to the problem by the puzzle of the seven bridges 
on the Pregel (see Figure 1.12) in the ancient Prussian city of Konigsberg 
(birthplace of Kant; since 1944 it has belonged to the USSR and is called. 
Kaliningrad). Could anyone plan a walk in such a way that he would cross 
each bridge once and only once? 

It is clear that such a walk is possible iff the graph in Figure 1.13 has an 
Euler trail. 

Theorem 10. A non-trivial connected graph has an Euler circuit iff each vertex 
has even degree. 

A connected graph has a Euler trail from a vertex x to a vertex y =1= x iff 
x and yare the only vertices of odd degree. 

PROOF. The conditions are clearly necessary. For example, if XIX2 ... Xm is 
an Euler circuit in G and x occurs k times in the sequence Xl> X2'···' Xm , 

then d(x) = 2k. 
We prove the sufficiency of the first condition by induction on the number 

of edges. If there are no edges, there is nothing to prove so we proceed to the 
induction step. 

Let G be a non-trivial connected graph in which each vertex has even 
degree. Since e( G) 2': 1, we find that b( G) 2': 2 so, by Corollary 7, G contains 
a cycle. Let C be a circuit in G with the maximal number of edges. Suppose 

C 

A 4E---- ---.... D 

B 

Figure f.13. A graph of the Konigsberg bridges. 
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Figure 1.14. The circuits C and D. 

C is not Eulerian. As G is connected, C contains a vertex x which is in a 
non-trivial component H of G - E( C). Every vertex of H has even degree 
in H so by the induction hypothesis H contains an Euler circuit D. The 
circuits C and D (see Figure 1.14) are edge-disjoint and have a vertex in 
common, so they can be strung together to form a circuit with more edges 
than C. As this contradicts the maximality of e(C), the circuit C is Eulerian. 

Suppose now that G is connected and x and yare the only vertices of 
odd degree. Let G* be obtained from G by adding to it a vertex u together 
with the edges ux and uy. Then by the first part G* has an Euler circuit C*. 
Clearly C* - u is an Euler trail from x to y. 0 

Theorem 10 implies that there is no walk satisfying the conditions of the 
Konigsberg bridge puzzle, since the associated graph in Figure 1.13 has 
four vertices of odd degree. The plan of the corridors of an exhibition is also 
easily turned into a graph: an edge corresponds to a corridor and a vertex 
to the conjunction of several corridors. If the entrance and exit are the same, 
a visitor can walk along every corridor exactly once iff the corresponding 
graph has an Eulerian circuit. In general a visitor must have a plan in order 
to achieve this: he cannot just walk through any new corridor he happens 
to come to. However, in a well planned (!) exhibition a visitor would be 
certain to see all the exhibits provided he avoided going along the same 
corridor twice and continued his walk until there were no new exhibits 
ahead of him. The graph of such an exhibition is said to be randomly Eulerian 
from the vertex corresponding to the entrance (which is also the exit). See 
Figure 1.15 for two examples. Randomly Eulerian graphs are also easily 
characterized (Exercises 24-26). 

___ ,"-:H 

u v 

x 

Figj.lfe 1.15. G is randomly Eulerian from x; H is randomly Eulerian from both u and u. 
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§4 Planar Graphs 

The graph of the corridors of an exhibition is a planar graph: it can be drawn 
in the plane in such a way that no two edges intersect. Putting it a bit more 
rigorously, it is possible to represent it in the plane in such a way that the 
vertices correspond to distinct points and the edges to simple Jordan curves 
connecting the points of its end vertices in such a way that every two curves 
are either disjoint or meet only at a common endpoint. The above representa­
tion of a graph is said to be a plane graph. 

There is a simple way of associating a topological space with a graph, 
which leads to another definition of planarity, trivially equivalent to the one 
given above. Let PI' P2, ... be distinct points in ~3, the 3-dimensional 
Euclidean space, such that every plane in ~3 contains at most 3 of these points. 
Write (p;, p) for the straight line segment with endpoints Pi and Pj (open 
or closed, as you like). Given a graph G = (V, E), V = (Xl, X2, ... , xn), the 
topological space 

n 

R(G) = U{(Pi, P):XiXjEE} u U Pi C ~3 
1 

is said to be a realization of G. A graph G is a planar if R( G) is homeomorphic 
to a subset of ~2, the plane. 

Let us make some more remarks in connection with R(G). A graph H 
is said to be a subdivision of a graph G or a topological G graph if H is obtained 
from G by subdividing some of the edges, that is by replacing the edges by 
paths having at most their end vertices in common. We shall write TG for a 
topological G graph. Thus TG denotes any member of a rather large family 
of graphs; for example TK3 is an arbitrary cycle and TC8 is an arbitrary 
cycle oflength at least 8. It is clear that for any graph G the spaces R( G) and 
R(TG) are homeomorphic. We shall say that a graph G is homeomorphic to a 
graph H if R(G) is homeomorphic to R(H) or, equivalently, G and H have 
isomorphic subdivisions. 

At the first sight one may think that in the study of planar graphs one may 
run into topological difficulties. This is certainly not the case. It is easily 
seen that the Jordan curves corresponding to the edges can be assumed to 
be polygons. More precisely, every plane graph is homotopic to a plane 
graph representing the same graph, in which the Jordan curves are piecewise 
linear. Indeed, given a plane graph, let (j > 0 be less than half the minimal 
distance between two vertices. For each vertex a place a closed disc Da of 
radius (j about a. Denote by J ~ the curve corresponding to an edge (X = ab 
and let a~ be the last point of J~ in Da when going from a to b. Denote by 
J~ the part of J~ from aa. to b~. Let 6 > 0 be such that if (X # f3 then J~ and 
J'p are at a distance greater than 36. By the uniform continuity of a Jordan 
curve each J~ can be approximated within 6 by a polygon J; from a~ to b~. 
To get the required piecewise linear representation of the original graph 
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J:---
Figure 1.16. Constructing a piecewise linear n:presentation. 

simply replace each J(J. by the poygon obtained from J~ by extending it in 
both directions by the segments aa(J. and b(J.b (see Figure IJ6). 

A less pedestrian argument shows that every planar graph has a straight 
line representation: it can be drawn in the plane in such a way that the edges 
are actually straight line segments (Exercise 28). 

If we omit the vertices and edges of a plane graph G from the plane, the 
remainder falls into connected components, called faces. Clearly each 
plane graph has exactly one unbounded face. The boundary of a face is the 
set of edges in its closure. Since a cycle (that is a simple closed polygon) 
separates the points of the plane into two components, each edge of a cycle 
is in the boundary of two faces. A plane graph together with the set of faces 
it determines is called a plane map. The faces of a plane map are usually 
called countries. Two countries are neighbouring if their boundaries have an 
edge in common. 

If we draw the graph of a convex polyhedron in the plane then the faces 
of the polyhedron clearly correspond to the faces of the plane graph. This 
leads us to another contribution of Leonhard Euler to graph theory, namely 
Euler's polyhedron theorem or simply Euler's formula. 

Theorem 11. If a connected plane graph G has n vertices, m edges and f faces, 
then 

n - m + f= 2. 

PROOF. Let us apply induction on the number of faces. If f = 1 then G does 
not contain a cycle so it is a tree and the result holds. 

Suppose now that f > 1 and the result holds for smaller values of f. 
Let ab be an edge in a cycle of G. Since a cycle separates the plane, the edge 
ab is in the boundary of two faces, say Sand T. Omitting ab, in the new plane 
graph G' the faces Sand T join up to form a new face, while all other faces of 
G remain unchanged. Thus if n', m' and f' are the parameters of G' then 
n' = n, m' = m - 1 and f' = f - 1. Hence n - m + f = n' - m' - f = 2. 

o 
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Let G be a connected plane graph with n vertices, m edges and f faces; 
furthermore, denote by ii the number of faces having exactly i edges in their 
boundaries. Of course 

Iii = f, (3) 
i 

and if G has no bridge then 

I ifi = 2m, (4) 
i 

since every edge is in the boundary oftwo faces. Relations (3), (4) and Euler's 
formula give an upper bound for the number of edges of a planar graph of 
order n. This bound can be improved if the girth of the graph, that is the 
number of edges in a shortest cycle, is large. (The girth of an acyclic graph is 
defined to be 00.) 

Theorem 12. A planar graph of order n ~ 3 has at most 3n - 6 edges. Further­
more, a planar graph of order n and girth at least g, 3 ::;; g < 00, has size at 
most 

max {g ~ 2 (n - 2), n - I}. 

PROOF. The first assertion is the case g = 3 of the second, so it suffices to 
prove the second assertion. Let G be a planar graph of order n, size m and 
girth at least g. If n ::;; g - 1 then G is acyclic so m ::;; n - 1. Assume now 
that n ~ g and the assertion holds for smaller values of n. We may assume 
without loss of generality that G is connected. If ab is a bridge then G - ab is 
the union of two vertex disjoint subgraphs, say G1 and G2 • Putting ni = 

I Gi I, mi = e( GJ, i = 1, 2, by induction we find 

m = m 1 + m2 + 1 ::;; max{g ~ 2 (nl - 2), nl - I} 

+ max{g ~ 2(n2 - 2),n2 - I} + 1 

::;; max{g ~ 2(n - 2), n - I}. 

On the other hand, if Gis bridgeless, (3) and (4) imply 

2m = Iifi = I ifi ~ IM = gf. 
i i~g i 

Hence, by Euler's formula, 

2 
m+2=n+f::;;n+-m, 

g 
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and so 

m ~ -g-(n - 2). 
g-2 

19 

o 

Theorem 12 can often be used to show that certain graphs are non-planar. 
Thus K 5, the complete graph of order 5, is non-planar since e(K5) = 10 > 
3(5 - 2), and K 3 • 3 the complete 3 by 3 bipartite graph is non-planar since 
its girth is 4 and e(K 3 • 3 ) = 9 > (4/(4 - 2»(6 - 2). The non-planarity of 
K 3 • 3 implies that it is impossible to join each of 3 hours to each of 3 wells by 
non-crossing paths, as demanded by a well-known puzzle (see Figure 1.17). 

Figure I.17. Three houses and three wells. 

If a graph G is non-planar then so is every topological G graph, and 
every graph containing a topological G graph. Thus the graphs in Figure 1.18 
are non-planar since they contain TK 5 and TK 3 • 3 , respectively. 

It is somewhat surprising that the converse of the trivial remarks above 
is also true. This beautiful result was proved by Kuratowski in 1930; as the 
proof is rather long though elementary, we shall not give it here. 

G 

Figure I.18. G contains a TK 5 and H contains a TK 3 • 3 . 

Theorem 13. A graph is planar iff it does not contain a subdivision of K 5 or 
K 3 • 3 • 0 

§5 An Application of Euler Trails to Algebra 

To conclude this chapter we shall show that even simple notions like the 
ones presented so far may be of use in proving important results. The result 
we are going to prove is the fundamental theorem of Amitsur and Levitzki 
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on polynomial identities. The commutator of two elements a and b of a 
ring S is [a, bJ = ab - ba. Similarly, if ai E S, 1 sis k, we write 

[ai' a2"'" akJ = L (-I)"aulau2 ... auk' 
u 

where the summation is over all permutations (J of the integers 1, 2, ... , k. 
If [at> a2, ... , akJ = 0 for all ai E S, 1 sis k, then S is said to satisfy the 
k-th polynomial identity. The theorem of Amitsur and Levitzki states that the 
ring Mk(R) of k by k matrices with entries in a commutative ring R satisfies 
the 2k-th polynomial identity. 

Theorem 14. Let R be a commutative ring and let Ai' A 2, ... , A2k E Mk(R). 
Then [Ai' A2,···, A 2kJ = O. 

PROOF. We shall deduce the result from a lemma about Euler trails in directed 
multigraphs. Let G be a directed multigraph of order n with edges e 1, e2, ... , 
em' Thus each ei is an ordered pair of not necessarily distinct vertices. Every 
(directed) Euler trail P is readily identified with a permutation of 
{I, 2, ... , m}; define B(P) to be the sign of this permutation. Given not neces­
sarily distinct vertices x, y of G, put B(G; x, y) = LpB(P), where the sum­
mation is over all Euler trails from x to y. 

Lemma 15. If m ~ 2n then B(G; x, y) = O. 

Before proving this lemma, let us see how it implies Theorem 14. Write 
Eij E Mn(R) for the matrix whose only non-zero entry is a 1 in the ith row and 
jth column. Since [A 1, A2, ... ,A2nJ is R-linear in each variable and 
{Eij: 1 S i,j S n} is a basis of MiR) as .an R-module, it suffices to prove 
Theorem 14 when Ak = Ei0k for each k. Assuming this is the case, let G be the 
directed multigraph with vertex set {I, 2, ... ,n}, whose set of directed edges is 
{iljl' i2j2"'" i2n j2n}' By the definition of matrix multiplication a product 
Au1 Au2 '" Au2n is Eij if the corresponding sequence of edges is a (directed) 
Euler trial from ito j and otherwise the product is O. Hence [Ai' A 2,· .. ,A2nJ 
= Li,j B(G; i,j)Eij' By Lemma 15 each summand is 0 so the sum is also O. 

PROOF OF LEMMA 15. We may clearly assume that G has no isolated vertices. 
Let G' be obtained from G by adding to it a vertex x', a path of length 
m + 1 - 2n from x' to x and an edge from y to x' (see Figure 1.19). Then 

y 

Figure 1.19, The construction of G'. 
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G' has order n + (m + 1 - 2n) = m + 1 - n and size m + m + 1 - 2n + 1 
= 2(m + 1 - n). Furthermore, it is easily checked that Ic(G; x, y)1 = 
Ic(G'; x', x')I. Hence it suffices to prove the theorem when m = 2n and 
x = y. 

Given a vertex z, let d+(z) be the number of edges starting at z and let 
r(z) be the number of edges ending at z. Call d(z) = d+(z) + d-(z) the 
degree of z and f(z) = d+(z) - r(z) the flux at z. We may assume that 
G contains an Euler circuit (an Euler trail from x to x), otherwise there is 
nothing to prove. In this case each vertex has 0 flux and even degree at least 2. 
Furthermore, we may assume that there is no double edge (and so no double 
loop) for otherwise the assertion is trivial. 

In order to prove the theorem in the case m = 2n and x = y we apply 
induction on n. The case n = 1 being trivial, we turn to the induction step. 
We shall distinguish three cases. 

(i) There is a vertex b =F x of degree 2; say em = ab ends at band em-l = bc 
starts at b. If a = c the assertion follows by applying the induction hypo­
thesis to G - b. If a =F c then without loss of generality x =F c. Let el = CCl, 

e2 = CC2, ... , e t = CCt be the edges starting at c. For each i, 1 ::;; i ::;; t, 
construct a graph G from G - b by omitting e; and adding e; = ac; (see 
Figure 1.20). Then c(G; x, x) = 2::=1 c(G;; x, x) = o. 

em e".-l 

a. b c 

Figure 1.20. The construction of G 1. 

(ii) There is a Loop at a vertex b =F x of degree 4. Let em be the loop at b 
and let em- 2 = ab and em-l = bc be the other edges at b. Let Go· be obtained 
from G - b by adding to it an edge e~-2 = ac. Then c(6; x, x) = c(Go; x, x) 
= o. 

(iii) The cases (i) and (ii) do not appLy. Since m = 2n - ! 2:1 d; and each 
vertex distinct from x has degree at least 4, either each vertex has degree 4 
or else d(x) = 2, there is a vertex of degree 6 and all other vertices have degree 
4. It is easily checked (Exercise 34) that there are two adjacent vertices of 
degree 4, say a and b, since otherwise (ii) would hold. Now we shall apply our 
fourth and final graph transformation. This is more complicated than the 
previous ones since we shall construct two pairs of essentially different 
graphs from G: the graphs Gl , G2, Ii6 and Ii7 shown in Figure 1.21. Each 
Euler trail from x to x in G is transformed to an Euler trail in exactly one of 
G1 and G2 • However, the graphs G2 contain some spurious Euler trails: 
Euler trails that do not come from Euler trails in G. As these spurious Euler 
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Figure I.21. The graphs G., G2, ii6 and ii,. 
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trails are Euler trails in exactly one of H 6 and H 7 and they exhaust all the 
Euler trails of H 6 and H 7, we find that 

2 2 

B(G; x, x) = L B(G;; x, x) - L B(H;; x, x). 
1 1 

The first two terms are ° because of (i) and the second two terms are ° 
because of (ii) so B( G; x, x) = 0, completing the proof of Lemma 15. D 

EXERCISES 

1. (i) Show that every graph contains two vertices of equal degree. 
(ii) Determine all graphs with one pair of vertices of equal degree. 

2.- Prove that the complement of a disconnected graph is connected. 

r Show that in a graph G there exists a set of cycles such that each edge of G belongs 
to exactly one of these cycles iff every vertex has even degree. 

4. Show that in an infinite graph G with countably many edges there exists a set 
of cycles such that each edge of G belongs to exactly one of these cycles iff for 
every X c V(G) the set of edges joining X to V(G) - X is even or infinite. 

5. Show that d. ::;; d2 ::;; ... ::;; dn is the degree sequence of a tree iff d 1 ::::: 1 and 
D d; = 2n - 2. 



Exercises 23 

6. Show that every integer sequence d I ::::; d2 ::::; •.. ::::; dn with d l ;::: I and I~ di = 

2n - 2k, k ;::: I, is the degree sequence of a forest with k components. 

7. Characterize the degree sequence of forests! 

8. Prove that a regular bipartite graph of degree at least 2 does not have a bridge. 

9. Let G be a graph of order n. Prove the equivalence of the following assertions. 
(i) G is a tree. 

(ii) G is connected and has n - 1 edges. 
(iii) G is acyclic and has n - 1 edges. 
(iv) G = Kn for n = I, 2, and if n ;::: 3 then G "# Kn and the addition of an 

edge to G produces exactly one new cycle. 

10. Let.91 = {A I, A 2' ... , An} be a family of n (;::: 1) distinct subsets of a set X with n 
elements. Define a graph G with vertex set .91 in which Ai A j is an edge iff there 
exists an x E X such that Ai f::::. Aj = {x}. Label the edge AiAj with x. For He G 
let Lab(H) be the set of labels used for edges of H. Prove that there is a forest 
Fe G such that Lab(F) = Lab(G). 

11. (10 continued) Deduce from the result in the previous exercise that there is an 
element x E X such that the sets AI - {x}, A2 - {x}, ... , {An} - {x} are all 
distinct. Show that this need not hold for any n if 1.911 = n + 1. 

12. A tournament is a complete oriented graph, that is a directed graph in which for 
any two distinct vertices x and y either there is an edge from x to y or there is an 
edge from y to x, but not both. Prove that every tournament contains a (directed) 
Hamilton path. 

13: Let G be a connected graph of order n and let 1 ::::; k ::::; n. Show that G contains 
a connected subgraph of order k. 

14~ Prove that the radius and diameter of a graph satisfy the inequalities 

rad G ::::; diam G ::::; 2 rad G, 

and both inequalities are best possible. 

15:- Given d ;::: I, determine 

max min{diam T: T is a spanning tree of G}. 
diamG=d 

16. Denote by fJo(G) the maximum number of independent vertices in G. Prove that 
ifG does not contain a triangle then .1(G) ::::; /3o(G) and deduce that e(G) ::::; tn/3o(G), 
where n = IGI. 

I T Show that if for every vertex z of a directed graph there is an edge starting at z 
(that is d+ (z) > 0) then the graph contains a (directed) cycle. 

18. A grading of a directed graph G = V, if) is a partitioning of V into sets Vb V2 , . .• , ~ 

such that if xy E if then x E J.-; and y E V;+ I for some i. 
Given a directed graph G and a (non-directed) path P = XOXI ... x" denote 

by v(xo, x,; P) the number of edges XiXi+ I minus the number of edges Xj+ IXj. 

Prove that G has a grading iff v(xo, X,; P) is independent of P for every pair of 
vertices X o, X,. 
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19. Complete the proof of Theorem 8 by showing in detail that both the second and 
third methods construct an economical spanning tree. 

20. Show how the fourth method in Theorem 8 can be applied to find an economical 
spanning tree even if several edges have the same cost (cf. Figure 1.4). 

21. Show that every economical spanning tree can be constructed by each of the first 
three methods. 

22. Deduce from Theorem 10 that a graph contains an Euler circuit iff all but at 
most one of its components are isolated vertices and each vertex has even degree. 
State and prove an analogous statement about the existence of an Eulerian trail 
from x to y. 

23. The following algorithm for finding an Euler circuit X t X 2 ... Xn in a graph G 
is due to Fleury. Pick x arbitrarily. Having chosen Xl' X2, .•• , Xk, put Gk = 
G - {XIX2, X2 X3' .•. , Xk-lXk}. If Xk is isolated in Gk> terminate the algorithm. 
Otherwise let xk+ 1 be a neighbour of X k in Gk such that XkXk+ 1 is not a bridge, 

. unless every edge of Gk incident with X k is a bridge. 
Prove that if G has an Euler circuit then the trail X 1X 2 •.. Xl constructed 

by the algorithm is an Euler circuit. 

24. A graph G is randomly Eulerian from a vertex x if any maximal trail starting at x 
is an Euler circuit. (If T = xx 1 ••• Xl then T is a maximal trail starting at x iff 
Xl is an isolated vertex in G - E( T).) Prove that a non-empty graph G is randomly 
Eulerian from X iff G has an Euler circuit and x is contained in each cycle of G. 

25. Let F be a forest. Add a vertex x to F and join x to each vertex of odd degree 
in F. Prove that the graph obtained in this way is randomly Eulerian from x. 

26. Prove that a graph G is randomly Eulerian from each of two vertices x and y 
iff G is the union of an even number of x-y paths, any two of which have only x 
and y in common. 

27. How would you define the number of sides of a face so that formula (4) continues 
to hold for graphs with bridges? Rewrite the proof of Theorem 12 accordingly. 

28.+ Prove that every planar graph has a drawing in the plane in which every edge is a 
straight line segment. [Hint. Apply induction on the order of maximal planar 
graphs by omitting a suitable vertex.] 

29. A plane drawing of an infinite graph is defined as that of a finite graph with the 
additional condition that each point has a neighbourhood containing at most one 
vertex and meeting only edges incident with that vertex. 

Show that Kuratowski's theorem does not hold for infinite graphs, that is 
construct an infinite non-planar graph without TK 5 and T K 3.3. 

Is there an infinite non-planar graph without a T K4? 

30. Let d1 :::; d2 :::; ••. :::; dn be the degree sequence of a planar graph. 
(i) By making use of an upper bound for 2:1 d i , show that if d 1 2': 4 then 

2: df < 2(n + W - 62. 
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(ii) Prove by induction on n that if n ~ 4 then 

I df ::; 2(n + W - 62. 
I 

Show that equality can hold for every n ~ 4. 

31.+ Determine the maximum of II df where d l ::; d2 ::; •.. ::; dn is the degree 
sequence of a planar graph with girth at least 4 (that is without triangles). What is 
the maximum if the girth is at least 9 > 4? 

32. Fill in the small gap in the proof of Lemma 15: show that if cases (i) and (ii) do 
not apply then there are two adjacent vertices of degree 4. 

Notes 

Theorem 14 is in K. Kuratowski, Sur Ie probIeme des courbes gauches en 
topologie, Fund. Math. 15 (1930) 271-283; for a simpler proof see G. A. 
Dirac and S. Schuster, A theorem of Kuratowski, Indag. Math. 16 (1954) 
343-348. 

The theorem ofS. A. Amitsur and J. Levitzki (Theorem 14) is in Minimal 
identities for algebras, Proc. Amer. Math. Soc. 1 (1950) 449-463; the proof 
given in the text is based on R. G. Swan, An application of graph theory to 
algebra, Proc. Amer. Math. Soc. 14 (1963) 367-373 and Correction to " An 
application of graph theory to algebra," Proc. Amer. Math. Soc. 21 (1969) 
379-380. 



CHAPTER II 

Electrical Networks 

This chapter is something of a diversion from the main line of the book, so 
some readers may wish to skip it. Only the concepts introduced in the 
first half of §3 will be used later, in §2 of Chapter VIII. 

It does not take long to discover that an electrical network may be viewed 
as a graph, so the simplest problems about currents in networks are exactly 
questions about graphs. Does our brief acquaintance with graphs help us 
to tackle the problems? As it will transpire in the first section, the answer is 
yes; for after a short review of the basic ideas of electricity we make use of 
spanning trees to obtain solutions. Some of these results can be reformulated 
in terms of tilings of rectangles and squares, as we shall show in §2. The last 
section introduces elementary algebraic graph theory which is then applied 
to electrical networks. 

It should be emphasised that in the problems we consider we use hardly 
more than the terminology of graph theory; virtually the only concept to 
be used is that of a spanning tree. 

§1 Graphs and Electrical Networks 

A simple electrical network can be regarded as a graph in which each edge 
ei has been assigned a real number ri called its resistance. If there is a potential 
difference Pi between the endvertices of ej, say a and b, then an electrical 
current Wi will flow in the edge ei from a to b according to Ohm's law: 

26 
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Though to start with we could restrict our attention to electrical networks 
corresponding to graphs, in the simplifications that follow it will be essential 
to allow multiple edges, that is to consider multigraphs instead of graphs. 
Furthermore, we orient each edge arbitrarily from one end vertex to the other 
so that we may use Pi to denote the potential difference in the edge ei' meaning 
the difference between the potentials of the initial vertex and the end vertex. 
Similarly Wi is the current in the edge e;, meaning the current in ei in the 
direction of the edge. (Note that we regard a negative current -Wi as a 
positive current Wi in the other direction.) Thus, throughout the section we 
consider directed multigraphs, that is directed graphs which may contain 
several edges directed from a to b. However, in this section there is no danger 
of confusion if we use ab to denote an edge from a to b; in the next section 
we shall be more pedantic. Thus 

In many practical problems electrical currents are made to enter the 
network at some points and leave it at others, and we are interested in the 
consequent currents and potential differences in the edges. These are 
governed by the famous laws of Kirchhoff (another renowned citizen of 
Konigsberg). 

Kirchhoff's potential (or voltage) law states that the potential differences 
round any cycle XIX2 ... Xk sum to 0: 

Kirchhoff's current law postulates that the total current outflow from any 
point is 0: 

Wab + Wac + ... + Wau + Waco = O. 

Here ab, ac, ... ,au are the edges incident with a, and Waco denotes the 
amount of current that leaves the network at a. (In keeping with our con­
vention, Wcoa = -Waco is the amount of current entering the network at a). 
For vertices not connected to external points we have 

Wab + Wac + ... + Wau = O. 

Note that if we know the resistances, then the potential law can be re­
written as a restriction on the currents in the edges. Thus we may consider 
that the currents are governed by the Kirchhoff laws only; the physical 
characteristics of the network (the resistances) affect only the parameters in 
these laws. 

It is also easily seen that the potential law is equivalent to saying that one 
can assign absolute potentials Va, Yt" ... to the vertices a, b, ... so that the 
potential difference between a and b is Va - Yt, = Pab. If the network is 
connected and the potential differences Pab are given for the edges, then we 
are free to choose arbitrarily the potential of one of the vertices, say Va, but 
then all the other potentials are determined. In this section we shall work 
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with the potentials, usually choosing the potential of one of the vertices to 
be 0, but we must keep in mind that this is the same as the application of the 
voltage law. 

In the most fundamental problems current is only allowed to enter the 
network at a single point s, the source, and only leave it at another point t, 
the sink. (We shall indicate later that the general problem can be reduced 
to these fundamental problems.) If the size of the current from s to t is w 
and the potential difference between sand t is p, then by Ohm's law r = p/w 
is the total resistance of the network between sand t. As an example of the 
use of the Kirchhoff laws we shall evaluate the total resistance between sand 
t of the simple network shown in Figure Ill. 

s 

....... --... b ....... --... vb = 2(\ - e) 

Figure 11.1. The resistances, the currents and the potentials. 

This network has 5 resistors, of values 1,2,3,4 and 5 ohms, as shown in 
the first picture. If we suppose that a unit current flows into the system at s 
and leaves it at t, then the consequent edge currents must be as in the second 
picture, for suitable values of e andf. Finally, the potentials Vr = 0, Va, V/" V. 
assigned to the vertices must satisfy Ohm's law, so Va = 1 . e = e, V/, = 
2(1 - e) and V. = Va + 5(e + f) = 6e + 5f. Ohm's law has to be satisfied 
in two more edges, ab and bs, giving us 

v,. = e = V/, + 3f = 2(1 - e) + 3f 

and 

v. = 6e + 5f = Vb + 4(1 - e - f) = 2(1 - e) + 4(1 - e - f). 

Hence 

e = 2 - 2e + 3f 

and 

6e + 5f = 6 - 6e - 4{, 

giving e = 4/7, f = -2/21 and v" = 6e + 5f = 62/21. In particular, the 
total resistance from s to t is (v" - Vr)/w = 62/21. 

The calculations are often simplified if we note that Kirchhoff's equations 
are linear and homogeneous in all currents and potential differences. This 
implies the so-called principle of superposition: any combination of solutions 
is again a solution. As an application of the principle of superposition one 
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can show that any current resulting from multiple sources and sinks can be 
obtained by superposing flows belonging to one source and one sink, that is 
solutions of the fundamental problems mentioned above can be used to 
solve the general problem. Furthermore, the principle of superposition implies 
immediately that there is at most one solution, no matter how the sources 
and sinks are distributed. Indeed, the difference of two distinct solutions is a 
flow in which no current enters or leaves the network at any point. If in 
this flow there is a positive current in some edge from a to b, then by the 
current law a positive current must go from b to c, then from c to d, etc., 
giving a trail abed . ... Since the network is finite, this trail has to return 
to a point previously visited. Thus we obtain a circuit in whose edges positive 
currents flow in one direction. But this is impossible since it implies that the 
potential of each vertex is strictly greater than that of the next one round 
the circuit. 

Before proving the existence of a solution (which is obvious if we believe 
in the physical interpretation), we shall calculate the total resistance of two 
networks. Unless the networks are very small, the calculations can get very 
heavy, and electrical engineers have a number of standard tricks to make them 
easier. 

The very simple networks of Figure 11.2 show two resistors r1 and r2 
connected first in series and then in parallel. Let us put a current of size 1 

s 

a 

Figure II.2. Resistors connected in series and in parallel. 

through the networks, from s to t. What are the total resistances? In the first 
case 

v., = r1 and V. = v., + r2 = r1 + r2 

so the total resistance is 

r = r1 + r2' 

In the second case, when they are connected in parallel, if a current of size e 
goes through the first resistor and so a current of size 1 - e through the 
second, then 
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and the total resistance is given by 

1 1 1 
or - = - +-. 

r r1 r2 

This indicates that reciprocals of resistances, or conductances, are just as 
natural as the resistances themselves, and indeed are slightly more convenient 
in our presentation, especially in §3. (The conductance of an edge of resistance 
1 ohm is 1 mho). What we have shown now is that for series connection the 
resistances add and for parallel connection the conductances add. 

The use of conductances is particularly convenient when considering 
certain limiting cases of Ohm's law. If the resistance of an edge ab is 0, then 
we necessarily have v" = JIb, and from an electrical point of view the vertices 
can be regarded as identical. In the usual slang, a has been" shorted" (short­
circuited) to b. Of course, a may be shorted to b if there is some other reason 
why v" = JIb. At the other extreme, we can introduce edges of 0 conductance 
without effecting the currents and potentials. Conversely, we make an edge 
have 0 conductance by "cutting" it. Of course, an edge of 0 resistance is said 
to have 00 conductance and an edge of 0 conductance is said to have 00 

resistance. 
Let us see now how the acquaintance with resistors in series and in parallel 

and the possibility of shorting vertices can help us to determine the total 
resistance. As an example, let us take the network formed by the edges of a 
cube, in which each edge has 1 ohm resistance. What is the total resistance 
across an edge st? Using the notation of the first picture in Figure 11.3, 
we see that by symmetry v" = .v" and ~ = VI' so c can be shorted to a and f 
to d, giving us the second picture. From now on we can simplify resistors 
connected parallel and in series, until we find that the total resistance is 172' 

Knowing this, it is easy to recover the entire current flow. 
Another important device in practical calculations is the so-called 

star-delta transformation. If a vertex v is joined to just three vertices, say 

b 

e 

f 

s tat b 

] I! I 
! d ! e 

r] 
t t d 

Figure II.3. Calculating the total resistance of a cube. 
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a 

.{c 
b~C 

Figure 11.4. The star-delta transformation; S = AB + BC + CA. 
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a, band e, by edges of resistances A, Band C, then we call v the center of a 
star, as in the first picture of Figure II.4. If no current is allowed to enter or 
leave at v, then we are allowed to replace this star by the delta-configuration 
shown in the second picture of Figure II.3, because, as the reader should 
check, these two networks have the same total resistances across all three 
pairs ab, be and ca. Of course we may apply the transformation in reverse, 
replacing A', B', C' by A = B'C'/T, B = C'A'/T and C = A'B'/T, where 
T = A' + B' + C'. Incidentally, the formulae become symmetrical if we 
use resistances in the first transformation and conductances in the second: 
A' = B + C + BCjA, and a = {3' + y' + {3'y'/a', where a, {3, ... are the 
conductances. 

As an application of the star-delta transformation, let us calculate the 
total resistance of a tetrahedron across an edge, in which the resistances are 
as in Figure II.5. The pictures speak for themselves. 

J. 
2 

1 
2 

1 J. 
4 

1 5 ! 
'- l '-4 4 

Figure II.5. Applications of the star-delta transformation. 

We shall conclude this section on a slightly more theoretical note: we 
shall prove the existence of a solution. More precisely, we shall show that if a 
current of size 1 is put through a network then the current in an edge can be 
expressed in terms of the numbers of certain spanning trees. For simplicity 
we assume that the graph G of the network is connected, each edge has unit 
resistance, and a current of size 1 enters at a vertex s and leaves at t. 
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Theorem 1. Given an edge ab, denote by N(s, a, b, t) the number of spanning 
trees of G in which the (unique) path from s to t contains a and b, in this order. 
Define N(s, b, a, t) analogously and write N for the total number of spanning 
trees. Finally, let Wab = {N(s, a, b, t) - N(s, b, a, t)}/N. 

Distribute currents in the edges of G by sending a current of size wabfrom 
a to b for every edge abo Then there is a total current size 1from s to t satisfying 
the Kirchhoff laws. 

PROOF. For each spanning tree T there is exactly one neighbour XT of s 
that is on the Sot path P T contained in T. Hence Lber(s) N(s, s, b, t) = N, 
where r(s) is the set of neighbours of s. Since N(s, b, s, t) = 0 for every vertex 
bEr(S), we find that Lber(s)Wsb = 1. By symmetry Laer(t) Wat = 1; so 
Kirchhoff's current law is satisfied at sand t provided a current of size 1 
enters the network at s and leaves it at t. 

To prove the theorem we have to show that ifno current is allowed to enter 
or leave the network at any other point then the current and potential laws 
are satisfied. 

Let us take the current law first; to simplify the situation multiply all 
currents by N. What is the contribution of a spanning tree T to the current 
entering and leaving a vertex y distinct from sand t? If y is not on the Sot 
path PT then T contributes nothing to N(s, x, y, t) or N(s, y, x, t). Now if y is 
on the Sot path PT , say PT = s ... xyz ... t, then T contributes 1 to 
N(s, y, z, t) and it also contributes 1 to N(s, x, y, t). In other words T con­
tributes a current of size 1 from y and a current of size 1 into y. Thus the 
current law is satisfied. 

As all edges have the same resistance, the potential law claims that the 
total current in a cycle with some orientation is zero. To show this we proceed 
as earlier, but first reformulate slightly the definition of N(s, a, b, t). Call a 
forest F a thicket if it has exactly two components, say Fs and Fp such that 
s is in Fs and t is in Ft. Then N(s, a, b, t) is the number ofthickets F = Fs u Ft 
for which a E Fs and bE Ft and N(s, b, a, t) is defined analogously. What is 
then the contribution of a thicket F = Fs u F t to the total current in a 
cycle? It is the number of cycle edges from Fs to Ft minus the number of 
cycle edges from Ft to Fs; so it is zero. 0 

The proof above can be rewritten word for word to give a solution in 
the case when the edges have arbitrary conductances. For a spanning tree T 
define the weight w(T) of T as the product of the conductances of its edges. 
Let N* be the sum of the weights of all the spanning trees, let N*(s, a, b, t) 
be the sum of the weights of all the spanning trees in which b follows a on 
the (unique) Sot path in the tree, and let N*(s, b, a, t) = N*(t, a, b, s). 

Theorem 2. There is a distribution of currents satisfying Kirchhoff's laws in 
which a current of size 1 enters at s and leaves at t. The value of the current in 
and edge ab is given by {N*(s, a, b, t) - N*(s, b, a, t)}/N.* 0 
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Corollary 3. If the conductances of the edges are rational and a current of size 
1 goes through the network then the current in each edge has rational value. 

D 

§2 Squaring the Square 

This is a diversion within a diversion; we feel bound to draw attention to a 
famous problem arising from recreational mathematics which is related to 
the theory of electrical networks. Is there a perfect squared square? In other 
words, is it possible to subdivide a closed square into finitely many (but 
at least two) square regions of distinct sizes that intersect only at their 
boundaries? 

Let us consider a squared rectangle, say the one shown in Figure II.6; 
the number in a square is the length of its side. Let us cut this rectangle out 
ofa sheet of nichrome (or any other material with low conductivity) and let us 
put rods made of silver (or some other material of high conductivity) at the 
top and bottom. 

2 

4 

2 

3 3 

Figure II.6. A (non-perfect) squaring of a 6 x 7 rectangle. 

What happens if we ensure that the silver rod at the top is at 7 volts while 
the rod at the bottom is kept at O? Of course a uniform current will flow 
from top to bottom. In fact the potential at a point of the rectangle will 
depend only on the height of the point: the potential at height x will be x 
volts. Furthermore, there will be no current across the rectangle, only from 
top to bottom. Thus the current will not change at all if (i) we place silver 
rods on the horizontal sides of the squares and (ii) cut narrow slits along 
the vertical sides, as shown in the first picture of Figure II.7. 

Now since silver is a very good conductor, the points of each silver rod 
have been shortened, so can be identified. Thus as an electric conductor the 
whole rectangle behaves like. the plane network shown in the second picture 
of Figure II.7, in which the conductance of an edge is equal to the conductance 
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Figure II.7. The electrical network associated with our rectangle. 

of the corresponding square from top to bottom. Clearly the conductance of 
a rectangle from top to bottom is proportional to the length of a horizontal 
side and the resistance is proportional to a vertical side. Consequently all 
squares have the same resistance, say unit resistance, so all edges in Figure 
II.7 have unit resistance. What is the potential drop in an edge? It is the side 
length of the corresponding square. What is the resistance of the whole 
system? The ratio of the horizontal side of the original big rectangle to the 
vertical side, that is t. 

Since the process above is reversible, that is every squared rectangle can 
be obtained from some network we have an effective tool to help us in our 
search for squared squares. Take a connected planar graph G and turn it 
into an electrical network by giving each edge resistance 1. Calculate the 
total resistance from a vertex s to a vertex t. If this is also 1, the network may 
correspond to a suitably squared square. If the potential differences in the 
edges are all distinct, all squares have different sizes, so we have a perfect 
squared square. 

Of course, at this stage our problem is far from being solved; we do not 
even know that there must exist a squared square. However, we have a chance 
to search systematically for a solution. Many squared squares have been 
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Figure II.8. A perfect squared square: a tiling of a square with 21 incongruent squares. 



§3 Vector Spaces and Matrices Associated with Graphs 35 

found with the help of computers, but the first examples were found without 
computers by Sprague in 1939 and by Brooks, Smith, Stone and Tutte in 
1940. The smallest number of squares that can tile a square is 21; Figure 11.8 
shows this tiling, due to Duijvestijn. In fact, this is the only tiling of order 21. 

The connection between squaring a rectangle and electrical networks 
gives us immediately a beautiful result first proved by Dehn in 1903. Corollary 
3 tells us that if each edge has resistance 1 and a current of size 1 flows 
through the system then in each edge the value of the current is rational. 
This translates to the following result about squared rectangles. 

Theorem 4. If a rectangle can be tiled with squares then the ratio of two 
neighbouring sides of the rectangle is rational. 0 

Equivalently: a rectangle can be tiled with squares iff it can be tiled with 
congruent squares. 

It is easily seen that electrical networks can be used to obtain tilings of 
rectangles of prescribed shapes: an edge e of resistance r corresponds to a 
rectangle in which the height is r times the base. The reader is encouraged to 
solve the exercises based on this simple idea (Exercises 9-12); some other 
exercises concern related packing problems (Exercises 13-15). 

§3 Vector Spaces and Matrices Associated with 
Graphs 

The vertex space Co(G) of a graph G is the complex vector space of all 
functions from V( G) into C. Similarly the edge space C I (G) is the complex 
vector space of all functions from E(G) into C. In these definitions it is 
sometimes convenient to replace the complex field by F 2, the field of order 2, 
or by other fields. We shall take V(G) = {Vb V2, ... ' vn} and E(G) = 

reb e2'···' em} so that dim Co(G) = nand CI(G) = m. The elements of 
Co(G) are usually written in the form x = Ii'=1 XiVi or x = (Xi)'i. The sum 
Ii' = 1 Xi Vi is a formal sum of the vertices but if we think of Vi as the function 
V(G) ~ C which is 0 everywhere, except at the vertex Vi' where it is 1, then 
VI' ... ' Vn is a basis of Co(G) and the sum above simply expresses an element 
in terms of the basis elements. Similarly an element of C I (G) may be written 
as y = I~ I Yiei or Y = (Yi)7· We call (VI' ... , vrn) the standard basis of the 
vertex space Co(G) and (e 1, ... , em) the standard basis of the edge space. 
We shall endow these spaces with the inner product in which the standard 
bases are orthonormal: <x, y) = Ii XiYi. 

In this section we shall be concerned mostly with the edge space CI(G); 
to start with we define two subspaces which will turn out to be orthogonal 
complements of each other. Let L be a cycle in G with a given cyclic orienta­
tion L = U I U 2 .•. u/. If ei ~ UjUj + I and ei is oriented from uj to uj + I then 
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Figure 11.9. If the thick cycle L is oriented anti-clockwise, its vector in C 1 (L) is 
ZL = ( - 1, 1, 1, - 1, 1, 0, ... , 0). 

we say that ei is oriented as L. This oriented cycle L can be identified with 
an element ZL of C I (G): 

{ 
1 if ei E E(L) and ei is oriented as L, 

zL(e;) = -1 if ei E E(L) and ei is not oriented as L, 

a if ei ~ E(L). 

A simple example is shown in Figure II.9. Denote by Z(G) the subspace 
of CI(G) spanned by the vectors ZL as L runs over the set of cycles; Z(G) is 
the cycle space of G. 

Let now P be a partition V = VI U V2 of the vertex set of G. Consider the 
set (VI' V2) of edges from VI to V2 ; such a set of edges is called a cut. There 
is a vector up in CI(G) called a cut vector, naturally associated with this 
partition P: 

{ 
1 if ei goes from VI to V2 

up(ei) = -1 if ei goes from V2 to VI 
a if e ~ E(VI , V2). 

We write U(G) for the subspace of the edge space CI(G) spanned by all the 
cut vectors up; U(G) is the cut (or cocycle) space of G. 

Theorem 5. The inner product space C I (G) is the orthogonal direct sum of 
the cycle space Z(G) and the cut space U(G). If G has n vertices, m edges and 
k components then 

dim Z(G) = m - n + k and dim U(G) = n - k. 

PROOF. Let us see first that Z(G) and U(G) are orthogonal. Let L be a cycle 
and P a partition V = VI U V2 • What is the product (ZL' up)? It is simply 
the number of edges of L going from VI to V2 in the orientation of L, minus 
the number of edges of L from V2 to VI' Thus (ZL, up) = a for every cycle L 
and partition P, so Z(G) and U(G) are indeed orthogonal. 

Since the dimension of CI(G) is the number of edges, m, both assertions 
will be proved if we show that dim Z(G) ;;::: m - n + 1 and dim U(G) ;;::: 
n - 1. We shall first prove this under the assumption that G is connected; 
the general case will follow easily. 
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Thus let us assume that G is connected, that is k = 1. Let T be a spanning 
tree of G. We shall make use of T to exhibit m - n + 1 independent vectors 
in Z(G) and n - 1 independent vectors in U(G). We may choose the indices 
of the edges in such a way that el' e2"'" en-l are the tree edges and en' 
en+ 1, ... , em are the remaining edges, the chords of T. 

We know that for every chord ei (i 2=: n) there is a (unique) oriented cycle 
C such that zc.(e;) = 1 and zc.(e) = 0 for every other chord ej' that is 
whenever j 2=: nand j #- i. (Shortly: zc.(e) = ()ij if j 2=: n, where ()ij is the 
Kronecker delta.) We call Ci the fundamental cycle belonging to ei (with 
respect to T); zc; is a fundamental cycle vector (see Figure II.10). Similarly by 

Figure 11.10. The fundamental cycle vector belonging to e9 is zc; = e9 - e2 + e1 + 
e4 - e6 , the fundamental cut vector belonging to e4 is up, = e4 - elO - e9 . 

deleting an edge ei of T the remainder of the spanning tree falls into two 
components. Let Vii be the vertex set of the component containing the 
initial vertex of ei and let V~ be the vertex set of the component containing 
the terminal vertex of ei' If Pi is the partition V = V~ u V~ then clearly 
uple) = ()ij for 1 ~ j ~ n - 1. The cut E(VL V~) is the fundamental cut 
belonging to ei (with respect to T) and up; is the fundamental cut vector. 

It is easily seen that {zc;: n ~ i ~ m} is an independent set of cycle vectors. 
Indeed, if z = Li"=n AiZC; = 0 then for every j 2=: n we have 0 = z(e) = 
Li"=n Ai()ij = Yj and so every coefficient A.j is O. Similarly the fundamental 
cut vectors up;, 1 ~ i ~ n - 1, are also independent. Hence dim Z(G) 2=: 
m - n + 1 and dim U(G) 2=: n - 1, as required. 

Finally, the general case k 2=: 1 follows immediately from the case k = 1. 
For if G has components G1, G2 , ... , Gk then C 1 (G) is the orthogonal direct 
sum of the subspaces C 1(G;), i = 1,2, ... , k; furthermore Z(G i ) = 
Z(G) n C1(G i ) and U(G;) = U(G) n C1(G;), 0 

The proof above shows that dim Z(G), called the cyclomatic number of 
G, and dim U(G) are independent of the field over which the edge space is 
defined. The use of a spanning tree in the proof is not compulsory; in some 
cases, for instance in the case of a planar graph, there are other natural cycle 
and cut bases (cf. Exercise 16). 
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There are several matrices naturally associated with a graph and its 
vector spaces discussed above. The adjacency matrix A = A(G) = (ai) of a 
graph G is the n x n matrix given by 

a .. = {I ifvivjEE(G), 
I) 0 otherwise. 

In order to define the incidence matrix of a graph we again consider an 
orientation of the edges, as in the definition of the cycle and cut spaces. The 
incidence matrix B = B( G) = (bi) of G is the n x m matrix defined by 

{
I if Vi is the initial vertex of the edge ej' 

bij = -1 if Vi is the terminal vertex of the edge ej' 
o otherwise. 

There is a simple connection between the two matrices A and B. 

Theorem 6. BBt = D - A, where Bt denotes the transpose of Band D is the 
n x n diagonal matrix in which (D)ii is d(v;), the degree of the vertex Vi in G. 

PROOF. What is (BBt)i/ It is Li= 1 bi/bjz, which is d(vi) if i = j, -1 if ViVj is 
an edge (if el = ViVj is directed from Vi to Vj' then bi/bjl = 1( -1) = -1 
and all other products are 0), and 0 if Vi Vj is not an edge and i # j. 0 

We may and will identify the matrices A and B with the linear maps 
A: Co( G) -+ Co( G) and B: C 1 (G) -+ Co( G) they define in the standard bases: 
(AX)i = LJ= 1 aijXj and (BY)i = Lj= 1 bijYj· If we wanted to be pedantic, 
we would write the vectors in the vertex and edge spaces as column vectors, 
or we would put Axt and Byt, where t stands for transposition; we shall not 
do this since there is no danger of confusion. If C is a cycle then clearly 
Bzc = 0 E Co( G); in fact, it is easily shown (cf. Exercise 17) that the cycle 
space is exactly the kernel of B. Thus the rank of B is reB) = m - (m - n + k) 
= n - k. Furthermore, the transpose of B maps Co(G) into C1(G), and the 
image of Bt is exactly the cut space (cf. Exercise 18). 

In Chapter VIII we shall discuss in some detail the eigenvalues and eigen­
vectors of the adjacency matrix; in this section we shall use the matrices to 
solve the electrical network problem discussed in the first section. In fact, 
it was Kirchhoff who first realized the applicability of matrix algebra to 
graph theory, exactly in connection with the electrical network problem. 

How can we formulate the Kirchhoff laws in terms of matrices and vectors 
in the edge space? Let us assume that G' is the graph of our electrical network; 
V(G') = {Vb V2,"" Vn- d, E(G') = {el, e2,···' em'}' the network is con­
nected and we have a voltage generator ensuring that the potential difference 
between Vi and Vj is gi - gj volts for 1 :::; i < j :::; k. In order to express 
Kirchhoff's laws in a neat form, we add a vertex Vn to G', and join it to 
Vb V2"'" Vk; the new graph is G. Let m = m' + k and em'+l = VnVi, i = 
1,2, ... , k, so that V(G) = {Vl, C2"'" vn} and E(G) = {el, e2"'" em}. 
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Give the edges of G' an arbitrary orientation and let Wi be the amount of 
current flowing in the edge ei in the direction of ei; thus Wi = -1 means a 
current of 1 ampere in the opposite direction. Direct each new edge em' + i 

from Vn to Vi and let Wm, + i be the total current entering the network at Vi. 
Once again, W m' + i = - 1 means that a current of 1 ampere leaves the network 
at Vi. The vector w = (W b W2' ' .. , Wm) E C 1 (G) is the current vector. In this 
notation Kirchhoff's current law takes the form 

Bw= O. (1) 

We have no greater difficulty in formulating Kirchhoff's potential law 
in matrix form. Let Pi be the potential difference in the edge ei and let P = 
(PI, P2' . , . , Pm) E C I (G) be the potential vector. The potential law states that 
<z, p) = ° for every cycle Z E C I (G). Instead of postulating this about every 
cycle, we collect all necessary information into a single matrix. As before, we 
choose a spanning tree Tin G and label the edges so that el' e2' "., en-I 
are the tree edges and en, en+ b .. " em are the chords, Let C be the m x 
(m - n + 1) matrix whose ith column is the fundamental cycle vector 
ZCn _l+; belonging to the edge en -1+i, i = 1,2, ... , m - n + 1. Since the 
fundamental cycle vectors form a basis of the cycle space, the potential law 
takes the form 

Cp = 0, (2) 

where C denotes the transpose of C. 
Now in order to find the current through the edges of G' we need one 

more equation, namely the equation relating the potential to the current, 
the conductance and the voltage generator. For i ::s; m' let di be the con­
ductance of the edge ei and postulate that each new edge ej (j ~ m' + 1) 
has conductance dj = 0. We may assume that di > ° for every i ::s; m' since 
otherwise the edge ei could have been cut. Let D be the m x m diagonal 
matrix with (D)ii = d i • Finally, let g = (0, ... ,0, gl' g2' , .. , gk) E C1(G) be 
the vector of the voltage generator. Then clearly 

p = Dw + g. (3) 

This equation contains all the information we have about the electric current 
in addition to the Kirchhoff laws, 

In order to solve (1), (2) and (3) forw and p, we shall split C 1(G) as ET + EN, 
where ET is the subspace spanned by the tree edges and EN is spanned by the 
chords, the edges not belonging to T. Let w = (WT' wN) and p = (PT, PN) 
be the corresponding splittings; furthermore, writing 1J for the matrix 
obtained from B by omitting the last row, we have 

C = (~:) and 1J = (BTBN ). 

As the columns of C are the fundamental cycles, CN is the (m - n + 1) x 
(m - n + 1) identity matrix 1m _ n + I. Since the kernel of B contains the cycles, 



40 II Electrical Networks 

BC = ° and so BC = 0, giving BTCT = -BN. Now BT is invertible, as the 
reader should check (cf. Exercise 19), so 

CT = -Bi1BN· 

After this preparation we can easily solve our equations. 

Theorem 7. The electric current W satisfying p = Dw + g is given by w = 
- C(CDC)-lCg. 

PROOF. Equation (1) implies that BTwT + BNwN = 0, so WT = -Bi1BNwN 
= CTWN. Hence w = CwN. Combining (2) and (3) we find that CDw + 
Ctg = 0 and so (CDC)wN = - Cg. As CDC is easily shown to be invertible, 
the result follows. 0 

Clearly Theorem 7 is valid in a somewhat more general situation, not 
only when G and g are defined as above. In fact, the following conditions are 
sufficient (and more or less necessary) for the existence of a unique current 
w: gA = ° for every i and the edges ej with dj > ° form a connected subgraph. 

Furthermore, the results hold for multigraphs, that is "graphs" in which 
several edges may join the same pair of vertices. The reader may find it 
necessary to check that all the concepts (incidence matrix, cycle and cut 
spaces, fundamental cycles and cuts) can be defined as before and the proofs 
of the results remain unchanged. 

By considering multigraphs one can set up Theorem 7 in a slightly simpler 
form without adding a new vertex to the graph G' of the network. Thus if the 
current enters G' at a vertex and leaves it at a vertex b, then we join a to b by a 
new edge e of ° conductance (even if a and b had been joined before), and 
postulate (by choosing g = (0, 0, ... , 0, 1), where e is the last edge) that the 
potential difference in e is 1. Using this set-up one can check that the ratio 
of the current in ei to the total current (that is the current in e) is indeed 
given by Theorem 1 of §1, though this checking is rather tedious and involved. 
On the other hand, it is very easy to express the total number of spanning 
trees in a graph in terms of the incidence matrix. 

To do this we make use of two facts. The first is an extension ofthe observa­
tion that BT is invertible: the modulus of the determinant of an (n - 1) 
x (n - 1) submatrix of B is 1 if the edges corresponding to the columns 

form a tree and ° otherwise (cf. Exercise 19). The second is the Cauchy-Binet 
formula oflinear algebra, stating that if K is a p x q matrix (p :::; q) and L is a 
q x p matrix then det KL = Lpdet KpLp = Lpdet Kp det Lp. Here the 
summation is over all p-subsets P of {l, 2, ... , q}, and Kp is the p x p sub­
matrix of K formed by the columns of K indexed with elements of P and Lp is 
the submatrix of L formed by the corresponding rows of L. Putting the two 
together we arrive at the following formula. 

Theorem 8. The number of spanning trees of G is det BBt. o 



Exercises 41 

EXERCISES 

1.- Verify the formulae in the star-delta transformation. 

In Exercises 2-6 all edges are assumed to have unit resistance. 

2.- Calculate the resistance of the network shown in Figure Ll measured between the 
vertices 2 and 3. 

3. For each different pair of vertices of a cube calculate the resistance between them. 

4. What is the resistance between two adjacent vertices of (a) an octahedron, (b) a 
dodecahedron and (c) an icosahedron? 

5. Suppose each edge of a connected network is in the same number of spanning 
trees. Prove that the total resistance between two adjacent vertices is (n - 1)/e, 
where n is the order and e is the size of the network. Verify your answers to 
Exercise 4. 

6. By applying suitable star-delta transformations, calculate the resistance of a 
dodecahedron between the midpoints of two adjacent edges. 

7. Give a detailed proof of Theorem 2. 

8. Find the squared rectangle indicated in Figure ILl I. 

Figure 1I.11. A squaring of the 69 x 61 rectangle. 

9. Which squared rectangle corresponds to the network in Figure 1I.12? Rotate the 
rectangle through 90° and draw the network for this rectangle. 

Figure 1I.12. A plane network. 

10.- How many essentially different squared rectangles correspond to the network 
of the cube in Exercise 3? 
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11. Find the tiling associated with Figure 11.13. 

t 2 

Figure 11.13. A network with edges of differing resistance. 

12. Find the simple perfect squared square given by the network in Figure 11.14. 
(This example was found in 1964 by J. Wilson.) 

Figure 11.14. A network giving a perfect square. 

13. Show that an equilateral triangle cannot be dissected into finitely many in­
congruent equilateral triangles. 

14.- Prove that if a rectangular parallelepiped can be decomposed into cubes then the 
ratios of its sides are rational. 

15. Show that a cube cannot be dissected into finitely many incongruent cubes. 

16. Show that in a plane graph the boundaries of bounded faces form a. cycle basis. 

17. Show that the cycle space is the kernel of the map C I (G) -+ C o( G) defined by the 
incidence matrix B. 

18. Let B' be the transpose of B. Show that the cut space is the image of the map 
Co(G) -+ C1(G) defined by B'. 

19. Let F be a set of n - 1 edges of a graph of order n with incidence matrix B. Let 
Bf" be an (n - 1) x (n - 1) submatrix of B whose columns correspond to the 
edges of F. Prove that BF is invertible iff F is the edge set of a tree. 

20. Deduce from Theorem 8 that there are n" - 2 trees on n distinguishable vertices. 
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Notes 

The first squared square was published by R. Sprague, Beispiel einer Zer­
legung des Quadrats in lauter verschiedene Quadrate, J. Reine Angew. Math. 
182 (1940) 60-64, closely followed by R. L. Brooks, C. A. B. Smith, A. H. 
Stone and W. T. Tutte, The dissection of rectangles into squares, Duke Math. 
J. 7 (1940) 312-340. The square shown in Fig. 8 was published in A. J. W. 
Duijvestijn, Simple perfect square of lowest order, J. Combinational Theory 
Ser. B 25 (1978) 240-243. 

The original proof of Theorem 4 is due to Max Dehn, Uber die Zer­
legung von Rechtecken in Rechtecke, Math. Ann. 57 (1903) 314-322. Two 
survey articles the reader may wish to look at are W. T. Tutte, The quest of 
the perfect square, Amer. Math. Monthly 72 (1965),29-35 and N. D. Kaza­
rinoff and R. Weitzenkamp, Squaring rectangles and squares, Amer. Math. 
Monthly 80 (1973) 877-888. 



CHAPTER III 

Flows, Connectivity and Matching 

The results of this chapter have many applications in diverse branches in 
mathematics; in particular, Hall's marriage theorem is a useful tool in 
algebra and analysis. Every result we are going to present is a necessary and 
sufficient condition for the existence of certain objects: in each case the 
beauty of the theorem is that a condition whose necessity is obvious is shown 
to be also sufficient. In the natural formulation of our results we shall have 
two functions, say J and g, clearly satisfyingJ :s; g, and we shall show that 
max J = min g. The results of the chapter are closely interrelated so the 
order they are proved in is a matter of taste; to emphasize this, some results 
will be given several proofs. 

In the first chapter we looked at the simplest properties of connectivity. 
Now we shall go a step further and in §2 we shall prove the basic theorem 
about connectivity, namely Menger's theorem, first proved in 1927. This 
theorem turns out to be one of the many consequences of a fundamental 
theorem about flows in directed graphs, the max-flow min-cut theorem. 

Though this book is devoted almost exclusively to undirected graphs, we 
introduce in the first paragraph the concept of a flow in a directed graph 
and go on to prove the max-flow min-cut theorem, partly because it pro­
vides one of the simplest proofs of Menger's theorem and partly because 
it has a number of other important consequences concerning undirected 
graphs. 

A set of independent edges in a graph is called a matching. In a bipartite 
graph a matching can be identified with a flow and the max-flow min-cut 
theorem takes the form of another widely applicable combinatorial result, 
Hall's marriage theorem. We discuss various forms of this result in §3. 

Though we deduce the theorems of both Menger and Hall from the 
max-flow min-cut theorem, the results are in fact very closely related, and 

44 
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because of their fundamental importance we give also independent proofs 
of each. 

Hall's theorem tells us, in particular, when a bipartite graph has got a 
ijactor, a subgraph whose vertex set is that of the original graph and in 
which every vertex has degree 1. The question of the existence of a i-factor 
in an arbitrary graph is considerably harder. It is answered by a theorem of 
Tutte that we present in §4. 

§ 1 Flows in Directed Graphs 

Let G be a (finite) directed graph with vertex set V and edge set if. We shall 
study (static) flows in G from a vertex s (the source) to a vertex t (the sink). 
A flow Jis a non-negative function defined on the edges; the value J(xy) 
is the flow or current in the edge xy. For notational simplicity we shall write 
J(x, y) instead ofJ(xy) and a similar convention will be used for other func­
tions. The only condition a flow from s to t has to satisfy is Kirchhoff's 
current law: the total current flowing into each intermediate vertex (that is 
vertex different from sand t) is equal to the total current leaving the vertex. 
Thus if for x E V we put 

r+(x) = {y E V: xy E if}, 

r-(x) = {y E V: yx E if}, 

then a flow Jrom s to t satisfies the following condition: 

L J(x, y) = L J(z, x) for each x E V - {s, t}. 
YEf+(x) ZEf-(x) 

Since 

o = L {L J(x, y) - L J(z, X)} 
XEV-{S,t} YEf+(x) ZEf-(x) 

uItJ tJ~(u/(Z' u) - YEh(u/(u, Z)} 
we find that 

L J(s, y) - L J(y, s) = L J(Y, t) - L J(t, y). 
YEf+(s) YEf-(s) YEf-(t) YEf+(t) 

The common value, denoted by v(f), is called the value oj J or the amlJunt oj 
flow from s to t. 

We wish to determine the maximal flow value from s to t provided the 
flow satisfies certain constraints. First we shall deal with the case when the 
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so called capacity of an edge restricts the current through the edge. It will 
turn out that several other seemingly more complicated restrictions can be 
reduced to this case. 

Let us fix our directed graph G = (V, £) and two vertices in it, say sand 
t. With each edge xy of G we associate a non-negative number c(x, y), called 
the capacity of the edge. We shall assume that the current flowing through 
the edge xy cannot be more than the capacity c(x, y). 

Given two subsets X, Y of V we write £(X, Y) for the set of directed 
X-Yedges: 

£(X, Y) = {XY:XEX,yE Y}. 

Whenever g: £ -+ IR is a function, we put 

g(X, Y) = I g(x, y), 

where the summation is over £(X, Y). If S is a subset of V containing s but 
nott then £(S, S) is called a cut separating s from t. (Here S = V - S.) If 
we delete the edges of a cut then no positive-valued flow from s to t can be 
defined on the remainder. Conversely, it is easily seen that if F is a set of 
edges after whose deletion there is no flow from s to t (that is v(f) = 0 for 
every flow from s to t) then F contains a cut (Exercise 1). The capacity of a 
cut £(S, S) is c(S, S) (see Figure III.l). It is easily seen (Exercise 2) that the 
capacity of a cut is at least as large as the value of any flow, so the minimum 
of all cut capacities is at least as large as the maximum of all flow values. 
The celebrated max-flow min-cut theorem of Ford and Fulkerson states 
that this trivial inequality is, in fact, an equality. Before stating this theorem 
and getting down to the proof, let us justify the above use of the words 
minimum and maximum. Since there are only finitely many cuts, there is a 
cut whose capacity is minimal. The existence of a flow with maximal value 
is only slightly less trivial. Indeed, 

v(f) ~ I c(x, y) 
xyEif 

for every flow I, so v = sup v(f) < 00. Let II> 12, ... be a sequence of flows 
with limn v(fn) = v. Then, by passing to a subsequence, we may assume that 
for each xy E £ the sequence (fix, y» is convergent, say to I(x, y). The 
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Figure IIU. A cut with capacity 12. (The numbers next to the edges indicate their 
capacity.) 
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functionfis a flow with value v, that is a flow with maximal value. In a similar 
way one can show that even if some of the edges have infinite capacity, there 
is a flow with maximal value which can be either finite or infinite (Exercise 3). 

Theorem 1. (Max-flow min-cut theorem.) The maximal flow value from s to t 
is equal to the minimum of the capacities of cuts separating s from t. 

PROOF. We have remarked already that there is a flow fwith maximal value, 
say v, and the capacity of every cut is at least v. Thus, in order to prove the 
theorem we have to show that there is a cut with capacity v. We shall, in 
fact, do considerably more than this: we shall give a very simple procedure 
for constructing such a cut from a flow fwith maximal value. 

Define a subset S c V recursively as follows. Let s E S. If XES and 

c(x, y) > f(x, y) 

or 

f(y, x) > 0 

then let yES. 
We claim that £(S, S) is a cut separating s from t with capacity v = v(f). 

Let us see first why t cannot belong to S. If t belongs to S, we can find vertices 
Xo = s, Xl' ... , Xl = t such that 

Ci = max{c(xi, Xi+1) - f(Xi' Xi+l),f(Xi+l, x;)} > 0 

for every i, 0 sis I - 1. Put C = mini Ci' Then f can be augmented to a 
flow f* in the following way: if Ci > f(Xi+ 1> x;) then increase the flow in 

XiXi+ 1 by c, otherwise decrease the flow in Xi+ lXi by c. Clearly f* is a flow 
and its value is v(f*) = v(f) + c, contradicting the maximality of f. This 
shows that t tt s so £(S, S) is a cut separating s from t. 

Now v(f) is equal to the value of the flow from S to S defined in the ob­
vious way: 

L f(x, y) - L f(x, y). 
XES.YES XES. YES 

By the definition of S the first sum is exactly 

L c(x, y) = c(S, S) 
XES, YES 

and each summand in the second sum is zero. Hence c(S, S) = v(f), as 
required. D 

The max-flow min-cut theorem is the cornerstone of the theory to be 
presented in this chapter. Note that the theorem remains valid (with ex­
actly the same proof) if some of the edges have infinite capacity but the 
maximal flow value is finite. 

The proof of the theorem also provides a surprisingly efficient algorithm 
for finding a flow with maximal value if the capacity function is integral, 
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that is if c(x, y) is an integer for every edge xy. We start with the identically 
zero flow: fo(x, y) = 0 for every xy E E. We shall construct an increasing 
sequence of flows fo, f1' f2' ... that has to terminate in a maximal flow. 
Suppose we have constructed!;. As in the proof above, we find the set S 
belonging to j;. Now if t f. S then!; is a maximal flow (and E(S, S) is a minimal 
cut) so we terminate the sequence. If, on the other hand, t E S, then!; can be 
augmented to a flow!; + 1 by increasing the flow along a path from s to t. 
Since each v(!;) is an integer, we have v(!;) ~ V(!;-1) + 1, and the sequence 
must end in at most Lx,y c(x, y) steps. 

Moreover, if c is integral the algorithm constructs a maximal flow which 
is also integral, that is a flow whose value is an integer in every edge. Indeed, 
fo is integral and if!;_1 is integral then so is!;, since it is obtained from!;_1 
by increasing the flow in a path by a value which is the minimum of positive 
integers. This result is often called the integrality theorem. 

Theorem 2. If the capacity function is integral then there is a maximal flow 
which is also integral. 0 

We shall rely on this simple result when we use the max-flow min-cut 
theorem to find various paths in graphs. It is important to note that the 
results do not claim uniqueness: the algorithm finds one of the maximal 
flows (usually there are many) and Theorem 2 claims that one ofthe maximal 
flows is integral. 

The existence of the algorithm proves some other intuitively obvious 
results as well. For instance, there is a maximal acyclic flow, that is one which 
does not contain a flow around a cycle X 1X 2 '· .. , xk : 

It may seem somewhat surprising that if instead of one source and one 
sink we take several of each, the situation does not become any more com­
plicated. The only occasion we have to be a little more careful is the defini­
tion of a cut. If S 1, ... , Sk are the sources and t 1, ... ,tl are the sinks then 
E(S, S) is a cut if Si E Sand tj E S for every i, j, 1 :5: i :5: k, 1 :5: j ::; I. 

In order to be able to apply the max-flow min-cut theorem, let us add a 
new source S and a new sink t to G, together with all the edges SSi and tjt 
of infinite capacity. Let Ii be the graph obtained in this way. Consider those 
flows from S 1, ... , Sk to t 1, ... , tl in G in which the total current entering 
(leaving) a source (sink) is not greater than the total current leaving (en­
tering) it. These flows can easily be extended to a flow from S to t in Ii and 
this extension establishes a 1-1 correspondence between the two sets of 
flows. Furthermore, a cut separating S from t in Ii that has finite capacity 
cannot contain an edge _of the form SSi and tjt, so it corresponds to a cut 
of the same capacity in G, separating S 1, ... , Sk from t 1, ... , t l . Thus Theo­
rem 1 has the following extension. 
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Theorem 3. The maximum of the flow value from a set of sources to a set of 
sinks is equal to the minimum of the capacity of cuts separating the sources 
from the sinks. 0 

Let us assume now that we have capacity restrictions on the vertices, 
except the source and the sink. Thus we are given a function c: V - {s, t} -t 

IR + and every flow f from s to t has to satisfy the following inequality: 

I f(x, y) = L f(z, x) ~ c(x) for every x E V - {s, t}. 
YE r+ (xl Z E r- (xl 

How should we define a cut in this situation? A cut is a subset S of V - {s, t} 
such that no positive-valued flow from s to t can be defined on G-S. (In 
order to distinguish the two kinds of cuts we sometimes call this a vertex-cut 
and the other one an edge-cut. However, it is almost always clear which cut 
is in question.) Can we carryover the max-flow min-cut theorem to this 
case? Yes, very easily, if we notice that a flow can be interpreted to flow in a 
vetex as well, namely from the part where all the currents enter it to the part 
where all the currents leave it. More precisely we can turn each vertex of G 
into an edge (without changing the nature of the directed graph) in such a 
way that any current entering (and leaving) the vertex will be forced through 
the edge. To do this, replace each vertex x E V - {s, t} by two vertices, say 
x _ and x + , send each incoming edge to x _ and send each outgoing edge to 
x+. Finally, add edges from x_ to x+ with capacity c(x_, x+) = c(x) (see 
Figure 111.2). There is a simple 1-1 correspondence between the flows from 

x 

'm, 
.~ 

s 

Figure III.2. Replacing a graph G with restrictions on the capacity of the vertices by a 
graph H with restrictions on the capacity of the edges. 

s to t in G satisfying the capacity restrictions on the vertices and the flows 
in the new graph Ii satisfying the capacity restrictions on (some of) the 
edges. Since in H only the edges Lx:;. have finite capacities, an edge-cut 
of finite capacity in H consists entirely of edges of the form Lx:;. , so it 
corresponds to a vertex-cut in G of the same capacity. Thus we have the 
following form of Theorem 1. 

Theorem 4. Let G be a directed graph with capacity bounds on the vertices 
other than the source s and the sink t. Then the minimum of the capacity of a 
vertex-cut is equal to the maximum of the flow value from s to t. 
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Theorems 1, 3 and 4 can easily be combined into a single theorem. We 
leave this to the reader (Exercise 6). 

§2 Connectivity and Menger's Theorem 

RecalI that if any two vertices of a graph can be joined by a path then the 
graph is said to be connected, otherwise it is disconnected. A maximal con­
nected subgraph of a graph G is a component of G. 

If G is connected and G-W is disconnected, where W is a set of vertices 
or a set of edges, then we say that W separates G. If in G-W two vertices s 
and t belong to different components then W separates s from t. We say 
that a graph G is k-connected (k ~ 2) if either G is aKk + 1 or else it has at 
least k + 2 vertices and no set of k - 1 vertices separates it. Similarly G is 
k-edge-connected (k ~ 2) if it has at least two vertices and no set of at most 
k - 1 edges separates it. A connected graph is also said to be I-connected 
and l-edge-connected. The maximal value of k for which a connected graph 
G is k-connected is the connectivity of G, denoted by K(G). (If G is discon­
nected, we put K(G) = 0.) The edge-connectivity A(G) is defined analogously. 

Clearly a graph is 2-connected iff it is connected, has at least 3 vertices 
and contains no cut vertex. Similarly, a graph is 2-edge-connected iff it is 
connected, has at least 2 vertices and contains no bridge. It is often easy to 
determine the connectivity of a given graph. Thus if 1 ~ I ~ n then K(pl) = 
A(pl) = 1, K(e") = A(e") = 2, K(Kn) = A(Kn) = n - 1 and K(KI,n) = A(KI,n) 
= l. In order to correct the false impression that the vertex-connectivity is 
equal to the edge-connectivity, note that if G is obtained from the disjoint 
union of two Kl by adding a new vertex x and joining x to every old vertex, 
then K(G) = 1, since x is a cut vertex, but A(G) = I (see also Exercise 11). 
This last example shows that A(G - x) may be 0 even when A(G) is large. 
However, it is clear from the definitions that for every vertex x and edge xy 
we have 

K(G) - 1 ~ K(G - x) and A(G) - 1 ~ A(G - xy) ~ A(G). 

If G is non-trivial (that is has at least two vertices), then the parameters 
b( G), ,1,( G) and K( G) satisfy the folIowing inequality: 

K(G) ~ A(G) ~ b(G). 

Indeed, if we delete alI the edges incident with a vertex, the graph becomes 
disconnected, so the second inequality holds. To see the other inequality, 
note first that if G is complete then K( G) = ,1,( G) = I G I - 1, and if K( G) ~ 1 
then A(G) = K(G). Suppose now that G is not complete, A(G) = k ~ 2 and 
{X 1Yl,X2Yz, .•• ,XkYk} is a set of edges disconnecting G. If G­
{Xl' X2"'" Xk} is disconnected then K(G) ~ k. Otherwise each vertex Xi 
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Figure 111.3. A 4-edge-connected graph G such that G - Xl' XZ, X3, X4 is connected. 

has degree at most k (and so exactly k), as shown in Figure 111.3. Deleting 
the neighbours of Xl' we disconnect G. Hence K = A(G). 

Another property immediate from the definition of vertex-connectivity 
is that if Gl and Gz are k-connected (k ~ 1) subgraphs of a graph G having 
at least k common vertices, then Gl U Gz is also k-connected. Indeed if 
W c V(G l ) U V(G z) has at most k - 1 vertices, then there is a vertex X 

in V(G l ) n V(Gz)\w. Therefore the connected subgraphs Gl - Wand 
Gz - W of G have at least one vertex, namely x, in common, so Gl U Gz -
W = (G l - W) u (G z - W) is connected. 

Having seen in Chapter I how useful it is to partition a graph into its 
components, that is into its maximal connected subgraphs, let us attempt a 
similar decomposition using all maximal 2-connected subgraphs. A sub­
graph B of a graph G is a block ofG if either B is a bridge (and its endvertices) 
or else it is a maximal 2-connected subgraph of G. The remarks above show 
that any two blocks have at most one vertex in common and if x, yare 
distinct vertices of a block B then G - E(B) contains no x-y path. Therefore 
every vertex belonging to two blocks is a cutvertex of G, and, conversely, 
every cut vertex belongs to at least two blocks. Recalling that a cycle is 2-
connected and an edge is a bridge iff no cycle contains it, we find that G 
decomposes into its blocks B l , Bz , ... , Bp in the following sense: 

p 

E(G) = UE(Bi) and E(Bi) n E(B) = 0 if i =f. j. 
1 

Suppose now that G is a non-trivial connected graph. Let bc(G) be the 
graph whose vertices are the blocks and cutvertices of G and whose edges 
join cutvertices to blocks: each cut vertex is joined to the blocks containing 
it. Then bc(G), called the block-cut vertex graph of G, is a tree. Each end­
vertex of bc(G) is a block of G, called an endblock of G. If Gis 2-connected 
or it is a K Z (an "edge") then it contains only one block, itself; otherwise 
there are at least two end blocks, and a block is an endblock iff it contains 
exactly one cutvertex (Figure 111.4). 

The basic result in the theory of connectivity was proved by Menger in 
1927. It is the analogue of the max-flow min-cut theorem for (non-directed) 
graphs. Recall that two s-t paths are independent if they have only the vertices 
sand t in common. 
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Figure I1I.4. The construction of the block-cut vertex tree bc(G). Bl is an endblock. 

Theorem 5. 

i. Let sand t be distinct non-adjacent vertices of a graph G. Then the minimal 
number of vertices separating s from t is equal to the maximal number of 
independent s-t paths. 

11. Let sand t be distinct vertices of G. Then the minimal number of edges 
separating s from t is equal to the maximal number of edge-disjoint s-t 
paths. 

PROOF. (i) Replace each edge xy of G by two directed edges, .xy and yx, and 
give each vertex other than sand t capacity 1. Then by Theorem 4 the 
maximal flow value from s to t is equal to the minimum of the capacity of a 
cut separating s from t. By the integrality theorem (Theorem 2) there is a 
maximal flow with current 1 or 0 in each edge. Therefore the maximum flow 
value from s to t is equal to the maximal number of independent s-t paths. 
The minimum of the cut capacity is clearly the minimal number of vertices 
separating s from t. 

(ii) Proceed as in (i), except instead of restricting the capacity of the 
vertices, give each directed edge capacity 1. 0 

The two parts of the above theorem are called the vertex form of Menger's 
theorem and the edge form of Menger's theorem. One can easily deduce 
the edge form from the vertex form (Exercise 14), but the other implication 
is not so easily proved. Since, as we have mentioned already, the max-flow 
min-cut theorem can also be deduced from Menger's theorem, we shall give 
another proof of the vertex form of Menger's theorem from first principles. 

SECOND PROOF OF THE VERTEX FORM OF MENGER'S THEOREM. Denote by k 
the minimal number of vertices separating sand t. Then clearly there are 
at most k independent s-I paths and for k ~ I there are k independent s-I 

paths. 
Suppose the theorem fails. Take the minimal k 2:: 2 for which there is a 

counterexample to the theorem and let G be a counterexample (for the 
minimal k) with the minimal number of edges. Then there are at most k - 1 
independent s-t paths and no vertex x is joined to both sand t, otherwise 
G - x would be a counterexample for k - 1. 
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Let W be a set of k vertices separating s from t. Suppose neither s nor t 
is adjacent to every vertex in W. Let Gs be obtained from G by replacing 
the component of G - W containing s by a single vertex S' and joining S' 

to each vertex in W. In G s we still need k vertices to separate S' from t and 
since the component we collapsed had at least two vertices, Gs has fewer 
edges than G. Since G is a counterexample of minimal size, in Gs there are k 
independent S' -t paths. The segments of these k paths from t to Ware such 
that any two of them have exactly the vertex t in common. In particular, for 
every WE W one of these paths is a t-w path. If we carry out the analogous 
procedure for t instead of s then we get k paths from s to W. These two sets 
of paths can be put together to give k independent s-t paths, contradicting 
our assumption. Hence for any set W of k vertices separating s from t either 
s or t is adjacent to each vertex of W. 

Let SX 1X2 ... x/t be a shortest s-t path. Then I? 2 and, by the minimality 
of G, in the graph G - x 1 X 2 we can find a set Wo of k - 1 vertices separating 
s from t. Then both W1 = {xd u Wo and W2 = {X2} u Wo are k-sets 
separating s from t. Since t is not joined to Xl' S is joined to every vertex in 
W1 • Similarly, s is not joined to X2' so t is joined to every vertex in W2. This 
implies the contradiction that sand t have at least one common neighbour: 
every vertex in Wo is a common neighbour of sand t and I Wo I = k - 1 ? 1. 

D 

Corollary 6. A graph is k-connected (k ? 2) iff it has at least two vertices and 
any two vertices can be joined by k independent paths. A graph is k-edge­
connected (k ? 2) iff it has at least two vertices and any two vertices can be 
joined by k edge-disjoint paths. 

Another characterization of k-connectivity is given in Exercise 12. 
Corresponding to the max-flow min-cut theorem for multiple sources 

and sinks, one has the following version of Menger's theorem. If Sand T 
are arbitrary subsets of vertices of G then the maximal number of vertex­
disjoint (induding endvertices!) S-T paths is min { I WI: We V( G), G - W 
has no S-T path}. To see this add two new vertices to G, say sand t, join s 
to every vertex in Sand t to every vertex in T, and apply Menger's theorem 
to the vertices sand t in the new graph. 

§3 Matching 

Given a finite group G and a subgroup H of index m, can you find m elements 
of G, say gl' g2"'" gm, such that {glH, g2H, ... , gmH} is the set of left 
co sets of Hand {Hgl> Hg2, ... , Hgm} is the set of right cosets? A reformula­
tion of this problem turns out to be a special case of the following problem 
arising frequently in diverse branches of mathematics. Given a family 
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d = {A 1> A 2, ... , Am} of subsets of a set X, can we find m distinct elements 
of X, one from each Ai? A set {x I, X2' ... ,xm } with these properties (i.e. 
Xi E Ai> Xi i= Xj if i i= j) is called a set of distinct representatives of the family 
d. The set system d is naturally identifiable with a bipartite graph with 
vertex classes VI = d and V2 = X in which Ai E d is joined to every X E X 
contained in Ai' A system of distinct representatives is then a set of m in­
dependent edges (thus each vertex in VI is incident with one of these edges). 
We also say that there is a complete matching from VI to V2 • 

It is customary to formulate this problem in terms of marriage arrange­
ments. Given m girls and n boys, under what conditions can we marry off 
all the girls provided we do not want to carry matchmaking as far as to marry 
a girl to a boy she does not even know? 

It is clear that both the max-flow min-cut theorem and Menger's theorem 
imply a necessary and sufficient condition for the existence of a complete 
matching. In fact, because of the special features of a bipartite graph, there 
is a particularly simple and pleasant necessary and sufficient condition. 

If there are k girls who altogether know at most k - 1 boys then we cannot 
find suitable marriages for these girls. Equivalently, if there is a complete 
matching from VI to V2 then for every S C VI there are at least I S I vertices 
of V2 adjacent to a vertex in S, that is 

Ir(S)1 ~ lSI. 

The result that this necessary condition is also sufficient is usually called 
Hairs theorem. (P. Hall proved it in 1935, and an equivalent form of it was 
proved by Konig and Egervary in 1931, but both versions follow immediately 
from Menger's theorem, proved in 1927.) We shall give three proofs. The 
first is based on Menger's theorem or the max-flow min-cut theorem, the 
other two prove the result from first principles. 

Theorem 7. A bipartite graph G with vertex sets VI and V2 contains a complete 
matching from VI to V2 iff 

Ir(S) I ~ lSI for every S C VI' 

We have already seen that the condition is necessary so we have to prove only 
the sufficiency. 

1ST PROOF. Both Menger's theorem (applied to the sets VI and V2 , as at the 
end of §2) and the max-flow min-cut theorem (applied to the directed graph 
obtained from G by sending each edge from VI to V2 , in which each vertex 
has capacity 1) imply the following. If G does not contain a complete match­
ing from VI to V2 then there are TI C VI and T2 C V2 such that I TI I + 
I T21 < I VI I and there is no edge from VI - TI to V2 - T2. Then 
r(VI - TI ) C T2 so 

Ir(VI - TI)I:s; IT21 < IVII-ITII = IVI - Til. 

This shows the sufficiency of the condition. D 
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2ND PROOF. In this proof, due to Halmos and Vaughan, we shall use the 
matchmaking terminology. We shall apply induction on m, the number of 
girls. For m = 1 the condition is clearly sufficient so we assume that m ~ 2 
and the condition is sufficient for smaller values of m. 

Suppose first that any k girls (1 ::;;; k < m) know at least k + 1 boys. 
Then we arrange one marriage arbitrarily. The remaining sets of girls and 
boys still satisfy the condition, so the other m - 1 girls can be married off 
by induction. 

Suppose now that for some k, there are k girls who altogether know ex­
actly k boys. These girls can clearly be married off by induction. What 
about the other girls? We can marry them off (again by induction) if they 
also satisfy the condition provided we do not count the boys who are already 
married. But the condition is satisfied since if some I girls to be married 
know fewer than I remaining boys then these girls together with the first k 
girls would know fewer than k + I boys. 0 

3RD PROOF. This proof is due to Rado. Let G be a minimal graph satisfying 
the condition. It suffices to show that G consists of I VI I independent edges. 

If this is not so then G contains two edges of the form al x, a2 x, where 
aI' a2 E VI and x E V2. Since the deletion of either of these edges invalidates 
the condition, there are sets AI, A2 C VI such that I r(Ai) I = lAd and ai 
is the only vertex of A;(i = 1, 2) adjacent to x. Then 

Ir(AI) nr(A2)1 = Ir(AI - {al}) nr(A2 - {a2}) I + 1 
~ jr(AI nA2)1 + 1 ~ IAI nA21 + 1, 

which implies the following contradiction: 

Ir(AI u A 2 )1 = Ir(AI ) u r(A2) I = jr(AI) I + jr(A2) I 
- Ir(AI) nr(A2)1 ::;;;IAII + IA21-IAI nA21-l. 

A regular bipartite graph satisfies the conditions of Hall's theorem, so 
it has a complete matching. In turn this implies that we can indeed find group 
elements gl' g2, ... , gm as required at the beginning of the section. 

Let us reformulate the marriage theorem in terms of sets of distinct 
representatives. 

Theorem 7'. A family d = {AI' A 2, ... , Am} of sets has a set of distinct 
representatives iff 

I U Ai I ~ IFI for every Fe {l, 2, ... , m}. 
,eF 

o 

There are two natural extensions of the marriage theorem. Suppose the 
marriage condition is not satisfied. How near can we come to marrying off 
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all the girls? When can we marry off all the girls but d of them? Clearly 
only if any k of them know at least k - d boys. This obvious necessary con­
dition is again sufficient. 

Corollary 8. Suppose the bipartite graph G = Gim, n) with vertex sets Vi' V2 

satisfies the following condition: 

!r(S) I ;::: lSI - d for every S C Vi' 

Then G contains m - d independent edges. 

PROOF. Add d vertices to V2 and join them to each vertex in Vi' The new 
graph G* satisfies the condition for a complete matching. At least m - d 
of the edges in this matching belong to G. D 

The next extension concerns matchmaking for boys in a polygynous 
country, where the ith boy intends to marry di girls. 

Corollary 9. Let G be a bipartite graph with vertex classes Vi = {Xl' ... ,xm} 
and V2 = {Yl, ... ,Yn}' Then G contains a subgraph H such that dH(x;) = di 
and 0 ~ dH(Yi) ~ 1 iff 

Ir(S)I;::: L di for every S C Vi' 
XiES 

PROOF. Replace each vertex Xi by di vertices joined to each vertex in rex;). 
Then there is a subgraph H iff the new graph has a matching from the new 
first vertex class to V2 • The result follows from Theorem 7. D 

Of course, Corollary 9 also has a defect form which the reader is en­
couraged to state and deduce from this. 

The reader is probably aware of the fact that these corollaries are still 
special cases of the max-flow min-cut theorem. In fact, the bipartite graph 
version of the max-flow min-cut theorem is considerably more general 
than the corollaries above. 

Theorem 10. Let G = Gim, n) be a bipartite graph with vertex classes 
Vi = {Xl,·.·, xm} and V2 = {Yl"'" Yn}. For S C Vi and 1 ~j ~ n denote 
by Sj the number of edges from Yj to S. Let db"" dm and el , ... , en be natura'l 
numbers and let d ;::: O. Then there exists a subgraph H of G with 

n 

e(H) ;::: L d i - d, 
1 

1 ~ i ~ m 

and 

1 ~ j ~ n, 
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ifffor every S C VI we have 
n 

L di ::; L min{Sj' ej} + d. 
X,ES j=l 

PROOF. Turn G into a directed graph G by 'sending each edge from VI to V2 • 

Give each edge capacity 1, a vertex Xi capacity di and a vertex Yj capacity ej. 
Then there is a subgraph H with required properties iff in G there is a flow 
from VI to V2 with value at least L~ d; - d and, by the max-flow min-cut 
theorem, this happens iff every cut has capacity at least L~ d; - d. Now 
minimal cut-sets are of the form T u U U E(VI - T, V2 - U), where 
T C VI and U C V2 • Given a set T, the capacity of such a cut will be minimal 
if a vertex Yj belongs to U iff its capacity is smaller than the number of edges 
from S = VI - T to Yj. With this choice of U the capacity of the cut is 
exactly 

n 

L d; + Lmin{Sj' e). 
X,E T 1 

The condition that this is at least L~ d; - d is clearly the condition in the 
theorem. 0 

The reader is invited to check that the second proof of Theorem 7 can be 
rewritten word for word to give a proof of the exact form of this result (that 
is with d = 0) and the defect form (the case d ~ 0) can be deduced from it 
as Corollary 8 was deduced from Theorem 7 (Exercise 26). 

To conclude this section we prove another extension of the marriage 
theorem. This is Dilworth's theorem concerning partially ordered sets. A 
partial order < on a set is a transitive and irreflexive relation defined on 
some ordered pairs of elements. Thus if X < Y and Y < x then x < Z, but 
x < Y and Y < x cannot both hold. A set with a partial order on it is a 
partially ordered set. The relation x ::; Y expresses the fact that either x = Y 
or else x < y. A subset C of a partially ordered set P is a chain (or tower) if 
for x, Y E C either x ::; Y or Y < x. A set A c P is an antichain if x < Y 
implies that {x, y} ¢ A. See Figure Ill.5 for an example. 

Figure III.5. A partially ordered set and a maximal antichain. (An edge indicates 
that its upper endvertex is greater than its lower endvertex.) 
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What is the smallest number of chains into which we can decompose a 
partially ordered set? Since no two elements of an antichain can belong to 
the same chain, we need at least as many chains as the minimal size of an 
antichain. Once again, the trivial necessary condition is, in fact, sufficient. 

Theorem 11. If every antichain in a (finite) partially ordered set P has at most 
m elements then P is the union of m chains. 

PROOF. Let us apply induction on 1 P I. If P = 0 there is nothing to prove 
so we suppose that 1 PI> 0 and the theorem holds for sets with fewer ele­
ments. 

Let C be a maximal chain in P. (Thus if x ¢ C then C u {x} is no longer a 
chain.) If no antichain of P - C has m elements then we are home by in­
duction. Therefore we may assume that P - C contains an antichain 
A = {aI, a2"" ,am}· 

Define the lower shadow of A as 

s- = {x E P: x ::; a; for some i}, 

and define the upper shadow S + of A analogously. Then P is the union of the 
two shadows since otherwise A could be extended to an antichain with 
m + i elements. Furthermore, neither shadow is the whole of P since the 
maximal element of C does not belong to S - and the minimal element of C 
does not belong to S+. By the induction hypothesis both shadows can be 
decomposed into m chains, say 

m 

and S+ = U ct. 
I 

Since different a; belong to different chains, we may assume that a; E C;­
and a;ECt. 

The proof will be completed if we show that a; is the maximal element of 
C;- and the minimal element of ct. For in that case the chains C;- and ct 
can be strung together to give a single chain C; and then P = U'r C;. 

Suppose then that, say, a; is not the maximal element of C;-: a; < x for 
some XEC;-. Since x is in the lower shadow of A, there is an ajEA with 
x ::; aj. However, this implies the contradiction a; < aj. 0 

§4 Tutte's I-Factor Theorem 

A factor of a graph is a subgraph whose vertex set is that of the whole graph. 
If every vertex of a factor has degree r then we call it an r1actor. How can 
we characterize graphs with a i-factor? If G has a i-factor H and we delete 
a set S of vertices of G, then in a component C of G - S and even number 
of vertices are on edges of H contained in C and the other vertices of Care 
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Figure III.6. A graph G with a I-factor: lSI = 4 and G - S has 2 odd components. 

on edges of H joining a vertex of C to a vertex of S. In particular, for every 
odd component C of G - S (that is a component with an odd number of 
vertices) there is an edge of H joining a vertex of C to a vertex of S. Now the 
edges of H are independent, so this implies that the graph G - S has at 
most I S I odd components, one for each vertex in S (see Figure 111.6). 

The necessity of the condition we have just found is rather trivial, but it 
is not clear at all that the condition is also sufficient. This surprising and 
deep result was first proved by Tutte in 1947. It will be convenient to denote 
by q(H) the number of odd components of a graph H, that is the number of 
components of odd order. 

Theorem 12. A graph G has got a l1actor iff 

q(G - S) ~ lSI for every S c V(G). (*) 

PROOF. We know that the condition is necessary. We shall prove the suffi­
ciency by induction on the order of G. For I G I = 0 there is nothing to prove. 
Now let G be a graph of order at least one satisfying (*) and suppose that 
the theorem holds for graphs of smaller order. 

Let So c V(G) be a non-empty set for which equality holds in (*). Denote 
by C 10 C 2 , •.. , Cm, m = I So I :2: 1, the odd components of G - So and let 
D1 , D2 , ••• , Dk be the even components of G - So. If the theorem is true 
and G does contain a I-factor F then for each Ci there is at least one edge 
of F that joins a vertex of Ci to a vertex in So. Since m = I So I, for each Ci 

there is exactly one such edge, say Ci Si' Ci E Ci , Si E So. Each Ci - Ci contains 
a I-factor, (a subgraph of F), and each Dj contains a I-factor (a subgraph of 
F). Finally, the edges S1C1' S2C2,"" SmCm form a complete matching from 
So into the set {C 1 , C 2 ,··., Cm}. 

The proof is based on the fact that one can find an So which has all the 
properties described above. How shall we find such a set So? Let So be a 
maximal non-empty subset of V(G) for which equality holds in (*). Of 
course, a priori it is not even clear that there is such a set So. With S = 0 
the condition (*) implies that G has an even order. If S is any vertex of G 
then G - {s} has even ordet so it has at least one odd component. Since (*) 
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holds, G - {s} has exactly one odd component. Hence for every S = {s} 
we have equality in (*). This establishes the existence of So. 

As before, C I , C2 , ••• , Cm, m = ISol, are the odd components of G - So 
and Dl , D2 , ••• , Dk are the even components. 

(i) Each Dj has a l1actor. Indeed, if S c V(D) then 

q(G - So uS) = q(G - So) + q(D j - So) ~ ISo u SI = ISol + lSI, 

so 

q(Dj - S) ~ lSI. 

Hence by the induction hypothesis Dj has a I-factor. 
(ii) If c E C j then C; - c has a I-factor. Assume that this is false. Then by 

the induction hypothesis there is a set S c V(C;) - {c} such that 

q(C; - {c} uS) > lSI. 

Since 

q(C; - {c} uS) + IS u {c}1 == IC;! == 1 (mod 2), 

this implies that 

q(C; - {c} uS) ~ lSI + 2. 

Consequently 

ISo u {c} u SI = ISol + 1 + lSI ~ q(G - So u {c} uS) 

= q(G - So) - 1 + q(C; - {c} u S) ~ ISol + 1 + lSI, 

so in (*) we have equality for the set So u {c} uS as well. This contradicts 
the maximality of So. 

(iii) G contains m independent edges of the form SiC;, s; E So and C; E C;, 
i = 1, 2, ... , m. To show this let us consider the bipartite graph H = G2(n, m) 
with vertex classes {C l , C2 , ••• , Cm} and V2 = So, in which C; is joined to 
a vertex s E So if and only if G contains an edge from s to C;. The assertion 
above is true iff H has a I-factor, that is a matching from VI to V2 • Fortu­
nately we have got the weapon to check this: Hall's theorem. Given A c VI' 
put B = r H(A) c V2 (see Figure III.7). Then (*) implies that 

IAI ~ q(G - B) ~ IBI. 

Hence the graph H satisfies Hall's condition, so it has I-factor. 
We are almost home. To complete the proof we just put together the 

information from (i), (ii) and (iii). We start with the m independent edges 
SiC;, s; E SO, C; E C;. Adding to this set of edges a I-factor of each C; - c;, 
1 ~ i ~ m, and a I-factor of each Dj , 1 ~ j ~ k, we arrive at a I-factor 
~a 0 

It is once again very easy to obtain a defect form of the above result. 



Exercises 61 

G 

Figure 111.7. The construction of H from G. The set A = {Cz , C3 } determines Be So 
by the rule B = ru(A). 

Corollary 13. A graph G contains a set of independent edges covering all but 
at most d of the vertices iff 

q(G - S) ::;; lSI + d for every S c: V(G). 

PROOF. Since the number of vertices not covered by a set of independent 
edges is congruent to I G I modulo 2, we may assume that 

d == IGI (mod 2). 

Put H = G + K d, that is let H be obtained from G by adding to it a set W 
of d vertices and joining every new vertex to every other vertex, old and new. 
Then G contains a set of independent edges covering all but d of the vertices 
itT H has got a I-factor. When does (*) hold for H? If W - S' "# 0 then 
H - S' is connected so q(H - S') ::;; 1 and then (*) does hold; if W c: S' 
then with S = S' - W we have q(H - S') = q(G - {S'\W}) = q(G - S), 
so (*) is equivalent to 

q( G - S) ::;; I S'I = I S I + d. o 
EXERCISES 

1.- Suppose F is a set of edges after whose deletion there is no flow from s to t with 
positive value. Prove that F contains a cut separating s from t. 

2.- By summing an appropriate set of equations show that the capacity of a cut is at 
least as large as the maximum of the flow value. 

3.- Let G = (V, E) be a directed graph and let c be an extended-real-valued capacity 
function on E. (Thus c(x, y) is a non-negative real or + 00.) Let sand t be two 
vertices. Prove that either there is a flow from s to t with infinite value or else there 
is a flow with maximal finite value. 

4. By successively reducing the number of circular flows in G, prove that there is a 
maximal flow without circular flows in which no current enters the source and 
no current leaves the sink. 

5. Use the method of Exercise 4 to show that if the capacity function is integral then 
there is a maximal flow that is also integral. 
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6. Formulate and prove the max-flow min-cut theorem for multiple sources and 
sinks with bounds on the capacity of the edges and vertices. 

7. (Circulation theorem). A circulation in a directed graph G is a flow without a 
source and a sink. Given a lower capacity I(x, y) and an upper capacity c(x, y) 
for each edge xy with 0 S; I(x, y) s; c(x, y) we call a circulation 9 feasible if 

I(x, y) s; g(x, y) s; c(x, y) 

for every edge xy. Prove that there exists a feasible circulation iff 

I(S, S) s; c(S, S) for every S c V. 

[Note that the necessity of the condition is trivial since in a feasible circulation 
the function I forces at least I(S, S) current from S to S and the function c allows 
at most c(S, S) current into S from S. To prove the sufficiency, adjoin a sink sand 
a source t to G, send an edge from s to each vertex of G and send an edge from 
each vertex of G to i. Define a capacity function c* on the edges of the new graph 
G* by putting c*(x, y) = c(x, y) - I(x, y), c*(s, x) = I(V, x) and c*(x, t) = I(x, V) . 

. Then the relation 

f(x, y) = g(x, y) - I(x, y) 

sets up a 1-1 correspondence between the feasible circulations 9 in G and flows 
fin G* from s to t with value I( V, V). Rewrite the condition given in the max-flow 
min-cut theorem in the form required in this result.] 

8.+ Let H be a bipartite multigraph without loops, with vertex classes VI and V2 • (Thus 
H may contain mUltiple edges, that is two vertices belonging to different classes 
may be joined by several edges, which are said to be parallel.) As usual, given a 
vertex x we denote by rex) the set of edges incident with x and by d(x) = I rex) I 
the degree of x. Prove that, given any natural number k, the set E of edges can be 
partitioned into sets E I , E2 , ••• , Ek such that for every vertex x and every set E j 

we have 

ld(x)J rd(X)l k s; lr(x)nEjl S; k ' 

where, as in the rest of the book, r z 1 is the least integer not less than z and L z J = 
-r -zl 

Thus if we think ofthe partition U~ E j as a colouring of the edges with k colours, 
then the colouring is equitable in the sense that in each vertex the distribution of 
colours is as equal as possible. [Hint. Construct a directed graph if = (VI U V2 , E) 
from H by sending an edge from x to y iff x E VI' Y E V2 and H contains at least one 

G 

Figure III.8. The graphs H, fj and G. 
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xyedge. Let G be obtained from Ii by adding a vertex u and all the edges ux, yu, 
for x E VI and y E V2 , as shown in Figure III.8. Define an appropriate upper and 
lower capacity for each edge of G and prove that there is a feasible integral circula­
tion. Use this circulation to define one of the colour classes.] 

9. (Exercise 8+ continued) Show that we may require that, in addition to the 
property above, the colour classes are as equal as possible, say lEI I ::;; IE21 
::;; ... ::;; I Ek I ::;; lEI I + 1, and in each set of parallel edges the distribution of 
colours is as equal as possible. 

10. Let d l ::;; d2 ::;; ••• ::;; dn be the degree sequence of a graph G. Suppose that 

dj c. j + k - 1 for j = 1,2, .. '.' n - 1 - dn-k+ I' 

11. Prove that G is k-connected. 

Let k and I be integers 1 ::;; k ::;; I. Construct graphs GI , G2 and G3 such that 
(i) K(G I ) = k and A(G I ) = I, 

(ii) K(G2 ) = k and K(G 2 - x) = I for some vertex x, 
(iii) K(G 3 - x) = k and A(G 3 - xy) = I for some edge xy. 

12. Given V c V(G) and a vertex x E V(G) - V, an x-V fan is a set of I V I paths from 
x to V, any two of which have exactly the vertex x in common. Prove that a graph 
G is k-connected iff I G I c. k + 1 and for any k-set V c V(G) and vertex x not 
in V, there is an x-V fan in G. [Hint. Given a pair (x, V), add a vertex u to G 
and join it to each vertex in V. Check that the new graph is k-connected if G 
is. Apply Menger for x and u.] 

13. Prove that if G is k-connected (k c. 2) and {x I, x 2 , ..• , Xk} c V( G) then there 
is a cycle in G that contains all Xi' 1 ::;; i ::;; k. 

14. The line graph L(G) of a graph G = (V, E) has vertex set E and two vertices 
0:, f3 E E are adjacent iff they have exactly one vertex of G in common. By applying 
the vertex form of Menger's theorem to the line graph L(G), prove that the vertex 
form of Menger's theorem implies the edge form. 

15. Show that if A(G) = k c. 2 then the deletion of k edges from G results in at most 
2 components. Is there a similar result for vertex-connectivity? 

16. Let G be a connected graph with minimum degree c5(G) = k c. 1. Prove that G 
contains a path XIX2 ... X k such that G - {XI' x 2 , ••. , x k } is also connected. 
[Hint. Let XIX2'" Xl be a longest path. Note that I c. k + 1. Suppose that 
G - {XI> X2, ... , Xk} is disconnected and let YoYI ... Ym be a longest path in a 
component C not containing Xk+ IXk+2 ... Xl' Then dc(Yo) ::;; m but Yo cannot be 
joined to k - m of the vertices X I> ..• , Xk'] 

17. Let G = G2(m, n) be a bipartite graph with vertex classes VI and V2 containing 
a matching from VI to V2 • 

(i) Prove that there is a vertex x E VI such that for every edge xy there is a 
matching from VI to V2 that contains xy. 

(ii) Deduce that if d(x) = d for every x E VI then G contains at least d! matchings 
if d ::;; m and at least d(d - 1)··· (d - m + 1) matchings if d > m. 

18. Let A = (aij)~ be an n x 11 stochastic matrix, that is let aij c. 0 and I?= I aij = 

Ii= I aij = 1 for all i, j. Show that A is in the convex hull of n x n permutation 



64 III Flows, Connectivity and Matching 

matrices, i.e. there are Ai ~ 0, Ii Ai = 1, and permutation matrices P" P 2' ... , Pm 
such that A = Ii AiPi' [Let aij = raijl, A* = (aij)~, and let G = G2(n, n) be 
the bipartite graph naturally associated with A*. Show that G has a complete 
matching and deduce that there are a permutation matrix P and a real A,O < il ~ 1, 
such that A - ilP = B = (bij)'j is such that bij ~ 0, Ii=, bij = D=, bij = 1 - il 
for alli,j, and B has at least one more 0 entry than A.] 

19. An r x s Latin rectangle based on 1, 2, ... , n is an r x s matrix A = (aij) such 
that each entry is one of the integers 1,2, ... , n and each integer occurs in each 
row and column at most once. Prove that every r x n Latin rectangle A can be 
extended to an n x n Latin square. [Hint. Assume that r < n and extend A to an 
(r + 1) x n Latin rectangle. Let Aj be the set of possible values of ar + '.j, that 
is let Aj = {k: 1 ::; k ::; n, k =1= aij}' Check that {A j : 1 ::; j ::; n} has a set of 
distinct representatives.] 

Prove that there are at least n! (n - I)! ... (n - r + 1)! distinct r + n Latin 
rectangles based on 1,2, ... , n. [Hint. Apply Exercise I7(ii).] 

20. . Let A be an r x s Latin rectangle and denote by A(i) the number of times the 
symbol i occurs in A. Show that A can be extended to an n x n Latin square 
iff A(i) ~ r + s - n for every i = 1,2, ... , n. 

21. Prove the following form of the Schroder-Bernstein theorem. Let G be a bi­
partite graph with vertex classes X and Y having arbitrary cardinalities. Let 
A c X and BeY. Suppose there are complete matchings from A into Y and 
from B into X. Prove that G contains a set of independent edges covering all 
the vertices of A v B. [Hint. Consider the components of the union of the 
matchings.] 

22. Deduce from Exercise 20 that every bipartite graph contains a set of independent 
edges such that each vertex of maximum degree (that is degree ~(G» is incident 
with one of the edges. Deduce that a non-empty regular bipartite graph has a 
i-factor. 

23. We say that G is an (r, r - k)-regular graph if r - k ::; beG) ::; ~(G) ::; r. Prove 
that for 1 ::; k ::; s ::; revery (r, r - k)-regular graph contains an (s, s - k)-regular 
factor. [Hint. Assume s = r - 1. Take a minimal (r, r - k)-regular factor. Note 
that in this factor no two vertices of degree r are adjacent. Remove a set of in­
dependent edges covering the vertices of degree r.] 

24;- Recall Tychonov's theorem from general topology: the product of an arbitrary 
family of compact spaces is compact. Deduce from this the following extension 
of Hall's theorem. 

Let G be an infinite bipartite graph with vertex classes X and Y, such that each 
vertex in X is incident with finitely many edges. Then there is a complete matching 
from X into Y iff 1 rcA) 1 ~ 1 A 1 for every finite subset A of X. 

Show that the finiteness condition cannot be omitted. 

25. Prove that a 2-edge-connected cubic graph has a I-factor. [This result is called 
Petersen's theorem. In order to prove it check that the condition of Tutte's 
theorem is satisfied. If 0 =1= S c V(G) and C is an odd component of G - S 
then there are at lea~t two S - C edges, since G is 2-edge-connected. Furthermore, 
since G is cubic, there are at least three S - C edges. Deduce that q( G - S) ::; 1 S I.] 



Exercises 65 

26. Imitate the second proof of Theorem 7 to give a direct proof of the case d = 0 
of Theorem 10 and then deduce from it the general case d :;:: O. 

27. Let G be a graph of order n with at most r :;:: 2 independent vertices. Prove that 
if G is any orientation of G which does not contain a directed cycle (acyclic 
orientation) then G contains a directed path of length at least r n/r 1 - 1. [Hint. 
Apply Dilworth's theorem, Theorem I1.J 

28. Deduce from Exercise 27 the following result. Given a set of rk + 1 distinct 
natural numbers, either there exists a set of r + 1 numbers, none of which divides 
any of the other r numbers, or else there exists a sequence ao < al < ... < ak 
such that if 0 ::;; i < j ::;; k then ai divides aj. 

29. Describe all maximal graphs of order n = 21 which do not contain a I-factor. 
[Hint. Read it out of Tutte's theorem (Theorem 12).J 

30. (cf. Exercise 29) Describe all maximal graphs of order n which contain at most k 
independent edges. [Hint. Apply Corollary 13.J 

31. Make use of Exercise 30 and the convexity of the binomial coefficient CD, x :;:: 2, 
to prove that if n :;:: k + 1 then the maximal size of a graph of order n with at 
most k independent edges is 

Show also that the extremal graphs (that is the graphs for which equality holds) 
are one or both of the graphs K2k+ I U En - 2k - 1 and Kk + E"-k. (See Figure 111.9.) 

K3 + En 

K7 U E2 

0 • 

• 

Figure 111.9. For k = 3, n = 9 there are two extremal graphs: K7 u E2 and 
K3 + E6. 

32. Call a sequence d l , d2 , ••. , dn of integers graphic if there is a graph G with vertex 
set V(G) = {XI' X 2 , ... , xn} such that d(x) = di' 1 ::;; i ::;; n. (The graph G is said to 
realize (d)1.) Show that d I :;:: d2 :;:: ••• :;:: dn is graphic iff so is the sequence 

33. Use the algorithm given in the previous exercise to decide which of the follow­
ing sequences are graphic: 5,4,3,2,2,2; 5,4,4,2,2,1; 4,4,3,3,2,2,2 and 
5, 5, 5, 4, 2, 1, 1, 1. Draw tbe graphs realizing the appropriate sequences con­
structed by the algorithm. 
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Notes 

The basic book on flows is L. R. Ford, Jnr. and D. R. Fulkerson, Flows in 
Networks, Princeton University Press, Princeton, 1962. It not only contains 
all the results mentioned in the chapter concerning flows and circulations, 
but also a number of applications to standard optimization problems. 

The fundamental theorems of Menger, Hall and Tutte are in K. Menger, 
Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927) 96-115, P. Hall, On 
representatives of subsets, J. London Math. Soc. 10 (1935) 26-30), and W. T. 
Tutte, A factorization of linear graphs, J. London Math. Soc. 22 (1947) 
107-111. The proof of Tutte's theorem we gave is due to T. Gallai, Neuer 
Beweis eines Tutte'schen Satzes, Magyar Tud. Akad. Kozl. 8 (1963) 135-139, 
and was rediscovered independently by I. Anderson, Perfect matchings in a 
graph, J. Combinatorial Theory Ser. B 10 (1971) 183-186 and W. Mader, 
Grad und lokaler Zusammenhang in endlichen Graphen, Math. Ann. 205 
(1973) 9-11. The result in Exen::ises 8 and 9 is due to D. de Werra, Multi­
graphs with quasiweak odd cycles, J. Combinatorial Theory Ser. B 23 (1977) 
75-82. 

A slightly simpler form of the result in Exercise 23 is due to W. T. Tutte; 
the proof indicated in the hint was found by C. Thomassen. An extensive 
survey of results concerning connectivity and matching can be found in 
Chapters I and II of B. BolloMs, Extremal Graph Theory, Academic Press, 
London and New York, 1978. 



CHAPTER IV 

Extremal Problems 

At least how many edges are in a graph of order n if it is forced to contain a 
path of length I? A cycle of length at least I? A cycle of length at most I? 
A complete graph K r ? These questions are special cases of the so called 
forbidden subgraph problem: given a graph F, determine ex(n; F), the maximal 
number of edges in a graph of order n not containing F. The forbidden sub­
graph problem is a prime example of the rather large family of extremal 
problems in graph theory. In this chapter we present the fundamental result 
concerning the forbidden subgraph problem and discuss some closely re­
lated extremal questions. We have to emphasize that we do not intend to 
provide an overall view of extremal graph theory. 

Before going into the details, it is appropriate to say a few words about 
the terminology. If for a given class of graphs a certain graph parameter, 
say the number of edges or the minimum degree, is at most some number f, 
then the graphs for which equality holds are the extremal graphs of the 
inequality. As a trivial example, note that an acyclic graph of order n has at 
most n - 1 edges, and the extremal graphs are the trees of order n. In the 
forbidden subgraph problem a graph is extremal if it does not contain F and 
has ex(n; F) edges. In the previous chapter Tutte's factor theorem enabled 
us to solve a beautiful extremal problem: how many edges guarantee k + 1 
independent edges? In this case F consists of k + 1 independent edges, that 
is F = (k + 1)K2. Exercise 31 of Chapter III claims that for n ~ 2k + 1 
the extremal graphs of ex(n; F) are K2k+ 1 U En - 2k-l and/or Kk + En - k. 

The material in this chapter falls conveniently into two parts: the odd 
sections concern paths and cycles while the even ones are about complete 
subgraphs. We have chosen to alternate the topics in order to have the 
simpler results first, as in most other chapters. 

The first section is about paths and cycles (short and long) in graphs of 
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large size. Among others we shall give a good bound on ex(n; pi), the maximal 
number of edges in a graph of order n without a path of length l. We shall 
also present some fundamental results about Hamilton cycles. 

One of the best known theorems in graph theory, Tunin's theorem, 
determines the function ex(n; Kr). The second section is devoted to this 
theorem together with some related results. 

When discussing ex(n; pi) and ex(n; Kr), we most1y care about the case 
when n is large compared to I and r. We get rather different problems if F 
and G have the same order. A prime example of these problems will be 
discussed in the third section, the problem of Hamilton cycles. Over the 
years considerable effort has gone into the solution of this problem and in a 
certain rather narrow sense the present answers are satisfactory. 

The fourth section is devoted to a deep and surprising theorem of Erdos 
and Stone. The theorem concerns ex(n; F), where F is a complete r-partite 
graph with t vertices in each class, but as an immediate corollary of this 
result one can determine limn _ oo ex(n; F)/n 2 for every graph F. 

§ 1 Paths and Cycles 

In its natural formulation our first theorem gives a lower bound on the order 
of a graph in terms of the minimum degree and the girth, the length of a 
shortest cycle. Equivalently, the result gives an upper bound on the girth 
in terms of the order and minimum degree. 

Theorem 1. For g ;;:: 3 and b ;;:: 3 put 

no(g, b) = {

I + _b_ {(b _ 1)<g-1)/2 - I} 
b-2 

_2_ {(b _ 1)g/2 - I} 
b-2 

if g is odd, 

if g is even. 

Then a graph G with minimum degree b and girth g has at least no(g, b) vertices. 

PROOF. Suppose first that g is odd, say g = 2d + 1, d ;;:: 1. Pick a vertex x. 
There is no vertex z for which G contains two distinct z-x paths of length at 
most d, since otherwise G has a cycle of length at most 2d. Consequently 
there are at least b vertices at distance 1 from x, at least b(b - 1) vertices at 
distance 2, and so on, at least b(b - 1)d-1 vertices at distance d from x 
(Figure IY.1). Thus 

n ;;:: 1 + b + b( b - 1) + ... + b( b - l)d - \ 

as claimed. 
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* Figure IV. I. The cases i5 = 9 = 5 and i5 = 4, 9 = 6. 

Suppose now that g is even, say g = 2d. Pick two adjacent vertices, say 
x and y. Then there are 2(0 - 1) vertices at distance 1 from {x, y}, 2(0 - 1)2 
vertices at distance 2, and so on, 2(0 - l)d-1 vertices at distance d - 1 from 
{x, y}, implying the required inequality. D 

Let Go be an extremal graph of Theorem 3, that is a graph with parameters 
o and g, for which equality holds. The proof above implies that Go is regular 
of degree 0; if g = 2d + 1 then Go has diameter d and if g = 2d then every 
vertex is within distance d - 1 of each pair of adjacent vertices. It is easily 
seen that no(g, 0) is also the maximal number for which there is a graph with 
maximum degree 0 having the latter property (Exercise 1). We call Go a 
Moore graph of degree 0 and girth g, or, if g = 2d + 1, a Moore graph of 
degree 0 and diameter d. In Chapter VIII we shall use algebraic methods to 
investigate Moore graphs. 

Let us see now what we can say about long cycles and paths in a graph. 
If a graph of order n is Hamiltonian then its circumference, that is the length 
of a longest cycle, is n, while the length of a longest path is n - 1. However, 
every non-Hamiltonian connected graph contains at least as long paths as 
the circumference of the graph. Indeed, if C = x I X2 •.. Xl is a longest cycle 
and I < n then there is a vertex y not on C adjacent to a vertex of C, say x I, 
and then YXIX2'" Xl is a path of length I. 

Theorem 2. Let G be a connected graph of order n ;;::: 3 such that for any two 
non-adjacent vertices x and y we have 

d(x) + dey) ;;::: k. 

If k = n then G is Hamiltonian and if k < n then G contains a path of length 
k. and a cycle of length at least (k + 2)/2. 

PROOF. Assume that G is not Hamiltonian and let P = XIX2 ... Xl be a 
longest path in G. The maximality of P implies that the neighbours of XI 

and Xl are vertices of P. As G does ~ot contain a cycle oflength I, XI is not 
adjacent to Xl' Furthermore the path P cannot contain vertices Xi and Xi+ I 

such that XI is adjacent to Xi+ I and Xl is adjacent to Xi since otherwise 
X I X 2 ... XiXnXn-l ... X i + 1 is a cycle of length I (Figure IV.2). Consequently 
the sets 
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--------- ~ X~ XI- 1 Xl 
X"'-;----~-X .. 2--·--· .... -..--X ..... i~-~ ~ 

----
Figure IV.2. The construction of a cycle of length I. 

are disjoint subsets of {X2, X3' ... , Xl} and so 

k s d(xI) + d(xl) s 1- 1 s n - 1. 

The first two assertions of the theorem follow from this inequality. If k = n, 
this is impossible, so G is Hamiltonian. If k < n then P has length I - 1 ~ k. 

Finally, the assertion about cycles is even simpler. Assume that d(xI) ~ 
d(xl) so d(xI) ~ rk/21, where rzl denotes the least integer not less than z. 
Put t = max{i: XIXi E E(G)}. Then t ~ d(xI) + 1 ~ rk/21 + 1 and G con­
tains the cycle XIX2'" XI of length t. D 

In §3 we shall make use of the proof of this theorem to obtain detailed 
information about graphs without long cycles and paths. For the moment 
we confine ourselves to noting two consequences of Theorem 2. 

Theorem 3. Let G be a graph of order n without a path of length k( ~ 1). Then 

k - 1 
e(G) s -2-n. 

A graph is an extremal graph (that is equality holds for it) iff all its components 
are complete graphs of order k. 

PROOF. We fix k and apply induction on n. The assertion is clearly true if 
n s k. Assume now that n > k and the assertion holds for smaller values 
ofn. 

If G is disconnected, the induction hypothesis implies the result. Now if 
G is connected, it contains no Kk and, by Theorem 1, it has a vertex X of 
degree at most (k - 1)/2. Since G - X is not an extremal graph 

k-l k-l k-l 
e(G) s d(x) + e(G - x) < -2- + -2-(n - 1) = -2-n. D 

Theorem 4. Let G be a graph of order n in which every cycle has length at most 
k (k ~ 2). Then 

k 
e(G) s l(n - 1). 

A graph is an extremal graph iff it is connected and all its blocks are complete 
graphs of order k. D 
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The proof of this result is somewhat more involved than that of Theorem 
3. Since a convenient way of presenting it uses 'simple transforms' to be 
introduced in §3, the proof is left as an exercise (Exercise 25) with a detailed 
hint. 

§2 Complete SUbgraphs 

What is ex(n; K r ), the maximal number of edges in a graph of order n not 
containing a K r , a complete graph of order r? If G is (r - I)-partite then it 
does not contain a Kr since every vertex class of G contains at most one 
vertex of a complete subgraph. Thus ex(n; Kr) is at least as large as the 
maximal size of an (r - 1 )-partite graph of order n. In fact, there is a unique 
(r - I)-partite graph of order n that has maximal size. This graph is the 
complete (r - I)-partite graph 1',.-l(n) that has L(n + k - I)/(r - I)J 
vertices in the kth class (Figure IV.3). In other words, 1',.-1 (n) is the complete 
(r - I)-partite graph of order n whose classes are as equal as possible: say 
there are nk vertices in the kth class and n1 ::;; n2 ::;; ... ::;; nr - 1 ::;; n1 + 1. 
Indeed, let G be an (r - 1 )-partite graph of order n and maximal size. 

Figure IV.3. The Turan graph T3(7). 

Clearly G is a complete (r - I)-partite graph. Suppose the classes are not 
as equal as possible, say there are m1 vertices in the first class and m2 ;:;:: 
m1 + 2 in the second. This is impossible since by transferring one vertex 
from the second class to the first we would increase the number of edges by 
(m1 + I)(m2 - 1) - m1m2 = m2 - m1 - 1 ;:;:: 1. 

The number of edges in 1',.-l(n) is usually denoted by tr - 1(n); thus tin) = 
Ln2/4J. A fundamental theorem of Tunin states that the trivial inequality 
ex(n; Kr);:;:: tr- 1(n) is, in fact, an equality for every nand r. We shall show 
first that the degree sequence of a graph without a K r is dominated by the 
degree sequence of an (r - I)-partite graph. In view of the remarks above 
this will imply Tunin's theorem. 

Theorem 5. Let G be a graph with vertex set V that does not contain K r , a 
complete graph of order r. Then there is an (r - I)-partite graph H with 
vertex set V such that for every vertex Z E V we have 
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If G is not a complete (r - I)-partite graph then there is at least one vertex Z 

for which the inequality above is strict. 

PROOF. We shall apply induction on r. For r = 2 there is nothing to prove 
since G is the empty graph En, which is I-partite. Assume now that r ~ 3 
and the assertion holds for smaller values of r. 

Pick a vertex x E V for which dG(x) is maximal and denote by W the set 
of vertices of G that are joined to x. Then Go = G[W] does not contain a 
K,-l otherwise with x it would form a K'. By the induction hypothesis we 
can replace Go by an (r - 2)-partite graph Ho with vertex set W in such a 
way that dGo(Y) ~ dHo(y) for every yEW. Add to Ho the vertices in V - W 
and join each vertex in V - W to each vertex in W. To complete the proof 
let us check that the graph H obtained in this way has the required properties. 

If Z E V - W then dH(z) = dH(x) = dG(x) ~ dG(z) and if z E W then 
dH(z) = dHo(z) + n - I WI ~ dGo(z) + n - I WI ~ dG(z). Thus dG(z) ~ dH(z) 
holds for every z E V. 

Can H contain a complete subgraph of order r? Clearly not, since a 
complete subgraph of H has at most one vertex in V - Wand most r - 2 
vertices in W. 

What can we say about G is e(G) = e(H)? Then e(Go) = eCHo), so by 
the induction hypothesis Go is a complete (r - 2)-partite graph and 

eG(W, W) = eH(W, W) = IWIIWI. 
Hence 

e(G[W]) = e(H[W]) = 0, 

implying that G is a complete (r - I)-partite graph. 

We now give Turon's theorem in its original form. 

o 

Theorem 6. ex(n; K') = t,-l(n) and T,.-l(n) is the unique graph of order nand 
size t,_1 (n) that does not contain a complete graph of order r. 

1sT PROOF. Since T,.-I(n) is the unique (r - I)-partite graph of order nand 
maximum size, both assertions follow from Theorem 5. D 

In order to emphasize the significance of Theorem 6, we prove it from 
first principles also. This proof is based on the fact that T,.- 1 (n) is almost 
regular: .5(T,.- 1 (n» = n - r nj(r - 1)1, ,1.(T,.- 1 (n» = n - Lnj(r - l)J, and if 
x is a vertex of minimum degree in T,.-I(n) then T,.-I(n) - x is exactly 
T,.-l(n - 1). 

2ND PROOF. Fix r ~ 3 and apply induction on n. For n ~ r the assertion is 
trivial so suppose that n > r and the theorem holds for smaller values of n. 

Suppose G has n vertices, t,_l(n) edges and it contains no K'. As T,.-I(n) 
is a maximal graph without a K' (that is no edge can be added to it without 
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creating a K') the induction step will follow if we show that G is exactly a 
1',. - 1 (n). Since the degrees in 1',. _ 1 (n) differ by at most 1, we have 

J(G) ~ J(1',.-I(n» ~ ~(1',.-I(n» ~ ~(G). 

Let x be a vertex of G with degree d(x) = J(G) ~ J(1',.-I(n». Then 

e(G - x) = e(G) - d(x) ~ e(1',.-I(n - 1», 

so by the induction hypothesis Gx = G - x is exactly a 1',.-I(n - 1). 
A smallest vertex class of Gx contains L(n - 1)/(r - l)J vertices and the 

vertex x is joined to all but 

n - 1 - (n - rr ~ 11) = l: = ~J 
vertices of Gx . Since x cannot be joined to a vertex in each class of Gx , it 
has to be joined to all vertices of Gx save the vertices in a smallest vertex 
class. This shows that G is exactly a 1',.-1 (n) graph. 0 

The proof above can easily be adapted to give a number of related results 
(cf. Exercises 7, 8). 

Now let us turn to the probLem of Zarankiewicz, which is the analog of 
Tunin's problem in bipartite graphs. Write G2(m, n) for a bipartite graph 
with m vertices in the first class and n in the second. What is the maximum 
size of a G2(m, n) if it does not contain a complete bipartite graph with s 
vertices in the first class and t in the second? This maximum is usually 
denoted by z(m, n; s, t). The following simple lemma seems to imply a very 
good upper bound for the function z(m, n; s, t). 

Lemma 7. Let m, n, s, t, r, k be integers, 2 ~ s ~ m, 2 ~ t ~ n, 0 ~ k, 0 ~ 
r < m, and Let G = G2(m, n) be a graph of size z = my = km + r without a 
K(s, t) subgraph having s vertices in the first class and t in the second. Then 

(1) 

PROOF. Denote by VI and V2 the vertex classes of G. We shall say that at-set 
(i.e., a set with t elements) T of V2 beLongs to a vertex x E VI if x is joined to 
every vertex in T. The number of t-sets belonging to a vertex x E VI is (d}X). 
Since the assumption on G i-s exactly that each t-set in V2 belongs to at most 
s - 1 vertices of VI, we find that 

L (d(X») ~ (s _ 1) (n). 
XEV, t t 

(2) 

As LXEV, d(x) = z = my =km + r, 0 ~; < m andf(u) = (~) is a convex 
function of u for u ~ t, inequality (2) implies (1). 0 
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Theorem 8. z(m, n; s, t) :5: (s - l)l/t(n - t + 1)m 1 -(I/t) + (t - l)m. 

PROOF. Let G = G2(m, n) be an extremal graph for the function z(m, n; s, t), 
that is let G be a bipartite graph of size z(m, n; s, t) = my without a K(s, t) 
subgraph. As y :5: n, inequality (1) implies 

(y - (t - l)Y :5: (s - l)(n - (t - 1)Ym- 1. o 

As a consequence of Theorem 8 we see that if t :c: 2 and c > (t - l)l/t 
are fixed then for every sufficiently large n we have 

z(n, n; t, t) < cn2 -(1/t). (3) 

The method of Lemma 7 gives also an upper bound for ex(n; Kz(t)), the 
maximum number of edges in a graph of order n without a complete t by t 

bipartite subgraph. 

Theorem 9. ex(n; Kit)) :5: t(t - l)l/t(n - t + 1)n1 -(I/t) + t{t - l)n 
< t{t - l)l/tnZ-(I/t) + ttn. 

PROOF. Let G be an extremal graph. As in Lemma 7, let us say that at-set 
of the vertices belongs to a vertex x if x is joined to every vertex of the t-set. 
Since G does not contain a Kit), every t-set belongs to at most t - 1 vertices. 
Therefore if G has degree sequence (d;)~ then 2::1 di = 2 ex(n; K 2(t)) and 

implying the result. o 

It is very likely that inequality (3) gives the correct order of magnitude of 
z(n, n; t, t) for every t :c: 2 as n ~ 00 but this has been proved only for t = 2 
and 3. In fact, it is rather hard to find non-trivial lower bounds for 
z(m, n; s, t). In Chapter VII we shall use the probabilistic method to obtain 
a lower bound. To conclude the section we prove an elegant result for t = 2 
that indicates the connection between the problem of Zarankiewicz and 
designs, in particular, projective spaces. 

Theorem 10. z(n, n; 2, 2) :5: tn{l + (4n - 3)I/Z} and equality holds for in­
finitely many values ofn. 

PROOF. Note that with z = tn{l + (4n - 3)1/2} we have 

(z - n)z = n2(n - 1). 

Suppose that there is a bipartite graph G = Gz(n, n) of size greater than z 
that does not contain a quadrilateral (that is a K(2, 2)). Denote by 
d 1, dz , ... , dn the degrees of the vertices of G in the first vertex class, say VI' 
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Then L~ d; = e = e(G) > z and, as in the proof of Lemma 7, we have 

(n) n (d.) 1 n 1 n 

2 ~ t: 2' = 2: t: dt - 2: t: di 

~ 2 _ .: z(z - n) _ (n) 
~ 2n e 2 > 2n - 2' 

This shows that the inequality does hold. 
In fact, the proof so far tells us a considerable amount about the graphs 

G for which equality can be attained. We must have d i = d2 = ... = dn = d 
and any two vertices in the second vertex class V2 of G have exactly one 
common neighbour. By symmetry each vertex of V2 has degree d and any 
two vertices in Vi have exactly one common neighbour. 

Call the vertices in Vi points and the sets r(x), x E V2, lines. By the remarks 
above there are n points and n lines, each point is on d lines and each line 
containsd points, there is exactly one line through any two points and any 
two lines meet in exactly one point. Thus we have arrived at the projective 
plane of order d - 1. Since the steps are easy to trace back, we see that equa­
lity holds for every n for which there is a projective plane with n points. In 
particular, equality holds for every n = q2 + q + 1 where q is a prime power. 

In conclusion, let us see the actual construction of G for the above values 
of n. Let q be a prime power and let PG(2, q) be the projective plane over 
the field of order q. Let Vi be the set of points and V2 the set of lines. Then 

I Vi I = I V21 = q2 + q + 1 = n. 

Let G be the bipartite graph Gin, n) with vertex classes Vi and V2 in which 
PI (P E VI' IE V2 ) is an edge iff the point P is on the line l. (See Figure IV.4.) 
Then G has n(q + 1) = !n{l + (4n - 3)i/2} edges and it does not contain a 
quadrilateral. D 

n -> n + 0, 1,3 

Figure IVA. PG(2, 2) and the corresponding bipartite graph. 

§3 Hamilton Paths and Cycles 
A class of graphs is said to be monotone if whenever a graph L belongs to the 
class and M is obtained from L by adding to it an edge (but no vertex) then 
M also belongs to the class. Most theorems in graph theory can be expressed 
by saying that a monotone class vIt is contained in a monotone class r!I. 
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Of course, these classes are usually described in terms of graph invariants 
or subgraphs contained by them. For example, the simplest case of TUflin's 
theorem, discussed in the previous section, states that the class uIt = 

{G(n, m): m > n2 j4} is contained in [1» = {G: G contains a K3}. It is worth 
noting that a class [1» of graphs is said to be a property of graphs if L E [1» and 
L ~ M imply M E [1». 

How should we go about deciding whether or not uIt is contained in &? 
In some cases there is a simple and beautiful way of tackling this problem. 
Suppose we have a class!Y of triples (G, x, y), where G is a graph and x and 
yare non-adjacent vertices of G, such that if (G, x, y) E!Y and G E uIt then 
G belongs to [1» iff G+ = G + xy does. This holds, for example, if [1» is the 
property of containing a K r and !Y = {(G, x, y): /r(x) n r(y)/ < r - 2}. 
In this case G can be replaced by G+. If G+ also contains two non-adjacent 
vertices, say u and v, such that (G + , u, v) E !Y then we can repeat the opera­
tion: we can replace G+ by G+ + = G+ + uv. Continuing in this way we 
arrive at a graph G* :::> G which belongs to [1» iff G does, and which is a 
closure of G with respect to !Y, that is it has the additional property that for 
no vertices a, bE G* does (G*, a, b) E!Y hold. Thus it is sufficient to decide 
about these graphs G* E uIt whether or not they belong to [1». 

Of course the method above is feasible only if (i) the class !Y is simple 
enough, (ii) it is easy to show that G belongs to [1» iff G+ does and (iii) if we 
start with a graph G E uIt then a graph G* E uIt is easily shown to belong to 
[1». In this section we give two examples that satisfy all these requirements: 
we shall give sufficient conditions for a graph to contain a Hamilton cycle 
or a Hamilton path. Because of the special features of these examples it will 
be convenient to use slightly different notation and terminology. 

Let nand k be natural numbers and let [1» be a class of graphs of order n. 
We say that [1» is k-stable ifwhenever G is an arbitrary graph of order n, x 
and yare non-adjacent vertices of G and d(x) + d(y) ~ k then G has property 
[1» iff G + = G + xy has it also. It is easily seen that for every graph G of 
order n there is unique minimal graph G* = Ck(G) containing G such that 

dG*(x) + dG*(y) s k - 1 for xy ¢ E(G*). 

In the notation of the previous paragraph, we shall take 

!Y = {(G, x, y): / G / = n, xy ¢ E(G), d(x) + dey) ~ k}, 

which is certainly simple enough, so (i) will be satisfied. It is also encouraging 
that G* = Ck(G) is unique. Almost by definition we have the following 
principle of stability: if [1» is a k-stable property of graphs of order n then G 
has property [1» ijfCk(G) has it also. We call Ck( G) the k-closure of G. 

Requirement (ii) is also satisfied, since the gist of the proof of Theorem 2 
is that the property of containing a Hamilton cycle is n-stable and the 
property of containing a Hamilton path is (n - I)-stable. Indeed if d(x) + 
dey) ~ n - 1 whenever x and yare non-adjacent distinct vertices, then the 
graph is connected so the proof of Theorem 2 can be applied. (In fact, this 
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is exactly what inspired the notion of a k-closure.) By the stability principle 
we obtain the following reformulation of Theorem 2 in the case k = n or 
n-l. 

Lemma 11. G is Hamiltonian iff Cn(G) is and G has a Hamilton cycle iff so 
does CiG). 0 

Depending on the amount of work we are able and willing to put in at 
this stage (cf. requirement (iii», we obtain various sufficient conditions for 
a graph to be Hamiltonian. Of course, the case k = n of Theorem 2 is ob­
tained without any work, and so is the case k = n - 1, since the conditions 
imply immediately that Cn(G) = Kn in the first case and Cn-I(G) = K n in 
the second, and K n is Hamiltonian if n ~ 3. In order to make better use of 
Lemma 11, we shall prove the following ungainly technical lemma. 

Lemma 12. Let k, nand t be natural numbers, t < n, and let G be a graph with 
vertex set V(G) = {Xl, X2,"" xn}, whose k-closure Ck(G) contains at most 
t - 1 vertices of degree n - 1. Then there are indices i,j, 1 :::; i < j :::; n, such 
that Xi X j ¢ E( G) and each of the following four inequalities holds: 

j ~ max {2n - k - i, n - t + I} 
d(x;):::; i + k - n, d(x) :::; j + k - n - 1, (4) 

d(Xi) + d(x) :::; k - 1. 

Remark. Note that it is not assumed that the degree sequence d(XI), 
d(X2), ... , d(xn) of G is ordered in any way. 

PROOF. The graph H = Ck(G) is not complete so we can define two indices 
i and j as follows: 

j = max{l: dH(XL) =F n - I}, 
i = max{l: x/Xj ¢ E(H)}. 

Then XiXj ¢ E(H) so, by (3), 

dH(xJ + dH(xj) :::; k - 1, 

which implies the fourth inequality in (4). Each of the vertices 

has degree n - 1 in H so 

n-j:::;t-l 

and 
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The vertex x j is joined to the n - j vertices following it and to the j - i-I 
vertices preceding it, so 

dH(x j ) ;;:: n - j + j - i-I = n - i - 1. 

These inequalities enable us to show that the indices i, j, 1 ~ i < j ~ n, 
satisfy the remaining three inequalities in (4). Indeed, 

dG(x;) ~ dH(x;) ~ k - 1 - dH(x) ~ k - 1 - (n - i-I) = i + k - n, 

dG(x;) ~ dH(x) ~ k - 1 - dH(x;) ~ k - 1 - (n - j) = j + k - n - 1, 

i + j ;;:: (n - dH(x j) - 1) + (n - dH(x;)) ;;:: 2n - 1 - (k - 1) = 2n - k. 
o 

Combining Lemma 11 and Lemma 12 (with t = n - 1 and k = n or 
n - 1) we obtain rather complicated but useful conditions for the existence 
of a Hamilton path or cycle. 

Theorem 13. Let G be a graph with vertex set V(G) = {Xl' X2' ... , Xn}, 
n ;;:: 3. Let e = 0 or 1 and suppose there are no indices i, 1, 1 ~ i < j ~ n, 
such that X;Xj ¢ E(G) and 

j;;::n-i+e, 

d(x;) ~ i - e, d(x) ~ j - 1 - e, 

d(x;) + d(xj) ~ n - 1 - e. 

Ife = 0 then G has a Hamilton cycle and ife = 1 then G has a Hamilton path. 
o 

This theorem has the following beautiful consequence. 

Corollary 14. Let G be a graph with degree sequence d l ~ d2 ~ ... ~ dn, 
n ;;:: 3, and let e = 0 or 1. Suppose 

dn- k - E ;;:: n - k whenever dk ~ k - e < !(n - e). 

Ife = 0 then G has a Hamilton cycle and ife = 1 then G has a Hamilton path. 
o 

We draw the attention of the reader to Exercises 21 and 22 which show 
that the assertions in the corollary above are in some sense best possible. 
In particular, if d 1 ~ d2 ~ ... ~ dn is a graphic sequence such that 

n 
dn - k < n - k and dk ~ k < 2 

then there is a graph G with vertex set {Xl> X2, ... , xn} such that d(x;) ;;:: d;, 
1 ~ i ~ n, and G does not have a Hamilton cycle. 
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x o€---oi( x iIE---o( 

Figure IV.S. An x-path and a simple transform of it. 

There is another customary way of showing that a graph has a Hamilton 
cycle or path. Let S be a longest xo-path in G, that is a longest path beginning 
at xo: S = XOXl ... Xk· Then r(Xk) C {Xo, Xl"'" Xk- d since otherwise S 
could be continues to a longer path. If Xk is adjacent to Xj, 1 :5: j < k - 1, 
then S' = Xo Xl' .. X j Xk Xk _ 1 ••• X j + 1 is another longest xo-path. We call 
S' a simple transform of S. It is obtained from S by erasing the edge XjXj+ 1 

and adding to it the edge XkXj' Note that if S' is a simple transform of S 
then S is a simple transform of S' and S has exactly d(xk) - 1 simple trans­
forms. The result of a sequence of simple transforms is called a transform 
(See Figure IV.5). 

Let L be the set of end vertices (different from xo) of transforms of Sand 
put N = {XjES:Xj_ l E L or xj+ l EL} and R = V - NuL. Thus L is the 
collection of the last vertices of the transforms, N is the collection of their 
neighbours on Sand R is the rest of the vertices. 

Theorem 15. The graph G has no L-~ edges. 

PROOF. Recall that there is no L - (V(G) - V(S)) edge, since S is a longest 
xo-path, so in particular V(S) = V(P) for every transform P of S. 

Suppose XiXjEE(G), where XiEL and XjER. Let Si be a transform of S 
ending in Xi' Since at least one neighbour of Xj on Si is the end vertex of a 
simple transform of Si' Xj cannot have the same neighbours on Sand Si' 
since otherwise Xj would belong to N. However, when the edge xl Xl 

j' = j - 1 or j + 1, is erased during a sequence S ~ S' ~ S" ~ ... ~ Si of 
simple transformations, one of the vertices xl' X j is put into L and the other 
into N. Thus Xj E L u N = V(G) - R, contradicting our assumption. D 

We will make use of Theorem 15 later in Chapter VII. The last two 
results of this section are also obtained with the use of simple transforms. 

Theorem 16. Let W be the set of vertices of even degree in a graph G and let 
Xo be a vertex of G. Then there are an even number of longest xo-paths ending 
in W. 

PROOF. Let H be the graph whose vertex set is the set L of longest xo-paths 
in G, in which Pl E L is joined to P2 E L iff P2 is a simple transform of Pl' 
Since the degree of P = XOXl ... Xk E Lin H is d(xk) - 1, the set of longest 
paths ending in W is exactly the set of vertices of odd degree in H. The 
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number of vertices of odd degree is even in any graph, so the proof is com­
plete. [] 

Theorem 17. Let G be a graph in which every vertex has odd degree. Then 
every edge ofG is contained in an even number of Hamilton cycles. 

PROOF. Let XoY E E(G). Then in G' = G - xoy only Xo and y have even 
degree, so in G' there are an even number of longest xo-paths that end in y. 
Thus either G has no Hamilton cycle that contains XoY or it has a positive 
even number of them. [] 

§4 The Structure of Graphs 

As we saw in §2 on the example of a Turim graph 1',.-1 (n), a graph of order n 
with !«r - 2)/(r - 1) + o(1»n edges does not necessarily contain a K', a 
complete graph of order r. (Here and in what follows we use Landau's nota­
tion 0(1) to denote a function tending to 0 as n --+ co.) The main aim of this 
section is to prove the deep result of Erdos and Stone, proved in 1946, that 
if e > 0 then en2 more edges ensure not only a K', but a K,(t), a complete 
r-partite graph with t vertices in each class, where t --+ co as n --+ co. 

A sharper version of the theorem is due to Bollobas and Erdos; this is 
the result we shall present here. The simple proof is based on two lemmas. 
The first lemma enables us to replace a condition on the size by a condition 
on the minimum degree; the second is a technical lemma in the vein of 
Lemma 7. 

Lemma 18. Let 0 < a < a + e < 1 and put I] = (e/2) 1/2. Then every graph 
G of order n ~ 2a/e and size at least !(a + e)n2 contains a subgraph H with 
I H I = h ~ I]n and minimum degree at least ah. 

PROOF. Define a sequence of graphs Go = G ~ G1 ~ G2 ::> .•. with IGkl = 
n - k as follows. If Gk has a vertex Xk of degree less than a(n - k) then put 
Gk+ 1 = Gk - xk, if c5(Gk) ~ a(n - k) then terminate the sequence. The 
assertion of the theorem follows if we show that the sequence has to terminate 
in a graph Gk with h = n - k ~ I]n. 

Suppose this is not so and we arrive at a graph Gk with h = n - k < I]n. 
By construction 

e(Gk ) ~ !(a + e)n2 - a{n + (n - 1) + ... + (h + I)}. 

On the other hand 
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so 

en2 - an + ah + h ~ (1 - a)h2, 

contradicting our assumptions. 

81 

o 

Lemma 19. Let r ~ 2, 1 ~ t ~ q and N = n - (r - 1)q ~ 1. Let G be a 
graph of order n that contains a Kr-I(q), say K, but does not contain a Kr(t). 
Then G has at most 

e = «r - 2)q + t)N + 2qN 1 -(I/t) 

edges of the form xy, where x E K and y E G - K. 

PROOF. Let SI' S2' ... , S,_I be the vertex classes of K and put S = Url-I Si' 
ThuslSd = qandlSI = (r -1)q.LetxI,x2, ... ,xN betheverticesofG - K 
and put Ai = r(Xi) r. S, i = 1,2, ... ,N. With this notation the lemma 
states that 

N 

I lAd ~ e. 
1 

Call a set We S a centipede if it has exactly t vertices in each set Si' 
Since G does not contain a KrCt), every centipede is contained in at most 
t - 1 of the Ai' We may assume that IAil ~ (r - 2)q + t for i ~ M and 
IAil < (r - 2)q + tfor i > M. Fori ~ Mandj ~ r - 1 putaij = IAi r. Sjl. 
Then aij ~ t and Ai contains 

rff (aij) 
j= 1 t 

centipedes. Since altogether there are mr- 1 centipedes and each one of 
them is contained in at most t - 1 sets Ai' we have 

I rfl (aij) ~ (t _ 1) (q)r-I. 
i=lj=1 t t 

The required estimate follows from this inequality and the convexity of 
the binomial coefficients. Indeed putting ai = Ii: t aij - (r - 2)q, one has 

~nl (aij) ~ (q)r-2(ai), 
J=I t t t 

so 

.f (a i ) ~ (t - 1) (q). 
,= 1 t t 

As G) is a convex function of x, on putting a = I~ aJM the last inequality 
implies 
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Thus 

and 
M 

I IAil < 2qM- 1/t + M((r - 2)q + t). 
1 

Since 
N 

I lAd :-s.; (N - M)((r - 2)q + t), 
M+1 

the required estimate does hold. o 

Theorem 20. Let r ~ 2 be an integer and let 0 < c < !(r - 1). Then there 
exists ad = d(c, r) > 0 such that ifn is sufficiently large and 

m ~ H(r - 2)/(r - 1) + c}nZ 

then every graph of order n and size m contains a KrCt) with t ~ Ld log nJ. 

PROOF. We shall apply induction on r. For r = 2 Theorem 9 implies that 
any d < -1/log(2c) will do for d(c, 2). Indeed, if there is a graph G(n, m) 
without a Kz(t) where m ~ enz and t = Ld log nJ, then by Theorem 9 we 
have 

that is 

2en l/t :-s.; (t - 1 )l/t + tn - 1+ (lft). 

However, this inequality cannot hold if n is sufficiently large. 
Now assume that r > 2 and the result holds for smaller values of r. For 

the sake of convenience we write Kix) for KiLxJ) and we denote by Gin) 
a graph of order n and size at least {!(r - 2)/(r - 1) + c}nz. 

Put Cr = H(r - 2)/(r - 1) - (r - 3)j(r - 2)} = {2(r - l)(r - 2)} -1 > 0 
and er = d(c" r - 1) > O. Then er depends only on r, so by the induction 
hypothesis if n is large then every Gin) contains a Kr- 1(er log n) = Kr-1(q). 
We shall show that d = d(c, r) = er(r - 1)c/4 will do for the theorem, that is 
every Gin) contains a KrCd log n) = KrCt) ifn is large enough. 

Suppose that, contrary to this assertion, there are arbitrarily large values 
ofnfor which some Gin) does not contain a KrCd log n) = Kr(t). Given any 
ho ~ l/c, let G = Gin), n ~ ho/YJ, contain a Kr- 1(q), say K, but no KrCt). 
Hence by Theorem 9 there are at most !(t - l)qZ-(l/t) + !qt edges in a 
subgraph spanned by the q vertices in a class of K, so there are at most 

( r - 1) A = 2. qZ + (r - l){!{t - 1)qZ-1/t + !qt} 
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edges in the subgraph spanned by the whole of K. Furthermore, by Lemma 
19, at most B = «r - 2)q + t)(n - (r - l)q) + 2qn 1- 0 /t) edges join K to 
G - K. Finally, as <5(G) 2': {(r - 2)/(r - 1) + 6}n, we must have 

2A + B 2': (r - l)q<5(G) 2': {(r - 2) + 6(r - l)}qn, 
and so 

2qn 1- O /t ) + (r - 1)q2 + tn :::;; 6(r - l)qn. 

We have arrived at a contradiction, since this inequality does not hold for 
larger values of n. D 

Remark. In a certain sense Theorem 20 is best possible: for every 6 and r 
there is a constant d: tending to 0 with 6 such that the graph described in 
the theorem need not contain a K,(t) with t = Ld: log nJ. In fact, we shall 
see in Chapter VII Theorem 3 that if 0 < 6 < ! and d! > - 2jlog(26), then 
for every sufficiently large n there is a graph G(n, m) not containing a Kit), 
where m= Lcn2 J and t = Ld! log nJ. This result will imply immediately 
(cf. Exercise 6 of Chapter VII) that if r > 2 and 0 < 6 < !(r - 1) - 2 then 
any value greater than -2/log(2(r - 1)26) will do for,d:. 

Since d log n --+ 00 as n --+ 00, Theorem 20 has the following immediate 
corollaries. 

Corollary 21. Let F = Kit), where r 2': 2 and t 2': 1. Then the maximal size 
of a graph of order n without a Kr(t) is 

1{r-2 } ex(n; F) = 2: r _ 1 + 0(1) n2. D 

Corollary 22. Let F 1, F 2, •.. , F/ be non-empty graphs. Denote by r the mini­
mum of the chromatic numbers of the F;, that is let r be the minimum number 
for which at least one of the Fi is contained in an F = Kr(t) for some t. Then 
the maximal size of a graph of order n not containing any of the Fi is 

ex(n; F 1 , F2, ... , F/) = ~ {~ = ~ + 0(1)}n2. 

PROOF. The Tunin graph 1',.-1 (n) does not contain any of the F;, so 

ex(n; Fb F2,···, F/) 2': e(1',.-l(n)) = tr- 1(n) = ~ t = ~ + 0(1)}n2. 

Conversely, since, say F j C F = K,(t) for some j and t, 

ex(n; Fb F 2,···, F/) :::;; ex(n; F) :::;; ex(n; F) = ~ t = ~ + 0(1)}n2. D 

Theorem 20 is the basis of a rather detailed study of the structure of 
extremal graphs, giving us considerably more accurate results than Corollary 
22. This theory is, however, outside the scope of our book. 
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The density of a graph G of order n is defined to be e(G)/G). The upper 
density of an infinite graph G is the supremum of the densities of arbitrarily 
large finite subgraphs of G. It is surprising and fascinating that not every 
value between 0 and 1 is the upper density of some infinite graph; in fact, 
the range of the upper density is a countable set. 

Corollary 23. The upper density of an infinite graph G is 1, t, ~, i, ... , or o. 
Each of these values is the upper density of some infinite graph. 

PROOF. Let Gr be the complete r-partite graph with infinitely many vertices 
in each class. Since the density of Kit) tends to 1 - (1/r) as t tends to 00, 

the upper density of Gr is 1 - (l/r), proving the second assertion. 
Now let IY. be the upper density of G and suppose 

1 
IY. > 1 - -- (r ~ 2). 

r - 1 

Then there is an e > 0 such that G contain graphs H k of order nk with nk -+ 00 

satisfying e(Hk) ~ t(1 - (1/(r - 1)) + e)nr By Theorem 19 each Hk con­
tains a subgraph Kr(tk) with tk -+ 00; the subgraphs Kr(tk) show that IY. ~ 
1 - (l/r). 0 

EXCERCISES 

1. (i) Let G be a graph of order n, maximum degree ~ :2: 3 and diameter d. Let 
no(g, b) be as in Theorem 1. Prove that n ::;; no(2d + 1, ~) with equality iff G 
is ~-regular and has girth 2d + 1. 

(ii) Let G be a graph of order n, maximum degree ~ :2: 3, and suppose every 
vertex is within distance d - 1 of each pair of adjacent vertices. Prove that 
n ::;; no(2d, ~), with equality iff G is ~-regular and has girth 2d. 

2. Prove Theorem 4 for k = 3 and 4. 

3. Prove that the maximal number of edges in a graph of order n without an even 
cycle is Lt(n - 1)J. Compare this with the maximum size of a graph without 
an odd cycle. 

4. Show that a tree with 2k endvertices contains k edge-disjoint paths joining distinct 
end vertices. 

5. Suppose x is not a cutvertex and has degree 2k. Prove that there are k edge­
disjoint cycles containing x. [Cf. Exercise 4.] 

6: Show that a graph with n vertices and minimum degree L(r - 2)n/(r - l)J + 1 
contains a K'. 

7. Let G have n :2: r + 1 vertices and t,-1 (n) + 1 edges. 
(i) Show that G contains two K' subgraphs with r - 1 vertices in common. 

(ii) Prove that for every p, r ::;; p ::;; n, G has a subgraph with p vertices and at least 
t'-l(P) + 1 edges. 
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8. Prove that for n 2: 5 every graph of order n with Ln2/4J + 2 edges contains two 
triangles with exactly one vertex in common. 

9. Prove that if a graph with n vertices and Ln2/4J - I edges contains a triangle 
then it contains at least Ln/2J - 1- 1 triangles. [Hint. Let XIX2X3 be a triangle 
and denote by m the number of edges joining {XI' X2, X3} to V(G) - {XI' X 2 , X3}· 

Estimate the number of triangles in G - {Xl> X2' X3} and the number of triangles 
sharing a side with XIX2X3.J 

10; (i) Show that the edges of a graph of order n can be covered with not more than 
Ln2/4J edges and triangles. 

(ii) Let G be a graph with vertices XI' X2, .•. , Xn, n 2: 4. Prove that there is a 
set S, I S I ::; Ln2 /4 J, containing non-empty subsets X I, X 2, ... , X n such that 
XiXj is an edge of G if Xi (\ Xj oft 0. 

11~ Let 1 ::; k < n. Show that every graph of order n and size (k - l)n - m + 1 
contains a subgraph with minimum degree k, but there is a graph of order nand 
size (k - l)n - m in which every subgraph has minimum degree at most k - 1. 
[Hint. Imitate the proof of Lemma 18.J 

IT Show that a graph of order n and size (k - l)n - m + 1 contains every tree 
of order k + 1. 

13. Let G be a graph of order n which does not contain a cycle and one of its diagonals. 
Prove that if n 2: 4 then G has at most 2n - 4 edges. 

Show that if n 2: 6 and G has 2n - 4 edges then G is the complete bipartite 
graph K(2, n - 2). [Hint. Consider a longest path in G.J 

14~ Let k 2: 1 and let G be a graph of order n without an odd cycle of length less than 
2k + 1 2: 5. Prove that b(G)::; Ln/2J and Tin) is the only extremal graph, 
unless n = 2k + 1 = 5, in which case there is another extremal graph, C 5• 

15 -; Let G be a graph of order n without an odd cycle of length less than 2k + 1 2: 5. 
Prove that if G does not contain r n/21 independent vertices then (j(G)::; 
2n/(2k + 1). Show that equality holds only for n = (2k + l)t and the extremal 
graphs are obtained from a cycle C2 k+ I by replacing each vertex by t vertices, 
as in Figure IV.6. 

Figure IV.6. The graph CSC2). 

16. Let Xl> X2, ... , Xn be vectors of norm at least 1 in a Euclidean space. Prove that 
there are at most Ln2/4J unordered pairs i,j such that IXi + Xjl < 1. [Hint. Show 
that if IXII = IX21 = IX31 = 1 then IXi + Xjl 2: 1 for some i,j, 1 ::; i < j ::; 3.J 

1 r Let X and Y be independent identically distributed random variables taking 
values in a Euclidean space. Prove that P( I X + YI 2: x) 2: !P( I X I 2: X)2 for 
every X 2: o. 
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18. Let x[, X2, ... , X3pE [R2 be such that IXi - xjl:$; 1. Prove that at most 3p2 of 
the distances IXi - Xjl are greater than J2/2. [Hint. Show that among any four 
of the points there are two within distance J2/2 of each other.] 

19. The clique number cl( G) of a graph G is the maximum order of a complete subgraph 
of G. Show that if a regular graph of order n contains a complete subgraph of 
order Lnl2J + 1 then it is a complete graph, but for every p, I :$; p :$; n12, there 
is a regular graph of order n with cl(G) = p. 

20:- We say that a set We V(G) covers the edges of a graph G if every edge of Gis 
incident with at least one vertex in W Denote by cxo(G) the minimum number of 
vertices covering the edges of G. Prove that if G has n vertices and m edges then 
cxo(G) :$; 2mnj(2m + n), with equality iff G = pK' for some p and r, that is iff each 
component of G is a K' for some r. [Hint. Note that cxo(G) = n - cl(G), and if 
cl(G) = p then by Tunin's theorem e(G) :$; tp(n), so m = (2) - e(G) ~ m - tin).] 

21. (Cf. Corollary 14.) Let d 1 :$; d2 :$; ... :$; dn be a graphic sequence such that for 
some k 

n 
dk :$; k < 2 and dn- k :$; n - k - 1. 

Show that there is a non-Hamiltonian graph G with vertex set {Xl' X2, ... , xn} 
such that d(Xi) ~ d;, 1 :$; i :$; n (cf. Figure IV.7). 

Figure IV.7. The graph (K 3 u E3) + K3 has no Hamilton cycle and (K 2 u E3) 
+ K2 has no Hamilton path. 

22. (Cf. Corollary 14) Let dl :$; d2 :$; ... :$; dn be a graphic sequence such that for 
some k 

dk :$; k - 1 < ten - 1) and dn + l-k 2': n - k. 

Prove that there is a graph G with vertex set {x 1> X2, ... , xn} such that d(Xi) ~ di, 
1 :$; i :$; n, and G does not contain a Hamilton path (cf. Figure IV.7). 

23. Prove that a non-Hamiltonian graph of order n 2': 3 has at most (2) - (n - 2) 
edges and there is a unique extremal graph. 

Prove that a graph of order n ~ 2 without a Hamilton path has at most 
m - (n - 3) edges and K n - l u El is the unique extremal graph. 

24. Given b < n12, determine the maximal number of edges in a graph G of order n 
without a Hamilton cycle (path), provided beG) = b. 

25. Prove Theorem 4 by making use of simple transforms of a longest xo-path P = 
XOXI .. . x,. [Hint. Apply induction on n. If beG) :$; k12, the result follows by 
induction, otherwise consider the set L of end vertices of simple transforms of P. 
Put I = I L I, r = maxxEL d(x) and note that I 2': r and the neighbours of each 
X E L are contained in {x" X,_ [, ... , X'-k+ d. Deduce that e(G) - e(G - L) 
:$; I(k - I) + I(r + I - k) :$; kl/2 and complete the proof by applying the induction 
hypothesis to G - L.] 
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26. Let 1 < al < a2 < ... < ak S x be natural numbers. Suppose no ai divides 
the product of any two others. Prove that k s n(x) + x 2i3 , where, as usual, n(x) 
denotes the number of primes not exceeding x. [Hint. Put VI = {I, 2, ... , LX 213 J} 
and V2 = {x: x2i3 S b s x and b is a prime}. Show first that ai = biCi' where 
bi' ci E V = VI U V2. Let G be the graph (with loops) with vertex set V whose 
edges (loops) are biCi' Note that G does not contain a path of length 3.J 

27.+ (Cf. Exercise 26). Let 1 < a l < a2 < ... < ak S x be natural numbers. Suppose 
aiaj # akal unless {i,j} = {h, I}. Prove that k s n(x) + CX 314 for some constant 
c> O. [Hint. The graph G of Exercise 26 contains no quadrilaterals; apply 
Theorem 8 to the bipartite subgraph of G with vertex classes VI and V2 . Recall the 
prime number theorem, namely that (n(x)log x)/x ---> 1 as x ---> oo.J 

28. Denote by Dk(n) the maximum number of occurrences of the same positive 
distance among n points in IRk. Prove that limn _ oo Dk(n)/n 2 = t - (1/2Lk/2J) if 
k ;::: 2. [Hint. (i) Note that if x E {z E IRk: ZI + d = 1 and Zi = 0 if i > 2} and 
Y E {ZE IRk:Z~ + Z~ = 1 and Zi = 0 ifi # 3 or4} then Ix - yl = j2. (ii) Deduce 
from Theorem 20 that Dk(n) is at least as large as claimed.J 

Notes 
The results concerning Hamilton cycles and paths presented in the chapter 
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P. Turan, On an extremal problem in graph theory (in Hungarian), Mat. es 
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formation about the degree sequence of a graph without a f('" is in P. Erdos, 
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Extremal Graph Theory, Academic Press, London-New York-San 
Francisco, 1978; Chapter III of the same book concerns cycles and contains 
many more results than we could present in this chapter. 



CHAPTER V 

Colouring 

We wish to arrange the talks in a congress in such a way that no participant 
will be forced to miss a talk he would like to hear, that is that there are no 
undesirable clashes. Assuming a good supply of lecture rooms enabling us to 
hold as many parallel talks as we like, how long will the program have to 
last? Let us reformulate this question in terms of graphs. Let G be the graph 
whose vertices are the talks and in which two talks are joined iff there is a 
participant wishing to attend both. What is the minimum value of k for which 
V(G) can be partitioned into k classes, say VI, V2 , ••. , l-k, such that no edge 
joins two vertices of the same class? As in §4 Chapter IV, we denote this 
minimum by X(G) and call it the (vertex) chromatic number of G. The termin­
ology originates in the usual definition of X( G): a colouring of the vertices 
of G is an assignment of colours to the vertices in such a way that adjacent 
vertices have distinct colours; X(G) is then the minimal number of colours in 
a (vertex) colouring of G. 

Let us remark here that we shall use real colours (red, blue, ... ) only if 
there are few colours, otherwise the natural numbers will be our "colours". 
Thus a k-colouring of the vertices of G is a function c: V(G) -> {l, 2, ... , k} 
such that each set c-l(j) is independent. 

Another scheduling problem goes as follows. Each of n businessmen 
wishes to hold confidential meetings with some of the others. Assuming 
that each meeting lasts a day and at each meeting exactly two businessmen 
are present, in how many days can the meetings be over? In this case one 
considers the graph H whose vertices correspond to the n businessmen and 
two vertices are adjacent iff the two businessmen wish to hold a meeting. 
Then the problem above asks for the minimal number of colours in an edge­
colouring of H, that is in a colouring of the edges of H in such a way that no 
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two adjacent edges have the same colour. This number, denoted by X'(H), 
is the edge chromatic number of H. 

In this chapter we shall present some of the basic properties of the vertex 
and edge chromatic numbers. The final section (§3) is devoted to colouring 
planar graphs and to a very brief outline of the proof of the best known 
result in graph theory, the so called four colour theorem. 

§1 Vertex Colouring 

In Chapter I. §2 we noted the trivial fact that a graph is bipartite iff it does 
not contain an odd cycle. Thus X(G) ;;::: 2 iff G contains an edge and X(G) ;;::: 3 
iff G contains an odd cycle. For k ;;::: 4 we do not have a similar character­
ization of graphs with chromatic number at least k, though there are some 
complicated characterizations (cf. Exercises 32-35). Of course, if G => Kk 
then X( G) ;;::: k and if G does not contain h + 1 independent vertices then 
X( G) ;;::: I G I/h. However, it is not easy to see that there are triangle-free 
graphs of large chromatic number (cf. Exercise 11), though in Chapter VII 
we shall show that there exist graphs with arbitrarily large chromatic 
number and arbitrarily large girth. The difficulty we encounter in finding 
such graphs shows that it would be unreasonable to expect a simple character­
ization of graphs with large chromatic number. Thus we shall concentrate 
on finding efficient ways of colouring a graph. 

How should one try to colour the vertices of a graph with colours 1,2, ... , 
using as few colours as possible? A simple way is as follows. Order the 
vertices, say Xl' X 2 , ••• , Xn and then colour them one by one: colour xlI, 

then colour X 2 1 if X 1X 2 rtE(G) and 2 otherwise, and so on, colour each vertex 
the smallest colour it can have at that stage. This so-called greedy algorithm 
does produce a colouring, but this colouring may and usually does use many 
more colours than necessary. Figure V.I shows a bipartite (i.e., 2-colourable) 
graph for which the greedy algorithm wastes four colours. However, it is 
easily seen (Exercise 3') that for every graph the vertices .can be ordered in 
such a way that the greedy algorithm uses as few colours as possible. Thus it is 
not surprising that it pays to investigate the number of colours needed by 
the greedy algorithm in various orders of the vertices. 

Figure V.l. In the order Xl>X2,"" Xs the greedy algorithm needs four colours. 
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Let us start with an immediate consequence of the algorithm. 

Theorem 1. Let k = maxH c5(H), where the maximum is taken over all spanned 
subgraphs of G. Then x( G) ::; k + 1. 

PROOF. Write Xn for a vertex of degree at most k, and put Hn - l = G - {x n}. 

By assumption Hn - l has a vertex of degree at most k. Let Xn-l be one of 
them and put Hn - 2 = Hn - l - {xn - d = G - {xn , Xn- d. Continuing in 
this way we enumerate all the vertices. 

Now the sequence Xl' X2, •.. , Xn is such that each Xj is joined to at most 
k vertices preceding it. Hence the algorithm will never need colour k + 2 
to colour a vertex. 0 

It is, of course, very easy to improve the efficiency of the greedy algorithm. 
If we already know a subgraph H 0 which can be coloured with few colours, 
in particular, if we know a colouring of H 0 with X(H 0) colours, then we may 
start our sequence with the vertices of H 0, colour H 0 in an efficient way 
and apply only then the algorithm to colour the remaining vertices. This 
gives us the following extension of Theorem 1. 

Theorem 2. Let Ho be a spanned subgraph of G and suppose every subgraph 
H satisfying Ho c H c G, V(Ho) =I V(H), contains a vertex x E V(H) 
- V(Ho) with dH(x) ::; k. Then 

x(G) ::; max{k + 1, X(H)}. o 

In some cases the problem of colouring a graph can be reduced to the 
problem of colouring certain subgraphs of it. This happens if the graph is 
disconnected or has a cutvertex or, slightly more generally, contains a 
complete subgraph whose vertex set disconnects the graph. Then we may 
colour each part separately since, at worst by a change of notation, we can 
fit these colourings together to produce a colouring of the original graph, 
as shown in Figure V.2. 

G 

1~1 , 
lJ;l' 

3 1 

• 3~ G3 

3 2 

Figure V.2. The vertex set of the thick triangle disconnects G; 
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As a rather crude consequence of Theorem 1 we see that x( G) ::; d + 1, 
where d = d(G) is the maximum degree of G, since maxHcG (j(H) ::; d(G). 
Furthermore, if G is connected and not d-regular then clearly maxHcG (j(H) 
::; d - 1 so x( G) ::; A The following result, due to Brooks, takes care of the 
regular case. 

Theorem 3. Let G be a connected graph with maximal degree d. Suppose G is 
neither a complete graph nor an odd cycle. Then X(G) ::; d. 

PROOF. We know already that we may assume without loss of generality that 
G is 2-connected and d-regular. Furthermore, we may assume that d ~ 3, 
since a 2-regular 3-chromatic graph is an odd cycle. 

If G is 3-connected, let Xn be any vertex of G and let XI' X2 be two non­
adjacent vertices in rexn). If G is not 3-connected, let Xn be a vertex for which 
G - Xn is separable, so has at least two blocks. Since G is 2-connected, each 
endblock.of G - Xn has a vertex adjacent to X n • Let X I and X 2 be such vertices 
belonging to different end blocks. 

In either case we have found vertices XI' X2 and Xn such that G - {Xl> X2} 

is connected, X I X2 f/: E(G) but XIXn E E(G) and X2Xn E E(G). Let Xn-I E V -
{x I, X 2, xn} be a neighbour of X n , let Xn - 2 be a neighbour of Xn or Xn _ I, etc. 
Then the order XI' X 2 , X3""'Xn is such that each vertex other than Xn is 
adjacent to at least one vertex following it. Thus the greedy algorithm will 
use at most d colours, since XI and X2 get the same colour and Xn is adjacent 
to both. 0 

Another colouring algorithm can be obtained by reducing the problem to 
colouring two other graphs derived from G. This reduction also enables us to 
obtain some information about the number of colourings of a graph with a 
given set of colours. 

Let a and b be non-adjacent vertices of a graph G. Let G' be obtained from 
G by joining a to b, and let G" be obtained from G by identifying a and b. 
Thus in G" there is a new vertex ab instead of a and b, which is joined to the 
vertices adjacent to at least one of a and b (Figure V.3). The colourings of G 
in which a and b get distinct colours are in 1-1 correspondence with the 
colourings of G'. Indeed c: V(G) -+ {I, 2, ... , k} is a colouring of G with 
c(a) =1= c(b) iff c is a colouring of G'. Similarly the colourings of G in which 

G G' GU 

Figure V.3. The graphs G' and GU
• 
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a and b get the same colour are in a 1-1 correspondence with the colourings 
of Gil. In particular, if for a natural number x and a graph H we write PH(X) 
for the number of colourings of a graph H with colours 1, 2, ... , x, then 

PG(X) = pdx) + PG"(x), (1) 

By definition X(G) is the least natural number k for which PG(k) ~ 1. Thus 
both the remarks above and relation (1) imply that 

x( G) = min {xC G'), X( Gil)}. (2) 

The basic properties of PH(X) are given in our next result. 

Theorem 4. Let H be a graph with n ~ 1 vertices, m edges and k components. 
Then 

n-k 

PH (X) = L (-IYai xn - i, 
i=O 

whereao = l,a 1 = mandai> Oforeveryi,O.::; i.::; n - k. 

PROOF. We apply induction on n + m. For n + m = 1 the assertions are 
trivial so we pass to the induction step. If m = 0, we are again home since 
in this case k = n and as every map f: V(H) ~ {I, 2, ... , x} is a colouring 
of H, we have PH(X) = xn. If m > 0 we pick two adjacent vertices of H, say 
a and b. Putting G = H - ab we find that G' = H. Since e( G) = m - 1 and 
I Gill + e( Gil) .::; n - 1 + m, by the induction hypothesis the assertions of the 
theorem hold for PG(x) and PG''(x). Note now that Gil has k components and 
G has at least k components. Therefore 

n-k 

PG(x) = xn - (m - l)xn - 1 + L (_l)ibix"-i 
i=2 

where bi ~ 0 for each i, and 
n-k 

PG"(x) = x n- 1 - L ( -IYci xn - i, 

i=2 

where Ci > 0 for each i. Hence, by (1), 
n-k 

PH(X) = pdx) = PG(x) - PG''(x) = xn - mxn - 1 + L (-IY(b i + cJxn - i 

n-k 

= xm - mxn - 1 + L (-l)iaixn-i, 
i=2 

where ai > 0 for each i. 

i=2 

o 

Because of Theorem 4 we are justified in calling PH(X) the chromatic 
polynomial of H. The chromatic polynomial is closely connected to various 
enumeration problems, some of which will be discussed in Ch. VIII. In par-
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ticular, the modulus of each coefficient of PH(X) is the number of certain 
subgraphs of H (cf. Exercise 12+). 

Let us describe now the algorithm based on the reduction G --+ {G', Gil}. 
Given a graph G, construct a sequence of graphs Go, G1, ... as follows. Put 
Go = G. Having constructed Gi , if Gi is complete, terminate the sequence, 
otherwise let Gi + 1 be Gi or Gi'. The sequence has to end in a complete graph 
Gn say of order I Gt I = k. A k-colouring of Gt can easily be lifted to a k­
colouring of the original graph G, so X(G) :::; k. In fact, equality (2) shows 
that X( G) is the minimum order of a complete graph in which a sequence 
Go, G1,.·· can terminate. 

There are other problems that can be tackled by the reduction G--+ 
{G', Gil}; a beautiful example is Exercise 16+. 

§2 Edge Colouring 

In a colouring of the edges of a graph G the edges incident with a vertex 
get distinct colours, so x'(G), the edge chromatic number, is at least as 
large as the maximum degree, .1.(G) = maxx d(x), 

x'(G) ~ .1.(G). (3) 

At first sight it is somewhat surprising that this trivial inequality is in fact, 
an equality for large classes of graphs, including the class of bipartite graphs. 
Indeed, Exercise 22 of Chapter III, which is a consequence of Hall's theorem, 
asserts that the edge set E(G) of a bipartite graph G can be partitioned into 
.1.(G) classes of independent edges, that is x'(G) = .1.(G). 

Another trivial lower bound on x'(G) follows from the fact that if G does 
not contain /3 + 1 independent edges, then each colour class has at most /3 
edges so we need at least r e( G)/ /31 colour classes to take care of all the edges: 

x'(G) ~ r e(G)//31. (4) 

Similarly to Theorem 9 of Chapter 1, it is easily shown that if G is a complete 
graph of order 2 then equality holds in (4), that is X'(Kn) = n - 1 if n is 
even and x'(Kn) = n if n ~ 3 is odd (Exercise 28). 

How can one obtain an upper bound for x'(G)? Since each edge is adjacent 
to at most 2(.1.(G) - 1) edges, Theorem 1 implies that 

X'(G) :::; 2.1.(G) - 1. 

Furthermore, if .1.(G) ~ 3, the theorem of Brooks gives 

X'(G) :::; 2.1.(G) - 2. 

At first sight this inequality seems reasonably good. However, the following 
fundamental theorem of Vizing shows that this is not the case, for the edge­
chromatic number is almost determined by the maximum degree. 
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Theorem 5. ~(G) ::; X'(G) ::; ~(G) + 1. 

PROOF. Put ~ = ~(G) and assume that we have used 1,2, ... , ~ + 1 to 
colour all but one of the edges. We are home if we can show that this un­
coloured edge can also be coloured. 

We say that a colour is missing at a vertex z if no edge incident with z 
gets that colour. If z is incident with d'(z) ::; d(z) ::; ~ edges that have been 
coloured, then ~ + 1 - d'(z) colours are missing at z. In particular, at each 
vertex at least one colour is missing. Our aim is to move around the colours 
and the uncoloured edge in such a way that a colour will be missing at both 
end vertices of the uncoloured edge, enabling us to complete the colouring. 

Let XY1 be the uncoloured edge; let s be a colour missing at x and let t1 
be a colour missing at Y l' We shall construct a sequence of edges xY 1, XY2, ... , 
and a sequence of colours t 1, t2, ... such that ti is missing at Yi and XYi+1 
has colour ti. Suppose we have constructed XY1"'" XYi and t 1,···, ti· 
There is at most one edge xy of colour ti. If Y ¢ {Y1" .. ,y;}, we put Yi+ 1 = Y 
and pick a colour ti+ 1 missing at Yi+ 1, otherwise we stop the sequence. 
These sequences have to terminate at most ~(G) terms; let XY1' ... , XYh and 
t b ... , th be the complete sequences. Let us examine the two reasons that 
may have forced us to terminate these sequences. 

(a) No edge xy has colour tho Then recolour the edges XYi' i < h, giving 
XYi the colour ti. In the colouring we obtain every edge is coloured, except 
XYh' However, since th occurs neither at x nor at Yh, we may complete the 
colouring by assigning th to XYh' 

(b) For some j < h the edge xYj has colour tho To start with, recolour the 
edges XYi' i < j, giving XYi the colour ti. In this colouring the uncoloured edge 
is xYJ' Let H(s, t h ) be the subgraph of G formed by the edges of colour s 
and tho Each vertex of H(s, th) is incident with at most 2 edges in H(s, th) (one of 
colour s and the other of colour t h) so the components of H(s, t h) are paths 
and cycles. Each of the vertices x, Yj and Yh has degree at most 1 in H(s, th), 
so they cannot beiong to the same component of H(s, th)' Thus at least one 
of the following two cases has to hold. 

(bl) The vertices x and Yj belong to distinct components of H(s, th)' Inter­
change the colours sand th in the component containing Yj. Then the colour 
s is missing at both x and Yj' so we may complete the colouring by giving xYj 
the colour S. 

(b2) The vertices x and Yh belong to distinct components of H(s, th)' 
Continue the recolouring ofthe edges incident with x by giving XYi the colour 
ti for each i < h, thereby making XYh the uncoloured edge. This change does 
not involve edges of colour sand t h , so H(s, t h) has not been altered. Now 
switch around the colours in the component containing Yh' This switch 
makes sure that the colour s is missing at both x and Yh, so we can use s to 
colour the so far uncoloured edge XYh' D 

Note that the proof above gives an algorithm for colouring the edges 
with at most ~ + 1 colours. 
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§3 Graphs on Surfaces 

The most famous problem in graph theory is undoubtedly the four colour 
problem: prove that every plane graph is 4-colourable. The weaker assertion, 
namely that every plane graph is 5-colourable, is an almost immediate 
consequence of Euler's formula. 

Theorem 6. Every plane graph is 5-colourable. 

PROOF. Suppose the assertion is false and let G be a 6-chromatic plane graph 
with minimal number of vertices. By Theorem 12 of Chapter I G has a vertex 
x of degree at most 5. Put H = G - x. Then H is 5-colourable, say with 
colours 1,2, ... , 5. Each of these colours must be used to colour at least one 
neighbourhood of x, otherwise the missing colour could be used to colour x. 
Hence we may assume that x has 5 neighbours, say Xl> X2, ... , X5 in some 
cyc1ic order about x, and the colour of Xi is i, i = 1,2, ... ,5. Denote by 
H(i, j) the subgraph of H spanned by the vertices of colour i and j. 

Suppose first that Xl and X3 belong to distinct components of H(1, 3). 
Interchanging the colours 1 and 3 in the component of Xl> we obtain another 
5-colouring of H. However, in this 5-colouring both Xl and X3 get colour 3, 
so 1 is not used to colour any of the vertices Xl' ... , X5. This is impossible 
since then X can be coloured l. 

Since Xl and X3 belong to the same component of H(1, 3), there is an XI-X3 

path P 13 in H whose vertices are coloured 1 and 3. Analogously H contains 
an X2-X4 path P24 whose vertices are coloured 2 and 4. However, this is 
impossible, since the cycle XXIP13X3 of G separates X2 from X 4 but P 24 

cannot meet this cycle (Figure V.4). D 

Clearly not every plane graph is 3-colourable. Indeed, K4 is planar and 
it does need 4 colours. Another 4-chromatic planar graph is obtained by join­
ing all five vertices of a C5 to a sixth vertex. Thus if we want to determine 
XO = max{x(G): G is planar} then we see immediately that XO 2:: 4 and 
XO ~ 5 and the problem is to prove Xo ~ 4. 

Instead of a plane graph we may wish to consider a graph drawn on an 
orientable surface of genus y > 0 and ask for XY' the maximum ofthe chromatic 

4 
-~--

2 

3 

Figure V.4. The paths P\3 and P 24 • 
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number of such a graph. We shall see in a moment that in this problem we 
encounter a rather different difficulty. For our limited purpose it will suffice 
to remark that an orientable surface Sy of genus I' ::::: 1 is obtained from a 
sphere by attaching to it I' "handles", and a graph of order n drawn on Sy 
has at most 3n + 6(1' - 1) edges. Thus S 1 is the torus, and every toroidal 
graph (that is, graph that can be drawn on a torus) of order n has at most 3n 
edges. The following easy upper bound on the chromatic number of a graph 
drawn on an orientable surface of genus I' ::::: 1 was obtained by Heawood 
in 1890. 

Theorem 7. The number of colours needed to colour a graph drawn on an 
orientable surface of genus I' ::::: 1 is at most 

H(y) = Lt{7 + J1 + 48y}J. 

PROOF. Let G be the graph in question and let H be any subgraph of G. By 
Theorem 1 we are home if we show that (j(H) ::::;; H(y) - 1. If H has n vertices, 
it has at most 3n + 6(1' - 1) edges so 

(j(H) ::::;; min{n - 1,6+ l12(Y n- 1) J}. 
Hence the result follows if 

6 + l12(Y - 1)J < H( ) - 1 
H(y) + 1 - I' . 

With a little work one can check that this inequality indeed holds. 0 

By applying a stronger colouring result than the trivial Theorem 1, one 
can show that H(y) - 1 colours suffice to colour a graph on Sy unless the 
graph contains a complete graph of order H(y). Thus Xy = H(y) iff KH(y) 

can be drawn on Sy- Heawood gave a false proof of the assertion Xy = H(y); 
the first correct proof, due to Ringel and Youngs, was found only over 75 
years later. Note that the difficulty in proving this deep result lies in finding 
a drawing of a fixed and single graph, KH(Y), on a surface of genus I' > O. On 
the other hand, in order to solve the four colour problem one has to show that 
every plane graph can be coloured with four colours. Thus the problem of 
determining Xo has almost nothing to do with the problem of determining 
Xy forI' ::::: 1. 

Before saying a few words about the solution of the four colour problem, 
let us point out that H(l) = 7 is easily proved; in fact, this was indeed proved 
by Heawood. All one needs is that K7 can be drawn on the torus. Recalling 
that a torus can be obtained from a rectangle by identifying opposite sides, 
Figure V.5 shows a required drawing. 

We saw in Chapter I. §4 that a plane graph G determines a map M = M(G) 
consisting of the plane graph G and the countries determined by the plane 
graph. A colouring of a map is a colouring of the countries such that no two 
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2 3 

5 5 

4 4 

2 3 

Figure V.S. A drawing of K7 on the torus. 

countries sharing an edge in their boundaries get the same colour. Show 
that every plane map can be coloured with four colours. This is the original 
form of the four colour problem, as posed by Francis Guthrie in 1852. His 
teacher, de Morgan, circulated it amongst his colleagues, but the problem was 
first made popular in 1878 by Cayley, who mentioned it before the Royal 
Society. Almost at once "proofs" appeared, by Kempe in 1879 and by Tait in 
1880. Heawood's refutation of Kempe's proof was published in 1890, though 
he modified the proof to obtain the five colour theorem. Tait's paper also 
contained false assumptions which prompted Petersen to observe in 1891 
that the four colour theorem is equivalent to the conjecture that every cubic 
planar graph has edge chromatic number three (Exercise 27). Contributions 
to the solution since the turn of the century include Birkhoff's introduction 
of the chromatic polynomial and works by various authors giving lower 
bounds on the order of a possible counterexample. In 1943 Hadwiger made 
a deep conjecture containing the four colour problem as a special case: 
if X(G) = k then G is contractible to Kk (see Exercises 18-20). 

In hindsight the most important advance was made by Heesch, who 
developed the method of discharging to find unavoidable sets of reducible 
configurations. The problem was at last solved by Appel and Haken in 1976, 
making use of a refinement of Heesch's method and fast electronic com­
puters. The interested reader is referred to some papers of Appel and Haken, 
and to the book of Saaty and Kainen for a detailed explanation of the under­
lying ideas of the proof. All we have room for is a few superficial remarks. 

What makes the five colour theorem true? The following two facts: (i) a 
minimal 6-colourable plane graph cannot contain a vertex of degree at 
most 5, and (ii) a plane graph has to contain a vertex of degree at most 5. 
We can go a step further and ask why (i) and (ii) hold. A look at the proof 
shows that (i) is proved by making a good use of the paths Pii , called Kempe 
chains after Kempe, who used them in his false proof of 1879, and (ii) follows 
immediately from Euler's formula n - e + f = 2. 

The attack on the four colour problem goes along similar lines. A con­
figuration is a connected cluster of vertices of a plane graph together with 
the degrees of the vertices. A configuration is reducible if no minimal 5-
chromatic plane graph can contain it, and a set of configurations is un­
avoidable if every plane graph contains at least configuration belonging to 
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the set. In order to prove that every plane graph is 4-colourable, one sets out 
to find an unavoidable set of reducible configurations. How should one show 
that a configuration is reducible? Replace the cluster of vertices by a smaller 
cluster, 4-colour the obtained smaller graph and use Kempe chains to show 
that the 4-colouring can be "pulled back" to the original graph. How 
should one show that a set of configurations is unavoidable? Make extensive 
use of Euler's formula. Of course, one may always assume that the graph is a 
maximal plane graph. Assigning a charge of 6-k to a vertex of degree k, 
Euler's formula guarantees that the total charge is 12. Push charges around 
the vertices, that is transfer some charge from a vertex to some of its neigh­
bours, until it transpires that the plane graph has to contain one of the con­
figurations. 

Looking again at the five colour theorem, we see that the proof was based 
on the fact that set of configurations of single vertices of degree at most 5 is 
an unavoidable set of configurations (for the five colour theorem). 

The simplistic sketch above does not indicate the difficulty of the actual 
proof. In order to rectify this a little, we mention that Appel and Haken 
had to find over 1900 reducible configurations to complete the proof. 
Furthermore, we invite the reader to prove the following two simple 
assertions. 

1. The configurations in Figure V.6 are reducible. 

+ 
Figure V.6. Three reducible configurations; in the second examples the outer vertices 
may have arbitrary degrees. 

2. Let G be a maximal planar graph of order at most 25 and minimum 
degree 5. Call a vertex a major vertex if its degree is at least 7, otherwise 
call it a minor. Then G contains one of the following: 

(a) a minor vertex with 3 consecutive neighbours of degree 5, 
(b) a vertex of degree 5 with minor neighbours only, 
(c) a major vertex with at most one neighbour of degree at least 6. 

EXERCISES 

1:- Show that a graph G has at least e~G)) edges. 

2. For each k :2: 3 find a bipartite graph with vertices Xl, X2, ... , Xn for which the 
greedy algorithm uses k colours. Can it be done with n = 2k -' 2? Show that it 
cannot be done with n = 2k - 3. 
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r Given a graph G, order its vertices in such a way that the greedy algorithm uses 
only k = X(G) colours. 

4.- Let d I 2':: dz 2':: •.. 2':: dn be the degree sequence of G. Show that in an order 
XI' Xz, ... , Xn' d(x;) = dj, the greedy algorithm uses at most max min{di + 1, i} 
colours, and so if k is the maximal natural number for which k ~ dk + 1 then 
X(G) ~ k. 

5. Deduce from Exercise 4 that if G has n vertices then 

x(G) + X(G) ~ n + 1. 

6.- Show that X(G) + X(G) 2':: 2J~. 

7. Let d, d l and dz be non-negative integers with dl + dz = d - 1. Prove that if 
~(G) = d then the vertex set V(G) of G can be partitioned into two classes, say 
V(G) = VI U Vz , such that the graphs Gi = G[V;] satisfy ~(Gi) ~ d;, i = 1, 2. 
[Hint. Consider a partition V(G) = VI U Vz for which dle(G z) + dze(G I) is 
minimal.] 

8. (Exercise 7 continued) Let now d, dl , dz , ... , dr be non-negative integers with 
2:; (di + 1) = d + 1. Prove that if ~(G) = d then there is a partition V(G) = 
U; V; such that the graphs Gi = G[V;] satisfy ~(Gi) ~ d;, i = 1,2, ... , r. 

9. Given natural numbers rand t,.2r ~ t, the Kneser graph Kjr) is constructed as 
follows. Its vertex set is T(r), the set of r-element subsets of T = {I, 2, ... , t}, and 
two vertices are joined iff they are disjoint subsets of T. Figure V.7 shows K~Z), the 
so called Petersen graph. Prove that X(Kjr) ~ t - 2r + 2, x(Kf) = 3 and 
X(K~Z) = 4. 

Figure V.7. The Petersen graph and the Grotzsch graph. 

10. Check that the Grotzsch graph (Figure V.7) has girth 4 and chromatic number 4. 
Show that there is no graph of order 10 with girth at least 4 and chromatic number 
4. 

11 + Try to construct a triangle free graph of chromatic number 1526 without looking 
at Chapters VI or VII. 

12.+ Let H be a graph of order n with edges eh ez, ... , em and chromatic polynomial 
PH(X) = 2:7=0 (-I)icixn- i. Call a set of edges a broken cycle if it is obtained from 
the edge set of a cycle by omitting the edge of highest inClex. Show that cj is the 
number of .i-element subsets of the edges containing no broken cycle [Hint. 
Imitate the proof of Theorem 4, choosing e l for abo Put G = H - e l so that 
H = G' and PII(X) = PG(x) - PG . .(x). If an edge of G" comes from two edges of G, 
say from xa = ei and xb := eh' label it with eb where k = max{i, h}; otherwise 
keep the label it had in G (and H). Let F be a set of edges of H containing no 
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broken cycle of H. Note that if e l rt F then F is a set of edges of G containing 
no broken cycle, and if e l E F then F - {e l } is a set of edges of G" containing no 
broken cycle.] 

13. Let PG(x) = Li'=o (-IYaixn-i be the chromatic polynomial of G. Prove that a2 = 
(2) - k3(G), where m = e(G) and k3(G) is the number of triangles in G. 

14. Show that there is a unique graph Go of order n and size m = Ln 2 j4J such that if G 
is also of order n and size m then 

whenever x is sufficiently large. 

15.- Find graphs G and H of order n and same size such that X(G) < X(H) but PG(x) < 
PH(X) if x is sufficiently large. 

16:+ Given a connected graph G containing at least one cycle, define a graph H on the 
.set S of all spanning trees of G by joining TI to T2 iff I E(T1)\E(T2) I = 1. (Cf. 
simple transform of an x-path, p. 79). Imitate the proof of the fact that PH(X) is a 
polynomial (Theorem 4) and the proof suggested in Exercise 12 +, to show that 
H is not only Hamiltonian, but every edge of it is contained in a Hamiltonian 
cycle. 

17.+ We say that a graph G has a subgraph contractible to a graph H with vertex 
set {Y!, ... , Yk} if G contains vertex disjoint connected subgraphs G" ... , Gk 

such that, for i #- j, YiYj E E(H) iff G has a GcGj edge. 

Prove that for every natural number P there is a minimal integer c(p) such that 
every graph with chromatic number at least c(p) has a subgraph contractible 
to KP. Show that c(l) = I, c(2) = 2 and c(n + 1) ~ 2c(n) - I for n:2: 2. 
[Hint. Pick Xo E G and let Sk be the "sphere" of centre Xo and radius k; Sk = 
{x E G: d(xo, x) = k}. Show that X(G) ~ X(Sk) + X(Sk+ I) for some k.] 

18.+ Hadwiger's conjecture states that c(P) = P for every p. Prove this for P ~ 4. 

19. Deduce from Kuratowski's theorem, Theorem 13 of Chapter I, that a graph is 
planar iff it has no subgraph contractible to K 5 or K 3 • 3. 

20. Show that the truth of Hadwiger's conjecture for P = 5 implies the four colour 
theorem. 

21.- Show that a map M = M(G) can be 2-coloured (see p. 96) iff every vertex of G 
has even degree. 

22:+ Suppose G is a cubic plane graph. Prove that the map M(G) is 3-colourable iff 
each country has an even number of sides. 

23:- Let M = M(G) be a triangular map, that is a map in which every country has 
three sides. Show that M is 3-colourable unless G = K4. 

24:- Prove that a map M = M(G) is 4-colourable if G has a Hamilton cycle. 

25:- For each plane graph G construct a cubic plane graph H such that if M(H) is 
is 4-colourable then so is M(G). 
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26~ According to Tait's conjecture every 3-connected cubic plane graph has a Hamilton 
cycle. (i) Show that Tait's conjecture implies the four colour theorem. (ii) By 
examining the graph in Figure V.8 disprove Tait's conjecture. 

Figure V.8. Tutte's counterexample to Tait's conjecture 

27: Let G be a cubic plane graph. Show that G is 3-edge-colourable iff M(G) is 4-
colourable. [Hint. Let 1, a, band c be the elements of the Klein fourgroup C2 x C2 , 

so that a2 = b2 = c2 = 1. Colour the edges with a, band c, and the ountries 
with 1, a, b and c.] 

28.- Find the edge chromatic number of K". 

29. The cubic graph G has exactly one edge colouring with x'(G) colours. Show that 
X'(G) = 3 and that G has exactly 3 Hamilton cycles. 

30. Let n = 2P• Show that K n + 1 is not the union of p bipartite graphs but K" is. 
Deduce that if there are 2P + 1 points in the plane then some three of them deter­
mine an angle of size at least n(l - (lIp)). 

31. Let X(G) = k. What is the minimal number of r-chromatic graphs whose union 
is G? 

32. Show that a k-chromatic graph can be oriented in such a way that a longest 
directed path has k vertices. 

33. Show that if a graph G can be oriented in such a way that no directed path contains 
more than k vertices than X(G) :s; k. [Hint. Omit a minimal set of edges to destroy 
all directed cycles. For a vertex x let c(x) be the maximal number of vertices on a 
directed path in the new graph starting at x. Check that c is a proper colouring.] 

34. Denote by cf/k the set of (isomorphism classes of) graphs of chromatic number 
at least k. Let G1 and G2 be vertex disjoint graphs in (f/k and let aibi be an edge 
of Gi, i = 1,2. Let G = G1 V G2 be obtained from G1 U G2 by omitting the edges 

Figure V.9. The Haj6s operation. 
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alb l , azbz , adding the edge blbz and identifying the vertices al and az. (The opera­
tion v is said to be the Hajos operation, see Figure V.9.) Prove that G E (fjk' 

35.+ Let Yf'k be the smallest collection of (isomorphism classes of) graphs such that 
(I) KkEYf'k' (2) if HE,;ifk and G::J H then GE.;ifb (3) if HE,;ifk and Gis 
obtained from H by identifying two non-adjacent vertices, then G E Yf'k> (4) if 
GI , Gz E Yf'k and G = GI V Gz then G E Yf'k' Prove that Yf'k = C§k' [Hint. 

Exercise 33 implies that Yf'k C C§k' Assume that the converse inclusion is false and 
let G E C§k\Yf'k be a counterexample of minimal order and maximal size. G cannot 
be a complete q-partite graph so it contains vertices a, b l and bz such that 
blbz E E(G) but ab l, abz rt E(G). Let GI = G + ab l and Gz = G + abz . Then 
GI and Gz are not counterexamples so belong to .Yfk . Find out how G can be 
obtained from copies of G I and Gz by the allowed operations.] 

36. Let k be a natural number. Prove that an infinite graph is k-colourable iff every 
finite subgraph of it is. [Hint. Apply Tychonov's theorem as in Exercise 24 of 
Chapter IlL] 

Notes 
Theorem 3 is in R. L. Brooks, On colouring the nodes of a network, Proc. 
Cambridge Phil. Soc. 37 (1941) 194-197, and Vizing's theorem, Theorem 5, is 
in V. G. Vizing, On an estimate ofthe chromatic class of a p-graph (in Russian) 
Diskret. Analiz 3 (1964) 23-30. A detailed account of results concerning 
colouring graphs on surfaces, culminating in Ringel and Youngs' proof of 
Heawood's conjecture, can be found in Map Color Theorem, Grundlehren 
der math. Wiss. 209, Springer-Verlag, Berlin, 1974. The use of the dis­
charging procedure in attacking the four colour problem is described in H. 
Heesch, Untersuchungen zum Vierfarbenproblem, B-I-Hochschulskripten 
810/81 Oa/81 Ob, Bibliographisches Institut, Mannheim, Vienna, Zurich, 
1969. The proof of the four colour theorem appears in K. Appel and W. 
Haken, Every planar map is four colourable, Part I: discharging, Illinois J. 
of Math. 21 (1977) 429-490 and K. Appel, W. Haken and J. Koch, Every 
planar map is four colourable, Part II: reducibility, Illinois J. of Math. 21 
(1977) 491-567. A history of the four colour problem and a digest of its 
proof are provided byT. L. Saaty and P. C. Kainen, The Four Color'problem, 
Assaults and Conquest, McGraw-Hill, New York, 1977. The partition results 
of Exercises 7 and 8 are in L. Lovasz, On Decomposition of Graphs, Studia Sci. 
Math., Hungar.l (1966) 237-238. 

The result in Exercise 33 is due to T. Gallai, On directed paths and circuits, 
in Theory of Graphs (P. Erdos and G. Katona, eds.), Academic Press, New 
York, 1968, 115-118, and that of Exercise 35 was proved by G. Haj6s, 
Uber eine Konstruktion nicht n-farbbarer Graphen, Wiss. Zeitschr. Martin 
Luther Univ. Halle-Wittenberg, Math.-Natur. Reihe 10 (1961) 116-117. 

Colouring is a naturally appealing part of graph theory and the subject 
has a vast literature. Many of the fundamental results are due to G. A. Dirac; 
for these and other results see Chapter V. of B. Bollobas, Extremal Graph 
Theory, Academic Press, London and New York, 1978. 



CHAPTER VI 

Ramsey Theory 

Show that in a party of six people there is always a group of three who 
either all know each other or are all strangers to each other. This well known 
puzzle is a special case of a theorem proved by Ramsey in 1928. The theorem 
has many deep extensions which are important not only in graph theory and 
combinatorics but in set theory (logic) and analysis as well. In this chapter 
we prove the original theorems of Ramsey, indicate some variations and 
present some applications of the "results. 

§1 The Fundamental Ramsey Theorems 

We shall consider partitions of the edges of graphs and hypergraphs. For 
the sake of convenience a partition will be called a colouring, but one should 
bear in mind that a colouring in this sense has nothing to do with the edge 
colourings considered in Chapter V. Adjacent edges may have the same 
colour and, indeed, our aim is to show that there are large subgraphs all of 
whose edges have the same colour. In a 2-colouring we shall always choose 
red and blue as colours; a subgraph is red (blue) if all its edges are red (blue). 

Given a natural number s, there is an n(s) such that if n 2: n(s) then every 
colouring of the edges of Kn with red and blu~ contains either a red KS or a 
blue K S • In order to show this and to give a bound on n(s), we introduce the 
following notation: R(s, t) is the minimum of n for which every red-blue 
colouring of Kn yields a red KS or a blue K'. (We assume that s, t 2: 2, for we 
adopt the reasonable convention that every Kl is both red and blue since 
it has no edges.) A priori ifis not clear that R(s, t) is finite for every sand t. 
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However, it is obvious that 

R(s, t) = R(t, s) for every s, t ::?: 2 

and 

R(s, s) = R(2, s) = s, 

since in a red-blue colouring of K S either there is a blue edge or else every 
edge is red. The following result shows that R(s, t) is finite for every sand t, 
and at the same time it gives a bound on R(s, t). 

Theorem 1. If s > 2 and t > 2 then 

R(s, t) ::; R(s - 1, t) + R(s, t - 1) (1) 

and 

( s + t - 2) 
R(s, t) ::; s _ 1 . (2) 

PROOF. (i) When proving (1) we may assume that R(s - 1, t) and R(s, t - 1) 
are finite. Let n = R(s - 1, t) + R(s, t - 1) and consider a colouring of the 
edges of K n with red and blue. Wd have to show that this colouring contains 
either a red K S or a blue Kt. Let x be a vertex of Kn. Since d(x) = n - 1 = 
R(s - 1, t) + R(s, t - 1) - 1, either there are at least nl = R(s - 1, t) red 
edges incident with x or there are at least n2 = R(s, t - 1) blue edges incident 
with x. By symmetry we may assume that the first case holds. Consider a 
subgraph Knl of K n spanned by nl vertices joined to x by a red edge. If Knl 
has a blue K t, we are home. Otherwise Knl contains a red K S - 1 which forms 
a red K S with x. 

(ii) Inequality (2) holds if s = 2 ot t = 2 (in fact, we have equality since 
R(s,2) = R(2, s) = s). Assume now that s > 2, t > 2 and (2) holds for every 
pair (s', t') with 2 ::; s', t' and s' + t' < s + t. Then by (1) we have 

R(s, t) ::; R(s - 1, t) + R(s, t - 1) 

::; (s + t - 3) + (s + t - 3) = (s + t - 2). 
s-2 s-l s-1 

D 

The result easily extends to co lou rings with arbitrarily (but finitely) 
many colours: given k and SI' S2' ... ' Sk' if n is sufficiently large then every 
colour of K n with k colours is such that for some i, 1 ::; i ::; k, it contains a 
KSi coloured with the i-th colour. (The minimal value of n for which this 
holds is usually denoted by R k(SI, ... , Sk).) Indeed, if we know this for k - 1 
colours, then in a k-colouring of Kn we replace the first two colours by a new 
colour. Ifn is sufficiently large (depending on SI' S2, •.• , Sk) then either there 
is a KSi coloured with the i-th colour for some i, 3 ::; i ::; k, or else there is a 
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Km, m = R(sl> S2) coloured with the new colour, that is coloured with the 
first two (original) colours. In the first case we are home and in the second, for 
i = 1 or 2 we can find a K S ' in K m coloured with the i-th colour. 

In fact, Theorem 1 also extends to hypergraphs, that is to colourings of the 
set x(r) of all r-tuples of a finite set X with k colours. This is one of the theorems 
proved by Ramsey. 

Denote by R(r)(s, t) the minimum of n for which every red-blue colouring 
of x(r) yields a red s-set or a blue t-set, provided I X I = n. Of course, a set 
Y c X is called red (blue) if every element of y(r) is red (blue). Note that 
R(s, t) = R(2)(S, t). As in the case of Theorem 1, the next result not only 
guarantees that R(r)(s, t) is finite for all values of the parameters (which 
is not at all obvious a priori), but also gives an upper bound on R(r)(s, t). The 
proof is an almost exact replica of the proof of Theorem 1. Note that if r > 
min{s, t} then R(r)(s, t) = min{s, t} and ifr = s.::; t then R(r)(s, t) = t. 

Theorem 2. Let 1 < r < min{s, t}. Then R(r)(s, t) is finite and 

R(r)(s, t) .::; R(r-1)(R(r)(s - 1, t), R(r)(s, t - 1» + 1. 

PROOF. Both assertions follow if we prove the inequality under the assump­
tion that R(r-l)(u, v) is finite for all u, v, and R(r)(s - 1, t), R(r)(s, t - 1) are 
also finite. 

Let X be a set with R(r-l)(R(r)(s - 1, t), R(r)(s, t - 1» + 1 elements. 
Given any red-blue colouring of x(r), pick an x E X and define a red-blue 
colouring of the (r - I)-sets of Y = X - {x} by colouring (J E y(r-l) the 
colour of {x} U (J E x(r). By the definition of the function R(r- 1)(u, v) we may 
assume that Y has a red subset Z with R(r)(s - 1, t) elements. 

Now let us look at the colouring of z(r). If it has a blue t-set, we are home, 
since z(r) c x(r) so a blue t-set of Z is also a blue t-set of X. On the other 
hand if there is no blue t-set of Z then there is a red (s - I)-set, and its union 
with {x} is then a red s-set of X. 0 

Very few of the non-trivial Ramsey numbers are known, even in the case 
r = 2. It is easily seen that R(3, 3) = 6 and with some work one can show 
that R(3, 4) = 9, R(3, 5) = 14, R(3,6) = 18, R(3, 7) = 23 and R(4,4) 
= 18. Because of (1) any upper bound on an R(s, t) helps to give an upper 
bound on every R(s', t'), s' ~ s, t' ~ t. Lower bounds for R(s, t) are not easy 
to come by either. In Chapter VII we shall apply the method of random 
graphs to obtain lower bounds on the Ramsey numbers R(s, t). 

As a consequence of Theorem 2 we see that in every red-blue colouring of 
the r-tuples of the natural numbers contains arbitrarily large monochromatic 
subsets; a subset if monochromatic if its r-tuples have the same colour. 
Ramsey proved that, in fact, we can find an infinite monochromatic set. 

Theorem 3. Let c: A (r) -> {l, . ~ . , k} be a k-colouring of the r-tuples (1 .::; r < (0) 
of an infinite set A. Then A contains a monochromatic infinite set. 
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PROOF. We apply induction on r. Note that the result is trivial for r = 1 so 
assume that r > 1 and the theorem holds for smaller values of r. 

Put Ao = A and pick an element Xl E Ao. As in the proof of Theorem 2, 
define a colouring c 1 : B~ - 1) -> {I, ... , k} of the (r - 1 )-tuples of B 1 = 

Ao - {xd by putting C1C,) = c(, u {xd), ,E B~-1). By the induction 
hypothesis Bl contains an infinite set Ai all whose (r - I)-tuples have the 
same colour, say d l (d l E {I, ... , k}). Let now X2 E Ai, Bl = Ai - {X2} 
and define a k-colouring c2:B~-1)->{I, ... ,k} by putting C2(')= 
c(, u {X2}), ,E B~-1). Then B2 has an infinite set A2 all of whose (r - 1)­
tuples have the same colour, say d2 • Continuing in this way we obtain an 
infinite sequence of elements: X b X2' ... , an infinite sequence of colours: 
dl, d2, ... , and an infinite nested sequence of sets: Ao ::J Ai ::J A2 ::J "', 
such that Xi E A i - l and all r-tuples whose only element outside Au is Xi have 
the same colour di • The infinite sequence (dn)~ must take at least one of the 
k values 1, 2, ... , k infinitely often, say ni -> 00 and dni = 1 for every i. Then 
by the construction each r-tuple of the infinite set {xn " xn2 ' ••• } has colour 1. 

o 

In some cases it is more convenient to apply the following version of 
Theorem 3. (N is the set of natural numbers.) 

Theorem 3'. Let kr EN, r EN, and colour the set N(r) of r-tuples of N with kr 
colours. Then there is an infinite set MeN such that for every r any two r­
tuples of M have the same colour, provided their minimal elements are at least r. 

PROOF. Put Mo = N. Having chosen infinite sets Mo::J ... ::J M r- l , let 
Mr be an infinite subset of M r- l such that all the r-tuples of Mr have the same 
colour. This way we obtain an infinite nested sequence of infinite sets: 
Mo ::J Ml ::J '" .Pickal E Mba2 E M2 - {I, ... , ad,a3 E M3 - {l, ... ,a2}, 
etc. Clearly M = {ab a2,"'} has the required properties. 0 

Either Theorem 2 and the colour-grouping argument described after 
Theorem 1, or Theorem 3 and a compactness argument imply the following. 
Given rand Sl' S2,"" Sk' then for large enough IXI every colouring of x(r) 

with k colours is such that for some i, 1 :::;; i :::;; k, there is a set Si c X, 
ISil = Si' all of whose r-sets have colour i. The smallest value of IXI for 
which this is true is denoted by Rt)(Sl' S2,"" Sk); thus R(r)(s, t) = R~)(s, t) 
and Risl,S2, ... ,Sk) = Rf)(SbS2, ... ,Sk)' The upper bound for 
Rt)(Sl' S2"'" Sk) implied by Theorem 2 is not very good. Imitating the 
proof of Theorem 2 one arrives at a better upper bound (cf. Exercise 8): 

Rt)(Sl"'" Sk) :::;; Rt-l)(Rt)(Sl - 1, S2' ... , Sk),···, 

Rt)(Sl' ... , Sk-l' Sk - 1» + 1. 
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§2 Monochromatic Subgraphs 

Let H 1 and H 2 be arbitrary graphs. Given n, is it true that every red-blue 
colouring of the edges of K n contains a red H 1 or a blue H 2 ? Since Hi is a 
subgraph of KSi, where Si = IHd, the answer is clearly "yes" ifn ?: R(Sl, S2). 
Denote by r(H 1, H 2) the smallest value of n that will ensure an affirmative 
answer. Note that this notation is similar to the one introduced earlier: 
R(s l' S2) = r(KS" KS2). Clearly r(H 1, H 2) - 1 is the maximal value of n for 
which there is a graph G of order n such that H 1 ¢ G and H 2 ¢ G. 

The numbers r(H 1, H 2), sometimes called generalized Ramsey numbers, 
have been investigated fairly extensively in recent years. We shall determine 
r(H1' H2) for some simple pairs (H1' H2). 

Theorem 4. Let T be a tree of order t. Then r(KS , T) = (s - l)(t - 1) + 1. 

PROOF. The graph (s - 1)K t - 1 does not contain T, its complement, 
Ks - 1(t - 1), does not contain K S , so r(KS , T)?: (s - l)(t - 1) + 1. 

Let now G be a graph of order (s - l)(t - 1) + 1 whose complement does 
not contain K S • Then x( G) ?: r n/(s - 1)1 = t so it contains a critical sub­
graph H of minimal degree at least t - 1 (see Theorem 1 of Chapter V). It 
is easily seen that H contains (a copy of) T. Indeed, we may assume that 
T1 c H, where T1 = T - x and x is an end vertex of T, adjacent to a vertex 
y of T1 (and of H). Since y has at least t - 1 neighbours in H, at least one of its 
neighbours, say z, does not belong to T1 • Then the subgraph of H spanned 
by T1 and z clearly contains (a copy of) T. 

As we know very little about r(KS, K t ), it is only to be expected that 
r(G 1, G2) has been calculated mostly in the cases when both G1 and G2 are 
sparse (have few edges compared to their orders), e.g., when G1 = sH 1 
and G2 = tH 2. The following simple lemma shows that for fixed H 1 and 
H 2 the function r(sH 1, tH 2) is at most s I H 1 I + t I H 21 + c, where c depends 
only on H1 and H 2 , and not on sand t, 

Lemma 5. r(G,H 1 u H2)::; max{r(G, H1) + IH21, r(G, H2)}. In particular, 
r(sH1' H2) ::; r(Hi> H2) + (s - 1)IH11. 

PROOF. Let n be greater than the right hand side and suppose there is a red­
blue colouring of Kn without a red G. Then n ?: r(G, H 2) implies that there 
is a blue H 2 • Remove it. Since n - IH21 ?: r(G, H 1), the remainder contains 
a blue H 1. Hence Kn contains a blue H 1 U H 2. 0 

Theorem 6. If s ?: t ?: 1 then 

r(sK2, tK2) = 2s + t - 1. 
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PROOF. The graph G = K 2 s- 1 U EI - 1 does not contain s independent edges 
and G = E2s - 1 + K I - 1 does not contain t independent edges. Hence 
r(sK2, tK2) ~ 2s + t - 1. 

Trivially r(sK2, K2) = 2s. We shall show that 

r«s + 1)K 2, (t + 1)K2) ~ r(sK2, tK2) + 3. 

This is sufficient to complete the proof since then 

r«s + 1)K2, (t + 1)K2) ~ r(sK2, tK2) + 3 ~ r«s - l)K2, (t - 1)K2) + 6 
~ r«s - t + 1)K2, K2) + 3t = 2(s - t + 1) + 3t 

= 2s + t + 2. 

Let G be a graph of order n = r(sK2, tK2) + 3 ~ 2s + t + 1. If G = Kn then 
G J (s + 1)K2 and if G = En then G J (t + 1)K2. Otherwise there are 
three vertices, say x, y and z such that xy E G, xz ~ G. Now either G - {x, y, z} 
contains s independent edges and then xy can be added to them to form 
s + 1 independent edges of G or else G - {x, y, z} contains t independent 
edges and then xz can be added to them to form t + 1 independent edges 
~~ 0 

Theorem 7. If s ~ t ~ 1 and s ~ 2 then r(sK 3, tK3) = 3s + 2t. 

PROOF. Let G = K 3s - 1 U (Kl + E2r - 1). Then G does not contain s in­
dependent triangles and G = E3s - 1 + (K 1 U K 21 - 1 ) does not contain t 

independent triangles. Hence r(sK3, tK3) is at least as large as claimed. 
It is easily shown that r(2K 3, K 3) = 8 and r(2K3, 2K3) = 10 (Exercise 

12). Hence repeated applications of Lemma 5 give 

r(sK3, K 3) ~ 3s, 

and to complete the proof it suffices to show that for s ~ 1, t ~ 1 we have 

To see this let n = r(sK3, tK 3) + 5 and consider a red-blue colouring of 
Kn. Select a monochromatic (say red) triangle Kr in Kn. If K n - Kr contains 
a red sK3 then we are home. Otherwise K n - Kr contains a blue triangle Kb 
(it even contains a blue tK 3 ). We may assume that at least five of the nine 
Kr - Kb edges are red. At least two of these edges are incident with a vertex 
of Kb, and, together with an edge of Kr they form a red triangle K: meeting 
Kb. Since K n - K: - Kb has r(sK3, tK3) vertices, it contains either a red 
sK3 or a blue tK3. These are disjoint from both K: and K b , so K n contains 
either a red (s + 1)K3 or a blue (t + 1)K3. 0 

By elaborating the idea used in the proofs of the previous two theorems 
we can obtain good bounds on r(sKP, tKq), provided max(s, t) is large 



§2 Monochromatic Subgraphs 

compared to max(p, q). Let p, q ~ 2 be fixed and choose to such that 

to min{p, q} ~ 2r(KP, Kq). 

Theorem 8. If s ~ t ~ 1 then 

ps + (q - 1)t - 1 ~ r(sKP, tKq) ~ ps + (q - 1)t + C. 
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PROOF. The graph KPS- 1 U E(q- 1)1- 1 shows the first inequality. As in the 
proofs of the previous theorems, we fix s - t and apply induction on t. By 
Lemma 5 we have 

r(sKP, tKq) ~ (s - t)p + r(tKP, tKq) ~ ps + C, 

provided t ~ to. Assume now that t ~ to, and the second inequality holds 
for s, t. 

Let G be a graph of order n = p(s + 1) + (q - 1)(t + 1) + C + 1 such 
that G t> (s + 1)KP and G t> (t + 1)Kq. Suppose no KP of G and Kq of G 
ha ve a vertex in common. Denote by ~ the set of vertices of G that are in KP 
subgraphs and put Vq = V - Vp, np = I Vp I, nq = I Vq I. No vertex x E Vq is 
joined to more than r(KP-I, Kq) vertices of Vp since otherwise either there is 
a KP of G containing x or else there is a Kq of G containing vertices of Vp. 
Similarly every vertex Y E Vq is joined to all but at most r(KP, Kq-I) vertices 
of Vp. Hence 

nqr(KP-l, Kq) + npr(KP, Kq-I) ~ npnq. 

However, this is impossible, since np ~ sp, nq ~ tq so np > 2r(KP-I, Kq) 
and nq > 2r(KP, Kq- I). Therefore we can find a KP of G and a Kq of G with 
a vertex in common. 

When we omit the p + q - 1 vertices of these subgraphs, we find that the 
remainder H is such that H t> sKP and H t> tKq. However, IHI = ps 
+ (q - 1)t + C + 1, so this is impossible. 0 

One is inclined to imagine that the various Ramsey theorems hold for 
finite graphs because the graph whose edges we colour is K n and not some 
sparse graph with few edges. 

Let us consider now another generalization of the original Ramsey 
problem for finite graphs. Let H, GI , Gz , ... , Gk be graphs. Denote by 

H -+ (G I , Gz,··., Gk) 

the following statement: for every colouring of the edges of H with colours 
C I, C 2, ... , Ck there is an index i such that H contains a subgraph isomorphic 
to G; whose edges are of colour C;. If G; = G for each i then instead of 
H -+ (G I , Gz , ... , Gk) we usually write H -+ (G)k. Note that 

r(G I , Gz) = min{n: K n + I -+ (G I , Gz)} = max{n: K n + (G I , Gz)}. 
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Figure VI. 1. The graph C3 + C5• 

Clearly it is harder to find a monochromatic subgraph in a sparse graph than 
in a complete graph and for given G1 and G2 it may not be easy to find a 
sparse graph H (sparse in some given sense) such that H ..... (G 1, G2). Thus 
one may not find immediately a graph H without a K6 for which H ..... 
(K 3 , K 3 ). (Such a graph is shown in Figure VI.1). Going even further, one 
may ask the following difficult question: is there a graph H with cl(H) = 3 
(so without a K4) such that H ..... (K 3, K3)? Note that Theorem 1 does not 
guarantee the existence of such an H. To conclude the section we only state 
a deep theorem of N esetfil and R odl showing that the answers to the questions 
of this type are in the affirmative. 

Theorem 9. Given graphs Gb G2 , ... , Gk there is a graph H such that cl(H) 
= max1:$i:$k cl(GJ and H ..... (G b G2 , ... , Gk). 0 

§3 Ramsey Theorems in Algebra and Geometry 

Given an algebraic or geometric object and a collection f!J of finite subsets 
of the elements, is it true that whenever we colour the elements with k 
colours (i.e., partition them into k classes), at least one of the colour classes 
contains at least one member of f!J? In this section we discuss some questions 
of this type for Euclidean spaces, finite vector spaces, various semi groups 
and objects belonging to rather general categories. We prove only one or 
two simple results, since the proofs of the deep results are well beyond the 
scope of these notes, though the statements themselves are very easily under­
stood. 

Let f!J be a collection of finite subsets of a set M. In accordance with the 
notation used in the previous section, M ..... (f!J)k means that in every k­
colouring of M there is a monochromatic set PeJJ, i.e., if M = M 1 u··· U Mk 
then P c Mi for some i E [1, k] = {l, ... , k} and P E f!J. When discussing 
whether M ..... (f!J)k holds or not, the following compactness theorem enables 
us to replace M by a finite subset of it. 

Theorem 10. M ..... (f!J)k iff there is a finite set X c M such that X ..... (f!J)k. 
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PROOF. If M f+ (.9')k then clearly X f+ (g»k for every finite set X. 
A k-colouring of M is a point of the space [1, k]M; for C E [1, k]M and 

x E M the projection of c into the x component, 1!x(c), is exactly c(x) E [1, k] 
= {I, 2, ... , k}, the colour assigned by c to x. As almost always, we give 
[1, k] the discrete topology and [1, k]M the product topology. By the familiar 
Tychonov theorem from general topology, the space [1, k]M is compact 
since it is a product of compact spaces. 

Given a finite set X c M, let N(X) be the set of co lou rings in which X 
does not contain a monochromatic set PEg>. If eFt N(X) and dE [1, k]M 
agrees with c on X (that is d I X = c I X) then d Ft N(X). Therefore 
[1, k]M - N(X) is open and so N(X) is closed. (In fact, N(X) is trivially 
clopen.) 

Let us turn now to the proof of the second implication. Assume that 
X f+ (g»k for every finite set X c M. This means exactly that N(X) #- 0 
for every finite set X. Since N(X) n N(Y) ::J N(X u Y), the system 
{N(X): Xc M is finite} of closed sets has the finite intersection property. 
The compactness of [1, k]M implies that nx N(X) #- 0. Every c E nx N(X) 
is a k-colouring of M without a monochromatic set PEg>. 0 

Let L be a finite set of points in [Rm, the m-dimensional Euclidean space. 
As another variant of the notation used so far, [Rn -+ (L)k means that in 
every k-colouring of [Rn there is a monochromatic L' congruent to L. We say 
that L is Ramsey if for every k there is an n such that [Rn -+ (L)k. 

Theorem 11. Let P be a pair of points at distance 1 apart. Then 

[R2 -+ (Ph but [R2 f+ (Ph. 

PROOF. Figure VI.2 shows the first assertion. For suppose that in a red-blue­
yellow colouring of the seven points there is no monochromatic adjacent 

x 

y, 

Figure VI.2. Adjacent points are at distance 1. 

pair. We may assume that x is red. Then Yl, Zl are blue and yellow so Xl is 
red. Similarly X2 is red, but Xl and X2 are adjacent. 

Figure VI.3 shows that [Rf -+ (Ph is false. 0 
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Figure VI.3. The hexagons have side a, 1 < a < (4)5 - 5)/10. 

It is interesting that we do not know the maximal value of k for which 
IRz --+ (P)k' 

Theorem 12. Let QZ be the (vertex set of a) unit square. Then 1R6 --+ (Qzh. 

PROOF. Consider a red-blue colouring of 1R6. Then, in particular, we have a 
red-blue colouring of the following fifteen points of 1R6 :xij = (Xi}"", X~), 

1 :=; i < j :=; 6, X~j = 0 unless k = i or j and xL = xlj = 1/)2. Consider a 
K6 with vertex set {VI"'" V6}, and colour edge viv/i < j) with the colour 
of xij' Since r(C4 , C4 ) = 6 (the easy proof of this is left to the reader as 
Exercise 13), by symmetry we may assume that the edges VI V z , Vz V3' V3 V4 

are all red. It is easily checked that the points X12, XZ3, X34 and X l4 form a 
unit square and this square is, of course, red. 0 

Given LI C IRm 1 and Lz C IRm>, we define LI x L z C IRm 1+m 2 by LI X 

Lz = {(Xl> ... , Xm, + m,): (Xl,···, Xm1 )ELI , (Xm1 +l>"" Xm, + m')ELZ}' 

Theorem 13. If LI and Lz are Ramsey then so is LI X Lz · 

PROOF. Given k, there is an m such that IRm --+ (Llh. Hence by the com­
pactness theorem there is aftnite subset X c IRm such that X --+ (LI)k' Put 
I = klxl. Since L z is Ramsey, there is an n such that IRn --+ (LZ)I' Every k­
colouring of IRm + n = IRm x IRn restricts to a k-colouring c: X x IRn-+ 
[1, kJ = {l, 2, ... , k}. This gives an 1= k1xl-colouring of IRn with colours 
[1, kY: simply colour Yo E IR" with the functionf E [1, kY that tells us how 
the points of X x {Yo} are coloured: f(yo) = c(x, Yo). In this I-colouring 
there is a monochromatic L z c IR", i.e., an L z c IRn such that for X E X, 
and YI' Y2 E Lz the points (x, YI), (x, Yz) have the same colour (in the original 
k-colouring). Assigning this common colour to x, we obtain a k-colouring 
of X. It has a monochromatic LI C X, providing us with a monochromatic 
LI x L z . D 
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A brick in IRn is a set congruent to 

where ai > 0. A unit simplex in IRk shows that IRk ---+ ({O, 1})k so every 2-point 
set is Ramsey. Hence Theorem 13 has the following consequence. 

Theorem 14. Every subset of a brick is Ramsey. o 

Call a set L c IRm spherical if it is imbeddable in some sphere (of arbitrary 
dimension and radius). It is somewhat more complicated to show that if a 
set is not spherical then it is not Ramsey (Exercise 20). It is rather curious 
that though there are many sets (and many very simple sets, e.g., an obtuse 
triangle) that are spherical but not subsets of bricks, it is not known about 
any of them whether they are Ramsey or not. 

The following very significant extension of Ramsey's theorem was proved 
by Hales and Jewett. 

Theorem 15. Let S be a commutative infinite semigroup. Let L be afinite subset 
of S and let [7/ = {a + nL: a E S, n EN}, where nL = {nx: x E L}. Then 

S ---+ ([7/)k for every k. o 

The proof is too difficult to present in these notes. However, we state this 
theorem partly because it is the cornerstone of very general results proved 
by Graham, Leeb and Rothschild, asserting that certain categories are 
"Ramsey", and partly because we shall prove a special case of this theorem. 
The next theorem was conjectured by Rota; it is one of the most striking 
consequences of the results about Ramsey categories. 

Theorem 16. Given a finite field F and natural numbers nand k, there is a 
natural number N such that if FN, the N-dimensional vector space over F, is 
coloured with k colours then FN contains a monochromatic n-dimensional 
affine subspace. 

Furthermore, given a finite field F and natural numbers n, m and k, there is 
an M such that if the set of k-dimensional subspaces of FM is coloured with k 
colours, then there is an n-dimensional subspace in which all k-dimensional 
subspaces have the same colour. 0 

The classical theorem of van der Waerden (Theorem 17 below) is a special 
case of Theorem 15. Here we present it with a proof due to Graham and 
Rothschild, since the proof gives back the flavour of the arguments used in 
the deepest results of the theory. As customary, we write N for the set of 
natural numbers and em, n] for {m, m + 1, ... , n}. 
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Theorem17. Given p, kE N, there exists an integer W(p, k) such that in any 
k-colouring of [1, W(p, k)] there is a monochromatic arithmetic progression 
consisting of p terms. 

PROOF. Let I and m be natural numbers. Two m-tuples (Xl> ... , x m), 

(y 1, ... , Ym) E [0, l](m) are said to be I-equivalent if they agree up to and in­
cluding the last occurrences of I, with the convention that any two sequences 
not containing I are equivalent. We write S(l, m) for the following state­
ment: 

Given kEN, there exists W(l, m, k) such that for every function 

c: [1, W(/, m, k)] -> [1, k] 

there exist a, d 1, .... , dm E N such that 

a+l~dj::S;W(/,m,k) and c(a+~Xjdj) 
is constant on each I-equivalence class of [0, I](m). 

Note that van der Waerden's theorem is exactly the assertion S(p, 1), 
but the theorem holding for every p is equivalent to the truth of S(I, m) for 
every I and m. We shall prove S(l, m) by induction, starting with the trivial 
assertion S(l, 1) and proving two different induction steps. 

(i) If S(l, m) holds for some m ~ 1 then so does S(l, m + 1). To see this, 
fixkandput W = Hr{1,m,k), W' = W(l, 1,kW)and Jtj = [(j - l)W + l,jW], 
1 ::s; j ::s; W'. Let c: [1, WW'] -> [1, k] be any k-colouring. This induces a kW_ 
colouring c' of [1, W] that colours jE[l, W] with the functionf E[l, kJll. Wj 

describing the colouring of Jtj: f(w) = c«j - l)W + w), 1 ::s; w ::s; W (cf. 
the proof of Theorem 3). By the choice of W', there exist a' and d', a' + Id' ::s; 
W' such that c'(a') = c'(a' + d') = c'(a' + (I - l)d'). Let us apply S(l, m) to 
the interval [(a' - l)W + 1, a'W], k-coloured with c. Then there exist 
a, d n ... , dm E N such that 

m 

(a' - l)W + 1 ::s; a ::s; a + I L dj ::s; a'W 
1 

and c(a + LT xjd;) is constant on I-equivalence classes. Put dm + 1 = d'W. 
Then a, d 1, ... , dm + 1 are such that 

m+l 

a + I L dj::s; WW' 
1 

and 

( 
m+ 1 ) 

C a + t xjd j 

is constant on each I-equivalence class of [0, IJ<m +). (See Figure VI.4.) 
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ex a + L x,d. a + d'W 
1"'1 I ••• 1 

. 
a' 

. 
a' + d' 
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a + 2d'W 
1 • • • I 

. . 
a' + 2d' W' 

Figure VIA. Illustration to part (i). The colour ofj E [1, W'] tells us how It} is coloured. 

(ii) IIS(l, m) hoidsior every m then S(l + 1,1) also holds. This is an almost 
immediate consequence of the pigeonhole principle. For let c:[W(l, k, k)] ~ 
[1, k] be given. Then there exist a, d 1 , ••• ,dk EN such that a + I L1 di :::;; 
W(l, k, k) and c(a + L1 XidJ is constant on I-equivalence classes. The. 
colours c(a + L1ldJ, s = 0, 1, ... , k cannot be all different so there exist 
s, t, ° :::;; s < t :::;; k, such that 

Then 

is constant for j E [O,j]. 
Since S(l, 1) is trivial, by induction S(l, m) is true for every I and m. 0 

Van der Waerden's theorem has many interesting and deep extensions. 
Among others, Rado determined when a system 

n 

L aijxj = 0, 
j= 1 

i = 1, ... , m, 

of linear equations with integer coefficients has a monochromatic solution 
in every colouring of N with finitely many colours. As a particular case of 
Rado's theorem and the compactness theorem one obtains the following 
result. Given integers k and n, there exists N = N(k, n) such that if [1, N] 
is k-coloured then there is a set A of n natural numbers such that LaEA a :::;; N 
and all the sums LbEB b, 0 "# B c A have the same color. At the end of the 
next section we discuss a beautiful extension of this to infinite sets. 

§4 Subsequences 

Let Un) be a sequence of functions on a space T. Then we can find an in­
finite subsequence Un') such that one of the following two alternatives holds: 

a. if Un) is any subsequence of (!",) then sup IL~ In; I ::::: l/Nforevery N ::::: 1, 
b. ifUn)isanysubsequenceofUn,)thensupIL~ In;1 < l/N for some N ::::: L 
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This rather difficult assertion about sequences of functions is, in fact, an 
immediate consequence of a Ramsey type result about infinite sets. 

As usual, 2M denotes the set of subsets of M, M(r) is the set of r-tuples of 
M and M(W) denotes the set of countably infinite subsets of M. N is the set 
of natural numbers and [1, n] = {I, 2, ... ,n}. A family fF c 2~ is called 
Ramsey iff there exists an ME N(W) such that either M(W) c fF or M(W) c 

2~ - fF. 
Of course, 2~ can be identified with the cartesian product fliE ~ T", where 

T" = {O, I}. We give T" the discrete topology and the product 2N the product 
topology. In this topology 2~ is a compact Hausdorff space. A weak form 
of a theorem due to Galvin and Prikry states that open subsets of 2~ are 
Ramsey. (This is easily seen to imply the above assertion about sequences 
of functions.) To prove this result it is convenient to use the notation and 
terminology introduced by Galvin and Prikry. M, N, A and B are infinite 
subsets of N. X, Yare finite subsets of N. X < a means that x < a for every 
x EX; X < M means that X < m for every m EM. An M -extension of X is 
a set of the form X u N where X < Nand N c M. Let us fix now a family 
fF c 2W. We say that M accepts X if every M-extension of X belongs to fF; 
M rejects X if no N c M accepts X. 

Lemma 18. If N rejects 0 then there exists an ME N(W) that rejects every 
XcM. 

PROOF. Note first that there is an Mo such that every X c Mo is either 
accepted or rejected by Mo. Indeed, put No = N, ao = 1. Suppose that we 
have defined No=> N I=>· .. => Nk and ai E Ni - N i+ IO :s; i :s; k - 1. Pick 
akENk· If Nk - {ak} rejects {ao,··· ,ak} then put Nk+1 = Nk - {ak}, 
otherwise let Nk+ I be an infinite subset of Nk - {ak} that accepts {ao, ... , ak}' 
Then M o = {ao, a l , ... } will do. 

By assumption M ° rejects 0. Suppose now that we have chosen 
bo, bI> ... , bk - I such that M o rejects every Xc {bo, b l , ••• , bk - I }. Then 
M o can not accept infinitely many sets of the form Xu {c),j = 1,2, ... , 
since otherwise {CI, C2, •. '} accepts X. Hence M o rejects all but finitely 
many sets of the form Xu {c}. As there are only 2k choices for X, there 
exists a bk such that M ° rejects every X c {bo, b I, ... , bk }. By construction 
the set M = {bo, bl , ... } has required property. 0 

Theorem 19. Every open subset of2N is Ramsey. 

PROOF. Let fF c 2~ be open and assume that A(w) ¢ fF for every A E N(W), 

i.e., N rejects 0. Let M be the set whose existence is guaranteed by Lemma 
18. If M(W) ¢ 2W - fF, let A E M(W) n fF. Since fF is open, it contains a 
neighbourhood of A so there is an integer a E A such that if B n {l, 2, ... , a} 
= A n {I, 2, ... ,a} then BE fF. But this implies that M accepts An 
{I, 2, ... ,a}, contrary to the choice of M. Hence M(W) c 2w - fF, proving 
that fF is Ramsey. 0 
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Denote by XI<W) the family of finite subsets of X. A family fi'o c NI<w) 

is dense if fi' 0 n M' < w) i= 0 for every ME N'W) and it is thin if no member 
of fi' 0 is an initial segment of another member (that is if X < Y implies 
X ~ fi' 0 or X u Y ~ fi' 0). 

Corollary 20. Let fi' 0 c NI<W) be dense. Then there is an ME N'W) such that 
every A c M has an initial segment belonging to fi' 0 . 

PROOF. Let fi' = {F eN: F has an initial segment belonging to fi' o}. Then 
fi' is open so there is an M E Nlw) such that either MIW) c fi', in which case 
we are home, or else Mlw) c 2N - fi'. The second alternative cannot hold 
since it would imply M'<W) n fi' 0 = 0. D 

This corollary enables us to deduce an extension of the original Ramsey 
theorem for infinite sets (Theorem 3). 

Corollary 21. Let fi' 0 c N'<W) be a thin family. Then for any k-colouring of 
fi' 0 there is an irifjnite set A c N such that all members of fi' 0 contained in A 
have the same colour. 

PROOF. It suffices to prove the result for k = 2. Consider a red and blue 
colouring of fi' 0: fi' 0 = fi'red U fi' blue. If fi'red is dense then let M be the 
set guaranteed by Corollary 20. For every FE fi' 0 n 2M there is an infinite 
set N c M with initial segment F. Since fi' 0 is thin, F is the unique initial 
segment of N that belongs to fi' o. Hence FE fi'red, so every member of fi' 0 
contained in M is red. 

On the other hand if fi'red is not dense then 2M n fi'red = 0 for some 
infinite set M. Hence 2M n fi' 0 c fi' blue. 0 

Let us now turn to the result concerning monochromatic sums we pro­
mised at the end of the previous section. This beautiful result, conjectured 
by Graham and Rothschild and first proved by Hindman, is not very near 
to the results given in this section, but the striking proof given by Glazer 
illustrates the rich methods that can be applied in infinite Ramsey theory. 

Theorem 22. For any k-colouring of N there is an infinite set A c N such 
that all sums LXEX x, 0 i= X c A, have the same colour. D 

We shall not give a detailed proof but only sketch one for those who are 
(at least rather vaguely) familiar with ultrafilters on N and know that the 
set f3N of all ultrafilters is a compact topological space (the Stone-Cech 
compactification of N with, of course, the discrete topology). The proof 
which is due to Glazer, is at least as beautiful as the theorem and it is con­
siderably more surprising. 
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Let us recall that a filter :F on N is a collection of subsets of N such that 
(i) if A, BE:F, then An BE:F, (ii) if A E:F and A c B then BE:F and 
(iii) :F -# 2N, that is 0 ¢:F. Zorn's lemma implies that every filter is con­
tained in a maximal filter, called ultrafilter. IfOlt is an ultrafilter then for every 
A c N either A EOlt or else N - A EOlt. This implies that every ultrafilter 

Olt defines a finitely additive 0-1 measure m on 2N : 

meA) = {I if A EOlt, 
o if N - A EOlt. 

Conversely, clearly every finitely additive 0-1 measure on 2N defines an 
ultrafilter. If there is a finite set of measure 1 then one of the elements, say a, 
of that set has also measure 1, and so Olt = {A eN: a E A}. These ultra­
filters are called principal. Not every ultrafilter is principal: the ultrafilters 
containing the filter:F = {A c N: N - A is finite} are not principal. 

That ultrafilters can be useful in proofs of Ramsey theorems can be seen 
from the following very simple proof of the case r = 2 of Theorem 3. Let Olt 
be a non-principal ultrafilter. Let N(2) = P t U P2 U··· U Pk. For n EN let 
Aln) = {m: (n, m) E PJ. Then exactly one of the sets Aln), A~n), ... ,Aln) be­
longs to Olt, say the set A~(~). Now with Bi = {n: c(n) = i} we have N = 
B t u ... U Bk so again exactly one of these sets, say B j , belongs toOlt. Finally, 
pick at E Bj , a2 E Bj n AjUd, a3 E Bj n Ajad n AjU21, etc. With A = {at, a2, ... } 
we have A(2) c Pj' 

Let us turn at last to the sketch of Glazer's proof of Theorem 22. Let us 
define an addition on f3N by 

Olt + 'Y = {A eN: {n EN: A - n EOlt} E 'Y} 

where Olt, 'Y E f3N and A - n = {a - n: a E A, a > n}. 
With some effort one can check that Olt + 'Y is indeed an ultrafilter and 

that with this addition f3N becomes a semigroup. Furthermore, the semi­
group operation is right-continuous, i.e. for a fixed flJ E f3N the map f3N ..... 
f3N, given by Olt ..... flJ + Olt, is continuous. By applying a short and standard 
topological argument we see that the properties above imply that f3N has 
an idempotent element, that is an element flJ with flJ + flJ = flJ. This flJ is 
nonprincipal since if {p} E flJ then {2p} E flJ + flJ so {p} ¢ .OJ> + flJ. 

Let now A E flJ. Then by the definition of the addition 

A* = {nEN:A - nEP}EflJ. 

Thus if a E An A* then B = (A - a) n (A - {a}) E ;J/. (We could replace 
A by A - {a} since:-Y is not principal) Hence for every A E :J} there exist 
a E A and B c A - {a} such that BE ?J and a + B c A. 

Of course, this ultrafilter P has nothing to do with any colouring of N. 
However, just as any non-principal ultrafilter enabled us to find a mono­
chromatic infinite set in a direct way, this idempotent ;J}i enables us to find 
an appropriate infinite set. Let N = C t u ... U Ck be the decomposition 
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of N into colour classes. Exactly one of these colour classes, say Ci , belongs 
to !I. Put Al = Ci . Select al E Al and A2 E g>, A2 C Al - {ad such that 
al + A z c AI' Then select a2 E A2 and A3 E g>, A3 c A2 - {a2} such that 
az + A3 c A 2, etc. The set A = {aI, a2,"'} clearly has the required 
property: every infinite sum LXE x X, X c A, has colour i. 0 

Finally, it should be emphasised that the infinite Ramsey results presented 
in this section form only the tip of an iceberg: the Ramsey theory of infinite 
sets, called partition calculus, is an essential and very cultivated branch of 
set theory, and it has a huge literature. 

The foundations of partition calculus were laid down over twenty years 
ago by Erdos and Rado, who also introduced the arrow notation, used 
throughout the chapter, to formulate assertions about large cardinals. 

EXERCISES 

1. Show the equivalence of Theorem 3 and Rt)(sl"'" Sk) < 00, 

(i) directly, 
(ii) using Theorem 10. 

2. Prove that R(3, 4) = 9. 

Figure VI.5. A graph showing R(3, 4) Z 9. 

3. Extending the construction in Figure VI.5, find for each t z 2 a t-regular graph 
which shows that R(3, t + 1) z 3t. 

4. By considering the graph with vertex set ;Z 17 (the integers modulo 17) in which i 
is joined to j iff i - j = ± 1, ±2, ±4 or ±8, show that R(4, 4) = 18. 

5. Prove that R(3, 5) = 14. 

6. Let e be an edge of K4. Show that r(K4 - e, K4) = 11 (cf. Exercise 4). 

7. By considering the 3-colouring of KI6 with vertex set GF(16), the field of order 16, 
in which the colour of an edge ij depends on the coset of the cubic residues to which 
i - j belongs, show that R3(3, 3, 3) = 17. (You have to check that the graph is 
well defined.) 

8. Establish the upper bound for Rt)(sJ, ... , Sk) given at the end of §1. 
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9:- Given 2 :::;; k :::;; n, denote by ck(n) the maximal integer which is such that in every 
k-colouring of the edges of K n we can find a connected monochromatic subgraph 
of order ck(n). Show that cin) = n. (See Exercise 13 of Chapter 1.) 

10:- Prove that Cn -I (n) = 2 if n ;?: 2 is even and Cn - I (n) = 3 if n ;?: 3 is odd. [Hint. 
Use Theorem 9 of Chapter 1.J 

11:- Prove that 

if n == 2 (mod 4), 

otherwise 

12. Check that r(2K 3 , K 3 ) = 8 and r(2K\ 2K 3) = 10. 

13. Show that r(C4 , C4 ) = 6. 

14. By using the proof of Theorem 9 of Chapter IV prove that rk(C4 , C4 , ... , C4 ) :::;; 

e + k + 2. 

15.+ Using two-dimensional vector spaces over finite fields (cf. Theorem 10 of Chapter 
IV), show that 

rk(C4 , C4 , •.. , C4 ) = k2 + O(k). 

16. By considering HI = p5 and H 2 = K 1,3, show that 

r(H I , H 2);?: min r(Hi' Ha 
i = 1. 2 

need not hold. 

17.+ Let H P' H q be graphs of order p and q, respectively and let cl(B p) = i, cl(Bq) = j. 
Then there is a constant C depending only on p and q such that 

ps + qt - min{si, tj} - 2 :::;; r(sHp, tHq) :::;; ps + qt - min{si, tj} + C. 

[Hint. Find a red Ki(p-i), say R, a blue Ki(q- ii, say B, and a set N of ij other vertices 
such that the RN edges are red and the BN edges are blue. Cf. the proof of Theorem 
8.J 

18. Prove that a set {xo, x I' ... ,xtl c [Rn is non-spherical iff for some Cj 

{ { 

I dXi - Xo) = 0 and I cllxd2 - IXoI2) = b =I O. 
I I 

19. Let b, Clo' .. , CI E [R, b =I O. Show that there exists an integer k and some k-colouring 
of [RI such that the equation 

I 

Idxj - xo) = b 
I 

has no solution with X o, XI' ... , XI all the same colour. 

20. Prove that every Ramsey set is spherical. [Hint. Given a non-spherical set 
{xo, XI" ... , XI} C [Rn, find (Cj) and b as in Exercise 18. Choose a k and a k-colouring 
of [RI as in Exercise 19. Use this k-colouring to define a k-colouring of [Rn by 
colouring X E [Rn with the colour of 1 x 12.J 
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21. Let fen) be the minimal integer N such that whenever X is a set of N points 
in a plane, no three of which are collinear, X contains n points forming a convex 
n-gon. Show that fen) ~ R(4)(5, n) for every n ~ 4. Can you give a better bound 
for f(5)? 

22. Let S be an infinite set of points in the plane. Show that there is an infinite set A 
such that either A is contained in a line or no three points of A are collinear. 

23. Show that Rk(3, 3, ... , 3) ~ Lek!J + 1. 

24. Deduce from Exercise 23 the following theorem of Schur: If we partition the 
natural numbers not exceeding ek! into k classes then the equation x + y = z 
is solvable in at least one of the classes. 

25. Show that there is an infinite set of natural numbers such that the sum of any two 
elements has an even number of prime factors. 

26:' Show that there is a sequence nl < n2 < ... of natural numbers such that if 
r ~ i l < i2 < ... < ir then 2:i= 1 nij has an even number of prime factors iff r 
has an odd number of prime factors. 

27. Define a graph with vertex set [1, N](2) by joining a < b to b < c. Show that this 
graph does not contain a triangle and its chromatic number tends to infinity 
with N. (See Exercise 11 of Chapter V.) 

28. Let gl(X), g2(X), ... , gn(x) be bounded real functions and let f(x) be another 
real function. Let e and £5 be positive constants. Suppose maXi (gi(X) - g;(y)) > £5 

whenever f(x) - fey) > B. Prove that f is bounded. 
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CHAPTER VII 

Random Graphs 

"Give a 'good' lower bound on the Ramsey number R(s, s), that is show 
that there exists a graph of large order such that neither the graph nor its 
complement contains a KS". "Show that for every natural number k there 
is a k-chromatic graph which does not contain a triangle". It does not take 
long to realize that the constructions that seem to be demanded by questions 
like these are not easily come by. Later we show that for every k there is a 
graph with the latter property, but even for k = 4 our graph has at least 
232 vertices. This book does not contain a picture of such a graph. Indeed, 
the aim of this chapter is to show that in order to solve these problems we 
can use probabilistic methods to demonstrate the existence of the graphs 
without actually constructing them. (It should be noted that we never use 
more than the convenient language of probability theory, since all the 
probabilistic arguments we need can be replaced by counting the number of 
objects in various sets.) This phenomenon is not confined to graph theory 
and combinatorics; in the last decade or two probabilistic methods have 
been used with striking success in Fourier analysis, in the theory of function 
spaces, in number theory, in the geometry of Banach spaces, etc. However, 
there is no area where probabilistic (or counting) methods are more natural 
than in combinatorics. 

In most cases we use one of two closely related probabilistic models. We 
start with a fixed set of n distinguished (labelled) vertices. Then either we 
choose every edge with some probability p, 0 < p < 1, independently of 
the choices of other edges or else we take all graphs of order n and size M, 
and consider them as points of a probability space, having equal probability. 
In the first case we shall write C§(n, P(edge) = p) for the probability space, 
in the second case we write c§(n, M). Of course in a more complicated model 
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we would choose the edges with given probabilities from several disjoint 
subsets of edges. 

In the first two sections we shall show that a random graph can be a 
valuable weapon in attacking straightforward questions concerning graphs, 
including the ones mentioned above. However, random graphs are clearly 
of interest in themselves. A random graph can be viewed as an organism 
that develops by acquiring more and more edges as p or M increases. It is 
fascinating and rather surprising that a given property may appear rather 
suddenly at a certain stage of the development. In the last two sections we 
present some examples of this phenomenon. 

§1 Complete Subgraphs and Ramsey Numbers-the 
Use of the Expectation 

Let n, Nand M be natural numbers, 0::;; M ::;; N = (2). We shall consider 
the set n = '§(n, M) of all graphs of size M with vertex set V = {I, 2, ... , n}. 
Clearly n has (z,) elements; in particular, if M =0 then n = {En} and if 
M = N = (2) then n = {Kn}. (We use M for the number of edges in order 
to emphasise that M tends to be of larger order than n. We cannot use e 
since the base of the natural logarithm occurs in many of our formulae.) 
For the sake of convenience we view n as a probability space, in which the 
points (i.e., graphs) have equal probability, 1/1 n I. Then all graphic in­
variants occur as random variables on n, so we may talk of their expected 
value, standard deviation, etc. In our calculations we shall often make use 
of various estimates of binomial coefficients. For convenience we list them 
now. First recall Stirling's formula 

n! = (~rjhmea/(12n), (1) 

where IX depends on n but is between 0 and 1. The following estimates, in 
which 0 ::;; x ::;; x + y ::;; a and x ::;; b ::;; a, are obtained by expanding the 
binomial coefficient and occasionally applying Stirling's formula (1). 

2:ra (~r ::;; 2~ C ~ br-b(~r ::;; (~) ::;; (a ~ br-b(~r ::;; e:r 
(2) 

(a -b - y)Y(~)x ::;; (a - x - y)(a)-l a-x-y a-x b-x b ::;; e: br(~r ::;; e-(b/a)y-(l-(b/a»x. (3) 
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As our first illustration of the use of the language of probability in graph 
theory we give a lower bound for the Ramsey number R(s, t). This lower 
bound is based on the expected number of complete subgraphs of a given 
order. For G E 0 denote by Xs = X.(G) the number of K S subgraphs in G. 
Then X s is an integer valued random variable on the probability space O. 

Theorem 1. The expected number of KS subgraphs contained in a graph 
G E 0 = f§(n, m) is 

E(X.) = (n) (N - (~)) (N) -1. 

s M - (2) M 

PROOF. As we noted earlier, 101 = (ft). In order to calculate the expected 
number of K S subgraphs in G E 0, first we compute the number of graphs 
G E 0 that contain a fixed complete subgraph Ko of order s. If Ko c G then 
m ofthe.edges of G are determined (i.e., are in K 0) and the remaining M - m 
edges have to be chosen from a set of N - m = (2) - m edges. Thus 

( N -m) M-m 
of the graphs G EO contain Ko. As there are G) choices for K o, the expected 
number of KS subgraphs contained in G E 0 is as claimed. 0 

Theorem 2. If s, t :2: 3 then 

{
(S - 1)(t - 1)} 

R(s, t) > exp 2(s + t) . 

In particular 

R(s, s) > e(I/4)(s-I)2/s• 

PROOF. Note first that the graph G = (t - 1)Ks- 1 does not contain a K S 

and its complement, K s - 1(t - 1), does not contain a K1, so R(s, t) :2: 
(s - l)(t - 1) + 1. Therefore we may assume that 

r {(S - 1)(t - 1)}1 
n = exp 2(s + t) :2: (s - l)(t - 1) + 1, 

so, in particular 8 ::;; s ::;; t. 
Let 

M= l_s NJ, 
s + t 

I t 
M =N-M<--N+l 

s + t ' 

let Es be the expected number of K S subgraphs in a graph of order n and size 
M, and, similarly, let EI be the expected number of KI subgraphs in the 
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complement of such graphs (i.e., in the graphs G(n, M'». Let us estimate the 
expression for E., given in Theorem 1, by using inequalities (2) and (3). 
We obtain 

Similarly 

t s(s - 1) 
log Es ::; s(log n + 1 - log s) - -- 2 

s + t 
s(s - 1) ::; - + 1 - s(log s - 1) < - 3. 
2(s + t) 

s t(t - 1) t(t - 1) 
log Et ::; t(log n + 1 - log t) - -- 2 + ( 1) 

s+t nn-

t(t - 1) t(t - 1) 
= - + 1 - t(log t - 1) + < - 3. 

2(s + t) n(n - 1) 

Hence Es + Et < 1 so there is a graph G E Q which does not contain a K S 

and whose complement does not contain a Kt. Hence R(s, t) ~ n, as claimed. 
o 

Clearly the bound given in Theorem 2 is very bad for s = 3 and large t. 
In §2 we shall sketch a more refined version of the proof above, that gives a 
much better bound for R(3, t). However, first we apply a straightforward 
argument to obtain lower bounds in the problem of Zarankiewicz (cf. 
Theorems 8 and 10 in Chapter IV). 

Theorem 3. Let 2::; s ::; nl, 2::; t ::; n2, a = (s - l)/(st - 1) and f3 = 
(t - 1)/(st - 1). Then there is a bipartite graph G2(n!, nz) of size 

l( l - ___ 1 )nl-anl-pJ 
s!t! ! z 

that does not contain a K(s, t) (with s vertices in the first class and t vertices 
in the second class). 

PROOF. Let 

n = n l + n2' 
Vi = {l, 2, ... , nd, 
Vz = {nl + 1, n l + 2, ... , n! + n2}, 

E = {ij: i E VI, j E Vz}, 
M = Lnl-an~-PJ. 

We shall consider the probability space Q = ':§(n, M; E) consisting of the 
(It I) graphs with vertex set V = VI U Vz having exactly M edges from E 
and none outside E. (Note that this is not the probability space considered 
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in the previous theorems.) The expected number of K(s, t) subgraphs con­
tained in a graph G E Q is 

since the first factor is the number of ways the first class of K(s, t) can be 
chosen, the second factor is the number of ways the second class can be 
chosen and since K(s, t) has st edges. By (3) we have 

1 ( M )SI I E < S I I-a I-P 
s,1 - -,-, n1 n2 -- < -,-, n1 n2 • 

S.t. n 1n2 S.t. 

Thus there is a graph Go E Q that contains fewer than (l/s!t !)n~ -an~ - p 

complete bipartite graphs K(s, t). Omit one edge from each K(s, t) in Go. 
The obtained graph G = Gin 1 , n2) has at least 

Ln 1- an1- PJ - _1_nl-an1-P > l(1 - _1_)n 1 - an1 - fJJ 
1 2 s!t! 1 2 - s!t! 1 2 

edges and contains no K(s, t). D 

By similar methods one can construct a graph of order n and size 

l! (1 - _1_)n2 -(S+I-2)/(SI-l)J 
2 s!t! 

that does not contain a K(s, t) (see Exercise 4). 

It is a fact of life that the answers produced with the aid of random graphs 
usually differ from the best possible ones by a factor of 2. For example, 
random graphs give R(s, s) > 2s/ 2 , whereas one would expect the actual 
value of R(s, s) to be around 2S • Similarly it is thought that there are graphs 
of order n with cl n2 -(1/1) edges containing no K(t, t), where C I is a positive 
constant depending only on t; random graphs show that CI n2 - (2/1) edges 
are possible. However, in both these cases random graphs produce the best 
known lower bounds. 

§2 Girth and Chromatic Number-Altering 
a Random Graph 

When looking for graphs with a certain property, we sometimes turn a set 
of graphs into a probability space and hope that most graphs in that space 
have the required property. If this does not happen, all is not lost, for we can 
try to alter the graph slightly to make it have that property. We shall il­
lustrate this point with a particularly simple example. Throughout the 
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section, we work with the probability space 0 = rg(n, M) of all graphs of 
size M with a fixed set of n distinguished vertices. 

Theorem 4. Given natural numbers b z 3 and g z 4 there is a graph of order 
at most (2b)g whose minimum degree is at least b and whose girth is at least g. 

PROOF. Let 0 = rg(n, M), where n = (2b)g and M = bn. Denote by ZlG) 
the number of cycles of length I in a graph G; thus ZI is a random variable 
on the space o. What is E(ZI), the expected value of ZI ? A cycle Co of length 
I determines I edges of a graph G containing it; the remaining M - I edges 
of G have to be chosen from a set of CD - I = N - I edges. Since there are 
(';) choices for the vertex set of Co and, given the vertex set, there are 1<1 - I)! 
ways of choosing Co, 

I (n) (N - I) (N)-I 1 I(M)I E(ZI)=1(I-l)! I M-I M ~2zn N . 

In the inequality above we applied (3) with a = N, b = M, x = I and y = o. 
Summing over I we find that 

g-I g-Il {b}1 g-I 
1~3 E(ZI) ~ 1~3 21 nl: < 1~3 (2by < n. 

Hence there is a graph G E G(n, bn) that contains at most n - 1 cycles of 
length at most g - 1. Therefore, by omitting one edge from each cycle of 
length at most 9 - 1, we obtain a graph H of order n and size M' > (b - 1)n. 
We know from the simple Exercise 11 of Chapter IV that H contains a graph 
with minimum degree at least b. D 

The next result solves the second problem posed in the introduction of 
this chapter. 

Theorem 5. Given natural numbers k z 4 and g z 4, there is a k-chromatic 
graph of girth 9 (and order e g + g). 

PROOF. Let 0 = rg(n, M), where n = k4g and M = k3 n. Then, as in the pre­
vious proof, we have 

g-I g-I 1 
L E(ZI) < L (2k 3Y < (2k3 )g < - n 7/8. 

1=3 1=3 9 

Putf = (2k 3 )g and denote by 0 1 the set of graphs in 0 that contain at most 
3f cycles of length less than g. Then trivially (or by Chebyshev's inequality, 
see §4), we have 

P(OI) z l 
Now we put p = (njk) + 1 = k4g - I + 1 and estimate P(02)' the measure 

of the set O2 of graphs G that do not contain a p-set with at most 3f edges. 
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Clearly the graphs in O2 are not (k - l)-colourable. Furthermore, even if 
we omit any 3Joftheir edges, we still cannot colour them with k - 1 colours. 
In order to estimate P(02) we calculate the expectation of 1;1 = 1;I(G), 
the number of p-sets of vertices in which G has exactly I edges. There are (;) 
ways of choosing a set of p vertices; there are 

ways of choosing I edges joining vertices of such a set; and the remaining 
M - I edges can be chosen in 

(N-m) 
M -I 

ways. Thus 

Applying (3) and summing over I we find that 

L E(l P ):::; L - - exp - M 3f +1 3f (en)p(ep2 )1 { (p) (n) -1} 
1=0 1=0 P 2 2 2 

< kPeP+3fp6fexp{ -kn}. 

The logarithm of the right hand side is at most 

Consequently 

and so 

Therefore 

n 
n + - + n 7/8 + !n 7/8 log n - kn < -tn. 

3 

3f 
L E(l;I) < e- n/ 2 < t 

1=0 

P(01 n O2) ~ 1-
Every graph HE 0 1 n O2 can be altered in a very simple way to provide 

a graph with the required properties. Indeed, since H E 0 1, it contains at 
most 3J cycles of length less than g. Let F be obtained from H by omitting 
3J edges of H, at least one from each cycle of length less than g. Then F has 
girth g(F) ~ g. Since HE O2 , this graph F does not contain p = (n/k) + 1 
independent vertices and so X(F) ~ k. Let G be the disjoint union of a cycle 
Cg and a k-chromatic subgraph of F. 0 
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In §1 we promised to sketch a proof of a lower bound for the Ramsey 
number R(3, t), given by Erdos. The sketch will be rather rough since the 
details of the proof are somewhat technical and cumbersome. 

Theorem 6. There is a constant c > 0 such that 

for every t ~ 2. 

R(3, t) ~ cCo~ tY 
o 

It suffices to show that there is a (large) positive constant A such that for 
every n there is a graph Gn without triangles and without LAnl/2 log nJ in­
dependent vertices. Indeed, it is easily checked that if there is such a constant 
then c = tA - 2 will do in the theorem. 

In order to show the existence of A, we choose a constant B > 0 and con­
sider the probability space Q = '!len, M), where M = LB- 1/2n3/2 J Given 
G E Q, let E* be a minimal set of edges whose removal destroys every triangle 
in G. If H = G - E* contains a set W of p = LBnl/2 log nJ independent 
vertices, then every edge of G[W] has to be contained in a triangle of G whose 
third vertex is outside W One can show that if Band n are sufficiently large, 
say B ~ Bo and n ~ no, then most graphs G E Q do not contain such a set W 
Clearly A = Bo n6 has the required properties. 

§3 Simple Properties of Almost All Graphs- the 
Basic Use of Probability 

In this section we shall introduce and examine the model <g(n, P(edge) = p). 
The graphs in this model are such that the edges are chosen independently 
and with the same probability p,O < P < 1. Thus <g(n, P(edge) = p) con­
sists of all graphs with a fixed set of n distinguishable vertices, and the 
probability of a graph with m edges is pmqN-m, where q = 1 - p and, as 
before, N = (D. Thus q is the probability that a given pair of vertices are 
not joined by an edge, and N is the maximum possible number of edges. We 
saw in the preceding section how useful it is to know that most graphs in a 
model have a certain property. Now we shall go a step further, namely we 
shall discuss properties shared by almost all graphs. Given a property Q, 
we shall say that almost every (a.e.) graph (in a probability space Q n con­
sisting of graphs of order n) has property Q if peG E Q n : G has Q) ~ 1 as 
n ~ 00. In this section we shall always take Q n = '!len, P(edge) = p), where 
o < p < 1 may depend on n. 

Let us assume first that 0 < p < 1 is fixed, that is p is independent of n. 
There are many simple properties holding for a.e. graph in <g(n, P(edge) = 

p). For instance, if H is an arbitrary fixed graph, then a.e. G E <g(n, P(edge) = p) 
contains H as a spanned subgraph. Indeed, if I H I = h, then the probability 
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that the subgraph of G spanned by a given set of h vertices is isomorphic 
to H is positive, say r > O. Since V(G) contains Ln/hJ disjoint subsets of h 
vertices each, the probability that no spanned subgraph of G is isomorphic 
to H is at most (1 - ryn/hJ, which tends to 0 as n --+ 00. The following result 
is a strengthened version of this observation. 

Theorem 7. Let 1 S h s k be fixed natural numbers and let 0 < p < 1 be 
fixed also. Then in C§(n, P(edge) = p) a.e. graph G is such that for every 
sequence ofk vertices Xl' X 2 , ..• , X k there exists a vertex x such that XXi E E(G) 
if 1 sis hand xxd: E( G) if h < i s k. 

PROOF. Let XI> x 2 , ••• , Xk be an arbitrary sequence. The probability that a 
vertex X E W = V(G) - {Xl' ... ,xd has the required properties is phqk-h. 
Since for x, YEW, X =1= y, the edges XXi are chosen independently of the 
edges yXi' the probability that no suitable vertex X can be found for this 
particular sequence is (1 - phqk-h)"-k. Since there are n(n - 1) ... (n - k + 1) 
choices for the sequence X I> X 2 , ••• ,Xb the probability that there is a 
sequence Xl, X 2 , ••• , X k for which no suitable X can be found is at most 

c = nk(1 _ phqk-h)"-k. 

Clearly c --+ 0 as n --+ 00. D 

By a result of Gaifman concerning first order sentences, Theorem 7 im­
plies that for a fixed 0 < p < 1 every first order sentence about graphs is 
either true for a.e. graph in C§(n, P( edge) = p) or is false for a.e. graph. Though 
this result looks rather sophisticated, it is in fact weaker than the shallow 
Theorem 7, for given any first order sentence, Theorem 7 enables us to 
deduce immediately whether the sentence holds for a.e. graph or it is false 
for a.e. graph. In particular, each of the following statements concerning 
the model C§(n, P(edge) = p) for a fixed p,O < P < 1, is an immediate con­
sequence of Theorem 7. 

1. For a fixed integer k, a.e. graph is k-connected. 
2. A.e. graph has diameter 2. 
3. Given a graph H, a.e. graph G is such that whenever Foe G is isomorphic 

to a subgraph F of H, there exists an Ho isomorphic to H satisfying 
Fo c Ho c G. 

Rather naturally, most statements we are interested in are not first order 
sentences, since they concern large subsets of vertices. "For a given e > 0, 
a.e. graph has at least -!(p - c)n2 edges and at most -!(p + c)n2 edges". 
"Almost no graph can be coloured with nl / 2 colours". "A.e. graph contains 
a complete graph of order (log n)/(log(l/p))". "Given c > 0, a.e. graph is 
!(p - c)n-connected". These statements are all true for a fixed p and are 
easily proved (see Exercises 8-11); however, none of them is a first order 
sentence. 
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Now we shall examine the model n = C§(n, P(edge) = p) under the as­
sumption that 0 < p < 1 depends on n but pn2 ~ 00 and (1 - p)n2 ~ 00 as 
n ~ 00. As before, we put N = m and for M = 0, 1, ... , N we denote by 
n M the set of graphs in C§(n, M). Clearly n = Uz.;o nM' and the elements 
ofnM have equal probability both in C§(n, M) and C§(n, P(edge) = p). 

We shall show that the models n = C§(n, P(edge) = p) and C§(n, M) are 
very close to each other, provided M is about pN, the expected number of 
edges of a graph in n. 

Writing P for the probability in n, we see that 

Hence 

p(nM ) M + 1 q 
p(nM + 1) N - M p. 

(4) 

This shows that p(nN)/p(nM+ 1) increases with M, and p(nM) is maximal 
for some M satisfying pN - 1 ~ M ~ pN + 1. Furthermore, if 0 < e < 1 
and n is sufficiently large then, since pn2 ~ 00 as n ~ 00, 

p(nM ) 

p(nM + 1) < 1 - e 

provided M < (1 - e)pN, and 

p(nM + 1)«I+ )-1 
p(nM) e 

when M > (1 + e)pN. Putting Ne = L(l + e)pN J and N -e = r(1 - e)pNl, 
we see from these inequalities that a.e. graph G in n satisfies N -e ~ e(G) ~ 
N" that is 

pC~-& nM) ~ 1 as n ~ 00. (5) 

Another consequence of (4) is that there is an YJ > 0 (in fact, any 0 < YJ < t 
would do) such that 

(6) 

if n is sufficiently large. Now (5) and (6) imply that if n* c n is such that 
p(n*) ~ 1 as n -+ 00, then for any e > 0 there are M 1 and M 2, such that 
(1 - e)pN ~ M 1 ~ pN ~ M 2 ~ (1 + e)pN and 

InM (l n*1 
, ~1 asn~oo 

InMil 
(i = 1, 2,). (7) 
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We call a set Q* c Q convex if G E Q* whenever G1 c G C G2 and 
G 1, G2 E Q*; a convex property of graphs is defined analogously. It is easily 
seen that for a convex set Q* relation (7) implies that 

(7') 

whenever M 1 ~ M ~ M 2, in particular, if M = LPN J. Let us restate the 
assertions above as a theorem about the connection between the models 
~(n, P(edge) = p) and ~(n, M). 

Theorem 8. Let 0 < P = p(n) < 1 be such that pn2 -+ 00 and (1 - p)n2 -+ 00 

as n -+ 00, and let Q be a property of graphs. 
(i) Suppose e > 0 is fixed and, if (1 - e)pN < M < (1 + e)pN, then a.e. 

graph in ~(n, M) has Q. Then a.e. graph in ~(n, P(edge) = p) has Q. 
(ii) IfQ is a convex property and a.e. graph in ~(n, P(edge) = p) has Q, then 

a.e. graph in ~(n, LPN J) has Q. D 

§4 Almost Determined Variables-the Use of the 
Variance 

If X = X(G) is a non-negative variable on Q = ~(n, M) or Q = 
~(n, P(edge) = p), and the expectation of X is at most a, then 

t - 1 
P(X ~ ta) ~ -- for t > 1. 

t 

Thus if the expectation of X is very small then X is small for most graphs. 
This simple fact was used over and over again in the first two sections. 
However, if we want to show that X is large or non-zero for almost every 
graph in Q then the expected value itself very rarely can help us, so we have 
to try a slightly more sophisticated attack. We usually turn to the variance 
for help. Recall that if J1. = E(X) is the expectation of X then 

is the variance of X and u = u(X) > 0 is the standard deviation. Chebyshev's 
inequality, which is immediate from first principles, states that if t > 0 then 
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In particular, if 0 < t < p then 

so 

a2 

P(X = 0) ~ P(IX - pi;;:: t) ~ 2' 
t 

a 2 

P(X = 0) ~ 2. 
J1. 

(8) 

In the examples we consider X = X(G) is always the number of spanned 
subgraphs of G contained in a family !F = {F 1, F 2, ... }. Here the family 
!F may depend on n and every graph FE !F has the same labelled vertex set 
as G. Then clearly 

E(X2) = L peG contains F' and F"), 
(F'.F") 

where the summation is over all ordered pairs (F', F"), F', F" E!F. 

(9) 

In this section we shall consider the space Q = <;§(n, P(edge) = p), where 
o < p < 1 is fixed; we know that this space is near to <;§(n, M), where M = 

LPn2j2J. As before, we write q = 1 - p for the probability that two given 
vertices are not adjacent. Furthermore, we use Landau's notation O(J(n)) 
for a term that, when divided by fen), remains bounded as n -+ 00. Similarly, 
o(J(n)) denotes a term that, when divided by fen), tends to 0 as n -+ 00. 

Thus 0(1) is a bounded term and 0(1) is a term tending to o. 
Our aim is to make use of the variance to show that certain graph in­

variants are almost determined in our model <;§(n, P(edge) = p). The first 
theorem concerns the maximal degree. In its proof we shall make use of a 
special case of the classical De Moivre-Laplace theorem concerning the 
approximation of the binomial distribution by the normal distribution. 
Let 0 < c = c(n) = 0(1) and put d(c) = LPn + c(pqn log n)1/2 J Suppose 
x(c) = c(log n)1/2 -+ 00. Then 

L pkqn-k = (1 + 0(1)) - e- u2/ 2 du n (n) 1 foo 
k=d(e) k J2n x(e) 

Furthermore 

± {(n)pkqn_k}2 = (1 + 0(1))(2npqn)-1/2 foo e- u2 du 
k = dIe) k x(e) 

= (1 + 0(1))(8npqc2n log n)-1/2n -e2 

= o(n -e2- 1/2). (11) 
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Theorem 9. IfO < P < 1 is fixed then in Q = C§(n, P(edge) = p) the maximal 
degree of almost every graph is 

pn + (2pqn log n)l/Z + o(n log n)l/Z. 

PROOF. Let c > 0 and denote by Xc = Xi G) the number of vertices of degree 
at least d(c) = Lpn + c(pqn log n)l/Z J. Then, by (10), 

and 

+ n(n - 1) L: L: n - n - pk,+k2 -Z qZn-Z-k,-k2 n-l n-l ( 2)( 2) 
k, =d(c) k2 =d(c) k, - 1 kz - 1 

= I1c + (1 + 0(1»11;· 

In the estimation of E(X;) the term 

is the probability that, given vertices a, bEG, a =I b, the vertex a is joined 
to k 1 - 1 vertices in V (G) - {a, b} and b is joined to kz - 1 vertices in 
V(G) - {a, b}. 

Now if c = J2 - c, where 0 < c < 1, then I1c ;::: (1 + o(I»nE, so E(X;) = 

(1 + 0(1»11; and (JZ(Xc) = 0(11;). Therefore, by (8), 

P(Xc = 0) = 0(1). 

Thus G almost surely has a vertex of degree at least 

pn + (J2 - c)(pqn log n)l/Z. 

On the other hand, if c = J2 + c, c > 0, then I1c = o(n- E) so 

o 

The result above has an interesting consequence. 

Corollary 10. IfO < P < 1 and c > J(3/2) then in C§(n, P(edge) = p) almost 
no graph has two vertices of equal degree whose degrees are at least 

d(c) == LIm + c(pqn log n)l/Z J. 
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PROOF. The probability ofthe existence of two such vertices is at most 

and by (11) this is 0(1). o 

Combining Theorem 9 with Corollary 10 we see that a.e. graph has a 
unique vertex with maximum degree. 

In the next theorem we again consider the case when p varies with n. 
We say that a function t(n) is a threshold/unction for a property Q of graphs 
if 

1. (Q) = {O if p/t(n) ~ 0, 
1m Pn p . ( 

n-oo' 1 If p/t n) ~ 00. 

Here Pn.p(Q) denotes the probability that in ~(n, P(edge) = p) a graph has 
property Q. The existence of a threshold function means that in the evolu­
tion of a random graph, i.e. in the process a graph acquires more and more 
edges, the property emerges rather abruptly. In this section we prove a basic 
result about threshold functions. The next section will be devoted to the 
beautiful result that the property of being Hamiltonian has a sharp threshold 
function. 

Theorem 11. Let k ~ 2, k - 1 :::; I :::; m and let F = G(k, l) be a graph with 
average degree (21/k) at least as large as that 0/ any 0/ its subgraphs. Then 
n-k/1 is a threshold/unction/or F, that is ijpnk/l ~ 0 then in ~(n, P(edge) = p) 
almost no graph contains F and ijpnk/l ~ 00 then almost every graph contains F. 

PROOF. Let p = yn- k/1, 0 < y < nk/l, and denote by X = X(G) the number 
of copies of F contained in G E ~(n, P(edge) = p). Denote by kF the number 
of graphs with a fixed set of k labelled vertices that are isomorphic to F. 
Clearly kF :::; k!. Then 

fl = fly = E(X) = (~)kFP1(1 - py~)-l :::; nk(y1n- k) = yl, 

so E(X) ~ 0 as y ~ 0, showing the first assertion. 
Now let us estimate the variance of X when y is large. Note that there is a 

constant c 1 > 0 such that 

(12) 

According to (9), we have to estimate the probability that G contains two 
fixed copies of F, say F' and F". Put 

As = I P(G contains F' and F"), 
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where Ls means that the summation is over all pairs (P', F") with s vertices 
in common. Clearly 

Furthermore, in a set of s vertices F' has t ~ (l/k)s edges. Hence, counting 
first the choices for P' and then for F" with s 2 1 common vertices with P', 
we find that for some constants C2 and c3 , 

As ~ L (k) (n - k)k!pl-tq(~)-l+t 
/1 t -5, ls/k S k - s 

~ L c2nk-S(yn-k/I)I-t 
t -5, ls/k 

Here in the last step we separated the term with t = 0 from the rest. Con­
sequently, making use of (12), we find that 

for some constant C4' Therefore, by (8), 

so P(X = 0) --+ 0 as y --+ 00. D 

The most striking example of a graphic invariant being almost determined 
in a random graph is that of the clique number, the maximal order of a com­
plete subgraph. It turns out that for a fixed p, 0 < p < 1, the clique number 
of almost every graph in ~(n, P(edge) = p) is one of two possible values. In 
fact, for most values of n (in a well defined sense) the clique number of almost 
every graph is just a function of p and n. We shall confine ourselves to proving 
a simple result in this direction. As in Theorem 1, denote by X = X(G) the 
number of K' subgraphs in G E ~(n, P(edge) = p). Then 

since we have G) choices for the vertex set of a K' and, having chosen the 
vertex set, we have no choice for the m edges. Let d = d(n, p) be the positive 
real number for which 
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For simplicity we put b = lip. It is easily checked with the aid of Stirling's 
formula that 

and 

2 log n 
d = log b + O(log log n). (6) 

Theorem 12. Let 0 < p < 1 be fixed. Then the clique number of almost every 
graph G E ~(n, P(edge) = p) is LdJ or r dl. 

PROOF. The assertion is equivalent to the following: 

P(X, > 0) --+ 0 if r z d + 1, 

P(X, > 0) --+ 1 if r :0::; d - 1. 

Now if r z d + 1, then by (6), 

E(X,) = (n)p(2) :0::; ~ p'( n )p(r 21):O::; ~ p' --+ 0, 
r r r-1 r 

so the first assertion is clear. 
Let now r :0::; d - 1. Let us use (9) to calculate the second moment of X" 

summing separately over pairs of K' subgraphs with exactly I vertices in 
common: 

Since 

Jl; = E(X,>2 = £ (n) (n) (n - r)p2(2) = (n)2 p2<2J 
1=0 r I r - I r 

with u, = u(X,) we have 

, 
:0::; I r2In- 1b(l-I)I/2. 

1=2 
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Recall now that bd/ 2 < n so bO - 1 )1/2 < nl - 1 • Hence 

proving the second assertion. o 

§5 Hamilton Cycles-the Use of Graph Theoretic 
Tools 

In the proofs so far we always adopted a more or less head-on attack. We 
hardly needed more from graph theory than the definitions of the concepts 
involved, the emphasis was on the use of probability theory. This section is 
devoted to a beautiful result of P6sa, the proof of which is based on a non­
trivial result in graph theory. Of course, in the ideal use of probabilistic 
methods in graph theory we would have a mixture of all the ideas presented 
in the four sections. Thus we would prepare the ground by using non-trivial 
graph theoretic results and would apply probability theory to get informa­
tion about graphs in a probability space tailor made for the problem. We 
could then select an appropriate graph which we would afterwards alter 
with the aid of powerful graph theoretic tools. 

It is easily seen that if c; > 0 then almost all graphs of order n and size 
M = L(t + c;)n log nJ are connected and one can also show that almost no 
graph of order n and size M = L(t - c;)n log nJ is connected (Exercise 13). 
In particular, almost no graph of order n and size M = L(t - c;)n log nJ 
contains a Hamilton cycle. It is fascinating that roughly the same number of 
edges as are needed to ensure connectivity already ensure the existence of a 
Hamilton cycle. Our next aim is to prove this beautiful theorem of P6sa. 

The basis of the proof of this result is Theorem 15 of Chapter IV. Let S 
be a longest xo-path in a graph H and write L for the set of end vertices of the 
transforms of S. Denote by N the set of neighbours of vertices of L on Sand 
put flA = V(H) - L uN. Then Theorem 15 of Chapter IV states that H has 
no L - flA edge. All we shall need from this is that if I L I = 1 s I H 1/3 then 
there are disjoint sets of size 1 and I H I - 31 + 1, that are joined by no edge 
of H. 

For the sake of convenience we shall work with the space 

clog n 
~(n, P(edge) = p), p = ~-. 

n 

We start with a simple lemma in the vein of Theorem 4. Denote by Dt the 
number of pairs (X, Y) of disjoint subsets of V such that I X I = t, I Y I = 

n - 1 - 3t, and G has no X - Y edge. 
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Lemma 13. Let c > 3 and 0 < y < !- be constants and let p = (c log n)/n. 
Then in ~(n, P(edge) = p) we have 

P(Dt > 0 for some t, 1 S t S yn) = O(n3- C). 

PROOF. Put f3 = (c - 3)/4c. Clearly 

L: E(Dt) = L: n n - (1 _ py(n-3t) [ynl [ynl ( ) ( t ) 

t; 1 t~ 1 t n - 3t 

[ynl 

+ L: 22n(1 - py(n-3t). 
[f/nl+ 1 

Now since (1 - p)n < n-C, we have 

n3(1 _ p)n-3 < (1 _ p)3n3-C, 

n3t(1 - py(n-3t) < nt(3-(c(n-3t)/n) S n3- c if2 S t s f3n 

and 

22n(1 - py(n-3t) < n(2n/(logn))-«n-3t)t/n) = O(n-f/(l-3y)n) if f3n S t S yn. 

Consequently 

[ynl 

L: E(Dt) = O(n3 - C), 

t; 1 

implying the assertion of the lemma. o 

Theorem 14. Let p = (c log n)/n and consider the space ~(n, P(edge) = p). 
If c > 3 and x and yare arbitrary vertices, then almost every graph contains a 
Hamilton pathfrom x to Y.1f c > 9 then almost every graph is Hamiltonian con­
nected: every pair of distinct vertices is joined by a Hamilton path. 

PROOF. Choose y < !- in such a way that cy > 3 if c > 9 and cy > 1 if c > 3. 
Let us introduce the following notation for certain events in 

~(n, P(edge) = p), whose general element is denoted by G. 

D = {Dt = 0 for every t, 1 S t s LynJ}, 
E(W, x) = {G[W] has a path of maximal length, whose endvertex is 

joined to x}, 
E(W, xlw) = {G[W] has a w-path of maximal length among the w-paths, 

whose endvertex is joined to x}, 
F(x) = {every path of maximal length contains x}, 

H(W) = {G[W] has a Hamilton path}, 
H(x, y) = {G has a Hamilton x-y path}, 

He = {G is Hamiltonian connected}. 
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The complement of an event A is A. 
Note that by Lemma 13 we have 

P(D) = 1 - P(D) = O(nC- 3 ). 

Let I WI = n - 2 or n - 1 and let us estimate P(D n E(W, x», where 
x ¢ W. Let G E D n E(W, x) and consider a path S = XOX1 ... Xk of maximal 
length in G[W]. (By introducing an ordering in W, we can easily achieve 
that S is determined by G[W].) Let L = L(G[W]) be the set of endvertices 
of the transforms of the xo-path S and let M be as in Theorem 15 of Chapter 
IV (applied to G[W]). Recall that I M I ~ I WI + 1 - 31 L I and there is no 
L - M edge, so no L - M u {x} edge either. Since G ED and 1M u {x} I ~ 
n - 31 L I, we find that I L I ~ yn. As L was determined independently of the 
edges incident with x, we have 

P(D n E(W, x» :s:; peG E D and x is not joined to L(G[W]» 
:s:; (1 - p)Yn < n- cy. 

Exactly the same proof implies that 

P(D n E(W, xlw» < n- CY 

provided I WI = n - 2 or n - 1, WE Wand x ¢ W. 
Note now that F(x) c E(V - {x}, x), so 

P(H(V» = p( U F(X») :s:; P(D n U F(X») + P(D) 
xeV xeV 

:s:; L P(D n F(x» + P(D) :s:; nP(D n E(V - {x}, x» + P(D) 

:s:; n 1 -cy + O(n 3 -C). 

This proves that if c > 3 then almost every graph has a Hamilton path. 
Now let x and y be distinct vertices and put W = V - {x, y}. By the 

first part 

P(H(W»:s:; 2n 1 - cy + O(n3 - c). 

Since 

H(x, y) c H(W) n E(W, y) n E(W, xly), 

we have 

P(H(x, y» :s:; P(H(W» + P(D n E(W, y» + P(D n E(W, xly) + P(D) 
:s:; 2n 1 -cy + 2n -cy + O(NC- 3). 

Therefore, if c > 3 then alm<;>st every graph contains a Hamilton path from 
x to y. 
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Finally, as there are G) choices for an unordered pair (x, y), x "# y, 

P(HC) ~ L P(H(x, y)) ~ n3 - cy + O(n 2 - Cy ). 

x=y 

Thus if c > 9 then almost every graph is Hamiltonian connected. D 

Since every Hamiltonian connected graph is Hamiltonian (contains a 
Hamilton cycle), by Theorem 8 we have, in particular, that if c > 9 then 
almost every graph in "§(n, L(c log n)/nJ) is Hamiltonian. In fact, one can see 
that the essential part of the proof gives this result with c > 6 as well. Inde­
pendently of P6sa, Korshunov proved a sharper and essentially best possible 
form of Theorem 14: the assertion holds for every c > 1. 

EXERCISES 

1. Let G = (V, E) be a directed graph with m edges and without loops. Prove that V 
can be partitioned into sets VI and V2 such that G contains more than m/4 edges 
from VI to V2 . 

2. Given an integer k :2: 2 and a graph G, denote by p(k)(G) the minimal number of 
edges of G whose omission results in a k-partite graph. Prove that if G = G(n, m) 

then 

where n = kr + 1,0 :0;; 1 < k. Show furthermore that 

k - 1 
m - kp(k)(G) :2: -- m. 

n - 1 

[Hint. Consider all graphs of the form H = IK'+ I U (k - l)K' with vertex 
set V(G). Note that the expected number of edges common to G and H is 
e(G)e(H)/e(Kn).J 

3. Prove that there is a tournament of order n (see Exercise 12 of Chapter I) that 
contains at least n! 2 - n + I directed Hamiltonian paths. 

4. Show that there is a graph of order n and size Lt(l - (l/s! t !»n 2 -«S+I- 2)(sl- I»J 

that does not contain a K(s, t). 

5. Given 2 :0;; s :0;; n, let d be the maximal integer for which there is a G 3(n, n, n) 
without a K3(S, s, s), in which every vertex is joined by at least d edges to each of 
the other two classes. Prove a lower bound for d. 

6. Use Theorem 3 to prove that if r > 2,0 < e < tcr - 1) - 2 and 

2 
d* > - :---:-c---,-:--;;-c-
, log(2(r - 1)2(;) 

then for every sufficiently large n there is a graph G(n, m) not containing a K,(t), 

where m :2: {(r - 2)/2(r - 1) + e}n2 and t = Ld: log nJ. (Note that this shows 
that Theorem 20 of Chapter IV is essentially the best possible.) 
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7. Show that a given vertex has degree 1 in about 2/e2 of the graphs in <'§(n, n). 

In Exercises 8-13 the model <'§(n, P(edge) = p) is used and 0 < p < 1 is assumed 
to be fixed. The same model is used in Exercises 14-19 but p varies with n as 
indicated. 

8 ~ Show that for I: > 0 a.e. graph has at least t(p - l:)n 2 edges and at most t(p + l:)n2 

edges. 

9 ~ Give a lower bound on the chromatic number of a.e. graph. 

10. Show that a.e. graph contains a complete graph of order at least log n/log(l/p). 

11. Prove that a.e. graph G satisfies. 

o(G) = A(G) = K(G) = pn - (2pqn log n)1/2 + o(n log n)1/2, 

where q = 1 - p. 

12. Estimate the maximal value of t for which a.e. graph contains a spanned K'" = 

K(t, t). Estimate the corresponding value for Kr(t) = K(t, ... , t). 

13. Let 0 < C < I. Prove that a.e. graph has the property that for every set Wof 
k = Lc log2 nJ vertices there is a vertex X z for each subset Z of W such that Xz is 
joined to each vertex in Z and to none in W - Z. Note that for c = 1 it is 
impossible to find even a set of 2k vertices disjoint from W. [Hint. Refine the proof 
of Theorem 7.] 

14. Prove that (log n)/n is a sharp threshold function for connectivity, in the sense 
that if e > 0 and p = «1 - e)log n)/n then almost no graph is connected while 
if e > 0 and p = «1 + I:)log n)/n then a.e. graph is connected. 

15:'" Sharpen the previous result as follows. If p = ((log n)/n) + (2x/n) then the prob­
ability that G is connected is e - e - 2 x. [Show first that a.e. G consists of a component 
and isolated vertices.] 

16. Let p = ((log n)/n) + (C(n)/n), where C(n) -> 00 arbitrarily slowly. Prove that 
a.e. G contains a I-factor. [Use Tutte's theorem, Theorem 12 of Chapter III, 
ignoring the parity of the components.] 

17. Show that l/n is a threshold function for F 1 in Figure VII.1, that is if pn -> 0 then 
almost no graph contains F 1 and if pn -> 00 then a.e. graph does. 

18. What is the threshold function for F 2 in Figure VII. 1 ? 

A 
Figure Vn.1. The graphs F l' F 2 and F 3 . 
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19. Let e > O. Prove that if p = n-(1/2)-e then almost no graph contains F 3 in Figure 
VII.l but if p = 11-(1/2)+e then a.e. graph does. [Find a suitable graph Fj that has 
average degree 2 + e.J 

20:- Consider random directed graphs in which all edges are chosen independently 
and with the same probability p. Prove that there is a constant c such that if 
p = c((log n)ln)1/2 then a.e. directed graph contains a directed Hamilton cycle. 
[Hint. What is the probability that a graph contains both edges ab and bQ? 
Apply Theorem 14 to the random graph formed by the double edges.J 

21:- Note that the suggested solution of Exercise 20 gives two directed Hamilton 
cycles with the same underlying (non-directed) edge set. Show that with p = 

(1 - e)((log n)ln)1/2 almost no directed graph contains such a pair of Hamilton 
cycles. 

22. Show that there are at least (2N In!) + O(2N III !) non-isomorphic graphs of order n. 
[Hint. Show that a.e. graph in '09'(11, P(edge) = 1) has trivial automorphism group; 
for the automorphism group see p. 157.J 

Notes 

Perhaps the first combinatorial result proved by probabilistic methods is 
the assertion of Exercise 3, proved by T. Szele in Combinatorial investi­
gations concerning directed complete graphs (in Hungarian), Mat. Fiz. 
Lapok 50 (1943) 223-256; for a German translation see Kombinatorische 
Untersuchungen tiber gerichtete vollstandige Graphen, Publ. Math. Debre­
cen 13 (1966) 145-168. However, the first papers that gave real impetus to 
the use of random graphs are two papers of P. Erdos: Graph theory and 
probability, Canad. J. Math. 11 (1959) 34-38, contains Theorem 6 and Graph 
theory and probability II, Can ad. J. Math. 13 (1961) 346-352, contains the 
lower bound on R(3, t) given in Theorem 6. 

The result about first order sentences which we mentioned after Theorem 
7 is due to R. Fagin, Probabilities on finite models, J. Symb. Logic 41 (1976) 
50-58. 

The fundamental paper on the growth of random graphs is P. Erdos and 
A. Renyi, On the evolution of random graphs, Publ. Math. Inst. Hungar. 
A cad. Sci. 5 (1960) 17-61. This paper contains a detailed discussion of 
sparse random graphs, covering amongst other things the distribution oftheir 
components and the occurrence of small subgraphs (Theorem 11). 

The sharpest results in the direction of Theorem 12 are in B. Bollobas 
and P. Erdos, Cliques in random graphs, Math. Proc. Cambridge Phil. Soc. 
80 (1976) 419-427. P6sa's theorem (Theorem 14) is in L. P6sa, Discrete Math. 
14 (1976) 359-364, its sharper form is in A. D. Korshunov, Solution of a 
problem of Erdos and Renyi, on Hamilton cycles in non oriented graphs, 
Soviet Mat. Doklady 17 (1976) 760-764. 

For standard results of probability theory, including Chebyshev's in­
equality and the approximation of the binomial distribution by the Poisson 
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distribution the reader is referred to W. Feller, An Introduction to Proba­
bility Theory and Its Applications, Vol. 1 3rd ed., Wiley, New York, 1974, 
and A. Renyi, Foundations of Probability, Holden-Day, San Francisco, 1970, 
especially to the sections on the De Moivre-Laplace formula. 

Random graphs and other combinatorial structures are investigated 
in depth in the book by P. Erdos and J. Spencer, Probabilistic Methods in 
Combinatorics, Academic Press, New York and London, 1974. 



CHAPTER VIII 

Graphs and Groups 

In this chapter we examine some interactions between graphs and groups. 
Some problems concerning groups are best attacked by using graphs. 
Although in this context a graph is hardly more than a visual or computa­
tional aid, its use does make the presentation clearer and the problems more 
manageable. The methods are useful both in theory and in practice: they help 
us to prove general results about groups and particular results about in­
dividual groups. The first section, about Cayley and Schreier diagrams, 
illustrates well both these aspects. It also contains an informal account of 
group presentations. 

If each member of a class of graphs is known to have particularly pleasant 
symmetry properties, in other words if it has a large automorphism group, 
then we may often make use of this to obtain additional information about 
the class. In some cases this extra information enables us to determine the 
class almost completely. The second section shows how we can do this 
using the properties of the adjacency matrix. 

Some classes of labelled graphs are easily enumerated, as we shall see in 
§3. Other enumeration problems, such as counting isomorphism classes 
of graphs, lead us to the study of orbits of permutation groups. The high­
light of the section is the fundamental theorem enumerating such orbits, 
namely Polya's theorem. 

§1 Cayley and Schreier Diagrams 

Let A be a group generated by a, b, .... The graph of A, also called its Cayley 
diagram, with respect to these generators is a directed multigraph whose 
edges are coloured with the generators: there is an edge from x to y coloured 

146 



§l Cayley and Schreier Diagrams 147 

Figure VIII.1. The Cayley diagrams of (i) the cyclic group C4 generated by a, (ii) the 
Klein four-group with generators a, b and (iii) the symmetric group S 3 with generators 
a = (123) and b = (12). 

with a generator 9 iff xg = y. To illustrate this concept in Figure VII 1.1 , 
we show the Cayley diagrams of three small groups. 

A Cayley diagram is regular, and so is its colouring, in the following 
sense: for each vertex x and each generator (colour) 9 there is exactly one 
edge of colour 9 starting at x and exactly one edge of colour 9 ending at x. 
Furthermore, at most one edge goes from x to another vertex y. If we know 
the Cayley diagram of a group then we can easily answer questions in terms 
of the generators. What is the element aba2 b in S 3 ? It is the end of the directed 
walk starting at 1 whose first edge has colour a, the second has colour b, 
the third a, the fourth a and, finally, the fifth b. By following this walk in 
the third picture in Figure 1, we find that aba2 b = a2 • In general, two ele­
ments expressed as products of some generators are equal iff the correspond­
ing walks starting at 1 end at the same vertex. 

The Schreier diagram is a slight extension of the Cayley diagram. This 
time we have a group A, a set S of elements of A and a subgroup B of A. 
The Schreier diagram of A mod B describes the effect of the elements of S on 
the right cosets of B: it is a directed multigraph whose vertices are the right 
co sets of B, in which an edge of colour s E S goes from a coset H to a coset K 
iff Hs = K. (Thus a Cayley diagram is a Schreier diagram mod B = {I}.) 
In most cases S is chosen to be a set of generators or a set which together 
with B generates A. Instead of giving a separate illustration, note that if A 
is the symmetric group on p, 2, 3, 4}, B is the subgroup of elements fixing 
1 and S = {a} with a = (1234) then the Schreier diagram is exactly the first 
picture in Figure VIII.1, that is the Cayley diagram of C4 . Once again we 
note that for each vertex H and each colour 9 E S exactly one edge coloured 
9 starts at H and exactly one edge coloured 9 ends at H. However, some of 
the edges may be loops, that is they may start amd end at the same coset. 
Furthermore, there may be many edges of different colours joining two 
vertices. 

Group diagrams do not tell us anything about groups that cannot be 
expressed algebraically. However, the disadvantage of the algebraic ap­
proach is that many lines of print are needed to express what is conveyed 
almost instantaneously by a 'single diagram. These diagrams are especially 



148 VIII Graphs and Groups 

helpful when we have a concrete problem to be solved by hand, and more­
over the purely mechanical techniques involved are ideal for direct use on a 
computer. Since the advent of fast electronic computers many otherwise 
hopeless problems have been solved in this way. 

Group diagrams are particularly useful when attacking problems con­
cerning groups given by means of their presentations. For the convenience 
of the reader we recall the basic facts about group presentations. We aim 
throughout for an intuitive description, rather than a rigorous treatment; 
the interested reader may fill in the details himself or turn to some specialist 
books on the subject. A word W in the symbols a, b, c, ... is a finite sequence 
such as ba-lccaa- 1b- 1a; the empty sequence is denoted by 1. We call two 
words equivalent if one can be obtained from the other by repeatedly re­
placing xx - 1 or X-I X by 1 (the empty word) or vice versa. Thus abb - 1 a-I c - 1 

and CC-1C-1dd- 1 are both equivalent to c- 1• In fact, we shall use the same 
notation for a word and its equivalence class and so we write simply 
abb-Ia-Ic- 1 = cc-Ic-1dd- 1 = c- I . Furthermore, for simplicity 
abbc-Ic-Ic- I = ab2c- 3 , etc. The (equivalence classes of) words form a 
group if multiplication is defined as juxtaposition: (ab-Ic)(c-Iba) = 

ab-Icc-Iba = a2• Clearly a-I is the inverse of a and (a-Ib-Ic)-I = c-Iba. 
This group is the free group generated by a, b, c, ... and it is denoted by 
<a, b, c, .. . ). 

Let RI" Rv> ... be words in the symbols a, b, c, ... , let F = <a, b, c, ... ) 
and let K be the normal subgroup of F generated by RI" Rv , .••• Then the 
quotient group A = F/K is said to be the group generated by a, b, c, ... and 
the relators RI" Rv ,"'; in notation A = <a, b, C, ..• IRI" Rv ," .). 

Once again we use a word to denote its equivalence class and write 
equality to express equivalence. More often than not, a group presentation 
is written with defining relations instead of the more pedantic relators. Thus 
<a, bla2 = b3 ) denotes the group <a, bla2b- 3 ). A group isfinitely presented 
if in its presentation there are finitely many generators and relations. It is 
easily seen that two words WI and W2 are equivalent in A iff W2 can be ob­
tained from WI by repeated insertions or deletions of aa - I, a - I a, bb - I, ... , 

the relators RI" R., ... and their inverses R;: 1, R; 1, .... As an example, 
note that in A = <a, bla3b, b3, a4 ) we have a = aa3b = a4 b = b. Hence 
1 = a3b(b 3)-1 = a = b and so A is the trivial group of order 1. 

Even the trivial example above illustrates our difficulties when faced with 
a group given in terms of defining relations. However, groups defined by 
their presentations arise naturally in diverse areas of mathematics, es­
pecially in knot theory, topology and geometry, so we have to try to over­
come the difficulties. The fundamental problems concerning group presenta­
tions were formulated by Max Dehn in 1911. These problems ask for general 
and effective methods for deciding in a finite number of steps (i) whether two 
given words represent the same group element or not (word problem), (ii) 
whether they represent conjugate elements (conjugacy problem) and (iii) 
whether two finitely presented groups are isomorphic or not (isomorphism 
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problem). All these problems have turned out to be problems in logic, and 
cannot be solved in general. Explicit solutions of these problems are always 
based on specific presentations and often make use of group diagrams. 
(Dehn himself was a particularly enthusiastic advocate of group diagrams.) 

Let A = <a, b, ... IR Jl , R" .. . ). We shall attempt to construct the Cayley 
diagram of A with respect to the generators a, b, . ... Having got the Cayley 
diagram, we clearly have a solution to the word problem for this presentation. 

The Cayley diagram has the following two properties. (a) The (directed) 
edges have a regular colouring with a, b, ... , that is for each vertex x and 
generator g there is exactly one edge coloured g starting at x and exactly 
one edge coloured g ending at x. (b) Every relation is satisfied at every 
vertex, that is if x is a vertex and Rv is a relator then the walk starting at x 
corresponding to Rv ends at x. How shall we go about finding the Cayley 
diagram? We try to satisfy (a) and (b) without ever identifying two vertices 
unless we are forced to do so. Thus at each stage we are free to take a new 
vertex and an edge into it (or from it). We identify two vertices when either 
(b) or (a) force us to do so. If the process stops, we have arrived at the Cayley 
diagram. Note that until the end we do not know that distinct vertices rep­
resent distinct group elements. 

As an example, let us see how we can find the Cayley diagram of A = 

<a, bla3 = b2 = (ab)2 = I). We replace each double edge corresponding to 
b by a single undirected edge; this makes the Cayley diagram into a graph. 
We start with the identity and with a triangle 123 corresponding to a3 = 1; 
for simplicity we use numbers 1,2, ... to denote the vertices, reserving 1 for 
the identity element. An edge coloured b must start at each of the vertices 
1, 2 and 3, giving vertices 4, 5 and 6. Now a3 = 1 must be satisfied at 6, 
giving another triangle, say 678, whose edges are coloured a, as in Figure 
VIII.2. At this stage we may care to bring in the relation (ab)2 = abab = 1. 
Checking itat 8, say, we see that the walk 86314 must end at 8, so the vertices 
so far denoted by 8 and 4 have to coincide. Next we check abab = 1 at 7: 
the walk 7(8 == 4)/125 must end at 7 so 5 and 7 are identical. All that remains 
to check is that the diagram we obtained satisfies (a) and (b), so it is the 
Cayley diagram of the group in question. In fact, the diagram is exactly the 
third picture in Figure VIII.1, so the group is S3. 

For p ;::: q ;::: r;::: 2 denote by (p, q, r) the group <a, b, claP = bq = cr = 
abc = I). Given specific values of p, q and r, with a little effort the reader 

--a 
I 

: -----b 
I 
I 
I 

~------2~------~, 
Figure VIII.2 .. Construction of a Cayley diagram. 
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--a 

---- b 
........ c 

a4 = b = cJ = abc = I 

Figure VIII.3. Some Cayley diagrams. The shaded regions correspond to abc = 1. 

can find the Cayley diagram of the group (p, q, r) with respect to the genera­
tors a, band c. Figure VIII.3 shows some of these diagrams. 

The diagrams above indicate some connection with tessellations. The 
beauty of the use of Cayley diagrams is that one can make good use of this 
connection. Indeed, the reader who is slightly familiar with tessellations of 
the sphere, the Euclidean plane and the hyperbolic plane, can easily prove 
the following result. 

Theorem 1. If (l/p) + (l/q) + (l/r) < 1 then the group (p, q, r) is finite and 
has order 2s where l/s = (l/p) + (l/q) + (l/r) - 1. The Cayley diagram is 
a tessellation of the sphere (as in the first two pictures in Figure VIII.3). 

If (l/p) + (l/q) + (1/r) ::;; 1 then the group (p, q, r) is infinite. If equality 
holds, the Cayley diagram is a tessellation of the Euclidean plane, otherwise 
it is a tessellation of the hyperbolic plane (as in the last two pictures in Figure 
VIIl.3). 

As we remarked earlier, groups given by means of their presentations 
arise frequently in knot theory. In particular, Dehn showed how a presenta­
tion of the group of a (tame) knot (that is the fundamental group of [R3 

after the removal of the knot) can be read off from a projection of the knot 
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Figure VIII.4. The trefoil and the figure of eight. 

into a plane. The projection of the knot forms .the boundary of certain 
bounded domains of the plane. To each of these domains there corresponds 
a generator (the identity corresponds to the unbounded domain) and to 
each cross-over there corresponds a relator. The general form of these 
relators is easily deduced from the two examples shown in Figure VIll.4. 
(Indeed, readers familiar with the fundamentals of algebraic topology can 
easily prove the correctness of this presentation.) The group of the trefoil 
(or clover leaf) knot is <a, b, e, d I ad - 1 b, cd - I a, ebr I) and the group of the 
figure of eight knot is <a, b, e, d, e I ab -Ie, ad-Ieb -1, ed- 1eb -1, aed- l ). 

Of course, before embarking on an investigation of the group, it is sensible 
to attempt to simplify the presentation. For example, ebd- 1 = 1 means that 
d = eb or br Ie = 1. Thus the group of the trefoil knot is 

<a,b,e,dlad- 1b,bd- Ie,ed- 1a) 

or, equivalently, 

<a, b, eleb = ba = ae). 

We invite the reader to check that the Cayley diagram of this group is made 
up of replicas of the ladder shown in Figure VIll.5. (Exercise 4). At each 
edge three ladders are glued together in such a way that when looking at 
these ladders from above, we see an infinite cubic tree (Figure VIIl.5). 

a 

b d 

d 
c 

d 
a 

b 

c d 

d 

Figure VIII.5. The ingn::dients of the Cayley diagram of the trefoil knot. 
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Having obtained the Cayley diagram, we can read off the properties we are 
interested in. In the case of this group the method does not happen to be 
too economical, but this is the way Dehn proved in 1910 that the group of 
the trefoil knot is not the group of a circle, which is infinite cyclic. 

Schreier diagrams can be constructed analogously to Cayley diagrams. 
In fact, in order to determine the structure of a largish group given in a 
presentation it is often more advantageous to determine first the Schreier 
diagram of a subgroup. In order to show this, we work through another 
example, once again due to Dehn. What is the group 

A = <a, bla2 = bS = (ba)3 = I)? 

Let us construct the Schreier diagram of the cosets of the subgroup B gene­
rated by b. As before, we take a vertex 1 for B and try to construct as big a 
diagram as conditions (a) and (b) allow us. (Recall that (a) requires the 
colouring to be regular and (b) requires that each defining relation is satisfied 
at each vertex.) However, in this case there is one more condition: the edge 
coloured b starting at 1 must end in 1 (so it is a loop) since Bb = B. Thus 
after two steps we have the diagram shown in Figure VIII.6. (Once again the 
edges coloured a will not be directed since a2 = 1.) 

/-~ 

r i 
\ , 
\ I 
\ I 
\,1 

--a 
---- b 

Figure VIII.6. The initial part of the Schreier diagram of A mod B. 

Now let us check the condition bababa = 1 at vertex 6. The walk babab 
takes us from 6 to 3, so there must be an edge coloured a from 3 to 6. In 
order to have edges coloured a starting at 4 and 5, we take up new vertices 
7 and 8, together with edges 47 and 58 coloured a. Next we check the con­
dition ab-1ab-1ab- 1 = 1, which is equivalent to (ba)3 = 1 at 7, and find 
that there is an edge from 7 to 8 coloured b. To satisfy bS = 1 at 7 we take 
three new vertices, 9, 10 and 11. Checking (ba)3 = 1 at 11 we find that there 
is an edge from 9 to 11 coloured a. At this stage we are almost home, but no 
edge coloured a begins at 10, so we take a new vertex 12 joined to 10 by an 
edge coloured a. What does the condition ab - 1 ab - 1 ab - 1 = 1 tell us at 
vertex 12? The walk ab-1ab-1a starting at 12 ends at 12, so there must be 
an edge coloured b starting at 12 and ending at 12, giving us Figure VIII.7. 
This is the Schreier diagram we have been looking for, since the colouring 
is clearly regular and it is a simple matter to check that each defining relation 
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\ _4:- 5 8 -~--6 9 

Figure VIII.7. The complete Schreier diagram. 

( , 
\ ~ 
\ I 
\ I , / 

• 
12 

--a 
---b 
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is satisfied at each vertex. In fact, a2 = 1 and b5 = 1 are obviously satisfied; 
since (ba)3 = 1 holds at 6 by construction, it also holds at each vertex of 
the walk 621236, etc. 

This detailed and cumbersome description fails to do justice to the 
method which, when performed on a piece of paper or on a blackboard, is 
quick and efficient. The reader is encouraged to find this out for himself. 

What the Schreier diagram certainly tells us is the index of B: it is simply 
the number of vertices. Indeed, Schreier diagrams are often constructed on 
computers just to determine the index of a subgroup. In some cases, as in 
the example above, it tells us considerably more. The Schreier diagram is 
essentially a shorthand for the representation of A as a group of permuta­
tions of the co sets of B. In this case a -+ (12)(36)(47)(58)(9 11)(10 12) and 
b -+ (1)(23456)(78910 11)(12). Since the permutation corresponding to b 
has order 5, which is exactly the order of b in A, we see that A is a group of 
order 5.12 = 60 and is, in fact, isomorphic to A 5 , the alternating group on 
5 symbols. 

If we want our Schreier diagram to carry more information, then we fix 
certain representatives of the cosets and keep track of the effect of the genera­
tors on these representatives. We decorate each coset by its representative: 
if H is decorated by [h] then H = Bh. Now if there is an edge coloured a 
from H = Bh to K = Bk, then we decorate this edge by [IX] if ha = ak. Since 
K = Bk = H a = Bha, we see that IX E B, so the edges are decorated with 
elements of B. Furthermore, if H, K and L are decorated with h, k and I, 
and there are edges coloured a, b, c and decorated [a], [P] and [y] joining 
them, as in Figure VIII.8, then habc = akbc = IXPlc = apyh. In particular, 

H[h] 

Figure VIII.S. 

K[k] 

\ 
\ 

\ 
\ 

\ 

a[lX] ~ b[P] 
\ 

\ 
\ 

\ 
\ 
\ 

..................................... :. L[I] 
cry] 

A cycle in a decorated Schreier diagram. 
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b[b] 3 
/-~ 

{ \ 

'. f 
\ 

B= 1~-+---< 

a[l] 

4 

Figure VIII.9. The decorations induced by a spanning tree. 

if h = 1 we have abc = af3y. Of course, an analogous assertion holds for 
arbitrary walks starting and ending at B: the product of the colours equals 
the product of the decorations. 

One of the simplest ways of decorating the vertices and edges makes use 
of spanning trees. Select a spanning tree of the Schreier diagram. Decorate 
B, the subgroup itself, by 1 (the identity) and decorate the edges of the 
spanning tree also by 1. This determines the decoration of every vertex (that 
is coset) and every edge. Indeed, for each vertex H the spanning tree contains 
a unique path from B to H; clearly H has to be decorated with the product 
abc . .. corresponding to this path. These coset representatives are said to 
form a Schreier system for B mod A. What is the decoration of a chord HK, 
an edge not in the tree? By the remark above it is the product of the colours 
on the B-H path, the edge HK and the K-B path, as in Figure VIII.9. 

Since each element of B is the product of the colours on a closed walk 
from B to B in the Schreier diagram, the decorations of the chords generate 
B. Thus from a Schreier diagram we can read off a set of generators of B, 
independently of the structure of A. 

Theorem 2. The subgroup B of A is generated by the decorations of the chords. 
o 

In particular, the subgroup B in Figure VIII.9 is generated by b, ab 3a-1, 
ab - 1 ab - 1 a-I and ababa - 1. 

It is equally simple to find a presentation of B, provided we have a presen­
tation of A. This is obtained by the Reidemeister-Schreier rewriting process; 
we give a quick and loose description of it. The generators of this presenta­
tion are the chords of the spanning tree; to distinguish chords of the same 
colour we write Ci for the edge coloured c starting at vertex i. For each vertex 
i and each relator RJl denote by R~ the (word of the) walk starting at i given 
by RJl expressed as a product of the cj ' say R~ = bic j .••• The reader can 
easily fill in the missing details in the proof of the following beautiful result, 
due to Reidemeister and Schreier. 

Theorem 3. The subgroup B has a presentation 

D 
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Now if we wish to preserve the connection between this presentation of 
B and the original presentation of A, we simply equate Ci with the decoration 
of the edge coloured c starting at vertex i. 

If A is a free group, its presentation contains no relations. Hence the 
above presentation of B contains no relations either, so B is also a free group. 
This is a fundamental result of Nielsen and Schreier. 

Theorem 4. A subgroup of afree group isfree. Furthermore, if A is afree group 
of rank k (that is it has k free generators) and B is a subgroup of index n then 
B has rank (k - l)n + 1. 

PROOF. The presentation of B given in Theorem 3 is a free presentation on the 
set of chords of the Schreier diagram. Altogether there are kn edges of which 
n - 1 are tree edges; hence there are (k - l)n + 1 chords. 

It is amusing to note that Theorem 3 implies that the rank of a free group 
is well defined. Indeed, suppose that A is freely generated by a, b, .... Then 
every directed multigraph with a distinguished vertex (corresponding to 
the subgroup) and a regular colouring (by a, b, ... ) is the Schreier diagram 
of some subgroup B of A, for threre are no relations to be satisfied. Hence 
subgroups of index n are in 1-1 correspondence with regularly coloured 
multigraphs of order n. In particular, if A has k 2 2 generators, it has 2k - 1 
subgroups of index 2, for there are 2k multigraphs of order 2 regularly 
coloured with k colours, but one of those is disconnected. The number of 
subgroups of index 2 is clearly independent of the presentation, so k is 
determined by A. 

§2 Applications of the Adjacency Matrix 

Recall from §3, Chapter II that the vertex space Co(G) of a graph G is the 
complex vector space of all functions from V(G) into C. Once again we take 
V(G) = {VI' V2"'" vn } so that dim Co(G) = n and write the elements of 
Co(G) in the form x = I?= 1 XiV i or x = (xJ~; here Xi is the value of x at Vi' 

also called the weight at Vi' The space Co(G) is given the natural inner product 
associated with the basis (Vi)~: (x, y) = L?= 1 XiYi' 

We shall concentrate on the adjacency matrix A = (aij) of G, the 0-1 
matrix where aij = 1 iff Vi V j is an edge. As usual, A is identified with a linear 
endomorphism of Co(G). To start with, we recollect some simple facts from 
linear algebra. The matrix A is real and symmetric, so it is hermitian, that is 
(Ax, y) = (x, Ay). Hence its numerical range 

V(A) = {(Ax, x): (x, x) = I} 

is a closed interval of the real line. The eigenvalues of A are real, say Al > 
..12 > ... > At> and V(A) isexactiy the interval [At> All (For simplicity an 
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eigenvalue of A is said to be an eigenvalue of G). We shall write Amax(G) for 
the maximal eigenvalue Al and AmiJG) for the minimal eigenvalue At. The 
inner product space Co(G) has got an orthonormal basis consisting of 
eigenvectors of A. In particular, if m(A) denotes the (geometric or algebraic) 
multiplicity of an eigenvalue A then L:l= I m(Ai) = n. These remarks enable 
us to deduce some basic properties of the eigenvalues. 

Theorem 5. Let G be a connected graph of order n with adjacency matrix A. 

(i) Every eigenvalue A of G satisfies I AI s ~ = ~(G). 

(ii) ~ is an eigenvalue of G iff G is regular; if ~ is an eigenvalue then m(M = 1. 
(iii) If - ~ is an eigenvalue of G then G is regular and bipartite. 
(iv) If G is bipartite and A is an eigenvalue of G then so is - A, and m(A) = 

m( -A). 
(v) b(G) s Amax(G) s ~(G). 

(vi) If H is a spanned subgraph of G then Amin(G) S Amin(H) S Amax(H) S 
AmaiG). 

PROOF. (i) Let x = (xJ be a non-zero eigenvector with eigenvalue A. Let xp 
be a weight with maximum modulus: I xp I :?: I Xi I for every i; we may assume 
without loss of generality that xp = 1. Then 

IAI = IAXpl = iltlaplxli s Jlapllxz! S IXpld(vp) s IXpl~ =~, (*) 

showing I AI s ~. 
(ii) If A = ~ is an eigenvalue and x, xp are chosen as in (i), then (*) im­

plies that d(vp) = ~ and XI = xp = 1 whenever VI is adjacent to vp. In turn 
this implies that d(vI) = ~ and Xk = XI = 1 whenever Vk is adjacent to VI' 
and so on; as G is connected d(vJ = ~ and Xi = 1 for every i. Hence G is 
~-regular and x is j, the vector all of whose entries are 1. 

Conversely, if G is ~-regular then (Aj)i = I7= I ail = ~ so Aj = ~j. 
(iii) If A = - ~ is an eigenvalue then, as in (ii) inequality (*) implies that 

d(vp) = ~ and XI = -xp = -1 whenever VI is adjacent to vp. As in (ii), 
this implies that G is ~-regular. Furthermore, at each vertex Vk adjacent to 
VI the weight is 1, at each neighbour of Vk it is -1, and so on. The weight is 1 
at the vertices at an even distance from vp and it is - 1 at the other vertices 
and every edge joins vertices of different weights. Thus G is bipartite, say 
V = VI U V2 , where xp E VI. 

(iv) Suppose G is bipartite with vertex classes VI and V2 • Let b be the 
function (vector) that is 1 on VI and - 1 on V2 • Then x ~ bx = (b i Xi)~ is 
an automorphism of the vector space Co(G). Now if Ax = AX and Vi E VI' 
say, then 

n 

(A(bx»i = L: aijbjxj = I aijXj - I aijXj = - L: aijXj 
j= 1 VjEV 1 VjEV2 VjEV2 

n 

- L: aijX j - L: aijXj = - I aijXj = - AXi = -A(bx);. 
VjEV t VjEV2 j= 1 
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Hence b gives an isomorphism between ker(A - A) and ker(A + A), showing 
m(A) = m( - A). 

(v) We know already that Amax(G) ::::; ~(G). Note that for j = (1, 1, ... , 1) 
we have <j, j) = n so 

Hence Amax(G) = max V(A) ~ J(G). 
(vi) It suffices to prove the result for a spanned subgraph H of order 

n - 1, say V(H) = {Vi> V2 ,··., vn-d. 
Let A' be the adjacency matrix of H. Then there is a vector y E Co(H) 

such that <y, y) = 1 and <A'y, y) = Amax(H). Let x = (Yl, Y2' ... , Yn-l' 0). 
Then x E Co(G), <x, x) = 1 and <Ax, x) = <A'y, y) = AmaiH) E V(A). Con­
sequently Amax(G) ~ Amax(H). The other inequality is proved analogously. 

o 

It is reasonable to expect that a graph with many automorphisms will 
have particularly pleasing properties and that these will be reflected in the 
adjacency matrix. The automorphism group of a graph G is the group, Aut G, 
of permutations of the vertices preserving adjacency. Every abstract group 
can be represented as the automorphism group of some graph. For instance, 
if F is any finite group, consider its Cayley diagram with respect to some 
set of generators. The automorphism group of this coloured and directed 
mu[tigraph is exactly F. It only remains to replace each edge of this diagram 
by a suitable subgraph which bears the information previously given by the 
direction and colour. This produces a graph G with automorphism group 
isomorphic to F. An example is shown in Figure VUllO. 

Each n E Aut G induces an endomorphism of Co(G) which is described 
by a permutation matrix P. In fact, an arbitrary permutation matrix Q 
corresponds to an automorphism of G precisely when it commutes with the 

Figure VULlO. A graph with automorphism group S3' constructed from the Cayley 
diagram in Figure VIII. I. 
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adjacency matrix A, that is AQ = QA. The group of these matrices therefore 
faithfully represents Aut G. Regarding A as an endomorphism of Co(G), 
we find that the eigenspaces of A are invariant under P. In particular, if an 
eigenvalue of A is simple (that is it has multiplicity 1) then P must map an 
eigenvector to a multiple of itself. Thus if all eigenvalues are simple, we must 
have p 2 = I. This is a strong restriction on those permutations which might 
correspond to automorphisms of G. For example, if G has at least 3 vertices 
and every eigenvalue is simple, then Aut G cannot be vertex-transitive, so 
not every pair of vertices can be interchanged by an automorphism. 

these remarks indicate how the methods of representation theory may 
be used to deduce restrictions on the adjacency matrix of graphs which have 
extensive automorphism groups. The lack of space prevents us from ex­
ploring this further. Instead, we shall use algebraic methods to study graphs 
which are highly regular although this regularity is not expressed in terms 
of the automorphism group. 

Algebraic methods are particularly useful if we want to prove that certain 
regularity conditions cannot be satisfied except perhaps for a small set of 
parameters. A problem of this type arose in Chapter IV: for which values 
of k is there a k-regular graph of order n = k2 + 1 and girth 5? We shall 
show later that if there is such a graph then k is 2, 3, 7 or 57. Group theory is 
particularly rich in problems of this type, especially because of the search 
for sporadic simple groups. Later on we shall mention some examples. 

Regularity, that is the condition that all vertices have the same degree k, 
is not sufficiently restrictive. There are too many k-regular graphs of order 
n (provided k < nand kn is even) so we have to go considerably further to 
find interesting classes. Call a connected graph G highly regular with col­
lapsed adjacency matrix C = (Ci) if for every vertex x E V = V(G) there is a 
partition of V into sets V1 = {x}, V2 , .•• , Vp such that each vertex yE J.'j is 
adjacent to exactly cij vertices in ~ (see Figure VIII.11). It is immediate 
from the definition that G is regular, say every vertex has degree k. In this 
case each column sum in the collapsed matrix is k. The collapsed matrix C 

(0 1 0) 
2 ° I ° 1 1 

2 
:®: 

3 

(~ ~ ~ ~) 

1 

2*2 3 3 

3 3 

3 3 

(0 1 0) 
3 ° 1 
022 

Figure VIlLI I. The pentagon, the cube and the Petersen graph together with collapsed 
adjacency matrices. 
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can be obtained from the adjacency matrix A as follows: 

cij = Last, where Vt E lj. 
VsEVi 

The point is exactly that the above sum is independent of the representative 
Vt of Jt;. We are especially interested in the collapsed adjacency matrix C 
if it is of a much smaller size than A. 

Consider a partition VI = {v d, Vz , ... ,~ belonging to the vertex 
x = VI' Let P be the p-dimensional complex vector space of formal sums 
Lf= I Zi Jt;, Zi E C, and let n: Co(G) -+ P be the linear map given by 

Of course, C can be considered to map P into itself. 

Theorem 6. 

(i) nA = Cn, that is n(Ax) = C(nx) for every x E Co(G). 
(ii) The adjacency matrix A and the collapsed adjacency matrix C have the 

same minimal polynomial. In particular, A is an eigenvalue of A iff it is a 
root of the characteristic polynomial of C. 

PROOF. (i) Let us show that n(Avt) = C(nvt), where Vt is the basis vector 
corresponding to an arbitrary vertex Vt E lj. To do this it suffices to check 
that the ith coordinates of the two sides are equal. Clearly nVt = lj so 

(n(Avt))i = Last 
VsEVi 

and 

and these are equal by definition. 
(ii) Let q be the minimal polynomial of C. In order to prove q(A) = 0, 

by symmetry it suffices to check that (q(A)x) I = 0 for every x. This is indeed 
so: 

(q(A)x) I = (n(q(A)x))1 = (q(C)(nx))1 = (0)1 = o. 
Conversely, the minimal polynomial of A annihilates C since nCo(G) = P. 

D 

This result enables us to restrict rather severely the matrices C that may 
arise as collapsed adjacency matrices. 

Theorem 7. Let G be a connected non-bipartite highly regular graph of order 
n with collapsed adjacency matrix C. Let AI> ..1.2 , .•. , A, be the roots of the 
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characteristic polynomial of C different from k, the degree of the vertices of 
G. Then there are natural numbers m 1 , mz , ... , mr such that 

and 

r 

Lmi=n-l 
i= 1 

I: m;A'i = - k. 
i= 1 

PROOF. We know from Theorem 5 that ..1. 1 , A.z , ... ,A.r are the eigenvalues of 
A in addition to k, which has multiplicity 1. Thus if m(A.;) is the multiplicity 
of A.i then 

r 

1 + I: m(A.;) = n, 
i= 1 

since Co(G) has an orthonormal basis consisting of eigenvectors of A. 
Furthermore, since the trace of A is 0 and a change of basis does not alter 
the trace, 

r 

tr A = k + I: m(A.i)A.i = O. o 
i= 1 

The condition expressed in Theorem 7 is not easily satisfied, especially 
if ..1. 1 , A.z , ... , A.r are not rational numbers, so it does rule out the possibility 
of constructing many highly regular graphs with seemingly feasible param­
eters. For the so-called strongly regular graphs we shall rewrite the condition 
in a more attractive form. A graph G is said to be strongly regular with 
parameters (k, a, b) if it is k-regular, any two adjacent vertices have exactly 
a common neighbours and any two non-adjacent vertices have b ~ 1 
common neighbours. In other words, G is highly regular with collapsed 
adjacency matrix 

(
0 

C = k a 

o k-a-l 

o ) b . 
k-b 

Theorem 8. If there is a strongly regular graph of order n with parameters 
(k, a, b) then 

1 { (n - l)(b - a) - 2k } 
mj, mz ="2 n - 1 ± {(a _ b)Z + 4(k _ b)}l/Z 

are natural numbers. 

PROOF. The characteristic polynomial of the collapsed adjacency matrix 
Cis 

x 3 + (b - a - k)x Z + «a - b)k + b - k)x + k(k - b). 
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On dividing by x - k, we find that the roots different from k are 

A1, A2 = Ha - b ± {(a - b)2 + 4(k - b)}1/2}. 

By theorem 7 there are natural numbers m1 and m2 satisfying 

m1 + m2 = n - 1 
and 

m1A1 + m2 A2 = -k. 
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Solving these for m1 and m2 we arrive at the assertion of the theorem. 0 

Theorem 8 is sometimes called the rationality condition for strongly 
regular graphs. It is also easily proved without invoking Theorem 7. Indeed, 
if A is the adjacency matrix of a strongly regular graph with parameter 
(n, k, a, b), then 

Hence 

{
kif i = j, 

(A2);j = a ifv;vjEE(G), 
b otherwise 

A 2 = kI + aA + b(J - I - A), 

where J is the matrix all whose entries are 1. Therefore J is a quadratic 
polynomial in A, so J and A are simultaneously diagonalizable. Noting 
that J has only two eigenvalues: n, with multiplicity 1, and 0, with multi­
plicity n - 1, one can easily find that Al and A2 are as above (cf. Exercise 28). 

Now we shall use the rationality condition to fulfil our promise con­
cerning Moore graphs of diameter 2 (or girth 5). 

Theorem 9. Suppose there is a k-regular graph G of order n = k 2 + 1 and 
diameter 2. Then k = 2, 3, 7 or 57. 

PROOF. We know from Theorem 1 of Chapter IV that G is strongly regular 
with parameters (k,O, 1). By the rationality condition at least one of the 
following two conditions has to hold: 

(i) (n - 1) - 2k = k 2 - 2k = 0 and n - 1 = k 2 is even, 
(ii) 1 + 4(k - 1) = 4k - 3 is a square, say 4k - 3 = S2. 

Now if (i) holds then k = 2. 
If (ii) holds then k = ¥S2 + 3); on putting this into the expression for 

the mUltiplicity m1 we find that 

_ ~ {~( 2 3)2 [(S2 + 3)2/16J - [(S2 + 3)/2J} 
m1 - 2 16 s + + s ' 

that is 
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Hence s divides 15 so s is one of the values 1, 3, 5 and 15, giving k = 1, 3, 7 
or 57. The case k = 1 is clearly unrealizable. 0 

It is worth noting that for k = 2, 3 and 7 there are unique k-regular 
graphs of order k 2 + 1 and diameter 2 (and so girth 5). In particular for 
k = 2 it is a pentagon and for k = 3 it is the Petersen graph. However, it is 
not known whether or not k = 57 can be realized. 

Sporadic simple groups are those simple groups which do not belong to 
one of the infinite sequences consisting of cyclic groups of prime order, 
alternating groups of degree at least 5 and simple groups of Lie type. As 
we remarked earlier, sporadic simple groups are often connected to strongly 
regular graphs. For example, there is a strongly regular graph with param­
eters (162, 105, 81) and the Maclaughlin group of order 898 128000 is a 
subgroup of index 2 of the automorphism group of this graph. Similarly, 
there is a strongly regular graph with parameters (416, 100,96) and the 
Suzuki group, which is a simple group of order 448 345 497 600, is a sub­
group of index 2 of the automorphism group of this graph. 

§3 Enumeration and P61ya's Theorem 

We cannot end the book without considering perhaps the most basic ques­
tion about graphs, namely, how many of them are there? We may want to 
count graphs with a given set of vertices or we may be interested in the 
number of isomorphism classes of certain graphs. As we saw in Chapter VII, 
counting labelled graphs is relatively easy, for instance there are 2m = 2N 
labelled graphs on n vertices, of which (~) have m edges. Furthermore, by 
applying Theorem 8 of Chapter II to the complete graph, one can easily 
show that there are nn-2 labelled trees of order n. This result was first ob­
tained by Cayley; we present it here with a proof due to PrOfer, which is 
independent of Theorem 8 of Chapter II. 

Theorem 10. There are nn - 2 trees on n labelled vertices. 

PROOF. As in Chapter VII, let V = {l, 2, ... , n} be the set of vertices. Given 
a tree T, associate a code with T as follows. Remove the end vertex with the 
smallest label and write down the label of the adjacent vertex. Repeat the 
process until only two vertices remain. The code obtained is a sequence of 
length n - 2 consisting of some numbers from 1, 2, ... , n; of course any 
number may occur several times in the code (see Figure VIII.12). As the 
reader should check, each of the nn- 2 possible codes corresponds to a unique 
tree. 0 
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6 
7 

9 

5 

10 4 

Figure VIII.l2. The Priifer code of this tree is (3, 8, 11,8, 5, 8, 3, 5, 3). 

It is easily seen that the label of a vertex of degree d occurs exactly d - 1 
times in the Priifer code of the tree. Thus the proof has the following con­
sequence. 

Corollary 11. Let d1 S dz S ... S dn be the degree sequence of a tree: d1 ~ 1 
and I?= 1 d; = 2n - 2. Then the number of labelled trees of order n with 
degree sequence (d;)~ is given by the multinomial coefficient 

( n - 2 ) 
d 1 - 1, dz - 1, ... , dn - 1 . 

o 

The difficulties we encounter change entirely if we wish to count certain 
graphs within isomorphism. Given graphs G1 and Gz with a common 
vertex set V, when are they isomorphic? They are isomorphic if there is a 
permutation 1[ of V which maps G1 onto Gz . Of course, strictly speaking 1[ 

does not act on graphs, it only induces a permutation a of X = VIZ), the 
pairs of vertices, and it is a that maps an edge of G 1 into an edge of G z and a 
non-edge of G1 into a non-edge of Gz. Now G; is naturally identified with a 
subset of X or, equivalently, with a function/;: X ~ {O, I}. Therefore G1 is 
isomorphic to Gz iff there is a permutation a of X = VIZ) (coming from a 
permutation 1[ of V) such that a*fl = fz, where a* is the permutation of the 
set of functions {O, I}X induced by a. Thus counting graphs within iso­
morphism is a special case of the following problem. Given sets X and Y, 
and a group r acting on X, let r act on the set offunctions yX in the natural 
way. How many orbits are there in yX? The main aim of this section is to 
present a beautiful theorem of P61ya that answers this question. 

Let r be a group of permutations acting on a (finite) set X. For x, y E X 
put X ~ Y iff y = ax for some a E r. Then '" is an equivalence relation on 
X; if x '" y we say that x is equivalent to y under r. The equivalence class of 
x is called the r-orbit (or simply orbit) of x, and is denoted by [x]. For 
x, yE X put 

r(x, y) = {a E r: ax = y}. 

Of course, r(x, y) is non-empty iff [x] = [y], that is x and y belong to the 
same orbit. r(x) = r(x, x) is the stabiliser of x; it is a subgroup of r. Note 
that if y = f3x then 

r(x, y) = {a: ax = y} = {a: ax = f3x} = {IX: p-la E r(x)} = f3r(x), 
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so r(x, y) is a coset of r(x). We see that I r(x)1 depends on the equivalence 
class of x, so we may put s([x]) = jr(x)l. Clearly 

r = U r(x, y), YE[X] 
and this gives us 

Irj = I [x] I jr(x) I = I [x] Is([x]). 

The theorem mentioned in the title of this section is based on a version 
of a lemma due to Burnside concerning the sum of the" weights" of orbits. 
Let 0 1, ••• ,0, be the r-orbits, let A be an arbitrary Abelian group (written 
additively) and let w: X ~ A be a function that is constant on orbits. We 
call w a weight function and define the weight of 0i by w(O;) = w(x), X E 0i. 
For a permutation a E r we denote by F(a) the set of elements fixed by a, 
that is F(a) = {x E X: ax = x}. Thus x E F(a) iff a E r(x). 

Lemma 12. I rj Ll= 1 W(Oi) = LaEr LXEF(a) W(X). 

PROOF. 

, 
L L W(X) = L L W(X) = L L L W(X) 

aEr xEF(a) i= 1 XEDi aEr(x) , , , 
= L W( 0 i) L L 1 = L W( 0 i) I 0;1 s( 0;) = jr I L W( 0;). 

i= 1 XEDi aEr(x) i= 1 i= 1 

D 

The original form of Burnside's lemma is obtained on choosing A = 7L 
and W == 1: 

1 1 
N(r) = -Irl L L 1 = -Irl L IF(a)l, 

aEr xEF(a) aEr 

where N(r) = I is the number of or bits. 
We shall illustrate by two very simple examples, that even Burnside's 

lemma can be used to calculate the number of equivalence classes of certain 
objects. 

EXAMPLE 1. Let X = {l, 2,3, 4} and r = {l, (12), (34), (l2)(34)}. What is 
N(r)? Clearly F(1) = {I, 2, 3, 4}, F«(12» = {3, 4}, F«34» = {I, 2} and 
F«(12)(34» = 0. Thus N(r) = i{4 + 2 + 2 + O} = 2. 

EXAMPLE 2. Consider all bracelets made up of 5 beads. The beads can be red, 
blue and green, and two bracelets are considered to be identical if one can 
be obtained from the other by rotation. (Reflections are not allowed!) How 
many distinct bracelets are there? 
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In this case we choose X to be the set of all 35 = 243 bracelets and let r 
be Cs, the cyclic group of order 5, acting on X. Then the question is: how 
many orbits does r have? For the identity 1 E r clearly F(1) = X. For 
every non-trivial rotation rx E r only the 3 monochromatic bracelets are 
invariant under rx, so N(r) = !{243 + 3 + 3 + 3 + 3} = 51. 

The second example resembles a little the problem we really want to 
tackle. Let r be a group of permutations of a (finite) set D. Let R be another 
(finite) set and let us consider the set RD of all functions from D into R. Each 
rx E r can be made to act on RD; namely define rx*: RD --+ RD by 

(rx*f)(d) = f(rxd), 

Then 

r* = {rx*: rxE r} 

is a group of permutations of RD; as an abstract group, it is isomorphic to 
r and we distinguish it from r only to emphasize that it acts on RD while 
r acts on D. 

As customary in connection with P6lya's theorem, we adopt an intuitive 
terminology. D is called the domain and its elements are places, R is the 
range and its elements are figures, the functions in RD are called configura­
tions, finally a pattern is an equivalence class of configurations under r*, 
that is a r*-orbit. Our main aim is to calculate the number of distinct pat­
terns. 

The origin of this terminology is that a functionf E RD is an arrangement 
of some figures into the places in such a way that for each place there is 
exactly one figure in that place, but each figure can be put into as many 
places as we like. Two configurations mapped into each other by an element 
of r* have the same pattern and are not distinguished. Thus in the second 
example the places are, say, 1, 2, 3, 4 and 5, the figures are r, band g (for red, 
blue and green) and a configuration is a sequence of the type g, b, b, r, b, that 
is a bracelet. The group r is generated by (12345) and distinct patterns 
correspond to distinguishable bracelets. 

In addition to counting the number of distinct patterns, we may wish to 
count the number of patterns of a certain type. It turns out that all these 
problems can be solved at once, provided we learn enough about the cycle 
structure of permutations in r acting on D, and are willing to store much 
information about the patterns. 

Each element rx E r is an essentially unique product of disjoint cycles 
(cyclic permutations) acting on D. If rx = ~1 ~2 ..• ~m is such a product, we 
say that ~ 1, ... , ~m are the cycles of rx. In the product we include cycles of 
length 1 as well so that every rx E D appears in exactly one cycle; if I ~ I denotes 
the number of elements in ~ then Lk'= 1 I ~k I = d, where d = I D I is the number 
of elements in D. Denote by Nrx) the number of cycles of rx having length k; 
by the previous equality Lk'= 1 kNrx) = d. Note that I F(rx) I, appearing in 
Burnside's lemma, is exactly jl(rx), the number of elements of D fixed by rx. 
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We define the cycle sum of r to be 
d 

Z(r; al"'" ad) = L TI alk(a\ 
aErk=1 

where, as before d = I D I. The reader should bear in mind that Z depends on 
the action of r on D, not only on the abstract group r. Note also that the 
cycle sum is a polynomial in a l , a2' ... , ad with integer coefficients; it tells 
us the distribution of cycles in the elements of r. When writing down a cycle 
sum, it is useful to remember that L~= 1 kM(1.) = d for every (1.. The customary 
cycle index of r is Z(r; a l , ... , ad) = (1/WDz(r; a l , ... , ad)' As we shall 
consider general rings instead of the more usual polynomial ring with ra­
tional coefficients, we have to use the cycle sum since we. cannot divide 
by WI. 

Let A be an arbitrary commutative ring and let w: R -+ A be a function. 
We call w(r) the weight of the figure r, and for k = 1,2, ... define the kth 
figure sum as 

Furthermore, the weight of a configurationf E RD is 

w(f) = TI w(f(a)). 
aED 

Clearly any two configurations equivalent under r* have the same weight, 
so we may define the weight of a pattern 0i by 

w( 0;) = w(f), 

Our aim is to learn about the pattern sum 

1 

S = L w(O;), 
i= I 

where 0 1 , O2 , ••• ,01 are the r*-orbits, that is the distinct patterns. 
Note that w(r), w(f), Sk and S are all elements of our commutative ring 

A. If we have a way of determining the pattern sum S, it is up to us to choose 
A and the weight function w: R -+ A in such a way that S can be "decoded" 
to tell us all we want to know about various sets of patterns. In practice one 
always chooses A to be a polynomial ring (Z[x], Q[x, y], etc.), and usually 
w(r) is a monic polynomial; the information we look for is then given by 
certain coefficients of the polynomial S. We shall give several examples 
after the proof of our main result, P6lya's enumeration theorem. 

Theorem 13. (P6Iya's enumeration theorem) 

InS = z(r; SI' S2' '" ,Sd)' 
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PROOF. By Lemma 12 

I 

IriS = WI I w(OJ = L L w(f). 
;= 1 aEl JEF(a*) 

Now clearly 
F(rx*) = {fERD:f is constant on cycles of rx}, so if ~1' ~2"'" ~m are 

the cycles of rx and a E ~; means that a is an element of the cycle ~; then 

F(rx*)={fERD:r;ER and f(a)=r; if aE~;,i=1,2, ... ,m}. 

Hence 

m d ( )jk(a) d I w(f) = I TI w(rJI~;I = TI I w(r)k = TI sida ), 
JEF(a*) (ri)cR ;= 1 k= 1 rER k= 1 

giving 

d 

InS = L TI slk(a) = z(r; SI' S2"'" Sd)' o 
aE 1 k = 1 

If I r I has an inverse in the ring A, say if A is a polynomial ring over the 
rationals, then Theorem 13 can also be written in its more usual form: 

Let us illustrate now how the theorem can be applied. 

EXAMPLE 3. Let us consider again the bracelets made up of five beads, which 
can be red, blue and green. Then D = {1, 2, 3, 4, 5} is the set of places of the 
beads, R = {r, b, g} is the set of colours (figures) and r is Cs , the cyclic 
group of order 5 generated by the permutation (12345). The cycle sum is 
Z = a~ + 4as . On choosing A = 7L and w(r) = w(b) = w(g) = 1, we find 
that Sk = 3 for every k, so 5S = 3s + 4.3. Since each pattern (bracelet) has 
weight 1, there are !{3s + 12} = 51 distinct patterns (bracelets). 

On choosing A = 7L[x, y] and w(r) = 1, w(b) = x, w(g) = y, we find that 
S = !{(l + x + y)S + 4(1 + X S + yS)}. Now it is easy to extract much 
information from this form of S. For example, a bracelet has weight xy2 iff 
it has 2 red, 1 blue and 2 green beads. Thus the number of such bracelets is 
the coefficient of xy2 in the polynomial S, that is 0/5)(5 !/2!2!) = 6. 

EXAMPLE 4. What happens if in the previous example we allow reflections? 
Then r is the dihedral group D s' the group of symmetries of the regular 
pentagon, whose cycle sum is a~ + 4as + 5a l a~. Thus if we take, as before, 
A = 7L[x, y], w(r) = 1, w(b) = x and w(g) = y, we find that the number of 
bracelets containing 2 red, 1 blue and 2 green beads is the coefficient of xy2 in 
lo{(l + x + y)S + 40 + X S + yS) + 5(1 + x + y)(1 + x2 + y2)2}, that 
is,3 + 1 = 4. . 
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EXAMPLE 5. This is the example P6lya used to illustrate his theorem. Place 
3 red, 2 blue and 1 yellow balls in the 6 vertices of an octahedron. In how 
many distinct ways can this be done? The group of symmetries of the octa­
hedron has cycle sum a~ + 6ai a4 + 3ai a~ + 6a~ + 8a~: a~ comes from 
the identity, 6ai a4 from rotations through rc about axes through the vertices, 
6a~ from rotations through rc about axes through midpoints of edges, and, 
finally, a~ is the summand corresponding to a rotation through 2rc/3 about 
an axis going through the centre of a face. On taking A = Z[x, y], w(r) = 1, 
w(b) = x and w(y) = y, we see that the required number is the coefficient of 
x 2y in 

l4{(1 + x + y)6 + 6(1 + x + y)2(1 + X4 + y4) 

+ 3(1 + x + y)2(1 + x 2 + y2)2 + 6(1 + x 2 + y2)3 + 8(1 + x 3 + y3)2}, 

that is, 3. 
It should be clear by now that the theorem loses nothing from its general­

ity if instead of a general commutative ring A we take Z[x,: r E R], the poly­
nomial ring over the integers in variables with the elements of R, and we 
define the weight function as w(r) = x,. Then the pattern sum S contains all 
the information the theorem can ever give us. In particular, if w: R ~ A is 
an arbitrary weight function then the corresponding pattern sum is obtained 
by replacing x, by w(r) in S. However, if R is large, the calculations may get 
out of hand if we do not choose a "smaller" ring than Z[x,: r E R], which is 
tailor-made for the problem at hand. The choice of a smaller ring is, of 
course, equivalent to a substitution into S. 

EXAMPLE 6. Place red, blue, green and yellow balls into the vertices of an 
octahedron. Denote by Pi the set of patterns in which the total number of 
red and blue balls is congruent to i modulo 4. What is 1 Pol - 1 P 21 ? 

The cycle sum of the rotation group of the octahedron was calculated in 
Exercise 5 and was found to be a~ + 6ai a4 + 3ai a~ + 6a~ + 8a~. 

Let A = C, the field of complex numbers, and put w(r) = w(b) = i, 
w(g) = w(y) = 1. Then for a pattern/we have Re w(f)= 1 iffEPo, Re w(f)= 
- 1 if / E P 2 and Re w(f) = 0 if / E PI U P 3· Thus IF 01 - jP 21 is exactly 
the real part of the pattern sum. As s 1 = 2(1 + i), s 2 = 0, S 3 = 2(1 - i) and 
S4 = 4, we see immediately that after substitution the real part of each term 
is 0, so IF 0 1 = 1 P 2 I· 

We were first led to our study of the orbits of a permutation group by 
our desire to count the number of graphs within isomorphism. We realized 
that this amounted to counting the orbits of the group r: acting on {O, 1}x, 
where X = V(2) and rn is the permutation group acting on X which is in­
duced by the symmetric group acting on V. So according to P6lya's theorem 
our problem is solved when we know the cycle sum of the permutation group 
rn. It is now a routine matter to write down an explicit expression for this 
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cycle sum, though we don't display it here since its form is not very in­
spiring. Furthermore, except for small values of n it is too unwieldy for 
practical calculations and it is much easier to use asymptotic formulae 
derived by random graph techniques (see Exercises 22 and 23 of Chapter 
VII). 

We remark finally that an extension of P6lya's theorem covers the case 
when there is also a group acting on the range of the functions. For instance, 
if we let S2 act on {a, I} in the example above, we do not distinguish between 
a graph and its complement, and may thereby compute the number of graphs 
which are isomorphic to their complements. 

EXERCISES 

1. Draw the Cayley diagram of the quaternion group <a, b la2 = b2 = (ab)2). 

2. Findtheordersof<a,bla3 = b3 = 1,ab = ba),<a,bla4 = b3 = 1,ab = ba)and 
<a, bla3 = b4 = (aW = 1). 

3. Use Euler's formula and information about the Cayley diagram to deduce that 
in the group <a, b, cla 5 = b3 = c2 = (abc)-') we have a610 = 1. 

4. Verify that the Cayley diagram associated with the trefoil knot is the diagram 
described in Figure VIII.5. 

5. Write down presentations of the knots shown in Figure VIII.13. Show that the 
group of the quinquefoil is isomorphic to < J, 9 I f5 = g2) and the group of the 
tweeny is <a, b I ababa-'b-'a-' babab-'a-'b -'). 

Figure VIII.13. The quinquefoil and the tweeny. 

6. Prove that no two of the groups of the knots shown in Figures VIllA and VIII. 13 
are isomorphic. 

7. A closed orientable surface of genus 2 is obtained by identifying pairs of non­
adjacent sides of an octagon, say as in Figure VIII.14. The fundamental group 
has a presentation <a" a2, a3, a41 a,az'a4ai'a3a2a4'a3'). Show that the Cayley 
diagram is a tessellation of the hyperbolic plane. Deduce that any non-empty 
reduced word W equal to 1 must contain a subword of length at least 5 which is 
part of the cyclically written relator or its inverse. (A reduced word is one in which 
no generator occurs next to its inverse.) [Hint. Consider the part of the walk W 
furthest from 1.] 
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Figure VIII.14. An orientable surface of genus 2. 

8. Show that the dihedral group Dn, the group of symmetries of a regular n-gon, 
has a presentation of the form (a, blan = b2 = (ab)2 = 1). What is its Cayley 
diagram? 

9. Give a group whose Cayley diagram is the truncated cube having 8 triangular and 
(i octagonal faces. 

10. Draw the Cayley diagram of (i) (a, blab = ba) in the Euclidean plane, (ii) 
(a, b Ibn, ab = ba) on an infinite cylinder, (iii) (a, b I am = bn = 1, ab = ba) on a 
torus, (iv) (a, b, c I a4 = b4 = c4 = abc = 1) in the hyperbolic plane. 

11. Check the examples of Cayley diagrams illustrated in Figure VIII.3 and prove 
Theorem 1. 

12:- Let A = (a, bla3 = b4 = (ba)2 = 1) and B = (b). What is the Schreier diagram 
of A mod B? 

13.- A group A is generated by a, band c, the Schreier diagram of A modulo a subgroup 
B is shown in Figure VIII.15. Read off a set of generators of B. 

B 

~/// ............... ~ 

--a 
---b 
......... c 

Figure VIII. 15. The Schreier diagram of A mod B. 

14. Let A be the free group on a, band c, and let B be the subgroup consisting of all 
squares. What is the Schreier diagram of A mod B? Find a set of free generators 
for B. 

15. How many subgroups of index 2 are there in a free group of rank k? 

16. How many subgroups of index n are there in a free group on 2 generators? 
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17. Show that a subgroup B of a finitely generated free group F is of finite index in F 
iff B is finitely generated and there is a natural number n for which W" E B for 
every word W 

18. What is the automorphism group of the Petersen graph (shown in Figure VIII.ll)? 
Find the automorphism group of the Kneser graph Krl, where s ;::: 2r + 1 (see 
p. 99. Deduce that the automorphism group of K~;+ I is 3-arc-transitive, that 
is any path of length 3 can be mapped into any other path of length 3 by an auto­
morphism. 

19. The Tutte 8-cage has vertices n l , n3, n5 for n = 1,2, ... , 10, with edges joining 
n5 to nl and n3, and ni to mi iff In - ml == ±i (mod 10). Show that the auto­
morphism group of the Tutte 8-cage is 5-arc-transitive. 

20. Find the automorphism group of the Grotzsch graph (see p. 99). 

21. Does every tree have an Abelian automorphism group? 

22. Construct a non-trivial tree with trivial automorphism group. 

23. Let fen) be the minimal size of a graph of order with trivial automorphism group. 
Prove that fen) < n for every n ;::: 7 and f(n)/n -> 1 as n -> 00. 

24. Show that if 11 E Aut G has k odd cycles and 1 even cycles then G has at most 
k + 21 simple eigenvalues. 

25. Show that a connected graph G of odd order whose automorphism group is 
vertex transitive has exactly one simple eigenvalue. 

26.- Let A be the adjacency matrix of a graph G. Show that (A1)ij is the number of 
Vi-Vj walks of length I. 

27. Given k ;::: 2, Po (x), PI (x), ... be polynomials defined by Po(x) = 1, PI (x) = x, 
pz(x) = X Z - k and 

I ;::: 3. 

Show that if A is the adjacency matrix of a k-regular graph then (Pl(A»ij is the 
number of Vi-Vj paths of length I. 

28. Complete the details of the second proof of Theorem 8, as suggested on p. 161. 

29. Prove that the matrix J (all of whose entries are 1) is a polynomial in the adjacency 
matrix A iff G is regular and connected. 

30. Combine Theorem 5(vi) and Theorem 1 of Chapter V to deduce that X(G) ::; 
Am.x( G) + 1. 

31. Let fG(x) = D~o CkX"-k be the characteristic polynomial of (the adjacency 
matrix of) a graph G. Show that Co = 1, CI = 0, C2 = -e(G) and -C3 is twice 
the number of triangles in G. 

32. Let k(x) be the characteristic polynomial of G. Show that if e = xy is a bridge 
of G then 
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Now let F be a forest with 2n vertices and denote by dk the number of k-element 
sets of independent edges. [Thus d; is the number of I-factors.] Prove that 

What are the possible values for dn ? 

33. Let G be a connected k-regular graph containing an odd cycle. At time 0 put a 
counter on a vertex. For each counter that is on a vertex x at time t, place a counter 
on every vertex adjacent to x at time t + 1 and remove the counters from t. Show 
that n,(x)lk' tends to a limit as t -> 00, where nlx) is the number of counters on 
x at time t. What is the corresponding assertion if the counters are not removed 
from the vertices? [Hint. There is an orthonormal basis consisting of the eigen­
vectors of the adjacency matrix.] 

34. A k-regular graph G of order n is such that any two non-adjacent vertices can be 
mapped into any other such two by some automorphism of G. Show that G is 
strongly regular. What are the eigenvalues of G? What is the condition that k 
and n have to satisfy? 

35. Let C be the collapsed adjacency matrix of a highly regular graph. Show that 
(cl ) 11 is the number of walks of length I from a vertex to itself. Interpret the other 
entries of Cl • 

36. Why must the collapsed adjacency matrix of the Petersen graph, as shown in 
Figure 11, have rational eigenvalues? 

37. In the graph G every two adjacent vertices have exactly one common neighbour 
and every two non-adjacent vertices have exactly two common neighbours. 
Show that G is regular of degree k and has order 2k2 + 1, for some k in 
{I, 2, 7,11,56, 497}. 

38. Let G be a strongly regular graph of order 100 with parameters (k, 0, b). What are 
the possible values of k? Find the eigenvalues when k = 22. 

39. Make use of the result of Exercise 19 to calculate the eigenvalues of the Tutte 
8-cage. 

40. Give detailed proofs of Theorem 10 and Corollary 11. 

41. Prove that the number of trees with n - 1 ~ 2 labelled edges is nn - 3. 

42. Show that a given vertex has degree 1 in about lie of all labelled trees, where 
e = 2.71828 .... (Cf. Exercise 7 in Chapter VII.) 

43. Denote by R(n, k) the number of trees with n distinguishable vertices of which 
exactly k have degree 1. Prove that 

k 
- R(n, k) = (n - k)R(n - 1, k - 1) + kR(n - 1, k). 
n 

44. Prove that there are 
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acyclic graphs on n distinguishable vertices have n - m edges. Deduce that there 
are ten - l)(n + 6)nn ~ 4 forests with two components. 

45. Show that the cycle sum of the symmetric group Sn acting on the usual n letters is 

where the summation is over all partitionsjl + 2jz + ... + njn = n. 

46. What is the cycle sum of S5 acting on the unordered pairs of 5 elements? How 
many non-isomorphic graphs are there on 5 vertices? How many of them have 
5 edges? 

47. Let Z(r, ai' az, ... , ad) be the cycle index of a permutation group r acting on a set 
D. Consider the action of r on the set of all k-subsets of D. How many orbits are 
there? 

48. Determine the cycle index of the rotations of the cube acting on (i) the vertices, 
(ii) the edges, (iii) the faces, (iv) the faces and vertices. In how many distinct ways 
can you colour the vertices using some of n colours? The edges? The faces? The 
vertices and faces? 

49. Show that the cycle sum of Cn, the cyclic group of order n, is Z(Cn; ai' ... , an) = 
Lk/n ¢(k)akn/\ where ¢(k) is the Euler function. 

50. Prove that the cycle index of the dihedral group Dn (cf. Exercise 8) is 

. _I. {tala~~I)/z ifn is odd, 
Z(Dn' aJ,"" azn) - zZ(Cn, al"'" an) + I( n/2 2 (n~2)/Z) 'f . 

4 a2 + ala2 1 n IS even. 

How many bracelets are there with 20 beads coloured red, blue and green? 

51. How many distinct ways are there of colouring the faces of a dodecahedron 
with red, blue and green, using each colour at least once? 

Notes 

There is a vast literature concerned with group presentations, including 
the use of Cayley and Schreier diagrams. The basic book is perhaps W. 
Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Second 
Edition, Dover, New York, 1976; the connections with geometry are 
emphasised in H. S. M. Coxeter, Regular Complex Polytopes, Cambridge 
University Press, New York, 1974. Numerous articles deal with the com­
putational aspect, in particular J. A. Todd and H. S. M. Coxeter, A practical 
method for enumerating cosets of a finite abstract group, Proc. Edinburgh 
Math. Soc. (2) 5 (1936) 26~34, which was the first paper in this line and J. 
Leech, Computer proof of relations in groups, in Topics in Group Theory 
and Computation (M. P. J. Curran, ed.), Academic Press, New York, 1977, 
in which some more recent developments are described. 
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Max Dehn posed the word problem in Dber unendliche diskontinuier­
liche Gruppen, Math. Ann. 71 (1911) 116-144, and gave the above discussed 
presentation of the group of the trefoil in Dber die Topologie des dreidimen­
sionalen Raumes, Math. Ann. 69 (1910) 137-168. The word problem was 
shown to be intrisically connected to logic by P. S. Novikov, On the algo­
rithmic unsolvability of the word problem, Amer. Math. Soc. Transl. (2) 9 
(1958) 1-22 and G. Higman, Subgroups of finitely presented groups, 
Proc. Royal Soc. A, 262 (1961) 455-475. For the properties of knots and 
their groups the reader is referred to R. H. Crowell and R. H. Fox, Intro­
duction to Knot Theory, Graduate Texts in Mathematics, Vol. 57, Springer­
Verlag, New York, 1977. 

An exposition of matrix methods in graph theory can be found in N. Biggs, 
Algebraic Graph Theory, Cambridge University Press, New York, 1974. 
The first striking result obtained in this way, Theorem 9, is due to A. J. 
Hoffman and R. R. Singleton, On Moore graphs with diameters 2 and 3, 
IBM J. Res. Dev. 4 (1960) 497-504. The connection between graphs and 
sporadic simple groups is discussed in detail in R. Brauer and C. H. Sah 
(editors), Theory of Finite Groups: a Symposium, Benjamin, Menlo Park, 
1969. Since then however several more sporadic groups have been found. 

The fundamental enumeration theorem of G, P61ya appeared in Kom­
binatorische Anzahlbestimmungen fUr Gruppen und chemische Verbin­
dungen, Acta Math. 68 (1937) 145-254. Many enumeration techniques were 
anticipated by J. H. Redfield, The theory of group-reduced distributions, 
Amer. J. Math. 49 (1927) 433-455. The standard reference book for P61ya­
type enumeration is F. Harary and E. M. Palmer, Graphical Enumeration, 
Academic Press, New York, 1973. 
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