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To Gabriella



As long as a branch of science offers an abundance of problems, so long
is it alive; a lack of problems foreshadows extinction or the cessation of
independent development. Just as any human undertaking pursues certain
objects, so also mathematical research requires its problems. It is by the
solution of problems that the investigator tests the temper of his steel; he
finds new methods and new outlooks, and gains a wider and freer horizon.

David Hilbert, Mathematical Problems,

International Congress of Mathematicians,
Paris, 1900.



Apologia

This book has grown out of Graph Theory ~ An Introductory Course (GT), a book
I wrote about twenty years ago. Although I am still happy to recommend GT for
a fairly fast-paced introduction to the basic results of graph theory, in the light
of the developments in the past twenty years it seemed desirable to write a more
substantial introduction to graph theory, rather than just a slightly changed new
edition.

In addition to the classical results of the subject from GT, amounting to about
40% of the material, this book contains many beautiful recent results, and also
explores some of the exciting connections with other branches of mathematics that
have come to the fore over the last two decades. Among the new results we discuss
in detail are: Szemerédi’s Regularity Lemma and its use, Shelah’s extension of the
Hales-Jewett Theorem, the results of Galvin and Thomassen on list colourings, the
Perfect Graph Theorem of Lovasz and Fulkerson, and the precise description of
the phase transition in the random graph process, extending the classical theorems
of ErdGs and Rényi. One whole field that has been brought into the light in recent
years concerns the interplay between electrical networks, random walks on graphs,
and the rapid mixing of Markov chains. Another important connection we present
is between the Tutte polynomial of a graph, the partition functions of theoretical
physics, and the powerful new knot polynomials.

The deepening and broadening of the subject indicated by all the developments
mentioned above is evidence that graph theory has reached a point where it should
be treated on a par with all the well-established disciplines of pure mathematics.
The time has surely now arrived when a rigorous and challenging course on the
subject should be taught in every mathematics department. Another reason why
graph theory demands prominence in a mathematics curriculum is its status as that
branch of pure mathematics which is closest to computer science. This proximity
enriches both disciplines: not only is graph theory fundamental to theoretical
computer science, but problems arising in computer science and other areas of
application greatly influence the direction taken by graph theory. In this book we
shall not stress applications: our treatment of graph theory will be as an exciting
branch of pure mathematics, full of elegant and innovative ideas.



viii Apologia

Graph theory, more than any other branch of mathematics, feeds on problems.
There are a great many significant open problems which arise naturally in the
subject: many of these are simple to state and look innocent but are proving to
be surprisingly hard to resolve. It is no coincidence that Paul Erdds, the greatest
problem-poser the world has ever seen, devoted much of his time to graph theory.
This amazing wealth of open problems is mostly a blessing, but also, to some
extent, a curse. A blessing, because there is a constant flow of exciting problems
stimulating the development of the subject: a curse, because people can be misled
into working on shallow or dead-end problems which, while bearing a superficial
resemblence to important problems, do not really advance the subject.

In contrast to most traditional branches of mathematics, for a thorough ground-
ing in graph theory, absorbing the results and proofs is only half of the battle. It
is rare that a genuine problem in graph theory can be solved by simply applying
an existing theorem, either from graph theory or from outside. More typically,
solving a problem requires a “bare hands” argument together with a known re-
sult with a new twist. More often than not, it turns out that none of the existing
high-powered machinery of mathematics is of any help to us, and nevertheless a
solution emerges. The reader of this book will be exposed to many examples of
this phenomenon, both in the proofs presented in the text and in the exercises.
Needless to say, in graph theory we are just as happy to have powerful tools at
our disposal as in any other branch of mathematics, but our main aim is to solve
the substantial problems of the subject, rather than to build machinery for its own
sake.

Hopefully, the reader will appreciate the beauty and significance of the major
results and their proofs in this book. However, tackling and solving a great many
challenging exercises is an equally vital part of the process of becoming a graph
theorist. To this end, the book contains an unusually large number of exercises:
well over 600 in total. No reader is expected to attempt them all, but in order to
really benefit from the book, the reader is strongly advised to think about a fair
proportion of them. Although some of the exercises are straightforward, most of
them are substantial, and some will stretch even the most able reader.

Outside pure mathematics, problems that arise tend to lack a clear structure
and an obvious line of attack. As such, they are akin to many a problem in graph
theory: their solution is likely to require ingenuity and original thought. Thus the
expertise gained in solving the exercises in this book is likely to pay dividends not
only in graph theory and other branches of mathematics, but also in other scientific
disciplines.

“As long as a branch of science offers an abundance of problems, so long is it
alive”, said David Hilbert in his address to the Congress in Paris in 1900. Judged
by this criterion, graph theory could hardly be more alive.

B.B.
Memphis
March 15, 1998



Preface

Graph theory is a young but rapidly maturing subject. Even during the quarter of
a century that I lectured on it in Cambridge, it changed considerably, and I have
found that there is a clear need for a text which introduces the reader not only to
the well-established results, but to many of the newer developments as well. It is
hoped that this volume will go some way towards satisfying that need.

There is too much here for a single course. However, there are many ways of
using the book for a single-semester course: after a little preparation any chapter
can be included in the material to be covered. Although strictly speaking there are
almost no mathematical prerequisites, the subject matter and the pace of the book
demand mathematical maturity from the student.

Each of the ten chapters consists of about five sections, together with a selection
of exercises, and some bibliographical notes. In the opening sections of a chapter
the material is introduced gently: much of the time results are rather simple, and
the proofs are presented in detail. The later sections are more specialized and
proceed at a brisker pace: the theorems tend to be deeper and their proofs, which
are not always simple, are given rapidly. These sections are for the reader whose
interest in the topic has been excited.

We do not attempt to give an exhaustive list of theorems, but hope to show
how the results come together to form a cohesive theory. In order to preserve
the freshness and elegance of the material, the presentation is not over-pedantic:
occasionally the reader is expected to formalize some details of the argument.
Throughout the book the reader will discover connections with various other
branches of mathematics, like optimization theory, group theory, matrix algebra,
probability theory, logic, and knot theory. Although the reader is not expected to
have intimate knowledge of these fields, a modest acquaintance with them would
enhance the enjoyment of this book.

The bibliographical notes are far from exhaustive: we are careful in our attribu-
tions of the major results, but beyond that we do little more than give suggestions
for further readings.

A vital feature of the book is that it contains hundreds of exercises. Some are
very simple, and test only the understanding of the concepts, but many go way
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beyond that, demanding mathematical ingenuity. We have shunned routine drills:
even in the simplest questions the overriding criterion for inclusion was beauty. An
attempt has been made to grade the exercises: those marked by ~ signs are five-
finger exercises, while the ones with + signs need some inventiveness. Solving
an exercise marked with T should give the reader a sense of accomplishment.
Needless to say, this grading is subjective: a reader who has some problems with
a standard exercise may well find a + exercise easy.

The conventions adopted in the book are standard. Thus, Theorem 8 of Chap-
ter IV is referred to as Theorem 8 within the chapter, and as Theorem IV.8
elsewhere. Also, the symbol, [J, denotes the end of a proof; we also use it to
indicate the absence of one.

The quality of the book would not have been the same without the valuable
contributions of a host of people, and I thank them all sincerely. The hundreds
of talented and enthusiastic Cambridge students I have lectured and supervised
in graph theory; my past research students and others who taught the subject and
provided useful feedback; my son, Mark, who typed and retyped the manuscript a
number of times. Several of my past research students were also generous enough
to give the early manuscript a critical reading: I am particularly grateful to Graham
Brightwell, Yoshiharu Kohayakawa, Imre Leader, Oliver Riordan, Amites Sarkar,
Alexander Scott and Andrew Thomason for their astute comments and perceptive
suggestions. The deficiencies that remain are entirely my fault.

Finally, I would like to thank Springer-Verlag and especially Ina Lindemann,
Anne Fossella and Anthony Guardiola for their care and efficiency in producing
this book.

B.B.
Memphis
March 15, 1998

For help with preparation of the third printing, I would like to thank Richard
Arratia, Peter Magyar, and Oliver Riordan. I am especially grateful to Don Knuth
for sending me lists of misprints. For the many that undoubtedly remain, I
apologize. Please refer to the website for this book, where I will maintain a
list of further misprints that come to my attention; I'd be grateful for any as-
sistance in making this list as complete as possible. The url for this book is
http://www.msci.memphis.edu/faculty/bollobasb.html

B.B.
Memphis
April 16, 2002
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Neque ingenium sine disciplina,
aut disciplina sine ingenio
perfectum artificem potest efficere.

Vitruvius



I

Fundamentals

The basic concepts of graph theory are extraordinarily simple and can be used
to express problems from many different subjects. The purpose of this chapter is
to familiarize the reader with the terminology and notation that we shall use in
the book. In order to give the reader practice with the definitions, we prove some
simple results as soon as possible. With the exception of those in Section 5, all
the proofs in this chapter are straightforward and could have safely been left to
the reader. Indeed, the adventurous reader may wish to find his own proofs before
reading those we have given, to check that he is on the right track.

The reader is not expected to have complete mastery of this chapter before
sampling the rest of the book; indeed, he is encouraged to skip ahead, since
most of the terminology is self-explanatory. We should add at this stage that the
terminology of graph theory is still not standard, though the one used in this book
is well accepted.

1.1 Definitions

A graph G is an ordered pair of disjoint sets (V, E) such that E is a subset of
the set V@ of unordered pairs of V. Unless it is explicitly stated otherwise, we
consider only finite graphs, that is, V and E are always finite. The set V is the set
of vertices and E is the set of edges. If G is a graph, then V = V (G) is the vertex
set of G, and E = E(G) is the edge set. An edge {x, y} is said to join the vertices
x and y and is denoted by xy. Thus xy and yx mean exactly the same edge; the
vertices x and y are the endvertices of this edge. If xy € E(G), then x and y are
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adjacent, or neighbouring, vertices of G, and the vertices x and y are incident with
the edge xy. Two edges are adjacent if they have exactly one common endvertex.

As the terminology suggests, we do not usually think of a graph as an ordered
pair, but as a collection of vertices some of which are joined by edges. It is then
a natural step to draw a picture of the graph. In fact, sometimes the easiest way
to describe a small graph is to draw it; the graph with vertices 1,2,...,9 and
edges 12, 23, 34, 45, 56, 61, 17, 72, 29, 95, 57, 74, 48, 83, 39, 96, 68, and 81 is
immediately comprehended by looking at Fig. I.1.

FIGURE L.1. A graph.

We say that G’ = (V', E') isasubgraphof G = (V,E)if V' C Vand E' C E.
In this case we write G’ C G. If G’ contains all edges of G that join two vertices
in V’ then G’ is said to be the subgraph induced or spanned by V' and is denoted
by G[V’]. Thus, a subgraph G’ of G is an induced subgraph if G’ = G[V(G")].
If V/ = V, then G’ is said to be a spanning subgraph of G. These concepts are
illustrated in Fig. 1.2.

[ ] ®
FIGURE 1.2. A subgraph, an induced subgraph and a spanning subgraph of the graph in
Fig. L.1.

We shall often construct new graphs from old ones by deleting or adding some
vertices and edges. If W C V(G), then G — W = G[V \ W] is the subgraph of G
obtained by deleting the vertices in W and all edges incident with them. Similarly,
if E' C E(G),thenG — E' = (V(G), E(G)\ E").If W = {w} and E’ = {xy},
then this notation is simplified to G — w and G — xy. Similarly, if x and y are
nonadjacent vertices of G, then G + xy is obtained from G by joining x to y.
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If x is a vertex of a graph G, then occasionally we write x € G instead of
x € V(G). The order of G is the number of vertices in G; it is denoted by |G]|.
The same notation is used for the number of elements (cardinality) of a sez: | X|
denotes the number of elements of the set X. Thus |G| = |V (G)|. The size of G
is the number of edges in G; it is denoted by e(G). We write G" for an arbitrary
graph of order n. Similarly, G(n, m) denotes an arbitrary graph of order n and
size m.

Given disjoint subsets U and W of the vertex set of a graph, we write E(U, W)
for the set of U — W edges, that is, for the set of edges joining a vertex in U to
a vertex in W. Also, e(U, W) = |E(U, W)} is the number of U — W edges. If
we wish to emphasize that our underlying graph is G, then we put Eg(U, W) and
ec(U, W).

Two graphs are isomorphic if there is a correspondence between their vertex
sets that preserves adjacency. Thus G = (V, E) is isomorphic to G’ = (V', E')
if there is a bijection ¢ : V — V' suchthat xy € E iff ¢(x)¢(y) € E’. Clearly,
isomorphic graphs have the same order and size. Usually we do not distinguish
between isomorphic graphs, unless we consider graphs with a distinguished or
labelled set of vertices (for example, subgraphs of a given graph). In accordance
with this convention, if G and H are isomorphic graphs, then we write either
G = H orsimply G = H. In Fig. 1.3 we show all graphs (up to isomorphism)
that have order at most 4 and size 3.

ALY

FIGURE 1.3. Graphs of order at most 4 and size 3.

The size of a graph of order n is at least 0 and at most (3). Clearly, for every m,
0 < m < (}), there is a graph G(n, m). A graph of order n and size (3) is called
a complete n-graph and is denoted by K, ; an empty n-graph E, has order n and
no edges. In K, every two vertices are adjacent, while in E, no two vertices are
adjacent. The graph Ky = E| is said to be trivial.

As E, is rather close to the notation for the edge set of a graph, we frequently
use K, for the empty graph of order n, signifying that it is the complement of
the complete graph. In general, for a graph G = (V, E) the complement of G is
G = (V, V@ — E); thus, two vertices are adjacent in G if and only if they are
not adjacent in G.

The set of vertices adjacent to a vertex x € G, the neighbourhood of x, is
denoted by I"(x). Occasionally one calls I"(x) the open neighbourhood of x, and
I' U {x} the closed neighbourhood of x. Also, x ~ y means that the vertex x
is adjacent to the vertex y. Thus y € T'(x), x € I'(y), x ~ y,and y ~ x
are all equivalent: each of them means that xy is an edge. The degree of x is
d(x) = |I'(x)]. If we want to emphasize that the underlying graph is G, then we
write ['g (x) and d¢(x); a similar convention will be adopted for other functions
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depending on an underlying graph. Thus if x € H = G[W], then
Fr(x)={ye H:xye E[H)})=Tg(x)NW.

The minimal degree of the vertices of a graph G is denoted by §(G) and the
maximal degree by A(G). A vertex of degree 0 is said to be an isolated vertex. If
3(G) = A(G) = k, that is, every vertex of G has degree k, then G is said to be
k-regular or regular of degree k. A graph is regular if it is k-regular for some k. A
3-regular graph is said to be cubic.

If V(G) = {x1, x2, ..., xn}, then (d(x;))] is a degree sequence of G. Usually
we order the vertices in such a way that the degree sequence obtained in this way
is monotone increasing or monotone decreasing, for example, §(G) = d(x]) <
-++ < d(xp) = A(G). Since each edge has two endvertices, the sum of the degrees
is exactly twice the number of edges:

n
Y d(xi) =2¢(G). (1)
1
In particular, the sum of degrees is even:
n
Y d(x)=0 (mod2). )
1

This last observation is sometimes called the handshaking lemma, since it
expresses the fact that in any party the total number of hands shaken is even.
Equivalently, (2) states that the number of vertices of odd degree is even. We see
also from (1) that §(G) < [2e¢(G)/n] and A(G) > [2e(G)/n]. Here | x| denotes
the greatest integer not greater than x and [x] = —|—x] is the smallest integer
not less than x.

A path is a graph P of the form

V(P) = {x0, x1,...,x1}, E(P) = {xox1, X1x2, ..., X1—1X1}.

This path P is usually denoted by xoxp - --x;. The vertices xo and x; are the
endvertices of P and I = e(P) is the length of P. We say that P is a path from x¢
to xy, or an xo—x; path. Of course, P is also a path from x; to xg, or an x;—xg path.
Sometimes we wish to emphasize that P is considered to go from xg to x;, and we
then call xg the initial and x; the terminal vertex of P. A path with initial vertex x
is an x-path.

The term independent will be used in connection with vertices, edges, and paths
of a graph. A set of vertices (edges) is independent if no two elements of it are
adjacent; also, W C V(G) consists of independent vertices iff G{W] is an empty
graph. A set of paths is independent if for any two paths each vertex belonging
to both paths is an endvertex of both. Thus Py, Ps, ..., Py are independent x—y
paths iff V(P;) N V(P;) = {x, y} whenever i # j. The paths P; are also said to
be internally disjoint. There are several notions closely related to that of a path in
a graph. A walk W in a graph is an alternating sequence of vertices and edges,
say xo, €1, X1, €2, - . ., €], Xx; Where ¢; = x;_1x;,0 < i <. In accordance with the
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terminology above, W is an xo—x; walk and is denoted by xoxy - - - x;; the length
of W is [. This walk W is called a trail if all its edges are distinct. Note that a path
is a walk with distinct vertices. A trail whose endvertices coincide (a closed trail)
is called a circuit. To be precise, a circuit is a closed trail without distinguished
endvertices and direction, so that, for example, two triangles sharing a single
vertex give rise to precisely two circuits with six edges. If awalk W = xox1--- x
is such that / > 3, xo = xj, and the vertices x;, 0 < i < I, are distinct from each
other and x, then W is said to be a cycle. For simplicity this cycle is denoted by
x1x2 - - - x;. Note that the notation differs from that of a path since x1x; is also an
edge of this cycle. A cycle has neither a starting vertex nor a direction, so that
X1X2 - X, X]X[—1"" X1, X2X3 -+ - X|X], and XiXj—1 " X1X]X]=1"" " Xi41 all denote
the same cycle.

We frequently use the symbol P; to denote an arbitrary path of length £ and
C¢ to denote a cycle of length £. We call C3 a triangle, C4 a quadrilateral, Cs a
pentagon, and so on; also, Cy is called an £-cycle (see Fig. 1.4). A cycle is even
(odd) if its length is even (odd).

e RS,

FIGURE 1.4. The graphs K4, E3, P4, C4 and Cs.

It would be less confusing to use P¢ and C* for generic paths and cycles, and to
reserve Py, P, ..., C1, Ca, ... for particular paths and cycles. However, in order
to conform to the widely accepted usage of subscripts, we also opt for subscripts,
although with some reluctance. It is to be hoped that this convention will not lead
to any misunderstanding.

Before continuing with our definitions, let us present two results concerning
cycles. The first was noted by Veblen in 1912.

Theorem 1 The edge set of a graph can be partitioned into cycles if, and only if,
every vertex has even degree.

Proof. The condition is clearly necessary, since if a graph is the union of some
edge disjoint cycles and isolated vertices, then a vertex contained in & cycles has
degree 2k.

Suppose that every vertex of a graph G has even degree and ¢(G) > 0. How
can we find a single cycle in G? Let xox - - - x¢ be a path of maximal length £ in
G. Since xox1 € E(G), we have d(x¢) > 2. But then xp has another neighbour y
in addition to xp; furthermore, we must have y = x; for some {,2 < i < £, since
otherwise yxgx1 - - - x; would be a path of length £ + 1. Therefore, we have found
our cycle: xox1 -« - xi. '

Having found one cycle, Cj, say, all we have to do is to repeat the procedure
over and over again. To formalize this, set G| = G, so that C; is a cycle in Gy,
and define G, = G1 — E(Cy). Every vertex of G, has even degree,' so either
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E(G7) = @ or else G, contains a cycle C,. Continuing in this way, we find vertex
disjoint cycles Cy, Ca, ..., Cs such that E(G) = Ule E(C)). O

To prove the second result, a beautiful theorem of Mantel from 1907, we shall
use observation (1) and Cauchy’s inequality.

Theorem 2 Every graph of order n and size greater than |n?/4] contains a
triangle.

Proof. Let G be a triangle-free graph of order n. Then I'(x) N "' (y) = @ for every
edge xy € E(G), so

dx)+d(y) <n.
Summing these inequalities for all e(G) edges xy, we find that
D> d@)? < ne(G). €)

x€G

Now by (1) and Cauchy’s inequality,

2
(2e(G))? = (Z d(x)) <n (Z d(x)z) )

x€G xeG
Hence, by (3),
(26(G))* < ne(G),
implying that e(G) < n?/4. 0

The bound in this result is easily seen to be best possible (see Exercise 4).
Mantel’s theorem was greatly extended by Turdn in 1941: as we shall see in
Chapter IV, this theorem of Turdn is the starting point of extremal graph theory.

Given vertices x and y, their distance d(x, y) is the minimal length of an x—y
path. If there is no x—y path then d(x, y) = oc.

A graph is connected if for every pair {x, y} of distinct vertices there is a path
from x to y. Note that a connected graph of order at least 2 cannot contain an
isolated vertex. A maximal connected subgraph is a component of the graph.
A cutvertex is a vertex whose deletion increases the number of components.
Similarly, an edge is a bridge if its deletion increases the number of components.
Thus an edge of a connected graph is a bridge if its deletion disconnects the graph.
A graph without any cycles is a forest, or an acyclic graph; a tree is a connected
forest. (See Fig. 1.5.) The relation of a tree to a forest sounds less absurd if we note
that a forest is a disjoint union of trees; in other words, a forest is a graph whose
every component is a tree.

A graph G is a bipartite graph with vertex classes Vy and V; if V(G) =
ViuV,, ViNnV, = @ and every edge joins a vertex of V| to a vertex of V».
One also says that G has bipartition (Vy, V2). Similarly G is r-partite with vertex
classes Vi, Va, ..., V; (or r-partition (V1, ..., V) if V(G) = ViUV U.- .UV,
ViNV; =@ whenever 1 <i < j <r, and no edge joins two vertices in the same
class. The graphs in Fig. 1.1 and Fig. L.5 are bipartite. The symbol K (n1, ..., n,)
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Y

FIGURE 1.5. A forest.

denotes a complete r-partite graph: it has n; vertices in the i th class and contains
all edges joining vertices in distinct classes. For simplicity, we often write K 4
instead of K (p, q) and K, (¢) instead of K (¢, .. ., t).

We shall write GU H = (V(G)UV(H), E(G)U E(H)) and kG for the union
of k disjoint copies of G. We obtain the join G + H from G U H by adding all
edges between G and H. Thus, for example, K33 = E3 + E3 = K2+ K3 and
K,-(t)=E;+...E; =Kt++Kt

There are several notions closely related to that of a graph. A hypergraph is a
pair (V, E) such that V N E = @ and E is a subset of P(V), the power set of V,
that is the set of all subsets of V (see Fig. 1.6). In fact, there is a simple 1-to-1
correspondence between the class of hypergraphs and the class of certain bipartite
graphs. Given a hypergraph H = (V, E), the incidence graph of H is the bipartite

3

1¢# »2
4

FIGURE L.6. The hypergraph of the Fano plane, the projective plane PG (2, 2) of seven
points and seven lines: the lines are 124, 235, 346, 457, 561, 672, and 713.

graph with vertex classes V and E in whichx € V is joined to a hyperedge S € E
iff x € S (see Fig. 1.7).

By definition a graph does not contain a loop, an “edge” joining a vertex to itself;
neither does it contain multiple edges, that is, several “edges” joining the same
two vertices. In a multigraph both multiple edges and multiple loops are allowed;
a loop is a special edge. When there is any danger of confusion, graphs are called
simple graphs. In this book the emphasis will be on graphs rather than multigraphs.
However, sometimes multigraphs are the natural context for our results, and it is
artificial to restrict ourselves to (simple) graphs. For example, Theorem 1 is valid
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4 457

FIGURE L.7. The drawings of the Heawood graph, the incidence graph of the Fano plane
in Fig. L.6.

for multigraphs, provided that a loop is taken to contribute 2 to the degree of a
vertex, and we allow cycles of length 1 (loops) and length 2 (formed by two edges
joining the same vertices.

If the edges are ordered pairs of vertices, then we get the notions of a directed
graph and directed multigraph. An ordered pair (a, b) is said to be an edge directed

from a to b, or an edge beginning at a and ending at b, and is denoted by ab or
simply ab. The notions defined for graphs are easily carried over to multigraphs,
directed graphs, and directed multigraphs, mutatis mutandis. Thus a (directed)
trail in a directed multigraph is an alternating sequence of vertices and edges:
X0, €1, X1, €2, . .., €1, X1, such that ¢; begins at x;_; and ends at x;. Also, a vertex
x of a directed graph has an outdegree and an indegree: the outdegree d™ (x) is
the number of edges starting at x, and the indegree d— (x) is the number of edges
ending at x.

An oriented graph is a directed graph obtained by orienting the edges of a

graph, that is, by giving the edge ab an orientation ab or ba. Thus an oriented

graph is a directed graph in which at most one of ab and ba occurs.

Note that Theorem 1 has a natural variant for directed multigraphs as well: the
edge set of a directed multigraph can be partitioned into (directed) cycles if and
only if each vertex has the same outdegree as indegree, that is, d*(x) = d~ (x)
for every vertex x. To see the sufficiency of the condition, all we have to notice is
that, as before, if our graph has an edge, then it has a (directed) cycle as well.

1.2 Paths, Cycles, and Trees

With the concepts defined so far we can start proving some results about graphs.
Though these results are hardly more than simple observations, in keeping with
the style of the other chapters we shall call them theorems.
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Theorem 3 Let x be a vertex of a graph G and let W be the vertex set of a
component containing x. Then the following assertions hold.

i. W ={y € G : G contains an x~y path}.
ii. W={y € G : G contains an x-y trail}.
iii. W={yeG:d(x,y) < oo} _
iv. Foru,v € V = V(G) put uRv iff uv € E(G), and let R be the smallest
equivalence relation on V containing R. Then W is the equivalence class
of x. a

This little result implies that every graph is the vertex disjoint union of its
components (equivalently, every vertex is contained in a unique component), and
that an edge is a bridge iff it is not contained in a cycle.

Theorem 4 A graph is bipartite iff it does not contain an odd cycle.

Proof. Suppose G is bipartite with vertex classes V| and V,. Let xjx3---x; be a
cycle in G. We may assume that x; € Vq. Then x, € V3, x3 € Vi, and so on:
x; € V1 iff i is odd. Since x; € V, we find that [ is even.

Suppose now that G does not contain an odd cycle. Since a graph is bipartite
iff each component of it is, we may assume that G is connected. Pick a vertex
x € V(G) and put V; = {y : d(x,y) is odd}, Vo = V \ V. There is no edge
joining two vertices of the same class V;, since otherwise G would contain an odd
cycle. Hence G is bipartite. 0

A bipartite graph with bipartition (Vi, V,) has at most |V1|| V2| edges, so a
bipartite graph of order n has at most maxg k(n — k) = |n%/4] edges, with the
maximum attained at the complete bipartite graph K|n/2,[n/2]. By Theorem 4,
[n2/4] is also the maximal size of a graph of order n containing no odd cycles. In
fact, as we saw in Theorem 2, forbidding a single odd cycle, the triangle, restricts
the size just as much.

Theorem S A graph is a forest iff for every pair {x, y} of distinct vertices it
contains at most one x—y path.

Proof. If x1x3---x; is a cycle in a graph G, then x1x3---x; and x| x; are two
x1—x; paths in G.

Conversely, let Py = xgx1 - - - x; and Py = xqy1y2 - - - yiX1 be two distinct xg—x;
paths in a graph G. Let i + 1 be the minimal index for which x;4+1 # y;+1 and let
J be the minimal index for which j > i and y; is a vertex of Py, say yj 11 = xj.
Then x;x;41 -+ XpYjyj—1---yi+1isacyclein G. O

Theorem 6 The following assertions are equivalent for a graph G.

i. Gisatree.

ii. G is a minimal connected graph, that is, G is connected and if xy € E(G),
then G — xy is disconnected. [In other words, G is connected and every edge
is a bridge. ]

iii. G is a maximal acyclic graph; that is, G is acyclic and if x and y are
nonadjacent vertices of G, then G + xy contains a cycle.
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Proof. Suppose G is atree. For an edge xy € E(G), the graph G — xy cannot con-
tain an x—y path xz122 - - - 2k, since otherwise G contains the cycle xz122 - - - 2k y.
Hence G — xy is disconnected; and so G is a minimal connected graph. Simi-
larly, if x and y are nonadjacent vertices of the tree G then G, contains a path
x2122 -+ - 2y, and so G + xy contains the cycle xz1z2---zxy. Hence G + xy
contains a cycle, and so G is a maximal acyclic graph.

Suppose next that G is a minimal connected graph. If G contains a cycle
x7122 -+ - Zxy, then G — xy is still connected, since in any u—v walk in G the edge
xy can be replaced by the path xz1z2 - - - zxy. As this contradicts the minimality
of G, we conclude that G is acyclic and so it is a tree.

Suppose, finally, that G is a maximal acyclic graph. Is G connected? Yes, since
if x and y belong to different components, the addition of xy to G cannot create
acycle xz122 - - - 2 y, since otherwise the path xz1z2---zxy is in G. Thus G is a
tree. |

Corellary 7 Every connected graph contains a spanning tree, that is, a tree
containing every vertex of the graph.

Proof. Take a minimal connected spanning subgraph. O

There are several simple constructions of a spanning tree of a graph G; we
present two of them. Pick a vertex x and put V; = {y € G : d(x,y) = i},
i =0,1,.... Note thatif y; € V;,i > 0, and xz122---z;—1y; 1s an x—y; path
(whose existence is guaranteed by the definition of V;), then d(x, z;) = j for
every j, 0 < j < i.In particular, V; # @, and for every y € V;, i > 0, there is
a vertex y' € V;_j joined to y. (Of course, this vertex y’ is usually not unique,
but for each y # x we pick only one y’.) Let T be the subgraph of G with vertex
set V and edge set E(T) = {yy’ : y # x}. Then T is connected, since every
y € V — {x} is joined to x by a path yy’y” - - - x. Furthermore, T is acyclic, since
if W is any subset of V and w is a vertex in W furthest from x, then w is joined
to at most one vertex in W. Thus T is a spanning tree.

The argument above shows that with k¥ = maxy d(x, y), we have V; # @ for
O<i<kandV =V(G) = Uﬁ Vi. At this point it is difficult to resist the
remark that diamG = max, y d(x, y) is called the diameter of G and radG =
min, maxy d(x, y) is the radius of G.

If we choose x € G with k = maxy d(x, y) = radG, then the spanning tree T
also has radius k.

A slight variant of the above construction of T goes as follows. Pick x € G and
let 77 be the subgraph of G with this single vertex x. Then T} is a tree. Suppose
we have constructed trees Ty C T, C --- C Ty C G, where T; has order i. If
k < n = |G| then by the connectedness of G there is a vertex y € V(G) \ V(T})
that is adjacent (in G) to a vertex z € T;. Let Ty be obtained from T} by adding
to it the vertex y and the edge yz. Then T4 is connected and as yz cannot be an
edge of a cycle in T4, it is also acyclic. Thus Ty is also a tree, so the sequence
To C T1 C - - - can be continued to 7,,. This tree T, is then a spanning tree of G.
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The spanning trees constructed by either of the methods above have order n (of
course!) and size n — 1. In the first construction there is a 1-to-1 correspondence
between V — {x} and E(T), given by y > yy’, and in the second construction
e(Ty) = k — 1 for each k, since e(T;) = 0 and Ty4) has one more edge than Tj.
Since by Theorem 6 every tree has a unique spanning tree, namely itself, we have
arrived at the following result, observed by Listing in 1862.

Corollary 8 A tree of order n has size n— 1; a forest of order n with k components
has sizen — k.

The first part of this corollary can be incorporated into several other character-
izations of trees. In particular, a graph of order # is a tree iff it is connected and
has size n — 1. The reader is invited to prove these characterizations (Exercises 5
and 6).

Corollary 9 A tree of order at least 2 contains at least 2 vertices of degree 1.

Proof. Letd) <dp <--- < dybethe degree sequence of atree T of ordern > 2.
Since T is connected, 8(T) = d; > 1. Hence if T had at most one vertex of
degree 1, by (1) and Corollary 8 we would have

n
2n——2=2e(T)=Zd,~21+2(n-—1). 0
1

A well-known problem in optimization theory asks for a relatively easy way of
finding a spanning subgraph with a special property. Given a graph G = (V, E)
and a positive valued cost function f defined on the edges, f : E - R*, find a
connected spanning subgraph T = (V, E’) of G for which

fMy=Y" f&xy)

xy€E’

is minimal. We call such a spanning subgraph T an economical spanning subgraph.
One does not need much imagination to translate this into a “real life” problem.
Suppose certain villages in an area are to be joined to a water supply situated in
one of the villages. The system of pipes is to consist of pipelines connecting the
water towers of two villages. For any two villages we know how much it would
cost to build a pipeline connecting them, provided such a pipeline can be built at
all. How can we find an economical system of pipes?

In order to reduce the second question to the above problem about graphs, let G
be the graph whose vertex set is the set of villages and in which xy is an edge iff it
is possible to build a pipeline joining x to y; denote the cost of such a pipeline by
£ (xy) (see Fig. 1.8). Then a system of pipes corresponds to a connected spanning
subgraph T of G. Since the system has to be economical, T is a minimal connected
spanning subgraph of G, that is, a spanning tree of G.

The connected spanning subgraph T we look for has to be a minimal connected
subgraph, since otherwise we could find an edge o whose deletion would leave
T connected, and then T — « would be a more economical spanning subgraph.
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FIGURE L.8. A graph with a function f : E — R™; the number next to an edge xy is the
cost f(xy) of the edge.

Thus 7 is a spanning tree of G. Corresponding to the various characterizations
and constructions of a spanning tree, we have several easy ways of finding an
economical spanning tree; we shall describe four of these methods.

(1) Given G and f : E(G) — R, we choose one of the cheapest edges of G,
that is, an edge « for which f («) is minimal. Each subsequent edge will be chosen
from among the cheapest remaining edges of G with the only restriction that we
must not select all edges of any cycle; that is, the subgraph of G formed by the
selected edges is acyclic.

The process terminates when no edge can be added to the set E’ of edges
selected so far without creating a cycle. Then T} = (V(G), E’) is a maximal
acyclic subgraph of G, so by Theorem 6(iii), it is a spanning tree of G.

(2) This method is based on the fact that it is foolish to use a costly edge
unless it is needed to ensure the connectedness of the subgraph. Thus let us delete
one by one a costliest edge whose deletion does not disconnect the graph. By
Theorem 6(ii) the process ends in a spanning tree 75.

(3) Pick a vertex x; of G and select one of the least costly edges incident
with xj, say x1x3. Then choose one of the least costly edges of the form x;x,

where 1 <i <2 and x ¢ {x1, x2}. Having found vertices xi, x2, ..., x; and an
edge x;xj,i < j,foreach vertex x; with j < k, select one of the least costly edges
of the form x;x, say x;jxx4+1, where 1 <i < k and xx41 & {x1, x2,...,xx}. The

process terminates after we have selected n — 1 edges. Denote by T3 the spanning
tree given by these edges (see Fig. 1.9).

FIGURE 1.9. Three of the six economical spanning trees of the graph shown in Fig. 1.8.
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(4) This method is applicable only if no two pipelines cost the same. The
advantage of the method is that every village can make its own decision and start
building a pipeline without bothering to find out what the other villages are going
to do. Of course, each village will start building the cheapest pipeline ending in
the village. It may happen that both village x and village y will build the pipeline
xy; in this case they meet in the middle and end up with a single pipeline from x
to y. Thus at the end of this stage some villages will be joined by pipelines but
the whole system of pipes need not be connected. At the next stage each group
of villages joined to each other by pipelines finds the cheapest pipeline going
to a village not in the group and begins to build that single pipeline. The same
procedure is repeated until a connected system is obtained. Clearly, the villages
will never build all the pipes of a cycle, so the final system of pipes will be a
spanning tree (see Fig. 1.10).

FIGURE I.10. The graph of Fig. 1.8 with a slightly altered cost function (0 < ¢ < %) and
its unique economical spanning tree.

Theorem 10 Each of the four methods described above produces an economical
spanning tree. If no two edges have the same cost, then there is a unique economical
spanning tree.

Proof. Choose an economical spanning tree 7 of G that has as many edges in
common with T as possible, where 77 is a spanning tree constructed by the first
method.

Suppose that E(T1) # E(T). The edges of T} have been selected one by one:
let xy be the first edge of T that is not an edge of T. Then T contains a unique
x —y path, say P. This path P has at least one edge, say uv, that does not belong
to T, since otherwise T would contain a cycle. When xy was selected as an edge
of Ti, the edge uv was also a candidate. As xy was chosen and not uv, the edge
xy cannot be costlier then uv; thatis, f(xy) < f(uv). ThenT' =T ~uv + xy
is a spanning tree, and since f(T') = f(T) — f(uv) + f(xy) < f(T), the new
tree 7’ is an economical spanning tree of G. (Of course, this inequality implies
that f(T') = f(T) and f(xy) = f(uv).) This tree T’ has more edges in common
with 7; than T, contradicting the choice of T. Hence T = T}, so Tj is indeed an
economical spanning tree. '
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Slight variants of the proof above show that the spanning trees T and T3,
constructed by the second and third methods, are also economical. We invite the
reader to furnish the details (Exercise 44).

Suppose now that no two edges have the same cost; that is, f(xy) # f(uv)
whenever xy # uv. Let T4 be the spanning tree constructed by the fourth method
and let T be an economical spanning tree. Suppose that T # Ty, and let xy be
the first edge not in T that we select for T4. The edge xy was selected, since it is
the least costly edge of G joining a vertex of a subtree F of Tj to a vertex outside
F.The x — y path in T has an edge uv joining a vertex of F to a vertex outside
F so f(xy) < f(uv). However, this is impossible, since T/ = T — uv + xy
is a spanning tree of G and f(T') < f(T). Hence T = T4. This shows that
T4 is indeed an economical spanning tree. Furthermore, since the spanning tree
constructed by the fourth method is unique, the economical spanning tree is unique
if no two edges have the same cost. O

1.3 Hamilton Cycles and Euler Circuits

The so-called travelling salesman problem greatly resembles the economical span-
ning tree problem discussed in the preceding section, but the similarity is only
superficial. A salesman is to make a tour of n cities, at the end of which he
has to return to the head office he starts from. The cost of the journey between
any two cities is known. The problem asks for an efficient algorithm for find-
ing a least expensive tour. (As we shall not deal with algorithmic problems,
we leave the term “efficient” undefined; loosely speaking, an algorithm is ef-
ficient if the computing time is bounded by a polynomial in the number of
vertices.) Though a considerable amount of work has been done on this prob-
lem, since its solution would have important practical applications, it is not
known whether or not there is an efficient algorithm for finding a least expensive
route.

In another version of the travelling salesman problem the route is required to be
a cycle, that is, the salesman is not allowed to visit the same city twice (except the
city of the head office, where he starts and ends his journey). A cycle containing
all the vertices of a graph is said to be a Hamilton cycle of the graph. The origin of
this term is a game invented in 1857 by Sir William Rowan Hamilton based on the
construction of cycles containing all the vertices in the graph of the dodecahedron
(see Fig. 1.11). A Hamilton path of a graph is a path containing all the vertices of
the graph. A graph containing a Hamilton cycle is said to be Hamiltonian.

In fact, Hamilton cycles and paths in special graphs had been studied well before
Hamilton proposed his game. In particular, the puzzle of the knight’s tour on a
chess board, thoroughly analysed by Euler in 1759, asks for a Hamilton cycle in
the graph whose vertices are the 64 squares of a chessboard and in which two
vertices are adjacent if a knight can jump from one square to the other. Fig. 1.12
shows two solutions of this puzzle.
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FIGURE I.11. A Hamilton cycle in the graph of the dodecahedron.

FIGURE 1.12. Two tours of a knight on a chessboard.

If in the second, more restrictive, version of the travelling salesman problem
there are only two travel costs, 1 and oo (expressing the impossibility of the
journey), then the question is whether or not the graph formed by the edges with
travel cost 1 contains a Hamilton cycle. Even this special case of the travelling
salesman problem is unsolved: no efficient algorithm is known for constructing a
Hamilton cycle, though neither is it known that there is no such algorithm.

If the travel cost between any two cities is the same, then our salesman has no
difficulty in finding a least expensive tour: any permutation of the n — 1 cities (the
nth city is that of the head office) will do. Revelling in his new found freedom,
our salesman decides to connect duty and pleasure, and promises not to take the
same road xy again whilst there is a road uv he hasn’t seen yet. Can he keep his
promise? In order to plan a required sequence of journeys for our salesman, we
have to decompose K, into the union of some edge-disjoint Hamilton cycles. For
which values of n is this possible? Since K, is (n —1)-regular and a Hamilton cycle
is 2-regular, a necessary condition is that n — 1 should be even, that is, n should be
odd. This necessary condition also follows from the fact that e(K,) = %n(n -1
and a Hamilton cycle contains n edges, so K, has to be the union of %(n -1
Hamilton cycles.
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FIGURE I.13. Three edge disjoint Hamilton paths in K.

Let us assume now that n is odd, n > 3. Deleting a vertex of K,, we see that if
K, is the union of %(n — 1) Hamilton cycles then K, is the union of %(n -1
Hamilton paths. (In fact, n — 1 has to be even if K,_) is the union of some
Hamilton paths, since e(K,—1) = %(n — 1)(n — 2) and a Hamilton path in K,
has n — 2 edges.) With the hint shown in Fig. 1.13 the reader can show that for odd
values of n the graph K, is indeed the union of %(n — 1) Hamilton paths. In this
decomposition of X, into %(n — 1) Hamilton paths each vertex is the endvertex
of exactly one Hamilton path. (In fact, this holds for every decomposition of K,
into %(n — 1) edge-disjoint Hamilton paths, since each vertex x of K,_ has odd
degree, so at least one Hamilton path has to end in x.) Consequently, if we add a
new vertex to K,_; and extend each Hamilton path in K,,— to a Hamilton cycle in
K, then we obtain a decomposition of K, into %(n — 1) edge-disjoint Hamilton
cycles. Thus we have proved the following result.

Theorem 11 Forn > 3 the complete graph K,, is decomposable into edge disjoint
Hamilton cycles iff n is odd. For n > 2 the complete graph K, is decomposable
into edge-disjoint Hamilton paths iff n is even.

The result above shows thatif n > 3 is odd, then we can string together %(n -1)
edge disjoint cycles in K, to obtain a circuit containing all the edges of K. In
general, a circuit in a graph G containing all the edges is said to be an Euler circuit
of G. Similarly, a trail containing all edges is an Euler trail.

A graph s Eulerian if it has an Euler circuit. Euler circuits and trails are named
after Leonhard Euler, who, in 1736, characterized those graphs that contain them.
At the time Euler was a professor of mathematics in St. Petersburg, and was led to
the problem by the puzzle of the seven bridges on the Pregel (see Fig. 1.14) in the
ancient Prussian city Konigsberg (birthplace and home of Kant and seat of a great
German university, which was taken over by the USSR and renamed Kaliningrad
in 1946; since the collapse of the Soviet Union it has belonged to Russia). The
good burghers of Konigsberg wondered whether it was possible to plan a walk in
such a way that each bridge would be crossed once and only once? It is clear that
such a walk is possible iff the graph (or multigraph) in Fig. 1.15 has an Euler trail.
Here is then Euler’s theorem inspired by the puzzle of the bridges of Kénigsberg.

Theorem 12 A non-trivial connected graph has an Euler circuit iff each vertex
has even degree.
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FIGURE I.14. The seven bridges on the Pregel in Konigsberg.

o

B B

FIGURE L.15. A graph of the Konigsberg bridges and its simpler representation by a
multigraph.

A connected graph has an Euler trail from a vertex x to a vertex y # x iff x
and y are the only vertices of odd degree.

Proof. The conditions are clearly necessary. For example, if G has an Euler circuit
X1X3 + -+ Xm, and x occurs k times in the sequence x1, x2, ..., xm, then d(x) = 2k.

We prove the sufficiency of the first condition by induction on the number
of edges. If there are no edges, there is nothing to prove, so we proceed to the
induction step.

Let G be a non-trivial connected graph in which each vertex has even degree.
Since e(G) > 1, we find that §(G) > 2, so by Corollary 9, G contains a cycle. Let
C be a circuit in G with the maximal number of edges. Suppose C is not Eulerian.
As G is connected, C contains a vertex x that is in a non-trivial component H
of G — E(C). Every vertex of H has even degree in H, so by the induction
hypothesis, H contains an Euler circuit D. The circuits C and D (see Fig. [.16) are
edge-disjoint and have a vertex in common, so they can be concatenated to form
a circuit with more edges than C, As this contradicts the maximality of e(C), the
circuit C is Eulerian.

Suppose now that G is connected and x and y are the only vertices of odd
degree. Let G* be obtained from G by adding to it a vertex u together with the
edges ux and uy. Then, by the first part, G* has an Euler circuit C*. Clearly,
C* — u is an Euler trail from x to y. 1
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FIGURE I.16. The circuits C and D.

The alert reader has no doubt noticed that Theorem 12 is practically the same as
Theorem 1: every Euler circuit is aunion of edge-disjoint cycles, and if a connected
graph is a union of edge-disjoint cycles, then these cycles can be concatenated to
form an Euler circuit. Like Theorem 1, Theorem 12 holds for multigraphs as well:
in fact, the natural models that arise (as in Fig. 1.15) are frequently multigraphs.

It is also very easy to guess the variant of Theorem 12 for directed multigraphs:
a directed multigraph has a (directed) Euler circuit if and only if the underlying
multigraph is connected and each vertex has the same outdegree as indegree. To
see this, we proceed as before, but take care to concatenate the circuits in the right
(that is, permissible) direction.

There is a beautiful connection between the set of Euler circuits and certain
sets of oriented spanning trees. In order to state this connection precisely, let
G be a directed multigraph with vertex set V(G) = {v1,..., vy}, such that
d*(vi) = d~(v;) for every i. We know that if G has a (directed) Euler circuit, then
these conditions are satisfied. Let £ be the set of (directed) Euler circuits, and let £;
be the set of (directed) Euler trails starting and ending in v;. Since each Euler circuit
passes through v; exactly d* (v;) = d~ (v;) times, |&;| = dt(v)|E] = d~ (W) |E].

We say that a spanning tree is oriented towards v;, its root, if for every j # i
the unique path from v; to v; is oriented towards v;. Let 7; be the set of spanning
trees oriented towards v;.

Our aim is to define a map ¢; : & — 7, but for notational simplicity we take
i = 1. Given an Euler trail S € &, for j = 2,...,n, let ¢; be the edge through
which § exits from v; for the last time, never to return to v;. In particular, ¢; is not
a loop but an edge from v; to another vertex. Also, if e; goes from v; to v; then on
S the edge ¢; precedes e;.

Let T be the directed graph with vertices vy, ..., v, and edges e, ..., e,. We
claim that T € 7;. To prove this, we have to show that (1) T is atree,and 2) T
is oriented towards v;.

Suppose first that T contains a cycle C. Since d}" (v1) =0and d}L (vj) =1 for
J > 1, it follows that C is an oriented cycle that does not contain v;. But if ¢; is
the last edge of S on C, going from v; to vy, say, then S gets back to vy, after
having left it for the last time (through e,,). This contradiction shows that T is
indeed a tree.
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Is T oriented towards v;? Suppose T contains the path vy vx—] - - - v1. Then the
edge vpv) is ez, since there is no e;. What about v3v,? It is either e3 or e3. But it
is not ez, so it is e3. Continuing in this way, we find that our path vgvg_--- vy is
indeed oriented towards v1. Hence T € 7}, as claimed.

To get our map ¢ : &1 — Tq, set¢1(S) = T. Now, for T € 71, the set ¢1‘1(T)
is easily described. Indeed, to construct an Euler trail S € &; with $;(S) = T,
one has to proceed as follows. Start at vy through any edge; also, having returned
to v, leave it by an unused edge, if there is any; otherwise; terminate the trail.
More importantly, having arrived in v;, j > 1, leave v; by an unused edge that
is different from e;, if there are any such edges; otherwise, leave v; by e;. Since
d+(vj) = d~ (v;) for every j, this process does give us an Euler trail S € £; with
¢1(S) = T. Consequently,

e ErACHI I (CACHESIE
j=2
and so
€1 = 1T [ J@* @) — .
11

With this, we have proved a theorem of de Bruijn, van Aardenne-Ehrenfest, Smith,
and Tutte; the result is occasionally called the BEST theorem.

Theorem 13 Let G be adirected multigraph with vertexset V(G) = {vy, ..., vn},
suchthatd* (v;) = d~(v;) for everyi. Denote by s(G) the number of Euler circuits
of G, and by t;(G) the number of spanning trees oriented towards i. Then

s(G) =1t(G) [ J@* @) - 1!
j=l1
foreveryi, 1 <i < n. In particular, t;(G) = - - - = t,(G).

Note that the conditions of Theorem 13 are satisfied if G is Eulerian, that is,
has an Euler circuit.

Concerning the puzzle of the seven bridges on the Pregel, Theorem 12 tells
us that there is no suitable tour, since the associated graph in Fig. I.15 has four
vertices of odd degree (and, needless to say, so has the associated multigraph: each
of its vertices has odd degree).

The plan of the corridors of an exhibition is also easily turned into a graph: an
edge corresponds to a corridor and a vertex to the conjunction of several corridors.
If the entrance and exit are the same, a visitor can walk along every corridor exactly
once iff the corresponding graph has an Eulerian circuit. In general, a visitor must
have a plan in order to achieve this: he cannot just walk through any new corridor
he happens to come to. However, in a well planned (!) exhibition a visitor would
be certain to see all the exhibits, provided that he avoided going along the same
corridor twice and continued his walk until there were no new exhibits ahead of
him. The graph of such an exhibition is said to be randomly Eulerian from the
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X w

FIGURE I1.17. The graph G is randomly Eulerian from x; H is randomly Eulerian from
both u and v; the multigraph M is randomly Eulerian from w.

vertex corresponding to the entrance (which is also the exit). See Fig. .17 for three
examples. Randomly Eulerian graphs are also easily characterized (Exercises 50—
52).

To conclude this section, let us note a result from the first half of this
century, concerning two-way infinite Euler trails in infinite graphs. These
are the natural analogues of Euler circuits in finite graphs: given an infinite
graph G = (V,E), a two-way infinite Euler trail in G is a two-way in-
finite sequence ---x_zx_1xox1x2--- of vertices of G such that x; ~ x;41
for all i € Z and each edge of G occurs precisely once in the sequence
ey X_2X_1, X_1X0, X0X1, X1X2, - --. In 1936, ErdsGs, Griinwald and Weiszfeld
proved the following analogue of Theorem 12.

Theorem 14 Let G = (V, E) be a connected multigraph with E infinite. Then
G has a two-way infinite Euler trail if and only if the following conditions are
satisfied:
(1) E is countable,

(ii) every degree is even or infinite,

(iii) for every subgraph G' C G, G’ = (V, E’), with E' finite, the graph
G — E’ has at most two infinite components; furthermore, if dg:(x) is even for
every x € V, then G — E' has precisely one infinite component.

Although the proof is not too difficult, we do not give it here. The reader is
encouraged to do Exercises 54-56, which are related to this result.

1.4 Planar Graphs

The graph of the corridors of an exhibition is a planar graph: it can be drawn in the
plane in such a way that no two edges intersect. Putting it a little more rigorously, it
is possible to represent it by a drawing in the plane in which the vertices correspond
to distinct points and the edges to simple Jordan curves connecting the points of
its endvertices. In this drawing every two curves are either disjoint or meet only
at a common endpoint. The above representation of a graph is said to be a plane
graph.

There is a simple way of associating a topological space with a graph, which
leads to another definition of planarity, trivially equivalent to the one given above.
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Let p1, p2, ... be distinct points in R3, the 3-dimensional Euclidean space, such
that every plane in R3 contains at most 3 of these points. Write (p;, pj) for the
straight line segment with endpoints p; and p; (open or closed, as you like). Given
agraph G = (V, E), V = (x1, x2, ..., xn), the topological space

RG) = JUpi, pj) : xixj € EYU| Jipi} C R
1

is said to be a realization of G. A graph G is planar if R(G) is homeomorphic to
a subset of R2, the plane.

Let us make some more remarks in connection with R(G). A graph H is said to
be a subdivision of a graph G, or a topological G graphif H is obtained from G by
subdividing some of the edges, that is, by replacing the edges by paths having at
most their endvertices in common. We shall write TG for a topological G graph.
Thus TG denotes any member of a rather large family of graphs; for example,
T K3 is an arbitrary cycle, and T Cg is an arbitrary cycle of length at least 8. It is
clear that for any graph G the spaces R(G) and R(T G) are homeomorphic. We
shall say that a graph G is homeomorphic to a graph H if R(G) is homeomorphic
to R(H) or, equivalently, G and H have isomorphic subdivisions.

At first sight one may think that in the study of planar graphs one might run
into topological difficulties. This is certainly not the case. It is easily seen that
the Jordan curves corresponding to the edges can be assumed to be polygons.
More precisely, every plane graph is homotopic to a plane graph representing the
same graph, in which the Jordan curves are piecewise linear. Indeed, given a plane
graph, let 3 > 0 be less than half the minimal distance between two vertices.
For each vertex a place a closed disc D, of radius § about a. Denote by J, the
curve corresponding to an edge o = ab and let a, be the last point of J, in Dy
when going from a to b. Denote by J., the part of J, from ay to by. Let & > 0
be such that if @ % B then J, and J,‘li are at a distance greater than 3¢. By the
uniform continuity of a Jordan curve, each J;, can be approximated within £ by
a polygon J! from a, to by. To get the required piecewise linear representation
of the original graph simply replace each J, by the polygon obtained from J_ by
extending it in both directions by the segments aa, and b,b (see Fig. 1.18).

FIGURE 1.18. Constructing a piecewise linear representation.
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A less pedestrian argument shows that every planar graph has a straight line
representation: it can be drawn in the plane in such a way that the edges are
actually straight line segments (Exercise 637).

If we omit the vertices and edges of a plane graph G from the plane, the
remainder falls into connected components, called faces. Clearly, each plane graph
has exactly one unbounded face. The boundary of a face is the set of edges in its
closure. Since a cycle (that is a simple closed polygon) separates the points of the
plane into two components, each edge of a cycle is in the boundary of two faces. A
plane graph together with the set of faces it determines is called a plane map. The
faces of a plane map are usually called countries. Two countries are neighbouring
if their boundaries have an edge in common.

If we draw the graph of a convex polyhedron in the plane, then the faces of
the polyhedron clearly correspond to the faces of the plane graph. This leads
us to another contribution of Leonhard Euler to graph theory, namely Euler’s
polyhedron theorem or simply Euler’s formula.

Theorem 15 If a connected plane graph G has n vertices, m edges, and f faces,
then

n—m+ f=2.

Proof. Let us apply induction on the number of faces. If f = 1, then G does not
contain a cycle, so it is a tree, and the result holds by Corollary 8.

Suppose now that f > 1 and the result holds for smaller values of f. Let ab
be an edge in a cycle of G. Since a cycle separates the plane, the edge ab is in
the boundary of two faces, say S and T. Omitting ab, in the new plane graph G’
the faces S and T join up to form a new face, while all other faces of G remain
unchanged. Thusifn’, m’ and f’ are the parameters of G',thenn’ = n,m’ = m—1,
and f'=f—1.Hencen—m+ f=n'"—m'+ f' =2. O

Let G be a connected plane graph with n vertices, m edges, and f faces;
furthermore, denote by f; the number of faces having exactly i edges in their
boundaries. Clearly,

Z fi=f @

and if G has no bridge, then
Y ifi =2m, )

i

since every edge is in the boundary of two faces. Relations (4), (5), and Euler’s
formula give an upper bound for the number of edges of a planar graph of order n.
This bound can be improved if the girth of the graph, that is the number of edges
in a shortest cycle, is large. (The girth of an acyclic graph is defined to be c0.)

Theorem 16 A planar graph of order n > 3 has at most 3n — 6 edges. Further-
more, a planar graph of order n and girth at least g, 3 < g < 0o, has size at
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most

max[ g (n—2), n—l}.
g—2

Proof. The first assertion is the case g = 3 of the second, so it suffices to prove
the second assertion. Let G be a planar graph of order n, size m, and girth at least
g.Ifn < g — 1, then G is acyclic, som < n — 1. Assume now that n > g and the
assertion holds for smaller values of n. We may assume without loss of generality
that G is connected. If ab is a bridge then G — ab is the union of two vertex
disjoint subgraphs, say G| and G». Putting n; = |G;|, m; = e(G;), i = 1,2, by
induction we find that

gf2mx—mnu—1}

4
g—-2

m=m1+m2+15max{

+max{ (n2—2),n2—1]+1

smax{

g 2(n—2),n—1].

On the other hand, if G is bridgeless, (4) and (5) imply that

2m=) ifi=) ifi28) fi=gf.

izg

Hence, by Euler’s formula,
2
m+2=n+f5n+_m’
g

and so

m=

g2m—m. 0

Theorem 16 can often be used to show that certain graphs are nonplanar. Thus
K, the complete graph order 5, is nonplanar since e(K5) = 10 > 3(5 — 2).
Another nonplanar graph is K3 3, the complete 3 by 3 bipartite graph, also called
the Thomsen graph, since its girth is 4 and e(K33) = 9 > (4/(4 — 2))(6 — 2).
The nonplanarity of K3 3 implies that it is impossible to join each of 3 houses to
each of 3 wells by non-crossing paths, as demanded by a well-known puzzle (see
Fig. 1.19).

3 & &
\
o\e

FIGURE 1.19. The Thomsen graph: three houses and three wells.
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FIGURE 1.20. G contains a T K5 and H contains a T K3 3.

If a graph G is nonplanar, then so is every topological G graph and every graph
containing a topological G graph. Thus the graphs in Fig. I.20 are nonplanar, since
they contain T K5 and T K3 3, respectively.

It is somewhat surprising that the converse of the trivial remarks above is also
true: this beautiful result was proved by Kuratowski in 1930.

Theorem 17 A graph is planar iff it does not contain a subdivision of K5 or K3 3.
a

A variant of Theorem 17 characterizes planar graphs in terms of forbidden
minors, rather than forbidden topological subgraphs. At first sight, the concept of
a minor may seem a little artificial, but it is, in fact, the right notion related to
drawing graphs on surfaces.

Given an edge xy of a graph G, the graph G/xy is obtained from G by con-
tracting the edge xy; that is, to get G/xy we identify the vertices x and y and
remove all resulting loops and duplicate edges. A graph G obtained by a sequence
of edge-contractions is said to be a contraction of G. A graph H is a minor of
G, written G > H or H < G, if it is a subgraph of a graph obtained from G
by a sequence of edge-contractions (see Fig. 1.21). It is easily checked that if
V(H) = {y1,y2,..., yr} then H < G if and only if G has vertex-disjoint con-
nected subgraphs G, G2, ..., G such that if y;y; € E(H), then G has an edge
from G; to G;j (see Exercise 837).

In 1937, Wagner proved the following analogue of Kuratowski’s theorem.

Theorem 18 A graph is planar iff it contains neither Ks nor K3 3 as a minor. 0

G Glxy H

FIGURE L.21. A graph G, its contraction G/xy and a minor H.
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It is easy to see that Theorems 17 and 18 are equivalent. Indeed, if G O TH,
then, rather trivially, G > H. In fact, if H has maximal degree at most 3, then
G D TH iff G > H.In particular, G D TK33 if and only if G > H. Also, if
G > K5 then either G O TKs or G D T K3 3. The reader is encouraged to fill in
the details (see Exercise 91).

I.5 An Application of Euler Trails to Algebra

To conclude this chapter we shall show that even simple notions like the ones
presented so far may be of use in proving important results. The result we are
going to prove is the fundamental theorem of Amitsur and Levitzki on polynomial
identities. The commutator of two elements a and b of aring S is [a, b] = ab—ba.
Similarly, ifa; € §,1 <i <k, we write

lai, a2, ..., 4] = ZSgn(o)aalaJZ - Goks
a

where the summation is over all permutations o of the integers 1,2, ..., %, and
sgn(o) is the sign of 0. For example, [a1, a2, a3] = a1a2a3 — ajazay + azaray —
asaya) +azasa; —aaras. If [ay,aa, ..., ax] =O0foralla; € S,1 <i <k,thenS
is said to satisfy the kth polynomial identity. The theorem of Amitsur and Levitzki
states that the ring My (R) of k by k matrices with entries in a commutative ring
R satisfies the (2k)th polynomial identity.

Theorem 19 Let R be a commutative ring and let the matrices A1, Az, ..., Ay
be in M (R). Then [A1, Aa,..., Ax] =0.

Proof. We shall deduce the result from a lemma about Euler trails in directed
multigraphs. Let G be a directed multigraph of order n with edges ey, e3, . .., €n.
Thus to each edge e; we associate an ordered pair of not necessarily distinct
vertices: the initial vertex of ¢; and the terminal vertex of ¢;. Every (directed)
Euler trail P is readily identified with a permutation of {1, 2, ..., m}; define £(P)
to be the sign of this permutation. Given not necessarily distinct vertices x, y of
G,pute(G; x,y) = Y p &(P), where the summation is over all Euler trails from
xtoy.

Lemma 20 Ifm > 2n then s(é; x,y)=0.

Before proving this lemma, let us see how it implies Theorem 19. Write E;; €
M, (R) for the matrix whose only non-zero entry is a 1 in the ith row and jth
column. Since [A1, Az, ..., Aj,]is R-linearin eachvariableand {E;; : 1 <i,j <
n} is a basis of M, (R) as an R-module, it suffices to prove Theorem 19 when Ay =
E;, j, for each k. Assuming that this is the case, let G be the directed multigraph
with vertex set {1, 2, ..., n} whose set of directed edges is {i1 j1, i2j2, - - . , {20 j2n}.
By the definition of matrix multiplication, a product As1Ag2 -+ Aga, iS E;; if
the corresponding sequence of edges is a (directed) Euler trail from i to j and
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otherwise it is 0. Hence [A1, A2, ..., A2x] = Zi,j e(é; i, j)E;;. By Lemma 20
each summand is 0, so the sum is also 0, and Theorem 19 is proved. O

Proof of Lemma 20. We may clearly assume that G has no isolated vertices. Let G/
be obtained from G by addmg toita vertex x’, a path of length m + 1 —2n from x’
to x, and an edge from y to x’ (see Fig. 1.22). Then G’ has order n+ (m+1-2n) =
m+1—nand s1zem +m+1 —-2n+ 1 = 2(m + 1 — n). Furthermore, it is easily
checked that Ie(G x,y) = |a(G’ x’, x")|. Hence it suffices to prove the theorem
whenm =2nandx = y.

FIGURE 1.22. The construction of G’

Given a vertex z, recall that d*(z) is the number of edges starting at z and
recall that d~(z) is the number of edges ending at z. Call d(z) = d*(z) +d ~(@@)
the degree of z and f(z) = d*(z) — d™(z) the flux at z. We may assume that G
contains an Euler circuit (an Euler trail from x to x; otherwise, there is nothing to
prove. In this case, each vertex has 0 flux, even degree, and the degree is at least
2. Furthermore, we may assume that there is no double edge (and so no double
loop), for otherwise the assertion is trivial.

In order to prove the theorem in the case m = 2n and x = y we apply induction
on n. The case n = 1 being trivial, we turn to the induction step. We shall
distinguish three cases.

(1) There is a vertex b # x of degree 2; say ep,—1 = ab ends at b and e, = bc
starts at b. If a = ¢, the assertion follows by applying the induction hypothesis
to G — b. If a # c, then without loss of generality x # c¢. Let e; = ccy,
€2=0C2,...,€ =CC be the edges starting at ¢. Foreach i, 1 <i < t, construct
a graph G from G-b by omlttmg e; and adding e; = ac; (see Fig. 1.23). Then
£(G; x,x) = i £(Gi; x,x) = 0.

(ii) There is a loop at a vertex b # x of degree 4. Let ey, be the loop at b and
let e—2 = ab and e,,—1 = bc be the other edges at b. Let Go be obtained from

> ' a c

e, €

FIGURE 1.23. The construction of G1.
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G-b by adding to it an edge e;n_z =ac. Then s(é; X,X)= e(éo; x, x), which
is 0 by the induction hypothesis.

(iii) The cases (i) and (ii) do not apply. Since m = 2n = % Y"1 d; and each
vertex distinct from x has degree at least 4, either each vertex has degree 4 or else
d(x) = 2 and there is a vertex of degree 6 and all other vertices have degree 4. It is
easily checked (Exercise 93) that there are two adjacent vertices of degree 4, say
a and b, since otherwise (ii) holds. Now we shall apply our fourth and final graph
transformation. This is more complicated than the previous ones, since we shall
construct two pairs of essentially different graphs from G: the graphs Gl, Gz, H6,
and Hy shown in Fig. 1.24. Each Euler trail from x to x in Gi is transformed to an
Euler trail in exactly one of G1 and G2 However, the graphs G1 and G2 contam
some spurious Euler trails: Euler trails that do not come from Euler trails in G. As
these spurious Euler trails are Euler trails in exactly one of Hs and H7 and they
exhaust all the Euler trails of H6 and H7, we find that

o(@55) = e (Bnx) - Yoo (o).

The first two terms are 0 because of (i), and the second two terms are 0 because
of (ii), so (G; x, x) = 0, completing the proof of Lemma 20. d

FIGURE 1.24. The graphs G, G1, G,, Hg and Hy.
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The operations G +— Gy, Ga, He, Hy are somewhat similar to various graph
operations used to construct graph polynomials; a simple example is that of the
chromatic polynomial, to be studied in Chapter V.

1.6 Exercises

1.
2.

Prove that either a graph or its complement is connected.

(i) Show that every graph contains two vertices of equal degree.
(ii) Determine all graphs with one pair of vertices of equal degree.

3.7 Let a be a vertex of a connected graph G. Show that G is bipartite if and

only if d(a, b) # d(a, c) for every edge bc.

. Prove that the bound in Mantel’s theorem (Theorem 2) is best possible: even

more, for every n > 1, the complete bipartite graph K, /2|, (n/2] is the unique
triangle-free graph of order n and maximal size.

. Show that the following conditions are equivalent for a graph G of size at

least 2:
(i) G is connected and has no cutvertex,
(ii) any two vertices are on a cycle,
(iii) any two edges are on a cycle,
(iv) for any three vertices x, y and z, there is an x-z path containing y.

Let G be a graph of order n. Prove the equivalence of the following assertions.
(i) G is atree.

(ii) G is connected and has at most n — 1 edges.

(iii) G is acyclic and has at least n — 1 edges.

(iv) G=K, forn=1,2,and if n > 3, then G # K, and the addition of an

edge to G produces exactly one new cycle.

7.~ Show that every connected graph G of order at least two contains vertices x

10.

and y such that both G — x and G — y are connected.

. In the puzzle of jealous husbands, three husbands and their wives wish to

cross a river. They have only one small boat, which can take two persons
at a time. No husband ever allows his wife to be in the company of other
men unless he is also present. Draw the graph of permissible distributions of
people and advise the travelers how they could cross the river.

. In the puzzle of the man and his dog, goat, and (large) cabbage, a man

wishes to cross the river with his dog, goat, and (large) cabbage, but the small
boat he has access to can take only one of his possessions besides himself.
To complicate matters, for obvious reasons, the goat cannot be left in the
company of the dog or the cabbage, unless the man is also present. Draw the
very simple bipartite graph of permissible situations, and advise the man how
he should proceed.

Show that in an infinite graph G with countably many edges there exists a
set of cycles and two-way infinite paths such that each edge of G belongs to
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exactly one of these iff for every X C V (G) either there are infinitely many
edges joining X to V(G) — X, orelse e(X, V(G) — X) is even.

11. Show that every graph G has abipartition V(G) = UUW suchthate(U, W) >
%e(G). Show also that if G is cubic of order n, then we may demand that
e(U, W) >n.

12. Show that for every graph G = (V, E) there is a partition V = V; U V3 such
that

1
e(G[V1]) +e(G[V2]) < Ee(G)-

Show also that one may also demand that each V; span at most a third of the
edges, that is, e(G[V]) < 1e(G) fori = 1,2.

13. Show that every graph with average degree d contains a subgraph of minimal
degree at least d /2.

14. Show that every graph with average degree d contains a bipartite subgraph of
average degree at least d /2.

15. Show that every graph of order n and average degree d contains a subgraph
of order greater than n/2 and maximal degree at most d.

16. Let G be a graph of average degree d > 0. Show that for some vertex x of
G the average of the degrees of the neighbours of x is at least 4. What if we
replace “at least” by “at most™?

17. Show thatdy < ds < --- < d, is the degree sequence of a tree iff d; > 1 and
Yldi=2n-2.

18. Show that every integer sequence dj < dp < --» < d, withd; > 1 and

Y1di =2n—2k,k > 1,is the degree sequence of a forest with k components.
19. Characterize the degree sequences of forests!

207 Show that, up to isomorphism, there is a unique graph with degree sequence
2,2,...,2,1, 1.

21. Show that for every degree sequence (d,-)'l', 1<dy <.--<d, <n-—1,there
are at most (n — 2)! trees on {x1, ..., Xz}, with d(x;) = d; for every i. Show
also that, for every n there is a unique degree sequence on which this upper
bound is attained.

227 Show that there is a unique sequence @)}, 1 <di <--- < dp, for which
there is only one tree on {x1, ..., x,} with d(x;) = d; for every i.

23. Show that if n is large enough, then for every sequence 1 <d; <--- <d, <
n—2,with )/, di = 2n — 2, there are at least n — 2 trees on {x1, ..., X}
with d(x;) = d; for every i.

24. Prove that a regular bipartite graph of degree at least 2 does not have a bridge.

25. Let V(G) = Uf-;l Vi be a partition of the vertex set of a connected graph
G into k > 2 nonempty subsets such that each G[V;] is connected. Prove
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that there are indices 1 < i < j < k such that both G — V; and G — V; are
connected.

26.” Let G be a connected graph of order n and let 1 < k < n. Show that G
contains a connected subgraph of order k.

27. Let A = {A1, Ag, ..., Ap} be a family of n > 1 distinct subsets of a set X
with n elements. Define a graph G with vertex set A in which A; A; is an edge
iff there exists an x € X such that A;AA; = {x}. Label the edge A; A; with
x. For H C G let Lab(H) be the set of labels used for edges of H. Prove that
there is a forest F C G such that Lab(F) = Lab(G).

28. (Exercise 27 contd.) Deduce that there is an element x € X such that the sets
Ay = {x}, Ay — {x}, ..., Ay — {x]} are all distinct. Show that this need not
hold for any n if | 4] =n + 1.

29.% (Exercise 27 contd.) Describe all families A = {A1, A, ..., Apy1}ofn+1
distinct subsets of X, |X| = n, such that for every x € X there are i, j,
1<i<j<n+1,withA; —(x}=A; —{x}.

30. A tournament is a complete oriented graph, that is, a directed graph in which
for any two distinct vertices x and y either there is an edge from x to y or there
is an edge from y to x, but not both. Prove that every tournament contains a
(directed) Hamilton path.

31.~ Prove that the radius and diameter of a graph satisfy the inequalities
radG < diamG < 2radG,
and both inequalities are best possible.
32.” Givend > 1, determine

max min{diamT : T is a spanning tree of G}.
diamG=d

33. Leta and b be vertices of a tree T at maximal distance d(a, b) = 2r, and let

¢ be the vertex on the unique a — b path at distance r from a and b. Show that
¢ is the unique vertex of T with d(c, x) < r foreveryx € T.

34. Deduce from the proof of Theorem 1 the following strengthening of the
assertion. Let G be a triangle-free graph of order n. Then ¢(G) < |n?%/4],
with equality iff G is a complete bipartite graph K,/2),12/2].

35. Denote by a(G) the maximal cardinality of a set of independent vertices in G.
Prove that if G does not contain a triangle, then A(G) < «(G) and deduce
that e(G) < }na(G), where n = |G|.

36.~ Show that if for every vertex z of a directed graph there is an edge starting at
z (thatis, d*(z) > 0) then the graph contains a (directed) cycle.

37. A grading of a directed graph C*;_‘= (V,E)isa partitioning of V into sets
V1, Va,..., Vi such that if Xy € E, thenx € V; and y € V4 for some i.
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Given a directed graph G and a (nondirected) path P = xgx| - - - x5, denote by

— . —
v(xo, x5; P) the number of edges x;x; 1 minus the number of edges x;j1x;.
Prove that G has a grading iff v(xg, x5; P) is independent of P for every pair
of vertices xg, x;s.

Is it true that, for every n > 2, the complete graph K, is the union of cycles
C3,C4,...,Cy_1, an edge, and a path of length 2?

Show that a complete graph K, has a decomposition into edge-disjoint paths
of length 2 if and only if n = 0 or 1 (mod 4).

Show that for n > 2 the complete graph K, is the union of paths of distinct
lengths.

A Steiner triple system of order n is a decomposition of a complete graph K,
into edge disjoint triangles. Equivalently, a Steiner triple system on a set X is
a set system A C X® such that every pair e € X? is contained in precisely
one triple A € A4; the number of elements of the ground set X is the order
of \A. Show that if there is a Steiner triple system of order n thenn = 1 or 3
(mod 6).

Show that up to relabelling, there is a unique Steiner triple system of order 7,
namely the Fano plane in Fig. 1.6.

Let A ¢ X® and B ¢ Y® be Steiner triple systems. Let C € (X x Y)®
consist of all triples of the form

(1) {(x1, ¥), (x2,y), (x3,y)} with A = {x1, x2,x3} € Aand y € ¥,

(@) {(x, y1), (x, ¥2), (x, y3)} with B = {y1, y2, y3} € Band x € X,

(3) {(x1,¥1), (x2,¥2), (x3,¥3)} with A = {x|,x2,x3} € A and B =
{y1,y2,y3} € B.

[Note that in (3) each pair of triples (A, B) gives rise to precisely six different
triples.] Show that C, the product of A and B, is a Steiner triple system on
X x Y. Deduce that there are infinitely many Steiner triple systems of order
congruent to 1 (mod 6), and likewise for 3 (mod 6).

Complete the proof of Theorem 10 by showing in detail that both the second
and third methods construct an economical spanning tree.

Show how the fourth method in Theorem 10 can be applied to find an
economical spanning tree even if several edges have the same cost (cf. Fig. 1.8).

Show that every economical spanning tree can be constructed by each of the
first three methods.

Deduce from Theorem 12 that a graph contains an Euler circuit iff all but
at most one of its components are isolated vertices and each vertex has even
degree. State and prove an analogous statement about the existence of an
Euler trail from x to y.

Show that every multigraph with 2¢ > 2 vertices of odd degrees is the
edge-disjoint union of £ trails.
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49.

50.

51.

52.
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Fleury gave the following algorithm for finding an Euler circuit x;x2 - - - x,
in a graph G. Pick x arbitrarily. Having chosen x1, x2, ..., x¢, put Gx =
G — {x1x2, x2x3, ..., xx—1xk}. If every edge incident with x; in Gy is a
bridge (in particular, if x; is an isolated vertex of Gy), then terminate the
algorithm. Otherwise, let x;+1 be a neighbour of x; in Gy such that xg x4 is
not a bridge of G¢.

Prove that if G has an Euler circuit, then the trail x1x3 - - - x¢ constructed by
the algorithm is an Euler circuit.

Recall that a graph G is randomly Eulerian from a vertex x if any maximal
trail starting at x is an Euler circuit. (If T = xxj - - - x4, then T is a maximal
trail starting at x iff x¢ is an isolated vertex in G — E(T).) Prove that a
nonempty graph G is randomly Eulerian from x iff G has an Euler circuit and
x is contained in every cycle of G.

Let F be a forest. Add a vertex x to F and join x to each vertex of odd degree
in F. Prove that the graph obtained in this way is randomly Eulerian from x,
and every graph randomly Eulerian from x can be obtained in this way.

Prove that a graph G is randomly Eulerian from each of two vertices x and
y iff G is the union of an even number of x—y paths, any two of which have
only x and y in common.

53.% A one-way infinite Euler trail in an infinite multigraph G = (V, E) is an

54.
55.

56.
57.

infinite sequence x1, €1, x2, €2, ... such that x1,x2,... € V, ¢; is the edge
xixiy1, e #ejifi # j,and E = {e, ez,...}.

Let G be a connected infinite multigraph with countably many edges and with
one vertex of odd degree. (Thus d(x;) is odd for some vertex xy; for every
other vertex x either d(x) is infinite or it is finite and even.) Show that G has
a one-way infinite Euler trail if, and only if, for every finite set Eg C E, the
graph G — Ep has only one infinite component.

Show the necessity of the conditions in Theorem 14.

Show that condition (iii) in Theorem 14 can be replaced by the following
condition:

(iii’) there is a vertex x such that if T is a finite trail starting at x then
G — E(T) has at most two infinite components; furthermore, if T is a closed
trail (circuit), then G — E(T') has precisely one infinite component.

Deduce Theorem 14 from the results in the previous two exercises.

Show that for every n > 1 the graph of the lattice Z” has a two-way infinite
Euler trail.

58.%7 Each of n > 4 elderly professors know some item of gossip not known to the

others. They communicate by telephone and in each conversation they part
with all the gossip they know. Show that 2n — 4 calls are needed before each
of them knows everything.
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59. How would you define the number of sides of a face so that formula (4)
continues to hold for graphs with bridges? Rewrite the proof of Theorem 15
accordingly.

60. Let G be a planar graph of order at least 3, with degree sequence (d;)7. Show
that

n

D 6—dy=) (6-d)=12

d;<6 i=1

Deduce that if §(G) > 5, then G has at least 12 vertices of degree 5, and if
8(G) = 4 then G has at least 6 vertices of degree at most 5.

61.% Let (d;)] be the degree sequence of a planar graph of order n > 3. Prove that
for k > 3 we have

k
Zd,- <2n + 6k — 16.
i=1

62.7 Make use of the nonplanarity of K5 to show that every face of a maximal
planar graph is a triangle.

63.% Prove that every planar graph has a drawing in the plane in which every edge
is a straight line segment. [Hint. Apply induction on the order of a maximal
planar graph by omitting a suitable vertex.]

64. A plane drawing of an infinite graph is defined as that of a finite graph with
the additional condition that each point has a neighbourhood containing at
most one vertex and meeting only edges incident with that vertex.

Show that Kuratowski’s theorem does not hold for infinite graphs; that is,
construct an infinite nonplanar graph without T K5 and T K3 3.
Is there an infinite nonplanar graph without a 7 K4?

65. Show that there is no bipartite cubic planar graph of order 10, but for every
n > 4,n # 5, there is a connected bipartite cubic planar graph of order 2n
(see Fig. 1.25).

FIGURE 1.25. A bipartite cubic planar graph of order 12.
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66. There are n convex sets in the plane such that the boundaries of any two of
them have at most two common points. Show that the boundary of their union
consists of at most 6n — 12 connected arcs of the boundaries of the sets.

67. Let (d;)] be the degree sequence of a planar graph G.
(i) By making use of an upper bound for ) ] d;, show that if §(G) > 4 then

n
Y d? <2n+3)-62.
1
(ii) Prove by induction on n that if n > 4 then
n
Y d}<2n+3)-62.
1

Show that equality can hold for every n > 4.

68.% Determine the maximum of 3| d2, where (d;)] is the degree sequence of a
planar graph of girth at least 4 (that is without triangles). What is the maximum
if the girth is at least g > 4?

69. Let G be a graph of order n > 4 such that every graph obtained from G by
deleting a vertex is regular (i.e.; all vertices have the same degree). Show that
G is either the complete graph K, or the empty graph Ej.

70. Show that every graph of maximal degree at most r is an induced subgraph
of an r-regular graph: if A(G) < r, then there is an r-regular graph H and a
set W C V(H) such that G = H — W. Show also that we can always find a
pair (H, W) with

[W| < max {r - 8(G), [Z(r - d(x))/r“ +1.
xeG
71. Let G be a graph with §(G) > 2. Show that there is a connected graph H with
the same degree sequence, that is with V(H) = V(G) and dy(x) = dg(x)
forall x € V(H).

72. Show that for every graph G = (V, E) and natural number £, there is a
partition V = Uf.‘=1 Vi such thatif x € V; and i # j, then x is joined to at
least as many vertices in V; as in V;.

73. Let G be a planar graph, with the edges coloured red and blue. Show that there
is a vertex x such that going round the edges incident with x in the clockwise
direction, say, we encounter no more than two changes of colour.

74. Suppose we have n > 3 great circles of the sphere 2 C R3, not all through
the same point, coloured red and blue. Deduce from the result in the previous
exercise that there is a point x € S? such that there are at least 2 great circles
through it and they all have the same colour.
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75.% Let Py, P,, ..., P, be points in the plane, not all on a line, coloured red and

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

blue. Prove that there is a line through two of these points such that all points
on this line have the same colour.

Let x1x3 - --x, be a regular n-gon, with n > 2k 4+ 1, k > 1. Show that if
kn + 1 of the pairs (x;, x;) are joined by straight line segments, then k + 1 of
them are pairwise disjoint. Does this hold for kn pairs?

Prove that in the game of Hex (played on an n x n board) precisely one of the
players wins.

Let Ty, ..., Tx be subtrees of a tree T such that forall 1 <i < j < k the

trees 7; and T; have a vertex in common. Show that T has a vertex that is in
all the T;.

Given a graph G and an equivalence relation R on V(G), let G/ R be the graph
whose vertices are the equivalence classes V; of R, and V;V; € E(G/R) if
G contains a (V; — V;)-edge. Show that for every connected graph H there
is a tree T and an equivalence relation R on V(T) such that H = T/R and
e(H) = e(T).

Show that every connected graph with an even number of edges has an
orientation in which every vertex x has even outdegree d* (x).

Let G be a connected infinite graph and let ¢ : Vg — {0, 1}, where VFr is
the set of vertices of finite degree. Show that G has an orientation such that
d*(x) = e(x) (mod 2) for every x € Vp.

Show that every multigraph has an orientation in which the out degree and in
degree of every vertex differ by at most 1.

Show that for every graph G there is a set W C V(G) such that every vertex
in W has an even number of neighbours in W and every vertex in V — W has
an odd number of neighbours in W.

Determine all graphs of order n with a loop at some of the vertices such that
no two vertices have the same degree. [A loop at a vertex x adds 1 to the
degree of x.]

LetG = (V, E) bea(simple) graph, with V = {x{, ..., x,},andletzty, ..., t,
be distinct real numbers. Show that the map V — R3, xi = (&, tiz, ti3 ), gives
an embedding of G into R? with straight line segments.

Let p1,q1, p2,92, - - -, Pm, gm be 2m distinct points in the plane. Show that
there are m disjoint polygonal arcs, with the j™ arc connecting pj to g;.

A k-book is a topological space homeomorphic to the union of k squares in
R3, with any two sharing the same segment as a common side, called the
spine of the book. Show that every graph has an embedding into a 3-book.
[Hint. Put all vertices on a line in a square, parallel to the spine, and join each
vertex x with d(x) straight line segments to points on the spine.]
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88.7 Let G and H be graphs, with V(H) = {y1, y2, - .., Yk} Justify the remarks
before Theorem 18, namely that G > H iff G has vertex=disjoint connected
subgraphs G1, G2, ..., Gy suchthatif y;y; € E(H), then G contains an edge
from G; to G;.

89. Show that G > K, if and only if T K4 C G, that is, G contains a subdivision
of Ky4.

90. Show that if H is a cubic multigraphand G > H,then G D TH.

91. Show that if K5 is a minor of a graph G, then G D TKsor G D TK33.
Check that this implies the equivalence of Theorems 17 and 18.

92. A graph is said to be outerplanar if it can be drawn in the plane in such a way
that all vertices are on the boundary of the unbounded face (or of any face, of
course). Show that a graph is outerplanar iff it contains neither K4 nor K33
as a minor.

93. Fill in the small gap in the proof of Lemma 20: show that if cases (i) and (ii)
do not apply then there are two adjacent vertices of degree 4.

94. Let 7 be the set of spanning trees of a connected graph of order n. Let H
be the graph with vertex set 7 in which T} € 7 is joined to T € F if
|E(T\)AE(T,)| = 2, i.e., if T} has precisely one edge not in 75 (and so T
has one edge not in T7). Show that H is connected and has diameter at most
n—2.

95. Let G be a graph of size (%) + 1, and maximal degree at least 2. Show that
there is a set U C V(G) such that [U| = k£ + 1 and G[U] has no isolated
vertices.

96. (Exercise 95 ctd.) Let G be a graph with 2k + 1 vertices and (%) — (5) — 1
edges. Show that there is a partition V(G) = U; U U of the vertex set such
that A(G[U;]) < k — 1fori = 1, 2. Show also that if G has one more edge
then such a partition need not exist.

Notes

The first book on graph theory was written by the Hungarian D. Kénig: Theorie der
endlichen und unendlichen Graphen, Kombinatorische Topologie und Strecken-
komplexe, Akademische Verlagsgesellschaft, Leipzig, 1936, 258 pp.; this book
contains all the basic results. (For an English translation with commentaries, see it
Theory of Finite and Infinite Graphs, Birkhauser, Boston, 1990, 426 pp.) Euler’s
theorem on the bridges of Kénigsberg had been published 200 years before, in St.
Petersburg: L. Euler, Solutio problematis ad geometrian situs pertinentis, Comm.
Acad. Sci. Imper. Petropol. 8 (1736) 128-140. Theorem 14 is from P. Erd6s,
T. Griinwald, and E. Weiszfeld, On Euler lines of infinite graphs (in Hungarian),
Mat. Fiz. Lapok 43 (1936), 129-140. In its full generality, Theorem 13 is due
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to T. van Aardenne-Ehrenfest and N.G. de Bruijn, Circuits and trees in oriented
linear graphs, Simon Stevin 28 (1951), 203-217, but the case of degree 4 can be
found in C.A.B. Smith and W.T.Tutte, On unicursal paths in a network of degree
4, Amer. Math. Monthly 48 (1941), 233-237.

Theorem 17 is in K. Kuratowski, Sur le probleme des courbes gauches en
topologie, Fund. Math. 15 (1930) 271-283; for simpler proofs see A.G. Dirac
and S. Schuster, A theorem of Kuratowski, Indag. Math. 16 (1954) 343-348,
C. Thomassen, Kuratowski’s theorem, J. Graph Theory § (1981) 225-241, and
H. Tverberg, A proof of Kuratowski’s theorem, in: Graph Theory in Memory of
G.A. Dirac (eds. L.D. Andersen et al), North Holland, Amsterdam, 1987.

The theorem of A.S. Amitsur and J. Levitzki (Theorem 19) is in Minimal
identities for algebras, Proc. Amer. Math. Soc. 1 (1950) 449-463; the simpler
and more combinatorial proof is based on R. G. Swan, An application of graph
theory to algebra, Proc. Amer. Math. Soc. 14 (1963) 367-373 and Correction to
“An application of graph theory to algebra,” Proc. Amer. Math. Soc. 21 (1969)
379-380.

Steiner triple systems, mentioned in Exercises 41-43 are named after Jakob
Steiner, who, in 1853, asked whether the necessary condition that n = 1 or
3 (mod 6) is also sufficient for their existence. In fact, the same problem had
been posed and answered in the affirmative by the Rev. Thomas Kirkman, On a
problem of combinations, Cambridge and Dublin Math. J. 2 (1847) 101-204. We
shall prove this in Exercises 84-86 of Chapter III.



II

Electrical Networks

This chapter is something of a diversion from the main line of the book, so at the
first reading some readers may wish to skip it. The concepts introduced in the first
half of Section 3 will be used in Section 2 of Chapter VIII, and in Chapter IX we
shall return to electrical networks, when we connect them with random walks.

It does not take long to discover that an electrical network may be viewed as a
graph, so the simplest problems about currents in networks are exactly questions
about graphs. Does our brief acquaintance with graphs help us tackle the problems?
As it will transpire in the first section, the answer is yes; for after a short review
of the basic ideas of electricity we make use of spanning trees to obtain solutions.
Some of these results can be reformulated in terms of tilings of rectangles and
squares, as we shall show in Section 2. The last section introduces elementary
algebraic graph theory, which is then applied to electrical networks.

It should be emphasized that in the problems we consider we use hardly more
than the terminology of graph theory; virtually the only concept to be used is that
of a spanning tree.

II.1 Graphs and Electrical Networks

A simple electrical network can be regarded as a graph in which each edge e;
has been assigned a real number 7;, called its resistance. If there is a potential
difference p; between the endvertices of ¢;, say a; and b;, then an electrical current
w; will flow in the edge e; from a; to b; according to Ohm’s law:

=P
r

i
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Though to start with we could restrict our attention to electrical networks cor-
responding to graphs, in the simplifications that follow it will be essential to allow
multiple edges, that is, to consider multigraphs instead of graphs. Furthermore, we
orient each edge arbitrarily from one endvertex to the other so that we may use p;
to denote the potential difference in the edge e;, meaning the difference between
the potentials of the initial vertex and the endvertex. Similarly, w; is the current
in the edge e;, meaning the current in e; in the direction of the edge. (Note that
we regard a negative current —w; as a positive current w; in the other direction.)
Thus, throughout the section we consider directed multigraphs, that is, directed
graphs that may contain several edges directed from a; to b;. However, in this
section there is no danger of confusion if we use a;b; to denote an edge from a; to
b;; in the next section we shall be more pedantic. Thus,

Wgp = —Wpa and  pap = — Pha.

In many practical problems, electrical currents are made to enter the network at
some points and leave it at others, and we are interested in the consequent currents
and potential differences in the edges. These are governed by the famous laws of
Kirchhoff, another renowned citizen of Konigsberg.

Kirchhoff’s potential (or voltage) law states that the potential differences round
any cycle x1x3 - - - x¢ sum to O:

Pxix; + Pxaxs + -+ Pyix + Pxixy = 0.

Kirchhoff’s current law postulates that the total current outflow from any point
is 0:

wab+wac+"'+wau+wa°o=0.

Here ab, ac, . . ., au are the edges incident with a, and w,« denotes the amount
of current that leaves the network at a. (In keeping with our convention, Wee, =
—Wgeo is the amount of current entering the network at a.) For vertices not
connected to external points we have

Wap + Wae + -+ + Way = 0.

Note that if we know the resistances then the potential law can be rewritten as a
restriction on the currents in the edges. Thus we may consider that the currents are
governed by the Kirchhoff laws only; the physical characteristics of the network
(the resistances) affect only the parameters in these laws.

It is also easily seen that the potential law is equivalent to saying that one can
assign absolute potentials V,, V3, . .. to the vertices a, b, . . . so that the potential
difference between a and b is V; — V, = pgp. If the network is connected and
the potential differences p,p are given for the edges, then we are free to choose
arbitrarily the potential of one of the vertices, say V,, but then all the other
potentials are determined. In this section we shall work with absolute potentials,
usually choosing the potential of one of the vertices to be 0, but we must keep in
mind that this is the same as the application of the voltage law.
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FIGURE II.1. The resistances, the currents, and the potentials.

In the most fundamental problems, current is allowed to enter the network only
at a single vertex s, the source, and leave it only at another vertex ¢, the sink. (We
shall indicate later how the general problem can be reduced to these fundamental
problems.) If the size of the current from s to ¢ is w and the potential difference
between s and ¢ is p, then by Ohm’s law r = p/w is the total resistance of the
network between s and ¢. As an example of the use of the Kirchhoff laws we
shall evaluate the total resistance between s and ¢ of the simple network shown in
Fig. II.1.

This network has 5 resistors, of values 1, 2, 3, 4, and 5 ohms, as shown in the
first picture. If we suppose that a unit current flows into the system at s and leaves
it at ¢, then the consequent edge currents must be as in the second picture, for
suitable values of e and f. Finally, the potentials V; = 0, V,, Vp, V; assigned
to the vertices must satisfy Ohm’s law, so V; = 1-¢ = ¢, Vp = 2(1 — ¢), and
Vs = Va+5(e+ f) = 6e+5f. Ohm’s law has to be satisfied in two more edges,
ab and bs, giving us

Vime=Vyo+3f=21-e)+3f

and
Vi=6e+5f=Vp+4(l—-e—f)=2(1—-e)+4(1 —e— f).
Hence
e=2~2e+3f
and

6e +5f =6—6e —4f,

giving e = 4/7, f = —2/21 and V; = 6e + 5f = 62/21. In particular, the total
resistance from s to ¢ is (V; — V;)/1 = 62/21.

The calculations are often simplified if we note that Kirchhoff’s equations are
linear and homogeneous in all currents and potential differences. This implies
the so-called principle of superposition: any combination of solutions is again
a solution. As an application of the principle of superposition one can show
that any current resulting from multiple sources and sinks can be obtained by
superposing flows belonging to one source and sink; that is, solutions of,the
fundamental problems mentioned above can be used to solve the general problem.
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Furthermore, the principle of superposition implies immediately that there is at
most one solution, no matter how the sources and sinks are distributed. Indeed, the
difference of two distinct solutions is a flow in which no current enters or leaves
the network at any point. If in this flow there is a positive current in some edge
from a to b then by the current law a positive current must go from b to c, then
from c¢ to d, etc., giving a trail abed - - - . Since the network is finite, this trail has
to return to a point previously visited. Thus we obtain a circuit in whose edges
positive currents flow in one direction. But this is impossible, since it implies that
the potential of each vertex is strictly greater than that of the next one round the
circuit.

Before proving the existence of a solution (which is obvious if we believe in the
physical interpretation), we shall calculate the total resistance of two networks.
Unless the networks are very small, the calculations can get very heavy, and
electrical engineers have a number of standard tricks to make them easier.

The very simple networks of Fig. I1.2 show two resistors r; and r2 connected
first in series and then in parallel. Let us put a current of size 1 through the
networks, from s to t. What are the total resistances? In the first case

Va=r1 and Vi=V,4+rp=r1+4r,
so the total resistance is
r=r+n.

In the second case, when they are connected in parallel, if a current of size e goes
through the first resistor and so a current of size 1 — e through the second, then

r
Vi=rie=ry(l—¢), so e= 2 s
ri+r2
and the total resistance is given by
rr 1 1 1
r= ——1—2——, or —=—+—.
ri+n r n o n

This indicates that reciprocals of resistances, or conductances, are just as natural
as the resistances themselves, and indeed are more convenient in our presentation.
(The conductance of an edge of resistance 1 ohm is 1 mho.) What we have shown
now is that for series connection the resistances add and for parallel connection
the conductances add.

—>—eS
S
r;
ae r ra
n V=0
t
—— V|=0

FIGURE IL.2. Resistors connected in series and in parallel.
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FIGURE IL.3. Calculating the total resistance of a cube.

The use of conductances is particularly convenient when considering certain
limiting cases of Ohm’s law. If the resistance of an edge ab is 0, then we necessarily
have V,; = V},, and from an electrical point of view the vertices can be regarded as
identical. In the usual slang, a has been “shorted” (short-circuited) to b. Of course,
a may be shorted to b if there is some other reason why V, = V},. At the other
extreme, we can introduce edges of 0 conductance without affecting the currents
and potentials. Conversely, we make an edge have 0 conductance by “cutting” it.
Of course, an edge of 0 resistance is said to have oo conductance, and an edge of
0 conductance is said to have oo resistance.

Let us see now how the acquaintance with resistors in series and in parallel and
the possibility of shorting vertices can help us determine the total resistance. As
an example, let us take the network formed by the edges of a cube, in which each
edge has 1 ohm resistance. What is the total resistance across an edge s¢? Using
the notation of the first picture in Fig. I1.3, we see that by symmetry V, = V,
and V4 = V¥, so ¢ can be shorted to g and f to d, giving us the second picture.
From now on we can simplify resistors connected in parallel and in series, until
we find that the total resistance is 7/12. Knowing this, it is easy to recover the
entire current flow.

Another important device in practical calculations is the so-called startriangle
(or star—delta) transformation. If a vertex v is joined to just three vertices, say a,
b, and ¢, by edges of resistances A, B, and C, then we call v the centre of a star,
as in the first picture of Fig. I1.4. If no current is allowed to enter or leave at v,
then we are allowed to replace this star by the triangle configuration shown in the
second picture of Fig. IL.4, because, as the reader should check (see Exercise 11),
if the vertices a, b, c are set at potentials V,, V3, V,, then in the two networks we
get precisely the same currents wgo, Whoo, Weoo leaving the network. Needless to
say, we may apply the transformation in reverse, replacing A’, B', and C' by A =
B'C'/T,B=C'A’/T,and C = A'B'/T, where T = A’ + B’ + C’. Incidentally,
the formulae become symmetrical if we use resistances in the first transformation
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C = S/C B =S/B

b 4 =54 ¢

FIGURE I1.4. The star-triangle transformation; S = AB + BC + CA.

5 3 3 13 1
i ——d % ——e

FIGURE 11.5. Applications of the star~triangle transformation.

and conductances in the second: A’ = B+C+BC/Aanda = 8/ +y'+ 8y’ /o,
where «, 8, . .. are the conductances.

As an application of the star—triangle transformation, let us calculate the total
resistance of a tetrahedron across an edge, in which the resistances are as in
Fig. IL.5. The pictures speak for themselves.

We shall conclude this section on a slightly more theoretical note: we shall prove
the existence of a solution. More precisely, we shall present Kirchhoff’s theorem

stating that, if a current of size 1 is put through a network, then the current in
an edge can be expressed in terms of the numbers of certain spanning trees. For
simplicity we assume that the graph G of the network is connected, each edge has
unit resistance, and a current of size 1 enters at a vertex s and leaves at ¢.

Theorem 1 Given an edge ab, denote by N(s, a, b, t) the number of spanning
trees of G in which the (unique) path from s to t contains a and b, in this order.
Define N(s, b, a,t) analogously and write N for the total number of spanning
trees. Finally, let wgp = {N(s,a,b,t) — N(s,b,a, t)}/N.

Distribute currents in the edges of G by sending a current of size wgp from a to
b for every edge ab. Then there is a total current size 1 from s to t satisfying the
Kirchhoff laws.

Proof. To simplify the situation, multiply all currents by N. Also, for every
spanning tree T and edge ab € E(G), let wT) be the current of size 1 along
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the unique s—¢ pathin T

1 ifT hasapaths---ab---t,
wi) =11 ifThasapaths---ba---t,

0 otherwise.
Then
N(s,a,b,t) — N(s,b,a,t) = Z wg),
T

where the summation is over all spanning trees T'. Therefore, our task is to show
that if we send a current of size ZT wg) from a to b for every edge ab, then we
obtain a total current of size N from s to ¢ satisfying the Kirchhoff laws.

Now, each wT) is a current of size 1 from s to ¢ satisfying Kirchhoff’s current
law, and so their sum is a current of size N from s to ¢ satisfying Kirchhoff’s
current law.

All we have to show then is that the potential law is also satisfied. As all edges
have the same resistance, the potential law claims that the total current in a cycle
with some orientation is zero. To show this, we proceed as earlier, but first we
reformulate slightly the definition of N(s, a, b, t). Call a spanning forest F of G
a thicket if it has exactly two components, say F; and F;, such that s is in F; and
t is in F;. Then N(s, a, b, t) is the number of thickets F = F; U F; for which
a € F;and b € F;, and N(s, b, a,t) is defined analogously. What is then the
contribution of a thicket F = F; U F; to the total current in a cycle? It is the
number of cycle edges from F; to F; minus the number of cycle edges from F; to
F;; so it is zero. O

Let us write out the second part of the proof more formally, to make it even
more evident that we use the basic and powerful combinatorial principle of double
counting, or reversing the order of summation. For a thicket F = F; U F; and an
edge ab € E(G), set

(F) [wfj“b) if F + ab is a spanning tree,
Wep =

0 otherwise.

Then
Yo = L)

where the second summation is over all thickets F. Finally, the total current around
acycle x1xp - - - xx of G, with xp+1 = x1, 1s

k
; wf) = ZF) ZIZ wlf) =0,
l=
(F)

since 3°%_, whin,, = O for every thicket F.

x

i=l1
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More importantly, the proof of Theorem 1 can be rewritten to give a solution in
the case when the edges have arbitrary conductances. For a spanning tree T define
the weight w(T) of T as the product of the conductances of its edges. Let N* be
the sum of the weights of all the spanning trees, let N*(s, a, b, t) be the sum of
the weights of all the spanning trees in which b follows a on the (unique) s—¢ path
in the tree, and let N*(s, b, a,t) = N*(t,a, b, 5).

Theorem 2 There is a distribution of currents satisfying Ohm’s law and Kirch-
hoff’s laws in which a current of size 1 enters at s and leaves at t. The value of the
current in an edge ab is given by (N*(s,a, b,t) — N*(s, b, a,1)}/N*. 0

Let us note an immediate consequence of this result.

Corollary 3 If the conductances of the edges are rational and a current of size 1
goes through the network then the current in each edge has rational value. O

The star—triangle transformation tells us that no matter what the rest of the
network is, every ‘star’ may be replaced by a suitable ‘triangle’, and vice versa.
On an even simpler level, if two networks, N and M, share only two vertices, say a
and b, and nothing else, and the total resistance of M froma tobisr, thenin NUM
we may replace M by an edge ab of resistance r. In fact, similar transformations
can be carried out for networks with any number of vertices of attachment, not
only two or three, as above. To be precise, if a part M of a network is attached
to the rest of the network only at a set U of vertices, then we may replace M by
edges of certain resistances joining the vertices of U (and introducing no other
vertices) without changing the distribution of currents outside M. We leave this
as an exercise (Exercise 137).

In estimating the resistance of a network, it is frequently convenient to make
use of the fact that if the resistance of a wire is increased then the total resistance
does not decrease. In particular, if some wires are cut then the total resistance
does not decrease; similarly, if some vertices are shorted, i.e., are identified, then
the total resistance does not increase. This is obvious if we appeal to physical
intuition; however, the problem is that the Kirchhoff laws, together with Ohm’s
law, determine all currents, potential differences, and so on: having accepted these
three laws, we have no right to appeal to any physical intuition. In this chapter we
leave this assertion as an exercise (Exercise 14), but we shall prove it, several
times over, in Chapter IX, when we give a less superficial treatment of electrical
networks.

I1.2 Squaring the Square

This is a diversion within a diversion; we feel bound to draw attention to a
famous problem arising from recreational mathematics that is related to the theory
of electrical networks. Is there a perfect squared square? In other words, is it
possible to subdivide a closed square into finitely many (but at least two) square
regions of distinct sizes that intersect only at their boundaries?
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FIGURE I1.6. The perfect squaring of the 33 x 32 rectangle, due to Moron.

The answer to this question is far from obvious: on the one hand, there seems
to be no reason why there should not be a perfect squared square; on the other
hand, it is not easy to find even a perfect squared rectangle, a rectangle divided
into finitely many (but at least two) squares of distinct sizes.

As it happens, there are perfect squared rectangles: in 1925 Morofi found
the perfect squaring of the 33 x 32 rectangle shown in Fig. II.6. This squared
rectangle has order 9: there are 9 squares in the subdivision; in the figure the
number associated with a square is the length of its side.

We shall use Morofi’s squared rectangle to illustrate an argument. Let us cut this
rectangle out of a sheet of nichrome (or any other material with low conductivity)
and let us put rods made of silver (or some other material of high conductivity) at
the top and bottom.

What happens if we ensure that the silver rod at the top is at 32 volts while the
rod at the bottom is kept at 0? Trivially, a uniform current will flow from top to
bottom. In fact, the potential at a point of the rectangle will depend only on the
height of the point: the potential at height x will be x volts. Furthermore, there will
be no current across the rectangle, only from top to bottom. Thus the current will
not change at all if (i) we place silver rods on the horizontal sides of the squares
and (ii) cut narrow slits along the vertical sides, as shown in the first picture of
Fig. IL7.

Now, since silver is a very good conductor, the points of each silver rod have
been shortened, so they can be identified. Thus as an electric conductor the whole
rectangle behaves like the plane network shown in the second picture of Fig. I1.7, in
which the conductance of an edge is equal to the conductance of the corresponding
square from top to bottom. Clearly, the conductance of a rectangle from top to
bottom is proportional to the length of a horizontal side and the resistance is
proportional to a vertical side. Consequently, all squares have the same resistance,
say unit resistance, so all edges in Fig. I1.7 have unit resistance. What is the
potential drop in an edge? It is the side length of the corresponding square. What
is the resistance of the whole system? The ratio of the vertical side of the original
big rectangle to the horizontal side, that is, 32/33.
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FIGURE I1.7. The electrical network associated with our rectangle.

Since the process above is reversible, that is, every squared rectangle can be
obtained from some network, we have an effective fool to help us in our search
for squared squares. Take a connected planar graph G and turn it into an electrical
network by giving each edge resistance 1. Calculate the total resistance from a
vertex s to a vertex ¢. If this is also 1, the network may correspond to a suitably
squared square. If the potential differences in the edges are all distinct, all squares
have different sizes, so we have a perfect squared square.

Of course, at this stage our problem is far from being solved; we do not even
know that there must exist a squared square. However, we have a chance to search
systematically for a solution. What should we look for? A plane graph containing
s and ¢t on the outer face, lacking all symmetries, such that the total resistance
froms totis 1.

Many squared squares have been found with the help of computers, but the
first examples were found without computers by Sprague in 1939 and by four
undergraduates at Cambridge — Brooks, Smith, Stone and Tutte — in 1940. The
smallest number of squares that can tile a square is 21; Fig. II.8 shows such a
tiling, due to Duijvestijn. In fact, this is the only tiling of order 21. Several other
tilings are given among the exercises.

The connection between squaring a rectangle and electrical networks gives us
immediately a beautiful result first proved by Dehn in 1903. Corollary 3 tells
us that if each edge has resistance 1 and a current of size 1 flows through the
system then in each edge the value of the current is rational. This translates to the
following result about squared rectangles.

Theorem 4 If a rectangle can be tiled with squares then the ratio of two
neighbouring sides of the rectangle is rational. O
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FIGURE I1.8. A perfect squared square: a tiling of a square with 21 incongruent squares.

Equivalently, a rectangle can be tiled with squares iff it can be tiled with
congruent squares.

Itis easily seen that electrical networks can be used to obtain tilings of rectangles
of prescribed shapes: an edge e of resistance r corresponds to a rectangle in which
the height is r times the base (see Exercise 19).

Numerous questions remain about squared rectangles; here we mention only
two. First, which plane networks correspond to perfect squared rectangles? The
answer holds no surprises: if s and ¢ are on the outer face of a plane network,
with each edge having resistance 1, then this network corresponds to a squared
rectangle iff the following condition is satisfied: when a non-zero current is put
through the network from s to ¢, there is a non-zero current in each edge.

Second, which rectangles have perfect squarings? This question is considerably
more difficult to answer. The result below, greatly extending Dehn’s theorem
(Theorem 4), was proved by Sprague in 1940.

Theorem 5 A rectangle has a perfect squaring if, and only if, the ratio of two
neighbouring sides is rational.

The result can be proved by putting together appropriate perfect rectangles; for
the proof we refer the reader to the original paper of Sprague.

In the rest of this section, we consider tilings of rectangles by rectangles: our
aim is to prove some beautiful results that somewhat resemble the results above.
Suppose that we have a tiling of a rectangle by 1 x 8 and 8 x 1 rectangles. Then,
as the total area is a multiple of 8, either one of the sides is a multiple of 4 and the
other is even, or one of the sides is a multiple of 8. Can both possibilities arise?
There are similar questions in higher dimensions. For example, if a box is filled
with 1 x 2 x 4 bricks in any position (1 x 2 x 4,4 x 2 x 1,2 x 1 x 4, etc.), then
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either all sides of the box are even, or one is a multiple of 4, another is even and
the third is odd, or else one of the sides is a multiple of 8 and the two other sides
are odd. But can all possibilities arise?

The latter problem was posed by de Bruijn in a Hungarian journal in 1959; a
decade later he proved considerable extensions of the result, including the theorems
below. There is a galaxy of beautiful proofs of the first theorem: here we give four.
Call a side of a rectangle integer if its length is an integer.

Theorem 6 Let a rectangle T be tiled with rectangles T, ..., T;. If each T; has
an integer side then so does T.

Remark. In all four proofs we assume, as we may, that 7 C R? is in canonical
position: it has vertices (0, 0), (a, 0), (0, b) and (a, b), where a, b > 0. Then the
sides of the T; are also parallel to the axes.

First Proof. Construct a bipartite graph G, with vertex classes L and R, as follows.
Let L (for ‘left’ or ‘lattice points’) be the set of integer lattice points in the tiled
rectangle: L = {(x, y) € Z2:0<x<a,0< y < b}, and let R (for ‘right’ or
‘rectangles’) be the set of tiling rectangles T1, . . ., T¢. Our graph G has vertex set
LUR, and (x,y) € L is joined to T; € R if (x, y) is a vertex (‘corner’) of T;.
Then, since each T; has an integer side, each T; has degree 0, 2 or 4, so e(G) is
even.

Also, every vertex in L, other than the corners of T, has degree 0, 2 or 4, but
the corner (0, 0) € L has degree 1. Hence G has at least one edge incident with
another corner: in particular, at least one other corner belongs to L, and we are
done. O

Second Proof. Set F(x,y) = sin2mxsin2ny. Then

// F(x,y)dxdy =0

¢
ffF(x,y)dxdy=Z/fF(x,y)dxdy=0.
T i=1 i

for each i, so

But
b a
/ [ F(x,y)dxdy = / (/ F(x, y)dx) dy
T 0 \Jo
a b
= f sin2mx dx/ sin2wy dy
0 0
1\2
= (—) (1 —cos2ma)(1 — cos2nb).
2n
Hence at least one of g and b is an integer. O

Third Proof. Colour the 1/2 x 1/2 squares of the square lattice %Zz in a black
and white checkerboard fashion. Then each tile 7; contains an equal amount of
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black and white, and so T itself has an equal amount of black and white. But it is
easily checked that in this case at least one of a and b is an integer. O

Fourth Proof. Fore > 0and x € R, set
X ifx eZ,

x + & otherwise.

¢e(x) = [

Also, forz = (x,y) € R?, define ¢¢(z) = (¢e(x), ds(¥)), and for a rectangle U
with corners (z; )‘} let ¢ (U) be the (possibly degenerate) rectangle with corners
(@ @)}

It is an easy exercise to show that if ¢ > 0 is small enough, say 0 < ¢ < &g,
then the rectangles ¢.(7;) form a tiling of ¢.(7T). Writing |U]| for the area of a
rectangle U, if 0 < & < gg then

£
Ipe (T =) I6e(To.
i=1

Now, as T; has an integer side, |¢.(7;)| is a linear function of € for 0 < & < &.
On the other hand, if a, b ¢ Z then |¢(T)| = ab + (a + b)e + &2 is a quadratic
function of ¢. As this is not the case, our proof is complete. O

It is easy to generalize the result to n-dimensional boxes, rectangular
parallelepipeds.

Theorem 7 Let a box B in R" be tiled with boxes By, ..., Be. If each B; has at
least k integer sides, then B itself has at least k integer sides.

Proof. The fourth proof above carries over, mutatis mutandis. Defining ¢, as
before, with ¢, (z) = (¢:(21), - . ., $=(2n)), we find that, if £ > 0 is small enough,
each |¢:(B;)]| is a polynomial of degree at most n — k. Also, if B has precisely h
integer sides then |¢.(B)| has degree n — k. O

Theorem 8 Letay, ..., a, be natural numbers with ay|az, .. ., ay—1|ay, and let
Bbean Ay x---x A, boxfilledwith ay X - - - X a, bricks standing in any position.
Then B can also be filled with these bricks positioned the same way. Equivalently,
there is a permutation w of {1, ..., n} such that a; divides Ay ;).

Proof. By Theorem 6, we know that a, divides an A;: let w(n) be such that g,
divides A (n). Next, we know by Theorem 7 that a,_; divides at least two A;: let
7(n — 1) # mw(n) be such that a,—; divides Ay (,—1). Continuing in this way, we
get a permutation as desired. O

For some more proofs and extensions of Theorem 6, see Exercises 28-35.

I1.3  Vector Spaces and Matrices Associated with Graphs

The vertex space Co(G) of a graph G is the complex vector space of all functions
from V(G) into C. Similarly, the edge space C1(G) is the complex vector space of
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FIGURE I1.9. If the thick cycle L is oriented anti-clockwise, its vector in C)(G) is
zp=(-1,1,1,-1,0,...,0).

all linear functions from E (G) into C. In these definitions it is sometimes conve-
nient to replace the complex field by F>, the field of order 2, or by other fields.
We shall take V(G) = {vi,v2,...,vs} and E(G) = {e1,e2,...,emn}, so that
dim Co(G) = n and dim C1(G) = m. The elements of Co(G) are usually written
inthe formx = Y|, x;v; or x = (x)]. The sum Y/ _; x;v; is a formal sum of
the vertices, but if we think of v; as the function V(G) — C that is 0 everywhere,
except at the vertex v;, where it is 1, then v;, ..., v, is a basis of Cy(G) and the
sum above simply expresses an element in terms of the basis elements. Similarly,
an element of C(G) may be written as y = Z:-';l yiei or'y = (y;)T'. We call
(v1, - . ., Um) the standard basis of the vertex space Co(G) and (ey, ..., ey,) the
standard basis of the edge space. We shall endow these spaces with the inner
product in which the standard bases are orthonormal: (x,y) = ) ; x;¥;.

In this section we shall be concerned mostly with the edge space C;(G); to start
with we define two subspaces which will turn out to be orthogonal complements of
each other. Let L be a cycle in G with a given cyclic orientation L = ujus - - - uy.
If e; = uju;yq and ¢; is oriented from u; to uj then we say that e; is oriented
as L. This oriented cycle L can be identified with an element z; of C1(G):

1 ife; € E(L) and ¢; is oriented as L,
z1(e;) = {—1 ife; € E(L)and ¢; is not oriented as L,
0 ife; ¢ E(L).
A simple example is shown in Fig. I1.9. Denote by Z(G) the subspace of C1(G)
spanned by the vectors zy as L runs over the set of cycles; Z(G) is the cycle space
of G.

Now let P be a partition V = Vi U V, of the vertex set of G. Consider the set
E(V), V2) of edges from V; to V,; such a set of edges is called a cut. There is
a vector up in C1(G) called a cut vector, or cocycle vector naturally associated
with this partition P:

1 if e; goes from Vj to V5,
up(e;) = {—1 ife; goes from V, to V7,
0 ife; ¢ E(Vy, V2).
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We write U(G) for the subspace of the edge space C;(G) spanned by all the cut
vectors up, and we call it the cut (or cocycle) space of G.

Theorem 9 The inner product space C1(G) is the orthogonal direct sum of the
cycle space Z(G) and the cut space U(G). If G has n vertices, m edges and k
components then

dmZ(G)=m—n+k and dimU(G)=n-—k.

Proof. Let us see first that Z(G) and U (G) are orthogonal. Let L be a cycle and
P apartition V = V; U V,. What is the product (z;, up)? It is simply the number
of edges of L going from V; to V5 in the orientation of L, minus the number of
edges of L from V; to V;. Thus (z;,up) = 0 for every cycle L and partition P,
so Z(G) and U(G) are indeed orthogonal.

Since the dimension of Cy(G) is the number of edges, m, both assertions will
be proved if we show that dimZ(G) > m —n 4+ k anddimU(G) > n — k. We
shall first prove this under the assumption that G is connected; the general case
will follow easily.

Thus let us assume that G is connected, that is, k = 1. Let T be a spanning tree
of G. We shall make use of T to exhibit m — n + 1 independent vectors in Z(G)
and n — 1 independent vectors in U (G). We may choose the indices of the edges
in such a way that e, 3, . . ., e,—_1 are the tree edges and e,, €p+1, . . ., €, are the
remaining edges, the chords of T

‘We know that for every chord e; there is a (unique) oriented cycle C; such that
zc;(e;) = 1 and zc; (¢j) = O for every other chord ¢;, that is, whenever j > n and
Jj # i. (For short: zc;(ej) = §;j if j > n, where §;; is the Kronecker delta.) We
call C; the fundamental cycle belonging to e; (with respect to T); also, zc; is a
fundamental cycle vector (see Fig. I1.10). Similarly, by deleting an edge e; of T
the remainder of the spanning tree falls into two components. Let Vli be the vertex
set of the component containing the initial vertex of e; and let Vzi be the vertex
set of the component containing the terminal vertex of ¢;. If P; is the partition
V= Vli U Vzi then clearly up, (e;) = §;; for1 < j <n — 1. Thecut E(Vli, Vzi) is
the fundamental cut, or fundamental cocycle, belonging to e; (with respect to T'),
and up, is the fundamental cut vector, or fundamental cocycle vector.

It is easily seen that {z¢; : n < i < m} is an independent set of cycle vectors.
Indeed, if z = Y;., Aizc; = O then for every j > n we have 0 = z(e;) =
Z;';n Ai8;; = A;j, and so every coefficient A; is 0. Similarly, the fundamental cut
vectorsup,, | <i <n — 1, are also independent. Hence dim Z(G) > m —n + 1
and dim U(G) > n — 1, as required.

Finally, the general case k > 1 follows immediately from the case k = 1. For
if G has components G, G, ..., Gk then C;(G) is the orthogonal direct sum of
the subspaces C1(G;), i = 1,2,...,k; furthermore, Z(G;) = Z(G) N C1(G;)
and U(G;) = U(G) N C1(Gy). m

The proof above shows that n(G) = dim Z(G), called the nullity of G, and
r(G) = dim U(G), the rank of G, are independent of the field over which the
edge space is defined. The nullity is also called the cyclomatic number or corank
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e

FIGUREIL 10. The fundamental cycle vector belonging to eg is zc, = eg—er+e1+e4—es;
the fundamental cut vector belonging to e4 is up, = e4 — €10 — €.

of G. The use of a spanning tree in the proof is not compulsory; in some cases, for
instance in the case of a planar graph, there are other natural cycle and cut bases
(cf. Exercise 37).

There are several matrices naturally associated with a graph and its vector spaces
discussed above. The adjacency matrix A = A(G) = (a;;) of a graph G is the

n X n matrix given by
1 ifyv; € E(G),
ajj = .
0 otherwise.

In order to define the incidence matrix of a graph, we again consider an orientation
of the edges, as in the definition of the cycle and cut spaces. The incidence matrix
B = B(G) = (bij) of G is the n X m matrix defined by

1 if v; is the initial vertex of the edge ¢;,
bij = { —1 if v; is the terminal vertex of the edge e;,
0 otherwise.

There is a simple connection between the two matrices A and B. As usual, we
write M’ for the transpose of a matrix M.

Theorem 10 Let D = (D;;) be the n X n diagonal matrix with D;; = d(v;), the
degree of vi in G. Then

BB' =D - A.

Proof. What is (BB");j?Itis Y -, bibji, which is d(v;) if i = j, —1if v;vj is
an edge (if e; = v;v; is directed from v; to v, then b;bj; = 1(—1) = —1 and all
other products are 0), and 0 if v;v; is not an edge and i # j. O

The matrix L = D — A, the combinatorial Laplacian or Kirchhoff matrix of a
graph, is of great importance in spectral graph theory: we shall return to it at the
end of this section and in Chapter IX.

We may and will identify the matrices A and B with the linear maps A :
Co(G) = Cp(G) and B : C1(G) — Cy(G) that they define in the standard bases:
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(Ax); = Y 1_; aijxj and (By); = Y7 bijy;. If we wanted to be pedantic, we
would write the vectors in the vertex and edge spaces as column vectors, or we
would put Ax! and By', where ¢ stands for transposition; we shall not do this since
there is no danger of confusion. If C is a cycle then clearly Bz¢c = 0 € Co(G); in
fact, it is easily shown (cf. Exercise 38) that the cycle space is exactly the kernel
of B. Thus therank of Bisr(B) = m — (m —n + k) = n —k, the rank of G, and
its nullity is the corank, or cyclomatic number, of G. Furthermore, the transpose
of B maps Co(G) into C1(G), and the image of B! is exactly the cut space (cf.
Exercise 39).

In Chapter VIII we shall discuss in some detail the eigenvalues and eigenvectors
of the adjacency matrix; in this section we shall use the matrices to solve the
electrical network problem discussed in the first section. In fact, it was Kirchhoff
who first realized the applicability of matrix algebra to graph theory, exactly in
connection with the electrical network problem.

How can we formulate the Kirchhoff laws in terms of matrices and vectors
in the edge space? Let us assume that G’ is the graph of our electrical network,
V(G ={vi, vz, ...,vn1), E(G") = |ey, e, ..., ep), the network is connected
and we have a voltage generator ensuring that the potential difference between
v; and v; is g; — g; volts for 1 < i < j < k. In order to express Kirchhoff’s
laws in a neat form, we add a vertex v, to G’, and join it to vy, vy, ..., v; the
new graph is G. Let m = m’ + k and epyq; = vav;, i = 1,2,...,k, so that
V(G) ={v1,v2,...,us} and E(G) = {e1, €2, ..., em}.

Give the edges of G’ an arbitrary orientation and let w; be the amount of current
flowing in the edge e;; thus w; = —1 means a current of 1 ampere in the opposite
direction. Direct each new edge e,4; from v, to v; and let wy,/,; be the rotal
current entering the network at v;. Once again, w,,4; = —1 means that a current
of 1 ampere leaves the network at v;. The vectorw = (w1, w3, ..., wy) € C1(G)
is the current vector. In this notation Kirchhoff’s current law takes the form

Bw=0. 1)

It is just as easy to formulate Kirchhoff’s potential law in matrix form. Let p;
be the potential difference in the edge ¢; and let p = (p1, p2, ..., pm) € C1(G)
be the potential vector. The potential law states that (z, p) = 0 for every cycle
z € C1(G). Instead of postulating this about every cycle, we collect all the
necessary information into a single matrix. As before, we choose a spanning
tree T in G and label the edges so that ey, ey, ..., e, are the tree edges and
en, €ntl, - .., ey are the chords. Let C be the m x (m — n + 1) matrix whose
i th column is the fundamental cycle vector z¢,_,,; belonging to the edge e,—14,
i=1,2,...,m-n+ 1. Since the fundamental cycle vectors form a basis of the
cycle space, the potential law takes the form

C'p=0, @)

where C* denotes the transpose of C.
Now, in order to find the current through the edges of G’ we need one more
equation, namely the equation relating the potential to the current, the resistance
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and the voltage generator. For i < m’, let r; be the resistance of the edge ¢;, and
postulate that each new edge ej, j > m’ + 1, has resistance r; = 0. We may
assume that r; > O for every i < m/, since otherwise the edge ¢; could have
been cut. Let R = (R;;) be the m x m diagonal matrix with R;; = r;. Finally,
letg=(0,...,0,g1,82,...,8) € C1(G) be the vector of the voltage generator.
Then clearly,

p=Rw+g. 3)

This equation contains all the information we have about the electric current in
addition to the Kirchhoff laws.

In order to solve (1), (2) and (3) for w and p, we shall split C;(G) as ET + Ey,
where ET is the subspace spanned by the tree edges and Ey is spanned by the
chords, the edges not belonging to T. Let w = (wr, wy) and p = (pr, pn) be
the corresponding splittings; furthermore, writing B for the matrix obtained from
B by omitting the last row, we have

Cr ~

C= and B = (BrBy).
Cn

As the columns of C are the fundamental cycles, Cy isthe (n—n+1)x(m—n+1)

identity matrix I;—n+1. Since the kernel of B contains all cycle vectors, BC = 0

and so BC = 0, giving BrCr = —By. Now, Br is invertible, as the reader should

check (cf. Exercise 40), so

Cr=-Bf B N.
After this preparation we can easily solve our equations.

Theorem 11 The electric current w satisfying p = Rw + g is given by w =
—C(C'RC)"IC'g,

Proof. Equation (1) implies that Brwr + Bywy = 0,50 wr = —B7!Bywy =
Crwy. Hence w = Cwy. Combining (2) and (3) we find that C* Rw + C'g = 0
and so (C* RC)wy = —C'g. As C*RC is easily shown to be invertible, the result
follows. O

Clearly, Theorem 11 is valid in a somewhat more general situation, not only
when G and g are defined as above. In fact, the following conditions are sufficient
(and more or less necessary) for the existence of a unique current: g;r; = 0 for
every i and the edges e; with r; = 0 form a connected subgraph.

Furthermore, the results hold for multigraphs: all the concepts (incidence matrix,
cycle and cut spaces, fundamental cycles and cuts) can be defined as before and
the proofs of the results remain unchanged.

By considering multigraphs one can set up Theorem 7 in a slightly simpler
form, without adding a new vertex to the graph G’ of the network. Thus if the
current enters G’ at a vertex a and leaves it at a vertex b, then we joina to b by a
new edge e of 0 resistance (even if a and b had been joined before) and postulate
(by choosing g = (0,0,...,0,1), where ¢ is the last edge) that the potential
difference in e is 1. Using this set-up one can check that the ratio of the current in
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e; to the total current (that is, the current in e) is indeed given by Theorem 1 of
Section 1, though this checking is rather tedious and involved. On the other hand,
as we shall show now, it is very easy to express the total number of spanning trees
in a graph in terms of the combinatorial Laplacian.

In fact, let us consider the case of electrical networks with differing resistances
and weighted spanning trees, as in Theorem 2. Let then G be a graph with
V(G) = {v1, ..., vn} and conductance matrix C = (c;;): if i = j or v;v; is not
an edge then ¢;; is 0o, otherwise it is the conductance of the edge v;v;.

As in Theorem 2, given a spanning tree T, write w(T') for the product of the
conductances of the edges of T, and let N*(G) = 3 w(T), with the summation
over all spanning trees.

The combinatorial Laplacian, or Kirchhoff matrix, of our electrical network
is L = D — C, where D is the diagonal matrix whose i th diagonal entry is
Yj=1€ij = 2j_1Cji- As in L all rows and columns sum to 0, all the first
cofactors of L are equal: denote by K*(G) this common value. Here then is the
matrix—tree theorem for electrical networks.

Theorem 12 With the notation above, N*(G) = K*(G).

Proof. We may assume that G is connected, since otherwise N*(G) = K*(G) =
0. Also, the result is trivial for n = 1 since then N*(G) = K*(G) = 1.

Let us apply induction on the number of edges of G. As the result holds for
no edges, we turn to the proof of the induction step. Suppose then thatn > 1, G
is connected, and the assertion holds for networks with fewer edges. Assuming,
as we may, that v; and v, are adjacent, let G — vjv; be obtained from G by
cutting (deleting) the edge viv2, and let G/vjvy be obtained from G by fusing
(contracting) the edge vjvy. Thus in G/vv, the vertices vy and v, are replaced
by a new vertex, vi2, say, which is joined to a vertex v;, i > 2, by an edge of
conductance c|; + ¢;, provided c¢y; + ¢3; > 0.

The crunch of the proof is that N* and K * satisfy the same cut-and-fuse relation:

N*(G) = N*(G — vivn) + c12N* (G /v1v2), €]
and
K*(G) = K*(G — vivp) + c12K*(G/v1v2). )

Indeed, N*(G — vjvz) ‘counts’ the spanning trees not containing vyvz, and
¢12N*(G/vyvz) ‘counts’ the remaining spanning trees. To see (5), simply consider
the cofactors belonging to vy and vys.

This is all: by the induction hypothesis, the right-hand sides of (4) and (5) are

equal. O

A special case of Theorem 12 concerns multigraphs (or even graphs): all we
have to do is to write c;; for the number of edges joining v; to v;.

Corollary 13 The number of spanning trees in a multigraph is precisely the
common value of the first cofactors of the combinatorial Laplacian.

A similar result holds for directed multigraphs; however, this time we have to
count spanning trees oriented towards a vertex, as in Section L.3.
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Theorem 14 Let G be adirected multigraph withvertexset V(G) = (vy, ..., vy).
For 1 <i < n, denote by t;(G) the number of spanning trees oriented towards v;.
Also, let L = (£;;) be the combinatorial Laplacian of G: for i # j, —&;; is the
number of edges from v; to vj, and £;; = — Z#i £ij. Then t;(G) is precisely the
first cofactor of L belonging to £;;.

The proof is entirely along the lines of the proof of Theorem 12: when consid-
ering 11 (G), say, all we have to take care is to contract all edges from v; fo vy for
some i > 1.Note that this result contains Corollary 13: given a multigraph, replace
each edge by two edges, oriented in either direction, and apply Theorem 14.

II.4 Exercises

In exercises 1-7 every graph is taken as a simple electrical network, with every
edge having resistance 1.

1. Calculate the resistance of the network shown in Fig. II.1 measured between
the vertices 2 and 3.

2. For each different pair of vertices of a cube calculate the resistance between
them.

3. What is the resistance between two adjacent vertices of (a) an octahedron, (b)
a dodecahedron and (c) an icosahedron?

4. Suppose each edge of a connected network is in the same number of spanning
trees. Prove that the total resistance between two adjacent vertices is (n—1) /e,
where n is the order and e is the size of the network. Verify your answers to
Exercise 3.

5. By applying suitable star-triangle transformations, calculate the resistance of
a dodecahedron between the midpoints of two adjacent edges.

6. Show that the resistance across an edge of K, is 2/n, and so is the resistance
between two vertices of K, ,, that belong to the second class (having m
vertices).

7. Calculate the resistance between two nonadjacent vertices of the complete
three-partite graph K, , .

8. Give a detailed proof of Theorem 2.
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Construct the tilings associated with the networks in Fig. I1.11.

s G5 s H6

t t

FIGURE I1.11. Networks with edges of differing resistances.

~ Consider an electrical network on a complete graph. Indicate a simple way

of measuring the resistances of the edges by setting the vertices at certain
potentials and measuring the currents leaving or entering the network at the
vertices.

Let M; and M; be electrical networks, each containing a set U of vertices,
the vertices of attachment. We say that (M1, U) is equivalent to (M3, U) if
whenever N is a network sharing with each M; the set U and nothing else, and
we set some vertices of N at certain potentials, thenin N U M; and N U M»
we obtain precisely the same distribution of currents in the edges of N. For
a,b e U,a # b,let wyp(M;, U) be the amount of current leaving M; at b if
the vertex a is set at potential 1 and all other vertices of U are set at 0. Show
that (M1, U) is equivalent to (M3, U) if wap(M1, U) = wep(My, U) for all
a,beU,a+#b.

Use this to verify the star—triangle transformation.

(Exercise 11 contd.) Show that a network M, with attachment set U, is
equivalent to a network with vertex set U (and attachment set U) if, and only
if, wap(M, U) = wpa (M, U) foralla,b € U,a #b.

13.% Show that every network M with attachment set U is equivalent to a network

with vertex set U. [Hint. By the result in the previous exercise, it suffices
to show that wgp(M, U) = wp,(M, U), where a,b € U, a # b. Short all
vertices of U, other than a and b, to a vertex c. Let V; be the potential of a
vertex x when we set a at 1, and b and ¢ at 0, and let it be V; when we set
b at 1, and a and ¢ at 0. For a vertex x, set P, = (V;,V)) € R? and, for
each edge xy, let the point Py pull Py with a force cxy(Py — Py). Note that
if P, = (1,0), P, = (0, 1) and P. = (0, 0) are fixed, then this system is in
equilibrium, so the torque at P, is 0.]

14 Show that if the resistance of a wire is increased (in particular, if it is cut) then

15.

the total resistance of a network does not decrease, and if a wire is shorted (or
just some vertices are shorted) then the total resistance does not increase.

Given a multigraph G and an edge e, write G — e for G without the edge e,
and G/e for the multigraph obtained by contracting the edge e, i.e., for the
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graph obtained from G — e by identifying the endvertices of e. Also, for a
connected multigraph G and an edge e, write Pg(e € T) for the probability
that a random spanning tree contains e. Thus

Pg(e € T) = N(G/e)/N(G),

where N(H) denotes the number of spanning trees of a graph H.
Show that the result in the previous exercise is equivalent to the assertion that
if e and f are distinct edges of G then

Po/rle e T) <PgleeT) <Pg-s(eeT).

The n-dimensional (hyper-)cube has vertex set {0, 1}", with two sequences
a = (a;)}, b = (b;)] € {0, 1}" joined by an edge if they differ in exactly one
term (so a; # b; for precisely one suffix 7). Show that the resistance across
an edge is (2" — 1)/(n2" 1) = % - FLT ~ ,—2,, and calculate the resistance
between two opposite vertices.

17+ (Exercise 16 contd.) Show that the resistance between any two vertices

18.

of the n-dimensional cube is at least (2" — 1)/(n2""1) ~ % and at most
(n+1/()~ 2.

Let G, be the n by n grid, with s and ¢ in the opposite corners, and let H,,
be its diagonal variant, as shown in Fig. I1.12. Estimate the total resistance
between s and ¢ in the two networks if every edge has resistance 1.

)

(N
—
[
—

no
J—
—

FIGURE II.12. The networks G¢ and Hs.

19. Fork > 1, let Ly, My and Nj be the networks indicated in Fig. II.13. Thus

My has 2k + 1 edges, with resistances 1,2,...,k,k+ 1, and 1, %,..., %
For each network, calculate the resistance from s to ¢, and find the associated
tiling.



I1.4 Exercises 61

FIGURE I1.13. The networks Lg, Mg and N4, the numbers indicate the resistances.

207 Let s and ¢ be vertices of the boundary of the outer face of a plane network,
in which each edge has unit resistance. Suppose that when a non-zero current
is put through the network from s to ¢ then there is a non-zero current in each
edge. Show that this network corresponds to a squared rectangle.

21} Show that there is no perfect squared rectangle of order less than 9 (that is,
made up of at most 8 squares).

22F* Show that there are two essentially different squared rectangles of order
9; the squaring of the 33 x 32 rectangle in Fig. II.6 and the squaring of the
69 x 61 rectangle in Fig. I1.14.

33 36

28 25

16

FIGURE I1.14. A squaring of the 69 x 61 rectangle.

23. Find the perfect squared square indicated in Fig. II.15. (This was found by
A.J.W. Duijvestijn.)
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FIGURE I1.15. A perfect squaring of the 110 x 110 square: the largest squares have side
lengths 60, 50, 28, 27, 26, 24, 23, 22, 21 and 18.

24. Find the simple perfect squared square given by the network in Fig. II.16.
(This example was found by T.H. Willcox.)

FIGURE II.16. A network giving a perfect squared square: the main square has side
length 110, and the constituent squares have side lengths 60, 50, 28, 27, 26, 24, 23, 22,
21,19,18,17,16, 14,12,9,8,6,4,3,2 and 1.
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25} Show that an equilateral triangle cannot be dissected into finitely many

26.

217.
28.

29.

30.

3L

32.
33.

34.

incongruent equilateral triangles.

Prove that if a rectangular parallelepiped can be decomposed into cubes then
the ratios of its sides are rational.

Show that a cube cannot be dissected into finitely many incongruent cubes.

Dot the i’s in the following proof of Theorem 6. For arectangle U = [x], x2] x
[y1, y2l, set y(U) = (x2 — x1) ® (y2 — y1) € Z(R/Z) ® Z(R/Z). Then
¥(T) = Y_ ¥ (T;) = 0,and so T has an integer side.

Fill in the details in the following proof of Theorem 6. Let M be the free
Z-module with basis R? /Z2 For a rectangle U = [x1, x2] x [y1, y2] € R?,
set w(U) = Yo ;1 (=" (xi, 3j) € M. Then u(T) = Y{_; u(T3) = 0, 50
T has an integer side.

Prove Theorem 6 in the following way.

(i) Let p > 2 be a prime. Check that if each 7; has only integer sides and
one of them is divisible by p, then one of the sides of T is divisible by p.
(ii) Foraprime p > 2 and x = (x1,x2) € R?, let ép(x) = ([px1], [px2]) €
Z2. Assume that T = [0, a] x [0, b]. Show that if p is large enough then
&p(T) is tiled with ¢,(T1), ..., ¢p(Ty), where ¢, (U) is the rectangle whose
vertices are the images of the vertices of U under ¢,. Apply (i) to this tiling,
and deduce Theorem 6.

Prove the following extension of Theorem 6. Let T1, ..., T¢ be rectangles
tiling the rectangle T = [0, a] x [0, b] C R? Suppose that each 7; has 0, 2
or 4 vertices (corners) in Z2. Then T has an integer side. [Hint. First proof of
Theorem 6.]

Adapt the second proof of Theorem 6 to prove Theorem 7.

Let Ty, ..., T; be rectangles contained in a rectangle T such that every point
of T that is not on the boundary of some 7; is contained in the same m > 1
number of rectangles 7;. Show that if each 7; has an integer side then so
does T.

We know from Corollary 8 that if an @ x b x ¢ box B in R3 is filled with
1 x 2 x 4 bricks, then it can also be filled with these bricks all standing in the
same way. Prove this as follows. First, note that 8|abc and each of ab, bc and
ca is even. Hence, we are done unless each of a, b and ¢ is even. Assume then
that we are in this case. Replace the box B by an appropriate set of lattice
points: B’ = {(x, y,z) € Z1<x<al< y £b,1 <z < c}. Check that
the sum of the coordinates of the points of B’ is %abc(a +b+c+3)and
that the sum of the coordinates of the points in a box is of the form 8s + 16.
Deduce that at least one of a, b and c is divisible by 4. [This was de Bruijn’s
original problem he published in a Hungarian journal in 1959; the solution
above is his own: it was published in 1960.]
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Prove the result in the previous exercise in the following way. As before, we
may assume that each of a, b and c is even. Divide the box B into 2 x 2 x 2
cubes, and consider a black and white checkerboard colouring of these cubes.
Check that each 1 x 2 x 4 brick has exactly as much black as white, and so
there are as many black cubes as white ones. Deduce the result from this. { This
solution to de Bruijn’s problem, given by G. Katona and D. Szisz in 1960, is
the origin of the ‘checkerboard’ proof of Theorem 6.]

Let 7 be the set of tilings of a simply connected domain with2 x 1 and 1 x 2
dominoes. Let H be the graph with vertex set 7 in which a tiling 7} is joined
to a tiling T if 71 and T, agree in all but two dominoes. Show that H is
connected. Show also that the assertion need not hold if the domain is not
simply connected.

Show that in a plane graph the boundaries of the bounded faces form a cycle
basis.

Show that the cycle space is the kernel of the map C;(G) — Cp(G) defined
by the incidence matrix B.

Let B! be the transpose of the incidence matrix B of a graph G. Show that
the cut space is the image of the map Co(G) — C;(G) defined by B*.

Let F be a set of n — 1 edges of a graph of order n with incidence matrix B.
Let Br be an (n — 1) x (n — 1) submatrix of B whose columns correspond
to the edges of F. Prove that B is invertible iff F is the edge set of a tree.

Deduce from Corollary 13 that there are n"~2 trees on n distinguishable
vertices.

Which squared rectangle corresponds to the network in Fig. I1.17. Rotate the
rectangle through 90° and draw the network for this rectangle.

FIGURE I1.17. A plane network.

How many essentially different squared rectangles correspond to the network
of the cube in Exercise 2?7
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44. Show that a graph is planar if, and only if, its cycle space has a basis of cycles

45.

such that every edge belongs to at most two of these cycles.

Given a tiling of a rectangle by rectangles, write S for the number of segments:
the number of maximal segments that are unions of some sides of the rectan-
gles, T for the number of tiles, and C for the number of crosses: the number
of points in four tiles (see Fig. I1.18). Prove that S — T + C = 3. [Hint. Let G
be the plane graph of the tiling, with n vertices, m edges and f = T + 1 faces.
Write n; for the number of vertices of degree i so that n; = 4 and n4 = C.
Check that 2m = 8 + 3n3 + 4C and § = n3/2 + 4. Apply Euler’s formula.]

|

FIGURE I1.18. A tiling of a rectangle by rectangles, with S = 15, T = 14 and C = 2.

46. Note that in every triangulation of a convex n-gon there are at least 2n — 3

segments that occur twice among the sides of the triangles of the triangulation
and the sides of the original n-gon. Show that the same holds for every tiling of
a convex n-gon with triangles, as in Fig. 11.19. [Hint. Suppose that our tiling
is made up of T triangles, and there are ¢ segments that occur twice. The
polygon and the triangles have, altogether, n + 37 sides, sos = n+ 37T — 2t
sides occur once (‘singly’). Suppose also that there are b boundary vertices,
i.e., vertices of the triangles that are also on a side of a triangle or of the n-gon.
Check that s < 3b son + 3T = 2t + s < 2t + 3b. Counting angles, check
that T > b + n — 2, and deduce the assertion.]

FIGURE 11.19. A tiling of a square with triangles; the parameters are n = 4, T = 9,
t=5,s=2landb="7.
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47. (Exercise 46 contd.) Show that in a tiling of a convex n-gon with triangles
there are precisely 2n — 3 segments that occur twice among the sides of the
triangles and the n-gon if, and if only if,

(i) every vertex (of a triangle) in the interior of the n-gon is in the interior of
a side of a triangle,
(ii) if a segment is a union of sides then it is itself a side.

II.5 Notes

The origin of the fundamental results on the distribution of currents, Theorems 1
and 2, is G. Kirchhoff, Uber die Auflosung der Gleichungen, auf welche man
pei der Untersuchung der Linearen Vertheilung galvanischer Strome gefiihrt wird,
Ann. Phys. Chem. 72 (1847) 497-508.

Theorem 4 is one of the simplest results from M. Dehn, Uber die Zerlegung
von Rechtecken in Rechtecke, Math. Ann. 57 (1903) 314-322; its extension,
Theorem 5, is from R. Sprague, Uber die Zerlegung von Rechtecken in lauter
verschiedene Quadrate, J. fiir die Reine und Angewandte Mathematik 182 (1940)
60-64.

The first perfect squared squares were published independently by R. Sprague,
Beispiel einer Zerlegung des Quadrats in lauter verschiedene Quadrate, Math.
Zeitschrift 45 (1939) 607-608, and by R.L. Brooks, C.A.B. Smith, A.H. Stone
and W. T. Tutte, The dissection of rectangles into squares, Duke. Math. J. 7 (1940)
312-340. The square shown in Fig. I1.8 was published in A.J.W. Duijvestijn,
Simple perfect square of lowest order, J. Combinatorial Theory Ser. B 25 (1978)
240-243.

Two survey articles the reader may wish to look at are W.T. Tutte, The quest
of the perfect square, Amer. Math. Monthly 72 (1965) 29-35 and N.D. Kazarinoff
and R. Weitzenkamp, Squaring rectangles and squares, Amer. Math. Monthly 80
(1973) 877-888. A recent compendium of squaring results is a privately published
volume by J.D. Skinner 11, Squared Squares — Who is Who, and What is What,
Lincoln, Nebraska, 1993, 167 pp.

The origins of the results of de Bruijn at the end of Section 2 are two problems
he published in the Hungarian Matematikai Lapok in 1959 and 1961; the material
presented is from N.G. de Bruijn, Filling boxes with bricks, Amer. Math. Monthly
76 (1969) 37-40. For a rich variety of proofs and generalizations of these results,
see S. Wagon, Fourteen proofs of a result about tiling a rectangle, Amer. Math.
Monthly 94 (1987) 601-617.
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Flows, Connectivity and Matching

Given a collection of boys and girls, when can all the girls find husbands that they
know? For a subgroup H of a finite group G, are there group elements g1, ..., g,
such that {g1H, ..., g, H} is the collection of left cosets and {Hgi, ..., Hg,}
is the collection of right cosets of H? Given sets Ay, ..., Ay, are there distinct
elementsa; € Ay, ...,am € Ap?

These seemingly disparate questions are, in fact, closely related: they all concern
sets of independent edges, called matchings, in bipartite graphs, and are answered
by the same basic theorem in various guises, attributed to Hall, Kénig and Egerviry.
This theorem, which we shall call Hall’s marriage theorem, is a prime example
of several results we shall present in this chapter giving necessary and sufficient
conditions for the existence of certain objects; in each case the beauty of the
theorem is that a condition whose necessity is obvious is shown to be also sufficient.
In the natural formulation of our results we shall have two functions, say f and g,
clearly satisfying f < g, and we shall show that max f = min g. The results of
this chapter are closely interrelated, and so the order they are proved in is a matter
of taste; to emphasize this, some results will be given several proofs.

In the previous chapter we discussed flows in electrical networks: in Section 1 of
this chapter we shall study rather different aspects of flows in directed graphs. Our
main aim is to present the simple but very powerful max-flow min-cut theorem of
Ford and Fulkerson, proved in 1962. This result not only implies the central results
of the next two sections, but it also has a number of other important consequences
concerning undirected graphs.

Connectivity of graphs is our theme in the second section: the main result is
Menger’s theorem, first proved in 1927. Hall’s marriage theorem and its variants
are presented in Section 3.
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In the first instance we shall deduce the theorems of both Menger and Hall from
the max-flow min-cut theorem. However, as these results are closely related, and
are of fundamental importance, we shall also give independent proofs of each.

Hall’s theorem tells us, in particular, when a bipartite graph has got a 1-factor,
a subgraph whose vertex set is that of the original graph and in which every vertex
has degree 1. The question of the existence of a 1-factor in an arbitrary graph is
considerably harder. It is answered by the theorem of Tutte we shall present in
Section 4.

The last section is about so-called stable matchings in bipartite graphs. These
are matchings which are compatible with ‘preferences’ at all the vertices: in a
well defined sense, such a matching is a local maximum for every pair of vertices,
one from each class. The fundamental result is a theorem of Gale and Shapley,
proved in 1962: this result is not only of great interest in its own right, but it also
has numerous applications. Some of these applications will be given here; another
important recent application, to list colourings, will be given in Chapter V.

III.1 Flows in Directed Graphs

LetGbea (finite) directed graph with vertex set V and edge set E. We shall study
(static) flows in G from a vertex s (the source) to a vertex t (the sink). A flow f isa

non-negative function defined on the edges; the value f(X3) is the amount of flow
or current in the edge 3 For notational simplicity we shall write f(x, y) instead
of f(x3) and a similar convention will be used for other functions. Also, we take
f(x, y) to be 0 whenever ﬂ ¢ E. The only condition a flow from s to ¢ has to
satisfy is Kirchhoff’s current law: the total current flowing into each intermediate
vertex (that is, vertex different from s and ¢) is equal to the total current leaving
the vertex. Thus if for x € V we put

' =(yeV: ek

e ={eV: ¥ ek},

then a flow from s to t satisfies the following condition:

Y few= ) f@x

yel'+(x) zel—(x)

foreach x € V — {s, t}. Since

0= > {2 fen- ) f@x

xeV—{s,t} | yeI'+t(x) zell—(x)

=Y 1> faw- )Y funt,

uels,t} | zeI'~(u) yel+@u)



III.1 Flows in Directed Graphs 69

we find that
Yo fen= ), fo= ). fo.n- Y. ft.
yel+(s) yel'—(s) yel'= (1) yel'+ (1)

In other words, the net current leaving s equals the net current flowing into ¢. The
common value, denoted by v(f), is called the value of f or the amount of flow
froms to ¢

We wish to determine the maximal flow value from s to ¢ provided the flow
satisfies certain constraints. First we shall deal with the case when the so called
capacity of an edge restricts the current through the edge. It will turn out that
several other seemingly more complicated restrictions can be reduced to this case.

Let us fix our directed graph G = (V, E) and two vertices in it, say s and ¢.

With each edge ;Sz of G we associate a non-negative number c(x, y), called the
capacity of the edge. We shall assume that the current flowing through the edge

;Sz cannot be more than the capacity c(x, y).
Given two subsets X, Y of V, we write E(X, Y) for the set of directed X — Y
edges:

EX,Y)={xyeE:xeX, yeY).
Whenever g : E - Ris a function, we put
gX, ¥y =Y g(x,y),

where the summation is over E (X,Y). If S is a subset of V containing s but
not ¢ then E (8,S) is called a cut separating s from t. Here S = V — § is the
complement of S. If we delete the edges of a cut then no positive-valued flow from
s to t can be defined on the remainder. Conversely, it is easily seen that if F is a
set of edges after whose deletion there is no flow from s to ¢ (that is, v(f) = 0 for
every flow from s to #) then F contains a cut (Exercise 1). The capacity of a cut
E (8,5) is c(S, S) (see Fig. IIL1). It is easily seen (Exercise 2) that the capacity
of a cut is at least as large as the value of any flow, so the minimum of all cut
capacities is at least as large as the maximum of all flow values. The celebrated
max-flow min-cut theorem of Ford and Fulkerson states that this trivial inequality
is, in fact, an equality. Before stating this theorem and getting down to the proof,
let us justify the above use of the words ‘minimum’ and ‘maximum’. Since there
are only finitely many cuts, there is a cut whose capacity is minimal. The existence
of a flow with maximal value is only slightly less trivial. Indeed, rather crudely,

v(f) <Y elx,y)
xyek
for every flow f, so v = supv(f) < oo. Let fi, fa,... be a sequence of flows
with lim,, v(f;) = v. Then, by passing to a subsequence, we may assume that for

each x_SI € E the sequence (f(x, y)) is convergent, say to f(x, y). The function
f is a flow with value v, that is, a flow with maximal value. In a similar way one
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FIGURE IIL.1. A cut with capacity 12. (The numbers next to the edges indicate their
capacity.)

can show that even if some of the edges have infinite capacity, there is a flow with
maximal value which can be either finite or infinite (Exercise 3).

Theorem 1 (Max-Flow Min-Cut Theorem.) The maximal flow value from s to t
is equal to the minimum of the capacities of cuts separating s from t.

Proof. We have remarked already that there is a flow f with maximal value, say
v, and the capacity of every cut is at least v. Thus, in order to prove the theorem we
have to show that there is a cut with capacity v. We shall, in fact, do considerably
more than this: we shall give a very simple procedure for constructing such a cut
from a flow f with maximal value.

Define a subset S C V recursively as follows. Lets € S.If x € S, and

c(x,y) > f(x,y)
or

f(y,x) >0,

thenlety € §.

We claim that E(S, S) is a cut separating s from ¢ with capacity v = v(f).
Let us see first why 7 cannot belong to S. If ¢ belongs to S, we can find vertices
Xg =S, X{,...,X¢ =t such that

g = max{c(x;, xiy1) — f(xi, xi41), f(Xig1, %)} > 0

forevery i, 0 <i <[ — 1. Put & = min; &. Then f can be augmented to a flow
f* in the following way: if &; > f(x;4+1,x;) then increase the flow in mﬂ by
&; otherwise, decrease the flow in X;1%; by ¢. Clearly, f* is a flow and its value
i§ v(f*) = v(f) + ¢, contradicting the maximality of f. This shows that¢ ¢ S so
E(S, S) is a cut separating s from .

Now, v(f) is equal to the value of the flow from S to S defined in the obvious

way:
Yo fey— Y fGy).

x€S,yeS xeS,yes
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By the definition of S the first sum is exactly
> clx,y) =c(S,9),

xeS8,yeS

and each summand in the second sum is zero. Hence ¢(S, S) = v( f), as required.
O

The max-flow min-cut theorem is the cornerstone of the theory to be presented
in this chapter. Note that the theorem remains valid (with exactly the same proof)
if some of the edges have infinite capacity but the maximal flow value is finite.

The above proof of the theorem also provides a surprisingly efficient algorithm
for finding a flow with maximal value if the capacity function is integral, that

is, if ¢(x, y) is an integer for every edge ;;: We start with the identically zero

flow: fo(x, y) = 0 for every x_Sz € E. We shall construct an increasing sequence
of flows fo, f1, f2, ... that has to terminate in a maximal flow. Suppose we have
constructed f;. As in the proof above, we find the set S belonging to f;. Now, if
t ¢ S then f; is a maximal flow (and E(S, S) is a minimal cut) so we terminate
the sequence. If, on the other hand, ¢ € S, then f; can be augmented to a flow f;1
by increasing the flow along a path from s to ¢, precisely as in the proof. Since
each v(f;) is an integer, we have v( fi+1) = v(f;) + 1, and the sequence must end
inatmost 3, . c(x, y) steps.

Moreover, if ¢ is integral then the algorithm constructs a maximal flow which
is also integral, that is, a flow whose value is an integer in every edge. Indeed,
fo is integral, and if f; is integral then so is f;y, since it is obtained from f; by
increasing the flow in a path by a value that is the minimum of a set of positive
integers. This result is often called the integrality theorem.

Theorem 2 If the capacity function is integral then there is a maximal flow that
is also integral. 0

We shall rely on this simple result when we use the max-flow min-cut theorem
to find various paths in graphs. It is important to note that the results do not claim
uniqueness: the algorithm finds one of the maximal flows (usually there are many),
and Theorem 2 claims that one of the maximal flows is integral.

The existence of the algorithm proves some other intuitively obvious results as
well. For instance, there is a maximal acyclic flow, that is, one that does not contain
a flow around a cycle (see Exercise 4); in other words, for no cycle x1x3 - - - x; do
we have

fC,x2) >0, f(x2,%3) >0, ..., f(xe—1,xk) >0, f(xg, x1) > 0.

Just as in the case of electrical networks, if instead of one source and one sink
we take several of each, the problem becomes only a little more complicated. In
fact, the only difference is that we have to be careful when we define a cut. If
si,..., S arethe sourcesand ¢, .. ., # are the sinks then E(S, Sisacutifs; € S
and ¢; € Sforeveryi, j,1<i<k/1<j<l.
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In order to be able to apply the max-flow min-cut theorem, let us add a new
source s and anew sink  to é, together with all the edges .'v—st and g?, each having
infinite capacity. Let H be the graph obtained in this way. Consider those flows
from s1,...,8 to t1, ..., #; in G in which the total current entering (leaving) a
source (sink) is not greater than the total current leaving (entering) it. These flows
can easily be extended to a flow from s to ¢ in H, and this extension establishes a
1-to-1 correspondence between the two sets of flows. Furthermore, a cut separating

s from t in H that has finite capacity cannot contain an edge of the form 55 or g;
s0 it corresponds to a cut of the same capacity in G, separating s1, . . ., sy from
t1, ..., t1. Thus Theorem 1 has the following extension.

Theorem 3 The maximum of the flow value from a set of sources to a set of sinks
is equal to the minimum of the capacities of cuts separating the sources from the
sinks. g

Let us assume now that we have capacity restrictions on the vertices, except
for the source and the sink. Thus we are given a function ¢ : V — {s,t} — Rt
and every flow f from s to ¢ has to satisfy the following inequality for every
xeV—{st}h

Yo fem= 3 f@x <c®.

yel't(x) zel't(x)

How should we define a cut in this situation? A cut is a subset S of V — {s, ¢}
such that no positive-valued flow from s to ¢ can be defined on G — S. In order
to distinguish the two kinds of cuts, we sometimes call this a vertex-cut and the
other one an edge-cut. However, it is almost always clear which cut is in question.
Can we carry over the max-flow min-cut theorem to this case? Yes, very easily,
if we notice that a flow can be interpreted to flow in a vertex as well, namely
from the part where all the currents enter it to the part where all the currents leave
it. More precisely, we can turn each vertex of G into an edge (without changing
the nature of the directed graph) in such a way that any current entering (and
leaving) the vertex will be forced through the edge. To do this, replace each vertex
x € V — {s,t} by two vertices, say x.. and x; send each incoming edge to x_
and send each outgoing edge out of x.. Finally, for each x, add an edge from x_
to x4 with capacity c(x_, x4+ ) = c(x) (see Fig. I11.2).

x_. x,

y z Y+ z,

FIGURE III.2. Replacing a graph G with restrictions on the capacity of the vertices by a
graph H with restrictions on the capacity of the edges.



IIL.2 Connectivity and Menger’s Theorem 73

There is a simple 1-to-1 correspondence between the flows from s to ¢ in G
and the flows in the new graph H satisfying the capacity restrictions on (some of)

the edges. Since in H only the edges X_% 4+ have finite capacities, an edge-cut of
finite capacity in H consists entirely of edges of the form x_% 4, 80it corresponds

to a vertex-cut in G of the same capacity. Thus we have the following form of
Theorem 1.

Theorem4 Let G be a directed graph with capacity bounds on the vertices other
than the source s and the sink t. Then the minimum of the capacity of a vertex-cut
is equal to the maximum of the flow value from s to t. O

Theorems 1, 3 and 4 can easily be combined into a single theorem. We leave
this to the reader (Exercise 6).

II.2 Connectivity and Menger’s Theorem

Recall that a graph is connected if any two of its vertices can be joined by a path,
and otherwise it is disconnected. A maximal connected subgraph of a graph G is
a component of G.

If G is connected and, for some set W of vertices or edges, G — W is dis-
connected, then we say that W separates G. If in G — W two vertices s and ¢
belong to different components then W separates s from t. For k > 2, we say
that a graph G is k-connected if either G is a complete graph K or else it
has at least k + 2 vertices and no set of k — 1 vertices separates it. Similarly, for
k > 2, a graph G is k-edge-connected if it has at least two vertices and no set of
at most k — 1 edges separates it. A connected graph is also said to be 1-connected
and 1-edge-connected. The maximal value of k for which a connected graph G is
k-connected is the connectivity of G, denoted by «(G). If G is disconnected, we
put k (G) = 0. The edge-connectivity A(G) is defined analogously.

Clearly, a graph is 2-connected iff it is connected, has at least 3 vertices and
contains no cutvertex. Similarly, a graph is 2-edge-connected iff it is connected,
has at least 2 vertices and contains no bridge. It is often easy to determine the
connectivity of a given graph. Thus if 1 < [ < n then k(Pg) = A(Pe) = 1,
k(Cp) = MCp) = 2, k(Kn) = MKy) = n— 1 and k(K¢,n) = A(Ken) = £
In order to correct the false impression that the vertex-connectivity is equal to
the edge-connectivity, note that if G is obtained from the disjoint union of two
complete graphs K, by adding a new vertex x and joining x to every old vertex,
then k(G) = 1, since x is a cutvertex, but A(G) = £ (see also Exercise 11). This
last example shows that A(G — x) may be 0 even when A(G) is large. However, it
is clear from the definitions that for every vertex x and edge xy we have

kK(G)—1<k(G—x) and A(G)—1<A(G —xy) < A(G).

If G is nontrivial (that is, has at least two vertices), then the parameters §(G),
A(G) and k (G) satisfy the following inequality:

k(G) = MG) < 4(G).
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Indeed, if we delete all the edges incident with a vertex, the graph becomes
disconnected, so the second inequality holds. To see the other inequality, note
first that if G is complete then x(G) = A(G) = |G| — 1, and if A(G) < 1
then A(G) = «(G). Suppose now that G is not complete, A(G) = k > 2 and
{x1y1, x2¥2, ..., xi Yk} is a set of edges disconnecting G. If G — {x1, x2, ..., xx}
is disconnected then x(G) < k. Otherwise, each vertex x; has degree at most
k (and so exactly k), as shown in Fig. IIL.3. Deleting the neighbours of x;, we
disconnect G. Hence k = A(G).

FIGURE IIL.3. A 4-edge-connected graph G such that G — {x1, x2, x3, x4} is connected.

Another property immediate from the definition of vertex-connectivity is that
for k > 1, if G| and G, are k-connected subgraphs of a graph G having at least
k common vertices, then G| U G4 is also k-connected. Indeed, if W C V(G) U
V (G3) has at most k — 1 vertices, then there is a vertex x in (V(G )NV (G2)) \ W.
Therefore, the connected subgraphs G; — W and G, — W of G have at least one
vertex, namely x, in common, s0 G{ UGy — W = (G — W)U (G2 — W) is
connected.

Having seen in Chapter [ how useful it is to partition a graph into its components,
that is, into its maximal connected subgraphs, let us attempt a similar decompo-
sition using all maximal 2-connected subgraphs. A subgraph B of a graph G is
a block of G if either it is a bridge (together with the vertices incident with the
bridge) or else it is a maximal 2-connected subgraph of G. The remarks above
show that any two blocks have at most one vertex in common, and if x, y are dis-
tinct vertices of a block B then G — E(B) contains no x—y path. Therefore, every
vertex belonging to at least two blocks is a cutvertex of G, and, conversely, every
cutvertex belongs to at least two blocks. Recalling that a cycle is 2-connected and
an edge is a bridge iff no cycle contains it, we find that G decomposes into its
blocks By, Ba, ..., Bp in the following sense:

14
EG) =|JE®B), and EB)NEB)=9 ifis].
1

Suppose now that G is a nontrivial connected graph. Let bc(G) be the graph
whose vertices are the blocks and cutvertices of G and whose edges join cutvertices
to blocks: each cutvertex is joined to the blocks containing it. Then bc(G), called
the block—cutvertex graph of G, is a tree. Each endvertex of bc(G), is a block of
G, called an endblock of G. If G is 2-connected or is a K; (an “edge”) then it
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B, B, B,

FIGURE II1.4. The construction of the block—cutvertex tree bc(G). The subgraph Bj is
an endblock.

contains only one block, namely itself: otherwise there are at least two endblocks,
and a block is an endblock iff it contains exactly one cutvertex (Fig. I11.4).

The basic result in the theory of connectivity was proved by Menger in 1927. It
is the analogue of the max-flow min-cut theorem for (undirected) graphs. Recall
that two s—t paths are independent if they have only the vertices s and ¢ in common.

Theorem 5 (i) Let s and t be distinct nonadjacent vertices of a graph G. Then the
minimal number of vertices separating s from t is equal to the maximal number
of independent s—t paths.

(ii) Let s and t be distinct vertices of G. Then the minimal number of edges
separating s from t is equal to the maximal number of edge-disjoint s—t paths.

Proof. (i) Replace each edge xy of G by two directed edges, X3 and y%, and give
each vertex other than s and ¢ capacity 1. Then by Theorem 4 the maximal flow
value from s to ¢ is equal to the minimum of the capacity of a cut separating s from
t. By the integrality theorem (Theorem 2) there is a maximal flow with current 1
or 0 in each edge. Therefore, the maximal flow value from s to ¢ is equal to the
maximal number of independent s—¢ paths. The minimum of the cut capacity is
clearly the minimal number of vertices separating s from ¢.

(i) Proceed as in (i), except instead of restricting the capacity of the vertices,
give each directed edge capacity 1. O

The two parts of the above theorem are called the vertex form and the edge
form of Menger’s theorem. One can easily deduce the edge form from the vertex
form (Exercise 15), but the other implication is not so easy. Since, as we have
mentioned aiready, the max-flow min-cut theorem can also be deduced from
Menger’s theorem, we shall give another proof of the vertex form of Menger’s
theorem from first principles.

Second Proof of the Vertex Form of Menger’s Theorem. Denote by k the minimal
number of vertices separating s and . Then clearly there are at most k independent
s—t paths and for k < 1 there are k independent s—t paths.

Suppose the theorem fails. Take the minimal k¥ > 2 for which there is a coun-
terexample to the theorem and let G be a counterexample (for this minimal k)
with the minimal number of edges. Then there are at most k — 1 independent s—¢
paths and no vertex x is joined to both s and ¢, otherwise, G — x would be a
counterexample for k — 1.
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Let W be a set of k vertices separating s from t. Suppose neither s nor ¢
is adjacent to every vertex in W. Let G, be obtained from G by replacing the
component of G — W containing s by a single vertex s’ and joining s’ to each
vertex in W. In G, we still need k vertices to separate s’ from ¢, and since the
component we collapsed had at least two vertices, G has fewer edges than G.
Now, as G is a counterexample of minimal size, in G, there are k independent
s’—t paths. The segments of these k paths from ¢ to W are such that any two of
them have nothing but the vertex ¢ in common. In particular, for every w € W one
of these paths is a #—w path. If we carry out the analogous procedure for ¢ instead
of s then we get k paths from s to W. These two sets of paths can be put together
to give k independent s—¢ paths, contradicting our assumption. Hence for any set
W of k vertices separating s from ¢ either s or t is adjacent to all vertices of W.

Let sx1x3 - - - x;t be a shortest s— path. Then / > 2 and, by the minimality of
G, in the graph G — x;x2 we can find a set Wp of k — 1 vertices separating s from
t. Then both W) = {x1} U Wy and W, = {x3} U Wy are k-sets separating s from ¢.
Since ¢ is not joined to x1, the vertex s is joined to every vertex in Wj. Similarly,
s is not joined to x3, and so ¢ is joined to every vertex in W. This implies the
contradiction that s and ¢ have at least one common neighbour: every vertex in Wy
is a common neighbour of s and ¢, and |Wp| =k — 1 > 1. O

Corollary 6 Fork > 2, a graph is k-connected iff it has at least two vertices and
any two vertices can be joined by k independent paths. Also, for k > 2, a graph is
k-edge-connected iff it has at least two vertices and any two vertices can be joined
by k edge disjoint paths. O

Another characterization of k-connectivity is given in Exercise 12.

Corresponding to the max-flow min-cut theorem for multiple sources and sinks,
one has the following version of Menger’s theorem. If § and T are arbitrary
subsets of vertices of G, then the maximal number of vertex-disjoint (including
endvertices!) S—T paths is min{|W|: W C V(G), G — W has no S-T path}. To
see this, add two new vertices to G, say s and ¢, join s to every vertex in S and ¢ to
every vertex in T, and apply Menger’s theorem to the vertices s and ¢ in the new
graph.

HI.3 Matching

Given a finite group G and a subgroup H of index m, can you find m ele-
ments of G, say g1, g2,...,8m such that {g1H, g2H, ..., gnH} is the set of
all left cosets of H and {Hg1, Hg2, ..., Hgm} is the set of all right cosets? A
reformulation of this problem turns out to be a special case of the following prob-
lem, which arises frequently in diverse branches of mathematics. Given a family
A= {Ay, Ay, ..., Ay} of subsets of a set X, can we find m distinct elements of
X, one from each A;? A set {x1, x2, ..., xn} with these properties (i.e., x; € A;,
xi # xj if i # j)is called a set of distinct representatives of the family .A. The
set system A is naturally identifiable with a bipartite graph with vertex classes
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Vi = A and V5, = X in which A; € A is joined to every x € X contained in A;.
A system of distinct representatives is then a set of m independent edges (thus
each vertex in Vj is incident with one of these edges). We also say that there is a
complete matching from Vi to Vj.

It is customary to formulate this problem in terms of marriage arrangements.
Given m girls and n boys, under what conditions can we marry off all the girls,
provided that we do not want to carry matchmaking so far as to marry a girl to a
boy she does not even know?

It is clear that both the max-flow min-cut theorem and Menger’s theorem imply
a necessary and sufficient condition for the existence of a complete matching. In
fact, because of the special features of a bipartite graph, there is a particularly
simple and pleasant necessary and sufficient condition.

If there are k girls who know at most k — 1 boys altogether, then we cannot find
suitable marriages for these girls. Equivalently, if there is a complete matching
from V| to V>, then for every S C V) there are at least | S| vertices of V; adjacent
to a vertex in S; that is,

TS = 1S

The result that this necessary condition is also sufficient is usually called Hall’s
theorem. This fundamental theorem was proved by Hall in 1935, but an equivalent
form of it had been proved by Konig and Egervary in 1931, but both versions follow
immediately from Menger’s theorem from 1927. We shall give three proofs. The
first is based on Menger’s theorem or the max-flow min-cut theorem, the other
two prove the result from first principles.

Theorem 7 A bipartite graph G with vertex sets V| and V, contains a complete
matching from V| to Vy iff

IT(S)| = |S| for every S C V.

We have already seen that the condition is necessary so we have to prove only
the sufficiency.
First Proof. Both Menger’s theorem (applied to the sets V1 and V; as at the end
of Section 2) and the max-flow min-cut theorem (applied to the directed graph
obtained from G by sending each edge from V| to V3, and giving each vertex
capacity 1) imply the following. If G does not contain a complete matching from
V1 to V, then there are 71 C V| and T; C V3 such that || + |T3| < |Vi]| and
there is no edge from V| — Ty to Vo — T5. Then I' (V] — T1) C Tz so

ITVi=T)l 2 T2l < Vil = |Th| = Vi = T
This shows the sufficiency of the condition. O

Second Proof. In this proof, due to Halmos and Vaughn, we shall use the match-
making terminology. We shall apply induction on m = |Vi|, the number of girls.
For m = 1 the condition is clearly sufficient, so we assume that m > 2 and the
condition is sufficient for smaller values of m.
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Suppose first that any k girls (1 < k < m) know at least k¥ + 1 boys. Then we
arrange one marriage arbitrarily. The remaining (sets of) girls and boys still satisfy
the condition, so the other m — 1 girls can be married off by induction.

Suppose now that for some k, 1 < k < m, there are k girls who know exactly &
boys altogether. These girls can clearly be married off by induction. What about
the other girls? We can marry them off (again by induction) if they also satisfy the
condition, provided that we do not count the boys who are already married. But
the condition is satisfied, since if some £ girls to be married know fewer than £
remaining boys, then these girls together with the first k girls would know fewer
than k + £ boys. O

Third Proof. This proof is due to Rado. Let G be a minimal graph satisfying the
condition. It suffices to show that G consists of | V|| independent edges.

If this is not so, then G contains two edges of the form a;x, ayx, where a;, a; €
Vi, a1 # ay,and x € V;. Since the deletion of either of these edges invalidates the
condition, there are sets A{, Az C V such that fori = 1,2 we have |[['(A;)] =
|A;|, and a; is the only vertex of A; adjacent to x. Then

IT(A) NT(A2)| = [T(Ar — {a1) NT'(A2 — {a2D)| + 1
> |F(ArNAY|+1=|ANA|+ 1.

But this implies the following contradiction:

IT(A1 U A2)| = T'(A1) UT(A2)]
= [I'(AD| + |T'(A2)| — IT(A) NT'(A2)]
< |Ail+|A2] = A1 N A2f -1
=|A;] UAy| — 1. a
A regular bipartite graph satisfies the conditions of Hall’s theorem, so it has a
complete matching. In turn this implies that we can indeed find group elements
g1, 82, - ., &m, as required at the beginning of the section.

Let us reformulate the marriage theorem in terms of sets of distinct
representatives.

Theorem 8 A family A = {A1, A2, ..., Ay} of sets has a set of distinct
representatives iff

Ua

ieF

> |F| forevery F C {1,2,...,m}. O

In the next four results we present two natural extensions of the marriage
theorem. The first two of the these concern deficient forms of the theorem. Suppose
that the marriage condition is not satisfied. How near can we come to marrying
off all the girls? When can we marry off all but d of the girls? Clearly, only if any
k of them know at least k — d boys. This obvious necessary condition is again
sufficient.
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Corollary 9 Suppose that a bipartite graph G = G,(m, n), with vertex sets
V1, Va, satisfies the following condition:

TS =[S —4d
for every S1 C V1. Then G contains m — d independent edges.

Proof. Add d vertices to V; and join them to each vertex in V;. The new graph
G satisfies the conditions for a complete matching. At least m — d of the edges
in a complete matching of G* belong to G. O

Let us give another deficient form of the marriage theorem. If an edge e is
incident with a vertex x, then we say that e covers x, and x covers e. Furthermore,
a vertex is said to cover itself (and no other vertex).

Corollary 10 Let G = G1(m, n) be a bipartite graph. Write h for the maximal
number of independent edges, i for the maximal number of independent vertices,
and j for the minimal number of edges and vertices covering all the vertices. Then

i=j=m+n-h.

Proof. Let E' UV’ be a set of j edges and vertices covering all vertices, with
E' c Eand V' Cc V.Ife, f € E’ share a vertex, then in the cover E' U V' we
may replace f by its other endvertex. Hence we may assume that E’ consists of
independent edges. This shows that j =m 4 n — k.

Also,m +n —i > h,since if I is a set of i independent vertices (in any graph),
then every edge is incident with at least one vertex not in /.

Finally, let S C V| be such that |[T'(S)| = |S| — (m — k), as guaranteed by
Corollary 9. Then, with T = V, —T'(S), the set SUT isasetof |S|+n—|'(S)| =
m + n — h independent vertices, proving thati > m +n — h. O

The next extension concerns matchmaking for boys in a polygynous country,
where the i th boy intends to marry d; girls.

Corollary 11 Let G be a bipartite graph with vertex classes V1 = {x1, ..., xm}
and V, = {y1,...,yn}. Then G contains a subgraph H such that dy(x;) = d;
and0 <dg(yj) < liff

TSIz ) d

xi€S

forevery S C V.

Proof. Replace each vertex x; by d; vertices joined to every vertex in I (x;). Then
G has such a subgraph H iff the new graph has a matching from the new first
vertex class to V3. The result follows from Theorem 7. O

Of course, Corollary 11 also has a defect form which the reader is encouraged
to state and deduce from this.

The alert reader is probably aware of the fact that these corollaries are still
special cases of the max-flow min-cut theorem. In fact, the bipartite graph version
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of the max-flow min-cut theorem is considerably more general than the corollaries
above.

Theorem 12 Let G = Gy(m, n) be a bipartite graph with vertex classes V) =
{x1,...,xm}and V2 = {y1, ..., yn}. For § C Vi and 1 < j < n denote by S; the
number of edges from yj to S. Letd\, ... ,dm and ey, . .., e, be natural numbers
and let d > 0. Then there exists a subgraph H of G with

m
e(H)> ) di—d,
i=1

dy(x;) < d;, I1<i<m
and
du(yj) <ej, 1<j=n,

iff for every S C V1 we have

Y di< imin{sj, e} +d.
j=1

X €S

Proof. Turn G into a directed graph G by sending each edge from V) to V,. Give
each edge capacity 1, a vertex x; capacity d;, and a vertex y; capacity e;. Then
there is a subgraph H with the required properties iff in G there is a flow from Vi
to V2 with value at least ) 1’ d; — d, and by the max-flow min-cut theorem, this
happens iff every cut has capacity at least 3 7' d; — d. Now, minimal cuts are of
theformTUUUE(V,—T,Vy —U),where T C Vy and U C V5. Given a set
T, the capacity of such a cut will be minimal if a vertex y; belongs to U iff its
capacity is smaller than the number of edges from S = Vi — T to y;. With this
choice of U the capacity of the cut is exactly

Y di+ Zn:min{Sj, ej}.
xieT 1

The condition that this is at least ) |’ d; —d is clearly the condition in the theorem.
a

The reader is invited to check that the second proof of Theorem 7 can be
rewritten word for word to give a proof of the exact form of this result (that is,
with d = 0) and the defect form (the case d > 0) can be deduced from it as
Corollary 10 was deduced from Theorem 7 (Exercise 33).

To conclude this section we prove another extension of the marriage theorem.
This is Dilworth’s theorem concerning partially ordered sets. A partial order <
on a set is a transitive and irreflexive relation defined on some ordered pairs of
elements. Thusif x < yandy < zthenx < z,butx < y and y < x cannot
both hold. A set with a partial order on it is a partially ordered set. The relation
x < y expresses the fact that either x = y orelse x < y. A subset C of a partially
ordered set P is a chain (or tower) if for x,y € C eitherx < yory < x. A set
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FIGURE IIL5. A partially ordered set and a maximal antichain. (An edge indicates that
its upper endvertex is greater than its lower endvertex.)

A C P is an antichain if x < y implies that {x, y} ¢ A. See Fig. IIL.5 for an
example.

What is the smallest number of chains into which we can decompose a partially
ordered set? Since no two elements of an antichain can belong to the same chain,
we need at least as many chains as the maximal size of an antichain. Once again,
the trivial necessary condition is, in fact, sufficient.

Theorem 13 If every antichain in a (finite) partially ordered set P has at most
m elements, then P is the union of m chains.

Proof. Let us apply induction on | P|. If P = @, there is nothing to prove, so we
suppose that | P| > 0 and the theorem holds for sets with fewer elements.

Let C be a maximal chain in P, (Thus if x ¢ C, then C U {x} is no longer a
chain.) If no antichain of P — C has m elements, then we are home by induction.
Therefore, we may assume that P — C contains an antichain A = {a1, a3, .. ., am}.

Define the lower shadow of A as

S” ={x € P:x <a; forsome i},

and define the upper shadow S of A analogously. Then P is the union of the two
shadows, since otherwise A could be extended to an antichain with m+1 elements.
Furthermore, neither shadow is the whole of P, since the maximal element of C
does not belong to S~ and the minimal element of C does not belong to S*. By
the induction hypothesis both shadows can be decomposed into m chains, say

m m
s—=Jc; and st=|]Jc

i=l i=l

Since different a; belong to different chains, we may assume that a; € C;” and
, +

a; € C;.
The proof will be completed if we show that a; is the maximal element of C;”

and the minimal element of C t+ , since in that case the chains C;” and Cl.+ can be
strung together to give a single chain Cj, and then P = | JT Ci.
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Suppose then that, say, a; is not the maximal element of C;” : a; < x for some
x € C; . Since x is in the lower shadow of A, there is an a; € A with x < g;.
However, this implies the contradiction a; < a;. O

In fact, Dilworth’s theorem holds for all partially ordered sets: we leave this to
the reader (Exercise 53).

1.4 Tutte’s 1-Factor Theorem

A factor of a graph is a spanning subgraph: a subgraph whose vertex set is that of
the whole graph. If every vertex of a factor has degree r, then we call it an r-factor.
How can we characterize graphs with a 1-factor? If G has a 1-factor H and we
delete a set S of vertices of G, then in a component C of G — S an even number of
vertices are on edges of H contained in C, and the other vertices of C are on edges
of H joining a vertex of C to a vertex of S. In particular, for every odd component
C of G — S (that is, a component with an odd number of vertices) there is an edge
of H joining a vertex of C to a vertex of S. Now, the edges of H are independent,
so this implies that the graph G — S has at most | S| odd components, one for each
vertex in § (see Fig. I11.6).

FIGURE IIL6. A graph G with a 1-factor: |S| = 4 and G — S has 2 odd components.

The necessity of the condition we have just found is rather trivial, but it is not
clear at all that the condition is also sufficient. This surprising and deep result was
first proved by Tutte in 1947. It will be convenient to denote by g (H) the number
of odd components of a graph H, that is, the number of components of odd order.

Theorem 14 A graph G has a 1-factor iff
q(G - 9) =S| (1)
forevery S C V(G).

Proof. We know that the condition is necessary. We shall prove the sufficiency by
induction on the order of G. For |G| = 0 there is nothing to prove. Now let G be
a graph of order at least one satisfying (1) and suppose that the theorem holds for
graphs of smaller order.



II1.4 Tutte’s 1-Factor Theorem 83

Suppose that Sp C V(G) is a non-empty set for which equality holds in (1).
Denote by C1, Cs, ..., Cp, m = |Sp] = 1, the odd components of G — Sp and
let Dy, Dy, ..., Dy be the even components of G — Sp. If the theorem is true
and G does contain a 1-factor F, then for each C; there is at least one edge of F
that joins a vertex of C; to a vertex in Sp. Since m = |Sp|, for each C; there is
exactly one such edge, say c¢;s;, ¢; € C;, s; € So. Each C; — ¢; contains a 1-factor
(a subgraph of F), and each D; contains a 1-factor (a subgraph of F). Finally,
the edges sicy, 52¢2, . .., Smcm form a complete matching from Sp into the set
{C1,Cs,...,Cn}.

The proof is based on the fact that one can find an Sp that has all the properties
described above. How shall we find such a set So? Let Sp be a maximal non-empty
subset of V(G) for which equality holds in (1). Of course, a priori it is not even
clear that there is such a set So. With S = @ the condition (1) implies that G has
even order. If s is any vertex of G, then G — {s} has odd order, so it has a least one
odd component. Since (1) holds, G — {s} has exactly one odd component. Hence
for every S = {s} we have equality in 1. This establishes the existence of Sp.

As before, let Cy, Ca, ..., Cyp, m = |Sp| be the odd components of G — Sy and
D1, Dy, ..., Dy the even components.

(i) Each D; has a 1-factor. Indeed, if S C V(D;) then

q(G —80)+q(Dj —8) =q(G—5US) <|SoUS|=|Sl+ S,
SO
q(Dj - 8) <|S|.

Hence by the induction hypothesis D; has a 1-factor.
(ii) If ¢ € C;, then C; — ¢ has a 1-factor. Assume that this is false. Then by the
induction hypothesis there is a subset S of V(C;) — {c} such that

q(Ci —{c}U §) > |S|.
Since
g(Ci —{c}U) +|SU{c}|=|Ci|=1 (mod?2),

this implies that

q(Ci —{c}U 8) = |§| +2.
Consequently,

1SoU{cyU S| =[Sol +1+1[S]>q(G—~SU{ctUS)
=4(G —So0) —1+4(C; — {c}US)
> S0l + 1+ 1S,

so in (1) we have equality for the set Sy U {c¢} U S as well. This contradicts the
maximality of So.

(iii) G contains m independent edges of the form s;c;, s; € Sp and ¢; € C;,
i =1,2,...,m. To show this, let us consider the bipartite graph H = G,(m, m)
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with vertex classes V] = {Cy, C3, ..., Cy} and Vo = Sp, in which C; is joined to
avertex s € Sy if and only if G contains an edge from s to C;. The assertion above
is true iff H has a 1-factor, that is, a matching from V) to V,. Fortunately, we have
the weapon to check this: Hall’s theorem. Given A C Vi, put B=Tg(A) C V»
(see Fig. II1.7). Then (1) implies that

|A| < ¢(G - B) < |B|.

Hence the graph H satisfies Hall’s condition, so it has a 1-factor.

We are almost done. To complete the proof we just put together the information
from (i), (ii), and (iii). We start with the m independentedges s;c;, s; € Sp,¢; € C;.
Adding to this set of edges a 1-factor of each C; — ¢;, 1 <i < m, and a 1-factor

of each Dj, 1 < j <k, we arrive at a 1-factor of G. O
G
So v, V,=8§
H 2 0

o

C,
Cy

C, JB G B
C

C, ‘

Cs

FIGURE I11.7. The construction of H from G. The set A = {C3, C3} determines B C Sp
by the rule B = I'y (A).

It is once again very easy to obtain a defect form of the above result.

Corollary 15 A graph G contains a set of independent edges covering all but at
most d of the vertices iff

q(G—S8) <|S|+d
forevery S C V(G).

Proof. Since the number of vertices not covered by a set of independent edges is
congruent to |G| modulo 2, we may assume that

d = |G| (mod 2).

Put H = G + Ky; that is, let H be obtained from G by adding to it a set W of d
vertices, and joining every new vertex to every other vertex, old and new. Then G
contains a set of independent edges covering all but d of the vertices iff H has a
1-factor. When does (1) hold for H?If @ # S’ ¢ V(H) and W — §’ # @, then
H — §’ is connected, so g(H — §’) < 1, and then (1) does hold; if W C S’ then,
setting S = 8" — W, wehave g(H — §") = q(G — {S'\ W}) = q(G — S), s0 (1)
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is equivalent to
q(G - $8) < |5 =S| +d. m|

Tutte’s theorem has numerous beautiful consequences: for example, it implies
that every 2-edge-connected cubic graph has a 1-factor (Exercise 32).

III.5 Stable Matchings

Let us return to the problem of finding matchings in bipartite graphs. This time
we shall study so-called stable matchings, that is, matchings satisfying certain
conditions. These matchings were first studied by Gale and Shapley in. 1961, and
our main aim is to prove their fundamental result. Before we turn to the complete
graphs studied by Gale and Shapley, we consider general bipartite graphs.

As in the case of Hall’s theorem, it is customary to formulate the conditions and
results in terms of marriage arrangements between n boys and m girls. Suppose
then that we have an n by m bipartite graph G = G2(rn, m) with bipartition
(V1, V), where V1 = {a, b, .. .} is the set of boys and V; = {A, B, ...} is the set
of girls. For the moment we do not assume that n = m, i.e., that we have the same
number of girls and boys. As before, an edge a A means that the boy a knows the
girl A. Suppose that each boy has an order of preferences on the set of girls he
knows, and each girl has an order of preferences on the set of boys she knows. We
assume that these orders are linear orders but place no other restriction on them.
Given the preferences, a stable matching in G is a set M of independent edges of
G suchthatif aB € E(G) — M, then either aA € M for some girl A preferred to
B by a, or bB € M for some boy b preferred to a by B. Thus if a is not married
to B, then either a is married to a girl he prefers to B, or else B is married to a boy
she prefers to a. Otherwise, a and B could (and eventually would) get married,
perhaps divorcing their present spouses, to the benefit of both. This makes the
(somewhat unrealistic) assumption that it is always better to be married (to an
acquaintance) than to stay single.

Note that a stable matching is not assumed to be complete. However, it is clear
that every stable matching is a maximal matching in G; that is, it cannot be enlarged
to a strictly larger matching. Indeed, suppose M U {aB} is a matching in G for
some edge aB € E(G) — M. Then under the marriage arrangement M, the boy a
is a bachelor, so he is certainly not married to a girl he prefers to B, and the girl
B is a spinster, so she is not married to a boy she prefers to a. This contradicts the
fact that M is stable.

Although every stable matching is maximal, it need not be a maximum matching;
thatis, it need not have maximal cardinality. A trivial example is shown in Fig. ITL.8.
However, as we shall see later, all stable matchings have the same cardinality.

The stability condition for a matching is fairly complex, so a priori it is not
clear that there is always a stable matching. In fact, we shall show that not only is
there always a stable matching, but there is also a stable matching that is optimal
for each boy. The existence of an optimal stable matching follows free of charge
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A

FIGURE H11.8. If g prefers B to A, and B prefers a to b, then M = {a B} is the only stable
matching.

from the algorithm used to construct a stable matching, so to start with we shall
not bother with optimality. It is rather quaint that this fundamental algorithm is
simply the codification of the rules of old-fashioned etiquette: every boy proposes
to his highest preference and every girl refuses all but her best proposer. This
goes on until no changes occur; then every boy marries the girl to whom he last
proposed, and every girl marries her only proposer she has not yet refused.

Note that the algorithm is such that once a girl gets a proposal, at the end of
the process she does end up with a husband, for she will refuse a suitor only for
somebody she finds more desirable. Also, every boy gets married unless in the
algorithm he is refused by every girl. Finally, as the algorithm progresses, every
girl gets better and better suitors, and every boy has to be resigned to marrying
less and less desirable girls. With this we have come close to proving the stable
matching theorem of Gale and Shapley.

Theorem 16 For every assignment of preferences in a bipartite graph, there is a
stable matching.

Proof. Let us describe a variant of the fundamental algorithm we have just men-
tioned, in which all boys and all girls act simultaneously, in rounds. In every odd
round (1st, 3rd, ...), each boy proposes to his highest preference among those
girls whom he knows and who have not yet refused him, and in every even round
(2nd, 4th, ...), each of the m girls refuses all but her highest suitor. The process
ends when no girl refuses a suitor: then every girl marries her (only) suitor, if she
has one.

The algorithm terminates after at most 2nm rounds, since at most m(n — 1)
proposals are refused.

We claim that this fundamental algorithm produces a stable matching. It clearly
produces a (partial) matching M, since at every stage each boy proposes to at most
one girl, and each girl rejects all but at most one boy. To see that M is stable, let
aB € E(G) — M. Then either a never proposed to B, or a was refused by B
during the algorithm. In the former case a marries a girl he prefers to B, as he
never goes as low as B, and in the latter case B refused a for a boy she prefers to
a, so eventually ends up with a husband she prefers to her suitor a. O

The fundamental algorithm we have just described can be run at various speeds:
we do not have to have uniform action, in rounds. Every boy and every girl may
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act individually: each boy keeps proposing to the best girl (in his estimation) who
has not yet refused him, and each girl maximizes her satisfaction by being willing
to accept only the very best boy (in her estimation) who has ever proposed to
her. When the dust settles, we have a stable matching independent of the speed at
which we have run the algorithm (see Exercise 42).

‘What can we say about the collection of stable matchings? Somewhat surpris-
ingly, all stable matchings are incident with the same set of vertices; that is, every
vertex is either matched in every stable matching or remains unmatched in every
stable matching. This will follow easily from the lemma below.

Call a cycle preference-oriented if it can be written in the form aAbB ---zZ
such that A prefers b to a, b prefers B to A, ..., and Z prefers a to z.

Lemma 17 Let M and M’ be two stable matchings in a bipartite graph with
certain preferences, and let C be a component of the subgraph H formed by the
edges of M U M'. If C has at least three vertices, then it is a preference-oriented
cycle. In particular, if aA, bB € M and aB € M’, then a prefers A to B iff B
prefers a to b.

Proof. In this proof it is best not to distinguish between boys and girls: we shall
write x1, x3, . . . for either of them. We know that C is either a path of length at
least two or a cycle of length at least four.

Suppose that C contains a path x| x2x3x4, with x5 preferring x3 to x;. Assuming,
as we may, that x,x3 ¢ M, we see that x3 prefers x4 to x, since M is stable.

This simple observation implies that if C is a cycle, then it is preference-oriented.
Indeed, if xjxx3 - - - xi is a cycle and x; prefers x3 to x1, then looking at the path
x1x2x3x4 We see that x5 prefers x4 to x2. Next, looking at the path x;x3x4x5 we
see that x4 prefers x5 to x3. Continuing in this way, we find that x; prefers x; to
xi—1 and x| prefers x; to xj.

Also, if C is a path x1x3 - - - xg with [ > 3 and x1x3 ¢ M, say, then x; prefers
x3 to x), since M is stable and x;xo, ¢ M. Similarly, x,— prefers x;_s to x;.
However, this is impossible, since, arguing as above, x; prefers x3 to x1, x3 prefers
X4 to x7, x4 prefers x5 to x3, and so on, x;—| prefers x to xg—s.

The second assertion is immediate from the fact that the component of H
containing the path AaBb is a preference-oriented cycle. O

Theorem 18 For every assignment of preferences in a bipartite graph with
bipartition (Vi, V2), there are subsets Uy C V| and Uy C V; such that every
stable matching is a complete matching from U; to Us. In particular, all stable
matchings have the same cardinality.

Proof. Suppose that the assertion fails. Then we may assume that some edge aA
of M is such that a is not incident with any edge of M’. As M’ is a maximal
matching, bA € M’ for some b € Vi, b # a. But then the component of a in the
subgraph formed by the edges of M U M’ contains a, A, and b, and is not a cycle,
contradicting Lemma 17. O
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It is tempting to expect that every stable matching of the subgraph spanned
by Up U U is a stable matching in the entire graph, but this is not the case (see
Exercise 52).

Let us state an immediate consequence of Theorem 18 and Lemma 17.

Corollary 19 Let M and M’ be stable matchings in a bipartite graph, with some
assignment of preferences. Suppose aB € M and aB ¢ M'. Then in M’ both a
and B have mates; also, one of a and B is better off in M’ than in M, and the
other is worse off. O

The matching constructed by the fundamental algorithm in the proof of Theo-
rem 16 is not only a stable matching, but it is also ‘best’ for the boys: every boy
ends up with his highest preference among all stable matchings.

To make this definition more formal, let G be a bipartite graph with bipartition
(V1, V,), with a certain assignment of preferences. A stable matching M is said to
be Vy-optimal (or optimal for the boys) if for every stable matching M’ and every
vertex a € Vy,if aB € M’, then aA € M for some girl A, and either A = B or
else a prefers A to B. In other words, M is a Vi-optimal stable matching if in M
every boy is at least as well off as in any other stable matching, once again with
the assumption that it is better to be married than stay single. It is not clear that
there is a V|-optimal stable matching, but it is obvious that if there is one, then it
is unique.

Theorem 20 For every assignment of preferences in an n by n complete bipartite
graph with bipartition (Vy, V3), there is a Vi-optimal stable matching.

Proof. Let us denote by S(a) the set of girls a boy a could marry in some stable
matching: this is the set of possible girls for a. We claim that in the fundamental
algorithm no girl in S(a) refuses a, so every boy marries his favourite possible
girl, and thus the stable matching is optimal for the boys.

Suppose that this is not the case. Let us stop the algorithm when it happens for
the very first time that a boy, say a, is refused by one of his possible girls, say A.
By definition, this happens because A prefers another of her suitors at the time,
say b. At that time b prefers A to all others that have not yet refused him. Hence,
a fortiori, b prefers A to all others that are possible for him. As A is possible for
a, there is a stable matching M in which a marries A and b marries a girl B. But
this is impossible, since b prefers A to B, and A prefers b to a. This contradiction
completes the proof. a

By definition, the V;-optimal stable matching is ‘best’ for every boy (element of
V1). How ‘good’ is it for the girls? Recalling Corollary 19, we see that, somewhat
surprisingly, it is the worst for every girl, independently of the assignment of
preferences. To be a little more precise, call a stable matching M V;-pessimal if in
M no girl is better off than in any other stable matching. Once again, a priori it is
not clear that there is a V-pessimal stable matching, but the definition implies that
if there is a V,-pessimal stable matching, then it is unique. Corollary19 implies
that the Vi-optimal stable matching is precisely the V,-pessimal stable matching.
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There are a good many extensions and variants of the results above; here we shall
consider only stable complete matchings in (not necessarily complete) bipartite
graphs with equal colour classes and stable matchings in a polygynous society.

Let us set the scene again, in a slightly different way. This rather heavy-handed
definition of a stable matching will be frequently useful in applications. Suppose
that we have a set V| of n boys and a set V, of n girls. Every boy and every
girl has a possibly incomplete set of preferences. Thus for every girl A there is a
list L(A) = {a1, a2, ..., ax}, signifying that A is willing to marry only the boys
ay, ay, ..., ak, and this is exactly her order of preferences. Similarly, every boy
a has a possibly incomplete list L(a). We call (Vi, V2, L) an incomplete system
of preferences. This setup clearly corresponds to the bipartite graph (V; U V3, E),
where E = {aA : a € L(A) and A € L(a)}, with the preferences given by the
lists. In this formulation a matching M from V; to V; is stable if any two matched
vertices appear on each other’s lists, and if a € L(B), B € L(a) butaB ¢ M
then either aA € M for some A € L(a) that a prefers to B, or bB € M for some
b € L(B) that B prefers to a.

How can we decide whether an incomplete system has a stable complete
matching? Resembling our trick in the proof of Corollary 9, we can enlarge the
incomplete system to a complete system in such a way that the stable matchings
in the original incomplete system correspond to easily identifiable stable match-
ings in the enlarged complete system. To be precise, let us add a fictitious boy w
and a fictitious girl W to the system: w is the widower and W is the widow. Set
V{ = Vi U{w}and V; = V, U {W}. Let us define a complete set of preferences
for (V/, V2’) as follows: each person slots in the widow (widower) after her (his)
genuine preferences, and follows it with an arbitrary enumeration of the boys
(girls) she (he) is unwilling to marry at all. Finally, the widow puts the widower at
the end of her list, and the widower puts the widow at the end of his preferences.
We say that this now complete system (V{, V;, L') is associated to the original
system.

Theorem 21 An incomplete system (Vy, Va, L) with |V|| = |V2| has a stable
complete matching iff the associated complete system (V{, V,, L") has a stable
matching in which the widow marries the widower.

Proof. Let M be a complete matching from V; to V,, and let M’ be the complete
matching from V| to V, obtained from M by adding to it the edge wW. To
prove the theorem, we shall show that M is a stable matching in the incomplete
system (Vi, Vo, L) iff M’ is a stable matching in the associated complete system
(V{,V,, L").

Suppose M is a stable matching in (Vi, V3, L). Then M’ is stable, since if
aA € M then A prefers a to w and a prefers A to W.

Also, if M’ is a stable matching in (V/, vy, L"), then M is a stable matching in
(V1, Va, L). Indeed, ifaA € M, then A € L(a), since otherwise a prefers W to A,
and W prefers a to w. Similarly, a € L(A), since otherwise A prefers w to a and
w prefers A to W. Hence every edge aA of M satisfies A € L(a) and a € L(A),
so M is a stable matching in (V], V3, L). O
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Since the V/{-optimal stable matching in (V}, V;, L) is precisely the V}-pessimal
stable matching, if some stable matching in (V{, V;, L) contains wW, then every
stable matching contains wW. This gives us the following slightly stronger form
of Theorem 21.

Theorem 21'. Let (Vi, V2, L) be an incomplete system, with associated complete
system (V{, V,, L), and let M' be a stable matching for (V|, V,, L"). Then there
is a stable complete matching for (Vy, V3, L) iff M’ contains wW. O

For the last variant of the stable matching theorem, it is convenient to use
politically correct terms. In the college admissions problem we are given n ap-
plicants, ay, ..., a,, wishing to enter m colleges, Ay, ..., Ay, with college A;
willing to admit n; undergraduates, such that ) "7~ | n; = n. Each applicant orders
the colleges according to his preferences and each college orders the applicants
according to his or her preferences. Once again, an assignment of the applicants
to the colleges, with n; students assigned to college A;, is said to be a stable
admissions scheme if whenever a student g; is admitted by a college A and a
student a; by a college A;, then either a; prefers Ay to A;/, or A} prefers a; to
a;. A stable admissions scheme is said to be optimal (for the applicants) if every
applicant gets as good a college as possible under any stable admissions scheme.

Theorem 22 No matter what the orders of preferences are, there is always an
optimal stable admissions scheme.

Proof. For the sake of argument, call the students boys, and replace each college
A; by n; girls, say Agl), AIQ), ceey Af""), with each AE’) having the same order
of preferences among the boys ay, ..., a, as A;. Also, each boy orders the girls
by taking the girls corresponding to the highest-rated college first (in any order)
followed by the girls corresponding to the second college (in any order), and so on.
In the bipartite graph we have just defined, take a stable matching that is optimal
for {ay, ..., a,}: the admissions scheme this induces is clearly optimal (for the
applicants). O

There are many ways of relaxing the conditions in the college admissions
problem. The condition Zf___l n; = n need not by kept, an applicant may not wish
to go to a certain college at all, and a college may not be willing to accept a student
under any circumstances. For the sake of convenience, we can discard the last
possibility by declaring that a student will not apply to a college if the college is
unwilling to accept him under any circumstances. In this more general setup the
analogue of the fundamental algorithm goes as follows. All students apply to their
highest-rated colleges. A college of size n; puts on its waiting list the n; applicants
it rates highest, or all of them if it gets no more than n; applications, and rejects
the others. The rejected students apply to their second choices, and again a college
with quota n; rejects all but its n; highest applicants, and so on. The process stops
when in a round no student gets rejected by a college, and then every college
admits all the students on its waiting list. It is easy to show (see Exercise 51) that
the admissions scheme obtained is such that (i) every college admits at most n; of
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the students who applied to it, (ii) if a college does not admit its full quota then
no student left on the shelf has applied to that college, and (iii) the assignment is
stable in the sense that if a student a is admitted by a college A, and a student b
by a college B, then either a is unwilling to go to B, or a prefers A to B or B
prefers b to a. Furthermore, every student goes to as good a college as under any
other admissions scheme satisfying these conditions.

III.6 Exercises

1.

Suppose F is a set of edges after whose deletion there is no flow from s to ¢
with positive value. Prove that F contains a cut separating s from ¢.

. By summing an appropriate set of equations show that the capacity of a cut is

at least as large as the value of a flow.

Let E= (V,E ) be a directed graph and let ¢ be an extended-real-valued
capacity function on E. (Thus ¢(x, y) is a non-negative real or +00.) Let s
and ¢ be two vertices. Prove that either there is a flow from s to t with infinite
value or else there is a flow with maximal finite value.

By successively reducing the number of circular flows in G, prove that there
is a maximal flow without circular flows in which no current enters the source
and no current leaves the sink.

Use the method of Exercise 4 to show that if the capacity function is integral,
then there is a maximal flow that is, also integral.

Formulate and prove the max-flow min-cut theorem of Ford and Fulkerson
for multiple sources and sinks with bounds on the capacities of the edges and
vertices.

(Circulation theorem.) A circulation in a directed graph G is a flow without
a source and a sink. Given a lower capacity /(x, y) and an upper capacity

c(x, y) for each edge ;} with 0 < I(x,y) < ¢(x, y), we call a circulation g
feasible if

Ix,y) < g(x,y) <clx,y)
for every edge )c_;) Prove that there exists a feasible circulation iff
1(S,8) < ¢(S, S) for every S C V.

[Note that the necessity of the condition is trivial, since in a feasible circulation
the function ! forces at least [(S, S) current from S to S and the function ¢
allows at most c(S, S) current from S back to S. To prove the sufficiency,
adjoin a sink 5 and a source f to G, send an edge from s to each vertex of G
and send an edge from each vertex of G to . Define a capacity function c*
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on the edges of the new graph G* by putting c*(x, y) = c(x,y) — I(x, y),
c*(s, x) =1(V, x), and c*(x, t) = I(x, V). Then the relation

fxy) =8, y)—lx,y)
sets up a 1-to-1 correspondence between the feasible circulations g in G and
—

flows f in G* from s to ¢ with value /(V, V). Rewrite the condition given in
the max-flow min-cut theorem in the form required in this result.]

8% Let H be a bipartite multigraph without loops, with vertex classes V; and

V,. (Thus H may contain multiple edges; that is, two vertices belonging to
different classes may be joined by several edges, which are said to be parallel.)
As usual, given a vertex x, denote by I'(x) the set of edges incident with x
and by d(x) = |I"(x)| the degree of x. Prove that, given any natural number
k, the set E of edges can be partitioned into sets E, E3, ..., E such that for
every vertex x and every set E; we have

[@J <IFGx )nE,|<[d(")1,
k k

where, as in the rest of the book, [z] is the least integer not less than z and
lz] = —[—zl].

Thus if we think of the partition U’f E; as a colouring of the edges with k£
colours, then the colouring is equitable in the sense that in each vertex the
distribution of colours is as equal as possible. [Hint. Construct a directed
graph H= N1uVy, E) from H by sending an edge from x to y iff x € V1,
y € Vo and H contains at least one xy edge. Let G be obtained from H by
adding a vertex u and all the edges ux, )7;4 forx € Vy and y € V3, as shown
in Fig. IIL.9. Define an appropriate upper and lower capacity for each edge of
G and prove that there is a feasible integral circulation. Use this circulation
to define one of the colour classes.]

% 2
VI

FIGURE IIL9. The graphs H, H, and G.

. (Exercise 8 contd.) Show that we may require that, in addition to the property

above, the colour classes be as equal as possible, say |Ej| < |E2| < --- <
|Ex| < |E1] + 1, and that in each set of parallel edges the distribution of
colours is as equal as possible.
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Letd; < d; <--- <d, be the degree sequence of a graph G. Suppose that
d>j+k—1forj=12,...,n =1 —dp_p41.
Prove that G is k-connected.

Let k and [ be integers with 1 < k& < [. Construct graphs G, G2, and G3 such
that

() x(G1) =k and M(G}) =1,

(ii) k(G2) = k and k(G; — x) = [ for some vertex x,

(iii) A(G3 — x) = k and A(G3 — xy) = | for some edge xy.

Let G be a regular bipartite graph of degree at least 2. Show that k (G) ## 1.

GivenU C V(G)andavertexx € V(G)—U,anx—U fanisasetof |U| paths
from x to U any two of which have exactly the vertex x in common. Prove
that a graph G is k-connected iff |G| > k + 1 and for any k-set U C V(G)
and vertex x notin U, there is an x — U fan in G. [Hint. Given a pair (x, U),
add a vertex u to G and join it to each vertex in U. Check that the new graph
is k-connected if G is. Apply Menger’s theorem for x and u.]

Prove thatif G is k-connected (k > 2), then every set of k vertices is contained
in a cycle. Is the converse true?

The line graph L(G) of a graph G = (V, E) has vertex set E and two vertices
e, f € E are adjacent iff they have exactly one vertex of G in common. By
applying the vertex form of Menger’s theorem to the line graph L(G), prove
that the vertex form of Menger’s theorem implies the edge form.

Show that if A(G) = k > 2, then the deletion of k edges from G results
in a graph with at most 2 components. Is there a similar result for vertex-
connectivity?

Let G be a connected graph with minimum degree §(G) = k > 1. Prove that
G contains a path x1x2 - - - x¢ such that G — {xy, x2, . .., xx} is also connected.
[Hint. Let x1x3 - - - x¢ be a longest path. Note that £ > k + 1. Suppose that
G — {x1,x2,..., x} is disconnected, and let yoy; - - - y,, be a longest path
in a component C not containing x44. Then d¢(yo) < m, but yp cannot be
joined to k — m of the vertices x1, .. ., x¢.]

Let G = Gz(m,n) be a bipartite graph with vertex classes V| and V,
containing a complete matching from Vj to V5.

(i) Prove that there is a vertex x € V such that for every edge xy there is a
matching from V) to V; that contains xy.

(i) Deduce that if d(x) = d for every x € V), then G contains at least d!
complete matchings if d < m and atleastd(d — 1) - - - (d — m + 1) complete
matchings if d > m.

Let A = (a;j)] be an n x n doubly stochastic matrix; that is, let a;; > 0
and 37 ja;j = Y ;_jai = 1forall i, j. Show that A is in the convex
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hull of the n x n permutation matrices, i.e., there are A; > 0, Z’l" A=
1, and permutation matrices Py, P, ..., Pp such that A = Y 7" A; P;. [Let
a;.*j = [a;j], A* = (a})], and let G = G3(n,n) be the bipartite graph
naturally associated witf'n A*. Show that G has a complete matching and
deduce that there are a permutation matrix P and areal A, 0 < A < 1, such
that A — AP = B = (by;)] satisfies bj; > 0, 31, bij = 37_ 1 bij =1-2
for all i, j, and B has at least one more 0 entry than A.]

Prove the following form of the Schréder—Bernstein theorem. Let G be a
bipartite graph with vertex classes X and Y having arbitrary cardinalities. Let
A C X and B C Y. Suppose there are complete matchings from A into ¥
and from B into X. Prove that G contains a set of independent edges covering
all the vertices of A U B. [Hint. Consider the components of the union of the
matchings.]

Let G be a bipartite graph with vertex sets Vi, V,. Let A be the set of vertices
of maximal degree. Show that there is a complete matching from A N Vj into
Vs.

Deduce from the previous exercise that every bipartite graph contains a set of
independent edges such that each vertex of maximal degree (that is, degree
A(G)) is incident with one of the edges. Deduce that a non-empty regular
bipartite graph has a 1-factor.

We say that G is an (r, r — k)-regular graphif r —k < 8(G) < A(G) <r.
Prove that for 1 < k < s < r every (r,r — k)-regular graph contains an
(s, s — k)-regular factor. [Hint. Assume s = r — 1. Take a minimal (r, r — k)-
regular factor. Note that in this factor no two vertices of degree r are adjacent.
Remove a set of independent edges covering the vertices of degree r.]

Let G be a graph with k(G) = k > 1 and let V1 U W U V; be a partition
of V(G) with |W| =k, V; # 8,i = 1,2, and G containing no V| — V,
edges. Show that, for each i, G contains either a matching from W into V; or
a matching from V; into W,

Let G be a connected graph of order at least four such that every edge belongs
to a 1-factor of G. Show that G is 2-connected. Show also that if |G| > 2k
and every set of k — 1 independent edges in contained in a 1-factor, then G is
k-connected.

Show that if a graph G has a 1-factor, |G| > 2k + 2, and every set of k
independent edges is contained in a 1-factor, then every set of k—1 independent
edges is contained in a 1-factor.

Let G be a connected graph of order at least 4, and let F = {fi, ..., fin} be
a 1-factor of G. Show that F contains two edges, f; = a;b; and f; = a;bj,
say, such that G — {a;, b;} and G — {a;, b;} are both connected.

Anr x s Latin rectangle based on 1,2, ...,nisan r X s matrix A = (a;;)
such that each entry is one of the integers 1,2, ..., n and each integer occurs
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in each row and column at most once. Prove that every r x n Latin rectangle
A can be extended to an n x n Latin square. [Hint. Assume that r < n and
extend A to an (r + 1) x n Latin rectangle. Let A; be the set of possible values
of ary,j; thatis, let A; = {k : 1 < k < n, k # a;;}. Check that the system
{Aj : 1 < j < n} has aset of distinct representatives.]

Prove that there are at least n!(n — 1)!---(n — r + 1)! distinct r x n Latin
rectangles based on 1, 2, ..., n. [Hint. Apply Exercise 18(ii).]

Let A be an r x s Latin rectangle and denote by A (i) the number of times the
symbol i occurs in A. Show that A can be extended to an n x n Latin square
iff Af)>r+s—nforeveryi =1,2,...,n.

The fundamental theorem of Tychonov’s from general topology states that the
product of a family of compact topological spaces is compact in the product
topology. In combinatorics this result is frequently needed in the following
simple form: the product of a family of finite sets is compact. Prove this in
the following formulation.

Let " be an index set and I'<®) the collection of finite subsets of I'. For
each y € T, let S, be a finite set and, for A C T, define Sp = UYGA Sy.

For every I € (<) let F; be a non-empty set of functions f : I — S§j,
with f(y) € S, forevery y € I. Suppose that, forall I’ C I € (<o) and
f € Fi, the restriction f|I' of f to I’ belongs to Fyr. Show that there is a
function F : I' — Sr such that F|I € Fj forevery I € '(<®) [Hint. For
I € T(<9 define G = {g € Fj: forevery J € r(<®) 7 5 I, there is
an f € F7 with f|I = g}. Note that G; # @ for every I € I'(<®)_ Find a
function F : A — Sa, with A C I maximal, such that F|I € G; for every
e A9 ]

31% Deduce from Tychonov’s theorem in the previous exercise the following

32.

33.

34.

extension of Hall’s theorem.

Let G be an infinite bipartite graph with vertex classes X and Y, such that
each vertex in X is incident with finitely many edges. Then there is a complete
matching from X into Y iff |[I"(A)| > |A| for every finite subset A of X.
Show that the finiteness condition cannot be omitted.

Prove that a 2-edge-connected cubic graph has a 1-factor. [This result is
called Petersen’s theorem. In order to prove it, check that the condition of
Tutte’s theorem is satisfied. If @ = S C V(G) and C is an odd component of
G — S, then there are at least two S — C edges, since G is 2-edge connected.
Furthermore, since G is cubic, there are at least three S — C edges. Deduce
that (G — S) < |S].]

Show also that a cubic graph need not have a 1-factor.

Imitate the second proof of Theorem 7 to give a direct proof of the case d = 0
of Theorem 12 and then deduce from it the general case d > 0.

Let G be a graph of order n with at most r > 2 independent vertices. Prove
that if G is any orientation of G that does not contain a directed cycle (acyclic



96

35.

36.

37.

38.

39.

IIl. Flows, Connectivity and Matching

orientation), then G contains a directed path of length at least [n/r] — 1.
[Hint. Apply Dilworth’s theorem, Theorem 13.]

Let Iy, I, ..., I;41 be intervals in R, with r, s > 1. Show that either some
r + 1 of these intervals have a non-empty intersection or some s + 1 of them
are pairwise disjoint.

Let Ry, R2, ..., Ry, be rectangular parallelepipeds in canonical position in
R", so that R; = ]—[Ll[ai, b;]. Show that if m > rs"™ + 1 then either some
r + 1 of these parallelepipeds have a non-empty intersection, or some s + 1
of them are pairwise disjoint.

Deduce from Exercise 34 the following result. Given a set of rk 4 1 distinct
natural numbers, either there exists a set of r + 1 numbers, none of which
divides any of the other r numbers, or else there exists a sequence ap < a; <
.-+ < g such thatif 0 <i < j <k, then g; divides a;.

Describe all maximal graphs of order n = 2/ that do not contain a 1-factor.
[Hint. Read it out of Tutte’s theorem (Theorem 14).]

Make use of Exercise 38 and the convexity of the binomial coefficient (g),
x > 2, to prove that if n > 2k + 1 then the maximal size of a graph of order
n with at most k independent edges is

o (4£7) ) 10-0).

Show also that the extremal graphs (that is, the graphs for which equality
holds) are one or both of the graphs Kax4+1 U Ep_2¢—1 and Kx + E,_x (see
Fig. I11.10).

FIGURE II1.10. For k = 3, n = 9 there are two extremal graphs: K7 U E; and K3 + Es.

40. Call a sequence dy, d, . .., d, of integers graphic if there is a graph G with

vertex set V(G) = {x1,x2,...,x,} such that d(x;) = di, 1 <i < n. (The
graph G is said to realize (d;)}.) Show thatdy > dp > --- > dp is graphic iff
so is the sequence

dy—1,d3—1,...,dgy1 — 1,dg42,ddy43, ..., dn.
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Use the algorithm given in Exercise 40 to decide which of the follow-
ing sequences are graphic: 5,4,3,2,2,2; 5,4,4,2,2,1; 4,4,3,3,2,2,2;
and 5,5,5,4,2,1, 1, 1. Draw the graphs realizing the appropriate sequences
constructed by the algorithm.

The general form of the fundamental algorithm for stable matching goes
as follows. In each step of the algorithm either a boy with no outstanding
proposal proposes to the next girl on his list or a girl with at least two
outstanding proposals refuses all but her best suitor. These steps can be taken
in any order. Show that the algorithm always constructs the same matching,
namely the unique stable matching optimal for the boys.

Define a stable matching in a bipartite multigraph by defining, for each vertex,
an order of preference on the set of edges incident with the vertex. Show that
every bipartite multigraph has a stable matching.

Show that, for every n > 1, there is an assignment of preferences in an n by
n bipartite graph such that there is precisely one stable matching (and so an
optimal stable matching is also pessimal).

Show that in the stable matching optimal for the boys at most one boy ends
up with his worst choice.

Suppose that in a set of n boys and n girls all boys have the same order
of preferences. How many proposals are made in the fundamental stable
matching algorithm?

What is the maximal number of proposals made in the fundamental stable
matching algorithm when applied to n boys and n girls?

Let m(n) be the maximal number of stable matchings in a set of n boys and
n girls. Show that m(n; + n2) > m(n;)m(n;), and deduce that m(n) > on/2
for n > 2. (What is m(3)?)

Show that if a stable matching contains an edge a A, with A being the worst
for a and a being the worst for A, then every stable matching contains aA.

Let us say that a stable matching M is less than a stable matching M’ (in
notation, M < M’), if for allaA € M and aA’ € M/, either A = A’ or a
prefers A’ to A. Show that the set M of all stable matchings, endowed with
the partial order <, is a distributive lattice. (All one needs is that if a, A, and
A’ are as above and A” is the ‘better’ of A and A’ for a, then the edges aA”
form a suitable matching, and so do the edges aA”, where A" is the ‘worse’
of A and A’ for a.) Deduce from this that if there are stable matchings, then
there is a stable matching optimal for the boys.

Show that the admissions scheme produced by the analogue of the fundamen-
tal algorithm, described at the end of Section 5, has the claimed properties,
and is optimal for the students.
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Construct a bipartite graph G with preferences such that some stable matching
of the subgraph spanned by U; U U3 is not a stable matching in G, where U
and U; are as in Theorem 18.

Let P = (X, <) be a partially ordered set containing no antichain on m + 1
elements. Show that P is the union of m chains. [Hint. Give the space [m]X
of all functions f : X — [m] = {(1,2,..., m} the product topology. By
Tychonov’s theorem, this space is compact. For two incomparable elements,
x and y, set

Vo ={f etm*: f0 # f0}.

Note that each V,,, is closed and any finitely many of them have a non-empty
intersection.]

Deduce from Dilworth’s theorem the following result of Erdds and Szekeres.
Every sequence (x;)| of real numbers with more than k£ terms contains either
an increasing subsequence with kK + 1 terms or a decreasing subsequence with
£ + 1 terms. (A subsequence (x; 6" is increasing if x;, < x;; < --- < x;,; it
is decreasing if x;, > x;; > -+ > x;,.) Show that a sequence of length k£
need not contain either.

Show that an incomplete regular graph on n vertices does not contain a
complete graph on more than n/2 vertices.

Show that every connected regular bipartite graph with more than 2 vertices
is 2-connected.

Let G be a bipartite graph with bipartition (U, W), |U| = |W| = n, and
minimal degree at least n/2. Show that G has a complete matching.

Let G be an r-regular bipartite graph, and let Eq be a set of r — 1 edges. Show
that G — Ey has a complete matching.

Let M be the set of complete matchings of an n by n bipartite graph. Let H
be the graph with vertex set M in which M| € M is joined to M, € M if
M and M, agree in all but two edges. Is H necessarily connected?

Let G be a connected graph that is not complete such that for any two distinct
nonadjacent vertices there are k independent paths joining them. Show that
k(G) > k.

Let G be an r-regular graph of order 2r — 2 and vertex-connectivity k (G) = k.
Show that k2 — k + 12 > 4r. Show also that equality holds if and only if
k=0or1(mod4)and V(G) = ViUV, U V3, |Vi|=r+ 1k, |Va| =k,
V3| = r — 3, with G[V] and G{V3] complete, each x; € V) joined to all
vertices in V;, each x3 € V» joined to all vertices in V7 and to k — 1 vertices
in V3, and each x3 € V3 joined to four vertices in V;. Note, in particular, that
k = x(G) > 4, and there is a unique r-regular graph of order 2r — 2 and
connectivity 4, namely a certain graph of order 10.
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An n by n matrix S = (s;;) is said to be doubly substochastic if ZLI sij <1
forevery jand Z;"=1 sij < 1foreveryi.Show that every doubly substochastic
matrix is element-wise dominated by some doubly stochastic matrix; that is,
if § = (s;) is doubly substochastic, then 5;; < d;; for some doubly stochastic
matrix D = (d;;).

(Exercise 19 contd.) Let A, > 0 be the maximal real number such that for
every n x n doubly stochastic matrix A = (a;;)] there is a permutation
matrix P for which all entries of A — A, P are non-negative. Show that
A= 1/L(n + 1)2/4].

Let n > 1. Show that every n x n doubly stochastic matrix is the convex
linear combination of (n — 1)2 + 1 permutation matrices but it need not be
expressible as a convex linear combination of (n — 1)? permutation matrices.

Let S,'," be the set of sequences x = (x1, ..., x,) such that x; > O for all i
and )" x; = 1. The decreasing rearrangement of a sequence x € S is the
sequence x* = (x[;) where x;) is the i thlargest term of x. Letus write x < y
to denote the fact that Y% x;;; < Y % yli] for every k. Show thatif x, y € S,
then x < y if and only if x = Dy for some doubly stochastic matrix D.

Show that for y € S the set {x € S7 : x < y} is the convex hull of the points
obtained by permuting the elements of y.

Let G be a 3-edge-connected cubic graph without a cutvertex. Show that G
is also 3-connected. (Thus if A(G) = 3 and k(G) > 2 then k(G) = 3.) Show
also that there are cubic graphs G of arbitrarily large order with A(G) = 3
and k(G) = 1.

Let G be a bipartite graph with bipartition (V, V3),andlet A; C V;,i =1, 2.
Let I; be a set of independent edges covering A;, i = 1,2. (Thus I, is a
complete matching from Aj into V;, and I, is a complete matching from

Aj into V1.) Show that I; U I contains a set of independent edges covering
A1 U As.

Let G be a connected bipartite graph with 2k + 3 vertices in each class and
each vertex having degree k or k + 1. Show that G has a complete matching
unless it is a certain graph, to be determined. [Hins. The exceptional graph
consists of two not quite full copies of Kx2 x+1, joined by an edge.]

Let G = (V1, V2; E) be a bipartite graph such that [['(A)| > |A|4d for every

"A C V1, A # 0. Show that G has a subgraph H such that dyy (x) = d + 1 for

every x € Vi and [Ty (A)| > |A|+d forevery A C V|, A # 0.
Let1 <d; <dp <--- <dy. Show that (d;)] is the degree sequence of some
graph if and only if } ] d; is even and

n n—k

Z d; <k(k—1)+)_ min{d;, k}.

i=n—k+1 i=1
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72.
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Let G and H be graphs with vertex set V such that dg(x) = dy(x) + 1 for
every x € V. Show that there is a graph G = (V, E) suchthatd(x) = dg (x)
for every x € V and G contains a 1-factor (i.e., a set of |V]/2 independent
edges).

73.~ Let G be a graph with vertex set V(G) = {x1, x2, ..., x,} such that every

vertex x; is joined to at most k — 1 of the vertices xy, x3, ..., x;—1. Show that
G is k-partite (i.e., V(G) = Uf.‘=1 Vi, with no edge joining vertices in the same
class V;).

74.~ Show that for all 1 < k < £ there is a graph G with vertex-connectivity

k{(G) = k and edge-connectivity A(G) = £.

75.~ Deduce from Hall's theorem the following theorem of Konig and Egerviry.

76.

71.

78.

79.

80.

81.

82.

Let A be an m x n matrix of Os and 1s, and call a column or row of A a line.
Then the minimal number of lines containing all the 1s of A is precisely the
maximal number of 1s with no two in the same line.

Let x and y be vertices of G at distance d. Suppose that after the deletion of
any k — 1 of the vertices the distance between x and y is still 4. Show that G
contains k independent x — y paths, each of length d.

Let x and y be adjacent vertices of degree at least & in a graph G. Show that
if G/xy is k-connected then, so is G. [The graph G/xy is obtained from G
by contracting the edge xy, i.e., by identifying x and y, and joining the new
vertex to all other vertices of G that are joined in G to at least one of x and
y

Let G be a graph of minimal degree 3 without two edge-disjoint cycles. Show
that G is either K4 or K3 3 (i.e., it is either a complete graph on 4 vertices or
a complete bipartite graph with 3 vertices in each class).

Determine all multigraphs (graphs with loops and multiple edges) of minimal
degree 3 without two edge-disjoint cycles. [ In a multigraph, a loop at x adds
2 to the degree of x; a loop forms a cycle of length 1, and two edges joining
the same two vertices form a cycle of length 2.]

Deduce from the result of the previous exercise that every graph of order n
and size n + 4 contains two edge-disjoint cycles.

Show that a graph with n vertices and m edges has an independent set of at
least 2n/3 — m/3 vertices. For what graphs is equality attained? (What are
the extremal graphs?)

The transversal number 1(G) of a graph G is the minimal number of vertices
meeting every edge. Show that the transversal number of a graph with n
vertices and m edges is at most (n + m)/3. What are the extremal graphs?

For n > 2 even, let F, be the number of 1-factors of K,,. Show that F, =
(m=D=@m—-Dn-3)n-=>5) =nl/{(n/2)12"?%.
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83. Letn > 6 be even, and let ey, ..., e,— be edges of K,. Show that K, —
{e1,...,en~1} has a 1-factor unless each e; is incident with the same vertex.

84. Let A be a Steiner triple system on [n] = {1, ..., n}, as defined in Exer-
cise L41,and let U = {x1,...,x} U {y1,...,yn} U{z} be aset of 2n + 1
elements. Show that

B={xjyiz: 1 <i <n}U{xixjxg: ijk € AU {xiyjyx € A}
is a Steiner triple system on U.

85. (Exercise 85 contd.) Show that .A contains a set .Ag of n triples such that each
i € [n] is in precisely three triples that belong to .A4y. Let

U=XUYUZ={xl,---sxn}U{}’l,---,}’n}U{ZO,---,ZG}

be a set of 2n 4 7 elements, and let H be the bipartite graph with bipartition
X UY and edge set {x;y; : ijk € A}. Show that E(H) is the union of six
1-factors, Fi, ..., Fs}, and set Fp = {x;y; : 1 <i < n}. Finally, set

C1 = {xixjxy : ijk € A},

Co = {xiyjzx : xiyj € Fr,0 <k <6},
C3 = {xiyjyk : ijk € A\ Ao},

Ca = {yiyjyk : ijk € Ao},
C=CU...UCs,

where Cs is a Steiner triple system on the 7-element set Z. Show that C is a
Steiner triple system on U.

86. (Exercise 85 contd.) Deduce Kirkman'’s theorem that if » is of the form 6k + 1
or 6k + 3 then there is a Steiner triple system of order n.

III.7 Notes

The basic book on flows is L.R. Ford Jr. and D.R. Fulkerson, Flows in Networks,
Princeton University Press, Princeton, 1962. It not only contains all the results
mentioned in the chapter concerning flows and circulations, but also a number of
applications to standard optimization problems.

The fundamental theorems of Menger, Hall, and Tutte are in K. Menger, Zur
allgemeinen Kurventheorie, Fund. Math. 10 (1927) 96-115, P. Hall, On repre-
sentatives of subsets, J. London Math. Soc. 10 (1935) 26-30, and W.T. Tutte, A
factorization of linear graphs, J. London Math. Soc. 22 (1947) 107-111. The proof
of Tutte’s theorem we give is due to T. Gallai, Neuer Beweis eines Tutte’schen
Satzes, Magyar Tud. Akad. Kizl. 8 (1963) 135-139, and was rediscovered inde-
pendently by I. Anderson, Perfect matchings in a graph, J. Combinatorial Theory
Ser. B 10 (1971) 183-186 and W. Mader, Grad und lokaler Zusammenhang in
endlichen Graphen, Math. Ann. 205 (1973) 9-11.
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The stable matching theorem of Gale and Shapley and its variant concerning
college admissions are from D. Gale and L.S. Shapley, College admissions and
the stability of marriage, American Mathematical Monthly 69 (1962), 9-15.

The results in Exercises 8 and 9 are due to D. de Werra, Multigraphs with
quasi-weak odd cycles, J. Combinatorial Theory Ser. B 23 (1977), 75-82.

A slightly simpler form of the result in Exercise 23 is due to W.T. Tutte; the
proof indicated in the hint was found by C. Thomassen. An extensive survey of
results concerning connectivity and matching can be found in Chapters I and II
of B. Bollobas, Extremal Graph Theory, Academic Press, London and New York,
1978.

Stable matchings are discussed in D.E. Knuth, Mariages Stables et Leur Re-
lations avec d’Autres Problémes Combinatoires, Les Presses de 1’Université de
Montréal, Montréal, 1976, 106 pp., and in its slightly updated translation, Stable
Marriage and Its Relation to Other Combinatorial Problems — An Introduction to
the Mathematical Analysis of Algorithms, Amer. Math. Soc. 1997, xiii + 74 pp.
For an account of the relationship among stable matchings, non-expansive net-
works and optimization, see Tomas Feder, Stable Networks and Product Graphs,
Memoirs Amer. Math. Soc., Vol. 116, 1995, x + 223 pp.



IV

Extremal Problems

Extremal problems are at the very heart of graph theory. Interpreting it broadly,
extremal graph theory encompasses most of graph theory; in its narrow sense, it
contains many of the deepest and most beautiful results of graph theory.

Of necessity, in this chapter we cannot take the broad view, so we shall concen-
trate on variants of the quintessential extremal problem, the forbidden subgraph
problem : given a graph F, determine ex(n; F), the maximal number of edges in
a graph of order n not containing F. Equivalently, how many edges guarantee that
our graph contains F'? For example, how many edges in a graph of order n force
it to contain a path of length £7 A cycle of length at least £? A cycle of length at
most £? A complete graph K, ?

More generally, an extremal question asks for the extreme values of certain
graph parameters in various classes of graphs. For example, what is the maximal
value of r for which there is a 2-connected r-regular graph of order n that is
not Hamiltonian? Equivalently, how small a value of r guarantees that every 2-
connected r-regular graph of order n is Hamiltonian? We shall not say much about
these more general extremal questions, although occasionally we shall demand
that our graphs be k-connected for some k or that their minimal degrees not be too
small.

Before going into the details, it is appropriate to say a few words about termi-
nology. If, for a given class of graphs, a certain graph parameter, say the number of
edges or the minimal degree, is at most some number f, then the graphs for which
equality holds are the extremal graphs of the inequality. As a trivial example, note
that an acyclic graph of order n has at most n — 1 edges, and the extremal graphs
are the trees of order n.

When we talk of extremal graphs, uniqueness is always understood up to iso-
morphism. Thus, a disconnected graph of order at least n > 2d + 2 and minimal

degree at least d > 0 has at most (dgl) + (""g_l) edges, and Kg41 U Kp_q_1 is
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the unique extremal graph (see Exercise 27). Also, a graph of order n without odd
cycles has at most [n2/4] edges, and K|»/2],[n/2] is the only extremal graph.

In the forbidden subgraph problem a graph is extremal if it does not contain
F and has ex(n; F) edges; the set of extremal graphs is EX(n; F). Thus we
know from Mantel’s theorem (Theorem I.2) that ex(n; K3) = |n?/4] and, in fact,
EX(n; K3) = {K|n/2),1n/21}- Also, in the previous chapter, Tutte’s factor theorem
enabled us to solve a beautiful extremal problem: how many edges guarantee
k + 1 independent edges? In this case F consists of ¥ + 1 independent edges;
that is, F = (k + 1)K>, and for n > 2k + 1 the extremal graphs of ex(n; F) are
Kog+1 U K241 and/or Ky + Kn—i (see Exercises I11.38-39).

The material in this chapter falls conveniently into two parts: the odd sections
concern paths and cycles, while the even ones are about complete subgraphs, We
have chosen to alternate the topics in order to have the simpler results first, as in
most other chapters.

The first section is about paths and cycles (short and long) in graphs of large
size. Among other results, we shall give a good bound on ex(n; P¢), the maximal
number of edges in a graph of order n without a path of length £. We shall also
present some fundamental results about Hamilton cycles.

Extremal graph theory really started in 1941, when Turan, considerably ex-
tending Mantel’s theorem, determined both the function ex(n; K,) and the set
EX(n; K,). The second section is devoted to this fundamental theorem together
with some related results. v

When discussing ex(n; P¢) and ex(n; K, ), we mostly care about the case when
n is large compared to £ and r. We get rather different problems if F and G have
the same order. A prime example of these problems will be discussed in the third
section, the problem of Hamilton cycles. Over the years considerable effort has
gone into the solution of this problem, and in a certain rather narrow sense the
present answers are satisfactory.

The fourth section is devoted to a deep and surprising theorem of Erdds and
Stone, proved in 1946. The theorem, occasionally called the fundamental theorem
of extremal graph theory, concerns ex(n; F), where F is a complete r-partite graph
with ¢ vertices in each class, but as an immediate corollary of this result one can
determine lim,_, o ex(n; F)/n? for every graph F.

The last two sections are about considerable new developments: Szemerédi’s
regularity lemma and its applications. In 1975, while proving his celebrated the-
orem on arithmetical progressions (see Section VI.4), Szemerédi discovered a
beautiful result concerning the coarse structure of every graph. This theorem, Sze-
merédi’s regularity lemma, is a vital tool in attacking numerous extremal problems.
Once again, we do hardly more than point the way.

IV.1 Paths and Cycles

When looking for cycles in a graph, the most natural questions concern short
cycles and long cycles. At most how large is the girth, the minimal length of a
cycle? At least how large is the circumference, the maximal length of a cycle?
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Let us see first what we can say about graphs with only a few more edges than
vertices. A graph G = G(n,n + 1), that is, a graph with n vertices and n + 1
edges, has girth g(G) < |2(n + 1)/3]. Indeed, G has at least two cycles, as its
cyclomatic number is at least two. Now, if there are two edge-disjoint cycles, then
g(G) < 11;_1; otherwise, there are two vertices joined by three independent paths.
Writing n1, n3 and n3 for the lengths of these paths, we have ny +na4+n3 = n+1,
and the three cycles formed by these three paths have lengths ny + na, n2 + ns,
and n| + n3. The sum of these three lengths is 2(n; + n2 + n3) < 2(n+ 1), so
G has at least one cycle of length at most 2(n + 1)/3. It is also easily seen that G
need not contain a cycle of length less than [2(n + 1)/3].

Similarly, every graph G(n,n + 2) has girth at most (n + 2)/2, and every
G(n,n + 3) has girth at most 4(n + 3)/9 (see Exercises 12—-14. Although this
sequence can be continued for a few more values, the results become more and
more complicated.

In looking for short cycles, it is more convenient to postulate that the minimal
degree is large, rather than that the graph has many edges, so this is what we shall
do now. In its natural formulation our first theorem gives a lower bound on the
order of a graph in terms of the minimal degree and the girth, the length of a
shortest cycle. Equivalently, the result gives an upper bound on the girth in terms
of the order and minimal degree.

Theorem 1 For g >3 andé > 3 put

8

1+ —i{6- DED2_1} ifgisodd,
no(g,d) =

56D 1) if g is even.

Then a graph G with minimal degree § and girth g has at least no(g, 8) vertices.

Proof. Suppose first that g is odd, say g = 2d +1,d > 1. Pick a vertex x. There is
no vertex z for which g contains two distinct z—x paths of length at most d, since
otherwise G has a cycle of length at most 2d. Consequently, there are at least §
vertices at distance 1 from x, at least §(6 — 1) vertices at distance 2, and so on,
and at least §(8 — 1)4~1 vertices at distance d from x (Fig. IV.1).

FIGUREIV.l. Thecases§ = g=5and§ =4, g =6.

Thus
n>1468+80—1)+---+806— 141,

as claimed.
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Suppose now that g is even, say g = 2d. Pick two adjacent vertices, say x and
y. Then there are 2(8 — 1) vertices at distance 1 from {x, y}, 2(8 — 1)? vertices
at distance 2, and so on, and 2(§ — 1)’1”1 vertices at distance d — 1 from {x, y},
implying the required inequality. O

Let Go be an extremal graph of Theorem 1, that is, a graph with parameters
& and g, for which equality holds. The proof above implies that G is regular
of degree §; if g = 2d + 1, then Gy has diameter d, and if g = 2d, then every
vertex is within distance d — 1 of each pair of adjacent vertices. It is easily seen
that no(g, &) is also the maximal number for which there is a graph with maximal
degree § having the latter property (Exercise 4). We call Go a Moore graph of
degree & and girth g or, if g = 2d + 1, a Moore graph of degree & and diameter
d. In Chapter VIII we shall use algebraic methods to investigate Moore graphs.
Here let us note only that the Heawood graph, the incidence graph of the Fano
plane, shown in Fig. 1.7, is a bipartite cubic graph of order 14 and girth 6, so it
is a Moore graph of degree 3 and girth 6. Similarly, the Petersen graph, shown in
Fig. V.11, is a Moore graph of degree 3 and diameter 2 (or girth 5).

Let us see now what we can say about long cycles and paths in a graph. Our first
result in this direction is a theorem of Pésa, extending a fundamental theorem of
Dirac from 1952. If a graph of order » is Hamiltonian, then its circumference is
n, while the length of a longest path is n — 1. However, every non-Hamiltonian
connected graph contains at least as long paths as the circumference of the graph.
Indeed, if C = x1x3 - - - x¢ is a longest cycle and £ < n then there is a vertex y not
on C that i1s adjacent to a vertex of C, say x;. But then yx;x; - - - x¢ is a path of
length £.

Theorem 2 Let G be a connected graph of order n > 3 such that for any two
non-adjacent vertices x and y we have

d(x)+d(y) > k.

Ifk = n then G is Hamiltonian, and if k < n then G contains a path of length k
and a cycle of length at least (k + 2)/2.

Proof. Assume that G is not Hamiltonian and let P = xjx, - - - x¢ be a longest
path in G. The maximality of P implies that the neighbours of x; and x; are
vertices of P. As G does not contain a cycle of length £, x; is not adjacent to x;.
Even more, the path P cannot contain vertices x; and x;+1 such that x is adjacent
to x;+1 and x; is adjacent to x;, since otherwise x1xz« - X;XgXg—1 -+ - X;j41 IS @
cycle of length £ (Fig. IV.2).

Consequently, the sets

T(x1) = {xj : x1xj € E(G)} and T (xg) = {xi31 : xix¢ € E(G)}
are disjoint subsets of {x3, x3, ..., x¢}, and so

k<dx)+d@xeg) =T +IT¥ x| <£—-1<n-1
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Xiv1 Xis2 Xi-1 X

x, P X; /

FIGURE IV.2. The construction of a cycle of length £.

Now, if k = n then this is a contradiction, so G is Hamiltonian. Also, if k¥ < n,
then this relation implies that G has a path of length £ — 1 > k. This proves the
first two assertions of the theorem.

Finally, the assertion about cycles is even simpler. Assume that d(x1) > d(x¢),
so d(x1) > [k/2]. Put t = max{i : x;x; € E(G)}. Thent > d(x;) +1 >
[k/2] + 1, and G contains the cycle xjx3 - - - x; of length ¢. O

Theorem 2 contains Dirac’s theorem: every graph of order » > 3 and minimal
degree at least n/2 is Hamiltonian.

In Section 3 we shall make use of the proof of Theorem 2 to obtain detailed
information about graphs without long cycles and paths. For the moment we
confine ourselves to noting two of its consequences.

Theorem 3 Let G be a graph of order n without a path of length k(= 1). Then

e(G) < n.
A graph is an extremal graph (that is, equality holds for it) iff all its components
are complete graphs of order k.

Proof. We fix k and apply induction on n. The assertion is clearly true if n < k.
Assume now that n > k and the assertion holds for smaller values of n.

If G is disconnected, then the induction hypothesis implies the result. Now, if
G is connected, then it contains no K; and, by Theorem 2, it has a vertex x of
degree at most (k — 1)/2. Since G — x is not an extremal graph,

k-1 k-1 k-1
e(G)y<d@x)+e(G—x) < — + n-1)=
2 2 2
Theorem 4 Let k > 2 and let G be a graph of order n in which every cycle has
length at most k. Then

n. O

e(G) < g(n 1.

A graph is extremal iff it is connected and all its blocks are complete graphs of
order k. O

The proof of this result is somewhat more involved than that of Theorem 3.
Since a convenient way of presenting it uses “simple transforms” to be introduced
in Section 3, the proof is left as an exercise (Exercise 37), with a detailed hint.



108 IV. Extremal Problems
IV.2 Complete Subgraphs

What is ex(n; K,+1), the maximal number of edges in a graph of order n not
containing a K4, a complete graph of order r 4+ 1? If G is r-partite, then it does
not contain a K,41, since every vertex class of G contains at most one vertex
of a complete subgraph. Thus ex(n; K,41) is at least as large as the maximal
size of an r-partite graph of order n. In fact, there is a unique r-partite graph
of order n that has maximal size. This graph is the Turdn graph T,(n), the
complete r-partite graph with n vertices and as equal classes as possible (see
Fig. IV.3), so that if we order the classes by size and there are ny vertices in the
kth class, thenn; < np < --- < n, < ny1+ 1. To see that this is the case, let
G be an r-partite graph of order n and maximal size. Clearly, G is a complete
r-partite graph. Suppose the classes are not as equal as possible; say there are
m vertices in the one class and my > mj + 2 in another. Then, by transferring
one vertex from the second class to the first, we would increase the number of
edges by (m) + 1)(m2 — 1) —mymy = my — m; — 1 > 1. Note that the relations
ny<np<-..--<n, and th:l n; = n uniquely determine the n;, and so 7, (n) is
unique. In fact, n; = [((n+i — 1)/r]fori=1,...,r.

FIGURE IV.3. The Turan graph 73(7).

The number of edges in the Turan graph 7, (n) is usually denoted by #, (n); thus,
for example, t,(n) = [n%/4]. Simple calculations show that

() > (1 - }) (;) W

In fact, if r > 11is fixed and n — oc, then

—(1-1io) ("
tr(”)—( —;+0( )) (2)

Here and elsewhere, we use Landau’s notation: g = O(f) if g/f is bounded as
n — oo, and g = o(f) if g/f — 0 as n — oc. In particular, 0(1) denotes a
function tending to 0 as n — oo.

A fundamental theorem of Turan states that the trivial inequality ex(n; K,4+1) >
t,(n) is, in fact, an equality for every n and r. In proving this, somewhat as in
the case of Hall’s theorem, we have an embarrassment of riches: there are many
beautiful ways of proving the theorem, since the Turan graph 7; (n) is ideal for all
kinds of induction arguments. Before getting down to some proofs, we observe
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some simple properties of 7,(n) and, in general, of graphs of order n and size
t,(n); indeed, after these observations, several proofs of Turan’s theorem will be
almost immediate.

Clearly, 6(T;(n)) = n — [n/r] and A(T,(n)) = n — |n/r], so the minimal
degree of a Turdn graph is at most one smaller than its maximal degree. In other
words, given that T, (n) has n vertices and t, (n) edges, its degrees are as equal as
possible: if G = G(n, t;(n)), then §(G) < 8(T;(n)) and A(G) > A(T,(n)). Also,
if x € T,(n) is a vertex of minimal degree, then T, (n) — x is precisely 7,(n — 1).
If H is an (r — 1)-partite graph of order n — k and H + Ki = Ty (n), then, k is
\n/r]or[n/r] and H = T,_1(n — k). As a slight variant of this, we see that if
H=Gn—k, t,_(n—k)) and e(H + Ki) = t,(n), then k is |n/r] or [n/r].
Equivalently, t,(n) — k(n — k) > t,_1(n — k) unless k is |n/r] or [n/r].

We dignify the final observation by calling it a theorem.

Theorem S Let G be a graph with n vertices and at least t.(n) edges, and let
x be a vertex of maximal degree, say, d(x) = n — k = A(G). Set W = I'(x),
U=V(G)\Wand H= G[W]. Then e(H) = t,_1(n — k), and the inequality
is strict unless k = |n/r} and U is an independent set of vertices, each of degree
n—k.

Proof. As we noted above, k < |n/r]. Assume that e(H) < t,_;(n — k). Then

t,(n) < e(G) = e(H) + % Zd(u) + —;-e(U, W)
uclU
<e(H)+k(n—k) <tr_i(n— k) + k(n — k).

Consequently, k = |n/s], e(U, W) = k(n — k), and so G = H + Ky, as claimed.
O

From here it is but a short step to connect T, (n) with complete subgraphs and
thereby deduce the following extension of Turan’s theorem.

Theorem 6 Let G be a graph with n vertices and at least t, (n) edges. Consider
the following simple algorithm for finding a complete subgraph of order r + 1.
Pick avertex x| of maximal degree in G| = G, then a vertex x3 of maximal degree
in the subgraph G, of G spanned by the neighbours of x1, then a vertex x3 of
maximal degree in the subgraph G3 of G, spanned by the neighbours of x» (in
G2), and so on, stopping with xg if it has no neighbours in Gg. Then either G is a
Turdn graph T, (n), or else the procedure above constructs at least r + 1 vertices,
X1, X2, ..., Xr4+1, Which then span a complete subgraph.
In particular, ex(n; Kry1) = tr(n), and T, (n) is the unique extremal graph.

Proof. We apply induction on r, noting that for r = 1 there is nothing to prove. Set
n—k =d(x1) = A(G).If e(G2) > t,—1(n—k), then we are done by the induction
hypothesis, since G2 cannot be isomorphic to 7,_j (n — k), and x1, followed by the
vertices x2, X3, ..., Xr+1 We find in G, gives the sequence as claimed. Otherwise,
by Theorem 5, k = |n/r], e(G2) = t,_1(n — k), and G = G, + K. Hence,
by another application of the induction hypothesis to G, we see that either our
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procedure constructs xz, . .., x,4+1, orelse G2 = T,_a(n — k) and G = T, (n),
as claimed. O

In 1970 ErdGs proved a beautiful result about all graphs containing no K,41,
regardless of their number of edges, namely that the degree sequence of a graph
without a K, is dominated by the degree sequence of an r-partite graph. This
result again implies Turdn’s theorem.

Theorem 7 Let G be a graph with vertex set V that does not contain K, 1, a
complete graph of order r. Then there is an r-partite graph H with vertex set V
such that for every vertex 7 € V we have

dg(z) <dy@@).

If G is not a complete r-partite graph, then there is at least one vertex z for which
the inequality above is strict.

Proof. 'We shall apply induction on r. For » = 1 there is nothing to prove, since
G is the empty graph K, which is 1-partite. Assume now that r > 2 and the
assertion holds for smaller values of r.

Pick a vertex x € V for which dg(x) is maximal and denote by W the set
of vertices of G that are joined to x. Then Gy = G[W] does not contain a K,
for otherwise with x it would form a K, 1. By the induction hypothesis we can
replace Gy by an (r — 1)-partite graph Hp with vertex set W in such a way that
dG,(y) < dp,(y) for every y € W and strict inequality holds for at least one y
unless G is a complete (r — 1)-partite graph. Add to Hp the verticesin V — W
and join each vertex in V — W to each vertex in W. To complete the proof let us
check that the r-partite graph H obtained in this way has the required properties.

Ifze U=V —W,thendy() =dg(x) =dg(x) > dg(z),andifz € W, then
du(z) = dmy(z) +n — |W| =2 dg,(2) + n — |W| 2 dg(2). Thus dg(z) < dp(z)
holds foreveryz € V.

What can we say about G if e(H) = ¢(G)? Then e(Hp) = ¢(Gy), so Gy is a
complete (r — 1)-partite graph. Also, by counting the edges outside Go = Hp, we
see that

0=e(G) —e(Go) = Z dg(u) — e(GLU]) — [U||W|
uel

< |U|IW| —e(G[U]) — |U||W| = —e(G[U]),
implying that G is a complete r-partite graph. O

In order to emphasize the importance of Turan’s theorem, we state it once more,
this time in its original form, as it was stated in 1940.

Theorem 8 For r,n > 2 we have ex(n; K,+1) = t,(n) and EX(n; K, 4+1) =
{T,(n)}. In words, every graph of order n with more than t,(n) edges contains
a K,41. Also, T,(n) is the unique graph of order n and size t,(n) that does not
containa K 4.
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Proof. The theorem is contained in Theorem 6, and it is also an immediate con-
sequence of Theorem 7, since 7, (n) is the unique r-partite graph of order n and
maximal size.

Nevertheless, let us give two more proofs of the theorem itself, based again on
the properties of 7, (n).

3 rd Proof. For r = 1 there is nothing to prove, so fix r > 2 and apply induction
on n. For n < r 4 1 the assertion is trivial, so suppose that n > r + 1 and the
theorem holds for smaller values of n.

Suppose G has n vertices, #.(r) edges, and it contains no K,+1. As T,(n) is a
maximal graph without a X, 1 (thatis, no edge can be added to it without creating
a K1), the induction step will follow if we show that G is exactly a T, (n). Since
the degrees in T, (n) differ by at most 1, we have

8(G) < 8(Tr(n)) < A(T: () < A(G).
Let x be a vertex of G with degree d(x) = 8(G) < 8(T,(n)). Then
e(G ~—x)=e(G) —d(x) 2 e(T,(n - 1)),

so by the induction hypothesis Gy, = G — x is exactlya T, (n — 1).
A smallest vertex class of G, contains | (n — 1)/r] vertices, and the vertex x is

joined to all but
= (-[E)- 5]

vertices of Gy. Since x cannot be joined to a vertex in each class of Gy, it has
to be joined to all vertices of G, save the vertices in a smallest vertex class. This
shows that G = T, (n), as required. a

4 th Proof. This time we apply induction on n + r. Assume that2 < r < n and
the assertion holds for smaller values of r + n. Fix a graph G = G(n, t,(n))
without a K4 : as before, it suffices to prove that we must have G = T, (n). Since
tr(n) > t,_1(n), by the induction hypothesis G contains a K, say, with vertex set
W = {x1,x2,...,x}. Set U = V(G) \ W and H = G[U]. Clearly, no vertex
x € U sends r edges to W, so

e(H) = e(G) — (;) —e(U, W)

> tr—1(n) — (;) --nr-D=tMr-r).

The second equality above follows from the fact that if we remove (the vertex set
of) a K, from T, (n) then we remove precisely (;) + (n —r)(r — 1) edges, and we
are left with a T, (n —r). Now, as H contains no K1, by the induction hypothesis
the inequality above implies that H = T, (n — r), and every vertex of H is joined
to precisely r — 1 vertices of W. It is easily checked that this forces G = T, (n),
as in the previous proof. O
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The proofs above can easily be adapted to give a number of related results (cf.
Exercises 18-23). Yet another proof of Turdn’s theorem will be given in Chapter
VIIIL.

In a slightly different formulation, Turan’s theorem gives a lower bound on the
clique number of a graph with given order and size. A maximal complete subgraph
of a graph is a clique, and the clique number w(G) of a graph G is the maximal
order of a clique in G. Simply, w(G) is the maximal order of a complete subgraph
of G. Now, Turdn’s theorem states that if a graph G has n verticesand m > t,.1(n)
edges then w(G) > r,unless m = t,_1(n) and G = T,_1 (n).

Now let us turn to the problem of Zarankiewicz, which is the analogue of Turan’s
problem in bipartite graphs. Write G, (m, r) for a bipartite graph with m vertices in
the first class and » in the second. What is the maximal size of a Gy(m, n) if it does
not contain a complete bipartite graph with s vertices in the first class and ¢ in the
second? This maximum is usually denoted by z(m, n; s, t). The following simple
lemma seems to imply a very good upper bound for the function z(m, n; s, t).

Lemma 9 Letm,n,s,t, k,r be non-negative integers, 2 < s <m,2 <t <n,
0 <r < m, and let G = G2(m,n) be an m by n bipartite graph of size
7z = my = km +r without a K ; subgraph having s vertices in the first class and
t in the second. Then

y k k+1 n
m(t> s(m—r)(t)+r< , )5(s—1)<t). (2)

Proof. Denote by V| and V; the vertex classes of G. We shall say that a ¢-set (i.e.,
a set with ¢ elements) T of V3 is covered by a vertex x € V; if x is joined to
every vertex in T. The number of ¢-sets covered by a vertex x € V is (d(tx )). Since
the assumption on G is exactly that each ¢-set in V; is covered by at most s — 1

vertices of Vi, we find that
d(x) n
5 () =6-0() ®

xeVp

AsY ey dx)=z=my=km+r,0<r <m,and f(u) = (‘t‘) is a convex
function of u for u > t, inequality (3) implies (2). (]

The proof of Lemma 9 is the simple but powerful double counting argument;
as this is perhaps the most basic combinatorial argument, let us spell it out again,
this time in terms of the edges of a bipartite graph H. One of the vertex classes of

H is just Vi, but the other is V.9, the set of all z-subsets of V5. In our new graph

H,joinx € Vito A € Vz(’) if in G the vertex x is joined to all ¢ vertices of A.
Now, counting from Vi, we see that

d
e(H) = Z ( (tx))'

xeVy
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On the other hand, as G contains no K, in H every vertex A € Vz(') has at most

s — 1 neighbours. Thus
AMSG—DC)

and the rest is simple algebra.
Theorem 10 For all natural numbers m, n, s and t we have
zmn s, )< —DV -t + DmV 4 ¢ = Dm.

Proof. Let G = G2(m, n) be an extremal graph for the function z(m, n; s,t) =
my without a K (s, t) subgraph. As y > n, inequality (2) implies

G-@=-DV<@-D@n-¢-1))m" O

The only advantage of Theorem 10 is that it is fairly transparent: for any
particular choice of the parameters we are better off dealing with inequality (2).
Thus, for example,

2(n,1;5,2) < Z(1+ (4G — D = D+ D7), @)
Indeed, with the notation of Lemma 9 we have n(}) < (s — 1)(3). Hence

Y-y-(-Drn-1<0,

implying that ny is at most the right-hand side of (4).

The method of proof of Lemma 9 also gives an upper bound for ex(n; K5(f)),
the maximal number of edges in a graph of order n without a complete ¢ by ¢
bipartite subgraph.

Theorem 11 Letn,s,t, k and r be non-negative integers, and let G be a graph
oforderz =ny/2 = %(kn + r), containing no K ;. Then

) z-ofl) (1) o)

1 1
ex(n, K) < 5 (5 = Dtp2-1r 4 5= Dn.

Furthermore,

Proof. AsinLemma 9, let us say that a z-set of the vertices is covered by a vertex
x if x is joined to every vertex of the ¢-set. Since G does not contain a K ;, every
t-set is covered by at most s — 1 vertices. Therefore, if G has degree sequence

(d;)] then
”. (d; n
B (0)=e-n()

and the rest is as in Lemma 9 and Theorem 10. d
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In fact, there is no need to repeat the proof of Lemma 9 to prove Theorem 11: a
simple, and general, “duplication” argument will do the job. Given a graph G with
vertex set V(G) = {x1, ..., xu}, construct a bipartite graph H = D(G) as follows.
Take two disjoint copies of V(G), say V1 = {x{, ..., x,}and V2 = {x{, ..., x;}.
The graph H has bipartition (Vj, V), and xlfx]’.’ € E(H)iff x;xj € E(G). Clearly,
e(H) = 2¢(G); in fact, dg(x;) = dp(x]) = dy(x]') for every i. It is easily seen
thatif K;; ¢ G, then K5, ¢ H,and so z(n, n; s, t) > 2ex(n, K; r).

What about the order of z(n, n; t, t)? We see from Theorem 10 thatif ¢t > 2 is
fixed, then

zinyn;t,t) < ¢ — DYV 4 ¢ = Dn. 5)
Also, by Theorem 11,

1 1
ex(n, K1) < 5 (¢ = D'Vt 4 e = Dn. (6)

It is very likely that (5) and (6) give the correct orders of the functions z(n, n; ¢, )
and ex(n, K ), but this has been proved only for # = 2 and 3. In fact, it is rather
hard to find nontrivial lower bounds for z(m, n; s, t). In Chapter VII we shall
use the probabilistic method to obtain a lower bound. Here we present an elegant
result for ¢ = 2, proved by Reiman in 1958, that indicates the connection between
the problem of Zarankiewicz and designs, in particular projective spaces, and we
shall conclude the section with some recent results for ¢ > 3.

Theorem 12 Forn > 1, we have
2(n,n;2,2) < %n{l + (4n — 3)172),
and equality holds for infinitely many values of n. Furthermore,
ex(n, Cs) < 7(1+an —3).

Proof. Since 2ex(n, K;¢) < z(n, n; s, t), the second inequality is immediate from
the first. Moreover, the first inequality is just the case s = 2 of (4). In fact, the
proof of Lemma 9 tells us a considerable amount about the graphs G for which
equality is attained. We must have d; = d; = - - - = dp = d, and any two vertices
in the second vertex class V3 have degree d and any two vertices in V; have exactly
one common neighbour. Also, precisely the same assertions hold with V; and V;
interchanged.

Call the vertices in V3 points and the sets I'(x), x € V), lines. By the remarks
above there are n points and n lines, each point is on d lines; and each line contains
d points, there is exactly one line through any two points and any two lines meet
in exactly one point. Thus we have arrived at the projective plane of order d — 1.
Since the steps are easy to trace back, we see that equality holds for every n for
which there is a projective plane with n points. In particular, equality holds for
every n = q* + q + 1 where g is a prime power.

In conclusion, let us see the actual construction of G for the above values of n.
Let g be a prime power and let PG(2, q) be the projective plane over the field of
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order g. Let V) be the set of points and V; the set of lines. Then
Vil=Val=¢*+q+1=n.

Let G be the bipartite graph G2(n, r) with vertex classes V; and V5 in which we
join a point P € Vi to a line £ € V; by an edge iff the point P is on the line
£. (For g = 2 this gives us the Heawood graph, shown in Fig. I.7.) Then G has
nig+1)= %n{l + (4n — 3)1/2) edges, and it does not contain a quadrilateral.
a

A variant of the construction above can be used to show that the bound for
ex (n; K3,2) = ex(n; C4) given in Theorem 11 is also essentially best possible.

The results for K3 3 are almost as satisfactory as the results above for K3 5 = Cy.
We see from (5) and (6) that z(n, n; 3, 3) < (213 + 0(1))n%/? and ex(n, K3 3) <
% (2134 0(1))n>/3. By using an ingenious construction based on finite geometries,
Brown showed in 1966 that z(n,n; 3,3) > (1 + 0(1))115/3 and so ex(n, K33) >
(% + 0(1))n3/3. Thus (5) and (6) do give the correct orders for K 3,3. However, 30
years passed before it was proved that the constants (1 and 1/2) in the lower bounds
of Brown are best possible. In 1996, Fiiredi gave the first substantial improvement
on the simple upper bound in Theorem 10 when he proved thatfor1 <t <s <m
we have

zim,n;8,0) < (s —t 4+ DV fam'=V 4 tn 4 tm?201, @)

Combining (7) with the lower bound given by Brown, we see that z(n, n; 3, 3) =
(14 o(1))n*> and ex(n, K33) = (3 + o())n/>.

In spite of all these results, much remains to be done. It is very likely that (5)
and (6) not only give the correct orders but z(n, n; t, t) = (¢; + 0(1))n?~ (/9 and
ex(n, K; 1) = %(c, +0(1))n?2=/)_ Even more, perhaps Fiiredi’s inequality (7) is
essentially best possible and ¢, = 1.

IV.3 Hamilton Paths and Cycles

A class of graphs is said to be monotone if whenever a graph L belongs to the
class and M is obtained from L by adding to it an edge (but no vertex) then M also
belongs to the class. Most theorems in graph theory can be expressed by saying
that a monotone class M is contained in a monotone class P. Of course, these
classes are usually described in terms of graph invariants or subgraphs contained
by them. For example, the simplest case of Turan’s theorem, discussed in the
previous section, states that the class M = {G(n, m) : m > n?/4} is contained in
P = {G : G contains a triangle}. It is worth noting that a class P of graphs is said
to be a property of graphs if L € Pand L = M imply M € P.

How should we go about deciding whether M is contained in P? Bondy and
Chvital showed in 1976 that in some cases there is a simple and beautiful way of
tackling this problem. Suppose we have a class 7 of triples (G, x, y), where G is
a graph and x and y are non-adjacent vertices of G, such that if (G, x, y) € 7 and
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G € M, then G belongs to P iff GT = G + xy does. This holds, for example, if
P is the property of containinga K, and 7 = {(G, x, y) : [T(x)NT(y)| < r—=2}..
In this case G can be replaced by G*. If G* also contains two non-adjacent
vertices, say u and v, such that (G*, u, v) € 7T, then we can repeat the operation:
we can replace GT by Gt = G* + uv. Continuing in this way we arrive at a
graph G* D G that belongs to P if G does and that is a closure of G with respect
to T; that is, it has the additional property that for no vertices a, b € G* does
(G*,a, b) € T hold. Thus it is sufficient to decide about these graphs G* € M
whether or not they belong to P.

Of course, the method above is feasible only if (1) the class 7 is simple enough,
(ii) it is easy to show that G belongs to P iff Gt does, and (iii) if we start with
a graph G € M, then a graph G* € M is easily shown to belong to P. In this
section we give two examples due to Bondy and Chvital that satisfy all these
requirements: we shall give sufficient conditions for a graph to contain a Hamilton
cycle or a Hamilton path. Because of the special features of these examples it will
be convenient to use slightly different notation and terminology.

Let n and k be natural numbers and let P be a class of graphs of order n. We
say that P is k-stable if whenever G is an arbitrary graph of order n, and x and y
are non-adjacent vertices of G with d(x) + d(y) > k, then G has property P iff
Gt = G + xy has it also. It is easily seen that for every graph G of order n there
is a unique minimal graph G* = Cy(G) containing G such that

dg+(x) +dg+(y) <k — 1forxy ¢ E(G*).
In the notation of the previous paragraph, we shall take
T={G,x,y):|G|l=n, xy ¢ E(G), dx)+d(y) = k},

which is certainly simple enough, so (i) will be satisfied. It is also encouraging
that G* = Ci(G) is unique. Almost by definition we have the following principle
of stability: if P is a k-stable property of graphs of order n, then G has property
P iff Ce(G) has it also. We call Ci(G) the k-closure of G.

Requirement (ii) is also satisfied, since the gist of the proof of Theorem 2 is
that the property of containing a Hamilton cycle is n-stable and the property of
containing a Hamilton path is (n — 1)-stable. Indeed, if d(x) + d(y) > n — 1
whenever x and y are nonadjacent distinct vertices, then the graph is connected,
so the proof of Theorem 2 can be applied. (In fact, this is exactly what motivated
the notion of a k-closure.) By the stability principle we obtain the following
reformulation of Theorem 2 in the case k =n orn — 1.

Lemma 13 A graph G is Hamiltonian iff C,(G) is, and G has a Hamilton path
iff Cu—1(G) does. O

Depending on the amount of work we are able and willing to put in at this
stage (cf. requirement (iii)), we obtain various sufficient conditions for a graph
to be Hamiltonian. Of course, the case k = n of Theorem 2 is obtained without
any work, and so is the case k = n — 1, since the conditions imply immediately
that C,,(G) = K, in the first case and C,—1(G) = K, in the second, and K, is
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Hamiltonian if n > 3. In order to make better use of Lemma 13, we shall prove
the following ungainly technical lemma.

Lemma 14 Let G be a graph with vertex set V(G) = {x1,x2, ..., Xp}, whose
k-closure Cy(G) contains at mostt < n — 2 vertices of degree n — 1. Then there
are indicesi, j, 1 <i < j < n, such that x;x; € E(G) and each of the following
four inequalities holds:

j>max{2n —k—i,n—t},
dxj) <i+k—n, dxj))<j+k—-n-—1, (8)
d(x;)) +d(x;) <k—1.

Remark. It is not assumed that the degree sequence d(x1), d(x32),...,d(x,) of G
is ordered in any way.

Proof. The graph H = C¢(G) is not complete so, we can define two indices i and
J as follows:

J=max{f:dgy(x¢) #n—1},
i =max{£ : xex; ¢ E(H)}.
Then x;x; ¢ E(H), so
dy(xi) +du(xj) <k -1,
which implies the fourth inequality in (8). Each of the vertices
Xj41, Xj42, s Xn
has degree n — 1in H, so
n—j<t
and
n—j <8(H) <dux).

The vertex x; is joined to the n — j vertices following it and to the j —i — 1
vertices preceding it, so

dp(xj)>= -+ (G—-i-l)=n—i~1.

These inequalities enable us to show that the indices i, j, 1 <i < j < n, satisfy
the remaining three inequalities in (8). Indeed,

do(xi) <dg(x) <k —1-dp@xj)<k—-1-(n—i-1)=i+k—n,

do(xj) <du(xj)) <k —1-dg(x)) <k—-1—-(n—j)=j+k—n-1,
and

i+jzm—dp)—D+m—dg(x))22n—1—(k—1)=2n—k,
completing the proof. O
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Combining Lemma 13 and Lemma 14 (witht =n —2andk =norn — 1) we
obtain the following theorem of Bondy and Chvital, giving rather complicated
but useful conditions for the existence of a Hamilton path or cycle.

Theorem 15 Let G be a graph with vertex set V(G) = {x1,x2, ..., X}, n = 3.
Let ¢ = 0 or 1 and suppose there are no indices i, j, 1 <i < j < n, such that
xixj ¢ E(G) and

jzn—i+e,
dx)<i—e, dxj)<j-1-g¢,
dx))+dxj)<n—1-e¢.

If ¢ = 0 then G has a Hamilton cycle, and if ¢ = 1 then G has a Hamilton path.
O

An immediate consequence of this result is the following theorem of Chvital.

Corollary 16 Let G be a graph with degree sequence di < dy < --- < d,
n >3, and let ¢ = 0 or 1. Suppose

1
dp—g+e > n —k wheneverdy <k —¢ < i(n —&).

If e = 0 then G has a Hamilton cycle, and if € = 1 then G has a Hamilton path.
a

We draw the attention of the reader to Exercises 32— 33 which show that the
assertions in the corollary above are in some sense best possible. In particular, if
dy <dy < --- < d, is a graphic sequence such that

dk5k<g' and dp—p <n—k,

then there is a graph G with vertex set {x1, x2, ..., x,} such that d(x;) > 4,
1 <i < n, and G does not have a Hamilton cycle.

There is another customary way of showing that a graph has a Hamilton cycle
or path. Let S be a longest xg-path in G, that is, a longest path beginning at
x0 : S = xgx1---x¢. Then T'(x) C {xo, x1, ..., Xx—1} since otherwise S could
be continued to a longer path. If x; is adjacent to xj, 0 < j < k — 1, then
S’ = xox1 - XjXkXk~1 - Xj41 is another longest xo-path. We call S’ a simple
transform of S. It is obtained from S by erasing the edge x;jx;+ and adding to
it the edge xix;. Note that if S is a simple transform of S, then S is a simple
transform of S’ and S has exactly d(x¢) — 1 simple transforms. The result of a
sequence of simple transforms is called a transform (see Fig. IV.4).

The theorem below is usually called Pésa’s lemma: as we shall see in Chap-
ter VII, it can be used to prove the existence of Hamilton cycles in random graphs.
To present it, let L be the set of endvertices (different from xo) of transforms of
Sandput N ={xj € S:xj_1€ Lorxj;; € L}and R=V\NUL. Thus L
is the collection of the last vertices of the transforms, N is the collection of their
neighbours on § and R is the rest of the vertices.
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FIGURE IV.4. An x-path and a simple transform of it.

Theorem 17 The graph G has no L—R edges.

Proof. Recall that there is no edge between L and V(G) \ V(S), since S is a
longest xp-path, so in particular V(S) = V (P) for every transform P of S.
Suppose x;x; € E(G), where x; € L and x; € R. Let §; be a transform of §
ending in x;. Since at least one neighbour of x; on S; is the endvertex of a simple
transform of S;, x; cannot have the same neighbours on § and S;, since otherwise
x;j would belong to N. However, when the edge x;/x;, j' = j—1or j+1, is erased
during a sequence S - §' = §” — ... — §; of simple transformations, one of
the vertices x;/, x; is putinto L and the otherinto N. Thusx; € LUN = V(G)\R,
contradicting our assumption. 0

The theorems of this section are also obtained with the use of simple transforms:
they are due to Thomason, who extended earlier results of Smith.

Theorem 18 Let W be the set of vertices of even degree in a graph G and let xg
be a vertex of G. Then there is an even number of longest xo-paths ending in W,

Proof. Let H be the graph whose vertex set is the set X of longest xp-paths in G,
in which P; € X is joined to P, € X if P; is a simple transform of Pj. Since the
degree of P = xox1---xx € X in H is d(x;) — 1, the set of longest paths ending
in W is exactly the set of vertices of odd degree in H. The number of vertices of
odd degree is even in any graph, so the proof is complete. [}

Theorem 19 Let G be a graph in which every vertex has odd degree. Then every
edge of G is contained in an even number of Hamilton cycles.

Proof. Let xgy € E(G). Thenin G’ = G — xgy only xg and y have even degree,
so in G’ there is an even number of longest xo-paths that end in y. Thus either
G has no Hamilton cycle that contains xpy or it has a positive even number of
them. O

The most striking case of Theorem 19 is that in a cubic graph every edge is
contained in an even number of Hamilton cycles; in particular, for every edge of
a Hamilton cycle there is another Hamilton cycle containing the edge.
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IV4 The Structure of Graphs

The Turédn graph T,(n) does not contain a complete graph of order r + 1, and
by (1) it has at least (1 — })(;) edges. Therefore, a graph of order n and size at
least (1 — })(;) need not contain a K, 1. The main aim of this section is to prove
a deep result of Erdds and Stone, published in 1946, that if ¢ > 0 is fixed then
en? more edges ensure notonly a K, 1, buta K, (), acomplete (» + 1)-partite
graph with ¢ vertices in each class, with ¢ — oo as n — oo. The Erdds—Stone
theorem is rightly called the fundamental theorem of extremal graph theory.

A considerably sharper result, giving the correct speed logn for t — oo, was
published by Bollobds and Erdds in 1976; this is the theorem we shall prove. To
be precise, in order to make the calculations more pleasant, we shall present only
a weaker form of this resulit.

For r = 1 the problem is precisely the Zarankiewicz problem discussed in
Section 2, but this time for rather dense graphs, with t — oco. What we want can
be read out of (6), but as we shall be satisfied with an even simpler result, we run
through the argument. We claim that if ¢ > 0 is fixed and » is large enough, then
every graph G of order n and minimal degree at least en contains a K»(¢) with
t > eglogn.

To prove this, suppose G does not contain a K»(¢). As before, we say that a set
of t vertices is covered by a vertex x if x is joined to every vertex in the set. Every
vertex of G covers at least (Et") sets of ¢ vertices, and no set of ¢ vertices is covered

by ¢ vertices. Therefore,
£n n
n <t .
(7)<C0)

This inequality is false for # = [¢ logn] and n large, since then

t t 2t
t<n)/n<8n) < -1l - —)"t < =g
t t n en n
< zelog(l/s)slogn < _2_t_n1/s <1.

en en

What we have just proved is the case r = 1 of the theorem below; this result
is only slightly weaker than the form of the ErdGs—Stone theorem to be given as
Theorem 22.

Theorem 20 Let r > 1 be an integer and let ¢ > 0. Then there is an integer
no = no(r1€) such that if |G| = n > ng and

5(G) > (1—}+e)n,

then G D K,41(t), where

elogn
1> —
= 2-1r = 1)
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Proof. We apply induction on r. As the case r = 1 was proved above, we proceed
to the induction step. Let then r > 2 and let G be a graph with n vertices and
minimal degree at least (1 — % + &)n. Note that 0 < ¢ < 1/r. Since

1 1
5(G) > (1 - ;+ v 1)) n,

by the induction hypothesis G contains a K,(T) = K, say, with |T| = [d, logn]
vertices in one class, where d, = 227 /r!. Let U be the set of verticesin G — K
joined to at least (1 — } + %)IK | vertices of K. We claim that

|U| > en.

To see this, note that the number f of edges between K and G — K satisfies
1 1 ¢
|KH - ;+6)n—IKI}S f=IUIK|+ (- |UDH1 - ;+5)1K|,

that is,
ren re
— < |U|(1 = =) +r|K|.
n 2

This implies that |U| > ren/2 > en if n is large enough, so our claim is justified.
Sett = [logn/2"1(r —D!. Thent < [(re/2)T1, so

[ - % + -;—)|K|] = [ = DT + (er/2T1 2 (r — DT +1.

Calling a subgraph H of G covered by a vertex x if x is joined to every vertex of
H, this inequality shows that every vertex of U covers at least one K, (¢) subgraph

of K. In K there are only (f)r such subgraphs, so there is aset W C U,

T r
Wi = IUI/(t) ,

such that every vertex of W covers the same K, (¢) subgraph of XK. To complete the
proof, all we have to check is that |W| > t. Now, t/eT > &/3, and by Stirling’s
formula, t > (t/e)", so

t tr
IW| > en (—) > en(e/3)"
eT

> en(e/3) exp{log(e/3)relogn/2 "1 (r — 1)1).

Since r < 2"}(r — 1)! and log(e/3)e > log(1/6)/2 > —1, we have |W| > ¢,
and we are done. O

The following observation enables us to weaken the condition above on the
minimal degree to a condition on the size of a graph.

Lemma 21 Letc, e > 0. If n is sufficiently large, say n > 3 /¢, then every graph
of order n and size at least (c + €)(5) contains a subgraph H with 8(H) > c|H|
and |H| > ¢'/?n.
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Proof. Let G be a graph of order n > 3/¢ and size e(G) > (c + £)(3). Note that
in this case 0 < ¢ < ¢ + ¢ < 1. If the assertion fails then there is a sequence of
graphs G, = G D Gu—y D -+- D Gy, £ = |£!/2n], such that |G;| = j and for
n > j > £ the only vertex of G; notin G;_ has degree less than ¢j in G;. Then

e(Gr) > (c+e)<'2’) —j§lcj = (c+8)<;) —c{<’”2”) - (“2”)}
> e(Z) +c(£; 1) —cn > 6‘(’21) > (;)

since 0 < ¢ < 1 and n > 3/n. This contradiction completes the proof. O

Putting together Theorem 20 and Lemma 21, we obtain a strengthening of the
Erd6s—Stone theorem of 1946, published by Bollobds and Erdds in 1973.

Theorem 22 Let r > 1 be an integer and let € > Q. Then there is an integer
ng = no(r, &) such that if |G| = n > ng and

1 n
e(G)>(1- —+€)( )
r 2

then G D K,41(t) for some t > glogn/Q™1(r — 1)!).

Proof. Ifn > 3/¢ then, by Lemma 21, G has a subgraph H with |[H| = h > £1/2n

and 8(H) > (1 — % + &/2)h. Hence if n is sufficiently large then H contains a

K, 1(¢) witht > %logh/(2"1(r -DH > slogn/(2’+1(r — 1)), as claimed.
[

The function no(r, €) appearing in Theorem 22 is not that large: one can check
that no(r, £) = max{[3/¢], 100} will do (see Exercise 58).

In a certain sense Theorem 22 is best possible: for every ¢ and r there is a
constant d tending to O with £ such that the graph described in the theorem need
not contain a K, (t) with t = |d}logn]. In fact, we shall see in Theorem VIL.3
thatif 0 < € < % and dy > —2/log(2¢), then for every sufficiently large n there
is a graph G (n, m) not containing a K»(t), where m = len?] andt = [d; logn].
This result will imply immediately (cf. Exercise VII.13) thatif r > 2and 0 < ¢ <
%(r —1)"2 then any value greater than —2/log(2(r — 1)2¢) will do for dr.

The fact that this example gives the correct speed for d(g, r) is a much deeper
result: this was proved by Chvétal and Szemerédi in 1981, by making use of a very
powerful tool, Szemerédi’s regularity lemma, to be presented in the next section.

Since dlogn — o0 as n — o0, Theorem 22 has the following immediate
corollaries. The first is a slightly weaker form of the original Erd6s—Stone theorem.

Corollary 23 Let F = K,4+1(t), wherer > 1 andt > 1. Then the maximal size
of a graph of order n without a K, 1(¢) is

ex(n; F) = (1 — l)(") +o(n?). O
r'\2
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Corollary 24 Let Fy, F, ..., F; be non-empty graphs. Denote by r + 1 the
minimum of the chromatic numbers of the F;, that is, let r + 1 be the minimal
number for which at least one of the F; is contained in an F = K,1(t) for some
t. Then the maximal size of a graph of order n not containing any of the F; is

1
ex(n; Fi, Py, ..., Fo) = (1 — —)(;) +o(n?).
r
Proof. The Turan graph T, (n) does not contain any of the F; so, by (1),

1
ex(n; F1, Fp, ..., F) Z e(Tr1(n)) = tr1(n) < (1 - ;)(;)-

Conversely, since, say F; C F = K,4(t) for some j and ¢,

ex(n; Fi, Fp, ..., Fy) <ex(n; Fj) <ex(n; F) = (1 - %)('21) +o(). O

Theorem 22 is the basis of a rather detailed study of the structure of extremal
graphs, initiated by Erd8s and Simonovits, giving us considerably more accurate
results than Corollary 24. This theory is, however, outside the scope of our book.

The density of a graph G of order » is defined to be e(G)/ (;) The upper density
of an infinite graph G is the supremum of the densities of arbitrarily large finite
subgraphs of G. It is surprising and fascinating that not every value between 0
and 1 is the upper density of some infinite graph; in fact, the range of the upper
density is a countable set.

Corollary 25 The upper density of an infinite graph G is 1, % % %, ..., 0rQ.

Each of these values is the upper density of some infinite graph.

Proof. Let G, be the complete r-partite graph with infinitely many vertices in
each class. Since the density of K, () tends to 1 — % as ¢ tends to oo, the upper

density of G, is 1 — }, proving the second assertion.
Now, let « be the upper density of G and suppose that
1

r—1

oa>1-

?

where r > 2. Then there is an £ > 0 such that G contains graphs Hy of order ny
with ny — oo satisfying

r—1

By Theorem 20 each Hy contains a subgraph K, () with #x — 00; the subgraphs
K, (%) show that o > % O

1 1
e(Hy) > 2 (1 - +£) n,zc.

The results above give fairly satisfactory answers to the forbidden subgraph
problem, provided that no forbidden subgraph is bipartite, and Erdés and Si-
monovits have proved several considerably stronger results. However, for a general
bipartite graph F, the result ex(n; F) = o(n?) is rather feeble, and for most
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bipartite graphs F we cannot even determine the exponent  of # for which
0 < lim ex(n; F)/n% < o0.
n—->o0

Also, we have only rudimentary results for hypergraphs, so much remains to be
done.

IV.5 Szemerédi’s Regularity Lemma

In 1975 Szemerédi proved one of the most beautiful results in combinatorics:
every set of natural numbers with positive upper density contains arbitrarily long
arithmetic progressions (see Section VI1.4). A crucial step in the proof was an inno-
cent looking lemma, which has turned out to be of vital importance in attacking a
great variety of extremal problems. This lemma has come to be called Szemerédi’s
regularity lemma, although ‘uniformity’ rather than ‘regularity’ would be much
closer to the mark. Roughly speaking, the lemma claims that the vertex set of
every graph can be partitioned into boundedly many almost equal classes such
that most pairs of classes are ‘regular’, in the sense that the number of edges
between two subsets of the classes is about proportional to the possible number
of edges between the subsets, provided that the subsets are not too small. Thus
for a ‘regular’ pair of classes it does not happen that some two k-subsets span
many edges while some others span few edges. In order to formulate the lemma
precisely, we need some definitions and notation.

Given a graph G = (V, E) and a pair (X, Y) of disjoint non-empty subsets
of V, denote by e(X,Y) = eg(X,Y) the number of X-Y edges of G, and
write d(X,Y) = dg(X,Y) = e(X, Y)/()X||Y]) for the density of the X-Y edges
of G. Call (X, Y) an e-uniform pair if

ld(X*, Y*) —d(X,Y)| <¢

whenever X* C X and Y* C Y are such that |X*| > £|X| > Oand |[Y*| > ¢|Y| >
0. A partition P = (C,~)f=0 of the vertex set V is said to be an equitable partition
with exceptional class Cop if |C1] = |C2| = --- = |Cg/|. Finally, an e-uniform
partition is an equitable partition (C,~)5‘=0 such that the exceptional class Cyp has at
most &n vertices and, with the exception of at most k? pairs, the pairs (C;, Cp),
1 <i < j <k, are e-uniform.

Szemerédi’s lemma (Theorem 29) states that every graph has an £-uniform parti-
tion with a bounded number of classes. We begin the proof with two easy lemmas:
the first concerns the densities d(X, Y) and the second is a simple inequality.
Readers are encouraged to skip the proofs.

Lemma 26 Suppose that X and Y are disjoint sets of vertices of a graph G,
and X* C X and Y* C Y are such that |X*| > (1 — y)|X| > 0 and |Y*| >
(1=8)|Y| > 0. Then

ld(X*, Y —dX, V)| <y +38 (9)
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and
|d2(X*, Y*) —d*(X, Y)| < 2(y + ). (10)
Proof. Note that, rather crudely,
0<eX,Y)—eX*,Y") < (y +8 - ydIXIIY| < (¥ + OIX|IY],

SO

e(X,Y) —e(X*,Y*)
X,Y)—d(X* Y* 8.
d(X,Y)—d(X", Y") < XYl <y+

If G is replaced by its complement G, then each density d changes to 1 — d, so

do(X*,Y*) —da(X, ¥) = dg(X, ) — dg(X*, Y*)) <y +3,

completing the proof of (9).
Inequality (10) is an immediate consequence of (9):

|d2(X*, Y*) — d*(X, Y)|
= |d(X* Y +dX, DINdX*, Y —dX, V)| <2y +8). O

Lemma27 Let(d;)_; CR 1<t <s D=1%% d,andd=1%"_ a;
Then

—Zd2>D2 — (D~ d?>p*+t ~(D - d)2.
In particular, ift > ysand |D — d| > § > 0, then

1 5
p > d} > D?+ys%.

i=1

Proof. With

sD —td
st Zd'_ s—t '
=11

the convexity of the function x2 implies that

5 ! 5
Y di=) d}+ Y d?xtd+ (s —1)e?
=1 i=1

i=t+1
$2D? — 25tdD + t2d?
s—1

t
=sD? + s—f_-t(D—d)Z. 0

=td® +
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Given an equitable partition P = (C,-)f.‘=0 with exceptional class Co, let us
define the square mean of P as

1
4P)=3 Y, 4G, Cp.

1<i<j<k

As d*(C;, Cj) < 1 forall i and j and the sum above has (£) terms, we have 0 <
q(P) < %

The final lemma, which is the cornerstone of the proof of the regularity lemma,
claims that if P is not e-uniform although Cy is small enough, then there is a
partition P’ = (C] )f=0, with £ a given function of k, such that g(P") is appreciably
larger than g(P) and |Cy| is only a little larger than |Co|. To find an &-uniform
partition, all we need then is to repeatedly replace an appropriate starting partition
by a partition appreciably increasing the square mean. The process ends after
boundedly many steps in an e-uniform partition.

Lemma 28 Let G be a graph of order n with an equitable partition V = U{-‘=0 C;
of the vertex set with exceptional class Co and

IC1l = |Cal = -+ = |G| = ¢ > 2k,

Suppose that the partition P = (C,~)f-‘=0 is not e-uniform, where 0 < & < %
and 27% < £5/8. Then there is an equitable partition P' = (C})_, with £ =
k(4% — 281y and exceptional class Cyy O Co such that

n
ICol < ICol + 7%

and

5
aP)zqP)+ .

Proof. For apair (C;, C;) thatis not e-uniform, let C;; C C; and Cj; C C; be sets
showing that (C;, C;) is not e-uniform: |C;;| > ¢|C;| = &c, |Cj;i| = €|C;| = ec,
and

ld(Cij, Cji) —d(Ci, Cj)| = €. 11

Furthermore, for an -uniform pair (C;, C;), set C;; = Cj; = 0.

Ideally, we would like to partition each C; into a few (according to the statement
of the lemma, into 4% — 2"‘1) sets C,’l of size d, say, such that each C;; is the
exact union of some of these sets C,’,. In this way, a large difference |d(C};, Cji) —
d(C;, Cj)| would guarantee, by Lemma 27, that the part of g(P’) arising from
d2(C,', C;), namely

d2
Y [dz(c;, C): €y CCij Gy Ciil,
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is appreciably larger than d?(C;, C;). In turn, this would imply that g(P’) is
considerably larger than g(P).

Although we cannot construct sets C;, such that each C;; is the exact union of
some of these sets, we can come fairly close to it: we can achieve that each Cj; is
almost the union of the sets C,’, it contains, We do this by considering, for each C;,
all the sets C;; at once, and choosing the future C 2, sets (to be denoted by D;y,)
such that they do not cut across any C;;. The price we have to pay is simply that
we cannot quite partition C; into the sets C ;, so we have to add the remainder to
the “rubbish bin” Co to obtain a slightly larger exceptional set Cj,.

In order to carry out our plan, for each i, 1 <i < k, consider the atoms of the
algebra on C; induced by the sets C;;, 1 < j < k, j # i. These atoms are the
equivalence classes of the equivalence relation ~ on C; in which x ~ y means
that x € C;; iff y € C;;. Note that C; has at most 2k—1 atoms.

Set d = [c/4*], so that d > 2%t! and 4kd < ¢ < 4*d + 1) — 1, and
put H = 4k —2%k=1 Let Dy, 1 < h < H, be pairwise disjoint d-subsets of C;
such that each Dy, is contained in some atom of C;. It is possible to choose such
sets D;p, since all but at most d — 1 elements of each atom can be partitioned into
d-subsets, and

Hd+2Y(d = 1) =4kd - 21 < 4kq < c.

Fori,j=1,...,k,i # j,SetE,' = Uf=1 Dy, and_C_‘,'j = Li{Dih: Dy C Cij} =
UD,-;.CC;,- D;y,.. Our first aim is to show that d(C;, C;) and d(C;, Ej) are close, and
so are d(C;j, Cji) and d(Cij, Cj;) if (C;, C;) is not e-uniform, so that d(C;, C;)
and d(C;j, _(,_‘j,-) are almost as far from each other as d(C;, C;) and d(C;;, Cj;).
Now,

IC\Cil _ 4@+ - @ -2""NHd 4 +241d
ICil 4k(d + 1) o Ad+1)

1 1 % _ €
<2+———2k+152 =3 (12)

Consequently, by Lemma 26,

W

|d(Ci, ;) — d(C;, Cj)| < ? (13)
and
1d*(Ci, Cj) — d*(Ci, )l < f; (14)
Hence
1 — = 1 &
z 2 L@z Y G- (15)

l<i<j<k 1<i<j<k
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Suppose (C;, C;) is not e-uniform. Then, by (12),

ICii \Cyjl _ IGi\Cil < et
ICijl - |Ct]| 8

(16)

and
ICijl > 1Cij1 = ICi \ Ci| = (¢ — 7 /8)|Ci| = (1 —27e|Ci]
> (1 -27)elCyl. (17)

Lemma 26 and inequality (16) imply that

&4

1d(Cij, Cji) — d(Cij, Cji)l < T (18)

and so, by (11), (13) and (18), rather crudely,
|d(Cij, Cji) — d(Ci, Cj)| = 1d(Cij, Cji) — d(C;, Cj)|
— |d(Cij, Cji) — d(Cyj, Cji)| — 1d(Ci, Cj) — d(Ci, Cj)
et 815

>£—Z—I>E£. (19)

Hence, if (C;, C;) is not e-uniform then, by Lemma 27,

ICii11Ci) (15 \?
d*(Diu, D )>d2(C,C)+__%.(_£)
quz_;vz-; o S T AT IANT

27 T a2 (15
> d*(C;, Cj) + ((1 =27 ")e) 1—65)

— — 3
> d?(C;, Cj) + Ze“, (20)

since, by inequality (17), |C;;||Cji| > ((1 — 2_7)8)216,'”6]'].
Also, for every pair (C;, C;) we have

H H 2
H2 sz (Diy, D]v) > [ Z d(D;y, Djv)]
=l

u=1 v=1 u=1

=d*(C;, C)). 1)

All that remains is to rename the sets D;, as C ]’ 1 < j < ¢, and check that the
obtained partition has the required properties. Thus, let {C}, ..., C}} = {Dip: 1 <
i <k, 1 <h<H}and Cj=V\ U, C. Then Cj; > Co, with

k
’ — n
|co\co|=;|ci\ci|s§,

with the inequality following from (12). Finally, and most importantly, (20), (15),
and the fact that there are at least ek? pairs (C;, C ') that are not -uniform imply
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that
ek?
qP)y=+ Y. dXCLCH=— Y dC. c])+—,s“k—2
I<t<]<l 1<;<]<k
1
k_2 Z dz(C;.C)——+4a
I<i<j<k
> aPy+ 2
>q(P) >
as claimed. O

From Lemma 28 it is a short step to Szemerédi’s regularity lemma. Due to its
importance we call it a theorem.

Theorem 29 Form € Nand 0 < ¢ < -% there is an integer M = M(g, m)

such that every graph of order at least m has an e-uniform partition (C,-)LO
withm <k <M.

Proof. Sett = Le‘5_| and define ko, k1, ..., k;+1 by letting kp be the minimal
integer satisfying ko > m and 27k < £5 /8, and setting k;+1 = k; (4"" —2ki ‘1).
We claim that M = k;23%+2 will do.

Let G be a graph of order n > m. Partitioning the vertex set of G into n singletons
and the empty set as the exceptional set, we obtain a O-uniform partition (C;)7_,
Hence in proving our claim, we may assume thatn > M.

Let Py = (C,.(O)):.“;O be an equitable partition of the vertex set of G with
exceptional class C{ ) such that |C{”| = -+ = |C| = |n/ko] and 0 < |C{”|
n—koln/kol < ko < 2n If Py is e- umform we are done. Otherwise, let P
(Ci(l))k1 be the partition guaranteed by Lemma 28, with |C;y ) < |C(()0)|+n/2k° <
en. Once again, if P is s-uniform, we are done; otherwise, let P, = (Ci(z))fio b
the partition guaranteed by Lemma 28, with [C(()z)l < |C(§°)|+n(2‘k° +27k1y < en.
Continuing in this way, we obtain an &-uniform partition P; = (C,-(’ ))f’= o for
some j with0 < j <t. '

Indeed, if P; is not e-uniform and 0 < j < £ then |CY’| > n/2k; > 23K+
and 2% < £3/8, so Lemma 28 guarantees a partition P; i+l = (C(]‘H))k”1 with
exceptional set |C(] +1)| < lC(()O)I +n@ % 427k 4 ... 4 27k) < en. However,
P:+1 cannot exist since if it did exist then we would have

IIA

1
5 > 4P = —— 3 eV, ) 2 ¢+ 1)) >3
t+1 I<i<j<t
This contradiction completes the proof. O

The regularity lemma has numerous reformulations: here we give two, leaving
the easy proofs to the reader (see Exercise 60).



130 1V. Extremal Problems

Theorem 29’ For every ¢ > 0 and m € N there is a natural number M' =
M’ (g, m) such that for every graph G = (V, E) there is a partition V = U?:l C;
such thatm <k < M, |Cy| < |Ca] < -+ < |Ckl < |C1| + 1 and, with the
exception of at most ck? pairs, the pairs (C;, Cj), 1 <i < j <k, are e-uniform.

|

Theorem 29" For every ¢ > 0 and m € N there is a natural number M" =
M" (e, m) such that for every graph G = (V, E) there is a partition V = Uf:o C;
suchthatm <k < M”",|Co|l <k -1, |Cy| =|C2| =...=|Ck|, and all but at
most & proportion of the pairs (C;, C;), 1 <i < j <k, are g-uniform. O

The bound on M (g, m) given in the proof of Theorem 29 is enormous: unless
2

m is immense compared to 1/, it is about 22, where the height of the tower
is about 5. At first sight this seems to be extremely bad and far from the truth.
However, in 1997 Gowers proved that M (g, 2) grows at least as a tower of 2s of
height about 6~1/16 ; the argument is a tour de force.

In fact, it would be a significant achievement to give reasonable estimates for
a much finer function than M (g, m) or M (e, 2). Given a graph G, call a partition
V(G) = f-‘=0 V; of the vertex set (8, ¥, 8, &)-uniform if | Vo] < BIV(G)|, |V1]| <
Vol < - < |Vl < V1] + 1, and all but ek? of the pairs (V;, V;), 1 <i < j <k,
are such thatif W; C V;, W; C V}, [W;| > y|V;l, and |W;| > y|Vj], then

|d(W;, Wj) —d(Vi, V)| < 8.

Let M(B, y,é, ) be the minimal integer such that for every graph G there is
a (B, ¥, 8, &)-uniform partition V(G) = Uf:o Viwith2 <k < M(B,v,¢,96).
Determine the approximate order of M (8, y, §, ) as the four variables tend to
0. This is very likely to be a tall order; as a consolation prize, one could try to
determine the order of M (B, v, 8, €) as some variables are kept constant and the
others tend to 0. For example, given some small values Sy and g9, what can one
say about M(Bo, v, 8, €0), as y and é tend to 07

IV.6 Simple Applications of Szemerédi’s Lemma

The main use of a Szemerédi-type partition is that it guarantees the existence of
certain subgraphs, even in graphs with not too many edges. Here is one of the
standard ways of finding all small r-partite subgraphs.

Theorem 30 Let f > 2, r > 2,0 <8 < 1/r and let V|, Va,...,V, be
disjoint subsets of vertices of a graph G. Suppose |V;| > 8~/ for every i, and
ifl<i<j<randW; CV, W CV; satisfy |Wi| > 87|V;| and \W;| >
sf |V;|, then d(W;, W;) > &. Then for all non-negative integers f1,..., fr with

‘1 fi = ftherearesets Uy C Vi,..., U, C V, with|U;| = fifor1 <i <r,
such that for 1 <i < j < r every vertex of U; is joined to every vertex of U;. In
particular, G contains every r-partite graph on f vertices.
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Proof. Let us apply induction on f. For f = 2 the assertion is trivial, so suppose
that f > 3 and the assertion holds for smaller values of f. We may assume
that fj > 1.

For 2 <i < r, let R; be the set of vertices in V) joined to fewer than 5| V;|
vertices of V;. Then |R;| < 87|V;|, so | U, Ri| < (r — 1)8/|Vi| < |Vi]. Hence
there is a vertex x € V1 \ Ui, Ri; set V] = Vi \ {x} and V/ = V; N T'(x) for
i=2,...,r.Then V]| 2 86 — 1> s/t and |V]| = 1 - 8/)|V1| = §|V1|;
furthermore, |V/| > 8|Vi| > =/+! for2 <i < r. Also, if W; C V/ and W; C
VI, 1 <i < j <r, are such that |W;| > §/~!|V/| and |W;| > 8/~ 1|V|,
then |W;| > 87|Vi| and |W;| > 87|Vj|, so V{,..., V/ satisfy the condltlons
for 0 < § < 1/r and f — 1. Hence, by the induction hypothesis, there are
sets Uy C V[,...,U; c V/with|U]| = fi—1and |U]| = fifor2 <i <r
such that for 1 <i < j < r, every vertex of U] is joined to every vertex of U !
Clearly, the sets Uy = Uj U {x}, Uy = Uj, ... = U/ have the requ1red
properties. d

The proof above is very crude indeed, and even as it stands it shows that the
restrictions on é and V; are unnecessarily severe and can be relaxedto 0 < § <
r—1)7120<6<1/2,and |V;| > 817,

More often than not, Theorem 30 is used in conjunction with a Szemerédi-type
partition, as in the following immediate consequence of it.

Theorem31 Let f >2,r >2,0<8 <1/r,andletV\, ..., V, be disjoint sub-
sets of vertices of a graph G. Suppose |V;| > 8= for everyi, and all pairs (V;, V;)
are 87 -regular, with density at least § 4 8/ Then G contains every r-partite graph
of order f. O

As an application of Theorem 31, let us show that if F is a fixed subgraph with
chromatic number x (F) = r > 2 and n is sufficiently large, then every graph of
order n not containing F as a subgraph is close to a graph that does not contain
K,.

We set the scene in a little more generality than needed for the immediate
application. Let m > 2, & > 0, and § > 0 be given, and let M = M" (g, m) be
as in Theorem 29”. For a graph G of ordern > M, let V(G) = f=0 C; be the
vertex partition guaranteed by Theorem 29”; thus m < k < M, |Co| < k — 1,
IC1] = Ca] = -+ = |Ckl, and all but (%) of the pairs (C;, Cj), 1 <i < j <n,
are g-uniform. Let Glk; & d > 8] be the union of the bipartite subgraphs of
G spanned by (C;, C;) for the e-regular pairs of density greater than §. We call
Glk; & d > 8} an (m; & d > §)-piece of G. For simplicity, we take the
vertex set to be U, 1 Ci, so that G[k; &; d > 8] is a k-partite graph with vertex-
classes |Cy| = = |Cx| =1, such that n — k 4+ 1 < kI < n. Furthermore, let
Stk; e; d > 8] be the graph on [k] in which ij is an edge if and only if (C;, C;)
is e-uniform, with density more than 5. We call S{k; &; d > §] the skeleton of
Glk; ¢, d > 8.

Note that G[k; &; d > 8] is not unique; we just pick one of the possible graphs
and for S[k; &; d > 8] take the skeleton it determines. Furthermore, these graphs
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need not be defined for every &: all we know is that they are defined for some k in
therangem <k < M.
We define Glk; ¢; 8 <d < &] and S[k; ¢; 8 < d < &3] analogously.

Theorem 32 Let 0 < & < 1and 0 < 8§ < 1 be real numbers, let m > 2
be an integer, and let M = M" (g, m) be as in Theorem 29" of the previous
section. Let G be a graph of order n > M, and let H = G[k; &; d > 8] be an
(m; &; d > 8)-piece of G. Then

e(G) — e(H) < <e+a+l+y—4>n2/2.
m n

In particular, if0 < e <8/2,m > 4/5 andn > 8M /5 then
e(G) — e(H) < 8n? .

Proof. Let V(G) = Uf:o C; be the partition guaranteed by Theorem 29” so that
[Col <k —1,1Ci|=---=|C¢|,m <k < M, and H is the appropriate k-partite
graph with classes Cy, ..., Cg. Clearly, E(G) — E(H) consists of four types of
edges: the edges incident with Cp, the edges joining vertices in the same class C;,
1 <i <k, the C;-C; edges with (C;, Cj) not g-uniform, 1 < i < j < k and
the C;-C; edges with (C;, C;) e-uniform with density at most §, 1 <i < j <k.

Hence
n/k k\ /n\2 n
|E(G) — E(H)| < kn+k( ; )+a(2) (E) +a(2)

<kn+n2+£n2+8n2
2k 2 2

n? en?  8n?

<M —t — 4+ —
=< n+2m+2+2

( 2M 1)n2

5 £+8+_"—+— ~
n m) 2

as claimed. O

Theorem 33 For every ¢ > 0 and graph F, there is a constant no = no(e, F)
with the following property. Let G be a graph of order n > ng that does not
contain F as a subgraph. Then G contains a set E' of less than en? edges such
that the subgraph H = G — E' has no K,, where r = x (F).

Proof. We may assume thatr > 2,0 <& < 1/r,and f = |F| > 3. Let§ = ¢/2
andm > 8/ = 4/6.

Let M = M" (87, m) be given by Szemerédi’s lemma, as in Theorem 29”. We
claim that ng = [8M&~/7 will do.

Indeed,let H = G[k: 6': d > 8+ 68 1bean (m; 8f; d > 6 +<Sf)—piece of
G, with skeleton S = S{k; 6f; d > & + 8]. Then, by Theorem 32,

e(G) — e(H) < (8 + 8Nn? < en?.
Furthermore, by Theorem 30, S contains no K, ; therefore, neither does H. O
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Note that Theorem 33 is a considerable extension of Corollary 23, which is
essentially the original form of the Erdds—Stone theorem. Indeed, let ¢ > 0 and
t > 1 be fixed, and let n > ng (g, K, (t)). Then every graph G of order n and size
at least t,_1 (n) + en? edges contains a K, (¢), since otherwise, by Theorem 33, by
deleting fewer than en? edges of G, we would get a graph H without a K. But as
e(H) > t,—1(n), Turdn’s theorem implies that H does contain a X,. Needless to
say, as a proof of the Erdés—Stone theorem, this is far too heavy-handed.

Our final application of Szemerédi’s lemma concerns a beautiful ‘mixed’ case
of the quintessential extremal problem, that of determining ex(n; Fy, ..., Fy). We
have studied ex(n; K,), solved by Turdn’s theorem, and ex(n; Kj ), the problem
of Zarankiewicz. What happens if we forbid both K, and K ,? How large is
ex(n; K,, K; )? In the case when r and s are fixed and t = |cn] for some positive
constant ¢, in 1988 Frankl and Pach gave an upper bound for this function. First
we need a result of independent interest.

Theorem 34 Let H be a k-partite graph with classes Cy, - - -, Cy where |Cy| =
... = |Cy| = £. Suppose thereare q pairs (i, j), 1 <i < j <k, with E(C;, Cj) #
@. Suppose also that2 < s < t, and G contains no K, with all s vertices in the
same class C;. Then

2e(H) < Q)1 g2~ Vst — 1)Vskl/s 4 24¢s.

Proof. Except for the minor variation that notall pairs (C;, C}),1 <i < j <k,are
joined by edges, we proceed much as in the standard estimate of the Zarankiewicz
function z(s, t). Write d = 2e(G)/k(£) for the average degree of H. We may
assume that kd > 2q(s — 1), since otherwise there is nothing to prove. For
x € V(H)and 1 <i <k, let d;(x) be the number of neighbours of x in C;; also,
let P ={(x,i): x e V(H),1<i <k,d;(x) > 1}. Then, trivially,

|P| < 2q¢.

Let us define a claw (or s-claw) of H as a star K ; whose base, the set of s
vertices in the second class, is contained in some class C;. (In the usual estimate
of the Zarankiewicz function, the base is allowed to be anywhere.) The vertex
constituting the first class of a claw is the centre of the claw.

Since H contains no Kj;, for every s-subset S of C; there are at most ¢ — 1
claws with base S. Hence, writing N for the total number of claws in H,

N<(-1DY ('?') =t - l)k(f) .
i=1

On the other hand, for each vertex x and class C;, there are (d"f‘)) claws with
centre x and base in C;, so

- BEE)- T )

xeV(H) i=l (x,i)eP
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Therefore,
3 (d"(x)) < (t—l)k(e). (22)
@.nep N 5 $

In order to give a lower bound for the left-hand side of (22), set

uw—1)---(u—s+1/s! ifu>s-1,

0 ifu<s—1.

fs(u) = [

Then f; : R — R is a convex function. As 3, . p di(x) = 2e(H) = ktd, and
| P| < 2q¢, the convexity of f; implies that

kd d;
2qLfs (z)ﬁ Z ( ix)).

(x,i)eP

Since % > s — 1, we have f( %) = (kdézq); recalling inequality (3) we find that

2qe(kd/ 2‘1) <(@t- 1)k(£) :
N S

But then, rather crudely,

2q¢ (g:— —(s- 1)>s < (t — Dke*,
and so
2e(G) = ktd < 2q)' 71502V — DKM 4 2g0(s - 1),
as claimed. |
We are ready to present the theorem of Frankl and Pach that we promised.

Theorem 35 Letr > 3 and s > 2 be fixed integers, and ¢ and y positive
constants. Then if n is sufficiently large and G is a graph of order n that contains
neither K, nor K ;, where t = [cn], then

-2 1-1/s _2
e(G) < (Z== 2 oynt.
r—1 2

Proof. We may assume that0 < y < 1/2and ¢ < (r —2)/(r — 1), since we do
know that e(G) < t,_1(n) < 2(’;2—n2.

Let 8 = y/2, m > 4/§, andl)suppose that n > 4Ms/8 > 8M/S, where
M = M"(8"; m).Let G be a graph of order n containing neither K, nor K . Let
H =Glk; §"; d > 6+8 ]bean (m; 8"; d > §+45")-piece of G with skeleton S.
Then, by Theorem 32, e(G)—e(H) < 6+8Mn? < 2yn2/3,andby Theorem 31, §

does not contain a K. Hence, by Turdn’s theorem, g = e(S) < (r— 2)k? /2(r—1).
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As H contains no K ;, by Theorem 34 we have, with £ = |n/k],

r—2 1-1/s
2e(H) < ( 1) k&)Yt — )5 4 K205
-
o\ 1-1/s
<cl/s (r___Z) n? + Msn
r—1
_\1-Vs yn?
<ol 2, Y
=€ (r 1 mt g
Therefore,
e(G) < e(H) + yn?/2+ < e(H) + yn?,
as claimed. O

In fact, the upper bound in Theorem 35 is essentially best possible: if » > 3 and
s > 2 are fixed integers and 0 < ¢ < (r — 2)/(r — 1), then

-1 1-1/s
)

lim ex(n; K, K; ,)(") =\ (' ) ,

n—»00 "\2 r—1

where t = [cn].

There are a great number of substantial applications of Szemerédi’s regular-
ity lemma. For example, in 1993 Komlés, Sarkézy, and Szemerédi proved the
following theorem, conjectured by Bollobds in 1978.

Theorem 36 For every ¢ > 0 and A > 1 there is an ny = no(g, A) such that
every graph of order n and minimal degree at least (1 + €)n/2 contains every tree
of order n and maximal degree at most A.

In fact, more is true: given ¢ > 0, if ¢ > 0 is small enough, and n is large
enough then every graph of order n and minimal degree at least (1 4+ &)n/2
contains every tree of order n and maximal degree at most cn. There are numerous
related conjectures, the best known of which is the conjecture of Erdés and Sés
from 1963: every graph of order n and size | (k — 1)n/2] + 1 contains every tree
with k edges.

IV.7 Exercises

1 Show that every graph with n vertices and minimal degree at least |n/2] is
connected, but for every n > 2 there are disconnected graphs with minimal
degree [n/2] — 1.

27 Let G be a graph of order n > k 4+ 1 > 2 and size at least (g) —n+k.
Show that G is k-connected unless it has a vertex x of degree k — 1 such that
G—x=K,.
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10.
11.

12,

13.

14.

15.

16.

IV. Extremal Problems

Let 0 < k < n. Show that an by n bipartite graph without k + 1 independent
edges has size at most kn. Determine the unique extremal graph.

(i) Let G be a graph of order n, maximal degree A > 3, and diameter d. Let
no(g, 8) be as in Theorem 1. Prove that n < no(2d + 1, A), with equality iff
G is A-regular and has girth 2d + 1.

(ii)) Let G be a graph of order n, maximal degree A > 3, and suppose every
vertex is within distance d — 1 of each pair of adjacent vertices. Prove that
n < no(2d, A), with equality iff G is A-regular and has girth 2d.

Prove Theorem 4 for k = 3 and 4.

Show that a graph with n vertices and m > 3(n — 1)/2 edges contains two
vertices joined by three independent paths.

Prove that the maximal number of edges in a graph of order n without an even
cycle is L-32-(n — 1)]. Compare this with the maximal size of a graph without
an odd cycle.

Show that a tree with 2k endvertices contains k edge-disjoint paths joining
distinct endvertices.

. Suppose x is not a cutvertex and has degree 2k. Prove that there are k edge-

disjoint cycles containing x. [Cf. Exercise 8.]
Show thatif « (G) > 3,then G D T K4. Show that the same holds if §(G) > 3.

Deduce from the assertion in Exercise 10 that if ¢e(G) > 2|G| — 2 then G
contains a subdivision of Kj.

Recall that a graph of order n and size n + 1 has girth at most L%(n +1)].
Show that a graph of order n and size n + 2 has girth at most [ (r 4+ 2)/2].
Show also that both bounds are best possible. [Hint. Assuming that §(G) = 3,
study the multigraph H with §(H) > 3 whose subdivision G is.]

Prove that for ¥ > 1 the maximal girth of a graph of order n = 9% — 3 and
size 9k is 4k. What is the maximal girth of a graph of order n and size n 4 3?

Show that for every k > 1 there is a graph of order 16k — 4, size 16k and girth
6k. [Hint. Consider an octagon with the opposite vertices joined.]

Let r > 1. We say that the cycles Cy, ..., C, are nested if V(G1) C --- C
V(G,). Determine

min{n : K, contains r nested cycles}.
The domination number of a graph G is
min{|W}|: W C V(G), WUT (W) =V(G)}.

Show that if G has n vertices, then its domination number is at least [+/4n7] —
1 — A(G), and this inequality is best possible for every n > 1.
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17. Show that the domination number of a graph of order n and minimal degree
2 is at most |n/2]. Note that equality can be attained for every n. [Hint.
Assuming, as we may, that every edge of our graph is incident with a vertex
of degree 2, let U = {u € V(G) : d(u) = 3}, and consider the partition
VG =UUWUZ,where W =T(U).]

18 Show that a graph with n vertices and minimal degree |(r —2)n/(r —1)] +1
contains a K.

19. Let G have n > r + 1 vertices and t,—1(n) + 1 edges.
(1) Prove that for every p,r < p < n, G has a subgraph with p vertices and
at least #,_1(p) + 1 edges.
(ii) Show that G contains two K, subgraphs with r — 1 vertices in common.

20+ Prove that for n > 5 every graph of order n with |n2/4] + 2 edges contains
two triangles with exactly one vertex in common.

21 Prove that if a graph with n vertices and |n? /4] — £ edges contains a triangle,
then it contains at least |n/2| — £ — 1 triangles. [Hint. Let x1x3x3 be a
triangle and denote by m the number of edges joining {xi, x2, x3} to V(G) —
{x1, x3, x3}. Estimate the number of triangles in G — {x, x2, x3} and the
number of triangles sharing a side with x1x2x3.]

22} (i) Show that the edges of a graph of order n can be covered with not more
than |n2/4] edges and triangles.
(ii) Let G be a graph with vertices xy, ..., x,, n > 4. Prove that there is a
set S, |S| < Ln2/4j, containing non-empty subsets X1, X3, ..., X, such that
xixjis anedge of G if X; N X; # 0.

237 Let 1 < k < n. Show that every graph of order n and size (k — 1)n — (g) +1
contains a subgraph with minimal degree k, but there is a graph of order n
and size (k — 1)n — (£) in which every subgraph has minimal degree at most
k — 1. [Hint. Imitate the proof of Lemma 20.]

24 Show that a graph of order » and size (k — 1)n — (’;) + 1 contains every tree
of order k + 1.

25. Let G be a graph of order n that does not contain a cycle with at least one of
its diagonals. Prove that if n > 4, then G has at most 2n — 4 edges.
Show that if n > 6 and G has 2n — 4, edges then G is the complete bipartite
graph K (2, n — 2). [Hint. Consider a longest path in G.]

267 Letk > 1 and let G be a graph of order n without an odd cycle of length less
than 2k + 1 < 5. Prove that §(G) < [n/2] and Ty(n) is the only extremal
graph, unless n = 2k + 1 = 5, in which case there is another extremal graph,
Cs.

27" Let G be a graph of order n without an odd cycle of length less than 2k+1 > 5.
Prove that if G does not contain [n/2] independent vertices then §(G) <
2n/(2k + 1). Show that equality holds only for n = (2k + 1)/t and the
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extremal graphs are obtained from a cycle C1 by replacing each vertex by
t vertices, as in Fig. IV.S.

FIGURE IV.5. The graph Cs(2).

Let x1, x2, ..., x, be vectors of norm at least 1 in a Euclidean space. Prove
that there are at most [n2/4) unordered pairs i, j such that |x; + x;| < 1.
[Hint. Show that if |x1| = |x2] = |x3] = 1 then |x; + x;| > 1 for some , j,
1<i<j<3i]

29 Let X and Y be independent identically distributed random variables taking

30.

31.

32.

values in a Euclidean space. Prove that P(|1X + Y| > x) > %IP(IX | > x)? for
every x > 0.

Letxy,x2,...,x3p € R? be such that Ix; — xj| < 1. Prove that at most 3p2
of the distances |x; — x;| are greater than ﬁ/Z. [Hint. Show that among any
four of the points there are two within the distance +/2/2 of each other.]

Recall that a maximal complete subgraph of a graph is a clique of the graph,
and the clique number (G) of a graph G is the maximal order of a clique of
G. Thus {x, y} is the vertex set of a clique of G if xy € E(G) and no vertex
of G is joined to both x and y. Show that, for every n > 1, there is a graph of
order n with [n/2] cliques of different orders.

Show also that if G is a regular graph of order n then either w(G) = n or else
w(G) < n/2.Show also thatif n > 1 and 1 < p < n/2 then there is a regular
graph G of order n with w(G) = p.

33} We say that a set W C V(G) covers the edges of a graph G if every edge

34.

of G is incident with at least one vertex in W. Denote by ag(G) the minimal
number of vertices covering the edges of G. Prove that if G has n vertices and
m edges, then ag(G) < 2mn/(2m + n), with equality iff G = pK, for some
p and r, that is, iff each component of G is K, for some r. [Hint. Note that
80(G) = n—w(G), andif w(G) = p, then by Turdn’s theorem e(G) < tp(n),
som = (5) — tp(n).]

The edge clique-cover number 6,(G) of a graph G is the minimal number of
cliques of G whose unionis G. Call two vertices x, y equivalentif xy € E(G)
and every z € V(G) \ {x, y} is joined to x iff it is joined to y. Check that if
x and y are equivalent vertices then 8,e(G) = 6,(G’), where G’ = G\{y}.
Prove that if G contains neither isolated vertices, nor equivalent vertices, then
8.(G) = logy(n + 1), where #n is the order of G. [Hint. Let Ky, ..., K
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be cliques of G with G = U;":l K;. Forx ¢ V(G),let I(x) = {i : K;
contains an edge incident with x}. Check thatif x, y € V(G) and x # y, then
I1(x) #1(y).]

35:F (Cf. Corollary 16.) Letdy < d < --- < dj, be a graphic sequence such that

for some k,
dk5k<% and dypy <n—k—1.

Show that there is a non-Hamiltonian graph G with vertex set {x;, x2, ..., X}
such that d(x;) > d;, 1 <i < n (cf. Fig. IV.6).

FIGURE IV.6. The graph (K2 U E3) + K3 has no Hamilton cycle and (K3 U E3) + K3
has no Hamilton path.

36.F (Cf. Corollary 16.) Letd; < d; < --- < d, be a graphic sequence such that

37.

38.

for some k,
1
di<k-1< E(n—l) and dpy1—x <n-—k.

Prove that there is a graph G with vertex set {x1, x2, ..., x,} such thatd(x;) >
di, 1 <i < n, and G does not contain a Hamilton path (cf. Fig. IV.6).

Prove that a non-Hamiltonian graph of order n > 3 has at most (;) - (n-2)
edges and there is a unique extremal graph.

Prove that a graph of order n > 2 without a Hamilton path has at most
(5) — (n —3) edges and K,_; U K| is the unique extremal graph.

Given § < n/2, determine the maximal number of edges in a graph G of order
n without a Hamilton cycle (path), provided that §(G) = §.

39+ Prove Theorem 4 by making use of simple transforms of a longest xo-path

40.

P = xopxy-:-x;. [Hint. Apply induction on n. If 5(G) < k/2, the result
follows by induction; otherwise, consider the set L of endvertices of simple
transforms of P. Put £ = |L|, r = max,¢z d(x), and note that £ > r and the
neighbours of each x € L are contained in {x;, x;—1, ..., Xx;—r+1}. Deduce
that e(G) — e(G — L) < &(k — £) + £(r + £ — k) < k€/2 and complete the
proof by applying the induction hypothesis to G — L.]

Letl < a1 < a3 < --- < ax < x be natural numbers. Suppose no g;
divides the product of any two others. Prove that k < m(x) + x%/3 where,
as usual, 7r(x) denotes the number of primes not exceeding x. [Hint. Put
Vi={1,2,....1x*3)}and V, = {x : x?3 <b < xandbis a prime}. Show
first that @; = bjc;, where b;,c; € V = V; U V,. Let G be the graph (with
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loops) with vertex set V whose edges (loops) are b;c;. Note that G does not
contain a path of length 3.]

417+ Letl <ay < a3 < -+ < @ < x be natural numbers. Suppose a;a; # anag
unless {i, j} = {h, £}. Prove that k < 7 (x) + cx3/* for some constant ¢ > 0.
[Hint. The graph G in the previous exercise contains no quadrilaterals; apply
Theorem 8 to the bipartite subgraph of G with vertex classes V| and V,. Recall
the prime number theorem, namely that (7 (x)logx)/x — 1 as x — 00.]

427 Denote by Dy (n) the maximal number of occurrences of the same positive
distance among n points in R¥, Prove that if k > 2 then

. 2 1 1
At e/ = 3 = 2]

[Hint. (i) Note thatifx € {z € R¥; z} +z3 =1l andz; = 0if i > 2} and
ye{zeRk 22 +22=1andz; = 0ifi # 4 or 4}, then |x — y| = +/2.
(i1) Deduce from Theorem 20 that Dy (n) is at least as large as claimed.]

43. Show that a graph of order n > k(d + 1) with at least k > 2 components and
minimal degree at least d has at most

d+1 n—(k—1d+1)
(k—l)(2)+( ) )

edges. What is the unique extremal graph?

44. By checking the details of the ‘duplication’ argument, show thatex(n, K; ;) <
%z(n, n;s,t).

457 Show that if any k + 1 vertices of a k-connected graph with at least 3 vertices
span at least one edge, then the graph is Hamiltonian.

46. Let k and n be natural numbers. Show that every graph of order » and size
greater than k(n — (k + 1)/2) contains a subgraph of minimal degree k + 1.
Show also that for every m < k(n — (k + 1)/2) there is a graph of order n and
size m that has no subgraph of minimal degree at least k + 1.

47. Let X c R? with |X| = n > 3 and max{d(x, y) : (x,y) € X®} = 1. Show
that there are at most n pairs (x,y) € X @ with d(x, y) = 1, and this bound
can be attained for every n > 3.
[Hint. Apply induction on n. For the proof of the induction hypothesis, set
E ={(x,y) € X® :d(x,y) = 1} and let G be the graph (X, E). Assuming
that |[E| > n + 1, show that there is a subgraph H C G with §(H) > 2 and
A(H) = 3, and make use of a vertex of degree at least 3 in H to arrive at a
contradiction.]

48. Let X = {x1, ..., x»} be a set of n points in the plane, with no three collinear,
and let G = (X, E) be a graph with n 4 1 edges. Show that there are edges
x1y1, x2y2 € E such that the straight line segments [xy, y2] and [x3, y2] are
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disjoint. Show also that the bound n 4 1 is best possible for every n > 3.
[Hint. Imitate the proof of Exercise 47.]

497 Show that an r-regular graph of order 2r + 1 is Hamiltonian. Show also that

if r > 2, then our graph contains a triangle.

50+ (i) Prove that the maximal number of edges of a non-Hamiltonian graph of

51
52.

53.

order 2n and minimal degree n — 1 is 3n(n — 1)/2.
(ii) Determine ex(n; C,).

Determine ex(n; Py) for every n and k, where Py is a path of length k.

Note that if G is a graph of order n, then n — «(G) is the minimal number
of vertices representing all edges of G; i.e., n — «(G) = min{|R| : R C
V(G), G — R has no edges}. Here «(G) is the independence number, the
maximal number of independent vertices, so that ¥(G) = (G). Show that if
G has no triangles then ¢(G) < ¢(G)(n — a(G)) < n?/4.

Recall that the maximal number of edges in a graph of order n containing only
even cycles is precisely [#2/4]. What is the maximum if every cycle-length
is a multiple of 3?7 And if every cycle-length is a multiple of 4?

547 Describe all 2-connected graphs that do not contain an odd cycle of length at

55.

least five.

Let G be a triangle-free graph of order n. Show that erV(G) d(x)? <n3/4,
with equality if and only if n is even and G is T2(n). [Hint. Recall the proof
of Mantel’s theorem from Chapter I.]

56.~ For each r > 3, construct a graph of order r + 2 that contains no K, but is

not (r — 1)-partite.

57.7 Let G be a graph of order n such that no set of n — k vertices is independent

58.

59.

60.

61.

(i.e., every set of n — k vertices spans at least one edge) and no set of k + 1
edges is independent (i.e., among any k + 1 edges, there are two that share a
vertex). Show that e(G) > k + 2.

Show that for n > 5, the maximal number of edges of a triangle-free non-
bipartite graph of order n is | (n — 1)2/4] + 1. [Hint. Delete the vertex set of
a shortest odd cycle.]

Let G be a triangle-free graph of order n and size [n2/4] — m. Show that G
contains an induced bipartite subgraph of order at least n — 8m/n (i.e., there
isaset W C V(G) such that |W| > n — 8m/n and G[W] is bipartite).

Givenr > 3, determine the minimal order of a graph that is not (r — 1)-partite
and contains no X,.

Let G be a graph of average degree d > 0, and let r = [d/4]. Show that for
some k > r, G contains a k by k bipartite graph with a 1-factor, in which
every vertex in the first class has degree r.
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62. Let0 < c <c+¢& < landn > (¢/(1 — c))!/2. Show that if n is sufficiently
large, then there is a graph of order n and size at least (c + &)(}) such that
every subgraph H with |H| > nn has minimal degree less than c|H|.

63F Check the estimates in the proofs of Theorems 20 and 22 to show that in
Theorem 22 we may take no(r, £) = max{[3/¢], 100}.

64 Show that for all &; > gy > O there is an n > 0 such that if X C Xi,
YoC Y, XinY1 =0, X1l £ A +n)lXol, [Y1] £ (1+ n|Yol, and (Xo, Yo)
is gg-regular, then (X1, Y1) is £)-regular.

65. Deduce Theorems 29’ and 29” from Theorem 29.

66 Let Py, P,, ..., P, be points in the unit square. Show that there are at least
([n/212 + |n/2)* — n)/2 pairs (i, j), 1 < i < j < n, with the distance
d(P;, P;) being at most 1.

671 Let Py, P, ..., P, be points in the unit cube. Show that at least n(n — 7)/14
pairs (P;, Pj), 1 <i < j < n, are at distance at most 1 from each other.

68" Let G = G(n, m) be triangle-free. Show that for some vertex x € G we have
e(G[Wx]) < m — 4m*/n?,

where W, = {y € G: d(x, y) > 2}.

Show also that if n is even and m = rn/2 for some integer r then this
inequality is best possible: for some graph G = G(n, m) equality holds for
every x € G. [Hint. Imitate the proof of Theorem 2 in Chapter L.]

69. Deduce from Exercise 68 that if G is a triangle-free graph then e(G[W,]) <
n?/16 for some vertex x. Show also that if n is a multiple of 4 then this
inequality is best possible.

70. Let G be a graph of size (’5) + 1. Show that either & is even and A(G) = 1,
or else G has a subgraph of order k + 1 without isolated vertices.

71. For n > 1, let m(n) be the maximal integer m such that every graph of order
2n + 1 and size at most m is the union of a bipartite graph of maximal degree
less than n. Check that m(1) = 2 and m(2) = 7, and prove that forn > 3 we

have
2n+1 n
'"("’z( 2 )‘(2)‘1‘

[Hint. Make use of the result in Exercise 70.]

IV.8 Notes

There is an immense literature on extremal problems: here we shall give only the
basic references.
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Colouring

We wish to arrange the talks in a congress in such a way that no participant will
be forced to miss a talk they would like to hear: there are no undesirable clashes.
Assuming a good supply of lecture rooms enabling us to hold as many parallel
talks as we like, how long will the programme have to last? What is the smallest
number k of time slots required? Let us reformulate this question in terms of
graphs. Let G be the graph whose vertices are the talks and in which two talks
are joined iff there is a participant wishing to attend both. What is the minimal
value of k for which V(G) can be partitioned into k classes, say Vi, Va, ..., V,
such that no edge joins two vertices of the same class? As in Section IV.4, we
denote this minimum by x (G) and call it the (vertex) chromatic number of G.
The terminology originates in the usual definition of x (G): a proper colouring or
simply a colouring of the vertices of G is an assignment of colours to the vertices
in such a way that adjacent vertices have distinct colours; x (G) is then the minimal
number of colours in a (vertex) colouring of G. Thus, for example, x (Kx) = k,
x(Ki) = 1, x(Co) = 2 and x(Cor+1) = 3.

In general, it is difficult to determine the chromatic number of a graph. However,
it is trivial that if Ky C G then x(G) > x(Ki) = k. Putting this slightly
differently,

x(G) = w(G), 1)
where @ (G) is the cligue number of G, the maximal order of a complete subgraph
of G.

Let us remark here that we shall use real colours (red, blue, . ..) only if there
are few colours, otherwise the natural numbers will be our “colours”. Thus a
k-colouring of the vertices of G is a function ¢ : V(G) — {1,2,...,k} such



146 V. Colouring

that each set ¢~1(j) is independent. The sets ¢! (j) are the colour classes of the
colouring.

Another scheduling problem goes as follows. Each of n businessmen wishes to
hold confidential meetings with some of the others. Assuming that each meeting
lasts a day and at each meeting exactly two businessmen are present, in how many
days can the meetings be over? In this case one considers the graph H whose
vertices correspond to the n businessmen and where two vertices are adjacent iff
the two businessmen wish to hold a meeting. Then the problem above asks for the
minimal number of colours in an edge-colouring of H, that is, in a colouring of
the edges of H in such a way that no two adjacent edges have the same colour.
This number, denoted by x'(H), is the edge-chromatic number or chromatic index
of H. Note that x’(H) is exactly the chromatic number of the line graph of H:

X' (H) = x(L(H)). 2

In the first two sections of the chapter we shall present the basic results con-
cerning colourings of vertices and edges. The chromatic numbers of graphs drawn
on surfaces, especially on the plane, merit separate study. We shall devote much
of Section 3 to planar graphs; we shall also discuss graphs on other surfaces, and
we shall give a brief outline of the proof of the most famous result in graph theory,
the four colour theorem.

If, instead of colouring every vertex with a colour from the same set [k] =
{1,2,...,k}, we demand that the colour of a vertex x be chosen from a special
set or list L(x) assigned to x, then we arrive at the concept of list colouring. How
long do the lists have to be to guarantee that there is a proper colouring with
this restriction? In terms of our example of talks in a congress, each speaker is
available to talk only on a set of days L(x): for how many days must each speaker
be available to ensure that we can devise an appropriate programme? Some of the
many beautiful results concerning list colourings will be presented in Section 4.
As we shall see, list colourings are connected to the stable matchings we studied
in Section IIL.S.

In the final section we shall prove the basic results concerning perfect graphs.
A graph is perfect if for every induced subgraph of it we have equality in (1).
These graphs have a surprisingly beautiful structure, and are important not only
for their own sake but also because of their connections to optimization, linear
programming and polyhedral combinatorics.

V.1 Vertex Colouring

In Section 1.2 we noted the simple fact that a graph is bipartite iff it does not
contain an odd cycle. Thus x(G) > 2 iff G contains an edge and x (G) > 3 iff
G contains an odd cycle. For k¥ > 4 we do not have a similar characterization
of graphs with chromatic number at least k, though there are some complicated
characterizations (cf. Exercises 30-34). Rather than asking for a characterization,
let us lower our aim considerably, and ask for the most obvious reasons for a



V.1 Vertex Colouring 147

graph to have a large chromatic number. We have already noted one such reason,
namely the existence of a large complete graph: this gave us inequality (1). After
amoment’s thought, another simple reason springs to mind: the absence of a large
independent set. Indeed, if G does not contain & + 1 independent vertices, then
in every colouring of G at most & vertices get the same colour (every colour class
has at most h vertices). Hence

x(G) =z max{w(G), |Gl/a(G)}, 3)

where «(G), the independence number of G, is the maximal size of an independent
set.

Although for many a graph G inequality (3) is very weak, it is a definite
improvement on (1). Nevertheless, it is not too easy to see that w(G) can be much
smaller than x (G). In fact, it is also not easy to see that we can have w(G) = 2
and x(G) large, that is, that there are triangle-free graphs of large chromatic
number (cf. Exercise 12). In Chapter VII we shall make use of random graphs
and inequality (3) to show that there exist graphs with arbitrarily large chromatic
number and arbitrarily large girth. The difficulty we encounter in finding such
graphs shows that it would be unreasonable to expect a simple characterization of
graphs with large chromatic number. Thus we shall concentrate on finding ways
of colouring a graph with few colours.

How would one try to colour the vertices of a graph with colours 1, 2, . .., using
as few colours as possible? A simple approach is as follows. Order the vertices,
say xi, X2, ..., Xp, and then colour them one by one: give x; colour 1, then give
x2 colour 1if x1xp ¢ E(G) and colour 2 otherwise, and so on; colour each vertex
with the smallest colour it can have at that stage. This so-called greedy algorithm
does produce a colouring, but the colouring may (and usually does) use many
more colours than necessary. Fig. V.1 shows a bipartite (i.e., 2-colourable) graph
for which the greedy algorithm wastes two colours. However, it is easily seen
(Exercise 3) that for every graph the vertices can be ordered in such a way that
the greedy algorithm uses as few colours as possible. Therefore it is not surprising
that it pays to investigate the number of colours needed by the greedy algorithm
in various orders of the vertices.

4
X3 Xq Xe Xs

FIGURE V.1. In the order x1, x3, .. ., xg the greedy algorithm needs four colours.
First, note that whatever order we take, the greedy algorithm uses at most

A(G) + 1 colours for colouring the vertices of a graph G. Indeed, when we come
to colouring a vertex x of degree d(x), at least one of the first d(x) + 1 colours
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has not been used for a neighbour of x, so at least one of these colours is available
for x. This simple observation shows that what matters is not even the maximal
degree but the maximal number of neighbours of a vertex we have coloured before
we get to the vertex itself. From here it is but a short step to the following result.

Theorem 1 Let k = maxy §(H), where the maximum is taken over all induced
subgraphs of G. Then x(G) <k + 1.

Proof. The graph G itself has a vertex of degree at most k; let x,, be such a vertex,
and put H,—; = G — {x,}. By assumption, H,_) has a vertex of degree at most
k. Let x,—1 be one of them and put H,—3 = Hyp—1 — {xp—1} = G — {xn, Xn—1}.
Continuing in this way we enumerate all the vertices.

Now, the sequence x1, x2, ..., X, is such that each x; is joined to at most k
vertices preceding it. Hence the greedy algorithm will never need colour k + 2 to
colour a vertex. O

In a somewhat more down-to-earth formulation, Theorem 1 says that a minimal
(k 4+ 1)-chromatic graph has minimal degree at least k: if x(G) = k + 1 and
x (H) < k for every proper (induced) subgraph H of G then §(G) > k.

It is, of course, very easy to improve the efficiency of the greedy algorithm. If
we already have a subgraph Hy that we know how to colour with x (Ho) colours,
then we may start our sequence with the vertices of Hp, colour Hp in an efficient
way, and apply only then the algorithm to colour the remaining vertices. This gives
us the following extension of Theorem 1.

Theorem 2 Let Hy be an induced subgraph of G and suppose every subgraph H
satisfying Hy ¢ H C G, V(Hp) # V(H), contains a vertex x € V(H) — V(Hp)
withdy(x) < k. Then

x(G) < max{k + 1, x (Ho)}. O

In some cases the problem of colouring a graph can be reduced to the problem
of colouring certain subgraphs of it. This happens if the graph is disconnected or
has a cutvertex or, slightly more generally, contains a complete subgraph whose
vertex set disconnects the graph. Then we may colour each part separately since,
at worst by a change of notation, we can fit these colourings together to produce
a colouring of the original graph, as shown in Fig. V.2.

As a rather crude consequence of Theorem 1 we see that x(G) < A + 1,
where A = A(G) is the maximal degree of G, since maxpcg 8(H) < A(G).
Furthermore, if G is connected and not A-regular, then clearly maxgcg 6(H) <
A~—1,50 x(G) < A. The following result, due to Brooks, takes care of the regular
case.

Theorem 3 Let G be a connected graph with maximal degree A. Suppose G is
neither a complete graph nor an odd cycle. Then x(G) < A.

Proof. We know already that we may assume without loss of generality that G
is 2-connected and A-regular. Furthermore, we may assume that A > 3, since a
connected 2-regular 3-chromatic graph is an odd cycle.
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3¢ 2

FIGURE V.2. The vertex set of the thick triangle disconnects G, and we find that x (G) =
max{x(G1), x(G2), x(G3)}.

If G is 3-connected, let x,, be any vertex of G and let x, x3 be two nonadjacent
vertices in I'(x,). Such vertices exist since G is regular and not complete. If G is
not 3-connected, let x,, be a vertex for which G — x,, is separable, and thus has at
least two blocks. Since G is 2-connected, each endblock of G — x, has a vertex
adjacent to x,. Let x| and x; be such vertices belonging to different endblocks.

In either case, we have found vertices x, x2 and x, such that G — {x1, x3}
is connected, x;x, ¢ E(G), but x1x, € E(G) and x2x, € E(G). Let x,— €
V — {x1, x2, x,} be a neighbour of x,, let x,_; be a neighbour of x, or x,_1, etc.
Then the order x1, x2, X3, . .., X, is such that each vertex other than x, is adjacent
to at least one vertex following it. Thus the greedy algorithm will use at most
A colours, since x) and x get the same colour and x,, the only vertex with A
neighbours preceding it, is adjacent to both. 0

Another colouring algorithm can be obtained by reducing the problem to colour-
ing two other graphs derived from G. This reduction also enables us to obtain some
information about the number of colourings of a graph with a given set of colours.

Let a and b be nonadjacent vertices of a graph G. Let G’ be obtained from G
by joining a to b, and let G” be obtained from G by identifying a and b. Thus in
G” there is a new vertex (ab) instead of a and b, which is joined to the vertices
adjacent to at least one of a and b (Fig. V.3).

These operations are even more natural if we start with the G”: then G is obtained
from G’ by cutting or deleting the edge ab, and G” is obtained from G” by fusing,
or contracting, ab.

The colourings of G in which a and b get distinct colours are in 1-to-1 cor-
respondence with the colourings of G'. Indeed ¢ : V(G) — {1,2,...,k}isa

G G G”

ab

FIGURE V.3. The graphs G, G’ and G".



150 V. Colouring

colouring of G with c(a) # c(b) iff ¢ is a colouring of G’. Similarly the colourings
of G in which a and b get the same colour are in a 1-to-1 correspondence with the
colourings of G”. In particular, if for a natural number x and a graph H we write
pH(x) for the number of colourings of a graph H with colours 1, 2, ..., x, then

pG(x) = pg/(x) + pgr(x). C))
By definition x (G) is the least natural number k for which pg (k) > 1. Thus both
the remarks above and relation (3) imply that
X(G) = min{x(G), x(G")}. )
The basic properties of pg(x) are given in our next result.

Theorem 4 Let H be a graph with n > 1 vertices, m edges and k components.
Then

n—k
pu(x) =Y (-Diaix"™",
i=0

where ap = 1, a; = m and a; is a positive integer for everyi, 0 <i <n —k.

Proof. We apply induction on n + m. For n + m = 1 the assertions are trivial
so we pass to the induction step. If m = 0, we are again done, since in this
case k = n and, as every map f : V(H) — {1,2,...,x} is a colouring of
H, we have py(x) = x". If m > 0 we pick two adjacent vertices of H, say a
and b. Putting G = H — ab we find that G’ = H. Since ¢(G) = m — 1 and
|G”| + e(G") < n — 14 m, by the induction hypothesis the assertions of the
theorem hold for pg(x) and pgr(x). Note now that G” has k components and G
has at least k£ components. Therefore,

n—k
p(x) =x" —(m = Dx""' + 3 (= 1bix™ ",
i=2

where b; is a nonnegative integer for each i, and

n—k
por(x) =x""1 =Y (~Dicix",
s

where ¢; is a positive integer for each i. Hence, by (3),

pa(x) = pgr(x) = pG(x) — pgr(x)
n—k
=x" — mxn—l + Z(_l)l(b’ + Ci)xn—-i
i=2

n—k
=x" — mxn—l + Z(—l)'a,-x”_',
=

where q; is a positive integer for each i. O
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As a trivial consequence of Theorem 4, we see that py(x) is a polynomial,
so we are justified in calling it the chromatic polynomial of H. In fact, it is very
easy to see from first principles that py(x) is a polynomial in x with integer
coefficients. Write 7, (H) for the number of partitions of V (H) into r non-empty
independent sets. Then for every natural number x we have

pr(x) =) 7 (H)x),
r=1

where (x), = x(x —1)(x —2) - - - (x —r+1) is the falling factorial. The coefficients
of the chromatic polynomial have a fairly simple interpretation.

Theorem 5 Let H be a graph with n vertices and edge set E(H) =
{e1,€2,...,em}). Call a subset of E(H) a broken cycle if it is obtained from
the edge set of a cycle by deleting the edge of highest index. Then the chromatic
polynomial of H is

n—1
pr(x) =Y (=Diaix"~,
i=0

where a; is the number of i-subsets of E(H) containing no broken cycle.

Proof. Let us apply induction on m. For m = 0 the assertion is trivial, so suppose
that m > 1 and the assertion holds for smaller values of m. Let e; = ab and, as
before, set G = H — ab,so that G’ = G + ab = H and G” = G/ab satisfy (1).

With a slight abuse of notation, we identify not only E(G) = {e3, €3, ..., ém},
but also £(G”), with a subset of E(H). If an edge of E(G") comes from only one
edge of E(G), we keep its notation, and if an edge (ab)x comes from two edges of
G, say e¢; = ax and e;, = bx, then we denote (ab)x by e, where k = max{i, h}.

As (1) holds, to complete the induction step, all we have to check is that the
number of i -subsets of E (G’) containing no broken cycle of G’ is precisely the sum
of the number of i-subsets of E(G) containing no broken cycle and the number of
(i — 1)-subsets of E(G") containing no broken cycle. But this is a consequence
of the following two simple assertions.

(1) Suppose e ¢ F C E(G’). Then F contains no broken cycle of G’ iff F
contains no broken cycle of G.

(2) Suppose e; € F C E(G’). Then F contains no broken cycle of G’ if
F —{e1} C E(G") and F — {e)} contains no broken cycle of G”. O

As a by-product of Theorem 5, we see that the number of i-subsets of E(H)
containing no broken cycle is independent of the order imposed on E (H)—a fact
which is far from obvious.

In general, Theorem 5 does not provide a practical method for determining the
coefficients of the chromatic polynomial. However, if the graph has no short cycles
then it does give us the first few coefficients,
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Corollary 6 Let H be a graph with n vertices, m edges, girth g and chromatic
polynomial

pu(x) =) (~1ax"".
i=0

Then a; = (':') fori < g — 2. Furthermore, if g is finite and H has c; cycles of
length g then ag_y = (g'fl) — ¢ O

The reduction G — {G’, G”} also gives us a natural, although not very practical,
algorithm for finding the chromatic number. Given a graph G, construct a sequence
of graphs Gy, G, . .. as follows. Put Go = G. Having constructed G;, if G; is
complete, terminate the sequence; otherwise, let G;4.1 be G/ or G;. The sequence
has to end in a complete graph G, say of order |G,| = k. A k-colouring of G, can
easily be lifted to a k-colouring of the original graph G, so x (G) < k. Equality (4)
shows that if we construct all possible sequences from G then x(G) is precisely
the maximal order of a terminal graph.

There are other problems that can be tackled by the reduction G — {G’, G"};
a beautiful example is Exercise 15+.

In Chapter X we shall return to this topic, when we study a substantial gener-
alization of the chromatic polynomial, the Tutte polynomial. As we shall see, one
of the most important properties of the Tutte polynomial is that it can be defined
by the analogues of the cut and fuse operations for multigraphs.

V.2 Edge Colouring

In a colouring of the edges of a graph G, the edges incident with a vertex get
distinct colours, so x’'(G), the edge-chromatic number, is at least as large as the
maximal degree, A(G) = max, d(x):

x'(G) = A(G). (6)

At first sight it is somewhat surprising that this trivial inequality is, in fact, an
equality for large classes of graphs, including the class of bipartite graphs. Indeed,
Exercise 22 of Chapter IIT, which is an easy consequence of Hall’s theorem, asserts
that the edge set E(G) of a bipartite graph G can be partitioned into A(G) classes
of independent edges, that is, x'(G) = A(G).

Another trivial lower bound on x’'(G) follows from the fact that if G does not
contain B + 1 independent edges, then each colour class has at most B edges, so
we need at least [e(G)/B8] colour classes to take care of all the edges:

x'(G) 2 [e(G)/B1. )

Proceeding as in the proof of Theorem I. 11, it is easy to show thatif G is acomplete
graph of order at least 2 then equality holds in (7), thatis, x'(K") =n — lifnis
even, and x'(K™) = n if n > 3 is odd (Exercise 29).
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How can one obtain an upper bound for x'(G)? Since each edge is adjacent to
at most 2(A(G) — 1) edges, Theorem 1 implies that

x'(G) <2A(G) - 1.
Furthermore, if A(G) > 3, then Brooks’ theorem gives
x'(G) = x(L(G)) <2A(G) - 2.

At first sight this inequality seems reasonably good. However, the following
fundamental theorem of Vizing shows that this is not the case, because the
edge-chromatic number is always very close to the maximal degree.

Theorem 7 A graph G of maximal degree A has edge-chromatic number A or
A+1

Proof. Let us assume that we have used 1,2, ..., A + 1 to colour all but one of
the edges. We are home if we can show that by recolouring some of the edges, we
can colour this last edge as well withone of 1,2, ..., A + 1.

We say that a colour is missing at a vertex z if no edge incident with z gets that
colour. If z is incident with d’(z) < d(z) < A edges that have been coloured, then
A + 1 —d'(2) colours are missing at z. In particular, at each vertex at least one
colour is missing. Our aim is to move around the colours and the uncoloured edge
in such a way that a colour will be missing at both endvertices of the uncoloured
edge, enabling us to complete the colouring.

Let xy; be the uncoloured edge; let s be a colour missing at x and let ; be
a colour missing at y;. We shall construct a sequence of edges xy), xy,,...,
and a sequence of colours ?1, 2, ... such that ¢; is missing at y; and xy;, has
colour ¢;. Suppose we have constructed xy;,...,xy; and #1, ..., . There is at
most one edge xy of colour ;. If y ¢ {y1,...,yi}, we put y;+1 = y and pick
a colour ;1 missing at y;.1, otherwise we stop the sequence. These sequences
have to terminate after at most A(G) terms; let xy;, ..., xyp and ty, ..., t, be the
complete sequences. Let us examine the two reasons that may have forced us to
terminate these sequences.

(a) No edge xy has colour ty. Then recolour the edges xy;, i < h, giving xy;
colour ¢;. In the colouring we obtain, every edge is coloured except xy,. However,
since #, occurs neither at x nor at y;,, we may complete the colouring by assigning
th tO XYp.

(b) For some j < h the edge xyj has colour t,. To start with, recolour the edges
xyi, I < J, giving xy; colour #;. In this colouring the uncoloured edge is xy;. Let
H(s, t) be the subgraph of G formed by the edges of colour s and t,, where s is
the original colour missing at x and #; is missing at y;. Each vertex of H (s, t;) is
incident with at most 2 edges in H (s, t;) (one of colour s and the other of colour
ty), so the components of H (s, ) are paths and cycles. Each of the vertices x,
y;j and yp has degree at most 1 in H (s, ), so they cannot all belong to the same
component of H (s, #;). Thus at least one of the following two cases has to hold.
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(bl) The vertices x and y; belong to distinct components of H(s, t). In this
case interchange the colours s and #; in the component containing y;. Then s is
missing at both x and y;, so we may complete the colouring by giving xy; colour s.

(b2) The vertices x and yp belong to distinct components of H(s, ty). Now
continue the recolouring of the edges incident with x by giving xy; colour #;
for each i < h, thereby making xyy, the uncoloured edge. This change does not
involve edges of colours s and #;, so H (s, ;) has not been altered. Now switch
around the colours in the component containing yy,. This switch makes sure that
s is missing at both x and y,, so we can use s to colour the so far uncoloured
edge xyp. O

Note that the proof above gives an algorithm for colouring the edges with at
most A 4 1 colours.

V.3  Graphs on Surfaces

There is no doubt that for well over a hundred years the best known problem in
graph theory was the the four colour problem: prove that every plane graph is 4-
colourable. After numerous false starts and partial results, the problem was solved
in 1976 by Appel and Haken, relying on ideas of Heesch, when they proved that
every plane graph can indeed be coloured with four colours. On the other hand,
Euler’s formula implies that every plane graph can be coloured with 6 colours.
Indeed, by Theorem1.16, every plane graph of order n has at most 3n — 6 edges and
so its minimal degree is at most 5. Hence, by Theorem 1, the chromatic number
is at most 6. Furthermore, with a little more work we can obtain the following
stronger assertion.

Theorem 8 Every plane graph is 5-colourable.

Proof. Suppose the assertion is false and let G be a 6-chromatic plane graph with
minimal number of vertices. As above, we know that G has a vertex x of degree
at most 5. Put H = G — x. Then H is 5-colourable, say with colours 1,2, ..., 5.
Each of these colours must be used to colour at least one neighbour of x, otherwise
the missing colour could be used to colour x. Hence we may assume that x has 5
neighbours, say x1, x3, . .., x5 in some cyclic order about x, and the colour of x;
isi,i =1,2,...,5.Denote by H (i, j) the subgraph of H spanned by vertices of
colour i and j.

Suppose first that x1 and x3 belong to distinct components of H (1, 3). Inter-
changing the colours 1 and 3 in the component of x;, we obtain another 5-colouring
of H, However, in this 5-colouring both x| and x3 get colour 3, so 1 is not used
to colour any of the vertices xy, . .., x5. This is impossible because then x can be
coloured 1.

Since x; and x3 belong to the same component of H (1, 3), there is an x;—x3
path Py3 in H whose vertices are coloured 1 and 3. Analogously, H contains an
x2—x4 path P4 whose vertices are coloured 2 and 4. However, this is impossible,
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FIGURE V4. The paths Pi3 and Py.

since the cycle x1 Pi3x3 of G separates x; from x4 but Po4 cannot meet this cycle
(Fig. V.4). O

Clearly, not every plane graph is 3-colourable. Indeed, K4 is planar and it does
need 4 colours. Another 4-chromatic planar graph is obtained by joining all five
vertices of a Cs to a sixth vertex. Thus o = max{x(G) : G is planar} trivially
satisfies xo > 4 and xo < 5, and the problem is to prove xo < 4.

Instead of a plane graph, we may wish to consider a graph drawn on a closed
surface of arbitrary Euler characteristic. We shall see in a moment that, rather
curiously, the plane is the exception: for every closed surface other than the plane,
the problem is of an entirely different nature (and much easier).

We shall need very little about closed surfaces: in fact, all we need is their
classification theorem and the Euler—Poincaré formula. For p > 0, let S, be
the closed surface obtained from a 4 p-gon by identifying pairs of sides, as in
Fig. V.5(i), and for ¢ > 0, let N;; be the closed surface obtained from a 2g-gon by
identifying pairs of sides, as in Fig. V.5(ii). Thus S is the torus, N is the projective
plane and N is the Klein bottle; also, let Sp be the sphere. By the classification
theorem, every closed surface is homeomorphic to precisely one of the orientable
surfaces Sp, S1, . . . or one of the non-orientable surfaces Ny, N2, ....For p > 0,
the surface S, has genus p and Euler characteristic x = x(Sp) = 2(1~— p), and for
q > 0, the surface Ny has genus q and Euler characteristic x = x(Ng) =2—q.1t
is rather unfortunate that x is the standard symbol for both the Euler characteristic
of a surface and the chromatic number of a graph. This conflict will occur only in
this section and, hopefully, it will not lead to any confusion.

_ Y
At bl b, A M a, ar}

FIGURE V.5. The torus Sy, the projective plane Ny and the Klein bottle N;.
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A triangulation of a surface is a drawing of a graph on the surface such that
every face is a triangle. The Euler—Poincaré formula states that if a triangulation
of a closed surface of Euler characteristic x has a vertices, o) edges and o5 faces,
then g — @) + 2 = x. An immediate consequence of this is that if a graph G of
order n is drawn on a surface of Euler characteristic y, then

e(G) < 3n -3y, ®

with equality iff G is a triangulation of the surface.
The following easy upper bound on the chromatic number of a graph drawn on
a closed surface was obtained by Heawood in 1890.

Theorem 9 The chromatic number of a graph G drawn on a closed surface of
Euler characteristic y < 1 is at most

h(x) = L(7+ /49 —24)/2}.

Proof. Let k be the chromatic number of G. We may and shall assume that G
is a minimal graph of chromatic number k; otherwise, we may replace it by a
subgraph. But then §(G) > k — 1, so all we need is that if, for » = h()x), G has
n > h + 1 vertices then its minimal degree is at most # — 1. Now, if n > A + 1
then e(G) < 3n — 3 implies that

3(G)<6—06x/(h+1).
Hence if we had 8(G) > h then we would have
h<6—-6x/th+1),
that is,
h* —5h+6(x — 1) <0.

But this would imply the contradiction

1
h < 5(5-}— 49 —-24y). O

For a surface M, define its chromatic number, s(M), as the maximum of the
chromatic numbers of graphs drawn on M. Trivially, s(S;) < 5(Sg+1) since
every graph that can be drawn on S; can also be drawn on Sg4i; similarly,
5(Ng) < s(Ng41). The simple Theorem 9 states that if M is a surface of Euler
characteristic x then the chromatic number s (M) is at most as large as the Heawood
bound h(x) = (74 /49 — 24))/2].

When does equality hold? The following easy result shows that, for most values
of x, what matters is whether a complete graph can be drawn on a surface.

Theorem 10 Let x < 0, h = h(x) = (7T + /49 —24x) /2], and let G be
a minimal h-chromatic graph drawn on a surface of Euler characteristic x. If
x #—1,—2o0r—7then G = Kj.

Proof. All we shall use is inequality (8): a graph of order n drawn on a surface of
Euler characteristic x has at most 3(n — x) edges.
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Suppose G # Kj. Then n > h +- 2. Furthermore, if n = h + 2 then, as claimed

by Exercise 38,
h+2
e(G) = ( ;— ) -5,

which is easily checked to be greater than 3(h + 2 — x). Hence n > h + 3. Our
graph G is a minimal h-chromatic graph, so §(G) = h — 1 > 6 and, by Brooks’
theorem, G is not (b — 1)-regular. Therefore

nth—1)

e(G) > > ,

and so
nth—1)+1=<6(m—x). ®
Since h = 1, inequality (9) has to hold for n = h + 3, that is,
h%* —4h 20+ 6y < 0.
This implies that

h <2+ .24—-6y. (10)

Simple calculations show that (10) fails for x < —20, and it is easily checked that
for —19 < x < 0 inequality (10) fails unless x = —1, —2 or —7. O

In fact, Theorem 10 holds without any exceptions: this can be proved by using
a slightly better bound on the size of a minimal A-chromatic graph of order n.

From Theorem 10, it is easy to determine the chromatic number of a surface of
small genus other than the sphere.

Theorem 11 The torus, the projective plane and the Klein bottle have chromatic
numbers s(S1) =7, s(N1) = 6 and s(N;) = 6.

Proof. The Euler characteristics of these surfaces are x(N{) = 1 and x(S1) =
X (N2) = 0, therefore Theorem 9 implies that s(N;) < 6 and s(S1),s(N3) < 7.
Fig. V.6 shows that K¢ triangulates N; and K7 triangulates Sj, so s(N;) = 6,
5(S1)=7and 6 <s(N,) <7.

Our problem is then to decide whether the chromatic number of the Klein bottle
is 6 or 7. We know from Theorem 10 that s(N;) = 7 iff K7 can be drawn on
N3, and so K7 triangulates N;. To complete the proof, we shall show that K7
triangulates a unique closed surface, the torus, so that s(N;) = 6.

Suppose then that we have a triangulation by K7 of a closed surface (of Euler
characteristic 0). Then every vertex of K7 is on the boundary of six triangular
faces, and the third sides of these triangles form a 6-cycle. Writing 0, 1, ...,6
for the vertices, we may assume that the 6-cycle ‘surrounding’ 0 is 123456. Then
vertex 1 is surrounded by 602x - y, vertex 2 by 301x - -, and so on (see Fig. V.7).
But then x has to be 4 or 5: by symmetry, we may assume that it is 4. Having
made this choice, everything else is determined: looking at the neighbourhoods
of 1 and 6, namely the cycles y6024- and 501y - -, we see that y = 3, then we
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FIGURE V.6. Triangulations of the projective plane N by Kg, and of the torus S; by K7.

get z = 2, u = 1, and so on, as shown in Fig. V.7. What we have proved is that
if K7 triangulates a surface then this triangulation is unique (up to reflection) and
is as in Fig. V.7. But this labelling is easily seen to be consistent and to give a
triangulation of the torus. (As it happens, we already know that K7 triangulates
the torus, but in this proof we were forced to find that triangulation.) In particular,
K7 cannot be drawn on the Klein bottle, so s(N2) = 6, and we are done. O

FIGURE V.7. The start of a triangulation given by K7, and the labelling of the entire
triangular lattice.

In fact, the Heawood bound A () in Theorem 9 is best possible for every closed
surface other than the Klein bottle: if M is a closed surface of Euler characteristic
x < 1 and M is not the Klein bottle, then s(M) = h(x). Although this was
claimed by Heawood in 1890, his proof was incorrect, and the assertion became
known as Heawood’s conjecture. The first correct proof of Heawood’s conjecture
was found by Ringel and Youngs only over 75 years later. Note that the difficulty
in proving this deep result lies in finding a drawing of a single fixed graph, Kj(,),
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on a surface of Euler characteristic x < 1. What we have to do for y < —1 is
rather similar to the proof of Theorem 11: we have to find a ‘consistent colouring’
of a triangular tessellation of the hyperbolic plane in which every vertex has degree
h(x) — 1. On the other hand, in order to solve the four colour problem one has to
show that every plane graph can be coloured with four colours. Thus the difficulty
in solving the four colour problem has almost nothing to do with the problem of
determining s(M) for x (M) < 1.

For fear of upsetting the balance of the book, we shall say only a few words about
the solution of the four colour problem. We saw in Section 1.4 that a plane graph G
determines a map M = M(G) consisting of the plane graph G and the countries
determined by the plane graph. A colouring of a map is a colouring of the countries
such that no two countries sharing an edge in their boundaries get the same colour.
The original form of the four colour problem, as posed by Francis Guthrie in 1852,
asked for a proof of the assertion that every plane map can be coloured with four
colours. His teacher, de Morgan, circulated the problem amongst his colleagues,
but it was first made popular in 1878 by Cayley, who mentioned it before the
Royal Society. Almost at once “proofs” appeared, by Kempe in 1879 and by Tait
in 1890. Heawood’s refutation of Kempe’s proof was published in 1890, though
he modified the proof to obtain the five colour theorem. Tait’s paper also contained
false assumptions, which prompted Petersen to observe in 1891 that the four colour
theorem is equivalent to the conjecture that every 2-connected cubic planar graph
has edge chromatic number three (Exercise 28%). Contributions to the solution
since the turn of the century include Birkhoff’s introduction of the chromatic
polynomial and works by various authors giving lower bounds on the order of a
possible counterexample. In 1943 Hadwiger made a deep conjecture containing
the four colour theorem as a special case: if x (G) = k, then G is contractible to
K (see Exercises 16-18).

In hindsight, the most important advance was made by Heesch. The problem
was at last solved by Appel and Haken in 1976, making use of a refinement of
Heesch’s method and fast computers. The interested reader is referred to some
papers of Appel and Haken, to the book of Saaty and Kainen, and a recent paper
of Robertson, Sanders, Seymour and Thomas for a detailed explanation of the
underlying ideas of the proof. All we have room for is a few superficial remarks.

‘What makes the five colour theorem true? The following two facts: (i) a minimal
6-chromatic plane graph cannot contain a vertex of degree at most 5, and (ii) a
plane graph has to contain a vertex of degree at most 5. We can go a step further
and ask why (i) and (ii) hold. A look at the proof shows that (i) is proved by
making a good use of the paths P;;, called Kempe chains after Kempe, who used
them in his false proof of 1870, and (ii) follows immediately from Euler’s formula
n—e+ f=2.

The attack on the four colour problem initiated by Heesch goes along similar
lines. A configuration is a connected cluster of vertices of a plane graph together
with the degrees of the vertices. A configuration is reducible if no minimal 5-
chromatic plane graph can contain it and a set of configurations is unavoidable if
every plane graph contains at least one configuration belonging to the set. In order



160 V. Colouring

to prove that every plane graph is 3-colourable, one sets out to find an unavoidable
set of reducible configurations. How should one show that a configuration is
reducible? Replace the cluster of vertices by a smaller cluster, 4-colour the obtained
smaller graph and use Kempe chains to show that the 4-colouring can be “pulled
back” to the original graph. How should one show that a set of configurations is
unavoidable? Make extensive use of Euler’s formula. Of course, one may always
assume that the graph is a maximal plane graph. Assigning a charge of 6 — k to
a vertex of degree k, Euler’s formula guarantees that the total charge is 12. Push
charges around the vertices according to some discharging rules, that is, transfer
some charge from a vertex to some of its neighbours, until it transpires that the
plane graph has to contain one of the configurations.

Looking again at the five colour theorem, we see that the proof was based on
the fact that the configurations consisting of single vertices of degree at most 5
form an unavoidable set of configurations (for the five colour theorem).

The simplistic sketch above does not indicate the difficulty of the actual proof.
In order to rectify this a little, we mention that Appel and Haken needed over
1900 reducible configurations and more than 300 discharging rules to complete
the proof. Furthermore, we invite the reader to prove the following two simple
assertions.

+

FIGURE V.8. Three reducible configurations; in the last two examples the outer vertices
may have arbitrary degrees.

1. The configurations in Fig. V.8 are reducible.

2. Let G be a maximal planar graph of order at least 25 and minimal degree 5. Call
a vertex a major vertex if its degree is at least 7, otherwise, call it minor. Then G
contains one of the following:

(a) a minor vertex with 3 consecutive neighbours of degree 5,

(b) a vertex of degree 5 with minor neighbours only,

(c) amajor vertex with at most one neighbour of degree at least 6.

For twenty years, the Appel and Haken proof was neither simplified, nor thor-
oughly checked, as in addition to the huge program, the proof requires that
some 1400 graphs be put into the computer by hand. Recently, however, Robert-
son, Sanders, Seymour and Thomas produced their version of the proof, with an
unavoidable set of ‘only’ 633 reducible configurations, and with ‘only’ 32 dis-
charging rules. This proof is considerably easier to check, since the immense task
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of checking unavoidability by hand is replaced by a formally written proof, which
can be read and verified by a computer in a few minutes.

V.4 List Colouring

Recall that a graph is k-colourable iff to every vertex x we can assign a colour
c(x) € k] = {1,2,..., k) such that adjacent vertices get distinct colours. Now
suppose that to every vertex x of a k-colourable graph we assign a paint-box or
list L(x) of k colours. Is it possible to assign to each vertex one of the colours
from its own list such that adjacent vertices get distinct colours? At first sight, it
seems trivial that such an assignment is always possible, since “surely the worst
case is when the lists are identical, as that maximizes the chances of a conflict.”

However, this first impression is clearly misleading. For example, let G be the
complete three by three bipartite graph K3 3 with vertex classes V) = {x1, x2, x3}
and Vo = {y1, y2, y3},andlet L(x;) = L(y;) = {1,2,3}—{i},i = 1,2, 3. Thenin
any colouring of the vertices from these lists, at least two colours must be used to
colour V1, and at least two to colour V2, so there is bound to be an edge joining two
vertices of the same colour (see Fig. V.9). This realization leads to an important
variant of the chromatic number, the list-chromatic number.

(2,3} {1, 3} {1,2}
N Y2 Y3

X1 X2 X3
{2,3} {1,3} {1,2}

FIGURE V.9. The graph K3 3 with lists of size 2 assigned to the vertices, without a proper
colouring from the lists.

Given a graph G and a map L assigning to each vertex a set L(x), an L-
colouring of G is a proper colouring ¢ of the vertices such that c¢(x) € L(x) for
every x € V(G). The list-chromatic number x;(G) of G is the minimal integer
k such that G has an L-colouring whenever |L(x)| > k for every x € V(G).
Clearly, x¢(G) > x(G) for every graph G, since x(G) is the minimal integer k
such that G has an L-colouring when L(x) = [k] for every x € V(G).

The example above shows that we may have x;(G) > 3 and x(G) = 2. In
fact, it is easily seen that for every k > 2 there is a bipartite graph G with
x¢(G) > k. Indeed, writing A®) for the set of all k-subsets of a set A let G
be the complete bipartite graph with vertex classes V; = {xy, x2, ..., xg5—1}®
and V; = {yl,yz,...,yzk_l}("). Also, for x = {x;,xi,,...x;} € Viand y =
{yiy» Yiz» - - - ¥i,} € Vo, set L(x) = L(y) = {i1,i2,...,ix}. Then G is bipartite
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and has no L-colouring, since in any L-colouring we would have to use at least
k colours to colour V| and at least k colours to colour V5, so we would have two
adjacent vertices with the same colour. Hence x(G) = 2 and x¢ > k. On the other
hand, the greedy algorithm shows that x;(G) < A(G) + 1 for every graph G.

Our aim in this section is to prove two beautiful results, due to Thomassen and
Galvin, claiming that under certain circumstances the list-chromatic number is not
much larger than the chromatic number. These theorems strengthen considerably
two of our rather simple earlier results. As the proofs are short and very elegant,
the reader may be surprised to learn that much effort had gone into proving these
results before Thomassen and Galvin found their ingenious proofs.

We start with Thomassen’s theorem, strengthening Theorem 8 by claiming that
the list-chromatic number of a planar graph is at most 5. The proof below is a
striking example of the admirable principle that it is frequently much easier to
prove an appropriate generalization of an assertion than the original clean assertion.
In this case the generalization concerns list-colourings of almost maximal planar
graphs, with varying list sizes. To be precise, call a plane graph a near-triangulation
if the outer face is a cycle and all the inner faces are triangles.

As in a maximal plane graph of order at least 4 every face is a triangle, the
following result is clearly stronger than the assertion that every planar graph has
list-chromatic number at most 5.

Theorem 12 Let G be a near-triangulation with outer cycle C = x1x2 - - - xg,
and for each x € V(G) let L(x) be a list of colours assigned to x, such that
L(x1) = {1}, L(x2) = {2}, [L(x)| = 3 for3 < i <k, and |L(x)] = 5 for
x € V(G — C). Then G has an L-colouring.

Proof. Letus apply induction on the order of G. For |G| = 3 the assertion is trivial,
so suppose that |G| > 3 and the assertion holds for graphs of order less than |G|.
We shall distinguish two cases, according to whether C contains a ‘diagonal’ from
Xk or not.

(i) First suppose that G contains a ‘diagonal’ x¢xj, 2 < j < k — 2, of C.
Then we can apply the induction hypothesis to the graph formed by the cycle
XgX1x2 - - - xj and its interior and then, having fixed the colours of x; and x;, to the
cycle xgxjxj41 - - - xk—1 and its interior, to find an L-colouring of G.

(ii) Now suppose that G contains none of the edges x;xj,2 < j < k—2.Let the
neighbours of x be x¢_1, y1, ¥2, ..., y¢ and xy, in this order, so that xgx¢_1y1,
XkY1y2, - -+, XkyeX) are internal faces of our plane graph (see Fig. V.10).

Let a and b be colours in L(xx), distinct from 1. Our aim is to use one of
a and b to colour xi, having coloured the rest of the graph. To this end, let
L'(x) = L(x)ifx ¢ {y1,...,ye} and L’ (y;) = L(y;) —{a,b} for1 <i < L
Then, by the induction hypothesis, the graph G’ = G — xi, with outer cycle
X1X2 -+ Xk—1Y1y2 - - - Ye, has an L'-colouring. Extend this L’-colouring of G’ to
an L-colouring of G by assigning a or b to x; such that x; and x;_; get distinct
colours. ]
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FIGURE V.10. The second case in the proof of Theorem 12.

Theorem 12 is not only considerably stronger than Theorem 8, the five colour
theorem, but it is also best possible: as shown by Voigt, there are planar graphs of
list-chromatic number exactly 5.

Our next aim is to prove Galvin’s theorem concerning list-colourings of the
edges of a bipartite graph. Suppose that for every edge e € E(G) of a graph
G, we are given a list L(e) of colours. An L-edge-colouring of G is a proper
edge-colouring A of G such that A(e) € L(e) for every e € E(G). For a function
f : E(G) > N, wesay that G is f-edge-choosableif G has an L-edge-colouring
whenever |L(e)| > f(e) forevery e € E(G). The minimal k such that G is k-edge-
choosable is called the list-edge-chromatic number of G, or the list-chromatic
index of G, or the edge-choosability number of G, and is denoted by x;(G) or
ch(G). To make this terminology a little less cumbersome, we shall frequently
omit the word edge when there is no danger of confusion, so we shall talk of
L-colourings and f-choosable graphs.

As we shall make use of the existence of a stable matching, we shall follow
the conventions used in Section III. 5. Let G be a bipartite graph with bipartition
(V1, V1) and a certain assignment of preferences. For e = aA € E(G) let tg(e)
be the sum of the number of vertices the vertex a prefers to A and the number of
vertices the vertex A prefers to a. We call ¢ : E(G) — Zt = {0, 1, .. .} the total
function of the assignment of preferences.

Note that if H is a subgraph of G and Ey C E(H) then

tg(e) —tG-Ey(e) = ty(e) — tH_E,y(e) (11)

for every edge e € E(H) — Ep. (Needless to say, the preferences in subgraphs of
G are taken as in G.) Furthermore, a matching M in H is stable iff

ty(e) —tg-m(e) > 1 (12)

foreveryedgee € E(H) — M.
After all this preparation it is easy to state and prove a result that will readily
imply that x;,(G) = x'(G) for every bipartite graph G.
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Theorem 13 Let G be a bipartite graph with total function tg given by a certain
assignment of preferences. Then G is (tg + 1)-choosable.

Proof. We apply induction on the size of G. If E(G) = {, there is nothing to
prove, so suppose E(G) # @ and the assertion holds for graphs of smaller size.

Let us fix an assignment of preferences for G. For each edge ¢ € E(G), let
L(e) be a set of tg(e) + 1 natural numbers. We have to show that the edges of G
have an L-colouring.

Let I # @ be the set of edges whose lists contain a certain colour i, and let
H = (V(G), I) be the subgraph of G with edge-set I. By Theorem III.15, the
graph H contains a stable matching M. Let G’ = G — M, and for e € E(G’) set
L’(e) = L(e) — {i}. We claim that

IL'(e)| = tgr(e) + 1 (13)

forevery e € E(G’). Indeed, if e ¢ I then L'(e) = L(e) so this is clearly the case.
Also,ife € I — M = E(H) — M then, by relations (11) and (12),

tg(e) —tgi(e) =ty(e) —ty(e) > 1,

SO
IL ()l = |L(e)| = 1 > tG(e) = ter(e) + 1,
proving (13).
By the induction hypothesis, G’ has an L’-colouring; colouring the edges of M
by i, we get an L-colouring of the edges of G. O

From here it is but a short step to Galvin’s theorem.

Theorem 14 The list-chromatic index of a bipartite graph equals its chromatic
index.

Proof. Let G be a bipartite graph with bipartition (Vy, V;), and let A : E(G) —
[k] be an edge-colouring of G, where k is the chromatic index of G. Define
preferences on G as follows: let a € V) prefer a neighbour A to a neighbour
B iff AM(aA) > A(aB), and let A € V, prefer a neighbour a to a neighbour b
iff A(@aA) < A(bA). Note that the total function defined by this assignment of
preferences is at most kK — 1 on every edge, since if A(aA) = j then a prefers at
most k — j of its neighbours to A, and A prefers at most j — 1 of its neighbours
to a. Hence, by Theorem 11, G is k-choosable. O

As we noted in Section 2, the chromatic index of a bipartite graph equals its
maximal degree, so Theorem 14 can be restated as

Xe(G) = X' (G) = A(G)

for every bipartite graph G.

It is easily seen that the result above holds for bipartite multigraphs as well
(see Exercise 52); indeed, all one has to recall is that every bipartite multigraph
contains a stable matching.
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We know that, in general, x¢(G) # x(G) even for planar graphs, although we
do have equality for the line graphs of bipartite graphs. Recall that the line graph
ofagraph G = (V,E)is L(G) = (E, F),where F ={ef :e,f € E,eand f
are adjacent}. Indeed, it is conjectured that we have equality for all line graphs, in
other words, x,(G) = x'(G) for all graphs. Trivially,

x¢(G) = xe(L(G)) < A((L(G)) + 1 £ 2A(G) - 1,
but it is not even easy to see that
1:(G) < 2 - 10719A(G)

if A(G) is large enough. In fact, in 1996 Kahn proved that if ¢ > 0 and A(G) is
large enough then

x2(G) < (1 +8)A(G).

Even after these beautiful results of Galvin and Kahn, we seem to be far from a
proof of the full conjecture that x,(G) = x'(G) for every graph.

V.5 Perfect Graphs

In the introduction to this chapter we remarked that perhaps the simplest reason
why the chromatic number of a graph G is at least k is that G contains a k-clique,
a complete graph of order k. The observation gave us the trivial inequality (1),
namely that x (G) is at least as large as the clique number w(G), the maximal
order of a complete subgraph of G.

The chromatic number x (G) can be considerably larger than w(G); in fact, we
shall see in Chapter VII that, for all k and g, there is a graph of chromatic number
at least k and girth at least g. However, here we shall be concerned with graphs at
the other end of the spectrum: with graphs all whose induced subgraphs have their
chromatic number equal to their clique number. These are the so-called perfect
graphs. Thus a graph G is perfect if x (H) = w(H) for every induced subgraph H
of G, including G itself. Clearly, bipartite graphs are perfect, but a triangle-free
graph containing an odd cycle is not perfect since its clique number is 2 and its
chromatic number is at least 3. It is less immediate that the complement of a
bipartite graph is also perfect. This is perhaps the first result on perfect graphs,
proved by Gallai and K&nig in 1932, although the concept of a perfect graph was
only explicitly defined by Berge in 1960. Recall that the complement of a graph
G = (V,E)is G = (V,V® — E). Although w(G) is (G), the independence
number of G, in order to have fewer functions, we shall use w(G) rather than
a(G).

Theorem 15 The complement of a bipartite graph is perfect.

Proof. Since an induced subgraph of the complement of a bipartite graph is also
the complement of a bipartite graph, all we have to prove is that if G = (V, E) is
a bipartite graph then x (G) = w(G).
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Now, in a colouring of G, every colour class is either a vertex or a pair of
vertices adjacent in G. Thus x (G) is the minimal number of vertices and edges of
G, covering all vertices of G. By Corollary III.10, this is precisely the maximal
number of independent vertices in G, that is, the clique number @ (G) of G. O

For our next examples of perfect graphs, we shall take line graphs and their
complements.

Theorem 16 Let G be a bipartite graph with line graph H = L(G). Then H
and H are perfect.

Proof. Once again, all we have to proveis that x (H) = w(H)and x (H) = w(H).
Clearly, w(H) = A(G) and x(H) = x'(G). But as G is bipartite, x'(G) =
A(G) (see the beginning of Section 2), so x(H) = A(G) = w(H).
And what is x(H)? The minimal number of vertices of G covering all the
edges. Finally, what is w(H)? The maximal number of independent edges of G.
By Corollary III.10, these two quantities are equal. O

Yet another class of perfect graphs can be obtained from partially ordered sets.
Given a partially ordered set P = (X, <), its comparability graph is C(P) =
(X, E), where E = {xy € X? . x < yory <x}.

Theorem 17 Comparability graphs and their complements are perfect.

Proof. Once again, it suffices to show that if P is a partially ordered set then for
H = C(P) we have x(H) = w(H) and x(H) = w(H).

To see the first equality, for x € P letr(x), the rank of x, be the maximal integer
r for which P contains a chain of r elements, with maximal element x. Then for
k = max, r(x) the map r : P — [k] gives a k-colouring of H, and a chain of size
k gives a k-clique.

The second equality is deeper. Indeed, x (H) is the minimal number of chains
into which P can be partitioned, and w(H) is precisely the maximal number of
elements in an antichain. Therefore the equality x (H) = w(H) is none other than
Dilworth’s theorem, Theorem II.12. O

It does not take much to notice that, in all the examples above, the complement
of a perfect graph is also perfect. In fact, the cornerstone of the theory of perfect
graphs, the perfect graph theorem, claims that this holds without exception, not
only for the examples above. This fundamental result was proved by Lovasz and
Fulkerson in the early 1970s; although the proof below is relatively simple, it
needs a little preparation.

Lemma 18 A necessary and sufficient condition for a graph G to be perfect is
that for every induced subgraph H C G there is an independent set of vertices, 1,
such that

w(H -1) < w(H).

That is, a graph is perfect iff every induced subgraph H has an mdependent set
meeting every clique of H of maximal order w(H).
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Proof. The necessity holds with plenty to spare. Indeed, let H be a graph with
k = x(H) = w(H), and let I be a colour class of a k-colouring of H. Then
wH—1) < x(H-1) = x(H) - 1 < o(H).

The sufficiency of the condition will be proved by induction on @ (G). For
®(G) = 1 there is nothing to prove, so suppose that w(G) > 1 and the assertion
holds for smaller values of the clique number. Let H be an induced subgraph of G
and I an independent set with w(H — I) < w(H). By the induction hypothesis,
we can colour H — I with w(H — I) colours; colouring the vertices of I with
a new colour, we obtain a colouring of H with w(H — I) + 1 < w(H) colours.
Thus x (H) < w(H), and we are done. O

The next result needed in the proof of the perfect graph theorem we shall give is
of interest in its own right, as it enables one to construct large families of perfect
graphs. In order to state it, we need the notion of substitution.

Let G be a graph with vertex-set V(G) = [n] = {1, ...,n},andlet Gy, ..., G,
be vertex-disjoint graphs. Let G* = G[Gy, ..., G,] be obtained from U;‘=1 G;
by joining all vertices of G; to all vertices of G; wheneverij € E(G). We say that
G* is obtained from G by substituting G, . . ., G, for the vertices or by replacing
the vertices of G by G, ..., G,. Note that if we replace the vertices of G one by
one with the graphs G, ..., G,, we get the same graph G*.

We are ready to state the replacement theorem for perfect graphs.

Theorem 19 A graph obtained from a perfect graph by replacing its vertices by
perfect graphs is perfect.

Proof. As we may replace the vertices one by one, it suffices to prove that if
a vertex x of a perfect graph G is replaced by a perféct graph G, then the
resulting graph G* is perfect. Furthermore, since every induced subgraph of G*
is of precisely the same form (obtained from a perfect graph by replacing one of
its vertices by a perfect graph), by Lemma 18 it suffices to show that G* itself
contains an independent set of vertices meeting every clique of G* with w(G*)
vertices.

Having identified our task, let us get on with the job. By Lemma 18, the graph
G, has an independent set [ such that (G, — I) < w(G,). Colour G with w(G)
colours, and let W, be the colour class containing x. Then J = T U (W, — x) is
an independent set in G*. We claim this set J will do for the independent set. Let
K be aclique of G* with w(G™*) vertices, and let us show that J meets K.

Note that either X is a clique in G — x, or it is the union of a clique of G, of
order w(G,) and a clique of G[I'(x)]. Now, if X is a clique in G — x then, as it has
w(G*) > w(G) vertices, it meets every colour class of G in our w(G)-colouring,
including Wy, so K N J = K N W, # §. On the other hand, if K meets G, then
K meets I, as the part of X in G is an w(Gy)-clique of G,. Hence J does meet
K as claimed. 0

After all this preparation, we are ready to prove the perfect graph theorem of
Lovasz and Fulkerson.
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Theorem 20 The complement of a perfect graph is perfect.

Proof. Let us prove the theorem by induction on the order n of our perfect graph.
For n = 1 there is nothing to prove, so suppose that n > 1 and the theorem
holds for perfect graphs of order less than n. In order to prove the induction step,
by Lemma 18 all we need is that if G is a perfect graph of order n, then G
contains an independent set I such that (G — I) < w(G). Translating this into
an assertion about G, all we need is that G contains a complete graph K such that
a(G — K) < a(G).

Suppose then that this fails, that is, for every complete subgraph K of G, there
is an independent set /¢ with «(G) vertices that is disjoint from K. As we wish
to count, let us put this slightly differently: if K1, K>, ..., K; are all the complete
subgraphs of G then, for every r, 1 < r < t, there is an independent set I, with
a(G) vertices, which is disjoint from K.

For a vertex x of G, denote by i (x) the number of independent sets I, containing
x. Let G* be obtained from G by substituting a complete graph of order i (x) for
every vertex x. We know from the replacement theorem, Theorem 19, that G* is
perfect. But is it?

First, let us give an upper bound for the clique nummber v (G*). Every complete
subgraph of G* is obtained from a complete subgraph of G by substituting at most
i (x) vertices for each vertex x. Hence, thereisanr, 1 < r <, such that

o(G*) = Z i(x).

xek,
But
t
dim=) Y 1=) IKNnLl<t—1,
xek, xekK, xel s=1
since |K, N I;| < 1forall r and s, and |K, N I,| = 0. Therefore,
(G <t-1.

And what about x (G*)? By the construction of G*,

t
1G* =) itx)=)_ Il =ta(G),

xeG r=1

and as G* is obtained from G by substituting complete graphs for the vertices,
a(G*) = a(G). Consequently,

|G*|
G*) > =1.
x(GY) = 2(GH
Thus w(G*) < x(G™*), contradicting the fact that G* is perfect, and so completing
the proof of the theorem. O

There is another beautiful proof of the perfect graph theorem or, to be pre-
cise, of a slight extension of the perfect graph theorem, suggested by the trivial
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inequality (2). Indeed, if H is an induced subgraph of a perfect graph then, by (2),
w(H) = x(H) > |H|/a(H) = |H|/w(H),
so that
|H| < o(H)w(H). (14)

Hajnal and Simonovits conjectured that this trivial necessary condition for a graph
to be perfect is also sufficient, namely that a graph is perfect if, and only if, (14)
holds for every induced subgraph H. This conjecture was proved by Lovasz in
1972, and in 1996 Gasparian found a shorter proof of it. Note that the perfect
graph theorem is an immediate consequence of this result.

Let us turn to yet another characterization of perfect graphs, indicating the
connection between perfect graphs and linear programming. First we need a variant
of the independence number of a graph. Identifying a set with its characteristic
function, an independent set of vertices of a graph G is naturally identified with a
function f : V(G) — {0, 1} suchthat ), f(v) < 1 for every clique K C G.
The clique number o(G) is the maximum of ) _, ., f(v) over all such functions.

If we allow f to take any value between 0 and 1 (or just any non-negative value),
then we get the fractional independence number o* (G) of G:

oa*(G) = maxZ f@),

veG

where the maximum is over all functions f : V(G) — [0, 1] such that
Y vex f() < 1 for every clique K C G. Another beautiful result of Lovasz
is that a graph is perfect if, and only if, «*(H) = «(H) for every induced
subgraph H.

Having seen several classes of perfect graphs, what about graphs that are not
perfect? We noted earlier that every triangle-free non-bipartite graph is imperfect.
But what about a characterization of perfect graphs in terms of forbidden induced
subgraphs? As an induced subgraph of a perfect graph is perfect, it would suffice
to characterize critically imperfect graphs, that is, imperfect graphs whose every
induced proper subgraph is perfect. Examples of such graphs are the odd cycles
of length at least 5 and, by the perfect graph theorem, the complements of these
graphs.

Rather surprisingly, no other minimal examples are known. Indeed, the so called
perfect graph conjecture, proposed by Berge in 1960, claims that these are the
only examples: a graph G is perfect if, and only if, neither G nor its complement
G contains an induced odd cycle of length at least 5. Equivalently, the odd cycles
of length at least 5 and their complements are the only critically imperfect graphs.

Clearly, the perfect graph theorem would be an immediate consequence of the
perfect graph conjecture. However, in spite of much effort, we do not seem to be
close to a proof of this conjecture.
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V.6 Exercises

17 Show that a graph G has at least (X (20)) edges.

2. For each k > 3 find a bipartite graph with vertices x1, x7, ..., x, for which
the greedy algorithm uses k colours. Can this be done with n = 2k —27 Show
that it cannot be done with n = 2k — 3.

3.7 Given a graph G, order its vertices in such a way that the greedy algorithm
uses only k = x (G) colours.

4~ Order the vertices of a graph G according to their degrees, so that V(G) =
{x1,x2,...,xn} and d(x1) > d(x2) > ---. Show that in this order the greedy
algorithm uses at most max; min{d(x;) + 1, i} colours, and so if & is the
maximal natural number for which k < d(x;) + 1 then x(G) <k.

5. Deduce from Exercise 4 that if G has n vertices then
X(G)+x(@G) <n+1.
6 Show that x (G) + x(G) > 2./n.

7. Let G = (V, E) be a graph of maximal degree 3. Show that for some partition
V = ViUV, both G[ V1] and G[V,] consist of independent edges and vertices.

8. Let d, dq and d> be nonnegative integers with d; + d» = d — 1. Prove that
if A(G) = d then the vertex set V(G) of G can be partitioned into two
classes, say V(G) = Vi U Va, such that the graphs G; = G[V;] satisfy
A(G;) < d;,i = 1, 2. [Hint. Consider a partition V(G) = V; U V; for which
di1e(G7) + dre(G1) is minimal.]

9. (Exercise 8 contd.) Let now d, d,d3, ..., d, be nonnegative integers with
31(di+1) = d+ 1. Prove that if A(G) = d then there is a partition V(G) =
U1 Vi such that the graphs G; = G[V;] satisfy A(G;) <d;,i=1,2,...,r.

10. Given natural numbers r and ¢, 2r < t,the Kneser graph K ,(’) is constructed as
follows. Its vertex setis T, the set of r-element subsets of T = (1,2, ..., t},
and two vertices are joined iff they are disjoint subsets of T'. Fig. V.11 shows
K 5(2), the so called Petersen graph. Prove that x (K ,(')) <t-2r4+2,x(K 5(2)) =

3and x(K) = 4.

FIGURE V.11. The Petersen graph and the Grotzsch graph.
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11. Check that the Grotzsch graph, shown in Fig. V.11, has girth 4 and chromatic
number 4. Show that there is no graph of order 10 with girth at least 4 and
chromatic number 4.

12:+* Try to construct a triangle-free graph of chromatic number 1526 without
looking at Chapters VI or VIL

13:F Show that there is a unique graph Gy of order n and size m = |n2/4] such
that if G is also of order n and size m then

PG (x) < pGy(x)
whenever x is sufficiently large.

147 Find graphs G and H of order n and the same size such that x (G) < x(H)
but pg(x) < pg(x) if x is sufficiently large.

15" Given a connected graph G containing at least one cycle, define a graph H on
the set S of all spanning trees of G by joining T to T3 iff | E(T1) \ E(Th)| = 1.
(Cf. simple transforms of an x-path in Section IV. 3.) Imitate the proof of the
fact that py(x) is a polynomial (Theorem 4) and the proof suggested in
Exercise 12 to show that H is not only Hamiltonian, but every edge of it is
contained in a Hamilton cycle.

16. Let x be a vertex of a graph G and, for r > 0, let G, be the subgraph of
G induced by the vertices at distance r from x. (Thus G, is the ‘sphere’ of
radius r about x.) Show that x (G) is at most x(G,) + x (G,+) for some r.

17 Recall from Chapter I that a graph G has a subgraph contractible to a graph H

with vertex set {y1, .. ., yx} if G contains vertex disjoint connected subgraphs
G1, ..., Gi such that, for i # j, there is an edge y;y; € E(H) iff G has a
G;—G; edge; in notation, G > H or H < G.
Prove that for every natural number p there is a minimal integer ¢(p) such that
every graph with chromatic number at least c(p) has a subgraph contractible to
K. By making use of the result in the previous exercise, show that ¢(1) = 1,
c)=2andc(n+1) <2c(n)—1forn > 2.

187 Hadwiger’s conjecture states that c(p) = p for every p. Prove this for p < 4.

19. Can you show that for every p > 1 there is an integer 5(p) such that every
graph of minimal degree at least 8(p) is contractible to K,?

20. Let G be obtained from a 3-connected graph by adding to it a vertex x and 3
edges incident with x. Show that G is contractible to K 55 that is, to a complete
graph of order 5 from which an edge has been deleted.

21. Prove that if x(G) = 5 then either Ks < G or Ky < G — x for every
x € V(G).

22. Show that the truth of Hadwiger’s conjecture for p = 5 implies the four
colour theorem.
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23. Show that a planar map M = M(G) can be 2-coloured iff every vertex of G
has even degree. [Hint. If every vertex of G has even degree then G is a union
of edge-disjoint cycles. For another solution, apply induction on the number
of edges, and delete the edges of a cycle forming the boundary of a face of
M(G).]

247 Let M = M(G) be a triangular map, that is, a map in which every country
has three sides. Show that M 1s 3-colourable unless G = K4.

25 Prove that a map M = M(G) is 4-colourable if G has a Hamilton cycle.

26.” For each plane graph G construct a cubic plane graph H such that if M(H)
is 4-colourable then so is M(G).

277 According to Tait’s conjecture every 3-connected cubic plane graph has
a Hamilton cycle. (i) Show that Tait’s conjecture implies the four colour
theorem. (ii) By examining the graph in Fig. V.12 disprove Tait’s conjecture.

FIGURE V.12. Tutte’s counterexample to Tait’s conjecture.

28 Let G be a cubic plane graph. Show that G is 3-edge-colourable iff M(G) is
4-colourable. [Hint. Let 1, a, b and ¢ be the elements of the Klein four-group
C; x C3, so that a? = b? = ¢? = 1. Colour the edges with a, b and ¢, and
the countries with 1, a, b and c.]

29. Find the edge chromatic number of X,,.
30.~ Show that every cubic Hamiltonian graph has at least three Hamilton cycles.

31. Suppose the cubic graph G has exactly one edge-colouring with x'(G)
colours, up to a permutation of the colours. Show that x'(G) = 3 and that G
has exactly 3 Hamilton cycles.

32 Let P, be obtained from two vertex-disjoint n-cycles, vivz--- v, and
wiws - - - Wy, Say, by joining v; to w4, with suffices computed modulo
n. Show that Py 5 is uniquely 3-edge-colourable (cf. Exercise 31); that is,
up to a permutation of the colours it has a unique 3-edge-colouring. Show
also that if n > 2 then Pgp43,2 is not uniquely 3-edge-colourable, and it has
exactly three Hamilton cycles.
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33. Let n = 2P. Show that K, is not the union of p bipartite graphs but K, is.
Deduce that if there are 2”7 4 1 points in the plane then some three of them
determine an angle of size at least 7 (1 — (1/p)).

34. Let x(G) = k. What is the minimal number of r-chromatic graphs whose
union is G?

357 Show that a k-chromatic graph can be oriented in such a way that a longest
directed path has k vertices.

36. Prove the following theorem of Roy and Gallai. If a graph G can be oriented in
such a way that no directed path contains more than k vertices then x (G) < k.
[Hint. Omit a minimal set of edges to destroy all directed cycles. For a vertex
x let ¢(x) be the maximal number of vertices on a directed path in the new
graph starting at x. Check that ¢ is a proper colouring.]

37. Let G be a graph of maximal degree at most 2, without a triangle and without
three independent edges, such that for any two vertices there is an edge
incident with neither of them. Show that G = C5 U K,,_s.

38. A graph G is said to be k-critical if x(G) = k and x(H) < k for every
proper subgraph H of G. Note that K is the only 2-critical graph and the
odd cycles are the only 3-critical graphs. Show that if G # K} is k-critical
then |G| > k + 2. Deduce from the previous exercise that if G is a k-critical
graph with k + 2 vertices then k > 3 and G = Cs + K;_3. In particular,
e(G) = ("3h) -s.

39. Let G and G be vertex disjoint graphs, containing edges x1y; € E(G;) and
x2y2 € E(G2). The Hajos sum G = (G1, x1y1) + (G2, x2y2) of the pairs
(G1, x1y1) and (G2, x2y2) is obtained from G U G; by identifying x; and
x2, deleting the edges xyi, x2y2, and adding the edge y;y; (see Fig.V.13).
Check that x (G) > min{x (G1), x(G2)}. [In fact, Hajés proved in 1961 that
{G : x(G) = k} is precisely the smallest class of graphs containing Ky that
is closed under Hajés sums and the trivial operations of adding edges and
identifying non-adjacent vertices.]

X X2 X=X

Y1 Y2 N Y2

FIGURE V.13. The Hajés sum (G1, x1y1) + (G2, x2y2) of a wheel and a complete graph.

40:+ (Exercise 39 contd.) Let Hy, be the smallest collection of (isomorphism classes
of) graphs such that (1) Kx € Hy, (2)if H € Hy and G D H then G € H;,
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(3) if H € Hy and G is obtained from H by identifying two nonadjacent
vertices, then G € Hy, (4) if Gy, G2 € H; and G is the Haj6s sum of G,
and G, then G € Hy. Prove that H; is precisely the class G of graphs of
chromatic number at least k. [Hint. The result in Exercise 39 implies that
Hi C Gi. Assume that the converse inclusion is false and let G € G \ Hg
be a counterexample of minimal order and maximal size. Then G cannot
be a complete g-partite graph, so it contains vertices a, by and b3 such that
b1by € (G) butaby, aby € E(G).Let G| = G + ab; and Gy = G + ab;.
Then G and G, are not counterexamples so belong to Hj. Find out how G
can be obtained from copies of G| and G, by the allowed operations.]

(Exercises 39 and 40 contd.) Show that, for k > 3, the Hajés sum of two
k-critical graphs is again k-critical.

Show that, for k > 3 and £ > 1, there is a k-critical graph of order n =
(k — 1)£ + 1 and size £(%) — 1.

Show that a 4-critical graph with 7 vertices has at least 11 edges, and this
bound is best possible.

Let k be a natural number. Prove that an infinite graph is k-colourable iff every
finite subgraph of it is. [Hint. Apply Tychonov’s theorem as in Exercise I11.31.]

Check that the chromatic polynomial of a tree T’ of order n is
prx) =x(x — "L
Deduce that the chromatic polynomial of a forest F of order n and size m is
pr(x) =x"""(x - 1"
Use Corollary 6 to deduce the same assertion.
Let e be a bridge of a graph G. Show that pg(x) = ’%lpc_e(x).
Let G be a connected graph with blocks By, By, ..., Bg. Show that

e
pe(x) = x~t! 1—[ pB; (x).

i=1
Let G = G1 UGy, with H = G N G2 being a complete graph K”. Show that

pGl(x)PGz(x) pGl(x)sz(x)
pc(x) = = .
()r PH(x)
Show that if G is a connected graph of order n then (-Dr-t pc(x) > 0 for
allx,0 <x < 1.

Show that | pg(—1)| is the number of acyclic orientations of G.

Let us assign alist L(x) of two colours to every vertex x of an odd cycle. Show
that there is an L-colouring unless we assign the same set to every vertex.

Check that Theorem 14 holds for bipartite multigraphs as well.
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A graph is said to be triangulated if every cycle of length at least 4 has a
diagonal, that is, if the graph contains no induced cycle of length at least 4.
Show that a connected graph G is triangulated iff whenever § is a minimal
set of vertices such that G \ S is disconnected then G[S] is complete.

A vertex whose neighbours induce a complete graph is said to be simplicial.
Show that every non-empty triangulated graph has at least two simplicial ver-
tices. Deduce that a graph G is triangulated iff its vertices have an enumeration
X1, X2, ..., X%, such that each xy is a simplicial vertex of G[{x1, ..., xz}].

55 An interval graph has vertex set {I}, ..., I,}, where each I; is an interval

56.

[a;, bj] C R, and two intervals I; and I, are adjacent if they meet. Show that
every interval graph is triangulated, and its complement is a comparability
graph.

Without making use of the perfect graph theorem, show that interval graphs
and their complements are perfect.

Given a permutation 7 of [n] = {1, 2, ..., n}, the permutation graph G (i)
has vertex set [n], with ij an edge if & switches the order of i and j. Thus,
fori < j, we joini to j iff m(j) < m(i). Without making use of the perfect
graph theorem, show that permutation graphs are perfect.

57+% To appreciate the depth of Theorem 14, try to give a direct proof of the

58.

59.

assertion that the list-chromatic index of the complete k by k bipartite graph
is k. If you fail (and it would be a wonderful achievement if you did not), try
to prove it for k = 2, 3 and 4.

Griinbaum conjectured in 1970 that forall k > 2 and g > 3 there are (k, £, g)-
graphs, that is, k-chromatic k-regular graphs of girth at least g. Show that the
graph in Fig.V.14, constructed by Brinkman, is a (4, 4, 5)-graph.

Fill in the details in the proof of Theorem 10.

FIGURE V.14. The Brinkman graph.
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60. Let n > 4. Show that if K, triangulates a closed surface then n # 2
(mod 3). Deduce the converse from the Ringel-Youngs theorem, namely that
s(M) — h(x) = L(7T+ /49 — 24 ) /2] for every closed surface M of Euler
characteristic x < 0.

61. Let G be a graph of order 2n such that for every S C V(G), the graph G — §
has at most S| odd components. Show that x(G) < n, and we can have
equality for every n > 1.

62. Check from first principles that the complement of an odd cycle of length at
least 5 is imperfect.

63+ For o, w > 2, call a graph G an (@, w)-graph if it has aw + 1 vertices and for
every v € G the graph G — v can be partitioned into « cliques, each of order w,
and also into w independent sets, each with & vertices. Recalling that a graph
G is perfect iff every induced subgraph H C G satisfies |H| < a(H)w(H),
show that every critically imperfect graph is an (o, )-graph for some o,
®>2.

647 Leta, w > 2 be integers, and let G be the (w— 1)st power of an (@w+-1)-cycle
Cow+1- Thus V(G) = Zgu+1 and ij € E(G) if

EG)={ij:i—j==x1,£2,..., H(w—-1).
Show that G is an («, w)-graph. Is G critically imperfect?
65. For k > 1, let Gy be the graph with vertex set
V=02 +11?9=(1,2,...,2t+ }®

in which {a, b} € V is joined to {b, ¢} € V whenevera < b < c. Thus Gy

has (zk;' " vertices and Z%;O £(2% — £) edges. Prove that Gy is triangle-free
and x(Gy) =k + 1.

66. In 1947, Tutte constructed a sequence G3, G4, . .. of triangle-free graphs as
follows. Let G3 be an odd cycle with at least 5 vertices. Having constructed
Gy with ny vertices, set my = k(ng — 1)+ 1 and ng41 = (';':)nk + my. Let
W be a set of my vertices, and for each « € W@ | je. each ng-subset o
of W, let G4 be a copy of Gy, with the sets W and V(Gy), o € W@ | all
disjoint. Let G4 be obtained from | J, Go U W by adding, for each «, a
complete matching from « to V(Gg). Thus |Ggy1| = ng41. Show that each
Gy, is triangle-free and x (Gy) = k.

67 Let G be the infinite graph whose vertex set is R? and in which two points
are joined if their distance is 1. Show that4 < x(G) < 7.

68" Show that the chromatic number of a triangle-free graph drawn on a surface
of Euler characteristic E < 0is at most (5 + /25 — 16E)/2.
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69. Let G be a triangle-free graph with vertex set {xi, x2,..., x,}. Construct a
graph G’ from G by adding to it n + 1 vertices, x{, x5, ..., x;, and y, and
joining each x; to the vertices in ['g(x;) U {y}. (Thus x] ‘duplicates’ x;,
and y is joined to the other new vertices.) Show that G’ is triangle-free and
x(G") = x(G). Use this construction to exhibit triangle-free graphs G3, G4
and Gs, with x(Gy) = k.

70. Let G be the graph of order 2n + 1 > 5 obtained from K, , by subdividing
an edge by a vertex. Show that x'(G) = A(G)+1=n+1,but x'(G—e) =
A(G — e) = n for every edge e of G.

71. Show that there is no plane graph G such that
(1) every face other than x;x3 - - - x¢ is a triangle,
(2) all degrees not on this face are even, and
(3) all degrees d(x1), ..., d(xm—1) are odd, where m = |£/2], and d(x,,) is
odd iff £ is odd.

72. Let G be atriangulation of the plane, with all degrees even. Show that x (G) =
3. [Hint. Pick a vertex xi. Let V; be the smallest set of vertices such that
(1) x; € Vi, and (2) if x € V) and both xyz and x'yz are faces then x’ € V.
Use the result in Exercise 71 to check that V| is an independent set. Clearly,
G — V) is a collection of even cycles.]

73. Let G be a cubic plane graph. Prove that the map M(G) is 3-colourable iff
each country has an even number of sides.

74. Show that the only vertex-critical 3-chromatic graphs are the odd cycles: if
x(G) =3 and x(G — x) = 2 for every vertex x then G = Cy for some
k>1

75. Let G be the graph on Z7 with { joined to j iff i — j € {£2, +6, +7, +8}.
Show that G is a vertex-critical 5-chromatic graph with a critical edge: x (G) =
5, x(G — x) = 4 forevery vertex x, and x(G — xy) = 5 for every edge xy.

767 Prove that the chromatic number of a triangle-free graph of size m is at
most 2m'/3 4+ 1. [Hint. Apply induction on m, making use of Exercise 68 of
Chapter IV.]
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bridge Phil. Soc. 37 (1941) 194-197, and Vizing’s theorem, Theorem 5, is in V.G.
Vizing, On an estimate of the chromatic class of a p-graph (in Russian), Diskret.
Analiz 3 (1964) 23-30. A detailed account of results concerning colouring graphs
on surfaces, culminating in the proof of Heawood’s conjecture by Ringel and
Youngs’ can be found in Map Color Theorem, Grundlehren der math. Wiss. 209,



178 V. Colouring

Springer-Verlag, Berlin, 1974. The use of the discharging procedure in attacking
the four colour problem is described in H. Heesch, Untersuchungen zum Vierfar-
benproblem, B-I-Hochschulskripten 810/810a/810b, Bibliographisches Institut,
Mannheim, Vienna, Ziirich, 1969. The first proof of the four colour theorem is in
K. Appel and W. Haken, Every planar map is four colourable, Part I: discharging,
Hllinois J. of Math. 21 (1977) 429490 and K. Appel, W. Haken and J. Koch,
Every planar map is four colourable, Part II: reducibility, Illinois J. of Math. 21
(1977) 491-567. A history of the four colour problem and a digest of its proof are
provided by T.L. Saaty and P.C. Kainen, The Four Color Problem, Assaults and
Conquest, McGraw-Hill, New York, 1977.

The recent proof mentioned in the text is in N. Robertson, D. Sanders, P.D. Sey-
mour and R. Thomas, The four-colour theorem, J. Combinatorial Theory, Ser. B
70 (1997) 2—44.

The theorems of Thomassen and Galvin were published in C. Thomassen, Every
planar graph s 5-choosable, J. Combinatorial Theory, Series B 62 (1994) 180-181,
and F. Galvin, The list chromatic index of a bipartite multigraph, J. Combinatorial
Theory, Series B 63 (1995) 153-158. Our presentation of Galvin’s theorem is
based on T. Slivnik, A short proof of Galvin’s theorem on the list-chromatic index
of a bipartite multigraph, Combinatorics, Probability and Computing 5 (1996)
91-94. Voigt’s construction of a planar graph of list-chromatic number 5 is in
M. Voigt, List colourings of planar graphs, Discrete Mathematics 120 (1993)
215-219. Kahn’s breakthrough in the list-colouring problem, briefly mentioned
at the end of Section 4, is in J. Kahn, Asymptotically good list-colourings, J.
Combinatorial Theory A 73 (1996) 1-59.

The perfect graph theorem was proved in L. Lovész, Normal hypergraphs
and the perfect graph conjecture, Discrete Math. 2 (1972) 253-267, and D.R.
Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Programming 1
(1971) 168-194; for an excellent review of the theory and application of perfect
graphs see L. Loviész, Perfect graphs, in Selected Topics in Graph Theory 2 (L.W.
Beineke and R.J. Wilson, eds), Academic Press, London, 1983, pp. 55-87. The
simple proof of the sufficiency of condition (13) we mentioned in the text is in
G. S. Gasparian, Minimal imperfect graphs: a simple approach, Combinatorica
16 (1996) 209-212.

The partition results of Exercises 8 and 9 are in L. Lovész, On decomposition
of graphs, Studia Sci. Math., Hungar. 1 (1966) 237-238.

The result in Exercise 36 is due to B. Roy,, Nombre chromatique et plus
longs chemins d’un graphe, Rev. AFIRO 1 (1967) 127-132, and T. Gallai, On
directed paths and circuits, in Theory of Graphs (P. Erd8s and G. Katona, eds),
Academic Press, New York, 1968, 115-118, and the results in Exercises 39—
41 are from G. Hajés, Uber eine Konstruktion nicht n-firbbarer Graphen, Wiss.
Zeitschr. Martin Luther Univ. Halle-Wittenberg, Math.-Natur. Reihe 10 (1961)
116-117.

Colouring is a naturally appealing part of graph theory, and the subject has a
vast literature. Many of the fundamental results are due to G.A. Dirac; for these



V.7 Notes 179

and other results see Chapter V of B. Bollobas, Extremal Graph Theory, Academic
Press, London and New York, 1978.

An excellent comprehensive book on colourings is T.R. Jensen and B. Toft,
Graph Coloring Problems, Wiley-Interscience, New York, 1995, xix+29S pp.,
and a relevant recent review article is B. Toft, Colouring, stable sets and perfect
graphs, in Handbook of Combinatorics vol. I (R.L. Graham, M. Grétschel and
L. Lovasz, eds), North-Holland, Amsterdam, 1995, pp. 233-288.



VI
Ramsey Theory

In a party of six people there is always a group of three who either all know each
other or are all strangers to each other. If the edges of the complete graph on
an infinite set N are coloured red or blue then for some infinite set M C N all
the edges joining vertices of M get the same colour. Both of these assertions are
special cases of a theorem published by Ramsey in 1930. The original theorems of
Ramsey have been extended in many directions, resulting in what has come to be
called Ramsey theory: a rich theory expressing the deep mathematical principle,
vastly extending the pigeon-hole principle, that no matter how we partition the
objects of a ‘large’ structure into a ‘few’ classes, one of these classes contains
a ‘large’ subsystem. While Dirichlet’s pigeon-hole principle guarantees that we
have ‘many’ objects in the same class, without any condition on their relationship
to each other, in Ramsey theory we look for a large substructure in the same class:
we do not only want infinitely many red edges, say, but we want all the edges
joining vertices of an infinite set to be red. Or, in the first example, we do not only
want three pairs of acquaintances, but we want these three acquaintances to ‘form
a triangle’, to be the three pairs of acquaintances belonging to three people.

The quintessential result of Ramsey theory dealing with richer mathematical
structures than graphs is van der Waerden’s theorem, predating the theorems of
Ramsey, which states that given k and p, if W is a large enough integer and we
partition the set of the first W natural numbers into k classes, then one of the
classes contains an arithmetic progression with p terms.

Ramsey theory is a large and beautiful area of combinatorics, in which a great
variety of techniques are used from many branches of mathematics, and whose
results are important not only in graph theory and combinatorics, but in set theory,
logic, analysis, algebra, and geometry as well. In order to demonstrate this, we
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shall go well beyond graph theory to present several striking and deep results, in-
cluding the Erd6s—Rado canonical theorem, extending Ramsey’s original theorem
to infinitely many colours; Shelah’s theorem, extending the Hales-Jewett theorem
(which itself extends van der Waerden’s theorem); and the theorems of Galvin,
Prikry, and Hindman about Ramsey properties of infinite sequences. Nevertheless,
we shall hardly do more than scratch the surface of modern Ramsey theory.

VI.1 The Fundamental Ramsey Theorems

We shall consider partitions of the edges of graphs and hypergraphs. For the sake
of convenience a partition will be called a colouring, but one should bear in mind
that a colouring in this sense has nothing to do with the edge colourings considered
in Chapter V. Adjacent edges may have the same colour and, indeed, our aim is
to show that there are large subgraphs all of whose edges have the same colour.
In a 2-colouring we shall often choose red and blue as colours; a subgraph is red
(blue) if all its edges are red (blue).

As we shall see, given a natural number s, there is an integer R(s) such that
if n > R(s) then every colouring of the edges of K, with red and blue contains
either a red K or a blue K;. The assertion about a party of six people claims
precisely that R(3) = 6 will do. In order to show the existence of R(s) in general,
for any s and ¢, we define the Ramsey number R(s, t) as the smallest value of n for
which every red-blue colouring of K, yields a red K or a blue K. In particular,
R(s, t) = oo if there is no such n such that in every red-blue colouring of K,
there is ared K or a blue K;. It is obvious that

R(s, t) = R(, s)
for every s, > 2 and
R(s, 2) = R(2, 5) =,

since in a red-blue colouring of K either there is a blue edge or else every edge is
red. The following result, due to ErdGs and Szekeres, states that R(s, t) is finite
for every s and ¢, and at the same time it gives a bound on R(s, ¢). Although
qualitatively it is a special case of Ramsey’s original theorem, the bound it gives
is considerably better than that given by Ramsey.

Theorem 1 The function R(s, t) is finite forall s, t > 2. If s > 2 and t > 2 then

R(s,t) <R(s—=1,t)4+ R(s,t—-1) ¢))
and
(s +1t - 2)
R(s, t) < . 2
s—1

Proof. As we shall prove (1) and (2), it will follow that R(s, ¢) is finite.
(i) When proving (1) we may assume that R(s — 1, t) and R(s, ¢ — 1) are finite.
Letn = R(s — 1, t) + R(s, ¢t — 1) and consider a colouring of the edges of K,
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with red and blue. We have to show that in this colouring there is either a red
K, or a blue K;. To this end, let x be a vertex of K,. Sinced(x) = n—-1=
R(s — 1, t)+ R(s, t — 1) — 1, either there are at least n; = R(s — 1, ¢t) red edges
incident with x or there are at least n; = R(s, t — 1) blue edges incident with x.
By symmetry we may assume that the first case holds. Consider a subgraph K,
of K, spanned by n; vertices joined to x by red edges. If K, has a blue K;, we
are done. Otherwise, by the definition of R(s — 1, t), the graph K,, contains a red
K_1 which forms ared K with x.

(ii) Inequality (2) holds if s = 2 or ¢ = 2 (in fact, we have equality since
R(s, 2) = R(2, 5s) = 5). Assume now that s > 2, ¢t > 2 and (2) holds for every
pair (s', ') with2 < s’ +¢' < s + ¢. Then by (1) we have

R(s, ) <Rs—-1,)+R(s,t—1)

s+t—-3 s+t—3 s+t—-2
< = .
—(S—2 >+(s—l) (s—l) O

It is customary to distinguish diagonal Ramsey numbers R(s) = R(s, s) and
off-diagonal Ramsey numbers R(s, t), s # t. It is not surprising that the diagonal
Ramsey numbers are of greatest interest, and they are also the hardest to estimate.
Re calling that a graph is trivial if it is either complete or empty, the diagonal
Ramsey number R(s) is the minimal integer n such that every graph of order n
has a trivial subgraph of order s.

We see from Theorem 1 that

REs) < (2s —2) < 22;2.

Although the proof above is very simple, the bound (3) was hardly improved for
over 50 years. The best improvement is due to Thomason, who in 1988 proved
that

©)

s—1

22:
R(s) < — 4

if 5 is large. Although the improvement over (3) is small, this is a hard result,
and we shall not prove it. In Chapter VII we shall show that R(s) does grow
exponentially: R(s) > 2°/2, Itis widely believed that there is a constant ¢, perhaps
even ¢ = 1, such that

R(S) — 2({,‘+0(1))S’

but this is very far from being proved.

The result easily extends to colourings with any finite number of colours: given
k and 51,52, ..., Sk, if n is sufficiently large, then every colouring of K, with
k colours is such that for some i, 1 < i < k, there is a K; coloured with the
i th colour. (The minimal value of n for which this holds is usually denoted by
Ri(s1, ..., sx).) Indeed, if we know this for k — 1 colours, then in a k-colouring
of K, we replace the first two colours by a new colour. If n is sufficiently large
(dependingonsy, 52, . .., s¢) theneither there is a K, coloured with the i th colour
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for some i, 3 < i <k, orelse for m = R(sy, 52) there is a K, coloured with the
new colour. In other words, in the original colouring this K, is coloured with the
first two (original) colours. In the first case we are home, and in the second, for
i =1 or2 wecanfind a Kj; in K, coloured with the i th colour. This shows that

Ri(s1, ..., 5k) < Re—~1(R(s1,52), 53, ..., 5k).

In fact, Theorem 1 also extends to hypergraphs, that is, to colourings of the set
X" of all r-tuples of a finite set X with k colours. This is one of the theorems
proved by Ramsey. We now turn our attention to this.

Denote by R (s, t) the minimal value of n for which every red-blue colouring
of X® yields a red s-set or a blue ¢-set, provided that | X| = n. Of course, a set
Y C X is called red (blue) if every element of Y is red (blue). Note that
R(s, t) = R@(s, 1). As in the case of Theorem 1, the next result not only
guarantees that R@ (s, t) is finite for all values of the parameters (which is
certainly not at all obvious at first), but also gives an upper bound on R (s, t).
The proof is an almost exact replica of the proof of Theorem 1. Note that if
r > min{s, ¢} then R")(s, t) = min{s, ¢}, andif r = s <t then R")(s, t) =¢.

Theorem 2 Let 1 < r < min{s, t}. Then R")(s, t) is finite and
RO, 1) < RCD (R(’)(s ~1, ), RO, t — 1)) +1.

Proof. Both assertions follow immediately if we prove the inequality under the
assumption that R~ (u, v) is finite for all u, v, and both R (s — 1, ¢) and
R (s, t — 1) are also finite.

Let X be aset with RCD(R®) (s — 1, 1), R (s, t — 1)) + 1 elements. Given
any red-blue colouring ¢ of X"), pick an x € X and define a red-blue colouring
¢’ of the (r — 1)-sets of Y = X — {x} by colouring 0 € YD the colour of
o U{x} € X, By the definition of the function RT=D(u, v) we may assume
that Y has a red subset Z (for ¢’) with R") (s — 1, 1) elements.

Now let us look at the restriction of ¢ to Z. If it has a blue z-set, we are done,
since Z() ¢ X, s0 a blue t-set of Z is certainly also a blue ¢-set of X. On the
other hand, if there is no blue z-set of Z then there is ared (s — 1)-set. The union
of this red (s — 1)-set with {x} is then a red s-set of X, because {x} U o is red for
everyo € ZU-D, 0

It is easily seen that Theorem 2 and the colour-grouping argument described
after Theorem 1 imply the following assertion. Given r and s, 52, . . ., 5k, then for
large enough | X| every colouring of X" with k colours is such that for some i,
1 <i <k, thereis aset S; C X, |S;| = si, all of whose r-sets have colouri. The
smallest value of | X| for which this is true is denoted by R,(C') (s1,52,...,5); thus

RO(s, 1) = RV(s, 1) and Re(s1, 2, - ., %) = R (51,52, .. -, 5t). The upper

bound for R,Er) (s1, $2, . .., S) implied (via colour-grouping) by Theorem 2 is not
very good. Imitating the proof of Theorem 1 one arrives at a better upper bound
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(cf. Exercise 8):

RO (1,52, 50 < RUVRO 51— 1,52, us0),
R,E')(Sl, S-S — D)+ 1

Very few of the nontrivial Ramsey numbers are known, even in the case r =
2. It is easily seen that R(3, 3) = 6, and with some work one can show that
R3,4) =9, R3,5) =14, R3, 6) = 18, R(3, 7) = 23 and R4, 4) = 18.
Considerably more effort is needed to prove that R(3, 8) = 28 and R(3, 9) = 36.
Furthermore, McKay and Radziszowski proved in 1995 that R(4, 5) = 25. These
are the only known two-colour Ramsey numbers. For the other ones, all that is
known are bounds, as shown in Table V1. 1. The proofs of many of these bounds
needed a surprising amount of ingenuity, work and computing time.

At first sight, the paucity of exact Ramsey numbers may well seem surprising.
However, there are many reasons why it is unlikely that a large Ramsey number,
like R(6, 6), will ever be determined. The two-colourings of K, without large
monochromatic complete subgraphs lack order: they look as if they had been
chosen at random. This apparent disorder makes it highly unlikely that a simple
induction argument will give a tight upper bound for R(s, t). On the other hand,
a head-on attack by computers is also doomed to failure, even for R(5, 5). For
example, if all we want to prove is that 48 is an upper bound for R(S5, 5), we
have to examine over 219 graphs of order 48: a task well beyond the power of
computers.

It is not too easy to prove general lower bounds for Ramsey numbers either. As
the colourings without large complete monochromatic subgraphs are ‘disorderly’,
it is not surprising that random methods can be used to give fairly good lower
bounds. In Chapter VII we shall show some beautiful examples of this.

As it is very difficult to find good estimates for R(s, t) as 5s,¢ — 00, it is not
surprising that very few fast-growing Ramsey functions have been determined
exactly. In fact, Erd6s and Szekeres proved that the right-hand side of (2) is
exactly 1 smaller than the value of a natural Ramsey function. In order to present
this result, we introduce some terminology. Call a set S C R? non-degenerate if
any two points of it have different x coordinates. A k-cup, or a convex k-set, is a
non-degenerate set of k points of the form {(x;, h(x;)) : { = 1,...,k}, where h
is a convex function. Writing s(p, p') = (y — y')/(x — x’) for the slope of the
line through the points p = (x, y) and p’ = (x’,y"), if K = {p1, ..., px} with
pi = (i, yi), x1 <--- < xi, then K isak-cupiff s(p1, p2) <s(p2, p3) <--- <
§(pk—1, pr)- An £-cap, or a concave £-set, is defined analogously.

Here is then the beautiful result of Erdds and Szekeres about k-cups and £-caps.
The first part was published in 1935, the second in 1960.

Theorem 3 Fork, £ > 2, every non-degenerate set of (k :54) + 1 points contains
a k-cup or an £-cap. Also, for all k, £ > 2, there is a non-degenerate set S ¢ of

ktf;“) points that contains neither a k-cup nor an £-cap.
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Proof. Let us write ¢ (k, £) for the binomial coefficient (k"'l 4)

(i) We shall prove by induction on k + £ that every non-degenerate set of
¢(k,£) + 1 points contains a k-cup or an {-cap. Since a non-degenerate set
of 2 points is both a 2-cup and a 2-cap, this is clear if min{k, £} = 2, since
ok,2) =¢(2,£) = 1forallk, £ > 2. Suppose then that £, £ > 3 and the assertion
holds for smaller values of k-+£. Let S be a non-degenerate set of ¢ (k, £)+1 points
and suppose that, contrary to the assertion, S contains neither a k-cup nor an £-cap.
Let L C S be the set of last points of (k — 1)-cups. Then S\ L has neither a (k — 1)-
cup nor an £-cap so, by the induction hypothesis, |S\L| < ¢ (k — 1, £). Therefore
[IL| > ¢k, &) +1— ¢k —1,8) = ¢k, £ — 1) + 1 so, again by the induction
hypothesis, L contains an (£ — 1)-cap, say {q1, . .., ge—1}, with first point our set
S contains g;. Since g € L,a (k—1)-cup{p1, ..., pk—1}, whose last point, px_1,
is precisely q1. Now, if s(pr—2, pr—1) < s(px—1,42) then {p1,..., pk—1, g2} is
a k-cup. Otherwise, s(px—2, q1) > (91, 492), 50 {px—2,q1. ..., g¢—~1) is an £-cup.
This contradiction completes the proof of the induction step, and we are done.

(i1) We shall construct Sk ¢ also be induction on & + £. In fact, we shall construct
Sk,¢ in the form {(i, ;) : 1 <i < ¢(k, D)}.

If min{k, £} = 2 then ¢(k, £) = 1 and we may take S; ¢ = {(1, 0)}. Suppose
then that k, £ > 3 and we have constructed Sk ¢ for smaller values of k + £.
Set Y = Sg—14, Z = Sge—1,m = ¢k —1,£) and n = ¢(k, £ — 1), so that
Y = {(i,y)) : 1 < i < m} contains neither a (k — 1)-cup nor an {-cap, and

={(i, z;) : 1 <i < n} contains neither a k-cup nor an (£ — 1)-cup.

Fora >0, set Y = {G,ey):1<i<m)and Z® = {(m +i,m + ez;):
1 <i < n}. Now, if £ > 0 is small enough then every line through two points of
Y® goes below the entire set Z(®), and every line through two points of Z() goes
above the entire set Y®. Hence, in this case, every cup meeting Z® in at least
two points is entirely in Z @), and every cup meeting ¥ ®) in at least two points is
entirely in Y©. But then Y® U Z(®) will do for Sy ¢ since it continues neither a
k-cup nor an £-cup. O

As an easy consequence of Theorem 3, we see that every set of (37) + 1
points in the plane in general position contains the vertices of some convex k-
gon. In 1935, ErdGs and Szekeres conjectured that, in fact, every set of 2k=2 41
points in general position contains a convex k-gon. It does not seem likely that
the conjecture will be proved in the near future, but it is known that, if true, the
conjecture is best possible (see Exercise 23).

After this brief diversion, let us return to hypergraphs. Theorem 2 implies that
every red-blue colouring of the r-tuples of the natural numbers contains arbitrarily
large monochromatic subsets; a subset is monochromatic if its r-tuples have the
same colour. Ramsey proved that, in fact, we can find an infinite monochromatic
set.

Theorem 4 Let1 <r < ooandletc : AV — [k] = {1,2,...,k} be a k-
colouring of the r-tuples of an infinite set A. Then A contains a monochromatic
infinite set.
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|1”314J5|6|7|8 9]10|11}12[13|14|15’
k
3 6] 9114 18 23 28 36 40 46 51 59 66 73
43 51 60 69 78 89
4 18125 35 49 53 69 80 9 | 106 | 118 | 129 | 134
41 61 84 115 149 191 | 238 | 291 | 349 | 417
5 43 158 80 95 114
49 | 87 | 143 | 216 316 442
6 102
165 | 298 | 495 780 1171
7 205
540 | 1031 | 1713 | 2826
8 282
1870 | 3583 | 6090
9 565
6625 | 12715
10 798
23854

TABLE VI.1. Some values and bounds for two colour Ramsey numbers.

Proof. We apply induction on r. Note that the result is trivial for r = 1, so we
may assume that » > 1 and the theorem holds for smaller values of r.

Put Ag = A and pick an element x; € Ag. As in the proof of Theorem 2,
define a a colouring c; : Bl('_l) — [k] of the (r — 1)-tuples of B} = Ag — {x1}
by putting ¢1(t) = c(r U {x1}), T € Bf"l). By the induction hypothesis B;
contains an infinite set A; all of whose (r — 1)-tuples have the same colour, say
dy, where di € {1,...,k}. Let now xp € Ay, By = A1 — {x2} and define a
k-colouring c; : Bé'_l) — [k] by putting c2(t) = c(r U {x2}), T € Bzr_l). Then
B, has an infinite set Aj all of whose (r — 1)-tuples have the same colour, say
d>. Continuing in this way we obtain an infinite sequence of elements: x1, x, ...,
an infinite sequence of colours: di, d, ..., and an infinite nested sequence of
sets: Ag D Ay D Ay D ---,suchthat x; € Aj_j,and fori = 0,1,..., all r-
tuples whose only element outside A; is x; have the same colour d;. The infinite

sequence (d,,)‘l’° must take at least one of the k values 1, 2, ..., k infinitely often,
say d = dn, = dn, = .... Then, by the construction, each r-tuple of the infinite
set {Xp,, Xn,, ...} has colour d. O

In some cases it is more convenient to apply the following version of Theorem 4.
As usual, the set of natural numbers is denoted by N.

Theorem 5 For each r € N, colour the set N) of r-tuples of N with k, colours,
where k, € N. Then there is an infinite set M C N such that for every r any two
r-tuples of M have the same colour, provided their minimal elements are not less
than the r'® element of M.

Proof. Put My = N. Having chosen infinite sets My D --- O M,_1, let M, be
an infinite subset of M, _| such that all the r-tuples of M, have the same colour.
This way we obtain an infinite nested sequence of infinite sets: Mo D My O ---.
Pick aj € M1, a3 € My — {1,...,a1}, a3 € M3 — {1,..., a3}, etc. Clearly,
M = {ay, ay, ...} has the required properties. O
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It is interesting to note that Ramsey’s theorem for infinite sets, Theorem 3,
easily implies the corresponding result for finite sets, although it fails to give
bounds on the numbers R") (51, 52, ..., Sk). To see this, all one needs is a simple
compactness argument, a special case of Tychonov’s theorem that the product of
compact spaces is compact.

We have already formulated this (see Exercise II1.30) but here we spell it out
again in a convenient form.

Theorem 6 Let r and k be natural numbers, and for every n > 1, let C, be
a non-empty set of k-colourings of [n] such that if n < m and ¢y € Cn
then the restriction c,(,:' ) of ¢m to [n)") belongs to Cp. Then there is a colouring
¢ : NO s [k] such that, for every n, the restriction ¢™ of c to [n]") belongs to
Ch.

Proof. For m > n, write C, ,, for the set of colourings [n]?) — [k] that
are restrictions of colourings in C,;. Then Cpy1 C Cpmw C Cp and so
Cn = N5pt1Crm # @ for every n, since each Cy m is finite. Let ¢, € Cr,
and pick ¢,4] € é,+1, Cry2 € (~Z,+2, and so on, such that each is in the preimage
of the previous one: ¢, = c,(,'zl. Finally, define ¢ : N®) - [k] by setting, for
p € NO,

c(p) = cn(p) = cnt1(p) =+,
where n = max p. This colouring c is as required. 0

Let us see then that Theorem 5 implies that R® (s1, 52, . .., st ) exists. Indeed,
otherwise for every n there is a colouring [n]™ — [k] such that, for each i, there
is no s;-set all of whose r-sets have colour i. Writing C, for the set of all such
colourings, we see that C, # @ and C, ,, C C, for all n < m, where C, , is as
in the proof of Theorem 5. But then there is a colouring ¢ : N® - [k] such
that every monochromatic set has fewer than s = max s; elements, contradicting
Theorem 4.

To conclude this section, we point out a fascinating phenomenon. First, let us

see an extension of the fact that R,(cr) (s1, ..., Sk) exists.

Theorem 7 Letr, k ands > 2. If n is sufficiently large then for every k-colouring
of (1] there is a monochromatic set S C [n] such that

|S| > max{s, min S}.

Proof. Suppose that there is no such n, that is, for every n there is a colouring
[n]) — [k] without an appropriate monochromatic set. Let C,, be the set of all
such colourings. Then C,, # @ and, in the earlier notation, Cp, ,, C C, foralln < m.
But then there is a colouring ¢ : N — [k] such that its restriction c¢™ to [n]®)
belongs to C,. Now, by Theorem 4, there is an infinite monochromatic set M C N.
Set m = min M, t = max{m, s}, and let S consist of the first ¢ elements of M.
Then, withn = max S, the colouring ¢™ does have an appropriate monochromatic
set, namely S, contradicting ¢ € C,. O
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This is a beautiful result but it is not too unexpected. What is surprising and
deep is that, as proved by Paris and Harrington in 1977, although Theorem 7
is a (fairly simple) assertion concerning finite sets, it cannot be deduced from
the Peano axioms, that is, it cannot be proved within the theory of finite sets.
In other words, we actually need the notion of a finite set to prove Theorem 7.
This theorem of Paris and Harrington became the starting point of an active area
connecting combinatorics and logic.

As this is a book on graph theory, we cannot digress too far into logic, so let
us return to graphs. Let R*(s) be the minimal integer n such that for every two-
colouring of [n]® there is a monochromatic set S C [n] with |S| > max{s, |S|}.
Thus R*(s) is the minimal value of »n such that for every graph G with vertex set
[n] there is a set S C [n] with |S| > max{s, |S|} such that G[S] is trivial, that is,
either complete or empty. We know from Theorem 7 that R*(s) exists. Clearly,
R*(s) > R(s) but, not surprisingly, R*(s) is of a greater order of magnitude
than R(s): it turns out that there are positive constants ¢ and d such that 2%° <
R*(s) < 22“.

VI.2 Canonical Ramsey Theorems

Can anything significant be said about colourings of N with infinitely many
colours? Can we guarantee that there is an infinite set M C N such that on
M) our colouring is particularly ‘nice’? In 1950, Erd6s and Rado proved that,
unexpectedly, this is precisely the case.

In what follows, M, N, M1, Ny, ... denote countable infinite sets, and r, s, ...
are natural numbers.

We call two colourings ¢ : Nl(r) — Crandcs : Nz(') — Cj equivalent if there
is a 1-to-1 map ¢ of Ny onto N, such that for p, p’ € Nl(') we have ¢ (p) = c1(p’)
if and only if c2(¢(p)) = c2(¢(p")).

In an ideal world, for every colouring of N (with any number of colours)
there would be an infinite set M C N on which the colouring is equivalent to one
of finitely many colourings. Surprisingly, even more is true.

Call a colouring ¢ : N7 — C irreducible if for every infinite subset N; of
N, the restriction of ¢ to N 1(') is equivalent to ¢. Also, call a set C of colourings
N®) — N unavoidable if for every colouring ¢ of N there is an infinite set
M C N such that the restriction of ¢ to M) is equivalent to a member of C. Erd6s
and Rado proved that for every r there is a finite unavoidable family of irreducible
colourings.

What are examples of irreducible colourings of N”? Two constructions spring
to mind: a monochromatic colouring, in which all r-sets get the same colour,
and an all-distinct colouring, in which no two sets get the same colour. After a
moment’s thought, we can construct more irreducible colourings. Given N C N,
a={a, ,a}eNa <...<ag,andSC[r1=1{1,...,r}, |S| = s, set
as = {a; : i € S}. Define the S-canonical colouring cs : N N 5 N6, by setting
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cs(e) = as. Thus we are colouring the elements of N with s-sets, and two r-sets
get the same colour iff their i th elements coincide for i € S and are different for
i ¢ S.1Itis easily seen (see Exercise 29) that cs is an irreducible colouring for every
S C [r]; also, these colourings include the two irreducible colourings mentioned
above: cg is a monochromatic colouring and cy,] is an all-distinct colouring.

Clearly, for S # S’ the colourings cs and cs of N are not equivalent, so N
has at least 2" irreducible colourings, namely the 2" canonical colourings. As we
shall see, there are no other irreducible colourings. At first sight this might be rather
surprising since a canonical colouring of N depends on the order of elements
of N. To resolve this ‘paradox’, note that if {ay,as,...} and {by, b3, ...} are
two enumerations of N then there are subsequences ay,, ax,, ... and by, by, .. .,
ki <ky <---, 11 <lp <., suchthat ay, = by, foreveryi.

Before we turn to the results, let us introduce a concept similar to the equivalence
of colourings, but taking into account the order on the underlying set. Let ¢ :
N - Cand T,U € N® forsome ¢t > r. Also, let ¢ : T — U be the unique
order-preserving map from T onto U. The sets T and U are said to have the same
pattern (with respect to c) if for p, p’ € T™) we have c(p) = c(p) if, and only
if, c(¢(p)) = c(¢(p")). Note that the number of patterns of ¢-sets is precisely the

t
number of partitions of C) distinguishable objects; clearly, (:) ® is a crude upper
bound for this number.

After all this preparation, let us prove the ErdGs—Rado canonical theorem for
graphs, that is, for r = 2. Note that for every infinite set N C N there are four
canonical colourings of N®). In the @-canonical colouring of N, all edges have
the same colour, in the {1, 2}-canonical colouring all edges have distinct colours,
in the {1}-canonical colouring two edges have the same colour iff their first vertices
coincide, and in the {2}-canonical colouring two edges have the same colour iff
their second vertices coincide.

Theorem 8 For every colouring c : N — N there is an infinite subset M of N
such that the restriction of ¢ to M@ is canonical.

Proof. As there are only finitely many patterns for the colourings of [4]?, we
may apply Ramsey’s theorem for infinite sets, obtaining an infinite set M C N
such that all 4-sets of M have the same pattern 7r. We claim that this set M will do.

Let M = {m, m3, ---}, where m; < my < .... Since all 4-sets have the same
pattern, for any two edges m;m; and m;my, the colours c(m;m;) and c(mym;) do
or do not coincide, according to the relative position of the pairs ij and &/ in the
set {i, j, k,1}. For example, 25 and 57 have the same relative position as 36 and
67; similarly, 38 and 46 have the same position as 29 and 78.

After these observations, let us prove that the restriction of cto M @ is canonical.
With a slight abuse of notation, from now on write ¢ for the restriction of ¢ to M®.
We may assume that ¢ # cq1,2), that is, M @ has two edges of the same colour:
say c(m;mj) = c(mym;), where m; & {mj, my}. Note that we do not (and can not)
assume that i < j ori > j. Butthen c(maima;) = c(mayma) = c(maiyimz;)
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so M@ has two adjacent edges of the same colour. Let us distinguish three cases
according to the positions of these adjacent edges, and see what we can deduce.

(i) Suppose first that c(m;m;) = c(m;my) for some i < j < k. Then, by
considering the 4-set {m;, m;, my, mg41}, we see that in the pattern 7 the edges 12
and 13 get the same colour. But then any two edges sharing their first vertices have
the same colour, since if 7 < s < ¢ then the restriction of cto {m,, mg, my, my41}@
shows that c(m,ms) = c(m,m;). This means that there is a colouringd : M > N
such that for r < s we have c(m,m;) = d(m,).

(ii) Suppose next that c(m;my) = c(m;my) forsomei < j < k. Then, similarly,
there is amap e : M — N such that c(m,m;) = e(m;) if r < s.

(iii) Finally suppose that c(m;mj) = c(mjmy) for some i < j < k. Then
c(myms) = c(mgmy) for all r < s < t. Hence c(mym3) = c(myms) =
c(mam3) = c(mamy), say, so there are edges of the same colour sharing their
second vertices. Therefore, there are maps d : M — N and e : M — N such that
ifi < j then c(m;m;) = d(m;) = e(m;). But then any two edges of M® have
the same colour, so ¢ = cg.

What we have seen so far is that if (iii) holds then we are done. In fact, it is very
easy to complete the proof in the case when (iii) does not hold. Indeed, if (i) holds
but (iii) does not then d(m;) # d(m;) forall i # j, so ¢ = c(y), and if (ii) holds
but (iii) does not then e(m;) # e(m;) fori # j,soc = cq). O

As it happens, the proof of the full Erd6s-Rado canonical theorem is hardly
more complicated than the proof above.

Theorem 9 Let r be a positive integer and ¢ : N — N a colouring. Then there
is an infinite subset M of N such that the restriction of ¢ to M) is canonical.

Proof. Letus apply inductionon r. For r = 1 there is nothing to prove, so suppose
that » > 2 and the theorem holds for smaller values of r. Given ¢ : N — N,
colour each T € N@) with the pattern of the restriction of ¢ to 7). As there are
only finitely many patterns, there is an infinite set N C N such that all 2r-subsets
of N have the same pattern 7. In order to simplify the notation, we assume that
N = N: all this amounts to is an appropriate relabelling.

If no two r-subsets of N have the same colour then we are done: ¢ =

cir)- Therefore we may assume that c(p) = c(o) for some p,o0 € N,
p # o;say p = {ay,...,a,} and 0 = {by,...,b,}, where a1 < --- < a,
and by < --- < b,. As p # o, there is an element b; € o\p. Note

that all the sets pp = {2a,2as,...,2a;}, o1 = {2b1,2b,...,2b,} and
oy = {2b1,2bs, ...,2bi_1,2b; — 1,2b;4y, ..., 2b,} get the same colour. Indeed,
loo Uay| = |pp Uoy| = u, say, so there are sets T, T» € N@ such that po Vo
is the set of the first u elements of T, and pg U o5 is the set of the first u elements
of T. As Tl(') has pattern 7, we have ¢(p0p) = c¢(o), and as Tz(r) has pattern 7,
we have c(pg) = c(07).

Now, since o1 and o get the same colour, any two r-subsets of N differing only
in the i th place also get the same colour: if 7, T € N and 7j,)(;) = (- i) then
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¢(t) = c(t'), that is,the colour of T € N depends only on 7(,}—;}. This enables
us to define a colouring ¢’ : N"~D — N U {00} as follows: for v € N7 get
¢ v) = c(r) if v = 1)) for some 7 € N, and ¢'(v) = oo otherwise.

By the induction hypothesis, there is an infinite set M C N such that ¢ is
canonical on M7~ Then ¢/(v) # oo for v € MU~ and ¢ is a canonical
colouring of M), O

As an amusing point, note that Theorem 9 is clearly stronger than Theorem 4
since for an infinite set M C N the only canonical colouring of M) that uses
finitely many colours is cg, the canonical colouring using only one colour.

VL3 Ramsey Theory For Graphs

Let Hy and H; be arbitrary graphs. Given n, is it true that every red-blue colouring
of the edges of K, contains a red H; or a blue H,? Since H; is a subgraph of
Kj,, where s; = |H;|, the answer is clearly “yes” if n > R(s1, s2). Letr(Hy, H3)
be the smallest value of n that will ensure an affirmative answer, and define
r(Hy, ..., Hy) analogously for k colours. Note that this notation is similar to the
one introduced earlier: R(s, s2) = r(Kj,;, Kj,). Instead of a red-blue colouring,
one frequently works with a graph and its complement: clearly, 7 (H;, Hz) — 1 is
the maximal value of n for which there is a graph G of order n such that H| ¢ G
and H, ¢ G.

The numbers r(Hy, ..., Hy), called generalized Ramsey numbers or graphical
Ramsey numbers, have been the subject of much study, and by now there is a large
body of results about them. Nevertheless, there is a long way to go, which is not
surprising, since the generalized Ramsey numbers include the classical Ramsey
numbers R(s, t). Here we shall present some of the basic results about generalized
Ramsey numbers.

In order to avoid trivialities, throughout this discussion we shall assume that
Hy, H,, ... do not have isolated vertices. Let us start with the observation that if
H| is very sparse, say it consists of £ independent edges, then r (Hy, H3) is rather
small. In fact, if Hy consists of £ independent edges, and H is a complete graph,
then we can determine r(H;, H,) exactly.

Theorem 10 For{ > 1 and p > 2 we have
r(€Kz, Ky) =2+ p—2.

Proof. The graph K71 U E,_> does not contain £ independent edges, and its
complement, Ez¢—1 + K2, does not contain a complete graph of order p. Hence
r(¢Kz, Kp) > 26+ p —2.

On the other hand, let G be a graph of order n = 2£+ p—2, containing a maximal
setof s < £—1independentedges. Thenthesetofn—2s > 28+ p—2-2(£—1) =
p vertices not on these edges spans a complete graph of order at least p. Therefore
r(¢K2, Kp) <26+ p—2. a
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Note that if H is any graph of order 4 then, by Theorem 10, r(£K3, H) <
r(¢K,,Kp) <2+ h-2.

The next observation is a lower bound for r (H1, Hz), valid for all pairs (H;, Hs).
For a graph G, denote by ¢(G) the maximal order of a component of G, and by
u(G) the chromatic surplus of G: the minimal number of vertices in a colour
class, taken over all proper y(G)-colourings of G. Thus u(G) = min{U C
V(G) : x(G — U) < x(G)}. For example, u(Cak) = k and u(Cox4+1) = 1.

Theorem 11 For all nonempty graphs Hy and H, we have
r(Hy, Hy) = (x(H1) — D(c(H?) — 1) + u(H).
In particular, if H, is connected then
r(Hy, Hy) 2 (x(H)) = )(|H2| = D + 1.

Proof. Set k = x(Hi1), u = u(Hy) and ¢ = c(Hp). Trivially, r(Hy, Hy) >
r(Hy, K2) = |Hy| = x(Hy)u(Hy) = ku. Hence, if ¢ < u thenr(Hy, Hy) > ku >
(k — 1)c + u. On the other hand, if ¢ > u then the graph G = (k — 1)K._; U
K, does not contain H,, and its complement does not contain H;. Therefore,
r(H,H)) > |G|+ 1=k -1 (c—1)+u. O

Although the inequalities in Theorem 9 are very simple, in some cases they
are best possible. Let us see two examples of this: the first is a beautiful result of
Chvital.

Theorem 12 Let s,t > 2. then for every tree T of order t we have r(K;, T) =
s-De-D+1

Proof. From Theorem 10 we know that r (K, T) > (s — 1)(¢ — 1) + 1. To prove
the reverse inequality, let G be a graph of order n = (s — 1)(t — 1) + 1 whose
complement does not contain K. Then x(G) > [n/(s — 1)] = ¢ so it contains
a critical subgraph H of minimal degree at least # — 1 (see Theorem V.1). It is
easily seen that H contains (a copy of) T. Indeed, we may assume that Ty C H,
where T1 = T — x and x is an endvertex of T, adjacent to a vertex y of T} (and
of H). Since y has at least t — 1 neighbours in H, at least one of its neighbours,
say z, does not belong to 7. Then the subgraph of H spanned by T} and z clearly
contains (a copy of) T. O

The second example of equality in Theorem 8 concerns fans. For [ > 1, the
graph Hy = K1+ £K3 is called a fan with £ blades. Thus F) = K3, and F; is made
up of £ triangles with a vertex in common. In 1996, Li and Rousseau demonstrated
the following result.

Theorem 13 For £ > 2 we haver(F1, F;) =r(K3, Fg) = 40 4+ 1.

Proof. We know from Theorem 11 that (K3, Fp) > 2(|Fp| — 1)+ 1 =4¢ + 1.

To prove the reverse inequality, suppose that the inequality is false; that is,
there is a triangle-free graph G of order n = 4£ + 1 whose complement does not
contain Fjy.
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__Forx € G, let U = I'g(x). Then U is a set of independent vertices and since
G does not contains Fy, we see thatdg(x) = |U| <2¢.
On the other hand, how large can the degree of x be in G? Set W = I'z(x) =

V(G) — (U U {x}). Then G[W] does not contain £ independent edges, and its
complement, G{W], has no triangle. Hence, by Theorem 10, dz(x) = |W| < 2¢.

This shows that dg(x) = dg(x) = 2¢, that is, G is a triangle-free 2¢-regular
graph of order 4¢ + 1. But from the result in Exercise IV.48 we know that this is
impossible. O

If we define a graph Hj to be Hj-good if equality holds in Theorem 11, then
the previous two results claim that every tree is K-good for s > 2, and the fan F}
is K3-good for £ > 2. In fact, Li and Rousseau proved also that, for every fixed
s > 2, if £ is large enough then Fy is Ks-good. Even more, if H and H; are fixed
graphs and £ is large enough then K; 4 £H3 is (K2 + H{)-good.

As we know very little about r (K, K;),itis only to be expected thatr(G1, G2)
has been determined mostly in the cases when at least one of G| and G is sparse,
as in Theorems 12 and 13. As we shall see now, there are particularly pleasing
results for r(sHy, tH>) when Hy and H; are fixed and s and ¢ are large. The
following simple lemma shows that for fixed H; and H; the function r (s Hy, tH3)
is at most s|H1| + t|Hz| + ¢, where ¢ depends only on H; and H», and not on s
and ¢.

Lemma 14 For all graphs G, Hy and Hy we have r(G,H; U H) <
max{r(G, Hy) + |Hal, r(G, H)}. In particular, r(sH1, H2) < r(H), Hz) +
(s — DIH1l.

Proof. Letn = max{r(G, Hi)+ |Ha|, r(G, H>)}, and suppose that we are given
a red-blue colouring of K, without a red G. Then n > r(G, H,) implies that
there is a blue Hy. Remove it. Since n — | Hy| > r(G, H)), the remainder contains
a blue Hj. Hence K, contains a blue H; U Hj. O

This simple lemma can be used to determine r(s H, t H) when H is K3 or K3.
Theorem 15 Ifs >t > 1 then
r(sKz, tKp) =2s+t— 1.

Proof. The graph G = K»;—1 U E;_; does not contain s independent edges and
G = E_1 + K;_1 does not contain ¢ independent edges. Hence r (s K2, tK7) >
25+t —1.

Trivially (or, by Theorem 10), r(sK2, K2) = 2s, so to complete the proof it
suffices to show that

r((s+ DKy, (t+ 1)K2) <r(sKj, tK3) + 3.

To see this, let G be a graph of order n = r(sK7, tK2) +3 > 2s +t + 2. If
G = K, then G D (s + 1)K3, and if G = E, then G D (¢ + 1)K3. Otherwise,
there are three vertices, say x, y and z, such that xy € G, xz ¢ G. Now, either
G — {x, y, z} contains s independent edges of G and then xy can be added to
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them to form s + 1 independent edges of G, or else G — {x, y, z} contains ¢
independent edges and then xz can be added to them to form 7 + 1 independent
edges of G. O

Theorem 16 Ifs >t > lands > 2 thenr(sK3, tK3) = 3s + 2t.

Proof. Let G = K3;-1 U (K1 + E2—1). Then G does not contain s independent
triangles and G = E3;_1+ (K1 UK2_1) does not contain ¢ independent triangles.
Hence r(sK3, tK3) is at least as large as claimed.

It is not difficult to show that r(2K3, K3) = 8 and r(2K3, 2K3) = 10
(Exercise 15). Hence repeated applications of Lemma 14 give

r(sK3, K3) <3s+2,
and to complete the proof it suffices to show that fors > 1, # > 1 we have
r((s + )K3, (t + 1)K3) <r(sK3, tK3) + 5.

To see this, let n = r(sK3, tK3) + S and consider a red-blue colouring of K,,.
Select a monochromatic (say red) triangle R3 in K. If K,, — R3 contains a red
5 K3 then we are home. Otherwise, K, — R3 contains a blue triangle B3 (it even
contains a blue £ K3). We may assume that at least five of the nine R3 — B3 edges
are red. At least two of these edges are incident with a vertex of B3, and together
with an edge of R3 they form a red triangle R} meeting B3. Since K, — R} — B3
has r(s K3, tK3) vertices, it contains either a red sK3 or a blue ¢K3. These are
disjoint from both R} and B3, so K, contains either a red (s + 1)K3 or a blue
(t + DKs. O

By elaborating the idea used in the proofs of the previous two theorems we can
obtain good bounds on r(sK), tK,), provided that max(s, ¢) is large compared
to max(p, q).Let p, g > 2 be fixed and choose 7y such that

tomin{p, g} > 2r(K,, K,).
Put C =r(tK,, 10K,).
Theorem 17 Ifs >t > 1 then
ps+(@—1Dt—1=<r(sKp, tK;) < ps+(qg—1t+C.

Proof. The graph Kps—1 U E(4_1),-1 shows the first inequality. As in the proofs
of the previous theorems, we fix s — ¢ and apply induction on ¢. By Lemma 14 we
have

r(sKp, tKg) <(s —t)p+r(Kp, tK;) < ps+C,

provided that ¢ < #9. Assume now that t > fp and the second inequality of the
theorem holds for s, ¢.

Let G be a graph of order n = p(s + 1) + (g — 1)(¢ + 1) 4+ C such that
G 7 (s + DKp and G? @+ 1)K4. We claim that some K, of G and K, of G
share a vertex. Indeed, suppose that this is not the case. By altering G, if necessary,
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we may assume that G D 5K, and G D K. Denote by V), the set of vertices of
G that are in K}, subgraphs and put V; = V\Vjp, np = |Vp|, and ngy = |V,

By our assumption, n, > sp and ng; > tq. In the graph G, a vertex x € V, is
joined to at most r(Kp—1, K4) — 1 vertices of V), since otherwise there is a K P
of G containing x or else a K; of G consisting of vertices of Vp. Similarly, in the
graph G every vertex y € Vq is joined to at most r (K, K4—1) — 1 vertices of V).
Hence, counting the V, — V; edges in G and G, we find that

ngr(Kp—1, Kg) +npr(Kp, Kg—1) > npny.

However, this is impossible, since n, > sp > tp and ng > tqg > toq, so
np > 2r(Kp—1, Kq) and ny > 2r(Kp, K,4—1). Therefore, we can find a K, of G
and a K, of G with a vertex in common.

When we omit the p + g — 1 vertices of these two subgraphs, we find that
the remainder H is such that H 2 sK, and H? tK4. However, |H| = ps +
(g — )t + C, so this is impossible. O

In all the results above, we have r(H1, Hy) < C(|H1|+|H3|), where C depends
only on the maximal degrees of H; and H;. That this is not by chance is a beautiful
and deep theorem, proved by Chvital, Rddl, Szemerédi and Trotter in 1983.

Theorem 18 For everyd > 1 thereis a constant ¢ = c(d) suchthatif A(H) <d
thenr(H, H) < c|H]|. O

In fact, it is likely that much more is true. Burr and Erdds conjectured in 1975
that the maximal degree can be replaced by the maximum of the minimal degrees
of subgraphs, as in Theorem V.1: for every d there is a constant ¢ = c(d) such
that if every subgraph of H has a vertex of degree at most d then r(H) < c|H|.

Additional evidence for the truth of this conjecture was provided by Chen and
Schelp: they proved that r(H) < c|H| for some absolute constant ¢ and every
planar graph H. Extending this result, R6dl and Thomas proved in 1995 that for
every k there is a constant ¢ = c{(k) such that if H has no subcontraction to K
then r(H) < c|H|.

It would not be unreasonable to think that the various Ramsey theorems hold
for finite graphs, because the graph whose edges we colour is K, and not some
sparse graph with few edges. For example, one might guess that, if G is a graph
such that whenever the edges of G are k-coloured there is a monochromatic K,
then G has to be rather dense. In fact, this is not the case at all. For every graph
H with clique number r = w(H) and every k > 1 there is a graph G with clique
number also r such that every k-colouring of G contains a monochromatic copy of
H . This beautiful result was proved by Negetfil and Rodl in the following stronger
form, extending earlier results of Graham and Folkman.

Theorem 19 For every graph H and integer k > 1, there is a graph G
with w(G) = w(H) such that every k-colouring of the edges of G contains a
monochromatic induced subgraph isomorphic to H. O



V1.4 Ramsey Theory for Integers 197

FIGURE VL.1. The graph C; + Cs.

To conclude this section, let us note that occasionally mainstream problems of
extremal graph theory masquerade as problems of Ramsey theory, as the problems
have very little to do with partitioning the edges. For example, whatis r (H, K1,¢)?
It is the smallest value of n such that every graph G of order n and minimal degree
at least n — £ contains a copy of H. As another example, if

kex(n; H) < (;),

then in every k-colouring of the edges of K, there is a colour class with more than
ex(n; H) edges, so that colour class automatically contains a copy of H.
For example, by Theorem IV.12,

ex(n; C4) < %(1 ++/4n —3),

so for n = k% + k + 2 we have

K2+k+2
kex(n; Cy) < k—+4i(1 + 2k + 1))
_(E+RDE+E+2) ("
h 2 2)
Therefore, ri(Cs) < k? + k + 2. Chung and Graham showed that this bound is
close to being best possible: rg(Cs) > kK2 —k+2ifk—2isa prime power (see
Exercise 17).

VL4 Ramsey Theory for Integers

It may sound strange that the first results concerning monochromatic substructures
arose in connection with the integers, rather than graphs; however, as graph theory
is very young indeed, this is not too surprising. In this section we shall present
three classical results, together with some substantial recent developments.
Perhaps the first result of Ramsey theory is a theorem of Hilbert concerning
‘cubes’ in the set of natural numbers. Although the result is simple, its proof is
clearly more than a straightforward application of the pigeon-hole principle.
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Letuscall aset C C N an £-cube in Nif there are natural numbers sq, 51, .. ., ¢,
withs; +... 45 < sj41 for 1 <i < £, such that

£
C =C(s0;S1,...,8) = {so+Zs,~s1 ;g =0or1}.

i=1

Thus an £-cube in N is the affine image of the unit cube {0, 1} C R, and this
affine image has 2¢ vertices.
In 1892 Hilbert proved the following result.

Theorem 20 If N is coloured with finitely many colours then, for every £ > 1,
one of the colour classes contains infinitely many translates of the same £-cube.

Proof. 1t clearly suffices to prove the following finite version of this result.

There is a function H : N x N — N such that if N > H(k,[) then every
k-colouring of [ N] contains a monochromatic £-cube.

Since a 1-cube in N is just a pair of integers, H(k, 1) = k + 1 will do in this
assertion. Therefore, it suffices to show that if we can have H(k, £) < n then
H(k, £+ 1) =N = kn®*! will do.

Tosee this, letc : [N] — [k] be ak-colouring, and partition [N]into N/n = knt
intervals, each of length n:

N/n

N =] 1,
j=1

where I; = [(j — Dn + 1, jn],j = 1,..., N/n. Then each I; contains a
monochromatic £-cube. But, up to translation, there are at most (n — 1)5 < nt
cubes in these intervals, and each monochromatic cube can get one of k colours.
Since there are kn! intervals, some two of these intervals, say /; and I, contain
translations of the same £-cube C; in the same colour. The union of these two
translations is a monochromatic (£ + 1)-cube. O

The result above had essentially no influence on the development of Ramsey
theory, but the following theorem, proved by Schur in 1916, became the starting
point of an area that is still very active today.

Theorem 21 For every k > 1 there is an integer m such that every k-colouring
of [m] contains integers x, y, 7 of the same colour such that

x+y=z.

Proof. We claim that m = Ry (3) — 1 will do, where R,(3) = Ry (3, ...,3) is the
graphical Ramsey number for k colours and triangles, i.e., the minimal integer n
such that every k-colouring of the edges of K, contains a monochromatic triangle.

Let then n = Ry(3) and let ¢ : [m] = [n — 1] — [k] be a k-colouring. Induce
a k-colouring of [n]@, the edge set of the complete graph with vertex set [n], as
follows: for ij € E(K,) = [n