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Preface

About This Book

This book is meant to be used by beginning graduate students. It covers
basic material needed by any student of algebra, and is essential to those
specializing in ring theory, homological algebra, representation theory and
K-theory, among others. It will also be of interest to students of algebraic
topology, functional analysis, differential geometry and number theory.

Our approach is more homological than ring-theoretic, as this leads the
student more quickly to many important areas of mathematics. This ap-
proach is also, we believe, cleaner and easier to understand. However, the
more classical, ring-theoretic approach, as well as modern extensions, are
also presented via several exercises and sections in Chapter Five. We have
tried not to leave any gaps on the paths to proving the main theorems -
at most we ask the reader to fill in details for some of the sideline results;
indeed this can be a fruitful way of solidifying one’s understanding.

The exercises in this book are meant to provide concrete examples to
concepts introduced in the text, to introduce related material, and to point
the way to further areas of study. Our philosophy is that the best way
to learn is to do; accordingly, the reader should try to work most of the
exercises (or should at least read through all of the exercises). It should be
noted, however, that most of the “standard” material is contained in the
text proper. The problems vary in difficulty from routine computation to
proofs of well-known theorems. For the more difficult problems, extensive
hints are (almost always) provided.

The core of the book (Chapters Zero through Four) contains material
which is appropriate for a one semester graduate course, and in fact there
should be enough time left to do a few of the selected topics. Another
option is to use this book as a starting point for a more specialized course
on representation theory, ring theory, or the Brauer group. This book is
also suitable for self study.

Chapter Zero covers some of the background material which will be used
throughout the book. We cover this material quickly, but provide references
which contain further elaboration of the details. This chapter should never
actually be read straight through; the reader should perhaps skim it quickly
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before beginning with the real meat of the book, and refer back to Chapter
Zero as needed.

Chapter One covers the basics of semisimple modules and rings, includ-
ing the Wedderburn Structure Theorem. Many equivalent definitions of
semisimplicity are given, so that the reader will have a varied supply of
tools and viewpoints with which to study such rings. The chapter ends
with a structure theorem for simple artinian rings, and some applications
are given, although the most important applications of this material come
in the selected topics later in the book, most notably in the representation
theory of finite groups. Exercises include a guided tour through the well-
known theorem of Maschke concerning semisimplicity of group rings, as
well as a section on projective and injective modules and their connection
with semisimplicity.

Chapter Two is an exposition of the theory of the Jacobson radical. The
philosophy behind the radical is explored, as well as its connection with
semisimplicity and other areas of algebra. Here we follow the above style,
and provide several equivalent definitions of the Jacobson radical, since
one can see a creature more clearly by viewing it from a variety of vantage
points. The chapter concludes with a discussion of Nakayama’s Lemma
and its many applications. Exercises include the concepts of nilpotence
and nilradical, local rings, and the radical of a module.

Chapter Three develops the theory of central simple algebras. After a
discussion of extension of scalars and semisimplicity (with applications
to central simple algebras), the extremely important Skolem-Noether and
Double-Centralizer Theorems are proven. The power of these theorems and
methods is illustrated by two famous, classical theorems : the Wedderburn
Theorem on finite division rings and the Frobenius Theorem on the clas-
sification of central division algebras over R. The exercises include many
applications of the Skolem-Noether and Double-Centralizer Theorems, as
well as a thorough outline of a proof of the well-known Jacobson-Noether
Theorem.

Chapter Four is an introduction to the Brauer group. The Brauer group
and relative Brauer group are defined and shown to be groups, and as
many examples as possible are given. The general study of Br(k) is re-
duced to that of studying Br(K/k) for galois extensions K/k. This allows
a more thorough, concrete study of the Brauer group via factor sets and
crossed product algebras. Group cohomology is introduced, and an explicit
connection with factor sets is given, culminating in a proof that Br(K/k)
is isomorphic to H?(Gal(K/k), K*). A complete proof of this extremely
important theorem seems to have escaped much of the literature; most au-
thors show only that the above two groups correspond as sets. There are
exceptions, such as Herstein’s classic Noncommutative Rings, where an ex-
tremely involved computational proof involving idempotents is given. We
give a clean, elegant, and easy to understand proof due to Chase. This is
the first time this proof appears in an English textbook. The chapter ends
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with applications of this homological characterization of the Brauer group,
including the fact that Br(K/k) is torsion, and a primary decomposition
theorem for central division algebras is given.

Chapter Five introduces the notion of primitive ring, generalizing that of
simple ring. The theory of primitive rings is developed along lines parallel
to that of simple rings, culminating in Jacobson’s Density Theorem, which
is the analogue for primitive rings of the Structure Theorem for Simple
Artinian Rings. Jacobson’s Theorem is used to give another proof of the
Structure Theorem for Simple Artinian Rings; indeed this is the classical
approach to the subject. The Structure Theorem for Primitive Rings is
then proved, and several applications of the above theorems are given in
the exercises.

Chapter Six provides a quick introduction to the representation theory
of finite groups, with a proof of Burnside’s famous p®q® theorem as the final
goal. The connection between representations of a group and the structure
of its group ring is discussed, and then the Wedderburn theory is brought
to bear. Characters are introduced and their properties are studied. The
Orthogonality Relations for characters are proved, as is their consequence
that the number of absolutely irreducible representations of a finite group
divide the order of the group. A nice criterion of Burnside for when a group
is not simple is shown, and finally all of the above ingredients are brought
together to produce a proof of Burnside’s theorem.

Chapter Seven is an introduction to the global dimension of a ring. We
take the elementary point of view set down by Kaplansky, hence we use
projective resoultions and prove Schanuel’s Lemma in order to define pro-
jective dimension of a module. Global dimension of a ring is defined and its
basic properties are studied, all with an eye toward computation. The chap-
ter concludes with a proof of the Hilbert Syzygy Theorem, which computes
the global dimension of polynomial rings over fields.

Chapter Eight gives an introduction to the Brauer group of a commu-
tative ring. Azumaya algebras are introduced as generalizations of central
simple algebras over a field, and an equivalence relation on Azumaya al-
gebras is introduced which generalizes that in the field case. It is shown
that endomorphism algebras over faithfully projective modules are Azu-
maya. The Brauer group of a commutative ring is defined and shown to be
an abelian group under the tensor product. Br() is shown to be a functor
from the category of commutative rings and ring homomorphisms to the
category of abelian groups and group homomorphisms. Several examples
and relations between Brauer groups are then discussed.

The book ends with a list of supplementary problems. These problems
are divided into small sections which may be thought of as “mini-projects”
for the reader. Some of these sections explore further topics which have

already been discussed in the text, while others are concerned with related
material and applications.



X Preface
About Other Books

Any introduction to noncommutative algebra would most surely lean heav-
ily on LN. Herstein’s classic Noncommutative Rings; we are no exception.
Herstein’s book has helped train several generations of algebraists, includ-
ing the older author of this book. The reader may want to look at this book
for a more classic, ring-theoretic view of things.

The books Ring Theory by Rowen and Associative Rings by Pierce cover
similar material to ours, but each is more exhautive and at a higher level.
Hence these texts would be suitable for reading after completing Chapters
One through Four of this book; indeed they take one to the forefront of
modern research in Ring Theory.

Other books which would be appropriate to read as either a companion
or a continuation of this book are included in the references.
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A Word About Conventions

On occasion we will use the words “category” and “functorial”, as they are
the proper words to use. We do not, however, formally define these terms
in this book, and the reader who doesn’t know the definitions may look
them up or continue reading without any loss.

When making references to other papers or books, we will write out the
full name of the text instead of making a reference to the bibliography at
the back of the book. We do this so that the reader may know which book
we are refering to without having to look it up in the back. In addition, the
complete information on each reference is contained in the bibliography.
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Background Material

This chapter contains some of the background material that will be used
throughout this book. The goal of this chapter is to fill in certain small
gaps for the reader who already has some familiarity with this background
material. This should also indicate how much we assume the reader already
knows, and should serve to fix some notation and conventions. According-
ly, explanations will be kept to a minimum; the reader may consult the
references given at the end of the book for a thorough introduction to the
material. This chapter also contains several exercises, for use both by in-
structors and readers wishing to make sure they understand the basics.
The reader may want to begin by glancing casually through this chapter,
leaving a thorough reading of a section for when it is needed.

Rings: Some Basics

We begin with a rapid review of the definitions and basic properties of
rings.

A ring R is a set with two binary operations, called addition and mul-
tiplication, such that

(1) R is an abelian group under addition.

(2) Multiplication is associative; i.e., (zy)z = z(yz) for all z,y,z € R.

(3) There exists an element 1 € R with 1z = 21 = z for all z € R.

(4) The distributive laws hold in R : z(y + z) = 2y + £z and (y+2)z=
yx + zz for all z,y,2 € R.

The element 1 € R is called the identity, or unit element of the ring
R. We will always denote the unit element for addition by 0, and the unit
element for multiplication by 1. R is a commutative ring if zy = yz for

all 2,5 € R. We shall not assume that our rings are commutative unless
otherwise specified.

Examples:

1. Z, the integers, with the usual addition and multiplication, with 0
and 1 as additive and multiplicative unit elements.
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2. Q, R, and C; the rational numbers, real numbers, and complex num-
bers, respectively, with operations as in Example 1.

3. The ring Z/nZ of integers mod n, under addition and multiplication
mod n.

4. R[z], the ring of polynomials with coefficients in a ring R, is a ring
under addition and multiplication of polynomials, with the polyno-

mials 0 and 1 acting as additive and multiplicative unit elements,
respectively.

5. The ring M,(R) of n X n matrices with entries in a ring R , under
addition and multiplication of matrices, and with the n x n identity
matrix as identity element.

6. The ring End(M) of endomorphisms of an abelian group M, under
addition and composition of endomorphisms (recall that an endomor-
phism of M is a homomorphism from M to itself).

7. The ring of continuous real-valued functions on an interval [a, b}, un-
der addition and multiplication of functions.

The rings in examples 1,2,3, and 7 are commutative; the rings in exam-
ples 4,5 and 6 are generally not (R[z] is commutative if and only if R is
commutative). We shall encounter many more examples of rings, many of
which will not be commutative.

A ring homomorphism is a mapping f from a ring R to a ring S such
that

(1) f(x+y) = f(z) + f(y); i.e., f is a homomorphism of abelian groups.

(2) f(zy) = f(z)f(y).
@) f() =1

In short, f preserves addition, multiplication, and the identity element.
For those more familiar with groups than with rings, note that (3) does not
follow from (1) and (2). For example, the homomorphism f: R - R x R
given by f(z) = (z,0) satisfies (1) and (2), but not (3).

The composition of ring homomorphisms is again a ring homomorphism.
An endomorphism of a ring is a (ring) homomorphism of the ring into
itself. An isomorphism of rings is a ring homomorphism f : R — S which
is one-to-one and onto; in this case, R and S are said to be isomorphic as
rings. If f: R — S and g : S — R are ring homomorphisms such that
fogand go f are the identity homomorphisms of S and R, respectively,
then both f and g are ring isomorphisms.

A subset S of a ring R is called a subring if S is closed under addition
and multiplication and contains the same identity element as R. A subset
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I of a ring R is called a left ideal of R if I is a subgroup of the additive
group of R and if ri € I for all r € R,i € I; the notions of right ideal
and two-sided ideal are similarly defined. We shall always assume, unless
otherwise specified, that all ideals are left ideals. An ideal I is said to be a
maximal ideal of the ring Rif I # R and if I C J C R for some ideal J,
then J=Ior J=R.

For a two-sided I, the quotient group R/I inherits a natural ring struc-
ture given by (r+ I)(s+I) = rs+ I. This ring is called the quotient ring
of R by I. Note that there is a one-to-one, order-preserving correspondence
between ideals of R/I and ideals of R containing I.

A zero-divisor in a ring R is an element r € R for which rs = 0 for some
s # 0. An element r € R is called a unit of R, and is said to be invertible,
if rs = sr = 1 for some s € R. Note that the set of invertible elements of a
ring R forms a group under multiplication, called the group of units of R.
A ring such that 1 3 0, and such that every nonzero element is invertible,
is called a division ring. A commutative division ring is called a field.

Let F be a field and let n be the smallest integer for which 14+.--4+1 =
n-1 = 0. We call n the characteristic of F, denoted char(F), and we
let char(F) = 0 if no such (finite) n exists. It is easy to show that the
characteristic of any field is either 0 or prime. For example, Q, R and C
are fields of characteristic 0. Fy, the field with ¢ = p” (p prime) elements,
is a field of characteristic p.

Modules: Some Basics

Let R be a ring. A left R-module is an abelian group M, written addi-
tively, on which R acts linearly; that is, there is a map R x M — M,
denoted by (r,m) — rm for r € R,m € M, for which

1) (r+sym=rm+sm
2 r(m+n)=rm+rn
(3) (rs)m =r(sm)
4)Im=m

for r,s € R and m,n € M. Equivalently, M is an abelian group together
with a ring homomorphism p : R — End(M), where End(M) denotes
the ring of group endomorphisms of an abelian group (for those unfamil-
lar with this notion, see page 13). p is called the structure map, or a
representation of the ring R. There is a corresponding notion of right

module, but, unless otherwise specified, we shall assume all modules are
left modules.
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Examples:

1. An ideal I of a ring R is an R-module. In particular, R is an R-
module.

2. Any vector space over a field k is a k-module. A module over a division
ring D is sometimes called a vector space over D.

3. Any abelian group is a Z-module.

4. The cartesian product R® = Rx---x R is an R-module in the obvious
way. R" is called the free module of rank n.

5. The set of n x n matrices M,,(R) over a ring R is an R-module
under addition of matrices. The action of R on M, (R) is defined, for
r € R,B € M,(R), to be r — rB, where B denotes the matrix
whose 1, jth entry is r times the 4, jth entry of B.

Let M and N be R-modules. A mapping f : M — N is an R-module
homomorphism if :

(1) flm+n) = f(m) + f(n)
(2) f(rm) =rf(m)

for all m,n € M,r € R. In this case f is also called R-linear. Note
that the composition of two module homomorphisms is again a module
homomorphism. A (module) endomorphism is a homomorphism of a
module to itself. A module homomorphism f : M — N which is one-to
one and onto is called a (module) isomorphism, in which case M and
N are said to be isomorphic modules.

A subset N of a module M is called a submodule of M, if N is an
(additive) subgroup of M and if rn € N for all r € R,n € N. Thus, the
R-submodules of R are precisely the (left) idealsof R. If f: M — N is a
homomorphism of R-modules, let

ker(f)={me M : f(m) =0}
im(f) = f(M)

be the kernel and the image of f. It is easy to check that ker(f) is a
submodule of M and im(f) is a submodule of N. In particular, for fixed
m € M, the kernel of the R-module homomorphism ¢ : R — M given by
@(r) = rm, is a submodule (i.e., left ideal) of R. More explicitly, this kernel
is {r € R : rm = 0}. This ideal of R is called the annihilator of m, and
is denoted by ann(m). The intersection of the annihilators of each of the
elements of M is called the annihilator of M, and is denoted ann(M);
that is

ann(M) = ﬂ ann(m)
meM
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An R-module M is called faithful if ann(M) = 0. In this case the
associated representation p is also called a faithful representation of R.

The abelian group M/N inherits a natural R-module structure via r(m+
N) = rm+ N. This R-module is called the quotient module of M by N.
Note that there is a one-to-one, order preserving correspondence between
submodules of M/N and submodules of M containing N. This is sometimes
referred to as the Correspondence Theorem for Modules. If I is a two-sided
ideal of a ring R, and if M is an R/I-module, then M is also an R-module
via R — R/I — End(M). Further, given an R-module M which is
annihilated by I (i.e., I C ann(m) for all m € M), there is a unique
R/I-module structure on M giving rise to the original structure on M :

R ———= End(M)
A

R/

Thus, there is a one-to-one correspondence between R/I-modules and R-
modules annihilated by I.

We shall now discuss certain operations on rings and modules which
will be useful later in the text. If M is an R-module and N CMICR
are additive subgroups, then IN is defined to be the additive subgroup
generated by {rn:r € I,n € N}; that is, IN = i rini:meN,r; €
I,n; € N}. Note that if N is a submodule of M, then IN C N, and if I
is a left ideal of R, then IN is a submodule. In particular, if M = R, then
IN is a product of ideals. The following formulas hold for I ,I1,I2 C R and

N1 Nl, N2 g M :
Associative Law : I} (I3N) = (I,I,)N
Both sides are the additive subgroup generated by products r;ryn.

Distributive Laws :  (I; + I,)N = I; N + I,N
I(N1 +N2) = IN; +IN,

.If M is an R-module and m € M, then Rm is a submodule of M and is
said to be the cyclic submodule of M generated by m.
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Zorn’s Lemma,

Zorn’s Lemma is used frequently in ring theory. Here we include one typical
application.

A partially ordered set is a set S, together with a relation <, which
satisifies

a<a (reflexive)
a<band b<cimpliesa<c (transitive)
a<band b<aimpliesa=15 (anti-symmetric)

for all a,b,c € S. A subset T C S is called a chain if eithera < borb< a
for all a,b € T. An upper bound for a chain T in S is an element ¢ € S
such that a < cfor all @ € T. An element ¢ € S is called a maximal
element of S if a € § and ¢ < a implies ¢ = a. We now state

Lemma 0.1 (Zorn’s Lemma) Let S be a partially ordered set. If every

chain T of S has an upper bound in S, then S has at least one marimal
element.

Zorn’s Lemma is logically equivalent both to the Axiom of Choice and to
the Well-ordering Principle. For proofs of these equivalences, see Halmos,
Naive Set Theory. For those who worry about using the Axiom of Choice
(and thus Zorn’s Lemma), we shall always point out where Zorn’s Lemma
is used.

We conclude this section with a typical application of Zorn’s Lemma.

Proposition 0.2 Let R # 0 be a ring (with 1). Then R has a mazimal
left ideal.

Proof: Let S be the set of proper (i.e., # R) left ideals of R, partially
ordered by inclusion. If {I,} is a chain of ideals in R, then for all o and
B, either I, C Ig or Iz C I,. It is now easy to check that I =|J_ I, is an
ideal of R, and that 1 & I since 1 € I, for any a. Thus I € S and [ is an
upper bound for the chain. Hence S contains a maximal element. O

Products

Let R; and R; be rings. Then the cartesian product Ry x Ry = {(r1,72) :
T1 € Ry1,72 € Ry} is a ring if addition and multiplication are taken coor-
dinatewise. The ring R; X Ry is called the product of the rings R; and
R;. There are natural ring homomorphisms p; : Ry X R2 — R; given by
projection onto the ith coordinate, i = 1,2. There is also a one-to-one map
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RI—FRIXRQ

(r1,7m2) = (71,0).

The same holds true for R,. This is not, however, a ring homomorphism,
since it does not preserve identity elements. Thus R; and R, sit inside
R; x Ry as two-sided ideals, but not as subrings. Given rings Rj,..., Rn,
we may form the product H?:l R; as was done in the case n = 2. The
product of n copies of a ring R is denoted by R™.

Given any index set I (possibly infinite), and a family of modules {M;}icr,
we may, by the same technique as above, construct the product Hie 1 M;
of these modules. An element of [],.; M; consists of a family of elements
{m; € M;}, which we think of as ‘I-tuples’. The submodule of [Tict M;
consisting of those elements {m; € M;} for which all but finitely many of
the m; are zero, is called the direct sum of the modules {M;};cs, and
is denoted by €D;.; M;. Note that for finite families of modules, the di-
rect sum and the product are the same. If M’ is a submodule of M, and
if M ~ M'@ M" for some module M”, then M’ is said to be a direct
summand of M.

Given a subset S of an R-module M, a linear combination of elements
of § is a finite sum )_ r;s;, where each r; € R and each s; € S. We will
always write linear combinations so that the s; are distinct, which is always
possible by combining terms. The elements r; are called the coefficients
of the linear combination. The set of all linear combinations of elements
of S is the unique smallest submodule of M containing S, and is called
the submodule generated by S . The elements of S are then said to
generate the submodule. A module is said to be finitely generated if it
contains a finite generating set.

A subset S of an R-module M is linearly independent over R if, for
every linear combination }_ r;s; which is equal to 0, then r; = 0 for all i;
informally, there are no “relations” among the elements of S. In this case
we will also say that the elements of S are linearly independent. A subset
is linearly dependent over R if it is not linearly independent. A subset
S of an R-module M forms a basis for M over R if S generates M and
is linearly independent over R.

Given a family {M;} of submodules of an R-module M, the sum ) M;
of the family of submodules is defined to be the submodule generated by
the union of the M;; or, equivalently, > M; is the set of all finite sums
Y mi, m; € M;. The sum is a direct sum, and M is isomorphic to the
direct sum of the submodules M;, if every element of M can be written
uniquely as a finite sum ) m;, m; € M;.

If a set of elements {m,,...,m,} forms a basis for the R-module M,
then it is easy to check that M is isomorphic to R™, and in this case M
is said to be a free module of rank n. In the case when R is a field
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or a division algebra we call n the dimension of M over R, denoted by

dimp(M), or simply dim(M) , when there is no confusion about which ring
we are talking about.

Algebras

It turns out that many important examples of modules have an additional
multiplicative structure which makes them rings as well, and the module
and ring structures are compatible in some sense. Examples to keep in mind
are matrix rings, polynomial rings, group rings, and the quaternions (which
we shall introduce in this section). The notion of an algebra ties the ring
and module structures together, and is one of the basic objects of study in
mathematics, particularly in this book. Although we give the definition of

an algebra over a commutative ring k, we shall only be interested in the
case when k is a field.

Definition: An (associative) algebra over a commutative ring R is a ring
A which is also a module over R, such that the ring and module multipli-
cation are compatible in the following way :

z(ab) = (za)b = a(zb) forall z € R,a,be A.

A is also called a R-algebra. When R is a field, a basis for 4 as a module
over R is said to be a basis for the algebra A, and A is said to be a finite
dimensional R-algebra, if A is finite dimensional as a module over R (i.e.,
if A has a finite basis over R). The algebra A is a commutative algebra
if A is a commutative ring.

Examples:

1. Any ring is an algebra over Z.
2. C is a two-dimensional algebra over R, with basis {1,i}.

3. The set of n xn matrices M, (k) over a field k is a k-algebra of dimen-
sion n2. A basis for this algebra consists of the matrices {e;;},1 <
i,j < n, where e;; denotes the matrix with 1 in the i, j position and
zeros elsewhere.

4. The ring R[z] is an algebra over the ring R, with basis 1,z,2?,...
as a (free) R-module, and with multiplication of polynomials as the
algebra multiplication.

5. The ring R|[z]] of formal power series Y oo riz* with coefficients r; €
R is an R-algebra with the obvious multiplication. Similarly, the ring
R|z,z71] of Laurent series is an R-algebra.
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6. Let R be a ring and let G be a group. The group ring R[G] consists
of the free R-module on the set G; elements are usually written as
dec 749, where ry € R, and only finitely many r, are non-zero.
Multiplication is defined by extending (rg)(sh) = (rs)(gh) to all of
R|G] by the distributive law. Check that this makes R[G] into a ring.
Note that R = R-1 is naturally a subring of R[G]. For a commutative
ring R and a group G, the group ring R[G] is an algebra over R. R[G]
is often called a group algebra.

Let A and B be R-algebras. A map f : A — B is an R-algebra
homomorphism if f is a homomorphism of R-modules which is a homo-
morphism of rings as well; that is

(1) f(a+b) = f(a) + f(b)
(2) f(za) = zf(a)

(3) f(ab) = f(a)f(b)

(4) f(1) =1

for all a,b € A,z € R. An R-algebra homomorphism which is one-to-one
and onto is called a R-algebra isomorphism , in which case the algebras
are said to be isomorphic algebras. A subset S of an algebra A is called a
subalgebra if S is both a subring and a submodule of A.

We end this section with the construction of a basic, important example
of an algebra. Recall that we can think of C as a two-dimensional algebra
with basis {1, i} over R. We shall now construct a four-dimensional algebra,
the quaternions, with basis {1,1, j, k} over R. The quaternions will give an
example of a division ring for which multiplication is not commutative.
Later in this book we shall see why the number four is special, and why
the quaternions and its generalizations play such an important role in the
theory of noncommutative algebra.

Definition: The (real) Quaternions, denoted H (in honor of its discoverer
Hamilton), is the four-dimensional vector space over R with basis denoted

by {1,4,7,k}, and multiplication defined so that 1 is the multiplicative
identity element and

i =j =k =-1

ij=—ji=k
jk=—kj =i
ik = —ki = —j.

These equations (in fact the first two) completely determine how basis
elements are multiplied, and thus how any elements of the algebra are
multiplied. Every element ¢ = a + bi 4+ ¢j + dk € H has a quaternion
conjugate § = a — bi — cj — dk. It is easy to check that (77)(@) =g q
and that g§ =gg=a +b +c +d . This real number is denoted by lgl .
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If ¢ # Q then ¢ has multiplicative inverse ¢~! = §/|q|2, which shows that
H is a division algebra. See the exercises for more on the quaternions.

Tensor Product of Modules Over a Commutative
Ring

This section reviews basic properties of the tensor product of modules over
a commutative ring. Throughout this section we will assume that R is a
commutative ring.

Let M,N, and P be R-modules. A map f : M x N — P is said
to be an R-bilinear map, or simply a bilinear map, if f is R-linear in
each variable when the other variable is fixed; that is, the mappings z —
f(z,y0) and y — f(xzg,y) are R-linear for each fixed 2o € M,y, € N.
The idea of the tensor product is to convert bilinear maps into linear maps
(i.e., homomorphisms), which are much easier to work with.

Let M and N be modules over a commutative ring R. The tensor prod-
uct of M and N (over R) , denoted by M®g N , can be characterized by
the following universal property, which formalizes the idea of “converting”
bilinear maps into linear maps :

Theorem 0.3 (Universal Property of Tensor Product) Let M and
N be modules over a commutative ring R. Then there exists an R-module
M ®p N and a bilinear map i : M x N — M ®pg N which satisfy the
following universal property : Given any R-module P and any bilinear map
f: M x N — P, there ezists a unique linear mapping f' : MQrN — P
so that f = f' oi; that is, there erists a unique homomorphism f' so that
the following diagram commutes

MxN——L————» M@RN

f 0

Moreover, if there exists an R-module S and a bilinear map j : M XN — S
satisfying the above property, then there is an isomorphism g : M@rN —
S with § = goi; that is, the tensor product is unique up to isomorphism.

Proof:

Uniqueness : Apply the universal mapping property of M @ N f,o j:
MxN — Stogetamap g: M ®g N — S with j = g oi. Similarly,
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applying the universal mapping property of Stoi : M x N — M ®g N
givesamap g’ : S — M ®gr N with i = g’ 0 j. Thus go g’ and ¢’ o g must
be the identity, and so both g and g’ are isomorphisms.

Existence : Let T denote the free module generated by the pairs {(m,n) :
m € M,n € N}. Thus every element of T can be written as a linear
combination Y- | ri(m;,n;) for r; € R, (m;,n;) € M x N. '

Let V denote the submodule of T' generated by elements of the following
form:

(m+m',n) - (m,n) — (M, n)
(m,n+n') - (m,n) — (m,n')
(rm,n) — r(m,n)
(myrn) —r(m,n)

form,m' € M,n,n' € N,r € R. Let M®g N be the quotient module T'/V.
For each basis element (m,n) of M x N, let m ® n denote its image under
the quotient map T' — T/V = M ®gr N. Then M ®g N is generated
by elements of the form m ® n. Now define i : M x N — M ®g N by
i(m,n) = m @ n. It is easy to check from the definitions that 7 is bilinear.

It remains to check that M ®pg N satifies the universal mapping property.
To this end, let an R-module P and a bilinear map f : M x N — P be
given. We may extend f by linearity to a map f : T.— P since T is free
with the set M x N as basis. Since f is bilinear, this implies that f(V) = 0,
so that there is a well-defined homomorphism f’ : T/V — P such that
f'(m®n) = f(m,n), and we are done. O

The above proof shows that if {u;}7; and {v; }j, are generating sets for
M and N, respectively, then {u;®v; : 1 <i<n,1<j< m} is a generating
set for M @ g N. In particular, if both M and N are finitely generated, then
80 is M ®g N; and, in fact, dimg(M ®g N) = dimg(M) - dimp(N).

Given R-modules My, ..., M, and an R-module P, a multilinear map
(or n-linear map) is a map f: My X --- x M,, — P which is R-linear in
each variable when the other variables are held fixed. The same proof as
above gives a construction of the tensor product M; ® R+ ®r M, which
satisfies the same universal property with respect to multilinear maps. We
leave the details as an exercise for the reader.

Endomorphism Rings

Let M be an abelian group, written additively. Let End(M) denote the set
of endomorphisms (i.e., group homomorphisms of M into itself; in particu-
lar, every endomorphism takes 0 to 0). If ¢ and 9 are endomorphisms of M ,

then ¢o1) is also an endomorphism of M , 50 we may define a multiplication
in End(M) via
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#Y(m) = ¢(y(m)) form € M.

The identity endomorphism 1(m) = m clearly acts as a multiplicative
identity. We may also define an addition in End(M) via

(¢ + ¥)(m) = ¢(m) + ¢(m) forme M.

It is trivial to verify that ¢+ € End(M), and that End(M ) is an abelian
group under this addition, with the endomorphism 0(m) = 0 acting as the
additive identity element. Finally, it is easy to check that, under these
operations of addition and multiplication of endomorphisms, End(M) is a
ring. ,

More generally let M and N be R-modules, and let H omp(M, N) be the
set of R-module homomorphisms from M to N. Then, just as above, we see
that Homp(M, N) is an abelian group under addition of homomorphisms,
with the zero homomorphism acting as identity. We denote H. omg(M, M)
by Endgr(M). As above, we see that Endp(M) is a ring, called the endo-
morphism ring of the R-module M. A ring of endomorphisms of M
is a subring of Endg(M).

Notice that Endr(M) is also an R-module via

(r@)(m) =7 - ¢(m) r€R,¢ € Endgp(M),m e M.

If R is a commutative ring, the R-module multiplication in Endg(M) is
compatible with the ring multiplication of Endg(M). Thus, in this case,
Endr(M) is an R-algebra, and is called the endomorphism algebra of
the R-module M. If M is a free R-module of rank n, then it is not difficult
to see that Endg(M) is isomorphic to the algebra M, (R).

Field Extensions: Some Basics

Let k be a field. A field extension of k is a field K with £ C K, and is
denoted by K/k. The smallest field containing k and r4,...,7, is denoted
by k(r1,...,7s). Given a field extension K/k, it is useful to consider K as
a vector space over k; the abelian group structure is that of K, and, for
r € k,v € K, rv is just the the product of r and v in K. In fact, since
there is actually a multiplication in K, and since all operations in sight
are commutative, we see that K is an algebra over k. The dimension of K
as a vector space over k is called the degree of the extension K/k, and
is denoted by [K : k|. The extension K/k is called a finite extension if
[K : k] < o0.

Most of the time we shall be concerned with finite extensions K/k. Let
0 # u € K for such an extension. Since K is finite dimensional as a vector
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space over k, the set {1,u,u?,...,u"} is linearly dependent for some n;
that is, cau™ + cp_1u™ ! + -+ - + cyu + g = 0 for some constants ¢; € k.
Thus u satisfies the polynomial f(z) = c,z" + 12" +--- 4+ c1Z + ¢,
and f(z) € k[z]. Let I = {g(z) € k[z] : g(u) = 0}. Clearly I is an additive
subgroup of k[z], and hg(0) = h(0)g(0) = O for all h(z) € k[z],g(z) € I,
so that I is an ideal. Since k is a field, every ideal in k[z] is principal (see,
e.g., Jacobson, Basic Algebra I). Since I contains f(z) # 0, I is not the
zero ideal, and so there exists a polynomial g(z) € k[z] which generates
I; that is, g(z) divides every polynomial which u satisfies. Clearly we may
take g(z) to be a monic polynomial, and then it is easy to see that g(z)
is the unique monic polynomial of least degree satisfying g(u) = 0. g(z) is
called the minimal polynomial of u over k.

A polynomial is said to be separable if it has distinct roots in an alge-
braic closure. An element u € K is said to be a separable element over k
if its minimal polynomial over k is a separable polynomial. A (finite) field
extension K/k is said to be a separable extension if every element of K
is separable over k. Note that if char(k) = 0, then every (finite) extension
of k is separable (see Exercise 35).

A field L D k is said to be a splitting field over k for the polynomial
f(z) € kiz] if f(x) factors as a product of linear factors f(z) = (z —
T1)-+-(z —7n) in Liz], and if L = k(ry,...,r,). Thus L is a splitting field
over k for f(x) if and only if L is the smallest field containing k which
contains every root of f(x). A (finite) field extension K/k is called normal
if every irreducible polynomial in k[z] which has a root in K is a product
of linear factors in K[x]. Thus the extension K/k is normal if and only if
K contains a splitting field for the minimal polynomial of every element
of K. An extension which is both normal and separable is called a galois
extension.

Let K/k be a field extension. The set of automorphisms of K which
are the identity when restricted to k forms a group under composition of
functions. This group is called the galois group of the extension K /k,
and is denoted by Gal(K/k). The Fundamental Theorem of Galois Theory
asserts, among other things, that for a galois extension K /k, the order of
Gal(K/k) is equal to [K : k].

Now suppose L 2 K D k are fields. Then there are three vector spaces
in sight; namely L over K, L over k, and K over k. The next result relates
the dimensions of these vector spaces, and will be used quite frequently.

Proposition 0.4 Let L D K D k be fields. Then [L : k] is finite if and
only if both [L : K] and [K : k] are finite, and in this case
[L:k]=[L:KJ[K:k].

Proof: Suppose {ui,...,u,} is a basis for L over K and {vi,...,vm}isa
basis for K over k. We claim that {uiv; :1<i<n1<5< m} is a basis
for L over k:
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{uiv;} span L/k: Let z € L be given. Then = = Z:‘zl c;u; for some

¢i-€ K. But ¢; € K implies that ¢; = Z;’;l d;jv; for some d;; € k. Hence
T = Zi,j d,-ju,-vj.

{usv;} is independent over k: Suppose Y d;;u;v; = O for some d;; € k.
Then 3_,(3°; dijv;j)u; = 0, and so 3, dijv; = 0 for each i, since {u;} is a
basis. But {v;} is also a basis, and so d;; = 0 for all j and for each i.

Now if [L : k] is finite, then [K : k] is finite since K is a k-subspace of L,
and [L : K] is finite since the finite basis for L over k will clearly span L
over K. Conversely, if both [L : K] and [K : k] are finite, then the above
shows that [L : k| is finite and that [L: k] = [L: K|[K : k]. O

Exercises

The exercises in this chapter are not meant to be a complete set of exercises
for a basic course on rings, fields, and modules; rather, they are meant to
help the reader polish old skills. In addition, these exercises provide some
basic facts which will be used throughout the text.

Elementary Exercises on Rings and Modules

1. Let I4,..., I, be two-sided ideals of a ring R such that I; + I; = R
for all ¢ # j. Prove the following:

(a) L+ (I =R foralli.

i
(b) (Chinese Remainder Theorem): Given elements zi,...,Zn
of R, there exists € R such that ¢ = z;(mod I;) for all i.

(c) Show that there is an isomorphism of rings
¢:R/LNn---NI, — (R/I) x -+ x (R/I)

such that ¢(z+(I1N---N1,)) = (z+(1),...,x+(Ip)) forall z € R.

2. Show that every finitely generated module has a maximal (proper)
submodule. Is this true for modules that are not finitely generated?

3. Show that every module is isomorphic to a quotient module of a free
module.

4. Let R be a commutative ring, and let M be a free R-module of rank
n. Prove that the algebras Endg(M) and M,(R) are isomorphic.
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Products and Sums

Let R, and R; be rings. Show that any (left,right,two-sided) ideal in
Ry X Ry is of the form L, x Ly, where L; is a (left,right,two-sided
respectively) ideal of R;, i = 1,2.

If Ry and R; are rings, show that there is a one-to-one correspondence
between R; x Ry-modules M and pairs of modules (M;, M3) where
each M; is an R;-module, i = 1, 2. Generalize to the case of arbitrary
products.

. Let R; and R; be rings. Thinking of R; as R; x 0O sitting inside

R = R; x Ry, check that R; is a two-sided ideal but not a subring
(similarly for R;). Now show that R; # Ry as R; X Rz-modules,
even if R; = Rj as rings. Show that there is in fact no non-trivial
R-homomorphism from R; to Ry. Generalize to the case of arbitrary
products.

Let M = @;c; M; and let N be an arbitrary R-module. Prove that
a homomorphism from M to N is uniquely determined by its restric-
tions to the M; and that these restrictions can be arbitrary. This can
be phrased as follows : There is an isomorphism

Hom(ED M;, N) ~ [ | Hom(M;, N).

Show that there is an isomorphism

Hom(N, [[ Mi) ~ [] Hom(N, M).

K E,...,E,,F,...,Fyareany R-modulesand ¢: E, & - - - & E,, —
F, & --- ® F, is a R-module homomorphism, show that ¢ can be rep-
resented by a unique matrix

$11 ... O1n
M(¢)=| :
d’ml R ¢mn

where ¢;; € Homg(E;, F;), in the sense that, if one represents an
element t = z;+---+ 1z, € E;®--- ® E, as a column vector
I
, and one represents elements of Fy & - - @ F,, similarly, then
Tn
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Pien i)
#(z) = :
E?:l Omi (-'Bz)

that is, ¢ is given by “matrix multiplication”. Further, check that
composition of maps corresponds to matrix multiplication. This ex-
ercise generalizes Proposition 1.7. [Hint: The module E; & --- & E,
is equipped with inclusions ix : Ex — FE; & --- @ E,, and (onto)
projections g : E1 @ -+ @ E, — Ej.]

Idempotents

(a) An element e of a ring R is said to be an idempotent if e? = e.
An element e is central in R if er = re for all r € R. Let e be
a central idempotent of R, and let R; = eR and R; = (1 — €)R.
Check that these subsets of R are two-sided ideals of R which are
in fact rings. What are the identity elements of R; and Ry as rings?
Show that every element of R can be written uniquely as a sum of
an element of R; and an element of R3. Conclude that R ~ R; x R,
as rings.

(b) What do the ideals of R look like in terms of the ideals of R, and
Ry?

(a) More generally, let ej,...,e, in R be an orthogonal family
of central idempotents; that is, assume each e;,1 < i < nis a
central idempotent and that e;e; = 0 for i # j. Further assume that
e1+e2+...+e, = 1. Show that R = R; X Ry X ... X R, where
R,‘ = e,-R.

(b) What do modules over R look like?
Let I be a two-sided ideal of R, and assume that R=I1dJ =1 J’,
where J is a left ideal of R and J’ is a right ideal of R. Prove that

there is a unique central idempotent such that I = Re, and that then
J=R(l-¢)=J.

Tensor Products

Let M, N, and P be modules over a commutative ring R. Prove the
following (all tensoring is done over R):

(a) MN~N@M.
(b) (MAN)QP~MRINQP)~MRNQP.

© (MBN)RP~(MQP)BNQP).
(d) RQM=~ M.
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Group Rings

(a) If G is the trivial group, what is R[G]?
(b) If G is a free abelian group on n generators, what is R[G]?
(c) Show that R[G x H] ~ R[G) ®r R[H)] ~ (R[G])[H] as rings.

(d) Show that if G acts linearly on a vector space V over a field k,
then V has a natural k[G}-module structure.

(a) Let R,S be rings and let G be a group. Let U(S) denote the
group of units of S (that is, the (multiplicative) group of elements
in S that have multiplicative inverses). Show that there is a one-
to-one correspondence between ring homomorphisms f : R[G] — S
and pairs consisting of a ring homomorphism fp : R — S and a
group homomorphism fg : G — U(S) where the images of fg and
fe commute.

(b) If f : G — H is a group homomorphism, show that there is a
unique ring homomorphism R[G] — R[H| which is the identity on R
and is f when restricted to G.

Remark: Consider the case when R is a commutative ring and S
is an R-algebra, so fgr is fixed as the structure map. The “units”
functor U is a functor § +— U(S) from the category of R-algebras
to the category of groups. The “group-algebra” functor G — R[G]
is a functor from groups to R-algebras. Holding fg fixed, the proof
of part (a) shows the existence of a bijection

HO’rng,.oup(G, U(S)) — HomR-—algebra(R{Gly S)’

that is, the group-algebra functor is the left-adjoint to the units func-
tor (for terminology, see Rotman’s Homological Algebra).

(a) If H is a finite subgroup of G, write Ny = 2hem h (this is
the so-called “norm element” of H ). Show that Ny - Ny = |H|Ny.

Conclude that if |H| is invertible in R, then the element e H = Ny/|H|
is idempotent.

(b) Show that if H is a finite normal subgroup of G and |H| is in-
vertible in R, then ey is a central idempotent of R[G].

Let Q denote the rational numbers and let S3 denote the symmetric
group on 3 letters. Note that S; is generated by the elements q = (12)
and b = (123) with o(a) = 2 and o(b) = 3, aba = b=1,83 ~ Z3 x 2.
(a) Show that Q[Z;] ~ Q x Q. Exhibit the ring homomorphisms
explicitly. Exhibit the idempotents explicitly.
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(b) The unique surjective homomorphism S; — Z, induces a ring
surjection Q[S3] — Q[Z3] ~ Q x Q. For B = (b), find the images of
ep and 1 - ep, where ep is defined as in problem 17.

(c) Let M2(Q) denote the ring of 2 x 2 matrices over Q. Let A =
( (1) (1) ) and B = ( (1) :i ) Show that o(A) = 2,0(B) = 3 (can

you do this without computing?),and ABA = B~!. Thus there is a
group homomorphism

S3 = GL2(Q) = U(M2(Q)).

Show that this gives a surjective ring homomorphism Q[S3] — M,(Q).

(d) Put all of this together and show that Q[S3] ~ Q x Q x M3(Q).
Explicitly give all of the homomorphisms. Explicitly list the idempo-
tents (in terms of the group ring) which give each factor. In Chapter
One we will see that this implies that Q[S3] is semisimple.

Remark: This example is typical of group representation theory :
you’ll soon see that any group algebra Q[G] (G finite) is a direct
product of matrix algebras, and this is a good example to keep in
mind. The idea is to “enrich structure” by recasting problems from
group theory (which is hard) into the theory of algebras (which is
rich and well-developed, as we will see in subsequent chapters).

Generalizing part (a) of the previous exercise, show that if p is prime
then Q[Z,] =~ Q x Q[(p], where (, is a primitive p** root of unity.

Quaternions

Check that H is a division algebra which is not commutative. Find
the center of H; i.e., the set of elements £ € H which commute
(multiplicatively) with every element of H. Which elements commute
with ¢? with 57 with k7

Let HQ be the subset of H consisting of elements with rational co-
ordinates; that is, let HQ ={a+bi+cj+dk:a,bcde Q}.Show
that HQ is a subring of H, and that HQ is a division ring. HQ is
called the ring of rational quaternions.

Let R denote the set of matrices of the form ( —i% _2 ) a,beC.

(a) Show that R is a subring of M3(C).
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(b) Show that the center of R may be identified with the real numbers
via a certain set of diagonal matrices.

(c) Show that R is isomorphic, as an R-algebra, to the real quater-
nions.

Show that the real quaternions can be considered as a two-dimensional
algebra over C. Explicitly give a basis for H over C.

Think of R* as pairs (r,v), where r is a real number and v is a vector
in R3. Define a multiplication on R* by

(ro)( o) =(rr' —v- v, + v+ v x ) ' eR,v,0 € R3

where - and x denote the standard dot and cross product of vectors
in R3, respectively. Prove that R? with this multiplication is an al-
gebra which is isomorphic to the quaternions. Thus, multiplication
of quaternions involves the two most basic operations on vectors in
three-dimensional euclidean space. Hamilton, the discoverer of the
quaternions, had the idea to use the quaternions to study physics.
Physicists, however, seem to have found it easier to use the dot and
cross product without mention of the quaternions.

The Opposite Ring

If R is a ring, then R° denotes the opposite ring (of R) : that is, R°
has the same additive group as R but multiplication in R° is defined
by 7 - s = sr. Check that R° is a ring.

(a) If k is a commutative ring and G is any group, show that klG)° =~
kG).

(b) Let H denote the division algebra of real quaternions. Show that
H° ~ H.

(c) If R is a ring and M,(R) denotes the ring of n x n matrices over

R, show that M,(R)° = M,(R°).

(d) Fxhibit a ring R such that R° is not isomorphic to R. Can you
give »uch a ring that is finite? If so, what is the smallest possible
number of elements it can have?

(e) Let R be a commutative ring and let 7;, (R) denote the ringof nxn
upper triangular matrices over R. Is 7,,(R)® isomorphic to T.(R)?

Show that Endg(R) ~ R°.
Show that if e is an idempotent of R, then S = eRe is a ring with

identity element e (note : by definition eRe = {ere : r € R}). Find
an isomorphism (of rings)
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¢:8° =5 Endg(Re).

This generalizes the fact that, for any ring R, Endg(R) ~ R° (just
take e = 1).

Bimodules

28. Let R and S be rings. An R-S -bimodule is an abelian group M
with the structure of both a left R-module and a right S-module,
such that (rm)s = r(ms) for r € R,m € M,s € S. For example,
any ring R is an R-R bimodule under left and right multiplication.
If R and S are k-algebras, we will say that M is an R-S-bimodule
relative to k if, in addition to the above, Am = m\ for A € k and
m € M. Prove that R-S bimodule structures on M relative to k are
in one-to-one correspondence with R ®; S°-module structures on M.

29. Let e and ¢’ be idempotents of a ring R, let S = eRe and let
S' = €'Re’. Note that S and S’ are rings with identity elements
e and €, respectively. Find S-$’-bimodule structures on eRe’ and
Hompg(Re, Re'), and an S- S’-bimodule isomorphism

eRe’ = Hompg(Re, Re').

Note that, if we now take ¢’ = 1, then eR ~ Hompg(Re, R) as S-R-
bimodules. (cf. Exercise 27).
Universal Mapping Properties

30. (a) Show that any R-module homomorphism f : M — N “factors
through M/ker(f)”; that is, show that there is a unique homomor-
phism f’ : M/ker(f) — N so that the following diagram commutes :

f

M——>N

fl
M/ ex(f)
Show further that f’ is one-to-one. Show that the above holds when

ker(f) is replaced by any submodule of ker(f) (of course, the injec-
tivity fails to hold).
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(b) Prove a corresponding universal mapping property for homomor-
phisms of rings.

State the results of exercises 8 and 9 in terms of universal mapping
properties.

Let M,,..., M, be modules over a commutative ring R. Following
the construction given in Theorem 0.3 for the case n = 2, construct
the tensor product M; ®g ‘- ®g M, and show that it is unique.
Prove a universal mapping property for this tensor product which
agrees with Theorem 0.3 in the case n = 2.

Elementary Exercises on Field Theory

(a) Let F be a field with char(F) # 0. Show that char(F) is equal to
the smallest integer n such that z+---+z=n.x=0forallz € F.
(b) Show that the characteristic of any field is either 0 or prime. Fur-
ther, show that any field of characteristic 0 contains Q as a subfield.

Assuming that C is algebraically closed, prove that the only finite
field extensions of R are R and C.

(a) Let k be a field. Show that a polynomial f(z) € k|z] has multiple
roots (in a splitting field for f over k) if and only if f and f’ have a
common root (in a splitting field), where f’ is the polynomial which
is the derivative of f as in elementary calculus.

(b) Use part (a) to show that any finite extension of a field of char-
acteristic zero is separable.

Show that the field Q(+/2) is not a normal extension of Q, where
V2 denotes the real cube root of 2. Recall that Q(V/2) denotes the
smallest field containing Q and /2.

Exact Sequences: Some Basics

A sequence of R-modules and R-module homomorphisms
firr fi
Mgy — M, S My — -

is said to be exact at M; if ker(f;) = im(fi41). The sequence is
called an exact sequence if it is exact at each M;. A short exact
sequence is an exact sequence of the form

0—A-B 2 c—o0.
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Note that the sequence is exact at A if and only if i : A — B is one-
to-one, and that the sequence is exact at C if and only if p:B—C
is onto. Exactness at B means that C ~ B/i(A).

Exact sequences are extremely useful in keeping track of informa-
tion about maps between modules. They are crucial in the study
of algebraic topology, algebraic geometry, and in fact all of algebra.
Although exact sequences are not essential for understanding much
of this book, they will provide another viewpoint in the study of
semisimple rings, the Brauer group and various selected topics.

A short exact sequence

O———»A—f-bBi-)C'———»O

is said to split if there is a homomorphism h : C — B with goh=
idg, where idc denotes the identity endomorphism of C.

Let 0 — A -2 B £, ¢ — 0 be exact. Prove that the following
are equivalent:

a) The sequence splits.
b) The module f(A) is a direct summand in B.

(
(
(c) There is a homomorphism 7 : B — A with r o f = id.

(d) There is a homomorphism s : C — B such that g o s = idc.

Let 0 — A — B — C — 0 be exact. Show that the sequence
splits if C is a free module.

(a) Suppose

All‘—'Bl—g-}—)CI and A2'£2—*B2‘g—2)02
are exact. Show that

A x 4728 B x B 0, x C,

is exact.

(b) Generalize part (a) to arbitrary direct products.

(c) Generalize part (a) to arbitrary direct sums.

Let 0 — V} — -.- — V,; — 0 be an exact sequence of finite-

dimensional vector spaces over a field. Show that } - (—1)idim(V;) =
0.
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Length

A composition series for a module M is a chain of submodules
0=MyC M, C---C M, =M which admits no refinement, i.e.,
M;/M;_, is simple. We call n the length of the composition series.
The simple modules M;/M;_; are called the composition factors of
the composition series. A given module may have many composition
series. These series are related, however, by the following :

Theorem 0.5 (Jordan-Hoélder Theorem) If M has a composi-
tion series, then any two composition series have the same length
and have isomorphic composition factors.

The proof of this theorem is the same as that for groups. For details
see e.g., Jacobson, Basic Algebra I. We define the length of a module
M, denoted by l(M), to be the length of a composition series for M
(if M doesn’t have a composition series, we say that M has infinite
length ). The length of a module is well-defined by the Jordan-Hélder
Theorem. We also note that “length of a module” generalizes the
concept of “dimension of a vector space”. For example, it is easy to
see that if R is an algebra over a field k, then any R-module M such
that dimy(M) < oo has finite length.

(a) If M is a module of finite length, prove that any submodule and
any quotient module of M has finite length.

(b) Conversely, if M’ C M and M/M’ both have finite length, show
that M has finite length. Further, show that (M) = [(M')+I(M/M").
Deduce that I(M') < (M) if M’ # M.

(c) Prove that a finite direct sum of modules of finite length has finite
length and give a formula for the length.

(d) If R has finite length as a left R-module, prove that every finitely
generated left R-module has finite length (A module M is finitely
generated if there exists a finite family of elements m,, ..., m, of
M such that Rm; + -+ + Rm, = M).

Chain Conditions

We say that a module M satisfies the ascending chain condition
(ACC) if for every chain M; C M, C - - of submodules of M, there
is an integer n with M; = M,, for all i > n. If M satisfies the ACC,
we also say that M is noetherian.

We say that a module M satisfies the descending chain condition
(DCC) if for every chain M; 2 M, D -- - of submodules of M, there
is an integer m such that M; = M,, for all j > m. If M satisfies the
DCC, we say that M is artinian.
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(a) Show that Z is a noetherian Z-module which is not artinian.

(b) Let Z,~ denote the submodule of the Z-module Q/Z consisting
of elements which are annihilated by some power of p. Show that Z,~
is an artinian Z-module which is not noetherian.

(a) Show that the ACC is equivalent to the “maximal condition” : Ev-
ery non-empty collection of submodules contains a maximal element
(with respect to inclusion).

(b) Show that the DCC is equivalent to the “minimal condition” : Ev-

ery non-empty collection of submodules contains a minimal element
(with respect to inclusion).

Prove that a module is noetherian if and only if every submodule is
finitely generated.

(a) Prove that submodules and quotients of artinian modules are
artinian. Prove the same fact for noetherian modules.

(b) Let M’ be a submodule of M. Show that if both M’ and M/M’ are
artinian, then so is M. Prove the same fact for noetherian modules.

In other words, these statements say that given a short exact sequence
0-M ->M->M' -0,

M is artinian (resp. noetherian) if and only if both M’ and M" are
artinian (resp. noetherian).

Prove that a module has finite length if and only if it is both artinian
and noetherian.

Note: We shall call a ring R a (left) noetherian ring or a (left)
artinian ring if it has the corresponding property as a left R-module.
We shall drop the adjective “left” when no confusion will occur.

Prove that if R is an artinian ring and M is a finitely generated
R-module, then M has finite length.

Prove that if M is an R-module of finite length, then Endr(M) is
artinian.

This exercise will show that the concepts of left and right artinian
(and noetherian) are not the same. Let K/k be a field extension with
[K : k] = oo. Let R denote the subset of M2(K) consisting of all
upper triangular matrices of the form
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6 ]

with a,b € K and c € k. Show that R is a subring of M2(K), and
that R is left artinian and left noetherian, but neither right artinian
nor right noetherian.

(a) Prove Fitting’s Lemma : If M is an artinian module and f :
M — M is an injective homomorphism, then f is surjective.

(b) Prove the dual assertion to Fitting’s Lemma : If M is a noetherian
module and f : M — M is a surjective homomorphism, then f is
injective.

(c) Let G be a free abelian group of finite rank, and let ¢ : G — G
be an epimorphism. Show that ¢ is an isomorphism.



1

Semisimple Modules & Rings
and the Wedderburn Structure
Theorem

This chapter is concerned with looking at part of a structure theory for
rings. The idea of any “structure theory” of an object (in this case a ring)
is to express that object in terms of simpler, better understood pieces. For
example, the Wedderburn Structure Theorem says that any semisimple ring
(we’ll define this later) is isomorphic to a finite product of matrix rings over
division rings, each of which is simple. The theory for semisimple modules
is in many ways analogous to the theory of vector spaces over a field, where
we can break up vector spaces as sums of certain subspaces.

One common theme in this chapter is the interconnection between the
structure of a ring and the structure of modules over that ring. This inter-
play leads to many deep and useful theorems.

Unless otherwise specified, all ideals will be left ideals and all modules
will be left modules.

Simple Modules

We begin our discussion with modules that are the basic building blocks of
other modules.

Definition: A non-zero module M is simple (or irreducible) if it contains
no proper non-zero submodule. An R-module M is cyclic with generator
m if M = Rm for some m € M.

If F is a field, then the submodules of a vector space V over F are simply
the subspaces of the V. The simple F-modules are the one-dimensional
vector spaces over F'; thus there is only one isomorphism class of simple
F-modules. We shall soon see many other examples of simple modules.

Proposition 1.1 The following are equivalent for an R-module M :
(1) M is simple.

(2) M is cyclic and every non-zero element is a generator.

(3) M = R/I for some mazimal left ideal I.
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Proof:

(1) implies (2) : If m € R,m # 0, then Rm is a non-zero submodule of
M, hence Rm = M.

(2) implies (3) : Let I be the kernel of the surjective module map ¢ :
R — Rm given by ¢(r) = rm (this kernel is called the (left) annihilator
of m and is denoted by ann(m)). So I is a submodule of R, i.e. a left ideal
of R, and R/I =~ Rm. I is maximal : for if not, then there would be a
non-generating element of M.

(3) implies (1) : If M’ is a nonzero submodule of M ~ R/I, then by the
Correspondence Theorem for Modules (see Chapter 0) we have that there
is an ideal I’ properly containing I. Since [ is maximal, I’ = R,so M’ = M
and we are done. O

Note: It is easy to check that if R is commutative, then the ideal I in
(3) is independent of the generator m € M, so I is uniquely determined by
M; in this case we see that isomorphism classes of simple R-modules are
in one-to-one correspondence with maximal ideals of R (this is a familiar
fact when R = Z).

It is easy to construct many examples of simple modules using (3) above.

Examples:
1. The simple Z-modules. are Z/pZ for p prime.

2. The simple F[z]-modules (F a field) are F|z]/(p) for p an irreducible
polynomial.

3. Here is a less obvious example : Let F be a field, V an n-dimensional
vector space over F, and let R = Endp(V) (R is often called the
“ring of linear operators over V”). One sees by choosing a basis for V
over F that R ~ M, (F), the ring of n X n matrices with entries in F.
V is an R-module via f-v = f(v); in fact, V is a simple R-module:
if v # 0, then v is part of a basis for V, so clearly Rv = V, hence V'
satisfies (ii). In fact, we will see that this is the only simple R-module,
up to isomorphism.

One of the reasons simple modules are so useful and easy to work with
is that there are so few homomorphisms between them. Consider a module
homomorphism f : M — N. Note that kernel(f) and image(f) are
submodules of M and N, respectively. Thus if M is simple, then kernel(f)
is 0 or M, and if N is simple then image(f) is 0 or N. In particular, if both
M and N are simple, then f is either an isomorphism or the zero map.
This proves the well-known

Lemma 1.2 (Schur’s Lemma) Any homomorphism between simple R-
modules is either an isomorphism or the zero homomorphism. Therefore
Endgr(M) is a division ring if M is simple.
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It is also clear that if M and N are simple, and if M % N, then
Homp(M,N)=0.

Remarks:

1. If R is a commutative ring, then
EndR(R/I) = EndR/](R/I) ~ R/I

since in general we have, for commutative rings R, that Endr(R) ~ R
via f — f(1). Note that, in particular, if M is a simple R-module,
then M ~ R/I for some maximal ideal I, and so Endgr(M) =
Endgr(R/I) = R/I, a field. So when R is a commutative ring and
M is a simple R-module, Endg(M) is not only a division ring, but
is in fact a field.

2. If V is a module over a division ring D and R = Endp(V), then R
acts on V, and the action of R commutes with that of D. Thus scalar
multiplication induces a homomorphism

D — Endg(V)

d — ‘scalar multiplication by d’.

In fact, this is an isomorphism :

Proof: Since the above homomorphism is clearly injective, we need
only show, given T € Endg(V'), that T is multiplication by an ele-
ment of D. Choose v # 0 in V. Given any element w of V, it is easy
to find an endomorphism of V' which carries v to w; hence v generates
V as an R-module. Thus an R-module endomorphism T is uniquely
determined by what it does to v. It therefore suffices to show Tv = dv
for some d € D. Now since v is part of a D-basis for V, there is a
projection operator p € Endp(V) = R, where p is the endomorphism
that projects any vector in V onto the subspace Dv generated by v
(so in particular p(v) = v). Then Tv = T(pv) = p(Tv) € Dv and
we’re done. O

In fact, the above isomorphism holds for a class of rings more general
than division rings, namely semisimple rings. For details see Exercise
18.
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3. Suppose that R is an algebra over a field k and M is a simple R-
module of finite k-dimension. Then by Schur’s Lemma Endgr(M)
is a division ring, and, since it lies in Endy(M), is in fact a finite
dimensional algebra over k via the natural inclusion

k— EndR(M)

z — ‘multiplication by z’.

When are all R-endomorphisms of M of this form? That is, when is
it true that every R-endomorphism is just “multiplication by z” for
some z € k? The following corollary to Lemma 1.2 gives us a partial
answer.

Corollary 1.3 If k is an algebraically closed field, R an algebra over k,
and M a simple R-module of finite k-dimension, then k ~ Endr(M); that
is, the only endomorphisms of M are the scalar multiplications by elements
of k.

Proof: This follows from the fact that the only finite dimensional division
algebra over an algebraically closed field is the field itself (see Exercise 1).
m]

This corollary is the original result proved by Schur, and was stated in
the context of group representation theory (with ¥ = C and R = C|G]).
Together, Corollary 1.3 and Schur’s Lemma constitute the “orthogonality
relations for complex characters” which are so important in representation
theory. We will give some indication of the power of these methods in
Chapter 6.

Semisimple Modules

The next level in complexity of modules is to combine simple modules in
a simple way, namely with direct sum. The resulting modules are called
semisimple, and are one of the basic objects of study in algebra. The phi-
losophy is that semisimple modules behave in many ways like vector spaces
over a field, simple modules playing a role analogous to one-dimensional
subspaces.

Definition: A module M is called semisimple if it is a direct sum (not
necessarily finite) of simple modules. The Uniqueness Theorem for Semisim-
ple Modules (see Exercise 25) shows that these simple summands are de-
termined (up to isomorphism) by M, and so are independent of how we
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write the direct sum. The simple modules in the direct sum are called the
(simple) constituents of M.

Examples:

1. Any simple module is semisimple.

2. Any vector space V over a division ring is semisimple. If we choose
a basis {e; }icr for V, then the one-dimensional subspaces generated
by the e; are simple modules whose direct sum is V.

3. Clearly any direct sum of semisimple modules is semisimple.

We shall see other examples of semisimple modules later.

Recognizing semisimple modules isn’t as hard as it looks. For example,
M is semisimple if one can write every element of M as a sum of elements
of simple submodules.

Proposition 1.4 If M is the sum (not necessarily direct) of simple sub-
modules M;,i € I, then M is semisimple. More precisely, there is a subset
I' C I such that M = @, M;.

The proof of this proposition is similar to the proof that every vector
space has a basis. Recall that a family of submodules {M;};c; is called
independent if } .. ; m; = 0 implies that m; = 0 for all j (here m; € M;
and m; = 0 for all but finitely many j). This is equivalent to saying that
> jes M; is a direct sum.

Proof: Consider the collection & = {J : {M,};cs is independent} under
the partial order given by inclusion. § is clearly not empty. Every chain has
an upper bound in S (namely its union) and hence by Zorn’s Lemma there
exists a maximal element I'. Let M’ =}, ;. M;. We claim that M’ = M
: for since each Mj is a simple module, M’ N M; =0 or M' N M; = M;.
If M' N M; = 0 then we could replace I’ by I’ U {j}, contradicting the
maximality of I’. Hence M; C M’ for all Mj,j € I, and so M C M’. Since
clearly M' C M we have M = M' = Zie 1+ M, the sum being direct since
I'eS.o

This proposition may be used to obtain information about the submod-
ules and quotient modules of a semisimple module M.

Corollary 1.5 If M is a semisimple module, then every submodule and
every quotient module of M is semisimple. Moreover, every submodule is a
direct summand.
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Proof: Write M as a direct sum of simple modules M = @, M;. If M’
is a submodule of M, then M/M’ is generated by the images M; of the M;
under the natural projection M — M/M’. Now if M; # 0, then M; ~ M;
since M; is simple, so by the above proposition there exists I” C I such
that M/M’' = @,c;» M;; hence M/M' is semisimple. It is now easy to
check that

M=(®Mi)@M’

el

(see Exercise 15). Finally, M’ is semisimple because it is a quotient of the
semisimple module M morever, if I’ = I\I", then

M ~M/ P M~ P M.

el el

n}

There is a partial converse to this corollary that provides a useful crite-
rion for determining whether or not a module is semisimple :

Proposition 1.6 Let M be a module such that every submodule of M is a
direct summand. Then M is semisimple.

Proof: The proof, with outline provided, is left as Exercise 17. O

The Endomorphism Ring of a Semisimple Module

Any linear transformation of one finite-dimensional vector space into an-
other can always be represented by a matrix, with composition of trans-
formations corresponding to matrix multiplication. This way of describing
linear transformations is extremely useful, and we wish to develop the idea
more generally for semisimple modules.

The first result we prove will show how to represent R-linear maps be-
tween direct sums of R-modules (in particular free R-modules) by matrices
with entries in R. The reader should keep in mind the special case when R
is a field. As we shall see in the discussion following the proposition, how-
ever, matrices which represent R-linear maps for noncommutative rings R
still have entries in R, but these entries must be multiplied in reverse order;
that is, we should view the entries as elements of the opposite ring of R.
Before discussing this more precisely, we prove the following

Proposition 1.7 Let M be an R-module and let S = Endg(M). For any
positive integers m,n, there is a canonical isomorphism of abelian groups
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Homg(M™, M™) ~ §™*"
such that the composition

Homp(M™, M™) x Homp(M?, M™) — Homgp(MP, M™)

(f,g) > fog

corresponds to matriz multiplication

SmXn ¢ gnXp gmxp

(A,B) — AB

In particular, Endg(M™) = S™*" = M, (S) is an isomorphism of rings.

For a more general result, which shows how to represent homomorphisms
of sums of different R-modules into other such sums, see Chapter 0, Exercise
10.

Proof: We'll give the setup and let the reader check the details. Given
J:M™ — M™, let a;; be the composite

M—M Ly M

where the first map is ‘injection of the j-th summand’ and the last map is
‘projection onto the i-th factor’. This gives the correspondence f — [as5],
where [a;;] is an m X n matrix with elements in S.

In the other direction, given [a;;], we define

n
f@y,..y20) = (41,...,¥m)  where y; = Zaij z;.
i=1
o

For an element r of a ring R, let T, : R — R denote the R-linear map

T.(z) = zr (note that the natural choice T(z) = rz is not R-linear). This
gives a function

R — Endg(R)

r— T,

which fails to be a homomorphism of rings since multiplication is back-
wards, namely T, o Ty = T,,. If R is commutative, then T,, = T.,, and
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so this map does give a homomorphism. This homomorphism is one-to-one
since T, = T, implies in particular that r = T,(1) = T5(1) = s, and is onto
since f = Ty(y) for any f € Endgr(R). Thus Endg(R) ~ R if R is commu-
tative. In general, the problem of “backwards multiplication” is corrected
by looking at the opposite ring R° of R, which has the same additive
group as R, but has multiplication defined by r - s = sr (see Chapter 0,
Exercise 25 for properties of the opposite ring). By the same argument, it
is clear that Endgr(R) ~ R° for any ring R. Note that this is consistent
with the case when R is commutative, for then R ~ R°.

We now look at Proposition 1.7 in the special case of modules over a
division ring. The theory of modules over a division ring D is very much
like the theory of vector spaces over a field. In particular, any D-module is a
direct sum of copies of D (by the usual proof for vector spaces over a field),
and (by Proposition 1.7) we can represent any D-linear map D® — D™
as an m X n matrix with entries in Endp(D) ~ D°; that is

Endp(D") ~ Mp(Endp(D)) = M,(D°).

Notice that if D is a field then D° = D, and we obtain the well-known
result from linear algebra that linear transformations can be represented by
matrices with entries in the base field, with composition of transformations
corresponding to matrix multiplication.

We conclude this section with a theorem that gives us some idea of what
the endomorphism ring of a semisimple R-module looks like for an arbitrary
ring R. In order to do this we must make one additional (though not too
restrictive) assumption. We will need

Definition: A semisimple module has finite length if it is a finite direct
sum of simple modules.

This definition is a special case of the definition of finite length for ar-
bitrary modules. For the more general definition of finite length, see the
exercises in Chapter 0. The statements that follow also hold for the more
general definition, although the proofs are a bit messier.

Proposition 1.8 If M is a semisimple R-module of finite length, then
Endr(M) is isomorphic to a finite product of matriz rings over division
Tings.

Proof: By grouping together isomorphic simple summands of M we can
write

k
M~ P M
i=1
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with M; simple and M; % M; if i # j (the M]** are called the homoge-
neous or isotypic components of M). Since Hom(M;, M;) = 0 for i # j,
clearly any endomorphism of M must take each isotypic constituent into
itself. Thus we have

Endp(M) =~ Endp(@®F_, M™)

~ [15_, Endr(M) by Chapter 0, Exercises 8 and 9
and the above comment
= HLI M., (Endg(M;)) by Proposition 1.7.

and Endg(M;) is a division ring for each i by Schur’s Lemma. O

This proposition shows that for semisimple R-modules M, we can think
of Endgr(M) as isomorphic to the ring of matrices of the form

A 0 0 O
0 A, 0 O
0 0 0 A,

where A; is an n; X n; matrix with elements in the division ring Endg(M;).
This is a particularly concrete way of describing semisimple R-modules.

Semisimple Rings

This section introduces the concept of semisimple ring. Semisimple rings
arise in diverse areas of mathematics such as number theory, representation
theory, differential geometry and analysis. Understanding their structure

will be one of our goals. Semisimple rings will also provide us with many
examples of semisimple modules.

Definition: A ring R is a (left) semisimple ring if R is semisimple as a
left R-module.

Remark: There is also an obvious notion of “right semisimple” . We shall
soon see, however, that this notion coincides with that of “left semisimple”,
so we shall henceforth drop the qualifier “left”.

We now give two other conditions which are equivalent to semisimplicity
of a ring. This will be our first example of how the structure of a ring may
be deduced from information about modules over that ring. For those not

familiar with the definition of exact sequence or split exact sequence, see
Chapter 0.
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Theorem 1.9 Let R be a ring. Then the following are equivalent :
(1) R is a semisimple ring.

(2) Every R-module is semisimple.

(3) Every short ezact sequence of R-modules splits.

Moreover, if these conditions hold then R has finite length as an R-
module and every simple R-module is isomorphic to a simple constituent

of R. In particular there are only finitely many simple R-modules (up to
isomorphism).

Proof:

(1) implies (2): If R is a semisimple R-module, then 1 R is semisimple
for any such sum. Any R-module M is the quotient of some free mod-
ule €, R (Chapter 0, Exercise 3), hence is semisimple since quotients of
semisimple modules are semisimple (Corollary 1.5).

(2) implies (3): This follows immediately from the fact that every sub-
module of a semisimple module is a direct summand ( Corollary 1.5).

(3) implies (1): Given a submodule I of R, looking at
0-—I—R-—R/I —0

shows that, by (3), I is a direct summand of R. R is thus semisimple by
Proposition 1.6.

If the above three conditions hold, then R ~ ®i€ 1 M; as modules for
some simple R-modules M;. But R is finitely generated (by 1 € R) as an R-
module, so [ is finite. Thus R has finite length. If M is a simple R-module,
we have

iel

with the second map onto (Proposition 1.1). Since M is simple, only one
of the maps M; — M is nonzero, and so must be an isomorphism. Thus
the simple R- modules are precisely the M;, and there are finitely many of
them. O

It is worth re-emphasizing that the only simple R-modules are those
occuring in the representation of R as a direct sum of simple modules.

Examples:

1. Any division ring D is semisimple because it has no proper (left)
ideals; hence it is a simple D-module.
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2. Theorem 1.9 says that semisimple rings are, as modules, finite direct
sums of simple submodules. Since simple Z-module are just cyclic
groups of prime order, and since Z # finite Z/pZ for any such finite
sum, it follows that the ring Z is not semisimple. Indeed, the homo-
geneous (i.e., having just one homogeneous constituent) semisimple
Z-modules are just the elementary p-groups, and the general semisim-
ple Z-module is a direct sum of such.

3. If F' is a field, then F[z] is not semisimple for reasons similar to the
above.

4. One can check that Z/nZ is semisimple if n is square-free. Similarly,
for a field F, Flz]/(f) (F a field) is semisimple if f is square-free.

5. If D is a division ring, V a finite dimensional vector space over D, then
the matrix ring Endp (V) is semisimple. Further, all simple modules
over Endp(V) are isomorphic.

Proof: Choose a basis {e;,...,e,} for V and define

R=Fndp(V) —Va.---0V
f'_—")(f(el)v-"af(en))

We claim that the above map is an isomorphism of R-modules: It is

a homomorphism since ¢, the evaluation map at v, is R-linear, as
seen by

&(hf) = (hf)(v)
= h(f(v))
= h(es(£)).

The map is one-to-one since f is determined by what it does to a
basis, and is onto since, given any function on a basis, there exists an
f € Endp(V) extending that function.

Thus, since V is a simple Endp(V)-module (see the example after
Proposition 1.1), we see that Endp (V) is a semisimple ring. By The-
orem 1.9, every module over Endp(V) is a direct sum of simple mod-
ules (namely copies of V). O

Let us look at the above in terms of matrices, where we can give
a convenient family of simple submodules of the semisimple module
Mn(D°) = Endp(V') which illustrates the decomposition concretely.
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The spaces of column vectors

0 ay; 0
1/1' = azq
0 QAni 0

are simple submodules of the semisimple module M, (D°) = Endp(V),
and further M,(D°) = V; @ --- & V,,. Note again that the V; are

mutually isomorphic, so there is a single simple module (up to iso-
morphism).

Note: This result is not true if V' is not finite-dimensional (see Exercise
28).

6. If R and S are semisimple rings, then R x S is semisimple. This can be
seen from the fact that if M is an R x S-module, then M = M, ® M,,
where M, is an R-module and M; is an S-module (see Chapter 0,
Exercise 6).

Examples 5 and 6 imply that, given division rings D; (i = 1,...,n) and
finite dimensional vector spaces V; over D;, [T}, Endp, (V;) is semisimple.
For emphasis we state this as

Proposition 1.10 Any finite product of matriz rings over division rings
18 semisimple.

Wedderburn Structure Theorem

Theorem 1.9 says that a semisimple ring R is isomorphic, as an R-module,
to a finite sum of simple R-modules. We can also give such a decomposition
of R into rings instead of modules; in fact, an even more precise result can
be given. Proposition 1.10 states that any finite product of matrix rings
is semisimple. The fact that all semisimple rings are of this form is the
content of the next theorem. This will be our second example of how the
structure of a ring may be deduced from information about modules over
that ring.

Theorem 1.11 (Wedderburn Structure Theorem) Every semisimple
ring R is isomorphic to a finite direct product of matrir rings over division
rings. If R is commutative, then R is isomorphic to a finite direct product
of fields.
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Proof: Since R is semisimple as a ring (and thus of finite length as an
R-module, by Theorem 1.9) we have, by Proposition 1.8, that Endg(R)
is isomorphic to a finite product [ My, (D;) of matrix rings over division
rings D;. But Endgr(R) = R°. Thus

R~ (R°)° w[[Man(Di)]°
~ HM"i (Df)

The last isomorphism comes from the fact that M, (D)° ~ M, (D°), as
can be seen by using the transpose. The second statement of the theorem
is clear. O

Before elaborating on the Wedderburn Structure Theorem, we give one
immediate consequence which makes life a bit less complicated.

Corollary 1.12 A ring is left semisimple if and only if it is right semisim-
ple.

Thus we refer only to semisimple rings without mention of left or right.

Definition: A ring is called simple if it has no non-trivial two-sided ideals.
This is, in general, weaker than saying that the ring is simple as a module
over itself; any ring which is simple as a module over itself is a simple
ring, but not conversely. Exercise 5 of this chapter shows that a ring of
n X n matrices over a division ring is simple, although it may contain many
nontrivial left ideals. It should be noted that some authors (e.g., Lang and
Bourbaki) define “simple” for rings so that “simple” implies semisimple.

As we shall see, one more condition needs to be met for our simple rings
to be semisimple.

Combining the fact that matrix rings are simple with the Wedderburn
Structure Theorem, we see that

Every semisimple ring R is isomorphic to a finite product of
simple rings Ry,...,R,.

We can think of each R; as 0 x ... x R; x ... x 0 sitting inside of R =
Ry x...x Ry, so that each R; is a two-sided ideal in R (but not a subring!)
and thus an R-submodule of R. It is easy to check that if i # j then R; % R;
as R-modules, even if R; ~ R; as rings (Chapter 0, Exercise 7).

We also know what all of the simple R-modules are: each R; is isomorphic
to a matrix ring My, (D;), and, being simple, has a unique isomorphism
class of simple modules (by the Structure Theorem for Simple Artinian
Rings to follow). The unique isomorphism class of simple left (right) R;-
modules is the space generated by any column (row) vector (check this).
Thus R has exactly n isomorphism classes of simple modules. This follows
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from the fact that if M is an R x S-module, then M = M; & M,, where
M, is an R-module and M, is an S-module (Chapter 0, Exercise 6).

The Wedderburn Structure Theorem is a special case of a more general
theory of rings of projective dimension zero. For more information about
this topic, see Chapter 7.

We have shown that every semisimple ring can be written as a direct

product of simple rings. The following theorem tells us that we can do this
uniquely.

Theorem 1.13 (Uniqueness Theorem for Semisimple Rings) If

R=][R: and R=ﬁR;.
: e

are two product decompositions of a ring R, where each R; and R;- is a
simple ring, then n = m and each R; is some R;..

Remark: The following proof will show that these simple factors are unique

in the sense that each R; really is equal to, not just is isomorphic to, some
R’
]

Proof: First note that for each i, R;R = R;, since we may think of each
R; (and R;) as a two-sided ideal in R. Applying this to the equation R =
[1;=, R} gives R; = [[]_, RiR}. Now each R;R; is a two-sided ideal of R;
and is thus either zero or R;. Since every R;R; isn’t zero, there is an R;
with R; = R;R;. Now R; = R;R; is also a two-sided ideal of R}, and so
must equal Rj. Thus we see that R; = R};. O

There is an analogous, but weaker, uniqueness theorem for semisimple
modules, the proof of which we leave as an exercise (see Exercise 25).

Simple Rings and Further Applications

It follows from the definitions that any simple module is semisimple. Look-
ing at the way we defined these concepts for rings, however, the analogous
fact is not clear. In fact it is not true that every simple ring is semisimple!
(See Exercise 28 for an example.) The problem is that it is possible for
a ring (even a simple one) to contain an infinite descending sequence of
distinct left ideals I; D I D I3 D ---, but Theorem 1.9 shows that any
semisimple ring has finite length, and so no such descending chain of ideals
exists in a semisimple ring. If we assume that this does not happen in the
simple ring R, however, then it will be true that R is semisimple. A ring
satisfying such a descending chain condition is called left artinian. For
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those not familiar with artinian (and noetherian) rings and modules, see
the section on chain conditions in the exercises of Chapter 0 for additional
information.

Before proving that any simple artinian ring is semisimple, we shall intro-
duce two useful concepts that will aid in our understanding of the structure
of rings.

For a vector space V over a field F, V can be written as a direct sum of
one-dimensional subspaces, each of which is isomorphic (as an F-module)
to the simple module F'. Thus V can be broken up into simple pieces each
of which looks the same. The next definition generalizes this concept.

Definition: A semisimple module is called homogeneous if it is a direct
sum of a collection of simple modules all of which are isomorphic to a fixed
simple module S. We also say that the module is homogeneous or isotypic
of type S.

To prove the Structure Theorem for Simple Artinian Rings, we need a
lemma concerning endomorphisms of homogeneous semisimple modules.
Recall that a submodule M’ C M is said to be stable under the endomor-
phism ¢ : M — M if $(M') C M'. For homogeneous semisimple modules,
we can say exactly which submodules are stable under all endomorphisms;
namely, we have :

Lemma 1.14 Let M be a homogeneous semisimple module. Then the only
submodules of M that are stable under all endomorphisms are 0 and M.

Proof: Suppose M’ is a proper non-zero submodule. Since M is semisimple,
M’ is a direct summand, say M = M’ @ M". Note that both M’ and
M" are semisimple and in fact are homogeneous of the same type as M
(see the proof that submodules and quotients of semisimple modules are
semisimple in Corollary 1.5). Hence Hom(M’, M") # 0. But then it is easy
to find endomorphisms of M which don’t stabilize M’ , for example the
composition
M A ES g

0

The converse to this lemma is also true, as is shown in Exercise 11. That
is, if 0 and M are the only submodules of M which are stable under all
endomorphisms of M, then M is semisimple and homogeneous.

For a vector space V over a field F, no non-zero scalar annihilates a non-

zero vector; that is, any (non-zero) one-vector set is linearly independent.
The more general notion for modules is the following :

Definition: An R-module M is said to be faithful if, for every r € R,
rM = 0 implies that r = 0
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The following theorem ties together a few ways we have been looking at
the structure of rings, and in particular proves our claim that any simple
artinian ring is semisimple. This theorem provides another nice example of

the interplay between the structure of a ring and the structure of modules
over that ring.

Theorem 1.15 (Structure Theorem for Simple Artinian Rings)
Let R be a ring. Then the following are equivalent :

(1) R is a simple artinian ring.

(2) R is isomorphic to a matriz ring over a division ring.

(3) R is semisimple and all simple modules over R are isomorphic.

(4) R is homogeneous and semisimple as an R-module.

(5) R is artinian and has a faithful simple module.

This theorem is sometimes called the Wedderburn-Artin Theorem .

Proof: (5) implies (4): Let M be a faithful simple module. We’ll show
that R is isomorphic to a submodule of M™ for some n. Consider all R-
homomorphisms f : R — M™ for various n, and choose one with minimal
kernel (we can do this since R is artinian). We claim that f is one-to-one,
for if f(r) =0 and r # 0, then since M is faithful there is an m € M with
rm # 0. Define

R— Mo M
by

z+— (f(z),zm)

This map has smaller kernel than f, giving a contradiction. Thus f is
one-to-one and so R is a submodule of the homogeneous semisimple module
M?". Hence R is homogeneous and semisimple.

(4) implies (3): This follows immediately from the definitions and Theo-
rem 1.9.

(3) implies (2): This follows immediately from the Wedderburn Structure
Theorem and the comments following it.

(2) implies (1): This is simply the fact that every matrix ring over a
division ring is both simple (Exercise 5) and artinian (Chapter 0,Exercise
48).

(1) implies (5): Note that for any module M, Ann(M) = {r € RjrM = 0}
is a two-sided ideal of the simple ring R and 1 ¢ Ann(M), so Ann(M) = 0.
Thus any R-module is faithful. Since R is artinian, R has some simple
module; in fact, any module has a simple submodule, for any descending
chain of ideals must eventually stabilize, and the module to which the
sequence stabilizes must clearly be simple. Thus R has a faithful simple
module. This completes the proof of the Theorem. O
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Remark: It is easily shown (see Exercise 18) that if R satisfies the hy-
potheses of Theorem 1.15 and M is a simple R-module with endomorphis-
m ring D (remember D will be a division ring), then the structure map
R — Endp(M) is an isomorphism. This gives an explicit realization »f

).

We apply the ideas of this chapter to prove a classical result due to
Burnside.

Corollary 1.16 (Burnside) Let R be an algebra over a field k and let
M be a simple R-module such that dimx(M) < oo. Also suppose that
Endp(M) = k (e.g., if k is algebraically closed, cf. Corollary 1.8). Then
the structure map R — Endy(M) is onto.

Proof: The diagram

R ———— End, (M)

R/Ann(M)

commutes, where the homomorphism from R to End(M) is the structure
map of M as an R-module. Now

(1) M is a faithful R/Ann(M)-module (always), and hence
(2) R/Ann(M) — Endi(M) and the latter is finite dimensional over k
since M is finite dimensional over k. Thus R/Ann(M) is artinian since it
has finite dimension.

Now (1) and (2) are just condition (5) of Theorem 1.15 for the ring
R/Ann(M), hence R/Ann(M) ~ End(M) via Remark (2) above, and we
are done. O

We now give a corollary which will be useful later on in our study of the
Brauer group. We give this corollary, which shows that every element in the
Brauer group (defined in Chapter 4) has an inverse, in order to demonstrate
some of the techniques used in this chapter.

Corollary 1.17 Let k be a field. Let R be a simple k-algebra of finite
dimension n whose center is k. Then R Qx R° ~ M,(k).

Proof: R is an R-R bimodule relative to k, hence an R ®; R°-module
(Chapter 0, Exercise 28). It is a simple R ®; R°-module since it has no
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non-zero two-sided ideals (two-sided ideal = R ®; R°-submodule of R).
Consideration of the map

End}{®kRo (R) R Z(R)

F— f(1)
shows that

Endrg,r-(R) ~ Z(R) = k.
So by Corollary 1.16

R®k R° — Endi(R) ~ My(k)

is onto. But both the domain and the range have k-dimension n?, and so
the map is an isomorphism. O

Summary

Throughout this chapter we have seen several characterizations of semisim-
ple rings. In the exercises, we will introduce other properties of a ring which
are equivalent to semisimplicity. Since it is useful to keep all of these prop-
erties in mind when looking at such rings, we give a summary of several
properties which characterize semisimple rings :

Theorem 1.18 For a ring R the following are equivalent:

(1) R is a semisimple ring; i.e., R is semisimple as a left R-module.

(2) Every left R-module is semisimple.

(8) Every short ezact sequence of left R-modules splits.

(4) Every left R-module is projective.

(5) Every left R-module is injective.

(6) R is ring isomorphic to a finite product of matriz rings over division
Tings.

(7) R is the direct sum of a finite number of simple left ideals

n
R = @Ll
i=1

where each L; is a simple (as a submodule) left ideal and L; = Re;, where
{e:}, is a set of orthogonal idempotents such that e; +ez+---+e, = 1.
(8) R is artinian and has vanishing Jacobson radical.

Moreover, (1)-(5) hold with “left” replaced by “right”.

An explanation of (4) and (5) will be given in the exercises, and an expla-
nation of (8) will be given in Chapter 2. These conditions are included here
for completeness. The proof of this theorem (except for (8)) is contained in
this chapter partly in the exposition and partly in the exercises.
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Exercises

A Lonely, Ungroupable Exercise

1. Let D be a division algebra which has finite dimension over the field
k. For each a € D show there is a monic polynomial in k[z] which has
a as a root. Conclude that if k is algebraically closed, then k = D.
Note that this proves Corollary 1.3.

Simplicity

2. Let R be a ring (with 1) such that the only left ideals of R are 0 and
R. Show that R must be a division ring; that is, if R is simple as a
left R-module, then R is a division ring. If the hypothesis that R has
an identity is dropped, the result no longer holds. Give an example
to show this. In fact, the type of example you give is unique.

3. Show that the assumption “every non-zero element is a generator” in
Proposition 1.1 is necessary.

4. Determine all simple R-modules, where
(a) R=12Z.
(b) R = Cjz}.
(c) Q/(=® - 5)
{(c) R is a principal ideal domain.
(d) R = Clz,y.

(e) R is the set of continuous, real-valued functions with domain [0, 1].

5. Show that the only two-sided ideals of M,,(R) are of the form M,,(I)
for some two-sided ideal I of R. Conrlude that M,,(R) is a simple ring
if and only if R is a simple ring. [Hint: The following may be useful:
Let e;; denote the n x n matrix with 1 in the 4, j position and zeros
elsewhere. These matrices are called the elementary matrices of
My (R). Clearly {e;; : 1 <4,j < n} is a basis for M, (R) considered
as an R-module. So every element of M, (R) can be written uniquely
as ) ajje;j, and the e;; can be multiplied via the formula

0 ifj#k
€ijekl =
€5l lfj = k.

Note also that elementary row operations correspond to left multipli-
cation by elements of the form
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Eij(r)=I+re;; TeR,i#j

where I denotes the n x n identity matrix. Similarly, column opera-
tions correspond to right multiplication by such elements.]

Remark: The above exercise can be viewed as a very special case in
Morita theory. Morita theory provides a set of data (called a Morita
context) which gives a categorical equivalence between the category
of R-modules and the category of S-modules, where R and S are rings
forming part of a Morita context. In particular, R and M, (R) are re-
lated by a Morita context. For more on Morita theory, see Jacobson’s
Basic Algebra II.

Semisimplicity

. Show that the Z-module Q is neither semisimple nor has a simple

quotient. In fact, show that Q is indecomposable : it is not the
direct sum of two proper Z-submodules.

Show that the following conditions are equivalent for a semisimple
module M :

(i) M is finitely generated.

(ii) M is a direct sum of a finite number of simple submodules.

(iii) M has finite length.

(iv) M satisfies both the ACC and DCC.

In particular note that, for a vector space, length equals dimension.
Note that the equivalence of (iii) and (iv) is Exercise 46 of Chapter
0.

Prove that the homomorphic image of a semisimple ring is semisimple.

Let R be a ring and M a semisimple R-module. Let S and S’ be
isomorphic simple submodules of M via the isomorphism g : § — 5'.

(a) Show that there is an R-isomorphism f : M 5 M such that
the restriction of f to S is the given isomorphism g; in particular,
f(8) =5

(b) Show that this isn’t true if S and S’ are isomorphic but otherwise

arbitrary. [Hint : look at an infinite-dimensional vector space and an
infinite-dimensional proper subspace.]

Let N be a submodule of the R-module M. If N and M/N are
semisimple, does it follow that M is semisimple?
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Let M be a module. Show that 0 and M are the only submodules
of M stabilized by every endomorphism of M if and only if M is
semisimple and homogeneous(cf. Lemma 1.14).

Prove that a module M is semisimple if and only if every cyclic sub-
module of M is semisimple.

Some Centers

Let R be a ring. The center of R, denoted Z(R), is {z € Rlzr =12
for all r € R}. Z(R) is a commutative subring of R.

(a) Show that Z(R x S) ~ Z(R) x Z(S).

(b) Show that Z(M,(R)) ~ Z(R).

(c) Show that Z(D) is a field if D is a division ring.

(d) Compute Z(7T,(R)) for T,(R) the ring of n x n upper triangular
matrices over R.

(e) Show that the center of a semisimple ring is a product of fields,
hence is semisimple.

(f) Let D be a division ring and V a non-zero vector space over D.
Let k = Z(D) and R = Endp(V). There is a homomorphism k — R
given by the action of k on V' by scalar multiplication. Show that this
induces an isomorphism k ~ Z(R).

(g) Let k be a field and let G be a group. Describe Z(k[G]). [Hint: If
g € G has only finitely many conjugates, consider the element Cy in
k[G] which is the sum of the conjugates of g.]

Let R be a semisimple artinian ring.

(a) Prove that, if I is a two-sided ideal of R, then the canonical
homomorphism Z(R) — Z(R/I) is surjective.

(b) Let M be a left R-module and let S = Endg(M). Prove that the
homomorphism

T:Z(R) — Z(S)
defined by

mI(r)=rm forre Rme M

is surjective. Note that we view M as an R — S-bimodule.

(c) Assume now that R is simple artinian, and let D be the division
ring such that R ~ My(D). Prove that Z(R) ~ Z(D) as fields. [Note
that this can be deduced from part (b) or shown directly.]
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Direct Summands

Let M be an R-module and M’ a submodule. Prove that M’ is a
direct summand of M if and only if M has a submodule M” which

maps isomorphically onto M /M’ under the canonical projection M —
M/M'.

If M’ is a direct summand of M, prove that any two complements
for M’ are isomorphic (recall that a complement of M’ in M is a
submodule N with M = M’ @ N). Give an example to show that two
complements are not necessarily equal.

Let M be a module such that every submodule is a direct summand.
Show that M is semisimple as follows:

(a) Show that every submodule of M inherits the property that each
of its submodules is a direct summand.

(b) Show that M contains a simple submodule : Choose any finitely
generated non-zero submodule M’ C M (e.g., M’ could be cyclic).
Let M" C M’ be a maximal submodule not equal to M’ (why do
such submodules exist?). Hence M’/M" is simple and by (a) there is
an X C M’ with M’ = M” & X and with X ~ M'/M" simple.

(c) Let M; be the submodule of M generated by all simple sub-
modules, which is thus a direct sum of simple modules. Then M =
M; & M; for some submodule M,. Applying (a) and (b) we see that
if My # 0, then it contains a simple submodule and we get a contra-
diction.

More Information from the Wedderburn Structure Theorem

Let R be a semisimple ring, let {M,...,M,} be a set of repre-
sentatives for the isomorphism classes of simple R-modules, and let
D; = Endgr(M;). The action of R on M; defines a homomorphis-
m ¢; : R — Endp,(M;). Combining these gives a homomorphism
® : R — [];_, Endp,(M;). Prove that M; is finite dimensional over
D; and that ® is an isomorphism.

Prove that if R is a commutative semisimple ring, then the canon-
ical map R — []; R/I is an isomorphism, where I ranges over the
maximal ideals of R.

With the notation of Exercise 18, let n; = dimp, M;. Prove that
n; is the multiplicity with which M; occurs in R, regarded as a left
R-module.

Prove that if R is a semisimple ring then the isotypic components of
R are the minimal two-sided ideals of R. Prove that every two-sided
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ideal of R is a product of these and conversely. Note that the isotypic
components are not subrings. ‘

(a) Prove that R is a semisimple ring if and only if R is the direct
sum of a finite number of simple left ideals

where each L; is a simple (as a submodule) left ideal and L; = Re;,
where {e;}1, is a set of orthogonal idempotents such that e; + ez +
oot e, =10

(b) Prove that if {e;,...,en} is a set of orthogonal idempotents in
My (D), D a division ring, then m < n.

This exercise provides a sketch of a clever proof, due to M. Rieffel, of
part of the Structure Theorem for Simple Artinian Rings. Let M # 0
be a left ideal of a simple ring R. Viewing M as a left R-module,
let S = Endg(M),T = Endg(M), and ¥ : R — T be the natural
homomorphism. Assume that R possesses no nonzero proper two-
sided ideals, so that 1) is injective.

(a) Show that ¥(M) is a left ideal of T'. [Hint: Show that the mapping

M—T
T — ()
is a homomorphism of T-modules by using the fact that right multi-
plication by elements of M yields elements of S.]

(b) Show that ¥ (R) is a left ideal of T'. [Hint: Observe that MR = R
and apply ¥ and part (a).]

(c) Show that 1 is an isomorphism.

Let A be a simple k-algebra with center k such that [A : k] = p? with
p a prime. Prove that either A is a division algebra or A ~ M,(k).
Uniqueness Theorem for Semisimple Modules

Prove the Uniqueness Theorem for Semisimple Modules: If M is an
R-module and if

M=éMi and M=éMJ’
i=1 j=1

are two direct sum decompositions of M with simple summands M;
and M}, then n = m and there is a permutation 7 of {1,...,n} with
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M; ~ M;(i) for each i = 1,...,n. [Hint : induct on the smaller of m
and n.]

(a) Show that the Uniqueness Theorem for Semisimple Modules is not
true if we replace “is isomorphic to” by “is equal to”, in contrast with
the Uniqueness Theorem for Semisimple Rings. [Hint : Show that if
M = R? is viewed as an R-module, then there are infinitely many
ways to decompose M as the direct sum of two simple submodules.]

(b) Show that the ring R of 2 x 2 matrices over the real numbers
has an infinite number of distinct proper left ideals, any two of which
are isomorphic as left R-modules. Then show that there are infinitely
many distinct pairs (I, I’) of minimal left ideals of R with R = I I
as modules (remember that minimal left ideals correspond to simple
left R-modules).

Maschke’s Theorem

Let k be a field and G be a finite group.

(a) Let M be a k[G]-module with submodule N. Since k is a field, we
know by Theorem 1.9 that the short exact sequence

0—N—MEM/N—o0

splits as a sequence of k-modules (here p is the canonical projection).
Denote the splitting by s : M/N — M. Clearly there is no reason
to believe that s is a homomorphism of k[G]-modules.

Define S : M/N — M by the formula S(z) = 3 . 9s(97 ).
Compute po S.-

(b) Show that if |G| is invertible in k, then there is a k[G]-splitting
of the above sequence. Conclude that k{G] is a semisimple ring.

Remarks : This result, known as “Maschke’s Theorem”, is of fun-
damental importance for representation theory. Given a group G,
we study C|G], which is just (by Maschke’s Theorem and Wedder-
burn’s Theorem) a product of algebras of the form M, (C). Since
we understand completely the structure of semisimple C-algebras,
the stratagem of embedding a mysterious object under study (the
group G) into an object with a richer and therefore better-understood
structure (the algebra C[G]) can be expected to yield great dividend-
s. In fact, many important theorems in the modern structure theo-
ry of finite groups are proved by representation-theoretic methods.
See Chapter 6 for more on this, in particular for an application of
Maschke’s Theorem in proving Burnside’s p®q® theorem, a much cel-
ebrated result in group theory.
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For those who know some analysis, think of G as a discrete topological
group with the counting measure p normalized to be a probability

measure; i.e., for X C G, u(X) = @%_FQ, so p(G) = 1. Then sums
can be written as integrals; e.g., Tflv"T Zg ag becomes [ a(g)du(g).
Then the formula for the above splitting assumes the form :

1 1 L .
5@ =g gezg‘;gs@ 1g) = fG 95(9™12)du(g).

This should look familiar - it’s just the convolution of the identity
with the map s. In fact, if G is any compact topological group, there
exists a unique left-invariant measure (i.e., u(X) = u(gX) for all
measurable X C G) with 4(G) = 1, called the Haar measure on G.
For example, the Haar measure on Euclidean space R" is Lebesgue
measure, and the Haar measure on the circle S! is the usual “5177
arclength” measure. The fundamental facts about group representa-
tions work just as well in this setting. Indeed, various formulae arising
in the representation theory of finite groups are called “Fourier in-
version” formulae, because that’s exactly what’s happening.

(c) Prove the converse of part (b). [Hint : Look at the exact sequence

where ¢ is the ‘augmentation map’ (3> r,9) = Y r, and A is the
kernel of € (A is often called the augmentation ideal of k[G]). Here
k is viewed as a k[G] — module via e. Show that this exact sequence
doesn’t split when the characteristic of k divides |G|.]

Some Counterexamples

(a) If V is a vector space of countably infinite dimension over a field
k, show that the set of finite rank operators (i.e., those elements of
Endy, (V) whose image is finite dimensional) forms a two-sided ideal
in Endi(V); hence Endy(V) is not simple, in contrast to the fact

that finite endomorphism rings of finite dimensional vector spaces
are simple.

(b) Use part (a) to construct a simple ring which is not semisimple.

Projective and Injective Modules

A module P is called projective if any of the following three equiv-
alent conditions holds :
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(i) Given a homomorphism f : P — B and a surjective homomor-
phism p : A — B, there exists a homomorphism g : P — A making
the following diagram commutative :

~

A———>»B — =

(ii) Every surjection p : M — P splits, i.e., there is a homomorphism
s : P — M such that ps = 1p.

(iii) P is a direct summand of some free module F.

(a) Show that these three conditions are equivalent.

(b) Show that an arbitrary sum of modules is projective if and only
if each of the summands is projective.

30. (a) Show that the projective Z-modules are precisely the free abelian
groups; i.e., every projective Z-module is free. Generalize this to prin-
cipal ideal domains.

(b) Let R be the ring of two-by-two matrices over a field k, and let [
be the left ideal of R consisting of matrices whose second column is
zero. Show that the left R-module I is projective but not free.

31. A module @ is called injective if either of the following equivalent
conditions holds :

(i) Given a homomorphism j : A — @ and an injective homomor-
phism i : A — B, there exists a homomorphism h : B — @ making
the following diagram commutative :

i

0———» A —= R

J

(ii) Every injection i : Q@ — M splits.
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(a) Show that these two conditions are equivalent.

(b) Show that an arbitrary product of modules is injective if and only
if each factor is.

Remark : Injectivity is a concept “dual” to projectivity; that is, the
respective parts (i) and (ii) of the equivalent definitions are obtained
from each other by reversing the direction of the arrows. Is there an
analogue (or rather dual) to definition (iii) of Exercise 29 for injective
modules?

Prove that every vector space over a division ring is both projective
and injective.

Let R be a ring. Show that the following statements are equivalent :
(i) Every R-module is projective.

(ii) Every short exact sequence of R-modules splits.

(iii) Every R-module is injective.

In view of Theorem 1.9, this gives us two more equivalent definitions
of a semisimple ring.

Prove that Q is not a projective Z-module, thus providing another
proof that Z is not a semisimple ring,.

Projective modules are quite common, whereas injective modules,
though still extremely useful in many contexts, are harder to come
by. This exercise gives a way of recognizing injective modules. Prove
the following : The R-module Q is injective if and only if for each
left ideal L of R, every homomorphism of L to Q can be extended to
a homomorphism of R to Q. [Hint : One direction is trivial. For the
other direction proceed as follows :

(i) Given a diagram

consider the collection S of all pairs (B;, f;) where image(i) C B, C
B and f; : B; — Q satisfies fii = f. Partially order S by saying
that (Bj, f;) > (Bk, f) if both B; D By, and the restriction of fi to
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By is fix. Apply Zorn’s Lemma to get a maximal element of S; call it

(Bo, fo)-

(ii) Now show that By = B : if By # B, choose ¢ € B with c ¢ By
and let L = {r € R|rc € By}, a left ideal of R. Show that the
formula g(b) = fo(bc) defines a homomorphism from L to Q. Apply
the hypothesis to get a homomorphism ¢’ : R — Q. If rc € By,
show that: f(rc) = rg’(1). Let B' = By + Rc, which contains but
is not equal to Bg. Show that f' : B — Q given by the formula
f'(bo +rc) = fo(bo) + rg’(1) is a well-defined homomorphism which
restricts to fo on By. This should yield a contradiction and conclude
the proof.]

An abelian group A is divisible if for all a € A and n € Z,n # 0,
there exists b € A such that a = nb.

(a) Show that direct sums, homomorphic images, and direct sum-
mands of divisible groups are divisible.

(b) Show that an abelian group is divisible if and only if it is injective
as a Z-module.
(a) Show that the additive groups Q, R, and C are divisible.

(b) Show that Q/Z and direct factors of Q/Z, for example the p-

torsion subgroups Zy~ = {r € Q : p"r € Z for some n} , are divisi-
ble.

(c) Show that no finite group is divisible. Show that no free abelian
group is divisible.



2
The Jacobson Radical

In Chapter One we developed a structure theory for semisimple rings, as
summarized in Theorem 1.18. This theory used, for the most part, proper-
ties of modules over a semisimple ring in order to characterize such a ring.
In this chapter, we give a more intrinsic characterization of semisimple
rings.

What follows is part of a general theme in any structure theory. The
idea is to single out some “undesirable” property of the object one wishes
to study; in our case the information is captured by the Jacobson radical
of a given ring. One then studies only those objects which don’t have this
property; for example, those rings whose radical is zero. This can be a tricky
business, for one must strike a balance between studying a class of objects
large enough to be interesting and useful, yet small enough to be tractable.
A good example of such objects, as we have seen, are semisimple rings, and
it is this class of objects we are most interested in. Our explorations using
this philosophy will also provide us with valuable information about rings
which are not semisimple.

Another Characterization of Semisimple Rings

We understand vector spaces over fields quite well. One nice property of
such modules is that no non-zero scalar annihilates a non-zero vector, and
in particular does not annihilate the entire module; that is, a field acts
faithfully on any vector space over that field (recall that an R-module
M is faithful if ann(M) = 0). Moving from the situation of a field to an
arbitrary ring R, we want to come up with an algebraic object that captures
the information of how far off we are from having R act faithfully on some
simple R-module. We will now define such an object - the Jacobson radical
J(R). The radical is an ideal consisting of those elements which can't be
detected by simple modules. Accordingly, it will turn out that J (R)=0
precisely when R has “enough” simple R-modules; and J (R) will vanish if
there exists a faithful simple R-module.

Definition: The (Jacobson) radical of a ring R, denoted J (R) , is the set

of those r € R such that r € ann(M) for every simple (left) R-module M;
that is,
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J(R) = ﬂ ann(M).

M simple

If J(R) = 0, we say that “R has no radical.”

Remarks:

1. Tt is easy to check that J(R) is a two-sided ideal. It is also easy to
check that ann(M) is a maximal left ideal for each simple module M,
and that, conversely, each maximal left ideal I is the annihilator of
some simple R-module (namely, R/I). This is true because, as stated
in Proposition 1.1, simple R-modules are precisely R/I for maximal
left ideals I. Thus we see that, alternatively,

JR)= ) I
max. left
ideals I

This shows that J(R) can be intrinsically defined. Such a definition
is useful in computing the Jacobson radical, as long as we can get
sufficient information on the maximal ideals of the ring at hand. This
is the case in examples 1, 2, and 4 below. Note that, in particular,
J(R) # R.

2. Some authors say “R is semsimple” when referring to rings with
J(R) = 0. This is, in general, not the same as our definition of
the word; the ring Z, for example, has vanishing radical but is not
semisimple. Such people (usually ring-theorists) would say “semisim-
ple with minimum condition” when referring to our definition of
semisimple; here “minimum condition” refers to the descending chain
condition. Theorem 2.2 will show that their “semisimple with mini-
mum condition” really does coincide with our definition of semisim-
ple.

We now give a few examples where the radical ca