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Preface 

About This Book 

This book is meant to be used by beginning graduate students. It covers 
basic material needed by any student of algebra, and is essential to those 
specializing in ring theory, homological algebra, representation theory and 
K-theory, among others. It will also be of interest to students of algebraic 
topology, functional analysis, differential geometry and number theory. 

Our approach is more homological than ring-theoretic, as this leads the 
student more quickly to many important areas of mathematics. This ap­
proach is also, we believe, cleaner and easier to understand. However, the 
more classical, ring-theoretic approach, as well as modern extensions, are 
also presented via several exercises and sections in Chapter Five. We have 
tried not to leave any gaps on the paths to proving the main theorems -
at most we ask the reader to fill in details for some of the sideline results; 
indeed this can be a fruitful way of solidifying one's understanding. 

The exercises in this book are meant to provide concrete examples to 
concepts introduced in the text, to introduce related material, and to point 
the way to further areas of study. Our philosophy is that the best way 
to learn is to do; accordingly, the reader should try to work most of the 
exercises (or should at least read through all of the exercises). It should be 
noted, however, that most of the "standard" material is contained in the 
text proper. The problems vary in difficulty from routine computation to 
proofs of well-known theorems. For the more difficult problems, extensive 
hints are (almost always) provided. 

The core of the book (Chapters Zero through Four) contains material 
which is appropriate for a one semester graduate course, and in fact there 
should be enough time left to do a few of the selected topics. Another 
option is to use this book as a starting point for a more specialized course 
on representation theory, ring theory, or the Brauer group. This book is 
also suitable for self study. 

Chapter Zero covers some of the background material which will be used 
throughout the book. We cover this material quickly, but provide references 
which contain further elaboration of the details. This chapter should never 
actually be read straight through; the reader should perhaps skim it quickly 
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before beginning with the real meat of the book, and refer back to Chapter 
Zero as needed. 

Chapter One covers the basics of semisimple modules and rings, includ­
ing the Wedderburn Structure Theorem. Many equivalent definitions of 
semisimplicity are given, so that the reader will have a varied supply of 
tools and viewpoints with which to study such rings. The chapter ends 
with a structure theorem for simple artinian rings, and some applications 
are given, although the most important applications of this material come 
in the selected topics later in the book, most notably in the representation 
theory of finite groups. Exercises include a guided tour through the well­
known theorem of Maschke concerning semisimplicity of group rings, as 
well as a section on projective and injective modules and their connection 
with semisimplicity. 

Chapter Two is an exposition of the theory of the Jacobson radical. The 
philosophy behind the radical is explored, as well as its connection with 
semisimplicity and other areas of algebra. Here we follow the above style, 
and provide several equivalent definitions of the Jacobson radical, since 
one can see a creature more clearly by viewing it from a variety of vantage 
points. The chapter concludes with a discussion of Nakayama's Lemma 
and its many applications. Exercises include the concepts of nilpotence 
and nilradical, local rings, and the radical of a module. 

Chapter Three develops the theory of central simple algebras. After a 
discussion of extension of scalars and semisimplicity (with applications 
to central simple algebras), the extremely important Skolem-Noether and 
Double-Centralizer Theorems are proven. The power of these theorems and 
methods is illustrated by two famous, classical theorems: the Wedderburn 
Theorem on finite division rings and the Frobenius Theorem on the clas­
sification of central division algebras over R. The exercises include many 
applications of the Skolem-Noether and Double-Centralizer Theorems, as 
well as a thorough outline of a proof of the well-known Jacobson-Noether 
Theorem. 

Chapter Four is an introduction to the Brauer group. The Brauer group 
and relative Brauer group are defined and shown to be groups, and as 
many examples as possible are given. The general study of Br(k) is re­
duced to that of studying Br(K/k) for galois extensions K/k. This allows 
a more thorough, concrete study of the Brauer group via factor sets and 
crossed product algebras. Group cohomology is introduced, and an explicit 
connection with factor sets is given, culminating in a proof that Br(K/k) 
is isomorphic to H2(Gal(K/k) , K*). A complete proof of this extremely 
important theorem seems to have escaped much of the literature; most au­
thors show only that the above two groups correspond as sets. There are 
exceptions, such as Herstein's classic Noncommutative Rings, where an ex­
tremely involved computational proof involving idempotents is given. We 
give a clean, elegant, and easy to understand proof due to Chase. This is 
the first time this proof appears in an English textbook. The chapter ends 
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with applications of this homological characterization of the Brauer group, 
including the fact that Br( K / k) is torsion, and a primary decomposition 
theorem for central division algebras is given. 

Chapter Five introduces the notion of primitive ring, generalizing that of 
simple ring. The theory of primitive rings is developed along lines parallel 
to that of simple rings, culminating in Jacobson's Density Theorem, which 
is the analogue for primitive rings of the Structure Theorem for Simple 
Artinian Rings. Jacobson's Theorem is used to give another proof of the 
Structure Theorem for Simple Artinian Rings; indeed this is the classical 
approach to the subject. The Structure Theorem for Primitive Rings is 
then proved, and several applications of the above theorems are given in 
the exercises. 

Chapter Six provides a quick introduction to the representation theory 
of finite groups, with a proof of Burnside's famous paqb theorem as the final 
goal. The connection between representations of a group and the structure 
of its group ring is discussed, and then the Wedderburn theory is brought 
to bear. Characters are introduced and their properties are studied. The 
Orthogonality Relations for characters are proved, as is their consequence 
that the number of absolutely irreducible representations of a finite group 
divide the order of the group. A nice criterion of Burnside for when a group 
is not simple is shown, and finally all of the above ingredients are brought 
together to produce a proof of Burnside's theorem. 

Chapter Seven is an introduction to the global dimension of a ring. We 
take the elementary point of view set down by Kaplansky, hence we use 
projective resoultions and prove Schanuel's Lemma in order to define pro­
jective dimension of a module. Global dimension of a ring is defined and its 
basic properties are studied, all with an eye toward computation. The chap­
ter concludes with a proof of the Hilbert Syzygy Theorem, which computes 
the global dimension of polynomial rings over fields. 

Chapter Eight gives an introduction to the Brauer group of a commu­
tative ring. Azumaya algebras are introduced as generalizations of central 
simple algebras over a field, and an equivalence relation on Azumaya al­
gebras is introduced which generalizes that in the field case. It is shown 
that endomorphism algebras over faithfully projective modules are Azu­
maya. The Brauer group of a commutative ring is defined and shown to be 
an abelian group under the tensor product. BrO is shown to be a functor 
from the category of commutative rings and ring homomorphisms to the 
category of abelian groups and group homomorphisms. Several examples 
and relations between Brauer groups are then discussed. 

The book ends with a list of supplementary problems. These problems 
are divided into small sections which may be thought of as "mini-projects" 
for the reader. Some of these sections explore further topics which have 
already been discussed in the text, while others are concerned with related 
material and applications. 
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About Other Books 

Any introduction to noncommutative algebra would most surely lean heav­
ilyon I.N. Herstein's classic Noncommv.tative Rings; we are no exception. 
Herstein's book has helped train several generations of algebraists, includ­
ing the older author of this book. The reader may want to look at this book 
for a more classic, ring-theoretic view of things. 

The books Ring Theory by Rowen and Associative Rings by Pierce cover 
similar material to ours, but each is more exhautive and at a higher level. 
Hence these texts would be suitable for reading after completing Chapters 
One through Four of this book; indeed they take one to the forefront of 
modern research in Ring Theory. 

Other books which would be appropriate to read as either a companion 
or a continuation of this book are included in the references. 
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A Word About Conventions 

On occasion we will use the words "category" and "functorial", as they are 
the proper words to use. We do not, however, formally define these terms 
in this book, and the reader who doesn't know the definitions may look 
them up or continue reading without any loss. 

When making references to other papers or books, we will write out the 
full name of the text instead of making a reference to the bibliography at 
the back of the book. We do this so that the reader may know which book 
we are refering to without having to look it up in the back. In addition, the 
complete information on each reference is contained in the bibliography. 
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Part I 

The Core Course 



o 
Background Material 

This chapter contains some of the background material that will be used 
throughout this book. The goal of this chapter is to fill in certain small 
gaps for the reader who already has some familiarity with this background 
material. This should also indicate how much we assume the reader already 
knows, and should serve to fix some notation and conventions. According­
ly, explanations will be kept to a minimum; the reader may consult the 
references given at the end of the book for a thorough introduction to the 
material. This chapter also contains several exercises, for use both by in­
structors and readers wishing to make sure they understand the basics. 
The reader may want to begin by glancing casually through this chapter, 
leaving a thorough reading of a section for when it is needed. 

Rings: Some Basics 

We begin with a rapid review of the definitions and basic properties of 
rings. 

A ring R is a set with two binary operations, called addition and mul-
tiplication, such that 

(1) R is an abelian group under addition. 

(2) Multiplication is associative; i.e., (xy)z = x(yz) for all x, y, z E R. 
(3) There exists an element 1 E R with Ix = xl = x for all x E R. 
(4) The distributive laws hold in R : x(y + z) = xy + xz and (y + z)x = 

yx + zx for all x, y, z E R. 

The element 1 E R is called the identity, or unit element of the ring 
R. We will always denote the unit element for addition by 0, and the unit 
element for multiplication by 1. R is a commutative ring if xy = yx for 
all x, y E R. We shall not assume that our rings are commutative unless 
otherwise specified. 

Examples: 

1. Z, the integers, with the usual addition and multiplication, with 0 
and 1 as additive and multiplicative unit elements. 
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2. Q, R, and C; the rational numbers, real numbers, and complex num­
bers, respectively, with operations as in Example 1. 

3. The ring Z/nZ of integers mod n, under addition and multiplication 
modn. 

4. R[x], the ring of polynomials with coefficients in a ring R, is a ring 
under addition and multiplication of polynomials, with the polyno­
mials 0 and 1 acting as additive and multiplicative unit elements, 
respectively. 

5. The ring Mn(R) of n x n matrices with entries in a ring R , under 
addition and multiplication of matrices, and with the n x n identity 
matrix as identity element. 

6. The ring End(M) of endomorphisms of an abelian group M, under 
addition and composition of endomorphisms (recall that an endomor­
phism of M is a homomorphism from M to itself). 

7. The ring of continuous real-valued functions on an interval [a, b], un­
der addition and multiplication of functions. 

The rings in examples 1,2,3, and 7 are commutative; the rings in exam­
ples 4,5 and 6 are generally not (R[x] is commutative if and only if R is 
commutative). We shall encounter many more examples of rings, many of 
which will not be commutative. 

A ring homomorphism is a mapping 1 from a ring R to a ring S such 
that 

(1) I(x + y) = I(x) + I(Y); i.e., 1 is a homomorphism of abelian groups. 

(2) I(xy) = l(x)/(Y). 
(3) 1(1) = 1. 

In short, 1 preserves addition, multiplication, and the identity element. 
For those more familiar with groups than with rings, note that (3) does not 
follow from (1) and (2). For example, the homomorphism 1 : R -+ R x R 
given by I(x) = (x, 0) satisfies (1) and (2), but not (3). 

The composition of ring homomorphisms is again a ring homomorphism. 
An endomorphism of a ring is a (ring) homomorphism of the ring into 
itself. An isomorphism of rings is a ring homomorphism 1 : R --+ S which 
is one-to-one and onto; in this case, Rand S are said to be isomorphic as 
rings. If 1 : R --+ S and 9 : S --+ R are ring homomorphisms such that 
log and 9 0 1 are the identity homomorphisms of S and R, respectively, 
then both 1 and 9 are ring isomorphisms. 

A subset S of a ring R is called a subring if S is closed under addition 
and multiplication and contains the same identity element as R. A subset 
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I of a ring R is called a left ideal of R if I is a subgroup of the additive 
group of R and if ri E I for all r E R, i E Ii the notions of right ideal 
and two-sided ideal are similarly defined. We shall always assume, unless 
otherwise specified, that all ideals are left ideals. An ideal I is said to be a 
maximal ideal of the ring R if I =F R and if I ~ J ~ R for some ideal J, 
thenJ=IorJ=R. 

For a two-sided I, the quotient group R/ I inhetits a natural ring struc­
ture given by (r + I) (s + I) = r s + I. This ring is called the quotient ring 
of R by I. Note that there is a one-to-one, order-preserving correspondence 
between ideals of R/ I and ideals of R containing I. 

A zero-divisor in a ring R is an element r E R for which r8 = 0 for some 
s =F O. An element r E R is called a unit of R, and is said to be invertible, 
if rs = sr = 1 for some s E R. Note that the set of invertible elements of a 
ring R forms a group under multiplication, called the group of units of R. 
A ring such that 1 =F 0, and such that every nonzero element is invertible, 
is called a division ring. A commutative division ring is called a field. 

Let F be a field and let n be the smallest integer for which 1 + ... + 1 = 
n·1 = O. We call n the characteristic of F, denoted char(F), and we 
let char(F) = 0 if no such (finite) n exists. It is easy to show that the 
characteristic of any field is either 0 or prime. For example, Q, Rand C 
are fields of characteristic O. F q , the field with q = pn (p prime) elements, 
is a field of characteristic p. 

Modules: Some Basics 

Let R be a ring. A left R-module is an abelian group M, written addi­
tively, on which R acts linearlYi that is, there is a map R x M __ M, 
denoted by (r, m) .-- rm for r E R, mE M, for which 

(1) (r + s)m = rm + 8m 

(2) r(m + n) = rm + rn 
(3) (rs)m = r(8m) 
(4) 1m=m 

for r, 8 E R and m, n EM. Equivalently, M is an abelian group together 
with a ring homomorphism p : R __ End(M), where End(M) denotes 
the ring of group endomorphisms of an abelian group (for those unfamil­
iar with this notion, see page 13). p is called the structure map, or a 
representation of the ring R. There is a corresponding notion of right 
module, but, unless otherwise specified, we shall assume all modules are 
left modules. 
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Examples: 

1. An ideal I of a ring R is an R-module. In particular, R is an R­
module. 

2. Any vector space over a field k is a k-module. A module over a division 
ring D is sometimes called a vector space over D. 

3. Any abelian group is a Z-module. 

4. The cartesian product Rn = R x ... x R is an R-module in the obvious 
way. Rn is called the free module of rank n. 

5. The set of n x n matrices Mn(R) over a ring R is an R-module 
under addition of matrices. The action of R on Mn (R) is defined, for 
r E R, B E Mn(R), to be r ~ rB, where rB denotes the matrix 
whose i,jth entry is r times the i,jth entry of B. 

Let M and N be R-modules. A mapping f : M --. N is an R-module 
homomorphism if : 

(1) f(m + n) = f(m) + f(n) 
(2) f(rm) = r f(m) 

for all m, n E M, r E R. In this case f is also called R-linear. Note 
that the composition of two module homomorphisms is again a module 
homomorphism. A (module) endomorphism is a homomorphism of a 
module to itself. A module homomorphism f : M --t N which is one-to 
one and onto is called a (module) isomorphism, in which case M and 
N are said to be isomorphic modules. 

A subset N of a module M is called a submodule of M, if N is an 
(additive) subgroup of M and if Tn E N for all r E R, n E N. Thus, the 
R-submodules of R are precisely the (left) ideals of R. If f : M --t N is a 
homomorphism of R-modules, let 

ker(f) = {m EM: f(m) = O} 
im(f) = f(M) 

be the kernel and the image of f. It is easy to check that ker(f) is a 
submodule of M and im(f) is a submodule of N. In particular, for fixed 
mE M, the kernel of the R-module homomorphism ¢J: R ---+ M given by 
¢(r) = rm, is a submodule (i.e., left ideal) of R. More explicitly, this kernel 
is {r E R : rm = OJ. This ideal of R is called the annihilator of m, and 
is denoted by ann(m). The intersection of the annihilators of each of the 
elements of M is called the annihilator of M, and is denoted ann(M)j 
that is 

ann(M) = n ann(m) 
mEM 
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An R-module M is called faithful if ann(M) = O. In this case the 
associated representation p is also called a faithful representation of R. 

The abelian group M/N inherits a natural R-module structure via r(m+ 
N) = rm+N. This R-module is called the quotient module of M by N. 
Note that there is a one-to-one, order preserving correspondence between 
submodules of M/N and submodules of M containing N. This is sometimes 
referred to as the Correspondence Theorem for Modules. If I is a two-sided 
ideal of a ring R, and if M is an R/ I-module, then M is also an R-module 
via R --+ R/I --+ End(M). FUrther, given an R-module M which is 
annihilated by I (i.e., I ~ ann(m) for all m EM), there is a unique 
R/ I -module structure on M giving rise to the original structure on M : 

R • End(M) 

I /// 
Thus, there is a one-to-one correspondence between R/ I-modules and R­
modules annihilated by I. 

We shall now discuss certain operations on rings and modules which 
will be useful later in the text. If M is an R-module and N C M I C R - , -
are additive subgroups, then IN is defined to be the additive subgroup 
generated by {rn: r E I,n EN}; that is, IN = n:::'l rini : m E N,ri E 
I,ni EN}. Note that if N is a submodule of M, then IN ~ N, and if I 
is a left ideal of R, then IN is a submodule. In particular, if M = R, then 
IN is a product of ideals. The following formulas hold for I, ft, 12 ~ Rand 
N,Nl,N2 ~ M: 

Both sides are the additive subgroup generated by products rl r2n . 

Distributive Laws: (Ii + 12)N = liN + 12N 
I(Nl + N2) = IN! + IN2 

If M is an R-module and m EM, then Rm is a submodule of M and is 
said to be the cyclic submodule of M generated by m. 
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Zorn's Lemma 

Zorn's Lemma is used frequently in ring theory. Here we include one typical 
application. 

A partially ordered set is a set S, together with a relation ~, which 
satisifies 

a~a 

a ~ band b ~ c implies a ~ c 
a ~ band b ~ a implies a = b 

(reflexi ve ) 
(transitive) 
(anti-symmetric) 

for all a, b, c E S. A subset T ~ S is called a chain if either a ~ b or b ~ a 
for all a, bET. An upper bound for a chain T in S is an element c E S 
such that a ~ c for all a E T. An element c E S is called a maximal 
element of S if a E S and c ~ a implies c = a. We now state 

Lemma 0.1 (Zorn's Lemma) Let S be a partially ordered set. If every 
chain T of S has an upper bound in S, then S has at least one maximal 
element. 

Zorn's Lemma is logically equivalent both to the Axiom of Choice and to 
the Well-ordering Principle. For proofs of these equivalences, see Halmos, 
Naive Set Theory. For those who worry about using the Axiom of Choice 
(and thus Zorn's Lemma), we shall always point out where Zorn's Lemma 
is used. 

We conclude this section with a typical application of Zorn's Lemma. 

Proposition 0.2 Let R =I- 0 be a ring (with 1). Then R has a maximal 
left ideal. 

Proof: Let S be the set of proper (i.e., =I- R) left ideals of R, partially 
ordered by inclusion. If {Io.} is a chain of ideals in R, then for all 0 and 
{3, either 10 ~ I{3 or I{3 ~ 10 , It is now easy to check that 1= Uo 10 is an 
ideal of R, and that 1 ¢ I since 1 ¢ 10 for any o. Thus IE S and I is an 
upper bound for the chain. Hence S contains a maximal element. 0 

Products 

Let Rl and R2 be rings. Then the cartesian product Rl x R2 = {(rl,r2) : 
rl E Rr, r2 E R2 } is a ring if addition and multiplication are taken coor­
dinatewise. The ring Rl x R2 is called the product of the rings Rl and 
R2. There are natural ring homomorphisms Pi : Rl x R2 --+ ~ given by 
projection onto the ith coordinate, i = 1,2. There is also a one-to-one map 
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The same holds true for R2. This is not, however, a ring homomorphism, 
since it does not preserve identity elements. Thus RI and R2 sit inside 
RI x R2 as two-sided ideals, but not as subrings. Given rings R 1, .• ·, R.n, 
we may form the product TI~I Ri as was done in the case n = 2. The 
product of n copies of a ring R is denoted by Rn. 

Given any index set I (possibly infinite), and a family of modules {Mi hEJ, 
we may, by the same technique as above, construct the product TIiEJ Mi 
of these modules. An element of TIiEJ Mi consists of a family of elements 
{mi E Md, which we think of as 'I-tuples'. The submodule of TIiEJ Mi 
consisting of those elements {mi E M i } for which all but finitely many of 
the mi are zero, is called the direct sum of the modules {MihEJ, and 
is denoted by €aiEJ Mi' Note that for finite families of modules, the di­
rect sum and the product are the same. If M' is a submodule of M, and 
if M ~ M' €a Mil for some module Mil, then M' is said to be a direct 
summand of M. 

Given a subset S of an R-module M, a linear combination of elements 
of S is a finite sum ~ risi, where each ri E R and each Si E S. We will 
always write linear combinations so that the Si are distinct, which is always 
possible by combining terms. The elements ri are called the coefficients 
of the linear combination. The set of all linear combinations of elements 
of S is the unique smallest submodule of M containing S, and is called 
the submodule generated by S . The elements of S are then said to 
generate the submodule. A module is said to be finitely generated if it 
contains a finite generating set. 

A subset S of an R-module M is linearly independent over R if, for 
every linear combination ~ riSi which is equal to 0, then ri = 0 for all i; 
informally, there are no "relations" among the elements of S. In this case 
we will also say that the elements of S are linearly independent. A subset 
is linearly dependent over R if it is not linearly independent. A subset 
S of an R-module M forms a basis for Mover R if S generates M and 
is linearly independent over R. 

Given a family {Mi} of submodules of an R-module M, the sum ~ Mi 
of the family of suhmodules is defined to he the submodule generated by 
the union of the Mi; or, equivalently, ~ Mi is the set of all finite sums 
~ mi, mi E Mi' The sum is a direct sum, and M is isomorphic to the 
direct sum of the submodules M i , if every element of M can be written 
uniquely as a finite sum ~ mi, mi E Mi· 

If a set of elements {ml,'" ,mn } forms a basis for the R-module M, 
then it is easy to check that M is isomorphic to R n , and in this case M 
is said to be a free module of rank n. In the case when R is a field 
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or a division algebra we call n the dimension of Mover R, denoted by 
dimR(M), or simply dim(M} ,when there is no confusion about which ring 
we are talking about. 

Algebras 

It turns out that many important examples of modules have an additional 
multiplicative structure which makes them rings as well, and the module 
and ring structures are compatible in some sense. Examples to keep in mind 
are matrix rings, polynomial rings, group rings, and the quaternions (which 
we shall introduce in this section). The notion of an algebra ties the ring 
and module structures together, and is one of the basic objects of study in 
mathematics, particularly in this book. Although we give the definition of 
an algebra over a commutative ring k, we shall only be interested in the 
case when k is a field. 

Definition: An (associative) algebra over a commutative ring R is a ring 
A which is also a module over R, such that the ring and module multipli­
cation are compatible in the following way: 

x(ab) = (xa)b = a(xb) for all x E R,a,b EA. 

A is also called a R-algebra. When R is a field, a basis for A as a module 
over R is said to be a basis for the algebra A, and A is said to be a finite 
dimensional R-algebra, if A is finite dimensional as a module over R (Le., 
if A has a finite basis over R). The algebra A is a commutative algebra 
if A is a commutative ring. 

Examples: 

1. Any ring is an algebra over Z. 

2. C is a two-dimensional algebra over R, with basis {I, i}. 

3. The set of n x n matrices Mn (k) over a field k is a k-algebra of dimen­
sion n2 • A basis for this algebra consists of the matrices {eij}, 1 ~ 
i, j ~ n, where eij denotes the matrix with 1 in the i, j position and 
zeros elsewhere. 

4. The ring R[x] is an algebra over the ring R, with basis 1, x, x2 , •.• 

as a (free) R-module, and with multiplication of polynomials as the 
algebra multiplication. 

5. The ring R[[x]] of formal power series 2::0 TiXi with coefficients Ti E 
R is an R-algebra with the obvious multiplication. Similarly, the ring 
R[x, X-I] of Laurent series is an R-algebra. 
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6. Let R be a ring and let G be a group. The group ring R[G] consists 
of the free R-module on the set G; elements are usually written as 
~9EG rgg, where rg E R, and only finitely many Tg are non-zero. 
Multiplication is defined by extending (rg)(sh) = (rs)(gh) to all of 
R[G] by the distributive law. Check that this makes R[G] into a ring. 
Note that R = R·I is naturally a subring of R[G]. For a commutative 
ring R and a group G, the group ring R[G] is an algebra over R. R[G] 
is often called a group algebra. 

Let A and B be R-algebras. A map f : A ----+ B is ,an R-algebra 
homomorphism if f is a homomorphism of R-modules which is a homo­
morphism of rings as well; that is 

(1) f(a + b) = f(a) + f(b) 
(2) f(xa) = xf(a) 
(3) f(ab} = f(a)/(b} 
(4) /(I) = 1 

for all a, b E A, x E R. An R-algebra homomorphism which is one-to-one 
and onto is called a R-algebra isomorphism, in which case the algebras 
are said to be isomorphic algebras. A subset S of an algebra A is called a 
subalgebra if S is both a subring and a submodule of A. 

We end this section with the construction of a basic, important example 
of an algebra. Recall that we can think of C as a two-dimensional algebra 
with basis {I, i} over R. We shall now construct a four-dimensional algebra, 
the quaternions, with basis {I,i,j,k} over R. The quaternions will give an 
example of a division ring for which multiplication is not commutative. 
Later in this book we shall see why the number four is special, and why 
the quaternions and its generalizations play such an important role in the 
theory of noncommutative algebra. 

Definition: The (real) Quaternions, denoted H (in honor of its discoverer 
Hamilton), is the four-dimensional vector space over R with basis denoted 
by {I, i, j, k}, and multiplication defined so that 1 is the multiplicative 
identity element and 

i = j = k =-1 
ij=-ji=k 
jk = -kj = i 
ik = -ki = -j. 

These equations (in fact the first two) completely determine how basis 
elements are multiplied, and thus how any elements of the algebra are 
multiplied. Every element q = a + bi + cj + dk E H has a quaternion 
conjugate q = a - bi - cj - dk. It is easy to check that (q)(q) = q q 
and that qq = qq = a + b + c + d . This real number is denoted by iqi . 



12 O. Background Material 

If q f Q then q has mUltiplicative inverse q-l = q/!q!2, which shows that 
H is a division algebra. See the exercises for more on the quaternions. 

Tensor Product of Modules Over a Commutative 
Ring 

This section reviews basic properties of the tensor product of modules over 
a commutative ring. Throughout this section we will assume that R is a 
commutative ring. 

Let M, N, and P be R-modules. A map f : M x N ---+ P is said 
to be an R-bilinear map, or simply a bilinear map, if f is R-linear in 
each variable when the other variable is fixed; that is, the mappings x ~ 
f(x, Yo) and y 1--+ f(xo, y) are R-linear for each fixed Xo E M, Yo E N. 
The idea of the tensor product is to convert bilinear maps into linear maps 
(i.e., homomorphisms), which are much easier to work with. 

Let M and N be modules over a commutative ring R. The tensor prod­
uct of M and N (over R) , denoted by M ® R N , can be characterized by 
the following universal property, which formalizes the idea of "converting" 
bilinear maps into linear maps : 

Theorem 0.3 (Universal Property of Tensor Product) Let M and 
N be modules over a commutative ring R. Then there exists an R-module 
M ® R N and a bilinear map i : M x N ---+ M ® R N which satisfy the 
following universal property,' Given any R-module P and any bilinear map 
f : M x N ---+ P, there exists a unique linear mapping f' : M ® R N --+ P 
so that f = f' 0 i; that is, there exists a unique homomorphism f' so that 
the following diagram commutes 

p 

Moreover, if there exists an R-module S and a bilinear map j : MxN --+ S 
satisfying the above property, then there is an isomorphism g: M®RN --+ 

S with j = go i; that is, the tensor product is unique up to isomorphism. 

Proof: 

Uniqueness: Apply the universal mapping property of M ®R N to j : 
M x N ---+ S to get a map 9 : M ®R N --+ S with j = go i. Similarly, 
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applying the universal mapping property of S to i : M x N ~ M ® R N 
gives a map g' : S ---+ M ®R N with i = g' 0 j. Thus gog' and g' 0 9 must 
be the identity, and so both 9 and 9' are isomorphisms. 

Existence: Let T denote the free module generated by the pairs {( m, n) : 
m E M, n EN}. Thus every element of T can be written as a linear 
combination l:~=l ri(mi, ni) for r.i E R, (mi' ni) E M x N. 

Let V denote the submodule of T generated by elements of the following 
form: 

(m + m',n) - (m,n) - (m',n) 
(m, n + n') - (m, n) - (m, n') 

(rm, n) - rem, n) 
(m,rn)-r(m,n) 

for m, m' E M, n, n' E N, r E R. Let M ® R N be the quotient module T IV. 
For each basis element (m, n) of M x N, let m ® n denote its image under 
the quotient map T ~ TIV = M ®R N. Then M ®R N is generated 
by elements of the form m ® n. Now define i : M x N ---+ M ®R N by 
i(m, n) = m ® n. It is easy to check from the definitions that i is bilinear. 

It remains to check that M ® R N satifies the universal mapping property. 
To this end, let an R-module P and a bilinear map f : M x N ~ P be 
given. We may extend f by linearity to a map f : T ~ P since T is free 
with the set M x N as basis. Since f is bilinear, this implies that f(V) = 0, 
so that there is a well-defined homomorphism f' : T IV ~ P such that 
f'(m®n) = f(m,n), and we are done. 0 

The above proof shows that if {Ui} f= 1 and {v j } j= 1 are generating sets for 
M and N, respectively, then {Ui®Vj : 1 ~ i ~ n, 1 ~ j ~ m} is a generating 
set for M®RN. In particular, if both M and N are finitely generated, then 
so is M ®R N; and, in fact, dimR(M ®R N) = dimR(M) . dimR(N). 

Given R-modules M b ... , Mn and an R-module P, a multilinear map 
(or n-linear map) is a map f : Ml X •.• x Mn ~ P which is R-linear in 
each variable when the other variables are held fixed. The same proof as 
above gives a construction of the tensor product Ml ®R'" ®R Mn which 
satisfies the same universal property with respect to multilinear maps. We 
leave the details as an exercise for the reader. 

Endomorphism Rings 

Let M be an abelian group, written additively. Let End(M) denote the set 
of endomorphisms (Le., group homomorphisms of M into itself; in particu­
lar, every endomorphism takes 0 to 0). If ¢ and 1jJ are endomorphisms of M, 
then ¢o1jJ is also an endomorphism of M, so we may define a multiplication 
in End( M) via 
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</J1/J(m) = </J(1/J(m)) for m E M. 

The identity endomorphism l{m) = m clearly acts as a mUltiplicative 
identity. We may also define an addition in End{M) via 

(</J + 1/J){m) = </J{m) + 1/J{m) for m E M. 

It is trivial to verify that </J+1/J E End{M), and that End(M) is an abelian 
group under this addition, with the endomorphism O( m) = 0 acting as the 
additive identity element. Finally, it is easy to check that, under these 
operations of addition and multiplication of endomorphisms, End(M) is a 
ring. 

More generally let M and N be R-modules, and let HomR(M, N) be the 
set of R-module homomorphisms from M to N. Then, just as above, we see 
that HomR{M,N) is an abelian group under addition of homomorphisms, 
with the zero homomorphism acting as identity. We denote HomR(M,M) 
by EndR{M). As above, we see that EndR(M) is a ring, called the endo­
morphism ring of the R-module M. A ring of endomorphisms of M 
is a subring of EndR{M). 

Notice that EndR(M) is also an R-module via 

(T</J)(m) = T . </J(m) T E R, </J E EndR(M), m E M. 

If R is a commutative ring, the R-module multiplication in EndR{M) is 
compatible with the ring multiplication of EndR{M). Thus, in this case, 
EndR{M) is an R-algebra, and is called the endomorphism algebra of 
the R-module M. If M is a free R-module of rank n, then it is not difficult 
to see that EndR{M) is isomorphic to the algebra Mn(R). 

Field Extensions: Some Basics 

Let k be a field. A field extension of k is a field K with k ~ K, and is 
denoted by K/k. The smallest field containing k and Tl, ... , Tn is denoted 
by k(Tl, . .. ,Tn). Given a field extension K/k, it is useful to consider K as 
a vector space over kj the abelian group structure is that of K, and, for 
T E k, v E K, TV is just the the product of T and v in K. In fact, since 
there is actually a multiplication in K, and since all operations in sight 
are commutative, we see that K is an algebra over k. The dimension of K 
as a vector space over k is called the degree of the extension K/k, and 
is denoted by [K : k]. The extension K / k is called a finite extension if 
[K: k] < 00. 

Most of the time we shall be concerned with finite extensions K/k. Let 
o # U E K for such an extension. Since K is finite dimensional as a vector 
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space over k, the set {1,u,u2 , ••• ,un} is linearly dependent for some nj 
that is, Cnun + Cn_IUn - 1 + ... + CIU + Co = 0 for some constants Ci E k. 
Thus u satisfies the polynomial f(x) = Cnxn + Cn_lXn - 1 + ... + CIX + Co, 
and f(x) E k[i]. Let 1= {g(x) E k[x] : g(u) = O}. Clearly I is an additive 
subgroup of k[x], and hg(O) = h(O)g(O) = 0 for all h(x) E k[x],g(x) E I, 
so that I is an ideal. Since k is a field, every ideal in k[x] is principal (see, 
e.g., Jacobson, Basic Algebra I). Since I contains f(x) #- 0, I is not the 
zero ideal, and so there exists a polynomial g(x) E k[x] which generates 
Ij that is, g(x) divides every polynomial which u satisfies. Clearly we may 
take g( x) to be a monic polynomial, and then it is easy to see that g( x) 
is the unique monic polynomial of least degree satisfying g(u) = O. g(x) is 
called the minimal polynomial of u over k. 

A polynomial is said to be separable if it has distinct roots in an alge­
braic closure. An element u E K is said to be a separable element over k 
if its minimal polynomial over k is a separable polynomial. A (finite) field 
extension K j k is said to be a separable extension if every element of K 
is separable over k. Note that if char(k) = 0, then every (finite) extension 
of k is separable (see Exercise 35). 

A field L ;2 k is said to be a splitting field over k for the polynomial 
f(x) E k[x] if f(x) factors as a product of linear factors f(x) = (x­
rt) ... (x - rn) in L[x], and if L = k(rb ... ,rn). Thus L is a splitting field 
over k for f(x) if and only if L is the smallest field containing k which 
contains every root of f(x). A (finite) field extension Kjk is called normal 
if every irreducible polynomial in k[x] which has a root in K is a product 
of linear factors in K[x]. Thus the extension Kjk is normal if and only if 
K contains a splitting field for the minimal polynomial of every element 
of K. An extension which is both normal and separable is called a galois 
extension. 

Let K j k be a field extension. The set of automorphisms of K which 
are the identity when restricted to k forms a group under composition of 
functions. This group is called the galois group of the extension Kjk, 
and is denoted by Gal(Kjk). The Fundamental Theorem of Galois Theory 
asserts, among other things, that for a galois extension Kjk, the order of 
Gal(Kjk) is equal to [K: k]. 

Now suppose L ;2 K ;2 k are fields. Then there are three vector spaces 
in sight; namely Lover K, Lover k, and Kover k. The next result relates 
the dimensions of these vector spaces, and will be used quite frequently. 

Proposition 0.4 Let L ;2 K ;2 k be fields. Then [L : k] is finite if and 
only if both [L : K] and [K : k] are finite, and in this case 

[L: k] = [L : KJ[K : k]. 

Proof: Suppose {UI, .•. , un} is a basis for Lover K and {VI, ... , Vm } is a 
basis for Kover k. We claim that {UiVj : 1 ~ i ~ n, 1 ~ j ~ m} is a basis 
for Lover k: 
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{UiVj} span Llk: Let x E L be given. Then x = 2:~=1 CiUi for some 
ct- E K. But Ci E K implies that Ci = 2:~1 dijvj for some d ij E k. Hence 
x = 2:- . di:J'UiV:J-' '.:J 

{UiVj} is independent over k: Suppose 2: dijUiVj = 0 for some d ij E k. 
Then 2:i(2:jdijVj)Ui = 0, and so 2:jdijVj = 0 for each i, since {Ui} is a 
basis. But {Vj} is also a basis, and so dij = 0 for all j and for each i. 

Now if [L : k] is finite, then [K : k] is finite since K is a k-subspace of L, 
and [L : K] is finite since the finite basis for Lover k will clearly span L 
over K. Conversely, if both [L : K] and [K : k] are finite, then the above 
shows that [L : k] is finite and that [L: k] = [L: K][K : k]. 0 

Exercises 

The exercises in this chapter are not meant to be a complete set of exercises 
for a basic course on rings, fields, and modules; rather, they are meant to 
help the reader polish old skills. In addition, these exercises provide some 
basic facts which will be used throughout the text. 

Elementary Exercises on Rings and Modules 

1. Let 110 "" In be two-sided ideals of a ring R such that Ii + I j = R 
for all i =f:. j. Prove the following: 

(a) Ii + n I j = R for alii. 
j#i 

(b) (Chinese Remainder Theorem): Given elements Xl>'" ,Xn 
of R, there exists x E R such that x == xi(mod Ii) for all i. 

(c) Show that there is an isomorphism of rings 

fjJ: Rllt n··· n In -+ (Rllt) X ••• X (RlIn) 

such that t/>(x+(ltn·· ·nIn)) = (X+(Il),'" ,x+(In)) for all x E R. 

2. Show that every finitely generated module has a maximal (proper) 
submodule. Is this true for modules that are not finitely generated? 

3. Show that every module is isomorphic to a quotient module of a free 
module. 

4. Let R be a commutative ring, and let M be a free R-module of rank 
n. Prove that the algebras EndR(M) and Mn(R) are isomorphic. 
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Products and Sums 

5. Let Rl and R2 be rings. Show that any (left,right,two-sided) ideal in 
Rl x R2 is of the form Ll x L2, where Li is a (left,right,two-sided 
respectively) ideal of ~, i = 1,2. 

6. If Rl and R2 are rings, show that there is a one-to-one correspondence 
between Rl x R2-modules M and pairs of modules (Ml. M 2 ) where 
each Mi is an Ri-module, i = 1,2. Generalize to the case of arbitrary 
products. 

7. Let Rl and R2 be rings. Thinking of Rl as Rl x 0 sitting inside 
R = RI X R2 , check that RI is a two-sided ideal but not a subring 
(similarly for R2). Now show that Rl ¢ R2 as RI x R2-modules, 
even if RI ~ R2 as rings. Show that there is in fact no non-trivial 
R-homomorphism from Rl to R2 • Generalize to the case of arbitrary 
products. 

8. Let M = EBiEl Mi and let N be an arbitrary R-module. Prove that 
a homomorphism from M to N is uniquely determined by its restric­
tions to the Mi and that these restrictions can be arbitrary. This can 
be phrased as follows : There is an isomorphism 

Hom(EBMi,N) ~ II Hom(Mi,N). 
i i 

9. Show that there is an isomorphism 

Hom(N, II Mi) ~ II Hom(N, Mi). 
i i 

10. If El. ... ,En' FI. ... ,Fm are any R-modules and 1>: El EB •.• EB En--+ 
Fl EB··· EB Fm is a R-module homomorphism, show that 1> can be rep­
resented by a unique matrix 

where 1>ij E HomR(Ej,Fi ), in the sense that, if one represents an 
element x = Xl + ... + Xn E El EB .•. EB En as a column vector 

[ ~: ], and one represents elements of F, <1> ••• <I> F_ sbnila<ly, then 
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that is, <I> is given by "matrix multiplication". Further, check that 
composition of maps corresponds to matrix multiplication. This ex­
ercise generalizes Proposition 1.7. [Hint: The module El $ ... $ En 
is equipped with inclusions ik : Ek ---+ El $ ... $ En and (onto) 
projections 7rk : El $ ... $ En ---+ Ek .] 

Idempotents 

11. (a) An element e of a ring R is said to be an idempotent if e2 = e. 
An element e is central in R if er = re for all r E R. Let e be 
a central idempotent of R, and let Rl = eR and R2 = (1 - e)R. 
Check that these subsets of R are two-sided ideals of R which are 
in fact rings. What are the identity elements of Rl and R2 as rings? 
Show that every element of R can be written uniquely as a sum of 
an element of Rl and an element of R2. Conclude that R ~ Rl X R2 
as rings. 

(b) What do the ideals of R look like in terms of the ideals of Rl and 
R2? 

12. (a) More generally, let ell"" en in R be an orthogonal family 
of central idempotentsj that is, assume each ei, 1 ~ i ~ n is a 
central idempotent and that eiej = 0 for i i- j. Further assume that 
el + e2 + ... + en = 1. Show that R ~ Rl X R2 X ..• x Rn where 
Ri = eiR. 
(b) What do modules over R look like? 

13. Let I be a two-sided ideal of R, and assume that R = 1$ J = 1$ J' , 
where J is a left ideal of R and J' is a right ideal of R. Prove that 
there is a unique central idempotent such that I = Re, and that then 
J = R( 1 - e) = J'. 

Tensor Products 

14. Let M, N, and P be modules over a commutative ring R. Prove the 
following (all tensoring is done over R): 

(a) M®N~N®M. 

(b) (M®N)®P ~ M®(N®P) ~ M®N®P. 

(c) (MEBN)®P~ (M®P)EB(N®P). 

(d) R®M~ M. 
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Group Rings 

15. (a) If G is the trivial group, what is R[G1? 
(b) If G is a free abelian group on n generators, what is R[G}? 

(c) Show that R[G x H1 ~ R[G1 ®R R[H1 ~ (R[G})[H] as rings. 

(d) Show that if G acts linearly on a vector space V over a field k, 
then V has a natural k[G]-module structure. 

16. (a) Let R, S be rings and let G be a group. Let U(S) denote the 
group of units of S (that is, the (multiplicative) group of elements 
in S that have multiplicative inverses). Show that there is a one­
to-one correspondence between ring homomorphisms f : RIG] - S 
and pairs consisting of a ring homomorphism f R : R - S and a 
group homomorphism fa : G - U(S) where the images of fR and 
fa commute. 

(b) If f : G - H is a group homomorphism, show that there is a 
unique ring homomorphism RIG]- RIH] which is the identity on R 
and is f when restricted to G. 

Remark: Consider the case when R is a commutative ring and S 
is an R-algebra, so fR is fixed as the structure map. The "units" 
functor U is a functor S ~ U(S) from the category of R-algebras 
to the category of groups. The "group-algebra" functor G ~ RIG] 
is a functor from groups to R-algebras. Holding f R fixed, the proof 
of part (a) shows the existence of a bijection 

Homgroup(G, U(S» +---+ HomR-algebra(R[Gj, S), 

that is, the group-algebra functor is the left-adjoint to the units func­
tor (for terminology, see Rotman's Homological Algebra). 

17. (a) If H is a finite subgroup of G, write NH = l::hEH h (this is 
the so-called "norm element" of H). Show that NH . NH = IHINH. 
Conclude that if IHI is invertible in R, then the element eH = NH /IHI 
is idempotent. 

(b) Show that if H is a finite normal subgroup of G and IHI is in­
vertible in R, then eH is a central idempotent of RIG]. 

18. Let Q denote the rational numbers and let S3 denote the symmetric 
group on 3 letters. Note that S3 is generated by the elements a = (12) 
and b = (123) with o(a) = 2 and o(b) = 3, aba = b- 1 , S3 ~ Z3 ~ Z2. 

(a) Show that Q[Z2] ~ Q x Q. Exhibit the ring homomorphisms 
explicitly. Exhibit the idempotents explicitly. 
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(b) The unique surjective homomorphism S3 - Z2 induces a ring 
surjection Q[S3]- Q[Z2] ~ Q x Q. For B = (b), find the images of 
eB and 1 - eB, where eB is defined as in problem 17. 

(c) Let M 2(Q) denote the ring of 2 x 2 matrices over Q. Let A = 

(0 1) (0 -1) 1 0 and B = 1 -1 . Show that o(A) = 2,0(B) = 3 (can 

you do this without computing?),and ABA = B-1. Thus there is a 
group homomorphism 

Show that this gives a surjective ring homomorphism Q[S3] - M2(Q). 

(d) Put all of this together and show that Q[S3] ~ Q x Q x M2(Q). 
Explicitly give all of the homomorphisms. Explicitly list the idempo­
tents (in terms of the group ring) which give each factor. In Chapter 
One we will see that this implies that Q[S3] is semisimple. 

Remark: This example is typical of group representation theory : 
you'll soon see that any group algebra Q[G] (G finite) is a direct 
product of matrix algebras, and this is a good example to keep in 
mind. The idea is to "enrich structure" by recasting problems from 
group theory (which is hard) into the theory of algebras (which is 
rich and well-developed, as we will see in subsequent chapters). 

19. Generalizing part (a) of the previous exercise, show that if p is prime 
then Q[Zp] ~ Q x Q[(p], where (p is a primitive pth root of unity. 

Quaternions 

20. Check that H is a division algebra which is not commutative. Find 
the center of H; i.e., the set of elements x E H which commute 
(multiplicatively) with every element of H. Which elements commute 
with i? with j? with k? 

21. Let HQ be the subset of H consisting of elements with rational co­
ordinates; that is, let HQ = {a + bi + cj + dk : a, b, c, d E Q} . Show 
that HQ is a subring of H, and that HQ is a division ring. HQ is 
called the ring of rational quaternions. 

22. Let R denote the set of matrices of the form ( a_ b) a, bE C. -b a 

(a) Show that R is a subring of M2(C). 
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(b) Show that the center of R may be identified with the real numbers 
via a certain set of diagonal matrices. 

(c) Show that R is isomorphic, as an R-algebra, to the real quater­
nions. 

23. Show that the real quaternions can be considered as a two-dimensional 
algebra over C. Explicitly give a basis for Hover C. 

24. Think of R4 as pairs (r, v), where r is a real number and v is a vector 
in R3. Define a multiplication on R4 by 

(r,v)(r',v') = (rr' - v· v',rv' + r'v + v x v') r,r' E R,v,v' E R3 

where . and x denote the standard dot and cross product of vectors 
in R3, respectively. Prove that R4 with this multiplication is an al­
gebra which is isomorphic to the quaternions. Thus, multiplication 
of quaternions involves the two most basic operations on vectors in 
three-dimensional euclidean space. Hamilton, the discoverer of the 
quaternions, had the idea to use the quaternions to study physics. 
Physicists, however, seem to have found it easier to use the dot and 
cross product without mention of the quaternions. 

The Opposite Ring 

25. If R is a ring, then HO denotes the opposite ring (of R) : that is, RO 
has the same additive group as R but multiplication in RO is defined 
by r . s = sr. Check that RO is a ring. 

(a) If k is a commutative ring and G is any group, show that k[G)O ~ 
k[GJ. 
(b) Let H denote the division algebra of real quaternions. Show that 
HO:::::::H. 

(c) If R is a ring and Mn(R) denotes the ring of n x n matrices over 
R, show that Mn(R)O ~ Mn(RO). 
(d) Jo;xhibit a ring R such that RO is not isomorphic to R. Can you 
give t>itch a ring that is finite? If so, what is the smallest possible 
number of elements it can have? 

(e) Let R be a commutative ring and let Tn (R) denote the ring of n x n 
upper triangular matrices over R. Is 7;.(R)O isomorphic to Tn(R)? 

26. Show that EndR(R) ::::::: RO. 

27. Show that if e is an idempotent of R, then S = eRe is a ring with 
identity element e (note: by definition eRe = {ere: r E R}). Find 
an isomorphism (of rings) 
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This generalizes the fact that, for any ring R, EndR(R) ~ RO (just 
take e = 1). 

Bimodules 

28. Let R and S be rings. An R-S -bimodule is an abelian group M 
with the structure of both a left R-module and a right S-module, 
such that (rm)s = r(ms) for r E R,m EM,s E S. For example, 
any ring R is an R-R bimodule under left and right multiplication. 
If R and S are k-algebras, we will say that M is an R-S-bimodule 
relative to k if, in addition to the above, Am = mA for A E k and 
mE M. Prove that R-S bimodule structures on M relative to k are 
in one-to-one correspondence with R®k SO-module structures on M. 

29. Let e and e' be idempotents of a ring R, let S = eRe and let 
S' = e' Re'. Note that S and S' are rings with identity elements 
e and e', respectively. Find S-S' -bimodule structures on eRe' and 
HomR(Re, Re'), and an S- S'-bimodule isomorphism 

eRe' -.::.. HomR(Re,Re'). 

Note that, if we now take e' = 1, then eR ~ HomR(Re, R) as S-R­
bimodules. (cf. Exercise 27). 

Universal Mapping Properties 

30. (a) Show that any R-module homomorphism f : M - N "factors 
through M/ker(J)"; that is, show that there is a unique homomor­
phism l' : M / ker(f) - N so that the following diagram commutes: 

f 
M --N 

t/ 
M/ker(f) 

Show further that l' is one-to-one. Show that the above holds when 
ker(f) is replaced by any submodule of ker(f) (of course, the injec­
tivity fails to hold). 
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(b) Prove a corresponding universal mapping property for homomor­
phisms of rings. 

31. State the results of exercises 8 and 9 in terms of universal mapping 
properties. 

32. Let M l , ... , Mn be modules over a commutative ring R. Following 
the construction given in Theorem 0.3 for the case n = 2, construct 
the tensor product Ml ®R··· ®R Mn , and show that it is unique. 
Prove a universal mapping property for this tensor product which 
agrees with Theorem 0.3 in the case n = 2. 

Elementary Exercises on Field Theory 

33. (a) Let F be a field with char(F) :f. o. Show that char(F) is equal to 
the smallest integer n such that x + ... + x = n . x = 0 for all x E F. 
(b) Show that the characteristic of any field is either 0 or prime. Fur­
ther, show that any field of characteristic 0 contains Q as a subfield. 

34. Assuming that C is algebraically closed, prove that the only finite 
field extensions of Rare Rand C. 

35. (a) Let k be a field. Show that a polynomial I(x) E k[x] has multiple 
roots (in a splitting field for I over k) if and only if I and f' have a 
common root (in a splitting field), where I' is the polynomial which 
is the derivative of I as in elementary calculus. 

(b) Use part (a) to show that any finite extension of a field of char­
acteristic zero is separable. 

36. Show that the field Q(~) is not a normal extension of Q, where 
~ denotes the real cube root of 2. Recall that Q(~) denotes the 
smallest field containing Q and ~. 

Exact Sequences: Some Basics 

A sequence of R-modules and R-module homomorphisms 

M Ji+l M /; 
. •• ---t i+ 1 ---t i ---t Mi - l ---t .•. 

is said to be exact at Mi if ker(fi) = im(Ji+l). The sequence is 
called an exact sequence if it is exact at each Mi. A short exact 
sequence is an exact sequence of the form 

o ---t A ~ B ~ C ---t o. 
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Note that the sequence is exact at A if and only if i : A ---t B is one­
t~one, and that the sequence is exact at C if and only if p : B --. C 
is onto. Exactness at B means that C ~ B/i(A). 
Exact sequences are extremely useful in keeping track of informa­
tion about maps between modules. They are crucial in the study 
of algebraic topology, algebraic geometry, and in fact all of algebra. 
Although exact sequences are not essential for understanding much 
of this book, they will provide another viewpoint in the study of 
semisimple rings, the Brauer group and various selected topics. 

A short exact sequence 

O--.A~B~C--,O 

is said to split if there is a homomorphism h : C ---t B with 9 0 h = 
ide, where ide denotes the identity endomorphism of C. 

37. Let 0 --+ ALB ~ C - 0 be exact. Prove that the following 
are equivalent: 

(a) The sequence splits. 

(b) The module f(A) is a direct summand in B. 

(c) There is a homomorphism r : B --. A with r 0 f = idA. 

(d) There is a homomorphism s : C --. B such that 9 0 s = ide· 

38. Let 0 --+ A --+ B --. C --. 0 be exact. Show that the sequence 
splits if C is a free module. 

39. (a) Suppose 

A It B gl C 
1--' 1- 1 

are exact. Show that 

is exact. 

and A hB g2C 2---t 2- 2 

(b) Generalize part (a) to arbitrary direct products. 

(c) Generalize part (a) to arbitrary direct sums. 

40. Let 0 __ Vl --+ ... -- Vn - 0 be an exact sequence of finite­
dimensional vector spaces over a field. Show that L~=l ( -1 )idim(l-'i) = 
O. 
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Length 

A composition series for a module M is a chain of submodules 
o = Mo C Ml C ... C Mn = M which admits no refinement, i.e., 
MdMi - 1 is simple. We call n the length of the composition series. 
The simple modules Mi/Mi- 1 are called the composition factors of 
the composition series. A given module may have many composition 
series. These series are related, however, by the following : 

Theorem 0.5 (Jordan-Holder Theorem) If M has a composi­
tion series, then any two composition series have the same length 
and have isomorphic composition factors. 

The proof of this theorem is the same as that for groups. For details 
see e.g., Jacobson, Basic Algebra 1. We define the length of a module 
M, denoted by I(M), to be the length of a composition series for M 
(if M doesn't have a composition series, we say that M has infinite 
length). The length of a module is well-defined by the Jordan-Holder 
Theorem. We also note that "length of a module" generalizes the 
concept of "dimension of a vector space". For example, it is easy to 
see that if R is an algebra over a field k, then any R-module M such 
that dimk(M) < 00 has finite length. 

41. (a) If M is a module of finite length, prove that any submodule and 
any quotient module of M has finite length. 

(b) Conversely, if M' ~ M and M / M' both have finite length, show 
that M has finite length. Further, show that l(M) = l(M')+l(M/M'). 
Deduce that l(M') < l(M) if M' ::/= M. 

(c) Prove that a finite direct sum of modules of finite length has finite 
length and give a formula for the length. 

(d) If R has finite length as a left R-module, prove that every finitely 
generated left R-module has finite length (A module M is finitely 
generated if there exists a finite family of elements ml, ... ,mn of 
M such that Rml + ... + Rmn = M). 

Chain Conditions 

We say that a module M satisfies the ascending chain condition 
(ACC) if for every chain Ml ~ M2 ~ ... of submodules of M, there 
is an integer n with Mi = Mn for all i ;:::: n. If M satisfies the ACC, 
we also say that M is noetherian. 

We say that a module M satisfies the descending chain condition 
(DCC) if for every chain Ml 2 M2 2 ... of submodules of M, there 
is an integer m such that M j = Mm for all j ;:::: m. If M satisfies the 
DCC, we say that M is artinian. 
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42. (a) Show that Z is a noetherian Z-module which is not artinian. 

(b) Let Zpoo denote the submodule of the Z-module Q/Z consisting 
of elements which are annihilated by some power of p. Show that Zpoo 
is an artinian Z-module which is not noetherian. 

43. (a) Show that the Aee is equivalent to the "maximal condition" : Ev­
ery non-empty collection of submodules contains a maximal element 
(with respect to inclusion). 

(b) Show that the Dee is equivalent to the "minimal condition" : Ev­
ery non-empty collection of submodules contains a minimal element 
(with respect to inclusion). 

44. Prove that a module is noetherian if and only if every submodule is 
finitely generated. 

45. (a) Prove that submodules and quotients of artinian modules are 
artinian. Prove the same fact for noetherian modules. 

(b) Let M' be a submodule of M. Show that if both M' and M / M' are 
artinian, then so is M. Prove the same fact for noetherian modules. 

In other words, these statements say that given a short exact sequence 

o --. M' -. M -. M" -. 0, 

Mis artinian (resp. noetherian) if and only if both M' and M" are 
artinian (resp. noetherian). 

46. Prove that a module has finite length if and only if it is both artinian 
and noetherian. 

Note: We shall call a ring R a (left) noetherian ring or a (left) 
artinian ring if it has the corresponding property as a left R-module. 
We shall drop the adjective "left" when no confusion will occur. 

47. Prove that if R is an artinian ring and M is a finitely generated 
R-module, then M has finite length. 

48. Prove that if M is an R-module of finite length, then EndR(M) is 
artinian. 

49. This exercise will show that the concepts of left and right artinian 
(and noetherian) are not the same. Let K/k be a field extension with 
[K : k] = 00. Let R denote the subset of M2(K) consisting of all 
upper triangular matrices of the form 
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with a, b E K and c E k. Show that R is a subring of M2(K), and 
that R is left artinian and left noetherian, but neither right artinian 
nor right noetherian. 

50. (a) Prove Fitting's Lemma: If M is an artinian module and f : 
M - M is an injective homomorphism, then f is surjective. 

(b) Prove the dual assertion to Fitting's Lemma: If M is a noetherian 
module and f : M - M is a surjective homomorphism, then f is 
injective. 

(c) Let G be a free abelian group of finite rank, and let rP : G - G 
be an epimorphism. Show that rP is an isomorphism. 



1 

Semisimple Modules & Rings 
and the Wedderburn Structure 
Theorem 

This chapter is concerned with looking at part of a structure theory for 
rings. The idea of any "structure theory" of an object (in this case a ring) 
is to express that object in terms of simpler, better understood pieces. For 
example, the Wedderburn Structure Theorem says that any semisimple ring 
(we'll define this later) is isomorphic to a finite product of matrix rings over 
division rings, each of which is simple. The theory for semisimple modules 
is in many ways analogous to the theory of vector spaces over a field, where 
we can break up vector spaces as sums of certain subspaces. 

One common theme in this chapter is the interconnection between the 
structure of a ring and the structure of modules over that ring. This inter­
play leads to many deep and useful theorems. 

Unless otherwise specified, all ideals will be left ideals and all modules 
will be left modules. 

Simple Modules 

We begin our discussion with modules that are the basic building blocks of 
other modules. 

Definition: A non-zero module M is simple (or irreducible) if it contains 
no proper non-zero submodule. An R-module M is cyclic with generator 
m if M = Rm for some m E M. 

If F is a field, then the submodules of a vector space V over F are simply 
the subspaces of the V. The simple F-modules are the one-dimensional 
vector spaces over Fj thus there is only one isomorphism class of simple 
F-modules. We shall soon see many other examples of simple modules. 

Proposition 1.1 The following are equivalent for an R-module M: 
(1) M is simple. 
(2) M is cyclic and every non-zero element is a generator. 
(3) M ~ R/I for some maximal left ideal I. 
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Proof: 
(1) implies (2) : If mER, m i:- 0, then Rm is a non-zero submodule of 

M, hence Rm = M. 
(2) implies (3) : Let I be the kernel of the surjective module map ¢> : 

R ~ Rm given by ¢>(r) = rm (this kernel is called the (left) annihilator 
of m and is denoted by ann(m». So I is a submodule of R, i.e. a left ideal 
of R, and RI I ~ Rm. I is maximal : for if not, then there would be a 
non-generating element of M. 

(3) implies (1) : If M' is a nonzero submodule of M ~ RI I, then by the 
Correspondence Theorem for Modules (see Chapter 0) we have that there 
is an ideal I' properly containing I. Since I is maximal, I' = R, so M' = M 
and we are done. 0 

Note: It is easy to check that if R is commutative, then the ideal I in 
(3) is independent of the generator m E M, so I is uniquely determined by 
M j in this case we see that isomorphism classes of simple R-modules are 
in one-to-one correspondence with maximal ideals of R (this is a familiar 
fact when R = Z). 

It is easy to construct many examples of simple modules using (3) above. 

Examples: 

1. The simple Z-modules. are Z/pZ for p prime. 

2. The simple F[x]-modules (F a field) are F(xJl(p) for p an irreducible 
polynomial. 

3. Here is a less obvious example : Let F be a field, V an n-dimensional 
vector space over F, and let R = EndF(V) (R is often called the 
"ring of linear operators over V"). One sees by choosing a basis for V 
over F that R ~ Mn(F), the ring of n x n matrices with entries in F. 
V is an R-module via f· v = f(v); in fact, V is a simple R-module: 
if v i:- 0, then v is part of a basis for V, so clearly Rv = V, hence V 
satisfies (ii). In fact, we will see that this is the only simple R-module, 
up to isomorphism. 

One of the reasons simple modules are so useful and easy to work with 
is that there are so few homomorphisms between them. Consider a module 
homomorphism f : M ~ N. Note that kernel (f) and image (f) are 
submodules of M and N, respectively. Thus if M is simple, then kernel (f) 
is 0 or M, and if N is simple then image(f) is 0 or N. In particular, if both 
M and N are simple, then f is either an isomorphism or the zero map. 
This proves the well-known 

Lemma 1.2 (Schur's Lemma) Any homomorphism between simple R­
modules is either an isomorphism or the zero homomorphism. Therefore 
EndR(M) is a division ring if M is simple. 
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It is also clear that if M and N are simple, and if M ~ N, then 
HomR(M,N) = o. 

Remarks: 

1. If R is a commutative ring, then 

since in general we have, for commutative rings R, that EndR{R) ~ R 
via / 1--+ /(1). Note that, in particular, if M is a simple R-module, 
then M ~ Rj I for some maximal ideal I, and so EndR{M) ~ 
EndR(RjI) ~ RjI, a field. So when R is a commutative ring and 
M is a simple R-module, EndR(M) is not only a division ring, but 
is in fact a field. 

2. If V is a module over a division ring D and R = EndD(V), then R 
acts on V, and the action of R commutes with that of D. Thus scalar 
multiplication induces a homomorphism 

d 1----+ 'scalar multiplication by d'. 

In fact, this is an isomorphism : 

Proof: Since the above homomorphism is clearly injective, we need 
only show, given T E EndR(V), that T is multiplication by an ele­
ment of D. Choose v -::I 0 in V. Given any element w of V, it is easy 
to find an endomorphism of V which carries v to w; hence v generates 
Vas an R-module. Thus an R-module endomorphism T is uniquely 
determined by what it does to v. It therefore suffices to show Tv = dv 
for some d E D. Now since v is part of a D-basis for V, there is a 
projection operator p E EndD(V) = R, where p is the endomorphism 
that projects any vector in V onto the subspace Dv generated by v 
(so in particular p(v) = v). Then Tv = T(pv) = p(Tv) E Dv and 
we're done. 0 

In fact, the above isomorphism holds for a class of rings more general 
than division rings, namely semisimple rings. For details see Exercise 
l8. 
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3. Suppose that R is an algebra over a field k and M is a simple R­
module of finite k-dimension. Then by Schur's Lemma EndR(M) 
is a division ring, and, since it lies in Endk(M), is in fact a finite 
dimensional algebra over k via the natural inclusion 

X f---+ 'multiplication by x'. 

When are all R-endomorphisms of M of this form? That is, when is 
it true that every R-endomorphism is just "multiplication by x" for 
some x E k? The following corollary to Lemma 1.2 gives us a partial 
answer. 

Corollary 1.3 If k is an algebraically closed field, R an algebra over k, 
and M a simple R-module of finite k-dimension, then k :::::J EndR(M); that 
is, the only endomorphisms of M are the scalar multiplications by elements 
of k. 

Proof: This follows from the fact that the only finite dimensional division 
algebra over an algebraically closed field is the field itself (see Exercise 1). 
o 

This corollary is the original result proved by Schur, and was stated in 
the context of group representation theory (with k = C and R = C[G]). 
Together, Corollary 1.3 and Schur's Lemma constitute the "orthogonality 
relations for complex characters" which are so important in representation 
theory. We will give some indication of the power of these methods in 
Chapter 6. 

Semisimple Modules 

The next level in complexity of modules is to combine simple modules in 
a simple way, namely with direct sum. The resulting modules are called 
semisimple, and are one of the basic objects of study in algebra. The phi­
losophy is that semisimple modules behave in many ways like vector spaces 
over a field, simple modules playing a role analogous to one-dimensional 
subspaces. 

Definition: A module M is called semisimple if it is a direct sum (not 
necessarily finite) of simple modules. The Uniqueness Theorem for Semisim­
pIe Modules (see Exercise 25) shows that these simple summands are de­
termined (up to isomorphism) by M, and so are independent of how we 
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write the direct sum. The simple modules in the direct sum are called the 
(simple) constituents of M. 

Examples: 

1. Any simple module is semisimple. 

2. Any vector space V over a division ring is semisimple. If we choose 
a basis {eihE! for V, then the one-dimensional subspaces generated 
by the ei are simple modules whose direct sum is V. 

3. Clearly any direct sum of semisimple modules is semisimple. 

We shall see other examples of semisimple modules later. 
Recognizing semisimple modules isn't as hard as it looks. For example, 

M is semisimple if one can write every element of M as a sum of elements 
of simple submodules. 

Proposition 1.4 If M is the sum (not necessarily direct) of simple sub­
modules M i , i E I, then M is semisimple. More precisely, there is a subset 
l' S;;; I such that M = ffiiE!' Mi. 

The proof of this proposition is similar to the proof that every vector 
space has a basis. Recall that a family of submodules {Mj hEJ is called 
independent if LjEJ mj = 0 implies that mj = 0 for all j (here mj E Mj 
and mj = 0 for all but finitely many j). This is equivalent to saying that 
LjEJ Mj is a direct sum. 

Proof: Consider the collection S = {J : {Mj hEJ is independent} under 
the partial order given by inclusion. S is clearly not empty. Every chain has 
an upper bound in S (namely its union) and hence by Zorn's Lemma there 
exists a maximal element I'. Let M' = LiE!' Mi. We claim that M' = M 
: for since each Mj is a simple module, M' n Mj = 0 or M' n M j = Mj . 
If M' n M j = 0 then we could replace I' by I' U {j}, contradicting the 
maximality of I'. Hence Mj S;;; M' for all Mj,j E I, and so M S;;; M'. Since 
clearly M' S;;; M we have M = M' = LiE!' M i , the sum being direct since 
I' E S. 0 

This proposition may be used to obtain information about the submod­
ules and quotient modules of a semisimple module M. 

Corollary 1.5 If M is a semisimple module, then every submodule and 
every quotient module of Mis semisimple. Moreover, every submodule is a 
direct summand. 
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Proof: Write M as a direct sum of simple modules M = €aiEl Mi. If M' 
is a submodule of M, then M I M' is generated by the images M i of the Mi 
under the natural projection M ----+ MIM'. Now if Mi =1= 0, then Mi ~ Mi 
since Mi is simple, so by the above proposition there exists I" ~ I such 
that MIM' = €aiEl" Mi; hence MIM' is semisimple. It is now easy to 
check that 

M = (EB Mi) EB M' 
iEI" 

(see Exercise 15). Finally, M' is semisimple because it is a quotient of the 
semisimple module Mj morever, if I' = 1\1", then 

M' ~ MI EB Mi ~ EBMi . 

iEI" iEI' 

o 

There is a partial converse to this corollary that provides a useful crite­
rion for determining whether or not a module is semisimple : 

Proposition 1.6 Let M be a module such that every submodule of M is a 
direct summand. Then M is semisimple. 

Proof: The proof, with outline provided, is left as Exercise 17. 0 

The Endomorphism Ring of a Semisimple Module 

Any linear transformation of one finite-dimensional vector space into an­
other can always be represented by a matrix, with composition of trans­
formations corresponding to matrix multiplication. This way of describing 
linear transformations is extremely useful, and we wish to develop the idea 
more generally for semisimple modules. 

The first result we prove will show how to represent R-linear maps be~ 
tween direct sums of R-modufes (in particular free R-modules) by matrices 
with entries in R. The reader should keep in mind the special case when R 
is a field. As we shall see in the discussion following the proposition, how­
ever, matrices which represent R-linear maps for noncommutative rings R 
still have entries in R, but these entries must be multiplied in reverse order; 
that is, we should view the entries as elements of the opposite ring of R. 
Before discussing this more precisely, we prove the following 

Proposition 1.7 Let M be an R-module and let S = EndR(M). For any 
positive integers m, n, there is a canonical isomorphism of abelian groups 
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HomR(Mn,Mm) Rl smxn 

such that the composition 

(f,g) ~ fog 

corresponds to matrix multiplication 

smxn X snxp ~ smxp 

(A,B)~AB 

In particular, EndR(Mn) Rl snxn = Mn(S) is an isomorphism of rings. 

For a more general result, which shows how to represent homomorphisms 
of sums of different R-modules into other such sums, see Chapter 0, Exercise 
10. 

Proof: We'll give the setup and let the reader check the details. Given 
f : Mn ~ Mm, let (lij be the composite 

where the first map is 'injection of the j-th summand' and the last map is 
'projection onto the i-th factor'. This gives the correspondence f ~ [(lij], 

where [Qij] is an m x n matrix with elements in S. 

o 

In the other direction, given [Qij], we define 

n 

where Yi = L Qij Xj. 

j=l 

For an element r of a ring R, let Tr : R ~ R denote the R-linear map 
Tr(x) = xr (note that the natural choice Tr(x) = rx is not R-linear). This 
gives a function 

which fails to be a homomorphism of rings since multiplication is back­
wards, namely Tr 0 Ts = Tsr . If R is commutative, then Tsr = Trs , and 
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so this map does give a homomorphism. This homomorphism is one-to-one 
since Tr = Ts implies in particular that r = Tr(l) = T.(l) = s, and is onto 
since / = TJ(l) for any / E EndR(R). Thus EndR(R) ~ R if R is commu­
tative. In general, the problem of "backwards multiplication" is corrected 
by looking at the opposite ring RO of R, which has the same additive 
group as R, but has multiplication defined by r . s = sr (see Chapter 0, 
Exercise 25 for properties of the opposite ring). By the same argument, it 
is clear that EndR(R) ~ RO for any ring R. Note that this is consistent 
with the case when R is commutative, for then R ~ RO. 

We now look at Proposition 1.7 in the special case of modules over a 
division ring. The theory of modules over a division ring V is very much 
like the theory of vector spaces over a field. In particular, any V-module is a 
direct sum of copies of V (by the usual proof for vector spaces over a field), 
and (by Proposition 1. 7) we can represent any V-linear map vn --+ vm 
as an m x n matrix with entries in EndD(V) ~ VOi that is 

Notice that if V is a field then VO ~ D, and we obtain the well-known 
result from linear algebra that linear trp.JlSformations can be represented by 
matrices with entries in the base field; with composition of transformations 
corresponding to matrix multiplication. 

We conclude this section with a theorem that gives us some idea of what 
the endomorphism ring of a semisimple R-module looks like for an arbitrary 
ring R. In order to do this we must make one additional (though not too 
restrictive) assumption. We will need 

Definition: A semisimple module has finite length if it is a finite direct 
sum of simple modules. 

This definition is a special case of the definition of finite length for ar­
bitrary modules. For the more general definition of finite length, see the 
exercises in Chapter O. The statements that follow also hold for the more 
general definition, although the proofs are a bit messier. 

Proposition 1.8 1/ M is a semisimple R-module 0/ finite length, then 
EndR(M) is isomorphic to a finite product 0/ matrix rings over division 
rings. 

Proof: By grouping together isomorphic simple summands of M we can 
write 

k 

M~E9Mr' 
i=l 
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with Mi simple and Mi ~ Mj if i =I j (the MF" are called the homoge­
neous or isotypic components of M). Since Hom(Mi, Mj ) = 0 for i =I j, 
clearly any endomorphism of M must take each isotypic constituent into 
itself. Thus we have 

EndR(M) ~ EndR(E£)~=l Mr') 

by Chapter 0, Exercises 8 and 9 
and the above comment 
by Proposition 1.7. 

and EndR(Mi ) is a division ring for each i by Schur's Lemma. 0 

This proposition shows that for semisimple R-modules M, we can think 
of EndR(M) as isomorphic to the ring of matrices of the form 

o 

o 
o 

o 

where Ai is an ni x ni matrix with elements in the division ring EndR(Mi ). 

This is a particularly concrete way of describing semisimple R-modules. 

Semisimple Rings 

This section introduces the concept of semisimple ring. Semisimple rings 
arise in diverse areas of mathematics such as number theory, representation 
theory, differential geometry and analysis. Understanding their structure 
will be one of our goals. Semisimple rings will also provide us with many 
examples of semisimple modules. 

Definition: A ring R is a (left) semisimple ring if R is semisimple as a 
left R-module. 

Remark: There is also an obvious notion of "right semisimple" . We shall 
soon see, however, that this notion coincides with that of "left semisimple", 
so we shall henceforth drop the qualifier "left". 

We now give two other conditions which are equivalent to semi simplicity 
of a ring. This will be our first example of how the structure of a ring may 
be deduced from information about modules over that ring. For those not 
familiar with the definition of exact sequence or split exact sequence, see 
Chapter O. 
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Theorem 1.9 Let R be a ring. Then the following are equivalent : 
(1) R is a semisimple ring. 
(2) Every R-module is semisimple. 
(9) Every short exact sequence of R-modules splits. 

Moreover, if these conditions hold then R has finite length as an R­
module and every simple R-module is isomorphic to a simple constituent 
of R. In particular there are only finitely many simple R-modules (up to 
isomorphism). 

Proof: 
(1) implies (2): If R is a semisimple R-module, then Eel R is semisimple 

for any such sum. .A,ny R-module M is the quotient of some free mod­
ule Eel R (Chapter 0, Exercise 3), hence is semisimple since quotients of 
semisimple modules are semisimple (Corollary 1.5). 

(2) implies (3): This follows immediately from the fact that every sub­
module of a semisimple module is a direct summand ( Corollary 1.5). 

(3) implies (1): Given a submodule I of R, looking at 

O~I ~R-R/I--+O 

shows that, by (3), I is a direct summand of R. R is thus semisimple by 
Proposition 1.6. 

If the above three conditions hold, then R ~ EeiEI Mi as modules for 
some simple R-modules Mi. But R is finitely generated (by 1 E R) as an R­
module, so I is finite. Thus R has finite length. If M is a simple R-module, 
we have 

with the second map onto (Proposition 1.1). Since M is simple, only one 
of the maps Mi --+ M is nonzero, and so must be an isomorphism. Thus 
the simple R- modules are precisely the Mi, and there are finitely many of 
them. 0 

It is worth re-emphasizing that the only simple R-modules are those 
occuring in the representation of R as a direct sum of simple modules. 

Examples: 

1. Any division ring D is semisimple because it has no proper (left) 
ideals; hence it is a simple D-module. 
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2. Theorem 1.9 says that semisimple rings are, as modules, finite direct 
sums of simple submodules. Since simple Z-module are just cyclic. 
groups of prime order, and since Z i= L/inite Z/pZ for any such finite 
sum, it follows that the ring Z is not semisimple. Indeed, the homo­
geneous (Le., having just one homogeneous constituent) semisimple 
Z-modules are just the elementary p-groups, and the general semisim­
pIe Z-module is a direct sum of such. 

3. If F is a. field, then F[xJ is not semisimple for reasons similar to the 
above. 

4. One can check that Z/nZ is semisimple if n is square-free. Similarly, 
for a field F, F[xJ/(f) (F a field) is semisimple if f is square-free. 

5. If D is a division ring, Va finite dimensional vector space over D, then 
the matrix ring EndD(V} is semisimple. Further, all simple modules 
over EndD(V) are isomorphic. 

Proof: Choose a basis {el, ... , en} for V and define 

R = EndD(V) -+ V $ ... $ V 

f ~ (f(ed,···, f{en» 
We claim that the above map is an isomorphism of R-modules: It is 
a homomorphism since fv, the evaluation map at v, is R-linear, as 
seen by 

fv{hf) = (hf)(v) 
= h(f{v» 
= h{fv(f». 

The map is one-to-one since f is determined by what it does to a 
basis, and is onto since, given any function on a basis, there exists an 
f E EndD(V) extending that function. 

Thus, since V is a simple EndD(V)-module (see the example after 
Proposition 1.1), we see that EndD(V) is a semisimple ring. By The­
orem 1.9, every module over EndD(V) is a direct sum of simple mod­
ules (namely copies of V). 0 

Let us look at the above in terms of matrices, where we can give 
a convenient family of simple submodules of the semisimple module 
Mn(DO) = EndD(V) which illustrates the decomposition concretely. 
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The spaces of column vectors 

are simple submodules of the semisimple module Mn(DO) = EndD(V), 
and further Mn(DO) = V1 $ ... $ Vn. Note again that the Vi are 
mutually isomorphic, so there is a single simple module (up to iso­
morphism). 

Note: This result is not true if V is not finite-dimensional (see Exercise 
28). 

6. If R and S are semisimple rings, then R x S is semisimple. This can be 
seen from the fact that if M is an R x S-module, then M = Ml $ M 2 , 

where Ml is an R-module and M2 is an S-module (see Chapter 0, 
Exercise 6). 

Examples 5 and 6 imply that, given division rings Di (i = 1, ... , n) and 
finite dimensional vector spaces Vi over D i , n~=l EndD. (Vi) is semisimple. 
For emphasis we state this as 

Proposition 1.10 Any finite product of matrix rings over division rings 
is semisimple. 

Wedderburn Structure Theorem 

Theorem 1.9 says that a semisimple ring R is isomorphic, as an R-module, 
to a finite sum of simple R-modules. We can also give such a decomposition 
of R into rings instead of modules; in fact, an even more precise result can 
be given. Proposition 1.10 states that any finite product of matrix rings 
is semisimple. The fact that all semisimple rings are of this form is the 
content of the next theorem. This will be our second example of how the 
structure of a ring may be deduced from information about modules over 
that ring. 

Theorem 1.11 (Wedderburn Structure Theorem) Every semisimple 
ring R is isomorphic to a finite direct product of matrix rings over division 
rings. If R is commutative, then R is isomorphic to a finite direct product 
of fields. 
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Proof: Since R is semisimple as a ring (and thus of finite length as an 
R-module, by Theorem 1.9) we have, by Proposition 1.8, that EndR(R) 
is isomorphic to a finite product TI M n , (Di) of matrix rings over division 
rings Di. But EndR(R) ~ RO. Thus 

R ~ (Rot ~ TI[Mn, (DiW 
~ TIMn,(Df). 

The last isomorphism comes from the fact that Mn(D)O ~ Mn(DO), as 
can be seen by using the transpose. The second statement of the theorem 
is clear. 0 

Before elaborating on the Wedderburn Structure Theorem, we give one 
immediate consequence which makes life a bit less complicated. 

Corollary 1.12 A ring is left semisimple if and only if it is right semisim­
pIe. 

Thus we refer only to semisimple rings without mention of left or right. 

Definition: A ring is called simple if it has no non-trivial two-sided ideals. 
This is, in general, weaker than saying that the ring is simple as a module 
over itself; any ring which is simple as a module over itself is a simple 
ring, but not conversely. Exercise 5 of this chapter shows that a ring of 
n x n matrices over a division ring is simple, although it may contain many 
nontrivial left ideals. It should be noted that some authors (e.g., Lang and 
Bourbaki) define "simple" for rings so that "simple" implies semisimple. 
As we shall see, one more condition needs to be met for our simple rings 
to be semisimple. 

Combining the fact that matrix rings are simple with the Wedderburn 
Structure Theorem, we see that 

Every semisimple ring R is isomorphic to a finite product of 
simple rings R 1 , ••. , Rn. 

We can think of each Ri as 0 x ... x ~ x ... x 0 sitting inside of R = 
Rl X •.. x Rn, so that each Ri is a two-sided ideal in R (but not a subring!) 
and thus an R-submodule of R. It is easy to check that if i i= j then Ri ~ Rj 
as R-modules, even if Ri ~ Rj as rings (Chapter 0, Exercise 7). 

We also know what all of the simple R-modules are: each Ri is isomorphic 
to a matrix ring Mn,(Di ), and, being simple, has a unique isomorphism 
class of simple modules (by the Structure Theorem for Simple Artinian 
Rings to follow). The unique isomorphism class of simple left (right) Ri -

modules is the space generated by any column (row) vector (check this). 
Thus R has exactly n isomorphism classes of simple modules. This follows 
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from the fact that if M is an R x S-module, then M = Ml ED M2 , where 
Ml is an R-module and M2 is an S-module (Chapter 0, Exercise 6). 

The Wedderburn Structure Theorem is a special case of a more general 
theory of rings of projective dimension zero. For more information about 
this topic, see Chapter 7. 

We have shown that every semisimple ring can be written as a direct 
product of simple rings. The following theorem tells us that we can do this 
uniquely. 

Theorem 1.13 (Uniqueness Theorem for Semisimple Rings) If 

m 

and R= TIRj 
j=l 

are two product decompositions of a ring R, where each Ri and Rj is a 
simple ring, then n = m and each Ri is some Rj. 

Remark: The following proof will show that these simple factors are unique 
in the sense that each ~ really is equal to, not just is isomorphic to, some 
Rj. 

Proof: First note that for each i, ~R = Ri , since we may think of each 
Ri (and Rj) as a two-sided ideal in R. Applying this to the equation R = 
n;:l Rj gives ~ = n;:l RiRj. Now each ~R'. is a two-sided ideal of ~ 
and is thus either zero or ~. Since every RiR{ isn't zero, there is an Rj 
with ~ = RiRj. Now Ri = ~Rj is also a two-sided ideal of Rj, and so 
must equal Rj. Thus we see that ~ = Rj. 0 

There is an analogous, but weaker, uniqueness theorem for semisimple 
modules, the proof of which we leave as an exercise (see Exercise 25). 

Simple Rings and Further Applications 

It follows from the definitions that any simple module is semisimple. Look­
ing at the way we defined these concepts for rings, however, the analogous 
fact is not clear. In fact it is not true that every simple ring is semisimple! 
(See Exercise 28 for an example.) The problem is that it is possible for 
a ring (even a simple one) to contain an infinite descending sequence of 
distinct left ideals It :::) 12 :::) h :::) ... , but Theorem 1.9 shows that any 
semisimple ring has finite length, and so no such descending chain of ideals 
exists in a semisimple ring. If we assume that this does not happen in the 
simple ring R, however, then it will be true that R is semisimple. A ring 
satisfying such a descending chain condition is called left artinian. For 
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those not familiar with artinian (and noetherian) rings and modules, see 
the section on chain conditions in the exercises of Chapter 0 for additional 
information. 

Before proving that any simple artinian ring is semisimple, we shall intro­
duce two useful concepts that will aid in our understanding of the structure 
of rings. 

For a vector space V over a field F, V can be written as a direct sum of 
one-dimensional subspaces, each of which is isomorphic (as an F-module) 
to the simple module F. Thus V can be broken up into simple pieces each 
of which looks the same. The next definition generalizes this concept. 

Definition: A semisimple module is called homogeneous if it is a direct 
sum of a collection of simple modules all of which are isomorphic to a fixed 
simple module S. We also say that the module is homogeneous or isotypic 
of type S. 

To prove the Structure Theorem for Simple Artinian Rings, we need a 
lemma concerning endomorphisms of homogeneous semisimple modules. 
Recall that a submodule M' S;;; M is said to be stable under the endomor­
phism ¢: M --+ M if ¢(M') S;;; M'. For homogeneous semisimple modules, 
we can say exactly which submodules are stable under all endomorphisms; 
namely, we have : 

Lemma 1.14 Let M be a homogeneous semisimple module. Then the only 
submodules of M that are stable under all endomorphisms are 0 and M. 

Proof: Suppose M' is a proper non-zero submodule. Since M is semisimple, 
M' is a direct summand, say M = M' EB Mil. Note that both M' and 
Mil are semisimple and in fact are homogeneous of the same type as M 
(see the proof that submodules and quotients of semisimple modules are 
semisimple in Corollary 1.5). Hence H om(M', M") =f. O. But then it is easy 
to find endomorphisms of M which don't stabilize M', for example the 
composition 

M~' M' e M" '--+ M. 

o 

The converse to this lemma is also true, as is shown in Exercise 11. That 
is, if 0 and M are the only submodules of M which are stable under all 
endomorphisms of M, then M is semisimple and homogeneous. 

For a vector space V over a field F, no non-zero scalar annihilates a non­
zero vector; that is, any (non-zero) one-vector set is linearly independent. 
The more general notion for modules is the following: 

Definition: An R-module M is said to be faithful if, for every r E R, 
r M = 0 implies that r = O. 
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The following theorem ties together a few ways we have been looking at 
the structure of rings, and in particular proves our claim that any simple 
artinian ring is semisimple. This theorem provides another nice example of 
the interplay between the structure of a ring and the structure of modules 
over that ring. 

Theorem 1.15 (Structure Theorem for Simple Artinian Rings) 
Let R be a ring. Then the following are equivalent : 
(1) R is a simple artinian ring. 
(2) R is isomorphic to a matrix ring over a division ring. 
(3) R is semisimple and all simple modules over R are isomorphic. 
(4) R is homogeneous and semisimple as an R-module. 
(5) R is artinian and has a faithful simple module. 

This theorem is sometimes called the Wedderburn-Art in Theorem. 

Proof: (5) implies (4): Let M be a faithful simple module. We'll show 
that R is isomorphic to a submodule of Mn for some n. Consider all R­
homomorphisms f : R ----- M n for various n, and choose one with minimal 
kernel (we can do this since R is artinian). We claim that f is one-to-one, 
for if f(r) = 0 and r =/: 0, then since M is faithful there is an mE M with 
rm =/: O. Define 

by 

X t----+ (f ( X ) , xm) 

This map has smaller kernel than f, giving a contradiction. Thus f is 
one-to-one and so R is a submodule of the homogeneous semisimple module 
Mn. Hence R is homogeneous and semisimple. 

(4) implies (3): This follows immediately from the definitions and Theo­
rem 1.9. 

(3) implies (2): This follows immediately from the Wedderburn Structure 
Theorem and the comments following it. 

(2) implies (1): This is simply the fact that every matrix ring over a 
division ring is both simple (Exercise 5) and artinian (Chapter O,Exercise 
48). 

(1) implies (5): Note that for any module M, Ann(M) = {r E RlrM = O} 
is a two-sided ideal of the simple ring Rand 1 r;. Ann(M), so Ann(M) = O. 
Thus any R-module is faithful. Since R is artinian, R has some simple 
module; in fact, any module has a simple submodule, for any descending 
chain of ideals must eventually stabilize, and the module to which the 
sequence stabilizes must clearly be simple. Thus R has a faithful simple 
module. This completes the proof of the Theorem. 0 
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Remark: It is easily shown (see Exercise 18) that if R satisfies the hy­
potheses of Theorem 1.15 and M is a simple R-module with endomorphis­
m ring D (remember D will be a division ring), then the structure map 
R --+ EndD{M) is an isomorphism. This gives an explicit realization 'If 
(2). 

We apply the ideas of this chapter to prove a classical result due to 
Burnside. 

Corollary 1.16 (Burnside) Let R be an algebra over a field k and let 
M be a simple R-module such that dimk(M) < 00. Also suppose that 
EndR(M) = k (e.g., if k is algebraically closed, cf. Corollary 1.3). Then 
the structure map R --+ Endk(M) is onto. 

Proof: The diagram 

commutes, where the homomorphism from R to Endk(M) is the structure 
map of M as an R-module. Now 

(1) M is a faithful R/Ann(M)-module (always), and hence 
(2) R/Ann{M) '-+ Endk{M) and the latter is finite dimensional over k 
since M is finite dimensional over k. Thus R/Ann(M) is artinian since it 
has finite dimension. 

Now (I) and (2) are just condition (5) of Theorem 1.15 for the ring 
R/Ann(M), hence R/Ann(M) ~ EnddM) via Remark (2) above, and we 
are done. 0 

We now give a corollary which will be useful later on in our study of the 
Brauer group. We give this corollary, which shows that every element in the 
Brauer group (defined in Chapter 4) has an inverse, in order to demonstrate 
some of the techniques used in this chapter. 

Corollary 1.17 Let k be a field. Let R be a simple k-algebra of finite 
dimension n whose center is k. Then R 0k RO ~ Mn(k). 

Proof: R is an R-R bimodule relative to k, hence an R 0k RO-module 
(Chapter 0, Exercise 28). It is a simple R 0k RO-module since it has no 
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non-zero two-sided ideals (two-sided ideal = R ®k RO-submodule of R). 
Consideration of the map 

f ~ f(1) 

shows that 

So by Corollary 1.16 

R ®k RO ---+ Endk(R) ~ Mn(k) 

is onto. But both the domain and the range have k-dimension n2 , and so 
the map is an isomorphism. 0 

Summary 

Throughout this chapter we have seen several characterizations of semisim­
pIe rings. In the exercises, we will introduce other properties of a ring which 
are equivalent to semisimplicity. Since it is useful to keep all of these prop­
erties in mind when looking at such rings, we give a summary of several 
properties which characterize semisimple rings : 

Theorem 1.18 For a ring R the following are equivalent: 
(1) R is a semisimple ring; i. e., R is semisimple as a left R-module. 
(2) Every left R-module is semisimple. 
(3) Every short exact sequence of left R-modules splits. 
(4) Every left R-module is projective. 
(5) Every left R-module is injective. 
(6) R is ring isomorphic to a finite product of matrix rings over division 
rings. 
(7) R is the direct sum of a finite number of simple left ideals 

i=l 
where each Li is a simple (as a submodule) left ideal and Li = Rei, where 
{edf=l is a set of orthogonal idempotents such that el + e2 + ... + en = 1. 
(8) R is artinian and has vanishing Jacobson radical. 

Moreover, (1)-(5) hold with "left" replaced by "right". 

An explanation of (4) and (5) will be given in the exercises, and an expla­
nation of (8) will be given in Chapter 2. These conditions are included here 
for completeness. The proof of this theorem (except for (8)) is contained in 
this chapter partly in the exposition and partly in the exercises. 
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Exercises 

A Lonely, Ungroupable Exercise 

1. Let D be a division algebra which has finite dimension over the field 
k. For each a E D show there is a monic polynomial in k[xj which has 
a as a root. Conclude that if k is algebraically closed, then k = D. 
Note that this proves Corollary 1.3. 

Simplicity 

2. Let R be a ring (with 1) such that the only left ideals of Rare 0 and 
R. Show that R must be a division ring; that is, if R is simple as a 
left R-module, then R is a division ring. If the hypothesis that R has 
an identity is dropped, the result no longer holds. Give an example 
to show this. In fact, the type of example you give is unique. 

3. Show that the assumption "every non-zero element is a generator" in 
Proposition 1.1 is necessary. 

4. Determine all simple R-modules, where 

(a) R = Z. 

(b) R = C[x]. 

(c) Q/(x3 - 5) 

(c) R is a principal ideal domain. 

(d) R = C[x,yj. 

(e) R is the set of continuous, real-valued functions with domain [0,1]. 

5. Show that the only two-sided ideals of Mn (R) are of the form Mn (I) 
for some two-sided ideal I of R. Cow'lude that Mn(R) is a simple ring 
if and only if R is a simple ring. [Hmt: The following may be useful: 
Let eij denote the n x n matrix with 1 in the i, j position and zeros 
elsewhere, These matrices are called the elementary matrices of 
Mn(R). Clearly {eij : 1 ~ i,j ~ n} is a basis for Mn(R) considered 
as an R-module. So every element of Mn(R) can be written uniquely 
as 2: aij eij, and the eij can be multiplied via the formula 

if j "" k 

if j = k. 

Note also that elementary row operations correspond to left multipli­
cation by elements of the form 
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Eij{r) = 1+ reij r E R,i '" j 

where I denotes the n x n identity matrix. Similarly, column opera­
tions correspond to right multiplication by such elements.] 

Remark: The above exercise can be viewed as a very special case in 
Morita theory. Morita theory provides a set of data (called a Morita 
context) which gives a categorical equivalence between the category 
of R-modules and the category of 8-modules, where R and 8 are rings 
forming part of a Morita context. In particular, Rand Mn{R) are re­
lated by a Morita context. For more on Morita theory, see Jacobson's 
Basic Algebra II. 

Semisimplicity 

6. Show that the Z-module Q is neither semisimple nor has a simple 
quotient. In fact, show that Q is indecomposable : it is not the 
direct sum of two proper Z-submodules. 

7. Show that the following conditions are equivalent for a semisimple 
module M: 
(i) M is finitely generated. 
(ii) M is a direct sum of a finite number of simple submodules. 
(iii) M has finite length. 
(iv) M satisfies both the ACC and DCC. 

In particular note that, for a vector space, length equals dimension. 
Note that the equivalence of (iii) and (iv) is Exercise 46 of Chapter 
O. 

8. Prove that the homomorphic image of a semisimple ring is semisimple. 

9. Let R be a ring and M a semisimple R-module. Let 8 and 8f be 
isomorphic simple submodules of M via the isomorphism g : 8 - 8f • 

(a) Show that there is an R-isomorphism 1 : M .::. M such that 
the restriction of 1 to 8 is the given isomorphism gj in particular, 
1(8) = 8f • 

(b) Show that this isn't true if 8 and 8 f are isomorphic but otherwise 
arbitrary. [Hint : look at an infinite-dimensional vector space and an 
infinite-dimensional proper subspace.] 

10. Let N be a submodule of the R-module M. If Nand M / N are 
semisimple, does it follow that Mis semisimple? 
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11. Let M be a module. Show that 0 and M are the only submodules 
of M stabilized by every endomorphism of M if and only if M is 
semisimple and homogeneous{cf. Lemma 1.14). 

12. Prove that a module M is semisimple if and only if every cyclic sub­
module of M is semisimple. 

Some Centers 

13. Let R be a ring. The center of R, denoted Z{R), is {z E Rlzr = rz 
for all r E R}. Z{R) is a commutative subring of R. 

(a) Show that Z{R x S) ~ Z{R) x Z{S). 

(b) Show that Z{Mn{R)) ~ Z{R). 

(c) Show that ZeD) is a field if D is a division ring. 

(d) Compute Z{Tn{R)) for Tn{R) the ring of n x n upper triangular 
matrices over R. 
(e) Show that the center of a semisimple ring is a product of fields, 
hence is semisimple. 

(f) Let D be a division ring and V a non-zero vector space over D. 
Let k = ZeD) and R = EndD(V). There is a homomorphism k - R 
given by the action of k on V by scalar multiplication. Show that this 
induces an isomorphism k ~ Z{R). 

(g) Let k be a field and let G be a group. Describe Z{k[G)). [Hint: If 
g E G has only finitely many conjugates, consider the element Cg in 
k[G] which is the sum of the conjugates of g.] 

14. Let R be a semisimple artinian ring. 

(a) Prove that, if I is a two-sided ideal of R, then the canonical 
homomorphism Z{R) -+ Z{RjI) is surjective. 

(b) Let M be a left R-module and let S = EndR(M). Prove that the 
homomorphism 

T: Z{R) -+ Z(S) 

defined by 

mT(r) = rm for r E R,m EM 

is surjective. Note that we view M as an R - S-bimodule. 

(c) Assume now that R is simple artinian, and let D be the division 
ring such that R ~ Mn(D). Prove that Z(R) ~ ZeD) as fields. [Note 
that this can be deduced from part (b) or shown directly.] 
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Direct Summands 

15. Let M be an R-module and M' a submodule. Prove that M' is a 
direct summand of M if and only if M has a submodule M" which 
maps isomorphically onto M I M' under the canonical projection M -
MIM'. 

16. If M' is a direct summand of M, prove that any two complements 
for M' are isomorphic (recall that a complement of M' in M is a 
submodule N with M = M' fB N). Give an example to show that two 
complements are not necessarily equal. 

17. Let M be a module such that every submodule is a direct summand. 
Show that M is semisimple as follows: 

(a) Show that every submodule of M inherits the property that each 
of its submodules is a direct summand. 

(b) Show that M contains a simple submodule : Choose any finitely 
generated non-zero submodule M' £:;; M (e.g., M' could be cyclic). 
Let M" C M' be a maximal submodule not equal to M' (why do 
such submodules exist?). Hence M'IM" is simple and by (a) there is 
an X C M' with M' = M" fB X and with X :::::: M' 1M" simple. 

(c) Let Ml be the submodule of M generated by all simple sub­
modules, which is thus a direct sum of simple modules. Then M = 
Ml fB M2 for some submodule M2 • Applying (a) and (b) we see that 
if M2 =1= 0, then it contains a simple submodule and we get a contra­
diction. 

More Information from the Wedderburn Structure Theorem 

18. Let R be a semisimple ring, let {Ml. ... , Mn} be a set of repre­
sentatives for the isomorphism classes of simple R-modules, and let 
Di = EndR(Mi ). The action of R on Mi defines a homomorphis­
m 4>i : R - EndD; (Mi). Combining these gives a homomorphism 
<P : R - rr=l EndD; (Mi). Prove that Mi is finite dimensional over 
Di and that <P is an isomorphism. 

19. Prove that if R is a commutative semisimple ring, then the canon­
ical map R - TIl RI I is an isomorphism, where I ranges over the 
maximal ideals of R. 

20. With the notation of Exercise 18, let ni = dimD;Mi . Prove that 
ni is the multiplicity with which Mi occurs in R, regarded as a left 
R-module. 

21. Prove that if R is a semisimple ring then the isotypic components of 
R are the minimal two-sided ideals of R. Prove that every two-sided 
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ideal of R is a product of these and conversely. Note that the isotypic 
components are not subrings. . 

22. (a) Prove that R is a semisimple ring if and only if R is the direct 
sum of a finite number of simple left ideals 

where each Li is a simple (as a submodule) left ideal and Li = Rei, 
where {ei}i=1 is a set of orthogonal idempotents such that e1 + e2 + 
... +en=l. 

(b) Prove that if {ell' .. , em} is a set of orthogonal idempotents in 
Mn(D), D a division ring, then m ~ n. 

23. This exercise provides a sketch of a clever proof, due to M. Rieffel, of 
part of the Structure Theorem for Simple Artinian Rings. Let M '" 0 
be a left ideal of a simple ring R. Viewing M as a left R-module, 
let S = EndR(M), T = Ends(M), and 'I/J : R --+ T be the natural 
homomorphism. Assume that R possesses no nonzero proper two­
sided ideals, so that 'I/J is injective. 

(a) Show that 'I/J(M) is a left ideal ofT. [Hint: Show that the mapping 

M--+T 
x 1---+ 'I/J(x) 

is a homomorphism of T-modules by using the fact that right multi­
plication by elements of M yields elements of S.] 

(b) Show that 'I/J(R) is a left ideal of T. [Hint: Observe that MR = R 
and apply 'I/J and part (a).] 

(c) Show that 1/J is an isomorphism. 

24. Let A be a simple k-algebra with center k such that [A : k] = p2 with 
p a prime. Prove that either A is a division algebra or A ~ Mp(k). 

Uniqueness Theorem for Semisimple Modules 

25. Prove the Uniqueness Theorem for Semisimple Modules: If M is an 
R-module and if 

m 

and M = $Mj 
;=1 

are two direct sum decompositions of M with simple summands Mi 
and Mj, then n = m and there is a permutation 1f' of {I, ... , n} with 
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Mi ~ M~(i) for each i = 1, ... , n. [Hint: induct on the smaller of m 
and n.] 

26. (a) Show that the Uniqueness Theorem for Semisimple Modules is not 
true if we replace "is isomorphic to" by "is equal to" , in contrast with 
the Uniqueness Theorem for Semisimple Rings. (Hint: Show that if 
M = R2 is viewed as an R-module, then there are infinitely many 
ways to decompose M as the direct sum of two simple submodules.] 

(b) Show that the ring R of 2 x 2 matrices over the real numbers 
has an infinite number of distinct proper left ideals, any two of which 
are isomorphic as left R-modules. Then show that there are infinitely 
many distinct pairs (I, I') of minimal left ideals of R with R = I EEl I' 
as modules (remember that minimal left ideals correspond to simple 
left R-modules). 

Maschke's Theorem 

27. Let k be a field and G be a finite group. 

(a) Let M be a k[GJ-module with submodule N. Since k is a field, we 
know by Theorem 1.9 that the short exact sequence 

O-+N-+M~MIN_O 

splits as a sequence of k-modules (here p is the canonical projection). 
Denote the splitting by 8 : MIN -+ M. Clearly there is no reason 
to believe that s is a homomorphism of k[G]-modules. 

Define S : MIN -+ M by the formula S(x) = E9EGgS(g-lx). 
Compute po S .. 

(b) Show that if IGI is invertible in k, then there is a k[G]-splitting 
of the above sequence. Conclude that k[G] is a semisimple ring. 

Remarks: This result, known as "Maschke's Theorem", is of fun­
damental importance for representation theory. Given a group G, 
we study C[G1, which is just (by Maschke's Theorem and Wedder­
burn's Theorem) a product of algebras of the form Mn(C). Since 
we understand completely the structure of semisimple C-algebras, 
the stratagem of embedding a mysterious object under study (the 
group G) into an object with a richer and therefore better-understood 
structure (the algebra C[Gj) can be expected to yield great dividend­
s. In fact, many important theorems in the modern structure theo­
ry of finite groups are proved by representation-theoretic methods. 
See Chapter 6 for more on this, in particular for an application of 
Maschke's Theorem in proving Burnside's paqb theorem, a much cel­
ebrated result in group theory. 
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For those who know some analysis, think of G as a discrete topological 
group with the counting measure IJ normalized to be a probability 

measurej i.e., for X ~ G, IJ(X) = Cjg\X), so IJ(G) = 1. Then sums 

can be written as integrals; e.g., faT L:g ag becomes fe a(g)dlJ(g)· 
Then the formula for the above splitting assumes the form : 

This should look familiar - it's just the convolution of the identity 
with the map s. In fact, if G is any compact topological group, there 
exists a unique left-invariant measure (i.e., IJ(X) = lJ{gX) for all 
measurable X ~ G) with IJ( G) = 1, called the Haar measure on G. 
For example, the Haar measure on Euclidean space R n is Lebesgue 
measure, and the Haar measure on the circle 8 1 is the usual "2~· 
arclength" measure. The fundamental facts about group representa­
tions work just as well in this setting. Indeed, various formulae arising 
in the representation theory of finite groups are called "Fourier in­
version" formulae, because that's exactly what's happening. 

(c) Prove the converse of part (b). [Hint: Look at the exact sequence 

where E is the 'augmentation map' E(L: r gg) = L: r 9 and A is the 
kernel of E (A is often called the augmentation ideal of k[GJ). Here 
k is viewed as a k[G) - module via E. Show that this exact sequence 
doesn't split when the characteristic of k divides IGI.] 

Some Counterexamples 

28. (a) If V is a vector space of countably infinite dimension over a field 
k, show that the set of finite rank operators (i.e., those elements of 
Endk(V) whose image is finite dimensional) forms a two-sided ideal 
in Endk(V)j hence Endk(V) is not simple, in contrast to the fact 
that finite endomorphism rings of finite dimensional vector spaces 
are simple. 

(b) Use part (a) to construct a simple ring which is not semisimple. 

Projective and Injective Modules 

29. A module P is called projective if any of the following three equiv­
alent conditions holds : 



54 1. Semisimple Modules & Rings and the Wedderburn Structure Theorem 

(i) Given a homomorphism f : P --+ B and a surjective homomor­
phism p : A --+ B, there exists a homomorphism 9 : P --+ A making 
the following diagram commutative : 

(ii) Every surjection p : M --+ P splits, i.e., there is a homomorphism 
s : P --+ M such that ps = Ip. 

(iii) P is a direct summand of some free module F. 

(a) Show that these three conditions are equivalent. 

(b) Show that an arbitrary sum of modules is projective if and only 
if each of the summands is projective. 

30. (a) Show that the projective Z-modules are precisely the free abelian 
groups; i.e., every projective Z-module is free. Generalize this to prin­
cipal ideal domains. 

(b) Let R be the ring of two-by-two matrices over a field k, and let I 
be the left ideal of R consisting of matrices whose second column is 
zero. Show that the left R-module I is projective but not free. 

31. A module Q is called injective if either of the following equivalent 
conditions holds : 

(i) Given a homomorphism j : A --+ Q and an injective homomor­
phism i : A --+ B, there exists a homomorphism h : B --+ Q making 
the following diagram commutative : 

(ii) Every injection i : Q --+ M splits. 
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(a) Show that these two conditions are equivalent. 

(b) Show that an arbitrary product of modules is injective if and only 
if each factor is. 

Remark: Injectivity is a concept "dual" to projectivity; that is, the 
respective parts (i) and (ii) of the equivalent definitions are obtained 
from each other by reversing the direction of the arrows. Is there an 
analogue (or rather dual) to definition (iii) of Exercise 29 for injective 
modules? 

32. Prove that every vector space over a division ring is both projective 
and injective. 

33. Let R be a ring. Show that the following statements are equivalent : 

(i) Every R-module is projective. 

(ii) Every short exact sequence of R-modules splits. 

(iii) Every R-module is injective. 

In view of Theorem 1.9, this gives us two more equivalent definitions 
of a semisimple ring. 

34. Prove that Q is not a projective Z-module, thus providing another 
proof that Z is not a semisimple ring. 

35. Projective modules are quite common, whereas injective modules, 
though still extremely useful in many contexts, are harder to come 
by. This exercise gives a way of recognizing injective modules. Prove 
the following : The R-module Q is injective if and only if for each 
left ideal L of R, every homomorphism of L to Q can be extended to 
a homomorphism of R to Q. [Hint : One direction is trivial. For the 
other direction proceed as follows : 

(i) Given a diagram 

o --~ ..... A ----.:...~ .. - B 

Ij 
Q 

consider the collection S of all pairs (Bj, Ii) where image(i) C Bj C 

B and Ii : B j --+ Q satisfies Iii = f. Partially order S by saying 
that (Bj, Ii) ~ (Bk, lk) if both Bj ::> Bk and the restriction of Ii to 
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Bk is Ik. Apply Zorn's Lemma to get a maximal element of S; call it 
{Bo, 10). 
(ii) Now show that Bo = B : if Bo =f. B, choose e E B with e f/. Bo 
and let L = {r E Rlre E Bo}, a left ideal of R. Show that the 
formula g(b} = lo{be) defines a homomorphism from L to Q. Apply 
the hypothesis to get a homomorphism g' : R --+ Q. If re E Bo, 
show that'/{re} = rg'{l}. Let B' = Bo + Re, which contains but 
is not equal to Bo. Show that f' : B' --+ Q given by the formula 
f'{bo + re) = lo{bo) + rg'{l} is a well-defined homomorphism which 
restricts to 10 on Bo. This should yield a contradiction and conclude 
the proof.] 

36. An abelian group A is divisible if for all a E A and nEZ, n =f. 0, 
there exists b E A such that a = nb. 

{a} Show that direct sums, homomorphic images, and direct sum­
mands of divisible groups are divisible. 

(b) Show that an abelian group is divisible if and only if it is injective 
as a Z-module. 

37. {a} Show that the additive groups Q, R, and C are divisible. 

(b) Show that Q/Z and direct factors of Q/Z, for example the 1>­
torsion subgroups Zpoo = {r E Q : pnr E Z for some n} , are divisi­
ble. 

(c) Show that no finite group is divisible. Show that no free abelian 
group is divisible. 
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The Jacobson Radical 

In Chapter One we developed a structure theory for semisimple rings, as 
summarized in Theorem 1.18. This theory used, for the most part, proper­
ties of modules over a semisimple ring in order to characterize such a ring. 
In this chapter, we give a more intrinsic characterization of semisimple 
rings. 

What follows is part of a general theme in any structure theory. The 
idea is to single out some "undesirable" property of the object one wishes 
to study; in our case the information is captured by the Jacobson radical 
of a given ring. One then studies only those objects which don't have this 
property; for example, those rings whose radical is zero. This can be a tricky 
business, for one must strike a balance between studying a class of objects 
large enough to be interesting and useful, yet small enough to be tractable. 
A good example of such objects, as we have seen, are semisimple rings, and 
it is this class of objects we are most interested in. Our explorations using 
this philosophy will also provide us with valuable information about rings 
which are not semisimple. 

Another Characterization of Semisimple Rings 

We understand vector spaces over fields quite well. One nice property of 
such modules is that no non-zero scalar annihilates a non-zero vector, and 
in particular does not annihilate the entire module; that is, a field acts 
faithfully on any vector space over that field (recall that an R-module 
M is faithful if ann(M) = 0). Moving from the situation of a field to an 
arbitrary ring R, we want to come up with an algebraic object that captures 
the information of how far off we are from having R act faithfully on some 
simple R-module. We will now define such an object - the Jacobson radical 
J(R). The radical is an ideal consisting of those elements which can't be 
detected by simple modules. Accordingly, it will turn out that J(R) = 0 
precisely when R has "enough" simple R-modules; and J(R) will vanish if 
there exists a faithful simple R-module. 

Definition: The (Jacobson) radical of a ring R, denoted J(R) , is the set 
of those r E R such that r E ann(M) for every simple (left) R-module M; 
that is, 
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J(R) = n ann(M). 
M simple 

If J(R) = 0, we say that "R has no radical." 

Remarks: 

1. It is easy to check that J(R) is a two-sided ideal. It is also easy to 
check that ann(M) is a maximal left ideal for each simple module M, 
and that, conversely, each maximal left ideal I is the annihilator of 
some simple R-module (namely, R/ I). This is true because, as stated 
in Proposition 1.1, simple R-modules are precisely R/ I for maximal 
left ideals I. Thus we see that, alternatively, 

J(R) = n I 
max. left 
ideals 1 

This shows that J(R) can be intrinsically defined. Such a definition 
is useful in computing the Jacobson radical, as long as we can get 
sufficient information on the maximal ideals of the ring at hand. This 
is the case in examples 1, 2, and 4 below. Note that, in particular, 
J(R) #- R. 

2. Some authors say "R is semsimple" when referring to rings with 
J(R) = O. This is, in general, not the same as our definition of 
the word; the ring Z, for example, has vanishing radical but is not 
semisimple. Such people (usually ring-theorists) would say "semisim­
pIe with minimum condition" when referring to our definition of 
semisimple; here "minimum condition" refers to the descending chain 
condition. Theorem 2.2 will show that their "semisimple with mini­
mum condition" really does coincide with our definition of semisim­
pIe. 

We now give a few examples where the radical can be computed explicitly. 
Other examples may be found (and worked out) in the exercises. 

Examples: 
1. J(D) = 0 for D a division ring, since D has no (nontrivial) maximal 

left ideals. 

2. J(Z) = n pZ = O. 
p prime 
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3. J(Zjpnz) is the unique maximal ideal pZjpnz of Zjpnz, which is 
non-trivial for n 2: 2. For the proof of this fact, see the discussion after 
Proposition 2.8. 

4. J(Mn(R» = Mn(J(R». The proof of this fact is Exercise 16. 

It should be noted that many radicals other than J(R) have been con­
structed, such as the prime radical and the nilradical (which is treated in 
Exercise 19). These radicals capture other "undesirable" properties of a 
ring R. For an extensive treatment of radicals see M.J. Divinsky, Rings 
and Radicals, and M. Gray, A Radical Approach to Algebra. 

The radical J(R) is the intersection of all maximal left ideals of R. This 
intersection may be infinite, and it would be nice to know if there is some 
finite family of maximal left ideals whose intersection is precisely J(R); 
thus making J(R) easier to deal with. In general, it is not true that such 
a finite family exists; some sort of "finiteness condition" must be put on 
the ring. Since the radical involves intersections, one might guess that the 
appropriate finiteness condition to put on the ring R would be that there 
are no infinite descending chains; that is, that R is artinian (see Chapter 
Zero for the definition of artinian ring). This will suffice, as we now show. 

Lemma 2.1 If R is an arlinian ring, there is a finite family {L1' ... , Ln} 
of ideals such that J(R) = n~l L i . 

Proof: If R has no maximal left ideals other than zero then the lemma is 
trivial, so assume otherwise. Let 

s = {nLi : {Li} is a finite family of maximal left ideals}. 

By assumption S is not empty. Since R is artinian, there exists a minimal 
(with respect to inclusion) element Q of S (Chapter Zero, Exercise 43). If 
I is any maximal left ideal, then I n Q ~ Q, so Q = I n Q by minimality 
of Q. Thus Q ~ I for all maximal left ideals I; that is, Q ~ J(R). Clearly 
J(R) ~ Q, and so J(R) = Q, an intersection of finitely many maximal left 
ideals. 0 

Although Chapter One gives seven equivalent characterizations of a semi­
simple ring, it may still be difficult to prove, using only these definitions, 
that a given ring is semisimple. Perhaps this is because none of these def­
initions is intrinsic to the ring at hand; each involves different modules 
associated with the ring. The Jacobson radical is intrinsic, and can be a 
useful tool in determining if a ring is semisimple. The relationship between 
the Jacobson radical and semisimplicity is given by the following theorem, 
which will complete our list of characterizations of semisimple rings given 
in Theorem 1.18. 
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Theorem 2.2 R is semisimple if and only if R is artinian and J(R) = o. 

Proof: Assuming that R is semisimple, Theorem 1.9 shows that R has 
finite length and is thus artinian. To show that J(R) = 0, first note that 
any matrix ring Mn(D) over a division ring is simple, so by condition 
(5) of the Structure Theorem for Simple Artinian Rings, Mn{D) has a 
faithful simple module, and hence J(Mn(D)) = o. Alternatively, note that 
Mn(D) has no nontrivial two-sided ideals (Chapter 1, Exercise 5), and 
since J(Mn(D)) is a two-sided ideal not equal to Mn(D), J(Mn(D)) = O. 
Since R is semisimple, R is a finite product of matrix rings over division 
rings, each of which has trivial radical. The result follows from the fact that 
J(RI x R 2) = J(Rt} x J(R2) for rings R}, R2 (see Exercise 5). 

Now assume that R is artinian and J(R) = o. By Corollary 1.5, it suffices 
to show that R embeds as a submodule of some semisimple module. Well, 
since R is artinian and J(R) = 0, there exists, by Lemma 2.1, a finite 
collection {Li} of maximal left ideals whose intersection is zero. Thus the 
natural map 

has zero kernel (note that the image really is a sum since {Ld is finite). 
Hence R embeds as a submodule of the semisimple module EBi Rj L i , and 
is thus (by Corollary 1.5) semisimple. 0 

This theorem gives us a new way of determining whether a ring is 
semisimple, at least in the case of artinian rings. It is often easier to. com­
pute the radical than to realize one of the seven characterizations given 
earlier of semisimple rings. Theorem 2.2 may also be viewed as showing 
that, at least for artinian rings, J(R) is a measure of how far R is from 
being semisimple. 

We now make precise the statement in the beginning discussion of this 
chapter that the radical "captures an undesirable property". In the case 
at hand, J(R) consists of elements that are undesirable in the sense that 
they annihilate every simple R-module. Since J(R) consists of all these 
annihilating elements, the quotient ring R/ J(R) should contain no such 
elements; that is, R/ J(R) should have no radical. This idea has an analog 
in any type of radical we define; namely, if J is some radical (Jacobson, 
prime, nil, etc.) of R, then R/J should have no radical (of that type). Thus, 
for our study of the Jacobson radical, we give the following 

Corollary 2.3 R/ J(R) has no radical; hence if R is artinian, R/ J(R) is 
semisimple. 
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Proof: Rj J(R) has no radical since simple Rj J(R)-modules are in one-to­
one correspondence with simple R-modules. If R is artinian, so is Rj J(R), 
and so R is semisimple by Theorem 2.2. 0 

Corollary 2.3 is frequently used when proving statements about artinian 
rings. The typical argument is as follows : If one wishes to prove a certain 
statement concerning an artinian ring R, it suffices to show that the state­
ment holds for Rj J(R). Since Rj J(R) is artinian and has no radical, it is 
semisimple and is thus a product of matrix rings over division rings. This 
often reduces the original question to a question about matrices, where 
computational techniques may be used. See Chapter Three, Exercise 18 for 
an example of this kind of argument. 

Properties of the Jacobson Radical 

We now explore some of the properties of the Jacobson radical. We also 
introduce the concept of nilpotence, which will be useful in describing some 
of these properties and in making computations. 

We call T ERa nilpotent element if Tn = 0 for some n. An ideal I ~ R 
is called a nilpotent ideal if In = 0 for some n (here In denotes a product 
of ideals). Note that this is stronger than saying that all of the elements of 
I are nilpotent, since In = 0 says that all n-fold products TIT2' .. Tn (each 
Ti E I) are zero. If R is commutative and I is a finitely generated ideal, 
however, we have: I is nilpotent *=* all elements of I are nilpotent *=* I 
is generated by nilpotent elements. 

We shall now show how the radical of a ring may be characterized by 
the ring's nilpotent ideals. 

Theorem 2.4 Any nilpotent ideal of a ring R is contained in J(R). If R 
is artinian, then J(R) is nilpotent and hence is the largest nilpotent ideal 
of R. 

Note that J(R) is not necessarily nilpotent if R is not artinian (see 
Exercise 20). 

Proof: Let I be a nilpotent ideal. We must show I M = 0 for any simple 
module M. Well, if 1M =1= 0 then 1M = M since M is simple, so 12M = 
I M = M. Continuing this gives In M = M; but In = 0, so In M = OM = 0, 
a contradiction. Thus I ~ J(R). 

Now assume that R is artinian and let J = J(R). Since R is artinian, 
the descending chain J ;2 J2 ;2 ... must stabilize; that is, r = In+1 for 
some n. Let A = In. If A = 0, then J is nilpotent and we are done, so 
suppose A =1= O. Let I be a left ideal of R which is minimal among left 
ideals L such that AL =1= O. Such an I exists since R is artinian, and since 
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the collection of such ideals is not empty; for example, AJ = A # O. Now 
A(JI) = (AJ)I = AI # 0, so JI = I by the minimality of I. 

We claim that I is generated by a single element: Since AI # 0, there 
exists x E I such that Ax # o. But Ax ~ I is a left ideal, and A· Ax = Ax, 
so by minimality of I we have Ax = I. In particular, since x E I, there 
exists a E A with ax = x, and so (1 - a)x=O. Now if we can prove that 
(1 - a) has a left inverse, then x = 0, and so I = Ax = 0, hence AI = 0, a 
contradiction. Thus it would be that A = 0 and so J is nilpotent. 

So now all that is left is to show that 1 - a has a left inverse for any 
a E J(R). Well, by definition of the radical, a is contained in every maximal 
left ideal, so clearly 1 - a is in no maximal left ideal. Hence 1 - a is in no 
proper left ideal, so R(1 - a) = R. In particular, 1 = r(l - a) for some 
r E R and we are done. 0 

For a proof of the second part of Theorem 2.4 which follows the module­
theoretic theme of this book, the reader may see Exercise 28. The argument 
in the last paragraph is a special case of both Proposition 2.8 and Nakaya­
ma's Lemma, which we shall see later in the chapter. The type of argument 
used is a typical application of these results. 

Example: Theorem 2.4 can be used to calculate the radical of R = 
Z/pnZ, p a prime, as follows. All proper nonzero ideals of R clearly have 
the form pi R, i = 1, ... , n. Clearly every ideal is nilpotent, and pR is the 
largest (nilpotent) ideal. Hence, by Theorem 2.4, J(R) = pRo Note that 
J(R) = pR is nontrivial for n ::::: 2. 

Theorem 2.2 gives a relationship between semisimplicity and the vanish­
ing of the radical. Combining this with the above description of J(R) as the 
largest nilpotent ideal of R will give us another method, in terms of nilpo­
tent ideals, of determining if a ring is semisimple. If R is commutative, it 
will suffice to check whether or not there are any nilpotent elements. Thus 
we give the following : 

Corollary 2.5 R is semisimple if and only if R is artinian and has no 
non-zero nilpotent left ideals. If R is commutative, then R is semisimple if 
and only if R is artinian and has no nilpotent elements. 

Proof: The first part of this corollary is clear from Theorem 2.4. For the 
commutative case, note that a nilpotent element generates a nilpotent ideal, 
since an = 0 if and only if (Ra)n = Ran = o. 0 

Another application of Theorem 2.4, combined with Theorem 2.2 and 
Wedderburn's Theorem yields the following corollary. 

Corollary 2.6 If R is artinian, then R has a nilpotent two-sided ideal J 
such that R/ J is isomorphic to a finite product of matrix rings over division 
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rings, with factors in one-to-one correspondence with isomorphism classes 
of simple R-modules. 

These two corollaries can be used to show that any artinian ring (with 
unit) is noetherian. This result is striking because these two concepts have 
no obvious connection; intuitively, what happens at the "bottom" of a ring 
shouldn't have much to do with what happens at the "top". The converse, 
in fact, is not true; for example, Z is noetherian but not artinian. Note 
also that the result does not hold for modules: an artinian module need 
not be noetherian, as is demonstrated by the Z-modules Zpoo (Exercise 42 
of Chapter 0). The fact that every artinian ring is noetherian can be quite 
useful, as we saw in the proof of Corollary 2.6. Thus we give the following: 

Theorem 2.7 (Hopkin's Theorem) If R is artinian (with identity) then 
R is noetherian. 

Proof: An outline of the proof, with a few gaps waiting to be filled by an 
eager reader, can be found in Exercise 31. 0 

We now give some results that describe J(R) on the level of individual 
elements. This can be useful in certain cases for computing the radical. 

Proposition 2.8 x E J(R) if and only if 1 + ax has a left inverse for all 
aER. 

Proof: If x E J(R), then ax E J(R) since J(R) is a two-sided ideal. Thus 
we have that ax is in every maximal left ideal, so clearly 1 + ax is in no 
maximal left ideal. Hence l+ax is in no proper left ideal, so R(l+ax) = R. 
In particular, 1 = r(l + ax) for some r E R and we are done. 

Conversely, if x f/. J(R), then there exists some maximal left ideal I such 
that x f/. I. So 1+ Rx = R by maximality of I. In particular, 1 = r + ax 
for some rEI, a E R; that is, 1- ax = rEI has no left inverse (remember 
that br f. 1 for any b E R since I is a proper ideal). 0 

Example: As an application of Proposition 2.8, we compute the radical of 
a ring that is useful in number theory and topology. The localization of 
Z at a prime ideal p, denoted by Z(p), is the subring of Q given by 

m 
Z(p) = {-: (p,n) = 1}. 

n 

First note that the invertible elements of Z(p) are precisely those rational , 
numbers with numerator relatively prime to p. Hence 1 + (m) (p m ) is 

,nn' 
invertible for all :' :' E Z(p); hence pZ(p) <;;; J(Z(p». Now if (m,p) = 
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1, then (remember the Euclidean Algorithm) there exist a, {3 E Z with 
am + {3p = 1. Then 1 - am = {3p has no inverse in Z(p), and so m is not 

m 
contained in the radical. It follows that - is not contained in the radical for 

n 
any m with (m,p) = 1, and so J(Z(p») = pZ(p), which is always nontrivial. 

We continue with another useful characterization of the Jacobson radical. 

Proposition 2.9 If x E J(R) then 1 + x is invertible (i.e. has a two-sided 
inverse). Moreover, J(R) is the largest two-sided ideal with this property. 

Proof: We already know by Proposition 2.8 that 1 + x has a left inverse, 
call it z. Clearly z - 1 E J(R), so z = 1 + y for some y E J(R). Again by 
Proposition 2.8, 1 + y has a left inverse; but 1 + Y also has a right inverse, 
namely 1 + x. Thus 1 + x and 1 + Y are (two-sided) inverses of each other. 

Now if I is any two-sided ideal with this property, then 1 +ax is invertible 
for all a E R,x E I, so by the Proposition 2.8 we have x E J(R). Thus 
I ~ J(R). 0 

Thus far we have dealt with what should really be called the "left radical" 
of R. We could also define a "right radical" of R to be the intersection of 
all maximal right ideals of R, and by the same technique used in proving 
Proposition 2.8, we can show that 

x E J(R) if and only if 1 + xb has a right inverse for all b E R. 

But Proposition 2.9 gives a symmetric characterization of the radical, so 
the left radical and right radical must coincide. We state this formally as 

Corollary 2.10 J(R) ~ J(RO). 

We conclude this section with one more characterization of the Jacobson 
radical in the hope that the many different views we have taken of this 
creature will help to give the reader a good picture and intuition for it. 

An element r of a ring R is called a non-generator of R if, whenever S is 
a subset of R such that SU {r} generates R, then S alone generates R. First 
note that every element r of J (R) is anon-generator, for if {Xl, ... , X n , r} 
generates R, then in particular 

for some CI,'" ,Cn+! E R. But CIXI + .. , + CnXn = 1 - Cn+!r has a left 
inverse by Proposition 2.8, so in fact {Xl, ... , Xn} generates R. Conversely, 
if r E R is a non-generator, then r must be contained in every maximal left 
ideal I, for otherwise I U {r} would generate R by maximality of I. Hence 
r E J(R). So we now have another characterization of the radical: 
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J(R) is the set of non-generators of R. 

In group theory, there is an analogous definition of a non-generating 
element. In this case one studies the set of non-generators of a group G, 
which is called the Frattini subgroup of G. The Frattini subgroup plays a 
role in group theory which is analogous to that of the Jacobson radical in 
ring theory. 

Nakayama's Lemma and Applications 

We now give a lemma that is simple but extremely useful in a variety of 
situations. This lemma, called Nakayama's Lemma, often reduces a local 
question to that of a field, where techniques from linear algebra can be 
applied. We shall make this more precise later. 

Lemma 2.11 (Nakayama's Lemma) If M is a finitely generated R­
module such that J(R)M = M, then M = O. 

Proof: Since J(R) annihilates every simple module, we have J(R)(M/M')= 
o for all maximal submodules M' of M, and so J(R)M ~ M'. If M is finite­
ly generated and non-zero, then such an M' exists by Zorn's Lemma, and 
hence J(R)M ::f. M since M' is proper, contradicting the given. Thus M 
must be 0 and we are done. 0 

Remarks: 
1. A trivial, alternate proof of Nakayama's Lemma may be given when 

J(R) is nilpotent, say J(Rt = 0, for then M = J(R)M = J(R)2(M) = 
... = J(R)n M = O. In particular, if R is artinian then J(R) is nilpotent 
(Theorem 2.4), and so this proof will work. 

2. Even if J(R)M = M holds, the conclusion of Nakayama's Lemma can 
fail if M is not finitely generated (see Exercise 35). 

Nakayama's Lemma may be stated in several ways. We now give two 
equivalent reformulations of Nakayama's Lemma that will be useful for 
applications. 

Equivalent Formulations of Nakayama's Lemma 

1. Let M be a finitely generated R-module. If N is a submodule of M, 
then N + J(R)M::::: M if and only if N::::: M. 

2. Recall that if M is an R-module and I is a two-sided ideal of R, 
then 1M is a submodule of M, and the module M/1M is annihilated 
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by I. Thus M JIM may be regarded in a natural way as a module over 
Rjl. For I = J(R), M = MjJ(R)M can be considered as a module over 
R = RjJ(R). Supposing further that M is finitely generated, Nakayama's 
Lemma is then equivalent to the following: M = 0 if and only if M = O. 

It is not difficult to check that these two statements are equivalent to 
Lemma 2.11; the reader is encouraged to do so. 

We now give two applications of Nakayama's Lemma; others will be given 
throughout the exercises (although the reader may not always be told when 
the lemma should be applied!). Using the forms of the lemma stated above, 
one can often reduce questions about M to questions about M, where, as 
above, M = MjJ(R)M is considered as a module over R = RjJ(R). M 
is easier to work with since R is a 'nicer' ring than R. For example, R has 
no radical, and is thus semisimple if R is artinian. Another example arises 
when R is a local ring (defined in the exercises), in which case R is a field, 
and so linear algebra may be used to determine the answers to questions 
about M. This philosophy is demonstrated by the following two corollaries. 

Suppose j : M --t M' is a homomorphism of a module M into a finitely 
generated module M'. Since j(IM) ~ 1M' for any ideal I of R, we have 
in particular that j(J(R)M) ~ J(R)M'. Thus j induces a homomorphism 
- - -, j : M --t M making the following diagram commute : 

Here 1T: M --t M = MjJ(R)M and 1T': M' --t M' = M' jJ(R)M' are 
the natural quotient maps. 

Corollary 2.12 Let 1 : M --t M' be a homomorphism with M finitely 
generated such that 7 : M --t M' is surjective. Then 1 is surjective. 

Proof: Apply (1) above with N = image(f). 0 

Corollary 2.13 Let M be a finitely generated R-module, and let {Xi} be 
a collection 01 elements 01 M. Then {Xi} generates M il and only il {Xi} 
generates M. 
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Proof: Apply the previous corollary with M the submodule generated by 
{Xi}. 0 

Although seemingly trivial, these corollaries, along with Nakayama's 
Lemma, are extremely useful in proofs. Several applications will be giv­
en in the exercises, both in a special section and scattered throughout. 

Summary 

Throughout this Chapter we have seen several different ways of looking at 
the Jacobson radical J(R). Since it is useful to keep all of these characteri­
zations in mind when trying to compute the radical of a given ring, we now 
give a summary of equivalent definitions of J (R). 

Equivalent Definitions of the Jacobson Radical of a Ring R 

(1) J(R) = n ann(M) = n ann(M) . 
simple left simple right 
modules M modules M 

(2) J(R) = n 1= n 1. 
max. left max. right 
ideals I ideals I 

(3) J(R) = {x E R : 1 + ax has a left inverse for all a E R}. 
(4) J(R) = {x E R: 1 + xb has a right inverse for all b E R}. 
(5) J(R) = {x E R : 1 + axb has a (two-sided) inverse for all a, bE R}. 
(6) J(R) is the largest two-sided ideal of R with the property that 1 + x 

has a two-sided inverse for every element x of the ideal. 
(7) J(R) is the set of non-generators of R. 

The equivalence of all of these definitions, except for (5), was discussed 
in the text. It is easy to check that (5) is equivalent to both (3) and (4), 
and thus to the rest of the characterizations. When computing the radical 
of a given ring, the trick is to choose the proper characterization «1)-(7» 
of J(R). 

For artinian rings, we may further characterize J(R) as the largest nilpo­
tent ideal of R. Also for artinian rings, semisimplicity of R is equivalent 
to the vanishing of J(R). In this sense the radical of an artinian ring R 
measures how far R is from being semisimple. 

Exercises 

Properties of the Radical 

1. Show that if J : R --+ S is a ring surjection, then J(J(R» <;;; J(S). 
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Show by example that this inclusion need not be an equality. What 
happens if ! is not surjective? 

2. Let I be an ideal of a ring R. Show that if J(R/ I) = 0, then 1;2 J(R). 
In particular, if I ~ J(R) and J(R/I) = 0, then 1= J(R). 

3. Let R be a ring and suppose v E R is invertible in R/ J(R). Prove 
that v is invertible in R. 

4. Let R be a ring, and let M be an R-module. Prove that M is semisim­
pIe if and only if ann(x) is the intersection of finitely many maximal 
left ideals of R for all x E M, x =1= O. (Hint: Try it first for M cyclic.] 

5. If {~hEl is a family of rings, show that J(IT R i ) = IT J(~). 
iEI iEI 

6. Let S be a ring and let R be a subring of S. Assume that S is 
finitely generated as a left R-module, and that SJ(R) = J(R)S (this 
is automatic, for example, if R is central in S). Prove that J(R) ~ 
J(S). 

7. (a) Let e be an idempotent in a ring R; i.e., e2 = e. Prove that 
eJ(R)e = J(eRe). 

(b) Show that if e E J(R) is an idempotent, then e = O. More gen­
erally, show that if xn = x for some n :?: 2 and x E J(R), then 
x=O. 

8. If I is a two-sided ideal in a ring R, show that J (R/ I) ;2 (I + J (R» / I. 
If 1<;;;; J(R), show that equality holds, and that equality need not hold 
otherwise. 

9. Remember that J(R) is the intersection of all maximal left (or right) 
ideals of R. This problem constructs a ring R such that J(R) is not 
the intersection of maximal two-sided ideals of R. Let K be a field 
of characteristic 0, u an automorphism of K of infinite order, and let 
R be the ring consisting of all (non-commuting) polynomials !(x) = 
ao + alX + '" + anxn with ai E K, but with multiplication defined 
by the rule: 

for all a, b E K 

This ring is usually called a twisted polynomial ring. Prove that: 

(a) A subset of R is a non-zero two-sided ideal of R if and only if it 
has the form Rxn for some n :?: O. 

(b) Rx is the unique maximal two-sided ideal of R, and R/ Rx ~ K 
as rings. 
(c) J(R) = O. (Hint: Start by looking for some maximal left ideals of 
R, or perhaps some simple left R-modules.] 
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10. Do a similar construction as in Exercise 9 for Laurent polynomials, 
and show that this provides an example of a simple ring with no zero 
divisors which is not a division ring. 

11. (a) Let R be a semisimple artinian ring, and let M be a faithful left 
R-module. Prove that, if R is also commutative, then M ~ R EB N 
for some R-module N. Give an example to show that this is not true 
in general if R is not commutative. 

(b) Prove that J(R) = 0 if and only if there is a faithful semisimple 
R-module. 

(c) Assume that R has finitely many maximal left ideals and that 
J(R) = O. Prove that R ~ Rl X ••• x Rn, where, for each 1 :5 i :5 n, 
either ~ is a division ring or Ri ~ Mn; (ki ) with ki a finite field. 
[Hint: First show that R is semisimple artinian.1 

(d) Why is this one problem instead of three? 

Computing J(R) 

12. (a) Compute J(R) in the following cases: 

(i) R = Z/8Z. 

(ii) R = Z/60Z. 

(iii) R = Q[xJ/(x3 - 5x). 

(iv) R = Q[[xlJ, the ring of formal power series. 

(v) R = F p[Z/pZI, the group ring over the field Fp with p ele­
ments (p a prime). 

(vi) R is a principal ideal domain which is not a field. (Hint: The 
answers are different depending on whether R has finitely or 
infinitely many primes.1 

(vii) R = 8[xl with 8 a (commutative) integral domain. 

(b) Which of the above are semisimple? 

(c) Compute the radical of Z/nZ. For which n is Z/nZ semisimple? 

13. Let R be a principal ideal domain. Let a be a nonzero element of R, 
and write 8 = R/(a). Describe 8 in terms of the factorization of a. 
Compute J(8). Compute 8/ J(8). Give an explicit description of all 
finitely generated projective 8-modules. List (up to isomorphism) all 
simple 8-modules. 

14. Consider the ring of all continuous real-valued functions on [0,11. 
What is the radical of this ring? 
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15. Let k be a field. For each k-algebra A given below, do the following: 
Find J(A)j find all simple left A-modules (up to isomorphism)j and 
express J(A)i / J(A)Hl as a direct sum of simple A-modules for all 
i 2: O. 

(a) A = k[xl/(xn ), n 2: O. 

(b) A = the set of 2 x 2 upper triangular matrices with entries in k. 

(c) A = M2(k) as a k-space, but with multiplication defined by the 
formula 

[ a b 1 [a' b' 1 [ aa' ab' + bd' 1 
cdc'd' = ca'+dd dd' 

(d) The ring of matrices of the form 

where r E R, s E S and m E M for rings R and S and an R-S 
bimodule M. 

16. If R is a ring, show that J(Mn(R» = Mn(J(R». What does this 
say about the radical of a matrix ring over a division ring? About the 
radical of a semisimple ring? 

17. (a) Find J(Tn(D», where Tn(D) is the ring of all upper triangular 
n x n matrices over a division ring D. 

(b) Show that Tn(D)/J(Tn(D» is isomorphic to the direct product 
D x D x ... x D (n factors). 

(c) If S is a subring of Tn(D) such that S ~ D, show that J(S) = 
S n J(Tn(D». 

Nilpotence 

18. An ideal I (left, right, or two-sided) is called a nil ideal if all its 
elements are nilpotent. Prove that any nil ideal (left or right) of a 
ring R is contained in J(R). 

19. (a) Let I and J be two-sided nil ideals of R. Prove that 1+ J is a nil 
ideal. 

(b) Let Nil(R) denote the two-sided ideal generated by all two-sided 
nil ideals of R. Nil(R) is called the nilradical of R. Prove that 
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Nil(R) is a nil ideal of R and that R/Nil(R) possesses no non-zero 
nil ideals; that is, Nil(R/Nil(R)) = O. 

(c) Prove that Nil(R) ~ J(R). 

(d) Compute Nil(R) for all of the rings discussed so far in this chap­
ter. Which one of these gives an example to show that equality does 
not necessarily hold in part (c)? 

(e) Show that for a commutative ring R, Nil(R) is the intersection 
of all prime ideals of R (recall that an ideal P =I- R is prime if, for 
all ideals A, B of R, AB ~ P implies A ~ P or B ~ P). 
(f) Show that for a commutative ring R, J(R[x]) = Nil(R)[x]. 

20. This exercise provides two examples of rings with ideals that are nil 
but not nilpotent. 

(a) Let R be the ring of infinite matrices (with entries in a field) 
whose rows are eventually zero; that is, if [aij] E R, then there is an 
n with aij = 0 for all j > n. Let S be the subring of R consisting of 
matrices with zeros below the main diagonal. Show that J(S) is the 
set of matrices that have zeros on the main diagonal (Le., the set of 
[aij] with au = 0). Show that J(S) is nil but not nilpotent. This also 
gives an example of a ring whose radical is not nilpotent. 

(b) Let R = k[Xl,X2, •.. J be the ring of polynomials with commut­
ing indeterminants Xl. X2, •..• Let I be the ideal of R generated by 
{x~,x~, .. . }. Prove that R/I has nil ideals that are not nilpotent. 

21. (a) Show that in non-commutative rings, nilpotent elements do not 
necessarily generate nilpotent ideals. [Hint: Look at Mn(Q).] Show 
that a finite number of nilpotent elements do generate nilpotent ideals 
in commutative rings. 

(b) For D a division ring, show that Mn(D) contains no two-sided 
nilpotent ideals. Hence a semisimple ring contains no two-sided nilpo­
tent ideals. 

(c) Show that the ring Tn(D) is not a semisimple ring for n ;::: 2. 

(d) Show that any non-zero left ideal of Mn(D) contains a non-zero 
idempotent. Hence Mn(D) contains no left nil ideals. Draw the same 
conclusion for a semisimple ring. 

Remark: It is easy to see what the left ideals of Mn(D) look like. 
Think about this, especially in connection with Wedderburn's Theo­
rem. 

22. Let M be an R-rnodule of finite length. Show that J(EndR(M)) is 
nilpotent. 
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23. (a) Give another proof of the converse of Maschke's Theorem by 
exhibiting, if IGI is not invertible in k, a nil ideal of k[G]. 

(b) For fun, try to solve the following open questions : If G is an infi­
nite torsion-free group, can k[G] contain idempotents? Zero-divisors? 
Nilpotent elements? Non-trivial units? What are the answers to these 
question if the group has torsion (this is not hard)? 

The answers to these questions for certain cases are known. See Za­
lesskii and Mikhalev's article "Group Rings", as well as Passman's 
survey "Advances in Group Rings" . 

24. Let R be an artinian ring and let G be a finite group. Show that R[G] 
is semisimple if and only if R is semisimple and IGI is invertible in R. 

25. (a) Let I be a non-zero ideal of R[x], and let p(x) E R[x] be a non­
zero polynomial of least degree in I with leading coefficient a. Show 
that if f(x) E R[x] and amf(x) = 0, then am-1p(x)f(x) = O. 

(b) Show that if a ring R has no non-zero nil ideals (in particular, if R 
is semisimple), then R[x] has zero Jacobson radical. [Hint: Let M be 
the set of non-zero polynomials of least degree in J(R[x]). Let N be 
the set consisting of 0 and the leading coefficients of polynomials in 
M. Use part (a) to show that N is a nil ideal of R, whence J(R[x]) = 
0.] 
(c) Show that there exists a ring R such that R[x] has zero Jacobson 
radical but R does not. [Hint: Consider R = F[[xll, F a field.] 

26. Give another proof of the part of Corollary 2.5 that says: If R is 
an artinian ring and has no non-zero nilpotent left ideals, then R is 
semisimple. Proceed as follows: 

(a) Choose a minimal non-zero left ideal L. Show that L2 = L. Fix 
x E L with Lx = L, and choose eEL such that ex = x. Show that 
e2 = e and conclude that Re = L is a simple, idempotent-generated 
left ideal. Decompose R as a left R-module as R = Re $ L1 , where 
L1 = {y - yelY E R} and note that LIe = O. 

(b) Assume by induction that R has been decomposed as 

with Rei simple and el, e2,"" en an orthogonal family of idempo­
tents such that Lnei = 0 for all i. If Ln i:- 0, as in part (a), show that 
there is an e' E Ln with Re' a simple left ideal, Ln = Re' E9 Ln+1, 
Ln+1 e' = O. Clearly e' ei = 0 for all i, but unfortunately the product 
in the other order is not necessarily zero. Replace e' by en+ 1 = e' - ee' , 
where e = e1 + ... + en. Show that everything works now. 
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(c) Use the finiteness hypothesis on R to conclude that this process 
must terminate ~d hence R can be written as a direct sum of simple 
left ideals. 

(d) In the preceding theorem it is not necessary to assume that R 
has an identity element. Show that e = el + ... + en must be the 
identity element of R in case R is written as above with precisely n 
summands, and that these are all of the corresponding idempotents. 
Check that re = r for all r E R. Why must er = r as well? [Hint: 
Show s(er - r) = 0 for all r,s E R.) 

27. Part (a) of Exercise 26 shows that in an artinian ring which has no 
non-zero nilpotent left ideals, any minimal left ideal is generated by 
an idempotent. Show that, in fact, every left ideal of such a ring is 
generated by an idempotent. 

28. Give another proof of the second part of Theorem 2.4 by finishing 
the following idea : In the terminology of the proof of Theorem 2.4, 
let L = {m E I : mA = O}. Check that L is an ideal and that IjL is 
simple. Show that this implies AJ I = 0 and obtain a contradiction. 

29. Prove that if R is an artinian ring and L is a non-nilpotent left ideal 
of R, , then there is an element y E L such that yn =F 0 for all n. 
Proceed as follows : 

(a) Find Lo ~ L with Lo =F 0 and L~ = Lo. 

(b) Show that there exists a non-zero left ideal M which is minimal 
with respect to the properties (i) LoM =F 0, (ii) M ~ Lo. 

(c) Show that there exists a non-zero x E M with LoX = M. 

(d) As X E M there is ayE Lo with yx = x. Show that this y works. 

30. (a) Show that if R is artinian, then a left ideal is nilpotent if and only 
if it is nil (Le., every element is nilpotent). Exercise 20 shows that 
this is not necessarily true if R is not artinian. 

(b) Show that in any artinian ring, maximal nilpotent left ideals exist. 

(c) Show that in any ring, the sum of two nilpotent left ideals is again 
nilpotent. 

(d) Show that if R is artinian, then there is a unique maximal nilpo­
tent left ideal J containing all nilpotent left ideals. 

( e) If L is a nilpotent left ideal of R, show that Lx is also nilpotent 
for any x E R. Conclude that J of part (d) is a two-sided ideal. 

(f) If R is artinian, show that Rj J has no non-zero nilpotent left 
ideals. Conclude that Rj J is semisimple. Conclude that the ideal 
J = J(R) is nilpotent in case R is artinian, as asserted in Theorem 
2.4. 
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Hopkin's Theorem 

31. (a) Let R be an artinian ring and let J denote its Jacobson radical 
(which is nilpotent by the Exercise 30 or Theorem 2.4). As R/ J is 
semisimple by Corollary 2.3, each of its modules are sums of simple 
modules. Now Ji / Ji+ 1 is an R/ J-module. Show that it must be a 
sum of a finite number of simple modules. Thus the chain 0 = In ~ 
In-l ~ ... ~ J ~ R can be refined to a composition series for R. 
Conclude that R satisfies the ACC (i.e., is noetherian). You have just 
proved Hopkin's Theorem (Theorem 2.7); namely: 

If R is an artinian ring with an identity element, then R is noetheri­
an. 

(b) Give an example to show that Hopkin's Theorem is false if R 
is not required to have an identity element. [Hint: Try a ring with 
trivial multiplication.] 

Jordan Form and Another Proof of Maschke's Theorem 

32. (Compare this exercise with Chapter 1, Exercise 27.) Let K be a 
field and let G be a finite group such that the characteristic of K 
does not divide the order of G. Let n = IGI. There is a one-to-one 
ring homomorphism 

given by sending v E K[G] to the function 'left multiplication by v', 
and then taking the matrix of this linear transformation with respect 
to the basis {g E G} of K[G] over K. This homomorphism is called 
the left regular representation of G. By considering the dimen­
sion, K[G] is certainly artinian. Show that K[G] has no nilpotent left 
ideals as follows: Suppose j is a nilpotent left ideal. If x = E agg E I 

gEG 
is a non-zero nilpotent element, show that we can assume that al f. o. 
For Z E K[G], let Lz denote left multiplication by z. What is Tr(Lg) 
for 9 f. 1? (Here Tr{Lg) is the trace of the linear tranformation Lg; 
i.e., the sum of the elements on the diagonal of the matrix repre­
senting Lg in the given basis.) What is Tr{Ld? What must Tr(x) 
be? Compute in two different ways, once from the hypothesis on x 
and once from the formulas for Tr{Lg). This proves, using Corollary 
2.5, that K[G] is semisimple, which is the statement of Maschke's 
Theorem. 

Remark: You have juSt computed the "character of the regular rep­
resentation": a representation of G is a map G ~ GLm{K) for 
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some mj in this case, the map p is just 9 t--t [matrix of Lg], and m = n. 
The character of a representation is the function X : G --+ K given 
by X(g) = Tr(p(g)). Character theory is a fruitful way of studying 
finite groups. See Chapter 6 for more details. 

33. If you have forgotten about Jordan canonical form, this is a good 
time to review. In fact, prove the following: The Jordan form of a 

matrix A is diagonal if and only if 9))1 (f the minimal polynomial 
of A) is semisimple. 

More on Nakayama's Lemma 

34. Show that the two equivalent formulations of Nakayama's Lemma 
given on page 65 are actually equivalent to Nakayama's Lemma. 

35. (a) Show that, even if J(R)M = M, the conclusion of Nakayama's 
Lemma can fail if M is not finitely generated. 

(b) Show that, in fact, there even exist rings with idempotent radical 
(Le., with radical J = J(R) such that J2 = J). [Hint: Consider 
the quotient of a polynomial ring in infinitely many variables by an 
appropriate ideal.] 

36. Give an another proof of Nakayama's Lemma as follows: Let x!, ... , 
Xm be a generating set for M with a minimal number of elements. 
Show that if M # 0 and J(R)M = M, then a smaller generating set 
exists, thus giving a contradiction. 

37. Let P, Q be finitely generated projective R-modules, and let I be a 
two-sided ideal of R such that I ~ J (R). Prove that P / I P ~ Q / I Q 
if and only if P ~ Q. This is useful in Algebraic K-Theory. 

38. (a) Let I be a two-sided ideal of R contained in J(R). Prove that 
the canonical homomorphism R* --+ (R/I)* is surjective, where R* 
denotes the multiplicative group of invertible elements of R. 

(b) Let I be as in part (a). Prove that the canonical homomorphism 
GLn(R) --+ GLn(R/I) is surjective. 

Local Rings 

39. If R is a ring such that the sum of any two non-units is again a non­
unit, then show that the collection of non-units is a two-sided ideal of 
R. Call it I. Show that this two-sided ideal I is in fact the radical of 
R. Further show that R/ I is a division ring. A ring such that R/ J(R) 
is a division ring is called a local ring. 
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40. (a) Remember that the localization of Z at a prime pis Z(p) = {~ E 
Q: (p, n) = I}. Show that Z(p) is a local ring. 

(b) Show that, for a field F, the ring offormal power series in several 
variables F[[xI, ... ,xnll is a local ring. 

(c) The p-adic integers Zp can be described as the ring consisting 
of infinite sequences of integers (aI,a2," .), where 0 ~ ai < pi for all 
i, and ak == al(mod pk) for k ~ l. Addition and multiplication of such 
series is component-wise (mod p to the power of the component). 
Equivalently, elements Zp may be taken to be formal power series 

where 0 ~ Ti < p, with addition and multiplication as in standard 
power series, but with "carrying". 

Show that Zp is a local ring. More generally, show that the completion 
of a ring at a prime ideal is a local ring (for the definitions, see Atiyah­
MacDonald, Introduction to Commutative Algebra). 

41. If R is a local ring, then R has a unique maximal two-sided ideal I 
(the set of non-units) such that R/ I is a division ring. Show that the 
converse is not true; that is, find a ring R with a unique maximal 
two-sided ideal I, such that R/ I is a division ring but R is not lo­
cal. [Hint: Look at the endomorphism ring of an infinite dimensional 
vector space and the two-sided ideal of finite rank operators.) 

42. Show that R/lk is a local ring for R a commutative ring and I a 
maximal ideal. Why is / / /k the radical of R/Ik ? (cf. example 3 on 
page 59.) 

43. Let Ln(k) denote the ring of upper triangular matrices contained in 
Mn(k) for which all of the entries on the diagonal are equal. Compute 
the radical of this ring. Show that the ring is a noncommutative local 
ring and compute the residue division ring (Le. R/ J(R)). 

44. Let R be a local ring. For A E Mn(R), let A denote the image 
of A under the canonical homomorphism Mn(R) ---+ Mn(R/J(R» 
induced by R ---+ R/J(R). Show that A is invertible if and only if A 
is invertible. 

45. Let p be prime and k be any positive integer. Check that the sequence 

is exact. Use this to show that the order of GLn(Z/pkZ) is (pn -
l)(pn _ p) ... (pn _ pn-l )(pk-l )n2. [Hint: It is not hard to compute 
the orders of the second and fourth terms of the exact sequence.) 
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46. Let R be an artinian ring. Prove that : 

(a) J(R)8 / J(R)8+1 is a finitely generated left R-module for all s ~ O. 

(b) R is a local ring if and only if R possesses no idempotents other 
than 0 and 1. [Hint: Show that idempotents in RI J(R) can be lifted 
to idempotents in R.J 

47. (a) A left R-module M is called indecomposable if, whenever M = 
Ml EBM2, then Ml = 0 or M2 = O. Prove that, if EndR(M) is a local 
ring, then M is indecomposable. 

(b) Let R be a finite dimensional k-algebra, k a field, and let M be an 
indecomposable finitely generated R-module. Prove that EndR(M) 
is a local ring. 

48. Let R be a local ring and let P be a finitely generated projective 
R-module. Show that P is actually a free R-module as follows : For 
J the radical of R, write R for RfJ and P for PI JP. By Nakayama's 
Lemma, choose a finite set {Xi} in P so that their images {Xi} E P 
form a basis over R and have the further property that the {xd 
generate P. Let F be a free R-module with the same number of 
generators as you have found for P. Map it in the obvious way onto 
P. Show that this map is an isomorphism. 

Remark: Kaplansky has shown that any projective module over a 
local ring is free; finite-generation is not necessary. See Kaplansky, 
"Projective Modules", Math. Ann., 68 (1958), pp. 372-377. 

49. Let G be a finite p-group for p prime and let k be a field of char­
acteristic p > O. Part (b) will show that k[GJ is a local ring. But 
first: 

(a) Show that k[GJ has a unique simple module given by the map 
k[GJ --t k which is determined by 9 ~ 1; this map is usually called 
the augmentation map of k[GJ. [Hint: Let S be a simple k[GJ­
module and let A be a finite additive subgroup of S which is carried 
into itself by the action of G (e.g., for s E S take the additive subgroup 
generated by {gs : 9 E G}). Note that pA = O. Using the action of 
G on A by multiplication, apply the fixed point theorem for p-groups 
(see Jacobson, Basic Algebra I) and conclude that A contains a non­
zero subgroup Ao which is fixed by G. Now consider the submodule 
of S generated by Ao.J 

(b) Conclude that the augmentation ideal (the kernel of the augmen­
tation map) is the Jacobson radical of k[G] and hence k[GJ is a local 
ring. 
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(c) A further observation: Let L be any non-zero left ideal of k[G]. 
Show that NG E L (remember that NG, the so-called norm element 
of k[G], is defined to be L g). Hence k[G] has a unique non-zero 

gEG 

minimal ideal (left or two-sided). 

(d) Give an integer large enough so that the radical raised to that 
power is zero. 

The Radical of a Module 

The Jacobson radical of a module is defined in a way analogous to 
that of the radical of a ring : The radical of an R-module M is 
the intersection of the maximal submodules of M, and is denoted 
by J(M). It is easy to see that J(R) is the same whether R is con­
sidered as a ring or as an R-module, since maximal submodules are 
precisely the maximal left ideals. Thus we may use the notation J(R) 
unambiguously. 

50. Let R be a ring and M be an R-module. Show that M is semi-simple 
of finite length if and only if Mis artinian and J(M) = O. Note that 
this generalizes Theorem 2.2. 

51. Prove the following facts about J(M), each of which has its ring 
theoretic analog (which are in previous exercises): 

(a) If M is a finitely generated R-module, then J(M) :f: M. 
(b) If f: M --+- N is a homomorphism of modules, then f(J(M» S; 
J(N). 
(c) IfN is asubmoduleofM,thenJ(N) S; J(M).Further,J(MjN):;2 

J(Mk+ N . 

(d) If N is a submodule of M such that J(MjN) = 0, then N :;2 
J(M). In particular, if N is a submodule of M such that N S; J(M) 
and J(MjN) = 0, then N = J(M). 
(e) Using the previous parts of this exercise, prove 

Proposition 2.14 (Nakayama's Lemma for Modules) If N is 
a submodule of M with N + J(M) = M, then M = N. 

52. (a) Prove that, if {Mi} is a family of R-modules, then J($Mi) = 
$J(Mi). 
(b) Prove that, if {Mi} is a family of R-modules, then 

Give examples to show that both containments may be proper. 
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53. (a) Show that for an R-module M, J(R)M ~ J(M). Give an example 
of a ring R and a finitely generated R-module M such that J(R)M # 
J(M). 

(b) Prove that, if P is a projective R-module, then J(R)P = J(P). 
[Hint: Use Exercise 52 to prove it for free modules, then for projective 
modules.) 

(c) Let R be a left artinian ring, and let M be a left R-module. Prove 
that J(R)M = J(M), and that M/J(M) is the "maximal semisimple 
factor module" of M (give a precise statement of what that phrase 
means). 

54. Let P be a finitely generated projective left R-module and let S = 
EndR(P). This exercise outlines a proof that J(S) = {o: E S : o:P ~ 
J(R)P} and S/J(S) ~ EndR(P/J(R)P). Note that this generalizes 
Exercise 16. . 

(a) Let 0: E S and assume that o:P ~ J(R)P. Show that (l+o:)S = S. 
[Hint: Use Nakayama's Lemma to prove that 1 + 0: is surjective.) 

(b) Again, let 0: E S, but assume that there is a maximal proper 
submodule pI of P with o:P ~ P'. Show that there exists f3 E S 
with (1 - f3o:)P ~ P'. [Hint: Note that o:P + pI = Pj hence, given 
x E P, x = o:y + z for some yEP, z E P'. Show that we can choose 
y = f3x for some f3 E S. To do this, first let P" = {y E P : o:y E PI} 
and find f : P --+ P / P" such that, if x = o:y + z as above, then 
y + P" = f(x).) 

(c) Prove that J(S) = {o: E S : o:P ~ J(R)P}, and find an isomor­
phism 

S/J(S) --=::.. EndR(P/J(R)P). 
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Central Simple Algebras 

In the first two chapters we studied rings and modules. Many of the impor­
tant examples we studied, such as polynomial rings, matrix rings, group 
rings and the quaternions, have additional structure we have been ignoring; 
namely, they are modules as well as rings, and the ring multiplication is 
compatible with the module multiplication. Thus, these objects are alge­
bras (for definitions and basic properties concerning algebras, see Chapter 
0). We now wish to exploit this additional structure in order to learn more 
about these and other examples. 

We will also introduce the tensor product as a way of constructing new 
algebras from old ones (for definitions and basic properties concerning the 
tensor product of modules, see Chapter 0). Changing from our philosophy 
of looking at one ring or module at a time, we view the tensor product as 
an operation on the category of all algebras over a given field. This point of 
view (and the tensor product) will be indispensible in our discussion of the 
Brauer group in Chapter 4. Added motivation for the following material 
comes from the fact that algebras and the tensor product are useful in 
algebra, topology, differential geometry and analysis, and indeed occupy a 
central place in mathematics. 

We assume throughout that k is a field, and that, unless otherwise speci­
fied, all algebras are k-algebras and all tensoring is done over k. Sometimes 
the k may be included for emphasis. 

Tensor Product of Algebras 

If Rand S are k-modules then R ®k S is a k-module (see Chapter 0 for 
details). We now introduce additional structure into the situation in the 
hope of extracting more information. 

If R and S have the additional structure of k-algebras, then R ®k S has 
a k-algebra structure such that 

(r ® s) . (rl ® Sl) = rrl ® SSI for all r, rl E Rand s, Sl E S. 

To justify this, note that (r, s, rl, s') 1---+ rr' ®SSI is multilinear, and thus 
induces a map 

(R® S) ® (R® S) -+ R® S. 
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Equivalently, there is a bilinear map 

(R ® S) x (R ® S) -- R ® S. 

This says that there is a multiplication on R ® S which distributes over 
addition. It is not difficult to see that 1 ® 1 is the identity element for this 
multiplication, since multiplication by 1®1 fixes all generators r®s of R®S. 
A similar argument (checking on generators) proves that multiplication is 
associative. Thus we have shown that R®S is a ring. It is also easy to check, 
using the fact that the ring mUltiplication in both R and S is compatible 
with the action of k on these as k-modules, that the ring multiplication 
is compatible with the action of k on the module R ® S. This shows that 
R ® S is, in fact, a k-algebra. 

We now look at some of the basic properties of R ® S. Recall that there 
are two basic k-algebra maps 

i:R-+R®S and j:S--R®S 

given by 
and S l----+ 1 ® s 

If {ea } is a basis for S over k, then every element x E R®S has a unique 
expression 

In other words, if we regard R ® S as an R-module via i, then R ® S 
is free with basis {j ( ea ) }. This can be verified by using universal mapping 
properties to exhibit the coordinate functions. It follows that i is one­
to-one, since anything in the kernel would annihilate R ® S, but only 0 
annihilates a free module. Reversing the roles of S and R gives similar 
results. Since i and j are both one-to-one, we will henceforth identify R 
and S with their images under i and j (note that the images commute 
since (r ® 1)(1 ® s) = (r ® s) = (1 ® s)(r ® 1)). With these identifications, 
our observations above may be stated as follows: 

Proposition 3.1 Given a field k and k-algebras Rand S, then R ® S is 
a k-algebra. Further, we have that: 

(i) R ® S contains Rand S as commuting subalgebras. 
(ii) Any basis {sj3} of S over k is a basis for R ® S as an R-module. 
(iii) Any basis {raJ of Rover k is a basis for R ® S as an S-module. 

Analogous to the universal mapping property of R®S as a module, R®S 
also has a universal mapping property as an algebra: 
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Proposition 3.2 Given any k-algebra T, and any pair of k-algebra ho­
momorphisms R L T, 8 ~ T such that f(R) and g(8) commute and 
Ilk = glk' then there is a unique k-algebra homomorphism h : R ® 8 --+ T 
such that hi = f and hj = 9 (where i and j denote the canonical inclu­
sions). That is, the following diagram commutes: 

Proof: This is similar to the proof of the universal mapping property of 
the tensor product of modules given in Chapter 0, so we leave this proof 
as an exercise for the reader. 0 

The above proposition shows that we can think of R ® 8 as the k-algebra 
generated by Rand 8, subject to the relation that R and 8 commute. 
Note that this does not say that r ® 8 = s ® r for r E R, s E 8, but that 
(r ® 1)(1 ® 8) = (1 ® s)(r ® 1). The universal mapping property of R ® 8 
as a k-algebra is often used to construct k-algebra maps from R ® 8 to T, 
given k-algebra maps from R to T and from 8 to T. Examples of this are 
scattered throughout the text. 

Extension of Scalars and Semisimplicity 

We now apply the above comments to an important special case. Suppose 
we are given a k-algebra R and an extension field K of k. The elements of k 
are called scalars in the algebra R. It would be useful if we could "extend" 
the scalars of R so that R could be considered as an algebra over K. As we 
shall see, this can be accomplished by using the tensor product, namely by 
taking K ®k R. 

First note that any field extension K of k can be considered as an algebra 
over k since K is a vector space over k, elements of K can be multiplied 
together, and this multiplication is consistent with the scalar multiplication 
for K as a vector space over k. Thus K ®k R is a K -algebra, usually written 
as RK, and is said to be obtained from R by extension of scalars. More 
concretely, this means the following : a k-algebra R is often described by 
giving a basis {eil of Rover k and saying how to multiply basis elements; 
say 
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eiej = L Cijkek , Cijk E k. 
k 

According to part (ii) of Proposition 3.1, RK can be described as a K­
algebra with the same basis and same multiplication law as Rover k; for 
note that k ~ K, so Cijk E K, and the following diagram is commutative: 

k » R 

I I 
Example: Given any real algebra S (i.e., S is an algebra over R), we can 
construct the C-algebra Sc ' which is called the complexification of S. 
Note that, taking S = R, then Sc is simply C. HC = C ®R H is a 
4-dimensional C-algebra. We shall later see that this C-algebra is simple, 
and in fact isomorphic to M2(C), 

Remark: For those who know some category theory, let R - Mod denote 
the category of R-modules and R-module homomorphisms and let k - Alg 
denote the category of k-algebras and k-algebra homomorphisms. Then 
extension of scalars gives a functor from R - Mod to RK - Mod and from 
k - Alg to K - Alg. This may help when thinking about the following 
comment. 

Classically, enlarging the real numbers to the complex numbers often 
simplified both proofs and statements of theorems; for C has many useful 
properties which R does not, such as being algebraically closed. Extension 
of scalars is a generalization of this philosophy, and is an important tool 
that we will make significant use of. 

An algebra is said to be a simple algebra or a semisimple algebra 
if it has the corresponding property as a ring. We now wish to study the 
effect that extending scalars has on the semisimplicity of an algebra. We 
begin with a useful lemma : the Primitive Element Theorem. We include 
this basic theorem from field theory for those who happened not to have 
seen it. 

Lemma 3.3 (Primitive Element Theorem) If K ;2 k is a finite sepa­
rable field extension, then there exists C E K with K = k(c). 
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Proof: If k is finite then the proof is easy, so suppose k is infinite. By 
using induction (which applies since the extension is finite), it suffices to 
show that K = k(a, b) implies K = k(c) for some c E K. Let f(x) be the 
irreducible polynomial of a over k with roots al( = a), . .. ,an, and let g(x) 
be the irreducible polynomial of b over k with roots bi (= b), ... ,bm . Since 
k is infinite, there is some 0: E k such that the elements ai + o:bj are all 
distinct. Let c = a + o:b. Now g(b) = 0 and b is also a root of f(c - o:x) 
since fCc - o:b) = f(a) = 0, ;hence x - b divides both g(x) and fCc - o:x) 
in k(c)[x1. Since the roots of f(x) and g(x) are distinct (remember Kjk is 
separable), we have that the g.c.d. of g(x) and fCc - o:x) in k(c)[xJ is x-b. 
Hence bE k(c). Since 0: E k(c) as well, a = c - o:b E k(c). This shows that 
k(a, b) ~ k(c) and so completes the proof. 0 

The element c in the above lemma is called a primitive element for 
the extension K ;;2 k. 

Given a finite field extension L of k, L is semisimple (as an algebra over 
k) since L is a field. It is natural to ask, more generally: "When is LK 
semisimple for every extension of scalars K ;;2 k?". For finite extensions, 
it turns out that L K is semisimple for all K precisely when L is separable 
over k. This is the content of the following theorem. 

Theorem 3.4 Let Ljk be a finite field extension. Then LK = K ®k L is 
semisimple for every field K ;;2 k if and only if L j k is a separable extension. 

Proof: Assume that L is separable. By the Primitive Element Theorem, 
L = k(O) for some 0 E L, and hence has a basis 1,0,02 , ... , on-l, where 
o satisfies a separable irreducible polynomial f over k of degree n = [L : 
k]j i.e., L ~ k[x]/(J(x). By the above remarks, LK has the same basis 
1, 0, 02 , ... ,On-lover K and satisfies the same polynomial f, so L K ~ 
K[xJl(J(x)). Since f is separable, it factors over K into distinct irreducible 
polynomials f(x) =e!I(x)··· fn(x) in K[xJ. So by the Chinese Remainder 
Theorem (Exercise 1 of Chapter 0), we see that LK ~ n K[xJ/ hex), a 
product of fields, and is thus semisimple. 

Conversely, assume that L is not separable. Then there exists a 0 E L 
which is not a separable element; that is, the minimal polynomial f(x) of 
o over L is not a separable polynomial. Hence there is a field K ;;2 L in 
which f(x) has repeated factors, so that k(O)K ~ K[xJ/ f(x) has nilpotent 
elements. Since LK ;2 k(O)K, LK also has nilpotent elements, hence by 
Corollary 2.5 is not semisimple. 0 

Remark: For the proof it was useful to think of K®kL as LK, an extension 
of scalars of L. Sometimes, however, it is useful to restate the result in a 
more symmetric fashion, namely: 
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The tensor product of two field extensions of k is semisimple provided 
one of the factors is finite and separable over k. 

Tensor Products, Simplicity and Semisimplicity 

In the last section we studied when extension of scalars gives a semisimple 
algebra. Now we consider the behavior of semisimplicity and other proper­
ties of algebras under tensor products in general. 

We define the center of an algebra S over k to be Z(S) = {x E S/xs = sx 
for all s E S}; that is, Z(S) is just the center of S considered as a ring. 
Note that for an algebra S over k, it is always true that k ~ Z(S). If, in 
fact, k = Z(S), we say thatS is a central k-algebra . We call S central 
simple if S is both central and simple. 

Examples: 

1. H is a central simple algebra over R. 

2. Any matrix algebra over a field is central simple (by Exercises 5 and 
13(b) of Chapter 1). 

3. Any proper field extension K~k is not central since Z(K) = K~k. 

We now explore how these properties behave under the operation of 
tensor product, and determine the structure of the center and the two­
sided ideals of a tensor product of certain algebras. Apart from general 
interest and usefulness, added motivation for this exploration comes from 
material we will study in Chapter Four. In that chapter we will define a 
certain group (the Brauer group) whose elements are equivalence classes of 
certain central simple algebras, with ® as the product operation. Corollary 
3.6 shows that the group is closed under this product operation. 

Theorem 3.5 Let S be a central simple algebra and let R be an arbitrary 
algebra. Then 

1. Every two-sided ideal of R ® S has the form I ® S, where I is a two­
sided ideal of R. In particular, if R is simple then R ® S is simple. 

2. Z(R ® S) = Z(R). Taking R = K, K a field, shows that SK is a 
central simple K -algebra. 

We shall see from the proof of the theorem that for a given ideal J of 
R ® S, the ideal I is unique, and in fact I = J n R. Before proving the 
theorem we give one immediate corollary: 

Corollary 3.6 If Rand S are central simple algebras, then so is R ® S. 
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This corollary shows that H®RH is central simple,and that Mn(k)®8 
is central simple for any central simple algebra 8. The converse to Corollary 
3.6 is also true (see Exercise 5). 

The following lemma will aid us in proving Theorem 2: 

Lemma 3.7 Let Rand 8 be algebras with 8 central simple. If J is a non­
zero two-sided ideal of R ® 8, then J n R i- O. 

Proof: Choose x E J, x i- 0 so that x is written as a linear combination 
I 

x = L ri ® Si with I minimal. Note that {Ti} is linearly independent over 
i=1 

k, for otherwise I would not be minimal; similarly for {Si}. Now SI i- 0, 
so by simplicity of 8 we have 8s18 = 8. Thus there exist Xj, Yj E 8 with 

m 

L Xj S 1Yj = 1. Consider 
j=1 

where s~ = 2:':1 XjSiYj, so si = 1. Clearly x' E J, x' t= 0 since the Ti 
are linearly independent over k and hence over 8 by Proposition 3.1, and 
si = 1 t= O. Now for any s E 8 we have 

(1 ® s)x' - x'(1 ® s) = 2:!=1 ri ® ss~ - 2:!=1 Ti ® s~s 

= 2:!=2 Ti ® (ss~ - s~s) 

since ssi - si s = s - s = O. By minimality, this element is zero. Since the 
ri are linearly independent over k, ss~ - s~s = 0 for each i. But this holds 
for all s E 8, so s~ is in the center of 8 for each i. Since the center of 8 is 
just k by hypothesis (so Ti ® s~ = ri ® (s~ . 1) = ris~ ® 1), we have 

= (2:risD ® 1 E R. 

Since x' t= 0, x' E J n R t= 0 and we are done. 0 
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With this lemma at our disposal we now prove Theorem 2: 

Proof: We begin with a proof of part (i) of the theorem. Let J be a 
two-'sided ideal of R ® 8 and let I = J n R. Consider the natural map 
R ® 8 --+ (Rj I) ® 8. We claim that the kernel of this map is I ® 8 : for if 
{Xi} is a basis for I, extend this to a basis {Xi} U {Yj} for Rj then {yj +I} 
is a basis for R/ I. Hence E aixi + E bjYj is in the kernel if and only if 
bj = 0 for all j. Considering 

J --+ (R® 8)/(1 ® 8) ~ (R/I) ® 8, 

in order for J to contain I ® 8 properly it must be that the image of this 
map is non-zero, so by the lemma im( J) n R/ I =F O. But im( J) n R/ I = 0 
by the choice of 1= J n R. This proves part (i) of the theorem. 

Our proof of part (ii) does not depend on the fact that 8 is simple: Let 
z = E Ti ® Si be in the center of R ® 8. As in the proof of Lemma 3.7, we 
may assume that the Ti are linearly independent over k. For S E 8 we have 

0= (1 ® s)z - z(1 ® s) = L Ti ® (SSi - SiS). 

The independence of the Ti over 8 then gives SSi - SiS = 0 for all i, so 
SSi = SiSj that is, Si E Z(8) = k for all i. Thus 

z =ETi®Si 

=T®1 

where T = E TiSi' If X E R, then 

0= (x ® l)z - z(x ® 1) = (XT - TX) ® 1, 

so XT = TX for all x E Rj i.e., T E Z(R). 0 

We now have the necessary tools to answer questions concerning semisim­
plicity of tensor products of certain semisimple algebras. But first two 

Remarks: 
1. For algebras R = Rl X R2, we have R ® 8 ~ (Rl ® 8) X (R2 ® 8) for 

any algebra 8. To see this, note that the map 

R x 8 --+ (Rl ® 8) X (R2 ® 8) 
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is bilinear with respect to Rand 8, and thus induces a homomorphism 
R ® 8 ---+ (Rl ® 8) X (R2 ® 8). It is then easy to check that this is 
an isomorphism by writing down the obvious inverse (using the injections 
~ ~ R, i = 1,2). By induction, (TI~) ® 8 ~ TI(Ri ® 8) for any finite 
product of rings. 

2. Suppose 8 is a simple k-algebra with center C. Chapter 1, Exercise 
13 shows that C is a field, so we can view 8 as a central simple C-algebra. 
It is not hard to show (Exercise 13) that C ~ Ends®so (8). It is also clear 
that R®", 8 = (R®", C) ®c 8. 

We may use these remarks to reduce questions concerning semisimplicity 
of tensor products of semisimple algebras to easier questions. Remark (1) 
reduces the question to the case of simple algebras. Remark (2) further 
breaks down the question into two steps : first do the extension of scalars 
case, then answer the question assuming one of the algebras is central. We 
shall use this method when proving Proposition 3.9. 

In order to talk about semisimplicity of extension of scalars, we needed 
the notion of separable field extension. Discussing semisimplicity of tensor 
products requires a generalization of this concept. 

Definition: Suppose 8 is a finite dimensional semisimple algebra over k. 
If C denotes the center of 8, then C = C1 X ••• x C", where the Ci are 
fields (see Chapter 1, Exercise 13). We say that 8 is a separable algebra 
if every Ci is separable over k. Equivalently, we say that 8 is separable if 
for each simple 8-module M, the center of Ends(M) is a separable field 
extension of k. 

The notion of separable algebra vastly generalizes that of separable field 
extension. We saw in the previous section that for such extensions L, all 
extensions of scalars LK are semisimple. We now prove the analogous result 
for the more general case of separable algebras. 

Proposition 3.8 If 8 is a separable algebra, then 8 K is semisimple for all 
fields K;2 k. 

Proof: We may assume by Remark (1) that 8 is simple with separable 
center C. Remember that C is a field since 8 is simple. Now 

K ® 8 ~ (K ® C) ®c 8 by Remark (2) 

~(TI~)®c8 

~ TI(~ ®c 8) 

for some simple ~ 
by Theorem 3.4 

by Remark (1) 

and each ~ ®c 8 is simple by part (i) of Theorem 2, since each ~ is simple 
and 8 is central simple over C. 0 
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Continuing the generalization of results on separable field extensions to 
separable algebras, we now prove a fact analogous to the statement that 
the tensor product of two field extensions is semisimple provided one of the 
factors is finite and separable. 

Proposition 3.9 If Rand S are finite dimensional semisimple algebms, 
and if at least one of Rand S is sepamble, then R ® S is semisimple. 

Proof: Without loss of generality suppose R is separable. By Remark (1), 
we may assume that both R and S are simple. Let C denote the center of 
Sj so C is a field. Then 

R ® S ~ (R ® C) ®c S by Remark (2) 

~ (n~) ®c S for some simple ~ by 
the previous proposition 

~ n(~ ®c S) by Remark (1) 

and each Ri ®c S is simple for the same reasons as in the previous propo­
sition.O 

Some Applications of Tensor Products 

The results of the previous section have many interesting consequences. To 
begin with, we obtain some nice results on the dimension of certain finite 
dimensional algebras. Knowing the dimension of an algebra vastly limits 
the possibilities of what that algebra can be. This will be useful when we are 
trying to determine what the alternatives are for finite dimensional division 
algebras over various fields (e.g., the reals). The following proof provides us 
with our first example of how information may be obtained by extending 
scalars to a field where more is known. This technique is extremely useful 
for a variety of problems. 

Theorem 3.10 If D is a finite dimensional division algebra over its center 
k, then [D: k] is a square. 

Proof: Let K = k, the algebraic closure of k. Note that [D : k] = [DK : 
K]. DK is a finite dimensional algebra over K, hence artinian. Also, DK 
is simple by part (i) of Theorem 2. Thus, by the Structure Theorem for 
Simple Artinian Rings, D K is isomorphic to a ring of n x n matrices with 
coefficients in a (finite dimensional) division algebra over K. Since K is 
algebraically closed, Exercise 1 of Chapter 0 tells us that the only finite 
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dimensional division algebra over K is K itself; hence DK ~ Mn(K). So 
[D: k] = [DK: K] = [Mn(K): K] = n2 • 0 

More generally, if A is a simple algebra which is finite dimensional over 
its center Z, then, by the Structure Theorem for Simple Artinian Rings, 
A ~ Mn(D), where D is a finite dimensional (over Z) division algebra with 
center Z. So 

[A : Z] = [A : D][D : Z] 

=n2 • [D: Z] 

for some m, by Theorem 3.10 

This proves 

Corollary 3.11 If A is a simple algebra which is finite dimensional over 
its center Z, then [A : Z] is a square. 

It is nO surprise that a matrix algebra has dimension which is a square, 
for we can plainly "see" the n2 dimensions. The fact that any simple alge­
bra of finite dimension actually has square dimension is quite remarkable, 
however, for it is far from obvious given the definitions. How useful it is to 
extend scalars! 

We prove the next result with an eye towards Chapter 4. As already 
mentioned, we shall construct a group (the Brauer group of a field k) whose 
elements are certain equivalence classes of finite dimensional central simple 
algebras over k, with ® acting as product in the group. It will turn out 
that Mn(k) will be in the equivalence class of the identity. The following 
proposition uses Theorem 2 to show that the inverse (in the Brauer Group) 
of the equivalence class of a central simple algebra R is the equivalence class 
of RO. This comment will be made precise in Chapter 4. 

Proposition 3.12 Let R be a finite dimensional central simple algebra. 
Then R ® RO ~ Mn(k), where n = [R: k]. 

Proof: Let 

A = {Lr E Endk(R) : Lr(x) = rX,r E R} 

B = {Tr E End;"(R) : Tr(x) = xr, r E R}. 

Then, as shown in Chapter 1, A ~ Rand B ~ RO as rings. Also, elements 
of A and B commute by the associativity law in R (yes, the associativity 
law). Define 
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by 

Since R (and thus RO) is central simple, by Theorem 2 we have that 
R ® RO is simple. Thus the map is one-to-one. Since dimk(R ® RO) = 
(dimk(R))2 = dimk(Endk(R)), we know that the map is onto, and thus an 
isomorphism. Since Mn(k) ~ Endk(R) we are done. 0 

Remark: This is the second proof of this result. The earlier proof (Corol­
lary 1.17), used simplicity to show the above map is onto, then computing 
dimension showed that the map is one-to-one. 

Exercise 25 of Chapter 1 shows that H ~ HO. Since H is a central simple 
algebra of dimension 4 over R, the theorem tells us that H®R H ~ M4(R). 
This provides yet another proof that H ®R H is central simple. 

The Skolem-N oether Theorem 

It is easy to show (Exercise 15), using elementary linear algebra, that any 
automorphism of the ring of n x n matrices over a field k which leaves 
k fixed must be inner (Le., the automorphism is "conjugation by a fixed 
matrix"). The Skolem-Noether Theorem is an important generalization of 
this fact to any finite dimensional central simple algebra. In order to prove 
this theorem, we need to know that for finite dimensional simple algebras 
R, there is a unique R-module (up to isomorphism, of course) of any given 
dimension. This is the content of 

Lemma 3.13 Let R be a finite dimensional simple algebra over k. If Ml 
and M2 are finite dimensional R-modules of the same dimension over k, 
then Ml ~ M2· 

Proof: Since R is finite dimensional (hence artinian) and simple, we know 
by the Structure Theorem for Simple Artinian Rings that R has a unique 
simple module M. Then Ml ~ MIl and M2 ~ Ml2 for some it, 12 , Clearly 
dimk(Mi) = lidimk(M) for i = 1,2, so if dimk(Md = dimk(M2), then 
It = 12 and hence Ml ~ M2. 0 

The above lemma generalizes the well-known fact that any two vector 
spaces (over afield) of the same dimension are isomorphic. With this lemma 
in hand we are now ready to prove the Skolem-Noether Theorem. 
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Theorem 3.14 (Skolem-Noether) Let S be a finite dimensional central 
simple k-algebra, and let R be a simple k-algebra. If f, 9 : R ---> S are 
homomorphisms (necessarily one-to-one), then there is an inner automor­
phism a : S ---> S such that af = g. 

Equivalently, If Rl and R2 are isomorphic simple subalgebras of S, then 
for any homomorphism f : Rl ---> R2 there is an inner automorphism a 
of S such that alRt = f. In particular, any automorphism of S is inner. 

Note: We cannot drop the assumption that the center of S is k. For 
example, if S is a proper field extension of k, then there are usually many 
k-algebra automorphisms of S, but there are no (non-trivial) inner ones 
since S is commutative. As a special case, note that complex conjugation 
is a non-inner R-algebra automorphism of C. 

Proof: S is finite dimensional (hence artinian) and simple, so S ~ EndD(V) 
for some division algebra Dover k and some finite dimensional D-module 
V. Note that Z(S) = Z(D) = k. Now f and 9 define two R-module struc­
tures on V which commute with the given action of D and which induce 
the given k-module structure on V. Hence V is an R ® D-module in two 
different ways. But R ® D is artinian and simple (by Theorem 2), so by 
the Lemma these two R ® D-modules are isomorphic; that is, there is an 
abelian group isomorphism h : V ---> V such that 

(1) h(f(r)v) = g(r)h(v) and 
(2) h(dv) = dh(v) 

Now (2) says that h E EndD(V) = S, and (1) says that hf(r) = g(r)h; 
that is, hf(r)h-1 = g(r). This finishes the proof. 0 

The Skolem-Noether Theorem will playa crucial role in our proofs of 
two classical theorems of Wedderburn and Frobenius, as well as in the 
construction of factor sets, which will be objects of study in Chapter 4. In 
case this is not enough to emphasize the usefulness of the Skolem-Noether 
Theorem, several more of its many applications are given in the exercises 
at the end of this chapter. 

The Centralizer Theorem 

In the study of groups it is quite useful to study the centralizers of various 
subgroups of a group. In this section, we define the centralizer in the context 
of algebras, and prove an important result on centralizers which will help 
to elucidate the structure of algebras. 

Definition: If R is an algebra and S is any subset of R, the centralizer 
of S in R is defined to be C(S) = {r E Rlrs = sr for all s E S}. One may 
check that C(S) is a subalgebra of R for any subset S ~ R. 
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For a central simple k-algebra S, C(C(S)) = C(k) = S by definition. In 
other words, S is its own "double centralizer" . Intuitively, it seems as if 
the smaller the subalgebra R, the larger the centralizer C(R) should be, for 
it is easier to commute with fewer elements. Taking the double centralizer 
C(C(R)) is like moving "up and down", then. Of course it is always true 
that R ~ C(C(R)). Part (iv) of the following theorem shows that, as in 
the case of the centralizer of the full central simple algebra, moving up and 
down actually takes one back to where one started. 

If S is a finite dimensional simple algebra, then by the Structure Theorem 
for Simple Artinian Rings we know that S ~ Mn(D) for some n and some 
division algebra D. In fact, it makes sense to talk about the division ring D 
such that S ~ Mn(D), for D is uniquely determined (up to isomorphism) 
as the opposite of the endomorphism ring of the unique simple S-module. 
We shall write S '" D when S ~ Mn(D) for some n. The relation", is 
a special case of a more general relation which will be of importance in 
Chapter 4, where we will discuss the set of central simple algebras under 
that equivalence relation. We shall elaborate fully on these ideas in Chapter 
Four. 

Theorem 3.15 (Centralizer Theorem) Let S be a finite dimensional 
central simple algebra over k, and let R be a simple subalgebra of S. Then 

(1) C(R) is simple. 
(2) If S '" Dl and R ® D'l '" D2 , then C(R) '" D2· 
(3) [S: kJ = [R : k][C(R) : k]. 
(4) C(C(R)) = R. 

Remarks: 
1. Note that Parts 2 and 3 completely determine the structure of C(R). 

2. Part 4 of this theorem is often called the "Double Centralizer Theo­
rem". 

Proof: By the Structure Theorem for Simple Artinian Rings, we may as­
sume that S ~ Endv(V) ~ Mn(DO), where D is a division algebra with 
center k and V is a finite dimensional D-module. Also note that V is an 
R® D-module, and C(R) = EndR®v(V) ~ S. 

Proof of Part 1: R ® D is simple, so R ® D ~ EndE(W), where W is 
the unique simple R ® D-module and E = EndR®v(W) is the associated 
division algebra. So V ~ wm as R ® D-modules. Thus 

C(R) ~ EndR®v(Wm ) 
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Proof of Part 2: 8", DO, so Dl = DO. Now R0D'J. = R0D '" EO = D2 
(by the above). Thus C(R) '" E = D2. 

Proof of Part 3: Since C(R) ~ Mn(E), we have that [C(R) : k] = n2[E : 
kJ. Since V ~ wn we also have that [V: k] = n[W : kJ = n[W : E][E : k]. 
Squaring this and plugging back in to the first equality gives 

[V: kJ2 
[C(R) : kj = [W : EJ2[E : kJ2 [E : kj 

_ [v:kf 
- [W: E]2[E: kJ 

_ [V: kJ2 
- dimk(EndE(W)) 

_ [V: k]2 
- [R: k][D : k] 

and so 

[R: k][C(R) : kj = [~\k~l 

_ [V : Df[D : kf 
- [D: k] 

= [8:kj. 

Proof of 4: Applying Part 3 to C(R) gives [8 : kJ = [C(R) : k][C(C(R» : 
k), so [C(C(R» : kj = [R : k). Also note that R ~ C(C(R», so clearly 
R = C(C(R)). 0 

Among the Centralizer Theorem's many applications, we can now express 
any finite dimensional central simple algebra in terms of any of its central 
simple subalgebras: 

Corollary 3.16 If R is a central simple subalgebra of a finite dimensional 
central simple algebra 8, then 8 ~ R 0 C(R). 

Proof: Since Rand C(R) commute, we have a map R 0 C(R) ---+ 8 via 
r 0 r' t---+ rr'. Since R 0 C(R) is simple, this map is one-to-one, hence an 
isomorphism by counting dimensions. 0 

With a little more work it is possible to make the technique of extension 
of scalars even more useful. The idea is to try to extend scalars "as little 
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as possible", but enough so that things become easy. We shall now make 
this precise. 

Let D be a division algebra over k. A field K 2 k such that DK :::::J 

Mn(K) is called a splitting field for Dj for in this case DK splits as a 
sum of n simple K-modules, whereas D is simple as a module over itself. A 
central simple k-algebra of the form Mn (k) is often called a split central 
simple k-algebra. If K is a separable maximal subfield of the k-algebra D, 
and if L is an extension of k which splits every pol)'Ilomial f(x) E k[x] 
having a root in K, then L splits D (see Chapter 4, Exercise 30). This 
gives a connection between the word "splitting" used in two different ways. 

The integer n is called the degree of Dj n2 is called the rank of Dover 
k. Note that no further splitting takes place when we extend scalars over 
Kj for if K' 2 K, then 

In the next chapter we will use this technique to split the collection of all 
division algebras with center k into more manageable pieces. These pieces 
will turn out to have another explicit description via pomological algebra. 

As another application of the Centralizer Theorem, we derive a useful 
result on maximal subfields of a division algebra D and their relationship 
to the existence of splitting fields for D. 

Corollary 3.17 Let D be a division algebra with center k and [D : k] = n2 . 

If K is any maximal subfield of D, then [K : k] = n. Moreover, K is a 
splitting field for D. 

Proof: The first part follows immediately from parts (3) and (4) of the 
Centralizer Theoremj for C(K) = K, so n2 = [D : k] = [K : k)[C(K) : k]. 

To show that K is a splitting field for D, we note that D is a D-K 
bimodule (for the definition of bimodule, see Exercise 28 of Chapter 0), 
hence a D®K-module, and as such it is simple. Moreover, EndD0K(D) = 
K. Since D ® K is simple, it follows that D ® K:::::J EndK(D) :::::J Mm(K), 
m= (D:K]. 0 

Corollary 3.17 provides us with many examples of splitting fields. It 
is also true that for any division algebra there always exists a maximal 
subfield which is also separable (see Exercise 33). This will be important 
in our study of the Brauer group in Chapter 4. 
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Some Famous Theorems 

The material presented so far in this chapter is mostly useful as a tool for 
further applications. The power of these results may not seem obvious at 
first, so at this point we will attempt to convert the unconvinced. A good 
way to do this, perhaps, is to use the results to prove two famous, classical 
theorems. 

Theorem 3.18 (Wedderburn's Theorem) Every finite division ring is 
commutative. 

This theorem (an addition to our growing list of "Wedderburn The­
orem"s!) is truly remarkable in that commutativity properties of a ring 
seem to have nothing at all to do with whether or not the ring is finite; 
although the theorem proves our intuition completely wrong. Apart from 
being surprising and beautiful in its own right, this result (originally proven 
by Wedderburn in 1905) has played an important role in many areas of al­
gebra, such as representation theory and projective geometry (see, e.g. E. 
Artin, Geometric Algebra). This theorem is also a foundation stone for an 
extensive theory dealing with conditions that can be put on a ring that 
will make it commutative. For further details, see Herstein, Noncommuta­
tive Rings. 

The following proof, due to B. L. van der Waerden , uses the Skolem­
Noether Theorem and consequences of the Centralizer Theorem in an es­
sential way. 

Proof: For a finite division ring D, let k = Z(D) (remember that the 
center of a division ring is a field), and let K be a maximal subfield of D 
containing k, so k ~ K ~ D. If K = D we are done, so assume K =I- D. By 
Theorem 3.10 we have [D: k) = n2 for some n, so (since K =I- D) we have 
[K: k) = n by Corollary 3.17. Thus if q = Ikl, then K must have order qn. 

Now any two fields containing k of order qn are isomorphic, since they 
are both splitting fields of the polynomial xqn - x over k (see, e.g., Jacob­
son, Basic Algebra I, Chapter 4.13). Thus they are conjugate in D by the 
Skolem-Noether Theorem. Every element of D is contained in some maxi­
mal subfield of D, so D = UXED xKx-1 for some fixed maximal subfield K. 
If D* denotes the multiplicative group of D, then D* = UXED* xK*x-1 • 

But this is impossible unless K = D since, as shall be proved in the fol­
lowing lemma, no finite group is a union of conjugates of any nontrivial 
subgroup. 0 

We now prove the lemma that was necessary in the above proof. This 
lemma is an elementary problem in group theory. 

Lemma 3.19 If H < G are finite groups with H =I- G, 
then G =I- U9EG gH g-l. 
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Proof: If N(H) denotes the normalizer of H in G, then IG : N(H)] is 
the number of subgroups in G which are conjugate to H. The number of 
non-identity elements in UgEG gHg- 1 is 

~ (G: N(H)I(IHI - 1) 

~ IG : H](IHI- 1) 

=IGI-IG:H] 

< IGI-l 

and so G =f:. UgEG9Hg-1. 0 

since H =f:. G 

In Chapter 4 we will give another (less elementary) proof of Wedderburn's 
Theorem by showing that the Brauer group of a finite field is trivial. 

We know that C and H are division algebras of dimensions 2 and 4, 
respectively, over R. What are the other finite dimensional division alge­
bras over R? W.R. Hamilton, who discovered the quaternions in 1843, had 
worked for ten years trying to come up with a division algebra of dimension 
3 over R. Of course Theorem 3.10 tells us that such an algebra does not 
exist, and so (fortunately) Hamilton did not succeed. After Hamilton tried 
in dimension 4 and succeeded in constructing the quaternions, efforts were 
made by many mathematicians to come up with other so-called "hyper­
complex systems" (Le., finite dimensional division algebras over R). All of 
these efforts failed. Thus it was indeed satisfying when, in 1878, Frobenius 
showed that all such hypercomplex systems had already been found : 

Theorem 3.20 (Frobenius) If D is a division algebm with R in its cen­
ter and [D : R] < 00, then D = R, C, or H. 

Proof: Let K be a maximal subfield of D, so IK : R] < 00 by the given. 
Since the only finite field extensions of R are Rand C( Chapter 0, Exercise 
34), we have that [K : R] = 1 or 2. If [K: R] = 1, then by Corollary 3.17 
we have that [D : R] = 1 and so D = R. If [K : R] == 2, then again by 
Corollary 3.17 we have [D : K] = 1 or 2. If [D : K] = 1 then D = C, so 
suppose that [D : KJ = 2. Now K ~ C, and the map f : K --+ K given 
by a + bi 1----+ a - bi is an R-isomorphism. Hence, by the Skolem-Noether 
Theorem, there exists xED with x(a+bi)x-1 = a-bi for all a, b. It is easy 
to check that conjugation by x 2 is the identity, and so x 2 E C(K) = K. 
Now lex) = X2, and so x 2 E R. If x 2 > 0, then x 2 = r2 for some r E R, so 
x = ±r, a contradiction. Thus x 2 < 0, and so x 2 = _y2 for some y E R. 
Let j = xlv, and let k = ij. It is then easy to check that 



i 2 = l = k2 =-1 
ij = k = -ji 
jk = i = -kj 
ki = j = -ik. 
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We also leave it for the reader to check (see Exercises 16) that {l,i,j,k} 
form a basis for D. 0 

In particular, this theorem shows that the only finite dimensional central 
division algebras over Rare Rand H. In Chapter 4 we will use a calculation 
of the Brauer group of R to recover this result. 

In our definition of an algebra, we assumed associativity of multiplica­
tion. If this restriction is dropped, then there is a (non-associative) division 
algebra over R of dimension 8 called the Cayley Algebra, otherwise known 
as the octonions, and denoted by O. There is a theorem, the Generalized 
Frobenius Theorem , that says that R, C, H, and 0 are the only finite 
dimensional division algebras over R. This result is quite satisfying in the 
sense that it tells us that "we know everything" about finite dimensional 
division algebras over R. 

Summary 

In this chapter we explored properties of central simple algebras over a field 
k. We saw that the tensor product A ®k B of any two k-algebras A and B 
is itself a k-algebra in the obvious way, and that A ®k B is central simple if 
both A and B are. This fact was used to show that, for a separable k-algebra 
S, the K-algebra SK is semisimple for any extension K of the scalars k, 
generalizing the case when S is a separable field extension of k. We also 
saw that any automorphism of a finite dimensional central simple algebra 
S is inner (Skolem-Noether Theorem), and that the double centralizer of 
any simple subalgebra of R of Sis R itself (Double Centralizer Theorem). 
These two Theorems were used to prove the classical results that any finite 
division ring is commutative (another Wedderburn Theorem), and that the 
only finite dimensional division algebras containing R in its center are R, C, 
and the real quaternions H (Frobenius Theorem). Thus all such division 
algebras over R were classified. In Chapter 4, we shall use the material 
developed in this chapter in an attempt to prove theorems along the lines 
of the Frobenius Theorem, and along the way we will get a glimpse of how 
this material ties in with a myriad of fields, including number theory and 
algebraic K-theory. 
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Exercises 

1. Let R be a k-algebra and let V be a vector space over k. Regard V 
as a subspace of R 181 V in the usual way. 

(a) For any subspace W of V, show that (R 181 W) n V = W. 

(b) H Wl and W2 are subspaces of V such that R® Wl = R® W2 , 

show that Wl = W2 • Show that this assertion is not necessarily true 
unless k is a field. [Hint: try k = Z.] 

2. Given finite groups G = Gl X G2 and a field k, show that 

as k-algebras. 

3. Let R be a finite-dimensional central simple k-algebra. If M is an 
R-R-bimodule relative to k, show that M is free both as a left R­
module and as a right R-module. In fact, show that there exists a 
subset of M which is a basis of M both as a right and left R-module. 
In particular, deduce that if R is a subalgebra of an algebra S, then 
S is a free R-module. [Hint: M is an R ®k RO-module and hence its 
structure is completely known.] 

Remark: The results of this problem, except possibly for the exis­
tence of a simultaneous basis, remain valid even if k is not the center 
of R. The proof again uses tensor products, but in a different way. 
For details, see Bourbaki, Algebra, Chapter 8, section 5. 

4. Let H be the division ring of quaternions over R. 

(a) Show that HC is isomorphic to M2(C). 

(b) Explicitly exhibit this isomorphism, i.e., compute the images of 
all the basis vectors 1181 1, l®i, l®j, 1®k ofHC over C. [Hint: Find 
a simple HC-module.] 

5. Let R and S be algebras. 

(a) Show that both Rand S are simple (semisimple) if R®S is simple 
(semisimple) . 

(b) Show that both Rand S are central if R 181 S is central. 

6. Let R be an artinian algebra and let S be a finite dimensional algebra. 
Prove that R 181 S is artinian. 
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7. (a) Let R be a finite-dimensional commutative algebra over a field k. 
If R is semisimple, show that every subalgebra of R is also semisimple. 

(b) Give an example to show that this is false in the noncommutative 
case. In fact, give a commutative subalgebra of M2(k) which is not 
semisimple, even though M2(k) is simple. 

8. (a) If R is a finite-dimensional algebra over a field k, and if R is also 
an integral domain, show that R is a division algebra over k. 

(b) Prove that a subalgebra of a finite-dimensional division algebra 
is also a division algebra. 

9. (a) Let f(x) E k[x], k a field. Show that k[x]/(f(x)) is semisimple 
if and only if f(x) is a separable polynomial over k (Le., has no 
multiple roots in its splitting field). [Hint: Use unique factorization 
and the Chinese Remainder Theorem.] 

(b) Let K be a finite dimensional separable extension field of a field 
k, and let A be a central simple K -algebra. Show that A 0k A ° is not 
simple. [Hint: Find an idempotent =f. 0,1 in K 0k KO.] 

10. Let S be a finite dimensional semisimple algebra over a field k. Show 
that S is a separable k-algebra if and only if S is projective as an 
S 0k SO-module. 

Filling in Some Holes 

The following exercises come from assorted gaps we have left in the 
text. You will be doing the authors a great service if you work these 
problems out. 

11. (a) Prove Proposition 3.2 

(b) Deduce from this that if M is an R-module and an S-module 
such that the two actions commute and induce the same k-module 
structure on M, then there is a unique R0S-module structure on M 
inducing the given actions of Rand S. 

12. Furnish another proof of Theorem 3.4 by showing that K[x]/(f(x)) 
has no nilpotent elements. 

13. Let S be a simple algebra with center C. Show that C ~ Ends®so (S). 

14. Check that the two "equivalent" definitions of separable algebra given 
on page 89 are really equivalent. 
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15. Show, using only elementary linear algebra, that any automorphism 
of the ring of n x n matrices over a field k which leaves k fixed is inner 
(Le., the automorphism is "conjugation by a fixed matrix"). [Hint: Let 
V = kn be the vector space. Note that the images of the elementary 
linear transformations (given by multiplication) ell, e22, ... ,enn on 
this vector space are one-dimensional and have sum equal to V. If 
I is any automorphism of Mn(k), then I(ell), ... , I(enn ) have the 
same property. Use these subspaces to give bases for V, and show 
that the action of I is the same as conjugation by this change of 
basis matrix. It will be useful to note that a matrix is completely 
determined by its product with the eii'] 

16. Check that the properties of i,j, and k given in the proof of Theorem 
3.20 hold. Also check that {I, i, j, k} is indeed a basis for D. 

Altering the Hypotheses of Skolem-Noether (or trying to) 

17. Let k be a field, S = Ms(k),R = k x M2(k). Define I,g: R -+ S 
by I(x, y) = diag(x, y, y) and g(x, y) = diag(x, x, x, y), where diag 
denotes the appropriate block matrix. Show that there is no inner 
automorphism h of S such that hi = g. Hence the Skolem-Noether 
theorem cannot be generalized to include the case of semi-simple 
subalgebras of a central simple algebra. 

18. In our proof of the Skolem-Noether Theorem we assumed that the 
ring S had finite dimension over its center k. It is only necessary to 
assume that the embedded simple algebra R has finite dimension over 
k. Check that every step of the given proof works for this case, except 
possibly the last step: S = EndD(V) for D a division algebra with 
center k, V a finite dimensional vector space over D. V is a module 
over R ®k D in two different ways, via I, 9 : R -+ S. As before, 
V is still a finitely generated R ® D-module and as such is still the 
sum of a finite number of copies of the unique simple R ® D-module. 
We no longer know that the same number occur each time since the 
dimensions over k could be infinite. Nevertheless, we can still get a 
map j : V -+ V from "V with I-structure" to "V with g-structure" 
(if the first number of summands is smallerj in the opposite direction 
if the reverse is true) which satisfies: (i) j is one-to-onej and (ii) 
j 0 I(r) = g(r) 0 j. If j had an inverse, the proof would be complete. 

Complete the following two ideas to show that any element of an 
artinian ring which is not a zero-divisor must be a unit, thus finishing 
the above proof in two different ways : 

(i) Use Fitting's Lemma (Chapter 0, Exercise 50). 

(ii) Alternatively, show that it suffices to prove the statement for the 
ring mod its radical, which has no radical and is artinianj hence is 
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semisimple. Now use the Wedderburn Structure Theorem to reduce 
the problem to the case of matrix algebras over a field. Prove the 
statement in this case by considering row and column reductions. 

19. This exercise shows that the Skolem-Noether Theorem does not nec­
essarily hold if the simple subalgebras in question are not finite di­
mensional. 

(a) Let Rl ~ R2 ~ ... be a (not necessarily finite) increasing sequence 
of simple rings. Show that the union U Ri is simple. 

(b) Let S be a central simple k-algebra which is not commutative; for 
example, S could be M2(k). Let Si denote the tensor product (over 
k) of i copies of S. Let R = Ui Si. Show that R is a central simple 
k-algebra. 

(c) Pick any element 8 E S which is not central. Use this to give a 
conjugation on each Si which is nontrivial on each factor of the tensor 
product. Show that this induces an automorphism of R which is not 
inner. 

(d) Consider the following subalgebras of R: 

Rodd = S ®k 1 ®k S ®k 1 ®k .. . 
Reven = 1 ®k S ®k 1 ®k S ®k .. . 

Use these subalgebras to show that the first part of the Skolem­
Noether Theorem does not necessarily hold if the subalgebras are 
not finite dimensional. 

20. What happens if we replace the central simple algebra S in the 
Skolem-Noether Theorem with a semisimple ring? Show that with 
the appropriate centralizer assumption, the first part of the theorem 
will still hold, but the second part will not. What happens if one 
drops the assumption that the ring homomorphisms take 1 to 1? 

21. Compute the automorphism group of an arbitrary semisimple ring. 
[Hint: Reduce the question to that of the homogeneous components 
and note that endomorphisms can be described in matrix notation. 
When does such a matrix really represent an automorphism?] 

More on Centralizers 

22. Let A and B be k-algebras. 

(a) Show that the centralizer of A ® k in A ® B is equal to Z(A) ® B, 
where Z(A) denotes the center of A. 

(b) Show that Z(A ® B) = Z(A) ® Z(B). 
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(c) Show that if C and D are sub algebras of A and B, respectively, 
then the centralizer of C ® D in A ® B is isomorphic to the tensor 
product of the centralizer of C in A with the centralizer of Din B. 

23. Let A be a k-algebra with subalgebra B. Prove that if x E A·, then 
C(x-1Bx) = x-1C(B)x. 

24. Prove the following generalization of the Centralizer Theorem: If 8 is 
a central simple k-algebra (not necessarily of finite dimension), and if 
R is a finite dimensional simple subalgebra of 8, then C(R) is simple, 
and C(C(R» = R. [Hint: Use the generalized form of the Skolem­
Noether Theorem (Exercise 18)and the previous two exercises.] 

Another Theorem of Wedderburn 

Theorem 3.21 Let A be a finite dimensional algebm over a field 
k. Let I be a two-sided ideal of A which is genemted by nilpotent 
elements. Then I is nilpotent. 

25. Prove this theorem as follows : 

(i) We may as well assume that k is algebraically closed since A is a 
subring ofk®kA, where k denotes the algebraic closure of k. Explain. 

(ii) Show that Mn(k) does not have a basis over k consisting of 
nilpotents. [Hint: consider the trace.] 

(iii) We now proceed by using induction on the dimension of lover 
k. Why does the case dim(I) = 1 work? 

(iv) Now I is artinian and if I contains no nilpotent left ideals, so I 
is semisimple by Theorem 2.4. Hence I ~ II Mn,(k). Why are these 
matrix rings over k? 
(v) By (ii) this can't happen. Thus I contains a nonzero nilpotent 
left ideal. Thus J(R) n I =F O. 

(vi) Consider A/(J(R)nI) and compute the k-dimension of the image 
of I. Use the induction hypothesis to complete the proof. 

26. (a) Wedderburn's Theorem (Theorem 3.21, that is!) is usually stated 
for rings without unit: If I is a finite dimensional k-algebra which 
has a basis consisting of nilpotent elements, then I is nilpotent (here 
I need not have an identity element). Show that this follows from 
the Wedderburn theorem by taking A = k E9 I with suitably defined 
multiplication. Conversely, the above theorem follows from this one. 

(b) Apply this theorem to give another proof of Problem 49 in Chap­
ter 2, which states that, for a finite p-group G and a field k of char­
acteristic p > 0, the augmentation ideal I is the Jacobson radical of 
k[G] and hence k[G] is a local ring. 
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Remarks: 

(i) Actually, the augmentation ideal I is generated by elements of the 
form s -1, where s runs over a set of group elements which generate 
G. Prove this as an exercise. 

(ii) This material plays a crucial role in the Nakayama-Rim theory of 
cohomologically trivial modules. For more information on this topic, 
see K. Brown, Cohomology of Groups. 

Applications of the Skolem-Noether Theorem 

27. Let D be a finite dimensional division algebra over its center k. Let 
a, bED have the same minimal polynomial over k. Show that there 
exists xED such that xbx- I = a. This result is due to Dickson. 

28. (a) Let U denote the elements of absolute value 1 in H, the real 
quaternions. Prove that every element in U is a commutator in the 
multiplicative group H* of H. In fact, show that one can take the 
elements to lie in U itself. Further, prove that given any triple of 
elements UI, U2, U3 in U, there exists elements z, VI, V2, V3 in U with 
UI = [Z,VI],U2 = [Z,V2],U3 = [Z,V3]. Can this be done with an arbi­
trary 4 elements of U? [Hint: Use the previous exercise, and note that 
two elements of U have the same minimal polynomial if and only if 
they have the same trace.] 

(b) Let D be a division algebra of dimension 4 over its center. Prove 
that every pair of commutators in D* can be written as commutators 
with the same first (or last) element. Use this to conclude that every 
element of [D*, D*] can be represented as a single commutator. 

29. Let D be a division algebra containing a finite field k in its center. 
Assume that every element of D satisfies an algebraic equation over 
k. Prove that D is a field. [Hint: Let K be the center of D and take 
xED, x ¢ K. Show that there is an element y E D such that 
yk[x]y-I = k[x] but yxy-I =f. x. Obtain a contradiction by looking 
at k[x,y].] 

30. Let R be a ring. An additive map d : R --+ R is called a derivation 
if d(ab) = ad(b) + d(a)b. For example, differentiation of polynomials 
is a derivation on the ring of polynomials over R. d is called an inner 
derivation if there exists an element c E R such that d(x) = xc - ex 
for all x E R. 

Theorem 3.22 Let R be a finite dimensional central simple k-algebra. 
Every k-linear derivation on R is inner. 
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Prove this theorem by applying the Skolem-Noether Theorem to the 
following two isomorphic subrings of M2(R}: 

{rI: r E R} and 

Remark: Derivations play an important role in the study of separa­
ble algebras, a concept vastly generalizing separable field extensions. 
The degree to which derivations fail to be inner can be measured by 
a certain cohomology group, which we shall discuss later. 

31. Let k be a field of characteristic not equal to 2. Let D be a divi­
sion algebra over k such that [D : k] = 4. Suppose that D is not 
commutative. Show that k is the center of D and that there exists 
elements u, v E D so that 1, u, v, uv form a basis for Dover k and 
satisfy u2 = a, v2 = b, uv = -vu for some a, b E k. Such an algebra 
is called a generalized quaternion algebra over k. These algebras 
play an important role in the study of the Brauer group and in alge­
braic K-theory, and are discussed in greater detail in the exercises of 
Chapter 4. 

The Jacobson-Noether Theorem 

Theorem 3.23 (Jacobson-Noether) If D is a noncommutative di­
vision ring which is algebraic over its center k, then there is an ele­
ment in D, not in k, which is separable over k. 

32. Prove this theorem as follows: 
(a) Let K ;2 k be fields of characteristic p and let c E K be algebraic 
over k. Let f(x) be the minimal polynomial of cover k. If f(x) has 
multiple roots, show that f(x) = g(xP ) for some g(x) E k[x]. Conclude 
that f(x) = h(xpe } for some h(x) E k[x] which has no multiple roots. 
This says that cPe is separable over k. 

(b) Since the theorem,is clear if k has characteristic 0, assume that 
k has characteristic p > O. If the theorem fails, show (using part (a» 
that there exists a E D with aP E k, a ¢ k. Define d : D -+ D by 
d(x) = xa - ax. Show that d is a k-linear map which satisfies d =F 0 
and dP(x} = xaP - aPx. Hence dP = 0 since aP E k. Let y E D be 
such that d(y) =F 0 and choose s such that x = ds-1(y} =F 0 and 
d8 (y) = O. Now s > 1 so x = d(w) for some wED, i.e., x = wa-aw. 
Further, dx = 0, i.e. ax = xa. Write x = au. Show that a = ca - ac 
for c = wu- I . Thus c = 1 + aca-I. Raise this to a large power of p 
and reach a contradiction. 
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33. (a) (Koethe's Theorem) Use the Jacobson-Noether Theorem to show 
that if D is a finite dimensional division algebra with center k, and if 
K <; D is a separable extension of k, then D has a maximal subfield 
containing K which is separable over k. 

(b) Conclude from the Jacobson-Noether Theorem that any central 
simple algebra has a separable splitting field which is finite dimen­
sional over its center. 

(c) Does there exist a maximal subfield which is galois (i.e., normal 
and separable) over its center? [Remark: Don't feel bad if you don't 
get this one, considering that this was an open question for quite some 
time. The problem was finally answered in the negative by Amitsur 
(See S. Amitsur, "On Central Division Algebras" , or B. Jacob and A. 
Wadsworth, "A new construction of noncrossed product algebras").) 

Embeddings of Algebras 

34. (a) Let D be a central division k-algebra, A = Mr(D), and V be a 
simple A-module. Describe [V : k) in terms of r and D. 

(b) Let A be a central simple k-algebra with [A : k] = n2 . Given a 
matrix algebra Mm(k), it is natural to ask under what conditions on 
A does A embed as a subalgebra of Mm(k). There is a nice answer 
to this question. First note that A ::::: Mm(D) for a unique division 
algebra D by the Structure Theorem for Simple Artinian Rings, and 
[D : k) = d? for some integer d by Theorem 3.10 (we will later call d 
the "Schur index" of A in studying the Brauer group). Prove that A 
is isomorphic to a k-subalgebra of Mm(k) if and only if nd divides 
m. In particular, show that if A is a central division k-algebra then 
this condition holds if and only if [A : k) divides m. [Hint: Use the 
Centralizer Theorem and Wedderburn's Theorem.) 

35. (a) More generally, suppose that Al and A2 are simple k-algebras 
with A2 central. Let Di (i = 1,2) be the unique division algebra with 
Ai ::::: Mr; (Dd; and let ni = [Ai: k), di = [Di : k] (i = 1,2). Note 
that ni = ridi. Note that Al ® Dz is simple, so Al ® D2 ::::: Mra(D3) 
for a unique division algebra D3; let d3 = [D3 : k). Prove that Al 
embeds as a k-subalgebra of A2 if and only if n I d2d3 divides n2. 

[Hint: Let Vi (i = 1,2) be the simple Ai module, and let V3 be the 
simple Al ®D2-module. First show that Ai embeds in A2 if and only 
if V2 is isomorphic to some Al ® D2-module. Show that this holds if 
and only if dimk(V3) divides dimk(V2). Now compute dimensions of 
everything in sight.) 

(b) What happens if Al is now just semisimple in the above? How 
about if A2 is semisimple? How about if both Ai and A2 are just 
semisimple? What kind of theorem can you prove? 
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The Cartan-Brauer-Hua Theorem 

36. This problem provides two lemmas which will be used in the proof of 
the Cartan-Brauer-Hua Theorem (Exercise 37). 

(a) Let R be a finite dimensional algebra over an infinite field k. 
Show that if r E R, then there exists S E k* with r - s a unit in R. 
In particular, show that every element of R is the sum of two units 
in R. [Hint: Since R is finite dimensional, f(r) = 0 for some non-zero 
polynomial f E k[x]. Since k is infinite, there exists s E k* such that 
the polynomial f (x + s) has a non-zero constant term.] 

(b) Show that no group can be written as the union of two of its 
proper subgroups. 

37. Prove the Cartan-Brauer-Hua Theorem: Let R be a finite dimensional 
central simple algebra over an infinite field k. If D is a division sub­
algebra of R with D* a normal subgroup of R*, then either D = k or 
D = R. [Hint: Suppose D ¥- k and D ¥- R. Use part (a) of Exercise 36 
to show that D* is properly contained in R* , and use the Double Cen­
tralizer Theorem to show that C(D) is properly contained in R. Now 
apply part (b) of Exercise 36 to find an element x E (D* U C(D)*) 
with x ¢ R*. Use the hypothesis and part (a) of Exercise 36 to show 
that w E D*, giving a contradiction.] 

38. (a) Show that every subalgebra of a division algebra is a division 
algebra. 

(b) Show that if D is a finite dimensional central division algebra with 
subfield E ¥- k, then D is generated (as a k-algebra) by UdED. d-1 Ed. 

(c) Use part (b) of this exercise to give another proof of Wedderburn's 
Theorem that finite division rings are commutative. Notice that this 
gives a proof of Wedderburn's theorem via the Double Centralizer 
Theorem, whereas the proof given in the text uses the Skolem-Noether 
Theorem. 
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The Brauer Group 

This chapter is concerned with the classification of finite dimensional cen­
tral division algebras over a given field k. In the case k = R, the Frobenius 
Theorem shows that R and H are the only finite dimensional central di­
vision algebras over R. This kind of classification is optimal in the sense 
that we have an explicit, easy-to-understand list of all finite dimension­
al central division algebras over R. Classifying finite dimensional central 
division algebras over other fields has proven much more difficult, and in 
fact this problem has been a focal point for research in number theory and 
quadratic forms. Although such an explicit list as in the case of central 
division algebras over R cannot always be given, there is much that can be 
said. 

Our attack on the above problem shall lead us to a discussion of the 
Brauer group, named for R. Brauer, who first defined this group in 1929. 
Computing the Brauer group is a classical problem that has strong ties with 
number theory and algebraic geometry (see, e.g., J.P. Serre, Local Fields). 
The Brauer group has also begun to play an important role in algebraic 
K-theory, as can be seen by recent work of Merkur'ev and Suslin (see I. 
Kersten, Brauergruppen von Korpern). 

We shall assume throughout this chapter that, unless otherwise specified, 
all of the algebras are finite dimensional. 

An Equivalence Relation on Central Simple 
Algebras 

For reasons that will soon be clear, it is more convenient to rephrase the 
above classification question as follows: given a field k, try to classify all 
finite dimensional central simple algebras over k up to similarity, where S 
and Sf are called similar (written S ,...., Sf) if the division algebras D, Df 
such that S ~ Mn(D) and Sf ~ Mn,(Df) are isomorphic. Note that such 
division algebras exist by the Structure Theorem for Simple Artinian Rings, 
and that it makes sense to talk about the division algebra such that S ~ 
Mn (D) since D is uniquely determined (up to isomorphism) as the opposite 
of the endomorphism ring of a simple S-module. Thus we see that each 
similarity class contains a unique isomorphism class of finite dimensional 
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central division algebras, and each such division algebra is contained in a 
unique similarity class. So the classification problem for finite dimensional 
central division algebras is equivalent to that for finite dimensional central 
simple algebras (up to similarity). 

The point of studying the set of central simple algebras over k instead 
of the central division algebras is that the tensor product of two division 
algebras is not always a division algebra, while the tensor product of two 
central simple algebras is again a central simple algebra; that is, the set 
of central simple algebras is closed under tensor product. This allows one 
to put a group structure on the (similarity classes of) central simple k­
algebras. The group structure imposes constraints which can be exploited 
to give information about the central simple k-algebras, hence about the 
central division k-algebras. 

It will be useful in later discussions to phrase the above equivalence 
relation in several different, though equivalent, forms. 

Definition: Let S and T be finite-dimensional central simple k-algebras. 
We say that S and T are similar , and write ,S '" T , if anyone of the 
following equivalent conditions hold : 

1. If S ~ Mn(D) and T ~ Mm(E) for division rings D, E, then D ~ E. 

2. There exist m,n such that 8 ®k Mm(k) ~ T ®k Mn(k). 

3. There exist m, n such that Mm(S) ~ Mn(T). 

4. If M is the unique simple S-module and N is the unique simple T­
module, then Ends(M) ~ EndT(N). 

It is not difficult, using the previous discussion and Lemma 4.1, to check 
that these four definitions of similarity are equivalent. We leave the verifi­
cation as an exercise to the reader. 

The Brauer Group : Definition and Examples 

Finally, after lots of foreshadowing in the previous chapter, we come to the 
definition of the Brauer group. 

Definition: The Brauer group of a field k, denoted Br(k), is the set 
of equivalence classes of finite-dimensional central simple k-algebras under 
the equivalence relation of similarity, with the tensor product acting as 
the group operation and the equivalence class of k acting as the identity 
element. The equivalence class in the Brauer group of a finite-dimensional 
central simple algebra S will be denoted by [8]. 
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Note: For the logicians and set theorists in the crowd, it is an easy exercise 
to check that the set of isomorphism classes of finite-dimensional algebras 
over a given field really does form a set. 

The Brauer group acts as a "classifier" of central division algebras, in 
the sense that each element of Br( k) corresponds to a distinct central 
division algebra over k. For example, Br(k) = 0 precisely when k is the 
only central division k-algebra. Although we will not always be able to give 
a list of elements of Br(k) (and thus an explicit classification of central 
division algebras), the group structure of Br(k) will allow us to make other 
quantitative statements about the set of such algebras. 

Note that [Mn(k)) = [k) = 1 E Br(k) for every n. It is also useful to 
note that if A and B are finite-dimensional central simple k-algebras, then 
A ~ B if and only if [A) = [B) in Br{k) and A and B have the same 
dimension over k. 

Our next goal is to show that the Brauer group is, in fact, a group. Before 
doing this, however, we shall give two useful lemmas. 

Lemma 4.1 (i) Mn{R) ~ R ®k Mn{k) for any k-algebra R. 
(ii) Mm{k) ® Mn(k) ~ Mmn{k). 

Proof: Denoting the n x n identity matrix in Mn (R) by I, we have maps 
R --+ Mn(R) via r I-t rI as well as the natural inclusion Mn(k) --+ 

Mn(R). Now (rI)A = rA = Ar = A{rI); that is, the images of the above 
maps commute, and so there is a ring map R ®k Mn(k) --+ Mn(R) with 
1 ®eij I-t eij, where eij is the elementary matrix with a 1 in the i, j position. 
Clearly the map takes an R-basis to an R-basis and is thus an isomorphism. 

To prove part (ii), simply let R = Mn(k) in the above to obtain 

Mm(k) ® Mn{k) ~ Mn{Mm{k)) by part (i) 

~ Mnm{k) 

The last isomorphism is the "erase-the-lines" isomorphism which comes 
from facts about block multiplication of matrices. For a slightly more hands­
on proof of part (ii), see Exercise 2. 0 

The next lemma will help show that multiplication in the Brauer group 
is well-defined by proving that we may multiply two equivalence classes by 
multiplying any two representatives from these classes and then taking the 
equivalence class of the product. 

Lemma 4.2 If 8 '" 81 and T rv T1 then 8 ® T rv 81 ® T1 . 

Proof: First note that if A rv B, then A and B have the same division 
algebra D, so we may write 
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S ~ Mn(D) 
S1 ~ M n1 (D) 

T~ Mm(E) 
T1 ~ Mm1 (E) 

for some positive integers m, n, m1, nl. Then 

~ D ® Mn(k) ® E ® Mm(k) by (i) of Lemma 4.1 

by (ii) of Lemma 4.1 and 
commutativity of tensor product 

by (i) of Lemma 4.1 

Similarly, S1 ® T1 ~ Mn1 m1 (D ® E) and we are done. 0 

Having given these two lemmas, we need only collect facts from the 
previous chapter to show that Br{k) is an abelian group. 

Proposition 4.3 Br(k) with the operation [S]-[T] = [S®T] is an abelian 
group. 

Proof: Let Sand T be two finite-dimensional central simple k-algebras. 
Then S ® T is finite-dimensional, and by Corollary 3.6 we know that S ® T 
is central simple. From this fact and Lemma 4.2 we see that the tensor 
product gives a well-defined multiplication on Br{k). Associativity of this 
multiplication follows from associativity of the tensor product. Clearly [k] 
acts as an identity element, and by the definition of rv we have [Mn(k)] = 
(k]. By Proposition 3.12, S ® So ~ Mn(k) for a finite-dimensional central 
simple algebra S, which proves that [soJ is the inverse of [S] in Br{k). 
Finally, Br( k) is abelian since S ® T ~ T ® S for any algebras Sand T. 0 

There are a few cases in which Br(k) can be explicitly computed. Al­
though not all the proofs are contained in this book, we provide the follow­
ing list of examples to give the reader some idea of the possibilities that 
are involved. 

Examples: 

1. Br(F) = 0 for any finite field F by Wedderburn's Theorem on finite 
division rings. In fact, Br(k) = 0 for any algebraic extension k of a 
finite field. 

2. Br( k) = 0 for any algebraically closed field k, since there are no (non­
trivial) division algebras over an algebraically closed field (Chapter 
1, Exercise 1). In fact, Br(k) = 0 for any field k of transcendence 
degree one over an algebraically closed field. 
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3. Br(R) ~ Z2 and is generated by [H], as shown by Frobenius' Theo­
rem and the fact that H 0R H ~ M 4 (R). 

4. Br(Qp) ~ Q/Z. Here Qp denotes the field of p-adic numbers. The 
subgroup of Q/Z of order n (namely ~Z/Z) corresponds to those 
division algebras which have a splitting field of degree n. The proof 
of this result uses local class field theory and is beyond the scope of 
this book. The interested reader may consult Serre, Local Fields, or 
Kersten, Brauergruppen von Korpern. 

5. For the Brauer group of Q, there is an exact sequence 

. f 
0---+ Br(Q) ~ $Br(Qi) ---+ Q/Z -t 0 

i 

where Qi ranges over all completions of Q, j is the canonical map 
(which maps into the direct sum rather than the direct product since 
the map Br(Q) -t Br(Qi) is trivial for all but finitely many i), 
f({xi}) = LXi, Br(R) is identified with ~Z/Z, and each Br(Qp) 
is identified with Q/Z. One may interpret this result by noting that 
each element of Br(Q) gives rise to an infinite number of numerical 
invariants in Q/Z, which completely determines the element. These 
invariants can be arbitrary, subject only to: (i) the first is in ~Z/Z, 
(ii) all but a finite number are zero, and (iii) their sum is zero. This 
can be generalized to other number fields; see Kersten, Brauergruppen 
von K5rpern. 

In the 1930's, such eminent mathematicians as A.A. Albert, R. Brauer, 
H. Hasse and E. Noether made an intensive study of Br(k) in the case 
when k is an algebraic number field. This work, which uses techniques 
from and has importance in number theory, culminated in the complete 
determination of the Brauer group of an algebraic number field. One of 
their results is that any central division algebra over an algebraic number 
field k is isomorphic to a cyclic crossed product algebra, which we will define 
later in this chapter. For a summary of this work, see Albert, Structure of 
Algebras, Deuring, Algebren, or Pierce, Associative Algebras. 

The Relative Brauer Group and Galois Splitting 
Fields 

This section will explore the relationship between the Brauer Group and 
maximal subfields of central simple algebras. We begin by noting that Br( ), 
which associates to each field an abelian group, has the following functorial 
property: given a field extension K/k, there is a homomorphism 
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Br(k) ---+ Br(K) 

given by 

where SK = K ®k S is an extension of scalars. This homomorphism can of­
ten be used to determine information about Br(k) from information about 
Br(K), which may be easier to deal with. The above homomorphism also 
leads us to the following 

Definition: Br(K/k) = ker(Br(k) ---+ Br(K))j that is, Br(K/k) is the 
set of finite-dimensional central division algebras over k which are split by 
K. Br(K/k) is called the relative Brauer group. 

The relative Brauer group will be useful in studying the Brauer group, 
for we will be able to reduce questions about Br(k) to questions about 
Br(K/k) for certain K, and Br(K/k) is often easier to work with. In order 
to do this we must first discuss a generalization of maximal subfield of a 
division ring. 

Definition: Let S be a simple k-algebra. A maximal subfield of S is 
defined to be a field K C;;; S containing k such that C(K) = Kj that is, K 
is its own centralizer in S. 

There is another natural notion of "maximal subfield" meaning a subfield 
which is maximal with respect to inclusion. The two definitions agree for 
division algebras, but do not agree in general. In fact, maximal subfields (in 
the first sense defined above) do not always exist. These facts are illustrated 
by the following 

Examples: 

1. Consider Mn(H), which is a simple R-algebra of di,mension 4n2 • By 
the Centralizer Theorem, any maximal subfield of Mn (H) would have 
dimension 2n over R. But the only finite extensions of R are Rand 
C, so if n > 1 then a maximal subfield of Mn(H) cannot exist. 

2. Even when maximal subfields under both definitions exist, the two 
notions do not always coincide. We give an easier example of when 
maximal subfields (with our definition) are too small to be maximal 
commutative subrings. Consider the ring M2n(F) over a field F and 
the subring S C M 2n(F) of matrices of the form 
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[ aI B] 
o aI 

where a E F, I is the n x n identity matrix and B is any n x n matrix. 
Then 8 is a commutative subring of dimension n2 + 1 over F, so any 
maximal commutative subring has dimension at least n2 + 1. By the 
Centralizer Theorem, however, any maximal subfield of M2n(F) has 
dimension 2n. 

Computation of Br( k) is based on a more detailed study of splitting fields 
than we've given so far. Corollary 3.17 provides us with one example of 
how to construct splitting fields; namely, as maximal subfields of a division 
algebra. More generally we have the following 

Theorem 4.4 Let 8 be a centml simple k-algebm of dimension n 2 • Then 
any maximal subfield K of 8 is a splitting field for 8, and [K : kJ = 
[8 : KJ = n. Conversely, given any field extension K ::) k of degree n, 
any element of Br(K/k) has a unique representative 8 of degree n2 which 
contains K as a maximal subfield. 

Proof: First note that 

n2 = [8: k] by hypothesis 

= [K : k][C(K) : k] by part (iii) of the Centralizer Theorem 

=[K:kF since C(K) = K 

and so [K: k] = n. To show that K is a splitting field for 8, note that 8 
acts on 8 on the left, K acts on 8 on the right, and the actions commute, 
thus giving a map 

where f(s®x)(s') = ss'x. Since 8 is central simple and K is simple, 8®K 
is simple by part (i) of Theorem 2. Since f has simple domain and is clearly 
nonzero, f is one-to-one. Also, both 8 ®k K and Mn(K) have dimension 
n3 over k; hence f is an isomorphism. 

Conversely, suppose we are given an extension K / k and an element of 
Br(K/k). Let D be the division algebra which represents the chosen ele­
ment of Br(K/k). Then K ®k j)O ~ Mm(K) for some m(D acts on the 
right) and is thus simple. Also note that 
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Let V be the simple K ®k DO -module, so K ® DO ~ vm. Computing the 
dimensions of both sides gives 

m·[V:Dj=[K:kj (**). 

Now K acts on V, and the action commutes with that of D, so there is 
a K -algebra homomorphism 

K -- EndDo(V) ~ M[V:D] (D) 

which is injective since K is a field. Let 8 = M[V:D](D). Then [8j = [Dj 
in Br(Kjk) and 

[8 : kj = [V : D]2 [D : kj 
= [V: DJ2m2 by (*) 
= ([V: Dj· m)2 
= [K : kj2 by (**). 

Now an application of part (iii) of the Centralizer Theorem, applied to 
the simple subalgebra K of the central simple algebra 8, yields 

[K : k]2 = [8 : k] = [K : kllC(K) : k] 

and so C(K) = K and we are done. Uniqueness follows from the dimension 
of 8.0 

For a division algebra of dimension n2 over its center k, there exists a 
splitting field which is a finite galois extension of k. This is trivial to prove 
when the characteristic of k is zero, or, more generally, when every finite 
extension of k is separable. The case of an arbitrary field requires use of the 
Jacobson-Noether Theorem (Chapter 3, Exercise 32), and is done in the 
following corollary. The fact that a galois splitting field exists is essential 
when giving an explicit description of elements of the Brauer group. 

Corollary 4.5 If D is a division algebra with center k and of dimension 
n 2 , then there exists a finite galois extension K of k which is a splitting 
field for D. 

Proof: It follows from the Jacobson-Noether Theorem that there exists a 
maximalsubfield LCD which is separable over k (see Chapter 3, Exercise 
33(a)). Let k C L c K be the normal closure. So K is galois over k and 

D ®k K ~ (D ®k L) ®L K 

~ Mn(L) ®L K 
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o 

We now draw an immediate but important conclusion from Corollary 
4.5. The following corollary reduces the general computation of Br(k) of a 
field k to the study of Br(K/k) in the case where K is galois over k. This 
is important because the relative Brauer group is, as we shall see in the 
sections which follow, much easier to compute than Br(k). 

Corollary 4.6 Br(k) = U Br(K/k) , where K ranges over the finite galois 
extensions of k. 

Corollary 3.17 shows that if D is a division algebra of dimension n2 , 

then any maximal subfield of D has dimension n and splits D. Conversely, 
it follows from Theorem 4.4 that every field which splits D has degree 
divisible by n. We state this interesting fact as : 

Corollary 4.7 If D is a central division k-algebra of dimension n 2 , and 
if K splits D, then nl[K : k]. 

Factor Sets and Crossed Product Algebras 

In this section we introduce the notions of factor sets and crossed produc­
t algebras. These concepts will prove useful in analyzing the structure of 
central simple algebras, and will provide us with a more concrete descrip­
tion of elements of Br(K/k) than we have seen so far. This description will 
allow us to make the connection between the relative Brauer group and the 
important concept of cohomology in the following section. 

In the proof of the Frobenius Theorem, we determined the structure of 
a given division algebra D by looking at a maximal subfield K of D. In 
the case when [D : K] = 2, K could be identified with C, and the Skolem­
Noether Theorem was applied to show the existence of JED with 

for all z E C 

which was the main step in showing that D must be the quaternions. 
More generally, suppose that S is a central simple k-algebra of dimension 

n2 which contains K as a maximal subfield, K/k is a field extension of 
degree n, and G is the Galois group of Kover k. We shall now employ a 
method similar to the one we used in the proof of the Frobenius Theorem 
in order to analyze the structure of S. Instead of looking at a maximal 
subfield of S, we look at a field K which splits S. Unfortunately, S does not 
necessarily contain K, so we will have to choose a particular representative 
of [S] E Br(K/k) which contains K as a maximal subfield. The details in 
the general case will be more complicated than in the Frobenius Theorem, 
for there are usually more than 2 automorphisms of K, and also because 
the base field is not always as nice as R. 
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For any 0' E G, there exists Xu E S such that 

for all a E K (4.1) 

by the Skolem-Noether Theorem. Note that Xu is unique up to scalar mul­
tiplication by non-zero elements of K; for if both x~ and Xu satisfy (4.1), 
then x~x;l induces the identity on K, and is thus contained in C(K) = K. 
From this fact it follows that 

for some aU,T E K* . 

The collection {aU,T} is called a factor set of S relative to K. It is useful 
to view {xu} as a function G - K*, and a factor set {aU,T} as a function 
GxG-K*. 

Note: We abbreviate {xu : 0' E G} and {aU'T : 0', T E G} to {xu} and 
{aU,T }. 

Since the xu's are unique only up to scalar multiplication, different choic­
es of {xu} will give rise to distinct factor sets. There is, however, a relation­
ship between factor sets that are obtained by different choices for the xu's. 
More precisely, suppose we have {xu} and {x~} with factor sets {aU,T } and 
{bU,T}' respectively. Then x~x;l = /0' for some /0' E K*; that is, 

(4.2) 

and we have 

x~x~ = /UXU/TXT by equation 4.2 

and so 

bU,T/UT = /UO'(fT)aU,T 

Thus we obtain the following relationship between the two factor sets : 

This relationship will be useful in later discussions. Note that if we choose 
Xl = 1, then al,u = au,l = 1 for all 0' E G. We call such a factor set 
normalized. 

Although infinitely many bases for Cover R exist, choosing the basis 
{I, i} makes formulas easier to understand. We shall now show that the 
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x". 's form a basis for the algebra 8 over the field K. The point is that {x".} 
give multiplication formulas which take a particularly nice form, which in 
some sense makes the algebra look like a "twisted" group algebra. By choos­
ing this basis in such a reasonable way, we will re-discover the algebraic 
definition of cohomology. 

Proposition 4.8 {x". : u E G} is a basis for 8 over K. 

Proof: Since IGI = [K : k] = [8 : KJ, we need only show independence. 
So assume that the set is not independent, and choose a subset J which 
is maximal with respect to the property that J ~ G and {x.,. : T E J} is 
independent. Assume u ¢ J. Then 

x". = La.,.x.,. 
.,.EJ 

for a.,. E K . 

multiplying by any r E K gives 

yielding by (4.1) 

x". . r = L a.,.x.,. . r 
.,.EJ 

u(r)x". = L a.,.T(r)x.,. 
.,.EJ 

for all r E K 

(4.3) 

(4.4) 

Multiplying (4.3) by u(r) and using (4.1) to equate it with (4.4) gives 

for all T E J, r E K. 

Since x". =f. 0, there exists some T E J with 0.,. =f. 0, so T(r) = u(r) for 
all r E K, and so u = T E J, contradicting the choice of u. Thus J is all of 
G, and we are done. 0 

This proposition shows that, additively, 

with multiplication characterized by 

x".a = u(a)x". for all a E K 

It is natural to ask whether any function {a".,.,.} : G x G ---+ K* is the 
factor set for some algebra relative to some field. {a".,.,.} cannot be arbitrary, 
since the associativity relation xp(x".x.,.) = (xpx". )xr implies that 



120 4. The Brauer Group 

and so 

thus giving the constraint 

This is, however, the only condition on {aa,'T} in order for it to be a 
factor set: 

Proposition 4.9 Given an extension Kjk, any set of elements {aU,'T} of 
K satisfying (*) for all p, a, T EGis the factor set relative to K of a central 
simple k-algebra A. Further, A contains K as a maximal subfield. 

Note: In light of this proposition, any set of elements {aU,'T} of K which 
satisfy (*) will be called a factor set (relative to K), regardless of whether 
or not an algebra of which {aU,'T} is a factor set is given. 

Proof: Let A be a vector space over K with basis {eO' : a E G}. Define 
multiplication via 

(£leu )(.8e'T) = £la(.8)aU,'TeU'T 

and extend this definition to all of A by linearity. Then it is easy to check 
that the axioms for an algebra hold in A with a1iel being the identity 
element. For example, the distributive law holds (almost) by definition, 
and to show that al,iel is the identity element, we first note that for any 
a, 

since {aU,'T} satisfies (*). Thus al,l = al,u, which implies that 

Similarly, it is easy to check that a(al,l) = au,l. which implies that 

eu(al,i)el = a(al,i)au,leu 

= eO' 
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showing that a-1e1 acts as identity element. K is a subring of A via the 1,1 
map 

K--+A 

a ~ a· 1 (1 = al,~el). 

To show that K is its own centralizer, note that E a"e" is contained in 
C(K) if and only if 

for all a E K, 

which is equivalent to 

for all a E K. 

If a" ¥ 0, this implies that a = O'(a) for all a E K, i.e., 0' is the identity. 
Thus a" = 0 if 0' is not the identity, and so C(K) ~ K. Since K is clearly 
contained in C(K), we have K = C(K) in A. A similar argument shows 
that k = C(A). 

To see that A is simple, suppose that I is a proper two-sided ideal of A. 
Then K --+ AI I is an injection. Let e" denote the image of e" under this 
injection. Then c"a = ae" for all a E k. The proof that {e" : 0' E G} are 
independent still works for {c" : 0' E G}. Hence 1=0 and A is simple. 0 

Definition: With notation as in the above proposition, A is called the 
crossed product of K and G relative to the factor set {a",T}' and is 
sometimes referred to simply as the crossed product algebra (K, G, a). 

In this terminology, Proposition 4.9 shows that any factor set {a",T} is 
the factor set of the central simple algebra (K,G,a), and that (K,G,a) 
contains K as a maximal subfield. 

Recall that a factor set {a",T} of an algebra is not uniquely determined, 
for x" is unique only up to multiplication by non-zero scalars; that is, 
different choices for the x" 's will give rise to distinct factor sets {a",T } and 
{b",T}. As shown on page 118, however, such factor sets are related by 

(**) 

for some I" E K* (recall that {b",T} arise from {x~}, where x~ = I"x,,). 
Conversely, given two factor sets {a",T} and {b",T} which are related by 
(**), it is easy to check (using (*) and (**» that the vector space map 

(K, G, b) --+ (K, G, a) 
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is a k-algebra isomorphism. In short, 

Two factor sets which are related by (**) give rise to isomorphic crossed 
product algebras. 

We shall now show how factor sets and crossed product algebras relate 
to the relative Brauer group. In particular, the following theorem will show 
that every element in the Brauer group is [(K, G, a)] for some factor set 
{aa,,,.}, and that one may associate an equivalence class of factor sets to each 
element of Br(K/k). This gives a more concrete description of elements of 
Br{K/k), which will actually make it possible to do some computations as 
well as relate the relative Brauer group to cohomology. 

Theorem 4.10 Let K/k be a Galois extension with Galois group G. Then 
there is a one-to-one correspondence between elements of Br{K/k) and 
equivalence classes of factor sets {aa,,,.} (relative to K), where {au,,,.} I"V 

{bu,,,.} if there exists {fu} such that (**) holds. 

Proof: Given x E Br{K/k), Theorem 4.4 shows that there exists a unique 
(up to isomorphism) central simple algebra A with [A] = x in which K 
embeds as a maximal subfield, and in fact the embedding is unique up to 
isomorphism (by the Skolem-Noether Theorem). From the above discussion 
we see that different choices of A as a representative of x E Br(K/k) will 
give rise to equivalent factor sets, and so we get a well-defined map 

Br(K/k) ---+ equiv. classes of {au,,,.} 

[AJI---t (factor set of A relative to K). 

Conversely, given a factor set {au,,,.}, Proposition 4.9 shows that there 
exists a central simple algebra (K,G,a) which has the {au,,,.} as factor 
set. Since equivalent factor sets give rise to isomorphic algebras, we get a 
well-defined map 

equiv. classes of {au,,,.} --+ Br(K/k) 

{au,,,.} I---t [{K, G, a)J. 

It is clear that composing the above two maps (in either order) gives the 
identity, and so Br(K/k) is in one-to-one correspondence with the set of 
equivalence classes of factor sets {au,,,.}· 0 
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A Homological Characterization of the Brauer 
Group 

In this section we introduce the idea of cohomology as another point of view 
from which to study the Brauer group. The notion of group cohomology is 
useful in many other contexts, so we shall develop this material in a more 
general setting than will actually be used here, although this development 
is not really more difficult. We shall then apply the ideas of cohomology to 
the study of the Brauer group. 

The cohomology groups of a group were first defined by Hopf in the 
early 1940's by means of algebraic topology, and were used to study the 
relationship between the homology and homotopy groups of spaces. The 
definition of Hn(G, M) was algebraicized by Eilenberg-MacLane (and in­
dependently by Eckmann) in the course of the development of homological 
algebra. It was they who realized that many classical constructions, such as 
equivalence classes of factor sets, could be described as cohomology groups 
in dimensions 0,1,2, and 3. The cohomology of groups has many applica­
tions in both topology and algebra. Its study remains a very active area 
of research. A nice introduction to this theory can be found in K. Brown, 
Cohomology of Groups. 

Now let us proceed with the Eilenberg-MacLane definition of the coho­
mology of a group. For any group G and any abelian group M on which G 
acts, we define 

and, for n ~ 1, we define en (G, M) to be the set of all functions from Gn 
(the product of G with itself n times) to M, that is, let 

en(G,M) = {tlf: Gn ---+ M}. 

Notice that en(G,M) is an abelian group under pointwise addition 
of functions, with the zero function acting as identity. More precisely, if 
h.J2 E en(G,M), then by definition 

and 

O(gl, ... ,gn) = o. 
Notice that G acts on en (G, M) via 

The elements of en (G, M) are called n-cochains of G with coeffi­
cients in M, and en(G, M) is called the n-th co chain group. We shall 
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now define, for each n ~ 0, a homomorphism which carries the group of n­
cochains into the group of n + 1 cochains. Let 00 : eO (G, M) --+ e 1 (G, M) 
be defined by 

(001)(91) = 91 ·1 - 1 

for 1 E eO(G,M), that is 1 E M. For n ~ 1, define On : en(G,M) --+ 

en+!(G, M) by 

On(J)(91, ... ,9n+!) = 91·1(92, ... ,gn+t> 

So for n = 1 this map is defined by 

and for n = 2 we have 

02f(91, 92, 93) = 91·1(92,93) - f(9192,93) + 1(91,9293) - 1(91,92). 

On is called the n-th boundary map. It is clear that each On is a group 
homomorphism. The maps On also have the following important property: 

Proposition 4.11 on+! 0 On = 0 

Proof: This is an easy exercise which follows immediately from the defini­
tions, and will be left to the reader. 0 

This proposition shows that {en, on} forms a cochain complex; that is, 
a sequence of abelian groups {en} and homomorphisms On : en --+ en+! 
satisfying on+! oOn = o. In shorter form, we may write this cochain complex 
as 

Whenever one has a cochain complex, one may take its homology. We 
now proceed to do this. Let 

zn = kernel(on) 
Bn = image(On_l) 

Elements of zn are called n-cocycles; elements of Bn are called n­
coboundaries . The property On+l 0 On = 0 tells us that Bn ~ zn. Since 
zn is abelian, we may form the quotient zn / Bn. We define the n-th co­
homology group of G with coefficients in M to be 
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We shall now restrict our attention to the special case when G=Gal(K/k) 
and M = K* for a galois extension K/k. The groups Hn(G, K*) are called 
the Galois cohomology groups of the extension K / k with coeffi­
cients in K* . As we shall now see, the machinery of cohomology captures 
the properties and relations between factor sets in a more manageable way. 

In the terminology of the previous section, and letting G = Gal(K/k), 
we can think of {f u} as a function G --+ K* (i.e., a 1-cochain), and {aU,T} 
as a function G x G --+ K*, (Le., a 2-cochain). One version of Hilbert's 
famous "Theorem 90" states that HO(G,K*) = k* and H1(G, K*) = 1. An 
outline of the proof of this theorem is given in Exercise 41. We shall now 
concentrate on H2 (G, K*), and will "re-discover" the relationship between 
this group and the relative Brauer group Br{K/k); namely, that they are 
isomorphic. 

Z2 consists of functions a : G x G ---+ K* such that o2(a) = 1; that is 
(writing K* multiplicatively, of course) 

1 = 02 (a)(p, 0", T) = p(a(0",T»a(pO",T)-1. a(p,o"T)a(p,O")-l 

or, equivalently, 

p( a( 0", T) )a(p, o"T) = a(p, 0" )a(pO", T) 

This condition is called the co cycle condition. The cocycle condition is 
just condition (*) on page 120. In other words, the 2-cocycles of C2 (G, K*) 
are just the factor sets relative to K. 

B2 consists of functions which are the image under 61 of f : G ---+ K*; 
that is 

Since two 2-cocycles represent the same element of H2(G, K*) precisely 
when they differ (multiplicatively) by a 2-coboundary, we see that H2 (G, K*) 
consists of the set of factor sets (=2-cocycles) modulo the equivalence re­
lation a rv b in Z2(G,K*) if 

This is just condition (**) on page 121. But Theorem 4.10 shows that the 
set of factor sets modulo this equivalence relation is in one-to-one correspon­
dence with Br{K/k). Thus we see that, as sets, Br(K/k) is in one-to-one 
correspondence with H2 (G, K*). 
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Remark: As we noted on page 118, every factor set (i.e., 2-cocycle) is 
equivalent to a normalized factor set. This shows that we may assume that 
every a E Z2(G,K*) satisfies a(l, 0') = a(O', 1) = 1. This assumption often 
simplifies computations. 

Our next goal is to prove that the above correspondence is an isomor­
phism of groups; that is, we shall prove that the map 

1/J : H2(G, K*) -- Br(Kjk) 

given by 

1/I(a) = [(K, G, a)) 

is an isomorphism, where a is a 2-cocycle. The above discussion shows that 
1/1 is one-to-one and onto, so it remains only to see that 1/1 is a homomor­
phism. In other words, we must prove the following 

Lemma 4.12 If K j k is a galois extension with Galois group G, and if a 
and b are factor sets, then 

[(K, G, a)][(K, G, b)] = [(K, G, ab)] in Br(Kjk). 

The following proof is due to Chase, and seems to be a quicker, more 
conceptual proof than is currently contained in the literature. For a more 
computational proof, see the exercises at the end of this chapter. 

Proof: Let A = (K, G, a), B = (K, G, b), and C = (K, G, c), where c = abo 
What we must show is that A ®k B is equivalent (as a finite-dimensional 
central simple algebra) to C. The idea of the proof is a slightly more in­
volved version of a technique that has been used throughout this book : 
we just find an appropriate module on which both A ®k Band C act (on 
opposite sides). From this we obtain a homomorphism of the first algebra 
into an endomorphism ring over the second, and conclude that this is an 
isomorphism by simplicity of A®kB and counting dimensions. It will follow 
that the two algebras are equivalent in Br(K/k). 

With the above outline in mind, let M = A ° ® K B, where we view A 
and BasK-modules via left multiplication. In M we have that 

xa ® K b = a ® K xb for all x E K, a E A, b E B (4.5) 

where ®K denotes the tensor product of two elements over K. Note that 
the left-hand side of the equation is really a 0 x ®K b, where 0 denotes 
multiplication in AO. The expression a 0 x is, however, equal to xa, the 
multiplication here taking place in A. We shall continue to use this termi­
nology without comment. 

We may now make M a right A ®k B-module via right multiplication: 
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(a' ®K b')(a ®k b) = a' a ®K b'b for all a, a' E A and b, b' E B. 

The next step of the proof is to introduce a left C-module structure on 
M which makes M into a C - (A ®k B)-bimodule. 

Let {u,,}, {v" }, {w,,} be the distinguished bases over K of A, B, and C, 
respectively (see the proof of Proposition 4.9). Define the operation of C 
on M on the left by 

for all x E K,a E G,a E A,b E B (4.6) 

It is not difficult to check that this operation is well-defined, and that 
M then satisfies the axioms of a (left) C-module, and that this structure is 
compatible with the right A ®k B-module structure on M. Hence M has a 
C - (A ®k B)-bimodule. We shall give what is perhaps the most crucial of 
these computations; namely, the verification of the associativity formula 

(cc')m = c(c'm) for c,c' E C,m E M. 

So assume c = XWu , c' = X'Wr , and m = a ®K b with x, x' E K, a, T E G, 
and a E A, b E B. Then 

(cc')m = xa{x')a",rb",ru"ra ®K v"rb by (4.6) 

= xa{x')au,rUura ®K b",rv"rb by (4.5) 

= xa{x')u"ura ®K v"vrb 

= xu"x'ura ®K vuvrb 

= xwu(x'ura ®K vrb) by (4.6) 

= c(c'm) by (4.6) 

The C - {A ®k B)-bimodule structure of M gives a k-algebra homomor­
phism 

(A ®k B)O --t Endc(M) (4.7) 
x 1---+ Ix 

where Ix(m) = mx. This homomorphism is injective since A ®k B (and 
thus (A ®k B)Ois a simple algebra. Thus it suffices to show that both the 
range and domain have the same k-dimension in order to prove that the 
above map is an isomorphism. 
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Let n = [K : k). Since A, B, and C each have dimension n over K, M 
has dimension n2 over K, and so 

[M: k] = n2[K: k) = n3 = n[C: k). 

Since a finitely generated module over a simple algebra is determined 
(up to isomorphism) by its dimension over the base field, it follows that M 
is a free C-module of rank n, M :::::! cn. Thus 

Endc(M):::::! Endc(Cn) :::::! Mn(Endc(C»:::::! Mn(CO):::::! Co ®k Mn(k). 

It follows that 

dimk(Endc(M» = n2dimk(C) = n~ = dimk(A ®k B). 

Thus the homomorphism in (4.7) is an isomorphism, so (A ®k B)O :::::! 

Co ®k Mn(k), and so (A®k B)O '" Co. It follows that A®k B '" C and we 
are done. 0 

Lemma 4.12 thus shows that the map 'I/J : H2(G, K*) --+ Br(Kjk) is a 
homomorphism, and the previous discussion shows that 'I/J is an isomorphis­
m. This gives us another way of looking at the Brauer group, and connects 
this group to many other important areas of mathematics. We state this . 
as a theorem for emphasis. 

Theorem 4.13 For a galois extension Kjk, Br(Kjk) :::::! H2(Gal (Kjk) , K*) 
as groups. 

The Brauer Group is Torsion 

Using the fact that, for galois extensions, the relative Brauer group Br( K / k) 
is isomorphic to the cohomology group H2(Gal(K/k), K*), we may deduce 
facts about relative Brauer groups from general properties of cohomology 
groups. In this section we shall prove that the Brauer group is a torsion 
groupj that is, each element of Br(k) has finite order. Although this proof 
can be carried out directly in the Brauer group, it becomes easier to un­
derstand when placed in the context of homological algebra. We now begin 
with a standard result about the cohomology of finite groups. 

Theorem 4.14 I/G is a finite group, then IGIHn(G,M) = o. 

Proof: We shall prove this fact in the case n = 2. The more general case 
is similar, and will be left as an exercise. 

Let / E Z2(G, M), so 62/ = OJ that is 

0= (621)(gl,92,93) = 9t/(92,g3) - /(9192,g3) + /(91.9293) - /(g1l92). 
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In other words 

Summing over all 93 E G gives 

IG\f(9},92) = L (9t/(92,93) - 1(9192,93) + 1(91.9293))' 
93EG 

Now let h(92) = L93EG 1(92,93)' Note that 

and so 

L f(9}, 9293) = L f(91. 93) 
~EG ~EG. 

IG\f(91192) = 9lh(92) - h(9l92) + h(9l) 

= (lhh)(91,92) E B2(G,M). 

This shows that IGIZ2(G,M) ~ B2(G,M) and thus IGIH2(G,M) = O. 
o 

This theorem may now be used to show that the Brauer group is a torsion 
group. 

Corollary 4.15 For any field k, Br(k) is a torsion abelian 9rouP· 

Proof: Corollary 4.6 shows that Br(k) = UBr(K/k), where the union is 
taken over all galois extensions K/k. But Br(K/k) ~ H2(G, K*), which 
by the above theorem is annihilated by IGI = [K : k). 0 

This corollary also shows how the reduction of questions about Br(k) 
to properties of relative Brauer groups Br(K/k) for galois extensions K/k 
can be a useful technique. 

A Primary Decomposition Theorem for Central 
Division Algebras 

The fact that the Brauer group is a torsion abelian group tells us a great 
deal about central division algebras. This harkens back to the comment at 
the beginning of this chapter that statements about the group structure of 
Br(k) can be used to give us concrete information about a single central 
division algebra. 

Given a central division algebra Dover k, the previous section shows 
that [DJ has finite order in Br(k), so this order can be written as a product 
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of powers of distinct primes. It would be nice if D itself could be broken 
up into pieces corresponding to this prime factorization. The main goal of 
this section is to prove such a theorem. Along the way we will learn about 
a variety of dimensionality relationships among various algebras. 

We begin by recalling a few definitions. Let D be a central division 
algebra over k, and let K be a splitting field for Dj i.e., DK ~ Mn(K) 
for some n. We defined the degree of D, denoted deg(D), to be n. Note 
that since [D : k][K : kj = n2[K : kj, [D : kj = n2, and so the degree of D 
over k may also be defined as the square root of the dimension of D as a 
vector space over k. If A is a central simple k-algebra, then A ~ Mm(D) 
for a unique division algebra D, and we define the (Schur) index of A, 
denoted ind(A) , to be the degree of D. The degree and the index of a 
division algebra are equal by definition. Finally, we define the exponent 
of the central simple k-algebra A, denoted exp(A), to be the order of [AI 
in Br(k)j that is, exp(A) is the smallest number m so that A®m ~ Mr(k) 
for some r, where A®m denotes the tensor product of m copies of A. 

Although it is not obvious from the definitions, there is a relationship 
between the exponent and the index of a central simple algebraj namely, 
the former divides the latter. We state this as 

Proposition 4.16 [Ajind(A) = 1 in Br(k); that is, exp(A) divides ind(A). 

Proof: A ~ Mr(D) for some central division algebra Dover k with [D : 
kj = m2, where m = ind(A). By Corollary 4.5, there is a finite galois 
extension K of k which is a splitting field for D. Let G be the Galois group 
of Kover k, and IGI = n = [K: kj. By Theorem 4.4, [A: kj = n2 . Note 
that, since A ~ Mr(D), we have n2 = r2[D: k] = r2m2, so n = rm. 

Now [Aj = [(K,G, a)] for some a E Z2(G,K*). Since [Ajm = [(K,G,a)]m, 
it suffices to show that am E B2(G, K*). Let V = Dr, and note that V 
is a left Endv(V)-module, where the action is given by ¢. v = ¢(v) for 
¢ E Endv(V), v E V. Since A ~ Mr(D) ~ Endv(V), we see that V is a 
left A-module. Since K C A, V is a vector space over K. Let's compute 
it's dimension. We have 

rm2 = [V : D][D : k] = V : k] = [V : K][K : k] = [V : K]rm 

and so [V : K] = m. Choose a basis {VI,'" ,vm} for V over K. Since V 
is a left A-module, we know that for each c E A, c· Vi = LT=l CijVj with 
Cij E K. We think of the Cij as an m x m matrix via -

c, [v] = hjJ[v] with [v] = 
[ V~·~I ] 
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Now choose a basis {X"}"EG for (K,G,a) over K, and let X" E Mm(K) 
denote the matrix associated to x". For a, T E G, let a(Xr) denote the 
matrix obtained from Xr by letting a act on each entry. Then 

and 

Thus 

a",rX"r = a(Xr )X". 

Taking the determinant of both sides of this last equation, we see that 

with det(X,,) E K*. Thus am E B2(G,K*) and we are done. 0 

Note that Proposition 4.16 provides another proofthat Br(k) is a torsion 
group. 

Before proving the main theorem of this section, we need two lemmas. 
The following lemma gives a sort of partial converse to Proposition 4.16. 
Taken together, the two statements show that exp(A) and ind(A) have the 
same prime factors. 

Lemma 4.17 Every prime divisor ofind(A) is a prime divisor of exp(A). 

The following proof gives another example of the technique of extension 
of scalars, a common tool in studying the Brauer group. 

Proof: Let (K, G, a) >:::: Mm(D) be a crossed product algebra with [A] = 
[(K, G, a)] = [Mm(D)], where D is a central division k-algebra, and let 
d = ind(A) = ind(D) = deg(D). Let p be a prime dividing d. Note that 
IGI2 = [(K, G, a) : kJ = m2d2 ; hence IGI = md and p divides IGI. Let Gp 

denote the p-Sylow subgroup of G, say IGpl = pr, and let Kp ::) K denote 
the fixed field of Gp. Then [K : Kp] = pr by the Fundamental Theorem of 
Galois Theory. Since Gp is p-Sylow, p A[Kp : kj, and so Kp cannot split 
A by Corollary 4.7. By the given, p divides the degree of any maximal 
subfield of D, so exp(AKp) :f:. 1. But (A ®k Kp) ®K" K = A ®k K splits 
and [K: Kp] = pr, so p divides exp(AK ,,). 

Recall that there is a homomorphism 

Br(k) --+ Br(Kp) 

[8]1---+ [8Kp ] 



132 4. The Brauer Group 

given by extension of scalars. Since this map is a homomorphism of groups 
it is clear that exp(AKp) divides exp(A) and we are done. 0 

The tensor product of two division algebras is not always a division 
algebra. This is the reason that division algebras were not used as elements 
of the Brauer group. The following lemma gives a sufficient condition for 
the product of two division algebras to be a division algebra. 

Lemma 4.18 If Dl and D2 are central division algebras with deg(Dt} and 
deg(D2) relatively prime, then Dl ® D2 is a division algebra. 

Proof: Dl ® D2 ~ Mm(D) for some central division algebra D and some 
mj we will show that m = 1. Well, D'l ® Dl ~ Mn(k), where k is the base 
field. Then 

n2 = [Mn(k) : kJ = [D~ ® Dl : kJ = [Dl : kJ[Dl : kJ 

and so n = [DI : kJ. Now 

M n(D2) = Mn(k) ® D2 
= D'l®Dl ®D2 

= D'l®Mm(D) 
= Mm(Dl'®D) 
= Mm(Mr(D'» for some division algebra D' 
= Mmr(D'). 

So n = mr, which implies that m divides [Dl : k]. Similarly, m divides 
[D2 : k]. Since the degrees of Dl and D2 are relatively prime, and hence 
[Dl : k] and [D2 : k] are relatively prime, it follows that m = 1. 0 

We are now ready to prove a nice decomposition theorem for central 
division algebras. This theorem is analogous to the primary decomposition 
theorem for finitely generated modules over a principal ideal domain. In 
each case we break down the given module (or division algebra) into its 
so-called "primary components" . 

Theorem 4.19 Let D be a finite-dimensional central division algebra over 
k, and deg(D) = p'r ... p~r, where PI, ... ,Pr are distinct primes. Then 
there is a unique (up to isomorphism) decomposition 

D = DI ®D2® ... ®Dr 

where Di are division algebras and ind(Di) = p~;. 

Proof: It suffices to show that, if deg(D) = n = nln2 with nl and n2 
relatively prime, then D ~ Dl ® D2, where deg(D1 ) = nl and deg(D2) = 
n2. The theorem will then follow by induction on the number of distinct 
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primes in the factorization of n. Since nl and n2 are relatively prime, 
there are integers u, v with unl + vn2 = 1. Let Db D2 be the unique 
central division algebras such that [Dd = [DJvn2 and [D2J = [DJun1 • Then 
[Dl 0 D2J = [DJ(un1 +vn2 ) = [DJ. We also know that [DIJnl = [DJvn = [kJ 
by Proposition 4.16 (recall that deg(D1) = ind(Dl) since Dl is a division 
algebra); hence exp(Dt} I nl' Similarly, exp(D2) I n2' Lemma 4.17 implies 
that exp(Di) and deg(Di) (i = 1,2) have the same prime divisors, and 
(nbn2) = 1 by the given, hence (deg(D1),deg(D2)) = 1. Since Dl and D2 
are division algebras of relatively prime degree, D10D2 is a division algebra 
by Lemma 4.18. Thus [D10D2] = [D] implies that deg(D10D2) = deg(D). 
It follows that deg(Di) = ni, i = 1,2. 0 

In view of this theorem, the structure theory of division algebras reduces 
to the case where the degree is a prime power. 

Summary 

In this chapter we studied the Brauer group Br(k) of a field k, which 
consists of all of the isomorphism classes of central simple k-algebras under 
the equivalence relation given on page 110. Br(k) is a group under the 
operation of tensor product, with [Mn(k)] = [kJ acting as identity element 
and [AO] acting as the inverse of [AJ. Br(k) acts as a "classifier" of central 
division algebras, and in the exercises we will get a glimpse of the connection 
of the Brauer group with many other areas of algebra and number theory. 

The study of Br(k) was reduced to the study of Br(K/k) for galois 
extensions K/k. Using factor sets, which involves ideas generalizing those 
used in the proof of the Frobenius Theorem, we obtained more explicit 
information on elements of Br(K/k). The somewhat messy calculations 
with factor sets gave the impetus for our re-discovery of the powerful ho­
mological viewpoint. The concrete connection of the cohomology of groups 
with the theory of central simple algebras culminated in the proof that 
Br(K/k) ~ H2(Gal(K/k),K*). Using this isomorphism, we proved that 
Br(k) is a torsion abelian group. Finally, we used group theoretic facts 
about Br(k) to give information about the indices and exponents of cen­
tral simple algebras, and to prove a structure theorem on central division 
algebras, re-emphasizing the usefulness of making the set of (equivalence 
classes of) finite-dimensional central simple algebras into a group. 

Exercises 

1. Show that the four conditions given on page 110 for two algebras to 
be similar are indeed equivalent. 
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2. Let A = [aij] E Mn(k) and B = [bkd E Mm(k). The Kronecker 
product of matrices A and B, denoted by A ® B, is the nm x nm 
block matrix [Abkt], 1 :5 k, l :5 m. Prove that the mapping 

(A, B) f---+ A ® B 

induces a k-algebra isomorphism. 

3. Show that the set of isomorphism classes of finite-dimensional alge­
bras over a given field k actually forms a set. Estimate its cardinality. 

4. (a) Show that Br( ) is a functor from the category of fields and 
field homomorphisms to the category of abelian groups and group 
homomorphisms (if you don't know what these words mean, look 
them up). 

(b) Let i : k -- K and j : k -- K be homomorphisms of fields 
and let i. and j. be the induced maps from Br(k) to Br(K). Let 
F = {x E k : i(x) = j(x}}, and assume that K/i(F) is a finite galois 
extension. Prove that i. = j •. 

5. Give an example of two finite-dimensional central division algebras 
over k whose tensor product (over k) is not a division algebra. 

6. (a) Prove that Br(k) = 0 for any algebraic extension of a finite field. 

(b) Prove that Br(k) = 0 for any field of transcendence degree one 
over an algebraically closed field. 

7. (a) Show that a k-algebra A is central simple over k if and only if 
there is a k-algebra B such that A ® B ~ Mn(k) as k-algebras for 
some n. 

(b) Let A, A' be central simple k-algebras. Show that if [A] = [A'] in 
Br(k) and [A: kj = [A' : kj, then A ~ A' as k-algebras. 

8. Theorem 4.4 may be interpreted as follows: Given Z E Br(K/k), 
there is a pair (8, i) such that z = [8J, where 8 is a central simple 
k-algebra and i : K -- 8 is a k-algebra homomorphism whose image 
is a maximal commutative subalgebra of 8. Suppose that (8',i') is 
another such pair and z = [8'J. Prove that there is a k-algebra iso­
morphism <P : 8 -- 8' such that <Pi = i'. [Hint: Use Exercise 7b and 
the Skolem-Noether Theorem.J 
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9. Let A be a central simple algebra with maximal commutative subal­
gebra K. Assume that K/k is galois with Galois group G. Let E be 
the normalizer of K* in A *. Find a homomorphism rP of E onto G 
such that K er( rP) = K*. E is an example of what is called a "group 
extension of G by K*". 

10. Let A be a central simple k-algebra containing a field F. Let C(F) 
be the centralizer of F in A. Show that the following equality holds 
in Br(F): [F 0k A) = [C(F)). [Hint: Use the Double Centralizer 
Theorem.) 

Remark: The interplay between simple subrings and their central­
izers deserves to be understood; in this connection, see also Chapter 
3, Exercise 3.16. In that case, the subalgebra was central simple but 
there was no hypothesis on the ambient algebra. In this situation, 
the ambient algebra is finite-dimensional central simple and the sub­
algebra (which doesn't need to be a field for most of the argument) 
is simple. In either case, what's involved is the structure theory of 
central simple algebras, the Centralizer Theorem and the Skolem­
Noether Theorem. 

Schur Index 

11. Let A be a central simple k-algebra. Prove the following : 

(a) If [A : k) = n2 , then ind(A)ln. ind(A) = n if and only if A is a 
division algebra. 

(b) If A' is a central simple k-algebra such that [Aj = [A') in Br(k), 
then ind(A') = ind(A). 

(c) A possesses a splitting field of degree ind(A) over k. 

(d) If K is any splitting field of A then ind(A)I[K : k). 

(e) ind(A) = min{[K : k) : K splits A}. 

(f) For m ~ 1, ind(A 0 ... 0 A) (the tensor product of m copies of 
A) divides ind(A). 

12. Let A be a central simple k-algebra and let K/k be a finite extension. 
Prove that 

(a) ind(AK )lind(A). 

(b) ind(A)I[K: k]ind(AK)' 

(c) Ifind(A) and [K: k) are relatively prime, thenind(AK) = ind(A); 
and if A is also a division algebra, then so is AK • 
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Exponents 

13. Let A and B be finite-dimensional central simple k-algebras. Let K / k 
be a finite field extension. Prove the following facts : 

(a) If [A] = [BJ, then exp(A) = exp(B). 

(b) exp(AK) I exp(A). 

(c) exp(A) I [K: k]exp(AK). 

(d) If ind(A) is relatively prime to [K : k], then exp(AK) = exp(A). 

(e) exp(A ® B) divides the least common multiple of exp(A) and 
exp(B). 

(f) exp(A®m) = exp(A)/n, where n is the greatest common divisor 
of m and exp(A). 

(g) If ind(A) and ind(B) are relatively prime, then ind(A ® B) = 
(ind(A))(ind(B)) and exp(A ® B) = (exp(A))(exp(B)). 

14. Let A be a finite-dimensional central simple k-algebra with ind(A) = 
pin, where pis prime, j ;::: 1, and p does not divide n. Prove that 
there is a field extension Kover k whose dimension is relatively prime 
to p, for which ind(AK) = pi. 

Generalized Quaternion Algebras 

Let k be a field of characteristic not equal to 2. For a, b E k* let 

( a~ b) denote the vector space of dimension 4 over k having the 

elements 1,i,j,k as a basis. Defining i 2 = a,j2 = band ij = -ji = k 
makes this into a k-algebra (don't confuse the field k with the element 
kj both used because that is the standard notation). Note that k 2 = 

-ab, ki = -ik = -aj, and jk = -kj = -bi. The algebra (a~ b) is 

called a generalized quaternion algebra . 

15. (a) Show that every 4-dimensional central simple algebra over k is 

isomorphic to (a~ b) for some a, b E k*. [Hint: See the proof of the 

Frobenius Theorem.] 

(b) Using this description of the central simple algebra, explicitly give 
its factor set. 

16. Show that (1~1) ~ M2(k). [Hint: Consider the matrices el2 + e21 

and ell - e22.] 

( a,b) (b,a) 17. Show that k ~ k . 
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(a b) (ax2 by2) 18. Show that i- ~ ;. for x, y E k*. [Hint: Remember the 

proof of the Frobenius Theorem.] 

19. Show that (a;. b) ®k K ~ (a:) for field K 2 k. 

20. Show that (a~ b) is a central simple k-algebra. [Hint: Compute the 

center. Tensor with the algebraic closure and apply previous results 
for the other part.] 

21. Show that (a, 1k- a) ~ M2(k). [Hint: Define the quaternion con­

jugate of z = u + iv + jw + kx to be z = u - iv - jw - kx. Define 
N(z) = zz = zz. N(z) is called the (quaternion) norm of z. Show 
that an element has an inverse if and only if N(z) =I O. Do this by 
observing that the regular representation has determinant equal to 
the square of N. Now compute N(l + i + j).] 

22. Show that (\b) ~(a,;a)~ M2(k). [Hint: Consider j + k and 

i + j.] 

23. Show that (a~ b) is isomorphic to its opposite algebra. 

This shows that each quaternion algebra (a;. b) has order dividing 

2 in Br(k). If it is a division ring, it has order 2. A long standing 
conjecture was that these elements generate the part of the Brauer 
group annihilated by 2. This was eventually proved by the two Rus­
sian mathematicians A.S. Merkurjev and A.A. Suslin using algebraic 
K-theory. 

24. (a;.b)~ M2(k) if and only if a = NE/k(Z) for some z E E = k(v'b). 

Here NE/k(U+vv'b) = u2 _bv2 is the norm, a multiplicative function. 
[Hint: If v'b is in k, the result is clear. If not, consider N(u + i + 
vj) if u2 - bv2 = a. In the other direction, assume N(z) = 0 for 
some z =I 0 and find the sought-after element by grouping elements 
appropriately. ] 

This exercise takes on its true significance when placed in the con­
text number theory, K-theory, and the theory of quadratic forms. We 
mention three instances: 

(i) Look at the first part of J.P. Serre, A Course in Arithmetic under 
"Hilbert symbol". You will find defined there a symbol with the same 
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formal properties as (ak b) which gives informat~on about quadratic 

forms. Note that the above problem makes an assertion about when 
the quadratic form Q( u, v) = u2 - bv2 assumes the value a E k; 

namely, it does so when (akb)~ M 2(k). But (akb)~ M2(k) if 

and only if ( \ a ) ~ M2 (k), by problem 17. This proves the following 

interesting (and nontrivial) fact: u2 - bv2 takes the value a if and 
only if u2 - av2 takes the value b. This is a basic example of what is 
known as a reciprocity law . See Serre's book for other reciprocity 
laws. 

(ii) Look at Samuel, Algebraic Theory 0/ Numbers under "quadratic 
reciprocity"; at least the statement of the theorem. It is a special case 
of one of the deepest theorems of mathematics. The quadratic case 
was known to Legendre, but was first proved by Gauss. 

(iii) In algebraic K-theory, one defines a functor K2. A theorem 
of Matsumoto says that for a field k, K2(k) has formal generators 
{a, b}, a, b E k* which satisfy the following relations : 

(a) Bilinearity: {ab, c} = {a, cHb, c} and {a, be} = {a, bHa, c}. 
(b) {a,b} = {b,a}-l. 

(c) {a, 1 - a} = 1 if a, 1 - a E k*. 

These relations correspond to properties of generalized quaternion 
algebras which you (hopefully) proved in the previous few exercises. 
Thus there is a homomorphism 

K2(k)!{squares} --. Br(k) 

given by 

{a,b} ~ (akb) 

whose image is the smallest subgroup of Br(k) generated by the 
quaternion algebras. It was by this method that Merkurjev and Suslin 
proved that the quaternion algebras generate the part of the Brauer 
group annihilated by 2 (cf. Exercise 23). For more information about 
K 2 , including Matsumoto's Theorem, see J. Milnor, Introduction to 
Algebraic K- Theory, as well as 1. Kersten, Brauergruppen von Korpern. 
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25. Show that (a~ b) is a division algebra if and only b is not the norm 

of an element of k( va). [Hint: Use Exercise 24 of Chapter 1.] 

2 (a,b) (a,e) (a,be) (e,-a2e) (a,be) 6. k ®k k :::::I T ®k -k- :::::I T ®kM2(k). [Hint: 

Consider the elements [ = i x 1, J = j x j', K = [J, [I = 1 X j', J' = 
i X k', K' = [' J' and think "double centralizer" .J 

This exercise gives another formal property of Hilbert symbols; name­
ly, (a, be) = (a, b)(a, e). When the result is interpreted in Br(k), it 
says precisely that 

[(akb)]. [Cke)] = [(a'kbe )] 

Together with the fact that (a, b) = (b, a), this shows that the Hilbert 
symbol is bilinear (or "bimultiplicative", as it is sometimes called due 
to the multiplicative notation). 

27. Prove that an element of Br(k) has the form [( ak b) J for some a, b E 

k if and only if it is in Br( K j k) for some separable quadratic extension 
Kjk (remember that an extension Kjk is called quadratic if it is of 
degree two). 

28. Let F be a field containing a primitive nth root of unity w. For 
a, b E F*, let A",(a, b) be the F-algebra of dimension n2 which is 
generated by elements x and y which satisfy xn = a, yn = b, and 
yx = wxy. A basis for A",(a,b) consists of {Xiyj : 0 :5 i,j < n}. 
Check the following: 

Aw(a, b) is central simple over F, and thus gives a function 

a", : F* x F* --+ Br(F) 

This function satisfies 

aw(a, be) = aw(a, b}a", (a, e) 
aw(a,b} = aw(b,a)-l 
aw(a,l - a} = 1 
aw(a, -a} = 1 
aw(a,bt = 1 

Further, a",(a, b} = 1 if and only if a is a norm from F( V'b). For 
a local field F with w in F, there exists a, b such that aw(a, b) has 
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order exactly n. Further information about these algebras and related 
topics can be found in J.P. Serre, Local Fields, J. Milnor, Introduction 
to Algebraic K-Theory (Chapter 15), and L.E. Dickson, Algebras and 
Their Arithmetics. 

29. An involution of a k-algebra A is a k-module automorphism 4> : 
A --+ A such that 4>{xy) = 4>{y)4>{x) and 4>2{x) = x for all x,y E A. 
(a) Show that if there is an involution of A, then AO ~ A. 

(b) Find involutions of the k-algebras Mn{k) and (a~b). thus con-

cluding that Mn{k) ~ Mn{k)O and (a~b) ~ ( akb) 0. 

(c) Let A be a finite-dimensional central simple k-algebra. Prove that 
if there is an involution 4> of A, then [A]2 = 1 in Br{k). Deduce that 
[A]2 = 1 for every quaternion algebra A. 

Another Proof that Br{K/k) = H2{Gal{K/k), K*) 

30. (a) Let K ;2 k be a finite separable field extension and let L ;2 k be a 
splitting field for K relative to k (that is, any irreducible polynomial 
in k[x] which has a root in K splits completely in L). For example, 
L could be an algebraic closure of k, or if K is galois over k, then L 
could be K. Let 0"1,"" O"n be the distinct k-algebra maps from K to 
L, and let 0" : K --+ Ln be the maps with components 0"1. • •• , O"n' 
Let O"L : KL --+ Ln be the unique L-algebra map extending 0": 

O"L(a ® x) = a ® O"{x) for a E L, x E K. 

Prove that O"L is an isomorphism. Thus the k-algebra K "splits com­
pletely" when the scalars are extended to L. 
(b) Let K and L be as in (a). Show that if D is a central simple k­
algebra with maximal subfield K, then L splits D. [Hint: Use Exercise 
22 to count idempotents.] 

(c) If L splits D, and if K is a maximal separable subfield of D, does 
L split K relative to k (as in part (a»? 

Remark: Note that if K is galois over k, then we could take L = K, 
obtaining an isomorphism 

II K. 
<rEGal(K/k) 

Now suppose that k and K are just commutative rings, not necessarily 
fields, and that G is a finite group of automorphisms of K with fixed 
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point set KG = k. We have the obvious map K®kK --+ Il"EG K de­
scribed above, and we could define K / k to be a galois extension of 
rings if this map is an isomorphism. Chase, Harrison, and Rosenberg 
adopt this viewpoint in their paper Galois Theory and Cohomology 
of Commutative Rings. One can also form the crossed product alge­
bra (K, G, 1) arising from the trivial2-cocycle. They showed that the 
following are equivalent: 

(a) S :2 R is a galois ring extension. 

(b) S is a finitely generated projective R-module, and (K,G, 1) ::::! 

EndR(S), 
(c) For every maximal ideal I ~ S, G acts faithfully on S / I. 
(d) S is projective as an S ® SO-module, and for every nontrivial 
idempotent e E Sand (1 #- r in G, there exists xES with (1(x)e #­
r(x)e. 

This Galois theory of rings is well-developed and useful. The article 
by Chase, Harrison, and Rosenberg is quite readable and is strongly 
recommended; see also DeMeyer and Ingraham, Sepamble Algebms 
Over Commutative Rings. 

31. (See, e.g., Herstein, Noncommutative Rings) Let K/k be a galois ex­
tension with galois group G. The fact that Br(Kjk) ::::! H2(G, K*) 
boils down to the fact that for factor sets a and b, [(K, G, a)][(K, G, b)] 
= [(K,G,ab)]. The proof (of Chase) given in the text exhibits a 
"magic module" on which both (K,G,a) ®k (K,G,b) and (K,G,ab) 
act. A more direct approach is to choose bases for the first two al­
gebras which give the co cycles a and b, respectively, and then try 
to find a corresponding basis for their tensor product. Their tensor 
product is not, unfortunately, (K, G, ab), but rather, is matrices over 
this ring. Hence we must find an appropriate subring of the matrix 
ring Mn«K,G,ab)) ::::! (K,G,ab) ®k Mn(k) which is isomorphic to 
(K, G, ab). This is where Exercise 30 comes in: we now want to list 
explicitly the idempotents (and their properties) from that exercise. 
Complete the following outline, which gives the "classical" proof that 
Br(K/k) = H2(G,K*): 

(a) Prove that if A is a central simple algebra over k and if e#-O is an 
idempotent element in A, then [A] = [eAe] in Br(k). [Hint: Think of 
A as matrices via the Structure Theorem for Simple Artinian Rings. 
What does the matrix representing an idempotent element look like?] 

(b) Prove that 

K ®k K = EB e,,(K ®k 1) = EB e,,(1 ®k K) 
"EG "EG 
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where eu are orthogonal idempotents such that eu(z ® 1) = eu(1 ® 
a(z)) for all z E K. Proceed as follows: Since K/k is separable, K = 
k(a) for some a E K. Let p(x) = xn + an_lXn- l + ... + ao be the 
minimal polynomial of a over k. Show that K ®k K is a product of 
copies of K by writing K = k[x]/(p{x». For a E G, let 

bu,m = am ® 1 + am- l ® a{a) + ... + 1 ® a{a)m. 

From the fact that {1, a(a), . .. ,a{a)m-l} is linearly independent over 
k for each fixed a, deduce that {bu,l, ... ,bu,n-d is independent over 
kin K ®k K. Now note that 

(a ® 1-1 ® a(a))bu,m = am +l ® 1 - 1 ® a(a)m+l. 

Deduce that 

(a ® 1 - 1 ® a(a»)[bu,n-l + an- lbu,n-2 + ... + albu,o] = o. 

Hence a® 1-1 ®a(a) is a (nonzero) zero divisor in K ®k K, so there 
is a minimal idempotent eu such that eu(a ® 1 - 1 ® a{a)) = 0 (an 
idempotent e is a minimal idempotent if, whenever e = el + e2 for 
some commuting idempotents el, e2, then e = el or e = e2). Show 
that eu(z® 1) = eu(1 ®a(z» for all z E K. By comparing dimensions 
and observing that eu '" eT if a '" T, show that eUeT = 0 if a '" T, 

and further that 

L eu(K ®k K) = L eu(1 ®k K) = K ®k K. 
uEG uEG 

(c) Use parts (a) and (b) to prove that, for factor sets a and b, 

(K, G, a) ®k (K, G, b) ~ (K, G, ab) ®k Mn(k). 

Proceed as follows: Let R = (K, G,a)®k(K,G,b). Since R:2 K®k K , 
part (b) gives eu as above. Let e = el. Choose bases {xu}, {YT} for 
(K, G, a) and (K, G, b) which give the cocycles a and b, respectively. 
Show that 

(1 ® YT )e(1 ® y:;:l) = eT 
(X;;l ® 1)e(xu ® 1) = eu 

for all a, T E G. Let wu = Xu ® YU. Show that wue = ewu· Let Uu = 
ewu; so Uu E eRe is invertible in eRe with inverse ew;;l. Show that 
UUUT = uUTe(aU,Tbu,T®1). Using the fact that K®kK is commutative 



Exercises 143 

(so e(K ®k 1) = (K ®k l)e), show that u;;le(x ® l)u", = e(u(x) ® 1 
for x E K. Conclude that eRe 2 (e(K ®k 1), G, e(a ® l)(b ® 1». By 
a similar computation, show that eRe S;;; L u",e(K ®k 1) S;;; eRe, and 
so eRe = L u",e(K ®k 1) = (e(K ®k 1), G, e(ab ® 1». By part (a), 
[R] = [eRe], so we finally have [R] = [eRe] = [(K, G, ab)] and we are 
done! 

Norms and Traces 

Let R be a finite-dimensional algebra over a field k. If x E R, then 
left multiplication by x is a k-endomorphism of R. The norm of this 
k-endomorphism is called the norm of x, denoted N R/ k (x); the trace 
of this k-endomorphism is called the trace of x, denoted TR/k(X). As 

an[ uveX~utlle, if E = k( v'b), the element u + vv'b of E gives the matrix 

in the basis {I, v'b}. Thus 

NE/k(U + vv'b) = u2 - bv2 

TE/k(U + vv'b) = 2u. 

The definition of norm just given extends that of the norm for gen­
eralized quaternion algebras (cf. exercise 21). 

32. As above, let R be a finite-dimensional algebra over a field k, and let 
x E R. Show that the following properties hold: 

(a) N(x) =1= 0 if and only if x is invertible. 

(b) N : R* ---> k* is a homomorphism. 

(c) N(a) = an if a E k, where n = [R: kJ. 

(d) T: R --+ k is k-linear. 

(e) T(xy) = T(yx). 
(f) T(a) = na for a E k. 

33. Prove the following: 

(a) Norm and trace are invariant under extension of scalars. That is, 
if S = RK for a field K containing k, then 

for x E R 

and 
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for x E R. 

(b) Norm and trace are compatible with direct products. That is, if 
R = Rl X R2, then 

and 

TR/k«Xt, X2» = TR1/k(Xt} + TR3/ k(X2). 

(c) If x E J(R) then N(l + x) = 1 and T(x) = o. 
(d) In the notation of Exercise 30, 

NK/k(X) = II O"i(X) 
i 

and 

TK/k(X} = L O"i(X}. 
i 

(e) If R = Mn(k), then 

NR/k(X) = (det(x)t 

and 

TR/k(X) = n . trace(x). 

This suggests the definition of more useful functions, called the re­
duced trace and reduced norm j Reiner, Maximal Orders, or Bass, 
Algebraic K-Theory for details. 

34. A bilinear form B(x, y} on a finite-dimensional vector space V over 
a field k is a function B : V x V ---. k which is linear as a function 
of one variable when the other is kept fixed. B is said to be non­
degenerate if the following equivalent criteria hold: 

(a) If x E V satisfies B(x, y) = 0 for all y E V, then x = O. 

(b) The map f : V -+ V· = Homk(V, k) defined by f(x)(y) = 
B(x, y) is an isomorphism. 
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(c) For any basis el, ... ,en of V the matrix (B( ei, ej)) is invertible. 

(d) For some basis, the matrix (B(ei,ej)) is invertible. 

Show that these four conditions are equivalent. Recall that a finite­
dimensional algebra Rover k is called separable over k if its center is 
aproduct of separable field extensions of k. Prove that if char(k) = 0 
or if R is commutative, then R is separable if and only if the bilinear 
form B(x, y) = TR/k(xy) is non-degenerate. [Hint: Use the fact that 
the trace is invariant under extension of scalars.] 

Remark: This is no longer true if k has non-zero characteristic and 
R is noncommutative. If R = Mn(k) and char(k) = p, p a prime 
dividing n, then TR/k = O. 

35. Let K be a galois extension of k with Galois group G which is cyclic of 
order n. Prove that Br(K/k) ::::! k* /NK/k(K*). [Hint: It is possible to 
deduce this from the isomorphism of Br(K/k) with H2(G, K*), but 
it is easier to go back to the proof of this isomorphism and observe 
that the situation is much simpler when G is cyclic. Let Xu be chosen 
for (7 a generator of G. Use this element to choose all the other basis 
elements in an obvious way.] 

36. Use the preceding problem to give another proof of the Frobenius 
Theorem that the only finite-dimensional central division algebras 
over R are Rand H. Also give another proof of Wedderburn's Theo­
rem that all finite division rings are commutative. Do these by com­
puting the respective Brauer groups. It is yet another indication of 
the power of the Brauer theory that it subsumes these two celebrated 
results. 

Cohomology and Applications 

37. Prove Proposition 4.11 : [)2 = O. 

38. Let G be a finite group and let M be a G-module. Show by a direct 
argument that every element of Hn(G, M) is annihilated by IGI for 
n>l. 

Remark: There is a more conceptual way to do this: for a sub­
group H ~ G, there are useful maps (which we will discuss in the 
exercises later in this chapter) Res : Hn (G, M) ---> Hn (H, M) and 
Cor: Hn (H, M) ---> Hn (G, M) (the classical "transfer maps" of 
group theory) such that Cor oRes : Hn(G,M) ---> Hn(G,M) is just 
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multiplication by [G : H}. In particular, taking H = 1, the trivial 
group, we see that multiplication by IGI is just the composite 

HR(G,M) ~ HR(l,M) 0!!; nn(G,M) 

But HR(l,M) = 0, so this composite is the zero map, and so IGI 
annihilates HR(G, M). For more details on this, see K. Brown, Co­
homology 01 Groups. 

39. Try to understand the following argument, checking statements and 
filling in details as needed: By Theorem 4.13, H2(G, K*) R:: Br(K/k) 
and hence classifies central simple algebras. By an entirely similar 
argument, one can show that, for a G-module M, H2(G, M) classifies 
extensions 

I--M--E--G--l 

inducing the given G-action on M (see K. Brown, Cohomology 01 
Groups). If M is finite and IMI is prime to IGI, then note that: 

(a) Multiplication by IGI is an automorphism of M, and so induces 
an automorphism of H2(G,M). 

(b) Multiplication by IGI kills H2 (G, M) by the above problem. Thus 
the only possibility is that H2 (G, M) = 0; that is, there is only one 
extension 1 __ M --+ E --+ G -- I, the split one. Put another 
way: If E is a group and M is an abelian normal subgroup such that 
G = E/M has order prime to IMI, then E is a semidirect product 
E = M )4 G. Finally, by suitable cleverness, one can reduce the arbi­
trary case (M non-abelian) to the case of M abelian, thus giving the 
following 

Theorem 4.20 (Schur-Zassenhaus) IIG is a finite group, H <I G 
a normal subgroup with IHI prime to [G: H), then G is a semidirect 
product G = H )4 (G/H). 

40. Prove the following corollary to the above discussion : 

Corollary 4.21 Let A be a finite-dimensional central simple k-algebra 
with galois splitting field L, and let n = [L: k). Then 

R 

lor some m. 
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Reflect upon how hard this would be to prove without use of coho­
mology. 

41. Prove Hilbert's so-called 'Theorem 90' : If K/k is a galois extension 
and G = Gal(K/k), then HO(G,K*) = k* and Hl(G,K*) = 1. [Hint 
: Let f : G --+ K* satisfy (61 (f)(0', T) = 1 for all 0', T E G. Now show 
that there exists a E K* such that b = EUEG f(O')O'(a) :j:. O. Deduce 
that T(b) = f(T)-lb for alIT E G, so that f E Bl(G,K*).] 

42. (a) Let G be a group and let H be a subgroup. Let M be a G­
module. Show that by restricting a function from G x ... x G --+ M 
to a function H x ... x H --+ M we obtain a homomorphism of 
cochain groups 

"Res" stands for "restriction". The map is called this for obvious rea­
sons. Show that Res~ maps zn(G, M) into zn(H, M) and Bn(G, M) 
into Bn(H, M), and hence induces a homomorphism 

(b) Let k ~ F ~ K be fields. Show that extension of scalars induces 
a map 

Resf : Br(K/k) --+ Br(K/F) 

given by Resf([A]) = [F ®k A]. 

(c) Let K/k be a galois extension with Galois group G. Let H be a 
subgroup of G and let F be the corresponding fixed field. Let f be a 
factor set satisfying the cocycle condition. Let A = (K, G, f) be the 
central simple k-algebra constructed in the proof of the isomorphism 
of the Brauer group with H2 (G, K*). Let {xu : 0' E G} be the usual 
K-basis of A, that is, XuU = O'(u)xu and XUXT = fU,TXUT ' Prove that 
{xu: 0' E H} is a K-basis C(F). 

(d) Let k ~ F ~ K and H a subgroup of G as in part (c). Show that 
the following diagram commutes: 

H\G,K*) ----i.~ Br(Klk) 

Res~l lRes: 
H 2(Ht K*) -----l .... Br(KIF) 
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43. (a) Let G be a group, H a normal subgroup, and MaG-module. 
Show that MH = {m EM: O'{m) = m for all 0' E H} is a 
G/H-module. Show that there is a homomorphism 

which sends a cocycle f to the function defined by (0', T) ~ f (0' H, T H). 
"In/" stands for "inflation" because it gives a map from the cohomol­
ogy of a quotient group G / H into the cohomology of the (inflated) 
full group G. 

(b) Let k ~ F ~ K be fields such that [K : k] < 00. Let B be a central 
simple k-algebra with maximal commutative subring F. Considering 
K ®F B as a right B-module, show that A = EndB(K ®F B) is 
a central simple k-algebra with maximal commutative subring FK. 
Further, show that [A] = [B] in Br(k). 

(c) Let k ~ F ~ K be as in part (b). Assume further that K is galois 
over k with Galois group G, and that F is the fixed subfield of the 
normal subgroup H. Show that the following diagram commutes: 

H2(GIH,F*) - Br(Flk) .. 

lnf~ I I 
H2(G,K*) - .. Br(Klk) 

44. Let k ~ F ~ K be fields with E / K and K / k galois extensions. Show 
that the sequence 

is exact. 

0-- H2(Gal(F/k),F*) ~ H2(Gal(K/k),K*) 

~ H2(Gal(K/F),K*) -- 0 
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Selected Topics 
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Primitive Rings and the 
Density Theorem 

We saw in Theorem 1.15 that simple artinian rings are precisely those 
artinian rings which have a faithful simple module. It is useful to drop the 
finiteness condition and to study those rings which have a faithful simple 
module but are not necessarily artinian. Such a ring is called a primitive 
ring. Primitive rings, a generalization of simple rings, playa role analogous 
to that of simple rings in that they may be viewed as the basic building 
blocks of other rings, though in an extended, infinite dimensional context. 
This perhaps justifies the name primitive. The theory of primitive rings can 
be developed along lines parallel to that of simple rings. The two theories 
intertwine, and in fact some authors choose to study simple rings from the 
point of view of primitive rings. This chapter explores such an approach. 

Definition: A ring R is called primitive if it has a faithful simple module. 

It should be noted that some of the terms in this definition are often giv­
en other names. Recall that giving an R-module M is the same as giving a 
homomorphism p of R into End(M), the ring of abelian group homomor­
phisms of M. p is often called a representation of R (acting on M). An 
irreducible representation of R is a representation for which the associ­
ated module is irreducible (Le., simple). Thus a primitive ring is one which 
has a faithful irreducible representation. We will pick up this terminology 
in a later chapter on representation theory. 

Examples: 

1. Any simple ring is primitive; in particular, any finite dimensional 
matrix ring over a division ring is primitive. This follows from the 
fact that any nonzero ring R has a maximal left ideal I, and if R is 
simple then I contains no nonzero ideal, so Rj I is a faithful simple 
module for R. It should be noted that the zero ring is simple but not 
primitive, but in this book we are only considering rings with identity 
1, with 1 i= 0, so the zero ring doesn't count. 

2. Let V be a vector space, not necessarily finite dimensional, over a 
division ring D. Then R = EndD(V) has Vasa faithful simple 
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module and is thus primitive. Clearly V is a faithful R-module. To 
show that V is a simple R-module, we need to see that for any v, W E 
V, there is a ¢ E R with ¢( v) = w, but this is clear since v is part of 
a basis for V. As noted in exercise 28 of Chapter 1, R is not simple 
if V is not finite dimensional over D. This gives an example of a ring 
which is primitive but not simple. 

Other examples of primitive rings can be found in the exercises at the 
end of this chapter and in Part III. 

There is another, more ring-theoretic approach to proving the Structure 
Theorem for Simple Artinian Rings than was taken in Chapter 1. This 
alternate line of attack uses the Jacobson Density Theorem, a theorem 
which has applications throughout ring theory. We first begin with a 

Definition: Let V be a vector space over a division ring D, and let R be 
a ring of D-linear transformations of V. R is called a dense ring of lin­
ear transformations, or is said to act densely on V, if for every finite set 
{Vb' .. , vn } of linearly independent vectors in V, and any set {Wb ... , wn } 

of (not necessarily independent) vectors in V, there exists a linear trans­
formation ¢ E R with 

¢(Vi) = Wi for i = 1, ... ,no 

Let R be a dense ring of linear transformations of a finite dimensional 
vector space over a division ring D with basis {VI, ... , vn }. For any 'I/J E 
EndD (V) , there must be ¢ E R with ¢(Vi) = 'I/J(Vi), since R is dense. But 
{ VI, ... , vn } is a ba.'lis for V, so 'I/J = ¢ E R. Thus the only dense ring of 
linear transformations of V is the ring EndD(V). 

For those who wonder where the topological term "dense" comes from in 
the above definition, let V be given the discrete topology, and let EndD(V) 
be given the compact-open topology as a space of functions on the space 
V. Then it is not hard to check that a ring R of linear transformations acts 
denslyon V if and only if R is dense as a subspace of EndD(V), 

Before proving the main theorem of this chapter, the Jacobson Density 
Theorem, we prove a similar theorem in the context of semisimple modules 
which will be used to prove Jacobson's Theorem. 

Theorem 5.1 (Density Theorem For Semisimple Modules) Let M 
be a semisimple module over a ring R, and let S = EndR(M). Let ¢ E 
Ends(M). Then for any set {Xl,"" xn} of M, there exists r E R such 
that 

¢(Xi) = rXi for i = 1, ... ,n. 

Thus the action of any S -module endomorphism of M on a finite set can 
be achieved by the action of an element of R. 
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Note that {Xb'" ,x,,} in the hypothesis of the theorem is not assumed 
to be a linearly independent set. 

Proof: We first prove the theorem in the case n = 1. Let Xl be given. Since 
M is semisimple we can write 

M = &16jM' 

for some submodule M' (every submodule is a direct summand). If 11" : 

M --+ &1 is the projection map, then 11" E S, and so 

4>(Xl) = 4>(1I"(Xl» = 1I"(4)(Xl))' 

But {y EM: 1I"(Y) = y} is just &1' Thus 4>(Xl) E &1 as desired. 
Now suppose we are given the set {XII" ., Xn} of M. At first suppose M 

is simple. Look at the product map 4>(n) : Mn --+ Mn defined by 

Then EndR(Mn) = Mn(S) by Proposition 1.7. Now 4> and S both act 
on M, and the actions commute, so 4>(n) E EndEndR(M,,)(Mn), so by the 
proof of the theorem in the n = 1 case there exists r E R with 

and the theorem is proved for simple M. 
If M is semisimple then M is a direct sum of its isotypic constituents 

The matrices representing the endomorphisms break up into blocks, and 
the reader may check that the same argument as above will work. 0 

The Density Theorem for Semisimple Modules may be used to prove 
a density theorem for primitive rings due to Jacobson. This useful result 
may be viewed 88 an analog to the Structure Theorem for Simple Artinian 
Rings. 

Theorem 5.2 (Jacobson Density Theorem) A ring R is primitive if 
and only if it is a dense ring of linear transformations of a vector space 
over a division ring. 

It is interesting to note that Jacobson, in his book Basic Algebra II, calls 
this theorem the "Density Theorem for Primitive Rings", although it is 
most commonly known 88 the Jacobson Density Theorem. 

Proof: Suppose R is primitive, and that M is a faithful simple R-module. 
Then D = EndR(M) is a division ring by Schur's Lemma. Since M is 
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faithful, R acts (by left multiplication) as a ring of linear transformations 
on M considered as a vector space over the division ring D. Given a set 
{Vl' ... , vn } of linearly independent (over D) vectors in M, and any set 
{Wb ... ,wn } of vectors in M, we may take (by linear independence) the 
Vi'S as part of a basis for M, and so there exists a linear transformation ¢ 
such that 

¢( Vi) = Wi i = 1, ... , n. 

But ¢ E EndD{M) and D = EndR{M), so by the Density Theorem for 
Semisimple Modules there exists r E R with 

rXi = ¢(Xi) = Yi i = 1, ... ,n. 

Thus R is a dense ring of endomorphisms of M. 
Conversely, suppose that R is a dense ring of endomorphisms of a vector 

space V over a division ring D. Then V is an R-module via 

¢. V = ¢(v) for ¢ E R,v E V. 

V is clearly a faithful R-module, and is simple since, given any V f. 0 
in V, v is part of a basis for V, and so for any W E V there is a linear 
transformation ¢ E R with ¢(v) = Wj that is, W E Rv. Thus R is primitive, 
as it has a faithful simple module. 0 

The 'if' direction of the Jacobson Density Theorem can be made stronger. 
A set R of endomorphisms of a vector space V over a division ring D is 
called n-fold transitive if, for any m :5 n, any set {Xl!"" xm} of m 
linearly independent vectors in V and any set {Yl, ... , Ym} of vectors in V, 
there exists ¢ E R with ¢(Xi) = Yi for all 1 :5 i :5 m. Now if R is a ring 
of endomorphisms of V over D which is even just I-fold transitive, then R 
is primitive. To see this, note that by definition V is a faithful R-module, 
and is simple by transitivity. Thus we have a stronger implication in the 
'if' direction of the density theorem, although there is another intricacy 
involved (see Exercise 9). 

One may derive a plethora of results from the Jacobson Density Theorem; 
we mention but two. Many authors derive the Structure Theorem for Simple 
Artinian Rings as a consequence of Jacobson's Theorem. We now take this 
approach. 

Theorem 5.3 (Simple artinian rings revisited) Any simple arlinian 
ring is isomorphic to a finite dimensional matrix ring over a division ring. 

We don't bother to derive the correspondiqg theorem for semisimple 
rings (Wedderburn's Theorem) and the uniqueness results, for these follow 
as in Chapter 1. 
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Proof: Let R be a simple artinian ring. R is primitive since R is simple 
(Example Ion page 151). Let M be a faithful simple R-module, and let D = 
EndR(M), which is a division ring by Schur's Lemma. By the Jacobson 
Density Theorem we know that R is isomorphic to a dense subring of 
EndD(M). If M is finite dimensional over D, then as noted previously a 
dense subring of a finite dimensional endomorphism ring is the whole ring 
of endomorphisms, so in this case R = EndD(M) and we are done. 

So suppose that VI, V2, ••• is an infinite linearly independent set of vectors 
in the vector space Mover D. Let In be the left ideal of R defined by 

In = {r E R: rVi = 0 for all 1 ~ i ~ n}. 

Clearly It :) 12 :) ... is a descending chain of left ideals. In fact it 
is a properly descending chain by the Density Theorem for Semisimple 
Modules, since by the theorem there is an element r E R with rVi = 0 for 
1 ~ i ~ n, but with rVn+l =F O. This infinite descending chain contradicts 
the hypothesis that R is artinian, so M is in fact finite dimensional over D 
and we are done. 0 

As another consequence of the Jacobson Density Theorem one may de­
rive a structure theorem for primitive rings which is similar to that for 
simple artinian rings, although as one might expect considering the finite­
ness condition is dropped, part of the structure theorem has to deal with 
the cases when the ring is quite big. 

Theorem 5.4 (Structure Theorem for Primitive Rings) Let R be a 
primitive ring with faithful simple module M. Let D = EndR(M) (D is a 
division ring by Schur's Lemma). Then either R = Mn(D) for some nor, 
for every positive integer m, there exists a subring Rm of R which maps 
homomorphically onto Mm(D). 

Proof: The proof is similar to that of Theorem 5.3. As before, if M has 
finite dimension over D then R = EndD(M) = Mn(D) for some n. If 
VI. V2,··. is an infinite linearly independent set of vectors in the vector space 
Mover D, then let Mm be the D-subspace of M spanned by {VI. ... ,vm}, 
let 

and, as in the proof of Theorem 5.3, let 

1m = {r E R: rVi = 0 for alII ~ i ~ m}. 

Then 1m is an ideal in the subring Rm of R, and Rm/ 1m ~ Mm(D) by 
the Jacobson Density Theorem. This proves the theorem. 0 
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It seems that one could use the Structure Theorem for Primitive Rings 
to prove Theorem 5.3 (that every simple artinian ring is isomorphic to a 
matrix ring), for it seems unlikely that a ring with subrings mapping onto 
arbitrarily large matrix rings could be artinian. Such rings do, however, 
existj even division rings with this property exist! See Part III, Exercise 27 
for an example. This shows that primitive rings may be quite unweidlyj 
indeed, every algebra is the image of some primitive algebra under some 
homomorphism (Exercise 15). 

As noted in the examples on page 151, every simple ring is primitive but 
not every primitive ring is simple. The Structure Theorem for Primitive 
Rings also lends credence to the notion that primitive rings extend the 
notion of simple ring to the infinite dimensional context. In fact it is not 
difficult to show that a ring is primitive artinian if and only if it is simple 
artinian (if and only if it is a finite dimensional matrix ring)j thus the 
concepts of primitive and simple agree in the finite dimensional case. We 
leave this fact as an exercise to the reader (Exercise 8). 

Exercises 

Primitive Rings 

1. Let V be a vector space over a division ring D. Let V be given 
the discrete topology and let EndD(V) be given the compact-open 
topology as a space of functions on the space V. Show that a ring R 
of linear transformations acts densely on V if and only if R is dense 
as a subspace of EndD(M). 

2. (a) Show that a ring is primitive if and only if it contains a maximal 
left ideal that contains no nonzero ideal. 

(b) Show that a commutative ring is primitive if and only if it is a 
field. 

3. Show that Mn(R) is primitive if R is primitive. 

4. Let V be a vector space of countably infinite dimension over a division 
ring D, and choose a basis for V over D. Let R denote the set of linear 
transformations represented by matrices of the form 

where A is a finite square matrix and d ED. Check that R is a 
subring of the ring of row-finite matrices (matrices with only finitely 
many nonzero entries in each row). Show that R is primitive. 
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5. Let V be the vector space Q[xJ, x an indeterminate. Let d denote the 
"differentiation map" defined by 

and let i denote the "integration map (with constant term 0)" defined 
by 

) Cn n+l 
i(cnxn + ... + CIX + Co = (n + 1) x + ... Cox. 

Check that both d and i are Q-endomorphisms of V. Let R be the 
sub algebra of EndQ(V) generated by Q, d, and i. Show that R is 
primitive. 

6. Let e be a nonzero idempotent of the ring R. Recall (Chapter 0, 
Exercise 27) that eRe is a ring with e as identity element. Show that 
eRe is primitive if R is primitive. 

7. In the proof of the Structure Theorem for Primitive Rings, show that 
R is artinian if and only if the faithful simple R-module M has finite 
dimension over the division ring D = EndR(M). 

8. Show that a ring is primitive artinian if and only if it is simple artini­
an. [Hint: Look at the proof of the Structure Theorem for Primitive 
Rings.J 

More on the Converse to the Density Theorem 

9. (a) We showed above that if R is a 1-fold transitive ring of endomor­
phisms of a vector space V over a division ring D, then R is primitive. 
Show that in this case, however, the commuting ring of R need not 
equal D (recall that the commuting ring of R is the set of endomor­
phisms in EndR(M) which commute with all of the endomorphisms 
¢r given by scalar multiplication with r E R). 

(b) Now assume that V is finite dimensional. Characterize all simple 
subrings of Mn(D) (see Chapter 3, Exercise 34). 

(c) Still assuming V is finite dimensional, characterize all primitive 
subrings of Mn(D). 

10. Show that any ring R of 2-fold transitive endomorphisms of a vector 
space V over a division ring D is dense, and so is n-fold transitive 
for all n. Thus in this case the commuting ring of R is precisely D. 
[Hint: Show first that, if v E V and ¢ E EndR(V), then v and ¢(v) 
are linearly independent over D, as long as dimD(V) ~ 2.J 
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Semi-Primitive Rings 

A ring R is called semi-primitive if for any element a -:F 0 of R, there 
is a simple R-module M with a ¢ ann(M). The relationship between 
semi-primitive rings and semisimple rings is reminiscient of that be­
tween primitive rings and simple rings. In studying semi-primitive 
rings it will be useful to generalize the concept of direct product. If 
{RO!} is any family of rings, and if 'If {3 : n Ra. -+ R{3 is the natural 
projection, then R is said to be a subdirect product of the rings RO! 
if there is a monomorphism i : R -+ n Ra. such that 7r{3oi : R -+ R{3 
is surjective for each {3. 

11. Show that the following three conditions on a ring R are equivalent: 

(i) R is semi-primitive. 

(ii) R has a faithful semisimple module. 

(iii)R is a subdirect product of primitive rings. 

12. (a) Show that a commutative ring is semi-primitive if and only if it 
is a subdirect product of fields. 

(b) Show that Z is semi-primitive, as is any principal ideal domain 
with an infinite number of primes. 

13. (a) Show that a ring R is semi-primitive if and only if J(R) = 0, 
where J(R) denotes the (Jacobson) radical of R. 

(b) Show that RjJ(R) is semi-primitive, and that J(R) is the inter­
section of all ideals I of R such that Rj I is primitive. 

14. Show that R is semisimple artinian if and only if R is semi-primitive 
artinian. 

Applications of the Density Theorem 

15. Let A be an algebra over the field k, and let V be a direct sum of 
infinitely many copies of A. Consider the subring R of Endk (V) gen­
erated by A (acting diagonally) and the set of linear transformations 
which are nonzero on at most finitely many terms of the direct sum 
(these transformations are sometimes said to have finite support). 
Show that R is primitive and that there is a surjection of R onto A. 
Thus any k-algebra is the image of some primitive k-algebra under 
some homomorphism. 

16. The goal of this exercise is to prove a very nice theorem of Jacobson 
that gives a condition on the powers of elements of a ring that will 
make the ring commutative. The condition is that for every elemen­
t r of the ring, there is some integer nCr) > 1 so that rn(r) = r. It 
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seems quite strange that a ring with such a property must necessarily 
be commutative, and even strange that any condition of this nature 
should imply commutativity. This theorem can be proved using tech­
niques from this chapter. 

(a) Show that if R is a primitive ring with the property that, for each 
r E R, there is an integer nCr) > 1 such that rn(r) = r, then R is a 
division ring. 

(b) Show that the ring in part (a) is in fact a field. [Hint: Show that 
R has finite characteristic p. If R = Z(R) we are done, otherwise 
choose r E R, r ¢ Z(R). Use the generalized Skolem-Noether Theo­
rem (Chapter 3, Exercise 18) to find an s E R with srs-1 = rP • Show 
that rand s generate a finite division ring.] 

(c) Let R be any ring such that, for any r E R, there is an integer 
nCr) > 1 such that rn(r) = r. Show that R is semi-primitive. 

(d) Prove the following theorem of Jacobson: If R is any ring such 
that, for any r E R, there is an integer nCr) > 1 such that rn(r) = r, 
then R is commutative. 

Remark: The theorem you just proved has vast generalizations, and 
indeed there is a whole theory of commutativity of which this is one of 
the foundling steps. For an introduction to commutativity theorems 
see Herstein, Noncommutative Rings. 
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Burnside's Theorem and 
Representations of Finite 
Groups 

In this chapter we provide an application of the structure theory of rings 
developed in Chapters One and Two to the theory of finite groups. Repre­
sentation theory of finite groups is a vast subject; in this chapter we'll make 
a thin beeline right to a famous theorem of Burnside. For a more thorough 
introduction to the representation theory of finite groups, the reader may 
consult Serre, Linear Representations of Finite Groups, as well as Fulton 
and Harris, Representation Theory : A First Course. 

Unless otherwise specified, G will denote a finite group throughout this 
chapter. We will only discuss representation over the field C of complex 
numbers, as this suffices for the desired applications. 

Group Representations 

We begin with a rephrasing of some of the ring theory we have learned into 
the language of representation theory. 

Definition: A representation of a group G is a homomorphism p : G --+ 

GL(V) , where GL(V) is the algebra of automorphisms of a vector space 
V over a field k. The dimension of V over k (which we will assume to be 
finite throughout this chapter) is called the degree of the representation. 

Note: Henceforth we will assume that k = C, and by "representation" 
we will mean a representation over the complex numbers, which is usual­
ly called a complex representation. Although representations over other 
fields, in particular fields of nonzero characteristic, are extremely importan­
t, restricting our attention to representations over C will simplify matters 
greatly, and suffices for the applications we wish to give. When working 
with complex representations, the two most important properties of the 
field C which will be used are the facts that the order of the group G is 
invertible in the field C, and C is algebraically closed. 
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If V is n-dimensional and if we pick a basis B for V over C, then GL(V) 
can be thought of as the group of n x n invertible matrices over C, denoted 
GLn(C), In this way the representation p assigns a matrix Ps(g) to each 
group element g, and we call p a matrix representation of G (sometimes 
we refer to a matrix representation without explicitly choosing a basis). If 
A and B are bases for V over C, and if C is the change of basis matrix 
from A to B, then the matrices P.A.(g) and ps(g) are related by : ps(g) = 
C-lp.A(g)C. If P is a matrix representation, we denote the (i,j)-entry of 
the matrix p( (7) by Pij (t7) for t7 E G. 

Notice that V is a module over the group ring C[G), where the action of 
the ring is defined by g·v = p(g)(v) for 9 E G, v E V and is extended linearly 
to C[G). Conversely, a C[G)-module V gives a representation p : G ~ 
GL(V) defined by p(g)(v) = g. v, where g. v denotes the multiplication of 
a module element by a scalar. Hence the study of representations of G is 
equivalent to the study of C[G)-modules. 

Two representations p : G ~ GL(V) and pI : G __ GL(VI) are 
equivalent if V and VI are isomorphic as C[G)-modules. Note that this is 
the same as saying that pl(g) = Tp(g)T-l for all 9 E G, where T : V __ VI 
is a C-module isomorphism. 

Examples: 

1. Letting V be one-dimensional and letting p: G -- GL(V) be peg) = 
1 for all 9 E G, where '1' here denotes the identity element of GL(V), 
gives a representation called the trivial representation of G. 

2. A degree one representation is simply a homomorphism p : G __ C*. 
Note that since G has finite order each peg) is a root of unity; in 
particular Ip(g)1 = 1 for all 9 E G. When G = Z/nZ, the cyclic 
group of order n, then it is clear that each nth root of unity gives 
a degree one representation over C, so that there are precisely n 
representations of Z/nZ of degree one over C. 

3. The group algebra C[G) is a left module over itself, which gives a 
representation of G. This most fundamental and important repre­
sentation is called the (left) regular representation of G; it is a 
degree IGI representation. Note that 9 E G acts by left multiplication 
on elements of C[G], giving an element of EndC(C[G)). For example, 
let G = {I, X, x2 , x3 } be the cyclic group of order 4. The group ele­
ment x2 E G acts on the standard C-basis {1,x,x2 ,x3 } of the group 
ring C[G) by multiplication on the left : 

Thus if P is the regular representation of G, we have 
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Definition: A simple C[G]-module V (and the associated representation 
p: G --+ GL(V» is called an irreducible representation. 

Notice from the Wedderburn Theory (cf. the discussion on page 41) that 
every irreducible representation occurs as a component of the regular rep­
resentation. 

Characters and Orthogonality Relations 

Let f and g be complex valued functions on G. Define 

(f,g) = I~I L f(O')g(O'- 1). 
aEG 

This "inner product" is clearly bilinear, and is symmetric (i.e. (f, g) = 
(g, I) since 0' can be replaced by 0'-1 in the sum. 

Proposition 6.1 Let P and p' be inequivalent matrix representations of a 
finite group G. Then (Pir'P~j) = 0 for all i,r,s,j. If P is irreducible then 
(Pir, Psj) = 0 unless i = j and r = s, in which case (Pir, Pri) = lid, where 
d is the degree of p. 

Proof: Let P : G --+ GL(V),p' : G --+ GL(V') be the given represen­
tations. Let T : V --+ V' be a C-linear map, and let n = IGI. Then 
~F(T) = ~ EaEG O'TO'-1 is a G-map from V to V'. If V and V' are non­
isomorphic and irreducible then ~F(T) = 0 by Schur's Lemma. Choosing a 
basis and expressing this in terms of P and pi, and letting A be the matrix 
of T with respect to the chosen basis gives 

.!:. L p'(O')Ap(O'-1) = 0 
n aEG 

(6.1) 

where A can be any d' x d matrix, where d = dim(V), d' = dim(V'). 
Now let A = Ers be the elementary matrix with a 1 in the (r,s) position 
and 0 elsewhere. One then checks that the (i,j) entry of p'(O')Ersp(O'-1) is 
P~r(O')Psj(O'-1). Hence equation (6.1) implies that ~ EaEG P~r(O')Psj(O'-1) = 
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OJ that is, ~(P~r,Psi) = 0 for all i,r,8,j. Since the 'inner product' is sym­
metric we are done. 

Now suppose that V is irreducible, so that EndC[GI (V) = C. Now 

~ EaP(O')Ap(O'- 1) = >..I, where A depends on A and I is the identity 
matrix. Letting A = ers and writing the corresponding A as Ars gives 

1 n LPir(O')Psi(O'-1) = ArsCii = 0 if i"# j 
a 

so that (Pir, Psi) = 0 if i =F j. Similarly (PSi' Pir) = 0 if 8 =F r. We also have 
that 

and so there exists A with Aii = A for all i. Thus 

dA = E~=lAii = ~ Ei La Pri(O')Pir(O'- 1 ) 

= ~ EaEiPri(O')Pir(O'-1) 

= ~ Ea[I]rr = ~ . n = 1. 

Hence A = lid and we are done. 0 

We now introduce an extremely important tool in the study of represen­
tations. 

Definition: The character of a representation p: G ---+ G£(V), denoted 
by X(p) (or sometimes simply X), is defined to be x(O') = Tr[p(O')] for 0' E G, 
where ''!'r' denotes the trace of a linear transformation. Note that X can be 
computed the same way relative to any basis for V, since Tr(ABA-l) = 
Tr(B) for any n x n matrices A and B over C. This also shows that X is a 
class function, i.e. X is a well-defined function on the conjugacy classes of 
G, and that equivalent representations have the same characters. 

Examples: 

1. Since the trivial representation p: G ---+ G£(V) is such that p(g) is 
the 1 x 1 identity matrix for all 9 E G, we see that X(g) = 1 for all 
gEG. 
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2. If P is the regular representation of G, choose the elements of G as a 
basis for e[G]. Let X denote the character of p. Clearly X(I) = IGI, 
since multiplication by 1 is represented by the identity matrix with 
respect to the chosen basis. If 9 EGis not equal to 1, then gh =I- h 
for all h E G, hence the matrix representing multiplication by 9 has 
zero's along the diagonal, so that X(g) = 0 in this case. 

We will see other examples of characters later. 
Note that if X is a character of a representation of degree n then X(I) = n. 

Also note that if X and X' are characters ofrepresentations P : G ~ G L(V) 
and P' : G ~ GL(V'), respectively, then X + X' is the character of the 
direct sum representation P EB P' : G ~ GL(V EB V'). In particular, the 
character of a representation P is the sum of the characters of the irreducible 
components of p. 

Characters play a central role in representation theory, as they encapsu­
late a great deal of information about their reprentationsj indeed a char­
acter characterizes its representation. The following theorem shows that 
any two inequivalent irreducible representations are part of an orthonor­
mal basis in the space of class functions on G. In fact, we will later see that 
the set of characters corresponding to the (finite number of) irreducible 
representations of G forms an orthonormal basis for this function space. 

Theorem 6.2 (Orthogonality Relations) If P and P' are inequivalent 
representations with chamcters X and X', then (X, X') = o. If P is irreducible 
then (X, X) = 1. 

d ~ Proof: First note that x(a) = Li=1 Pii(a) and x'(a) = Li=1 p~i(a) for 
a E G. Then 

d d' d d' 

(X,X') = (I>ii'LPjj) = LL(Pii.PJj) = 0 
i=1 j=1 i=1 j=1 

by bilinearity and by Proposition 6.1. For the same reasons we also have, 
if P is irreducible, that 

d d d d d 

(X,X) = (LPii' LPjj) = LL(Pii,Pjj) = dL(Pii,Pii) = 1. 
i=1 j=1 i=1 j=1 i=1 

o 
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The Group Ring 

Let G be a finite group. Recall MaBchke's Theorem from Exercise 27 of 
Chapter 1 or Exercise 32 of Chapter 2, which tells us that the group 
algebra C[G] is semisimple. So C[G] ~ II=l Md.(C). The multiplicity 
of an irreducible representation in the regular representation is precisely 
its degree di . We know from the Wedderburn theory (cf. the discussion 
on page 41) that C[G] haB exactly r isomorphism claBses of simple mod­
ules, in other words G haB exactly r inequivalent irreducible representa­
tions. The di's are the degrees of the irreducible representations; hence 
IGI = dimC(C[G]) = }:~=l d~. 

Is there some way to determine r, the number of inequivalent irreducible 
representations of G? The answer is yes; in fact r is a familiar number 
aBsociated to the group G. 

Proposition 6.3 The number of inequivalent irreducible representations 
of a finite group G is equal to the number of conjugacy classes in G. 

Proof: Let R = C[G], so that R ~ TI~=l~' where each ~ is a matrix ring 
over a division C-algebra of finite dimension. Hence Z(R) = TI~=l Z(~), 
and each each Z(~) is one-dimensional over C (remember that the center 
of a matrix ring over a field consists of scalar multiples of the identity 
matrix). Hence r = dimC(Z(R)). 

Now let x E R. Then x E Z(R} if and only if uxu- l = x for aU u E G. 
Write x = }:rEG XrT. Then x = uxu-1 is the same aB 

}:rEG XrT = }:rEG XrUTU- 1 

= }:rEG Xu-lruT, 

so Xr = Xu-l ru for all u E G. Hence x E Z(R) if and only if Xr = Xu-l ru 

for all u E G. Let {Cj }j=l denote the conjugacy classes of G, and let 
Cj = }:uECj u in C[G]. We shall call Cj the characteristic function 
of the conjugacy class Cj. Clearly {Cj}j=l is a C-basis for Z(R), and so 
r = dimC(Z(R)) equals the number of conjugacy classes in G. 0 

Examples: 

1. In Example 2 on Page 162 we found n degree one representations (over 
C)of the cyclic group G = ZjnZ. Note that these representations are 
pairwise inequivalent since they all have different characters. Since G 
has n conjugacy claBses (each element is in its own claBs), Proposition 
6.3 implies that these are precisely the irreducible representations of 
G. 
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2. Let G = 83 , the symmetric group on 3 letters. 83 has 3 conjugacy 
classes, hence 83 has 3 inequivalent irreducible representations. One 
of these is the trivial representation, which is of degree one; another 
is the degree one representation given by 'sgn', the sign of a permuta­
tion. One can check that these representations are inequivalent since 
their characters Xl and X2 take on different values on the odd permu­
tations. So we know there is one more irreducible representation P of 
83 , and ifn is its degree then 1+1+n2 = 1831 = 6, so n = 2. One can 
also figure out the values of the character X3 of P since Xl + X2 + 2X3 
is the character of the regular representation, which takes the value 
o on the non-identity elements of G and the value IGI = 6 on the 
identity element. 

Characters and Algebraic Integers 

Note that in the decomposition C[G] = ll~=l Ri we can write 1 = L~=l ei, 
where ei E Ri is the unit in ~ (Le. the identity matrix in the matrix ring 
Ri ~ Md; (C)). Then the e/s also form a basis for Z(R) = ll~=l Z(Ri). 
Let Pi correspond to an irreducible representation given by R i • With Cj 

denoting the characteristic function of the conjugacy class Cj in G (d. the 
proof of Proposition 6.3), write 

Cj = c} + c; + ... cj. 

Then Pi(Cj) = Pi(C)) = A)ei for some A~ E C by Schur's Lemma. It 
should be noted that here we are identifying Pi (Cj ), which is an element 
of EndC(Vi), with an element of the group ring. Indeed the C[G]-module 
structure on Vi, viewed as a ring map C[G] ~ EndC(Vi), factors through 
the natural projection 

Tr(Pi(Cj)) = L Tr(pi(a)) = hjXi(aj), 
uECj 
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where OJ is any element of Gj , hj = \Gj \ and Xi is the character of Pi. Note 
that we've used the fact that a character X of a representation is constant 
on conjugacy classes: X( 0") = X( rO"r- 1 ). This discussion shows that 

Our next goal is to show that the >.~ are algebraic integers; that is, each 
satisfies some monic polynomial with coefficients in Z. 

Theorem 6.4 With notation as above, each >.; is an algebraic integer. 

Proof: Recall that Cj is defined to be LUEC; 0", where Gj is a conjugacy 
class in G. Hence CjCk = LUEG njkuO", where njku is a non-negative integer. 
Since CjCk E Z(C[G]) , we have r-1CjCkr = CjCk for rEG. This implies 
that 

so that njku = njk(TUT-1) for rEG. Grouping terms in conjugacy classes 
gives CjCk = L:==1 ajklC! with ajkl a non-negative integer. Projecting onto 
the ith component gives : 

8 

(>.;ed(>'~ei) = Pi(Cj)Pi(Ck) = Pi(CjCk) = L ajkl>.tei. 
1==1 

Hence >.)>.~ = L:==1 ajkl>.l with each ajkl a non-negative integer. By 
taking M = (BI>.tZ in the following proposition and by noting that M is 
a faithful Z[>')l-module for each j, we conclude that the >.~ are algebraic 
integers. 

o 

Proposition 6.5 Let A be a subring of a commutative ring B, and let 
x E B. Then the following are equivalent: 

1. x is integral over A; that is, x satisfies a monic polynomial with co­
efficients in A. 

2. A[x] is a finitely generated A-module. 

3. A[x] is contained in a subring G of B which is a finitely generated 
A-module. 

4. There is a faithful A[x]-module M which is finitely generated over A. 
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Proof: It is obvious that (1) implies (2) and that (2) implies (3). The fact 
that (3) implies (4) is clear by taking M = C and by noting that 1 E C. 
To prove that (4) implies (1), let {Xl! ... , Xn} be a set of generators of M 
as an A-module, and write XXi = E7=1 aijXj, that is 

or, written differently : 

n n 

L XOijXj = L aijXj 
j=l j=1 

n 

L(XCij - aij)Xj = O. 
j=1 

Let P be the matrix [Pij 1 with Pij = XOij - aij· So 

Hence 

where adj(P) denotes the adjoint matrix of P. Now det(P) is a monic 
polynomial of degree n in x which acts trivially on M, and det(P} = 0 
since A[x] acts faithfully. 0 

We will need the following facts about algebraic integers, which hence­
forth we will use without comment. The proofs (with hints) are left for the 
exercise section at the end of this chapter. 

1. Any rational number which is also an algebraic integer is in fact an 
integer. 

2. The algebraic integers form a ring. More generally, if A ~ B is an 
extension of commutative rings, the set of elements of B which are 
integral over A form a subring of B. 

The fact that the A~ are algebraic integers has important consequences. 
Recall that the orthogonality relations tell us that if X is the character 
corresponding to an irreducible representation, then (X, X) = 1. Thus, with 
n=IGI, 
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Hence 

and so 

~ L: Xi(U)Xi(U- 1) = 1 
/TEG 

L:B hjXi(Uj) .( -1) _ n 
XI U· --d· 1 d· 

j=1 I • 

B 

~ \i (-1) n 
L..J "jXi Uj = d.' 
j=1 I 

Now uj = 1, where k is the order of Uj, so pi(Uj)k = 1. Thus all the 
eigenvalues of Pi(Uj) are kth roots of unity. But Xi(Uj) = Tr(Pi(Uj)) is a 
sum of eigenvalues, hence is an algebraic integer, as is Xi(ujl). Thus nidi 
is an algebraic integer. But nidi E Q, hence nidi E Z, or diln. In other 
words, the degrees of the irreducible representations of a finite group divide 
the order of the group. 

Burnside's Theorem 

In this section we use the tools of representation theory we have developed 
in this chapter to prove a famous theorem of Burnside. Burnside's Theorem 
was one of the first major theorems in group theory which was proved using 
representation theory. 

With the notation as in the previous sections, let us recall we have shown 
so far: 

1. ,\~ = hj~;Uj) is an algebraic integer (Theorem 6.4). 

2. Xi(Uj) is an algebraic integer. 

3. If hj and di are relatively prime then Xi~~j) is an algebraic integer. 

This follows from the following 

Lemma 6.6 Let a and b be relatively prime integers. If a is an algebraic 
integer and if aalb is an algebraic integer, then alb is an algebraic integer. 

Proof: Since a and b are relatively prime, there exist r, s E Z with ra+sb = 
1. Hence r(aalb) + sa = alb and so alb is an algebraic integer. 0 
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Lemma 6.7 With notation as above, if hj and di are relatively prime, then 
either Pi(Uj) is in the center of pi(G) or Xi(Uj) = o. 

Proof: First note that Xi(Uj) = Tr(Pi(Uj)) is the sum of di roots of unity, 
X·(u·) 

so that I 'd/ I :5 1. If equality holds then IXi(O'j)1 = di , so that all of 

the eigenvalues of Pi(Uj) lie on the same ray through the origin. Since each 
eigenvalue also lies on the unit circle, they are all equal, so that Pi(Uj) is 
scalar and lies in the center of Pi ( G) . 

X·(u·) X·(u·) 
Now suppose that ITI < 1, and let a = T' Let 1] be a primitive 

dith root of unity and let K = Q(1]). If 0' E Gal(KIQ) then u(a) is 
also 1/di times a sum of di roots of unity., so that 100(a)1 :5 1. Hence 
I TIaEGal(KIQ) u(a)1 < 1. Since a is an algebraic integer, so is each u(a), 
hence the product is an algebraic integer. Since the product is also a rational 
number, it must be an integer, hence it must be O. But 0, being fixed by the 
Galois group, is its own (and only) galois conjugate, so that in fact a = 0 
and we are done. 0 

The core of Burnside's Theorem is contained in the following proposition, 
which in itself provides a nice condition under which a group is not simple. 

Proposition 6.8 If the number of elements in some conjugacy class e of 
a finite group G is a positive power of a prime p, then there is a nontrivial 
irreducible representation P of G such that p( e) is contained in the center 
of p( G). In particular, G is not simple. 

Proof: Let X be the character of the regular representation of G. Then for 
all 1 =F x E G, we have 

r r 

0= X(x) = LdiXi(X) = 1 + LdiXi(X) (6.2) 
i=l i=2 

With the notation as above, take x = Uj. Then for a given i either pldi or 
p Xdi . If P Xdi then lej I and di are clearly relatively prime, so by Lemma 6.7 
we know that either Pi (Uj) is in the center of Pi (G) or Xi (Uj) = O. Suppose 
the first alternative never happens for i ~ 2. Then by (Proposition 6.2) we 
have that 0 = 1 + p{3, where {3 is an algebraic integer. But then -lip = {3 
is an algebraic integer and a rational number, hence an integer (Exercise 
12), an obvious contradiction. Thus Pi (Uj) is in the center of Pi(G) for each 
i and we are done. 0 

We are now ready to prove the main result of this chapter, Burnside's 
paqb Theorem, which states that every group of order paqb is solvable. It 
seems interesting that this purely group-theoretic result was not proven 
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without recourse to representation theory for nearly 60 years after Burn­
side's original 1904 proof, and even then the proof (by John Thompson) 
was quite long and complicated. This makes the proof using representation 
theory all the more impressive. A shorter purely group-theoretic proof of 
Burnside's Theorem was finally given by Goldschmidt ("A Group Theoretic 
Proof of the paqb Theorem, for Odd Primes") and Matsuyama ("Solvability 
of Groups of Order 2a pb,,). 

Theorem 6.9 (Burnside's paqb Theorem) Every group of order paqb, 
where p and q are distinct primes, is solvable. 

Proof: Let G be a group of order paqb. We proceed by induction on the 
order of G. First recall that groups of order pa are solvable (Exercise 16(a». 
Choose a nontrivial element x in the center of a q-Sylow subgroup of G. 
Then either x E Z(G) or Con(x) - the conjugacy class of x in G - has 
(positive) prime power order (recall that ICon(x) I is equal to the index 
of the centralizer of x in G). Hence the hypothesis of Proposition 6.8 is 
satisfied, so that G is not simple. The result follows by induction on the 
order of G, together with the standard result from group theory (Exercise 
16b) that if N is a normal subgroup of G with both N and GIN solvable, 
then G is solvable. 0 

Burnside's work originated in the problem of classifying finite simple 
groups, or at least finding restrictions on their orders. Finite simple groups 
have finally been classified, a culmination of decades of work by many 
mathematicians (Note: the proof is so huge, however, that its validity is 
still not wholly clear). Much of the progress in this area has been made 
using techniques of representation theory. Readers who are interested in the 
classification of finite simple groups should take a look at D. Gorenstein's 
book, Finite Simple Groups. 

Exercises 

Representations and Characters 

1. Let X be the character of a representation p. Prove that p is irreducible 
if and only if (X, X) = 1. 

2. Let X be the character of a representation p. Show that the number 
of times that p contains the trivial representation is equal to (X, 1), 
where 1 denotes the character of the trivial representation. 

3. Show that every character of G which is 0 for all 1 f. g EGis an 
integral multiple of the character of the regular representation. 
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4. Prove that a finite group N is abelian if and only if all irreducible 
representations of N have degree 1. Conclude that if N is an abelian 
subgroup of a finite group G then every irreducible representation of 
G has degree :5 IGI/INI· 

5. Let G be a finite group and let p be an irreducible representation of 
G of degree n with character X. 

(a) Prove that Ix(z)1 = n for all z E Z(G), where Z(G) denotes the 
center of G. 

(b) Prove that n2 :5 IGI/IZ(G)I. 

(c) Prove that Z (G) is cyclic if p is faithful. 

6. Let p : G ---+ GL(V) be a representation with character X, and let 
V* denote the dual space of V; that is, V* is the vector space of 
linear functionals on V. For v E V, v' E V*, let (v, v') denote the 
value of the linear functional v' at v. Show that there exists a unique 
representation p* : G ---+ GL(V*) such that 

(p(g)(v),p'(g)(v'» = (v,v') for 9 E G,v E V,v' E V*. 

The representation p' is called the dual representation of p. What 
is the character of the dual representation? 

7. If p : G ---+ GL(V) and p' : G' ---+ GL(V') are representations then 
we may define a representation p® p' : G x G' ---+ G L(V) ® G L(V) ~ 
GL(V ® V') by 

(p x /)(g, g') = p(g) ® p' (g'). 

This representation is called the tensor product of the representa­
tions p and p'. We shall prove that G L(V) ® G L(V) is isomorphic to 
GL(V ® V) in Chapter 8. 

(a) If X, X' and X" are the characters of p, p' and p ® p' respectively, 
show that X"(g,g') = X(g)X'(g') for all (g,g') E G X G'. 

(b) Show that if p and p' are irreducible then p ® p' is irreducible. 

(c) Prove that every irreducible representation of G x G' is isomor­
phic to some representation of the form p ® p', where p and p' are 
irreducible representations of G and G', respectively. This shows that 
the study of representations of a direct product can be reduced to 
the study of the representations of each of its factors. 
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8. When determining the values of the characters of the representations 
of G, it is a useful and common practice to make an array whose 
rows are indexed by these characters and whose columns are indexed 
by the conjugacy classes of G. The entry in the row indexed by the 
character Xi and the column indexed by the conjugacy class Cj is 
Xi(Cj ) (recall that characters are class functions). This table is called 
the character table of G. 

For each of the following groups G, determine the number of irre­
ducible representations of G. Determine the character table of G. 

(a) G = 84 , the symmetric group on 4 letters. 

(b) G = A4, the alternating group on 4 letters. Recall that A4 is the 
subgroup of 84 consisting of the set of even permutations. 

(c) G = {±1, ±i, ±j, ±k}, the multiplicative subgroup of order 8 in 
the quaternions. This is often called the quaternion group. 

(d) G = Dn, the dihedral group of order 2n. Recall that G is the 
group of rotations and reflections of the plane which preserve a regular 
polygon with n vertices. If r denotes a rotation through an angle of 
27r In, and if I (for 'flip') is any single reflection, then G is generated 
by r and I with relations rn = p = 1, Ir I = r- 1. [Hint: The cases 
when n is even or odd are different. Start by constructing the degree 
one and degree two representations.] 

9. (a) Note that D4 and the group Q of quaternions have the same 
character table. Show that D4 and Q are not isomorphic, but the 
group algebras C[D4] and C[Q] are isomorphic. 

(b) Show that the real group algebras R[D4] and R[Q] are not iso­
morphic. 

10. Prove that the number of degree one representations of a group G is 
equal to [G: G'J, where G' denotes the commutator subgroup of G. 
Show how G' can be determined from the character table of G. 

11. (a) Let G be a finite abelian group. Show that every irreducible com­
plex representation of G has degree one. 

(b)How many irreducible complex representations does G have? 

(b) The group of characters of irreducible representations of a finite 
abelian group G is called the character group of G. Prove that G 
is isomorphic to its character group. [Hint : Write G as a product 
of cyclic groups G1 x ... x Gn , where each G i is generated by gi E 
Gi. Show that for any character X as above, the value of X on any 
element of one of Gi is alGi Ith root of unity. Now show that the 
homomorphism I from the character group of G to G defined by 
I(x) = (x(gd,···, X(gn)) is an isomorphism.] 
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Algebraic Integers 

12. Show that any rational number which is an algebraic integer is in fact 
an integer. 

13. Show that the algebraic integers form a ring. More generally, show 
that if A is a sub ring of a commutative ring B, then the set of elements 
of B which are integral over A forms a subring of B. [Hint: Use 
Proposition 6.5] 

Related to Burnside's Theorem 

14. Let G be a group having a faithful irreducible representation of degree 
pa, with a > 0 and p prime, and let X be the character of that 
representation. Suppose Z(G) = 1, and let H be a p-Sylow subgroup 
of G. Prove that X(g) = 0 for alII =f. 9 E Z(H). 

15. Prove that a nonabelian simple group cannot have a nilpotent sub­
group of prime power index. 

16. (a) Prove that any group whose order is a prime power is solvable. 
This begins the induction in Burnside's Theorem. 

(b) Let N be a normal subgroup of a group G. Prove that G is solvable 
if and only if both Nand G / N are solvable. This allows one to use 
induction in the proof of Burnside's Theorem. 
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The Global Dimension of a 
Ring 

There is an invariant of rings called the global dimension. Semisimple rings 
are precisely those rings with global dimension zero. Thus the material in 
Chapters 1 and 2 can be considered the zero'th step in the theory of global 
dimension. Kaplansky, based upon an observation of Schanuel, was the first 
to set down the dimension theory of rings in an elementary way, without 
using the powerful machinery of homological algebra. This section is based 
on his Queen Mary College notes. 

We saw in Chapter 1 that semisimple rings have a nice structure, namely 
they are all products of matrix rings over division rings. Theorem 1.18 
shows that the semisimplicity of a ring R is characterized by the property 
that every (left) R-module is projective; an instance of the phenomenon 
that the structure of a ring is reflected in the structure of modules over 
that ring. One way to measure how far an arbitrary ring R is from being 
semisimple is to determine how far R-modules are from being projective. 
Let us begin, then, with a way of measuring how far a fixed R-module is 
from being projective. 

Definition: Let R be a ring and let M be an R-module. A (finite) pro­
jective resolution is a long exact sequence 

0---+ Pn ---+ ••• ---+ P l ---+ Po ---+ M 

with each Pi a projective R-module. The projective dimension of the 
module M, denoted pd(M), is the least n for which there is a projective 
resolution as above; if no projective resolution for M exists then we set 
pd(M) = 00. Sometimes we denote projective dimension by pdR(M) if 
we wish to emphasize that we are considering the dimension of M as an 
R-module. Projective dimension is sometimes called homological dimen­
sion. 

First note that pd(M) = 0 if and only if M is projective; in this sense 
projective dimension gives a measure of how far a module is from being 
projective. We will see other evidence for this. It is also clear that pd(M) = 
1 if and only if M is not projective but is the quotient of two projective 
modules. 
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To compute the projective dimension of a module M in practice, we need 
some way of telling when we actually have the smallest projective resolution 
of M in hand. It is satisfying and useful that every projective resolution 
of M has the same length, so that any projective resolution of M may be 
used to compute its projective dimension. This follows from the following 

Lemma 7.1 (Scbanuel's Lemma) Let R be a ring and let 

o--M--pLN--O 

O--M'--p'LN--O 

be short exact sequences of R-modules. If P and P' are projective then 
M$P':::::lM'$P. 

Proof: Let L = {(x, x') E P $ P' : f(x) = f'(x')}. Then it is easy to see 
that L is a submodule of P$p' and that the natural projection 71" : L __ P 
is onto; for given pEP, there exists p' E P' with f'(p') = f(p) (since f' 
is onto), and so (p,p') ELand 71"(p,p') = p. Since P is projective, the 
surjective homomorphism 71" : L -- P splits, hence L :::::l ker(71") $ P. But 
note that 

ker(71") = ((O,p') E P $ P' : J'(p') = O} :::::l ker(f') :::::l M' 

and so L :::::l M' $ P. The same argument shows that L :::::l M $ P'. 0 

An easy induction argument using Schanuel's Lemma shows that every 
projective resolution of a module M has the same length, which is pd(M). 
Instead of looking at long exact sequences, one can chop them up into short 
exact sequences to define projective dimension. R-modules M and M' are 
said to be projectively equivalent if there are projective R-modules P 
and P' with M $ P :::::l M' $ P'. It is not difficult to check that this is 
actually an equivalence relation; we denote the equivalence class of M by 
[M]. It follows from Schanuel's Lemma that if 

O __ N __ P __ M---+O 

and 
o -- N' -- p' -- M' ---+ 0 

are short exact sequences with P and P' projective, then [M] = [M'] implies 
[N] = [N']. Now if M is any R-module then we can map a projective R­
module Ponto M with kernel N as above. Defining a map n by n([M]) = 
[N], this discussion shows that n is well-defined. It is easy to check that 
pd(M) is the smallest integer n with nn([M]) = o. 

Note also that if we have an exact sequence 0 -- N ---+ P -- M - 0 
with P projective, then nn([M]) = nn-l([N]) for all n 2: 1. This shows 
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that pd(N) = 0 if pd(M) = 0, pd(M) = 00 if and only if pd(N) = 00, and 
pd(N) = pd(M) -1 if pd(M) > O. 

Examples: 

1. pdF(V) = 0 for any vector space V over a field F, since any such V 
is a free F-module. 

2. H G is an abelian group then pdz (G) = 0 if G is free abelian and 
pdz (G) = 1 if G is not free. The first fact is clear, the second follows 
from the exact sequence 

o --+ Z --+ Z --+ ZjnZ --+ O. 

3. Let p be prime and consider the ring R = Zjp2Z. The annihilator of 
pER is the ideal pR, so we have an exact sequence 

o --+ pR --+ R --+ pR --+ 0 

of R-modules. But pR is not projective, for otherwise p would gen­
erate R. The discussion above shows that "R.([PR]) = [PRJ; hence 
pdR(pR) = 00. 

4. Example 3 immediately generalizes to the following: Let a, b E R 
be such that anneal :;: bR and ann (b) = aR. Then either pd(aR) = 
pd(bR) = 00 or aR(f)bR ~ R as R-modules and pd( aR) = pd(bR) = O. 

5. H {Mi} is any collection of R-modules, thenpd(Ea M i ) = sUp{pd(Mi)}' 

Having a measure of how far a module is from being projective gives a 
natural way of measuring how far a ring is from being semisimple. 

Definition: The (left) global dimension of a ring R, denoted gd(R), is 
defined to be the supremum of the projective dimensions of left R-modules: 

gd(R) = sup{pdR(M) : M a left R-module}. 

Examples: 

1. gd(R) = 0 if and only if R is semisimple. This follows from the fact 
(Theorem 1.18) that R is semisimple if and only if every (left) R­
module is projective; and an R-module M is projective if and only if 
pd(M) = O. 
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2. A ring is said to be a (left) hereditary ring if all of its left ideals 
are projective as R-modules. Hence gd(R) = 1 if and only if R is a 
hereditary ring which is not semisimple. Hereditary rings have been 
studied extensively by ring theorists. For more on hereditary rings, 
see the exercises at the end of this chapter. 

There is an obvious way of defining (right) projective dimension for right 
R-modules, which gives rise to the notion of right global dimension for the 
ring R. Since, by Corollary 1.12, a ring is left semisimple if and only if it 
is right semisimple, we see that a ring has left global dimension zero if and 
only if it has right global dimension zero. This statement does not hold true 
in general, however: there exist rings whose left and right global dimensions 
are not equal (see Exercise 11). In what follows we will always be working 
with left global dimension, although the statements would hold for right 
global dimension as well. 

Lemma 7.2 Let 0 --+ A --+ B --+ C --+ 0 be an exact sequence of R­
modules. If any two of these modules has finite projective dimension, then 
so does the third, in which case 

pd(A) ~ max{pd(B),pd(C)} 
pd(B) ~ max{pd(A) + l,pd(C)} 
pd(C) $ max{pd(A) + l,pd(B) + I} 

Furthermore, ifpd(B) = 1 and pd(C) > 1, then pd(C) = pd(A) + 1. 

Proof: We prove only the first half of the lemma as this is the only part 
which will be needed later; the proof of the second half is left to the reader. 

We induct on the sum of the given two dimensions. If C is projective 
then the sequence splits and B ~ A e C, so [B] = [A] and pd(B) = pd(A). 
If B is projective then 'R([Cn = [A], so that pd(a) ~ c ~ a + 1 and the 
result holds. So suppose that neither B nor C is projective. 

Map a projective module Ponto B with kernel D. Let E be the preim­
age under this map of A ~ B. Note that E is equal to the kernel of the 
epimorphism P --+ B --+ C, and that D and E are projective. It is easy 
to check that the sequences 

O--+D--+P--+B--+O 

O--+E--+P--+C--+O 

O--+D--+E--+A--+O 

are exact. Since pd(B) =F 0 and pd(C) =F 0 we have that pd(D) = pd(B)-1 
and pd(E) = pd(C) - 1, so that at least two of the modules in the third 
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exact sequence above have finite projective dimensions whose sum is less 
than the sum in the original sequence. The result follows by induction: for 
example pd(E) ::; max{pd(D) + 1,pd(A)} implies that pd(C) ::; {pd(B) + 
1,pd(A) + 1}; the other two inequalities follow similarly. 0 

The following proposition is due to Kaplansky. 

Proposition 7.3 Let R be a ring and let a E R be an element in the 
center of R which is not a zero-divisor. If M is a nonzero R/(a)-module 
then pdR(M) = pdR/(a)(M) + 1. 

Proof: We induct on n = pdR/(a)(M). If n = 0 then M is a projective 
R/(a)-module, hence a direct summand of some free R/(a)-module N. 
Since (a) is a free R-module and is not a direct summand of R, we have 
PdR(R/(a)) = 1 and pdR(N) = 1; hence pdR(M) ::; 1. To show that M is 
not a projective R-module, note that a acts faithfully on any free R-module, 
and thus on any non-zero projective R-module. 

Now assume n > 0, and map a free R/(a)-module N onto M to form 

O-L-N-M-O. 

Then L # 0 and pdR/(a)(L) = n - 1, so pdR(L) = n by induction. Also 
note that pdR(N) = 1. It follows from Lemma 7.2 that pdR(M) ::; n + 1, 
with equality if n > 1. If n = 1 write M = P/Q for R-modules P and Q 
with P projective. Then we have the following exact sequences of R/(a)­
modules (note that aM = 0 so aP ~ Q): 

0- Q/aP - P/aP - M - 0 

0- aP/aQ - Q/aQ - Q/aP - o. 

Since P/aP is a projective R/(a)-module and since n = 1, we have 
that Q/ Pa is a projective R/(a)-module, so the second exact sequence 
splits. Thus M ~ aP/aQ is a direct summand of Q/aQ, which is therefore 
not projective. Hence Q is not a projective R-module, and pdR(M) > 1, 
completing the proof. 0 

An immediate consequence of Proposition 7.3 is the following 

Corollary 7.4 Let R be a ring and let a E R be an element in the center 
of R which is not a zero-divisor. If gd( R/ (a)) = n < 00 then gd( R) ~ n + 1. 

Corollary 7.4 can be used to help compute the global dimension of a 
polynomial ring in terms of the global dimension of its ring of coefficients. 
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Theorem 7.5 Let R[x] be the polynomial ring over the ring R. Then 
gd(R[x]) = gd(R) + 1. 

Proof: We give the argument for gd(R) < OOj the case gd(R) = 00 is 
not much different and is left to the reader. It follows immediately from 
Corollary 7.4 that gd(R[x]) ;::: gd(R) + 1. 

We now show that the inequality also goes in the reverse direction; that 
is, pdR[x](M) ~ pdR(M) + 1 for every R-module M. The first thing to note 
is that PdR(M) = pdR[x] {R[x] ®R M). One direction follows from the fact 
that R[x] ® M is a projective R-module if M is a projective R-module, 
which is easy to see since the same statement clearly holds for free modules 
and since direct sums distribute through tensor products. Conversely, if 
R[xl ® M is R[xl-projective, then R[x] ® M is a direct summand of some 
free R[x]-module, which is also a free R-modulej hence R[x] ® M is R­
projective. But as an R-module, R[x1 ® M is just a sum of copies of M, so 
Mis R-projective. It follows that pdR(M) = pdR[x) (R[xj ®R M). 

Now R[x1 acts on both R[x1 and M. Taking the difference of these two 
actions gives a map 

'I/J : R[x] ® M ...-- R[x] ® M 

Lxi ® mi ...... L(xi+l ® mi - Xi ® xmi). 
i 

Let J.l : R[x]®M ...-- M be the multiplication map induced by J.l(f®m) = 
1m. Then there is an exact sequence of R[x]-modules 

o ~ R[x] ® M ~ R[xl ® M ~ M ...-- O. 

Lemma 7.2 then implies that pdR[x](M) ~ pdR(x](R[x] ® M) + 1 = 
pdR(M) + 1. 0 

An immediate corollary is the famous 

Corollary 7.6 (Hilbert Syzygy Theorem) Let k[Xb . .. ,xnl be a poly­
nomial ring in n variables over a field k. Then gd(k[Xl" .. ,xn]) = n. 

Exercises 

1. Use Schanuel's Lemma to show that every projective resolution of an 
R-module has the same length. 

2. (a) Recall that two R-modules M and M' are called projectively 
equivalent if there are projective R-modules P and pI with M ffiP ::::::: 
M' ffi P'. Show that this is an equivalence relation. 

(b) With the notation as on page 178, show that pd( M) is the smallest 
integer n with 'Rn([M)) = O. 
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3. State and prove a dual version to Schanuel's Lemma. 

4. Let a, bE R be such that ann (a) = bR and ann (b) = aR. Show that 
either pd(aR) = pd(bR) = 00 or aR Ef) bR ::::: R as R-modules and 
pd(aR) = pd(bR) = O. 

5. Show that if {Mi} is any collection of R-modules, then pd( €a Mi ) = 
8up{pd(Mi)}' 

6. Prove the second half of Lemma 7.2. 

7. Let R be a commutative ring, M an R-module, and A a free R­
algebra. Show that the projective dimension of M as an R-module is 
equal to the projective dimension of M as an A-module. 

8. Prove that gd(Mn(R)) = gd(R) for any ring R. 

9. (D.E. Cohen) Let S be a subring of R such that S is a direct summand 
of R as an R-S bimodule. Prove that gd(S) ::; gd(R)+pds(R). In par­
ticular, if R is projective as ans S-module then gd(S) ::; gd(R). [Hint: 
If M is an S-module, first show that pd(M) ::; pd(Homs(R, M)).} 

10. (a) Let R[x, X-I} be the ring of Laurent series over the ring R. What 
is the relationship between gd(R[x,X-lJ) and gd(R)? Prove it. 

(b) Use part (a) to derive a result for Laurent series in many variables 
which is analogous to the Hilbert Syzygy Theorem. 

11. (Small) Let R be the ring of matrices [~ ~] with a E Z, b, CEQ. 

Show that R has left global dimension 1 but right global dimension 
2. 

Remark: In fact, Jategaonkar proved that if 1 ::; m < n ::; 00, then 
there exists a ring R with left global dimension m and right global 
dimension n. See his paper "A counter-example in ring theory and 
homological algebra", J. Algebra 12 (1969), pp.418-440. 

12. Show that semisimple rings, principal ideal domains, and the ring of 
upper triangular matrices of a division ring are hereditary. 

13. (Cartan-Eilenberg) 

(a) Show that if R is a hereditary ring, then every submodule of a 
free R-module is isomorphic to a direct sum of (left) ideals. 

(b) Prove that a ring R is hereditary if and only if every submodule 
of a projective R-module is projective. 

(c) Prove that a ring R is hereditary if and only if every quotient 
module of an injective R-module is injective. 
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The Brauer Group of a 
Commutative Ring 

An absolutely natural impulse in virtually all of algebra is to 
do for commutative rings what has already been done for fields. 

D. Zelinsky 

The Brauer group Br(R) of a commutative ring was introduced by Aus­
lander and Goldman in their 1960 paper The Brauer Group of a Commuta­
tive Ring, building on earlier work of Azumaya. This group coincides with 
the "classical" Brauer group (cf. Chapter 4) in the case when R is a field. 
One of the points of extending the theory to rings is that one can relate 
Brauer groups of fields to Brauer groups of related rings in exact sequences; 
one then hopes that this will help compute the classical Brauer group. The 
Brauer group of a commutative ring is also part of a Galois theory of com­
mutative rings. For more on these matters, the reader may consult Galois 
Theory and Cohomology of Commutative Rings by Chase, Harrison and 
Rosenberg, The Brauer Group of Commutative Rings by Orzech and Smal­
l, Separable Algebras Over Commutative Rings by DeMeyer and Ingraham, 
or the paper of Auslander and Goldman quoted above. 

Henceforth, unless otherwise specified, R will denote a commutative ring 
and all (unlabeled) tensoring will be done over R. 

Azumaya Algebras 

In this section we introduce the notion of Azumaya algebra over a commu­
tative ring, which generalizes the notion of central simple algebra over a 
field. Just as in the case of fields, these objects will be central to our study; 
in particular we will form a group out of the set of (equivalence classes of) 
Azumaya algebras over a fixed ring R. 

Definition: Let A be an R-algebra. Let Ae = A ®R AO, where AO denotes 
the opposite algebra of A. The R-algebra Ae is called the enveloping 
algebra of A. 

There is a natural homomorphism 1/J : Ae - EndR(A) defined by 
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t/J(a ® o:)(y) = ayo: 

extended linearly. Recall from Chapter 0, Exercise 28 that there is a one­
to-one correspondence between left Ae-modules and A-A bimodules. 

Definition: An R-module A is said to be faithfully projective if A is 
finitely generated, projective and faithful as an R-module. An R-algebra A 
is called an Azumaya algebra if the following two conditions hold: 

1. A is a faithfully projective R-module. 

2. The map t/J : Ae ---.. EndR(A) defined above is an isomorphism. 

Example: If k is a field then a (finite dimensional) k-algebra A is an 
Azumaya algebra if and only if A is central simple. For suppose that A 
is central simple. Then A is faithfully projective since k is a field, and 
Proposition 3.12 shows that condition (2) above is satisfied. Hence any 
central simple algebra over a field is an Azumaya algebra. 

Conversely, if A is an Azumaya k-algebra, then A ~ kn as k-modules for 
some n since A is faithfully projective. From this fact and condition (2) in 
the definition of Azumaya algebra we see that 

so that Ae is a central simple k-algebra. But for any k-algebras A and B, 
both A and B are central simple if A ® B is central simple; hence A is 
central simple since Ae ~ A ® AO is central simple. 

We will see other examples of Azumaya algebras later. 
Theorems about endomorphism algebras of projective R-modules can 

often be reduced to similar questions about endomorphism algebras of free 
R-modules, a fact which we shall often exploit. Hence we begin with a 
proposition describing the behavior of matrix algebras under the tensor 
product. 

Proposition 8.1 Let R be a commutative ring. Then 

1. Mm(R) ® Mn(R) ~ Mmn{R}. 

2. The map w : EndR(Rm)®EndR(Rn) --+ EndR(nm®nn) defined by 
w(f ® g) = f ® 9 extended linearly is an isomorphism of R-algebras. 
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Proof: Let {el,' .. , em} be a basis for Rm and let {h,·· . , In} be a basis for Rn. Then Rm (8) Rn has basis {ei (8) I; : 1 :::; i :::; m, 1 :::; j :::; n}. Let 
Eij E EndR(Rm) and Fkl E EndR(Rn) be defined by 

Fkl(fs) = {jksit, 1:::; k,l,s:::; n 

where {jir equals 1 when i = r and is 0 when i i= r. Then {Eij : 1 :::; i, j :::; m} 
is an R-algebra basis for EndR(Rm) and {Fkl : 1 :::; k, I:::; n} is an R-algebra 
basis for EndR(Rn), so that {Eij (8) Fkl : 1 :::; i,j :::; m; 1 :::; k, I :::; n} is an 
R-algebra basis for EndR(Rm) (8) EndR(Rn). 

Let hE EndR(Rm (8) Rn) be given. Then 

h(ei (8) 1;) = L hik,jlek (8) II 
k,1 

for some hik,jI E R. Let h' = Lk,1 hik,jIEik (8) Fjl. Then it is easy to check that W(h') = h; hence w is surjective. To show that w is injective, first note 
that any element h E EndR(Rm) (8) EndR(Rn) can be written uniquely as 
h = Li,j,k,l hij,klEij (8) Fkl. We now compute 

= L:j,l hITj,Tlej (8) fI. 

If w(h) = 0 then w(h)(eIT (8) IT) = 0 for each (1,T. Since {ej (8) It} forms 
a basis for Rm (8) Rn, the above computation implies that hITj,Tl = 0 for all 
(1, T,j, I; hence h = O. 0 

A more general version of Proposition 8.1 is given in Exercise 2. 
Recall from Exercise 10 of Chapter 0 that if E1, ... , En, Fl. ... , Fm are 

any R-modules and q,: E1 EB··· EB En ~ Fl EB··· EB Fm is a R-module ho­
momorphism, then q, can be represented by a unique matrix 

[ 
q,u 

M(q,) = : 
, q,ml 

where q,ij E HomR(Ej , Fi). In particular, for R-modules M and N, there 
are homomorphisms 
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I~ [~ ~] 

Notice that j oi is the identity, so that i is injective and j is surjective. We 
shall use this observation several times in what follows. The recurring theme 
will be that projective modules are direct summands of free modules, whose 
endomorphism algebras we understand quite well, so we should be able to 
use the above maps to tell us something about endomorphism algebras of 
projective modules. We begin with a useful illustration of this idea. 

Proposition 8.2 II P and Q are finitely generated projective R-modules 
then the map w : EndR(P) ® EndR(Q) ---+ EndR(P ® Q) defined by 
w(J ® g) = I ® 9 extended linearly is an isomorphism. 

Proof: As P and Q are finitely generated projective R-modules, we can 
choose R-modules pI and Q' with P EB pI ~ Rn and Q EB Q' ~ Rm. We 
then have the the following commutative diagram: 

EndR(P)®EndR(Q) 
w 

... EndR(P®Q) 

i j 1i i' j 1j' 
EndR (P$ P') ® EndR (Q $ Q') EndR«P$P')®(Q$Q'» 

~j 
w' 

j~ 
EndR(Rn)®EndR(R m ) ... EndR(Rn®R m ) 

where the homomorphism i and its splitting homomorphism j are induced 
by the inclusions P <-+ P EB pI and Q <-+ Q EB Q/, as discussed above; 
similarly i' and j' are induced by these inclusions. The bottom right-hand 
side isomorphism comes from the fact that 

(P EB PI) ® (Q ® Q') ~ (P ® Q) EB (P ® Q') EB (PI ® Q) EB (PI ® Q') 



Azumaya Algebras 189 

and since P EB pI ~ Rn and Q EB Q' ~ Rm. Note that the diagram above 
commutes, including the splitting maps. Since w' is an isomorphism by 
Proposition 8.1, it follows that w is an isomorphism. 0 

Just as matrix algebras with entries in a field k played an important role 
in the study of Br(k) (namely, these are precisely the algebras representing 
[kJ = 1 E Br(k)), so shall EndR(P) for faithfully projective R-modules P 
play an important role in Br(R). The first basic fact about these endomor­
phism algebras is that they are Azumaya algebras. 

Proposition 8.3 If P is a faithfully projective R-module then EndR(P) 
is an Azumaya R-algebra. 

Proof: Since P is a finitely generated projective R-module, there is an 
R-module Q with P EB Q ~ R n for some n. Hence EndR(P EB Q) ~ 
EndR(Rn) ~ Mn(R) ~ Rn2 as R-modules, so that EndR(P EB Q) is free. 
But by the discussion on page 187, there are homomorphisms EndR(P) ---+ 

EndR(P EB Q) ~ EndR(P) whose composition is the identity; hence 
EndR(P) is finitely generated projective. If r E R annihilated EndR(P), 
then in particular it would annihilate the identity map 1 E EndR(P), 
whence it would annihilate P. Since P is a faithful R-module, this shows 
that EndR(P) is a faithful R-module. 

It is left to prove that EndR(P) satisfies condition (2) in the definition 
of Azumaya algebra. Let Q be as above, so that P EB Q ~ Rn. Then it is 
not difficult to check that the following diagram commutes: 

where, as always, the vertical maps and their splittings are induced by 
the inclusion P ~ P EB Q, and the horizontal homomorphisms are as in 
condition (2) of the definition of Azumaya algebra. Hence to show that '¢P 
is an isomorphism it suffices to show that '¢ PffiQ is an isomorphism. 

Let {ell ... , en} be a basis for the free R-algebra P EB Q ~ Rn, and let 
Eij E EndR(Rn) be defined by Eij(ek) = Dikej. Then {Eij : 1 :S i,j :S n} 
is an R-algebra basis for EndR(Rn), and {Eij0Ekl : 1 ~ i,j, k,l:S n} is an 
R-algebra basis for EndR(Rn) 0 EndR(Rn)o. We also have, by definition 
of '¢ PffiQ, that 
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1/JpffJQ(Eij ® Ekl)(Eet ) = EijEstEkl = DjsDtkEi/. 

From this it is easy to check that 1/JPffJQ is an isomorphism. 0 

The Brauer group of a commutative ring R will consist of (equivalence 
classes of) Azumaya algebras over R with the tensor product as the group 
operation. The following proposition will help show that the group is close 
under this operation. 

Proposition 8.4 If A and B are Azumaya algebms then A ® B is an 
Azumaya algebm. 

Proof: We leave as an exercise for the reader the fact that A®B is faithfully 
projective if both A and B are faithfully projective (Exercise 3). 

Now let tPA®B : (A ® B)e --t EndR(A ® B) be the homomorphism 
defined in condition (2) of the definition of Azumaya algebra. Then the 
following diagram is commutative: 

cP 
Ends(A®R S ) EndR(A)®RS • 

1 1 cp' 1 1 
EndR(R")®RS • Ends(R"®RS) 

Here tPA : A ®R AO --t EndR(A) denotes the isomorphism coming from 
the fact that A is Azumaya (similarly for 1/JB), w is the isomorphism given 
by Proposition 8.1, and the left side vertical isomorphism comes from the 
commutativity of the tensor product and the fact that (A®B)O ~ AO ®Bo. 
This shows tliat tP A®B is an isomorphism. Hence A ® B is an Azumaya R­
algebra. 0 

A subject intimately connected with Azumaya algebras is that of Poly­
nomial Identity Rings. An explanation of this relationship can be found in 
L. Rowen, Ring Theory, Vol. II, Chapter 6. 

Constructing the Brauer group 

In this section we define the Brauer group of a commutative ring and prove 
that Br( ) is functorial. 
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In our study of the Brauer group of a commutative ring, we will introduce 
an equivalence relation on the set of Azumaya algebras over that ring, just 
as in the case for fields. More precisely, we make the following 

Definition: Let A and B be Azumaya algebras over R. We write A "" B 
if there exist faithfully projective R-modules P and Q such that A 0R 
EndR(P) ~ B 0R EndR(Q). 

Note that in the case when R is a field, "" is precisely the equivalence 
relation on central simple algebras over R which was introduced in Chapter 
4 on page 110. The equivalence classes of central simple R-algebras under 
that relation form the elements of the Brauer group Br(R) of the field R. 

Proposition 8.2 can be used to show that '" is indeed an equivalence 
relation. The only thing to check is transitivity, so suppose that A rv Band 
B '" C for Azumaya algebras A, B, Cover R. Then there exist faithfully 
projective R-modules P, pI, Q, Q' with 

This implies that 

A 0 EndR(P) ~ B 0 EndR(Q) 

B 0 EndR(P') ~ C 0 EndR(Q'). 

A 0 EndR(P 0 PI) ~ A 0 EndR(P) 0 EndR(P') 

~ B 0 EndR(Q) 0 EndR(P') 

~ B 0 EndR(P') 0 EndR(Q) 

~ C 0 EndR(Q') 0 EndR(Q) 

~ C 0 EndR(Q' 0 Q) 

with P 0 P' and Q' 0 Q faithfully projective since P, pI, Q, Q' are faithfully 
projective (Exercise 3); hence A '" C. 

With this equivalence relation we are now ready to construct the Brauer 
group. 

Definition: We denote by [A] the equivalence class of the Azumaya R­
algebra A under the equivalence relation "'. We define the Brauer group of 
a commutative ring R, denoted by Br( R), as the set of equivalence classes 
of Azumaya R-algebras, with the tensor product as the group operation 
and with [RJ acting as the identity element. 

Recall from Proposition 8.3 that EndR(P) is an Azumaya algebra for 
any faithfully projective R-module P. Also note that [EndR(P)] = [R] = 
1 E Br(R) by definition of "". 
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Collecting the above observations together with the propositions of the 
previous sections, we now show that Br(R) is indeed a group. 

Theorem 8.5 Br(R) with multiplication defined by [A]_ [B] = [A ® B] is 
an abelian group. 

Proof: It is easy to check that if A '" A' and B '" B' for Azumaya algebras 
A, A', B, B' then A ® B '" A' ® B' (Exercise 5). Since it is also true that 
A ® B is an Azumaya algebra if both A and B are (Proposition 8.4), we see 
that ® gives a well-defined multiplication on the set of equivalence class­
es of Azumaya R-algebras. This multiplication is clearly associative and 
commutative. [R] = [EndR(P)] for P faithfully projective acts as identity 
element by definition of "'. Finally, if A is Azumaya then so is A 0 , and 

[A]_ [AO] = [A ® AO] = [EndR(A)] = 1 E Br(R) 

so that [AO] is the inverse of [A] in Br(R). 0 

Homomorphisms and Functoriality 

Just as we saw in the case of fields, homomorphisms between Brauer group­
s can be just as important as the Brauer groups themselves. We shall 
now prove that BrO is a (covariant) functor from the category of com­
mutative rings and ring homomorphisms to the category of abelian groups 
and group homomorphisms. For those not familiar with these terms from 
category theory, this can be phrased as saying that to each commutative 
ring R there is an associated group Br(R), and to each homomorphism 
f : R ~ S of commutative rings there is an associated homomorphism 
BrU) : Br(R) ~ Br(S) of abelian groups, so that 

1. If 9 : S ~ T is another homomorphism of commutative rings then 
Br(g 0 f) = Br(g) 0 BrU), and 

2. If f : R ~ R is the identity homomorphism then BrU) : Br(R) ~ 
Br(R) is the identity homomorphism. 

So suppose that f : R ~ S is a homomorphism of commutative rings. 
Then S becomes a commutative R-algebra via 

r·s = f(r)s. 

If A is an R-algebra then A ®R S is an S-algebra. An obvious candidate 
for BrU) is 

BrU) : Br(R) ~ Br(S) 
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[A] 1-+ [A ®R S] 

Before proving that BrU) is well-defined we shall need the following two 
lemmas, which relate certain tensor products over R to others over S. 

Lemma 8.6 If A and B are R-algebms and if S is a commutative R­
algebm then (A ®R S) ®s (B ®R S) Ri (A ®R B) ®R S as S-algebras. 

Proof: We leave as an exercise (Exercise 7) to the reader the fact that the 
map defined by 

(A ®R S) ®s (B ®R S) -+ (A ®R B) ®R S 

(a ® s) ® (b ® s') 1-+ (a ® b) ® ss' 

extended linearly is an isomorphism. 0 

Lemma 8.7 If A is a faithfully projective R-algebra and S is a commuta­
tive R-algebm then EndR(A) ®R S Ri Ends (A ®R S). 

Proof: 
We define a homomorphism 1/>: EndR(A) ®R S -+ Ends(A ®R S) by 

I/>{f ® s)(a ® s') = f(a) ® ss' 

extended linearly, where f E EndR(A), a E A, and s, s' E S. As A is a 
faithfully projective R-module, there exists an R-module B with A EB B Ri 

Rn. We then have the following commutative diagram : 

EndR(A)®RS 
c/J 

• Ends(A®RS) 

I 1 c/J' I 1 
EndR(R")®RS .. Ends(R" ®RS) 

where the vertical maps are induced by the inclusion A "--+ A EB B as dis­
cussed on page 187, and 1/>' is defined by 

I/>'{f ® s)(v ® s') = f(v) ® SS' 

extended linearly, where f E EndR(Rn), vERn, and s, s' E S. Since the 
above diagram (including the splitting maps) commutes, it suffices to show 
that 1/>' is an isomorphism. 

Let {el, . .. , en} be an R-algebra basis for A EB B ~ Rn, so that {ei ® 1 } 
is an S-algebra basis for (A EEl B) ®R S ~ R n ®R S. Let Eij E EndR(Rn) 
be defined, as always, by 
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Eij(ek) = bikej, 1:5 i,j :5 n 

so that {Eij} is an R-algebra basis for EndR(Rn). To show that <p' is onto, 
let h E Ends(Rn ® S) be given. Then h(ei ® 1) = Lj ej ® Sij for some 
Sij E S. For each i, 

= h(ei ® 1). 

Since {ei ® 1} forms an S-algebra basis for Rn ® S and since elements of 
Ends(Rn ® S) are determined uniquely by their value on a basis, we see 
that <p' is onto. 

To show that <p' is one-to-one, first note that any element hE EndR(Rn)® 
S can be written uniquely as 

h = I: Eij ® Sij 
i,j 

with Sij E S. Then <p'(h)(ei ® 1) = Lj Tj ®Sij' If <p'(h) = 0, then <p'(h)(ei ® 
1) = 0 for each i, so that Lj Sij(ej ® 1) = Lj Tj ® Sij = O. Since {ej ® 1} 
forms a basis for Rn ® S, this implies that Sij = 0 for each j and for each 
i. Hence h = 0 and we are done. 0 

To show that BTU) is well-defined we must first show that the operation 
of tensoring with S (over R) takes Azumaya R-algebras to Azumaya S­
algebras. 

Lemma 8.8 If A is an Azumaya R-algebra and S is a commutative R­
algebra then A ® R S is an Azumaya S -algebra. 

Proof: We leave as an exercise (Exercise 4) the fact that if A is a faithfully 
projective R-algebra and S is a commutative R-algebra then A ® R S is 
a faithfully projective S-algebra. To prove that condition (2) in the def­
inition of Azumaya algebra holds, we note that the following diagram is 
commutative: 

(A®RS)®s(A®RS)O 'IIA®s 
EndR(A®RS) .. 

~l 
'IIA ® Is 

¢ 1 ~ 
(A®RAO)®R S ~ EndR(A)®S 

z 
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where 1/JA : A ®R AO -- EndR(A) is the isomorphism coming from the 
fact that A is an Azumaya R-algebra, </> is the isomorphism coming from 
Lemma 8.7, and the left-side vertical isomorphism comes from Lemma 8.6. 
Hence 1/J A®S is an isomorphism. 0 

With these lemmas it is now possible to prove that BrO is a functor. 

Theorem 8.9 BrO is a functor from the category of commutative rings 
and ring homomorphisms to the category of abelian groups and group ho­
momorphisms. 

Proof: Let f : R -- S be a homomorphism of commutative rings. 
By Lemma 8.8 we have that the operation of tensoring with S (over R) 
takes Azumaya R-algebras to Azumaya S-algebras. To prove that Br(f) 
is well-defined we must check that Br(f) preserves the equivalence re­
lation f'V. So suppose that A and Bare R-algebras with A f'V B, say 
A®REndR(P) ~ B®REndR(Q) for some faithfully projective R-modules 
P and Q. Tensoring both sides by ® RS gives 

(A ®R EndR(P)) ®R S ~ (B ®R EndR(Q)) ®R S 

and by an application of Lemma 8.6 this gives 

(A ®R S) ®s (EndR(P) ®R S) ~ (B ®R S) ®s (EndR(Q) ®R S). 

Since, by Lemma 8.7, EndR(P)®RS ~ Ends(P®RS) and EndR(Q)®R 
S ~ Ends(Q ®R S), it follows that 

(A ®R S) ®s Ends(P ®R S) ~ (B ®R S) ®s Ends(Q ®R S). 

Since P ®R Sand Q ®R S are faithfully projective S-modules, this says 
that (A®RS) f'V (B®RS) as S-algebras, so that Br(f) : Br(R) __ Br(S) 
is well-defined. Furthermore, for Azumaya R-algebras A and B we have 

Br(f)([A]- [B]) = Br(f)([A ®R B]) 
= [(A®RB)®RS] 
= [(A ®R S) ®s (B ®R S)] by Lemma 8.6 
= [A®RS]- [B®RS] 
= Br(f)([A]) - Br(f)([B]) 

so that Br(f) is a group homomorphism. It is now trivial to verify that 
Br(f) is a functor. 0 

The fact that BrO is a functor may be used to relate Brauer groups of 
various rings and fields. We list a few examples, followed by references for 
their proofs. 
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Examples: 

1. If R is the ring of algebraic integers in a (finite) algebraic number 
field, then Br(R) is a direct product of cyclic groups of order 2. A 
special case of this theorem implies that Br(Z) = O. 

2. If I is an ideal in the commutative ring R, then the canonical ho­
momorphism R -- Rj I induces a homomorphism of Brauer groups 
Br(R) -- Br(R/ I). This homomorphism is an isomorphism when­
ever I is a nilpotent ideal, or when R is a complete local ring with 
maximal ideal I. 

3. If R is an integral domain with field of fractions k, then the homo­
morphism Br(R) -- Br(k) induced by the inclusion R '-+ k is often 
one-to-one. This happens, for example, when R is a regular domain. 
The homomorphism from Br(R) to Br(k) is rarely onto; for example 
Br(Z) = 0 but Br(Q) to. 

4. If R is any ring we have homomorphisms 

R~R[xl~R 

where R[x] denotes the ring of polynomials in one variable over R, i 
denotes the inclusion homomorphism, and j : R[x] -- R is the R­
homomorphism determined by j(x) = O. Note that joi is the identity. 
If R is commutative, this sequence induces homomorphisms 

Br(R) B.!.S!) Br(R[x]) ~) Br(R) 

with Br(j)oBr(i) the identity by functoriality. In particular, Br(i) is 
injective, Br(j) is surjective, and Br(R[x]) is the direct sum of Br(R) 
and kernel(Br(j)). When R is a field, Br(i) is an isomorphism if and 
only if R is perfect. 

These and other examples are discussed in D. Zelinsky's survey article 
"Brauer Groups" . Their proofs are beyond the scope of this book; the proof 
of Example 1 can be found in Grothendieck, "Le Groupe de Brauer, I, II, 
III", while the proofs of Examples 2,3, and 4 can be found in Auslander 
and Goldman, "The Brauer Group of a Commutative Ring" . 

Exercises 

1. An algebra A over a commutative ring R is called central if Z(A) = 
R. The goal of this exercise is to prove that Azumaya algebras are 
central. 
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(a) Prove that any idempotent finitely generated ideal of a commu­
tative ring R is principal. 

(b) If M is any R-module, let 

TR(M) = {Lfi(mi): hE HamR(M,R),mi E M} 
i 

Then TR(M) is a two-sided ideal of R, called the trace ideal of M. 
Show that the trace ideal of any faithfully projective R-module is all 
of R. 

(c) Prove that if A is a faithfully projective R-algebra, and if we 
identify R with the image of the algebra-structure map R --t A, 
then R is an R-module direct summand of A. [Hint: Apply part (b) 
to 1 E R.] 
(d) Suppose that A is an R-algebra which is faithfully projective as 
an R-module and faithful as an Ae-module. Prove that A is central. 
Conclude that Azumaya algebras are central. [Hint : Let A = R EEl P 
be the splitting given by part (c). Since R is central in A, it will suffice 
to show that any nonzero element of P is not central. Prove that, for 
any PEP, 1 ® p and p ® 1 are distinct in A e. Now show that this 
implies that p is not centraL] 

2. Generalize Proposition 8.1 as follows: Let R be a commutative ring. 
Show that the natural map 

is an isomporphism for any positive integers m, n, m', n'. 

3. (a) Show that if M and N are finitely generated R-modules, then 
M ® N is a finitely generated R-module. 

(b) Show that if M and N are projective R-modules then M ® N is 
a projective R-module. 

(c) Give an example to show that the tensor product of two faithful 
R-modules is not necessarily faithful. Show that if M and N are 
faithfully projective R-modules then M ® N is a faithfully projective 
R-module. 

4. Let S be a commutative R-algebra. 

(a) Show that if A is a finitely generated R-module then A ®R S is a 
finitely generated S-module. 

(b) Show that if A is a projective R-module then A® RS is a projective 
S-module. 
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(c) Give an example to show that, even if A is a faithful R-module, 
A 0R S may not be a faithful S-module. [Hint: Look at the ring of 
continuous, real-valued functions on the unit interval, and the ideal 
of functions which are zero in some neighborhood of 0.] Show that 
if A is a faithfully projective R-module then A 0R S is a faithfully 
projective S-module. 

5. Prove that if A "" A' and B "" B' for Azumaya algebras A, A', B, B' 
then A 0 B '" A' 0 B'. 

6. (a) Prove that [A] = [RJ = 1 in Br(R) if and only if A ~ EndR{P) 
for some faithfully projective R-module P. 

(b) Prove that [A] = [B] in Br(R) if and only if A0RBo ~ EndR(P) 
for some faithfully projective R-module P. 

7. Prove Lemma 8.6; that is, if A is an R-algebra and S is a commutative 
R-algebra then the map defined by 

(A 0R S) 0s (B 0R S) -+ (A 0R B) 0R S 

(a0s) 0 (b08') 1-+ (a0b) 08S' 

extended linearly is an isomorphism. 

8. Verify that BrO is a functor. 

9. Show that there is no subring A of the real quaternions H such that: 
A is free of rank 4 over Z; A 0Z R = H (Le., A contains a basis 
for Hover R); and A is an Azumaya algebra over Z. In particular, 
the Z-algebra of "integer quaternions" , Le. the set of real quaternions 
with integer coordinates, is not an Azumaya algebra over Z. [Hint: 
Tensor with Zj2Z and use exercise 1.] 

10. (a) Let R be a commutative ring in which 2 is invertible. Define the 
quaternions Q over R as follows: Q is a free R-module with basis 
l,i,j,k and multiplication satisfying i 2 = P = k2 = -l,ij = k = 
-ji. Show that Q is an Azumaya R-algebra. What can you say about 
the order of [Q] in Br(R)? 
(b) Let R be as in part (a), and let a and b be units in R. define the 

generalized quaternion algebra (aRb) to be the free R-algebra with 

basis {l,i,j,k} satisfying i 2 = a,p = b,ij = -ji = k. Show that 

( aRb) is an Azumaya algebra. 



Part III 

Supplementary Exercises 
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1. Let k be a field, and let R be a k-subalgebra of Mn(k) with the 
property that every simple R-module is a k-space of dimension one. 
Show that there is an invertible matrix u E Mn (k) such that all 
elements of uRu-1 are upper triangular matrices. [Hint: Look at a 
composition series of R as a left R-module.] 

2. (a) Let A be a finite-dimensional algebra over a field. Show that if 
a E A, then either a has a two-sided inverse in A or there exists b =f- 0 
in A such that ab = 0 = ba; in particular, if A is an integral domain, 
then it is a division ring. [Hint: Use the "minimal polynomial" of a.] 
(b) Give an example of a ring R and an element a E R that has a left 
inverse but no right inverse. 

The Ore Condition and the Construction of Division Rings 
of Fractions 
One common way of constructing fields is to take the field of frac­
tions of a commutative integral domain, a process exactly like that of 
constructing the field of rational numbers from the ring of integers. 
There is an analogous process in the noncommutative case, whereby 
one may construct the "division ring of fractions" from a (not nec­
essarily commutative) integral domain. This construction does not 
work for every integral domain, but in the 1940's, O. Ore gave a pre­
cise condition on an integral domain which tells when the division 
ring of fractions may be constructed. This provides us with many 
more examples of division rings, one of the basic objects of study in 
this book. 

3. Let us begin with the easier case of constructing the field of fractions 
of a commutative integral domain R. Let S = {(a, b) : a, b E R, b =f­
O}, and define an equivalence relation '" on S by setting (a, b) '" 
(a',b') if ab' = a'b. Denote the equivalence class of (a, b) by a/b. 
Show that setting 

alb + c/d = (ad + bc)/bd 

and 
a/b· c/d = ac/bd 

is well-defined and makes the set of equivalence classes in S into a 
field containing R. Show that this field is the smallest field containing 
R. 

4. (a) Now let us generalize the construction of the field of fractions 
to the case of an integral domain R which is not necessarily com­
mutative. R is said to satisfy the right Ore condition if for al­
l a, b E R, both nonzero, there exist a', b' E R (both nonzero) so 
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that aa' = bb'; that is, a and b have a common right multiple. Let 
S = {(a, b) : a, bE R, b =1= a}, and define an equivalence relation", on 
S by setting (a, b) '" (e, d) if ab' = cd', where bb' = dd' via the Ore 
condition. Show that this is an equivalence relation. Let D be the set 
of equivalence classes in S. Define an addition by 

alb + eld = (ab' + ed')lbb' 

where bb' = dd' via the Ore condition, and define a multiplication by 

alb. eld = ab'lde' 

where bb' = ee' via the Ore condition. Show that these operations are 
well-defined, and that they make D into a division algebra containing 
R. 

(b) Prove a universal mapping property for R with respect to D. 
Conversely to the above, show that any ring which has a division 
ring of fractions must satisfy the right Ore condition. 

(c) Give the definition of left Ore condition, and mentally go through 
this exercise again for rings satisfying the left Ore condition. 

5. Let D be a division algebra. 

(a) Show that D[x] satisfies both the right and left Ore condition. In 
fact, show that a ring R satisfies the (right) Ore condition if and only 
if the polynomial ring R[x] does. 

(b) Let F be a field, and let F {x, y} be the free algebra on x and 
y. This algebra is similar to the polynomial algebra F[x, y], except 
that x and y do not commute in F {x, y}. Show that F {x, y} does not 
satisfy either Ore condition. 

(c) Let 0' be an automorphism of D, and let D[x; 0'] denote the twist­
ed polynomial ring of D twisted by 0'. This ring is defined to be 
the polynomial ring D[x] with multiplication defined by 

xa = O'(a)x, 

so for example 
(axm)(bxn) = aO'm(b)xm+n. 

Show that D[x; 0'] satisfies both the right and left Ore conditions. 

(d) Now let 0' be any endomorphism of D. Let 8 : D ---+ D be a 
c:r-derivation , which means that 

8(ab) = 0'(a)8(b) + 8(a)b for a, bED. 
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Denote by D[x; u, c5j the polynomial ring D[x] with multiplication 
defined by 

xa = u(a)x + c5(a). 

This generalizes the concept of twisted polynomial ring. Show that 
the following are equivalent: 

(1) u is onto. 

(2) D[x; u, c5j satisfies the right Ore condition. 

(3) Every right ideal of D[x; u, 0) is principal. 

More on Injective Modules 

6. Recall that Z-modules are precisely the abelian groups, and (Chapter 
1, Exercise 36) injective Z-modules are precisely the divisible abelian 
groups. Prove that every abelian group can be embedded in a divis­
ible group; in other words, every Z-module can be embedded in an 
injective Z-module. [Hint: Do it first for free abelian groups.) 

7. The goal of this exercise is to classify all injective Z-modules (i.e. all 
divisible abelian groups). 

(a) Let T(G) denote the torsion subgroup of G; that is, T(G) is the 
set of elements of G which have finite order. Show that G/T(G) is 
torsion-free. Show that if G is divisible, then G ~ T(G) EB (G/T(G)), 
and both T( G) and G /T( G) are divisible. 

(b) Show that any torsion-free divisible group is a direct sum of copies 
ofQ. 

(c) A group G is called a p-primary (p a prime) if every element of 
G has order some power of p. Let G and H be divisible p-primary 
groups, and let Gp (resp. Hp) denote the subgroup of G (resp. H) 
consisting of elements annihilated by p. Prove that G ~ H if and only 
if Gp ~ Hp. [Hint: One direction is clear; for the other, think of the 
isomorphism ¢ : Gp --+ Hp as a map ¢ : Gp --+ H. Now use the 
extension property of injective modules (Exercise 35 of Chapter 1) to 
find a map from G to H. Show that this map is an isomorphism.] 

(d) Recall that Zpoo denotes the submodule of the Z-module Q/Z 
consisting of elements which are annihilated by some power of p. 
Prove that every divisible group G (Le., every injective Z-module) 
is isomorphic to a direct sum of copies of Q and Zpoo (for various 
primes p). [Hint: The number of copies of Zpoo for a given prime pis 
equal to the dimension of Gp as a vector space over Z/pZ.] 
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(e) If G is a divisible group, note that G /T( G) is a vector space over 
Q, and T(G)p is a vector space over Z/pZ. Prove that, if G and H 
are divisible groups, then G :::::: H if and only if 

(i) G/T(G) and H/T(H) have the same dimension; and 

(ii) For each prime p, T(G)p and T(H)p have the same dimension. 

8. This exercise gives a method for constructing injective modules over 
an arbitrary ring R. Let R be a ring and let A be an abelian group. 

(a) Show that HomZ(R,A) becomes a left R-module via (rf)(s) = 
J(sr). Similarly, it becomes a right R-module via (fr)(s) = J(rs). 
(b) If Q is an injective Z-module (Le. a divisible abelian group), show 
that HomZ(R,Q) is an injective R-module. Do this by applying Ex­
ercise 35 of Chapter 1: Given a left ideal L of R and a homomorphism 
J: L - HomZ(R,Q), consider the function 

g:L-Q 

defined by 
g(x) = J(x)(l). 

This is a Z-homomorphism and by the Z-injectivity of Q extends to 
a Z-homomorphism g': R - Q. Let 

f': R ---+ HomZ(R,Q) 

be defined by 
f'(x)(y) = g'(yx). 

Show that f' is an R-homomorphism which extends f. 
(c) Show that every R-module can be embedded in an injective R­
module. [Hint: Apply HomZ(R, ) to exercise 6 and note that for 
an R-module M, we have M:::::: HomR(R, M) ~ HomZ(R, M). Note 
that the R-module structure here for HomR(R, M) is given as above; 
this is not the usual way, but fortunately it doesn't make any differ­
ence here.) 

Remark: These results are used in homological algebra to construct 
injective resolutions of modules; that is, we can obtain, for each M, 
an exact sequence of the form 

with each Qi injective. 
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9. Let R be a commutative Noetherian ring, Q be an injective R-module, 
and I be an ideal of R. Show that the set of elements x E Q such 
that In x = 0 for some n (depending on x) is an injective R-module. 
[Hint: Use Chapter 0, Exercise 35.] 

The Big Ring: A Counterexample to Everything 

10. Let V be a vector space of countably infinite dimension over a field 
k. Let I be the set of finite rank operators; i.e., those elements of 
Endk(V) whose image is finite dimensional. Show that I forms a 
two-sided in Endk(V); hence Endk(V) is not simple, in contrast to 
the fact that endomorphism rings of finite dimensional vector spaces 
are simple. 

11. With the notation as above, let R = Endk(V)/ I. We shall call the 
ring R the Big Ring (certain people have refered to this ring as 
the Mother of all Rings). The Big Ring has several interesting 
properties, and provides, for many theorems, an example to show that 
the theorem does not hold if the assumption of finite-dimensionality 
is dropped. The Big Ring also provides certain counterexamples in 
algebraic K-theory. Prove the following facts about the Big Ring R: 

(a) The Big Ring is a simple ring which is not semisimple. 

(b) R ~ R ffi R as R-modules (but not as rings, of course). 

(c) R ~ M2(R). 

(d) Let 4> : M 2(R) --+ R be an isomorphism, and let diag : R --+ 

M 2 (R) denote the map which takes r E R to the 2 x 2 diagonal 
matrix each of whose nonzero entries is r. Let ~ : R --+ R be the 
composition ~ = 4> 0 diag. Let S be the direct limit of the sequence 

Show that S is actually isomorphic to a subalgebra of R. Is S isomor­
phic to R? 

(e) Use parts (c) and (d) of this exercise to give counterexamples to 
both parts of the Skolem-Noether Theorem. 

Other Examples of How Skolem-Noether Can Fail 

The examples in this section will show how both parts of the Skolem­
Noether may fail, even in the case of central division algebras. 

12. Let Dl ~ D2 ~ '" be a (not necessarily finite) increasing sequence 
of division rings. Show that the union Ui Di is a division ring. 
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13. (a) Let F be a field with char(F) =1= 2, and let K = F(Xl' Yt. X2, Y2, . .. ), 
where each Xi and each Yi is an indeterminate over F. The field K 
is called a function field in infinitely many variables. Let (Xt) 
denote a generalized quaternion algebra over K (for information on 
these algebras, see the exercises of Chapter 4). Show that 

is a division algebra for each i. 

(b) Use the division algebras from part (a) to come up with an ex­
ample which shows that neither part of the Skolem-Noether Theorem 
necessarily holds if the subalgebras are not finite dimensional. 

14. (a) Let Db D2 , ••. be an infinite sequence of division algebras of rel­
atively prime degree over a field k. Show that 

is a division algebra for each i (cf. Chapter 4, Exercise 4.18). 

(b) Use the division algebras from part (a) to come up with an ex­
ample which shows that neither part of the Skolem-Noether Theorem 
necessarily holds if the subalgebras are not finite dimensional. 

Maximal Commutative Subalgebras 

15. Let A be a central simple algebra over a field k, and let K and L be 
commutative subalgebras of A. Prove the following facts: 

(a) A is a faithful K ®k L-module. 

(b) The K ®k L-module A is projective and has a summand isomor­
phic to K ®k L. 

(c) [K : k)[L: kJ ~ [A: kJ; in particular [A: kJ ~ [K: kJ2. 

16. Derive the following corollary to Exercise 15: Let K, L ~ A as in 
Exercise 15 with both K and L semisimple. Then the following are 
equivalent: 

(a) K and L are maximal commutative subalgebras of A. 

(b) A;::::: K ®k Las K ®K L-modules. 

(c) [A: kJ = [K: k][L : kJ 
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17. Let A be a central simple k-algebra with commutative semisimple 
subalgebra K. Prove that the following are equivalent: 

(a) K is a maximal commutative subalgebra of A. 

(b) A ~ K ®k K as K ®k K-modules. 

(c) [A: k] = [K : k]2. 

18. Prove the following generalization of Theorem 4.4: If A is a central 
simple k-algebra, and if K is a maximal commutative semisimple 
subalgebra of A, then K splits A. [Hint: Use the Double Centralizer 
Theorem.] 

19. Let A be a central simple k-algebra with [A : k] = n2 • Let Q E A, and 
let f be the minimal polynomial of Q over k. Assume that deg(f)f = 
n, f is separable, and f has a root in k. Prove that A ~ Mn(k). 

Primitive Rings and Density 

20. Let I be a two-sided ideal in a dense ring of linear transformations 
of a vector space V over a division ring D. Prove that I itself is 
dense; that is, show that if {VI, ... ,vn } is a linearly independent set 
of vectors in V, and if {WI, ... , wn } is an arbitrary set of vectors in 
V, then there exists </> E I with </>(Vi) = Wi for 1 $ i $ n. 

21. Let R be a ring with J(R) = 0 such that for all a, b, e E R, 

a(be - eb) = (be - eb)a. 

Show that R is a subdirect product of division rings. [Hint: First 
assume that R is (left) primitive and that [V: D] > 1, where V is a 
faithful simple R-module with endomorphism ring D. Choose a, b, e 
like matrices and get [V : D] = 1. 

22. Prove that if a (left) primitive ring R contains a finite nonzero left 
ideal then R is finite. 

23. Let F be a field of characteristic 0 and let F {x, y} denote the free 
algebra over F generated by x and y. Let I denote the ideal of F {x, y} 
generated by xy - yx - x. Show that F{x, y}/ I is primitive. 

24. Let R = F[h, ... , t n ] be the polynomial ring in n indeterminates over 
a field F. 

(a) Show that for each i with 1 $ i $ n there is a unique derivation 
di of R with di(tj) = 6ij . 

(b) As usual, for r E R let Tr denote be the map Tr(s) = rs. Show 
that if D is any derivation of R, and if r E R, then Tr 0 D is also a 
derivation of R. 
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(c) Show that every derivation of R is of the form 

where the di are as in part (a) and Ti E R. Conversely, all such sums 
are derivations of R. 

(d) Let S be the ring of endomorphisms of the additive group of R 
generated by the derivations and the Tr's, T E R. Assuming that F 
has characteristic 0, show that S is simple, hence primitive. 

25. Let F be a field of characteristic 0, and let F{XI"" Xn, Yb"" Yn} 
be the free algebra on 2n indeterminates. Suppose that I is the ideal 
in F{XI,'" Xn, Yb"" Yn} generated by elements of the form 

Let Wn = F{XI, ... Xn,YI, ... ,Yn}/I. Wn is called the Weyl alge­
bra. Let Rand S be as in exercise 24. Let 

for 1 ~ i ~ n. Show that ¢ is surjective and has kernel I. Conclude 
that the Weyl algebra Wn is primitive. 

26. (a) Show that the Weyl algebra WI is simple. 

(b) Show more generally that the Weyl algebra Wn is simple. 

27. This exercise constructs a division ring R which is artinian, yet has 
the property that for every positive integer n, there exists a subring 
Rn of R which maps homomorphically onto Mn(D), where D = 
EndR(M), M a faithful simple R-module (compare with Theorem 5.4 
and the discussion that follows). 

(a) Let Lo be a field containing all nth roots of unity (e.g., the com­
plex numbers). Let L = Lo(z), z an indeterminate. Let Ln = Lo( y'z). 
Then The Galois group Gal(Ln/L) is the cyclic group of order n, 
say generated by the automorphism (Tn' Let Rn = Ln[xnj(Tnl be the 
twisted polynomial ring over the indeterminate Xn with twist (Tn (re­
call that Rn is simply the polynomial ring Ln[xnl with multiplication 
defined by Xna = (Tn(a)xn). Define a map 
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Rn -+ Mn(L) 

Xn 1---+ c(yn - z) 

where C = C(yn_z) denotes the companion matrix of the polynomial 
yn _ z over L. Show that this map is surjective. [Hint: Let ( be a 
primitive nth root of unity. The matrix 

has the property that SCS- 1 = (C, and is an explicit matrix that 
conjugates like the Skolem-Noether theorem says.) 

(b) Use the rings Rp as p runs over all primes to form a ring R which 
satisfies the Ore condition, and let ~ be the division ring of fractions 
of R (cf. exercises 4 and 5). Show that ~ is the division ring we are 
looking for. 

von Neumann Regular Rings 

28. Prove that the following three conditions on a ring R are equivalent: 

(i) Every principal left ideal of R is generated by an idempotent. 

(ii) For any a E R, there exists bE R with aba = a. 
(iii) Every principal right ideal of R is generated by an idempotent. 

A ring satisfying these conditions is called von Neumann regular, 
or simply regular. Such rings were introduced by (you guessed it) 
von Neumann in his work on so-called "continuous geometries" in the 
mid 1930's. 

29. Show that a regular ring is a division ring if and only if its only 
idempotents are 0 and 1. 

30. Show that the following rings are regular: 

(a) Division rings. 

(b) Products of regular rings. 

(c) EndD(V), where V is a (not necessarily finite dimensional) vector 
space over the division ring D. 

(d) Semisimple rings. 

(e) eRe, where e is an idempotent of the regular ring R. 
(f) Mn(R), where R is a regular ring. 
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31. (a) Show that regular rings have vanishing Jacobson radical, hence 
are semi-primitive. Give an example of a ring R with J(R) = 0 that 
is not regular. 

(b) Show that the following conditions on a ring R are equivalent: 

(i) R is semisimple. 

(ii) R is regular and artinian. 

(iii) R is regular and noetherian. 

32. Show that R is regular if and only if every finitely generated submod­
ule M of a projective R-module P is a direct summand. [Hint: for 
one direction take R = Pj for the other, you may assume P is free 
(why?). Then Hum(P,M) is a left ideal of Mn(R) and is therefore a 
summand. So M ~ HumR(R, M) is a projective R-module.] 

Clifford Algebras 

Clifford algebras provide interesting examples of semisimple rings 
which generalize some of the rings we've studied, and are useful in 
differential geometry and the study of quadratic forms (see, e.g., Ja­
cobson's Basic Algebra I). 

Let F be a field with characteristic not equal to 2, and let al,· " ,an 
be elements of F. The Clifford algebra C = C(at. ... ,an) is defined 
to be the free F-algebra F{xt. ... xn} over indeterminates Xt, ... Xn 
subject to the relations XiXj = -XjXi and x~ = ai for all i =1= j. For 
example, over the field R C( -1) is the field C of complex numbers 
and C( -1, -1) is the Quaternions H. More generally, if al and a2 
are nonzero elements of the field F, then C(at, a2) is the generalized 

quaternion algebra (al~a2) discussed in the exercises of Chapter 4. 

When all of the ai's are 0, C is the Grassmann algebra, also known 
as the exterior algebra. 

33. Which Clifford algebras have zero-divisors? 

34. Let C = C( all ... ,an) be a Clifford algebra. If {ill' .. ir } is a subset 
of N = {I, 2, ... , n} with il < i2 < ... < ir , let Xs denote the 
monomial XiI Xi2 ... Xir E C. Show that {xs : S ~ N} is a basis for 
the Clifford algebra C, and hence C has dimension 2n over the field 
F; in particular C is artinian. 

35. (a) Let C = C(all"" an) be a Clifford algebra. Prove that C is 
semisimple if and only if n~=l ~ =1= O. [Hint: Necessity is easy. To 
prove sufficiency, use a trace argument which is similar to the proof 
of Maschke's Theorem given in Chapter 2, Exercise 32.] 
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(b) If C is a Clifford algebra which is semisimple, show that C is a 
direct sum of at most two simple components. 

36. Let C = C(ab' .. an) be the clifford algebra with ai =1= 0 if i ::; rand 
ai = 0 for i > r. Prove that J(R) is generated by Xr+I. ... , x n , and 
that C/ J(C) ~ C(al,"" ar ). 

Classifying Quaternion Algebras 

37. The goal of this group of exercises is to give a classification (as F­

algebras) of the general quaternion algebras (a~b) over the field F. 
We follow the treatment given in Pierce's Associative Algebms. For 
the definitions and basic properties of generalized quaternion alge­
bras, see the section devoted to them in the exercises of Chapter 4. 
Recall that if x = Co + Cl i + C2j + C3k is an element of the generalized 

quaternion algebra (a~b), then the quaternion conjugate of x is 

defined to be x = Co - cli - C2j - C3k, and the (quaternion) norm 
of x is defined to be N(x) = xx = c5 - ac~ - bc~ - abc~. 

38. Use the exercises on quaternion algebras in Chapter 4 to show that 
every generalized quaternion algebra over R is isomorphic (as an R­
algebra) to either H or M 2 (R). 

39. An element x = Co + cli + c2j + C3k of A = (a~b) is called a pure 

quaternion if Co = O. The set of pure quaternions is denoted by Ao. 
Show that the notion of pure quaternion is independent of the choice 
of basis for A by showing that a nonzero element x E A is a pure 
quaternion if and only if x f/. F and x 2 E F. 

(a b) (a' b') 40. Let A = Y and A' = -j.- be generalized quaternion al-

gebras with norms Nand N', respectively. Show that A and A' are 
isomorphic (as F -algebras) if and only if there is a vector space iso­
morphism 4> : Ao -- A~ with N'(4)(x)) = N(x) for all x E Ao. 

41. Two quadratic forms Q and Q' on a vector space over a field Fare 
said to be equivalent if one may be obtained from the other by a 
change of basis. Represent Q by the matrix [Qij), so that 
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Then the quadratic forms Q and Q' are equivalent if and only if 
there is a non-singular matrix P with [Qij] ~ pt[Q~j]P, where pt de­
notes the transpose of P. Prove the following classification of quater­
nion algebras in terms of quadratic forms: The quaternion algebras 

( a/) and (a'~b') are isomorphic (as F -algebras) if and only if the 

quadratic forms Q(Xl, X2, X3) = ax~ +bx~ -abx~ and Q'(Xl. X2, X3) = 
a'x~ + b'x~ - a'b'x~ are equivalent. [Hint: Let Q(Xl. X2, X3) = -ax~­
bx~ +abx~. Note that if x = cli +C2j +C3k is a pure quaternion, then 
N (x) = Q( Cl, C2, C3); similarly for Q' and N'. Write these equations 
in matrix form and see what Exercise 40 says. 

42. Use the classification of quaternion algebras to show that Br(Q) is 
infinite. 

Polynomial Identity Rings 

For a deeper exploration of polynomial identity rings, see Procesi, 
Rings with Polynomial Identities, and Rowen, Polynomial Identities 
in Ring Theory. 

Let k be a field and let k[Xl,' .. , xn] denote the free k-algebra in the 
(noncommuting) varibles Xl, ... , X n . An algebra A over k is said to 
satisfy a polynomial identity if there exists a nonzero polynomi­
al f E k[xl. ... ,xn] for some n such that f(al, ... ,an) = 0 for all 
al,'" ,an in A. In this case A is said to satisfy f, and A is called a 
polynomial identity algebra, or P.I. algebra for short. 

43. (a) Show that any commutative algebra is a P.1. algebra. 

(b) Show that M2(k) is a P.1. algebra over the field k. 

(c) Let Sn denote the group of permutations of n objects, and let 
sgn( a) be 1 or -1 according to whether a is an even or odd permu­
tation. In k[xl. . .. , xn], the standard identity of degree n is 

[Xl." . , xn] = L sgn(a)Xq(l)'" Xq(n) 
qESn 

where a runs over all elements of Sn. Notice that [Xl, X2] = X1X2 -
X2Xl. Show that if A is an n-dimensional k-algebra then A satisfies 
[Xl>"" Xn+lJ. Hence Mn(k) satisfies [Xl>"" Xn2+l]' 

44. Let n be a positive integer and let f be a nonzero polynomial in 
k[Xl,." ,xnJ. Show that there exists an integer m so that Mm(k) 
does not satisfy f. Thus there is no universal polynomial identity 
which holds for all matrix algebras. 
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45. (a) Show that if a k-algebra A satisfies a polynomial identity of degree 
d then it satisfies a multilinear identity whose degree is less than or 
equal to d. Conclude that if A satisfies a multilinear identity f, then 
A ®k K satisfies f for any extension field K of k. 

(b) Show that Mn (k) does not satisfy a polynomial identity of degree 
less than 2n. [Hint: First show that if Mn (k) satisfies such an identity 
f, then one can assume that f is multilinear and homogeneous.] 

(c) Prove Kaplansky's Theorem, which is a cornerstone in the theory 
of P.I. rings: Let A be a primitive algebra satisfying a polynomial 
identity of degree d. Then A is a finite dimensional simple algebra over 
its center Z(A), and the dimension of A over Z(A) is at most [d/2]2, 
where [d/2] denotes the greatest integer of d/2. [Hint: Use exercise 44 
to show that A is isomorphic to Mn(D) for some division ring D. Now 
split D by a maximal subfield K, and show that A®Z(K)K ~ Mn(K). 
Now compute dimensions and apply parts (a) and (b) to obtain the 
desired conclusion.] 

Final Exam 

46. Some Rings: 

(a) Z 
(b) Z/nZ 

(c) C[x] 
(d) C[x, y] 

(e) Q[xJl(x3 - 5x) 
(f) C[x, y]/(2x2 - y2 + 1) 

(g) Mn(R) 

(h) Tn(R), the ring of upper triangular matrices. 

(i) C[[x]], the ring of formal power series over C 

(j) C[x, X-I], the ring offormal Laurent series over C 

(k) C[G], where G is a cyclic group 

(1) C[G], where G is any finite group 

(m) The ring of real-valued continuous functions on [0,1] 

(n) A twisted polynomial ring (d. Chapter 2, Exercise 9) 

For each of the rings listed above, determine whether that ring is 

(a) simple 

(b) semisimple 
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(c) radical free, i.e. J(R) = 0 

(d) artinian 

( e) noetherian 

(f) primitive 

(g) semi-primitive 

(h) prime 

(i) von Neumann regular 

For each of the rings R listed above, compute the following : 

(a) Z(R) 

(b) J(R) 

(c) The units of R 

(d) The zero-divisors of R 

(e) The nilpotent elements of R 

(f) The idempotents of R 

For each of the rings R listed above, classify the finitely generated 
R-modules which are: 

(a) simple 

(b) semisimple 

(c) of finite length 

(d) free 

(e) projective 

(f) injective 
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