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Preface 

Textbooks, even excellent ones, are a reflection of their times. Form and 
content of books depend on what the students know already, what they are 
expected to learn, how the subject matter is regarded in relation to other 
divisions of mathematics, and even how fashionable the subject matter is. It 
is thus not surprising that we no longer use such masterpieces as Hurwitz and 
Courant's Funktionentheorie or Jordan's Cours d'Analyse in our courses. 

The last two decades have seen a significant change in the techniques used 
in the theory of functions of one complex variable. The important role played 
by the inhomogeneous Cauchy-Riemann equation in the current research has 
led to the reunification, at least in their spirit, of complex analysis in one and 
in several variables. We say reunification since we think that Weierstrass, 
Poincare, and others (in contrast to many of our students) did not consider 
them to be entirely separate subjects. Indeed, not only complex analysis 
in several variables, but also number theory, harmonic analysis, and other 
branches of mathematics, both pure and applied, have required a reconsidera
tion of analytic continuation, ordinary differential equations in the complex 
domain, asymptotic analysis, iteration of holomorphic functions, and many 
other subjects from the classic theory of functions of one complex variable. 
This ongoing reconsideration led us to think that a textbook incorporating 
some of these new perspectives and techniques had to be written. In particular, 
we felt that introducing ideas from homological algebra, algebraic topology, 
sheaf theory, and the theory of distributions, together with the systematic use 
of the Cauchy-Riemann a-operator, were essential to a complete under
standing of the properties and applications of the holomorphic functions of 
one variable. 

The idea that function theory can be integrated into other branches of 
mathematics is not unknown to our students. It is our experience that under-
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graduates see many applications of complex analysis, such as the use of partial 
fractions, the Laplace transform, and the explicit computation of integrals and 
series which could not be done otherwise. Graduate students thus have a 
powerful motivation to understand the foundation of the theory of functions 
of one complex variable. 

The present book evolved out of graduate courses given at the universities 
of Maryland and Bordeaux, where we have attempted to give the students a 
sense of the importance of new developments and the continuing vitality of 
the theory of functions. Because of the amount of material covered, we are 
presenting our work in two volumes. 

We have tried to make this book self-contained and accessible to graduate 
students, while at the same time to reach quite far into the topics considered. 
For that reason we assume mainly knowledge that is found in the under
graduate curriculum, such as elementary linear algebra, calculus, and point 
set topology for the complex plane and the two-dimensional sphere S2. 
Beyond this, we assume familiarity with metric spaces, the Hahn-Banach 
theorem, and the theory of integration as it can be found in many introductory 
texts of real analysis. Whenever we felt a subject was not universally known, 
we have given a short review of it. 

Almost every section contains a large number of exercises of different levels 
of difficulty. Those that are not altogether elementary have been starred. 
Many starred exercises came from graduate qualifying examinations. Some 
exercises provide an insight into a subject that is explained in detail later in 
the text. 

In the same vein, we have made each chapter, and sometimes each section, 
as independent as possible of the previous ones. If an argument was worth 
repeating, we did so. This is one of the reasons the formulas have not been 
numbered; when absolutely essential, they have been marked for ease of 
reference in their immediate neighborhood. There are some propositions and 
proofs that have also been starred, and the reader can safely skip them the 
first time around without loss of continuity. Finally, we have left for the 
second volume some subjects that require a somewhat better acquaintance 
with functional analysis. 

Let us give a short overview of this volume. Some of the basic properties 
of holomorphic functions of one complex variable are really topological in 
'lature. For instance, Cauchy's theorem and the theory of residues have a 
homotopy and a homology form. In the first chapter, we give a detailed 
description of differential forms (including a proof of the Stokes formula), 
homotopy theory, homology theory, and other parts of topology pertinent to 
the theory of functions in the complex plane. Later chapters introduce the 
reader to sheaf theory and its applications. We conclude Chapter 1 with the 
definition of holomorphic functions and with the properties of those functions 
that are immediate from the preceding topological considerations. 

In the second chapter we study analytic properties of holomorphic func
tions, with emphasis on the notion of compact families. This permits an early 
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proof of the Riemann mapping theorem, and we explore some of its con
sequences and extensions. The class S of normalized univalent functions is 
introduced as an example of a compact family. A one-semester course in 
complex analysis could very well start in this chapter and refer the student 
back to selected topics as necessary. 

In the third chapter we consider the solvability of the inhomogeneous 
Cauchy-Riemann equation. As a corollary we obtain a simple exposition of 
ideal theory and corresponding interpolation theorems in the algebra of 
hoi om orphic functions. We also study the boundary values of holomorphic 
functions in the sense of distributions, showing that every distribution on IR 
can be obtained as boundary value of a holomorphic function in C\IR. (An 
appendix to this chapter gives a short introduction to the concepts of distribu
tion theory.) The Edge-of-the-Wedge theorem, an important generalization of 
the Schwarz reflection principle, is proven. These ideas lead directly to the 
theory of hyperfunctions to be considered in the second volume. We conclude 
this chapter with a totally new approach to the theory of residues. 

In the fourth chapter we develop the theory of growth of sub harmonic 
functions in such a way that Hadamard's infinite product expansion for 
entire functions of finite order is generalized to subharmonic functions. We 
give a proof due to Bell and Krantz of the fact that a biholomorphic map
ping between smooth domains extends smoothly to the boundary. This is 
used to prove simply and rigorously properties of the Green function of a 
domain. 

In order to develop fully the concept of analytic continuation, Chapter 5 
has a short introduction to the theory of sheaves, covering spaces and Rie
mann surfaces. Among the applications of these ideas we give the index 
theorem for linear differential operators in the complex plane. This chapter 
also contains an introduction to the theory of Dirichlet series. 

In the second volume the reader will find the application of the ideas 
and methods developed in the present volume to harmonic analysis, func
tional equations, and number theory. For instance, elliptic functions, mean
periodic functions, the corona theorem, the Bezout equation in spaces of 
entire functions, and the Leroy-Lindel6f theory of analytic continuation 
and its relation to functional equations and overconvergence of Dirichlet 
series. 

This being a textbook, it is impossible to be entirely original, and we have 
benefited from the existence of many excellent monographs and even un
published lecture notes, too many to give credit to all ofthem in every instance. 
The list of references contains their titles as well as those of a number of 
research articles relevant to the subjects we touched upon. In a few places we 
have also tried to steer the reader into further lines of study that were naturally 
related to the subject at hand, but that, due to the desire to keep this book 
within manageable limits, we were compelled to leave aside. 

Almost everything that the reader will find in our book can be traced in 
one way or another to Ahlfors' Complex Analysis. When it appeared, it 
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changed entirely the way the subject was taught. Although we do not aspire 
to such achievement, our sincere hope is that we have not let him down. 

Finally, we would like to thank Virginia Vargas for the excellent typing and 
her infinite patience. A number of our friends and students, among them, F. 
Colonna, D. Pascuas, A. Sebbar, A. Vidras, and A. Yger, have gladly played 
the role of guinea pigs, reading different portions of the manuscript and offering 
excellent advice. Our heartfelt thanks to all ofthem. 

Carlos A. Berenstein 
Bethesda, Maryland 

Roger Gay 
Saucats, La Brede 
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CHAPTER 1 

Topology of the Complex Plane and 
Holomorphic Functions 

§ 1. Some Linear Algebra and Differential Calculus 

The complex plane C coincides with ~2 by the usual identification of a 
complex number z = x + iy, x = Re z, y = 1m z, with the vector (x, y). As such 
it has two vector space structures, one as a two-dimensional vector space over 
~ and the other as a one-dimensional vector space over C. The relations 
between them lead to the classical Cauchy-Riemann equations. 

Let :l'[R(C,~) be the space of all ~-linear maps from C into ~. These maps 
are also called (real) linear forms. It is clear that :l'[R(C, ~) is an ~-vector space. 
Moreover, since {l, i} forms an ~-basis for C, the pair oflinear forms 

dx:h~Reh and dy:h~lmh 

constitutes a basis for :l'[R(C, ~). 
Let :l'[R(C) denote the space of all ~-linear maps of C into itself. It is a vector 

space of dimension 4 over ~ and dimension 2 over C. One way to see this is 
the following. The inclusion ~ s C allows us to consider :l'[R(C,~) as an 
~-linear subspace of :l'[R(C). We can decompose a form L E :l'[R(C) as L = 
Re L + i 1m L. Hence, as real vector spaces 

:l'[R(C) = :l'[R(C,~) Ef> i:l'[R(C, ~), 

and we see immediately that dim[R:l'[R(C) = 4. Moreover, any ~-basis of 
:l'[R(c,~) is a C-basis of 2"[R(C) and, conversely, any C-basis of :l'[R(C) consist
ing of real-valued mappings is an ~-basis for :l'[R(C, ~). In particular, the pair 
{dx,dy} is a C-basis for :l'[R(C). 

We shall consider now the complex subspace :l'dc) of :l'[R(C) consisting 
of those linear forms which are C-linear. Observe that a linear form L = 
P dx + Q dy E :l'[R(C) is C-linear if and only if 
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L(ih) = iL(h) 

for every hE C. Writing h = hi + ihz, hi ,hz E [R, we find ih = - h2 + ih l and 

L(ih) = -Ph2 + Qh 1 , 

while 

iL(h) = i(Ph l + Qh2 ) = iPh l + iQh2 . 

Therefore, L E .Pdc) if and only if Q = iP. Define the linear form 

dz:= dx + idy, 

dz E .Pdc) and L = P dz whenever Q = iP. In particular, .Pdc) has complex 
dimension 1 and real dimension 2. 

Finally, let us denote by .Pdc) the subspace of .P~(C) of C-antilinear 
transformations. That is, L(exh) = aL(h) for every ex,h E C. The involution z -+ Z 

can be extended from C to .P~(C), and it exchanges the subspaces .Pdc) and 
:.eaC). It provides a direct sum decomposition (as real vector spaces): 

.PLQ(C) = .Pdc) EB .Pdc)· 

The linear form dz = dx - i dy is in .PdC and it is usually denoted dZ. It 
is immediate to vertify that {dz,dZ} is also a C-basis of £'~(C). 

As an illustration of this, let us consider the formulas for the change of 
basis. When we write an element L E .P~(C) in terms of those two bases we 
have 

L =Pdx + Qdy = Adz + BdZ, 

where P, Q, A, B E C are related by the equations 

A = !(P - iQ), 

P = A + B, 

B = t(P + iQ) 

Q = i(A - B). 

The transformation L is C-linear, i.e., L E 2dc), if and only if B = O. This is 
the familiar Cauchy-Riemann condition found earlier: 

1 
P=-:-Q. 

I 

When we identify C to [R2, then L correpsonds to a 2 x 2 real matrix [ : ~ J ' 
related to the preceding representation by 

P = a + ib, Q = c + id. 

The Cauchy-Rieman condition takes the more familiar form of the pair of 
equations: 

{
a = d 

b = -c. 
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Thus, the il:>linear transformation of multiplication by P = a + ib E C has the 

. . [a -bJ matrIX representatIOn b a . 

It is also clear from these computations that 2dc) n 2,,(C, [R) = {O}, i.e., 
the only real-valued C-linear transformation of C is the identically zero map. 

We denote by B6'([R2 x [R2, C) the complex vector space of the alternating 
[R-bilinear mappings from [R2 x [R2 into Co 

Recall that if h=(h1,hz)E[Rz, k=(kl,k2}E[R2, and BEB6'([R2 x [R2,C) 
then h --+ B(h, k) and k --+ B(h, k) are [R-Iinear and B(h, k) = - B(k, h). An 
example of such a map is: 

( hi kl) B(h, k) = det hz k2 = hi k2 - h2 k 1 • 

We can generate other IR-bilinear maps by the following procedure: If 
ljJ,e E 2,,(C), then we define the wedge product (or exterior product) ljJ 1\ e, 
as the element in ~(1R2 x [R2, C) given by 

(ljJ 1\ 8)(h, k) = det (~i:~ :i:D = ljJ(h)()(k} - ljJ(k)(}(h). 

In this notation the previous example is simply dx 1\ dy. 
Let us see that {dx 1\ dy} is a C-basis for .?l(1R2 x 1R2, C) and hence, 

dim cB6'(1R2 x [R2, C) = 1. It is evident that dx 1\ dy f= 0. Moreover, elemen
tary calculation shows that for any B E ~(1R2 X [R2, C) we have 

B = B(e l ,e2 )dx 1\ dy, 

where e l = (1,0) and e2 = (0,1). 
One verifies that the mapping 

2'~(q x 2~(C) --+ ~(1R2 X [R2, C) 

(ljJ,8)f--'>ljJ 1\ e 

is also IR-bilinear and alternating. This proves the distributivity of the wedge 
product with respect to the sum and shows ¢; 1\ ljJ = 0 for every ljJ E 2",(C), In 
particular, 

and 

~1\~=~I\~=hl\h=~I\~=~ 

dx 1\ dy = -dy 1\ dx, 

dz 1\ ~ = -~ 1\ dz = -lidx 1\ dy, 

which shows that {dz 1\ ~} is also a C-basis for .?l(1R2 x 1R2, C). 
Let Q be an open subset of C and E a normed space defined over IR. A 

mapping f: Q --+ E is said to be differentiable at a E Q if there is a linear 
transformation L E 2~(C, E) (the space IR-linear transformations from C into 
E) such that for every h E C of absolute value sufficiently sman we have 
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I(a + h) = I(a) + L(h) + IhI8(h), 

where lim 8(h) = O. If such an L exists, it is unique and one cans it the derivative 
h-O 

of I at the point a. It is denoted DI(a). 
If I is differentiable at every point a E Q we can define a function 

DI: Q --+ 2'R(C, E) by a 1-+ DI(a}. 
Recall that 2'[f.!(C, E) is also a normed space with the norm 

Ilu!1 = sup Ilu(h)IIE' 
Ihl <;1 

where tHE is the norm in E. Since every IR-linear map u : C --+ E is continuous 
due to the finite dimensionality of C, it follows that Iluil is well defined for 
every u E 2'R(C, E). 

It is easy to see that if I: Q --+ E is differentiable (everywhere in Q) it is 
continuous. One says that I is continuously differentiable, or I is C1 (or 
IE Cl(Q», if I is differentiable and DI is continuous. One says that I is twice 
differentiable if I is differentiable and its derivative DI: Q --+ 2'R{C,E) is also 
differentiable. It is clear that if I is twice differentiable then it is C 1• One says 
that I is twice continuously differentiable, or I is C2 , if DI is itself C 1. These 
notions can be recursively extended to any integer k ::?: 1, and even k ::?: 0 if 
one agrees to say I is CO when I is continuous. One says I is Coo, or infinitely 
differentiable, if I is Ck for every k ::?: O. 

Let I: Q --+ E, a = a 1 + ia2 E Q. We say I has a partial derivative with 
respect to x at the point a if the function r2(x) := I(x, az) is differentiable, as 

a function of the real variable x, at a j • Denote by ~I (a) the IR-linear trans
ox 

formation DUa2 )(a l ). In the same way we can define the partial derivative 

. - If If. . 
WIth respect to y. One has: a~ (a) E 2'ji{lR, E) and Dr (a) E ,P,,(IR, E). We can 

identify 2'[Q(IR, E) to E, and with this identification in mind, one can verify that 
if I is differentiable at the point a, then it admits both partials at a and 

If, ol 
DI(a) = -------- (a) 0 dx +-- (a) 0 dy ox oy 

If ol 
= "31 (a) dx + ,,(a)dy, 

uX oy 

where we allow the multiplication of the vectors in E by (real) scalars to take 
place also on the right. The reader should recall that a sufficient condition for 
the function to be differentiable at a is that both partial derivatives are 
continuous at the point a. 

EXERCISES 1.1 
1. Write down the 2 x 2 real matrix corresponding to the I[:-linear transformation 

z 1----. ei6z (8 E IR). Compute its determinant. 
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Z3 

2. Let f: C -+ C be defined by f(O) = 0, f(z) == for z # O. Show f is C1 and find the 
points where Df is C-linear. z 

3. Is the function f(z) = z51zl~4 (z # 0), f(O) = 0, continuous at z = O? Is it differenti
able at z = O? 

§2. Differential Forms on an Open Subset n of C 

1.2.1. Definitions 

1. A differentialform of degree () and class C k in Q (k E N u {oo}) is a function 
f: Q --+ C which is Ck in Q. We will denote by gr(Q), for simplicity gk(Q), the 
set of all differential forms of degree O. If k = CD we will omit it from the 
notation. 

2. A differential form of degree 1 and class C k in Q is a function 
w : Q --+ !t' n'I( C) of class Ck in Q. We denote by g t (Q) the set of these differential 
forms, omitting the index k if k = 00. 

A differential form of degree 1 in Q can be written in a unique way as 

w = Pdx + Qdy = Adz + Bdz 

where P, Q, A, and B are complex-valued functions in Q of the same class as w. 
3. Let f: Q --+ C be a differentiable function. One denotes by df, the differ

ential of f, the differential form of degree 1 given by 

af af 
df = ax dx + ay dy. 

If we express dI in terms of the basis dz, dz, its coefficients will be denoted 

of d af b I . h h' . :l an ,:)_ y ana ogy WIt t e preVIous expreSSIOn: 
uZ uz 

of of_ 
df = az dz + ozdz. 

The elementary calculation of change of basis mentioned in §1 gives the 
relations 

af = !(of + !D.r) 
oz 2 ox i oy 

of = !(af _! Of). 
iJz 2 ax i oy 

Note that Of and aO~ are not partial derivatives of f with respect to the 
oz z 
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"variables" z and z, but rather the result of applying to f the differential 
operators. 

01(0 10) ~=- -+--
oz 2 ox i oy , 

One verifies easily the following relations (all the functions appearing here 
are assumed to be differentiable): 

a au ov 
o/u + v) = oz + oz' 

O(AU) = A OU 
OZ oz 

o ov ou 
~(u'v) = u~ + V-, 
OZ oz oz 

au ov 
-v-u~ 

~(~) = OZ OZ 
OZ V v2 ' 

(A E q, 

(n E Z), 

all of which hold when :Z is replaced by :z. Similarly, 

d(u + v) = du + dv, d(u'v) = udv + vdu, 

d (~) = v du - u dv , and 
v v2 

d ( fog) = (:~ 0 g) dg 1 + (g 0 g) dg 2, 

where f: 0 --+ I[; and 9 : 0' -+ 0 are differentiable, 0 and 0' are open subsets 
of 1[;, and 9 = gl + i9 2 • Furthermore, one has 

d(fo g) = G~ 0 9 )d9 + (:, 0 9 )d?i. 

Writing, = ~ + il] as the variable in 0' and z = x + iy the variable in 0, and 

. d Ogl d): Ogl d d . '1 . ~ l' usmg gl = - <, + ~ I] an a SImI ar expreSSIOn lor g2' one can a so wrIte 
O~ vI] 

d(fog) = ((Of Og)091 + (Of Og)092)# 
ox o~ oy o~ 

(( Of ) Ogl (Of ) 092) + - 0 9 - + - 0 9 - dl] 
ox 01] oy 01] 

and 

(( Of )Og (Of )o?i) d(f 0 g) = ~ 0 9 - + -= 0 9 - d, 
OZ 0, oz 0, 
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Occasionally we will need to use the relations 

au ali 
az -ai and 

7 

4. A differentialform of degree 1, type (1,0), and class C" in 0, is a function 
W : 0 ...... .Pdq of class Ck• The space of these forms is denoted tS'i '°(0). The 
differential forms of type (0,1) are the functions w : 0 ...... .Pdq. The corre
sponding space is denoted tS'~.1(0). We evidently have 

tS'~(0) = tS'~,0(0) EB tS'~.1(0). 

Every element wEtS'i'O(O) (resp. tS'Z·l(O)) can be written as w=Adz 
(resp. w = B dz) with A, B complex-valued functions of class Ck in O. 

5. A differential form of degree 2 and class C k in 0 is a mapping 
w : 0 ...... .16'(1R 2 x 1R2, q of class Ck • The space of all these forms will be denoted 
tS't(O)(omitting k when it is (0). By the preceding remarks, a differential form 
of degree 2 and class Ck can be written in a unique way 

ill = C dx 1\ dy = D dz 1\ dz, 

where C, D: 0 ...... C are functions of class Ck • 

Later on we win consider differential forms with coefficients less regular 
than continuous. For instance, one can speak about differential forms with 
coefficients that are locally integrable (with respect to the Lebesgue measure) 
in O. We win denote these spaces (Lloc(O»O, (Lloc(O»l, (Ltoc(O»l.O, (Lloc(O»O.l 
(Lloc(0»2. In other cases we will use corresponding notations without further 
comments. 

We have already introduced the differential form df, the differential of a 
differentiable function f. The differential defines, for k ~ 1, a mapping: 

d: tS'Z(O) ...... tS'~-1 (0) 

f~df, 

which can be decomposed into the sum of two mappings 

and 

so that d = a + (j. 

a: tS'Z(O) ...... tS'~~~ (0) 

f~af:= ~{dz 

(j : tS'Z(O) ...... tS'~~\ (0) 

f~~r:= :;dz 

One extends to the space of 1-forms of class Ck the operation of wedge 
product 
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where (WI 1\ (2)(Z) := WI (z) 1\ w 2(z) for all Z E O. If WI = PI dx + Q 1 ely = 

Al dz + Bl di and W 2 = Pz dx + Q2 dy = .04 2 dz + B2 di then 

WI 1\ W 2 = (PI Q2 - PzQddx 1\ dy = (AjB Z - A 2 Bddz 1\ dz. 

One can also introduce the exterior differential, or differential for short. It 
is a mapping, still denoted d, d : 6" t (0) -> 6"f-l (0) (k 2: 1) defined by 

dw := elP /\ dx + dQ 1\ dy, 

if ol = P dx -+ Q dy. Since ol can also be written as Adz + B di we have the 
relations 

_ (DQ OP) (VB 0.04) _ dOl = dA 1\ dz + dB 1\ dz = . -.- dx 1\ dy = -- --= dz 1\ dz 
ax ay cz cz 

and, for any function f of class C k , 

d(fw) = df 1\ Ol +fdOl. 

Let us also consider here operators a, a for which d = c + a, where: 

a: 6"~(n) -> 6"~_l(n) 

vB 
WI--> rJA 1\ dz + DB 1\ dz =az dz 1\ dz 

and 

(j: 6"t (0) -> 6"f-l (0) 

- - aA 
(J) I--> iiA 1\ dz + aB 1\ di = - (ii dz 1\ di. 

For k 2: 2 it makes sense to consider the composition of the mappings: 

6"~(n) .. ~. 6'1 1 (0) .. d .. 6"f-2(0) 

One has d 2 = dod = 0 since 

. . (ell cf) ((i2( a2f ) (d 0 d)(j) = d{dJ) = d 4 dx +--dy = ~ ~"- ;; -~ dx 1\ dy 
ox Z'y oxcy oyax 

which is zero by the theorem of Schwarz on the identity of the mixed partials. 
Therefore, a necesssary condition for W = P dx + Q ely E 6"11 (0) (k 2: 2) 

to be of the form w = d( for some I E 6"~(0) is that dw = 0 (that is, 
DQ uP . ... _ . 

. -, = 0). This conditIon IS not sufhclent as shown by the well-known 
(if' 

. x d v····· y dx (" dZ) . 
example: 0 = C\{O} and W ='2 or w = ; . See ExerCise 1.2.6 
herem. x + \ -
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6. Let W E S,(O) (j = 1,2, and k ~ 0). A differential form IX E sf;:l (0) such 
that W = dlX is called a primitive of w. 

7. A differential form W E Si(O) (k ~ 1) such that dw = 0 is called a closed 
form. A form admitting a primitive is called on exact form. The previous 
remarks indicate that every exact I-form of class C1 is closed. 

Recall that an open set n is called star-shaped (with respect to the origin) 
if for every Z E 0 the line segment [0, z] = {tz : t E ~, 0 ::;; t ::;; I} is completely 
contained in n. 

1.2.2. Propositon (Poincare's lemma). Let 0 be a star-shaped open set. We have: 

(a) every W E Si(O) (k ~ 1) that is closed is exact. 
(b) every IX E Sf(n) (k ~ 0) is exact. 

PROOF. (a) Let w = P dx + Q dy and define 

f(x, y) = x L P(tx, ty) dt + y L Q(tx, ty) dt. 

It is legitimate to take derivatives under the integral sign due to the differenti
ability hypothesis assumed on w (hence on P and Q). One obtains 

of II 11 0 P II oQ ox (x, y) = 0 P(tx, ty) dt + x 0 ax (tx, ty)t dt + y 0 ox (tx, ty)t dt. 

. oQ oP 
Smce dw = 0 means that ox = oy' we have 

of II II ( oP oP) ox (x, y) = 0 P(tx, ty) dt + 0 x ox (tx, ty) + y oy (tx, ty) t dt. 

The expression in brackets can be rewritten as :t (P(tx, ty)). Therefore 

If 11 II d ox (X,y) = 0 P(tx,ty)dt + 0 t dt(P(tx,ty»dt, 

which we can simplify by integrating by parts the second integral, so 

If 11 11 ox (x, y) = 0 P(tx, ty) dt + (tP(tx, tym - 0 P(tx, ty) dt = P(x, y). 

One shows in the same way that : = Q. This proves (a). Note the essential 

way the geometric hypothesis on n was used to define f. 
(b) Let IX = C dx 1\ dy, set 

8(x, y) = ( - Y II tC(tx, ty) dt) dx + (x L tC(tx, ty) dt) dy. 
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We can again differentiate under the integral sign and obtain 

( f 1 f1 ac 
d8(x,y) = 2 0 tC(lx,ty)dt + x 0 t2 ax (tx,ty)dt 

+ y L t2~~(tX,tY)dt)dX /\ dy 

= (2 L tC(tX,ty)dt + L t 2 :t(C(tX,tY))dt)dX /\ dy 

=(2 L tC(tx,ty)dt+(t2C(tx,tym-2 L tC(tx,tY)dt)dX/\dY 

= C(x,y)dx /\ dy = rI.. o 

We will return to the problem of deciding when a dosed 1-form is exact in 
§1.9 later. 

We shall now define the pull-hack or inverse image of a differential form by 
a differentiable mapping. For simplicity, we will always assume the mapping 
to be of dass CD. In order to proceed we need to consider the notion of a 
differential form on an open subset U of IR. A differential form of degree 0 and 
dass Ck is simply a function f: U -> C of dass Ck . A differential form of degree 
1 and dass Ck is a function OJ: U -> 2~(1R, IC) of dass Ck , where 2~(1R, IC) is 
the space of IR-linear transformations of IR into C. The space 2~(1R, IC) is a 
complex vector space isomorphic to C. In fact, it has the basis {dt}, dt(s) = s 
for S E IR. A differential form ill of degree 1 can be written ill = g dt, g : U -> C 
of dass Ck . An example is the differential df = f'(t) dt of a differentiable 
function f on U. 

We consider three separate cases in order to define the inverse image of a 
differential form. 

1.2.3. Inverse Image: The case of a Mapping Ii : 0 1 ~ O2 

of Class COO Between Two Open Subsets of [R 

The inverse image by y of a differential form of degree 0, g : O2 -> C, is the 
form of degree 0: 

y*g:= gO}'. 

The inverse image by y of a differential form of degree 1, OJ = g dt, is the 
differential form of degree 1: 

y*OJ := (g 0 y) dy = (g 0 },). y' dt 

defined in 0 1 , Note that if (Q(, h) denotes the action of the map rI. on the vector 
h, then for hEIR, 
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<y*w(t), h) = <w(y(t)), y'(t)h). 

If g is of degree 0 and class ck, k ~ 1, one verifies that 

y*(dg) = d(y*g). 

1.2.4. Inverse Image: The Case of a Mapping y: n1 --+ n2 , n1 

Open Set in IR, n2 Open in C, y of Class Coo 

11 

For a differential form of degree 0, g: il2 -+ C, the definition is the same as in 
§1.2.3, y*g = goy. If w = P dx + Q dy, then its inverse image by y is the 
differential form of degree 1 in il 1 given by 

y*w := (P 0 y)d(x 0 y) + (Q 0 y)d(y 0 y). 

Ify = (1'1,1'2) = 1'1 + iY2 we then have 

y*w = ((P 0 y)y~ + (Q 0 y)y;)dt. 

One can also verify that d(y*g) = y*(dg) for g : il2 -+ C of degree 0 and class 
Ck (k ~ 1). One also has for hEIR 

<y*w(t), h) = <w(y(t)), y'(t)(h). 

1.2.5. Inverse Image: The Case of a Mapping y : n1 --+ n2 

of Class Coo, Where n1 , n2 are Open Subsets ofC 

We continue defining y*g = goy for g : il2 -+ C a differential form of degree 
O. For a I-form w = Pdx + Qdy we have 

y*w := (P 0 y)d(x 0 y) + (Q 0 y)d(y 0 y) 

( aY1 ay2) ( aYl ay2) = (P 0 Y)a[ + (Q 0 Y)a[ d~ + (P 0 Y)aq + (Q 0 Y)aq d/] 

where y = Yl + iY2 and, = ~ + i/] denotes the variable in ill' A formula 
similar to that in § 1.2.4 can be obtained if we represent w by Adz + B dz- (see 
Exercise 1.2.3). 

For a differential form w of degree 2, w = A dx /\ dy, y*w is defined by 

* (01'1 01'2 01'1 01'2) Y w:= (A 0 y) dYl /\ dY2 = (A 0 y) a[ aq - aq a[ d~ /\ d/]. 

One can see that if J(y) denotes the Jacobian determinant of y, as a map 
1R2 -+ 1R2, then 

y*w = (A 0 y)J(y)d~ /\ d/]. 

It is now possible to verify that if the degree of w is 0 or 1 then 

d(y*w) = y*(dw). 
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It is also true that if OJ has degree t and h, k are two vectors in ~2, then 

<Y*OJ(O, h) = <OJ(y(O), y'«()(h», 

where y' is the derivative of y. If OJ has degree 2, then <Y*OJ(O, (h, k) = 
<OJ(y(O), (y'«()(h), y'«()(k))). In the same vein, it is not hard to see that 

y*(OJ 1 /\ OJ2) = Y*OJ 1 /\ Y*OJ 2· 

As an example, let us verify d(y*OJ) = y*(dOJ) for a form OJ = P dx + Q dy of 
degree 1. We assume the distributivity of the inverse image with respect to 
the wedge product and that the formula has been verified for degree 0. 
We have: 

d(y*w) = d«P 0 y)dY1 + (Q 0 y)dY2) 

= d(P 0 y) /\ dY1 + (P 0 y)d 2Y1 + d(Q 0 y) /\ dY2 + (Q 0 y)d 2Y2 

= d(y*P) /\ d(y*x) + d(y*Q) /\ d(y*y) 

= y*(dP) /\ y*(dx) + y*(dQ) /\ y*(dy) 

= y*(dP /\ dx + dQ /\ dy) = y*(dOJ). 

In summary, the inverse mapping y* is a linear transformation between 
differential forms of the same degree, which commutes with the operations of 
exterior derivative d and wedge product. 

1.2.6. Example (Polar Coordinates). Consider ill = JO, oo[ x ~ as an open 
subset of ~2 with variables denoted (p, 0), il2 = C* = C\ {O}. Let y : ill --+ il2 
be given by 

and Y2(P,O) = p sin 0, 

hence y(p,O) = pe iO . We remind the reader that if z = x + iy = pe iO, then 
p = Izl = Jx 2 + y2 = Jzz is the absolute value of z and 0 = argz is the 
argument of z. When we can choose 0 E J - n, n[, we denote it by Arg z, the 
principal value of the argument. 

xdy - ydx 
For OJ =------- we have x2 + y2 ' 

y*OJ = dO and d(y*OJ) = o. 

1.2.7. Remark. The notion of inverse image makes sense for forms of class Ck 

if y is of class Ci,j ~ k. 

1.2.8. Definitions. 1. Let il be an open subset of C. A path in il is a continuous 
function c: [0, tJ --+ il. The point c(O) is called the starting point of the path. 
The point c(t) is the endpoint. 

2. The set of all paths in il is the set '6'( [0, t J, il) of all continuous functions 
in [0, tJ with values in il. 
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3. We say a path c is piecewise-Cj (j :2: 1) if there is a partition 0": 0 = 
to < t 1 < ... < tn = 1 of the segment [0, 1] such that all the functions 
Ck := cl [tk - 1 , tk ] are of class Ci. (This means that all the derivatives in] tk - 1 , tk [ 

extend continuously to [tk- I , tkJ. Equivalently, there is a Ci function in an 
open interval which restricts to Ck in the closed interval.) 

4. Let W E 6"6 (0) and let c be a piecewise-Cj path in 0 (j :2: 1). Then we can 
define the integral of w along c by: 

1 w:= 1<;~,;n fk, ct(w) = 1 ,;~,;n fk, <w(c(t)), c~(t» dt. 

One can verify without any difficulty that the value thus obtained is indepen
dent of the chosen partition 0" of c. In fact, by introducing an extra point 
r E ]tk - I , t k [ we have 

If 0"1 and (Jz are two partitions associated to c, one compares the value 
associated to each of them with the value corresponding to the partition 
(JI U(Jz· 

5. A path can also be defined as a continuous (or piecewise-Ci) map 
c: [a, b] - o. A change of parameterization is a strictly increasing C1 map 
cp: [c, d] - [a, b J. We obtain a new path cp*c whose image in 0, starting point, 
and endpoint coincide with those of c. Clearly we can define the integral of a 
form w along c in the same way as earlier and we find without difficulty that 

f w = f w, 
e cp*c 

that is, the value of the integral is independent of the parameterization. 

1.2.9. Proposition (Barrow's Rule). Let c be a piecewise-C 1 path in 0 and 
f E 6"?(0). Then 

1 df = f(c(!)) - f(c(O)). 

PROOF. Let us choose a partition (J: 0 = to < ... < tn = I such that the corre
sponding Ck = cl [t k - 1 , tkJ are continuously differentiable. We have 

1 df = 1<;~';" fk, ct(df) = 1';~9 fk, d(f0 ck ) 

= 1 ck,;n fk, (f 0 eS(t) dt 

L U(c(tk )) - f(c(tk-d)} = f(c(1)) - f(c(O)). D 
15,k$;n 
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Let c be a piecewise-C1 path in n. We recall that such a path is rectifiable 
and its length t(c) is given by 

t(c) = Ll Ic'(t)1 dt. 

The parameterization of c such that IC'(s)1 == 1, s E [0, t(c)], is called the arc 
length parameterization. The integral of a function 9 defined on the image of 
c using arc length parameterization is denoted indistinctly by 

L gds = L gldzl:= f:(C) g(c(s»ds. 

With this notation we have t(c) = L Idzl. 

Let now WE cJ(n). For each ZEn denote IIw(z)1I the norm of the linear 
map w(z) E 21R(C). The following simple inequality will have very important 
applications: 

In fact, let (1 : ° = to < t 1 < ... < tn = 1 be a suitable partition for the path c. 
We have 

EXERCISES 1.2 

::; O:~~l IIw(e(t»II· 1 ~~~n fk, !c'(t)1 dt 

= sup Ilw(e(t))ll· tee). 
05l~1 

1. Let n be an open connected subset of \R2, f E C'(n) such that df = o. Show that 
f is a constant. 

2. In the situation of § 1.2.4, verify that if w = A dz + B dz, then 

y*w = (A 0 y) dy + (B 0 y)dy = ((A 0 y)(y~ + iy;) + (B 0 y)(y~ - iy;» dt. 

3. In the situation of 1.2.5, compute y*w when w = Adz + B dz. 

4. In the situation of 1.2.5, verify that if w = B dz A dz, then 

(l OY 12 lOY 12) y*w = (B 0 y) oC - of d( A d'-

5. Let yep, 0) = (p cos 0, p sin 0) as in Example 1.2.6. Show that if f is a differentiable 
function in IC*, then 
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a(fo y) = ~(x of + y Of) 0 y, 
ap p ax ay 

a(f 0 y) = (x of _ /f) 0 y 
08 ay ax ' 

of au 0 y) sin 8 au 0 y) 
- (p cos 8, p sin 8) = cos 8 -0-(p, 8) - - -08 (p,8), 
ax p p 

. of of of 
and find corresponding formulas for oy 0 y, oz 0 y, and Oz 0 y. 

h .. x dy - y dx . . "'* I .. 6. In this exercise we show that t e lorm w = 2 2 IS not exact In IV • n lact, 
x + y 

if w = df for some f E C1(C*), show that f 0 y = 8 + c, for some constant C E C. 
Conclude from this that f cannot be continuous. Find another proof that w is not 
exact using Proposition 1.2.9. 

(x - y)dx + (x + y)dy . 
7. Let IX > 0 be a parameter, 0 = C* and w = (2 2)" • For WhICh 

x + y 
values of IX is w closed? For which values of IX is wexact? 

8. Let 0 be an open subset of C, f E 8°(0), IX = df, and suppose IX(Z) f:. 0 for every 
Z E O. For w E 8 2(0) solve the equation 

IXI\P=W 

with P E 8 1(0). 

9. Let nEll, compute ~(z") and o_(zn), where z f:. 0 ifn < O. 
OZ oz 

to. Compute dlzl 2 and dlog2 1z1 (where z f:. 0). 

o 0 
11. Let m, n E N, compute OZ (zmz") and oz (zmzn). 

§3. Partitions of Unity 

One can easily verify that the function cp defined on the real line by 

(t) .= {exp( -1/(1 - t2» ifltJ < 1 
cp . 0 ifJtJ ~ 1, 

is of class COO in ~, even, and strictly positive on J -1,1 [. 
Let us denote supp f, the support of a continuous function f (i.e., supp f = 

{x: f(x) =I- O} = the closure of the set of points where f is different from zero). 
Then we see that supp cp is exactly the compact set [ -1, IJ. 
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Consider the function 8 defined in [Rn by 

o(x)'= {kneXp( -1/(1 - IlxI12») if Ilxll < 1 
. 0 ifllxll ;::: 1, 

where kn is chosen so that J" 8(x)dx = 1. (Here x = (x1,···,xn ), Ilxll = 
iR'l ( t Ix)2) 1/2 is the Euclidean norm.) It is a ex: function in [Rn, radial (i.e., 

depends only on Ilxll), nonnegative, has integral 1, and its support is contained 
in the closed unit ball B(O, 1). A function e with these properties will be called 
standard. In that case, for f; > 0 we will denote by 0, the function given by 
8,(x) = ,,-no(x/,,). This new function will have the same properties as 8 except 
that its support will be contained in B(O, B). 

Let 0 be an open set in [Rn, we will denote g)(0) the complex vector space 
of an CO) functions in [Rn with compact support contained in O. The existence 
of standard functions shows this space is nontrivial. 

1.3.1. Proposition. Let 0 be an open set of [Rn and :JJ a basis of open sets in O. 
There is a sequence (UJj~l of open sets in:JJ such that 

(1) U Uj=O 
j;-1 

(2) For every compact set Kin 0 the set {j: K n Uj i= 0} isjinite. 

The first condition means that (U)j~l is an open covering ofO. The second 
means that this covering is locally finite. 

PROOF. Let (Kj).k -1 be an exhaustion of 0 by compact sets, where K-l = 

Ko = 0 for convenience. That is 

(i) K j ~ Kj + 1 for j ;::: 1, 
(li) 0 = U K j . 

j'21 

Consider w,:= K'+l \Kr- 2 , v,.:= K.\Kr-l for r;::: 1. Hence, each W, is 
open, each v,. is compact, v,. ~ w" and 0 = U v,.. 

r~l 

For every x E v,. there is Ux,r E:JJ such that x E Ux.r ~ w,. Since v,. is 
compact, there exist finitely many points x r , l' ... , Xr,kr E v,. such that 

v,. ~ U UXr."r ~ w,. 
l~i~kr 

The collection (Ux . r)r>l l<i<k is countable and satisfies (1) and (2) since 
any compact K in 0 i~'terse~ti ~niy a finite number of w,. 0 

1.3.2. Proposition (CO Partition of Unity, I). Let 0 be a nonempty open subset 
of ~". Let (OJiEI be an open covering of O. There exists a sequence (O)j;?:l of 
elements (Xj E f?ii(0) such that 
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(1) for every j ~ 1 there is an i = i(j) E I such that supp (Xj !:; Qi. The family 
(suPP(X)j;'l is locally finite. 

(2) 0 :s; (Xj :s; 1 for every j ~ 1. 
(3) L (Xix) = 1 for every x E Q. 

j;,l 

This sequence «(X)j;'l is said to be a COO partition of unity subordinate to the 
covering (Qi)ieI. 

PROOF. For every x E Q there is rx > 0 such that B(x, rx) !:; Q ix for some ix E I. 
The family f!4 of all the balls B(x, r), x E Q, 0 < r :s; rx, is a basis of open sets 
orQ. Therefore, there is a sequence B(xj,rj),j ~ 1, satisfying the properties (1) 
and (2) of Proposition 1.3.1. For j ~ 1 we have 

B(xj, r) !:; B(xj, rj) !:; Qi(j)' 

where we have set i(j) = ix . Let () be a standard function and define functions 
J 

Pj E E0(Q) by Pj(x) = ()r/x - x). The family (supp Pj)j;'l is locally finite by 
construction. Hence the function 

is a COO function in Q. Furthermore, s(x) > 0 everywhere in Q. Let (Xj = P)s. 
This sequence has the desired properties. D 

1.3.3. Corollary. Let K be a compact subset of an open set Q in jRn. Let V be 
an open neighborhood of K, v!:; Q. There is a function qJ E E0(V) such that 

(1) O:s; qJ:S; 1, 
(2) qJ == 1 in a neighborhood of K. 

PROOF. For 6>0, denote V(K,6) = {XE jRn:dist(x,K) < 6}. Choose 6>0 
so that K !:; V(K, 6) !:; V(K, 26) !:; V. We apply §1.3.2 to the covering of Q 
consisting of the two open sets Ql = V(K, 26) and Q2 = Q \ V(K, 6), and define 

qJ := L' (Xj' 
j 

where the prime indicates the sum takes place over only those indices j for 
which supp (Xj !:; Ql. The function qJ is clearly in E0(Q), and its support is 
contained in V(K,26). It is also identically equal to one on a neighborhood of 
K, since if the index k does not appear in the sum defining qJ we must have 
supp (Xk ¢. Ql. Therefore supp (Xk !:; 02. It follows that (Xk = 0 on V(K, 6). Hence 

qJ IV(K, 6) = (.L (Xj) IV(K, 6) = 1. 
j;,l 

This ends the proof of the corollary. D 

Such a function qJ is called a plateau function. 
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1.3.4. Proposition (COO Partition of Unity, II). Let (Vi)ieI be a covering of an 
open set 0 by nonempty open sets. For every i E I there is IXi E 8(0) such that 
0:::;; IXi :::;; 1 and supp IXi is a relatively closed subset of Vi· Furthermore, the family 
(SUPPIXi)ieI is locally finite and L IXi == 1. 

ie I 

PROOF. We already know that there is a sequence (Pj)j?l ~ ~(O) with the 
properties (1), (2), and (3) of §1.3.2. For every i E I let Ii = {j: i(j) = i} and 
define 

The family (supp Pj)j?l is locally finite, hence it follows that IXi E 8(0), 
o :::;; IXi :::;; 1, and supp IXi ~ U supp Pj is a relatively closed subset of 0 con-
tained in Vi. jeli 

We need to show that (supp IXi)ieI is also a locally finite family. In fact, each 
z E 0 has a neighborhood ~ such that 

E = {j E N * : supp Pi rl ~ -=I: 0} 

is finite. Leti(E) = {i(j):j E E}. Ifi rf. i(E), then one must have SUpPIXl rl Vz = 0, 
otherwise there is a j with i(j) = i such that supp Pj rl ~ -=I: 0. This implies 
that j E E and hence i E i(E). Therefore, # {i : supp IXi rl ~ -=I: 0} :::;; # (i(E» :::;; 
#(E) < 00. 

Finally, it is clear that 

o 

In the sequel to this volume, we will need more precision on the behavior 
of the derivatives of the function ({J obtained in Corollary 1.3.3. This precision 
is given by the following proposition originally due to H. Whitney. The reader 
can safely skip its proof for the moment. 

*1.3.5. Proposition. Let 0 -=I: F ~ 0 ~ ~., F closed and 0 open. Define 
d(x):= max {d(x, F), d(x, OC)}. There is a Coo function ({J in~· such that 

(i) ({J == 1 on F, 
(ii) supp ({J ~ 0, and 

(iii) for some constants Ck > 0 (independent of F and il), any derivative of ({J of 
order k satisfies the estimate 

I ::a ({J(x) I :::;; ckd(x)-k 

everywhere. (Here IX E Nk, IX = (IXl, ••• ,IX.), IIXI = IXl + ... + IX. = k.) 

Moreover, if F is compact then <p can be taked in ~(~n). 
If 0 = !R., replacing d(x) by a positive constant, the same statements hold. 
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PROOF. First note that one can easily verify that d(x) > 0 everywhere and 
Id(x) - d(Y)1 ::;; IIx - YII· 

Using Zorn's lemma we can now construct a maximal sequence of 
points Xm in IRn such that the balls B(xm, lod(xm)) are pairwise disjoint. We 
claim that the balls (B(xm , !d(Xm)))m"l form an open covering of IRn, i.e., 
U B(xm, !d(xm)) = IRn. In fact, if Xo If. U B(xm, lod(xm}) then there must exist 
m~l m~l 

an integer m such that 

B( X m , 110d(Xm») n B( Xo, 110d(xo») #- 0· 

Otherwise the sequence (xm)m would not be maximal. Let Y be a point in the 
intersection. Then 

1 1 
IIxo - xmll ::;; Ilxo - yll + Ily - xmll < lOd(xo) + lOd(xm) 

1 2 1 2 
= 10 (d(xo) - d(xm)} + 10 d(xm)::;; 10 Ilxo - xmll + 10 d(xm). 

Hence (ollxo - xmll ::;; lod(xm) and Xo E B(xm,~d(xm)) c;;: B(xm,!d(xm)). A for
tiori, the balls of center Xm and radius td(xm) also form a covering of IRn. Let 
us verify that the number of such balls that can have a common point Xo is 
bounded by a constant that depends only on the dimension n. Namely, let us 
consider M = {m: Xo E B(xm, td(xm))} be nonempty. Then for m E M we have 

1 
d(xm) = d(xm) - d(xo) + d(xo) ::;; Ilxo - xmll + d(xo) ::;; 2d(xm) + d(xo), 

hence 

and therefore 

B ( Xm, ~ d(Xm») c;;: B(xo, 2d(xo)). 

The same reasoning shows that 

and therefore 

B (Xm' 1~ d(Xm») ;;2 B (Xm, :0 d(Xo»). 

The disjointness of the balls B(xm, lod(xm» (m E M) implies that the sum of 
their volumes cannot be bigger than the volume of B(xo, 2d(xo», whence the 
inequality 
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or 

#(M) ::; 30ft. 

The last property of these balls that we will need is that no B(xm, td(xm)) can 
simultaneously intersect F and nco In fact, if there are Xo E B(xm' td(xm» (\ F 
and Xo E B(xm, td(xm)) (\ !l', then 

and 

which contradicts the definition of d(xm). 
Let 0 be a standard function and consider the function 

I/I(x):= r 01/2(X - y)dy. J lyl:;;1.5 

(This function is in fact the convolution product of the characteristic function 
of the ball B(O, 1.5) and 01/2 .) It is easy to verify that 1/1 E !')(lRft), 1/1 == 1 on B(O, 1), 
supp 1/1 £; B(O, 2), ° ::; 1/1 ::; 1, and we have some constants c~ > ° such that 

I al~1 I 
ax~ I/I(x) ::; c~ (k = IIXI). 

Now we adapt the function 1/1 to the balls B(xm' !d(xm)) introducing the 
functions 

I/Im(X) = 1/1 ( 4(~(:m~m»), mE N*. 

It is clear that ° ::; I/Im ::; 1, I/Im == 1 on B(xm' !d(xm», supp I/Im £; B(xm, td(xm», 
and that for x E supp I/Im' the following inequalities hold: 

I ;;~ I/Im(x) I ::; c~4kd(xm)-k ::; c~ 12kd(x)-k. 

The last inequality is a consequence of the above inequality (*). Finally, for 
every x E IRft, 

1 ::; 'I'(x):= L I/Im(x)::; 3on. 
m~l 

The lower bound is a consequence of the fact that (B(xm, !d(xm)))m~ 1 is a 
covering of IRft; the upper bound, from the bound on the number of balls of 
radius td(xm) intersecting at a single point. 
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Let Mo = {m: B(xm, !d(xm )) (1 F =1= 0}. We define the required function qJ 
by the formula 

qJ(X) := ( L t/!m (X»)/'P (x). 
meMo 

It is easy to verify that qJ has all the properties stated in the proposition. 
o 

EXERCISES 1.3 
1. Let cp, t/J be functions in ~(IR), with supp cp and supp t/J contained the interval [a, b]. 

Let IX = f:oo cp(x)dx, p = f:oo t/J(x)dx. Show that the function 

X(x) = IX roo t/J(t)dt - P roo cp(t)dt 

is also in ~(IR), supp(X) !:;;; [a, b]. 

2. Let f E Lloc(O)' 0 open in IR·. Show that if 

Sa fcpdx = 0 

for every cp E ~(O), thenf = 0 a.e. in O. (Hint: Show first that for every hypercube 

Q, Q !:;;; 0, one has Sa f dx = 0.) 

*3 (Borel's Lemma). Let (a.).;,o be an arbitrary sequence of complex numbers. Show 
that there is a Coo function f in IR such that p·)(O) = a., n = 0, 1, 2, .... (Hint: Let 
cp E ~(] -1, 1[) such that cp(x) = 1 in a neighborhood ofO. Let IX. be a conveniently 

00 x. 
chosen increasing sequence, IX. -+ 00. Define f(x) = L a.,cp(IX.X).) 

.=0 n. 

4. Let f be a Coo function defined in an open set 0 !:;;; 1R2 such that the differential 
df(z) #- 0 for every z E O. Let S = {z EO: f(z) = O}. Show that 

(i) For every z E S there is an open set V.!:;;; 0 and a Coo diffeomorphism 
cp: V. -+ ]-1, 1[ x ]-1, 1[ such that (fo cp-l)(U,V) = v. 

(ii) If g is a Coo function in the square] -1, 1[ x ] -1, 1[ which vanishes on the 
axis v = 0, then there is a Coo function h such that g(u, v) = vh(u, v) in the square. 

(iii) If G E .1(0), G = 0 on S, then there is H E .1(0) such that G = fH in O. 

*5. The goal of this exercise is to construct, without appeal to Zorn's lemma, the 
maximal sequence {Xm}m;'l found in the proof of Proposition 1.3.5. We keep the 
notation from that proposition. Pick an arbitrary point Xl E IR" and proceed by 
induction. Assume you have already found the first m - 1 points Xl' ... , Xm- 1 of 
the sequence, and let us try to find the point Xm as follows: 

(i) Show that the set 

Em := {x E IR·: B(x,d(x)jlO) n B(xj ,d(Xj)jl0) = 0,j = 1, .. . ,m - I} 

is not empty. 
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(ii) Let 'm := inf{ Ilx - xIII: X E Em}. Prove there is a point Xm E Em such that 
Ilxm - Xl ,I = r",. 

(iii) Show that that sequence of positive real numbers {r m} m;, 2 is unbounded. 
Deduce that the sequence {X",}m<:l is maximal for the property that the balls 

B(x"" d(xml/lO) are pairwise disjoint. 

6. Show that a cOE1pact subset K of an open set Q is the support of a function q> E S?(Q) 

if and only if it = K. 

*7. Show that every closed subset F of an open set Q s;; C coincides with the set of 
zeros of a function of class Coo in Q. 

§4. Regular Boundaries 

1.4.1. Definition. Let 0 be an open subset of [R2. We say that 0 has a regular 
boundary of class Ck (k ;::: 1) if for every p E ao there is a neighborhood Up of 
p and a diffeomorphism ({Jp of class c::k from Up onto a neighborhood t;, 
of 0 in [R2 such that ({Jp(p) = 0, ({Jp(Up n 0) = t;, n {(x, Y) E [R2 : x :s: O}, and the 
Jacobian determinant J«({Jp) is > 0 in Up. 

One can assume without loss of generality that t;, = ] -1, 1[ x ] - 1, 1[ 
and that ({Jp is still a diffeomorphism in a neighborhood of Up. 

-1 o 

-1 

Figure 1.1 

1.4.2. Remarks. (1) If ({Jp = (pp,o-p) then the function Pp: Up ...... [R is such that 
Up n 0 = g E Up: pp(O < O} and Up n 00 = g E Up: pp(O = O}. Further
more, I/Ip:= o-pl(Up n (0): Up n 00 ...... t;, n {(x, Y) E [R2 : x = O} is a homeo
morphism onto J -1, 1[ such that I/Ip-l : J -1,1 [ ...... 0 is of class Ck • Let ( = 
(~, '1) and Y = I/Iq«()' Since Pp 0 I/Ip-l == 0 in ] -I, I[ one sees that the vector 

grad pp(O = (ap! (0, app (0) is orthogonal to (1/1;'1 ),(y), the tangent vector to 
or:; 0'1 



§4. Regular Boundaries 23 

the curve Up 11 an parameterized by t/Jp-l. As we mentioned earlier, we can 
suppose that t/Jp-l is a homeomorphism of the closed interval [ -1,1] onto 
t/Jp- 1([ -1,1]) <:; an. Moreover, the conditon detJ«(,Op) > 0 means that the 
basis of 1R12 given by {grad pp(O, (t/Jp-I )'(y)} is a basis defining the usual orienta
tion of 1R12. 

(2) If Up 11 Uq i= 0 for two points p, q E an, then the map 

(,01' 0 (,Oq- 1 I(,Oq(Up 11 Uq) : (Pq(Up 11 Uq) -+ (,Op(Up 11 Uq) 

is a diffeomorphism of class Ck • 

-1 0 

-1 

Figure 1.2 

-1 

(3) There is a map p: 1R12 -+ IR1 of class Ck such that n = g: p(O < O}, 
an = {( : p(O = O} and, furthermore, dp(O i= 0 if' E an. To see this, consider 
a covering of an by open sets Up (p E an) as those obtained earlier and let 
(/30' /31' ill' : pEOn) be a C'" partition of unity subordinate to the covering 
{n, 1R12 \ n, Up (p E an)} of 1R12, as given by Proposition 1.3.4. Hence, supp /30 <:; n, 
supp /31 <:; 1R12 \0, and supp ill' <:; Up. Set 

p«():= - /30«() + /31 «() + I ilp(Opp(O, 
I' 

which is evidently of class Ck• By (1) if ( E an all the dpp(O for which ilp(O i= 0 
are different from zero and proportional to each other with a positive constant 
of proportionality. It foHows that dp(O i= 0 for every ( E an. It is clear that if 
( E n then p(O < O. Conversely, if' ¢ 0 one can easily see p(O > o. 

One can also see without difficulty that, given p : 1R12 -+ IR1 of class C k (k 2:': 1) 
such that when n is defined by n := g : p(O < O} one has dp(O i= 0 for ( E an, 
then Q is an open set with regular boundary of class Ck • We remark that if PI 
and P2 define the same n, then PI = hpz for some strictly positive function h 
(see Exercise 1.3.4). 

Finally, we note that one can also consider an open subset OJ of an open 
set n, and say that OJ has a regular boundary relative to n, if the relative 
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boundary onw is regular in the preceding sense. Since we are only going to 
use this for 0) relatively compact in n, the two notions coincide. 

1.4.3. Proposition. Let n be a relatively compact, open set with regular bound
ary. Then, the number of connected components of an is finite. 

PROOF. Let us suppose that the set (C;)iU of connected components of an is 
infinite. Choose Zi E Ci . The family (z;); El admits an accumulation point z E an. 
By definition of regular boundary, we can choose a neighborhood Uz of Z such 
that an n Uz is a connected set. Therefore z cannot be an accumulation point 
of(zJiEl' 0 

1.4.4. Proposition. Let n be a relatively compact, open set with regular boundary 
of class Ck (k 2 1). Every connected component f' of an is a Jordan curve of 
class Ck . 

*PROOF. Let us recall that a subset K of IC is said to be a Jordan curve 
(resp. of class Ck ) if there is a continuous (resp. Ck ) map cP: [0,1 J ~ IC such 
that cpl[0,1[ is injective, cp(O) = cP(l) (cp(j)(O) = cp{j)(1), ° 5,j 5, k), and 
cp([O, IJ) = K. 

Let P be a Ck function defining n. Since an is regular, we know that f can 
be represented as the finite union of a family of open arcs f1' ... , f N• N 2 2, 
of the form fi = cp;(J - 1, 1 D, where each CPi is the restriction to J - 1. 1 [ of an 
injective function, still denoted cp;. CPi: C -1, 1J ~ f which is not surjective. 
Moreover, for any t E [ -1, IJ, the pair (grad P(CPi(t», cp:(t))} is an orthogonal 
basis of [R2 with the canonical orientation. We can also assume that 
fi ct U Ij (1 5, i 5, N) and that every p E f has a neighborhood Up such that 

.ili 
if P E f'i then 

Up n r~ = Up n r. (*) 

We shall show by induction on N that f is a Jordan curve of class Ck . 

Consider first the case N = 2. Then f == f1 u f 2; the connectedness of f 
implies fl n r2 i= 0. Thus cpi1(f'2} is a nonempty open proper subset of 
] -1,1 [. Therefore cpi! (f2) is a countable union of disjoint, nonempty open 
intervals, cpi1(f'2) = U Jan,bnC· 

n:2:1 

Suppose an > -1. We shall show thatbn = I. Since neither CP1(an) nor cpj(bn) 
belongs to f2' we have thaUPI (J an, b.D = CP1 ([a., bn ]) n f'2' Hence CP1 (]a n , bnD 
is a closed su barc of f 2. If bn < 1, then CPl (] an. bn [) would also be open in f2' 
whence f2 = CP1(]am bn D. It would follow that r z s; f l , which is impossible. 
This argument shows that bn = t when an > - 1. A similar argument shows 
that if bn < I, then an = - 1. We conclude that cpi- I (f2) is the union of at most 
two disjoint nonempty intervals] - 1, b[, J a, 1 [, with b 5, a. The set cpi l (f2) 
is relatively open in [ - 1, 1 J and both points CP1 ( - 1) and CP1 (1) belong to f 2 . 

Therefore cpi1 (fz) must have exactly two components. 
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Clearly we also have that cpi1(rl) is the union of two disjoint intervals 
] - 1, [3 [ and] a, 1 [, with - 1 < [3 :::; a < 1" Therefore, r 1 (\ r 2 is the disjoint 
union of the arcs CPI (] - 1, b[) and CPl (J a, 1 [), and it is also the disjoint union 
of the arcs CP2(J -1, [3[) and CP2(] a, l[). We claim that 

CPI(J-l,b[) = CP2(]a, 1[) and 

Otherwise, CPI (] -1, b[) = CP2(] -1, [3[) and CPl (]a, I D = CP2(]a, 1 D. Hence 
cpi 1 a CPI is a diffeomorphism from ] - 1, b [ onto ].- 1, [3 [, and from ]a, 1 [ 
onto ] a, 1 [. This function is strictly increasing because its derivative is 
positive. In fact, for tE]-I,b[u]a,l[ and s=cpi1 (CPI(t», we have that 
{grad P(CPI (t», cP~ (t)} and {grad P(CP2(S», cp~(s)} are bases of [R2 with the same 
orientation. Since CPt (t) = CP2(S), this implies that cP~ (t) = (CPl·! a CPI)'(t)CP~(s) is 
a positive scalar multiple of cp~(s), i.e., (cpi 1 a cpd'(t) > O. 

By continuity, we obtain CPI (-1) = cpz( -1), CPI (1) = CPz(1), CPI (b) = cpz([3), 
(PI (a) = cpz(a). A quick look at Figure 1.3 will convince the reader that this is 
a contradiction with the assumption (*) at the point p = CP1(b). 

<P1(a) = <p2(a) 

<PI (1) = <P2(1) 

Figure 1.3 

In conclusion, CPI (] - 1, b D = cpz (Ja, I D and CPI (] a, 1 D = cpz (] - 1, [3 D. 
Moreover, since cpi! a CP1 is strictly increasing, CPl (-1) = cpz(a), CPl (b) = CP2(1), 
CPl(a) = cpz(-····I), and CPI(1) = CP2([3). From Figure 1.4 we see now that r is a 
Jordan curve. 

Now it is not difficult to show that r is a Ck Jordan curve. For that purpose 

Figure 1.4 
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we will reparameterize r 1 and r z using arc length parameters in such a way 
that we can patch these parameterizations into a Ck map defining a Ck Jordan 
curve. 

First consider S I' the arc length parameter for r 1 , defined by 

S1(t) = J:ICP;(X)ldX. 

Then S 1 : [ - 1, 1 J -> [0, t 1 J, where 

t 1 := rlcp~(X)ldx=t(rJ. 
Let i 1 be the inverse of S land tjJ 1 : [O,t 1 J -> r given by tjJ ds) = CP1 (r 1 (s». 
We also consider the arc length parameter for f 2, defined by 

S2(t) = I: Icp~(x)1 dx; 

S2: [ -1, 1J -> [t;,t~J, where 

t;:= I-1 Icp~(x)ldx < 0 < t~:= f Icp~(x)ldx. 
Let i2 be the inverse of S2 and tjJz: [t;,t~J -> r be given by tjJ2(S) = CP2(r2(s», 

Denote t~ := S 1 (a), t 2 = S2(et), and to = SI (b) (cf. Figure 1.4). Observe that 
tjJl (t I + s), t~ - t 1 S; S S; 0, and tjJ2(S), t; S; s S; 0, are both arc length param
eterizations of the arc CPl ([a, 1]) = cpz([ -1, P]), with tjJl (II) = CPl (1) = CP2(P) = 
tjJz(O). Therefore, these two parameterizations must coincide. Hence t~ - I I = 
t; and tjJl(l l + s) = tjJ2(S), for t; S; s S; O. A similar argument shows that 
to = I~ - I z and tjJI(S) = tjJ2(tz + s), for 0 S; s S; to. 

Define now L = tl + t2 and a map '1': [O,LJ -> I[ by 

'I'(s) = {tjJl(S) ~fOS;sS;ll 
. tjJz(s-t l ) IfI1S;sS;L. 

This map is of class Ck , '1'1 [0, L] is injective, 'l'w(O) = 'l'U)(L) for ° S; j S; k, 
and '1'([0, LJ) = r. 

Consider now the case N 2 3. Then CPl (1) E r z U··· UrN' After relabeling, 
if necessary, we can suppose that CPl(1) E r 2 . 

By the previous reasoning we know that CPl 1(rz) (resp. cp;-l(rd) is the 
union of at most two disjoint intervals of the form] -1, b[ and ]a, I [ (resp. 
]-l,P[ and ]et,l[). This time one of them must be necessarily empty. 
Since CPl(l) E r z, ]b, I[ # 0. The argument given for N = 2 shows that 
CPI (] b, 1 [) = CPl(] -1, et[), CPl (b) = CP2( -1), and CP1 (1) = cpz(et). If] -1, a[ were 
not empty, it would follow that r l u r 2 is a Jordan curve. Since r # r l u r z, 
there is i # 1, 2 such that r i (l (r1 u r z) # 0 and r i 't r l u r 2 . Consider 
an arc Yi <:; r i (l WI u r z), one of its extreme points p belongs to rio This 
contradicts (*) (see Figure 1.5). 

Therefore, using the same method as in the case tV = 2, we can construct 
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Figure l.5 

an injective Ck function 'P1,2: [-1,1] -I- r such that 'P1 • 2 (] -1, IE) = r 1 U r 2 

and {grad p('P l,2(t)), 'P~, 2(t)} is an orthogonal basis of [R2 with the canonical 
orientation for every t E [ -1,1]. Applying now the inductive hypothesis to 
r 1 U r 2 , r 3 , ... , r N , we conclude that r is a Ck Jordan curve. 0 

1.4.5. Remark. If p: IC -I- [R is a function of class Ck defining 0 and if 
(p: [0,1] -l> IC is a parameterizat.ion of a component r of ao of class Ck (i.e., 
cpl[O, I[ injective, cpW(O) = cp(jJ(l), 0 -::;;j -::;; k), then one can choose cp so that 
for every point pEr the pair {grad pCp), cp'(cp-l(p))} is an orthogonal basis of 
[R2 with the canonical orientation. This determines an orientation for r, 
independent of the choice of p and cp. 

We also note that Proposition 1.4.4 does not really use that 0 is relatively 
compact. 

1.4.6. Definition. An open subset 0 has a piecewise regular boundary (of class 
C\ k ~ 1) if, for every point p E a~, there is a neighborhood Up of p and a 
diffeomorphism Cpp of class Ck from Up onto] -1, 1[ x ] -1, I[ such that 
(Pp(p) = 0, J«Pp) > 0, and cpp(Up n U) is one of the following sets: 

(1) (pp(UpnU) =]-1,0] x ] .... 1,1[ 
(2) cpp(Up n U) = ]-1,0] x ] -l,OJ 
(3) cpp(Up n U) = (] -1, 1[ x ] -1, 1 [)\(]O, 1[ x ]0, 1[) 

1.4.7. Proposition. Let 0 be a relatively compact, open subset of IC with piece
wise regular boundary (of class ck ~ 1). There is only a finite number of 
connected components of ao and each of them is a Jordan curve (piecewise Ck ). 

PROOF. The proof is analogous to the proofs of 1.4.3 and 1.4.4. D 



28 1. Topology of the Complex Plane and Holomorphic Functions 

1.4.8. Remark. One can give an orientation to 00 in the case of Proposition 
1.4.7 in the same way as it was done for a regular boundary. 

§5. Integration of Differential Forms of Degree 2: 
The Stokes Formula 

1.5.1. Definition. Let 0 be an open subset of C, w a (Lebesgue) measurable 
subset of 0 and a = f dx 1\ dya 2-form in 0 with measurable coefficient f If 
f is integrable over w (with respect to the Lebesgue measure dm) we define the 
integral of a over w as the complex number given by 

1.5.2. Proposition. Let cp : 0 1 -+ O2 be a diffeomorphism of class C 1 between 
two open subsets of C such that J(cp) > 0, let W; be open subsets of O;(i = 1,2) 
such that cp(wd = W2' and let a = f dx 1\ dy be a 2-form with f measurable on 
O 2 and integrable over W2. Let cp«(, '1) = (x, y), then cp*(a) = (f 0 cp)J(cp) d~ 1\ d'1, 

(f 0 cp)J(cp) is measurable on 0 1 , integrable over WI' and f cp*(a) = f a. 
Wl Ct)2 

PROOF. In fact, the formula of change of variables for the Lebesgue integral 
becomes here 

1.2 f dm = 1., (f 0 cp)J(cp)dm, 

which can be translated into 

f a = f cp*(a). 
W2 rot 

o 

1.5.3. Proposition (The Stokes Formula). Let 0 be an open subset of C, and w 
a relatively compact, open subset of 0 with piecewise regular boundary. Let y 
be a 1-form of class C 1 in O. We have the relation 

f dy = f y, 
'" a", 

where 1", y represents 1 ];,," ti y, the r; being the connected components of ow, 

canonically oriented. 

PROOF. For each p E ow we can find an open neighborhood Up of pin 0 and 
a diffeomorphism Cpp of Up onto] -1, 1[ x ] -1, I[ = V such that cpp(Up (") w) 



§S. Integration of Differential Forms of Degree 2: The Stokes Formula 29 

is of one of three types indicated in §1.4.6. We can find a finite number of 
points PI"'" PN so that Up1 ,"" UPN is a covering of ow. Hence the family of 
open sets O\w, w, Upl ,"" UPN is a covering ofO. Let (OCj)j;:'l be a Coo partition 
of unity subordinate to that covering. We have Y = L OC/i and dy = L d(ocjy). f j;:,l j;:,l 

In order to compute w d(ocjy) we need to consider three cases. 

(1) First case: supp ocj S;; w. We have here f d(ocjy) = f d(ocjY)' If OCjY = 
P dx + Q dy, one can write w C 

f d(ocjY) = f (oQ - OP)dXdY 
c c ox oy 

since P, Q are Cl functions of compact support. Therefore, in this case, have 

o = f d(ocjY) = f OCjY, 
w ow 

since the form ocjY vanishes on ow. 
(2) Second case: there is an index k such that suppocj S;; Upk' 
There are three subcases depending on the type of ({JPk(Upk n w) according 

to §1.4.6. 
(1) ({JPk(Upk n w) = ] -1,0] x ] -1, 1[ = V' (see Figure 1.6). 
We have 

f d(ocjY) = r d(ocjy) = r «({J;"l )*(d(ocjy)) = r d[«({Jp~l )*(OCjY)]' 
(J) JUPkf"l{J) Jv' Jv' 

-1 

V' -1 

Figure 1.6 
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Writing «{Jp~l )*(lJ(jY) = P dx + Q dy, the preceding expression becomes 

L d(lJ(jY) = f1 {f:1 e; -~~) dX} dy 

f 1 {fO OQ} fO {flOP } = -dx dy- -dy dx 
-1 _lOX -1 -lOY 

= f ~1 Q(O, y) dy. 

If 1/1 denotes ({Jp~l restricted to {O} x J -1,1[, one has 

1/I*(lJ(jyl(Upk (\ ow» = Q(O,y)dy 

and hence 

Therefore one has 

f d(lJ(jw) = r IJ(jY = f IJ(jY' 
ro JUPknoro Ow 

(2) ({JPk(Upk (\ w) = J -1, OJ x J -1, OJ = V" (see Figure 1.7). 
Here we have 

V" -1 

Figure 1.7 
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f o (fO oQ) fO (fO oP ) = -dx dy- -dy dx 
-1 -lOX -1 -lOY 

= f:1 Q(O, y) dy - f:1 P(x,O)dx. 

If tjJ denotes qJ~ll{O} x ]-I,I[ and 0 denotes qJ~ll]-I,I[ x {OJ, then 
tjJ* (ocjy I (Upk now» = Q(O, y) dy and O*(ocjyl(Upk now» = P(x,O)dx. Therefore 

f o Q(O, y) dy - fO P(x,O)dx = f OCjY, 
-1 -1 ow 

as shown earlier. 
(3) qJPk(Upk n w) = V\(]O, I [ x ]0, I[) = V'" (see Figure 1.8). 
We leave this subcase to the reader. 
(3) Third case: suppocj S; O\w. Here we immediately have 

f OCjY = f d(ocjy) = O. 
aw w 

Therefore, in every case we have the identity f d(ocjY) = f ocjy. The prop-
osition follows by summation over j. w ow 0 

1.5.6. Corollary (Ostrogradski's Formula). Let zl-+A(z) = (A 1(z),A 2 (z» be a 
C1-vector field on an open set 0 in C (i.e., the coordinates Aj(z) of the vector 
A(z) are functions of class C1 ). Let w be a relatively compact open subset of 0 
with piecewise regular boundary of class c1• One has the relation 

f divAdxdy = f (A(z)ln(z»ldzl, 
w aw 

-1 

V'" -1 

Figure 1.8 
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. OAl OA2 
where dlV A = ax + oy is the divergence of the vector field A, n(z) denotes 

the exterior unit normal to ow at the point z E ow, and (Aln) denotes the scalar 
product of the two vectors. 

If the component of ow is parameterized near z by <P :[0, 1] -+ n, then one 
has that n(<p(t)) can be identified to the complex number - i<p'(t)/I <p'(t)l, 
Idzl = 1<p'(t)1 dt, and 

( ( ( »1 ( ( ») = Ai (<p(t»· 1m <p'(t) - A2(<P(t))· Re <p'(t) 
A <p t n <p t 1<p'(t)1 . 

Also note that n(z) is well defined with the possible exception of finitely many 
ZE ow. 

PROOF. If (Ij)l s,js,n is the family of connected components of ow, and <Pj = 
Xj + iYj is their piecewise-Cl parametric representation (with the canonical 
orientation), one has 

1w (A(z)ln(z)) Idzl = 1 s,~s,n Ii (A(<pj(t»ln(<pj(t)))1 dz(<pj(t»1 

= ls,~s,n f (Ai (<pit»yj(t) - A2(<pj(t))xj(t))dt 

= L rl
(A l dY -A2dx)=f y, 

ls,js,nJo aw 

where we have introduced the I-form y = Ai dy - A2 dx. This form has the 

( OA l OA2) , property that dy = ax + oy dx 1\ dy. Therefore, by Stokes formula, 

f diVAdXdy=f dy=f y=f (A(z)ln(z))ldzl. 0 
w w aw ow 

1.5.7. Corollary (Green's Formula). Let n be an open subset of C and f, 
g E ~2(n). For any w relatively compact open subset of n with piecewise regular 
boundary of class cl, we have the identity 

L (gN - fAg)dxdy = 1w (g(Z) in (z) - fez) :: (Z)}dZ I, 

where ~f (z) and :: (z) denote the partial derivatives off and g with respect to 

the exterior normal n(z) at the point z E ow. They are defined by 

of d 
an (z) = d/(z + tn(z))I,=o = (gradf(z)ln(z)) 

og d 
an (z) = dt g(z + tn(z))l.=o = (grad g(z)ln(z)). 
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The symbol ~ represents the Laplace (differential) operator, 

(}2 (}2 (}2 

~=-+-=4--. 
(}x2 (}y2 (}z Oz 

PROOF. Use §1.5.6 with A = g' gradf - f· grad g. o 
1.5.8. Corollary (Gauss' Formula). With the same hypotheses as in §1.5.7, we 
have 

f NdXdy=f ~(z)ldzl. 
w ow un 

1.5.9. Corollary. Let 0 be an open set in C, IX E 8l(0) a I-form of class Cl with 
compact support in O. Then 

In dlX = O. 

PROOF. The form IX can be considered as an element of 8l(e) (extended to be 
zero outside 0, as we have done before). For R > 0 sufficiently large we have 

r dlX = f dlX = f IX = O. In B(O.R) oB(O.R) 
o 

We will denote by ~f(O), or for simplicity ~k(O), the set of O-forms (i.e., 
functions) of class Ck and compact support in O. Similarly one denotes ~f (0) 
(and ~ff(O» the set of I-forms (and 2-forms) of class Ck and compact suport 
in O. We omit the subscript k when k = 00. 

We are going to consider the following two sequences ofC-linear mappings: 

BO(O) ~ Bl(O) ~ 8 2(0), 

~O(O) ~ ~1(0) ~ ~2(0), 

where d denotes the differential of functions or I-forms, according to case. 
Recall that d2 = 0, hence the image of the first d is contained in the kernel of 
the next one. One says the sequence is exact if these two spaces coincide. To 
measure how much these sequences deviate from exactness one introduces the 
following vector spaces: 

Zl(O):= Ker[d: Cl(O) -+ B2(0)], space of the l-cocycles. 
Bl(O):= Im[d: 8°(0) -+ Cl(O)], space of the l-coboundaries. 
Hl(O):= Zl(O)jBl(O), theftrst de Rham cohomology vector space of O. 
Z2(0) := C2(0). 
B2(0):= Im[d: Cl(O) -+ C2(0)], space of the 2-coboundaries. 
H2(0):= Z2(Q)jB2(0), the second de Rham cohomology vector space of Q. 

HO(O):= Zo(O):= Ker[d: BO(O) -+ Cl(O)], the zeroth de Rham cohomol-
ogy vector space of O. 
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Note that the elements of HO(O) are locally constant functions, therefore 
HO(O) can be identified with the Cartesian product Il C i , where J is the set 

ieJ 

of connected components of 0 and Ci is a copy of IC. 
One defines analogously the spaces Zl(O), Bl(O), H1(O), by replacing Iff' with 

f:Z everywhere. One calls them the same way, adding "with compact support." 
Note that HcO(O) = 0. 

The dimension (as a vector space over C) of HO(O) is denoted by bo and 
called the zeroth Betti number of O. It is exactly the number of connected 
components of O. Similarly, the jtll Betti number of 0 is defined to be 
bj := dime Hi(O) (j = 1,2). 

It is standard to call domain a nonempty connected open set in C (later 
we will use this name for subsets of the sphere S2.) 

It is easy to see that if q; : 0 -+ n' is a COO diffeomorphism between two open 
subsets of C, the inverse image maps q;* induce isomorphisms 

ijJ*: Hi(O') -+ Hi(O) (j = 0,1,2), 

by passage to the quotient. One needs only to recall the commutation relations 
q;*d = dq;* established in §1.2. 

We shall see later that the space H1(0) plays a fundamental role in the 
theory of hoi om orphic functions. For the time being though, we shaH concen
trate on studying the spaces H;(O) and H2(0). 

As we have seen in Corollary 1.5.9 the linear map "'integration over 0" 

I: f:Z2(0) -+ C 

is zero on d(f:Z1(0») and hence induces a linear map I in the quotient space, 
I: H;(O) -+ C. This map is surjective: if ;~ E C, and B(zo, R) S; 0, one can easily 
find a 2-form w = f dx 1\ dy with f E f:Z(B(zo, R» such that 

( w = f f dx d y = )~. In B(zo.R) 

One can make this statement more precise. 

1.5.10 Proposition. Let 0 be a connected open set of C. The map I is an 
isomorphism. In other words, dime H;(O) = 1. Equivalently, in order for a 
2-form of class ex; with compact support to be exact, it is necessary and sufficient 
that its integral vanishes. 

PROOF. We already know that if a E d(f:Z 1 (0» then I ex = O. To show the 
converse we first need the following lemmas: n 

1.5.11. Lemma. Let ex, [3 E f:Z2(B(zo, R».ln order that ex and [3 be cohomologous 
(i.e., ex - f3 E d(f:Z1(B(zo, R)))) it is necessary and su:fJicient that 

f ex = f [3. 
B(zo,R) B(zo.R) 
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PROOF. Since B(O,1) is diffeomorphic to C by the orientation preserving 
diffeomorphism 

z 
<p(z} := 1 _ IZl2 

and B(zo, R) is diffeomorphic to B(O, l} by the orientation preserving diffeo
morphism 

z - Zo 
8(z):=--, 

R 

it is clear that we only need to prove the following: 

1.5.12. Lemma. Let ex, (3 E .@2(C). Then ex - (3 E d(.@l(C) if and only if 

Lex = L{3· 
PROOF. It is enough to show that if y E .@2(C), y = 9 dx 1\ dy, is such that 

I(y) = Ly = L gdxdy = 0 then y E d(.@l(C). For that, it is enough to show 

that for every <p E .@2(C) there exists A(<p) E .@1(C) such that 

d(A(<p») = <p - I(<p)p, 

where p E .@2(C)is a conveniently fixed 2-form. In fact, if we take <p = y in this 
formula it follows that d(A(y» = y. 

Let k E .@(IR) be such that f~oo k(t) dt = 1 and set p := k(x)k(y) dx 1\ dy. For 

<p = I dx 1\ dy, we define the I-form A(<p) by: 

A(<p):= {f:", [/(t,y) - k(t) f~", I(S,y)dS]dt}dy 

- k(x) {foo [f~70 I(s, u) ds - I(<P)k(U)] dU} dx. 

One verifies easily that A(<p) E .@1(C) and d(A(<p» = <p - I(<p)p. o 
1.5.13. Lemma. For every WE .@2(0) and B(zo, R) <;; 0 there is ex E .@2(B(zo, R» 
such that W - ex E d(.@l(O)). 

PROOF. Let(B(z" r;})t "i"n be a covering ofsupp w. For a COO partition of unity 
(ex)j;>l subordinate to the covering {(B(zi,r,)l";,,n,O\suppw} ofn, we can 
write W = I exjW, with supp(exjw) contained in one of the disks B(z;, rJ if 

j;>l 
exjw i' O. Since the set ofj for which rxjW i' 0 is finite, it sufficies to prove the 
lemma for a 2-form W with compact support in a disk B(" r) <;; O. 

Since 0 is connected, we can find a finite family of disks (B('j' R j ))l "j"k 
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such that: (1) B«(l,Rd = B(zo,R), (2) B«(k,Rd = B(Cr), and (3) B«(j,R)n 
B«(j+b Rj +1) # 0 for 1 $;, j $;, k - 1. 

If we can find differential forms Wj E ::J12(B«(j, Rj } n B«(j+l' Rj+d), 
{3j E ::J11(B«(j+l,Rj+d) such that 

(i) W = Wk-l + d{3k-l, and 
(ii) wj+1 = Wj + d{3j,j = 1,2, ... , k - 2, 

then we will have W = WI + L d{3j. Setting (X = WI will prove the lemma. 
1 :5j,;k-l 

Let us show how to find W k- 1 ' d{3k-l; the rest of the proof is a repetition of 
this step. 

We know we can find W k - 1 E §02(B«(k' R k ) n B«(k-l' R k - 1» such that 

o 
Let us now go back to the proof of Proposition 1.5.10. Given WE ::J1 2 (0) 

with In W = 0 we want to show that W is ofthe form dy with y E §01 (0). Choose 

v E §02(0) such that If! v = 1 and the support of v is contained in some 

disk B(zo, R). The form (X given by Lemma 1.5.13 is cohomologous to 

J1 := (f ex) v, since both have the same integral. Therefore ex - J1 = dljJ 
B(zo.R) 

for some IjJ E §01(B(zo, R)) <;: §01(0), and W is also cohomologous to J1 in 

n, i.e., W - P. = dy for some y E .@1(0). The hypothesis f OJ = 0 now gives 

f ex = 0, hence p. = 0 and W = dy. f! 0 
B(zo.R) 

1.5.14. Proposition. For every open set 0 in C one has H2(0) = O. 

PROOF. We can assume without loss of generality that 0 is connected. Let 
(B(z" r;)t" 1 be a countable, locally finite covering of 0 by disks B(Zi, r;) cc 0 
such that B(z" r;) n B(Zi+l' ri+l) # 0 for every i. Let (<Pi)i~l be a COO partition 
of unity subordinate to the covering. We can assume <Pi E §0(B(z" r;). 

If (X E Z2(0), then every (Xi = <Pi(X has compact support inside B(Zi, r;). 
Using Lemma 1.5.11 and induction, one can see that for every i ~ 1 there 

exist forms (Xi.jE§02(B(zj,r)nB(zj_l,rj _d) and {3i.jE§01(B(zj_brj_d),j = i + 1, 
i + 2, ... such that 

(A) (x, = (X"i+l + d{3i,i+l 

(B) (Xi,j = (X"j+1 + d{3i,j+l,j ~ i + 1. 

The family (StiPP {3i,j)j~i+l is locally finite and one has (Xi = dYi' with Yi = 
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L Pi,i' which is a I-form of class COO having its support contained in 
i~i+l 

U B(zi' ri )· It follows that the family (supp Yi)i~l is also locally finite and 
i~i+l 

IX = dy with y = L Yi' This proves the proposition. 0 
i~l 

1.5.15. Proposition (Mayer-Vietoris). Let U and V be nonempty open subsets 
of an open subset 0 in C such that 0 = U u V. Denote Ai the linear maps 
Ai: &i(O) -+ 8 i(U) $ 8 i(V), j = 0, 1, 2, defined by Ai(w) := (w I u, wi V). Let Jl.i 
be the linear maps Jl.i: 8 i(U) $ 8 i(V) -+ 8 i(U ('\ V), 

Jl.i(lX, P) := (IXI(U ('\ V» - (PI(U ('\ V». 

Then: 

(1) The sequences 

0-+ &i(O) ~ 8 i(U) $ &i(V) ~ 8 i(U ('\ V) -+ 0 

are exact. 
(2) If U ('\ V is connected, passing from Al and Jl.l to the quotient maps iI' ill 

induces an exact sequence 
1 -

0-+ Hl(O) ~ Hl(U) $ Hl(V) ~ Hl(U ('\ V) -+ O. 

PROOF. (1) The only thing that needs to be shown is the surjectivity of Jl.i' Let 
{qJu, qJy} be a COO partition of unity subordinate to the covering {U, V} of O. 
If IX E 8 i(U ('\ V) then qJylX E &i(U) and qJulX E 8 i(V). For example, qJvlX E 8 i(U) 
since it is obtained by putting together the form identically zero in U\supp qJv 
and theform qJvlX, which is COO in U ('\ V (recall U = (U\supPqJv)u(U ('\ V». 
It is clear that IX = Jl.iqJvlX, -qJulX). 

(2) If U ('\ V is connected let us show that the map 

Hl(O) ~ Hl(U) $ Hl(V) 

induced by AI: Zl(O) -+ Zl(U) $ Zl(V) (which passes to the quotient since 
Al(Bl(O)) £; Bl(U)$Bl(V)) is injective. Denote by w the class of a closed 
form w. If i l (w) = 0 then wi U = df, for some f E 8(U), and wi V = dg, for 
some g E &(V). Therefore f - g is constant in the connected open set U ('\ V, 
say f - g = c. It follows that the function h defined by h = f in U and 
h = g + c in V is in 8(0) and dh = w. Hence w = O. 

Let now (IX, P) E Zl(U) Et> Zl(V) be such that ill (a.,p) = O. This means that 
(IXI(U ('\ V)) - <PI(U ('\ V)) = dy, for some y E 8«U ('\ V)). Since Jl.o is surjec
tive, y = Yu - Yv with Yu E 8(U), Yv E &(V). It follows that 

(IXI(U ('\ V)) - (PI(U ('\ V)) = d(Yul(U ('\ V)) - d(Yvl(U ('\ V», 

hence (IXI(U ('\ V» - d(Yul(U ('\ V)) = (PI(U ('\ V)) - d(Yvl(U ('\ V)). In other 
words, IX - dyu and P - dyv define a single I-form (j E 8 1(0) such that 
(j E Zl(O) and il($) = (a.,ih This shows the exactness at Hl(U) Et> Hl(V). 
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Finally, let us prove that fil is surjective. Let WE Zl(U 11 V), set Wu = 
({JvW E $l(U) and Wv = ({JuW E $1(V) as earlier, so that J.ll(WU, -wv) = w. 

We have dwu = d({Jv 1\ w, d( - wv) = - d({Ju 1\ w, but since ({Ju + ({Jv = 1 
we also have d({Ju = - d({Jv' Therefore dwu = d( - wv) in U 11 V, which 
implies that the pair dwu, d( -wv) defines a global form '1 E $2(0). Since 
H2(0) = 0, there is () E $1(0) such that '1 = d(). Hence Wu - «()IU) E Zl(U), 
Wv - «()I V) E Zl(V) and 

fil((WU - «()IU»-, -(wv - «()IV»)) = W. 

This ends the proof of Proposition 1.5.15. o 

1.5.16. Corollary. Let 0 be an open subset of IC which is Coo diffeomorphic to 
IC, PI' ... , Pn' distinct points of 0, and 0' = O\{Pl, ... ,Pn}' Then Hl(O') is 
isomorphic to ICn and one can take as a basis the classes wi' corresponding to 

1 dz 
the forms Wi = -.'--, 1 ~j ~ n. 

2m z - Pi 

PROOF. Let us first note that an elementary computation shows that 
wi E Zl(O'). Let ({J : IC -+ 0 be a Coo diffeomorphism, ai E IC such that ({J(a) = Pi 
and denote by OC l , ... , OCn the 1-forms ({J*(w l ), ... , ({J*(wn ). Recall that ({J* induces 
an isomorphism between Hl(O') and Hl(lC\ {a l , ... , an}). 

We are going to argue by induction on n. 

Case n = 1. We need to show that Hl(IC\{ad) ~ IC and that the I-form OC l , 
which is certainly a nonzero cocycle,gives in fact a generator !Xl of Hl(lC\ {a l }). 

We can clearly assume that a l = 0 and drop the index for OC l . 

For f3 E Zl(IC\{O})letI(f3) = {f3' wherey is the circle tl--+e27[it(0 ~ t ~ 1). 

Consider the auxiliary expression 

v(f3) := f3 - I(f3)oc. 

We are going to show that I(oc) = 1, and hence I(v(f3» = O. We have 

Let us choose R > 0 sufficiently large so that ({J 0 y ([0, 1]) ~ B(Pl' R), and the 
open set D = B(Pl' R) \ ({J(B(O, 1» has a regular boundary. Recall PI = ((J(O), 

hence PI f/= 15. Therefore d (~) = 0 in a neighborhood of 15 and aD is 
z - PI 

composed of aB(Pl' R) and of ({J 0 y traced in the opposite sense. Using the 
Stokes formula we obtain 

1 f dz - 1 f dz - 1 
2ni rpoy z - PI - 2ni CB(Pl. R ) z - PI - . 

Hence I(oc) = 1. 
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Let us now introduce VI = C\] -00,0] and V2 = C\[O, 00[. For Z E VI 
consider the segment (Tz which joins 1 to Z «(TAt) = 1 + t(z - 1), 0 ~ t ~ 1). For 
z E U2, let!z be the segment that joins -1 to Z (Tz(t) = -1 + t(z + 1), 0 ~ t ~ 1). 
Define two functions FI , F2 by 

FI (z) := f v(fJ), Z E VI' 
"% 

F2 (z):= L v({3), z E Vz, 

which one can verify are of class C'X) and satisfy dFj = v({3) in their respective 
domains of definition. Since VI n Vz is disconnected it is not at all clear that 
G(z) = Fl (z) - Fz(z) is independent of z. This is evident though, for the upper 
half-plane and lower half-plane, respectively, since dG = O. (One can also 
obtain this result applying the Stokes formula to convenient quadrilaterals.) 
Let us now take any two points, one in each half-plane: to fix ideas let them 
be + i and - i. Then the definition of G, F1 , Fl indicates that 

G(i)---- G( - i) = r v({3), Jr 
where r is the quadrilateral of vertices 1, i, -1, - i with the counterclockwise 
orientation. Since dv({3) = 0 outside the origin, we can apply Stokes' formula 
twice and obtain 

r v({3) = f v({3) = f v({3) = J(v({3» = 0 Jr cB(O,2) y 

(recall }' = oB(O, 1)). Hence, G(z) == C E C throughout VI n V2 , and the func
tions Fl in VI and F2 + C in V 2 define jointly a C"" function rp in C\ {O} such 
that dFfJ = v({3). It follows that 

{3 = dFfJ + J({3)a 

and fj = J({3)ii.. This ends the proof for n = 1. 

Case n :->: 2. It is clear that one can find an indexjo and an open strip S whose 
boundary is formed by -.!wo parallel lines Lo and LI , such that ajo is in one of 
the components of C\S and all the other aj are in the other one. Let us call 
II the open half-plane defined by the line Lo (closest to aj ) which does not 
contain ajo (see Figure 1.9). 

Similarly, let IT be the open half-plane defined by Ll which contains ajo' 

Hence, S = II n ll' and {aj}Njo ~ ll. By induction we see that 

(1) HI(ll\ {aJNio) ::= e-I and {wj}Nio is a basis for this vector space. 
(2) HI (ll' \ {ajo} ) ::= C and {wjo } is a basis for this vector space. 

Let V = ll\ {aj)h'jo' V = ll'\ {ajJ. Then Un V = S, which is connected, 
and Hl(S) = 0 by Poincare's lemma 1.2.2(a) (since S is star shaped). By 
Mayer-Vietoris we have 
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n 

• 

s 

• 

Figure 1.9 

• a 
10 

H 1 (1C\{a j , ••• ,an }):::= Hl(U)Ef)Hl(V):::= e. 

In this isomorphism the class Wj in the left-hand side of Wj corresponds to the 
class of Wj in Hl(U) (j "# jo) and the class (Oia to that of wio in Hl(V). This 
proves the last statement of the corollary. 0 

EXERCISES 1.5 
1. Let y be a piecewise C 1 path in IC and y* its complex conjugate, i.e., i'*(t) = ~(t). 

Let f be continuous in a neighborhood of 1m y and f*(z) = /(z). Show that 

1 f(zldz = L f*(z)dz. 

Conclude that ify(t) = e2nit (0 :s: t :s: 1), i.e., the unit circle traversed in the positive 
sense, then 

f f --dz 
y f(z)dz = - l' f(z);~. 

2. Prove the formula area(U) = f x dy, for an open set U with piecewise regular 
au 

x2 y2 
boundary. Compute the area of the ellipse 2 + 2 = I. 

a b 

3. Let U be a domain with piecewise regular boundary, symmetric with respect to 
the origin in IC. Compute 

f (yx + eY)dx + (xy 3 + xeY - 2y)dy. 
en 

4, Let U be a domain as in the previous section. Let O(z) be the angle between the 
exterior normal n(z) to au at the point z, and the positive real axis, Compute 

fn (x cos ()(z) + y sin ()(z))ldzl, 

where;; = x + iy. 
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5. Let m, n E N. Use the Stokes formula to compute f zm z" dx dy. 
B(O.I) 

6. Show that if 0 is a star-shaped open subset of C, then its Betti numbers are bo = I, 
b l = bz = O. 

7. Show that, irO is a connected open set in C, there is a covering of 0, (B(Zi' r;)iE ", 
by disks such that B(zj, rJ n B(Zi+1' r;+1) of. 0 (cf. §5.1.14). 

8. Show that ~z is a closed form in C*. 
Z 

9. Let 0 be a connected open set in C, 0 diffeomorphic to C, and a l , ... , a., distinct 
points in O. Given a form OJ E Z 1 (0 \ {a 1, ... , an} ), find a procedure to compute 

n I dz 
the coefficients Aj in the decomposition W = L AjWj , with OJj = ---: --. 

j~l 2m Z - aj 

10. Let 0 be a relatively compact, open set with piecewise regular boundary, and 
u, v E C2(Q). Show that 

r (grad ulgrad v)dxdy + r UAVdXdy=f u~vldzi. In In m un 

11. Let 9 E C2 (B(O, r) for some r > 1, h = tlg. Show that if B = B(O, I), then 

2ng(0) = f h(z) log Izl dx dy + f g(z)ldzl· 
B 8B 

(Hint: use Green's formula with OJ = B\B(O, E), 0 < I: < 1.) 

1 
12. Show that the function J(z) = - is locally integrable in Co 

z 

13. Let 0 be an open set in e, a" ... , an distinct points in 0, 0' = 0\ {a 1 , ••• , an}. Let 
J E ,ff(0') be such that J(z) of. 0 if z E 0' and there are disjoint disks Bj centered at 
aj , non vanishing functions IjIj E ,ff(Bj ) and integers kj with the property that 
J(z) = (z - aj)kjljlj(z) in Bj{ aJ. Show that 

. dJ kj dz dljlj • {} 
(1)-, = -- + - In B\ a· . J z - aj IjIj } J 

(ii) Given any 9 E 0)(0), we can find go E 0)(0'), gj E 0)(Bj ) with gj = 9 near aj 

such that 9 = go + gl + ... + gR' 

(iii) t ~ 1\ dgo = - t d (gO j) = O. (Why do the integrals make sense?) 

(iv) f dljlj 1\ dgj = -f d(9j~,!j) = O. 
Bj IjIj Bj IjIj 

(v) ~f -~~ 1\ dg = g(a.). 
2m BjZ - (lj J J 

Conclude that for any 9 E 0)(0): 

1 f. dJ n 
-2' -j' 1\ dg = L kjg(aj). 

nl n j~1 

14. Let fI = xd~ - y~X in 1R12\{O}. Verify that dYJ = O. Compute (xdx + ydy) 1\ fl. 
x + y 
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15. Let Q be an open subset of iR 2 with regular boundary of class C 1, f a function 
C1 in a neighborhood of n, (xo, Yo) a point in Q. Define 

, = 'xo • .Yo : (x, y) I-> (x - X o, Y - Yo) 

and let '1 be the I-form from the previous exercise. Show that 

f(x o, Yo) = ~ [f f(,*'1) - r df 1\ 1:*'1J. 
2n ,In ~n 

Use this formula to compute f ,*'1. 
;10 

*16. Let p: C* -? iR of class Coo be such that lim p(z) = +00 and dp(z) =f 0 for every 
Iz!-oo 

Z E C*. Define S, = {z E C* : p(z) = t} for t E iR. 
(i) Show that for every OJ E 2&2(C*) there is el E 2&1 (C*) such that (j) = dp 1\ el. 

(ii) Let 0:" ell E .@'(C*) be such that dp 1\ 0:, = dp 1\ el2 • Show that there is 
fJ E .@o(C*) such that ell = 0:2 + fJ dp. Show, moreover, that for every t E iR, 

(iii) Let 0: E £01 (C*), OJ = dp 1\ el. Show that if g(t) = f 0: then 
s, 

J" w = I'" g(t) dt. 
c'" --ry;:) 

Study in particular the case p(z) = Izi. 
17. Let B = B(O, I) S iR 2 and f a CO function from a neighborhood of B into iR 2 such 

that feB) s aB, II B = idoB (i.e., I(x, y) = (x, y) if (x, y) E aB). 

(i) Show that if I = (II ,12) then dI, 1\ df2 = 0 in B. 

(ii) Compute f 11 dil in two different ways to show that such function I 
<1B 

cannot exist. 
*(iii) Show that the conclusion from (ii) still holds if we remove the assump

tion that I(z) = z for all z E aBo (Hint: Consider the auxiliary function 
z + (1 - Izll)I(z).) 

*(iv) Conclude that there is no C" map g from a neighborhood of B into iR 2 such 
that g(B) s Band g(x, y) =f (x, y) for every (x, y) E B. 

*(v) Prove statement (iii) under the hypothesis that g is only continuous. 

§6. Homotopy: Fundamental Group 

We recall from §1.2.8 that a path y in an open set n in C (or more generally 
a topological space, e.g., n a closed subset of q is simply a continuous map 
}': [0, 1] ~ n. We call a = y(O) the starting point of the path and b = yO) the 
endpoint. Let us denote by <t'(n; a, b) the collection of paths in n starting at a 
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and ending at b. If a = b we say the path is closed and a is called the base 
point. ~(n; a) is then the family of all closed paths (loops in n with base point 
a). If ZEn we denote by ez the constant path with base point z, eAt) = Z 

(0 :5; t :5; 1). If Y E ~(n; a, b) we denote by y the inverse path to y, y E ~(n; b, a) 
and is defined byy(t) = y(1 - t)(O:5; t:5; 1). Ify E ~(n;a) then yE ~(n;a) also. 
Furthermore, ea = ea' 

If ex E ~(n; a, b) and {3 E ~(n; b, c) we denote by ex{3 the path in C(n; a, c) 
defined by: 

{1X(2t) if 0 :5; t :5; ! 
1X{3(t):= {3(2 1)'f 1 1 t- 1 "2:5;t:5; . 

The path 1X{3 is called the composition of IX and {3. It is easy to see that 1X{3 = !iri. 
On the other hand, when (1X{3)y is defined, the 1X({3y) is also defined but, in 
general, they do not coincide. 

1.6.1. Definition. Two paths Yo, Yi E ~(n; a, b) are said to be homotopic with 
fixed endpoints if there is a continuous map H: [0, 1] x [0,1] -+ n such that 
H(t,O) = yo(t), H(t, 1) = Yi (t) (0:5; t :5; 1) and, H(O, s) = a, H(I, s) = b 
(0:5; s :5; 1). 

One says the homotopy H carries Yo into Yi' (See Figure 1.10.) 

1.6.2. Proposition. Homotopy is an equivalence relation in ~(n; a, b). 

PROOF. Reflexivity and symmetry are clear. Let us see the transitivity. Let 
Yo, Yi' Y2 E ~(n;a,b), Yo, Yi homotopic by Hand Yi' Y2 homotopic by K. One 
obtains a homotopy L carrying Yo into Y2 by: 

L(t s) = {H(t,2S) 0 :5; s :5; ! 
, K(t,2s - 1) !:5; s :5; 1. 

Denote by [IX] the class of IX under homotopy. 

a 

o 

s 

" 
Ys 

Yo 

a 

b 

Figure 1.10 

D 

Yo 

Ys 

b 
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1.6.3. Proposition (Change of Parameters). Let IX E ~(n;a,b) and f: [0, 1]-+ 
[0,1] continuous, f(O) = 0, f(I) = 1. Then the paths IX and f*(IX) = IX 0 fare 
homotopic with fixed endpoints. 

PROOF. It is enough to define the homotopy H, 

H(t, s) := IX((1 - s)t + sf(t)). D 

1.6.4. Proposition. The composition of paths and the inversion of paths are 
compatible with homotopies. The composition thus defined on the equivalence 
classes of paths is associative. 

PROOF. Let F be a homotopy carrying IXo into lXI' IXo, IX1 E ~(n; a, b), and G a 
homotopy carying {3o into {31' {3o, {31 E ~(n; b, c). Then 

H( ) .= {F(2t, s), 0 $; t $; t 
t, s . 1 

G(2t - I,s), 2" $; t $; 1, 

is a homotopy carrying IXo{3o into IXl {31' 
H F is a homotopy carrying Yo into Y1 then (t, s)1-+ F(I - t,s) is a homotopy 

carrying Vo into VI' 
Finally, let IX E ~(n; a, b), {3 E ~(n; b, c) and Y E ~(n; c, d). We want to show 

that.:>o = (IX{3)y and':>l = IX({3y) are homotopic. Letfbe the unique continuous 
piecewise affine map such that f(O) = 0, f(I/2) = 1/4, f(3/4) = 1/2, f(l) = 1. 
Then ':>1 = f*(':>o), whence ':>0 and ':>1 are homotopic. D 

1.6.5. Remark. More generally, let (Y;)1 ,;;i';;n be a family of paths such that 
Yi(I) = Yi+1(0)(I $; i $; n - 1) and let 0 = to < t1 < ... < tn = 1 be a partition 
of [0, 1]. The path Y defined by 

( t - t· ) yet) := Yi _.-l 
ti ti- 1 

is homotopic to the path Y1(Y2('" Yn) ... ). Moreover, if IXi is homotopic to Yi, 
the corresponding path IX is homotopic to y. Therefore, we can talk about the 
path Yl ... Yn "up to homotopy," without worrying about placing parentheses. 
Obviously the same is true for the composition of the homotopy classes 

[Yl]'" [Yn]. 

1.6.6. Proposition. Let Y E ~(n; a, b). The paths yGb and Ga yare homotopic to y. 
Therefore 

The paths YV and VY are homotopic to Ga and Gb respectively. Hence 
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s 
-

y y 

b 

a 

Figure 1.11 

PROOF. One has yeb = Y 0 f with f(t) = 2t if 0 ~ t ~ 1/2 and f(t) = 1 for 
1/2 ~ t ~ 1. A similar formula holds for BaY. Therefore, by Proposition 1.6.3, 
)'eb and yBa are homotopic to y. 

The function 

{

Y(2t) 

F(t, s) = y(.s) 

y(2t - 1) 

o ~ t ~ s/2 

s/2 ~ t ~ 1 - s/2 

1 - s/2 ~ t ~ 1 

is a homotopy carrying Ba into y1'. (See Figure 1.11.) D 

Let us denote by n 1 (0; a) the set of equivalence classes (under homotopy) 
of 'i€(0; a). n 1 (0; a, b) is defined similarly. The following theorem summarizes 
several of the previous propositions. 

1.6.7. Theorem. For the composition law 

nt(O;a) x nl(O;a)-+nl(O;a) 

([a],[p])f-+[a][p] = Cap], 

the set nt(O;a) is a group whose identity element is [cal The inverse [yTl of 
[y] is given by [1']. 

1.6.8. Definition. The group n 1 (0; a) will be caned the fundamentallJroup of 
o (with base point a). It is also known as theftrst homotopy group orQ with 
base point a. 

1.6.9. Remark. The group 1l:1 (0; a) is, in general, nonabelian, as will be seen 
in later examples. 

We want to compare now the fundamental groups with base points a, bin 
the same connected component of o. 
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1.6.10. Proposition. Let }' E'i€(n;a,b). The map 1(1'): 7r1(O;a) -+ 7r 1(n;b), 
[a] ~ [yay], is a group isomorphism that depends only on [I']. If I' 1 E 'i€(n; a, b) 
is another path, then the isomorphisms 1(1'), I(yd are conjugate in 7r 1 (n;b). 
Moreover, all these isomorphisms are independent of the path I' if and only if 
n 1 (0; a) is commutative. 

PROOF. It is clear that /(')') depends only on [I']. Furthermore, I(y)([a] [fJ]) = 

[yafJy] = [yay] [yfJyJ = (l(y)([aJ»)(I(y)([fJJ», which shows 1(1') is a homo
morphism of groups. Since I(y) acts as the inverse map to 1(1'), this homo
morphism is in fact an isomorphism. 

Given now 1',1'1 E 'i€(0; a, b) we have c = }\ I' E 'i€(n; b) and 

l(y! )([aJ) = [YI a)'! J = Dil i' J [yay] [Yi'l] = [c]I(y)([a]) [crl. 

Finally, if 11:1(O;a) is abelian, nl(O;b) is also abelian and I(}') = 1('11). 
Conversely, let us assume 1(1') = lh'l) for every pair of paths 1', 1'1 E 'i€(0; a, b). 
We want to show that every inner automorphism [a]~[c] [a] [crl of 11:1 (0; a) 
is the identity. Pick}' as done earlier. Given c E 'i€(n; a) let}' 1 = cy EO 'i€(n; a, b). 
Hence we have [c] = [yJ [yc] = [I'] [Yl]. On the other hand, the identity 
l(},) = 1(1'1) means that 

[y][a][y] = [Yl] [a][}'l]. 

Multiplying on the left by [I'] and on the right by [y], this identity leads to 

D 

If n is connected we denote by n 1 (0) one of the groups n 1 (n; a), with a E n 
chosen arbitrarily. 

1.6.11. Definition. An open subset !l of C is called simply connected if 0 is 
connected and nl(O) = 0 (i.e., nl(!l;a) = {[ca]} for every a EO). 

1.6.12. Proposition. If 0 is simply connected, the set 7rl (0; a, b) contains a single 
element for every pair a, b E o. 

PROOF. If for some a i= b, 7rl (0; a, b) contains [I'] i= [1'1]' then n l (0; a) contains 
two different elements [caJ and [Yl y]. D 

1.6.1 3. Examples 

(1) A star-shaped open subset of C (with respect to a point a E 0) is simply 
connected. If I' E 'i€(0; a) then H(t, s) := sa + (1 - s)y(t) is a homotopy 
carrying I' into Ca· 

(2) Let VI' V2 be simply connected open subsets of C such that VI n V2 is 
nonempty and connected. Then 0 = VI U U2 is simply connected. 

It is clear that n is connected. Let a E U I n U2 , I' E 'i€(!l; a). We need to show 
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[y] = [eal There is a partition of the interval [0,1],0 = to < tl < ... tn = 1, 
such that y(tj ) E Vl n V2 and Yk:= yl[tk- l , tk] (1 ~ k ~ n) is a path entirely 
contained in one of the Vi' which we will denote i(k). 

Choose rt.j E rt'(Ul n V2 ; a, y(tj )) (1 ~j ~ n - 1). It is clear that [y] = 
[Yl (Xl] [rt. l Y2(X2]'" [rt.n- l Ynl 

Now, we can consider that Yl (Xl E rt'(Vi(1); a), rt.l rt.2 (X2 E rt'(Vi(2); a), etc. There
fore (with an obvious abuse of notation, which is justified by considering the 
canonical injections of Vl n V2 , Vl , and V2 into a) we have 

[Yl(Xl] = [rt. l Y2(X2] = ... = [rt.n-lYn] = [eal 

Hence [y] = [eo] and a is simply connected. 

1.6.14. Definition. Two loops Yo E rt'(a;a) and Yl E rt'(a;b) are called free 
homotopic if there is a continuous map H: [0, 1] x [0,1] -+ a-still called 
homotopy-with the following properties: 

(1) H(t,O) = Yo(t), 0 :5: t :5: 1 
(2) H(t, 1) = Yl(t), 0:5: t :5: 1 
(3) H(O, s) = H(I, s), 0 :5: s :5: 1 

s 

Ys 
s ~---=------I 

o Yo 

Figure 1.12 

1.6.15. Proposition. A connected open set a is simply connected if and only if 
any two loops in a are free homotopic. 

PROOF. Exercise. D 

We would like now to compute the fundamental group of an open subset 
of C which is homeomorphic to C\ {Pl"'" Pn}. For that purpose we need the 
notion of a free group generated by a set. 

1.6.16. Proposition Let A be a nonempty set. There is a group G and an injection 
i : A -+ G with the following two properties: 
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(1) G is generated by i(A). 
(2) Iff is a mapping from A into a group H, there is a unique group homo

morphism h : G -> H such that hoi = f. 

PROOF. Let J be the set of finite sequences (or "words") of elements of 
A x { -1, 1}. We denote by (a;" ... , a~m) a word in J, where aj E A, 
ej E { - 1, I}. If m = 0, the empty word is denoted by 1. One can consider an 
associative product in J, which has 1 as its neutral element, by means of: 

(a~t, .. . , a~m)(bi\ .. . , b~m) := (C~l, ... , c~~r;), 

where cJJ = a? if 1 :< j :< m and, cJj = b;~-::: if m + 1 :< j :< n + m. That is, 
J is a monoid. 

Consider on r the equivalence relation p compatible with this product 
and generated by the identification of (ae)(a-") with 1 for every a E A. (If 
B = {«ae)(a-e), 1): a E A, e = ± I} ~ r x r, then p is the intersection of all 
the equivalence relations in r containing B.) We say that two words M, N 
are elementarily equivalent if M = N, or M = m(ae)(a-e)n and N = mn, or 
M = mn and N = m(ae)(a-e)n, for some a E A, e E { -1, I}, m, n E r, and 
juxtaposition denotes product. One can verify that two words V, V are 
p-equivalent if and only if there is a finite collection of words Vo = V, V1 , ... , 

V, = V such that for 0:< j :< r - 1 the words ~ and ~+1 are elementarily 
equivalent. 

Let n: r -> r/p denote the canonical projection. Since p is compatible with 
the product law in r, one has a product law in G := r/p. One verifies that G 
is in fact a group under this product. For instance, the inverse of n( (a~" ... , a!")) 
is n«a;'n, ... , a~el ». 

Let a: A -> r be the injection a ~ (a l ). Set i = n 0 a, this is an injection from 
A into G. In fact, n«ae)) = n«b~» implies that (a e) = (b~). We want to show 
that the pair G, i has the required properties. Let f: A -> H. If h exists and 
mEr, m = (a~l, . .. , aZ k ) one should have 

h(n(m») = (h 0 n)«a~I» x ... x (h 0 n)«aZk » 
= «h 0 n)(ad)e , x ... x «h 0 nHa'))'k 

= (f(ad)" x ... x (f(ak))e\ 

where x denotes the product in H. This identity indicates how to define h 
and ensures the uniqueness of h. Namely, the conditionj{{ae» = (f(a»)' deter
mines a unique monoidal homomorphismj: r -> H by 

j«a~" ... a~k» = (f(a 1 »" x ... x (f(adYk, 

since every element of r is written in a unique way as (a~', ... , aZk ). This map 
j is constant on the equivalence classes with respect to p: for instance, jf 
M = m(a')(a-')n and N = mn, one has 

j(M) = j(m) (f(a))'(f(aW'j(n) = j(m)j(n) = j(N). 
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Therefore, there is a unique group homomorphism h: G -+ H such that 
h 0 1t = j. D 

What one really does in practice is to restrict oneself to "reduced" words. 
Given a word (a~', . .. ,a~"') we reduce it by suppressing two consecutive entries 
of the form a', a-e. A reduced word is one such that for every j(1 ~ j ~ m - 1) 
aj~\' "# aj-'j. One verifies easily that every word is equivalent to a reduced word. 
Every element of G\ {1} can be written in a unique way in the form X~' ... X;k 
where Xj E i(A), nj E 7L\ {O} and Xj "# Xj+l for 1 ~ j ~ k - 1. 

The pair (G, i) is unique up to isomorphisms, cf. Exercise 1.6.12. 

1.6.17. Definition. One says that the group G constructed in 1.6.16 is thefree 
group generated by A. We denote it by L(A). We will identify A to i(A). If 
A = 0 we denote by L(A) the trivial group G = {I}. If #A = n ~ 1 we say G 
is a free group with n generators. 

For an arbitrary group G, one calls commutator [a, P] of two elements 
a, PEG the element 

The subgroup generated by the commutators is denoted [G, G] and is called 
the commutator subgroup of G. 

1.6.18. Proposition. The subgroup [G, G] is normal in G and the quotient group 
G/[G, G] is abelian. 

PROOF. In fact, yEa, P]y-l = (yay-l )(yPy-l )(yay-l )-1 (yPy-1 )-1 and pa = 
ap[p-l, a-I]. 0 

The subgroup [G, G] is the smallest normal subgroup H of G such that 
G / H is abelian. In fact, the projection 0 : G -+ G / H sends [a, P] into the neutral 
element of G/H and [G,G] ~ KerO = H. The group G/[G,G] is sometimes 
called the abelianized version of G. 

It follows that any homomorphism of G into a commutative group K 
induces a homomorphism from G/[G, G] into K (cf. Exercise 1.6.13). 

Let us denote by 7L(A) the set of all functions l{J : A -+ 7L that are zero except 
at finitely many points in A. It is an abelian group under the operation of sum 
of functions. 

1.6.19. Proposition. Let G = L(A). Then G/[G, G] is isomorphic to the group 
7L(A). 

PROOF. Let us denote (ja the Kronecker function A -+ 7L, (ja(b) = 1 or 0 accord
ing to whether a = b or not. We have our associated map f: A -+ 7L(A) given 
by f(a) = (ja. The homomorphism h : G -+ 7L(A) that extends f is given by 
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for the reduced element (a~" ... , a~k). It is clear that h is surjective and 
Ker h ;2 [G, G]. 

We claim that Kerh £; [G,G]. Assume h«a~', ... ,a~k)) = 0. Let bl , ... , b, 
be distinct points of A such that {bl , ••• , b,} = {a 1 , ... , ak }. Therefore, for every 
i one has r,inj = ° where r,i denotes the sum over thosej for which aj = bi' Let 
(): G -+ G/[G, G] be the canonical projection. We also have 

()«a~', ... , a~k)) = n . f1 ()(aji) = n ()(bJr.;nj = 1. 
I J:aj=b j 1 

Hence (a;', ... ,a~k) E [G, G] and the proposition has been proved. 0 

1.6.20. Proposition. Let n be an open subset of C, homeomorphic to C. The 
fundamental group of n \ {p}, for pEn, is isomorphic to 7L. A generator can be 
taken to be the homotopy class of the loop y given by y : t 1-+ P + re21<it (0 ~ t ~ 1) 
and r > ° is sufficiently small in order that B(p, r) £; n. 

PROOF. It will depend on several lemmas, the first one being: 

1.6.21. Lemma (Existence of a Continuous Determination of the Logarithm 
over any Path in C*). Let y be a path in C*, and let Zo E C be such that eZo = y(O). 
There is a unique path c in C such that c(O) = Zo and exp(c(t)) = y(t) for 
O~t~1. 

PROOF. Let us first prove the uniqueness of the lifting c of y. Let x E [0, 1] and 
c l , C2 two liftings ofy defined over [0, x] such that c1(0) = c2 (0). Then we have 
1 = ec ,(t)-C2(t) for ° ~ t ~ x . Hence c1 - C2 takes values in 2ni7L, and since 
c,(O) - c?(O) = 0, we have c, = c? in ro.xl. 

Let us now prove the existence of a lifting c of y. Let I = {x E [0,1]: 3 
cx : [0, x] -+ C, continuous, cx(O) = zo, and expcx = yl[O, x]}. The set I is not 
empty because ° E I. Let x E I and ° ~ x' ~ x, then Cx' = cXI[O,x/] has all the 
necessary properties, hence x' E I. Therefore I is an interval with endpoints ° 
and b (0 ~ b ~ 1). We want to show that bEl and b = 1. By the proof of 
uniqueness given at the beginning we have a well-defined continuous map 
cb: [O,b[ -+ C such that expcb = yl[O,b[ and cb(O) = Zoo Namely, for x < b 
define cb(x) = cAx). 

Choose a E C satisfying eQ = y(b) but otherwise arbitrary. For ° < '1 < 2n 
the disks B(a + 2nik, '1) (k E 7L) are disjoint and exp is a COO diffeomorphism 
of each of them into a neighborhood V of y(b) in C*. There exist b > ° 
and ko E 7L such that for t E [b - b, b + b] n [0, 1] one has y(t) E V, and for 
t E [b - b, b[ n [0, 1] one has cb(t) E B(a + 2niko, '1). Define a continuous 
function c in [0, b + b] n [0, 1] by 

c(t) '= {Cb(t) if t < b 
. (exp IB(a + 2niko, ,.,W l 0 y(t) if t E ]b - b, b + b] n [0, 1]. 
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The function c is continuous since the two definitions coincide in 
] b - b, b [ n [0, 1]. Therefore c is a lifting of Y over [0, b + b] n [0, 1] such 
that c(o) = 0. This shows I = [0,1]. D 

1.6.22. Lemma. Let H: [0, 1] x [0,1] -+ C* be a homotopy with fixed end
points bet wen two paths Yo and Y1 in C*. Let Zo = Yo(O) = Y1(0), Z1 = Yo(1) = 
Y1 (1), and a E C be such that ea = zoo For every s E [0, 1] let Cs be the unique path 
starting at a which lifts the path Y. : t f-+ Ys(t) = H(t, s). Define H by H(t, s) = cs(t). 
Then every c. has the same endpoint, H is a homotopy with fixed endpoints 
between Co and c1, and expH = H. 

PROOF. Note that exp H = H follows from the definition (as was done in the 
previous lemma). Choose '1 > ° such that exp is a diffeomorphism from every 
B(a + 2rrik, '1) onto a neighborhood V of zoo We claim: 

(i) There is an eo > ° such that H is continuous in [0, eo [ x [0, 1]. Since 
H(O, s) = Zo, ° ~ s ~ 1, then there is eo such that H([O, eo[ x [0,1]) £ V. The 
uniqueness of the lifting of the paths Ys over [O,eo[ shows that c.1 [0, eo] = 
(expIB(a,'1W1 0 Y.I[O,eo[. Hence H = (expIB(a,'1W1 0 H on [O,eo[ x [0,1], 
which shows that (i) holds. 

(ii) H is continuous in [0,1] x [0,1]. Assume H is not continuous at the 
point (to, a) Define r as r = inf{ t: H discontinuous at the point (t, a)}. Then 
eo ~ r. Let x = H(r, a), y = H(r, a). We have by definition, Ya(r) = X = eY = 
exp(ca(r». For some p > 0, the exponential map is a diffeomorphism of B(y, p) 
onto an open neighborhood W of x in C*. To simplify the notation we call 
it (,0. 

By the continuity of Hat (r, a) we can find e, ° < e < eo such that 

H (] r - e, r + e [ x ] a - e, a + e [ n [0, 1] x [0, 1]) £ W 

In particular, yA]r - e, r + e[) £ W (We replace r + e by 1 if r + e > 1.) 
Hence cal]r - e, r + e[ = (,0-1 0 Yal]r - e, r + e[ takes its values in B(y,p). 

Let t1 be arbitrary in]r - e,r[. We have H(t1,a) = ca(t 1) E B(y,p). The 
continuity of Hat (t1,a) allows us to find b, 0< b < e, such that H(t1'S) = 
cs(t 1) E B(y, p)for s E]a - b, a + £5[. (Again we replace a + £5 by 1 if a + b > 1.) 
The uniqueness of the lifting gives c.l]r - e, r + e[ = (,0-1 0 Y.I]r- e, r + e[ 
for every s E ] a - £5, a + b [ (since both sides coincide at a = t 1). Hence 
H = (,0-1 0 H in]r - e, r + e[ x ]a - b, a + £5[, showing that H is continuous 
at the points (t, a) with r ~ t ~ r + e. This contradiction with the choice of r 
shows that H is continuous over the whole square [0,1] x [0,1] as asserted 
by (ii). 

Sinceexp(H)=HandH({I} x [0,1])= {zd, we have H({I} x [0,1])£ 
exp-1(zd E b + 2rriZ (e h = zd. By continuity there is a unique ko E Z such 
that H( {1} x [0,1]) = {b + 2rriko}. Therefore, Co and C1 are homotopic by H 
with fixed endpoints a and Co (1 ) = c 1 (1) = b + 2rriko· D 

1.6.23. Definition. Let Y be a closed loop in C* with base point zoo We call 
degree of Y the integer (c(I) - c(0»/2rri, where c is a lifting of y. Denote by d(y) 
this integer. 
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This definition presupposes that (c( J) - c(0))j2ni does not depend on the 
Hefting chosen. But if c 1 and c 2 are two liftings of Y and if n = (c 1 (0) - C 2 (0) )/2ni, 
then c; = C 1 - 2nin is another lifting of Y starting at c; (0) = C 1 (0) - 2nin = 

c2 (0). Hence c; = C2 and it follows that c2 (1) = c;(1) = C1 (1) - 2nin, implying 
c2 (1) ---- c2 (0) = c1 (1) - CI(O). 

For example, if Yn is the loop in le* with base point 1, y.(t) = exp(2nint), 
nElL, then d(y.) = n since tf--+ 2nint is a lifting of Yn' 

1.6.24. Lemma Two loops Yo, YI in 1[;*, with base point zo, are homotopic in 1[;* 
with fixed endpoint if and only if d(yo) = d(Y1)' 

PROOF. If d(yo) = d(yd = d, the liftings Co and C1 of Yo and YI respectively, 
which are defined by coCO) = CI(O) = a (ea = Zo), must satisfy co(1) = c l (l) = 

a + 2nid. Since I[; is simply connected (being star-shaped) it follows that Co 
and C1 are homotopic by a means of a homotopy Ii with fixed endpoints. 
Hence Yo and Yl are homotopic by II := exp(Ii). 

The converse is valid by 1.6.22. D 

1.6.25. Lemma. Let Yo, YI be two loops in 1[;* with base point Zoo We have 

PROOF. In fact, if ea = Zo and Co, CI are the respective liftings of Yo, Y 1 starting 
at a, then 

{
co(2t) 0 ::;; t ::;; t 

coo:= 1 
c1 (2t -1) + co(1)---- a "2::;; t::;; 1 

is a lifting ofYoYI starting at a. Therefore d(YoYI) = (c(1) - c(0»j2ni, hence 

d(Yoyd = (c 1 (1) + co(1) - a - co(0»j2ni 

= «c i (1) - C1 (0»j2ni) + «co(1) - co(0»j2ni) 

= d(yo) + d(yd· D 

1.6.26. Lemma. Let 0 1 , O2 be two open subsets of I[; homeomorphic by 
f: 0 1 -> O2 and Zo E 0 1 , Then 1[1(OI;ZO) and n1 (02;f(zo» are isomorphic by 
f* : [ex] --+ [f 0 a]. 

PROOF. Exercise. o 

Let us go back to the proof of Proposition \.6.20. By Lemma 1.6.26 we 
can assume 0 = I[; and p = O. Hence 0\ {p} = 1[;*. If Zo E 1[;*, the map 
d: ~(I[;*;zo) --+ lL which associates to Y its degree d(y) passes by 1.6.24 to the 
quotient and induces d: nl(I[;*;zo) --+ lL, d([y]) = dey). This map is a group 
isomorphism. Its inverse is n f---+ [Yn]' y.(t) = zoe21tint. A generator of n, (1[;*; zo) 
is then [YI]. This was the result we wanted to prove (cf. Exercise 1.6.14). 0 
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1.6.27. Proposition. Let 0 be an open subset of C homeomorphic to C, PI' ... , P. 
distinct points in O. Let Yj : t H Pj + rje2 1<il (0 $; t $; 1), where rj > 0 are so small 
that B(pj,rj ) S; O\{PI, ... ,Pj-I,Pj+1, ... ,Pn} (1 $;j $; n). Then thefundamental 
group of O\{Pl, ... ,Pn} is isomorphic to the free group generated by 

An = {YI'···,Y.}, 

PROOF. Note that Yj is free homotopic in 0\ {Pi>"" Pn} to t H Pj + ee2"i! for 
any 0 < e < ri , in fact to any loop Y in B(pj, r) with d(y) = 1 in C\ {Pj}' This 
follows from the previous proposition. With this remark in mind, we can now 
suppose 0 = IC. After a possible renumbering we can suppose there are two 
parallel lines )'1, A2 such that in the open half-plane V determined by A1 and 
containing PH there are no other Pj in V and A2 S; V. Similarly, we require that 
PI' ... , Pn-l belong to the half-plane V determined by A2 which contains )'1 

and that Pn ¢: tJ. (See Figure 1.9 for a similar situation.) Then V n V = S is a 
strip with as = Al U A2 and no Pj belongs to S. Note that we also have 
V U V = IC. Due to the preceding remark we can assume that the Yj are in fact 
circles as in the statement of the proposition, but. with radii so small that they 
do not intersect S and that the corresponding closed disks are disjoint. We 
can take the base point Zo E S and choose paths rxj starting at zo, ending at a 
point C E Yj([O, 1]) and, furthermore, rx" is entirely contained in V and the 
others are entirely contained in V. 

Let a E 'i&'(C \ {PI"'" p,,}; Zo). There is a partition ° = to < t 1 < ., . < tN = 1 
of the unit interval such that 

(1) rx(tJ E S, ° $; i $; N; 
(2) for every i (0 $; i $; N - 1) either a([t j , ti+l]) S; V or rx([fi' tH1 ]) S; V; 
(3) in successive intervals [ti' t H1 ] and [t i +l , ti+ 2] the images do not lie in the 

same half-plane. 

Such a partition exists: if M is an integer sufficiently large so that 1/ M is 
smaller than the Lebesgue number of the covering (a-I(V), a-I (V)) of [0, 1], 

the~ one has a ([~~~ 1, ! J) contained entirely in V or V (1 $; k $; M). If 

a (M) rf: S, then one can remove the point k/ M since then either both 

rx([k ~/, !J) and rx([!, k ~ 1J) are in V or both are in V. We can 

eliminate more points ifnecessary to satisfy (3). The tj are the remaining points. 
Let now Pi = ocl[ti> ti+l] and pick (;i path in S from Zo to oc(t;) (with the 

choice (50 = (;N = 8zo)' The loops ~i = (\P,bH1 have base point Zo and lie 
entirely in V or V. 

We are going to continue the proof by induction on n, the case n = 1 being 
the previous proposition. We can assume more precise knowledge of the 
isomorphism between Ttl (V\ {Pio"" Pn-d; zo) and L(An-d. (It is just a ques
tion of reformulating the induction hypothesis and verifying that the case 
n = 1 still holds.) Namely, let cj be the loops in C\ {PI>'" ,p,,-d with base 
point zo, cj := ocjY/ij • We require: 
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Every loop (J with base point Zo in U\{PI, ... ,p.-d is homotopic to a 
unique loop which is sZo or can be written in the reduced form ct/ ... c~\ where 
qi E Z* and Ii E {l, ... ,n - I}. The isomorphism is given by [(J]I--+Yt.· ... y~' 
(and [szo] 1--+ 1). 

Returning now to the loop 0(, we remark that it is homotopic to the loop 
f3 = '10'11" ·'1N-I· The case n = 1 and the preceding induction hypothesis 
ensure that every '1i is either 

homotopic to some ct,' ... c~' written in reduced form, Ii E {I, ... , n - I} if 
'1i lies in U\ {PI'"'' P._I}, or 

homotopic to c: if '1i lies in V\ {P.}. 

It follows that 0( is homotopic to an expression of the form c~"", c~., 
mj E {I, ... , n} directly juxtaposing the reduced forms. Condition (3) imposed 
on the subdivision points ti implies this is a reduced expression already. 

The map 0: 1£1 (C\ {PI'"'' P.};zo) -+ L(A.), given by [0(] I--+Y~ • ... y~.is also 
a group homomorphism. In fact, if 0(1 is homotopic to ct/ ... c'!: and 0(2 is 
homotopic to c~" ... c;;o. then 0(10(2 is homotopic to yt/ ... Y~' . y~" ... y~:, which 
is exactly the product 0([0(1])0([0(2])' 

This homomorphism is clearly surjective. Let us see it is also injective. If 
O([O(]) = yt.· ... y~' is the neutral element in L(A.) then ql = ... = qk = 0, since 
the reduced form in L(A.) is unique. This says that [0(] = [s.ol D 

1.6.28 Proposition (Existence of a Continuous Logarithm). Let n be a simply 
connected open subset of C, f: n -+ C* continuous, Zo En, Wo E C such that 
e Wo = f(zo). There is a unique continuous function g : n -+ C such that g(zo) = Wo 
and exp(g) = f (i.e., g = log!). 

PROOF. Uniqueness: If gl, g2 are two such liftings of f, then we have gl(z)
g2(Z) E 21£iZ for every ZEn, but gl (zo) - g2(ZO) = O. Hence gl == g2' 

Existence: Let ZEn. For every path y in n starting at Zo and ending at z, 
the pathf 0 y admits a unique liftinggy such that exp(gy) = f 0 y and gy(O) = Wo0 
IfYI' Y2 are two such paths, then they are homotopic and it follows gyo(l) = 
gy. (1). Define g by g(z) := gy(l). 

Let us show that g is continuous in n. Let Z lEn. There is '1 > 0 such that 
exp is a Coo-diffeomorphism of B(g(z I)' '1) onto a neighborhood V of fez I) in 
C*. There is tJ > 0 such that B(z I' tJ) £; nand f(B(z I, tJ)) £; V. 

If ( E B(z I, tJ) one can find a path y from Zo to ( of the form O(s{, where (X is 
a fixed path from Zo to Z I in nand s{ is the line segment s{(t) = t«( - Z d + Z I' 
A lifting (J of f 0 y is therefore the following. If c is a lifting of f 0 (X starting at 
wo, let (J(t) = c(2t) (0 S; t S; 1/2) and 

(J(t) = «expIB(g(zl),'1WI of)«2t - 1)«( - ZI) + zd 

(1/2 S; t S; 1). It follows that gee) = (J(1) = «exp IB(g(zd, '1WI 0 f)«() for 
( E B(z l' tJ) and hence g is continuous. D 
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1.6.29. Remarks (1) If f is of class Ck then 9 is ofless Ck• 

(2) The function f has n-roots of any order n E 1\,1'" (as differentiable as f), 
and, more generally, fIX is defined for any a E IC. 

1.6.30. Remark. Given a loop y in C"', we can write yet) = ly(t)1 eia(t), where 
a is a continuous path in lIt This follows from 1.6.21 by lifting the loop 

f3(t) = y(t)/ly(t)I· By Exercise 1.6.2, dey) = d(f3) = 2In (a(1) - a(O). Since aCt) is 

the argument of the complex number y(t), this formula is usually stated as 
saying "the degree of the loop y equals the variation of the argument along 
y," and it is written as 

1 1 
d(y) = - A argz =~; A logz. 

2n ZEY 2m zey 

This formula is also known as the argument principle. 

EXERCISE 1.6 
1. Identify 1[ I (a, zo) (zo E a) in the following cases: 

(i) a = l~-2,2C\[ -1,1]2 
(ii) a = (J -4, 4[ x J - 2, 2[)\([ -1, IJ2 u B(2, 1» 

(iii) a = C\(Q R j U {a 1 , ... , aq }). where the R j are closed half-lines, pairwise 

disjoint, and containing none of the points at, ... , aq• 

2. Show that C* every loop is free homotopic to a loop contained in the unit circle 
C := {z E C : Izl = 1}. Show they have the same degree. 

3. Show that two loops in C* which have the same degree are free homotopic. 

4. Show that for any loop y in C*, dry) = -d(y). 

5. Let J: a -+ C* have a continuous logarithm g, J = ego Show that for any loop y 
in a, d(fo ')') = O. 

*6. Let J: a ~ C* be a continuous function such that d(fo ')') = 0 for every loop 
yin a. Show that J admits a continuous logarithm in U. (Hint: Follow the proof 
of Proposition 1.6.28.) 

7. Let J: C -> C* be continuous, then there is an integer n and a continuous function 
g: C -> C such that J(z) = z"eY(z). 

*8. Let a be an open set homeomorphic to C, U' = a\ {PI"" ,Po}, Pj distinct points 
of U. Let J: U' --+ C* be continuous. Show there exist integers k I' ... , k. and a 
continuous function 9 : U' -+ C such that 

J(z) = (z - PI )k, ... (z - p.)kne9(z) 

for every z E (l'. (Hint: Let YI, ... , Y. be loops in U' as in Proposition 1.6.27 and 
kj = d(f 0 y).) 

9. Let (J. : [0, l] -+ a be a continuous path in an open set (l s;; C. Show there is a 
11 > 0 such that if fJ : [0, 1 J --+ C is continuous and 
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sup{ la(t)---- P(tll : t E [0, IJ} < 6, 

then P is another path in nand P is free homotopic to Q( in n. (We leave to the 
reader the task of supplying the definition of free homotopy for paths, similar to 
1.6.14.) 

10. Every path in an open subset of C is free homotopic in n to a polygonal path in 
Q whose segments are parallel to one of the coordinate axes. Show that this is 
also true for homotopy with fixed endpoints. 

* 11. Let P(z) = zn + a1 zn-l + ... + an' aj E C be a polynomial of degree n > ° in C and, 
for, E ] 0, 00 [, consider the loop f.. ; t ~ P(re2nit ), t E [0, 1 l 

(i) Show that for r sufficiently large, d(f..) = n 
(ii) Show that if P has no roots in '1 :s; Izl :S;'2 then dU;) is constant for 

r E [r1 ,r2l 
(iii) Assume an -# 0, what is dUo)? 
(iv) (Fundamental theorem of algebra) Show that P has a root in C. 

12. Let A -# 0, G], G2 two groups, and i] ; A --> G], i2 : A --> G2 two injective maps 
such that both pairs (G1,id and (Gz,i z) satisfy the conditions 1 and 2 of Prop
osition 1.6.16. Show there is a unique group isomorphism k: G1 --> Gz such that 
k 0 il = i 2 . 

13. Let G be a group, K a commutative group, and f: G --> K a homomorphism. 
Show there is a unique homomorphism l: G/[G, GJ --> K such that f = jon, 
where n is the canonical projection of G onto G/[G, G]. Moreover, the map f~ j 
is a group isomorphism from Hom(G, K) onto Hom(G/[G, G], K). 

14. Let f: n --> C be a homeomorphism,f(p) = 0, r > 0 be such that B(p, r) £ n, and 
y(t) = p + re2nit (0 :s; t :s; 1.) Let Zo E C* and 1'1 (t) = zoe lnit (0 :s; t :s; I). Show that 
[fo 1'] = [I'll 

§7. Integration of Closed I-Forms 
Along Continuous Paths 

To study better the homotopy of continuous paths one needs to extend the 
notion of integration of I-forms (of class C1 ). Such extension is possible if we 
limit ourselves to the case of closed forms. 

d 
1.7.1. Lemma. Let 0 be an open subset of [0, 1]. The map dx: ~(O) -. ~(O) is 

surjective and its kernel, denoted 1[(0), is the space of functions which are locally 
constant on O. 

PROOF. Exercise. o 

1.7.2. Lemma. Let (J1i);El be an open covering of [0,1] and for every pair 
(i, j) E I x I such that V; n l-j =1= 0 let c;.j E I[(V; n l-j) be given so that for any 
triplet (i, j, k) E I x I x I such that V; n l-j n Vk =1= 0 they satisfy C;,j + Cj . k + 
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Ck,i = ° on V; n lJ n v,.. Then,for every i there is Ci E IC(V;) such that Ci,j = Ci - Cj 

for every (i,j) such that V; n lJ =F 0· 

PROOF. Note that by a judicious choice of (i, j, k) the hypotheses imply Ci i == ° 
and Ci,j = -Cj,i' If neither ° n£r 1 belong to V; we set V; = V;. If V; co~tains 
only one ofthem, say 0, we set V; = ] -00, o[ u V;. (Similarly, in the other case, 
V; = V; u [1,00[.) Finally, if both 0, 1 E V;, set V; = ] -00,0] u V; u [1, 00[. 
Now the family (V;)ieI is an open covering of IR. There exists a COO partition 
of unity (exv)v>l given by elements of .@(IR) subordinate to this covering: for 
every v ~ 1 there is j(v) E I such that OC v E .@(~(V». Restrict this partition of 
unity to [0,1]. 

Since the family (supp exv)v~ 1 is locally finite in IR, only finitely many exv are 
not identically zero on [0,1]. Let J; = L exA,j(v) E 8(V;). If V; n lJ =F 0, in 

v~l 

V; n lJ we have 

J; - jj = L exv(ci,j(V) - cj,i(V» = L exvci,j = Ci,j' 
v~l v~l 

since, if exv(x) =F ° then V; n lJ n lJ(V) =F 0 and hence 

Ci,j(V) - Cj,j(V) = Ci,j(V) + Cj(V),j = -Cj,i = Ci,j' 

Differentiating this expression we obtain J;' - jj' = ° on V; n lJ. Therefore, the 
J;' induce a globally defined function g E 8([0, 1]). There exists hE 8([0, 1]) 
such that h' = g. Let Ci = J; - (hi V;). A priori, Ci is just a Coo function in V; but 
c; = J;' - (h'l V;) = J;' - g = 0, hence Ci E IC(V;). It is immediate that Ci,j = 
Ci - cj • D 

Recall that '1&'([0,1], n) denotes the space of continuous paths ex: [0, 1] --+ n. 
We now have the following result. 

1.7.3. Proposition. Let (Ui)ieI be an open covering of an open subset n of C. 
For every i E I let J; : Ui --+ C be given such that if Ui n ~ =F 0 then J; - jj is 
locally constant in Ui n ~. Then there exists a unique map 

I: '1&'([0, 1], n) --+ C 

such that 

(1) If the path ex E '1&'([0, 1],n) has its image in Ui , then 

I(ex) = J;(ex(l)) - J;(ex(O)). 

(2) If P is obtained from ex by a parameter change (i.e., P = ex 0 <p, <p: [0, 1] --+ 

[0,1] continuous, <p(0) = 0, <p(I) = 1) then I(P) = I(ex). 
(3) If ex and P are consecutive (oc(l) = P(O)) then 

I(exP) = I(ex) + I(P). 

PROOF. Uniqueness: We say that a partition C1 of [0,1], C1: 0 = to < t1 < ... < 
tn = 1, is adapted to a path ex in n if for every k, 0 ~ k ~ n - 1, there is ik E I 
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such that 1X([tk , tk+d £: Ujk . As we have already shown a few times, e.g., in 
§1.6.27, such adapted partitions exist. Let IXk(t) = (IX I [tk' tk+I])«I - t)tk + tk+d. 
Hence IX is obtained from lXolXl ... lXn- l by a parameter change, therefore 
I(IX) = I(lXo) + ... + I(lXn-d by (2) and (3). By (1) we now have 

I(IX) = L U;k(lX(tk+d) - .t;k(lX(tk))). 
O~k~n-l 

This proves the uniqueness of I(IX). This reasoning proves in fact a little bit 
more: under hypotheses (1), (2), and (3), the right-hand side is independent of 
the subidivision (J adapted to IX and of the choice of indices ik such that 
1X([tk, tk+I]) £: Ujk · 

Existence. Let IX E ~([O, I],g). The family (lX-l(Uj))jeI is an open covering 
of [0,1]. For every i E I, .t; 0 IX maps lX-l(Uj) into C. If Uj n ~ :F 0 then 
lX-l(U;) n IX-l(~) = IX-I (Uj n ~) :F 0 and the function cj.j := .t; 0 IX - fj 0 IX = 
(.t; - fj) 0 IX is locally constant. On the nonempty intersection of three sets of 
the covering one has cj.j + cj •k + ck• j = O. By §1.7.2 there exist gj E C(1X-I(Uj)) 
such that 

on 

Therefore, 

.t; 0 IX - gj = fj 0 IX - gj on 

and this defines h: [0, 1] -+ C by hllX-I(Uj):=.t; 0 IX - gj. Furthermore, 
h - .t; 0 IX is locally constant on IX-I(U;). 

Let I(IX) = h(I) - h(O). The complex number I(IX) thus defined does not 
depend on the family (gj)jel. Namely, let (gj)jel be a second family of func
tions with the same properties. Define h by patching together .t; 0 IX - gj 
as before. Then the functions h - .t; 0 IX are also locally constant on IX-I(U;). 
Therefore, h - h is locally constant on [0,1], hence constant. It follows that 
h(I) - h(O) = h(I) - h(O), as we wanted to show. 

This function I has the desired properties on ~([O, 1], g): 
(a) If IX is a path with IX([O, 1]) £: Uj , then h - .t; 0 IX is locally constant on 

[0,1], hence constant and 

I(IX) = h(I) - h(O) = .t;(IX(I)) - .t;(1X(0». 

(b) Let fJ be obtained from IX by a change of parameters, fJ = IX 0 q>. Since 
h - .t; 0 IX is locally constant on IX-I(Uj), then 

hoq>-.t;ofJ=hoq>-.t;olXoq> 

is locally constant on q>-I(IX-I(Uj)) = fJ-I(UJ Moreover, if we start with 
gj.j = .t; 0 fJ - fj 0 fJ th~n gj.j = Cj.j 0 q> = gj 0 q> - gj 0 q> and then, to define 
I(fJ), we can consider h = .t; 0 fJ - gj 0 q> = h 0 q>. Therefore, 

I(fJ) = h(I) - h(O) = h(q>(1)) - h(q>(O)) = h(1) - h(O) = I(IX). 

(c) Let IX, fJ E ~([O, 1], g) be such that IX(I) = fJ(O). Denote by t l' t 2 the maps 
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tl-+2t (0::;; t::;; t), tl-+2t - 1. The set A = {i E I: 1X(1) = P(O) = IXP(l/2) E UJ 
is not empty. The covering sets are given by 

(IXP)-l(U;) = tl1(1X-1(U;)) U t],l (P-l (U;)). 

Let us denote by gf, gf, gfP, h", hfJ, h"fJ the functions associated to the paths 
IX, p, IXP. Let now i,j E A. We have the relations 

U; - fj) 0 IX = gf - gj", 

U; - fj) 0 P = gf - gf. 

Since };(IX(I)) - fj(IX(I)) = };(P(O)) - fj(P(O)), we obtain gf(l) - gj(l) = 
gf(O) - gf(O). Hence, the quantity s = gf(l) - gf(O) does not depend on the 
index i E A. We can therefore define functions gi by: 

{ gf(2t) ift E ti1(1X-1(Ui)) 
gi(t):= gf(2t - 1) + sift E t],l(P-l(Ui)). 

These functions are well defined on (IXP)-l(Ui) since if 

t E t 11(1X-1(Ui)) n t],l (P-l (U;)) 

it must be the case that t = 1/2 and i E A (recall 0 ::;; t ::;; 1 always holds). One 
verifies without difficulty that they are locally constant. If 0 ::;; t ::;; 1/2 and t 
is in (1XP)-l(Ui) n (IXP)-l(~) (= t 11(1X-1(Ui n ~))) then 

gi(t) - gj(t) = gf(2t) - gj(2t) = (}; 0 1X)(2t) - (fj 0 1X)(2t) = «}; - fj) 0 (IXP))(t). 

If 1/2 ::;; t ::;; 1 and t is in (IXPf1(Ui) n (IXPfl(~) (= t],l(P-l«Ui n~))) then 
we have 

gi(t) - gj(t) = (gf(2t - 1) + s) - (gf(2t - 1) + s) 
= gf(2t - 1) - gf(2t - 1) = «}; - fj) 0 P)(2t - 1) 

= «}; - fj) 0 (IXP))(t). 

Therefore, the functions}; 0 (IXP) - gi determine a globalfunction h"p. We have 

I(IXP) = h"fJ(l) - h"fJ(O) = h"fJ(l) - h"P(I/2) + h"fJ(I/2) - h"fJ(O). 

On the other hand, 

h"P(I) - h"fJ(I/2) = hP(I) - hP(O) = I(P). 

Namely, for t ;;::: 1/2, t E (IXP)-l(U;) we have 

h"fJ(t) = (}; 0 (IXP))(t) - gi(t) = NP(2t - 1)) - (gf(2t - 1) + s). 

Hence, for t = 1, if 1 E (1XP)-l(Ui), we get 

h"P(I) = NP(l)) - gf(l) - s = hP(I) - s. 

Similarly, for t = 1/2, we have 

h"fJ(I/2) = };(P(O)) - gf(O) - s = hP(O) - s. 



60 1. Topology of the Complex Plane and Holomorphic Functions 

This proves the claim. In the same way we obtain 

h"'P(1/2) - h"'P(O) = h"'(l) - h"'(O) = l(P). 

This ends the proof of the proposition. D 

1.7.4. Proposition. Vnder the same conditions as in §1.7.3, the map I defined 
there has the following additional properties: 

(1) l(ea ) = 0 for every a E n. 
(2) If a, P are two paths which are homotopic with fixed endpoints, then 

l(a) = I(P). 
(3) For every path a in n, l(a) = -lea). 
(4) If a, P are two free homotopic loops in n, then l(a) = I(P). 

PROOF. (1) There is some i for which a E Vi' that is, lla([O, 1]) £: Vi' Hence 
1(lla ) = !;(lla(l» - !;(lla(O» = J;(a) - J;(a) = O. 

(2) Let H be a homotopy with fixed endpoints carrying a into p. Let us 
denote a = a(O) = P(O), b = a(1) = P(l), and H. is the path tf--+H(t,s). We 
are going to show that the function s f--+ I(Hs) is locally constant. This will 
suffice to prove (2) since Ho = a, HI = p. 

Given s E [0, 1] there is a partition 0 = to < tl < ... < tn = 1 and open sets 
Vio' ... , Vin_, of the covering such that H.([tk , tH1 ]) £: Vi.' By the uniform 
continuity of H, there is {) > 0 such that if Is - s'l < {) and s' E [0,1] then 
H •. ([tk , tH1 ]) £: Vi. is also valid. As observed in the proof of the uniqueness 
in §1.7.3 we have 

I(H.) = !;o(H.(t 1 » - !;o(H.(O» + ... + !;n_,(H.(l» - !;n_JH.(tn- 1 » 

= -!;o(H.(O» + (!;o(H.(td) - k(H.(td» + ... 

+ (!;n_2(H.(tn- 1 » - !;n_,(H.(tn-l))) + !;n-' (H,(l» 

and the same identity holds for H, .. 
Since!; - jj is locally constant in Vi n ~, there is a neighborhood of H.(tk ) 

where !;._, - !;. is constant. By reducing the size of {) if necessary, we can 
assume H,.(tk ) belongs to the same neighborhood for 0 ~ k ~ n. Hence, for 
1 ~ k ~ n we have 

It follows that 

I(H,) - l(H,.) = (!;o(Hs'(O» - !;o(H,(O))) 

+ (!;n_,(Hs(l» - !;n_,(H,.(l))) = O. 

(3) One remarks that aa is homotopic to Ila with fixed endpoints. Hence 
o = 1(lla ) = l(aa) = lea) + I (a). 

(4) Let a, P be two free homotopic loops, H the corresponding homotopy. 
The starting point of the path H.(t) = H(t, s) traverses a path y joining 
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a = IX(O) = (X(I) to b = P(O) = P(1). The loop yfJY is homotopic with fixed 
endpoints to IX (up to a change of parameters) by the homotopy 

Hence 

{
o ::; t ::; 1/3 : H(O, 3ts) 

<1>(t, s) = 1/3::; t ::; 2/3 : H (3t - 1, s) 

2/3::; t::; 1 : H(1,3s - 3ts). 

l(rx) = l(ypy) = I(y) + I(P) - J(y) = I(P). D 

1.7.5. Proposition. Let (V;,f.)ieI' (Vj,gj)jeJ be two families satisfying the condi
tions of §1.7.3. Assume further that for any pair (i,j) E I x J such that 
Vi n ~ '# 0, the difference J; - Yj is locally constant on Vi n Vj. Then the 
integration functionals II, 12 associated to the two families by §1.7.3 coincide. 

PROOF. It is enough to prove the uniqueness in the case in which one of the 
coverings consists of a single set, since then, for every Vi and every path (X in 
Vi one can compute J;(IX(I» - /;((X(O» in terms of the covering (Vi n Vj)jEJ and 
the functions (Yjl(Ui n Vj»jEJ' 

Let us assume then that I contains a single element 0, and a corresponding 
function f. Let a : 0 = to < t I < ... < tn = 1 be a subdivision adapted to IX and 
the covering (Vj)jEJ> so that for 0::; k ::; n - 1 there exists jk E J such that 
(X( [tk' tUI ]) E Vj., One has 

I2(cx) = L (gjk(CX(tk +1» - gjk(CX(tk »), 
O<;k:;n-I 

and 

11(a) = f(rx(l» - f(IX(O» = L (f(cx(tU1 » - f(a(t k »)· 
O:;k:;.-l 

Now for every k, the function x t--+ f(x) - Yjk (x) is constant over the connected 
set a([tk , tUI ]) S ~k' Hence 

Ij(IX) - 12(a) = L [(f - Yjk)(IX(tUI» - (f - Yjk)(IX(tk))] = O. 
O:;k:;n-I 

The proposition has therefore been proved. D 

Given WE gleO), W dosed, let S be the collection of open subsets V of 0 
for which there is a primitive gv of W on V. Poincare's lemma (Proposition 
1.2.2.a) ensures that S is a covering of O. Furthermore, if V, V E Sand 
V n V '# 0 it foHows that Yu - Yv is locally constant on U n V. There is hence 
a unique functional 

Iw: <C([O, 1],0) -> C 

which verifies the properties stated in §1.7.3 and §1.7.4. By Proposition 1.7.5 
it does not depend on the choice of subcovering or of promitives. 
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The relation between this functional and the integration of w along a 
piecewise-C1 path is given by the following lemma. 

1.7.6. Lemma. If a is a piecewise-C1 path in 0 and w E CI(O) is a closed form, 
then 

Iw(a) = L w. 

PROOF. If a([O, 1J) £ V for some V E S, then 

Iw(a) = gy(a(1)) - gy(a(O)) = L dgy = L w. 

If not, let 0 = to < t 1 < ... < tn = 1 be a partition adapted to a. Then 
a([tk,tk+1J) £ J-j" 0 ~ k ~ n - 1 and 

Iw(a) = L (gy.(a(tk+1)) - gy.(a(tk)) 
05k5n-l 

D 

1.7.7. Proposition. Let W E Cl(O) be a closed form. Then: 

(1 )If a, P are two piecewise-C1 paths in 0, homotopic with fixed endpoints or, 
if they are piecewise-C1 loops, free homotopic, then 

(2) If a, P are two consecutive piecewise-C1 paths then 

f w=f w+f W. 
a./J a. /J 

(3) If a is a piecewise-C1 path, then 

PROOF. A consequence of §1.7.4 and §1.7.6. D 

1.7.S. Remark. Let 0 1 , O2 be two open subsets of C and h : 0 1 -+ O2 a c 1 map 
with positive Jacobian. If a is a piecewise-C1 path in 0 1 and w E Cl(02) then 
we know that 

[ w = f h*(w). 
Jhoa 1% 

If, moreover, w is closed and (U;);EI is a covering of O2 by open sets on 
which w admits a primitive g;, then h*(w) is closed in 0 1 and has a primitive 
h*(g;) = g; 0 h = /; in the open sets h-1(U;) of the covering (h- 1(UJ)iEI of 0 1 , 
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One concludes that 

()h 0 IX) = Ih.(w)(IX). 

Let's consider now a connected open set 0, a E 0, W E &l (0) a closed form. 
The map Iro : (C( [0, 1],0) -+ C restricted to 1$'(0; a) can be factored through 

a map jro: n 1 (0; a) -l> C which makes the fonowing diagram commutative 
(q(lX) = [ex]): 

I$'(O;a) ~ C 

\/ 
nl(O;a) 

Since Iro(exf3) = Iw(lX) + Iw(f3), the map jro is a group homomorphism. The 
valuesj",([ex]) are called the periods of w and, correspondingly, the subgroup 
1m j", of C is caned the group of periods of w (or the lattice of periods of w). 

Consider now the set Hom(n1 (0;a),C) of group homomorphisms from 
nl(O;a) into C. It is dearly a complex vector space. The map 

j : Zl (0) -l> Hom(n 1 (0; a), C) 

vanishes on Bl(O), hence passes to the quotient Hl(O) = Zl(O)jBl(O) as 
shown by the following proposition. 

1.7.9. Proposition. Let 0 be a connected open set in C. The kernel of the map 
j defined earlier is exactly Bl(O). Furthermore, this map induces an isomorphism 
.fof complex vector spaces 

T: [[1(0) -l> Hom(nl (0; a), C). 

In particular, two closed i-forms are cohomologous if and only if they have 
the same periods. 

PROOF. We will admit for the moment the surjectivity of the map j. It will be 
proved in Chapter 5, Proposition 5.14.14. 

If w = df, one needs a single set in the covering to construct Iro. Then if IX 

is a loop we have 

I,,,(IX) = f(IX(1» - f(IX(O» = O. 

Thereforej vanishes on Bl(O) and induces). 
Let us show thatJis injective. Let w E Zl(O) be such thatj", = O. Let Cz be 

an arbitrary path in Ojoining a to z, then Iw{cz ) does not depend on the path 
Cz . Namely, if c1 , C2 are two such paths, then [c 1 cz] E n 1 (0; a) and 

0= Iw (c 1c2 ) = I",(cd -1",{c2 ). 

Let us now show that the (wen-defined) function 

f(z) := I",(cz } 
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is CX) in O. Let Zo E 0 and r > 0 be such that B(zo, r) £ O. There is a COO 
primitive g of w in B(zo, r). For z E B(zo, r} let IXz be the segment aAt) = 

Zo + t(z - zo}. The path CzolXzCz is a loop with base point a. Hence I",{czolXzcz ) = 

O. In other words, I(zo) + g(z) - g(zo} - I(z) = 0, which means that in B(zo, r), 
1 can be represented as 

I(z) = g(z) + I(zo) - g(zo)· 

It follows that 1 is c.c in B(zo, r) and dl = dg = win B(zo, r). Hence 1 E g(O) 
and dl = w, or w E BI(O). 0 

1.7.10. Remarks. (a) The sequence 

o -l> C ----. gl(O).!.. Z1(0) -4 Hom(n 1(0;a),q -l> 0 

is exact. 
(b) If U is an open set homeomorphic to C and P1" .. , Pn are distinct points 

in U, then, for 0 = U\ {PI'"'' Pn}' we know that HI (0) is isomorphic to e 
and every element W E HI(O} can be written in a unique way as 

- L'-w = kW-
J l' 

1 -:;,j:sn 

where A- E C and w. =L dz 
J ) 2ni z - p) 

We know also that every loop IX in 0 with base point a is homotopic to a 
loop of the form 

ci,' ... c~', 
where % E /l, cj = YjIX/Yj, IXj is a circle centered at Pj and radius rj (i.e., IXj(t) = 

Pj + rje21til), rj so small that B(pj, rJ £ U and B(pj, rj } n B(Pk' rd = 0 if j -# k. 
We also choose Yj to be a path in 0 from a to (j E ai [0, 1]). 

We have 

- 1 f dz J'«(!1k ) ([c.]) = I (c-) = I (y.a--y.) = I (a-) = - --- = <5. k' 
) w.) OJ.) J J COk J 2ni a. z - Pk ). 

J 

Therefore 

IfEj={k:lk=j}andmj = L qk then 
kEEj 

.l(u})([a]) = L I.jm]. 
j 

It foHows that the group of periods of w is the set L )'imj, where (m 1'" ., mn ) E 
j 

/In. Hence, one finds in this case that 

Hom(nl (0; a), q = Hom ([n~(~l~~\~~;;n~aU' c ) ~ Hom(/l", q = e. 
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For the first isomorphism, see Exercise 1.6.13. The next one is due to the fact 
that a free group of n generators modulo its subgroup of commutators is 
isomorphic to 71.". This shows, in this particular case, thatj is indeed surjective. 

1.7.11. Proposition. Let Q be a simply connected open subset of C, then every 
closed I-form is exact. 

PROOF. 1tl (Q; a) = {[eaJ}, hencej is the zero map and Kerj = Zl(Q).1t follows 
that Bl(Q) = Zl(Q). D 

Note that this proposition did not use the fact that j is surjective. Neither 
does the following one. 

1.7.12. Proposition. Let Q be an open subset of C. In order for a closed I-form 
to admit a primitive it is necessary and sufficient that all its periods vanish. 

PROOF. It is also a corollary of §1.7.9. D 

From now on, whenever co is a closed I-form in Q and y is a loop in Q, we 

will write {co to represent Iw(Y)' D 

EXERCISES 1.7 

1. Let co = -21 . dz, I' a loop in C*, d(y) = 1, show that f co = 1. What happens if 
1tI z y 

d(y) = n? 

2C f2" dt b b . 'hfdZ . . ompute 2 2 b2 ' 2 (a, > 0) y companson Wlt -, Q bemg the 
oacost+ smt onZ 

. x2 y2 
domam a2 + b2 < 1. 

3. Let P(z) = aoz' + alz·-1 + ... + a. be a complex polynomial of degree n. Show 

that for r > 0 sufficiently large f dP = 2nid(P 0 Yr) = 2nin, (Yr = oB(O, r) with 
08(0.r) P 

the positive orientation). 

4. Recall that the Peano curve is a continuous surjective map yo: [0, 1] -+ [0, 1]2 such 
that 1'0(0) = (0,0) and 1'0(1) = (1,1). Let Q+ (resp. Q_) be the closed set in IC defined 
by 1 ::; Izl ::; 2, Rez ~ 0 (resp. Rez::; 0). Using Yo, constant a path 1'+ starting at 
the point z = 2 and ending at the point z = -1, whose image is the whole Q+. 
Similarly, let 1'_ fill Q_ starting at z = -1 and ending at z = 2. Let I' be the loop 
I' = 1'+1'-, compute dey). 

xdx Y(X2 + y2 + l)dy 
5. Let co = + .Showdco = Oin 

(x - W + «x + 1)2 + y2) «x - w + y2)2«X + If + y2)2 
[R2 \ {I, - I}. Compute its periods. Does it admit a primitive? 
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§8. Index of a Loop 

If a. is a loop in C we will define its index with respect to points a E C\a.([O, 1]). 
It is an integer that describes how many times the loop a. turns around the 
point a. 

1.8.1. Definition. We call index of the loop a. with respect to the point 
a E C\a.([O, 1]) the degree of the loop y, y(t) = a.(t) - a, in C*. We denote it 
Ind,,(a). 

Some properties of the index follow. 

1.8.2. Proposition. Let a. be a loop in C and a E C\a.([O, 1]). The condition 
Ind,,(a) = 0 is equivalent to a. being homotopic to 1:,,(0) in C\ {a}. 

PROOF. It is an immediate consequence of 1.6.24. o 

1.8.3. Proposition. If a. is piecewise-C1 and a E C\a.([O, 1]) we have 

1 f dz Ind,,(a) = -2. --. 
m "z-a 

In particular, if a = 0, the degree of a. is 

d(a.) = ~ f dz. 
2m "z 

PROOF. We can assume a = O. Let c be a lifting of a., it is also piecewise-C1 

since exp is a local diffeomorphism. We have 

_1 f dz = _1 f (exp)* (dZ) = _1 f d(eU
) 

2ni "z 2ni c z 2ni c eU 

1 f 1 = -. du = -2 -;(c(l) - c(O» = d(a.) = Ind,,(O). 
2m c m 

1 dz 
1.8.4. Remarks. (1) Let Wa be the closed form Wa = -2 . --. We have 

mz-a 

Ind,,(a) = Iro.<a.). 

o 

Namely, by Remark 1.7.8, IroJa.) = Ih.(roa)(c) with h = exp and c a lifting of a.. 
It follows that if a., P are two loops free homotopic in C\ {a}, then Ind,,(a) = 
Indp(a). For the same reason, if a., p are two loops with the same base point 
in C\ {a}, we have Ind"f/(a) = Ind,,(a) + Indf/(a). 

In fact, these properties were already used when we discussed the degree 
ofa loop. 

(2) The map sending a. E ~(C\ {a};zo) to Ind,,(a) E 7L factors through 
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1tt(C\{a};zo). One obtains this way jw. and Imj",., the group of the periods 
ofwa · 

(3) The function a 1-+ IndAa) is locally constant in C\IX([O, 1]). In fact, 
Ind,,(a + b) = Ind,,_b(a) = Inda(a) if b E C, Ibl very small, since then IX, IX - b 
are free homotopic in C\ {a}. (Here we define (a - b)(t) := a(t) - b.) It foHows 
that a 1-+ lnda{a) is constant on each connected component of C\ a([O, 1]). 
Furthermore it is zero on the unbounded component, since if lal is very large 
then IX([O, 1]) is contained in a half-plane S; C\ {a}. Hence IX is homotopic to 
a constant loop in C\ {a}. 

(4) Effective way of computing the index: Assume IX is a piecewise-C 1 loop 
in C and z if, Im(lX) = IX([O, 1]). Assume that a half-line R of direction u, starting 
at the point z, does not intersect Im{lX) except for a finite number of simple 
points a(t d, ... , a(tn), ° < t 1 < ... < tn < 1, where the tangent vectors Ii(t) are 
defined and are not parallel to u. Let tj be such that the pair {u, Ii (tj) } is a basis 
of [R2 with the canonical orientation. A judicious use of Sard's theorem and 
the inverse function theorem shows that one can find I'; > ° sufficiently small 
so that for B = B(IX(tj ), e), Im(lX) n B has only one connected component, it 
contains no other intersection point with R, and B\Im(a) has exactly two 
components, 0 1 , O2 , Let 0 1 be the component that intersects the straight 
line segment [z,a(tJ]. Reducing 8 further, if necessary, we can assume that 
the connected component of a-1(B) containing tj is ]tj - 8 1 ,tj + 1';2 [ and 
a(] tj - e1> tj + 8 2 D = B n Im(a). We can assume further IX is C1 in [tj - 8 1 , 

tj + 8 2 ]. We claim that for any WI E Q 1 and Wz E O2 one has the relation 

Ind,,(wd = Ind,,(w2 ) + 1. 

In fact, let {3 be the arc of oB which does not intersect [z, lX(t)], starts at 
lX(tj - 1';1) and ends at a(tj + e2)' Let}' = {3(1X1 [tj - 81, tj + e2])- (the - denotes 
the inverse path). It is clear, by continuing R in the direction - u, that z is in 
the unbounded component ofIm(')'). Hence, the same is true for W j • Therefore, 
Indy(wd = 0. 

z 

Figure 1.13 
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-----
-f-'-'-f--'-'----,I--C-+ 1-'--_____________ _ 

Figure 1.14 

It follows, by homotopy, that if.:5 represents the loop obtained from a by 
replacing al [tj - [;1' tj + [;2] by the arc of circle p, then Ind~(wd = Indd(wd· 
The same reasoning shows that if P' represents the arc of oB that starts 
at a(tj - 8 1 ), ends at a(tj + [;2) and intersects [z, a(tj)], and (i' is the loop 
obtained from a replacing al[tj - 8 1 ,tj + [;2] by p', then Inda(w2 ) = Indd,(wz)' 
Moreover, it is clear that Indo(wt ) = Ind~(a(t) and Indb·(w2 ) = Indb,(a(t). 
Therefore, 

Inda(w t ) - Ind~(w2) = Indo(lX(tj » - Ind",(IX(t) = IndcB(a(tj » = 1. 

Similarly, if the orientation of the pair {u, &(tk)} is negative one has 

lnda(wd = Inda (w2 ) - 1, 

with the same definitions of 0 1 and Oz. 
n 

One can now see that Inda(z) is the sum L (Jj' where (Jj = + 1 if orientation 
j~l 

of {u, a (t))} is positive, (Jj = -1 in the other case. For instance, in Figure 1.14, 
we have Inda(z) = 2. 

Let us recall here that a Jordan curve is a loop I' in C such that 1'1 [0, 1 [ is 
injective. The computation of the function Indy is given in this case by the 
following famous theorem. 

1.8.5. Jordan Curve Theorem. Let I' be a Jordan curve, then 1[;\1'([0, 1J) has 
only two connected components. If a is in the bounded component, Indy(a) = 1 
and, if a is in the unbounded component, Indy(a) = 0. 

The bounded component is called interior of 1', denoted by Int(y), and the 
unbounded one is called exterior of 1', Exl(y). 

There are several elementary proofs of this theorem originally stated by 
Camille Jordan in 1887 (see, for instance, [Tr], [He2], or [Bu]). 

We give now several versions of Rouche's theorem. 

1.8.6. Proposition (Rouche's Theorem-Strong Version). Let n be an open set 
in C, IX a loop in 0, f, g two continuous complex-valued functions on a( [0, 1]) 
such that 

If(lX(t) ----- g(a(t)) I < If(a(t»)1 + Ig(a(t))1 
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for every t E [0,1]. Then f 0 0( and goO( are two loops in C* of the same degree, 
i.e., 

IndfoiO) = Indgo",(O). 

PROOF. The strict inequality in the hypotheses shows that neither f nor g can 
vanish on Im(O(). Moreover, the function A(t) = f(O(t))/g(O(t)) takes values in 
C\J -00,0]. Namely, A = 0 is impossible and if A < 0 then the inequality of 
the statement implies 1 + IAI < 1 + IAI. 

Let H(t, s) := (1 - s) + SA(t). This establishes a homotopy between the 
constant loop 8 1 and the loop A. Hence K(t,s):= H(t,s)g(O(t)) is a homotopy 
between goO( and f 0 0(. 0 

1.8.7. CoroUary (Usual Version of Rouch{:'s Theorem). Let n be an open subset 
of C, 0( a loop in n, f, g two continuous complex-valued functions on 0([0, IJ) 
such that 

If(O(t)) - g(O(t))1 < Ig(O(t))] 

for every t E [0,1]. Then f 00( and goO( are two loops in C* with the same 
degree: 

EXERCISES 1.8 
1. Compute the index in each connected component of C\Im(lX) for the following 

loops: 

Figure 1.15 
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Figure 1.15 (cont.) 

2. Let a E B(O, 1), and ex the loop given by 

e2 l<it - a 
ex:tl-+ 2. 

1 - ae It" (0 :5: t :5: 1). 

Show that A arg ex(t) = 27t. Compute Ind.(z) for Izl ¥- 1. 

· (z -a.) 3. Let B = B(O, 1), a l , ••• , a. E B,f(z) = n -1 _1 • Compute A argf(z). 
j=1 - ajz ZE iJB 

4. G. Polya's version of Rouche's theorem: A young man carries a bouquet of flowers 
in one hand and pulls along his leashed dog with the other. While waiting for his 
fiancee, he paces nervously around a fountain, two meters in diameter. All along, 
the dog wanders its own way, restrained only by the five-foot-Iong leash. After 
about 20 minutes, the man and his dog find themselves at their respective starting 
point. Show that the total number oftums around the fountain is the same for the 
dog and its master. 

"'5. Use the argument principle in 1.6.30 to show that the equation 

ao + a I cos (J + ... + a. cos n(J = 0, 

where 0:5: ao < a l < ... < a., has exactly 2n distinct roots in the interval 0 < (J < 27t. 
(Hint: Show first that all the roots of the polynomial p(z) = ao + a l z + ... + a.z· 
lie in the unit disk B(O, 1). Use the argument principle to determine the minimum 
number of intersections of the loop (J 1-+ p(e iB), 0 :5: (J :5: 27t, with the imaginary axis.) 

"'6. Let B = B(O, 1), f: Ii -+ C continuous and injective. 

(i) Show that for t E [0,1], the loops f, given by f,(z) = fC : t) - fC-:Zt). 

z E aB, have image in C'" and have the same degree. Conclude that fo does not 
have a continuous logarithm. 



§9. Homology 71 

(ii) Show that if J(O) is not an interior point of J(B) then there are values w so that 
IJ(O) - wi is very small and z f-+ J(z) - w admits a continuous logarithm in B. 

(iii) Using Rouche's theorem, show that (i) and (ii) are contradictory. Conclude 
that if J: 0 -+ C, 0 open in C, J continuous and injective, then J(O) is open. 

§9. Homology 

Let n be an open subset of Co In this section we will denote So(n) the set n 
itself, SI(n) the set CC([O, 1],n) of paths in n, and by S2(n) the set CC(A2,n) of 
continuous maps A2 -+ n, A2 := {(x,y) E 1R2: x ~ 0, y ~ 0, 0 ~ x + y ~ I}. If 
Ao = {OJ, Al = [0,1] then S;(n) = CC(A;,n) for i = 0, 1, 2. An element from 
S;(n) will be called an elementary i-chain. We denote by CC;(n; Z) the free 
Z-module Z(s,(on of all maps from S;(n) into Z that are supported by a finite 
number of points. The elements of CC;(n; Z) are called i-chains with integral 
coefficients. In other words, every i-chain is a (formal) linear combination 
LVa . a where a E S;(n), Va E Z, and only finitely many Va are distinct from zero. 
Note that L Va· a = 0 is equivalent to Va = 0 for every a. The boundary of an 
elementary I-chain (i.e., of a path) y: [0, 1] -+ n, is the O-chain y(l) - y(O), 
denoted oy or 01 y. The boundary oa (or 02a) of an elementary 2-chain 
a: A2 -+ n is the I-chain Yo - Yl + Y2' where Yo(t) := a(1 - t, t), Yl (t) := a(O, t), 
Y2(t) := a(t, 0). 

We can extend the definition of the boundary operators to CC1 (n; Z) and 
CC2(n;Z) by making them Z-linear: 

o( L va·a) = L va·o(a) (i = 1,2). 
aeS,(O) aeS,(O) 

This way we obtain two homomorphisms 

1\2 

o 

01 : CC1 (n; Z) -+ CCo(n; Z) 

O2 : CC2(n; Z) -+ CC1 (n; Z), 

cr 

Figure 1.16 

Yo 
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and one verifies easily that 01 0 O2 = 0 (sometimes also written 01 = 0). If we 
introduce the homomorphism 

we can also verify G 0 01 = O. It is then natural to consider the sequence 

cg2(0; Z) cgl (n; Z) ~ cgo(O; Z) --:.. Z --l> 0, 

where 1m O2 S Ker 01 and 1m 01 S Ker 1-:. Denote by Z1 (0; Z) the set Ker 01 , 

its elements are called i-cycles. The I-boundaries are the elements of Bl (0; Z) = 

Im02 • The quotient group Hl(O;Z) = Z1(0;Z)/B1(0;Z) is called the first 
homology group of 0 (with integral coefficients). Two elements of Zl (0; Z) 
which are congruent modulo Bl (0; Z) are said to be homologous. 

We are going to show now that if 0 is connected then HI (0; Z) can be 
identified to 1[1(0)/[1[1(0),1[1(0)]. We have really shown this already in the 
case of an open set homeomorphic to C punctured by a finite number of points 
(i.e., C\{Pl, ... ,Pn})' 

A loop Y E cg(O; zo) appears in the languange of homology as an elementary 
i-chain (Jy such that o(Jy = y(l) - yeO) = O. We have therefore a canonical 
injection 

1.9.1 Lemma. If two loops Yl, Y2 with base point Zo are homotopic in 0 then 
(JYl = X(Yl) and (JY2 = X(Y2) are homologous. (That is, X induces a map from 
1[1(O;ZO) into Hl(O;Z).) 

PROOF. Let us denote (as in Figure 1.16) eo = (0,0), e1 = (1,0), ez = (0, 1), the 
vertices of Il z . Let Q(s):= se2 + (l - s)e 1 (0::; s ::; I) and O(t,s):= tQ(s) + 
(1 - t)eo = t(1 - s)e l + tsez (0::; t ::; 1). Now, 0 is a continuous surjection 
from [0, 1] x [0, 1J to Ilz such that 

B(t,O) = tel 

(J(t, 1) = tez 

0(0, s) = eo 

O(1,s) = sez + (1 - s)c 1 • 

Let now H: [0, 1] x [0,1] --l> n be a homotopy carrying the loop Y1 into Yz. 
H is hence constant on {O} x [0, 1] (equal to zo) and, since 0(0, s) = Co' it 
makes sense to define the 2-chain (J by 

(JeB(t, s» = H(r, s). 

(Note that 0 is injective except on {O} x [0, IJ and Il z can be considered as 
the quotient space of [0, 1 J x [0, 1] by the equivalence z ~ z' if and only if 
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e(z) = e(z').) We have now 

0(11) = (sl-+H(l,s» - (tl-+H(t, 1)) + (t 1-+ H(t, 0» = 11, - l1y. + l1y . 
Zo 2 1 

On the other hand, if a' is the elementary 2-chain a'(t, s) := Zo then o(a') = l1ez ' 

therefore o(a' - a) = aY2 - (1y, = X(Y2) - X(Yl), which is what we wanted t'O 
prove. 0 

1.9.2. Lemma. Letl'1' 1'2 be two paths in 0 such that 1'1 (1) = 1'2(0). Let 1'0 = 1'11'2' 
Then: 

(a) The I-chain ay, + "Y2 - aro is a boundary (i.e., (1Yl + aY2 is homologous to ayJ 
(b) The map X : ~(O; zo) ~ Zt (0, Z) induces a quotient map 

'i: 1t1 (0;zo) ~ HI (0, Z) 

which is a group homomorphism. 

PROOF. (a) Define an elementary 2-chain a as follows (see Figure 1.17): 

{
a(x,y) = Yt(x + 2y) ifx + 2y::;; 1 

a(x, y) = 1'2(X + 2y - 1) if x + 2y :2: 1. 

It is immediate to check that a is a 2-chain in 0 satisfying al[eO,e1J = 1'1' 
al[e1,e2J = Yz, al[ez,eoJ = 1'11'2 = Yo· That is, o(a) = aY2 - aro + ay,. This 
proves (a). 

(b). We have X(1'1Y2) homologous to x(yd + X(Y2), hence 'i([Y1] [1'2]) = 
'i([Y1]) + 'i([1'2])' 0 

eo + e2 

2 

Y1 

Figure 1.17 

It follows from this lemma that if l' is a path starting at Zo one has 
'i([yy]) = 0 since yy is homotopic to e.o' 

1.9.3. Theorem. Let 0 be an open connected subset of C, then the group 
homomorphism 'i: 1t1 (0; zo) ~ HI (0; Z) is surjective. Its kernel Ker'i is the 
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subgroup of commutators of 1t1 (Q; zo) and H 1 (Q; Z) can be identified to 

1t 1 (Q; zo)/[1t 1 (Q; zo), 1t1 (Q; zo)]. 

PROOF. Since X takes values in a commutative group it follows that 
Ker X::2 [1t 1 (Q;zo), 1t1(Q; zo)] and, if cp is the quotient map of 1t1 (Q,zo) onto 
its abelianized 1t1(Q;ZO)/[1t1(Q;zo), 1t1(Q;ZO)], then there is a unique homo
morphism X' of this last group into H 1 (Q; Z) such that 

X = X' 0 cpo 

We want to define a homomorphism K from H 1 (Q; Z) into this quotient group 
such that K 0 X' = id, X' 0 K = id. This will prove the theorem. 

For each z E Q, let us choose a homotopy class az of a path joining Zo to 
z, with the convention that azo = [8zo]. Let now u: [0, 1] --+ Q be an arbitrary 
path, set 

l(u) := aU(O)[u]a;;(i) E 1t1 (Q; zo). 

This defines a map l: S1 (Q) --+ 1t1 (Q; zo) by l(uu) = l(u). By Z-linearly extend
ing to <C1 (Q; Z) the map cp 0 l, we obtain a homomorphism: 

f1.: <C1(Q;Z) --+ 1tl(Q;ZO)/[1t1(Q;zo), 1t1(Q;ZO)]. 

1.9.4. Lemma. The map f1. vanishes on Bl (Q; Z). 

PROOF. Let u: A2 --+ Q be an elementary 2-chain. Using the previous notation 
(see Figure 1.16), we have 

Hence, 
o(u) = Yo - Y1 + Y2-

= cp (aa(el) [Yo] a;(~2)(aa(eo) [y 1] a;(~2))-1 aa(eo) [Y2] a;;(~l)) 

= cp(aa(e.,[yO] [Y1 r 1 [Y2]a;(~.,). 

We claim that the loop YOY1 Y2, with base point u(ed, is homotopic to 8a(e.,· 
Namely, let 0 be the continuous surjection 

0: [0,1] x [0,1] --+ A2 

O(t,s):= t(1 - s)eo + se1 + (1 - s)(1 - t)e2 = se1 + (1 - s)(1 - t)e2. 

It is clear that (we write between parentheses the corresponding paths under u) 

(J(t,O) = (1 - t)e2 

(J(t, 1) = e1 

(J(O,s) = se 1 +(1-s)e2 

O(1,s) = se1 
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Hence t := u 0 e: [0, 1] x [0,1] -+ Q is a continuous map such that 

tl[O, 1] x {O} = Y1 

tl{l} x [0,1] = Y2 

tl[O, 1] x {I} = 1:00(el) 

tl {O} x [0,1] = Yo' 

Let us consider the following figure: 

€cr(e 1) 8(0) = C(O) A.----__ --'-_--,,-____ ----.D 

Yo 

8 = 8(1) C = C(1) 

Figure 1.18 

75 

It shows that YOY1 Y2 is homotopic to 1:00(etl as follows: For U E [0, 1] as the 
homotopy parameter, it traverses the segment [A, B(u)] during the first third 
of the time, [B(u), C(u)] during the second third, and [C(u), D] the last third. 
More precisely, let 

( 3t(1 - u) 1 _ 3 ) 
t 2 ' tu o ~ t ~ 1/3 

H(t, u) := t C ; U + (3t - l)u, 1 - u) 1/3 ~ t ~ 2/3 

( 1 + u (3t - 2)(1 - u) 1 (3 2 ) 
t -2- + 2 ,- u + u t - ) 2/3 ~ t ~ 1 

Hence, jl(iJ(u)) = cp([l:zo ]) = 0. 

Therefore, the restriction of jl to Zl (Q; Z) induces a homomorphism 

K: H1(Q;Z) -+ 1t1(Q;ZO)/[1t1(Q;zo), 1t1(Q;ZO)]. 

D 
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PROOF. It is enough to show that K 0 X = <po 

Indeed, if K 0 X = <p, then Ie 0 X' 0 <p = <p = id 0 <p as shown by this diagram 
and, since <p is surjective, K 0 X' = id. Conversely, if K 0 x' = id, then Ie 0 X = <p, 
by the same diagram. 

Letnowy E 'C(Q;zo). The element x([yJ) is the class of Clyand (Ie 0 X)([yJ) = 
J1«(Jy) = <p(),«(Jy))' Since y(O) = y(1) = Zo and O!zo = [c;zJ we have 

A«(Jy) = O!Y(O)[y]O!;(L = [y]. 

Hence (K 0 X)([yJ) = <p([yJ), and the lemma follows. o 

1.9.6. Lemma. X' 0 K = id on HI (H; Z). 

PROOF. Consider the diagram: 

Zl(H;Z) ~ Hl(Q;E) 

'j X 1, 
H1(H;E) ~ nd[n1 ,n1J 

The statement is equivalent to X' 0 J1 = p = canonical projection 
ZI (Q; Z) --+ H j (Q; Z). Namely, if X' 0 Ie = id then x' 0 J1 = X' 0 K 0 P = p. On the 
other hand, if X' 0 J1 = p then X' 0 K 0 P = id 0 P and, since p is surjective, 
X' 0 Ie = id. 

Let (J = L vj(Ju, be a I-cycle (v j E Z, U j path in Q). We have 
j 

with A«(Ju) = O!u.cO)[U;]O!~flj (note that we use additive notation because J1 
takes values in an abelian group). Let c, be a path in the class()(!; for every 
~ E H. The loop CudOj UjCu,(1) defines a cycle homologous to the cycle 
ifj = (Je + (J. - (Je' Hence X'(J1«(J.» = X'(<p(),(Ju))) is the homology class 

ui{O) 1 Uj(l} 1 1 

of the cycle Uj. By linearity, X'(u((J)) is the class of the cycle 
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We need therefore to show that the last sum vanishes. We have not yet really 
used that (J is a cycle; this means precisely that 

O«(J) = L Vj(u j(1) - ui(O)) = 0 

in ~o(O; Z). For' E 0, let 

j 

1(0:= {i E I: u;(O) = n 
J(O:= {i E I: u;(1) = 0. 

Recall that I is finite, so for only finitely many' E 0 we can have 1(0 t= 0 or 
J(O t= 0. The equality a«(J) = 0 leads to 

o = L ( L Vi - LVi) " 
~"n ieI(~) iEJg) 

hence L Vi = L Vi for every' E O. Therefore 
iEl<Q iEJ(I;) 

This concludes the proofs of Lemma 1.9.6 and Theorem 1.9.3. o 
1.9.7. Corollary. If 0 is a simply connected open subset ofC, then Hl (0; Z) = o. 

1.9.8. Example. In C\{Pl'PZ} the loop with base point Zo of Figure 1.19 
induces a 1-boundary (Jr' 

In fact, y is homotopic to the commutator a/h.·· l p···1, where ct, 13 are shown 
in Figure 1.20. 

More generally, if 0 is homeomorphic to C, then H 1(0\{Pl, ... ,Pn};Z) is 
isomorphic to Z" and generated by the loops ctj : t f-+ Pj + r j e21!it, rj > 0 smalL 

--
Figure 1.19 
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Figure 1.20 

1.9.9. Definition. We call a special chain in 0 a I-chain c = L nil'i, where ni E 1'. 
i 

and "Ii is either a horizontal or a vertical path (i.e., parallel to one of the 
coordinates axes) of the form Yi(t) = (ta + (1 - t)b, c) or Y,(t) = (c, ta + (1 - t)b). 

1.9.10. Proposition. Let 0 be an open subset of !C. Every cycle (J E ZI (0; 1'.) is 
homologous to a special cycle. 

PRCX>F. It is enough to show that every path "I is homotopic in 0 to a special 
path (i.e., composed of horizontal and vertical line segments). This is a conse
quence of the foHowing observation: ifyl' "12 are two paths in 0 with the same 
endpoints and sup 1'Yl(t) - Y2(t)! is sufficiently small, then "11' "12 are homo-

Oslsl 

topic by H(t,s) = SYI(t) + (1 - S)Y2(t) which is a homotopy in 0 with fixed 
endpoints. The uniform continuity of a path "I now shows that it is homotopic 
to a piecewise linear path in 0 composed of very small segments. Moreover, 
this piecewise linear path is itself homotopic to a special path. 0 

1.9.11 Definitions. 

(1) We call support of an i-chain (i = 0,1,2) (J = L Vi(Ji, the set 
i 

supp (J := U Image (0-,). 
i 

(2) If 0 is a connected open set, .5 E ZI (0; 1'.) and a E !C \ supp.5, we call index 
of 0 with respect to a, the number 

Ind~(a) := L nJwJy;) 
i 

. 1 dz If 0 = "n.y. where OJ = - ................. . .y. , " a 2ni z - a' 

1.9.12. Remarks. (1) The function we have just defined is constant on each 
connected component of!c\supp.5, takes only integral values, and is zero in 
the unbounded component of this set (cr. §1.8.4, Remark 3). Namely, let us show 
that lnd,,(a) = (}fi) 011)(0), where Tw : nt/[n!, n!] -+ 1'. is the quotient map 

a a 

corresponding to jroa : n 1 (0; zo) -+ 1'. (this can be done since Kerjw a 2 [n 1 , n 1 ], 
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because Z is commutative). This identity will then prove the remark by the 
properties ofjw . 

If b = ~niYiowith ~ni(Yi(l) - Yi(O)) = o(b) = 0, then J1.(~niYi) is the class 
" , 

in 1t 1 1[1t 1 , 1t 1 ] of n «(Xi(O)[Y;](X~t))ni. It follows that 
i 

}Wo (qJ (I) «(Xi(O)[Y;](X~h)") ) = ~ n;I.,Jcai(olYica,,) 

= L n;IwJcai(O) + L nilwJY;) - L n;IwJcai() 
iii 

(we have kept the notations from the previous theorem and corresponding 
lemmas). As before, l(z) = {i E I: Yi(O) = starting point ofYi = z}, and J(z) = 
{i E I: Yi(l) = endpoint of Yi = z}, hence we have L ni = L ni for every 

iel(z) ieJ(z) 

ZEn, because b is a cycle. Let us note now that 

L n;Iwjcaico) = L ( L ni) IwJcz ) 
i zen iel(z) 

It follows that 

(2) What we have just done is to "integrate" the form Wa along the cycle b. 
More generally: 

(a) We call integration ofO-forms the operation 

~o(n; Z) x sg(n) -+ c 
(c,f)f-+(c,f) = L vz/(z), 

zen 

where c is the O-chain c = L Vz ' Z. 
zen 

(b) Integration of the closed I-forms of class C1, the operation 

~l(n;Z) x zt(n) -+ c 

(c,w)f-+(c,w) = L V .. lw (0"), 
.. eS,(n) 

where zt (n) is the set of closed I-forms of class C1 and c = L V .. O". If the 
.. eS,(n) 

0" appearing in c are piecewise C1 then one can also integrate along c a I-form 

W which could eventually be not closed, by setting (c, w) = L v .. f W. 
aeS,(n) a 

For instance, if U is an open set with piecewise regular boundary of class 
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C l , then the boundary au of U is a I-cycle b := au = L fi' where the Yi 
1::; i:5n 

are the piecewise-C l Jordan curves that are the connected components of au, 
parameterized following the canonical orientation. If w is a I-form of class C 1 

on a neighborhood of 0, the Stokes formula can be written as 

r dw = f w = 2: f w = <b,w). 
Ju cu 'y; 

(c) Let us show that if w is a closed I-form of class C 1 and b E Bl (0; Z) then 
<b, w) = o. Without loss of generality we can assume b = aa, a E S2(0). Then, 
with the notation of Figure 1.16, we have b = Yo - 1'1 + 1'2. Therefore 

(b,w) = Jro(Yo) -1,)1'1) + 1",(1'2) = 1w(foYlY2) = 0, 

because, as we have shown in the proof of 1.9.4, the loop YOY1 1'2 is homotopic 
to e",(ell. In particular the index of a I-boundary b with respect to any point 
a E C\suppb is zero. 

More generally, we have the following proposition. 

1.9.13. Proposition. Let 0 be a connected open set in C. A I-cycle b E Zl (0; Z) 
is a I-boundary if and only iflndb(a) = 0 for every a E C\O. 

PROOF. We can assume b is a special 1-cycle LVkYk. Consider two (finite) 
increasing sequences of real numbers {ad, {bj} where the {ad contains all the 
projections of the endpoints of the Yk on the x-axis, {bJ those on the y-axis. 
We can, in fact, suppose that every Yk is either of the form [ai ,ai+1] x {bj} or 
{ai } x [bj , bj +1]. Denote by Qi,j the rectangle [a" ai+l] x [bj , bj+1J, which will 

bj + I 

[ cr/ 

Cij1 

b j 

Figure 1.21 
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be considered as the support of the 2-chain Ci,j = cL + cL as shown by Figure 
1.21. 

Let Zi,j be a point in the interior of Qi,j' Consider the I-chain 

b' := I Indd(zi)o(ci), 
i,j 

which is evidently a I-cycle in IC. We want to show that b' is in fact a 
I-boundary in n. 

If Indd(zi) "# 0 we claim that Qi,j ~ n. Assume this is not the case, let 
Z E Qi,j\n. We have then Indd(z) = 0 by hypothesis. The segment [Zi,j' z] does 
not intersect supp b since [Zi,j' z[ ~ Qi,j and Z rt n. Therefore, Ind~ is constant 
on that segment and Indd(zi) = Indd(z) = 0, a contradiction. 

Therefore, b' is the boundary of the 2-chain c E ~2(n; Z), 

c := I' Ind,,(zi)ci,j' 
i,j 

where the sum takes place only over the indices i, j, for which Indd(zi) "# O. 
Let us now show that b = b'. One can write b - b' = L npup, where np E Z, 

p 

and up are segments, either vertical or horizontal, and have disjoint interiors. 
Let us assume npo "# 0, and to fix ideas, assume upo is a vertical segment located 
on the left side of Qio,jo' 

Figure 1.22 

Define b":= b - b' + npoo(cio,jo)' We now have Ind,,_d,(zi) = 0 for every 
i,j and Indo(c .. )(Zi J') = 1. Therefore Ind",,(zi J') = np . For the same reason 

IOdO O· 0 Q. 0 o. 
Indr(zio-l,jo) = O. On the other hand, npoo(cio.jol contams the term -npoupo' 
hence supp b" does not intersect [Zio-l,jo' Zio,jo]' From here we conclude that 
npo = O. This contradiction shows that b = b'. Therefore we have obtained 
b = o(c). [] 

1.9.14. Corollary. Let n be a connected open subset of C and ex a loop in n. The 
following conditions are equivalent: 

(1) For every OJ E Zl(n) we have I",(ex) = j",([ex]) = O. 
(2) For every a E C\n we have Ind",(a) = O. 
(3) The class [ex] of <X in n 1 (n; ex(O)) belongs to the commutator subgroup. 

PROOF. (1) implies (2) since OJa is closed. (2) implies (3) since, by Proposition 
1.9.13, X(ex) = u'" is a I-boundary in n. This means that [ex] E [nl' n1] because 
in the isomorphism between H 1 (n; Z) and n 1 I[n l' n 1] to the class of u'" 
corresponds [ex]. 

Finally, (3) implies (1) sincej", vanishes on [n1,n1l [] 
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1.9.15. Proposition. Let W be a closed I10rm of class C 1 in 0, 0 connected 
open set in Co The differential form W is exact if and only if for every 

b = L niYi E Z1(0;Z) 
i E 1 

it satisfies 

<b,w) = L niI",(yJ = O. 
iel 

PROOF. If w = df with f E t9'f(O) then 

<b,w) = L ni(f(Yi(I» - f(Yi(O») = L ( L ni - L ni)f(z), 
i e I z e (l i e J(z) i e l(z) 

with I(z) = {i E J: Yi(O) = z}, J(z) = {i E I: Yi(I) = z}. Since b is a I-cycle we 
know that L ni = L ni , hence < b, w) = O. 

iel(z) ieJ(z) 
Conversely, the condition < b, w) = 0 for every I-cycle implies that all the 

periods of w vanish, hence the function f(z) = L. w is well defined and satisfies 

df = w, as in Proposition 1.7.8. 0 

Let 0 be an open set in C and a = L niai be a 2-chain such that ai : A2 -+ 0 
be the restriction to A2 of a function of class C1 in a neighborhood of A2. Such 
a 2-chain will be called a differentiable 2-chain. 

If w is a 2-form in 0 with coefficients in L}oc(O), we will call the integral of 
w over the differentiable 2-chain a the complex number 

<a,w):= ~ ni f w:= ~ ni f ai*(w). 
, ai I .112 

A form w E t9'J (0) is said to be locally exact if for every a E 0 there is a disk 
B = B(a, r) ~ 0 and a C1-function f in B such that w = df in B. If 0' is an 
open subset of 0, 0' simply connected, then the proof of Proposition 1.7.9 
shows that w has a primitive f in 0' (i.e., f E 81 (0'), w = df). If w were of class 
C1 we could have applied directly Proposition 1.7.11. 

1.9.16. Proposition. (1) Let w be a I-form of class C 1 in O. The differential form 
w is closed if and only if < b, w) = 0 for every b E B1 (0; Z) which is of the form 
b = o(a), a a differentiable 2-chain in O. 

(2) If w is a continuous I-form, we have the following equivalence: The form 

w is locally exact if and only if L w = 0 for every loop IX in 0 which is of class 

piecewise-C 1 and homotopic to a point O.It is enough to let IX be a boundary of 
a rctangle of sides parallel to the axes which is homotopic to a point in O. 
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PROOF. (1) If w is C1 and closed, and b = o(I: nioJ, with (Ji differentiable, we have 
<b, w) = 0 by §1.9.l2, 2(c). Conversely, if dw * 0 and w = P dx + Q dy, we can 

oQ oP ... f (oQ OP) 
assume ax - oy does not vamsh m some tnangle T. Hence T ox - oy x 

dx dy * O. If (J is the affine 2-chain that parameterizes T, then 

<o«(J),w) = f w = f dw * o. 
aT T 

(2) Every a E n has neighborhood B(a, r) ~ n where the function 

F(z) = f w 
Y. 

is a primitive of w such that ~F = P, ~F = Q when w = P dx + Q dy. (Yz is the 
ox uy 

path indicated in Figure 1.23.) 

Let us verify that ~~ = P. Assume a = 0 for simplicity. For z E B(O, r) 

h real, we have (say h > 0) 

rX +h fY fY F(z + h) - F(z) = Jx P(t)dt + 0 Q(x + h + it)dt - 0 Q(x + it)dt 

rX +h 

= Jx P(t + iy)dt 

x + iy x + h + iy 

o x x+h 

Figure 1.23 
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by the hypotheses (Figure 1.23). It follows that ()~ (z) exists and equals P(z). ox 
o 

These results allow us to define on open connected subsets 0 of C, a duality 
bracket 

H 1 (0;Z) x Hl(O)-+C 

which to the class b of the i-cycle <5 = LniY;, and to the class W of the closed 
form w associates <<5,w). This mapping is wen defined, Z-linear in b, C-linear 
in w, and nondegenerate, namely, 

EXERCISES 1.9 

{ <<5,W)=O V<5=w=O (1.9.15), 

<<5,w)=O 'r/w=b=O (1.9.13). 

1. Let ai' ... , an+! be a collection of distinct points in C, Yj paths starting at aj and 
ending at aj +! (1 :O:;j:o:; n), O'j = O'Yj the corresponding elementary I-chains. Show 

" that if 0' = L APi is a I-cycle then Aj = 0 for all j. 
j=l 

2. Compute H dO; l') for the 0 given in Exercise 1.6.1. 

3. Let f: 0 1 ..... O2 be a continuous transformation between two open subsets of C 
(i) Show that the map Sj(f)(O') = fa 0', s;(f): Sj(Od -> Sj(02)(i = 0, 1,2), extends 

to a l'-linear map from 'Cj(Ol, l') into 'Cj(Oz, l'). 
(ii) Prove that if Ol = O2 , f = idOl then s;(f) = id-t;(ol' J')' 

(iii) If 9 : O2 -> 0 3 is another continuous map, then Sj(g 0 f) = 8;(g) 0 Sj(f)' 
(iv) Show that Oi+! 0 Sj+! (f) = 5j(f) " Oi+! for i = 0, 1. Conclude that 

(a) Sl(f)(Zj(Ol;l')) f; ZdOz;l') 
(b) sdf)(B j (OJ; l')) f; B j (02 ; l') 
(c) sdf) induces a homomorphism Hj(f): Hj(O!;l') ..... H j(02;l') such that 

Hj(ido ) = idHt(!l;J') and Hdg of) = HJ(g) 0 Hdf). 
(v) Show that if f is a homeomorphism, then H! (f) is an isomorphism. 

§10. Residues 

We consider the Riemann sphere S2 = {x E 1R3: Ilxll = I} as the Alexandrov 
(or one-point) compactification of C. This means that S2 is identified to 
C (; {oo}, any open set 0 of C is also open in S2, and a basis of open 
neighborhoods of the point 00 are the exteriors of disks centered at the origin 
in IC. Later on, we will have the opportunity to consider the chordal metric 
in S2 (that is, the metric induced by the Euclidean metric of JR3) and the stereo
graphic projection. What we need now is the observation that given an open 
set 0 £ C then S2 \0 is a closed set and only one of its connected components 
contains the point 00, this one is called the unbounded component; the other 
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ones are closed sets, bounded in C (hence compact), and are called the holes 
ofQ. 

1.10.1. Proposition. Let Q be a connected open set in C. The following state
ments are equivalent: 

(1) Q does not have holes (i.e., S2\Q is connected). 
(2) H 1 (Q; Z) = 0 (i.e., every I-cycle is a boundary). 
(3) Hl(Q) = 0 (i.e., every closed I-form is exact). 
(4) Q is simply connected. 

PROOF. (1) => (2): Let (j be a I-cycle and art Q. Then Indd(a) = 0 since a is in the 
unbounded component of C\supp(j. Hence b is a boundary by Proposition 
1.9.3. 

(2) => (1): We prove first an important lemma. 

1.10.2. Lemma. Let K be a compact subset of C, Van open neighborhood of 
K, and a E K. There is (j E Zl (V\ K; Z), which can be taken to be a special cycle, 
such that Indd(a) = 1 and (j E Bl (V, Z). 

PROOF. If V = C the proof is obvious. If not, let p = d(K, VC ) > O. Let us 

consider the tiling of C by (closed) squares of center a + ~(p + iq), p, q E Z, 

and side p/2 (called the size of these tiles). 
Let Qo, Ql' ... , Qn be those squares intersecting K, numbered in such a 

way that a E Qo. We consider Qj as the support of the 2-chain cj = cJ + cj, 
where cf (k = 1,2) are triangles defined as in Figure 1.21. 

Let (j = L o(c), which is clearly a I-boundary in V. We claim that (j is 
O:5j:5n 

also a I-chain in V\K (and hence a I-cycle). In fact, if one of the sides y of Qj 
is not entirely in V\K, y must intersect K. Then the square of the paving 
contiguous to Qj along y intersects K, hence it is one from the preceding list, 
say Qk' 0 ::;; k ::;; n, k -# j. It follows that the segment y is not in supp (j since it 
appears exactly two times in (j, once in o(c) and once in o(ck ), but with opposite 
signs. 

Figure 1.24 
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The chain.:5 is then a cycle in V\K since its boundary, as a chain in V\K, 
has the same formal expression as the boundary of .:5, considered as a chain 
in V. 

Finally, Ind.,(a) = 1 since Indc(co)(a) = 1 and Indo(cj)(a) = 0 for j 2': 1. This 
concludes the lemma. D 

Let us go back to the proof of (2) ==> (1). We argue by contraposition. 
Assume that HI (0; Z') = 0 but there are holes in O. Since now S2 \0 is not 
connected, then there are two closed sets A, B <;; S2\0, not empty, disjoint, 
and such that S2\0 = Au B. Assume 00 E A, then B is compact. Let us apply 
the preceding lemma to V = 0 u B (= S2\A), K = B, a E B. There is then 
bE ZI(V\K;Z') = ZI(O;Z') such that Ind.,(a) = 1. Hence b ¢; BI(O;Z'), other
wise Ind,,(a) = O. This contradicts HI (0; Z') = O. 

(2)=-(3) It follows from the duality between HI (0; Z') and HI (Q) established 
at the end of the previous section. 

(4) ==> (l), (2), (3): if 1t 1(0; zo) = {[6zoJ} for Zo EO, then HI (0; Z') = O. 
(l), (2), (3) ==> (4): If rx is a loop in 0 there is an [; > 0 such that if Q is a square 

of a tiling of size B such that Q n ao 0/= 0 then Q n Image(o:) 0/= 0. Let us add 
to S2 \0 those squares of the tiling whose interiors intersect aQ. One obtains 
this way a closed set Fe in S2 such that Oe = S2\Fc is an open set in 0 and 0: 

is a loop in Qc ' Since 0 has no holes, Fe is connected. Let {Oe.J be the family 
of connected components orOe. For each i, Fe nne.; is not empty by construc
tion, hence Fe U 0e.; is connected. (Both Fe' 0c,i are connected.) Therefore, for 
each i, S2\Oe,i is connected since it is the union of connected sets, Fe U O •. j 
(j 0/= i), with nonempty intersection }~. Therefore, since 0: is contained in one 
of the 0e.; and 0e.; has no holes, we are reduced to prove, by induction on N, 
the following: 

Let U be an open set of IC obtained as union of N squares Q 1, ... , QN of a 
tiling (possibly taking away some of their sides). 

Assume U and S2 \ U are connected. Then U is simply connected. 

The case N = I being obvious, we consider the case N 2': 2. Among the 
squares in U, we have one which can be singled out by being "further to the 
right and up" than any other square in U (for instance, the point qo = (xo, Yo) E 

o which satisfies Xo = max {x: (x,y) EO} and Yo = max{y: (xo,Y) EO} is a 
vertex of this square and only this square among Ql"'" QN') Let us can Q 
this square. If either, three sides of Q have been taken away or, this happened 
for only two sides of Q but Q is bounded by three other Q;, then V = U\ Q 
has N - 1 squares and verifies the same connectivity hypotheses. Hence V is 
simply connected by the inductive hypothesis. (See Figure 1.25.) One con
cludes the reasoning by a simple application of §1.6.l3, Remark 2, to V and 
V(Q, b) for () > 0 small (V(Q, ()) a b-neighborhood of Q in U, i.e., the shaded 
area in Figure 1.25). 

If not, we have the foHowing type of situation (where the shaded area in 
Figure 1.26 corresponds to S2 \ U): 
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The problem here is that if we remove Q then we may disconnect U or not. 
The set U\ Q has at most two connected components by the choice of Q. If it 
has exactly two, Ul and U2 , then they are simply connected by the induction 
hypothesis (for instance, S2\ Ul = Q U U2 u (S2\ U) is connected). Applying 
§1.6.13 once gives Q u Ul simply connected (with the correct sides of Q taken 
away), reapplying it shows that U = (Q U U l ) U U2 is also simply connected. 

The troublesome case arises when U\ Q has a single component. Then 
V = U\ Q is again simply connected by induction, but we cannot say anything 
about U. We are going to see that this case does not really arise. Let a and b 
be the midpoints of the sides of Q which are not exterior to U. Since V is 
connected one can find a special path y in V joining a to b. One can further 
assume that y has no self-intersections (i.e., the continuous map y : [0,1] -+ V 
is injective). Let ex be the special path joining b to a in Q and passing through 
the center of Q. The path P = yex is hence a Jordan curve in U (not homotopic 
to a point!). One can see that this situation is impossible because it shows that 
S2\ U is not connected. Namely, the square C from Figure 1.27 is in the 
bounded component of S2\ U as one can see computing by continuity the 
index with respect to p. The index changes from 0 to 1 when one traverses ex. 
This concludes the proof of Proposition 1.10.1. D 
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1.10.3. Definitions 

(1) Let Q be an open subset of !C and T a hole of Q. T is said to be admissible 
if Q u T is open in !C. 

(2) An open subset of!C is called admissible if all its holes are admissible. 

For example, if Q = !C\ {a, 1, 1/2, 1/3, ... , l/n, ... } then 1: = {lIn} IS an 
admissible hole for n :2: 1. To = {O} is not. Hence Q is inadmissible. 

1.10.4. Proposition. An open set Q in !C is admissible if and only if the family 
(7;)iEl of its holes is locally finite in the open set U = S2\ Tee, where Too is the 
component of 00 in S2\Q. 

PROOF. If (7;)iEl is locally finite in U then for every io E [ we have Q u 7;0 is 
open. In fact, since 7;0 is compact and the family is locally finite we can find 
a neighborhood of 7;0 which meets only finitely many other 1;, by reducing 
the size of this neighborhood one finds an open set V that doesn't intersect 
any 7;, i "1= io and V;;> 7;0' hence V u Q = Q u 7;0 is open. 

Conversely, if Q is admissible, then every compact subset K of U must 
intersect only a finite number of holes 7;. If not, let ('1j)jEJ be a countably 
infinite family of holes intersecting K. Pick distinct Zj E '1j n K. The sequence 
{ZjLeJ admits an accumulation point Zo E K n (S2\Q). Therefore Zo itself 
belongs to some 1;0' It follows Q u 7;0 cannot be open, since every neighbor
hood of Zo (in particular, Q u 7;0' if open) must contain an infinite number of 
Zj,j E J, which is clearly impossible. 0 

For example, if Q has only finitely many holes or if the set of holes is a 
discrete set of points, then Q is admissible. 
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1.10.5. Proposition. Let 0 be an open set in C, T an admissible hole. There exists 
bT E Zl (0; 1') II B1 (0 u T; 1') such that 

(i) If bET, then Ind"r(b) = 1. 
(2) If c ¢ 0 u T, then Ind"r(c) = O. 

Furthermore, if b~ E Zl (0; 1') II B1 (0 u T; 1') verifies also (i) and (2), then 
bT - b~ E B1(0;1'). 

PROOF. One applies Lemma 1.10.2 to V = 0 u T, K = T and a E T, this lemma 
furnishes bT • 

If b~ has the same properties as bT then bT - b~ is a i-boundary in 0 since 
its index with respect to any Z E S2\0 is zero. D 

1.10.6. Definition. Let Tbe a hole of an open set o and bE Zl(O;1'). We denote 
by Ind,,(T), index of b with respect to T, the integer Ind6(a) for a E T (which is 
independent of the choice of a). 

1.10.7. Proposition. Let 0 be an admissible open set. For every I-cycle 
bE Zl (0; 1') one has Indo(T) = 0 for every hole T, with the exception of at most 
a finite number of holes. 

PROOF. The connected component of 00 in U = S2\SUppb contains all the 
holes of 0 except possibly for a finite number (cf. §1.10.4), and Indo(a) = 0 for 
aE U. 0 

1.10.7. Residue Theorem (First Version). Let 0 be an admissible open set. For 
every hole T of 0 choose bT E Zl (0; 1') II B1 (0 u T; 1') such that Indor(a) = i 
if a E T, Indor(a) = 0 if a ¢ 0 u T. Then, for every b E Zl (0; 1') one has 

b' := b - L Ind,,(T)bT E B1 (0; 1'). 
T 

PROOF. Let us consider the index of b' with respect to a ¢ O. If a is in the 
unbounded component, then Indo(a), Indor(a) are all zero, hence Indo,(a) = O. 

If a E To, To hole of 0, Indo(a) = Ind,,(To) and 

L Ind,,(1) Ind6 (a) = Indo(To) Indo (a) = Ind,,(To)· 
T r ~ 

Hence Ind",(a) = O. It follows that b' is a i-boundary. o 

1.10.8. Remarks 

(1) If b is homologous to L nTbT, then nT = Ind6(T). 
T 

(2) Let I be the set of holes in O. The first version of the residue theorem means 
that Hi (0; 1') is isomorphic to 1'(1) (the set of maps I -+ l' with finite 
support) via the mapping ;51-+ (Ind,,(T)hE/' 
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1.10.9. Definition. Let 0 be an open set in C, T an admissible hole, w a closed 
I-form of class C l in 0, and (jT a I-cycle corresponding to T. We denote 
Res",(T), the residue of w with respect to T, the number 

We remark that this value does not depend on the choice of (jT' since if (j~ 
is another cycle satisfying the same condition, (j = (j~ - (jT is a I-boundary 
in 0 and hence, l",((j) = O. Moreover, two closed I-forms which are cohomo
logo us have the same residue. 

1.1 0.1 O. Residue Theorem (Second Version). Let 0 be an admissible open subset 
of C, w a closed I-form of class C l in 0 and (j E Zl (0; Z). One has the relation 
("residue formula") 

where f w = <(j,w), i.e., f w = ~nilro(Yi) if (j = ~niYi' The sum takes place 
6 6' , 

over all the holes of O. 

PROOF. We already known that (j' = (j - ~)nd6(T)(jT is a I-boundary. 
T 

Furthermore, f w = 0 since w is closed. 
6' 

o 

1.10.11. Remark. With 1 the set of holes in 0 as in §1.10.8, one can consider 
the map 

HI(O) -+ C1 

W 1-+ (Res",(T)he I' 

This map is ~::-linear and injective. If Res",(T) = 0 for every hole T, the residue 
theorem shows that <(j, w) = 0 for every (j E Zl (0; Z). We already know that 
this implies that w is exact, hence w = O. 

Therefore, the residue theorem states that the "duality" HI (0; Z) x H1(0), 
(b,w) 1-+ <(j,w), is exactly the usual duality bracket of Z(l) x C l via the injec
tion HI (0) -+ C l given earlier. If 1 is finite, the map Hl(O) -+ {} is clearly 
bijective. 

EXERCISES 1.1 0 
1. A Jordan region is defined to be Int(y), where y is a Jordan curve. Show any Jordan 

region is simply connected. 

2. (a) Let 0" O2 be two connected open sets whose intersection is also connected. 
Show that if H'(Od = H'(02) = 0 then H'(O, u O2 ) = o. 
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(b) Under the hypothesis of part (a), it follows that if w is a I-form which admits a 
primitive in 0 1 and in O2 , then it admits a primitive in 0 1 u O2 , Is it true in 
general that if a I-form w admits a primitive in two connected open sets OJ, O2 

with 0 1 n O2 connected, then w admits a primitive in 0, u Oz? 

dz 
3. Let 0 = C\(Tj U T2 ), TI = 8(0,1), Tz = 8(3,1). Let m = -, compute Res,oC1j), 

z 
j = 1,2. 

4. Let 0 be an admissible open set in C, possibly having infinitely many holes. Let T1 , 

... , T" be holes of 0, and AI, ... , An arbitrary complex numbers. Construct a closed 
I-form w in 0 such that Res",(1j) = Aj for j = 1, ... , n. Could this be done when 
n = oo? 

5. Let 0 be an open connected set in C, show it is simply connected if and only if, for 
every Jordan curve y in 0, one has Int(y) ~ O. 

§11. Holomorphic Functions 

In this section we introduce the subject of study of this book, the holomorphic 
functions, and point out some properties that are immediate consequences of 
the topological considerations in this chapter. The deeper properties of holo
morphic functions will be considered in the fonowing chapters. 

1.1 U. Definition. Let n be an open set in C. A function hE Ifl (n) is said to 
be holomorphic if (jh = 0, in other words, if its differential is of type (1,0). We 
denote by .Jf(n) the set of functions hoi om orphic in n. A function in .Jf'(C) is 
said to be an entire function. 

It is convenient to say that f is holomorphic in a set K if there is an open 
set n, K s n, such that f is defined in nand f E £'(n). 

The condition required for a function h to be hoi om orphic is that it satisfies 

the differential equation :~ = 0, which is known as the homogeneous Cauchy

Riemann equation. 

If h = P + iQ, the equation :~ = 0 is equivalent to the system 

{ (3~_(~g=O ;~ +;: ~ 0 
ax ay 

It follows from these equations that if his holomorphic 

i3h ah 
i3z ax and 

i3h 1 ah 
fj~ - i i3y" 
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These identities and the observation that when h is holomorphic, the differ
ential form w = h dz is closed, playa very important role in computations 
involving holomorphic functions. 

We recall from §1 that the condition of holomorphicity is exactly that the 
differential dh(zo) be a ([:>linear map at each point Zo E O. One can rephrase 
this observation as follows: since h is differentiable, if z is close to Zo we have 

h(z) - h(zo) = dh(zoHz - zo) + Iz - zolt:(z - zo) 

with lim t:(w) = O. Since dh = Ga"1h dz, the action ofthe map dh(zo} on the vector 
Iwl~O z 

. ah 
z - Zo becomes multiplicatIOn by the complex number .::i .... (zo): 

(;Z 

We profit from the fact that we can divide by the nonzero complex number 
z - Zo (if z i= zo) to obtain the existence of the following limit 

lim h(z) - h(zo) = ~~(zo). 
Z·~Zo Z - Zo az 

This formula is analogous to the usual definition in one real variable of the 
derivative of a function; for that reason we denote this limit also h'(zo), or 

sometimes dh (zo) and can it the derivative of the holomorphic function h at 
dz 

the point zo0 The derivative is hence a new (continuous) function in 0 defined 
by 

ah 
h'(z):= az (z). 

A natural question arises here. Assume h : 0 -> C has a "complex derivative" 
at each point in the following sense: the limit 

, . h(z) - h(z) h (zo) = 11m ... ~ ............................ . 
Z--f'Zo Z - Zo 

~xists for every Zo E O. Is h a holomorphic function? The answer is affirmative, 
as we will see in the next chapter. Meanwhile we will describe some elementary 
properties of holomorphic functions. 

From now on, unless otherwise mentioned, a polynomial is an expression 
of the form ao + at z + ... + a.z". That is, it is a polynomial in the single 
variable z (as opposed to the more general polynomials in the two real 
variables x, y, L aj,kxiy\ where z = x + iy). 

1.11.2. Proposition. The set £(0) is an algebra containing the polynomials. 

PROOF. Exercise for the reader. o 
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An entire function which is not a polynomial is said to be transcendental. 

1.11.3. Examples. (1) The following functions are entire: 

eiz _ e-iz 

sin z := ~---=--
2i 

eiz + e- iz 
cos z := ~--=---

2 

eZ _ e-z 

sinhz:= 2 

eZ + e-Z 

coshz:= 2 

(:ze z = ez ) 

(:z sinz = cosz) 

(:z cosz = -sinz) 

(:z sinhz = -cosh z) 

(:z cosh z = sinh z). 
(2) In n = C\] -00,0], the function 

Logz = loglzl + iArgz, 

-n < Arg z < n, is holomorphic and satisfies exp(Log z) = z. It is the principal 
branch of the logarithm. One can verify that Log z is a primitive of the 

differential form OJ = dz in n. The function z~ := exp(oc Log z) (oc E C) is holo-
z 

morphic in the same set. 
Let us show, for instance, that Log z is holomorphic in n. The exponential 

function is a Coo bijection of the strip S := {w: -n < 1m w < n} onto n with 
Jacobian e2Re w > O. It follows that there is a unique inverse qJ of class Coo, 
qJ : n -+ S, exp 0 qJ = idn, qJ 0 exp = ids. Assume ip is a continuous function in 
n satisfying exp 0 ip = idn. Then, for ZEn, one has qJ(z) - ip(z) = 2nin(z), 
where n : n -+ 7L is a continuous function, hence a constant. Since the function 
Logz = loglzl + i Argz is a continuous function such that exp(Logz) = z and 
Log: n -+ S, it follows that Log z == qJ(z). Therefore Log is a Coo function. 

Let us now compute ~~ . After differentiating the identity z = exp( qJ(z)), the 

. 8qJ 8qJ 
cham rule allows us to conclude that 0 = exp(qJ(z))' 8z' Hence 8z = 0 and 

qJ(z) is holomorphic. In the same way we find that 1 = exp(qJ)' ~~. Therefore 

8qJ = ! and Log z is the primitive in n of the closed differential form OJ = dz, 
8z z z 
which vanishes at z = 1, 

Logz = f dt 
a z t ' 
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where U z is the segment joining 1 to z in o. (We can take any other path since 
o is simply connected.) 

(3) If c =I- 0 the rational function z H az + db from C \ { - die} into C is 
cz + 

holomorphic. In particular ~ is holomorphic in C* = C\ {O}. 
z 

(4) z H 1 Z 12 is not hoI om orphic. 
(5) Let 010 O2 be open sets in C, f E £(Od, g E £(02), and f(Od ~ O2. 

Then g 0 f E £(Od. 
This follows immediately from the chain rule applied to the differential 

a 
operator az. 

As we have already pointed out, when f E £(0), the differential form 
ill = f dz is of class C1 and closed. Therefore, Proposition 1.7.7, Proposition 
1.9.15, and Theorem 1.10.10 can be translated into the following. 

1.11.4. Cauchy's Theorem. Let 0 be an open set in C, f E £(0). 

(1) If iX, f3 are two paths in 0, homotopic with fixed endpoints, then 

(2) If iX, f3 are two loops which are free homotopic in 0, then 

In particular, if iX is a loop free homotopic to a point 

L fdz = o. 

If 0 is simply connected, then one has L f dz = 0 for every loop iX. 

(3) If b1 and b2 are two 1-cycles that are homologous in 0 then 

f fdz = r fdz. 
0, Jh 2 

If b is a I-boundary in 0, then J/ dz = O. 

(4) If 0 is an admissible open set and b is a I-cycle in 0, then the residue formula 
is the expression 

~ f f dz = L Indo(T) ResJdAT). 
2m 0 T 

(5) If ill = f dz admits a primitive F in 0, then F is holomorphic in O. 
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Example. If 0 is a simply connected set and f E .*'(0), then co = f dz admits 
primitives. All of them are holomorphic. 

We conclude this chapter with a discussion of two generalizations of 
Example 1.11.3, (2). If 0 is a simply connected open set andf E .*'(O),f(z) =F 0 
for every z E 0, then we can define in a unique way a C1 function g(z) = logf(z) 
once a value for logf(zo) has been fixed for some Zo E O. This follows from 
§1.6.29 (1). Since f(z) = exp(g(z», we can apply the same reasoning as in 

og 
Example 1.11.3, (2) to show that o-Z = 0, hence 9 E .*'(0). Furthermore, 

'() f'(z) h . .. . f h ~ f'(z) d A . . h· ~ . 
9 z = f(z)' ence 9 IS a pnmltIve 0 t e Iorm f(z) z. pnon t IS Iorm IS 

only of class Co, it follows from §2.1.6 that, in fact, it is a closed coo form. Note 
that in particular we can define other branches log z of the logarithm in any 
o simply connected such that 0 ¢ O. 

What happens when f omits not only the value 0 but also another value, 
say the value 1, in O? We have the following lemma of Landau. 

1.11.5. Lemma. Let 0 be a simply connected open set in C, f E .*'(0), f(z) ¢ 0, 1 
for every z E O. Fix a point Zo E O. There is then a function h E .*'(0) such that 

f(z) = exp(2ni cosh(h(z))) 

and -n ::;; 1m h(zo) < n. This function satisfies the estimate 

Ih(zo)l::;; log (2 + IIogl~(zo)ll) + n. 

PROOF. Since f does not vanish, we can uniquely determine logf once 
we normalize its imaginary part at the point zo0 Let 9 E .*'(0) be such 
that -!::;; Reg(zo) < ! and f(z) = exp(2nig(z» in o. It is then clear that 
g(O) n 7L = 0, otherwise f(z) = 1 would have a solution in O. In particular, 
g(Z)2 - 1 does not vanish in 0 and has a holomorphic square root Gin o. We 
have then g2 = 1 + G2, or 

(g - G)(g + G) = 1. 

Let H be one of the functions 9 - G, 9 + G, chosen so that IH(zo)1 ~ 1. It 
follows that H does not vanish and we choose 

h = 10gH, -n ::;; 1m h(zo) < n. 

Let us verify that cosh(h(z» == g(z). Assume that H(z) == g(z) - G(z), 
(H(zW1 == g(z) + G(z). We have 

eh(z) + e-h(z) H(z) + (H(ZWl 
cosh(h(z» = 2 = 2 

= g(z) + G(z) ; g(z) - G(z) = g(z). 
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The other case leads to the same result. From the definition of 9 we see that 

/(z) = exp(2ni cosh h(z))). 

The estimate of Ih(zo)1 is left for the exercises. D 

EXERCISES 1.11 
o represents a domain in C, B = B(O, 1). We collect here some geometric properties of 
the complex plane that will be useful in the study of holomorphic functions. 

1. Let z E C \J -oc, OJ, i~ the principal branch of the 11th root. Compute 

lim (l1i~ - 1). 
n~oo 

2 S' h 'ff A "h I d' . . , I' ((z+h)-f(z) , . ,lowt atl : .. ->'0 asacompex envatIveateverypomt,l.e., 1m' ....... . 
h~O h 

exists for every Z E 0, then f is continuous, 

3, (i) Write down the Cauchy-Riemann equations in polar coordinates. That is, 
show that if f(z) = u(x, y) + iv(x, y) and (r, e) are the corresponding polar 
coordinates, the Cauchy-Riemann equations become 

au 1 au au 1 au 
ar rae' ar -~ aB' 

with some abuse of notation (see Exercise 1.2,5 for a precise version), 
a 

Oi) Let {s, 11} be an orthonormal basis of [R2 defining the usual orientation. Let .~ .... 
a all 

and T represent differentiation directions /I and 05, respectively, at a point Zo 
DS 

in 0, Then the Cauchy-Riemann equations become 

au av 
as - an' 

au 
all 

ov 
as 

4. Let f, g E £'(0), g(z) # 0 for every z E O. Show that fig E ,Jf'(n), 

5, Show that iff = u + iv is hoi om orphic in n, then for p ;:0: 2 one has (Ll is the Laplace 
operator): 

(i) Llu = Llv = M = 0 
(ii) Lllf(z)iP = p2If(z)IP~ IIf'(zW 

(iii) Lllu(zW = p(p ,- 1)lu(z)IP - 2 1f'(z)12 , 

(In proving (ii) and (iii) you should be careful about the points where fez) = 0 or 
u(z) = O. Formulas (ii) and (iii) hold for every p real if fez) # 0 or u(z) # 0,) 
,i1 1 , f'{z) . 

(IV) c;-lf(z)1 = -11(z)I'- (whenever fez) Ie 0) 
oz 2 fez) 
i1 1 au 1 

(v) c;-u(z) =/,(z) and (z) =J'(z) 
cz 2 az 21 

(vi) L'l.ePlflzll = p2e P1f(z)1 (p + U~~)I) l.f'(zW (p E C, fez) # 0) 

(vii) L'l.log(J + 1 /,(z)12) = 4I1'(z)1 2 , 
, 1 + If(z)1 2 
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6. Consider Z 1-+ Z2 as a transformation of C into C: 
(i) What is the image of an angle (Jo < arg z < (JI, (JI - (Jo < n? 

(ii) What is the image of a family of parallel lines not passing through the origin? 

7. Consider the transformation zl-+eZ : 

(i) What is the image of a family of lines parallel to one of the coordinate axes? 
(The answer depends on the axis.) 

(ii) What is the image of a line not parallel to any of the coordinate axes? 

8. Consider the function f : Z 1-+ cos z. 
(i) What is the image of the segment y = Yo, 0 < x < n, in the three cases Yo > 0, 

Yo = 0, Yo < O? 

(ii) Same question for the straight line x = Xo in the two cases Xo =f. k ~ (k E Z) 

71: 
and Xo = k 2. 

(iii) Let D be the strip 0 < x < 71:. Show f takes every complex value when z is in 
ii, and it is injective in D. 

9. Show that the map f(z) = ~ (z + ~) transforms every circle 08(0, r), r > 0, into an 

ellipse. Find the image of the segments z = te i., 0 < t < 1 (ex E [0,2n[ fixed). 

10. Let /,.(z) be defined for z E 8(0, r) (r > 0) by the formula 

/,.(z) = r exp (, + ~)r ~ . JI{I=. .,., z 

(i) Show that /,. is C1, by taking derivatives as a function of a parameter, and 

it satisfies ~ = 0 in 8(0, r). 

(ii) Show that fR I 8(0, r) = /,. when R > r, using Theorem 1.11.4. 
(iii) Conclude there is an entire function foo such that foo 18(0, r) = /,. for every r > O. 

11. Prove the inequality in the statement of Lemma 1.11.5. (Hint: Use that H + k = 2g 

and IH(zo)1 ~ 1.) 

12. Show that the function h from Lemma 1.11.5 does not take any of the values 

±cosh-I(n + 1) + 2mni (n E N,m E Z). 

Draw a picture of these points in the plane to convince yourself that any disk of 
radius ~ 4 contains one of these omitted values (actually 3.22 works). 

Notes to Chapter 1 

The reader wi\l find [Gre] and [Go] as very reasonable introductions to algebraic 
topology, which is the subject of most of this chapter. The material on differential 
calculus can be found in [Ca] and ESp]. We also recommend [Bur] and [Fo] for 
further insights into the relation between topology and complex analysis. 



CHAPTER 2 

Analytic Properties of 
Holomorphic Functions 

§1. Integral Representation Formulas 

At the end of Chapter 1 we introduced the holomorphic functions, that 
is, those functions f E C1(0) that satisfy the Cauchy-Riemann differential 

equation Of = 0 throughout an open set 0 £; C. As an immediate consequence 
uZ 

of the topological tools developed in that chapter we found that the holo
morphic functions enjoyed the following remarkable property (Cauchy's 
theorem 1.11.4). 

2.1.1. Proposition. If IX is a loop homotopic to a point in an open set 0 and 
f E £(0), then 

I f(z)dz = O. 

In order to study further the holomorphic functions we need to pursue their 
analytic properties, that is, those properties that depend on Stokes' formula, 
integral representations, power series, etc. The first step in that direction is the 
following integral representation formula, valid for arbitrary C 1 functions. 

2.1.2. Proposition (Pompeiu's Formula). Let 0 be an open set in C, D an open 
relatively compact subset of 0 with piecewise regular boundary of class ct. Let 
f be a c 1 function in O. Then, for every ( E D we have: 

v 1 f f(z) 1 f of 1 ~ f(l,,) =---; --ydz + -. ~~(z)--dz 1\ dz. 
2m aD z - s 2m D 0 Z Z - ( 
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PROOF. Let D.:= {z ED: Iz - 'I > e} (0 < e < d«(, DC)). We apply Stokes' for

mula to the I-form :~)(dZ and the open set D., whose boundary is piecewise 

regular and it is the I-cycle oD - oB«(, e) of Q. Parameterizing oB(e,O by 
o E [0, 2n] 1-+ ( + ee ilJ, we obtain: 

-f o~(z)dz 1\ dZ- = f f(z) dz - i f2" f«( + ee ilJ ) dO, 
D,OZ Z - , iJD Z - , 0 

. ( f(Z)) of dz 1\ dz- . 
smce d z _ ,dz = - az-(z) z _ ( . Let e ~ 0 to obtam the result. o 

As a consequence of the last proposition we obtain Cauchy's integral 
representation for holomorphic functions. 

2.1.3. Corollary. Under the same hypotheses as in Proposition 2.1.2, we have 

f«() = ~ f f(z) dz 
2m iJD z - ( 

«( E D) 

for any f E £(Q). 

2.1.4. Corollary. If u E .@(C) we have 

1 f au 1 u«() = -. -::.(z)--dz 1\ dz-
2m c OZ z - ( 

«( E C). 

PROOF OF THE COROLLARIES. The first one is immediate from §2.1.2. For the 
proof of the second, let D = B(O, R) in §2.1.2 with R so large that 
suppu c B(O,R). Then let R ~ +00. 0 

We are now going to consider a kind of converse to these corollaries. 

2.1.5. Proposition. Let Jl. be a complex measure of compact support in C. The 
integral 

,11(():= - ~ f dJl.(z) 
n z - ( 

defines a function /l holomorphic outside supp Jl.. If in an open set ro, the measure 
Jl. has the form cp dx dy, cp E Sk(ro), k ;?: 0, we also have /l E tS'k(ro), moreover, 
0' 
o~ = cp if k ;?: 1. The function /l is called the Cauchy transform of Jl.. 

PROOF. The function /l is of class COO in C\supp Jl. as one sees by differentiation 
under the integral sign. We find thus in that open set 
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a~(O = -~ f a_(_I_) dJ1.(z) = 0, 
ac n ac z - C 

since ~ is a holomorphic function for C E C\supp J1. if z E supp J1.. Therefore 
z-,. 

(t is holomorphic on C \ supp J1.. 
To prove the second part, let us first assume w = C and J1. = cp dx dy, 

cp E .@k(C)' We have then: 

A(O = ~ f cp(z) dz Adz. 
2m c z - C 

Let us introduce the change of variables z = C - u = f(u), then 

f * (cp(Z) d d-) cp(C - u)d d--- z A Z = - U A U. 
Z - C u 

The function l/u E LI~c(C) and supp cp is compact, it follows that A is at least 
a continuous function of C. Furthermore, if cp is of class Ck (k ~ 1) then one 
can take derivatives under the integral sign and A E Ck also. Hence 

a~(O = _~ f a~ (C _ u/u A du 
ac 2m c ac u 

1 f 1 acp -=- ---(Z)dZAdz 
2ni c Z - C az 

= cp(z) (by §2.l.4). 

In the general case, when w -# C, let Zo E wand take IjI E .@(w), IjI == 1 on 
a neighborhood V of Zoo Let J1.1 = IjIJ1., J1.2 = (1 - IjI)J1.. Since J1.1 = cpIjl dm, 
cpIjl E .@k(C)(afteritisdefined by zero outside w), we have Al E Ck , and if k ~ 1, 

a~ = cpIjl. Since V s; C\supp J1.2, Az E c.tJ and aAl = 0 in V. The proposition 
ac ac 
fu~WL 0 

2.1.6. Corollary. Every h E £'(n) is of class C'X) in n. Furthermore, the derivative 
h' is also a holomorphic function in n. 

PROOF. For Zo E n, let w = B(zo, R) cc n. Cauchy's integral representation 
formula is then 

h(O = ~ f h(z) dz, 
2m 8B(zo. R) Z - C 

C E B(zo,R). 

In B(zo, R), h appears then as the Cauchy transform of a measure of support 
contained in the compact aB(zo, R). By §2.1.5, h is of class COO in B(zo, R). 
Therefore h E $(n). 
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We have h' = ~: and, since h is of class Coo, we have 

oh' _ a (Oh) _ a (Oh) _ 0 
o-Z - o-Z oz - oz o-Z - . 

Therefore h' is also holomorphic in O. o 
2.1.7. Remark. Let 0 be a nonempty open set in C. The operator 

:-Z: !i&(0) -+ !i&(0) is not surjective. In fact, if f = :;, u E !i&(0), then 

f dz 1\ d-z = - d(u dz). It follows that In f dz 1\ d-z = - In d(u dz) = o. On the 

other hand, there are f E !i&(0) such that In f dz 1\ dz- # O. 

The following is an important result; in fact, it is the converse to Cauchy's 
theorem 2.1.1. 

2.1.S. Proposition (Morera's Theorem). Let f be a continuous function in an 
open connected subset 0 of C. Assume that for every piecewise-C1 loop ex which 

is free-homotopic to a point in 0 we have L f dz = O. Then f is holomorphic in O. 

Furthermore, it is enough to consider only rectangles with sides parallel to the 
axes and homotopic to a point in O. 

PROOF. By §1.9.16, item (2), the differential form f dz admits a primitive F of 

I C l S· F . .. . of f of if h of 0 . h c ass . IDce IS a pnmItIve, ax = , oy = i, ence oZ- = . F IS t en 

holomorphic, and so is its derivative F'. But F' = ~~ = f, which shows that 

locally f is Coo and satisfies the Cauchy-Riemann equation. Since f is defined 
in the whole set 0, it follows that f E £(0). 0 

2.1.9. Remarks. (1) A first application of Morera's theorem is the following: 
Let (X, J.l) be a a-finite measure space and J.l ~ 0 (or even just a complex-valued 
measure on X). Let f be a function 0 x X -+ C such that 

(i) For every z E 0, tl--+ fez, t) is measurable and defined a.e. in X. 
(ii) For every z E 0 there is a closed disk B(z, r) £ 0 and a function g on X 

integrable with respect to J.l (respectively 1J.l1, if J.l is a complex measure) 
such that If(', t)1 s get) a.e. for every' E B(z, r). 

(iii) For a.e. t, z 1--+ fez, t) is hoi om orphic in O. 

Then, the function 

F(z):= Ix fez, t) dJ.l(t) 

is holomorphic in O. 
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The hypotheses (i) and (ii) show that F is continuous. Moreover, the 
hypothesis (ii) implies that f is integrable on oR x X for every closed rectangle 
contained in B(z, r) cc n. Thus we can apply Fubini's theorem and obtain 

f F(z) dz = f f fez, t) dJ1(t) dz = f f fez, t) dz dJ1(t) = 0, 
oR oR X x oR 

since by (iii), for almost every t we have f fez, t) dz = O. 
oR 

(2) As other immediate corollaries of Morera's theorem, let us mention 
here: 

• Iff is continuous in nand holomorphic in n\L, where L is an affine real 
line then f is holomorphic in n . 

• If f is continuous in n, A a discrete subset of n, and f hoI om orphic in 
n\A, then f is hoi om orphic in n. 

2.1.10. Proposition (The Schwarz Reflection Principle). Let f be a function 
holomorphic in the half-disk D = {z E C : I z I < r, 1m z > O}, such that f is con
tinuous on jj and real valued on the real axis. Define a function F in B(O, r) by 

{ fez) iflmz;;::: 0 
F(z):= fez) if 1m z < O. 

Then F is holomorphic in B(O, r). 

PROOF. One verifies easily that F is hoi om orphic outside the real axis and F 
is continuous in B(O, r). Apply then the previous remark. 0 

We will find stronger versions of this principle in other parts of this text, 
e.g., the Edge-of-the-Wedge theorem in §3.6. 

We are now ready to prove that a function having a complex derivative at 
every point is hoi om orphic, thus answering a question raised at the end of 
Chapter 1. 

2.t.H. Proposition (Cauchy-Goursat's Theorem). Let f be a function whose 
complex derivative exists at every point of an open set n. Then f is holomorphic 
inn. 

PROOF. It is clear that f is continuous in n. By Morera's theorem it is enough 

to show that f f dz = 0 for every closed rectangle R in n. For that purpose, 
oR 

denote 

a(R) := f fez) dz. 
oR 

Let us now subdivide the rectangle in four parts by dividing each side in two 
equal parts. Let Yi be the oriented boundaries of the four rectangles Ri thus 
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obtained. We have 

f f(z) dz = L f f(z) dz = L a(R;). 
aR 1 s;is;4 y, 1 s;is;4 

Among these four rectangles there must be one such that la(Ri)1 ~ la(R)lf4. 
Let us call Rl this rectangle. Divide Rl into four rectangles by the same 
procedure. At least one of them, denoted R 2 , verifies 

la(R2)1 ~ Irx(R)1/42. 

Iterating this procedure we get a sequence of closed rectangles {R,J, 

Irx(Rk)1 ~ la(R)1/4k, 

dt := diameter(Rk) = ;k diameter(R) = dl2k; 

Let Zo be the unique common point to all these rectangles. Since Zo E R £: n 
and f has a complex derivative at zo, we have 

f(z) = f(zo) + !'(zo)(z - zo) + Iz - zole(z - zo), 

with e(t) -+ 0 as t -+ O. We have therefore 

f f(z)dz = f(zo) f dz + !'(zo) f (z - zo)dz 
aRk aRk aRk 

+ f Iz - zole(z - zo)dz. 
aRk 

Since dz and (z - zo) dz are closed differential forms, the first two terms on 
the right-hand side vanish, leading to 

la(Rk)1 = ItRk f(Z)dzl ~ dkLksup{le(z - zo)l: z E aRk}' 

From here it follows that if b(k) indicates the supremum in the last formula, 
we have 

I rx(R) I ~ dLb(k). 

Since b(k) -+ 0 as k -+ 00 we obtain rx(R) = O. o 
2.1.12. Proposition (Cauchy's Integral Formulas). Let f be a holomorphic 
function in the open set n £: C and let a E n. The following two formulas hold. 

(1) Let ')I be a loop in n\ {a} homotopic to a point in n. Then: 

1 f f(z) -2' --dz = Indy(a)·f(a). 
1tl yz-a 
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(2) Let J = L vjYj be a 1-boundary in n such that suppJ £; n\ {a}. Then: 
j 

1 f f(z) 
-2' --dz = Ind,,(a)·f(a). 

m "z-a 

In particular, if J = L Yj' where the Yj are loops in n \ {a} such that for 
l,,;,j";'n 

every z E C\n one has ~)ndy (z) = 0, then 
. j 

J 

1 f f(z) ( ) -2' --dz = LIndy/a) f(a). 
m "z-a l,,;,j,,;,n 

PROOF. Let us note first that we are dealing with integrals of the closed form 
(f(z)/(z - a))dz in n/{a} along continuous paths. 

The function g(z):= (f(z) - f(a))/(z - a) if z #- a, g(a):= f'(a) is holo
morphic in n\{a} and continuous in n. It follows from §2.1.9, (2) that 9 is 

holomorphic in n. Therefore I g(z)dz = 0 ify is a loop as in (1). One obtains 

the first formula recalling that Indy(a) = -21 .f ~. 
m yz-a 

The other relations are obtained in the same way. 0 

2.1.13. Definition. The holomorphic function h(n) is the nth derivative of tbe 
bolomorpbic function h and is defined by recurrence as follows: 

h(n) := (h(n-l))', h(l) = h', h(O) = h. 

2.1.14. Proposition (Cauchy's Formula for the Derivatives). Let h be a holo
morphic function in an open set n £; C, w cc n an open subset with piecewise 
regular boundary. The following relation holds: 

h(j)(O = L f h(z) . dz «( E w). 
2ni aw (z - ()J+1 

PROOF. Let us show that 

h'(O = _1 f h(z) dz 
2ni aw (z - ()2 

Consider the differential of the function F(z) = h(z)y, holomorphic in 
z-." 

n\{C}. We have dF = (:~z~ - (z ~z~f)dZ. We know that IdF(y) = 0 for 

every loop Y in n \ {n, hence the integral of dF over ow vanishes. It follows that 

h'(O = _1 f h'(z) dz = _1 f h(z) dz. 
2ni aw (z - () 2ni aro (z - 0 2 
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The proof continues by recurrence. The relation 

h(n+l)(O = ~ f h'(z) dz 
21ti ow (z - on+l 
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holds by induction applied to the nth derivative of the holomorphic function 

h'. Using now the differential of the auxiliary function F(z) = (z ~(~~n+l' as 

done earlier, leads to the Cauchy formulas. 0 

A slightly more general version of the Cauchy formulas for the derivatives 
is the following. 

2.1.15. Proposition. Let J be a holomorphic Junction in the open set n, a E n. 
Then: 

(1) Let Y be a loop in n\ {a}, homotopic to a point in n. We have 

• (j) - j! f J(z) d Indy(a) J (a) - 2-----; ( )i+1 Z (j ;;:: 0). 
m y z-a 

(2) Let b be a 1-boundary in n such that supp b £; n \ {a}, then 

Ind,,(a)· J(j)(a) = j!. f J(z) . dz 
2m ,,(z - a)1+1 

(j;;:: 0). 

In particular, if b = L Yio where the Yi are loops in n \ {a} such that 
l~i~n 

~)ndYi(z) = 0 Jor every z E C\n, we have , 

1 f J(z) ( ) JU)(a) 
-2. ( )i+1 dz = L Indy,(a) -.,-. 

m "z-a i J. 

PROOF. It is analogous to the proof of the preceding proposition taking into 
account that integration over a I-cycle annihilates the exact differential forms 
of class C1 and degree 1. We also use the fact that a 1-boundary of n with 
support in n \ { a} is a 1-cycle in n \ { a }. 0 

We are going to show now that the holomorphic functions in an open set 
n can be characterized as those functions that are locally representable by 
convergent power series. 

2.1.16. Definition. Given a sequence (an)n~O of complex numbers, the power 
series about Zo (zo E q with coefficients (an)ne 1'\1 is the formal series whose 
general term is aiz - zo)n, that is, L an(z - zo)n. 

n~O 

We recall here that if a power series L anzn converges at a point ZI "# 0, 
n~O 

then it converges for every z in the disk B(O, I z 11). It follows that if a power 
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series converges at some point z "* 0, there is a largest R (possibly R = 00) 

such that the power series converges in B(O, R). This value R is called the radius 
of convergence of L a"z". We declare it to be R = 0 if the series converges 

n2:0 

only at z = 0, and R = 00 if it converges everywhere. There is a very simple 
way of obtaining R, namely, 

R = sup{r ~ 0: 3M(r) such that lanlrn :::;; M(r) < 00 (n ~ O)}. 

2.1.17. Proposition. Given a power series L an(z - zo)", its radius of con
n2:0 

vergence is given by the formula due to Hadamard: 

~=limsup~. 
R n-+C(J 

The series converges absolutely in B(zo, R), and absolutely and uniformly in 
every compact subset of B(zo, R). Moreover, it does not converge anywhere in 
the exterior of B(zo, R). 

PROOF. It is left as an exercise to the reader (cf. [Mar], [Ahl]). o 

2.1.18. Proposition. Let Q be an open subset of C. For every f E .Jt'(Q) and 
Zo E Q, the power series 

converges uniformly and absolutely over any compact subset of B(zo, d(zo, QC». 
Its sum equals f(z) at every point of that disk. 

Furthermore, this series (called the Taylor series of fat zo) is the unique 
power series L an(z - zo)" whose sum equals f in B(ao,d(zo,QC». (Here we 

n2:0 

have set d(zo, QC) = +00 ifQ = C and d(zo,QC) := inf{1( - zol : , E QC}, if not.) 

PROOF. Let 0 < r < d(zo, QC). For z E 8B(zo, r) and, E B(zo, r) we have 

1 = L (' - zo)" 
(z - zo) ( , - zo) n2:0 (z - ZO)"+l' 

1---
z - Zo 

z-' 
This series is uniformly and absolutely convergent over any set of the form 
K x 8B(zo, r), where K cc B(zo, r). 

We can therefore apply Cauchy's formula with w = B(zo, r) and inter
change the order of integration and summation. For fixed' E B(zo, r) this 
gives: 
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The last step is a consequence of the Cauchy formula for the derivatives. By 
choosing r E JI( - zol,d(zo,OC)[ we can prove the same representation holds 
for any ( E B(zo, d(zo, OC». 

This reasoning yields the uniform convergence of the series over any 
compact subset of B(zo, d(zo, oe)). This can also be obtained from the general 
theory of power series since the argument shows that the radius of convergence 
is at least d(zo, OC). (One can also estimate the coefficients using their integral 
representation and Hadamard's formula.) Finally, the uniqueness of the series 
follows from the Cauchy formula for the derivatives. 0 

We will show later on that, conversely, a function representable locally by 
convergent power series is holomorphic. For the time being, let us recall some 
familiar examples of series expansions. 

2.1.19. Examples 

z· 
e Z = L

.;0,0 n! 
(ZE q, 

Z2.+1 

sinz= L (-It--- (ZEq, 
.;0,0 (2n + I)! 

_2. 
COSZ = L (-l)"~-- (z E q, 

n;:>O (2n)! 

(ZE q, 

eZ _ e-Z Z2.+1 
sinh z = ---- = L ........... _-- (z E q, 

2 .;:>0 (2n + 1)! 

__ 1 ......... = L (k + p - I)Zk (izi < 1), p E N*. 
(1-z)P k;o,O p-I 

2.1.20. Proposition (Cauchy's Inequalities). Let 0 be an open set in C,f E £'(0): 

(I) For Zo E 0, 0 < r < d(zo,OC) we have 

Ipn)(zo)1 ~ n! Melfi, r), 
r" 

with M(lfl, r) = max If(=)I. In particular, iff is bounded in 0 we have 
Iz-zol=r 
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with I:flloc> = sup If(z)l. 
Z E fl 

As a corollary, if f is a bounded entire function, then f is a constant 
(Liouville's theorem). 

(2) If w is a relatively compact, open subset of Q, with piecewise regular 
boundary of class C 1, and if Zo E w, then: 

which leads to 

n! f If(z)lldzl 
1 f (n) (z ) 1 < ____8"'__________ 

o - 2n(d(zo, ow)t+1 ' 

Ifln)(zo)1 :c; n!t(aw)max{lf(~)I:z E ow}, 
- 2n(d(zo, omW' 1 

where, we recall, t(ow) denotes the length of the boundary of w. 
(3) If K is a compact subset of Q and U a neighborhood of K which is relatively 

compact in Q, there are positive constants Cn(n E N) such that for every 
f E .1f(Q) 

sup Ipnl(Z)1 :c; Cnl:fllv(U). 
ZEK 

PROOF. The statements (1) and (2) are immediate consequences of the Cauchy 
formulas for the derivatives. 

Let us prove (3). Let IjJ E E0(U) be identically equal to 1 on a neighborhood 
of K. We have 

and that, if K 1 := supp ~~, K 1 is a compact subset of U and d(K, K d > O. 

Therefore, applying Pompeiu's formula (cr. §2.1.4) to IjJf and differentiating 
under the integral sign gives, for ( E K, 

f(n)(o =~!: f f(z) o~ (z) dz "y ~:l . 
2m Kl oz (z----- \,) 

The constants Cn are obtained by estimating directly this integral. 0 

2.1.21. Proposition (Principle of Analytic Continuation). Let Q be a connected 
open subset of IC and h E .1f(Q) be a function such that for some Zo E Q verifies 
h(n)(zo) = 0 for every n ~ O. Then h == O. 

PROOF. The set E := {z E Q: h(n)(z) = 0 for every n ~ O} is closed in Q since 
all the functions h(n) are continuous. It is also open by the convergence of the 
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Taylor expansion 

h«() =:= L h(n)~z) «( - zt 
n2:0 n. 

in B(z, d(z, QC)) for every z E Q. This expansion implies that if z E E, then h == 0 
in that disk and hence, E ;2 B(z, d(z, OC». The hypothesis ensures that E is not 
empty, hence E = Q and the proposition follows. D 

2.1.22. Corollary. If his holomorphic in a connected open set Q and h =1= 0, then 
for every Zo E Q there is a unique integer k ~ 0 such that 

(z E Q), 

with g E Jt'(Q) and g(zo) -:f O. In particular, the zeros of h are isolated. 

PROOF. We know that h is represented in B(zo, d(zo, QC)) by the Taylor series 

1 
h(z) = L ,h(n)(zo)(z - zot 

n2:0 n. 

and that, by §2.1.21, the set {n EN: h(n)(zo) -:f O} is not empty, hence it has a 
smallest element k. Therefore, we can define g by g(z) = h(z)/(z - ZO)k in 
Q\{zo} and 

in B(zo, d(zo, QC)). This shows that g is holomorphic in Q\{zo} and at least 
h(k)(Z ) 

continuous at Zo, hence g E Jt'(Q). Furthermore, g(zo) = T -:f O. D 

2.1.23. Corollary. If hI' h2 E Jt'(Q), Q open connected and hilE = h21E for 
some nonempty subset E of Q which has an accumulation point in Q, then 

hl == h2 • 

PROOF. hl - h2 would have some nonisolated zeros if it were not identically 
zero. D 

2.1.24. Example. We have the relation 

sin2 z + cos2 Z = 1 

in C. (Since we already know it to be true in IR!) 

2.1.25. Proposition (Open Mapping Property). Let Q be a nonempty open 
subset of C and h E Jt'(Q) a holomorphic function which is not constant in any 
connected component of Q. Then h(Q) is an open subset of C. 

PROOF. We can assume that 0 E Q and h(O) = O. It is enough then to prove 
that h(Q) is a neighborhood of the origin. The zeros of h are isolated, hence 
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there is r > 0 such that B(O, r) £; 0 and h(z) #- 0 for 0 < Izl ::s; r. Let 

15:= inf Ih(z)1 > O. 
Izl=r 

We want to show that B(O, 15/2) £; h(O). 
Either B(O,J) £; h(O), and we are done, or there is w, Iwl < 15 and w ¢ h(O). 

Hence, the function 

1 
cp(z) := h(z) _ w 

is holomorphic in O. The Cauchy inequalities show 

111 
JWl = I cp(O) I ::s; ~~2Ih(z) _ wl::S; 15 -Iwl' 

Therefore Iwl ~ 15/2. It follows that B(O,J/2) £; h(O) as we wanted to show. 
o 

2.1.26. Corollary. Let 0 be a connected open set in C and f E Jt'(0), if either 
of Re f, 1m f, or If I is constant, then f is also constant. 

PROOF. f(O) would be a subset of the x-axis, y-axis, or a circle respectively. 
None of them could be open. 0 

2.1.27. Corollary (Maximum Principle). Let 0 be a bounded connected open 
set in C, let h E Jt'(O) be nonconstant, and 

M = sup (lim sup Ih(Z)I) . 
,eon z-, 

zen 

Then the inequality 

Ih(z)1 < M 

holds for every z E O. 

PROOF. We can assume M < 00. The function cp defined on the compact set 0 
by 

is upper semicontinuous in O. Therefore, cp is bounded. It follows that 
U = h(O) is a bounded open subset of C. Since h is an open mapping, for every 
WE au there is a sequence (Zn)n~l of points in 0 such that w = lim h(zn) and 

(Zn)n~l is itself convergent to a point in a~. We conclude that 

au £; {w E C: Iwl ::s; M}, 
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hence 

u ~ {wEC:lwl < M}. 

This proves the corollary. o 

2.1.2S. Corollary. Let 0 be a connected open subset of C and h E £'(0) such 
that for some a E 0 we have Ih(z)1 ~ Ih(a)1 for every z in a neighborhood of a. 
Then h is constant. 

PROOF. The proof is left to the reader as an exercise. o 

2.1.29. Proposition (Schwarz's Lemma). Let g: B(O, 1) -+ B(O, 1) be a holo
morphic function such that g(O) = O. Then 

Ig(z)1 ~ Izl 

and 

Ig'(O)1 ~ 1. 

If either inequality becomes an equality (even at a single point, except for z = 0, 
for the first one) then g(z) = Cz for some constant C, 1 CI = 1. 

PROOF. The function h(z):= g(z)/z(z =f. 0), h(O):= g'(O) is holomorphic in 
B(O, 1) and, for any r, 0 < r < 1, 

max Ig(z)1 
max Ih(z)1 = max Ih(z)1 = -'.:.Iz'--'I=''-----_ ~ ~. 
Izl:Sr Izl=' r r 

Since r is arbitrary, it follows that Ih(z)1 ~ 1 for every z E B(O, 1). If there is 
some Zo E B(O, 1)\ {O} such that Ih(zo)1 = 1, then h is a constant C of absolute 
value 1 by §2.1.28. The same argument holds if Ig'(O)1 = Ih(O)1 = 1. 0 

EXERCISES 2.1 
(0 represents a connected open set in C and B = B(O, 1). It is understood that a contour 
like Izl = r is traversed only once and counterclockwise.) 

1. With the help of Cauchy's integral representation formulas compute the following 
integrals: 

(.) i . dz I smz--. 
1=+il=3 z + I 

(ii) r ~dz 
JI=I=2 z - 1 

( ... ) i cosz 
III -2--2dz 

1=1=4 z - n 

(iv) r dz 
J 1=1=2 (z - l)ft(z - 3) 

(n = 1,2,3, ... ) 
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2. Let f E ~(B) n C°(1~), show that 

and 

r f(Od(=O J 1(1~1 

(z E B). 

Conclude that 

1 fn '8 frO) = - f(e' )dO. 
2n _. 

Write down the corresponding mean-value property for f(a), when B(a, r) £; n 
and f E ,Jf'(n). 

3. Let f, 9 E ,;;-r(B) n C°(iJ), show that 

_1 r (f(O + Zg(O) d( = {f(Z) 
2ni J 1(1~1 (- z z( - 1 g(1/z) 

4. Let f E ~(n), B(zo, R) £; n, 0 s r < R. Compute 

1<1z-2 ol<R f(z)dxdy. 

iflzl < 1 

if Izl > 1. 

5. Let p > 0 and f be an entire function such that for some constant M > 0, 

I f(z) I s M(1 + Iz!)P 

for every z E C. Show that f is a polynomial of degree at most p. 

6. Let f be an entire function satisfying If(z)1 s Me lzl everywhere. Show that 
I f(O) I s M and 

Ipn)(o)I s M (~)" 
n! n 

(n E N*). 

7. Let y be a piecewise C 1 Jordan curve, cp a continuous function on Im(y), and 
o E Int(y). Show that 

f cp(t) dt = 0 for every z E Int(,) 
y t - z 

if and only if 

1 t"cp(t)dt = 0 for n = -1, --2, -3, .... 

*8. Let S = {z E C : 11m z I < a < co} and f E ~(S) satisfying the two conditions 

(i) lim f(z! = 0, 
Izl--oo z 

.. fX If(x + iy)1 
(11) ··········--dx < co, 

-xo 1 + Ixl 
for every Y E ] - a, a[. 
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Show that there exist functions 11 (resp. 12) holomorphic in the half-plane 
1m z > - a (resp. 1m z < a) satisfying the conditions: for any e > 0,11 (z) -+ 0 when 
Izl-+ 00 while 1m z ~ -a + e (resp. I2(z) -+ 0 when Izl-+ 00 while 1m z ;5; a - e), 
and 

for every z E S. 

(Hint: For 0 < b < a, define 11 in Imz > -b by 

1 fOO
-

ib 1(0 I1(z) = -. -d'. 
2m -oo-ib' - Z 

Use a similar definition for 12 and Cauchy's theorems 2.1.3 and 1.11.4.) 

9. Show that 

(a) For any a. E C we have f: e-t2 dt = f:oo e-(t+.)2 dt. (Why is this not an 

immediate consequence of the translation in variance of the Lebesgue 
measure?) 

(b) Consider the integral of the function e iK%2 tan 7tZ around the parallelogram in 
Figure 2.1. Let R -+ 00 to show that 

Figure 2.1 

(c) Integrate e-%2 along the contour of Figure 2.2 to show that 

100 100 lA sin(x2 )dx = cos(x 2 )dx = - -. 
o 0 2 2 

Figure 2.2 
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10. (a) Prove Proposition 2.1.17 and the preceding statements about the radius of 
convergence. 

(b) Show that the radius of convergence of a power series L a.z· and that of .,,0 
the series of its formal derivative, L na.z·-t, coincide. 

Jr.l~1 

(c) Show that the function (defined for h 0/= 0, n E N*) 

(z + h)' - z· 
- nz·-1 

h 

is a polynomial in z and h with positive coefficients. Use this fact to prove the 
inequality 

I(Z + h)' - z· _ nz--II < (Izl + Ihll"=J:"I" _ nlzl" I 
h - Ihl 

Conclude that 

I ~( L a.(z + h)' - L a.zn ) - L na.z"-II 
h .,,0 ",,0 .,,0 

«Izl + Ihl)" - IZI') 0-1 
$ L lanl-~------ - L nla,llzl .,,0 Ihl .,,0 

(d) Recall the following property of a family {u.}."o of Cl functions defined on 
a finite interval [a,b] of the real axis: if L u~ converges uniformly in [a,b] 

1':1>0 

and L u.(xo) converges for some point ~o E [a,bJ, then the series L u.(x) 
"~o n~O 

converges uniformly in [a, b] to a C I function whose derivative is ( L u.)' 
",,0 

L u~. (If not seen before, this is a good exercise). 
n~(} 

Conclude that a power series L a.z' with radius of convergence R > 0 
lI~O 

is a holomorphic function in B(O, R). 

11. Give the Taylor series expansion about z = 0 and find its radius of convergence 
for the following functions: 

. eZ + e-' + 2cosz 
(1) --4---

Z2 + 4Z4 + Z6 

(ii) (1 _ Z2)4 

(iii) (1 - zrm-l, mEN 

(iv) (l - Z6)-3 

Z5 

(v) (Z2 + -1)(z - 1) 

(vi) Let L a.z", L b.z" have respective radius of convergence rx > 0, P > O. 
n~ 0 n~ 0 
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What can be said about the radius of convergence of the series L cnzn, where 
n;;,O 

• 
C. = L an-kbk? 

k=O 

12. (a) Let w cc 0, ow piecewise regular, f E £'(0). Apply the Cauchy inequality 
2.1.20, (2) 

f( )1 t(ow)max{lf(z)l: z E ow} 
I Zo :::; , 

2nd(zo, ow) 
which is valid for Zo E W, to the holomorphic functions (f(z))n, n = 1, 2, ... , 
to show that If(zo)1 :::; max{lf(z)1 : z E ow}. Obtain a proof of the weak 
maximum principle: 

If 0 bounded, f E £'(0) n CO(Q) then IIfIIL~(O) :::; IIfIlL~(OO)· 
(By comparison with this exercise, the statement 2.1.27 is sometimes called 

the strong maximum principle.) 
(b) Show that the open mapping property 2.1.25 implies the weak maximum 

principle. 

13. Show that the maximum principle 2.1.27 fails if 0 is not bounded. 
14. Assume f E £'(0) is not constant. Show that If I cannot have a minimum at a 

point Zo E 0, unless f(zo) = O. 

15. Suppose qJ E C1 (0), N := {z EO: qJ(Z) = O}, and grad qJ(z) "" 0 if ZEN. Show that 
if f E £'(0) and f(O) s;;; N then f is constant. 

16. Let p be a polynomial of degree n and a > O. How many connected components 
can the open set {z E C: Ip(z)1 < a} have? 

17. Let f be an entire function such that If(z)1 :::; eRe z everywhere. What can you say 
aboutf? 

18. Assume f E £,(B) and it satisfies f" (~) = f(~) for every n E N*, show that f 
is an entire function. 

19. Is there a function holomorphic in B such that it satisfies any ofthese conditions 
for every n E N*: 

(a) fG) = f( -~) = :2; 
(b) f(!) = f(-!) = _1 ; 

n n 2n+l 

(c) kG)1 < rn; 

(d) _1 < If(!)1 < ~. In n In 
20. Let p be a polynomial of degree n. M(r) = M(lpl,r) = max{lp(z)l: Izl = r}. Show 

that if 0 < r < R < 00 then 
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M(r) M(R) 
7~lf" 

What can you say about p if the equality holds for some r, R? 
21. Let B+ = B n {z E C: Imz > OJ, f E £,(B+) n CC(il+). Show that if f(x) = 0 for 

- 1 < x < 1, then f == O. 

*22. Let B+ be as in the previous exercise, f E £,(B+) n CC(8+) such that f is real valued 
on the real axis, Imf(z) "* 0 in B+ and f is injective in B+. Show that there is a 
function FE £'(B), F injective and FIB+ = f. 

23. Let f be holomorphic in the upper-half-plane and continuous up to the real axis. 
Assume f is real valued on the real axis and Ilflloo ~ 1. Show f == C E [ -1,1]. 

24. Show that the function Zl->cos(Jz) which is a priori defined only in 
-1t < Arg z < 1t, can be extended to be an entire function. Give its Taylor series 
expansion about z = O. Does it depend on the determination of Jz? 

25. Show that the r function defined here is holomorphic in the right half-plane 
{z E C: Rez > OJ, 

Verify that 

r(z + 1) = zr(z). 

Conclude that for n E N, 

r(n + 1) = nL 

26. Show that the function Zl-> foo e-tz 
2 dt is holomorphic for Re z > O. Jo 1 + t 

27. Let f be holomorphic in 8, f E £'(8) (see §1.11.1). Compute 

L z·-If(z)dxdy (n ~ 1). 

28. Let f E £,(B) and k a radial continuous function of compact support in B such 

that t k(z)dm(z) = 21t L rk(r)dr = 1. Show that 

f(O) = t f(z)k(z)dm(z). 

(as always in this book, dm stands for the Lebesgue measure.) 

29. Let fl' ... , f. E £'(0) be such that Ifl(zW + ... + If.(zW == 1 in O. Show that 
fl' ... , f. are constants. 

30. Let f : 0 -+ 0 be holomorphic and satisfy f 0 f = f. Show that either f is constant 
or f = ida· 

31. (a) Let f E £'(0), 028(0, r), f(z) = L a.z· be its Taylor expansion about 
.;>:0 
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z = O. Show that 

(b) When r = 1 in part (a) show that 

laRl z 1 f 2: -- = - If(zW dm(z) . 
• ;,0 n + 1 TC B 

32. Apply exercise 31 to show that if f is a polynomial of degree n such that feB) s; B, 
then 

1 f If'(zW dm(z) ~ n. 
n B 

Find all the polynomials for which this is an identity. 

33. Let f E Jt"(B), f(z) = 2: anz n . Write u = Ref, v = Imf. Show that for any 
n~O 

rE]O,l[,nEN*, 

Use the first identity to show that if flO) = 1, u ~ 0, then lanl ~ 2, n = 1, 
2, .... Conclude that 

1 - Izi 1 + Izl 
1+ Izl ~ If(z)1 ~ 1 -Izl' 

(Hint: Use that f(z) =I 0 to prove the lower bound.) 

34. Use Liouville's theorem (cf. §2.1.20) to prove the Fundamental Theorem of 
Algebra, i.e., every nonconstant polynomial has a zero. 

§2. The Frechet Space cYe(Q) 

We recall that the space <;6'(0) of all the continuous complex-valued functions 
in an open set 0 s; C admits the following metric: 

1 Pn(f - g) 
d(f,g):= L 2" 1 + (f _ )' 

0;,1 Pn g 

where Pn(h) = sup Ih(z)1 and (K.)n;'1 is an exhaustive sequence of compacts in 
zEKn 

O. (That is, K. s; Kn+l for every n ;;::: 1 and 0 = U. K •. An example of such a 
.>1 

sequence is K. = B(O, n) n {z EO: d(z, oe) ;;::: ~}.) This distance is invariant 

under translations, i.e., d(f + h, g + h) = d(f, g), and it induces the topology 
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of uniform convergence on every compact subset ofQ. ct'(Q) is then a complete 
metric space, i.e., a Frechet space. 

We will always consider JIf(Q) with the topology induced from ct'(Q). 

2.2.1. Proposition. The space JIf(Q) is a Frechet space. 

PROOF. It is enough to show that JIf(Q) is a closed subspace ofct'(Q). Let (f,,)n~l 
be a sequence of holomorphic functions that converges uniformly over every 
compact subset of Q towards a continuous function f We have to show that 
f is holomorphic. If R is a closed rectangle contained in Q, then 

f f(z)dz = lim f fn(z)dz = 0, 
oR n-->oo oR 

by the uniform convergence on the compact oR. Morera's theorem implies 
that f is indeed holomorphic in Q. 0 

2.2.2. Corollaries 

(1) If a power series L anzn is convergent in a disk B(O, R), its sum is a 
n~O 

holomorphic function in that disk. 
(2) The space JIf(Q) is identical to the collection of all functions in Q that admit 

locally an expansion in power series. 

PROOF. The proofs are left to the reader. o 

d 
2.2.3. Proposition. The mapping dz : f 1-+ I' from JIf(Q) into itself is continuous. 

PROOF. Let K be a compact subset of Q and ill a relatively compact neighbor
hood of Kin Q. The Cauchy inequalities assert that there is a constant C such 
that 

sup If'(z)1 ~ C sup If(z)l. 
zeK ZEro 

This proves the continuity of the operator :z. o 

2.2.4. Corollaries 

(1) If s(z) = L anzn in the disk B(O, R) then s'(z) = L nanzn- 1 in the same disk. 
n~l n~l 

(2) If Un)n;'l is a convergent sequence in JIf(Q) to a function f, then U:)n~l 
converges in JIf(Q) to 1'. 

(3) A similar statement holds for series: If L fn converges to f in JIf(Q), then 
n~l 

L f: converges to I' in this space. 
n~l 
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2.2.5. Remark. If f(z) = 2: anzn in B(O, R), then a primitive for f in the same 
disk is 

F(z) = 2: ~ zn+1. 
n~O n + 1 

2.2.6. Examples. (1) Let f(z) = -1 _1_, its expansion in B(O, 1) is L zn. The 
- z n~O 

function F(z) = f: f«() d( is a primitive of f and admits the expansion 

zn+l 

F(z) = 2:-. 
n~O n + 1 

Consider now the holomorphic function g(z) := e-F(z).lts derivative can be 
readily computed by the chain rule 

g' = og = _ of 9 = -fg. 
oz OZ 

The product function fg is also holomorphic in B(O, 1) and 

(fg)' = fg' + f'g. 

Since g' = -fg and I' = 1/(1 - Z)2 = P we have 

(fg)' = -pg + pg = 0. 

Therefore fg is a constant equal to f(O)g(O) = 1. It follows that - F is a 
determination of the logarithm of 1 - z. Moreover, if Izl < 1 we have 
1 - z E C\] -00,0] and we have already defined the principal value of its 
logarithm, Log(1 - z). The two continuous functions Log(1 - z) and - F(z) 
are determinations of the logarithm of 1 - z in B(O, 1) and coincide for z = 0. 
Therefore F(z) = -Log(1 - z) throughout B(O, 1) and we have 

zn+l 

Log(1 - z) = - 2: -
n~O n + 1 

(lzi < 1). 

(2) Consider the function (1 - x)'" (IX E q defined for x E ] -1, 1[ by 

(1 - x)'" = e",Log(l-x). 

From calculus we know that this function has the Taylor expansion con
vergent in ] -1,1[, 

(1 _ x)'" = 2: (_1)"1X(1X - 1) ... (IX - n + 1) xn. 
n~O n! 

The power series obtained by replacing x with z converges in B(O, 1) and hence 
defines a hoI om orphic function there, also denoted (1 - z)"'. One can verify 
that (1 - z)'" coincides in B(O, 1) with ecrLog(1-Z). In fact, these two holomorphic 
functions already coincide on ] -1,1[. 
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(3) Let f(z) = ~!~~2 = L (_I)"z2n in B(O,I). The function F(z) 
1 + z n~O 

J: f(Od( is a primitive of f whose Taylor series expansion about 0 is 

z2n+l 

F(z) = L (-I)n-2 - (Izl < 1). 
n~O n + 1 

Let us recall that the entire function cos w vanishes exactly at the points 
nl2 + kn(k E Z). Therefore, the function tan w = sin wlcos w is holomorphic 
in C \ {n12 + kZ}. It is well known that tan x is strictly increasing in the 
segment ] - n12, n12[ of the real axis, where it admits an inverse function 

h d · . . 1 
arc tan x w ose envatIve IS -1 --2· 

+x 
There is a connected open set w in C containing] - n14, n14[ such that 

g(z) := F(tan z) is well defined and holomorphic in w. One has g(O) = 0 and 

d sec2 z 
g'(z) = F'(tanz)~d-tanz = 2 = 1, 

z 1 + tan z 

hence g(z) = z.1t follows that in] -1, 1[ the function arc tan x is the restriction 
of the holomorphic function F. 

2.2.7. Definition. A subset A ~ £'(0), A "# 0, is said to be boundediffor every 
compact K ~ 0 there is a constant M(K) < 00 such that 

sup (sup If(Z)I) = sup IlfilK :::;; M(K). 
JeA zeK JeA 

This is a particular case of the usual definition of bounded subsets of 
a topological vector space. The reader should note that the sets that are 
bounded for the metric defining the topology of £'(0) are not generally 
bounded in the sense of Definition 2.2.7. For instance, £'(0) is itself bounded 
for this distance being contained in the ball centered at the zero function and 
radius one. Evidently, £'(0) is not bounded in the sense of §2.2.7. 

2.2.8. Theorem (Montel). The bounded sets of £'(0) are precisely the relative 
compact subsets of £'(0). (In other words, £'(0) is a Frechet-Montel space (cf. 
[Sch]).) 

PROOF. Since for every K cc 0, the numerical function fl-+ IlfilK is con
tinuous in £'(0), it is clear that every relatively compact subset of £'(0) is 
bounded in the sense of §2.2. 7. 

Conversely, if A is a bounded set in £'(0), it is also equicontinuous by the 
Cauchy inequalities. The theorem of Arzela-Ascoli now shows that A is 
relatively compact in fi&'(0). Since £'(0) is a closed subspace of fi&'(0), A is also 
relatively compact in £'(0). 0 
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2.2.9. Examples. (1) Let n be a connected open set in C, (f")"~l a bounded 
sequence in ~(n), and E a subset of n which has an accumulation point in 
n. If for every z E E, (f,,(Z))"~1 is a convergent sequence, then the sequence 
(f,,)"~l converges in ~(n). 

In fact, let (f"Jk~1 be a convergent subsequence, its limit g does not depend 
on the choice of convergent subsequence since it is completely determined by 
its values on E. Therefore the sequence (f")"~ I converges to g in ~(n). (If not, 
there is e > 0 and a subsequence (f"k)k~ I such that d(f"k' g) ;;:: e. This sub
sequence will have itself a convergent subsequence (f"Jj~1 and its limit will 
coincide with g on E, hence everywhere. This is an obvious contradiction with 
the choice of e and (f"J) 

(2) Let n = B(O, 1) and (f,,)">o be a bounded sequence of holomorphic 
functions in n. Let f"(z) = L C:kZk be their Taylor series expansion about 

k~O 

the origin. Then (f")"~l converges in ~(n) to fo if and only if for every k ;;:: 0, 
lim C",k = CO,k' 

If lim f" = fo then it is clear that (C",k)"~l converges to CO,k for every k ;;:: 0, 
"-+00 

Conversely, since C",k = f,,(k)(O)/k!, if g = lim f"j is the limit of a subsequence, 
j-+oo 

then g(k)(O)/k! = ~im C"j,k = CO,k and hence g is independent ofthe subsequence. 
)-+00 

The rest of the proof is the same as in Example 1. 
(3) Let U be an open set in C, f E ~(U) such that f(U) ~ U, and Zo E U 

be such that f(zo) = Zo and 1f'(zo)1 < 1. Under these conditions, there is a 
disk B(zo, r) ~ U such that lim JI"I(z) = Zo uniformly in that disk. (Here JI"I 

"-+00 

denotes the nth iterate off, JIll = f,JI"1 = f 0 JI"-ll for n ;;:: 2.) If U is bounded 
and connected, it is also true that lim JI"I = Zo (the constant function) in 

~(U). 

Set R = ~(1 + If'(zo)l) < 1. From the definition of f'(zo) it follows that 

there is r > 0 such that B(zo, r) ~ U and 

If(Z) - f(zo) I ::; R if 0 < Iz - zol ::; r. 
z - Zo 

Therefore, since f(zo) = Zo, 

If(z) - zol ::; Rlz - zol if 0 ::; Iz - zol ::; r. 

This implies that f(B(zo, r)) ~ B(zo, r) and hence we can iterate the last 
inequality, whence 

IJI"I(z) - zol ::; R"lz - zol ::; R"r (z E B(zo,r)). 

From this inequality the uniform convergence of f[1I1 to the constant Zo in 
B(zo, r) is evident. Finally, if U is bounded and connected, the sequence 
(f[III).~1 is bounded in ~(U). From (1) it follows that JI"I converges to Zo in 
~(U). 
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(4) Let n be a connected open subset of C and f E £'(n) be such that fen) 
is a compact subset of n. The iterates jlnl of f converge to a constant Zo En. 

In order to see this, let nn = jlnl(n) and K = n nn. We have nn+1 = 
n~l 

f(nn) £; f(nn) £; f(nn-d = nn by induction. It follows that K is also given by 
K = n nn' hence it is compact and nonempty. Let (f[nkl)k~1 be a subsequence 

n~2 

of iterates of f converging to 9 in £'(n). It is clear that g(n) £; K. We claim 
that g(n) = K. If W E K then W E nn+l = jln+1l(n) = jlnl(n1), hence for every 
n ;;::: 1 there is Wn E n l such that W = jlnl(wn)' Since 0.1 is compact, we can find 
a subsequence (Wn.)j~l of the sequence (WnJk~l converging to Wo E 0.1 ' The 

J _ 

uniform convergence of (f[nk)j~l to 9 on n l implies that lim jlnkjl(wnk) = 
j-oo J 

g(Wo), so that W = g(wo) E g(nd £; g(n). 
We can conclude that 9 must be a constant function Zo, Zo E n. If not, 9 

will be an open mapping, K = g(n) will be both open and closed, hence K = n 
which is impossible. 

We recommend [Ab] and [Bl] as introductions to the iteration theory of 
holomorphic maps. 

(5) Let f E Ltoc(n) be such that for every lP E ~(n) one has 

[ OlP Jo f ozdm = O. 

We claim there is a holomorphic function j in n such that f = j a.e. Let lP 

be a standard function and set lPn(z) = n2lP(nz). Letnn = {Z En: d(z,Q") > ~}. 
The Coo function 

Fn(z) = f- fez - OlPn«()dm(O 
B(O,l/n) 

is then holomorphic in nn. In fact, we can write 

Fn(z) = f- f(u)lPn(z - u) dm(u), 
B(O,l/n) 

and hence, by differentiation under the integral sign, 

0;; = Sa feu) :z(lPn(Z - u»dm(u) = - Sa feu) :i/lPn(z - u»dm(u) = 0, 

since u 1-+ lPn(z - u) E ~(n) when Z E nn. 
For no fixed, the sequence (Fn)n~no is bounded in nno: Let K cc nno' 

-( 1) -r > 0 such that V K, r + no £; n. (We recall that for B > 0, V(K, B) = 

{Z E C: d(z,K) < B}.) For n;;::: no and Z E K we can write 

Fn(z) = ~ f Fn(w)dm(w). 
nr B(z,r) 
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(In fact, we have, for 0 < p ~ r, 

1 1 F.(O 1 12
" i8 e F.(z) =; y-" d, =- F.(z + pe ) d , 

2m I(-zl=p (" - z 2n 0 

Integrating this identity with respect to pdp, we obtain 

~ IT (1 2
" F.(z + peW) de) p dp = ~ IT F.(z)p dp = Fn(z), 

nr 0 0 nr 0 

which yields the preceding claim.) 
Writing now w = U + iv, , = ~ + iYf. we obtain 

iF.(z) I ~ ~ f IFn(w)1 dudv 
nr B(z.r) 

~····~f dUdvf If(w-OIIPn(Od~dYf, 
nr B(z,r) B(O,l/n) 

~ _12 (f- If(w)1 du dV) f IPn(O d~ dYf' 
nr V(K,r+l/no) 8(0,1/n) 

That is, for z E K and n ?: no we have 

iFn(z) I ~ -~2 r If(w)1 du dv. 
nr JV(K,r+l/.o) 

This shows that the sequence (Fn)n;,:no is bounded in £(n.o)' 

The sequence (Fn)n;':l has the following property: for every 1/1 E .@(n), 

lim r Fnl/l dx dy = r N dx dy. 
n-oo In Jo 

To verify this identity, let n be such that nn ::2 supp 1/1. Then 

r (f - Fn)1/I dx dy = - r [f (f(z - ') - f(z))IP.(O dx dyj I/I(z) dx dy, Jo Jo B~.~~ 

The function (z, n f---> (f(z - 0 - f(z»l/I(z)IP.(O is integrable on 

V ( supp 1/1, ~) x jj ( 0, ~), hence we can apply Fubini's theorem and obtain 

r (f - F.)I/I dx dy = f (r (f(z - () - f(z»I/I(z) dx dY) fP.(O d~ dYf, Jo B(O.I/n) Jo 
Let z .. -. , = w = u + iv, the identity becomes 

r (f - Fn)l/Idxdy = f (r f(w)(I/I(' + w) - I/I(W»dUdV)fPn(')d~d'1' J 0 8(0,1/n) J 0 

By the uniform continuity of 1/1, given e > 0 there is N such that if n > N 
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I r (f - Fn)t/ldXdyl:s;; e r I/(w)ldudv, J rl J V(supp t/I, liN) 

which shows the limit of In F.t/I exists and equals inN. 
If no is such that 0.0 :2 supp t/I, and if (Fnkh;"l is a subsequence of (Fn).;".o 

which converges in £(0.0 ) to g, then 

lim r Fnkt/ldxdy = r (lim Fnk)t/ldXdY = r gt/ldxdy, 
k-oo In JUno k-+oo JUno 

Therefore 

r gt/ldxdy = r Ndxdy, J rlno J rl 

which shows that the holomorphic function g coincides with I a.e. in 0., and 
hence g does not depend on the subsequence (F.)k;"l' We can conclude that 

the condition I E Ll~c(O)and In 1~;dXdY = o for every cp E ~(O)implies that 

there is a function j E £(0) such that I = j a.e. 
(6) Let (f.)n>l be a sequence of holomorphic functions in 0 such that 

U;')n>l converges in Lloc(O) to a function I E Ll~C(O) (i.e., for every K cc 0, 
f,. -+ f in U (K». Then there exists j E £(0) such that I = j a.e. and f,. -+ j 
in £(0). 

In fact, one verifies easily that for every cp E ~(O), 

I ocp . I ocp I ~_dxdy = bm In ~_dxdy = 0 
rl uz .-00 rl uZ 

and then one can use (5) and inequality 2.1.20, (3). 
(7) Let 0 < b < (X :s;; TC, 0 the angular region given by 0 := 

{z E c: 0 < Izl < 1, -(X < Argz < (X}, and IE £(0), be a bounded function 
such that lim I(x) = LEe exists. It follows that lim I(z) = L holds uniformly 

x-o+ z-o 
within -(X + b :s;; Argz :s;; (X - b (i.e., only Izl-+ 0 counts, as long as z lies in 
the smaller angle). 

To see this, let us introduce the bounded sequence of holomorphic func
tions in 0, f,.(z) := l(z/2·). This sequence verifies, for every x E JO, 1[, 

lim f,.(x) = L. 
.-00 

It follows from (1) that (fn).;"l converges uniformly on every compact subset 
of 0 to the constant L. 

Let K = {z EO: *:s;; Izl :s;; !. -(X + b :s;; Argz :s;; (X - b}. For e > 0 there is 
no E N such that if n > no we have 1/.(z) - LI < e for every z E K. Let z be 
such that 0 < Izl :s;; 2-.0 , -(X + b :s;; Argz :s;; (X + b, and let j> no such that 
1/2i +2 < Izl :s;; 1/2i +l (which means that 2iz E K), then I(z) = Jj(2 iz) and 
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If(z) - LI = IJJ(2i z) - LI < c. 

Therefore, -IX + (j :::;; Argz :::;; IX - (j and 0 < Izl :::;; 1/2"0 implies that 
If(z) - LI < c. This means that the uniform convergence to the constant L 
holds in the smaller angle. 

2.2.10. Remark. A different generalization ofthe Cauchy-Goursat Proposition 
2.1.11 than the one given in 2.2.9, (5) is the Loman-Menchoff theorem: Let 

be h · I d' . of of . . n f E CC(Q) such that t e partla envattves ox' oy eXIst at every pomt z E u 

and satisfy :zf(Z) = 0 everywhere, then f E Jt"(Q). 

For a proof see [SZ] or [NaI]. This theorem is not so frequently used as 
Example 5 in §2.2.9. 

*2.2.11. Definition (Analytic Functionals). An analytic functional T defined 
on the open set Q of C is a continuous linear function T: Jt"(Q) --+ C. The space 
of all those functionals is the topological dual of the Frechet space Jt"(Q) and 
it is denoted Jt"'(Q) (cf. [Sch]). 

Since Jt"(Q) is a closed subspace of CC(Q), the Hahn-Banach and Riesz 
theorems allow us to conclude that for any T E Jt"'(Q), there is at least one 
complex-valued measure Jl with compact support in Q representing T, that 
means: 

(T,f> = In f dJl (f E Jt"(Q». 

It is easy to see that in general the measure Jl is not unique. For instance, 
if T is the evaluation at the point a E Q, the measures Jlr (0 < r < dCa, Qe» 
defined by 

as well as the Dirac measure (ja represent T. (They are not the only ones!) 
One can define a topology in Jt"'(Q) that makes it a Hausdorff locally 

convex topological vector space. To every bounded set A s; Jt"(Q) we associate 
the seminorm PA on Jt"'(Q) given by 

PA(T) = sup 1(T,f>l. 
JeA 

With this topology, one can consider the topological dual Jt""(Q) = (Jt"'(Q»' 
of Jt"'(Q). Montel's theorem 2.2.8 has as a consequence that Jt""(Q) can be 
identified to Jt"(Q). This is a classical result in the theory of topological vector 
spaces (cf. [Sch]). We will return to the study of Jt"'(Q) in the sequel to this 
volume. 
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EXERCISES 2.2 
(B = B(O, I) and n is a domain in C). 

1. Let f E f{'(B) be holomorphic and nonconstant, ilIll", ::;; 1. Show that g(z) := 
oc 

I U(z))· is holomorphic in B. Is 9 bounded? 
n=O 

2. Show thatthefamily,~ s; Jft'(B),.~ = {f: Iltll L' ::;; I} is a compact family in Jft'(B). 

3. Let U;').2:1 S; .#,(B), Ilt.IIL' ::;; I for all n, and lim J,,(z) exists for every z E B. Show 
n"-+oo 

that U.).;'l has a limit in Jft'(B). Show that it is enough to assume that lim J,,(z) 

exists for Z E A, where A is a set with an accumulation point Zo E B. 

*4. Let T be an analytic functional in <}/""(C) (cf. §2.2.11), let a. = (1; z'), /I 2:: O. Show 
that 
(a) The function f defined by 

" an f(O:= L..~' ,. 
,,~o n. 

is an entire function which satisfies for every' E C, 

for some constants A, B > O. 
(b) Let qJ E Jft'(C) be arbitrary, qJ(z) = I bnz", then 

11"20 

<T, qJ) = I a.b,. 
n2'::O 

Formally this can be interpreted as showing that 

" an dn I " . an (n) T = L.. -i~~;; = L.. (- 1) I 150 , 
n;,O n. d" ==0 nc:O n. 

where 150 is the Dirac mass at z = O. 
(c) Can you find a function <1> defined in C x C which is entire holomorphic in 

each variable separately, and such that for fixed, E C 

<'1;<1>(',0) = frO 

with t as in part (a)? 

5. Let 0 < )., < )'2 < ... be a sequence such that 

. n 
0< IX = hmsup c;- < 00, 

11-+00 A'n 

and let {a.}.;,! be a sequence of complex numbers such that 

1 < P = lim sup ylla:1 < 00. 
II-+a:: 

Show that the series 
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converges to a function holomorphic in the half-plane Re z > a log p. 

6. Show that the following series of holomorphic functions converge to a holo
morphic function in the indicated domains: 

) ~ cosnz ( C) (a L- --I - Z E ; 
• .,0 n. 

(b) L _1_ (z ¢ N*); 
• .,1 n(z - n) 

(c) L n:sinnz (IImzl < 1) (use Stirling's formula for n!); 
• .,1 n 

(d) L e-·2Jn (IArgzl < ~) . 
• .,0 4 

7. Show that the function z f-+ roo ! sin t 2 dt is holomorphic when Re z > O. (Note the Jo t + z 
integral has to be considered as an improper integral.) 

8. (Abel summation theorem). 
(i) Let Ul' .•• , U., Vi' ... , v. be a collection of 2n (not necessarily distinct) complex 

numbers. Let Sk = U 1 + ... + Uk (1 ~ k ~ n). Show that 

n n-l 

L UkVk = S.V. + L Sk(Vk - vud· 
1;1 1;1 

(ii) Show that if L u. is a convergent numerical series and v.(z) is a sequence 
• .,1 

00 

of functions on a set K such that Iv1(z)1 + L Iv.(z) - v.+l(z)1 is uniformly 
.. =1 

bounded on K, then the series L u.v.(z) is uniformly convergent on K. 
• .,1 

(iii) Consider now a convergent numerical series A = L a •. Show that the func
• .,0 

tion J(z) = L a.z· is holomorphic in B and, moreover, for any a > 0 if z E B 
• .,0 

remains in the angle 11 - zl ~ a(1 - IzD, the limit lim J(z) = A is uniform. 
1'1~1 

9. Suppose IF is a relatively compact family in Jt"(Q) such that for some open set D 
one has J(Q) £ D for every J E IF. Let 9 E Jt"(D), which is bounded on bounded 
sets. Show that the family of {g 0 J: J E IF} is also relatively compact in Jt"(Q). 

to. Let IF £ Jt"(Q), suppose that IF is a bounded family, show that IF' = {J' : J ElF} 
is also a bounded family in Jt"(Q). Is the converse true? 

11. Let (I.) • ., 1 £ Jt"(B), 1.(0) = O. Suppose Re I. converges to zero locally uniformly. 
Show that I. -+ 0 in Jt"(B) (Hint: consider g. = ern.) 

12. Let Q be a bounded domain in C and IF = {J E Jt"(Q) : J(Q) £ Q}. 
(a) Show that IF is a relatively compact family in Jt"(Q) and find its closure .#. 
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(b) Show that under the operation of composition of maps, :F is a semigroup. 
(c) Show that if (f.).~I' (gn)n~l are sequences in :F, In -> I, gn -> gin Jf'(Q) and I, 

9 E :F, then I. 0 g. -> log in .Jr)(U). 

§3. Holomorphic Maps 

A holomorphic function f = u + iv E .*,(Q) can also be interpreted as a trans
formation from 0 into IC. It is evidently a COO transformation. One can 
compute the Jacobian matrix D(f) of the transformation 

O.!.. 1R2 

(x, y) 1---+ (u, v) 

(z = x + iy 1---+ W = f(z) = u + iv) 

D(f) = ~;;:n = (: :). 

ox oy 

The Jacobian J(f) = det D(f) of this transformation equals 11'12, hence it is 
greater than or equal to 0 and f preserves the orientation. This is a direct 
consequence of the Cauchy-Riemann equations but it can also be seen as 
follows. 

From dw II. dw = - 2i du II. dv, dz II. dz = - 2i dx II. dy and the relation 

f*(du II. dv) = J(f)dx II. dy, 

one deduces 

( i ) i -J(f)dx II. dy = f* 2dw II. dw = 21' dz II. l' dz = 11'12 dx II. dy, 

hence, 

One concludes from the inverse function theorem that if 1'(zo) =f. 0 then f 
is locally invertible at the point Zo as a Coo map. Before proving that this local 
inverse is also a holomorphic map, let us reobtain a result already mentioned. 

2.3.1. Proposition (Composition of Holomorphic Maps). Let 0 1 , O2 be two 
open sets in C, f E £(Od taking values in O2 and g E £(02 ), The function 
h = g 0 f is holomorphic in 0 1 and 

h' = (g' 0 f)f'. 
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PROOF. We will prove first: 

2.3.2. Lemma. Let cp : 0 1 -+ O2 be a C 1 map, cp is holomorphic if and only if 
the inverse image of every form A dw of type (1,0) (in w) is a form of type (1,0) 
(in z). 

PROOF. For a C 1 map cp we have 

{ ocp ocp_} cp*(Adw) = (A 0 cp)dcp = (A 0 cp) -dz +~=dz . 
oz oz 

If cp is holomorphic, then ~i = 0 and hence 

cp*(A dw) = (A 0 cp) ~~ dz = (A 0 cp)cp' dz, 

which is clearly of type (1,0). 
Conversely, if cp*(A dw) is of type (1,0) for every COO function A, then 

necessarily ~i = 0 and cp is holomorphic. 0 

2.3.3. Remark. If cp is holomorphic one has 

o 0 cp* = cp* 0 0 and a 0 cp* = cp* 0 a, 
so that cp* preserves also the forms of type (0, 1). 

PROOF OF 2.3.1. Since h* = (g 0 f)* = f* 0 g*, and both f* and g* preserve 
the (1,0) forms, then h* also preserves the (1,0) forms and h is holomorphic 
by Lemma 2.3.2. Besides, using d(g 0 f) = f*(dg), one sees that 

hi = oh = ~(g o.n = (Og 0 f) o[ = (g' o.nr, 
& & Ow & 

which concludes the proof. o 

2.3.4. Corollaries 

(1) Iff: 0 1 -+ O2 is a holomorphic map which is also a C I -dijJeomorphism, then 
the inverse tran~formation f-I is holomorphic. 

(2) If g : 0 1 -+ O 2 is a holomorphic map such that for some Zo E OJ, g'(ZO) # 0, 
the local inverse is holomorphic in a neighborhood of g(zo). 

PROOF. They are an easy consequence of Lemma 2.3.2; we encourage the 
reader to prove them in that framework. A direct proof of (2) can be obtained 
as follows. 

Let f : 0 -+ C be holomorphic and such that r (z) # 0 for every z E O. If we 
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fix Zo E n and consider z, ( near Zo we obtain 

hence, 

Therefore, 

J(z) = J(zo) + !'(zo)(z - zo) + O«z - ZO)2) 

J«() = J(zo) + !'(zo)(( - zo) + 0«( - ZO)2), 

1 
IJ(z) - J(OI ~ 2I!'(zo)llz - " 

if both z and ( are close to zo0 Hence J is injective near Zo and the inverse J-1 

can be defined near J(zo), which is continuous since J is an open map. 
Let now w = J(z), OJ = J(O for z, ( near Zo, then 

J-l(W) - J- 1(OJ) z - ( 1 
-::-:--:----::-c= -+ -- when w -+ OJ, 

W - OJ J(z) - J(O 1'(0 

which shows that J- 1 is hoi om orphic with derivative 1/1'«() at OJ. 0 

2.3.5. Remark. The inverse of a differentiable homeomorphism is not differ
entiable in general as shown by the example x 1-+ x 3 from IR to IR. Nevertheless, 
for holomorphic maps we have the following. 

2.3.6. Proposition. A bijective holomorphic map J: n1 -+ n2 has a holomorphic 
inverse. 

PROOF. We already know J is a homeomorphism since J is an open map. It 
suffices to prove that!, does not vanish. Let us assume that for some Zo E n1 

we have !'(zo) = O. We might as well suppose that Zo = J(zo) = O. 
There is then an integer k ~ 2, a function g holomorphic near 0, g(O) = 1, 

and a number c E C\ {OJ such that 

J(z) = ckzkg(Z). 

There is a J > 0 such that Ig(z) - 11 < 1 if Izl < J. The function WI-+W 1/k = 
el/klogw is holomorphic in B(l, 1). By composition, the function h(z) = (g(Z»I/k 
is holomorphic in I z I < (). This implies that J cannot be injective in a neighbor
hood of zero. In fact, the map qJ : z 1-+ czh(z) is a local diffeomorphism about 
z = 0 by §2.3.4 since its derivative at the origin is c. Hence, there is an 
open neighborhood V (V £; {I z I < ()}) of the origin and e > 0 such that 
qJ : V -+ B(O, e) is bijective. In V, J = qJ\ and since W 1-+ wk is a k-to-1 map on 
any circle centered at the origin, J cannot be injective. 0 

2.3.7. Corollary. Let J be a nonconstant holomorphic Junction in a connected 
open set n, Zo E n, and J(zo) = W0 0 There is an integer k ~ 1 and a holomorphic 
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function cp defined in a neighborhood of Zo such that cp(zo) = 0, cp'(zo) "# 0, and 

fez) = Wo + (cp(z)t 

PROOF. It is a consequence of the proof of §2.3.6. o 
2.3.8. Remarks. (1) From the local representation 2.3.7, one can give a new 
proof of the fact that a nonconstant holomorphic map is an open map. This 
is left to the reader as an exercise. 

(2) Let 0 be open and connected, f : 0 -+ C holomorphic and nonconstant. 
The set U of points in 0 where f is locally injective is open and its complemen
tary D = 0\ U is a discrete set. Namely, D is the set of zeros of /'. A point 
Zo E 0 is in U if and only if the integer k in §2.3.7 equals 1. 

For a point Zo EO there is a neighborhood W of f(zo) = wo, and a neigh
borhood V of Zo such that f(V) = W, f-1(WO) 11 V = {zo}, and, for every 
, E W\ {wo}, theequationf(z) = ,has exactly kdistinct solutions in V\ {zo}. 

The integer k is sometimes called the ramification index (or branching order) 
of fat zo0 If Wo = 0 it is also called the multiplicity of Zo as a zero of f The 
proof of characterizes k as the smallest positive integer such that j<k)(ZO) "# o. 

2.3.9. Definition. A holomorphic map f: 0 1 -+ O2 between two open subsets 
of C which is bijective is called a biholomorphism or a conformal map. 

If 0 1 = O2, it is customary to say that f is an automorphism of 0 1. The 
collection of all automorphisms of an open set 0 is a group under composition 
denoted Aut(O). 

We would like to explain here where the name "conformal map" comes 
from. Given two vectors Z1, Z2 E C*, let us recall that the oriented angle 
o = O(z 1, z 2) between them is defined to be the value of 0,0 ::::;; 0 < 2n, such that 

i6 Z2 Z1 e =---. 
IZ211z11 

Given a differentiable map cp : 0 1 -+ O2 and a C1 curve Y : ] - e, e[ -+ 0 1, 
recall that the tangent vector 1i(0) of the curve r:t. = cp a Y at r:t.(0) is given by 

1i(0) = D(cp)(y(O»y(O) = ~: (y(O»y(O) + ~~ (y(O»y(O), 

where yeO) is the tangent vector to the curve y at yeO). 
Let now Yio Y2 be two curves of class C1 in 0 1 such that Y1(0) = Y2(0) = 

Zo E 0 1, and let r:t.1 = cp a YI, r:t.2 = cp a Y2. 
Assume cp is holomorphic in a neighborhood of Zo and cp'(zo) "# o. If 

o = O(Y1 (0), Y2(0» and fj = O(1i1 (0), 1i2(0» then we have 

iii 1i2 (0) Ii 1 (0) cp'(ZO)Y2(0) cp'(ZO)Y1 (0) i6 
e = = =e . 

11i2(0)111i1 (0)1 I cp'(zo)Y2(0)11 cp'(ZO)Y1 (0)1 

Therefore fj = (J and we see that cp preserves the oriented angles between the 
two tangent vectors at Z00 
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Conversely, suppose the differentiable map I.fJ preserves the oriented angles 
between any two tangent vectors at Zo and l(l.fJ)(zo) i= O. Consider the two 
curves 

. (0) - W1°1.fJ( ) + _;9,OI.fJ( ) ()(z ..... e . - Zo e -= Zo • oz oz 
The condition e ili = e iB implies that the quadratic form 

Z(e i01 , eiOZ) = (iz (zo) + ~~ (zo)e- Zi82 ) (~: (zo) + ~~ (zo)e- 2i81 ) > 0 

for all choices of 81 ,82 , This immediately implies that o~ (zo) = O. If not, taking 
OZ 

81 = 0 and varying 82 one sees that the point Z(l, e i02 ) describes a circle of 
positive radius. 

We have therefore shown the following. 

2.3.10. Proposition. Let I.fJ : 0 1 ---> O2 be a differentiable map with nonvanishing 
lacobian 1 (1.fJ). Then «(J is holomorphic if and only if I.fJ preserves the oriented 
angles. 

2.3.n. Remarks 

(1) Let «(J be holomorphic in a neighborhood of zo, if 1.fJ'(zo) = 0, then the 
angles between tangent vectors are not preserved but amplified by the 
factor k ::?: 2, ramification index of I.fJ at zoo 

(2) There are differentiable maps I.fJ which are not holomorphic but 
l(l.fJ)(zo) = 0 and I.fJ preserves the angles between tangent vectors at Zoo For 
example, Zo = 0 and (p(z) = zlzl. This transformation preserves lines in a 
wide sense. For instance, the image of a ray through the origin is exactly 
the same ray. Only the parameterization changes. 

(3) A useful corollary of Proposition 2.3.10 is the following: Let I.fJ : 0 1 ---> O2 

be a differentiable homeomorphism between two open subsets of C, then 
(p is a biholomorphic map if and only if J (1.fJ) never vanishes and I.fJ preserves 
the oriented angles. 

2.3.12. Examples. (1) A transformation (f of S2 = C u { oo} of the form 

az + b 
(f(z) = ----, 

cz + d 



§3. Holomorphic Maps 133 

with ad - be 1= ° is called a Moebius transformation. If e = ° it is a similarity 
(an invertible affine transformation of C onto itself) and we have a( co) = co. 
If c ¥ ° we have a( - die) = co and a( co) = ale. If a is a Moebius transforma-

tion, the new transformation a·· j defined by 0--1(Z) = dz - ~-, is also a 
-ez + a 

Moebius transformation and 0-(0--1(Z» = 0--1(0-(Z)) = z. If a and t are two 
Moebius transformations one can see without difficulty that the same holds 
for the composition (J 0 t. Hence the family .A of Moebius transformations is 
a group. It is clear that if ). E C* and a is the transformation just described it 

is also true that a(z) = ~az + ~!, therefore the coefficients a, b, e, d are not 
Aez + 

uniquely determined. But this is really the extent of the indeterminacy, one 
can say this more precisely as follows. 

Let GL(2, q be the group of invertible 2 x 2 matrices. The map 

$ : GL(2, q -jo ..It given by I]) ((: :)) = a, where a is the transformation 

just described, is a group homomorphism whose kernel is the subgroup of 
GL(2, C) of diagonal matrices. 

(2) If a E C, lal < 1, consider the Moebius transformation 

z-a 
tpa(z) = -1 _. 

- az 

Note that tpa is holomorphic in the disk B(O, lila!) and that tp~··1 = tp-a. We 
claim that tpa is an automorphism of B(O, 1). It is enough to show that 
I tpAz) I < 1 if I z I < 1. But the condition I tpa(z) I < 1 is equivalent to I tpa(zW < 1, 
which itself is equivalent to 

Izl2 + lal 2 < 1 + lal 2 lzl2. 

This last inequality is a consequence of the identity 

Izl2 + lal2 - lal21z12 - 1 = (lzl 2 - 1)(1 - lal l ) < 0. 

It is also easy to see directly that tpa(i7B(O, 1)) = oB(O, 1); it is only necessary 
to observe that for e E IR 

;8 lew - al lew - al 
Itpa(e )I=--~~~~,~~~~=~~~· ~~·=l. 11 - ae,ol Ie ,6 - al 

Let us note also that tpa(O) = .- a, tpa(a) = 0, (P~(O) = 1 - I al 2 and tp~(a) = 

1/(1 - laI 2 ). More generally, the following relation holds 

Itp~(z)l(1 - Iz12) = 1 -ltpa(zW. 

Let now f: B(O, 1) -jo B(O, 1) be a holomorphic map. Let a E B(O, l) and 
b = f(a). Consider the holomorphic map 

g := tpb 0 f 0 tp-a: B(O, 1) -jo B(O, 1) 
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which satisfies g(O) = O. By Schwarz's lemma we have Ig'(O)1 < 1, unless 
g(z) = Cz, I CI = 1. Computing this derivative we find 

g'(O) = (qJb 0 f)'(qJ-a(O»· qJ'--a(O) = (qJb 0 f)'(a)· (1 - lal2) 

= qJ~(b)1'(a)(1 - lal2) = ~ = ::::1'(a). 

Therefore, 

11'( )1 < _!-=:- Ibl2 = 1 - If(aW 
a-I _ lal2 1 _ lal 2 ' 

and the first inequality is an equality only if Ig'(O)1 = 1, in which case, we will 
have 

f(z) = qJ-b(CqJa(Z», Izl < 1. 

Since I CI = 1, this says that f is an automorphism of B(O, 1) (as a composition 
of three automorphisms: qJa' multiplication by C, qJ-b). One can find by direct 
computation that f is then of the form CqJ;; for some liil < 1, ICI = 1. In 
particular, we can show that every biholomorphism f of B(O, 1) is of the form 
f = CqJa for a convenient constant C, I CI = 1 and point a E B(O, 1). In fact, let 
a = f- 1(0), then g = f 0 qJ-a is another biholomorphic map of B(O, 1) with 
g(O) = 0.1f h is its inverse, then by Schwarz's lemma Ig'(O)1 ::;; 1 and Ih'(O)1 ::;; 1 
but g'(O)h'(O) = 1, hence g(z) = Cz and, hence f = CqJa. 

Summarizing, we have shown that every holomorphic map of B(O, 1) into 
itself satisfies 

11'( )1 < 1 - If(zW 
z - 1 _ Izl2 (Izl < 1) 

and that equality at a single point occurs if and only if f is a biholomorphic 
map, hence of the form CqJa(lal < 1, ICI = 1). In this last case equality holds 
everywhere. 

EXERCISES 2.3 
n is an open connected set in C, B = B(O, 1). 

1. Let us recall that the explicit identification of unit sphere S2 = 

{P=(XI,X2,X3)EIR3:xi+x~+x~=1} with Cv{oo} is given by the 
stereographic projection: C is considered as the plane X3 = o. The north pole 
N = (0,0, 1) is identified to 00 and a point Z = x + iy E C corresponds to the 
unique point p E S2 such that the straight line through Nand P passes also 
through (x, y, 0). The chordal distance of two points Z I, Z 2 E C corresponding to 
PI' P2 E S2 is U(ZI,Z2) = IpI - P21 = Euclidean distance in 1R3. Show that: 

(a) 

and 

Z+z 
xI =1+lzI2 ' 

Z-z 
X2 = i(1 + Iz12)' 

IzI2 - 1 
X3 = 1 + IzI2 
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Xl + iX2 
Z = ~~~~~~~~~~~~--

1 - X3 

What is the image of a circle in S2 under stereographic projection? 
(b) The topology in S2 induced by the chordal distance and that considered in 

the text coincide. Moreover, 
21z1 - z21 

0"(ZI,Z2) = «1 + Iz,,2)(1 + iz;!2))!!:!' 

Find O"(z, co) for z E if:. Show also that a (~,~) = a(z I' Z2), for every pair z l' 
Zl Z2 

Z2 E C*. 
(c) Let r be a piecewise-C1 path in S2 and')' the piecewise CI-path in C u {co} 

obtained by stereographic projection. Then, if we consider the length of r in 
the metric induced by 0", we have 

length(r) = f ~I 121dzl. 
y 1 + z 

This length induces the usual metric on the sphere S2. 
The aim of the following questions is to find out what kind of transfor

mation of C u { co} corresponds to a rotation of S2 under stereographic 
projection. 

(d) Show that every rotation of [R3 admits 1 as an eigenvalue, hence a fixed axis. 
(e) Show that every rotation is the composition of rotations about the coordi

nate axes. Show that in the complex plane, these rotations correspond via 
stereo graphic projection to a Moebius transformation. 

(f) Compute the Moebius transformation corresponding to the matrix 

(~ -~ -H 
*(g) Does every Moebius transformation correspond to a rotation of S2? (Show 

m+b, . 
that only those Zl->~- such that lal- + Ibl2 = 1, C = -b, d = ahave this 

cz + d 
property. The corresponding group of matrices is denoted PSU(2,2), cr. 
[JS].) 

2. Let J E .Jf'(Q) be an isometry for the chordal distance, that is, a(f(z d,f(zz)) = 

a(z l' Z2) for every z l' Z2 E Q. We want to find J. 
(i) Show that J satisfies the differential equation 

IF(zW = (1 + Ij(ZW)2 
1 + Izl2 

(ii) Show that by composition with Moebius transformations one can assume 
o E Q, J(O) = 0, F(O) = 1. 

(iii) Show that under the conditions of (ii) one has IJ(z)1 = Izl in a neighborhood 
of O. Conclude that J(z) = z in this case. 

(iv) (Alternate proof of (iii». Differentiating the differential equation obtained in 

(i) with respect to :z' show that P')(O) = 0 for n ~ 2. Conclude that every 
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local holomorphic isometry for the chordal metric is a Moebius transfor
mation. (In fact, it is possible to show that if f preserves the metric (locally) 
and the orientation, it is differentiable and conformal, hence f is automati
cally holomorphic.) 

3. Let f E Jt"(Q). Show that, if a is the chordal distance, 

# . a(f(O,f(z)) 21/,(z)1 
(a) f (z):= ~1':; ~:::::~T- = 1-+ If(zW' 

(b) If f(z) # 0, show that f #(z) = G) # (z). 

(c) The length in S2 (in the metric induced by the chordal distance) of f 0 y, i' 
piecewise-C1 path in Q, is 

The function f # is called the spherical derivative of f. 
(d) Let y be a piecewise-C 1 path in Q, starting at a and ending at b. Then 

a(f(a),f(b»);<s; 1.f#(Z)ldZ!. 

4. (a) Show that any Moebius transformation can be obtained as a composition of 
the following three kinds of simpler Moebius transformations: (i) translations: 

I 
z 1-+ Z + a, a E 1[:; (ii) dilations: z 1-+ bz, b E 1[:*, and (iii) inversions: z 1-+ -. 

z 

(b) What does this say about the group GL(2, IC)? 
(c) Conclude that any Moebius transformation preserves the family composed 

of all circles and lines in I[: (you can think of the lines as being circles through 
00 E S2). 

(d) Show that a Moebius transformation is determined by the image of three 
different points. 

(e) The quantity 

is called the cross ratio of the four points z l' Z2, Z3, Z4 E I[: when at least three 
of them are different. If one of them is 00 it can be defined by limits, e.g., 

Show that Moebius transformations preserve the cross ratio. Moreover, 
show that if cp is a Moebius transformation and Z2 = cpl(1), Z3 = cp-l(O), 
Z4 = cp-l(C.O), then 

cp(z) = (Z,Z2,Z3,Z4)' 

Conclude that given two triples of distinct points {Zj>Z2,Z3} and 
{WI' W 2 , w3 } in S2, there is a Moebius transformation 1/1 such that I/I(z) = Wj 

(j = 1,2,3). 
(f) Show that the cross ratio (z t , Z 2, Z 3, Z4) E IR if and only if the four points lie 

on a circle or on a line. 
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5. Show that the Moebius transformations which map the unit disk onto itself can 

also be identified to the subgroup SUO, 1) := {(i~ :):= lal 2 - Iblz = I} of 

GL(2, IC). More precisely, SU(J, 1)!{ ± I}, 1 = identity matrix. Conclude that 
Aut(B) is isomorphic to SU(l, 1)/{ ± I}. 

6. Show that if (p is a Moebius transformation of B onto itself, it preserves the 
hyperbolic length of curves, defined by 

f Idzl 
L(y):= y 1 -lzI2' 

where y is a piecewise-C l path in B. It also preserves the hyperbolic distance 
between points 

P(ZI,Z2):= arctanh( IZI - z21). 
11 - z,z21 

Taking for granted that the geodesic, with respect to this metric, j oining the origin 
to the point r in the segment ]0, 1 [ is the segment [0, r], find all geodesics. 

7. Let 0 ~ B,J E .#(O),J(O) ~ B. Assume f is an isometry for the hyperbolic metric. 
Show that f is a Moebius transformation from B onto B. (Hint: Compare with 
Exercise 2.3.2). 

8. Let J E .Jf'(B), f(B) ~ B, f(z) fi z. Show that it can have at most one fixed point. 

9. Let f: B -+ B be holomorphic; let mEN * be the multiplicity of the origin as a 
zero of f. Show that 

IJ(z)1 ~ Izlm (z E B). 

lO. Let J: B -+ B be holomorphic and vanish at z l' ... , zm' Show that 

I f(O) I ~ IZI"·z.,I-
*11. Suppose that J E .;J¥'(B) is injective, f(O) = 0, 1f'(0)1 ~ 1, and f(B) ;2 B. Show that 

J(z) = cz, for some constant c, lei = 1. 

* 12. Let a E B, l/1(z) = z<p.(z) = z(z - a)/(l - az). Consider the sequence of functions 
l/1!n] = 1/1 0 ••• 0 1/1. Show that 

(i) if z E B then l/1!nl(z) -+ ° as 11 -+ 00 (uniformly on compacts of B); 
(ii) if z E BC then l/1!nl(z) -> 00 as n -+ 00 (uniformly on compacts of BC ); 

(iii) if Izi = 1, then either l/1!nl(z) does not have a limit or the limit is the solution 
Zo of <P.(zo) = 1. 

13. Let J E £(0) be injective, D = J(O). Show that 

area(D) = In 1f'(zW dx dy. 

14. Let ° < IX < 2. Show that the map z 1-+ z· is a biholomorphic mapping of the upper 
half plane H onto the angular region {z E IC : 0 < Arg z < 1X1t}. 

I z + I.. . 
15. (a) Show that the map z 1-+ w = -:- -- IS a blho\omorphlsm of B onto 

I Z - 1 
H = {w E IC: 1m w > O}. 
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(b) Use part (a) and Example 2.3.12(2) to show that every biholomorphism of H 
onto itself is given by a Moebius transformation 

aw+b 
w ...... cw + d' a, b, c, d E IR, ad-bc=1. 

This identifies the group Aut(H) with SL(2, IR)/{ ± I}, where SL(2, IR) is the 
group of 2 x 2 real matrices with determinant equal to 1. 

(c) Show that if f E Aut(H) fixes the points 0 and 00 in S2, then f(w) = ~w, 
~ E ]0, 00[. When is ~ = I? 

(d) Show that every conformal map of B onto H is a Moebius transformation. 
(e) Show that if f E Aut(H) is such that w = 0 is a double zero of f(w) - w = 0 

w 
thenf(w) = --1' c E IR. Whenisc = O? What is the form off when w = 00 

cw + 
is a double fixed point? 

16. (a) Let cp E Aut(B). Show that cp has either exactly one or exactly two fixed points 
in jj or cp = idB. If the fixed point Zo is in B, show Icp'(zo)1 = 1. 

(b) If cp has exactly two fixed points, show there is a Moebius transformation tjJ 
from B onto H so that tjJ 0 cp 0 tjJ-I E Aut(H) and fixes 0 and 00. 

(c) Show that if cp has exactly two fixed points then there is one of them, say zo, 
such that the iterates cp[ft] converge in -*,(B) to the constant function Zoo 

(d) Show that if cp has exactly one fixed point Zo in aB then the conclusion of (c) 
also holds. (Hint: cf. Exercise 2.3.15, (e).) 

17. Find a biholomorphic map of B onto the first quadrant {z E C : Re Z > 0 and 
Imz > O}. 

18. Construct a biholomorphic mapping from B+ = {z E B: Imz > O} onto B. 

19. Construct a biholomorphic mapping from n = {z E c: Izi > 1 and Imz > O} 
onto B. 

20. Find a conformal map from the strip S = {z E C : 0 < 1m z < I} onto B. 

21. Construct a conformal map of the half-strip n = {z E C: Imz > 0 and 
o < Re z < I} onto B. 

22. Let f E -*,(B(O, r)) be such that 

II'(z) - 1'(0)1 < 11'(0)1 

for every z E B(O, r). Show that f is injective. 

§4. Isolated Singularities and Residues 

2.4.1. Definition. Let t be a holomorphic function defined in an open set 
o of C. A point a E C will be called an isolated singularity of t if a is an 
isolated point of 00. 

lt is the same as saying that there is r > 0 such that B(a,r)\ {a} £; 0 
and a ¢ 0. Note that this concept is very dependent upon the set 0 where 
we consider the function t, for example, the function 
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fez) = ~ in IC\ {OJ 
z 

has an isolated singularity at z = O. But the function 

g(z)=~ in {Rez>O} 
z 

does not have an isolated singularity at z = O. This ambiguity will be removed 
later when we discuss analytic continuation. 

Examples with the origin as an Isolated Singularity. 

f . 1 - cos z . {OJ 
(1) I(Z) = 10 IC\ .' 

z 

(2) f2(Z) = ~ in IC\ {OJ. 
z 

(3) f3(Z) = el/z in IC\ {OJ. 

The reader should note that fl is bounded in a neighborhood of 0 and can 
be defined in the whole IC; lim If2(z)1 = 00 and lim If3(z)1 does not exist. 

z-o z-oo 

Moreover, for every p > 0 one can verify f3(B(O, p)\ {O}) = IC\ {OJ. We will see 
that the distinction between these three types is a general phenomenon. 

Let us remark also that if f is not identically zero in a connected open set 
Q and f E £(n), then the function 11f is holomorphic in Q\Z(f), where 
ZU) = {z E Q : f(z) = OJ, and every point of Z(f) is an isolated singularity of 

the second type for Ilf (i.e., !~~o 1 1/.f(z) 1 = 00 if Zo E zen). 
2.4.2. Proposition. A function .f that is holomorphic and bounded in a punctured 
disk B(a, r) \ {a} is the restriction of a unique function j, holomorphic in the disk 
B(a,r). 

PROOF. Since f is bounded,! E Lloc(Q), Q = B(a, r). From §2.2.9(5) we conclude 
it suffices to prove that for every cp E g&(Q) one has 

r f ~p dz A dz = 0 In 8z ' 

because, in that case, there is .F E .n"(Q) such that j = f a.e., hence j == f in 
B(a,r}\ {a}. 

For cP E g&(Q) we have 

i 8cp -' f 8cp -f=dz A dz = hm f=dz A dz 
Q 8z <~o «Iz-al<r 8z 

= lim r fcp dz, 
,·,,0 J Izl=< 
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- 8cp 
since d(fcp dz) = 8(fcp dz) = - f 8-z dz /\ d-z and we can apply Stokes' formula. 

The functions If I, Icpl being bounded, say by M, we have 

I r fcp dz I ~ 21tBM2 , J Izl=. 

which ends the proof. o 
A different way of proving the same statement is the following: The function 

g(z) = (z - a)f(z) for z "# a, g(a) = 0 is continuous in B(a, r) and holomorphic 
in B(a, r)\ {a}. By one ofthe corollaries of Morera's theorem, g is holomorphic 
in B(a, r). Since it vanishes at z = a we know also that g(z) = (z - a)j(z) for 
some j hoi om orphic in the whole disk. Evidently f = j in B(a, r)\ {a}. 

2.4.3. Definition. An isolated singularity of f E £(0) such that f is the restric
tion of a function j holomorphic in 0 u {a} is called a removable singularity. 

Therefore, if f is holomorphic and bounded in B(a, r)\ {a}, the singularity 
a is removable. 

2.4.4. Proposition (Classification of Isolated Singularities). Let f be holo
morphic in B(a, r)\ {a}. Only the following three cases are possible: 

(I) The singularity is removable and this holds if and only if 

lim sup If(z)1 < 00. 

(2) If lim sup If(z)1 = +00, 

(i) either lim I f(z) I exists in IR and equals +00, or 
z-+a 

(ii) lim If(z)1 does not exist in IR and this holds if and only if f(B(a, p) \ {a} ) 

is dense in IC for every p, 0 < p < r. 

This theorem is often referred to as the Casorati-Weierstrass theorem. A 
stronger version, Picard's theorem, will be proved in §2.7. 

PROOF. It is enough to prove the equivalence of the two conditions stated in 
(2), item (ii). 

It is clear that if, for every p E ]0, r[, f(B(a, p) \ {a}) is dense in IC, then 
lim sup I f(z) I = +00 and that lim If(z)1 does not exist since, for instance 

z-a z-a 

lim inflf(z) I = o. 
Let us show that if the lim If(z) I does not exist in IR then the density 

condition is satisfied. Suppose there are p (0 < p < r), w E IC and {) > 0 such 
that If(z) - wi > {) in B(a,p)\{a}. Then, the function g(z) = I/(f(z) - w) is 
holomorphic and bounded in B(a, p)\ {a}. Its singularity at the point a will be 
removable and g extends to g, holomorphic and bounded in B(a, p). It is not 
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possible that g(a) # 0, otherwise I would be bounded in a neighborhood of 
a. On the other hand if jj(a) = 0 then 

lim _1_ = lim II(z) - wi = +00 
=~a Ig(z)1 Z--'u 

and, hence, lim II(z)1 exists in IR and has the value +00, thereby contradicting 
z· .... a 

the assumptions. o 
2.4.5. Definition. Let a be an isolated singularity of I which is not removable, 
if lim II(z)1 = +00 we say that a is a pole of f If the limit does not exist we 

say that a is an essential singularity. 

2.4.6. Remark. If a is a pole of IE £(B(a, r)\ {a}) there is ro E ]0, r[ such that 
II(z)1 ~ 1 if ° < Iz---- al < roo Hence the function g = 1/1 has a removable 
singularity at a and it takes the value 0 there. If k is the multiplicity of this 
zero of 9 one can write I(z) = h(z)/(z - a)k with h holomorphic in a neighbor
hood of a and h(a) # O. The number k will be called the order of the pole a off 

Using the Taylor expansion of h about z = a, one can find complex numbers 
A j , - k :::;; j :::;; - 1, and a function f{J holomorphic in a neighborhood of 0 such 
that A-k # 0 and 

f .) A-k A-I ( (z = ---- + .. , + -- + f{J z - a). 
(z - at (z - a) 

Conversely, if I can be written this way, then z = a is a pole of I of order 
k. Therefore, to say that a is a pole of I means that I can be extended to a 
continuous map J: B(a, r) --+ S2 with J(a) = 00 and I/J holomorphic in a 
neighborhood of a (we define for this purpose 0 = 1/(0). 

2.4.7. Definition. Let 0 be an open subset of C, g: 0 --+ S2 a continuous 
function such that g---l( (0) is a discrete subset ofn. We say g is a meromorphic 
function in 0 if gl(O\g-l(oo» is a holomorphic function. 

In other words, if 9 is meromorphic in 0, the set P(g) := g-1 (00) is exactly 
the set of poles of the holomorphic function gIO', 0' = O\P(g). 

The collection of meromorphic functions in 0 will be denoted .A(O). 
Let us also observe that if A is a discrete subset of an open set 0 in C, 

9 E ,Jt'(Q\A) and every point of A is either a removable singularity or a pole 
of g, then there is a unique continuous g : Q --+ S2 which extends g. Clearly the 
function jj is meromorphic in Q. 

A function f which is holomorphic in the set C\B(a, r), can be considered 
as a function defined in S2 in a punctured neighborhood V of the point of 00. 
In that sense 00 is an isolated singularity for this function. By introducing the 
change of variables z f-> l/z one can classify this singularity the way we did 
earlier, namely, consider the function g(z) := I(1/z) defined in a punctured 
neighborhood of z = O. 
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For instance, 00 is a removable singularity of the functions l/z, l/z n, l/p(z) 
(p(z) = anzn + ... + ao, an "# 0). It is an essential singularity of every entire 
function which is not a polynomial. In fact, 00 is a pole of the entire function 
f if and only if g(z) = f(l/z) has a pole at O. In that case, g(z) = h(Z)/Zk for 
some integer k ;;:::: 1 and a function h holomorphic in a neighborhood of 0 with 
h(O) "# O. It follows that for Izllarge there is a constant M > 0 such that 

1 f(z) 1 :::;; Mlzlk. 

From the Cauchy inequalities it follows that f is a polynomial of degree less 
than or equal to k. 

From now on we will also consider the spaces ~(O) and .,1((0) when 0 is 
an open subset of S2. Assume f is a holomorphic function in the annulus 
0:::;; r < Izl < 00, with 00 being a removable singularity or a pole of f Then 
g(w) = f(l/w) will be defined in 0 < Iwl < l/r, with w = 0 being at most a pole 
and, hence, it can be written as 

As a consequence 

g(w) = L Ajwj. 
h-k 

If the singularity at 00 were essential, we are going to see that the poly
nomial part in the expansion will have to be replaced by an infinite series. 

Note that the concept of spherical derivative f # from Exercise 2.3.3 makes 
sense for functions meromorphic in an open set of S2.1t is enough to note that 

d 
if 00 is not a singularity of f, then 1'( 00) can be defined as dz f (l/z) evaluated 

t =0 df#( )·=1· O"(I(l/z)'/(oo»= 211'(00)1 h Ids. 
a z ,an 00. /~ Izl 1 + If(ooW 0 

2.4.8. Proposition. A holomorphic function f in an annulus A(a; r1 , r2) := 
{z E C : 0:::;; r1 < Iz - al < r2 :::;; oo} can be written in a unique way as 

f(z) = L an(z - a)n, 
ne Z 

in such a way that: 

(i) The series L an wn converges in B(O, r2), defining a holomorphic function 
n~O 

fl(W). 
(ii) The series L a_n wn converges in B(O, l/r 1) defining a holomorphic function 

n>O 

f(z) = fl (z - a) + f2 (_1_). 
z-a 
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Furthermore, the coefficients an are given by the formula 

an = 2~i I-al=p (t !~;II+1 dt, 

where P is an arbitrary value in the interval r1 < P < r2 • 

PROOF. For Z E A(a; r1 , r2) choose PI' P2 such that r1 < PI < P2 < r2 and 
Z E A(a;P1,P2)' We have then 

f(z) = . ...!-; r f(t) dt _ ~ r f(t) dt. 
2m J It-al=P2 t - z 2m J It-al=p, t - z 

For It - al = P2 let us write 

1 (z - a)" 
-- - ~~~~~~~~~~~- - -~-~~~~~ = L n + 1 . 

t - z (t - a) - (z - a) (t _ a)(l _~~:::::~) 112:0 (t - a) 
t-a 

The series converges uniformly for t in the circle It - al = P2' 
For It - al = PI we can write 

1 
-- - ------c---

t - z (t - a) - (z - a) 
~_~~~~~~_~~~_=_!~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ = _ L (t - at 

( 
t - a) n2:0 (z - a)"+l 

(z - a) 1---
z-a 

and the series converges uniformly for t in the circle It - al = Pl' Hence 

~ f f(t) dt = L a,,(z - a)" = fl(Z - a), 
2m J It-al=P2 t - Z .2:0 

an = ~ f __ j(t) "+1 dt, 
2m J It-al=P2 (t - a) 

which shows that la.1 ::; C(P2)pi" for some constant C(P2) > O. Therefore the 
series L anwn converges for Iwl < r2 , because P2 could be chosen arbitrarily 

n;?O 

dose to r2 • Similarly, 

-~ f£~tl-dt = L a-n 1 n = f( __ L), 
2m JII-al;Pl t - Z n2:1 (z - a) z - a 

a_II = -21 . f f(t)(t - art dt, 
ttl J II-al=p, 

which shows that L a_n w" is convergent for Iwl < l/r1 by the same reasoning 
n;?:l 

as earlier. 
Finally, we remark that by Cauchy's Theorem 1.1.4, the integrals 

-21 . f f(t)!(t - a)"+1 dt are independent of P E ]r1,r2[. 
m Jlt-al=p 
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The uniqueness of the expansion being evident (by integration), this con-
cludes the proof of 2.4.8. 0 

2.4.9. Definitions 

(1) The expansion of f obtained in §2.4.8 is called the Laurent series expansion 
of f in the annulus A(a; r1 , r2 ). 

(2) In the case when a is an isolated singularity for f E £(0) the annulus 
becomes A(a;O,d(a,(Ou {a})C) and the series L an(z - a)n is called the 

n<O 

principal part of fat a. 
(3) When 0 = A (0; r, (0), the Laurent development of f is called the Laurent 

series about z = 00, and the principal part is now L anzn. 
n>O 

2.4.10. Proposition. Let a be an isolated singularity of a function f holomorphic 
in B(a,r)\ {a}. We have the following equivalences: 

(i) The singularity is removable if and only if the principal part off at a is zero. 
(ii) The singularity is a pole if and only if the principal part is a polynomial in 

l/(z - a). 
(iii) The singularity is essential otherwise. 

PROOF. The proof is left to the reader. 

EXERCISES 2.4 
B = B(O, 1). 

o 

1. LetObeanopensubsetofC,g:O -+ S2continuous. LetZ(g) = {z E 0 :g(z) = O} 
and peg) = {z EO: g(z) = oo}. Assume that: 

(i) g is not identically equal to 00 in any component of 0; 
(ii) g is holomorphic in O\P(g); 

1 
(iii) - is holomorphic in O\Z(g). Show that g E ..-H(O). 

g 

2. Is the function z f-> (sin (D r1 
meromorphic in C? In C*? 

3. If 0 is a connected open set then Jt"(0) is an integral domain and ..-H(O) is a field. 
Moreover, the quotient field of Jt"(0) is a subfield of ..-H(O). 

4. Show that Jt"(S2) = C. 

5. Let f E ..-H(O), 0 connected, and f not constant, then f(O) is an open subset of S2. 

6. Find the isolated singular points of the following functions and determine the 
type of singularity: 

z 
(a) -.-; 

smz 
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1 
(b) cotan z - -; 

z 

nz 
(c) _ 1 cos~+i; 

(d) z(e 1/z - 1); 

1 - cosz 
(e)· Z2 
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7. Let f, 9 be holomorphic functions in a neighborhood of z = 0 such that f(O) = 

g(O) = O. L'Hospita\'s rule ~ is normally stated as 

lim f(z) = lim f'(z) 
z-o g(z) z~O g'(z) 

when g'(O) =1= O. Why is it correct? Generalize to the case g'(O) = 0 and also study 

the indeterminacies .~. and 0· co. What can you do if the indeterminacy occurs 
co 

at z = co? 

8. Let f be a function holomorphic in B(O, r)\ {O} such that If(z) I ~ clzl- I /2 . Show 
that 0 is a removable singularity of f. 

9. Let f E ff(B\ {O}), M(r) = max If(z)l, 0 < r < 1. Show that for every n E N, 
!zl=,. 

lim rn M (r) = co if and only if 0 is an essential singularity of f. Conclude that if 
r-O 

9 E ff(Bl\ {O}, g(O) = 0, g(B) ~ B, and 0 is an essential singularity for f, thenf 0 9 
has an essential singularity at z = O. 

10. Letf E A(e) whose set of poles is 1.. Show that for every r > 0, f(B(O, rY) is dense 
in S2. (Hint: The proof is similar to the Casorati-Weierstrass theorem.) 

11. Let f E .y{"(B\ {O}), Ref(z) 2 O. What kind of singularity can z = 0 be? What 

happens if we only know that f(z) ¢ [ -1, IJ ~ IR? (Hint: For the second part 

consider the function fez) - 1.) 
f(z) + 1 

12. Let B+ = {z E B: 1m z > O} and f E ff(B+) n 'G'(B+) such that If(x)1 = 1 for 
x E ] - 1, 1 [. Show that f has a unique meromorphic extension to the whole disk 
B. Do poles actually occur? 

13. For each example that follows define a hoi om orphic function in an annulus such 
that it has the following as its Laurent series development: 

00 z" 
(a) )~oo Rf; 

00 

(b) I r1nl(z - 1)". 
n=-oc 
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if. 

14. If f(z) = I GnZ" is the Laurent series of fin A(O; r1 , r2 ), which is the Laurent 
n=-a:' 

series of f' in the same annulus? 

00 'Ye 

15. Iff and 9 have Laurent series I a"zn and I bnz" in the annulus A(O;'I, r2 ), 
n=-c() 

find the Laurent series development of the product f' 9 in the same annulus. 

16. Determine the Laurent series development of f(z) = (Z2 - Ifl in the following 
regions: 
(a) B(O,1); 
(b) A(l; 0, 2); 
(c) A( -1;0,2); 
(d) A(O; 1, 00). 

17. Let f(z) = 

I < Izl < 00. 

- I 
in Izi > 1, f(2) > O. Find its Laurent series development in 

+ 1 

18. Letf E ~(0\{al,G2" .. ,an }), where the aj are distinct points ofO. Letfl, ... ,j~ 
be the corresponding principal parts of the Laurent series development off about 
z = aI' ... , z = an, respectively. Show that f - (fl + ... + fn) has removable 
singularities at every aj . 

19. Let f be an entire function such that f(z + 1) == f(z). Show that there is a 
holomorphic function gin 1[:\ {O} such that f(z) = g(exp(2niz). Conclude that f 
can be represented in the form 

00 

f(z) = I akehikz, 
k= -00 

the series being convergent in ~(IC). It is called the Fourier series of f. 
Show that the Fourier series converges uniformly in every strip a < 1m z < b. 

Furthermore, the coefficients can be computed from the formula 

ak = II f(x + ib)e- 2 "ik(x+ib) dx, 

for any fixed b E IR. 
Generalize this expansion to the case when the periodic function f is not entire, 

but only holomorphic in 111 < 1m z < b2 . 

20. Show that the Fourier series expansion off(z) = cotan nzin 1m z > Oisgiven by 

f(z) = -i(1 + 2 f e2nikz). 
k=1 

*21. (Bessel functions of order, n EEl. 
la) Show that if the differential equation 

Z2/,,(Z) + zf'(z) + (Z2 ____ ,;[2)f(z) = 0 

admits an entire solution f ¢ 0, then the parameter Ie must be an integer n E Z. 
Prove that the converse is also true. 
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For A. = n ~ 0, the solution of this equation that starts its Taylor series 

development about z = 0 with the term (~). is called J., the Besselfunction 

(oftheftrst kind) of order n. Show that 

= (:). 00 (_ 1 )k(z/2)2k 
J.(z) 2 k~O k!(n + k)! . 

One defines J., n = -1, - 2, ... , by L.(z) = (-1)'J.(z). 
(b) Let z be a fixed complex number. Show that the Laurent expansion in C* of 

the function t f-+ exp [ ~ (t - ~) ] is given by 

exp [: (t - !)] = L J.(z)t·. 
2 t ."z 

(c) From (b) obtain the development in Fourier series ofOf-+e i •• in8 and conclude 
that 

1 i" J.(z) = - cos(z sin 0 - nO) dO. 
n 0 

(d) Show that for n E 1\1: 

(i) J.-1 (z) + J"+1 (z) = 2n J"(z). (Hint: Use Part (c).) 
z 

d 
(ii) dz (z'J.(z» = z" J.-1 (z). (Hint: Use Taylor series expansion.) 

(iii) ~ (J"(Z») = _ J'+1 (z); 
dz z· z· 

(iv) J.-1 (z) - J"+1 (z) = 2J~(z). 

*22. Assume f to be a holomorphic function in the strip S = {z E C : - p < 1m z < p} 
00 

(p > 0). Suppose further that the series L fez + k) converges in -*,(S). Let F 
1:=-00 

be the holomorphic function thus defined. 
(a) Show that one can expand F in a Fourier series: 

00 

F(z) = L A"e2"i", 
n=-oo 

foo ( 00 rk +1 

A. = -00 f(x)e- hi.", dx. The integrals converge as kJ;oo J k f(x)e- 2 l<inx dx 

due to the hypotheSiS.) 

(b) (Poisson summation formula). Show that 

k=~OO f(k) = .=~oo f: f(x)e- 21ti.", dx. 

(c) Let t > o. Apply the last two parts to the function fez) = e-",·2 to show that 
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en 

if O(t):= L e-·k2" then 
k=-oo 

Use part (a) of Exercise 2.1.9 to compute the integrals and conclude that the 
following functional equation holds for t > 0: 

8(t) =~~ 0 G)' 
v 

23. Show that if the .f~ are functions in £(B\ {O} ) with a pole of order exactly n at 
z = 0, then the function F., 

F. := II + ... + I., 

has also a pole of order exactly n at z = O. 
1 1 1 1 

What happens with the F., when I. = 2.=1 Z.-I -.fn?' and we let n -> 00'/ 

24. Let I be a rational function and 

be its Laurent development about z = 00. Show the aj satisfy a recurrence 
relation. Is the converse true? 

§5. Residues and the Computation of Definite Integrals 

2.5.1. Definitions. Let 0 be an open subset of C, f E Jf'(O). 

(1) Let a E ao be an isolated singularity. We call residue off at the point a, 
Res(f, a), the residue ofthe closed form w = fez) dz with respect to the hole 
{a} oro. 

(2) If 0;:> C\B(O, R) we call residue off at 00, Res(f, 00), the residue of the 

closed form w = -f(~)~: = <p*(f(z)dz) with respect to the hole {OJ of 

-1 1 <p (0), where z = <p(w) =. 
w 

2.5.2. Remark. The reader should consult §1.10 for the background material 
on residues of a closed form. We recall here that in case (1), if y is the loop 
y(t) = a + re21<it (r > ° sufficiently small), then 

Res(f, a) = Resjdz({ a}) = 21 . f f dz. 
my 

In case (2), denote y the loop y(t) = relnit (0 < r < 1/ R), then 
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Res(J, (0) = Res'P*(!dz)({O}) = -21 . f cp*(fdz) 
m y 

= -~ f f(~t ~ -21 . r f(z)dz, 
2m y w m Jr 

e- 21rit 

where r is the loop r(t) = (cp 0 y)(t) = --. 
r 
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The oddity of the definition of Res(J, (0) disappears a bit when we imagine 
{oo} as a "hole" ofn, the orientation of the loop r being such that the "index" 
of this loop with respect to the hole {oo} is + 1. Since the index should be 

something like ~ r dw, and this integral is exactly Indr(O), and can be seen 
2mJr w 

to be - 1 by direct computation, we find ourselves justified in the choice of 
definition. 

2.5.3. Proposition. Let n be an open set of C, f E Jf'(n): 

(1) If a E an is an isolated singularity off and the Laurent expansion off about 
a is given by 

f(z) = L an(z - at, 
ne Z 

then 

Res(f,a) = a-l. 

(2) If n ;;;2 C\B(O, R) and if the Laurent expansion off about 00 is given by 

f(z) = L anzn, 
ne Z 

then 

Res(J, (0) = -a-l. 

PROOF. It is enough to compute -21 . f f dz in the first case, and -21 . r f dz in 
m y mJr 

the second, using the notation from §2.5.2. 0 

2.5.4. Proposition. Let f be holomorphic in B(a, r) \ {a} and have a pole at z = a 
(i.e., f is meromorphic in B(a, r». Then 

(1) If a is a simple pole off (i.e., the order of the pole is k = 1), then 

Res(f, a) = lim (z - a)f(z). 

In particular, iff(z) = P(z)/Q(z), P and Q are holomorphic in a neighborhood 
of a, P(a) =F 0, and Q has a simple zero at a, then a is a simple pole of f and 
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P(a) 
Res(j, a) = Q'(a). 

(2) If a is a pole of order k of f, then the function g(z) = (z - aN(z) is 
holomorphic in a neighborhood of a. Let L b.(z - at be the Taylor expan-

.;:,0 

sion of g. Then we have 

Res(f,a) = bk- I = !i~ (k ~ 1)! (::k~1 {(z - 4f(Z)}). 

PROOF. (1) The first statement is clear. The second follows from the fact that 

Q(z) can be extended to be a non vanishing holomorphic function in a 
z-a 
neighborhood of a, hence the order of the pole is 1, and 

P(z) 
(z - a)f(z) = Q(z) _ Q(a) (since Q(a) = 0) 

z-a 

has P(a)/Q'(a) as a limit when z tends to a. 
(2) We have g(z) = bo + bi (z - a) + ... + bk- I (z - a)k-I + (z - a)kh(z), 

with h holomorphic near a. Hence 

bo bi bk - I 
f(z) = ( )k + ( )k I + ... + -( -) + h(z), z-a z-a z-a 

and the formula for Res(j, a) follows from §2.5.3, (1). D 

. 1 
2.5.5. Example. The functIOn f(z) = (Z2 + l)(z _ 1)3 = (z + i)(z _ i)(z _ 1)3 

has simple poles at ± i and a triple pole at 1. We have 

1 1 + i 
Res(j, i) = ~~ (z - i)f(z) = 2i(i _ 1)3 = --8-

1 1 - i 
Res(f, -i) = !~~i (z + i)f(z) = (-2i)( -i _ 1)3 = Res(j, i) = --8-· 

For the computation of Res(j, 1), we need to find the expansion of 

(z - 1)3f(z) = _1_2 near z = 1. Let z = 1 + h, we obtain 
1 + z 

hence 

1 ~ Z2 = ~(1 - h + h22 + 0(h3 »). 

1 
Res(j, 1) = 4. 
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Before we draw some consequences of the Residue Formula we will apply 
it to the computation of definite integrals. We recall that the Residue Formula 
1.11.4, (4) is the following. 

Let n be an admissible open set and () a I-cycle of n, then 

-21 . f f(z)dz = L Ind.s(T) Resfdz(T), 
1tI 6 T 

where the sum takes place over all the holes of n. 
The method of computation of integrals using residues uses quite frequently 

the idea oftaking limits on the cycles, and it depends on the following classical 
lemmas (usually attributed to C. Jordan). 

2.5.6. Lemma 

(1) Let f be a continuous function on the set 

Sl = {z E C : 0 < Iz - al < r'O(l :::;; Arg(z - a) :::;; 0(2}' 

a E C, r> 0, 0(1 < 0(2. 

Let Yp be the arc of the circle of center a and radius p contained in Sl. 
The condition 

lim (z - a)f(z) = 0 

implies 

lim f f(z)dz = O. 
p-o+ Yp 

(2) Let f be a continuous function in the set 

S2 = {z E c: Iz - al > R'O(l :::;; Arg(z - a):::;; 0(2}' a E C, R ~ 0, 0(1 < 0(2. 

As before, let Y p be the arc of the circle of radius p and center a contained 
in S2-

The condition 

implies 

lim (z - a)f(z) = 0 
Izl-+oo 
zeS2 

lim f f(z)dz = O. 
p-+oo ,,/p 

PROOF. In the two cases the length ofyp is (0(2 - O(dp. Then 

If f(Z)dzl:::;; (0(2 - O(dp sup I f(z) I = (0(2 - O(d sup I(z - a)f(z)l, 
YP zeyp zeyp 

and the result is clear. D 
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2.5.7. Lemma. Let g be a continuous function in the hall-plane 1m z ~ 0 tending 
to zero when Izl -> OCJ in that half-plane. Let Cp be the semicircle of center 0 and 
radius p in that half-plane. Then, for (1. > 0 fixed, we have 

lim f eiaZg(z)dz = O. 
p--+oo C p 

PROOF. It depends on the inequality (see Figure 2.3) 

~.~ ~ sinO ~ e for o ~ e ~ n12. 
n 

Let us write z = pew, 0 ~ e ~ n. The integral becomes 

II' = f g(z)e iaz dz = fit g(peiO)eiaP(Cosfi+iSinB)ipeW de. 
Cp 0 

Let Mp be the maximum value of Ig(z)1 on Cp , then 

111'1 ~ p It Ig(pei8)le-apsinBde ~ pMI' In eapsinOde. 

f "12 1 - e-ap n 
~ 2pMp e-ap28/n dO ~ 2pMp --.. - ~ - sup Ig(z)l. 

o ap2/n a zeCp 

The lemma follows since lim Mp = 0 by hypothesis. o 
p~oo 

2.5.8. Lemma. Let a be a simple pole of a function f, II' an arc of circle positively 
oriented of angular opening a, center a and radius p. Then 

lim f f(z)dz = iaRes(f,a). 
p-+O+ Yp 

rc/2 

t = e 

t = sin e 

e 
o rc!2 rc 

Figure 2.3 
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PROOF. Since a is a simple pole, the Laurent expansion of J about z = a gives 

J( Res(j, a) ( ) 
z) = + 8 z, 

z-a 

where 18(z)1 :$; M, if z is sufficiently close to a. Therefore, 

f J(z)dz = Res(j,a)f ·····~······+f e(z)dz. 
~ ~z a ~ 

A direct computation yields 

On the other hand 

f ~=icx. z-a 
YP 

I {p 8(Z) dz I :$; Mt(yp) = Mcxp ~ 0 as p~O. o 

2.5.9. Examples. (1) Integrals oJ rational Junctions. Let J(z) = P(z}/Q(z) be a 
rational function with no poles on the real axis and deg P :$; deg Q - 2. 
Therefore, lim zJ(z) = ° and hence 

Izl~oo 

lim f J(z) dz = 0, 
R-++oo CR 

where CR is the semicircle of center 0 and radius R in the half-plane 1m z ~ 0 
(by §2.5.6). 

Passing to the limit in the following identity, valid for R sufficiently large 

f J(z)dz + r J(z)dz = 2ni L Res(j,a), 
C R JI-R.Rl Ima>O 

we find 

foo J(x) dx = 2ni L Res(j, a), 
-00 Ima>O 

where the sum is over all poles of J in the upper half-plane. 
As an application we obtain 

Loo (X2-+ij;(f~+4)2 = ~ f:oo (XT·+···ij;·(f~+4)2 = 2~· 

{ 
0 if p is an odd integer fro xp 

-:-----c2",dx = n (0 :$; P :$; 2n - 2). 
-00 1 + x n nsin«p + 1)n/2n)ifp isaneveninteger 

(2) Trigonometric integrals. Let R(u, v) be a rational function of the two 
variables u and v which is continuous on u2 + v2 = 1. Consider the integral 
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f 2" 

I = 0 R(cos 0, sin 0) dO. 

l' 1) Introducing the variable z = ei8, we can write cos 0 = 2 (z + z ' sin () = 

~ (z -!), and the integral becomes 
21 z 

where C is the unit circle t H ehi'. If 

then 

] = 2ni I Res(f, a). 
lal< 1 

As examples we obtain 

mEN; 

O::;;r<1. 

(3) Fourier-type integrals. By this we mean an integral of the form 

] = L+ocoo 
f(x)e iax dx, 

where IX > 0, f hoI om orphic on 1m z ?: 0, with the possible exception of a 
discrete set A which does not intersect the real axis. We also assume 

lim 1 f(z) 1 = o. 
IZI~oo 

ImzzO 

(We remind the reader that f hoJomorphic on 1m z ?: 0 means that f E K(Q), 
Q open, {z: lmz ?: O} ~ Q. Moreover, A ~ {z: 1m z > O}.) It follows from the 
classification of singularities that A is finite and we have, as a consequence of 
§2.5.7, 

J:= lim f' f(x)e iax dx = 2ni I Res(f(z)e iaz, a). 
y-+oo -r aeA 

Note that the integral] is defined to be the limit on the right-hand side. 
By way of example: 

foo cos x 1 (fOO e ix ) n ---2dx = -Re ---2dx =-. 
o I + x 2 -00 1 + x 2e 
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(4) Principal-value of Fourier-type integrals. The same kind of integrals as 
in (3) except that we now allow for a finite number of simple poles at the points 
Ct.! < Ct. 2 < ... < Ct.p of the real axis. A will still denote the finite set of isolated 
singularities of f in {1m z > O}. 

There is first the question of how we should define the integral I in (3). Let 
us set 

where r > 0 is sufficiently large, ej > 0 are sufficiently small. We set 

1:= lim I(r,el, ... ,ep )' 

r-oo 
Ej-O 

!<;j<;p 

This definition determines the so-called principal value of the integral I. -----. 
a 

x 
x 

x 

___ --'-__ -----'. ~_--'. L-_______ --' 

- r CX1 CX2 

Figure 2.4 

We apply the residue theorem to the contour and use Lemmas 2.5.7 and 
2.5.8 to obtain 

I = ire { L Res (f(z) e iilZ, Ct.) + 2 L Res(f(z)eia:", a)}. 
1 <;j<;p a€A 

F or instance, 

fro sin x 1 Ioo e'X re 
-- dx = ---; dx = -. 

o X 21 -co x 2 

(5) Integrals of the type LX> R(x)dx, R rational function. We assume 

R(z) = P(z)/Q(z) is a rational function with no poles on the positive real axis 
[0, co) and deg P _~ deg Q - 2. We are going to apply the residue theorem to 
the contour Yr,e,h shown in Figure 2.5, 

The idea is to apply that theorem to an auxiliary function, merom orphic 
in 1[\[0, co['f(z) := R(z) logz, where 1m logz = argz E ]0, 2re[, Its only poles, 
a finite number, are located at the zeros of Q(z). 
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a 

a 

Figure 2.5 

For e, h > 0, small, and r > 0, large, we have 

f J(z)dz = 2ni L_ Res(R(z)logz, a). 
1r.'.h Q(a)-O 

For e, r fixed, we have the limits, uniform on x E [e,r], 

lim R(z)logz = R(x)logx 
h-+O+ 
Imz>O 

lim R(z)logz = R(x)(logx + 2ni). 
h-+O+ 
Imz<O 

h 

Therefore, if Yp denotes the circle of center 0 and radius p, positively 
oriented, we have 

f R(z)logzdz - f R(z)logzdz - 2ni fr R(x)dx = 2ni L Res(R(z) log z, a). 
}',. Yt t. a 

The first two integrals satisfy the hypothesis of§2.5.6, where now S denotes 
the sector S = {z E C*: 0 ~ argz ~ 2n}, and we have 

lim zR(z) log z = 0 and lim zR(z) log z = O. 
z-O Izl-+oo 

As a corollary, one obtains 

foo R(x) dx = - L Res(R(z) log z, a). 
o a 
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For example: if p and q are integers, 0 ~ p ~ q - 2, 

foo xP n 

o 1 + x q dx = . (p + 1 ). 
qsm --n 

q 
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(6) Integrals oj the type too R(x)x-~ dx, 0 < at < 1. R is again a rational 

function without poles in the ray x ~ o. We assume that lim R(z) = o. 
Izl .... oo 

We note that the last hypothesis means that if R = P/Q then degP ~ 
deg Q - 1. We consider the functionJ(z) = R(z)/z~, z~ = e~JoBz, with the same 
choice oflogarithm as in (5). Integrating on )'r,.,h and letting first h ~ 0, as was 
done earlier, we obtain 

f R~) dz - f R~) dz + (1 - e-2"i~) f' R(:) dx = 2ni L Res(R~),a). 
1r Z 1, Z • X Q(a)=O Z 

We also have here that lim zJ(z) = 0 and hence, 
z .... oo 

foo R(x) 2ni (R(Z) ) 
o 7 dx =(I_e 2,,;~)~Res 7,a. 

For instance, 

(0 < at < 1). 

(7) Integrals oj the type too R(x) log x dx. Here R is a rational function 

without poles in x ~ 0 such that 

lim xR(x) = o. 

We proceed as in (5) and (6) with J(z) = R(z)(log Z)2. This yields the relation 

f oo R(x) log2 x dx - foo R(x)(log x + 2ni)2 dx = 2ni L Res(f(z), a). 
o 0 a 

Therefore 

-2 (00 R(x)logxdx _ 2ni (00 R(x)dx = L Res(R(z)(logz)2,a), Jo Jo a 

and one can use (5) to compute the second integral. If R(x) is real-valued for 
x E IR, then one can separate the real and imaginary parts in this relation and 
obtain 
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foo R(x)dx = ...... Llm(L ReS(R(Z)(logz)2,a)). 
o 2n a 

In this way we have obtained 

to J~"Z)jdX = -~. 

(8) One can apply the preceding method to Ioo R(x) log x dx when R has 

a simple pole at the point x = 1. In this case the vanishing of log x at x = 1 
keeps the integral convergent. One needs to modify the previous contour as 
shown in Figure 2.6. 

If R is real-valued on the real axis one obtains the relation 

f'Yj 1 
R(x)logxdx = n2Res(R, 1) - -Re L Res(R(z)(logz)2,a). 

o 2 a", 1 

An example of an application of this identity is given by: 

Ioo ~~~xTdx = ~2. 

One can compute integrals of the form I'" R(x)(log x)p dx, pEN, by inte

grating R(z)(logz)P+1. A priori one assumes R has no poles in x:;:>: 0 and 
xR(x) ~ 0 as x ~ 00, but one can accept a pole of order less than or equal to 
p at x = 1 as we have just done. 

-------~ 
Figure 2.6 
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(9) Integrals of the type Lb f(X)(: _ :Y dx, 0 < IX < 1. Here we assume 

that f is holomorphic in the whole complex plane with the exception of a finite 
number of points, none of them lying in ]a, b] and having at most a simple 
pole at a (-00 < a < b < 00). 

Let (= z - ab , this map is a biholomorphism from C\[a,b] onto 
z-

C \ (] - 00,0] u {I}). Hence, if Log ( is the principal determination of the 
logarithm (Arg ( E ] -n, nD, we have that the function g(z) = f(z)e" LOB ,(z) has 
only the same singularities as f has in C\[a,b]. 

Consider the I-cycle } ..... h in C\[a,b] suggested by Figure 2.7. 
For r, e, h conveniently chosen we have 

f g(z) dz = 2ni L Res(g, w). 
l'r,t,h w =Fa 

Now, if we fix e, r, and let h -. 0 +, we obtain 

lim g(z) dz = f(x)e"[IoB«x-a)/(b-x))-i7t] dx 1 fb-' 

h-+O+ [a'.b'] a+. 

fb-' (x - a)" . 
= f(x) ---=- e-'''7t dx, 

a+. b x 

x-a 
since '(I -. -b - and Arg( -. -n when z E [a', b' ]. 

-x 

Figure 2.7 
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i fb-' (x - a)« 
lim g(z) dz = - f(x) -b - ei«lt dx, 

h-O+ [a",b"] a+. - X 

this time Arg' -+ n. 
Let Y.,a and Y.,b be the positively oriented circles of radius e and centers a 

and b respectively. Then 

lim f g(z)dz = lim f g(z)dz = 0, 
£-0+ YE,a £-0+ YIl.b 

since 

lim (z - a)g(z) = lim (z - b)g(z) = O. 

(Note that the first identity is valid even if f has a simple pole at z = a.) 
Therefore, if I denotes the integral we are trying to compute and C, is the 

positively oriented circle of center 0 and radius r we have 

f g(z) dz + I· (e-i«lt - ei«1t) = 2ni L Res(g, w). 
c,.. W#-D 

Our assumption indicates that 9 is holomorphic in C\B(O,r), hence 

r g(z) dz = - 2ni Res(g, (0). Jc. 
Summarizing 

f b (x a)" n f(x) -b - dx = ~ L Res(g, w). 
a - x sm 1C(X WES2\{a) 

Let us see that 

II .JX5(l - X)d = ~(~ _ 21/6 . ~) 
2 X ;; 3 sm 12 . 

o 1 +x .,;3 

z(1 - z) z 2 
We take f(z) = 2 " = --1' a: = -3' We have then 

l+z z-

_Z(l-Z)( Z )2/3 
g(z) - 1 + Z2 Z - 1 

We compute Res(g, (0), the other residues being elementary to compute. 
1 

Let z = -, then for lui small 
u 

g(~) = _~(_1_)2/3 = -~(l + ~u + ... ) == -1 + ~u + .... 
u 1 + u2 1 - u 1 + u2 3 3 
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1 1 
Hence g(z) = -1 + - - + ... for Izllarge and 

3 z 

EXERCISES 2.5 

1 
Res(g, (0) = -3' 

1. Evaluate, using residue calculus, 

Use this to compute the Cauchy transfonn of XB, B = B(O, 1), namely, 

1 f dxdv 2B(0 = -- -"yo 

n B z - ~ 

2. Let - 1 < a < b < 1, n E r\J*, and B = B(O, 1), evaluate 

IB Z· LOg(; = ~)dZ. 
3. Evaluate 

e" Jo exp(cosO)cos(n8 - sin8)dB. 

(00 (Sin X)2 
4. Compute J o.~ dx. 
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fen eax ( e az 

5. Compute --dx (0 < a < 1). Hint: Consider the function /(z) = -1--
-00 1 + eX + eZ 

along the rectangle of vertices - R, R, R + 2ni, ... R + 2ni) 

6. Let 1m a > 0, 1m b > 0, and b "# a. Show that 

I~~ fro loglx =~Idx = loglb - al. 
1! -00 Ix - al 

7. Compute the integral ('" 4Jx 3 dx using as an auxiliary contour the boundary Jo (x + 1) 
n 

of the sector 0 ~ Argz ~ 4' 

8. Alternative proof of the Jordan Lemma 2.5.7: Show that if 0 ~ A < 1 then 

as R -> C1J 

by dividing the interval of integration into [o,j J and [}' ~ J. In the first one use 
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1 
that cos 0 ~ 2" to conclude that 

9. Show that for a > 0, b > 0: 

(a) ---dx = _e-balv2sin_· f'" x sin bx n r. ba 

o X4 + a4 2a2 J2' 
(b) ---dx = _e-balv2sin - + - . f'" cos bx n r. ( ba n) 

o X4 + a4 2a3 J2 4' 

( ) f'" X3 sin bx d _ n -bal fi· ba 
c 4 4 X - -2 e SIO r;;. 

o x +a ,,2 

10. IfO < a < 2, then 

f'" xa-I dx = ~ cos(ja + i) 
o 1 + x + x2 .j3 sin na . 

11. Show that 

f21t cos.OdO = {O 1.3.5 ... (n -1) 
o 2n--~~---

2·4···n 

12. For r > 0, b > 0, and 0< a < 2, prove that 

if n = 1, 3, 5, ... 

ifn=2,4,6, ... 

x SIO --bx ---=-r cos --br . foo a-I . (an ) dx n a-2 (an ) 
o 2 x 2 - r2 2 2 

13. Substituting x = tan 0, show that if -1 < a < 1 and -1 < r < 1, 

t/2 1 _\~;o:02s:: r2 (tan o)adO = 4cos~na/2)[1 + G : ~)J 
fro log2 x 16 n3 

14. Prove that 0 1 + x + x 2 - 81 .j3. 

15. Show that 

1'" sin(x2) d n 
(a) -- X=-

o x 4 

(b) roo cos x dx = 0.. 
Jo Jx ~2 

16. Let a > 0, use the rectangle [0, R] x [0, 1], conveniently indented, to compute 

roo sinax 
Jo e2 tu: _ 1 dx. 



§5. Residues and the Computation of Definite Integrals 

17. Find a function [ E vI(1C) such that 

100 t" 
[(rx) = -1 -2 dt 

o + t 
when 0 < rx < 1. 

18. Let [ = P /Q be a rational function with deg P ~ deg Q - 2. Evaluate 

lim r [(z) cotan 1tZ dz 
PI-+oo Jrn 

and 

lim r [(z) cosec 1tZ dz, 
II-+CX) Jrn 
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where n E Nand r. is the square with vertices ± ( n + D ± i (n + D. Evaluate 

00 1 
(a) I2; 

.=1 n 

00 1 
(b) .~o n2 + a2 (0 < a < 1); 

00 ( -1)" 
(c) 1;, n2 + a2 (0 < a < 1); 

00 1 
(d) I -2--2 (W E IC\Z); 

.=0 n - w 

00 1 
(e) I II (k E N*) . 

• =1 n 

19. Show that if [E .#'(8(0, R)) and [does not vanish, then for 0 < r < R we have 

10g[(0) = ~ r log [(z) dz. 
2m J 1:1=, z 

Use this formula to evaluate, for a E IC fixed, 

r21t Jo logle i8 - al dO. 

Deduce from this computation the Poisson-Jensen formula: Let [ E .#'(B(O, R)), 
o ~ m, the mUltiplicity of the origin as zero of [, ai' ... , a. (counted with multi
plicities), the zeros of fin 8(0, R)\ {O}, then 

( 1[<'")(0)1 • R) 1 12" log --I _Rm n -I 1 = -2 logl[(Rei8)ldO. 
m. )=1 aj 1t 0 

20. Let [E .#'(B(O, r)), [(z) *" 0 for Izl ~ r. Show that 

-21 f" e- i8 10glf(Rei8 )ldO = ~/'(O). 
1t _It 2 [(0) 
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Replace the hypothesis that I does not vanish by the hypothesis that 1(0) "# 0 
and let z I, ... , z. be the zeros of I (counted with multiplicity) in B(O, r). Show that 

I f~ -is is I /,(0) I f (r Zk) - e 10gl/(Re )ldO=-r-+- L... ---
2n _~ 2 1(0) 2 k=1 Zk r 

(c( Exercise 2.5.19). 

f e2~iz2/. 21. Use the loop in Figure 2.8 to integrate ye2~iZ _ I dz. Use this computation to 

0-1 . + ·1-. 

evaluate the Gauss sums L e27tik2/. = In-I _. _1-. 
k=O 1 + 1 

iR ,----_r------. iR + n/2 

0\ ( n/2 
) \ 

-iR -iR + n/2 

Figure 2.8 

22. Recall from Exercise 2.1.25 that the r function is the holomorphic function in the 

right-hand plane defined by r(z) = LX> e-'t Z - 1 dt. Write 

r(z) = fX> e-'t Z - 1 dt + II e-'t Z - 1 dt, 

expand the function e-' in a Taylor .series about t = 0, and evaluate the second 
integral term by term (why is it permissible?) to obtain 

Conclude that r has an extension to the whole plane as a meromorphic function 

. h· I I k k "" . h d··d (- I)k Wit simp e po es at z = -, E '''', Wit correspon mg resl ues~. 
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§6. Other Applications of the Residue Theorem 

We are now going to explore several other interesting consequences of the 
residue theorem and the argument principle (cf. §1.l0.10 and §1.6.30). 

2.6.1. Proposition. Let 0 be an admissible open subset of C, () E ZI (0; Z), f, 9 
holomorphic in 0, f taking values in C*. Then 

I f df -2' 9 f = L Ind.,(T) Res(91f)dAT), 
m lJ T 

the sum takes place over all the holes of O. 

PROOF. It is a direct application of the residue theorem to the closed form 
df gr o 

2.6.2. Corollary. Let 0 be an admissible open subset of C, f a meromorphic 
function in 0 which is not == 0 on any component of O. Let Z(f), P(f) be set 
of zeros and poles of f, respectively. Assume 0 = O\(Z(f) u P(f)) is also 
admissible. Let 9 E $(0) and () E ZI (0; Z). The following relation holds: 

1 f df -2' 9 f = L IndlJ(T) Res(glf)df(T) + L m(f, a)g(a) IndlJ(a) 
ttl l! T aeZ(f) 

- L m(J, a)g(a) Ind,,(a), 
aeP(f) 

where m(J, a) is the multiplicity of a as a zero of f (resp. pole of f). 

PROOF. It is enough to observe that if a E Z(f), 

Res(glf)df( {a}) = m(J, a)g(a) 

and if a E P(f), 

Res(91f)df({a}) = -m(f,a)g(a). o 

2.6.3. Corollary. Assume the same hypotheses as in §2.6.2, assume moreover that 
" E BI (0; tE) (for instance the I-cycle (1y associated to a loop y homotopic to a 
point), then 

1 f df -2' 9 f = L m(J, a)g(a) Ind,,(a) - L m(J, a)g(a) Ind,,(a). 
m l! aeZ(f) aeP(f) 

PROOF. Ind{)(T) = 0 for every hole T of 0 since () is a I-boundary. 0 
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2.6.4. Corollary (Argument Principle). Let J be a meromorphic Junction in an 
open set U, ex a Jordan curve in U whose interior Int(ex) is contained in U. Assume 
ex does not intersect Z(f) u P(f), then 

where 

1 f f'(z) 1 1 
2ni a J(z) dz = nz - np = 2ni Aa 10gJ = 2n Aa argf, 

nz = # (Int(ex) II Z(f», 

np = # (Int(ex) II P(f», 

the points being counted according to their multiplicity. Here AaargJ (resp. 
Aa logf) indicates the variation along ex oj a branch oj the argument oj J (resp. 
a branch oflogf). 

PROOF. The hypotheses imply that f ¥= 0 in the component of U which contains 
ex (f ¥= 00 by our definition of merom orphic function), hence nz < 00 and 
np < 00. We can construct n, admissible open set, with 

ex u Int(ex) £; n £; U, 

and apply §2.6.3. The last identities are a consequence of Remark 1.6.30. 0 

Note that when ex is piecewise-Clone can consider j(~; as ! (logf(z», 

where logf(z) is a continuous (but multiple-valued) determination of logf 
Locally, this derivative makes sense, so that 

1 f f'(z) 1 f 
2ni a J(z) dz = 2ni a d(logJ(z» dz. 

2.6.5. Proposition (RouchC's Theorem for Holomorphic Functions-Strong 
Version). Let n be an open subset of C, ex a Jordan curve in n with its interior 
contained in n, and f and g meromorphic functions in n without poles on ex such 
that 

If(z) - g(z)1 < If(z) I + Ig(z)1 (z E ex). 

Let nZ(fl' nZ(g)' np(fl' np(g) be the number oj zeros and poles off and gin Int(ex), 
counted according to their multiplicities. Then 

PROOF. In fact, from §1.8.6 the two loops in C*, f 0 ex and g 0 ex, have the same 
degree, i.e., 

On the other hand 
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1 f I'(z) 
Indfo~(O) = 2ni a fez} dz, 

Ind 0 (0) = ~ .... f 1(z) dz. 
9 a 2ni a g(z) 

Now we can apply §2.6.4. 
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o 

2.6.6. Proposition (Rouche's Theorem for Meromorphic Functions-Usual 
Form). Let n, O! be as in §2.6.5 and f, g meromorphic functions in n without 
poles on O! such that 

If(z) - g(z)1 < Ig(z)1 (z E O!). 

With the same notation as in §2.6.5 we have 

PROOf. It can be obtained as a coronary of §2.6.5 or directly from §1.8.7 and 
§2.6.4. D 

2.6.7. Example (D'Alembert-Gauss' Fundamental Theorem of Algebra). Let 
fez) = anz" + ... + aD, an :I 0, and g(z) = a.z". Let R be sufficiently large so 
that 

If(z) - g(z)1 = la._1z·-1 + ... + aol < Ig(z)1 = la.IR" 

on O! = {z E C: Izi = R}. Proposition 2.6.6 tells us that the number of zeros of 
the polynomial f inside ex equals that of g, that is, n. 

2.6.8. Proposition (Hurwitz's Theorem). Let n be an open subset of C, A a 
topological space, f: n x A -+ C a continuous map such that, for every A E A, 
the function z ~ f;.(z) := fez, A) is holomorphic in n. Let Zo be a zero of multi
plicity k (1 ::s; k < (0) of f;.o' There is an 80 > 0 such that for every 8, 0 < 8 ::s; 8o, 

there is a neighborhood v" of Ao such that f). has exactly k zeros (counted with 
multiplicities) in the disk B(zo, 8) if A E v". 

PROOF. ~ince Zo is an isolated zero of f;.o' there is eo > 0 such that f).o does not 
vanish on .8(zo, eo)\ {zo}' For e E ]0, eo] let 

m(8) = inf 1 f ... o(z) I > O. 
Iz-zol=< 

Since f: 8B(zo, c) x A -+ C is continuous, the family (f).} converges uniformly 
to f ... o on 8B(zo, e) when A -+ A.o. Therefore, there exists a neighborhood V. of 
A.o such that if A E v" and Iz - zol = 8 we have 

If;.(z) - f"o(z)1 < m(e) ::s; If"o(z)l. 
Hence, by §2.6.6, the functions J~ and f;.o have the same number of zeros in 
B(zo, e). 0 
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2.6.9. Examples. (l) Let P(z; ao," ., an) = anzn + ... + ao be a polynomial of 
degree n in the variable z. Assume that for some choice ag, ... , a~ of coefficients 
the value Zo is a simple root of P. Hence, for coefficients ao, ... , an sufficiently 
close to ag, ... , a~ the corresponding polynomials have exactly one root in 
a neighborhood of zoo This shows that, locally, the root z = z(ao, ... , an) is a 
continuous function of the coefficients. In fact, we can show that this function 
is differentiable (and even holomorphic in each aj). Namely, we can write 

8P 
1 i Tt(t;ao, ... ,an) 

z(ao, ... ,an) = -. t dt 
2m Izo-tl=< pet; ao,.··, an) 

for e > 0 sufficiently small and one can differentiate under the integral sign. 
(2) The function fez) = A - z - e-Z has a single root (in fact, a real root) 

in Re z ~ 0 for each A real> 1. In fact, it is easy to see that f(x) must vanish 
for some x real, x E JO, ..1[. If we set g(z) = A - z and consider the contour rt.R 

suggested by Figure 2.9, one verifies that le-zi = If(z) - g(z)1 ::; 1 < 1..1 - zl if 
z E rt.R • Therefore, the number of roots of f = 0 in the interior of rt.R does not 
change with R and remains equal to 1, the number of roots of g. 

Rr---------, 

o R 

1 A 

_RL------....J 

Figure 2.9 

2.6.10. Proposition. Let f be a holomorphic function in Izl < R such that 
f(O) = 0, 1'(0) =F O. Let r E JO, RJ be such that 0 < Izl ::; r implies fez) =F O. 
Then, for 0 < p < R, the relation 

1 i if'(t) g(w):= -. dt 
2m Izl=p f(t) - w 

determines a holomorphic function defined in Iwl < m:= inf If(t)l. For such 
Itl=p 
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values of w, z = g(w) is the unique solution of the equation f(z) = w, which tends 
to zero when w -+ 0 (in fact, g(w) also lies in Izl < p). The coefficients of the 
Taylor expansion of 9 about 0, g(w) = L a"w" can be computed by 

".,1 

1 f dt 1 {d"-1 [f t )"]} 
a" = 2nin Jltl=p (f(t»" = n! dt,,-1 V(t) (0). 

PROOF. For Iwl < m and Izl = p we have I f(z) I ~ m > Iwl. Hence Rouche's 
theorem asserts that the two functions f(z) and f(z) - w have the same number 
of zeros in Izl < p, that is, exactly one root. Denote g(w) the root off(z) - w = 0 
in Izl < p. It is given by the integral formula 

1 i f'(t) g(w) = -. t dt, 
2m Itl=p f(t) - w 

which shows that it is a holomorphic function of w (by differentiation under 
the integral sign). We remark that for It I = p, 

1 w" 
f(t) - w = ,,~o (f(t»,,+1 ' 

which converges uniformly and we can integrate termwise. This implies 
g(w) = L a"w" 

".,0 

_ 1 f tf'(t) d 
a" - 2ni J Itl=p (f(t»,,+1 t. 

Note that ao = 0 (as it should) since the corresponding value g(O) is the root 
of f(z) = 0 in Izl < p, which is exactly z = 0 by the hypotheses. 

Since (t/(f(t»")' = 1/(f(t»" - ntf'(t)/(f(t»,,+1, we find 

1 f dt 
a" = 2nin Jltl=p (f(t»" , 

1 
which is the residue at zero of the function -(1/f(t»". The origin is a pole of 

n 
order n for this function, therefore 

1 {d,,-1 [1 til ]} 
an = (n _ 1)! dt,,-1 11 (f(t»" (0). o 

2.6.11. Corollary. Let f be holomorphic in a neighborhood of B(a, R) and 
injective in B(a, R). If n = f(B(a, R» and y = oB(a, R) then the inverse function 
f- 1 is defined for WEn by the relation 

-1 1 f tf'(t) f (w) = -2· f() dt. my t-w 
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2.6.12. Remark. In many applications the equation one tries to solve has the 
form 

z - w<p(z) = 0, <p(o) -# 0. 

This equation fits the Proposition 2.6.10 with J(z) = z/<p(z). Therefore the 
solution z = g(w) has the expansion g(w) = L an wn with 

n2: I 

1 {dn
-

l 
} 

an =;If dt n- l [(<p(t»"] (0). 

Let us apply this to the equation 

A. - z - e- Z = ° (Rez ~ O,A. > 1) 

from §2.6.9, (2). Intuitively the solution is close to A. when A. is large. We 
transform this equation to bring it to the preceding form by writing z = A. + s, 
then 

Set w = -e-;', then we find s - we-S = 0. The solution z of the original 
equation is now given by 

Stirling's formula gives the asymptotic behavior of the factorial: 

n! ~ -f2~ nn+I/2e-n, 

and therefore 

nn-l -n). e-n().-l) 

1i!e ~ fo~' 

so that the series is convergent for A. ~ 1 (and it also allows us to estimate very 
well its value). 

Let us recall that a meromorphic function in S2 is a function which is 
merom orphic in C and has an isolated singularity at 00 which is at most a 
pole. Clearly any rational function is meromorphic in S2. 

2.6.13. Proposition. The class oj meromorphic Junctions in S2 coincides with 
the class oj rational Junctions. 

PROOF. Let m(z) be a meromorphic function in S2. The total number of poles 
is finite. Let us denote z I, ... , Zn the poles in C. For each j, let 

Ak j Al . 
mj(z) = J" k + ... + __ ._J 

(z - z) J Z - Zj 
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be the principal part of the Laurent expansion of m about Zj' The function 

P(z) := m(z) - L mizl 
j 

is an entire function and at 00 it has at most a pole, hence P is a polynomial. 
o 

Note that we have simultaneously proven the validity of the well-known 
partial fraction expansion for rational functions. 

2.6.14. Proposition. Let m be a rational function (m i= 0). The sum of the 
residues over all poles of m and the point of 00 is zero. In particular, the number 
of zeros and poles of m in S2, counted with multiplicities, is the same. 

PROOF. Let R > ° be sufficiently large so that all the poles of m in C lie in 
B(O, R). Then the residue formula gives: 

- Res(m, (0) = -21 _ f m(z) dz = L Res(m, a)_ 
TCl 8B(O,R) aeC 

poles 

The second part of the proposition is a consequence of the first applied to 
m~ 0 

2.6.15. Example (Abel's Formula). Let P, Q be polynomials, deg P :5: deg Q--- 2, 
every zero of Q is simple. Then we have 

2.6.16. Proposition (Cauchy's Expansion in Partial Fractions). Let f be a 
meromorphic junction in C for which there is a family (Yn)ne: 1 of rect!ficable 
Jordan curves such that Yn £ Int(Yn+J and C = U Int(Yn). Assume further that 

n;::1 

lim. f If(z)lldzl = o. 
n~oo Yn Izl 

Denote by (akhe: 1 the poles off, assume no ak lies in any curve Yn" Then we have 
the following expansion: 

where Dr = Int(Yl)' Dn = Int(Yn)\fl1t(Yn_d (n ~ 2), and Pk is the principal part 

off at ak- The series whose general term is L Pk (_I) converges uniformly 
akE Dn Z -- Q k 

on every compact subset of C\ {ak : k ~ 1}. 
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PROOF. For z E Dn \{ak: k ~ I}, we have 

Now, it is immediate that 

( f(t) ) Res --, t = z = f(z), 
t-z 

and 

Res (I(t):, ak ) = ____ Pk (_1 ) . 
t - '" z - ak 

On the other hand, for K compact in C \ {ak : k ~ I}, z E K, one has 

. II f(t) I -, . I If(t)lldtl hm sup -- dt ::;; C(K) hm sup ~~----- = O. 
"--+00 Yn t - z "-00 Yn Jtj 

The expansion is therefore valid. D 

cotanz 
2.6.17. Example. Let f(z) = ~-- and Y. be the circle of center 0 and radius 

z 
n 

(2n + 1);;;. The periodicity of cotan z implies that there is M > 0 such that if 
"-

Iz - nnl ~ n/4 for every n E 71., then Icotanzl ::;; M. Hence 

I Icotanzl,dz,::;; C. 
rn z Izl n 

Th .. 1 0 f cotan z. 1 d h . I e pnnclpa part at z = 0--- IS 2" an t e prmcipa part at z = nn 
z z 

(n 1= 0) is 1 __ , since the points z = nn are simple poles of residue~. 
117r(z - nn) 117r 

Therefore, for z ¢ n71. 

cotan z = ~ + lim I' _ 1 , 
z Z n~'XJ -n:;;k:;;n kn(z - kn) 

where I' means that k 1= 0 in the summation. It follows that 
k 

1 1 
cotan z = - + 2z I 2 2 2' 

Z n:;> 1 Z - n n 

The last formula follows from the previous one by adding together the terms 
of index k and -k. Note that this series is absolutely and uniformly convergent 
on compact subsets of C \ n71.. 

2.6.18. Proposition (Hurwitz's Theorem Second Version). Let n be an open 
subset o{ C, .t\ a topological space, I: n x .t\ --> C a continuous function such 
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that, for every A E A, 

f;. : z 1-+ f(z, A) 

is holomorphic in Q. Let AO E A and y be a Jordan curve in Q such that Int(y) £: Q 

and f;.o does not vanish on y. There is a neighborhood V of Ao in A such that for 
any A E V, f;. and f;.o have the same number of zeros in Int(y). 

PROOF. Let m:= inflf;'o(z)1 > O. By the uniform continuity of (f;.heA on y we 
zey 

have a neighborhood of V of Ao in A such that if A E V and z E y 

(z E y). 

The proposition follows now from Rouche's theorem. o 

2.6.19. Proposition. Let Q be a connected open subset of C, (fn)n:21 a sequence 
of injective holomorphic functions that converges in Jt'(Q) to f Then, either f 
is constant or f is injective. 

PROOF. Assume f(zd = f(z2) = a for some Zl =f: Z2. If ft= a then Hurwitz's 
Theorem 2.6.18 (with A = I\J u {oo} and foo = f) implies that fn - a has at 
least one zero in B(Zl'P) and one in B(Z2'P), for n sufficiently large and 
P conveniently chosen satisfying 0 < 2p < IZI - z21. This contradicts the 
injectivity of fn. 0 

2.6.20. Proposition. Let B = {z E C : 1 z 1 < 1} and let Q be a connected open 
subset of B containing the origin. Let fJI £: d £: Jt'(Q) be defined by: 

d := {f E Jt'(Q) : f(Q) £: B, f injective, f(O) = O} 

fJI := {f Ed: 11'(0)1 ~ 1}. 

Then the set fJI is compact in Jt'(Q) and there is f E fJI such that 

11'(0)1 = sup Ig'(O)I· 
ge d 

If we assume further that Q is simply connected then this function f is a 
biholomorphism of Q onto B. 

PROOF. Since Q £: B, at least the identity function z 1-+ z belongs to fJI. Let us 
show that fJI is compact in Jt'(Q); it will then follow that 

sup Ig'(O)1 = sup Ig'(O)1 
ge d ge ill 

is, in fact, achieved at some f E fJI, since g 1-+ Ig'(O)1 is a continuous function 
on fJI. 

Since fJI is a bounded subset of Jt'(Q), it is enough to show that it is closed. 
If qJ E fij there is a sequence qJn -+ qJ in Jt'(Q), {qJn}n:21 £: fJI. Hence qJ(O) = 0 
and 1 qJ'(O) 1 ~ 1. It follows that qJ is not constant and hence, by §2.6.19, qJ is 
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injective. Since qJn(O) £: B, it follows <p(0) £: B. But the maximum principle 
implies now that <p(0) £: B. Therefore <p E 91. 

Letf E 91 have the largest possible derivative at O. To show that in the case 
when 0 is simply connected f is a biholomorphism onto B we only have to 
prove f is surjective. Assume there is a E B\f(O). We want to construct 9 E d 
such that Ig'(O)1 > 11'(0)1. This will contradict the choice of f 

The simple connectivity of 0 assures us of the existence of the logarithm 
of any nonvanishing holomorphic function. Let 

( f(Z) - a) 
F(z) := log 1 _ df(z) . 

F is then holomorphic in 0 and since I f(z) ; a I < 1 we also have Re F < O. 
1 - a (z) 

Clearly, it is also injective. 
To construct a function in d we use the inequality 

Reu < 0, Rev < 0 implies Iv - ~I < 1. 
v+u 

(For u fixed, this is just a conformal map of {Re v < O} onto B.) Therefore the 
function 

g(z) := F(z) - F(O) E d. 
F(z) + F(O) 

Let us now compute g'(O). We note that 

F'(O) = (a - ~)I'(O) and '(0) _ F'(O) 
9 - F(O) + F(O) 

Hence, 

Ig'(O)1 1 - lal 2 

11'(0)1 - -2Ialloglal· 

Consider the auxiliary function t/J: t 1--+ 1 - t 2 + 2t log t in 0 < t < 1. It is 
strictly convex, t/J'(l) = 0, and t/J(l) = 0, therefore t/J(t) > O. This implies that 

Ig'(O)1 > 11'(0)1, 

which is the contradiction we were looking for. Therefore f is a biholo
morphism of 0 onto B. 0 

2.6.21. Riemann Mapping Theorem. Every proper simply connected open subset 
of C is biholomorphic to the unit disk B. 

PROOF. Let us assume 0 1 is a simply connected proper open subset of C. To 
show it is biholomorphic to B it is enough to show that it is biholomorphic 
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to a bounded open subset of c. The rest follows by applying a similarity and 
the result obtained in Proposition 2.6.20. 

If there is a closed ball B(a, p) disjoint from 0 1 , the map () : z f--+ _1_ is a 
z-a 

biholomorphism for 0 1 onto (}(01)' which is simply connected and bounded. 
In general, let bE a01 (it exists since 0 1 "# IC), the holomorphic function 

z f--+ z - b does not vanish on 0 1 • Hence there are two determinations R+, 
R_ of ~ in 0 1 . We have R_ = -R+. The open sets U+ = R+(Od 
and U_ = R-(Od are disjoint, otherwise if R+(zd = R_(Z2) we would have 
ZI - b = Z2 - b. Therefore ZI = Z2 but R+(ZI) = R_(ZI) = -R+(ZI) implies 
ZI = b, which is impossible. It follows that 0 1 is biholomorphic to U+, but U+ 
is disjoint from the nonempty open set U _. Hence U + is disjoint from some 
closed ball and we are back in the previous case. 0 

The ramifications of the Riemann mapping theorem will be explored in 
§2.8. Meanwhile, we conclude this section with another application of the 
argument principle. 

Given a connected open set 0 £; C, we have that ,,(((0) £; ~(0,S2), the 
space of all continuous mappings from 0 into S2. Since the Riemann sphere 
is a metric space with the chordal distance, we can consider in the space 
~(O, S2) the topology of uniform convergence on compact subsets ofO. When 
restricted to the subspace £(0) of ~(O, S2), this topology actually coincides 
with the usual topology of £(0). 

2.6.24. Definition. A sequence Cr..)n~1 £; ,,(((0) converges normally to a function 
f: 0 --+ S2 if u(fiz),J(z)) --+ 0 as n --+ 00 uniformly on compact subsets of 0, 
where u is the chordal distance in S2 defined in Exercise 2.3.1. 

The crucial property of this notion is the following proposition, whose 
proof is left to the reader. 

2.6.25. Proposition. Let (j;,)n~ 1 £; ,,(((0) converge normally to f, 0 connected 
open set in C. Then, either f E ,,(((0) or f == 00. Moreover, if all the fn are 
holomorphic and f =1= 00, then f E £(0) and f" --+ f in the topology of £(0). 

The concept of normal convergence can be extended to sequences in 
~(0,S2) and, even further, assume that 0 is a connected open set in S2. The 
previous proposition still makes sense and it can be translated into the 
following. 

2.6.26. Proposition. Let 0 be an open connected set in S2, ~(O, S2) is a Frechet 
space when considered with the topology of normal convergence. The closure of 
,,(((0) in this topology is ,,(((0) u {oc}, 00 representing the constant function 
identically equal to 00 in O. 
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Finally, we have the following generalization of the concept of relatively 
compact families in £'(0). 

2.6.27. Definition. A family iF s;;;: ..H(O) (0 open connected subset of S2) is said 
to be a normalfamily if every sequence Un)n?1 s;;;: iF has a normally convergent 
subsequence (to an element in ..H(O) u { 00 } ). 

EXERCISES 2.6 
o represents an open connected subset of C, though some statements are clearly valid 
also when 0 £; S2. B = B(O, 1) £; C. 

1. Let 0 be an open connected subset of S2, J E ,,/(0). Then J(O) is open and 
connected. Moreover, if J is injective then J- 1 E .,/(J(O)). 

2. Prove Propositions 2.6.25 and 2.6.26. 

3. Show that any bounded family in Jt"(0) is a normal family in the sense of 
Definition 2.6.27. Is the converse true? Is it true that if!J' £; Jt"(0) and the family 
!J" = {J' : J E !J'} is normal, then !J' is normal? Is the family !J' = {J == c, C E C} 
normal? 

4. Show that the family!J' = {J E Jt"(0): ReJ > O} is normal. 

5. Show that if J E Jt"(S2) then J == C E C. 

*6. Let J E Jt"(C) and 0 < r < R < 00 be two fixed numbers. Consider the family !J' 
offunctions h" h,(z) = J(kz), k E N*, for z E A(O; r, R). Show that !J' is normal if 
and only if J is a polynomial. 

*7. (Marty's Theorem). A family !J' £; ,,/(0) is normal if and only if the family 
!J''# = {J '# : J E !J'} of spherical derivatives is locally uniformly bounded. (Hint: 
See Exercise 2.3.3 for the definition of spherical derivatives. Use this exercise 
together with Arzela-Ascoli's theorem to obtain the result.) 

8. Show that all the fixed points of the meromorphic function tan z are real and 
simple. 

9. How many roots does the polynomial Z4 - 5z + 1 have in B(O, I)? Write down 
the first two terms of the power series expansion about ). = 1 of the root 
z().) E B(O, 1) of the equation 

Z4 - 5z + ). = O. 

10. How many roots does p(z) = Z5 + 12z3 + 3z2 + 20z + 3 have in the annulus 
{z: 1 < Izl < 2}. 

11. Show that all the roots of the equation Z3 - Z + ). = e-%(z + 2) lie in the half
plane Rez < 0, if), > 2. 

12. Let J E Jt"(B),J(O) *- 0, m E N*. Show that there exists p > 0 such that for every 
w,O < Iwl < p, the equation zm = wJ(z) has m distinct roots in B. 

*13. Let qJ be a continuous real-valued nondecreasing (or nonincreasing) function in 
the interval [0, 1]. Show that the entire function 
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I(z) = L q>(t) cos(tz) dt 

has only real zeros. (Hint: Use Exercise 1.8.5.) 

177 

14. Let ,elF = U E .n"(0): I(O) <;; B, I injective}. Determine the closure of the family 
.elF in ,;('(0). 

15. Let f E .n"(B), I(O) = 0, /,(0) = I, I injective, IIIlloo S; 1. Consider the family 
{P-l }." I of iterates lIn] = I 0 •.• 0 I Show that every limit function of this family 
is a conformal map of B onto an open set 0 <;; B. 

*16. Show that if 0 is a proper connected subset of C such that every nonvanishing 
hoi om orphic function admits a continuous square root, then 0 is simply connected. 
(Hint: This requires a modification of the construction of the auxiliary function 
F in the proof of Proposition 2.6.20.) 

17. Let S = U E Jt'(B): I(O) = 0,/'(0) = 1,/ injective}. Show that S is a closed subset 
of ,;('(B). 

00 1 
18. Use Example 3.6.17 to compute I2' 

n=l n 

19. Let f: B -> B be holomorphic and have the property that there is a unique point 
Zo E B such that I(zo) = zoo Show that if.? is a family of holomorphic functions 
in B such that g(B) <;; Band fog = g 0 f for every g E /F, then g(zo) = Zo for every 
g E .elF. 

20. Let f E Jf'(B) and f(B) <;; B. Assume there is some increasing sequence nk -> CfJ 

of integers and some g E Aut(B) such thatp"k] -> gin Jf?(B). Showthatf E Aut(B). 

21. (a) Prove Abel's Formula 2.6.15. 
(b) Let (, at, ... , an be distinct complex numbers, P a polynomial of degree n - 1 

such that 

j = 1, ... , n. 

Compute P(O using Abel's formula and Q(z) = (z - (Hz - a l ) ... (z - an) 
(You will obtain Lagrange's interpolation formula). 

(c) Let Cal"'" an as in (b), VI' ... , Vn E N*,d = VI + ... + Vn - 1, Papolynomial 
of degree d such that 

p(k)(aj) 
k! = bj,k' lS;js;n,Os;ks;vj-l. 

Find a formula for P(O using Abel's formula as in (b). 

22. Let f E Jf'(B(O, 3» and f '" 0 on Izl = 3. Assume that 

~ r f'(z) dz = 2 
2ni J Izl=3 f(z) , 

i~i L=3 z~:(~: dz = 2, 

and 
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2~i L=3 z2j(WdZ = -4 

Find the roots of fin B(O, 3). 

§7. The Area Theorem 

In this section we consider some simple properties of a particularly interesting 
class of conformal mappings of the disk, the class S. These properties are 
consequences of the area theorem (Lemma 2.7.3). We will use variants of 
these ideas to obtain Picard's theorem about the behavior of a holomorphic 
function near an essential singularity. The main theme is the interplay between 
covering properties of holomorphic maps and the concepts of bounded and 
normal families. 

2.7.1. Definition. We denote by S the class of hoi om orphic functions in B(O, 1) 
which are injective and satisfy the normalization conditions 1(0) = 0 and 
1'(0) = 1. 

This notation comes from the German word schlicht which means precisely 
injective. We are going to show that S is a compact subset of Jf'(B(O, 1). We 
already know that as a consequence of Hurwitz's theorem, S is closed (cf. 
Exercise 2.6.17). To prove the compactness, all we need to do is to obtain a 
uniform estimate for each r < 1 of the values I/(z)l, where Izl S; r < 1 and 
1 E S. This will follow from an estimation of the second coefficient a2 of the 
Taylor development of 1 at the origin 

I(z) = z + a2 z2 + a3 z3 + .... 

2.7.2. Proposition. For every 1 E S, la21 S; 2. 

PROOF. To every 1 E S we will associate a function g injective and holomorphic 
in the region 1 < Izl < 00; furthermore it will turn out that 

bi b2 
g(z) = Z + bo +------ +- + .... 

Z Z2 

Before making the bj more precise, we consider the following useful lemma. 

bi b2 
2.7.3. Lemma (Area Theorem). Let g(z) = z + bo + ------- + 1: + ... be holo-

z z 
morphic and injective in 1 < Izl < 00, then 

L nlbn l2 S; 1. 
1t?1 

PROOF. Let E be the compact set E:= lC\g( {z: 1 < Izl < oo}). Since g is 
injective then the image of the circle Izi = r > 1 is a Jordan curve whose 
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interior Er contains E (this follows from g( 00) = 00). Therefore the area 
m(Erl ~ m(E) ~ 0 can be computed as follows: 

m(Er) = -.1 f dw 1\ dw = -21. f wdw = -21. [ g*(wdw) 
21 E. IcE, 1 J 1=I=r 

=1. [ g'(z)g(i)dz 
21 J Izl=r 

Letting r -+ 1 we obtain 

o :s; m(E) = n (1 ..... n~l n1bnl2)' 

This proves the lemma. D 

From the lemma it foHows that Ib1 1:s; 1. Returning to the proof of 
Proposition 2.7.2, to every f E S we associate the function 

1 a2 1 
g(z) = ..... = z - - - + .... 

Jf(l/zZ) 2 z 

Once we show that 9 is well defined, satisfies the properties of Lemma 2.7.3, 

and has the coefficient b1 ==~~, then the proposition will be proven. 
2 

First we note that J f(w 2 ) makes sense since 

f(w 2 ) = w2 + azw4 + a3w6 + ... = w2 (1 + a2w2 + a3 w4 + ... ), 
and the function (1 + a2 w 2 + ... ) is holomorphic in B(O, 1) and never vanishes 
since f is injective (hence f(w 2) only vanishes at w = 0, where it has a 
double zero). Therefore we have a well-defined holomorphic square root 
(1 + az w2 + ... )1/2 which takes the value 1 at w = 0, 

and 

(1 + az W Z + ... )1/2 = 1 + az w2 + ... 
2 

h(w):= ~J(;2) = w( 1 + a22 w2 + ... ), 

is hoiomorphic in B(O, 1), and vanishes only for w = O. Let us check that this 
function is still injective (and hence it is in the class S). If h(wd = h(wz ), WI' 

W2 E B(O, 1), Wj =1= Wz, thenf(wf) = f(wi). Hence wf = wi and WI = -Wz. But 
h is an odd function, h(w2 ) = h( -wd = -h(wd implies h(wd = 0, hence 
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Wi = w2 = 0, which is impossible. (The reader should compare this argument 
with the proof of the Riemann mapping theorem.) 

It follows that g(z) := 1jh(1jz) is holomorphic and injective in the annulus 
1 < Izl < 00. Furthermore, 

z a2 1 
g(z) = = z - - - + .... 

1 + a2 ~ + ... 2 z 
2 Z2 

The proposition has therefore been proven. o 

Recall that for a E B(O, 1), we denote by <fla the Moebius transformation 
<fla(z) = (z - a)j(1 - az). For f E S, consider the function f 0 <fl-a' The latter is 
injective in B(O, 1) but it does not satisfy the normalization conditions to be 
in S. Its derivative at the origin is (f 0 <fl-a)'(O) = f'(a)<fl'-a(O) = (1 - laI 2)f'(a). 
Hence, the function 

F(z) := f 0 <fl-a(z) - f(a) 
(1 - laI 2)f'(a) 

is in the class S. The Taylor development of F at the origin is F(z) = 
z + A 2(a)z2 + .... The chain rule gives 

(f 0 <fl-a)"(O) = f"(a)(1 - la1 2)2 - 2af'(a)(1 - laI 2), 

whence 

1 ( 2 f"(a) _) 
A2(a) = 2 (1 - lal ) f'(a) - 2a . 

From here we obtain the following. 

2.7.4. Proposition. For every f E S and a E B(O, 1) we have 

laf"(a) - ~I < ~ 
f'(a) 1-r2 -1-r2' 

where lal = r. 

PROOF. From the preceding computation we get 

2 A2(a) f"(a) 21al 2 

a 1 _ lal 2 = a f'(a) - 1 _ lal 2' 

Using now that lal = r and that, by Proposition 2.7.3, IA 2 (z)1 :5: 2, we obtain 
the desired inequality. 0 

For a function f E S we have that f'(z) does not vanish and 1'(0) = 1, 
therefore we can define the holomorphic function g(z) = Logf'(z). We would 
like to estimate its real part, Re g(z) = 10glf'(z)l. For that purpose, we consider 



§7. The Area Theorem 181 

its derivative in the radial direction: 

o 'IJ (0 'IJ ) (f"(re ilJ ) ilJ) or Re g(re' ) = Re or g(re') = Re f' (re ilJ ) e . 

Hence, for z = re i6, 

o , ilJ (Zf"(Z») 
r or loglf (re )1 = Re f'(z) . 

Note that the right-hand side contains one of the quantities that appears 
in Proposition 2.7.4. From that proposition we conclude that 

2r2 - 4r (Zf"(Z») 2r2 + 4r 1 _ r2 ::::;; Re f'(z) ::::;; 1 _ r2' Izl = r. 

Divide by r and integrate in r between 0 and p, 0::::;; p < 1, we obtain 

log (11 ; ;3)::::;; 10glf'(peilJ)l::::;; log ell ~ ;3)-
It follows that 

1 - p If'( ilJ)1 1 + p 
(1+p)3::::;; pe ::::;;(1_p)3' 

for any f E S. Therefore if Izl = r < 1 we have 

fr . fr 1 + P r 
If(z)l::::;; 0 1f'(pe,IJ)1 dp::::;; 0 (1 _ p)3 dp = (1 _ r)2' 

Since this estimate is independent of J, it follows that S is a bounded family. 
We already know that S is a closed subset of Jf'(B(O, 1)). This proves the 
following. 

2.7.6. Theorem. The family S is compact in Jf'(B(O, 1)). 

We have not used the lower bound on 1f'(z)1 obtained earlier. If we do, we 
obtain a more precise result. 

2.7.7. Proposition. Iff E S, then 

r r 
(1 + r)2 ::::;; If(z)1 ::::;; (1 - rf' Izl = r < 1. 

PROOF. We have already proven the upper bound. To prove the lower bound, 
r 1 

note that (1 2 < -, hence the lower bound is automatically valid if + r) 4 
1 

I f(z) I ~ 4' In the other case, let us assume for the moment that the segment 
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L = [O'/(z)] lies entirely in the image of f In that case, let y be the Jordan 
arc in B(O, 1) going from ° to z, which is the inverse image of L. Over y we 

have that Arg (1'(0 ~D == Argf(z) = e, where s = arc length in ;'. Therefore 

fez) = l f'(Od, = e iO llf'(Olld(l. 

If we consider I (12 as a function of s, we see that there are only finitely many 
intervals where this function is not increasing (use that 1(1 2 is a real analytic 
function of s). Disregarding those intervals, we obtain a chain y where 1'1 takes 

values from ° to r. Moreover, it is easy to see that I ~~ 12: 1 in y, where p = 1(1· 

These observations, plus the previous identity, show that 

f fr 1 - p r 
I f(z) I 2: If'(Olld(l 2: ---dp =~-. 

ji 0 (1 + p)3 (1 + r)2 

We have to justify now our assumption. This is also a consequence of 
Proposition 2.7.2, as seen from the following. 

2.7.8. Lemma (Koebe's One-Quarter Theorem). If f E S then f(B(O, 1)) ;;> 

B(0,1/4). 

PROOF. If, ¢ f(B(O, 1)), consider the auxiliary function 

F(z):= y iJ(z) = z + (az + ~)Z2 + .... 
\, - fez) <" 

This function is in the class S, hence by Proposition 2.7.2, 

Therefore, 

I~I ~ 4, 

which shows that the lemma is correct. D 

As we said earlier, the only case where we needed the segment L = [O'/(z)] 
to be entirely contained in the image of f occurred when I f(z) 1 < 1/4. This is 
now assured by Lemma 2.7.8. D 

We have seen the importance of the estimate la21 ~ 2. This estimate was 
originally obtained by L. Bieberbach. He also conjectured that if (an)n;;,o are 
the Taylor coefficients of a function f in the class S, then lanl ::; n. This 
conjecture stood open for close to 70 years; its simplicity motivated a large 



§7. The Area Theorem 183 

amount of research on variational methods and other aspects of the theory of 
functions in the class S. In 1984, L. de Branges [de B] gave a beautiful and 
relatively simple proof of the correctness of this conjecture. The reader will 
find some references to these questions in the notes to this chapter. Let us also 
point out the fact that the only functions in the class S for which some 
coefficient an satisfies I an I = n, are the Koebe functions: 

Z 2 3 k(z) = ......... _- = z + 2z + 3z + .. . 
(1 - Z)2 

and 

(0 E [0, 2nD. 

These functions also have the remarkable property that they are the only 
functions in the class S for which (f(B(O, I)))C" aB(O, 1/4) i' 0 (d. [Du]). 

We present here another application of the one-quarter theorem, which 
will be used in the proof of Lemma 3.7.2. The reader could very well bypass 
this statement until he arrives at that point in Chapter 3. 

2.7.9. Lemma. Let K be a compact connected set in C of diameter greater than 
or equal to r > O. Assume further that K" is connected. Then there is a unique 
biholomorphic map F : B(O, 1) -+ S2 \ K such that 

r 
Moreover a > ..... , - 4 

a> O. 

PROOF. The hypothesis on K shows that S2\K is simply connected and 
biholomorphic to the unit disk by the Riemann mapping theorem. The 
uniqueness of F follows from the normalization conditions F(O) = 00 and 
a> O. 

In order to estimate a using the one-quarter theorem, we construct an 
auxiliary function q> in the class S. Let Wo E K, then 

a bo - Wo 2 
q>(Z) = -- = Z - ---z + .... 

F(z) - Wo a 

This function is clearly holomorphic in B(O, 1) and a conformal map as a 
composition of F with a Moebius transformation. Hence q> E S. It is clear that 

a 
for any WI E K we have ........................... ¢ q>(B(O, 1)). Therefore §2.7.8 implies that 

WI - Wo 

Since Wo, WI are arbitrary, the condition diameter of K ~ r immediately shows 
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that 
r 

a >-. -4 o 

This lemma is related to the concept of analytic capacity oc(K) of a compact 
set K. The analytic capacity is defined by 

oc(K):= sup{IRes(f, oo)l:f E £(S2\K), IIflloo ~ I}. 

Considering the functionf = F- 1 in Lemma 2.7.9 we see that the lemma states 

that oc(K) ;;::: ,i, when K is a connected compact set of C with diameter greater 

than or equal to r > 0 and S2 \ K is simply connected. 
In Chapter 4 we will also consider the logarithmic capacity C(K) of a 

compact set. It will not be hard to see then that C(K) ;;::: oc(K) (cf. Exercise 
4.9.12). Otherwise, the properties of oc(K) still are not well understood (see 
[Zal], [Vi]). 

It is natural to ask whether the one-quarter theorem can be generalized to 
functions that are not injective. This is the content of the following theorem 
of Landau. 

2.7.10. Proposition. Let f be holomorphic in .8(0,1) and 1'(0) = 1. Then 
- 1 

f(B(O, 1» contains a disk of radius greater than or equal to 16. 

This theorem has been further strengthened by Bloch, who showed that 
under the same hypotheses, there is an absolute constant p (Bloch's constant) 
and a disk A in B(O, 1) such that f is injective in A and f(A) contains a disk of 

radius;;::: p. The largest constant A that can replace 116 in Proposition 2.7.10 

is called Landau's constant [Ah2]. 

PROOF OF PROPOSITION 2.7.10. There is a largest value 0 ~ r < 1 such that 
max If'(z)I(1 - Izl) = 1. In fact, for r = 0 we have equality, and r = 1 is 
Izl=r 

1 
not possible. Let Zo be a point with IZol = r, If'(zo)1 = -1-. Consider the 

-r 

auxiliary function g(O := f«( + zo) - f(zo). It is clearly enough to show that 
1 

the image of 9 covers a disk of radius greater than or equal to 16' The function 

1 
9 is holomorphic in 1(1 ~ 1 - r, g(O) = 0 and Ig'(O)1 = -1-. Moreover, for 

-r 

1 - r 
1(1 = -2-' we have 
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10'(01 = IF(zo + 01 ~ max IF(z)1 
1=1=( 1 +r)/2 

2 ,2 
max (1 - Izl)lf (z)1 < -_ .... , 

1 - r 1=1=(1 +r)/2 1 - r 

J-r 
by the definition of r. It follows that for 1(1 ~ -2-··' 

10(01 = i I O'(W)dWi < 1. 

Suppose that a point Wo ¢: 0 (B( o,li··~) ). Clearly Wo t= 0 and we can 

consider the holomorphic function h in jj ( 0, !i~) 
h(z) = y"l - O(z}/wo = 1 + a1z + a2z2 + .... 

0'(0) 
We have a = - hence 

1 2wo' 

1 lall = .......... . 
21wol(1 - r) 

Moreover, 

10(z)1 1 
Ih(z)1 ~ 1 + --- ~ 1 + --. 

IWol Iwol 

From Exercise 2.1.31 one obtains 

1 f" I (1 - r '0)1 2 1 = 2n -1[ h-2- e' dB ~ 1 + Iw;;r 
It is now immediate, from this inequality and the value of lall, that 

1 
IWol2 16 , o 

This proposition and Lemma 1.11.15 allow us to prove the little Picard 
theorem, A different proof, depending on the uniformization theorem, can be 
found in Chapter 5. 

2.7.11. Theorem (Little Picard Theorem). Any entire function whose ranoe 
omits at least two values is a constant. 
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PROOF. Let a, b E IC be two distinct values not taken by the entire function F, 

h h f . 1 F(z) - a . . f . h . h I t en t e unctIOn (z) = b _ a IS an entIre unctIOn t at omIts t eva ues 0 

and 1. We can therefore apply Lemma 1.11.5 and obtain an entire function h 
such that 

I(z) = exp(2ni cosh (h(z))). 

It is clear that h must omit the values in the set !l', 

!l':= {±cosh-1(n + 1) + 2mni;n E N,m E Z} 

(cf. Exercise 1.11.12), otherwise 1 would take the value 1. The successive 
differences cosh-1 (n + 2) - cosh-1 (n + 1) decrease with n, the largest value, 
for n = 0, is about 1.317. A quick glance at the set !l' will convince the reader 

that any point of the plane is at a distance at most ~(n2 + 1.3172)1/2 ~ 3.22 

from a point in !l'. Therefore any disk of radius R = 4 contains a point omitted 
by h. 

Assume that h is not constant. Let Zo be such that h'(zo) ¥- O. Consider the 
auxiliary function 

H(z) := 6~ h (h~~:) + zo). 
Then H'(O) = 1 and we can apply Proposition 2.7.10 to it. That means the 

image of B(O, 1) by H contains a disk of radius at least 116 , Therefore the image 

of B(zo, Ih'~:o)l) by h covers a disk of radius at least 4. This is clearly a 

contradiction to the preceding discussion. It follows that h, and hence I, is 
constant. 0 

The reader should remark that it easily follows from this that, whenever 
1 E vU(1C) and it omits three distinct values a, b, C E S2, then 1 is constant. 

There are several ways of obtaining the big Picard theorem from here. It is 
more standard to again use this reasoning to prove a normality result due to 
Montel, and then obtain Picard's big theorem. We prefer to use a nice proof 
of Zalcman of a heuristic principle conjectured originally by A. Robinson, 
which leads directly from Picard's little theorem to Montel's normality criterion 
(we follow [Za2]). 

We first need some precision on the concept offunction, so that we indicate 
its domain of definition. For D a connected open set in IC, one denotes <I, D) 
a function 1 E .Yl'(D) (or 1 E vU(D». For instance, <ez, IC) ¥- <ez, B(O, 1». 

A property P of holomorphic (resp. merom orphic) functions is just a set of 
elements <f, D), e.g., the property P of being a solution of the differential 
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equation f' - f = 0, f(O) = 1, coincides with the set P = {<e z, D) : D domain 
in C}. 

We say a property P is invariant under linear transformations if whenever 
<f, D) E P and qJ(z) = az + b, a -# 0, then <f 0 qJ, qJ-l(D» E P also. 

Recall from §2.6.24 that the natural mode of convergence for a sequence of 
meromorphic functions is that of normal convergence, i.e., u(fn(z),f(z)) ~ 0 
uniformly on compact sets. We say that a property P is complete if: 

(i) whenever <fn, Dn) E P, Dl £: D2 £: .. " D = U Dn, and f E .Jf'(D) (resp. 
f E .If(D)) such that fn ~ f normally in D, then <f, D) E P. (Why does it 
make sense to say that fn ~ f normally, even though fn is only defined in 
Dn?); and 

(ii) if <f, D) E P and D' £: D, then <f, D/) E P. 

2.7.12. Theorem. Let P be a property of holomorphic (or meromorphic) functions 
which is invariant under linear transformations and complete. Assume further 
that whenever <f, C) E P it follows that f is a constant function. Then, for any 
fixed domain D, the family ff = {f: <f, D) E P} is a normal family in .Jf'(D) 
(resp . .If(D». 

We leave the exercises in this section to show that the completeness and 
the invariance under linear transformations are necessary conditions. Exercise 
2.6.6 shows that under the assumption of completeness, the final condition is 
also necessary. 

The proof depends on Marty's theorem, which was stated as Exercise 2.6.7. 
For the sake of completeness we sketch a proof of this result. Therefore, let 
ff £: .If(Q), Q a domain in S2, and we assume that the family of spherical 
derivatives ff# = {f # : f E ff} is locally uniformly bounded in Q. Since S2 is 
a compact space and .If(Q) £: rc(Q, S2), then all we have to prove to conclude 
that ff is a normal family is that it is locally equicontinuous. Let D be a closed 
disk in Q, M an upper bound for all f #(z), zED, f E ff, then for any z, wED, 
we can apply Exercise 2.3.3, (d) and obtain 

u(f(z),f(w)) =:;; i f #(Old(l =:;; M(z - wi· 
[z,w) 

This clearly shows the equicontinuity. 

The converse is an elementary consequence ofthe fact that u(a, b) = (1 (~, ~) 
and f #(z) = (7) # (z). Note also that f # is a continuous function in Q. 

PROOF OF THEOREM 2.7.12. We argue by contradiction. If there were a domain 
D for which the family ff = {f: <f, D) E P} is not normal, by the definition 
of normality there would also be a disk A £: D on which the family ff is 
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not normal. Hence we can assume D = Ll; moreover, since P is invariant 
under linear transformations, one can further assume A = B(O, 1). By Marty's 
theorem, there is a value ro, 0:::; ro < 1, and a sequence /" E.'f'" such that 
max Ifn #(z)1 -+ 00. The proof that follows imitates in part the proof of Landau's 
Izi <;ro 

Proposition 2.7.10. Let Iwnl :::; ro be such that fn#(wn) -+ 00. Choose any 
r E ]ro, 1 [ and consider 

( IZI2) Mn = max 1 - -2 f/(z). 
Izl <;r r 

We clearly have 

( rli) # (IWnI2) # 1 -? In (Wn):::; 1 - 7 In (Wo):::; M n, 

which shows that Mn -+ 00. Let zn, Iz.1 :::; r, be such that 

Mn = (I _lz;t)J,/(z.). 

Let Pn = II/" #(z.), then ° < Pn < 00 and we can define functions gn by 

g.(O = In(zn + PnO· 

r -lz.1 
The function gn is defined at least for 1(1 < Rn, Rn = ---. Moreover, 

Pn 
(gn, B(O, Rn) > E P and 

Rn = r -Iznl = (r -lznl)I/(zn) =1~(1 _IZnI2)/"#(Zn) = ~_~-"-- 2: Mn. 
P. r + IZnl r2 r + Iz.1 2r 

We can therefore assume B(O, R 1 ) £; B(O, R 2 ) £; ... and U B(O, Rn} = IC. In 
order to use the completeness of P we need to show that the g. (or a sub
sequence) converges to a holomorphic (merom orphic) function in IC. For that 
purpose we fix R > ° and we consider 1(1:::; Rand n such that R < Rn. 

Hence Zn + Pn' E B(O, r) and 

( I YI2)' -I 
g:'(O = Pn/" #(z. + PnO :::; PnMn 1 -':"~f---"~\'-

Rn 
<---
- Rn - R 

Therefore we can extract a subsequence, still called Yn for simplicity, such that 
gn -> g normally to some function 9 defined everywhere. Moreover, 

This implies that 9 cannot be constantly equal to en (or any other constant, 
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for that matter), hence 9 is a holomorphic (or meromorphic) function defined 
everywhere. By the completeness of P, (g, C) E P. This implies that 9 is 
constant, and we have a contradiction. The theorem is therefore correct. 0 

2.7.13. Corollaries 

(a) Mantel's Normality Theorem: Let 0 be a domain in C,::F ~ .H(O) be such 
that there are three distinct values WI' W2, W3 E S2 such that "'j rt f(O) for 
every j = 1, 2, 3, and every f E ::F. Then::F is a normal family. 

(b) Extended Montel's Theorem: Let 0 be a domain in C,::F ~ A(O) and B > 0 
be such that for every f E::F there are three values WI' Wz, W3 E S2 omitted 
by f and such that a(WI,w2)a(wZ, w3 )a(w3 , WI) ::::: B. Then::F is a normal 
family. 

PROOF. It is clear that (b) is stronger than (a) since the values WI' W 2 , W3 

may depend on f. Let P be the property that a meromorphic function 
f omits at least three values WI' Wz, W3 (depending on f) such that 
a(wl , wZ)a(w2, w3 )a(w3 , WI)::::: B. In order to apply Theorem 2.7.12 we only 
need to check what happens when a sequence of merom orphic functions in D 
satisfying the property P converges normally to a meromorphic function f on 
D. One can assume f is not constant, otherwise (f, D) E P is clear. 

Let an, bn , Cn be the points omitted by fn' a(a., bn)a(bn, cn)a(c., an) ::::: B. 

By the compactness of S2 we can assume an -+ a, bn -+ b, Cn -+ c. Clearly 
a(a, b)a(b, c)a(c, a} ::::: c, hence these points are distinct. We need to show that 
f does not take any of the values a, b, and c. Assume there is Zo E D such that 
f(zo) = a. Assume a # 00 and let B(zo,r) ~ D be so small that f is holo
morphic in a neighborhood of B(zo, r). Then the functions fn(z.} - an converge 
uniformly to the function fez) - a in B(zo, r). Since this last function is not 
constant and vanishes at least once, by Hurwitz's theorem every fn takes the 
value an in B(zo, r) (for n sufficiently large). This is clearly impossible. Hence 
f omits the value a if a # 00. The same argument works with a = 00, replacing 
J, fn by 1/f and l/fn, respectively. 

Therefore, P is complete and we can apply Theorem 2.7.12 to conclude the 
proof. 0 

It is now easy to prove the fonowing. 

2.7.14. Theorem (Big Picard Theorem). In a neighborhood of an isolated 
essential singularity a holomorphic Junction takes every value in IC jnj/nitely 
often with at most one exception. 

PROOF. Assume that f E £(B(O, c:) \ {O} ),0 is an essential singularity, and there 
are two values a # b such that both equations f(z) = a and fez) = b have only 
finitely many solutions z, 0 < JzJ < B. Hence there is a 6, 0 < b ::;; B such that 
there are no solutions with 0 < JzJ < b. By a simple change of variable we can 
assume b = 2. 
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Consider now the domain D = {z E C: t < JzJ < 2} and the functions 

f.(z) = I(in). n EN, zED. Note that the function f. takes in D the same 

values the function I takes in the annulus r n - 1 < JzJ < rn+l. In particular, 
none of the functions f. takes the values a or b in D. It follows from Montel's 
Normality Theorem 2.7.13 (a) that fi' = {f.: n EN} is a normal family in D. 
Therefore there is a subsequence n1 < n2 < ... such that f.k -+ I normally in 
D. Either I == 00 or I is hoi om orphic. If I =t= 00, then we can assume that the 
f.k are uniformly bounded on the unit circle oB(O, 1), which is a compact subset 
of D. If not Ink -+ 00 uniformly there and we can assume I/f.k is bounded in 
oB(O, 1). Let us say we are in the first case, and Jf.Jz)J ~ M < 00 for every 
k E N+, Z E oB(O, 1). Then we have 

J/(z)J ~ M for JzJ = 1 and JzJ = rnk. 

By the maximum principle 

J/(z)J ~ M whenever Z-nk ~ JzJ ~ 1. 

Hence, J/(z)J ~ 1 in B(O, 1)\ {OJ, since 2-nk -+ 0 as k -+ 00. The singularity is 
therefore removable. The second case implies 0 is a removable singularity for 
III, also impossible. 0 

It is very easy to strengthen this theorem to the following result of G. Julia: 
If 0 is an essential singularity of a holomorphic function/in B(O, 1)\ {OJ, then 
there is zo, 0 < JZoJ < 1, such that for every 6 > 0 the function I takes every 
value, with at most one exception, infinitely often on the union of the disks 

( zo 6) B 2n ' 2n ,n E N (cf. [Za2], [SZ]). 

EXERCISES 2.7. 
1. Let f be a function of the class S such that all its Taylor coefficients about z = 0 

are real, f(z) = z + a2 z2 + a3 z 3 + .... Fix r, 0 < r < 1 and define the auxiliary 
function 9 on [ - 1t, 1t] by 

g(O) := (f(re i8 ) - f(re- i8 )) sin O. 

(a) Show that 9 is even and does not vanish except for 0 = 0, ± 1t. 

(b) Show that f~n g(O)dO = nr. Conclude 9 ~ o. 

(c) Let n be an integer greater than or equal to 2, show that 

2 fn ( an-I) Os - g(O)(l ± cosnO)dO = 2 ± an+1 - -2- rn. 
nr -n r 

(d) Conclude from (c) that 

(n ~ 2). 

(e) Prove that lanl s n for all n ~ 1. That is, the Bieberbach conjecture holds for 
the functions of class S that are real on the axis. (This result was proved in 
1931 by 1. Dieudonne.) 
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e5• - 1 1 
2. Let J(z) = -5-' show that J omits the value -5' J(O) = 0,1'(0) = 1. Why 

doesn't this function contradict the one-quarter theorem? 

3. Use Picard's little theorem to show that if p is a nonzero polynomial, then the 
equation e' - p(z) = 0 has infinitely many solutions. 

4. State and prove the Picard little and big theorems for meromorphic functions. 

5. Let J E £(B(O, R» be a conformal map onto a region 0 of finite area. For 
o < r < R, let Or = J(B(O, r». Show that 

m(O) ;::: (~)2. 
m(Or) r 

(Hint: Compare with the proof of Lemma 2.7.3 or with Exercise 2.1.31.) 

6. Use the functionJ(z) = ~Log 1 + z to show that Landau's constant). is at most-4
1t • 

2 1 - z 

7. Show that given any a > 0 there is a value R = R(a) > 0 such that if IJ(O)I = a, 
J(z) i= 0, 1, J E £(B(O, R», then there is a singular point of J on oB(O, R). (Hint: 
Compare with the proof of the little Picard theorem.) 

8. Let J E S and assume D = J(B(O, 1» is a convex set. The objective of this exercise 

is to show that D 2 B( o,D. 
(a) Let 0 < p < 1, t = e i8 E oB(O, 1) show that 

IIi ( z Pt)dZ -pt=-. J(z) 1 +-+- -. 
2 2m 1.I=p 2pt 2z z 

Conclude that 

1 '8 1 In . 2 (0 - qJ) -pe' = - J(pe"P) cos -- dqJ. 
2 1t -n 2 

(b) Use the fact that - cos2 - dO = 1 and D is convex to show that - pei8 E D. 1 In (0) 1 
1t -n 2 2 

Conclude that B ( 0, D s;: D. 

h f · z 1 . 
(c) Use t e unctIon J(z) = -- to show that - is the best possIble constant. 

1 - z 2 

9. Let J E S. Verify that for a fixed a E B(O, 1) the function 

F(z) = J 0 qJ_.(z) - J(a) 
(1 - laI 2 )f'(a) 

1 1 - r 
belongs to the class S (cf. the proof of Theorem 2.7.6). Conclude that - -- ;5; 

r 1 + r 

if'(Z)i 11 + r 
J(z) ;5; -;: 1 _ r for 0 < Izl = r < 1. 

10. Let J E £(B(O, 1», J(z) = z + a2z2 + a3z3 + .... Show that if 
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I nla.l:$; 1 
n~2 

thenfE s. 

11. Prove that the family of polynomials which belong to S is dense in S. 

§8. Conformal Mappings 

Let us recall that a differentiable homeomorphism between two planar 
domains n1 , n2 (or even two open sets in S2) with nonvanishing Jacobian, 
that preserves the orientation and the angles, is a conformal mapping, i.e., a 
biholomorphic mapping. We say that the domains are conformallyequivalent. 

The Riemann mapping theorem can be restated as follows. 

2.8.1. Theorem. Let n be a simply connected open set in S2, then n is cmiformally 
eqUivalent to exactly one of the following three domains: (i) S2, (ii) C, or (iii) 
B = B(O, 1). 

The first case only occurs if n = S2, the second if n = S2\ {a}, the third if 
ns;S2\{a,b},a1=b. 

PROOF. The proof is left to the reader as an exercise. D 

There is a corollary of the proof of the Riemann mapping theorem which 
is worth mentioning here. 

2.8.2. Proposition. Let n be a domain C, then n is simply connected if and only 
if every nonvanishing holomorphic function in n admits a continuous logarithm. 

PROOF. Clearly we can assume n 1= Co Now we only have to observe that in 
the proofs of§2.6.20 and §2.6.21 the only place where n being simply connected 
played a role was in the use of logarithms and square roots to construct 
auxiliary functions. Therefore, in this case we have a conformal map from n 
onto B and the domain must be simply connected. D 

A theorem of Caratheodory asserts that for a Jordan domain, the con
formal mapping onto B extends continuously to the boundary. Our objective 
is to explain the analytic ideas in the proof of this fact. For that reason we will 
state first a number of purely topological lemmas about simply connected 
domains in C, whose proofs the reader can take for granted. 

*2.8.3. Lemma. Given any two distinct points Zl' Z2 in a domain n, then there 
is a polygonal Jordan arc in n, with sides parallel to the axes, starting at z 1 

and ending at Z2. (Jordan arc means that it is parameterized by an injective 
continuous map qJ : [0, 1] -. Co) 

PROOF. It is an elementary exercise. D 
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*2.8.4. Lemma. Let n be a domain and r a polygonal Jordan arc in n. Then 
n\r is connected. 

PROOF. It an elementary exercise, draw a picture. D 

*2.8.5. Lemma. Let n be a Jordan domain, i.e., n = Int(r), r a Jordan curve 
in C, and let Zo E r. Then, for every e > 0 there is a b > 0 such that every 
pair of points z l' Z 1 E n n B(zo, b) can be joined by a Jordan polygonal arc 
Y ~ n n B(zo, e). In particular, any two points of n n B(zo, b) are in the same 
component of n n B(zo, e). 

PROOF. This is the crucial and entirely topological property. A proof can be 
found in [Bu, 4.48]. It is also a consequence of Schoenflies' version of the 
Jordan curve theorem (see references in [Bu]). See Figure 2.10. D 

*2.8.6. Lemma. Let n, Zo be as in Lemma 2.8.5. Let Zn En, lim Zn = Z00 Then, 
n-+oo 

for every e > 0, there is a subsequence (Zn.)k and an injective curve Y passing 
through all the zn.' contained in B(zo, e) n n except for its endpoint, which is zoo 
(That is y: [0, 1] -. C is a continuous injective path, y([O, 1[) ~ n, y(l) = Zo, 

and there is a sequence 0 < tn • .1' 1 such that y(tnJ = zn •. ) 

PROOF. Let e1 = e be given, let b1 > 0 be the value obtained from Lemma 2.8.5 
and let n1 be chosen so that Zn E B(zo, bd for every n ~ n1. Let nl = n1 + 1. 
Choose Y1 polygonal Jordan arc in n n B(zo, ed, starting at zn" and ending 
at zn2' Let el = !dist(Y1' zo), and choose a corresponding bl and n 3 , n4 = n3 + 1 
by the same procedure. There is then a Jordan polygonal arc Y; starting at 
zn3' ending at zn4 and contained in n n B(zo, el)' The points zn2 and zn3 both 
belong to n n B(zo, bd, hence to the same component C1 of n n B(zo, ed. 
Moreover, by the choice of e1, we have that Y1 and Y; are disjoint. Applying 
twice Lemma 2.8.4 we conclude that C1 \(Y1 u Y;) is connected. Choose two 

Figure 2.10 
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very small disks .11, .12 centered at Z.2' Z.3' respectively, contained in C1 
so that they are disjoint from Y; and Y1' respectively, but Y1 intersects the 
boundary of the first one and Y2 the boundary of the second. Choose points 
Z~2 in 0.1 1 \Y1' Z~3 E an2 \y;. We can connect Z~2 and Z~3 in C1 \(Y1 u yi) by a 
polygonal Jordan arc, and adding Jordan polygonal arcs contained in.11 and 
A2, respectively, we construct a Jordan polygonal arc Y2 entirely contained in 
Cl> starting at z., passing through Z.2' Z.3 and ending at Z.4' We let now 
1:3 = tdist(zo, Y2) and c53 , n4 , ns = n4 + 1 as earlier. The points Z.3 and z •• are 
in the same connected component C2 of B(zo, 1:2) n n. We can repeat the 
procedure constructing first Y; in B(zo, 1:3) n n, and then joining it to Y2 as 
done earlier. This procedure clearly answers the question posed. 0 

We need one more consequence of §2.8.5. Let n be a Jordan domain, 
Wo E an, and r a Jordan arc in n defined in [0, 1) such that there is a sequence 
of values tk --+ 1 with ntk) --+ woo Let ro < dist(wo, nO». Then, for any 
0< r ~ ro, there is a connected subdomain of n with Wo in its boundary, 
constructed as follows. 

Let Fr = {t E [0, 1]: r(t) E aB(wo,r)}. It is a closed subset of [0,1[. Hence, 
it has a smallest value t1 (r) > O. We let w(r) = nt(r» E aB(wo, r) n n. Note 
that r --+ t 1 (r) is decreasing, hence it is continuous except for a countable 
set. Therefore the same is true for the functions r 1-+ w(r) and r 1-+ O(r) = 
arg(w(r) - wo). Moreover, the point w(r) determines a component Cr of the 
set aB(wo, r) n n (which is -1= aB(wo, r) by the choice r ~ ro). This arc is a 
cross-cut of n, i.e., if we let ar , br be its endpoints, they lie in an and determine 
two arcs of an. The choice of the one containing the point wo, say Yr' allows 
us to define a Jordan curve whose interior nr is contained in n. It is not hard 
to see that if a sequence w. --+ Wo, then for n ~ n(r), one has Wn E nr' It follows 
from this that if 0 < r' < r, then nr' <;; nr' 

Let r' now be another Jordan arc in n in which there is a sequence of points 
converging to Wo and assume that the starting point ofr also lies outside nro' 
Since r'(t) --+ Wo when t --+ 1, its must be the case that for every r r(t) E nr for 
someO < t < t. By hypothesis r([O, tD n an = 0, hence r'([O, 1D nCr -1= 0 
for every 0 < r < roo Let t2(r) be the "first" value of t where r' crosses Cr. It 
is clear again that rl-+ t2(r) is continuous on the right and hence the same is 
true for rl-+w'(r) = r'(t(r», and O'(r) = arg(w'(r) - wo). 

We are now ready to return to the proof of Caratheodory's assertion. 

2.8.7. Proposition. Let f: n --+ n' be a conformal map between two Jordan 
domains. Then f has a continuous extension to an. 

PROOF. We argue by contradiction. Iff does not have a continuous extension 
to the boundary of an, there exists a point Wo E an and two sequences (Wn)n;o, 1 
and (w~)n;o, 1 of points in n such that Wn --+ Wo and w~ --+ Wo but Zn = f(wn) --+ Zo 
and z~ = f(w~) --+ zb with Zo -1= zb. A priori the points zo, zb E ii', but using 
Hurwitz's theorem one sees easily that zo, zb EOn. 
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IX 
Let IX = Izo - z~1 > 0; we can assume that for all n, IZII - zol < 3" and 

Iz~ - z~1 < ~. Using Lemma 2.8.6 we can construct two Jordan arcs y, y' such 

that y lies in B (zo, ~) (\ Q' except for its endpoint Zo and y'lies in B (z~, ~) (\ Q' 

except for its endpoint z~. Furthermore, y passes through a subsequence ZlIk 

of (ZII)II;;': 1 and y' passes through a subsequence of (Z~)II;;': l' Note that by 

construction we have Iy(t) - yl(t')1 ;;:: ~ for any t', t E [0, i]. 
Let nt) = f-l(y(t)) and r'(t) = f-l(Y'(t)). These are two arcs in Q to which 

we can apply the prior reasoning. Therefore we can choose for 0 < r ~ ro a 
pair of values lJ(r), lJl(r) in [0,21[[ that is a continuous choice except at count
ably many values, such that the points w(r) = Zo + re i8(r), w'(r) = Zo + re i8'(r) 
belong to rand r ', respectively, and the arc from lJ(r) to lJl(r) is entirely 
contained in Cr. It follows that 

IX f8'(r) I df I 
3" ~ If(w(r)) - f(w'(r))1 ~ J8(r) dz (wo + re it ) rdt, 

since we can assume lJ(r) ~ lJl(r). 
By Schwarz's inequality we obtain 

(~y ~ r2(L:~:r) If'(wo + reitWdt)w(r) -lJ(r)) 

i8 '(r) 

~ 21[r2 If'(wo + reitW dt. 
8(r) 

Divide by r and integrate in r between 6 and roo Then 

(~y 10g(~) ~ fO rdr 1:~:r) If'(wo + reitWdt 

~ 2n i 1f'(wW dm(w) ~ 2nm(f(Qro )) 
oro 

~ 2nm(f(Q)) ~ 2nm(Q') < 00. 

This is clearly impossible when 6 --+ O. This contradiction shows f extends 
continuously to the boundary of Q. 0 

2.8.8. Theorem (Caratheodory). Let f: Q --+ Q' be a biholomorphic mapping 
between two Jordan domains. Then there is a homeomorphism j: Q --+ QI such 
that jlQ = f. 

PROOF. By the previous proposition f has a continuous extension j: Q --+ Q'. 
Similarly, g = f- 1 has a continuous extension g: Q' --+ Q. On the other hand, 
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go f = idn, and by continuity we have go J = idQ. Similarly Jog = idQ" 
Therefore, J is a homeomorphism. 0 

2.8.9. Corollary. if n is a Jordan domain, then n is homeomorphic to B(O, 1). 

In Chapter 4 we give two other independent proofs of the extension of the 
conformal maps to the boundary of Jordan domains, but under the assump
tion they have either COO regular boundaries or real analytic boundaries. On 
the other hand, the extensions will be respectively Coo and real analytic. The 
reader will probably find those proofs in Chapter 4 much simpler to follow 
than the previous one. The reason is that the topological difficulties are 
eliminated due to the regularity of the boundaries. 

We must also point out that the correct setting to study the question of 
extension to the boundary is the theory of prime ends. The books [CL] 
and [Porn] provide an excellent introduction to the difficult subject of the 
boundary behavior of conformal mappings. 

The problem of explicitly finding the conformal equivalence between a 
given Jordan domain and B(O, 1) is very difficult. Some examples will be given 
later. For many practical applications, e.g., in aerodynamics, this is done 
numerically. We recommend [Bie], [Dic], and [Hen] for explicit examples of 
conformal maps and numerical methods. 

2.8.10. Examples of Conformal Maps. (1) The group Aut(1C) of conformal 
automorphisms of C: An entire function f: C -+ C which is injective cannot 
have the point 00 E S2 as an essential singularity. It is therefore a polynomial 
and the injectivity implies the degree is exactly one. Hence the group 
Aut(1C) of holomorphic automorphisms of C consists of the affine mappings 
T",b : z r+ az + b, a =1= O. 

The transformation Tl,b is a translation. If a =1= 1, T",b admits a unique fixed 
point Zo = bl(1 - a). The group Aut(1C) is clearly transitive. The stabilizer 
of a point Zo E C is the subgroup of the transformations of the form 
zr+a(z - zo) + zo, a =1= O. 

(2) The group Aut(S2) of conformal automorphisms of S2: Consider the 
az + b . 

family r of Moebius transformations of the form TA : z r+ ~~d' wIth 
cz + 

A = (: ~) E GL(2,1C). 

One has y;'(oo) = alc and Y;. ( -n = 00 if c =1= O. Otherwise TA(oo) = 00. 

The map TB is the inverse to Y;. if B = (det A)A -1. Moreover, A and A.A (A. =1= 0) 
define the same Moebius transformation. The family r forms a group of 
meromorphic maps of S2 into S2. This group r is precisely the image of the 
group homomorphism 



§8. Conformal Mappings 197 

where r(S2) is the group of all merom orphic automorphisms of S2. The kernel 
of T is the subgroup D of diagonal matrices. 

The Riemann sphere does not have any other merom orphic automor
phisms, i.e., T is surjective. One way to see this surjectivity is the following. 
Let Soo ~ Aut(S2) be the stabilizer group of 00 E S2. Clearly Soo = Aut(C). By 
the preceding characterization of Aut(C) we see that Soo = T(N), N is the 
subgroup of GL(2, C) of matrices with c = 0. On the other hand we have the 
following general fact. 

Let Q be an open set of S2 and let G be a transitive subgroup of the group 
Aut(Q) of meromorphic automorphisms of Q. Then, if there exists a point 
Zo E Q whose stabilizer Szo is contained in G, it follows that G = Aut(Q). 

In fact, for any S E Aut(Q) there is aTE G such that T(zo) = S(zo). Hence 
R = TO-iS E Szo ~ G and S = ToR E G. 

Applying this result to Q = S2 and G = T(GL(2, C) we obtain the sur
jectivity of T. Aut(S2) can now be identified to GL(2, C)jD. 

(3) The group Aut(B(O, 1)): The Moebius transformation S: ZI-+ Z - ~ 
Z+z 

transforms the upper half-plane H = {z E IC: Imz > O} onto the unit disk 
B(O, 1). We conclude that the map 

S* : Aut(B(O, 1» -+ Aut(H) 

qJl-+S- i 0 qJ 0 S 

is a group isomorphism. We want to characterize Aut(B(O, 1» and Aut(H). 
The subgroup G of Aut(S2) of transformations which send the real axis !R 

into itself is G = T(GL(2, !R)). One has G n Aut(H) = T(GL +(2, !R)), where 

GL + (2, !R) := {A E GL(2, !R) : det A > O}. 

This is a consequence of the identity 

Im(~(z)) = detA 'lczI:~12 if A = (: ~). 
It is easy to see that G+ = T(GL +(2,!R)) is transitive in H. Namely, 

x + iy = TA(i) with A = (~ 7) E GL +(2, !R) if y > 0. Moreover, the stabilizer 

Si of the point i in Aut(H) is contained in G+. To see this, it is the same to find 
the set of transformations in Aut(B(O, 1)) leaving the origin fixed (using S*). 
But Schwarz's lemma ensures that such a transformation qJ satisfies I qJ(Z) I :$; Izi 
and IqJ-i(W)11 :$; Iwl. The last inequality applied to w = qJ(z) yields IqJ(z)1 = Izl 
and hence, qJ(z) = ei6z for some 0 E !R. Using the isomorphism S* one finds 
that if R E Si one has 

R(z) = 
cos(Oj2)z + sin(Oj2) 
sin(Oj2)z - cos(Oj2) 

for some 0 E !R. This shows that Si ~ G+. By the general result proved earlier 
we obtain Aut(H) = G+ = T(GL +(2, !R)). To determine Aut(B(O, I» we use 
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again the isomorphism S*. One finds that Aut(B(O, l)) consists of those 
Moebius transformations of the form 

R(z) = ei6 z + Zo (0 E 1R,lzol < 1). 
1 + ZoZ 

This coincides with the result obtained in §2.3.12 by a different method, in that 
t · R i6 nota IOn = e qJ-zo. 

(4 h ,". (z + 1)2 - i(z - 1)2. h .. 
) T e transformatIon Z H W = (z + 1)2 + i(z _ If IS t e composItIOn 

l+z z-i 
of ZH--, ZHZ2, ZH--., and transforms B+(O,l)=B(O,l)nH con-

1-z Z+I 

formally onto B(O, 1), leaving the points 1, -1, i fixed. 

(5) Let n = {Z E IC : I ~ -11 > 1 > I ~ -II} (0 < a < b), it is transformed 

onto B(O, 1) by zHitan{~7r(! -~) - ~)}. 
b-a Z 2b 4 

1," . h· 1 R 1 One simply observes that Z H Z transforms n mto t e stnp 2b < e z < 2a 

and that this strip is transformed into H by the function 

ZHexp {b ~ a 7ri(Z - 21b)}· 

1m z = 0 

Figure 2.11 

(6) The map ZH(;: ~y transforms H\B(O, 1) into H. 

(7) The mapping Z H i sinh ~~ transforms the region R = {z E IC : Re z > ° 
and IImzl < h} into H. 
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Let us see a few consequences of the argument principle that are useful to 
check whether a map is conformal. 

2.8.11. Proposition. Let I' be a Jordan curve. Assume that f: Int(y) --+ C is 
continuous, holomorphic in Int(y) and injective on y. Then f is a homeomorphism 
of Int(y) onto Int(r) and a biholomorphism of Int(y) onto Int(r), where r is the 
Jordan curve f 0 y. 

PROOF. From the hypotheses we can conclude that n = f(Int 1') is a connected 
open set. Let WI E Int(r), the number n of roots off(z) - WI = 0 with z E Int(y) 
is given by 

n = _1 f f'(z) dz 
211:i y, f(z) - WI ' 

where Yt is the Jordan curve constructed as follows. Since f- 1 ({ wd) is a 
compact subset oflnt(y) and Int(y) is homeomorphic to B(O, 1), there is a value 
to,O < to < 1 such that for no t E ]to, 1] the curve Yt(O) = cp(tei21[B)(O :$;; 0 :$;; 1) 
intersects f- 1 ( {WI} ), where cp : B(O, 1) --+ Int(y) is a homeomorphism such that 
cp(e i2 1[B) = 1'(0). Therefore n = Indr,(wd, with r t = f 0 Yt for every to < t < 1. 
Since rand r t are homotopic, we have n = Indr (w1 ) = 1. 

Hence, for every WI E Int(r) there is a unique z I E Int(y) such that 
f(z I) = WI· In particular, n :2 Int(r). 

Let now W2 E Ext(r). The preceding reasoning also shows that 
n (] Ext(r) = 0. 

We have also r (] n = 0. This is a consequence of the fact that f is an 
open mapping. If W E r could be written as W = f(z) for some z E Int(y), then 
there would be a neighborhood V of z such that V£:; Int(y) and f(V) is a 
neighborhood of w. Therefore f(V) (] Ext(r) # 0, which is impossible since 
f(V) £:; n. 

This shows that f(Int(y» = n = Int(r), f is a biholomorphic mapping and 
a homeomorphism from Int(y) onto Int(r). D 

There is an analogous result for the exterior of I' considered as a set in 82, 

i.e., Extoo(Y) = 82 \Int(y). 

2.8.12. Proposition. Iff: Extoo(Y) --+ C is a continuous function, holomorphic in 
Extoo(Y), which is injective on 1', then f is a homeomorphic map from Extoo(Y) onto 
Int(r) and biholomorphic from Extoo(Y) onto Int(r), where r = f 0 y. 

PROOF. Let Zo E Int(y). The transformation z 1-+, = _1_ transforms I' into 
z - Zo 

a Jordan curve 1'* in C and Extoo(Y) into Int(y*). Consider f*(') = f(zo + D· 
The preceding result can now be applied to 1'* and f*, hence the conclusion 
of the proposition holds. 0 
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2.8.13. Examples. (1) The transformation Z I-> W = Z2, (z = rei'P, w = peW), 
injectively transforms the circle r = cos q; into the cardioid p = t(1 + cos 2()). 
By §2.8.11, z 1--+ Z2 is a conformal map of the disk B(t, 1/2) onto the interior of 
the cardioid. 

il2 

-------

o 

-i/2 
p = 112(1 + cos 20) 

Figure 2.12 

(2) The transformation z I-> J~ = el/2 Logz = w transforms the disk B(t, t) 
into the right petal of the lemmiscate p = J cos 20. 

o 

Figure 2.13 

Let us now consider the situation analogous to §2.8.11 when the Jordan 
curve}' in S2 is unbounded, i.e., 00 E }'. 

2.8.14. Proposition. Let y be a jordan curve in S2 with 00 E y. Let Dl and Dz 
be the two open components of S2 \ y. Assume f is a complex-valued continuous 
function on D1 , holomorphic in D l , injective on y. Then f is a biholomorphism 
of DI onto Int(r), r = f 0 y, which is a homeomorphism of Dl onto Int(f). 
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PROOF. Letzo E D2 and y* the Jordan curve in C image ofy by z~, = _1_. 
z - Zo 

We can apply §2.8.11 to y* and 1*(0 = I(zo + D. Now I is injective from 

Int(y*) onto Int(r). D 

An interesting particular case of §2.8.14 is the following. 
If I is continuous on H u { oo}, H the open upper half-plane 

H = {z E C: Imz ~ O}, I holomorphic in H, and injective on y = ~ u {oo}, 
then I is a conformal map of H onto Int(r), r the Jordan curve loy. 

To conclude this section let us consider a class offunctions that falls within 
the last situation. They are the Schwarz-Christoffel transformations. 

Let -00 < a 1 < a2 < ... < an < 00 be n real numbers, and OC 1, ... , OCn 
other n positive real numbers such that OC 1 + ... + OCn + 1 < n. Let 

pet) := (t - ad",-l ... (t - an)"n-1, then J:oo IP(t)1 dt < 00. We choose the 

determination of P in such a way that the argument of (t - ak)"k-1 = 
exp«ock - 1) log(t - ak» is equal to n(ock - 1) if t < ak • The argument of pet) is 
therefore n[(oc 1 + ... + ocn) - n] for t < a1. In ]ak-1,akL we have argp(t) = 
(ock - 1)n + ... + (ocn - 1)n, if 2::; k::; n, and argp(t) = 0 in Jan' 00[. Let us 
denote ao = -00, an+1 = +00 and c > 0 a constant. Define n + 2 complex 
numbers Wk by 

Wk := c J:k (t - a 1 )'" -1 ... (t - an)"n- 1 dt, 

The function I defined in H = {z E C : 1m z ~ O} by 

I(z) = c J: pet) dt, 

is holomorphic in H, and on the real axis it satisfies 

f(x) = Wk - 1 + c IX pet) dt = Wk - 1 + ce i[("k-1 )1t+ ... +(<%n- 1 )1tl IX IP(t)1 dt, 
Dk-l ak-l 

if x E ]ak-1,ak[ (1::; k::; n + 1). Therefore, I(x) - Wk- 1 has always the same 
argument [COCk - l)n + ... + (OCn - 1)n] in that interval, and its absolute value 
grows from 0 to tk , 

tk := c L:k, IP(t)1 dt. 

Hence, when x traverses the interval [ak - 1 , ak ] the function I traverses the 
straight line segment [Wk- 1 , wk ] = Llk - 1 of length tk and determines an angle 
of opening equal to (ock - l)n + ... + (ocn - l)n with the direction of the 
positive real axis. 

Let us show that Wo = Wn+1 . It is enough to show that for every e > 0 there 
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is a number R > 0 such that if z E H, Izl ~ R then 

Iwo - l(z)1 ~ e. 

This will show that lim I(z) = Wo = Wn +1 . Since f3 ELI (IR), clearly there exists 

Rl > 0 such that if -00 < x < -Rl then 

I Wo - e f: f3(t) dt l ~ r-:' 1f3(t)1 dt ~ 1'./2. 

We can certainly assume that Rl ~ max{la11, ... ,lanl}. For Zo = poe iOo, 

Po ~ R 1 , 0 ~ eo ~ j[ we have 

I/(zo) - I(Po)1 = elf:o (poe iO - alt,-I ... (poe iO - anyn-lpoeiOde/ 

~ epo(po - R1t,+"'h,,-n. 

By the hypothesis on the IY. j the last term goes to zero as Po ~ CfJ. Hence, there 
is an R ~ RI such that 

I/(zo) - I(Po)1 ~ 1'./2 

if Po = IZol ~ R. This proves that I/(z) - wol ~ 8 iflzl ~ R, Imz ~ O. 
Therefore, 1 maps IR u { CfJ} onto the closed polygonal line A whose sides 

are the segments Ao, AI' ... , An+1 and whose vertices are the points Wo, WI' 
•.. , Wn , wn+! = Wo0 It is not possible to conclude that 1 is injective on IR u {oo} 
since A could have self-intersections. This function 1 will be injective on IR 
(and on IR U {oo}) if and only if A is a Jordan curve. In that case we can apply 
§2.8.l4 and find that the Schwarz-Christoffel transformation 1 is a homeo
morphism of H u {CXl} onto fnt(A), which is a biholomorphism of H onto 
Int(A). 

(O".k-1) 11: + ... + (O".n-1)11: 
----'------

Figure 2.14 
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The interior angle of the polygon at the vertex wk (0 < k < n + 1) is 
(Xkn(mod 2n). If one imposes the additional condition that 0 < (Xk < 2, then this 
angle is exactly (Xkn. 

In fact, one can write P(t) = Pk(t)(t - ak)"'k-l , with 13k holomorphic in a 
neighborhood V of ak. In this neighborhood 13k has the series expansion 

Pk(t) = aO,k + al,k(t - ak) + "', 

Hence, for z E V n H we have 

aO,k "# O. 

J(z) = Wk + C fZ (aO,k + al,k(t - ak) + ,··)(t - ak)"'k- l dt 
ak 

If z tends towards ak along a line making an angle () with the positive real axis, 
it follows that J(z) approaches Wk along a curve whose tangent at Wk has the 
direction arg(aO,k) + (Xk(), since c > 0 and (Xk > O. When () goes from 0 to n 
and z remains on a small circle centered at ak, J(z) traverses a Jordan arc 
joining a point in ak to a point in ak- l . This reasoning shows that while 
remaining always in the interior angle of vertex Wk , the point J(z) has an 
argument that grows from arg(ao,d to arg(aO,k) + (Xkn. Therefore, (Xkn is the 
measure of this interior angle. 

At the vertex Wo = W,,+1 the interior angle of the polygon a is 
«n - 1) - «(Xl + ... + (X,,))n > O. The sum of the interior angles of a must be 
(n + 1 - 2)n. Therefore 

«n - 1) - «(Xl + ... + (X,,)) < 2n. 

The condition 

(Xl + ... + (X" > n - 1 

is therefore necessary for the injectivity of J but not sufficient. (See Figure 2.16) 
In the special case that (Xl + , .. + (X" = n - 2 one finds that the angle at Wo 

is exactly n, which means that Wo = W,,+1 is only a fictitious vertex of the 

• 

Figure 2.15 
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Figure 2.16 

polygon since Wo is in fact interior to the segment [wn' WI]. In this case J maps 
H onto a polygon with n sides. 

As an example let us map H onto a triangle with angles (Xl n, (X2 n, (X3 n 
(0 < (Xk' (Xl + (X2 + (X3 = 1) such thatthe length ofthe side opposite to the angle 
of (Xl n is t. We can do this in two ways: 

(1) Take n = 3, al = -1, a2 = 0, a3 = 1, 

J(z) = c f: (t + 1)~1-lt~2-I(t - 1Y3-1 dt. 

The constant c can be found from the condition 

t = c LI I(t + 1yl-lt~2-I(t - 1)~3-11 dt = c LI (t + 1)~1-lt~2-1(l - t)~3-1 dt. 

Hence f: (t + 1)~1-lt~2-I(t - l)a3 -1 dt 

J(z) = ---~--~----LI (t + l)a1-l ta2-1(1 - W3- l dt 

maps conformally H onto such a triangle. 
If (Xl = (X2 = (X3 = t (equilateral triangle), one obtains 

fz dt 

o ..yt2 (t 2 - 1)2 
J(z) = tIl dt 

o ..yt2 (1 - t 2 f 
If (Xl = t, (X2 = (X3 = t (isosceles triangle, rectangle with hypothenuse t) the 

map J is given by 
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(2) If we take n = 2 and we pick ai' a2 arbitrarily that will be mapped onto 
the vertices of angles 1X 1 7t, 1X27t of a triangle, the third vertex must be the image 
of the point 00. (Note that 1X1 + 1X2 #- n - 2 = 0.) For instance, let us take 
a 1 = 0, a2 = 1. Then 

We determine c by 

then 

f t"I- 1 (t - 1)"2-1 dt 
f(z) = t-==--o -----

Ioo t"l -1 (t - 1)"2-1 dt 

The case of an equilateral triangle corresponds to 

rz dt 

Jo 1t2 (t - 1)2 
f(z) = t --;;;-----'------'----'----fro dt 

1 1t2 (t - 1)2 

The Schwarz-Christoffel transformations will reappear when we study 
elliptic functions in the following volume. We suggest [Hen] for a thorough 
discussion of these transformations and their practical applications. 

Some of the exercises that follow pertain not only to this section but to the 
preceding material. 

EXERCISES 2.8. 
As in previous sections, B = B(O, 1); n is a domain in C. 

1. Let}' be a Jordan curve (with the positive orientation), f holomorphic in Int(}') 
and continuous on Int(}') be such that f(z) "* 0 on }'. Show that the number of 
zeros of f in Int(}') is equal to Ind(f 0 }'). (Hint: Compare with the proof of 
Proposition 2.8.11.) 

2. Apply the previous exercise to show that if}' is a Jordan curve, f is continuous 
in Int(}') and holomorphic in Int(}'), then for every Zo E Int(}') there is a pair of 
distinct points z 1, Z2 on }' such that 

(Hint: Consider the function g(z) = fez) - !'(zo)Z.) 
Apply this result to the function fez) = Z2 to obtain that every point Zo E Int(}') 

lies on a chord [z 1, Z2] with endpoints on }'. 



206 2. Analytic Properties of Holomorphic Functions 

3. (a) Let rp: oB --> oB be a homeomorphism. Show that «1>(z) := Izlrp(z/Izl) if Z T 0 
and «1>(0) := 0, is a homeomorphism of C onto itself. 

(b) Use part (a) and Caratheodory's theorem to show that if h: 3B -> y is a 
parameterization of a Jordan curve and Q = Int(y), then there is a homeo
morphism H: jj -> n such that HlaB = h. (This statement is usually called 
Schoenflies'theorem.) 

4. Let Q be a simply connected domain in S2 such that #(S2\Q) 2': 2, Zo E Q, 
(J. E [0, 2n[. Show there is a unique biholomorphic map f: Q -> B such that 
f(zo) = 0, Argf'(zo) = (J.. 

5. Let Q be a simply connected proper open set in C, symmetric with respect to the 
real axis. Let Xo E Q n IR, and f: B(O, 1) -> Q be the biholomorphism such that 
f(O) = Xo and 1'(0) > O. Show that j<k)(O) E IR every k 2': 1. 

6. Let f E .Yl'(B). Assume there is an open arc 1 s; aB such that for any sequence 
(z")":> I s:: B with limit Zo E 1 we have 

lim f(zn) = O. 

Show that f == O. 

7. Let f be a conformal map of the half-disk D onto the triangle T shown in Figure 
2.17 such that f is continuous in D, f(1) = I, f(i) = i, and f( - 1) = -1. Prove 
that f can be extended to a conformal map F of B onto the square Q. Show 
that there is a function G E J'l'(B) such that F(z) = zG(Z4). (The hypothesis of 
continuity off up to the boundary of D is not really necessary.) 

B Q 

, 
/ 

/ 

Figure 2.17 

8. Generalize Schwarz's Reflection Principle 2.1.10 by showing that if f E J'l'(B), I 

is an open arc of a B, and f is continuous on B uland real valued in 1, then the 
function F defined by 

{ 
f(z) if z E B u I 

F(z)= f(t(Z) ifz¢jj 

is holomorphic in the domain B u I u Jje. 
How should one define F if we know that If(z)l = I when z E J, instead of 

assuming f was real-valued on J? 
n 

9. Let n be the region whose boundaries are the rays Argz = ± 4 and the branch 
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of the hyperbola x 2 - y2 = 1 lying in Re z > O. Find a conformal map of 0 onto 
the unit disk. 

10. Let - 00 < a < b < 00. Show that the function z I-> I /Log (~~E) is a conformal 

map in 1C\[a,b]. Find its image. 

11. Let f E £(0) be locally injective, the Schwarzian derivative of f at the point z is 
defined by 

(.f"(Z»)' 1 (.f"(Z»)2 
{f,z}:= .f'(z) -2: I'(z) 

Assume that q; is a Moebius transformation: 
(a) Show that {q; " f, z} = {f, z} 
(b) Compute {f 0 q;,z}. 
(c) What can you say about f if {f, z} == 07 

12. Let f E £(8) be a conformal map from B onto O. Give an example showing that 
I' can vanish on oB. Can it have a double zero? 

13. Let f E £(IC) be real-valued on the real axis and satisfy Imf(z) > 0 whenever 
1m z > O. Show that f(z) = az + b, a > 0, b E IR. 

* 14. Let f E £( B) and c > 0 be such that the connected component w of 
{z E B: If(z)1 < c} is relatively compact in B and I' i= 0 on ow. Let N = the 
number of zeros (counted with multiplicities) of fin W. Show that the number of 
zeros of I' inside w is exactly N - 1 (counted with multiplicities). (Hint: Show 
first that ow is a Jordan curve. Prove then that if s is the arc length parameter on 

~ ~ ~~ 
ow and fJ = argf(z), then - is real and does not vanish. Use - = - - to 

~ ~ ~~ 

dfJ . . i6,' i8 de 
compute ~a", dz' Conclude the proof wntmg f = ce , f = Cle dz on the curve 

ow.) 

15. Let f E .Yf(B). Show that if f is not injective, there is r, 0 < r < 1, such that 
floB(O, r) is not injective. 

Z2 z· 
16. Use the previous exercise to show that the polynomial p(z) = z + -- + ... + -

2 n 
belongs to the class S. (Hint: if Re p(re i.) = Re p(re iP ), 0 ~ 0: < f3 < 2n, there is 

y E ]0:, p[ such that (:e Re p }reiY ) = 0.) 

1 7. Let A 1 = {z E IC : 0 < r 1 < I z I < R 1 < oo}, A 2 = {z E IC : 0 < r 2 < I z I < R 2 < oo}, 
and f: ,.1\ ..... ,.12 a homeomorphism such that f is holomorphic in AI' Apply the 

R R 
reflection principle of Exercise 2.S.S to show that .-2 = .--.!. and determine .f. (With 

r2 r\ 
the help of the more general reflection principle proved in Chapter 4 you will be 
able to reach the same conclusion if we only assume f: AI ..... A 2 is a conformal 
map.) 

IS () L b h . h . 1 1 + i i 
. a et D e t e square WIt vertIces 0" .... ~, and-. Assume f is a conformal 

222 . 
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map from D onto the upper half-plane 11. Use Theorem 2.8.8 and Schwarz's 
reflection principle to show that f can be extended to a function FE .Jf(C). F 
which is doubly periodic. i.e. 

F(z + I) = F(z), F(z + i) = F(zJ. 

19. Let 0 be a bounded simply connected polygon with vertices at the points Woo Wj • 

...• w •• with corresponding interior angles iXo7r, ... , iX.7r, 0 < iXk < 2. Let f be a 
conformal map of the upper half-plane H = {z E C : 1m z > O} ontoO, let Zo = CD, 

210 ... , z. be the points corresponding to wo, ... , w., respectively. (Why is f 
a homeomorphism of fI u {CD} onto n?) Define F(z):= log/,(z). Show that 
FE ft(l1) and F' admits an analytic continuation to the whole plane with simple 
poles at z l' ... , z., F' vanishes at CD and Res(F', zd = iXk - 1 for k = 1, ... , n. 
Conclude that f satisfies the dilTerential equation 

n iX -.• - 1 
f"(z) - L _k_f'(Z) = O. 

k~l Z - Zk 

Show that f is of the form I.fJ 0 1jJ, where IjJ is the Schwarz-Christoffel transformation 

and l.fJ(w) = aw + b is a linear map which sends 0 onto itself. 

20. Find a conformal map of the upper half-plane 11 onto the regular n-gon with 
vertices Wk = e2nik/n, k = 0, ... , n. 

21. Show that the function f E .Yr( B) gi ven by 

/(z) = f: (1 __ d~n)2i;;' 
where /(x) > 0 when 0 < x < 1, defines a conformal map from B onto a regular 
n-gon. What is the relation between this function and that found in the previous 
exercise? 

22. Let 0 < K < 1 and / be the Schwarz-Christoffel transformation 

jz dt 
/(z) = - - - - . 

o ",/(1- t2 )(1 - K 2 t2 ) 

Show that/maps the upper half-plane onto the rectangle of vertices -a, a, a + ib, 
-a + ib, a, b > 0, given by 

a = II [(1 - t 2 )(1 - K 2t 2 )]-1/2 dt 

b = r [(1 - t 2 )(t2 - K2)J-l/2 dt. 

By a change of variables t = sin e show that a is given by the hypergeometric 
series 

TC ex· [( 1/2) j2 
a = l' L ----<--,---~ K 2n , 

.. n=O 11. 

where (-Ho = 1, (1)1 = 1, (1)2 = (DO + I), .... 
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23. Let Q be the polygon from Exercise 2.8.19 and let Pk = 2 - !Xk. Consider the 
conformal map g of the upper half-plane H onto fie such that the points bk on 
the real axis correspond to wk , bo = 00. Show that g satisfies the differential 
equation 

g"(z) ± Pk - 1 2 2 
g'(z) = k=l Z - b" - z - Wo - z - wo· 

24. Suppose J E .,/(C) has only simple poles at Zl' Z2' Z3' ••. ,0 < Iztl :5: IZ21 :5: ... , 
Res(J, z.) = A •. Assume there is a sequence of Jordan curves r. such that no poles 
of J lie on any of them, r. s; Int(r'+1)' R.:= min Izl-+ 00, t(r.) = O(R.), and 
max IJ(z)1 = O(R.). Show that zern 

J(z)=J(O) + I A.(_I_+~), 
n~O Z - Zn Zn 

by considering r J(O -.!!L. How should the series be understood in order that Jr , ,- z 
it converges in Jt<'(C\{z.}.:.d? 

25. Show that if J is an entire function with finite L 1 norm in C, then J == O. (Is the 
same statement true for L2, L"J?) 

26. Find all the merom orphic functions J in C such that IIJIIL2(C) < 00. How about 
IIJIILI(C) < 00 or IIJIILro(C) < oo? 

27. Show that if J E Jt<'(B\ {O}) and J E Ll(B), then the singularity is removable. 

28. Let J E .,/(C)\ C. Show that J(C) is dense in S2. 

29. Assume J E .,/(C) and P is a polynomial such that 

Re J(z) :5: 1m P(z) 

at every point which is not a pole of f Show that J is a polynomial and find 
it explicitly. 

30. Let J, g be two holomorphic functions in a neighborhood of the disk Iwl :5: r, 
J(O) *" O. Show that for p > 0 sufficiently small, the equation 

w = zJ(w) + Z2g (W) 

has exactly one solution w = q>(z) in Iwl < r, and no solutions on Iwl = r, as long 
as Izi :5: p. The function q> is holomorphic and admits the Taylor series develop
ment q>(z) = I a.z·, 

.",0 

31. Let F be a Coo function of two complex variables z, w (Le., as a function of four 
. 8F 8F 

real vanables) such that 8z = 0, 8w = 0 when Izl :5: R, Iwl :5: r. Assume further 

that F(O, w) = 0 admits only the simple zero w = 0 in I wi :5: r. Show that for some 
p, 0 < p < R, there is a unique holomorphic function q>(z) in Izi < p such that 
q>(0) = 0 and F(z, q>(z» == o. 
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32. Let P(w) = wm + A j wm- 1 + ... + Am be a polynomial and WI' •.. , Wm its roots. 
(Each distinct root appearing as often as its multiplicity indicates). We know that 
the Ak can be determined from the identity 

m 

P(w) = n (w - wd· 
k "1 

We want to show in this exercise that they can also be obtained from the 
Newton sums 

k =O, ... ,m. 

For each k, write BO.k = I and 

P(w) 

Obtain the relation 

Write Ao = 1 and conclude that 

Using that the left-hand side equals P'(w) obtain expressions for the Ak in terms 
of the Bk • 

*33. Let F be as in Exercise 2.8.31, except that we assume only that F(O, w) vanishes 
at w = 0, but it is not identically zero in Iwl :s; r. Show there is an integer m, values 
o < '1 :s; r,O < R 1 :s; R and functions Adz), ... , Am(z) in Izi :s; R 1 , such that the 
functions 

P(z, w):= w" + Aj(z)wm - 1 + ... + Am(z) 

and 

G(z, w) := F(z, wJj P(z, w) 

are Coo and holomorphic in each variable separately in the bidisk Izl :s; R 1 , 

Iwl :s; r1 • Moreover, G(z, w) does not vanish anywhere in the bidisk. (Hint: Let m 
be the multiplicity of w = 0 as a zero of F(O, w) = 0 and choose '1 so that w = 0 
is the only zero of this equation in Iwl :s; r1 • Evaluate the functions 

of 
a(z,w) 

Bdz) = -~: r w k ".'::'___ dw 
2m Jlwl~rl F(z, w) 

in terms of the roots of the equation F(z, w) = O. Use Exercise 2.8.32 to define Ak 
and P.) 

34. Let n be a Jordan domain and f a conformal map of n onto B. Show 
that if g E ~(n) n '6'(Q), and £ > 0, there is a polynomial P such that 
Ilg - po fIIL"(I1) :s; e. 

35. Let.? <;; .Yt'(B) n (&(13),/ E.?, and nk /' 00 such that fl""! ..... Zo in ~(B) (zo denotes 
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the constant function). Assume 9 0 I = log for every 9 E fl'. Show that g(zo) = Zo 

for every 9 E fl' which is not a constant function. 

36. Use Exercises 2.3.16, 2.6.19, and 2.6.21 to show that, if a family fl' £; Jf(B) n ~(B) 
of commuting maps into B contains an element I E Aut(B)\ {idB}, then there is a 
common fixed point for every 9 E fl' which is not the constant map. 

37. Let IE Jf(B), 1111100:':; 1 and nk /' 00 be such that po.] -+ h in Jf(B) and 
h -=I- constant. 
(a) Assume mk = n k - nk-l /' 00, show there is a subsequence mk} such that pm.} 

is convergent in Jf(B) to a function g. 
(b) Writing po.}] = pm.} 0 pO'rd, conclude with the help of Exercise 2.2.12 that 

go h = h. 
(c) Show that 9 = idB. Conclude that I, h E Aut(B). 

38. Use Exercises 2.6.20, 2.6.21, and 2.6.35-37 to prove the following theorem of A. 
Shields [Shi]: Let fl' £; Jf(B) n ~(B) be a commuting family of maps into B. Then 
there is a common fixed point Zo E B for all the elements of fl'. (Hint: Show 
first that one can assume that no 9 E fl' is a constant function. Consider later 
separately the cases fl' £; Aut(B) or not.) 

Notes to Chapter 2 

1. We have assumed a certain familiarity with the elementary properties of power 
series and numerical series. They can be found in [Ahl] and [Mar]. For more about 
them one can consider, e.g., [Kn]. The books [Ahl], [Mar], and [JS] also provide 
a very clear introduction to the hyperbolic and spherical geometries which we intro
duced in the exercises. 

2. There are many sufficient conditions for holomorphicity. The Cauchy-Goursat 
theorem treats one of them. Example 2.2.9, (5) treats another, that locally integrable 
functions satisfying the homogeneous Cauchy-Riemann equation "are" holomorphic. 
A third one is Morera's theorem. These last two examples can be greatly generalized; 
some of these generalizations appear in the next volume. Even though these kinds of 
conditions appear on first sight to be really weaker than Cauchy-Goursat's, they are 
not, since they involve a certain kind of "uniformity" and are amenable to systematic 
study. The Cauchy-Goursat theorem and its analogs are "pointwise" results and tend 
to require ad hoc and very delicate arguments to prove them. The interested reader is 
referred to [Za5] for a lively discussion of this point. 

3. A number of other results appear natural in the context of distributions. For 
instance, the Cauchy transform /l of a measure Jl of compact support will be later 

shown to satisfy the equation :~ = Jl in the sense of distributions. In particular, /l = 0 

implies Jl = O. Similarly, the Schwarz Reflection Principle 2.1.11 has a distributional 
version, the Edge-of-the-Wedge Theorem 3.6.23, which we will later use as a motivation 
to introduce the concepts of distributions and hyperfunctions. 

On the other hand, the Schwarz reflection principle also shows clearly the dichotomy 
between "uniform" and "pointwise" results. As we shall see in Chapter 4, the boundary 
values of a hoi om orphic function can exist in a very weak sense, as long as they are 
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"real," and still guarantee that functions will have a holomorphic extension across a 
real analytic curve. This will prove helpful in extending the conformal mappings 
obtained with the help of the Riemann mapping theorem across the boundary of the 
unit disk. 

4. For detailed historical remarks and techniques of the calculus of residues, see 
[MK]. At the end of Chapter 3, we relate the concept of residues to the theory of 
distributions, in a way that leads naturally to the study of residues in several complex 
variables. 

5. The calculus of residues is related to interpolation theory. A nice treatment with 
special emphasis on numerical procedures can be found in [Hen]. Interpolation is one 
of the crucial tools in our study of convolution equations in the next volume, and 
therefore the reader should not be surprised to see it appear many times throughout 
this text. We also recommend [Ge], which was written with applications to trans
cendental number theory and analytic number theory in mind. 

6. For applications of the Lagrange Formula 1.5.19 and other related questions, 
such as the location of zeros of polynomials, we refer the reader to [Hen], and the 
bibliography there. This is a subject of great usefulness in control theory and other 
engineering areas. 

7. One interesting application of the concept of normal families lies in questions 
about iteration of holomorphic maps: Julia, Fatou, and Mandelbrojt sets. Several of 
the exercises provide a test of the complicated behavior of functions under iteration. 
A very good introduction into this subject is [Ab], see also [Bl]. The present interest 
in chaos, fractals, and iteration theory exemplifies the ubiquitous role of complex 
analysis in the applications of mathematics, see, e.g., [Dev]. 

8. The interesting story of de Branges' proof of the Bierbach conjecture can be 
found in [BH] and [Ko]. A great deal of mathematics related to this conjecture appears 
in [Ba]. 

9. The properties of Jf'(0) and J/(O) as topological vector spaces play an important 
part in this book, e.g., in Chapter 3, and are central to the next volume. In particular, 
the concept of bounded and normal families which are, one could even say unexpectedly, 
related to the question of omitted values as shown, e.g., by the Heuristic Principle 
2.7.11. A very sharp version of this principle can be found in [Hem]. The reader will 
find in [Schwick] a substantial number of normality criteria which can be obtained 
with the help of§2.7.12. It is also important to point out there are limitations to §2.7.12, 
see [Rubl] for examples in this direction. 

10. The natural context for the Picard theorems and their generalizations lies in 
Nevanlinna theory; see [Ha]. For a very nice introduction to Nevanlinna theory in 
several variables, where the geometric point of view of Ahlfors appears very clearly, 
we suggest [Gril]. 



CHAPTER 3 

The 0-Equation 

§1. Runge's Theorem 

I t is in this chapter that the difference between our textbook and more classical 
ones appears markedly. As stated in the preface, we have attempted to use, as 
systematically as possible, the inhomogeneous Cauchy-Riemann equation 

~ = 9 to study holomorphic functions (also called the a-equation). The 
oz 
reader should note the irony here. To better comprehend the solutions of the 

homogeneous equation ~ = 0 one is forced to study a more complex object! 

Our presentation owes much to Hormander's beautiful treatise on several 
complex variables [Hol]. 

Let us recall that if K is an arbitrary set in C, we denote Jft(K) the family 
of functions which are holomorphic in some neighborhood of K. Note that 
the neighborhood may depend on the function. 

It is evident that Jft'(K) s; (t'(K), the space of continuous functions on K. 
Recall that if K is a compact set, the space ~(K) is a Banach space with 
the norm 

IlfilK = max If(z)l· 
ZEK 

The topological dual vector space ~I(K) can be identified to the space of 
complex valued measures supported by K (Radon measures). In this context, 
the Hahn-Banach theorem implies that if f E ~(K) and 

Lfdf.1=O 
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for every Radon measure p with support in K, then f = O. Conversely, if His 

a subspace of'C(K), and H"- = {p E (fo'(K): If dp = 0 for every f E H} = {O}, 

it follows that H is dense in 'C(K). We write pl. H to indicate Ii E Hl; we say 
p is orthogonal to H. (See [Ru] and [HS] for the Hahn-Banach theorem and 
the few elements of functional analysis used here.) 

Finally, we remind the reader that the total variation lip 11K of a measure 
p E 'C'(K) is given by 

IlpIIK = sup {IIf dPI : f E 'C(K), Ilfll K ~ 1}. 
For n open in C, K compact, K ~ n, we have another subspace of 'C(K), 

Jf'(n)IK, the space of restrictions to K offunctions holomorphic in n. Clearly 
.Jf'(O)IK ~ £,(K). The next theorem allows us to decide whether ,}f(n)IK is 
dense in £,(K) (as subspaces of the Banach space 'C(K» in purely geometrical 
terms. 

3.1.1. Theorem (Runge). Let n be an open subset of C and K a compact subset 
of n. The following statements about the pair (n, K) are equivalent: 

(a) Every junction holomorphic in a neighborhood of K is the uniform limit over 
K of functions in £'(0). 

(b) None of the connected components of n\K is relatively compact in n. 
(c) For every Z E n\K there is a junction f E .Jf'(n) such that 

If(z)1 > sup If(OI = IlfiIK· 
'eK 

PIUX}F. We are going to show a -= b -= c. 
(1) (c = b): We want to show that condition (c) and the negation of (b) 

cannot hold simultaneously. 
Let us assume that n\K has a component (!J which is relatively compact 

in n. Hence (J(!J = 12\(!J ~ K. Namely, (J(!J = 12VD ~ 0 and at the same time, 
(J(!J ~ (n\KY ~ n c uK, so (J(!J ~ K. Therefore, for every f E £'(n) we have 

sup 1 f(z) I = sup 1 f(z) 1 ~ sup If(z)l, 
ZE' ~ of!; ZE K 

which contradicts (c). 
(2) (a = b): If (b) does not hold, let (!J be as in (1). For , E (!J the function 

f: z I--> 1/(z - 0 is holomorphic in a neighborhood of K. By (a) there is 
a sequence (hn)n:> 1 of functions in £'(0) converging uniformly to f on K. 

By the same argument as in (1) we have 

sup Ihp(z) - hq(z)1 ~ sup Ihp(z) ...... hq(z)l. 
ze(! ZEK 

Therefore the sequence (h")n~l converges uniformly on 12 uK to a function F. 
This function will be holomorphic in (!J and will coincide withf on K.lt follows 
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that the function z ~ (z - OF(z) - 1 vanishes identically on am and, by the 
maximum principle, it vanishes identically in m. Evaluating it at z = , we 
obtain a contradiction. 

(3) (b => a): If we show that every Radon measure J1 in K which vanishes 
on ,Jr(n), also vanishes on £(K), then from the Hahn-Banach theorem we 
conclude that 

.Jr(K) ~ ~(Q)IK, 

which is what we need to prove (the closure taken in CC(K), of course). 
Let J1 E CC'(K) be a Radon measure orthogonal to £(n). Let 

MO = -~ f ~j.l(~t 
n K z----- <" 

be its Cauchy transform (cf. §2.1.5). We are going to show first that {i == 0 in 
K" = C\K. 

1°. In the unbounded connected component of K C : For 1(1 > r, r sufficiently 
large, we have that the series 

1 z· 
~:::::-, = - n~o ("+1 

converges uniformly for z E K. Hence 

MO = ~ n~) (L z· dJ1 );,"+1. 

Since J1 is orthogonal to ,Jr(n), we have L z· dJ1 = 0 for n ;;::: O. Therefore {i == 0 

for 1(1 > r and hence, in the unbounded connected component of K C• 

2°. In any bounded connected component U of K C : We have Un nc # 0, 
otherwise, since au ~ K ~ n, we would have [j ~ n and hence, U would 
be a component of n\K, relatively compact in n, which contradicts the 
hypothesis. 

Let ( E Un nco For every k ;;::: 0, the function 

is holomorphic in n, hence 

A(k)(y) = _ k! f dJ1(z) = 0 
J1 " (Y)k+1' n K z -., 

Therefore {i == 0 in U. 
We want to show now that {i == 0 in K C implies that J1 vanishes on £(K). 

Let f E £(K), then for some open set w, K ~ w ~ n, we have f E £(w). Let 

!{1 E E&(w) be such that !{1 == 1 in a neighborhood of K. Let K I := supp (~~). 
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For Z E K we have, by Pompeiu's formula 2.1.2, 

f(z) = I/t(z)f(z) =1; f f(O~I/t~O _1 -d( /\ i( 
2m K, o( (- z 

Since K n K 1 = 0, the function (z, 0 f---7 /(O~; (0 -v _1_ is continuous in 
O\, ~ - z 

K x K l' Applying Fubini's theorem we obtain 

f fdj1 = f {-~: f f(OO~(O-!-d( /\ i[}dtl(Z) 
K K 2m K, o( ( - z 

= -~ f f(O~-~(OP(Od( /\ d, = o. 
21 K, o( 

The last identity follows from the fact that K 1 s; K C and {l == 0 on K C• 

(4) (b => c): Let z E n\K, and let L = B(z, p) s; n\K. The connected 
components of n\(K u L) are exactly the same as those of n\K except for 
that one from which we have taken away L (see Figure 3.1). 

Figure 3.1 

It follows that property (b) still holds for the pair (n, K u L). Since we 
have already shown that b => a, we have that property (a) holds for (n, K u L). 
Let f == 0 in a neighborhood of K and f == 1 in a neighborhood of L. This 
function belongs to ,;It'(K u L) and hence, we have a sequence (fn)n;?:1 in Jf)(n) 
converging uniformly to f on K u L. For n sufficiently large we have 

Ij~1 :<; 1/3 on K, Ij~1 Z 2/3 on L. 

This shows that (c) holds and concludes the proof of Runge's theorem. 0 

In particular, when n = C we have the following corollary. 
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3.1.2. Corollary. Every function holomorphic in a neighborhood of the compact 
set K can be approximated uniformly on K by polynomials if and only if Ke is 
connected. 

PROOF. Apply §3.1.1 and the fact that the polynomials are dense in Jft'(C). 0 

3.1.3. Definition. Let n be an open subset of the complex plane and K 
a compact subset of n. We call holomorphically convex hull of Kin n the set 

Kn := {z En: Vf E Jft'(n) If(z) I :::;; IIf11K}' 

where, as before, IIf11K = max If(z)l. If there is no possibility of confusion 
-.. zeK ...... 

about n, we shall write K instead of Kn. 

3.1.4. Proposition. Let n be an open subset of C, K compact in n. The following 
two properties hold: 

(a) K s K and K is a compact subset of n. 
(b) d(K, n e) = d(K, ne). 

PROOF. K is relatively closed in n since it is an intersection of relatively closed 
sets, 

K = n {z En: If(z)1 :::;; IIf11K}· 
JE K(n) 

From the definition, one easily sees that if r = max Izl, then K s B(O,r), 
ZEK 

hence K is bounded and (a) holds if n = c. 
If n =F C, let us show first (b). 
The inclusion K S K implies that 

d(K, n e) :::;; d(K, ne). 

On the other hand, for' Ene, the function Zl--+ l/(z - 0 is holomorphic 
in n and hence, for z E K we have 

111 

Iz - " :::;; !~~ Iw - " = inf Iw - '" 
WEK 

therefore inf I w - " :::;; I z - " and 
WEK 

d(K,ne) = inf Iw -" :::;; inf Iz - " = d(K,ne). 
weK zeK 
(Ene {Ene 

In conclusion, K is a relatively closed subset of n, bounded in C and 
d(K, n C ) = d(K, n C) > o. It is then clear that K is a compact subset of n. 0 

Note that if K is compact, K s n l S n 2, nj open in C, then 

Kn! S nl n Kn2. 
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If K is a compact set, then its convex hull cv(K) is always compact. We 
have that if K = Kc, K is always contained in cv(K). This follows from the 
fact that 

cv(K) = n {( E C: cp«() ::; sup cp}. 
<PE -"'R(C) K 

In fact, every cp E .PR(C) is of the form cp = Re e, e E .Pdc), and e(z) = az for 
some a E C. If z E K we have 

eRe(az) = leazl ::; sup lea{1 = exp[sup Re(ao] 
{EK {EK 

and, by the monotonicity of the exponential, we obtain cp(z) ::; sup cp(n Hence 
{EK 

K s cv(K). Therefore, for any 0 ;2 K we have 

Kn s cv(K) n O. 

It is also clear that if K SKI and both are compact subsets of 0, then 
KsK 1 • 

3.1.5. Definition. A compact subset K of an open set 0 is called holomorphically 
conJlex in 0 if K = Kn. 

Evidently (Kn)~ = Kn for every K and therefore, Kn is holomorphically 
convex on o. Furthermore, by the preceding remark, if K is a compact convex 
set then it is holomorphically convex (in any 0 which contains K). 

3.1.6. Proposition. The set Kn is the union of K and the connected components 
of O\K which are relatively compact in O. 

PROOF. Let (!) be a component of O\K, relatively compact in O. We have 
(j S K since iXfJ S K and hence, by the maximum principle, 

sup If(OI ::; sup If(OI, 
{E& {EK 

for every f E £'(0). 
Let K 1 be the union of K and the relatively compact components of 0\ K. 

Then K 1 S K. Moreover, the set O\K 1 is also the union of components of 
O\K, hence 0\K 1 is open. It follows that Kl is a compact subset of K. By 
the definition of K 1 , none of the components of 0\K1 is relatively compact 
in O. By part (c) of Runge's theorem we have K 1 = K 1. Since K S K 1 we also 
have K SKI = K 1. D 

3.1.7. Proposition. For every open set 0 S C there is an exhaustion of 0 by 
compact subsets which are holomorphically convex in O. 

PROOF. Let (LA",!> be an exhaustionoofO by compact su~sets. Let K1 = L1 • 

There is an index j2 > 2 such that Lj, ;2 K 1. Therefore Lh ;2 K1 U L 2 • Let 
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K2 = fh· There is j3 > 3 such that Lh 2 K 2, hence Lh 2 K2 U L 3 • Let 
K3 = L h , etc. 0 

EXERCISES 3.1 
1. Give an example of a compact set K and two planar open connected sets 0 1 , O2 

such that K S; 0 1 n O2 and Kn, i= Kn2 . 

2. Let K be a compact subset of C and f E ;F(K). Using Cauchy's formula, show that 
f can be uniformly approximated in K by rational functions whose poles are simple 
and lie in K C• (Hint: Show first that given 0 open, K S; 0, there is a finite number 

• 
of polygonal Jordan curves Yl' ... ' Y. such that K S; U Int(Yj) S; 0 (cf. Chapter 1).) 

j=l 

It is instructive to find another proof using Theorem 3.1.1. 

3. Using Theorem 3.1.1, show that if K is a compact subset of C and A = raj} is 
a collection of points in S2 \K, one in each connected component, then any function 
in ;F(K) can be uniformly approximated in K by rational functions with poles 
inA. 

*4. Let 0 1 S; O2 be open subsets of Co Prove that the following five conditions are 
equivalent: 

(i) ;F(02) is dense in ;F(Od. 
(ii) If O2 \01 = K v F, K n F = 0, K compact and F closed in O2 , then K = 0. 

(iii) For every compact subset K of 0 1, Kn = Kn . 
...... 2 1 ..... 

(iv) For every compact subset K of 0 1, ~n2 n 0 1 = Kn,. 
(v) For every compact subset K of 0 1, Kn2 n 0 1 is compact. 

5. Let 0 be an open subset of C such that OC has no bounded components. Show that 
the polynomials are dense in ;F(O). 

1 
6. Show directly that the function fez) = - cannot be the uniform limit of polynomials 

z 
in the closed annulus 1 ::::;; Izl ::::;; 2. 

7. (i) Let n E N*, 0 < b. < a. < n. Show that there is a polynomial p. such that 
- 1 -I p.(z) I ~ n if 1m z = b. and z E B(O, n), and Ip.(z)1 ::::;; - whenever z E B(O, n) and 

n 
either 1m z ::::;; 0 or 1m z ~ a •. 

(ii) Use the preceding construction to show the existence of a sequence of 
polynomials P. such that lim P.(z) = 0 everywhere, the limit is uniform in every 

compact subset of C\IR, but it is not uniform on any neighborhood of a real 
point. 

(iii) Modify the preceding procedure to construct a sequence of polynomials q. 
such that lim q.(z) = 0 if z E IR and lim q.(z) = 1 if z E C\ IR. 

*8. (Construction of a function in ;F(B) that has no radial limits at any point' E aB, 
B = B(O, 1». Define a collection of subsets B. of B as follows: 

Bo = {IZI::::;; U' 
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and so on (Draw a picture.) 
Show there is a sequence {p.}.;,o of polynomials with the following properties: 

Po == 0, assuming that PI' ... , P2.-2 have been found, then 

and 

1 
Ip () p ( )1 < 'f Izl <_ 1 - 2- 8.+ 8 , 2.-1 Z - 2.-2 Z - 22.-1 1 

1 
IP2.-2(Z) - 11 ::;; 22• 

if z E B2 •. 

Prove that there is a function f such that 

p. --+ f in £,(B). 

Show that this function satisfies 

1 1 
Ilf - 11182._ 1 ::;; 22.-2' IlfI182 .::;; 22.-1 ' 

and hence, it cannot have any radial limits. 

*9. (Construction of a universal entire function). Let {Q.}.;,o be an ordering of the 
collection of all polynomials with coefficients in 10 + iQ. Let K. = B(n3, n). Let 
PI = 0, choose p., n > 1, by induction as follows: 

1 
IP.(z) - p._I(z)1 ::;; 2" in B(O,(n - 1)3) 

1 
IP.(z) - Q.(z - n3 )1 ::;; 2" in K •. 

(Why is this possible?) Show that the function f:= L (P. - p.-J is entire. 
n~2 

Moreover, on B(O, n) it satisfies 

Let now 0 be a bounded simply connected domain in IC, l{J E £'(0). Show that 
there is a sequence of integers nk --+ 00, Qnk --+ l{J in £'(0). Conclude that the 
translates of f, f(z + nil, converge to l{J in £'(0) (cf. [BRl], [BR2]). 
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10. The object of this exercise is to prove the following extension of Runge's theorem. 
Let K be a compact subset of C such that K = K. Let I be a function which is of 
class C\ in a neighborhood of K and IE JIt'(K), then IE JIt'(K) (it is understood 
that the closure takes place in ~(K) and we really mean 11K is in the closure of 
JIt'(K». 
(a) Let J1 be any Radon measure with supp(J1) S;; K. Show that (l E LI~c(l[:). 

( Hint: Just show that for any K\ cc C, one has r dm(z) fd'J1(O' < 00 by JK1 Iz-CI 

Fubini's theorem') 

(b) Use the proof of Theorem 3.1.1 to show that if J1 is a Radon measure with 
supp(J1) S;; K, then J11. JIt'(K) if and only if (l = 0 in K C• 

(c) Show we can assume I E Pfi\ (I[:) and represent it as 

I(z) = -~ r a~(Odm('). 
7t Jc a, , -z 

al 
(d) One also has -=(0 = 0 for' E K. Why? a, 
(e) Show that f I dJ1 = O. 

Conclude that (fIK) E JIt'(K). 

§2. Mittag-LeIDer's Theorem 

3.2.1. Theorem. The operator a: &°(0) -+ &0.1(0) is surjective. In other words, 
au 

for every f E &0.1(0) there is u E &°(0) such that azdz = f 

PROOF. Let (Kj)j" ° be an exhaustion of 0 by holomorphically convex compact 
subsets. Let I/Ij E .@(O), 0 ~ I/Ij ~ 1, I/Ij == 1 on a neighborhood of K j (j ;?: 1) and 
1/10 = O. Set ({Jj = I/Ij - I/Ij-l (j ;?: 1). Hence ({Jj E .@(O), ({Jj == 0 in a neighborhood 

00 

of K j - 1 and L ({Jj = 1. 
j=1 

Since ({Jjf E .@(O), we can appeal to §2.1.5 to show there exists uj E &(0) 

such that ~i = ({JJ The function uj is holomorphic in a neighborhood of the 

holomorphically convex compact set K j - 1 • By Runge's theorem, there is 
a function Vj E £(0) such that 

1 
sup Iu. - v·1 < ~ 
K j _ 1 J 1 21' 

Therefore, the series U = L (uj - vj ) is uniformly convergent over every 
j,,1 

compact subset of O. Furthermore, for any I;?: 1, the functions (uj - v), 
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j ~ I + 1, are holomorphic in K1, hence their sum I (Uj - vJ is also a 
j:2:l+l 

holomorphic function in K/. A posteriori, it is of class C"" in KI • Since U is the 
sum of the tail end of the series and a finite number of other ex; functions, 
then U is also eX) in K/. This shows U E g(Q). 

Moreover, in Kl we have 

OU I 0 0 / OU (l ) - = I (u - v) + ........ I (u. - v) = I-u. = I <p. r oz j=l iJz} ] iJz j:2:l+l } ) j=l iJz J j=! ] . 

=(.I <Pi)f=i; 
):2:1 

since <Pj == 0 on Kl if} ~ 1+ L The index I being arbitrary, we conclude that 

in fact :~ = f everywhere in O. 0 

Let 0 be open in C and (OJi E I an open covering of O. With the convention 
that £(0) = {O} we have a sequence of complex vector spaces and ofC-linear 
maps: 

0--+ £(0) ~ n J'l-'(Oj) l:.. Il £(Qj II Ok) .. :.. n ,;.r'(Oj II Ok II ( 1) 

given by: 

where 

with 

j i.k j,k,/ 

aU) = UIOJjE1; 

bHij)jEl) = (gjk)U,k)E!XI' 

Cjkl = (gjkl(Uj II Uk II ( 1)) + (gkl I (OJ II Uk II n/)) + (gljICOj II Ok II ( 1)), 

(Compare with §1.7.2.) 
It is easy to see that the map a is injective, 1m a = Ker b, and 1m b <;; Ker c. 

We are going to show that it is also true that 1m b = Ker c. 
Let us note that if (gjk)j. k E Ker C then gjj = 0 for every j E I and more 

generally gjk = - gkj for every pair (j, k) E I x I. 
Now, the corresponding sequence is exact (i.e., 1m b = Ker c) when we 

replace holomorphic functions by COO functions. In fact, let (gij) be an element 
of Ker c in the Coo case. Let 

where (<pJv:2:0 is a C n partition of unity subordinate to the covering (OJ)jE/ 
by Coo functions of compact support, r: f'j ....• I is a function such that 
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CPv E ~(nr(v»' and the family (supp CPv)v;;,o is locally finite. Therefore, to see 
that he E S(nk) it is enough to show that CPvgr(v),k E S(nk). But this function is 
given by 

{ CPvgr(V),k in n k ('\ nr(V) 
o in n k \supp CPv' 

which shows that it is COO in all of nk' Finally, in nj ('\ nk, 

fk - jj = L CPv(gr(v),k - gr(v),j) = (L CPv) gjk = gjk' 
v;;, 0 v;;,o 

We prove now the exactness in the holomorphic case. 

3.2.2. Theorem. Let (nj)jeI be an open covering of n. Let gjk E Jf'(nj ('\ nk) be 
a collection of functions indexed by (j, k) E [ x [ such that 

(i) gjk = - gkj in nj ('\ n k for every (j, k) E [ x [ 
(ii) gjk + gkl + glj = 0 in nj ('\ n k ('\ n l for every triple (j, k, I) E [ x [ x [. 

Then, there are functions gj E Jf'(nj),j E [, such that 

for every (j, k) E [ x [. 

PROOF. Consider the commutative diagram 

o 

1 
S(Q) --0 

"--------------~ 

1- i - --0 

-
-

Every row and every column, except for the first column, is exact. 
Let (gjk) E Ker c with gjk E Jf'(nj ('\ nk)' One can consider (gjk) in Ker c in 

the second column. Since this column is exact we can find (hj)j E n S(nj) such 
j 
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h h h t' (Ohj) . ohk ohj 0 . 
t at gjk = k - j. Therelore OZ j E Ker b, SInce OZ - oz = ozgjk = 0 In 

nj n nk. The exactness of the third column says that we have a global CXl 

function .p whose restriction to nj is ~~. The exactness of the first row 

produces u E @"(n) such that :; = .p. Consider now the "corrected" functions: 

og. oh· 
We also have gjk = gk - gj. Moreover, this time we have o~ = o~ - (.p Inj) = O. 

This concludes the proof. 0 

We are now going to prove the Mittag-Lefller theorem for meromorphic 
functions. 

3.2.3. Theorem. Let (n)j El be an open covering of an open set n £ c. For every 
j E J, let Jj be a meromorphic function in nj. We assume Jj - fk E £(nj n nk) for 
every pair (j, k) E J x J (i.e., Jj and h. have the same principal parts in nj n nd. 
One can find a meromorphic function f in n such that (fIn) - Jj E £(nj) 
for every j E J (i.e., one can find a meromorphic function with given principal 
parts). 

PROOF. Let us define (gjd by gjk = Jj - fk if nj n n k =1= 0 and zero otherwise. 
These functions verify the conditions in §3.2.2. Therefore, there are gj E £(nj) 
(j E 1) such that 

Hence, the meromorphic function Jj + gj coincides with h. + gk in nj n nk' 
and this defines a global meromorphic function f such that 

flnj = Jj + gj in nj, 

i.e., (flnj) - Jj = gj E £(nj ), as we wanted to show. o 

The usual version of the Mittag-Lerner theorem is the following. 

3.2.4. Theorem. Let A = (Zj)j?:l be a discrete sequence in the open set n £ C. 
Let Jj be a meromorphic in a neighborhood of Zj (j ~ 1) which has only a pole 
at Zj as its only singularity in that neighborhood. Then, there is a meromorphic 
function f in n, holomorphic in n\A, such that f - Jj is holomorphic in a 
neighborhood of Zj for every j ~ 1. 

PROOF. Let no = n\A and fo = O. For every j ~ 1, let nj be disks centered at 
the point Zj' mutually disjoint, and such that Jj is merom orphic in nj whose 
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only singularity is a pole at Zj. By §3.2.3 there is a merom orphic function I in 0 
such that 

I - 10 is holomorphic in 0 0 

I - Jj is holomorphic in OJ (j ;;?: 1). 

This is the statement of the theorem. o 

3.2.5. Example. Let 0 1 , O 2 be two open subsets of C, I E £(01 n O2). There 
are 11 E £(01), 12 E £(02) such that 

1= (/11(01 n O2)) - (/21(01 n O2 )). 

In fact, let gll = g22 = 0, g12 = -g21 = f This choice verifies the conditions 
of §3.2.2 with 0 = 0 1 U O2 and the covering (01, O2). 

In the exercises we shall see how this theorem relates to Cauchy's theorem 
on partial fraction expansion of the previous chapter. 

As will be seen in Exercise 3.2.2, the classical proof of Theorem 3.2.4 in 
the case 0 = C is the following. Let Zo = 0, ° < IZ11 ::;; IZ21::;;··· /' 00 and Gn , 

n E N, polynomials so that the functions Gn (_1_) represent the desired 
Z - Zn 

principal parts. One finds polynomials Pn , with Po = 0, such that the series 

is uniformly convergent in compact subsets of C\ {Zj:j ;;?: o}. This series is 
usually called a Mittag-Leffler expansion of the function f Note that 
Proposition 2.6.16 represented a partial solution to the converse problem: 
given a meromorphic f, find, if possible, a Mittag-Leffier expansion of I. In 
this way we found in Example 2.6.17 the expansion of cotan z: 

1 2z 1 (1 1 ) cotan z = - + L 2 2 = - + L --+ - . 
Z n;;,l Z - (mr) z n"O Z - mr me 

More generally, a Mittag-Leffierexpansion for IE Jt(C) is a representation 
of the form 

where F E £(C). 

EXERCISES 3.2 
1. Use the same proof of Theorem 3.2.4 to show that if A = (Zj)j;;'1 is a discrete 

sequence of points in an open set 0, and if (~(z»j is a corresponding collection 

of principal parts (i.e., ~(z) = fie ~ zJ, fi E Jf'( {O}») then there is a function 

f E Jf'(O\A) such that for every Zj the principal part of the Laurent development 
of f about Z = Zj is exactly ~. 
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2. (Mittag-LeIDer's expansion). A constructive proof of Theorem 3.2.4 for mero
morphic functions in C is the following. Assume we have a sequence {Z.} • .,I' 

0< Izd ~ IZ21 ~ ... , lim z. = 00, and finite principal parts G.(_l_). Choose 
'-00 ( 1 ) z - z. 

p.(z) to be the initial Taylor polynomial of G. -- in 8(0, Iz.l), of sufficiently 
high degree so that z - Zn 

for some sequence en > 0 such that L en < 00. Show that 
• .,1 

F(z) = L (G.(_1 ) - P.(Z»), 
,.~1 z-z,. 

represents a meromorphic function in C with the desired poles and principal parts. 
What should you do if we also want a pole at z = O? (Compare with §2.6.16). 

3. Apply the previous exercise to the construction of meromorphic functions F in C 
with the following properties: 
(a) simple poles at z. = n, n E Z+ , Res(F, z.) = n; 
(b) simple poles at z. = yin, n E N, residues = 1; 
(c) simple poles at nEZ, residues = 1; 
(d) simple poles at (Z + iZ)\ {O}, residues = 1; 
(e) poles at Z + iZ with principal parts (z - (m + niW3. 

4. The function z I-> II e-'t Z - 1 dt has an analytic continuation to the whole complex 

plane as a meromorphic function: by expanding e-' in a power series, show that 
its Mittag-LeIDer expansion is 

L (-1)'_1_ . 
• .,0 n! z + n 

Use this expansion to show that the r function introduced in §2.5.22 has 
a Mittag-LeIDer expansion 

1 E J't(C). 

(-1)' 1 
r(z) = 1(z) + L -,- --, 

• .,0 n. z + n 

5. Find all the solutions 1 E 8(1C) of the equation ! = 9 for: (a) g(z) = z; (b) g(z) = z; 
(c) g(z) = zm z', m, n E N; (d) g(z) = e%; (e) 9 E J't(IC). 

6. We say that a function 1 belongs to COO (B), 8 = 8(0,1), if f is the restriction to 
B of a function which is defined and COO in a neighborhood of B. Let g(z) = 

exp ( ___ 11_2) for z E 8,g108 = O. Showthereisf E COO(B) such that ~~ = ginB. 
1 - zl uZ 

*7. Let K ceO open in Co Show there is a constant C > 0 such that for every U E 8(0) 
one has 
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where dm is the Lebesgue measure. 

8. Let J E f6'(C) be such that r (IJ(z)l/lz!)dm(z) < 00. Find a solution of the J Izl"l 

. ou f 
equatIOn o-Z = . 

*9. (a) Let Jl(k):= # {m + in E Z + iZ: max(lnl, 1m!) = k ~ O}. Show that L Jlk(:) < 00. 
k"l 

(b) Show that the function J(z):= L (z - W)-3 is meromorphic in C and 
(J)~Z+iZ 

doubly periodic, i.e., J(z + 1) = J(z + i) = J(z) for every z rI Z + iZ. 
(c) Use the previous part to show that 

1 [1 1 ] g(z) := 2: + L 2 - 2 
z O,.",eZ+iZ (z - w) w 

is a meromorphic function with double poles at every point in Z + iZ and 
residue zero. 

(d) Verify that g'(z) = - 2J(z). Conclude that g(z + 1) - g(z) = constant, 
g(z + j) - g(z) = constant. 

(e) Use that 9 is an even function to conclude that 9 is doubly periodic. 

10. The Bernoulli numbers B2m are defined by 

2m-1 (-l)m-1(2m)! 00 1 
2 B2m = 2m L k2m ' n k=l 

m = 1,2, .... 

Use the Mittag-Leffler expansion of cotan z obtained in this section to show that 

1 00 22mB z2m-1 

cotan z - - = L (- 1)m 2m 
Z m=l (2m)! 

for z near zero. What is the radius of convergence of this series? 

11. Verify that, ifthe numbers B. are defined by the identity 

z ~ B.. z eZ + 1 -+ L... -z =---
2 .=0 n! 2 eZ - 1 ' 

then Bo = 1, B1 = -t, B2.+1 = o for n > 0, and the B2.coincide with those defined 
in the previous exercise. They also satisfy the recurrence relation 

Bo=1, ktG)Bk=B. (n ~ 2). 

The Bernoulli polynomials are defined by 

B.(z):= kto G) Bkz·-k; 
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verify that 

e zr 00 t"-1 
-,- = L B,(z)-, 
e - 1 k=O n! 

0< It I < 2n. 

12. The following is another way to show that the identity 

1 (1 1) n cotan nz = - + L -- - -
z ,.z· z + n n 

holds. Define 

1 (1 1) g(z) = ncotannz - - - L -- - - . 
z ,.r z + n n 

(a) Show that g is entire and g(O) = o. 
(b) Show that 

_n2 1 
g'(z) = -.-- + L --. 

(sm nz)2 ,.z (z + n)2 

(c) Show that g' satisfies the functional relation 

4g'(z) = g'G) + g'(z; 1) 
(d) Conclude that if M = max Ig'(z)1 then 

Izl,;2 

4M$;M+M. 

This implies the identity (*) holds. Why? 

13. (a) Let f be holomorphic in the annulus 0 $; r < Izl < R $; O. Show explicitly 
a way to decompose f = f1 - f2, f1 E Jr(B(O,R)) and f2 E Jr(B(O,rn (it can 
be chosen holomorphic at z = (0). 

(b) Letfbe holomorphic in a neighborhood of the closed strip Ilmzl $; 1, assume 

I f(z) I $; _C_. Use Cauchy's formula to find an explicit decomposition 
1 + Izl 

f = f1 - f2 where f1 is holomorphic for 1m z < 1 and f2 is holomorphic for 
Imz> -1. 

(c) Let f be holomorphic in the open strip 11m zl < 1; show there are functions f1, 
f2' f1 holomorphic in the half-plane 1m z < 1,f2 holomorphic for 1m z > -1, 
andf= f1 - f2 in IImzl < 1. 

§3. Weierstrass' Theorem 

3.3.1. Theorem. Let (Z)j;?:l be a discrete sequence of distinct points in an open 
subset n of C. Let (mj )j;?:l be a sequence of nonzero integers. There is a mero
morphic function f in n which is holomorphic and never zero in n\ {Zj : j ~ I}, 
such that for every j: 
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J(Z) = (z - z)m1j(z) 

in a neighborhood lj oj Zj' where Jj is a nonvanishing holomorphic Junction in lj. 

PROOF. We can assume all the mj ~ 1. The general case is obtained by taking 
the quotient of two such hoI om orphic functions. 

The idea of the proof is the following: Find cp E $(Q), cp(z)"# 0 for 
Z rf: {Zj : j ~ I} and so that for every k, there is a disk Ak of center Zk such 
that cplAk = (z - Zk)mkhk(z), hk E Jf'(Ak), hk without zeros. (The disks can be 
chosen pairwise disjoint). Once cp has been found we choose J of the form 
J = cpe"', t/J E $(Q). 

Let us first explain the last step. That is, we assume we have a cp and we 
want to find t/J E $(Q) such that J = cpe'" satisfies all the conditions of the 

theorem. Clearly we need ;~ = 0, that is, 

so that t/J is a solution of the equation 

ot/J 1 ocp 
oz = --;p oz· 

Since cp is hoI om orphic in any Ak , ~; = 0 in that disk and hence, we can 

also take the second member to be identically zero in every Ak • This is why 
the right-hand side is a COO function in Q. Therefore, the inhomogeneous 
Cauchy-Riemann equation has at least one solution t/J E $(Q). Furthermore, 
t/J is holomorphic in each disk Ak. The function e'" is never zero, hence the 
holomorphic function J = cpe'" only vanishes when cp does, that is, only in the 
set {Zj:j ~ I}. In any Ak we have 

J(z) = (z - zktkhk(z)e"'(Z), 

as we have already pointed out, the function hk(z)e"'(Z) is holomorphic, and 
never zero in Ak • This shows that the problem reduces to that of finding cp. 

Translating Q, if necessary, we may assume that 0 E Q and Zj "# 0 for every 
j. We denote Q* the open subset of S2 obtained from Q by means of the map 

Z ~ W = !. The point 00 E Q*, hence an* is a compact subset of C. 
Z 

We can reorder the points Zj so that the points Wj = l/zj satisfy 
d(wj , oQ*) ~ d(wj +1' oQ*). The discreteness assures that d(wj , oQ*) -+ 0 unless 
the set {Zj : j ~ I} is finite. Let w~ be a point in oQ* so that I Wj - w; I = d( Wj' oQ*). 

Let rj = 2d(wj ,oQ*) and ~ = B(w;, r). This disk contains the segment 
[Wj' wi]. The family of open sets (~n Q*)j;;'l is locally finite even when 
{Zj : j ~ I} is infinite, since w; E oQ* and rj -+ o. 
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For every k ~ 1, let Ik = {j ~ 1: wi E [Wk, WkO and Jk = N*\Ik. 
There are open neighborhoods v,. of [wk, wkL v,. ~ Uk n n*, such that for 

every j E Jk, wi ¢ v,.. In fact, this follows from Uk n (n* \ { Wi : j E Jk}) being an 
open set in n*. (Recall the sequence is discrete in n*.) There exists a function 
I1-k E 8(n*) with support (relative to n*) contained in v,. and I1-k takes identically 
the value mk on a neighborhood V~ of [Wk, wkL V~ ~ v,. (see Figure 3.2). 

Let us recall that there is a determination oflog W - w~ outside the segment 
w- Wk 

[wk , wkJ. Therefore, the functions 

{

exp (l1-k(W) log W - W~) in n*\[wk, wk[ 
w- Wk 

gk(W) := 

( w - w~)mk in V~ 
W - Wk 

are smooth in n*, since the two formulas coincide in V~\[Wk' Wk[. They have 
the value 1 outside v,. and equal «w - wk)/(w - wk»mk in V~. 

For every index 1 ~. 1 there is only a finite number of gk which are =1= 1 in 
a neighborhood of W,. This follows from the fact that v,. ~ Uk n n* and the 
family (Uk n n*)k;o,1 is locally finite. Therefore, the function 
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g(W) = n gk(W) 
k<!ol 

is a locally finite product offunctions in $(n*), hence g E $(n*). This function 
vanishes only on the set {Wk : k ~ I}. 

Consider a function gk which is not identically equal to one in a neighbor
hood of W,. If IE Jk , this is impossible because W, ¢ v,.. Therefore I E h, that is, 

W, E [Wk, w~[, hence gk(W) = (w - Wk)mk in a neighborhood of w, and does not 
W - w~ 

vanish at W, unless I = k. Hence, there is a neighborhood N, of W, where g is 
holomorphic and clearly it vanishes at W, with multiplicity exactly mi. To 
conclude the proof, it is enough to define qJ(z) = g(1/z) and take the disks 
Ak S {z: l/zENd· 0 

The preceding proof was taken from [BTl A different proof of the 
Weierstrass' theorem for entire functions in terms of infinite products appears 
in the next chapter and in the exercises of this one. 

3.3.2. Corollary. Every meromorphic function F in an open set n of C can be 
written in the form F = fig with f, g E £(n). In particular, if n is connected, 
then the ring £(n) is an integral domain whose quotient field is the field vIt(n) 
of meromorphic functions in n. 

PROOF. If F has poles at the points Zj of order nj, one can find a holomorphic 
function g in n, vanishing only at those points and with multiplicity exactly 
nj • The function f = F g is then hoI om orphic in n. 

If n is connected, f, g E £(n) and fg == 0, then one of these two functions 
must be identically zero since it cannot have isolated zeros. The fact that vIt(n) 
is the quotient field of £(n) follows from the first part of the corollary. 0 

3.3.3. Corollary. Let n be an open subset of Co There is a function f E £(n) 
which cannot be analytically continued to any open set larger than n, even as 
a meromorphic function: there is no meromorphic function g on a disk B(a, r) 
centered at a point a E an, such that g coincides with f on B(a, r) n n. 

PROOF. We only have to construct a discrete sequence {Zj}j<!ol (of different 
points) in n accumulating at every point in an. In fact, in such a case there 
exists a function f E £(n) which vanishes exactly at the points Zj and nowhere 
else. Suppose that g is a meromorphic function on a disk B(a, r), a E an, and 
g = f on B(a, r) n n. Then g vanishes at all the Zj E B(a, r), and these points 
accumulate at a. Therefore g must be identically zero, which contradicts the 
fact that f only vanishes at the points Zj. 

To construct the sequence {ZJj<!ob write the points in n n (0 + iO) in 
a sequence {Wj L<!ol. Let rj = d(wj,nC ) and {Kj }j<!ol be a sequence of compact 
sets exhausting n. For every j choose Zj E Kj such that IZj - wjl < rj and, 
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moreover, so that Zj =I- Zk for j > k. Then it is dear that {ZjL~l is a discrete 
sequence (of different points) in n. If a E an and e > 0, there is j such that 
la - ~jl :::;; s/2, so rj :::;; e/2 and hence la - zjl :::;; la - wjl + IWj - zjl :::;; 11: + rj :::;; e. 
Thus {ZjL~l accumulates at every point in an, and the proof is complete. 

o 

In the situation of this corollary we say that n is the domain of holomorphy 
off. 

EXERCISES 3.3 
l. Derive the Weierstrass Theorem 3.3.1 from the Mittag-Lerner Theorem 3.2.4. 

2. (Classical proof of Weierstrass' theorem for entire functions). 
(a) Given a sequence {Zn}n~l' 0 < Iz,l:::;; IZ21:::;; "', lim Zn = X), show there is 

a sequence of integers mn E N such that 

(liz E C). 

(b) Let E(z,m) = (1 - z)exp(z + ;2 + ... +~) ifm 2 I, E(z,O) = 1 - z, be the 

Weierstrass primary factors. Show that the Weierstrass product 

f(z) = n. E(z,mn) 
n~":> 1 Zn 

is an entire function vanishing exactly at Zn' Moreover, the multiplicity of 
a zero a off is exactly the number of times it appears in the sequence {zn }n21 . 
What should you do to account for a zero at the origin? (For the theory of 
infinite products see [Ahl1], [Ma], or Chapter 4.) 

3. Find the Weierstrass product expansion corresponding to the following se
quences: (a) 71.; (b) Zn = log n, n 2 1; (c) 71. + i71.. (In parts (a) and (c) order the 
sequence with increasing absolute values as in §3.3.2.) 

4. Let Q be simply connected in C. How should one choose the integers mi E N * 
in Weierstrass' Theorem 3.3.1 in order that f has a holomorphic square root? 
A holomorphic cubic root? 

5. Let!l be a simply connected open set in C, f, g EO ff(Q). What are the necessary 
and sufficient conditions on f and g in order that the equation X 2 + IX + g = 0 
admits a solution X E .H(Q)? 

*6. Show that the family of functions whose domain of holomorphy is !l is dense in 
ff(Q). (Hint: Consider g + If, with f given by Corollary 3.3.3, t > 0.) 

7. Let rll be a connected open set, [11 ~ n2, ill a simply connected open set in C, 
and f E ·#-'(!l2)' all whose zeros are of even order. Suppose g E .;of(!l,) is such that 
gl = I in !l,. Show !l, is not the domain of holomorphy of g. 

8. Integrating the expression obtained for cotan z at the end of §3.2, show that 
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""( z) IC()I( z) , sinz = z 0 1 - -- ez!n" 1 + ~ e- z"" 
n~1 nn n~1 I'm 

=zOI-;2' 00 ( ?2 ) 

n~1 n n 

9. Derive the formulas: 

(a) sinh nz = nz 0 1 + ~2 ; 
00 ( ?2) 
.~l n 

10. Assume f is an entire function with the property that it has simple zeros at 
the points aj , 0 < lad s lall s "', and there is a sequence of piecewise-C l 

Jordan curves f. such that f. s; Int(f.+1 ), f does not vanish on any f., 
dist(f., 0) = Rn -l> 00 as n -l> 00, t(f.) = O(R,,) and 

I/'(Z)I max ~f = O(R.). 
rn . (z) 

Show that 

rx = /,(O)lf(O), and the factors are grouped together for those zeros ak lying 
between f. and f'+1 in order to make the infinite product convergent. 

Ii. Use the previous exercise to derive the expansions 

(al sin z - z cos z = ~ Z3 i1 (1 - z:), where A.n is the root of the equation 
3 n~l An 

tanz = z lying in the interval (nn,(n + t)n), n E N*. 
nz . nz 00 ( ( - O"z) (b) cos ~ - sm = 0 1 - ~~ . 
4 4 .~O 2n + 1 

*12. We return to the f function. By Exercise 3.2.4 we know it is a merom orphic 
function in C with simple poles at z = 0, -1, -2, .... One of the aims of this 
exercise is to show that f does not have any zeros. Instead of the power series 
expansion of e- r used in Exercise 3.2.4, we use here a different approximation 
of e-'. 
(a) Show that for 0 SiS n, n E N*, one has 

Os e-r _ (I _:)" S t~~~. 

(b) Let IP.(z) = f: (1 -~)"tZI dt. Show that 

in .JF( {Re z > O}). 
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(c) Use the change of variables t = nT in the integral defining rp. to show that 

n!n Z 

rp.(z) = - . 
z(z + I) . .. (z + n) 

(d) Let y be the Euler-Mascheroni constant, y = lim (± 1 - 10gn), and 
n--t-oo r:::t ] 

• I 
y'. = I-: -logn - y. Rewriting nZ as 

j o l ] 

show that 

f(z) = lim e- YZ I(z fI (1 + ~)e-z!j), 
n~oo I J~l J 

a priori only when Re z > O. 
(e) Use Exercise 3.3.2 to show that 

is an entire function. Conclude that this function coincides with ~ everywhere, 

(f) Does r have any zeros in C? 
n 

(g) Show that r(z)r(l - z) = -,~ and 1'(z + I) = zr(z). 
smnz 

(h) Use (g) to show that r(D = J~, and a posteriori 

( 1) 1 x 3 x ... x (2n - 1) ; 
f n + 2. =--2"----v n, n E ~*. 

13. (a) Show that any meromorphic solution of the equation 

zf(z) = f(z + 1) 

satisfying the condition f(1) = 1 must have simple poles at z = -n, 11 E ~*, 

'h 'd (-1)" Wit resl ues - --. 
n! 

(b) Show that if f is a solution of (a) then 

f(z) = rp(z)1'(z), 

where rp is a meromorphic function of period I, i.e., rp(z + 1) = rp(z). 

* 14. Show that given any entire function f with real coefficients there is an entire 
function g with rational coefficients with exactly the same set of zeros (including 
mUltiplicities). Conclude that given any real number a there is an equation of 
the form 
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with rj E Q, and whose only root is a simple root z = a. Similarly, show that given 
any sequence, finite or infinite, of real numbers at, a2, ... , such that lim a. = 00 if 

the sequence is infinite, then there is an entire function g with rational coefficients 
having exactly those values as zero. 

The above statements hold for any entire function f if one replaces Q by 
Q+iQ. 

§4. Interpolation Theorem 

Let us recall that given m distinct points Z l, .•• , Zm and m values al , •.. , am we 
can find polynomials p that interpolate these values, that is, 

j = 1, ... , m. 

In fact this polynomial will be unique if we require that deg p :::; m - 1. In 
the same way we could prescribe a certain number of derivatives at each point 
Zj' or what amounts to the same, prescribe the first terms of the Taylor 
development of p at the point Zj' This amounts to requiring 

p(k)(Zj) _ 
k!-aj,k' j = 1, ... , m, 

Both problems can be solved using explicit formulas or the calculus of 
residues (see Exercises 2.6.21 and 3.4.1). We want to show that this interpola
tion problem has a solution even if we consider it for an infinite discrete 
sequence of points. This is the meaning of the following theorem. 

3.4.1. Theorem. Let (Zj)j;o,l be a discrete sequence of distinct points in an open 
subset 0 of C and (n)j;o,l be a sequence of integers greater than or equal 
to 1. Let (aj,dj,k be a sequence of complex numbers indexed by j ~ 1 and 
o :::; k :::; nj - 1. There exists g E £(C) such that 

for allj E ~*, 0:::; k :::; nj - 1. 

PROOF. From Weierstrass' Theorem 3.3.1 we can conclude that there is a 
function f E £(0) which vanishes exactly at the points Zj with multiplicity nj • 

Let (t)j;o, 1 be a sequence of positive numbers such that the disks I1j = B(zj,2Bj) 
are disjoint. Consider the polynomials 

(j ~ 1), 

and for each j, let <Pj E g;)(IJ.) be such that 0 :::; <Pj :::; 1 and <Pj == 1 on B(zj' Bj). 
For t/J E 8(0), let g be given by 

g(z) = L ~(z)<p}z) - f(z)t/J(z). 
j;o,l 
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Since the supports of the functions ({}j are disjoint, the series contains at most 
one nonzero term in the neighborhood of any point of n. Therefore 9 E C(n). 
We need to choose t/J so that 9 is holomorphic. As should be familiar by now, 

this means that the equation :~ = 0 leads to 

L P;(z) o~ (z) = J(z) o~. 
j?;1 OZ 8z 

Let us call h(z) the left-hand side of this equation. In U B(zj' Bj ) we have 
j 

that h is identically zero, so that the function h(z)/J(z) (taken to be zero at 
all the z) is well defined and COO in n. Choosing a COO solution t/J of the 
inhomogeneous Cauchy-Riemann equation 8t/J18z = hlJ, we obtain that 9 is 
holomorphic in n. Furthermore, t/J is hoi om orphic in the neighborhood of 
every Zj and, since J vanishes with multiplicity nj at Zj' we have 

g(k)(Zj) = p;(k)(Zj) = klaj,k if 0 ~ k ~ nj - 1, 

as we wanted to show. D 

EXERCISES 3.4 
1. Let "I be a piecewise-C1 Jordan curve, Q ;2 Int(y),f, g E Jr'(Q), and g does not vanish 

on y. Define a function F by 

F(z) := _1 f 1(0 g(z) - g(O d,. 
2ni y g(O z - , 

Show that FE Jr'(lnt(y)). (In fact, you can prove F E Jr'(w) for some w open, 
w ;2 Int(y).) Moreover, if Zo is a zero of g of multiplicity m, Zo E Int(y), then 

O$k$m-1. 

Show that there is a function h E Jr'(lnt(y)) (in fact, holomorphic in some 
neighborhood of Int(y)) such that 

F = f + hg. 

Show that if g is a polynomial, then F is a polynomial. 

2. Why do we need the sequence (z)j2' 1 to be discrete in Theorem 3.4.11 

3. Let f be an entire function with simple zeros (Zn)n2'l, \zn\ $\zn+1\' Given any 
sequence (an)n2'1 of complex numbers, show there is a sequence of nonnegative 
integers (Qn)n2'l such that 

an f(z) (z)qn 
g(z) = I -~--

"2'1 f'(zn) Z - Zn Zn 

represents an entire function such that g(zn) = an' 

*4. Show that if(an)nEz satisfies the condition I la"12 < 00, then the function 
n 

sinz 
g(z) := I (-l)nan--

n Z - nn 
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is entire, takes the values g(nn) = an and f: Ig(xW dx < 00. 

5. (Newton's divided differences). Let Z I' ... , Zn be distinct points in Q, g E Jt"(Q). 
Let h be the polynomial of degree n - 1 interpolating the values h(z) = g(z), 
written as 

Define the divided differences ~(k)[g; ZI' ... , Zk+I] by 

~(O)[g;ZI] = g(zd 

A(k-l)[ . ] ~(k-l)[ ] 
(k) . . _ _ l..l_-=-g=-,_Z.=.2_' ._ . . _'_Zk_+_l_-___ g_,_z 1_'_· ._._' Z_k 

~ [g,zl,···,Zk+I]·-
Zk+1 - ZI 

Show that ~(k)[g;ZI, ... ,Zk+I] is a symmetric function of the points ZI, ... , Zk+l. 
Compute bo, b1 , •.• , bn- 1 in terms of the divided differences of g at the points 
Z I, ... , Zn. Write a formula similar to that in Exercise 3.4.1 to represent h. What 
happens when two points coincide? (We recommend [Ge] for an extensive and 
clear study of these operators ~(k) and their applications.) 

6. Let P, Q be two polynomials without common zeros. Show there exist polynomials 
A, B such that 

PA + QB = 1. 

Is the pair A, B unique? Show it is uniquely determined by the extra conditions 
deg A < deg Q and deg B < deg P. Show the problem can be reduced to an inter
polation problem and can be solved using Exercise 3.4.1. The formulas can be 
made explicit using residue calculus. 

§5. Closed Ideals in Jf(Q) 

Let 0 be an open subset of C, the family 2(0) of all holomorphic functions 
in 0 is a topological algebra, that is, it is an algebra over C and the topology 
of uniform convergence on compact subsets of 0 is compatible with the 
algebraic operations. This fact will prove to be important in the applications 
to harmonic analysis given in the second volume. The main objects of interest 
in an algebra are its ideals. Weierstrass' theorem will provide the main tool 
to study them. As a first step, we are going to show here that every closed 
ideal in 2(0) is a principal ideal. One should not assume that every ideal in 
2(0) is closed (they are not!). We follow [LRJ and [BTJ. 

3.5.1. Definition. We call multiplicity variety in 0, a sequence of pairs (zn, nk)k~l 
with Z = {Zk: k ::2: I} a discrete subset of 0 and nk integers ::2: 1. Whenever 
f E 2(0) satisfies j<i)(Zk) = 0 for 0 $; j $; nk - 1 and every k, we say that f 
vanishes on V. 
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3.5.2. Proposition. Let V = (zbndk":! be a multiplicity variety in Q. The set 

I(V) = {f E .ff(Q): f(zd = ... = r"k--1)(zd = 0, k :::::: 1} 

is a closed ideal in .?'t(Q). Moreover, I (V) is a principal ideal. 
leV) is called the ideal oJ the variety V 

PROOF. It is easy to verify that I(V) is an ideal. It is closed because the 
convergence of a sequence in Jf'(Q) implies the convergence of the derivatives 
of any order. Finally, Weierstrass' theorem provides us with a function 
f E Jf'(Q) which vanishes only at the points Zk and exactly with multiplicity 
nk . Hence f E I(V). 

Let g be another function in the same ideal. We claim that glf E .Jt'(Q). 
In fact, gif is holomorphic in Q\Z since f does not vanish there. (Recall 
Z = {Zk: k :::::: 1 }.) In a neighborhood of a point Zk E Z we can write 
g(z) = (z - zk)mkh(z) with mk :::::: nk and fez) = (z - Zk)n,,<p(Z), <p(zd" 0, h, 
<p holomorphic. Therefore, in a small neighborhood of Zk we have 
g(z)lf(z) = (z - zdmk-nkh(z)/<p(z) (z " zd and the right-hand side is holomor
phic at Z = Zk' It follows that f generates the ideal I(V). 0 

3.5.3. Definition. Let I be an ideal of Jf'(Q). We denote by Z(IJ the set oJzeros 
oj I, that is, the set 

Z(I):= n Zcn 
JET 

where zen:= {z E Q: fez) = O} is the zero set of f. 

3.5.4. Remarks. (1) We have Z(Jf'(Q)) = 0 (since 1 E Jf'(Q) and Z(l) = 0), 
but there exist ideals I " Jf'(Q) such that Z(I) = 0. For instance, let (zA,:! 
be an infinite discrete sequence in Q. Let I be the set of f E £'(Q) for which 
there is an integer h :::::: 0 such that for every j :::::: h + 1 we have f(zj) = O. 
Weierstrass' theorem shows that I " to}. Since 1 ¢; I we have I " Jf'(Q). 
Clearly Z(I) = 0. We leave as an exercise to the reader to verify that I is 
an ideal. 

(2) IfQ is connected then Z(I) is a discrete subset ofQ unless I = to}. 
(3) The proof of Proposition 3.5.2 also shows that any principal ideal is 

closed. 

3.5.5. Definition. Let Q be a connected open subset of <C and I a proper ideal 
in .Yf(Q) (that is, {O} " I " Jf'(Q)). We denote by V = V(l) the multiplicity 
variety oj the ideal I, where the sequence V of pairs (Zk' ndkd is defined by 
enumerating the discrete set Z(l) as (Zk)k":l and for each k we let nk be the 
integer greater than or equal to 1 given by 

nk := inf{ m(j, zd: f E I}, 

where mU: Zk) is the multiplicity of Zk as a zero of f. 
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We can assume without loss of generality that, when Z(I) is infinite, 
d(Zk' Qe) \. O. (If Q = C we take this to mean IZkl /' 00.) 

Note that V(f) = multiplicity variety of the principal ideal generated by f, 
consists precisely of the pairs given by the zeros of f and their respective 
multiplicities. If V(f) = (Zk' nk)k~l we have Z(f) = {Zk : nk ~ I}. Furthermore, 
it is clear that I(V(f» is generated by f Therefore, the statement of Proposi
tion 3.5.2 already includes the observation made in Remark 3.5.4, (3). 

We consider now a few properties of finitely generated ideals in £(Q). 

3.5.6. Lemma. Let fl' ... , fn E £(Q) be such that n Z(fj) = 0. There are 
1 sjsn 

gl' ... , gn E £(Q) such that L fjgj = 1. 
1 sjsn 

PROOF. We shall proceed by induction on the number n of functions. We can 
assume Q is connected (otherwise we work in each connected component 
separately). The case n = 1 is evident, but we need the case n = 2 to start the 
induction. 

Let fl' f2 E £(Q) such that Z(fl) (j Z(f2) = 0. Hence the sets 
Q1 := Q\Z(fd and Q2 := Q\Z(f2) form an open covering of Q. 

In Q1 we can find cx 1, CX2 E £(Qd such that 1 = CXdl + cx2f2' e.g., CX2 = 0, 
CX 1 = l/fl' Similarly, in Q 2 we can find 131' 132 such that 13dl + 13d2 = 1. 

In Q1 (j Q2 = Q\(Z(fd u Z(f2» we have 

1 = CXdl + cx2f2 = 13dl + 13d2' 

hence 

( CX l - 13dfl = (132 - cx2)f2' 

Therefore, we can define the function 

CX 1 - 131 132 - CX2 
gl,2 = f2 = f1 E £(Q1 (j Q2)' 

Let g2,l = -g1,2' gl,l = g2,2 = O. These gjk verify the conditions of§3.2.2. 
It follows that there are gl E £(Qd, g2 E £(Q2) such that 

This implies that in Q 1 (j Q 2 we have the two identities 

and 

In other words, 

and 
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Note that in the last identity we have (X2 - gIil E Jr(Ql ) and 
pz - 11 gz E Jr(Qz) and, since they coincide in Q l n Qz, they define a single 
holomorphic function v in Q. Similarly, the previous identity has the left-hand 
side (Xl + IZgl E Jr(Qd and the right-hand side Pl + g2i2 E Jr(Qz) and 
jointly, they define a function u E Jr(Q). 

We claim that u/l + vl2 = 1 in Q. Let us verify this in Ql' for instance. We 
have 

(u/l + vlz)IQl = «(Xl + 12gl)/l + «(X2 - gIil)/2 = (XIil + (X2i2 = l. 

The same way we verify (u/l + vlz)IQz = 1. Hence the case n = 2 has been 
completely proven. 

Let us now assume the result is valid for any set of n - 1 functions without 
any common zero. 

Let /1' ... , In E Jr(Q) be given functions without any common zeros. It is 
possible that /1' ... ,In-l have common zeros, otherwise we are done. Let the 
multiplicity variety of the common zeros of these first n - 1 functions be 
V = (Zb ndk;"l' By Weierstrass' theorem we have an I E Jr(Q) with V = V(f). 
Therefore, the functions <Pl := Itll, ... , <Pn-l := In-til are holomorphic in Q 
and have no common zeros. By the induction hypothesis we know there are 
ul , ..• , Un- 1 in Jr(Q) such that 

that is, 

L u)j =f 
l,;;j';;n-l 

Now we are in the situation where 1 and In have no common zeros. By the 
case n = 2, which we proved earlier, there are functions u, v E Jr(Q) such that 
ul + vln = 1. Hence 

(uul)/l + ... + (uun-dln-l + vln = 1. 

This proves the lemma. o 
3.5.7. Remarks. In the case n = 2 of Lemma 3.5.6, we can construct the 
functions u, v directly, using the a-equation. Let <Pl' <P2 be a Coo partition of 
unity subordinate to the covering Ql' Q 2 of Q given in the proof of the lemma 
(Qj = Q\Z(./j». We look for U and v of the form 

<PI •• 
U = 11 + W)2' 

<pz •• 
v= 12 -W)l' 

where WE &(Q) is an unknown function. Note that ufl + Vl2 = <Pl + <pz = 1, 
and that <Plili and <Pzllz E &(Q). Writing down the conditions that assure 
that u and v are holomorphic, we arrive at the following pair of equations for 
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ow 

I Oepl . ow 
-~:::: + 12 = 0 11 Oz 

1 Oep2 ow 
- - 11;';= = O. 
12 CZ 

h . h . oept Oep2 Th ... T esc two equatIOns are t e same SInce oE = - oE' erelore, 

ow 
where, if we use the middle term in O2 and the last one in OJ, we see that oE 
must equal a well-defined COO function on O. The surjectivity of -g~ assures the 

uZ 

existence of a solution wand, a posteriori, the existence of u and v. 
A small variation on the same theme is achieved by defining 

1/11 :=]1/(1/112 + 11~12), 1/12 :=fz/(1/112 + 1/21 2 ). These two functions are in 
('"(O) and 111/11 + 1~1/12 = I. Let us now consider 

u = 1/11 + w12 , 

V = 1/12 - wi!· 

The same reasoning as before leads to an inhomogeneous Cauchy-Riemann 
equation for m. This time we did not need to use a partition of unity. 

In any case, the main point to remember is that "to reduce the problem to 
a a-problem" is an almost universal recipe. 

3.5.8. Corollary. Every linitely generated ideal in £(0) is principal (and hence 
closed). 

PROOF. We can assume 0 is connected. Let 1= 1(f1"" ,In) be the ideal 
generated by 11"" ,f". IfZ(l) = 0, then 1= £(0) by§3.5.6. If Z(l) -=I- 0 then 
we construct a "greatest common divisor" IE £(0) such that n Z(jj/f) = 0 

J 

as was done in the proof of Lemma 3.5.6. Hence I = L uJj E I for some 
1 ~j::;n 

coefficients uj E £(0) and it is also clear that every element of I is divisible by 
f 1 is closed as pointed out in Remark 3.5.4, (3). 0 

3.5.9. Proposition. Every ideal I 01 £(0) such that Z(J) = 0 is dense in ,*'(0). 

PROOF. Let T E £'(0) (i.e., an analytic functional) orthogonal to 1. If we can 
show that T = 0 then the Hahn-Banach theorem allows us to conclude that 
J = £Y(O). 
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Recall that there is a compact subset L of Q and a constant C ~ Osuch 
that 

that is, T is already continuous for the "uniform convergence on L." Let 
K = La (or any other holomorphically compact subset of Q containing L). 
Since Z(1) = 0 we have 

Z(1) n K = n (Z(f) n K) = 0. 
fEI 

The compactness of K lets us conclude that there is a finite number of 
functions fl' ... , fn E I such that Z(fd n ... n Z(f,.) is disjoint from K. Hence 
there is an open set OJ, K s; OJ s; Q, such that fl' ... , fn have no common zeros 

in OJ. By §3.S.6 we can find gl' ... , gn E Jf'(OJ) such that L jjgj = 1 in OJ. 
A l$j$n 

Since K = Ka, Runge's theorem provides sequences (gj.dk~I' 1 ~j ~ n, 
of elements of Jf'(Q) such that lim gj,k = gj uniformly on K. 

k-oo 

If f is any function in Jf'(Q) we have 

f = lim L gj,kjjf, 
k-oo 1 ~j:5,n 

uniformly on K, hence on L. Therefore, 

<T,f> = lim / T, L gj,kjjf) = 0, 
k-oo \ 1 '5:.j'5,n 

since L gj.kjjf E 1 and T is orthogonal to 1. Since f was arbitrary, T = 0, 
1 :s;j:s;n 

and the proposition has been proved. 0 

3.5.10. Corollary. Every closed proper ideal I of Jf'(Q) satisfies Z(1) #- 0. 

3.5.11. Theorem. Let 1 be a closed ideal of Jf'(Q). Then 1 = 1 (V(1)). In 
particular: 

(a) every closed ideal is principal; 
(b) every closed maximal ideal has the form (z - zo)Jf'(Q) for some Zo E Q. 

PROOF. The inclusion 1 s; I(V(I)) is evident. Let f be a generator of the 
principal ideal I(V(1)) (use §3.S.2). Let 

11 := {u E Jf'(Q) : fu E I}. 

It is easy to see that 11 is an ideal of Jf'(Q); it is usually called the conductor 
of I in I(V(I)). Clearly I s; II' hence Z(11) s; Z(1). We claim that Z(1d = 0. 
In fact, if Zo E Z(1), then there is fo E 1 such that m(fo,zo) = m(f,zo) by 
definition of V(1) and f. Therefore Zo is not a zero of the hoi om orphic function 
u = folf. But u belongs to 11> hence Zo ¢ Z(11)' 
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From §3.5.9 we conclude that II is a dense ideal in £'(0). Let 0 be the 
continuous self-mapping of £'(0) given by O(g) = Ig. We have 

I(V(1» = 0(£'(0» = 0(11) ~ 0(11) ~ 1 = I. 

Hence 1= I(V(1» and it coincides with the principal ideal I(f). 
Finally, if I is a closed maximal ideal, then Z(1) -# 0 and Z(1) cannot 

contain more than a single point, and this point has to be of multiplicity one, 
otherwise I would not be maximal. 0 

3.5.12. Remarks 

(1) There are maximal ideals which are not closed, for example, every maximal 
ideal containing the ideal from Remark 3.5.4. 

(2) If I is a proper dense ideal, then for any 11' ... , f" E I we have 
Z(f1) n··· n Z(f,,) -# 0. Otherwise 1 E I and I = £'(0). In particular, I 
cannot contain any non-zero polynomial P. If PEl and Z 1, ... , z" are its 
roots we can find 11, ... , f" E I with jj(Zj) -# 0 (since Z(1) = 0). Therefore 
Z(P) n Z(f1) n··· n Z(f,,) = 0 and that would be a contradiction. 

EXERCISES 3.5 
o represents an open connected set in C. 

1. Let 1 be a closed maximal ideal of £(0). Show that £(0)/1 ~ C. 

2. Recall that C[z] is the space of polynomials in the variable z, and IC(z) is the field 
of rational functions. Let 1 be a maximal dense proper ideal in £(0). Show that 
the map 

IC[z] .... £(0)/1 

P f-+ p(mod I) 

is injective. Conclude that £(0)/1 contains a subfield isomorphic to IC(z). 

3. Let 1 = ideal generated by {sinG),n E N*}. Show that 1 is not a closed ideal 

in £(IC). 

4. Let II' ... , I. E £(0), show there is a gcdUI, . .. , I.) = I in £(0), and that there 
are functions g I, ... , gn E £(0) such that 

gti1 + ... + gnl. = f 

*5. Let 1 be a maximal ideal in £(0). The object of this exercise is to show that the 
field £(0)/1 is algebraically closed. 

(i) Show that we can reduce ourselves to the case Z(/) = 0. 
(ii) Let loX' + II x·-I + ... + I. = 0,/0' ... , I. E £(0), 10 ¢ I, be the equation 

we want to solve in £(0)/1. Show that we can also assume I. ¢ I. 
(iii) Prove that there are functions a; E £(0) and g E 1\ {OJ such that a;lol. + g = 1. 
(iv) Let hk = a;1.J,.. Show that it is enough to find functions p, y E £(0) such that 

(hoP' + hIP·-1 + ... + hn ) = gy. (Then we can take X = p.) 
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(v) Let V(g) = (Zj, mj)j. For each j choose an arbitrary root x = hj E C of the 
equation 

Show that hj #- O. 
(vi) We are going to choose fJ E £(0) so that fJ(z) = hj for each j. Differentiate 

the equation hofJ· + ... + h. = gy, v times, where 1 ~ v ~ mj - I, and set 
Z = Zj' Show that the values fJ(V)(Zj) are uniquely determined. 

(vii) Interpolate to obtain fJ and conclude the proof. 

6. Let H = {z E C: Re Z > O} and A:= {f E £(H): I E C6'(R) and I(z) -+ 0 when 
Izl-+ (f)}. 

(i) Show A is a Banach algebra with the norm 11I11 = sup I/(z)l. 
zeR 

(ii) Show e- Z ¢ A. 
(iii) Prove that 1:= {fe- z : I E A} is a closed ideal in A, Z(/) = 0, and 1 #- A. 

7. The object of this exercise is to show that there is a natural structure associated 
to the family of all ideals in the algebra £(0). 

(i) Let 1 be a proper ideal in £(0), associate to it a family g6(I) of sets in 0 defined 
as follows: 

g6(I):= {Z(f): I E l}. 

Show that g6(I) is a prefilter in 0, i.e., (a) if A, BE g6(I) then An B #- 0; and 
(b) for any A, B E g6(/) there is C E g6(/) such that C £; A n B. 

(ii) Let ~(/) be the filter generated by g6(I) as follows 

~(/):= {A subset of 0 : 31 E 1 with Z(f) £; A}. 

Show that ~(I) satisfies the three axioms offilters: (a) 0 ¢ ~(/); (b) A, B E ~(l) 

implies that A n B E ~(I); and (c) if B is a subset of 0 and there is A E ~(I) 

with A £; B, then B E ~(I). 

(iii) Given a filter ~ in 0, define IW) := {f E £(0) : Z(f) E ~}. Show that I(~) 
is an ideal in £(0), I(~) #- £(0). Moreover, l(~) #- {O} if and only if ~ 
contains a discrete subset of O. 

We denote by D this property for a filter, i.e., ~ E D means that I(~) is 
a proper ideal of £(0). 

(iv) Show that one always has the following relations: 
(a) I, J proper ideals in £(0), 1 £; J = ~(I) £; ~(J). 

(b) ~1 £; ~2 = I(~l) £; I(~2)' 
(c) ~ ED=<> ~(I(~» = ~. 

(d) I proper ideal in £(0) = I £; I(~(l)). 

In general there is no equality in (d). Is it true that the radical vfi = J I (~(I) )? 
(v) Show that if ~, t'§ E D, ~ #- t'§, then I(~) #- I(t'§). 

Recall that an ultrafilter is a maximal element for the family of filters 
partially ordered by inclusion. 

(vi) Show that'lliI--> 1('lII) and M I--> ~(M) are inverse mappings between the family 
of ultrafilters satisfying the property D and the family of maximal ideals in 
£(0). To the trivial ultrafilter 'lila of all sets containing the point a E 0, 
corresponds the maximal ideal generated by the function I(z) = Z - a. 
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§6. The Operator :2 Acting on Distributions 

In this section we assume the reader is acquainted with the theory of distri
butions and of topological vector spaces [S], [Sch]. The reader will find 
an elementary introduction to the subject in the last section of this chapter. 
The portions that depend heavily on these concepts can be skipped in a first 
reading. 

We are going to show first that a meromorphic function h in an open 

set 0 determines a distribution. The image of this distribution by :z is 

a distribution whose support is exactly the set of poles of h. The contribution 
of each pole to the latter distribution is computed using the principal part of 

h at that pole. I( iJ ) 
Later on, we identify .;;-r'(0) to C'(O) ozC'(O) and use this identification 

to characterize the orthogonal of a closed ideal and to reformulate the inter
polation theorem proved earlier. 

Finally, in this section we shall also discuss the relation between boundary 
values of holomorphic functions and distributions. 

As a coronary to Pompeiu's formula we have shown that, for qJ E g(lC), 

where, we remind the reader, dm(O denotes the Lebesgue measure of fR2, 
dm(O = d~ dry if' = ~ + iry. For z = 0 this formula becomes 

1 f oqJ dm(O qJ(O) = -- ~(O---. 
nco' , 

This means that, in the sense of distributions, this formula is 

hence 

-~ / z, ~~) = qJ(O), 
n \ oz 

o 1 
--=0 
oz nz ' 

. / ° 1) 1/1 0 ) smce VTi;~,qJ = -;\z'ozqJ = qJ(O) = (o,qJ). 

Note that since! is a locally integrable function in IC, then ~ defines 
z nz 

a distribution and the preceding manipulations are just the way the distri-
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butional derivative :_ ~ is defined. We are now going to introduce other 
uZ 1tZ 

1 
distributions generalizing-. 

1tZ 

3.6.1. Definition. For n integer greater than or equal to 1 we denote PV(1t~n). 
the principal value 01_1_, the distribution defined by 1tZn 

/ pv(~),cp):= lim ~ r cp«()dm«() 
\ 1tZ £-->0+ 1t J I";", (n 

When n = 1 we have pv (~) = ~ since ~ is locally integrable. This fails 
1tZ 1tZ Z 

for n > 1 and even the existence of the limit is not a priori clear. 
For an integer n ~ 1, we can use Taylor's formula about ( = 0 for cp E ~(q, 

and obtain 

with <l>n(O = 0(I(ln+1). To see this, one applies Taylor's formula with integral 
remainder to the functions of one real variable, g,(t) = cp(tO, and shows, by 
induction, that 

Therefore, if supp cp s;;: B(O, A), we have 

r cp(Odm(O = L _1_ ap+q! (0) f.A f21< pp+Q-n+1 ei(p-q-n)8dpdO 
J"I;", (n O:Sp+q:sn p!q! a(pa(Q • 0 

Now, 

+ f. <l>n~O dm(O· 
8:Si{I:SA ( 

f2" ei(p-Q-n)8 dO = {O if p - q - n # 0 
o ~ ffp-q-n=Q 

Since 0::;; p + q ::;; n (and they are both nonnegative) the only possibility for 
the integral to be different from zero occurs when p = nand q = O. The 
remainder term involves <l>n(ogn, which is integrable in 0 ::;; 1(1 ::;; A, hence 

/ pv(~),cp) = lim ~ r CP;~) dm(O = A~ ~n~ (0) + ~ r <I>;~O dm(O. 
\ 1tZ ,-->0 1t J "1;,,£ ., n. uZ 1t J "ISA ., 

Furthermore, the integral expression 
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1 11 dn+1 
$n«() = n! 0 (1 - t)n dtn+1 g~(t) dt 

= L n + 1 (P(q 11 (1 _ tt On+1qJ(t() dt, 
p+q=n+l p!q! 0 o(Po(q 

ensures that qJ I--+! r ($n«()/(n) dm«() is a distribution. It follows that 

( 
1 ) n JICISA 

pv - is well defined as a distribution. 
nzn 

3.6.2. Proposition. The relation 

~pV(_1 ) = -n pv(_1 ) 
OZ nzn nzn+1 

holds for any n ~ 1. 

PROOF. We have 

( a (1)) (( 1 ) OqJ) . 1 i 1 oqJ -pv -n ,qJ = - pv -n ,~ = -lIm - n ~(z)dm(z). 
oz nz nz uZ .-0 n Izl~. z uZ 

On the other hand, for z =1= 0, 

~ (qJ(Z») = ~ oqJ (z) _ n qJ(z) 
oz zn zn OZ zn+l ' 

hence 

I ~pv(~),qJ) = -lim! r ~(qJ(:»)dm(Z) - n l pv(~),qJ). 
\oz nz £-0 n Jlzl~£ OZ z \ nz 

But, using Stokes' formula and that supp qJ is compact, 

_! r ~(qJ(Z»)dm(Z) = _1 r ~(qJ(Z»)dZ /\ dz 
n JIZI~. OZ zn 2ni Jlzl~' OZ zn 

= _1 r a (qJ(Z) dZ) = __ 1 r qJ(z) dz. 
2ni J Izl~£ zn 2ni J 1.1=£ zn 

Developing qJ according to Taylor's formula, we have 

__ 1_ r qJ(z) dz = ~ L _1_ op+qqJ (O)e p+q-n+1 f 2" ei(p-q-n-1)6 dO 
2ni Jlzl=£ zn 2n OSp+qSn-l p!q! ozpozq 0 

~ f2" _i(n+1)6$n-l(ee i6 ) dO + 2 e n-l· n 0 e 

Since p + q ~ n - 1, all the trigonometric integrals in the sum are zero. 
Furthermore, I$n-l (ee i6 )1 = O(en), hence the limiting value of the last integral 
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is zero as e -> O. It follows that 

as we wanted to show. 

3.6.3. Proposition. For n ~ 1 we have the identities 

a (1) {_1)"-1 0"-1 -pv - = --() oz nz" (n - I)! OZ"-l ' 
where () = ()o is the Dirac mass at O. 

PROOF. We have already shown that 

~(~)={) oz nz ' 

o 

which is the statement of this proposition when n = 1. Let us proceed by 
induction and assume the statement to be correct for n, therefore 

a (1) 1 a (a (1)) 1 a ({ _1)"-1 On-1 ) OZPV nz"+l = -n oz OZPV nz" = -n oz (n - I)! OZ"-l () 
(-I)" an 

=---{). 0 n! oz" 
Let 1 be a holomorphic function in an open set Q which contains the origin. 

Define pv (L) as the product of 1 and pv (_1_) (restricted to Q), nz" nz" 

For <p E E»{Q), 

\ ( I) ) \ (1) ) . i I{z) <p{z) pv -" ,<p = pv -" ,f<p = lIm n dm{z), nz nz .-0 Izl2:. nz 
which shows that we could have used the same definition as in §3.6.1. We have 
then 

\:zPv (fzn). <p) = -\PV(fzn). ~;) = -\PV(n~n),f~;) 

= -\Pv(n~n).:z{f<p)) = \:zpv(n~n)'f<p) 

= \1 :zpv(n~n).<P), 
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hence 

O_pv(L) = f O_pv(_l ). 
OZ nz" OZ nz" 

Let us make more explicit a few cases. For instance, n = 1 becomes 

:zpv(~) = f(O)(j, 

and n = 2 gives 

o ( f ), o(j -=pv - = f (O)(j - f(O)-. 
OZ nz2 OZ 

In fact, 

(:zpv (fz2), qJ) = -(f~~,qJ) = -(~~,fqJ) = ((j,:/h)) 

= j'(O)qJ(O) + f(O) O~~O), 

which is exactly the preceding statement. 
This example shows also a general fact, multiplication by holomorphic 

l". • • h h o. d··b· h· 0 {unctions commutes WIt t e operator OZ actmg on Istn utIons, t at IS, OZ 

is Jt"(Q)-linear acting on the Jt"(Q)-module 9J'(Q). In effect, :_: 9J'(Q) -+ 9J'(Q) 

is the transpose of - :z : 9J(Q) -+ 9J(Q) and the Jt"(Q)-lineari:y is then evident. 

The computations we have just done allow us to embed the space ..H(Q) of 
merom orphic functions in Q as a subspace of 9J'(Q). This map is called the 
Cauchy principal value 

pv: ..H(Q) -+ 9J'(Q) 

and it is defined as follows: Let (Zk)k2:1 be the indexing of the poles of f (this 
sequence could be finite or even empty; if not, we can assume lim d(Zk' Q") = 0). 

k-+oo 

Let Q. = {z E Q: Iz - zkl ~ e for every k}, define for qJ E 9J(Q) 

(pv(f), qJ> := lim r f(z)qJ(z) dm(z). 
£-+0 JOe 

Note that if supp qJ contains no Zk' then for all e sufficiently small but positive, 

r h dm(z) = r fqJ dm(z), which is well defined. If Zk is in supp qJ, let Jo, Jo 
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be the Laurent development of f in the neighborhood of Zk' where Vk is the 
order of the pole Zk of f. Then we see that 

<pv(f), cp) = L ( L A k • / pv ( _1 r)' cp)) + <h, cp), 
k;"O l,;;v';;v. \ Z Zk 

where the first sum is finite and the function h is hoi om orphic in a neighbor
hood ofsupp cpo This shows that pv(f) defines a distribution in .@'(Q). We have 

o ( _1)v-l ov-l ) 
-:._pv(f) = n I I (_ 1)' Ak•v -:. v-I Jz• ' 
uZ k;"O 1 ,;; v,;; v. V • uZ 

where Jz• is the Dirac mass at Zk and the sum is meaningful as a distribution 
in Q since it is locally finite in Q. In the literature this distribution is sometimes 

called the residue distribution off, i.e., Res(f) := :zPV(f). 

This should not be confused with the residues Res(f, Zk) of the differential 
form f(z) dz at the point Zk' The relation between these two notions can be 
summarized as follows: Let v,. be a neighborhood of Zk not containing any 
other pole of f, then 

Res(f)! v,. = n Res(f, zdJz. + 11., 
where 11. is a distribution with supp 11. = {zd involving derivatives of Jz• and 

11. is not zero unless Vk = 1. Note that only derivatives of the form :vv appear, 
i.e., there are not derivatives with respect to z. Z 

It is the fact that a meromorphic function is not locally integrable, unless 
all the poles are of order 1, which requires we introduce the map pv. On the 
other hand, if f E Lloc(Q) and f is hoi om orphic outside a relatively closed 
subset F of Q, we can define the residue distribution of f, Res(f), by 

o 
Res(f):= oz 1j, 

where, as usual, < 1j, cp) = f fcp dm(z) for every cp E '@(Q). It is clear that 

supp(Res(f)) s; F. 
Recall that if w is a relatively compact open subset of Q with ow piecewise 

regular of class C 1, then the connected components C 1, ... , Cn of aware 
piecewise-C1 Jordan curves that are oriented in such a way that the Stokes 
formula is valid. We can define distributions T, 1j of "integration over ow," 
resp. "over Cj ," given by 

<T, cp) := f cp(z)dz 
oro 

and 

< 1j, cp):= r cp(z) dz. Jej 
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We have therefore T = L 1j. If X., is the characteristic function of w, the 
l,;;j,;;n 

following proposition holds. 

3.6.4. Proposition. Let w be a relatively compact open subset of 0. with piecewise 
regular boundary ow of components C1 , ..• , en, then 

a 1 1 
Res(T )=-X =--T=-- L T:. 

lID oz" 2i 2i l,;;j,;;n J 

Furthermore, let' E wand let S be the distribution defined by the locally 
1 X.,(z) 

integrable function of z, Z H - --r' This function is holomorphic outside 
n z -." 

owu g}, and 

as 1 1 
Res(S) = - = <>, - ---T oz 2ni z -, 

PROOF. It is just a translation into the language of distributions ofthe formulas 

of Stokes and Pompeiu. Note that the function ZH~ is smooth (even 
z-." 

holomorphic) in a neighborhood of supp(T) (= ow). 0 

We are now going to return to the study of analytic functionals, that is, 
elements of £'(0.). We have the exact sequence of Frechet-Schwartz spaces 

iJ 

i ffi 
o ----+ £(0.) ----+ 8(0.) ----+ 8(0.) ----+ 0, 

where i is the inclusion map. The transposes of these maps are t (:z) = - :z 
and ti = r = restriction of the action of distributions of compact support to 
the space of holomorphic functions (which is surjective by the Hahn-Banach 
theorem, cf. [Sch]). We obtain the exact sequence: 

i3 
if' 

0----+ 8'(0.) -..:.... 8'(0.) ~ £'(0.) ----+ O. 

We can conclude that £'(0.) can be identified to 8'(0)1 (:z(8'(0»). 

We are going to show now, using the same type of ideas, that the operator 

oOz: .@'(o.) -+ .@'(o.) 

is surjective. With that purpose in mind, we prove first a regularity result 

for the Cauchy-Riemann operator :z and the Laplace operator l1. Recall 
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that A = 4 a:;z and that a function h is called harmonic if it is C2 and Ah = o. 
Proposition 3.6.5 shows h is automatically coo. (Example 2.2.9, (3) is similar 
in spirit to the following proposition.) 

3.6.5. Proposition. Let 0 be an open subset of IC and T E .@'(O) satisfying the 
equation AT = O. Then there is a harmonic function h in 0 such that T" = T. 

aR 
Similarly, if R E .@'(O) satisfies a- = 0, there is a holomorphic function fin 0 
such that ~ = R. z 

PROOF. It is enough to prove the statement for the Laplace operator. A 

fundamental solution E for this operator is E = 2~ log Izl, that is, AE = b in 

the sense of distributions. Let now 0' be open and 0' ceO. We shall show 
"T is Coo in 0'," that is, there is a Coo function in 0' (necessarily harmonic since 
its Laplacian will be zero) which defines Tin 0'. Let g E '@(O) be such that 
g == 1 in a neighborhood of 0', then 

A(gT) = gAT + S = S 

with S E &'(0) and supp S £ O'c. Therefore 

gT = A(E * (gT» = E * A(gT) = E * S. 

We want to show that this implies that T is smooth in 0'. Let Zo E 0' and 
e > 0 sufficiently small so that V. = {z E IC: d(z,OIC) > e} is a neighborhood 
of zoo Let now BE E .@(IC) be equal to 1 for Izl :::;; e/2 and zero for Izl ~ e. 
We can write 

E * S = «BEE) * S) + «1 - B.)E) * S. 

Remark that 

(i) «1 - BE)E) * S is Coo since (1 - BE)E is Coo and S has compact support, 
(ii) SUPP«BEE) * S) £ supp(OEE) + supp S £ {z: d(z, supp(S» :::;; e}. 

The second condition ensures that (OEE) * S is zero in v., hence 
TIV. = (gT)1 V. = «(1 - OE)E) * S)IV. which is Coo by (i). Therefore, Tis smooth 
in the neighborhood of every point of Zo EO'. Since 0' was an arbitrary open 
relatively compact subset of 0, we have T is Coo in o. 0 

3.6.6. Theorem. The operator :z: .@'(O) --+ .@'(O) is surjective. 

PROOF. First, let us point out that for every S E &'(0) there is T E .@'(IC) such 

(aT)1 . .. 1 aT. that az 0 = S. In fact, the dlstnbutlOn T:= 1[Z * S E .@'(IC) and az = S In 

o (or everywhere if we extend S by zero outside 0, this is meaningful since 
supp(S) is a compact subset of 0). 



§6. The Operator :2 Acting on Distributions 253 

Let now S E ~'(Q) be given. Let (KA;':I be an exhaustion ofQ by a sequence 
of compact holomorphically convex subsets of Q. Let ljJi E ~(C) be such that 
0::; IjJj::; 1, IjJj == 1 in a neighborhood of K j , supp(ljJ) c;: K j+!. For every j let 

Ii E ~'(C) be such that ~i = IjJjS. For j >-: 2, the distribution 1] - 1]_1 satisfies 

c~ (1] .. -. 1] ... d = ° in a neighborhood of Kj - 1 . Since K j - 1 is holomorphically 
OZ 
convex in Q, for j >-: 2 we can find hj E .Jr(Q) such that 

sup 11] - 1]_1 - hjl ::; ri. 
zeKj -- 1 

Therefore, the series 

converges in !2"(Q). Let T be its sum, then 

~~ = ~~~ + L (~1J - ?1J=:1) = lim oT" = S. 
oz oz j;,:2 tJZ (1z n~oo oz o 

3.6.7. Proposition. Let Q be an open connected subset of C, 1 a closed proper 
ideal of £'(Q), f a generator of I, V = (Zk' mk)k;':l the multiplicity variety 
of I. The orthogonal 1.1 in £"(Q) can be identified to the quotient space 

@'(V(I»/( :z@'(V(I»), where @'(V(I» is the set of distributions R E @'(Q) such 

that f R is the zero distribution. Furthermore, 11. can also be identffled to the 
space of all distributions of the form 

with only finitely many nonzero coefficients Ak,v' 

PROOF. Let us point out that the last statement of the theorem can be obtained 
easily from the Interpolation Theorem 3.4.1. We do not want to do that here 
since we would like to show that Theorem 3.4.1 can be obtained as a corollary 
of this proposition. 

We first observe that if g E Yl"(Q) nj(g'(Q), i.e., there is a function h E @(Q) 
such that g = fh, then gEl. In fact, g will vanish on V(I). 

We already know that the following sequence is exact: 

a 
i of ° ----+ £'(Q) ---> @(Q) ----+ @(Q) ---> 0, 

From here it is easy to conclude the exactness of the following one: 

(l 

i f~ 
0----+ f£'(Q) ----+ f(g'(Q) ---> f6(Q) ----+ O. 



254 The a-Equation 

Passing to the quotient we obtain the commutative diagram 

0 0 0 

j j a j 
0---+ 1 

i 
f&(o.) ~ f&(o.) ---+0 ---+ 

j j 
iJ 

j 
0---+ £(0.) 

i 
&(0.) ~ &(0.) ---+ 0 ---+ 

j j j 
0---+ £(0.)/1 ~ &(o.)lf&(o.) ~ &(o.)lf&(o.) ---+ 0 

j j j 
0 0 0 

where IX (resp. fJ) is i (resp. :z) passed to the quotient. Every column is exact 

and we want to show the third row is also exact. First, fJ is surjective since :z 
is known to be surjective. The map IX is injective because, if 1X(g) = 0, where g 
is the class of 9 E £(0.) modulo 1, then we have 9 E f&(o.) n £(0.) = 1, hence 

g = O. Finally, if f3(ij) = 0 for 9 E &(0.), this means that :zg = fk, for some 

k E &(0.). Since k = :Zkl for some kl E &(0.), we obtain :z(g - fkd = O. 

Hence h = 9 - fk 1 E £(0.) and lX(h) = [g - fk1r = g. This ends the proof 
of the exactnesses. 

Let us note that the subspace f&(o.) is closed in C(o.). In fact, let qJn = fUn 
be a sequence that converges in &(0.) to qJ. We want to show that qJ is divisible 
by f in &(0.). It is enough to prove this locally, and this is shown to be 
true by the following lemma. 

3.6.8. Lemma. Let 9 be a C" function in a neighborhood of 0 such that for some 
fixed integer k ;;::: 1 satisfies 

for any (i,j) such that 0 ::;; i ::;; k - 1. Then the function z t--+ g(z)/zk is C'Xl in the 
same neighborhood of zero. 
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PROOF. For any n > k we can rewrite the Taylor formula for 9 about z = 0 as 
follows 

_ k ( 1 op+q p-k-q On (Z)) 
g(z) - z L -,-, ~ p~_q(O)z z + ~k ' 

O:;;p+q:;;n, p.q. uZ uZ Z 
k:;;p 

where On(z) = O(lzln+l). It follows that g(Z)/Zk has derivatives of every order 
which extend continuously to z = O. This proves the lemma. D 

Since the converse of this lemma is obviously true (e.g., by considering the 
Taylor formula of Zkt/J(Z) at z = 0 when t/J is Coo near 0), then cp = limfun will 

n 

satisfy the conditions of the lemma near each zero off Therefore cp is divisible 
by f and fc!(o.) is closed. 

It follows that all the quotient spaces in the last row of the diagram are 
Hausdorff, and hence Frechet-Schwartz spaces. Identify, as usual, (fc!(o.))J. to 
(c!(o.)/fc!(o.))' and IJ. to (£(0.)/1)'. Taking transposes in the last row of that 
sequence (here we use the fact they are Frechet-Schwartz) we obtain 

IJ. ~ (fc!(o.».L I :z«(fc!(o.))J.)· 

(See [Sch] for a proof of these statements.) 
To conclude the proof of the proposition we have to analyze a bit more in 

detail the meaning of T E (fc!(o.))J.. First we have T E c!'(o.) and < T,fcp > = 0 
for every cp E E0(o.). This means that fT = 0 as a distribution and one can 
conclude that supp(T) £; Z(f). The compactness ofsupp(T) now implies that 
Tis a finite sum of derivatives of "Zk with Zk E Z(f). Furthermore, Lemma 3.6.8 
shows that T is a finite sum of the form 

Therefore, if c!'(V(I)) denotes this space of finite sums we have 

(fc!(o.W = c!'(V(I». 

Evidently, any such sum is congruent to 

A Ov " 
k.v,Oozv Zk 

o 
modulo oz (c!'(V(I))). This ends the proof of Proposition 3.6.7. D 

We denote by £( V(/)), the space of hoi om orphic functions on the mUltiplicity 
variety V(I), the space of sequences (ak,')k~l . There is a natural restriction 
mapp, 0:;;1 :;;mk-1 
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p : £(Q) -+ £(V(l» 

. (<P(!)(Zk») 
p.<pH -1-'- . 

• OSISmk-1 
k;;,1 

The a-Equation 

The interpolation Theorem 3.4.1 can now be obtained as a corollary of 
Proposition 3.6.7. 

3.6.9. Corollary. The map p : £(Q) -+ £(V(/» is surjective. 

PROOF. We only need to show that £(Q)// can be naturally identified to 
£(V(l». By duality, from the proof of 3.6.7, we have that 8(Q)/f8(Q) can be 
identified to the space of sequences of the form 

with the projection map identified to the map 

<P H (+, iJiJ;iJ+~q <P(Zd) , 
p.q. Z Z 

(where the indices run over the set 0 ~ p ~ mk - 1, q ~ 0, k ~ 1). The operator 

f3 (the passage of :z to the qUotient) is then identified to 

(ak,p,q)H«q + l)ak,p,Q+l) 

and its kernel is then isomorphic to {(ak,p,O)}' This is precisely the identification 
of £(Q)// with £(V(/». 0 

We end this section with a discussion of the notion of the boundary values 
of a hoi om orphic function in the sense of distributions. The aim is to prove 
an important analytic continuation theorem called the edge-of-the-wedge 
theorem. This theorem is a generalization of the Schwarz reflection principle 
of Chapter 2. 

3.6.10. Definition. Let Q be the union of the rectangles Q+ and Q_, with 
Q+ = ]a, b[ + i]O, c[ (resp. Q_ = ]a, b[ + i] - c, O[), where a, b E IR 
(= R u {±oo}) and 0 < c ~ 00. We say that a function f, holomorphic in Q+ 
(resp. Q_), admits a boundary value in the sense of distributions if the limit 

lim fb f(x + ie)<p(x) dx 
£-0+ a 

( resp. lim fb f(x - ie)<p(X)dX) 
£ ...... 0+ a 

exists for every <p E q)(]a, b[). 
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If f is holomorphic in n = n+ u n_ = ]a, b[ + i(] - c, c[ \ {O} ) we write it 
as (f+,J-) wheref+ = fln+ andf_ = fln-. We say thatfadmits a boundary 
value in the sense of distributions if both f+ and f- admit boundary values in 
the sense of distributions. 

It follows from ([S], Theorem XIII, page 74) that the mapping which to each 

cp E ~(]a, bD assigns lim fb f(x + ie)cp(x) dx (resp. lim fb f(x - ie)cp(x) dX) 
£~o+ a £ ...... 0+ a 

is a distribution which we denote b+(f) (resp. b_(f)). If f = (f+,J-) admits 
boundary values, we denote by b(f) the distribution 

b(f):= b+(f) - b_(f). 

The distributions b(f), b+(f), and b_(f) are called the boundary values of 
J, f+, and f-, respectively. 

We keep the sets n+, n_, and n, fixed throughout the remainder of this 
section. 

We are going to show that a necessary and sufficient condition for a 
holomorphic function to admit boundary values in the sense of distributions 
is that it is of "slow growth" in the following sense. 

3.6.11. Definition. A function f holomorphic in n+ (resp. n_, or n) is said to 
be of slow growth if, for every compact subset K of]a, b[, there exist an integer 
k and two positive constants e, C such that 

C 
If(z) 1 ~ IImzlk for Rez E K, 0 < IImzl ~ e. 

Let us denote by Jfb(n+), Jfb(n_), and Jfb(n) the respective spaces of functions. 

3.6.12. Proposition. If f is a holomorphic function of slow growth in n+, it 
admits a boundary value in the sense of distributions. 

PROOF. Let K = [IX, P] be a compact subinterval of ]a, b[, k, c > 0 and e > 0 
as in §3.6.l1, and Zo = Xo + iyo a fixed point in n+. Let us denote by Yo, Y1' Y2 ... 
the successive primitives of fin n+ vanishing at zoo 

Yo(z) := fZ f(w) dw, 
Zo 

Y1 (z) := fZ Yo(w) dw, .... 
Zo 

One can show by recurrence that there are positive constants Co, ... , Ck 

and C~ such that, for z = x + iy, x E K, 0 < Y ~ e, 

1 Yo(z) 1 ~ CO/yk-t, ... , IYk-2(Z)1 ~ Ck- 2 /y 

IYk-1(Z)1 ~ Ck-tllogyl, IYk(Z)1 ~ Ckyllogyl + C~. 
Since Yk is bounded, it follows that Yk+1 can be extended as a continuous func
tion to [IX, P] + i[O, c[. Therefore the family of distributions Ty E ~'(]IX, PD 
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defined by 

< 'fy, cp>:= f: Yk+l (x + iy) cp (X) dx, 

admits a limit To in the sense of distributions when y -+ 0+. From 

dk+2 dk+2 
dXk+2 Yk+1 = dZ k+2 Yk+l = f 

one obtains 

(::::2 'fy,cp) = f: f(x + iy)cp(x)dx 

dk +2 

which has the distribution dXk+2 To as a limit, when y -+ 0+. Hence f admits 

this last distribution as boundary value in the sense of g)'(]a, PD. Since the 
subinterval K = [a,p] was arbitrary and a distribution is determined by 
its values locally, then f admits a boundary value b+(f) in the sense of 
distributions. 0 

Under the conditions of Proposition 3.6.12, let us denote by Yk+l the 
function (and its associated distribution) defined in [a,p] + i[ -00, c[ as 
follows: 

{

Yk+l(X+iY) ifO<y<c 

Y- (x + iy) = Yk+l(X + iO) = lim Yk+l(X + iy) if y = 0 
k+l y-+o+ 

o if y < O. 

3.6.13. Proposition. Let f satisfy the hypotheses of the previous proposition. 
For a compact subinterval [a,p] of ]a, b[ define a distribution f~.fJ in 
g)'(]a, p[ + i] -00, cD by 

8k+2 
f~.fJ:= 8Xk+ 2Yk+l' 

with Yk+l as defined earlier. Then we have the following identity: 

in the sense of distributions. 

PROOF. We keep the notation from the previous proposItIOn and let 
cp E g)(]a, p[ + i] -00, cD. Denote j:= f~.fJ and y:= Yk+l for simplicity. We 
have 



§6. The Operator :z Acting on Distributions 259 

. (_1)k+3 fP Ie Ok+3 -
= hm 2. Yk+l 0 k+20 cpdz 1\ dz, 

£-+0+ 1 '" £ X z 

where the last step used the continuity of Yk+l up to the real axis. Note that 
the support of cp does not intersect three of the sides of the rectangle where the 
integration is taking place. Hence, using that 

and applying Stokes' formula, we are led to 

( oj) . (- 1r3 fP . Ok+2 . 
O-,cp = hm 2· Yk+l(X + le)o k+2(X + ze)dx 

z £-+0+ I '" X 

( -1r3 fP . Ok+2cp . 
= 2i '" Yk+l (x + 10) OXk+2 (x + 10) dx 

(_1)k+3/ Ok+2cp .) 
= 2i \ 10 (x), OXk+2 (x + 10) 

= -~<b+(f),cp(X + iO» = -(~b+U)®"o(Y),CP), 
which is the desired formula. o 

3.6.14. Remarks. (1) If f* is another extension of f to a distribution in 
]IX,P[ + i]-oo,c] with suppU*) ~ ]IX,P[ + i[O,c[, which satisfies 

of* 1 
o-z = -2i(b+U) ® "o(Y», 

o -
then o-z U - f*) = O. Therefore, there is a holomorphic function h in 

] IX, P[ + i] -00, c[ such that j - f* = h in the sense of distributions, but this 
implies h(z) = 0 when 1m z < 0, therefore h == 0 and f* = j 

Note also that ifb+U)I]IX, P[ = 0, thenjis holomorphicin]lX, P[ + i] -00, c[ 
and zero in the lower half-plane, hence zero throughout. This implies f == 0 
inO+. 

(2) If we start with f E X(O_) of slow growth, we obtain 

oj 1 
o-z = 2i b- U-) ® "o(Y)· 
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3.6.15. Proposition. Let {t be the space of those distributions in ]a, b[ + i] - c, c[ 

whose support lies in ]a, b[ + i {O}. The quotient space {t I (:z (t ) is isomorphic 

to f!)'(]a, b[). Moreover,for any T E (t there is a unique R E f!)'(]a, b[) such that 

o 
T == R ® bo(Y) mod oz {to 

PROOF. Let a < Xo < b. For a sufficiently small open interval Uxo about the 
point xo, an element T E (t can be written as a finite sum of the form 

T = L 1j(x)®b~)(y) in Uxo + i]-c,c[, 
j 

where 1j are distributions acting on the variable x, and b~)(y) = dd j 
.!5o(Y) 

yJ 
which are distributions acting on the y variable (see [S], Theorem XXXVI, 
p. 101). On the other hand, for j ~ 1, 

o (j-I) 1 d (j-l) i (j) oz (1j(x) ® !50 (y» = :2 dx 1j(x) ® !50 (y) + :21j(x) ® !50 (y). 

Therefore, 

1j(x) ® b[j)(y) == i :x 1j(x) ® b[j-l)(y) mod :z {to 

It follows that, at least in Uxo + i] - c, c[, 

T == ( t i j 1j(j)(X») ® bo(Y) mod :z (to 

To obtain a global result we need the following lemma. 

3.6.16. Lemma. If a distribution of the form T(x)®bo(Y) in f!)'(]cx,jJ[ + i] -y, y[) 
oU 

can be written in the form oz' with supp(U) contained in the real axis, then 

T=O. 

PROOF. Locally U can be written in a unique way as L ~(x) ® !5~)(y). 
i::;,jSn 

Hence 

o 1" d ~(j) i" ~(j+1) () ~ ( ) oz U = :2 ofisn dx Uj(x) ® Uo (y) + :2 ofisn Uj(x) ® Uo (y = T x ® Uo y. 

From the uniqueness of the representation we conclude that 

dUn . dUl . 1 dUo 
Un = 0, di + lUn- l = 0, ... , dx + lUO = 0, T =:2 dx . 

Therefore, T = 0. o 
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Let us return to the proof of Proposition 3.6.15. We have found so far 
a covering (Udk2-t of ]a, b[ by open intervals and distributions Rk E .@'(Ud, 
Sk E .@'(v")(v,, = Uk + i]-e,e[), supp(Sd £; Uk + i{O} such that 

o 
T = Rk ® (lo(Y) + OZSk in Vk 

(Rk ----- Rj ) ® (loCv) = :z (Sj - Sk) in v" n fj. 

By Lemma 3.6.16 we have Rk = Rj in Uk n ~,hence they define a distribution 
R in ]a, bE. Introducing R into the preceding equations we obtain 

T = R ® (lo(Y) +~=Sk = R ® (lo(Y) + :Sj in v" n fj. 
oz uZ 

Hence Sk - Sj is holomorphic in v" n fj, but it has support in the real axis. 
It follows that Sk - Sj = 0 in v,. n fj and the family {Sk} defines a distribution 
S E (f such that 

o 
T = R(x) ® (lo(Y) + ozS. 

Moreover, by Lemma 3.6.16, we have that this equation determines R uniquely, 

hence the map T f-+ R is well defined from (f into .01' (Ja, b[). Its kernel is !~, 
also by Lemma 3.6.16. This concludes the proof of the proposition. 0 

We would like to show how every distribution in .@'(]a,b[)can be obtained 
as boundary value of a function holomorphic in n = n+ u n_. We start by 
showing this is the case for distributions in @"'(]a,b[). 

3.6.17. Definition. For a distribution S E 6'''«(:) we define its Cauchy transform 
Sby 

~ 1 
S :=. * S. 

nz 

This definition coincides with that from §2.1.5 in case S in a Radon measure. 
For a distribution T E @"f(~), its Cauchy transform f is the distribution in 

IC given by 

f := (T(x) ® (lo(Y)) A. 

Note that these distributions are holomorphic in lC\supp Sand lC\supp T, 
respectively. Moreover they verify 

and 
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since ~ is a fundamental solution for !_, and S (resp. T ® c5o(y» has compact 
m uZ 

support. 

3.6.18. Lemma. For every T E 8'(IR), the Cauchy transform f has - 2iT as 
boundary value in the sense of distributions. 

PROOF. Let us observe first that, T being of finite order, say n, f is of slow 
growth. In fact, there are positive constants C and R such that 

1 
djcp 1 1(T,cp)1 ::;; C sup sup -d .(x). 

xe[-R,R] Osjsn xJ 

Therefore, if z ¢ [ - R, R] we have 

~ I( 1 1 )1 C 1 j! 1 I T(z) I = T(x),- (--) ::;; ~ sup sup (--\.i+l' 
1t Z - X 1t xe[-R,R] OsjSn Z - XI 

It follows that, for a conveniently chosen constant C1 > 0, we have 

~ C1 

IT(z)l::;; IImzln + 1 ifImz # O. 

Let us denote by f+ and f-, respectively, the restrictions fl {1m z > O} and 
fl {1m z < O}, and by i+, l the respective extensions to .@'(C) with support 
in {1m z ;;::: O} and {1m z ::;; O}, respectively. Their existence is a consequence 
of §3.6.l2. We know that 

and 

of 
az = T ® c5o(y)· 

Therefore, f - (i+ + i-) is a distribution in IC with support in the real axis 
which satisfies 

By Lemma 3.6.16 we have 

1 ~ 
This is precisely the statement T = -2jb(T). o 
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3.6.19. Theorem. Every distribution in !?&'(Ja, b[) is a boundary value of a 
holomorphic function of slow growth in n. 

PROOF. Recall that n = (Ja, b[ + iJ - c, O[) u (Ja, b[ + iJO, c[) = n+ u n_. Let 
fi = Ja, b[ + iJ - c, cr. Let now Kn = [an' bnJ be a nested sequence of intervals 
with an+1 < an < bn < bn+1 , an -+ a, bn -+ b. Choose a sequence ({In E !?&(~), 

o ::;; ({In ::;; 1, ({In == 1 in a neighborhood of Kn and supp ({In S Jan+1' bn+1 [. 

Finally, choose a sequence of positive numbers cn, Cn /' c. 
Define Tl := ({Jl T, T,,:= (({In - ({In-l)T for n ~ 2. We have T = L T". For 

n:2:l 

every n ~ 1 the function 

f,. := (T,,(x) ® bo(y» A 

is holomorphic outside supp( T,,) + i {O}. In particular, for n ~ 2, f,. is 
hoI om orphic in a neighborhood of the closed rectangle 

Ln- l := {z E C: an-I::;; Rez::;; bn- 1 , -cn- l ::;; Imz::;; cn-d. 

Since this set is convex, it is holomorphically convex in C, therefore we can 
find polynomials hn which satisfy 

(n ~ 2). 

Therefore, the series 

S := Tl + L (f,. - hn) 
n:2:2 

converges in !?&'(n) and its sum S defines a holomorphic function of slow 
growth in n. Furthermore, 

as aTl "of,. ( " ) :)- = :i=- + ~ :)- = L.- T" ® bo(Y) = T ® bo(Y)· 
uZ uZ n:2:2 uZ n:2:1 

For every relatively compact subinterval Joc,P[ of [a, bJ we have that if S+, S_ 
denote the extensions of SI(Joc, P[ x {1m z > O}) and SI(Joc, P[ x {1m z < O}) 
with respective supports in {1m z ~ O} and {1m z ::;; O}, then 

Hence 

0-
az«SI(Joc,P[ + iJ-c,c[)) - (S+ + S_» 

= (TIJOC,P[) + ~(b+(S+) - b_(S_») ® bo(Y) 
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and one concludes, as before, that 

1 
T = -fjb(S). D 

We would like now to prove the converse of Proposition 3.6.12, that is, 
every holomorphic function in 0+ which admits boundary values in the sense 
of distributions must be of slow growth. 

3.6.20. Lemma. Let f E £(0+) having T E £C' (Ja, b[) as a boundary value. 
Then,for every cp E £C(]a, b[ + i] -00, cD, the function g : [0, c[ --+ IC defined by 

{I b f(x + ie)cp(x + ie)dx for 0 < e < c 
g(e):= a 

<T, cp(x + iO) for e = 0 

is continuous. 

PROOF. The proof is left to the reader. D 

3.6.21. Lemma. Under the same hypotheses as in Lemma 3.6.20, the integral 

S(cp):= J: (f f(x + ie)<p(x + ie)dx )de 

exists and S : cp H S(<p) defines a distribution in the half-strip ]a, b[ + i] -00, c[, 
with support in ]a, b[ + i[O, c[, which extends f to the half-strip. 

PROOF. The existence of S(cp) follows from Lemma 3.6.20. From [S], (Theorem 
XIII, p. 74), we conclude that S is a distribution. D 

3.6.22. Theorem. Under the same hypotheses of Lemma 3.6.20 we conclude that 
f has slow growth and 

as 1 1 o-z = -fjb+(f)®bo(Y) = -.fi(T®bo(Y)), 

with S defined by Lemma 3.6.21. 

PROOF. Let K = [IX, p] c c ]a, b[ £ IR and 0 < e < inf(b - p, IX - a). Let 1/1 be 
a standard radial function in IC with support in B(O, 1), I/Id(Z) = b-21/1(z/b) 
(b > 0). For Xo E K fixed, denote by <Pcl(O the function 1/16«( - (xo + ib)). Since 
S has a finite order n in the compact set F := {z E IC : d(z, K) ::5: e}, there is 
a positive constant C such that if cp E £C(IC) has support in F n {1m z > O} 
then 

I(S, cp)1 = If<pf dml ::5: C sup sup I ~P::!q(OI· 
~EF O,,;p+q,,;n uZ uZ 
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On the other hand 

8P+q<fJd 1 8p +q", (' - (xo + i<5») 
8zP8zq (O = <5 p +q +2 8zP8zq <5 • 

Therefore, there is a constant CK > 0 such that if 0 < <5 :5 8, 

If <fJ6(Of(Odm(ol :5 CK <5-n- 2• 

By the mean value property of holomorphic functions the left-hand side is 
precisely If(xo + i<5)I. In other words, 

o 
To close this section we obtain a generalization of the Schwarz Reflection 

Principle 2.1.11 known as the edge-of-the-wedge theorem. 

3.6.23. Theorem (Edge-of-the-Wedge). Let f = (j+, i-) be a holomorphic func
tion in Q+ u Q_ admitting boundary values b+{f+), b_{f_) which coincide, i.e., 
b{f) = O. Then f has a holomorphic extension i to the connected set ft. 

PROOF. Let S = i+ + i- defined as earlier in n. We have 

8 1 
8zS = -2ib(f) ® <5o(Y) = O. 

Therefore S is a hoI om orphic function in n which coincides with f+ in Q+ and 
f- in Q_. 0 

3.6.24. Corollary. Let Q and n be as earlier, then the map b induces an 
isomorphism 

b : K,,(Q)/ £'(Q) ~ ~' (Ja, b[). 

EXERCISES 3.6 
1. Let T E tf'(IR). Show that for Izl sufficiently large, we have 

- at a2 T(z) = - + - + .... 
z Z2 

Identify the coefficients. Is this expansion still true when T E JIt"'(C)? 

2. Show that if f E .Jtb(c), then f' E .Jtb(C). What can you say about f E .Jtb(C) if 
bu(n)) = 0 for some n E N? What about the case f = 1; T E g))'(IR)? 

3. Let cP be a continuous function on the real axis such that for some oc > 0 it 
satisfies the estimate Icp(x)1 = O(lxl-O) when x -+ ±oo. Show directly that 

1 
Ij)(z) = - * (cp(x) ® t5o(Y)) is well defined and b(lj)) = -2icp. In fact 

7tZ 

lim (Ij)(x + ie) -Ij)(x + ie)) = -2icp(x) 
£-0+ 
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locally uniformly. (Remark: Essentially the same statement is valid if we replace 
the continuity and decay conditions on cp by cp E L' (IR, dx) or cp E L 2(1R, dx).) 

4. Let cpEL2(IR,dx) and g(~)=j"cp(~)= t: cp(x)e-iX~d~ its Fourier transform. 

Show that the Cauchy transform g of g is given by 

{ 

-2i J:oo e-·tzcp(t)dt iflmz > 0 

g(z) = 

2i Loo e-itzcp(t) dt iflm z < O. 

The same result holds if we assume cp, g are both L' functions. 

5. The Heaviside function H is given by H := l[o 00)' It satisfies ~ H = 150 = 15 in 
. dx 

A 1 
the sense of distributions on IR. We also know that b(z) = -. Find / E Jr,,(C) 

nz 
such that b(f) = H. 

6. Let /(z) = (Logz)2 (as a holomorphic function in C\IR). Find b(f). 

7. The principal value Of~, pv(~) is the distribution in .@'(IR) defined by 

\ (1) ) _ I' i CP(x)d - 100 cp(x) - cp( -X)d pv - , cp - 1m -- x-x. 
X .-0+ Ixl>. x 0 x 

Show that if 

/(z) = {: 1 

2z 

for Imz > 0 

for Imz < 0 

then b(f) = pvG} Use this to show that (pvG) r (z) = -2if(z). 

8. The distribution (x + iOr' is defined as b(g), where g is the function given by 

Show that 

{
I. 
- 'fImz > 0 

g(z) = z 

o ifImz < O. 

(x + iO)-' = pvG) - inb. 

9. Let r be a C'-regular Jordan arc with endpoints a and b, and let / be a 
function on r that satisfies a Holder condition of order 11, 0 < 11 :-:;; 1 (i.e., 
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IJ(z) - J(OI ~ Mlz - (I" for any pair z" E r). For any Zo E r\{a,b} define the 
value F(zo) as follows: 

1 i J(z) . 1 i J(z) F(zo):= pv-. --dz:= hm -. --dz, 
2m r z - Zo .~o+ 2m r, z - Zo 

where r. = r\B(zo, e). We want to show this value F(zo) is well defined. 
(a) Show that 

i J(z) dz = i J(z) - J(zo) dz + J(zo) Log b - Zo + inJ(zo) + O(e), Jr, z - Zo Jr z - Zo a - Zo 

so that 

F(zo) = ~ i J(z) - J(zo) dz + ~J(zo) Log b - Zo + J(zo). 
2m J r z - Zo 2m a - Zo 2 

If r is closed we can drop the logarithmic term. 

(b) For r a C1 Jordan curve, J as earlier, let ~ be G) times the Cauchy transform 

of the Radon measure II = J(z)dz, with support in r, that is, 

For Zo E r, let 

1 i J(O ~(z) = -: ~ d" 
2m r' - z 

%-+':0 
zelnt(r) 

z if r. 

where the limits are understood to be along the normal direction to r at zo0 
Show that these limits exist and 

Finally, 

~+(zo) = F(zo) + tJ(zo) 

~-(zo) = F(zo) - tJ(zo)· 

~+(zo) - ~-(zo) = J(zo)· 

These formulas are usually called the Plemelj-Sokhotski formulas. 

10. (a) Let J be a holomorphic function in the upper half-plane H = {Imz > O} 

satisfying the inequality IJ(z)1 :::;; _1_. Show that g(z) = i z (z - w)J(w)dw 
Imz Ji 

satisfies the upper bound Ig(z)1 ~ C(I + Izl)2 for some constant C (z E H). 
(b) State and prove a similar result when IJ(z)1 ~ Ij(Im z)« for some ex > O. 

(c) Use part (a) to show that an entire function satisfying 1 J(z) 1 ~ _1_ every
IImzl 

where must be identically zero. Is the result true when IjlIm zl is replaced by 
Ijllm zla, ex > O? 
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§7. Mergelyan's Theorem 

Runge's theorem shows that if K is a compact subset of the open set n s C, 
and K = Ko then Yf(K) s Yf(n)IK (the closure in ~(K)). It is a natural 
question to try to figure out exactly which continuous functions on K belong 
to Yf(n)lK. The following subalgebra of~(K) is worth considering: 

A(K) := {f E ~(K): J is holomorphic in K}. 

A(K) can be defined even if K is not holomorphically convex in n or compact 
in C. Furthermore, note that if K = 0 then A(K) = ~(K). It is clear that 

Yf(n)IK s A(K). 

It is not always true that both coincide; Mergelyan's theorem concerns 
a particularly interesting case, n = c. 

3.7.1. Theorem (Mergelyan). Let K be a compact set which is holomorphically 
convex in C, then 

A(K) = Yf(c)IK. 

In other words, if K is a compact set such that KC is connected, then any 
function in A(K) can be uniformly approximated by polynomials. 

The original proof of Mergelyan, which we follow, is another nice example 
of the applications of Pompeiu's Formula 2.1.2. Let us first sketch the idea in 
a particular case. Assume that K = K, m(8K) = 0, and J E A(K) n.@l (C). 
Then we have 

J(z) = ~ f o~(Od( 1\ d( = ~ f o~(Od( 1\ d(, 
2m c o( ( - z 2m K,O( ( - z 

o h f . oj 1 .. bl where Kl = (suppf)\K. For each z fixed, t e unction ~ -r - IS mtegra e 
0(., - z 

over the compact set K l' Moreover, it is easy to convince ourselves that given 
e > 0 there is a () > 0 such that for any z E K and any Borel set E Lebesgue 
of measure m(E) ::5: () one has 

1
_1 f 8~(Od( 1\ d(l::5: e. 
2ni EnK, o( ( - z 

Now, cover oK by a finite collection of small open disks Bj so that if E = U Bj 
j 

then m(E) ::5: () and dist(K, K 1 \ E) > O. The function g defined as 

1 f oj d( 1\ d( 
g(z) = -2 . "y(O (_ 

nl K,IE u., Z 

is then holomorphic in a neighborhood of K and 

IIJ - gilK ::5: e. 
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By Runge's theorem, there is a polynomial h such that Ilg - hilK ~ e, hence 

II! - hllK ~ e + Ilg - hilK ~ 2e. 

Of course, if one wants to extend this proof, there are two problems. 
We have to approximate functions in A(K). They are only continuous and, 
furthermore, it is not necessarily true that K = K and that m(oK) = 0 in 
general. The second condition has been dispensed with in Exercise 3.1.10. 
Theorem 3.7.1 does not require K = K either. 

Before proceeding to the proof of the general case, let us make a few 
observations. First, given a function! E ~(K) we can always assume! E ~o(C) 

(i.e., continuous and with compact support). The reason is that the Tietze
Urisohn theorem [Arm] guarantees the existence of a continuous extension 
to the whole plane. Then we multiply this extended function by a cutoff 
X E ~(C), X = 1 on a neighborhood of K. 

Second, a function! E ~o(C) is uniformly continuous, hence its modulus 
of continuity OJ, 

OJ(b):= max{I!(z) - !(w)l: Iz - wi ~ b} (15 > 0), 

has the property that OJ(b) -+ 0 as 15 -+ O. 
Thirdly, assume! E A (B(zo , 15» and that k(z) = k(lzl) E ~o(B(O, 15» satisfies 

L k(z) dm(z) = 2n J: rk(r) dr = 1. 

Then, as an easy consequence of Cauchy's formula, we see that 

!(zo) = L !(zo - z)k(z)dm(z). 

We have already used this kind of argument in §2.2.9. This mean value 
property will be exploited in full in the next chapter. 

We are now ready to start the proof. 

PROOF OF THEOREM 3.7.1. We want to approximate a function! E A(K) 
uniformly on K by polynomials. We know that we can assume that 
! E £,(K) n ~o(C). Let OJ be its modulus of continuity. We will first try to 
approximate! by a function cp~ in ~1 (C) which is holomorphic in a "large" 
part of K. For that purpose, consider the auxiliary radial function k E ~1 (C) 
given by k(z) = k(lzl), where 

ifO~r~1 

if r > 1. 

It IS immediate that t k(z)dm(z) = 1. For any fixed 15, 0 < 15 < 1, let 
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kiz) = b- 2 k(z/<'»). Then supp kJ = B(O, b), t kJ dm = 1. We define now the 

approximation CP/i by 

cpo(z) = t f(z - Ok/i(O dm(O, 

as we did in §2.2.9. It follows that CP/i E £01 (C) and 

:_CPo(z) = -f f(z - O~~kli(Odm(O. 
(; z c as 

Let n li = {z E K : d(z, K C ) > b}. Then n/i ~ K and CP/i = f in n/i by the 

previous remarks. Hence supp (:~CPo) n no = 0. Moreover, we have 

Icp/i(Z) --- f(z) 1 = It U(z - 0 - f(z))k,~(Odm(O I:::; w(b) t k/i(Odm(O = w(b), 

so that (P/i is in fact an approximation of f. 
. f . b ca. To contmue the proo we need to obtam an upper ound lor a~CPIi' Smce 

kli has compact support, it follows from Stokes' theorem that 

f ~:kli(Odm(O = o. 
c a( 

iJ 
Therefore, the formula for a-z CP/i can be rewritten as follows: 

A direct computation shows that if r = 1(1 then 

1:,k/i(OI = ~;31~~G)1 = n~3(1 - ~:)i 
when 0 :::; r :::; b and zero otherwise. Hence 

1 _~ __ ffl'(Z)1 < ~- (j)(b) < 2w(b) a-z Yo - 5 b - b' 

We will use this estimate and Pompeiu's formula to approximate CP/j by 
functions in #(K). The crucial step is the following lemma, which in turn 
depends on Proposition 2.7.9, that is, on Koebe's one-quarter theorem. 
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3.7.2. Lemma. Let E be a compact connected set of diameter greater than or 
equal to r > 0, EC connected, and B an open disk of radius r such that E s; B. 
Then there is a function Q E Jft'(S2\E) and pEe such that 

R((, z) = Q(z) + (( - P)(Q(z)f 

satisfies the inequalities 

c i 
IR((,z)1 ~-

r 

and 

for all z E EC and ( E B. Here c I' C 2 are two absolute constants, i.e., positive 
numbers independent of r, E, etc. 

PROOF OF LEMMA 3.7.2. It is clear that if we translate the z and ( variables 
by the same quantity the inequalities do not change and only the value P is 
affected. Therefore we can assume that B = B(O, r). Recall that from Lemma 
2.7.9 we have a biholomorphic mapping 

F: B(O, 1) --+ S2\E 

a 
z = F(w) = - + bo + bi w + ... , 

w 

Let Q : S2 \ E --+ B ( 0, ~), also a biholomorphic mapping, given by 

1 
w = Q(z):= _F-I(Z). 

a 

We have Q(oo) = 0. Furthermore, from the definition of Q we have for 
z = F(w) 

Hence 

It follows that 

aQ(z) = aQ(F(w» = F-I(F(w» = w. 

zQ(z) = wF(w). 
a 

1· Q() I· wF(w) 1m z z = 1m ~~ = 1. 
%-00 w-o a 

Note that, for any ( fixed, we also obtain 

lim (z - ()Q(z) = 1. 
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From the hypotheses on E we have that {Izl ~ r} is entirely contained in 
the simply connected region S2 \ E of the Riemann sphere. Therefore, the 
following expansion is valid 

1 13 
Q(z) = - + - + ... 

z Z2 

in {Izl ~ r}, and 

13 = -21 . r zQ(z)dz, r ~ p < 00. 
m Jlzl=p 

We have IQ(z)1 ~ ~ ~ ~, hence 1131 ~ 4r (just take p = r). 
a r 

We are now ready to prove the first estimate for R«(,z), 1(1 < r, z E £C 

84 
IR«(,z)1 ~ IQ(z)1 + (1(1 + If3I)IQ(zW ~-. 

r 

In order to obtain the other estimate, fix (E B and consider the Laurent 
expansion in I z - (I > 2r 

( ) 1 C2 
Q z = z _ ( + (z _ 0 2 + ... , 

C- 2 = -21 . r (z - OQ(z)dz = -21 . r zQ(z)dz - 2( . r Q(z)dz 
m Jlzl=3r m Jlzl=3r m Jlzl=3r 

= 13 - (, 

using the expansion in powers of Z-l. Summarizing, in Iz - (I> 2r we have 

and 

Hence for ( fixed in B, 

is certainly holomorphic in Iz - (I > 2r, including 00, and the function between 
brackets is holomorphic in EC \ {(}. The possible pole at z = , is killed by 
the factor (z - 0 3 and therefore we have constructed a function holomorphic 
in S2 \ E. If we find an upper bound in (S2 \ E) n B, the maximum principle will 
guarantee this is an upper bound everywhere in S2\E. When z E B we have 
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Iz - (I ~ 2r, then 

I(Z - 03[ R(Cz) - z ~ cJI ~ Iz - (l 3 IR(C,r)1 + Iz - (12 

84 
~ 8r3 x - + 4r2 ~ 676r2. 

r 

273 

This concludes the proof of the lemma; we can take C1 = 84, C2 = 676. D 

We go back to the proof of Theorem 3.7.1. From Pompeiu's formula and 
previous analysis we have 

o/,)(z) = ~ [ a~ (C) dC /\ d'. 
2m J n~ ac z - C 

From the definition ofn,) we can see immediately that there is a finite covering 

of S := supp (aa~ ) by open disks B1 , ••• , Bm of radius 2" and centers lying in 

K C• Let Sl' ... , Sm be disjoint Borel sets such that S = U Sj, Sj ~ Bj. Then 
j 

Since S2\K is connected, we can find a path Ijjoining the center of Bj with 
00 and such that S2\1j is also connected. Extending it a little bit beyond the 
center of Bj and keeping a portion inside Bj which starts very near aBj' we can 
define a compact connected set Ej £; Bj , diameter (E) ~ 2", S2\Ej connected 
and Ej n K = 0. We can now apply Lemma 3.7.2 to each Ej , r = 2", giving 
approximations RiC, z) = Qj(z) + (C - {lj)QJ(z) to the Cauchy kernell/(z - 0 
in Bj • Consider the function 

~ 1 i a~ -<l>iz) = ~ -2. ---=-(C)Rj(C,z)dC /\ dC 
j=l m SJ ac 

~ 1 i ao/,) -= ~ Qj(z)-. ---=-(OdC /\ d( 
j=l 2m Sj ac 

+ f QJ(Z)-21 . [ a~(C)(C - {lj)dC /\ dr 
j=l m J Sj ac 

This is a linear combination of Qj and QJ. They are holomorphic in S2 \ Ej ; 
in particular they are all holomorphic in n = S2\(El u··· u Em), which is an 
open neighborhood of K. By Runge's theorem, we will be able to approximate 
<I> t5 uniformly on K by polynomials. Therefore, to end the proof of the theorem 
we have to show that <1>6 approximates 0/6 uniformly on K when" -+ O. 
We have 
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For a fixed ZEn, introduce polar coordinates, = Z + pe i8• Then the sets Sj 
can be divided into two disjoint pieces, Sj = Sj n g : Iz - " ::;; 3b}, Sj' = Sj\Sj. 
For' E Sj we have 

I 1 I c1 1 R.(Y z) - -- < - + -
J \" Z -, - 215 p' 

Hence 

tf IRj("Z)- ~Yldm(')::;;f_ (2C~+~)dm(o 
)=1 Sj Z \, 8(z, 36) u P 

In Sj' we have 

Hence 

m f I 1 I foo dp .L Rj("z) - -=r dm(')::;; 8nc2b22 = c;b. 
)=1 Sj' Z \, 36 P 

In conclusion, for ZEn, 

Summarizing, we have found a constant C > 0 (independent of K, 15, f, etc.) 
and a function <116 E Jt"'(n), n open neighborhood of K (n depends on b) so 
that 

Ilf - <11611K ::;; (1 + c)w(b). 

Therefore, given E > 0 we first choose 15 > 0 so that 2(1 + c)w(b) ::;; E. Then 
we approximate <116 in K by a polynomial P so that liP - <11611K ::;; E/2 and we 
have 

o 
There are several generalizations and different proofs of Mergelyan's theo

rem. The study of A(K) per se leads to the subject of uniform algebras. We 
refer the reader to the exercises and notes at the end of this chapter for some 
references to these questions. 
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It is also often useful to approximate uniformly by entire functions, functions 
that are continuous in a unbounded closed subset E of C and holomorphic 
in E. In fact, in this case one might want to do better: given w: E --+ ~+ 
continuous and f E Ye(E) n CC(E) (i.e., f E A(E», find hE Ye(C) such that 

If(z) - h(z)1 < w(z), for all z E E. 

This problem was considered by Arakelian who found necessary and suffi
cient conditions for this type of approximation to be possible. The conditions 
on E are similar to that in the theorem of Mergelyan. Recall that a hole is 
a bounded component of £C. Then, one needs 

(i) E has no holes, and 
(ii) for every closed disk B, the holes of B u E lie in a bounded set. 

For an arbitrary closed set E satisfying (i) and (ii) the essentially best 
conditions on w, when w(z) = B(lzl) and B(t) --+ 0 as t --+ +00 are that 

f<Xl 10gB(t)d 
~ t<oo, 

1 t 

but when E = 0, the last condition can be dispensed with. We refer to [Ful] 
and [Ga] for details. As an interesting application of Arakelian's theorem we 
mention an elementary construction in [Za6] of a nonzero entire function f 
with the following properties: 

(a) on every line t in C, f(z) --+ 0 as z --+ 00, Z E t; 

(b) f is integrable on every line t, i.e., L If(z)1 ds(z) < 00 (ds is the element of 

length in t); 

(c) for every line t, L f(z)ds(z) = O. 

In a recent article, J. P. Rosay and W. Rudin [RR] have given a very 
elementary derivation of Arakelian's theorem from Mergelyan's theorem 
and a Mittag-LeIDer type of argument in the particular cases were either 
w == constant or E = 0. We proceed to reproduce it here. 

3.7.3. Theorem. Let E be a closed set in C satisfying conditions (i) and (ii). Given 
f E A(E) and B > 0, there is an entire function h such that 

If(z) - h(z)1 ::; B for all z E E. 

PROOF. For n E ~*, let Bn = B(O,Rn), Rn < Rn+l --+ 00 be chosen so that 
Bn+! ;2 Bn u fin, where Hn = union of all the holes of E u Bn. This is possible 
by property (ii). By property (i) it follows that if Eo = E and En = E u Bn U fin' 
then the compact sets En- l n Bn+l have no holes and hence Mergelyan's 
theorem holds for them. Note that En £; En+! and U En = Co 

n 
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We define now a sequence of holomorphic functions hn' which for n ~ 1 
are going to be continuous in En and holomorphic in En' and the lim hn = h 

will be uniform over compact sets, whence h will be entire. 
Let ho = f and assume hn- 1 has already been chosen. Let t/ln E CO'(C) 

be such that 0 ~ t/ln ~ 1, t/ln = 1 on a neighborhood Un of Bn U En and 

1 flat/ln I dm(w) . . suPP(t/ln) ~ Bn+1' We know that Z~~ aw (w) Iz _ wi IS a contmuous 

function on C which tends to zero at infinity. Let Mn ~ 1 be an upper bound 
for this function. As we pointed out, we can apply Mergelyan's theorem to the 
function hn- 1 on En- 1 n Bn+1 and find a polynomial Pn such that 

Let now 

(Z E C) 

and define 

hn := t/lnPn + (1 - t/ln)hn- 1 + rn in En· 

We have that supp (~~ ) ~ Bn+l \ Un, hence rn E Jf(Un). Moreover, when 

Z E Un we have t/ln(z) = 1, hence hn(z) = Pn(z) + rn(z). Therefore, hn is well 
defined and holomorphic in Un. Hence, hn is continuous in En- 1 U Un, in 
particular, in En. 

We also have in En - 1 

ahn = at/ln _ h at/ln arn - 0 
a-Z Pn a-Z n-1 a-Z + a-Z -

by Pompeiu's formula. In other words, hn is continuous in En and holomorphic 
in En. 

The condition (*) implies that 

for all Z E C. 

Hence, for Z E En- 1 we have 

This implies immediately that the sequence (hn)n~m converges uniformly on 
Em. Namely, for n ~ m and p > 0, 
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so it defines a Cauchy sequence and therefore an entire function h. Clearly 
h = ho + L (hn - hn-d. It follows that on E we have 

n;;,l 

Ih - fl S; L Ihn - hn- 11 S; B. o 
n;;,l 

3.7.4. Corollary. Let E be as in the previous theorem and assume further that 
E = 0. Given a continuous function OJ : E --+ ~+ and f any continuous function 
on E, there is an entire function h such that 

Ih(z) - f(z)1 < OJ(z), Z E E. 

PROOF. From the previous theorem there is an entire function gl such that 

Ig1(Z) -logOJ(z)1 < 1 (z E E). 

Let g2(Z) = gl(Z) - 1, we have 

Reg2 (z) = Reg 1(z) - 1 < 10gOJ(z) (z E E). 

By the same theorem we can find g3 E Jf'(C) such that 

Ig3(Z) - f(z)e- 92(Z) I < 1 (z E E). 

Hence 

Ig3(z)e92(Z) - f(z)1 < le92(Z)1 < OJ(z) 

which concludes the proof of the corollary. 

(z E E), 

o 

A simple but very interesting case of this corollary occurs when E = ~. We 
shall have occasion to use this remark in the following chapter. See also, 
Exercise 3.7.6. 

EXERCISES 3.7 
1. Use Theorem 3.7.1 to prove the classical Weierstrass approximation theorem in 

IR: Any function continuous in an interval [a,b] can be uniformly approximated 
there by polynomials of a single real variable. 

2. Use Mergelyan's theorem to prove the following version of Cauchy's theorem. Let 
r be a rectifiable Jordan curve, K = r u Int(r), f E A(K). Then 

Lf(Z)dZ = O. 

*3. Assume K is a compact subset of the plane such that K C has finitely many 
components. State and prove an appropriate version of Mergelyan's theorem. 

4. (Alice Roth's Swiss cheese). Let {aJje 1\10 ao = 0,0 < rj < 1 be chosen in such a way 
such that the disks Bj = B(aj , rj ) satisfy 
(1) ~ £; B(O, I) = B. 

"" (2) L rj < 1. 
j;O 
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(3) ~ n Bk = 0 if j 0# k. 

(4) K = B\( U ~) has empty interior. 
j~O 

(Can you find such aj , rj ?) 
(a) Show that if f is a rational function with poles in K C then 

r f(z)dz = I r f(z)dz. 
JOB j;;,O JaBj 

(b) Show that the same is true if f E J'f(K). 
Izl --

(c) Is the function f(z) = - in A(K)? In J'f(K)? 
z 

The a-Equation 

5. Let B = B(O, 1), J1. a Radon measure in B such that for any IX E B it satisfies 

f z--a 
--dJ1.(z) =0. 
1 - IXZ 

Show that this implies that the functions f, 9 defined in B by 

f(IX):= f-z - dJ1.(Z), 
1 - IXZ 

f dJ1.(z) 
g(IX) = --, 

1 - IXZ 

vanish identically. Conclude from this that if IPI > 1 then 

f dJ1.(z) = O. 
P-z 

Prove now that f h dJ1. = 0 for every h E A(B). 

IX E B, 

Find the closed linear span of the Moebius functions z - ~ (IX E B) in ~(B). 
1 - IXZ 

*6. Using Corollary 3.7.4, show directly that any continuous function f on IR can be 

obtained as boundary values b(g), of a function 9 E J'f(C\IR). ( Hint: Reduce the 

problem to the case where If(t)1 $ _c_. Now the Cauchy transform! makes 
1 + It I 

sense. Show f = -~b(/), cf. Exercise 3.6.9.) 

§8. Short Survey of the Theory of Distributions: 
Their Relation to the Theory of Residues 

In this section we give a very quick introduction to the fundamental properties 
of distributions, only insofar as letting the reader operate with them con
fidently. We hope that this section will be enough to be able to read §3.6 for 
those who have not seen distributions before. For the general theory we 
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recommend [S], [GS], and [H02, Vol. 1]. We conclude this section with 
a recent approach to the theory of residues. 

3.8.1. Definition. A distribution T on an open subset 0 of IRn is a C-linear map 
T: '@(O) ~ C such that, for every compact subset K of 0, if (cp)j2: 1 is a sequence 
of elements of .@(O) such that 

(i) supp(cpj) £; K (j ~ 1) 
(ii) for every IX E Nn, lim sup I D<Xcpix) I = 0, (i.e., CPj ~ 0 in $(0)), we have 

j~oo xeK 

lim < T, CPj) = O. 
j-+oo 

(It is standard to denote T(cp) by <T, cP ).) The space of all distributions in 0 
is denoted by .@'(O). 

One can show from this definition that if T E .@'(O) and K ceO, then 
there is N EN and C > 0 such that 

1<T,cp)1 ~ C sup I D<Xcp(x) I 
1<xlsN 
XEK 

for every cp E '@(O) with supp(cp) £; K. 
The simplest example of a distribution is obtained starting from a function 

f E Lfoc(O). One defines T = T, E .@'(O) by 

< T" cp):= In fcp dx. 

If f, 9 E Lfoc(O) and T, = 'Fg then f = 9 a.e. in O. By abuse of language, one 
often writes f instead of T, when f E Lfoc(O). 

If fECI (0), then one can associate not only to f, but also to every partial 

derivative fx = ~f , a distribution T" T, ,respectively. The relation between 
J uXj Xj 

them is obtained by integration by parts: 

<T,r.'CP) = [ of cpdx = - [ f acp dx = _I T" acp). 
J 100xj 10 aXj \ oXj 

For this reason we define the derivative ~T of a distribution T E .@'(O) by 
uXj 

It is easy to see that :T is again a distribution in O. It follows that for IX E Nn, 
Xj 

al<x1 
D<X=_ 

ax<X' 
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It is clear that 

Da(DPT) = Da+P(T). 

As an example, let c5 denote as always the Dirac mass at 0, i.e., the distribution 
c5 : q> t-+ <c5, q» = q>(0) for q> E ~(~). If H = X[O,oo[ (the Heaviside function) and 
T = TH , then 

dTH(= dH) = c5. 
dx dx 

3.8.2. Definition. If Q l S; Q2 are two open sets in ~n and T E ~'(Q2) one can 
define the restriction TIQ l of T to Ql: 

<TIQ1,q»=<T,q» for q>E~(Qd. 

This makes sense, since ~(Ql) S; ~(Q2)' 

With the help of this definition one can define the support of a distribution. 

3.8.3. Definition. Let T E ~'(Q). One denotes supp(T), support ofT, the com
plement in Q of the union of all open sets ro S; Q such that Tiro = O. 

It follows that Q\supp(T) is the largest open subset ofQ on which Tis zero 
(i.e., it restricts to the zero distribution). For a continuous function in Q, 
supp(1f) = supp(f). 

Sometimes there is some doubt about the variable on which a distribution 
acts. For instance, in the case q> E ~(~n X ~n) and T E ~'(~n), then we can 
write 1'" to indicate that for each y E ~n one has a function 

Y t-+ < 1'", q>(x, y), 

which can be seen to belong to ~(~n). In this way one can define the tensor 
product T ® S of two distributions in ~'(~n) as a distribution in ~'(~2n) given 
by the formula 

< T ® S, q» := < Tx , <Sy, q>(X, y)) = <Sy, < Tx , q>(X, y)). 

The last identity is a generalization of the theorem of Fubini, which one proves 
first for q> E ~(~2n) of the form q>(x, y) = l/I(x)fJ(y), 1/1, 0 E ~(~n). Then one uses 
the fact that linear combinations of such products are dense in ~(~2n). One 
finds that 

supp(T ® S) = supp(T) x supp(S). 

Starting from this concept oftensor product one can introduce the extremely 
important concept of convolution that generalizes the usual convolution of 
functions. One observes that, iffor a certain compact K S; ~n and distributions 
T, S E ~'(~n), the set 

K := {(x, y) E ~n X ~n: x + y E K} n (supp(T) x supp(S)) 

is compact, then one can give a meaning to the expression 
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<Tx ® Sy, cp(x + y) 

when cp E ~(K) (i.e., cP E ~(IR"), supp(cp) £:; K). Namely, choose X E ~(1R2") 
which is identically 1 in a neighborhood of K, then the value 

<T® S,X(x,Y)CP(x + y) 

is independent of the choice of X. Hence, one declares it to be 
<Tx ® Sy, cp(x + y». 

3.8.4. Definition. Given S, T E ~'(IR") one says they can be convolved if for 
any K c c IR", the set K is compact in 1R2". In that case the convolution T * S 
is the distribution in IR" given by 

3.8.5. Remarks. (1) A sufficient condition that S, T can be convolved is that 
one of them has compact support. 

(2) Convolution is commutative but, in general, not associative. On the 
other hand, if supp SI c c IR", supp S2 C c IR" then 

(T*SI)*S2 = T*(SI *S2) = (T*S2)*SI· 

(3) The Dirac mass is the identity for the convolution product. For any 
T E ~'(IR") 

T* (j = (j. 

(4) If f, 9 are two functions in LI~c(IR") and one of them has compact 
support, then 

'ft * ~ = 'ft.g, 

where f * g(x) = [ f(x - y)g(y) dy is the usual convolution of functions. 
JRn 

For instance, if cp E ~(IR") and T E ~'(IR"), then T * Ttp coincides with 'ft where 
f is the Coo function 

f(x) = < 1'" cp(x - y). 

One writes T * cp for this expression in order to simplify the notation. 

3.8.6. Definition. One denotes /!' (IRn) the family of those T E ~' (IRn) such that 
supp(T) c c IRn. 

If T E /!'(lRn) and X E ~(lRn) is such that X == 1 in a neighborhood of supp(T), 
then for any cp E /!(lRn) we have XCP E ~(IR") and it makes sense to compute 
< T, XCP), which also turns out to be independent of X. One concludes that T 
extends to a I[>linear map /!(IR") --+ C defined by < T, cp) := < T, XCP). It can be 
proved that cp f--+ < T, cp) is a continuous map in the Frechet space /!(IR"). 
Moreover, every element of the topological dual of /!(IR") corresponds to 
a unique distribution T E /!'(lRn). 
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One of the fundamental theorems in the theory of distributions is the 
following. 

3.8.7. Proposition (Theorem ofTitchmarsh-Lions-Schwartz). The space $'(IR") 
is a commutative algebra under convolution with unit b. Moreover, it is an 
integral domain as a consequence of the identity 

cv(supp(T * S» = cv(supp(T» + cv(supp(S», 

validfor any T, S E &,'(IR"). (We denote cv(supp(T» = convex hull of the support 
ofT and,for subsets A, B of IR", A + B = {a + b: a E A,b E B}.) 

There is a further property of the convolution worth mentioning. If b(a) 
represents the derivative Dab of the Dirac distribution, then 

DaT = b(a) * T. 

Therefore, for a linear partial differential operator with constant coefficients 
P(D) = L aaDa, we have 

lal,;N 

P(D) T = P(b) * T, 

where P(b) = L aab(a). This formula can be generalized as follows: let 
lal,;N 

T E ~'(IR"), S E &,'(IR"), then 

Da(T * S) = (DaT) * S = T * (DaS). 

3.8.8. Definition. A fundamental solution E of a differential operator P(D) is 
a distribution E E ~'(IR") such that P(D)E = b. 

If S E If' (IR") (or if E * S makes sense) we can solve the distribution equation 

P(D)T = S, 

by taking T = E * S. In fact, 

P(D) T = P(D)(E * S) = (P(D)E) * S = b * S = S. 

For instance, for n = 2, 1R2 = C, we have seen that the distribution associated 

to the Lloc(1C) function z 1-+ ~ is a fundamental solution for the differential 
nz 

o 
operator oz. 

Another operation on distributions is the following. Let T E ~'(IR") and 
f E COO(IR"), then one can define a new distributionfT E ~'(IR") by 

(fT,<p):= (T,f<p). 

Clearly supp(fT) ~ supp(f) n supp(T). Note that the inclusion can be strict, 
e.g., xbo(x) = O. Furthermore, Leibnitz' rule for the derivatives is also valid for 
products of functions and distributions. For instance, (xT), = T + xT'. 

Using a partition of unity (<P)j;;'l on a set n one can write any distribution 
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T E ~'(O) as a locally finite sum (in the sense of supports) 

T = L (qJj' T) = L 1j, 
j j 

1j E ~'(lRn), supp(1j) ~ supp(qJj)' This remark was used in §3.6. 

283 

This last remark, together with the following "representation" theorem, 
allows us to operate with distributions as if they were functions. 

3.8.9. Proposition. Let T E 8' (IRn), supp( T) ~ B(O, R). There exist an N E N 
and a Jinite number oj continuous Junctions fa, a. E Nn, 1a.1 :s; N such that 
supp(fa) ~ B(O, R) and 

T= L D"1f •. 
1"lsN 

In the exercises following this section, the reader will see the family of 
distributions Ixl). in IR (more precisely, 1ixl') indexed by a complex parameter 
A, Re), > 0, given by 

(lxl).,qJ) = t Ixl).qJ(x)dx (qJ E ~(IR)). 

The transformation A 1-+ (lxl).,qJ) is holomorphic in the half-plane ReA> ° 
and its analytic continuation, as a function of A, is related to the distribution 

pv (~) defined by 

\ (1) ) . i qJ(x) pv - ,qJ = hm --dx; 
x ..... 0 Ixl;:.:. x 

cf. Exercise 3.6.7. 

In §3.6, we also considered the distributions in ~'(q defined by!, pv (~), 
Z zn 

n ~ 2, and, more generally, pv(f), for J E ..H(O). We saw there that they are 
related to the concept of residue in the classical sense, as it was introduced in 
Chapters 1 and 2. In fact, we have three slightly different notions of residue 
so far. In the remainder of this section we will introduce a less known 
systematic way of considering the residue, which can be traced back to 
Poincare, and more recently to Leray, Gelfand, Dolbeault, Grothendieck, 
Herrera, Lieberman, Passare, Y ger, etc., and that promises to be very useful 
in several applications of complex analysis. 

In §3.6 we have already shown that for 0 open subset of C, the space ..H(O) 
can be embedded as a subspace of ~'(O) via the Cauchy principal value map 

pv : ..H(O) -+ ~'(O) 

given by 

(pv(f), qJ) = lim r J(z)qJ(z) dm(z), 
£-+0 JOE 
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whereO. = {z EO: Iz - al ~ e > o for every a E P(f)}. We have also obtained 
that 

o ( _1).-1 0.- 1 

~_pv(f)=n L L( 1),Aa,.~ ._1£5a, 
U Z a E P(f). V -. uZ 

where the inner sum in v runs over the index set 1 ::;; v ::;; m = ma = order of 
a as a pole of J, and the principal part Pa of I at z = a is given by 

We pointed out that it is standard to call residue distribution of I the 

distribution Res(f) = :zPV(f), so that if V is an open neighborhood of a such 

that V n P(f) = {a} we have 

Res(f)1 V = n Res(J, a)£5a + 7;., 
0' 

where 7;. is a distribution with supp(7;.) = {a}, involving only ~£5a' 
uZ' 1 ::;; v ::;; m - 1, which is not zero unless m = 1. 

In what follows, given IE £'(0) we will recover Res(ljf) in terms of the 
family of distributions defined by III).. 

We start by observing that for a fixed value p. E C, if Re p. > 0, the function 

1 
z~_lzI2(1l-1) 

n 

is locally integrable in C, and as such, it defines a distribution, still denoted 

~lzI2(1l-l), 
n 

/ ~ IzI 2(1l-l), cp) = ~ r IzI 2(r 1)cp(z)dz A dz 
\n 2nlJc 

(cp E g)(IC). 

Moreover, for each fixed cp E f0(0), we can consider the map 

p.~ (~lzI2(r1), cp ) 

dnd prove without difficulty that it is also holomorphic in the same half-plane 
Re p. > O. It is customary to express this fact by saying that the map 

{Rep. > O} -+ g)'(1C) 

is holomorphic. Note that this means that for each ,1,0' Re ,1,0 > 0, we have 
a Taylor series expansion about ,1,0' 

h(A) = L T,.(A - ,1,0)\ 
k;"O 

with T,. E g)'(IC). The meaning of this expansion is that for every cp E .@(IC) one 
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has 

which is convergent for all A dose to ,1.0' Similarly for a meromorphic function 
g with values in £C'(O), the Laurent development near a point )'0 is formany 
given by 

1 '\' 11k T_ m T-l (1 1) 
g(A) = k.f:m~(A - Ao) = (A _ AO)m + ... + A _ ).0 + To + Tl A - AO + "', 

with ~ E £C'(O). It means that for ({I E £C(O), and 0 < 1,1. - ).01 small (smallness 
depending on (p), 

<g(A), ({I> = L (A - Ao)k<~, ((I). 
k:2:-m 

It is then justified to say that the distribution Ll is the residue 
Res(g(A),). = ,1.0)' 

1 
3.8.10. Proposition. The map h: f.11--+ _lzI 2(rl), with values in £C'(C), admits 

n 
an analytic continuation to the whole complex plane as a distribution valued 
meromorphic function with poles at f.1 = 0, - 1, - 2, .... A II the poles are simple 
and their residues are 

PROOF. For Z =f. 0, pEN, f.1 E C, and ({I E £C(C), we have the identity 

a (l z I
21'+2P OP({I(:j dZ) = (f.1 + p)l.ze~2~=2 OP({I(z) d-Z A dz 

Zp+1 o-ZP zP o-ZP 

Therefore, whenever Re 2f.1 + P > 2, we can apply Stokes' formula and obtain 

~ ~l~ f~r;~+l~'~ ~~~p~~Z) d-z Adz = f~e~+p2p=2 O~~~z) d-z Adz. 

In terms of our distribution valued function h(f.1) = ~ IzI 2 (1'-1l, it means 
n 

that for Re f.1 sufficiently large we have 

<h(f.1), ((I) = _L; f IzI 2 /l- 2({1(Z) d-z A dz = (- .1) f Izl21' ?({I~z) d-z A dz 
2m 2mf.1 z OZ 

= --~~~~--- --~~- dz A dz = ... 
(_1)2 fIZI2/l+202({1(Z)_ 

2nif.1(f.1 + 1) Z2 O-Z2 
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(-1)P+1 flzI2w'-ZPOP+1cp(Z) _ 
= ---------------------------------------- -- ~--+- d z /\ dz. 

2nill(1l + 1) ... (11 + p) OZP 1 

The function Zf----+ !zI2 f1 +2 Pj z P+1 and its derivative with respect to 11 are clearly 

integrable as long as Re 211 + P - 1 > - 2, that is, for Re 11 > - ~~~. By 

Morera's theorem, the last integral is a holomorphic function in the half-plane 

Re 11 > - ~; 1. This shows that (h(Il), cp> is a holomorphic function of 11 

p+l . p+l 
whenever Re /I > ----- --- except at the pomts II = - k kEN k < --. 

t" 2 t" , , 2' 

where it has a simple pole. (Remark we only move to the left by i at each stage 
of this procedure.) Since p is an arbitrary natural integer, this proves the 
proposition except for the computation of the residue of h(ll) at 11 = - k, kEN. 
We treat here the cases k = 0 and k = 1, and leave the other ones to the reader 
as an exercise. 

For k = 0, we use the previous identity with p = 0: 

. _. ( 1 f 2/. ocp dz /\ dZ) _ 1 f ocp dz /\ dz 
!~tl<h(Il),cp>-~I~ --2ni Izi oi .-----~--------.-- - -2ni 8z-z-

= cp(O) 

by Corollary 2.1.4 of Pompeiu's formula. 
For k = 1, we need p = 2 in the identity, hence 

, (-1)3 fIZI2f1+403cp(z) __ _ 
(11 + 1 )<h(Il), cp> = 2;iip(p+ 2) -z-3 - OZ3 dz /\ dz. 

Let 11 = -1 to compute the residue. Then we have 

1 f Z 03cp(Z) _ (( 1 ) _03cp(Z)\ 
Res( (h(Il), cp >,11 = -1) = -; - -----;:;-=-- dz /\ tiz = pv -.- , z ~/. 

2m Z2 OZ3 nz2 OZ3 

= -(i~(zpv(~z)),~:~~z{). 

We know that~(z pv(.!..)) = PV(-!..) + zb = pv(l), since z is zero 
oz nz nz nz 
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for z = O. Hence 

I pv(_l )'Z03~(Z») = _I pv(~), 0_ 02~(Z») = I o_pv(~), 02~(Z») 
\ 1I:Z2 OZ3 \ 1I:Z OZ OZOZ \oz 1I:Z OZOZ 

as we wanted to show. o 

The last part of the computation used the relation between pv (_1_) and 
1I:Z n 

its derivatives. A similar result is the following. 

3.8.11. Lemma. Let cp E !?t)(C), m E I\J. Then 

1 fzm omcp(z) ( (1) ) -. --_-dz Adz = (-ltm! pv - ,cp . 
2m zm ozm 1I:Z m 

PROOF. The proof is left to the reader. (It is enough to use that the left-hand 

side is (pv (1I:~m) cp, zmO;;~Z») and apply Propositions 3.6.2 and 3.6.3.) 0 

Proposition 3.8.10 can be interpreted as saying that 

(1 2( -1) ) 1 (1) 1 0 Res -izi /J. ,j1.=0 =-Res - =-----=T1!z, 
11: 11: Z 11: OZ 

where both sides are interpreted in the sense of distributions. Its natural 
generalization is the following proposition. 

3.8.12. Proposition. Let f E .n"(Q), then the !?t)'(Q)-valued holomorphic function 
1 -

j1.1--+-lfI2(/J.-l1', defined for Rej1. > 1, has an analytic continuation to the 
11: 

whole plane as a meromorphic function. It has a simple pole at j1. = 0 and its 

residue coincides with the distribution Res (:f ). That is, 

Res ( (~lf(Z)12(p.-l1'(Z)' CP(Z») , j1. = 0) = (~ :zPV (7). cp ). 

PROOF. Let (a)j;;'1 be the collection of zeros of fin Q, Aj pairwise disjoint 
disks centered at aj' Aj cc Q, !Xj E !?t)(Aj), 0 :s; !Xj :s; 1'!Xj = 1 on a neighborhood 
of aj' P = 1 - L !Xj. Let cp E f»(Q). When Re j1. > 1 we can use Stokes' formula 

j 

to verify that 
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__ 1 i If12/1 iJ(P - _ ---- -- -- dz /\ d", 
2ni n f vz 

=_1 [1£121'{JO<£dZ/\dZ+"(_ 1 (1jf/1~.~<PdZ/\dZ). 
2ni In f (;Z 'r 2ni In f J vz 

The last sum is finite since supp(<p) is compact. 
The first term is clearly an entire function of J1. since f never vanishes on 

supp(fi). Its value for J1. = 0 is obtained by direct evaluation. We obtain 

_~ r !(J~<£dz/\dz=/ _pv(_l) (J3<P) = _/(Jpv(l) ~<£)\. 
2niJnf3Z \ nf'32 \ nf'02 

Let us deal with one of the terms of the sum. In I1j we have f(z) = (z - a)mjgj(z), 
Ig·(ZW1I o<p(z) 

gj holomorphic and never vanishing in I1j • Define Bj (J1., z) = __ J_( - ''Y.j(z) ------;1C • 
gj z) U z 

We then have (suppressing the indexj to simplify the notation) 

_______ 1_ f In~~~~--~dz /\ dz = --'- f I~_- aI 2
",!, O(J1. z)dz /\ dz. 

2ni Ll. f oz 2ni Ll. (z - a)m ' 

It is clear that O(J1., z) is an entire function of fl, but the integral converges 
I I 

a priori only for Re J1. > ------ -, which is not enough for us unless m = 1. To 
2 m 

get around this difficulty we transform the integral as in Proposition 3.8.10 by 
means of the following lemma. 

PROOF. It is easy to verify that for z 1= a 

(-m Iz - al 2m l-' z - a = Il (mJ1. + k) Z -Cli". 1m ( (---- -)m) ( ) I ,2ml' 

OZ z - a 1 :5k:5m (z - a) 

Then one uses Stokes's formula to verify the identity. o 

As a first consequence of this lemma we see that the integral we are con
I 

sidering has an analytic continuation which is holomorphic for Re fJ. > - 2m' 
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It follows that if M = max{mj : aj E supp(qJ)}, then Jlh(Jl) has an analytic 

continuation to a function holomorphic for Re Jl > - 2~' Therefore, Jl = 0 is 

a simple pole of h, and to evaluate the residue we only need to let Jl = 0 in the 
integrals transformed using Lemma 3.8.13. By Lemma 3.8.11 we have (m = mj ) 

(_l)m+1 1 f (z - ii)m am 
m! -2' -- :._mfJ(O,z)dz /\ dz 

m 4 z - a uZ 

= -\PvCr(z ~ ar).fJ(O,Z») = -\PV(n(z ~ ar).~~~) 
= -\ ajPV(n(z ~ a)mg) , ~~) = -\ ajpv(~), ~~). 

(The next to last identity is due to the fact that gj does not vanish on supp(aj ).) 

As a consequence we obtain 

Res(h(Jl), Jl = 0) = !i~ Jlh(Jl) = - \PPV (:f). ~~) -~ \ ajpv (:f). ~~) 

This is the main identity we wanted to prove. 
With respect to the analytic continuation of h to the whole plane, one can 

easily reduce it to Proposition 3.8.10. We note that the poles will appear in the 

sequence 0, - ~, - ~"'" but the value M will be dependent on the function 

qJ; more precisely, it is determined as in the proof in terms ofthe multiplicities 
of the zeros aj of fin supp( qJ). 0 

In order to give some applications of the last proposition, we state first 
a consequence of Pompeiu's formula. 

3.8.14. Lemma (Pompeiu's Formula with Weights). Let n be an open set with 
a C1 regular boundary, fEel (n), and Cl> E C1 (n x n) such that Cl>(z, z) = 1 at 
the point ZEn. Then 

f(z) = ~ f Cl>(z, Of(O d( _ ~ r Cl>(z,08f(0 /\ d( 
2m an ( - z 2m J n ( - z 

_ ~ r f(O 8,Cl>(z, 0 /\ d(. 
2m In ( - z 

PROOF. The proof is immediate from §2.1.2 applied to (H f(OCl>(z, 0. D 

A particular example occurs when G is an entire function, G(l) = 1, and 
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<1>(z, 0 = G(1 + (z - Oq(z,O), q E C 1(Q x Q). Then 

3.8.15. Proposition. Let PI' ... , Pm be non-constant polynomials without 
. P(z) - p·(O . v , , 

common zeros In C Let giz, 0 = ~;-_ (J-if z # ~,g/z,z) = Pj(z), IIP(OiI Z = 

m 1 m 

j~ 11](01 2, q(z, 0 = IIP(0112 j~ 1](Ogiz,O and Q(z,O = q(z,Od(. We have 

the identities 

Note that the gj are polynomials in the two variables z, (. Also 
- 8 -
8,Q(z, 0 = a,q(z, 0 d( 1\ d(. It follows that both formulas produce poly-

nomials Aj (resp. Bj ) such that ~ Aj1] == 1 (resp. ~ Bj 1] == I). This is usually 

called the algebraic Bezout identity, and though it can easily be solved by the 
Euclidean division algorithm for polynomials, formulas (i) and (ii) can be 
generalized to the case of several variables and they permit sometimes an a 
priori analysis of the Aj (resp. Bj ) before finding them. Finally, this kind of 
formula is also valid for entire functions. We will see an application to 
deconvolution problems in the second volume. 

PROOF. To prove formula (i), we let G(t) = t 2 as the auxiliary function used in 
the preceding example of <1>, Q = B(O, R), and apply §3.8.14. Then we have for 
f(z) == 1, that for any z E B(O, R) 

1 f d( 1 =;. G(l + (z - Oq(z,())~ 
2m iiB(O. R) ~ - " 

Since 

obtain 
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Since none of the polynomials is constant we have IIP(OII ~ c(l + 1m and 

1~(OIIIP(OII-2 :5; (1 : 1m' It follows that if we let R --+ 00 the first integral 

tends to zero and the second one converges. It is clear that as functions of z 
the integrals 

A'(Z)=~f ~~~[PJ0J d"f/\dY 
J in c IIP(OIl2 kf-I a, IIP(OIl2 gk(Z,O.. .. 

are polynomials and 
m 

L ~Aj == 1. 
j;1 

.. m p.(z)p.«() 
In order to prove (11) we let cp(z, 0 = 1 + (z - Oq(z, 0 = j~ IIP«()1I 2 and 

O;.(z,O = 1 + P1(OIP1(OI2(;'-l)gl(Z,()(Z - 0 for ReA. sufficiently large. Let X 
be a radial function in gc(B(O,2)), X = 1 in a neighborhood of B(O, 1). We 

let f(z) == 1, l1>(z, 0 = cp(z, o 0;. (z, ()x(i). Then l1>(z,z) = 1 for Izl < R. Let 

n = B(O,2R) and apply §3.8.14. Since l1>(z,O = ° when (E an, for z E B(O,R) 
we have 

1 = __ 1_ f (Y)O ( y)aX«(IR) /\ d( 
2 'R cp z,.. ;. z,.. Y me .. -z 

+ 2~i t cp(z, OIP1(OI2(;'-I)Pi(Ogl(Z, Ox (i) d, /\ d( 

+ 2~i t o;'(Z,ox(i):~(Z,()d' /\ d(. 

The idea now is to apply Stokes' formula to the last integral. Observe that 

:,(O;.(Z, ()q(z, Ox (i) ) = ~ :~(i)q(Z'Oo;.(Z'O + x(i):~(Z'Oo;.(Z'O 

+ Ax(i)q(Z,091(Z,()(Z - OIP1(OI2(;'-I)Pi(o. 

This allows us to replace the last integral by a sum of two integrals. One 
obtains 

1 = -2:iR L ~~(i)o;.(Z'O(~(~? + q(Z,O)d' /\ d( 

+ 2~i L CP(Z,ox(i)gl(Z'()1P1(OI2(;'-1)P~(Od' /\ d( 

- 2~i L x(i)q(Z,()(Z - Ogl(z,OIPl(OI2(;'-1)P~(Od' /\ d(. 
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Let R be sufficiently large so that all zeros of PI lie in 1(1 < R. We have then 
the right to let A. ~ 0 and obtain that the second integral becomes 

(Res(1t~J'X(~)gl(Z'OCP(Z'O) = j~ (Res(1t~J,gl(Z'O 1I~12) ~(z)o 
Under the same conditions, the last integral becomes 

-( Res(1t~J,x(~)q(Z")(PI(Z) - P1(0») 

= -( Res(1t~J,q(Z,O)PI(Z) 
~ / (1) ~(Ogiz, '») 

= -P1(z) j~ \ Res 1tPI ' IIP(0112 ' 

since PI (')q(z, ') is killed by Res (_1_) 0 

1tPI 

Finally, we consider the first integral. We have that 

cp(z, 0 + ( r) = _1_ 
r q z,." r 0 

." - Z ." - Z 

Since the integrand is only different from zero when R < I" < 2R, we are 
allowed to let A. = 0 in (JAO We then have 

PI (') PI (z) 
(Jo(z, ') = 1 + !PI (012 (PI (z) - PI (0) = PI (0 0 

Therefore, 

__ 1 __ f a~ (I) (Jo(z, 0 it. " d, = _ PI (z) f a~ (I) d(,,, d, ~ 0 
21tiR c a, R , - z 21tiR c a, R PI ('H' - z) 

as R ~ 000 We conclude that 

We conclude this section with another application of the Pompeiu formula 
with weights and residueso The object is to find an explicit formula to write 
a division theorem with remainder for holomorphic functionso That is, given 
f, hE .tf(B), B = B(O, 1), we want to find a systematic way to obtain a, 
p E .tf(B) such that 

h=aj+p 

and p = 0 if and only if h is a multiple of f 
I j(z) - j(O d °d 01 0 In order to do so we et g(z,O = ,an conSl er two aUXl tary z-' 
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functions q(O = ,,/--1' p;,(z, 0 = If(012(,\-11(Og(z, 0. We have 

y z'_1(1 2 z'-1 
(z-l,)q(O= 1(12_1 and 1+(z-Oq(0=1(12_1' 

Moreover, 

and 

For a positive integer N, arbitrary for the moment, we let 

<D(z,O = (1 + (z - Oq«(WN(1 + (z - OP;.(z,O) 

= C;~2 ~ /r(lf(OI2('\-l~r(Of(z)+ (1 -If(OI2,\)). 

We fix a point z E B and apply Lemma 3.8.14 to the functions h and <D. We 
have 

since <D vanishes on aB. For Re A sufficiently large, we can easily compute 

_~J9 a~ (z, 0 = h(O [~(1~12 - It-1 (If(012(k-'11(Of(z) + (1 - If(OI2).)) 
( - z a( (z( - 1)N+l 

+ ), (lfl2::::: 1)Nlf(012P.-11'(Og(z, OJ. 
z( - 1 

Therefore, for Re A sufficiently large, we have 

h(z) = N.[f h(0(I(t:::::-.!)~~lf(012(l-11(Od' 1\ d(Jf(Z) 
2m B (z( - Ittl 

+ N. f h(O (1(12 
- It-1 (1 - If(OIH)d, 1\ d( 

2m B (z( - It+l 

+ ~; f h«() (lff:::::I)Ng(Z' 0 If(012(A-l)l'Ct) d( 1\ d(. 
2m B z( - 1 

We know that A I---> IfI 2(;'-0j' has an analytic continuation as a merom orphic 
function with values in f0'(B(O, 1 + e)) for some e > O. Furthermore, to obtain 
this analytic continuation for the half-plane c < Re )., we only need to do a 
finite number of integrations by parts. Therefore this distribution will act on 
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functions which are only required to have L continuous derivatives (L depends 

) Ch . N ffi· I I· h f . (1'12 - l)N on c. oosmg a su ICIent y arge mteger, t e unctIon y , ex-
z~ - 1 

tended as zero for' in Be, will be of class CL in a neighborhood of B, and will 
have support in B. Therefore we can let A -> 0 in the third integral and obtain 

. / (1) y. (ICl Z -l)N\ 
/1(z) := \ Res nl ,h(\'Jg(z, O~r-=-i ). 

This function /1 E Yf(B) and, furthermore, if h is a multiple of f, then auto
matically /1 == o. 

The second integral in the representation of h tends to zero as A -> 0 since 
(1 - If(OIH) -> 0 almost everywhere in B. 

Finally, when ), -> 0 the distributions 1/1 2 (" .. 1)1 = Ifr' tend to pv G) in 

.@'(B(O,1 + e)), acting on functions with only finitely many continuous deriva
tives by the same argument of analytic continuation. Letting N be sufficiently 
large for all these conditions to be satisfied, we can define 

a(z):= N / pv (L) h(O (IC~2 ~1!~:) 
\nf' . (z' - l)N+l 

which is also in .1f(B). We have therefore 

h = ry,f + /1, 

with the properties we claimed. 
A coronary of this decomposition is the following interesting result. Let 0 

be a connected open set and f, h E Yf(O), then h E J.1f(O) if and only if the 

distribution h Res G) is identically zero in .@'(O). 

Another corollary of the explicit formula for a is that when h = gf then 

h pv (~/) = g and the decomposition of h becomes 

g(z) = 2~i t g(O (:~r ~ l~~+~l d( 1\ d,. 

N (IC1 2 - It-1 

This kernel, -2 . ~---NT plays a crucial role in the work of P. Charpentier 
m (z' - 1) f 

to obtain minimal solutions of the equation au = 1 in the ball and the polydisk 
in en. It is the kernel of the orthogonal projection of the Hilbert space 

( . £I\~) . L 2 B, (1 - ICI2 )N-l 2i onto the closed subspace of holomorplllc func-

tions (see [Ch]). 
Finally, note that the formula for the remainder term /1 depends only on 

the values of h near the zeros of f. 
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EXERCISES 3.8 
1. Let x+ := max {O, x}, then xi is well defined for any J. E C (0· = 0). Moreover, when 

Re Ie > - I the function x f-> xi is locally integrable in Hi. It defines a distribution 
which we still denote xi, by 

<x~,cp):= foo xicp(x)dx = foo x!'(p(x)dx, 
-00 0 

(cp E .01(IR/». 

(a) Show that for any cp E .01(IR/), the function 

Af-> <x!,cp) 

is a holomorphic function in the half-plane {A E C : Re). > -I}. 
(b) Show that, for Re). > -1, 

<x!,cp) = x).[cp(x) - cp(O)]dx + -. - + x·cp(x)dx. f 1 cp(o) fro 
o A + 1 1 

Explain why the third term is an entire function of J. and the first one defines 
a holomorphic function for ReA > - 2. Note that Res(xi, J. = -1) = 0, with 
the obvious meaning for the notation. 

(c) Show that A f-> x~ has an analytic continuation to a merom orphic function in 
the whole plane such that 

XA 
f lo Af-> + 

+ . l(A + 1) 

is an entire function with values in .01'(IR/). Find its values for A = -I, - 2, .... 
Show that 

(d) Defining x = max{ -x,O}, repeat the procedure to study Af->X).. 
(e) Define z)' in C\ IR1 by using the principal branch of the argument, -IT < Arg z < IT. 

Show that for Re A > -1, we have the identities 

(x + iO»)' = b+(ZA) = x! + ei.lnx~ 

(x - iO»). = b_(z·) = xi + e-ihx~. 

These identities allow us to obtain the analytic continuations of (x ± iOl as 
(possibly) meromorphic functions in C with values in .01'(IR/). Show they are entire 
functions. 

2. Let f E %(Q), f '# 0. Show that f Res (~) = ° as a distribution. 

3. prove/pv(_l),:zm~:CP)=(_l)mm!/pv( __ l ),cp). 
\ rrzm ozm \ nzm 

4. ShowthatforkEf\,J'Res(llzI2(~-1),J.l= -k)=1 c)Zko_. 
IT (k !)2 c)Zkc):zk 

5. Let 9 E %(B(O, r», g(z) =I- 0 in B(O, r), and let f(z) = zmg(z). Use the analytic con
tinuation formula for IZIA to obtain the result from Proposition 3.8.12. (Hint: write 
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<lfI 2(/.-It, lp> = <lzmI2(P-I),t IgI2(r' )lp > = <lzI2(A-'),t IgI2(H)/mlp), where 
A = 1 + m(/1 - 1). Hence /1 = 0 corresponds to A = -m + 1. Use that the function 
A H IgIZ(A-,)/m, is holomorphic in £&'(B(O, r)) and the Exercise 3.8.4 to complete the 
proof.) 

6. In the case of two polynomials PI' Pz without common zeros, this exercise provides 
a very easy proof of Proposition 3.8.15. 
(a) Let R > 0 be so large that Z(Pd ~ B(O, R). Show that for Z E B(O, R) one has 

~ I (PI(z))m r 1 +1 PI (0 - PI(z) dC = 1. 
2ni m~O J"I~R (PI(Ot C - z 

( Hint: Write 1 = _1 r PI(O - Pdz) ~.) 
2ni J"I~R PI(O - PI(z) C - z 

(b) Show that if deg PI ~ 1, then 

_1 r 1 PI (0 - Pdz) dC = 0 

2ni J "I~R (PI (O)m+1 C - z 

for all m ~ 1 and z E B(O, R). Conclude that for every z E B(O, R) 

/ Res (_1_), PI (C) - PI (Z)) = 1. 
\ nPI(O C-z 

( It is understood the distribution Res (_1_) acts on the variable C.) 
nPI (C) 

(c) Using that Z(Pd n Z(Pz) = 0, show that (b) becomes 

o 
and use properties of the 

determinant to conclude 

+ PdOg(C,z), 

9 holomorphic in (. 
(e) With the help of Exercise 3.8.2, conclude that for z E B(O, R), 

PI (z) - PI (0 Pz(z) - Pz(C) 

1 = Res(_I_),_I_ C - z C - z 
nPI (C) Pz(O 

PI(z) Pz(z) 

Since R is arbitrary this identity holds for all z E C. 

7. Let Coo{lR) denote the space of continuous function in IR such that lim f{x) = O. 
Ixl~oo 

It is a Banach space with the norm Ilfll := max If(x)l. Any continuous linear 
XER 
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functional in Coo(lR) is given by integration against a Radon measure dfl such that t dlfll < 00 (see [HS] or [Ru]). 

(a) Show that if qJ E ~(IR) and f E Coo(IR), then qJ * f E Coo(lR) and is a COO function. 
Prove also that ~(IR) is dense in Coo(IR). 

*(b) Let (Zk)k2:1 be a sequence of complex numbers with 1m Zk > 0 and Zk -+ Zo for 
some zo, with 1m Zo > o. Prove that the family of linear combinations of the 

functions _1_, ~ is dense in Coo(IR). 
x - Zk X - Zk 

Notes to Chapter 3 

1. The treatment of Runge's theorem, its relation to the Mittag-Leffier theorems, and 
the solvability of the inhomogeneous Cauchy-Riemann equation follow basically 
[Ho 1], where presented as an introduction to the theory of several complex variables. 
The fact that solvablity results and approximation results are related extends to all 
linear partial differential operators and convolution operators; we refer the reader to 
Volume 2 of the treatise [H02]. 

2. As we mentioned in §3.7, approximation problems can be considered in many 
different lights. We refer to three excellent introductions to the subject, [Zal], [Ga], 
and [Ful], for a rather complete treatment of Runge's and Mergelyan's theorems and 
their generalizations, as well as to some of the literature on uniform algebras (see also 
[Gam] and [Wer]). The proof of Theorem 3.7.1 is essentially from [MerJ. The role of 
analytic capacity, Proposition 2.7.9, is very crucial. There are many questions open 
about this capacity and we refer to [Vi] for details. 

3. The proof of Weierstrass' theorem given in the text follows [BTl The proofs in 
the exercises are classical and can be found in [Ahl] and [Marl We will return to 
these Weierstrass expansions in Chapter 4. 

4. Mittag-Leffier Theorem 3.2.2 is clearly a theorem about vanishing of cohomology. 
In this form it generalizes to several complex variables. 

5. We gave two proofs to the interpolation theorem, namely, §3.4.1 and §3.6.9, 
because they introduce ideas that are central to the relations between complex analysis 
and harmonic analysis to be explored in the second volume. 

6. The theory of ideals in £'(0) follows the work of Helmer and Henriksen. The 
reader will find a similar treatment in [LR], where a functional analysis approach to 
complex analysis is also emphasized. 

7. The "jump formulas" of Exercise 3.6.9 were first found by Sokhotski in 1873. 
They appear naturally in many problems of integral and differential equations [GakJ. 
These formulas lead naturally to consideration of more general boundary values of 
holomorphic functions, in particular in the sense of distributions. Heaviside and others, 
in the first decades of this century, were led to consider these "generalized functions" 
while developing systematic methods, known as "operational calculus," to solve partial 
differential equations. We recommend [Bre] and the first volume of the treatise [G-S] 
for a modern introduction to the systematic use of boundary values of holomorphic 
functions in the theory of distributions. In the rather recent past, M. Sato recognized 
the usefulness of assigning a boundary value to every holomorphic function in C \ R 
This leads to the theory of hyperfunctions and the very powerful algebraic analysis 
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methods of Sato and his school. The proof of the Edge-of-the-Wedge Theorem 3.6.23 
follows Martineau [Mart], who also recognized the link between this theorem and the 
theory of hyper functions. We will discuss hyperfunctions in the second volume. There 
are many new books on this emerging subject, none very elementary. Perhaps the best 
introduction is [KKK]. 

8. Given a Jordan domain n, clearly the function f(z) = z is far from being ap
proximated uniformly in Q by polynomials. Nevertheless, the distance d(z,C[z]l 
(C [z] = space of all polynomials) in the metric of'ti(Q) appears already in the work of 
Ahlfors-Beurling. It is very curious that this quantity can be related to the isoperimetric 
inequality, as discovered by D. Khavinson [GK]. 

9. This chapter has clearly shown the important role of the inhomogeneous Cauchy
Riemann equation in complex analysis. There is a cognate equation that plays a 
fundamental role in the study of quasiconformal maps and Teichmliller theory. It is 

af af 
the Beltrami equation ~~ = 11-, where 11 = L 00. We refer the reader to [Ah3] for 

oz OZ 
an introduction to this subject. 



CHAPTER 4 

Harmonic and Subharmonic Functions 

§1. Introduction 

A large number of properties of holomorphic functions (maximum principle, 
Schwarz's lemma, convexity properties, etc.) still hold for a much larger class 
offunctions. It is the class ofsubharmonic functions (see Definition 4.4.1). The 
relation between these two classes of functions is given by the fact that if! is 
a holomorphic function, then 10gl!1 is a subharmonic function. 

If ! is a holomorphic function without zeros, then V = 10gl!1 is a COO 
function, which verifies the Laplace equation 

L\V = 0, 

where L\ is the second-order differential operator, Laplace operator, given by 

02 02 02 

L\ = ~X2 + ~y2 = 4--. 
u u ozoz 

One says that V is a harmonic function. 
On the other hand, in a neighborhood of a zero Zo of order k of J, the 

function V = 10gl!1 behaves like kloglz - zol, hence it tends to -00 as z 
approaches zoo Its Laplacian in the sense of distributions exists since V is 
locally integrable. Moreover, as will be seen later, in a neighborhood of Zo 
we have 

L\ V = 2nkfJzo ' 

The properties of these functions, the subharmonic and harmonic functions, 
are essentially properties of their average values over circles and disks. In order 
to simplify the hypotheses necessary to compute these averages we are obliged 
first to extend the notion of integration to the case of measurable functions, 
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bounded above and with values in [ -00,00[. We refer to the excellent books 
[Ru] and [HS] for the elements of the classical theory of integration. 

§2. A Remark on the Theory of Integration 

4.2.1. Proposition. Let (X, ff, Ji.) be a complete measure space with a positive 
finite measure Ji. (Ji.(X) < 00). Let f : X -+ [ - 00, 00 [ be a measurable function 
defined a.e. on X and bounded above a.e. For every ME IR, which is an upper 
bound off a.e., the value [(M) E [ - 00, oo[ given by 

[(M) = MJi.(X) - Ix (M - f)dJi. 

is well defined and independent of the upper bound (majorant) M. 

PROOF. (i) If [(Mo) E IR for some Mo upper bound of f a.e. and if M is 

another a.e. upper bound, then MoJi.(X) E IR and 0:::;; Ix (Mo - f)dJi. < 00. 

Hence, from M - f = M - Mo + Mo - f, one concludes that [(M) E IR also. 
Furthermore 

[(M) - [(Mo) = (M - Mo)Ji.(X) - Ix (M - f)dJi. + Ix (Mo - f)dJi., 

but Ix (M - f)dJi. = (M - Mo)Ji.(X) + Ix (Mo - f)dJi., hence [(M) = [(Mo)· 

(ii) This argument also shows that if [(Mo) = -00 for some a.e. upper 
bound Mo of f, then it must be the case that [(M) = -00 for every other 
majorant. D 

We define the generalized integral of f over X as 

Ixf dJi.:= [(M), 

for an arbitrary majorant M of f. This value coincides with the usual one if f 
is Ji.-integrable. It also preserves the properties of linearity and monotonicity 
of the usual definition. 

4.2.2. Examples. (1) Let X be a compact metric space and Ji. a positive Radon 
measure on X. We can now integrate, in the generalized sense, any upper 
semi continuous function in X with values in [-00,00[, which is not iden
tically equal to - 00 (we will abbreviate this to u.s.c.). This is precisely the case 
of interest in what follows. 

(2) fl ( -:2)dX = -00. 
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4.2.3. Proposition. Let X be a compact metric space and JI. a positive Radon 
measure on X. For every upper semicontinuous function f on X taking values 
in [-00, oo[ we have 

Ixf dJi. = inf {Ix qJ dJl.: qJ ~ f, qJ continuous}. 

PROOF. We need first the following. 

4.2.4. Lemma. Let X be a compact metric space and f u.s.c. on X. There exists 
a decreasing sequence of real valued continuous functions on X whose pointwise 
limit is f 

PROOF. Let d be a distance function on X. Consider the sequence of functions 

J,,(z) := sup (f(') - nd(z, m, ZEX. 
'EX 

It is easy to see that fl ~ f2 ~ ... ~ J" ~ ... ~ f and the fn are real valued. (It 
is here where one uses that f does not take the value + 00 and, hence, 
sup f(') < 00 by the upper semicontinuity.) To show that for every z, , 
lim fn(z) = f(z), it is enough to show that for a given e > 0 there is an n large 
n-co 

enough such that for all , E X, 

f(O - nd(z, ') ::; f(z) + e. 

If f(z) > - 00, there is a () > 0 such that d(z, 0 < () implies that f(O ::;f(z) + e 
by the semicontinuity. Therefore, we also have f(O - nd(z, 0 ::; f(z) + e if 
n ~ 1. On the other hand, if d(z, ') ~ () then 

f(O - nd(z, ') ::; (sup f(W») - n{). 
WEX 

It is clear that there is an nz ~ 1 such that the right-hand side is less than 
f(z) + e. Therefore we have 

f(') - nd(z, 0 ::; f(z) + e, 

in X\B(z, (». In other words, 

f(z) ::; fn(z) ::; f(z) + e 

which shows that J,,(z) ':. f(z) when f(z) #- - 00. 

If f(z) = - 00, for any A E IR, there is () > 0 such that d(z, ') < () implies 
that f(O - nd(z, 0 < A for every n ~ 1. If d(z, 0 ~ (), then we have 

f(O - nd(z, 0 ::; (sup f(W») - n{) < A once 
WEX 

n ~ nA =(1 + sup f(w) - A) {)-1. 
WEX 
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Hence n ~ nA implies 

I(z) = - 00 < I.(z) ~ A. 

Finally, the continuity of the In can be seen using the inequality 

I(/«() - nd(z, m - (f«() - nd(z', ml ~ nd(z, z'), 

which implies 

f(O - nd(z, 0 ~ f(O - nd(z',O + nd(z, z'), 

and, passing to the upper bounds, 

In(z) ~ In(z') + nd(z, z'). 

Interchanging the role of z and z' we obtain 

I/n(z) - In(z')1 ~ nd(z,z'). 

This concludes the proof of the lemma. o 
PROOF of 4.2.3. We have first 

inf {Ix cp dJ1. : cp ~ I, cp continuous} ~ Ix I dJ1.. 

This can be seen easily considering separately the cases Ix I dJ1. = - 00 and 

Ix I dJ1. finite. 

Conversely, let (f.)n;;d be a decreasing sequence of continuous functions 
coverging pointwise to f Let M be a strict majorant of f The compactness 
of X implies there is a positive integer no such that if n ~ no then I. < M. We 
can therefore write 

Ix l.dJ1. = MJ1.(X) - Ix (M - In)dJ1. 

IxldJ1. = MJ1.(X) - Ix (M - f)dJ1.. 

The Beppo Levi theorem ensures now that the sequence Ix (M - In)dJ1. con

verges in a monotonously increasing way to Ix (M - f)dJ1.. Therefore, the 

sequence L f. dJ1. converges decreasingly to Ix I dJ1.. 0 

4.2.5. Remark. Proposition 4.2.3. shows that the generalized integral we have 
defined coincides with the Daniell integral for u.s.c. functions (cf. [HS]). 
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4.2.6. Proposition (Dini-Cartan). Let X be a compact metric space, p. a positive 
Radon measure on X, and (Die I be a cofinal decreasing family of u.s.c. func
tions on X. Then 

~nf f J; dp. = f (~nf J;) dp. . 
• eI X X .eI 

PROOF. Recall that the hypotheses that the family (J;)iel is decreasing and 
cofinal means that for i, j E I there is k E I such that 

and 

everywhere in X. 
First, consider the case infJ; == O. We claim that given e > 0 there is io E I 

I 

such that J;o < e. In fact, for every Z E X there is i: such that J;'<z) < e. By the 
upper semicontinuity there is bz > 0 such that, if d(" z) < b:, then we still have 
J; (0 < e. The compactness of X allows us to find i 1 , ... , ill E I such that 
i~f(k, ... , J;J < e everywhere. Since the family is cofinal, there is an io E I such 
thatJ;o < e as claimed. 

Hence, Ix J;odp.::::;; ep.(X) and therefore, i~f Ix J;dp.::::;; 0 = Ix (i~fJ; )dP. in 

this particular case. 

If f = inf J; ¥= 0, and if A. E IR is such that f f dp. < A., then by Proposition 
iel X 

4.2.3 there is a continuous function qJ ~ f such that 

Ix f dp.::::;; Ix qJ dp. < A.. 

Let gj = sup(J; - qJ,O). The family (gj)j E I is now a decreasing, cofinal family 

of u.s.c. functions such that inf gj = O. Therefore, inff gj dp. ::::;; O. This implies 
I I x 

that inf f (J; - qJ) dp. ::::;; 0, and hence 
I x 

inff J;dp.::::;; f qJdJl. < A.. 
I X X 

A posteriori, 

i~f Ix J; dJl.::::;; Ix f dJl. = f (i~f J; ) dJl.. 

Since the reverse inequality is evident, the proposition holds. o 
4.2.7. Proposition (Fubini-Tonelli). Let (X, ff, JI.) and (Y,Y, v) be two measure 
spaces with JI., v bounded positive Radon measures and JI. x v the product mea-
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sure. Let f: X x Y -+ [ - 00, oo[ be an everywhere-defined measurable function 
for the product tribe :T x 9", and let f be bounded above everywhere. Then 

(1) For every y E Y the function x~ f(x,y) is :T-measurable and for every 
x E X the function x ~ f(x, y) is 9" -measurable. 

(2) The function y~ L f(x,y)dll(x) takes values in [-00, oo[ and is bounded 

above and 9" -measurable. The function x ~ L f(x, y) dv(y) takes values in 

[ - 00, 00 [, is bounded, and is :T -measurable. 

(3) LXyfd(1l x v)= L[tfdV]dll= t[Lfdll]dV. 

PROOF. Apply the usual theorem of Fubini-Tonelli to the function M - f for 
a majorant M of f. 0 

4.2.8. Remark. In the case of compact subsets of IR", the usual theorem 
of change of variables is always valid for the integral we have just defined 
when the compacts are related by a Cl-difTeomorphism defined in their 
neighborhood. 

§3. Harmonic Functions 

4.3.1. Definitions. Let Q be a nonempty open subset of IC. 
(1) Letf E Lloc(Q) (resp.f: Q -+ [ -00, oo[ measurable and bounded above 

on every compact subset of Q). For every closed disk B(z, r) £; Q, we call area 
average of f over B(z, r), and denote it A (f, z, r), the complex number (resp. 
the element of [-00, oo[) given by 

A(f,z,r) = ~ f f dm, 
nr B(z,r) 

where dm represents the Lebesgue measure in C, as usual. 
(2) Let f : Q -+ C, Z E Q, r > 0 be such that B(z, r) £; Q and 

fI8B(z,r) E L 1(8B(z,r),du), 

where du = r dO is the Lebesgue measure on 8B(z, r) (resp. f: Q -+ [ - 00, 00 [, 

measurable and bounded above on every compact subset of Q). We denote 
A(f, z, r) the circular average of f over 8B(z, r), i.e. the complex number (resp. 
the element in [ -00, oo[) given by 

A(f, z, r) = -21 f f du. 
nr iJB(z,r) 
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4.3.2. Remarks 

(1) If f E L~c(Q), zl-+A(f,z,r) is continuous in Qr:= {z E Q: d(z,Q<) > r} 
(r > 0 fixed). For z E Q, the function rl-+ A(f, z, r) is continuous in 
]0, d(z, QC)[. 

(2) Integrating in polar coordinates one finds the relation 

2 fr A(f,z,r) = 2" A(f,z,p)pdp, 
r 0 

since, in the case f E L(~c(Q), the function 91-+ f(z + peiO ) belongs to 
U(oB(z,p),d9) for almost every p E [O,r]. 

4.3.3. Proposition. Let Q be a nonempty open subset of C. The following 
statements are equivalent for any f: Q -+ C. 

(1) f E 8(Q) and N = O. 
(2) f E 80(Q) and f(z) = A(f, z, r) for every ii(z, r) £; Q. 
(3) f E &o(Q) and f(z) = A(f, z, r) for every ii(z, r) £; Q. 
(4) f E L~c(Q) and f(z) = A(f, z, r) for every ii(z, r) £; Q. 

(5) f E L(loc(Q) and f(z) = (f HPrHz) in Qr = {z E Q : d(z, QC) > r} if r > 0 is 
sufficiently small and qJ is a standard function. 

In the case that f satisfies any of these properties, we say that it is a harmonic 
Junction in Q. 

PROOF. The plan of the proof is: 

(1) - (2) - (3) - (2) - (5) - (3); (3)<:>(4); and (2) - (1); 

although it is clear that some of the arrows are redundant. 

(a) (1)-(2). We have A(f,z,r) = 2~ t2
" f(z + re iO )d9. Since f is C'o, it 

follows from this formula that r 1-+ A(f, z, r) is differentiable in [0, d(z, QC)[ and 

d 1 f2" a . 
dr l(f, z, r) = 2n 0 orf(z + re'O) d9. 

Now 

a ·0 of ·0 of ·0 of ·0 
- f(z + re' ) = -(z + re' )cos9 + -(z + re' )sin9 = -(z + re' ). 
or ax oy an 

Recall that Green's formula states that 

f- N«() d~ d" = r f 2" 0: (z + re iO ) d9 
B(z.r) 0 un 

Altogether this gives 
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d 1 f -d J..(f, z, r) = -2 Af(O d~ d1J. 
r nr B(z,r) 

d 
Since Af = 0 we get dr J..(f, z, r) = O. Therefore J..(f, z, r) is constant in 

[0, d(z, QC)[ and the value J..(f, z, 0) = lim J..(f, z, r) = f(z), allows us to conclude 
r->O 

that 

J..(f, z, r) = f(z) for r E [0, d(z, QC)[. 

2 ir (b) (2) => (3). It follows from A(f, z, r) = 2" J..(f, z, p)p dp. 
r 0 

(c) (3) => (2). If f(z) = A(f, z, r) for every r E [0, d(z, QC)[, we have 

r2f(z) = r2A(f,z,r) = 2 t J..(f,z,p)pdp. 

Since f is continuous, p ~ J..(f, z, p) is also continuous, and we can differentiate 
the last identity with respect to r obtaining 

2rf(z) = 2J..(f, z, r)r. 

That is, f(z) = J..(f, z, r) for r > 0, and for r = 0 by continuity. 
(d) (3)<:>(4). This follows from the fact that z~A(f,z,r) is continuous in 

Q r if f E LloC<Q)· 

(e) (2) => (5). We have (f * q>r)(z) = r f(z + Oq>r( - 0 d( d1J (where we J KI,;, 
write ( = e + i1J). Hence 

(f*q>r)(z) = t q>r(P) (L21t f(z + pe i6 )dO)PdP 

= 2n t q>r(p)J..(f,z,p)pdp 

= f(Z{ 2n t q>r(P)P dPJ = f(z{L q>.«() de d1J ] 

= f(z). 

(f) (5) => (3). Let (q>n)n>2 be a sequence of standard functions, uniformly 
bounded, all of them with support in .8(0,1), and depending only on Izl. 

Assume, moreover, they converge pointwise to ~ XB(O, 1)' To construct the q>n, 

choose rxn E .@(.8(0, 1», radially symmetric, equal to ~ in a neighborhood of 
n 

-( 1) 1 B 0, 1 - It ,0 ~ rxn ~ n' It follows that 
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(1-~y ~an:= Lrxn(Od~d"~l. 

Set CfJn = rxn/an· We have L CfJn dm = 1, 0 ~ CfJn ~ n(1 ~ 1/n)2 < 4/n, and 

lim CfJn(z) = ! XiM,I) 
n ...... oo 1t 

for every Z E C. We can conclude that lim CfJn r = --.;. XB(O r)' 
n .... oo ' nr ' 
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If (5) holds, then J(z) = (f * CfJn,r)(z), which shows that J is a COO function. 
Hence 

J(z) = lim (f * CfJn,r)(z) = lim r J(z + OCfJn,r(O d~ d" 
n .... oo n .... oo JI"~r 

= --.;. r J(z + C) d~ d" = A (f, z, r). 
nr J"19 

Note we have only proved (3) for r sufficiently small. The next step will show 
that this is enough to show (1) and hence the implication will be valid for every 
disk B(z, r) ~ Q. 

(g) (2) => (1). Since (2) => (5) has already been proved, and the proof of 
(5) => (3) shows that J E Coo, now J = J * CfJr shows D"f = D"f * CfJr for every 
rx E N 2• It follows again from (f) that D"f = A(D"f, z, r) for r sufficiently small. 
Therefore, taking rx = (2,0) and (0,2) we obtain llJ(z) = A(llJ, z, r). On the 
other hand, we have already shown in (a) that the first identity here holds, 

d 1 i r2 r2 
-d ).,(J,z,r) = -2 _ !J.fd~d" = -2 A(!J.f, z, r) = -2 !J.f(z). 

r n B(z,r) 

Since ).,(J, z, r) = J(z), it follows that !J.f(z) = o. o 

4.3.4. Examples. (1) Let Q be an open subset of C, J E .Jt"(Q). Then J, Re J, and 
ImJ and harmonic functions. 

(2) If Q is a simply connected open set in C, every real-valued harmonic 
function in Q is the real part of a holomorphic function in Q. 

I ~ 'f' h . f . 02U 0 h' h h h ou. n lact, 1 U IS a armomc unctIOn, OZOZ = ,w lC sows t at OZ IS a 

holomorphic function in Q. The differential form w := 2 ~: dz is closed since 

dw = a(2~:dz) = 2 :;;zdZ A dz = O. 

There is h E 8(Q) such that w = dh. We have, therefore, 

oh = 20U 
OZ OZ 

and oh =0 oz . 
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Hence h is a holomorphic function. Furthermore, since u is real valued we have 

and 

- OU 
dh = 2-dz oz 

d -- = -dz + -dz = duo ( h + 11) ou ou 
2 oz oz 

It follows that for some real constant k we have u = Re h + k. Letting 
f = h + k we have obtained a holomorphic function in n such that u = Re f 
The function f is uniquely determined up to the addition of a purely imaginary 
constant. 

A function v such that u = Re f and v = 1m f for the same holomorphic 
function f is called a harmonic conjugate of u. This concept is invariant under 
holomorphic transformations. 

We are now going to introduce Poisson's representation formula for har
monic functions. If h is a function holomorphic in a neighborhood ofthe unit 
disk B(O, 1) (or holomorphic in B(O, 1) and continuous in B(O, 1», we have for 
Izl < 1, 

h(z) = _1 r h(O d( = r (h(O !!L 
2ni J 1~1=1 ( - z J 1~1=1 ( - z 2ni( 

and 

O=~ r ~d(= r zh«(~ d~ , 
2m J 1~1=1 ( - lIZ J KI=l z - ( 2m( 

since (' = 1. By subtraction it follows that 

i [ ( z ] d( 
h(z) = h(O -I' - + r - 2 .1'. 

KI=l ." - Z ." - Z m." 

d( . dO . 1 - Izl2 d( . 
Note that the measure 2 .1' IS actually -2 for ( = e,(J, hence 2 2 .1' IS a 

n~ n I(-zl n~ 
positive measure on 1(1 = 1. Conjugating the previous identity we obtain 

lI(z) = r II«() 1 - Izl: d~ . 
JKI=l I(-zl 2m( 

Therefore the real-valued harmonic function u = h ; 11 = Re h verifies also 

i 1 - Izl2 d( I" .(J 1 - Izl2 dO 
u(z) = u(O I( 12 2 .1' = u(e' ) 1 i9 12 -2 

1~1=1 - z 1tl." -" e - z n 

= I" u(ei(J) 1 - r2 dO 
-" 1 - 2rcos(cx - 0) + r2 2n 
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If B(O, 1) is replaced by B(zo,r), we obtain for Z E B(zo,r), by a simple change 
of variables, 

1 fit r2 - Iz - ZOl2 ·6 
u(z) = -2 I i6 12 u(zo + re' )dO 

7t -It Zo + re - Z 

1 flt r2 - p2 . 
= - u(zo + re,6) dO 

2n -It r2 - 2prcos(ex - 0) + p2 

Since we have already shown that every real-valued harmonic function in 
a simply connected open set is the real part of a holomorphic function, we see 
that setting 

1 - r2 
p (ex) - ----_______ 

r - 1 _ 2rcosex + r2' 

we have the Poisson integral representation 

·6 1 f" ·6 u(re' ) = -2 P,(ex - O)u(e' ) dO 
7t -It 

for every real-valued harmonic function u in B(O, 1) that is continuous in 
B(O, 1). (Note that, strictly speaking, we do not know a priori that a holo
morphic function h in B(O, 1) such that Re h = u is also continuous in B(O, 1); 
a little limiting argument is necessary to bypass this point, we leave it as an 
exercise to the reader). This representation is a convolution on the group 
T = {w E C : Iwl = I}. By linearity, it is also valid for complex-valued har
monic functions. 

Moreover, if u is harmonic in B(O, 1), continuous in B(O, 1), and real valued, 
we can use the relation 

1'12 - IzI2 = Re ( + Z 

I( - ZI2 (- Z 

to obtain a representation of the unique holomorphic function h in B(O,I) 
with 1m h(O) = ° such that Re h = u. Namely, 

h(z) = ~ r ( + Z u«() d( , Z E B(O, 1). 
2m J"I=1 ( - Z ( 

1 i d( We have h(O) = -2 . u(o- = u(O) E IR. 
m 1{1=1 ( 

The positive function P,(I1) is called the Poisson kernel of the unit disk. The 
function 

Z = re i6 t-+P,(I1) 

is harmonic in the unit disk, hence it is COO in 11 for every fixed r, ° :5; r < 1. 

1 flt The integral-2 P,(IX) dlX = 1, as can be seen when representing the function 
7t _It 

U == 1. Furthermore, 
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(i) Pr(IX) = Pr( -IX), 
(ii) lim Pr(IX) = 0 uniformly in b ~ IIXI ~ n, for each fixed b E JO, n[, and 

r)'l 

(iii) Pr(IX) = L rlnleina. 
nE Z 

The Poisson representation of harmonic functions implies that if u is 
harmonic in B(O, 1) and continuous up to the boundary of the unit disk, then 
its values in B(O, 1) are completely determined by its values on 8B(0, 1). One 
could naturally ask which continuous functions on B(O, 1) can be obtained as 
restrictions to 8B(0, 1) of functions continuous in B(O, 1) and harmonic in the 
interior. This questions is known as the Dirichlet problem: 

Given a continuous function f on 8B(0, 1) find a continuous function u in 
B(O, 1) such that 

{Au = 0 in B(O, 1) 

Ul oB(O.l) = f 
We will solve this problem with the help of the Poisson representation 

formula. Later we will consider the same problem in arbitrary open subsets 
n ofC. 

4.3.5. Definition. Let f be an integrable function on B(O,I) (resp. 
f: 8B(0, 1) -+ [ - 00, oo[ measurable and bounded above). The Poisson integral 
of f is the function P(f) defined in B(O, 1) by 

1 ftt P(f)(z) = 2n -tt Pr(1X - O)f(e i8 ) dO, 

for z = re ia , 0 ~ r < 1. 
More generally, replacing B(O, 1) by B(zo, r), we call the Poisson integral of 

f over 8B(zo, r) the function defined in B(zo, r) by 

1 f" r2 - Iz - ZOl2 i8 
P(f)(z) = -2 I i8 12f(ZO + re )dO. 

n _" Zo + re - z 

Observe that the notation is a bit ambiguous and attention should be paid 
as to which disk one is working with. Modulo these considerations, we remark 
that 

P(f)(zo) = )..(f, Zo, r), 

where Zo is the center of the disk B(zo,r), and 

where 

P(f)(zo + pei(l) = L anplnleina, 
nE Z 

1 f" ·8·8 a = -- f(z + re' )e- In dO 
n 2nrn -It 0 , 

which coincides with the nth Fourier coefficient of f when Zo = 0, r = 1. 
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4.3.6. Proposition. Let f : oB(zo, r) --+ C be an integrable function. Then we have 

(1) P(f) is harmonic in B(zo, r) 
(2) Iff == Ao E C then P(f) == Ao. 
(3) Iff is continuous at a point Zl E oB(zo,r) then 

lim P(f)(z) = f(z 1) 
%-ZI 

zeB(zo,r) 

(4) Iff is a continuous function in B(zo, r), which is harmonic in B(zo, r) then 

f = P(floB(zo,r». 

PROOF. (1) This is proved either by differentiation under the integral sign or 
by considering the averages of P(f) over oB(z, p) for disks B(z, p) 5; B(zo, r) 
and using Fubini's theorem. In either case, one has to use the harmonicity of 

the function Zl-+r2 ~,IZ - :01 2 in B(zo,r) for a fixed, E oB(zo,r). We leave 
-zl 

the details to the reader. 
(2) By direct evaluation we see that 

P(Ao)(Zo + pei«) = [21n f2" pp/r (() - ex) dO }.o = Ao· 

(3) Using the previous result, P(f(zd) == f(Zl)' we have 

1 f2" r2 - Iz - zol2 . 
P(f)(z) = f(zd + -2 I i9 12 (f(zo + re,9) - f(zd) dO. 

n Zo + re - z 

Let Zl = Zo + re i91 . Then for every e> 0 there is 0 < (j < 2n such that if ,= Zo + re i9, 10 - 011 < (j then If(O - f(zdl < e. Therefore, we can split the 
integral into two parts, one over 10 - 011 < (j, the other over the comple
mentary arc. 

Recall that by property (ii) mentioned immediately after the definition of 
the Poisson kernel, limPr(ex) = 0 uniformly in ex, (j :s;; lexl :s;; n. Using this fact 

r?l 

and the Lebesgue-dominated convergence theorem, we see that the integral 
over the arc (j :s;; 10 - 011 :s;; n defines a function of z whose limit at z 1 exists 
and equals zero. On the other hand we have 

1
1 i r2 - Iz - zol2 '9 I 

-2 1 i9 12 (f(zo + re' ) - f(zd) dO 
n 19-9,1<6 Zo + re - z 

( .) 1 i2" r2 - Iz - Z 12 
:s;; max If(zo + re'9) - f(Zl)1 -2 1 i8 0 12 dO 

18-9t1<6 n 0 Zo + re - z 

= max If(zo + rei8 ) - f(zdl < e. 
19-8.1<6 

Finally, property (4) will follow from Corollary 4.3.8, applied to the function 
cP = f - P(f), which is harmonic in B(zo, r), continuous in B(zo, r), and zero 
on oB(zo, r) by (3). 0 
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4.3.7. Lemma (Maximum Principle for Harmonic Functions). Let n be an 
open connected subset of C, u : n -. IR a harmonic function. If u is bounded above 
and attains its least upper bound in n, then u is constant. 

PROOF. Let E := {Z En: u(z) = sup u(O = M < oo}. This set E is closed in n 
{E n 

and not empty by hypothesis. Let a E E and r > 0 such that B(a,r) s n. We 
have 

M = u(a) = A(u, a, r) = A(u(a), a, r). 

Hence A(u(a) - u, a, r) = O. Since u(a) - u ~ 0 and it is continuous, it follows 
that u(a) '= u in B(a, r). Therefore E is also open. It follows that E = n. 

D 

4.3.8. Corollary. Let n be a connected open subset of C and cp : n -. C a bounded 
harmonic function such that I cP I takes its least upper bound in n. The function 
cp is then a constant. 

PROOF. Let M = sup Icp«()1 and a E n such that cp(a) = Me ia for some real 
{ En 

number IX. Let g = e-iacp = u + iv. Then both u and v are real-valued harmonic 
functions, g(a) = u(a) = M. Clearly u ~ Igl ~ M. By the previous lemma, u is 
the constant function M. It also follows that v,=O since Igl=JM2+V2~M. 
This proves the corollary. 0 

4.3.9. Proposition (Harnack's Inequality). Let u be a nonnegative continuous 
function in B(zo, r) and u harmonic in B(zo, r). Then the following inequality 
holds for z E B(zo, r): 

r - Iz - zol r + Iz - zol 
I I u(zo) ~ u(z) ~ I I U(Zo)· 

r + z - Zo r - z - Zo 

PROOF. It is easy to see that 

r - Iz - zol r2 - Iz - zol r + Iz - zol 
--:-----c < '6 2 < . r + Iz - zol - Izo + re' - zi - r - Iz - zol 

From the Poisson representation and u ~ 0 it follows that 

1 f2lt r - Iz - zol . 
-2 I I u(zo + re (6 ) dB ~ P(u)(z) 

11: 0 r + z - Zo 

1 f21< r + Iz - zol ( i6)dB < - u Zo + re . 
- 211: 0 r - Iz - zol 

The desired inequality now follows from the identity 

u(zo) = P(u)(zo) = 2(u,zo,r) = ~ f21< u(zo + re i6 )dB. 
211: 0 

o 
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4.3.10. Corollary. A bounded harmonic function u in C is necessarily constant. 

PROOF. It is clearly sufficient to prove it for real-valued functions. By addition 
of a constant we can assume u ~ O. Therefore for any r such that 0::;; Izl < r 
we have 

r -Izl r + Izl 
-1-1 u(O) ::;; u(z) ::;; -1-1 u(O). r+ z r- z 

For z fixed let r ~ +00. It follows that u(z) = u(O). D 

4.3.11. Proposition (Harnack's Theorem). Let 0 be a connected open subset of 
C and {un}n:20 be an increasing sequence of (real-valued) harmonic functions in 
O. Either the sequence un(z) tends to + 00 for every z E 0 (and uniformly over 
any compact subset of 0) or the sequence converges uniformly over every 
compact subset of 0 to a harmonic function u. 

PROOF. Since the limit of un(z) exists (possibly + (0) for every z E 0, the function 
u can be defined by this limit as a map u : 0 ~ ] - 00, 00]. Let us assume that 
there is some Zo E 0 such that u(zo) < 00. Given 6 > 0 there is some n. such 
that if n ~ m > n. then 

un(zo) - um(zo) < 6. 

If B(zo,r) £ 0 and Iz - zol = p < r we have by one part of Harnack's 
inequality 

r+p 
0::;; un(z) - um(z) < /l--. 

r-p 

Therefore, by the maximum principle, the sequence {un}n:20 coverges uni
formly in B(zo, p), and u is defined and continuous in B(zo, p) and hence in 
B(zo, r). If, on the other hand, u(zo) = + 00, we can apply the other part of 
Harnack's inequality to un(z) - uo(z), see that u(z) == + 00 in B(zo, p), and that 
the convergence is uniform in this disk. It follows that the sets 0 1 and O2 

where u < 00 and u = 00, respectively, are both open subsets ofO. One of the 
two must be empty. In either case the argument shows that the convergence 
is locally uniform and hence uniform over compact sets. 

If O2 = 0, then for any B(zo, r) £ 0 we conclude that P(u) = u in B(zo, r) 
since P(un) = Un and the convergence is uniform on B(zo, r). Therefore u is 
harmonic. D 

4.3.12. Remark. If D is a Jordan domain, by Theorem 2.8.8 there is a homeo
morphism cp of jj to B(O, 1), such that cp is hoi om orphic in D. Then we can use 
the preceding considerations to solve the Dirichlet problem in D by reducing 
it to B(O, 1). If f is a continuous function on aD, the harmonic extension u of 
f to D is given by 

u(z) = P(f 0 cp-l)(cp(Z». 
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4.3.13. Examples. (1) D = B(zo, r), q>(z) = Z - zo. One obtains the Poisson 
r 

formula in B(zo, r) from the Poisson formula in B(O, 1). 
(z + 1)2 - i(z - W . 

(2) D = B(O, 1) (\ {1m z > O}, W = q>(z) = .( 1 2'( )2 IS a homeo-
z+) +lz-1 

morphism of jj onto jj(O, 1), holomorphic in D, as one verifies from the 

fact that q> is the composition of the following three maps, z 1-+ WI = 1 + z, 
1 - z 

2 W2 - i 
WI 1-+ W2 = WI' and W2 1-+ W = ~~.' 

W2 + I 

(3) If f is continuous on IR and bounded, then one finds in the same way 
a function u, harmonic in {1m z > O}, continuous in {1m z ~ a}, bounded and 
equal to f on IR, by taking 

z-i 
with q>(z) = --.' 

Z+l 

u = P(f 0 q> -1 ) 0 q> 

To conclude this section let us mention that under rather general condi
tions, a harmonic function in the unit disk has a Poisson representation 
u = P(f). For instance, the Riesz-Herglotz theorem states that if u is harmonic 
in B(O, 1), u ~ 0, then there is a nonnegative Radon measure dJ,L in oB(0,1) 
such that Izl < 1 

1 f 1 -lzl 2 

u(z) = 2n VB" _ Zl2 dJ,L(O, 

and f dJ,L = u(O). (See, e.g., [RuJ, [He2].) 
vB 

EXERCISES 4.3 
Here B = B(O, 1); n is a domain in Co 

1. Use the solution of the Dirichlet problem in B to show that every continuous 
2n-periodic function f in IR (i.e., f(x + 2n) = f(x)) can be uniformly approxi
mated by linear combinations of the trigonometric functions 1, sin x, cos x, sin 2x, 
cos 2x, ... (that is, by trigonometric polynomials). 

2. Use Exercise 4.3.1 to show that every continuous function on a closed interval 
[a,b] of the real line can be uniformly approximated on [a, b] by polynomials. 

3. Let f: n --> IR be such that both f and f2 are harmonic. Show that f is constant. 

4. Let f: n --> IR be a harmonic function such that fg is harmonic for every other 
harmonic function g in n. Prove that f is a constant. 

5. Introduce polar coordinates in B and show that 

Au = !~(rau) + ~ a2u 4 ar ar r2 ae2 ' 

with the usual identification x = r cos e, y = r sin e. 
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Using this formula, determine the radial harmonic functions in B\ {O}. Are there 
any nonconstant radial harmonic functions in B? 

6. LethbeharmonicintheannulusO ~ RI < Izl < R2 ~ oo,letf(r) = A(h,r,O).Show 
fer) = a log r + b for two constants a, b. 

7. Let f E .)()(U) be such that g(z) = zf(z) is harmonic. Show that f is a constant. 

8. In this exercise we want to show that the Fourier series of a 2n-periodic function 
of class C2 on IR converges uniformly to the function, just using the solvability of 
the Dirichlet problem in B. With a little bit more effort and using Exercise 4.3.1, 
one can obtain the usual theory of Fourier series in L 2([ -n, n], dx). 

(a) If f E C2(1R) and f is 2n-periodic, show that 1', f" are 2n-periodic. 

(b) Define an = ~"'fx f(x)e-inxdx, and show that 2: lanl < 00. 
2n -x n. Z 

(c) Recall from the text that 

(Pf)(re i8 ) = 2: anr lnl 
nE Z 

to show that 

2: a.e i ' x = f(x), 
nE Z 

and the convergence is uniform. 
*(d) Since the previous result only depends on the fact that L la,1 < 00, show 

,e Z 

that the uniform convergence still holds under the weaker hypotheses that 
f E CO(IR) be 2n-periodic and piecewise C I . (Hint: First show that if b. is the 

nth Fourier coefficient of 1', then b. = ina,. Second, show that L Ib.1 2 ~ 
riEL 

~ 1!'(xW dx.) 1 fn 
2n -n 

9. (a) Show that all the harmonic functions in an annulus RI < Izi < R 2 , which are 
of the form u(z) = v(r)w(O), v, w of class C 2, and w 2n-periodic, are solutions 
of a pair of ordinary differential equations 

{ 
r fr (r ~~) - AV = 0 

w" + AW = 0 

for A = n2, n E 1\1. Conclude that 

vCr) = ar' + br-' 

w(8) = AcosnO + BsinnO 

for some constants a, b, A, B. 
(b) Use this observation to look for solutions 

00 

u(re i6 ) = ao + L (an cos nO + b, sin nO)rn, 
n=l 

of the Dirichlet problem in B(O,I) with boundary values f(O) given by, 
respectively, 

(i) f(8) = cos2 0; 
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(ii) I(e) = sin3 0; 
(iii) 1(8) = sin4 0 + cos4 0. 

(c) The Dirichlet problem in the annulus 1 < Izl < 2 with the boundary data IdO) 
on Izl = 1 and 12(0) on Izl = 2, consists in finding a continuous function u in 
1 s: Izl s: 2, C2 in 1 < Izl < 2, such that 

{Au = 0 in 1 < I z I < 2 

u(ew) = 11 (e), u(2e i8 ) = 12(0). 

Use item (a) to solve this problem in the cases 
(i) 11(0) = a, .f~(8) = b, a, b E IR; and 

(ii) 11(0) = 1 + cos2 0,f2(e) = sinlO. 

10. Solve the problem 

{
Au = -xy 

ulaB = 0 

inB 

(Hint: use that the function v(z) = -xy(x2 + y2)j12 has the property Av = -xy, 
to reduce this problem to the Dirichlet problem in B.) 

11. This exercise gives two ways of showing that if h: B\ {O} ..... IR is a harmonic 
function, then 

h(re i8 ) = a log, + b + L (an cos 1If) + b, sin ne)r', 
n~ z· 

with the convergence being uniform in 0 < rl s: r s: r2 < 1, for any pair'l' '2' 
(a) First method: For r fixed, develop the function {} H h(re i6 ) in a Fourier series 

of the form 

h(re iO ) = Ao(r) + L (A.(r) cos ne + Bn(r) sin nO). 
n~l 

Show that Ao(r), A,(r) cos ne, and B.(r) sin lie are harmonic in B\ {O}. 
ah 

(b) Second method: Use the fact that-- E Jf'(B\ {O}) to obtain the desired az 
representation_ 

12. Let h: B\ {O} -> IR be a harmonic function such that h ~ 0 everywhere. Show that 
h(re i8 ) = a log r +- b + L (an cos lie + b. sin nO)r'. What can you say about a and 

n~l 

b? (Hint: Use h ~ 0 to show I}"(h(z) cos nO, 0, r)1 s: }"(h, 0, r).) 

13. Let us recall that a real analytic function I in an open subset V of IR is a e" function 
j<n)(x ) 

such that for each Xo E U, the Taylor series L __ o_(x - xo)' converges to I(x) 
.;,0 n! 

for Ix - xol sufficiently small. 
(i) Show that every loop in an open set D <:; C is homotopic to a real analytic loop. 

(ii) Show every path in D is homotopic, with a fixed-point homotopy, to a real 
analytic path in D. 

14. Let Un (n ~ 1) be a family of nonnegative harmonic functions in n such that for 

some Zo E n, numerical series L u.(zo) is convergent. Show that u(z) = L u.(z) is 
n~l n~l 

a harmonic function in n. 
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15. Let (U.).2:1 be a sequence of harmonic functions in n that converges locally 
uniformly to a function u. Show that for any IX E 1'\J2, the sequence 

locally uniformly. 

16. For a point z E B, let us define a function cpz = cp: [0,27t] ..... IR as follows. The point 
eitp(8) is the intersection of oB with the ray starting at z with direction ei8 Moreover, 
we impose the restriction that 0 :$; cp(O) - 0 < 27t. 
(i) Show that cp is differentiable and 

dcp = lei~(8) - zl. 
dO el8 - z 

(ii) Show that if f is a continuous function on oB, then 

Pf(z) = ~ r2
" f(e itpz(8»dO. 

27t Jo 
17. Let f E Jf(B), f(O) = 0, and IRe fl :$; A < 00 in B. Show that 

2A 1 + r 
I 1m f(z) I :$; -log--

7t l-r 
(Izl :$; r < 1). 

(Hint: Compare the derivation of the formula for the Poisson kernel to represent 
Imfin terms of ReJ) 

18. Show that if a real-valued harmonic function u in C is bounded above, then u is 
constant. 

19. Let y be a C l regular Jordan curve, Int(y) £ n, h a harmonic function in n, and 
z E Int(y). Show that 

1 r oh 1 r 0 
h(z) = - 27t J y on (C) logiC - zlldCI - 27t J y h(C) on logiC - zlldCI· 

20. Let n be a domain with piecewise regular boundary, u, v E C2(n). Define the 
Dirichlet scalar product 

D(u, v):= r (ou ov + ou ov) dx dy, In ox ox oy oy 

and the Dirichlet norm D(u) := D(u, u). 

(i) Show that D(u, v) = f u ~v Idzl- r uAvdxdy. on uU In 
(ii) Let ul on = 0 and v harmonic in n. Show that 

D(v) :$; D(u + v). 

(iii) (Dirichlet principle) If f is a function in C2(n), flon = 9 and u solves the 
Dirichlet problem with data 9 on on, then D(u) :$; D(f). 

21. (i) Prove the statement of Example 4.3.13, (3). Beware, the function f 0 cp-I 
might not be continuous on oB. (Why?) 
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(ii) Show that the Poisson representation formula for the upper half-plane H, i.e., 
F = P(f 0 cp -I) 0 cp, becomes 

1 foo Y F(z) = - 2 2 f(t)dt 
7t -00 (x - t) + y 

(Imz > 0). 

(iii) Why is this formula valid for any function fELl (~,~), in particular, 
1 + t 

for f E LOO(~)? Show that, if fELl (~,~) and to is a continuity point of 
1 + t 

f, then 

lim F(z) = f(t o). 

22. Let f be a harmonic function in a neighborhood of Zo #- O. Show that g(z) = f(l/Z) 
is harmonic in a neighborhood of l/Zo. Can you generalize this to f 0 h,fharmonic 
on the image of h, and 11 holomorphic? 

23. Let f: ~ -+ ~ be a C2 function such that whenever 9 : n -+ ~ is harmonic, it follows 
that fog is harmonic. What can you say about f? 

24. Let f: B\{O} -+ ~ be harmonic and satisfy If(z) I :S Alloglzlll/2 + B. Show that 
f has a harmonic extension to B. 

§4. Subharmonic Functions 

4.4.1. Definition. Let n be an open subset of C. A function u : n -+ [ -00,00 [ 

is called subharmonic in the wide sense in n if it verifies the following two 
conditions: 

(i) u is upper semicontinuous (u.s.c.); 
(ii) for every disk B(z, r) s n, u(z) :5 A(U, z, r). 

4.4.2. Remarks 

(1) Here the circular average A is given by a generalized integral in the sense 
of §4.1. 

(2) We will see later that one can replace the circular average by the area 
average A(u, z, r) in condition (ii). From the identity 

2 fr A(u,z,r) ="2 A(u,z,p)pdp 
r 0 

we see that if u is subharmonic in the wide sense 

u(z) :5 A(u, z, r). 

4.4.3. Proposition. Let n be an open connected subset of C and u function 
subharmonic in the wide sense in n. We have then either 
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(1) U == -00, or 
(2) U E Lloc(!J.). 

In the second case we say that u is subharmonic. 

319 

PROOF. Let G = {z EO: 3V., V. relatively compact neighborhood of z in 0, 
such that u I V. ELI (V.) }. The set G is open by its very definition. Let B = 0\ G. 
If B "# 0 then case (2) holds and there is nothing to prove. Assume B "# 0 
and let Zo E B. For every V, relatively compact neighborhood of Zo in 0, we 
have 

Iv u dx dy =····00. 

Let r > 0 be such that B(zo, r) ,;; O. We are going to show that u(z) = -00 for 
every z E B(zo, r/2). In fact, for such a z, B(z, r/2) is a relatively compact 
neighborhood of zo, hence A(u,z,r/2) =·····00. By Remark 4.4.2(2) we have 
u(z) = -00. Therefore u == -00 in B(zo,r/2). We claim that it follows that 
B(zo, r/2) ,;; B. If fact, if z E B(zo, r/2) and V is a neighborhood of z, then 
V n B(zo, r/2) contains a set of positive measure where u == -00; therefore it 
is not possible that u ELI (V). Hence B is both open and closed in 0 and not 
empty since Zo E B. We conclude that B = 0 and the preceding proof also 
shows that u == -00 in this case. D 

4.4.4. Definitions 

(1) A subharmonic function in the wide sense in an open set 0 is said to be 
subharmonic in 0 ifit is not identically equal to -00 in any component of 
O. We denote SH(O) the set of all subharmonic functions in O. 

(2) A subset P of 0 is said to be a polar subset of 0 if there is a subharmonic 
function u in 0 such that P ,;; {z EO: u(z) = -oo}. 

(3) If u is subharmonic in 0, the (relatively) closed subset 

E:= {z EO: u(z) = -oo} 

is called the polar set of u. 

4.4.5. Definition (Maximum Principle). Let X be a topological space. A func
tion f: X -+ [-00,00 [verifies the maximum principle in X if the existence of 
a relative maximum Xo E X implies that f is constant in a neighborhood of Xo. 

4.4.6. Proposition (Maximum Property). !f a u.s.c. function f in a connected 
topological space X verifies the maximum principle and has an absolute maxi
mum in X, then it is constant. 

PROOF. The set Y = {y EX: fey) = sup f(x)} is both open and closed. 0 
XEX 
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4.4.7. Proposition. A subharmonic function in an open subset ol C verifies the 
maximum principle. 

PROOF. Let Zo E Q be a relative maximum of f. Let r > 0 be such that 
B(zo, r) s;: Q and such that if z E B(zo, r), then f(z) :s;; f(zo). Hence 

f(zo) :s;; A(j, zo, r) :s;; f(zo). 

lfthere is Wo E B(zo, r) such that f(wo) < f(zo), there would be p > 0 such that 
B(wo,p) s;: B(zo,r) and few) < f(zo) for every WE B(wo,p). One would then 
have A(j,zo,r) < f(zo)· 0 

4.4.8. Corollary. Let Q be a connected open subset of C, f subharmonic function 
bounded above in Q such that f takes its least upper bound somewhere in Q. 

Then f is constant. 

4.4.9. Proposition. Let u be a real-valued function of class C2 in an open set Q 
in C. The following two conditions are equivalent: 

(1) u is sub harmonic in Q 
(2) Au ~ 0 in Q. 

PROOF. (1) implies (2) by the following lemma. 

4.4.10. Lemma. For a function f of class C2 in a neighborhood of z we have 

Af(z) = lim ~ U(j, z, r) - fez)]. 
r~O r 

PR(XlF OF LEMMA 4.4.10. Integrate in the variable h the Taylor development 

of of 
fez + h) - fez) = hl(z) + h2 -;;-(z) 

ax oy 

+- -~-(z)hf + 2--(z)h J hz +(z)h~ + IhI 2 e(h) 
1 (02f . 02f 02f) 
2 ox2 oxoy oy2 

where e(h) --+ 0 as Ihl --+ O. By the symmetry of oB(O, r) in the hl and h2 
directions we obtain for r > 0 sufficiently small 

, . 1 [1 02 f i 2 1 02 f i z I.(j, z, r) - fez) = ·2···- -2:l2 (z) hi da(h) + -2 :l2 (z) hz da(h) 
nr uX Ihl""r uy Ihl=r 

+ r2 L,=r e(h)da(h)] 

r2 
=2 [Af(z) + oCr)]. 0 

(2) implies (1) by an application of Green's formula: for r E ]O,d(z,QC)[ we 
have 



§4. Subharmonic Functions 321 

d 1 f 2" AU i8 1 f au -A(u,z,r) = ········~(z + re )dO = ~ ~(Old(l 
dr 211: 0 ar 211:r cB(z.r) an 

= ~21 f ~u(Od~ dYf :?: O. 
11:r aB(z.r) 

Hence r ~ A(U, z, r) is increasing and, since 2(u, z, 0) = u(z), we have u(z) ~ 
2(u, z, r). 0 

4.4.11. Proposition. Let n be an open subset of Co The following properties hold: 

(1) If u is subharmonic in n and v is harmonic in n, then both u + v and u - v 
are sub harmonic in n. 

(2) Let {uiLI be a family of subharmonic functions in n. The function 
u = sup ui is subharmonic if it is < +00 at every point and u.s.c. In par

ieI 

ticular, u is subharmonic if J is finite. 
(3) {f Xl' .•• , Xn are real numbers :?: 0 and u 1, ... , Un are subharmonic functions, 

then I: XiU i is a subharmonic function. 
l:5.i $;n 

(4) The infimum of a decreasing net of subharmonic functions, infu i , is sub
I 

harmonic in the wide sense. In particular, the limit of a decreasing sequence 
of subharmonic functions is subharmonic in the wide sense. 

(5) If u is harmonic (even if it is complex-valued) then lui is sub harmonic. 
(6) loglz - al is subharmonic. 
(7) Iff is holomorphic then Ref, lmf, If I, and loglfl are sub harmonic functions. 

(The last one only holds iff =1= 0 in each connected component of n.) 
(8) rr n is an open subset of C such that nc # 0, then -log d(z, nC} is sub

harmonic in n. 

PROOF. (1) (u + v)(z) = u(z) + v(z) .~ 2(u, z, r) + )o(v, z, r) = A(U + v, z, r) if 
B(z, r) s;: n. 

(2) For every iEI we have Ui(Z)~A(ui,z,r) if B(z,r)s;:n. Hence 

u(z) = sup ui(z) ~ A (sup Ui' z, r) if we assume that sup Ui is u.s.c. Therefore 
iEI lEI I 

U = sup Ui is subharmonic in that case. If I is finite, then sup Ui is always u.s.c. 
ieI 

(3) 2: lXiUi(Z) ~ 2: 1X)(Ui , z, r) = )0 (2: lXiU" z, r). 
1 :::;;I:£n' e 

(4) The infimum U = infu i is u.s.c. and for every j E 1, u(z) ~ A(uj,z,r) if 
i 

B(z, r) s;: n. By the Dini-Cartan Proposition 4.2.6 we have 

inf 2(u" z, r) = A (inf u" z, r) = Il(u, z, r), 
ie I i eI 

hence U is subharmonic. 
(5) If U is harmonic in nand B(z, r) s;: n, then u(z) = A(U, z, r), it follows 

then that I u(z) I ~ ),( I u I, z, r) even if u is complex-valued. 
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(6) For every /; > 0, the function u,(z) = }log(lz - al 2 + 1::) is CCIO and its 
Laplacian is 41::/(lz - al 2 + 1::)2. Therefore loglz - 171 is subharmonic as a de
creasing limit of a family of subharmonic functions (see (4». 

(7) It is clear that Ref and Imf are subharmonic. Moreover, by (5), If I is 
also subharmonic. If f =/=. 0 in every open set relatively compact and simply 
connected 0 1 cc 0, then we can write flOl = h Il (z - aj)mj , where the aj' 

1 sj:S;q 

1 s j s q < 00, are all the zeros of fin 0 1, mj their multiplicities, and h = e9 

for some hoi om orphic function g in 0 1 , Therefore, in 0 1 we have 

loglfl = L m)oglz - ail + Reg, 
1 sj<;q 

which shows that loglfl is subharmonic in 0 1 , This ensures that loglfl is 
subharmonic in disks whose closure is contained in O. This obviously implies 
loglfl is subharmonic in O. 

(8) The function -log d(z, OC) is continuous in O. Moreover, for every 
(E OC the function -Iogl( - zl is harmonic in 0, hence 

-logd(z,OC) = sup (-loglz - m 
, dlC 

ensures that·-Iog d(z, OC) is subharmonic by part (2). o 

For the proof of item (7) of the preceding proposition we proved that loglfl 
was subharmonic essentially by a localization argument. In fact, subhar
monicity is a local property as it is shown by: 

4.4.12. Proposition. Let 0 be an open subset of C, u: 0 -+ [ -00, CfJ [ a u.s.c. 
function. The following properties are equivalent: 

(I) For every compact K <:; 0 and every real-valued continuous function fin K 

that is harmonic in K, iff :2: u on aK, then f :2: u in K. 
(2) If D = B(zo, r) <:; 0 and if f E C[z] is a polynomial in z with complex 

coefficients such that us Ref on aD, then us Ref in D. 
(3) For every r > 0, for every measure It :2: 0 on [0, r], and for every z E Or = 

g EO: d«(,OC) > r}, we have 

/l([O,r])u(z) S [ )o(u,z,p)d/l(p) J [O.r] 

(4) For every 6 > 0 and z E 0 there is a positive measure in [0,6], with nonzero 
mass in ] 0, 6] such that (*) is valid. 

PROOF. (1) => (2) and (3) => (4) are evident. 
n 

(2) => (3). Let us recall that if a trigonometric polynomial q>(e) = L ak e ik8 

is real-valued, then we have a_k = ak , 0 S k S n. -" 
If z E Or> 0 < P S r, then D = B(z, p) <:; O. Suppose a real-valued trigo

nometric polynomial q>(e) satisfies u(z + peW) S q>(e) for every e E [0,2n]. 



§4. Subharmonic Functions 323 

n 

Then the polynomial f = Uo + L ak«( - zl/ pk will satisfy u ::; Re f on aD. 
k=O 

Therefore u ::; Re fin D. In particular, at ( = z we have 

u(z) ::; Re fez) = ao =1 f21t <p(0) dO. 
2n 0 

If IjJ is an arbitrary real-valued continuous function in [0,2n] such that 
u(z + peW) ::; 1jJ(0), and if e > ° is given, we can find a trigonometric poly
nomial <p such that IjJ ::; <p ::; IjJ + e. It foHows that 

u(z)::; e +J f21t IjJ(O) dO. 
2n 0 

Since e > ° was arbitrary we can also let e = 0 in this inequality. On the other 
hand 

f 21< f2" 
u(z + pe iO )dO = inf IjJ(O) dO, 

o .~u 0 

IjJ continuous, 

which shows that u(z) ::; A(U, z, pl. Integrating this inequality with respect to 
the positive measure J.l we obtain (3). 

(4) => (1). Let K be a compact subset orn and h a real-valued function that 
is continuous in K, harmonic in K, and h ~ u on oK. If M = sup(u - h) > 0, 

K 

then the upper semicontinuity of u - h implies that u - h = M on a nonempty 
compact subset F of K. Let Zo E F such that d(zo, oK) = d(F, oK). Let 
o < b < d(F, oK) and J.l be a measure in [0, b] with the property (4). By the 
very definition of zo, for every r, 0 < r ::; b, the circle oB(zo, r) contains at 
least a point in K\F, hence, by the upper semicontinuity, it contains a whole 
arc of points such that u(z) - h(z) < M. Therefore, 

f21< 

o (u - h)(zo + re iO ) dO < 2nM, 

whence 

J: L21t (u - h)(zo + re i8 )dO dJ.l(r) < 2nM J: dJ.l(r) = (u - h)(zo)2nJ.l([0,b]). 

For the harmonic function h we have equality of the corresponding terms in 
this inequality, it follows that 

~(t~,(j]) 10.oJ 2(u,zo,p)dJ.l(p) < u(zo), 

which contradicts (4). D 

4.4.13. Remarks. (1) To show that (1) => (3) we could also reason as foHows: 
if <p is continuous on oB(zo, p) (0 < p :::;; r) then <p = P(<p)loB(zo, p), where P(<p) 
is the Poisson integral of <po If u :::;; <p on oB(zo, p) then it follows by (1) that 
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u :<::; P(qy) in B(zo, pl. Hence, u(zo) ::;; ..:l(u, zo, p) and, by integrating with respect 
to j1, the proof can be concluded. 

(2) The same argument shows that u ::;; P(u) in B(zo, p), since 

P(u) = P ( !~: qy ) = !~: P(qy) ~ u. 
(jJ contin.uous 

(3) Clearly condition (4) is satisfied if u is subharmonic in the wide sense. 
It follows that we can define subharmonicity in the wide sense using area 
averages instead of circular averages. 

It is clear what we mean by the phrase: u is locally subharrnonic (or locally 
subharmonic in the wide sense). We have the following corollary to Proposi
tion 4.4.12. 

4.4.14. Corollary. Let 0 be an open subset of C and u : 0 -> [ -00,00 [ a u.s.e. 
function. 

(a) u is subharmonie in the wide sense if and only if u is locally subharmollic 
ill the wide sense. 

(b) If u E Lloc(O), u is subharmonie if and only if u is locally subharmonie. 

If u E SH(O) and B(zo, r) s; 0, then we can define 

M(u, zo, r):= max u(z). 
Iz-zol~r 

By Propositions 4.4.6 and 4.4.7 we have that 

(i) M(u,zo,r) = max u(z), and 
Iz-zoiSr 

(ij) n-+ M(u,zo, r) is increasing for r E JO,d(zo,OC)[. 

The following proposition extends these properties to the circular and area 
averages of u. If Zo = 0 then we often write M(u, r) instead of M(u, 0, r), 
especially in the case n = c. 

4.4.15. Proposition. Let n be an open subset of C, u a subharmonie function 
in n, Zo E n. In the interval JO, d(zo, OC)[ the two following functions are 
increasing: 

Furthermore, 

),(u,zo): n .... d(l4,zo,r) E [-CXj, oo[ 

A(u,zo): rf->A(I4,zo,r) E IR. 

(1) A(u,zo,r):<::; ..:l(u,zo,r) (0 < r < d(zo,OC» 
(2) u(zo) = lim J.(u, zo, r) = lim A(u, Zo, r). 

r~O 

PROOF. Let 0 < r < R < d(zo,OC). 
(1) ..:l(u,zo) is increasing: 
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In B(zo, R) we have u :::;; P(u), therefore 

2(u, Zo, r) :::;; 2(P(u), zo, r) = P(u)(zo) = 2(u, zo, R). 

(2) Inequality A(u, zo, r) :::;; 2(u, zo, r): 

2 Ir 2 I' A(u, zo, r) =2 2(u, zo, t)t dt :::;;2 2(u, zo, r)t dt = ).(u, zo, r). 
r oro 

(3) A(u,zo) is increasing: 
Assume 0 < r < R. Then 

2 IR A(u, Zo, R) = 2" 2(u, Zo, p)p dp 
R 0 

= ~21R 2(u,zo,p)pdp + ~22 ~ L A(u,zo,p)pdp 

(R2 ...... r2) r2 
~ A(u, zo, r)·····ki ··········· +k2 A(u, Zo, r) = A(u, Zo, r). 

325 

To conclude the proof it suffices to show that lim 2(u, Zo, r) = u(zo). Let 
r~O 

t:t. E [R such that u(zo) < tx. There exists e > 0 such that if z E B(zo, e), then 
u(z) < tx. Therefore u(zo) :::;; A(U, Zo, p) < tx for 0 < p < e. 0 

4.4.16. Proposition. Let u be a subharmonic function in an open subset 0 of C 
and ,tx a standard function in C. For p sufficiently small, up = u * IY.p is sub
harmonic in Op = {z EO: d(z,OC) > p} and the sequence {u1/.}.;,:no is decreasing 
and converges to u in 01/no (no integer sl~fJlciently large). 

PR(XlF. We have up(z) = f u(z - Orxp(Od~ d'1 = f u(OlY.p(z - ()d~ d'1 
B(O,p) B(z,p) 

for Z EOI" If B(z,r) s 01' we can apply Fubini's Theorem 4.2.7 and obtain 

2(up,z,r) = f (21 12
" u(z + re i8 - Ode)lY.p(Od~d'1 

B(O,p) n 0 

hence the eX) function up is subharmonic in 01" To show that the family up 
decreases in p when p ',. 0 and converges toward u, we just have to rewrite 
the definition of up for z E 01': 

up(z) = f u(z - OlY.p(O dr; d'1 = II' 12
" u(z - reiO)lY.p(r) dr de 

B(O.p) 0 0 

= 2n f: 2(u, z,p)txp(r) dr = 2n I1 ;I.(u,z,ps)rx(s)ds. 
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From this identity we see that up(z) --+ u(z) if P --+ 0, and that if PI < P2 and 
z E !1P2' then 

up,(z) - up, (z) = 2n II (A(U, z, P2S) - A(U, Z, PI s»a(s) ds ~ 0. 0 

4.4.17. Remark. There is an analogous statement for a convex function f on 
an open interval ]a,b[ of the real axis. For any [a',b'] ~ ]a,b[ we can define 
for x E [a', b'] 

fl /k 

fk(X) = f(x - t)a l/k(t) dt, 
-11k 

if k is a sufficiently large integer and a is a standard function in IR. Set 
A(f, x, s) := (f(x + s) + f(x - s»/2, then we have 

f l /k 

.t;.(x) = 0 (f(x + t) + f(x - t»a l/k(t) dt 

The convexity of f ensures that if SI ::; S2' then A(J, x, S2) ~ A(f, x, sd. There
fore the sequence fk converges decreasingly to f One verifies as in §4.4.16 that 
.t;. is convex on ]a', b'[. It is also clear from the definition that if f is increasing, 
then .t;. is also increasing. 

4.4.18. Proposition. Let [a, b[ ~ [ - 00,00[, f: [a, b[ --+ IR convex, increasing 
and such that f(a) = limf(t). Let u:!1 --+ [a, b[ be a subharmonic function in 

t .... a 

the open set !1 ~ C. The function f 0 u is then subharmonic in !1. 

PROOF. (1) Iff and u are both of class C2 , then an easy computation shows that 

A(f 0 u) = (I" 0 u)llgradull 2 + (f' 0 u)Au ~ 0, 

hence f 0 u is sub harmonic. 
(2) Iff is C2 and u is subharmonic then (with the notations of §4.4.16) we 

have that f 0 up is also subharmonic in !1p. These functions tend decreasingly 
towards f 0 u, which is therefore subharmonic. 

(3) If a> -00, extend the definition of f to ]-oo,b[ by setting it to be 
equal to f(a) in ] - 00, a]. This function is still convex and increasing, and we 
can approximate it in [a, b'] for any b' < b by a decreasing sequence of Coo 
increasing convex functions.t;., as was done in §4.4.17. Therefore, if u is sub
harmonic, we have that the decreasing sequence of subharmonic functions 
.t;. 0 u converges toward f 0 u. This ends the proof of the proposition. 0 
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4.4.19. Examples. The last proposition allows us to construct numerous 
examples of subharmonic functions. 

(1) Ifu ~ 0 is subharmonic and a ~ 1, then u a is subharmonic. 
(2) If u is subharmonic, then e" is subharmonic. 
(3) If log u is subharmonic (u ~ 0), then u is subharmonic and uP is also 

subharmonic for any p > o. 
(4) Iff is holomorphic, then IflP is subharmonic for any p > o. 
(5) If cp is a convex increasing function of a real variable, then cp(lzl) is 

subharmonic. 
(6) If cp, t/J are two convex functions in IR, then for any A, p ~ 0 we have that 

u(z) = Acp(Re z) + pt/J(Im z) is a subharmonic function in IC. 

4.4.20. Proposition. Let 0 be an open set in C and u : 0 -+ IR+ a u.s.c. function. 
Then log u is subharmonic in 0 if and only if for every a E 1R2, the function 
v(z) := u(z)exp(a1x + 1X2 y) is subharmonic in O. 

PROOF. 1. The condition is necessary. If log u is subharmonic then 

logu + a1x + azy 

is also subharmonic as well as its exponential. 
2. The condition is sufficient. Let us assume u E C2 with values in ]0, 00[. 

We then have 

Av = e"'jX+a2Y [AU + 2 (a au + IX au) + (a 2 + ()(2)UJ > 0 
lOX 2 oy 1 2 -

for every ()( E 1R2. Therefore, eliminating the exponential factor, multiplying by 
u, and completing squares, we have 

[(aju + ::Y + (a 2 u + ~~YJ + uAu - [G;Y + G~YJ ~ o. 

Since a E 1R2 is arbitrary, for each z E 0 we can choose it so that the first term 
vanishes. Hence 

u2 A(logu) = uAu - Ilgradul1 2 ~ o. 
It follows that log u is subharmonic. If u is not of class C2 we regularize as 

in 4.4.16 and 4.4.18. If u is not strictly positive, consider u + 1:, I: > O. Then let 
I:-+Q 0 

4.4.21. Example. If uj ~ 0 and log uj is su bharmonic (1 5, j 5, q) then 

log(Ul + ... + uq ) 

is subharmonic (log 0 = - (0). 
It is enough to show this for q = 2. For ()( E 1R2, we have uj(z)eatX+a2Y is 

subharmonic since log Uj is subharmonic. Therefore (u l (z) + uz(z»e""x+or 2Y is 
also subharmonic for every a E 1R2, hence log(u j + u2 ) is subharmonic. 
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Let u E Lloc(Q). We have seen in Chapter 3 that u can be considered as 
the element of the space of distributions .@'(Q) given by 

qJl--> In qJdxdy (qJE.@(Q». 

aiaiu 
As such we can define Dau =":1----;)-, for "- = (CX 1,"-2) E N 2, loci = 1X1 + "-2' 

UX"luy·2 

In particular, the Laplacian of u in the sense of distributions is the linear 
functional 

qJ I--> <Au, qJ> = [ uAqJ d( dr/, In qJ E '@(Q). 

Example 5 of §2.2.9 can be restated as saying that if :; = 0 in the sense of 

distributions then u coincides almost everywhere with a holomorphic function 
in Q. 

We recall that the Dirac measure at the point a is the linear functional 
ba : qJ I--> qJ(a). If a = 0 then we occasionally suppress the subscript. 

1 
4.4.22. Proposition. (1) The Laplacian of--Ioglzl in the sense of distributions 

2n 
is the Dirac measure b (at the origin). 

(2) Iff E Yf(Q),f i= 0 in any connected component of Q, and if {a j L Ei is the 
discrete set of zeros of and mj = m(f, aJ the multiplicity of those zeros, then the 
Laplacian of logl!1 in the sense of distributions is a nonnegative measure: 

A loglfl = 2n L mjJ.i , 

iE 1 

that is, 

<A loglfl, qJ> = 2n L mjqJ(a j) for cP E '@(Q). 
iE I 

PROOF. Let us compute (a:;i log Izl, cp) for qJ E g(C). We have by 

definition 

The last identity is valid because the function loglzl2 is locally integrable. On 
the other hand we have that for z =f- 0 the following computation is valid: 
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Therefore, for e > 0 we have 

i 02qJ i (OqJ ) i oqJ 1 (loglzI 2)::. ::._dz A dz = d ::._(loglzI2)dz - ::._ -dz A dz 
Izl;". uZuZ Izl;". uZ Izl;". uZ Z 

- f OqJ(1 I 12)d- i oqJ dz A dz - - - ogz Z - - . 
oB(O •• ) oz Izl;". oz Z 

It is easy to see that lim f ~~ loglzI2 dz = 0, therefore .-0 oB(O •• ) u Z 

(o2;::;ZI ,qJ) = _~ t ~; ~dz A dz = ~qJ(O) (=(~b,qJ)). 
The last identity is a consequence of Pompeiu's formula. This proves the first 
part of the proposition, 

(2) Let {e;}iEI be a sequence of positive real numbers such that the closed 
disks B(aj, ej) ~ n are pairwise disjoint, f(z) = (z - aj)m'hj(z) for some hj 
holomorphic in n without any zeros in B(aj, e;). Let no = n\ {a j : i E I}, 
n j = B(aj , ej), i E I. Consider (Xo, (Xj (i E 1) a Coo partition of the unity sub
ordinate to this open covering of n. For qJ E ~(n) we have 

(Aloglfl, qJ) = t (loglfl)AqJdxdy 

= t (loglfl)A«(XoqJ) dx dy + ~ Is(a, .. ,) (log IfI)A«(Xj qJ) dx dy. 

Let n~ be a regular open set with boundary piecewise C1 such that 
supp«(XoqJ) ~ n~ cc no. We can apply to the first term Green's formula and 
obtain 

t (log If I)A«(Xo qJ) dx dy = to (loglfI)A«(XoqJ)dxdy 

= i (Aloglfl)(XoqJdxdy = 0, Joo 
where the final identity follows from the fact that loglfl is harmonic in no. 
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We also have 

f (loglfl)~(aiq»dxdy = mi f (loglz - ad)~(aiq»dxdy 
B(Ui.Ci) B(ai.l>i) 

+ L(a".;) (loglhil)~(aiq»dxdy. 
The second term on the right-hand side is zero, because hi does not vanish on 
B(ai,B;). By (1) we can compute 

f loglz - ad~(aiq»dxdy = f loglz - ail~(aiq»dxdy 
B(a".,) C 

= 2n(a i q>)(a;) = 2nq>(a;), 

since by the choice of the partition of unity, we have ai(a;) = 1. Altogether we 
have obtained 

<~ 10gl!l, q» = 2n L m/i5a , , q», 
le 1 

i.e., 

~ loglfl = 2n :L mi')a,· o 
ieI 

4.4.23. Proposition. Let u E Lloc(O). The function u is subharmonic (i.e., equal 
a.e. to a true subharmonic function in 0) if and only if ~u is a nonnegative 
measure. 

PROOF. Let us recan that for q> E £0(0) we have 

lim; [A(q>, z, r) - q>(z)] = Llq>(z), 
r~O r 

and the convergence is uniform (cf. §4.4.11). Let u be a subharmonic function. 
We claim that the fonowing identity holds: 

In [A.(u,z,r) - u(z)]q>(z)dxdy = In u(z)[A.(q>,z,r) ----. q>(Z)] dx dy. 

Assuming this claim for the moment, we have for q> 2:: 0 

<Llu,q» = [ u(z)~q>(z)dxdY=lim; [ u(z)[).(q>,z,r)-q>(z)]dxdy In ~or Ju 
= lim 22 [ [A(u, z, r) ----- u(z)]q>(z)dxdy 2:: 0 

r~O r J f! 

since u is subharmonic. It is a standard fact in the theory of distributions that 
if <Llu, q» 2:: 0 for q> E £0(0), q> 2:: 0, then ~u is a nonnegative measure (i.e., it 
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makes sense to compute In ",L1u for any'" continuous function with compact 

support), see [L. Schwartz, Ch. 1, §4, Theorem V]. 
To prove the claim, we observe that 

In A.(u, z, r)<p(z) dx dy = In C111: fo2K u(z + re i6 ) dO) <p(z) dx dy 

= 2~ fo2K (In u(z + re i6 )<p(z) dx dY) dO 

= 2~ fo2K (In u(z)<p(z - re i6) dx dy )dO 

= In (2~ fo2K <p(z - re i6) dO) u(z) dx dy 

= In A.(<p, z, r)u(z) dx dy, 

where we have used several times that supp <p ~ Or. 
This proves half of th~ statement of the proposition. To prove the other 

half we need two lemmas. 

4.4.24. Lemma. (1) If p. is a complex Radon measure with compact support K, 
then the function 

UI'(z) := 2~ t loglz - "dp.(C) 

1 
is harmonic in C\K and, for Izl large, equals 211: loglzl + h(z), where h is a 

harmonic function tending to zero at infinity. 
(2) If p. is also nonnegative then UI' is subharmonic in C and UI'(a) = -00 

for every atom a of p.. 
(3) (Riesz' Decomposition Theorem): Let 0 1 be a relatively compact open 

subset of an open set 0 ~ C, U E LI~c(O) such that its Laplacian L1u (in the sense 
of distributions) is a nonnegative measure p.. Then, if we define a function Uo in 
0 1 by means of the decomposition, 

u(z) = uo(z) + 21 f loglz - "dp.(C), 
11: Je, 

we have that Uo is a harmonic function in 0 1 • 

The function UI' is called the logarithmic potential of the measure p.. 
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PROOF. (1) The proof of (1) is left to the reader. 
(2) Let r > O. For t E K we have 

r Iloglt - zlldxdy::;; r Iloglwlldxdy = M = M(r,d) < 00, J Izl $r J Iwl $r+d 

where d is chosen so that K £; B(O, d). Therefore, the function 

tH r Iloglt-zlldxdYEU(Jl) J Izl~r 
since 

f[ r Iloglt - zlldXdY]dJl(t)::;; MJl(K) < 00. 
Jlzl~r 

By Fubini's theorem this implies that VI' E Ltoc(C). Note that VI' is only 
defined (up to now) outside a set of Lebesgue measure zero. 

Let h.(z) := :n (loglzl2 + 8) and g.(z):= f h.(z - 0 dJl«(). We verify imme

diately that L\g.(z) = ~ f (I( _ Z~2 + 8)2 dJl(O ~ O. Therefore the family (g.).>o 

of subharmonic functions decreases towards VI', which is hence subharmonic 
in the wide sense. Since VI' E Ltoc(C) then VI' is subharmonic and defined 
everywhere. 

The last statement of (2) follows from the observation that 

1 
Vda(z) = -loglz - al 

2n 
ifz"# a. 

(3) Let us show now that in 0 1 we have the following property: 

i uoL\cp dx dy = 0 for every cp E E0(Od· 
0 1 

In fact, by the definition of Uo we have 

r u(z)L\cp(z) dx dy = 21 r (r loglz - (ldJl(O) L\cp(z) dx dy JOI n J01 JOI 
+ r uo(z)L\cp(z) dx dy. 

JO I 

We have already proved that ~ r loglz - (lL\cp(z)dxdy = cp«(), since 
2n J0 1 

cp E E0(01)' By Fubini, the last identity becomes 

r u(z)L\cp(z) dx dy = r cp(z) dJl(z) + r uo(z)L\cp(z) dx dy. 
JOI JOI JOI 
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But r u(z)Atp(z) dx dy = r tp(z) dp,(z) by the very definition of p,! Therefore JrI, JrI, 
we have shown that the claim holds. 

We need an additional lemma. 

4.4.25. Lemma (Weyl's Lemma). Let Uo E LI~c(nl) such that its Laplacian in 
the sense of distribution vanishes identically in 0.1 ' Then Uo is harmonic (i.e., it 
coincides a.e. with a harmonic function in 0.1 ), 

PROOF. This lemma is a particular case of Proposition 3.6.5, nevertheless it is 
instructive to give a different proof here. Let oc be a standard function. The 
family of COO functions Up = Uo * ocp' p > 0, converges to u in Ll1oc(nd when 
p --+ O. The function up is only defined in nl,p, but it is harmonic there. In fact, 
if z E nl,p 

Aup(z) = r uo(OAAocp(z - md~d'1 = r uo(()A{(ocp(z - md~d'1 = 0, JrI, JrI, 
since, for z fixed in nl,p the function (1-+ ociz - () is in E&(nd, and Auo = 0 
in the sense of distributions in 0.1 , 

Let now p, (1 > 0 be very small, we have in n1 ,p+.,., 

by §4.3.3, (5), since we have just shown that Uo * up is harmonic in n1,p' 

Therefore letting p --+ 0 we obtain Uo * oc.,. = Uo a.e. in 0.1 ,.,.. That is, Uo coincides 
a.e. in 0.1,.,. with a function COO and harmonic. A posteriori Uo can be modified 
in a set of measure zero of 0.1 and taken to be harmonic itself. This proves 
Lemma 4.4.25. 0 

This also concludes the last part of the proof of the Riesz's decomposition 
theorem. Lemma 4.4.24 is completely proven. 0 

We can now go back to the proof of Proposition 4.4.23. If u E LI1oc(n) and 
Au ~ 0 in the sense of distributions, then for every open relatively compact 
set we have (up to a set of Lebesgue measure zero) 

p, = Au. 

Since UP is subharmonic in 0.1 and Uo is harmonic there, we can modify uln1 

so that it is defined everywhere in 0.1 and subharmonic. Since the subhar
monicity is a local property, u can be made subharmonic in 0. (after modifying 
it in a set of Lebesgue measure zero). 0 

4.2.26. Proposition (Riesz's Convexity Theorem). Let u be a subharmonic func
tion in the annulus C = gEe: 0 ~ R < 1(1 < R' ~ co}. Then the function 
A : r 1-+ A(U, 0, r), is a convex function of log r for r E JR, R' [. 
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d2 A, 
PROOF. Let us first assume u of class C 2, let t = logr, and compute dt 2 • We 

have 

dA dA dr dA 
-=--=r-
dt dr dt dr 

and 

The last identity is valid since A, is a radial function. Therefore, to show the 
convexity of A with respect to log r, we have to show that A is subharmonic as 
a function of z in the annulus C. Let us introduce the auxiliary function 
g(z) := A(U, 0, Izl). Then 

g(z) = 21n t2
1[ u(lzle i8 )dO = 2~ t2

1[ u(zeilZ)drx. 

If B(zo, p) s C then 

1 f 1 f 2 n ( 1 f . ) A(g,zo,p) = -2 _ g(z)dxdy = 2: -2 _ u(ze'lZ)dxdy drx 
np B(zo.p) n 0 np B(zo.p) 

~ 2~ t2
1[ u(zoe ilZ ) drx = g(zo)· 

If u is not of class C2 we can regularize and obtain A(U, 0, r) as a decreasing 
limit of A(U * rxp ' 0, r), which are convex functions of log r. Therefore A is also 
a convex function of log r. 0 

4.4.27. Remarks. (1) It follows from §4.4.26 that A is differentiable as a function 
of log r, except possibly at a countable collection of points. The right and left 
derivatives always exist. 

(2) The proof of §4.4.26 shows that if u is subharmonic in C and radial, and 
we write u(z) = cp(lzl), then cp is a convex function oflogr. Ifu is subharmonic 
in B(O, R) and radial, then cp is also increasing since cp(r) = A(U, 0, r). 

(3) As it could already have been remarked after §4.4.15, let us note that 
if u is subharmonic in 0 and if E is the polar set of u, then not only E 
has Lebesgue measure zero but for any B(zo, r) s 0 the linear measure of 
E (') oB(zo, r) is also zero. If not, A(U, zo, r) = - 00, and we would have 
A(U,Zo,p) = -00 for 0::;; p ::;; r, contradicting the fact that u E LI~c(O). 

4.4.28. Proposition (Gauss' Theorem). Let u be subharmonic in an open set 0 
of C. For every Zo E 0, r E ]0, d(zo,OC)[ the function A: rt--d(u, zo, r) admits 
right and left derivatives with respect to log r and we have: 
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[~la A.(u, zor)] (r) = 21 r Au = 21 Au(B(zo, r)), 
u og r _ 7t J B(zo.r) 7t 

[ a ] Ii 1-~l A.(u,zor) (r) = -2 _ Au = -2 Au(B(zo,r)) 
u og r + 7t B(zo.r) 7t 

where Au denotes the measure ~ 0 induced by the Laplacian of u in the sense 
of distributions. Since A. is a convex of log r, these derivatives are equal except 
at most at a countable collection of points and we have the integral relation: 

A.(u,zo,R) - A.(u,zo,r) = 21 f.R ~(r AU)dt = 21 f.R ~ (1- AU)dt, 
7t r t J B(zo. r) 7t r t B(%o. r) 

for 0 < r < R < d(zo,QC). 

PROOF. Let us suppose first that u is of class C2, let (1 = log r. Green's formula 
gives 

dA. dA. 1 f r-(r) = -(r) = - Audm, 
dr d(1 2n B(zo.r) 

(dm = Lebesgue measure) and, by integration, if 0 < r < R < d(zo,QC) 

A.(u,zo,R) - A.(u,zo,r) = 21 f.R ~( r AUdm)dt. 
7t r t J B(zo.r) 

For u an arbitrary subharmonic function we regularize as usual, up = u * rxp' 

We claim that 

(1) limA.(up,zo,t) = A.(u,zo,t), and it is decreasing. 
p-o 

We have observed (1) several times before. Property (2) follows from general 
properties of nonnegative measures. In fact, if qJ, '" E ~(Q) and 

then 

r qJAu = r uAqJ = lim r upAqJ = lim r Aup' qJ ::::;; lim f Aup dm. JIl JIl p-o JIl p-o JIl p-o B(zo.l) 

Hence 

f Au = sup r qJAu::::;; lim r Aup dm. 
B(zo. I) O:s; <p:S; 1 J Il p-o J B(zo. I) 

<p e .!Ol(B(zo. I)) 

The same way we obtain 
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hence 

f du = inf ["'dU ~ lim f dUpdm. 
8(zo,l) "'e !!dIn) In p ... o B(zo,l) 

"'"",Xii(zo.t) 

This leads to the chain of inequalities (2). We can now integrate them against 
the measure dt/t. One obtains, by Fatou's inequality, 

fR 1 (f ) fR 1 (f ) - du dt:::; - lim dUpdm dt 
r t B(zo,l) r t p ... o B(zo, I) 

= lim [.l..(up, zo, R) - .l..(up, zo, r)] 
p ... o 

= .l..(u, zo, R) - .l..(u, zo, r), 

since the limits exist by (1). Similarly we can use the other part of (2). This 
leads to 

f R ~(f dU)dt:::; .l..(u,zo,R) - .l..(u,zo,r):::; fR ~(f- dU)dt. 
r t B(zo,l) r t B(zo,r) 

To compute the left derivative at R we need to divide by R - r and let 
r ? R. Now we have from the continuity properties of measures 

lim du(B(zo, t)) = lim du(.8(Zo, t)) = du(B(zo, R)). 
t-+R+ t-+R-

Hence the limit of the difference quotient is 

[:s .l..(u, zo, s) 1 (R) = 2~R du(B(zo, R)). 

The expression for the logarithmic derivative is obtained from this one by the 
chain rule. The right derivative is computed the same way. 0 

4.4.29. Corollary (Jensen's Formula I). Let f be a holomorphic function in 
B(O, R), f(O) =F 0, 0 < r < Rand aI' ... , aN the zeros of f in .8(0, r), counted 
according to multiplicity, 0 < lall:::; la21:::;"':::; laNI. We then have the 
expression 

1 12
" .l..(loglfl, 0, r) = ~2 loglf(re i8 )1 dO = loglf(O)1 + N log r - L loglajl 

n ° 1~~N 

= log (If(O) 1 n ~I)' 
I ~j~n laj 
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PROOF. Let us assume first that laNI < r. Denote al < ... < am the different 
values of lajl and nk the number of zeros (counted with multiplicities) of fin 
B(O, ak ). Finally, let ao be an arbitrary value in ]0, al [ and no = O. We are 
going to obtain Jensen's formula from the integral version of Gauss' theorem. 
Recall that 

A loglfl = 2n L Jaj , 

l,;,j,;,N 

since this sum includes the multiplicities. For 0 < t ::;; r we have 

v(t):= ~(Aloglfl)(B(o,t)) = {nj- l ~ft E [aj-l,al,j::;; m 
2n nm = N 1ft E [am,r]. 

(Recall we are assuming no zeros of flie in oB(O, r).) Gauss' theorem shows that 

A(loglfl, 0, r) - A(loglfl, 0, ao) 

= fr v(t) dt 
~o t 

= - nllog al + (nl - n2 ) log a2 + ... + (nm- l - nm) log am - l + nm log r 

= Nlogr - L 10glaJ 
l,;,j,;,N 

On the other hand the function log I f I is harmonic in B(O, a 1)' hence 
A(loglfl,O, ao) = 10glf(0)1. This proves Jensen's formula when there are no 
zeros aj' with lajl = r. 

If now am = r, we can write the preceding formula for r' > r, and let r' tend 
to r since every term is continuous on.r'. Note the terms with lajl = r do not 
really count at the end. D 

4.4.30. Corollary (Jensen's Formula II). The same conditions as in Corollary 
4.4.29 except we do not assume f(O) #- 0 but let k be the order of multiplicity of 
the origin as zero of f Then one has 

21 f2" 10glf(reiB)1 dO = log (k1, If(k)(O)lrk n _I r I)' 
no· 1 ';'J,;,N aj 

where ai' ... , aN denote the zeros of fin B(O,r)\{O}, counted according to 
multiplicity. 

PROOF. Apply Corollary 4.4.29 to the function g(z) = f(Z)jzk. D 

4.4.31. Remark. (1) If u is a subharmonic function in n, Zo En and 
o < r < er < d(zo, nC), then 

Au(B(zo,r))::;; A(u,zo,er) - A(u,zo,r). 
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fer dt 
In fact, Au(B(zo, r)) -:- = leu, zo, er) - .ic(u, zo, r), and for t E Jr, ere we have 

r t 
A(B(zo, t) ~ Au(B(zo, rH. 

(2) In particular, if f is holomorphic in n, f(zo) = 1 and vCr) is defined by 
1 

vCr) := 2n (A loglfIHB(zo, r)), then 

vCr) slog M(lfl, zo, er), 

where M(lfl, zo, R) = sup If(OI. 
K-·z"I=R 

In fact, A(loglfl, zo, er) slog M(lfl, zo, er) and 

).(loglfl,zo,r) ~ 10glf(zo)1 =0. 

Note that vCr) coincides with the number of zeros of fin 8(0, r). 

4.4.32. Proposition. (Hadamard's Three Circles Theorem). Let u be a subhar
monic function in the annulus C = {( E IC : 0 s R < I (I < R' s CIJ}. The func
tion r r-> M(u, r) = sup u(O, defined in JR, R'[, is an increasing convex function 

11;1=' 
of logr. 

PROOF. For e E [0, 2n] fixed, the function uo(O := u«(e W) is subharmonic in C. 
Let Jlt'(O:= sup uo(O. It will be subharmonic if one could prove it is U.S.C. 

0"0,,2,, 

If that were done, then .At(O = M(u, r) when 1(1 == r, hence uH is radial and 
therefore equal to its circular average. We already know that the circular 
average of a subharmonic function is an increasing convex function of log r. 

So all we have to do is prove that Jlt' is U.S.C. Let Zo E C and tI. > uH(zo). Let 
(be any point with 1(1 = IZol. Since u is U.S.C. there is a neighborhood ~ of ( 
such that u(z) < tI. if Z E ~. There is £ > 0 such that 

U ~:;:> {z: R < IZol .- c < Izi < IZol + 13 < R'} = C. 
1(1=lzol 

For Z E C we have M(O s tI.. This inequality proves the proposition. 0 

4.4.33. Corollary. There is no subharmonic function which is bounded above in 
C, except for the constants. 

Note that this corollary includes Liouville's Theorem 2.2.20 as a particular 
case. 

If u is subharmonic function in nand E is its polar set, then for Z if: E we 
have 

.. ),(u,z,r) 
x(u, z) := hm --1-- = 0, 

,~O og r 

since .ic(u, z, r) -> u(z) as r -> 0 when z 1= E. More generally we have the 
following. 
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4.4.34. Proposition. Let u be a sub harmonic function in a neighborhood of z E IC. 
The two limits 

I· A(u,z,r) d I' M(u,z,r) 
1m an 1m-----:---

,-+0 log r ,-+0 log r 

exist, are finite, nonnegative, and they coincide. 

The common value limit X(u, z) is called the Lelong number of u at z. 

PROOF. The existence of the two limits and that their values lie in [0, oo[ are 
consequences of the fact that A(U, z, r) and M(u,z, r) are increasing and convex 
functions of log r (cf. §4.4.15 and §4.4.32). From the preceding observation it 
is enough to prove their coincidence at points where u(z) = - 00, otherwise 
they are both zero. 

If u(z) = - 00 there is Ro, 0 < Ro < 1 such that u(O < 0 when, E B(z, Ro). 
Let" - zl ~ r < p < R < Ro. We have 

1 f2" R2 - p2 i6 
u(O ~ M(u, z, p) ~ sup 2- I R i6 12 u(z + Re ) dO. 

Iw-zl=p n 0 z + e - w 

R2 _ p2 R2 _ p2 R _ P 
Now we have . > = -- and u(z + Rei6 ) < 0, Iz + Re,6 - Wl2 - (R + p)2 R + P 
therefore 

R-p 
u(O ~ M(u,z,p) ~ --A(U, z, R). 

R+p 

Hence 

R-p 
).(u,z,r) ~ M(u, z, p) ~ --A(u,z,R). 

R+p 

By continuity we can replace p by r. Dividing by log r reverses the inequalities, 
so 

A(U, z, r) M(u, z, r) 1 - r/R A(u,z,r) 10gR 
-::---> > -

logr - logr - 1 + r/R 10gR logr' 

To obtain the desired conclusion it suffices to let R, r -+ 0 in such a way that 
10gR -logr and r/R - O. For instance R = -rlogr. D 

4.4.35. Corollary. If f is a holomorphic function in a neighborhood of z, then 

(I If I ) - I' A(loglfl, z, r) _ I' M(loglfl, z, r) - (f) 
X og ,z - 1m I - 1m I - m ,z, 

,-+0 og r ,-+0 og r 

where m(f, z) is the mUltiplicity of z as a zero of f 

PROOF. Use Jensen's formula 4.4.30 to evaluate x(loglfl, z). D 
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y 

M(u, 0, R) 1-------::7/ B 

log r 

M(u, 0, r) 

Figure 4.1 

4.4.36. Proposition (Schwarz's Lemma for Subharmonic Functions). Let u be 
subharmonic in B(O, R') and such that u(O) = - 00, X(u,O) > 0. Let R be such 
that 0< R < R'. For every r with 0< r ~ R we have 

r 
M(u,O,r) ~ M(u,O,R) + X(u,O)logR:' 

PROOF. Consider the convex increasing function F in ] - 00, log R' [ such that 
M(u, 0, r) = F(log r) (see Figure 4.1). The corresponding graph in] -oo,logR] 
lies below the straight line passing through the point B = (logR,M(u,O,R)) 
with slope X(u,O). The equation of this line is 

r 
Y = M(u,O,R) + X(u,OHlogr -logR] = M(u,O,R) + X(u,O)logR:' 

The inequality follows. o 

4.4.37. Corollary (Schwarz's Lemma for Holomorphic Functions). Let f be a 
holomorphic function in a neighborhood of B(O, R) with a zero at the origin of 
multiplicity m = m(f, 0) > 0. For ° ~ Izl = r ~ R we have 

If(z) I ~ M(lfl, 0, R) c~lr· 

PROOF. Let u = loglfl in the previous proposition. o 

Let X be a Hausdorff topological space and f: X --+ ~ = [ - 00, 00]. We 
introduce the upper regularized function f* of f and the lower regularized 
function f* of f by 

f*(x) := lim sup f(x), f*(x) := lim inf f(y). 
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The function f* is upper semicontinuous (u.s.c.) and f* is lower semicon
tinuos (l.s.c.). Furthermore, f* is the smallest u.s.c. majorant of f and f* the 
largest l.s.c. minorant of f Therefore, f is U.S.c. if and only if f = f*, and f is 
l.s.c. if and only if f = f*. 

4.4.38. Proposition. Let n be an open set in C and u: n -+ [ -00, oo[ be such 
that u E L~c(n) and u(z) ~ A(u, z, r) for every B(z, r) £; O. Then u* is subhar
monic in O. 

PROOF. We have u(z) ~ u*(z) ~ A(u, z, r) since A(u, z, r) is continuous in 0,. 
Therefore u*(z) ~ A(u*, z, r) and, since u* is U.S.c., u* is subharmonic. 0 

4.4.39. Remark. We have in §4.4.38 that u = u* a.e. Namely, 

lim A(u, z, r) = u(z) 
,-+0 

at every Lebesgue point of u (cf. [HS]), that is, a.e. From the chain of 
ineq uali ties 

u(z) ~ u*(z) ~ A(u, z, r) ~ A(u*, z, r) 

and u* subharmonic, we also conclude that everywhere 

u*(z) = lim A(u*,z,r) = lim A(u,z,r). 
,-+0 ,-+0 

Therefore u = u* a.e. 

4.4.40. Proposition (Hartogs's Lemma). Let {Un}n~l be a sequence of subhar
monic functions in an open set n of C. Assume they are uniformly bounded above 
on every compact subset of n. Let u := lim sup un and u* its upper regulariza-
tion. Then n-+oo 

(i) the function u* is subharmonic; 
(ii) assume there is a continuous function g in 0 such that u ~ g in O. Then, for 

every compact K £; 0 and every e > 0 there is an integer N such that 

for z E K, n ~ N. 

PROOF. Let ({In := sup Uk' The functions ({In and u = lim ({In' satisfy the hypoth-
k~n n-oo 

eses of Proposition 4.4.38. Therefore ({J: and u* are subharmonic. Furthermore 

u* = lim ({J:. 

In fact, ({In+l ~ ({In implies ({J:+1 ~ ({J:. Therefore the limit of ({J: exist, is sub
harmonic, and clearly u ~ lim ({J:. It follows that u* ~ lim ({J:. Moreover, 

n-+oo 

both sides coincide except possibly in a set of Lebesgue measure zero (just use 
the previous remark). The identity follows now from the following lemma. 
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4.4.41. Lemma. Let u l' U2 be two subharmonic functions in 0 such that U1 = U2 
a.e., then U1 == u2. In particular, u = u* whenever u E SH(O). 

PROOF. It follows from the following more general statement. 

4.4.42. Lemma. Let U1 be subharmonic and U2 be u.s.c. in o. If U1 = U2 a.e. then 
U1 S; U2 everywhere. 

PROOF. Let us assume there is Zo EO such that u2(zo) < U1 (zo). Then there 
is 0 > 0 such that u2(z) < U1 (zo) in B(zo, 0). For 0 S; r S; 0 we then have 
l(u2 , Zo, r) < U1 (zo) S; l(u1, Zo, r), therefore A(u2 , zo, 0) < A(u1, ZO, 0), which 
contradicts the hypothesis. 0 

Returning to the proof of Proposition 4.4.40, let now K c:c: 0, B > 0 be 
given. Set En := {z E K : rp:(z) - g(z) ~ B}. En is then a compact set and 

since u* S; g. There is therefore nCB, K) such that n ~ nCB, K) implies En = 0. 
(The En are nested.) Therefore rp:(z) S; g(z) + B for z E K. Since Un S; u: S; rp:, 
the proposition follows. 0 

4.4.43. Remarks. (1). Let {Un}n;;'l be an increasing sequence of functions in 

SH(O) which is locally bounded above and u(z) := lim un(z). Then u* E SH(O) 

and the set {z E 0: u(z) < u*(z)} has Lebesgue measure zero. 
(2) The statement of §4.4.40 holds when we have a family Ut depending on 

the parameter t > 0, (ut)t>o uniformly bounded above on compact sets and 
u = lim sup ut • 

t-oo 

Some results comparing the averages of a subharmonic function in different 
points are given later. They will be applied to a division problem. 

4.4.44. Proposition. Let 0 be an open subset of C, u subharmonic in 0, and K 
a compact subset of o. There are two positive constants A, B depending only 
on u and K such that if Zo, Zl are any two points in 0, 0 < ro, r1 such that 
B(zo,ro) £ K, B(zl,r1) £ K, and the segment [ZO,ZlJ £ K, then 

Il(u,zo,ro) - l(u,zl,rdl S; Alz1 - zol + B[log+(1/r1 ) + 10g+(1/ro) + 1J. 

PROOF. Let 0 1 be a relatively compact subset of 0 such that K £ 0 1 . We can 
apply the Riesz's decomposition theorem to u and obtain 

u = UI' + h 

with p. = Au, h harmonic in 0 1. We have evidently (since [ZO,ZlJ £ K) 
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1A.(h,zo,ro) - A.(h,zl,r1)1 = Ih(zo) - h(Zl)l:::;; k11z1 - zol, 

for some constant k1 that depends only on hand K. Our problem reduces to 
study only the case u = u,.. Let 0 < R < dist(K,n~). We will start by esti
mating A.(U",zl,R) - A.(U",zo,R). For that purpose recall that 

A.(U", " R) = r A.(logl· - tl, " R) djl(t), In, 
where the dot indicates that the average is taken with respect to that variable. 
Let NR (" t) represent the integrand, there are many ways to compute it 
explicitly, for instance, see §4.6.2, 

1 f2" '6 {logit -" if It - " ~ R. 
NR(',t) = 2n ° loglt -, - Re" IdO = 10gR if It _" < R. 

Let us now estimate INR(Zl,t)-NR(zo,t)l. Let z(s)=zl+s(zo-zd, 
dg o :::;; s :::;; 1, and g(s) = NR(z(s), t). We can compute ds (s) for the values of s such 

that Iz(s) - tl # R. This excludes at most two values. We have 

and 

dg = 0 
ds 

if Iz(s) - tl < R 

dg 1 (t - z)(zo - zd + (f - z)(zo - zd 
ds = -2 Iz(s) - tl 2 

if Iz(s) - tl > R. 

Idgl lit - zllzo - zll . 
Therefore, ds :::;; 2 R2 In the second case. Clearly, for t E n 1, 

1 
z E K, we have 21t - zl/R2 :::;; c. It follows that 

Ig(l) - g(O)1 :::;; CJzo - z 11· 

This implies that 

1A,(U",Zl,R) - A.(U", zo, R)I :::;; Cjl(n1)lz1 - zol 

and 

1A,(U,Zl,R) - A.(u,zo,R)I:::;; Alz1 - zol· 

Let us now estimate I A,(u, z l' R) - A.(u, z l' r1 )1. Assume first r1 < R. Then by 
Gauss' theorem 
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The other case r1 :?: R is easier since r1 < Ro < 00, with Ro a constant that 
depends only on K. Since the point Zo can be treated the same way we obtain 

[ +1 +1 ] \),,(u,zl,rd-),,(u,zo,ro)\:s;A\Zl-ZO\+B log -+log -+1, 
ro r1 

as we wanted to prove. o 

4.4.45. Theorem. Let U be a subharmonic function in an open subset Q of C, K 
a connected compact subset of Q. There are two real constants a, b, b > 0, such 
that for every disk B(z, r) £: K one has 

),,(u, z, r) :?: a + b log r. 

PROOF. Let 0 < oc < dist(K,QC), Ka = {z E c: dist(z,K):S; oc}. There is a finite 
number N of disks B(z;, oc) such that Z; E K and 

K £: U B(z;,oc) £: K a • 
l,;;,;N 

Let p, 0 < p < oc/2, be the Lebesgue number of this covering of K and Zo E K 
be such that u(zo) > -00. (We can suppose Zo exists since we are only 
interested in the case K contains some disk.) 

Let us show that there is a constant C > 0 such that 

\),,(u,z,p) - ),,(u,zo,p)\ :s; Clz - zo\ (z E K). 

We are going to use that the proof of the preceding proposition shows that 
we can take B = 0 when ro = r1 = p, independent of the points considered. 
The only problem to surmount is that the segment [z,zoJ does not belong 
necessarily to Ka. The problem only arises if B(z, p) and B(zo, p) are not both 
contained in the same disk B(z;,oc). In that case \z - zo\:?: p. Since K is con
nected there is a chain of disks B(Z;k' oc), 1:s; k:s; n, such that B(zo, p) £: B(z;n' oc), 
B(Z;k' oc)nB(z;k+I' oc) # 0 if 1 :s; k :s; n - 1 and B(z, p) £: B(z;" oc). W~ can also 
assume that in the intersection we can find X k such that B(Xb p) £: 

B(Z;k' oc) n B(z;k+" oc), by the definition of Lebesgue number. Now we have that 
z, Xl' X 2 , ... , Zo are such that the successive segments lie in K a , therefore 

\),,(u,Z,p) - ),,(u,zo,p)\ :s; \),,(u,z,p) - ),,(u,x 1 ,p)\ + ... 

+ \l(u,xn,p) - l(u,zo,p)1 

:s; ANp:s; Clz - zol. 

Let us consider now separately the cases r :?: p and 0 < r < p for a disk 
B(z,r) £: K. 

If r :?: p then: 

l(u,z,r):?: ),,(u,z,p):?: l(u,zo,p) - Alz - zol 

:?: inf (),,(u,zo,p) - Alz - zol) = f3 > -00. 
zeK 
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If 0 < r ~ p we have, since B(z,p) S; Ka , 

1 fP 1 (f ) J-I(Ka) p A(U,Z,p) - A(u,z,r) = -2 - dJ-l dt ~ -2-log -. 
1l: r t B(z,!) 1l: r 

Therefore 

J-I(K a } P Il(Ka} P 
A(U, z, r) ~ A(U, z, p} - -2-log- ~ A(U,Zo,p) - Alz - zol - -2-log-. 

1l: r 1l: r 

- Il(Ka) 
Let now r1 := sup{r > 0: 3z E K such that B(z,r) S; K} and let b:= 21t' 

Choose now a1 so that a1 + b log r1 ~ p. 
If 0 < r < p then we have 

A(u,z,r) ~ p - blogp + blogr ~ a + b log r. 

If p ~ r ~ r1 then we have 

A(u,z,r) ~ p ~ a1 + blogr1 ~ a + blogr, 

for a convenient choice of a, and the theorem has been proved, o 
4.4.46. Definition. Let n be a bounded open subset of C, f holomorphic in n 
and U subharmonic in n. We say that f (resp. u) has polynomial growth in n 
if there is M > 0 and p > 0 such that 

M 
I f(z) I ~ d(z,nc)p (z E n) 

(resp. u(z) ~ M - P log d(z, nC), ZEn). 
Therefore f has polynomial growth if and only if loglfl has polynomial 

growth. 
We have now the following "division" theorem. 

4.4.47. Theorem. Let n be an open connected set. Let u be a subharmonic 
function of polynomial growth in nand w a function subharmonic in a neighbor
hood W of n such that h = u - w is subharmonic in n. Then h is also of 
polynomial growth in n. 

PROOF. We have u(z) ~ M - plogd(z,nC), M E IR, p > O. We also have 

h(z) ~ A ( h, z, d(Z~ nC
) • 

( d(z, nC») d(z, nC) 
For (E oB z'-2- we have d((,nC ) ~ -2-' therefore 

h(O = u(O - w(() ~ M - plogd((,nC) - w(o 

~ (M + plog2) - plogd(z,nC) - w((). 
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From the previous theorem we can conclude that there are a, b E IR, b > 0, 
such that if B(z, r) £ Q, then 

).(w, z, r) ~ a + blogr. 

• t" d(z,QC) b' 
In partIcular, lor r = --2- we 0 tam 

( d(z, QC») 
A. w,z'-2- ~ a - blog2 + blogd(z,QC). 

Therefore, 

h(z) ~ A. ( h, z, d(Z; QC}) ~ M + P log 2 - P log d(z, QC) _ A. ( w, z, d(Z;QC») 

~ Mi - Pi logd(z,QC). 

with Pi = P + b, Mi = M - a + (p + b)log2. D 

4.4.48. Corollary. Let Q be a connected bounded open subset of C, f holomor
phic in Q of polynomial growth, g holomorphic in a neighborhood ofn. If h = fig 
is holomorphic in Q then h has polynomial growth in Q. 

This corollary is related to very precise lower bounds on the absolute 
value of holomorphic functions, which go by the generic name of "minimum 
modulus" theorems. We will see other ones in this book. The quintessential 
one is the Cartan-Boutroux Lemma 4.5.13 (cf. [Le], see also [Momm] and 
references therein, [Vall]). 

EXERCISES 4.4 
Q is a domain of C and B = B(O, 1). We write z = x + iy. 

1. Show that the subset of SH(Q), consisting of the continuous subharmonic func
tions, can be characterized as the set of real-valued functions u in Q such that for 
every compact K £: Q there is an open neighborhood V of K, a decreasing 
sequence u. E C2(V), u. subharmonic and u is the uniform limit of the u. on K. 

2. Let u: Q -+ [-00, oo[ be u.s.c., u ¢ -00. Assume that for every a, bE IR, the 
function Z I--> eax+by+u(z) is subharmonic in Q. Show that u is subharmonic. Is 
the converse true? 

3. (i) Let f E Ci(IR), f'(t) > 0 for every t, and v E Ci(Q). Assume that for every 
a, b E IR, the function Z I--> f(ax + by + v(z» is subharmonic. Show that v is 
subharmonic. 

(ii) Let f E Ci(IR). Assume that for every a, b E IR and every v E SH(Q) II C2(Q), 
the function ZI--> f(ax + by + v(z» is in SH(Q). Show that f is a convex 
function. 

4. Give an example ofa u.s.c. functionf: Q -+ [ -00, 00 [such that for every compact 
K £: Q, fl K takes its maximum value on oK, but f ¢ SH(Q). 
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5. Let f E SH(n) and qJ E CR(n) such that qJ is subharmonic in 
n\ {z En: fez) = -oo}. Show that qJ is subharmonic in n. (Hint: For e > 0, 
show that qJ + ef E SH(n).) 

6. Assume that (u.).;" £;; SH(n) and u. -> u uniformly on n when n -> 00. Show that 
u E SH(n). Show that it is enough to assume the convergence is uniform over 
compact subsets of n. 

7. Consider the space SH(n) with the topology of locally uniform convergence, 
suppose 0 #- IF £;; SH(n) is a relatively compact family. Show that the function 
g(z) = sup{f(z) : f E IF} is subharmonic in n. 

8. Let H = {z E C: Imz = y > O}. Let v E SH(H) be such that v(z) ~ A + By for 
some constants A, B. Show that 

qJ(Y) = sup vex + iy) 
XE R 

is a convex function of y. (Hint: let 0 < a < b, L(y) = cxy + P be such 
that qJ(a) ~ L(a), qJ(b) ~ L(b). Let e > 0 and consider the auxiliary function 
v.(z) = v(z) - L(y) - e(X2 - y2 + b2). Show that v. ~ 0 in the strip a ~ y ~ b. 
Conclude that qJ is convex.) 

*9. Let ao, a" ... , a. E £(C), ao(z) #- 0 for every z E C. Consider P(z, w) = a.(z)w· + 
a._, (z)w·-' + ... + a, (w)z + ao(z). Let Z(P) = {(x, w) E C2 : P(z, w) = O}. 

(i) Show that Z(P) is a closed subset of C2 and Z(P) n (C x {O}) = 0. 
(ii) Define qJ(z) = d(O, {w : P(z, w) = O}). Show qJ is a continuous function with 

values in ]0,00 [. (Hint: use Hurwitz's theorem.) 
(iii) For every fixed z, consider the function wt-+(P(z, w)f'. It is holomorphic in 

B(O, qJ(z». Let 

1 ~ k 
--) = L.... cxk(z)w . 
P(z, w k;,O 

Show that the CXk are entire functions. 

(iv) Show that log (_1_) = lim sup! 10glcxk(z)l. Conclude that qJ is subharmonic 
qJ(z) 1-<Xl k 

in C. 
(v) Assume that there is p > 0 such that (C x B(O,p)) n Z(P) = 0. Show that 

there is R > 0 such that for every z, the polynomial equation P(z, w) = 0 has 
a root of absolute value exactly R. (Hint: What can you say about qJ under 
this assumption?) 

*10. Let 0 ~ aij E SH(n), 1 ~ i, j ~ n. Let A(z) be the n x n matrix whose entries are 
the functions au. Suppose A(z) is an orthogonal matrix for every ZEn, show all 
the aij are constant functions. 

11. Let D = {z E C: R, < Izl < Rz}, 0 ~ U, E SH(D). The aim of this exercise is to 
generalize §4.4.26 and show that 

r t-+ mer) := (2~ I2" (u(re i9 ))2 dB yl2 

is a convex function of logr when Rl < r < R2 • 

(i) Show that it is enough to prove it for 0 < U and u E Coo. 
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(ii) Show that if one can prove that the function m is subharmonic we are done. 
(iii) Show that if one could prove that, for every n E N*, the function 

(
1 n-I )1/2 

un(z) = - L (u(e2nik/nz»2 
n k=O 

is subharmonic, the statement would be correct. 
(iv) Let VI' ..• , Vn E Coo, 0 < Vj E SH(D). Prove that z t-> (vi(z) + ... + V;(Z»I/2 

is sub harmonic. Note that for a fixed Zo there are real nonnegative num
bers x I' ... , Xn such that xi + ... + x; = 1 and (vi(zo) + ... + v;(zoW/2 = 
xlvdzo) + ... + xnvn(zo)·Concludetheproofof(iv)andoftheoriginalclaim. 

*12. (Hopf's Lemma). Assume that n has a C2 regular boundary. Let f E Ck(n), f 
harmonic in n and not constant. Let Zo E on be such that Zo is a strict local 
maximum for f (that is, f(zo) ~ f(z) for every z E B(zo, r) ('\ n, for some r small.) 

of 
We want to conclude that on (zo) > 0, n = outer normal. 

(i) Show we can find a disk B(zl,R) such that Zo E B(zl,R) ~ n ('\ {zo}. 
(ii) Consider the region B' = B(z I' R) ('\ B(zo, r), where r, 0 < r < R, is chosen so 

that the hypothesis of the local maximum is satisfied. Show that for IX > 0 
sufficiently large, the function h(z) = e-·1z - zd' - e-·R' satisfies t..h > 0 in B'. 

(iii) For e > 0 small, consider the function cp = f + eh. Show that for 
z E B(zo, r) n n, cp(z) < f(zo). Conclude that cp(z) < f(zo) in oB'\ {zo}, while 
cp(zo) = f(zo)· Deduce that 

ocp 
on (zo) ~ O. 

Show that this implies that ! (zo) > O. 

13. Let U ~ 0 in n, show that log u is subharmonic in n if and only if u is U.S.c., u ¢ 0, 
and for every open set U in n and every h harmonic in U, the function ueh is 
subharmonic in U. 

14. Let u ¢ 0, u.s.c. in n, u ~ O. Show that log u is subharmonic in n if and only if u" 
is subharmonic in n for every IX > O. 

15. (i) Let 0 < U be a continuous function in the annulus D = {z E C: 0::;; RI < 
Izl < R2 ::;; oo}. Show that 

r t-> log A(U, 0, r) 

is a convex function of log r for r E ] R I- R2 [ if for every real IX the function 

r t-> r' A(U, 0, r) 

is a convex function oflog r. 
(ii) With u as in (i), assume further that log u is subharmonic in D. Show that 

for real IX, z t-> log u(z) + IX loglzl is subharmonic and the same is true for 
zt-> Izl"u(z). 

(iii) Under the conditions of (ii), compute A(lzl'u(z), 0, r) in terms of A(U, 0, r). 
(iv) Conclude that if 0 :5: u in D and log u E SH(D), then 

r t-> log A(U, 0, r) 

is a convex function ofJogr, r E ]R I , R2[' 
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(v) Let u ~ 0 for which logu E SH(B). Show that 

rf--+ log A(u, 0, r) 

is a convex function oflog r in ] 0, 1 [. 
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16. Let u: B --+ [ -00,00 [be u.s.c. and ¥= -00. Show that iffor every y E] -1,1 [the 
function 

X 1--+ u(x, y) (Ixl <yT7) 

is a convex function of x, and for every x E ] -1, 1 [, the function 

Y 1--+ u(x, y) (iyl <Jt=?) 

is a convex function of y, then u E SH(B). (Hints: (i) Show that if (h, k) E 1R2 are 
such that 0 < h2 + k2 = r2 sufficiently small, then u(xo,Yo) :;;; 
Hu(xo + h,yo + k) + u(xo + h,yo - k) + u(xo - h,yo + k) + u(xo - h,yo - k)]. 
(ii) Let CP. be a decreasing sequence of continuous functions converging to u in 
8(zo, r) for some Zo E B, 0 < r small. Use (i) to conclude that u(zo) :;;; A(cp., zo, r).) 

17. Recall from the last chapter that A(B) = Jt'(B) 11 '6'(8). 
. ex 1 - Izl 

(I) Let IE A(B). Let y be an arc of 8B oflength ex > 0 and A(Z) = - ~~, Z E B. 
21l 1 + Izl 

Show that 

( )
).(%) ( )1-).(%) 

I I(z) I :;;; max 1/(')1 ma~ 1/(')1 . 
(ey l;eB 

(Hint: Let M ~ m be such that M > max 1/(')1, m = max I/K)I. Show that 
I;e Ii I; E Y 

cp(z) = 10gmax(l/(z)l,m) = logm + log+ ('/~)I) is subharmonic in Band 

1 i2~ 1 - Izl2 . 
cp(z) :;;; h(z):= - I is 12 cp(e'8) dO. 

21l 0 e - z 

Show that h(z):;;; A(Z) log m + (1 - A(z»logM in B. Conclude that (*) holds.) 
(ii) Use (i) to show that if (.f.).;'1 £ A(B), 1I.f.llli:;;; M, and the sequence (.f.). 

converges uniformly in some arc y of length ex > 0, then (.f.). converges in 
Jt'(B) to a bounded holomorphic function f 

18. Let IE Jt'(C). Assume I/(z) I :;;; AeB1I;IP, A, B, P > o. Estimate the function 
1 

vCr) = 21l (L\ logl/l) (B(O, r», forlarge values ofr. Apply to the case I(z) = g(z) - a, 

for a E C fixed, Ig(z)1 :;;; AeB1%IP. 

19. Let I E .,I(C), compute L\ logi/i. Is logl/l subharmonic? Can you derive Jensen's 
formula in this case from the Riesz's decomposition theorem anyway? 

20. Let D = {z E c: 0:;;; Rl < r < R2 < oo}. Let IE A(D), I(z) #- 0 for every point 
in D. Let m 1 = min If(z)l, m2 = min If(z)l. Estimate 

~-Rl ~-~ 

min If(z) I 
I%I-r 

*21. Let r be a Jordan arc contained, except for its endpoints, in the open angle 
IArg zl < ex < n. Assume its endpoints a, b lie respectively on the rays Arg z = ex, 
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Arg z = - oc. Define a Jordan domain 0 as the interior ofthe Jordan curve formed 
by [0, a[, rand ]b, 0[. Let f E Jf(O) be such that 

- {m if'Er 
~~ If(z)l:5: M 'E [0, a] u [b,O] 

and letR = max{I'I:' E n. Show that for any rEO n JR, one has the inequality 

If(r) 1 :5: M 1 -(,/R)·/'m(,/R)·/'. 

Note this estimate is only interesting if m < M. (Hint: for any e > 0 consider 
the auxiliary function cp,(z):= f(z)exp(e(z/r)"/"), z E O. Obtain an estimate for 
sup 1 cp,(z) I, a corresponding estimate for If(r)l, and minimize the latter over all 

n 
e > 0.) 

Conclude that if a sequence (f.).;'1 ~ Jf(O) is uniformly bounded in 0 and 
converges uniformly to zero on r, then it converges to zero in Jf(O). 

22. Let f E Jf(B), p > O. Show that 

- If(zW dm(z) :5: ~ If(e i6 W dO. 1 i 1 f" 
n B 2n _" 

In particular, 

(Is If(z)12 d:(Z») 1/2 :5: (IB If(zW I~:I) 1/2. 

(The functions f E Jf(B) for which lim f" If(re i6W dO < 00 constitute the 
,-1- -n 2n 

natural domain for the inequality. One says f E HP(B). There is a very rich theory 
about the space HP(B), see [Du2], [Koo].) 

n 

*23. (a) Let OCo, oc 1 , ••• , ~ 0 and Pn:= L OCjOCn_j • Show that 
j=O . 

P; :5: (n + 1) L ocJoc;-j. 
j=O 

(b) Let f E Jf(B). Show that 

f If(zW dm(z) :5: (f If(zW IdZ I)2 . 
B n iJB 211: 

Why is this not an obvious consequence of Exercise 4.4.22? (Hint: introduce 
the function cp(z) = (f(Z»2, compute both sides in terms of their Taylor 
expansions and use part (a).) 

(c) Let f E Jf(B) show that 

Is If(zW d:(z) :5: (filB If(Z)II~:ly. 
(Hint: Assume first f does not vanish on B.) 

(d) Let 1/1 E .Jft'(B) which is injective in aB, and let 0 = I/I(B), r = a~. Use (c) to 
show that the isoparametric inequality holds: 
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men) ::s; ~ (t(rW 
4n 

(Note that one can refine the previous parts to show also that equality holds 
in the isoparametric inequality if and only if n is a disk. For related inequali
ties, see [Car]. Moreover, part (c) can also be used to show that if u E ~(D), 

u > 0 throughout, then logu E SH(D) is subharmonic if and only iffor every 
disk B(zo, r) £; D one has 

(A(u2; zo, r))1/2 ::s; A.(u; zo, r), 

see [Ra, 3.26] and references therein.) 

24. Let u be a nonnegative continuous and subharmonic function in B(O, R). Let 
Zo E B(O, R), C be a circle of center Zo and contained in B(O, R). Show that 

f. u(z)ldzl ::s; (1 + ~) f u(z)ldzl· 
c R oB(O.R) 

(Hint: let v be the harmonic function in B(O, R) that coincides with u on aB(O, R). 

Compare L u(z)ldzl and v(zo)· Then use the Poisson formula.) In the case where 

u(z) = IJ(zW, J E A (B(O, R)), A. > 0, and C is a convex curve inside B(O, r), it is 
possible to prove the more general inequality 

f. IJ(zWldzl::s; 2 f IJ(zWldzl 
C oB(O.R) 

(see [Gab 1], [Gab2]). 

25. Use Theorem 4.4.5 to prove that if J E A(B(O, 1)), J ¥= 0, then 

fn logIJ(e i8)1 dO > -00. 

(In fact, weaker conditions that continuity up to aB(O, 1) suffice, e.g.,fbounded.) 
Conclude that if g is a holomorphic function in H = {z: Imz > OJ, g is 

continuous in ii = {z: Imz;;::: O} and bounded, then 

foo Iloglg(x)11 dx - 00 

-00 1 + x 2 -

implies that g == O. 

26. Give a different proof of 4.4.22(1), using that loglzl and ~ are locally integrable; 
z 

hence the computation of the derivative aa loglzl = ~ aa loglzl2 = ~, which is 
z 2 z 2z 

correct for z =1= 0, holds everywhere in the sense of distributions. Use the pre-

. I a 1 • 
VIOUS Y proven a- - = nu to conclude the proof. 

zz 

*27. Leta = {z: ~ < Izl < r}, B = B(O, 1),f: a -+ B holomorphic,fcontinuous in n, 
I10glz1 1 

and J(aB) ,;; aB, and let h(z) = - -~ + -. 
2 logr 2 
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(a) Let u(z) := L h(O, where the sum takes place over the solutions ( E Q of the 
( 

equation 1(0 = I(z). Show that u E SH(n). 
(b) Assume II {z : Izl = r} is injective. Show that u(z) :s 1 everywhere in n. 
(c) Use (b) to conclude that II {z: 1 < Izl < r} is injective. 

1 
(d) Use the function g(z) = z + - to construct an example of a function I that is 

z 
not injective in {z: rx < Izl < r} for any rx < 1 (cf. [BGHTJ). 

§5. Order and Type of Subharmonic Functions in C 

As we have already seen, a function u which is subharmonic in C cannot be 
bounded above unless u is constant. In fact, M(u, r) grows at least as fast as a 
linear function of log r. It is therefore natural to compare the order of growth 
of M(u, r) with that of different functions of log r, and classify, if possible, the 
subharmonic functions according to the different orders of growth of M (u, r). 

In what follows, an order of growth will be a positive, nonconstant convex 
function of log r. The typical functions are ra, exp(ra ), exp( exp(ra )) = exp2 (r a ), 

... , expp(ra ), with p integer ~ 1, IX > 0, and eXPk = exp(exPk_l)' Let us denote 
IOg2X = log(logx) (for x ~ e), 10gkX = 10g(lOgk-lX) (for x ~ eXPk1). We can 
now introduce the concept of class of growth of a subharmonic function. 

4.5.1. Definition. For a subharmonic function u in C we say that 

• It is of class zero if 

. M(u,r) 
hm sup -1-- < 00. 

r-+ao og r 

• It is offinite class p ~ 1 if p is the smallest integer k ~ 1 such that 

I. 10gkM(u, r) 
1m sup I < 00. 

r-+ao og r 

• It is of infinite class if no such integer exists. 

If p = lone says also that u is of finite order. In this case, the number 
p E [0, 00 [ defined by 

I. 10gM(u,r) 
p = Imsup I 

r-+oo og r 

is called the order of u. 
For functions of positive order p > 0, we have also the concept of the type r: 

. M(u,r) 
r = hmsup --p-' 

r-oo r 
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We say that u is of minimal (resp. normal, maximal) type if r = 0 (resp. it is 
finite and nonzero, infinite). The function u is said to be offinite type if it is of 
either minimal or normal type. 

Finally, if f is an entire function we use for f the terminology used for 
u = loglfl. 

4.5.2. Examples and Remarks. (1) If fis an entire function, then f is of class 
zero if and only if f is a polynomial. 

loglzl + J(loglzl)2 + 4 . .. 
(2) u(z) = 2 IS a subharmomc functIon of class zero 

which is not the logarithm of If I, for any f entire. 
(3) Let P be the polynomial P(z) = anzn + ... + ao, Zn =1= o. Then exp(P) is 

an entire function of order n and type I an I. The function eXP2 (P) is of class 2, etc. 
(4) More generally, iff is an entire function of class p then exp(f) is of class 

p + 1. 
(5) An entire function which is not a polynomial is called transcendental. 

We will see that there are transcendental functions of order zero. Such a 
function f verifies the condition: 

Ve > 0 3c, ~ 0: If(z)1 ::;; c,exp(lzl') (z E C). 

In the same way a function f will be of order p ~ 0 if and only if: 

(z E C), 

and p is the smallest number having this property. 
The entire functions most often considered are those of finite order since 

they arise in a natural way in harmonic analysis. Quite often, they are of 
exponential type. These are entire functions for which there are constants A, 
B > 0 such that 

If(z)1 ::;; A exp(Blzl) (z E C). 

In other words, these functions are precisely the entire functions of order < 1 
together with the functions of order 1 and finite type. 

(6) If u1 , U2 are two subharmonic functions of the same class, then U 1 + U 2 

is at most of the same class. If the classes are different, then U 1 + U 2 is of the 
largest class. One can verify the same property holds for orders. 

(7) The class, order, type of an entire function, and those of its derivative 
coincide. 

(8) If f is an entire function without any zeros and of finite order p (resp. 
class p) then the function 11fis of the same order p (resp. class pl. 

The proofs of the nonevident parts of these statements will constitute the 
rest of this section. 

4.5.3. Proposition. The entire function f(z) = I anzn is of finite order p if and 
only if n;>:O 
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. nlogn 
p. = hm sup I I I n-oo - og an 

is finite. In that case p = p.. 

PROOF. We show first that p. :::;; p. We will use that 

lanl :::;; M(I~I, r), r > o. 
r 

If p. = 0 we have clearly that p. :::;; p. Let us assume 0 < p. :::;; 00. If p. < 00, let 
R = p. - e, with e small and positive, so that R > 0, and let R > 0 arbitrary if 
p. = +00. It follows that for infinitely many indices n ~ 1 we have loglanl < 0 
and 

1 
nlogn ~ Rlog raJ. 

Therefore for these indices 

I I I -nlogn 
og an ~ R 

and 

10gM(lfl,r) ~ loglanl + nlogr ~ n(IOgr _ lOin). 

Set rn = (en)l/R. Then 

and 

------,;------ > R . log log MUfl, rn) (lOg n - log R) 
logrn - logn + 1 

We conclude that 

I· 10glogM(lfl,r) I· 10glogM(lfl,rn) 
p = 1m sup I ~ 1m sup I ~ R. 

'-00 og r n-oo og rn 

Since R is an arbitrary real number smaller than p. it follows that p ~ p.. 
Let us show now that p :::;; p.. If p. = +00 there is nothing to prove. Assume 

p. < 00 and let e > O. For n sufficiently large we have 

nlogn 
o :::;; I I I:::;; p. + e, - og an 

that is, 



§5. Order and Type of Subharmonic Functions in C 355 

Note this condition also implies that f is entire. Since the addition of a 
polynomial does not change the order of a function we can assume the last 
inequality holds for every n :?: 1 and that ao = o. We have therefore for r :?: 1: 

M(lfl,r) ~ L lanlrn ~ L n-n/(Il+£)rn = S1 + Sz, 
n;o:O ";0:1 

where 

Sl = L n-n/(Il+£)rn, Sz = L n-n/(Il+el r". 
1 sn«2r)Ii+f. n:?:(2r)Ji+t 

In S2 we have rn- 1 /(I'+f-) ~ 1/2. Hence S2 ~ 1. On the other hand 

Sl ~ r(2,)"+' L n-n/(Il+ej ~ M exp((2r)ll+t log r) ~ M1 exp(rll +2£). 
n:;::l 

for some constants M > 0 and M 1 > O. It follows that p ~ J..l + 21':. Since I': > 0 
is arbitrary, the proposition has been proved. 0 

4.5.4. Proposition. Letf(z) = L anz"anentirefunctionoforderp,O < p < 00. 
Let n;o:O 

Then f is of type t, v = pet (with the understanding that f is of maximal type 
if and only if v = +00.) 

PROOF. If v < 00 then f is at most of order p and if v > 0 then f is at least of 
order p. Namely, let I': > 0, then if v < 00 and n large 

n la"IP/n ~ v + 1':, 

hence 

nlogn p 
---Io-'g'--I a-II I ~ (1 - 1 og((-;-v -+-I':C-:)j---Cn)" 

it follows from the previous proposition that the order of f is at most p. 
Analogously one shows the other statement holds. 

Assume now that 0 < v < 00 and we will show that t ~ v/ep. Let I': > 0, for 
n large one has 

lanl ~ (v~~y/n 

and one can suppose this inequality holds for n :?: 1 and ao = 0 since adding 
a polynomial to f will not change its type. Therefore 

(
rp(v + 1':))nIP 

If(z) I ~ L lanlr" ~ L . 
11;0:1 n;o:1 n 

(
rp(v + I':))t/P 

Consider the function ep(t) = --t- for t > o. Its maximum value is 
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taken at t=(~!9~~ and it is exp(v+e)!~). We have thus, for some 
e pe 

convenient M > 0, 

Sl = .. L (~~f.)~~)n/p ~ (v + 2<:)rp exp (V + e)r~) 
1 $II <:(v+ 2,)rP n pe 

~ M exp ((V +p!B)rp
) 

S2 = I (v + B)~~)nfP ~ I (~!~)n/p = A41 < C/). 

0>(v+2,)," n n;>:l V + ~e 
It follows that T ~ vjep. To show the opposite inequality, note that ifO < B < v 
there are infinitely many n such that 

ne 
In the Cauchy inequality lanl ~ r~nM(lfl,r), let us take r: = -~. One 
obtains 

v 
Therefore T ;:::-. 

ep 

Examples 

v - B 

(rep)nIP 
(1) f(z) = I - zn is an entire function of order p and type T. 

n;>:l n 
(Tzt 

(2) The same holds for f(z) = I r(l--j-) 
n;>:O + n p 

D 

4.5.5. Proposition. Let v l' v2 be two subharmonic functions in C such that the 
function v = VI - v2 is also sub harmonic. Assume v2 (0) > -00. For every s > ° 
and ). > ° one has 

PROOF. Let R = (1 + Je)s, r = R - s = ).s and 

qJ = V2 - M(V2' R). 

This function is then subharmonic and negative in R(O, R). This last property 
implies that for any z with Izi = s we have 
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f cpdxdy:s; f cpdxdy, 
8(0,R) B(z,r) 

which can be rewritten as 

or 

r2 A(v1 ,z,r) - r2 M(v 2 ,R);;>: R2(p(0) = R2v2 (O) - R 2 M(V2,R), 

because cp is subharmonic. This last inequality is equivalent to 

A(v1,z,r);;>: M(V 2 ,R)( 1 - (1 + ~y) + (1 + ~y V2(0). 

We use now the hypothesis that v is also subharmonic, 

v(z):s; A(v,z,r) = A(vj,z,r) - A(v1,z,r):s; M(vl,R) - A(v2 ,z,r) 

:s; M(VI,R) + M(V 2 ,R)( (1 + ~y -1) - (1 + ~y V2(0). 

Since z was arbitrary we have 
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M(v, s) :s; M(v l , (1 + A)s) + M(Vl,(l + ),)s) ( (1 + ~y -1) -(1 + ~y V2(0). 

which is the inequality we were looking for. D 

4.5.6. Corollary. If VI and V2 are two sub harmonic junctions of order at most 
p (resp. finite class at most p) such that v = VI - v2 is also sub harmonic, then v 
is of order at most p (resp. finite class at most p). 

~f for every B > 0 there is an 1'/ > 0 such that whenever Izl > 1'/ one has 

then 

. M(v,r) , = hm sup ---- :s; 
r 

and 

'I if'2=0 

2'2 if'l = 0 

(1 + )'0)(1 + 2Ao) 
(1 --t- )'0)' 1 + ------------ ) 2 '2 if r 1 '2 '" 0, 

-0 

where Ao is the positive root of 

(rt!rz)A3 - 3A - 2 = o. 

PROOF. Let us prove only the last statement, the other ones being similar. We 
can assume v2 (0) > -<Xl (otherwise a small translation would achieve this). 
For B > 0 and s large we have 
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M(v,s)::;; (rl + 8)(1 + ,1.)S 

+ (r z + 8)(1 + ,1.)S( (1 + DZ - 1) - (1 + ~r V2(0). 

Hence 

. M(r,s). { (( 1)2 )} r = hmsup --.::;; mf r)(l + A) + r 2 (1 + A) 1 +~. - 1 . 
s~C() S A<-O ). 

If r 2 = 0 one finds r ::;; r 1. If r 2 > 0 one looks for the minimum of 

(1 + A) H~ + (1 + lY - I} 
which is exactly (1 +}'O){:: +(1 +lY -l}With,1.otheonlYPositiveroot 

of (rJrz),1. 3 - 3), - 2 = o. 0 

4.5.7. Corollary. ~f fl, j~ are two entire functions of exponential type at most 
r 1 and r 2 respectively, and iff = fl1f2 is entire, then f is of exponential type r 
with r ::;; r 1 ~f r 2 = 0, r ::;; 2r 2 if r 1 = 0, and 

where ,1.0 is the positive root of (r I Ir z)A 3 - 3A - 2 = O. 

4.5.8. Remark. It follows from §4.5.6. that if f is an entire function without 
any zeros and of finite order p (resp. finite class p) then the function Ilf is 
of order p (resp. class p). More generally, if f and g are entire functions of finite 
order p (resp. class p) and fig is entire, then the function fig is of order at 
most p (resp. class at most p). 

The statement and proof of §4.5.5 are due to Avanissian [A v]. 

4.5.9. Proposition. (Borel-Caratheodory Inequality). Let f be a holomorphic 
function in B(O,p). For 0::;; r < p let d(f,r) = max Ref(z). The following 

Izl=r 
inequality holds for any 0::;; r < R < P 

2r 
M(lfl,r)::;; [d(j;R) ..... Ref(O)]:R= .. ;: + If(O)I· 

PROOF. It is easy to see that we can assume f(O) = 0, f not constant. Hence 
Ref is not constant either and Ref(z) < sl(f,R) if Izl < R. Consider the 
auxiliary function 

fez) g(z) = ... - .... ----... -, 
2d(f, R) - fez) 
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which is holomorphic in B(O, R). Furthermore, Ig(z)1 :'5: 1. In fact, 

2 If(z)1 2 

Ig(z)1 = If(zW + 4d(f,R)(d(f,R) -"':ReR~)j:'5: 1. 

By Schwarz's lemma we have Ig(z)1 :'5: Izl/R. Writingfin terms of g one obtains 

whence 

f(z) = 2d(f, R)g(z) , 
1 + g(z) 

2d(f,R)(lzI/R) 2d(f,R)r 
If(z) 1 < --~~~~~~~~~~~~- < ~~---

- 1 - (lzI/R) - R - r 

if Izi :'5: r < R. The proposition follows immediately from this. o 

4.5.10. Corollary. Let f be a holomorphic function in B(O, p), f(O) = 1 and 
assume further that f(z) '" 0 in B(O, R), 0 < R < p. Then 

2r 
loglf(z)1 ~ -R ~~~~~~~~logM(lfl,R) 

-r 

for 1 z 1 :'5: r < R. 

PROOF. The function g = Logf is holomorphic in B(O, R) and zero at the 
origin. Recalling that 1 Logfl ~ - Re Logf = -loglfl and applying the 
Borel-Caratheodory inequality to g we obtain for Izl :'5: r 

-loglf(z)l:'5: M(-loglfl,r):'5: M(lgl,r) 

2r 2r 
< s#(g R) ~~~~--~~~~ = --M(loglfl R) 
~~~- 'R-r R-r " 

which proves the corollary. D 

Without much difficulty one can obtain now the following results. 

4.5.11. Corollary. Iff is an entire function without zeros of class p + 1, then 
logf is an entire function of class p. Iff is an entire function without any zeros 
of finite order at most p then logf is a polynomial of degree :'5: [p]. 

We have already seen that every transcendental function has a dense range 
and even that the image of every set {izi > R} is dense (Casorati-Weierstrass). 
This statement was made more precise by showing that for every il the 
equation f(z) = il always has infinitely many solutions, with the exception of 
at most a single value il. This result is Picard's Little Theorem 2.7.10. Here we 
can give a very elementary proof for the functions of finite class. (This argu
ment is inspired on a theorem of E. BoreL) 
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4.5.12. Proposition. Let f be an entire function of finite class p ;;:>: 1. We have 

#{a E IC: #U- 1 ({a}» < oo} ::;; 1. 

PROOF. Let a # b be two exceptional values: 

#Cr 1({b})) < 00. 

Therefore, there are two nonzero polynomials P, Q and two entire functions 
g, h such that 

f = a + Pexp(g) = b + Qexp(h). 

Differentiate the two sides of the identity 

a - b + Pexp(g) = Q exp(IJ) 

to obtain 

(P' + Pg')exp(g) = (Q' + Qh')exp(h). 

Let us assume first that P' + Py' ¢ 0, Q' + Qh' ¢ O. The functions g, h are of 
class exactly p - 1, therefore P' + Py', Q' + Qh' are also of class at most p - 1. 
The last identity can be rewritten as 

(P' + Pg')exp(g - h) = Q' -+- Qh', 

hence exp(g - h) if also of class at most p ----- 1. We have to consider two 
separate cases: 

If p = 1, then h is a polynomial and exp(g - h) is also a polynomial, hence 
it is a constant since it does not vanish. Since 

1 
e- h = --b [Q - P exp(y - h)], 

a-

it follows that e h is of class O. This is impossible because h is a polynomial 
which cannot be constant, otherwise f could not be of class 1. 

If p > 1, then e-h would be of class at most p - 1, which is again impossible. 
Otherwise h would be of class at most p - 2. 

The only possibility left is that P' + Pg' == 0 and Q' + Qh' == O. This implies 
that P cannot vanish, otherwise y' would have poles. Therefore P is a constant, 
P' = 0 and g' = O. This is again impossible because f would be a constant. 

D 

The minimum modulus theorem at the end of this section is a far-reaching 
generalization of Corollary 4.5.10. 

4.5.13. Lemma. (Cartan-Boutroux). Let ZI' .•. , Zn be n arbitrary complex 
numbers and P(zl = Il (z - z). For every H > 0 the inequality 

1 ~j 5. n 

IP(z)1 > (~)" 
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holds outside a set which is the union of p disks, p ::;; n, whose ,adii add up to at 
most 2H. 

PROOF. The change of variables , = H Z reduces the problem to the case 
n 

H = n. That is, we must show IP(z)1 ~ (~y outside a collection of no 

more than n circles, the sum of whose radii does not exceed 2n. The set 
K = cv{ Z 1, ... , Zn} is a polygon whose vertices are among the Zj. Let Zk be one 
of these vertices, mk the multiplicity of this value among the Zj. One can easily 
see (by drawing a picture) that there is at least one closed disk D of radius mk 
such that D 11 K = {Zk}. Let us call E the collection of closed disks D such 
that # {j: Zj E D} = radius of D. As we said, E =F 0. Of course, the radii of 
any disk in E is an integer ::;;n. Let'l be the largest value for those radii. 

For any integer p ~ '1 and any a E C it is not possible that B(a, p) con
tains strictly more Zj than p, say p' > p. Otherwise, either B(a, p') E E and 
p' > p ~ '1' which contradicts the maximality of '1' or B(a, p') contains 
p" > p' of the Zj. Then we see again that B(a,p") ¢ E, which means it con
tains p'" > p" of the Zj. And so on, but the Zj are a finite collection and 
this would lead to an infinite set. Therefore, if p ~ '1' pEN, we have 
# {j : Zj E B(a, p)} ::;; p. Choose a1 E C such that B(a1 , '1) E E. The points 
Zj E B(a1"l) are said to belong to the first generation, there are exactlY'l of 
them (counted with multiplicities). Let us take them out. We are left with n - '1 
points. If n - '1 > 0 we can continue and obtain a disk B(a2' '2) by the 
same procedure as earlier '2 ::;; n - '1. Let us see that '2 ::;; '1· If not B(a2' '2) 
contains ,~ ~ '2 > '1 points of the initial set and we know this is impossible. 
The points in B(a2 , '2) are said to be of the second generation. Iterating this 
procedure we obtain integers '1 ~ '2 ~ ... ~ 'p ~ 1, '1 + ... + 'p = n (hence 

p -

p ::;; n), and U B(aj, 'j) ;;2 {Zl'···, zn}· 
j=l 

Our exceptional disks are going to be the B(aj,2,), 1 ::;; j ::;; p. Clearly the 
sum of the radii equals 2n. Let now Z ¢ U B(aj,2'j). If pEN * then we must 

j 

have 

otherwise Iz - ajl ::;; p + 'j ::;; 2'j, which is false. Let k be the smallest index 
such that rk < p, B(z, p) contains no points of the first k - 1 generations. 
Therefore B(z, p) must contain at most p - 1 points of the sequence, otherwise 
it would have been a competitor for the kth generation of points. Let us now 
reorder the sequence by increasing distance to z. Since B(z, 1) contains no 
points of the sequence, we have Iz - zll > 1. The disk B(z, 2) contains at most 
one point of the sequence, therefore in the worst case this is Z 1. Hence 
Iz - z21 > 2. And we can go on to show Iz - zkl > k (after reordering). It 
follows that 



362 4. Harmonic and Subharmonic Functions 

n (n)n IP(z)1 = JJ Iz - zjl > n!;;::: e . 
Since z was arbitrary we have proved the lemma. o 

4.5.14. Minimum Modulus Theorem. Let f be holomorphic in the disk B(O, 2eR) 
and continuous in the closure of this disk. Assume f(O) = 1 and let I:: > 0 be such 

3e 
that 0 < I:: < 2. Then in the disk Izl ::; R, and outside a collection of closed 

disks the sum of whose radii does not exceed 41::R, we have 

10glf(z)l> -(2 + log ~:) 10gM(lfl, 2eR). 

PROOF. Let Zl, ... , Zn be the zeros of fin Izl::; 2R, always counted with 
multiplicity. We can assume that none of them lies in Izl = 2R. (Hnot, replace 
in what follows 2R by a slightly bigger quantity R' and verify that the 
argument remains true.) Let cp be the auxiliary function 

holomorphic in Izi ::; 2R, cp(O) = 1, Icp(2Re i6 )1 = I (2R)" I ;;::: 1. The function 
Zl··· Zn 

t/I(z) = f(z)/cp(z) is now hoi om orphic and without zeros in Izl ::; 2R. From 
Corollary 4.5.10 we conclude that if Izl ::; R, then 

10glt/l(z)l;;::: - 210gM(lfl/lcpl,2R) = -210gM(lfl,2R) + 210glcp(2Re i8 )1 

;;::: - 210gM(lfl,2R);;::: -210gM(lfl,2eR). 

We need to find a lower bound for Icpl. On one hand, for Izl ::; R thedenomina
tor of cp can be easily estimated: 

n n 1(2R)2 - zkzl ::; (6R2)n. 
k=l 

To the numerator we can apply Cartan-Boutroux' Lemma 4.5.13 with 
H = 21::R, hence for any z E C outside a family of p disks (p ::; n) whose radii 
add up to at most 41::R we have 

fI Iz - zkl ;;::: (2I::R)n. 
k=l n 

Therefore, for those points in Izl ::; R that lie outside those exceptional disks, 
we have 

(2R)n (2I::R)n 1 (21::)" 
Icp(z)1 ;;::: IZl ... znl n (6R2)";;::: 3e . 

On the other hand, by §4.4.31 (2), we have 
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n = vJ(2R) :s; log M(lfl, 2eR), 

that is, outside the exceptional disks 

logIIP(z)1 ~ IOgG:}OgM(lfl,2eR) 

and 

loglf(z)1 = logIIP(z)1 + logll/l(z)1 ~ -(2 + IOgG:) )IOgM(lfl,2eR). 

This proves the theorem. 

EXERCISES 4.5 
1. Find the order and type of the following functions: 

Zn 

(a) Ep(z) = .to r(l + np) (p > 0) (b) sin Z (c) cosz 

(d) cosh Z (e) sinh z 

( _1)nzp +2n 

(f) Jp(z) = I 2P+2n '( + )' (p E N) 
n~O n. n p. 

(g) AeAZ + Be~zl 

(h) cosJz (. (cos,Yz + cos j,Yz) 
I) 2 (j) I (:)n 

n~l n 

(log n)olnzn 

(k) I Pin (IX, P > 0) 
n~l n 

2. Compare the order, type, class of f and f'. 
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o 

3. Let f E Jf'(C), f(z) = I a.zn• Show that the condition for every e > 0 there is C, 
such that n~O 

If(z) I :::; C,e<lzl ('<IzEC) 

is equivalent to 

lim y/n!lanl = o. 

4. Why is the Example 4.5.2 (2) correct? Verify also items 1 and 3 of §4.5.2. 

5. Write a formula for the class of an entire function f in terms of the Taylor 
coefficients a. of f about z = o. 

6. Let f be an entire function of order p and finite type, show that there are two 
positive constants, e, C > 0 such that for any R ~ lone can find r E [R,2R] such 
that 

min If(z)1 ~ ee-Cr'. 

Izl=r 

7. Verify statement 4.5.2 (6). What can you say about the class, order, and type of the 
sum and of the product of two entire functions? 
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8. Let f be an entire function of class p ~ 1. Show that there cannot be two distinct 
constants a, II such that 

f = a + Peg = b + Qe h, 

for some P, Q, entire functions of class 5,p - 1, and g, h entire. 

*9. Let g(z) = I bnz" be an entire function of order p, 0 < p < 00, and type T, 
n~l 

o < T < 00. Let f(z) := e9(z) = I a.z". 
n~l 

. , . log3 M (lfl,r) 
(I) Show that p = hm sup -

,-X) log r 

. log2 M (lfl,r) 
T = hm sup -----p---

r---f>oo r 

(ii) Let v := lim sup (log nla.I!'!"). We want to show that T 5, V. 

(a) We can assume v < 00 (why?). Let Vj = v + 8 and n, ~ 2 be such that 
log nla.lpl" 5, Vj for n ~ n,. Show first that 

n, (V rP )"11' 
M(lfl,r) 5, I la.lr· + I _1

1_ 
.=0 n;o:2 ogn 

(b) Show that for r» I, max (VI rp)IIP 5, exp (e \'1"). The maximum is 
1;,2 logt p 

achieved at a value t = t(r) satisfying 

(c) Use (a) and (b) to conclude that 

. logz M(lfl, r) 
hm sUP--i;--- 5, VI' 

y-+r:r; r 

(iii) Show that vie" 5, T. 

(iv) Let G(z):= I Ibnlz". Find the order and type of G. 
n~O 

(v) Let s.(z):= I akz k• Show that for 121 < r one has 
Osks" 

Conclude that if Izi < rexp ( _ 2~(r)). then 

11 - sn(z)e-g(Z)1 < 1. 

(vi) Let D. be the modulus of the smaller zero of Sn' Why does D. -> 00 as n -> x? 
Show that for any r > 0 we have 
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Let IX. be the unique positive root of G(IX.) = n. Show that 

nlog2n 
(vii) Show that p = lim sup I I I' 

.~oo - og a. 

(One can also show that when g is not a polynomial 

. log2 n 
p = lIm sup -I .' 

n .... oo ogun 

. logn 
" = lIm sup -----.-;>, 

n-oo Un 

cf. [Buck]). 

10. Let fez) = I a.z· be an entire function of exponential type . 
• 2:0 

(i) Show that if for every Z E C we have 

then 

If(z) I ~ Ae*l, 

Ae"' Ae·lX· 
la.1 ~ inf -.- = --.-. 

,>0 r n 

Use Stirling's formula, 

n·.fi.1m 
n! = (1 + e(n)), e(n) -> 0 as n -> 00, 

e· 

to show that the radius of convergence of 

00 

g(w) = I n!a.w· 
n=O 

. I 1 
IS at east-. 

IX 
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(ii) Let B(w):= ~g(~ ) defined in Iwl > lXandOat 00, show thatfor p > IX one has 

fez) = ~ r eZWB(w)dw. 
2m Jlwl=p 

As usual, the circle Iwl = p is traversed in the positive sense. 
(iii) Show that f is of exponential type zero, i.e., for every e > 0 there is an A. such 

that If(z)1 ~ A.e*l, if and only if g is an entire function. 
11. Throughout this exercise f will be a function as in part (i) of Exercise 4.5.10 with 

0< IX < log 2. Let N·)(f):= (-l). I (_I)k (n)f(k). (These are exactly the 
O"k". k 

divided differences defined in Exercise 3.4.5.) 
(i) Show that for every Z E C fixed, the series 

I z(z - I) ... (z - n + I)(e w -1) • 
• =0 n! 
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converges uniformly in every compact subset of I wi < log 2 to the value eZW• 

The term with n = 0 has the value 1. (Hint: use the Taylor series development 
ofuH(1 + uj" for lui < 1.) 

(ii) Use Exercise 4.5.10, (ii) to show that 

f f () z(z-I) ... (z-n+l) 
(z) = L... t. n (f) ----:------

n=O n! 

holds for every fixed z E C. 
(iii) Show that for n :2: 1 

t.(n)(f) = ~ r f(z) dz. 
2m J Izl=2n z(z - 1) ... (z - n) 

Parameterize the circle Izl = 2n by z = cp(t) = 2neitl .fir, -rcJn ~ t ~ rcJn to 
conclude that 

( ) 2A (n!)222n (ea)2n i"/n 12n - 1 I I n I It.n(f)1 <--- - -- -- dt 
- rc (2n)!Jn 2 0 cp(t) - 1 ... cp(t) - n 

~ 4: (~yn tin I :~) ~; I .. ·1 cp(t)n_ n 1 dt. 

1 1 
(iv) Using that for A. = glog9, one has 1 + Y ~ e- ly for 0 ~ y ~ 8, show that for 

o ~ t ~ rcJn 

1
2n-k12 1 ( 8A.k t2) 

cp(t) - k = 1 + (8nk/(2n _ k)2) sin2 (t/2 In) ~ exp (2n - k)2 rc2 • 

Conclude that 

1~1 .. ·I_n I ~(_(1-10g2)4A.t2). 
cp(t) - 1 cp(t) - n rc 2 

Hence, there is an absolute constant K > 0 such that 

I t.(n)(f) I ~ KA(~yn. 

(v) Show that if feN) £: ~, then t.(n)(f) E ~ for every n E N. 
(vi) Conclude that if 0 < rx. < log 2 and If(z) I ~ Aealzl for every z E C, then the 

condition feN) £: ~ implies that f is a polynomial. Estimate the degree. What 
happens if f vanishes for all n E N? (For different generalizations of this 
expansion and applications, we refer to [Ge].) 

§6. Integral Representations 

Our objective in this section is to obtain integral formulas representing 
a subharmonic function u in terms of the measure Jl = Au ;;;:: O. In case 
u = logl!l, ! an entire function, one obtains, as a corollary, the Weierstrass 
and Hadamard representations of entire functions as infinite products of 
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elementary factors. These factors are defined in terms of the zeros of f and the 
order of growth of f. 

We start by generalizing the Jensen and Poisson formulas. 

4.6.1. Lemma. For a fixed " ° ~ 1'1 < R, the function z 1-+ log 1 R~z - 01 has 
R -z' 

the following properties: 

(1) It is harmonic in B(O,R)\{O-
(2) Continuous in B(O,R)\{O and identically zero when Izl = R. 

(3) The function z 1-+ log I z - " - log 1 R~z - 01 is harmonic in B(O, R) and 
R - z, 

continuous in B(O, R). 

PROOF. Since I" < R, we have R2 - z( #- ° for z E B(O,R). We can write in 
B(O,R)\{O 

10g1R~Z - ')1 = loglz -" + 10gR -loglR2 - z(l. 
R -z' 

which shows (1) and the continuity part of (2). It also shows (3) holds. The 
only statement to check is the last part of (2). 

If Izl = R then zz = R2 and 

IR2 - z(1 = IZllz - (I = Rlz - " = IR(z - 01, 

hence log 1 R~Z - 01 = log 1 = ° when Izl = R. 
R - z, o 

4.6.2. Lemma. The following identity holds for Izl < R: 

1 fit R2 - Izl2 i6 
2n _ItIRei6_zI210glw-Re Ide 

{
IOgIZ - WI_IOgIR~Z - ~I if Iwl < R 

= R -zw 

loglz - wi if Iwl ~ R. 

PROOF. (1) If Iwl > R then loglz - wi is a harmonic function of z in a neigh
borhood of li(O, R), hence by Poisson's formula we obtain 

1 fit R2 - Izl2 . 
loglz - wi = 2n _It IReili _ z1210g1Re·6 - wi de. 

(2) If Iwl < R, the function 

h(z) = loglz - WI_IOgIR~Z - ~I 
R -zw 
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is harmonic in B(O, R) and continuous in R(O, R) by Lemma 4.6.1, (3). Therefore 
for Izl < R we have 

I
R(Z-W)I 1 I" R2_lz12 . 

h(z) = loglz - wi - log R2 = -2 I iO 12 h(Re'O) dO 
- zw n -" Re - z 

_ 1 I" R2 - Izl2 iO 
- 2- I iO 1210giRe - wi dO 

n -" Re - z 

since the other term vanishes by part (2) of the previous lemma. 
(3) If Iwl = R, let w = eilZR, consider in t < t < 1 the function 

1 In R2 - Izl2 . 
cp(t) = -2 I iO 12logltw - Re,ol dO, 

n -n Re - z 

which can be evaluated by the previous part of this proof as 

cp(t) = loglz - twl _IOgIR~Z - tW)1 = 10giR _ zte-ilZl 
R -ztw 

= 10giReilZ - ztl ~ loglw - zl· 

On the other hand, the function !logltw - ReiOI! can be bounded as follows 
(draw a picture!) 

Therefore, 

!logltw - ReiOI! :5: log2 + max(!loglw - ReiOIl, !loglw - 2Re iO ll) = g(O), 

and g(O) is an integrable function of O. The Lebesgue-dominated convergence 
theorem allows us to take the limit under the integral defining cp and obtain 

1 In R2 - Izl2 . 
loglw - zl = lim <pet) = -2 I iO 1210glw - Re,ol dO. 

1-+1 n -" Re - z 

(Recall that all along z is fixed, Izl < R). o 

4.6.3. Proposition. (Poisson-Jensen's Formula for Sub harmonic Functions). 
Let u be a subharmonic function in a neighborhood of R(O, R). Then for 
z E B(O, R) we have 

1 In R2_lzf . 1 f IR(Z-Ol 
u(z) = -2 IR iO 12 u(Re'O) dO + -2 log 2 (~U)(O· 

n -" e - z 1t B(O,R) R - z, 

PROOF. Let R' > R be such that u is subharmonic in B(O, R/). Then for 1'1 < R' 
we have (cf. §4.4.24(3)) 

u(o = 21 flOg" - wl(~u)(w) + he,), 
n B(O,R') 
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h harmonic. Therefore, for Izl < R, 

~ I" R2._ Izl2 u(Re i6 )dO 
21t' _" IRe '6 - Zl2 

1 I" R2 - Izl2 {1 f } = - i6 2 -2 loglRe i6 - wIAu(w) + h(Rei6 ) dO 
21t' _" IRe - zl 1t' B(O,R') 

1 f {1 I" R2 - Izl2 , } = h(z) + -2 -2 IR i6 _ 1210g1Re'6 - wi dO Au(w). 
1t' B(O.R') 1t' _" e z 

By Lemma 4,6.2, the integral has the value 

1 f 1 f IR(Z-W)I -2 loglz - wIAu(w) - -2 log R2 _ (Au)(w). 
1t' B(O,R') 1t' B(O.R) ZW 

The first term is exactly u(z) - h(z), hence 
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1 I" R2 - Izl2, 1 f I R(z - w) I -2 1 i6 _ 12 u(Re'6 )dO = u(z) - -2 log R2 _ (Au)(w). 0 
1t' _" Re z 1t' B(O.R) zw 

4.6.4. Corollary. (Poisson-Jensen's Formula for Holomorphic Functions). Let 
f be a holomorphic function in the neighborhood of B(O, R), and a1 , ' •• , an its 
zeros in B(O, R), counted with multiplicities. For z E B(O, R), we have 

1 I" R2 -lzl2 '6 IR(z - aj)1 
10glf(z)1 = 21t' _" IRe i6 _ zI2 10glf(Re' )1 dO + 1 ~n IR2 - ajzl' 

In fact, one can add the zeros on oB(O, R) since they do not contribute to the 
last sum. 

We want to introduce now the Nevanlinna growth/unction N of a subhar
monic function. It will be apparent from the following definition that it is 
convenient to assume that u is harmonic in a neighborhood of the origin. 
Assume u is sub harmonic in a neighborhood of B(O, R). For e > ° very small 
and fixed, we replace u by the harmonic extension to B(O, e) of u I 8B(O, e). This 
way, one obtains a new subharmonic function in a neighborhood of B(O, R), 
which is harmonic in a neighborhood of the origin and coincides with the 
original function outside B(O, e). By abuse of language we will call the new 
function u also. Applying the Poisson-Jensen formula to this new function we 
obtain 

u(O) = 21 I" u(Re i6 )dO + r (IOglfl)AU(O 
1t' _" JB(O,R) R 

= A(u,O,R) + r (IOglfl) Au(O· 
JB(O.R) R 

Let 

U+ = max{u,O}, u- = -min{u,O} = max{ -u,O}, 
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and define the auxiliary functions T, m, and v by 

T(u, 0, r) = T(u, r) = A(U+, 0, r), 

m(u, 0, r) = m(u, r) = A(U-, 0, r), 

v(r) = (Au)(B(O, r)). 

Note that v(r) is increasing and v(r) = 0 for 0 ~ r < e. We claim that 

-f (IOgl-R' I) (Au)(O = fR v(t) dt. 
B(O.R) 0 t 

In fact, we know already from §4.4.28 that 

1 fR v(t) 
A(u,O,R) - A(U, 0, r) = -2 -dt. 

11: , t 

Since u(O) = lim A(U, 0, r) we have also 

1 fR v(t) 
A(U, 0, R) = u(O) + -2 - dt. 

11: 0 t 

By comparison with the previous application of the Poisson-Jensen formula, 
we see that the claim is correct. 

Let us now define 

1 f' v(t) N(u,r) = -2 -dt. 
11: 0 t 

The Poisson-Jensen formula becomes 

u(O) = A(u,O,R) - L(O.R) (IOgl~I)(AU)(O = A(u,O,R) - N(u,R) 

= A(U+, 0, R) - A(U-, 0, R) - N(u, R). 

This can be rewritten as the first fundamental formula of R. Nevanlinna, 
namely, 

T(u, R) = N(u, R) + m(u, R) + u(O). 

This formula is the first step of a very rich and deep theory developed originally 
by R. Nevanlinna. It has many applications to the study of holomorphic 
functions of one and several complex variables. Its pursuit will take us too 
far afield, the reader will profit from consulting the references in the bibliogra
phy, e.g., [Ha] and [Grill]. We remark that the two functions 

pf--+ T(u,p), pf--+N(u,p) 

are increasing and convex functions of log p. 
Let us return now to the question of integral representations of subhar

monic functions in C. 



§6. Integral Representations 371 

We start by describing the orders of growth of functions of the form 
v(t) = J.l(B(O, t», J.l a positive Borel measure. By analogy with §4.5 we define 
the order of growth p of v to be 

1. log v(r) 
p:= 1m sup ---

'-00 logr 

We use throughout the Stieltjes integral and the formula of integration by 
parts for this integral without any further ado (see [HS]). 

4.6.5. Lemma. For a> 0, q > 0, and v an increasing nonnegative function, the 
following conditions are equivalent: 

(1) Loo d:~t) < 00, 

foo v(t) 
(2) a t q+1 dt < 00. 

Let N(t) = foo v(s) ds, then the third equivalent condition is 
a S 

foo N(t) 
(3) q+l dt < 00. 

a t 

Everyone of these three conditions implies lim v(t) = O. We also have then 
1-00 t q 

lim N(t) = 0 
q • 

1-00 t 

PROOF. Integrating by parts one finds 

f
' dv(t) = v(t) I' + f' v(t) dt. 

t q t q q t q+1 a a a 

(1) = (2): We have 

v(r) f' v(t) d _ v(a) f'dV(t) v(a) foo dv(t) 
-q + q q+l t - -q + -q- ::; -q + -q- < 00. 
r at a a t a a t 

Since the two terms on the left are nonnegative, then (2) follows. Furthermore, 

h f · f' v(t) d d f' dv(t) . . c t e unctIOns r~q q+l t an r~ -q- are mcreasmg, thereJore both 
a tat 

have finite limits when r -+ 00. Hence, the preceding identity implies that 

L = lim v(:) exists, 0::; L < 00. Given e > 0 there is an r. > 0 such that for 
'-00 r 

r ~ r. we have 

fOO v(t) 
q , t q +1 dt ::; e. 
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Hence, since v is increasing 

vW f~ ~ f~ vW - = qv(r) - < eq - dt < e rq r t q+1 - r t q+1 -

. v(r) 
and L :::;; e for r ;:::: rEO So, hm -q = O. 

r-+oo r 
(2) => (1): Note that the previous reasoning shows that when (2) holds, 

I· v(r) 0 S' v(r) O' t' II h I' v(r) 1m sup -q = . Ince -q;:::: It 10 ows t at 1m -q = O. Hence 
r-oo r r r-oo r 

(3) => (2): Since the integral in (3) is finite, N(r) -+ 0 when r -+ 00, by the 
r q 

reasoning used in the part (2) => (1), which only uses the function being 
increasing and nonnegative. Therefore, 

f~ v(t) d - N(a) f~ N(t) d 
t q +1 t - -7 + q t q+1 t, 

a a 

which concludes the proof. o 
It is clear the conditions in Lemma 4.6.5 are independent of the choice of 

a> O. 

4.6.6. Definitions. Let J.l be a positive Borel measure in C, v(t) = J.l(B(O, t», 
a >0. 

(1) The number (or more precisely, the element of [0, 00]) 

Pl := inr{s > 0: LX' d:~t) < oo} = inr{s > 0: LX' ;s~~ dt < oo} 

is called the exponent of convergence of the measure J.l. 

(2) When Pl > 0, the smallest nonnegative integer q such that I~ ~~~? < 00 
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is called the genus of the measure J-l. Note that the genus q is also the 

II .. h h foo v(t) d sma est nonnegatIve mteger suc t at q+2 t < 00. 
a t 

4.6.7. Proposition. Let J-l, v, a be related as in §4.6.6. Then 

. log v(r) 
(1) The order P of the function v, P = lIm sup -1--' coincides with the 

'-+00 og r 
exponent of convergence of measure J-l. 

(2) If P is not an integer, the genus q of J-l is the largest integer ::;p, that is 
q = [p]. 

(3) If P is an integer, then q ::; P ::; q + 1. When P = q then v is of minimal type 
for the order p. 

PROOF. (1) If s > Pl' e > 0, there is r. > a such that r ~ r. implies 

v(r) 
Hence, - ::; se and 

r S 

f ao dt fao v(t) 
v(r) s+l ::; s+l dt ::; e. 

, t , t 

log v(r) - slog r ::; log(se), 

from this inequality is follows that 

. log v(r) 
P = lIm sup -1-- ::; s. ,-+ao og r 

Therefore P ::; PI' since s was an arbitrary number bigger than Pl. 
Conversely, if s > p, let P < (1 < s, then there is ra > a such that for r ~ ra 

log v(r) . v(r) 
one has -1-- ::; (1, that IS, - ::; 1. Hence 

ogr r a 

v(r) 1 
~l <-I )+1 forr~ra' r S - r s - a 

and 

f ao v(t) f'· v(t) foo dt 
t S +! dt ::; t s+l dt + t(s-a)+l < 00. 

a a rfS 

Therefore PI ::; s for every s > p, and hence PI ::; p. 
The proofs of (2) and (3) are obvious. o 

Examples. If {an }n:2:l is a sequence of nonzero complex numbers such that 
lanl ::; lan+ll for every n ~ 1, we assume that either {an}n is a finite sequence 
or lanl ~ 00 as n ~ 00. Let us consider the measure 
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We have here 

v(t) = I!(B(O, t)) = # {n: lanl < t}, 

which is an increasing function, continuous on the left. 
The exponent of convergence of I! is here the exponent of convergence of 

the sequence {an}n;;,i, 

Pi = inf{S > 0: L -I liS < oo}. 
n;;,i an 

The genus q is defined only when Pi > 0, hence the sequence is necessarily 

infinite. In this case it is the smallest integer such that L I 11q +1 < 00. 
n an 

For instance, 

(i) if an = n i /P, then the exponent of convergence is P while f -; = 00; 
n=i an 

(ii) if an = (n log2 n)i/p (n ~ 2), the exponent of convergence is also P but this 
00 1 

time L p < 00; 
n=2 an 

(iii) if an = en, the exponent of convergence is zero; 
(iv) if an = log n (n ~ 2), the exponent of convergence is + 00 (recall that the 

infimum of an empty set of real numbers is + (0). 

We are now going to define a canonical potential associated to a Borel 
measure I! ~ 0, using canonical kernels adapted to the behavior of I! at 00. 

For ( #- ° the function zl-+loglz - (I is harmonic in C\{(} and has a 
development in a Taylor series valid for Izl < 1(1: 

loglz - (I = Re{logl(1 + Log(l - zl()} = Re{IOgl(l - n~i ~G)} 
Let 

One has 

1 (p)n 
lan(z, OI S; n r when Izl = p, 1(1 = r. 

!f0 S; P < r then the series 10gl(1 + L an(z,() converges absolutely and uni-
n;;;::1 

formly to loglz - (I for Izl S; p, 1(1 = r. 
For q an integer ~ 0, let Kq be the canonical kernel of genus q: 

Kq(z,O:= loglz - (I -logl(l- L an(z, ° = L an(z,C). 
1 snsq n;;'q+i 
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Note the last identity only holds with Izi = p < r = 1(1. The function 
Kiz,O---- loglz - 'I is a harmonic function ofz in the whole plane, hence Kq 
is subharmonic in C. 

We are now going to give some estimates for the kernels K q • 

4.6.8. Lemma. Let r = 1'1 > 0, p = Izl, then 

2 (p)q+l 1 r 
(0 IK (z,OI:::;; ---- :::;; -~- if P:::;;-2 

q q+1 r 2q(q+l) 
(q ~ 1) 

(2) Ko{z,O :::;; log (1 +;) 
pq r 

(3) Kiz,O:::;; 2q +1 -;:;/ if 2 < P (q ~ 1) 

(4) For q ~ 1, one always has 

Kq(z, () :::;; 2q+l p; inf{t, iJ}. 
r r 

PROOF. We have, first of aU, 

Ko(z, 0 = loglz - 'I -log"l = 10gl! - tl :::;; 10g( 1 + :~D = 109( 1 +;). 
For q ~ 1 and 0:::;; p < r we have 

1 (p)n 1 (p)q+l 1 
IKq(z,OI:::;; L lan(z,OI:::;; L - - = ~- - ----. 

n<:q+l n<:q+l n n q + 1 r 1 - (plr) 

If 0:::;; p :::;; r/2 one obtains 

2 (p)Q+l 1 
IKq(z,OI :::;; q +1 -;: :::;; 2q(q +1)" 

Still, in the case q ~ 1, if r > p > r/2 one has 

Kq(z,O = 10gil - ~I- l-S~-Sq an(z,O:::;; IOg(l + n + l];-Sq ~(;)" 

:::;; (;y (2q - 1 + 2q ):::;; 2q+1 uy· 
Finally, (4) is a consequence of (1) and (3). D 

4.6.9. Theorem. Let jJ. be a Borel measure ~ 0 in C, v(t) = jJ.(B(O, t)), and q(t) a 
function continuous on the left with values in N, such that for some ro > 0 and 
every to > 0 one has 
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fOO (to)q(I)+l 
- dv(t) < 00. 

'0 t 

Then, there are subharmonic functions u in C such that du = jJ.. One of them 
can be explicitly written down as 

u(z) = -21 r loglz - "djJ.(') + r Kq(I"'(z, 0 djJ.(O. 
n J 1,1 Sro J 11;1 Sro 

Furthermore, 

The second term in the decomposition of u is called the canonical potential 
forjJ.. 

Before proceeding to prove Theorem 4.6.9 let us remark that given an 
increasing, continuous-on-the-Ieft function net), one can always find a function 
q(t), increasing, continuous on the left, with values in I\J such that for some 
ro > 0 and every to > 0 one has 

foo (to)q(I)+l 
- dn(t) < 00. 

'0 t 

For instance, we can assume net) ~ 1 for t ~ ro (otherwise we add the 
value -nero) + 1 to it) and take q(t) = [log(n(t) + 1)] = integral part of 
log(n(t) + 1). Then for t ~ tl = toe2 we have 

(
to)q(I)+l 1 
t :::;; exp(-210g(n(t) + 1» = (1 + n(t»2 

and 

f OO (to)q(t)+1 < foo dn(t) 
'0 t dn(t) - constant + I, (1 + n(t»2 < 00. 

PROOF OF THEOREM 4.6.9. Let us assume q(t) = q is constant in the interval 
]t 1 ,t2], ro:::;; tl < t2 < 00. Let 

v(z):= 21 f Kq(z,OdjJ.(O. 
n I, <11;1 $12 

Since Kq is subharmonic in C (as a function of z), v is a subharmonic function 
in C. Furthermore, the measure dv is given by 

dv = {djJ. inti < Izl:::;; t2 
o outside. 

In fact, 

p(z) = ~ f loglz - "djJ.(O 
2n I, <11;1 $12 
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is a subharmonic function with that property and (by §4.4.24) v - p is a 
harmonic polynomial of degree s q. 

t 
Let q ~ 1, if Izl s p, 1(1 = t, psi < t1 S t S t2, then p s t/2, hence 

2 (p)Q+1 
IK 1(z,')1 s q + 1 t and, therefore, 

2 i (p )q+1 2 i (p)q+1 Iv(z)1 < -- - d~(') = -- - dv(t). 
- q + 1 t,<I~I:5t2 1(1 q + 1 t,<ltl:5t2 t 

Let us now consider separately the two cases: 

(1) The function q is not bounded: 
Let q1 = q(ro} and, for q > q1' let rq = inf{r ~ ro: q(r) ~ q}. 

(2) The function is bounded: 
Let ql as previously, q2 = sup{q(t}: t > OJ. For q s q2let rq = 
inf{r ~ ro : q(r} ~ q}, and for q > q2' let rq = rQ2 + q - q2' 

Ineithercasewehavethatrq , = ro,q(t} = qinrq < t S rq+1,andlimrq = 00. 
q .... oo 

Let us define 

Uq(z) = r Kq(z, 0 d~('). 
J ,.<I{I:5,.+, 

If p satisfies ro S psi, Izl s p, then from the preceding considerations we 

have 

i (p)q(tl+1 
luq(z}1 s 2 t dv(t). 

rq <tSrq +l 

For a fixed p, this inequality is valid for q sufficiently large and therefore, 

for any qo ~ q1' the series L uiz) converges uniformly and absolutely in 
q";2qo 

Izl s p. Moreover, the sum is harmonic in Izl s p if rqo > 2p. In fact, to show 
the uniform convergence we can assume that rQO ~ 2p. For a fixed integer 
n ~ qo we have 

qO~:5" luiz}1 s 2 qO~:5" 1.<t9.+, (Oq(tl +1 dv(t) 

S 21~ (~y(tl+1 dv(t) < 00 

by hypothesis. If rqo > 2p then z is not in the support of L\uq, hence all the uq , 

q ~ qo are harmonic in a neighborhood of z, and the same holds for its sum. 
Therefore, the function 

u(z} = 21 r loglz - (I d~(O + L uq(z) 
nJI{I:5'o q";2q, 
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is subharmonic in Izl < p and satisfies ~u = p, for every p > roo This is exactly 
the function from the statement of the theorem. 0 

4.6.10. Lemma. Let p, be a Borel measure ~ 0 in C, vet) = p,(B(O, t)), and ro > 0 
be such that p,(B(O, ro)) = O. Assume that q is the genus of the p, and let 

u(z) = r Kq(z, () dp,«(). 
J 1~1>'o 

The function u is sub harmonic in C and ~u = p,. Moreover, if r > ro, Izl ~ r, 
the following inequalities hold: 

() 2q+l { q f' vet) dt ( 1) q+1 f vet) dt} u z ~ qr q+1 + q + r q+2 
'0 t , t 

(q ~ 1), 

() f'V(t)dt I'" v(t)d 
uz ~ --q:t:l+r -2 t 

'0 t , t 
(q = 0). 

PROOF. From §4.6.9 and the definition of genus we have that the function u is 
a well-defined subharmonic function with ~u = p,. (Recall that p, = 0 on 
B(O, ro).) We only need to prove the inequalities. 

If q ~ 1, we can use that Kq(z, 0 ~ 2q +1 C~Dq inf {I, :~:}. Then, with Izl = 

r, we have 

which is exactly the first inequality after integration by parts. 
If q = 0 we have 

I'" (r) I'" vet) I' vet) I'" vet) u(z) ~ log 1 + - dv(t) = r -(--)dt ~ -dt + r -2-dt. 
'0 t '0 t t + r '0 t , t 

o 

4.6.11. Theorem. (1) Let p, be a Borel measure in C, p, ~ 0 such that 
p,(B(O, ro)) =0 for some ro > 0, and assume that p, is of genus q > o. Then 

u(z) = r Kq(z, 0 dp,(O J KI>,o 

is a subharmonic function in C, ~u = p" and the order of u equals the order of v 
(v(t) = p,(B(O, t)). If the order of v equals q + 1 then the type of u is minimal. 
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(2) Let u be a subharmonic function in C of order at most p, such that u is 
harmonic in a neighborhood of B(O, ro) for some ro > O. Let q be the genus of 
p. = L\u, then q ~ [p] and 

u(z) = r Kq(z, 0 dp.(O + v(z), 
j"l>ro 

where v is a harmonic polynomial of degree ~ [p]. 

PROOF. Let us first prove part (1). The preceding lemma shows the function u 
is subharmonic, L\u = p., and satisfies the inequality 

u(z)~2q+1(q+ l)rq{f~;q~!dt+r f.oo t:~~dt}, 
with Izl = r ~ roo (This inequality holds irrespective of whether q = 0 or 
q ~ 1.) 

We show now that the order of u is at most the order PI of v. Since q is the 
genus of p., then the exponent of convergence PI of p. satisfies q ~ PI ~ q + 1. 

. log v(r) 
One also has PI = hm sup -1--. r-oo ogr 

Let us consider first the case PI < q + 1. Let P1 < A < q + 1. Hence there 
is c = c" > 0 such that for every t > 0, ct" ~ v(t). Therefore 

u(z) ~ 2q+l (q + l)crq {f.~ t,,-q-I dt + r IX) t,,-q-2 dt} = c'r", 

with c' = c2q +1 [_1_ + 1 J. This shows that the order of u is at most 
A-q q+l-A 

PI in this case. 

Let us now assume PI = q + 1. By §4.6.7 we have lim v(t) = 0 and 
1-00 t q+1 

f. oo :~~ dt < 00. The first condition implies that 
rO t 

1· ~ f.r v(t) d = 0 1m q+1 t , r-oo r ro t 

while the second one implies that 

. fOO V(t) 
hm q+2dt = O. 
r-+C() r t 

On the other hand, the preceding inequality on u can be rewritten as 
follows: 
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which shows that for e > 0 there is r. sufficiently large such that if Izl = r ~ r. 
then u(z) ~ erq+1 • That is, U is of order at most q + 1, and of minimal type. 

It remains to show that the order of v is exactly that of u. The first part of 
the proof of part (2) accomplishes this. To prove part (2) we proceed as follows: 
By Gauss' Theorem 4.4.28 one has for r ~ ro 

1 f' v(t) A(U, 0, r) = u(O) + -2 - dt, 
n '0 t 

where, as earlier, v(t) = fl(B(O, t)) = (Au)(B(O, t)). If we let N(t) = f' v(t) dt, 
'0 t 

(r ~ ro), then the hypothesis on u says that the order of N is at most p. Hence 
this also holds for the order of v and the exponent of convergence of fl. 
Therefore the genus q of fl satisfies q ~ p ~ q + 1, furthermore, q = [p J if p 
is not an integer. Consider the auxiliary function 

uo(z) = [ Kq(z, nAu(n. J 11;1>'0 

It is subharmonic, of order at most p by part (1), and 

u = Uo + v, v harmonic in C. 

We have to show that v is a harmonic polynomial of degree ~ [pJ. This 
function is of order at most p by §4.5.6. Hence for every e > 0 there is Co > 0 
such that 

v(z) ~ co(1 + Izl)P+o. 

Let f be the entire function such that Re f = v, 1m f(O) = O. By the Borel
Caratheodory inequality 

If(z)1 ~ c;(1 + Izl)P+o 

for some c: > O. Therefore f is a polynomial of degree ~ p. 
Let us remark that if u is of minimal type then the degree of v is going to 

be strictly less than p. 0 

We are now going to apply these considerations to a measure of the form 
fl = L !5a n , where {an}n is a sequence ordered so that lanl ~ lan+ll, lanl-+ 00 

n~l 

as n -+ 00 (the following arguments will, of course, also apply if the sequence 
{an}nisfinite,i.e., 1 ~ n < N < (0). Mittag-Lemer's theorem assures that there 
are entire functions vanishing exactly at the points an. (If the point an appears 
with multiplicity mn in the sequence we mean here vanishing with multiplicity 
mn .) We will see now how to give a representation to these functions in the 
form of an infinite product, and relate this infinite product representation to 
the one obtained for the canonical potential of fl. 

Let us start by recalling some well-known properties of infinite products. 
Let {Un}n;;'l be a sequence of complex numbers and set 

Pn=(1 +u1)(1 +u2).·.(1 +u.) 
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P: = (1 + lu l l)(1 + IU2D·.·(1 + lUnD. 

The following inequalities hold: 

(a) P:::;; exp(luII + ... + lUnD::;; 1 + (lUll + ... + IUnl)exp(luII + ... + lUnD· 

(b) IPn - 11::;; P: - 1 ::;; (lu l l+l u2 + ... + IUnDexPCtIIUkl) 

In fact, 

(a) One starts from the known inequality for x E ~, 1 + x ::;; eX, to obtain 

P: = (1 + lUI D·· .(1 + lUnD::;; exp(lull + ... + lUnD· 

(b) We have Pn = 1 + L ui, '" Uik ' hence 
ls,ijsn 
I ,;k';n 

IPn - 11 = I L uil ... Uikl::;; L lui,l..·luikl = P: - 1. 
l,;ij,;n l,;ij,;n 
I ,;k';n I ,;k';n 

The last inequality follows from eX - 1 ::;; xeX. 

4.6.12. Proposition. Let {un(S)}n2:1 be a sequence of functions bounded on a set 

S such that L lun(s)1 converges uniformly on S to a bounded function. Then the 
n2:1 

functions 

pis) = n (1 + uk(s» 
I ,;k,;n 

converge uniformly to a bounded function f(s). We denote it by 

f(s) = n (1 + un(s». 
n~l 

The order of the factors does not alter the limit function f and f(s) = 0 for an 
s E S if and only if un(s) = - 1 for some n. 

PROOF. We have 

IPn(s)1 ::;; 1 + IPn(s) - 11 ::;; p:(s) - 1 + 1 = p:(s) ::;; exp (I ,{;,;n IUk(S)I) ::;; M, 

for some M > 0 since the function L lun(s)1 is bounded in S. If n ~ m then 
n2:1 

IPn(s) - Pm(s)1 = 'Pm(S)!1 Ii (1 + uk(s» - 11 ::;; M (Ii (1 + !uk(s)D - 1) 
m+l m+l 

::;; M[expCtl !Uk(S)I) - 1 ] 

::;; M( t !Uk(s)!)exp ( t !Uk(S)!)::;; eMe' ::;; 2eM 
m+l m+l 
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CXJ 

if 0 < 6 < log 2, m ~ m. So that L \ uk(s) \ ~ dor every S E S, which proves the 
m+1 

uniform convergence of the Pn. 
Note we could have kept \Pm(s)\ instead of M in the last inequality through

out. Letting n ..... 00 we obtain 

\I(s) - Pm(s)\ ~ 26\Pm(S)\. 

If 6 < 1/2 then we have, for any m ~ m., S E S, 

\I(s) \ ~ \Pm(s)\(1 - 26). 

Therefore I(s) = 0 only if Pm(s) = 0, that is, only if one of the Uk takes the value 
- 1 when 1 ~ k ~ m. 

n 

Finally, if u is any permutation of 1\1* and we define qn(s) = n (1 + ua(j)(s)), 
j=l 

m ~ m. and n is sufficiently large so that {I, 2, ... , m} c {u(I), ... , u(n)} then 

\qn - Pm\ = Pml n (1 + uaw) - 11 ~ M(e' - 1) ~ 26M 
a(j)"m+1 

and it follows that lim qn = lim Pm = f 
n-oo m-oo 

We can now introduce the Weierstrass primary factors: 

G(z,O) = 1 - z, 

G(z,q) = (1 - z)exp(z + z; + ... + :q) 
One sees immediately that 

log\ G(z, 0)\ = 10g\1 - z\ 

and 

(q E 1\1*). 

( 
Z2 zq) 

10g\G(z,q)\ = 10g\1 - z\ + Re z + 2 + ... + q . 

Therefore, for' # 0 we have 

and 

(q ~ 1). 

D 

Hence the §4.6.8 yields estimates for 10gIGG,q)1 (q ~ 0). We have also 

the following estimate. 
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4.6.13. Lemma. If Izi < 1, q ? 0 then 

11 - G(z,q)l:s;; IzI Q+1. 

PROOF. For q = 0 it is obvious. For q ? 1 we observe that 

-G'(z,q) = zqexp[z + z; + ... + ~J 

383 

has a zero of order q at the origin, and its development in a Taylor series about 
z = 0 has all its coefficients ? O. Since 

1 - G(z,q) = r G'(u,q)du, 
J[o.%] 

one sees that 1 - G(z, q) has a zero of order q + 1 at z = 0 and if q>(z) = 

1 - G(z, q) '" n • l' 'f 
q+l ,then q>(z) = L.. allz wIth an? O. Thereiore I q>(W) I :s;; q>(I) I 

Z n~O 

Iwi :s;; 1. But q>(I) = 1 and we are done. 0 

If (Zn)lI~l is a sequence of nonzero complex numbers such that IZnl -+ 00 as 
n -+ 00, then there always exist sequences of integers qn ? 0 such that 

L (~)Qn+l < 00 

n~l IZnl 
for every r > O. 

For instance, qn = n - 1 will always work;just observe that for n ? no = no(r), 

one has -I r :s;; -21. Under this convergence condition on the qn' we can form 
znl 

the infinite product f(z) = n G (~, qn), which defines an entire function 
n~l Zn 

vanishing only at the points Zn and with the correct multiplicity. In fact, for 
Izl :s;; r, we have 

1 (z)1 1 z Iqn+1 (r )Qn+1 
I-G-q <- <-

zn' n - Zn - IZnl 

which assures that the series 

L 11 - G(~,qn)1 
"~1 Zn 

converges uniformly over every compact subset of Co This observation is 
essentially the proof of the following theorem. 

4.6.14. Theorem (Weierstrass). Every entire holomorphic function 9 has a repre
sentation of the form 
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where h is entire, the (Z.):'=1 form the family of zeros of g distinct from z = 0, 
each of them repeated as many times as its multiplicity, WEN if that sequence 
is finite, W = 00 if not. The value mEN is the multiplicity of the origin as a 
zero oj' g. 

PROOF. Since f(z) = zm 112w G G=, qn) is an entire function and g(z)/f(z) is an 

entire function without zeros, then this quotient is an exponential of an entire 
function. 0 

The representation in Weierstrass' theorem is not unique. It can be con

siderably simplified if the series L -~ < 00 for some A > O. If q is the genus 
n<:1 Iz.1 . 

of the measure L i5zo one can take qn = q for every n and then 
n 

converges uniformly over every compact. It is called the canonical product of 
genus q for the sequence (Z.)n<:I' The integer q is also called the genus of the 
canonical product. 

The subharmonic function 

14(Z) = logj n G(~,q)1 = L IOgIG(~,q)1 
n2-1"::'n n~l Zn 

L [IOgll - ~I + Re(~ + !(~)q +". + ~(~)q)J 
n<: 1 Zn Zn 2 Zn q Z. 

is precisely the subharmonic function from Theorem 4.6.11, (1) corresponding 

to the measure 2n L i5zo ' Hence its order is exactly the exponent of conver
"<:1 

gence of the sequence (Zn).<: l' 

It follows from §4.6.1l, (2) that if f is an entire function of order at most p, 
and m is the multiplicity of the origin as a zero of f, then 

ioglf(z)1 = mloglzl + u(z) + v(z), 

with v a harmonic polynomial of degree s [p], u the canonical potential. 
Proof 4.6.11 showed that v = Re h, h polynomial in z, degree h S [p]. 

This argument proves the fonowing. 

4.6.15. Hadamard's Factorization Theorem. Let f be an entire function of finite 
order p, then 
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where h is a polynomial of degree::;; p, m the multiplicity of the origin as a zero 
of f, and the infinite product is the canonical product of genus q, q ::;; p. 

4.6.16. Remark. If (an)n;,: 1 is a discrete sequence of nonzero (but not necessarily 
distinct) complex numbers and if u is a subharmonic function in C such that 

Au = 2n L ban' one can find, without passing through the intermediate step n;,:l 
of infinite products, an entire function f such that u = loglfl. That is, f is a 
function that vanishes with correct multiplicity at every an and nowhere else. 
To see how to do this, let us assume we already have a function f such that 
loglfl = u. Let B(O, R) be a disk not containing any of the an' Since f is never 
zero in B(O, R) then g = logf holomorphic and Re g = loglfl. So that g = 
u + iv. Now iJg = iJu - iiJv = 0, hence 

dg = iJg = iJu + iiJv = 2iJu. 

If Yz is any path from ° to z in B(O, R) we have 

g(z) = g(O) + 2 f iJu. 
Y. 

We can profit from this insight to construct f. Let n = C\nVl {an}· Let Yz 

be a path joining 0 to z in n and define 

g(yz) = 2 f iJu. 
Y. 

IfYl,z, YZ,z are two paths joining 0 to z in n we have 

g(Yl,z) - g(yz,z) = 2 f _ iJu = 2 (2ni ~ Indh .i'2)an) Res(iJu, an)), 
}'1.zi'2.z 

since iJu is a closed I-form of class COO in n. Moreover, 

Res(iJu, an) = -21 . r iJu, 
1tl J Iz-anl~r 

if r > 0 is so small that B(an, r) does not contain any ak , with ak # an' (Recall 
that there could be several indices k with ak = an.) In this little disk we have 

u(z) = mnloglz - ani + h(z), 

where mn = multiplicity of an in the sequence, and h harmonic in B(an, r). 
(This is simply a consequence of. the fact that Au = 2n L ban') Therefore, in n;,:l 

mn dz iJh 
iJu = - -- + - dz, 

2 z - an iJz 

and 
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This shows that 

g(y!'z) - g(Y2.z) = 2ni N(Yl,z, Y2,z), 

for some N(Yl,z, Y2,J E 71. 
It foHows that the function given by 

f(z) = eg(Y"l = exp (2 fl'z au) 

is well defined for ZEn, since it does not depend on the path Yz which joins 0 
to z in n. 

If Zo E n, B(zo, r) c n, then we can take for Z E B(zo, r) the path Yz = Yzo . oSZ' 

where oSz is the straight-line segment joining Zo to z. Hence we have 

g(yz) = 2 {xo au + 2 L: au, 

which is a CO function of z in B(zo, r}. Furthermore, dzg(yz) = 2au. Therefore 
f is e'" in n. Since df = e9 dg = 2eg au is a (1,0) form, it follows that f is 
actually holomorphic in n. Moreover, f never vanishes in n. 

Let us now study the behavior of f near one of the points an' We have seen 
that 

m. d( ou«() = ~ -- + oh«(). 
2 (- an 

in the punctured disk B(z.,r)\{an }. For z E B(a.,r)\{an } the path Yz will be 
chosen as foHows. Suppose first z rt: [an - r, an]. Let Yo be a fixed path in n 
joining 0 to an + r, followed by the segment z = [an + r, z], (see Figure 4.2 in 
the following page) then 

f(z) = exp (2 {o ou)exp(L Oh)exp(mn L (:(aJ· 

The two first terms define a holomorphic nonvanishing function in B(z., r). 
Thelasttermisexactly(z - an)mn • Ifz lies in [an - r,a.[thenweietz 1 = z + iE, 
o < e and small, and join 0 to z with the help of the obvious path passing 
through z l' We obtain that for z E B(an , r)\ {an} 

f(z) = F(z)(z - an)mn , 

where F is a holomorphic non vanishing function in B(zn, r). This identity 
shows that f extends to a holomorphic function in B(an , r), vanishing at an with 
multiplicity exactly mn' 

lt is clear then that we have constructured an entire function f such that 
in Q, ologlfl = au, hence after mUltiplying f by a positive real number we 
will have loglfl = u. 
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o 

Figure 4.2 

If we had known that u was given by a canonical potential, 

u{z) = I KqJz, an} = I 10gIG(~,qn)l, 
n;,o1 n;,o1 an 

then, given r > 0 let N = N(r) be such that n ;;::: N implies lanl > r. The function 

gn(z):= LOgG(:n,qn) = 10gIG(:n,qn)1 + ivn(z) 

is then holomorphic in B(O, r) and 

dgn{z) = 2010gIG(:/qn)l· 

Since I :n I < 1, we can use the series representation of gn and differentiate it 

term by term: 

hence 

I ~n (z) I ~ I :J" lanl~I~-I· 
This guarantees the uniform convergence on compact subsets of B(O, r) of the 

series I I O~n (z) I and, therefore, the identity 
n;,oN oz 
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holds. Thus 20u = L. 20 log I G (~, q.)1 converges uniformly in every com-
n::>l an 

pact subset of Q. Now 

20 Re (~ + ... +1 (~~.)qn) = ~~ (1 + ~ + ... (~)qn-l) dz = ~~=/an)qn dz 
an qn an a. an an a.(l - z/a.) 

and 

I z I I 20log 1 - - = ······-dz. 
an z - an 

From here it follows that 

20 log I G (=, q.)1 = (_1 + ~_1 __ (z/an)qn) dz = _ (=)a n _1 dz. 
an z - an all ...... z an - z an an - z 

Hence 

f f ( z)qn dz 2 ou= I - _ ... 
}'z ,,~1),:z an z-af1 

where the first terms differ from g. by 2nik, k E 2. It follows that 

J(z) = e2 J,. cu = TI G ( .. : .. , qn) . 
• ;;,1 an 

In this way one obtains Theorems 4.6.14 and 4.6.15 starting from the repre
sentation of subharmonic functions in terms of canonical potentials. 

This procedure will be exploited in the second volume where we will need 
to construct functions satisfying more complicated growth conditions than 
just being of finite order. 

. r 
4.6.17. Examples of Factorization. (1) The function J(z) = sm n~ z is entire of 

nv z 
order p = 1/2 and has simple zeros at z = n2 , n = 1, 2, 3, .... By Theorem 
4.6.14 

I(z) = TI (1 _Z2)' 
.;;,1 n 

since J(O) = 1. If z is replaced by Z2 one finds 

1I:Z 
1"1 (1 - =~). 
.;;,1 n 

sin nz 



§6. Integral Representations 389 

Note that the terms of this product are not primary factors, but the product 

of two of them, G (~, 1) and G( -~, 1). 

(2) The function r(z) can be defined by the formula 

_1_=zeYz TI (1 +:)e-z1n, 
r(z) n:<:1 n 

where y is the Euler-Mascheroni constant: 

y := lim (1 + ! + ... + ! - log n) 
n~ao 2 n 

(see Exercise 3.5.2). We will recover some of its properties from this represen
tation. Let us remark that the canonical product 

P(z) = TI (1+:)e- z1n = TI G(:,I) 
n:<:1 n n:<:1 n 

has genus 1 and P is entire of order 1. It is clear that r is a meromorphic 
function in IC with simple poles at z = 0, - 1, - 2, .... 

The constant y has been chosen so that r(1) = 1 since 

TI (1 + !)e-1/n = lim Ii (1 + !)e-1/n = lim (N + l)e-L~(1/n) = e-Y. 
n:<:1 n N~ao 1 n N~ao 

The function P(z - 1) is also entire of order 1, and has simple zeros at z = 0, 
-1, -2, .... By §4.6.14 one can write 

P(z - 1) = zeAZ+Bp(z), 

for some constants A and B. These constants can be computed taking loga
rithmic derivatives of both sides. One has the identity 

( 1 1) 1 (1 1) L -- =-+A+ L --- . 
n:<:1 Z - 1 + n n z n:<:1 Z + n n 

Both series are uniformly and absolutely convergent in compact subsets of 
IC\I\I*. By rearranging the first one we conclude that A = 0. Taking now z = 1, 
we see that 

hence 

P(z - 1) = zeYP(z). 
It follows that 

r(z + 1) = zr(z). 

In particular, r(n) = (n - I)! for every n integer ~ 1. 
Finally, from 

sin nz 
P(z)P( - z) = -

nz 
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one obtains the important formula 

r(z)ro - z) = . 
n 

smnz 

EXERCISES 4.6 
1. Find the exponent of convergence of the sequences (e").E iii' (nO)." iii (a> 0), 

(log n)n. N" 

2. Prove that the following infinite product expansions are correct: 

(a) sinz = z fI (1 ..... ~). (b) cosz = n (1 _Z2_2) 
."1 n2n2 ' 0"1 «n - 1/2)n) 

(c) coshz = nil [1 + ((:2~¥1)~)] (d) eZ 
- 1 = zez/2 D (1 + 4:22n2) 

(e) '~'~"-;-,-- = e-zcotanl n 1 - --~- ez/(l+nn) sinO. - z) (~ ) 
smA .EI. A + nn 

(f) coshz - cosz = Z2 n (1 + Z444) 
n~1 4n n 

(g) ez2 + e2z - 1 = 2e(z2+ 2z- 1l/2 n (1 + ~~=1)42)' 
n~l n (2n - 1) 

3. Let f be an entire function of order P < 00, P ¢: ~. 
(a) Show that J has infinitely many zeros. 

1 

(A ¢ nZ) 

(b) More precisely, show that if va(t) = 2n ~(Iogl/ - al)(8(0, t», then the order 

of growth of Va equals p for every a E C. 
. sinJz.. . 

(c) Conclude that the functIOn f(z) = -J; has mfimtely many fixed pomts. 

(d) Give an example showing that (b) may not hold if p E ~*. 

4. Let / be an entire function of finite order p E ~* and Pa the order of growth of 
Va defined in Exercise 4.6.3. Show that there could be at most one value a E C 
such that Pa < p. (Hint: study the proof of Proposition 4.5.12.) 

5. Let /(z) = eZ +- p(z), p polynomial #0. Show f has infinitely many zeros, using 
Hadamard's factorization theorem. 

6. Let f be a transcendental entire function of order O. Show that for every a E C, 
the equation f(z) = a has infinitely many solutions. 

7. Given a sequence (Z.).21 which has a finite exponent of convergence, find explic
itly a merom orphic function with simple poles exactly at the points of the 
sequence. 

*8. Let f be an entire function which is real on the axis and has genus q = 0 or 1. 
Show that all the zeros of I' are real. (Hint: compute the imaginary part of I'lf 
for z E C\R) 

9. (i) From Exercise 2.5.20 we know that if f is entire and /(0) # 0, then for any 
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r> 0 we have 

1 fit -;8 ;8 1 1'(0) 1 f [r ilk] - e loglf(re )ld8=-r-+- L.. --- , 
2n _It 2 f(O) 2 k=1 ak r 

where ai' ... , a. are the zeros of fin B(O,r) counted with multiplicities. Use 
this identity to show that if f is an entire function of exponential type (i.e., 
order < 1 or order 1 and finite type) then there is a constant C, 0 ~ C < 00, 

such that 

for all r > o. 

Given an example where C can be taken to be zero. 
*(ii) Find a similar identity to prove that if f is an entire function of order n E N * 
and finite type, there is a constant 0 ~ C < 00 such that 

for all r > 0, 

where the sequence (akk" I is the sequence of zeros of f, counted with multiplicities. 

10. Let f(z) = z fI (1 + :) e-z /k • What is the order and type of f? (Hint: use the 
k=1 k 

statement of the previous exercise.) 

11. Let (ak)k", I be an infinity sequence of complex numbers 0 < lad ~ la2 1 ~ ••• with 
exponent of convergence r = 1. Show that if the genus q = 0, then the canonical 
product defines a function of order 1 and minimal type. 

*12. Letf(z) = fI (1 + -=--),ak > O,beafunctionoforderp < 1. Letvbethecounting 
k=1 ak 

function v(t) = # {k: lakl < t}. Show that for x> 0 one has 

logf(x) = x f.oo (V(t)dt). 
o t x + t 

h ·fl· v(t) 'h Conclude t at I 1m - = A, t en 
t-+oo t P 

lim logf(x) = ~ 
p • • 

x~oo X sin np 

*13. Let (ak)k",1 be a sequence of complex numbers satisfying 0 < lad ~ la2 1 ~ ••• , of 
genus 1, and v(r) = #{j: lajl < r} ~ Ar + B for some positive constants A, B. 
Assume further that the condition of Exercise 4.6.9(i) holds, that is, for some 
constant C < 00 one has 

for all r > o. 

Show that the canonical product corresponding to this sequence defines a func
tion of order 1 and finite type. (Hint: estimate the partial products L G(z/ak ,1) 

k,;; vIr) 

instead of each term separately.) Generalize this method to the case of order 
PE N*. 
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*14. Let f be a transcendental entire function of order p < 1, v the counting function 
of its zeros #0. Show that for r -> CfJ 

iA' v(t) 
(a) 10gM( Ifl,r) ~ r -.~-dt + O(logr) 

o t(r + t) 

i'V(t) ier v(t) 
(b) log M(lfl, r) ~ dt + r ---2 dt + O(log r) 

o t , t 

(c) There is B = B(r), 0 ~ 0 ~ 1, such that 

i'V(t) fCC v(t) 
logM(lfl,r) ~ -dt + Brodt + O(logr). 

o t r t" 

* 15. Let f be a transcendental function, f(O) # 0, such that log MUfl, r) ~ B log2 r for 
r» I. 

(i) Show that for any A > lone has 

(A - I)v(r)logr ~ -dt ~ BA21og2r 
. . fro v(t) . 

r t 

and there is B' ~ 4B such that 

v(r) < B' log r. 

(ii) Use the previous exercise to show that 

r'v(t) 
logM(lfl,r) ~ Jo t dt + O(logr). 

(iii) Let v(t,O:= # {w: 0 < Iwl < t, f(w) = n, N(r, ():= r' v(t, Pdt. Show that Jo t 

log MUfl, r) 
lim = 1 (for every ( E C). 
'-00 N(r, 0 

* 16. Let f be a transcendental function of order 0, frO) # o. Show that 

lim inf r -2-dt! dt = O. ( fex; v(t) Ii' v(t) ) 

r'-~oo r t I 0 

. . f" v(t) . . . iOO dt . (Hmt: let N(r):= . dt. If the hmmf IS ()( > 0, then N(t)2 = Kr'/('+I), 
r t , t 

K > O. Conclude that there is a sequence rk --> CfJ and Ii > 0 such that 
N(rk) ~ fJr:l1+a. Show that in this case f cannot have order 0.) 

§7. Green Functions and Harmonic Measure 

We return to the Dirichlet problem. A nonempty family /F of subharmonic 
functions defined in an open connected set n <;; C is said to be a Perron family 
if it satisfies the following two conditions 
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(1) u, V E :!F then max {u, v} E :!F; 
(2) if B(zo, r) ~ n, u E :!F then the Poisson modification of u, Pu, also belongs 

to :!F. 

Here Pu = pZo.ru is defined as follows: 

Pu(z) = {
U(Z) if z E O\B(zo, r) 

P(uloB(zo,r»)(z) ifz E B(zo,r). 

The main result about Perron families is the following. 

4.7.1. Proposition. Let :!F be a Perron family in n. Then, the junction 
v: n ~ J-IX), +ooJ defined by 

v(z) = sup{u(z): u E:!F} 

is either identically equal to + IX) or it is a harmonic function in n. 

PROOF. Assume there is a Zo En such that v(zo) = +00. We can then find a 
sequence {Un}n;>1 ~ :!F, un(zo) ~ IX). Replacing Un by Vo = max {u 1 , ••. , un} we 
get an increasing sequence in ,'1', with /).(zo) ~ + 00. Fix a disk B(zo, r) ~ n 
and consider pZo.rvn = Pv. E :!F. We have 

Pvn(zo) = 2(v., zo, r) ~ vn(zo), 

hence Pv.(zo) ~ IX). Furthermore, the sequence PVn is also increasing and the 
functions PvnIB(zo, r) are harmonic. By the Harnack inequalities it follows 
that Pvn(z) ~ 00 for every z E B(zo, r). It follows that v == IX) in B(zo, r). In other 
words, we have just shown that E = {z EO: v(z) = + IX)} is a nonempty open 
set. 

H zJEEnO, let r1 >0 such that B(zl,rl)~n. There exists at least 
one point Z2EB(zl,rd2)nE. Then Zl EB(z2,rl/2)~B(z2,rI/2)~0. But 
v(z 2) = + 00 and v == + IX) in B(z 2, r 1/2) by the preceding argument. Therefore 
v(zJ = IX). That is, ZI E E. Since E is now open, dosed, and nonempty we 
must have E = n. 

Let us assume now that v < 00 everywhere in n and show that it is 
harmonic. 

Let Zo En, B(zo,r) ~ n. Let {U}n;>l ~:!F be such that un(zo) ~ v(zo). We 
can also assume here that Un is an increasing sequence and that Un = Pu •. 
Therefore, by Harnack's theorem, Pu.IB(zo, r) ~ u which is harmonic in 
B(zo, r) and u(zo) = v(zo). 

Let z 1 be a different point in B(zo, r). We can similarly find an increas
ing sequence {Vn}n>l ~:!F such that vn(zd ~ v(zJ). Let Wn = P(max{un,vn }) 

(P = pZo •r ). Then w~ is also harmonic in B(zo, r), Wn E :!F so that Wn ~ v every
where, and Wn ~ Un' Wn ~ Vn everywhere also. Moreover, since both {Un}.d 
and {vn}n;"t are increasing sequences, {wn}nd is an increasing sequence. By 
Harnack's theorem wnIB(zo,r) ~ W, which is harmonic in B(zo,r). We also 
have for z E B(zo, r) 
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w(z) = lim wn(z) ~ lim Itn{z) = u(z). 

Therefore u - w is a nonpositive harmonic function in B(zo. r). But 
u(zo} :<;; w(zo) :<;; v(zo} = u(zo). By the maximum principle, u == w. On the other 
hand 

v(z 1) ~ w(z 1) ~ lim sup Vn(z 1) = V(Z 1)' 

Hence u(z 1) = V(Z 1) also, but u is a fixed harmonic function and z 1 was 
arbitrary, v == It in B(zo, r). In other words, v is harmonic in B(zo, r). We 
conclude that v is harmonic everywhere in n. D 

4.7.2. Definition. Let n be an open subset of nand Xo E an. We say there is 
a barrier at Xo if for every b > 0, sufficiently small, we can find a function b,j 
such that 

(1) - bb is subharmonic in n. 
(2) ba ~ 0 in n. 
(3) ba ~ 1 for those ZEn such that Iz - xol ~ b, and 
(4) lim ba(z) = O. 

zEll 
Z-Xo 

Let h : an -> IR be a bounded function. The "Perron family of h" is the family 
ff(h) of subharmonic functions u in n such that of every' E an we have 

lim sup u(z) :<;; h(O. 
Z~\ 
ZEn 

We set vh(z) := sup{ u(z) : u E ff(h)}. 

4.7.3. Proposition. The function Vh is harmonic in n. If h is continuous at the 
point Xo E an and there is a barrier at x o, then 

4.7.4. Corollary. If there is a barrier at each point of an, then the Dirichlet 
problem is solvable in n. That is, for every bounded continuous function f on 
an, there is a function u harmonic in n and continuous in () such that ulan = f 

PROOF. To simplify the notation, let v = Vh' We can assume h ~ O. Other
wise we add a constant. Each function in ff(h) will be bounded above by 
M = sup{h(O:' E an} < +00. 

It is easy to see that ff(h) is a Perron family and, since v :<;; M, it follows 
from §4.7.1 that v is harmonic. 

Let I, > 0 and choose b > 0 such that Ih(xo) - h(y)1 < 13/2 if 

YEan n B(xo, b). 

Let b = b~ be a barrier function at Xo for that b. Consider the auxiliary function 
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s(z) = h(zo) - E - 2Mb(z) (z EO). 

Then s(z) :::; h(xo) - E everywhere in O. If y E 00 n B(xo, J) then we have 
h(xo) - E < hey) - E/2 < hey), hence 

lim sup s(z) < hey). 
z-y 

If y E 00 n (B(xo, J»e, then for z EO sufficiently close to y we will have 
Iz - xol ~ <5, hence b(z) ~ 1 and 

lim sup 8(Z) :::; h(xo) - E - 2M < h(xo) - E :::; hey). 

Therefore S E ~(h). As a consequence we obtain 

lim inf v(z) ~ lim inf s(z) ~ h(xo) - E, 

and since E > 0 is arbitrary, 

lim inf v(z) ~ h(xo). 

It is clear that if hi = h + k, k constant, then vh , = Vh + k. Therefore, this 
last inequality does not depend on h being ~O, just on being bounded. We 
can now apply the same reasoning to -h and define w as w = -V-h, that is 

-w(z) = sup{u(z): U E ~(-h)}, 

The function w is harmonic in 0 and 

lim inf (- w(z» ~ - h(xo), 

or 

lim sup w(z) :::; h(xo). 

To conclude the proof we need the same estimate with w replaced by v. If 
U1 E .'1'(h}, U z E ~(-h) then U1 + U 2 is subharmonic in 0 and for any y E ao 
we have 

lim sup (u l (z) + uz(z» :::; lim sup U 1 (z) + lim sup U2(Z) 
z~y 

:::; hey) + (-h(y» = O. 

Therefore U 1 + U2 :::; 0 in O. Hence, 

(v - w)(z) = sup{ U 1 (z) + u2 (z) : U 1 E ~(h), U z E ~(-h)} :::; 0, 

and we can conclude that 

lim sup v(z) :::; h(xo). 
Z-Xo 

zen 

This proves that lim v(z) = h(xo). o 
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One can extend to open subsets of S2 the notion of subharmonic func
tions, harmonic functions, Perron families, and barrier functions. For that 
purpose, one only has to observe that these notions are local and invariant 
under biholomorphisms. In the neighborhood of 00 E S2 one considers func-

. f I 'h l 0 tlOns 0 W = -, Wit - = . 
Z 00 

4.7.5. Proposition. Let 0 be a connected open subset ofS2 and Xo E 00. If there 
is a connected compact set K containing more than one point such that Xo E K 
and K sOc, then there is a barrier at Xo. 

PROOF. Let Xl #- xo, Xl E K. There is a Moebius transformation that sends Xo 
to 00 and Xl to O. We can therefore assume K s S2\0 and K contains 0 and 
00. Since K is connected, every connected component of S2\K is simply 
connected. Let Do be the component of S2\K such that 0 S Do. There is 
a determination logo of the logarithm in Do. Let Ro be the image of Do by the 
logarithm function. Ro is biholomorphic to Do, hence open, connected, and 
simply connected. We can assume that Ro intersects the imaginary axis. Hnot, 
we replace logo by logo + c, for some convenient constant c. We have 

Ro (] {it: t E IR} = l:J Jiaj, i{3j[' 
j~l 

K 

z 

Figure 4.3 
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where 

( ( w - ilX')) W - ilX· Let hj(w) = 1m Log ~{J1 = Arg~{J1, where Log' is, as usual, 
W-l j W-l j 

the principal branch of the logarithm for Re' > O. The functions hj are 
harmonic > 0 for Re W > O. If we set 

<p(t) = Im(Log(w - i(tlXj + (1 - t){Jj))), 

when 0 :5: t :5: 1, Re W > 0, then <p(I) - <p(0) = hj(w) and 

(Re w)({J. - IX.) 
'(t) - J 1 > 0 

<p - (Re W)2 + (1m W - (tlXj + (1 - t)lXj»2 . 

This implies that hj(w) > 0 and 

f IJj Rew 
hj(w) = IZj (Re wf + (1m W _ U)2 duo 

As a consequence, for any n we have 

foo Rew L hj(w) < 2 2 du = n. 
I ~j~n - -00 (Re W) + (1m W - u) 

Therefore the series L hj(w) determines a harmonic function in Re w > 0 and 
1 j~1 

h(w) = -- L hiw) satisfies -1 < h(w) < O. 
n hI 

It is easy to verify that if t E ]lXj , {Jl then 

lim hk(w) = (jjkn, 
w-it 

Rew>O 

where (jjk is the Kronecker delta, (jjj = 1, and (jjk = 0 if k "# j. Hence, if it E Ro, 

lim h(w) = - 1. 

Furthermore, 

Let us now set 

w-it 
Rew>O 

lim h(w) = O. 
Iwl .... oo 

Rew>O 

() { -I if Re w :5: 0, W E Ro 
g w = 

h(w) if Re w > 0, WE Ro. 

The function g is continuous and subharmonic in Ro, -1 :5: g < 0, and 
lim g(w) = 0 (when WE Ro, Re w > 0). Let now 

Iwl .... oo 
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G(z) = g(logo z) (z E Do.) 

The function G is subharmonic in Do, -1 ::; G < 0 and lim G(z) = O. It is 
Izl~oo 
zeDo 

quite possible that G --+ 0 at certain points in aDo located in the finite plane. 
To eliminate this possibility, let tn be a strictly increasing sequence of positive 
reals,O < tn ?' +00, such that the lines Re w = tn intersect Ro (i.e., the circles 
of center 0 and radius ern intersect Do). Let gn be the function constructed by 
the preceding method so that gn = -1 in Re w < tn. Set 

1 
H(z) = L 2n gn(logo z) (z E Do)· 

n~l 

This series converges uniformly to a function H continuous in Do, subhar
monic, -1 ::; H < 0 and lim H(z) = O. 

Izl~oo 
z€Do 

If YEan then logo Y E aRo and gn(logo y) = -1 for n ~ no(Y), hence 

lim H(z) < O. 
z~y 

ZEn 

For M > 0 sufficiently large, denote by 

p = sup (lim sup H(Z») < O. 
lyl:s;M z~y 

ZEn 

Then the function Hlp is a barrier at Xo = 00. o 
4.7.6. Corollary. If no component of an is reduced to a single point then the 
Dirichlet problem is solvable in n. 

Let us recall that in the case of the unit disk B(O, 1) the solution of the 
Dirichlet problem was done via the Poisson integral representation of the 
solution: 

Pf(z) = -21 r P(z,Of(Ods(O, 
1t JI~I=l 

where P(z, 0 is the Poisson kernel for B(O, 1). We will see that such a repre
sentation is also valid for every open set for which the Dirichlet problem is 
solvable; this follows from an abstract functional analysis argument. We will 
introduce then the Green/unction which will allow us, for open sets with COO 
boundary (or just sufficiently regular boundary), to have a representation of 
the solution of the Dirichlet problem almost as explicit as in the case of the 
unit disk. 

The starting point of this abstract construction is the observation that 

2~ P(z, 0 ds(O is a measure ~ 0 in aB(O, 1) of total mass 1. Let now n be an 
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open set in S2 for which the Dirichlet problem is solvable and denote 0000. its 
boundary in S2. The space ~(ooon, C) of complex valued continuous functions 
in 0000. is a Banach space with the uniform norm 

II!II = sup If(OI· 
~E awn 

It is also easy to verify that the space 1)(0) of continuous functions in 0 
which are harmonic in 0. is also a Banach space with the uniform norm. If we 
denote by P(f) the solution of the Dirichlet problem in 0. with f as boundary 
data, then 

is an isometry. For a function f ~ 0 we also have Pf ~ O. Let z E 0, the linear 
functional 

Bz :fHPf(z) 

is continuous and positive in ~(ooon, C) and, therefore, by the Riesz' repre
sentation theorem there is a unique nonnegative measure in 0000., denoted W z , 

such that 

Taking f == 1 we have Pf == 1, which shows that wAo",n) = 1. It is also clear 
that if z E 0000. then W z = bz = Dirac measure at z. 

4.7.7. Definition. The measure wzjust introduced is called the harmonic mea
sure of 0000. at the point z. 

Let us now introduce the Green function of a connected open subset 0. of S2. 

4.7.8. Definition. Let 0. be an open connected subset of S2 and Zo E n. The 
Green/unction ofn with pole at Zo is a harmonic function g(z; zo,n) in n\{zo}, 
which is continuous in O\{zo}, zero on 0000., and such that 

(i) if Zo # 00, g(z;zo,n) + loglz - zol is harmonic in n. 
(ii) if Zo = 00, g(z; 00,0.) - loglzl is harmonic in n. 

1 
4.7.9. Remarks. (1) Ifn = C and Zo E C then g(z;zo,C) = log I 

Iz - Zo 
1 

(2) If 0. = B(O, 1) and Zo = 0 then g(z; B(O, 1» = log-I' 
Iz 

(3) There is at most one Green function g(z; zo, 0.) for a given 0., Zo E n. 
This function is > 0 by the maximum principle. 

(4) If cp: 0 1 -+ O2 is a homeomorphism which is holomorphic in 0.1 (and 
hence a biholomorphic mapping from 0.1 and 0.2), then 0.1 admits a Green 
function with pole at Zo E 0.1 if and only if 0.2 admits a Green function with 
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pole at qJ(zo), and 

For instance, a biholomorphic mapping of B(O, 1) onto itself such that Zo 

corresponds to ° is given by the Moebius transformation 

Z - Zo 
qJ(z) = = w. 

1 - ZoZ 

Therefore, 

1 11 - zozi g(z;zo,B(O, 1» = g(w;O,B(O, 1» = log- = log . 
Iwl Z - Zo 

4.7.10. Proposition. Let n be an open connected subset of S2 for which the 
Dirichlet problem is solvable. Let Zo be any point in n, then the Green function 
of n with pole at Zo exists. 

PROOF. By means of the transformation Z!-+ _1_ one can assume Zo = 00 
Z - Zo 

and an is a bounded subset of C. Let h be the harmonic function in n taking 
the value -logizi on an. We let 

g(z; 00, n) = h(z) + loglzl (z En). 
It is easy to see this is the Green function. o 

4.7.11. Definition. Let n be a connected open set in S2. A regular exhaustion 
of n is a sequence {nn}n;;,l of open connected sets nn such that nn cc nn+1' 
U nn = n and ann is piecewise regular of class C'X). 
n~l 

4.7.12. Proposition. Every connected open set in S2 has a regular exhaustion. 

PROOF. One can assume an is a compact in C and 00 En. We cover an by a 

finite number of open disks of radius ~, which we can arrange so that none 
n 

of them is tangent to another one of this finite collection. Take as nn the 
unbounded component of the complement of the union of the corresponding 
closed disks. 0 

4.7.13. Remarks. (1) In the preceding construction, if n is simply connected, 
then the nn are also simply connected. 

(2) Since the number of corners of ann is finite one can modify the con
struction so that ann is of class Coo. 

(3) If {nn}n;;,l is a regular exhaustion and Zo E n1, then each nn admits a 
Green function with pole at Zo, gn(z) = g(z; Zo, nn). If n > m then gn - gm is 
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harmonic in nm and> 0 in anm, hence gn - gm > 0 throughout nm. Therefore 
the sequence {gn} converges uniformly throughout every compact ofn\{zo} 
either to the function identically + 00 or to a harmonic function. If n has a 
Green function with pole at zo, g(z) = g(z; zo, n), then gn < 9 in nn and 
therefore gn converges to a harmonic function at most equal to 9 in n\{zo}. 

But the same inequality forces lim (lim gn(Z») = 0 if , E an. It follows that 
z-' "-00 
zel1 

gn(z;zo,n) -+ g(z;zo,n) uniformly over compact subsets ofn\{zo}. 

4.7.14. Proposition (Symmetry of the Green Function). Let g(z;zo,n) and 
g(z; z 1, n) be the Green functions of n with poles at Zo "# z l' Then 

g(Z1;ZO,n) = g(ZO;Z1,n). 

(We assume the Dirichlet problem is solvable in n.) 

PROOF. Let us assume first that an is piecewise regular of class C1 and a 
compact subset of C. The function 

g(z;zo,n) + loglz - zol 

is harmonic in n and continuous in n, with boundary values 

I(z,zo) = loglz - zol. 

Consider the harmonic extension of 1(', zo) 

P(l(·,zo»(z) = f I(t,zo)dwAt) 
011 

(z En). 

It is clear that for z fixed, this is a harmonic function of Zo En. In fact, if 
B(zo,r) s;; n then, applying Fubini's theorem and that wHloglw - tl is har
monic in n for t E an fixed, we have 

-21 f P(l(.,W»(Z)dS(w)=f A(I(t,·),zo,r)dwAt) 
11:r oB(zo. r) 011 

= f I(t,zo)dwAt) = P(l(·,zo»(z), 
on 

which proves the mean-value property holds for Zo variable. 
On the other hand, we already know one harmonic function in z whose 

boundary values are precisely 1(', zo). Therefore we must have the identity 

P(l(·,zo»(z) = g(z;zo,n) + loglz - zol, 

which implies that for ZEn fixed, 

zoHg(Z;Zo,n) + loglz - zol 

is harmonic. Therefore zoHg(Z1;ZO,n) is harmonic in n\{zd. 
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Let D denote the diagonal of 0 x O. Consider the function 

b(Zl'ZO) = g(Zl;ZO'O) - g(ZO;Zl'O) 

defined in 0 x O\D. This function is harmonic in each variable separately. 
Now, as a function of Zo, g(Zl;ZO,O) has a logarithmic singularity at Zl, and 
as a function of Zo, g(zo;Z1>0) also has a logarithmic singularity at Zl, both 
have opposite signs so that Zo'-' b(z l' zo) is actually harmonic in a neighbor
hood of Z l' That is, we have shown b is actually well defined in 0 x 0 and 
harmonic in each variable separately. 

If x E 00 we have 

lim inf b(z l' Zo) = lim inf g(z 1; Zo, 0) - lim g(zo; z 1,0) 

= lim inf g(z 1; zo, 0) ;e:: 0, 
zo-x 

hence b ;e:: 0 in 0 x O. Similarly 

lim sup b(Zl,ZO) = lim sup (-g(Zl;ZO'O)) ~ 0, 

hence b == O. Therefore g(Zl;ZO'O) = g(ZO;Zl'O) if Zl -1= Zo0 
If 0 is an arbitrary open set for which the Dirichlet problem is solvable, let 

{Onkd be a regular exhaustion of O. We can suppose Zo, Zl E 0 1, We have 
g(z 1; ZO, On) = g(ZO; Z 1, On) for every n, therefore this identity holds for their 
limits, hence by §4.7.13, (3) for the Green function of O. D 

Our aim is to show how to find the harmonic measure W z in terms of the 
Green function (as in Proposition 4.7.18). We have shown the symmetry of 
the Green function; we must therefore have some relation between wzo and wz, . 

4.7.15. Proposition. Let 0 be an open set for which the Dirichlet problem is 
solvable. Zo, Z 1 be two distinct points in O. Then wZo and wz, are mutually 
absolutely continuous measures and, for every compact set K £; 0 there is a 
positive constant M such that 

1 
Mwzo(E) ~ wz,(E) ~ MWzo(E), 

for every zo, Z 1 E K and every Borelian set E £; 00. 

PROOF. Let us show first the absolute continuity of wz, with respect to wZo' 
Since these are regular measures, it is enough to show that if E is a closed 
subset of 00 and wzo(E) = 0 then wZ, (E) = 0 also. Let u E <c(aO) be such that 
o ~ u < 1 in aO\E, and u == Ion E. Set vn = P(un). Then {Vn}n~l is a decreas
ing sequence of harmonic functions ;e:: 0, and 

vn(zo) = f un dwzo ..... wzo(E) = O. 
on 

Hence vn ..... 0 in 0 and therefore, 
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which is what we wanted to prove. 
The last part of the proposition is just a little refinement of the preceding 

argument. From the Harnack Inequality 4.3.9 one can conclude that if v is 
harmonic positive function in n, K a compact subset ofn, there are constants 
C1 > 0, C2 > 0 such that for any pair zo, Zl E K we have 

CIV(ZO)::::;; v(ztl::::;; C2V(ZO)' 

Let now E be a closed subset of an such that wzo(E) = (1 > O. Using the 
preceding argument, we have a sequence Vn = P(u n ), which converges to a 
harmonic function v ~ O. One has 

v(zo) = lim I un dwzo 
"-+00 an 

= wzo(E) 

= (1 > O. 

Therefore v > 0 and we can apply the previous inequality, hence 

for every Zl E K. 

But 

v(z 1) = lim I u" dwz, = wZ , (E), 
"-+00 an 

whence 

c1wzo(E)::::;; wz,(E)::::;; c2wzo(E). 

By the regularity of the measures, these inequalities hold for every Borelian 
E£aO. 0 

4.7.16. Proposition. Let n1 , O2 be two open connected sets and qJ: fil ~ fi2 a 
homeomorphism which is a biholomorphismfrom 0 1 onto O2 , If the Dirichlet 
problem is solvable in 0 1 (and hence in O2 ) then for Zl E 0 1 we have 

wq>(z,) = qJ.(wz,). 

(qJ.(Wz,) is the direct image of the measure, i.e., 

I (f 0 qJ)dwz,·) 
an, 

PROOF. The proof is left to the reader. o 
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4.7.17. Proposition. The harmonic measure WZo of a point Zo E n has no atoms. 

PROOF. We can assume 00 En, 0 E an, and an ~ B(O, 1). We are going to 
show wzo({O}) = 0 by showing that loglzl E L 1(an,wzo ). 

Let g(z; 00, n) be the Green function of n with pole at 00, 

u(z):= g(z, oo,n) - loglzl. 

Then u is harmonic n, continuous in an \ {O}, and it has the value -log I z I on 
an\{O}. Let U.}.;;,1 be an increasing sequence of continuous positive func
tions in an such that limf.(z) = -loglzl, z #- 0, and limf.(O) = +00. The 

corresponding harmonic functions u. = P(f.) form an increasing sequence in 
nand un(z) ~ u(z), since Un ~ u on an\{O}. Therefore 

u(zo) ;;:: lim un(zo) = lim f fn dwzo 
n-co n-oo an 

which proves that wzo( {O}) = 0 and loglzl E U(an, wzJ D 

When the domain n has a real analytic boundary then one can give a 
formula for wzo in terms of the Green function. 

4.7.18. Proposition. If n is an open connected set, with regular real analytic 
boundary, Zo E n then 

1 a 
dwz (.) = --2 ~g(·;zo,n)ds, 

o 1t un 

a 
where g(z; zo, n) is the Green function with pole at zo, an is the derivative in the 

direction of the exterior normal and ds is the arc length measure on the boundary. 

PROOF. We will use Green's formula. Let hE C'''(an) and, for J > 0, let 
nd = {z En: Iz - zol > J} (0 < J < d(zo,nC)). Let u = P(h) and 

v(z) = g(z;zo,n). 

Applying Green's formula to no! we obtain 

r (ut\v - vt\u) dx dy = f (u ~v - v ~u) ds, 
J~ a~ un ~ 

but to justify this formula we need to know that v is a smooth function also in a 
neighborhood of an, This will depend on the following reflection principle. 

4.7.19. Lemma (Schwarz's Reflection Principle for Harmonic Functions). Let 
v be harmonic in ]a, b[ + i]O, J[, continuous in ]a, b[ + i[O, J[, and zero when 
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1m z = O. For z E ]a, b[ + i] - <5, <5[ we define 

{
V(Z) ifIm z ~ 0 

V(z) = _ v(z) ifIm z ::; 0, 

then V is a harmonic function. 

PROOF. Clearly V is continuous in G = ]a, b[ + i] - <5, <5[. If Zo E G, 1m Zo ¥- 0 
then it is clear V(zo) = A.(V, Zo, r) for all r > 0 sufficiently small. For Zo E ]a, b[ 
we have by the very definition of V, A.(V, Zo, r) = 0, but V(zo) = 0 also. Hence 
V satisfies the mean-value property and it is harmonic. 0 

Let us return to the proof of §4.7.18. If y : ] - e, e [ --+ IC is a real analytic 
function parametrizing locally a component of on, y'(t) ¥- 0 for all t and 
y(t) = L cjt j is the series development of y about t = 0, which we can assume 

j"?O 

converges in the disk of radius e. Let r(z) = L CjZ j, Z E B(O, e), then r is a 
j"?O 

holomorphic injective map in B(O, r) for some r, 0 < r ::; e. Therefore W = 
r(B(O, r» is an open neighborhood of y(O) which is biholomorphic to B(O, r). 
The curve y(] - r, r[) is the image of B(O, r) n {1m Z = O}. Let us consider 
therefore the harmonic function h(z) := g(r(z); Zo, n) in B(O, r) n {1m z > O}, 
which is continuous on B(O, r) n {1m z ~ O} and zero on B(O, r) n {1m z = O}. 
Hence there is a harmonic function H in B(O, r) whose restriction to the upper 
half of the disk coincides with h. The function r-1 is well defined in W, H 0 r-1 

is now a harmonic function in W which extends g(';zo,n) across a segment 
of on. This shows that g( .; Zo, n) is in fact smooth in a neighborhood of on, 
and justifies the use of Green's formula. 

Returning to Green's identity, let us recall that since v = g(', Zo, n) vanishes 
on on, and u, v are both harmonic in n~, we obtain 

o = f h ov ds - f (u ov - v ov) ds. 
an on aB(O, II) on on 

Introducing polar coordinates about Zo we have g(z; Zo, n) = -log r + G(z), 

G harmonic near Zo, :n = :r' hence 

ov 1 oG 
-= --+-
on r an' 

h oG.. h l" were an IS contInuous near zo0 T erelore 

f ov f" u~ds = - U(Zo + <5e i6 )dlJ + 0(<5) = -2nu(zo) + 0(<5) 
oB(O,~) un -" 

f ou f" 0 v ~ ds = - <5 log <5 ~ u(zo + <5e i9 ) dlJ + 0(<5) = 0(1). 
oB(O, II) un _" ur 
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Letting J -+ 0 we have 

In other words, 

f dv 
h~ds = -2nu(zo). 

an un 

1 f og u(zo) = - -2- h(z) ~ (z; zo, Q) ds(z), 
11: an un 

which is the statement of Proposition 4.7.18. o 

4.7.20. Remark. Lemma 4.7.19 provides a proof of a stronger Schwarz's 
reflection principle for holomorphic functions. That is, if f = u + iv is holo
morphic in ]a,b[ + i]O,J[, v is continuous in ]a,b[ + i[O,J[ and v = 0 on 
]a, b[, then there is a holomorphic function F in G such that 

F(z) = ff(z) ifz E G n {1m z > O} 
1](:z) ifz E G n {Imz < OJ. 

(G = ]a, b[ + i] -c5, J[ as in the proof of Lemma 4.7.19.) 
In fact, let g(z) = u(z) - iv(z), z E G n {Imz < OJ. One verifies without 

difficulty that :: = O. The difficulty lies in proving the continuity of F across 

1m z = o. We will bypass this problem as follows. 
The function V from Lemma 4.7.19 is harmonic in G and, since G is simply 

connected, there is a harmonic function U in G such that U + iV is holomor
phic in G. Furthermore, if W is another harmonic function in an open con
nected subset Q of G such that W + iV is holomorphic then W - U must be 
constant in Q. The choice W = u in G n {1m z > O} leads to U(z) = u(z) + kl 
when Imz > O. The choice of W(z) = u(z) in G n {Imz < O} leads to U(z) = 
u(z) + k2 when Imz < O. Since U is continuous we have that for Xo E ]a,b[, 

U(xo) - kl = lim U(xo + iB) - kl = lim u(xo + iB), 
£-0+ £-0+ 

which shows the last limit exists. Furthermore 

U(xo) - k2 = lim U(xo - iB) - k2 = lim u(X;;-- iB) = lim u(xo + iB). 
£-0+ £-0+ £-0+ 

hence kl = k2 • that is, U + iV - kl is hoi om orphic in G and coincides with 
f when 1m z > 0 and with g when 1m z < o. Therefore, F is a holomorphic 
extension of f 0 

Assume, as earlier, that Q is a connected open set with a real ana
lytic boundary. Let h(z) = h(z; zo, Q) be a "harmonic conjugate" of g(z) := 
g(z; zo, Q), defined in a neighborhood of 0\ {zo} by choosing a path yz from a 
fixed point z 1 (z 1 "# zo) to z and letting 

f og 
h(yz) = 2 Re Yz 13w (w) dw. 
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The form 2 aag dw is closed (cf §4.3.4) but h is not well defined. At every z, there 
w 

are several determinations depending on the periods, with respect to the holes 
of n\ {zo}, of the integral. Nevertheless, locally a determination of h can be 
chosen, and Q = g + ih is locally holomorphic (though multivalued). More
over, Q' is well defined, independent of the determination of h. In fact, one has 
the following. 

4.7.21. Proposition. If n is an open connected set with a real analytic boundary 
and Zo E n, then 

i 
dwz (z) = -2 Q'(z)dz 

o n (z E aU). 

PROOF. Let n be the exterior normal to an at ( and r the unit tangent vector 
at the same point (with the same orientation as an). The Cauchy-Riemann 
equations and the fact that g vanishes identically on an give 

ag ah 
0= -(0 = --(0· ar an 

We have d( = rds, n = -ir, and we can conclude that 

iQ'(O d( = i (lim Q«( -1:: ____ ~~) - Q(O) d, = I!. (ag (0 + i ~~ (0) ds 
1-0+ tn n an an 

ag 
= --a (Ods = 2ndwz , n 0 

which proves the proposition. o 
The relation 

shows that the function 

t a 
P«(,z) = - 2n an g('; z,n), 

where t = length of an, reproduces the harmonic functions in n that are 
continuous up to an. That is, 

u(z) = f P(" z)u(O da«(), 
on 

ds 
where da(O = 7" is the arc-length measure normalized. Therefore this function 

P has the right to be called the Poisson kernel of Q. Note that P ;;::: 0 and 

f pc"~ z) da(O = 1 for every ZEn. 
oil 
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In the next section we will remove the need to have a real analytic boundary 
for 0 in order to construct a Poisson kernel. The idea is to use §4.7.9 (4), and 
show that biholomorphic maps have nice boundary regularity properties. 

We state now a more or less immediate consequence of Remark 4.7.20 and 
the proof of Proposition 4.7.18. 

4.7.22. Proposition. If 0 is a Jordan domain with real analytic boundary and f 
is a conformal map of B(O, 1) onto 0, then f has an extension to a conformal map 
defined in a neighborhood of B(O, 1). 

PROOF. The proof is left to the reader. o 

We can put together the Riesz decomposition theorem and the preceding 
considerations to obtain a representation formula for subharmonic functions 
involving the Green function. 

4.7.23. Lemma. Let 0 be a bounded domain with a real analytic boundary. Then 
for every ( E 0, 

f I I Id () {IOg,,-zol ifzo¢O 
og z - Zo w{ z = . 

00 log" - zol + g«(;zo,O) tfzo E O. 

PROOF. Let us observe first that the formula on the right-hand side is actually 
a continuous function of zoo In fact, g«(; zo, 0) = g(zo; (, 0) ~ 0 when Zo tends 
to a point in 00. For Zo EO we already know that log" - zol + g«(;zo,O) 
coincides with a harmonic function of zoo Secondly, by Proposition 4.7.18 

we have that dw{(z) = - 2~ :ng(Z;(,O)ldZI, and for Zo E 00, the function 

z 1--+ loglz - Zo I is integrable on the boundary with respect to arc-length measure 

Idzl. Since og is bounded, a simple appeal to Lebesgue's dominated conver-on 
gence theorem shows the integral in the preceding expression is also a con
tinuous function of zoo 

Therefore, it is enough to prove the lemma when Zo ¢ 00. If Zo ¢ n, then 
loglz - zol is a harmonic function ofz in a neighborhood ofn, and the formula 
is correct by definition of the harmonic measure. If Zo EO, let hzo(z) be the 
harmonic function in 0 whose boundary values are loglz - zol. We have 

f loglz - zoldw{(z) = f hzo(z)dw{(z) = hzo(O = g«(,zo, O) + log" - zol 
00 00 

by definition of the Green function. o 

4.7.24. Remark. This lemma is valid under very general conditions, certainly 

we only use that :~ (z; (, 0) is bounded and dw{ = - 21n :~ (z; (, 0). Piecewise 
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smoothness of the boundary suffices for this requirement. (See, e.g., [HK, 
section 3.7] where this is proved assuming only m(an) = 0.) The same remark 
applies to the following proposition. 

4.7.25. Proposition. Let n be as in the previous lemma, u a subharmonic function 
in an open neighborhood of n. Then for every ( E n we have 

u(O = f u(z) dw{(z) - 21 r g(z;" n)Au(z). 
an n In 

PROOF. By Riesz' Decomposition Theorem 4.4.2 (3) and the hypotheses on u 
we have a relatively compact open set D, n s; D, and a function Uo harmonic 
in D such that for ZED we have 

u(z) = uo{z) +1_ f loglz - wi Au(w). 
2n D 

Let us integrate both sides against the harmonic measure dwr, ofn at the point 
(. Then 

f u(z)dw,(z) = -21 f uo(z)dw,(z) + 21 f (f loglz - wi AU(W»)dwr,(z). 
un nan nan D 

The total mass of D with respect to the positive measure Au is finite. The same 
is true for an with respect to the positive measure dw" The function loglz - wi 
is bounded above when (z, w) E an x D, hence we can apply Fubini's theorem 
and interchange the order of integration. We obtain 

f u(z)dwr,(z) = uo(O + 2-~ f AU(W)(f, loglz - WldWr,(z»). 
an n D en 

For w E D\n the inner integral becomes logl( - wi by §4.7.23. For WEn we 
can use the other part of §4.7.23 and get 

f u(z)dwr,(z) = uo(O + -21 f logl( - wi Au(w) + -21 r g(w;(,n)Au(w) 
an n D n In 

= u(O + 21 r g(w; (, n)Au(w). 
n In 

This is exactly the statement of the proposition. D 

We conclude this section by showing that the Riemann mapping theorem 
can be obtained from the existence of the Green function. We think the 
argument is instructive. 

4.7.26. Proposition. Let n be a proper open subset of C which is simply con
nected. Given Zo E n, there is a conformal map <p of n onto B(O, 1) such that 
<p(zo) = O. 
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PROOF. By the same argument as in §2.6.3, we can reduce ourselves to the case 
where 0 is bounded. Let g(z; zo, 0) be the Green function of 0 with pole at 
zoo It exists, since S2\0 is connected and has more than one point, and 
therefore the Dirichlet problem is solvable in O. Let 

u(z) = -g(z;zo,O) -loglz - zol (z EO), 

This function is harmonic in O. Let v be the harmonic conjugate function that 
vanishes at zoo The holomorphic function 

q>(z) = (z - zo) exp(u(z) + iv(z» 

is the conformal mapping we are looking for. 
It is clear that q>(zo) = 0 and that 10glq>(z)1 = loglz - zol + u(z) = 

-g(z;zo,O) ~ O. Therefore q>(0) £ B(O, 1) and lim 1q>(z)1 = 1. 
z .... an 

Let us now show that q> is surjective. Since q> is an open map, it is enough 
to prove that q> is also a closed map. If we show that q> is proper, then we will 
be done with the surjectivity question. For 0 < r < 1 we claim that the inverse 
image Kr of B(O, r) is a compact subset of O. If not, let (zn)n~ 1 be a sequence 
in Kr which converges to a point' E 00. It would follow that lim I q>(zn) I = 1, 
which is a contradiction. n .... oo 

To show that q> is injective, we can find a piecewise linear Jordan curve y 
in 0 such that Kr = q>-l(B(O, r» £ Int(y) (§1.10.2). The curve r = q> 0 y lies in 
the annulus r < Izl < 1. For a given wo, Iwol < r, we have that 

Indr(wo) = _1_ r ~ = _1_ f q>'(z) dz 
2ni Jr w - Wo 2ni y q>(z) - Wo 

is the number of times the value Wo is taken. Since Indr(wo) = Indr(O), this is 
also the number of times the value 0 is taken by q>. From the definition 
of q> one sees that this happens only once. This concludes the proof of the 
proposition. 0 

EXERCISES 4.7 
8 = 8(0,1). 

1. Prove Proposition 4.7.22 in detail. 

2. Let n be a simply connected open set in C. Show that the level curves SA:= 

{z En: g(z; ZOo n) = A > O} of g(z; Zo, n) are real analytic Jordan curves. 

3. Find the Green function of the following domains in C: 
(a) n = H = {z E C: Imz > O} 
(b) n = {z E C: 0 < Argz < ex < 21t} 
(c) n = 8(0, R) 
(d) n = 8(0, R) ('\ H 

(e) n = {z E C: Izl < 1,0 < Argz < ~}. 
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4. Solve the Dirichlet problem in H = {z E C: Imz > OJ, where the Dirichlet data 
UIR = f(x) is given by 
(a) f(x) = Xld,bl 

1 
(b) f(x) = 1 + x2 

(c) f(x) = 1. 

5. Solve the Dirichlet problem in the quadrant 0 = {z E C : 0 < Arg z < ~} for the 

data 
(a) ul{O} x [O,oo[=O,ul[O,oo[ x {OJ = 1 
(b) ul{O} ~ [0, oo[ = ex, ul[O, oo[ x {OJ = P (ex,p E IR). 

6. The Green function z f-+ g(z; Zo, 0) is locally integrable, hence an element of ~'(O). 
Compute ~g( .; Zo, 0). 

7. (i) Show that the domain 0 = B\ {OJ does not admit a Green function. (Hint: 
if g(z;zo,O) is the Green function show that the harmonic function h(z) = 

1 h b" g(z;zo,O) + -loglz - zol as a remova Ie smgulanty at z = O. Conclude 
21t 

that the function G(z):= -g(z; Zo,0) for z E B\{O}, G(O):= 0, is subharmonic. 
This violates the maximum principle.) 

(ii) Show, using (i), that there could be no conformal map between 0 and any 
annulus 0 < r l < Izl < r2 < 00. 

8. Write down explicitly the identity of Proposition 4.7.24, when u = loglfl, f 
holomorphic in a neighborhood of Q and has no zeros on 00. (What happens if 
there are zeros on aO?) 

*9. (a) Apply Exercise 4.7.7 when 0 = {z E C: Izl < R, Imz > OJ. Conclude that if 
ak denote the zeros of f in 0 then 

loglf(z)I = I 10giZ - ~kl + ~ fR PI(t)loglf(t)ldt 
Id.I<R Z - at 1t-R 

2R i" + ~ P2(O) loglf(Re i6 )1 dO, 
1t 0 

1 R2 
where z = x + iy E 0, PI (t) = 2 2 4 2 2 2' P2(O) = 

t - 2tx + r R - 2tR x + Izl t 
(R2-lzI2)sinO. .. 

IR2e2i6 _ 2Rxei6 + Iz1212 ' (Hmt: Compute the Green functIon of 0 usmg 

conformal maps.) 
(b) Assume further f(O) = 1; then by letting z -+ 0 conclude that 

~ (1 rk)' 1 f" . L- - - 2 sm Ok = - loglf(Re,6)1 sin 0 dO 
r.<R rk R 1tR 0 

1 fR (1 1) 1 + -2 2' - 2 10glf(x)f(-x)ldx + -Im(j'(O». 
1t 0 x R 2 
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*10. Use §4.7.20 to prove that if il = ]a, b[ + i]O,o] and J E .Jt"(il) is such that as 
z ....... Xo E ]a, b[, one has either ImJ(zn) ...... 0 or IJ(z.)I ...... 00, then J extends to a 
merom orphic function in D = il v ] a, b[ v n, whose only possible poles lie on 

the real axis. Here n = ] a, b[ - i]O, 0] . (Hint: consider the function g(z) = J(z) - ~ 
J(z) + I 

in a small half-disk centered about a point Xo E ]a,b[. Show one can assume 
g(z) #- 0 throughout that half-disk. Apply §4.7.20 to h(z) = i logg(z).) 

11. Let J be a conformal map between ill = {z: 0 < r l < Izl < Rd and il2 = 
RI R2 

{w: 0 < r2 < Iwl < R 2 }. Show that - = -. 
r l r2 

12. Let J E .II(B) be such that IJ(z)l ...... 1 as Izl ...... 1, show J has an extension to a 
function F in .II(S2). For Izl > 1 show that F(z) = 1!l(IjZ). (Hint: consider 
10gIJ(z)I.) 

13. Let J be an entire function which is real-valued exactly on the real axis. Show 
that J(z) = az + b for some a, b E IR, a #- O. (Hint: J is nonconstant and one can 
assume that ImJ(z) > 0 whenever 1m z > O. Use the argument principle to show 

. J(z) 
that J has exactly one zero. Let a E IR be that zero, and show the functIOn -~ 
must be constant.) z - a 

14. Let u be a harmonic function in H = {z E C: Imz > O} and continuous in ii. 
Assume u > 0 in Hand u = 0 on aH. Show that u(z) = ay for some a> O. 

15. Let ill' il2 be two domains in C for which the Dirichlet problem is solvable and 
J: ill ...... il2 a holomorphic map. Let 

u(z) := g(z; zo, ild - g(f(z);J(zo), il2)· 

(a) Show that u is harmonic in ill, except possibly at z = Zo and at the points of 
the discrete set rl( {J(zo)}). 

(b) Show that for every singular point ( E ill of u, there is kEN such that 
u(z) + k loglz - " is harmonic in a neighborhood of (. 

(c) Conclude from (a) and (b) that u is subharmonic in ill and u ~ o. This is 
precisely the Lindelof subordination principle: 

g(z; zo, ild ~ g(f(z);J(zo), il2)· 

(d) Let m(zo,f) be the multiplicity of J(zo) as a value of J at z = zoo Show that 

m(zo,f)g(z; zo, ild ~ g(f(z);J(zo), il2)· 

(e) Let Wo E il2 and J-I(WO) = {Zl' ... ,zn}. Show that 

L m(zk,f)g(Z; Zk' ild ~ g(J(z); Wo, il2)· 
l~k~n 

16. Use Exercise 4.7.15 to show that if ill = B(O, 1), il2 = {w E C: Rew > O}, 
J: ill ...... il2 holomorphic, and J(O) = Wo = Uo + ivo, then 

1 + Izl 
IJ(z) - iVol ~ Uo 1 -Izl' Izl < 1. 
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17. Let f : B -+ B holomorphic. Show that for every' E B one has 

I m(z,f)(l ..... Izl) < 00. 
ze/-Im 

*18. Let (Zk)k;'l <;; B, (mk)k;'l <;; N* be such that 

I mk (1 - IZkl) < 00. 
k~l 

413 

Construct a holomorphic function f: B --> B that vanishes exactly at the Zk with 
multiplicity mk. (Hint: consider f E £(B) such that loglf(z)1 = I mkg(Z;Zk,B).) 

k~l 

This result can be obtained directly using Blaschke products. 

19. Let U E SH(B), H harmonic in B such that for some p, 0< p < 1, u(z) ::;; H(z) for 
every Z E oB(O, pl. Let f E £(B), f(O) = 0, Ilfll", ::;; 1. Show that 

u(f(z)) ::;; H(f(z)) for every z E B(O, p) 

and 

,l(u 0 f, 0, p) ::;; ,1.(u, 0, p). 

*20. Let f: B -+ C\ [1,00 [ be holomorphic, f(z) = I anz' for z E B. Using a con-
tI~l 

formal map from B onto C\[l, 00 [ and the inequality 

lanl = {;Ir" f(pei9)p~ne~inedol::;; ;n r" jI(1 - DidO (p = 1 -~} 
show that there is c > ° such that 

lanl ::;; en. 

21. Recall that f is a proper map if f~l(K) cc B whenever K cc B. Show that if 
f: B -> B is a proper holomorphic map then f is hoi om orphic in a neighborhood 
of ii. (Hint: Compare with Exercise 4.7.12.) 

§8. Smoothness up to the Boundary of 
Biholomorphic Mappings 

In this section we will consider the possibility of extending up to the boun
daries in a e'l smooth fashion, a biholomorphic mapping f between two open 
bounded sets n1 , n2 which have COO boundaries. We already showed in 
Theorem 2.8.8 that when 0 1 and O2 are homeomorphic to the closed unit disk 
B(O, 1), Le., when they are Jordan domains, then without any assumption on 
the regularity of the boundaries, f has necessarily a continuous extension as 
a homeomorphism between 0 1 and O2 , The first proof of this theorem is due 
to Caratheodory in 1913, but, already in 1885, Paul Painleve had shown that 
when ani' anz are e-" regular boundaries then f has a Co extension from 0 1 

and O2 , Until very recently the proofs of this C" extension were extremely 
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intricate. The proof we give here, following [BK], originated in the context of 
several complex variables. This proof has the additional advantage that (as in 
Proposition 4.7.22) it provides the Coo extension without appealing to Cara
theodory's theorem. 

Let us start by remarking that if one expects a CX) behavior up to the 
boundary of a biholomorphic map f: B(O, 1) -> n, we must assume that an 
be a regular boundary of class COO. For instance, for n = {z E c: Izi < L 
Imz > O} the map 

JiV; :) -1 

f(z)=···············=~

J~~!n- z) + 1 
1 + z 

is biholomorphic from BtO, 1) onto n, and extends to a homeomorphism of 
the closures, which is not differentiable at z = ± t. 

Recall that if K is an arbitrary set in C, a function f: K -> C is said to be 
of class COO on K if there is an open neighborhood U of K and a function 
1 E t&'(U) such thatf = 11K. Incasenisan open set with Coo regular boundary, 
K = n, then f is C':; in K if and only if fin and all its partial derivatives can 
be continuously extended to K. This fact is not altogether obvious and we will 
therefore provide a detailed proof. 

First, let us observe that one can find two sequences {akh?o, {bdk;>OO of real 
numbers satisfying 

(i) bk < 0 

(ii) L I an II b: I < 00 for every integer n ;:::,.: 0 
k;>oO 

(iii) L akb: = 1 for every integer n ;:::,.: 0 
k;>oO 

(iv) lim bk = -CYJ. 

Namely, let bk = - 2\ and consider for each N E Z* the solutions ak,N of the 
N x N system 

0:::; n:::; N. 

Using Cramer's rule we see that they are given by ak,N = Ak ' Bk,N where 
1 + 2i 1 + 2i 

Ak = f1 -. --k' Bk,N = f1 -J-' --k' (Recall that an empty product 
05,j-;k-12J-2 kH5,j-;N2 -2 

equals 1.) It follows that 

IAkl:::; f1 2i + 2 - k = r(k2- 3k )12 

05,j-;k-l 

( 1 + 2k) 1 + 2k 
log Bk. N = L log ~2k:::; L. 2~2k:::; 4. 

kH 5,j-;N - - k+1 5,j<;N -
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When N increase toward +00, Bk,N also increases to a limit Bk ::;; e 4 • If we set 
ak = AkBk we have lakl ::;; e 4 2-(k2 -3k)/2. Therefore, we have L lakllb:1 < 00 for 

k:2:0 

every n ~ O. Let us extend the definition of ak,N by setting ak,N = 0 if k > N. 
We have 

ifN~n. 

Since lak,Nllb:1 ::;; lakllb:1 and L lakllb,.ln < 00 we have, for every n ~ 0 
k:2:0 

Hence the sequences {akh:2:o, {bk h:2:o satisfy the four properties (i)-(iv). 
Let now qJ E t9'(R) be any function such that qJ(t) = 1 if 0 ::;; t ::;; 1 and 

qJ(t) = 0 if t ~ 2. If f is a COO function in the set D = {z E C : a < Re z < b, 
1m z > O} such that it has a continuous extension, together with all its deri
vatives to the set Dl = {z E C: a < Rez < b, Imz ~ O} then we can set for 
y <0: 

Ef(x, y):= L akqJ(b,.y)f(x, b,.y). 
k:2:0 

For each y < 0 the sum is actually finite since b,. -+ -00. Since L lakllb,.ln < 00, 
k:2:0 

all the derivatives of Ef converge uniformly when y -+ 0- on compact subsets 
of a < x < b. By (iii) these limits coincide with those obtained for the corre
sponding derivatives of f when y -+ 0+. Therefore the function F defined in 
D2 = {z E C : a < Re z < b} by 

{
f(X'Y) fory>O 

F(x, y) = lim f(x, t) for y = 0 
t-+O+ 

Ef(x, y) for y < 0 

is a COO function in D2 that extends f To simplify the notation, let us call Ef 
the function F when a = -1, b = 1. 

If n is a bounded open set with regular boundary of class Coo, we can cover 
an by a finite collection of open sets U1 , ••• , Un and find corresponding Coo 
difTeomorphisms qJJ: nj -+ ] -1,1 [ x ] -1,1 [such that qJj(an (i ~) lies on the 
real axis. Let n = Uo, Un+1 = C\n, and CXo, ••• , CXn+1 be a Coo partition of unity 
in C subordinate to (~)j=O, ... ,n+1 with suppcxj cc ~ if 1 ::;; j::;; n. If f is a 
Coo function in n such that all its partial derivatives have a continuous 
extension to n, then we let 

G(f) = CXo· f + L CXj· (E(f 0 qJj-l) 0 qJj), 
1 ~s;n 

which is Coo everywhere and coincides with f in n. 
Ifn is a bounded simply connected open set with a Coo boundary, then an 

is a Jordan curve having a parametric representation ofthe form y: [0, 1] -+ C, 
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I d I djy 
Y of class Coc such that ~y(t) = 1};(t)1 = 1 for every t E [0 IJ and, (0) = 

'dt ' , dt l 

dj 

dt~ (1) for every j z O. We recall that there is also a COO function p : I[: -> I[: 

such that 0 = {z E I[: : p(z) < O} and the gradient V p(z) # 0 for every Z E ao 
(cf. §1.3.2 (3)). We will also need the following property. 

4.8.1. Proposition. Let 0 be a bounded open set with eX) boundary. For every 
Coo function p defining 0 as earlier there are two constants € > 0, C > 0, such 
that if d(z, (0) < e, then 

Ip(z)1 :::;; Cd(z, (0). 

PROOF. We have already pointed out in §1.4.2 that if Pl and P2 are two 
functions defining 0 there is a function hE $(IC) such that Pi = hp2 and h > 0. 
Hence, the proposition will follow if we find a simple defining function for 0 
which satisfies the desired estimate. This is assured by the following lemma. 

4.8.2. Lemma. Let 0 be a bounded open set with regular boundary of class eX). 
There is an e > ° such that if U, = {z E I[: : d(z, (0) < e}, then the function dn 
defined in U, by 

dn(z) = {d(Z, (0) if Z E Ue (1 (1[:\0) 
-d(z, (0) ifz E U, (1 0 

is of class C) and such that V dn(z) # ° for every Z E 00. 

PROOF. We can assume without loss of generality that 0 is connected. We will 
prove the lemma finding e > ° corresponding to a neighborhood of r, the 
component of 00 which is the boundary of the unbounded component of I[: \ O. 
The reader will convince himself that an analogous argument can be used for 
the other components of 00. Since the total number of components of 00 is 
finite this will suffice. 

Let }' : [0, 1] -> I[: be a eX) parameterization of r, y periodic of period 1 and 
ly(t)1 == 1 as earlier. We can assume Indy(a) = 1 for a E O. For (t,s) E [0, IJ x 
] -1, I [ define H by 

H(t, s) = y(t) - isY(t). 

Due to the assumption that lndy(a) = 1 if a E 0, iy(t) is the interior normal 
to r at the point yet). If y = Yl + iY2 then 

H(t, s) = (Yl (t) + SY2(t)) + i(Y2(t) - SYI (t)), 

and, considered as a map into ~;g2, its Jacobian matrix is 
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For s = 0 we have 

detJ(t,O) = -(Yl(t)2 + YZ(t)2) = -ly(t)12 = -1. 

The inverse function theorem implies that for some B > 0, the function H is 
invertible in [0,1] x ] -B, B[. Let V; = {z E C: d(z, r) < B}, G = H- l is de
fined in vI' and it is en. Furthermore, if G = (Gl , Gz) one has 

(1) y(G 1 (z» is the normal projection of z onto 00 
(2) G2 (z) = dg(z). 

Moreover, the Jacobian matrix of Gat z = y(t) E r is the inverse to the matrix 
J(t,O), i.e., 

(Yl (t) Y2(t»). 
Y2(t) -Yl(t) 

In particular, the components of Vdg(z) are given by °0~2 (z) = Y2(t) and 

a~;l (z) = -;/1 (t), which shows that V dg(z) # 0. This concludes the proof of 
uy 

the lemma and of Proposition 4.8.1. D 

4.8.3. Definition. If 0 is a bounded open set in C with regular boundary of 
class COO and if f : 0 -> C is a COO function, then we say that f vanishes to the 
order k on 00 if f and an the derivatives of f up to the order k - 1 vanish on 
00. 

4.8.4. Proposition. If 0 is a bounded open set in C with regular boundary of 
class C', p is a defining function for 0, and f: 0 -> C is a cae fimction such 
that for some C > 0 and some positive integer k satisfies 

If(z)1 :::;; Cip(z)l k (z E 0) 

then f vanishes to the order k on ao. 

PROOF. We leave the proof to the reader who, locally can reduce it to the case 
of a half-plane and use the Taylor formula with integral remainder to conclude 
the proof. D 

We will introduce now two powerful tools in the study of holomorphic 
maps. They are the Bergman kernel and the Bergman projection. They appear 
in the context of Hilbert spaces of holomorphic functions. Before proceeding 
we need to give the reader a brief introduction to the concept of reproducing 
kernels. 

Let H be a Hilbert space whose elements are complex-valued functions in 
a set S and assume that the point evaluations fl--> f(x) (x E S) are continuous 
linear functionals on H, i.e., there are constants Mx > 0 such that 

If(x)1 :::;; Mxllfll (Vf E H, Vx E S). 



418 4. Harmonic and Subharmonic Functions 

The Riesz representation theorem ensures the existence of an element 
Kx E H such that 

(VJ E H). 

(We have used 11'11 (resp. ('1')) to denote the norm (resp. scalar product) in H.) 
The function K : S x S -4 C defined by 

K(x,y}:= (KyIKx) 

is caned the reproducing kernel of H. Note that K(x, y) = Ky(x) and therefore 
for each y, x 1--+ K(x, y), belongs to the Hilbert space H. Furthermore, K(x, y) = 
(KyIK~) = (KxIKy) = K(y,x) = KAy}, hence YI--+K(x,y) belongs to H for 
every x. Finally, the defining property of the reproducing kernel can be written 
as 

J(x} = (f(')IK(',x» (V{ E H). 

This identity implies that the reproducing kernel is unique. 
A typical example of a Hilbert space of functions with a reproducing kernel 

is the space H2(B(O, 1» of aU holomorphic functions J in the unit disk B(O, 1) 
whose Taylor developments at the origin, J(z) = L a.z", satisfy L lan l2 < 00. 

The scalar product is given by n;eO .;eO 

(fIg) = L a)i., 
n~O 

if J(z) = L a.z n and g(z) = L bnzn • 
n~O n~O 

An orthonormal basis of H2(B(0, 1)) is given by en(z) = z· (n ;::: 0). This 
establishes an isomorphism with t 2 and with the subspace of L 2 (oB(O, 1), de) 
ofthe "holomorphic Fourier series" (namely, those whose Fourier coefficients 
with negative indices are zero). 

For' E B(O, 1) consider the function 

g{(z) = L ,'z", 
n~O 

g, E H 2(B(0, 1)), and for any J E H2(B(0, 1» we have 

(flg{) = J(O-

Therefore, H2(B(O, 1» has a reproducing kernel and it is given by K(z, 0 = 
g,(z). That is, 

It is called the Szego kernel. 
The following proposition shows that for a separable Hilbert space with a 

reproducing kernel, the kernel can always be found as we have done for 
H2(B(O, 1» in terms of an orthonormal basis. 

4.8.S. Proposition. Let {e.}.;eo be an orthonormal basis for a Hilbert space oj 
Junctions on S which has a reproducing kernel. This kernel can be computed by 
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the formula 

K (x, y) = L: en (x) eJY). 
n;,O 

PROOF. For XES fixed, the function Kx can be developed in a Fourier series 
in terms of the basis {en}n;,O: 

Kx = L: (Kxlen}en = L: (enIKx)en = L: e:(x) en. 
n~O n~O n~O 

By Parseval's identity 

K{x,y) = (KyIKx) = C~O en(y)enlm~o em(x)em) = Jo en(x)en(y)· 0 

Another example of a Hilbert space with a reproducing kernel is the 
following. Let 0 be a bounded open set in C. Recall that dm denotes the 
Lebesgue measure on O. Then A2(0) is the space of hoI om orphic functions in 
o such that 

IIfl12 = L If(zW dm(z) < <X). 

In other words, A2(0) = £'(0) n L 2(0, dm). In order to prove that A2(0) is a 
Hilbert space we need the following lemma. 

4.8.6. Lemma. For every compact set K ~ 0 there is a positive constant CK 

such that for every f E A 2(0) 

sup I f(z) I ~ CKllfll· 
ZEK 

PROOF. Let qJ E £&(Q), qJ == 1 in a neighborhood w of K, K 1 = supp (~~.). For 
z E K the representation OZ 

f(z) = ... ~ f. o~(O !(O d( " dC 
2m K, o( ~ - z 

holds for every f E £)(0) (apply Pompeiu's formula to qJf). Let us denote 

1 (f loqJ 12 1 )1/2 
CK = ~~f 211: K, oz«() Iz _ (12 dm(O , 

which is finite since K 1 n K = 0. From the Cauchy-Schwarz inequality it 
follows that for z E K and f E A 2(0) 

If(z) I ~ CK(L, If«(Wdm(oYI
2 ~ CK(L Ifl2dm y12. 

Therefore 

sup If(z)1 ~ CKllfll. o 
ZEK 
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4.8.7. Proposition. The space A 2(0), with the scalar product 

(fIg) = InfY dm, 

is a separable Hilbert space of functions with a reproducing kernel. 

PROOF. The preceding lemma implies that the point evaluations are con
tinuous. What we have not yet shown is that A 2(0) is complete. It is clear that 
we can consider A 2(0) as a subspace of U(O, dm), hence if we show that it is 
closed, it will follow that A2(0) is both complete and separable. If {JiL;;,o 
is a Cauchy sequence in A2(0) converging to a function f E L 2(0, dm), then 
Lemma 4.8.6 shows that {JiL;;,o converges uniformly over any compact subset 
of 0 to a holomorphic function. Therefore f can be taken to be in Jf'(O). 

D 

The reproducing kernel of A 2(0) will be denoted Kg and caned the Bergman 
kernel. Recall that Kg(z, w) == KAw); hence the reproducing property can be 
written as 

h(z) = In Kn(z, w)h(w)dm(w), 

for any h E A 2 (n), ZEn. 

In the case of the unit disk one can verify that the system 

en(z) = j;":1 z", n 2 0 

forms an orthonormal basis in A2(B(O, 1». In fact, 

(en, em) = ~ J~+lfo+l f z"zm dm(z) 
:rr J Izl<1 

Moreover, if fez) = L anzn belongs to A2(B(O, 1), we have for 0 < , < 1, 
.;;,0 

1 ,n+k+2 ,2n+2 

f(z)z" dm(z) = 2:rr L akbn,k k = nan --. 
Iz!<r k;;,O n + + 2 n + 1 

Since f(z)zn E L 1 (B(O, 1), dm) we can let r -> 1 and obtain 

an = J~nn~nnl (flen ). 

This shows that {en}n;;,o is complete. The Parseval identity becomes 
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IIfl12 = n L £,,1 2
, 

n;;>:O n + 1 

and the Bergman kernel KB(B = B(O, 1» is: 

1 - 1 
KB(Z,O = - L (n + l)zn,n = ---

n R<'O n(1 - Z02 

Therefore, for f E A2(B(O, 1» we have 

fez) = ~ f f(') 2 dm('). 
n JI~I<l (1 - zO 

This explicit construction of the Bergman kernel was dependent on the 
density of the polynomials in the space A 2(B(O, 1». If 0 is a Jordan domain, 
the polynomials are dense in A2(0). We refer to [Mar] and [Ga] for a proof 
of this fact. For other domains, this question is related to the capacity of the 
boundary qaO) (to be defined later on), see [Carl] and [Bed]. 

4.8.8. Proposition. The map 

Po.:fl---+ t Ko.(z,Of(Odm(O 

is the orthogonal projection L 2(0, dm) -+ A2(0). It is called the Bergman 
projection. 

PROOF. It is easy to see that A2(0) is the set of fixed points of Po., and pJ = Po.. 

D 

4.8.9. Remark. The preceding theory of the space A 2(0) was made under the 
assumption that 0 is bounded. This is only imposed to guarantee A2(0) # {O}. 
For example, A2(C) = {O}. Whenever we know Al(O) # {O} everything else 
holds. For instance, when 0 = {z E C: Imz > O}. 

4.8.10. Proposition (Change of Variables). Let f: 0 1 -+ Q 2 be a biholomorphic 
map between two open subsets of c. For any cp E L 2(02,dm), I/J E L 2(Oj,dm) 
we have 

r J'(z)cp(f(z»l/J(z) dm(z) = r cp(w) (!:::1 ),(w)l/J(f 1 (w)) dm(w). Jo.. J~ 
In other words, the operators 

Aj: L 2(Oz,dm) -+ L 2 (01,dm) 

which are defined by 

and 

( A1 cp}(z) := J'(z)cp(f(z» 

(A21/J)(w):= (f-l)'(W)I/J(f-1(W» 
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are such that 

(a) IIAI rpllu(Q,) = Ilrpllu(Q2) (isometry) 
(b) IIAzl/Jllu(Ql) = 1II/JIIu(Q,) (isometry) 
(c) (AI rpll/J)u(Q,) = (rpIA2I/Jh_1(Q2) (adjointness). 

PROOF. Let us show first that Al rp E L 2(0 1 , dm). Since Irpl2 E L 1(02, dm) we 
have that Irp 0 fl2llU)1 E L 1(01, dm), where l(f) is the determinant Jacobian 
of the diffemorphism f as a map [R2 -+ [R2. We know that by the Cauchy
Riemann equations l(f) = II'I2. Therefore, Al rp = I'(rp 0 f) E L 2 (OJ, dm) 
and II A 1 rp II = II rp II by the usual rule of change of variables in the Lebesgue 
integral. In the same way one sees that Azi/J E L2(Q2 ,dm) and IIA21/J11 = II I/J II· 

Finally, since I'(z) = 1/U-1 ),U(z» and (f-I )'(w) = l/I'(f-I(w», we have 

(AI rpjl/J) = r f'(z)rp(f(z»i/!(Z)dm(z) JQ, 
= I II'(Z)j2rp(f(Z»U=TY(.f(~»Ij;(T l(f(z)))dm(z) 

J II, 
= I rp(w)(f l),(w)I/J(f(w»dm(w) = (rpIA21/J). D In, 

4.8.11. Corollary. Let f: 0 1 -+ O2 be a biholomorphic map and K II" KQ 2 the 
corresponding Bergman kernels. The transformation formula 

holds. 

f'(a)h(f(a» = I Kn,(a, w)I'(w)h(f(w»dm(w) JQ, 

= I I'(w)h(f(w»K~,(w~ a)dm(w) JQ, 
= r h«(Hf-f)'(()KQ,Cl=T(O,a)dm(O 

JQ2 

= r h(O(f InOKII,(a,r·1(O)dm(O. 
JQ2 

Replacing a by f-I(Z) and multiplying both sides by (f-I ),(z) = l/.f'(a), the 
last identity becomes 

h(z) = { h(O [(f-I )'(z)Ku, (f-I (Z),f-I (0) (j=IY(()] dm«(). 
JQ2 
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The uniqueness of the reproducing kernel allows us to conclude that 

K 02(z,O = (f-l),(z)Ko,(f-l(Z),J-l(O)(1 1)'(0, 

423 

which is the formula we were looking for with I replaced by 1-1• D 

4.8.12. Proposition. Let I: Q 1 -+ Q 2 be a biholomorphic map. Then 

Po,(f'«({J 0 f)) = f'[(P02 ({J) 0 fJ «({J E L2(Q2,dm)). 

PROOF. 

Po,(f'«({J 0 f)(z) = r Ko,(z, w)f'(w)({J(f(w))dm(w) Jo, 
= r KO,(Z,J-l«()(1 l)'«()({J(Odm(O 

J0 2 

= f'(z) [(P02 ({J) 0 fJ(z). D 

After these generalities about the Bergman kernel and projection we return 
to the main point of this section, the regularity of biholomorphic mappings 
up to the boundary. 

Let Q be a regular open bounded set of class COO defined by p : C -+ ~ of 
02 02 

class Coo, let A = ox2 + oy2 denote, as always, the Laplace operator. 

4.8.13. Lemma. For every () E $(n) we have 

PO(A«()p2)) = o. 

PROOF. We need to show that for every h E A2(Q) we have 

In hA«()p2)dm = O. 

In fact, if h(w) = Ko(z, w) then we would have 

0= In Ko(z, w)A«()p2)(w)dm(w) = PO(A«()p2)(Z). 

Let 8 > 0 sufficiently small, p.(z) = p(z) + 8 if p(z) ~ -8 and P.(z) = 0 if 
p(z) > -8. If we let Q. = {z E Q: P.(z) < O} then Q. is a relatively compact 
subset of Q, oQ. is regular of class Coo. 

We claim that 

Namely, 
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For any [) > 0 there is an eo > 0 such that if 0 < e ::;; eo one has 

I r h~((Jp2)dml < ()/2. 
In\n, 

This follows from the fact that, since h E L 2(Q,dm), h~((Jp2) E U(Q,dm). For 
any given e > 0 we have in Q, 

~((J(p; - p)) = ((p + e)2 - p2)~(J + 2e(JAp + 4e(V(JIVp), 

whence the inequality 

1~((J(p; - p))1 

::;; 2emax(suE (Ipl + l)I~(J(z)l, sUE 1(J(z)~p(z)l, sUE 12(V(J(Z)IVP(Z))I) 
zen zen zen 

=2eM, 

holds in Q,. Therefore, 

It, h~((J(p2 - p;))dml::;; 2eM t Ihldm. 

Since Q is bounded, this last quantity can also be made smaller than ()/2 if e 
is sufficiently small. The claim is therefore valid. 

The integral r h~((Jp?') dm can be computed using Green's formula 
In, 

r hA((Jp;)dm = r (Jp;~(h)dm + f (ha~:.2) - (JP;::)dS. 
JOE JOe One 

The function p,2 vanishes to order two on aQ" therefore we also have 

:n ((Jp?') = O. Since h is hoi om orphic, we have ~h = O. We conclude the inte

gral on the left-hand side vanishes and, by the claim, 

In h~((Jp2)dm = O. 

This concludes the proof of the lemma. o 

From now on in this section, for the sake of simplicity we will write 

dn(z) = d(z, aQ) 

for any z E Q. (Note the sign difference with §4.8.2.) 
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4.8.14. Lemma. For every positive integer s there is a function (fl. E 8(n) such 
that Pg(fl. == 1 and a constant C. such that 

(z En). 

PROOF. One proceeds by induction on s. For s = 1 we take (fll = 1 - ~(91P2) 
for a convenient choice of 91 E 8(n). By the previous lemma we have 
Pg (fll = Pg 1 - Pg~(91P2) = Pg 1 = 1. 

We need to construct 91 so that 

this is sufficient by §4.8.1. One has 
(fll = 1 - ~(91P2) = 1 - p2~91 - 4p(V91IVp) - 2911Vpl2 - 2p91~P. 

One would like to take 91 = 1/(2IVpI2), then we would have 

l(flll = plp~91 + 4(V91IVp) + 291~pl :s; const. p. 

The problem is that V p could vanish, therefore we are compelled to introduce 
an auxiliary function X E q}(1C) with the property that X = 1 in a neighborhood 
of an and X = 0 in a neighborhood of {z E C: Vp(z) = O}. Hence we take 

X 
91 = 12Vp12' 

and we have 

(fll = 1 - ~(91P2) = P<l>I' 

for some function <1>1 E 8(n). 
The inductive hypothesis is then the following: Assume we have constructed 

(fll' ... , (fl.-l satisfying 

(1) Pg«(fli) = 1 and 
(2) (fli = pi<l>i' <l>i E 8(n). 

We will then choose 9. E 8(n) such that (fl. = (fl.-l - ~(p'+19.) verifies (2). 
Now, 

(fl.-l - ~(p'+19.) = (fl.-l - p'+1~9. - 2(s + 1)p'(VpIV9.) 

- s(s + 1)p·-19.IVpI2 - (s + 1)p'9s~p. 

Let us choose 

9 = X <1>.-1 
s s(s+1)IVpI2' 

with the same X as earlier. Then (fl, = p'<I>., for some <1>, E 8(n). This concludes 
the proof of the lemma. D 
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We show now that the Bergman kernel KB for the unit disk satisfies some 

I . 1 1 
simp e estlmates. Recall KB(Z,O = _-

11: (1 - Z02 

4.8.15. Lemma. Let s be a positive integer. The Bergman kernel K B for the unit 
disk verifies the inequality 

l as I (s+1)! -s-2 suPsKB(z,() s---(dB«() . 
Izl<l az n 

PROOF. We have 

as (8 + 1)1 ~s 
-KB(z,() = - --- . 
az" n (1 - Zos+2 

The maximum principle allows us to conclude that 

sup 1 ~!Ss KB(z, 0 1 s _(s_+_1_)! (inf 11 ----- Z(I)-"-2. 
Izl<l 6Z 11: Izl:l 

But I-Z -=---~I = 1 if Izi = 1 and 1(1 < 1, hence 
1 - z( 

inf 11 - z'l = inf Iz - (I = dB«()· 
Izl;1 Ixl;1 

Whence the statement of the lemma follows. D 

4.8.16. Lemma. Let f: B(O, 1) ~ n be a biholomorphic map of the unit disk onto 
an open simply connected bounded set n with a C'" regular boundary. There is 
then a constant c > 0 such that 

dn(f(z» s cdB(z). 

PROOF. Let y : [0, 1] ~ an be a parameterization of an with ly(t)1 = 1 inducing 
the usual orientation. Let Ro > 0 be a number smaller than the lower bound 
of the radius of curvature of every point in an. The closed disks of center 
y(t) + Roiy(t) and radius Ro, are contained in n and touch the boundary at 
a single point. 

Let P E an, p = y(t), q = y(t) +- Roiy(t), and Bp the disk of center q and 
radius Ro (See Figure 4.4). The Poisson kernel for Bp is given by 

R~ - Iz - ql2 (Ro - Iz - ql)(Ro + Iz - ql) 1 
P(z,O = ---Ir==r 2 ---- (2Ro)2 ------------------------- 2 4Ro dn(z). 

The function f- 1 is bounded by 1 on aBp and continuous except possibly at 
the point p. Therefore, by Poisson's formula, 

f- 1(z) = f P(z,Of- 1(Oda(0, 
(lBp 
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Figure 4.4 

for any Z E Br Since f P(z, 0 da(O = 1, we have 
aBp 

dBU-1(Z» = 1 -If-1(z)1 ~ f P(z,()(l ······If-1(()I)da(O 
iJBp 

The function 

is continuous on the compact set on, as one can see by applying Lebesgue's 
dominated convergence theorem. Since J.l(p) > 0 for every p E 80, there is a 

1 
c > 0 such that J.l(p) > -. Therefore 

c 

whenever Z E 0, dQ(z) < Ro. Since the continuous function dBU-1(Z» is 
strictly positive on the compact set {z EO: do(z) ~ Ro}, increasing c, if neces
sary, we obtain 

for all z E O. 

Replacing z by f(w) we have 

doU(w» ~ cdB(w) (w E B(O, 1». D 
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We are finally ready to use all the previous material to obtain the theorem 
on Coo extensions of biholomorphisms. 

4.8.17. Theorem. Let Q be a bounded, simply connected, open set in C, with 
a regular boundary of class Coo. If f is a biholomorphism of B(O, 1) onto Q, 

then f and all its derivatives admit a continuous extension to B(O, 1) (i.e., 
f E 6"(.8(0, 1))). Moreover, f- I and all its derivatives admit a continuous exten
sion to 0 (i.e., f-I E 6"(0». 

PROOF. Let s be a positive integer. We will show first that f(s) is a bounded 
function. We know that 

for any ({J E L2(Q,dm). We can choose ({J = ({Js+2 given by Lemma 4.8.14. 
Therefore, Po.({J == 1 and I ({J(W) I :::;; c(do.(W»S+2, and f' = PB(f'«({J 0 f)). Let us 
show now that for some C1 > ° we have 

(z E B(O, 1)). 

By the choice of ({J we have 

1({J(f{z))l :::;; c(do.f(z)))S+2 :::;; c'(dB(z)Y'- z, 

where the last inequality is a consequence of §4.8.16. If we can show that 

1f'(z)1 :::;; c"(dB(zWl, 

we will have the desired inequality. 
Fix z E B(O, 1) and 0 < r < dB(z) arbitrary, then we can write 

f'(z) = ~f f'dm. 
nr B(z,r) 

By the Cauchy-Schwarz inequality 

1f'(z)1 :::;;1 (nr2)1/211f'llu B 0 1 = J~(n) ~, nr2 ( ( , H n r 

since 11f'11£2(B(O,I)) = m(Q). Given that r was arbitrary we obtain 

1f'(z)1 :::;; J;"~ri) (dB(zW 1 , 

as we wanted. 
As we pointed out earlier, f' = PB(f'«({J 0 f)), hence 

ds
-

1 f PS)(z) = (PB(f'«({J 0 f))(s-l)(z) = dz s - 1 B Kfj{z, Of'(O({J(f(O) dm(O· 

The estimates on the derivatives of KB from Lemma 4.10.15, allow us to take 
the derivatives under the integral sign 
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f ds-1 
PS)(z) = B dz.-1 KB(z,Of'(Of{J(f(mdm(O, 

and they also show, by the previous estimates of the integrand, that 
IpS)(z)1 :.:;; C2 independent of z. For a holomorphic function in B(O, 1) we have 
that 

Ig(z) - g(w)1 :.:;; (sup Ig'(OI) Iz - wi, 
~E[Z.W] 

hence, if g' is bounded, the function g has a continuous extension to R(O,I). 
Therefore, f and all its derivatives extend continuously to R(O, 1). 

Now that we know that f E C(R(O, 1», let us show that f- 1 E C(O). This 
would follow from the inverse function theorem if we knew that Vf(z) '" ° for 
all z E aB(O, 1). Let Zo E aB(O, 1) and Wo = f(zo). We can assume, to simplify 
the notation, that Zo = 1. Choose Po on the exterior normal to 00 at Wo such 
that the closed disk of center Po and radius Iwo - Pol touches 0 only at woo 
Let a E C, lal = 1 be such that 

a 1 
---= ·=M. 
Wo - Po I Wo - Po I 

The function hew) := Re (_a_ ..... ) is harmonic in 0, COO in 0 and takes its 
w - Po 

maximum Mat w = woo Therefore g(z) = h(f(z» - M is a harmonic function 
in B(O, 1), Coo in R(O, 1), g(z) < ° in R(O, 1)\{l}, g(l) = 0. Let us show that 

~~ (1) > 0. By the chain rule this will imply that Vf(1) '" 0. For 0< r < 1 we 

can apply Poisson's formula 

1 f21< 1 - r2 '0 
g(r) = 2n 0 rr-=eilil2 g(e' ) dO. 

Hence, 

g(1) - g(r) 1 f 2" 1 + r " 1 f 2" . 
-~.~ = ~ (-g(e,O»dO ~ ~ (-g(e'O»dO > 0, 

1 - r 2n 0 I r - 4n 0 

. 1 + r 1 1 ag 
smce I ;812 ~ ··1 .... ·- ~ ~2' Therefore :l (1) > 0. As pointed out earlier, this 

r-e +r ur 
concludes the proof of the theorem. 0 

4.8.18. Corollary. If 0 1 and O2 are two bounded open sets, simply connected, 
whose boundaries are regular of class Co, and if f: 0 1 -+ O2 is a biholomor
phism, then f and all its derivatives have a continuous extension to 0 1 , The same 
holds for f- 1 and all its derivatives in O2 , 

PROOF. We know there are two biholomorphic mappings f{Jj: B(O, 1) -+ OJ, 
which by the preceding theorem have COO extensions up to the boundary of 
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the unit disk, and their inverses CPi have a Coo extension up to the boundary 
ofOi . The same holds for h = cpi1 0 f 0 CP1 : B(O, 1) -+ B(O, 1) which, by the way, 
is a Moebius transformation. Therefore, f = CP2 0 h 0 CPt 1 has the announced 
Coo extension properties to the boundary. 0 

As an application of Theorem 4.8.17 we have the following. 

4.8.19. Theorem. Let 0 be a bounded, simply connected, open set with boundary 
regular of class Coo. Let f: ao -+ C be a Coo function. The solution u of the 
Dirichlet problem 

is Coo in O. 

{ L\U = ° in 0 
Uliln = f 

PROOF. Assume the theorem has been proved for the case 0 = B(O, 1). Let 
CI>: B(O, 1) -+ 0 be a biholomorphic map. By §4.8.17 it admits a Coo extension 
to B(O, 1). The function j = f 0 (CI>laB(O, 1)) belongs to 8(oB(O, 1)). By the 
assumption, the solution u of the Dirichlet problem 

{~u = ° _ inB(O,1) 

UlilB(O.1) = f 
is Coo on B(O, 1). Since CI>-1 E 8(0) one obtains that u = u 0 CI>-1 E 8(0) and 
solves the original Dirichlet problem. Therefore, to conclude the proof we 
need to prove the following theorem. 

4.8.20. Theorem. Iff E 8(aB(O, 1)), its Poisson integral Pf is a Coo function in 
B(O,1). 

PROOF. If f(e i8 ) = I anein8 is the Fourier series expansion of f, the expression 

for Pf(rei8 ) is 
ne Z 

Pf(rei8 ) = I anrlnlein8, 
ne Z 

OS;rS;l. 

Lemma 4.8.21 implies that for every integer N > ° there is a constant 
CN > ° such that 

(n E Z). 

These estimates show that all the partial derivatives of Pf are bounded, 
which guarantees that Pf has a Coo extension to B(O, 1). In fact, for ° < r < 1 
we have 

ap +q . . 

O Po()qPf(re'8) = I aniqnq(lnl(lnl - 1) ... (lnl - p + 1))r1nl - Pe,n8, 
r ne Z 

Inl;"p 

which are clearly bounded in B(O, 1). o 
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4.8.21. Lemma. A continuous function qJ : oB(O, 1) -+ C is Coo if and only if the 
sequence {b"},,e z of its Fourier series is rapidly decreasing, i.e., for every integer 
N ~ 0 there is a constant CN > 0 such that 

(n E Z). 

PROOF. If qJ is Coo, then by integration by parts we have 

b" = ~ - u(k)(t)e-i"t dt, ( ')k 1 f" 
n 2n -" 

if n E 7L*, u(t) = qJ(e it ). The required estimate is then immediate. Conversely, 
if Ib,,1 ;:5; C2(1 + Inl)-2, then the Fourier series L b"ei"t converges uniformly to 
u(t) = qJ(e it ). The series differentiated term by term are also convergent by the 
rapid decrease of the sequence. Therefore qJ is a Coo function. Note that if we 
had assumed originally only that qJ E L 2 we would have obtained that qJ 

coincides with a Coo function almost everywhere. 0 

We are going to study now the case of biholomorphic maps between 
bounded open sets with regular Coo boundary but not necessarily simply 
connected. The first stage consists of proving that such an open set 0 is 
biholomorphic to an open set Of, bounded with a regular boundary, the 
components of the boundary being analytic curves. (For us, this will mean 
these curves are images of oB(O, 1) by maps which are holomorphic on oB(O, I} 
and injective.} We will also prove that the biholomorphism between 0 and Of 
has a Coo extension up to the boundaries. 

4.8.22. Proposition. Every bounded open set 0 in C, with regular boundary 
of class Coo, is biholomorphic to a bounded open set Of, with regular boundary 
whose components are analytic Jordan curves. 

PROOF. Let Co, Ci , ... , C" denote the connected components of 00. (There are 
only finitely many ofthem by §1.4.3.) By §1.4.4 they are Jordan curves of class 
Coo. We can assume Co is the boundary of the unbounded component Fo of 
C\O. The open set Uo = C\Fo is bounded, simply connected, and with a Coo 
regular boundary. Therefore we can find a biholomorphism ho which is Coo 
up to the boundary, from Uo onto B(O, 1). Denote Cf, ... , C; the images by 
ho of the curves Ci , ... , C". The open set Ui = S2\Int(Ci) is simply connected 
and with regular Coo boundary. Therefore, there exists a biholomorphism hi, 
Coo up to the boundary, from Ui onto S2\B(O, 1). (To see this one needs to 
apply two inversions to reduce oneself to the case of bounded sets in C.) Under 
hi, the image of oB(O, 1) is an analytic curve C5. Hence, by hi 0 ho the images 
of Co and Ci are analytic Jordan curves C5 and C; = oB(O, 1). Let q, ... , C; 
be the images of Ci , ... , C" under the map hi 0 ho. We can now find a 
biholomorphic map h2 of U2 = S2\Int(CD, Coo up to the boundary, onto 
S2\B(O, 1). By h2 0 hi 0 ho the images of Co, Ci , C2 are analyticJordan curves 
CJ, C?, Ci = oB(O, 1). Continuing in this fashion, we construct the bounded 
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open set n', with analytic regular boundary, and the biholomorphism h 
between nand n'. D 

4.8.23. Proposition. Let n1 , n2 be two open bounded sets with regular bound
aries of class eX), h: n 1 ~ n2 a biholomorphism. Then hand h- 1 have Coo 
extensions up to the boundaries. 

PROOF. Let n'l' n~ and ({J1, ({J2 be the open sets with analytic boundaries and 
the corresponding biholomorphic mappings of n i ~ n; given by §4.8.22. The 
biholomorphism k = ({J2 0 h 0 ({Jl1 between n'l and n~ is in fact the restriction 
to n'l of a function holomorphic in a neighborhood U1 of n'l, as follows from 
§4.7.20 (cf. §4.7.22). The same reasoning holds for k-1• Since h = ({J21 0 k 0 ({J1, 

the proposition is correct. D 

4.8.24. Corollary. If n is a bounded open set with Coo regular boundary, then 
its Green function with pole at Zo E n is a Coo function up to the boundary of n 
and the harmonic measure WZO of the point Zo is given by 

1 og 
dwzo(') = - 2n an (-; (0' n) ds. 

PROOF. If the open set has an analytic boundary these statements hold by 
§4.7.18. We can now use §4.8.22 and §4.7.16 to finish the proof of the corollary. 

D 

4.8.25. Remark. There is an analogous theorem for domains with regular 
boundary of class C\ 1 :::; k < 00. The biholomorphisms have only a Ck - 1 

extension (in fact, a bit better). The proofs are considerably harder. The 
interested reader should consult the work of Wars chaw ski in the book [Porn]. 

One can also use Corollary 4.8.18 to prove an extension of the Schwarz' 
reflection principle to Coo boundaries. The reader will find in [BeL] a proof 
and further references. The statement is the following: 

Let 1'1' 1'2 be two Coo curves in C, Zo E 1'1 and D a disk centered at Zo such 
that D\1'l has exactly two connected components D+ and D_. Suppose there 
is f holomorphic in D+, continuous in D+ and such that f(z) E 1'2 whenever 
Z E 1'1' Then f has a Coo extension to a neighborhood of Zoo Moreover, if f is 
not constant, there is n E ~* such that j<n)(zo) #- O. 

Note that a priori f could vanish with infinite order at a boundary point 
of a domain (give an example!) 

EXERCISES 4.8. 
1. Compute the Bergman kernel function KH for the upper half-plane H. 

2. Let n be a bounded domain in C with a Coo regular boundary. Let f E Coo(n). Show 
that the problem 

{~U =f inn 
u = 0 on an, U E c'''(n) 
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can be reduced to the Dirichlet problem. (Hint: Extend f to a function F E ~(C). 

Solve the equation L\v = F, v E 8(C).) Conclude that the problem (.) is solvable 
inO. 

3. Method to solve the equation :; = f in 0 when f E COO(Q): Solve the problem (.) 

. ou 
of Exercise 4.8.2 and let v = 4 oz . Show that 

. ov f' n 
(I) o-Z = Illu; 

(ii) v E L2(0,dm); 
(iii) v is orthogonal to A2(0) in L 2(n,dm); 
(iv) Pnv = 0; 
(v) v is the unique solution of (i) which is in L2(0,dm) and Pnv = O. 

4. Let 0 be a Jordan domain with a C" boundary. The object of this exercise is to 
show that the polynomials are dense in A 2(0) with the help of Theorem 4.8.17 and 
Mergelyan's theorem. We let f: B(O, 1) -> 0 be a conformal map given by the 
Riemann mapping theorem. 
(a) Show that the map f induces a linear map A2(0) -> A2(B(0, 1» given by 

f{J t-+ f{J 0 f This map is continuous and its inverse is continuous. 
(b) Conclude from (a) that the linear combinations of the powers of f- I are dense 

in A2(0). 
(c) Show that the polynomials are dense in A2(0). 

5. Let 0 be a bounded domain which is not simply connected and at least one of the 
components K of gc has more than one point. We want to show that the poly
nomials cannot be dense in A2(0). 
(a) Let z I' Z2 be distinct points of oK. Show that the function 

f(z):= (z - zd-I /2(Z - z2fl /2 

belongs to A2(0). 
(b) Let r be a Jordan curve in 0 such that K s;;; Int(r). Show that if there is 

a sequence of polynomials (P.).«I such that lip. - f IiL2(n) -> 0 then P. -> f 
uniformly on r. Prove that this is impossible. 

§9. Introduction to Potential Theory 

We have seen that the Riesz decomposition theorem associates to each 
subharmonic function the logarithmic potential of a positive measure, the 
Laplacian of this subharrnonic function. The study of potentials leads to a 
notion more delicate than that of zero measure, zero capacity, which allows 
us to decide which singularities are removable for subharrnonic functions. We 
will see that there are several ways of computing the capacity of a set. In 
particular, the geometric concept of transfinite diameter of a set will be useful 
in the second volume to study the arithmetic properties of certain entire 
functions taking integral values on Z. 

F or a bounded Borel set E in C, denote by f!jJ = f!jJ(E) the family of all Borel 
measures J.t ~ 0 in C, of total mass equal to 1 and such that J.t(E) = 1 (i.e., 
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probability measures on E). For a positive measure 11 of finite mass we can 
define its energy I(1l) by 

1(11):= f log_l_ dll(z)dll(t}. 
ExE Iz-tl 

Note that 1(11) E ] - 00, co] is well defined as the negative of 

f ioglz - tl dll(Z) dll(t), which has to be interpreted in the sense of §4.2. 
ExE 

4.9.1. Definition. A bounded Borel set E is said to be of zero logarithmic 
capacity if 1(11) = + (:JJ for every 11 E 9(E). If not, the capacity C(E) is defined 
by 

C(E) = e-V(E), 

where 

VeE) := inf{l(Il) : 11 E &,(E)}. 

(The capacity of the empty set is 0 by definition.) 

We remark that log 1 ::::: iog(l/diam(E» > -00 when ZI, Z2 E E, 
IZ1 - z21 

where diam(E) = sup I u --- vi is the diameter of the bounded set E. Hence one 
.. ,veE 

has 1(11) ::::: log(l/diam(E)) for every 11 E ,q1!(E) and 

C(E) :s;; diam(E). 

4.9.2. Proposition. The function E H C(E), which to a bounded Borel set assigns 
its capacity, has the following properties: 

(1) C({a})=O(aEC); 
(2) C(AE + a) = I).IC(E) (A,a E C); 
(3) E1 S; E2 implies C(Ed :s;; C(E 2 ); 

(4) If the Lebesgue measure m(E) > 0, then C(E) > 0; 
(5) C(E) = sup{ C(K): K compact, K s; E}. 

PROOF. (1) 11 = ba is the only measure in &'({a}) and l(ba ) = +00. 

(2) For A = 0 it is (1). Otherwise consider cp(z) = AZ + a, cp : E -+ AE + a. The 
map cp* : 9(E) -+ 9(AE + a) is a bijection and for 11 E &,(E) one has 

l(cp*ll) = I log __ l_-d(cp*Il)«(l)d(cp.Il)((z) 
]().E+a)X(AE+a) IZ1 - z21 

= iEXEl logICP(Z-~y~-qJ{Z~TIdll(Zddll(Z2) 
= -logl).1 + 1(11). 

Therefore V(AE + a) = -loglAI + VeE) and C().E + a) = I).IC(E). 
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(3) Clearly &(Etl ~ &(E2), hence 

V(E 1 ) = inf{I(Jl): Jl E &(Etl} ~ inf{I(Jl): Jl E &(E2)} = V(E2)' 

Therefore C(Etl ~ C(E2)' 
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(4) If m(E) > 0, let mlE be the Lebesgue measure restricted to E, then 

Jl = m;E) mlE E &(E) and I(Jl) < 00. This holds because 

I(Jl) = (m~;))2 L Umdm 

and the logarithmic potential um E LI~c(q. Hence V(E) < 00 and C(E) > O. 
The last item is a consequence of the regularity of the Borel measures and 

is left to the reader. 0 

To clarify the proof oi item (4) in Proposition 4.9.2 let us recall that one 
calls logarithmic potential of a complex measure Jl with compact support in 
C the function: 

UP(Z) = 2~ f loglz - tl dJl(t). 

UP can be written, for Izi sufficiently large, as 21n loglzl + h(z), h harmonic near 

00 and zero at 00. One knows also that !lUP = Jl (cf. §4.4.24). 
For Jl E &(E) the Fubini-Tonelli theorem yields 

I(Jl) = -2n f{2~floglz-tldJl(t)}dJl(Z)= -2n f UP(z)dJl(z). 

If I(Jl) < 00 then f UP(z) dJl(z) > - 00, hence UP is finite Jl - a.e. One knows, 

besides, that UP E L~c(q, and hence, it is finite almost everywhere for the 
Lebesgue measure. 

The same argument used in the proof of §4.9.2, (4), can be used to obtain 
the following more general result. 

4.9.3. Proposition. Let E l' E 2 be two compact subsets of C such that E 1 ~ E 2, 

C(Ed = 0 and C(E2) > o. If Jl E &(E2) satisfies I(Jl) < 00 then Jl(Etl = o. 

PROOF. Applying a homothety (which is allowed by §4.9.2 (2» we can assume 

that diam(E2 ) ~ 1. Therefore log 1 ~ 0 in E2 x E2 and 
IZI - z21 

r log I ~ I dJl(z 1) dJl(z 2) 
JEtxEt Zl Z2 

~ r log I ~ I dJl(ztldJl(Z2) = I(Jl) < 00. 
JE2 XE2 Zl Z2 
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If J-L(Ed > 0 then J-LIJ-L(E 1) would belong to &,(Ed and have finite energy which 
would contradict C(Ed = O. D 

4.9.4. Corollary. If E1, E2 are compact sets with C(Ed = C(E2) = 0 then 
C(EI u E 2 ) = O. 

PROOF. If J-L is a nonnegative measure on El u E2 such that I(J-L) < 00 then 
J-L(E 1 u E2) ::; J-L(Ed + J-L(E2) = O. 0 

4.9.5. Corollary. If (En)n>1 is a sequence of compact sets in C such that 
C(En) = 0 and E = U En is compact, then C(E) = O. 

n~1 

PROOF. If J-L is a nonnegative measure on E such that I(J-L) < 00 then 
J-L(E)::; L J-L(En) = O. D 

n~1 

We need to consider other potentials (introduced by M. Riesz), besides the 
logarithmic potentials. 

4.9.6. Definition. For a E C and J-L a complex measure with compact support 
in C, we set 

/l - f dJ-L(t) 
U«(z) - Iz - tl«' 

which is called the Riesz potential of order a for the measure J-L. 

4.9.7. Remark. For z fixed in C\K, supp(J-L) = K, the function U:(z) is an 
entire function of a. For a E IR and J-L ~ 0, U: is subharmonic in C\K since 
!l.U: = a2 U:+ 2 • 

4.9.8. Proposition. If for some a ¢ - 2N there is R > 0 such that U:(z) = 0 for 
Izl ~ R, then J-L = O. 

PROOF. We can assume that K = supp(J-L) s B(O, R). One has, for t E K, 

1 1 

R 1-- 1--«( te- i6)«/2 ( te i6)«/2 
R R 

= ~ L (_1)m+n (-aI2) (-aI2)tmtne-i(n-ml6R-(m+nl. 
R m.n~O m n 

For k an integer we have 

e" o = J 0 U:(Rei6)eik6 dB 
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S· h' .. . . I/R d (-rx/2) ( -rx/2) 0 I Ince t IS senes IS a power senes In an m m + k # as ong as 

m + k ;;?: 0, we obtain that 

L rmtm+k dJl.(t) = 0 

for every m ;;?: 0, m + k;;?: O. By the Stone-Weierstrass theorem we can con

clude that f f(t) dJl.(t) = 0 for every f: K -+ C continuous. Therefore Jl. = O. 
K 0 

4.9.9. Proposition. Let Jl. be a real-valued measure with compact support K. 
Suppose that Jl.(K) = 0 and I(IJl.D < 00. Then Uf exists m-a.e. and 

I(Jl.) = 2~ Ie (Uf(Z))2 dm(z). 

Hence, I(Jl.) ;;?: O. Moreover, I(Jl.) = 0 if and only if Jl. = O. 

PROOF. We need first to prove two auxiliary lemmas. 

4.9.10. Lemma. If E is a Lebesgue measurable subset of C, then 

f dm(z) c::::iD\ 
-I -I ~ 2y nm(E) 

E z - t 
(t E C). 

PROOF OF LEMMA 4.9.10. This inequality is trivial unless 0 < m(E) < 00. Let 
us consider the disk D = B(t, R) such that nR2 = m(E). Then 

r dm(z) = f dm(z) + f dm(z) <.!.. r dm + f dm(z) 
JE Iz - tl E\D Iz - tl EnD Iz - tl - R JE\D E"D Iz - tl 

= .!..m(E\D) + f dm(z) . 
R E"D Iz - tl 

We have that m(E\D) = m(E) - m(E n D) = m(D) - m(E n D) = m(D\E). 
Therefore, since when zED we have Iz - tl ~ R, we obtain 

r dm(z) = ~m(D\E) + r dm(z) < r dm(z) + r dm(z) 
JE Iz - tl R JE"D Iz - tl - JE\D Iz - tl JEnD Iz - tl 

f dm(z) fR f2" pdpd() = -- = -- = 2nR = 2J nm(E). 
D Iz - tl 0 0 p 

o 

4.9.11. Lemma. L I Uf(z)1 dm(z) ~ 21Jl.1(C)J nm(E), and Uf E Lt.,c(C)· 
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PROOF OF LEMMA 4.9.11. The theorem of Fubini ensures the inequality. The 
fact that Uf E Ltoc(C) now follows by letting E be an arbitrary compact 
~ 0 

Let us return now the proof of Proposition 4.9.9. We are going to show 
first that there is a constant Co such that if z 1 "# z 2, max { I z 11, I z 21} ::;; R, then 

1 i dm(t) 1 - -log =logR+Co +O(R-1 ), 
2n It I :<;R It - z 111 t - z 21 I z 1 - z 21 

where O(R-1 ) is a function of R such that in absolute value does not exceed 
MR- 1 for some M > 0, when R -+ 00 but Zl, Z2 remain fixed (or in a compact 
set). 

For that purpose, let us introduce the auxiliary functions 

and 

i dm(t) 
J(Zl,Z2,R) = . 

Itl:<;R+lz,l It - zlllt - z21 

We have (compare with Figure 4.5 in the next page) 

n((R + IZ11)2 - R2) 
II(zl,z2,R) - J(Zl,Z2,R)I::;; (R -IZ11)(R -IZ2i) 

_ n 21z11R + IZl12 

- R2 (1 _1~1)(I-I~I)" 
w 

Using successively the changes of variables w = t - Zl and s = --- in J 
we obtain Z2 - Zl 

In order to obtain the asymptotic behavior of this last integral when R -+ 00, 

we let A> 2, and write 

fA f2" dpdO f2 f2" dpdO fA f2" dpdO 
[(O,I,A) = 0 0 11- pe i6 1 = 0 0 11- pei61 + 2 0 11 - pei6 1· 

Since, for p ~ 2, 

1 11 ei6 e2i6 I 1 0 ( 1 ) 
11 - peiol - p I ei61 = p 1 + P + 2 ( ei6 ) = p + p2· 

1-- p 1--
P P 
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Figure 4.5 

One has 

1(0, 1,A) = I2 I2" 11 ~~:i81 + 2n(JogA -log2) + o(~). 
1 e [2" dpdO 

Let Co = 2nJo Jo 11 _ pei81-log2, then 

I(Zl,Z2,R) = J(Zl,Z2,R) + o(~) = 1(0,1, ~2+_1::11) + o(~) 

= 2n( Co + log~2+_I::II) + o(~) 

= 2n( Co + loglz2 ~ zll + IOgR) + o(~). 
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when R ~ 00 and IZli remains bounded. This proves the desired asymptotic 
development. Note that Co is independent of Z l' Z 2. We use now the hypothesis 
that J-I(K) = 0. Then 

1(J-I) = flOg I 1 I dJ-l(z tl dJ-l(Z2) 
KxK Z2 - Zl 

= 21 f {[ I _ d71(t)_ I}dJ-l(Zl)dJ-l(Z2) + O(-R1). 
n KxK Jltl~R t Zl t Z2 

The hypothesis that 1(1J-11) < 00 ensures that 

f log I 1 I dlJ-lI(z tl dIJ-lI(Z2) < 00. 
KxK Z2- Z 1 

Therefore, one also has 

f IIOgl 1 IldlJ-lI(ZtldlJ-lI(Z2) < 00, 
KxK Z2- Z 1 
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and hence, that 

f 1 dm(t) dlJlI(z 1) dIJl(Z2)1 
---'-'-----'--~"--'-'--'~ < 00. 

KxK 1/1:sR It - zilit - z21 
As a consequence, we can apply Fubini's theorem to the preceding expression 
of I(Ji) and obtain 

I(Jl) = 21n L:SR (L I~~Z;IY dm(t) + o(~) 
= 21 r (Uf(t))2 dm(t) + 0 (~). 

n JI/I:SR R 

Let R -+ 00, then 

I(Jl) = 2~ t (Uf(t)f dm(t), 

which concludes the proof of Proposition 4.9.9. o 
4.9.12. Proposition. If V(E) < 00 (i.e., C(E) > 0) there is a unique measure 
v E 9(E) such that I(v) = V(E). 

PROOF. By the definition of V(E), one can find a sequence (JlII)"~l of measures 
in 9(E) such that (l(Jl"))1I~1 is a decreasing sequence with limit V(E). Since 
9(E) is a metrizable compact space when considered with the topology 
induced by the weak convergence of measures, we can find a subsequence, 
also denoted (JlII)"~l' which converges weakly to a measure v E 9(E). 

In order to prove that I(v) = V(E), let us introduce the continuous functions 
gk(t) = inf( -logltl, k), kEN. We have 

I(v) = lim f gk(Zl - z2)dv(Zl)dv(Z2) 
k-+ao E xE 

= lim lim f gk(Zl - z2)dJlII(Z1)dJl,,(Z2)' 
k-oo n-CX) E xE 

For k fixed and n arbitrary we have 

f gk(Zl - z2)dJl,,(zddJl,,(Z2);S; f logl 1 IdJlII(zddJlII(Z2) = I(Jl,,). 
ExE ExE Z1 - Z2 

Therefore 

I(v);s; liminfI(Jl,,) = V(E). 

Since V(E) ;S; I(v) by the definition of V(E), we have I(v) = V(E). 
Let us show there is only one measure in 9(E) with this property. Note 

that for any pair of measures in 9(E) one has 
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I (Ill ; 1l2) + I (Ill ~ 1l2) = ~(I(1l1) + I(1l2». 

Assume Ill' 112 are two measures in 9(E) such that I(lli) = V(E). Then 

~(1l1 - 1l2) is a real-valued measure supported in E such that 

1 
2(1l1 - 1l2)(E) = O. 

From Proposition 4.9.9 we conclude that IG(1l1 - 1l2») ~ o. Therefore, the 

measure III ; 112 in 9(E) satisfies I (Ill; 1l2) ::;; V(E). By the minimality of 

V(E) we conclude that I (Ill; 1l2) = V(E) and I (Ill ~ 1l2) = O. Appealing 

again to Proposition 4.9.9, we conclude that III = 1l2. 0 

4.9.13. Definition. The measure v obtained in §4.9.12 satisfying I(v) = V(E) is 
called the equilibrium measure of E and the corresponding logarithmic poten
tial UV is called the equilibrium potential of E. 

We are now going to try to find an effective method to compute the capacity 
of a compact set. As a corollary of the procedure that follows, we shall be able 
to conclude that the equilibrium measure of a set is always concentrated in 
the exterior boundary of that set. (Recall the exterior boundary is the boun
dary of the unbounded component ofe\E.) 

Let E be a compact set. The number <>n = <>n(E) is determined by 

(<>n(E»"(n-1)/2 = sup { n IZk - zjl : Zj E E, 1 ::;; j ::;; n}. 
1 ~<ks;n 

The product n (Zk - Zj) that appears in the definition of <>n is precisely 
1 ~<ks;n 

the Vandermonde determinant D(z l' ... ,Zn) 

D(", ... ".) ~ de{ Zl zi .-, ) ... Zl 

Z2 Z~ n-1 ... Z2 

Zn Z2 n-1 
n Zn 

It is clear that 

<>2(E) = diam(E) 

and that, for every n 
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4.9.14. Proposition. The sequence (15n(E»n~l is decreasing and its limit t(E) is 
called the transfinite diameter of the compact set E. 

PROOF. Since E is compact there exist points Z l' ... , Zn+1 E E such that 

(15n+1(E))n(n+1)/2 = n IZk - Zjl 
1Q<k,;n+1 

The right-hand side equals 

IZn+1 - zd IZn+1 - z21·· ·IZn+1 - znl n IZk - Zjl 
1 Q<k,;n 

which is majored by 

IZn+1 - zlll zn+1 - z21·· ·IZn+1 - znl(15n(E)t(n-1)/2. 

The same way we obtain, for each index k fixed, 

(15n+1(E))n(n+1)/2 ~ (n IZj - Zkl) (15n(E)t(n-1)/2. 
j# 

By multiplying all these inequalities together we obtain 

[(15n+1 (E)t(n+1)/2Jn+1 ~ (n IZj - Zkl) [(15n(E))"(n-1)/2Jn+1 
Uk 

which implies 

and proves the proposition. o 

4.9.15. Remark. It is clear that if E is a finite set then t(E) = O. By Corollary 
4.9.4 we also have C(E) = 0 in this case. Therefore, for finite sets transfinite 
diameter and logarithmic capacity coincide. The following proposition shows 
that this is always the case. 

4.9.16. Proposition. For every compact set E one has t(E) = C(E). Moreover, 
if C(E) > 0, the equilibrium measure v has its support contained in the exterior 
boundary of E. 

PROOF. By the previous remark we can assume that E is an infinite set. Let 
15n = 15n(E) and z~n), ... , z~n) E E be such that 

15:(n-1)/2 = n 14n) - zjn)l. 
1 Q<k';n 

We remark that we can assume that all these points are in the exterior 
boundary of E. In fact, let Eoo be the unbounded component of C \ E and 
F. = C\Eoo • Then oF. £; E. Moreover, the function 
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n-l 

z~ Il 14') - zt)1 Illz - zyn)1 is subharmonic and achieves its maximum 
! sj<k<. j=l 

in E at a point of oE. Therefore this maximum must coincide with (5:(.-1)/2 
and we can assume that z~n) E oE. The same reasoning holds for the other z?). 

de (1) n Let J.lt) be the measure -- on the circle aB zt),- and J.lH = L J.lt), 
2nn n j=1 

J.ln(C) = 1. Let us recall that for every w, pEe one has 

- loglw - pe i6
1 de;;:: loglwl 1 f2" 

2n 0 

and, more precisely, 

1 f2" . {IOgIWI if Iwl > Ipi 
- loglw - pe,olde = I I I 
2n 0 109 P if Iwl ~ Ipl· 

Hence 

1 fin 1 f 2" I eiOl UI'"(Z) = - loglz - tl dJ.ln(t) = - .:L- log z - Z)n) - -- de 
2n 2n J'~1 2nn 0 n 

and 

1 n n 1 f2" I eW I = -- L L - log z~n) +.- - zJn) de 
n j=1 k=l 2nn 0 n 

1 n 1 f2" l
ei6

1 ~ -2 L ]oglz~n) - zn - L --2 log - de 
n j# j=l 2nn 0 n 

1 Sj,k:9 

1 '\' ( ) ( ) log n 
:$; -2 L. loglzt - z/ 1+ _ ..... 

n j# n 

That is, 

n-l logn 
I(J.l.) ~ --log{1/(5.) +---. 

n 11 

We can now extract a weakly convergent sl!,bsequence (J.ln.}k:2:1 from (J.l.).:2:1' 
Its limit measure J.lo E &I'(E) and supp J.lo £.: aE, since 

supp J.l. £.: {z E E : d(z, oE) ~ n. 
By exactly the same reasoning used to show the existence of the equilibrium 
measure in Proposition 4.9.12, we have 
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. . . . nk - 1 1 1 
I(llo) = hmmf I(Il"J:::;; hmmf--Iog~ = log (E)' 

k~oo k~oo nk u nk t 

since ()" --+ t(E). 
Conversely, given any set of distinct points Z l' ... , Zn E E we have the 

inequality 

1 1 L logl I ~ n(n - 1)log~. 
j# Zj - Zk Un 

Integrating this inequality against the nfold product of a measure Il E 9(E) 
with itself, we obtain 

If v is the equilibrium measure of E we conclude that 

and, passing to the limit 

1 
V(E) = I(v) ~ log~, 

n 

1 
I(v) ~ logt(E) ~ I(llo)· 

Note that if t(E) = 0 the previous inequality forces V(E) = 00 and C(E) = O. 
If t(E) > 0 the last inequality implies I(llo) < 00, and by the minimality 
I(v) :::;; I(llo) < 00. Therefore, we can use Proposition 4.9.12 to conclude that 
Ilo = v and t(E) = C(E). 0 

4.9.17. Proposition. Let r be the exterior boundary of the compact set E, then 

C(r) = C(E). 

PROOF. One has C(r) :::;; C(E) by Proposition 4.9.2 (3). The proof of Proposi
tion 4.9.15 shows that V(E) = I(llo) with Ilo E 9(E), sUPPllo £ r. Therefore 
Ilo E 9(r) and V(E) ~ V(r). Hence C(r) = C(E). 0 

-'.9.18. Corollary. If E1 and E2 are two compact sets having the same exterior 
boundary then C(Ed = C(E2)' 

We are going to give now a third way of finding C(E) for a nonempty 
compact set E in C. Let 9 .. denote the space of polynomials of degree :::;; nand 
complex coefficients. By 9 0 ... we denote the closed subset of 9" formed by the 
monic polynomials in 9 .. (i.e., the coefficient of z .. is exactly equal to 1.) Let 

M .. (E) = Mn = inf{suP IP(z)1 : P E 9 0 ... }. 
zeE 
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If P E &'O.n has a zero IX that does not belong to the convex hull cv(E) of 
E, then one can find another polynomial P1 E &'O.n such that SUP!P1 (z)1 < 

zeE 

sup IP(z)l. In fact, one can separate IX from E by a straight line and choose the 
zeE 

system of coordinates in C in such a way that this line is the imaginary axis, 
E is contained in the left-hand plane and IX > O. Therefore, for z E E we have 

. zP(z) 
Izl < Iz - lXI, hence if P1(z) = -- one has IP1(z)1 < IP(z)1 on E. Hence, to 

Z-IX 

find Mn we can restrict ourselves to consider those P E &'O.n all whose roots 

lie in cv(E). Since sup IP(z)1 is a continuous function of the zeros Zl"'" Zn of 
zeP 

P, and each of them can be taken independently of the others in the compact 
set cv(E), we are guaranteed the existence of points z~nl, ... , z~nl E cv(E) such 
that 

Mn = sup n Iz - ztll. 
zeE 15j"n 

As a first corollary of this observation we can show that Mm+n ~ MnMm. 
Namely, let z~nl, ... , z~nl and z~ml, ... , z~l be families of points in cv(E) giving 
Mn and Mm, respectively, then 

Mm+n ~ sup ( n Iz - zJnll n Iz - 4m'l) 
zeE 1 "j"n 1 "k"m 

~ (sup n Iz - zJnll) (sup n Iz - z~mll) 
zeE 1 "j"n zeE 1 "k"m 

= MnMm· 

Let us recall the following simple lemma. 

4.9.19. Lemma. If (Xn)n.,l is a sequence of real numbers satisfying 
x 

Xn+m ~ Xn + Xm for every n, m ~ 1, the lim --.!'. exists in [ - 00,00[. 
11""00 n 

PROOF. Let IX > inf {Xn}. There is an integer s such that x. < IX. For m > s let 
n.,l n s 

us write m = us + v, 0 ~ v < s, u, V EN. Then we have 

hence 

Xm us x. Xv 
-~---+-. 
m us+vs m 

When m --+ 00 we have u --+ 00 and, for large m we obtain 

Xm X. 
-~-+e<lX+e. 
m s 
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Therefore 

. f Xm 1· Xm 
In -:5: 1m sup - :5: oc. 
m,,1 m m .... oo m 

It follows that 

D 

4.9.20. Corollary. Let (Yn)n,,1 be a sequence of positive real numbers such that 

Ym+n :5: YnYm for every m, n ;;::: 1. Then lim .::fin exists in [0, 00 [ and it is smaller 
n .... oo 

than y;;m for any m ;;::: 1. 

PROOF. Let Xn = log Yn' then Xn = 10g(y~/n) and Xn satisfies the condition of 
n 

§4.9.19. Therefore lim y~/n = exp (lim Xn) = exp (inf Xm) E [0,00[. D 
,. ....... 00 11-+00 n m~ 1 m 

This last corollary allows us to define the Chebyschev constant peE) of a 
nonempty compact set E by 

peE) := lim (Mn(E))1/n. 
n .... oo 

The function E H peE) has the following three properties: 

(a) If E1 £; E2 then peEd :5: p(E2). 
(b) If E is a finite set then peE) = o. 
(c) If(En)n,,1 is a decreasing sequence of compact sets and if E = n En' then 

n,,1 

peE) = lim peEn). 
n .... oo 

Property (a) is evidently true. We leave the proof of (b) to the reader. Let 
us prove (c). Given 6> 0 there is an integer s ;;::: 1 such that 

peE) :5: (M.(E))1 /' :5: peE) + 6. 

For this s fixed we have 

(M.(E))t /' :5: (M.(EnW/n :5: (M.(E))t/s + 6; 

the last inequality holds for n sufficiently large since then the points of En are 
all very close to E. Therefore, for n sufficiently large we have 

peE) :5: peEn) :5: (M.(En))1/S :5: (Ms(E))1 /• + 6 :5: peE) + 26. 

The third inequality is a consequence ofthe last statement in Corollary 4.9.20. 
It is clear that chain of inequalities proves property (c). D 
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4.9.21. Proposition. For any nonempty compact set E in (: we have 

p(E) = C(E) = r(E). 

PROOF. We can assume E is infinite. Let Z1"'" Zn be the distinct points in E 
such that 

~n(n-l)/2 = n 1- Z 1 Un L.j - k, 
1 '5.j<k:s;n 

n 

with I5n = 15"(E). The polynomial P(z) = n (z - z) is in gilo,n, hence there is a 
j=1 

point Zn+1 E E such that 

Mn :$; sup IP(z)1 = IP(zn+dl· 
zeE 

Therefore 

I5 n(n-l)/2M <l5n(n-l)/2M « n Iz.-zl)IP(Z )1 
n+1 n - n n - J k "+1 

1 '5.j<k'5.n 
< n Iz. - z 1 < 15"(n+1)/2 
- J k - n+1 . 

1 '5.j<k'5.n+1 

In other words 

and we can conclude immediately that 

p(E) :$; .(E) = C(E). 

Conversely, let Q be a polynomial in gilo,n such that 

Mn = sup IQ(z}l. 
ZEE 

If z l' ... , Zn+l are any family of distinct points in E we have that the Vander
monde determinant D(Zl, ... ,Zn+l) can also be expressed as 

D(z 1, ... ,Zn+1) = det ( 1·~ z 1 zi z1-1 Q(ztJ) 
Zn+1 Z~+1 . . . z;:;t Q(z~+1) 

Developing this determinant along the last column we obtain 

D(Zl"'" Zn+1) = L (_l)iQ(zJD(Zl"'" Zj, ... , Zn+1)' 
1 '5.i'5.n+l 

where D(Zl, ... ,Zj, ... ,Zn+1) is the Vandermonde n x n determinant obtained 
by eliminating the last column and the jth row in the determinant. Of course, 
D(z 1, ... , Zj, ... , Zn+1) is exactly D(zj>"" Zj-l, Zj+1, ... ,Zn+l)' that is, the point 
Zj was removed from the set. We know that by the definition of bn 

ID(Z1, ... ,Zj"",zn+1)I:$; 15:<n-1)/2, 
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for 1 ::::;; j ::::;; n + 1 and aU possible choices of Z l' .. 0 , Zn+10 If we choose these 
points so that 

then we have 

or, taking the nth root, 

We take the logarithm ofthese inequalities and add them for the values n = 1, 
2, ... , m. After some simplification we obtain 

x + ... + x 
Recall now that if a sequence Xn -+ a then the averages _l_~~~~~~~~~ __ n -+ a also. 

n 
(This is the Cesaro summation procedure.) It is dear that if we divide by m on 
both sides we have essentially this situation: 

1 [11l~110g Jm+1 + m - 1 _1_ flog bkJ 
2 . m m (m - 1) k=2 

::::;;1 f !~~~(k + 1) + ~ f log(MlIk). 
m k=1 k m k=1 

Taking limits we obtain 

log t(E) ::::;; log p(E). 

This gives the other inequality needed to end the proof of the proposition. 
o 

4.9.22. Proposition. Let E be a nonempty compact set in C of zero capacity. 
There exists a measure (J E 31'(E) such that 

lim U"(z) = - 00 for all (E E 
z~~·~ 

and 

E={ZEC:U"'(Z)= -oo}. 

PROOF. The proof of the first part of the previous proposition shows that if 
we pick points zln), ... , z~n) in E such that 

(b.(E))·(n-1)/2 = b:(n-1)/2 = n Izt) - Zkn) I 
1 sj<ksn 

then 
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( 
n )1/" 

sup TI Iz - ztll ~ ()n+1' 
ZEE j=1 

Let us choose a sequence of integers (nk)k~1 such that 

k "2: 1. 

Set 

and 

It is clear that (J E &,(E). For z E E one has 

1 f vI,\, 1 (1 '\' (n ) ) V"(z) = - loglz - (I d(J(~) = - L...k ....... L... loglz - Zj k 1 
2n 2n k~l 2 nk 1 ;;;j;;;nk 

l,\,lk < - L.Ie = -co. 
- 2nk~12 

Since va is harmonic off the support of (J we conclude that 

E={ZEC:V"(Z)= -co}. 

The upper semicontinuity of V" also proves that 

lim V"(O = -co 

for every ( E E. 
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o 
There is a converse to this proposition. The proof requires the following 

proposition. 

4.9.23. Proposition. Let E be a compact set with C(E) > O. If v is the equilibrium 
measure for E then one has 

VV(Z) "2: 
VeE) 
2n 

for every Z E C, 

and VV(z) = - ~~) for Z E E, with the possible exception of a set A ~ E which 

is the countable union of compact sets of zero capacity, all of them contained 
v _ V(E) 

in the exterior boundary r of E. Moreover, V = -~~ on every bounded 
2n component of C\r. 
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PROOF. The support F of v is a compact set contained in the exterior boundary 
r of E. U" is harmonic in Fe and subharmonic in C, AU" = v and 

f U"dv = - ~~). 
Let us consider the set 

A := {z E E : U"(z) > - ~~)}. 
We want to show that C(A) = O. By the regularity of the Borel measures we 
have that C(A) = sup{ C(K) : K compact, K !;;; A}. It follows from this that, if 
C(A) > 0, then there exists an integer no ~ 1 such that C(An) > 0 for n ~ no, 
where 

{ " V(E) I} An:= Z E E: U (z) ~ -2n + n . 

In fact, if K compact, K !;;; A, C(K) > 0 then K = U (K (\ An) and by §4.9.S 
n2:1 

one has C(Ano) ~ C(K (\ Ano) > 0 for some no ~ 1. 
We must also have v(E\A) > o. Otherwise the condition (*) could not 

hold. In fact, v(A) = 1 also implies that v(An) > 0 for some n, contradicting 
(*). Therefore there is a compact set B, B!;;; E\A, such that v(B) > O. By 
Proposition 4.9.3 we also have C(B) > O. 

To show that C(A) > 0 leads to a contradiction we must use the extremality 
of the equilibrium measure v, that is, we are going to construct a convenient 
perturbation of v. 

Let Jl E &,(Ano) be a measure with finite energy I(Jl). Such a measure exists 
since C(Ano) > O. 

Every Borel subset of E can be written as a disjoint of union of three Borel 
sets contained respectively in B, Ano and E\(B u AnJ We can define a real
valued measure a on E by 

{ 
-v(S) if S !;;; B 

a(S) = v(B)Jl(S) if S !;;; Ano 

o if S !;;; E\(B u Ano). 

For 0 < t < 1 let A. = v + ta. One can verify that A. ~ O. (It is obvious that 
A. is positive in E\B and, in B one uses that t < 1.) Moreover, A.(E) = 
v(E) + t( - v(B) + v(B)Jl(Ano» = v(E) = 1. It is also easy to show that 

I(A.) < 00 and I(lai) < 00. 

Therefore, we must have 

I(v) ::; I(A.). 

But 
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I(A) = I(v) + t 2/(u) - 4nt f U' du, 

and we should then have 

f U' du:::;; O. 

On the other hand 

f U' du = - f U' dv + v(B) f U' dJl. 
B Ano 

~ v(B) V(E) + v(B) (_ V(E) + ~) 
2n 2n no 

= v(B) > 0 
no ' 

which is a contradiction. It follows that C(A) = O. 
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Since C(A) = 0 then C(An) = 0 for all n ~ 1, hence v(An) = 0 by Proposi
tion 4.9.3. We still have to show that A £; r, as well as the other properties 
stated in the proposition. We start by showing that 

U'(z) ~ - ~~) for all z E Co 

Th· ·11 . I h V(E) . \ IS WI Imp y t at U' = -21t" In E A. 

We show this inequality in two stages, first on F, the support ofv. Let Zo E F 

such that U'(zo) < - i E) . Since U· is U.S.C., there is an e > 0 and a compact 
. n V(E) 

neighborhood N of Zo such that U'(z) < -21t" - e for ZEN. We also must 

have v(N) > o. Otherwise Zo would not be in F. Hence 

- V2(E) = f U'dv + r U'dv 
n N J(F\N) 

:::;; ( - ~~) - e)V(N) + v(F\N) ( - ~~»). 

since we have already shown that v(A) = 0 and U' :::;; - i E) in E\A. There-
fore we have n 

_ V(E) < _ ev(N) _ V(E) 
2n - 2n 

h· h·· ·bl . h V(E) h h w IC IS Impossl e. That IS, we ave U' ~ -21t" everyw ere on F. T e 

second stage is accomplished by the following lemma. 
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4.9.24. Lemma. Let E be a compact subset of 1[, J1 E @'(E), c E ~. If VI' ;;::: c on 
E then UI' ;;::: c everywhere. 

PROOF OF LEMMA 4.9.24. Let D be a connected component of I[ \ E. Since - VI' 
is harmonic in D (and tends to - 00 at 00 if D is the unbounded component 
of E'), then it is enough to show that for any a E i5 n E we have 

lim sup - UI'(z) S - c. 
z->a 
ZED 

Let Dp = DnB(a,p), Ep = EnB(a,p). It is not possible that J1({a}) > 0, 
otherwise by Lemma 4.4.24 we would have VI'(a) = - 00. Hence given c > 0 
there exists p > 0 sufficiently small such that J1(Ep) < c. Let us choose z E Dp 
and z 1 E Ep (depending on z)such that IZI - zl s Iz - tl for every t E Ep. Then 

IZ1 - tl S IZ1 - zl + Iz - tl s 21z - tl for t E Ep 

and 

1 
log-- < log2 + log ...................... ~ 

Iz - tl - IZ1 - tl 

This inequality implies 

f log_l_dJ1(t) s J1(Ep ) log 2 + flOg-I _l-l dJ1(t) 
Ep Iz-tl Ep Zl- t 

s dog2 + flOg-I. _1_1 dJl(t) - f log-I ~ I dJ1(t) 
E Z 1 - t E\Ep Zit 

s clog2 - 2nc - f log-I ~ I dJ1(t), 
E\Ep Zl t 

since f log~ dJ1(t) = - 2nVI'(z 1) S - 2nc. 
E IZI - tl 

On the other hand, the integral over E\Ep is a continuous function of 
Zl E B(a,p). Since IZ1 - zl s Iz - al by definition of the point Zl' we have that 
there is a Po, 0 < Po < p, such that if z E B(a, Po) then 

f log~_~_l_ dJ1(t) s f log 1 __ dJ1(t) + E. 

E\Ep Iz - tl E\Ep IZ1 - tl 
Therefore, for z E B(a, Po) we have 

- 2nUI'(z) = f log -I 1_1 dJl(t) + f log -I _1_1 dJl(t) 
Ep z - t E\Ep Z - t 

s flOg _1_ dJ1(t) + flog! dJ1(t) + E 
Ep Iz - tl E\Ep IZ1 - tl 

S e(1 + log 2) - 2nc. 

This proves the lemma. o 
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The only thing missing to end the proof of Proposition 4.9.23 is to show 
that A <;; r. As in Proposition 4.9.16, let Eoo be an unbounded component of 
C\E and E = C\Eoo • Then E is a compact set such that iJE = r, therefore the 
equilibrium measure of E and of E coincide. Let 

~ {~ V(E)} A:= z E E: UV(z) > -~ . 

Then A <;; A and C(A) = 0, by the same reasoning as earlier. If A \r =I 0 then 

there is a point Zo E E where UV(zo) > - ~~). By the continuity of U' in rc 
there is a neighborhood W of zo, Wo <;; A. This is impossible since m(A) = O. 
This concludes the proof of Proposition 4.9.23. Note that the last consider a-

V(E) 
tions show that U' == --- on every component of C\r except for the 

2n 
unbounded one. 0 

The following is the converse to Proposition 4.9.22. 

4.9.25. Proposition. Let J.l be a positive measure with compact support E. If E1 
is a compact set contained in the polar set of UI" then C(E 1) = o. 

PROOF. Clearly E1 <;; E, since outside UI' is finite. If C(Ed > 0, let v be the 
.. . V(E) 

eqUlhbnum measure of E 1 • We know that u· 2: - -2- > -cYJ everywhere. 
By Fubini's theorem n 

L, UI"(z)dv(z) = L, (21n L loglz - (I dJ.l(O)dv(z) 

= f (~f loglz---- (I dV(Z»)dJ.l(O 
E 2n E, 

= f U'(OdJ.l(O 2: -~~]<,'i~(I9 > -00, 
E, 

which contradicts the fact that UI" = - cYJ on E l' D 

The Riesz decomposition theorem and Propositions 4.9.22 and 4.9.25 allow 
us to conclude that the compact polar sets are exactly the compacts with zero 
capacity. 

Another remark to be made at this point is that, under very mild restrictions 
on a compact set E of positive capacity, one can show the exceptional set A 
of §4.9.23 is empty. This will allow us to relate the capacity of E to the 
asymptotic behavior at infinite of the Green function of the unbounded 
component of S2\E. To get there we need first to prove some majoration 
properties of subharmonic functions. This will be done later. 

We study first some elementary conditions on the removal of singularities 
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of harmonic and subharmonic functions. On this account, let us recall that a 
harmonic function, since it is locally the real part of a hoI om orphic function, 
is real analytic. Therefore, if a harmonic function in a connected open set Q 

vanishes on a nonempty open set U, U £: Q, it is identically zero on Q. 

4.9.26. Proposition. Let Q be an open set in S2. A harmonic function h in Q\ {zo} 
(zo E Q) is the restriction of a harmonic function ii in Q if and only if 

lim h(z) = 0 if Zo "# 00 
Z~Zo loglz - zol 
Z':#Zo 

11·m h(z) = 0 l·f 00 Zo = . 
z~oo loglzl 

ZE!l\{OOJ 

PROOF. That the condition is necessary is evident. 

(1) 

(2) 

Let Zo "# 00 and B(zo, r) £: Q. Let hi be the harmonic function in B(zo, r) 
whose boundary values coincide with h. Let us show that h= hi in B(zo, r)\{zo}. 
Let I; > O. Set 

Iz - zol 
hE(z) := h(z) - hi (z) + dog , 

r 

for z E B(zo,r)\{zo}. The function hE is zero on 8B(zo,r), harmonic in 
B(zo,r)\{zo} and, by hypothesis (1), tends to -00 as z -+ zoo Therefore hE 
is subharmonic in B(zo, r) and, by the maximum principle, hE ~ 0 in this 
disk. Letting I; tend to zero one finds h ~ hi in B(zo, r). With the help of 

kE = hi - h + dog Iz - zol one proves that h and hi coincide. This proves the 
r 

extension of h to Zo is possible. 
If Zo = 00 one sets GE(z) = ± h(zH hi (z) + doglrzl if B(zo, 1/r)< £: Q, where 

hi is the solution of the Dirichlet problem in B(zo, 1/r)< with h as boundary 
value. The preceding reasoning can be applied to finish the proof. D 

4.9.27. Corollary. (Riemann). If h is harmonic in Q\ {zo} and bounded then h 
admits an extension to a harmonic function in Q. 

4.9.28. Proposition. Let Q be an open set in S2, Zo E Q, u subharmonic in 
Q\{zo}. The function u admits an extension it subharmonic in Q if and only if 

lim sup u(z) ~ 0 if Zo "# 00, 
Z~Zo log(1/lz - zol) 

(1) 

. u(z) 
hmsup -1-- < 0 if Zo = 00. 

z~oo oglzl-
(2) 
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PROOF. We will restrict ourselves to the case Zo :1= 00. The other case can be 
reduced to this one (we use the same reasoning). 

First we show the condition is necessary. If u exists then 

lim sup u(z} = lim sup u(z} :::;; u(zo} < 00. 
Z-+Zo Z-+Zo 
Z#%o Z#Zo 

Clearly, lim log I 1 I = + 00. Therefore 
% .... %0 z - Zo 
Z:#=Zo 

. u(z} 
hmsup I (1/1 _ I):::;; o. 

% .... %0 og Z Zo 
%#Zo 

To prove the sufficiency let us note that if u exists, then one must have 
u(zo) = lim A(U, Zo, r}. This proves that the possible extension is unique. We 

r .... O 

need an auxiliary result to proceed further. 

4.9.29. Lemma. Let u, nand Zo be as in the statement of Proposition 4.9.28. If 
B(zo, r} s nand h is a continuous function in B(zo, r}, which is harmonic in 
B(zo, r} and h ~ u on 8B(zo, r}, then h ~ u in B(zo, r}\ {zo}. 

Iz - zol -
PROOF. Let 8> 0 and we(z} = u(z} - h(z} + dog for z E B(zo,r}\{zo}. 

r 
The function We is subharmonic in B(zo,r}\{zo}. We claim that 

lim we(z} :::;; 0 
% .... { 

O<lz-%ol<r 

(i) if' = Zo we have 

() (I 1) [ u(z} 
we Z = oglz-zol 10g(l/lz- zol) 

h(z) dogr ] 
10g(l/lz- zol) -8 log(l/lz-zol) . 

By assumption (I) the expression between brackets is :::;; -812 if 0 < Iz - zol 
is sufficiently small. Therefore 

lim sup we(z) = - 00. 

(ii) If, E 8B(zo, r} we have 

Z-+Zo 
Z#Zo 

lim we(z} :::;; ( lim sup U(Z}) - h(O :::;; u(O - h(O :::;; o. 
z .... { z .... { 

O<lz-%ol<r O<lz-%ol<r 

Hence the claim is true and we can apply the maximum principle to conclude 
we:::;; 0 in B(zo, r}\{zo}. Letting 8 -+ 0 we obtain u(z} :::;; h(z} in the punctured 
~. D 

Returning to the proof of Proposition 4.9.28, we let Pru be the Poisson 
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modification of u with respect to the disk B(zo, r) (cf. §4.7.l). P,u is a subhar
monic function in U. If we let (rn ).>1 be a sequence of positive numbers 
decreasing to zero, then (Pr U)n>l isa decreasing sequence of subharmonic 
functions such that Pr u ;:::: ~ e;erywhere by Lemma 4.9.29. Therefore the 
function fi = infP'nu is"subharmonic and, clearly fil(U\{zo}) = u. This con-

n 

eludes the proof. o 

4.9.30. Corollary. Let U be an open set in S2, A = {Zn}n:2:1 a discrete subset of 
O. Then 

(1) {{ u is a subharmonic function in O\A then it admits a subharmonic extension 
fi to a if and only if for every n 

. u(z) 
(a) hm sup_· < 0 if an i= 00 

z~an log(l/Iz - zol) -
ZE.Q\A 

. u(z) 
(b) hm sup··· .... ···· ::; 0 

z~oo Iog(lz!) 
ZEO\A 

if CIJ E A. 

(2) If h is harmonic in O\A and satisfies for every n 
. h(z) 

(a) hm sup-------- = 0 if an i= 00 
z~a" Iog(1/lz - a.1) 

zdl\A 

. h(z) 
(b) hm --- < 0 

z4:O loglzl-
z €IlIA 

if CIJ E A. 

then h admits a harmonic extension to O. 
(3) The preceding two properties hold if u (resp. h) is bounded above (resp. 

bounded). 
(4) If u is subharmonic and bounded above in S2\A, A discrete, then u is a 

constant. 

4.9.31. Definition. A connected open set a in S2 is said to be parabolic if every 
subharmonic function in a which is bounded above is constant. If a is not 
parabolic one says it is hyperbolic. 

4.9.32. Proposition. Let a be a parabolic open set and 0 1 S a be an open sel 
whose relative boundary 0n(OI) is not empty. Let u be a subharmonic function 
in 0 1 bounded above by a constant M < CIJ. If lim sup u(z) ::; m for every 

z~{ 'E 0n(Ql)' then u :::; m in Q1 0 ZEn! 

Conversely, let a be a connected open subset of S2 such that for every open 
0 1 S a with 0n(U 1 ) i= 0 and every function u sub harmonic in 0, bounded above 
in a for which lim sup u(z) ::; m for every ( E on(Oj) one has u ::; m in OJ' Then, 

a is parabolic. 

z~~ 
ZEn l 
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PROOF. Let us assume first that 0 is parabolic and let 

v = {SUP(U - M,m - M) in 0 1 

m - M inO\OI' 

457 

It is clear that v is subharmonic, and hence U.S.c. both in 0 1 and in O\Ql' 
Since in 1'10(01 ) we have that v = m ...... M, it follows that v is u.s.c. in O. If 
( E OU(OI) and B(C r) <;;: 0, then from the definition of v we have v ;::>: m - M 
on B«(, r), hence ..1,(v, (, r) ;::>: m - M = v«(). Therefore v is subharmonic in O. 

Since v ::s; sup(O, m - M) in 0 we conclude that v is constant. This constant 
must be necessarily m - M since OU(Ol) #- 0. Therefore, u - M ::s; m - Min 
0 1 , or what is the same, U ::s; min 0 1 , 

Conversely, suppose u ::s; M < 00 is a sub harmonic function in O. We want 
to show u is a constant function. Let Zo EO, 0 1 = O\{zo}. 0 1 is a connected 
open set with on(Od = {zo}. The function v = ulO l satisfies 

lim sup v(z) ::s; u(zo). 

The hypothesis implies that u(z) = v(z) ::s; u(zo) for every z E O\{zo}. Since Zo 
was arbitrary, it follows that u must be a constant. 0 

4.9.33. Proposition. Let 0 be a connected open set in S2, E ~ 0000 a countable 
(or finite) set, and u a subharmonic function in 0 bounded above by M < 00 

such that 

lim sup u(z) ::s; m < 00 
z~1; 

zen 

for every (E 0ooO\E. Then u ::s; m in O. 

PROOF. We argue by contradiction. Suppose there is a point Zo EO such that 
u(zo) > m. Let J.I. > u(zo). There is a disk ii{zo, r) <;;: 0 such that u(z) < J.I. in it. 

For any WE S2\B(zo,r) there is a conformal map (in fact, a Moebius 
transformation) ({J : S2 \B(zo, r) -+ B(O, 1) such that ({J(w) = 0. Choose in this 
way ({In conformal mappings such that ((In((n) = ° for E = gn}n<:l' Hence the 
functions 10g(1!I({Jn(z)l) are harmonic and positive in O\B(zo,r). 

For a fixed ZI E O\B(zo, r) one can find a sequence IXn > ° such that 
L (Xn log(l!l({Jn(z)l) < 00. Therefore the function 
n~l 

h(z):= L an logO!1 ((In(z)l) ¥= 00 
n:?] 

is harmonic and positive in 0 \B(zo, r). 
For e > ° and z E O\B(zo,r), let 

v,(z) := u(z) - eh(z) - J.I.. 

This function is subharmonic. Let us study its behavior on the boundary of 
O\B(zo, r). 
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(i) If ( E E then a term of h tends to + 00 as z -> (. Since u :::;; M and 13 > ° 
we have v,(z) -> - 00 as z -l> (. 

(ii) If ( E ooofl\ E, lim sup u(z) :::;; m < u(zo) < f..l, and 0 :::;; sh(z), therefore 
z-' 

lim sup ve(z) :::;; 0. 
z-+, 
zen 

(iii) If ( E oB(zo, r), one has I <Pn(z) I -l> 1 as z -> (, hence h(z) -+ O. Nevertheless 
h ~ 0 and lim sup u(z) :::;; u«() < f..l, implies also that lim sup VE :::;; O. 

z-+{ 

By the maximum principle, VE :::;; 0 in fl\B(zo, r). That is 

u(z) :::;; sh(z) + f..l, 
Taking the limit 13 -> 0, one obtains u(z) :::;; f..l. Since f..l is arbitrary, we have 
u(z) :::;; u(zo), first in fl\B(zo, r), but using that r is arbitrary, one concludes that 
u(z) :::;; u(zo) for every point z E fl. From the maximum principle and the 
connectivity of fl, it follows that u(z) == u(zo) > m. This contradicts the fact 
that ocxJ!\E i= 0, and for' E (}oofl\E one has limsupu:::;; m. 0 

z-c 

4.9.34. Corollary. Let fl be a connected open set in S2 with countable boundary. 
Every subharmonic function in fl which is bounded above is constant. 

PROOF. Let Zo E fl, fll = fl\{zo}. We have limsupu(z):::;; u(zo). Therefore, we 
Z-Zo 

zeO! 

can apply the previous proposition to the sets 

We conclude that u(z) :::;; u(zo) in fll (hence in fl). Therefore u is a constant 
function. D 

4.9.35. Theorem (Phragmen-Lindelof Principle-I). Let fl be a connected open 
set in S2, E a proper and countable subset of ooofl, u a subharmonic function in 
fl such thai 

(1) lim sup u(z) :::;; m < 00 for every (E ooofl\E. 
z-I; 
!:En 

(2) There exists a subharmonic function v in fl such that 

lim sup v(z):::;; ° z-, 
ZEn 

(3) For every E > 0, sup lim sup (u(z) + sv(z» = A" < 00. 
,E' E z-+{ 

ZEn 

Then, u(z) :::;; m holds for every z E fl. 
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PROOF. Let E > O. The function w.(z) = u(z) + EV(Z) is subharmonic in nand 
satisfies lim sup wt(z) :-s;; m for' E ooon\E, and lim sup w,(z) :-s;; At for' E E. 

z-~ z-c 
Hence, lim sup w,(z) :-s;; sup(m, At) for every' E o",n. It foHows from the maxi-

z-~ 

mum principle that W t is bounded above in n. The previous proposition 
implies that wAz) :-s;; m for every ZEn. Let B = {z En: v(z) = - 00 }, it has zero 
measure. For z E n\B we have u(z) :-s;; m -- w(z), hence u(z) :-s;; m. If z E B, let 
r > 0 such that B(z, r) £; n. We have u(z) :-s;; A(u, z, r) :-s;; m, the last inequality 
follows from the fact that B has zero measure. 0 

4.9.36. Corollary. Let y z ~, n = {z E C : I Arg Z I < ;J, and let u be a sub

harmonic function in n such that 

(1) lim sup u(z) :-s;; m for every' E an 
z--~~ 

ZEn 

Then u :-s;; m throughout n. 

PROOF. Let 15, 11 be such that 

. logu+(z) 
ltmsuP j <O<I1<Y, 

z~, ogizi 
ZEn 

and let v(z)=Re(-z~)=-Re(e---~LogZ) for ZEn. (Recall Logz= 
11: 7T. 

loglzl + iArgz, --2 < Argz < .) One has 
Y 2y 

and v is harmonic. Since 

1111: 11: 
and 0 < -;;.- < -, we have 

Ly 2 

lim v(z) :-s;; 0 
z~1; 

ZEn 

Furthermore, there is R > 0 such that if r z R then 
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hence 

and 

lim sup (u(z) + w{z) = ---00 

for any 8 > O. We can therefore apply the previous proposition to obtain the 
inequality u ~ m in the angular sector n. D 

4.9.37. Corollary. Let}' :::=: !, n = {z E IC : 1 Arg z 1 < !.:..}. Iff is a holomorphic 
2 2y 

function in n such that 

(1) lim sup If(z)1 ~ M < ctJ for every' EOn, 
z-~ 
ZEn 

. 10g(log+lf(z)l) 
(2) 11m sup------ < }' 

z--->oo loglzl 
ZEn 

then If(z)1 ~ M for every ZEn. 

4.9.38. Corollary. Let p > ! and f an entire junction of order ~ p. If f is 
bounded over a family of half-lines argz = OJ, 1 ~ j ~ n + 1, e1 = en+!. such 
that the angle between consecutive half-lines is < n/ p, then f is constant. 

4.9.39. Examples. (1) The function f(z) = exp(1Xz Y), 1X > 0, Y > ! 
bounded in n = {z EO IC: IArgzl < ~}, while log M(lfl, r) = (1.r' and 

1. log log+ If(z)1 
1m sup = y. 

=--->CX) loglzl 
ZEn 

IS not 

. r; 
(2) If p = ! then Corollary 4.9.38 might fail. The entire function Slfi ~ 

shows there are entire functions of order! bounded over a half-line which are 
not constant. In Corollary 4.9.38, the condition p > ! forces the function f to 
be bounded on at least two half-lines. 

4.9.40. Corollary. An entire function f of order p < !- cannot be bounded on 
any half-line without being constant. If p = ! and type t < 00 then there is at 
most one half-line where f can be bounded unless f is constant. 
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4.9.41. Proposition. Let u be a subharmonic function in 

o = {z E C : a < Re z < b}, u :s; M < 00 in O. 

Let 

M(x) := sup u(x + iy) (a < x < b), 

then x f-+ M(x) is a convex function in ]a, be. 

PROOF. Let 
x-a b-x 

g(z) = b ~;;M(b) + b _ a M(a), 

whereM(a) = limsupM(x),M(b) = limsupM(x). Thengis a harmonicfunc-
x-a+O x-b-O 

tion in C, g(a + iy) = M(a), g(b + iy) = M(b). Hence v(z) = u(z) - g(z) is sub
harmonic in 0, bounded above and v :s; 0 on 00. This ensures that v :s; 0 in 
o by §4.9.33. Therefore 

x-a b-x 
u(z) :s; b _ a M(b) + b _ a M(a) (z = x + iy) 

and 
x-a b-x 

M(x) :s; b _ a M(b) + b _ a M(a). 

Note that this reasoning also allows us to conclude that the function M(x) 
is a convex function of x. It is enough to replace a and b by any two values 
Xl' x 2 , a < Xl < X2 < b to conclude M«(1- t)x 1 + tx2 ):s; (1- t)M(x 1 ) + 
tM(X2) when 0 :s; t :s; 1. D 

4.9.42. Corollary. Let f be a holomorphic function in the strip 0 = {z E C : 
z < Rez < b}, which is bounded in O. The function M(x):= suplf(x + iy)l, 

ye R 

a < x < b, is then a logarithmically convex function in ]a, b[ and 

M(x)b-·a :s; M(a)h-x M(by-a 

where M(a) = limsupM(x), M(b) = IimsupM(x). 
x-a+O 

4.9.43. Proposition. Let 0 = {z E C : 11m z I < ~} and u a subharmonic function 

in n. If there are two constants IX < 1 and A < 00 such that 

u(z):s; Aexp(etIRezl), (z E 0) 

lim sup u(z) :s; 0 «( E (0), 

then u(z) ::.;; 0 for every z E O. 
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Let us remark that f(z) = exp(exp z) and u(z) = Re(exp z) show that one 
cannot take IX = 1 in §4.9.43. 

PROOF. Choose fl, ° < IX < fl < 1, and let E > 0 be fixed. Let h.(z):= 
-ERe(e fJz + e- fJZ ) = -2 Re(coshflz). 

For ZEn we have 

Re(efJz + e- fJZ ) = (efJx + e- fJX ) cos fly ~ b(efJx + e- fJX ) 

with b = cos fl21t > 0 (since 0 < fl < 1). Hence 

lim sup (u(z) + h.(z» ~ 0 for (E an, 
z-+, 

and, for ZEn, 

which shows that 

lim sup (u(z) + h.(z» ~ o. 
z-+oo 
zen 

Therefore, u + h. ~ 0 in n, and u ~ 0 in n by letting E --+ O. o 

Since there exist uncountable compact sets with zero capacity, the following 
two propositions are more subtle than §4.9.33 and §4.9.35. 

4.9.44. Proposition. Let n be a connected open set in I[; and (En)n;el a locally 
finite sequence of compact subsets of an, all of them of zero capacity, E = U En. 

Let u be a subharmonic function in n which is bounded above. If 

then u ~ m in n. 

lim sup u(z) ~ m 
z-+, 
zen 

for (E an\E, 

n;el 

PROOF. Given /1- > m, without loss of generality we can assume that 0 E n, 
u(O) < /1-, and n is unbounded. For the construction that follows of a sub
harmonic function h in I[; such that E ~ {z E 1[;: h = -oo} we can assume 
(En)n;el is an infinite sequence, otherwise we can apply §4.9.22 directly. 

For every n ~ 1 we can find (In E 9(En) such that En = {z E I[; : Uan = -oo} 
(always by §4.9.22». Since the sequence (En)n;el is locally finite we have 
d(O, En) > 1 for all n sufficiently large, hence Uan(O) > 0 for those n. Choose a 
sequence of positive numbers (IXn)n;el such that the two series L IXn and 

n;el 

L IXn Uan(O) are convergent. The function h(z):= L IXn Uan(z) is locally given 
n~l n~l 

as the sum of a finite number of subharmonic functions plus a uniformly 
convergent series of harmonic functions. Therefore h is subharmonic in 1[;, 

harmonic in I[;\E, and -00 on E. Namely, if r> 0 and n ~ no we have 
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E" n B(O, r + 1) = 0; hence for Izl :5: rand n ~ no we have UO',(z) ~ 0. Now, 

if t "# 0, loglz - tl :5: logltl + 11;1, then 

0' 1 f Izl fder"(t) L a"U'(z):5:-2 L a" logltlder"(t) +-2 L a" -1-1 
";;'"0 11: ";;'"0 E, 11: ";;'"0 t 

(We have used that for n ~ no, t E supper", implies that It I ~ 1.) Using now 
that loglz - tl :5: log+lzl + log+ltl + log 2, the same reasoning shows that 
there is a positive constant Co such that 

h(z) :5: co(1 + log+ Izl). 

Hence, given r > ° there is a constant c 1 > ° such that 

h(z):5: Cl (1 + IOge;I)) when Izl ~ r. 

Let r > ° be such that B(O, r) £ n, u(z) :5: A. < p. for z E B(O, r). (This is possible 
because u(O) < p..) In the domain n l = n\B(O, r), consider for e > ° the aux
iliary subharmonic function, 

We claim that 

( Izl) v.(z) := u(z) + eh(z) - ecllog r - ecl · 

lim sup v.(z) :5: p., 
z-+{ 

Zeal 

for all, E anl . 

We note that v.:5: u everywhere in nl' Therefore v. is bounded in n l and if 
, E aB(O, r) or , E an\(E u B(O, r)) we have 

lim sup v.(z) :5: lim sup u(z) :5: sup (A., m) < p.. 
z-+{ z-+{ 

zent zen l 

Let M = sup u. If, E anl n E, then we have 
n 

lim sup v.(z):5: M + lim sup h(z) - eCl (IOg!fl + 1) = -00. 
z-+{ z-+{ r 

zeSll zenl 

It follows that v. :5: p. in n l , a posteriori u :5: p. in n l since h is finite everywhere 
in nl' Since u :5: p. in B(O, r) we have u :5: p. everywhere in n. As p. was an 
arbitrary quantity> m, we can conclude that the inequality u :5: min n holds. 

o 
4.9.45. Proposition (Phragmen-Lindelof Principle II). Let n be an open con
nected set in C, E = U E" £ an be the union of locally finite family of compact 

,,;;,1 
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sets En of capacity zero. Let E = E if n bounded, E = E u { oo} if not. Let u 
be a sub harmonic function in n satisfying: 

(1) lim sup u(z) :=; m < oo,for every' E an\E. 
z-, 
ZEn 

(2) There exists a subharmonic function v in n such that 

lim sup v(z) :=; ° z-, 
ZEn 

for every' E an\E. 

(3) For every e > 0, sup (lim sup (u(z) + ev(z») = A, < 00. 
,Et Z-, 

ZEn 

Then u(z) :=; m for every ZEn. 

PROOF. Let w,(z) = u(z) + ev(z). By the maximum principle w. is bounded 
above by sup(m, A.). Proposition 4.9.44 allows us now to conclude that that 
w. :=; m in n. Hence u :=; m in n when we let e -+ 0. 0 

We return to the question of relating the notion of capacity to that of Green 
functions. 

4.9.46. Proposition. Let E be a compact set in C, with C(E) > 0, and such that 
every connected component of the exterior boundary r has at least two points. 
Let n be the unbounded component of C \ E and g(z; 00, n) be the Green function 
of n with pole at 00. Then, if v denotes the equilibrium measure of E, we have 

g(z; 00, n) = 2n:UV (z) + VeE). 

It is standard to call in this context the constant VeE) (= -log C(E», the 
Robin constant of E. 

PROOF. The boundary an is r. The hypothesis made on it guarantees the 
existence of the Green function g(z) := g(z; 00, n). The function on the right
hand side of the equation in the statement of the proposition is subharmonic 
in C and harmonic in n. At infinity we have the asymptotic behavior 

2n:U V (z) = loglzl + 0(1). 

Moreover, by Proposition 4.9.23, there is an exceptional set A, A = U An, 
n;o,l 

each An is the compact set of zero capacity given by 

_ { • v VeE) I} 
An - z E r . U (z) ~ -Tn + n ' 
VeE) VeE) 

such that UV(z) ~ -Tn everywhere and, on E\A we have UV(z) = - 2n:-· 

Let us consider the function 

v(z) := 2n:UV (z) + VeE) - g(z). 
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It is harmonic in n and bounded at 00 since g(z) = loglzl + 0(1) near z = 00. 

Therefore v is bounded in n. For (E r\An we have 
. 2n 

11m sup (2nU'(z) + V(E)) ::;; 2nU'(O + V(E) ::;; -. 
z~{ n 
zen 

By the continuity of the Green function at the points of r we have 

lim sup v(z) ::;; 2n «( E r\An). 
z~{ n 
zen 

From Proposition 4.9.44 we obtain 

2n 
v(z)::;; -

n 
for every ZEn. 

Therefore, v::;; 0 in n. Since, as pointed out earlier, we also know that 
2nU' + V(E) ~ 0, we have 

o ::;; 2nU' + V(E) ::;; 9 in n. 
This ensures that the limit of2nU'(z) + V(E) when z approaches any point in 
r from inside n is zero. In §4.9.23 we also saw that 2nU' + V(E) == 0 in C\n, 
therefore the function 2nU' + V(E) is continuous in n and has the value zero 
on the boundary. This proves that 2nU' + V(E) == g(z) in n. 0 

4.9.47. Remarks. (1) It now follows from Proposition 4.9.46 that U' == - ~~) 
on r when E is a compact set satisfying the hypothesis of §4.9.46. Therefore, 
the exceptional set A from Proposition 4.9.23 is empty and U' is continuous 
everywhere. 

(2) V(E) can be computed as 

V(E) = lim g(z; oo,n) -loglzl, 

which is the usual definition of the Robin constant. 
(3) These two previous properties hold for any compact set E with positive 

capacity and such that the Dirichlet problem is solvable in n, the unbounded 
component of C \ E. 

4.9.48. Examples. (1) As a first example let us consider E = B(O,R). We have 
Izl 

g(z; oo,n} = 10gR' Therefore, 

V(E} = lim g(z;oo,n) -loglzl = -logR. 

Hence C(E) = R. 
(2) As another example let us take E = [ -1,1]. The function cp(z) = 

1 ( 1) - -2 z +; is a continuous map from n 1 onto n 2 , where n 1 = {z E C: Izl > 1} 
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and O2 = C\[ -1,1]. Moreover, <p is a biholomorphism of 0 1 onto O2 such 
that cp( (0) = 00. This observation allows us to compute the Green function 
of O2 with pole at 00. Namely, if w = <p(z), 

g(w; 00,02 ) = g(z; 00,01 ) = loglzl = loglw + ~I, 
where ~ is ~ 0 for WE J 1,00 [. Therefore, 

V(E) = lim (g(w; 00,02 ) -loglwl) = lim 10gli + )1 - 121 = log 2. 
w-oo Iwl-oo w 

b-a 
Hence C(E) =!. We conclude that C([a, bJ) = -4~ if a, b E IR, a < b. 

4.9.49. Proposition. Let 0 be an open connected set in S2, 00 E 0, such that the 
Dirichlet problem is solvable in O. Let Woo be the harmonic measure for 00 and 
let y of the Robin constant of 0: 

y = lim g(z; 00,0) -loglzl. 

Then the logarithmic potential generated by Woo is a continuous function and 
verifies: 

In particular, C(00) > O. Moreover, if E verifies the conditions of§4.9.46 and 
o is the unbounded component of E in S2, then y = V(E) and Woo is the equilib
rium measure of E. 

PROOF. Note that the proposed formula for U"'w represents a continuous 
function in C. For Zo E 0, Zo '" 00, and z E 0\ {zo}, let 

w(z) := f loglzo - (I dwA') - loglzo - zl + g(z; 00,0). 
an 

This function is harmonic in 0\ {zo}, including the point z = 00; it also has 
a logarithmic pole at Zo and vanishes on 00. It follows that w(z) = g(z; Zo, 0). 

Since g(z; zo, 0) = g(zo; z, 0) we have 

f loglzo - (I dwAO = g(zo; z,O) - (g(z; 00,0) -loglz - zol)· 
an 

Since for u continuous on 00, Pu(z) -+ Pu( (0) when z -+ 00, we can let z -+ 00 
in this identity and obtain 

f loglzo - (ldwoo(O = g(zo; 00,0) - y. 
an 

This is the first part of the result we wanted to prove. 
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Assume now that Zo ¢ n. Let us define w{z) by the same formula as earlier. 
This time, w is not only harmonic in n but also == 0 on on. Therefore w == o. 
Let z -+ 00, then 

0= w{oo) = f loglzo - 'Idwoo{O + y. 
iJl1 

On the other hand, the proof of §4.7.17 shows that for Zo E on we have 

UWoo(zo) = lim UWoo(z). 
Z-+Zo 
z e 11 

This implies that the formula holds everywhere. 
From the formula just obtained we conclude that 

J{woo ) = -2n f UWoo(z)dwoo(z) = II1 ydwoo{z) = Y < 00. 

Hence V(an) < 00 and C(an) > O. The rest of the proposition follows from 
§4.9.46. D 

Let n be a connected open subset of S2 such that the Dirichlet problem is 
solvable in n. Let E be a closed subset of on. By Urysohn's theorem there is 
a continuous function u : on -+ [0, 1] such that u -1 ( {I}) = E. Then, for ZEn 
we have 

wAE) = f dwz{O = lim f un«()dwAO-
E n-+oo iJl1 

Since Un := P(u n ) is a decreasing sequence of harmonic functions taking values 
in [0,1], its limit is a harmonic function. Therefore zf-+wAE) is a harmonic 
function in n. Moreover, if ( E on one has 

lim sup wAE) :::;; lim sup un(z) = un(O (n ~ 1). 

Hence 

z-+{ 
z e 11 

z-+{ 
zel1 

o :::;; lim sup wAE) :::;; XE(O 
z-+{ 
zel1 

In particular, lim wz{E) = 0 if ( E an\E. 

«( E an). 

z-+{ 
One can also show that for every ( E E (the relative interior), lim wz(E) = l. 

z-+{ 
In fact,let v E ct'(an), v = 1 in a neighborhood of (and v = 0 on an\E. Then 
v(z) :::;; un(z) for every z E an, and therefore wAE) ~ Pv(z) for every ZEn. This 
shows that wAE) -+ 1 as Z -+ ( (z En). 

One can easily verify, always using the theorem of monotone limits of 
harmonic functions, that the class 8 of Borel sets E s; an for which Z f-+ wAE) 
is a harmonic function, is a monotone class. This class contains the closed 
sets, as we have shown earlier, hence 8 = 81{an), the family of all Borel sets 
in on. 

Recall that for every compact set K s; n there are constants c 1, C 2 > 0 such 
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that 
c! wAE) ~ wz·(E) ~ c2 wAE) 

for every z, z' E K (cf. §4.7.15). From this it follows that if f is a Borel 
measurable function in an which is integrable with respect to the measute wzo 
for some Zo E n, thenf is integrable with respect to every wz , Z E n.1t is enough 
to prove it for f ;::: O. In this case we know that f is the increasing limit of the 
step functions (un)n;;,!, 

The sequence (Pun)n;;,! is an increasing sequence of harmonic functions in n 
that converges at Zo towards f f(Odwzo(O. Hence Pun(z) converges every

on 

where to a finite limit, that is, 1 E U (an, dwz), f 1(0 dwAO = lim Pun(z). 
an n .... oo 

Moreover Z f-+ f 1 dwz is harmonic in n. 
an 

Let now U be a subharmonic function in a neighborhood V of nand Pu 
be the Poisson extension of ulan, 

Pu(z) = f u(,)dwA')· 
an 

We want to show that Pu is well defined. Since u is u.S.c., ulan is a decreasing 
limit of continuous functions (<Pn)n;;,!' Hence P<Pn is a decreasing sequence of 
harmonic functions, Pu = lim P<Pn in n. Moreover, (P<Pn) I an ;::: u on an, hence 

n .... oo 

we have P<Pn ;::: u in n. Therefore Pu ;::: u in n, which shows that u is actually 
integrable with respect to dwz and Pu is well defined. 

Suppose now that n is bounded and u is a subharmonic function in n. 
Define a u.s.c. function <P on n by <p(0 = u(O, if' E n, and <p(0 = lim sup u(z), 

z .... , 

if' E an. Assume that sup <p(0 = M < 00. The preceding reasoning actually 
'eon 

shows that u ~ p(<plan) in n. Therefore u ~ M in n (which we would have 
known anyway using the maximum principle), but if we only know that <P is 
bounded and <p(0 ~ M for' E an\E, E a set of zero harmonic measure, then 
we will still obtain 

u ~ p(<plan) ~ M 

since 

f <pdwz = f <pdwz 
an on\E 

for every ZEn. 

A more precise result is the following. 



§9. Introduction to Potential Theory 469 

4.9.50 Theorem (of the Two Constants). Let n be a bounded open set of C such 
that the Dirichlet problem is solvable in n. Let E be a Borel subset of an. Let 
u be a sub harmonic function in n extended to an upper semicontinuous function 
<p on n by <p(O = lim sup u(z) for, E an. Assume that <p ::;; m in E and <p ::;; M 

on an \ E. Then 

u(z) ::;; mwAE) + MwAan\E) (z En). 

More generally, if <p is bounded and if an = ( U Ej) UN, where E 1, ... , 
1 :;;J:sn 

En are Borel subsets of an, N is a Borel subset of zero harmonic measure, and 
<p ::;; mj < 00 on Ej. Then 

u(z)::;; L mjwz<Ej) (z En). 
1 :Si:sn 

PROOF. u(z) ::;; (P<p)(z)::;; L mjwz(E) since <plan::;; L mjXE j , W z - a.e. for 
1 :Si:Sn 1 :Si:Sn 

every ZEn. 0 

Let us denote w(z, E, n) the value wAE) for ZEn and E a Borel subset of 
an. It is called the harmonic measure (at z) of E. This harmonic measure is 
invariant under conformal mappings. 

Let <p : n - n' be a biholomorphic mapping which has an extension to a 
homeomorphism of n onto n'. Assume the Dirichlet problem is solvable for 
n (hence also for n') then 

w(z, E, n) = w( <p(z), <p(E), n'). 

Namely, if h is a continuous function on an one has 

(Pnh)(z) = f h dwz 
on 

and 

But 

therefore, if E is a Borel subset of an we will have 

w(z, E, n) = (PnXE)(Z) = (Pn' Xrp(E»)( <p(z)) = w( <p(z), <p(E), n'). 

We exploit this remark in the following examples. 

4.9.51. Examples of Harmonic Measures. (1) If n = {z E c: Izl < R}. The 
usual Poisson formula gives 
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i6 _ 1 R2 - Izl2 
dwARe ) - 2n I Rei6 _ zl2 dO. 

For z = 0, E £ an one has 

w(O, E, n) = ;n L dO. 

If E is the arc of circle (2 (1 described in the counterclockwise sense then 

w(z,E,n) = ~(ArgG = ~:) - P). 

P is described by the Figure 4.6 and arg G = ~:) is the determination of the 

argument whose value at z = 0 is 2p. 

Figure 4.6 

(2) If n = {z E C: Izl < Rand Imz > O}, E = {z E C: Izl = R, Imz > O} 

2 (R+Z) 2 then w(z, E, n) = - Arg -- = - Ct. 
n R-z n 

-R o amE R 

Figure 4.7 

4> = Arg R + z 
R-z 

(3) n1 = {z E c: Izl < I} \ {O ~ x ~ I}, El = {O ~ x ~ I}. Then n1 is ob
tained from the open set n of Example 4.9.51(2) (with R = 1) by the map 
z 1-+ cp(z) = Z2. 
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Therefore 

E 

o 

Figure 4.8 

w(z,E1 ,nd = w(Jz,an\E,n) = 1 - w(J2,E,n) 

= 1 - ~Arg(1 + Jz). 
7t 1-Jz 

(4) n = {z E C : 0 < r1 < Izl < r2 < oo}, E = {z E C : Izl = rd. Then 

( n) log r2 - loglzl 
w z, E,~" = -,-------.,---

logr2 -logrl 

w(z,an\E,n) = loglzl-logr1 . 

logr2 -logrl 
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We conclude this chapter with a few results about removable singularities. 

4.9.52. Theorem (Rad6-Cartan). Let n be an open connected subset oj C, 
J: n -+ C a continuous Junction such that it is holomorphic in the open subset 
n\Z(f), Z(f) = {z En: J(z) = O}. Then J is a holomorphic Junction in n. 

PROOF. Let Zo E n. To simplify the notation we assume Zo = 0 and B(zo, R) ~ 
n for some R > 1. We are going to show that JIB(O, 1) is holomorphic. It is 
clear that we can assume J =1= 0 in B(O, 1). 

Let M = sup IJ(z)l, p(z) = log IJM(Z)I. This function is subharmonic in n. In 
Izl=1 

fact, p is clearly u.s.c. in n. Moreover it is clear that p is harmonic in n\Z(f). 
If z E Z(f), one has -00 = p(z) :s; A(p, z, r) for any r > 0 such that B(z, r) ~ n. 

Let J = u + iv. For s > 0, the function u + sp is subharmonic. It is enough 
to use the same reasoning that showed that p is subharmonic. Hence, for 
Izl < 1 we have 

1 127< 1 - Iz12. . 
u(z) + sp(z) :s; -2 I ill12 (u(e lll ) + sp(elll» dO 

7t 0 z-e 

1 127< 1 - Izl2 ill 
:s; -2 I ill12 u(e ) dO, 

7t 0 z-e 
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since p(ew) ~ 0. If Z E B(O, l)\Z(f) and c ~ ° we find that 

1 f2" 1 - IzI2 '0 u(z) < ····--~-u(e' )de. 
- 2n ° 1= - e,012 

The set Zcn is a polar set since Z(f) = {z En: p(z) = -oo}, hence it has 
measure zero. This implies that the previous inequality is valid throughout by 
continuity. Using -f and -u one obtains the reverse inequality. Therefore 

1 f21[ 1 - Izl2 ·0 
u(z) = iii ° I;=~WP u(e' ) de (z E B(O, 1). 

This shows that u is harmonic, hence eX), in B(O, 1). Clearly the same reasoning 

applies to v. It follows thatf is Ceo. Since ~~ = ° in B(O, l)\Z(f), by continuity 
oz 

we conclude that ~ = ° in B(O, 1). This proves the Rad6-Cartan theorem. 

o 

4.9.53. Corollary. Let n be a connected open subset of C, and (0 a nonisolated 
point of an. Let f E .Jf'(n) be such that f(z) ~ ° whenever z ~ ( for every 'E an n U, U some fixed neighborhood of (0' Then f == O. 

PR(X>F. Let V = B«(o, r) ~ U, n1 = n u V. Hence n1 is connected and the 
function F defined by 

~ _ {f(Z) if ZEn 
F( .. ) - ° if Z E v\n 

is continuous in nand holomorphic in n 1 \Z(F). By the previous theorem, F 
is holomorphic in n 1 , hence F == 0. 0 

Let us now prove a result about removable singularities for subharmonic 
functions. 

4.9.54. Lemma. Let n be a connected open set in C, E a closed polar subset of 
n, E c:::: {z En: q(z) = -oo}, q a subharmonic function in n. For every a E n\E 
there is a subharmonic function p in n such that piE = -00 and p(z) > -00 

for every Z sufficiently close to a. 

PROOF. Let B(a, R) ~ n\E. We take p to be the Poisson modification of q 
with respect to B(a, R), that is, 

{
q(Z) if z E n\B(a, R), 

p(z) = . 
p(qlaB(a, R»)(z) If Z E B(a, R). 

We have already shown that p is subharmonic. The other two properties are 
clear. 0 
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4.9.55. Theorem. Let n be a connected open set in C, E a closed polar subset 
of n, and u a subharmonic function in n\E such that, for every compact K in 
n, the function ul(K\E) is bounded above. Then, the function ii defined on n by 

is sub harmonic in n. 

{ 
u(z) if Z E n\E 

ii(z) = lim sup u(w) if Z E E 
w .... z 

wen\E 

PROOF. It is clear that ii is a u.s.c. function. Let wen, R > 0 be such that 
B(w, R) s n. We need to show that 

ii(w) ~ A(ii, w, R). 

Let Zo E B( w, R) \ E and p a subharmonic function in n such that piE = - 00 

and p(z) > -00 for z near zoo There is an M > 0 such that q = p - M ~ 0 in 
B(w, R). For e > 0, ii + eq is subharmonic in n, hence 

ii(zo) + eq(Zo) ~ 2~ {21t (Pw.R(ii + eq))(W + Rei9 )dO 

~ (Pw.R(ii))(zo), 

where Pw.R(g) is the Poisson modification of a function g in B(w, R). Letting 
e -+ 0 one obtains 

ii(zo) ~ (Pw.R(ii))(zo) 

for every Zo E B(w, R)\E. Since E = 0, Pw.R(ii) is continuous in B(w, R) and ii 
is u.s.C., we can conclude that 

ii(z) ~ (Pw.R(ii»)(z) 

for every z E B(w, R). In particular, 

ii(w) s (Pw.R(ii»)(w) = A(ii, w, R). 

Therefore, the function ii is subharmonic in n. 

4.9.56. Corollary. The Dirichlet problem is not solvable for n = B(O, 1)\ {OJ. 

o 

PROOF. Suppose there is a harmonic function h in n which takes the values 1 
at z = 0 and 1 on Izl = 1. By the preceding theorem h would have an extension 
h harmonic in B(O, 1), h(O) = 1, h(z) = 0 if Izi = 1. This would contradict the 
maximum principle. 0 

This example can be generalized to the following. 

4.9.57. Proposition. If E is a compact subset of C, C(E) = 0, then the set 
D = S2\E cannot have a Green function g with pole at 00. 
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PROOF. If function 9 exists, then the function u = -g is subharmonic in C\E. 

Moreover, lim sup u(z) = 0 for every' E E. By Theorem 4.9.55 the function ii, 
Z .... , 

ZE C\E 
which extends u to C being zero at E, is subharmonic in C. There are no 
subharmonic functions bounded above in C unless ii = constant, hence u = 0, 
impossible. D 

EXERCISES 4.9 
1. Justify the assertion made after Proposition 4.9.25 that a compact set E has 

C(E) = 0 if and only if it is a polar set. 

2. Give a different proof of Proposition 4.9.25 using that 8h is holomorphic with an 
isolated singularity at zoo 8z 

3. Let J: Q ...... Q 1 be a biholomorphism between two planar regions. Let E be a 
compact subset of Q. Show that C(E) = 0 if and only if C(J(E» = O. 

4. Let El be a compact connected set with at least two points. Let E be a compact 
subset of IC, El s;;: E. Show that C(E) > O. 

5. Let D. be an increasing sequence of domains in S2, 00 E D. for all n, U D. = D . 
and D = S2\E with C(E) = O. Assume that the Green function g. of D. with pole 
at 00 exists. Show that g. i 00 uniformly on compact subsets of D. 

6. Let E, EI be two compact subsets of IC, Q, respectively QI' the unbounded 
component of E" resp. E1. Let J be a conformal map of Q onto QI' J(z) = 

Z + ao + a l + .... Assume further that Q has a Green function with pole at 00. 
z 

(a) Show that Q I has also a Green function gl with pole at 00, g = gl 0 J and 
the Robin constants coincide, Y = YI' Hence C(E) = C(E I)' 

(b) Let E. = {z E IC: \z\ = 1, \Argz\ ~ n, 0 < IX < n. Show that the map 

J(z) = ![z - 1 + J(z - ei•/2 )(z - e i./2)], 
2 

where the square root is asymptotically equal to z at 00, maps conformally 
E~ onto B(O, P)C, for some P > O. Show that P = C(E.). Show further that for 

IX 
181 < 2' we have 

lim J(re i8 ) = ei812 (i sin ~ ± 
' .... 1 ± 2 

'2 1X '2 8) sm --sm -
2 2 ' 

and 

Conclude that C(E.) = sin~. 
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7. Let E be a compact set of positive capacity and assume that the exterior boundary 
of E is connected and has at least two points. Let n = E' and v the equilibrium 

VeE) 
measure of E. (Recall g(z, 00, n) = 2nU' + V(E).) Show that for every). > ---

2n 
the set SA = {z En: U'(z) = ).} is a real analytic Jordan curve. 

8. Let 1'1' 1'2 be two Jordan curves such that 1'1 is interior to 1'2. Show there is a 
polynomial P and a constant a> 0 such that the lemmiscate {z E c: IP(z)1 = a} 
~ Int(Y2)\Int(YI). (Hint; this is a consequence of the Riemann mapping theorem 
and Runge's theorem.) 

Conclude that given a Jordan curve rand e > 0 there are two lemmiscates 
LI and L2 such that 

and 

LI ~ y'(Ext(y))\Ext(y). 

(Recall y'(K) = {z E C : dist(z, K) < e}). Therefore, any simply connected region 

n has an exhaustion (n')'2: I (n. cc n.+I, V n. = n). by domains whose 

boundaries are lemmiscates. 

9. Let E be a compact subset ofe. We use the notation that follows Definition 4.9.13 
and denote m l (A) the Lebesgue measure of a set A ~ !R. 
(a) Let E* := {r ;::: 0: 3z E E, Izl = r}. E* is compact. (Why?) Show that for any 

z I, ... , Z. E E we have 

and conclude that 

C(E) ;::: C(E*). 

(b) Let Xe.(t), t E !R, be the characteristic function of E* and 

qJ(s):= t XE·(t)dt, S ;::: O. 

Show that if 0 ;5; SI ;5; S2 then 

0;5; qJ(S2) - qJ(sd ;5; S2 - SI 

and, if 0 ;5; t I < t2 < ... < t. ;5; ml (E*), there exist SI, ... , S. E E* such that 
tj = qJ(Sj) for 1 ;5; j ;5; n. Prove that 

ID(tl,···,t.)I;::: ID(sl,···,s.)I· 

Conclude that if J is an interval of length ml (E*), then 

C(E*) ;::: C(J). 

(c) Show that 
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10. Let E be a compact set in C, Jl a probability measure on E (Jl E &,(E», and y a C! 
Jordan curve such that E S Int(y). Compute 

1 8~jl (z)ldzl· 

(Hint: replace y by 8B(0, R) with R » 1 and use Gauss' Theorem 4.4.28.) 

* 11. Let E!, ... , En be closed subsets of Ii (O,~) and E = U Ej . Show that 
2 j=! 

1 n 1 
-->L . 
log C(E) - j=! log C(E) 

(Hint: let Vj be the equilibrium measures of the Ej . For any convex combination 
n n 

Jl = L AjVj' Aj ;:0: 0, L Aj = 1, show that 
j=! j=! 

hence V(E);:O: min Aj V(E). Choose Aj so that Aj V(Ej ) is independent of j to finish 
1 ~js," 

the proof.) 

12. Let / be a meromorphic function in the unit disk which has a simple pole at z = O. 
Let E = S2\/(B(0, 1». Why is it compact? Why does the Green function 9 ofC\E 
with pole at 00 exist? Show that the function 

u(z):= -g(f(z» - loglzl 

is subharmonic in B(O, 1) and u ~ O. Moreover, 

u(O) = -logIRes(f, 0)1 - V(E). 

Conclude that 

C(E) ~ IRes(f,O)I· 

Use this inequality to find the relation between capacity and analytic capacity 
(cf. §2.7.9). 

13. Prove Corollary 4.9.40. 

14. Let u be a subharmonic function in the half-plane 1m z > O. Define M(r) := 
sup u(re iB ) for r > 0 and u(x) := lim sup u(z), for x E IR. Assume that u(x) ~ 0 for 

O<9<1l' 

all x E IR and 

M(r) 
lim sup -- ~ O. 

r 

Show that u(z) ~ 0 for every z with 1m z ;:0: O. (Proceed as follows: use the Two
Constants Theorem 4.9.50 and Example 4.9.51.2, to show that 

(i) Given e > 0 and B > 0, let R > B be such that M(R) < eR. In the half-disk 
n:= {z E C: Izl < R, Imz > O}, show that 

2eR R+z 
u(z) ~ -Arg--. 

11: R - z 
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(ii) Conclude from (i) that for any z with 1m z ~ 0, you have 

4£ 

(iii) Finish the proof.) 

u(z) ~ ······Imz. 
11 

477 

15. Let f be a holomorphic function in the angular region IX < arg z < fl, 
11 

2n > fl - IX > 0, f continuous up to the boundary of this region, and p = p._-' 
-IX 

Assume If(z)1 ~ M on the sides of this angular region and that 

lim r- P sup loglf(re i8 )1 = o. 
r-oo a<8</I 

Shuw that If(z)1 ~ M everywhere. (Hint: assume ex = - {3, 0 < {3 < n, and con
sider the auxiliary function g(z) := f(z)e"'.) 

16. Let fbe holomorphic in Rez ~ 0 and vanish at every n EN. Assumefurther that 
for some ex < 11:, M, A > 0 one has 

If(z)1 ~ Mexp(ARez + IXllmzl). 

Show that f == O. (Hint: consider the auxiliary function g(z):= (z) e- Az and 
smnz 

apply Exercise 4.4.25. Alternatively, apply a convenient variation of Exercise 
4.7.8(b).) 

*17. Let f be holomorphic and bounded in the angle n:= {z E C: IArgzl < IX < n}, 
and continuous in Q. Assume f(re±i") -> L as r -> 00. Show that fez) -+ L when 

z 
ZEn, Izi -> 00. (Hint: consider the auxiliary function F(z) :=-~ f(z) for a 

Z+A 

convenient choice of A > 0.) Show that the condition ex < n can be removed by 
the change of variable z = (z. 

18. Let f be an entire function satisfying the inequalities 

If(z)1 ~ AeB1z1 , for every z E C 

and 

If(x) 1 ~ M, for every x E IR. 

Show that f satisfies the inequality 

1 f(z) 1 ~ MeBllmzl, for every z E C. 

* 19. Let f be a holomorphic function of order at most p in the angle 0: < arg z < {3, 
i.e., for any e > 0 

. loglf(re i9 )1 
hm sup p+, = 0 

"('----+O;) r 

uniformly for IX < 0 < {3. The Phragmen-Lindelof indicator function h is defined 
by 

h(O) I· log 1 f(re iO ) 1 
= 1m sup p . 

r"-*oo r 
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(a) Compute h in case I(;:;) = exp(P(z»), P a polynomial of degree exactly p 
(which then must be an integer). 

n 
(b) Let rx < 01 < O2 < fl. O2 - O[ < -. Assume h(Oll ~ hi' h(02l ~ hz, IIi E IR, and 

p . 

let H(O) := (hI sin P(02 - 0) + hz sin(O - Od)/sin P(02 - 01 ), Show that 

h(O) ~ H(O) 

What happens if h [ or hz = .... co'? 
n n 

(c) Let rx < 01 < O2 < 03 < fl, O2 - 01 < -, 03 - O2 < - and 
p p 

H(O) = acospO + hsinpO be such that h(Od ~ H(Odand h(Oz) 2': H(02)' then 
use (b) to show that 

Conclude that 

(d) Let h be finite in the interval 0, ~ 0 ~ 03 , 0) - 01 < n. Let O2 E JOI' 03[ and 
p 

HI (0) = al cos pO + hi sin pO, H 2 (0) = (12 cos pO + h2 sin pO be chosen so that 

H[(Od = h(OI)' 

Show that 

H2(0) ~ h(O) ~ HI(O) 

HdO) ~ 11(0) ~ H 2 (0) 

Conclude that if 8 E [0 1 , 03J\ {82 }, then 

if 01 ~ 0 ~ 82 

if 82 ~ 8 ~ 03 , 

HI(8) - HdOz) 11(0) - 11(82 ) H 2(8) - H 2(82) -_ .............................. <~~. . < . 
8 - 82 - 0 - O2 - 0 - O2 

Use these inequalities to prove that h is continuous at O2 , Hence h is continuous 
in the interval ]81,0) [. 

(c) Show that if II is finite in [ex, fi], rx < 01 < O2 < fl, E > 0, then there is 
'0 = rotE) > 0 such that 

II(reiO)1 ~ exp[rP(h(O) + e)] 

2n 
20. Let I be a holomorphic function of order p and type T in the angle 1 Arg z 1 ~ 

p 
Assume f is bounded on the sides of the angle. Show its indicator function h 
(defined in the previous exercise) satisfies the inequality 

h(O) ~ Tr P cos pO. 

21. Let f be holomorphic in the half-strip S := {z = x + iy : x 2': 0, I y I ~ rx} satisfying 
n 

If(x ± ;rx)1 ~ A on as and If(x + iy)1 ~ Bexp(ePXj, with 0 ~ fJ < 2:x' Show that 
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J is bounded by A everywhere in S. (Hint: consider the auxiliary function 

J(z) exp( - eCJZ ), with e > 0, {J < (J < ;0(.) 

Notes to Chapter 4 

1. The characterization of harmonic functions in terms ofthe mean-value property for 
all small disks (Proposition 4.3.3) can be substantially improved. Essentially, it is 
enough to consider averages for two fixed radii. We will discuss problems ofthis kind 
in the second volume. We refer to [Za5] and [BG] for different kinds of mean-value 
theorems. 

2. In the second volume we will consider in detail ideals, interpolation, and related 
problems for spaces of entire functions of finite order. These spaces arise naturally in 
harmonic analysis when one applies the Fourier transform to study integro-differential 
equations of the convolution type. We shall take up again there the construction of 
entire functions with given zeros following the ideas of Remark 4.6.16. The use of the 
canonical potentials as done in §4.6 owes much to [HK] and [GL]. 

3. The interpolation problems of the type that appear in Exercise 4.5.11 and 
Exercise 4.9.16 are related to questions of analytic continuation and functional equa
tions that will also be considered in the next volume. 

4. Besides its clear interest in the solvability of the Dirichlet problem and remov
ability of singularities of harmonic functions, the notions of Green function and 
capacity playa role in the study offunctional equations and arithmetical functions, as 
will be seen in the next volume. There is an extensive literature in potential theory 
and on the especially interesting questions of the relation between capacity and the 
Hausdorff dimension of a set and the solvability of the Dirichlet problem and Neumann 
problem for sets with very rough boundaries. The reader will find the small mono
graphs [Fu2] and [Carl] excellent introductions to this subject. In particular, in [Carl] 
one finds a criterion to decide exactly when a Cantor set has capacity zero. An 
essentially definitive contribution to the relation between capacity of a subset E of 
a rectifiable curve and the length of the set E can be found in [BJ]. There is a very large 
literature on potential theory in IRO. We mention [Lan] or [Hel] as a possible starting 
point for further study. 

5. The Riemann mapping theorem is not valid when one replaces C by C", n ~ 2. 
It was of considerable interest and difficulty to prove that biholomorphic mappings 
between domains with smooth boundaries, extend smoothly to the boundary. This 
theorem was first proved by C. Fefferman. The argument followed in §4.8 was carried 
out in the case ofC", n ~ 2, by S. Bell and others. We refer to [BK] for the particulars. 
Similarly, the Coo version of the Schwartz reflection principle mentioned at the end of 
§4.8 seems to have been discovered first in the context of several variables. 



CHAPTER 5 

Analytic Continuation and Singularities 

§l. Introduction 

When we say "given a holomorphic function in an open set n," we are already 
making a choice of the domain of the function. Sometimes it is evident that 
the function is in fact the restriction to n of a holomorphic function defined 
on a larger open set. The obvious example of a removable isolated singularity 
comes to mind. Another example occurs when we define the function by a 
power series expansion, for instance, for f(z) = L z" in B(O, 1), we can sum 

";;:0 

the series and find that the function z H (1 - zfl, holomorphic in C\ {1}, 
extends the function f to this larger open set. 

Regretfully, the intuitive concept of extension of a function across a point 
in the boundary of n quickly leads to bothersome difficulties, multi valued 
functions may appear. For instance, the function zHLogz in C\]-oo,O] 
admits one-sided extensions at the nonzero boundary points, but they do not 
coincide with the original function. Another typical example of this behavior 
arises when the functions are defined as Cauchy transforms. In fact, let 
y: [0, 1] -+ C be a Jordan arc, piecewise C 1, and f a holomorphic function in 
a neighborhood ofy([O, 1]). The function F: C\y([O, 1]) -+ C defined by 

F(z) = ~ f f(t) dt 
2m y t - z 

is holomorphic and has, in a neighborhood of each point of y different 
from the endpoints, the same type of behavior as the logarithm. Namely, let 
(E y(]O, 1[), ( = y(to). One can choose r > ° and two values t 1, t2 such 
that ° < t 1 < to < t2 < 1, y(]t1' t2 [) E B«(, r), y(t) E 8B«(, r) (j = 1,2), and f is 
holomorphic in a neighborhood of B«(, r). If C1 , C2 are the arcs of 8B«(, r) 
shown in Figure 5.1, then the curve (yl [t1' t2])· C2 is a Jordan curve of index 1 
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y (1) 

y (0) 

Figure 5.1 

with respect to the points of U2 , and C 1 . (Y 1 [t 1, t ;TI is also a Jordan curve with 
index 1 with respectto U1 • Let Y1 = Y 1 [0, t 1]' Y2 = Y I [t 2, 1]. Then, the function 

F1(z) = ~ f lJ!ldt 
2m y,.C2'Y2t-z 

is holomorphic in C \(Y1 . C2' Y2) and coincides with F in U1. One defines Fz similarly using Yl 'C1 • Y2' It follows that the limits 

tj(O = lim F(z) 
z--,{ 
ZE Vj 

U=1,2) 

exist, and, using once more Cauchy's theorem, 

(This is usually called Plemelj's formula, cf. Exercise 3.6.9.) 
In view of these examples, one needs to formalize the intuitive concept of 

analytic continuation, eliminating the pathology of multi valued functions. To 
do this, we must "leave" the complex plane and use the concept of a Riemann 
surface; one obtains this way a maximal surface (in a sense that will be defined 
precisely) which will be the natural domain of definition of the given function 
as a holomorphic function. It is precisely in this context that the notion of 
Riemann surfaces arose. 

The origin of the methods that we will introduce is the following: Given a 
holomorphic function f in a disk B(zo, R), consider a point z 1 in that disk 
which lies close to the boundary. We can develop the function f in a Taylor 
series about z l' This series, 

converges to f in B(Z1,R - IZ1 - zol), but it is possible that the radius of 
convergence r of this series is strictly bigger than R ---- IZ1 - zol. We have, 
therefore, a function defined in a neighborhood of a certain arc of oB(zo, R), 
through which the function f admits an analytic continuation. 
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On the other hand, if one has a holomorphic function F in an open set U 
such that U n aB(zo, R) =I 0, and such that II Un B(zo, R) = FI U n B(zo, R), 
one sees that, by taking z 1 close to Un aB(zo, R), one can obtain F as the sum 
of the series in a disk B(z 1, p). 

As one can convince oneself more or less easily, at least locally, the con
tinuations of I can be obtained iterating this process, from disk to disk to 
form a chain. Regretfully, it might happen that the extreme disks of these 
chains intersect without the functions defined in them coinciding in the inter
section. This leads us to consider for each point in C, and more generally in 
a Riemann surface, the family of all functions holomorphic near that point, 
that is, to the notion of germs of holomorphic functions, and to its associated 
sheaf. This will be the tool that will help us to study the question of analytic 
continuation. We start by considering first some elementary aspects of the 
problem of analytic continuation. 

Several of the subjects of this chapter, like overconvergence and Dirichlet 
series, will reappear in the second volume. 

§2. Elementary Study of Singularities and 
Dirichlet Series 

5.2.1. Definition. A point z 1 in the boundary of the disk B(O, R) of convergence 
of a power series s(z) = I anz n is said to be a regular point (for s) if there is 

n~O 

r > 0 and a function I holomorphic in B(z l' r) such that I and s coincide in 
B(O, r) n B(z 1, r). A point of aB(O, R) which is not regular for s is said to be 
singular. 

Singular points always exist. 

5.2.2. Proposition. Let 8(Z) = I anz n be a power series with radius oI con
n;::O 

vergence R, ° < R < 00. The set oI singular poillts is a non empty closed subset 
oI aB(O, R). 

PROOF. It is clear from their definition that the set of regular points is open in 
8B(0, R). Assume there are no singular points. Then, for every a E 8B(O, R), 
there is a disk B(a, Pal (Pa > 0) and a holomorphic function Fa in that disk 
such that sl(B(O, R) n B(a, Pa)) = Fal(B(O, R) n B(a, Pa». Whenever B(a, Pa) n 
B(b, Pb) =I 0 we have that Fa == Jib in B(a, Pal n B(b, Pb), since this intersection 
is connected and both Fa and Fb coincide with s in the nonempty open set 
B(O, R) n B(a, Pal n R(b, Ph). Therefore, there is a function F holomorphic in 
the open set 

Q = B(O, R) U ( U B(a, Po)) 
aE ilH(O,R) 

extending s. Q contains a disk B(O, R + 8) for some f, > O. Hence the radius of 
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convergence of the Taylor series of F about ° is at least R + s; since this is 
exactly the original series s, we have a contradiction. D 

Let us see now several examples showing that every point of the boundary 
of the disk could be a singular point. Furthermore, this phenomenon could 
occur even if the power series converges to a C'X> function in the closed disk. 

5.2.3. Examples. (1) !fa power seriesJ(z) = L anz" with radius of convergence 
.;;,0 

R, ° < R < 00, has an its coefficients a. ~ 0, the point z = R is a singular point 
If not, the series 

L -\ PH) (i?) (z _i?)" 
.;;,0 n. 2 2 

would converge in B(Rj2, Rd for some Rl >~. By the positivity of the 

coefficients we have Ipn) (~. e i6 ) I :::;; pn) (~), for every (J E [0,2n]. Therefore 

the series 

L ~ pn) (i?eiO) (z _i?ei6)n 
.;;,0 n! 2 2 

will also converge in the disks B (~eiO, R j ), and J will have no singular points 

in aB(O,R). 
(2) The Weierstrass series 

J(z) = L anz2", 
.;;,0 

an ~ 0, lim sup ~ = 1, has 1 as a radius of convergence and every point in 

aB(O, 1) is a singular point. Namely, for any integer N we have 

J(z) = / .. (z) + L anz2" = IN(Z) + L aN+k(z2 N )2k 

n;;,N k;;,O 

with / .. (z) = L anz2", and the second series admits z = 1 as a singular 
OsnsN-l 

point by the previous example. On the other hand, the function defined by 
this second series is invariant under the rotations Z f-> e211ip/2N Z, pEN, hence 
the points e 21t ;p/2"z are singular points for f This guarantees that the set of 
singular points is dense in oB(O, 1). Since it is closed, it coincides with aB(O, 1). 

(3) The series J(z) = L e- 2n/2z2 " has radius of convergence 1 since 
n~O 

n-oo 

The series for the derivatives 

J(k)(Z) = L 2"(2n - 1) ... (2" - k + 1)e- 2"i2z2"-k, 
ks2" 
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converge uniformly in the closed disk. Therefore f is C" in 13(0,1). On the 
other hand, by the previous example, every point of the boundary is a singular 
point. 

A generalization of this example is the following theorem due to Hadamard. 

5.2.4. Theorem. Let A, Pk' qk (k ~ 1) be positive integers such that: 

If the series f(z) = L anz n has a radius of convergence equal to 1 and, if an = ° 
112: 0 

for Pk < n < qk (lacunarity condition), then for every regular point 13 E oB(O, 1), 
the subsequence 

a ~n 
n"' 

of the sequence of partial sums off converges uniformly in a neighborhood of 
13 (overconvergence). 

PROOF. If g(z) = f(f3z), the function g also satisfies the lacunarity condition. 
We can therefore assume that 13 = I. This point being regular means that f is 
in fact holomorphic in an open set n containing B(O, 1) u { I}. Consider the 
auxiliary polynomial I(J of degree )~ + 1 given by 

l(J(w) := t(w'" + W'\+I) 

and the auxiliary function F(w) = f{l(J(w)) defined for WE l(J-l(Q). If Iwl s 1, 
w f= 1, we have I I(J(W) I < 1 since 11 + wi < 2. We also have I(J(I) = l. Hence 
there exists e > 0 such that I(J(B(O, 1 + e)) s; n. It follows that the series 

F(w) = L bnw" 
nzO 

converges in I wi < 1 + e. Note that the largest power appearing in (l(J(w))" is 
()~ + l)n, the smallest is An. Therefore, the polynomial (I(J(WWk has no terms 
in common with (I(J(W))qk. Since we have F(w) = L an(l(J(wW(lwl < 1) then 
the partial sums .;0,0 

L an(l(J(w}t = L bmwm, k = 1,2,3, ... 
05n5Pk O:o;m5(!.+llPk 

converge in I wi < 1 + <; when k -> 00. Therefore (Sp,,(Z))k;o, 1 converges for every 
z E I(J(B(O, I + e)). This is the neighborhood of 1 mentioned in the theorem. 

o 

5.2.5. Corollary. Let X be an integer> 0, (pdk;o, 1 a sequence of integers > 0 
satisf"ying 

k = 1,2,3, .... 

Assume that the power series 
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f(z) = L akzPk 

k" 1 

has radius of convergence 1. Then every point of oB(O, 1) is singular. 

485 

PROOF. We note that in this case the sequence (Spkh" 1 of Theorem 5.2.4 is, up 
to repetitions, exactly the sequence of partial sums of the series of f If 
{3 E oB(O, 1) were a regular point, then the series would converge in a neighbor
hood of {3. It follows from the properties of power series that the radius of 
convergence is strictly bigger than 1. This contradiction proves the corollary. 

o 

We recommend [Di] and [Hi1, vol. 2] to the reader who wants to know 
more about singularities of holomorphic functions. 

Power series are not the only kind of series expansions usually considered 
for holomorphic functions. In analytic number theory one makes frequent use 
of Dirichlet series. We shall study now these series a little bit, and see that 
their properties about singularities and analytic continuation are similar to 
those we have just seen for power series. The reader will find a very nice 
introduction to the subject in [HR]. For deeper properties of Dirichlet series, 
see [Man] and [Ber]. 

5.2.6. Definition. We call Dirichlet series a series of the form L ane-;·ns, SEC, 
n21 

ai' a2 , ••• complex numbers, and Al < ,1.2 < ... a sequence of real numbers 
converging to +00. 

The an are called the coefficients and the )'n the frequencies of the Dirichlet 
senes. 

For An = n, the Dirichlet series becomes a power series in the variable e-S • 

Another particular case corresponds to An = log n, the Dirichlet series can be 

written then as L a:. The series corresponding to an = 1 for every n 2 1, 
n" 1 n 

defines the Riemann, -function. 
We remark that in the rest of this section we shall use consistently the 

notation a = Re s, T = 1m S, S = a + iT. 
To study properties of Dirichlet series we can always assume Al 2 O. 

Consider first the question of absolute convergence. 

5.2.7. Proposition. If a Dirichlet series converges absolutely at the point 
So = ao + iro , then it converges absolutely and uniformly in the closed half-plane 
Re s :2: (To. 

o 
S.2.S. Proposition. For every Dirichlet series there is a value ct. E [ -(Y:;, 00] such 
that the series is absolutely convergent for Re s > ct. and is not absolutely 
convergent for Re s < ct.. 
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D 

5.2.9. Definition. The value oc is called the abscissa of absolute convergence and 
denoted (fa' The vertical line Re s = (fa is called the line of absolute convergence 
and the half-plane Re s > (fa' the halJ-plane of absolute convergence. 

On the line Re s = (fa' the Dirichlet series could be absolutely convergent 

or not. For instance, both series L -(I 1 )2 ~ and L ~ have (fa = 1. The first 
n;;,2 ogn n n;;,l n 

converges absolutely on that line and the second does not. The cases (fa = ± 00 

'd "n! d" 1 can occur: conSI er L... s an L..., -, -.' 
n;;,l n n;;,l n.n 

A very useful identity in the study of Dirichlet series is the Abel summation 
formula: Let (an)l ';n,;N, (bn)l ';n,;N be two finite sequences of complex numbers 
and Bk = bl + ... + bk , 1 :::;; k :::;; N. Then 

Its verification has already been left as an exercise to the reader (Exercise 2.2.8). 
Let us turn now to the convergence (not necessarily absolute) of Dirichlet 

series. 

5.2.10. Proposition. For every Dirichlet series L ane- AnS there is a value 
n;;,l 

/3 E [ - 00, 00] such that the series converges for Re s > /3 and diverges for 
Re s < /3. Furthermore, the sum f(s) of the Dirichlet series is holomorphic in the 
half-plane Re s > /3. 

PROOF. The proof follows from the following lemma. 

5.2.11. Lemma. If the series L ane- AnS converges for s = so, then it converges 
n;;, I 

in Re s > Re So = (fo. Furthermore, it converges uniformly in every sector 
7t 

IArg(s - so)1 :::;; "2 - <5, <5 > O. 

PROOF. We can assume that So = 0 and hence L an is convergent. 
n;;,l 

Let us show first that the sum of the series 

le-AtSI + L le-Ak+t' - e-Ak'l 
n~l 

is uniformly bounded in every sector of the form IArgsl :::;; ~ - <5 (<5 > 0). 
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Since 

we have 

f).k+· lsi 
le-).k+.' - e-).k'i $; lsi e-.<a dA = _(e-).k+.U - e-).kU ). 

).k (T 

Recalling that 0 $; Al < A2 < ... , the series we are considering is bounded 
by 

In order to prove the uniform convergence of the original Dirichlet series 
in the sector we apply the Abel summation procedure. Let SN(S) = L ane-).n" 

O,;n,;N 

be a partial sum of the Dirichlet series, bp,m = L ai' and Mp = max Ibp,ml. 
p,;j,;m m~p 

The sequence Mp is decreasing and Mp -+ 0 when p -+ 00, due to the fact that 
L an is convergent. Therefore 
n~1 

ISq(s) - Sp_l(s)1 = Ibp,p(e-).p" - e-).p+lS) + ... 
+ b _ (e-).'-" - e-).'") + b e-).·"I p,q 1 P.q 

$; M (1 + _.1_ + e-)..u) 
p smo 

$; Mp(2 + _._1_) -+ 0 as p -+ 00. 
smo 

This proves the lemma and Proposition 5.2.10. D 

5.2.12. Definition. The value fJ from Proposition 5.2.10 is called abscissa of 
convergence of the Dirichlet series and is denoted by (Te' The line Res S = (Te 

is called line of convergence, and the half-plane Re S > (Te is half-plane of 
convergence. One has clearly (Te $; (Ta and one can have (Te < (Ta' For instance, 
for the series 

1 1 1 
1- + + ... 

2s 3" 4' 

we have (Ta = 1 and (Te = 0 (by the alternating series criteria). The strip 
(Te < Re S < (Ta is called strip of conditional convergence. 

5.2.13. Remark. Even though the half-plane of convergence of a Dirichlet 
series is a concept analogous to the disk of convergence of a power series, 
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we see that there is an essential difference between the two. The disk of 
convergence and the disk of absolute convergence coincide, while the corre
sponding half-planes might not. 

The question of when a function holomorphic in a half-plane of the form 
Re s > a is represented by a Dirichlet series is a difficult one (cf. [Leo]). On 
the other hand, the uniqueness of such an eventual representation is easy to 
prove. It follows from the fact that, if I ane- AnS converges in Re s > (Jt and 

n,,1 

it has infinitely many zeros Sj --+ 00 in a sector IArg(s - (Jt)1 ::;; ~ - ~ (~ > 0), 

then a l = a2 = ... = O. In fact, we note that 

lim e Aps (I ane- AnS) = ap • 
s-oo n~p 

larg(s-acll ~,,/2-d 

Therefore, we can prove that the coefficients ai' a2' ... vanish by a simple 
induction. 

5.2.14. Proposition. The following relations hold: 

. logn 
(1) (Ja - (Jt ::;; hm sup --, 

n-+oo An 

logla + ... + a I 
(2) If (Jt > 0 then (Jt = lim sup I A, n 

n-oo n 

. logn 
PROOF. Let k = hmsup--,. We can assume that k < 00. Let kl > k, e > O. 

n-oo An 

We shall show that if the Dirichlet series converges for (Jo E IR, then it con
verges absolutely for s = (J I = (Jo + (1 + e)k l . This assertion clearly implies 

. logn 
(1). Now, SInce -A,- < kl for n ;;::: no, we have 

n 

The convergence of the Dirichlet series at (Jo implies that the sequence 
(lane-AnaoDn" I is bounded, hence the absolute convergence at (Jt is immediate. 

Let us now prove (2). Let 

P _ l' logla l + ... + ani> 0 
~ - Imsup , _ . 

n-oo An 
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(If t < 0 then we will have convergence of the series at s = 0, to the value 0, 
contradicting ere> 0.) We claim that ere ~ t. Clearly we can assume t < 00, 

and given e > 0 it is enough to show convergence at s = er = t + 2e. We have 
logla 1 + ... + ani ~ (t + e)An when n ~ no. We use once again the Abel sum
mation procedure and the notation from §S.2.11. For q > p > no we have 

L aje- AjS = L bo.ieAjS - e- Aj+ 1S ) - b O•p - 1 e- ApS + bo.qe-AqS. 
p$j$q p$j$q-l 

Hence 

I 2: aje- AjS I ~ s ~ e((+e)Aj IAj+l e- st dt + e(f+e)Ar'I-ApS + e(t+e))'q-"\qS 

P$J$q p$j$q-l ~ 

~ s L I),j+l e(f+<-s)t dt + e-eAp + e-eA. 

p$j$q-l Aj 

~ S Ieo e-er dt + 2e-CAp, 

Ap 

where we have used s = t + 2e in the last two inequalities. It is clear that the 
last term tends to 0 as p -+ 00, since e > O. Therefore the Dirichlet series 
converges for s = t + 2e, which shows that ere ~ t. Let us show now that (Ie ~ t. 
Let So E IR be a point at which the Dirichlet series converges. We have So > 0 
by the hypothesis. Let bi = aje-AjSO and Bp = bl + ... + bp. The convergence 
also ensures that there is an M ~ 0 such that IBnl ~ M for all n. The Abel 
summation formula shows that 

This clearly implies that t ~ So, hence t ~ (le

The case (Ie < 0 is left to the reader. D 

5.2.15. Corollary. If the abscissa of absolute convergence (la is strictly positive 
then 

. 10g(lall + ... + lanl) 
(la = hm sup·· ,.. 

n-a') An 

PR(X)F. One applies the preceding result to the series I lanle- J•nS• D 
":;:::0 

a 
5.2.16. Corollary. If the Dirichlet series is of the form L ~, then one has 

.;,0 n 



490 5. Analytic Continuation and Singularities 

PROOF. We have An = logn in this case. D 

5.2.17. Corollary. If the Dirichlet series L ane-).ns is such that lim l~ogn = 0, 
then n;o,O "~CO )'n 

. loglanl 
PROOF. Let y = limsup-,-. Let So = 0"0 + ito be a point in the half-plane 

n-oo /"11 

Re s > y. Pick [; E JO, (0"0 - y)/3[. There is no E N* such that for n ;;::: no one has 

1 lane-Ansol < e- An(<70- Y-E) < ~~~~2' 
n 

. . loglanl log n 0"0 - Y - £ 
Namely, It IS enough to assume that;~~ < y + [; and -, - < -----. 

An An 2 
We conclude that the series converges in Re s > y. That is, O"a = 0"(, S y. 

On the other hand, if eTo < y, for any I: E JO, y - 0"0[, we can find a sequence 
nk of indices such that 

This shows that the series diverges for Re s < y. o 

We have shown, by an elementary argument, that for a function represented 
by a Dirichlet series, one has uniqueness ofthe coefficients an, for the given set 
of frequencies. We could ask whether we could expand the function using 
two distinct sets of frequencies. We will see later that the answer is also 
negative. This will follow from a better knowledge of the behavior of a 
Dirichlet series in the half-planes Re s ;;::: b > o"c (assuming, of course, that 
(J'c < 00). 

5.2.18. Proposition. For every b > O"c there is a constant M ;;::: 0 such that !f 
Res> b, n E N*, then 

If ake-'.kS ! S M(IS - bl(e-A1(U-b) - e-An(G-tl» + e- An(<7-tll). 
k=l (J' - b 

00 

In particular, for f(s) = I ake- AkS we have 
k'''1 

(Res> b). 

PROOF. Since the series converges for s = 0, there is a constant M ;;::: 0 such 

that! ktl ake- Aktl ! S M for every n ;;::: 1. Let Re s = (J' > O. Set Up = ktl ake- AkS, 

and apply once more the Abel summation formula; we obtain 
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n n-1 
L ake-A.k' = L Up(e-A.p('-~l - eA.p+I(.-<ll) + Une-A.n('-"l. 

k=1 p=1 

Recalling that 

we have 

Letting n ~ 00, we find 

o 

00 

5.2.19. Proposition. If f(s) = Lake-A.,,·, then for every a1 > ac the following 
k=1 

two properties hold: 

(1) There is a constant M ~ 0 such that 

I f(s) I :::;;; Mllmsl 

whenever Res ~ a1, IImsl ~ 1. 

(2) lim If(a + h)1 = 0 
1<1-+00 It I 

uniformly in a, Res = a ~ a1. 

PROOF. To prove the first statement, we apply the preceding proposition with 
<5 E ]ac,a1[ and obtain Mo ~ 0 such that for Res ~ a ~ a1 we have that 

If(s)1 :::;;; Mo la ~ ~ ~ itl e-A.I(u-"l :::;;; Mo (1 + a I~ <5) :::;;; Mltl 

for a convenient choice of M, once we assume that It I ~ 1. (Recall that A1 ~ 0.) 
The proof of the second property follows from examination of the proof of 
Proposition 5.2.18. In fact, the constant M such that 

I L ake-A.k·l:::;;; M(1 + _1_tl_)e-"n(U-6l 
k~n a - <5 

can be chosen independent of n. For a ~ a1 we have therefore 

If(a + it) I :::;;; ~ nf lakle-U,A.k + M(~ + _1_)e-;.n<u'-.!l. 
It I It I k=1 It I a1 - <5 
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Hence 

. If(u + iT)1 . ( M ) hmsup ::;; mf __ e-;'n(al-~) = o. 
1<1-+«> ITI 0;;,1 u1 - (j 

This ends the proof of the proposition. D 

We are now closer to the proof of the uniqueness of the frequencies in a 
Dirichlet series. We still need a few technical lemmas. 

5.2.20. Lemma. If y > 0, one has 

- -ds= 1 f Y+i«> eU
' {I 

2ni y-i«> S 0 

ifu > 0 
ifu < 0, 

fY+ ioo fY+ih 
where the notation indicates lim , both here and in what follows, 

l'-ioo k-oo y-ik 
h-+oo 

unless explicitly mentioned. 

eU' 

PROOF. We integrate - along the boundary of the rectangle 
s 

- (j ::;; Re s ::;; y, - k ::;; 1m s ::;; h ifu > 0 

and 

y ::;; Re s ::;; (j, - k ::;; 1m s ::;; h ifu < 0, 

and we let h, k, (j -. +00. 

(a) If u > 0 we find, by the residue theorem, 

1 f Y+ih u. ds 1 fY eu(a+ih) 1 fY eu(a-ik) 
- e --1 =- ---du-- --du 
2ni y-ik s 2ni -00 u + ih 2ni -00 u - ik ' 

since lim eU' ~ = 0, as it follows from the inequality f
- Hih d 

0-+00 -~-ik S 

If
- Hih eu.dsl ::;; e-u~ (h + k). 
-o-ik S (j 

We have as a consequence the inequality 

I~ fY+ih eu• ds _ 11::;; _1_ fY eua du + _1_ fY eua du 
2m y-ik s 2nh -00 2nk -00 

< ~ eUY (! +!) 
- 2n u h k· 

This inequality allows us to draw the desired conclusion when u > 0 by 
letting h --+ 00, k -. 00. 

(b) The case u < 0 is completely similar and we leave it as an exercise to the 
reader. 0 
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5.2.21. Lemma. If y > 0 one has 

lim - -=-. 
1 f Y+ ih ds 1 

h~(jJ 2ni y-ih s 2 

PROOF. The proof is a routine computation. o 

We are now ready to prove a theorem that yields immediately the unique
ness of the frequencies and the coefficients of a convergent Dirichlet series. 

00 

5.2.22. Theorem. Let f(s) = L ake- AkS be a Dirichlet series with (Jc < 00. For 
k""1 

U E JAn' )'"+1 [ and y > max«(Jn 0) we have 

1 f y+ioo eUs n 

-. f(s)ds = L ak • 
2m y-i,XJ s k=l 

PROOF. Let 

n 00 

g(s) = eUSf(s) - L ake(U--lk)S = L ake-(Ak-U)S. 

k=1 k=n+l 

By Lemma 5.2.20 we have 

1 fY+ iOO 
( n )dS -. L ake(U-Ak)S -: = L ak· 

2m y-iC() k=l S 1 sksn 

To finish the proof of the theorem we need to show that 

fY+ iOO g(s) 
-ds=O. 

y-ioo s 

Note that g(s) is a Dirichlet series whose smallest frequency is strictly positive; 
we can rewrite it as g(s) = e-("n+l ···u)s F(s), where F(s) = L ake-(lk-An+!)S 

k~n+l 

h b · f . g(s) (). ) F(s) I h as a SClssa 0 convergence (Jc. Integratmg - = e- n+l-U '_ a ong t e 
s s 

boundary of the rectangle: y ~ Re s ~ ii, - k ~ 1m s ~ h, one obtains 0 since 

~(~) is holomorphic in a neighborhood of this rectangle. Hence 
s 

-----ds < ---- + e P·"+1 u)a d(J If Y+ ih F(s)e-(An+l-u)S I foo (IF«(J - ik)1 IF«(J + ih)l) - -
y-ik S - y k h ' 

since 

by the inequality 
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F(s)e-P.n+,-U)S - ::;; e-(}'n+l-u)~ dt. I f tHih ds I fh IF(b + it)1 

6-ik S -k b 

The last quantity tends to zero by §5.2.19 (1). By §5.2.19 (2), for a given e > 0 
there is R > 0, independent of u ~ y such that 

IF(u + ih)1 
h ::;; e and 

IF(u + ik)1 
k ::;; e, 

whenever h ~ Rand k ~ R. We conclude that 

IfY+ ih dsl 2e F(s)e-P'n+'-U)S _ ::;; . 
y-ik S A.+1 - U 

This inequality concludes the proof of the theorem. o 
00 00 

5.2.23. Corollary. Let f(s) = L ake-AkS = L bje-/ljS, for Re s > max(ueo u;), 
k=1 j=1 

where ue, u; are the respective abscissas of convergence and max(ue,u;) < 00. 

Then,for any Ak ¢ {Jlj L~ 1 we have ak = O,for any Jlj ¢ {Ak h~ l' we have bj = 0, 
and, if Ak = Jlj' then ak = bj. 

5.2.24. Corollary. Under the same hypothesis as in Theorem 5.2.2 we have 

. 1 fY+iR f(s)e AnS .-1 an 
hm -. --ds = L ak + -. 

R-oo 2m y-iR s k=1 2 

PROOF. By Theorem 5.2.2, we have 

1 fY+ ioo f(s) - a e- AnS .-1 
-. • eAnSds = L ak' 
2m y-ioo S k=1 

Let us write 

- e ds=- ---ds-- -
1 f Y+iR f(s) - a.e- AnS AnS I f Y+iR f(s)e AnS an f Y+iR ds 

2ni y-iR S 2ni y-iR S 2ni y-iR S' 

passing to the limit when R tends to infinity and using Lemma 5.2.21 we obtain 
the conclusion of the corollary. 0 

00 

5.2.25. Theorem. Let f(s) = L ake- AkS have abscissa of convergence Ue < 00. 
k=1 

For U E ]A., A.+1 [, Y > max(O, ue ), and p integer ~ lone has 

p! fY+ ioo f(s)e us , p 
-. ----p:jT ds = L ak(u - Ad . 
2m y-ioo S k=1 

PROOF. Note that the case p = 0 is just Theorem 5.2.22. To prove this theorem 
we observe first that integrating by parts several times yields 
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I fY+ iOO f(s)e US I I fY+ iOO (f(s)eUS)(P) 
- --ds=-- ds 
2 . p+1 2 . I ' 

7tl y-ioo S 7tl p. y-ioo S 

where the contributions of the endpoints vanish, thanks to §5.2.lS. For every 
integer p we have 

00 

(f(s)eu,)(P) = L ak(u - .A.dPe(U-Ak)' 
k=l 

in the half-plane of convergence. Applying now Theorem 5.2.22 to this last 
Dirichlet series we obtain the identity we were looking for. 0 

5.2.26. Theorem. Let f(s) = L ane- AnS be a Dirichlet series with -00 < (1'c < 00, 
n<!l 

and an ~ 0 for every n. Then the point s = (1'c is a singular point for the function f 

PROOF. If not, there is (1'0 > (1'c and a disk centered at (1'0 and radius R > (1'0 - (1'c 

in which the Taylor series 

f(s) = L jlk)«(1'O) (s - (1'o)k 

k<!O k! 

converges. Since the convergence of the Dirichlet series L ane- AnS is uniform 
n<!l 

in a neighborhood of (1'0' we have for kEN 

jlk)«(1'O) = (_I)k L ak.A.!e-AnaO, 
n<!l 

hence, for Is - (1'01 < R we have 

f(s) = L (L an.A.!e-Anao) «(1'0 - S)k. 
k<!O n<! 1 k! 

If we now consider s real, (1'0 - R < s < (1'c < (1'0' then (1'0 - s > 0 and not only 
the series converges, but the order of summation can be interchanged using 
that every term is positive. This way we obtain 

f(s) = L ane-Anao (L .A.!«(1'0 - S)k) 
n<! 1 k<!O k! 

= L ane-AnaOeAn(ao-S) 
n<!l 

= L ane- AnS. 
n<!l 

Therefore the Dirichlet series converges at s < (1'" which is impossible. 0 

As we mentioned earlier, we shall return to the study of general Dirichlet 
series after we introduce the Mellin transform in the second volume. More 
general series (with complex frequencies) will appear there also, in the context 
of mean periodicity. 



496 5. Analytic Continuation and Singularities 

EXERCISES 5.2 

1. Let/(z) = I anz" have radius of convergence 1 and let F(O = ..... y/ -'- . 1 (.") 
• ;eO 1 - <, I - ( 

(a) Show that F is holomorphic in the half·plane Re ( < ~,and z = 1 is a singular 
point for / if and only if ( = ~ is a singular point for F. 

(b) Show that F(O = I b.", with b. = f (11) ak • 
• ;e0 k=() ,k 

(c) Prove that z = 1 is a singular point for / if and only if lim inflbnl-I!n = 1 . 
• -0 

2. Prove by induction that for any k E N* there is a polynomial Pk of degree k, with 
coefficients in Z such that 

" k. _ Pk(z) 
L.. 11 z -. HI 

":>1 (I···z) 
for Izl < 1. 

(In fact, one can also show the coefficients of Pk are 2': 0.) Conclude that if Q is a 
polynomial, then the series 

/(z) = I Q(I1)Z" 
l1;?:O 

has radius of convergence exactly one but it is the restriction to the unit disk of 
a rational function whose only pole occurs at z = 1. What is the relation between 
the order of the pole and the degree of Q? 

*3. Let f be a meromorphic function in a neighborhood of the closed disk B(O, R) 
whose only pole lies at z = zo, IZol = R. Let /(z) = I a.z' be the Taylor series 

n~O 

expansion of / about z = O. Show that there is an A E C* and p > R such that 

where v is the order of the pole Zo' (Hint: let P ( 1) be the principal part of 
z - Zo 

/ about z = Zo and consider the holomorphic function F(z) = /(z) - P (~.) 
z ~o 

to compute the a,.) 
Conclude that 

. (n + l)J<"l(O) 
hm ----.......... = zoo 
n''''' p.+ll(O) 

4. Prove statement (3) of Proposition 5.2.14. 

5. Prove Corollary 5.2.23. 

6. Find aa' ac (when appropriate) for the following Dirichlet series: 

111 
(i) I s 

n~l n 
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1 
(ii) L s ,.,1 n 

("') '" (-1),+1 
III L.. ---

n~ 1 nS 

. '" 1 
(IV) L.. -,-s ,.,1 n.n 

(V) L (_l)'e-(Ioglogn)s 
n~2 

( .) '" (- l)n -(1011 log ,)s 
VI L.. --e ,.,2 n 
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7. Show that if A.. = n log n then u. = lim IO~la.1 for the Dirichlet series L a.e- lns. 
n""""'oo II..n n:2: 1 

8. Let f(s) = L a.e- lns, u = Re s > u., and M(u) = sup If(u + it)l. Show that 
II~ 1 te R: 

Conclude that 
la.le- ln" ~ M(u). 

*9. Let f(s) = L a,e-lns, g(s) = L b.e-lns converge absolutely for s = IX, S = p, 
• ., 1 • ., 1 

respectively. Show that 

lim ~ (T f(1X + it)g(P - it)dt = L a,b.e-ln(a+P). 
T~oo T Jo • .,1 

What is the limiting value of the average - If(1X + it)12 dt as T -+ oo? 1 fT 
2T -T 

10. Letf(s) = L ~ have Uc < 00. If x > 0 is not an integer, y > 0, and Re s > Uc + y, 
.>1 n 

then 

a 1 fY+ ioo dz L --i = -. f(s + z)X Z -

.<xn 2m y-ioo Z 

What is the corresponding statement for a general Dirichlet series L a.e-lns? 
• ., 1 

(Compare with Theorem 5.2.22.) 

11. Let lP be an entire function of exponential type A andf(s) = L a.e- lnS a Dirichlet 
1I~1 

series with u. < 00. Show that the Dirichlet series L anlP(A.n)e-lns has abscissa 
n~ 1 

of absolute convergence ~ u. + A. 

12. Let f be a function holomorphic in a neighborhood of the origin that satisfies 

the functional equation f(2z) = ~(f(z)f. Show that f must be an entire function. 
dz 
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Find a solution of the form J(z) = eAZ. (Hint: use the equation to define J in larger 
and larger domains.) 

*13. (a) Choose N E N* such that L ne- 2ni2 < 1. 
n~N 

(b) Let J(z) = z + L e- 2nJ2Z n• Show that J E Jf'(B(O, 1» n Coo(B(O, 1». 
n~N 

(c) Show that J is injective in B(O, 1). 
(d) Let r = J(8B(0, 1». It is a COO Jordan curve (why?). Show there is no point 

Wo E r for which one can find a function cp: [ -1,1] ..... C, real analytic, 
injective, cp(O) = wo, 1>(0) * 0, cp([ -1,1]) £; r. In other words, r is nowhere 
real analytic. 

14. For n EN denote by I\n = {z E C: Rez ~ n,IImzl ~ n} and Yn = 81\. with its 
usual orientation. For z ¢ Y., let 

h.(z):= --~ f exp(expO d,. 
2m Yn , - z 

(i) Show that h. is holomorphic in C\Y •. Moreover, when n ~ m, 

h.ll\~ = hmll\~· 

Conclude that there is an entire function h such that hll\~ = h. and h(z) = h(z). 
(ii) Show that 

-~ f exp(expOd, = 1 
2m Yn 

for every n E N. 

(iii) Let g(z) = zh(z) + 1. Prove that Ig(z)1 ~ -d 10 whenever z ¢ Yo. 
(z, Yo) 

(iv) For 0 < x < n, n E N*, show that h(x) = ee'" + ho(x), and conclude that 
lim h(x) = 00. 
x~oo 

(v) Prove that for every (J E ]0, 2n[, lim h(re i6 ) = O. Show that H(z) = h(z)e-h(Z) 
has the property r~oo 

lim H(re i6 ) = 0 

for every (J E IR. (The same is true for e-h(z) - e-h(2z).) 

(vi) Let B > 0, find a nonzero entire function J such that I J(z) I ~ I~I when 

IImzl ~ B, for some constant C > o. 
15. Show that if J is an entire function that satisfies the inequality 

1 
I J(z) I ~ Ilmzl 

everywhere, then J == O. (Hint. Consider the auxiliary function 

g(z) := (1m z)J(z), 

and develop it in series de Fourier to show g == 0.) See Exercise 3.5.10 for a 
different proof. 
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§3. A Brief Study of the Functions rand, 

We have already seen the Euler r-function appear several times in this book, 
e.g., in Exercises 3.2.4 and 3.3.11. It has a number of remarkable properties 
and we recommend the book [Cam], which is entirely dedicated to this 
function. We shall see later that the r-function appears intertwined with 
another famous function, the Riemann ,-function, which, in fact, was also 
originally defined by Euler. 

We have up to now given two different definitions of the r-function. The 
first one is 

r(z) = IX) e-'t z - 1 dt, 

and we indicated in Exercise 3.2.4 how this function, originally defined and 
holomorphic in the half-plane Re z > 0, has an analytic continuation to a 
meromorphic function in C with simple poles at z = 0, -1, - 2, .... Namely, 
for Re z > ° we rewrite (*) in the form 

r(z) = f: e-'t z - 1 dt + 100 
e-'t z - 1 dt 

L (-It fl t n+z - 1 dt + foo e-'t z - 1 dt 
n;;>:O n! 0 1 

L -=--- + e-'t z - 1 dt. 
( l)n 1 foo 

n;;>:O n! z + n 1 

The first term is clearly a meromorphic funtion with simple poles at z = 0, 
- 1, - 2, ... , and the second term is an entire function of z. 

The second definition we gave was in Example 4.5.7 (2), where we defined 

r indirectly by saying that ~ is the entire function given by the infinite product 

expansion 

_1_ = zeYz fI (1 + :) e-z/". 
r(z) n=1 n 

(t) 

A priori, it is not clear that the definitions (*) and (t) coincide. If they do, 

one can draw unexpected consequences, e.g., r has no zeros in C, since ~ is 
entire. There are several ways of conciliating the two definitions. We start with 

1 
(*), which clearly implies that r(x) > ° for x E ]0, oo[ and show that r(x) has 

the form (t) for x E ]0, 00[. Since we already know that the function r is 

meromorphic in C and hence ~ is also merom orphic in C, this will prove that 

(t) holds. 
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5.3.1. Lemma. The functions 1P.(z):= f: (1 -~y t z - 1 dt (n E N*) converge to 

r locally uniformly in the half-plane Re z > O. 

PROOF. (Compare with Exercise 3.3.11). We start by proving that the auxiliary 

functions I/In(t):= e-' - (1 -~y, defined forO::; t ::; n, satisfy the inequalities 

t 2e- t 

O::;I/In(t)::;-. (**) 
n 

The proof of the left-hand side inequality is very easy. The function 

( t)n ( t)n-1 ( t) Xn(t):= 1 - ~ e' satisfies X.(O) = 1 and X~(t) = e' 1 - n -n ::; 0 in 

o ::; t ::; n. Hence X.(t) ::; 1, or equivalently I/I.(t) ~ O. 
The other inequality is considerably harder. It is enough to show it for large 

n. Consider first the function 

g.(t) := et (1 - D·-1 - 2. 

Then g~(t) = et (1 - ~y-2 1 ~ t = 0 only if t = 1, which is a local maximum 

( l)n-1 
of g •. The value g.(I) = e 1 - ~ - 2 --+ -1, hence g.(t) ::; 0 in 0::; t ::; n, 

for all large n. To continue the proof, let B.(t):= 1 - e' (1 - ~y -~. We 

want to show that B. ::; O. We have B.(O) = 0 and 

B~(t) = ~[et(1 - ~)n-1 - 2J::; 0 
for all large n. Hence B. is decreasing and both inequalities in (**) hold, at least 
for large n. 

Note that if x = Rez, 0 < x ::; 1 

I In I foo foo e-n 
r(z) - 0 e-tt z - 1 dt ::; • e-'tx- 1 dt ::; nx- 1 n e-' dt ::; n1-x· 

If X > 1 we can integrate by parts and obtain 

f.'" e- tt x - 1 dt = e-·nx- 1 + (x - 1) f.oo t x- 2e-t dt. 

It is clear that for any 0 < A < B < 0 there is a constant C such that whenever 
A ::; Re z ::; B we have 

I r(z) - J: e-tt z - 1 dt I ::; Cn B - 1e-n --+ 0 as n --+ 00. 



§3. A Brief Study of the Functions rand, 501 

On the other hand, the inequalities (**) show that 

1 in +1 -t d r(x + 2) :::;; - t X e t:::;; . 
non 

This concludes the proof of the lemma. o 
We can describe the functions qJn more explicitly by integration by parts 

qJn(z) = J: (1 - ~)" t z - 1 dt = ~ J: (1 - ~)"-1 t Z dt. 

Iterating this procedure we obtain 

n'n Z nZ 
qJ (z) = . 
n z(z + 1) .. . (z + n) z(l + z)(l + z/2) ... (1 + z/n)' 

Since these functions have no zeros in Re z > 0, we can conclude by Hurwitz's 
theorem that the same holds for r. Moreover, 

= nzexp ([ 1 + ~ + ... + ~ -logn Jz \1] (1 + I)e- Z1k• 

Since lim (t -k
1 

- log n) = y, it is clear that 
n~oo k=l 

, Z 

r(z) = lim n.n 
n-+oo z(z + l) ... (z + n) 

as we wanted to show. From the first identity, sometimes called Gauss' 
formula, it is easy to derive the functional equation for the r-function 

n'nz +1 
r(z + I) = lim ---.---

n-oo(Z+ l) ... (z+n+ I) 

. [ n J' n!n Z 

= z hm hm = zr(z). 
n-oo Z + n + 1 n-oo z(z + I) ... (z +n) 

We remind the reader that we have proved this under the assumption that 
Re z > 0, but since both sides are merom orphic functions of z, it holds for every 
value z #- 0, -1, - 2, .... Furthermore, it is easy to see from the proof that 
Gauss' formula for the r-function is valid everywhere in C\ {O, -1, - 2, ... }. 

An important property of the r-function whose proof we shall omit is 
Stirling'sformula: For any e > 0, in the region IArgzl :::;; 1t - e we have 
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where zz-1/2 = exp((z - t) log z). (See [Cam], [Mar], [WW], or Exercise 5.5.35 
for a proof.) In particular, for n E N, we have 

n!-~(;)", 
where the symbol - indicates the quotient of the two sides has limit 1 when 
n -+ 00. 

There are several relations between the r -function and the (-function. One 
type of relation is obtained by considering the logarithmic derivative of r. 
From (t) we have 

hence 

r'(z) 1 00 (1 1) 
I/I(z) := - = -y - - + L - - - , 

r(z) Z n=1 n z + n 

1 00 1 
I/I'(z) = 2 + L ( )2· 

Z n=1 Z + n 

(tt) 

Evaluating this series at z = 1, we get 1/1'(1) = ((2). Proceeding this way, one 
can evaluate l/I(n)(1) in terms of ((n + 1). A more interesting relationship arises 
as follows. Let a E C* be fixed and define the generalized (-function 

00 1 
((s,a):= L ( t' 

n=O a + n 

which is holomorphic for Re s > 1. Note that ((s, 1) = ((s). We observe that 
for 0 < a and Re s > 0 

fOO ,-I -(a+n)x d _ r(s) 
x e x-( )' o a+n 

and, therefore, 

00 foo foo x,-l e-ax 
r(s)((s, a) = L x s- 1e-(a+n)x dx = x dx, 

n=O 0 0 1 - e 

which is a representation very similar to ( ... ) for the r -function. Let us consider 
now a contour C as in the adjacent Figure 5.2, which does not contain any of 
the points 2nin, n E Z*, and the corresponding integral 

1(0+) ( - z)'-le-az 

1 -z dz, 
00 -e 

where it is assumed that larg( -z)1 :::;; n, arg( -z) = 0 when z < 0, 0 < a :::;; 1. 1(0+) 

(It is standard to symbolize the integral over C by 00 • This path C is called 
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c 

• o 

Figure 5.2 

a Hankel contour.) As a function of s, this is an entire function. Shrinking 
the contour C to the positive real axis we obtain 

1(0+) (- z),-1e-az .. foo x·-1e-az 
1 z dz = - 21 S10 ns 1 " dx. 

00 -e 0 -e 

In Exercise 3.3.12 it was proved that 

1 sin ns 
=-c--:--c---,-,---,----
r(s)r(l - s) n 

Using this identity, we obtain for Re s > 1, s ¢ ~, that 

r(l - s) 1(0+) (_z)S-1 e-az 
«s,a) = dz. 

2ni 00 1 - e z 

This shows that (s,a) has an analytic continuation to the whole plane, 
which is a merom orphic function and whose only possible singularities are 
those of r(l - s), i.e., at most simple poles at s = 1, 2, .... On the other hand, 
(s, a) is a convergent Dirichlet series for Re s > 1. Hence (s, a) and the 
function (s) have only one singularity, a simple pole at s = 1. In fact 

lIm = -- dz=-1. 
. (s, a) 1 1(0+) e-az 

,-1 r(l - s) 2ni 00 1 - e Z 

Therefore, the residue is Res«((s, a), s = 1) = 1. 
Let us denote by CN the circle aB(O, (2N + 1 )n) in the positive direction, 

and by «2N + l)n,O+) the portion of the contour C lying inside CN. Here 
N E ~*. A computation of residues allows us to calculate 

- dz=- dz 
1 1 (- z)S-le-az 1 1(0+) (- z)s-1e-az 

2ni eN 1 - e Z 2ni (2N+1)" 1 - e Z 

= 2 ntl (2nn)S-1 sin (~sn + 2nan ). 

The function e-az(l - e-Z)-l is uniformly bounded over all the circles CN' 
hence if 0 < a :s; 1 and Re s < 0, we have 



504 5. Analytic Continuation and Singularities 

and one obtains a result due to Hurwitz: 

r( ) = 2r( 1 - s) [i (ns) f cos 2nan . (ns) f sin 2nan] 
.. s, a (2 )1-S S n 2 L. 1 S + cos 2 L. 1 S . n n=1 n n=1 n 

We set a = 1 to find the functional equation of the (-function 

2r(1 - s) . (ns) 
(s) = (2n)1-S sm 2 (1 - s), 

which is usually rewritten as 

21-Sr(S)(S)cos(~) = n S(1 - s). 

This formula holds for every value of s, with due consideration for the poles 
of the factors, and forces ( to have simple zeros at s = - 2, - 4, - 6, ... , and 
nowhere else, except possibly in the strip 0 :$; Re s :$; 1. The still unsolved 
Riemann hypothesis states that in this strip all the zeros lie in the vertical line 
Res = t. 

The relation of the (-function with number theory arises out of a relation 
discovered by Euler 

(Res> I), 

where the product takes place over all the primes P = 2,3,5, .... The existence 
of a pole for ( at s = 1 forces the relation 

1 I- = 00. 
p P 

This is Euler's proof of the existence of infinitely many primes. This already 
shows that the primes could not be very sparse, otherwise the series would 
converge. The prime number theorem asserts that if Pn represents the nth prime 
then Pn '" n log n. It turns out that this is a consequence of a theorem of 
Hadamard-dela Vallee-Poussin that (s) does not vanish when Res = 1. The 
Riemann hypothesis furnishes further information on the distribution of the 
prime numbers. We refer to [Ti2] and EPa] for an up-to-date account of this 
subject. 

EXERCISES 5.3 
1. Let ljJ(z) = r'(z)/nz). 

(a) Show that for k ~ 2,1jJ(k-l)(z) = (_l)k-l(k - l)!'(k, z). 
(b) Use (a) to show that r'(l) = -"I, r"(l) = "12 + '(2), and that, in general, r(n)(l) 

is a polynomial of degree n in "I with coefficients computed in terms of the values 
,(k), kEN. 
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(c) Show that I//(z) + I//(z + t) = 21//(2z). Use this to prove 

f'(2z) = 22 %-1 f'(z)f'(z + f). 

505 

(d) Prove f(x) = log f'(x) is a convex function of x for x > O. (It is a theorem of 
Bohr-Mollerup that the four conditions f'(x) > 0, f'(x + 1) = xf'(x), f'(1) = 1, 
and convexity oflog f', characterize the f' -function.) 

2. Use Stirling's formula to check that 

f"+1 1 
logf'(t)dt = x(logx - 1) + -log2n 

x 2 
for x> O. 

3. Show for x > 0 not an integer that 

f'(x) = --.-. - (-t)X-Ie-tdt, 
1 f(O+) 

21 sm nx 00 

where (- t)X-1 is defined by taking arg( - t) = 0 on the negative real axis and 
larg( - t)1 ~ n. The meaning of the path is that it does not pass through t = 0, 
otherwise starts at 00, encloses 0 counterclockwise, and returns to 00, cf. Figure 5.2. 
Show this identity still holds for any x e C\Z. Conclude that 

1 i f(O+) 
- = - (-t)-%e-t dt 
f'(z) 2n 00 

(ze C). 

4. (Alternative derivation of the inequalities in Lemma 5.3.1). 
1 

(a) Show that for 0 ~ y < 1, 1 + Y ~ e' ~ -1 -. 
-y 

(b) Replacing y bY~, obtain 0 ~ e-t - (1 - ~y ~ e- t {I - (1 -~)}. 
(c) Use that for 0 ~ fI ~ 1, (1 - fI)" ~ 1 - nfl to obtain the inequality 

ifO~t~n, nel\l* 

*5. (Proof of Stirling's asymptotic formula). 
(a) Show that when IArgzl ~ n - 6 (6) 0), we have 

Logf'(z) = -yz - Logz - f [~- LOg(l + ~)J. 
0=1 n n 

(b) Let [t] denote the integral part of the real number t. Show that for n e 1\1, n ~ 2, 
and Rez > 0, 

f" [t] - t + 1/2 0-1 f,k+1 (k + 1/2 + z ) 
----dt= L -1 dt 

o t + Z k=1 k t + z 

= "f [~- LOg(1 + ~)J -log[(n - I)!] 
k=1 k k 

- z (1 + ~ + . " + _1_) - (z + ~) Log z 
2 n - 1 2 

+ ( n - ~ + z }og(n + 2) - n. 
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(c) Use that for n -+ 00 and z fixed with Re z > 0, one has 

1 1 
1 + - + '" + -- = logn + y + 0(1), 

2 n - 1 

Log(n + z) = logn + ~ + 0(:2). 
to show that for Re z > 0 

( 1) 1 Joo [t] - t + 1/2 Logr(z) = z - - Logz - z + -log2n + dt. 
2 2 0 t+z 

Why is this formula valid for all z rI: ] -00, OJ? 

(d) Let cp(u) = J: ([t] - t + Ddt. Show that cp is periodic of period 1 and, hence, 

bounded. Integrate by parts to obtain 

Joo [t] - t + 1/2 dt = Joo cp(u)du. 
o t + z 0 (u + Z)2 

Show that when IArgzl ~ n - e, the last integral is 0C~I) as Izl-+ 00. This 

concludes the proof of Stirling's asymptotic formula for the r -function. 

6. Prove Euler's relation 

( 1 )-1 
(s) = I] 1 - ps for Res> 1. 

Why does it imply that the infinite product I] (1 -~) is divergent? Why does this 

. 1 
Imply that L - = oo? 

p p 

7. Let ~(s) := s(s - l)n- I /2S(s) r G)' Show that ~ is an entire function and satisfies 

the equation ~(s) = W - s). 

*8. Use Exercise 5.3.6 to prove that for Re s > 1 we have 

('(s) _ t A(n) 
(s) - - "=2 7' 

where A(n) = logp if n is a power of a prime p, A(n) = 0 otherwise. 

9. Show that for Re s > 1, 

00 ( 1)"+1 L --=-.-- = (1 - 21 - S )«s). 
n=1 n 

00 (_1)"+1 
Conclude that the Dirichlet series L --s- which has (Ta = 1, (Te = 0 (from 

"=1 n 
Exercise 5.2.6) is the restriction of an entire function to the half-plane Re s > O. 
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10. (a) Show that if X is a Cl function in the interval [ex, P], 0 :::; ex < P < 00, then 

L x(n) = ffJ X(x)dx + fll (x - [x] - -2
1

) x'(x) dx 
(J<n'5./l a IJ 

+ (ex - [ex] - DX(ex) - (p - [P] - DX(p). 
(Compare with Exercise 5.3.5.) 

(b) Let IX, p be integers, Re s > 1 and X(x) = x-So Use part (a) to show that 

1 1 foo [x] - x + 1/2 
'(s) = -2 + --1 + s s+1 dx. 

s - I X 

(c) Show that 

f" [x] - x "1 
--2 -dx = L -k -Iogn. 

I x k=2 

(d) Use parts (b) and (c) to conclude that 

lim (,(S) - _1_) = y. 
s~1 S - 1 

(e) Use the functional equation to obtain that ,(0) = -to 
(f) Show that the functional equation implies that 

n1 - s) = 10 n ?:. n sn _ r'(s) _ ns) 
W - s) g2 + 2 ta 2 ns) '(s)· 

(g) Use parts (d) and (e) to conclude that 

nO) 
'(0) = log 2n. 
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11. Show that the function J(z) = LI tz-Ie t dt is holomorphic for Re z > 0 and admits 

an analytic continuation to a function meromorphic in the whole complex plane. 

fOO tz-I 
12. Same as Exercise 5.3.l1, for J(z) = --2 dt. 

I 1 + t 
13. Let u > 1, use Exercise 5.2.9 to compute 

lim - "(u + itW dt. 1 fT 
T~oo 2T -T 

14. Show that for x > 0 

1 i eX 108 x-x 
-. exp [(e t -1-t)x]dt=n 1)' 
211:1 w X + 

where W is a path in the half-strip {Ret> 0, 11m tl < n}, asymptotic to the rays 
1m t = ± n, starts at 00 - in and ends at 00 + in. (Hint: Consider the transforma
tion t = Log( - z), then W is the image of a Hankel contour (00,0 + ) used in the 
text. See next page.) 
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§4. Covering Spaces 

5.4.1. Definitions 

(1) If X and Yare two topological spaces and p: X --+ Y is a continuous map 
we say p-1(y) is the fiber of p over y. 

(2) If p: Xl --+ Y, q: X 2 --+ Yare continuous maps, we say that a continuous 
map f: Xl --+ X 2 preserves the fibers if p = q 0 f 

(3) If X, Y, Z are topological spaces, and p: Y --+ X and f: Z --+ X are contin
uous maps, a lifting of f is any continuous map 9: Z -+ Y such that 
P 0 9 =f 

5.4.2. Proposition. Let X and Y be Hausdorff topol09ical spaces and p: Y -+ X 
a local homeomorphism. Let Z be a connected topolo9ical space and f: Z --+ X 
a continuous map. If 91,92 are two liftin9s off such that 91(ZO) = 92(ZO) for 
some Zo E Z, then 91 = 92' 

PROOF. Let A = {z E Z: 91(Z) = 92(Z)}, This set is a nonempty closed set by 
the hypotheses. We will show it is open. Let Z E A and y = 91 (z) = 92(Z), Since 
p is a local homeomorphism, there is an open neighborhood U of y which 
is homeomorphic by p to an open neighborhood V of p(y) = fez). By the 
continuity of 91 and 92' there is a neighborhood W of Z such that 
JdW) u 92(W) s; V. Let q> = (plV)-l : V -+ U. From po 9j = f we deduce 
9j l W = q> 0 (fl W),j = 1,2. Hence W s; A and the proposition holds. 0 

The concepts of loop, path, homotopy, and fundamental group that we 
have introduced in Chapter 1 for open subsets of C have an immediate 
extension to the case of topological spaces. We have also proved properties 
of the liftings of homo to pies with respect to the map C --+ C*, Zf-+e Z • We are 
now going to extend the validity of these properties. 

5.4.3. Proposition (Lifting of Homotopic Curves. Abstract Form ofthe Mono
dromy Theorem). Let X and Y be two Hausdorff spaces p: Y --+ X a local 
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homeomorphism. Let a, b E X and a 1 E p-l(a). Let II: [0,1] x [0,1] -+ X be a 
continuous map such that H(O,s) = a and H(1,s) = b for every s E [0,1]. Let 
Ys(t) = H(t, s) (0 ::::;; t ::::;; 1). If every path Ys can be lifted to a path Cs starting at 
ai' then Co and C1 end at the same point and they are homotopic with fixed 
endpoints. 

PROOF. We redo here (for the convenience of the reader) the proof already 
given in the case of I[: (d. Proposition 1.6.28). 

Define K : [0,1] x [0,1] -+ Y by K(s, t) = C., (t). 

5.4.4. Lemma. There is an eo > ° such that K is continuous in [0, eo] x [0, 1]. 

PROOF. There is a neighborhood V of a l and a neighborhood U of a such that 
PlY: V -+ Uisahomeomorphism. SinceH({O} x [0,1]) = {a}, there is eo > ° 
such that 1I([0, eo] x [0,1]) s; U. The uniqueness of the lifting of curves that 
follows from Proposition 5.4.2 implies that C,I [0, eo] = qJ 0 (Ysl [0, eo]) for ° ::::;; s::::;; 1, where qJ = (pi V)-l. Therefore 

KI[O,eo] x [0,1] = qJ 0 (HI [0, eo] x [0,1]), 

which shows that K is continuous in [O,eo] x [0,1]. D 

5.4.5. Lemma. The map K is continuous in [0,1] x [0,1]. 

PROOF. Let us assume that (to, 0) E [0,1] x [0,1] is a point of discontinuity 
for K. Let r = inf{ t E [0,1] : K is not continuous at (t, a)}. Clearly eo ::::;; r ::::;; to. 
Let x = H(r, a), y = K(r, a) = C,,(r). Let V, U be neighborhoods of y and x, 
respectively, such that pi V: V -+ U is a homeomorphism, and set qJ = (pi V)-l. 
Since H is continuous there is an e > ° such that H(1t(r) x I,(a)) s; U, where 
I,{e) = {t E [0, 1]: It - el < e}. In particular, Y,,(1,(r» s; U. Hence 

C"II,,(r) = qJ 0 (y".II,(r». 

Let us choose tl E l£(r) such that tl < r. Then 

K(t1,a) = C,,(tl) E V 

Since K is continuous at the point (t l' a) there is a 6, ° < 6 ::::;; e such that 

for s E 1.;( a). 

The uniqueness of the lifting shows that, for s E Ib(o), one has 

CsII.(r) = qJ 0 (YsII,{r)). 

Hence K = qJ 0 H in I,(r) x 1.(0-), which contradicts the definition of r. There
fore K is continuous in [0,1] x [0,1]. D 

To finish the proof of Proposition 5.4.3 we observe that H( {I} x [0,1]) = 

{b} and H = P 0 K implies that the connected compact set K ( {1} x [0, 1]) is 
contained in the discrete set p-l(b). (Why is p-l(b) discrete?) This clearly 
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implies that K ({ I} x [0, 1:1) is a single point. That is, the endpoint Cs ( 1) of all 
the paths coincide. This proves both statements in Proposition 5.4.3. 0 

5.4.6. Definitions 

(1) Let X, Y be two topological spaces. A map p: Y -+ X is said to be a covering 
map if for every x E X there is an open neighborhood U of x such 
that p-l(U) = U V;, where the V; are open sets in Y, pairwise disjoint, 

iEI 

pi V;: V; -+ U are homeomorphisms, and I is an index set depending on x. 
Such an open set U is said to be trivializing (for p). If we consider I with 

the discrete topology, one sees that p-l(U) is homeomorphic to U x I via 
the trivializing map (P, (P : p-l(U) -+ U x I, defined by qJ(Y) = (p(y), i(y», 
where i(y) is the unique i E 1 such that Y E V;. 

(2) Let PI : X I -+ X and pz : X 2 -+ X be two covering maps of the same topo
logical space X. A morphism between these covering maps is any continuous 
maps h: .~\ -+ X2 such that P2 0 h = Pl' (More precisely, one should say 
a morphism from (Xl,PI) to (X2 ,pz).) 

(3) A morphism is said to be an isomorphism if the map h is also a homeo
morphism (it foHows that h- l is also a morphism). 

(4) When Xl = X 2 = X and PI = P2 = p, the isomorphisms are called auto
morphisms of the covering map P : X -+ X. They form a group G(p) under 
composition. 

For instance, if X = X x F, F discrete and X connected, p:= prl , then 
every element of G(p) is of the form ~.,. : (x, y) ...... (x, a(y)), with a E elF' the 
group of permutations of F. Hence G(p) can be identified to elF' 

(5) If p : Y -+ X is a covering map, X is locally connected, and Y' is an open 
connected component of Y, then p' : Y' -+ X, p' := pi Y', is also a covering 
map. 

Examples of covering maps 

(1) p: C* -+ C*, p(z) = Zk, k E N*; 
(2) p: C -+ C*, p(z) = expz. 

One can prove for covering maps a uniqueness property similar to that of 
Proposition 5.4.2 without the Hausdorff hypothesis. 

5.4.7. Proposition. Let p : Y -+ X be a covering map, Z a connected topological 
space, f: Z -+ X continuous. If gl and gz are two liftings off that coincide at a 
point Zo E Z, then gl = g2' 

PROOF. LetE = {z E Z: gl(Z) = g2(Z)}. It is not empty by hypothesis. We need 
to show that E is both open and closed. (Why is E not automatically closed?) 

Let us show first that E is open. Let Z E E and U a trivializing neighborhood 
of f(z). Denote p-I(U) = U V;, (Ii = (pi v;rl. We have gl (z) = g2(Z) E V;o for 

i E 1 
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some io E I. By continuity, there is an open neighborhood W of z such that 
g;(W) u g2(W) ,,; V;o and f(W) ,,; U. It follows that gIl W = (Jio ° UI W) = 
9 21 W Therefore E is open. 

We shall now show that E is closed. Let z E if, U a trivializing open neighbor
hood of f(z), p-1(U) = lJ v;, (Jj = (pi V;)-1 as before. If g1(Z) E V;" g2(Z) E V;2' 
then we can find a neighborhood W of z such that g1 (W) ,,; V;" g2(W) ,,; V;2' 
and f(W),,;U. Hence gIIW=(Ji,oUIW) and g2IW=(Ji2oUIW). But 
Ell W is not empty and for (E Ell W we have 91(0 = g2(0, which is only 
possible if i l = i2 (otherwise V;, II V;2 i:- 0). Therefore we conclude that 
gIl W = g21 W In particular, z E E. D 

5.4.8. Definition. A continuous map p: Y ~ X is said to have the lifting 
property for paths iffor every Xo E X, every Yo E p-l(XO), and every continuous 
path y : [0, 1] ~ X starting at X o, there is a lifting C of y, c: [0, 1] ~ y contin
uous, and C(O) = Yo' 

5.4.9. Proposition. Every covering map p: Y ~ X has the lifting property for 
paths. 

PROOF. Let V : [0,1] be a continuous path in X starting at Xo, Yo E p--1(XO)' By 
the compactness of [0,1], there is a partition ° = to < t1 < ... < tn = 1 of 
[0,1] and trivializing open sets Uk"; X(1 ~ k ~ n)such that y([tk,tk+l])"; Uk 
and p-l(Uk) = lJ Vic,;· 

iElk 

We show by induction on k, k = 0, 1, ... , n, that there is lifting c: [0, tk ] ~ Y, 
continuous, C(o) = Yo, poe = yl[O, tkJ. For k = 0, it is evident. Let us assume 
k;?: 1 and that CI [0, tk - 1 ] has already been found. Denote Yk-l = C(tk-d. 
Since P(Yk---1) = p(C(tk-d) = y(tk-d E Uk' there exists a unique i E Ik such that 
Yk-1 E Vu Let <p = (pi Vic,;)-1 : Uk ~ Vic,i' If we let 

CI[tk-l,tk ] = <P ° (vl[tk - 1 ,tk ]) 

we get a lifting C of y, continuous in [0, tk]' D 

Remarks. Let p : Y ~ X be a covering map. 

(1) The lifting of a closed curve is not necessarily a closed curve. For instance 
if p: C ~ C*, p( z) = e Z and y is the closed curve given by y(t) = e21rit, then 
a lifting starting at k E Z ends at k + 1. 

(2) The liftings of two continuous paths, which are homotopic with fixed 
endpoints in X, are homotopic with fixed endpoints in 1', if they have the 
same starting point. In particular, if y is a loop with base point a, which 
is homotopic in X to the constant loop Sa' any lifting of V to Y starting at 
a 1 E p-l(a) will be a loop homotopic to the constant loop Ba ,' 

5.4.10. Proposition. Let X, Y be two topological spaces, X connected, and 
p: Y -+ X a covering map. For every Xo, Xl E X, the sets p-l(XO) and p-l(xd 
have the same cardinality. 
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PROOF. Let E = {x EX: p-l(X) have the same cardinal as p-l(XO)}' We show 
that E is open and closed. If x E E and U is a trivializing neighborhood of x, 
U = U V;, then it is clear that the cardinal #p-l(X') = #1 for every x' E U. 

ie I 

Hence U <;: E, and E is open. The same reasoning shows that if x E E one must 
have x E E. Simply use that U (\ E i= 0· D 

Remark. The cardinal # p-l(X) is called indistinctly multiplicity of p or the 
number of sheets of p. In general, there is no canonical way of enumerating 
the sheets. 

5.4.11. Definition. A topological space X is said to be simply connected if it is 
arcwise connected and if, for every a E X, every loop of base a is homotopic 
to Ca' 

For instance, every open set in C biholomorphic to B(O, 1) is simply 
connected. 

5.4.12. Proposition. Let X, Y be topological spaces, p: Y -> X a covering map. 
Let Z be a simply connected locally arc wise connected space and f: Z -> X a 
continuous map. For any choice Zo E Z, Yo E Y such that f(zo) = p(yo) there is 
a unique lifting goff, g: Z -> Y such that g(zo} = Yo' 

PROOF. Let z E Z and Y : [0, IJ -> Z be a continuous path joining Zo to z. Hence 
(I. = f 0 Y is a curve in X of origin f(zo) and endpoint f(z). Let C: [0, IJ -> Y 
be the unique lifting of ex starting at Yo' We define g(z) := C(l). This definition 
does not depend on the choice of y since, if Yl is another curve joining Zo to 
z, then YI is homotopic to Y (because YI 'y is homotopic to czJ Hence, 
(1.1 = f 0 Yl is homotopic to (I. by the homotopy f 0 H, where H is the homotopy 
between Y and YI' Therefore the linings C1 of (1.1 such that C1 (0) = C(O) = Yo 
will verify C1(1) = C(l). 

It is clear that p 0 g = f. 
We need to show that g is a continuous map. Let Z E Z, Y = g(z), and Va 

neighborhood of y such that pi V: V -> U := p(V) is a homeomorphism onto 
the open neighborhood U of p(y) = f(z). Since f is continuous and Z is locally 
arcwise connected, there is an arcwise connected neighborhood W of z such 
that f(W) <;: U. It is clear that if we show tht g(W) <;: V then the continuity of 
gat z follows. Let y, rt. be defined as earlier; for z' E W let y' be a path joining 
z to z' in W. The curve (I.' = f 0 y' is contained in U and c' = (pi V)-1 0 rt.' is a 
lifting of (I.' with origin y. Therefore, the composite path C' C lifts (I.. rt.' = 

.r 0 (y. y- I ) with origin Zo, and g(z') = C· C(1) = C(1) E V. D 

A familiar example of application of this proposition is the case p(z) = eZ 

between Y = C and X = C*, Z simply connected open subset of C, and 
f: Z -> C* a continuous function. Its lifting is log/; the branch of the logarithm 
being determined by the choice of Zo E Z and Yo E C such that f(zo) = eYO. 
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Remark. The previous proof remains valid if we assume only that p is a local 
homeomorphism which has the lifting property for paths. 

We introduce now a class of topological spaces X for which the local 
homeomorphisms p : X -+ Y that have the lifting property for paths are neces
sarily covering maps. 

5.4.13. Definition (Topological Manifold of Dimension 2). A topological 
manifold of dimension 2 is a Hausdorff space X such that for every a E X there 
is an open neighborhood U of a and a homeomorphism ({J of U onto an open 
subset of 1R2. 

Such a pair (U, ({J) is called a coordinate patch (or local chart) of X. 

Remark. One can replace 2 by n ~ 1 without any difficulty in Definition 5.4.13 
and talk about a topological manifold of dimension n. The following state
ments will still hold. 

5.4.14. Proposition. Let X be a topological manifold, Ya Hausdorff space, and 
p: Y -+ X a local homeomorphism having the lifting property for paths. Then p 
is a covering map. 

PROOF. Let Xo E X and {y;}ieI be the distinct elements of p-l(XO)' Let (U,({J) 
be a chart in X with Xo E U and U homeomorphic to a ball. Therefore U is 
simply connected and locally arcwise connected. Letj : U -+ X be the canonical 
injection. For every i E I there is a lifting /; : U -+ Y of j such that /;(xo) = Yi' 
If Vi = /;(U) then we leave to the reader the verification that Vi is open, we 
have p-l(U) = U Vi, and pi Vi: Vi -+ U is a homeomorphism. This concludes 

iEI 

the proof. D 

The following is a simple condition implying that a local homeomorphism 
is indeed a covering map. 

5.4.15. Lemma. Let X, Y be two locally compact spaces and p: Y -+ X a 
continuous proper map with discrete fibers. Then 
(1) For every x E X, p-l(X) is a finite set. 
(2) If x E X and V is an open neighborhood of p-l(X), there exists an open 

neighborhood U of x such that p-l(U) £; V. 

PROOF. Let us recall that a map p is proper ifp-l(compact set) is a compact set. 
It is immediate now that (1) holds. To prove (2), observe that Y\ Vis closed and 
hence p(Y\ V) is closed because p is a proper map. The set U = X\p(Y\ V) 
is an open neighborhood of x such that p-l(U) £; V. D 

5.4.16. Proposition. Let X, Y be two locally compact spaces and p: Y -+ X 
a continuous proper map which is also a local homeomorphism. Then p is 
a covering map. 
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PROOF. Let x E X, p-l(X) = {Yl, ... ,Yn}. For every j, 1 ~j ~ n, there is an 
open neighborhood W; of )Ii and an open neighborhood ~ of x such that 
pi W;: W; -4 Vj is a local homeomorphism. We can also assume that the W; are 
pairwise disjoint. By Lemma 5.4.15 there is an open neighborhood V of x such 
that V <;: VI n ... n Vn and p-l (V) <;: WI u··· u w". Let V; = W; n p-l(V). 
Then p -1 (V) = U V; and p I V; : V; -4 V is a homeomorphism. Therefore p is 

1 $j$n 

a covering map. o 

5.4.17. Example. The map z 1--+ tan z from IC into S2 \ {± i} is a meromorphic 
map. Let us show it is a covering map. We have 

1 1 - w 2 

tanz = ~ ---2' W = e-io • 
11 + w 

Since Z 1--+ eiz is a covering map of IC onto IC*, it is enough to show that 

w 1--+ ~ ~ : w
2 from IC* into S2\ {± i} is a covering map. For any ( E S2\ {± i} 

the equation 

I 1 - w2 

(= il+~-i 

has two roots: if ( = 00 they are ± i, if ( "# 00, they are the two solutions of 

w 2 = -( + i E IC*. 
(-i 

. 'd h 1 1 - w1
. 1 1 h h' b It IS eVI ent t at p : w 1--+ ~ ---2 IS a oca omeomorp Ism as one sees y 

11 + w 

computing the derivative p' (or G), near w = ± i). Finally, if K is a compact 

subset of S2\ {± n, there is an t: > 0 such that I( ± il 2 t: for any ( E K. This 
immediately implies that there are 0 < a < b such that a ~ Iwl ~ b if 

2 -( + i. d b P .. 5416 . w = ---. . Hence p 1S a proper map an , y roposltlOn .. , a covenng 
(-I 

map. 

EXERCISES 5.4 
1. Is the map C\ {O} ~ C\ {O, I}, given by z f-> e Z , a covering map? 

2. J s the map Z f-> eZ , from C \ 2rciZ into C \ {O, I}, a covering map? 

3. Let prl : C2 --> C, prdz, w) = z, and p = prdX, X:= {(z, w) E C2 : w2 - z = a}. Is 
p : X -> C a covering map? 

4. Consider XI = {(z, w) E C* xC: w2 - z = O}, prl : C* x C --> C* the projection 
onto the first coordinate, and PI = prliX I : Xl .... ' C*. Is PI a covering map? 

5. Let X = {(z, w) E C2 : zw ..... sin(zw) = O}, P = pr1lX (same notation as earlier). Is 
X -> C a covering map? 
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6. Let P E C[z] be a polynomial with complex coefficients of degree n. Its critical 
points are those Z E C such that P'(z) = 0, its critical values are the values 
that P takes at the critical points. Let V be the set of critical values of P, i.e., 
V = PHz E C: P'(z) = O}). Let 

X:= C\P-l(V), Y:= C\ V 

(a) Show that P: X -> Y is a covering map of multiplicity n. 
(b) Let a: X -> X be a continuous map such that po a = P. Show that a is holo

morphic in X and a is a proper map from X into X. Show now that a is the 
restriction to X of an affine map of the form z I--> }.z + Ii, l, Ii E C, and lq = 1 
for some integer q. 

7. Let p: C\ {I} -+ C\ {2} given by p(z) = Z2 - 2z + 3. Show that p is a covering 
map. Which is its multiplicity? Show there is only one nontrivial homeomorphism 
a:C\{1}->C\{l} such that poa=p. Show it has the form zl-+az+b. Find 
a and b. 

8. Let p: X -> Z be a covering map of multiplicity 2. For every x E X, denote by f(x) 
the other element of the fiber over p(x). Show that f: X -> X is a homeomorphism. 

9. In the vector space IR'\ let us denote the canonical basis by {l, i,j, k}. The space of 
quaternions n-lI is the vector space 1R4 as an IR-algebra, whose multiplication table 
satisfies 

j2 =/ = P = -1, i-j = -j'i = k, j'k = -k-j = i, k·i = -i'k =j 

and 1 is the identity. 
(a) Show that n-lI is a noncommutative field. 
(b) Let q = x + yi + zj + tk E n-lI, N(q) = (x 2 + y2 + Z2 + t 2 )112 be the Euclidean 

norm. Show N(qj . q2) = N(qdN(q2l. 
(c) Show that 83 = {q E n-lI : N(q) = I} is a compact group with the induced multi

plication. 
(d) Show that for q E s3, the map x E n-lIl-+ qxq-j E n-lI is a linear map of 1R4 given 

by a matrix in SO(3). 
(e) Show that the map m : S3 -+ SO(3) defined by m(q)(x) = qxq-l, is a two-sheeted 

covering map. 

§5. Riemann Surfaces 

5.5.1. Definitions. Let X be a topological manifold of dimension 2. 

(1) Two charts (VI' ({JI) and (Vz , ({Jz) are said to be holomorphically compatible 
if either VI n U2 = 0 or if not, the map 

({J2 0 ({Ji l : ({Jl(Ul n U2) -+ (P2(U1 n U2) 

is a biholomorphic map between the two open sets in C. 
(2) An atlas is a family U = {CU;, ({JJ }jeJ of charts, pairwise holomorphically 

compatible, such that U U; = X. 
jEJ 

(3) Two atlases are equivalent if every chart of one is compatible with every 
chart of the other, i.e., if their reunion is also an atlas. 
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Remarks 

(1) Ifq>: V --+ Vis a chart and VI isanopensubsetofV,thenq>IVl : VI --+ VI = 
q>(Vl ) is a new chart compatible with (V, q». 

(2) The notion of equivalence of atlases is in fact an equivalence relation. 

5.5.2. Definition. A structure of Riemann surface on a topological variety of 
dimension 2 is a choice of an equivalence class of atlases. 

5.5.3. Definition. Let X be a Riemann surface and Y ~ X an open subset. 
A function I: Y --+ C is said to be of class Ck (k E t\J u { 00 }) (respectively 
holomorphic) if for every chart (V, q», the function defined in the open subset 
q>(V n Y) of C given by 

10 q>-l : q>(V n Y) --+ C 

is Ck (respectively holomorphic) in the usual sense. 
The family of functions of class Ck in Y is denoted 8 k(Y) (if k = 00 we 

suppress the index) and the family of holomorphic functions is denoted .1l'( Y). 

5.5.4. Remarks 

(1) Thefamilies 8k( Y) and .1l'( Y) are C-algebras with the usual laws of addition 
and product. 

(2) Every chart (V, q» determines a function q> E .1l'(V). 
(3) If a E Y and I E .1l'( Y\ {a} ) is bounded in a neighborhood of a, then I has 

a unique extension to a function j E .1l'(Y). 
(4) Y has a natural structure of Riemann surface by taking charts 

(V n Y, q>1(V n Y» whenever (V, q» is a chart in X. 

5.5.5. Definitions 

(1) Let Xl' X2 be two Riemann surfaces. A continuous function I: Xl --+ X2 

is said to be holomorphic if, for every pair of charts (Vl,q>l) of Xl and 
(V2' q>2) of X 2, respectively, such that I(Vl ) ~ V2, the function 

q>2 0 I 0 q>1 1 : q>l (VI) --+ q>2(V2) 

is holomorphic. 
(2) A map I: Xl --+ X 2 is called biholomorphic, or a conformal map, if it is a 

homeomorphism such that both I and 1-1 are holomorphic. We also say 
that Xl and X2 are biholomorphic, or conformally equivalent. 

5.5.6. Remarks 

(1) If I: X --+ Y and g: Y --+ Z are holomorphic maps, then go I is also a 
holomorphic map. 

(2) If I: X --+ Y is a hoI om orphic map and V an open subset of Y, then the 
map 1* : .1l'(V) --+ .1l'U- l (V», g 1-+ go I, is an algebra homomorphism. 
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5.5.7. Examples. (1) C, or any nonempty open subset X s;; C, are Riemann 
surfaces. The atlas is (X, id). 

(2) The Riemann sphere S2: S2 = C u { oo} is a Riemann surface for the 
following atlas: VI = C, V2 = C* U { oo}, q>l = id, q>2(Z) = Z-1 for z E C* and 
q>2(OO) = O. The map q>z 0 !pi! : C* -+ C* is ZH> l/z. 

(3) Complex torus: Let Wi' W2 be two complex numbers, linearly indepen
dent over fR. Let r be the lattice r = ZWt EEl Zwz' Consider c;r with the 
quotient topology. It is a compact Hausdorff space. The canonical map 
C -+ c/r is open since the equivalence relation "modulo r" is open. Namely, 
if V is open in C, then 

n-l(n(V) = U (w + V), 
wer 

which is an open set. 
We can define in c/r a structure of Riemann surface as follows: Let V be 

an open subset of C which intersects each r -coset in at most one point. Then 
V = n(V) is an open set and nl V: V -+ V is a homeomorphism. The pair 
(V, (nl Vrl) is a chart. Any two such charts are holomorphicaHy compatible 
since 1/1 = q>2 0 (Pl- l has the property that I/I(z) - Z E r, hence Z H> I/I(z) - z is 
constant in each component of q>1 (VI n Vz) and, therefore, 1/1 is holomorphic. 
Let us also point out that n : C -+ c/r is a covering map. 

(4) The Riemann surface of the square root: Let VI = {z E C : 0 < arg z < 2n}, 
V2 = {z E C : - n < arg z < n}. In VI there is a determination of the "function 
square root," namely, 

11(z) = exp(Woglzl + iargz» 

and in Vz there is another determination 12 
12(z) = exp(tOoglzl + iargz» 

(0 < argz < 2n) 

(-n < argz < n). 

Evidently the sign chosen for 11 and 12 was a bit arbitrary. We are going to 
construct a two-sheeted covering space p: X -+ C* which will be a Riemann 
surface and, on this surface, we will have a holomorphic function j which 
takes at the two points of p-l(Z), z E C*, the two possible values of Jz. 

Let Y be the disjoint union 

Y = ({ 1} X VI X { -1,1}) U ({2} X V2 x { -1, 1}) 

considered as a subset of {t, 2} x C* x { - 1, I}. Let ffi = {id, a} be the group 
of permutations of { -1, I} (a(t) = - t for t E { - 1, 1}). Consider now the 
maps gil: VI -+ ffi, g12' g21: VI n V2 -+ ffi, g22: V2 -+ ffi, defined by gll(Z) = 
922(Z) = id,9u(z) = 921(Z) = idifImz > Oand912(Z) = 921(Z) = aifImz < O. 

Introduce the equivalence relation p in Y given by (i, z, s)p(j, (, s') if and 
only if Z = (, s' = gijZ)(S). The reader will be able to verify easily: 

(i) The relation p is open. 
(ii) If X = Y/ P denotes the quotient topological space and q : Y -+ X is the 

canonical projection, then q is an open map. 
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(iii) The map (i,z,e) ...... z passes to the quotient and induces a map 
P : g -+ C* surjective, open, which is a homeomorphism of each open set 
V;.a.£ = q({i} x Va X {ell onto Va' From this it follows that p is a covering 
map with multiplicity equal to two. 

Figure 5.3 in the following page illustrates the identification of Y by the 
number of crosses representing the corresponding points. The solid line rep
resents the "first sheet" and the dotted one the "second" one. 

(iv) If Pi,a,£ = pi V;,a.£, then any two charts are holomorphically compatible 
since l!;,a,£ 0 (hfJ,.j-1(Z) = z. _ 

(v) Therefore X is a Riemann surface and P : X -+ C* is holomorphic in the 
sense that for each Pi,a,., the function P 0 p~!.£ is holomorphic in an open subset 
ofe. 

On Y we have a function F defined by 

F(i, z, e) = e/;(z) 

This function is compatible with p since one can easily verify 

F(i, z, e) = F(j, z, gij(z)e). 

Hence we can define a holomorphic function j: g -+ C by letting 

j(q(i, z, e» = F(i, z, e). 

It can be seen that if 0'1 : V 1 -+ g, 0'2 : V2 -+ g are the two sections 

O'l(Z) = q(l,z, +1) 

0'2(Z) = q(2, z, -1) 

the j 00'1 (z) and j 0 0'2(Z) are the two values of Jz. 
One can "pluck the holes" 0 and 00 in g and obtain a compact Riemann 

surface, cf. §5.12. 
(5) The Riemann surface of the logarithm: As before, let V1 = {z e C : 

0< argz < 21t} and V2 = {z e C: -1t < argz < 1t}. In V 1 and V2 we have 
countably many determinations of the "function log" 

fl,k(z) = loglzl + iargz + 21tik 

f2,k(z) = loglzl + iargz + 21tik 

(0 < argz < 21t), k e 71., 

(-1t < argz< 1t), ke71.. 

We are going to construct a covering space g with countably many sheets, 
p: g -+ C*, which will be a Riemann surface, and we will also construct a 
hoi om orphic function j on g such that at the points of p- 1 (z), z e C*, it takes 
all the possible values of log z. 

As earlier, we leave the justification of all the assertions to the reader. 
Let Y be the disjoint union: 

Y=({l} x V 1 x 71.)0({2} X V2 x 71.), 

as a subspace of {l, 2} x C* x 71.. Let G> = G> z = the group of permutations 
(bijections) of the integers. Consider the maps gll : V1 -+ G>, g22: V2 -+ G>, 
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gl1(Z) = g22(Z) = idz, g12: U1 n U2 -+ m, 
gdz)(k) = k 

gdz)(k) = k + 1, 

ifImz > 0, 

ifImz < 0, 

and g21 (z) = (g12(z)fl. We introduce the equivalence relation p given by 
(i, z, k)p(j, z, 1) if and only if z = , and gij(z)(k) = 1. 

We introduce X = Y/ p, q, p as earlier, and verify without difficulty that the 
properties (i)-(v) of Example 5.5.7 (4) hold also in this case. 

The Figure 5.4 in the following page illustrates the identification of points 
in Y, the solid line lies in the sheet k. 

On Y we define a function F by 

F(i, z, k) = h,k(Z). 

It is compatible with p and induces a holomorphic function j: X -+ C by 

j(q(i, z, k)) = F(i, z, k). 

One verifies, using the sections CT1,k(Z) = q(1, z, k) and CT2,k(Z) = q(2, z, k), that 
the functions f 0 CTi,k take all the possible values of log z. 

(6) Remarks: One verifies that in the case of the square root the diagram 

X~C* 

\ !~" 
C* 

is commutative. 
Similarly, the diagram 

X~C* 

\ Ip 
C* 

commutes in the case of the logarithm. 

5.5.8. Proposition (Preservation of Identities). Let X and Y be two Riemann 
surfaces, fl' f2 : X -+ Y be two holomorphic maps that coincide on a set A £ X. 
Assume that A contains a point which is not isolated. If X is connected, then 

fl = f2' 

PROOF. The proof is the same as the proof for an open subset of C. 0 

5.5.9. Definition. Let Y be an open subset of a Riemann surface. A mero
morphic function in Y is a continuous map from Y into S2 such that if we 



§5. Riemann Surfaces 

+ 

""" 

+ 

""" 

/ 

/ 

I 

\ 

~ , 

- -.I-
I 

~ 
\ 
I 

: 
" 

/ 

521 

.--1 
I 

I 

""" I 

~: 



522 5. Analytic Continuation and Singularities 

denote P(f) = f-I(oo) then 

(I) In any component Yo of Y where f ¥= 00 we have that f is a holomorphic 
function in Yo \P(f). 

(2) ~ is holomorphic in y\Z(f), with Z(f) = f-l(O). The same remarks 

already made in §2.4.7 hold in this case. 

5.5.10. Proposition. A map f: Y ---'> S2 (Y open in a Riemann surface X) is a 
meromorphic function if and only iff is a holomorphic map between the Riemann 
surfaces Y and S2. 

PROOF. The proof is obvious. [J 

Remarks. If we denote ,it(Y) the family of meromorphic functions in Y, one 
can show that .A(Y) is a Il::>algebra and, if Y is connected, a field. 

5.5.11. Proposition. Let X be a Riemann surface, Y a Hausdor[f topological 
space, and p: Y ---'> X a local homeomorphism. There is a unique structure of 
Riemann surface on Y such that p becomes a holomorphic map. 

PROOF. We define an atlas on Y using the charts of the form (V, cp 0 (plY» for 
which there is a chart (U, cp) of X such that pi V: V ---'> U is a homeomorphism. 

The uniqueness follows from the remark that if u1 , a2 are two atlases in Y 
for which p is holomorphic, then id : (Y, a1 ) ---'> (Y, a2 ) is a local biholomorphic 
map, hence the two atlases are equivalent. [J 

To end this section, let us introduce the notation 21(X) for the space of COO 
functions of compact support in a Riemann surface X, and we mention that 
statements 1.3.2, 1.3.3, and 1.3.4 concerning COO partitions of the unity remain 
valid replacing an open set Q in IC by a Riemann surface X. 

EXERCISES 5.5 
1. Let (V1,qJ!), (V2 ,qJ2) be the two charts of S2 defined by 

(Pl(Z) = Z 

{

l , 
····lfO<izi<w 

qJz(z) = z 

o of z = w. 

Show that every holomorphic function I in VI n Vz can be written as I = II - I2' 
with jj E Jt"(~), j = 1, 2. 

2, Let 0 1 = O2 = B(O, 1t, 0 3 = C\ {O}, and 0 its topological sum, 0 = 0 1 0 Oz 003 , 

Identify points Z E 0 1 and WE 0 3 if Z2 = wZ, ( E H2 and WE 0 3 if (2 = w- z. Show 
that one obtains a quotient space which is a Riemann surface. 
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§6. The Sheaf of Germs of Holomorphic Functions 

Let a E C and consider the family of all pairs (U,f), where U is an open subset 
of C containing the point a, and f E £(U). We define an equivalence relation 
in this family by setting (U,f) '" (V, g) if and only ifthere is an open neighbor
hood W of a such that W sUn V and fl W = gl W The class of equivalence 
of (U, f) is denoted by L and called the germ of the holomorphic function f at 
the point a. We denote by (!)a the set of all germs of holomorphic functions 
at a. 

Clearly the same construction could have been done with C'X) functions 
instead of holomorphic functions. We denote $a the set of all germs of COO 
functions at the point a. 

Denote by L(a) the value at the point a of the germ L. It is defined by 
fa(a) = f(a), which is independent of the choice of representative f of the germ 
L. In the same way, we can define the value at a of the derivatives of fa' f}·)(a), 
n:::>: O. 

5.6.1. Proposition. The set (!)o has a natural structure of principal local ring, 
where the unique maximal ideal is Ma = {L E (!)a :L(a) = OJ. As a ring, it is 
isomorphic to the ring C {n of convergent power series in a single variable ,. 
The residue field (!)aIMa is isomorphic to C. 

PROOF. If Land ga have as representatives (U,f) and Cv, g), respectively, one 
defines fa + go and L' go as the classes of (U n V,f + g) and (U n V,f' g), 
respectively. If 2 E C, 2L is the class of (U, )/). We leave to the reader the 
verification that these operations are well defined in (!)a' It is also easy to see 
that (!)a is an integral domain. 

Let Ma be the set of noninvertible elements in (Qa. If L(a) # 0 then L is 
invertible in (!)a with inverse (l/f)a. Conversely, if L has an inverse go, then 
9a(a)fo(a) = 1 and it follows thatfa(a) # O. Therefore Ma = {fa E (!)a: fa(a) = O}. 

. 1 
Let j~ E (!)o' then the power series L - L(n) (a)(z - at has a positive radius 

.zon! 
of convergence, since it is the Taylor expansion of a representative f of Lin 
a disk of center a. The map assigning to L this power series is clearly a ring 
isomorphism between (!)o and C {(z - a)}, the ring of convergent power series 
in the variable (z - a). It now foHows that the only proper ideals in (!)a are the 
ideals M:, kEN '*. In fact, if I is a proper ideal in C { 0, let 

k = inf{V EN: 3s(0 = L a.e n E I with av # o}. 
n~O 

Clearly k:::>: 1, ifnot s will be invertible and 1= C{O. Similarly, k < 00, since 
I oj; {OJ. Let s E I be such that the infimum is attained at s, then 

s(O = ek(ak + aU1' + ... ) = ,ka(O. 
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Since ak -# 0, the series u is invertible in C {o. Hence I is the ideal generated 
by (k. In other words, the only proper ideals in {Da are M! and {Da is a local ring. 

The last assertion of the proposition is obvious. 0 

Consider now the set {D = U {Da' and introduce in it a topology as follows. 
ae C 

Let (V,f) be a representative of fa E (Da. Denote 

N(V,f) = {fz E {Dz : Z E V}, 

and let a set n £; (D be open if and only if it contains a subset of the form 
N(V,f) whenever fa E n. One verifies without difficulty that (D becomes a 
topological space, and the sets N(V,f) form a fundamental system of open 
neighborhoods of fa. 

In {D we have a natural continuous map p : (D -+ C, p(fa) = a. 

5.6.2. Definition. The space {D with the projection map p : {D -+ C is called the 
sheaf of germs of holomorphic functions on IC. 

Remark. One can define in the same way the sheaf Iff of germs of COO functions 
on C. In both cases ({D and Iff) one can also replace C by an arbitrary Riemann 
surface X; we denote by {Dx and Iffx the corresponding sheaves (we suppress 
the index when no confusion could arise). 

5.6.3. Proposition. The topological space {D is Hausdorff. 

PROOF. Let fa -# gb' If a -# b then one can choose representatives (V,f) and 
(V, g) such that V n V = 0. Hence N (V, f) n N (V, f) = 0. If a = b, then since 
fa -# ga we can find a disk B(a, p) and holomorphic functions f, 9 representing 
fa and ga, respectively, such that N(B(a, p),f) n N(B(a, p), g) = 0. If this last 
claim were not true, then there is a germ hz E N(B(a, p),f) n N(B(a, p), g). That 
is, hz = fz = gz, which means that f and 9 coincide in an open subset of B(a, p) 
and therefore, f = gin B(a, pl. Hence fa = ga' which is a contradiction. D 

Remark. It is easy to verify that Iff is not Hausdorff. It is also clear that the 
same proof shows that {Dx is Hausdorff for any Riemann surface X. 

5.6.4. Proposition. The map p : (Dx -+ X is a local homeomorphism. 

PROOF. If N(V,f) is a neighborhood of fa then p: N(V,f) -+ V is a homeo
morphism. It is clearly bijective. It is continuous and open because if V is an 
open neighborhood of Zo E V, then p(N(V,f)) = V and N(V,f) is an open 
neighborhood of h o' 0 

5.6.5. Corollary. {Dx is a Riemann surface and p : {Dx -+ X is a holomorphic map. 
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5.6.6. Definition. Let fa E (!}a and y: [0, 1] --+ X a continuous curve originating 
at y(O) = a. The analytic continuation of fa along y is the lifting y of y to (!}x such 
that y(O) = fa (if it exists). The germ y(t) is called the germ at the point y(t) 
obtained by the analytic continuation of fa along y. 

Due to the uniqueness of the lifting, it follows from this definition that if 
the analytic continuation of the germs of a holomorphic function exists along 
a curve, it is uniquely determined. But it could well occur, even for X = C, 
that the lifting does not exist: for instance if y : [0, 1] --+ C is the straight line 
segment y(t) = t, then y cannot be lifted to (!) having as origin the germ at 

z = 0 of the function _1_. 
1 - z 

In particular, p: (!}x --+ X is never a covering map. Nevertheless, we have 
the following. 

5.6.7. Theorem (Monodromy Theorem). Let X be a Riemann surface, Yo, Yl be 
two paths homotopic with fixed endpoints in X. Let a = Yo(O), b = yo(l), H be 
a homotopy between Yo, Yl' and Ys be the curves ys(t) = H(t, s). If fa E (!}a has an 
analytic continuation Ys along every curve Ys then yo(1) = Yl (1) in (!}b' 

PROOF. It is an immediate translation of §5.4.3 to this setting since (!}x is a 
Hausdorff space. 0 

5.6.8. Corollary. Let X be a simply connected Riemann surface, a E X, fa E (!}a 
a germ of a holomorphic function that admits analytic continuation along any 
path in X starting at a. There is then a unique holomorphic function f E Jf'(X) 
such that its germ at the point a coincides with fa. 

PROOF. For Z E X, let fz be the germ at z arising from fa by analytic continua
tion along a curve joining a to z. It does not depend on the curve due to the 
simple connectedness of X. Let f(z} = fz(z}; one sees that this defines a holo
morphic function in X such that its germ at the point a coincides with fa. 

o 
Remarks 

(1) In general, even if the analytic continuation is possible along every curve 
that starts at a and ends at b, the germ at b of the analytic continuations 
do not coincide (except, of course, if the curves are homotopic). 

(2) If y : [0, 1] --+ X is a curve in a Riemann surface, fa E (!}a (a = y(O», and we 
have a family of germs hIt) E (!}y(t) (0 ::; t ::; 1) such that fy(o) = fa and such 
that, also, for every T E [0,1] there is a neighborhood It of Tin [0,1], an 
open set Ut £; X, y(It} £; Ut and J E Jf'(Ut} such that the germ at y(t} of J 
coincides with fy(t) for every t E It' then f Y(l) is the analytic continuation of 
fa along y. Usually, the open sets Ut are coordinate patches centered at Y(T). 
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Let us assume that X and Yare two Riemann surfaces, (9x, (9y the 
corresponding sheaves of germs of hoi om orphic functions. Assume further 
that there is a local biholomorphism p: Y -+ X. Then, for every y E Y 
the pull back is an isomorphism p* : (9x,p(y) -+ (9y,y, p*f = fop, and we 
denote by p* : (9y,y -+ (9x,P(Y) its inverse. 

5.6.9. Definition. Assume X is a Riemann surface, a E X, and fa E (9a. A qua
druple (Y, p,j, b) is an analytic continuation of fa if: 
(1) Y is a connected Riemann surface and p : Y -+ X is a local biholomorphism, 
(2) j is a holomorphic function in Y, and 
(3) bEY is such that p(b) = a and p*cf,,) = fa. 

An analytic continuation (Y, p,j, b) is said to be maximal if it satisfies 
the following universal property: If (Z, q, g, c) is another analytic continua
tion of fa, then there is a holomorphic map F: Z -+ Y such that F(c) = b 
and F*(j) = j 0 F = g. 

c 

1\ 
Z --~-+ Y 

\1 
X 

Such maximal analytic continuation, if it exists, is unique up to biholo
morphic mappings; if (Y,p,j,b) and (Z,q,g,c) are maximal, then there are 
F: Z -+ Y, G: Y -+ Z such that f(c) = b, G(b) = c, j 0 F = g, and goG = f 
Hence FoG: Y -+ Y is such that po FoG = p and (F 0 G)(b) = b = idy(b). 
By the uniqueness of the liftings we have FoG = idy. Similarly Go F = idz 
and hence, F and G are biholomorphic mappings inverse to each other. 

5.6.10 Lemma. Let X be a Riemann surface, a E X,Ja E (Da, and (Y, p,j, b) be an 
analytic continuation of fa. If Y : [0, 1] -+ Y is a curve such that y(O) = band 
y(l) = y, then the germ p*C!y) E (9P(Y) is the analytic continuation of fa along 
IX = po y. 

PROOF. For t E [0,1], let f,.(t) = p*C!y(t») E (9,.(t). One has f,.(o) = fa and 
f"(l) = p*(jy). Let to E [0,1]. Since p is a local biholomorphic map, there are 
open neighborhoods V £ Y and U £ X of y(to) and lX(to), respectively, such 
that pi V: V -+ U is a biholomorphic map. Let q = (pi V)-l and g = q*(jl V) = 
(jl V) 0 q E £(U). Hence P*(~) = gp(C) for every' E V. On the other hand, 
there is a neighborhood Ito of to in [0,1] such that y(lto) £ V and lX(lto) £ U. 
For t E Ito we have 
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It follows from the preceding remarks that P.ci,) is the analytic continuation 
of fa along IX. D 

5.6.11. Theorem. Let X be a Riemann surface, a E X, and fa E (()a' There is 
a maximal analytic continuation (Y, P,j, b) of fa, where Y is the connected 
component of (()x containing fa and P: Y -+ X is the restriction to Y of the 
canonical map p: (()x -+ x. 
PROOF. Let Y be the connected component of (()x containing fa. First we 
remark that Y is an open subset of (()x. In fact, when U is a disk, the open sets 
N(U, g) in (()x are connected by arcs, hence (()x is locally connected (by arcs) 
and it follows that its connected components are open. Therefore, Y is a 
Riemann surface such that P: Y -+ X is a local biholomorphic map. 

Define now j as follows. Every' E Y is in fact a germ of a holomorphic 
function at the point p(O E X. Let j(O = C(p(O). It is easy to verify that j is 
holomorphic on Y and p.(~) = C for every' E Y. If we set b = fa we see that 
(Y,P,j,b) is an analytic continuation offa. 

Assume there is another analytic continuation of fa, (Z, q, g, c). Define 
F: Z -+ Y as follows: if C E Z and g(O = z, the germ q.(g,) E (()x,% is an analytic 
continuation of fa along a certain path joining a to z, and we know that Y is 
the set of all germs that can be obtained by analytic continuation of fa along 
curves. Therefore, there is a unique w E Y such that q.(g,) = w. Let F(O = w. 
One can verify that F is a hoi om orphic map from Z to Y, P 0 F = q, F(c) = b, 
and F*(j) = g. This concludes the proof of the theorem. D 

5.6.12. Proposition. Let X be a connected Riemann surface, a E X. Suppose that 
fa E (()a can be analytically continued along any path in X starting at a. Let 
(Y,p,j,b) be the maximal analytic continuation of fa. Then p: Y -+X is a 
covering map. 

PROOF. In fact, Y is a topological manifold of dimension 2, p: Y -+ X a local 
homeomorphism having the lifting property for curves. The proposition is 
then a corollary of 5.4.13. 

Y is sometimes called the Riemann surface of the germ fa. 
The concept of sheaf plays an important role in complex analysis, especially 

in the case of several variables. We recommend [Gu], [God], and [Bred] for 
further study. 

EXERCISES 5.6 
1. Let X be a connected Riemann surface, Zo E X, and I, g E (f)'a' which admit an 

analytic continuation along a path y starting at Zo and ending at z \. Let I y, gy E (f)'1 

be those analytic continuations. What can you say about the germs of ),f + Jlg 
(l, Jl E C) and Ig? 

2. Let X be an open subset of C, Zo E X, 1 E (f)'a' Assume 1 admits an analytic 
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continuation f~ along a path y in X which starts at Zo and ends at z I' f~ E {!)z,. Show 

that the germ 9 = : also admits an analytic continuation g~ along y and that 
df~. z 

g~= dzm{!)z,. 

*3. Let e E IR, Lo be the ray of direction e, i.e., Lo = {re iO : r > O}, and Ho be the 
half-plane "perpendicular" to Lo, i.e., Ho = {z E C: Re(zeiO ) < O}. Let 

h(z) = f exp (zt + (log ~)2) dt, 
L. 4m 

where logt = logltl + ie. 
(a) Show that h is holomorphic in Ho. 

(b) Show that if e < e' < e + ~ then h = fo' in Ho n Ho" In particular, if we let f 

denote the restriction of f-" to the disk B(1, 1), fez) = L a.(z - I)·, then f has 
.2:0 

an analytic continuation along any path in C* starting at z = l. 
Let y be the unit circle oB(O, 1) in the counterclockwise direction. 
(c) Show that f~ concides with f". 
(d) Show that for z E B(l, 1) (or even for Re z > 0) 

f ( logt)2) 
f~(z) = texp zt + --.- dt. 

L_. 4m 
Conclude that 

for z E B(I, 1) 

or 
f~(z) = L na.(z - 1)0-1 for Iz - 11 < 1. 

1I~1 

4. Let X = C\ {-I, I}, a = ° E X, fo the germ at z = ° of the determination of 
10g(1 - Z2) such that fo(O) = 0. Show that fo admits an analytic continuation along 
any path in X that starts at the origin. Let (Y,p,j,b) be a maximal analytic 
continuationof!o such thatp(b) = a = 0. Show that ifU = C\(] -00, -l]v[l, ooD 
then 

plp-I(U): p-I(U) -+ U 

is a trivial covering map. Find all the determinations of j over U. 

5. Same as Exercise 5.6.4 but for the following cases: 

(i)X=C\{-I,O,I}, a=~, fa(z)=(I-z2)11210gz, faG)= 

U = C\(] -00, -1] v [1, ooD; 
(ii) X = C\{O}, a = 1,Ja(z) = (1 + z2)z l l3,fa(1) = 1, U = C\]-oo,O[; 

(iii) X = C\ {2, 3}, a = 0, Ja(z) = «Z2 - 2)(Z2 - 3»112, Ja(O) = )6, 
U = C\( {2 - it: t ~ O} v {3 + it: t ~ O}); 

,j310g2 

2 

(iv) X = C\ {O, I}, a = -1, f.(z) = log(zl12 + (z - 1)112), Ja( -1) = (1 + j2)i, 

U = C\(]-oo,O] v [1, ooD; 

(v) X = C\ { -1,1}, a = 2, Ja(z) = (1 - Z2)112,f.(2) = ,j3i, U = C\[ -1,1]. 
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(vi) X = C\{1,2,3, ... ,2n}, a = 0, fa(z) 

fa(O) = (2n!)1/2, U = C\(Q [2j - 1, 2j]). 

«z - l)(z - 2) . .. (z - 2n))1/2, 

6. Let X = C\ {-ti: t ~ 2}, a = 1 - i,fa(z) = log(z + 2i). Find all the possible values 
at b = 1 + i of the analytic continuations of fa along paths in X joining a = 1 - i 

to b = 1 + i, assuming that fa(1 - i) = .Ji + i 1 ~1t. 

7. Same as in Exercise 5.6.6 in the following cases: 

(i) X = C\(] -00, -1] u [1, oo[),a = O,fa(z) = 10g(1 - Z2),fa(0) = 0, b = l:fii; 

(ii) X = C\([I,oo[u {-I + it:t ~ O}), a = 0, fa(z) = (1- Z2)1/2, fa(O) = -1, 
b = -5; 

(iii) X = C\([ - 5, -3] u [3,5]), a = 0, Ja(z) = ((Z2 - 9)(Z2 - 25))1/2, fa(O) = 15, 
b = i. 

8. Find the analytic continuation along the given paths in the following cases: 
(i) J(z) = ZI/S, J(I) = 1 (see Figure 5.5) 

o 

Figure 5.5 

(ii) J(z) = (1 + ZI/2) log z,f(l) = 41ti (see Figure 5.6) 

2 

Figure 5.6 
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(iii) fez) = «Z2 - 9)(Z2 - 25)1/2, f(O) = 15 (see Figure 5.7) 

-5 -4 -3 -2 -1 

Figure 5.7 

9. Let f" ... , f2. be entire functions and 

f(z):= L jj(z)log(z - j), 
1 '5.j-::; 2n 

considered as a germ in the neighborhood of a point a > 2n, with 

-11: < arg(z - j) < 11: 

determining the value of the logarithms. Find the analytic continuation F of f 
along the path y suggested by Figure 5.8. 

y 

2n - 1 2n a 

Figure 5.8 

10. Redo the work done in the text to define the sheaf (!! to construct a sheaf ./(, the 
sheaf of germs of meromorphic functions, where for a Riemann surface X, a E X, 
the set ./(. is obtained starting from pairs ofthe form (U,f), U open neighborhood 
of a, f E '/(U). 

1 L Let X, Y be two Riemann surfaces and 11: : X -+ Y an n-sheeted covering map. Let 
f be a meromorphic function in X, U be an open set in Y, biholomorphic to a disk 
and trivializing for 11:. Let 11:-1(U) = lj l-j, andfju = fo (nll-jr ' . 

I SjS. 

(i) Show that fju is meromorphic in U. 
(ii) Show that there exist n meromorphic functions in U, af, ... , a:!, such that for 

every WEe 

n (W - fjU) = w' + afw·- I + ... + a;:. 
1 ~j$n 

(iii) Let (U,)leA be an open covering of Y by sets biholomorphic to disks and 
trivializing for n. Show that for any k, I E A, j E {I, ... , n} 
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ajUkl Uk n U, = at'l Uk nU,. 

Conclude that there exist functions ai' ... , an E Jt(Y) such that 

ajlUk = aju. 

for any j, k. 

531 

12. Let fez) = f2 e-l/I~. Show it is holomorphic in C\[I, 2]. Find all the analytic 
1 t - z 

continuations of the germ of fat 0 along paths in C \ {I, 2}, joining 0 to z, z '# 1, 
z '# 2. 

13. Find the analytic continuation ofthe germ fez) = log log Jz,f(e2K ) = log 11: along 
the paths in Figure 5.9. 

Figure 5.9 

14. LeUp be an entirefunction,f(z) = ~ fl ql(t) ,z E C\[O, 1]. Let ')'be a closed path 
211:1Jo t - z 

in C\ {O, I}, starting at z E C\[O, 1]. Show the analytic continuation fy of f along 
')' exists and it is given by 

fy(z) = fez) + (Indy(l) - Indy(O))ql(Z). 

15. Let D be a simply connected domain in C and f E K(D) be such that feD) is a 
simply connected domain and f'(z) '# 0 for every ZED. It is often "proved" using 
the monodromy theorem that f is a biholomorphic map. The following is a simple 
counterexample. 

Let f(z):= f: e'2 ds, z E C. 

(a) Show that f'(z) '# 0 everywhere. 
(b) Show f is not injective. 
(c) f is an odd function. 
(d) f: C -+ C is surjective. (Hint: iff omits the value a, then it must also omit -a.) 

16. Let ql be a holomorphic function in a neighborhood of the closed half-plane 

Re z ;?: 0 such that for every e > 0, 0 < 0( :;:;; i there is R •. ~ such that 

I ql(z) I :;:;; eslzl, 

whenever Izi ;?: R •. ~ and IArgzl < 0(. 
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(a) Let B denote the universal covering space of B(O, 1)\ {O}. Show that the function 

1(0:= f' qJ(xW dx, 

'" = exp(x Log 0, is holomorphic in B(O, 1)\] -1, O[ and admits an analytic 
continuation to B. 

(b) Let t/I E ]-IX,IX[ and L", be the ray {z = pei"',p > O}. Set 

1",(0:= r qJ(zW dz. 
JL~ 

Show that I", is holomorphic in the set 

T", := g = re i9 : (log r) cos t/I - 0 sin t/I < 0, r > O}. 

Conclude that function I admits an analytic continuation to the universal 
covering space C ofC*, except for the points lying on the ray, 1 ~ r < 00,0 = O. 

(c) Describe T", and its boundary considered as a set in r > 0, 0 E IR, as well as its 
projections in C*. 

(d) Assume now that «I> is a holomorphic function in Re z ~ 0 which admits an 
analytic continuation to C and that there is A, 0 < A < 1t, such that for every 
IX > 0, Il > 0, there is R •.• satisfying 

if It/ll ~ IX, p > R •.•. Define 

h(t/I) := lim sup log 1«I>(pei"')I. 
p-oo p 

Show that the integral I, defined as in part (a) but with respect to «1>, admits an 
analytic continuation to C\u(h), where 

u(h)= n g=rei9:(Iogr)cost/l-Osint/l+h(t/I)~0,r>0}. 
"'e R 

Therefore, all the possible singular points of (the analytic continuation of) I 
project into the "interior" ofthe curve (logr)2 = A2 - 02• 

17. Let Uo E C\ {O, 1}, Yo, YI' Yoo be straight line segments that start at Uo and end, 
respectively, at 0, 1, 00 and do not intersect, except at Uo. By the angle between Yo 
and YI we mean the angular sector that does not contain YOO" Let us also fix three 
values a> -1, b> -1, A> -1, such that a + b + A < -1. If z E C\(YOUYI uYoo), 
let Y. be a path starting at Uo, otherwise disjoint from Yo U YI U Yoo and ending at 
z. We can choose a determination of the function 

for u in a neighborhood of Uo, continue it along Yo, YI' Yoo, Y. (except for the 
endpoints) and integrate this analytic continuation. This defines four functions of z 

Vo := f qJ(u)du, 
Yo 

VI := f qJ(u)du, 
y, 

Voo := f qJ(u)du, 
y. 

V% := f qJ(u)du. 
y, 
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(a) Show that the integrals defining Vo, ... , Vz are absolutely convergent. Why is 
Vz independent of the path Yz? Show the four functions are holomorphic 
functions of z in 1[:\ {Yo v Yl V Yoo). 

(b) Using the contour from the following figure show that 

(1 - e2niQ )vo + (e2nia _ e2xi(a+).»)vz 

+ (e2ni(aH) _ e2ni(a+bH»v 1 + (eZlti(a+b+A) - l)voo = O. 

(c) Show that if z approaches a point, in Yo \ {O} from inside the angle between 
Yo and Y 1, i.e., from the left, the values vo, ... , Voo admit a limit value which we 
denote by the symbols Vo, VI' V"" v,. If z approaches' from the right, i.e., from 
outside the angle, they also admit a limit which we denote v~, ... , v~. Show 
these limits satisfy the relations 

V~ - VI = 0, 

(1 - e2"··)(v~ - vo) + (eZ"i. - eZ".(aH»)(!,( - v,) = O. 

Note also that this observation allows us to define the analytic continuation 
of vo, ... , Vz when Yz is a path in 1[:\ {O, I}. 

(d) Consider the functions WI := Vz - Vo, Wz = Vz - VI' and the corresponding 
values wi, w~ from (e). Show that 

(e) Let v~, ... , v; the values when z lies on the left side ofYI' i.e., when z crosses 
from the inside to the outside of the angle between Yo and 'Y I' Show that 

v~ - Vo = 0, 

And giving w~, w~ the corresponding values, we have 

(f) Find the corresponding transformation law when z follows the following path 
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The above integrals are called hypergeometric (see [Pi], vol. 2, p. 257 ff. and 
vol. 3, p. 321 ff., [Hen]). The function Va) - VI admits a power series expansion 
of the form 

const. 1 + - z + ... + . z' + ... ( rxp rx(rx+I) ... (rx+n-l) P(P+I) ... (p+n-l) ) 

ly 1.2 ... n y(y+I) ... (y+n-l) 

when Izl < I, rx, P, yare parameters related to a, b, A by the expressions 

a = rx-y, b = y - P -I, A= -rx, y > P > O. 

Moreover, there is no restriction on rx for Va) - VI to be well defined. It is a 
solution of the hypergeometric differential equation, see Exercise 5.15.7 below. 

§7. Cocyc1es 

Let X, Y be two topological spaces, X connected, and p: Y ~ X a covering 
map such that every fiber has the same cardinality as a certain set F 
(which will be considered with the discrete topology). Let (Vi)ieI be a covering 
of X by trivializing open sets and, for every i E I, let qJi be a trivialization 
qJi: p-I(Vi) ~ Vi X F. 

If Vi n l1 is not empty we have, for (b, x) E (Vi n V) x F, 

(qJi 0 qJj-l)(b,x) = (b,gij(b)x), 

where 9ij is a locally constant map from Vi n ~ into the group SF of permuta
tions of F (also considered with its discrete topology). 

If Vi n ~ n Vk =F 0, we have 

since 

In particular, 

9ii(b) = idF for b E Vi 

gij(b} = 9ji(bW1, for b E Vi n TJ.J. 

We will set 9ij = idF if Vi n Vj = 0 for simplicity. 
Let (J : X ~ Y be a continuous section of p (i.e., a lifting of p, if it exists). 

Over the set Vi' the map Si := qJi 0 (J is a continuous section of the "trivial 
covering map," the projection onto the first coordinate, prl : Vi x F ~ Vi' This 
map has the form b 1-+ si(b) = (b, t"i(b}), where t"i: Vi ~ F is locally constant. 
Over the intersection Vi n ~ we have 

-I -I 
Sj = qJj 0 (J = qJj 0 qJi 0 qJi 0 (J = qJj 0 qJi 0 Si' 
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whence 

that is, 

(b e Ui ("\ u.;). 
Conversely, given maps T i : Ui -+ F which are locally constant and verify these 
last relations, we can construct a section (1 of p by (1(b) = fP;l(b, TI(b)) = 
fPi- 1 0 si(b), whenever b e Ui' 

Let us remark that since F and $F are given the discrete topology, the maps 
Ti and gij are continuous. Hence the section (1 thus defined is a continuous 
section. 

5.7.1. Definitions 

(1) Let X be a topological space, G a group (endowed with the discrete 
topology), e the identity element of G, and (Ui)ieI a covering of X. A cocycle 
for the covering (Ui)ieI with values in G is a family (gij)(i.j)eIxI such that, if 
Ui ("\ u.; "# 0, then gij is a locally constant map of Ui ("\ u.; into G and, 
if Ui ("\ u.; = 0, gij == e. We assume they verify the cocycle condition: 

gij(b)gjk(b)gki(b) = e, for every b e Ui ("\ u.; ("\ Uk' 

(2) We say that a cocycle (gij) for the covering (Ui)ieI of X with values in G is 
a trivial cocycle if there is a family of locally constant maps J; : UI -+ G such 
that, if Ui ("\ u.; "# 0, 

gij(b) = J;(b)fj(br1, for every b e Ui ("\ u.;. 
We have just seen that given a covering map with connected base space, 

we can associate to it a cocycle with values in the group of permutations 
of the fiber. Conversely, we have the following theorem. 

5.7.2. Theorem. Let X be a topological space, (Ui)ieI an open covering of X, F 
a set, and (gij) a cocycle for this covering with values in the group $F of 
permutations of F. There is a covering map p : X -+ X for which the gij are the 
elements of the cocycle found by the previous procedure. Two covering spaces 
having the same property are isomorphic. 

PROOF. Let Y be the topological sum of the Ui x F: 

Y= U ({i} X Ui x F) = {(i,b,~)eI x X x F:be Ui}, 
ieI 

where I and F are considered with the discrete topology. 
Let p be the equivalence relation in Y which identifies (i, b,~) to (j, c, '1) if 

b = c and ~ = gij(b)('1). If Ui ("\ u.; "# 0 we can define a map 
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hij: {j} x (Vi n V) x F --+ {i} X (Vi n V) x F 

( j, b,,,) 1-+ (i, b, %(,,». 

The maps hij are homeomorphisms, with inverse hji . Furthermore, the equiva
lence class of (j, b,,,) is given by {(i, b, gij("» : for every i E 1 such that b E V;}. 
It follows that the equivalence relation p is open; if w £; {j} x ~ x F we have 

saturated of w = sat(w) = U hij(w n ({ j} X (Vi n ~) x F)). 
i:U,nUj # 0 

Let X := Yj p with the quotient topology and q : Y --+ X the canonical pro
jection. Then q is an open map. The projection pr2 : 1 x X x F --+ X, (i, b, ~) 1-+ b, 
restricted to Y passes to the quotient and induces a continuous surjective map 
p: X --+ X, such that p 0 q = pr2 • 

This map p is also open. Namely, pr2 is open on Y because 

pr2({i} x V x {e}) = V, 

for every open subset of Vi' and p(Q) = pr2(q-I(Q)), for every open Q £; X. 
The map p is locally injective; since q is open, the sets q({i} x Vi x {e}) 

from an open covering of X. On such a set, p is necessarily injective. In fact, 
if p(q(i, b, m = q(p(i, b', m with b, b' E Vi' we have b = b' since p 0 q = pr2. 

Therefore we have shown that p is a surjective local homeomorphism.The 
maps (Ji,~: Vi --+ X defined, for i E 1, ~ E F fixed, by (Ji,~(b):= q(i, b, ~), are 
evidently ~ontinuous sections of p and (Ji,~(V;) = q( {i} X Vi x {e}) is an open 
subset of X. If ~ =F "we have that the open sets (Ji,~(Vi) and (Ji,,,(Vi) are disjoint. 
If not, let x E (Ji,~(V;) n (Ji,,,(V;) and b = p(x). Then q(i, b,~) = q(i, b,,,) and 
" = g;;(b)~ = ~. Finally, p-I(Vi) = U (Ji,~(Vi) = U q( {i} X Vi x {e}). Hence, 

~eF ~eF 

p is a covering map. 
Weseenowthatqi:=ql{i} x Vi x Fisahomeomorphismof{i} x Vi x F 

onto p-I(Vi) such that (p 0 qi)(i, b,~) = b. The map 

<Pi := q;l : p-I(Vi) --+ {i} x Vi x F ~ Vi X F 

is a trivialization of p over Vi' One can verify without difficulty that 

(<Pi 0 <pj-l )(b,~) = (b, giib)(~)). 

Finally, let PI : Xl --+ X be a covering map with trivializations <pf: Pl l (Vi )--+ 
Vi x F such that (<pi 0 (<pJ)-I)(b,~) = (b,giib)(~)). Then the continuous and 
open map (): Y --+ Xl equal to (<pf}-l on {i} x Vi x F, passes to the quotient 
and determines an isomorphism of covering spaces from X to X I' This 
concludes the proof of the theorem. 0 

5.7.3. Corollary. Let G be a group and (gij) a cocycle with values in G for a 
covering (Vi)ie I of a topological space X. Then there is a covering map p : X --+ X, 
which is unique up to isomorphism, such that the fibers are exactly G and the 
canonical cocycle associated can be identified to (gij)' Moreover, there is a group 
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monomorphism qJ : G -+ G(p) such that, via this monomorphism, G acts freely 
and transitively in every fiber. 

PROOF. We take F = G (hence SF == SG) in the preceding theorem. By the 
canonical injection i : G -+ SG' j(,)(,,) = ,,,, the given cocycle can be con
sidered taking values in SG. Therefore Theorem 5.7.2 is applicable to this case 
and we retain the notation from its proof. 

The group G acts on 1 x X x G by 

s . (i, b, ,) = (i, b, ,S-1), s E G. 

Under this action the set Y, defined in the proof of the previous theorem, 
is stable (s· Y ~ Y for every s E G) and this action is compatible with the 
equivalence relation p. If (i, b, ,)p(j, b,,,) we have, = gij(b)" and hence, 

[s· (i, b, ,)Jp[s· (j, b,,,)], 

since ,S-1 = gij(b)"S-1. It follows that we can let G act on X via 

s· q(i, b, ,) = q(i, b, ,S-1). 

The morphisms qJ(s) of X constructed this way are automorphisms of the 
covering map p : X -+ X. In fact, since p 0 q = pr2' we have 

p(s· q(i, b, ,» = p(q(i, b, ,S-1» = b. 

It is easy to see that the map qJ: G -+ G(p) defined by the preceding con
struction is a group monomorphism. 

Finally, let bo E X. We have p-1(bo) = q({i: bo E UJ x {bo} x G) ~ G. We 
want to check that the action of G is free and transitive on the fiber above boo 
Let 10 = {i: bo E UJ and choose io E 10. Let (X: 10 x {bo} x G -+ G be given 
by (X(i, bo, ,) = gioi(boK We have (X(i, bo, ,) = (X(j, bo, ,,)ifand only if q(i, bo, ,) = 
q(j, bo, ,,). Let z 1 = q(i, bo, ,) and Z2 = q(j, bo, ,,), with i, j E 10 • If there is an 
s E G such that s· Z1 = Z2' that is, s· Z1 = q(i, bo, ,S-1) = q(j, bo, ,,), we have 
,S-1 = gij(bo)", and it follows that s = ,,-1. gji(bo)· ,. Conversely, this s will 
definitely send z 1 into Z2. This shows that G acts freely and transitively on the 
fiber above boo 0 

It is clear that the definition of cocycles depends on the covering. On the 
other hand, if we have another covering (Vm)meM, such that each Vm ~ U, for 
some 1, we can define a cocycle element gmn on Vm n v" by restriction. In this 
way for instance, when X is a Riemann surface, we can assume that every U, 
is homeomorphic to a disk. An example of application of this type of condition 
on the covering appears in the following proposition. 

5.7.4. Proposition. Let X be a connected topological space that is locally con
nected by arcs. Let (Ui)ieI be an open covering of X by connected open sets, F 
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a set, and (gij) a cocycle for the covering with values in GF . Let X be the covering 

space constructed in Theorem 5.7.2. Keeping the notation of the proof of §5.7.2, 

a sufficient condition for the connectivity of X is the following: 

For every (i, b,~) and (j, c, 1]) in Y there is a finite sequence of indices 

i 1 , i 2 , ... , in, a sequence hI' ... , bn E X, and a sequence ~ 1, ... , ~n E F such that 

(1) i 1 = i, ~l =~, b1 = b; 
(2) in = j, ~n = Yf, hn = c; and 

(3) for 1 ::;; k::;; n + 1, bUl E Vi. n Vik+1 , gi"+I,ik(bk+l)(~k) = ~k+1' 

PROOF. Given z 1, Z 2 E X it is enough to find a continuous path y in X starting 

at Z1 and ending at Z2' Let b = P(Zl), c = p(zz), and i,j E I such that bE Vi> 

C E ~. Choose any ~, Yf E F such that q(i, b,~) = Z1' q(j, c, Yf) = Z2' and corre

sponding finite sequences Uk)' (~d, (bk ). For each k there is an arc Yk joining 

bk to bk+l in Vi since the Vi are arcwise connected. One can then define a 
"_ 

path y: [1, n] -> X by 

for k ::;; t ::;; k + 1. o 

As an application of the concept of co cycles we give the construction of the 

Riemann surface of a germ f E (0zo ' Zo E X, X connected Riemann surface, 

when f admits an analytic continuation along any path in X starting at Zo (cf. 

Proposition 5.6.12). 
Let X be a connected Riemann surface (V;)ieI a covering of X by simply 

connected open sets, Zo E Vio' and f E (!JZQ a germ of a holomorphic function 

which has an analytic continuation along any continuous path 'I starting at Zo. 

5.7.5. Lemma. Let i E I, Zi E Vi andy be a path starting at Zo and ending at Zi' 

There is a function fy E ,*,,(V;) which can be obtained as the analytic continuation 

off 1his function fy can be obtained by analytic continuation in Vi of the analytic 

continuation off along y. If we replace Zi andy by 'I' = 'Y'~, z; = endpoint of 

y', ~ a path in Vi starting at Zi, then the function h· E ,)f,(U;) thus obtained 

coincides with h. Moreover, fy depends only on the homotopy class of 'I in X. 

PROOF. By hypothesis, f has an analytic continuation along y. Let 9 be the 

germ of a hoI om orphic function at '1(1) obtained this way. By hypothesis g 

can also be analytically continued along any path of origin y(l), which is 

entirely contained in Vi' Hence by §5.6.8, there is a function fy E ,*,,(V;) whose 

germ at y(1) is exactly g. The other statements in the lemma are clear from the 

definition of gy. 0 

Recall that 'i&'(X, zo, Z,) is the set of an paths in X joining Zo to Zj E Vi' and 

11:1(X,zo,zd the set of their homotopy classes in X (under homotopies with 



§7. CocycIes 539 

fixed endpoints zo, Z;). For every path IX E CC(U;,Zi'Z;) the map [y] --+ [Y'IX] 
from lt 1(X,ZO,Zi) into lt 1(X,Zo,Z;) is a bijection. For this reason we denote by 
1t 1 (X, zo, Ui) one arbitrary choice among these sets. Introduce the equivalence 
relation Pi in lt1(X,zo, Ui) given by [y]pJy'] if and only if fy = f y' (with the 
notations of §5.7.5). Let Ei be the quotient set 1t 1 (X, Zo, Ui)/ Pi' denote its 
elements by [[y]] and h the function in Jf'(Ui) corresponding to [[y]]. We 
want to show that all the sets Ei are equipotent. 

Let P be a path in X joining Zi E Ui to Zj E ~. Every other path in X joining 
Zo to Zj is homotopic to a path of !!Ie form y . p, where y joins Zo to Zi; if c joins 
Zo to Zj' then c is homotopic to (cPW 

5.7.6. Lemma. The map Oij: [IX] Elt1 (X,ZO,Zi)I-+[IXP]Elt1 (X,ZO,Zj) is com
patible with the relations Pi and Pj and determines a bijection ({Jij : Ei --+ Ej which 
depends only on the homotopy class of p. The inverse bijection is defined in an 
analogous way using 71 instead of p. 

PROOF. It is enough to show that Oij is compatible with Pi and Pj' Now if 
[IX 1]p[IX2], it means that h, = h, E Jf'(U;). Hence h,p = h,p and we have 
[IX 1 P]plIX2 P], D 

In what follows let F be a set equipotent to all the Ei and identify any ({Jij 
with an element from (f)F' 

With the help of the ({Jij we would like now to construct a cocyc1e (gij) with 
values in (f)F' For i E 1, , E Ui' let lXi" be a path in Ui starting at Zi and ending 
at ,. 

Assume now that C E Ui n ~. We have a bijection gijm : F --+ F which is 
induced by the map [[y]] E Ejl-+ [[Y-IXj,,' IXi.a] E Ei. 

5.7.7. Lemma. The map gij: Ui n ~ --+ (f)F' given by ,1-+ gij(O is well defined, 
independent of the choices of IXi., and IXj", and locally constant. The family (gij) 
is a cocycle with values in (f)F for the covering (Ui)ieI of X. (As usual, we set 
gij = idF if Ui n ~ = 0.) 

PROOF. The main observation is that if V is a simply connected open subset 
of a component of Ui n~, then the paths IXj .,· IXi., for different 'E V are 
homotopic to each other. This implies that gij is constant in V. Similarly one 
can see that the cocyc1e condition gij(O' gjk(C)' gki(O = idF for, E Ui n ~ n Uk 
is satisfied because YIXi,,' IXk,,' IXk., . IXj ,,' IXj .,· IXi., and yare homotopic to each 
other in X. D 

Before proceeding with the construction we state two almost obvious 
observations. 
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5.7.8. Lemma 

1. It is possible to choose the covering (Vi)ieI so that the cocyc/e (gij) of §5.7.7 
satisfies the connectivity condition of Proposition 5.7.4. 

2. If two coverings (Vi)ieI, (VlheK' by open simply connected sets, are such that 
the corresponding cocyc/es (gij), (g~.l) satisfy the condition of §5.7.4, then 
the associated covering spaces are homeomorphic. 

PROOF. The covering of X by all the coordinate patches satisfies this condition. 
The second statement is an easy exercise for the reader. We note that the 
covering spaces are actually biholomorphic. D 

By §5.7.2 and Lemma 5.7.7 we conclude that there is a covering map 
p: X -+ X defined by the cocycle (gij), X is a Riemann surface, and p is a local 
biholomorphism. We want to show now the existence of a holomorphic 
function j: X -+ C which will give us the maximal analytic continuation of 
thegermf For (i,(,[[Y]])E {i} x Vi x Ei we set 

cp(i, " [[y]]) = fy(O. 

If (i, (, [[oc]]) and (j, (, [[fJ]]) are p-equivalent in Y = LJ {i} X Vi x Ei 
ieJ 

(with the notation of §5.7.2) that means that [[oc]] = gij«() [[fJ]] = 
[[fJ· ocM . OCi.~]]. It follows that the fun~ti~ns fa and f(J coinci~e in a neighbor
hood of ( and hence, the function f: X -+ C defined by f(q(i,(, [[y]])) = 
cp(i, " [[y J]) is actually holomorphic in X. 

Let V = q({io} X Vio x [[ezo]]) (ezo = constant loop at zO)l then 
PlY: V -+ V;o is a biholo~orp~ism, p(q(io,zo,[[ezo ]]» = Zo and p*(fzo) = f 
All of this assures that (X, p,f, q(io, zo, [[ezoJ]» is an analytic continuation 
off 

Finally, let us show this analytic continuation is maximal. We know that 
the manifold X is arcwise connected. Assume now that (Z, r, g, c) is another 
analytic continuation of f. Let us define f: Z -+ X as follows: if ( E Z and 
r(O = z, the germ r*(g~) E (!)x.~ is an analytic continuation_of f along a curve 
joining Zo to z (see §5.6.l0). Hence, there is a unique WE X, W = q(i,z, [[y]]) 
such that r*(g~) = (fy)z;. We set F(O = w. It is not hard to show that! is a 
hoi om orphic map such that p 0 F = r, F(c) = q(io, zo, [[ezo]]) and F*(f) = g. 

We have in this way shown that §5.6.12 can be obtained using cocycles. 

Remark. The reader will note that the constructions of the Riemann surfaces 
of the square root and of the logarithm given in §5.5.7 are particular cases 
of the preceding recipe, which allows us to construct more concretely the 
Riemann surfaces of multivalued functions. 

We recommend [JS] for more details on this subject and constructions that 
are akin to ours. 
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EXERCISES 5.7 
1. Let F = {O, 1,2} and UI , U2 be the open subsets ofC given by 

UI = {z E C: 0 < argz < 2n}, U2 = {z E C: -n < argz < n}. 

Let Y=({I} x UI x {0,1,2})0({2} X U2 x {0,1,2}), gl1:UI-.(fjF' gl1=idF, 

g22: U2 -+ (!)F, g22 = idF, 

and g21 = gli· 

jidF ifImz > 0 

gI2(zHO) = 1 
gdz) = 

gdzHl) = 2 ifImz < 0 

gI2(zH2) = 0 

Show that the construction from §5.7.7 of the Riemann surface of ZI/3 and the 
abstract construction of §5.4.7Iead to this same cocycle. In this way one obtains a 
Riemann surface X, p: X -+ C\ {O} a three-sheeted covering map, and a holo
morphic function F: X -+ C taking at the points p-I(Z) the three values of ZI/3. 

2. Repeat the construction of Exercise 5.7.1 for the Riemann surface of Zl/., n ~ 2. 

3. Let X k, X, denote the Riemann surfaces of Zl/k and Zl/I, Pk : X k -+ C* and P, : X, -+ C* 
the corresponding covering maps (k, lEN *). Show there is a biholomorphic map 
crkl : X k -+ X, such that P, 0 crkl = crk' (Hint: show first that the function Zl/k on Xl 
establishes a biholomorphism between Xk and C*.) 

4. Describe the Riemann surfaces of the functions J z(z - 1), J z(z - 1Hz - 2), etc. 
Construct a two-sheeted covering map p : X -+ C {O, I} and a holomorphic fUllction 
F: X -+ C whose values at the two points of p-I(Z) (z #- 0,1) are the two possible 

values of Jz(z - 1). Similarly, for Jz(z - 1Hz - 2), etc. 

5. Let 0 be an open subset ofC, OJ a closed I-form of class C l in O. For every U open, 
simply connected subset of 0 we let fU be a C2-function in U such that df = OJI U. 
Let (Ui)ieI be an open covering of 0 by simply connected sets. Construct a cocycle 
associated to this covering by gij(z) = fUj - fU;, with values in C (as an additive 
group). Use Corollary 5.7.3 to obtain a covering map p: X -+ O. 

What properties does this map have? What happens when 0 is simply connected? 
What if all the periods of OJ are zero? (Compare also with §1.7.) 

§8. Group Actions and Covering Spaces 

We will first develop a few elementary aspects of the theory of continuous 
group actions on topological spaces, among other things to permit a better 
understanding of the following property (.@), a property which will have 
important consequences for covering spaces. 

Let X be a topological space and G a topological group that acts con
tinuously (on the left) on X. One says that this action satisfies the property 
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(E?) if every x E X has a neighborhood U such that 

{g E G: gU n U oF 0} = {e} 

(that is, the sets gU are pairwise disjoints). 
One says the action of G on X is discrete when (E?) is satisfied. 

5.8.1. Proposition. Let X be a topological space and G a topological group 
acting continuously on the left on X. Let p: X --+ X/G be the canonical projection. 
If the condition (E?) is satisfied then p is a covering map. An analogous result 
holds for actions on the right. 

PROOF. The equivalence relation p defining X/G is, of course, xpx' if and 
only if there is 9 E G such that x' = g' x. It is an open relation since 
sat(Q) = U g' Q, and g' Q is open in X if Q is open in X. Therefore, the 

gEG 

canonical projection n is both continuous and open. 
We claim that p is also locally injective. Let x E X, let Ux be the open 

neighborhood of x whose existence is guaranteed by (E?). It follows that p must 
be injective on Ux ' If not, there are two distinct points Xl' X2 E U" and 9 E G 
such that X 2 = gx 1 • This clearly contradicts (E?). 

Let us show now that for every x E X, the open set V" = p(Ux ) trivial
izes p. It is clear that pi U,,: Ux --+ Vx is a homeomorphism. Clearly the same 
is true for pl(gUJ: gUx --+ v". Furthermore, it is absolutely obvious that 
p-l(VJ = lJ (gUx ). This concludes the proof of the proposition. 0 

gEG 

5.8.2. Corollary. Let G be a topological group and H a discrete subgroup of G. 
Then, the canonical projection n: G --+ G/H is a covering map. (Here G/H 
denotes the space of left cosets of H, {Hg: 9 E G}.) 

PROOF. The group H acts on Gin the obvious manner: (h,g)l-+hg(h E H,g E G). 
The equivalence relation p from §5.8.1 says glPg2 ifand only if glg2"l E H, i.e., 
g1 E Hg2. Hence, once we verify the property (E?), we will be done. Since H is 
discrete, there is a neighborhood V of e in G such that V n H = {e}. Since G 
is a topological group, there is another neighborhood U of e such that 
U' U-1 ~ V. If h E H, h oF e we see that hU n U = 0. One can see that this 
implies (E?). 0 

5.8.3. Proposition. Let G be a topological group acting continuously on a 
connected topological space X in such a way that (E?) holds. Then, the group 
G(p) of automorphisms of the covering map p: X --+ X/G is isomorphic to G. 

PROOF. Every 9 E G determines an automorphism ii by x 1-+ g' x. Conversely, 
if s E G(p) and x E X there is 9 E G such that s(x) = g' x. Hence s = ii, by the 
uniqueness of the liftings of p taking the value s(x) = g' x at x. D 
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Let now p: X - X be a covering map. The discrete group G(p) acts on 
the left on X. It acts on X and any fiber p-l(X) in a continuous fashion. 
Moreover, if X is connected, then G(p) acts freely. Namely, if s EGis such that 
sand idx coincide at a point x, then sand idx are two liftings of p which 
coincide at a point, hence s = idx. More generally we have the following 
theorem. 

5.8.4. Theorem. If p : X - X is a covering map, X is connected, and X is locally 
connected, then the group G(p) acts freely and (~) holds. 

PROOF. Let y E X and x = p(y). There is an open connected neighborhood of 
x trivializing p and a unique continuous section (1 of p over U such that 
(1(x) = y. Let V = (1(U). If s E G(p) is such that sV (") V =F 0, then the two 
sections s 0 (1 and s verify (s 0 (1)(U) (") (1(U) =F 0. Since U was trivializing, this 
implies s 0 (1 = (1. The free action proved before implies s = idx. 0 

5.8.5. Corollary. If p: X - X is a covering map, X connected, X locally 
connected, then the canonical projection q: X - X/G(p) is a covering map such 
that G(q) = G(p). 

5.8.6. Proposition. Let p : X - X be a covering map with X connected and X 
locally connected. Let n: X/G(p) - X induced by p. Then n is a covering map 
such that, for every x E X, n-1(x) is isomorphic to the homogeneous space 
p-l(X)/G(p). 

PROOF. The projection p passes to the quotient and induces n: X/G(p) - X 
such that n 0 q = p, where q: X - X/G(p) is a covering map by §5.8.5. 

X~X 

\/ 
X/G(p) 

Let x E X, V open connected neighborhood of x which trivializes p. Let 
(sz)zep-'(x) be the family of all sections of p over V. They verify: 

(a) sAx) = z and sz(V) open in X; 
(b) sz,(V) (") SZ2(V) =F 0 if and only if Zl = Z2; 

(c) p-l(V) = U sAY). 
zep-'(x) 

For every Z E p-l(X), q 0 Sz is a homeomorphism of V onto sAY). This set 
is open in n-1(V), since q 0 pz is injective and open on V. 

Let us choose now for every y E n-1(x) a point z(y) E q-l(y). This way 
we obtain a family of sections (1y = q 0 sz(y) (y E n-1 (x» of n above V, and 
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n-l(V) = U O"y(V). Hence n: XjG(p) -+ X is a covering map. It is also clear 
YEn-l(x) 

that n-1 (x) can be identified to p-l(X)jG(p). This shows the proposition is 
correct. 0 

To finish this section let us mention the following. 

5.8.7. Corollary. Let p: X -+ X be a covering map with X connected and X 
locally connected. The group G(p) acts transitively on every fiber p-l(X) if and 
only if it acts transitively on one fiber. 

§9. Galois Coverings 

5.9.1. Definition. A covering map p: X -+ X, where X is connected and X is 
locally connected, is called a Galois covering if its group of automorphisms 
G(p) acts transitively on each fiber p-l(X) (x EX). 

Under these conditions n: XjG(p) -+ X is a homeomorphism and the 
covering p: X -+ X is isomorphic to the covering q: X -+ XjG(p). 

Remarks 

(1) Every endomorphism of a Galois covering is an automorphism: let h be a 
morphism from the Galois covering, p: X -+ X into itself, and let z E X. 
There is agE G(p) such that h(z) = g. z = g(z). It follows that g = h. 

(2) The following coverings are Galois: 
(a) p: C* -+ C, p(z) = zk, k E N*, G(p) ~ 7Ljk7L, 
(b) p: C -+ C*, p(z) = exp(z), G(p) ~ 7L. 

The theorem that follows is one of the most important of the theory. The 
reader will recognize that our previous construction of the integral of closed 
differential forms along continuous paths is just a particular case of this 
theorem. It is just the fact that the interval [0, 1] is both locally connected and 
simply connected, hence it satisfies the requirements of Theorem 5.9.2. 

5.9.2. Theorem. Let X be a connected, locally connected space. The following 
conditions are equivalent: 

(a) Every covering map p : X -+ X is trivial. 
(b) Every connected covering of X is a homeomorphism. 
(c) Every Galois covering of X is a homeomorphism. 
(d) For every group G and every open covering (UJiEI of X, every cocycle with 

values in G for the covering (UJiEI is trivial. 

PROOF. (a) => (b). The connectedness of X, X and the existence of a global 
section of p : X -+ X implies the uniqueness of this section. It follows that p is 
a homeomorphism. 
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(b) ~ (c). By definition of Galois coverings, X is connected. 
(c) ~ (d). Let p: X -+ X be the covering map associated to the given cocycle. 

Let C be a connected component of X. We have the following lemma. 

5.9.3. Lemma. Let p : X -+ X be a covering map whose base X is connected and 
locally connected. Let C be a connected component of X. The map piC: C -+ X 
is a covering map. 

PROOF. Let x E X and V be a connected open neighborhood of x trivializing 
p. Let (SZ)ZEP-l(X) be the family of sections of p over V such that 
p-I(V) = U sAY). For every Z E p-I(X) we have either sAY) (") C = 0 

ZEp- 1(X) • 

or sAV)!:; c. Let J:= {z E p-I(X): sAV)!:; C}. Then (pi C)-I (V) = U sAY), 
ZEJ 

hence piC: C -+ X is a covering map. 0 

We come back to the proof of (c) ~ (d) by proving that the covering map 
pi C : C -+ X is Galois. In fact, G(pi C) acts transitively on each fiber since G(p) 
already had that property (by §5.7.4) and since, for s E G(p), s(C) (") C =1= 0 
implies s( C) = C. 

Therefore piC: C -+ X is a homeomorphism. Let 1" = (piCrI, then 1" is a 
global section of p. With the notations of §5.7.2, for every i E I let Ui,e be the 
section X 1-+ q(i, x, e) defined on Ui' On the intersection Ui (") ~ we have (cf. 
§5.7.4) 

ui,ix) = q(i, x, e) = qU, x, gji(x)e) = (gji(XWl • qU, x, e) = gij(x)' uj,ix), 

by definition of p and the action of G. In other words 

(x E Ui (") ~). 

For every i E I, ui,ix) and 1"(x) are two points in p-I(X) (x E U;). Since G 
acts transitively, there is a function h : Ui -+ G such that 

O"i,e(X) = h(x)1"(x) (x E U;). 

The function h is locally constant since the sections Ui,e and h(x)1"(x) 
coincide necessarily on a neighborhood of x. 

On Ui (") ~ we now have 

ui,e(x) = h(x)1"(x) = gij(x)O"j,ix) = gij(X).!j(x)1"(x). 

Since G acts freely, we obtain 

(x E Ui (") ~), 

hence the cocycle is trivial. 
(d) implies (a): The base X being connected allows us to construct a cocycle 

(gij) with values in ffiF , where F is the fiber of p : X -+ X such that the covering 
map considered is, up to isomorphism, the covering map associated to this 
cocycle. By (d) the cocycle is trivial. We could have assumed to start with that 
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the open sets of (Ui)ieI were connected. Let now /;: Ui ~ <»F be the constant 
functions such that gji = jj/;-1 on Ui n Uj . For every i E I and! E F let (1i,f be 
the section of p over Ui such that if ({Jj: p-1(Uj) ~ Uj x F is the trivialization 
over Uj then we have 

«({Jj 0 (1j,f )(x) = (x,f) = Sj,f(x). 

On Uj n ~ we have (use that the gjj are constant in this case) 

(1j,J(x) = «({Jj-1 0 Sj,f)(x) = «({Jj-1 0 ({Jj 0 ({Jj-1 0 Sj,f)(x) 

= ({Jj-1«X,gjj'f) = (1j,gJ"f(x). 

If when x E Uj we replace! by /;. f, then 

(1j,k f(x) = (1j,gj,k f(x) = (1j,fr f(x). 

We can set therefore 

when x E Ui> 

and so determine a family of global sections of p, «(1f)feF' such that 

(1) (1f(X) n (1iX) = 0 if ! =1= g. If not, there are i E I, x E Uj, such that 
(1j,kf(x) = (1j,f"g(x), which by definition means (x,k f) = (x,kg). There
fore! = g. 

(2) p-1(X) = U (1f(X), Namely, if Xo E Uj and Z E p-1(XO) there is! E F such 
feF 

that Z = (1j,fl' J<xo). If ((Jj(z) = (xo,fo) it is enough to take! = /;-1 . !o. 

These two conditions show that the covering map p was trivial. 
This concludes the proof of the theorem. Its applications will become clear 

in the next two sections. 0 

§10. The Exact Sequence of a Galois Covering 

Let us start with some elementary remarks about the lifting of homotopies. If 
p: X ~ X is a covering map, Xo E X, Zo E p-1(XO)' The map 

1t1 (p) : 1t1 (X, zo) ~ 1tl (X, xo), 

[a:] 1-+ [p 0 a:] 

is an injective group homomorphism. The verification that 1t1 (p) is a group 
homomorphism is elementary. On the other hand, ifn1(p)([a:]) = [&xo]' when 
we lift the two homotopic loops with base point X o, P 0 a:, and &xo' to 
paths with common origin Zo, we find by the uniqueness of the lifting that 
their liftings are a: and &zo' We know these two paths are homotopic, hence 
[a:] = [&zo]' thus showing the injectivity of 1tl (p). . _ 

It is also true that 1t 1 (p) is surjective ifand only if ~(X, Zo, .z) = 0 for every 
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Z E p-I (xo)\ {zo}. In fact, if 7l:1 (p) is surjective and }' E ~(X, zo, z), then p 0 y is 
a loop at xo, which admits a lifting to a loop IX with base point Zo (by 
the surjectivity of 7l: 1 (p». The uniqueness of the lifting implies that y = IX, 

hence Z = y(1) = y(O) = zoo Therefore, if Zo # z we will have ~(X,zo,z) = 0. 
Conversely, if ~(X,zo,z) = 0 for every Z E p-l(XO)\ {zo}, whenever we lift a 
loop Ct with base point Xo to a path y starting at Zo such that p 0 y = IX, we find 
that y(l) = zoo Hence 7l:1(P) is surjective. 

In particular, if X is arcwise connected, p-I(XO) reduces to a point once 
7l: 1 (p) is known to be surjective. If, for instance, X is simply connected then 
the surjectivity is true; hence p is a homeomorphism. More generally, the 
following proposition holds. 

5.10.1. Proposition. Let p: X -+ X be a covering map, x E X, Zl' Z2 E p-l(x).If 
Zl, Z2 can be connected by a continuous path in X, the groups 7l:1(P)(71:1(X,Zj» 
and 7l: j(P)(71:I(X,ZZ» are conjugate in nj(X, x). 

PROOF. Let y be a path in X joining ZI to Z2' Let c = p 0 y. Then [c] E 7l:l (X, x). 
The map 

[p 0 IX] 1-+ [crl [p 0 IX] [c] 

is the conjugation we use to prove the proposition. D 

This proposition admits a converse. If H is a subgroup of nj (X, x) which 
is conjugate to n1(p)(71:1(X,Zl» for some ZI E p-l(X), then there is Z2 E p-l(X) 
such that Zj and Z2 can be joined by a path in X and H = n 1(p)(n 1(X,z2»' 
Namely, if H = [Cr1n1(p)(n1(X,zd) [c], let}' be the lifting of c starting at Zl' 

If we set Z2 = y(l) we see that H = n 1(p)(n 1(X,zz». 

5.10.2. Proposition. Let p : X -+ X be a covering map, with X arcwise connected. 
Let x E X, Z E p-l(X), Yl, Y2 two loops with base x, and lXI' Ct 2 their liftings with 
origin z. In order that IXI and IX2 have the same endpoint, it is necessary and 
sufficient that [Yl][hT j E nj(p)(nl(X,z». 

PROOF. If IXI 0) = IX 2(1) then C(1 (X2 a loop with base z whose projection by p is 
YI1'2' This shows that [Yl] [Y2r1 E n 1 (p)(nl (X, z». 

Conversely, if [YI] [Yzr 1 E 11:1 (p)(nl (X, z», there is a loop C( with base point 
z which is a lifting of Y11'2' From the uniqueness of the lifting, it follows that 
a(1/2) = 0!1(1) = 0!2(1). D 

5.10.3. Proposition. Let p: X -+ X be a covering map, X arc wise connected. For 
every x E X and Zl' Z2 E p-l(X), there is a loop in x with base x whose lifting 
starts at z 1 and ends at z 2' 

In particular, theJlber p-l(X) has the same cardinal as the homogeneous space 
Tel (X, x)/n 1 (p) (11: 1 (X, z». 
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PROOF. It is enough to consider the loop ]I = p 0 rx in X, where Ot is a path in 
X joining Zj to Z2' and apply the preceding result. D 

It follows that under the preceding conditions, p : X -> X is an n-sheeted 
covering if and only if 1tl (P)(1tl (X, z)) has index n. 

In this order of ideas we have the following important theorem. 

5.10.4. Theorem. Let X be a connected topological space, locally arcwise con
nected and simply connected. Every covering of X is trivial. 

PROOF. Let p: X -> X be a covering map. Then X is locally arcwise connected 
and its connected components are then arcwise connected. These connected 
components are then covering spaces of multiplicity one of X by the preceding 
remark. D 

5.10.5. Corollary. Let X be a connected, locally arcwise connected and simply 
connected topological space. For every group G and every open covering of X, 
every cocycle with values in G for that covering must be trivial. 

Remarks 

(1) This last coronary gives a new justification of the theory of integration of 
closed one-forms along continuous paths. 

(2) Corollary 5.6.10 is also included in this coronary. 

We are now going to let the group 1tj(X,xo) act on the fiber p-l(XO) of a 
covering p : X -> X, Xo E X, in order to find an important relation between 
1t j (X,xo) and G(p). 

We have already seen that, given [rx] E 1t1 (X,XO) and Z E p-l(XO)' one can 
determine a unique point z' E p-l(XO) as follows: choose a representative loop 
rx of [Ot], lift it to a path ]I of origin z, and let z' = ]1(1). We write z' = z· [Ot], 
since it depends only on z and the homotopy class [Ot]. The following identities 
are evident: 

(1) z'[C:xJ = z; 
(2) (z·[Ot])·[f3] = z·([rx] [fI]). 

They express the fact that the group n 1 (X, xo) acts on the right on the fiber 
p-l(XO)' The trajectory of Z E p-l(XO) under this action of 1tl (X, xo) is precisely 
the trace in p-l(XO) of the arcwise connected component of X containing z. 

The stabilizer of z is 1tl (pHnl (X, z)). In fact, if [IX] stabilizes z and y is the 
lifting of rx such that ]1(0) = z, then ]1(1) = z· [Ot] = z implies that ]I is a loop. 
Hence [IX] E nl(p)(1tl(X,Z)). 

Let us assume now the X and X are connected, locally arcwise connected, 
and that p: X -> X is a Galois covering. For fixed Xo E X, Zo E p-l(XO)' one 
can construct a group homomorphism 
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p: n 1(X,xO) --+ G(p) 

as foHows: p([aJ)(zo) = zo' [al That is, p([aJ) is the unique element of G(p) 
that transforms Zo into Zo' [al 

5.10.6. Theorem. Let p: X --+ X be a Galois covering where X, X are connected 
and locally arc wise connected. The map p just introduced is a surjective group 
homomorphism whose kernel is n1 (p)(nl (X, zo». In other words, the sequence 

{[ezoJ} -----+ n 1(X,zo)· __ ·_":_'-<·1'!.....n 1(X,xo) ~ G(p) -----+ {idx} 

is exact. (It will be called the exact sequence of the Galois covering p: X --+ X.) 
It also follows that the group G(p) is isomorphic to n 1 (X, x O)/n1 (p)(n 1(X, zo»· 

PROOF. To show that p([aJ [PJ) = p([aJ) 0 p([PJ), it is enough to show that 
these two automorphisms take the same value at zo0 Now 

and 

(p([aJ) 0 p([PJ»(zo) = p([aJ)(p([pJ)(zo» = p([aJ)(zo' [PJ)· 

Therefore, we need to prove the following. 

5.10.7. Lemma. For every s E G(p), every P E n1(X,xo) and Zo E p-l(XO) we 
have 

s(Zo· [PJ) = s(zo)· [Pl 

PROOF. Let P be a representative loop of [PJ and y be its lifting starting at Zo 

and ending at Zo . [Pl Then soy is the lifting of P which starts at s(zo) and 
ends at s(zo·[PJ). By definition of the action ofn1 (X,xo), this endpoint is 
s(zo)· [Pl D 

Therefore p is a group homomorphism whose kernel is the stabilizer of Zo 

under the action of n 1 (X, xo), i.e., n 1 (p)(n 1 (X, zo». Finally the surjectivity of 
p foHows from the fact that X is arcwise connected. Namely, if z E p-l(XO) let 
y be a path in X starting at Zo and ending at z, then Zo· [aJ = z, with 
[a] = [p 0 y 1 To finish the proof of the theorem we need only to recall that 
we know already that 11: 1(p) is injective. 0 

5.10.8. Corollary. Let p: X --+ X be a covering map with X, X connected and 
locally arc wise connected. Assume further that X is simply connected. Then the 
covering is Galois and p is a group isomorphism identifying 11:1 (X, xo) to G(p). 

PROOF. Since X is simply connected, p is an isomorphism between 11:1 (X, xo) 
and G(p). This implies also that the covering is Galois, since if Zo, ZI E p-l(XO) 
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there is definitely an [a] E 71:1 (X, xo) such that Zl = Zo· [al Iff = p([Gt]) E G(p), 
thenf(zo)=zl· 0 

§11. Universal Covering Space 

5.11.1. Definition. Let X and Y be two connected topological spaces. A 
covering p : Y -+ X is said to be a universal covering space of X if it satisfies 
the following property: 

For every covering map q: Z -+ X with Z connected, and for every Yo E y, 
Zo E X such that p(Yo) = q(zo}, there is a unique lifting f of p with respect to 
q, f: Y -+ Z, q 0 f = p (i.e., a morphism of covering maps). 

Z 

//j. 
/ P 

Y ---------+ X 

A connected space has, up to isomorphism, at most one universal covering 
space. Note that we should really say universal covering map, but the accepted 
terminology is justified by the following proposition. 

5.11.2. Proposition. Let X, Y be two connected spaces, Y simply connected. 
Every covering map p: Y -+ X is a universal covering of X. 

PROOF. The lifting of p with respect to q is assured by the hypothesis. 0 

One can characterize the connected, locally arcwise connected spaces X 
which have a universal covering space. For us it suffices the following case. 

5.11.3. Theorem. Let X be a connected topological manifold. There is a 
topological manifold X connected and simply connected, and a covering map 
p : X -l> X. (Hence X is "the" universal covering space of x.) 

PR(X)F. It is enough to construct a covering map p : X -+ X, with X connected 
and simply connected. Let (U;)iEl be the open covering of X by all open sets 
which are connected and simply connected. For every i E J choose Zj E Ui. As 
observed in §5.7, for every continuous path Gt in Ui which joins Zi to z;, the 
map [I'] f---4 [YIX] is a bijection of 71:1 (X, ZO, zJ onto 71:1 (X, ZO, z;). For this reason 
we will simply denote Ei one of these sets. We are going to show that all 
the sets Ej are equipotent. Let I' be a path joining Zj to Zj' Every path c joining 
Zo to Zj is homotopic in X to a path of the form IXI', where IX is a continuous 
path joining Zo to Zj, namely, cyy. The following lemma is clear. 
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5.11.4. Lemma. The map ({Jji which associates to [ex] E n 1 (X, zo, zJ the class 
[exy] E n 1 (X, zo, Zj) is a bijection ({Jji: Ei -+ Ej , which depends only on the homo
topy class of y. Its inverse is defined analogously using y instead of y. 

In what foHows we denote F a set of the same cardinal as all the E; and 
identify ({Jji to an element of (fjF' Using the method of §5.7.7 we will construct 
a cocycle with values in (fjF for the covering (VJid' For every i E I and ( E Vi 
choose a path C1.i.~ joining Zi to ( in V;, and for ( E Vi n ~ consider the bijection 
gij(O: F -+ F which arises, modulo the preceding identifications, from the map 
[y] E Ej~ [yexj.,IXi.,] E E i . We have the following statement analogous to 5.7.7. 

5.n.5. Lemma. The map gij: Vi n ~ -+ (fjF is well defined, independent of the 
choice of IXi ., and IXj." and locally constant. The collection (gij) is a cocycle with 
values in (fjF for the covering (V;)iEI of X. (As always, gij = idF if Vi n ~ "# 0,) 

As a consequence of this lemma we can apply §5.7.2 and obtain a covering 
map p: X -+ X defined by the cocycIe (gi)' Keeping the notation of§5.7.2, we 
will show now that X is simply connected. Let us verify first that X is arcwise 
connected; it is done by the same construction as in §5.7.4. If q(i, (, [y]) is given 
with y(l) = (, then there is a partition 0 = to < tl < ... < tn = 1 of [0,1] and 
open sets Vio' ... , Vi. of the covering such that y([tk- 1,tk]) s; V ik • The curve 
y: [0, 1] -+ X defined by y(t) = q(ik , yet), [YtJ) if t E [tk - 1 , t k [ for k < nand 
t E [tn-I' tnJ if k = n, where y,(s) = y(ts) (0 :5: s :5: 1), is a lifting of y with origin 
q(io,zo,[ez J) and endpoint q(i,(,[yJ), as desired. Let now IX be a loop in _ 0 

X with basepoint q(io,zo. [ezoJ). Then y = po ex is a loop in X with base 
point Zoo The previous lifting y of y with origin q(io,zo. [Bzo]) and endpoint 
q(io,zo,[Y]) is, by the uniqueness of the liftings, equal to IX. Therefore 
)1(1) = q(io,zo,[yJ) = q(io,zo,[ezJ)· It foHows that [yJ = [BzoJ, and, by the 
liftings of homotopies, [IXJ = [eq(io.zo.ltzo])]. This shows that X is simply 
connected. 0 

5.11.6. Examples 

(1) exp: C -+ C* is the universal covering space ofC*. For n E Z let!n: C -+ C 
be the translation by 2nin. Then exp(!n(z» = exp(z) and, hence,!n E G(exp). 
If (J E G(exp), then exp«(J(O» = exp(O) = 1 and therefore there is n E Z such 
that (J(O) = !n(O). It follows that (J =!n and G(exp) ~ Z = n1(C*). 

(2) If H = {z E C: Rez < O} andD* = {z E C: 0 < Izl < I}, thenexp: H -+ D* 
is the universal covering space as earlier, and one has n 1 (D*) ~ Z. 

5.11.7. Theorem. Let X, Y be two connected topological manifolds, q: Y -+ X 
a covering map, and p : X -+ X the universal covering of X. Let f: X -+ Y be a 
lifting of p. Then f is a covering map and there is a subgroup G of G(p) such 
that (up to homeomorphism) Y = X/G. Moreover, G is isomorphic to nl(Y)' 
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PROOF. We know that G(p) acts freely and condition (01) is satisfied (by §5.8.4). 
Therefore, if G is a subgroup of G(p), X is a covering space of X/G since G 
also acts freely and (01) holds for G (§5.8.1). Hence, to prove the theorem is 
sufficient to show that f: X -. Y can be identified to the canonical map 
X -. X/G for a convenient subgroup G of G(p). By §5.8.3 it will also follow 
that G ~ 11:1 (Y). 

We first observe that if (J E G(p) then f 0 (J is also a lifting of p. Consider 
G = {(J E G(p) : f 0 (J = f}, the group of isotropy of f. If z E X, (J E G, and 
z' = O'(z) then it is obvious that f(z) = f(z'). Conversely, let z, z' E X in the 
same fiber p-l(X), x E X, be such thatf(z) = f(z'). Since G(p)is transitive, there 
is 0' E G(p) such that O'(z) = Zl. It follows f 0 0' = j~ since the two liftings of p 

coincide in z. To conclude the proof we need to show that f is open and its 
image is closed. This will imply that f is surjective and Y is homeomorphic 
to X/G. First, f is open. Namely, if W is a connected open set on which p is 
injective and peW) is trivializing for q, then on W we have that f is injective, 
since p = q 0 f. Furthermore, f(W) is a connected subset of q-l(p(W)), but 
f(W) intersects every fiber of q above p(W). Hence f(W) must be a connected 
component of the open set q-l(p(W»). It follows thatf(W) is open in }~ Second, 
let us show that f(X) is closed in Y. If y E f(X) and x = q(y), choose a 
connected open neighborhood of x trivializing q. There is a unique component 
VI of q-l (V) that contains y. Let V ~ V be a connected open neighborhood 
of x which trivializes p and such that f( V) ~ q-l (V). Every component of 
p-l(V) has its image under f contained in a component of q-l(V). Therefore 
VI contains the image of a component VI of p-l (V). Since there is z 1 E VI such 
that p(zd = x we have f(zd E f(X) nUl and q(f(Zl)) = x. This implies that 
f(zd = y since already q(y) = x and ql U1 is injective. This proves entirely the 
theorem. 0 

If one analyzes the proof of the existence of a universal covering space for 
a topological variety and the one of the existence of a maximal analytic 
continuation for a genus admitting analytic continuation along every curve, 
both obtained as applications of the notion of cocycle, one realizes that the 
manifold Y for which the maximal analytic continuation exists is a quotient 
of the universal covering space X of the manifold X on which the germ f was 
defined at Xo E X. In fact, one should consider the subgroup H of ttl (X, xo ) of 
those loops [ex] such that the analytic continuation of f along ex coincides with 
the original germ f. Then Y ~ X/H. More precisely we have the following 
proposition. 

5.11.S. Proposition. Let X be a connected Riemann surface, p : X -. X a uni
versal covering space of X, Zo E X, and f E (Dx,zQ a germ of a holomorphic 
function admitting analytic continuation along any curve in X which starts at 
zoo Let as in §5.6, p* : (l)x,ZQ -. (l)x,ZQ be the inverse of the map p* : (l)x,zo -. (£X.ZQ 

given by P*(¢;zo) = (¢; :: p)(,o' Then, there is a holc:morphic function f on 
X and a point (0 E X such that p«(o) = Zo, p*(!r,o) = .I~o and, moreover, 
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there is a maximal analytic continuation (X*, s,f*, ~o) of fzo with S(~o) = Zo 
and 

j = f* 0 r, 

where r: X --+> X* is the lifting of p such that r(~o) = (0' 

PROOF. We use the notation from the construction of X in §5.11.3. We see 
that for every path y joining Zo to Zi E Ui there is fy E £(U;), obtained as in 
§5.7.5 by analytic continuation along y. The function t/J defined on 
¥:= U {i} x Ui x E;(where Ei is the set n 1(X,zo,z,), ZiE Ui)by 

iE I 

t/J(i, (, [y]) := fy(O 

induces a holomorphic function j:X --+> C given by 

j(q(i, (, [y])) := t/J(i, (, [y]) = f y«(), 

with ij: ¥ --+> X as in §5.7.2. 
In the same way, if we recapitulate the construction in §§5.7.5, 5.7.6, 5.7.7 

and 5.7.8 of X*, there is a function ¢ defined on y* := U {i} x Vi x Ei where 
iEI 

here Ei is Ei modulo the equivalence relation Pi' [y]p,[y'] ifand only iffy = f r·), 
¢ defined by 

¢(i, (, [[y]]):= fy(O 

([[y]] the class of [y] modulo p;). It induces a holomorphic function f* on 
X* by 

f*(q*(i, (, [[y]]»:= ¢(i, (, Cry]]) = fy(O, 

with q* : y* --+> X* as in §5.7.2. 
It is now immediate that ifr is a lifting of p and we choose ~o E r-1«(0), then 

1*0r=1 0 

The Riemann mapping theorem characterized B(O, 1) as the "only" simply 
connected plane domain. A generalization of it is the characterization of the 
universal covering spaces of every Riemann surface. This is the content of the 
following theorem, usually called the uniformization theorem. The reader will 
find a proof using many of the concepts developed in this book in [Fo]. A 
rather different proof appears in [Car]. 

5.11.9. Uniformization Theorem. The universal covering space X of a connected 
Riemann surface X is biholomorphic to one of the three surfaces S2, C or B(O, 1). 

5.11.10. Definition. The connected Riemann surface X is said to be elliptic, 
parabolic, or hyperbolic, if X is biholomorphic to S2, C, or B(O, 1), respectively. 

5.11.11. Proposition. An elliptic Riemann surface is biholomorphic to S2. A 
parabolic Riemann surface is biholomorphic to one and only one of the three 
surfaces C, C\ {OJ or a complex torus c/r (see §5.5.7). 
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PROOF. If X is elliptic then p : S2 ~ X is a covering map and X is biholomorphic 
to S2/G(p), G(p) a subgroup of the group Aut(S2). All the automorphisms 
of S2 are of the form 

az + b 
ZI-+-

cz + d' 

Such a map has necessarily one fixed point. On the other hand, two elements 
of G(p) that coincide at one point coincide everywhere, hence G(p) = {ids2} 
and X ~ S2. 

If X is parabolic then it is conformally equivalent to CjG(p), G(p) a 
subgroup of Aut(C). Hence, we need to find out all the discrete subgroups of 
Aut(C) that do not have fixed points. Since any automorphism of C has the 
form 

zl-+az + b, aEC*, 

the only way it would not have a fixed point is that a = 1. The discreteness 
condition implies that G(p) can only be one of two types: 

(i) there is W E C* such that G(p) = {ZI-+Z + nw: n E Z}; 
(ii) there are Wi' W2 E C*, WdW2 ¢ IR such that 

G(p) = {ZI-+Z + mW 1 + nw2 : m,n E Z.} 

In the second case X ~ c/r, r = Wi Z EB W2Z. In the first case, 

p(z) = exp (~Z) is a concrete realization of the covering map p : C -+ C* 
2m 

with group G(p) isomorphic to wZ. So X is conformal to C* in the first case. 
D 

Note that the four cases that appear in the last proposition, S2, C, C*, and 
c/r are topologically different. For instance, S2 and Cjr are both compact, 
but one is simply connected (1tl(S2) = 0) and the other is not. The first 
corollary of this observation is the following. 

5.11.12. Corollary (Little Picard Theorem). Let f E Jt"(C). Then, either f is 
constant or C\f(C) contains at most one point. 

PROOF. Let a, bE C\f(C), a"# b. The Riemann surface X = C\{a,b} is not 
homeomorphic to either C or C*, since 1tl (X) "# {a}, Z, and it is clearly not 
compact. Therefore X = B(O, 1). Let p: B(O, 1) ~ X be the covering map. 
Since f: C -+ X and C is simply connected, there is a holomorphic lifting 
g: C -+ B(O, 1), f = po g. By Liouville's theorem, g is constant, a fortiori, f is 
also constant. D 

Compact connected Riemann surfaces are topologically characterized by 
their genus g, the number of "handles" one has to add to S2 to obtain (up to 
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homeomorphism) X. Then g = 0 for S2, g = 1 for a complex torus. Another 
immediate consequence of§5.11.11 is that a compact Riemann surface X with 
genus g ~ 2 is hyperbolic. In fact, one can also prove that if genus g :::;; 1, then 
X is not hyperbolic (see [Fo]). For instance, if X is compact connected and 
g = 0 then X is conformal to S2. 

For noncompact Riemann surfaces the classification is harder to accom
plish. Even for a seemingly simple example like the Riemann surface defined 
by the equation 

takes considerable effort to show it is parabolic [De]. Good references on this 
subject are [AS] and [Nev]. 

EXERCISES 5.11 
1. Show that two covering maps of X = B(O, R)\ {O} (0 < R ~ (0) having the same 

multiplicity are necessarily isomorphic. Is X = B(O, R)\ {O} essential for the 
correctness of this result? 

2. In 1R3 consider the segments AIBI , A 2 B2 , A3B3 such that 

Al = (0, -1,1) 

A2 = (0,2, 1) 

A3 = (1,2,0) 

BI = (0,2,1) 

B2 = (1,2,0) 

B3 = (1,0,0) 

Let Z be the union of those segments and the set {(x, sin~, 0) : 0 < x < 1t} 
and Z. = Z + (0,0, n), n E Z. Let p: 1R3 -+ 1R2 be the projection (x, y, z) 1-+ (x, y), 
X = p(Z), and Y = U Z •. Show that X is arcwise connected, Y is a connected 

.e Z 
covering space of X whose connected components by arcs are the sets Z., but no 
Z. is a covering space for X (with the map pIZ.). Show further that Y is not 
trivializable, even though X is simply connected (compare with §5.9.2 and §5.1O.4). 

3. Is the cocycle associated to the covering map 1[;* -+ 1[;*, Z 1-+ Z2 and the covering 
UI , ••• , U4 of 1[;* given by 

trivial? 

UI = {z E 1[;: Rez > O}, 

U3 = {z E 1[;: Imz > O}, 

U2 = {z E 1[;: Rez < O}, 

U4 = {z E 1[;: Imz < O} 

Same question for the covering map z 1-+ z· and an open covering of 1[;* defined 
similarly. 

4. Show that the two-sheeted covering map m: S3 -+ SO(3) constructed in Exercise 
5.4.9 is a Galois covering. Determine the group G(m). 

5. Are the covering maps associated to the functions Zl/. in 1[;* Galois coverings? 
(See Exercises 5.7.1 and 5.7.2.) Same question for Jz(z - 1). Determine the group 
of automorphisms of those coverings. 
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6. Let X be a Riemann surface and ~(X) the space of complex-valued continuous 
functions in X. 
(i) Let I E ~(X) be such that I(x) "#- 0 for every x E X. 

(a) Show there is an open covering (U;)iel of X and continuous functions 
gi: Ui -> C such that hi Ui = eg,. 

(b) Show that the functions hk I defined by hk I = ~(gl - gk) in UI n Uk "#- 0 , , 2m 

and hk,l = 0 if UI n Uk = 0, determine a cocycle of the open covering 
(U;)iel with values in C. 

(c) For every i E /, let g; be another continuous function in Ui such that 
II Ui = eg;, (hi.,/kl the corresponding cocycle. What can you say about the 
cocycle (hk,1 - hi.,/k/? 

(d) What does it mean that the cocycle (hk,/kl is trivial? What can you say 
about (hk,/)k,1 if X is simply connected? 

(ii) Assume that X is compact and let au = (U1 , ••• , UN) be a finite open covering 
of X, (lXi)l :5i:5N a Coo partition of unity subordinate to the covering au 
(i.e., SUPP(lXi) S; Ui' ~ lXi = 1). Let (hk,/)l :5k./:5N be any cocycle for the covering 

au with values in 71.. For each k, 1 ::::;; k ::::;; N, let 
N 

gk = 27ti I IXlhl.k in Uk' 
i=1 

(a) Show that gk is continuous in Uk' 
1 . 

(b) Show that ~(gl - gd = hk I In Uk nUl' 
2m ' 

(c) Show that there is I E ~(X), never zero, whose associated cocycle (i.e., the 
one constructed in (i)) is the given cocycle (hk,/k/' 

7. Let r1 = WI 71. EB W271., r2 = 1X171. EB 1X271. be two lattices of rank two in C (i.e., 
{W 1,W2 } and {1X1,1X2} are two IR-basis of q. Assume there is a complex number 
, "#- 0 such that ,WI' 'W 2 E r 2 . 

(i) Show that the function I: C -> C,/(z) = 1:Z induces a covering map P : c/r1 -> 

c/r2 such that G(p) isomorphic to the group r 2 /1:r1 . 

(ii) Find all the holomorphic maps 9 : c/r1 -+ c/r2 which map 0 into O. 
(iii) Find all the biholomorphic maps of c/r1 into itself. 

8. Let p : Y -+ X be a Galois covering, with both X and Y connected and locally 
arcwise connected. Assume 7t1 (X) is generated by N loops 1'1, ... , I'N' For Xo E X, 
Y E p-I(XO) let y' [yJ represent the endpoint of the lifting of I'j which starts at y. 
Show that knowing the N transformations p-l (xo) -> p-I (xo) given by y 1--+ Y" [Yj] 
completely determines the group homomorphism p: 7tl(X,XO) -+ G(p) (see §5.10.6 
for the notation). 

As an application, find G(p) for the coverings of C\ {OJ associated to Zl!n and 

of C \ {O, I} associated to J z(z - 1). 

9. Let X, B be two connected locally connected spaces, p: X -+ B a covering map, A 
a topological space, I: A -+ B a continuous map. Let 

Y:= {(a, x) E A x X :/(a) = p(x)}, 

assumed to be "#- 0 and with the topology induced by A x X. Let PA: Y -+ A be 
the map PA(a,x) = a. 
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(i) If U is a connected open neighborhood of b = J(z) which trivializes p, show 
that V = rl(U) is an open set trivializing PA- (Hint: if 9'(U) is the set of 
sections s of P over U consider the set Y't (V) of maps 

u(s) : ex E V -> (ex, s(f(ex))) 

and show that 
(a) u(s)(V) is an open subset of PAl (V); 
(b) If Sl # S2, then Sl (U) n S2(U) = 0 and U(Sl)(V) n U(S2)(V) = 0; 
(c) PAl (V) = U u(s)(V). 

se 9'(U) 

Conclude that (i) is correct. 
(ii) ShowthatPA: Y -> A is a covering map (called inverse image oJp : X -> Bby f). 

(iii) Show that there is a unique morphism H of covering maps, H: Y -> X, such 
that if q : D -> A is any covering map and r : D -> X is a continuous map that 
satisfies P 0 r = J 0 q, then there is a unique continuous map U : D -> Y verify
ing P A 0 U = q and H 0 U = r. 

o 

--------------~x 

jP 

A --------~~ B 

Figure 5.10 

This problem will be used in the following one.) 

10. (Universal covering space of SL(2, IR)): Consider the topological group 
G = SL(2, IR) defined by 

G = { ( : :)= a, b, e, d E IR, ad - be = 1 } 

with matrix multiplication as the operation of G. It has two subgroups 

B = { C~t ~)= t > 0, U E IR} 

_{(COSO -SinO). } K-· O O·OEIR, 
sm cos 

all of them considered with the topology induced by 1R4. 
(i) (a) Show that the map J.l : B x K -> B, J.l(b, k) = bk, is bijective and continuous. 

(b) Let L be a compact subset of G. Show there exist two constants ex > 0, 
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f3 > 0 such that 

max(lal, Ibl, lei, Idl) :$; f3 

e2 + d2 2 0( 

for every (: !) E L. Conclude that J-I is a homeomorphism from B x K 

onto G. 
(c) Show that G is connected and, using that the fundamental group of a 

product is the direct product of the fundamental groups, determine 1t 1 (G). 
(ii) (a) Let P = {z E C: Imz > O} and to 9 E G associate a Moebius transforma-

tion as follows: if 9 = (: !) then 

Recall that 

az + b 
g(z):=--. 

ez + d 

Imz 
Img(z) = lez + dl2 

and, hence, 9 maps Pinto P. 
(b) Consider the map J : G x P -+ C given by 

J(g,z) = ez + d. 

Show that J is continuous and never zero. 
(iii) As usual, denote by Sl = {z E c: Izl = I}. Let qJ: G -+ Sl defined by 

J(g, i) 
qJ(g) = IJ(g, i)1 

and p : G -+ G the covering map which is the inverse image by qJ ofthe covering 
map q : IR -+ SI, q(x) = eix• (See preceding exercise.) Then 

G = {(g, 0) E G x IR: qJ(g) = q(O)}, p(g,O) = g. 

(a) Let A be a subset of B x SI X IR of the triplets (b, z, 0) such that z = q(O). 
Show that the map'" : B x SI X IR -+ G x IR induced by J-I determines a 
homeomorphism from A onto G. Conclude that G is homeomorphic to 
BxlR. 

(b) Find the fundamental group Ofnl(G). 
(iv) Consider the map X : G x P -+ SI defined by 

J(g,z) 
X(g,z) = IJ(g,z)I' 

(a) Show there is a unique continuous map w : G x P -+ IR such that 

X(p(y), z) = ei.,(y,%) 

satisfying w(e, i) = 0, where e = G ~} 
(b) Find w(y, i) ip terms of y = (g,O). 
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(v) Denoted by m: G x G -+ G the group multiplication (gl'g2) ...... glg2. 
(a) Show that there is a unique continuous map m : G x G -+ G such that 

and 

m(e,e) = e. 

(b) Compare the two maps of G x G x G into G 

(1'1'1'2'1'3) ...... m(m(Yl' 1'2)' 1'3) 

(1'1,1'2' y3) ...... m(yl' m(Y2' 1'3))' 

Compare also the maps from G into itself 

1' ...... m(y,e) 

1''''''' m(e, 1'). 

(c) Do the same as in part (a) to lift to G the map i: G _.+ G, g ...... g-l. 
(d) Prove that there is on G a unique structure of (topological) group such 

that p : G -+ G becomes a group homomorphism and e is the group identity. 
(vi) Let Vbean open connected neighborhood orein Gand h: V -+ IR a continuous 

local homomorphism (i.e., if 1'1,1'2 E V are such that 1'1,1'2 E V then h(Yl 1'2) = 

h(Yd + h(Y2))' 
(a) Show there is an open neighborhood U of e in G such that U = u-l, 

U2 £ V, and G = U un . 
• ,,1 

(b) For I' E G consider the map 

hy: U· I' -+ IR 

hi8) = h(8y-l). 

Construct a cocycle (gy.d) for the covering (U' Y),EG with values in IR, IR 
considered with the discrete topology. Use this cocycle to show there is a 
unique group homomorphism ii: G -> IR which extends h. 

§12. Algebraic Functions. I 

We discuss in this section the construction of the complete Riemann surface 
of Jf(-;j, f a polynomial in C[z]. In the next section we will consider the 
general case of algebraic functions, i.e., functions w = w(z) defined by equa
tions of the form P(z, w) = 0, with PEe [z, w]. The previous case corresponds 
to the equation w 2 - P(z) = O. 

In the previous sections, by way of exercises at least, we have seen how to 
obtain a Riemann surface for Jz, Jz(~-::::::-~), etc., i.e., a covering surface of 
S2\ {oo, O}, S2\ {oo, 0, a}, etc., where the function Jz, resp. J z(z - a), is well 
defined. In order to "pluck the holes" we need the concept of branch point of 
a holomorphic map. 
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5.12.1. Definition. Let X, Y be two Riemann surfaces, p : X -+ Ya nonconstant 
holomorphic map. A point z E X is called a branch point (or ramification point) 
if, for every neighborhood V of z, pi V is not injective. It is easy to see that this 
is equivalent to the statement that there are charts (U, ip) of X about z and 
(w, t/I) of Y about p(z), and an integer k ~ 2 such that 

(i) ip(z) = t/I(p(z)) = 0 
(ii) p(U) 5; W 

(iii) (t/I 0 p 0 ip-1)(U) = Uk for u E ip(U). 

One says that z is a branch point of order k - 1. 
When X and Yare connected Riemann surfaces and p: X -+ Y is a 

nonconstant holomorphic and proper map, then the set A of branch 
points of p is a closed discrete subset of X. Moreover, B = p(A) is also 
closed in Y. The latter assertion follows from the fact that p is proper, hence a 
closed transformation. It is clear that if A had an accumulation point z, the 
function t/I 0 p 0 ip-1 : ip(U) -+ C would have u = 0 as an accumulation point 

d 
of zeros of du (t/I 0 p 0 ip-1). It follows that p would be constant on U, hence 

everywhere. 
The set B is called the set of critical values of p. 

5.12.2. Definition. Let X, Y be two Riemann surfaces. One says that a non
constant holomorphic map p : X -+ Y is a branched covering map if the three 
sets, A of branch points, B = p(A) of critical values, and p-1(B), are all closed 
discrete sets, and, furthermore, p: X\p-1(B) -+ Y\B is a covering map. 

Remark. In case one also assumes p is proper and Y connected, then the 
number of sheets n of p : X\p-1 (B) -+ Y\B is a well-determined integer. One 
says then that p is an n-sheeted branched covering. 

We are going to study first the Riemann surface of ..J7(;j, 
f(z) = (z - ad .. ·(z - an), 

where the aj are distinct complex numbers. 

5.12.3. Proposition. There is a compact connected Riemann surface X and a 
two-sheeted branched covering map 11: : X -+ S2 such that the set of critical values 
B 5; {a 1, ... , an, oo}, the set of branch points A coincides with 11:-1 (B), and there 
is a function F E Jt(X) such that F2 = f 011: over X\A and for any z E S2\B, 
if 1I:-1(z) = gl'~2}' then F(~d = -F(~2)' 

Furthermore, if (X, it, F) is another triple with the same properties, then there 
is a biholomorphic map u : X -+ X such that 11: 0 u = it and F 0 u = F. 

PROOF. For every ZEn = S2\{a 1, ... ,an, oo}, the polynomial Wf-+W2 - f(z) 
has two distinct roots which determine two germs ipz. t/lz E {!)z such that 
ip; = t/I; = fz· 
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Let Xl be the subset of the sheaf (1)0 of all the germs cpz E (l)z, ZEn, such 
that cP; = fz. Denote by n the restriction to Xl of the canonical projection 
(1)0 -+ n (i.e., n(cpz) = z). 

5.12.4. Lemma. For every ZEn, let B(z,c5) ~ n. Then there exist two holo
morphic functions fl' f2 E Jft'(B(z, c5)) such that 

(i) w2 - f(() = (w - fl (())(w - f2(0) for every ( E B(z, c5); 
(ii) n -1 (B(z, c5)) = N(B(z, c5),fd (; N(B(z, c5),f2)(notation of §5.6); 

(iii) nIN(B(z, c5),fj) : N(B, z, c5),fj) -+ B(z, c5) is a biholomorphic map,j = 1, 2; 
(iv) n: n-l(B(z, c5)) -+ B(z, c5) is a two-sheeted covering map. 

PROOF. There are exactly two determinations, fl and f2 = -fl' of fl on the 
simply connected set B(z, c5). The rest is obvious. 0 

This lemma ensures that Xl is a Riemann surface and n: Xl -+ n is a 
two-sheeted covering map. 

Let now F: Xl -+ C be defined by F(cpz) = cpAz). The funtion F is holo
morphic (as already shown in §5.6) since locally, f = cp 0 n, with cp holo
morphic. Moreover, F(Z)2 = (cpAZ))2 = f(n(cpz)) = f(z). To end the proof of 
the proposition we only need to pluck the holes lying over al' ... , an' 00. 

(a) For every 1 ~ j ~ n, choose rj > 0 sufficiently small so that the closed 
disks B(aj , rj ) are disjoint. 

The function giz) = n (z - ak ) does not vanish in B(aj, rj), hence there is 
k"j 

hj E Jft'(B(aj' r)) such that hJ = gj in that disk. Hence 

f(z) = (z - aj)(hj(z))2, z E B(aj' r). 

If 0 < p < rj, () E IR, let ( = aj + pe i6• There is a unique Cp, E (I), such that 
CPt = Jr. and cp,(O = Jpe i6/2hj (o. Performing the analytic continuation along 
the circle oB(ajp) of the initial germ at () = 0, one obtains the opposite germ 
when () = 2n. Let Uj = B(aj' r)\ {aj}, Jtj = n-1(Vj), then n : Jtj -+ Vjis a covering 
map with two sheets. 

(b) Let r> max{lajl: 1 ~j ~ n}. Then V = {z E c: Izl > r} U {oo} is an 
open neighborhood of 00 in S2, biholomorphic to a disk, and does not contain 
any aj. On V\ {oo} one can write 

f(z) = znh(z), 

with h holomorphic in U and h does not vanish. 
If n is odd there is then a meromorphic function k in V such that f(z) = 

z(k(Z))2 for z E V\ {oo}, and the only possible pole of k is at z = 00. 

If n is even there is a merom orphic function k on V such that f(z) = (k(Z))2 
in V\ {oo}, and the only pole of k occurs at k = 00. 

As before, we let V = n-1(V\ {oo}) and obtain that n: V -+ V\ {oo} is a 
two-sheeted covering map. If n is odd, V is connected, but, if n is even, it is 
not. The reason is that a germ Cp, with CPt = Jr., ( E V\ {oo}, can be taken as 
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the germ k~ (or -k{), and analytic continuation along the circle oB(O,IW 
returns to the same germ and not to its opposite. 

To construct X we are going to "glue" a disk ~ over lj and one or two 
disks Vover V, depending on whether V is connected or not. As a set X shall 
be the union of Xl and {a l , ... , an, oo} or {a l , ... ,an, 00, oo'}. 

Assume first that n is odd. Consider the topological space X 2 which is the 
disjoint union of Xl' Vi' V2, ... , v", V, where ~ is a copy of B(aj , rj ), 1 ::;; j ::;; n, 
and V is a copy of V. We introduce in X 2 an equivalence relation rH defined 
as follows: 

(i) For 1 ::;;j::;; n, we consider the two coverings of ~ = B(aj,rj)\{aj} 

n:lj--+~ 

and 

(z- al 
p.(z) = a. + J 

J J rj 

and show these two covering maps are isomorphic. Namely, let us define 
tj: lj --+ ~ as follows: fix ~o E lj and (0 E Vj such that n(~o) = Pj«(o). For ~ E lj 
there is a path Yl in lj joining ~o to ~. Let Y2 be the lifting, starting at (0' of 
the path no Yl. Set ti~) = Y2(1) = endpoint of Yz. It is easy to verify that 
tj: lj --+ Vj is a biholomorphic map such that Pj 0 tj = n. 

(ii) The same way one constructs an isomorphism of coverings t: V --+ 

V\ {oo} between the connected two-sheeted covering maps n: V --+ V\ {oo} 
Z2 

and p: V\ {oo} --+ V\ {oo}, p(z) = -. 
r 

Now, the relation rH consists in identifying the points in X 2 that correspond 
to each other by isomorphisms t 1, ... , tn' t. We leave to the reader the easy 
task of verifying that X = X 2/ rH is a connected compact Riemann surface. 

Xl is a dense open subset of X, X\Xl = {iii' . .. ,iin' oo}, where iii' resp. 00, 
is the class of ai' resp. 00, modulo rH. The original map n: Xl --+ C can be 
extended by continuity to X setting n(a l ) = ai' n(oo) = 00, obtaining a map 
n : X --+ 82 which is a holomorphic, proper, branched covering map. The 
branch point set A = {a l , ... , an' oo}, the order of every branch point is exactly 
1, and n(A) = B = (a l , ... , an, oo}. 

We already know that the function F defined on Xl by F(cpz) = cpz(z) is a 
holomorphic function satisfying F2 = f 0 n. We define it at ai by F(aj ) = ° and 
F(oo) = 00. It is easy to verify that it is a continuous map X --+ 82, hence 
FE .Jt(X) with a pole at 00. 

In case n is even, the construction is the same, except for the fact we have 
two copies of V, say V and V', in X 2 • The corresponding maps p, P' are just 
the identity. The only difference is that X\Xl = {al, ... ,an,oo,oo'}, A = 
{al, ... ,an), and B = {al, ... ,an}, i.e., the points at infinity are not branch 
points any longer. We let F(a) = 0, F(oo) = F(oo') = 00 to obtain the corre
sponding meromorphic map. 
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Finally, let us verify the essential uniqueness of the construction. There is 
an isomorphism of two-sheeted covering maps u : X, ..... X" 

X, := X\ft-'({a" ... ,an,oo}), 

defined as follows: For Z EX" let Uz be an open neighborhood of z in X" 
biholomorphic to a disk, such that ftl Uz is injective. The function F 0 (ftl Uzf' 
is holomorphic in the neighborhood ft(Uz ) of the point ft(z), let ({Jz denote the 
corresponding germ in (9",(Z)' We set u(z) = ({Jz. It is now easy to verify that 
u : X, ..... X, is a biholomorphism which extends to a biholomorphism in 
X ..... X with the required properties. 0 

5.12.5. Definition. The Riemann surface X just constructed is called the com
plete Riemann surface of the algebraic function J1W, J(z) = (z - ad ... 
(z - an), a" ... , an distinct. 

EXERCISES 5.12 
1. Let ai' a2 E C, a l =# a2 • Using the method of cocycles, construct a two-sheeted 

covering map n : Xl -+ C\ {a l ,a2 } and aholomorphicfunction F : XI -+ C such that 
for every z E C\{a l ,a2}, n-I({z}) = gl,C2} one has F(Cd = -F(C2) and F2 = 
Jon, with J(z) = (z - al)(z - a2). We suggest using the following two simply 
connected open sets VI' V2 that verify C\{a l ,a2} = VI U V2, (D I, D2, .11, .12 
are parallel rays). 

Z2 

1 
,a2 

1 Z1 

1 • 
1 D2 a 1 • 

z2 1 

D1 • 10:2 ~ 
1 • 

Ll2 
1 1 

Z1 1 Ll 1 
~ ,. 11 

a 2 

a 1 

Figure 5.11 

2. Same as in Exercise 5.12.1 with n distinct points. 

3. Let ai' ... , a. be n distinct complex numbers. Let J(z) = (z - a l ) ... (z - aft), 
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XI = fez, w) E (C\{a l , .. . ,z.}) x C: w2 - fez) = oJ, 
and n(z, w) = z. Show that n : X I -+ C\ {al , ... , z.} is a two-sheeted covering map 
and there is a holomorphicfunctionF: XI -+ C such that for every z E C\ {al , ... ,a.}, 
n-I({z}) = {(1"2}' one has F('d = -F('2) and F2 = fo n. 

4. Let X be the complete Riemann surface of ~ and F : X -+ S2 the meromorphic 
function such that F(a) = 0, F( 00) = 00, and F(,)2 = n(') - a given in Proposition 
5.12.3. Show that F is a biholomorphic map. In other words, X is conformally 
equivalent to S2. 

5. Let f(z)=(z-a l ) ... (z-a.), ai' ... , a. distinct. Let aoEC\{al, ... ,a.} and 
the Yi that appear in the Figure 5.12, the generators of nl(C\{al, .... ,a.},ao) 
(see Proposition 1.6.27). Let CP.o E l!7.0 be a solution of CP;o = J.o' For a loop 
Y E nl (C\ {al , ... , z.}, ao) describe the action of Y on CP.o in terms of the expression 
of y in the basis Y I' ... , Y n' 

• a1 

Figure 5.12 

6. Letf(z) = (z - ad ... (z - a.), a l , ... , a. distinct, n: X -+ S2 the complete Riemann 
surface of J1 and XI = n- I (S2\ {al,'" ,a., oo}). Show that n: XI -+ C\ {al , ... , a.} 
is a Galois covering. What can you conclude about the group G(n) of auto
morphisms of the covering? 

7. Let f and X be as in Exercise 5.12.6. Given 0 E vH(X) show there are two mero
morphic functions C1 , C2 in S2 (i.e., two rational functions) such that 0 verifies the 
equation 

02 + (c I 0 n)o + (c 2 0 n) = O. 

Conclude that the map vH(S2) -+ vH(X), h r-+ h 0 n, is a field extension of degree 
2. (One can construct CI, C2 on the open sets Vi' (Vi)i open covering trivializing 
n: X I -+ C\ {a l , ... , a.} by considering the two functions Oi.i' j = 1, 2, defined by 
Oi.i = (01V;) o (nlV;,irl, where n-I(V;) = V;,I U V;,2,and then definingci,l' Ci,2 by 
the formula 

w2 + Ci,l W + Ci.2 = (w - Oi,l)(w - 0i,2)·) 

8. Let X be the complete Riemann surface of J(z - ad(z - a2)(z - a3 ), ai' a2, a3 

distinct. Prove that X cannot be biholomorphic to S2. (One can consider the loops 
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Figure 5.13 

YI' Yz in C\ {ai' az, a3 } suggested in Figure 5.13, and lift them to two nonhomotopic 
loops in X.) 

§13. Algebraic Functions. II 

We proceed to construct the complete Riemann surface of an algebraic func
tion along the same lines as was done for J7 in the last section. 

5.13.1. Definition. Let P(z, w) E (;[z, w] be a nontrivial polynomial in two 
variables. The (unbranched) Riemann surface Xp of the equation P = 0 is the 
largest open subset of the sheaf (()c formed by the germs cpz of holomorphic 
functions satisfying the equation P«(, cpz(m = 0 in a neighborhood of z. 

Remark. One could define an analogous notion for an equation A = 0, with 
A a holomorphic function oftwo variables. For instance, A(z, w) = e W - z = 0. 
In this case, the holomorphicity in ( of A«(, cpAm for any germ cpz is clear. The 
surface XA can be cononically identified to the unbranched Riemann surface 
of the logarithm constructed in §5.5.7. 

Given a polynomial P E (;[z, w] one can write it as 

P = P~I ... PZN 
(' 

with ~ irreducible, i.e., prime in the factorial ring (;[z, w]. We claim that the 
surface Xp is the disjoint union of the surfaces Xp. It is clear that if cpz E Xp 

) J 

then P«(, cpz«(» = 0 in a neighborhood of z. On the other hand, the set of points 
in (;2 defined by Pi(z, w) = ~(z, w) = 0, i "# j, is finite. Therefore, a germ cpz 
cannot belong to Xp n Xp. This shows that Xp ~ lJ XI'" Finally, let 

t J l:::;,j5;N J 

cpz EO X p be defined in B(z, r) and let Zo E B(z, r) be such that there is no Wo and 
a pair i "# j with Pi(zo, wo) = ~(zo, wo) = O. Since P(zo, cpz(zo» = 0, there is 
only one index, say io , for which Pio(zo, cpAzo)) = O. In a neighborhood of Zo 

we have therefore ~«(, cpAm i= ° ifj "# io. Hence Pio«(' cpAm == 0 for all points 
in a neighborhood of Zo and we can conclude Pi «(, cpAm == 0 in B(z, r). In 

• 0 

other words, cp E XP'o and, hence, Xp = U X Pj ' 
J 
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Therefore, we can assume from now on that P is irreducible and write 

P(z, w) = ao(z)wn + al (z)w·- l + ... + a.(z), 

with ai E lC[z] having no common factor and ao ¥= O. 
Except for the values z which are zeros of ao, the equation (in w) P(z, w) = 0 

has n roots. Except for a finite number of additional values of z, these n roots 
are distinct. We denote by A(P) the set of those exceptional values of z; this 
is called the set of critical points of P. For simplicity we add 00 to A (P). In 
this way, A(P) is the union of 00, the roots of ao, and the z E IC such that the 

. oP oP 
two polynomIals in w, P(z, .) and ow (z, . ), have a common root. (P, ow have 

only finitely many common zeros, thanks to the irreducibility of P.) 

5.13.2. Lemma. Let Zo E S2\A(P) and WI' ... , w. be the distinct roots ofwH 
P(zo, w). There are germs CPl, ••• , CPo E (9zo such that CPj(zo) = Wj and 

• 
ao(z) n (w - cpiz)) = P(z, w) 

j=l 

for every z in a neighborhood of Zo and w E IC. 

PROOF. Let e > 0 be such that the closed disks B(wj , e) are disjoint. Let r > 0 
be such that P(z, w) "# 0 when Iz - zol ::;; rand Iw - wjl = e for some j. By 
Rouche's theorem, for each fixed z, I z - Zo I < r, there is only one zero of 
P(z, w) = 0 in B(wj , e), and it is given by 

1 f oP dw cp.(z) = - w-(z w)--
J 2ni oB(wj •• ) ow ' P(z, w)' 

The functions CPj E ~(B(wj' e)) and clearly satisfy the other conditions of the 
lemma. 0 

Let us consider now the situation in a neighborhood of a point 
Zo E A(P)\ {oo}. Let e > 0 be such that B(zo, e) n A(P) = {zo}, and define 
~o=n-l(B(zo,e)\{zo})nXp, where n:(9c-+C is the canonical projec
tion, n(cpz) = z. For every open simply connected subset U of B(zo,e)\{Zo} 
we can now construct, thanks to the lemma, n holomorphic function 
flU, ... , f.u in U, such that for each z E U the distinct roots WI' ... , w. of 
P(z, w) = 0 are given by the values fP(z), ... , f.U(z). Hence 

n-l(U) n Xp = lJ N(U,f"/) 
l5;j5;. 

and nlN(U,fn : N(UJ/) -+ U is a biholomorphism for every j. This shows 
that 

n: ~o-+B(zo,e)\{Zo} 

is an n-sheeted covering map. 
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Let y be a generator of 1tdB(zo, e)\ {zo}, a) of index 1 with respect to zoo 
The nelementsfl,a"" ,.r..,z E (l)a, which are germs of distinct roots of P(z, w)=O 
near z = a, can be continued along y into a new system of roots which are a 
permutation a of the original ones. We denote them by fa(1),a' ... , fa(n),a' One 
can decompose a into disjoint cycles. For instance, up to renumbering, we 
could have a(l) = 2, a(2) = 3, ... , a(q - 1) = q and a(q) = 1 for some q ~ n. 
This means that if we start with fl,a then continuing along y we obtain f2,a, 
continuing once more we obtain f3,a, and after q times we come back to fl,a' 
In this situation, the following property holds. 

5.13.3. Lemma. Let fa E (l)a be a germ admitting analytic continuation along any 
path in U = B(zo, e) \ {zo} that starts at Z = a. Let y be the generator of 1tl (U, a) 
that has index 1 with respect to zoo Assume that the analytic continuation of fa 
along yq is equal to fa. Then there is a Laurent series convergent in B(O, el/q) \ {O} 
such that 

fa(zo + «( - zo)q) = L cn«( - zot· 
ne Z 

PROOF. We can assume without loss of generality that Zo = 0, e = 1, 
U = B(O, 1)\ {O}. Let bE U be such that bq = a. The map <p: ( -+ (q of U 
into U has the property that the germ gb of fa 0 <p at ( = b, when con
tinued along y, returns to itself. By the monodromy theorem, gb determines 
a holomorphic function in U. This function can be expanded in a Laurent 
series L an(n in U, hence 

ne Z 

fa«(q) = L cn(n, 
ne Z 

as we wanted to show. D 

Applying the lemma to fl,a one finds 

fl,a(zo + «( - zo)q) = L cn«( - zot 
ne Z 

for a series f(t) = L cntn convergent in B(O,el/q)\{O}. It is usual to write 
ne Z 

¢ = Zo + «( - zo)q, hence 

fl,a(¢) = L cn(¢ - zot/q, 
ne Z 

which is called a Puiseux series representation for fl,a' In terms of f we have 
fl,a(¢) = f«¢ - ZO)l/q). With this notation the different branches fl,a, ... , fq,a 
can also be written as 

1 ~j ~ q, 

where one just takes into account the different choices of the root. If(¢ - ZO)l/q 
is the choice of fl,a, the others are e21ti(j-l)/q(¢ - ZO)l/q, i.e., 



568 5. Analytic Continuation and Singularities 

Jj.a<~) = f(e2"i(j-l)/q(~ - ZO)I/Q) = 2: c.[e2ni(j .I)!q(~ - ZO)I/Q]n 
ne 7L 

or 

ij,a(zo + «( - zo)Q) = 2: cn [e2,,;(j-l)/q(( - ZO)]"· 
nE 7L 

If q < n, then one can consider the different cycles of f q +l,Q' ... , fn,a, and find 
corresponding Puiseux series expansions for the different roots. 

If we are in the situation where ao(zo) of 0, then the solutions w of P(z, w) = 0 
remain in a bounded set when z is near zo0 In fact, the functions aj(z)/ao(z) are 
bounded in a neighborhood of zo, and from the expression 

w" = _ (~1 (z) wn- 1 + ... + an(z») 
ao(z) ao{z) 

we see that either I wi s 1 or 

Iwl = la 1 (z) + a2 (z) ~ + ... + an(z)L::11 s la 1 (z)1 + 1 adz) 1 + ... + 1 an(z) I. 
ao(z) ao(z) w ao(z) w ao(z) ao(z) ao(z) 

In other words, if a> ° is sufficiently small so that ao(z) of 0 in Iz - zol sa, 
we have that any root w of P(z, w) = 0 satisfies 

Iwl < max {l max la 1 (z) + ... -tJ~nJ~)I} < M < 00. 
- 'Iz-zol,;o lao(z)1 -

Therefore, the different branches ij,Q of the first cycle, or if one prefers, 
fl,a(ZO + «( - zon remain bounded when, -> Z00 This implies that f is holo
morphic even at t = 0, so that 

1 sj s q. 

The same happens for every cycle of the permutation (T. What does this mean 
for the covering map n : v,,, -> B(zo, B)\ {zo}? 

If q = 1, there is only one branch in the cycle, which is then the restriction 
to B(zo, B)\ {zo} of a holomorphic function in B(zo, e). This corresponds to 
a connected component of v'o' which has only one sheet. 

If q z 2, the cycle corresponds to a connected component of v'o of exactly 
q sheets. 

If ao(zo) = 0 with multiplicity k z 1, then, by the same reasoning as earlier, 
if w is a root of P(z, w) = 0, Z E B(zo, z)\ {zo}, we have 

Iz - z Iklwl < max {I 1~1(~)1=,='~' + lan(z)l} < M < 00 
o - , lao(z)l!lz - zolk -

as long as 0 < 1= - zol s a, a sufficiently small. In terms of the function f 
associated to the first cycle this means that 

tkl(t) = 2: cnt"H, o < It I < e1/q 

tlEZ 
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remains bounded as t ~ O. So f has at most a pole of order k and 

The description of the connected components of the covering 
n : ~o ~ B(zo, B)\ {zo} and their number of sheets remains the same. 

It remains to consider the point Zo = 00 E L\(P). Let d = max {deg aj' 0:::;; j:::;; n}. 
Then we can consider the polynomial equation 

about z = 0 and the local situation is the same as earlier. 
Now we are ready to construct the complete Riemann surface of the 

irreducible equation P = 0, proceeding in the same fashion as we did for 
J1(i) in §5.12, i.e., for P(z, w) = w2 - n (z - aj). 

1 s;jS;n 

For that purpose, let us denote Z l' .•• , ZN the points in L\(P). For each j, 
denote by 1 :::;; k :::;; mj the different connected components of the coverings 
n: lj ~ ~\ {Zj}, where the ~ are open disks with disjoint closures in 82 (for 
ZN = 00 we mean UN = {z E C: Izi > r} U {oo}), and lj = n-1 (l./.;\ {Zj}) n Xp. 
lj has connected components lj,k of multiplicity qjk' We have L qjk = n. 

_ 1S;ks;mj 

Consider now the topological space X which is the disjoint union of X p and 
L mj disks ~,k' One glues ljk to ~k by introducing isomorphisms (Tjk 

1 s;js;N 

between the covering maps 

and 

Pjk: ~k \ {Cjk} ~ ~\ {Zj}, 

where Cjk is the center of ~k and Pjk is a covering map with qjk sheets given by 
the qjk th power. 

To construct (Tjk, choose eo E X jk , Co E ~k \ {Cjk} such that n{eo) = Pjk(CO), 

~nd if e is the endpoint of a path y in ljk starting at Co, let Y1 be the lifting to 
ljk \ {cjk } of no y, starting at Co. We define Gtjk(e) = Y1 (1). One verifies without 
difficulty that (Tjk is a biholomorphic map from ljk onto ~k \ {cjk } such that 
Pjk 0 (Tjk = n I ljk' 

Introduce in X the equivalence relation fJIi which identifies the points that 
correspond to each other via some (Tjk' The quotient space Xp = X/fJIi is now 
a Riemann surface in which Xp appears as a dense open set. (In fact, Xp\Xp 
is a finite collection of points.) 

The covering map n: X p ~ C can be extended to a holomorphic map 
n: Xp ~ S2 setting n(cjk ) = Zj' where Cjk is the class of c jk modulo fJIi. It is 
a branched covering map. 
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The global holomorphic function F: Xp -..... I[ defined by F(cpJ = cpAz) can 
be extended by continuity to the points cjk to a finite or 00 value. According 
to whether the corresponding Laurent series 2: ant" is holomorphic or has 

nEE 

a pole at t = O. The meromorphic function F: Xp -> S2 thus obtained verifies 
P(n(cp),j(cp» = 0 for every cP E Xp. 

5.13.4. Definition. The triple (Xp , n, F) associated by the preceding construc
tion to the irreducible polynomial PEl[ [z, w] is caned the (complete) Riemann 
surface of the equation P = O. The function F is the algebraic function associated 
to the equation P = O. 

If P is not irreducible we denote Xp the (disjoint) union of the Xp for 
the different irreducible factors of P. J 

5.13.5. Proposition. If P is irreducible then Xp is connected. 

PROOF. It is enough to prove that Xp is connected. For that, it is enough 
to show that for a fixed Zo E n = S2 \ A (P), the n germs CPl' ... , CPn which 
are solutions of P(z, w) = 0 in a neighborhood of zo, are in the connected 
component of the germ CPt in (Do. We argue by contradiction. 

Let us assume that CPt, ... , CPk are in the same component and CPk+l' ••• , CPn 
in other components. Consider the symmetric functions (Jj of the lfJi' 1 :S;.i :s; k, 
defined by 

Il (w- cpJ = Wk .... 0'1 wk - 1 + ... + (_1)k(Jk' 

l:>j:>k 

If)' is a loop in n 1 (n, zo), the analytic continuation along}, preserves the 
set {cpj : 1 :s; j :s; k}. Hence the (Jj are well-defined holomorphic functions in n. 
The only possible singularities of the (Jj are poles at the points of A(P). The 
reason is that, from the Puiseux series expansions of the solutions of P = 0 
near a point C E A(P), one sees that all of them are bounded by Iz ..... cl- M for 
some fixed power M if c #- 00, and by IzlM if c = 00. Therefore the (Jj EO Jt(S2). 
Let Q(z) be the least-common multiple of the denominators of the rational 
function uj . Then 

R(z, w) := Q(z) Il (w - cpJ 
1 :>j:>k 

is a polynomial in (z, w) of degree k in w. It follows that Rand P are relatively 
prime, since P is irreducible and cannot divide R. Therefore, there are only 
finitely many common roots (z, w) E 1[2 of the equations 

R(z, w) = P(z, w) = O. 

This contradicts the fact that R(z, CPl (z» == 0 and P(z, CPl (z)) == 0 in a neigh
borhood of zoo 

We conclude that k < n is impossible, hence Xp is connected. 0 

5.13.6. Proposition. Xp is compact. 
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PROOF. We can assume P is irreducible. Xp is the union of finitely many 
relatively compact regions. Namely, the images under the equivalence f?I of 

the ~k and of Xp (U l-}k). 0 
}.k 

Remark. It follows that 1t: Xp -+ S2 is surjective, since 1t is an open map and 
Xp is compact. 

One can prove that the converse of Proposition 5.13.6 is also true. Any 
compact Riemann surface can be defined as X p for a convenient polynomial 
P E C[z, w] (see [Fo]). 

We have only scratched the surface of the subject of algebraic functions, or 
equivalently, compact Riemann surfaces. The reader should consult [Fo], 
[JS], [Gri2], [ACG], [Si], [FK], and [CI] for this beautiful and rich theory. 

Another interesting question is to decide in an effective way which are 
possible Puiseux expansions of algebraic function around the critical points. 
This can be done in terms of the Newton diagram (cf. [Hi 1] ). 

EXERCISES 5.13 
1. Describe the complete Riemann surfaces associated to the following algebraic 

equations. 
(a) P(z, w) = wn - Z = 0 (Riemann surface of ,J'z) 
(b) P(z, w) = w3 - 3w + 2z = 0 
(c) P(z, w) = w3 - 3w + Z6 = 0 
(d) P(z, w) = w4 - 2w2 + 1 - z = O. 
Find exactly the ramification points and the behavior at those points of the algebraic 
function F defined by the equation. Study the action of1t I (S2\A(P» on the fibers 
1t- t ( {z}) for points z E S2\A(P). Find out, if possible, the subgroup of the group of 
permutations ofn- t ( {z}) generated by the action of 1tdS2 \A(P». 

2. Prove that if PEC[Z,W] is an irreducible polynomial and, if (Xt ,1t t .Ft ) and 
(X2, 1t2, F2) are two triples satisfying the same conditions that satisfies the complete 
Riemann surfaces (X p, 1t, F) of P = 0, then there is a biholomorphic map (J : X t - X 2 

such that 1t2 0 (J = 1t1 and F2 0 (J = Fl. 

3. Study the Riemann surface j], for J(z) = (z - a l )«' ... (z - a.Y", where at, ... , 
an E C are distinct and the (lj are integers ~ 1. 

4. Construct the noncomplete Riemann surface Xp associated to an irreducible 
P E C[z, w], using {(z, w) E C2: P(z, w) = O}, as in Exercise 5.12.3. 

5. Let X, X be the noncomplete, resp. complete, Riemann surface of 
w4 - 2w2 + 1 - z = O. 
(a) X is a four-sheeted covering space of C\ {O, 1} (cf. Exercise 5.13.1). 
(b) Let Zo = 1. 1t-I({ZO}) = {el,e2,e3,e4}' with el = J1 + y"!, e2 = J1- y"!, 

e3 = -J1 + y"!, e4 = -J1 - y"!. Show that the action on {e1,e2,e3,e4} 
of a loop }'IE1tI(C\{O,l},t) with Indy,(O) = 1, Indy,(l)=0 is given by 
(notations from §5.1O.6) 

{el[}'l] = e2 
e2[}'I] = el 

and 
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(c) The same as (b) when Yz E n l (C\ {a, 1 H) has Indl,(O) = 0, Indy)l) = 1. 
(Answer: ~1[y2J = ~I' ~2[YZ] = ~4' ~3[YZ] = ~3' ~4[YzJ = ~2)' 

(d) Let Y3 E ndC\ {a, l}J) with Indl,(O) = Indy,(l) = 1. Show that 
[Y3] = [YI J [;'2 r l and characterize the action on n-1 ({zo}). 

(e) Show that the covering map n: X··+ C\ {a, I} is Galois and determine G(n). 

6. Redo Exercise 5.13.5 for the other Riemann surfaces of Exercise 5.13.1. 

7. Show that if F is an algebraic function which is single-valued on S2\B, #(B) < 00, 

then F is a rational function. 

8. Either using Exercise 5.13.7 or directly, show that if F is an algebraic function 
then F' / F is a rational function. Compare with Exercise 2.8.19 for the case 

J(z - a l )·· .(z .... an). 

§14. The Periods of a Differential Form 

The purpose of this section is to conclude the proof of Proposition 1.7.9. The 
missing part was that given a set of periods one could find a closed I-form 
with those periods. We need to develop a bit the calculus of differential forms 
in a Riemann surface. This is exactly analogous to what was done in §1.2. We 
recommend [We] for a thorough development of this subject and its relation 
to the geometry of complex manifolds (Riemann surfaces being manifolds of 
complex dimension 1). 

Let (V, cp), cp = u + iv, be a coordinate chart on a Riemann surface X (u, [! 

.. a a ° a real-valued). One can define the dIfferentIal operators ;),~-, ;)-, ;) __ from 
uU ov ucp vcp 

g( V) into itself by the formulas 

of v (c -1 ) --(~)=(focp ) (cp(O), au ax 

~~(O = (?Jo=(fo cp-l») (cp(O), 
vcp (Z 

where z = x + iy represents the coordinates in 1[;, Z = cp(O = u(O + iv(O, 

'E U. 
Let a E X. The ring go of germs at the point a of c~· functions is a local ring 

whose only maximal ideal JY~ is the set of germs f such that f(a) = O. We 
denote JV;,k its successive powers. One sees easily, using Taylor's expansion, 
that for any chart (V, cp) about a the ideal ~2 can be characterized as the set 
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of f E tCa such that 
of of 

f(a) = ou (a) = ov (a) = o. 

5.14.1. Definition. The complex vector space T,,*(X) defined as the quotient 

T,,*(X) := .%,./.%,/ 

is called the cotangent space to X at the point a. If V is an open set containing 
a and f E tC(V), its differential at a is the element df(a) E T,,*(X) defined by 

df(a) = f - f(a), 

where f(a) is the germ of the constant function and the notation 9 denotes the 
class of g E .%,. modulo .%,.2. 

5.14.2. Proposition. Let X be a Riemann surface, a E X, (U, (fJ) a chart about a, 
(fJ = u + iv, Z = x + iy = (fJ(') = u(O + iv(o, for, E U. The differentials duCal 
and dv(a) form a basis of T,,*(X). The same is true for d(fJ(a) and dqi(a). We have 
the relations d(fJ(a) = duCal + idv(a) and dqi(a) = duCal - idv(a). Moreover, if f 
is Coo in a neighborhood of a, we can write 

of of 
df(a) = OU (a) duCal + ov (a) dv(a) 

of of 
= 0(fJ (a) d(fJ(a) + oqi (a) dqi(a). 

PROOF. Let us show first that duCal and dv(a) span T,,*(X). Let () E T,,*(X) be 
represented by 0( E .%,.. Taylor's formula gives 

0(,) - O(a) = 0(,) = (u(O - u(a» (:x (0( 0 (fJ-l») «fJ(a» 

+ (v(,) - veal) (:x (0( 0 (fJ-l») «fJ(a» + "'(') 

where", E .%,.2. Passing to the quotient we have 

. 00( 00( 
() = (i = OU (a) duCal + ov (a) dv(a). 

. 00( 00( 
Moreover, If () = 0,0( E .%,.2 and -0 (a) = -(a) = o. Therefore {duCal, dv(a)} is 

u ov 
a basis for T,,*(X). One verifies that 

01(010) -=- -+--
0(fJ 2 OU i OV ' 

which shows that {d(fJ(a), dqi(a)} is another basis for T,,*(X). 
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If f is smooth near a, we have 

. af af 
j - f(a) = -(a)(u - u(a» + -(a)(v - v(a» + I/J, 

au av 

df(a) = aaf (a) du(a) + 'aW (a) dv(a) = aaf (a) dcp(a) + a~ (a) dcp(a). D 
u v cp ecp 

Clearly we do not need f E COO near a to be able to define df(a). 
Differentiability is enough. 

We are now going to define the differential forms of type (l, 0) and (0, 1). 
For that we need to find out the relations that appear when we change 
coordinate charts. Let (U, cp) and (V, I/J) be two charts about a. Let h = cp 0 I/J-l. 
If cp(O = z and I/J(O = z', then 

eh ah 
--(I/J(a» = -(I/J(a» ez' az' 

and 
ah eh 

= az' = o. 

Hence, 

Dcp ( e -1 ) eh acp - (a) = ---- (cp 0 I/J ) (I/J(a» = .... (I/J(a» ¥ 0, ~ (a) = 0, 
el/J ez' ez' al/J 

acp ecp - ecp 
dcp(a) = el/J (a) dt/J(a) + e!(i dl/J(a) = el/J (a) dl/J(a), 

and 

_ ecp --
dcp(a) = 8!jJ (a) dl/J(a). 

These formulas allow us to decompose the space 7;,*(X) as a direct sum 
7;,*(X) = 7;,l.O(X) EB 7;,0.I(X), of the two subspaces 

7;,l,O(X) = C dcp(a), 

7;,0.l(X) = C dip (a), 

which do not depend on the chart considered. The elements of 7;,1,O(X) are 
caned differential forms at a of type (1,0), those of 7;,0,1 (X) are said to be of 
type (0, 1). Iff is continuously differentiable in a neighborhood of a one can 
write, in a unique fashion, 

df(a) = ~f(a) + (ff(a), 

with af(a) E 1~1, O(X) and (ff(a) E 7;,0' leX). These formulas reveal that in terms 
of a coordinate chart (U, cp) we have 

. of d ( ) aj(a) = (a) cp a, 
a(p 
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and 
- of 
of (a) = oiji (a) diji(a). 

5.14.3. Definition. Let U be an open subset of the Riemann surface X. We 
denote by T*(U) = lj T,,*(X). A differential form W of degree one is a map 

aeU 

W: U --+ T*(U) 

such that w(a) E T,,*(X) for any a E U.1f w(a) E T,,1,O(X) for every a E U we say 
w is of type (1,0), while if w(a) E T,,0' I (X) for every a E U we say it is of type 
(0,1). We sometimes abbreviate and say that w is I-form, a (I,O)-form, or a 
(0, 1 )-form. 

Example. Iff E S(U), then df, of, af are differential forms of degree 1, the last 
two being, respectively, of type (1,0) and (0, 1). As it is easy to verify, f E S(U) 
is holomorphic in U if and only if af = O. The usual Leibniz rule for derivatives 
of a product imply d(f g) = f dg + 9 df and analogous relations for o(f g) and 
a(f g) hold, where f, 9 E S(U). 

Remarks. (1) Let (U, cp) be a chart in X, cp = u + iv. A differential form w of 
degree 1 in U can be written as 

w = f du + 9 dv = k dcp + I diji, 

where f, g, k, I are well-defined complex-valued functions in U. 
(2) If (U, cp) and (V, t/!) are two charts such that Un V::f. 0, and if w is a 

differential form of degree 1 in U n V, then 

w = f dcp + 9 diji = k dt/! + I dill. 

ocp _ ocp -. . 
The formulas dcp = at/! dt/! and dcp = at/! dt/!lmply the relatIons 

k = f OCP 
at/! 

and 
ocp 

1= 9 at/!' 

(3) If(U, cp) is a chart in X, cp(() = z, and w = f dcp + 9 diji is a differentiable 
form of degree 1 in U, we introduce the "local version" WI of w in the open 
subset U1 = cp(U) of the complex plane by 

WI = (f 0 cp-l)dz + (g 0 cp-1)dz. 

(4) When we are in the situation that we have two charts (U, cp), (V, t/!), 
Un V =1= 0, z = cp(O, z' = t/!(O, and w a differential form of degree 1 in Un V, 
w = f dcp + 9 diji = k dt/! + I dill, we have two local versions 

WI =(focp-1)dz+(gocp-l)dz, 

W 2 = (k 0 rl)dz' + (lo r1)dz', 

In 

In 

VI = cp(U n V), 

U2 = t/!(U n V). 
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Since w~_ know that k 0 r 1 = (f 0 r 1)(!: 0 rl) and 101/1-1 = (g 0 rl) 

x G: 0 1/1-1), if we let h = <p 0 1/1-1 : U2 -+ UI, and consider the pullback of 

OJ 1 by h, h*(OJ 1 ), we find 

h*(OJd = (f 0 <p-l 0 h)dh + (g a <p-l a h)dh 

= (f a <p -1) (o<p a 1/1-1) dz' + (g 0 1/1"1) (8<P a I/I~~) dz' 
. 01/1 81/1 

= OJ2' 

So that the two local versions of OJ are given by h*(OJd = OJ 2 , this allows 
us to talk about the continuity, smoothness, etc., of a differential form of degree 
1 in a way that is independent of the coordinate chart. 

5.14.4. Definition. Let W be an open subset of the Riemann surface X, 
OJ a differential form of degree 1 in W We say that OJ is of class Ck in 
W (k EN u {co}) if for any chart (U,<p), Us W, OJ = fd<p + gdip with j; 
9 E Ck(U). We say OJ is a holomorphic differential form of degree 1 if, for 
any chart (U, <p), Us W, OJ = hd<p, with h E ~(U). 

We will denote Ckl(W) the family of all differential forms of degree 1 of class 
Ck in W Similarly, Ckl,O(W), CkO,l(W), Ql(W) = Q(W), are those of type (1,0) 
and class C\ type (0, 1) and class C\ and hoi om orphic forms in W One can 
define in a natural way the associated sheaves of germs Ck1 , Cl'o, Cko, I, Q. If 
k = co, we will suppress the index k. 

In the same way as was done in §1.2, we can define the wedge product of 
vectors. If" 11 E T.,*(X) we obtain an element ( A /] of a vector space denoted 
indistinctly A 2T.,*(X) or T.,*2(X). If (U, <p) is a coordinate chart at the point a, 
<p = u + iv, we have that both dcp(a) A dip(a) and du(a) A dv(a) form a basis 
for the one-dimensional complex vector space T.,*2(X). Moreover, 

d<p(a) A dip(a) = - 2i du(a) A dv(a). 

5.14.5. Definition. Let W be an open subset of X, a differential form of degree 
2 on W is a map w : W -+ () T.,*2(X) = T*2(X) such that OJ(a) E T.,*2(X) for 

aeW 

every a E W We also say OJ is a 2-form in W 
Let (U, <p) be a chart in X, <p = u + iv, a differential form OJ of degree 2 in 

U can be written as 

w = f d<p A dip = 9 du A dv, 

for some uniquely determined functions f, 9 : U -+ IC. One can also introduce 
the local version OJ 1 of win <p(U) by 

WI = (fa <p-l)dz Adz, 
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where z = q>(o" E U. Different local versions of ware related by the pullback 
map. 

5.14.6. Definition. Let W be an open subset of the Riemann surface W, w a 
differential form of degree 2 in W We say that 

(1) w is of class Ck in W (k E fI\J u {oo}). if. for any chart (U. q» such that U £;; W, 
w = f dq> 1\ diP with f E Gk(U); 

(2) w is holomorphic in W if. for any such chart (U. q». w = h dq> 1\ diP with 
hE ~(U). 

We will denote by Gk2(W) the set of differential forms of degree 2 and class 
Ck in W (with k suppressed if k = (0). By 02(W) we denote the set of all 
holomorphic differential forms of degree 2 in W The corresponding sheaves 
shall be denoted tffl and 0 2 • 

The wedge product induces a map 

tffl(W) x ~l(W)~G~(W). m = inf{k.l} 

(rx. p) 1-+ rx 1\ P. 
where (rx 1\ p)(a) = rx(a) 1\ p(a). 

We shall now define the operator d: G1(W) ~ tff2(W). Locally (i.e .• in a 
chart) a COO differential form w of degree 1 can be written as 

w = Lftdgk' 
k 

ft. gk E COO (see. for instance. the alternative ways we write in terms of dq>. diP 
or duo dv when the chart is (U. q»). We define 

dw = L dft 1\ dgk· 
k 

One can easily show this 2-form is independent of the particular representa
tion chosen for w. It is also immediate that if f E G2 (X). then 

d(df) = O. 

5.14.7. Definition. Let W be an open set in a Riemann surface. A differential 
form w E GhW). k ~ 1. is said to be closed if dw = O. The form is said to be 
exact in W if there is a continuously differentiable function f such that w = df 
in W 

Remark. The previous remark implies that every exact form is closed. since 
d(df) = O. 

5.14.8. Proposition. Let W be an open set in a Riemann surface. 

(a) Every w E O(W) is closed. 
(b) Every w E G1.O(W) that is closed is holomorphic. 
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PROOF. Let (U, rp) be a coordinate chart with U £; Wand w = f drp in W Then 

dw = dl' Adm = _.D£dm A dffi. Iff' is holomorphic then~l = 0 and hence 
'J 'Y oip 'Y 'Y oip' , 

dw = O. The converse is equally clear. 0 

5.14.9. Definition. Let f: X ~ Y be a COO map between two Riemann sur
faces. For every open set W of Y, f induces C-linear maps, pullbacks, 
I* : !&,j(W) ~ !&,JU"'l(W») (j = 0, 1,2, !&,O(W) = !&,(W», where the pullback is 
defined as follows: 

(1) If 9 E !&,(W), then f*g = 9 0 f. 
(2) If a E !&,l(W) is written locally as a = Ifjdgj , then f*a = I U* fj) d(f*gJ 

j j 

(3) If (3 E !&,2(W) is written locally as (3 = Ifjdgj A dhj , then f* f3 = 

IU*fj)dU*g) A dU*h). 
j 

It is necessary to verify the independence of the definition of pullback with 
respect to the local representations. This is done easily; it depends only on the 
chain rule. For any 9 E !&,(W) one has 

f* dg = d(f*g). 

Similarly, for any Ol E !&,1(W) one has 

f* dOl = dU*Ol). 

It is also immediate that if I: X ~ Y and g: Y ~ Z are cee maps, then 
(g 0 f)* = f* 0 g*. 

We now note that the procedures explained in Chapter 1 to integrate 
I-forms of class C1 along a piecewise-C! path and closed I-forms along 
continuous paths are valid in the case of forms defined in an open set W of a 
Riemann surface. We have therefore at our disposal the analogue of state
ments 1.7.6, 1.7.7, and 1.7.8. One can define BI(W), Zl(W), and HI(W) in a 
natural fashion and one arrives to §1.7.9 which remains valid, except that 
the surjectivity of the map j: ZI(W) ~ Hom(n! (w, a), q remains still to be 
proven. It is to this proof that we are consecrating the remainder of this 
section. Once this is done the consequences 1.7.10, 1.7.11, and 1.7.12 remain 
valid for Riemann surfaces. 

Let X be a connected Riemann surface and p: X ~ X its universal cover
ing space. Recall that the group G(p) isomorphic to n l (X). If (J E G(p) and 
f: X ~ C is any function we define (J·f: X ~ C by (J'I = f 0 (J-l. It is 
clear that if 9 is another function g : X ~ C we have 

O"U + g) = (J·f + (J'g 

O'· Ug) = (J' f)(O'. g). 

Moreover, if 0',1: E G(p), (0' 0 1:)' I = (J' (1:' f). 



§14. The Periods of a Differential Form 579 

5.14.10. Definition. A function f: X --. C is said to be additively automorphic 
if for every a E G(p) there is a constant au E C such that 

These constants au are called the automorphic constants of f 
The obvious example of such a function is one which is invariant under the 

action of G(p), that is, au = 0 for every a E G(p). 

5.14.11. Proposition. Let f: X --. C be an additively automorphic function. 
Then the map af-+ au from G(p) = 11:1 (X) into C is an element of Hom(1I:1 (X), C). 

PROOF. 

au 0 t = f - a' (1: . f) = f - a' f + a' (f - 1: . f) = au + a' at = au + at' 0 

5.14.12. Proposition. Let X be a connected Riemann surface and p : X --. X its 
universal covering space. Then 

(a) If WE Zl(X) and f is a primitive of p*w, then f is additively automorphic 
and its constants au, a E 11:1 (X), are precisely the periods of w. 

(b) Conversely, iff E 8(X) is additively automorphic there is WE Zl(X) such 
that df = p* w. 

PROOF. (a) If a E G(p) = 11:1 (X), since p 0 a-I = p, then function a' f is also a 
primitive of p*w. Therefore f - a' f = constant == au. Let Xo EX, Zo E p-l(XO)' 
For a E G(p), the corresponding element if E 1I: 1(X,XO) can be represented by 
taking a curve y: [0, 1] --. X such that y(O) = Yo = a-1(zo) and y(1) = Zo0 Then 
a = po y is a loop in X with base point Xo such that if = [al The periods of 
ware then computed by 

1. w = {p*w = f(y(1)) - f(y(O)) = f(zo) - f(a- 1(zo)) = au· 

(b) If f is additively automorphic with constants au, a E G(p), we have 
a*(df) = d(a* f) = d(f + au) = df Since p is a local biholomorphism we 
always have locally WE 8 1(X) such that p*w = df, but since df is invari
ant under G(p) we obtain that w is globally well defined. Furthermore, 
p*(dw) = dp*w = ddf = 0, but p* is injective, hence dw = O. 0 

Let now X, Y be two Riemann surfaces, p : Y --. X a covering map. The 
group G(p) of automorphisms of p acts on 8(Y) by a' f = f 0 a-I. The differ
ences au = f - a' f E 8( Y), a E G(p), are then called the automorphic factors 
associated to f The map a E G(p) f-+ au E 8( Y) satisfies the following: 
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by the same argument of Proposition 5.14.2. Namely, a" Ot = f - (a 0 r)· f = 
f - a·f + a·(f - r·f) = a" + a·at· The only difference is that at is not 
constant in general. 

If the covering map p is Galois and the factors a" are all identically zero 
then f E p*If(X) ~ If(Y), and one can identify it to a function on X. 

Let x E X, V an open connected neighborhood of x which trivializes p. Let 
p-l(V) = U V;. Considering G(p) as usual with the discrete topology, one can 

iel 

construct a trivializing map 

qJ : p-l(y) -+ V x G(p) 

by choosing io E I since, in that case, for every i E I there is a unique a j E G(p) 
such that aj(V;o) = V;. We set qJ(Y) = (p(y), a;) if Y E V;. The diagram 

p-l(V) ~ V x G(p) 

~/F' 
V 

is then clearly commutative. Furthermore, qJ is compatible with the action of 
G(p): if qJ(Y) = (x, a), we have qJ(r(y» = (x, r 0 a) for every r E G(p). This triv
ialization of qJ can therefore be written qJ = (p, '1) with '1: p-l(V) -+ G(p) 
satisfying '1(r(y» = r 0 '1(y). Moreover, '1 is continuous, or what is the same, 
locally constant. 

This construction will be used in the following proposition. 

5.14.13. Proposition. Let X, Y be two Riemann surfaces and p: Y --+ X a Galois 
covering. For every map a : G(p) -+ If( Y), a 1-+ a", satisfying a" 0 t = a" + a· at 
for every a, r E G(p), there exist f E If( Y) having the functions a" as automorphic 
factors. 

PROOF. It consists of three steps: 
(i) Choose an open covering (V;)j E I of X by connected open sets trivializing 

p. On 1'; = p-l(Vj) let qJi: p-l(Vi) -+ Vi x G(p) be a trivialization like the one 
just constructed, qJi = (p, '1;). Define a function /; : 1'; -+ C by 

/;(y) = a~i(Y)(Y)' 

which is COO in 1';. 
(ii) We verify that /; - a· /; = a" on 1'; for every a E G(p). In fact, if y E 1'; 

we have, by definition 

(a·/;)(y) = /;(a- 1(y» = a~;(a-I(y))(a-l(y)) 

= a,,-I O~I(y)(a-l(y». 

The relation a" Ot = a" + a· at' with r = a-I 0 '1i(y), becomes 
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au(y) = au o.(y) - au-' O~i(y)(O'-l(y)) = a~i(Y)(Y) - (0" /;)(y) 

= /;(y) - (0" /;)(y), 

which is the relation we wanted to verify. 
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(iii) The differences gi,j = /; - fj E G(Y; ("\ lj) can be considered as being 
elements of 8(Ui ("\ Uj), since for any 0' E G(p) 

/; - 0" /; = au = fj - 0" fj 
leads to 

/; - fj = O"(/; - fj). 

Furthermore, it is clear that gi,j + gj,k + gk, i = 0 on Ui ("\ Uj ("\ Uk' 
Let now (acy)v be a partition of unity by elements of ~(X) such that for every 

v there is j(v) E I with (Xv E .@(Uj(v»' Set gi = ~>ygi,j(v)' It is easy to see that 
v 

gi E 8(U;) and gi,j = gi - gj' Hence, the functions 

~ = /; - P*gi E G(Y;), 

satisfy ~ - 0" ~ = au and, whenever Y; ("\ lj :F 0, we have on Y; ("\ lj 

~ - ~ = /; - fj - (P*gi - p*g) = gi,j - gi,j = O. 

Therefore, the ~ define a global function f E G(Y) satisfying f - 0" f = au for 
every 0' E G(p). 0 

We are finally ready to prove the surjectivity missing in §1.7.9. 

5.14.14. Proposition. Let X be a connected Riemann surface. The map 
j : Hi (X) -+ Hom(7t 1 (X), C) which associates to every cohomology class of a 
closed I-form its periods, is surjective. 

PROOF. Let p: X -+ X be the universal covering space of X. We have 
G(p) = 7t1(X), Let O'f-+au be an element of Hom(7t1(X),C) considered as a 
map from G(p) into G(X) (all its values being constant functions). It satisfies 
au Ot = au + 0" at' since 0" at = at 0 0'-1 = at and au o. = au + at' The preced
ing proposition ensures the existence of f E 8(X) with the au as automorphic 
constants. Hence co = df induces on X a closed differential I-form having 
periods au by §5.14.12. 0 

The reader will find in [Fo] the proof of the theorem of Behnke-Stein 
proving that there is a I-form co E Q(X) with given periods au if X is not 
compact. 

We abandon now the theory of Riemann surfaces. For the reader who 
wants to delve more deeply into this wonderful subject, we recommend the 
beautiful book [Fo], which has inspired much of our exposition on the subject. 
For a more geometric point of view, we recommend [JS] and [Gri2]. 
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EXERCISES 5.14 
1. Show that Q(S2) = {O}. 

2. Let X be the complete Riemann surface of~. Show that Q(X) = {O}. 

3. Let X be a connected Riemann surface. Denote by vU1.o(X) the I-forms W in X 
whose expression in any local chart (U, rp) is W = hdrp, h E vU(U). Show that vUI.O(X) 
is an vU(X)-vector space. 

Find the dimension of vU 1 .O(S2) over vU(S2). Answer the same question when X 
is the complete Riemann surface of ~. 

4. Let X be a Riemann surface. Show that a differential form WE 8 1(X), which is 
closed, has a primitive if and only if all its periods are zero. 

5. Let r = WIlL. EEl w2lL. be a lattice of rank two in C, X = c/r and p: C -> X the 
canonical projection map. Show there is a differential form ex. E Q(X) such that 
p*(ex.) = dz. Find the periods of ex.. 

Let ex.j : [0, 1] -> C, ex.it) = tWj and Yj:= p 0 ex.j, j = 1, 2. Then [YI]' [Y2] are the 
generators for 7tl(X) (= 7tl(X,O». 

Let P E Q(X). Prove that there is a function 9 E Jt"(C) such that g(O) = 0 and 
dg = p*p. 

Let R be the parallelogram suggested by Figure 5.14. Prove the identity 

0= f g'(z)dz + f g'(z)dz - f (g'(z) + w2)dz 
1%1 «3 (14 

-f (g'(z) - w1)dz = Wl g(W2) - w2g(wd· 
·2 

Conclude that there is a A E C such that p and Aex. have the same periods. Prove that 
dimcQ(X) = 1. 

Figure 5.14 

6. Compute dimcQ(X), when X is the complete Riemann surface of J(z - a)(z - b), 
a # b. 

7. Let 7t : X -> S2 be the branched covering map corresponding to complete Riemann 
surface of J], J(z) = (z - al)· .. (z - a2.+l), where ai' a2, ... , a 2.+1 are all distinct 
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complex numbers. Show that the formula 

n: j - I dn: 
w·=-- 1 ~j~n 

J ~' 
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defines elements ofQ(X). Moreover, they are (:-linearly independent. (See [Fo] for 
a proofthat {WI"'" wn } forms a basis of Q(X).) 

§15. Linear Differential Equations 

We are going to consider differential equations of the form 

y' = Ay + B, 

where y : n -+ C" is a holomorphic map to be determined, A : n -+ M(n, IC) and 
B : n -+ cn are holomorphic maps (Le., each component of y, A, and B is 
holomorphic). The meaning of the derivative y' is that each entry ofthe vector 
y is differentiated. n is assumed to be a simply connected open set in C. In 
general, one imposes an initial condition y(zo) = Xo E cn for some Zo E n. We 
shall show there is a unique solution to this problem. 

We start by solving the following problem: Given n simply connected open 
subset of C, Zo E n, and A: n -+ M(n, IC) holomorphic map, we look for a 
holomorphic map J: n -+ M(n, IC) such that 

t '=AJ 
(*) 

(zo) = iden = id. 

We identify M(n, IC) to .!£'(cn), the algebra of linear endomorphisms of C", 
which then carries a natural norm 11'11. (For x E C", Ilxll = (lx l l2 + ... + 
IXnI2)1/2. For A E M(n,lC), IIAII = max{IIAxlI: Ilxll = 1}.) 

If n = 1, n = C, A = a E C, and Zo = 0, a solution to (*) is J(z) = eaz, which 
can be represented by the power series 

One remarks that every term of this series can be obtained from the preceding 
one by multiplying it by a and then taking the primitive of the term thus 
obtained, normalized by the condition that it vanishes at the origin. We copy 
this procedure in the general case (*). Introduce a sequence offunctions in n 
with values in M(n, IC) by the recurrence formulas: 

<Po(z) = id 

<PI (z) = f A (u)<po (u) du 
r. 
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<fln+1 (z) = f A(u)<fl.(u) du, 
y% 

where yz is an arbitrary path joining Zo to z in n. The sequence «(Pn)n;;,O is well 
defined since one can verify by induction that all the <fl. are holomorphic in 
n. (Note that the integration takes place in each entry of the matrix A<fln.) 

5.15.1. Lemma. The series L <fl. is absolutely and uniformly convergent on 
n2':O 

every compact subset of n. Its sum fez) = L <fl.(z) is a holomorphic function in 
ncO 

n solving the problem (>1<). The solution to (>I<) is unique. Moreover, f takes values 
in GL(n,C). 

PROOF. (i) Let us prove the normal convergence of the series over any compact 
subset of n. It is sufficient to do it for closed disks ii(z l' R) s; n. Fix a piecewise 
C1 path y joining Zo to Zl in n, we will take yz = yaz , where az is the line 
segment joining Zl to Z in ii(Zl,R). Let M be a majorant of IIA(u)11 on 
ii(z I' R) u y. Let Ml be a majorant of MlyAu)1 when 0 :::;; u :::;; 1, Z E ii(Zl, R). 

F or a fixed Z E fJ(z l' R) we introduce now the auxiliary sequence of func
tions ip. : [0, 1] -+ M(n, C) defined by 

ipl (t) = id 

ipl (t) = t L A (yAts))ipo{ts)y;(ts) ds 

ipn+1 (t) = t L A(yAts»ipn(ts)y~(ts) ds. 

Using that s f-+ yAts) is a path joining Zo to yAt), one proves by induction that 

o :::;; t :::;; 1. 

We can estimate the norm of the ipn(t) for 0:::;; t :::;; 1 as follows: 

II ipo(t) II = 1 

II ipl (t) II :::;; tM 1 

It t2M2 
Ilip2(t)11 :-:; t 0 (ts)Mt ds = -2 ~ 

t 3M 3 Il (tM )3 
Ilip3(t)11 :::;; --T 0 s2 ds = ~+ 
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and, by induction, 

(tM )" 
11 - (t) < _1_ 

qJn - " n. 

Therefore, 

M" 
IlqJn(z)11 ~ ~f, 

n. 

since qJn{z) = cfn(1). This implies that the series L qJn converges normally in 
I'I~O 

13(z l' R). Hence, fez) = L qJ.(z) is a holomorphic function in Q with values in 
n~O 

M(n, C). 
(ii) We also have that the series A(z)f(z) = L A(z)qJn(z) converges nor-

.;;,0 

mally in every compact subset of Q. Therefore, it can be integrated term by 
term over any path yz: 

f, A (u)f(u) du = Jo fz A(u)(Pn(u) du = "~o qJn+l (z) = f(z) - qJo(z}. 

Hence 

f(z) = id + f A (u)f(u) du, 
Yz 

which ensures that f solves the problem (*). 
(iii) The same reasoning shows that there are solutions in Q to the (adjoint) 

problem 

{
gl(Z) = ~g(z)A(z) 
g(zo} = rd. 

(**) 

(Just note that introducing h = gl = the transpose of g, and B = - At, one 
turns (**) into the problem (*) for hand B instead of f and A.) 

Let now f be any solution of (*) and 9 any solution of (**). Then 

(gf)' = g'f + gf' = -gAf + gAf = O. 

Therefore, the matrix-valued holomorphic function gf must be constant. 
Evaluating at Zo we obtain 

gf = id. 

This implies that f takes values in GL(n, C). It also implies that the solution 
is unique. Namely, fix a solution g of (**), then any solution of (*) must be 
pointwise the inverse of g(z). 0 

5.15.2. Definition. The resolvent of the differential equation (*) is the func
tion R: Q x Q ..... GL(n, C) defined as follows: for Zo E Q fixed, the function 
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Z I-> R(z, zo) is the unique holomorphic function in n with values in M(n, q 
d 

such that R(zo, zo) = id and dz R(z, zo) = A(z)R(z, zo)· 

5.15.3. Proposition. The resolvent satisfies the following properties: 

(1) R(zo,zo) = id, (zo En); 
(2) R(Z2,zdR(Zl,ZO) = R(Z2,ZO) (ZO,Zl,Z2 En); 
(3) (R(Zl,ZO>r 1 = R(ZO,Zl) (ZO,Zl En); 

d 
(4) dz (R(z, zo» = A(z)R(z, zo) (z, Zo En). 

The function ZOI->R(Zl'ZO) is holomorphic in n for every Zl fixed in n. 
Furthermore R is a continuous function of both variables. 

PROOF. (1) and (4) are just the definition of R. (3) is an immediate consequence 
of (2) and (1) since R is invertible. To show (2), one only needs to verify that 
fez) = R(Z,Zl) (R(ZO,Zl>r 1 is a solution of (*), which is immediate. Hence 
fez) = R(z, zo) and (2) holds. 

It follows from (3) that for z 1 fixed the function Zo I-> R(z 1, zo) is also 
holomorphic in n. Namely, R(Zl' zo) = (R(zo, Zl>r\ R(ZO,Zl) is holomorphic 
in Zo by definition and its inverse is obtained by taking rational operations in 
the entries of R(ZO,Zl)' 

Finally, the continuity in both variables is also a consequence of (2) and 
(3). Namely, fixed Zo En. Then 

R(Zl,Z2) = R(Zl,Zo)(R(Z2,ZO>r\ 

and both functions are continuous in their first variables. In fact, this argument 
shows that R is a holomorphic function in both variables simultaneously, i.e., 
its entries can be given locally as power series in two variables. D 

We are now ready to solve the original inhomogeneous differential equation. 

5.15.4. Theorem. Let n be a simply connected open subset of e, A: n -+ M(n, q 
a holomorphic matrix-valued function, B : n -+ en a holomorphic vector-valued 
function, Zo E n, and Xo E en. Then, there exists a unique vector-valued holo
morphic function f: n -+ en solving the linear differential equation 

Sf'(z) = A(z)f(z) + B(z) (z En) 

Lr(zo) = xo' 

This function is given by the Green-Lagrange formula 

fez) = R(z, Zo)Xo + {z R(z, u)B(u) du, 

where Yz is a path joining Zo to z in n. 

(t) 
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PROOF. Let us assume (t) has a hoI om orphic solution f. Define an auxiliary 
vector-valued function g by 

g(z) = R(zo, z)/(z), 

which is holomorphic in n by the previous proposition. We also have 
g(zo) = /(zo) = xo, and, using item 3 in Proposition 5.15.3, 

/(z) = R(z, zo)g(z). 

Hence 

I'(z) = (~R(Z' zo») g(z) + R(z, zo)g'(z) = A(z)R(z, zo)g(z) + R(z, zo)g'(z) 

= A(z)/(z) + R(z,zo)g'(z). 

Therefore, 

g'(z) = (R(z, zoW1 B(z) = R(zo, z)B(z). 

Integrating this equation, we obtain 

g(z) = Xo + f R(zo, u)B(u) duo 
Y. 

Conversely, if we define g by the last integral, then the reasoning can be 
reversed and fez) = R(z, zo)g(z) solves (t). Moreover, it is now immediate that 
/ is represented by the Green-Lagrange formula. 0 

Remarks. (1) If B = 0, we say that the equation (t) is homogeneous. The 
solution / such that /(zo) = Xo is then simply given by /(z) = R(x, zo)xo. 

Finding aU solutions of the homogeneous equation now becomes the 
question of finding the resolvent R(z, zo) as a function of z for a fixed-value 
Zo E n. For Z1 En, we have 

R(Z,Zl) = R(z,zoHR(zl>ZOW1. 

(2) The function {. R(z, u)B(u) du is just the solution of (t) for the case 

Xo = O. In this form, the solution / of (t) appears as a sum of a particular 
solution with initial condition zero and a solution of the homogeneous equa
tion. If we have another particular solution, we reduce the problem (t) to 
a different homogeneous problem. 

(3) A system of solutions /1' ... , /n of the equation I' = A/ whose initial 
conditions j~ (zo) = Xo, 1, , , ., j~(ZO) = xO,n form a vector space basis of en, is 
said to be afundamental system of solutions. The matrix W(z) = (/1 (z), ... ,fn{z» 
whose columns are the jj is called a fundamental matrix. 

Since for any ZEn we have 
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we conclude that the matrix W is invertible everywhere in n. It follows that 
the vector space of solutions off' = AJ has dimension exactly n. Furthermore, 
for any fundamental matrix we have 

R(z, zo) = W(z) W(ZO)-l. 

Hence, the Green-Lagrange formula for the solution J of (t) can be written 

J(z) = W(z) W(ZO)-l Xo + W(z) f (W(uW 1 B(u) duo 
Yz 

(4) If we let A(z, zo) = det(R(z, zo» we have the relation 

A(z,zo) = exp({z CI;(A(U»dU). 

In fact, leUp(z) = R(z, zo) and c5(z) = A(z, zo). For ZEn and Ihl small we have 

c5(z + h) = c5(z)det(q>(z + h)q>(Z)-l), 

and 

q>(z + h) = q>(z) + hq>'(z) + o(h) = q>(z) + hA(z)q>(z) + o(h). 

Hence 

det(q>(z + h)q>(zrI) = det(id + hA(z) + o(h» = 1 + h Tr(A(z» + o(h), 

the last formulajust follows from the properties of the determinant. Therefore, 

c5(z + h) = c5(z) + h Tr(A(z»c5(z) + o(h). 

Letting h --+ 0 we conclude that c5 satisfies the scalar differential equation 

It follows that 

{ c5'(Z) = Tr(A(z»c5(z) 

c5(zo) = 1. 

A(z, zo) = c5(z) = exp ({z Tr(A(u» dU)' 

In terms of a fundamental matrix W this can be rewritten as 

det(W(z» = det(W(zo» exp ({z Tr(A(u» du ). 

We can now show some elementary consequences of these remarks for 
scalar linear differential equations of order n in a simply connected open set 
n ~ c. This means an equation of the form 

pn) + aden-I) + ... + an-d' + a.f = b, (c» 

where an, ... , an, bare holomorphic functions in n, and the holomorphic 
function J is the unknown we are looking for. 
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To such a function I one associates the vector-valued function F := (fJ', 
... ,pn-l), where we consider F as a column vector, F: n -> en. Clearly 
F' = (f'J", ... ,pn), hence the equation (c» is equivalent to 

F' = AF + B, 

with A E M(n, C), 

o 

A:= 

and BEen, 

It is easy to see that if<D=(ul, ... ,un ) is a solution of (C>C», then U 1 is a 
solution of (c» and U z = u~, .•• , Un = u(n-l) 

Hence, every solution I of (c» is completely determined by its initial 
conditions 

which can be chosen arbitrarily. Therefore, as in the real case, we have that 
the space of solutions of the corresponding homogeneous equation (i.e., (c» 
with b = 0) has dimension n. As earlier, the problem of solving (c» reduces to 
the study of the resolvent R(z, zo), or what is the same, to a fundamental matrix 
W for the solutions of the homogeneous equation. In this case we have that 

W= 
In ) j~ . , 

j~(~-I) 

for a system of solutions II' ... , /" of (c» whose initial conditions at a 
point Zo form a basis of en. Its determinant, W = det W, is usually called the 
Wronskian of the functions II' ... , j~. From part (4) of the previous remark, 
we have the relation 

w(z) = w(zo) exp ( - {z a l (u) du ), 

since Tr(A) = -a 1 in this case. 
The formula of Green-Lagrange specializes to the following: a solution qJ 
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of (I» with given initial conditions can be written as 

cp(z) = CPo(z) + _,_1_ 2: .!j(z) f b(S)WiS)exp(f a1(U)dU)dS, 
~(Zo) 1 $J:5,n Yz '/!s 

where: 

(i) CPo is the solution of the homogeneous equation satisfying the given initial 
conditions; 

(ii) j~, ... , j~ is a fundamental system of solutions and w is its Wronskian; 
(iii) Wj(s) is the determinant of the matrix obtained replacing the jth column 

of W by the vector (0, ... ,0, 1). 

This formula can be derived very simply by specializing the discussion in 
(1), (2), and (3) of the previous remark. In fact, from (2) we know that the 
solution F of (I> 1» with zero initial conditions is given by 

Iz R(z, s)B(s) ds = W(z) Iz (W(sW1B(s)ds. 

To compute (W(S»~1 B(s) we observe that B(s) = b(s) (0, ... ,0,1) = b(s)E. We 
can apply Cramer's rule to compute (W(S»-l E which is precisely the solu
tion C of the equation WC = E. This observation yields Cis) = w/s)jw(s) = 

w)s) exp (Is a1 (u)du ) I w(zo)· Finally, we recall that we only need to compute 

the first component of F to obtain the term in cP involving the ij. In practice 
one just writes cP = Y + CPl with 

y(z) = L: Ck (Z)fk (z), 
1 :$;k~n 

and CPt a convenient solution of the homogeneous equation. The unknown 
functions Ck are such that 

" (~~(s)') (~) 
Jt(s): = 0 . 

C~(s) ! b(s) 

One solves this linear system of equations in the unknowns C~, ... , C~ and then 
integrates. This is usually called Euler's method of variation of parameters. 

We will say now a few words about linear differential equations of first 
order on a Riemann surface. 

5.15.5. Definition. On a Riemann surface X we call a linear differential homo
geneous equation of first order a relation of the form 

df= A·f, 

where A E M(n,Q(X» is a matrix of holomorphic I-forms, A = (aij)ij, 
au E Q(X) and f : X -+ IC" is the holomorphic solution of this equation. 
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Remark. In a local chart (V, qJ) this equation becomes 

df 
dqJ = Bf, 

where A = B dqJ, B is a holomorphic matrix. 

5.15.6. Proposition. Let X be a simply connected Riemann surface, 
A E M(n,fl(X)), Zo E X. For every XI) E Cn there is a unique holomorphic map 
f: X -+ C" such that 

{
df = Af 

f(zo) = Xo' 

The family SA of all holomorphic solutions of the equation df = Af is a complex 
vector space of dimension n. 

PROOf. By the previous remark and Theorem 5.15.4 there is a simply con
nected Vo open neighborhood of Zo and a unique holomorphic solution 
f: Vo .-> e of df = Af with f(zo) = Xo. This already shows that if there is a 
solution in X to our equation, it must be unique. We need only to show that 
the solution f defined in Vo can be analytically continued along any path y 
in X starting at zoo Once this is done, the corresponding global function, still 
denoted f, will satisfy df = Af everywhere by the principle of preservation 
identities under analytic continuation. 

We can find simply connected coordinate patches Vj and a partition 
0= to < 11 < ... < tn = 1 such that y([tj- 1 , tj]) S; ~-1 for j = 1, ... , n. In such 
[~, for every xi E e there is a unique solution fj of df = Af in ~ such that 
jj(y(tj)) = Xj' Therefore, starting with fo = f we can construct the Ii by recur
rence in such a way that jj(y(t) = jj-I (y(t;). Therefore jj and fj-l coincide in 
the connected component of ~ n [~_I containing y(t). This shows the exis
tence of the analytic continuation of f along y. 

The map f E SA H- f(zo) is linear and bijective by the preceding part, hence 
dim SA = n. 0 

5.15.7. Corollary. Let p: X -+ X be the universal covering space of a Riemann 
surface X. Let A E M(n,fl(X)), Zo E X, Yo E p-l(ZO), Xo E e. There exists a 
unique holomorphic solution f: X -+ e of the equation df = (p*A)f such that 
f(yo) = Xo· 

Let X be a Riemann surface. A E M(n, fl(X» and p: X -+ X the universal 
covering space of X. Let Sp*A be the space of solutions of df = (p* A)f in X. 
Let fl' ... , fn be a basis of Sp*A- The fundamental matrix IlJ = (il"" In) 
satisfies the differential equation dllJ = (p* A)IlJ. For a E G(p) ~ n 1 (X) we set 
a·IlJ:= IlJ 0 a-I. Then d(a·llJ) = (p*A)(a·llJ) and it is also a fundamental 
matrix. Hence, there is a matrix T(a) E GL(n, C) such that a·1lJ = IlJT(a) 
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(product of matrices on the right-hand side of this equation). Now, let (T, 
r E G(p), then 

cI>T(a 0 r) = ((T 0 r)' <D = (T' (r' cI» = a' (<DT(r» = «(T' cI»T(r) = cI>T«(T)T(r), 

hence a f-+ T(O") is a group homomorphism from G(p) into GL(n, q. 
Conversely, if T: G(p) -+ GL(n, q is a group homomorphism and 

<D: X -> GL(n, q is a holomorphic map such that 

for every 0" E G(p), then the matrix (dcI»cI>-l is invariant under G(p), since 

a' (dcI»<D- 1 = (dcI>T(O"»(cI>T(O"))-l = (dcI»cI>-l, 

(tt) 

hence it is of the form p* A, with A E M(n, !l(X». Therefore, cI> is a fundamental 
solution for the differential equation df = (p* A)f 

A matrix satisfying the equation (tt) for the representation T of G(p) into 
GL(n, q is called an automorphic matrix. 

Let us consider now the special case 

X = {z E IC : 0 < Izl < R}, 

where 0 < R soc;. We take X = {w E IC: Rew < logR} and pew) = exp(w) 
as a concrete realization of the universal covering space of X. The group 
G(p) ~ n1 (X) is isomorphic to lL. On X the function L(w) = w is such that 
exp 0 L = p. We choose the isomorphism between G(p) and lL in such a way 
that 0"0 = 1 E lL acts by 

0"0' L = L 0 0"0 1 = L + 2ni, 

so that 0"0 1 arises out of a loop going once counterclockwise in X around the 
origin. 

Let now A E M (n, !l(X» and cI> a fundamental matrix of solutions of df = 
(p* A)f in X. The behavior of cI> as an automorphic matrix is determined by 
the matrix T E GL(n, q such that 

0"0' cI> = <DT 

In this case, T is called the automorphic factor. If 'I' is another fundamental 
matrix there is S E GL(n, q such that 'I' = cI>S, Hence 

0"0' 'I' = 0"0' (cI>S) = (0"0' cI»S = <DTS = 'I'(S-l TS). 

Therefore, by a convenient change of fundamental matrix we can assume that 
the automorphic factor T has the Jordan canonical form. 

5.15.8. Proposition. Let T E GL(n, q be given and B E M(n, q such that 

exp(2niB) = T. 

Then the matrix-valued fimction cI>0 = exp(BL) is a fundamental matrix in 
X = {w E IC: Rew < logR} for the equation 
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df = p* ( ~ dz )f' 

associated to the differential equation 

f'=l!f 
z 

on X = {z E C: 0 < I z I < R 5; oo}. 
The matrix <1>0 has T as automorphic factor 

ITo . <1>0 = <1>0 T, 

with ITo = 1 E 7L ~ G(p), ITo. L = L + 2ni, L(w) = w. 

PROOF. It is very simple. In the coordinates w, the differential equation in X 
is just f'(w) = Bf(w). We have <l>o(w) = exp(Bw), hence <I>~ = B<I>o, which 
shows that <1>0 is a fundamental matrix. Furthermore, 

(IT' <l>oHw) = exp((w + 2ni)B) = exp(wB)exp(2niB) = <l>o(w)T. D 

Remark. If T i= iden, there is no holomorphic function f: X ~ C, f =/=. 0 such 
B 

that f' = ~ f If not, we would have 
z 

p* df = dU 0 p) = p* (~dZ }P*f) = (Bdw)(p*f), 

hence the function g = p* f is 2ni-periodic, invariant under ITo, and would solve 
g' = Bg. This is impossible since it implies exp(2niB) = iden. 

5.15.9. Proposition. Let X = {z E C: 0 < Izl < R} (0 < R 5; (0), p: X ~ X 
its universal covering space, X = {w E C : Re w < log R}, p(w) = exp(w), and 
A: X ~ M(n, q a holomorphic map. The differential equation in X 

f' = Af 

has a fundamental matrix <I> in X of the form <I> = '1'<1>0' with <l>o(w) = exp(wB) 
for some B E M(n, q and '1': X ~ GL(n, q holomorphic. 

PROOF. Let <I> be a fundamental matrix for the solutions in X of df = 
(p*(A dz»f (That is, df(w) = A(eW)e"'f(w)dw.) We have ITo' <I> = <l>T for some 
T E GL(n, q and ITo = 1 E:l. the generator of G(p). We can find BE M(n, q 
such that T = exp(2niB) and hence, the function <l>o(w) = exp(wB) satisfies 
ITo' <1>0 = <1>01: Let 'I' = <1><1>01 , then IT' 'I' = '1'. This proves the proposition. 

o 

Remark. In other words, any fundamental matrix <I> of the preceding equation 
can be written as a product of a very simple matrix, <l>o(w) = exp(wB), and a 
matrix 'I' that can be developed in a Laurent series in X about z = o. 



594 5. Analytic Continuation and Singularities 

S.lS.Ht Definition. The origin is said to be a regular singular point or a 
Fuchsian type singularity for the differential equation I' = Af in X, 
A E M(n, J¥'(X)), if the matrix 'I' from Proposition 5.15.9 has at most a pole 
at z = 0. 

5.15.11. Proposition. Let X = {z E C: ° < Izl < R} (0 < R s co). If the 
matrix A E M(n, cn"(X)) has at most a pole of order 1 at z = 0, then the origin 
is a regular singular point for the differential equation 

I' = AI 

PROOF. The proof needs two lemmas. 

5.15.12. Lemma. Let k ~ 0, F : ]0, ro] -+ ]0, co [be a function of class C1 such 
that 

I kF(r) IF (r)1 s -.~, 
r 

0< r S roo 

Then 

0< r S ro. 

PROOF. By hypothesis 

d F'(r) k 
-(logF(r)) = ............... ~ --. 
dr F(r) r 

Integrating in [r, ro] we obtain 

F(ro) (ro) log-· ~ > -klog -
F(r) - r ' 

which is equivalent to the conclusion of the lemma. o 

5.15.13. Lemma. Let f E J¥'(X). Then 

1~lf(rei6)121 s 2If(re iO )III'(re iO )l. 

PR<X>F. We have I' = df =~£e-ie and I ofl = If'l. Furthermore, Ofr-dz or or u 

hence I ~I = II'I also. This gives 

1 ··~··lfI21 = I l~£ + fall s 2lfllf'l. 
or or or 

o 

We can now return to the proof of Proposition 5.15.11. 



§15. Linear Differential Equations 595 

We already know there is a fundamental matrix clI in X for the equation 
f' = Af in X, and that this fundamental matrix has the form clI = 'PclIo, 
clIo(w) = exp(wB) for some BE M(n, q and '1': X -+ GL(n, q holomorphic. 
We have that the matrix clI satisfies the equation 

d dw clI(w) = zA(z)clI(w) 

That is, 

Dividing by clio we obtain a differential equation in X for the matrix-valued 
holomorphic function 'I' 

Since the matrix A has at most a pole of order 1 at z = 0, there is a matrix

valued holomorphic function A 1 : B(O, R) -+ M(n, q such that A = ~ A l' That 
z 

is, we have 

] 
'P'(z) =~-(A 1 (z)'P(z) - 'P(z)B). 

z 

( )
1/2 

Let, for the moment, the norm ofa matrix (Cij) be Ilq = 2: ICijl2 • With 
t,j 

this definition of norm, there is an ro > 0 and M ;:::: 0 such that 

1I'P'(z)II ~ ~ 11'P(z)11 for 0 < Izi ~ roo 

If we now let e E ~ be fixed, r E JO, roJ, 'I' = ('Pij) and 

F(r) = 11'P(reiO)112 = L l'PkkeiIJW, 
i.j 

we conclude from Lemma 5.15.13 that 

IF'(r)1 ~ 2 L l'Pkj(reie)II'P~j(reilJ)1 
k,j 

~ 211'P(re i6)111I'P'(re i O)11 

2 '0 2 2M 
~ -MII'P(re' )11 =~-F(r). 

r r 

Applying Lemma 5.15.12 we obtain 

( )
-2M 

F(r) ~ F(ro) ~ . 
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That is, 

11'P(re i8 )11 ::; 11'P(roei6 )11 (~rM, 
which implies that 'II has a pole of order at most M at the origin. In other 
words, the origin is a regular singular point for /' = Af in X. 0 

Propositions 5.15.9 and 5.15.11 have the following consequence. 

5.15.14. Proposition. Let Al E M(n, C), A 2 : B(O, R) --+ M(n, IC) holomorphic, 
X = B(O, R)\ {a}. Then the differential equation 

/,(z) = ( ~1 + A 2 (Z»)f(Z) (z E X) 

has n vector-valued linearly independent solutions of the formf;. = (j~, 1"" ,fA.,) 

f(z) = L Pk(log Z)ZA+k, 
k<-O 

where,1. is an eigenvalue of the matrix Al and Pk is a vector-valued polynomial 
of degree ::; n·_· 1, which is not identically zero. The series is absolutely and 
uniformly convergent in every closed disk in X, for every determination of the 
logarithm (and corresponding determination of z.l = eAlogZ). 

PROOF. The singular point z = ° is a regular point by §5.15.11. Hence the 
equation in X 

dg = p* (( ~1 + A 2 (Z»)dZ)9 = (AI + A2(eW )e W )g dw 

has a fundamental matrix <I> of the form 

BE M(n,C) 

where 'II is holomorphic in X. From §5.15.3 we know that 'II has a Laurent 
expansion of the form 

'P(z) = L Zk'Pk = z·-mq,(z) 
k~m 

where 'P(z) is holomorphic at z = ° and mEN. In other words we have 

<I>(w) = 'P(ew)ew(Il-mlJ. 

We can change the fundamental matrix in such a way that B is in Jordan 
canonical form. Then, for each Jordan block of size d x d of the Jordan 
canonical form, there are d columns of the fundamental matrix which will be 
of the form CPl = (CPI, I"", CPI,n), 0 ::; I ::; d - 1, 
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00 

rtl .(w) = e{v-m)w 'Ii:"' P, . (w)ekw 
'1"'1.1 L, 1,1,k , 

k=O 

597 

where v is an eigenvalue of B. In the z-plane (using the same symbol qJI,j by 
abuse of language) 

00 

qJl,j(z) = zv-m L PI,j,k(lOgZ)Zk. 
k=O 

The coefficients P1,j,k are polynomials of degree :::;; I :::;; d - 1 :::;; n - 1. Let us 
consider first the case 1=0. We have that the vector qJo{z) has the form 
qJo{z) = zV-mh(z), h is a holomorphic vector at z = 0, h ¥= 0, Assume h(O) of. 0 
and set ). = v - m. Replacing into the differential equation we obtain 

Z.l."l(U - Adh + z"(h' - A2h) = O. 

Dividing by ZA and letting z ~ 0 we obtain 

(U - Adh(O) = 0, 

so that A is an eigenvalue of A l' If h(O) = 0, h'(O) of. 0, then we can write 
qJo{z) = ZHI h(z) and the same reasoning indicates that A + 1 is definitively an 
eigenvalue of A l' In any case, qJo can be written in such a way that the leading 
power is zv+s, S E 7L, v eigenvalue of B, v + s eigenvalue of AI' Note also that, 
if above A + 1 was not an eigenvalue of AI' then h(O) of. O. The general case 
qJl' I of. 0, follows the same lines. 0 

5.15.15. Remarks. (1) A slightly more careful analysis of the proof of the last 
proposition leads to the following: for every qJ" 0 :::;; I :::;; d - 1, corresponding 
to the same Jordan block of B one has 

00 

qJlz) = ZA L P1.k(lOg Z)Zk, 
k=O 

with the same eigenvalue A of Al and degree Pl,o = I. 
In fact, let us say that we are considering the Jordan block J 1 of B corre

sponding to the eigenvalue VI' i.e. 

o 

.11 is a d x d matrix. Then 
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w2 
W 

2 (d - I)! 

0 w 
ewJ, = e"W 0 1 

0 

w 
0 

Therefore, in the computation of CPo we see that it is the order of the origin as 
a zero of the entry .fr 1 1 (z) of the matrix .fr(z) that counts. If this were k, then 
.frl.l(Z) = aozk(l + .. .'), ao =F 0, and 

CPo = z·,-m+k 0 . (
'ao(1 + "')) 

The first entry of CPl' CPl.l will now have the form 

CPl.l (z) = z·,-m+k[(ao log z(l + ... )) + holomorphicfunction of z] 

= z·,-m+k[(aologz + bo) + (allogz + bl)z + ... ]. 

The entry CPu is given as 

CP1,2(Z) = z·,-m+k(holomorphic function of z) 

and the following ones are zero. 
The same reasoning holds for CP2"'" CPd-l and for the other Jordan blocks. 
It also follows that once we know the form of the solution we can determine 

the shape of the Jordan blocks of B. The eigenvalues v of B are then given as 
A + m - k, with A eigenvalue of Al and some kEN. Since Bis only determined 
up to a matrix C such that exp(2niC) = id, we see that we can take B with 
eigenvalues A + m, A eigenvalue of A l , and the Jordan structure of B obtained 
from the solutions. In the example of the second-order equations which is 
discussed at the end of this section, there is a case where this is not the most 
convenient choice of B. What is much harder is to determine m and the Jordan 
structure of B a priori (see [Ju] and [CoL]). 

(2) One can also prove that if a formal series 

J(z) = z;' L Pk(logz)zk 
k;,oO 

is a solution of the equation from Proposition 5.15.14, then it is convergent 
in every closed disk in 0 < Izl < r, for r sufficiently small. (See, e.g., [Hi2], 
[Hen], and [In].) 

Al 
5.15.16. Proposition. Let A = - + A 2, where AlE M(n, IC) and 

z 
A2 : B(O, p) --+ M(n, IC) is a holomorphic map. Assume that the endomorphism 
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of M(n,q given by Zf--+A1Z - ZA 1 does not have any eigenvalue which is a 
positive integer. Then, there is a unique holomorphic map H: B(O, p) -+ GL(n, q 
such that 

{ 
H'(,) ~ ~ (A, H(z) - H(z)A.l + A , (,)H(,), z E B(O, p)\ {D), 

H(O) = Iden = I. 

Moreover, if a formal proven series L HkZk satisfies the differential equation 
k;e:O 

and the initial condition, then it is automatically convergent and it is the Taylor 
series of H. 

PROOF. Let us assume that a formal power series L HkZk with Hk E M(n, q, 
k;e:O 

verifies the preceding equation and the initial condition. Then Ho = I and 

H' = L kHkz k - 1 , 
k;e:l 

while 

Let us write A2 (z} = L BkZk, with Bk E M(n,q, convergent in B(O,p). Then 
k;e:O 

we must have for k ~ 1 

The hypothesis made earlier on Al implies that this recurrence relation 
determines uniquely the matrices HI' Hz, .... 

We want to show that the formal power series that are obtained from the 
recurrence relations converges in B(O, p) to a holomorphic map with values 
in GL(n, q. From the recurrence we obtain the inequality (with the operator 
norm, so that IIHol1 = 1) 

(k - 211A 11I)IIHk ll :s; II Bk - l II + IIBk-zIIIIH11I + ... + IIBoIIIIHk-111· 

From the Cauchy inequalities for A 2' we know that there is a positive function 
M(r), 0 < r < p, such that 

1 M(r) 
II Bk II :s; 3 ---,:r' 

Therefore, for any k ~ 311 A 111 we have 

II Hk II :s; Mt) ()-=I + 1~~1~1 + ... + II H~_ 211 + II Hk-111). 

Let us fix now r, let 0 :s; t < r. From this inequality we can easily derive 
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IIHIII + 2111H211 + ... + kt k - 1 l1Hk ll 

M(r) k 

~ -(1 T)(IIHoll + tllHIl1 + ... + t IIHkll). 
- tlr 

Introducing the auxiliary function 

then we have 

Ik(t) = IIHol1 + tllHtl1 + ... + tkllHkll, 

, M(r) 
Ik(t) ~ -----·Ik(t), 

(1 - tlr) 
o ~ t < r. 

Integrating in t, this leads to 

Ik(t) ~ M(r) log(l - tlr). 

This inequality dearly implies that L HkZk converges uniformly for 
k;"O 

Izl ~ t < r. Hence it is a holomorphic function in B(O, pl. This proves the 
existence of a holomorphic solution to the differential equation with the initial 
value H(O) = I. It also proves its uniqueness. What we still need to show is 
that H takes values in GL(n, q. 

Consider the system 

{
,I 

K = z{A1K - KA 1 ) - KA2 

K(O) = I. 

The same argument shows this system has a holomorphic solution 
K : B(O, p) -+ M (n, q. Also note that the uniqueness part implies that if 
A2 = 0, then X == I is the unique solution to 

{
X = ~(AIX - XAd 

X(O) = I. 

Consider now the matrix-valued hoi om orphic function KH. It satisfies 
KH(O) = I, and 

(KH)' = K' H + KH' 

1 1 
= -(AIK - KA1)H - KA2H + K-(AIH - HAl) + KAzH 

z z 

From the previous observation it follows that KH == I. Hence H(z) E GL(n, q 
for every z E B(O, p). 0 
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5.15.17. Remarks. (1) Consider now the equation 

I (AI) R = AR = ~ + A2 R, 

with AlE M(n, q, A2 : B(O, p) -+ M(n, q holomorphic. We assume Al is such 
that ZHAIZ - ZA 1 has no eigenvalues in N*. 

Let us write R = Hr, where H is the unique holomorphic function in B(O, p) 
with values in GL(n, q that solves the equation from Proposition 5.15.16. 
Therefore we have 

which imposes on r the differential equation 

, 1 
Hr = ~HAIr, 

z 

and, since H is invertible, this is equivalent to 

r = Alr. 
Z 

From §5.l5.9, we know that r is of the following form. Fix some 
Zo E X = B(O, p)\ {OJ, then 

nz) = exp(log(Z/ZO)AI)r(ZO) 

and has T = exp(2niAI) as automorphic factor. 
If we cut X along a ray which does not contain Zo, we obtain a simply 

connected domain where the resolvent R(z, zo) must be 

R(z, zo) = H(z)r(z), 

with 

that is, 

Hence 

R(z, zo) = H(z) exp(log(z/zo)A dH(zo)-I. 

Let X = {w E IC: Rew < logp}, p: X -+ X, p(w) = e W • The differential 
equation in X 

admits as a fundamental matrix 
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which is of the form 

<I>(w) = H(eW)e A1W = 'I'(w)e A,W, 

Moreover, for (To = 1 E 7L ~ G(p) we have 

«(To' <I>)(w) = (<I> 0 (TOI )(w) = 'I'(w)e(21tHw)A , 

= <I>(w)e21tiAl = <I>(w) T, 

where T is the automorphic factor. 
A fundamental matrix in X is 

W(z) = H(z)eA1I0g z. 

(2) We refer the reader to the classical literature [Hi2], [CoL], and [In] 
for the study of systems with regular singular points of the form f' = Af, 

A = Al + A 2, where Al is such that ZI-+A 1 Z - ZA 1 has eigenvalues in N*. 
z 

We take the opportunity to mention here how the eigenvalues of Al as a 
linear transformation in en and those of the map ad(Al): ZI-+ Al Z - ZA I as 
a linear transformation in M(n, q ~ en2 are related. Let AI' ... , An be the 
eigenvalues of Al (counted with multiplicities), then for the map ad(Ad the 
eigenvalues are all the possible differences Aj - Ak, 1 ~ k, j ~ n. The proof is 
very simple and relegated to the exercises. 

We end this section with a glance into the theory of scalar equations of 
order n with a singularity of Fuchsian type at the origin. 

Let ai' a2"'" an be holomorphic functions in the disk B(O, pl. A differential 
equation of order n is said to be of Fuchsian type if it has the form 

pn)(z) + al (z) f(n-l)(z) + a2(z) f(n-2)(z) + .. , + an-~ (z) f'(z) + an(z) f = o. 
Z Z2 zn I zn 

Note that it could happen that z = 0 is a regular point for this equation if the 
aj vanish to sufficiently high order. Its associated first-order system can be 
written as 

, 1 
F =-AF, zn 

with F = (f,f', . .. ,f(n-l) and 

0 zn 0 0 
0 0 zn 0 

A= 

0 0 0 zn 

-an -zan- 1 -z2an_2 _zn-Ial 
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The equation for the resolvent is 
, 1 

R = ~AR. 
zn 

A priori this system does not seem to fan into the case previously considered, 
but one can reduce it to that case introducing matrices A and r such that 
R = Ar and 

zn-l 0 0 
o zn-2 0 

A(z) = 0 

o o 
z 0 
o 1 

One has detA(z) "1= 0 if z "1= o. We obtain 

R' = AT + Ar' = ~ AAr 
zn ' 

and hence r satisfies the differential equation 

in B(O, p)\ {OJ. Now 

and 

A'= 

Hence 

A- 1 = 

(n - 1)zn-2 0 

o (n - 2)zn-3 

o 

(n - 1) 

o 

o 

o 
(n - 2) 

o 

1 

... 0 

o 

o 
o 

o 
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and 

o 
o 

o 

Hence, r verifies the differential equation 

(" -1) 
1 

r' = 1 0 -(n - 2) 

z 0 

-an -a.- 1 

which is of the preceding type 

0 

-1 

r' = GAl + A2)r, 

with A 2 holomorphic in B(O, p) and 

-(n - 1) 

o 
1 0 

-(n - 2) 

The characteristic polynomial of A 1 is 

det{U - AI) = (A. + n - 1)(A. + n - 2) ... A. 

o 
o 

+ (A. + n - 1)(A. + n - 2) ... (A + 1)a1 (0) + ... 

+ (A + n - l)an - 1 (0) + an (0). 

Therefore, if none of the differences Ai - Aj between the eigenvalues (Ak)~=l of 
Al is in N*, we can apply the preceding study. Letting A. = r - n + 1 allows 
us to rewrite the characteristic equation of A 1 in the more classical form of 
the indicial equation 

r(r - l) ... (r - n + 1) + a1 (O)r(r - 1) .. . (r - Ii + 2) + ... + an-I(O)r + 1I.(O) 

=0. 

What we need then is that none of the differences rj - rk of the roots (rk)~=l of 
the indicial equation belongs to N*. 

The reader will easily find that the indicial equation is the equation that 
has to be satisfied by r E IC in order for the original Fuchsian differential 
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equation to have a solution of the formJ(z) = z'cp(z), cP holomorphic in B(O, p), 
cp(O) -# 0, z' = exp(r log z). 

If certain differences between roots of the indicial equation are integers 
(zero or not) one looks for solutions oftheform L Pk(log Z)ZHk, A = r - n + 1, 

k~O 

where Pk is a polynomial of degree:::; n - 1 (cf. §5.15.14 and §5.l5.15). 
As an example, let us study in more detail the extremely important case of 

Fuchsian type differential equations of second order. 
Let ai' a2 be two hoI om orphic functions in B(O,p), X = B(O,p)\{O}. The 

differential equation in X 

" a l (z), a2(z) ° y + --y + -2-Y = 
z z 

has a fundamental system of solutions (CP1,CP2) of one of the two foHowing 
forms (where '1'1' '1'2 are holomorphic in B(O, p»: 

In the first case 

{
CPl (z) = Z'1'1'l (z) 

CP2(Z) = z'2'1' 2(Z). 

This case occurs, for instance, if the matrix 

(1) 

is diagonalizable with eigenvalues A1' A2' which do not differ by a non
zero integer. The values r1 , r2 are the roots of the indicial equation 
r2 + r(a 1(0) - 1) + a2(0) = O. 

In the other case 

{ CPI (z) = Z''I'l (z) 

CP2(Z) = Z'('I'l (z) log z + 'I' 2 (z», 
(2) 

'I' 2 with at most a pole at O. This case occurs, for instance, if the matrix A 1 is 
not diagonalizable and r is the (double) root of the indicial equation. 

In order to see this, one writes the associated first-order system 

(:D = (_Oal _la 1)(:J 
Z2 z 

= z12 (_Oaz _Z:l Z)(:J = Az~)(::)' 
According to the previous remark we look for a solution (WI' W2) of the form 



606 5. Analytic Continuation and Singularities 

This leads to the new system 

Now 

A- I A,=(I/Z 0)(1 O)=(I/Z 0) 
0100 0 l' 

and hence, 

(u~) 1 ( -1 
u; = -Z -a2 

which shows that this system has Z = 0 as a regular singular point. Let 
Al = 1'(0), 

whose characteristic polynomial is 

det(.H - Ad = ),,2 + (al(O) + I))" + (a2(0) + al(O)), 

and the corresponding indicial equation is obtained by letting r = )" + 1, 

r2 + r(a l (0) - 1) + a2 (0) = O. 

We consider now the two possible cases. 
First case: The roots rl , r2 of the indicial equation do not differ by a nonzero 

integer. 
Then a fundamental matrix of solutions of 

is of the form 

1 -
U' = -AU 

Z 

U(Z) = H(z)eA,logz, 

which leads to a fundamental matrix W of the original system 

, 1 
W =2AW 

z 



§15. Linear Differential Equations 607 

by setting 

W(z) = (~ ~)H(Z)eA'IOgZ. 
Subcase 1 (a): If Al is diagonalizable, with ).1 = r 1 - 1, ).2 = r2 - 1 as 

eigenvalues, up to a similarity, we have 

eA,logz = (z~' Z~2). 

Since a similarity corresponds to a different choice of basis of solutions, we 
find that we have a fundamental system (CP1' CP2) of the type (1) for the original 
second-order scalar equation. 

Subcase 1 (b): If Al is not diagonalizable we must have r1 = r2 = r, 
).1 = ).2 = r - 1. Always up to a change of basis we have 

exp(A 1 10gz) = exp ((~ ~)tOgz) = exp ( (~ ~) logz )exp ((~ ~)IOgz) 

This leads to a fundamental system of the form (2). 
Second case: The two roots of the indicial equation differ by a nonzero 

integer. 
In this case Al is diagonalizable but all we can assert from §5.15.4(i) is that 

there is a matrix B with a double eigenvalue being one of the eigenvalues of 
A 1 and such that 

U(z) = H(z)eBIOgz. 

Then we have a fundamental system as in (1) or (2) according to B being 
diagonalizable or not. 

As an example of application, let us consider in X = C\ {O}, the Bessel 
equations of order p E C, 

Y' ( p2) Y" + z + 1 - Z2 Y = o. 

The indicial equation in this case is 

r2 _ p2 = 0 

with roots r = ± p. The matrix A 1 is 

-1) 
1 . 

If 2p ¢. 71., then we are in subcase 1 (a) since the matrix A 1 is diagonalizable 
and we have two independent solutions of the form zP,¥ 1 (z), z-P,¥ 2 (z), with 



608 5. Analytic Continuation and Singularities 

'1'1' '1'2 entire functions. In the other case, p integer or p half-integer differ in 
the existence of a logarithmic term in the first case and not in the second. To 
show this in detail we use the fact that even if 2p E 7l., there is definitely a 
solution of the form (cf. Remark 5.15.15) 

Co -# 0, 

and we can find the coefficients by substitution into the equation. The equa
tions for the coefficients are 

(r2 - p2)CO = 0 

«r + 1)2 - p2)Cl = 0 

«r + n)2 - p2)Cn + Cn- 2 = 0, n ;;?: 2. 

The first equation is simply the indicial equation since Co -# O. The second 
leads to C1 = 0, and hence to C2n+ 1 = 0 for every n E N by the third equation. 
With n = 2k, the third equation becomes 

4k + (r + k)C2k + C2k- 2 = 0, k;;?: 1, 

or 

( 1)2k C 

C2k = (_I)k 2: k!(r + 1)~ .. (r + k)" 

This procedure could only break down if r + k = 0 for some k E N*. Hence, 
if p ¢ 7l. we can take either choice r = ± p; if p E 7l. we can only take the 
choice r = p ;;?: O. With this proviso, we normalize the coefficients by choosing 
Co = l/qr + 1). We obtain the functions, called Besselfunctions of order p, 

( z)P <Xl (_I)k 
Jp(z) = 2: kf:O 2kk!qp + k + l)z2k. 

It is immediate that the series represents an entire function, and when p ¢ N 
we have two linearly independent solutions of the Bessel equation. (The linear 
independence is an immediate corollary of the obvious linear independence 
of zP, z-p for p ¢ 7l.. What happens when pEN? The relation 

4k( - p + k)C2k + C2k- 2 = 0, 

leads to C2k -# 0 for k < p, but for k = p, it yields o. c2p + C2p- 2 = 0, which is 
a contradiction. Therefore, there can only be one independent solution of the 
form zPh(z), h entire. It must be a multiple of Jp(z) defined earlier. The other 
one will be of the form q>(z) = Jp(z) log z + g(z), g with at most a pole at O. 
Replacing into the Bessel equation we have 

1 (p2) 2 g"(z) + -g'(z) + 1 -""2 g(z) = --J;(z), 
z z z 
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which admits a solution 
00 

g(z) = z-P L akzk. 
k=O 

For the case ofthe Bessel equation of order 1/2 we have that the independent 
solutions of 

are 

and 

We have not touched at all the relations between solutions of differential 
equations in the complex domain and analytic continuation, asymptotic 
developments, special functions, and group representations, Nevanlinna 
theory. Many of these questions are currently being studied in a completely 
different way than what the reader will find in classical textbooks [Hi2], 
[CoL], [In], and [Hen], we return to this subject in the next and last section 
of this book, as well as in the next volume. For the moment, we offer a few 
other references of interest: [Ju], [Del], [01], [Wa], [ViI], [Fi], and [Rub2]. 

EXERCISES 5.15 
1. Given A E M(n, IC) we denote ad(A): M(n, IC) ..... M(n, IC) the map defined by 

ad(A)M = AM - M A. 

We want to show that if AI' ... , Ao are the eigenvalues of A, counted with 
multiplicities, then Aj - Ak' 1 ::5; k,j ::5; n, are all the eigenvalues of ad (A). 

Denote by x a column vector in Co. Then Xl, its transpose, is a row vector. We 
let ej be the column vector representing the jth element of the canonical basis of 
en. The matrices Mjk = ej' e~ form a basis of M(n, IC). 
(a) Show that if A is a diagonal matrix, then the matrices Mjk are eigenvectors 

of ad(A) with eigenvalues Aj - Ak' Hence ad(A) is a diagonal matrix with 
respect to the basis (Mjk)j.k' 

(b) Recall that A is diagonalizable if there is a diagonal matrix D and an invertible 
matrix P such that A = PDP-I (D, P E M(n, IC). Show that in case A is 
diagonalizable, ad(A) is also diagonalizable. 

(c) Let x, y be eigenvectors of A with eigenvalues A, /l, respectively. Show that 
(i) xyl is a nonzero matrix. (Hint: apply this matrix to the column vector y, 

conjugate to y.) 
(ii) ad(A)xyt = (A - /l)xyl. 

(d) Let P be an invertible matrix such that A = PTP-I , T = (tjk ) an upper 
triangular matrix. 
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0) If M E M(n, q is an eigenvector of ad(A) with eigenvalue ct, show that 
N = p-I M P is an eigenvector of ad(T) with eigenvalue ct. 

(ii) Let k be the smallest index such that N ek # O. Show that N ek is an 
eigenvector of T with eigenvalue (t'k + ct). 

(iii) Use (ii) to conclude that ct = )'i - ).)' for some pair of eigenvalues Ai' ;') 

of A. 
(e) What are the eigenvalues of the map S(A): M(n, q ---> M(n, q, 

S(A)M = AM + MA? 

2. Let n be an open set in IC, a E n, II' ... , fn E (!)a' which are linearly independent. 
Assume further that 
(i) for each yEn I (n, a), and each j, the germ fj admits an analytic continuation 

along the loop y to a germ yfj E (0a ; 

(ii) for every }',j as in (i), we have that 

yfj = 111 fl + .. + l1.f. in 0a 

for some constants 111' ... , 11 .. 
Let W be the n x (n + 1) matrix 

and denote by w) the n x n minors obtained by deleting the jth column of W 
Clearly w} E (!Ja for 1 '5,j '5, n + 1. 
(a) Show that Wn + 1 is not identically zero; 
(b) Show that property (i) still holds for every y and every wi; 

(c) Let F = [fl]. Show that for y E 1(1 (0, a) there is a nonsingular matrix Ty 

In 
such that 

yF = T;F. 

(d) Show that if we denote by w.+! the multivalued holomorphic function in 
n defined by analytic continuation of W.+!, then the zeros of W.+l and its 
multiplicities are independent of the branch of W.+l lying above a point 
Zo E O. Let V be multiplicity variety of the zeros of Wn+l' 

(e) Show that aj = w)/w.+!, 1 '5,j '5, n, are germs in ..Ita and admit analytic 
continuation to a (single-valued) merom orphic function in n. 

(f) Let 9 E ~(n) define the multiplicity variety V and denote 

(l '5, j '5, tI). 

Show that if D denotes the following differential operator with holo
morphic coefficients in n: 

n d" 
'- ,,--' -D.- L bn -) n 

)=0 dz 

with bo = g, then every fj is a solution of the homogeneous equation 
Du=O. 
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3. Find the automorphic factor for the fundamental matrix of the system 

f'(z) = DG---~) + G ~)Jf(Z)' 0< Izl < w. 

Show it is not similar to exp (2ni (~ _ ~) ) as predicted by Remark 5.15.7(1) 

Why? 

4. Let rl , r2 be the roots of the indicial equation of the Fuchsian type differential 
equation (with singularity at z = 0) 

/,,(z) + al (z) f'(z) + a2(z) fez) = o. 
z 

(a) Introduce a change of variable z = (k, kEN, g(O = f«(k). Show that g satisfies 
a Fuchsian type equation with corresponding roots kr1 , kr2 for the indicial 
equation. 

(b) What happens when the change of variable is of the form z = cp(o, cp(O) = 0, 
cp'(O) *' O? 

(c) What happens in the case of an equation of order n? 

5. For a system f' = Af, A an n x n matrix holomorphic in the region 0 < R < Izl 
< w, we say that the system is regular or it has a Fuchsian type singularity at 

1 
z = w if the system g' = Bg obtained by the change of variables z ...... - has z = 0 

z 
as a regular point or, respectively, it has a Fuchsian type singularity. 

Show for either of these two possibilities to occur it is necessary and sufficient 
that z = w is a removable singularity for A and A( ex:;) = O. 

6. Consider the differential equation 

pn) + pd(n-I) + ... + pJ = 0, 

where z = ex:; is an isolated singularity for all the coefficients Pj' We say that z = w 
is a singular point of the Fuchsian type if the system obtained by the substitution 

1 
z = - has a Fuchsian type singularity at w = O. Show that this can happen if and 

w 
only if each coefficient Pj is holomorphic at z = ex:; and vanishes at least to the 
order j at that point. (Hint: it is easier to first write p/z) = %(z)/zj.) 

7. Use the definition and criteria given in the text and in Exercise 5.15.6 to classify 
all the singularities of the following equations: 
(a) (1 - Z2)/,,(Z) - 2zf'(z) + v(v + l)f(z) = 0 (Legendre equation) 

(b) (1 - Z2)/,,(Z) - 2zf'(z) + [V(V + 1) - _112. ____ Jf(Z) = 0 (associated Legendre 
1 _:;:2 

equation) 

(c) y" + ~ + (1 - i;) y = 0 (Bessel equation) 

(d) u" + (~ + --~) u' + __ c_ u = 0 (hypergeometric equation) 
z z - 1 z(z - 1) 

(v, Ii, p, a, b, c are complex parameters). 
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8. Let A be an n x n matrix holomorphic except for a finite number of singularities 
at Z I, ... , Zm E C, and, possibly Z = 00. Show that the system J' = Af has only 
Fuchsian type singularities if and only if there are constant nonzero matrices A I' 
... , Am such that 

Moreover, the point Z = 00 is not a singular point if and only if Al + ... + 
Am = O. Could there be a system with precisely one singular point? 

9. For a differential equation 

PO) + pd(O-l) + ... + pnf = 0, 

where the coefficients have singularities only at Z 1, ... , Zm, and possibly, Z = 00, 

show that all the singularities are of Fuchsian type if and only if the Pj are rational 
functions of the form 

p/Z) = ( m )j, 
IT (z - Zk) 

k=1 

qj a polynomial, degqj::;; (m - l)j. 

10. (a) Can there be a second-order equation r + PI J' + pd = 0 without singular 
points? 

(b) Show that ifthere is precisely one Fuchsian type singular point at Z = ZI -.f 00, 

then the equation is 

f" + _z_J' = O. 
Z - ZI 

Find a fundamental system. 
(c) Which is the only equation satisfying (b) when the only singular point is 

Z = oo? 

*11. Write down all the differential equations of second order which have exactly two 
singular points of the Fuchsian type at Z = Zj and Z = Z2, and Z = 00 is not a 

2z + a b. 
singularity. (Ans: r + ( / + ( )2( 21 = 0, with a, b 

(z-ZdZ-Z2 Z-Zl Z-Z2) 
arbitrary constants.) 

*12. Show that every second-order differential equation all whose singularities are of 
Fuchsian type and lie at Z = 0, 1, 00 are of the form 

u"+ -+-- u'+---u=O ( a b) C 

Z Z - 1 z(z - 1) 

(see Exercise 5.15.7(d)). 

13. W hat are the conditions on the parameters a, b, c of the hypergeometric equation 
in order that there is a solution which is a polynomial? 
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(Remark: There are only seven choices of triplets (a, b, c) such that all the 
solutions of the hypergeometric equation are algebraic (see [Hi2]).) 

14. Recall that the Schwarzian derivative {w,z} of a holomorphic function w with 

respect to the variable z is given by {w,z} = (w")' - ~(W")2. Show that ifu l , 
w' 2 w' 

U2 are two linearly independent solutions of the differential equation 

u" + qu = 0 

in a simply connected region n, and w = uJiu2 , then 

{w,z} = zq(z) 

(whenever U2(z) #- 0). 

15. A method, due to Laplace, to solve the differential equation with linear coefficients 

(aoz + bo)u"(z) + (alz + bl)u'(z) + (a2 z + b2 )u = 0, 

is to assume u is of the form 

u(z) = L e"v(t)dt 

for a convenient holomorphic function v and contour C. Show that formally v 
must satisfy the first-order equation 

dv 
P(t) dt - Q(t)v(t) = o. 

Find P, Q in terms of ao, bo, ... , b2 • Rewrite this equation as 

1 dv Al A2 
--=Jl+--+--. 
v dt t - !XI t - !X2 

In case AI' A2 satisfy Re Aj > -1, show that if we take C to be any finite segment, 
then one can define a solution UI of the original equation by this method. Use 
Euler's trick of writing U2 = wU I to find a second linearly independent solution 
(cf. [In] for generalizations). 

§16. The Index of Differential Operators 

We conclude this volume proving some index theorems for linear differential 
equations with holomorphic coefficients in several spaces of holomorphic 
functions and of germs of holomorphic functions. Surprisingly these results 
seem to have escaped the classical textbooks [Hi2], [CoL], [Ha], and [In], 
and only some of the corollaries have found their way there ([In] has the most 
complete account). We follow the article of [Mal]. A slightly different account 
appears in [Schm]. One should consider this section only as an introduction 
to the present renewal of interest on the theory of singular points by authors 
with very different perspectives on the subject, e.g., [Del], [BV], and [Be]. 
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In order not to make this section too long we will assume known the main 
facts about the index of operators [KaJ and sheaf cohomology [BreJ and 
[God]. We will recall here some definitions and basic results. 

5.16.1. Definition. Let E, F be two (>vector spaces and u : E ~ F a linear map. 
We say that u is an operator with index if keru and cokeru have finite 
dimension. The index X(u) is the integer defined by 

X(u) = dim ker u - dim coker u. 

If u : E --+ F and v: F ~ G are operators with index, then v 0 u also is an 
operator with index and 

x(v 0 u) = X(v) + X(u). 

If E and F are Banach spaces, u: E --+ F is an operator with index and 
v : E --+ F is a compact operator, then u + v is an operator with index and 

x(u + v) = x(u). 

Finally, if we have a commutative diagram of (>vector spaces and linear 
applications 

0 0 

j j 
Fl 

u 
E2 -----+ 

;, j j;' 
Fl 

v 
E2 -----+ 

"j j., 
FdEl 

w 
F2/E2 --- --+ 

j j 
0 0 

where the ik are injective, 1tk the canonical projections, and u, v are operators 
with index, then the unique linear map w that makes the diagram commutative 
is also an operator with index 

x(w) = x(v) - x(u). 

Since we are going to use several times this type of diagram, let us indicate 
here how to prove the last identity. 
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One completes the diagram to the following one 

0 0 0 

j j j 
o -----l> keru -----l> El E2 -----l> coker U -----l> 0 

j j j 
o -----l> kerv FI 

v 
F2 -----l> coker v -----l> 0 -----l> -----l> 

j j j 
o -----l> ker W -----l> FilEI 

w 
F2 1Ez -----l> cokerw -----l> 0 -----l> 

j j j 
0 0 0 

In this diagram all the rows and an the columns are exact. A dassicallemma 
of homological algebra (the five lemma) allows us to construct in this situation 
a linear map [) : ker w -7 coker u in such a way that the sequence 

o -7 ker u -7 ker v -7 ker w ~ coker u -7 coker v -7 coker w -70 

is exact. All these vector spaces are finite dimensional, hence one knows that 

dim ker u - dim ker v + dim ker w 

- dim coker u + dim coker v - dim coker w = 0, 

which yields immediately the equality x(w) = X(v) - X(u). 
In this section we denote by (9 the ring of germs of holomorphic functions 

at the origin of C, and /3 the ring of C[[z]] of formal power series. That is, 

/3 = C[[z]] = {I anzn:an E c}. 
n~O 

This is a local ring with the usual sum and multiplication of power series. Let 
vi! denote the maximal ideal of lD consisting of all the formal power series such 
that ao = O. Its kth power .ilk is therefore the principal ideal 

.ilk = Zk(?}. 

The corresponding maximal ideal in (D is denoted Jt = .il n (!). 

Iff = I anz" E /3, we denote by v(f) the smallest integer n such that an # O. 
n2:0 

That is, 
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It certainly exists if I =f. O. The integer v(f) is called the valuation of f. We set 
v(O) = 00. Since we can identify (I) with IC {z}, the subring of 0 of power series 
with nonzero radius of convergent, every element of (!J has also a valuation. 
Clearly, v(f) = 0, I E (!J (resp. 0) if and only if it is an invertible element of (!J 

(resp. (D). In fact, p = v(f) is the smallest integer such that I E ,AP (resp .,lIP), 

the pth power of the maximal ideal. 
In what follows D will denote a linear differential operator 

dm dm - 1 d 
D = a - + a···················· + ... + a- + a 

m dzm m-l dzm-1 1 dz 0' 

aj E (D, 0 ::S; j ::S; m, am =f. 0. 

5.16.2. Proposition. The linear map D : (!J ...... (!J is an operator with index, its 
index X(D, (!J) is given by 

PROOF. We will need first several lemmas. 

5.16.3. Lemma. For 0< r < 00 and pEN, the complex vector space 

Ep(r) := U E o*,(B(O, r» n 6"lB(wo, r))} 

can be given the norm 

11I11 = L max 1/(i)(z}l, 
O<:J<;p Izl9 

which turns it into a Banach space. 

(Here 6"lB(wo, r» is the space of functions whose partial derivatives with 
respect to z and z exist up to order p and are continuous in the closed disk. 
It coincides with those functions which are restrictions to the closed disk of 
functions of class 0' in a larger open disk. The subspace Ep(r) consists of those 
holomorphic functions I in B(O, r) whose derivatives I W , 0 ::S; j ::S; p have a 
continuous extension to the closed disk.} 

PROOF. If (fn)n;;,O is a Cauchy sequence in Ep(r), then for O::S; k ::S; p, the 
sequence (fn(k))n;;,o clearly converges uniformly in B(O, r) to a function 
gk E Eo(r), i.e., a function continuous in the closed disk and holomorphic 
inside. Furthermore, it is clear that for z E B(O, r) we have g~ = gH1 if 
o ::S; k ::S; P - 1. This implies that go E Ep(r) and that (fn)n;;,O converges to
wards go in Ep(r). 0 

di 
5.16.4. Lemma. Let m :2: 1, D' = o<;i~m-l aid;]' aj E E1 (r). Theil 

is a compact operator. 
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PROOF. Let (!..)n~o be a sequence of elements in the unit ball of Em(r). Let 
gn = D'!.., z,' E ii(O, r), then 

gn(z) - gn(') = (z - ') Ii g~(' + t(z - mdt, 

hence 

Ign(z) - gn(OI :s; Mlz - ", 

where M is a positive constant independent of n, due to the hypothesis on D' 
and (fn)n~o. Hence the sequence (gn)n~O is bounded in ii(O, r) and equicon
tinuous. Therefore, by Ascoli's theorem, it has a convergent subsequence in 
~~ D 

From the remarks at the beginning of this section we can now conclude 
that, when aj EEl (r), to show that D : Em(r) --+ Eo(r) is an operator with index, 

it is enough to show this holds for am dd m . Furthermore, X(D : Em(r) --+ Eo(r» = zm 

X ( am :z: : Em(r) --+ Eo(r») (here we assume am E Eo(r». Using the factorization 

dm 
ofamdzm : 

where the last operator is just multiplication by am, we have reduced the 
question to prove the following lemma. 

5.16.5. Lemma. 

d 
(1) The operator dz: Ep+1 (r) --+ Ep(r) has an index equal to 1. 

(2) The operator am: Eo(r) --+ Eo(r) has an index if am does not vanish in 
ii(O, r)\ {O}, its index is - v(am). 

(3) The operator D : Em(r) --+ Eo(r) has index m - v(am). 

PROOF. (1) It is clear that dim ker (!) = 1 since ii(O,r) is connected. On the 

other hand, ! is surjective. Namely, if f E Er(r), let 

g(z) = z t f(tz)dt = J: f(,)d,. 

d 
Then g E Ep+i (r) and dz g = f. 

(2) If am(z) = zkb(z), k = v(am), and b(z) ::F ° in ii(O, r), then it is clear that 
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the operator of multiplication by am is injective, and that its cokernel is 
generated by 1, z, ... , Zk-l. 

(3) This is just a consequence of the preceding two parts. D 

To end the proof of Proposition 5.16.2 we will exploit the fact that for any 
fixed p z 0 and 0 < ro < CJJ one has 

The symbol l~ Ep(r) represents the vector space "inductive limit" of 
O<r<ro 

the Ep(r). This space is the union U Ep(r), modulo the equivalence rela-
O<r<ro 

tion: f E Ep (r2), g E Ep (r2) are equivalent if f = g in B(O,inf(r1,r2». With this 
definition, the fact that (9 coincides with the inductive limit is obvious. 

Given the original operator D, its coefficients were only assumed to be 
holomorphic in a neighborhood of the origin. Let us choose Yo > 0 such that 
all the aj are holomorphic in a neighborhood of B(O, Yo) and am does not vanish 
in B(O, ro) \ {O}. This is possible since am is not identically zero. 

For any r, 0 < y < ro we denote 

the operator D acting on Em(r). We must have dim ker Dr :::;; m; if not in every 
simply connected open subset of B(O,r)\{O} we will have more than m inde
pendent solutions of the homogeneous equation 

which is impossible by the results of the previous section. It follows that, after 
taking ro smaller if necesssary, we can assume that dim ker Dr = N = constant 
for 0 < r < roo In fact, we can even assume we have a basis of N functions in 
Em{ro). Under these conditions the dim coker Dr is also stationary, namely, 
dim coker Dr = N - X(Dr) = N ...... m + v(am). 

Consider now the diagram 

0 0 0 

j j j 
ker Dr -----+ 

Dr 1t'r 

coker Dr -----+ 0 o -----+ Em(r) -----+Eo(r) -----+ 

j' j' j' j' 
o -----+ ker D (9 

D 
(9 

n 
coker D -----+ 0 -----+ -----+ -----+ 

where p denotes the restriction map and p the map obtained from p after 
passing to the quotient. The restriction maps p are dearly injective. 
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We must have dim ker D = dim ker Dr = N for all sufficiently small r. If not, 
let U I , ... , nN +1 E ker D which are linearly independent. Then for 0 < r « 1 we 
have that all uj E Em{r) and Druj = DUj = 0, hence dim ker Dr ;::: N + 1. This 
is impossible, hence dim ker D ~ N. On the other hand the injectivity of p 

implies the reverse inequality. 
We also know that dim coker Dr = M is constant for r small. We would like 

to show that dim coker D = M. Let us show first of all that dim coker D ~ M. 
Suppose there are u1 , ... , UM +1 E (0 such that n(u 1 ), ... , n(uM +1 ) are linearly 
independent. This means that for any choice AI"'" AM +1 E C, not all zero, we 

M+1 

have L )'jUj ¢: 1m D. On the other hand for 0 < r sufficiently small, all the 
j=1 

uj E Eo(r), hence the set {nr(u j ), ••• , nr(uM +1)} £; coker Dr and it is necessarily 
linearly dependent. Hence there are scalars )'1' ... , )'M+1' not all zero, 

M+l 

and f E Em(r) such that DJ = :L AjUj in Eo(r). This clearly implies that 
j=l 

M+l 

L Aj 14j E 1m D, a contradiction. To obtain dim coker D ;::: M we will show 
j=l 

that pis injective. Let us assume there is U E Eo(r) such that p{nr(u» = 0. This 
means that there is f E (!J such that U = Df in some disk B(O, r'), 0 < r' ~ r. 
Let us cover B(O, r)\ {O} with three open angular sectors such that the inter
section of any two of them is nonempty and connected. If S is one of those 
sectors, then it is simply connected and, taking initial conditions at a point 
Zo E S n B(O, r') which coincide with f(zo), ... , pm-l )(zo), we have a unique 
holomorphic function fs in S solving Dfs = U and satisfying those initial 
conditions. Therefore, fs = f in S n B(O, r'), hence fs is an analytic con
tinuation of f to the sector. If S' is another sector, we have a corresponding 
function J.~" fs' = f = fs in S n S' n B(O, 1"). This shows that f has an ana
lytic continuation (still called!) to B(O, r), solving Df = u. If we can prove that 
f E em in B(O, r) then we will have nr(u) = 0, as we wanted to show. Let 
z 1 E DB(O, r), take Zo E B(O, r) very close to z I so that for some p > 0 we 
have ZI E B(zo,p) and am has no zeros in B(zo,p) (it is enough to take Zo 
and p so that IZol + P < 1'0 and IZol - p > 0). Then the linear system asso
ciated to the equation 

1 Df = pm) + ~m-l pm-I) + ... + (10 f = U 

am am am am 

has a resolvent R(z, zo), and if we call F (respectively, B) the vector corre
sponding to f (resp. u/am ), the Green-Lagrange formula can be written as 

F(z) = R(z, zo)F(zo) + (z - zo) L R(z, Zo + t(z - zo»B(zo + t(z - zo» dt. 

Since U is continuous in B(zo, p) n B(O, r), the same holds for the vector-valued 
function B, hence for F. It we start with F(zo) = U(zo), .. ' ,j(m-l)(zo», this 
shows thatf, ... , pm-I) are continuous up to oB(O, r). The equation itself shows 
the same holds for f(m). Hence f E Em(r). 
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Now that we know that dim coker D = dim coker Dn we can conclude that 

o 

The differential operator D also operates in the space of formal power series 
{jJ. It will be denoted by the same symbol D. This operator D still has an index 
but it is not necessarily the same as in (I). 

5.16.6. Proposition. The map D : (fJ --> 8 is an operator with index and 

X(D, (fJ) = max (k - v(ak )). 

O~.;k<:m 

PROOF. Let n = max{k - v(ak ): 0::-:::; k ::-:::; m}, P = {p: p - v(ap ) = n}. For every 
PEP we have ap(z) = zP-nbp(z), bp E (D, and bp(O) +- O. If p ¢; P, we can still write 
ap(z) = zP-nbp(z), but then bp(O) = O. Let k be an integer? q = max {p : pEP}, 
then we have 

Hence 

D(zk) = (' I k(k - 1) ... (k - p +- 1)bp (O)) zk-n +- O(Zk-n+l). 
PEP 

The coefficient of zk-n is a polynomial Q(k) of degree q in k with leading term 
bp(O) +- O. It follows that there is ko E N * such that this coefficient is +- 0 
whenever k ? ko. 

To continue the proof we need the fonowing lemma. 

5.16.7. Lemma. Let k ? ko and let g E (fJ be such that v(g) ? k - n. There is a 
unique f E (D such that v(f) ? k and Df = g. In other words, D induces a bijection 
15 : Jik ---.,. Jik--n for every k ? ko' 

PROOF. Let us write g = ck_nZ k - n +- Ck-n+l zk-n+l +- ... E Jik-n and assume 
there is f = dkz k +- dk+l Zk+l +- ... E .iik such that Df = g. From the previous 
discussion we conclude that 

Df = Q(k)dkzk- n +- O(Zk-,+1). 

Hence, dk is uniquely determined by the equation dk = ck-nQ(k), since Q(k) +- 0 
whenever k ? ko. Writing now 

with r d k4-1 uk+l 
Jk+l= k+1 Z +-"'EJI't , 

we have 

- C' zk-n+l +- ... E ~tk -,+1 
- k-n+l • 
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The previous reasoning implies that dHl = C~_R+1/Q(k + 1). In this way, we 
can determine uniquely all the coefficients of f. Moreover, it is clear that with 
this choice of coefficients we can define an element f E i9 such that D(f) = g. 
Hence, the lemma is correct. 0 

To conclude the proof of Proposition 5.16.6 let us consider the diagram 

0 0 0 0 

j j j j 
o ----> ker jj = 0 --> ..,ik D ..,ik-. ----+ coker jj = 0 ----+ 0 ----+ 

j j j j 
0----+ kerD & D & cokerD ----+ 0 ----+ ----+ ----+ 

j j j j 
0----+ ker i5 ----+ &/..,ik ~ &/..,ik-. ----+ cokeri5 ----+ 0 

j j j j 
0 0 0 0 

where D is obtained by passing to the quotient. The columns and rows being 
exact, we conclude, with the help of the five lemma, that the sequence 

o -+ ker 15 -+ ker D -+ ker 15 -+ coker 15 -+ coker D -+ coker D -+ 0 

is also exact. This one breaks into two short exact sequences (isomorphisms) 

o -+ ker D -+ ker 15 -+ 0 

o -+ coker D -+ coker D -+ O. 

The spaces i9/.ii" and i9/.iiIt.-n are finite dimensional, of respective dimensions 
k and k - Pi. Hence D has an index and, by the last two isomorphisms, D also 
has an index and X(D) = X(D). To compute X(D) we use that 

dim ker 15 + dim 1m D = k, 

and 

dim coker 15 = k - Pi - dim 1m D. 
Therefore, 

X(D) = x(15) = dim ker 15 - dim coker 15 = Pi = max (p - v(ap»' 
OSpsm 

This concludes the proof of Proposition 5.16.6. o 
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Let us consider now the exact sequence 

o -dlJ -+@ -+@/{!)-+O, 

from which we obtain the following diagram. The last row was obtained by 
passing to the quotient, and the notation is, we hope, clear. 

0 0 0 

I I I 
0---+ ker(D, (D) {D D (D coker(D, (D) ---+ 0 ---+ ---+ ---+ 

I I I j 
0---+ ker(D,&) & 

D 
& coker(D,&) ---+ 0 ---+ ---+ ---+ 

j j j j 
0---+ ker(D,&/{D) ---+ &/{D --.£......... &/(D ---+ coker(D,&/{D) ---+ 0 

j I I 
0 0 0 

This gives rise, as before, to an exact sequence 

0-+ ker(D, (I)) -+ ker(D,@) -+ ker(D,@/{!)) -+ coker(D, (!)) -+ coker(D, @) 

-+ coker(D, @/(!)) -+ O. 

The third and sixth terms, ker(D, @/(I)) and coker(D, @/(!)), are the obstructions 
to the maps 

ker(D, (!)) -+ ker(D, @) 

coker(D, (!)) -+ coker(D, @) 

being isomorphisms. For instance, if the first map were an isomorphism, then 
every formal power series solution f of the homogeneous equation Df = 0 
would be automatically convergent in a neighborhood of the origin. 

We can prove the following comparison theorem. 

5.16.8. Theorem. One always has 

(1) coker(D,@/(I)) = 0, and 

(2) dimker(D,@/{!)) = { max (p - v(ap ))} - (m - v(am )). 
O:;;p:;;m 

PROOF. The meaning of assertion (1) is that every f E @ has a decomposition 
of the form f = Dg + h, with 9 E @ and h E (!). To prove this, choose any h E (!) 
(for instance a polynomial) such that v(f - h) ~ ko - n. By Lemma 5.16.7, 
there is 9 E @ such that Dg = f - h. 
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To prove assertion (2), recall that we already know that 

X(D, CD) = m - v(am }, 

X(D, @) = max (p - v(ap ». 
O:s;p:S;m 

From the exact sequence 

0-+ ker(D, CD) -+ ker(D, @) -+ ker(D,@ICD) -+ coker(D, CD) ..... coker(D,@) -+ 0 

we obtain 

0= dimker(D,CD) - dimker(D,@) + dimker(D.@ICD) - dimcoker(D,CD) 

+ dim coker(D, @) = dim ker(D, @ICD) + X(D, CD) - X(D, (9). 

Therefore, the assertion (2) holds. o 
Hence, in order that ker(D,@ICD) = 0 and that, as a consequence, 

ker(D. CD) 8: ker(D, (9) and coker(D, CD) 8: coker(D, @), it is necessary and 
sufficient that m- v(a",} = max{p - v(ap ): 0·::; p ::; m}. In other words, one 
should have, for every p (0::; p ::; m) 

v(ap ) ~ v(am } + p - m. 

We express this fact by means of the following definitions. 

5.16.9. Definitions 

(1) We say the origin is a regular singular point for D if, for every p, 0::; p ::; m, 

v(ap ) ~ v(a",) + p - m 

(2) The index of irregularity of D at the origin is the nonnegative integer 

i(D) = max (p - v(ap» - (m - v(a",)). 
O:s;p:s;'" 

Remarks. (1) A classical example, due to Euler, of an irregular singularity 
is the following: 

2df 
Df= Z dz- f 

One has i(D) = 1 and one observes that D (L n!zn+1) = z. Therefore 
n~O 

L n!zn+1 is a basis of ker(D,@ICD). 
n~O 

(2) One always has dim ker(D, CD) ~ m - v(a",), which is a statement of 
Perron giving a lower bound for the number of independent convergent 
power series which solve the homogeneous equation Df = O. 

(3) If we consider the equivalent matrix form of the operator 
dm am - 1 dm - 1 a 1 d ao . 
~ + ... ~ ........... ~~~~ .. + .. , + - - + -, we have the matrIX 
dz'" am dz m - 1 am dz am 
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0 

0 

A= 
0 
ao 

am 

1 

0 

0 

ao 

am 

0 o 
o 

The condition v(ap) ~ v(am } + p - m means that ap/am has a pole at origin of 
order v(am ) - v(ap) ~ m - p. In particular, the matrix A has a pole of order 
at most m. If we compare with the discussion in the previous section we see 
that a regular singularity in the sense of Definition 5.16.9 is a regular Fuchsian 
singularity in the sense of §5.15. 

We turn now to a global index theorem. 

dk 
5.16.10. Theorem. Let 0 be a connected open subset of e and D = I ak -d k 

O<;k<;m z 
a differential operator of order m with coefficients in ,}f(O). We assume that the 
Betti number b1 = dimeHl(O) < 00 and that the number v(am, O) of zeros of 
am in 0 (counted with multiplicity) is also finite. Then D: ,Jf'(O) -+ £'(0) is 
an operator with index and its index is 

X(D,H(O» = mel - bd - v(am,O). 

PROOF. Let Z be the set of zeros of am in 0 and let 0' = O\Z. Let Ker Dn' denote 
the sheaf of solut!ons of Din 0', that is, its fiber (Ker D)a:= ker{D: (!)a -+ (!)a} 

and Ker Do: = U (Ker D)a. It is a sheaf of complex vector spaces. In 0' we 
aEn' 

have the exact sequence of sheaves 

o -+ Ker Dn , -+ (!) ~ (!) -+ O. 

The existence and uniqueness theorem ensures that Ker Du' is locally iso
morphic to em. 

dm 
5.16.H. Lemma. Let D = am -d + ... + ao be a differential operator of order zm 

m with holomorphic coefficients in a connected open subset U of e such that 
dime HI(U) = /31 < 00 and am does not vanish anywhere in U. Then the operator 
D: £'(U) -+ £'(U) has an index equal to 

X(D,£'(U» = m(1 - /31)' 

PROOF. We will use here freely the main results and notation from the theory 
of cohomology with supports ([God], [Bre]). We shall denote by Dw the 
operator D acting in the space ,Jf'(W). 

We can assume 0 E U. Let U* be the open subset of S2 obtained from U 
1 

by the inversion z 1-+ w = ..... Using the same reasoning as in Theorem 3,3.1 we 
z 
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can find PI closed straight line segments in C, L 1, ... , L p" pairwise disjoint, 
joining a point of the boundary of the holes of V* to a point of the exterior 
boundary of V* in such a way that V*\(LI U··· U Lp,) is simply connected. 
Furthermore, every L j is entirely contained in V* except for its endpoints. We 
can also find simply connected open sets V!, ... , Vl" pairwise disjoint, 
such that L j n V* ~ V/ ~ V* and each V/\Lj has exactly two connected 
components, which are also simply connected. It follows that we can find 
smooth Jordan arcs (in fact, arcs of circle or straight line segments) FI , ... , Fp" 
pairwise disjoint, contained in V except for their endpoints, V\(F1 U'" U F(J,) 
is a simply connected open set, and such that the corresponding simply 
connected open subsets ~ of V are such that Fj n V ~ ~ and ~\Fj has exactly 
two connected components which are also simply connected. From the exact 
sequence of sheaves of vector spaces over V 

O~KerDu~(I)~ (I)~O, 

with Ker Du locally isomorphic to em, we can obtain the following com
mutative diagram whose columns represent exact sequences of cohomology 
with supports in F = U Fj. 

l.,,;j.,,;p, 

0 0 0 

j j j 
0----+ rF(V, Ker Du) rF(V, (I) Du 

rF(V,(I) ----+ ----+ 

j j j 
o ----+ r(V,KerDu) r(V,(I) Du r(V,(I) ----+ ----+ 

j j j 
0----+ r(V\F, Ker Du) ----+ r(V\F, (I) ~ r(V\F, (I) 

j j j 
Hi(V,KerDu) Hi(V,(I) Du Hi(V,(I) ----+ ----+ 

j j j 
Hl(V, Ker Du) Hl(V,(I) Du Hl(V, (I) ----+ ----+ 

Theorem 3.2.2 can be stated as saying that HI(V, (I) = O. As usual, r(V, (I) 
(resp. rF(V, (0» represents the sections in V of the sheaf (I) (resp. sections with 
support in F). It is clear that rJ?(V, Ker DO> = rF(V, (0) = 0, since no nonzero 
holomorphic function can have support in F. Introducing these facts in the 
previous diagram, we obtain 
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o o o 

0-
1 1 1 

r(U,KerDu) - r(U,l!J) ~ r(U,l!J) 

0-
lID 1 

r(U\F,KerDu) - r(U\F,l!J) ~ r(U\F,l!J) 

1 _ 1 1 
H;(U, Ker Du) - H;(U, l!J) ~ H;(U, l!J) 

1 1 
o o 

Since U\F is simply connected, we have that r(U\F, Ker Du) ;;;: em. We 
can apply now the five lemma, as done several times before, and obtain the 
exact sequence 

0-+ r(U,Ker Du) -+ em -+ H;(U,Ker Du) 

-+ coker Du -+ 0 -+ 0 -+ coker Du -+ O. 

Then, the alternating sum of the dimensions is 

dimer(U,KerDu)- m + dime H;(U, KerDu) - dime coker Du = O. 

To compute dim H;(U, Ker Du) we use the excision theorem which states that 

H;(U, Ker Du) = EB H;(~, Ker Du). 
1 sisfJl 

Considering, for eachj, sequences analogous to the preceding one, we obtain 

o o o 

o o 
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and the exact sequence 

o ~ r(U;, Ker Du) ~ em ~ r(U;\Fj, Ker Du) ~ e2m ~ Hft/U;, Ker Du) ~ O. 

(Recall that U;\Fj has exactly two components.) Therefore, 

dime Hi (U;.,KerDu.) = m, 
J J 

dime Hi(U, KerDu) = mPl' 
and 

X(D,H(U) = dim r(U, KerDu) - dimcokerDu = m - mPl = m(1 - Pd· 

Hence the statement of the lemma is true. D 

Let us denote by (1' ... , (M the points in Z = {z EO: am(z) = OJ. Let Aj 
be disks centered at (j' pairwise disjoint, Aj <:; O. Let Aj = Aj n 0' be the 
corresponding punctured disks. The map 

R : £'(0') -+ EB (£,(Aj)/£,(Aj)) 
l,;j,;M 

which to every U E £'(0') associates the collection ofdasses (u l , ... , UM) ofulAj 
modulo £,(Aj) is a surjective map; if Uj E £,(Aj), 1 :5: j :5: M are given, the 
Mittag-LeIDer theorem implies that there is a function U E £'(0') and functions 
Vj E J>t?(Aj) such that uj = U - Vi in Aj. Hence R(u) = (u l , ... , uM ). 

It is dear that ker R = £'(0), hence 

£'(0')/£'(0) ~ EB (£,(Aj)/£,(Aj)) 
l,;j,;M 

via the map R. 
The previous lemma implies that XeD, £,(Aj)) = m(l - 1) = O. We also 

have the following lemma. 

PROOF. Clearly v(arn , () indicates the multiplicity of (j as zero of a .... Let ({Jj be 
the radius of Aj . To simplify the notation, we set (j = 0 and eliminate the index 
j whenever it is clear. By definition of the disks Ai' am does not vanish in 
A' = A; = B(O, r)\ {OJ. For 0 < r < rj , consider the diagram (cf. §5.16.2) 

o~ kerDr ~ 
D 

Eo{r) cokerD, ~ 0 Em(r) ~ ---+ 

l' l' l' l' 
o~ kerD ---+ £,(A) ~ £,(A) ~ coker D ---+ 0 

1 1 1 
0 0 0 
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where p is the restriction map and Ii is the induced map. Since the first 
three columns are exact, we have dim ker D ;5; dim ker Dr. Therefore, it is 
enough to prove the reverse inequality dim ker Dr ;5; dim ker D to conclude 
that p: ker D -+ ker Dr is bijective. If the last inequality were not true, let 
N = dim ker D and U1 , ••• , UN+1 be linearly independent functions in E",(r) 
satisfying D(uj ) = O. These solutions have an analytic continuation to N + 1 
linearly independent solutions of Jt"(L\) by the reasoning of §5.16.5. Hence 
we have the contradiction that dim ker D ~ N + 1. 

We are now going to show that 

dim coker D = dim coker Dr. 

Let US start by showing that Ii: coker D -+ coker Dr is injective: If 1i(1t(u)) = 0 
for U E Jt"(L\), it means that p(u) = Dr(f) for some f E E",(r). As earlier, f has 
an analytic continuation to the whole disk L\ and Df = u. Hence 1t(u) = O. 
Therefore dim coker D ;5; dim coker Dr. 

To prove the equality of the dimensions we need to know that 1m D" the 
image of D" is closed in Eo(r) (and of finite codimension). Since Dr is a compact 

perturbation of a",!:, it is enough to show that a",!:: E",(r) -+ Eo(r) has 

a closed image, with kernel and cokernel of finite dimension (cf. §5.16.5). 
Classical functional analysis then shows the same holds for D,. 

Let us now show that a", !: has a closed image. Recall that if g is a 

holomorphic function in Eo(r), then the integral over the straight-line segment 
[O,z] 

i (z - t)",-l 
F(z) := (_ 1)' g(t)dt 

[0,=1 m . 

represents the mth primitive of g, vanishing, together with its (m - 1) first 

d ·· 0 S h d"'!". envatlves at z = . uppose now t at a sequence gn = dz'" converges 1D 

Eo(r) to a function g. The corresponding functions Fn converge in E",(r) to F. 

Hence, the image of E",(r) in Eo(r) under the map !: is closed. Now, if V is a 

closed subspace of Eo(r), then am V is also a closed subspace of Eo(r). The 
reason is that if (am' fn)n:i?l converges to g in Eo(r), !" E V, then using that 
am(z) = zV( ..... lb"'(z), bm(z) '" 0 in 0 ;5; Izi ;5; r, we have 

IIfn - hllo" = max I!"(z) - ft(z)l;5; r- V( ..... llll/bmll o,rllam·fn - a",·hllo,,· 
1=I=r 

Hence the sequence (fn)n:i?l converges to f E V and g = a",' f. In conclusion, 

the image of Em(r) in Eo(r) under the map am :z: is closed, and the same holds 
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for 1m Dr. Moreover, Dr is an operator with index 

X(D,) = X (a ... :z:) = m - v(a",). 

Note that p(Jt'(A» is dense in E ... (r). This can be shown the following way. 
Let I E E",(r). For 0 < s < 1Ietf.(z) = I(sz). The functionf. is holomorphic in 
B(O, r/s), hence f. E E",{r). One has f.Ul(z) = siJUl(sz). By the uniform continuity 
of I W, 0 ~j ~ m, for every 6 > 0 there is an s. E ]0, 1[ such that if Sf < S < 1 
we have 

(for every Izi ~ r,O ~j ~ m). 

This implies that f. converges to I in E",(r) when s -+ 1. Fix now s E ]s., 1[. 
The Taylor series off. converges uniformly in I z I ~ r, hence there is an ". such 
that 

II f.(z) - t IX"(S)Z" II ~ e, 
ft-O WI," 

where 11'11"", denotes the norm in E",(r). Altogether we have 

II I - t IX"(S}Z" II :s 26, 
11-0 m,r 

which shows that even the polynomials are dense in E",(r). 
We are now ready to return to the proof of the inequality 

dim coker Dr ~ dim coker D. Let us assume the opposite. Then, with 
v = dim coker D, we have 1t,(u l ), ..• , 1t,(u.+1) in coker D, which are linearly 
independent. Since 1m Dr is closed and uj ¢ 1m Dr> we can find ~ > 0 such that 
the balls B(uj'~) = {u E Eo(r): 1114 - ujllm,r < c5} are pairwise disjoint and do 
not intersect 1m Dr. The topology of coker Dr is Hausdorff since 1m D, is closed. 
Moreover, coker Dr is finite dimensional, hence its topology is precisely the 
usual Euclidean topology. Therefore we can also choose (i sufficiently sman 
so that if Vj E B{uj , <5) are chosen arbitrarily, the system 1t(v1 ), ••• , 1t(v.+1 ) is stm 
a basis for coker Dr. By the density of p(Jt'(A» in E",(r) we can assume 
Vj E Jt'(A). None of these functions could be in 1m D, if not vi = Dfj and 
D,p(fj) = p(vj ) E 1m Dr n B(uj , <5) which is impossible. Moreover, there cannot 

.+1 

exist constants AI' ••• , A.+1 and IE Jt'(A) such that DI = L AjVj. If not, 
j=1 

.+1 
we would have L Aj 1t,{p(Vj )} = 0, which is also impossible. Therefore, the only 

1 

possibility left is that dim coker Dr = dim coker D. 
It follows that D : Jt'(A) -+ Jt'(A) has an index and 

X(D, Jt'(A» = X(D,) = m - v(am}· 

Let us conclude the proof of Theorem 5.16.10. Since 

Jt'(O'}/Jt'(O) ~ EB (Jt'(Aj)/Jt'(Aj»' 
lsj:,;,,, 

o 
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we have 

X(D,£(O')/£(O)) = L x(D,£(aj)/£(aj ». 
ISjsM 

Consider the following diagram, whose rows and columns are exact: 

0 0 0 

! ! ! 
0 ..... ker(D, Jt"(Q» Jt"(Q) 

D 
Jt"(Q) coker(D, Jt"(Q» ..... 0 ..... ..... ..... 

! ! 
0 ..... ker(D, Jt"(Q'» Jt"(Q') 

D 
Jt"(Q') coker(D, Jt"(Q'» ..... 0 ..... ..... ..... 

! ! ! ! 
o ..... ker(D, Jt"(Q')/Jt"(Q)) ..... Jt"(Q')/Jt"(Q) ~ Jt"(Q')/Jt"(Q) ..... coker(D, Jt"(Q')/Jt"(Q'» ..... 0 

It leads to the exact sequence 

! 
o 

! 

o 
! 

o 

0-+ ker(D, £(0)) -+ ker(D, £(0')) -+ ker(D, £(0')/£(0)) 

-+ coker(D, £(0)) -+ coker(D, £(0')) -+ coker(D, £(0')/£(0)) -+ O. 

From the corresponding relation among dimensions 

0= dim ker(D, £(0)) - dimker(D,£(O')) + dim ker(D, £(0')/£(0)) 

- dim coker(D, £(0)) - dim coker(D, £(0')) 

+ dimcoker(D,£(O')/£(O», 

we obtain, 

X(D,£(O)) = X(D,£(O')) - X(D,£(O')/£(O)) 

= X(D,£(O')) - L X(D,£(aj)/£(aj )) 
ISjsM 

= m(l - Pd - L (X(D, £(aj)) - X(D, Jf'(aj )) 
IsjsM 

= m(l - PI + M) - v(am,O). 

Now bl = dim HI(O) is the number of holes of 0, and PI = dimH1(0') is the 
number of holes of 0'. It is clear that bl = PI + M. Hence 

X(D, Jf'(0» = m(l - bd - v(am,O) 

as asserted by the theorem. o 
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5.16.13. Example. Let D = Z2 ::2 + z :Z + (Z2 - n the operator in n = C* 

defining the Bessel functions of order 1/2. Since we have two independent 

. cos Z d () sin Z h' h . I I d d solutIOns J1/2(z) = ---r(i"" an 1-1/2 Z = -ril' w IC are not smg e-va ue ,an 
Z Z 

no linear combination of them is single-valued either, the space of hoi om orphic 
solutions of Df = 0 in C* must be r(C*,ker D) = {O}. The index of the 
operator is, in this case, zero since b1 = 1 and v(a2' C*) = V(Z2, C*) = o. One 
can conclude that D: Jt"(C*) -+ Jt"(C*) is surjective. One can verify this fact 
directly by the method of variation of parameters as follows. 

The Wronskian w(z) of J1/2 and 1-1/2 is Z-1, The Green-Lagrange formula 
for a particular solution of the equation Df = g gives 

~()_ coszfzsint ()d sinzfzcost ()d 
J' z - --- --g t t + -- --g t t, 

Jz t./i Jz t./i 

where fZ designates a primitive of the integrand. We want to show that f is 

a single-valued function in C*. Change variables t = S2, then 

f
z sin t f,fi sin(s2) 

G1(z) = t./ig(t)dt = 2 ~g(s2)ds, 

f
z cos t f,fi COS(S2) 

G2(z) = t./ig(t)dt = 2 -S-2 -g(s2)ds, 

and both integrands are Laurent series containing only even powers of s. 
Therefore G1(z) = JzH1(z), G2(z) = JzH2(z), where H1, H2 are single-valued 
holomorphic functions in C*. It follows that 

f(z) = -coszH1(z) + sinzH2(z), 

which is single-valued, holomorphic in C*, and solves Df = g. In other words, 
we have shown directly that D : Jt"(C*) -+ Jt"(C*) is surjective. 

EXERCISES 5.16 

d2 1 d ( p2) 
1. Let n = C·, D = dz2 + z If + 1 - Z2 the Bessel operator. For which values of 

the parameter p is dim coker D = 0, 1, 2? 

d 2 d 
2. Let n = C, D = Z2 dz2 - (4z + lz2) dz + (u - "z). For which values of" do we have 

dim ker D = 2? (Hint: Use Frobenius method from the previous chapter. Ans: 
" = -l, ,,= -U, and" = -3L) 

3. Let n = C, find dim ker D and dim coker D when D = Z2 :Z22 + Z2 ~ - 2. 
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Notes to Chapter 5 

The four subjects treated in this chapter, analytic continuation, Dirichlet series, 
Riemann surfaces, and differential equations in the complex domain, have long and 
separate histories, but their freshness and interest as sources of research problems and 
applications remain unabated. Moreover, as we have tried to convey, they are quite 
related to each other. We take the opportunity here to mention a few of these 
relationships and suggest further subjects of study. 

1. The classical theory of Dirichlet series, their analytic continuation, and location 
of singularities, is richer in the case where the exponents Jln ~ n, i.e., then the Dirichlet 
series is approximately a power series (see e.g., [Di], [Man], [Ber], and [Po]). This is 
an unnecessary restriction, as we shall show in the following volume, where we explore 
the relations between singularities, analytic continuation, functional equations, and 
interpolation. 

2. Trying to give the reader a definite direction to proceed from the introduction 
to the theory of Riemann surfaces we gave in this chapter is almost impossible; there 
are too many choices. Nevertheless, we mention a few topics we feel the reader should 
be able to understand with the background provided by this book: (i) a deeper study 
of Riemann surfaces [F 0 J, [FKJ, and [Gu]; (ii) Teichmiiller spaces [Leh]; (iii) algebraic 
curves as an introduction to algebraic geometry [Gri2], [CI], and [GH1]; (iv) dif
ferential geometry of complex manifolds [We] and [Na2]; (v) discrete groups [Bea] 
and [Mas]; and (vi) the study of meromorphic functions in complex tori, i.e., elliptic 
functions and their relation to number theory [Lang]. We will come back to this last 
item in the next volume. 

3. The Schwarz-Christoffel transformations that we studied in Chapter 2 can be 
understood as part of the general fact that a branched covering, e.g., 11: : B(O, 1) -> S2 
leads to a differential equation w" + cpw = 0, written in terms of the Schwarzian 
derivative {It, z}, cp = H 11:, z}. The local sections of It are quotients of a pair of in
dependent solutions of the equation (see [Hi2], chapter 10). 

4. The study of differential equations with singular points leads naturally to quite 
a few subjects that we have barely mentioned in the text. For asymptotic developments 
of solutions there is the excellent textbook [01]. There is a myriad of reasons to study 
special functions, especially hypergeometric functions and their properties. Two very 
different approaches are [Vii] and [Fi]. In the next volume we shall consider hyper
functions and infinite-order differential operators, as well as the relations between 
asymptotic developments and the analytic continuation of solutions of differential 
equations. The concept of resurgence, which has been developed in the last few years 
by [Ee] and others, arises also naturally when considering the analytic continuation 
of solutions of differential equations and functional equations. Finally, let us mention 
that differential equations in the complex domain also have very interesting relations 
with Nevanlinna theory [Hi2J, [Ban], and [Ro] and with dynamical systems [Ar]. 

5. The proofs of the index theorems should convince the reader of the value of sheaf 
theory and homological algebra in complex analysis. Further illustrations appear in 
the theory of several complex variables, especially in the study of analytic varieties 
(i.e., complex manifolds with singularities, see [HoI]). 

6. We are also confident that at the end of this volume the reader can turn to 
complex analysis in several variables and find out by himself the close relation between 
this subject and what we presented here. 
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Notation and Selected Terminology 

#(A) 

A x B:= {(a,b):aEA,bEB} 

Il Ai; pri 
ieI 

N := {O, 1,2, ... } 
N* := N\{O} 
7L 
Q 

IR 
IR* := IR\ {O} 
C 
C* := C\{O} 
(Zn)n;;'l 

log+ x := max (log x, 0) 

UAi 
ieI 

A + B := {a + b: a E A, bE B} 

This symbol is used to indicate that the 
left hand side is defined by the right 
hand side. 
We use this occasionally to indicate 
equality throughout a set. 
Denotes the number of points of the set 
A. Sometimes we write simply # A. 
Cartesian product of two sets A and B. 
Cartesian product of a family Ai of sets 
indexed by i E J; projection onto the 
ith coordinate. 
Set of non-negative integers. 
Set of natural numbers. 
Set of all integers. 
Set of all rational numbers. 
Set of all real numbers. 
Nonzero real numbers. 
Set of all complex numbers. 
Nonzero complex numbers. 
Sequence indexed by N*. 
For x> o. 
Disjoint union of a collection of sets. If 
all Ai ~ X, it means ~hat Ai n Aj = 0 
whenever i of. j and U Ai = U Ai· 

iel ieI 

We use this when A, B are subset of C. 
It makes sense in any additive group. 



Notation and Selected Terminology 

]a,b[:= {x E IR: a < x < b} 

[a,b]:= {x E IR: a::; x::; b} 

] a, b] := {x E IR : a < x < b} 
[a,b[:= {x E IR: a::; x < b} 
Rez,Imz 

z,lzl 

B(zo,r):= {z E C: Iz - zol < r} 

B(zo,r):= {z E C: Iz - zol ::; r} 

A 
A 
aA:= A\A 
Ae := C\A 

Exterior boundary of n 

A discrete in n 

Domain 
d(z,A):= inf{lz - al: a E A} 
d(A,B):= inf{la - bl.' a E A,b E B} 
V(K, e) := {z E C : d(z, K) < e} 
cv(A) 
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Open interval in the real line with end
points a, b. We allow a = -00 or 
b = 00. 

Closed interval in IR. Here -00 < a ::; 
b < 00. 

Semi-closed intervals in IR. 

Denotes the real and imaginary parts 
of the complex number z. 
Denotes the conjugate (resp. absolute 
value) of z E C. 
The open (resp. closed) disk of center 
Zo and radius r, 0 < r < 00. (Generally 
in the complex plane. In chapter 1 we 
use the same notation in IRn). 
For A s; C these symbols denote: 
Interior of A 
Closure of A 
Boundary of A 
Complement of A 
The symbol A is also used to denote 
closure when A is a subset of some 
topological space. In every instance 
this more general meaning is used, it 
will be clear from the context. 
It is the unit sphere in 1R3. We identify 
it to C u { 00 } via stereographic projec
tion. 
When A s; C is considered as a subset 
of S2, this indicates the boundary of A 
relative to S2 (Chapter 4). 
Also in Chapter 4, when A s; n s; C, 
this indicates the relative boundary of 
A in n, i.e., (A n n)\n. 
Boundary of unbounded component 
ofne• 

This means that A has no acumulation 
points in n. 
An open connected subset of IC. 
Distance from the point z to the set A. 
Distance between two sets A and B. 
e-neighborhood of the set K. 
Convex hull of a subset A of C, i.e., 
the smallest convex set containing 
A. 
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A c:c: B 

Exhaustion (Kn)n:2:1 ofQ 

Int(r) 

Ext(r) 

f: A-+B 

ImU) := {f(a) : a E A} 

flC 

f: aHb 

f(z) = O(g(z» when z -+ a 

f(z) = o(g(z» when z -+ a 

r»l 

f is u.s.c. in Q 

f is l.s.c. in Q 

f*,f* 

CC(A, B) 

CC(Q) := CC(Q, q 

f is of class Ck(Q) 

Notation and Selected Terminology 

A is relatively compact in B, i.e., A is 
compact, A ~ B. 
A collection of sets such that Kn c: c: 

Kn+l' U Kn = Q. 
n:2: 1 

When r is a Jordan curve: 
Interior of r, i.e., bounded component 
ofre• 

Exterior of r, i.e., unbounded compo
nent ofre. 
Denotes a function with domain A and 
values in B. 
When f is a function as above, the 
image off. 
The restriction of f to a subset C of 
A. 
Denotes the specific assignment given 
by the function f Sometimes this sym
bol is used to define the function f in 
terms of a concrete formula. 
For numerically valued functions, it 
means that there is a constant C such 
that If(z) I ~ C/g(z)1 for all values of z 
near a. 

It means that lim f«Z» = 0. 
z .... a g Z 

It means r sufficiently large, i.e., r > ro 
for some value roo 
It means f: Q -+ [ -00,00 [ is upper 
semicontinuous. 
It means f: Q -+ [-00,00] is lower 
semicontinuous. 
Upper (resp. lower) regularized of a 
real valued function, defined in 4.4.38, 
only used in Chapter 4. 
Set of all continuous maps from A into 
B. 
Set of all complex valued continuous 
maps in Q. 
Set of all real valued continuous maps 
in Q. 

For 1 ~ k ~ 00, it means that f has 
k continuous partial derivatives in an 
open set Q. For k = 0, it means f is 
continuous. 



Notation and Selected Terminology 

I*OJ 

I*g = go 1 
supp(Jl) 

£'fi(n) 

d 
1\ 

o 1(0 .0) _.=- --1-oz· 2 ox oy 

!:= ~(:X + i :J 
o,a 
Ilxll := Jxi + ... + x; 
(xIY) := X1Yl + ... + x"y" 

grad~:= (:~ , ... , ;~) 
o~ on := (V~ln) 

m(A) 
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It means that there is an open set V2 
n, 1 e Ck(V), V depends on f. 
Spaces of functions and differential 
forms with coefficients in Ck(n), de
fined in §1.2. When k = 00, the index k 
is omitted. 
Pullback (or inverse image) of a form 
OJ by a map f, see § 1.2. 
Composition of two functions. 
Denotes the support of a function, mea
sure, or distribution. 
Denotes the space of functions 1 of 
class Coo in the open set n such that 
supP(f) c: c: n. 
Spaces of functions and differential 
forms in n with coefficients in £'fi(n), 
defined in §1.5. 
Exterior differential, see §1.2. 
Wedge product, see §1.2 

Cauchy-Riemann operator, see §1.2. 

Complex differentials, see §1.2. 
Euclidean length of a vector x = 
(xl, ... ,x,,)e IR". 
Scalar product of two vectors in IR". 

Gradient of a function of n variables. 
Also denoted V~. 

Normal derivative. Here n denotes the 
exterior unit normal on a boundary 
on. 
Divergence of a vector field F = 
(Fl , ... , F,,). 

Laplace operator in 1R2. 

Lebesgue measure in 1R2. In Chapter 4 
we use ml to denote Lebesgue measure 
in IR. 
Lebesgue measure of a measurable 
subset A of 1R2. 
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ds,ldzl 

t(y) 
da := ds/t(y) 
~(O;a,b) 

~(O;a) 

1t 1 (0; a), 1t 1 (0) 
a.p 

iX 
[a.] 
Ba 
d(y) 
Indy(a) 
Zi(O), Bi(O), Hi(O) 

Zl (0; Z), Bl (0; Z), HI (0; Z) 

Iw(y) 

jw(y) 

L(A) 
[G,G] 

Abelianized version of G 
Z(A) 

.9"R(C, IR) 

.9"R(C) 

.9"dc) 

Notation and Selected Terminology 

Arc length measure on a rectifiable 
curve. The second notation is used ex
clusively in C. 
Length of a curve y. 
Normalized arc length measure (4.7.9). 
Family of all paths in 0 starting at a 
and ending at b, §1.6. 
Family of all loops in n, with base 
point a, § 1.6 
Fundamental group of 0 (1.6.8). 
Composition of paths: a. followed by 
p. 
Inverse of a path. 
Homotopy class of a path (1.6.2). 
Constant path at a. 
Degree of the path y (1.6.23). 
Index of y with respect to a (1.8.1). 
de Rham spaces of cocycles, cobound
aries, cohomology (1.5.9). 
Spaces of I-cycles, boundaries and 
homology in 0 with values in Z, §1.9. 
Index of (j E Zl (0; Z) with respect to 
the hole T of 0 (1.10.6). 
Residue of OJ E Zl(O) with respect to 
the hole T of 0 (1.10.9). 
Integral of OJ E Zl(O) along a contin
uous path y (1.7.5). 
Period map. Restriction of Iw to ~(O; a) 
(1.7.9). 
Free group generated by A (1.6.17). 
Commutator subgroup of a group G 
(1.6.17). 
G/[G, G] (1.6.17). 
Family of all f: A .... Z such that 
f(a) "# 0 only for finitely many values 
of A (1.6.19). 
Space of alllR-linear maps from C into 
IR (§1.1). 
Space of alllR-linear maps from C into 
itself (§ 1.1). 
Space of all C-linear maps from C into 
itself (§1.1). 
Space of all alternating IR-bilinear 
maps (§1.1) of 1R2 x 1R2 into C (§1.1). 
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M(n,q 

GL(n,q:= {A E M(n,q,detA =j:. O} 
SL(2, I!\I!) 

SU(t,1) 
.1'1;(0) (0 open) 

Jff(K) (K dosed) 

.It(O) 

Zen, P(f) 

Jff(O)IK := {IIK:f E Jff(O)} 

df f' 
dz' 

Aut(O) 

.It 
M(u, r) := sup u(z), 

Izl=r 

M(u,zo,r):= sup u(z) 
Iz-zol=r 

Ilflloo = Ilflll,ro(K) 

IlfIILP(K):= (1.: If(zWdmYIP 

IIJill K 
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Space of all n x n matrices with com
plex entries. Coincides with the space 
Ie den) of I!:::-linear maps of en into 
itself. 
Invertible n x n matrices. 
Space of an 2 x 2 matrices with real 
entries and determinant 1. 
See Exercise 2.3.15. 
Algebra of hoi om orphic functions in 
the open set 0 £; C. 
Algebra of functions holomorphic in 
a neighborhood of the dosed set K, 
§1.11. 
Space of meromorphic functions on 0 
(1.4. 7) 
Set of zeros (resp. poles) of f E .A(O) 
(2.4.7). 
Space of restrictions of functions holo
morphic in 0 to the (dosed) set K, §3.1. 

Derivative of a holomorphic function 
(2.1.13). 
nth derivative of a holomorphic func
tion (2.1.14). 
nth iterate of a function (2.2.9). 
Spherical derivative of a merom orphic 
function (Exercise 2.3.1). 
Chordal distance between two points 
in S2 (Exercise 2.3.1). 
Group of (conformal) automorphisms 
of 0 (2.3.9). 
Moebius group (2.3.12) . 
Notation used for subharmonic func
tions, (mainly chapter 4). 

L OO norm on a set K £; C. 

LP norm on a set K £; C. 

Total variation of a Radon measure on 
a (closed) set K, §3.1. 
Total variation measure of a Radon 
measure, see [Ru (6.1)]. 
Cauchy transform of a measure (resp. 
distribution) (2.1.5,3.6.17). 
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A(n) := Jt"(0) II ~(n) 

A2(0) = Jt"(0) II L2(n, dm) 
SH(O) 

r:2'(O) 

If 

<T,<p) (TE r:2'(O),<p E r:2(O» 
pv(f) 

Res(f,a) 

o 
Res(f) := oz pv(f) 

b+(f), b_(f), b (f) 

Z(J) : = n Z(f) 

V(I) 
J(V) 
Jt"(V(I» 

A(f,z,r) 
)",(f, z, r) 
vf(r) 
P,(O) 
P(f) 
P,(f) 

UI' 

fel 

Notation and Selected Terminology 

Space of holomorphic functions, con
tinuous to the boundary of 0 (3.7.1). 
Orthogonal space to a subspace H; 
linear functional orthogonal to H, 
§3.1. 
Holomorphically convex hull (in 0) of 
compact set K c c n, §3.1. 
Bergman space (4.8.7). 
Space of subharmonic functions in 0 
(Chapter 4). 
Space of distributions in 0, §3.8. 
Distribution associated to a function 
I E L/oC<O), §3.8. 
See §3.8. 
Cauchy principal value of IE .,1(0) 
(3.6.3). 
Residue of the function I at an isolated 
singularity a (2.5.3). 

Residue distribution (3.6.3). 

Boundary values in the sense of distri
butions; I holomorphic ofT the real 
axis (3.6.10). 
Spaces of holomorphic functions of 
slow growth on 0 (3.6.11). 
For a holomorphic functionf, the multi
plicity of Zo as a zero ofl(3.5.5). 

Zero locus of J ideal s; Jt"(0) (3.5.3). 

Multiplicity variety of an ideal (3.5.5). 
Ideal of a multiplicity variety (3.5.5). 
Space of hoi om orphic functions on the 
multiplicity variety V(I) (3.6.9). 
Area average, 4.3.1. 
Circular average, 4.3.1. 
Number of zeros of I in Izl S; r(4.4.31). 
Poisson kernel for the unit disk (4.3.4). 
Poisson integral of 1(4.3.5). 
Perron modification of 1(4.7.1). 
Harmonic measure (4.4.7). 
Green function of 0 with pole at Zo 
(4.7.8). 
Logarithmic potential of a measure p. 
(4.4.24). 
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UIA 
II 

~E) 

I(JJ) 
C(E) 
V(E) := log(I/C(E» 
T(E) 

p(E) 

C[z] 
C{z} 

C[[z]] 
(!Ja, tSa 

(!J,tS 

G(p) 

645 

Riesz potential of order (X of a measure 
JJ (4.9.6). 
Space of probability measures on E 
(4.9.1). 
Energy of JJ E &,(E) (4.9.1). 
Capacity of a compact set E (4.9.1). 
Robin constant (4.9.1). 
Transfinite diameter of a compact set 
(4.9.14). 
Chebyschev constant of a compact set 
E. 
Space of polynomials. 
Space of convergent power series 
(5.6.1). 
Space offormal power series (5.6.1). 
Space of germs of holomorphic (resp. 
COO) functions at a (5.6.1). 
Sheaf of germs of holomorphic (resp. 
COO) functions in C (5.6.1). 
Sheaf of germs of holomorphic (resp. 
COO) functions on a Riemann surface X. 
Permutation group of a set F (Chapter 
5). 
Group of automorphisms of a cover
ing map p (5.4.6). 
Abscissa of convergence (resp. abso
lute convergence) of a Dirichlet series 



Index 

Abel's summation formula, 127 
theorem, 127 

abscissa of convergence for a Dirichlet 
series, 487 

of absolute convergence, 486 
admissible hole, 88 

open set, 88 
algebraic functions, 559, 565 

complete Riemann surface of, 563, 
570 

analytic capacity, 184 
Analytic continuation, 480 

of a germ fa' 526 
along a path, 525 
principle of analytic continuation, 

108 
analytic functional, 125 
Arakelian's theorem, 275 
area average, 304 
Area theorem, 178 
argument principle, 55 
atlas, 515 
automorphic constants, 579 

factor, 592 
functions, 579 
matrix, 592 

automorphism of a domain, 131 
Avanissian's lemma, 356 

barrier function, 394 
Barrow's rule, 13 
Bergman kernel, 420 

projection, 421 
Bessel function I n , 147 

equation, 607 
Betti numbers, 34 
biholomorphism, 131,516 
Borel-Caratheodory's inequality, 

358 
Borel's lemma, 21 
boundary, regular, 22 

piecewise regular, 27 
boundary values (in the sense of 

distributions), 256 
bounded sets in H(D), 120 
branch point, 560 
branching order, 131 

canonical kernels, 374 
potential, 376 
product of genus q, 384 

capacity, 434 
Caratheodory's theorem, 195 
Cartan-Boutroux's lemma, 360 
Casorati-Weierstrass'theorem, 140 
Cauchy-Goursat's theorem, 102 



Index 

Cauchy-Riemann equation, 91 
inhomogeneous, 221 

Cauchy's inequalities, 107 
integral representation, 99, 103, 104, 

105 
theorem, 94 

Cauchy transform of a measure, 99 
of a distribution, 261 

chart, coordinate patch, 513 
holomorphically compatible, 515 

Chebyschev constant, 446 
chordal distance, 134 
circular average, 304 
class of a holomorphic (or subharmonic) 

function, 352 
coboundaries, Bi, 33 
cocycles, Zi, 33 
commutator group [G,G], 49 
conformal map, 131,516 
conformally equivalent domains, 192, 

516 
covering map, 510 

automorphism of, 510 
branched, 560 
morphism of, 510 
multiplicity (number of sheets), 512 
universal, 550 

critical values of a map, 560 

I-equation, 213 
6-operator, 7, 245 
de Rham cohomology groups Hi, 33 
derivative of a holomorphic function, 

92 
differential forms, 5 

closed,9 
exact, 9 
exterior differential, 8 
integration, I-forms, 13 
integration, 2-forms, 28 
integration of closed forms along con

tinuous paths, 56 
along chains, 79 

locally exact, 82 
pullback, inverse image, 10 
wedge product, 3, 7 

Dini-Cartan's lemma, 330 
Dirichlet problem, 310, 394 

Dirichlet series, 485 
distributions, 279 
divided differences, 237 

Edge-of-the-Wedge theorem, 265 
entire functions, 91 
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of exponential type, 353 
equilibrium, measure, potential, 441 
essential singularity, 141 
exhaustion (regular), 400 
exponent of convergence, 372 

fiber of a map, 508 
Fourier series, 146 
Frechet space, 118 
free group generated by A, L(A), 49 
Fubini-Thnelli's theorem, 303 
Fuchsian type equation, 602 

singularity, 594 
fundamental group, 45 
fundamental matrix of a differential 

equation, 587 
Fundamental Theorem of Algebra, 56, 

167 

Galois coverings, 544 
Gamma function, r, 499 
Gauss' formula, 33 

theorem, 334-
genus of a measure II- S 0, 373 
germs of holomorphic functions, 523 

of C'" functions, 523 
Green function, 398 
Green-Lagrange's formula, 586 
Green's formula, 32 

Hadamard's Three-circles theorem, 338 
factorization theorem, 384 

Hankel contour, 503 
harmonic function, 305 

conjugate, 308 
measure, 399 

Harnack's inequality, 312 
theorem, 313 

Hartogs's lemma, 341 
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heuristic principle, 186 
holes, 85 
holomorphic function, 91, 516 

of slow growth, 257 
holomorphically convex hull, 217 
homology, 72 

boundaries, 71 
chains, 71 
cycles, 72 
support of a chain, 78 

homotopy, 43 
with fixed endpoints, 43 
free, 47 

Hopfs lemma, 348 
Hurwitz's theorem, 167, 172 
hyperbolic metric, 137 
hypergeometric equation, 611 

integrals, 534 

ideals, 237 
index of a chain, 78 

loop, 66 
indicial equation, 604 
infinite products, 380 
interpolation, 235 

Jensen's formula, 336, 337 
Jordan curve, 24, 68 

exterior, Ext('Y), 68 
interior, Int('}'), 68 
theorem, 68 

Koebe's One-quarter theorem, 182 

lacunary power series, 484 
Landau's constant, 184 

theorem, 184 
Laurent series, 144 
Lelong number, 339 
lifting, 508 

of homotopic arcs, 508 
property for paths, 511 

Lindelofs subordination principle, 412 
Liouville's theorem, 108 
locally uniform convergence, 118 

logarithmic potential of a measure, 
331 

logarithms, 50, 54, 93 
loops, 43 

spaces of loops C(O;a), 43 

manifold (topological), 513 
Marty's theorem, 176, 187 

Index 

maximum principle, for holomorphic 
functions, 110 

for harmonic functions, 312 
for subharmonic functions, 319 

Mergelyan's theorem, 268 
meromorphic function, 141 
minimum modulus theorem, 362 
Mittag-Leffler's expansion, 225 

theorem, 224 
Moebius transformation, 133 
monodromy theorem, 508, 525 
Montel's theorem, 120 

normality theorem, 189 
Morera's theorem, 101 
multiplicity variety, 237 

holomorphic function on a, 255 
of an ideal, 238 
vanishing on a, 237 

multiplicity of a zero, 131 

Nevanlinna growth function N, 369 
normal family, 176 
normally convergent sequence, 175 

open coverings, 16 
cocycle for covering, 535 

open mapping property, 109 
order of growth, 352 
order of a pole, 141 
Ostrogradski's formula, 31 
overconvergence, 484 

partition of unity, 17 
paths, 12 

composition, 43 
degree, 51 
inverse, 43 
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paths (cont. ) 
parametrization, 13 
spaces qn;a,b), qn;a), 43 

period map L, 63 
lattice, Im(L), 63 

Perron family, 392 
modification, 393 

Phragmen-LindelOf principle, 458, 463 
Picard's theorems, 185,360,554 

little, 185 
big, 189 

plateau function, 17 
Plemelj-Sokhotski's formulas, 267 
Poincare's lemma, 9 
Poisson-1ensen's formula for subhar-

monic functions, 463 
for holomorphic functions, 464 

Poisson kernel, 309 
integral,310 
integral representation formula, 309, 

399 
summation formula, 147 

polar sets, 319 
pole (singularity), 141 
Pompeiu's formula, 98 

with weights, 289 
power series, 105 

radius of convergence, 106 
Taylor series, 106 

principal part of a Laurent series, 144 
principal value of an integral, 155 

Cauchy principal value map, pv: 
M(n) -> D'(n), 249 

of a meromorphic function, 246, 
248 

Puiseux series, 567 

Rado-Cartan's theorem, 471 
Radon measures, 214 
ramification index, 131 
real analytic function, 316 
regular point on the boundary of a disk, 

418 
removable singularity, 140 
reproducing kernel, 418 
residue distribution of a merom orphic 

function, 250 

Residue theorem, 89, 90 
of a closed form, 90 
formula, 90, 151 
of a function, 148 
at 00, 148 

649 

resolvent of a differential equation, 585 
Riemann mapping theorem, 174 

extension to the boundary, 194, 196, 
408,428 

Riemann surface, 516 
of an algebraic function, 570 
complete, 563, 570 
elliptic, 553 
of the germ fa' 527 
hyperbolic, 553 
parabolic, 553 

Riemann zeta function, 502 
Riesz' convexity theorem, 333 

decomposition theorem, 331 
potentials, 436 

Robin constant, 464 
Rouche's theorem, 68, 69, 166, 167 
Runge's theorem, 214 

Schwarz-Christoffel transformations, 
201 

Schwarzian derivative, 207 
Schwarz's lemma for holomorphic func

tions, 111, 340 
subharmonic functions, 340 

Schwarz's reflection principle, 102, 404, 
406 

sheaf of germs of holomorphic func
tions, 524 

Coo functions, 524 
meromorphic functions, 530 

simply connected set, 46,512 
singular points for differential equa

tions, 613 
regular, Fuchsian, 594 

singularities, 13 8, 482 
classification, 140 
essential, 141 
isolated, 138 
pole, 141 
removable, 140 

spherical derivative, 136 
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standard function, 16 
stereographic projection, 134 
Stirling's formula, 501, 505 
Stokes's formula, 28 
subharmonic function, 319 

in the wide sense, 318 
Szego kernel, 418 

Taylor series, 106 
torus (complex), 517 
transcendental function, 93, 353 
transfinite diameter, 442 
Two-constants theorem, 469 
type of an entire or subharmonic func

tion,352 

Index 

entire function of exponential type, 
353 

minimal type, 353 

uniformization theorem, 553 
u.s.c. function, 300 

variation of parameters, 590 

Weierstrass' primary factors, 382 
theorem, 228, 383 

Weyl's lemma, 333 
Wronskian, 589 
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