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Preface

Many authors begin their preface by confidently describing how their book
arose. We started this project so long ago, and our memories are so weak,
that we could not do this truthfully. Others begin by stating why they de-
cided to write. Thanks to Freud, we know that unconscious reasons can be
as important as conscious ones, and so this seems impossible, too. More-
over, the real question that should be addressed is why the reader should
struggle with this text.

Even that question we cannot fully answer, so instead we offer an ex-
planation for our own fascination with this subject. It offers the pleasure
of seeing many unexpected and useful connections between two beautiful,
and apparently unrelated, parts of mathematics: algebra and graph theory.
At its lowest level, this is just the feeling of getting something for nothing.
After devoting much thought to a graph-theoretical problem, one suddenly
realizes that the question is already answered by some lonely algebraic fact.
The canonical example is the use of eigenvalue techniques to prove that cer-
tain extremal graphs cannot exist, and to constrain the parameters of those
that do. Equally unexpected, and equally welcome, is the realization that
some complicated algebraic task reduces to a question in graph theory, for
example, the classification of groups with BN pairs becomes the study of
generalized polygons.

Although the subject goes back much further, Tutte’s work was funda-
mental. His famous characterization of graphs with no perfect matchings
was proved using Pfaffians; eventually, proofs were found that avoided any
reference to algebra, but nonetheless, his original approach has proved fruit-
ful in modern work developing parallelizable algorithms for determining the
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maximum size of a matching in a graph. He showed that the order of the
vertex stabilizer of an arc-transitive cubic graph was at most 48. This is still
the most surprising result on the autmomorphism groups of graphs, and it
has stimulated a vast amount of work by group theorists interested in deriv-
ing analogous bounds for arc-transitive graphs with valency greater than
three. Tutte took the chromatic polynomial and gave us back the Tutte
polynomial, an important generalization that we now find is related to the
surprising developments in knot theory connected to the Jones polynomial.

But Tutte’s work is not the only significant source. Hoffman and Sin-
gleton’s study of the maximal graphs with given valency and diameter led
them to what they called Moore graphs. Although they were disappointed
in that, despite the name, Moore graphs turned out to be very rare, this
was nonetheless the occasion for introducing eigenvalue techniques into the
study of graph theory.

Moore graphs and generalized polygons led to the theory of distance-
regular graphs, first thoroughly explored by Biggs and his collaborators.
Generalized polygons were introduced by Tits in the course of his funda-
mental work on finite simple groups. The parameters of finite generalized
polygons were determined in a famous paper by Feit and Higman; this can
still be viewed as one of the key results in algebraic graph theory. Seidel also
played a major role. The details of this story are surprising: His work was
actually motivated by the study of geometric problems in general metric
spaces. This led him to the study of equidistant sets of points in projective
space or, equivalently, the subject of equiangular lines. Extremal sets of
equiangular lines led in turn to regular two-graphs and strongly regular
graphs. Interest in strongly regular graphs was further stimulated when
group theorists used them to construct new finite simple groups.

We make some explanation of the philosophy that has governed our
choice of material. Qur main aim has been to present and illustrate the
main tools and ideas of algebraic graph theory, with an emphasis on cur-
rent rather than classical topics. We place a strong emphasis on concrete
examples, agreeing entirely with H. Liineburg’s admonition that “...the goal
of theory is the mastering of examples.” We have made a considerable effort
to keep our treatment self-contained.

Our view of algebraic graph theory is inclusive; perhaps some readers
will be surprised by the range of topics we have treated—fractional chro-
matic number, Voronoi polyhedra, a reasonably complete introduction to
matroids, graph drawing—to mention the most unlikely. We also find oc-
casion to discuss a large fraction of the topics discussed in standard graph
theory texts (vertex and edge connectivity, Hamilton cycles, matchings,
and colouring problems, to mention some examples).

We turn to the more concrete task of discussing the contents of this
book. To begin, a brief summary: automorphisms and homomorphisms,
the adjacency and Laplacian matrix, and the rank polynomial.
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In the first part of the book we study the automorphisms and homomor-
phisms of graphs, particularly vertex-transitive graphs. We introduce the
necessary results on graphs and permutation groups, and take care to de-
scribe a number of interesting classes of graphs; it seems silly, for example,
to take the trouble to prove that a vertex-transitive graph with valency &
has vertex connectivity at least 2(k + 1)/3 if the reader is not already in
position to write down some classes of vertex-transitive graphs. In addition
to results on the connectivity of vertex-transitive graphs, we also present
material on matchings and Hamilton cycles.

There are a number of well-known graphs with comparatively large au-
tomorphism groups that arise in a wide range of different settings—in
particular, the Petersen graph, the Coxeter graph, Tutte’s 8-cage, and the
Hoffman-Singleton graph. We treat these famous graphs in some detail. We
also study graphs arising from projective planes and symplectic forms over
4-dimensional vector spaces. These are examples of generalized polygons,
which can be characterized as bipartite graphs with diameter d and girth
2d. Moore graphs can be defined to be graphs with diameter d and girth
2d +1. It is natural to consider these two classes in the same place, and we
do so.

We complete the first part of the book with a treatment of graph homo-
morphisms. We discuss Hedetniemi’s conjecture in some detail, and provide
an extensive treatment of cores (graphs whose endomorphisms are all au-
tomorphisms). We prove that the complement of a perfect graph is perfect,
offering a short algebraic argument due to Gasparian. We pay particu-
lar attention to the Kneser graphs, which enables us to treat fractional
chromatic number and the Erdés—Ko-Rado theorem. We determine the
chromatic number of the Kneser graphs (using Borsuk’s theorem).

The second part of our book is concerned with matrix theory. Chapter 8
provides a course in linear algebra for graph theorists. This includes an
extensive, and perhaps nonstandard, treatment of the rank of a matrix. Fol-
lowing this we give a thorough treatment of interlacing, which provides one
of the most powerful ways of using eigenvalues to obtain graph-theoretic
information. We derive the standard bounds on the size of independent
sets, but also give bounds on the maximum number of vertices in a bi-
partite induced subgraph. We apply interlacing to establish that certain
carbon molecules, known as fullerenes, satisfy a stability criterion. We treat
strongly regular graphs and two-graphs. The main novelty here is a careful
discussion of the relation between the eigenvalues of the subconstituents
of a strongly regular graph and those of the graph itself. We use this to
study the strongly regular graphs arising as the point graphs of generalized
quadrangles, and characterize the generalized quadrangles with lines of size
three.

The least eigenvalue of the adjacency matrix of a line graph is at least
—2. We present the beautiful work of Cameron, Goethals, Shult, and Seidel,
characterizing the graphs with least eigenvalue at least —2. We follow the
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original proof, which reduces the problem to determining the generalized
quadrangles with lines of size three and also reveals a surprising and close
connection with the theory of root systems.

Finally we study the Laplacian matrix of a graph. We consider the re-
lation between the second-largest eigenvalue of the Laplacian and various
interesting graph parameters, such as edge-connectivity. We offer several
viewpoints on the relation between the eigenvectors of a graph and various
natural graph embeddings. We give a reasonably complete treatment of the
cut and flow spaces of a graph, using chip-firing games to provide a novel
approach to some aspects of this subject.

The last three chapters are devoted to the connection between graph
theory and knot theory. The most startling aspect of this is the connection
between the rank polynomial and the Jones polynomial.

For a graph theorist, the Jones polynomial is a specialization of a
straightforward generalization of the rank polynomial of a graph. The rank
polynomial is best understood in the context of matroid theory, and conse-
quently our treatment of it covers a significant part of matroid theory. We
make a determined attempt to establish the importance of this polynomial,
offering a fairly complete list of its remarkable applications in graph the-
ory (and coding theory). We present a version of Tutte’s theory of rotors,
which allows us to construct nonisomorphic 3-connected graphs with the
same rank polynomial.

After this work on the rank polynomial, it is not difficult to derive the
Jones polynomial and show that it is a useful knot invariant. In the last
chapter we treat more of the graph theory related to knot diagrams. We
characterize Gauss codes and show that certain knot theory operations are
just topological manifestations of standard results from graph theory, in
particular, the theory of circle graphs.

As already noted, our treatment is generally self-contained. We assume
familiarity with permutations, subgroups, and homomorphisms of groups.
We use the basics of the theory of symmetric matrices, but in this case we
do offer a concise treatment of the machinery. We feel that much of the
text is accessible to strong undergraduates. Our own experience is that we
can cover about three pages of material per lecture. Thus there is enough
here for a number of courses, and we feel this book could even be used for
a first course in graph theory.

The exercises range widely in difficulty. Occasionally, the notes to a
chapter provide a reference to a paper for a solution to an exercise; it
is then usually fair to assume that the exercise is at the difficult end of
the spectrum. The references at the end of each chapter are intended to
provide contact with the relevant literature, but they are not intended to
be complete.

It is more than likely that any readers familiar with algebraic graph
theory will find their favourite topics slighted; our consolation is the hope
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that no two such readers will be able to agree on where we have sinned the
most.

Both authors are human, and therefore strongly driven by the desire to
edit, emend, and reorganize anyone else’s work. One effect of this is that
there are very few places in the text where either of us could, with any
real confidence or plausibility, blame the other for the unfortunate and
inevitable mistakes that remain. In this matter, as in others, our wives, our
friends, and our students have made strenuous attempts to point out, and
to eradicate, our deficiencies. Nonetheless, some will still show through, and
s0 we must now throw ourselves on our readers’ mercy. We do intend, as an
exercise in public self-flagellation, to maintain a webpage listing corrections
at http://quoll.uwaterloo.ca/agt/.

A number of people have read parts of various versions of this book
and offered useful comments and advice as a result. In particular, it is
a pleasure to acknowledge the help of the following: Rob Beezer, An-
thony Bonato, Dom de Caen, Reinhard Diestel, Michael Doob, Jim Geelen,
Tommy Jensen, Bruce Richter.

We finish with a special offer of thanks to Norman Biggs, whose own Al-
gebraic Graph Theory is largely responsible for our interest in this subject.

Chris Godsil Waterloo
Gordon Royle Perth
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Graphs

In this chapter we undertake the necessary task of introducing some of
the basic notation for graphs. We discuss mappings between graphs—
isomorphisms, automorphisms, and homomorphisms—and introduce a
number of families of graphs. Some of these families will play a signifi-
cant role in later chapters; others will be used to illustrate definitions and
results.

1.1 Graphs

A graph X consists of a vertez set V(X) and an edge set E(X), where an
edge is an unordered pair of distinct vertices of X. We will usually use zy
rather than {z,y} to denote an edge. If zy is an edge, then we say that
z and y are adjacent or that y is a neighbour of z, and denote this by
writing x ~ y. A vertex is incident with an edge if it is one of the two
vertices of the edge. Graphs are frequently used to model a binary rela-
tionship between the objects in some domain, for example, the vertex set
may represent computers in a network, with adjacent vertices representing
pairs of computers that are physically linked.

Two graphs X and Y are equal if and only if they have the same vertex
set and the same edge set. Although this is a perfectly reasonable definition,
for most purposes the model of a relationship is not essentially changed if
Y is obtained from X just by renaming the vertex set. This motivates
the following definition: Two graphs X and Y are isomorphic if there is a
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bijection, ¢ say, from V(X) to V(Y) such that x ~ y in X if and only if
w(z) ~ @(y) in Y. We say that ¢ is an isomorphism from X to Y. Since ¢
is a bijection, it has an inverse, which is an isomorphism from Y to X. If
X and Y are isomorphic, then we write X = Y. It is normally appropriate
to treat isomorphic graphs as if they were equal.

It is often convenient, interesting, or attractive to represent a graph by a
picture, with points for the vertices and lines for the edges, as in Figure 1.1.
Strictly speaking, these pictures do not define graphs, since the vertex set
is not specified. However, we may assign distinct integers arbitrarily to the
points, and the edges can then be written down as ordered pairs. Thus the
diagram determines the graph up to isomorphism, which is usually all that
matters. We emphasize that in a picture of a graph, the positions of the
points and lines do not matter—the only information it conveys is which
pairs of vertices are joined by an edge. You should convince yourself that
the two graphs in Figure 1.1 are isomorphic.

Figure 1.1. Two graphs on five vertices

A graph is called complete if every pair of vertices are adjacent, and the
complete graph on n vertices is denoted by K,. A graph with no edges
(but at least one vertex) is called empty. The graph with no vertices and
no edges is the null graph, regarded by some authors as a pointless concept.
Graphs as we have defined them above are sometimes referred to as simple
graphs, because there are some useful generalizations of this definition.
For example, there are many occasions when we wish to use a graph to
model an asymmetric relation. In this situation we define a directed graph
X to consist of a vertex set V(X) and an arc set A(X), where an are,
or directed edge, is an ordered pair of distinct vertices. In a drawing of a
directed graph, the direction of an arc is indicated with an arrow, as in
Figure 1.2. Most graph-theoretical concepts have intuitive analogues for
directed graphs. Indeed, for many applications a simple graph can equally
well be viewed as a directed graph where (y, z) is an arc whenever (z,y) is
an arc.

Throughout this book we will explicitly mention when we are consider-
ing directed graphs, and otherwise “graph” will refer to a simple graph.
Although the definition of graph allows the vertex set to be infinite, we
do not consider this case, and so all our graphs may be assumed to be
finite—an assumption that is used implicitly in a few of our results.



1.2. Subgraphs 3

Figure 1.2. A directed graph

1.2 Subgraphs

A subgraph of a graph X is a graph Y such that
VY)cv(X), EY)CEX).

If V(Y) = V(X), we call Y a spanning subgraph of X. Any spanning
subgraph of X can be obtained by deleting some of the edges from X.
The first drawing in Figure 1.3 shows a spanning subgraph of a graph. The
number of spanning subgraphs of X is equal to the number of subsets of
E(X).

A subgraph Y of X is an induced subgraph if two vertices of V(Y) are
adjacent in Y if and only if they are adjacent in X. Any induced subgraph
of X can be obtained by deleting some of the vertices from X, along with
any edges that contain a deleted vertex. Thus an induced subgraph is de-
termined by its vertex set: We refer to it as the subgraph of X induced by
its vertex set. The second drawing in Figure 1.3 shows an induced subgraph
of a graph. The number of induced subgraphs of X is equal to the number
of subsets of V(X).

Figure 1.3. A spanning subgraph and an induced subgraph of a graph

Certain types of subgraphs arise frequently; we mention some of these. A
clique is a subgraph that is complete. It is necessarily an induced subgraph.
A set of vertices that induces an empty subgraph is called an independent
set. The size of the largest clique in a graph X is denoted by w(X), and
the size of the largest independent set by a(X). As we shall see later, a(X)
and w(X) are important parameters of a graph.
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A path of length r from z to y in a graph is a sequence of r + 1 distinct
vertices starting with z and ending with y such that consecutive vertices
are adjacent. If there is a path between any two vertices of a graph X, then
X is connected, otherwise disconnected. Alternatively, X is disconnected
if we can partition its vertices into two nonempty sets, R and S say, such
that no vertex in R is adjacent to a vertex in S. In this case we say that
X is the disjoint union of the two subgraphs induced by R and S. An
induced subgraph of X that is maximal, subject to being connected, is
called a connected component of X. (This is almost always abbreviated to
“component.”)

A cycle is a connected graph where every vertex has exactly two neigh-
bours; the smallest cycle is the complete graph Ks. The phrase “a cycle
in a graph” refers to a subgraph of X that is a cycle. A graph where each
vertex has at least two neighbours must contain a cycle, and proving this
fact is a traditional early exercise in graph theory. An acyclic graph is a
graph with no cycles, but these are usually referred to by more picturesque
terms: A connected acyclic graph is called a tree, and an acyclic graph is
called a forest, since each component is a tree. A spanning subgraph with
no cycles is called a spanning tree. We see (or you are invited to prove)
that a graph has a spanning tree if and only if it is connected. A mazimal
spanning forest in X is a spanning subgraph consisting of a spanning tree
from each component.

1.3 Automorphisms

An isomorphism from a graph X to itself is called an automorphism of X.
An automorphism is therefore a permutation of the vertices of X that maps
edges to edges and nonedges to nonedges. Consider the set of all automor-
phisms of a graph X. Clearly the identity permutation is an automorphism,
which we denote by e. If g is an automorphism of X, then so is its inverse
g1, and if h is a second automorphism of X, then the product gh is an
automorphism. Hence the set of all automorphisms of X forms a group,
which is called the automorphism group of X and denoted by Aut(X). The
symmetric group Sym(V) is the group of all permutations of a set V, and
so the automorphism group of X is a subgroup of Sym(V(X)). If X has n
vertices, then we will freely use Sym(n) for Sym(V(X)).

In general, it is a nontrivial task to decide whether two graphs are
isomorphic, or whether a given graph has a nonidentity automorphism.
Nonetheless there are some cases where everything is obvious. For exam-
ple, every permutation of the vertices of the complete graph K, is an
automorphism, and so Aut(K,) = Sym(n).

The image of an element v € V under a permutation g € Sym(V') will
be denoted by v9. If g € Aut(X) and Y is a subgraph of X, then we define
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Y9 to be the graph with
VY9 ={z9:2€V(Y)}
and

E(Y9) ={{z9,9'} : {z,y} € E(Y)}.

It is straightforward to see that Y9 is isomorphic to Y and is also a subgraph
of X.

The valency of a vertex x is the number of neighbours of z, and the max-
imum and minimum valency of a graph X are the maximum and minimum
values of the valencies of any vertex of X.

Lemma 1.3.1 If z is a vertex of the graph X and g is an automorphism
of X, then the vertex y = x9 has the same valency as .

Proof. Let N(z) denote the subgraph of X induced by the neighbours of
z in X. Then

N(z)? = N(z%) = N(y),

and therefore N(z) and N(y) are isomorphic subgraphs of X. Consequently
they have the same number of vertices, and so z and y have the same
valency. o

This shows that the automorphism group of a graph permutes the ver-
tices of equal valency among themselves. A graph in which every vertex
has equal valency k is called regular of valency k or k-regular. A 3-regular
graph is called cubic, and a 4-regular graph is sometimes called quartic. In
Chapter 3 and Chapter 4 we will be studying graphs with the very special
property that for any two vertices x and y, there is an automorphism g
such that x9 = y; such graphs are necessarily regular.

The distance dx(z,y) between two vertices = and y in a graph X is the
length of the shortest path from z to y. If the graph X is clear from the
context, then we will simply use d{x, y).

Lemma 1.3.2 Ifz andy are vertices of X and g € Aut(X), then d{z,y) =
d(z9, ). O

The complement X of a graph X has the same vertex set as X, where
vertices z and y are adjacent in X if and only if they are not adjacent in
X (see Figure 1.5).

Lemma 1.3.3 The automorphism group of a graph is equal to the
automorphism group of its complement. a

If X is a directed graph, then an automorphism is a permutation of the
vertices that maps arcs onto arcs, that is, it preserves the directions of the
edges.
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Figure 1.4. The dodecahedron is a cubic graph

Figure 1.5. A graph and its complement

1.4 Homomorphisms

Let X and Y be graphs. A mapping f from V(X) to V(Y) is a homomor-
phism if f(z) and f(y) are adjacent in Y whenever = and y are adjacent in
X. (When X and Y have no loops, which is our usual case, this definition
implies that if z ~ y, then f(z) # f(y).)

Any isomorphism between graphs is a homomorphism, and in particular
any automorphism is a homomorphism from a graph to itself. However
there are many homomorphisms that are not isomorphisms, as the following
example illustrates. A graph X is called bipartite if its vertex set can be
partitioned into two parts V; and V; such that every edge has one end in
V1 and one in V5. If X is bipartite, then the mapping from V(X) to V(K3)
that sends all the vertices in V; to the vertex i is a homomorphism from X
to Kz.

This example belongs to the best known class of homomorphisms: proper
colourings of graphs. A proper colouring of a graph X is a map from V' (X)
into some finite set of colours such that no two adjacent vertices are assigned
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the same colour. If X can be properly coloured with a set of k colours, then
we say that X can be properly k-coloured. The least value of k for which X
can be properly k-coloured is the chromatic number of X, and is denoted
by x(X). The set of vertices with a particular colour is called a colour class
of the colouring, and is an independent set. If X is a bipartite graph with
at least one edge, then x(X) = 2.

Lemma 1.4.1 The chromatic number of a graph X is the least integer r
such that there is a homomorphism from X to K,.

Proof. Suppose f is a homomorphism from the graph X to the graph Y.
If y € V(Y), define f~1(y) by

) = {zeV(X): f(z) =y}

Because y is not adjacent to itself, the set f~!(y) is an independent set.
Hence if there is a homomorphism from X to a graph with r vertices, the
r sets f~}(y) form the colour classes of a proper r-colouring of X, and so
x(X) < r. Conversely, suppose that X can be properly coloured with the
r colours {1,...,r}. Then the mapping that sends each vertex to its colour
is a homomorphism from X to the complete graph K. (]

A retraction is a homomorphism f from a graph X to a subgraph Y of
itself such that the restriction f|Y of f to V(Y) is the identity map. If there
is a retraction from X to a subgraph Y, then we say that Y is a retract of
X. If the graph X has a clique of size k = x(X), then any k-colouring of
X determines a retraction onto the clique.

Figure 1.6 shows the 5-prism as it is normally drawn, and then drawn to
display a retraction (each vertex of the outer cycle is fixed, and each vertex
of the inner cycle is mapped radially outward to the nearest vertex on the
outer cycle).

Figure 1.6. A graph with a retraction onto a 5-cycle

In Chapter 3 we will need to consider homomorphisms between directed
graphs. If X and Y are directed graphs, then a map f from V(X) to V(Y)
is a homomorphism if (f(x), f(y)) is an arc of Y whenever (z,y) is an
arc of X. In other words, a homomorphism must preserve the sense of the
directed edges.
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In Chapter 6 we will relax the definition of a graph still further, so that
the two ends of an edge can be the same vertex, rather than two distinct
vertices. Such edges are called loops, and if loops are permitted, then the
properties of homomorphisms are quite different. For example, a property of
homomorphisms of simple graphs used in Lemma 1.4.1 is that the preimage
of a vertex is an independent set. If loops are present, this is no longer true:
A homomorphism can map any set of vertices onto a vertex with a loop.

A homomorphism from a graph X to itself is called an endomorphism,
and the set of all endomorphisms of X is the endomorphism monoid of X.
(A monoid is a set that has an associative binary multiplication defined on
it and an identity element.) The endomorphism monoid of X contains its
automorphism group, since an automorphism is an endomorphism.

1.5 Circulant Graphs

We now introduce an important class of graphs that will provide useful
examples in later sections.

First we give a more elaborate definition of a cycle. The cycle on n
vertices is the graph C,, with vertex set {0,...,n — 1} and with ¢ adjacent
to j if and only if j — 7 = +1 mod n.

We determine some automorphisms of the cycle. If g is the element of
Sym(n) that maps i to (i+1) mod n, then g € Aut(C,). Therefore Aut(C,,)
contains the cyclic subgroup

R={¢g":0<m<n-1}

It is also easy to verify that the permutation A that maps 7 to —i mod n
is an automorphism of C,. Notice that h(0) = 0, so h fixes a vertex of
Cy. On the other hand, the nonidentity elements of R are fixed-point-free
automorphisms of C,. Therefore, h is not a power of g, and so h ¢ R. It
follows that Aut(C,) contains a second coset of R, and therefore

|Aut(C,)| > 2|R| = 2n.

In fact, Aut(C,) has order 2n as might be expected. However, we have not
yet set up the machinery to prove this.

The cycles are special cases of circulant graphs. Let Z,, denote the addi-
tive group of integers modulo n. If C is a subset of Z, \ 0, then construct
a directed graph X = X(Z, C) as follows. The vertices of X are the ele-
ments of Z,, and (i, j) is an arc of X if and only if j — i € C. The graph
X (Zn, C) is called a circulant of order n, and C is called its connection set.

Suppose that C has the additional property that it is closed under addi-
tive inverses, that is, —c € C if and only if ¢ € C. Then (4, j) is an arc if
and only if (j,%) is an arc, and so we can view X as an undirected graph.

It is easy to see that the permutation that maps each vertex i to i + 1
is an automorphism of X. If C is inverse-closed, then the mapping that
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Figure 1.7. The circulant X (Z10,{~1,1,-3,3})

sends i to —i is also an automorphism. Therefore, if X is undirected, its
automorphism group has order at least 2n.

The cycle Cj, is a circulant of order n, with connection set {1, —1}. The
complete and empty graphs are also circulants, with C = Z, and C =
respectively, and so the automorphism group of a circulant of order n can
have order much greater than 2n.

1.6 Johnson Graphs

Next we consider another family of graphs J(v, k, 7) that will recur through-
out this book. These graphs are important because they enable us to
translate many combinatorial problems about sets into graph theory.

Let v, k, and 7 be fixed positive integers, with v > &k > ¢; let Q be a fixed
set of size v; and define J(v, k, 1) as follows. The vertices of J(v, k, i) are the
subsets of ) with size k, where two subsets are adjacent if their intersection
has size i. Therefore, J(v,k,i) has (}) vertices, and it is a regular graph

with valency
K\ (v—k
iJ\k—i/)

As the next result shows, we can assume that v > 2k.
Lemma 1.6.1 Ifv >k > i, then J(v, k,i) = J(v,v — k,v — 2k + ).

Proof. The function that maps a k-set to its complement in €2 is an iso-
morphism from J(v, k,4) to J(v,v — k,v — 2k +4); you are invited to check
the details. a

For v > 2k, the graphs J{v,k,k — 1) are known as the Johnson graphs,
and the graphs J(v, k,0) are known as the Kneser graphs, which we will
study in some depth in Chapter 7. The Kneser graph J(5, 2,0) is one of the
most famous and important graphs and is known as the Petersen graph.
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Figure 1.8 gives a drawing of the Petersen graph, and Section 4.4 examines
it in detail.

Figure 1.8. The Petersen graph J(5,2,0)

If g is a permutation of 2 and S C €2, then we define S9 to be the subset
59 .= {s9:s5€ 85}

It follows that each permutation of 2 determines a permutation of the
subsets of 2, and in particular a permutation of the subsets of size k. If S
and T are subsets of {2, then

ISNT|=|SYNT9,
and so g is an automorphism of J(v, k, ). Thus we obtain the following.

Lemma 1.6.2 If v > k > 4, then Aut(J(v,k,i)) contains a subgroup
isomorphic to Sym(v). 0

Note that Aut(J(v, k, 1)) is a permutation group acting on a set of size (}),
and so when k # 1 or v—1, it is not actually equal to Sym(v). Nevertheless,
it is true that Aut(J(v, k, %)) is usually isomorphic to Sym(v), although this
is not always easy to prove.

1.7 Line Graphs

The line graph of a graph X is the graph L(X) with the edges of X as its
vertices, and where two edges of X are adjacent in L(X) if and only if they
are incident in X. An example is given in Figure 1.9 with the graph in grey
and the line graph below it in black.

The star K1 n, which consists of a single vertex with n neighbours, has
the complete graph K, as its line graph. The path P, is the graph with
vertex set {1,...,n} where ¢ is adjacent to ¢ + 1 for 1 <14 < n — 1. It has
line graph equal to the shorter path P,_;. The cycle C,, is isomorphic to
its own line graph.
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Figure 1.9. A graph and its line graph

Lemma 1.7.1 If X is reqular with valency k, then L(X) is regular with
valency 2k — 2. i

Each vertex in X determines a clique in L(X): If x is a vertex in X with
valency k, then the k edges containing x form a k-clique in L(X). Thus if
X has n vertices, there is a set of n cliques in L(X) with each vertex of
L(X) contained in at most two of these cliques. Each edge of L(X) lies in
exactly one of these cliques. The following result provides a useful converse:

Theorem 1.7.2 A nonempty graph is a line graph if and only if its edge
set can be partitioned into a set of cliques with the property that any vertex
lies in at most two cliques. g

If X has no triangles {that is, cliques of size three), then any vertex of
L(X) with at least two neighbours in one of these cliques must be contained
in that clique. Hence the cliques determined by the vertices of X are all
maximal.

It is both obvious and easy to prove that if X =Y, then L(X) = L(Y).
However, the converse is false: K3 and K7j 3 have the same line graph,
namely Ks3. Whitney proved that this is the only pair of connected
counterexamples. We content ourselves with proving the following weaker
result.

Lemma 1.7.3 Suppose that X and Y are graphs with minimum valency
four. Then X =Y if and only if L(X) = L{Y).

Proof. Let C be a clique in L(X) containing exactly c vertices. If ¢ > 3,
then the vertices of C' correspond to a set of ¢ edges in X, meeting at a
common vertex. Consequently, there is a bijection between the vertices of
X and the maximal cliques of L(X) that takes adjacent vertices to pairs
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of cliques with a vertex in common. The remaining details are left as an
exercise. m]

There is another interesting characterization of line graphs:

Theorem 1.7.4 A graph X is a line graph if and only if each induced
subgraph of X on at most six vertices is a line graph. ]

Consider the set of graphs X such that

(a) X is not a line graph, and
(b) every proper induced subgraph of X is a line graph.

The previous theorem implies that this set is finite, and in fact there
are exactly nine graphs in this set. (The notes at the end of the chapter
indicate where you can find the graphs themselves.)

We call a bipartite graph semiregular if it has a proper 2-colouring such
that all vertices with the same colour have the same valency. The cheap-
est examples are the complete bipartite graphs K, , which consist of an
independent set of m vertices completely joined to an independent set of n
vertices.

Lemma 1.7.5 If the line graph of a connected graph X is reqular, then X
is regqular or bipartite and semireqular.

Proof. Suppose that L(X) is regular with valency k. If u and v are adjacent
vertices in X, then their valencies sum to k+2. Consequently, all neighbours
of a vertex u have the same valency, and so if two vertices of X share a
common neighbour, then they have the same valency. Since X is connected,
this implies that there are at most two different valencies.

If two adjacent vertices have the same valency, then an easy induction
argument shows that X is regular. If X contains a cycle of odd length, then
it must have two adjacent vertices of the same valency, and so if it is not
regular, then it has no cycles of odd length. We leave it as an exercise to
show that a graph is bipartite if and only if it contains no cycles of odd
length. a

1.8 Planar Graphs

We have already seen that graphs can conveniently be given by drawings
where each vertex is represented by a point and each edge uv by a line
connecting v and v. A graph is called planar if it can be drawn without
crossing edges.

Although this definition is intuitively clear, it is topologically imprecise.
To make it precise, consider a function that maps each vertex of a graph
X to a distinct point of the plane, and each edge of X to a continuous non
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Figure 1.10. Planar graphs K4 and the octahedron

self-intersecting curve in the plane joining its endpoints. Such a function is
called a planar embedding if the curves corresponding to nonincident edges
do not meet, and the curves corresponding to incident edges meet only at
the point representing their common vertex. A graph is planar if and only
if it has a planar embedding. Figure 1.10 shows two planar graphs: the
complete graph K4 and the octahedron.

A plane graph is a planar graph together with a fixed embedding. The
edges of the graph divide the plane into regions called the faces of the plane
graph. All but one of these regions is bounded, with the unbounded region
called the infinite or external face. The length of a face is the number of
edges bounding it.

Euler’s famous formula gives the relationship between the number of
vertices, edges, and faces of a connected plane graph.

Theorem 1.8.1 (Euler) If a connected plane graph has n vertices, e edges
and f faces, then

n—e+ f=2. O

A mazimal planar graph is a planar graph X such that the graph formed by
adding an edge between any two nonadjacent vertices of X is not planar.
If an embedding of a planar graph has a face of length greater than three,
then an edge can be added between two vertices of that face. Therefore, in
any embedding of a maximal planar graph, every face is a triangle. Since
each edge lies in two faces, we have

2e = 3f,
and so by Euler’s formula,
e =23n— 6.

A planar graph on n vertices with 3n —6 edges is necessarily maximal; such
graphs are called planar triangulations . Both the graphs of Figure 1.10 are
planar triangulations.

A planar graph can be embedded into the plane in infinitely many ways.
The two embeddings of Figure 1.11 are easily seen to be combinatorially
different: the first has faces of length 3, 3, 4, and 6 while the second has
faces of lengths 3, 3, 5, and 5. It is an important result of topological graph
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theory that a 3-connected graph has essentially a unique embedding. (See
Section 3.4 for the explanation of what a 3-connected graph is.)

Figure 1.11. Two plane graphs

Given a plane graph X, we can form another plane graph called the dual
graph X*. The vertices of X* correspond to the faces of X, with each vertex
being placed in the corresponding face. Every edge e of X gives rise to an
edge of X* joining the two faces of X that contain e (see Figure 1.12).

Notice that two faces of X may share more than one common edge, in
which case the graph X* may contain multiple edges, meaning that two
vertices are joined by more than one edge. This requires the obvious gener-
alization to our definition of a graph, but otherwise causes no difficulties.
Once again, explicit warning will be given when it is necessary to consider
graphs with multiple edges.

Since each face in a planar triangulation is a triangle, its dual is a cubic
graph. Considering the graphs of Figure 1.10, it is easy to check that K4
is isomorphic to its dual; such graphs are called self-dual. The dual of the
octahedron is a bipartite cubic graph on eight vertices known as the cube,
which we will discuss further in Section 3.1.

Figure 1.12. The planar dual

As defined above, the planar dual of any graph X is connected, so if X
is not connected, then (X*)* is not isomorphic to X. However, this is the
only difficulty, and it can be shown that if X is connected, then (X*)* is
isomorphic to X.
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The notion of embedding a graph in the plane can be generalized directly
to embedding a graph in any surface. The dual of a graph embedded in any
surface is defined analogously to the planar dual.

The real projective plane is a nonorientable surface, which can be rep-
resented on paper by a circle with diametrically opposed points identified.
The complete graph Kj is not planar, but it can be embedded in the projec-
tive plane, as shown in Figure 1.13. This embedding of Kj is a triangulation
in the projective plane, so its dual is a cubic graph, which turns out to be
the Petersen graph.

Figure 1.13. An embedding of K¢ in the projective plane

The torus is an orientable surface, which can be represented physically
in Euclidean 3-space by the surface of a torus, or doughnut. It can be
represented on paper by a rectangle where the points on the bottom side
are identified with the points directly above them on the top side, and the
points of the left side are identified with the points directly to the right
of them on the right side. The complete graph K7 is not planar, nor can
it be embedded in the projective plane, but it can be embedded in the
torus as shown in Figure 1.14 (note that due to the identification the four
“corners” are actually the same point). This is another triangulation; its
dual is a cubic graph known as the Heawood graph, which is discussed in
Section 5.10.

Figure 1.14. An embedding of K~ in the torus
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1. Graphs

Exercises

1.

10.

11.
12.
13.
14.
15.

16.

Let X be a graph with n vertices. Show that X is complete or empty
if and only if every transposition of {1,...,n} belongs to Aut(X).

. Show that X and X have the same automorphism group, for any

graph X.

. Show that if  and y are vertices in the graph X and g € Aut(X),

then the distance between z and y in X is equal to the distance
between 29 and y9 in X.

Show that if f is a homomorphism from the graph X to the graph Y
and x; and x5 are vertices in X, then

dx(z1,x2) > dy (f(x1), f(z2)).

Show that if Y is a subgraph of X and f is a homomorphism from
X to Y such that f[Y is a bijection, then Y is a retract.

Show that a retract Y of X is an induced subgraph of X. Then
show that it is isometric, that is, if  and y are vertices of Y, then

dX($a y) = dY(mv y)
Show that any edge in a bipartite graph X is a retract of X.

The diameter of a graph is the maximum distance between two dis-
tinct vertices. (It is usually taken to be infinite if the graph is not
connected.) Determine the diameter of J(v, k, k — 1) when v > 2k.

Show that Aut(K,) is not isomorphic to Aut(L(K,)) if and only if
n =2 or4.

Show that the graph Kj \ e (obtained by deleting any edge e from
K5) is not a line graph.

Show that K 3 is not an induced subgraph of a line graph.
Prove that any induced subgraph of a line graph is a line graph.
Prove Krausz’s characterization of line graphs (Theorem 1.7.2).
Find all graphs G such that L(G) ¢ G.

Show that if X is a graph with minimum valency at least four, Aut(X)
and Aut(L(X)) are isomorphic.

Let S be a set of nonzero vectors from an m-dimensional vector space.
Let X(S) be the graph with the elements of S as its vertices, with
two vectors z and y adjacent if and only if zTy # 0. (Call X(S) the
“nonorthogonality” graph of S.) Show that any independent set in
X(S) has cardinality at most m.
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17. Let X be a graph with n vertices. Show that the line graph of X is
the nonorthogonality graph of a set of vectors in R™.

18. Show that a graph is bipartite if and only if it contains no odd cycles.
19. Show that a tree on n vertices has n — 1 edges.

20. Let X be a connected graph. Let T'(X) be the graph with the span-
ning trees of X as its vertices, where two spanning trees are adjacent
if the symmetric difference of their edge sets has size two. Show that
T(X) is connected.

21. Show that if two trees have isomorphic line graphs, they are
isomorphic.

22. Use Euler’s identity to show that Kj is not planar.
23. Construct an infinite family of self-dual planar graphs.

24. A graph is self-complementary if it is isomorphic to its complement.
Show that L(Kj3 3) is self-complementary.

25. Show that if there is a self-complementary graph X on n vertices,
then n =0, 1 mod 4. If X is regular, show that n = 1 mod 4.

26. The lexicographic product X[Y] of two graphs X and Y has vertex
set V(X) x V(Y') where (z,y) ~ (z/,¢') if and only if

(a) z is adjacent to =’ in X, or
b) £ =z’ and y is adjacent to 3/ in Y.
Y

Show that the complement of the lexicographic product of X and Y
is the lexicographic product of X and Y.

Notes

For those readers interested in a more comprehensive view of graph theory
itself, we recommend the books by West [6] and Diestel [2].

The problem of determining whether two graphs are isomorphic has a
long history, as it has many applications—for example, among chemists
who wish to tabulate all molecules in a certain class. All attempts to find
a collection of easily computable graph parameters that are sufficient to
distinguish any pair of nonisomorphic graphs have failed. Nevertheless the
problem of determining graph isomorphism has not been shown to be NP-
complete. It is considered a prime candidate for membership in the class
of problems in NP that are neither NP-complete nor in P (if indeed NP #
P).

In practice, computer programs such as Brendan McKay’s nauty [5] can
determine isomorphisms between most graphs up to about 20000 vertices,
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though there are significant “pathological” cases where certain very highly
structured graphs on only a few hundred vertices cannot be dealt with.
Determining the automorphism group of a graph is closely related to de-
termining whether two graphs are isomorphic. As we have already seen, it
is often easy to find some automorphisms of a graph, but quite difficult
to show that one has identified the full automorphism group of the graph.
Once again, for moderately sized graphs with explicit descriptions, use of
a computer is recommended.

Many graph parameters are known to be NP-hard to compute. For ex-
ample, determining the chromatic number of a graph or finding the size of
the maximum clique are both NP-hard.

Krausz’s theorem (Theorem 1.7.2) comes from [4] and is surprisingly
useful. A proof in English appears in [6], but you are better advised to
construct your own. Beineke’s result (Theorem 1.7.4) is proved in [1].

Most introductory texts on graph theory discuss planar graphs. For more
complete information about embeddings of graphs, we recommend Gross
and Tucker [3].

Part of the charm of graph theory is that it is easy to find interesting
and worthwhile problems that can be attacked by elementary methods,
and with some real prospect of success. We offer the following by way of
example. Define the iterated line graph L™(X) of a graph X by setting
L'(X) equal to L(X) and, if n > 1, defining L™(X) to be L(L*}(X)). It
is an open question, due to Ron Graham, whether a tree T' is determined
by the integer sequence

VErT), >l

References

[1] L. W. BEINEKE, Derived graphs and digraphs, Beitrige zur Graphentheorie,
(1968), 17-33.

[2] R. DIESTEL, Graph Theory, Springer-Verlag, New York, 1997.

[3] J. L. Gross AND T. W. TUCKER, Topological Graph Theory, John Wiley &
Sons Inc., New York, 1987.

[4] J. Krausz, Démonstration nouvelle d’une théoréme de Whitney sur les
réseauz, Mat. Fiz. Lapok, 50 (1943), 75-85.

[6] B. McKaAY, nauty user’s guide (version 1.5), tech. rep., Department of
Computer Science, Australian National University, 1990.

[6] D. B. WEST, Introduction to Graph Theory, Prentice Hall Inc., Upper Saddle
River, NJ, 1996.



Groups

The automorphism group of a graph is very naturally viewed as a group
of permutations of its vertices, and so we now present some basic informa-
tion about permutation groups. This includes some simple but very useful
counting results, which we will use to show that the proportion of graphs
on n vertices that have nontrivial automorphism group tends to zero as
n tends to infinity. (This is often expressed by the expression “almost all
graphs are asymmetric.”) For a group theorist this result might be a disap-
pointment, but we take its lesson to be that interesting interactions between
groups and graphs should be looked for where the automorphism groups
are large. Consequently, we also take the time here to develop some of the
basic properties of transitive groups.

2.1 Permutation Groups

The set of all permutations of a set V' is denoted by Sym(V'), or just Sym(n)
when |V| = n. A permutation group on V is a subgroup of Sym(V). If X
is a graph with vertex set V, then we can view each automorphism as a
permutation of V, and so Aut(X) is a permutation group.

A permutation representation of a group G is a homomorphism from G
into Sym(V) for some set V. A permutation representation is also referred
to as an action of G on the set V, in which case we say that G acts on V.
A representation is faithful if its kernel is the identity group.
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A group G acting on a set V induces a number of other actions. If S is a
subset of V', then for any element g € G, the translate 59 is again a subset
of V. Thus each element of G determines a permutation of the subsets of V/,
and so we have an action of G on the power set 2¥'. We can be more precise
than this by noting that |S9| = |S|. Thus for any fixed k, the action of G
on V induces an action of G on the k-subsets of V. Similarly, the action of
G on V induces an action of G on the ordered k-tuples of elements of V.

Suppose G is a permutation group on the set V. A subset S of V is G-
invariant if s9 € S for all points s of S and elements g of G. If S is invariant
under G, then each element g € G permutes the elements of S. Let g[S
denote the restriction of the permutation g to S. Then the mapping

g—gls

is a homomorphism from G into Sym(S), and the image of G under this
homomorphism is a permutation group on S, which we denote by G[S. (It
would be more usual to use G°.)

A permutation group G on V is transitive if given any two points z and
y from V there is an element g € G such that z9 = y. A G-invariant subset
S of V is an orbit of G if G[S is transitive on S. For any z € V, it is
straightforward to check that the set

% :={29: g€ G}

is an orbit of G. Now, if y € €, then y¢ = z€, and if y ¢ x©, then
y® Nz% =, so each point lies in a unique orbit of G, and the orbits of G
partition V. Any G-invariant subset of V is a union of orbits of G (and in
fact, we could define an orbit to be a minimal G-invariant subset of V).

2.2 Counting

Let G be a permutation group on V. For any x € V the stabilizer G of =
is the set of all permutations g € G such that z9 = z. It is easy to see that
G, is a subgroup of G. If z1, ...,z are distinct elements of V, then

r
Garl,..‘,zr = m Gzi'
=1

Thus this intersection is the subgroup of G formed by the elements that
fix z; for all 7; to emphasize this it is called the pointwise stabilizer of
{z1,...,2,}. If S is a subset of V, then the stabilizer Gs of S is the set of
all permutations g such that S9 = S. Because here we are not insisting that
every element of S be fixed this is sometimes called the setwise stabilizer
of S. If S = {x1,...,2}, then G, .. 4, is a subgroup of Gs.

T

Lemma 2.2.1 Let G be a permutation group acting on V and let S be an
orbit of G. If x and y are elements of S, the set of permutations in G that
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map x to y is a right coset of G5. Conversely, all elements in a right coset
of G, map x to the same point in S.

Proof. Since G is transitive on §, it contains an element, g say, such that
29 = y. Now suppose that h € G and 2" = y. Then 29 = z", whence
P Therefore, hg~! € G, and h € Gg. Consequently, all elements
mapping x to y belong to the coset Gg.

For the converse we must show that every element of G;g maps = to
the same point. Every element of G,g has the form hg for some element
h € G.. Since "9 = (z")9 = z9, it follows that all the elements of G.g
map x to 9. 0O

There is a simple but very useful consequence of this, known as the
orbit-stabilizer lemma.

Lemma 2.2.2 (Orbit-stabilizer) Let G be a permutation group acting
on'V and let x be a point in V. Then

|Gl |-TG' = |G|

Proof. By the previous lemma, the points of the orbit % correspond
bijectively with the right cosets of G;. Hence the elements of G can be
partitioned into \xal cosets, each containing |G| elements of G. O

In view of the above it is natural to wonder how G, and G, are related
if  and y are distinct points in an orbit of G. To answer this we first need
some more terminology. An element of the group G that can be written in
the form ¢~ 'hg is said to be conjugate to h, and the set of all elements of
G conjugate to h is the conjugacy class of h. Given any element g € G, the
mapping 7, : h — g 1hg is a permutation of the elements of G. The set
of all such mappings forms a group isomorphic to G with the conjugacy
classes of G as its orbits. If H C G and g € G, then g~ Hg is defined to
be the subset

{g7thg : h € H}.

If H is a subgroup of G, then g~ Hg is a subgroup of G isomorphic to H,
and we say that g~ ' Hg is conjugate to H. Our next result shows that the
stabilizers of two points in the same orbit of a group are conjugate.

Lemma 2.2.3 Let G be a permutation group on the set V and let = be a
point in V. If g € G, then g7 Grg = Gys.

Proof. Suppose that 29 = y. First we show that every element of g 1G g
fixes y. Let h € G,. Then

—1
hg _ Lhg _ _
Y =z =29 =y,

and therefore g 1hg € Gy. On the other hand, if A € Gy, then ghg™! fixes
x, whence we see that g~ 1G9 = Gy, |
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If g is a permutation of V, then fix(g) denotes the set of points in V
fixed by g. The following lemma is traditionally (and wrongly) attributed
to Burnside; in fact, it is due to Cauchy and Frobenius.

Lemma 2.2.4 (“Burnside”) Let G be a permutation group on the set
V. Then the number of orbits of G on V is equal to the average number of
points fired by an element of G.

Proof. We count in two ways the pairs (g, z) where g € G and « is a point
in V fixed by g. Summing over the elements of G we find that the number

of such pairs is
> Ifix(9)l;
geG

which, of course, is |G| times the average number of points fixed by an
element of G. Next we must sum over the points of V, and to do this we
first note that the number of elements of G that fix z is |G.|. Hence the

number of pairs is
> |Gal-

z€V

Now, |G| is constant as x ranges over an orbit, so the contribution to this
sum from the elements in the orbit z¢ is |#¢| |G| = |G|. Hence the total
sum is equal to |G| times the number of orbits, and the result is proved.O

2.3 Asymmetric Graphs

A graph is asymmetric if its automorphism group is the identity group.
In this section we will prove that almost all graphs are asymmetric, i.e.,
the proportion of graphs on n vertices that are asymmetric goes to 1 as
n — 00. Our main tool will be Burnside’s lemma.

Let V be a set of size n and consider all the distinct graphs with vertex
set V. If we let Ky denote a fixed copy of the complete graph on the
vertex set V, then there is a one-to-one correspondence between graphs
with vertex set V and subsets of E(Ky ). Since Kv has (}) edges, the total
number of different graphs is

2(3).

Given a graph X, the set of graphs isomorphic to X is called the iso-
morphism class of X. The isomorphism classes partition the set of graphs
with vertex set V. Two such graphs X and Y are isomorphic if there is a
permutation of Sym(V) that maps the edge set of X onto the edge set of
Y. Therefore, an isomorphism class is an orbit of Sym(V') in its action on
subsets of E(Ky).
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Lemma 2.3.1 The size of the isomorphism class containing X is

n!

|Aut(X)|

Proof. This follows from the orbit-stabilizer lemma. We leave the details
as an exercise. ]

Now we will count the number of isomorphism classes, using Burnside’s
lemma. This means that we must find the average number of subsets of
E(Ky) fixed by the elements of Sym(V'). Now, if a permutation g has r
orbits in its action on E(Ky ), then it fixes 2" subsets in its action on the
power set of E{Ky ). For any g € Sym(V), let orbg(g) denote the number
of orbits of g in its action on E(Ky ). Then Burnside’s lemma yields that
the number of isomorphism classes of graphs with vertex set V is equal to

1
~ > 2ol (2.1)
" g€Sym (V)

If all graphs were asymmetric, then every isomorphism class would
contain n! graphs and there would be exactly

9(3)

n!

isomorphism classes. Our next result shows that in fact, the number of
isomorphism classes of graphs on n vertices is quite close to this, and we
will deduce from this that almost all graphs are asymmetric. Recall that
o(1) is shorthand for a function that tends to 0 as n — co.

Lemma 2.3.2 The number of isomorphism classes of graphs on n vertices
1s at most

n

2(2)

(1 +0(1)) T

Proof. We will leave some details to the reader. The support of a per-

mutation is the set of points that it does not fix. We claim that among

all permutations g € Sym(V) with support of size an even integer 2r, the

maximum value of orby(g) is realized by the permutation with exactly r
cycles of length 2.

Suppose g € Sym(V) is such a permutation with r cycles of length two
and n — 2r fixed points. Since g% = e, all its orbits on pairs of elements from
V have length one or two. There are two ways in which an edge {z,y} €
E(Ky) can be not fixed by g. Either both z and y are in the support of g,
but 29 # y, or z is in the support of g and y is a fixed point of g. There are
2r(r —1) edges in the former category, and 2r(n — 2r) is the latter category.
Therefore the number of orbits of length 2 is r(r—1)+r(n—2r) = r(n—r—1),
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and the total number of orbits of g on E(Ky) is

n

wita) = (1) -1

Now we are going to partition the permutations of Sym(V) into 3 classes
and make rough estimates for the contribution that each class makes to the
sum (2.1) above.

Fix an even integer m < n — 2, and divide the permutations into three
classes as follows: C; = {e}, C2 contains the nonidentity permutations with
support of size at most m, and C3 contains the remaining permutations.
We may estimate the sizes of these classes as follows:

IC1] =1, |Ca| < (:L)m! <n™, |Cs| < n! < n™

An element g € C3 has the maximum number of orbits on pairs if it is a

single 2-cycle, in which case it has (}}) — (n — 2) such orbits. An element

g € C3 has support of size at least m and so has the maximum number of
orbits on pairs if it has m/2 2-cycles, in which case it has

(5)-50-5-0<()-7F

such orbits.
Therefore,

Z 2orb2(g) S 2(;)+nm2(;)—(n—2)_'_nnz(;)—nm/zl
g€Sym(V)

= 20) (14 nma= (=) 4 g/},

The sum of the last two terms can be shown to be o(1) by expressing it as

gm logn—n+2 4+ 9n logn—nm/4

and taking m = |clogn| for ¢ > 4. 0
Corollary 2.3.3 Almost all graphs are asymmetric.

Proof. Suppose that the proportion of isomorphism classes of graphs on
V that are asymmetric is u. Each isomorphism class of a graph that is not
asymmetric contains at most n!/2 graphs, whence the average size of an
isomorphism class is at most

n! <u+(—1—;”—)>=%!(1+u).

Consequently,

n

"1+ (1+o<1))¥ > 2(3),
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from which it follows that u tends to 1 as n tends to infinity. Since the
proportion of asymmetric graphs on V is at least as large as the proportion
of isomorphism classes (why?), it follows that the proportion of graphs on
n vertices that are asymmetric goes to 1 as n tends to co. O

Although the last result assures us that most graphs are asymmetric,
it is surprisingly difficult to find examples of graphs that are obviously
asymmetric. We describe a construction that does yield such examples. Let
T be a tree with no vertices of valency two, and with at least one vertex of
valency greater than two. Assume that it has exactly m end-vertices. We
construct a Halin graph by drawing T in the plane, and then drawing a
cycle of length m through its end-vertices, so as to form a planar graph.
An example is shown in Figure 2.1.

Figure 2.1. A Halin graph

Halin graphs have a number of interesting properties; in particular, it
is comparatively easy to construct cubic Halin graphs with no nonidentity
automorphisms. They all have the property that if we delete any two ver-
tices, then the resulting graph is connected, but if we delete any edge, then
we can find a pair of vertices whose deletion will disconnect the graph.
(To use language from Section 3.4, they are 3-connected, but any proper
subgraph is at most 2-connected.)

2.4  Orbits on Pairs

Let G be a transitive permutation group acting on the set V. Then G acts
on the set of ordered pairs V x V, and in this section we study its orbits
on this set. It is so common to study G acting on both V and V x V that
the orbits of G on V x V are often given the special name orbitals.

Since G is transitive, the set

{(z,z) :z €V}
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is an orbital of G, known as the diagonal orbital. If 2 CV x V, we define
its transpose QT to be

{(y,z) : (z,y) € Q}.

It is a routine exercise to show that Q7 is G-invariant if and only if € is.
Since orbits are either equal or disjoint, it follows that if €2 is an orbital of
G, either Q = QT or QNOQT = 0. If Q = Q7 we call it a symmetric orbital.

Lemma 2.4.1 Let G be a group acting transitively on the set V, and let
x be a point of V. Then there is a one-to-one correspondence between the
orbits of G on 'V x V and the orbits of G, on V.

Proof. Let €2 be an orbit of G on V x V, and let Y denote the set
{y : (z,y) € Q}. We claim that the set Yq is an orbit of G, acting on
V. If y and ¥’ belong to Yq, then (z,y) and (z,y') lie in 2 and there is a
permutation g such that

(z,9)? = (z,9).

This implies that g € G, and y9 = 3/, and thus y and 3’ are in the same
orbit of G,. Conversely, if (z,y) € Q and ¢y = y9 for some g € G, then
(z,9') € Q. Thus Yq is an orbit of G.. Since V is partitioned by the sets
Yq, where (2 ranges over the orbits of G on V x V, the lemma follows. O

This lemma shows that for any = € V, each orbit Q of G on V x V is
associated with a unique orbit of G;. The number of orbits of G, on V is
called the rank of the group G. If Q is symmetric, the corresponding orbit
of G is said to be self-paired. Each orbit Q of G on V x V may be viewed
as a directed graph with vertex set V and arc set 2. When 2 is symmetric
this directed graph is a graph: (z,y) is an arc if and only if (y, z) is. If Q
is not symmetric, then the directed graph has the property that if (z,y) is
an arc, then (y,z) is not an arc. Such directed graphs are often known as
oriented graphs (see Section 8.3).

Lemma 2.4.2 Let G be a transitive permutation group on V and let §) be
an orbit of G on V x V. Suppose (z,y) € Q. Then Q is symmetric if and
only if there is a permutation g in G such that x9 =y and y? = .

Proof. If (z,y) and (y,z) both lie in Q, then there is a permutation g €
G such that (z,y)9 = (29,y9) = (y,z). Conversely, suppose there is a
permutation g swapping = and y. Since (z,y)? = (y, z) € £, it follows that
QN QT #£0, and so Q = Q7. m]

If a permutation g swaps x and y, then (zy) is a cycle in g. It follows that
g has even order (and so G itself must have even order). A permutation
group G on V is generously transitive if for any two distinct elements x
and y from V there is a permutation that swaps them. All orbits of G on
V' x V are symmetric if and only if G is generously transitive.
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We have seen that each orbital of a transitive permutation group G on
V' gives rise to a graph or an oriented graph. It is clear that G acts as a
transitive group of automorphisms of each of these graphs. Similarly, the
union of any set of orbitals is a directed graph (or graph) on which G acts
transitively. We consider one example. Let V be the set of all 35 triples
from a fixed set of seven points. The symmetric group Sym(7) acts on V
as a transitive permutation group G, and it is not hard to show that G is
generously transitive. Fix a particular triple z and consider the orbits of
G on V. There are four orbits, namely x itself, the triples that meet x in 2
points, the triples that meet z in 1 point, and those disjoint from z. Hence
these correspond to four orbitals, the first being the diagonal orbital, with
the remaining three yielding the graphs J(7,3,2), J(7,3,1), and J(7,3,0).
It is clear that G is a subgroup of the automorphism group of each of these
graphs, but although it can be shown that G is the full automorphism
group of J(7,3,2) and J(7,3,0), it is not the full automorphism group of
J(7,3,1)!

Lemma 2.4.3 The automorphism group of J(7,3,1) contains a group
isomorphic to Sym(8).

Proof. There are 35 partitions of the set {0,1,...,7} into two sets of
size four. Let X be the graph with these partitions as vertices, where two
partitions are adjacent if and only if the intersection of a 4-set from one
with a 4-set from the other is a set of size two. Clearly, Aut(X) contains
a subgroup isomorphic to Sym(8). However, X is isomorphic to J(7,3,1).
To see this, observe that a partition of {0,1,...,7} into two sets of size
four is determined by the 4-set in it that contains 0, and this 4-set in turn
is determined by its nonzero elements. Hence the partitions correspond to
the triples from {1,2,...,7} and two partitions are adjacent in X if and
only if the corresponding triples have exactly one element in common. 0O

2.5 Primitivity

Let G be a transitive group on V. A nonempty subset S of V' is a block of
imprimitivity for G if for any element g of G, either $9 = .S or SN .S9 = §.
Because G is transitive, it is clear that the translates of S form a partition
of V. This set of distinct translates is called a system of imprimitivity for
G.

An example of a system of imprimitivity is readily provided by the
cube @ shown in Figure 2.2. It is straightforward to see that Aut(Q) acts
transitively on @ (see Section 3.1 for more details).

For each vertex x there is a unique vertex z’ at distance three from
it; all other vertices in @ are at distance at most two. If § = {z,2'}
and g € Aut(Q), then either S9 = S or SNSY = @, so S is a block of
imprimitivity. There are four disjoint sets of the form 59, as g ranges over
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(o O
Figure 2.2. The cube @

the elements of Aut(Q), and these sets are permuted among themselves by
Aut(Q).

The partition of V into singletons is a system of imprimitivity as is
the partition of V' into one cell containing all of V. Any other system of
imprimitivity is said to be nontrivial. A group with no nontrivial systems
of imprimitivity is primitive; otherwise, it is imprimitive. There are two
interesting characterizations of primitive permutation groups. We give one
now; the second is in the next section.

Lemma 2.5.1 Let G be a transitive permutation group on V and let x be
a point in V. Then G is primitive if and only if G, is a mazimal subgroup
of G.

Proof. In fact, we shall be proving the contrapositive statement, namely
that G has a nontrivial system of imprimitivity if and only if G, is not a
maximal subgroup of G. First some notation: We write H < G if H is a
subgroup of G, and H < G if H is a proper subgroup of G.

Suppose first that G has a nontrivial system of imprimitivity and that
B is a block of imprimitivity that contains z. Then we will show that
G, < Gp < G and therefore that G, is not maximal. If g € G, then
BN B¢ is nonempty (for it contains z) and hence B = BY. Thus G; < Gp.
To show that the inclusion is proper we find an element in G that is not
in G;. Let y # x be another element of B. Since G is transitive it contains
an element h such that 2” = y. But then B = B" yet h & G, and hence
G, < Gp.

Conversely, suppose that there is a subgroup H such that G, < H < G.
We shall show that the orbits of H form a nontrivial system of imprimi-
tivity. Let B be the orbit of H containing x and let g € G. To show that
B is a block of imprimitivity it is necessary to show that either B = BY
or BN BY = (). Suppose that y € B N BY. Then because y € B there
is an element h € H such that y = 2". Moreover, because y € BY there
is some element A’ € H such that y = 2’9, Then zh'9"' = z, and so
h'gh™! € G, < H. Therefore, g € H, and because B is an orbit of H we
have B = BY. Because G, < H, the block B does not consist of x alone,
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and because H < G, it does not consist of the whole of V', and hence it is
a nontrivial block of imprimitivity. a

2.6 Primitivity and Connectivity

Our second characterization of primitive permutation groups uses the orbits
of G on V x V, and requires some preparation. A path in a directed graph

D is a sequence uo,...,u, of distinct vertices such that (u;—1,u;) is an
arc of D for ¢ = 1,...,r. A weak path is a sequence uo, ..., u, of distinct
vertices such that for i = 1,...,r, either (u;—1,u;) or (u;,u;—1) is an arc.

(We will use this terminology in this section only.) A directed graph is
strongly connected if any two vertices can be joined by a path and is weakly
connected if any two vertices can be joined by a weak path. A directed
graph is weakly connected if and only if its “underlying” undirected graph is
connected. (This is often used as a definition of weak connectivity.) A strong
component of a directed graph is an induced subgraph that is maximal,
subject to being strongly connected. Since a vertex is strongly connected,
it follows that each vertex lies in a strong component, and therefore the
strong components of D partition its vertices.

The in-valency of a vertex in a directed graph is the number of arcs
ending on the vertex, the out-valency is defined analogously.

Lemma 2.6.1 Let D be a directed graph such that the in-valency and out-
valency of any vertex are equal. Then D is strongly connected if and only
if it is weakly connected.

Proof. The difficulty is to show that if D is weakly connected, then it is
strongly connected. Assume by way of contradiction that D is weakly, but
not strongly, connected and let Dy, ..., D, be the strong components of D.
If there is an arc starting in Dy and ending in D5, then any arc joining D,
to Do must start in D;. Hence we may define a directed graph D’ with the
strong components of D as its vertices, and such that there is an arc from
D; to D; in D’ if and only if there is an arc in D starting in D; and ending
in D;. This directed graph cannot contain any cycles. (Why?) It follows
that there is a strong component, D; say, such that any arc that ends on
a vertex in it must start at a vertex in it. Since D is weakly connected,
there is at least one arc that starts in D; and ends on a vertex not in Dj.
Consequently the number of arcs in D; is less than the sum of the out-
valencies of the vertices in it. But on the other hand, each arc that ends
in D must start in it, and therefore the number of arcs in D; is equal to
the sum of the in-valencies of its vertices. By our hypothesis on D, though,
the sum of the in-valencies of the vertices in D; equals the sum of the
out-valencies. Thus we have the contradiction we want. a
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What does this lemma have to do with permutation groups? Let G act
transitively on V and let Q be an orbit of G on V x V' that is not symmetric.
Then  is an oriented graph, and G acts transitively on its vertices. Hence
each point in V' has the same out-valency in £ and the same in-valency. As
the in- and out-valencies sum to the number of arcs in €2, the in- and out-
valencies of any point of V in Q are the same. Hence € is weakly connected
if and only if it is strongly connected, and so we will refer to weakly or
strongly connected orbits as connected orbits.

Lemma 2.6.2 Let G be a transitive permutation group on V. Then G is
primitive if and only if each nondiagonal orbit is connected.

Proof. Suppose that G is imprimitive, and that By, ..., B, is a system of
imprimitivity. Assume further that z and y are distinct points in B; and Q
is the orbit of G (on V x V) that contains (z,y). If g € G, then 29 and y9
must lie in the same block; otherwise BY contains points from two distinct
blocks. Therefore, each arc of € joins vertices in the same block, and so ©
is not connected.

Now suppose conversely that € is a nondiagonal orbit that is not con-
nected, and let B be the point set of some component of Q. If g € G, then
B and BY are either equal or disjoint. Therefore, B is a nontrivial block
and G is imprimitive. D

Exercises

1. Show that the size of the isomorphism class containing X is

n!

[Aut(X)|
2. Prove that [Aut(C,)| = 2n. (You may assume that 2n is a lower
bound on |Aut(Cy,)|.)

3. If G is a transitive permutation group on the set V', show that there
is an element of G with no fixed points. (What if G has more than
one orbit, but no fixed points?)

4. If g is a permutation of a set of n points with support of size s,
show that orbe(g) is maximal when all nontrivial cycles of g are
transpositions.

5. The goal of this exercise is to prove Frobenius’s lemma, which as-
serts that if the order of the group G is divisible by the prime p,
then G contains an element of order p. Let {2 denote the set of all
ordered p-tuples (z1, ..., z,) of elements of G such that z; -- -z, = e.
Let 7 denote the permutation of GP that maps (z1,22,...,%p) to
(x2,...,Zp,x1). Show that 7 fixes {2 as a set. Using the facts that =



10.

11.

12.

13.

14.
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fixes (e,...,e) and | = |G|P~!, deduce that 7 must fix at least p
elements of (2 and hence Frobenius’s lemma holds.

Construct a cubic planar graph on 12 vertices with trivial auto-
morphism group, and provide a proof that it has no nonidentity
automorphism.

Decide whether the cube is a Halin graph.

Let X be a self-complementary graph with more than one vertex.
Show that there is a permutation g of V(X) such that:
(a) {z,y} € E(X) if and only if {z9,y9} € E(X),
(b) g% € Aut(X) but g2 # e,
(c) the orbits of g on V(X) induce self-complementary subgraphs
of X.

If G is a permutation group on V, show that the number of orbits of
G on V x V is equal to

,—é—, 3 [fix(g)[2

geG

and derive a similar formula for the number of orbits of G on the set
of pairs of distinct elements from V.

If H and K are subsets of a group G, then HK denotes the subset
{hk:he H, ke K}.

If H and K are subgroups and g € G, then HgK is called a double
coset. The double coset HgK is a union of right cosets of H and a
union of left cosets of K, and G is partitioned by the distinct double
cosets HgK, as g varies over the elements of G. Now (finally) suppose
that G is a transitive permutation group on V and H < G. Show
that each orbit of H on V corresponds to a double coset of the form
G.gH. Also show that the orbit of G, corresponding to the double
coset GpgGy is self-paired if and only if GygGy = Gz9 1Gy.

Let G be a transitive permutation group on V. Show that it has a
symimetric nondiagonal orbit on V' x V if and only if |G| is even.

Show that the only primitive permutation group on V that contains
a transposition is Sym(V).

Let X be a graph such that Aut(X) acts transitively on V(X) and let
B be a block of imprimitivity for Aut(X). Show that the subgraph
of X induced by B is regular.

Let G be a generously transitive permutation group on V' and let B
be a block for G. Show that G|B and the permutation group induced
by G on the translates of B are both generously transitive.
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15. Let G be a transitive permutation group on V such that for each
element v in V there is an element of G with order two that has
v as its only fixed point. (Thus |V| must be odd.) Show that G is
generously transitive.

16. Let X be a nonempty graph that is not connected. If Aut(X) is
transitive, show that it is imprimitive.

17. Show that Aut(J(4n—1,2n—1,n—1)) contains a subgroup isomorphic
to Sym(4n). Show further that w(J(4n —1,2n—1,n—1)) < 4n —1,
and characterize the cases where equality holds.

Notes

The standard reference for permutation groups is Wielandt’s classic [5]. We
also highly recommend Cameron [1]. For combinatorialists these are the
best starting points. However, almost every book on finite group theory
contains enough information on permutation groups to cover our modest
needs. Neumann (3] gives an interesting history of Burnside’s lemma.

The result of Exercise 15 is due to Shult. Exercise 17 is worth some
thought, even if you do not attempt to solve it, because it appears quite
obvious that Aut(J(4n—1,2n—1,n—1)) should be Sym(4n — 1). The second
part will be easier if you know something about Hadamard matrices.

Call a graph minimal asymmetric if it is asymmetric, but any proper in-
duced subgraph with at least two vertices has a nontrivial automorphism.
Sabidussi and Nesetfil [2] conjecture that there are finitely many isomor-
phism classes of minimal asymmetric graphs. In [4], Sabidussi verifies this
for all graphs that contain an induced path of length at least 5, finding that
there are only two such graphs. In [2], Sabidussi and Nesetfil show that
there are exactly seven minimal asymmetric graphs in which the longest
induced path has length four.

References

[1] P. J. CAMERON, Permutation Groups, Cambridge University Press, Cam-
bridge, 1999.

[2] J. NESETRIL AND G. SABIDUSSI, Minimal asymmetric graphs of induced length
4, Graphs Combin., 8 (1992), 343-359.

[3] P. M. NEUMANN, A lemma that is not Burnside’s, Math. Sci., 4 (1979),
133-141.

[4] G. SaBipussi, Clumps, minimal asymmetric graphs, and involutions, J.
Combin. Theory Ser. B, 53 (1991), 40-79.

[6] H. WIELANDT, Finite Permutation Groups, Academic Press, New York, 1964.



3

Transitive Graphs

We are going to study the properties of graphs whose automorphism group
acts vertex transitively. A vertex-transitive graph is necessarily regular.
One challenge is to find properties of vertex-transitive graphs that are not
shared by all regular graphs. We will see that transitive graphs are more
strongly connected than regular graphs in general. Cayley graphs form an
important class of vertex-transitive graphs; we introduce them and offer
some reasons why they are important and interesting.

3.1 Vertex-Transitive Graphs

A graph X is vertex transitive (or just transitive) if its automorphism group
acts transitively on V(X). Thus for any two distinct vertices of X there is
an automorphism mapping one to the other.

An interesting family of vertex-transitive graphs is provided by the k-
cubes Q. The vertex set of Qy is the set of all 2% binary k-tuples, with
two being adjacent if they differ in precisely one coordinate position. We
have already met the 3-cube 3, which is normally just called the cube (see
Figure 2.2), and Figure 3.1 shows the 4-cube Q.

Lemma 3.1.1 The k-cube Qy is vertex transitive.
Proof. If v is a fixed k-tuple, then the mapping

Py T T+U
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Figure 3.1. The 4-cube Q4

(where addition is binary) is a permutation of the vertices of Q. This map-
ping is an automorphism because the k-tuples x and y differ in precisely
one coordinate position if and only if z + v and y + v differ in precisely
one coordinate position. There are 2% such permutations, and they form a
subgroup H of the automorphism group of Q. This subgroup acts transi-
tively on V(Qx) because for any two vertices z and y, the automorphism
Py—o Maps x to y. 0O

The group H of Lemma 3.1.1 is not the full automorphism group of Q.
Any permutation of the k coordinate positions is an automorphism of Qk,
and the set of all these permutations forms a subgroup K of Aut(Qy), iso-
morphic to Sym(k). Therefore, Aut(Qy) contains the set HK. By standard
group theory, the size of HK is given by

LH|| K]

IHK’lemrq'

It is straightforward to see that H N K is the identity subgroup, whence
we conclude that |Aut(Qx)| > 2Fk!.

Another family of vertex-transitive graphs that we have met before are
the circulants. Any vertex can be mapped to any other vertex by using a
suitable power of the cyclic permutation described in Section 1.5.

The circulants and the k-cubes are both examples of a more general
construction that produces many, but not all, vertex-transitive graphs.

Let G be a group and let C be a subset of G that is closed under taking
inverses and does not contain the identity. Then the Cayley graph X(G,C')
is the graph with vertex set G and edge set

E(X(G,C))={gh:hg~' € C}.
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If C is an arbitrary subset of G, then we can define a directed graph
X(@G, C) with vertex set G and arc set {(g, h) : hg—! € C}. If C is inverse-
closed and does not contain the identity, then this graph is undirected and
has no loops, and the definition reduces to that of a Cayley graph. Most
of the results for Cayley graphs apply in the more general directed case
without modification, but we explicitly use directed Cayley graphs only in
Section 3.8.

Theorem 3.1.2 The Cayley graph X(G, C) is vertex transitive.
Proof. For each g € G the mapping
Pg T Ty

is a permutation of the elements of G. This is an automorphism of X (G, C)
because

1 1

(yg)(zg) ™ =ygg 'zt =y,
and so zg ~ yg if and only if z ~ y. The permutations p, form a subgroup
of the automorphism group of X(G, C) isomorphic to G. This subgroup
acts transitively on the vertices of X (G, C) because for any two vertices g

and h, the automorphism pg-1, maps g to h. ]

The k-cube is a Cayley graph for the elementary abelian group (Z2)F,
and a circulant on n vertices is a Cayley graph for the cyclic group of order
n.

Most small vertex-transitive graphs are Cayley graphs, but there are
also many families of vertex-transitive graphs that are not Cayley graphs.
In particular, the graphs J(v, k,4) are vertex transitive because Sym(v)
contains permutations that map any k-set to any other k-set, but in general
they are not Cayley graphs. We content ourselves with a single example.

Lemma 3.1.3 The Petersen graph is not a Cayley graph.

Proof. There are only two groups of order 10, the cyclic group Z1o and the
dihedral group Djp. You may verify that none of the cubic Cayley graphs
on these groups are isomorphic to the Petersen graph (Exercise 2). O

We will return to study Cayley graphs in more detail in Section 3.7.

3.2 FEdge-Transitive Graphs

A graph X is edge transitive if its automorphism group acts transitively
on E(X). It is straightforward to see that the graphs J(v,k, i) are edge
transitive, but the circulants are not usually edge transitive.

An arcin X is an ordered pair of adjacent vertices, and X is arc transitive
if Aut(X) acts transitively on its arcs. It is frequently useful to view an edge
in a graph as a pair of oppositely directed arcs. An arc-transitive graph is
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necessarily vertex and edge transitive. In this section we will consider the
relations between these various forms of transitivity.

The complete bipartite graphs K,, , are edge transitive, but not vertex
transitive unless m = n, because no automorphism can map a vertex of
valency m to a vertex of valency n. The next lemma shows that all graphs
that are edge transitive but not vertex transitive are bipartite.

Lemma 3.2.1 Let X be an edge-transitive graph with no isolated vertices.
If X is not vertex transitive, then Aut(X) has exactly two orbits, and these
two orbits are a bipartition of X.

Proof. Suppose X is edge but not vertex transitive. Suppose that {x,y} €
E(X). If w € V(X), then w lies on an edge and there is an element of
Aut(X) that maps this edge onto {z,y}. Hence any vertex of X lies in
either the orbit of x under Aut(X), or the orbit of y. This shows that
Aut(X) has exactly two orbits. An edge that joins two vertices in one orbit
cannot be mapped by an automorphism to an edge that contains a vertex
from the other orbit. Since X is edge transitive and every vertex lies in an
edge, it follows that there is no edge joining two vertices in the same orbit.
Hence X is bipartite and the orbits are a bipartition for it. ]

Figure 3.2 shows a regular graph that is edge transitive but not vertex
transitive. The colouring of the vertices shows the bipartition.

0

Figure 3.2. A regular edge-transitive graph that is not vertex transitive

An arc-transitive graph is, as we noted, always vertex and edge transitive.
The converse is in general false; see the Notes at the end of the chapter for
more. We do at least have the next result.

Lemma 3.2.2 If the graph X is vertex and edge transitive, but not arc
transitive, then its valency is even.
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Proof. Let G = Aut(X), and suppose that € V(X). Let y be a vertex
adjacent to x and Q be the orbit of G on V' x V that contains (z, y). Since
X is edge transitive, every arc in X can be mapped by an automorphism to
either (z,y) or (y, z). Since X is not arc transitive, (y, z) ¢ , and therefore
€ is not symmetric. Therefore, X is the graph with edge set QUQT. Because
the out-valency of z is the same in © and Q7, the valency of X must be
even. g

A simple corollary to this result is that a vertex- and edge-transitive
graph of odd valency must be arc transitive. Figure 3.3 gives an example
of a vertex- and edge-transitive graph that is not arc-transitive.

Figure 3.3. A vertex- and edge- but not arc-transitive graph

3.3 Edge Connectivity

An edge cutset in a graph X is a set of edges whose deletion increases the
number of connected components of X. For a connected graph X, the edge
connectivity is the minimum number of edges in an edge cutset, and will
be denoted by k1(X). If a single edge e is an edge cutset, then we call
e a bridge or a cut-edge. As the set of edges adjacent to a vertex is an
edge cutset, the edge connectivity of a graph cannot be greater than its
minimum valency. Therefore, the edge connectivity of a vertex-transitive
graph is at most its valency. In this section we will prove that the edge
connectivity of a connected vertex-transitive graph is equal to its valency.
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If A C V(X), then we define A to be the set of edges with one end in
A and one end not in A. Soif A =0 or A =V(X), then dA = @), while the
edge connectivity is the minimum size of A as A ranges over the proper
subsets of V(X).

Lemma 3.3.1 Let A and B be subsets of V(X), for some graph X. Then
|0(AU B)| + |80(AN B)| < |0A| + |0B].

Proof. The details are left as an exercise. We simply note here that the
difference between the two sides is twice the number of edges joining A\ B
to B\ A. a

Define an edge atom of a graph X to be a subset S such that |0S| =
k1(X) and, given this, |S| is minimal. Since S = dV'\ S, it follows that if
S is an atom, then 2|5| < |V (X)|.

Corollary 3.3.2 Any two distinct edge atoms are vertez disjoint.

Proof. Assume k = k;(X) and let A and B be two distinct edge atoms in
X. If AUB = V(X), then, since neither A nor B contains more than half
the vertices of X, it follows that

1
4] = |B| = V()|

and hence that AN B = 0. So we may assume that AU B is a proper subset
of V(X). Now, the previous lemma yields

|0(AU B)| + |0(AN B)| < 2k,
and, since AU B # V(X) and AN B # {, this implies that
|8(AU B)| = |8(AN B)| = &.

Since A N B is a nonempty proper subset of the edge atom A, this is
impossible. We are forced to conclude that A and B are disjoint. a

Our next result answers all questions about the edge connectivity of a
vertex-transitive graph.

Lemma 3.3.3 If X is a connected vertex-transitive graph, then its edge
connectivity is equal to its valency.

Proof. Suppose that X has valency k. Let A be an edge atom of X. If A is
a single vertex, then |0A| = k and we are finished. Suppose that |A| > 2. If
g is an automorphism of X and B = A9, then |B| = |A| and |0B| = |0A].
From the previous lemma we see that either A = B or ANB = (. Therefore,
A is a block of imprimitivity for Aut(X), and by Exercise 2.13 it follows
that the subgraph of X induced by A is regular.

Suppose that the valency of this subgraph is ¢. Then each vertex in A
has exactly k£ — ¢ neighbours not in A, and so

104] = |Al(k - 2).
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Since X is connected, ¢ < k, and so if |A] > k, then |@A| > k. Hence we
may assume that |A| < k. Since £ < |A4] — 1, it follows that

|0A] 2 |A|(k+1 - |A]).

The minimum value of the right side here occurs if |A| = 1 or k, when it is
equal to k. Therefore, [0A| > & in all cases. ]

3.4 Vertex Connectivity

A verter cutset in a graph X is a set of vertices whose deletion increases
the number of connected components of X. The vertex connectivity (or just
connectivity) of a connected graph X is the minimum number of vertices
in a vertex cutset, and will be denoted by g(X). For any k < xo(X) we
say that X is k-connected. Complete graphs have no vertex cutsets, but
it is conventional to define xq(K,) to be n — 1. The fundamental result
on connectivity is Menger’s theorem, which we state after establishing one
more piece of terminology. If u and v are distinct vertices of X, then two
paths P and @ from u to v are openly disjoint if V(P \ {u,v}) and V(Q\
{u, v}) are disjoint sets.

Theorem 3.4.1 (Menger) Let u and v be distinct vertices in the graph
X. Then the mazimum number of openly disjoint paths from u to v equals
the minimum size of a set of vertices S such that u and v lie in distinct
components of X\ S. o

We say that the subset S of the theorem separates u and v. Clearly, two
vertices joined by m openly disjoint paths cannot be separated by any set of
size less than m. The significance of this theorem is that it implies that two
vertices that cannot be separated by fewer than m vertices must be joined
by m openly disjoint paths. A simple consequence of Menger’s theorem is
that two vertices that cannot be separated by a single vertex must lie on
a cycle. This is not too hard to prove directly. However, to prove that two
vertices that cannot be separated by a set of size two are joined by three
openly disjoint paths seems to be essentially as hard as the general case.
Nonetheless, this is possibly the most important case. (It is the one that
we make use of.)

There are a number of variations of Menger’s theorem. In particular, two
subsets A and B of V(X) of size m cannot be separated by fewer than m
vertices if and only if there are m disjoint paths starting in A and ending in
B. This is easily deduced from the result stated; we leave it as an exercise.

We have a precise bound for the connectivity of a vertex-transitive
graph, which requires much more effort to prove than determining its edge
connectivity did.
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Theorem 3.4.2 A wvertex-transitive graph with valency k has wvertex
connectivity at least 2(k +1).

Figure 3.4 shows a 5-regular graph with vertex connectivity four, showing
that equality can occur in this theorem.

Figure 3.4. A 5-regular graph with vertex connectivity four

Before proving this result we need to develop some theory. If A is a set
of vertices in X, let N(A) denote the vertices in V(X)\ A with a neighbour
in A and let A be the complement of A U N(A) in V(X). A fragment of
X is a subset A such that 4 # () and |N(A)| = ko(X). An atom of X is
a fragment that contains the minimum possible number of vertices. Note
that an atom must be connected and that if X is a k-regular graph with
an atom consisting of a single vertex, then ko(X) = k. It is not hard to

show that if A is a fragment, then N(A) = N(A) and A = A.
The following lemma records some further useful properties of fragments.

Lemma 3.4.3 Let A and B be fragments in a graph X. Then

(a) N(ANB) C (ANN(B)) U(N(A)N B)U (N(4) NN(B)).
(b) N(AU B) = (AN N(B)) U (N(A) N B)U(N(A) N N(B)).
(¢ AUBC ANB.
(d) AUB=ANB.

Proof. Suppose first that £ € N(AN B). Since AN B and N(AN B) are
disjoint, if € A, then r ¢ B, and therefore it must lie in N(B). Similarly,
ifz € B, then z € N(A). If z does not lie in A or B, then z € N(A)NN(B).
Thus we have proved (a).

Analogous arguments show that N(A U B) is contained in the union of
AN N(B), N(A)N B, and N(A) N N(B). To obtain the reverse inclusion,
note that if x € AN N(B), then z does not lie in A or B. Since = € N(B),
it follows that x € N(A U B). Similarly, we see that if € N(4) N B or
N(A)NN(B), then z € N(AU B).
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Next, if x € A, then z does not lie in A or N(A), and therefore does not

lie in AN B or N(AN B). So z € AN B. This proves (c). We leave the
proof of (d) as an exercise. o

B NB) B

NA)| b c d

A e

Figure 3.5. Intersection of fragments

Theorem 3.4.4 Let X be a graph on n vertices with connectivity . Sup-
pose A and B are fragments of X and ANB # 0. If |A| < |B|, then ANB
s a fragment.

Proof. The intersections of A, N(A), and A with the sets B, N(B), and B
partition V{(X) into nine pieces, as shown in Figure 3.5. The cardinalities
of five of these pieces are also defined in this figure. We present the proof
as a number of steps.

(a) |[AUB| < n — k.
Since |F| + |F| = n — & for any fragment F of X,
4] <|Bl=n—r—|BI,
and therefore |A|+|B| < n—&. Since AN B is nonempty, the claim follows.
(b) IN(AUB)| < .

From Lemma 3.4.3 we find that [N(ANB)| <a+b+cand [N(AUB)| =
¢+ d + e. Consequently,

2k = |N(A)|+|N(B)| = a+b+2c+d+e> |[N(ANB)|+|N(AUB)|. (3.1)
Since |[N(A N B)| > &, this implies that [N(AU B)| < &.
(c) ANB #0.

From (a) and (b) we see that |AU B| +|N(AU B)| < n. Hence AU B # 0,
and the claim follows from Lemma 3.4.3(d).

(d) [N(AU B)| = &.



42 3. Transitive Graphs

For any fragment F we have N(F) = N(F). Using part (a) of Lemma 3.4.3
and (b) we obtain

N(ANB) € (ANN(B)) U(BNN(A4))U(N(4)NN(B))
= (ANN(B))U(BNN(A))U(N(A)NN(B))
N(AUB).

Since AN B is nonempty, |N(A N B)| > « and therefore |N(A U B)| > &.
Taken with (b), we get the claim.

(e) The set AN B is a fragment.

From (3.1) we see that |[N(AN B)| + |[N(AU B)| < 2k, whence (d) ylelds
that N(AN B) < k.

Corollary 3.4.5 If A is an atom and B is a fragment of X, then A is a
subset of exactly one of B, N(B), and B.

Proof. Since A is an atom, |A| < |B| and |A| < |B|. Hence the intersection
of A with B or B, if nonempty, would be a fragment. Since A is an atom,
no proper subset of it can be a fragment. The result follows immediately.O

Now, we can prove Theorem 3.4.2. Suppose that X is a vertex-transitive
graph with valency k, and let A be an atom in X. If A is a single vertex,
then |N(A)| = k, and the theorem holds. Thus we may assume that |A| > 2.
If g € Aut(X), then A9 is also an atom, and so by Corollary 3.4.5, either
A= A9 or AN A9 = ). Hence A is a block of imprimitivity for Aut(X),
and its translates partition V(X). Corollary 3.4.5 now yields that N(A) is
partitioned by translates of A, and therefore

IN(A)] = t]A]

for some integer t. Suppose u is a vertex A. Then the valency of u is at
most

Al =1+ |N(A)] = (t+1)]A] -1,

L k. To

and from this it follows that k + 1 < (t + 1)|A] and ko(X) > 5

complete the proof we show that ¢t > 2.

This is actually a consequence of Exercise 20, but since X is vertex transi-
tive and the atoms are blocks of imprimitivity for Aut(X), there is a shorter
argument. Suppose for a contradiction that ¢t = 1. By Corollary 3.4.5, N(A)
is a union of atoms, and so N(A) is an atom. Since Aut(X) acts transitively
on the atoms of X, it follows that | N(N(A))| = |A|, and since ANN(N(A))
is nonempty, A = N(N(A)). This implies that A = (), and so A is not a
fragment.
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3.5 Matchings

A matching M in a graph X is a set of edges such that no two have a
vertex in common. The size of a matching is the number of edges in it.
A vertex contained in an edge of M is covered by M. A matching that
covers every vertex of X is called a perfect matching or a 1-factor. Clearly,
a graph that contains a perfect matching has an even number of vertices.
A mazimum matching is a matching with the maximum possible number
of edges. (Without this convention there is a chance of confusion, since
matchings can be partially ordered by inclusion or by size.)

We will prove the following result. It implies that a connected vertex-
transitive graph on an even number of vertices has a perfect matching, and
that each vertex in a connected vertex-transitive graph on an odd number
of vertices is missed by a matching that covers all the remaining vertices.

Theorem 3.5.1 Let X be a connected vertex-transitive graph. Then X has
a matching that misses at most one vertexr, and each edge is contained in
a mazrimum matching.

We first verify the claim about the maximum size of a matching. This
requires some preparation, including two lemmas. If M is a matching in X
and P is a path in X such that every second edge of P lies in M, we say
that P is an alternating path relative to M. Similarly, an alternating cycle
is a cycle with every second edge in M.

Suppose that M and N are matchings in X, and consider their symmetric
difference M @ N. Since M and N are regular subgraphs with valency
one, M & N is a subgraph with maximum valency two, and therefore each
component of it is either a path or a cycle. Since no vertex in M @& N lies
in two edges of M or of N, these paths and cycles are alternating relative
to both M and N. In particular, each cycle must have even length.

Suppose P is a path in M & N with odd length. We may assume without
loss that P contains more edges of M than of N, in which case it follows
that V& P is a matching in X that contains more edges than N. Hence, if
M and N are maximum matchings, all paths in M & N have even length.

Lemma 3.5.2 Let u and v be vertices in X such that no maximum match-
ing misses both of them. Suppose that M, and M, are mazimum matchings
that miss u and v, respectively. Then there is a path of even length in
M, & M, with u and v as its end-vertices.

Proof. Our hypothesis implies that u and v are vertices of valency one in
M, & M, so, by our ruminations above, both vertices are end-vertices of
paths in M, ® M,. As M, and M, have maximum size, these paths have
even length. If they are end-vertices of the same path, we are finished.
Assume that they lie on distinct paths and let P be the path on u. Then
P is an alternating path relative to M, with even length, and M, @ P is
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a matching in X that misses v and v and has the same size as M,. This
contradicts our choice of u and v. 0

We are almost ready to prove the first part of our theorem. We call a
vertex u in X ecritical if it is covered by every maximum matching. If X
is vertex transitive and one vertex is critical, then all vertices are critical,
whence X has a perfect matching. Given this, the next result implies the
first claim in our theorem.

Lemma 3.5.3 Let u and v be distinct vertices in X and let P be a path
from u to v. If no vertex in V(P)\ {u,v} is critical, then no mazimum
matching misses both u and v.

Proof. The proof is by induction on the length of P. If u ~ v, then no
maximum matching misses both u and v; hence we may assume that P has
length at least two.

Let z be a vertex on P distinct from u and v. Then u and x are joined
in X by a path that contains no critical vertices. This path is shorter than
P, so by induction, we conclude that no maximum matching misses both
u and z. Similarly, no maximum matching misses both v and «x.

Since z is not critical, there is a maximum matching M, that misses
it. Assume by way of contradiction that N is a maximum matching that
misses u and v. Then, by Lemma 3.5.2 applied to the vertices u and x,
there must be a path in M, & N with u and z as its end-vertices. Applying
the same argument to v and x, we find that M, & N contains a path with
v and z as its end-vertices. This implies that © = v, a contradiction. O

We noted above that a vertex-transitive graph that contains a critical
vertex must have a perfect matching. By the above lemma, if X is vertex-
transitive and does not contain a critical vertex, then no two vertices are
missed by a maximum matching, and therefore a maximum matching covers
all but one vertex of X.

It remains for us to show that every edge of X lies in a maximum
matching. We assume inductively that this claim holds for all connected
vertex-transitive graphs with fewer vertices or edges than X. If X is edge
transitive, we are finished, so we assume it is not. Suppose e is an edge that
does not lie in a maximum matching. Let Y be the subgraph of X with
edge set consisting of the orbit of e under the action of Aut(X). Thus Y is
a vertex-transitive spanning subgraph of X. Since X is not edge transitive,
Y has fewer edges than X. We shall show that X has a matching contain-
ing an edge of Y that misses at most one vertex. This can be mapped to a
matching containing e that misses at most one vertex.

If Y is connected, then by induction, each edge in it lies in a match-
ing that misses at most one vertex. So suppose Y is not connected. The
components of Y form a system of imprimitivity for Aut(X), and are pair-
wise isomorphic vertex-transitive graphs. If the number of vertices in a
component of Y is even, then by induction, each component has a perfect
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matching and the union of these perfect matchings is a perfect matching
inY.

Assume then that the number of vertices in a component of Y is odd. Let
Y1, ..., Y, denote the distinet components of Y. Consider the graph Z with
the components of Y as its vertices, with Y; adjacent to Y; if and only if
there is an edge in X joining some vertex in Y; to a vertex in Y;. Then Z is
a vertex-transitive graph and so, by induction, contains a matching N that
misses at most one vertex. Suppose (Y;,Y;) is an edge in this matching.
Since Y; is adjacent to Y; in Z, there are vertices y; in Y; and y; in Y; such
that y; is adjacent to y; in X. Because Y; and Y} are vertex transitive and
have an odd number of vertices, there is a matching in Y; that misses only
y; and, similarly, a matching in Y} that misses only y;. The union of these
two matchings, together with the edge y;y;, is a matching in X that covers
all vertices in Y; UY;. Thus each edge of N determines a matching that
covers the vertices in two components of Y.

If the number of components of Y is even, it follows that X has a per-
fect matching. If the number is odd, we still have a matching in X that
covers all the vertices outside one of the components, Y7 say, of Y. Taken
together with a matching of Y] that misses exactly one vertex of Y7, we get
a matching of X that misses exactly one vertex.

3.6 Hamilton Paths and Cycles

A Hamilton path in a graph is a path that meets every vertex, and a Hamil-
ton cycle is a cycle that meets every vertex. A graph with a Hamilton cycle
is called hamiltonian. All known vertex-transitive graphs have Hamilton
paths, and only five are known that do not have Hamilton cycles. We
consider these five graphs.

Clearly, K3 is vertex transitive and does not have a Hamilton cycle.
We pass on. A more interesting observation is that the Petersen graph
J(5,2,0) does not have a Hamilton cycle. This can be proved by a suitable
case argument; in Chapter 8 we will offer an algebraic proof. The Coxeter
graph, an arc-transitive cubic graph on 28 vertices that we will discuss in
Section 4.6, also has no Hamilton cycle. For references to proofs of this, see
the Notes at the end of this chapter.

The remaining two graphs are constructed from the Petersen and Coxeter
graphs, by replacing each vertex with a triangle (see Figure 3.6).

We give a more formal definition of what this means, using subdivision
graphs. The subdivision graph S(X) of a graph X is obtained by putting
one new vertex in the middle of each edge of X. Therefore, the vertex set of
S(X) is actually V(X) U E(X), where two vertices of S(X) are adjacent if
they form an incident vertex/edge pair in X. The subdivision graph S(X)
is bipartite, with the two colour classes corresponding to V(X) and E(X).
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Figure 3.6. The Petersen graph with each vertex replaced by a triangle

The vertices in the “edge class” of S(X) all have valency two. If X is
regular with valency k, then the vertices in the “vertex class” of S(X) all
have valency k. Thus S(X) is a semiregular bipartite graph.

The proof of the next result is left as an exercise.

Lemma 3.6.1 Let X be a cubic graph. Then L(S(X)) has a Hamilton
cycle if and only if X does. O

If X is arc transitive and cubic, it follows that L(S(X)) is vertex transitive.
Hence we obtain the last two of the five known vertex-transitive graphs
without Hamilton cycles. Of these five graphs, only K3 is a Cayley graph.
Despite this somewhat limited evidence it has been conjectured that all
Cayley graphs (other than K3) are hamiltonian, and even more strongly
that all vertex-transitive graphs other than these five are hamiltonian. The
two conjectures have been quite intensively studied, and although some
positive results are known, both conjectures seem to be wide open. (The
conjecture is false for directed graphs.)

It is natural to look for sensible lower bounds on the length of a longest
cycle in a vertex-transitive graph X. Some measure of our inadequacy is
provided by the fact that the best known bound is of order O({/|V(X)]).
Since this is all we have, we derive it here anyway. We need one further
result about permutation groups.

Lemma 3.6.2 Let G be a transitive permutation group on a set 'V, let S
be a subset of V, and set ¢ equal to the minimum value of |S N S| as g
ranges over the elements of G. Then |S| > \/c|V]|.

Proof. We count the pairs (g, z) where g € G and z € SN S9. For each
element of G there are at least ¢ such points in S, and therefore there are
at least ¢|G| such pairs. On the other hand, the elements of G that map x
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to y form a coset of G, and so there are exactly |S| |G| elements g~* of
G such that 29 € S, i.e.,, z € S9. Hence

c|G| < |8*|Gal,
and since G is transitive,
IG/1Gz| = |V
by the orbit stabilizer lemma. Consequently, |S| > /c|V|, as claimed. O

The proof of the next result depends on the fact that in a 3-connected
graph any two maximum-length cycles must have at least three vertices in
common.

Theorem 3.6.3 A connected vertex-transitive graph on n vertices contains
a cycle of length at least /3n.

Proof. Let X be our graph and let G be its automorphism group. First
we need to know that a connected vertex-transitive graph with valency at
least three is at least 3-connected. This is a consequence of Theorem 3.4.2.
Now we let C be a maximum-length cycle of X. Then by Exercise 19,
|CNCY| > 3 for any automorphism g of X, and the result follows from the
previous lemma. ]

In fact, we can find a cycle through all but one vertex in both the Petersen
and Coxeter graphs (see Figure 3.7 for the Petersen graph).

Figure 3.7. A cycle through nine vertices of the Petersen graph

3.7 Cayley Graphs

We now develop some of the basic properties of Cayley graphs. First we
need some more terminology about permutation groups. A permutation
group G acting on a set V is semiregular if no nonidentity element of G
fixes a point of V. By the orbit-stabilizer lemma it follows that if G is
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semiregular, then all of its orbits have length equal to |G|. A permutation
group is regular if it is semiregular and transitive. If G is regular on V,
then |G| = |V|.

Given any group G we can always find a set on which it acts regularly—
namely G itself. For each g € G recall that pg is the permutation of the
elements of G that maps x to zg. The mapping g — p, is a permutation
representation of G (called the right regular representation). This group is
isomorphic to G and acts transitively on G, hence is regular. Therefore, the
proof of Theorem 3.1.2 implies the following result.

Lemma 3.7.1 Let G be a group and let C be an inverse-closed subset of
G\e. Then Aut(X (G, C)) contains a regular subgroup isomorphic to G. O

There is a converse to this lemma.

Lemma 3.7.2 If a group G acts regularly on the vertices of the graph X,
then X is a Cayley graph for G relative to some inverse-closed subset of

G\e.

Proof. Choose a fixed vertex u of X. Now, if v is any vertex of X, then
since G acts regularly on V(X), there is a unique element, g, say, in G
such that u9 = v. Define

C:={gy:v~u}
If  and y are vertices of X, then since g, € Aut(X), we see that z ~ y if
and only if 29 ~ y% . But 2% =u and

-1 -1
ygac — ugyg:c y

and therefore z and y are adjacent if and only if g,g;! € C. It follows
therefore that if we identify each vertex x with the group element g, then
X = X(G,C). Since X is undirected and has no loops, the set C is an
inverse-closed subset of G\ e. 0

There are many Cayley graphs for each group. It is natural to ask when
Cayley graphs for the same group are isomorphic. The next lemma provides
a partial answer to this question. If G is a group, then an automorphism
of GG is a bijection

6:G—-G
such that
8(gh) = 6(g)6(h)
forall g, h € G.

Lemma 3.7.3 If 0 is an automorphism of the group G, then X(G,C) and
X(G,6(C)) are isomorphic.
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Proof. For any two vertices z and y of X (G, C) we have

0(y)o(=)~" = 0(yz™),

and so 6(y)f(x)~! € §(C) if and only if yz~! € C. Therefore, § is an
isomorphism from X(G, C) to X(G, 6(C). o

The converse of this lemma is not true. Two Cayley graphs for a group
G can be isomorphic even if there is no automorphism of G relating their
connection sets.

A subset C of a group G is a generating set for G if every element of
G can be written as a product of elements of C. Equivalently, the only
subgroup of G that contains C is G itself. The proof of the following is left
as an exercise.

Lemma 3.7.4 The Cayley graph X (G, C) is connected if and only if C' is
a generating set for G. ]

3.8 Directed Cayley Graphs with No Hamilton
Cycles

In this section we show that it is relatively easy to find vertex-transitive
directed graphs that are not hamiltonian, and in fact our examples are even
directed Cayley graphs.

Theorem 3.8.1 Suppose that distinct group elements o and [ generate
the finite group G, and that X = X (G, {«, B}) is the directed Cayley graph
of G with connection set {a, 8}. Suppose further that o and B have k and £
cycles, respectively, in their action by left multiplication on G. If 3~ a has
odd order and V(X) has a partition into r disjoint directed cycles, then r,
k, and ¢ all have the same parity.

Proof. Suppose that V(X) has a partition into r directed cycles. Define
a permutation 7w of G by 2™ = y if the arc (z,y) is in one of the directed
cycles. If we define

P={zecV(X):2" = azx}, Q={zeV(X):z" = fz},

then P and @ partition V{X).
Let 7 be the permutation of G defined by

2T =3 12",

Clearly, 7 fixes every element of @), and thus it fixes P setwise. Moreover,
for any element x € P we have 27 = 3~ 'az, and since 8~ '« has odd order,
so does 7. Therefore, 7 is an even permutation. (An element of odd order
is the square of some element in the cyclic group it generates, and so is
even.)
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Now, “recall” that the parity of a permutation of n elements with exactly
7 cycles equals the parity of n+r. Since left multiplication by 57! followed
by 7 is an even permutation, we see that £ + r is even. Exchanging « and
B in the above argument yields that k + r is even, and the result follows.O

The two permutations o = (1,2) and 8 = (1,2, 3,4) generate the sym-
metric group Sym(4); the Cayley graph X = X(Sym(4), {«, 5}) is shown
in Figure 3.8 (where undirected edges represent arcs in both directions).
Now,

ﬂ_la = (1747 3)7

which has odd order, and since Sym(4) has order 24, o and 3 have 12
and 6 cycles, respectively, in their action on Sym(4) by left multiplication.
Therefore, V(X) can only be partitioned into an even number of directed
cycles, and so in particular does not have a directed Hamilton cycle.

<
<

Figure 3.8. A nonhamiltonian directed Cayley graph

This example can be generalized to an infinite family X (n) of directed
Cayley graphs, where

X(n) = X(Sym(n),{(1,2),(1,2,3,...,n)}).
Corollary 3.8.2 If n is even and n > 4, then the directed Cayley graph

X (n) is not hamiltonian. a

It is known that X (3) and X (5) are hamiltonian, but it is unknown whether
X (n) is hamiltonian for odd n > 7.
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3.9 Retracts

Recall that a subgraph Y of X is a retract if there is a homomorphism f
from X to Y such that the restriction f[Y of f to Y is the identity map.
In fact, it is enough to require that f[Y be a bijection, in which case it is
an automorphism of Y. (See Exercise 1.5.)

The main result of this section is a proof that every vertex-transitive
graph is a retract of a Cayley graph. Let G be a group acting transitively
on the vertex set of X, and let x be a vertex of X. If y is a vertex of X,
then by Lemma 2.2.1, the set of elements of G that map x to y is a right
coset of G. Therefore, there is a bijection from V' (X) to the right cosets of
G, and so we can identify each vertex of X with a right coset of G. The
action of G on V(X) coincides with the action of G by right multiplication
on the cosets of G;. (You ought to verify this.)

Theorem 3.9.1 Any connected vertez-transitive graph is a retract of a
Cayley graph.

Proof. Suppose X is a connected vertex-transitive graph and let = be a
vertex of X. Let C be the set

C:={geG:z~2%}.

Then C is a union of right cosets of G, and since z is not adjacent to itself
C NG, = 0. Furthermore, 2 ~ z° if and only if z ~ 2%, which is true
if and only if ba=! € C.

Ifge C and h, b’ € G, then

z=a" ~ g9 =29
and thus h'gh € C. Therefore, G,CG, C C, and since it is clear that
C C G,CG,, we have C = G,CG,.

Let G be the subgroup of Aut(X) generated by the elements of C. An
elementary induction argument on the diameter of X yields that G acts
transitively on V(X).

Now, let Y be the Cayley graph X (G, C). The right cosets of G partition
V(Y'), so we can express every element of G in the form ga for some g € G.
If g and h lie in G, then the two vertices ga and hb are adjacent if and
only if

hb(ga)™* = hba"1g™* € C,

which happens if and only if ba~! € C. Therefore, any two distinct right
cosets either have no edges between them or are completely joined, and
since e ¢ C, the subgraph of Y induced by each right coset is empty.
Thus the subgraph of Y induced by any complete set of coset represen-
tatives of GG, is isomorphic to X. The map sending the vertices in Y in a
given right coset of G, to the corresponding right coset, viewed as a vertex
of X, is a homomorphism from Y to X. Its restriction to a complete set
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of coset representatives is a bijection, and thus we have the retraction we
need. ]

A careful reading of the above proof reveals that the Cayley graph Y
can be obtained from X by replacing each vertex in X by an independent
set of size |G|. The graph induced by a pair of these independent sets is
empty when the vertices in X are not adjacent, or is a complete bipartite
subgraph if they are adjacent. It follows that

V) _ VYY)

alX) oY)

We will make use of this in Section 7.7.

3.10 Transpositions

We consider some special Cayley graphs for the symmetric groups. A set
of transpositions from Sym(n) can be viewed as the edge set of a graph on
n vertices (the transposition (ij) corresponding to the edge {i,j}). Every
permutation in Sym(n) can be expressed as a product of transpositions,
whence the transpositions form a generating set for Sym(n). A generating
set C is minimal if C'\ g is not a generating set for any element g of C.

Lemma 3.10.1 Let T be a set of transpositions from Sym(n). Then T is
a generating set for Sym(n) if and only if its graph is connected.

Proof. Let T be the graph of 7, which has vertex set {1,...,n}. Let G
be the group generated by 7. If (1¢) and (ij) are elements of 7, then

(1) = ()(19)(id) € G.
Consequently, a simple induction argument shows that if there is a path
from 1 to ¢ in T, then (17) € G. It follows that if k£ and ¢ lie in the same
component, then (k¢) € G. (Repeat the above argument with k in place
of 1.) Hence the transpositions belonging to a particular component of T
generate the symmetric group on the vertices of that component.
Since no transposition can map a vertex in one component of T to a

vertex in a second component, it follows that the components of T" are the
orbits of G. a

Lemma 3.10.2 Let T be a set of transpositions from Sym(n). Then the
following are equivalent:

(a) T is a minimal generating set for Sym(n).
(b) The graph of T is a tree.

(¢) The product of the elements of T in any order is a cycle of length
n.
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Proof. A connected graph on n vertices must have at least n — 1 edges,
and has exactly n — 1 edges if and only if it is a tree. Thus (a) and (b) are
equivalent. The equivalence of (b) and (c) is left as an exercise. o

There are (n — 1)! possible products of n — 1 transpositions, and if (c)
holds, then these will be distinct, i.e., every cycle of length n will arise
exactly once.

If 7 is a set of transpositions, then the Cayley graph X(Sym(n),7) has
no triangles: If {e, g, h} were a triangle, then g, h, and hg would all be
in 7, which is impossible because no transposition is a product of two
transpositions. (In fact, it is almost as easy to prove that X (Sym(n),T) is
bipartite.)

From Lemma 3.10.2 we see that each tree on n vertices determines a
Cayley graph of Sym(n). We will use the next result to show that the
Cayley graph is determined by the tree.

Lemma 3.10.3 Let 7 be a set of transpositions from Sym(n) and let g
and h be elements of T. If the graph of T contains no triangles, then g and
h have ezactly one common neighbour in X (Sym(n),T) if gh # hg, and
ezactly two common neighbours otherwise.

Proof. The neighbours of a vertex g of X(Sym(n},T) have the form g,
where x € 7. So suppose zg = yh is a common neighbour of g and h. Then
yr = hg, and any solution to this equation yields a common neighbour.

If A and g commute, then they have disjoint support, and without loss
of generality we may take h = (12) and g = (34). Then

hg = (12)(34) = (34)(12) = gh,

and there are two solutions to the above equation, yielding the two common
neighbours e and hg.

If h and g do not commute, then they have overlapping support, and
without loss of generality we may take h = (12) and g = (13). Then hg =
(123), and the only way in which this can be factored into transpositions

(123) = (12)(13) = (13)(23) = (23)(12).

However, since both (12) and (13) lie in 7 and the graph of 7 contains no
triangles, then (23) does not lie in 7, and hence there is only one possible
factorization of hg, yielding e as the only common neighbour of g and .0

Theorem 3.10.4 Let T be a minimal generating set of transpositions for
Sym(n). If the graph of T is asymmetric, then

Aut(X(Sym(n),T)) = Sym(n).

Proof. Let T be the graph of 7. Since 7 is a minimal generating set, T"is a
tree and hence contains no cycles. Then by Lemma 3.10.3 we can determine
from X (Sym(n),7) which pairs of transpositions in 7 do not commute, or
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equivalently, which have overlapping support. Thus X (Sym(n),7T) deter-
mines the line graph of T. By Exercise 1.21, the tree T is determined by
its line graph.

Any element g of Aut(X (Sym(n), 7)), induces a permutation of 7. Since
automorphisms preserve paths of length two, it follows that the restriction
of g to 7 is an automorphism of T. Therefore, it is trivial.

Now, suppose that g is an automorphism of X(Sym(n),T) fixing at
least one vertex. We wish to show that g is the identity and hence that
Aut(X(Sym(n),7)) acts regularly. Suppose for a contradiction that g is
not the identity. Then since X (Sym(n),7T) is connected, there is a vertex
v fixed by g adjacent to a vertex w that is not fixed by it. Then p,gp;*
fixes e and moves the adjacent vertex wv~!. This is impossible, and so we
are forced to conclude that g is the identity. Therefore, the automorphism
group acts regularly. a

It is often quite difficult to determine the full automorphism group of a
Cayley graph, which makes Theorem 3.10.4 more interesting.

Exercises

1. We describe a construction for the Folkman graph in Figure 3.2. Con-
struct a multigraph by doubling each edge in S(K5), then replace each
vertex of valency eight by two vertices of valency four with identical
neighbourhoods. (This description is somewhat ambiguous, resolving
this forms part of the problem.) Show that the result is the Folkman
graph and prove that it is edge transitive but not vertex transitive.

2. Show that the Petersen graph is not a Cayley graph.
3. Show that the dodecahedron (Figure 1.4) is not a Cayley graph.

4. Prove that a Cayley graph X(G,C) is connected if and only if C
generates the group G.

5. If 7 is a set of transpositions from Sym(n), show that the Cayley
graph X (Sym(n),7T) is bipartite.

6. Prove that any vertex-transitive graph on a prime number of vertices
is a Cayley graph. (Use Frobenius’s lemma; see Exercise 2.5.)

7. Let G be a transitive permutation group on V, let S be a nonempty
proper subset of V', and let ¢ be the minimum value of |SN S9| as ¢
ranges over the elements of G. Can |V| be equal to ¢=1|S|??

8. Prove that a transitive abelian permutation group is regular.

9. Let G be an abelian group and let C be an inverse-closed subset of
G\ e. Show that if |C| > 3, then X (G, C) has girth at most four.
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Let C be an inverse-closed subset of G\e. Show that if G is abelian and
contains an element of order at least three, then |Aut(X(G,())| >
2|G|.

Let G be a group. If g € G, let A\; be the permutation of G such
that Ag(h) = gh for all h in G. Then {)\; : g € G} is a subgroup
of Sym(G). Show that each element of this subgroup commutes with
the group {p, : ¢ € G}, and then determine when these two groups
are equal.

Let a and b be two elements that generate the group G. Let A and B
respectively denote the nonidentity elements of the cyclic subgroups
generated by a and b. If AN B = (), show that the Cayley graph
X(G, AU B) is a line graph.

Show that S(X) is edge transitive if and only if X is arc transitive
and is vertex transitive if and only if X is a union of cycles of the
same length.

If X is a cubic vertex-transitive graph with a triangle and is not Ky,
show that X can be obtained by replacing each vertex of a cubic
arc-transitive graph with a triangle. (This smaller graph may have
multiple edges).

Let X be a connected arc-transitive graph with valency four and girth
three. If X is not complete, show that it is the line graph of a cubic
graph.

Prove that the vertex connectivity of a connected edge-transitive

graph is equal to its minimum valency.

Let X be a graph. Show that two subsets A and B of V(X)) of size
m cannot be separated by fewer than m vertices if and only if there
are m disjoint paths starting in A and ending in B.

Show that any two paths of maximum length in a connected graph
must have at least one vertex in common.

Show that any two cycles of maximum length in a 3-connected graph
have at least three vertices in common.

If A is an atom and B is a fragment of X such that A C N(B), show
that |4] < |[N(B)|/2.

Show that if a vertex-transitive graph with valency & has connectivity
2(k + 1), then the atoms induce complete graphs.

Prove that if X is cubic, then L(S(X)) has a Hamilton cycle if and
only if X does.

A Cayley graph X(G, C) for the group G is minimal if C generates
G but for any element ¢ of C the set C\ {c,c™'} does not generate
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G. Show that the connectivity of a minimal Cayley graph is equal to
its valency.

24. The alternating group Alt(5) is generated by the two permutations
a=(1,2,3), B=1(3,4,5).

Show that the directed Cayley graph X(Alt(5),{c,3}) is not
hamiltonian.

25. If G is a group of order 2™k where k is odd, then G has a single
conjugacy class of subgroups of order 2™ called the Sylow 2-subgroups
of G. Suppose that G is generated by two elements o and 3, where
B has odd order. Show that if the Sylow 2-subgroups of G are not
cyclic, then the directed Cayley graph

X(G,{a,a})

is not hamiltonian.

Notes

The example in Figure 3.3 comes from Holt [6]. It follows from Alspach et
al. [1], and earlier work reported there, that there are no smaller examples.
(The smallest known examples with primitive automorphism group, found
by Praeger and Xu [10], have 253 vertices and valency 24.)

The fact that the edge connectivity of a vertex-transitive graph equals
its valency is due to Mader [9]. Our derivation of the lower bound on the
connectivity of a vertex transitive graph follows the treatment in Chap-
ter VI of Graver and Watkins [5]. The result is due independently to
Mader [8] and Watkins [15]. For more details on the matching structure
of vertex-transitive graphs, see [7, pp. 207-211].

Theorem 3.6.3 is due to Babai [2]. Exercise 19, which it uses, is due to
Bondy. Our inability to improve on Babai’s bound is regrettable evidence of
our ignorance. Biggs [3] notes that there exactly six 1-factors in the Petersen
graph, all equivalent under the action of its automorphism group. He also
shows that the Coxeter graph has exactly 84 1-factors, all equivalent under
its automorphism group. Deleting any one of them leaves 2C14, whence
the Coxeter graph is not hamiltonian, but is 1-factorable. For the original
proof that the Coxeter graph has no Hamilton cycle, see Tutte [14]. In
Section 9.2, we will provide another proof that the Petersen graph does not
have a Hamilton cycle.

Sabidussi [12] first noted that if G acts as a regular group of automor-
phisms of a graph X, then X must be a Cayley graph for G. The fact that
each vertex-transitive graph is a retract of a Cayley graph is also due to
him.

Exercise 23 is based on [4].
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Lovész has conjectured that every connected vertex-transitive graph has
a Hamilton path. This is open even for Cayley graphs. Witte [16] has shown
that directed Cayley graphs of groups of prime-power order have Hamilton
cycles.

There is a family of examples, due to Milnor, of directed Cayley graphs
of metacyclic groups that do not have Hamilton paths. (A group G is
metacyclic if it has a cyclic normal subgroup H such that G/H is cyclic.)
These are described in Section 3.4 of Witte and Gallian’s survey [17].

Our discussion of nonhamiltonian directed Cayley graphs in Section 3.8
follows Swan [13]. Ruskey et al. [11] prove that the directed Cayley graph
X(5) is hamiltonian.
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4
Arc-Transitive Graphs

An arc in a graph is an ordered pair of adjacent vertices, and so a graph is
arc-transitive if its automorphism group acts transitively on the set of arcs.
As we have seen, this is a stronger property than being either vertex tran-
sitive or edge transitive, and so we can say even more about arc-transitive
graphs. The first few sections of this chapter consider the basic theory
leading up to Tutte’s remarkable results on cubic arc-transitive graphs. We
then consider some examples of arc-transitive graphs, including three of
the most famous graphs of all: the Petersen graph, the Coxeter graph, and
Tutte’s 8-cage.

4.1 Arc-Transitive Graphs

An s-arc in a graph is a sequence of vertices (vy,...,vs) such that consec-
utive vertices are adjacent and v;_1 # v;41 when 0 < i < s. Note that an
s-arc is permitted to use the same vertex more than once, although in all
cases of interest this will not happen. A graph is s-arc transitive if its auto-
morphism group is transitive on s-arcs. If s > 1, then it is both obvious and
easy to prove that an s-arc transitive graph is also (s — 1)-arc transitive.
A 0-arc transitive graph is just another name for a vertex-transitive graph,
and a l-arc transitive graph is another name for an arc-transitive graph. A
l-arc transitive graph is also sometimes called a symmetric graph.

A cycle on n vertices is s-arc transitive for all s, which only shows that
truth and utility are different concepts. A more interesting example is pro-
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vided by the cube, which is 2-arc transitive. The cube is not 3-arc transitive
because 3-arcs that form three sides of a four-cycle cannot be mapped to
3-arcs that do not (see Figure 4.1).

Figure 4.1. Inequivalent 3-arcs in the cube

A graph X is s-arc transitive if it has a group G of automorphisms such
that G is transitive, and the stabilizer G, of a vertex u acts transitively on
the s-arcs with initial vertex u.

Lemma 4.1.1 The graphs J(v, k,i) are at least arc transitive.

Proof. Consider the vertex {1,...,k}. The stabilizer of this vertex con-
tains Sym(k) x Sym(v — k). Clearly, any two k-sets meeting this initial
vertex in an ¢-set can be mapped to each other by this group. 0O

Lemma 4.1.2 The graphs J(2k + 1, k,0) are at least 2-arc transitive. O

The girth of a graph is the length of the shortest cycle in it. Our first result
implies that the subgraphs induced by s-arcs in s-arc transitive graphs are
paths.

Lemma 4.1.3 (Tutte) If X is an s-arc transitive graph with valency at
least three and girth g, then g > 2s — 2.

Proof. We may assume that s > 3, since the condition on the girth is
otherwise meaningless. It is easy to see that X contains a cycle of length
g and a path of length g whose end-vertices are not adjacent. Therefore X
contains a g-arc with adjacent end-vertices and a g-arc with nonadjacent
end-vertices; clearly, no automorphism can map one to the other, and so
§ < g. Since X contains cycles of length g, and since these contain s-
arcs, it follows that any s-arc must lie in a cycle of length g. Suppose that
vg, - - -, Us 18 an s-arc. Denote it by a. Since v,_1 has valency at least three,
it is adjacent to a vertex w other than vs_s and v, and since the girth of
X is at least s, this vertex cannot lie in «. Hence we may replace v by w,
obtaining a second s-arc 3 that intersects « in an (s — 1)-arc. Since § must
lie in a circuit of length g, we thus obtain a pair of circuits of length g that
have at least s — 1 edges in common.

If we delete these s — 1 edges from the graph formed by the edges of the
two circuits of length g, the resulting graph still contains a cycle of length
at most 2g — 2s + 2. Hence 2g — 25 + 2 > ¢, and the result follows. m]
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Given this lemma, it is natural to ask what can be said about the s-arc
transitive graphs with girth 2s — 2. It follows from our next result that
these graphs are, in the language of Section 5.6, generalized polygons. It is
a consequence of results we state there that s < 9.

Lemma 4.1.4 (Tutte) If X is an s-arc transitive graph with girth 2s—2,
it is bipartite and has diameter s — 1.

Proof. We first observe that if X has girth 2s — 2, then any s-arc lies in at
most one cycle of length 2s—2, and so if X is s-arc transitive, it follows that
every s-arc lies in a unique cycle of length 2s — 2. Clearly, X has diameter
at least s — 1, because opposite vertices in a cycle of length 2s — 2 are at
this distance. Now, let u be a vertex of X and suppose for a contradiction
that v is a vertex at distance s from it. Then there is an s-arc joining u to
v, which must lie in a cycle of length 2s — 2. Since a cycle of this length has
diameter s — 1, it follows that v cannot be of distance s from u. Therefore,
the diameter of X is at most s — 1 and hence equal to s — 1.

If X is not bipartite, then it contains an odd cycle; suppose C' is an odd
cycle of minimal length. Because the diameter of X is s — 1, the cycle must
have length 2s — 1. Let u be a vertex of C, and let v and v/ be the two
adjacent vertices in C' at distance s — 1 from u. Then we can form an s-arc
(u,...,v,v"). This s-arc lies in a cycle C’ of length 2s — 2. The vertices of
C and C’ not internal to the s-arc form a cycle of length less than 25 — 2,
which is a contradiction. o

In Section 4.5 we will use this lemma to show that s-arc transitive graphs
with girth 2s — 2 are distance transitive.

4.2  Arc Graphs

If s >1and a = (xg,...,2s) is an arc in X, we define its head head(«)
to be the (s — 1)-arc (x1,...,%s) and its tail tail(a) to be the (s — 1)-arc
(zo,...,7s-1). If @ and B are s-arcs, then we say that G follows a if there

is an (s+ 1)-arc «y such that head(y) = 8 and tail(y) = a. (Somewhat more
colourfully, we say that o can be shunted onto 3, and envisage pushing o
one step onto (.) Let s be a nonnegative integer. We use X () to denote
the directed graph with the s-arcs of X as its vertices, such that (¢, ) is
an arc if and only if o can be shunted onto 3. Any automorphisms of X
extend naturally to automorphisms of X, and so if X is s-arc transitive,
then X (%) is vertex transitive.

Lemma 4.2.1 Let X and Y be directed graphs and let f be a homomor-
phism from X ontoY such that every edge in'Y is the image of an edge in
X. Suppose yg, ...,y is a path in Y. Then for each vertex zg in X such
that f(xo) = yo, there is a path xo, ..., T, such that f(x;) = y;.
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Proof. Exercise. ]

Define a “spindle” in X to be a subgraph consisting of two given vertices
joined by three paths, with any two of these paths having only the given
vertices in common. Define a “bicycle” to be a subgraph consisting either of
two cycles with exactly one vertex in common, or two vertex-disjoint cycles
and a path joining them having only its end-vertices in common with the
cycles. We claim that if X is a spindle or a bicycle, then X(!) is strongly
connected. We leave the proof of this as an easy exercise. Nonetheless, it is
the key to the proof of the following result.

Theorem 4.2.2 If X is a connected graph with minimum valency two that
is not a cycle, then X(®) is strongly connected for all s > 0.

Proof. First we shall prove the result for s = 0 and s = 1, and then by
induction on s. If s = 0, then X is the graph obtained by replacing each
edge of X with a pair of oppositely directed arcs, so the result is clearly
true. If s = 1, then we must show that any l-arc can be shunted onto
any other l-arc. Since X is connected, we can shunt any l-arc onto any
edge of X, but not necessarily facing in the right direction. Therefore, it is
necessary and sufficient to show that we can reverse the direction of any
1-arc, that is, shunt zy onto yzx.

Since X has minimum valency at least two and is finite, it contains a
cycle, C say. If C' does not contain both x and y, then there is a (possibly
empty) path in X joining y to C. It is now easy to shunt zy along the path,
around C, then back along the path in the opposite direction to yz.

If z and y are in V(C) but zy ¢ E(C), then C together with the edge
zy is a spindle, and we are done.

Hence we may assume that zy € E(C). Since X is not a cycle, there is a
vertex in C adjacent to a vertex not in C. Suppose w in V(C) is adjacent
to a vertex z not in C. Let P be a path with maximal length in X, starting
with w and z, in this order. Then the last vertex of P is adjacent to a
vertex in P or a vertex in C. If it is adjacent to a vertex in C other than
w, then zy is an edge in a spindle. If it is adjacent to w or to a vertex of P
not in C, then zy is an edge in a bicycle. In either case we are done.

Now, assume that X(®) is strongly connected for some s > 1. It is easy
to see that the operation of taking the head of an (s+ 1)-arc is a homomor-
phism from X®+1 to X (%), Since X has minimum valency at least two,
each s-arc is the head of an (s + 1)-arc, and it follows that every edge of
X () is the image of an edge in X(**V. Let o and 3 be any two (s+1)-arcs
in X. Since X(®) is strongly connected, there is a path in it joining head(c)
to tail(8). By the lemma above, this path lifts to a path in X (1) from «
to a vertex v where head(y) = tail(8). Since s > 1 and X has minimum
valency at least two, we see that + can be shunted onto 8. Thus « can be
shunted to 3 via -, and so there is a path in X+ from « to 3. O
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In the next section we will use this theorem to prove that an arc-transitive
cubic graph is s-arc regular, for some s. This is a crucial step in Tutte’s
work on arc-transitive cubic graphs.

4.3 Cubic Arc-Transitive Graphs

In 1947 Tutte showed that for any s-arc transitive cubic graph, s < 5. This
was, eventually, the stimulus for a lot of work. One outcome of this was a
proof, by Richard Weiss, that for any s-arc transitive graph, s < 7. This is
a very deep result, the proof of which depends on the classification of the
finite simple groups.

We used a form of the next result in proving Theorem 3.10.4.

Lemma 4.3.1 Let X be a strongly connected directed graph, let G be a
transitive subgroup of its automorphism group, and, if u € V(X), let N(u)
be the set of vertices v in V(X) such that (u,v) is an arc of X. If there is
a vertex u of X such that G, [ N(u) is the identity, then G is regular.

Proof. Suppose u € V(X) and G, | N(u) is the identity group. By
Lemma 2.2.3,if v € V(X), then G, is conjugate in G to G,,. Hence G,[N (v)
must be the identity for all vertices v of X.

Assume, by way of contradiction, that G, is not the identity group. Since
X is strongly connected, we may choose a directed path that goes from u to
a vertex, w say, that is not fixed by G,,. Choose this path to have minimum
possible length, and let v denote the second-last vertex on it. Thus v is fixed
by G, and (v, w) is an arc in X. Since G, fixes all vertices in N(u), we
see that v # w.

Since G, fixes v, it fixes N (v) but acts nontrivially on it, because it does
not fix w. Hence G, [ N(v) is not the identity. This contradiction forces us
to conclude that G, = (e). O

A graph is s-arc regular if for any two s-arcs there is a unique
automorphism mapping the first to the second.

Lemma 4.3.2 Let X be a connected cubic graph that is s-arc transitive,
but not (s + 1)-arc transitive. Then X is s-arc regular.

Proof. We note that if X is cubic, then X(*) has out-valency two. Now let
G be the automorphism group of X, let a be an s-arc in X, and let H be the
subgroup of G fixing each vertex in «. Then G acts vertex transitively on
X, and H is the stabilizer in G of the vertex o in X () If the restriction
of H to the out-neighbours of « is not trivial, then H must swap the two
s-arcs that follow a. Now, any two (s + 1)-arcs in X can be mapped by
elements of G to (s+1)-arcs that have « as the “initial” s-arc; hence in this
case we see that G is transitive on the (s + 1)-arcs of X, which contradicts
our initial assumption.
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Hence the restriction of H to the out-neighbours of « is trivial, and it
follows from Lemma 4.3.1 that H itself is trivial. Therefore, we have proved
that G, = (e), and so G acts regularly on the s-arcs of X. a

If X is a regular graph with valency k on n vertices and s > 1, then
there exactly nk(k — 1)°~! s-arcs. It follows that if X is s-arc transitive
then [Aut(X)| must be divisible by nk(k —1)*~1, and if X is s-arc regular,
then |Aut(X)| = nk(k — 1)*~1. In particular, a cubic arc-transitive graph
X is s-arc regular if and only if

|[Aut(X)| = (3n)2°~ L.

For an example, consider the cube. The alternative drawing of the cube
in Figure 4.2 makes it clear that the stabilizer of a vertex contains Sym(3),
and therefore its automorphism group has size at least 48. We observed
earlier that the cube is not 3-arc transitive, so by Lemma 4.3.2 it must be
precisely 2-arc regular, with full automorphism group of order 48.

Figure 4.2. The cube redrawn

Finally, we state Tutte’s theorem.

Theorem 4.3.3 If X is an s-arc regular cubic graph, then s < 5. O

The smallest 5-arc regular cubic graph is Tutte’s 8-cage on 30 vertices,
which we shall meet in Section 4.7.

Corollary 4.3.4 If X is an arc-transitive cubic graph, v € V(X), and
G = Aut(X), then |G| divides 48 and is divisible by three. O

4.4 The Petersen Graph

The Petersen graph is one of the most remarkable of all graphs. Despite
having only 10 vertices, it plays a central role in so many different aspects
of graph theory that almost any graph theorist will automatically be forced
to give it special consideration when forming or testing new theorems. We
have already met the Petersen graph in several guises: as J(5,2,0) or L(K5)
in Section 1.5, as the dual of K in the projective plane in Section 1.8, and
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as one of the five nonhamiltonian vertex-transitive graphs in Section 3.6.
Two different drawings of it are shown in Figure 4.3.

Figure 4.3. Two more drawings of the Petersen graph

The Petersen graph can also be constructed from the dodecahedron,
which is shown in Figure 1.4. Every vertex v in the dodecahedron has a
unique vertex v’ at distance five from it. Consider the graph whose vertex
set is the ten pairs of the form {v, v}, where {u, v’} is adjacent to {v,v'} if
and only if there is a perfect matching between them. The resulting graph
is the Petersen graph. In this situation we say that the dodecahedron is a
2-fold cover of the Petersen graph. We consider covers in more detail in
Section 6.8.

Since Sym(5) acts on J(5,2,0), we see that the automorphism group of
the Petersen graph has order at least 120, and therefore it is at least 3-arc
transitive (also see Exercise 5). Because the Petersen graph has girth five,
by Lemma 4.1.3 it cannot be 4-arc transitive. Hence it is 3-arc regular,
and its automorphism group has order exactly 120. Therefore, Sym(5) in
its action on the 2-element subsets of a set of five elements is the full
automorphism group of the Petersen graph.

The Petersen graph plays an important role in one of the most famous
of all graph-theoretical problems. The four colour problem asks whether
every plane graph can have its faces coloured with four colours such that
faces with a common edge receive different colours. It can be shown that
this is equivalent to the assertion that a cubic planar graph with edge
connectivity at least two can have its edges coloured with three colours
such that incident edges receive different colours (that is, has a proper 3-
edge colouring). The Petersen graph was the first cubic graph discovered
that did not have a proper 3-edge colouring.

Theorem 4.4.1 The Petersen graph cannot be 3-edge coloured.

Proof. Let P denote the Petersen graph, and suppose for a contradiction
that it can be 3-edge coloured. Since P is cubic, each colour class is a 1-
factor of P. A simple case argument shows that each edge lies in precisely
two 1-factors (Figure 4.4 shows the two 1-factors containing the vertical
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“spoke” edge). For each of these 1-factors, the remaining edges form a
graph isomorphic to 2Cs that cannot be partitioned into two 1-factors.
Since P is edge transitive, this is true for all 1-factors of P, and thus P is
not 3-edge colourable. o

Figure 4.4. Two 1-factors through an edge of P

Thus the Petersen graph made the first of its many appearances as a
counterexample. Since it is not planar, it is not a counterexample to the
four colour problem, which was eventually proved in 1977, thus becoming
the four colour theorem.

We have already observed that there is a cycle through any nine vertices
in the Petersen graph. Let X \ v denote the subgraph of X induced by
V(X)\ {v}. A nonhamiltonian graph X such that X \ v is hamiltonian for
all v is called hypohamiltonian. The Petersen graph is the unique smallest
hypohamiltonian graph; the next smallest have 13 and 15 vertices, respec-
tively, and are closely related to the Petersen graph. We will see two more
hypohamiltonian graphs in Section 13.6.

So far, we have only scratched the surface of the many ways in which the
Petersen graph is special. It will reappear in several of the remaining sec-
tions of this book. In particular, the Petersen graph is a distance-transitive
graph (Section 4.5), a Moore graph (Section 5.8), and a strongly regular
graph (Chapter 10).

4.5 Distance-Transitive Graphs

A connected graph X is distance transitive if given any two ordered pairs
of vertices (u,u') and (v,v") such that d(u, u’) = d(v,v’), there is an auto-
morphism g of X such that (v,v") = (u,u')9. A distance-transitive graph is
always at least 1-arc transitive. The complete graphs, the complete bipartite
graphs with equal-sized parts, and the circuits are the cheapest examples
available. A more interesting example is provided by the Petersen graph.
It is not hard to see that this is distance transitive, since it is arc transitive
and its complement, the line graph of Kj, is also arc transitive.
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Another family of examples is provided by the k-cubes described in Sec-
tion 3.7. If d(u,v’) = d(v,v") = i, then by adding u to the first pair and
v to the second pair, we can assume that u = v = 0. Then ' and v’ are
simply different vectors with ¢ nonzero coordinates that can be mapped to
one another by Sym(k) acting on coordinate positions.

Lemma 4.5.1 The graph J(v,k,k — 1) is distance transitive.

Proof. The key is to prove that two vertices u and v have distance 4 in
J(v,k,k — 1) if and only if [uNv| = k — i (viewing u and v as k-sets). We
leave the details as an exercise. o

Lemma 4.5.2 The graph J(2k + 1,k 4+ 1,0) is distance transitive. O

There is an alternative definition of a distance-transitive graph that often
proves easier to work with. If u is a vertex of X, then let X;(u) denote the
set of vertices at distance ¢ from u. The partition {u, X1(u), ..., Xq{u)} is
called the distance partition with respect to u. Figure 4.5 gives a drawing
of the dodecahedron that displays the distance partition from a vertex.

Figure 4.5. The dodecahedron

Suppose G acts distance transitively on X and u € V(X). If v and v/
are two vertices at distance ¢ from wu, there is an element of G that maps
(u,v) to (u,v'), i.e., there is an element of G, that maps v to v/, and so
G acts transitively on X;(u). Therefore, the cells of the distance partition
with respect to u are the orbits of G,,. If X has diameter d, then it follows
that G acts distance transitively on X if and only if it acts transitively and,
for any vertex u in X, the vertex stabilizer G, has exactly d + 1 orbits. In
other words, the group G is transitive with rank d + 1.

Since the cells of the distance partition are orbits of G, every vertex in
Xi(u) is adjacent to the same number of other vertices, say a;, in X;{u).
Similarly, every vertex in X;(u) is adjacent to the same number, say b;, of
vertices in X;11(u) and the same number, say c;, of vertices in X;_1(u).
Equivalently, the graph induced by any cell is regular, and the graph in-
duced by any pair of cells is semiregular. The graph X is regular, and its
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valency is given by bg, so if the diameter of X is d, we have
ci—l—ai—}—bi:bo, 7,:0,1,,d

These numbers are called the parameters of the distance-transitive graph,
and determine many of its properties. We can record these numbers in the
3 x (d+ 1) intersection array

— Cl ... Cdg—1 Cq
ag aj ... Qqg—1 Qa4
bo bl oo bga -

Since each column sums to the valency of the graph, it is necessary to
give only two rows of the matrix to determine it entirely. It is customary
to use the following abbreviated version of the intersection array:

{bo,bl, .. .,bdfl;cljcQ, .o .,Cd}.

For example, consider the dodecahedron. It is easy to see that every
vertex in Xy (u) is adjacent to one vertex in X (u), one in Xs(u), and one
in X3(u), and therefore as = by = cs = 1. Continuing similarly we find
that the intersection array for the dodecahedron is

-1 11 2 3
0 01 10 O
3 2111 —
Lemma 4.5.3 A connected s-arc transitive graph with girth 2s — 2 is
distance-transitive with diameter s — 1.

Proof. Let X satisfy the hypotheses of the lemma and let (u, u’) and (v,v")
be pairs of vertices at distance ¢. Since X has diameter s—1 by Lemma 4.1.4,
we see that ¢ < s—1. The two pairs of vertices are joined by paths of length
1, and since X is transitive on i-arcs, there is an automorphism mapping
(u,u) to (v,v'). o

Distance transitivity is a symmetry property in that it is defined in terms
of the existence of certain automorphisms of a graph. These automorphisms
impose regularity properties on the graph, namely that the numbers q;,
b;, and c; are well-defined. There is an important combinatorial analogue
to distance transitivity, which simply asks that the numerical regularity
properties hold, whether or not the automorphisms exist. Given any graph
X we can compute the distance partition from any vertex u, and it may
occur “by accident” that every vertex in X;(u) is adjacent to a constant
number of vertices in X;_;(u), X;(u), and X;11(u), regardless of whether
there are any automorphisms that force this to occur. (Looking forward
to Section 9.3 this is saying that the distance partition is an equitable
partition.) If the intersection array is well-defined and is the same for the
distance partition from any vertex, then X is said to be distance regular.
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It is immediate that any distance-transitive graph is distance regular, but
the converse is far from true.

We provide one class of distance-regular graphs that includes many
graphs that are not distance transitive. A Latin square of order n is an
n X n matrix with entries from {1,...,n} such that each integer ¢ occurs
exactly once in each row and exactly once in each column. Given an n x n
Latin square L, we obtain a set of n? triples of the form

(1,7, Lij).

Let X (L) be the graph with these triples as vertices, and where two triples
are adjacent if they agree on the first, second, or third coordinate. (In fact,
two triples can agree on at most one coordinate.) Alternatively, we may
view X (L) as the graph whose vertices are the n? positions in L, and two
“positions” are adjacent if they lie in the same row or column, or contain
the same entry. The graph X(L) has n? vertices, diameter two, and is
regular with valency 3(n — 1). It is distance regular, and is in general not
distance transitive. The proof that X (L) is distance regular is left as an
exercise. We will encounter these graphs again in Chapter 10.

4.6 The Coxeter Graph

The Coxeter graph is a 28-vertex cubic graph with girth seven. It is shown
in Figure 4.6. From the picture we see that it is constructed from circulants
based on Z7. Start with the three circulants X (Z7, {1, -1}), X(Z, {2, —2}),
X(Z7,{3,—3}) and then add seven more vertices, joining each one to the
same element of Z~ in each of the three circulants.

We describe another construction for the Coxeter graph, which identifies
it as an induced subgraph of J(7,3,0). The vertices of J(7,3,0) are the
35 triples from the set Q = {1,...,7}. Two triples are adjacent if they
are disjoint, at distance two if they intersect in two points and at distance
three if they have exactly one point in common. A heptad is a set of seven
triples from € such that each pair of triples meet in exactly one point, and
there is no point in all of them. In graph theoretic terms, a heptad is a set
of seven vertices of J(7,3,0) such that each pair of distinct vertices is at
distance three. The following seven triples are an example of a heptad.:

124, 235, 346, 457, 561, 672, 713

This set of triples is invariant under the action of the 7-cycle (1234567);
denote this permutation by o. It is easy to verify that the four triples

357, 367, 567, 356

lie in distinct orbits under o. The orbit of 356 is another heptad. The
orbits of the first three triples are isomorphic, in the order given, to
X(Zr,{1,-1}), X(Z7,{2,—2}), and X (Z~, {3, —3}), respectively. It is easy
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Figure 4.6. The Coxeter graph

to check that 357, 367 and 567 are the unique triples in their orbits that are
disjoint from 124, and somewhat more tedious to see that no triple from
one of these orbits is disjoint from a triple in one of the other two. Thus,
by a minor miracle, we infer that the orbits of the triples

124, 357, 367, 567

induce a subgraph of J(7,3,0) isomorphic to the Coxeter graph. We also
see that the vertices not in this Coxeter graph form a heptad.

We use the embedding of the Coxeter graph in J(7, 3, 0) to show that its
girth is seven. First we determine the girth of J(7, 3, 0).

Lemma 4.6.1 The diameter of J(7,3,0) is three and its girth is siz.

Proof. If we denote J(7,3,0) by Y, then Y7 (u) consists of the triples dis-
joint from u, while Y(u) consists of the triples that meet u in two points,
and Y3(u) consists of the triples that meet u in one point. Therefore, there
are no edges in Y7 (u) or Yz(u), so the girth of J(7, 3,0) is at least six. Since
it is easy to find a six-cycle, its girth is exactly six. a

An easy argument shows that every triple from ) that is not in a heptad
is disjoint from precisely one triple of the heptad. Therefore, deleting a
heptad from J(7,3,0) results in a 28-vertex cubic graph X. To show that
X has girth seven we must demonstrate that every heptad meets every
six-cycle of J(7,3,0). To this end, we characterize the six-cycles.

Lemma 4.6.2 There is a one-to-one correspondence between siz-cycles in
J(7,3,0) and partitions of Q of the form {abc, de, fg}.
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Proof. The partition {abc, de, fg} corresponds to the six-cycle ade, bfg,
cde, afg, bde, cfg. To show that every six-cycle has this form, it suffices to
consider six-cycles through 123. Without loss of generality we can assume
that the neighbours of 123 in the six-cycle are 456 and 457. The vertex at
distance three from 123 has one point in common with 123, say 1, and two in
common with 456 and 457 and hence must be 145. This then determines the
partition {167,23,45}, and it is straightforward to verify that the six-cycle
must be of the type described above. o

Lemma 4.6.3 FEvery heptad meets every siz-cycle in J(7,3,0).

Proof. The seven triples of a heptad contain 21 pairs of points; since two
distinct triples have only one point in common, these pairs must be distinct.
Hence each pair of points from {1,..., 7} lies in exactly one triple from the
heptad. If the point i lies in r triples, then it lies in 2r pairs. Therefore,
each point lies in exactly three triples.

Without loss of generality, we consider the six-cycle determined by the
partition {123,45,67}. Each heptad has a triple of the form a45 and one
of the form b67. At least one of a and b must be 1, 2, or 3, or else the
two triples would meet in two points. Hence this six-cycle has a triple in
common with every heptad. a

We will see in Section 5.9 that all heptads in J(7,3,0) are equivalent
under the action of Sym(7).

The automorphism group of the Coxeter graph is at least the size of the
stabilizer in Sym(7) of the heptad. The heptad we used above is fixed by
the permutations

(23)(47), (2347)(56), (235)(476), (1234567).

The first two permutations generate a group of order eight, so the group
generated by all four permutations has order divisible by 8, 3, and 7, and
therefore its order is at least 168.

This implies that the Coxeter graph is at least 2-arc transitive. In fact,
there is an additional automorphism of order two (see Exercise 5.4), so its
full automorphism group has size 336, and acts 3-arc regularly.

4.7 Tutte’s 8-Cage

Another interesting cubic arc-transitive graph is Tutte’s 8-cage on 30 ver-
tices. In 1947 Tutte gave (essentially) the following two-sentence description
of how to construct this graph. Take the cube and an additional vertex oc.
In each set of four parallel edges, join the midpoint of each pair of opposite
edges by an edge, then join the midpoint of the two new edges by an edge,
and finally join the midpoint of this edge to oco. The resulting graph is
shown in Figure 4.7.
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Figure 4.7. Tutte’s 8-cage

An alternative description of this graph makes use of the edges and 1-
factors of the complete graph Kg. There are fifteen edges in K. Each of
these edges lies in three 1-factors, and as each 1-factor contains three edges,
this implies that there are fifteen 1-factors.

Construct a bipartite graph T with the fifteen edges as one colour class
and the fifteen 1-factors as the other, where each edge is adjacent to the
three 1-factors that contain it. This is a cubic graph on 30 vertices, which
is Tutte’s 8-cage again. One advantage of this description is that is easy to
see that Sym(6) acts as a group of automorphisms with the two parts of
the bipartition as its two orbits.

However, we have not yet established why the two descriptions are equiv-
alent. At the end of this section we sketch a proof that there is a unique
bipartite cubic graph on 30 vertices with girth eight. First we will verify
that T has girth eight. For reasons that we will reveal in Section 5.4, we
do this by first establishing the following lemma.

Lemma 4.7.1 Let F be a 1-factor of K¢ and let e be an edge of K¢ that
is not contained in F. Then there is a unique 1-factor on e that contains
an edge of F'.

Proof. Two edges of Kg lie in a 1-factor if and only if they are disjoint,
and two disjoint edges lie in a unique 1-factor. Since e ¢ F', it meets two
distinct edges of F', and hence is disjoint from precisely one edge of F', with
which it lies in a unique 1-factor. a
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Since T is bipartite, if its girth is less than eight, then it must be four or
six. Since you should not just sit here reading, you may eliminate the possi-
bility that the girth is four. Having completed that we shall now eliminate
the possibility that the girth is six. Suppose to the contrary that there is a
6-cycle

€1, Fla €2, F2a €3, F3'

This implies that F, and Fs are distinct 1-factors on ez that contain the
edges ey and e1, respectively, contradicting the previous lemma. Hence we
are forced to conclude that the graph has girth at least eight. There are a
number of ways by which you might show that the girth is equal to eight.

Now, we shall show that T is arc transitive. It is easy to see that if e
and ey are edges of Kg, then there is a permutation of Sym(6) mapping
e1 to es. It is also clear that the stabilizer of e; in Sym(6) is transitive
on the three neighbours of e; in 7. Therefore, we conclude that Sym(6)
is transitive on l-arcs starting at an “edge vertex.” Similarly, Sym(6) is
transitive on l-arcs starting at a “l1-factor vertex”.

The sole remaining task is to show that there is an automorphism that
exchanges the two classes of vertices, and this requires some prepara-
tion. Although this argument is quite long, it is not atypical for such
computations done by hand.

A 1-factorization of a graph is a partition of its edge set into 1-factors.
Given a 1-factor F of Ky, there are six 1-factors that share an edge with
F, and hence eight that are edge-disjoint from F'. The union of two disjoint
1-factors is a 6-cycle, and hence the remaining edges of K¢ form a 3-prism
(see Figure 4.8). It is straightforward to check that the 3-prism has four
1-factors and a unique 1-factorization (see Figure 4.8). Therefore, any two
disjoint 1-factors lie in a unique 1-factorization. Counting triples (F, G, F)
where F and G are 1-factors contained in the 1-factorization F, we see
that there are six 1-factorizations of Kj. Since each 1-factor lies in the
same number of 1-factorizations, this implies that each 1-factor lies in two
1-factorizations. There are fifteen pairs of distinct 1-factorizations, and so
any two distinct 1-factorizations have a unique 1-factor in common.

Figure 4.8. The 3-prism together with its unique 1-factorization

We will use the six 1-factorizations to determine a bijection between
the edges of Kg and the 1-factors of K¢, and show that this bijection is
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an automorphism of T. Arbitrarily label the six 1-factorizations of Kg as
Fi,...,Fg. Then define a map 1 as follows. If e = ij is an edge of Kg, then
let 9(e) be the 1-factor that F; and F; have in common. The five edges
of K containing i are mapped by ¢ to the five 1-factors contained in F;.
If e and f are incident edges of Kg, then 1(e) and ¥(f) are edge-disjoint
1-factors. Since there are only eight 1-factors disjoint from a given one, this
shows that if e and f are not incident, then 1 (e) and 1(f) have an edge in
common.

Therefore, three independent edges of Kg are mapped by 1 to three 1-
factors, any two of which have an edge in common. Any such set must
consist of the three 1-factors on a single edge. So, if F = {e, f,g} is a 1-
factor, then define ¥(F') to be the edge of K¢ common to (e), ¥(f), and
¥(g)-

All that remains is to show that 9 is an automorphism of 7. Suppose that
the edge e is adjacent to the 1-factor F' = {e, f, g}. Then ¢(F’) is the edge
that ¥(e), ¥(f), and ¥(g) have in common. In particular, ¥(F) is an edge
in ¥(e), and so ¥(e) ~ ¥(F) in T. Consequently, ¢ is an automorphism
of T that swaps its two colour classes. Therefore, T' is vertex transitive
and hence arc transitive with an automorphism group of order at least
2 x 6! = 1440. If T is s-arc transitive, then s > 5, and Lemma 4.1.3 (or
Theorem 4.3.3) yields that s = 5. From Lemma 4.5.3 we conclude that T'
is distance transitive with diameter four.

Now we sketch a proof that there is a unique cubic bipartite graph on
30 vertices with girth eight, thus showing that both descriptions above
are equivalent. So let X be a cubic bipartite graph on 30 vertices with
girth eight. Let v be any vertex of X and consider the graph induced
by X3(v) U X4(v). The eight vertices of X4(v) have valency three, and the
twelve vertices of X3(v) all have valency two and join two vertices of X4(v).
Therefore, this graph is a subdivision of a cubic graph Y, that has girth
four. The fact that X has girth eight implies that it must be possible to
partition E(Y) into pairs of edges at distance three. The cube is the unique
graph on eight vertices with these properties, and therefore X3(v) U X4(v)
is the subdivision graph of the cube. It is now straightforward to check that
the only way to extend a subdivision of the cube to a bipartite cubic graph
on 30 vertices with girth eight is by following Tutte’s original description
of the 8-cage (see Exercise 15).

Exercises

1. Show that the graph J(2k + 1, k,0) is at least 2-arc transitive.

2. Prove that if X is a spindle or a bicycle, then X @ s strongly
connected.



10.

11.

12.

13.

14.

15.
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Define the directed line graph DL(X) of a directed graph X to be the
directed graph with the arcs of X as its vertices. If « and 3 are arcs
in X, then («, 8) is an arc in DL(X) if and only if head(«) = tail(3)
and tail(o) # head(8). (Thus (e, 3) is an arc if and only if « is the
tail and 3 the head of a 2-arc in X.) Prove that if s > 1, then X(*+1)
is the directed line graph of X ().

Let X be a vertex-transitive cubic graph on n vertices and let G be
its automorphism group. If 3 divides the order of the stabilizer G, of
a vertex u, show that X is arc transitive.

. Show directly (without using Tutte’s theorem) that the automor-

phism group of the Petersen graph has one orbit on 3-arcs, and hence
that P is 3-arc transitive.

. Show that each edge of the Petersen graph lies in exactly two 1-

factors. Conclude that it contains precisely six 1-factors, and that
these 1-factors are equivalent under the action of the automorphism
group. Deduce from this that the Petersen graph does not have a
Hamilton cycle.

. Find the intersection arrays of the Petersen graph, the Coxeter graph,

and Tutte’s 8-cage.

Prove that J(v,k,k — 1) is distance transitive, and determine its
intersection array.

. Prove that J(2k + 1,k,0) is distance transitive, and determine its

intersection array.

The multiplication table of a group is a Latin square. Show that its
Latin square graph is a Cayley graph.

There are two distinct groups of order four, and their multiplication
tables can be viewed as Latin squares. Show that the graphs of these
Latin squares are not isomorphic. (One approach is to determine the
value of x(X) for both graphs.)

Show that an automorphism of Coxeter’s graph that fixes two ver-
tices at distance three is necessarily the identity, and conclude that
Coxeter’s graph is not 4-arc transitive.

Show that a distance-transitive graph with girth at least five is 2-arc
transitive. Determine a relation between the girth and degree of arc
transitivity.

Show that an s-arc transitive graph with girth 2s — 1 has diameter s
and is distance transitive.

Let the edges of the graph Kg be given as pairs (4, 7) where 1 < ¢ <
J < 6. By labelling the vertices of a cube with the edges (1,3), (1,4),
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(1,5), (1,6), (2,3), (2,4), (2,5), (2,6) and labelling the point co with
(1,2), reconcile Tutte’s one-sentence description of the 8-cage with
the description in terms of edges and 1-factors of K.

Notes

Theorem 4.2.2 is based on unpublished notes by D. G. Wagner.

Biggs [1] shows that there are exactly six 1-factors in the Petersen graph,
all equivalent under the action of its automorphism group. He also shows
that the Coxeter graph has exactly 84 1-factors, all equivalent under its
automorphism group. Deleting any one of them leaves 2C14, whence the
Coxeter graph is not hamiltonian, but is 1-factorable. Coxeter gave a geo-
metric construction for Tutte’s graph, and so it is sometimes referred to as
the Tutte-Coxeter graph.

Biggs [2] provides a proof of Tutte’s theorem on arc-transitive cubic
graphs, which loosely follows Tutte’s treatment. Weiss provides a more
succinct proof of a slightly more general result in [3]. (The advantages of
his approach will be lost if you do not read German, unfortunately.)
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D

Generalized Polygons and Moore
Graphs

A graph with diameter d has girth at most 2d + 1, while a bipartite graph
with diameter d has girth at most 2d. While these are very simple bounds,
the graphs that arise when they are met are particularly interesting. Graphs
with diameter d and girth 2d + 1 are known as Moore graphs. They were
introduced by Hoffman and Singleton in a paper that can be viewed as
one of the prime sources of algebraic graph theory. After considerable de-
velopment, the tools they used in this paper led to a proof that a Moore
graph has diameter at most two. They themselves proved that a Moore
graph of diameter two must be regular, with valency 2, 3, 7, or 57. We
will provide the machinery to prove this last result in our work on strongly
regular graphs in Chapter 10.

Bipartite graphs with diameter d and girth 2d are known as general-
ized polygons. They were introduced by Tits in fundamental work on the
classification of finite simple groups. The complete bipartite graphs, with
diameter two and girth four, are the only examples we have met already.
Surprisingly, generalized polygons are related to classical geometry; in fact,
a generalized polygon with diameter three is another manifestation of a pro-
jective plane. When d = 4 they are known as generalized quadrangles, and
many of the known examples are related to quadrics in projective space.

In this chapter we consider these two classes of graphs. We develop
some of the basic theory of generalized polygons proving that “nondegener-
ate” generalized polygons are necessarily semiregular bipartite graphs. We
present the classical examples of generalized triangles and generalized quad-
rangles, and the smallest generalized hexagons. We show that the Moore
graphs are distance regular, which is surprising, because it is not even
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immediate that they are regular. We give a construction of the Hoffman-
Singleton graph, the unique Moore graph of diameter two and valency
seven, which along with the Petersen graph and the 5-cycle completes the
list of known Moore graphs of diameter two. The chapter concludes with
a brief introduction to designs, which provide another source of highly
structured graphs.

5.1 Incidence Graphs

An incidence structure consists of a set P of points, a set £ of lines (disjoint
from P), and a relation

ICPxL

called incidence. If (p, L) € I, then we say that the point p and the line L are
incident. If T = (P, L, I) is an incidence structure, then its dual incidence
structure is given by I* = (£, P, I*), where I* = {(L,p) | (p,L) € I}.
Informally, this simply corresponds to interchanging the names of “points”
and “lines.”

The incidence graph X(Z) of an incidence structure Z is the graph with
vertex set P U L, where two vertices are adjacent if and only if they are in-
cident. The incidence graph of an incidence structure is a bipartite graph.
Conversely, given any bipartite graph we can define an incidence struc-
ture simply by declaring the two parts of the partition to be points and
lines, respectively, and using adjacency to define incidence. Since we can
choose either half of the partition to be the points, any bipartite graph
determines a dual pair of incidence structures. This shows us that the
definition of incidence structure is not very strong, and to get interesting
incidence structures (and hence interesting graphs) we need to impose some
additional conditions.

A partial linear space is an incidence structure in which any two points
are incident with at most one line. This implies that any two lines are
incident with at most one point.

Lemma 5.1.1 The incidence graph X of a partial linear space has girth
at least sizx.

Proof. If X contains a four-cycle p, L, g, M, then p and ¢ are incident to
two lines. Since the girth of X is even and not four, it is at least six. O

When referring to partial linear spaces we will normally use geometric
terminology. Thus two points are said to be joined by a line, or to be
collinear, if they are incident to a common line. Similarly, two lines meet
at a point, or are concurrent, if they are incident to a common point.
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An automorphism of an incidence structure (P, £, I) is a permutation o
of P U L such that P? =P, L7 = L, and

(p°,L°) el = (p,L) € 1.

This yields an automorphism of the incidence graph that preserves the two
parts of the bipartition. An incidence-preserving permutation ¢ of P U L
such that P? = £ and £° = P is called a duality. An incidence structure
with a duality is isomorphic to its dual, and called self-dual.

5.2 Projective Planes

One of the most interesting classes of incidence structures is that of pro-
jective planes. A projective plane is a partial linear space satisfying the
following three conditions:

(1) Any two lines meet in a unique point.
(2) Any two points lie in a unique line.
(3) There are three pairwise noncollinear points (a triangle).

The first two conditions are duals of each other, while the third is self-
dual, so the dual of a projective plane is again a projective plane.

The first two conditions are the important conditions, with the third
serving to eliminate uninteresting “l-dimensional” cases, such as partial
linear spaces where all the points lie on a single line or all the lines on a
single point.

Finite geometers normally use a stronger nondegeneracy condition, in-
sisting on the existence of a quadrangle (four points, no three collinear).
Figure 5.1 shows a projective plane that a geometer would regard as
degenerate. The reasons for this will become apparent in Section 5.6.

Figure 5.1. A degenerate projective plane

Theorem 5.2.1 Let T be a partial linear space that contains a triangle.
ThenT is a (possibly degenerate) projective plane if and only if its incidence
graph X (I) has diameter three and girth siz.
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Proof. Let Z be a projective plane that contains a triangle. Any two points
lie at distance two in X (Z), similarly for any two lines. Now, consider a line
L and a point p not on L. Any line M through p must meet L in a point
p’, and thus L, p’, M, p is a path of length three from L to p. Hence any
two vertices are at distance at most three, and the existence of the triangle
guarantees one pair at distance exactly three, so the diameter of X (Z) is
three. Since 7 is a partial linear space, the girth of X (Z) is at least six, and
the existence of the triangle guarantees that it is exactly six.

Conversely, let X (Z) be the incidence graph of an incidence structure
and suppose that it has diameter three and girth six. Then one half of
the bipartition corresponds to the points of 7 and the other to the lines
of Z. Any two points are at an even distance from each other, and since
this distance is at most three, it must be two. There must be a unique
path of length two between the two points; else there would be a four-
cycle in X(T). Hence there is a unique line between any two points. A dual
argument shows that any two lines meet in a unique point, and hence we
have a projective plane. o

5.3 A Family of Projective Planes

Let V be the three-dimensional vector space over the field F with g ele-
ments. We can define an incidence structure PG(2, q) as follows: The points
of PG(2, q) are the 1-dimensional subspaces of V, and the lines are the 2-
dimensional subspaces of V. We say that a point p is incident with a line L
if the 1-dimensional subspace p is contained in the 2-dimensional subspace
L. A k-dimensional subspace of V contains ¢* — 1 nonzero vectors. There-
fore, a line L contains ¢ — 1 nonzero vectors, while each 1-dimensional
subspace contains ¢ — 1 nonzero vectors. Therefore, each line contains
(g2 —1)/(g — 1) = q + 1 distinct points. Similarly, the entire projective
plane contains (¢® —1)/(¢—1) = ¢®+ ¢+ 1 points. It is also not hard to see
that there are g? + ¢ + 1 lines, with ¢ + 1 lines passing through each point.

Each point may be represented by a vector a in V, where a and Aa
represent the same point if A # 0. A line can be represented by a pair of
linearly independent vectors, or by a vector a’. Here the understanding is
that a line is the subspace of dimension two formed by the vectors z such
aTz = 0. Of course, if A # 0, then AaT and a” determine the same line.
Then the point represented by a vector b lies on the line represented by a”
if and only if a7b = 0.

Two one-dimensional subspaces of V' lie in a unique two-dimensional sub-
space of V, so there is a unique line joining two points. Two two-dimensional
subspaces of V intersect in a one-dimensional subspace, so any two lines
meet in a unique point. Therefore, PG(2, q) is a projective plane.
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By Theorem 5.2.1, the incidence graph X of PG(2, q) is a bipartite graph
with diameter three and girth six. It has 2(¢? +q+ 1) vertices and is regular
of valency g+ 1. However, we can say more. We aim to prove that it is 4-arc
transitive. To start with we must find some automorphisms of it.

We denote the group of all invertible 3 x 3 matrices over IF by GL(3, ¢). It
is called the 3-dimensional linear group over F. Each element of it permutes
the nonzero vectors in V' and maps subspaces to subspaces, therefore giving
rise to an automorphism of X. By elementary linear algebra, there is an
invertible matrix that maps any ordered basis to any other ordered basis,
so GL(3, q) acts transitively on the set of all ordered bases of V.

Let p V q denote the unique line joining the points p and q. If p, ¢, and
r are three noncollinear points, then

p,pVg, q gV, T, pVr

is a hexagon in X. The sequence

(p, Vg, q, qVr, T)

is a 4-arc in X, and so it follows that Aut(X) acts transitively on the 4-arcs
that start at a “point-vertex” of X. The same argument shows that Aut(X)
acts transitively on 4-arcs starting at a “line-vertex” of X. Therefore, to
show that Aut(X) is 4-arc transitive, it remains only to prove that there
is an automorphism of X that swaps point-vertices and line-vertices of X.

This automorphism is easy to describe. For each vector a, it swaps the
point represented by a with the line represented by a”. Since a¥b = 0 if
and only if b7a = 0, this maps adjacent vertices to adjacent vertices, and
hence is an example of a duality.

Given this, it follows that X is a 4-arc transitive graph. In addition, from
Lemma 4.5.3, X is distance transitive.

5.4 Generalized Quadrangles

A second interesting class of incidence structures is provided by generalized
quadrangles. A generalized quadrangle is a partial linear space satisfying
the following two conditions:

(1) Given any line L and a point p not on L there is a unique point p’
on L such that p and p’ are collinear.

(2) There are noncollinear points and nonconcurrent lines.

These conditions are self-dual, so the dual of a generalized quadrangle is
again a generalized quadrangle.

Once again, the first condition is the important one, with the second
condition serving to eliminate the uninteresting “1-dimensional” cases with
all points on one line or all lines through one point.
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We have already seen a generalized quadrangle. Lemma 4.7.1 showed
that the incidence structure defined on the edges and 1-factors of K is a
generalized quadrangle with Tutte’s 8-cage as its incidence graph.

Two simple generalized quadrangles, called the grid and its dual are
shown in Figure 5.2. In a grid, every point is on two lines, while in a dual
grid, every line contains two points. For reasons that will become apparent
in Section 5.6, finite geometers also sometimes regard these as degenerate.

Figure 5.2. A grid and a dual grid

Theorem 5.4.1 Let I be a partial linear space that contains noncollinear
points and nonconcurrent lines. Then T is a generalized quadrangle if and
only if its incidence graph X (T) has diameter four and girth eight.

Proof. Let Z be a generalized quadrangle, and consider the distances in
X(Z) from a point p. A line is distance one from p if it contains p, and
at distance three otherwise (by the condition defining a generalized quad-
rangle). A point is at distance two from p if it is collinear with p, and at
distance four otherwise. The existence of noncollinear points guarantees
the existence of a pair of points at distance four. A dual argument for lines
completes the argument, showing that the diameter of X (Z) is indeed four.

The girth of X (Z) is at least six. If it were exactly six, then the point and
line opposite each other in a six-cycle would violate the condition defining
a generalized quadrangle. To show that there is an 8-cycle we let p and
g be two noncollinear points. Then there is a line L, on p that does not
contain ¢, and a line L, on ¢ that does not contain p. But then there is a
unique point on L, incident to ¢ and a unique point on L, incident to p.
These eight elements form a cycle of length eight in the incidence graph,
and hence the girth is eight.

Conversely, suppose X(Z) is the incidence graph of some partial linear
space, and that it has diameter four and girth eight. Then one part of the
bipartition corresponds to the points of Z, and the other part to the lines of
Z. Consider a line L and point p at distance three. Since the girth is eight,
there is a unique path L, p’, L/, p from L to p. This provides the unique
point p’ satisfying the condition defining a generalized quadrangle. ]
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5.5 A Family of Generalized Quadrangles

In this section we describe an infinite class of generalized quadrangles. The
smallest member of this family has Tutte’s graph as its incidence graph.
Let V be the vector space of dimension four over the field F with order
g. The projective space PG(3,q) is the system of one-, two- and three-
dimensional subspaces of V. We will refer to these as the points, lines, and
planes, respectively of PG(3,q). There are ¢* — 1 nonzero vectors in V,
and each 1-dimensional subspace contains ¢ — 1 nonzero vectors, so there
are exactly (¢* —1)/(g — 1) = (¢ + 1)(¢® + 1) points. We will construct an
incidence structure using all of these points, but just some of the lines of

PG(3,q).
Let H be the matrix defined by
01 00
-1 0 00
H= 0 0 01
00 -1 0

(If the field has characteristic 2 or, equivalently, ¢ is even, then —1 = 1.)
A subspace S of V is totally isotropic if uT Hv =0 for all w and v in S. Tt
is easy to see that u” Hu = 0 for all u, so all the 1-dimensional subspaces
of V are totally isotropic. We will be concerned with the 2-dimensional
totally isotropic subspaces of V. Our first task is to count them. A 2-
dimensional subspace of V spanned by u and v is totally isotropic if and
only if uT Hv = 0. For a nonzero vector u, define the set uL as follows:

ut ={veV|u'Hv=0}.

The determinant of H is one, so H is invertible, and the vector u” H is
nonzero. Since u* consists of all the vectors orthogonal to v H, it is a 3-
dimensional subspace of V' that contains u. We count the number of pairs of
vectors u, v such that {(u,v) is a 2-dimensional totally isotropic subspace.
There are ¢g* — 1 choices for the vector u and then ¢* — ¢ choices for a
vector v that it is in «* but not in the span of u. Therefore, there are
(¢* — 1)(¢® — q) pairs of vectors spanning 2-dimensional totally isotropic
subspaces. Each 2-dimensional subspace is spanned by (¢ —1)(¢? —q) pairs
of vectors, so the total number of 2-dimensional totally isotropic subspaces
is (¢ +1)(g+1).

Using the language of geometry, we say that PG(3, q) contains (¢2+1)(g+
1) totally isotropic points and (g2 4+ 1)(q + 1) totally isotropic lines. A 2-
dimensional space contains g+ 1 subspaces of dimension one, so each totally
isotropic line contains g + 1 totally isotropic points. Because the numbers
of points and lines are equal, this implies that each totally isotropic point
is contained in g + 1 totally isotropic lines. Now, let W (g) be the incidence
structure whose points and lines are the totally isotropic points and totally
isotropic lines of PG(3, q).
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Lemma 5.5.1 Let W(q) be the point/line incidence structure whose points
and lines are the totally isotropic points and totally isotropic lines of
PG(3,q). Then W(q) is a generalized quadrangle.

Proof. We need to prove that given a point p and a line L not containing
p, there is a unique point on L that is collinear with p. Suppose that the
point p is spanned by the vector u. Any point collinear with p is spanned by
a vector in u™. The 3-dimensional subspace u* intersects the 2-dimensional
subspace L in a subspace of dimension one, and hence there is a unique
point on L that is collinear with p. |

If X is the incidence graph of W(q), then it is a bipartite graph on
2(q?+1)(g+1) vertices that is regular with valency g+1. By Theorem 5.4.1,
it has diameter four and girth eight. As will become apparent in Section 5.6,
it is also distance regular.

Applying the construction to the field of order two, we obtain a gener-
alized quadrangle with fifteen points and fifteen lines; this is the same as
the generalized quadrangle on the edges and 1-factors of Kg.

The matrix H we used can be replaced by any invertible 4 x 4 matrix
over F with all diagonal entries zero such that H” = —H. However, this
does not change the generalized quadrangle that results.

Although the construction described in this section yields generalized
quadrangles that are regular, it should be noted that there are many that
are not regular. We will not present any general constructions, although an
example will arise later.

5.6 Generalized Polygons

In Section 5.2 and Section 5.4 we saw that two classes of interesting (and
highly studied) incidence structures are equivalent to bipartite graphs with
diameter d and girth 2d, for d = 3 and d = 4. This motivates us to define a
generalized polygon to be a finite bipartite graph with diameter d and girth
2d. When it is important to specify the diameter, a generalized polygon of
diameter d is called a generalized d-gon, and the normal names for small
polygons (triangle for 3-gon, quadrangle for 4-gon, etc.) are used.

A vertex in a generalized polygon is called thick if its valency is at least
three. Vertices that are not thick are thin. A generalized polygon is called
thick if all its vertices are thick. Although on the face of it the defini-
tion of a generalized polygon is not very restrictive, we will show that the
thick generalized polygons are regular or semiregular, and that the general-
ized polygons that are not thick arise purely as subdivisions of generalized
polygons.

The argument proceeds by a series of simple structural lemmas. The first
such lemma is a trivial observation, but we will use it repeatedly.
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Lemma 5.6.1 If d(v,w) = m < d, then there is a unique path of length
m from v to w. |

Lemma 5.6.2 If d(v,w) = d, then v and w have the same valency.

Proof. Since X is bipartite of diameter d, any neighbour v’ of v has dis-
tance d—1 from w. Therefore, there is a unique path of length d—1 from v/
to w that contains precisely one neighbour of w. Each such path contains a
different neighbour of w, and therefore w has at least as many neighbours
as v. Similarly, v has at least as many neighbours as w, and hence they
have equal valency. O

Lemma 5.6.3 Fvery vertex in X has valency at least two.

Proof. Let C be a cycle of length 2d in X. Clearly, the vertices of C' have
valency at least two. Let z be a vertex not on C, let P be the shortest path
joining z to C, and denote the length of P by . Travelling around the cycle
for d — i steps we arrive at a vertex z’ at distance d from z. Then x has
the same valency as z’, which is at least two. a

Lemma 5.6.4 Any two vertices lie in a cycle of length 2d.

Proof. Let v and w be any two vertices of X. Let P be the shortest path
between them. By repeatedly choosing any neighbour of an endpoint of P
not already in P, we can extend P to a geodesic path of length d with
endpoints z and y. Then = has a neighbour z’ not in P, and hence it has
distance d — 1 from y, and by following the unique path of length d — 1
from z’ to y we extend P into a cycle of length 2d as required. a

The next series of lemmas shows that generalized polygons that are not
thick are largely trivial modifications of those that are thick.

Lemma 5.6.5 Let C be a cycle of length 2d. Then any two vertices at the
same distance in C from a thick vertex in C have the same valency.

Proof. Let v be a thick vertex contained in C and let w be its antipode in
C (that is, the unique vertex in C at distance d from v). Now, because v
is thick, it has at least one further neighbour ¢’, and hence there is a path
P from v’ to w that is disjoint from C except at w. Therefore, C' together
with P forms three internally vertex-disjoint paths of length d from v to w.
Consider two vertices v1, vy in C both at distance h from v. Let = be the
vertex in P at distance d — h from v. Then z is at distance d from both v;
and v,, and hence v; and v both have the same valency as z, and so they
have equal valencies. ]

Lemma 5.6.6 The minimum distance k between any pair of thick vertices
in X is a divisor of d. If d/k is odd, then all the thick vertices have the same
valency; if it is even, then the thick vertices share at most two valencies.
Moreover, any vertex at distance k from a thick vertex is itself thick.
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Proof. Let v and w be two thick vertices of X such that d(v, w) = k, and
let = be any other thick vertex of X. By extending the path from z to the
closer of v and w, we can form a cycle C of length 2d containing v, w and z.
Repeatedly applying the previous lemma to the thick vertices of C' starting
at v, we see that every kth vertex of C is thick. Since the antipode v’ of
v in C is thick, k¥ must divide d. Again using the previous lemma we see
that every second thick vertex in C' has the same valency, and therefore
every thick vertex in C has the same valency as either v or w. Thus our
arbitrarily chosen thick vertex = has one of these two valencies, and the
set of all thick vertices shares at most two valencies. If d/k is odd, then v/
has the same valency as w, so the valency of v is equal to the valency of w.
However, if d/k is even, then v and w may have different valencies. Finally,
consider any vertex z’ at distance k from z. If ' € C, then the argument
above shows that it is thick. If 2’ ¢ C, then we can form a new cycle of
length 2d that includes z’, x, and one of the vertices of C at distance k
from z. Then repeating the above argument with the new cycle yields that
z' is itself thick. O

We have already defined the subdivision graph S(X) as being the graph
obtained from X by putting a vertex in the middle of each edge. We could
also regard this as replacing each edge by a path of length 2. Taking this
point of view we define the k-fold subdivision of a graph X to be the graph
obtained from X by replacing each edge by a path of length k.

Theorem 5.6.7 A generalized polygon X that is not thick is either a cycle,
the k-fold subdivision of a multiple edge, or the k-fold subdivision of a thick
generalized polygon.

Proof. If X has no thick vertices at all, then it is a cycle. Otherwise,
the previous lemma shows that any path between two thick vertices of
X has length a multiple of k with every kth vertex being thick and the
remainder thin. Therefore, we can define a graph X’ whose vertices are
the thick vertices of X, and where two vertices are adjacent in X’ if they
are joined by a path of length k in X. Clearly, X is the k-fold subdivision
of X’. If k = d, then two thick vertices at maximum distance are joined
by a collection of k-vertex paths of thin vertices. This collection of paths
contains all the vertices of X, so X contains only two thick vertices and
is just a subdivided multiple edge. (If we are willing to accept a multiple
edge as a thick generalized 2-gon, then we eliminate the necessity for this
case altogether.) If k < d, then X’ has diameter d’ := d/k because a path
of length d between two thick vertices in X is a k-fold subdivision of a path
of length d’ between two vertices of X’. Similarly, a cycle of length 2d in
X is a k-fold subdivision of a cycle of length 2d/k in X’. Therefore, X’
has diameter d’ and girth 2d’. Tt is clear that X’ must be bipartite, for if it
contained an odd cycle, then any k-fold subdivision of such a cycle would
have a thin vertex at distance at least kd’ + 1 from some thick vertex,
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contradicting the fact that X has diameter d. Therefore, X’ is a thick
generalized polygon. m|

Therefore, the study of generalized polygons reduces to the study of thick
generalized polygons, with the remainder being considered the degenerate
cases. The degenerate projective plane of Figure 5.1 is a 3-fold subdivision
of a multiple edge. The grids and dual grids are 2-fold subdivisions of the
complete bipartite graph, which is a generalized 2-gon.

Although the proofs of the main results about thick generalized polygons
are beyond our scope, the results themselves are easy to state. The following
famous theorem shows that in a thick generalized polygon, the diameter d
is severely restricted.

Theorem 5.6.8 (Feit and Higman) If a generalized d-gon is thick, then
d e {3,4,6,8}. O

We have already seen examples of thick generalized triangles (d = 3) and
thick generalized quadrangles (d = 4). In fact generalized triangles and
generalized quadrangles exist in great profusion. Generalized hexagons and
octagons do exist, but only a few families are known. Unfortunately, even
the simplest of these families are difficult to describe.

Since a projective plane is a thick generalized triangle, it is necessarily
regular. If all the vertices have valency s+1, then we say that the projective
plane has order s. The other thick generalized polygons may be regular or
semiregular. If the valencies of the vertices of a thick generalized polygon
X are s+ 1 and ¢t + 1, then X is said to have order (s,t) (where s may
equal t).

We leave as an exercise the task of establishing the following result.

Lemma 5.6.9 If a generalized polygon is regular, then it is distance
reqular. a

The order of a thick generalized polygon satisfies certain inequalities
due to Higman and Haemers. We will prove the first of these later, as
Lemma 10.8.3.

Theorem 5.6.10 Let X be a thick generalized d-gon of order (s,t).

(a) Ifd =4, then s < t? and t < s2.
(b) If d =6, then st is a square and s < t3 and t < s3.
(c) Ifd =8, then 2st is a square and s < t? and t < 2. o

Note that it is possible to take a generalized polygon of order (s, s) and
subdivide each edge exactly once to form a generalized polygon of order
(1, 8). Therefore, it is possible to have a generalized 12-gon that is neither
thick nor a cycle.
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5.7 'Two Generalized Hexagons

Although it is known that an infinite number of generalized hexagons exist,
it is not straightforward to present an elementary construction of an infinite
family. Therefore, we content ourselves with a construction of the smallest
thick generalized hexagon.

The smallest thick generalized hexagon has order (2,2), and hence is
a cubic graph with girth 6 and diameter 12. By Exercise 5 it is distance
regular with intersection array

{3,2,2,2,2,2;1,1,1,1,1,3}.

Given the intersection array we can count the number of vertices in each
cell of the distance partition from any vertex u. For example, it is clear that
| X1(u)| = 3. Therefore, there are six edges between X;(u) and X5 (u), and
since each vertex of X;(u) is adjacent to one vertex in X (u), we conclude
that | X2(u)| = 6. Continuing similarly we see that the cells of the distance
partition from w have 1, 3, 6, 12, 24, 48, and 32 vertices, respectively.

Lemma 5.7.1 If X is a generalized hexagon of order (2,2), then the graph
Xs5(u) U X¢(u) is the subdivision S(Y) of a cubic graph Y on 32 vertices.

Proof. It is straightforward to confirm that the 48 vertices of X5(u) are
each adjacent to two vertices of Xg(u), and each vertex of Xg(u) is adjacent
to three from Xj(u). a

We will describe the generalized hexagon by giving the cubic graph Y
on 32 vertices, and explaining which vertex of X5(u) subdivides each edge
of Y. First we give a simple encoding of the 48 vertices in X5(u). Let the
three vertices adjacent to u be called r, g, and b. Then each of these has
two neighbours in X, (u): We call them 70, r1, b0, b1, g0, and g1. Similarly,
we denote the two neighbours of 70 in X3(u) by 700 and r01. Continuing
in this fashion, every vertex of X;5(u) is labelled by a word of length 5 with
first entry r, g, or b and whose remaining four entries are binary.

Lemma 5.7.2 For ¢ € {r,g,b}, the 16 edges of Y subdivided by the 16
vertices of Xs(u) with first entry ¢ form a one-factor of Y.

Proof. The distance from ¢ € {r, g,b} to any vertex of X5(u) with first
entry c is four, and so there is a path of length at most eight between any
two such vertices. Since X has no cycles of length 10, two such vertices
cannot subdivide incident edges of Y. o

Figure 5.3 shows a bipartite cubic graph with 32 vertices, along with
a l-factorization given by the three different edge colours. This graph is
drawn on the torus, but in an unusual manner. Rather than identifying
points on the opposite sides of a square, this diagram identifies points on
the opposite sides of a hexagon.
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Figure 5.3. Building block for the generalized hexagon

Temporarily define the distance between two edges of a graph Z to be
the distance that the corresponding vertices have in the subdivision S(Z).
(Thus incident edges of Y are deemed to have distance two.)

Theorem 5.7.3 Let Y be the graph of Figure 5.3 and let R be the set of
edges in one of the colour classes. Then for every edge e € R, there is a
unique edge € € R at distance 10 from e. Moreover,

(a) There is a unique partition of the eight pairs {e, e’} into four quartets
of edges with pairwise distance at least eight, and

(b) There is a unique partition of these four quartets into two octets of
edges with pairwise distance at least siz.

Proof. A few minutes with a photocopy of Y and a pencil will be far more
convincing than any written proof, so this is left as an exercise. [m]

Now, it should be clear how we will subdivide the edges of Y to form a
generalized hexagon. The edges in R are assigned to the vertices of X5(u)
with first element 7. The two octets of edges are assigned to the two octets
of vertices whose codes agree in the first two positions, the four quartets
of edges are assigned to the quartets of vertices whose codes agree in the
first three positions, and the eight pairs of edges are assigned to the pairs
of vertices whose codes agree in the first four positions. Then the two edges
of a pair are subdivided arbitrarily by the two vertices to which the pair is



90 5. Generalized Polygons and Moore Graphs

assigned. The same procedure is followed for the other two colour classes
of edges.

It is clear that the resulting graph is bipartite, and the assertions of
Theorem 5.7.3 are enough to show that it has no cycles of length less than
12, and that its diameter is six.

The automorphism group of this generalized hexagon does not act tran-
sitively on the vertices, but rather it has two orbits that are the two halves
of the bipartition. If we calculate the distance partition from a vertex of
the opposite colour to u, say v, then X5(v) U X¢(v) is a subdivision of a
different graph. In fact, it is the subdivision of a disconnected graph, each
of whose components is isomorphic to the graph shown in Figure 5.4.

Figure 5.4. Building block for the dual generalized hexagon

Although we shall not do so here, it can be shown that the two graphs of
Figure 5.3 and Figure 5.4 are the only possibilities for Y, and hence there
is a unique dual pair of generalized hexagons of order (2, 2).

5.8 Moore Graphs

A Moore graph is a graph with diameter d and girth 2d + 1. We already
know two examples: Cs and the Petersen graph. Unfortunately, there are
at most two more Moore graphs. (The proof of this is one of the major
achievements in algebraic graph theory.) In this section we prove that a
Moore graph must be distance regular, and in the next section we provide
the third known example.

Lemma 5.8.1 Let X be a graph with diameter d and girth 2d + 1. Then
X is regular.
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Proof. First we shall show that any two vertices at distance d have the
same valency, and then we shall show that this implies that all vertices have
the same valency. Let v and w be two vertices of X such that d(v,w) = d.
Let P be the path of length d joining them. Consider any neighbour v' of v
that is not on P. Then the distance from v' to w is exactly d; hence there
is a unique path from v’ to w that contains one neighbour of w. Each such
path uses a different neighbour of w, and hence w has at least as many
neighbours as v. Similarly, v has at least as many neighbours as w, and
so they have equal valency. Let C be a cycle of length 2d + 1. Starting
with any given vertex v and taking two d-step walks around C' shows that
the neighbours of v have the same valency as v. Therefore, all vertices of
C have the same valency. Given any vertex x not on C, form a path of
length ¢ from x to C. The vertex &’ that is d — ¢ further steps around C
has distance d from z, and hence z has the same valency as z’. Therefore,
all the vertices of X have the same valency, and X is regular. |

Theorem 5.8.2 A Moore graph is distance regular.

Proof. Let X be a Moore graph of diameter d. By the previous lemma, X
is regular, so denote its valency by k. In order to show that X is distance
regular it is sufficient to show that the intersection numbers a;, b;, and ¢; of
Section 4.5 are well-defined. Let v be a vertex of the Moore graph and let
X1(v), ..., Xq(v) be the cells of the distance partition. The arguments are
straightforward, relying on the simple fact that for each vertex w € X;(v)
there is a unique path of length 7 from v to w.

For any 1 < i < d a vertex w in X;(v) cannot have two neighbours in
X;—1(v) because if so, there would be a cycle of length at most 27 containing
v and w. On the other hand, w must have at least one neighbour in X;_1(v),
andsoc; =1foralll <i<d.

For any 1 <4 <d—1 a vertex w in X;(v) cannot have a neighbour w’ in
the same cell, because if so, there would be a cycle of length at most 2i + 1
containing v, w, and w’. Therefore, a; =0 forall 1 <i <d— 1.

By the previous lemma X is regular, and hence this is enough to show
that bg =k, b; =k —1for 1 <7 <d-—1 and ag = k — 1. Therefore, the
intersection numbers are well-defined and hence X is distance regular. 0O

The theory of distance-regular graphs can be used to show that Moore
graphs of diameter greater than two do not exist, and that if a Moore graph
of diameter two does exist, then its valency is either 2, 3, 7, or 57. We will
develop enough of this theory in our work on strongly regular graphs in
Chapter 10 to determine the possible valencies of a Moore graph of diameter
two. (In fact, it will become a fairly routine exercise: Exercise 10.7.) We
construct a Moore graph of valency seven in the next section; the existence
of a Moore graph of valency 57 is a long-standing and famous open problem
in graph theory.



92 5. Generalized Polygons and Moore Graphs

5.9 The Hoffman-Singleton Graph

In this section we show that there is a Moore graph of diameter two and
valency seven and study some of its properties. This graph is known as the
Hoffman—Singleton graph after its discoverers. By counting the number of
vertices at distance one and two from a fixed vertex, we find that it has
14 7+ 42 = 50 vertices.

Lemma 5.9.1 An independent set C in a Moore graph of diameter two
and valency seven contains at most 15 vertices. If |C| = 15, then every
vertex not in C' has exactly three neighbours in C.

Proof. Let X be a Moore graph of diameter two and valency seven. Sup-
pose that C is an independent set in X with ¢ vertices in it. Without loss of
generality we may assume that the vertices are labelled so that the vertices
{1,...,50 — ¢} are the ones not in C. If i is a vertex not in C, let k; denote
the number of its neighbours that lie in C. Since no two vertices in C are
joined by an edge, we have

50—c

Te=> ki
1=1

Now, consider the paths of length two joining two vertices in C. Since
every pair of nonadjacent vertices in X has exactly one common neighbour,
counting these in two ways yields

(-3 (5)

From these last two equations it follows that for any real number p,

50—c
3" (ki = w)? = (50 — ¢)u® — 1dep +  + 6e. (5.1)
=1

The right side here must be nonnegative for all values of u, so regarding it
as a quadratic in u, we see that it must have at most one zero. Therefore,
the discriminant

196¢% — 4(50 — ¢)(c? + 6¢) = 4c(c — 15)(c + 20)

of the quadratic must be less than or equal to 0. It follows that ¢ < 15.
If ¢ = 15, then the right side of (5.1) becomes

35u2 — 210p + 315 = 35(u — 3)?,
and so setting p equal to three in (5.1) yields that

35
D (ki—3)*=0.
=1
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Therefore, k; = 3 for all i, as required. d

We will now describe a construction of the Hoffman—Singleton graph,
using the heptads of Section 4.6. Once again we consider the 35 triples
from the set © = {1,...,7}. A set of triples is concurrent if there is some
point common to them all, and the intersection of any two of them is this
common point. A triad is a set of three concurrent triples. The remainder
of the argument is broken up into a number of separate claims.

(a) No two distinct heptads have three nonconcurrent triples in common.

It is enough to check that for one set of three nonconcurrent triples, there
is a unique heptad containing them.

(b) Each triad is contained in exactly two heptads.

Without loss of generality we may take our triad to be 123, 145, and 167.
By a routine calculation one finds that there are two heptads containing
this triad:

123 123
145 145
167 167
246 247
257 256
347 346
356 357

Note that the second of these heptads can be obtained from the first by
applying the permutation (67) to each of its triples.

(c) There are exactly 30 heptads.

There are 15 triads on each point, thus we obtain 210 pairs consisting of
a triad and a heptad containing it. Since each heptad contains exactly 7
triads, it follows that there must be 30 heptads.

(d) Any two heptads have 0, 1, or 3 triples in common.

If two heptads have four (or more) triples in common, then they have three
nonconcurrent triples in common. Hence two heptads can have at most
three triples in common. If two triples meet in precisely one point, there
is a unique third triple concurrent with them. Any heptad containing the
first two triples must contain the third. (Why?)

(e) The automorphism group of a heptad has order 168, and consists of
even permutations.

Firstly, we note that Sym(7) acts transitively on the set of heptads, as it
acts transitively on the set of triads and there are permutations mapping
the two heptads on a triad to each other. Since there are 30 heptads, we
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deduce that the subgroup of Sym(7) fixing a heptad has order 168, and in
Section 4.6 we exhibited such a group consisting of even permutations.

(f) The heptads form two orbits of length 15 under the action of the alter-
nating group Alt(7). Any two heptads in the same orbit have exactly one
triple in common.

Since the subgroup of Alt(7) fixing a heptad has order 168, the number of
heptads in an orbit is 15. Let II denote the first of the heptads above. The
permutations (123) and (132) lie in Alt(7) and map IT onto two distinct
heptads having exactly one triple in common with II. (Check it!) From each
triple in IT we obtain two 3-cycles in Alt(7); hence we infer that there are
14 heptads in the same orbit as IT under Alt(7) each with exactly one triple
in common with II. Since there are only 15 heptads in an Alt(7) orbit, and
since all heptads in an Alt(7) orbit are equivalent, it follows that any two
heptads in such an orbit have exactly one triple in common.

(g) Each triple from Q lies in exactly siz heptads, three from each Alt(7)
orbit.

Simple counting.

We can now construct the Hoffman-Singleton graph. Choose an Alt(7)
orbit of heptads from §2. Take the vertices of our graph to be these heptads,
together with the 35 triples in 2. We join a heptad to a triple if and only if it
contains the triple. Two triples are adjacent if and only if they are disjoint.
The resulting graph is easily seen to have valency seven and diameter two.
Since it has 50 = 72 + 1 vertices, it is a Moore graph. The collection of 15
heptads forms an independent set of size 15 as considered in Lemma 5.9.1.

5.10 Designs

Another important class of incidence structures is the class of t-designs. In
general, t-designs are not partial linear spaces, and design theorists tend to
use the word “block” rather than “line”, and to identify a block with the
subset of points to which it is incident.

In this language, a t-(v, k, A¢) design is a set P of v points, together with
a collection B of k-subsets of points, called blocks such that every t-set
of points lies in precisely A; blocks. The projective planes PG(2,q) have
the property that every two points lie in a unique block, and so they are
2-(¢> + ¢+ 1,q+ 1, 1) designs.

Now, suppose that D is a t-(v, k, \¢) design and let S be an s-set of points
for some s < t. We will count the number of blocks A of D containing S.
We will do this by counting in two ways the pairs (7, B) where T is a t-set
containing S and B is a block containing 7. Firstly, S lies in (”::) t-subsets

t
T, each of which lies in A; blocks. Secondly, for each block containing S
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k

there are (}

~?) possible choices for T. Hence

W52 =a(020), (52)

and since the number of blocks does not depend on the particular choice
of S, we see that D is also an s-(v, k, As) design. This yields a necessary
condition for the existence of a t-design in that the values of A\; must be
integers for all s < ¢.

The parameter )y is the total number of blocks in the design, and is
normally denoted by b. Putting s = 0 into (5.2), we get

/(i) =»(2)

The parameter )\; is the number of blocks containing each point, and it is
normally called the replication number and denoted by r. Putting t = 1 in
the previous equation yields that

bk = vr.

If \; = 1, then the design is called a Steiner system, and a 2-design with
A2 =1 and k = 3 is called a Steiner triple system. The projective plane
PG(2,2) is a 2-(7,3,1) design, so is a Steiner triple system. It is usually
called the Fano plane and drawn as shown in Figure 5.5, where the blocks
are the straight lines and the central circle.

Figure 5.5. The Fano plane

The incidence matriz of a design is the matrix N with rows indexed by
points and columns by blocks such that N;; = 1 if the ith point lies in the
jth block, and N;; = 0 otherwise. Then the matrix N has constant row
sum 7 and constant column sum k, and satisfies the equation

NNT = (r — X)I + Ao,

where J is the all-ones matrix. Conversely, any 01-matrix with constant row
sum and constant column sum satisfying this equation yields a 2-design.

The proof of the next result relies on some results from linear algebra
that will be covered in Chapter 8.

Lemma 5.10.1 In a 2-design with k < v we have b > v.
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Proof. Putting ¢ = 2 and s = 1 into (5.2) we get that r(k—1) = (v—1)Ag,
and so k < vimplies that r—A2 > 0. By the remark at the end of Section 8.6,
it follows that NN7 is invertible. It follows that the rows of N are linearly
independent, and therefore that b > v. o

A 2-design with b = v is called symmetric. The dual of a 1-design is a
1-design, but in general the dual of a 2-design is not a 2-design. The next
result shows that symmetric designs are exceptional.

Lemma 5.10.2 The dual D* of a symmetric design D is a symmetric
design with the same parameters.

Proof. If N is the incidence matrix of D, then N7 is the incidence matrix
of D*. Since D is a 2-design, we have NNT = (r — A\3)I + A2J, and thus
NT = N=Y((r — X\2)I + XoJ). Since D is symmetric, 7 = k, and so N
commutes with both I and J. Therefore, NTN = (r — X3)I + A2J, showing
that D* is a 2-design with the same parameters as D. O

Theorem 5.10.3 A bipartite graph is the incidence graph of a symmetric
2-design if and only if it is distance reqular with diameter three.

Proof. Let D be a symmetric 2-(v, k, A2) design with incidence graph X.
Any two points lie at distance two in X, and similarly for blocks. Therefore,
a block lies at distance three from a point not on the block, and this is the
diameter of X. Now, consider the distance partition from a point. Clearly,
X is bipartite, so we have a; = az = a3z = 0. Since two points lie in A
blocks, we have ca = A2, and (using r = k) it is straightforward to verify
that the intersection numbers are

— 1 A2 k
0 0 0 0
k k=1 k—) -—

Since the dual of D is a design with the same parameters, the distance
partition from a line yields the same intersection numbers.

Conversely, suppose that X is a bipartite distance-regular graph with
diameter three. Declare one part of the bipartition to be points, and the
other to be blocks. Considering the distance partition from a point we
see that every point lies in by blocks, and every two points lie in ¢z blocks,
hence we have a 2-design with r = by and Ay = co. Considering the distance
partition from a block, we see that every block contains by points and every
two blocks meet in ¢y blocks. Thus we have a 2-design with k£ = byp = r and
hence b = v. m|

Since projective planes are symmetric designs, this provides another
proof of Lemma 5.6.9 for the case of generalized polygons with diame-
ter three. The incidence graph of the Fano plane is called the Heawood
graph, and shown in Figure 5.6.
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Figure 5.6. The Heawood graph

Another way to form a graph from a design D is to consider the block
graph whose vertices are the blocks of D, where two vertices are adjacent
if the corresponding blocks intersect. More generally, blocks in a design
may meet in differing numbers of points, and interesting graphs can often
be found by taking two blocks to be adjacent if they meet in some fixed
number of points.

Theorem 5.10.4 The block intersection graph of a Steiner triple system
with v > 7 is distance regular with diameter two.

Proof. Let D be a 2-(v,3,1) design, and let X be the block intersection
graph of D. Every point lies in (v — 1)/2 blocks, and so X is regular with
valency 3(v — 3)/2. If we consider two blocks that intersect, then there are
(v—15)/2 further blocks through that point of intersection, and four blocks
containing a pair of points, one from each block, other than the point of
intersection. Therefore,

a1 =(w—-"5)/24+4=(v+3)/2.

If we now consider two blocks that do not intersect, then we see that there
are nine blocks containing a pair of points, one from each block, and so
¢co = 9. This also shows that the diameter of X is two. From these it is
straightforward to compute the remaining intersection numbers and hence
show that X is distance regular. a

Exercises
1. Find the degenerate projective planes (those that do not contain a
triangle).

2. Determine the degenerate generalized quadrangles (those without
noncollinear points and nonconcurrent lines).

3. Let G be a group of automorphisms of an incidence structure Z and
consider the set of points and lines fixed by G. Show that this is:
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(1) A partial linear space if Z is a partial linear space.
(2) A projective plane if 7 is a projective plane.
(3) A generalized quadrangle if 7 is a generalized quadrangle.

. Consider the projective plane PG(2,2). An antiflag in PG(2,2) is a

pair (p, L) where p is not on L. If L and M are two lines, then let
L N M denote the unique point incident with both L and M. Define
a graph whose vertex set is the set of antiflags, and where (p, L) and
(g, M) are adjacent if the point L N M is on the line pV q. Show that
this graph is the Coxeter graph and that the duality gives rise to an
automorphism of order two additional to the automorphism group of
PG(2,2). (We discussed the Coxeter graph at length in Section 4.6.)

. Show that a generalized hexagon of order (2,2) is distance regular

with intersection array {3,2,2,2,2,2;1,1,1,1,1, 3}.

. Determine how to subdivide the edges of two copies of the graph of

Figure 5.4 to form a generalized hexagon.

. The Shrikhande graph can be embedded as a triangulation on the
torus as shown in Figure 5.7. Show that the graph of Figure 5.3 is
the dual of the Shrikhande graph.

VA VA VA

[ R |

Figure 5.7. The Shrikhande graph on the torus

8. Let Y denote the graph of Figure 5.4. Show that every vertex v €

V(Y) has a unique vertex v’ at distance 4 from it. Define a graph Y’
whose vertex set is the eight pairs of vertices, and where two pairs
are adjacent if there are any edges between them in Y. What graph
is Y'? (It will follow from our work in Section 6.8 that Y is a cover
of Y'.)
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. Show that the graph of Figure 5.4 is the unique cubic graph of girth

six on 16 vertices. Show further that the Heawood graph is the only
smaller cubic graph of girth six.

Show that if a Moore graph of valency 57 and diameter two exists,
then an independent set in it has size at most 400.

Suppose that X is a Moore graph with diameter two and valency
k. Show that there are exactly k(k — 1)2/2 5-cycles through a given
vertex of X. Deduce from this that 5 divides (k? + 1)k(k — 1)?, and
hence that k& # 4 mod 5.

Show that a Moore graph with diameter two and valency seven con-
tains a subgraph isomorphic to the Petersen graph with an edge
deleted. Show further that the subgraph induced by this is isomorphic
to the Petersen graph.

Let X be the incidence graph of a projective plane of order n. (See
Section 5.3 for details.) Let Y be the graph obtained from X by
deleting an adjacent pair of vertices and all their neighbours. Show
that the resulting graph is distance regular.

Let X be a Moore graph with diameter two and valency seven. If
u € V(X), show that the graph induced by the vertices at distance
two from u is distance regular.

Let X be a Moore graph with diameter two and valency seven, and
let Y be an induced subgraph of X isomorphic to the Petersen graph.
Show that each vertex in V(X)\ V(Y') has exactly one neighbour in
Y. (It follows that the partition (V(Y), V(X)\V(Y)) of V(X) is an
example of an equitable partition. We will study these in Section 9.3.)

Let X be a Moore graph with diameter two and suppose G is a group
of automorphisms of X. Let Y be the subgraph of X induced by the
fixed points of G. Show that Y is isomorphic to either Ky, K, for
some r, or a Moore graph of diameter two.

In Section 1.8 we saw that the Petersen graph is the dual of Kg
embedded in the projective plane. This embedding determines a set
of 5-cycles such that each edge lies in exactly two of them. We build
an incidence structure as follows. Let V be the set {0,1,...,10} and
let V' \ 0 be the vertices of a copy of the Petersen graph. The first
six blocks of the incidence structure are the vertex sets of the six 5-
cycles given by the embedding of this graph in the projective plane.
There are five further blocks, consisting of a set of four independent
vertices in the Petersen graph, together with 0. (You might wish to
verify that the Petersen graph has exactly five independent sets of size
four.) Show that the 11 points in V and the 11 blocks just described
form a 2-(11, 5, 2) design.
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Notes

Feit and Higman proved their theorem in [8]. A number of alternative
proofs of this result are known now. For one of these, and more details,
see Section 6.5 of [3]. The study of Moore graphs began with the work of
Hoffman and Singleton [9]. Biggs [2] presents a proof that a Moore graph
has diameter at most two. His treatment follows Damerell {7]; this result
was proved independently by Bannai and Ito [1].

Although generalized triangles and generalized quadrangles had previ-
ously been studied, the concept of a generalized polygon is due to Tits [11].
Our proof that a generalized polygon is semiregular is based on Yanushka
[12], while our proof that a Moore graph is necessarily regular follows Sin-
gleton [10]. The construction of the generalized hexagon in Section 5.7 is
essentially the same as that offered by Cohen and Tits in [6]. There they
also prove that there is a unique dual pair of generalized hexagons with
order (2,2).

The construction of the Hoffman—Singleton graph we presented is related
to the projective geometry PG(3,2) of dimension three over GF(2). We
may take the heptads in one Alt(7) orbit to be the points, the triples as
the lines, and the remaining Alt(7) orbit of heptads as the planes. The
resulting collection of points, lines, and planes is PG(3,2).

An independent set C in a Moore graph of valency 57 and diameter two
has size at most 400. (See Exercise 10.) If such a set C' exists, then each of
2850 vertices not in it is adjacent to exactly eight vertices in C. This gives
us a 2-(400, 8, 1) design. The projective geometry PG(3,7) has 400 points
and 2850 lines. It is perhaps tempting to use this to construct a Moore
graph of valency 57, with these points and lines as its vertices. A point will
be adjacent to a line if it is on it; the unresolved difficulty is to decide how
to define a suitable adjacency relation on the lines of PG(3,7).

G. Higman [4] showed that if a Moore graph with valency 57 and diameter
two exists, it cannot be vertex transitive. This improved on earlier work
of Aschbacher, who showed that the automorphism group of such a graph
could not be a rank-three group.

A solution to Exercise 12 will be found in Chapter 6 of [5].

We do not seem to be at all close to deciding whether there is a Moore
graph with diameter two and valency 57. This is one of the most famous
open problems in graph theory.
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6

Homomorphisms

Although any isomorphism between two graphs is a homomorphism, the
study of homomorphisms between graphs has quite a different flavour to
the study of isomorphisms. In this chapter we support this claim by intro-
ducing a number of topics involving graph homomorphisms. We consider
the relationship between homomorphisms and graph products, and in par-
ticular a famous unsolved conjecture of Hedetniemi, which asserts that if
two graphs are not n-colourable, then neither is their product. Our second
major topic is the exploration of the core of a graph, which is the minimal
subgraph of a graph that is also a homomorphic image of the graph. Study-
ing graphs that are equal to their core leads us to an interesting class of
graphs first studied by Andrésfai. We finish the chapter with an exploration
of the cores of vertex-transitive graphs.

6.1 The Basics

If X, Y, and Z are graphs and there are homomorphisms f from X to Y
and g from Y to Z, then the composition go f is a homomorphism from X
to Z. (This needs a line of proof, which is a task for the reader.) Note that
we have g o f and not f o g, an unfortunate consequence of the fact that
it is traditional to write homomorphisms on the left rather than the right.
Now, define a relation “—” on the class of all graphs by X — Y if there
is a homomorphism from X to Y. (It may help if you read “—” as “has
a homomorphism into.”) Since the composition of two homomorphisms is
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a homomorphism, “—7” is a transitive relation. Since the identity map is
a homomorphism, we have X — X for any graph X, and therefore — is
reflexive as well. Most reflexive transitive relations you have met have been
partial orders such as:

(a) < on the reals,
(b) m divides n on the integers, or
(c) C on the subsets of a set.

Our new relation is not a partial order because it is not antisymmetric,
that is to say, if X — Y and Y — X, it does not necessarily follow that
X =Y. (Take X to be any bipartite graph and Y to be an edge.)

If X and Y are graphs such that there is a homomorphism from X to
Y and a homomorphism from Y to X, we say they are homomorphically
equivalent. A homomorphism from X to Y is surjective if every vertex of Y’
is the image of a vertex of X. If there is a surjective homomorphism from
X to Y and from Y to X, then X and Y are isomorphic (this implicitly
uses the fact that X and Y are finite).

If f is a homomorphism from X to Y, then the preimages f~!(y) of
each vertex y in Y are called the fibres of f. The fibres of f determine a
partition 7 of V(X) called the kernel of f. If Y has no loops, then the
kernel is a partition into independent sets. Given a graph X together with
a partition 7 of V(X), define a graph X/m with vertex set the cells of 7 and
with an edge between two cells if there is an edge of X with an endpoint
in each cell (and a loop if there is an edge within a cell). There is a natural
homomorphism from X to X /7 with kernel .

Although it is generally a hard task to show that there is no homomor-
phism from one graph to another, there are two parameters that can be
useful. Recall from Lemma 1.4.1 that a graph Y can be properly coloured
with 7 colours if and only if there is a homomorphism from Y to K,.. There-
fore, if there is a homomorphism from X to Y, we have X — Y — K,., and
so X(X) < x(Y). Hence if x(X) > x(Y), then there can be no homomor-
phism from X to Y. Second, if X has an induced odd cycle of length ¢ and
any induced odd cycle in Y has length greater than ¢, then there cannot
be a homomorphism from X to Y, because the homomorphic image of an
odd cycle must be an odd cycle of no greater length. We call the length
of a shortest odd cycle in X the odd girth of X; the odd girth of X is an
upper bound on the odd girth of any homomorphic image of X.

6.2 Cores

A graph X is a core if any homomorphism from X to itself is a bijection or,
equivalently, if its endomorphism monoid equals its automorphism group.
The simplest examples of cores are the complete graphs. A subgraph Y of
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X is a core of X if Y is a core and there is a homomorphism from X to
Y. We will see below that every graph has a core, and that all its cores are
isomorphic. We denote the core of X by X®. If Y is a core of X and f isa
homomorphism from X to Y, then f[Y must be an automorphism of Y.
The composition of f with the inverse of this automorphism is the identity
mapping on Y; hence any core of X is a retract (see Exercise 1.5).

A graph X is x-critical (or just ecritical) if the chromatic number of
any proper subgraph is less than x(X). A x-critical graph cannot have a
homomorphism to any proper subgraph, and hence must be its own core.
This provides a wide class of cores, including all complete graphs and odd
cycles.

The next lemma implies that — is a partial order on isomorphism classes
of cores.

Lemma 6.2.1 Let X and Y be cores. Then X and Y are homomorphically
equivalent if and only if they are isomorphic.

Proof. Suppose X and Y are homomorphically equivalent and that f :
X - Y and g : Y — X are the homomorphisms between them. Then
because both f o g and go f must be surjective, we see that both f and g
are surjective, so X and Y are isomorphic. 0

Lemma 6.2.2 Every graph X has a core, which is an induced subgraph
and is unique up to isomorphism.

Proof. Since X is finite and the identity mapping is a homomorphism, the
family of subgraphs of X to which X has a homomorphism is finite and
nonempty and hence has a minimal element with respect to inclusion. Since
a core is a retract, it is clearly an induced subgraph. Now, suppose that Y1
and Y3 are cores of X and let f; be a homomorphism from X to Y;. Then
f11Y2 is a homomorphism from Y5 to Yi, and f [Y) is a homomorphism
from Y7 to Y;. Therefore, by the previous lemma, ¥; and Y2 are isomorphic.
O

Lemma 6.2.3 Two graphs X and Y are homomorphically equivalent if
and only if their cores are isomorphic.

Proof. If there is a homomorphism f : X — Y, then we have a sequence
of homomorphisms

X' —-X-Y YY",

which composes to give a homomorphism from X* to Y'®. Hence, if X and
Y are homomorphically equivalent, so are X*® and Y*.

On the other hand, if f : X* — Y™® is a homomorphism, then we have a
sequence of homomorphisms

X—-X*—>Y*>Y.
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which composes to yield a homomorphism from X to Y, and so X and Y
are homomorphically equivalent if X® and Y* are.

Hence two graphs are homomorphically equivalent if and only if their
cores are. By Lemma 6.2.1, two cores are homomorphically equivalent if
and only if they are isomorphic. Hence the proof is complete. [

If we view “—” as a relation on the set of isomorphism classes of cores,
then the above results have the following consequence.

Corollary 6.2.4 The relation “—” is a partial order on the set of
isomorphism classes of cores.

Proof. We have already seen that “—” is a transitive and reflexive relation
on the set of isomorphism classes of graphs, whence it follows that it is
transitive and reflexive on isomorphism classes of cores. By Lemma 6.2.1, if
X and Y are cores and X — Y and Y — X, then X and Y are isomorphic.
Hence “—” is antisymmetric, and a transitive, reflexive, antisymmetric
relation is a partial order. 0O

We will learn more about this partial order in the next section.

6.3 Products

If X and Y are graphs, then their product X x Y has vertex set V(X) x
V(Y), and (z,y) ~ («’,4’) if and only if z ~ 2’ and y ~ 3. The map that
sends (z,y) to (y, z) is an isomorphism from X x Y to Y x X, and it is no
harder to describe an isomorphism from (X xY) x Z to X x (Y x Z), so
this product behaves in much the way we might expect. However,

Ko x 2K3 2 2Cg =2 Ko x Cq

(as you are invited to verify), and so if X x Y7 = X x Ya, it does not follow
that Y7 = Ys. The product of connected graphs is connected if and only
if at least one of the factors is not bipartite. (Another exercise.) We also
point out that the product X x K; is the empty graph, which is possibly
not what you expected.

For fixed = in V(X), the vertices of the form (z,y) in X x Y form an
independent set. Therefore, the mapping

DPx: (:c,y)H:c

is a homomorphism from X x Y to X. It is dignified by calling it the
projection from X x Y to X. Similarly, there is a projection py from X xY
to Y.

Theorem 6.3.1 Let X, Y, and Z be graphs. If f : Z — X and g: Z —
Y, then there is a unique homomorphism ¢ from Z to X x Y such that

f=pxopand g=pyo¢.
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Proof. Assume that we are given homomorphisms f : Z — X and g :
Z — Y. The map

¢: 20 (f(2),9(2))

is readily seen to be a homomorphism from Z to X x Y. Clearly, pxo¢ = f
and py o ¢ = g, and furthermore, ¢ is uniquely determined by f and g. O

If X and Y are graphs, we use Hom(X,Y") to denote the set of all
homomorphisms from X to Y.

Corollary 6.3.2 For any graphs X, Y, and Z,
|[Hom(Z, X x Y)| = [Hom(Z, X)| |Hom(Z,Y')|. O

Our last theorem allows us to derive another property of the set of isomor-
phism classes of cores. Recall that a partially ordered set is a lattice if each
pair of elements has a least upper bound and a greatest lower bound.

Lemma 6.3.3 The set of isomorphism classes of cores, partially ordered
by “—=7, is a lattice.

Proof. We start with the least upper bound. Let X and Y be cores. For
any core Z,if X - Zand Y — Z, then X UY — Z. Hence (X UY)*® is
the least upper bound of X and Y.

For the greatest lower bound we note that by the previous theorem, if
Z — Xand Z — Y, then Z — X x Y. Hence (X x Y)® is the greatest
lower bound of X and Y. ]

It is probably a surprise that the greatest lower bound (X xY')® normally
has more vertices than the least upper bound. Life can be surprising.

If X is a graph, then the vertices (z,z), where x € V(X), induce a
subgraph of X x X isomorphic to X. We call it the diagonal of the product.
In general, X x Y need not contain a copy of X; consider the product
K, x K3, which is isomorphic to Cs and thus contains no copy of K.

To conclude this section we describe another construction closely related
to the product. Suppose that X and Y are graphs with homomorphisms
f and g, respectively, to a graph F. The subdirect product of (X, f) and
(Y, g) is the subgraph of X x Y induced by the set of vertices

{(z,y) e V(X) xV(Y): f(=z) = g(y)}-

(The proof is left as an exercise.) If X is a connected bipartite graph, then it
has exactly two homomorphisms f; and f» to Ks. Suppose Y is connected
and g is a homomorphism from Y to K>. Then the two subdirect products
of (X, f;) with (Y, g) form the components of X x Y. (Yet another exercise.)
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6.4 The Map Graph

Let F and X be graphs. The map graph FX has the set of functions from
V(X) to V(F) as its vertices; two such functions f and g are adjacent in
FX if and only if whenever u and v are adjacent in X, the vertices f(u)
and g(v) are adjacent in F. A vertex in FX has a loop on it if and only
if the corresponding function is a homomorphism. Even if there are no
homomorphisms from X to F', the map graph FX can still be very useful,
as we will see.

Now, suppose that 1 is a homomorphism from X to Y. If f is a function
from V(Y) to V(F), then the composition f o1 is a function from V(X)
to V(F). Hence v determines a map from the vertices of F¥ to FX, which
we call the adjoint map to 1.

Theorem 6.4.1 If F is a graph and 1 is a homomorphism from X to Y,
then the adjoint of v is a homomorphism from FY to FX.

Proof. Suppose that f and g are adjacent vertices of F¥ and that x;
and z, are adjacent vertices in X. Then ¥(z1) ~ 9(z2), and therefore
f(@(z1)) ~ g(¥(z2). Hence f o) and g ot are adjacent in FX, a

Theorem 6.4.2 For any graphs F, X, and Y, we have FX*Y = (FX)Y

Proof. It is immediate that FX*Y and (FX)Y have the same number of
vertices. We start by defining the natural bijection between these sets, and
then we will show that it is an isomorphism.

Suppose that ¢ is a map from V(X x Y) to F. For any fixed y € V(Y)
the map

gy 1T g(z,y)
is an element of FX. Therefore, the map
Qg 1y gy

is an element of (FX)Y. The mapping g — ®, is the bijection that we need.

Now, we must show that this bijection is in fact an isomorphism. So let
f and g be adjacent vertices of FX*Y. We must show that ®; and ®, are
adjacent vertices of (FX)Y. Let y; and y» be adjacent vertices in Y. For
any two vertices x; ~ z2 in X we have

(xla yl) ~ (1'2, y2)7

and since f ~ g,

f('rhyl) ~ g(x27y2)1

and so

Pr(y1) ~ Pg(yo)-

A similar argument shows that if f o g, then ®; # ®,, and hence the
result follows. a
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Corollary 6.4.3 For any graphs F', X, and Y, we have
[Hom(X x Y, F)| = [Hom(Y, F¥)).

Proof. We have just seen that FX*Y = (FX)Y and so they have the
same number of loops, which are precisely the homomorphisms. O

Since there is a homomorphism from X x F' to F, the last result implies
that there is a homomorphism from F into FX. We can be more precise,
although we leave the proof as an exercise.

Lemma 6.4.4 If X has at least one edge, the constant functions from
V(X) to V(F) induce a subgraph of FX isomorphic to F. 0

6.5 Counting Homomorphisms

By counting homomorphisms we will derive another interesting property
of the map graph.

Lemma 6.5.1 Let X and Y be fixed graphs. Suppose that for all graphs Z
we have

|[Hom(Z, X)| = |Hom(Z,Y)|.
Then X and Y are isomorphic.

Proof. Let Inj(A, B) denote the set of injective homomorphisms from a
graph A to a graph B. We aim to show that for all Z we have |Inj(Z, X)| =
Inj(Z,Y)|. By taking Z equal to X and then Y, we see that there are
injective homomorphisms from X to Y and Y to X. Since X and Y must
have the same number of vertices, an injective homomorphism is surjective,
and thus X is isomorphic to Y.

We prove that |Inj(Z, X)| = [Inj(Z,Y)| by induction on the num-
ber of vertices in Z. It is clearly true if Z has one vertex, because any
homomorphism from a single vertex is injective.

We can partition the homomorphisms from Z into any graph W
according to the kernel, so we get

[Hom(Z,W)| =Y _ [Inj(Z/x, W),

where 7 ranges over all partitions. A homomorphism is an injection if and
only if its kernel is the discrete partition, which we shall denote by 4.
Therefore,

nj(Z, W)| = [Hom(Z, W)| — Y _ [Inj(Z/x, W)|.
T#S
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Now, by the induction hypothesis, all the terms on the right hand side of
this sum are the same for W = X and W = Y. Therefore, we conclude
that
IInj(Z, X)| = Inj(2,Y)],

and the result follows. a
Lemma 6.5.2 For any graphs F, X, and Y we have

FXUY ~ FX x FY.
Proof. For any graph Z, we have

[Hom(Z, F¥*Y)| = [Hom(Z x (X UY), F)|

= |[Hom((Z x X)U(Z xY), F)|

= |Hom(Z x X, F)||Hom(Z x Y, F)|

= |Hom(Z, F¥X)||Hom(Z, FY)|.

By Corollary 6.3.2, the last product equals the number of homomorphisms
from Z to FX x FY. Now, the previous lemma completes the argument.O

It is not hard to find a direct proof of the last result, but the argument
we have given has its own charm.

6.6 Products and Colourings

We recall that if X — Y, then x(X) < x(Y). Since both X and Y are
homomorphic images of X X Y (using the projection homomorphisms), we
have that

x(X xY) < min{x(X), x(Y)}.

S. Hedetniemi has conjectured that for all graphs X and Y equality occurs
in the above bound and hence that x(X x Y) = min{x(X), x(Y)}.

An equivalent formulation of Hedetniemi’s conjecture is that if X and
Y are graphs that are not n-colourable, then the product X x Y is not
n-colourable. When n = 2 we can prove this by showing that the product
of two odd cycles contains an odd cycle. For n = 3, the conjecture was
proved by El-Zahar and Sauer in 1985. The remaining cases are still open.

Our first result uses the map graph to simplify the study of Hedetniemi’s
conjecture.

Theorem 6.6.1 Suppose x(X) > n. Then KX is n-colourable if and only
if x(X xY) > n for all graphs Y such that x(Y) > n.

Proof. By Corollary 6.4.3,
[Hom(X x KX, K,)| = [Hom(KX,KX)| > 0,
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and therefore X x KX is n-colourable. Consequently, if x(X) > n and
x(X x Y) > n whenever x(Y) > n, then KX must be n-colourable.

Assume conversely that x(K7) < n and let ¥ be a graph such that
x(Y) > n. Then there are no homomorphisms from Y into any n-colourable
graph, and therefore

0 = |Hom(Y, K.X)| = [Hom(X x Y, K,,)|.
Hence x(X xY) > n. O

This theorem tells us that we can prove Hedetniemi’s conjecture by prov-
ing that x(KX) < n if x(X) > n. The next few results summarize the
limited number of cases where the conjecture is known to be true.

Theorem 6.6.2 The map graph Kff"“ is n-colourable.

Proof. We construct a proper n-colouring ¢ of Kx."**. For any f € KKt

there are two distinct vertices ¢ and j such that f(i) = f(j). Define ¢(f)
to be the least value in the range of f that is the image of at least two
vertices. If ¢(f) = #(g), then for some distinct vertices ¢’ and j' we have

f@) = f(4) = g() = g(4").

Because ¢ is not equal to both ¢/ and 7/, this implies that f ¢ g. Therefore,

¢ is a proper n-colouring of KEm, o

Corollary 6.6.3 Suppose that the graph X contains a clique of size n+ 1.
Then KX is n-colourable.

Proof. Since K,,;; — X, by Theorem 6.4.1
KX — Ko,
By the theorem, K4 ™+ is n-colourable, and so KX is n-colourable. o

Theorem 6.6.4 All loops in Kf" are isolated vertices. The subgraph of
KEn induced by the vertices without loops is n-colourable.

Proof. Suppose f € KE» and f is a proper n-colouring of K,. If g is
adjacent to f, then g(z) # f(j) for j in V(K,)\ 4. This implies that g(i) =
f(@) and hence that g = f.

For any f in the loopless part of K= there are at least two distinct
vertices ¢ and j such that f(i) = f(j), and we can define a proper n-
colouring of this part of KX~ as in Theorem 6.6.2. O

The next result is remarkably useful.

Theorem 6.6.5 If X is connected and not n-colourable, then KX contains
a unique n-cliqgue, namely the constant functions.

Proof. By Lemma 6.4.4, the subgraph of KX induced by the constant
functions is an n-clique. We need to prove this is the only n-clique.
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If x(X) > n and f is a homomorphism from X to KX, then, by the
previous theorem, f must map each vertex of X onto the same loop of
KX». Since K, has exactly n! proper n-colourings, KX~ has exactly n!
loops and therefore

X x K, Ky,)|
Ko, KX)|.

|

o
Q

AAEA

=
X
>
g

Thus there are exactly n! homomorphisms from K, into K,)f, and therefore
KX contains a unique n-clique. m]

The above proof shows that if x(X) > n, then there are exactly n! ho-
momorphisms from X x K, to K,,. Hence X x K, is uniquely n-colourable.
(For more about this, see the next section.)

Theorem 6.6.6 Suppose n > 2 and let X and Y be connected graphs, each
containing an n-clique. If X and Y are not n-colourable, neither is X xY .

Proof. Let z1,...,z, and y1,. .., y, be the respective n-cliques in X and
Y and suppose, by way of contradiction, that there is a homomorphism f
from X XY into K,,. Consider the induced homomorphism from Y into K;X.
By Theorem 6.6.5, the image of y1,...,y, in KX consists of the constant
maps. In other words, f(z,y;), viewed as a function of z, is constant for each
y;. A similar argument yields that f(z;,y) is constant as a function of y.
Then f(x1,y1) = f(z1,y2) = f(z2,y2), so the adjacent vertices (z1,y1) and
(z2, y2) are mapped to the same vertex of K,,, contradicting the assumption
that f is a homomorphism. a

One consequence of this theorem is that if X and Y are not bipartite,
then neither is X x Y.

Corollary 6.6.7 Let X be a graph such that every vertexr lies in an n-
cliqgue and x(X) > n. If Y is a connected graph with x(Y) > n, then
x(X xY)>n.

Proof. Suppose by way of contradiction that there is a homomorphism f
from X x Y into K,. Then consider the induced mapping ®¢ from X into
KY . Because KY has no loops, every n-clique in X is mapped injectively
onto the unique n-clique in KY. Every vertex of X lies in an n-clique,
and so every vertex of X is mapped to this n-clique. Therefore, ® is a
homomorphism from X into K,,, which is a contradiction. a
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6.7 Uniquely Colourable Graphs

If X is a graph with chromatic number n, then each n-colouring of X
determines a partition of V(X) into n independent sets; conversely, each
partition of V(X) into n independent sets gives rise to exactly n! proper
n-colourings. We say that a graph is uniquely n-colourable if it has chro-
matic number n, and there is a unique partition of its vertex set into n
independent sets. It is not hard to see that if a graph X has at least n
vertices, then it is uniquely n-colourable if and only if there are exactly n!
homomorphisms from X to K,,. The simplest examples are the connected
bipartite graphs with at least one edge, which are uniquely 2-colourable.

There are a number of conjectures concerning uniquely colourable graphs
related to Hedetniemi’s conjecture. The connections arise because of our
next result, which is implicit in the proof of Theorem 6.6.5, as we noted
earlier.

Theorem 6.7.1 If X is a connected graph with x(X) > n, then X x K,
1s uniquely n-colourable. o

We have the following generalization of the first part of Theorem 6.6.4.

Lemma 6.7.2 If X is uniquely n-colourable, then each proper n-colouring
of X is an isolated vertex in KX.

Proof. Let f be a proper n-colouring of X and let x be a vertex in X.
Since X is uniquely n-colourable, each of the n — 1 colours other than f(z)
must occur as the colour of a vertex in the neighbourhood of z. It follows
that if g ~ f, then g(z) = f(z), and so the only vertex of KX adjacent to
fis f itself. |

Let A(K;X) denote the subgraph of KX induced by its loopless vertices.
We can state the following conjectures:

(By) If X is uniquely n-colourable and Y is a connected graph that is not
n-colourable, then X x Y is uniquely n-colourable.

(D,) If X is uniquely n-colourable, then the subgraph of K;X induced by
its loopless vertices is n-colourable.

(Hp) Ix(X)=x(Y)=n+1,then x(X xY)=n+1

The conjecture that (H,) holds for all positive integers n is equivalent
to Hedetniemi’s conjecture. We will show that

(Bn) & (Dn) = (Hn).

Suppose that (B,,) holds, and let X be uniquely n-colourable. If Y is any
subgraph of A(K| ff ), then there are more than n! homomorphisms from Y
into KX (there is one homomorphism for each of the n! loops, along with
the identity map), and so

[Hom(X x Y, K,,)| = |[Hom(Y, KX)| > n! + 1.
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This shows that X x Y is not uniquely n-colourable, whence (B,,) implies
that x(Y) < n. Hence (B,) implies (D).

But (D) implies (By,) too. For if Y is connected and x(Y) > n and
A(KX) is n-colourable, then the only homomorphisms from Y to KX are
the maps onto the loops. Therefore,

n! = [Hom(Y, KX)| = [Hom(X x Y, K,,)|,

with the implication that X x Y is uniquely n-colourable.
We will use the next lemma to show that (D) implies (H,,) (which, we
recall, is Hedetniemi’s conjecture).

Lemma 6.7.3 If x(X) > n, then there is a homomorphism from KX to
the subgraph of KX*¥» induced by the loopless vertices.

Proof. Let px be the projection homomorphism from X x K, to X, and
let ¢ be the induced mapping from KX to KX*%n~_ (See Theorem 6.4.1,
where this was introduced.) If g € KX, then g is not a proper colouring of
X, and so there are adjacent vertices u and v in X such that g(u) = g(v).
Now, ¢(g) = g o px, whence ¢(g) maps (u,7) and (v,j) to g(u), for any
vertices ¢ and j in K,,. Hence ¢(g) is not a proper colouring of X x K,,
which means that it is not a loop. O

So now suppose that (D) holds and let X be a graph with x(X) > n.
By Theorem 6.7.1, X x K, is uniquely n-colourable, and so (D,,) implies
that A(K;X*¥~) is n-colourable. Hence, by the lemma, KX is n-colourable,
and Hedetniemi’s conjecture holds.

6.8 Foldings and Covers

We call a homomorphism from X to Y a simple folding if it has one fibre
consisting of two vertices at distance two, and all other fibres are singletons.
For example, the two homomorphisms from the path on three vertices to
K are simple foldings. A homomorphism is a folding if it is the composition
of a number of simple foldings.

Lemma 6.8.1 If f is a retraction from a connected graph X to a proper
subgraph Y, then it is a folding.

Proof. We proceed by induction on the number of vertices in X. Suppose
f is a retraction from X to Y, that is, f is a homomorphism from X to Y
and f|Y is the identity. If X =Y, we have nothing to prove. Otherwise,
since X is connected, there is a vertex y in Y adjacent to a vertex x not in
Y. Now, f fixes y and maps z to some neighbour, z say, of y in Y.

Let 7 be the partition of V(X)) with {z, z} as one cell and with all other
cells singletons. There is a homomorphism f; from X to a graph X; with
kernel 7. Since the kernel of f; is a refinement of the kernel of f, there is
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a homomorphism f» from Xj to Y such that fa o fi = f. Since fi maps
each vertex in Y to itself, it follows that Y is a subgraph of X1, and f; is a
retraction from X; to Y. Finally, f; is a simple folding, and by induction,
we may assume that fo is a folding. This proves the lemma. O

We call a homomorphism a local injection if the minimum distance
between two vertices in the same fibre is at least three. Clearly, any
automorphism is a local injection.

Lemma 6.8.2 Every homomorphism h from X to Y can be expressed as
the composition f o g, where g is a folding and f a local injection.

Proof. Let 7 be the kernel of h. If v and v are vertices of X, write u =~ v
if u and v lie in the same cell of = and are equal or at distance two in X.
This is a symmetric and reflexive relation on the vertices of X. Hence its
transitive closure is an equivalence relation, which determines a partition
7' of V(X). There is a homomorphism g from X to X/n’ with kernel 7’
and a homomorphism f from X/7’ to Y such that h = fog.

Clearly, g is a folding. We complete the proof by showing that f is a local
injection. Assume by way of contradiction that o and 3 are vertices in X/7’
at distance two such that f(a) = f(8). Let ¥ be a common neighbour of «
and 3 in X/n’. There must be a vertex u of X in g71(a) adjacent (in X)
to a vertex u’ in g~1(v), and a vertex v of X in g~*(8) adjacent (in X)
to a vertex v in g7!(7). But v’ and v are joined in X by a walk of even
length, hence this holds true for u and v as well. This implies that » and v
must lie in the same cell of 7/, a contradiction that completes the proof.O

A homomorphism f from X to Y is a local isomorphism if for each
vertex y in Y, the induced mapping from the set of neighbours of a vertex
in f~!(y) to the neighbours of y is bijective. We call f a covering map if
it is a surjective local isomorphism, in which case we say that X covers
Y. If f is a local isomorphism, then each fibre is an independent set of
vertices in X, and between each fibre there are either no edges or there is
a matching. If the image of X is connected, then each fibre has the same
size. This number is called the index r of the cover, and X is said to be an
r-fold cover of Y. There may be more than one covering map from a graph
X to a graph Y, so we define a covering graph X of Y to be a pair (X, f),
where f is a local isomorphism from X to Y.

If (X, f) is a cover of Y and Y} is an induced subgraph of Y, then f~1(Y})
covers Y;. This means that questions about covers of Y can be reduced to
questions about the covers of its components. If Y is a connected graph
and (X, f) is a cover of Y, then each component of X covers Y. (We leave
the proof of this as an exercise.)

Our next result is a simple but fundamental property of covering maps.

Lemma 6.8.3 If X coversY andY is a tree, then X is the disjoint union
of copies of Y.
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Proof. Suppose f is a covering map from X to Y. Since f is a local
isomorphism, if z € V(X), then the valency of f(z) in Y equals the valency
of z in X. This implies that the image of any cycle in X is a cycle in Y,
and hence the girth of X cannot be less than the girth of Y. Thus, since Y
is acyclic, so is X.

A local isomorphism is locally surjective; hence if f(z) = y, then each
edge on y is the image under f of an edge on z. It follows that any path
in Y that starts at y is the image under f of a path in X that starts at
z (and this is also true for walks). Therefore, there is a tree T' in X such
that f is an isomorphism from T to Y. Hence Y is a retract of X, and as
each component of X covers Y, it follows from Lemma 6.8.1 that X is the
disjoint union of copies of Y. O

We say that a cover (X, f) of index r over Y is trivial if X is isomorphic
to r vertex disjoint copies of Y and the restriction of f to any copy of Y
is an isomorphism. The previous lemma implies that any cover of a tree is
trivial.

Interesting covers are surprisingly common. The cube () has the property
that for each vertex z there is a unique vertex in @ at distance three from
z. Thus V(Q) can partitioned into four pairs, and these pairs are the fibres
of a covering map from Q onto K4 (see Figure 6.1).

X X

Figure 6.1. The cube is a 2-fold cover of K4

Similarly, the dodecahedron covers the Petersen graph and the line graph
of the Petersen graph covers K. The 42 vertices at distance two from a
fixed vertex in the Hoffman—Singleton graph form a 6-fold cover of K. For
any graph X, the product X x K5 is a 2-fold cover of X. In Chapter 11 we
will study two-graphs, which can be defined as 2-fold covers of complete
graphs.

If (X,f) and (Y, g) are covers of F, then so is their subdirect prod-
uct. (The proof is left as an exercise. We defined the subdirect product in
Section 6.3.)

6.9 Cores with No Triangles

We showed in Section 6.2 that every graph has a core, but despite this,
it is not trivial to provide examples of cores. Critical graphs provide one
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such class. So far, the only critical graphs we have identified are the odd
cycles and the complete graphs. There are many critical graphs known
that are more interesting, but we do not consider them here, since we have
nothing to say about them from an algebraic viewpoint. Since any homo-
morphism must map triangles to triangles, it would seem comparatively
easy to construct examples of cores that contain many triangles. In this
section we therefore take a more difficult route, and construct examples of
cores without triangles.

We begin by deriving a simple sufficient condition for a graph to be a
core.

Lemma 6.9.1 Let X be a connected nonbipartite graph. If every 2-arc lies
in a shortest odd cycle of X, then X is a core.

Proof. Let f be a homomorphism from X to X. This necessarily maps a
shortest odd cycle of X onto an odd cycle of the same length, so any two
vertices in the cycle have different images under f. Since every 2-arc lies
in a shortest odd cycle, this shows that f is a local injection, and hence by
Lemma 6.8.1, it cannot map X onto a proper subgraph of itself. ]

If two vertices u and v in a graph X have identical neighbourhoods, then
X is certainly not a core, for there is a retraction from X to X \ u. This
motivates the following definition: A graph is reduced if it has no isolated
vertices and the neighbourhoods of distinct vertices are distinct.

Now, suppose that X is a triangle-free graph. If u and v are two vertices
in X at distance at least three, then the graph obtained by adding the edge
uv is also triangle free. Continuing this process, we see that any triangle-
free graph X is a spanning subgraph of a triangle-free graph with diameter
two.

We note a useful property of reduced triangle-free graphs with diameter
two.

Lemma 6.9.2 Let X be a reduced triangle-free graph with diameter two.
For any pair of distinct nonadjacent vertices u and v, there is a vertex
adjacent to u but not to v.

Proof. Suppose for a contradiction that N(u) € N(v). Since X is reduced,
there is some vertex w adjacent to v but not to u. Since X has no triangles,
w is not adjacent to any neighbour of u, which implies that the distance
between u and w is at least three. o

This last result enables us to characterize a class of cores.

Lemma 6.9.3 Let X be a triangle-free graph with diameter two. Then X
is a core if and only if it is reduced.

Proof. Our comments above establish that a graph that is not reduced is
not a core. So we assume that X is reduced and show that each 2-arc in X
lies in a 5-cycle, whence the result follows from Lemma 6.9.1.
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Assume that (u, v, w) is a 2-arc. Then w is at distance two from u. Since
N(w) is not contained in N (u), there is a neighbour, w’ say, of w at distance
two from u. Now, w’ must have a neighbour, v’ say, adjacent to u. Since X
has no triangles, v' # v, and therefore (u,v,w,w’,v") is a 5-cycle. O

It follows immediately that any reduced triangle-free graph of diameter
two is a core. The graph obtained by deleting a vertex from the Petersen
graph is triangle free with diameter three, but any proper homomorphic
image of it contains a triangle, thus showing that the condition in the
lemma is not necessary.

6.10 The Andrasfai Graphs

We define a family of Cayley graphs And(k), each of which is a reduced
triangle-free graph with diameter two. For any integer £k > 1, let G =
Z3k—1 denote the additive group of integers modulo 3k — 1 and let C be
the subset of Zsk_1 consisting of the elements congruent to 1 modulo 3.
Then we denote the Cayley graph X (G, C) by And(k). The graph And(2)
is isomorphic to the 5-cycle, And(3) is known as the Mdbius ladder (see
Exercise 44), and And(4) is depicted in Figure 6.2.

Figure 6.2. And(4) = X(Z11,{1,4,7,10})

Lemma 6.10.1 For k > 2, the Cayley graph And(k) is a reduced triangle-
free graph with diameter two.

Proof. First we show that And(k) is reduced. If And(k) has two distinct
vertices with the same neighbours, then there must be an element g in G
such that g # 0 and g + C = C. It follows that both g + 1 and g — 1 lie in
C, which is impossible, since they are not both congruent to 1 modulo 3.

Next we show that And(k) has no triangles containing the vertex 0. Let
g and h be two neighbours of 0. Then g and h are in C, and so g — h is zero
modulo 3. Thus g — h ¢ C, and so g is not adjacent to h. Since And(k) is
transitive, this suffices to show that it is triangle-free.
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Finally, we show that And(k) has diameter two, by showing that there
is a path of length at most two from 0 to any other vertex. If g = 31, then
the path (0,37 + 1,3i) has length two, and if ¢ = 3¢+ 2, then the path
(0,3i + 1, 3i + 2) has length two. Every other vertex is adjacent to 0, and
so the result follows. ]

Let X be a reduced triangle-free graph with diameter two, and let S
be an independent set in X. If S is an independent set that is maximal
under inclusion, then every vertex of X is adjacent to at least one vertex
in S. The graph we get by taking a new vertex and joining it to each
vertex of S is triangle-free with diameter two. Provided that S is not the
neighbourhood of a vertex, this new graph is also reduced. This gives us
a procedure for embedding each reduced triangle-free graph with diameter
two as an induced subgraph of a reduced triangle-free graph with diameter
two with one more vertex—unless each independent set in X is contained in
the neighbourhood of a vertex. This observation should make the following
result more interesting.

Lemma 6.10.2 Each independent set of vertices of And(k) is contained
in the neighbourhood of a vertez.

Proof. Consider the k — 1 pairs of adjacent vertices of the form {3i,3i—1}
for 1 < i < k. Now, any vertex g € C has the form 3¢+ 1. If ¢ > i, then g
is adjacent to 34, but not to 3i— 1. If ¢ < 4, then g is adjacent to 3¢ —1, but
not to 3¢. Therefore, every vertex in C is adjacent to precisely one vertex
from each pair.

Suppose now that there is an independent set not contained in the neigh-
bourhood of a vertex. Then we can find an independent set S and an
element z such that S U x is independent, S is in the neighbourhood of a
vertex, but SUz is not in the neighbourhood of a vertex. By the transitivity
of And(k) we can assume that S is in the neighbourhood of 0. Since z is
not adjacent to 0, either x = 3¢ or x = 37 — 1 for some ¢. If z = 3¢, then
every vertex of S is not adjacent to z, and so is adjacent to z — 1, which
implies that S U z is in the neighbourhood of z — 1. Finally, if z = 31 — 1,
then every vertex of S is not adjacent to z and so is adjacent to = + 1,
which implies that S Uz is in the neighbourhood of z + 1. Therefore, SUx
is in the neighbourhood of some vertex, which is a contradiction. o

6.11 Colouring Andrasfai Graphs
In the next section we will use the following properties of Andrasfai graphs
to characterize them.

Lemma 6.11.1 If k > 2, then the number of 3-colourings of And(k) is
6(3k — 1), and they are all equivalent under its automorphism group.
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Proof. In any 3-colouring of And(k), the average size of a colour class is
k— % Since the maximum size of a colour class is k, two colour classes have
size k, and the third has size ¥ — 1. By Lemma 6.10.2, the two big colour
classes are neighbourhoods of vertices.

Suppose that we have a 3-colouring of And(k) and that one of the big
colour classes consists of the neighbours of 0; this colour class may be any
of the three colours.

Now, consider the set of vertices not adjacent to 0. This can be

partitioned into the two sets
A:={2,5,...,3k— 4}, B:={3,6,...,3k—3}.

It is immediate that A and B are independent sets and that the ith vertex
of A is adjacent to the last k — i vertices of B (Figure 6.3 shows this
for And(4)). Hence A U B induces a connected bipartite graph, and can
therefore be coloured in exactly two ways with two colours.

There are now two choices for the colour assigned to 0, and so in total
there are 12 distinct colourings with the neighbours of 0 as a big colour
class. Since And(k) is transitive with 3k — 1 vertices, and each 3-colouring
has two big colour classes, the first claim follows.

The permutation that exchanges ¢ and —i modulo 3k — 1 is an auto-
morphism of And(k) that exchanges A and B, and hence the second claim
follows. ]

Figure 6.3. Another view of And(4)

We note another property of the Andrésfai graphs. The subgraph of
And(k) induced by {0,1,...,3(k—1) —2} is And(k — 1). Therefore, we can
get And(k — 1) from And(k) by deleting the path (3k — 4,3k — 3,3k — 2).

Lemma 6.11.2 Let X be a triangle-free regular graph with valency k > 2,
and suppose that P is a path of length two in X. If X \ P = And(k — 1),
then X = And(k).

Proof. Let P be the path (u,v,w) and let Y denote X \ P. Since X is
triangle-free and regular, the neighbours of u, v, and w that are in Y form
independent sets of size kK — 1, k — 2, and k — 1 respectively. Since Y is
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regular of valency & — 1, each vertex of Y is adjacent to precisely one
vertex of P. Therefore, these independent sets are a 3-colouring of Y. Since
all 3-colourings of Y are equivalent under Aut(Y’), the result follows. O

6.12 A Characterization

The condition that each independent set lies in the neighbourhood of a
vertex is very strong: We show that a reduced triangle-free graph with
this property must be one of the Cayley graphs And(k). This is surprising,
because we know very few interesting cases where a simple combinatorial
condition implies so much symmetry.

Theorem 6.12.1 If X is a reduced triangle-free graph such that each in-
dependent set in X is contained in the neighbourhood of a vertex, then X
is an Andrdsfai graph.

Proof. We break the proof into a number of steps.

(a) If u and v are distinct nonadjacent vertices, then there is a unique
vertex o, (v) adjacent to v but not u and such that

Xi(u) N Xi(ou(v) = X1 (u)\ (X1(w) N X1(v)).
The set of vertices

{v} U (X1(w)\ X1 (v))

is independent and, by Lemma 6.9.2, contains at least one vertex of X (u).
Therefore, it is contained in the neighbourhood of some vertex, w say,
not adjacent to u. We will take o, (v) to be w, but must show that it is
unique. Suppose for a contradiction that there is another vertex w’ such
that w’ is adjacent to all the vertices in the above set. Then w and w’
are not adjacent, and so there is a vertex z that is adjacent to w but not
w'. However, this implies that {u, z,w'} is an independent set. Any vertex
adjacent to u and w’ is adjacent to w, and therefore it cannot be adjacent
to  (because w is). Thus we have an independent set that is not contained
in the neighbourhood of a vertex, which is the required contradiction. This
implies that o, is a fixed-point-free involution on the set of vertices at
distance two from wu.

(b) X is a k-regular graph on 3k — 1 vertices.

Let u be a vertex of X, and consider the edges between X;{u) and Xa(u).
Every vertex of X;(u) is adjacent to exactly one vertex from each pair
{v, 04 (v)}. Therefore, every vertex in X;(u) has the same valency, which
implies that every pair of vertices at distance two has the same valency.
Consequently, either X is bipartite or it is regular of valency k. If X has
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two distinct nonadjacent vertices v and v, then u, v, and o,(v) lie in a 5-
cycle, and so X is not bipartite. Therefore, if X is bipartite, it is complete
and thus equal to K, which is And(1). If it is regular of valency k, then
for any vertex u, there are k¥ — 1 pairs {v,0,(v)} in X3(u), and hence
| Xa(u)| = 2(k — 1).

(c) If K > 2, then for each vertex u in X there is a vertex w such that u
and w have a unique common neighbour.

First we show that there is a vertex v such that u and v have kK —1 common
neighbours. Let v be a vertex with the largest number of common neigh-
bours with u, and suppose that they have k — s common neighbours, where
s > 1. Let U denote X;(u)\ X;(v) and V denote X;(v)\ X1 (u). Then both
U and V contain s vertices; moreover, U contains o,(u) and V contains
oy (V).

If s > 1, then V contains a vertex v’ other than o, (v). Since o, (v) is
the unique vertex adjacent to v and everything in U, it follows that there
is some vertex u’ € U not adjacent to v'. Then

{u', v} U (X1 (u) N X1 (v))

is independent and hence contained in the neighbourhood of a vertex w # w.
Therefore, u and w have at least k—s+1 common neighbours. By the choice
of v, this cannot occur, and therefore s = 1, and v and v have k—1 common
neighbours.

If w and v have k — 1 common neighbours, then v and w = 0, (v) have
one common neighbour, and the claim is proved.

(d) Let k > 2, and suppose that P = (u,v,w) is a path in X such that
v is the unique common neighbour of u and w. Then X \ P is a reduced
triangle-free graph such that every independent set is in the neighbourhood
of a vertex.

If Y denotes X\ P, then it is immediate that Y is a triangle-free graph, and
so we must show that every independent set of Y lies in the neighbourhood
of a vertex, and that it is reduced.

Let U, V, and W be the neighbours of u, v, and w, respectively, in Y.
Since no vertex of Y is in two of these sets, and they have sizes k —1, k —2,
and k — 1, respectively, these three sets partition V().

Suppose that S is an independent set in Y, and hence an independent set
in X. Then S lies in the neighbourhood of a vertex, x say, in X. If z is not
in {u, v, w}, then it is a vertex of Y, and there is nothing to prove. If z = ,
then S C U and since the vertex o, (v) is adjacent to everything in U, the
set S is in the neighbourhood of o, (v). An analogous argument deals with
the case where x = w. For the final case, where x = v, note that v and
o,(w) have w as their unique common neighbour, and therefore o, (o, (w))
lies in U and is adjacent to everything in V. Therefore, we conclude that
in every case S lies in the neighbourhood of a vertex in Y.
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Finally, we prove that Y is reduced, by showing that any two vertices
z and y have different neighbourhoods. If z and y are both in U, then
since they have different neighbourhoods in X, they have different neigh-
bourhoods in Y. The same argument applies if they are both in V or both
in W. So suppose that x and y are in different sets from {U,V, W}, and
without loss of generality we assume that x € U. Then o (u) is in U and
is adjacent to everything in W, and o,(c,(w)) is in U and is adjacent to
everything in V. Therefore, every vertex in V(Y)\U is adjacent to a vertex
in U and so cannot have the same neighbourhood as z.

(e) X is an Andrdsfai graph.

It is easy to check that And(2) is the unique reduced triangle-free graph
with valency two such that every independent set is in the neighbourhood
of a vertex. The result follows by induction using (d) and Lemma 6.11.2.0

6.13 Cores of Vertex-Transitive Graphs

In this section we consider some further simple techniques that allow us
to identify classes of cores. Although these techniques use the theory of
homomorphisms that we have developed in a relatively elementary way,
we can get some quite strong results that would be difficult to prove
without using homomorphisms. The first result is quite surprising, as it
provides a somewhat unexpected connection between homomorphisms and
automorphisms.

Theorem 6.13.1 If X is a vertez-transitive graph, then its core X* 1is
vertex transitive.

Proof. Let z and y be two distinct vertices of X*. Then there is an auto-
morphism of X that maps z to y. The composition of this automorphism
with a retraction from X to X*® is a homomorphism f from X to X*. The
restriction f [ X* is an automorphism of X*® mapping = to y. ]

The graph of Figure 6.4 is an example of a quartic vertex-transitive graph
whose core is the vertex-transitive graph Cj.

Theorem 6.13.2 If X is a vertez-transitive graph, then |V (X*®)| divides
V(X)1.

Proof. We show that the fibres of any homomorphism from X to X* have
the same size. Let f be a homomorphism from X to X whose image Y is a
core of X. For any element g of Aut(X), the translate Y9 is mapped onto
Y by f, and therefore Y9 has one vertex in each fibre of f.

Now, suppose v € V(X) and let F be the fibre of f that contains v.
Since X is vertex transitive, the number of automorphisms g such that Y9
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Figure 6.4. Quartic vertex-transitive graph with core Cs

contains v is independent of our choice of v. If we denote this number by
N, then since every image Y9 of Y meets F,

|Aut(X)| = |F|N.

Since N does not depend on F', this implies that all fibres of f have the
same size. (]

This result has an immediate corollary that provides us with further large
classes of cores.

Corollary 6.13.3 If X is a nonempty vertex-transitive graph with a prime
number of vertices, then X is a core. 0o

More surprisingly, it also yields an elegant proof of a result in graph
colouring theory.

Corollary 6.13.4 Let X be a vertex-transitive graph on n vertices with
chromatic number three. If n is not a multiple of three, then X is triangle-
free.

Proof. Since X is 3-colourable, it has a homomorphism onto Kj3. If X
contained a triangle, then the core of X would be a triangle and n would
be a multiple of three, contradicting the hypothesis. Therefore, X has no
triangles. a

This result can easily be generalized to other chromatic numbers, as you
are asked to show in Exercise 41.
To complete this section, we note another application of Lemma 6.9.1.

Theorem 6.13.5 If X is a connected 2-arc transitive nonbipartite graph,
then X 1is a core.

Proof. Since X is not bipartite, it contains an odd cycle; since X is 2-arc
transitive, each 2-arc lies in a shortest odd cycle. O
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This provides a simple proof that the Petersen graph and the Coxeter
graph are cores; alternative proofs seem to require tedious case arguments.
By Lemma 4.1.2 and the previous theorem, we see that the Kneser graphs
J(2k +1,k,0) are cores; in Chapter 7 we will show that all Kneser graphs
are cores.

6.14 Cores of Cubic Vertex-Transitive Graphs

The cycles are the only connected vertex-transitive graphs of valency two,
so cubic vertex-transitive graphs are the first interesting vertex-transitive
graphs, and as such, they have been widely studied. In this section we
consider cores of cubic vertex-transitive graphs, strengthen some of the
results of Section 6.13, and provide some interesting examples.

We start by showing that a connected cubic graph is a core if it is arc
transitive, thus strengthening Theorem 6.13.5.

Theorem 6.14.1 If X is a connected arc-transitive nonbipartite cubic
graph, then X is a core.

Proof. Let C be a shortest odd cycle in X, and let = be a vertex in C
with three neighbours z1, z9, and x3, where z; and z are in C. If G is
the automorphism group of X, then the vertex stabilizer G, contains an
element g of order three, which can be taken without loss of generality to
contain the cycle (x1z223). The 2-arc § = (x1,,z2) is in a shortest odd
cycle, and therefore so are 89 = (z2, z, x3) and 399 = (z3,x, x1). Hence any
2-arc with = as middle vertex lies in a shortest odd cycle, and because X
is vertex transitive, the same is true for every 2-arc. Thus by Lemma 6.9.1,
X is a core. O

We note in passing that there are cubic graphs that satisfy the condition
of Lemma 6.9.1 that are not arc transitive. For example, Figure 6.5 shows
two such graphs that are not even vertex transitive.

Figure 6.5. Two cubic cores that are not vertex transitive
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It is easy to show that a graph with maximum valency A can be properly
coloured with A + 1 colours. The following useful strengthening of this
observation is a standard result from graph theory, known as Brooks’s
theorem.

Theorem 6.14.2 (Brooks) If X is a connected graph of mazimum va-
lency A that is neither complete nor an odd cycle, then the chromatic
number of X is at most A. 0

Theorem 6.14.3 If X is a connected vertez-transitive cubic graph, then
X* is Ka, an odd cycle, or X itself.

Proof. The proof of this is left as Exercise 42. O

This theorem raises the question as to whether we can identify cubic
vertex-transitive graphs whose cores are odd cycles. We content ourselves
with presenting an interesting example, which is the smallest cubic vertex-
transitive graph after the 10-vertex ladder that has core Cs. First some
notation: Given a graph X, a truncation of X is a graph Y obtained by
replacing each vertex v of valency k& with k new vertices, one for each
edge incident to v. Pairs of vertices corresponding to the edges of X are
adjacent in Y, and the k vertices of Y corresponding to a single vertex of
X are joined in a cycle of length k. If £ = 3, then there is only one way to
do this, but otherwise the order in which the &k vertices are joined must be
specified. If the graph X is embedded in a surface, then there is a “natural”
truncation obtained by joining the k vertices in the cyclic order given by
the embedding (see Figure 6.6).

Figure 6.6. Truncating a vertex of valency k

The graph Kg can be embedded in the real projective plane as we saw
in Figure 1.13. Truncating this graph yields the vertex-transitive graph on
30 vertices shown in Figure 6.7 (also drawn in the real projective plane).
The odd girth of this graph is five, so by Theorem 6.14.3, it is either a core
or has a homomorphism onto Cs. In fact, it can be shown that it has a
homomorphism onto Cs, as given by the colouring of the vertices in the
figure. It is the second-smallest cubic vertex-transitive graph with core Cs
after the 10-vertex ladder (see Exercise 44).
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__________

------------

Figure 6.7. Cubic vertex-transitive graph with core Cs

Truncating the icosahedron embedded in the plane (Figure 6.8) yields a
cubic vertex-transitive graph on 60 vertices (see Figure 9.5). The truncated
icosahedron is well known because it describes the structure of the molecule
Ceo (here C stands for carbon not cycle!) known as buckminsterfullerene.
Like the cube, the truncated icosahedron is antipodal; it is a 2-fold cover
of the graph of Figure 6.7. One consequence of this is that the truncated
icosahedron also has core C5. We will meet the truncated icosahedron once

again when we study fullerenes in Section 9.8.

Figure 6.8. The icosahedron
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Exercises

1.
2.

10.

11.

12.
13.

14.

15.

Show that in a bipartite graph, every isometric path is a retract.

Show that in a bipartite graph, any cycle of length equal to the girth
is a retract.

. Show that any bipartite graph is an isometric subgraph of a product

of paths.

If S C V(X) and x(X \S) < x(X), show that every retract of X
contains at least one vertex of S.

. If X is arc transitive and C is a core of X, show that C is arc

transitive. What if X is s-arc transitive?

Show that the product of two connected graphs X and Y (with
at least two vertices) is not connected if and only if X and Y are
bipartite.

Let X and Y be two graphs. Show that w(X x Y') is the minimum of
w(X) and w(Y). Show that the odd girth of X x Y is the maximum
of the odd girths of X and Y. (This implies that if X and Y are not
bipartite, then neither is X x Y.)

Show that Ko x J(2k —1,k—1,0) = J(2k,k,k —1). (See Section 1.6
if you have forgotten the notation.)

For i = 1,2, let X; and Y; be graphs and let f; be a homomorphism
from X; to Y;. Show that the mapping that sends a vertex (21, z2) in
X1 x X3 to (fi(z1), f2(x2)) is a homomorphism to Y7 x Ya.

Suppose that for each pair of distinct vertices w and v in X, there
is an r-colouring of X where v and v have different colours. Show
that X is a subgraph of the product of some number of copies of K.
Deduce that And(k) is a subgraph of a product of copies of Kj.

Let X and Y be fixed graphs. Show that if |Hom(X,Z)| =
[Hom(Y, Z)| for all Z, then X and Y are isomorphic.

Show that if X x X 2Y x Y, then X Y.

Show that there is a homomorphism from X into X x Y if and only
if there is a homomorphism from X into Y.

Show that the constant functions from V(X) to V(F) induce a
subgraph of FX isomorphic to F.

If X is not bipartite, show that K5< is the disjoint union of K, with
some (usually large) number of isolated vertices. Using this deduce
that if X x Y is bipartite, then X or Y is bipartite.



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

6.14. Exercises 129

Show that there is bijection between the arcs of FX and the set of
homomorphisms from X x Ks to F.

Show that for any graph X, the product X x KX is n-colourable. (In
fact, construct an explicit n-colouring, then prove the result again by
counting homomorphisms.)

Suppose that there are graphs X and Y, neither n-colourable, such
that x(X XY) = n. Show there are subgraphs X’ and Y’ of X and Y,
respectively, such that x(X') = x(Y') =n+1and x(X' xY’) =n.

If X and Y are connected graphs, then show that K, is a retract of
X x Y only if it is a retract of X or a retract of Y.

Show that Hedetniemi’s conjecture is equivalent to the statement that
K, is a retract of the product X x Y of two graphs only if it is a
retract of X or a retract of Y.

Show that the subdirect product of two covers of Y is a cover of Y.

If X and Y are connected bipartite graphs, show that the two
components of X x Y are subdirect products of X and Y.

Show that if (X, f) is a cover of the connected graph Y, then each
component of X covers Y.

Show that a nontrivial automorphism of a connected cover that fixes
each fibre must be fixed-point free.

Let X be a Moore graph of diameter two and valency m. Show that
the m2 — m vertices at distance two from a fixed vertex in X form
an (m — 1)-fold cover of K,,.

Let X be the incidence graph of a projective plane of order n. (See
Section 5.3 for details.) Let Y be the graph obtained from X by
deleting an adjacent pair of vertices and all their neighbours. Show
that the resulting graph is an n-fold cover of K, .

A homomorphism f from a graph X to a graph Y determines a map,
f' say, from L(X) to L(Y). Show that the following are equivalent:

(a) f is alocal injection,
(b) f’is a homomorphism,
(¢) f'1is alocal injection.

Show that if f is a local injection from X to itself, then f is an
automorphism.

Suppose the Cayley graph X (G, C) for the group G is triangle-free.
Show that there is a subset D of G'\ e such that C C D and X(G, D)
is triangle-free and has diameter two.



130

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.
41.
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The complement of And(k) (see Section 6.9) has the property that
the neighbourhood of each vertex is covered by two vertex-disjoint
cliques. Prove or disprove that it is a line graph.

Show that the graph we get by deleting a vertex from the Petersen
graph has the property that each proper homomorphic image contains
a triangle.

Let X be a reduced triangle-free graph with diameter two. If 4 and
v are nonadjacent vertices in X, show that there is a unique vertex
v" adjacent to v such that each neighbour of u is adjacent to v or v'.

Show that the Cayley graph And(k) does not contain an induced copy
of C(;.

Show that a triangle-free graph X on n vertices that contains a
subgraph isomorphic to the Mébius ladder on eight vertices (see Ex-
ercise 44 for the definition of M6bius ladder) has minimum valency at
most 3n/8. (Hint: Any independent set in And(3) contains at most
three vertices. Hence if And(3) is a subgraph of X, then any vertex
not in this subgraph has at most three neighbours in it.)

Show that a triangle-free graph on n vertices with minimum valency
greater than [3n/8] has a homomorphism into Cs.

Let 7 and k be integers such that r > 3 and k > 2. Let And,(k)
denote the Cayley graph for Zx_1),42 With connection set

C={l,r+1,...,(k—1)r+1}.
Show that {0,1,2,...,7 — 1} induces a path and
And,(k)\{0,1,2,...,7r — 1} = And,(k — 1).

Suppose X = And(k), with vertex set {0,1,...,3k — 2}. Show that
0i(i +2) = i+ 3, where addition is modulo 3k — 1.

Prove or disprove: If k > r, then x(And,.(k)) = r.

Let Hy be the graph defined as follows. The vertices of Hy, are the 3k—
1 vertices of a regular (3k — 1)-gon inscribed in a circle. Two vertices
are adjacent if and only if their distance is greater than the side of
the regular triangle that can be inscribed in the circle. Show that Hy
is a Cayley graph for Zsx_1, and then show that Hy is isomorphic to
And(k).

Show that the icosahedron is a core.

We saw (in Corollary 6.13.4) that if X is a vertex-transitive graph
with x(X) = 3 and |V(X)| is not divisible by three, then X is
triangle-free. Find and prove an analogue of this result for graphs
with chromatic number k.



42.

43.

44.

45.

46.

47.

48.
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Prove that if X is cubic and vertex transitive, then X* is Ky, an odd
cycle, or X itself. (Hint: Consider the odd girth of X).

Show that if X is a quartic vertex-transitive graph on an odd number
of vertices, then its core is either complete, an odd cycle, or itself.
What about quartic graphs on 2™ vertices?

The ladder L{2n) is the cubic graph constructed as follows: Take
two copies of the cycle C,, on disjoint vertex sets {ai,...,an} and
{b1,...,bp}, and join the corresponding vertices a;b; for 1 < i < n.
The Mobius ladder M(2n) is obtained from the ladder by deleting
the edges a1as and byby and then inserting edges a1bs and agb;. Find
the cores of L(2n) and M (2n) for all n.

Consider the cubic graph obtained by subdividing every edge of the
cube and joining pairs of vertices corresponding to opposite edges
(the first step in the construction of Tutte’s 8-cage). Show that this
graph is a core.

Let X be a graph and let C be a subset of E(X). Construct a graph
Y with vertex set

V(X) x {0,1}

as follows. If uv € C, then (u,0) ~ (v,1) and (u,1) ~ (v,0) (in Y).
If uv € E(X)\C, then (u,0) ~ (v,0) and (u,1) ~ (v,1). Show that
Y is a double cover of X, and that the girth of Y is greater than r
if and only if each cycle of X with length at most r contains an odd
number of edges from C.

Let X be a graph and let C be a subset of E(X). If u € V(X), let
S(u) denote the set of edges in X that are incident with . Show that
the double cover determined by C is isomorphic to the double cover
determined by the symmetric difference of C' and S(u).

The aim of this exercise is to show that if n > 2, then there is a
unique double cover of the n-cube with girth six. For n = 2, this is
immediate, so assume n > 2. View the n-cube @, as consisting of a
top and bottom copy of Q,,_1 with a perfect matching consisting of
vertical edges joining the two copies. Now, proceed as follows:

(a) If C C E(Qy), then there is a subset C’ of E(Qy,) that contains
no vertical edges, but determines a double cover isomorphic to
the one given by C.

(b) Suppose C is a subset of E(Q,,) that contains no vertical edges.
For any edge e in the top copy of F(Qn_1), let €’ denote the
corresponding edge in the bottom copy. Show that the double
cover determined by C has girth at least six if and only if C
contains precisely one edge from each pair {e,€e'}.
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(c) Prove that up to isomorphism there is a unique double cover
of @, with girth six.

Notes

The survey by Hahn and Tardif [11] is an excellent source of information on
graph homomorphisms, and has had a strong influence on our treatment.

Many of the questions about homomorphisms we have considered can be
extended naturally to directed graphs. See, e.g., [10].

The theory of graph homomorphisms can be presented naturally in terms
of the category with graphs as its objects and homomorphisms as its maps.
Then X x Y is the categorical product; the subdirect product is the natural
product for the category formed by the covers of a fixed graph Y, with local
isomorphisms as mappings. Imrich and Izbicki enumerate all the natural
graph products in [15]. The products used most frequently in graph theory
are the “product,” the strong product and the Cartesian product, all of
which we have considered in this chapter. Imrich and Klavzar [16] provide
an extensive treatment of graph products.

The map graph KX was introduced by El-Zahar and Sauer and extended
to FX by Haggkvist et al. in [10]. Our treatment has been influenced by
Duffus and Sauer’s treatment in [6]. Lemma 6.5.1 is due to Lovész, as is
Exercise 12. (See Section 5 of [18].)

The strongest result concerning Hedetniemi’s conjecture is due to El-
Zahar and Sauer [7], who proved that if X and Y are not 3-colourable,
then neither is their product X x Y. Their paper is elegant and accessible.
Greenwell and Lovész first proved that K,, x X is uniquely n-colourable
when x(X) > n or X is uniquely n-colourable. Burr, Erdés, and Lovész [4]
proved that x(X xY) =n+1if x(X) = x(Y) = n+ 1 and each vertex
of X lies in an n-clique. Welzl [21] and, independently, Duffus, Sands, and
Woodrow [5] proved that if x(X) = x(Y) = n+ 1 and both X and Y
contain an n-clique, then x(X xY)=n+1.

The comparison between the conclusions in Exercise 19 and Exercise 20
is very surprising. Most of the interesting results in graph theory that
hold for connected graphs hold for all graphs, but the essential difficulty
of Hedetniemi’s conjecture lies in establishing it for graphs that are not
necessarily connected! For further information related to this, see Larose
and Tardif [17].

Covers play a significant role in the theory of graph embeddings, dis-
guised as “voltage graphs”. (See [8].) The theory of covering graphs can be
viewed a special case of the theory of covering spaces in topology. If this
approach is taken, it is more natural to allow our graphs to have multiple
edges and loops, and our definition of a covering map needs adjustment.
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It would be useful to have a combinatorial development of the theory and
applications of covering graphs, but we do not know of one.

Hell and Nesgetfil [14] prove that if Y is not bipartite, then the problem
of deciding whether there is a homomorphism from a given graph X into
Y is NP-complete.

The Cayley graphs And(k) were first used by Andrésfai in [1], and also
appear in his book [2]. Pach [20] showed that a reduced triangle-free graph
of diameter two such that each independent set lies in the neighbourhood of
a vertex must be isomorphic to one of the Cayley graphs And(k). Brouwer
[3] has a second proof. Exercise 39 provides the original description of the
Andrésfai graphs.

Exercise 1 and Exercise 3 are from Hell [12] and [13], respectively, while
Exercise 2 is an unpublished observation due to Sabidussi. Exercise 27 and
Exercise 28 are due to Nesetfil (19]. Exercise 34 and Exercise 35 come from
[9].

Without a doubt, Hedetniemi’s conjecture remains one of the most
important unsolved problems in this area.
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7
Kneser Graphs

The Kneser graph K., is the graph with the r-subsets of a fixed v-set
as its vertices, with two r-subsets adjacent if they are disjoint. We have
already met the complete graphs K,.;, while K,.o is the complement of
the line graph of K. The first half of this chapter is devoted to fractional
versions of the chromatic number and clique number of a graph. We dis-
cover that for the fractional chromatic number, the Kneser graphs play
a role analogous to that played by the complete graphs for the ordinary
chromatic number. We use this setting to provide a proof of the Erdds—
Ko-Rado theorem, which is a famous result from extremal set theory. In
the remainder of the chapter, we determine the chromatic number of the
Kneser graphs, which surprisingly uses a nontrivial result from topology,
and study homomorphisms between Kneser graphs.

7.1 Fractional Colourings and Cliques

We will use Z(X) to denote the set of all independent sets of X, and Z(X, «)
to denote the independent sets that contain the vertex wu.

A fractional colouring of a graph X is a nonnegative real-valued function
f on Z(X) such that for any vertex x of X,

> oS>t

SeI(X,x)
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The weight of a fractional colouring is the sum of all its values, and the
fractional chromatic number x*(X) of the graph X is the minimum possi-
ble weight of a fractional colouring. (We address the question of why this
minimum exists in a later section.) We call a fractional colouring regular
if, for each vertex = of X, we have

> f8)=1.

SET(X,x)

The colour classes of a proper k-colouring of X form a collection of k
pairwise disjoint independent sets Vi,...,V; whose union is V(X). The
function f such that f(V;) =1 and f(S) = 0 for all other independent sets
S is a fractional colouring of weight k. Therefore, it is immediate that

X" (X) < x(X).

Conversely, suppose that X has a 01-valued fractional colouring f of weight
k. Then the support of f consists of k independent sets Vi, ..., Vi whose
union is V(X). If we colour a vertex x with the smallest 7 such that x € V;,
then we have a proper k-colouring of X. Thus the chromatic number of X
is the minimum weight of a 01-valued fractional colouring.

The five-cycle Cs has exactly five independent sets of size two, and each
vertex lies in two of them. Thus if we define f to take the value % on each of
these independent sets and 0 on all others, then f is a fractional colouring
of Cs with weight 2. Of course, x(Cs) = 3, and thus we see that x*(X)
can be strictly less than x(X). (Despite this, x*(X) is no easier to compute
than x(X), in general.)

For a second example, consider the Kneser graph K,... The r-sets that
contain a given point 7 form an independent set of size (::}), and each
vertex lies in exactly r of these independent sets. The function with value
1/r on each of these sets, and zero elsewhere, is a fractional colouring with
weight v/r, and so x*(Ky.r) < v/r.

The empty set is an independent set, and so if f is a fractional colouring,
then f(@) is defined. However, if f(@) # 0, then we may adjust f by declar-
ing it to be zero on § (and leaving its value on all nonempty independent
sets unaltered). The resulting function is a still a fractional colouring, but
its weight is less than that of f. Thus we can usually assume without loss
that f(0) = 0.

7.2 Fractional Cliques

A fractional clique of a graph X is a nonnegative real-valued function on
V(X) such that the sum of the values of the function on the vertices of any
independent set is at most one. The weight of a fractional clique is the sum
of its values. The fractional cliqgue number of X is the maximum possible
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weight of a fractional clique, and it is denoted by w*(X). The characteristic
function of any clique of size k in X is a 01-valued fractional clique of weight
k, and thus

w(X) < w'(X).

The function with value % on each vertex of Cs is a fractional clique with
weight 2, and thus we see that w*(X) can be strictly greater than w(X).
More generally, if «(X) denotes the maximum size of an independent set in
X, then g := a(X)~!1 is a fractional clique. Hence we have the following.

Lemma 7.2.1 For any graph X,
VX!
a(X)

There is one important case where we can determine the fractional clique
number.

(]

W (X) >

Lemma 7.2.2 If X is vertex transitive, then

o VD)
<0 =33

and a(X)711 is a fractional clique with this weight.

Proof. Suppose g is a nonzero fractional clique of X. Then g is a function
on V(X). If v € Aut(X), define the function g7 by

g7 (z) = g(x").

Then g7 is again a fractional clique, with the same weight as g. It follows
that

1
- ~
977 TAut(X)] 2.
veAut(X)
is also a fractional clique with the same weight as ¢. If X is vertex transitive,
then it is easy to verify that § is constant on the vertices of X. Now, c1 is
a fractional clique if and only if ¢ < a(X)™!, and so the result follows. O

So far we have not indicated why the fractional chromatic number and
fractional clique number are well-defined, that is, why fractional colourings
of minimum weight and fractional cliques of maximum weight must exist.
We remedy this in the next section.

7.3 Fractional Chromatic Number

Let B be the 0l-matrix with rows indexed by the vertices of X and with
the characteristic vectors of the independent sets of X as columns. Then a
nonnegative vector f such that Bf > 1 {that is, each coordinate of Bf is



138 7. Kneser Graphs

at least one) is the same thing as a fractional colouring, and a nonnegative
vector g such that g” B < 1 is a fractional clique. Our first lemma shows
that if f is a fractional colouring, then there is a regular fractional colouring
f' of no greater weight than f.

Lemma 7.3.1 If a graph X has a fractional colouring [ of weight w, then
it has a fractional colouring f' with weight no greater than w such that
Bf' =1.

Proof. If Bf # 1, then we will show that we can perturb f into a function
[ of weight no greater than f such that Bf’ has fewer entries not equal to
one. The result then follows immediately by induction.

Suppose that some entry of Bf is greater than 1; say (Bf); = b > 1.
Let Sp,...,S; be the independent sets in the support of f that contain z;.
Choose values aq, . . ., a; such that

i=t
ale(S,) and Zai:b—l.
i=1

Then define f’' by

f(S) —a;, ifS=S5;
f'(S) =14 f(S) +ai, ifS=S;\zjand S #0;
f(S), otherwise.

Then f’ is a fractional colouring with weight no greater than w such that
(Bf'); =1 and (Bf'); = (Bf); for all 5 # j. o

The next result is extremely important, as it asserts that the fractional
chromatic number of a graph is a well-defined rational number. It is possible
to provide a reasonably short and direct proof of this result. However, it is
a direct consequence of the basic theory of linear programming, and so we
give only the statement, leaving the details of the direct proof as Exercise 1.

Theorem 7.3.2 Any graph X has a regular rational-valued fractional
colouring with weight x*(X). |

Similarly, the fractional clique number is also well-defined and rational
valued.

7.4 Homomorphisms and Fractional Colourings

We have already seen two graph parameters, namely the chromatic num-
ber and the odd girth, that can be used to demonstrate that there is no
homomorphism from one graph to another. We show that the fractional
chromatic number can also fill this role.
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First, we make some remarks about the preimages of independent sets
in Y. If ¢ is a homomorphism from X to Y and S is an independent set
in Y, then the preimage ¢~!(S) is an independent set in X, as is easily
verified. If T is a second independent set in Y and

SNe(X) =TNe(X),

then p=1(S) = ¢~}(T). It follows that the preimage of an independent set
S of Y is determined by its intersection with ¢(X).

Now, suppose that ¢ is a homomorphism from X to Y and f is a
fractional colouring of Y. We define a function f on Z(X) by

8= @,

T:p~(T)=S

and say that f is obtained by lifting f. The support of f consists of in-
dependent sets in X of the form ¢~1(S), where S € Z(Y). If two or more
independent sets in Y have the same intersection with ¢(X), then they
have the same preimage S, and so all contribute to the value f (S). As ev-

ery independent set in Y makes a contribution to f , the weight of f is the
same as the weight of f.

Theorem 7.4.1 If there is a homomorphism from X toY and f is a
fractional colouring of Y, then the lift f of f is a fractional colouring of
X with weight equal to the weight of f. The support of f consists of the
preimages of the independent sets in the support of f.

Proof. If u € V(X), then

o fm= > (s

TeEI(X,u) S:u€p—1(S)

= > f9.

SET(Y,p(u))
It follows that f is a fractional colouring.

Corollary 7.4.2 If there is a homomorphism from X to Y, then x*(X)
x*(Y).

o O

If there is an independent set in the support of f that does not inter-
sect p(X), then its preimage is the empty set. In this situation f(@) # 0,
and there is a fractional colouring that agrees with f on all nonempty
independent sets and vanishes on (). Hence we have the following:

Corollary 7.4.3 Let X andY be two graphs with the same fractional chro-
matic number. If ¢ is a homomorphism from X toY and f is a fractional
colouring of Y with weight x*(Y'), then the image of X in' Y must meet
every independent set in the support of f. 0O
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Lemma 7.4.4 If X is vertex transitive, then x*(X) < |V(X)|/a(X).

Proof. We saw in Section 7.1 that x*(Ky.,) < v/r. If X is vertex tran-
sitive, then by Theorem 3.9.1 and the remarks following its proof, it is
a retract of a Cayley graph Y where |V(Y)|/a(Y) = |[V(X)|/a(X). By
Corollary 7.4.2 we see that x*(X) = x*(Y). If n = |V(Y)| and o = a(Y),
then we will show that there is a homomorphism from Y into K, .4.

Thus suppose that Y is a Cayley graph X(G,C) for some group G of
order n. As in Section 3.1, we take the vertex set of Y to be G. Let S be
an independent set of size a(Y') in Y, and define a map

p:g— (SN,
where S7! = {s7! : s € S}. Now, suppose that g ~ h and consider
w(g)N(h). Ity € p(g) N(h), then y = a 1g=b"1h where a, b € S. But
then ba=! = hg™! € C, and so a ~ b, contradicting the fact that S is an

independent set. Thus ¢(g) is disjoint from ¢(h), and ¢ is a homomorphism
fromY to K,.q- 0

In the previous proof we used the existence of a homomorphism into K.,
to bound x*(X). Our next result shows that in fact the Kneser graphs play
the same central role in fractional graph colouring as the complete graphs
in graph colouring.

Theorem 7.4.5 For any graph X we have
X" (X) = min{v/r: X — Ky.r }.

Proof. We have already seen that x*(K,.) < v/r, and so by Corol-
lary 7.4.2, it follows that if X has a homomorphism into K,.., then it
has a fractional colouring with weight at most v/r.

Conversely, suppose that X is a graph with fractional chromatic number
x*(X). By Theorem 7.3.2, x*(X) is a rational number, say m/n, and X
has a regular fractional colouring f of this weight. Then there is a least
integer r such that the function g = rf is integer valued. The weight of g
is an integer v, and since f is regular, the sum of the values of g on the
independent sets containing x is .

Now, let A be the |V(X)| x v matrix with rows indexed by V(X), such
that if S is an independent set in X, then A has g(S) columns equal to
the characteristic vector of S. Form a copy of the Kneser graph K,.. by
taking Q to be the set of columns of A. Each vertex x of X determines
a set of r columns of A—those that have a 1 in the row corresponding
to z—and since no independent set contains an edge, the sets of columns
corresponding to adjacent vertices of X are disjoint. Hence the map from
vertices of X to sets of columns is a homomorphism from X into K,... O

The proof of Lemma 7.4.4 emphasized the role of Kneser graphs, but
there are several alternative proofs. One of the shortest is to observe that
if X is vertex transitive and S is an independent set of maximum size
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a(X), then the translates of S under the action of Aut(X) are the support
of a fractional colouring with weight |V(X)|/a(X). We will offer another
argument in the next section.

7.5 Duality

We give an alternative description of x*(X) and w*(X), which will prove
very useful.

Let B be the 01-matrix whose columns are the characteristic vectors of
the independent sets in X. The fractional chromatic number x*{X) is equal
to the value of the following linear optimization problem:

min 17 f
Bf>1
f>o.

Similarly, w*(X) is the value of the optimization problem

max ng
g'B<1
g=>0.

These are both linear programming problems; in fact, they form a dual
pair.

We use the formulations just given to prove the following result. Since
w(X) < w*(X) and x*(X) < x(X), this could be viewed as a strengthening
of the simple inequality w(X) < x(X).

Lemma 7.5.1 For any graph X we have w*(X) < x*(X).

Proof. Suppose that f is a fractional colouring and g a fractional clique
of X. Then

17f~g" =17f —g"Bf +¢"Bf —¢g"1
= (1" -¢"B)f +¢"(Bf - 1).

Since g is a fractional clique, 17 —¢T B > 0. Since f is a fractional colouring,
f > 0, and consequently (17 — g7 B)f > 0. Similarly, g and Bf — 1 are
nonnegative, and so g7 (Bf — 1) > 0. Hence we have that 1Tf — gT1 is
the sum of two nonnegative numbers, and therefore 17f > gT1 for any
fractional colouring f and fractional clique g. a

The above argument is essentially the proof of the weak duality theorem
from linear programming. We point out that the strong duality theorem
from linear programming implies that x*(X) = w*(X) for any graph X.
For vertex-transitive graphs we can prove this now.
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Corollary 7.5.2 If X is a vertex-transitive graph, then
V(X))

(X)) =x"(X) = .

w00 =33 = B

Proof. Lemma 7.2.1, Lemma 7.5.1, and Lemma 7.4.4 yield that
V(X)) [V (X)I
2 < (X) < XM (X) < ,
ax) SO =X X) <7y

and so the result follows. 0O

The odd circuit Ca,,+1 is vertex transitive and o(Cam41) = m, so we see
that x*(Cams1) =2+ L.
We extract two consequences of the proof of Lemma 7.5.1, for later use.

Corollary 7.5.3 For any graph X we have

V(X)I
a(X)
Proof. Use Lemma 7.2.1. O

X*(X) >

Lemma 7.5.4 Let X andY be vertez-transitive graphs with the same frac-
tional chromatic number, and suppose ¢ is a homomorphism from X to
Y. If S is a mazimum independent set in Y, then ¢ 1(S) is a mazimum
independent set in X.

Proof. Since X and Y are vertex transitive,

V(X)) V)l
——==x"X)=x"Y) = .
Let f be a fractional colouring of weight x*(X) and let g = a(X)~!1. By
Lemma 7.2.2 we have that g is a fractional clique of maximum weight. From
the proof of Lemma 7.5.1

(1" —g¢"B)f =0.

Since the sum of the values of g on any independent set of size less than
(X)) is less than 1, this implies that f(S) = 0 if S is an independent set
with size less than a(X). On the other hand, Theorem 7.4.1 yields that
X has a fractional colouring of weight x*(X) with ¢~1(S) in its support.
Therefore, |p™1(9)] = a(X). o

7.6 Imperfect Graphs

It is a trivial observation that x(X) > w(X). We call a graph X perfect
if for any induced subgraph Y of X we have x(Y) = w(Y). A graph that
is not perfect is called imperfect. The simplest examples of perfect graphs
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are the bipartite graphs, while the simplest examples of imperfect graphs
are the odd cycles.

A much larger class of perfect graphs, known as comparability graphs,
arise from partially ordered sets. If S is a set, partially ordered by “<”,
then we say that two elements a and b are comparable if ¢ < b or b < a.
The comparability graph of S is the graph with vertex set S, where two
vertices are adjacent if they are distinct and comparable. An induced sub-
graph of a comparability graph is also a comparability graph. A clique in
a comparability graph corresponds to a chain in the partially ordered set,
and an independent set to an antichain. A famous theorem of Dilworth as-
serts that the minimum number of antichains needed to cover the elements
of a partially ordered set equals the maximum size of a chain. Equivalently,
comparability graphs are perfect. Every bipartite graph is a comparability
graph, and so this result generalizes the observation that bipartite graphs
are perfect.

Dilworth also proved that the minimum number of chains needed to
cover the elements of a poset equals the maximum size of an antichain.
Expressed graph-theoretically, this result states that the complement of a
comparability graph is perfect. Lovasz settled a long-standing open problem
by proving that the complement of any perfect graph is perfect, and we will
present a short proof of this fact.

A graph is minimally imperfect if it is not perfect but each induced proper
subgraph is perfect. The odd cycles are the simplest examples of minimally
imperfect graphs. If X is minimally imperfect, then x(X) = w(X)+ 1 and
X(X\v) = w(X), for each vertex v of X. Let us say that an independent
set S in a graph X is big if |S| = a(X), and that a clique is big if it has
size w(X).

Lemma 7.6.1 Let X be a minimally imperfect graph. Then any indepen-
dent set is disjoint from at least one big clique.

Proof. Let S be an independent set in the minimally imperfect graph X.
Then X \ S is perfect, and therefore x(X \ S) = w(X \S). If S meets each
big clique in at least one vertex, it follows that w(X \ S) < w(X) — 1.
Consequently,

X(X) =1+ x(X\5) = w(X),
which is impossible. ]

Suppose X is a minimally imperfect graph on n vertices, and let « and w
denote a(X) and w(X), respectively. If v € V(X), then X\v has a partition
into w(X) independent sets. Each of these sets contains a neighbour of v,
for otherwise we could extend the colouring to a proper colouring of X
with w colours. Thus these independent sets are maximal in X. We now
define a collection S of independent sets in X. First choose an independent
set Sp of size a. For each vertex v in S, take w independent sets in X \ v
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that form an w-colouring of X \ v. This gives a collection of N = 1 + aw
independent sets Sp,...,Sny_1-

Lemma 7.6.2 Each verter of X lies in exactly « members of S, and any
big clique of X is disjoint from exactly one member of S.

Proof. We leave the first claim as an exercise.

Let K be a big clique of X, let v be an arbitrary vertex of X, and suppose
that X \ v is coloured with w colours. Then K has at most one vertex in
each colour class, and so either v ¢ K and K meets each colour class in
one vertex, or v € K and K is disjoint from exactly one colour class.

We see now that if K is disjoint from Sp, then it must meet each of
S1,...,SN_1 in one vertex. If K is not disjoint from Sy, then it meets it in
a single vertex, u say. If v € S \ u, then K meets each of the independent
sets we chose in X \ v. However, K misses exactly one of the independent
sets from X \ u. a

Let A be the N x n matrix whose rows are the characteristic vectors of
the independent sets in S. By Lemma 7.6.1 we may form a collection C of
big cliques C; such that C; N S; = @ for each i. Let B be the N x n matrix
whose rows are the characteristic vectors of these big cliques. Lemma 7.6.2
implies that S; is the only member of S disjoint from C;. Accordingly, the
following result is immediate.

Lemma 7.6.3 ABT =J — 1. 0O

Theorem 7.6.4 The complement of a perfect graph is perfect.

Proof. For any graph X we have the trivial bound |V (X)| < x(X)a(X),
and so for perfect graphs we have |V (X)| < a(X)w(X).

Since J—1I is invertible, the previous lemma implies that the rows of A are
linearly independent, and thus N < n. On the other hand, |[V(X\v)| < aw,
and therefore n < N. This proves that N = n, and so

n=|V(X) =1+ a(X)wX)=1+wX)x(X).

Therefore, X cannot be perfect.

If X is imperfect, then it contains a minimally imperfect induced sub-
graph Z. The complement Z is then an induced subgraph of X that is
not perfect, and so X is imperfect. Therefore, the complement of a perfect
graph is perfect. O

We extract further consequences from the above proof. If X is minimally
imperfect and n = 1+ ow, the w independent sets that partition a subgraph
X\ v must all have size a. Therefore, all members of S have size a.

We can define a function f on the independent sets of X by declaring f to
have value 1/ on each element of S and to be zero elsewhere. By the first
part of Lemma 7.6.2, this is a fractional colouring. Since |S| = n, its weight
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is n/a, and therefore x*(X) < n/a. On the other hand, Corollary 7.5.3
asserts that |V(X)|/a(X) < x*(X), for any graph X. Hence we find that
n 1
X)) = — =w(X —_.
) = o =0 +
For any graph,
w(X) < w'(X) < x"(X) < x(X),

and so whenever Y is an induced subgraph of a perfect graph we have
x*(Y) = x(Y). Therefore, we deduce that a graph X is perfect if and only
if x*(Y) = x(Y) for any induced subgraph Y of X.

We note one final corollary of these results. Suppose that K is a big
clique of X, and let z be its characteristic vector. By the second part of
Lemma 7.6.2, we see that & = Az has one entry zero and all other entries
equal to one. Hence b is a column of J — I. Since ABT = J — T and A
is invertible, this implies that 2 must be a column of BY, and therefore
K € C. Thus C contains all big cliques of X. It follows similarly that S
contains all big independent sets of X.

7.7 Cyclic Interval Graphs

The cyclic interval graph C(v,r) is the graph whose vertex set is the set of
all cyclic shifts, modulo v, of the subset {1,...,7} of @ = {1,...,v}, and
where two vertices are adjacent if the corresponding r-sets are disjoint. It
is immediate that C(v,r) is an induced subgraph of the Kneser graph K.,
and that C(v,r) is a circulant, and hence vertex transitive.

If v < 2r, then every two vertices intersect and C(v,r) is empty, and
therefore we usually insist that v > 2r. In this case we can determine
the maximum size of an independent set in C(v,r) and characterize the
independent sets of this size.

Lemma 7.7.1 For v > 2r, an independent set in C(v,r) has size at most
r. Moreover, an independent set of size r consists of the vertices that
contain o given element of {1,...,v}.

Proof. Suppose that S is an independent set in C(v,r). Since C(v,r) is
vertex transitive, we may assume that S contains the r-set 3 = {1,...,r},
Let S and S, be the r-sets in S that contain the points 1 and r, respectively.
Let j be the least integer that lies in all the r-sets in S,. The least element
of each set in S, is thus at most j, and since distinct sets in S, have distinct
least elements, it follows that [S;.| < j. On the other hand, each element of
S; has a point in common with each element of S,.. Hence each element of
S contains j, and consequently, |S1| < 7 — 7+ 1. Since v > 2r this implies
that S; NS, = {5}, and so we have

S| =181 +1Sp| ~1< (r—j+1D)+j-1=r
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If equality holds, then S consists of the vertices in C(v, ) that contain j.0O
Corollary 7.7.2 Ifv > 2r, then x*(C(v,r)) =v/7. o
Corollary 7.7.3 For v > 2r, the fractional chromatic number of the
Kneser graph K., is v/r.

Proof. Since C(v,r) is a subgraph of K., it follows that

2 =X (C1) <X (Ko,

and we have already seen that x*(Ky.,) < v/r. O

Corollary 7.7.4 Ifv > 2r, then the shortest odd cycle in K., has length
at least v/ (v — 2r).

Proof. If the odd cycle Cs,, 41 is a subgraph of K., then

sl

1
2+ — =X *(Com+1) S

which implies that m > r/(v — 2r), and hence that 2m+1 > v/(v — 2r).0

The bound of this lemma is tight for the odd graphs Ka,y1..-

7.8 Erdos—Ko-Rado

We apply the theory we have developed to the Kneser graphs. The following
result is one of the fundamental theorems in extremal set theory.

Theorem 7.8.1 (Erdés—Ko—Rado) If v > 2r, then a(Ky.r) = (27}).
An independent set of size (U~ 1) consists of the r-subsets of {1, ...,v} that

1
contain a particular point.

Proof. From Corollary 7.7.3 and Corollary 7.5.2, it follows that

o) = (17 1)

Suppose that S is an independent set in K., with size (”:1) Given any
cyclic ordering of {1,...,v}, the graph C induced by the cyclic shifts of
the first 7 elements of the ordering is isomorphic to C(v, r). The inclusion
mapping from C to K. is a homomorphism, and SNV (C) is the preimage
of S under this homomorphism. Therefore, by Lemma 7.5.4 we have that
[ISNV(C)| =r and SNV (C) consists of the r cyclic shifts of some set of
T consecutive elements in this ordering.

First consider the natural (numerical) ordering {1, ...,v}. Relabelling if
necessary, we can assume that S contains the sets

{L,2,...,7}1,{2,3,...,m,r+ 1}, ..., {r,r+1,...,2r — 1},
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that is, all the r-subsets that contain the element r. To complete the proof
we need to show that by varying the cyclic ordering appropriately, we can
conclude that S contains every r-subset containing r. First note that since
S contains precisely r cyclic shifts from any cyclic ordering, it does not
contain {x,1,...,r — 1} for any =z € {2r,...,v}.

Now, let g be any element of Sym(v) that fixes {1,...,r —1} setwise and
consider any cyclic ordering that starts

{z,19,29, ..., (r = 1)9,r,.. .},

where z € {2r,...,v}. Then S contains 8 = {19,29,...,(r — 1)9,r} but
not {z,19,...,(r — 1)9}, and so S must contain the r right cyclic shifts of
0. For any r-subset « containing 7, there is some cyclic ordering of this
form that has a as one of these r cyclic shifts unless o contains all of the
elements {2r,...,v} (for then there is no suitable choice for x).

For any y € {r +1,...,2r — 1}, the same argument applies if we con-
sider the natural cyclic ordering with 2r interchanged with y (with v as
x). Therefore, every r-subset containing r is in S except possibly those
containing all the elements of {y, 2r, ..., v}. By varying y, it follows that if
there is any r-subset containing r that is not in S, then it contains all of
the elements of {r+1,...,v}. Since v > 2r, there are no such subsets and
the result follows. o

Corollary 7.8.2 The automorphism group of K,.r is isomorphic to the
symmetric group Sym(v).

Proof. Let X denote K,., and let X (i) denote the maximum independent
set consisting of all the r-sets containing the point ¢ from the underlying set
Q. Any automorphism of X must permute the maximum independent sets
of X, and by the Erd6s-Ko~Rado theorem, all the maximum independent
sets are of the form X (i) for some ¢ € Q. Thus any automorphism of X
permutes the X(¢), and thus determines a permutation in Sym(v). It is
straightforward to check that no nonidentity permutation can fix all the
X (2), and therefore Aut(X) = Sym(v). m

The bound in Theorem 7.8.1 is still correct when v = 2r; the maximum
size of an independent set is

2r—1 _1 2r
r—1) 2\ r /)
2r—1

But Ka., is isomorphic to (277

it has

) vertex-disjoint copies of K5, and therefore

9 (2::11 )

maximum independent sets, not just the 2r described in the theorem.
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7.9 Homomorphisms of Kneser Graphs

In this section we consider homomorphisms between Kneser graphs. Our
first result shows that Kneser graphs are cores.

Theorem 7.9.1 If v > 2r, then K,., is a core.

Proof. Let X denote K., and let X (¢) denote the maximum independent
set consisting of all the r-sets containing the point i from the underlying
set Q. Let ¢ be a homomorphism from X to X. We will show that it is
onto. If 3 = {1,...,r}, then 8 is the unique element of the intersection

X1)nX2)n---NnX(r).

By Lemma 7.5.4, the preimage ¢~ (X ()) is an independent set of maxi-
mum size. By the Erdés-Ko—Rado theorem, this preimage is equal to X (¢'),
for some element i’ of 2. We have

e H{BY =9 (X (D) N (X @) N Ne™H (X(r)),

from which we see that ¢ ~=1{} is the intersection of at most r distinct sets
of the form X (¢'). This implies that ¢~ '{3} # 0, and hence ¢ is onto. O

Our next result implies that K., — Ky _2,42.1; since Ky_ary2.1 is the
complete graph on v — 2r 42 vertices, this implies that x(K,.,) < v—2r+42.
In the next section we will see that equality holds.

Theorem 7.9.2 Ifv > 2r and r > 2, there is a homomorphism from K.,
to Ky_2:r—1.

Proof. If v = 2r, then K., = (*"') K3, which admits a homomorphism
into any graph with an edge. So we assume v > 2r  and that the under-
lying set € is equal to {1,...,v}. We can easily find a homomorphism ¢
from K,_1., to K,_2.._1: Map each r-set to the (r — 1)-subset we get by
deleting its largest element. We identify K, 1., with the subgraph of K.,
induced by the vertices that do not contain v, and try to extend ¢ into a
homomorphism from K., into K, 2.-_1.

We note first that the vertices in K., that are not in our chosen K, 1.,
all contain v, and thus they form an independent set in K,,... Denote this
set of vertices by S and let S; denote the subset of S formed by the r-sets
that contain v,v — 1,...,v — 7+ 1, but not v — i. The sets 51, ..., S, form
a partition of S. If a € Sy, define p(a) to be a\v. If i > 1 and o € §;,
then v — i ¢ . In this case let ¢(a) be obtained from « by deleting v and
replacing v—1 by v—i. It is now routine to check that ¢ is a homomorphism
from K. into K, _o.,_1. O

Lemma 7.9.3 Suppose that v > 2r and v/r = w/s. There is a
homomorphism from K. to K.s if and only if v divides s.

Proof. Suppose r divides s; we may assume s = mr and w = mv. Let W
be a fixed set of size w and let m be a partition of it into v cells of size
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m. Then the s-subsets of W that are the union of r cells of 7 induce a
subgraph of K., isomorphic to K,.,.

Assume that the vertices of X are the r-subsets of the v-set V, and for
¢ in V, let X (¢) be the maximum independent set formed by the r-subsets
that contain 4. Similarly, assume that the vertices of Y are the s-subsets of
W, and for j in W, let Y(j) be the maximum independent set formed by
the s-subsets that contain j. The preimage ¢~ 1(Y (j)) is equal to X (i), for
some <.

Let v; denote the number of elements j of W such that ¢~} (Y (j)) =
X(3). Let o be an arbitrary vertex of X. Then ¢~ }(Y (5)) = X (i) for some
i € aif and only if (Y (j)) contains « if and only if j € (). Therefore,

Z v; = 8. (7.1)
i€a
Moreover, v; is independent of 4. Suppose « and g3 are vertices of X such
that |aN 3| = r — 1. Then, if a\ 8 = {k} and S\ a = {£}, we have

O=s—858= E v; — E V; = Vi — Vyp.

i€a i€s
Thus vy = vy, and therefore v; is constant. By (7.1) it follows that r divides
s, as required. o

7.10 Induced Homomorphisms

We continue our study of homomorphisms between Kneser graphs by show-
ing that in many cases a homomorphism from K., to K., induces a
homomorphism from K,_1., to Ky_o..

For this we need to consider the independent sets of the Kneser graphs.
We have already seen that the maximum independent sets of X = K., are
the sets X(1), ..., X(v) where X (i) comprises all the subsets that contain
the point ¢. More generally, let S be an independent set in K,... An element
of the underlying set 2 is called a centre of S if it lies in each r-set in S. If
an independent set in K., has a centre 7, then it is a subset of X (7). Let
h, » denote the maximum size of an independent set in K. that does not
have a centre.

Theorem 7.10.1 (Hilton—Milner) If v > 2r, the mazimum size of an
independent set in K. with no centre is

v—1 v—r—1
hy,=1 - . a
v +(r~1) ( r—1 >

Lemma 7.10.2 Suppose there is a homomorphism from K. to Ky.e. If

E(:) >v<::i) + (w—v)hy,r,
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then there is a homomorphism from K,_1.r to Ky _o..

Proof. Suppose that f is a homomorphism from X = K. to Y = K.
Consider the preimages f~!(Y(i)) of all the maximum independent sets
of Y, and suppose that two of them, say f~(Y(i)) and f~1(Y(j)), have
the same centre ¢. Then f maps any r-set that does not contain ¢ to an
¢-set that does not contain 4 or j, and so its restriction to the r-sets not
containing ¢ is a homomorphism from K,_1.. to Ky_2.4.

Counting the pairs («, Y (i)) where a € V(K,.) and Y (i) contains the
vertex f(a) we find that

Sisorei=¢(;)

If no two of the preimages f~1(Y(¢)) have the same centre, then at most v
of them have centres and the remaining w — v do not have centres. In this
case, it follows that

OO by RACE I

and thus the result holds. O

By way of illustration, suppose that there were a homomorphism from
K7.2 to Ki1:3. The inequality of the lemma holds, and so this implies the
existence of a homomorphism from Kg.2 to Kg.3. This can be ruled out
either by using Lemma 7.9.3 or by applying the lemma one more time, and
seeing that there would be an induced homomorphism from Ks. to K7.3,
which can be directly eliminated as

5_ 7
*(Ks2) = = > - = x*(Kr.3)-
X (Ks2) = 5 > 5 = x"(Kra)
This argument can be extended to show that there is a homomorphism
from K,.2 to K3 if and only if w > 2v — 2, but we leave the proof of this

as an exercise.

7.11 The Chromatic Number of the Kneser Graph

We will use the following theorem from topology, known as Borsuk’s the-
orem, to determine Xx(K,.,). A pair of points {z,y} on the unit sphere in
R™ is antipodal if y = —=x.

Theorem 7.11.1 If the unit sphere in R™ is expressed as the union of n
open sets, then one of the sets contains an antipodal pair of points. 0

At first (and second) glance, this bears no relation to colouring graphs. We
therefore present Borsuk’s theorem in an alternative form. If a is a nonzero
vector, the open half-space H(a) is the set of vectors x such that a”z > 0.
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Lemma 7.11.2 Let C be a collection of closed convex subsets of the unit
sphere in R™. Let X be the graph with the elements of C as its vertices,
with two elements adjacent if they are disjoint. If for each unit vector a the
open half-space H(a) contains an element of C, then X cannot be properly
coloured with n colours.

Proof. Suppose X has been coloured with the n colours {1,...,n}. For
i€ {1,...,n}, let C; be the set of vectors a on the unit sphere such that
H(a) contains a vertex of colour 4. If S € V(X), then the set of vectors a
such that a”z > 0 for all z in S is open, and C; is the union of these sets
for all vertices of X with colour 7. Hence C; is open.

By our constraint on C, we see that U ,C; is the entire unit sphere.
Hence Borsuk’s theorem implies that for some i, the set C; contains an
antipodal pair of points, @ and —a say. Then both H(a) and H(-a) contain
a vertex of colour #; since these vertices must be adjacent, our colouring
cannot be proper. ]

To apply this result we need a further lemma. The proof of this involves
only linear algebra, and will be presented in the next section.

Theorem 7.11.3 There is a set  of v points in RY"2"t1 such that each
open half-space H(a) contains at least r points from Q. a

Theorem 7.11.4 x(K,.,) =v—2r+2.

Proof. We have already seen that v— 2r+2 is an upper bound on x (K. );
we must show that it is also a lower bound.

Assume that Q = {z1,...,7,} is a set of v points in R?~2"! such that
each open half-space H(a) contains at least r points of Q. Call a subset
S of Q conical if it is contained in some open half-space. For each conical
r-subset « of 2, let S(a) be the intersection with the sphere with the cone
generated by «. (In other words, let S{a) be the set of all unit vectors
that are nonnegative linear combinations of the elements of a.) Then let
X be the graph with the sets S(a) as vertices, and with two such vertices
adjacent if they are disjoint. If S(«) is disjoint from S(3), then clearly « is
disjoint from g, and so the map

p:8) - a

is an injective homomorphism from X to K,... Thus by Lemma 7.11.2, the
chromatic number of K., is at least v — 2r + 2. O

Since the fractional chromatic number of K., is only v/r, this shows that
the difference between the chromatic number and the fractional chromatic
number can be arbitrarily large.
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7.12 Gale’s Theorem

We have already used the following to determine x(Ky.r); now we prove it.

Theorem 7.12.1 If v > 2r, then there is a set Q of v points in RV—2r+1
such that each open half-space H(a) contains at least r points from .

Proof. Let ay,...,a, be any v distinct real numbers, and let G be the
(2m + 1) x v matrix
1 1 1
ay a2 Ay
G = .
am ggm . gim

for any integer m such that v > 2m + 2.

We claim that the rank of G is 2m+ 1. We shall show that for any vector
f=(fo,--., fam)¥ we have fTG # 0, and hence the 2m + 1 rows of G are
linearly independent. If f(t) is the polynomial of degree at most 2m given
by

2m
f(t) = Z fitiv
=0

then

fTG = (f(al)a .. '7f(a"v))7

and so fTG has at most 2m entries equal to 0; thus f7 G # 0.

Now, consider the null space of G. We shall show that any vector x # 0
such that Gx = 0 has at least m + 1 negative entries and at least m + 1
positive entries. Suppose for a contradiction that Gx = 0 and that « has
at most m negative entries. Then

ot) = [ (@~ as)

x; <0

is a polynomial of degree at most m, and f(t) := g(¢)? is a polynomial of
degree at most 2m. Then y = f7'G is a vector in the row space of G such
that y > 0 and y; = 0 if and only if z; < 0. Since yTz = 0, it follows that
z can have no positive entries, and since Gz = 0, we have found a set of
at most m linearly dependent columns, contradicting the fact that G has
rank 2m + 1. Hence z has at least m + 1 negative entries, and because —x
is also in the null space of G, we see that = has at least m + 1 positive
entries.

Now, let N be the (v — 2m — 1) x v matrix whose rows are a basis for
the null space of G. The columns of N form a set of v vectors in Rv=2m~}
such that for any vector a there are at least m + 1 positive entries in a7 N.
Therefore, the open half-space H(a) in R¥"2™~! contains at least m + 1
columns of N. Taking m equal to r — 1, the theorem follows. m]
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7.13 Welzl’s Theorem

The rational numbers have the property that between any two distinct
rational numbers there is a third one. More formally, the usual order on
the rationals is dense. It is amazing that the lattice of cores of nonbipartite
graphs is also dense.

Theorem 7.13.1 (Welzl) Let X be a graph such that x(X) > 3, and let
Z be a graph such that X — Z but Z / X. Then there is a graph Y such
that X =Y andY — Z, but Z4Y andY 4 X.

Proof. Since X is not empty or bipartite, any homomorphism from X
to Z must map X into a nonbipartite component of Z. If we have homo-
morphisms X — Y and Y — Z, it follows that the image of ¥ must be
contained in a nonbipartite component of Z. Since Y cannot be empty, there
is a homomorphism from any bipartite component of Z into Y. Hence it will
suffice if we prove the theorem under the assumption that no component
of Z is bipartite.

Let m be the maximum value of the odd girths of the components of
Z and let n be the chromatic number of the map-graph XZ. Let L be
a graph with no odd cycles of length less than or equal to m and with
chromatic number greater than n. (For example, we may take L to be a
suitable Kneser graph.) Let Y be the disjoint union X U (Z x L).

Clearly, X — Y. If there is a homomorphism from Y to X, then there
must be one from Z x L to X, and therefore, by Corollary 6.4.3, a ho-
momorphism from L to XZ. Given the chromatic number of L, this is
impossible.

Since there are homomorphisms from X to Z and from Z x L to Z, there
is a homomorphism from Y to Z. Given the value of the odd girth of L,
there cannot be a homomorphism that maps a component of Z into L.
Therefore, there is no homomorphism from Z to L, and so there cannot be
one from Z into Z x L. o

An elegant illustration of this theorem is provided by the Andrasfai
graphs. Each Andrésfai graph is 3-colourable, and so And(k) — K3, but
And(k) is triangle-free, and so K3 4 And(k). The theorem implies the
existence of a graph Y such that And(k) — Y — K3, and from our work
in Section 6.11 we see that we can take Y to be And(k + 1). Therefore, we
get an infinite sequence

And(2) - And(3) — -+ — Kj.
The fractional chromatic number of And(k) is (3k — 1)/k, and so the frac-

tional chromatic numbers of the graphs in this sequence form an increasing
sequence tending to 3.
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7.14 The Cartesian Product

We introduce the Cartesian product of graphs, and show how it can be used
to provide information about the size of r-colourable induced subgraphs of
a graph.

If X and Y are graphs, their Cartesian product X OY has vertex set
V(X) x V(Y), where (z1,31) is adjacent to (z2,y2) if and only if z; = 3
and o ~ yo, or £ ~ y; and z2 = y2. Roughly speaking, we construct the
Cartesian product of X and Y by taking one copy of Y for each vertex
of X, and joining copies of Y corresponding to adjacent vertices of X by
matchings of size |V (Y)|. For example, K, O Ky, = L(Kpn)-

Let «,(X) denote the maximum number of vertices in an r-colourable
induced subgraph of X.

Lemma 7.14.1 For any graph X, we have a,(X) = (X O K,).

Proof. Suppose that S is an independent set in X [1 K,.. If v € V(K,.),
then the set S, defined by

Sy = {u e V(X): (u,v) € S},

is an independent set in X. Any two distinct vertices of X O K, with
the same first coordinate are adjacent, which implies that if v and w are
distinct vertices of K., then S, NS, = 0. Thus an independent set in
X 0O K, corresponds to a set of r pairwise-disjoint independent sets in X.
The subgraph induced by such a set is an r-colourable subgraph of X. For
the converse, suppose that X’ is an r-colourable induced subgraph of X.
Consider the set of vertices

S = {(z,i) : z € V(X') and z has colour i}

in XOK.,.. All vertices in S have distinct first coordinates so can be adjacent
only if they share the same second coordinate. However, if both (z,) and
(y,%) are in S, then x and y have the same colour in the r-colouring of X',
so are not adjacent in X. Therefore, S is an independent set in X 0 K,..O

In Section 9.7 we will use this result to bound the size of the largest
bipartite subgraphs of certain Kneser graphs.

If X and Y are vertex transitive, then so is their Cartesian product (as
you are invited to prove). In particular, if X is vertex transitive, then so is

XOK,.

Lemma 7.14.2 If Y is vertex transitive and there is a homomorphism
from X toY, then

V)| _ V)
a(X) = (V)

Proof. If there is a homomorphism from X to Y, then there is a homo-
morphism from X 0 K, to Y O K,.. Therefore, x*(X OK,) < x*(YOK,).
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Using Corollary 7.5.3 and Corollary 7.5.2 in turn, we see that

%g—g—% <X (XOK,) <x*(YOK,) = %%—Ilg;',
and then by the previous lemma
VIXOK)| _ [V(Y O K|
ar(X) T a(Y) 7
which immediately yields the result. o

We offer a generalization of this result in Exercise 25.

7.15 Strong Products and Colourings

The strong product X *xY of two graphs X and Y is a graph with vertex
set X x Y; two distinct pairs (x1,y1) and (z2,y2) are adjacent in X =Y if
z1 is equal or adjacent to x5, and ¥y is equal or adjacent to ys.

In the strong product X * Y any set of vertices of the form

{(z,y) : 2 e V(X)}

induces a subgraph isomorphic to X. Similarly, the sets

{(z,y):y e V(Y)}

induce copies of Y, and so it follows that

X(X #Y) 2 max{x(X), x(Y)}-

This bound is not tight if both X and Y have at least one edge, as will be
proved later.

We define the n-colouring graph C,(X) of X to be the graph whose
vertices are the m-colourings of X, with two vertices f and g adjacent if
and only if there is an n-colouring of X * Ky whose restrictions to the
subsets V(X)) x {1} and V(X) x {2} of V(X % K3) are f and g respectively.
Notice that unlike the map graph KX, the vertices of C,(X) are restricted
to be proper colourings of X.

Lemma 7.15.1 For graphs X and Y,
[Hom(X * Y, K,,)| = |[Hom(Y, C,(X))].
Proof. Exercise. O
Applying this lemma with X = K, we discover that
|Hom(K, Y, K,)| = [Hom(Y, Ca(K,))].
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Recall that the lexicographic product X[Y] of two graphs X and Y is the
graph with vertex set V(X) x V(YY) and where

r1 =x9 and Y3 ~ Yz, oOr
(Z1,y1) ~ (z2,92) 1if {371 ~ g and y; =y3, or
T1 ~ T2 and Y1 ~ ya.

Theorem 7.15.2 C,(K,) = K,..[Kn].

Proof. Each vertex of C,(K,) is an n-colouring of K., and so its image
(as a function) is a set of r distinct colours. Partitioning the vertices of
Cn(K;) according to their images gives (7) cells each containing r! pair-
wise nonadjacent vertices. Any two cells of this partition induce a complete
bipartite graph if the corresponding r-sets are disjoint, and otherwise in-
duce an empty graph. It is straightforward to see that this is precisely the
description of the graph K,..[K]. o

Corollary 7.15.3 K,.. and C,(K,) are homomorphically equivalent. O

Corollary 7.15.4 There is an n-colouring of K, * X if and only if there
is @ homomorphism from X into K,.,. |

A more unusual application of these results is the determination of the
number of proper colourings of the lexicographic product C,,[K,].

Lemma 7.15.5 The number of v-colourings of the graph C,[K,] is equal
to

[Hom(Ch, Ky [Kn1])]-

Proof. The lexicographic product Cp[K,] is equal to the strong product
K, x C,, and therefore we have

|Hom(C,[K,], K,)| = [Hom(K, * Cn, K,)|
= |Hom(C’n,Cv(Kr))|
= |H0m(Cn,er[R7])i
a

In Exercise 8.1 we will see how this last expression can be evaluated in
terms of the eigenvalues of a suitable matrix.

Exercises

1. Let f be a fractional colouring of the graph X, and let B be the matrix
with the characteristic vectors of the independent sets of X as its
columns. Show that if the columns in supp f are linearly dependent,
there is a fractional colouring f’ such that supp(f’) C supp(f) and



10.

11.

12.

13.

7.15. Exercises 157

the weight of f’ is no greater than that of f. Deduce that there is a
fractional colouring f with weight x*(X), and that x*(X) must be a
rational number.

. Prove that w*(X) is rational.

. Show that K., is isomorphic to a subgraph of the product of enough

copies of K,_2..—1. (Hint: First, if f is a homomorphism from K.
to Ky-—2.,—1 and y € Aut(K,.), then f o+ is a homomorphism from
K,.. to Ky_o._1; second, the number of copies needed is at most
|[Aut(Ky.r)|.)

Prove that C(v,r) is a core. (Hint: It is possible to use the proof of
Theorem 7.9.1 as a starting point.)

Show that x(C(v,r)) = [%].

Suppose v > 2r, w > 2s, and v/r < w/s. Show that there is a
homomorphism from C(v, r) into C(w, s).

The circular chromatic number of a graph X is defined to be the
minimum possible value of the ratio v/r, given that there is a homo-
morphism from X to C'(v, 7). Denote this by x°(X). Show that this is
well-defined and that for any X we have x(X) —1 < x°(X) < x(X).

If X is vertex transitive, show that a(X)w(X) < |V(X)|. Deduce
that if X is vertex transitive but not complete and |V (X)]| is prime,
then w(X) < x(X).

. Let X be a minimally imperfect graph and let A and B respectively

be the incidence matrices for the big independent sets and big cliques
of X, as defined in Section 7.6. Show that BJ = JB = wJ and that
A and BT commute. Deduce that each vertex of X lies in exactly
w(X) big cliques.

Let X be a minimally imperfect graph, and let S and C be the col-
lections of big independent sets and big cliques of X, as defined in
Section 7.6. Let S; and S; be two members of S, and let C; be the
corresponding members of C. Show that if neither S; N .S; nor C;NCj
is empty, then some entry of BT A is greater than 1. Deduce that for
each vertex v in X there is a partition of X \ v into « cliques from C.

Let S be a subset of a set of v elements with size 2¢ — 1. Show
that the k-sets that contain at least £ elements of S form a maximal
independent set in K., although the intersection of this family of k
sets is empty.

Show that there are no homomorphisms from Kpg.2 or Ko:3 to Kis:s,
but there is a homomorphism from Kg.2 X Kg.3 to Kis:5.

Show that a(X *Y) > a(X)a(Y) and w(X *Y) = w(X)w(Y).
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14.

15.
16.
17.

18.

19.

20.

21.

22.

23.

24.
25.

7. Kneser Graphs

Show that x(X *Y) < x(X)x(Y), and that this bound is sharp for
graphs whose chromatic and clique numbers are equal.

Show that x(Cs * Cs) = 5.
If X is a graph on n vertices, show that a(X * X) > n.

Show that Cs is homomorphically equivalent to C5(Cs). (Hence x (X *
Cs) =5 if and only if there is a homomorphism from X to Cs.)

Let X* be the graph obtained from X by replacing each edge of X
by a path of length three. (So X* is a double subdivision of X, but
not a subdivision of S(X).) Show that there is a homomorphism from
X* into Cs if and only if there is a homomorphism from X into K.

Convince yourself that if L; denotes the loop on one vertex, then
X x L; = X. Show that the subgraph of FXYY induced by the
homomorphisms is, essentially, the strong product of the subgraphs
of FX and FY induced respectively by the homomorphisms from X
and Y into F. (And explain why we wrote “essentially” above.)

The usual version of Borsuk’s theorem asserts that if the unit sphere
in R™ is covered by n closed sets, then one of the sets contains an
antipodal pair of points. The aim of this exercise is to show that
this version implies the one we used. Suppose that Si,...,S; are
open sets covering the unit sphere in R™ Show that there is an open
set T whose closure is contained in S; such that 77, together with
So, ..., Sk, covers the unit sphere; using this deduce the version of
Borsuk’s theorem from Section 7.11. [Hint: Let R; be the complement
of Sy U---USk; this is a closed set contained in S;. The boundary of
R, is a compact set, hence can be covered by a finite number of open
disks on the sphere, each of which is contained in Sj.]

Show that if X and Y are vertex transitive, then so is their Cartesian
product.

Show that if there is a homomorphism from X to Y, then there is a
homomorphism from X O K, to Y O K,..

Show that if X has n vertices, then (X O Cs) < 2n and equality
holds if and only if there is a homomorphism from X into C5. Hence

deduce that if X has an induced subgraph Y on m vertices such that
there is a homomorphism from Y into Cj, then 2|V (Y)| < (X OC5).

Show that K7.3 0 Cs contains an independent set of size 61.

Let v(X, K) denote the maximum number of vertices in a subgraph
of X that admits a homomorphism to K. If Y is vertex transitive and
there is a homomorphism from X to Y, show that

V)l . V)l

V(X,K) = v(¥,K)’
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(Hint: Do not use the Cartesian product.)

26. If Y and X are graphs, let Y[X] be the graph we get by replacing each
vertex of Y by a copy of X, and each edge of Y by a complete bipartite
graph joining the two copies of X. (For example, the complement of m
vertex-disjoint copies of X is isomorphic to K, [X].) If v > 2r+1 and
Y = K., show that x(X) < r if and only if x(Y[X]) < v. If x(X) >
r, show that any n-colouring of Y determines a homomorphism from
Kv:r to Kn:r+1~

27. Show that there is a homomorphism from K,.5 to K3 if and only if
w > 2v—2.

28. Using the Hilton—Milner theorem (Theorem 7.10.1), prove that for
v > 7 there is a homomorphism from K,.3 to K,.4 if and only if
w > 2v—4.

29. Let V be a set of size v, let a be a k-subset of V', and suppose 1 € V\a.
Let H denote the set of all k-subsets of V' that contain 1 and at least
one point from «, together with the set «. Show that any two elements
of H have at least one point in common, but the intersection of the
elements of H is empty. (Note that [H| =1+ (2-1) — (“3*7)-)

30. Let V be a set of size v that contains {1,2,3}. Show that the set
of triples that contain at least two elements from {1,2,3} has size

143(v —3). (Note that 3v —9 = (";') = (*3).)

Notes

The theory of the fractional chromatic number provides a convincing
application of linear programming methods to graph theory.

The idea of using the fractional chromatic number to restrict the exis-
tence of homomorphisms is apparently due to Perles. It is an extension of
the “no homomorphism lemma” of Albertson and Collins, which appears
in [1]. The results in Section 7.14 are also based on this paper.

The study of perfect graphs has been driven by two conjectures, due
to Berge. The first, the so-called weak perfect graph conjecture, asserted
that the complement of a perfect graph is perfect. This was first proved
by Lovész, although it was subsequently realized that Fulkerson had come
within easy distance of it. The proof we give is due to Gasparian [7]. The
second conjecture, the strong perfect graph conjecture, asserts that a mini-
mally imperfect graph is either an odd cycle or its complement. This is still
open. Inventing new classes of perfect graphs has been a growth industry
for many years.

The circular chromatic number of a graph, which we introduced in Ex-
ercise 7, was first studied by Vince [12], who called it the star chromatic
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number. See Bondy and Hell [4] and Zhu [14] for further work on this
parameter.

For a treatment of the Erdé6s—Ko—Rado theorem from a more traditional
viewpoint, see [3].

The chromatic number of the Kneser graphs was first determined by
Lovaész (8], thus verifying a 23-year-old conjecture due to Kneser. A shorter
proof was subsequently found by Bdrany [2], and this is what we followed.

The proof of Theorem 7.13.1 is due independently to Perles and Nesetiil.
It is a significant simplification of Welzl’s original argument, in [13].

The strong product X * K, is isomorphic to the lexicographic product
X|[K,] (see Exercise 1.26). Theorem 7.9.2 and Lemma 7.9.3 are due to Stahl
[10]. Section 7.15 is based on Vesztergombi [11], which in turn is strongly
influenced by [10].

Reinfeld [9] uses the result of Lemma 7.15.5 together with the spectrum
of the Kneser graph to find the chromatic polynomial of the graphs C,|[ K]
(see Chapter 15 for the definition of chromatic polynomial).

The truths expressed in Exercise 23 and Exercise 24 were pointed out to
us by Tardif. In Section 9.7 we will present a technique that will allow us
to prove that a(K7.3 0 Cs) = 61. (See Exercise 9.18.) Tardif observes that
this implies that an induced subgraph of K7.3 with a homomorphism into
Cs must have at most 30 vertices; he has an example of such a subgraph
with 29 vertices, and this can be shown by computer to be the largest such
subgraph. For the solution to Exercise 25, see Bondy and Hell [4].

Exercise 26 is based on Garey and Johnson [6]. They use it to show
that if a polynomial-time approximate algorithm for graph colouring ex-
ists, then there is a polynomial-time algorithm for graph colouring. (The
expert consensus is that this is unlikely.) For information related to the
Hilton—Milner theorem (Theorem 7.10.1), see Frankl [5]. Exercise 29 and
Exercise 30 give all the families of k-sets without centres that realize the
Hilton—Milner bound.

It would be interesting to find more tools for determining the existence
of homomorphisms between pairs of Kneser graphs. We personally cannot
say whether there is a homomorphism from Kig.4 to Ki3.5. The general
problem is clearly difficult, since it contains the problem of determining
the chromatic numbers of the Kneser graphs.
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8
Matrix Theory

There are various matrices that are naturally associated with a graph, such
as the adjacency matrix, the incidence matrix, and the Laplacian. One of
the main problems of algebraic graph theory is to determine precisely how,
or whether, properties of graphs are reflected in the algebraic properties of
such matrices.

Here we introduce the incidence and adjacency matrices of a graph, and
the tools needed to work with them. This chapter could be subtitled “Linear
Algebra for Graph Theorists,” because it develops the linear algebra we
need from fundamental results about symmetric matrices through to the
Perron-Frobenius theorem and the spectral decomposition of symmetric
matrices.

Since many of the matrices that arise in graph theory are Ol-matrices,
further information can often be obtained by viewing the matrix over the
finite field GF(2). We illustrate this with an investigation into the binary
rank of the adjacency matrix of a graph.

8.1 The Adjacency Matrix

The adjacency matriz A(X) of a directed graph X is the integer matrix
with rows and columns indexed by the vertices of X, such that the uv-entry
of A(X) is equal to the number of arcs from u to v (which is usually 0 or
1). If X is a graph, then we view each edge as a pair of arcs in opposite
directions, and A(X) is a symmetric 01-matrix. Because a graph has no
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loops, the diagonal entries of A(X) are zero. Different directed graphs on
the same vertex set have different adjacency matrices, even if they are
isomorphic. This is not much of a problem, and in any case we have the
following consolation, the proof of which is left as an exercise.

Lemma 8.1.1 Let X and Y be directed graphs on the same vertexr set.
Then they are isomorphic if and only if there is a permutation matrixz P
such that PTA(X)P = A(Y). O

Since permutation matrices are orthogonal, PT = P!, and so if X and Y’
are isomorphic directed graphs, then A(X) and A(Y) are similar matrices.
The characteristic polynomial of a matrix A is the polynomial

¢(A, ) = det(zI — A),

and we let ¢(X,x) denote the characteristic polynomial of A(X). The
spectrum of a matrix is the list of its eigenvalues together with their multi-
plicities. The spectrum of a graph X is the spectrum of A(X) (and similarly
we refer to the eigenvalues and eigenvectors of A(X) as the eigenvalues and
eigenvectors of X). Lemma 8.1.1 shows that ¢(X,z) = ¢(Y,z) if X and
Y are isomorphic, and so the spectrum is an invariant of the isomorphism
class of a graph.

However, it is not hard to see that the spectrum of a graph does not
determine its isomorphism class. Figure 8.1 shows two graphs that are not
isomorphic but share the characteristic polynomial

(x+2)(z + 1) —1)%(z* - 22 — 6),
and hence have spectrum
{-2, 1@ 1@ 117}

(where the superscripts give the multiplicities of eigenvalues with multi-
plicity greater than one). Two graphs with the same spectrum are called
cospectral.

Figure 8.1. Two cospectral graphs

The graphs of Figure 8.1 show that the valencies of the vertices are not
determined by the spectrum, and that whether a graph is planar is not
determined by the spectrum. In general, if there is a cospectral pair of
graphs, only one of which has a certain property P, then P cannot be
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determined by the spectrum. Such cospectral pairs have been found for a
large number of graph-theoretical properties.

However, the next result shows that there is some useful information that
can be obtained from the spectrum. A walk of length r in a directed graph
X is a sequence of vertices

Vg ~ Uy ~ -~ Up.

A walk is closed if its first and last vertices are the same. This definition is
similar to that of a path (Section 1.2), with the important difference being
that a walk is permitted to use vertices more than once.

Lemma 8.1.2 Let X be a directed graph with adjacency matriz A. The
number of walks from u to v in X with length v is (A" )yw.

Proof. This is easily proved by induction on r, as you are invited to do.O

The trace of a square matrix A is the sum of its diagonal entries and
is denoted by tr A. The previous result shows that the number of closed
walks of length r in X is tr A", and hence we get the following corollary:

Corollary 8.1.3 Let X be a graph with e edges and t triangles. If A is the
adjacency matriz of X, then

a) trdA =0,

( )

b) tr A% = 2¢

( )

c) tr A% = 6t. O
(c)

Since the trace of a square matrix is also equal to the sum of its eigen-
values, and the eigenvalues of A" are the rth powers of the eigenvalues of
A, we see that tr A" is determined by the spectrum of A. Therefore, the
spectrum of a graph X determines at least the number of vertices, edges,
and triangles in X. The graphs K; 4 and K3 U Cy are cospectral and do
not have the same number of 4-cycles, so it is difficult to extend these
observations.

8.2 The Incidence Matrix

The incidence matriz B(X) of a graph X is the 0l-matrix with rows and
columns indexed by the vertices and edges of X, respectively, such that the
uf-entry of B(X) is equal to one if and only if the vertex u is in the edge
f. If X has n vertices and e edges, then B(X) has order n x e.

The rank of the adjacency matrix of a graph can be computed in poly-
nomial time, but we do not have a simple combinatorial expression for it.
We do have one for the rank of the incidence matrix.
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Theorem 8.2.1 Let X be a graph with n vertices and co bipartite con-
nected components. If B is the incidence matriz of X, then its rank is
giwen by rk B = n — ¢gp.

Proof. We shall show that the null space of B has dimension cg, and hence
that tk B = n — co. Suppose that z is a vector in R™ such that z7 B = 0. If
uv is an edge of X, then z, + z, = 0. It follows by an easy induction that if
u and v are vertices of X joined by a path of length r, then z,, = (—1)"z,.
Therefore, if we view z as a function on V (X)), it is identically zero on any
component of X that is not bipartite, and takes equal and opposite values
on the two colour classes of any bipartite component. The space of such
vectors has dimension cg. O

The inner product of two columns of B(X) is nonzero if and only if the
corresponding edges have a common vertex, which immediately yields the
following result.

Lemma 8.2.2 Let B be the incidence matriz of the graph X, and let L be
the line graph of X. Then BT B = 21 + A(L). O

If X is a graph on n vertices, let A(X) be the diagonal n X n matrix with
rows and columns indexed by V(X) with uu-entry equal to the valency
of vertex u. The inner product of any two distinct rows of B(X) is equal
to the number of edges joining the corresponding vertices. Thus it is zero
or one according as these vertices are adjacent or not, and we have the
following;:

Lemma 8.2.3 Let B be the incidence matriz of the graph X. Then BBT =
A(X) + A(X). O

When X is regular the last two results imply a simple relation between the
eigenvalues of L(X) and those of X, but to prove this we also need the
following result.

Lemma 8.2.4 If C and D are matrices such that CD and DC are both
defined, then det(I — CD) = det(I — DC).

Proof. If
I C I 0
x=(p 7) v=(5 1)

[-cD C e
= ("7 0) vx=(0 %)

and since det XY = det Y X, it follows that det(I — CD) = det(I — DC).0

This result implies that det(I — z7!CD) = det(I — z~1DC), from which
it follows that CD and DC have the same nonzero eigenvalues with the
same multiplicities.

then
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Lemma 8.2.5 Let X be a regular graph of valency k with n vertices and
e edges and let L be the line graph of X. Then

&(L,x)=(z+2) "d(X,z —k+2).

Proof. Substituting C = =BT and D = B into the previous lemma we
get

det (I. — 2 'BTB) = det (I, — 2 'BB"),
whence
det (zI. — BT B) = z° " det (z1, — BB”).
Noting that A(X) = kI and using Lemma 8.2.2 and Lemma 8.2.3, we get
det((z — 2)I. — A(L)) = ¢ " det((z — k)I,, — A(X)),
and so
¢(L,z —2) =z "9(X,z — k),

whence our claim follows. ]

8.3 The Incidence Matrix of an Oriented Graph

An orientation of a graph X is the assignment of a direction to each edge;
this means that we declare one end of the edge to be the head of the edge
and the other to be the tail, and view the edge as oriented from its tail
to its head. Although this definition should be clear, we occasionally need
a more formal version. Recall that an arc of a graph is an ordered pair of
adjacent vertices. An orientation of X can then be defined as a function o
from the arcs of X to {—1,1} such that if (u,v) is an arc, then

o(u,v) = —o(v,u).

If o(u,v) = 1, then we will regard the edge uv as oriented from tail u to
head wv.

An oriented graph is a graph together with a particular orientation. We
will sometimes use X° to denote the oriented graph determined by the
specific orientation . (You may, if you choose, view oriented graphs as a
special class of directed graphs. We tend to view them as graphs with extra
structure.) Figure 8.2 shows an example of an oriented graph, using arrows
to indicate the orientation.

The incidence matriz D(X°) of an oriented graph X7 is the {0, £1}-
matrix with rows and columns indexed by the vertices and edges of X,
respectively, such that the uf-entry of D(X?) is equal to 1 if the vertex u
is the head of the edge f, —1 if u is the tail of f, and 0 otherwise. If X
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3 4

Figure 8.2. An oriented graph

has n vertices and e edges, then D(X?) has order n x e. For example, the
incidence matrix of the graph of Figure 8.2 is

-1 1 0 o 0 0
1 0 -1 1 0 0
0 O 1 0 1 -1
0o 0 0 0 -1 0
0 -1 0 -1 0 1

Although there are many different ways to orient a given graph, many
of the results about oriented graphs are independent of the choice of
orientation. For example, the next result shows that the rank of the in-
cidence matrix of an oriented graph depends only on X, rather than on the
particular orientation given to X.

Theorem 8.3.1 Let X be a graph with n vertices and ¢ connected compo-
nents. If o is an orientation of X and D is the incidence matriz of X7,
thentk D = n — c.

Proof. We shall show that the null space of D has dimension ¢, and hence
that rk D = n — c. Suppose that z is a vector in R™ such that z7 B = 0. If
uv is an edge of X, then z, — 2z, = 0. Therefore, if we view z as a function
on V(X), it is constant on any connected component of X. The space of
such vectors has dimension c. a

We note the following analogue to Lemma 8.2.3.

Lemma 8.3.2 If o is an orientation of X and D is the incidence matriz
of X7, then DDT = A(X) — A(X). o

If X is a plane graph, then each orientation of X determines an orientation
of its dual. This orientation is obtained by viewing each edge of X* as
arising from rotating the corresponding edge of X through 90° clockwise
(as in Figure 8.3). We will use o to denote the orientation of both X and
X*.
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Figure 8.3. Orienting the edges of the dual

Lemma 8.3.3 Let X and Y be dual plane graphs, and let o be an orien-
tation of X. If D and E are the incidence matrices of X° and Y, then
DET =0.

Proof. If u is an edge of X and F' is a face, there are exactly two edges
on u and in F'. Denote them by ¢ and h and assume, for convenience, that
g precedes h as we go clockwise around F. Then the uF-entry of DE7T is
equal to

DyyEly + DunElp.

If the orientation of the edge g is reversed, then the value of the product
DugEgF does not change. Hence the value of the sum is independent of the
orientation ¢, and so we may assume that g has head u and that f has tail
u. This implies that the edges in Y corresponding to g and h both have
head F', and a simple computation now yields that the sum is zero. O

8.4 Symmetric Matrices

In this section we review the main results of the linear algebra of symmetric
matrices over the real numbers, which form the basis for the remainder of
this chapter.

Lemma 8.4.1 Let A be a real symmetric matriz. If v and v are
eigenvectors of A with different eigenvalues, then u and v are orthogonal.

Proof. Suppose that Au = Ay and Av = 7v. As A is symmetric, u? Av =
(vT Au)T. However, the left-hand side of this equation is 7uTv and the
right-hand side is AuTv, and so if 7 # X, it must be the case that u”v = 0.
O

Lemma 8.4.2 The eigenvalues of a real symmetric matriz A are real
numbers.

Proof. Let u be an eigenvector of A with eigenvalue A. Then by taking
the complex conjugate of the equation Au = \u we get AZ = A7, and
so u is also an eigenvector of A. Now, by definition an eigenvector is not
zero, so ul'@ > 0. By the previous lemma, v and % cannot have different
eigenvalues, so A = X, and the claim is proved. 0O
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We shall now prove that a real symmetric matrix is diagonalizable. For
this we need a simple lemma that expresses one of the most important
properties of symmetric matrices. A subspace U is said to be A-invariant
if Aue U forallu e U.

Lemma 8.4.3 Let A be a real symmetric n x n matriz. If U is an A-
invariant subspace of R™, then UL is also A-invariant.

Proof. For any two vectors u and v, we have
vT (Au) = (Av)Tw.

If w € U, then Au € U; hence if v € U+, then vT Au = 0. Consequently,
(Av)Tu = 0 whenever v € U and v € U'. This implies that Av € U+
whenever v € U, and therefore U' is A-invariant. O

Any square matrix has at least one eigenvalue, because there must be at
least one solution to the polynomial equation det(x] — A) = 0. Hence a real
symmetric matrix A has at least one real eigenvalue, 6 say, and hence at
least one real eigenvector (any vector in the kernel of A—6I, to be precise).
Our next result is a crucial strengthening of this fact.

Lemma 8.4.4 Let A be an n x n real symmetric matriz. If U is a nonzero
A-invariant subspace of R™, then U contains a real eigenvector of A.

Proof. Let R be a matrix whose columns form an orthonormal basis for
U. Then, because U is A-invariant, AR = RB for some square matrix B.
Since RTR = I, we have

RTAR = RTRB = B,

which implies that B is symmetric, as well as real. Since every symmetric
matrix has at least one eigenvalue, we may choose a real eigenvector u of
B with eigenvalue A\. Then ARu = RBu = ARu, and since u 7 0 and
the columns of R are linearly independent, Ru # 0. Therefore, Ru is an
eigenvector of A contained in U. O

Theorem 8.4.5 Let A be a real symmetric n x n matriz. Then R™ has an
orthonormal basis consisting of eigenvectors of A.

Proof. Let {ui,...,un} be an orthonormal (and hence linearly indepen-
dent) set of m < n eigenvectors of A, and let M be the subspace that
they span. Since A has at least one eigenvector, m > 1. The subspace M
is A-invariant, and hence M~ is A-invariant, and so M+ contains a (nor-
malized) eigenvector uy,+1. Then {u1, ..., m, Um+1} is an orthonormal set
of m + 1 eigenvectors of A. Therefore, a simple induction argument shows
that a set consisting of one normalized eigenvector can be extended to an
orthonormal basis consisting of eigenvectors of A. ]
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Corollary 8.4.6 If A is an n X n real symmetric matriz, then there are
matrices L and D such that LYL = LLT = I and LALT = D, where D is
the diagonal matriz of eigenvalues of A.

Proof. Let L be the matrix whose rows are an orthonormal basis of eigen-
vectors of A. We leave it as an exercise to show that L has the stated
properties. O

8.5 Eigenvectors

Most introductory linear algebra courses impart the belief that the way to
compute the eigenvalues of a matrix is to find the zeros of its characteristic
polynomial. For matrices with order greater than two, this is false. Gener-
ally, the best way to obtain eigenvalues is to find eigenvectors: If Ax = 6z,
then 6 is an eigenvalue of A.

When we work with graphs there is an additional refinement. First, we
stated in Section 8.1 that the rows and columns of A(X) are indexed by
the vertices of X. Formally, this means we are viewing A(X) as a linear
mapping on RY(X) | the space of real functions on V(X) (rather than on
the isomorphic vector space R™, where n = |V(X)|). If f € RV(X) and
A = A(X), then the image Af of f under A is given by

since A is a 0l-matrix, it follows that

(AN)w) = fv).

(e

In words, the value of Af at u is the sum of the values of f on the neighbours
of u. If we suppose that f is an eigenvector of A with eigenvalue 4, then

Af =46f, and so
0f(u) =Y f(v).

U

In words, the sum of the values of f on the neighbours of u is equal to
6 times the value of f at u. Conversely, any function f that satisfies this
condition is an eigenvector of X. Figure 8.4 shows an eigenvector of the
Petersen graph. It can readily be checked that the sum of the values on
the neighbours of any vertex is equal to the value on that vertex; hence we
have an eigenvector with eigenvalue one. (The viewpoint expressed in this
paragraph is very fruitful, and we will make extensive use of it.)

Now, we will find the eigenvalues of the cycle C,,. Take the vertex set of
Cr to be {0,1,...,n — 1}. Let 7 be an nth root of unity (so 7 is probably
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Figure 8.4. An eigenvector of P with eigenvalue 1

not a real number) and define f(u) := 7*. Then for all vertices u,

S @) = ()

v~u

and therefore 77! 4 7 is an eigenvalue of C,,. Note that this is real, even if
T is not. By varying our choice of 7 we find the n eigenvalues of C),. This
argument is easily extended to any circulant graph.

By taking 7 = 1 we see that the vector with all entries equal to one is an
eigenvector of C,, with eigenvalue two. We shall denote this eigenvector by
1. It is clear that 1 is an eigenvector of a graph X with eigenvalue k if and
only if X is regular with valency k. We can say more about regular graphs.

Lemma 8.5.1 Let X be a k-regular graph on n vertices with eigenvalues
k, 02,...,0,. Then X and its complement X have the same eigenvectors,
and the eigenvalues of X aren—k—1, -1 —03,...,—1 —6,.

Proof. The adjacency matrix of the complement X is given by
AX)=J~1-A(X),

where J is the all-ones matrix. Let {1, uz,...,un} be an orthonormal basis
of eigenvectors of A(X). Then 1 is an eigenvector of X with eigenvalue
n — k — 1. For 2 < i < n, the eigenvector u; is orthogonal to 1, and so

Therefore, u; is an eigenvector of A(X) with eigenvalue —1 — 6;. o

Finally, suppose that X is a semiregular bipartite graph with bipartition
V(X) =V1 UV, and let k and £ be the valencies of the vertices in V; and
Va2, respectively. Assume that u; is a vertex with valency k, and us is a

vertex with valency £. We look for an eigenvector f that is constant on the
two parts of the bipartition. If f is such an eigenvector and has eigenvalue
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6, then
0f(ur) = kf(uz),  0f(ua) = £f(w1)-

Because an eigenvector is a nonzero vector, we can multiply the two
equations just given to obtain

6% = kt.
Thus, if @ = £vk¢, then defining f by

1, ifu € vy,
f(“)“{a/k, if u € Va,

yields two eigenvectors of X.

We comment on a feature of the last example. If A is the adjacency
matrix of a graph X, and f is a function on V(X), then so is Af. If X is a
semiregular bipartite graph, then the space of functions on V(X) that are
constant on the two parts of the bipartition is A-invariant. (Indeed, this is
equivalent to the fact that X is bipartite and semiregular.) By Lemma 8.4.4,
an A-invariant subspace must contain an eigenvector of A; in the above
example this subspace has dimension two, and the eigenvector is easy to
find. In Section 9.3 we introduce and study equitable partitions, which
provide many further examples of A-invariant subspaces.

8.6 Positive Semidefinite Matrices

A real symmetric matrix A is positive semidefinite if uT Au > 0 for all
vectors u. It is positive definite if it is positive semidefinite and u? Au = 0
if and only if u = 0. (These terms are used only for symmetric matrices.)
Observe that a positive semidefinite matrix is positive definite if and only
if it is invertible.

There are a number of characterizations of positive semidefinite matrices.
The first we offer involves eigenvalues. If « is an eigenvector of A with
eigenvalue 6, then

uT Ay = 6uTu,

and so we see that a real symmetric matrix is positive semidefinite if and
only if its eigenvalues are nonnegative.

Our second characterization involves a factorization. If A = BT B for
some matrix B, then

u? Au = wT BT Bu = (Bu)” Bu > 0,

and therefore A is positive semidefinite. The Gram matriz of vectors
Ui, .., U, from R™ is the n X n matrix G such that G;; = uzTu, Note
that BT B is the Gram matrix of the columns of B, and that any Gram
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matrix is positive semidefinite. The next result shows that the converse is
true.

Lemma 8.6.1 If A is a positive semidefinite matriz, then there is a matriz
B such that A= BT B.

Proof. Since A is symmetric, there is a matrix L such that
A=LTAL,

where A is the diagonal matrix with ith entry equal to the ith eigenvalue
of A. Since A is positive semidefinite, the entries of A are nonnegative, and
so there is a diagonal matrix D such that D? = A. If B = LT DL, then
B = BT and A = B? = BT B, as required. ]

We can now establish some interesting results about the eigenvalues of
graphs, the first being about line graphs.

Let Omax(X) and 00 (X) respectively denote the largest and smallest
eigenvalues of A(X).

Lemma 8.6.2 If L is a line graph, then Oy, (L) > —2.

Proof. If L is the line graph of X and B is the incidence matrix of X, we
have

A(L)+2I = BTB.

Since BT B is positive semidefinite, its eigenvalues are nonnegative and all
eigenvalues of BT B — 21 are at least —2. o

What is surprising about this lemma is how close it comes to
characterizing line graphs. We will study this question in detail in
Chapter 12.

Lemma 8.6.3 Let Y be an induced subgraph of X. Then
Omin(X) S amin(y) S Gmax(Y) S gmax(X)-

Proof. Let A be the adjacency matrix of X and abbreviate 0,,x(X) to
6. The matrix 6 — A has only nonnegative eigenvalues, and is therefore
positive semidefinite. Let f be any vector that is zero on the vertices of X
not in Y, and let fy be its restriction to V(Y). Then

0.< fT(6T — A)f = FE(OI - A(Y))fy,

from which we deduce that 6I — A(Y') is positive semidefinite. Hence
Omax(Y) < 0. A similar argument applied to A — 60, (X)I yields the second
claim of the lemma. |

It is actually true that if Y is any subgraph of X, and not just an induced
subgraph, then On.x(Y) < Omax(X). Furthermore, when Y is a proper
subgraph, equality can hold only when X is not connected. We return
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to this when we discuss the Perron—Frobenius theorem in the next two
sections.

Finally, we clear a debt incurred in Section 5.10. There we claimed that
the matrix

(r= NI+ AJ

is invertible when r > A > 0. Note that (r — A)I is positive definite: All
its eigenvalues are positive and A\J = A117 is positive semidefinite. But
the sum of a positive definite and a positive semidefinite matrix is positive
definite, and therefore invertible.

8.7 Subharmonic Functions

In this section we introduce subharmonic functions, and use them to
develop some properties of nonnegative matrices. We will use similar tech-
niques again in Section 13.9, when we show how linear algebra can be used
to construct drawings of planar graphs.

If A is a square matrix, then we say that a nonnegative vector = is A-
subharmonic for A if x # 0 and Az > Az. When the value of ) is irrelevant,
we simply say that z is subharmonic. We note one way that subharmonic
vectors arise. Let |A| denote the matrix obtained by replacing each entry
of A with its absolute value. If z is an eigenvector for A with eigenvalue 6,
then

1] |2:] = 18] = [(Az)i| = | Y Aija| <Y Ayl |y,
i i

from which we see that |z| is |8|-subharmonic for |A|.

Let A be an n X n real matrix. The underlying directed graph of A has
vertex set {1,...,n}, with an arc from vertex ¢ to vertex j if and only if
A;; # 0. (Note that this directed graph may have loops.) A square matrix
is trreducible if its underlying graph is strongly connected.

Lemma 8.7.1 Let A be an n X n nonnegative irreducible matriz. Then
there is a mazimum real number p such that there is a p-subharmonic vector
for A. Moreover, any p-subharmonic vector x is an eigenvector for A with
eigenvalue p, and all entries of © are positive.

Proof. Let

F(z) = min (Az);
Lz A0 X

be a function defined on the set of nonnegative vectors, and consider the
values of F' on the vectors in the set

S={w:x20, lTx:I}.
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It is clear that any nonnegative vector x is F'(x)-subharmonic, and so we
wish to show that there is some vector y € S such that F' attains its
maximum on y. Since S is compact, this would be immediate if F' were
continuous on S, but this is not the case at the boundary of S. As A is
irreducible, Lemma 8.1.2 shows that the matrix (I + A)"~! is positive.
Therefore, the set

T =(I+A)"'S

contains only positive vectors, and F' is continuous on T'. Since T is also
compact, it follows that F' attains its maximum value p at a point z € T'.
If we set

z
175’
then y € § and F(y) = F(z) = p. Moreover, for any vector z we have

F(I + A" (z)) > F(a),

y:

and therefore by the choice of z, there is no vector z € S with F(z) > p.
We now prove that any p-subharmonic vector is an eigenvector for A,
necessarily with eigenvalue p. If z is p-subharmonic, define o(x) by

o(x) ={i: (Ax); > pz;}.

Clearly, = is an eigenvector if and only if o(z) = §. Assume by way of
contradiction that o(z) # . The support of a vector v is the set of nonzero
coordinates of v and is denoted by supp(v). Let h be a nonnegative vector
with support equal to o(x) and consider the vector y = x + eh.

We have

(Ay)s — pys = (Azx); — px; + €(Ah); — eph;.

If i € o(x), then (Ax); > pz;, and so for all sufficiently small values of e,
the right side of (8.7) is positive. Hence

(Ay)i > pyi-
If i ¢ o(z), then (Ax); = pz; and h; = 0, so (8.7) yields that
(Ay)i — pyi = e(Ah);.

Provided that € > 0, the right side here is nonnegative. Since A is irre-
ducible, there is at least one value of ¢ not in o(z) such that (Ah); > 0,
and hence o(y) properly contains o(z).

If |o(y)| = n, it follows that y is p’-subharmonic, where p’ > p, and this
is a contradiction to our choice of p. Otherwise, y is p-subharmonic but
lo(y)] > |o(z)|, and we may repeat the above argument with y in place
of z. After a finite number of iterations we will arrive at a p’-subharmonic
vector, with p’ > p, again a contradiction.
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Finally, we prove that if z is p-subharmonic, then z > 0. Suppose instead
that 2, = 0 for some 4. Because o(x) = 0, it follows that (Az); = 0, but

(ACL‘)z = ZAijl‘j,
J

and since A > 0, this implies that z; = 0 if A;; # 0. Since A is irreducible,
a simple induction argument yields that all entries of x must be zero, which
is the required contradiction. Therefore, x must be positive. ]

The spectral radius p(A) of a matrix A is the maximum of the moduli of
its eigenvalues. (If A is not symmetric, these eigenvalues need not be real
numbers.) The spectral radius of a matrix need not be an eigenvalue of it,
e.g., if A= —1I, then p(A) = 1. One consequence of our next result is that
the real number p from the previous lemma is the spectral radius of A.

Lemma 8.7.2 Let A be an n X n nonnegative irreducible matriz and let p
be the greatest real number such that A has a p-subharmonic vector. If B
is an n X n matriz such that |B| < A and Bx = 0z, then |0] < p. If |0] = p,
then |B| = A and |z| is an eigenvector of A with eigenvalue p.

Proof. If Bx = 0z, then
|0l|x| = |0z| = |Bz| < |B| |z| < Alx|.

Hence [z]| is |f|-subharmonic for A, and so |0 < p. If |f] = p, then A|z| =
|B||z| = p|z|, and by the previous lemma, || is positive. Since A —|B| > 0
and (A — |BJ)|z| = 0, it follows that A = |B]. o

Lemma 8.7.3 Let A be a nonnegative irreducible n xn matriz with spectral
radius p. Then p is a simple eigenvalue of A, and if x is an eigenvector
with eigenvalue p, then all entries of x are nonzero and have the same sign.

Proof. The p-eigenspace of A is 1-dimensional, for otherwise we could
find a p-subharmonic vector with some entry equal to zero, contradicting
Lemma 8.7.1. If z is an eigenvector with eigenvalue p, then by the previous
lemma, |z| is a positive eigenvector with the same eigenvalue. Thus |z} is a
multiple of z, which implies that all the entries of x have the same sign.
Since the geometric multiplicity of p is 1, we see that K = ker(A — pI)
has dimension 1 and the column space C of A — pI has dimension n — 1. If
C contains z, then we can find a vector y such that z = (4 — pI)y. For any
k, we have (A — pI)(y + kx) = z, and so by taking k sufficiently large, we
may assume that y is positive. But then y is p-subharmonic and hence is a
multiple of x, which is impossible. Therefore, we conclude that K NC = 0,
and that R™ is the direct sum of K and C. Since K and C are A-invariant,
this implies that the characteristic polynomial ¢(A,t) of A is the product
of t — p and the characteristic polynomial of A restricted to C. As z is not
in C, all eigenvectors of A contained in C have eigenvalue different from
p, and so we conclude that p is a simple root of ¢(A,t), and hence has
algebraic multiplicity one. a
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8.8 The Perron-Frobenius Theorem

The Perron—Frobenius theorem is the most important result on the
eigenvalues and eigenvectors of nonnegative matrices.

Theorem 8.8.1 Suppose A is a real nonnegative n X n matriz whose
underlying directed graph X is strongly connected. Then:

(a) p(A) is a simple eigenvalue of A. If x is an eigenvector for p, then
no entries of x are zero, and all have the same sign.

(b) Suppose A1 is a real nonnegative n x n matric such that A — Ay
is nonnegative. Then p(A;) < p(A), with equality if and only if
A = A

(c) IfO is an eigenvalue of A and |0] = p(A), then 6/p(A) is an mth root
of unity and e*™"/™p(A) is an eigenvalue of A for all r. Further,
all cycles in X have length divisible by m. a

The first two parts of this theorem follow from the results of the previous
section. We discuss part (c), but do not give a complete proof of it, since
we will not need its full strength.

Suppose A is the adjacency matrix of a connected graph X, with spectral
radius p, and assume that 6 is an eigenvalue of A such that || = p. If § # p,
then § = —p, and so 8/p is a root of unity. If z5 and z; are eigenvectors with
eigenvalues 6 and p, respectively, then they are linearly independent, and
therefore the eigenspace of A? with eigenvalue p? has dimension at least
two. However, it is easy to see that p? is the spectral radius of A%2. As A2
is nonnegative, it follows from part (a) of the theorem that the underlying
graph of A2 cannot be connected, and given this, it is easy to prove that
X must be bipartite.

It is not hard to see that if X is bipartite, then there is a graph isomorphic
to X with adjacency matrix of the form

0 B
A= (BT 0 ) )
for a suitable 01-matrix B. If the partitioned vector (z,y) is an eigenvector
of A with eigenvalue 8, then it is easy to verify that (z, —y) is an eigenvector

of A with eigenvalue —0. It follows that # and —6 are eigenvalues with the
same multiplicity. Thus we have the following:

Theorem 8.8.2 Let A be the adjacency matriz of the graph X, and let p
be its spectral radius. Then the following are equivalent:

(a) X is bipartite.

(b) The spectrum of A is symmetric about the origin, i.e., for any 6, the
multiplicities of 8 and —0 as eigenvalues of A are the same.

(¢) —p is an eigenvalue of A. o
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There are two common applications of the Perron-Frobenius theorem
to connected regular graphs. Let X be a connected k-regular graph with
adjacency matrix A. Then the spectral radius of A is the valency k with
corresponding eigenvector 1, which implies that every other eigenspace of
A is orthogonal to 1. Secondly, the graph X is bipartite if and only if —k
is an eigenvalue of A.

8.9 The Rank of a Symmetric Matrix

The rank of a matrix is a fundamental algebraic concept, and so it is natural
to ask what information about a graph can be deduced from the rank of its
adjacency matrix. In contrast to what we obtained for the incidence matrix,
there is no simple combinatorial expression for the rank of the adjacency
matrix of a graph. This section develops a number of preliminary results
about the rank of a symmetric matrix that will be used later.

Theorem 8.9.1 Let A be a symmetric matriz of rank r. Then there is a
permutation matriz P and a principal r X v submatriz M of A such that

1

T —
P AP‘(R

> M(I RT).

Proof. Since A has rank r, there is a linearly independent set of r rows
of A. By symmetry, the corresponding set of columns is also linearly inde-
pendent. The entries of A in these rows and columns determine an r X r
principal submatrix M. Therefore, there is a permutation matrix P such
that

M N T)

TAP —
PAP_<N %

Since the first » rows of this matrix generate the row space of PTAP, we
have that N = RM for some matrix R, and hence H = RNT = RMR”.

Therefore,
T [ M MR (1 T
P AP_(RM RMRT>—<R>M(I RY)

as claimed. O
We note an important corollary of this result.
Corollary 8.9.2 If A is a symmetric matriz of rank r, then it has a

principal r X v submatriz of full rank. ]

If a matrix A has rank one, then it is necessarily of the form A = zy” for
some nonzero vectors x and y. It is not too hard to see that if a matrix
can be written as the sum of r rank-one matrices. then it has rank at most
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r. However, it is less well known that a matrix A has rank r if and only if
it can be written as the sum of r rank-one matrices, but no fewer. If A is
symmetric, the rank-one matrices in this decomposition will not necessarily
be symmetric. Instead, we have the following.

Lemma 8.9.3 Suppose A is a symmetric matriz with rank r over some
field. Then there is an integer s such that A is the sum of r — 2s symmetric
matrices with rank one and s symmetric matrices with rank two.

Proof. Suppose A is symmetric. First we show that if A has a nonzero
diagonal entry, then it is the sum of a symmetric rank-one matrix and a
symmetric matrix of rank r — 1. Let e; denote the ith standard basis vector,
and suppose that a = el Ae; # 0. Let z = Ae; and define B by

B:=A-a 'zz7.

Then B is symmetric, and o~ 'zz” has rank one. Clearly, Bu = 0 whenever
Au = 0, and so the null space of B contains the null space of A. This
inclusion is proper because e; lies in the null space of B, but not A, and so
rk(B) < rk(A) — 1. Since the column space of A is spanned by the columns
of B together with the vector =, we conclude that rk(B) = rk(A) — 1.

Next we show that if there are two diagonal entries A;; = A;; = 0
with A;; # 0, then A is the sum of a symmetric rank-two matrix and a
symmetric matrix of rank r — 2. So suppose that e} Ae; = e}"Ae]- = 0 but
that 3 = el Ae; # 0. Let y = Ae;, z = Ae; and define B by

B:=A— 7 y2T + 2y7).

Then B is symmetric and 87! (yz7 + 2y”) has rank two. The null space of
B contains the null space of A. The independent vectors e; and e; lie in the
null space of B but not in the null space of A, and so rk(B) < rk(A) — 2.
Since the column space of A is spanned by the columns of B together with

the vectors y and z, we conclude that rk(B) =rk(A) — 2.
Therefore, by induction on the rank of A, we may write

r—2s s
A=D ozl +3 B e + 2y, (8.1)
=1 j=1

and thus we have expressed A as a sum of s symmetric matrices with rank
two and r — 2s with rank one. 0O

Corollary 8.9.4 Let A be a real symmetric n x n matriz of rank r. Then
there is an n X r matriz C of rank v such that

A=CNCT,

where N is a block-diagonal r x r matrix with r — 2s diagonal entries equal
to 1, and s blocks of the form

(1)
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Proof. We note that

s ) =ty ) (] ) 57y 2T

Therefore, if we take C' to be the n x r matrix with columns /| '|z;,
ﬁj‘lyj, and z;, then

A=CNCT,

where N is a block-diagonal matrix, with each diagonal block one of the

matrices
(0),  (+1), ((1) (1))

The column space of A is contained in the space spanned by vectors x;,
y; and z; in (8.1); because these two spaces have the same dimension, we
conclude that these vectors are a basis for the column space of A. Therefore,
tk(C) =r. o

The previous result is an application of Lemma 8.9.3 to real symmetric
matrices. In the next section we apply it to symmetric matrices over GF'(2).

8.10 The Binary Rank of the Adjacency Matrix

In general, there is not a great deal that can be said about a graph given the
rank of its adjacency matrix over the real numbers. However, we can say
considerably more if we consider the binary rank of the adjacency matrix,
that is, the rank calculated over GF(2). If X is a graph, then rko(X)
denotes the rank of its adjacency matrix over GF(2).

First we specialize the results of the previous section to the binary case.

Theorem 8.10.1 Let A be a symmetric n X n matriz over GF(2) with
zero diagonal and binary rank m. Then m is even and there is an m X n
matriz C' of rank m such that

A=CNCT,

where N is a block diagonal matriz with m/2 blocks of the form

(1)

Proof. Over GF(2), the diagonal entries of the matrix yzT + zy” are
zero. Since all diagonal entries of A are zero, it follows that the algorithm
implicit in the proof of Lemma 8.9.3 will express A as a sum of symmetric
matrices with rank two and zero diagonals. Therefore, Lemma 8.9.3 implies
that rk(A) is even. The proof of Corollary 8.9.4 now yields the rest of the
theorem. a
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Next we develop a graphical translation of the procedure we used to
prove Lemma 8.9.3. If u € V(X), the local complement o,(X) of X at u is
defined to be the graph with the same vertex set as X such that:

(a) If v and w are distinct neighbours of u, then they are adjacent in Y’
if and only if they are not adjacent in X.

(b) If v and w are distinct vertices of X, and not both neighbours of u,
then they are adjacent in Y if and only if they are adjacent in X.

Less formally, we get Y from X by complementing the neighbourhood
X1(u) of u in X. If we view o, as an operator on graphs with the same
vertex set as X, then o2 is the identity map. If u and v are not adjacent
in X, then 0,0,(X) = 0,0,(X). We leave the proof of this as an exercise,
because our concern will be with the case where u and v are adjacent. One
consequence of the following theorem is that (cruav)?’ is the identity map if

u and v are adjacent.

Theorem 8.10.2 Let X be a graph and suppose u and v are neighbours in
X. Then 04,0,04,(X) = 0,0,0,(X). If Y is the graph obtained by deleting
u and v from 0,0,0,(X), then rka(X) = rko2(Y) + 2.

Proof. Let A be the adjacency matrix of X. Define a to be the character-
istic vector of the set of neighbours of u that are not adjacent to v. Define
b to be the characteristic vector of the set of the neighbours of v, other
than u, that are not adjacent to u. Let ¢ denote the characteristic vector
of the set of common neighbours of v and v. Finally, let e,, and e, denote
the characteristic vectors of u and v.

The characteristic vector of the neighbours of u is a + ¢+ e,, and so the
off-diagonal entries of A(o, (X)) are equal to those of

A=A+ (a+ct+e)atcte)T.

Similarly, as a + b + e,, is the characteristic vector of the neighbours of v
in 0,(X), the off-diagonal entries of A(c,0,(X)) are equal to those of

Ay =A1+(a+b+e)(a+b+e,)T.

Finally, the characteristic vector of the neighbours of u in ¢,0,(X) is b+
¢+ e,, and so the off-diagonal entries of A(0,0,0,(X)) are equal to those
of

Az =As+ (b+c+e,)(b+c+e,)T.
After straightforward manipulation we find that
As = A+ ab? +baT + act + cal + beT + cbT
+ (a+b)(ey +e)T + (ew +eu)(a+b)T +eyel.

The only nonzero diagonal entry of this matrix is the uu-entry, and so we
conclude that A(o,0,0,(X)) = A3 + eyel. The previous equation shows
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that A3 +eyel is unchanged if we swap a with b and e, with e,. Therefore,
00,04 (X) = 0,0,0,(X), as claimed.

The u-column of A is a + ¢ + e,, the v-column of A is b + ¢+ e,, and
el Ae, = 1. Therefore, the proof of Lemma 8.9.3 shows that the rank of
the matrix

A+ (a+cte)b+cte)T +(b+ecte)atcte)

is equal to rkg(A) — 2. The u- and v-rows and columns of this matrix are
zero, and so if A’ is the principal submatrix obtained by deleting the u-
and v-rows and columns, then rko(A’) = rko(A) — 2.

To complete the proof we note that since

(@+e)b+o)" + (b +c)(a+b)7"
= ab’ +ba” + ac” + caT + bel + b7,

it follows that the matrix obtained by deleting the u- and v-rows and
columns from Aj is equal to A’. This matrix is the adjacency matrix of Y,
and hence the second claim follows. O

We will say that the graph Y in the theorem is obtained by rank-two
reduction of X at the edge uwv.

By way of example, if X is the cycle C,, and n > 5, then the rank-two
reduction of X at an edge is C,_3. When n = 4 it is 2K, and when n =3
it is K. It follows that rky(Cy) is n — 2 when n is even and n — 1 when n
is odd. Clearly, we can use Theorem 8.10.2 to determine the binary rank of
the adjacency matrix of any graph, although it will not usually be as easy
as it was in this case.

8.11 The Symplectic Graphs

If a graph X has two vertices with identical neighbourhoods, then deleting
one of them does not alter its rank. Conversely, we can duplicate a vertex
arbitrarily often without changing the rank of a graph. Similarly, isolated
vertices can be added or deleted at will without changing the rank of X.
Recall that a graph is reduced if it has no isolated vertices and the neigh-
bourhoods of distinct vertices are distinct. It is clear that every graph is a
straightforward modification of a reduced graph of the same rank. We are
going to show that there is a unique maximal graph with binary rank 2r
that contains every reduced graph of binary rank at most 2r as an induced
subgraph.

Suppose that X is a reduced graph with binary rank 2r. Relabelling
vertices if necessary, Theorem 8.9.1 shows that the adjacency matrix of X
can be expressed in the form

A(X) = (é)M(I RT),
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where M is a 2r x 2r matrix of full rank. Therefore, using Lemma 8.9.3 we
see that

A(X) = (é) CNCT(I RT),

where N is a block diagonal matrix with r blocks of the form

(v 0)

This provides an interesting vectorial representation of the graph X. The
vertices of X are the columns of the matrix CT (I RT), and adjacency
is given by

u~v if and only if u'Nv=1.

Therefore, X is entirely determined by the set  of columns of CT (I RT).
Since C has full rank, Q is a spanning set of vectors. Conversely, if 2 is a
spanning set of nonzero vectors in GF(2)?" and X is the graph with vertex
set 2 and with adjacency defined by

U~V = UUz + UV + - -+ Ur—1V2r + UgrUor—1 = 1,

then X is a reduced graph with binary rank 2r.

We give an example in Figure 8.5; this graph has binary rank 4, and
therefore can be represented by eight vectors from GF(2)%. It is easy to
check that it is represented by the set

Q = {1000, 0100, 0010,0001,1110,1101,1011,0111}.

Figure 8.5. Graph with binary rank 4

Let Sp(2r) be the graph obtained by taking Q to be GF(2)?"\ 0. We
call it the symplectic graph, for reasons to be provided in Section 10.12.
The next result shows that we can view Sp(2r) as the universal graph with
binary rank 2r.

Theorem 8.11.1 A reduced graph has binary rank at most 2r if and only
if it is an induced subgraph of Sp(2r).
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Proof. Any reduced graph X of binary rank 2r has a vectorial representa-
tion as a spanning set of nonzero vectors in G F(2)?". Therefore, the vertex
set of X is a subset of the vertices of Sp(2r), where two vertices are ad-
jacent in X if and only if they are adjacent in Sp(2r). Therefore, X is an
induced subgraph of Sp(2r). The converse is clear. 0

This implies that studying the properties of the universal graph Sp(2r)
can yield information that applies to all graphs with binary rank 2r. A
trivial observation of this kind is that a reduced graph with binary rank
2r has at most 22" — 1 vertices. A more interesting example will be given
when we return to the graphs Sp(2r) in Section 10.12. Finally, we finish
with an interesting property of the symplectic graphs.

Theorem 8.11.2 Every graph on 2r — 1 vertices occurs as an induced
subgraph of Sp(2r).

Proof. We prove this by induction on r. It is true when r = 1 because a
single vertex is an induced subgraph of a triangle. So suppose that r > 1,
and let X be an arbitrary graph on 2r — 1 vertices. If X is empty, then it is
straightforward to see that it is an induced subgraph of Sp(2r). Otherwise,
X has at least one edge uv. Let Y be the rank-two reduction of X at the
edge uv. Then Y is a graph on 2r — 3 vertices, and hence by the inductive
hypothesis can be represented as a set € of nonzero vectors in GF(2)272.

If z is a vector in {2 representing the vertex y € V(Y), then define a vector
Z' € GF(2)?" as follows:

! 1, fi=2r—-landy~uinX,ori=2r andy ~vin X;

{z,-, for1<i<2r—2;
0, otherwise.

Then the set of vectors
O ={:2¢eStU{e—_1,e2}

is a set of 2r vectors in GF(2)?". Checking that the graph defined by €
is equal to X requires examining several cases, but is otherwise routine, so
we leave it as Exercise 28. 0o

8.12 Spectral Decomposition

Let A be an n X n real symmetric matrix and let ev(A) denote the set of
eigenvalues of A. If 6 is an eigenvalue of A, let Ey be the matrix representing
orthogonal projection onto the eigenspace of . These are sometimes called
the principal idempotents of A. Then

E% = F,,
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and since distinct eigenspaces of A are orthogonal, it follows that if # and
T are distinct eigenvalues of A,

EyE,. = 0.

Since R™ has a basis consisting of eigenvectors of A, we have

I= Z E,.

fcev(A)

From this equation we see that

A= Z 0Ey;

fdcev(A)

this is known as the spectral decomposition of A.
More generally, if p is any polynomial, then it follows from the above
that

p(A) = Y p)Es (82)

fcev(A)

Since we may choose p so that it vanishes on all but one of the eigenvalues
of A, it follows from (8.2) that E4 is a polynomial in A. The matrices Fy
are linearly independent: If ", agEy = 0, then

0= E-,— ZagEg = a,.ET.
[4

Therefore, the principal idempotents form a basis for the vector space of
all polynomials in A, and therefore this vector space has dimension equal
to the number of distinct eigenvalues of A.

Lemma 8.12.1 If X is a graph with diameter d, then A(X) has at least
d+ 1 distinct eigenvalues.

Proof. We sketch the proof. Observe that the wv-entry of (A + I)" is
nonzero if and only if u and v are joined by a path of length at most
r. Consequently, the matrices (A + I)” for r = 0,...,d form a linearly
independent subset in the space of all polynomials in A. Therefore, d + 1
is no greater than the dimension of this space, which is the number of
primitive idempotents of A. a

A rational function is a function that can be expressed as the ratio g/r
of two polynomials. It is not too hard to see that (8.2) still holds when p
is a rational function, provided only that it is defined at each eigenvalue of
A. Hence we obtain that

@ —-A)"= > (z-0)""Ep (8.3)

fcev(A)
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8.13 Rational Functions

In this section we explore some of the consequences of (8.3); these will be
crucial to our work on interlacing in the next chapter.

Lemma 8.13.1 Let A be a real symmetric n x n matriz and let B denote
the matriz obtained by deleting the ith row and column of A. Then

zg%z—; =el(xI - A) e,

where e; 1s the ith standard basis vector.

Proof. From the standard determinantal formula for the inverse of a
matrix we have

__ det(z! - B)

(I — A) )i = dot(zl —A)’

so noting that
(I = A)™ Vg = el (xl — A) ey
suffices to complete the proof. m]

Corollary 8.13.2 For any graph X we have

g(Xx)= Y ¢(X\uz)

uEV(X)
Proof. By (8.3),
tr Eg
tr(z] — A)' = .
r(zl — A) ‘L; po?
By the lemma, the left side here is equal to

$(X, z)

If mg denotes the multiplicity of § as a zero of ¢(X,x), then a little bit of
calculus yields the partial fraction expansion

u€V(X)

¢(X,x) me
(X, z) _; z—0

Since Ey is a symmetric matrix and Ej = Ey, its eigenvalues are all 0 or 1,
and tr Fy is equal to its rank. But the rank of Ey is the dimension of the
eigenspace associated with #, and therefore tr Fy = my. This completes the
proof. O

If f = p/q is a rational function, we say that f is proper if the degree of
p is less than the degree of g. Any proper rational function has a partial



188 8. Matrix Theory

fraction expansion
=1 (.'L' - oz)ml

Here m; is a positive integer, and p;(x) is a nonzero polynomial of degree
less than m;. We call the numbers 6; the poles of f; the integer m; is the
order of the pole at 6;. A simple pole is a pole of order one. If the rational
function f has a pole of order m, then f2 has a pole of order at least 2m.
(You are invited to prove this.)

Theorem 8.13.3 Let A be a real symmetric n x n matriz, let b be a vector
of length n, and define ¥(z) to be the rational function bT(zI — A)~1b.
Then all zeros and poles of 1 are simple, and ' is negative everywhere it
is defined. If @ and 7 are consecutive poles of v, the closed interval [0, 7]
contains ezactly one zero of .

Proof. By (8.3),
T Egb

Wizl —A) b= Y o (8.4)
pcev(d) T

This implies that the poles of ¢ are simple. We differentiate both sides of
(8.4) to obtain

) b7 Egb
w(x)Z‘;ﬁg

and then observe, using (8.3), that the right side here is —b% (zI — A)~2b.
Thus

Y (x) = —bT (x — A)~%b.

Since bT(zI — A)~2b is the squared length of (zI — A)~!b, it follows that
1'(z) < 0 whenever z is not a pole of ). This implies that each zero of ¢
must be simple.

Suppose that 6 and 7 are consecutive poles of . Since these poles are
simple, it follows that 1 is a strictly decreasing function on the interval
[0, 7] and that it is positive for values of z in this interval sufficiently close
to 6, and negative when zx is close enough to 7. Accordingly, this interval
contains exactly one zero of . 0O

Exercises

1. Show that [Hom(Cy, X)| equals the number of closed walks of length
n in X, and hence that [Hom(C,, X)| is the sum of the nth powers
of the eigenvalues of X.
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. Let B and D be respectively the incidence and an oriented incidence

matrix for the graph X. Show that X is bipartite if and only if there
is a diagonal matrix M, with all diagonal entries equal to 1 or —1,
such that M D = B. Show that X is bipartite if and only if A+ A(X)
and A — A(X) are similar matrices.

. Show that cospectral graphs have the same odd girth.

. Show that the sum of two positive semidefinite matrices is positive

semidefinite, and that the sum of a positive definite and positive
semidefinite matrix is positive definite.

. Let fi1,..., fn be a set of vectors in an inner product space V and let

G be the n x n matrix with G;; equal to the inner product of f; and
f;. Show that G is a symmetric positive semidefinite matrix.

. Show that any principal submatrix of a positive semidefinite matrix

is positive semidefinite.

Let A be a symmetric positive semidefinite matrix. Show that the ith
row of A is zero if and only if A;; = 0.

. Let X be a regular graph on n vertices with valency &k and let § be

an eigenvalue of X. If u is an eigenvector for A(X) with eigenvalue
¢ and Ju = 0, show that u is an eigenvector for X with eigenvalue
—1—6. Use this to give an expression for ¢(X, z) in terms of ¢(X, ).

. Determine the eigenvalues of L(P) in the following stages:

(a) Determine the eigenvalues of K.
(b) Find the eigenvalues of L(Ks).

(c) Find the eigenvalues of P = L{Kj5).
(d) Find the eigenvalues of L(P).

Determine the eigenvalues of K, ,, and their multiplicities.

Let P, be the path with n vertices with vertex set {v1, ..., v,}, where
v; ~ vy fori=1,...,n— 1. Suppose that f is an eigenvector for X
with eigenvalue 6 such that f(v;1) = 1. If we define polynomials p,(x)
recursively by po(z) = 1, p1(z) = z, and

pr+1(z) = zpr(z) — pr-1(2),
then show that f(v,) = pr—1(6). Deduce from this that p,(z) is the
characteristic polynomial of P,.
Show that when n is odd, ¢(Cap,z) = — ¢(Ch, z) ¢(Cr, —x).

If Y is a subgraph of X, show that p(A(Y)) < p(A(X)). If X is
connected, show that equality holds if and only if Y = X.

Let X be a graph with maximum valency a. Show that
Va<p(A(X))<a
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and characterize the cases where equality holds.

Let A be a symmetric matrix with distinct eigenvalues 6y, . . ., 8,, and

for each ¢, let x; be an eigenvector with length one and eigenvalue

;. Show that the principal idempotent E; corresponding to 6; equals
T

A graph X is walk regular if for all nonnegative integers r, the di-
agonal entries of A(X)" are equal. (The simplest examples are the
vertex-transitive graphs. Strongly regular graphs, which we study in
Chapter 10, provide another less obvious class.) Show that a regular
graph with at most four distinct eigenvalues is walk regular.

If f is a rational function with a pole of order m, show that f? has a
pole of order at least 2m.

Let B be the submatrix of the symmetric matrix A obtained by delet-
ing the ith row and column of A. Show that if z is an eigenvector
for A such that z; = 0, then the vector y we get by deleting the ith
coordinate from z is an eigenvector for B. We call y the restriction
of z, and z the extension of y. Now, suppose that 6 is a common
eigenvalue of A and B, and that its multiplicity as an eigenvalue of
A is m. If the multiplicity of # as an eigenvalue of B is m — 1, show
that each -eigenvector of B extends to an eigenvector for A. Using
the spectral decomposition, prove that if the multiplicity of  as an
eigenvalue of B is at least m and z is a f-eigenvector = of A, then

1‘1‘:0.
0 T
=(05)

If
then show that an eigenvector of B extends to an eigenvector of A if
and only if it is orthogonal to b.

If
0 "
= (5 %),
then show that

1 0 g —pT
0 zI-B —-b zI—-B
(1 —T z—bl(zI -B)~'b 0
N0 I ~(zI — B)“lb 1)’
Hence deduce that

det(zl — A)

devz! —A) _ T r_ py-l
det(al — B) x—>b" (zI — B) b.
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Let X be a regular graph on 2m vertices and suppose S C V(X)) such
that |S] = m. Let X! be the graph we get by taking a new vertex
and joining it to each vertex in S. Let X? be the graph we get by
taking a new vertex and joining it to each vertex in V(X)\S. Use the
previous exercise to show that X! and X? are cospectral. Construct
an example where X! and X? are not isomorphic.

Let A be an irreducible nonnegative matrix, and let L be the set of
all real numbers A such that there is a A-subharmonic vector for A.
Show directly that L is closed and bounded, and hence contains a
maximum element p.

Show that an m X n matrix over a field F has rank r if and only if it
can be written as the sum of r matrices with rank one.

Show that if a graph has two vertices with identical neighbourhoods,
then deleting one of them does not alter its rank.

Show that if X is bipartite and Y is obtained from X by rank-two
reduction at an edge, then Y is bipartite.

Suppose we consider graphs with loops, but at most one loop per
vertex. Define a rank-one reduction operation, similar to local com-
plementation at a vertex, that converts a given vertex to an isolated
vertex and reduces the rank of the adjacency matrix.

Let A be the adjacency matrix of the Petersen graph. Compute rko(A)
and rko(A + I) using rank-one and rank-two reductions.

Complete the details in the proof of Theorem 8.11.2 that every graph
on 2r — 1 vertices occurs as an induced subgraph of Sp(2r).

A matrix A over a field of odd characteristic is skew symmetric if
A = —AT. (In even characteristic, we must add the requirement
that the diagonal entries of A be zero.) An oriented graph can be
represented naturally by a skew symmetric matrix over GF(3). Show
that there is a universal oriented graph of rank r that contains each
reduced oriented graph of rank at most r as an induced subgraph.

Let A be the adjacency matrix of the graph X over some field F. If
c € Fand ¢ # 0, show that a(X) <rtk(4 +cI). If c € F and ¢ # 1,
show that 1 4+ w(X) < rk(A + cI).

Let A be the adjacency matrix of the graph X over some field F. If
c € F\{0,1} and r = rk(A + ¢I), show that |V(X)| < 2" + r.



192 References
Notes

Detailed information and further references concerning the eigenvalues of
the adjacency matrix of a graph will be found in [4, 3, 2]. Another approach,
placing more emphasis on the characteristic polynomial, is presented in [5].
Most books on matrix theory include material on the Perron-Frobenius
theorems (for example [8, 9]), and Minc [10] gives a detailed treatment of
nonnegative matrices. We have covered some material not in the standard
sources; we refer in particular to our discussions of rank and binary rank
(in Section 8.9 and Section 8.10), and rational functions (in Section 8.13).

The observation that a reduced graph with binary rank 2r is an induced
subgraph of Sp(2r) is due to Rotman [11], and this is explored further in
Godsil and Royle [7]. A graph is called n-full if it contains every graph
on n vertices as an induced subgraph. Vu [12] observed that Sp(2r) is
(2r — 1)-full and gave the proof presented in Theorem 8.11.2. Bollobds
and Thomason [1] proved that the Paley graphs, which we will meet in
Section 10.3, also contain all small graphs as induced subgraphs. More
information on walk-regular graphs appears in [6].
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Interlacing

If M is a real symmetric n X n matrix, let 6;(M) > 02(M) > -+ > 6,,(M)
denote its eigenvalues in nonincreasing order. Suppose A is a real symmetric
n X n matrix and B is a real symmetric m X m matrix, where m < n. We say
that the eigenvalues of B interlace the eigenvalues of Aiffori=1,...,m,

Or—msi(A) < 0:(B) < 6;(A).

We will see that the eigenvalues of an induced subgraph of X interlace the
eigenvalues of X. It follows that if we know enough about the spectrum of
X, we can derive constraints on the subgraphs of X. We develop the theory
of interlacing, equitable partitions, and generalized interlacing, and present
a range of applications. These applications range from bounding the size of
an independent set in a graph, and hence bounding its chromatic number,
through to results related to the chemistry of the carbon molecules known
as fullerenes.

9.1 Interlacing
We derive the interlacing inequalities as a consequence of our work on
rational functions (in Section 8.13).

Theorem 9.1.1 Let A be a real symmetric n X n matriz and let B be a
principal submatriz of A with order m x m. Then, fort=1,...,m,

On—mi(A) < 8;(B) < 6;(A).
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Proof. We prove the result by induction on n. If m = n, there is nothing
to prove. Assume m = n — 1. Then, by Lemma 8.13.1, for some i we have

Zglj’ g =el (] — A) e

Denote this rational function by 3. By Theorem 8.13.3, ¥(z) has only
simple poles and zeros, and each consecutive pair of poles is separated by
a single zero. The poles of ¥ are zeros of A, the zeros of ¢ are zeros of B.

For a real symmetric matrix M and a real number A, let n(A, M) denote
the number of indices 7 such that 6;(M) > A. We consider the behaviour
of n(\, A) — n(\, B) as A decreases. If \ is greater than the largest pole of
1), then the difference n(\, A) — n(\, B) is initially zero. Since each pole
is simple, the value of this difference increases by one each time )\ passes
through a pole of ¥, and since each zero is simple, its value decreases by one
as it passes through a zero. As there is exactly one zero between each pair
of poles, this difference alternates between 0 and 1. Therefore, it follows
that 6;41(A4) < 6;,(B) < 6,(A) for all 3.

Now, suppose that m < n — 1. Then B is a principal submatrix of a
principal submatrix C of A with order (n — 1) x (n — 1). By induction we
have

On—1-m+i(C) < 0:(B) < 6:(C).
By what we have already shown,
0i+1(A) < 6;(C) < 6;(4),
and it follows that the eigenvalues of B interlace the eigenvalues of A. O

We will use Theorem 8.13.3 again in Chapter 13 to derive an interlac-
ing result for the eigenvalues of the Laplacian matrix of a graph. (See
Theorem 13.6.2.)

We close this section with an example. Let P be the Petersen graph
and P; denote the subgraph obtained by deleting a single vertex. Then by
Exercise 8.9, the characteristic polynomial of P is given by

#(P,z) = (x —3)(x — 1)5(x +2)*.
By Corollary 8.13.2, we have
¢'(P,x) = 10¢(P\1,x),

and so
$(Pr,z) = (22 — 22— 2)(z — 1)*(z + 2)°.
Therefore,
o)~ @2 =D+ 110 12 2/5

C-3a-1PE+2' -3 @-1) @+
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The zeros of this are 1 + v/3, and the poles are 3, 1, and —2. Hence there
is a zero between each pole, and given this it is not at all difficult to verify
the the eigenvalues of P\ 1 interlace the eigenvalues of P.

9.2 Inside and Outside the Petersen Graph

We noted in Chapter 4 that the Petersen graph has no Hamilton cycle. We
now give a proof of this using interlacing.

Lemma 9.2.1 There are no Hamilton cycles in the Petersen graph P.

Proof. First note that there is a Hamilton cycle in P if and only if there
is an induced Cig in L(P).

Now, L(P) has eigenvalues 4, 2, —1, and —2 with respective multiplic-
ities 1, 5, 4, and 5 (see Exercise 8.9). In particular, 87(L(P)) = —1. The
eigenvalues of Cyg are

o 1+Vh —1+V6 1-V6 —1-V5
’ 2 7 2 ’ 2 7 2
where 2 and —2 are simple eigenvalues and the others all have multiplicity
two. Therefore, 6;(C1o) ~ —0.618034. Hence 6;(C1o) > 67(L(P)), and so
Cho is not an induced subgraph of L(P).
It would be very interesting to find further applications of this argument.
For example, there is no analogous proof that the Coxeter graph has no

Hamilton cycle.

’ _23

Lemma 9.2.2 The edges of K19 cannot be partitioned into three copies of
the Petersen graph.

Proof. Let P and Q) be two copies of Petersen’s graph on the same vertex
set and with no edges in common. Let R be the subgraph of K¢ formed
by the edges not in P or @. We show that R is bipartite.

Let Up be the eigenspace of A(P) with eigenvalue 1, and let Ug be the
corresponding eigenspace for A(Q). Then Up and Ug are 5-dimensional
subspaces of R19, Since both subspaces lie in 11, they must have a nonzero
vector u in common. Then

ARu=(J-1-AP) - AQ))u=(J—Du—2u= —3u,

and so —3 is an eigenvalue of A(R). Since R is cubic, it follows from
Theorem 8.8.2 that it must be bipartite. |

9.3 Equitable Partitions

In this section we consider partitions of the vertex set of a graph. We say
that a partition 7 of V(X)) with cells C1, .. ., Cy is equitable if the number
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of neighbours in C; of a vertex u in C; is a constant b;;, independent of
u. An equivalent definition is that the subgraph of X induced by each cell
is regular, and the edges joining any two distinct cells form a semiregular
bipartite graph. The directed graph with the r cells of 7 as its vertices and
b;; arcs from the ith to the jth cells of 7 is called the quotient of X over
m, and denoted by X/m. Therefore, the entries of the adjacency matrix of
this quotient are given by

A(X/’ﬂ')” = bij.

One important class of equitable partitions arises from automorphisms of
a graph. The orbits of any group of automorphisms of X form an equitable
partition. (The proof of this is left as an exercise.) An example is given
by the group of rotations of order 5 acting on the Petersen graph. The
two orbits of this group, namely the 5 “inner” vertices and the 5 “outer”
vertices, form an equitable partition m; with quotient matrix

A(X /1) = <f ;)

Another class arises from a mild generalization of the distance partitions
of Section 4.5. If C is a subset of V(X), let C; denote the set of vertices in
X at distance i from C. (So Cy = C.) We call a subset C' completely regular
if its distance partition is equitable. Any vertex of the Petersen graph is
completely regular, and the corresponding distance partition 7o has three
cells and quotient matrix

0 3 0
AX/m)=|1 0 2
01 2

If 7 is a partition of V' with r cells, define its characteristic matriz P to
be the [V| x r matrix with the characteristic vectors of the cells of 7 as its
columns. Then PT P is a diagonal matrix where (PT P);; = |C;|. Since the
cells are nonempty, the matrix PT P is invertible.

Lemma 9.3.1 Let 7 be an equitable partition of the graph X, with char-
acteristic matriz P, and let B = A(X/w). Then AP = PB and B =
(PTP)"1PTAP.

Proof. We will show that for all vertices u and cells C; we have
(AP)uj = (PB)u]"

The uj-entry of AP is the number of neighbours of w that lie in C;. If
u € Cj, then this number is b;;. Now, the uj-entry of PB is also b;j,
because the only nonzero entry in the u-row of P is a 1 in the i-column.
Therefore, AP = PB, and so

PTAP = PTPB:
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since PTP is invertible, the second claim follows. O

We can translate the definition of an equitable partition more or less
directly into linear algebra.

Lemma 9.83.2 Let X be a graph with adjacency matric A and let m be a
partition of V(X) with characteristic matriz P. Then 7 is equitable if and
only if the column space of P is A-invariant.

Proof. The column space of P is A-invariant if and only if there is a
matrix B such that AP = PB. If 7 is equitable, then by the previous
lemma we may take B = A(X/#). Conversely, if there is such a matrix B,
then every vertex in cell C; is adjacent to b,; vertices in cell C;, and hence
7 is equitable. ]

If AP = PB, then A"P = PB" for any nonnegative integer r, and
more generally, if f(z) is a polynomial, then f(A)P = Pf(B). If fis a
polynomial such that f(A) = 0, then Pf(B) = 0. Since the columns of
P are linearly independent, this implies that f(B) = 0. This shows that
the minimal polynomial of B divides the minimal polynomial of A, and
therefore every eigenvalue of B is an eigenvalue of A.

In fact, we can say more about the relationship between eigenvalues of
B and eigenvalues of A. The next result implies that the multiplicity of 6
as an eigenvalue of B is no greater than its multiplicity as an eigenvalue of

A.

Theorem 9.3.3 If 7 is an equitable partition of a graph X, then the char-
acteristic polynomial of A(X/w) divides the characteristic polynomial of
A(X).

Proof. Let P be the characteristic matrix of = and let B = A(X/7). If
X has n vertices, then let @ be an n x (n — |7|) matrix whose columns,
together with those of P, form a basis for R™. Then there are matrices C
and D such that

AQ =PC+QD,

from which it follows that
B C
ar 9= oy 9)

Since (P Q) is invertible, it follows that det(zI — B) divides det(zI — A)
as asserted. O

We can also get information about the eigenvectors of X from the eigen-
vectors of the quotient X/7. Suppose that AP = PB and that v is an
eigenvector of B with eigenvalue §. Then Pv # 0 and

APv = PBv = 0Pv:
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hence Pv is an eigenvector of A. In this situation we say that the eigenvector
v of B “lifts” to an eigenvector of A.

Alternatively, we may argue that if the column space of P is A-invariant,
then it must have a basis consisting of eigenvectors of A. Each of these
eigenvectors is constant on the cells of P, and hence has the form Puv,
where v # 0. If APv = 6Pv, then it follows that Bv = fv. a

If the column space of P is A-invariant, then so is its orthogonal com-
plement; from this it follows that we may divide the eigenvectors of A into
two classes: those that are constant on the cells of 7, which have the form
Pv for some eigenvector of B, and those that sum to zero on each cell of
.

For the two equitable partitions of the Petersen graph described above
we have

(X/m,z) = (z = 3)(z - 1)

and
(X/m2,2) = (z = 3)(z —1)(z + 2),

and therefore we can conclude that —2, 1, and 3 are eigenvalues of the
Petersen graph.

We conclude this section with one elegant application of Theorem 9.3.3.
A perfect e-code in a graph X is a set of vertices S such that for each vertex
v of X there is a unique vertex in S at distance at most e from v.

Lemma 9.3.4 If X is a regular graph with a perfect 1-code, then —1 is an
eigenvalue of A(X).

Proof. Let S be a perfect 1-code and consider the partition 7 of V(X) into
S and its complement. If X is k-regular, then the definition of a perfect
1-code implies that 7 is equitable with quotient matrix

0 k
1 k-1)’
which has characteristic polynomial
zz—(k-1)—k=(z—-k)(z+1).

Therefore, —1 is an eigenvalue of the quotient matrix, and hence an
eigenvalue of A(X). 0

We have already seen an example of a perfect 1-code in Section 4.6: A
heptad in J(7, 3,0) forms a perfect 1-code, because every vertex either lies
in the heptad or is adjacent to a unique vertex in the heptad. In the next
section we show that the eigenvalues of J(7,3,0) = K;.3 are

_37 _17 27 4a

which is reassuring.
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9.4 Eigenvalues of Kneser Graphs

If X is a graph, and 7 an equitable partition, then in general the eigenvalues
of X /7 will be a proper subset of those of X. However, in certain special
cases X/ retains all the eigenvalues of X, and we can get a partial converse
to Theorem 9.3.3.

Theorem 9.4.1 Let X be a vertex-transitive graph and w the orbit par-
tition of some subgroup G of Aut(X). If m has a singleton cell {u}, then
every eigenvalue of X is an eigenvalue of X/m.

Proof. If f is a function on V(X), and g € Aut(X), then let f9 denote
the function given by

f(z) = f(z9).

It is routine to show that if f is an eigenvector of X with eigenvalue 6, then
so is f9.

If f is an eigenvector of X with eigenvalue 6, let f denote the average
of f9 over the elements g € G. Then f is constant on the cells of 7, and
provided that it is nonzero, it, too, is an eigenvector of X with eigenvalue
6.

Now, consider any eigenvector h of X with eigenvalue . Since h # 0,
there is some vertex v such that h(v) # 0. Let g € Aut(X) be an element
such that 9 = v and let f = h9. Then f(u) # 0, and so

flu) = f(u) #0.

Thus f is nonzero and constant on the cells of 7. Therefore, following the
discussion in Section 9.3, this implies that f is the lift of some eigenvector
of X/m with the same eigenvalue. Therefore, every eigenvalue of X is an
eigenvalue of X/x. 0

We shall use this result to find the eigenvalues of the Kneser graphs.
Assume that v > 2r, let X be the Kneser graph K., and assume that
the vertices of X are the r-subsets of the set 2 = {1,...,v}. Let a be the
fixed r-subset {1,...,r} and let C; denote the r-subsets of 2 that meet o
in exactly r — ¢ points. The partition = with cells Cy, ..., C, is the orbit
partition of the subgroup of Sym(Q2) that fixes «a setwise, and hence 7 is
an equitable partition satisfying the conditions of Theorem 9.4.1.

Now, we determine A(X/7). Let 3 be an r-set meeting « in exactly r —1
points. Then the ij-entry of A(X/7) is the number of r-subsets of (2 that
are disjoint from 8 and meet « in exactly r — j points. Hence

A(X /)iy = (iy_) (”_;_i), 0<i,j<r
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For example, if » = 3, then
0 0 0
axm=| :
v(—)ﬁ (vv;—? 2(:§Z) v—6
(*a%) 307 3(%) (%)
To determine the eigenvalues of A(X/7), we need to carry out some

computations with binomial coefficients; we note one that might not be
familiar.

Lemma 9.4.2 We have

S () () = (220

Proof. Denote the sum in the statement of the lemma by f(a, h, k). Since
a—-ty f(fa—-i-1 + a—i—1
k) k k-1 )

f(a,h,k) = f(a—1,h,k)+ f(a—1,h,k—1).

We have f(k, h, k) = (—1)*, while f(a, h,0) = 0if h > 0 and f(a,0,0) = 1.
Thus it follows by induction that

fa, h k) = (—1)" (Z - };)

as claimed. a

we have

Theorem 9.4.83 The eigenvalues of the Kneser graph K. are the integers

(v —T—1
-1yt i=0,1,...,7.
S G N ,

2

Proof. If h(i, j) is a function of ¢ and j, let [h(i, j)] denote the (r+1) x (r+
1) matrix with éj-entry h(i,;), where 0 < 4,5 < r. Let D be the diagonal
matrix with ¢th diagonal entry

We will prove the following identity:

R e (9 R
() -[0)

Here
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and hence this identity implies that A(X/7) is similar to the product

D[(::;)] Since [(::;)] is upper triangular with all diagonal entries equal
to 1, it follows that the eigenvalues of X/n are the diagonal entries of D,
and this yields the theorem.

We prove (9.1). The ik-entry of the product

0N
i(v—;_i) (rL‘) (D

j=0

6= ()G 0

we can rewrite this sum as

BT
IR
(0

(The last equality follows from the Vandermonde identity.)
Given this, the hk-entry of the product

o ONHCTICIG)
(o)

which by Lemma 9.4.2 is equal to
(v r—k\(v-r—h\ g (v—r—h\(r—h
(=1) ( r—k )( k—h >_( b ( r—h r—k)’

where the last equality follows from (9.2) by takinga = v—r—h, b=r—h,
and ¢ = k — h. This value is equal to the hk-entry of

2|72

and so the result is proved. |

equals

Since

equals
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9.5 More Interlacing

We establish a somewhat more general version of interlacing. This will
increase the range of application, and yields further information when some
of the inequalities are tight.

We will use a tool from linear algebra known as Rayleigh’s inequalities.
Let A be a real symmetric matrix and let uy,...,u; be eigenvectors for
A such that Au; = 0;(A)u,. Let U; be the space spanned by the vectors
{u1,...,u;}. Then, for all u in U;

uT Au
uTu

> 0;(4),

with equality if and only if u is an eigenvector with eigenvalue 6;(A). If
u € Ujl, then

uT Au

uTu

< 041(4),

with equality if and only if u is an eigenvector with eigenvalue 6;.1(A). If
you prove these inequalities when A is a diagonal matrix, then it is easy
to do the general case; we invite you to do so. Also, the second family of
inequalities follows from the first, applied to —A.

Suppose that the eigenvalues of B interlace the eigenvalues of A, so that

On—m+i(A) < 0;(B) < 0;(A).
Then we say the interlacing is tight if there is some index j such that
' [ 6:(4), fori=1,...,7;
0:(B) = {Bn_mH(A), fori=73+1,...,m.
Informally this means that the first j eigenvalues of B are as large as
possible, while the remaining m — j are as small as possible.

Theorem 9.5.1 Let A be a real symmetric n X n matriz and let R be an
nxm matriz such that RTR = I,,,. Set B equal to RTAR and let vy, ..., v
be an orthogonal set of eigenvectors for B such that Bv; = 0;(B)v;. Then:

(a) The eigenvalues of B interlace the eigenvalues of A.

(b) If6;(B) = 0;(A), then there is an eigenvector y of B with eigenvalue
0;(B) such that Ry is an eigenvector of A with eigenvalue 6;(A).

(c) If 6;(B) = 0,(A) fori=1,...,£, then Rv; is an eigenvector for A
with eigenvalue 6;(A) fori=1,...,¢.

(d) If the interlacing is tight, then AR = RB.

Proof. Let uq,...,u, be an orthogonal set of eigenvectors for A such that
Au; = 0;(A)u;. Let U; be the span of uq,...,u; and let V; be the span of
v1,...,v;. For any i, the space V; has dimension i, and the space (RTU;_,)

has dimension at most 7 — 1. Therefore, there is a nonzero vector y in the
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intersection of V; and (RTU;_;)*t. Then yT RTu; =0for j =1,...,i -1,
and therefore Ry € U7 ;. By Rayleigh’s inequalities this yields

(Ry)"ARy _ y"By
(By)"Ry Ty
We can now apply the same argument to the symmetric matrices —A and
—B and conclude that ;(—B) < 6;(—A), and hence that 6,_n,4:(4) <
6;(B). Therefore, the eigenvalues of B interlace those of A, and we have
proved (a).

If equality holds in (9.3), then y must be an eigenvector for B and Ry
an eigenvector for A, both with eigenvalue 6;(A) = 6;(B). This proves (b).

We prove (c) by induction on £. If i = 1, we may take y in (9.3) to be
v1, and deduce that ARv; = 6;(4)Rv;. So we may assume that ARv; =
0;(A)Rv; for all + < ¢, and hence we may assume that u; = Ru; for all
i < £. But then vy lies in the intersection of V; and (RTU,_1)*, and thus
we may choose y to be vg, which proves (c).

If the interlacing is tight, then there is some index j such that 6;(B) =
6;(A) for i < j and 6;(—B) = 6;(—A) for i < m — j. Applying (c), we see
that for all 4,

0:(4) >

> 0,(B). (9.3)

RBv; = 0, (B)R’Uz = ARuv;,
and since vy, ..., v, is a basis for R™, this implies that RB = AR. |

If we take R to have columns equal to the standard basis vectors e; for ¢
in some index set I, then RT AR is the principal submatrix of A with rows
and columns indexed by I. Therefore, this result provides a considerable
generalization of Theorem 9.1.1. We present an important application of
this stronger version of interlacing in the next section, but before then we
note the following consequence of the above theorem, which will be used in
Chapter 13.

Corollary 9.5.2 Let M be a real symmetric n xn matriz. If R is annxm
matriz such that RTR = I,,, then tr RT MR is less than or equal to the sum
of the m largest eigenvalues of M. Equality holds if and only if the column
space of R is spanned by eigenvectors belonging to these eigenvalues. O

9.6 More Applications

Let X be a graph with adjacency matrix A, and let m be a partition,
not necessarily equitable, of the vertices of X. If P is the characteristic
matrix of 7, then define the quotient of A relative to 7 to be the matrix
(PTP)~'PTAP, and denote it by A/x. We will show that the eigenvalues
of A/m interlace the eigenvalues of A, and then we will give examples to
show why this might be of interest.
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Lemma 9.6.1 If P is the characteristic matriz of a partition 7 of the
vertices of the graph X, then the eigenvalues of (PTP)~'PT AP interlace
the eigenvalues of A. If the interlacing is tight, then 7 is equitable.

Proof. The problem with P is that its columns form an orthogonal set,
not an orthonormal set, but fortunately this can easily be fixed. Recall that
PTP is a diagonal matrix with positive diagonal entries, and so there is a
diagonal matrix D such that D? = PTP.If R = PD™, then

RTAR=D'PTAPD™' = D(D2PTAP)D!,
and so RT AR is similar to (PTP)~1PT AP. Furthermore,
RTR=DY(PTP)D' =D Y(D?))D! =1,

and therefore by Theorem 9.5.1, the eigenvalues of RT AR interlace the
eigenvalues of A. If the interlacing is tight, then the column space of R is
A-invariant, and since R and P have the same column space, it follows that
T is equitable. O

The ij-entry of PT AP is the number of edges joining vertices in the ith
cell of 7 to vertices in the jth cell. Therefore, the ij-entry of (PTP)~1PTAP
is the average number of edges leading from a vertex in the ith cell of 7 to
vertices in the jth cell.

We show how this can be used to find a bound on the size of an inde-
pendent set in a regular graph. Let X be a regular graph on n vertices
with valency k£ and let S be an independent set of vertices. Let m be the
partition with two cells S and V(X)\ S and let B be the quotient matrix
A/m. There are | S|k edges between S and V(X)\ S, and hence each vertex
not in S has exactly |S|k/(n — |S|) neighbours in S. Therefore,

0 k
B= BR k- )
Both rows of B sum to k, and thus & is one of its eigenvalues. Since
trB=k— ﬁ,
n—k

and tr B is the sum of the eigenvalues of B, we deduce that the second
eigenvalue of B is —k|S|/(n —|S|). Therefore, if 7 is the smallest eigenvalue
of A, we conclude by interlacing that

< __KS|
T< no ST

(9.4)

Lemma 9.6.2 Let X be a k-regular graph on n wvertices with least
eigenvalue 7. Then
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If equality holds, then each vertez not in an independent set of size a(X)
has exactly —7 neighbours in it.

Proof. The inequality follows on unpacking (9.4). If S is an independent
set with size meeting this bound, then the partition with S and V(X)\S as
its cells is equitable, and so each vertex not in S has exactly k|S|/(n—|S|) =
—7 neighbours in S. a

The Petersen graph P has n = 10, k = 3, and 7 = —2, and hence
a(P) < 4. The Petersen graph does have independent sets of size four, and
so each vertex outside such a set has exactly two neighbours in it (and
thus the complement of an independent set of size four induces a copy of
3K3). The Hoffman-Singleton graph has n = 50, k = 7, and as part of
Exercise 10.7 we will discover that it has 7 = —3. Therefore, the bound on
the size of a maximum independent set is 15, and every vertex not in an
independent set of size 15 has exactly three neighbours in it. Thus we have
another proof of Lemma 5.9.1.

We saw in Section 9.4 that the least eigenvalue of K., is

(.7

Since K, has valency ("), we find using Lemma 9.6.2 that the size of
an independent set is at most

—r—1
OIS I (v—l)
—_ —r—1 - - )
)+ 5 -l
thus providing another proof of the first part of the Erdés-Ko-Rado theo-
rem (Theorem 7.8.1). As equality holds, each vertex not in an independent
set of this size has exactly (“,”]") neighbours in it.

We can use interlacing in another way to produce another bound on
the size of an independent set in a graph. If 4 is a symmetric matrix, let
nt(A) and n~(A) denote respectively the number of positive and negative

eigenvalues of A.

Lemma 9.6.3 Let X be a graph on n vertices and let A be a symmetric
n x n matriz such that Ay, = 0 if the vertices u and v are not adjacent.
Then

a(X) < min{n —n"(A4),n - n"(4)}.

Proof. Let S be the subgraph of X induced by an independent set of size
s, and let B be the principal submatrix of A with rows and columns indexed
by the vertices in S. (So B is the zero matrix.) By interlacing,

On—s+i(A) < 0:(B) < 6;(A).
But of course, 8;(B) = 0 for all ¢; hence we infer that

0.<65(4)
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and that n7(A) < n — s. We can apply the same argument with —A in
place of A to deduce that n*(A) <n —s. o

We can always apply this result to the adjacency matrix A of X, but
there are times when other matrices are more useful. One example will be
offered in the next section.

9.7 Bipartite Subgraphs

We study the problem of bounding the maximum number of vertices in a
bipartite induced subgraph of a Kneser graph Ka,41.r. (The Kneser graphs
with these parameters are often referred to as odd graphs.)

We use ar(X) to denote the maximum number of vertices in an
r-colourable subgraph of X. By Lemma 7.14.1, we have that

ar(X) = (X OK,),

from which it follows that any bound on the size of an independent set
in X O K, yields a bound on «,(X). We will use the bound we derived
in terms of the number of nonnegative (or nonpositive) eigenvalues. For
this we need to determine the adjacency matrix of the Cartesian product.
Define the Kronecker product A ® B of two matrices A and B to be the
matrix we get by replacing the ij-entry of A by A;;B, for all 4 and j. If X
and Y are graphs and X X Y is their product, as defined in Section 6.3,
then you may show that

AX xY)=A(X)® A(Y).
For the Cartesian product X OY we have
AXOY)=AX)I+I A(Y).

We attempt to justify this by noting that A(X)®I is the adjacency matrix
of |V(Y)| vertex-disjoint copies of X, and that I ® A(Y) is the adjacency
matrix of |V(X)] vertex-disjoint copies of Y, but we omit the details.

The Kronecker product has the property that if A, B, C, and D are four
matrices such that the products AC and BD exist, then

(A® B)(C® D) = AC ® BD.
Therefore, if x and y are vectors of the correct lengths, then
(A® B)(z ®y) = Az ® By.

If £ and y are eigenvectors of A and B, with eigenvalues # and T,
respectively, then

Ar ® By =01z ®y,
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whence x ® y is an eigenvector of A ® B with eigenvalue 67. In particular,
if z and y are eigenvectors of X and Y, with respective eigenvalues 6 and
T, then

AXOY)(z@y)=@+7)zQvy.

This implies that if # and 7 have multiplicities a and b, respectively, then
6 + 7 is an eigenvalue of X OY with multiplicity ab. We also note that if
r and s are real numbers, then 78 + s7 is an eigenvalue of

rA(X)® 1+ sI ® A(Y)

with multiplicity ab.
We are now going to apply Lemma 9.6.3 to the Kneser graphs Kar11.r.
As we saw in Section 9.4, the eigenvalues of these graphs are the integers

(- (r+1-4), i=0,...,m;

the multiplicities are known to be

(2r+1) (2r—|—1) .
. -1 . , 1=0,...,7,
1 i—1

with the understanding that the binomial coefficient ( %) is zero. (We have
not computed these multiplicities, and will not.)

We start with the Petersen graph Kj.,. Its eigenvalues are 3, —2 and
1 with multiplicities 1, 4, and 5. The eigenvalues of Ky are —1 and 1, so
Ks.2 O K5 has eight negative eigenvalues, seven positive eigenvalues, and
five equal to zero. This yields a bound of at most 12 vertices in a bipartite
subgraph, which is certainly not wrong! There is an improvement available,
though, if we work with the matrix

3
A= A(K2T+12’r‘) QI+ EI &® A(KZ)

For the Petersen graph, this matrix has seven positive eigenvalues and 13
negative eigenvalues, yielding as(X) < 7. This can be realized in two ways,
shown in Figure 9.1.

Figure 9.1. Bipartite subgraphs of Ks.o
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Applying the same modification to K7.3, we find that
az(K73) < 26,

which is again the correct bound, and again can be realized in two different
ways. In general, we get the following, but we leave the proof as an exercise.

Lemma 9.7.1 We have as(Kori1.4) < (2:) + (Tz_rg)- o
For Kg.4 this gives an upper bound of 98. The exact value is not known,
but Tardif has found a bipartite subgraph of size 96.

9.8 Fullerenes

A fullerene is a cubic planar graph with all faces 5-cycles or 6-cycles.
Fullerenes arise in chemistry as molecules consisting entirely of carbon
atoms. Each carbon atom is bonded to exactly three others, thus the ver-
tices of the graph represent the carbon atoms and the edges the bonded
pairs of atoms. An example on 26 vertices is shown in Figure 9.2.

Figure 9.2. A fullerene on 26 vertices

Lemma 9.8.1 A fullerene has exactly twelve 5-cycles.

Proof. Suppose F' is a fullerene with n vertices, e edges, and f faces. Then
n, e, and f are constrained by Euler’s relation, n — e + f = 2. Since F is
cubic, 3n = 2e. Let f,. denote the number of faces of F' with size r. Then

3 1
f5+f6=f:2+e—n=2+§n—n:2+§n.

Since each edge lies in exactly two faces,

5fs + 6fs = 2e = 3n.
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Solving these equations implies that f5 = 12. o
It follows from the argument above that
n = 2fg + 20.

If f6 = 0, then n = 20, and the dodecahedron is the unique fullerene on 20
vertices.

Most fullerene graphs do not correspond to molecules that have been
observed in nature. Chemists believe that one necessary condition is that no
two 5-cycles can share a common vertex—such fullerenes are called isolated
pentagon fullerenes. By Lemma 9.8.1, any isolated pentagon fullerene has at
least 60 vertices. There is a unique example on 60 vertices, which happens
to be the Cayley graph for Alt(5) relative to the generating set

{(12)(34), (12345), (15342)}.

This example is shown in Figure 9.5 and is known as buckminsterfullerene.

We describe an operation on cubic planar graphs that can be used to
construct fullerenes. If X is a cubic planar graph with n vertices, m = 3n/2
edges and f faces, then its line graph L(X) is a planar 4-regular graph
with m vertices and n + f faces; the reason it is planar is clear from a
drawing such as Figure 9.3. The n + f faces consist of n triangular faces
each containing a vertex of X, and f faces each completely inscribed within
a face of X of the same length.

Figure 9.3. A cubic planar graph X and its line graph L{X)

The leapfrog graph F(X) is formed by taking each vertex of L{X) and
splitting it into a pair of adjacent vertices in such a way that every trian-
gular face around a vertex of X becomes a six-cycle; once again, a drawing
such as Figure 9.4 is the easiest way to visualize this. Then F(X) is a cubic
planar graph on 2m vertices with n faces of length six and f faces of the

same lengths as the faces of X. In particular, if X is a fullerene, then so is
F(X).
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Figure 9.4. The leapfrog graph

The edges joining each pair of newly split vertices form a perfect match-
ing M in F(X). The n faces of length six around the vertices of X each
contain three edges from M and three other edges, and we will call these
faces the special hezagons of F'(X). The remaining faces, those arising from
the faces of X, contain no edges of M. Therefore, regardless of the start-
ing fullerene, F'(X) is an isolated pentagon fullerene. Buckminsterfullerene
arises by performing the leapfrog operation on the dodecahedron.

There is an alternative description of the leapfrog operation that is more
general and more formal. Suppose a graph X is embedded on some surface
in such a way that each edge lies in two distinct faces. We construct a
graph F(X) whose vertices are the pairs (e, F'), where ¢ is an edge and F'
a face of X that contains e. If F} and F3 are the two faces that contain e,
we declare (e, F1) and (e, F2) to be adjacent. If e; and ey are two edges on
F, then (e, F') is adjacent to (e, F) if and only if e; and e; have a single
vertex in common. We say that F(X) is obtained from X by leapfrogging.
The edges of the first type form a perfect matching M in F(X), and the
edges of the second type form a disjoint collection of cycles, one for each
face of X. We call M the canonical perfect matching of F(X).

9.9 Stability of Fullerenes

In addition to the isolated pentagon rule, there is evidence that leads some
chemists to believe that a necessary condition for the physical existence of a
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Figure 9.5. Buckminsterfullerene

particular fullerene is that the graph should have exactly half its eigenvalues
positive, and half negative. In this section we use interlacing to show that
a fullerene derived from the leapfrog construction has exactly half of its
eigenvalues positive and half negative. Other than the leapfrog fullerenes,
there are very few other fullerenes known to have this property.

Lemma 9.9.1 If X is a cubic planar graph with leapfrog graph F(X), then
F(X) has at most half of its eigenvalues positive and at most half of its
eigenvalues negative.

Proof. Let 7 be the partition whose cells are the edges of the canonical
perfect matching M of F(X). Since X is cubic, two distinct cells of 7 are
joined by at most one edge. The graph defined on the cells of © where two
cells are adjacent if they are joined by an edge is the line graph L(X) of
X.

Let P be the characteristic matrix of 7, let A be the adjacency matrix of
F(X), and let L be the adjacency matrix of L(X). Then a straightforward
calculation shows that

PTAP =21+ L.
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Because the smallest eigenvalue of L is —2, it follows that PT AP is positive
semidefinite. If R = P/+/2, then RT AR is also positive semidefinite, and
its eigenvalues interlace the eigenvalues of A. Therefore, if F(X) has 2m
vertices, we have

0 < 0, (RTAR) < 6,,(A).

Next we prove a similar bound on 0,41 (A). We use an arbitrary orienta-
tion o of X to produce an orientation of the edges of the canonical perfect
matching M. Suppose e € E(X) and F; and F, are the two faces of X
that contain e. Then (e, F1) and (e, F3) are the end-vertices of an edge of
M. We orient it so that it points from (e, F1) to (e, F) if F; is the face on
the right as we move along e in the direction determined by o. Denote this
oriented graph by M°?.

Let @ be the incidence matrix of M? and let D be the incidence matrix
of X?. Then

QTAQ=-DTD,

which implies that QT AQ is negative semidefinite. If R = @Q/+/2, then
RT AR is also negative semidefinite, and the eigenvalues of RT AR interlace
those of A. Therefore,

0m+1(A) < 0:(RTAR) <0,
and the result is proved. a

Theorem 9.9.2 If X is a cubic planar graph, then its leapfrog graph F(X)
has exactly half of its eigenvalues negative. If, in addition, X has a face of
length not divisible by three, then its leapfrog graph F(X) also has ezactly
half of its eigenvalues positive.

Proof. By the lemma, the first conclusion follows if 6,,11(A) # 0, and the
second follows if 6,,(A) # 0.

Suppose to the contrary that 6,11(4) = 0. Then by Theorem 9.5.1,
there is an eigenvector f for A with eigenvalue 0 that sums to zero on
each cell of w. Let F = vy, ..., v, be a face of F(X) that is not a special
hexagon. Thus each vertex v; is adjacent to v;_1, v;+1, and the other vertex
w; in the same cell of 7. Since f sums to zero on the cells of 7, we have
f(w;) = —f(v;). Since f has eigenvalue 0, the sum of the values of f on
the neighbours of v;11 is 0, and similarly for v; ;5. Therefore (performing
all subscript arithmetic modulo r + 1), we get

f(i) = f(vit1) + f(vit2) = 0,
f(viz1) = f(viy2) + f(vigs) = 0,

and hence

f(vits) = —f(vi).
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If the length of F is not divisible by six, then f is constant, and therefore
zero, on the vertices of F'. Any cubic planar graph has a face of length less
than six, and therefore F(X) has a face that is not a special hexagon on
which f is zero. Every edge of M lies in two special hexagons, and if f is
determined on one special hexagon, the values it takes on any “neighbour-
ing” special hexagon are also uniquely determined. If f is zero on a special
hexagon, then it is routine to confirm that it is zero on any neighbouring
special hexagon, and therefore zero on every vertex of F(X). Otherwise,
by starting with a special hexagon H sharing an edge with F and inferring
the values that f must take on the special hexagons neighbouring H and
so on, it is possible to show that there is a “circuit” of special hexagons
such that f takes increasingly large absolute values on every second one;
we leave the details as an exercise. This, of course, is impossible, and so we
conclude that there is no such eigenvector.

Next we suppose that 6,,(A) = 0, in which case there is an eigenvector
for A with eigenvalue 0 that is constant on each cell of n. An analogous
argument to the one above yields that for a face F' = vy, ..., v, that is not
a special hexagon, we have

f(vis) = f(vi)-

If F has length not divisible by three, then f is constant, and hence zero
on every vertex of F. It is left as an exercise similar to the case above to
show that this implies that f = 0. O

Exercises

1. What goes wrong if we apply the argument of Lemma 9.2.1 in an
attempt to prove that the Petersen graph has no Hamilton path?

2. Show that the orbits of a group of automorphisms of X form an
equitable partition.

3. If 7 is an equitable partition of the vertex set of the graph X, show
that the spectral radius of A(X/7) is equal to the spectral radius of
A(X).

4. Determine the graphs with 6, > —1.

5. Let X be a vertex-transitive graph with valency k, and let 6 be a
simple eigenvalue of its adjacency matrix A. Show that either § =
k, or |[V(X)| is even and k — 0 is an even integer. (Hint: If P is a
permutation matrix representing an automorphism of X and u is an
eigenvector of A, then Pu is an eigenvector with the same eigenvalue.)

6. Let X be an arc-transitive graph with valency k. Show that if 6 is a
simple eigenvalue of A(X), then 6 = +k.
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10.

11.

12.

13.

14.

15.

9. Interlacing

Let X be a vertex-transitive graph with two simple eigenvalues,
neither equal to the valency. Show that |V (X)| is divisible by four.

Let X be a graph and 7 an equitable partition of V(X). Show that
the spectral radius of X is equal to the spectral radius of X /.

Let X be a graph with largest eigenvalue 6; and average valency k.
Use interlacing to prove that 6, < k, with equality if and only if X
is regular.

Let X be the Kneser graph K,.., with the r-subsets of Q as its
vertices. If 1 € Q, let m be the partition of X with two cells, one
consisting of the r-subsets that contain 1, and the other of those that
do not. Show that this partition is equitable, and that »(”:1;1) is
an eigenvalue of the quotient.

Let X and Y be graphs with respective equitable partitions ¢ and .
If A(X/o) = A(Y/7), show that there is a graph Z that covers both
X and Y.

Let A be a symmetric n x n matrix and let R be an n X m matrix
such that RT R = I. Show that there is an orthogonal matrix Q whose
first m columns coincide with R, and hence deduce that RTAR is a
principal submatrix of a symmetric matrix similar to A.

Let X be a graph on n vertices and let m be an equitable partition
of X. Let @ be the normalized characteristic matrix of 7 and assume
that B is the quotient matrix, given by

AQ = QB.
If 0 is an eigenvalue of A with principal idempotent Ey, define Fy by
EgP = PF,.

(Note that Fj might be zero.) Show that Fj is symmetric and F? =
Fy. Show further that Fy is one of the principal idempotents of B. If
the first cell of 7 consists of the first vertex of X, show that

(Eg)11 = (Fo)11-

Suppose X is a walk-regular graph on n vertices and 7 is an equitable
partition of X with the first vertex of X as a cell. Assume B =
A(X/m) and @ is a simple eigenvalue of B; let x4 be an eigenvector of
B with eigenvalue 0. If my is the multiplicity of 6 as an eigenvalue of
X, show that mg = n(zg)?/||xe||?, where |z| denotes the Euclidean
length of a vector z. (Hint: Use the previous exercise.)

Suppose X is a graph on n vertices and 7 is an equitable partition of
X with the first vertex of X as a cell. Show how to determine n from

A(X /).
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17.

18.
19.
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Let A be a real symmetric n X n matrix. A subspace U of R" is
isotropic if zT Az = 0 for all vectors z in U. Let V' (+) be the subspace
of R™ spanned by the eigenvectors of A with positive eigenvalues, and
let V(—) be the subspace spanned by the eigenvectors with negative
eigenvalues. Show that

V(+)nV(=)={0},
and if U is isotropic, then
V(+)NU =V (-)nU = {0}.

Using this, deduce that o(X) cannot be greater than n — n™(A4) or
n—n~(A).

Compute the eigenvalues of And(k) and then use an eigenvalue bound
to show that its independence number is bounded above by its
valency. (See Section 6.9 for the definition of these graphs.)

Use a weighted adjacency matrix to prove that a(K7.3 10 Cs) < 61.

Find an expression for the eigenvalues of the lexicographic product
X [Km] in terms of the eigenvalues of X.

Let X be a cubic planar graph with leapfrog graph F(X), and let f
be an eigenvector of F(X) with eigenvalue 0 that sums to zero on the
cells of the canonical perfect matching. Show that f = 0 if and only
if f is zero on the vertices of a face that is not a special hexagon.

Let X be a cubic planar graph with leapfrog graph F(X), and let f
be an eigenvector of F(X) with eigenvalue 0 that is constant on the
cells of the canonical perfect matching. Show that f = 0 if and only
if f is zero on the vertices of a face that is not a special hexagon.

Define a generalized leapfrog operation as follows. If X is a graph,
then define a graph F’(X) on the vertex set {(e,7) : e € E(X),i =
0,1}. All the pairs of vertices (e,0) and (e, 1) are adjacent, and there
is a single edge between {(e,0), (e,1)} and {(f,0), (f,1)} if and only
if e and f are incident edges in X. Show that any generalized leapfrog
graph has at most half its eigenvalues positive and at most half
negative.

Notes

The full power of interlacing in graph theory was most convincingly demon-
strated by Haemers, in his doctoral thesis. He has exhausted his supply of
copies of this, but [1] is a satisfactory substitute.

The proof that Kjo cannot be partitioned into three copies of the
Petersen graph is based on Lossers and Schwenk [3].
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The bound on &(X) involving the least eigenvalue of X is due to Hoffman,
although inspired by a bound, due to Delsarte, for strongly regular graphs.
The bound on «(X) in terms of n*(A) and n~(A) is due to Cvetkovié. This
bounds seems surprisingly useful, and has not received a lot of attention.

Our treatment of the stability of fullerenes follows Haemers [1], which is
based in turn on Manolopoulos, Woodall, and Fowler [4].

More information related to Exercise 11 is given in Leighton [2].

The proof, in Section 9.2, that the Petersen graph has no Hamilton cycle
is based on work of Mohar [5]. Some extensions to this will be treated in
Section 13.6. In the notes to Chapter 3 we discussed two proofs that the
Coxeter graph has no Hamilton cycle. Because we have only a very limited
selection of tools for proving that a graph has no Hamilton cycle, we feel
it could be very useful to have a third proof of this, using interlacing.
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10
Strongly Regular Graphs

In this chapter we return to the theme of combinatorial regularity with the
study of strongly regular graphs. In addition to being regular, a strongly
regular graph has the property that the number of common neighbours
of two distinct vertices depends only on whether they are adjacent or
nonadjacent. A connected strongly regular graph with connected comple-
ment is just a distance-regular graph of diameter two. Any vertex-transitive
graph with a rank-three automorphism group is strongly regular, and we
have already met several such graphs, including the Petersen graph, the
Hoffman-Singleton graph, and the symplectic graphs of Section 8.11.

We present the basic theory of strongly regular graphs, primarily using
the algebraic methods of earlier chapters. We show that the adjacency
matrix of a strongly regular graph has just three eigenvalues, and develop
a number of conditions that these eigenvalues satisfy, culminating in an
elementary proof of the Krein bounds. Each of these conditions restricts
the structure of a strongly regular graph, and most of them yield some
additional information about the possible subgraphs of a strongly regular
graph.

Although many strongly regular graphs have large and interesting
groups, this is not at all typical, and it is probably true that “almost
all” strongly regular graphs are asymmetric. We show how strongly regular
graphs arise from Latin squares and designs, which supply numerous exam-
ples of strongly regular graphs with no reason to have large automorphism
groups.
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10.1 Parameters

Let X be a regular graph that is neither complete nor empty. Then X is
said to be strongly regular with parameters

(n,k,a,c)

if it is k-regular, every pair of adjacent vertices has a common neighbours,
and every pair of distinct nonadjacent vertices has ¢ common neighbours.
One simple example is the 5-cycle Cs, which is a 2-regular graph such that
adjacent vertices have no common neighbours and distinct nonadjacent ver-
tices have precisely one common neighbour. Thus it is a (5, 2,0, 1) strongly
regular graph.

It is straightforward to show that if X is strongly regular with parameters
(n, k,a,c), then its complement X is also strongly regular with parameters
(n, k,a,c), where

k=n—-k—-1,
a=n-—2-2k+c,
c=n-2k+a.

A strongly regular graph X is called primitive if both X and its com-
plement are connected, otherwise imprimitive. The next lemma shows that
there is only one class of imprimitive strongly regular graphs.

Lemma 10.1.1 Let X be an (n,k,a,c) strongly reqular graph. Then the
following are equivalent:

(a) X is not connected,

(b) c= 0;

(¢c) a=k—-1,

(d) X is isomorphic to mKgy1 for some m > 1.
Proof. Suppose that X is not connected and let X; be a component of X.
A vertex in X; has no common neighbours with a vertex not in X, and
so ¢ = 0. If ¢ = 0, then any two neighbours of a vertex u € V(X) must
be adjacent, and so @ = k — 1. Finally, if a = k — 1, then the component
containing any vertex must be a complete graph Kj .1, and hence X is a
disjoint union of complete graphs. a

Two simple families of examples of strongly regular graphs are provided
by the line graphs of K,, and K, ,. The graph L(K,) has parameters

(n(n—1)/2, 2n—4, n—2, 4),
while L(K, ») has parameters
(n?, 2n—2, n—2, 2).
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These graphs are sometimes referred to as the triangular graphs and the
square lattice graphs, respectively.

The parameters of a strongly regular graph are not independent. We can
find some relationships between them by simple counting. Every vertex u
has k neighbours, and hence n — k — 1 non-neighbours. We will count the
total number of edges between the neighbours and non-neighbours of u
in two ways. Each of the k neighbours of u is adjacent to w itself, to a
neighbours of u, and thus to k¥ — @ — 1 non-neighbours of u, for a total of
k(k—a—1) edges. On the other hand, each of the n —k — 1 non-neighbours
of u is adjacent to ¢ neighbours of u for a total of (n — k — 1)c edges.
Therefore,

k(k—a—-1)=(n—-k—-1c (10.1)

The study of strongly regular graphs often proceeds by constructing a
list of possible parameter sets, and then trying to find the actual graphs
with those parameter sets. We can view the above equation as a very simple
example of a feasibility condition that must be satisfied by the parameters
of any strongly regular graph.

10.2 Eigenvalues

Suppose A is the adjacency matrix of the (n, k, a, ¢) strongly regular graph
X. We can determine the eigenvalues of the matrix A from the parameters
of X and thereby obtain some strong feasibility conditions.

The uv-entry of the matrix A? is the number of walks of length two from
the vertex u to the vertex v. In a strongly regular graph this number is
determined only by whether v and v are equal, adjacent, or distinct and
nonadjacent. Therefore, we get the equation

A =kl +aA+c(J -1~ A),
which can be rewritten as
A? —(a—c)A— (k—c) =cJ.

We can use this equation to determine the eigenvalues of A. Since X
is regular with valency k, it follows that k is an eigenvalue of A with
eigenvector 1. By Lemma 8.4.1 any other eigenvector of A is orthogonal to
1. Let 2 be an eigenvector for A with eigenvalue 8 # k. Then

A’z —(a—c)Az—(k—c)lz=cJz =0,
so
62 —(a—c)f — (k—c)=0.

Therefore, the eigenvalues of A different from k& must be zeros of the
quadratic 22 — (@ — ¢)x — (k — ¢). If we set A = (a — ¢)? + 4(k — ¢) (the
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discriminant of the quadratic) and denote the two zeros of this polynomial
by 6 and T, we get

(a—c)+VA

b="—7%—
_(@-o)-VA
T

Now, 67 = (¢ — k), and so, provided that ¢ < k, we get that § and 7
are nonzero with opposite signs. We shall usually assume that 8 > 0. We
see that the eigenvalues of a strongly regular graph are determined by its
parameters (although strongly regular graphs with the same parameters
need not be isomorphic).

The multiplicities of the eigenvalues are also determined by the parame-
ters. To see this, let mg and m. be the multiplicities of # and 7, respectively.
Since k has multiplicity equal to one and the sum of all the eigenvalues is
the trace of A (which is 0), we have

mg+ms=n—1, mgd +m,7 = —k.
Hence
_ (n=DL1+k _(n=1)0+k
mg = 60—~ y My = 0— 1 . (10.2)
Now,

0—7)2=(0+7)2—40r = (a—c)* +4(k —c) = A.

Substituting the values for § and 7 into the expressions for the multiplici-

ties, we get
M = 1 ((n— 1) - 2k+(n—1)(a—c)>

2 VA
and
1 2k +(n—1)(a —c¢)
m7=5<(n——1)+ 7 )

This argument yields a powerful feasibility condition. Given a parame-
ter set we can compute my and m, using these equations. If the results
are not integers, then there cannot be a strongly regular graph with these
parameters. In practice this is a very useful condition, as we shall see in Sec-
tion 10.5. The classical application of this idea is to determine the possible
valencies for a Moo