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Preface 

Many authors begin their preface by confidently describing how their book 
arose. We started this project so long ago, and our memories are so weak, 
that we could not do this truthfully. Others begin by stating why they de­
cided to write. Thanks to Freud, we know that unconscious reasons can be 
as important as conscious ones, and so this seems impossible, too. More­
over, the real question that should be addressed is why the reader should 
struggle with this text. 

Even that question we cannot fully answer, so instead we offer an ex­
planation for our own fascination with this subject. It offers the pleasure 
of seeing many unexpected and useful connections between two beautiful, 
and apparently unrelated, parts of mathematics: algebra and graph theory. 
At its lowest level, this is just the feeling of getting something for nothing. 
After devoting much thought to a graph-theoretical problem, one suddenly 
realizes that the question is already answered by some lonely algebraic fact. 
The canonical example is the use of eigenvalue techniques to prove that cer­
tain extremal graphs cannot exist, and to constrain the parameters of those 
that do. Equally unexpected, and equally welcome, is the realization that 
some complicated algebraic task reduces to a question in graph theory, for 
example, the classification of groups with BN pairs becomes the study of 
generalized polygons. 

Although the subject goes back much further, Tutte's work was funda­
mental. His famous characterization of graphs with no perfect matchings 
was proved using Pfaffians; eventually, proofs were found that avoided any 
reference to algebra, but nonetheless, his original approach has proved fruit­
ful in modern work developing parallelizable algorithms for determining the 
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maximum size of a matching in a graph. He showed that the order of the 
vertex stabilizer of an arc-transitive cubic graph was at most 48. This is still 
the most surprising result on the autmomorphism groups of graphs, and it 
has stimulated a vast amount of work by group theorists interested in deriv­
ing analogous bounds for arc-transitive graphs with valency greater than 
three. Tutte took the chromatic polynomial and gave us back the Tutte 
polynomial, an important generalization that we now find is related to the 
surprising developments in knot theory connected to the Jones polynomial. 

But Tutte's work is not the only significant source. Hoffman and Sin­
gleton's study of the maximal graphs with given valency and diameter led 
them to what they called Moore graphs. Although they were disappointed 
in that, despite the name, Moore graphs turned out to be very rare, this 
was nonetheless the occasion for introducing eigenvalue techniques into the 
study of graph theory. 

Moore graphs and generalized polygons led to the theory of distance­
regular graphs, first thoroughly explored by Biggs and his collaborators. 
Generalized polygons were introduced by Tits in the course of his funda­
mental work on finite simple groups. The parameters of finite generalized 
polygons were determined in a famous paper by Feit and Higman; this can 
still be viewed as one of the key results in algebraic graph theory. Seidel also 
played a major role. The details of this story are surprising: His work was 
actually motivated by the study of geometric problems in general metric 
spaces. This led him to the study of equidistant sets of points in projective 
space or, equivalently, the subject of equiangular lines. Extremal sets of 
equiangular lines led in turn to regular two-graphs and strongly regular 
graphs. Interest in strongly regular graphs was further stimulated when 
group theorists used them to construct new finite simple groups. 

We make some explanation of the philosophy that has governed our 
choice of material. Our main aim has been to present and illustrate the 
main tools and ideas of algebraic graph theory, with an emphasis on cur­
rent rather than classical topics. We place a strong emphasis on concrete 
examples, agreeing entirely with H. Liineburg's admonition that " ... the goal 
of theory is the mastering of examples." We have made a considerable effort 
to keep our treatment self-contained. 

Our view of algebraic graph theory is inclusive; perhaps some readers 
will be surprised by the range of topics we have treated-fractional chro­
matic number, Voronoi polyhedra, a reasonably complete introduction to 
matroids, graph drawing-to mention the most unlikely. We also find oc­
casion to discuss a large fraction of the topics discussed in standard graph 
theory texts (vertex and edge connectivity, Hamilton cycles, matchings, 
and colouring problems, to mention some examples). 

We turn to the more concrete task of discussing the contents of this 
book. To begin, a brief summary: automorphisms and homomorphisms, 
the adjacency and Laplacian matrix, and the rank polynomial. 
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In the first part of the book we study the automorphisms and homomor­
phisms of graphs, particularly vertex-transitive graphs. We introduce the 
necessary results on graphs and permutation groups, and take care to de­
scribe a number of interesting classes of graphs; it seems silly, for example, 
to take the trouble to prove that a vertex-transitive graph with valency k 
has vertex connectivity at least 2(k + 1)/3 if the reader is not already in 
position to write down some classes of vertex-transitive graphs. In addition 
to results on the connectivity of vertex-transitive graphs, we also present 
material on matchings and Hamilton cycles. 

There are a number of well-known graphs with comparatively large au­
tomorphism groups that arise in a wide range of different settings-in 
particular, the Petersen graph, the Coxeter graph, Tutte's 8-cage, and the 
Hoffman-Singleton graph. We treat these famous graphs in some detail. We 
also study graphs arising from projective planes and symplectic forms over 
4-dimensional vector spaces. These are examples of generalized polygons, 
which can be characterized as bipartite graphs with diameter d and girth 
2d. Moore graphs can be defined to be graphs with diameter d and girth 
2d + 1. It is natural to consider these two classes in the same place, and we 
do so. 

We complete the first part of the book with a treatment of graph homo­
morphisms. We discuss Hedetniemi's conjecture in some detail, and provide 
an extensive treatment of cores (graphs whose endomorphisms are all au­
tomorphisms). We prove that the complement of a perfect graph is perfect, 
offering a short algebraic argument due to Gasparian. We pay particu­
lar attention to the Kneser graphs, which enables us to treat fractional 
chromatic number and the Erdos-Ko-Rado theorem. We determine the 
chromatic number of the Kneser graphs (using Borsuk's theorem). 

The second part of our book is concerned with matrix theory. Chapter 8 
provides a course in linear algebra for graph theorists. This includes an 
extensive, and perhaps nonstandard, treatment of the rank of a matrix. Fol­
lowing this we give a thorough treatment of interlacing, which provides one 
of the most powerful ways of using eigenvalues to obtain graph-theoretic 
information. We derive the standard bounds on the size of independent 
sets, but also give bounds on the maximum number of vertices in a bi­
partite induced subgraph. We apply interlacing to establish that certain 
carbon molecules, known as fullerenes, satisfy a stability criterion. We treat 
strongly regular graphs and two-graphs. The main novelty here is a careful 
discussion of the relation between the eigenvalues of the subconstituents 
of a strongly regular graph and those of the graph itself. We use this to 
study the strongly regular graphs arising as the point graphs of generalized 
quadrangles, and characterize the generalized quadrangles with lines of size 
three. 

The least eigenvalue of the adjacency matrix of a line graph is at least 
-2. We present the beautiful work of Cameron, Goethals, Shult, and Seidel, 
characterizing the graphs with least eigenvalue at least -2. We follow the 
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original proof, which reduces the problem to determining the generalized 
quadrangles with lines of size three and also reveals a surprising and close 
connection with the theory of root systems. 

Finally we study the Laplacian matrix of a graph. We consider the re­
lation between the second-largest eigenvalue of the Laplacian and various 
interesting graph parameters, such as edge-connectivity. We offer several 
viewpoints on the relation between the eigenvectors of a graph and various 
natural graph embeddings. We give a reasonably complete treatment of the 
cut and flow spaces of a graph, using chip-firing games to provide a novel 
approach to some aspects of this subject. 

The last three chapters are devoted to the connection between graph 
theory and knot theory. The most startling aspect of this is the connection 
between the rank polynomial and the Jones polynomial. 

For a graph theorist, the Jones polynomial is a specialization of a 
straightforward generalization of the rank polynomial of a graph. The rank 
polynomial is best understood in the context of matroid theory, and conse­
quently our treatment of it covers a significant part of matroid theory. We 
make a determined attempt to establish the importance of this polynomial, 
offering a fairly complete list of its remarkable applications in graph the­
ory (and coding theory). We present a version of Tutte's theory of rotors, 
which allows us to construct nonisomorphic 3-connected graphs with the 
same rank polynomial. 

After this work on the rank polynomial, it is not difficult to derive the 
Jones polynomial and show that it is a useful knot invariant. In the last 
chapter we treat more of the graph theory related to knot diagrams. We 
characterize Gauss codes and show that certain knot theory operations are 
just topological manifestations of standard results from graph theory, in 
particular, the theory of circle graphs. 

As already noted, our treatment is generally self-contained. We assume 
familiarity with permutations, subgroups, and homomorphisms of groups. 
We use the basics of the theory of symmetric matrices, but in this case we 
do offer a concise treatment of the machinery. We feel that much of the 
text is accessible to strong undergraduates. Our own experience is that we 
can cover about three pages of material per lecture. Thus there is enough 
here for a number of courses, and we feel this book could even be used for 
a first course in graph theory. 

The exercises range widely in difficulty. Occasionally, the notes to a 
chapter provide a reference to a paper for a solution to an exercise; it 
is then usually fair to assume that the exercise is at the difficult end of 
the spectrum. The references at the end of each chapter are intended to 
provide contact with the relevant literature, but they are not intended to 
be complete. 

It is more than likely that any readers familiar with algebraic graph 
theory will find their favourite topics slighted; our consolation is the hope 
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that no two such readers will be able to agree on where we have sinned the 
most. 

Both authors are human, and therefore strongly driven by the desire to 
edit, emend, and reorganize anyone else's work. One effect of this is that 
there are very few places in the text where either of us could, with any 
real confidence or plausibility, blame the other for the unfortunate and 
inevitable mistakes that remain. In this matter, as in others, our wives, our 
friends, and our students have made strenuous attempts to point out, and 
to eradicate, our deficiencies. Nonetheless, some will still show through, and 
so we must now throw ourselves on our readers' mercy. We do intend, as an 
exercise in public self-flagellation, to maintain a webpage listing corrections 
at http://quoll. uwaterloo . cal agt/. 

A number of people have read parts of various versions of this book 
and offered useful comments and advice as a result. In particular, it is 
a pleasure to acknowledge the help of the following: Rob Beezer, An­
thony Bonato, Dom de Caen, Reinhard Diestel, Michael Doob, Jim Geelen, 
Tommy Jensen, Bruce Richter. 

We finish with a special offer of thanks to Norman Biggs, whose own Al­
gebraic Graph Theory is largely responsible for our interest in this subject. 

Chris Godsil 
Gordon Royle 

Waterloo 
Perth 
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1 
Graphs 

In this chapter we undertake the necessary task of introducing some of 
the basic notation for graphs. We discuss mappings between graphs~ 
isomorphisms, automorphisms, and homomorphisms~and introduce a 
number of families of graphs. Some of these families will play a signifi­
cant role in later chapters; others will be used to illustrate definitions and 
results. 

1.1 Graphs 

A graph X consists of a vertex set V(X) and an edge set E(X), where an 
edge is an unordered pair of distinct vertices of X. We will usually use xy 
rather than {x, y} to denote an edge. If xy is an edge, then we say that 
x and yare adjacent or that y is a neighbour of x, and denote this by 
writing x '" y. A vertex is incident with an edge if it is one of the two 
vertices of the edge. Graphs are frequently used to model a binary rela­
tionship between the objects in some domain, for example, the vertex set 
may represent computers in a network, with adjacent vertices representing 
pairs of computers that are physically linked. 

Two graphs X and Yare equal if and only if they have the same vertex 
set and the same edge set. Although this is a perfectly reasonable definition, 
for most purposes the model of a relationship is not essentially changed if 
Y is obtained from X just by renaming the vertex set. This motivates 
the following definition: Two graphs X and Yare isomorphic if there is a 
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bijection, c.p say, from V(X) to V(Y) such that x rv y in X if and only if 
c.p(x) rv c.p(y) in Y. We say that c.p is an isomorphism from X to Y. Since c.p 
is a bijection, it has an inverse, which is an isomorphism from Y to X. If 
X and Yare isomorphic, then we write X ~ Y. It is normally appropriate 
to treat isomorphic graphs as if they were equal. 

It is often convenient, interesting, or attractive to represent a graph by a 
picture, with points for the vertices and lines for the edges, as in Figure 1.1. 
Strictly speaking, these pictures do not define graphs, since the vertex set 
is not specified. However, we may assign distinct integers arbitrarily to the 
points, and the edges can then be written down as ordered pairs. Thus the 
diagram determines the graph up to isomorphism, which is usually all that 
matters. We emphasize that in a picture of a graph, the positions of the 
points and lines do not matter-the only information it conveys is which 
pairs of vertices are joined by an edge. You should convince yourself that 
the two graphs in Figure 1.1 are isomorphic. 

Figure 1.1. Two graphs on five vertices 

A graph is called complete if every pair of vertices are adjacent, and the 
complete graph on n vertices is denoted by Kn. A graph with no edges 
(but at least one vertex) is called empty. The graph with no vertices and 
no edges is the null graph, regarded by some authors as a pointless concept. 
Graphs as we have defined them above are sometimes referred to as simple 
graphs, because there are some useful generalizations of this definition. 
For example, there are many occasions when we wish to use a graph to 
model an asymmetric relation. In this situation we define a directed graph 
X to consist of a vertex set V(X) and an arc set A(X), where an are, 
or directed edge, is an ordered pair of distinct vertices. In a drawing of a 
directed graph, the direction of an arc is indicated with an arrow, as in 
Figure 1.2. Most graph-theoretical concepts have intuitive analogues for 
directed graphs. Indeed, for many applications a simple graph can equally 
well be viewed as a directed graph where (y, x) is an arc whenever (x, y) is 
an arc. 

Throughout this book we will explicitly mention when we are consider­
ing directed graphs, and otherwise "graph" will refer to a simple graph. 
Although the definition of graph allows the vertex set to be infinite, we 
do not consider this case, and so all our graphs may be assumed to be 
finite-an assumption that is used implicitly in a few of our results. 
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Figure 1.2. A directed graph 

1.2 Subgraphs 

A subgraph of a graph X is a graph Y such that 

V(Y) <;;; V(X), E(Y) <;;; E(X). 

If V(Y) = V(X), we call Y a spanning subgraph of X. Any spanning 
subgraph of X can be obtained by deleting some of the edges from X. 
The first drawing in Figure 1.3 shows a spanning subgraph of a graph. The 
number of spanning subgraphs of X is equal to the number of subsets of 
E(X). 

A subgraph Y of X is an induced subgraph if two vertices of V(Y) are 
adjacent in Y if and only if they are adjacent in X. Any induced subgraph 
of X can be obtained by deleting some of the vertices from X, along with 
any edges that contain a deleted vertex. Thus an induced subgraph is de­
termined by its vertex set: We refer to it as the subgraph of X induced by 
its vertex set. The second drawing in Figure 1.3 shows an induced subgraph 
of a graph. The number of induced subgraphs of X is equal to the number 
of subsets of V(X). 

Figure 1.3. A spanning subgraph and an induced subgraph of a graph 

Certain types of subgraphs arise frequently; we mention some of these. A 
clique is a subgraph that is complete. It is necessarily an induced subgraph. 
A set of vertices that induces an empty subgraph is called an independent 
set. The size of the largest clique in a graph X is denoted by w(X), and 
the size of the largest independent set by a(X). As we shall see later, a(X) 
and w(X) are important parameters of a graph. 
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A path of length r from x to y in a graph is a sequence of r + 1 distinct 
vertices starting with x and ending with y such that consecutive vertices 
are adjacent. If there is a path between any two vertices of a graph X, then 
X is connected, otherwise disconnected. Alternatively, X is disconnected 
if we can partition its vertices into two nonempty sets, Rand S say, such 
that no vertex in R is adjacent to a vertex in S. In this case we say that 
X is the disjoint union of the two subgraphs induced by Rand S. An 
induced subgraph of X that is maximal, subject to being connected, is 
called a connected component of X. (This is almost always abbreviated to 
"component.") 

A cycle is a connected graph where every vertex has exactly two neigh­
bours; the smallest cycle is the complete graph K 3 . The phrase "a cycle 
in a graph" refers to a subgraph of X that is a cycle. A graph where each 
vertex has at least two neighbours must contain a cycle, and proving this 
fact is a traditional early exercise in graph theory. An acyclic graph is a 
graph with no cycles, but these are usually referred to by more picturesque 
terms: A connected acyclic graph is called a tree, and an acyclic graph is 
called a forest, since each component is a tree. A spanning subgraph with 
no cycles is called a spanning tree. We see (or you are invited to prove) 
that a graph has a spanning tree if and only if it is connected. A maximal 
spanning forest in X is a spanning subgraph consisting of a spanning tree 
from each component. 

1.3 Automorphisms 

An isomorphism from a graph X to itself is called an automorphism of X. 
An automorphism is therefore a permutation of the vertices of X that maps 
edges to edges and nonedges to nonedges. Consider the set of all automor­
phisms of a graph X. Clearly the identity permutation is an automorphism, 
which we denote bye. If g is an automorphism of X, then so is its inverse 
g-1, and if h is a second automorphism of X, then the product gh is an 
automorphism. Hence the set of all automorphisms of X forms a group, 
which is called the automorphism group of X and denoted by Aut(X). The 
symmetric group Sym(V) is the group of all permutations of a set V, and 
so the automorphism group of X is a subgroup of Sym(V(X)). If X has n 
vertices, then we will freely use Sym(n) for Sym(V(X)). 

In general, it is a nontrivial task to decide whether two graphs are 
isomorphic, or whether a given graph has a nonidentity automorphism. 
Nonetheless there are some cases where everything is obvious. For exam­
ple, every permutation of the vertices of the complete graph Kn is an 
automorphism, and so Aut(Kn) ~ Sym(n). 

The image of an element v E V under a permutation 9 E Sym(V) will 
be denoted by v9 . If 9 E Aut(X) and Y is a subgraph of X, then we define 



1.3. Automorphisms 5 

y9 to be the graph with 

V(Y9) = {x9 : x E V(Y)} 

and 

E(Y9) ={{X9,y9}: {x,y} E E(Y)}. 

It is straightforward to see that y9 is isomorphic to Y and is also a subgraph 
ofX. 

The valency of a vertex x is the number of neighbours of x, and the max­
imum and minimum valency of a graph X are the maximum and minimum 
values of the valencies of any vertex of X. 

Lemma 1.3.1 If x is a vertex of the graph X and g is an automorphism 
of X, then the vertex y = x 9 has the same valency as x. 

Proof. Let N(x) denote the subgraph of X induced by the neighbours of 
x in X. Then 

N(X)9 = N(x9) = N(y), 

and therefore N(x) and N(y) are isomorphic subgraphs of X. Consequently 
they have the same number of vertices, and so x and y have the same 
valency. 0 

This shows that the automorphism group of a graph permutes the ver­
tices of equal valency among themselves. A graph in which every vertex 
has equal valency k is called regular of valency k or k-regular. A 3-regular 
graph is called cubic, and a 4-regular graph is sometimes called quartic. In 
Chapter 3 and Chapter 4 we will be studying graphs with the very special 
property that for any two vertices x and y, there is an automorphism g 
such that x 9 = Yj such graphs are necessarily regular. 

The distance dx(x, y) between two vertices x and y in a graph X is the 
length of the shortest path from x to y. If the graph X is clear from the 
context, then we will simply use d(x, y). 

Lemma 1.3.2 Ifx and yare vertices of X and g E Aut(X), then d(x, y) = 
d(x9,y9). 0 

The complement X of a graph X has the same vertex set as X, where 
vertices x and yare adjacent in X if and only if they are not adjacent in 
X (see Figure 1.5). 

Lemma 1.3.3 The automorphism group of a graph is equal to the 
automorphism group of its complement. 0 

If X is a directed graph, then an automorphism is a permutation of the 
vertices that maps arcs onto arcs, that is, it preserves the directions of the 
edges. 
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Figure 1.4. The dodecahedron is a cubic graph 

~o 
Figure 1.5. A graph and its complement 

1.4 Homomorphisms 

Let X and Y be graphs. A mapping f from V(X) to V(Y) is a homomor­
phism if f(x) and f(y) are adjacent in Y whenever x and yare adjacent in 
X. (When X and Y have no loops, which is our usual case, this definition 
implies that if x'" y, then f(x) -=f=. f(y).) 

Any isomorphism between graphs is a homomorphism, and in particular 
any automorphism is a homomorphism from a graph to itself. However 
there are many homomorphisms that are not isomorphisms, as the following 
example illustrates. A graph X is called bipartite if its vertex set can be 
partitioned into two parts V1 and V2 such that every edge has one end in 
Vi and one in V2. If X is bipartite, then the mapping from V(X) to V(K2) 
that sends all the vertices in Vi to the vertex i is a homomorphism from X 
to K 2 . 

This example belongs to the best known class of homomorphisms: proper 
colourings of graphs. A proper colouring of a graph X is a map from V(X) 
into some finite set of colours such that no two adjacent vertices are assigned 
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the same colour. If X can be properly coloured with a set of k colours, then 
we say that X can be properly k-coloured. The least value of k for which X 
can be properly k-coloured is the chromatic number of X, and is denoted 
by x(X). The set of vertices with a particular colour is called a colour class 
of the colouring, and is an independent set. If X is a bipartite graph with 
at least one edge, then x(X) = 2. 

Lemma 1.4.1 The chromatic number of a graph X is the least integer r 
such that there is a homomorphism from X to K r . 

Proof. Suppose f is a homomorphism from the graph X to the graph Y. 
If y E V(Y), define f-l(y) by 

r 1 (y) := {x E V(X) : f(x) = y}. 

Because y is not adjacent to itself, the set f- 1 (y) is an independent set. 
Hence if there is a homomorphism from X to a graph with r vertices, the 
r sets f- 1 (y) form the colour classes of a proper r-colouring of X, and so 
x(X) ::::; r. Conversely, suppose that X can be properly coloured with the 
r colours {I, ... , r}. Then the mapping that sends each vertex to its colour 
is a homomorphism from X to the complete graph K r . 0 

A retraction is a homomorphism f from a graph X to a subgraph Y of 
itself such that the restriction frY of f to V (Y) is the identity map. If there 
is a retraction from X to a subgraph Y, then we say that Y is a retract of 
X. If the graph X has a clique of size k = X(X), then any k-colouring of 
X determines a retraction onto the clique. 

Figure 1.6 shows the 5-prism as it is normally drawn, and then drawn to 
display a retraction (each vertex of the outer cycle is fixed, and each vertex 
of the inner cycle is mapped radially outward to the nearest vertex on the 
outer cycle). 

Figure 1.6. A graph with a retraction onto a 5-cycle 

In Chapter 3 we will need to consider homomorphisms between directed 
graphs. If X and Yare directed graphs, then a map f from V(X) to V(Y) 
is a homomorphism if (f(x), f(y)) is an arc of Y whenever (x, y) is an 
arc of X. In other words, a homomorphism must preserve the sense of the 
directed edges. 
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In Chapter 6 we will relax the definition of a graph still further, so that 
the two ends of an edge can be the same vertex, rather than two distinct 
vertices. Such edges are called loops, and if loops are permitted, then the 
properties of homomorphisms are quite different. For example, a property of 
homomorphisms of simple graphs used in Lemma 1.4.1 is that the preimage 
of a vertex is an independent set. If loops are present, this is no longer true: 
A homomorphism can map any set of vertices onto a vertex with a loop. 

A homomorphism from a graph X to itself is called an endomorphism, 
and the set of all endomorphisms of X is the endomorphism monoid of X. 
(A monoid is a set that has an associative binary multiplication defined on 
it and an identity element.) The endomorphism monoid of X contains its 
automorphism group, since an automorphism is an endomorphism. 

1.5 Circulant Graphs 

We now introduce an important class of graphs that will provide useful 
examples in later sections. 

First we give a more elaborate definition of a cycle. The cycle on n 
vertices is the graph Cn with vertex set {O, ... , n - I} and with i adjacent 
to j if and only if j - i == ±1 mod n. 

We determine some automorphisms of the cycle. If 9 is the element of 
Sym(n) that maps i to (i+1) mod n, then 9 E Aut(Cn ). Therefore Aut(Cn ) 

contains the cyclic subgroup 

R = {gm : ° ::; m ::; n - I}. 

It is also easy to verify that the permutation h that maps i to -i mod n 
is an automorphism of Cn. Notice that h(O) = 0, so h fixes a vertex of 
Cn. On the other hand, the nonidentity elements of Rare fixed-point-free 
automorphisms of Cn. Therefore, h is not a power of g, and so h ~ R. It 
follows that Aut(Cn ) contains a second coset of R, and therefore 

IAut(Cn)1 ~ 21RI = 2n. 

In fact, Aut(Cn ) has order 2n as might be expected. However, we have not 
yet set up the machinery to prove this. 

The cycles are special cases of circulant graphs. Let Zn denote the addi­
tive group of integers modulo n. If C is a subset of Zn \ 0, then construct 
a directed graph X = X(Zn, C) as follows. The vertices of X are the ele­
ments of Zn and (i,j) is an arc of X if and only if j - i E C. The graph 
X(Zn' C) is called a circulant of order n, and C is called its connection set. 

Suppose that C has the additional property that it is closed under addi­
tive inverses, that is, -c E C if and only if c E C. Then (i, j) is an arc if 
and only if (j, i) is an arc, and so we can view X as an undirected graph. 

It is easy to see that the permutation that maps each vertex i to i + 1 
is an automorphism of X. If C is inverse-closed, then the mapping that 
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Figure 1.7. The circulant X(ZlO, {-1, 1, -3, 3}) 

sends i to -i is also an automorphism. Therefore, if X is undirected, its 
automorphism group has order at least 2n. 

The cycle Cn is a circulant of order n, with connection set {1, -I}. The 
complete and empty graphs are also circulants, with C = !Zn and C = 0 
respectively, and so the automorphism group of a circulant of order n can 
have order much greater than 2n. 

1.6 Johnson Graphs 

Next we consider another family of graphs J( v, k, i) that will recur through­
out this book. These graphs are important because they enable us to 
translate many combinatorial problems about sets into graph theory. 

Let v, k, and i be fixed positive integers, with v 2: k 2: i; let n be a fixed 
set of size v; and define J( v, k, i) as follows. The vertices of J( v, k, i) are the 
subsets of n with size k, where two subsets are adjacent if their intersection 
has size i. Therefore, J( v, k, i) has (~) vertices, and it is a regular graph 
with valency 

As the next result shows, we can assume that v 2: 2k. 

Lemma 1.6.1 If v 2: k 2: i, then J(v, k, i) ~ J(v, v - k, v - 2k + i). 
Proof. The function that maps a k-set to its complement in n is an iso­
morphism from J(v, k,i) to J(v, v - k, v - 2k+i); you are invited to check 
the details. 0 

For v 2: 2k, the graphs J(v, k, k - 1) are known as the Johnson graphs, 
and the graphs J(v, k, 0) are known as the Kneser graphs, which we will 
study in some depth in Chapter 7. The Kneser graph J(5, 2, 0) is one of the 
most famous and important graphs and is known as the Petersen graph. 
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Figure 1.8 gives a drawing of the Petersen graph, and Section 4.4 examines 
it in detail. 

Figure 1.8. The Petersen graph J(5, 2, 0) 

If g is a permutation of nand 5 ~ n, then we define 59 to be the subset 

59 : = {s9 : s E 5}. 

It follows that each permutation of n determines a permutation of the 
subsets of n, and in particular a permutation of the subsets of size k. If 5 
and T are subsets of n, then 

and so g is an automorphism of J(v, k, i). Thus we obtain the following. 

Lemma 1.6.2 If v ~ k ~ i, then Aut(J(v, k, i)) contains a subgroup 
isomorphic to Sym( v). 0 

Note that Aut(J(v, k, i)) is a permutation group acting on a set of size (~), 
and so when k -=I- 1 or v -1, it is not actually equal to Sym( v). Nevertheless, 
it is true that Aut(J(v, k, i)) is usually isomorphic to Sym(v) , although this 
is not always easy to prove. 

l. 7 Line Graphs 

The line graph of a graph X is the graph L(X) with the edges of X as its 
vertices, and where two edges of X are adjacent in LeX) if and only if they 
are incident in X. An example is given in Figure 1.9 with the graph in grey 
and the line graph below it in black. 

The star KI,n, which consists of a single vertex with n neighbours, has 
the complete graph Kn as its line graph. The path Pn is the graph with 
vertex set {I, ... , n} where i is adjacent to i + 1 for 1 ~ i ~ n - 1. It has 
line graph equal to the shorter path Pn- I . The cycle en is isomorphic to 
its own line graph. 
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Figure 1.9. A graph and its line graph 

Lemma 1.7.1 If X is regular with valency k, then L(X) is regular with 
valency 2k - 2. 0 

Each vertex in X determines a clique in L(X): If x is a vertex in X with 
valency k, then the k edges containing x form a k-clique in L(X). Thus if 
X has n vertices, there is a set of n cliques in L(X) with each vertex of 
L(X) contained in at most two of these cliques. Each edge of L(X) lies in 
exactly one of these cliques. The following result provides a useful converse: 

Theorem 1. 7.2 A nonempty graph is a line graph if and only if its edge 
set can be partitioned into a set of cliques with the property that any vertex 
lies in at most two cliques. 0 

If X has no triangles (that is, cliques of size three), then any vertex of 
L(X) with at least two neighbours in one of these cliques must be contained 
in that clique. Hence the cliques determined by the vertices of X are all 
maximal. 

It is both obvious and easy to prove that if X ~ Y, then L(X) ~ L(Y). 
However, the converse is false: K3 and K 1 ,3 have the same line graph, 
namely K 3 . Whitney proved that this is the only pair of connected 
counterexamples. We content ourselves with proving the following weaker 
result. 

Lemma 1. 7.3 Suppose that X and Yare graphs with minimum valency 
four. Then X ~ Y if and only if L(X) ~ L(Y). 

Proof. Let C be a clique in L(X) containing exactly c vertices. If c > 3, 
then the vertices of C correspond to a set of c edges in X, meeting at a 
common vertex. Consequently, there is a bijection between the vertices of 
X and the maximal cliques of L(X) that takes adjacent vertices to pairs 
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of cliques with a vertex in common. The remaining details are left as an 
exercise. 0 

There is another interesting characterization of line graphs: 

Theorem 1. 7.4 A graph X is a line graph if and only if each induced 
subgraph of X on at most six vertices is a line graph. 0 

Consider the set of graphs X such that 

(a) X is not a line graph, and 
(b) every proper induced subgraph of X is a line graph. 

The previous theorem implies that this set is finite, and in fact there 
are exactly nine graphs in this set. (The notes at the end of the chapter 
indicate where you can find the graphs themselves.) 

We call a bipartite graph semiregular if it has a proper 2-colouring such 
that all vertices with the same colour have the same valency. The cheap­
est examples are the complete bipartite graphs Km,n which consist of an 
independent set of m vertices completely joined to an independent set of n 
vertices. 

Lemma 1.7.5 If the line graph of a connected graph X is regular, then X 
is regular or bipartite and semiregular. 

Proof. Suppose that L(X) is regular with valency k. If u and v are adjacent 
vertices in X, then their valencies sum to k+2. Consequently, all neighbours 
of a vertex u have the same valency, and so if two vertices of X share a 
common neighbour, then they have the same valency. Since X is connected, 
this implies that there are at most two different valencies. 

If two adjacent vertices have the same valency, then an easy induction 
argument shows that X is regular. If X contains a cycle of odd length, then 
it must have two adjacent vertices of the same valency, and so if it is not 
regular, then it has no cycles of odd length. We leave it as an exercise to 
show that a graph is bipartite if and only if it contains no cycles of odd 
length. 0 

1.8 Planar Graphs 

We have already seen that graphs can conveniently be given by drawings 
where each vertex is represented by a point and each edge uv by a line 
connecting u and v. A graph is called planar if it can be drawn without 
crossing edges. 

Although this definition is intuitively clear, it is topologically imprecise. 
To make it precise, consider a function that maps each vertex of a graph 
X to a distinct point of the plane, and each edge of X to a continuous non 
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Figure 1.10. Planar graphs K4 and the octahedron 

self-intersecting curve in the plane joining its endpoints. Such a function is 
called a planar embedding if the curves corresponding to nonincident edges 
do not meet, and the curves corresponding to incident edges meet only at 
the point representing their common vertex. A graph is planar if and only 
if it has a planar embedding. Figure 1.10 shows two planar graphs: the 
complete graph K4 and the octahedron. 

A plane graph is a planar graph together with a fixed embedding. The 
edges of the graph divide the plane into regions called the faces of the plane 
graph. All but one of these regions is bounded, with the unbounded region 
called the infinite or external face. The length of a face is the number of 
edges bounding it. 

Euler's famous formula gives the relationship between the number of 
vertices, edges, and faces of a connected plane graph. 

Theorem 1.B.1 (Euler) If a connected plane graph has n vertices, e edges 
and f faces, then 

n-e+f = 2. o 

A maximal planar graph is a planar graph X such that the graph formed by 
adding an edge between any two nonadjacent vertices of X is not planar. 
If an embedding of a planar graph has a face of length greater than three, 
then an edge can be added between two vertices of that face. Therefore, in 
any embedding of a maximal planar graph, every face is a triangle. Since 
each edge lies in two faces, we have 

2e = 3f, 

and so by Euler's formula, 

e = 3n - 6. 

A planar graph on n vertices with 3n - 6 edges is necessarily maximal; such 
graphs are called planar triangulations . Both the graphs of Figure 1.10 are 
planar triangulations. 

A planar graph can be embedded into the plane in infinitely many ways. 
The two embeddings of Figure 1.11 are easily seen to be combinatorially 
different: the first has faces of length 3, 3, 4, and 6 while the second has 
faces of lengths 3, 3, 5, and 5. It is an important result of topological graph 
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theory that a 3-connected graph has essentially a unique embedding. (See 
Section 3.4 for the explanation of what a 3-connected graph is.) 

Figure 1.11. Two plane graphs 

Given a plane graph X, we can form another plane graph called the dual 
graph X* . The vertices of X* correspond to the faces of X, with each vertex 
being placed in the corresponding face. Every edge e of X gives rise to an 
edge of X* joining the two faces of X that contain e (see Figure 1.12). 

Notice that two faces of X may share more than one common edge, in 
which case the graph X* may contain multiple edges, meaning that two 
vertices are joined by more than one edge. This requires the obvious gener­
alization to our definition of a graph, but otherwise causes no difficulties. 
Once again, explicit warning will be given when it is necessary to consider 
graphs with multiple edges. 

Since each face in a planar triangulation is a triangle, its dual is a cubic 
graph. Considering the graphs of Figure 1.10, it is easy to check that K4 
is isomorphic to its dual; such graphs are called self-dual. The dual of the 
octahedron is a bipartite cubic graph on eight vertices known as the cube, 
which we will discuss further in Section 3.1. 

Figure 1.12. The planar dual 

As defined above, the planar dual of any graph X is connected, so if X 
is not connected, then (X*)* is not isomorphic to X. However, this is the 
only difficulty, and it can be shown that if X is connected, then (X*)* is 
isomorphic to X. 
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The notion of embedding a graph in the plane can be generalized directly 
to embedding a graph in any surface. The dual of a graph embedded in any 
surface is defined analogously to the planar dual. 

The real projective plane is a nonorientable surface, which can be rep­
resented on paper by a circle with diametrically opposed points identified. 
The complete graph K6 is not planar, but it can be embedded in the projec­
tive plane, as shown in Figure 1.13. This embedding of K6 is a triangulation 
in the projective plane, so its dual is a cubic graph, which turns out to be 
the Petersen graph. 

· · · . . . . 

,.. ............. .. 

. . 
. . . 

Figure 1.13. An embedding of K6 in the projective plane 

The torus is an orientable surface, which can be represented physically 
in Euclidean 3-space by the surface of a torus, Or doughnut. It can be 
represented on paper by a rectangle where the points on the bottom side 
are identified with the points directly above them on the top side, and the 
points of the left side are identified with the points directly to the right 
of them on the right side. The complete graph K7 is not planar, nOr can 
it be embedded in the projective plane, but it can be embedded in the 
torus as shown in Figure 1.14 (note that due to the identification the four 
"corners" are actually the same point). This is another triangulation; its 
dual is a cubic graph known as the Heawood graph, which is discussed in 
Section 5.10. 

Figure 1.14. An embedding of K7 in the torus 
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Exercises 

1. Let X be a graph with n vertices. Show that X is complete or empty 
if and only if every transposition of {1, ... ,n} belongs to Aut(X). 

2. Show that X and X have the same automorphism group, for any 
graph X. 

3. Show that if x and yare vertices in the graph X and 9 E Aut(X), 
then the distance between x and y in X is equal to the distance 
between x 9 and y9 in X. 

4. Show that if f is a homomorphism from the graph X to the graph Y 
and Xl and X2 are vertices in X, then 

5. Show that if Y is a subgraph of X and f is a homomorphism from 
X to Y such that fry is a bijection, then Y is a retract. 

6. Show that a retract Y of X is an induced subgraph of X. Then 
show that it is isometric, that is, if x and yare vertices of Y, then 
dx(x, y) = dy(x, y). 

7. Show that any edge in a bipartite graph X is a retract of X. 

8. The diameter of a graph is the maximum distance between two dis­
tinct vertices. (It is usually taken to be infinite if the graph is not 
connected.) Determine the diameter of J(v, k, k - 1) when v > 2k. 

9. Show that Aut(Kn) is not isomorphic to Aut(L(Kn)) if and only if 
n = 2 or 4. 

10. Show that the graph K5 \ e (obtained by deleting any edge e from 
K 5 ) is not a line graph. 

11. Show that K l ,3 is not an induced subgraph of a line graph. 

12. Prove that any induced subgraph of a line graph is a line graph. 

13. Prove Krausz's characterization of line graphs (Theorem 1.7.2). 

14. Find all graphs G such that L(G) ~ G. 

15. Show that if X is a graph with minimum valency at least four, Aut(X) 
and Aut(L(X)) are isomorphic. 

16. Let S be a set of nonzero vectors from an m-dimensional vector space. 
Let X(S) be the graph with the elements of S as its vertices, with 
two vectors x and y adjacent if and only if xTy of o. (Call X(S) the 
"nonorthogonality" graph of S.) Show that any independent set in 
X(S) has cardinality at most m. 
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17. Let X be a graph with n vertices. Show that the line graph of X is 
the nonorthogonality graph of a set of vectors in ~n. 

18. Show that a graph is bipartite if and only if it contains no odd cycles. 

19. Show that a tree on n vertices has n - 1 edges. 

20. Let X be a connected graph. Let T(X) be the graph with the span­
ning trees of X as its vertices, where two spanning trees are adjacent 
if the symmetric difference of their edge sets has size two. Show that 
T(X) is connected. 

21. Show that if two trees have isomorphic line graphs, they are 
isomorphic. 

22. Use Euler's identity to show that K5 is not planar. 

23. Construct an infinite family of self-dual planar graphs. 

24. A graph is self-complementary if it is isomorphic to its complement. 
Show that L(K3,3) is self-complementary. 

25. Show that if there is a self-complementary graph X on n vertices, 
then n == 0, 1 mod 4. If X is regular, show that n == 1 mod 4. 

26. The lexicographic product X[Y] of two graphs X and Y has vertex 
set V(X) x V(Y) where (x, y) '" (x', y') if and only if 

(a) x is adjacent to x' in X, or 
(b) x = x' and y is adjacent to y' in Y. 

Show that the complement of the lexicographic product of X and Y 
is the lexicographic product of X and Y. 

Notes 

For those readers interested in a more comprehensive view of graph theory 
itself, we recommend the books by West [6] and Diestel [2]. 

The problem of determining whether two graphs are isomorphic has a 
long history, as it has many applications~for example, among chemists 
who wish to tabulate all molecules in a certain class. All attempts to find 
a collection of easily computable graph parameters that are sufficient to 
distinguish any pair of nonisomorphic graphs have failed. Nevertheless the 
problem of determining graph isomorphism has not been shown to be NP­
complete. It is considered a prime candidate for membership in the class 
of problems in NP that are neither NP-complete nor in P (if indeed NP =I­
P). 

In practice, computer programs such as Brendan McKay's nauty [5] can 
determine isomorphisms between most graphs up to about 20000 vertices, 
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though there are significant "pathological" cases where certain very highly 
structured graphs on only a few hundred vertices cannot be dealt with. 
Determining the automorphism group of a graph is closely related to de­
termining whether two graphs are isomorphic. As we have already seen, it 
is often easy to find some automorphisms of a graph, but quite difficult 
to show that one has identified the full automorphism group of the graph. 
Once again, for moderately sized graphs with explicit descriptions, use of 
a computer is recommended. 

Many graph parameters are known to be NP-hard to compute. For ex­
ample, determining the chromatic number of a graph or finding the size of 
the maximum clique are both NP-hard. 

Krausz's theorem (Theorem 1.7.2) comes from [4] and is surprisingly 
useful. A proof in English appears in [6], but you are better advised to 
construct your own. Beineke's result (Theorem 1.7.4) is proved in [1]. 

Most introductory texts on graph theory discuss planar graphs. For more 
complete information about embeddings of graphs, we recommend Gross 
and Tucker [3]. 

Part of the charm of graph theory is that it is easy to find interesting 
and worthwhile problems that can be attacked by elementary methods, 
and with some real prospect of success. We offer the following by way of 
example. Define the iterated line graph Ln(x) of a graph X by setting 
Ll(X) equal to L(X) and, if n > I, defining Ln(x) to be L(Ln-l(x)). It 
is an open question, due to Ron Graham, whether a tree T is determined 
by the integer sequence 

n?1. 
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2 
Groups 

The automorphism group of a graph is very naturally viewed as a group 
of permutations of its vertices, and so we now present some basic informa­
tion about permutation groups. This includes some simple but very useful 
counting results, which we will use to show that the proportion of graphs 
on n vertices that have nontrivial automorphism group tends to zero as 
n tends to infinity. (This is often expressed by the expression "almost all 
graphs are asymmetric.") For a group theorist this result might be a disap­
pointment, but we take its lesson to be that interesting interactions between 
groups and graphs should be looked for where the automorphism groups 
are large. Consequently, we also take the time here to develop some of the 
basic properties of transitive groups. 

2.1 Permutation Groups 

The set of all permutations of a set V is denoted by Sym(V), or just Sym( n) 
when IVI = n. A permutation group on V is a subgroup of Sym(V). If X 
is a graph with vertex set V, then we can view each automorphism as a 
permutation of V, and so Aut(X) is a permutation group. 

A permutation representation of a group G is a homomorphism from G 
into Sym(V) for some set V. A permutation representation is also referred 
to as an action of G on the set V, in which case we say that G acts on V. 
A representation is faithful if its kernel is the identity group. 
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A group G acting on a set V induces a number of other actions. If S is a 
subset of V, then for any element 9 E G, the translate S9 is again a subset 
of V. Thus each element of G determines a permutation of the subsets of V, 
and so we have an action of G on the power set 2 v. We can be more precise 
than this by noting that IS91 = lSI. Thus for any fixed k, the action of G 
on V induces an action of G on the k-subsets of V. Similarly, the action of 
G on V induces an action of G on the ordered k-tuples of elements of V. 

Suppose G is a permutation group on the set V. A subset S of V is G­
invariant if S9 E S for all points s of S and elements 9 of G. If S is invariant 
under G, then each element 9 E G permutes the elements of S. Let 9 r S 
denote the restriction of the permutation 9 to S. Then the mapping 

gf-+grS 

is a homomorphism from G into Sym(S), and the image of G under this 
homomorphism is a permutation group on S, which we denote by G r S. (It 
would be more usual to use G S .) 

A permutation group G on V is transitive if given any two points x and 
y from V there is an element 9 E G such that X9 = y. A G-invariant subset 
S of V is an orbit of G if G r S is transitive on S. For any x E V, it is 
straightforward to check that the set 

xC := {x9 : 9 E G} 

is an orbit of G. Now, if y E xc, then yC = xc, and if y </. xc, then 
yC n xC = 0, so each point lies in a unique orbit of G, and the orbits of G 
partition V. Any G-invariant subset of V is a union of orbits of G (and in 
fact, we could define an orbit to be a minimal G-invariant subset of V). 

2.2 Counting 

Let G be a permutation group on V. For any x E V the stabilizer Gx of x 
is the set of all permutations 9 E G such that x9 = X. It is easy to see that 
Gx is a subgroup of G. If Xl, ... , Xr are distinct elements of V, then 

r 

G ·=nG Xl"",Xr . X z • 

i=l 

Thus this intersection is the subgroup of G formed by the elements that 
fix Xi for all i; to emphasize this it is called the pointwise stabilizer of 
{Xl, ... , x r }. If S is a subset of V, then the stabilizer G S of S is the set of 
all permutations 9 such that S9 = S. Because here we are not insisting that 
every element of S be fixed this is sometimes called the setwise stabilizer 
of S. If S = {Xl, ... , x r }, then GX1, ... ,xr is a subgroup of Gs. 

Lemma 2.2.1 Let G be a permutation group acting on V and let S be an 
orbit of G. If X and yare elements of S, the set of permutations in G that 
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map x to y is a right coset of G x . Conversely, all elements in a right coset 
of Gx map x to the same point in S. 

Proof. Since G is transitive on S, it contains an element, 9 say, such that 
x 9 = y. Now suppose that h E G and xh = y. Then x 9 = xh, whence 
X h9- 1 = x. Therefore, hg- 1 E Gx and h E Gxg. Consequently, all elements 
mapping x to y belong to the coset Gxg. 

For the converse we must show that every element of Gxg maps x to 
the same point. Every element of Gxg has the form hg for some element 
h E Gx. Since X h9 = (xh)9 = x 9, it follows that all the elements of Gxg 
map x to x 9 . D 

There is a simple but very useful consequence of this, known as the 
orbit-stabilizer lemma. 

Lemma 2.2.2 (Orbit-stabilizer) Let G be a permutation group acting 
on V and let x be a point in V. Then 

Proof. By the previous lemma, the points of the orbit xC correspond 
bijectively with the right cosets of Gx . Hence the elements of G can be 
partitioned into Ixci cosets, each containing IGxl elements of G. D 

In view of the above it is natural to wonder how Gx and Gy are related 
if x and yare distinct points in an orbit of G. To answer this we first need 
some more terminology. An element of the group G that can be written in 
the form 9 -1 hg is said to be conjugate to h, and the set of all elements of 
G conjugate to h is the conjugacy class of h. Given any element 9 E G, the 
mapping 79 : h f--+ g-lhg is a permutation of the elements of G. The set 
of all such mappings forms a group isomorphic to G with the conjugacy 
classes of G as its orbits. If H S;; G and 9 E G, then g-l Hg is defined to 
be the subset 

If H is a subgroup of G, then g-l Hg is a subgroup of G isomorphic to H, 
and we say that g-l H 9 is conjugate to H. Our next result shows that the 
stabilizers of two points in the same orbit of a group are conjugate. 

Lemma 2.2.3 Let G be a permutation group on the set V and let x be a 
point in V. If 9 E G, then g-lGxg = G x9. 

Proof. Suppose that x 9 = y. First we show that every element of g-lGxg 
fixes y. Let h E Gx . Then 

-lh h y9 9 = X 9 = x9 = y, 

and therefore g-lhg E G y . On the other hand, if hE Gy , then ghg- 1 fixes 
x, whence we see that g-lGxg = G y . D 
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If 9 is a permutation of V, then fix(g) denotes the set of points in V 
fixed by g. The following lemma is traditionally (and wrongly) attributed 
to Burnside; in fact, it is due to Cauchy and Frobenius. 

Lemma 2.2.4 ("Burnside") Let G be a permutation group on the set 
V. Then the number of orbits of G on V is equal to the average number of 
points fixed by an element of G. 

Proof. We count in two ways the pairs (g, x) where 9 E G and x is a point 
in V fixed by g. Summing over the elements of G we find that the number 
of such pairs is 

L Ifix(g)l, 
gEG 

which, of course, is IGI times the average number of points fixed by an 
element of G. Next we must sum over the points of V, and to do this we 
first note that the number of elements of G that fix x is IGx I. Hence the 
number of pairs is 

Now, IGxl is constant as x ranges over an orbit, so the contribution to this 
sum from the elements in the orbit xG is IxGIIGxl = IGI. Hence the total 
sum is equal to I G I times the number of orbits, and the result is proved. 0 

2.3 Asymmetric Graphs 

A graph is asymmetric if its automorphism group is the identity group. 
In this section we will prove that almost all graphs are asymmetric, i.e., 
the proportion of graphs on n vertices that are asymmetric goes to 1 as 
n ~ 00. Our main tool will be Burnside's lemma. 

Let V be a set of size n and consider all the distinct graphs with vertex 
set V. If we let Kv denote a fixed copy of the complete graph on the 
vertex set V, then there is a one-to-one correspondence between graphs 
with vertex set V and subsets of E(K v). Since K v has G) edges, the total 
number of different graphs is 

Given a graph X, the set of graphs isomorphic to X is called the iso­
morphism class of X. The isomorphism classes partition the set of graphs 
with vertex set V. Two such graphs X and Yare isomorphic if there is a 
permutation of Sym(V) that maps the edge set of X onto the edge set of 
Y. Therefore, an isomorphism class is an orbit of Sym(V) in its action on 
subsets of E(Kv). 
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Lemma 2.3.1 The size of the isomorphism class containing X is 

n! 

IAut(X)I' 

Proof. This follows from the orbit-stabilizer lemma. We leave the details 
as an exercise. 0 

Now we will count the number of isomorphism classes, using Burnside's 
lemma. This means that we must find the average number of subsets of 
E(Kv) fixed by the elements of Sym(V). Now, if a permutation 9 has r 
orbits in its action on E(Kv), then it fixes 2r subsets in its action on the 
power set of E(Kv). For any 9 E Sym(V), let orb2 (g) denote the number 
of orbits of 9 in its action on E( K v). Then Burnside's lemma yields that 
the number of isomorphism classes of graphs with vertex set V is equal to 

1 '" 2orb2 (g). 
n! L.-

gESym(V) 

(2.1) 

If all graphs were asymmetric, then every isomorphism class would 
contain n! graphs and there would be exactly 

n! 

isomorphism classes. Our next result shows that in fact, the number of 
isomorphism classes of graphs on n vertices is quite close to this, and we 
will deduce from this that almost all graphs are asymmetric. Recall that 
0(1) is shorthand for a function that tends to 0 as n -+ 00. 

Lemma 2.3.2 The number of isomorphism classes of graphs on n vertices 
is at most 

2(;) 
(1 + 0(1))-, . 

n. 

Proof. We will leave some details to the reader. The support of a per­
mutation is the set of points that it does not fix. We claim that among 
all permutations 9 E Sym(V) with support of size an even integer 2r, the 
maximum value of orb2 (g) is realized by the permutation with exactly r 
cycles of length 2. 

Suppose 9 E Sym(V) is such a permutation with r cycles of length two 
and n - 2r fixed points. Since g2 = e, all its orbits on pairs of elements from 
V have length one or two. There are two ways in which an edge {x, y} E 

E(Kv) can be not fixed by g. Either both x and yare in the support of g, 
but x g -I- y, or x is in the support of 9 and y is a fixed point of g. There are 
2r(r -1) edges in the former category, and 2r(n - 2r) is the latter category. 
Therefore the number of orbits oflength 2 is r(r-1)+r(n-2r) = r(n-r-1), 
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and the total number of orbits of 9 on E(K v) is 

orb2 (g) = (;) - r(n - r -1). 

Now we are going to partition the permutations of Sym(V) into 3 classes 
and make rough estimates for the contribution that each class makes to the 
sum (2.1) above. 

Fix an even integer m ~ n - 2, and divide the permutations into three 
classes as follows: CI = {e}, C2 contains the nonidentity permutations with 
support of size at most m, and C3 contains the remaining permutations. 
We may estimate the sizes of these classes as follows: 

ICII = 1, IC2 1 ~ (:)m! < nm, IC3 1 < n! < nn. 

An element 9 E C2 has the maximum number of orbits on pairs if it is a 
single 2-cycle, in which case it has (~) - (n - 2) such orbits. An element 
9 E C3 has support of size at least m and so has the maximum number of 
orbits on pairs if it has m/2 2-cycles, in which case it has 

(;) _ ; ( n _ ; _ 1) ~ (;) _ n:; 
such orbits. 

Therefore, 

L 2orb2 (g) ~ 2(;) + nm2(;)-(n-2) + nn2(;)-nm/4 

gESym(V) 

The sum of the last two terms can be shown to be 0(1) by expressing it as 

2m log n-n+2 + 2nlogn-nm/4 

and taking m = lclognJ for c > 4. o 

Corollary 2.3.3 Almost all graphs are asymmetric. 

Proof. Suppose that the proportion of isomorphism classes of graphs on 
V that are asymmetric is 1-£. Each isomorphism class of a graph that is not 
asymmetric contains at most n!/2 graphs, whence the average size of an 
isomorphism class is at most 

Consequently, 
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from which it follows that J-t tends to 1 as n tends to infinity. Since the 
proportion of asymmetric graphs on V is at least as large as the proportion 
of isomorphism classes (why?), it follows that the proportion of graphs on 
n vertices that are asymmetric goes to 1 as n tends to 00. D 

Although the last result assures us that most graphs are asymmetric, 
it is surprisingly difficult to find examples of graphs that are obviously 
asymmetric. We describe a construction that does yield such examples. Let 
T be a tree with no vertices of valency two, and with at least one vertex of 
valency greater than two. Assume that it has exactly m end-vertices. We 
construct a Halin graph by drawing T in the plane, and then drawing a 
cycle of length m through its end-vertices, so as to form a planar graph. 
An example is shown in Figure 2.1. 

Figure 2.1. A Halin graph 

HaHn graphs have a number of interesting properties; in particular, it 
is comparatively easy to construct cubic HaHn graphs with no nonidentity 
automorphisms. They all have the property that if we delete any two ver­
tices, then the resulting graph is connected, but if we delete any edge, then 
we can find a pair of vertices whose deletion will disconnect the graph. 
(To use language from Section 3.4, they are 3-connected, but any proper 
subgraph is at most 2-connected.) 

2.4 Orbits on Pairs 

Let G be a transitive permutation group acting on the set V. Then G acts 
on the set of ordered pairs V x V, and in this section we study its orbits 
on this set. It is so common to study G acting on both V and V x V that 
the orbits of G on V x V are often given the special name orbitals. 

Since G is transitive, the set 

{(x,x): x E V} 
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is an orbital of G, known as the diagonal orbital. If n <; V x V, we define 
its transpose n T to be 

{(y,x): (x,y) En}. 

It is a routine exercise to show that n T is G-invariant if and only if n is. 
Since orbits are either equal or disjoint, it follows that if n is an orbital of 
G, either n = n T or nnnT = 0. If n = nT, we call it a symmetric orbital. 

Lemma 2.4.1 Let G be a group acting transitively on the set V, and let 
x be a point of V. Then there is a one-to-one correspondence between the 
orbits of G on V x V and the orbits of Gx on V. 

Proof. Let n be an orbit of G on V x V, and let Yo denote the set 
{y : (x, y) En}. We claim that the set Yo is an orbit of Gx acting on 
V. If y and y' belong to Yo, then (x, y) and (x, V') lie in n and there is a 
permutation 9 such that 

(x, y)g = (x, V'). 

This implies that 9 E Gx and yg = y', and thus y and y' are in the same 
orbit of Gx . Conversely, if (x, y) E nand y' = yg for some 9 E Gx , then 
(x, V') E n. Thus Yo is an orbit of Gx . Since V is partitioned by the sets 
Yo, where n ranges over the orbits of G on V x V, the lemma follows. 0 

This lemma shows that for any x E V, each orbit n of G on V x V is 
associated with a unique orbit of Gx . The number of orbits of Gx on V is 
called the rank of the group G. If n is symmetric, the corresponding orbit 
of Gx is said to be self-paired. Each orbit n of G on V x V may be viewed 
as a directed graph with vertex set V and arc set n. When n is symmetric 
this directed graph is a graph: (x, y) is an arc if and only if (y, x) is. If n 
is not symmetric, then the directed graph has the property that if (x, y) is 
an arc, then (y, x) is not an arc. Such directed graphs are often known as 
oriented graphs (see Section 8.3). 

Lemma 2.4.2 Let G be a transitive permutation group on V and let n be 
an orbit of G on V x v. Suppose (x, y) En. Then n is symmetric if and 
only if there is a permutation 9 in G such that x g = y and yg = x. 

Proof. If (x, y) and (y, x) both lie in n, then there is a permutation 9 E 
G such that (x,y)g = (xg,yg) = (y,x). Conversely, suppose there is a 
permutation 9 swapping x and y. Since (x, y)g = (y, x) E n, it follows that 
n n n T =1= 0, and so n = nT. 0 

If a permutation 9 swaps x and y, then (xy) is a cycle in g. It follows that 
9 has even order (and so G itself must have even order). A permutation 
group G on V is generously transitive if for any two distinct elements x 
and y from V there is a permutation that swaps them. All orbits of G on 
V x V are symmetric if and only if G is generously transitive. 
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We have seen that each orbital of a transitive permutation group G on 
V gives rise to a graph or an oriented graph. It is clear that G acts as a 
transitive group of automorphisms of each of these graphs. Similarly, the 
union of any set of orbitals is a directed graph (or graph) on which G acts 
transitively. We consider one example. Let V be the set of all 35 triples 
from a fixed set of seven points. The symmetric group Sym(7) acts on V 
as a transitive permutation group G, and it is not hard to show that G is 
generously transitive. Fix a particular triple x and consider the orbits of 
Gx on V. There are four orbits, namely x itself, the triples that meet x in 2 
points, the triples that meet x in 1 point, and those disjoint from x. Hence 
these correspond to four orbitals, the first being the diagonal orbital, with 
the remaining three yielding the graphs J(7, 3, 2), J(7, 3, 1), and J(7, 3, 0). 
It is clear that G is a subgroup of the automorphism group of each of these 
graphs, but although it can be shown that G is the full automorphism 
group of J(7, 3, 2) and J(7, 3, 0), it is not the full automorphism group of 
J(7, 3, 1)! 

Lemma 2.4.3 The automorphism group of J(7, 3,1) contains a group 
isomorphic to Sym(8). 

Proof. There are 35 partitions of the set {O, 1, ... , 7} into two sets of 
size four. Let X be the graph with these partitions as vertices, where two 
partitions are adjacent if and only if the intersection of a 4-set from one 
with a 4-set from the other is a set of size two. Clearly, Aut(X) contains 
a subgroup isomorphic to Sym(8). However, X is isomorphic to J(7, 3,1). 
To see this, observe that a partition of {O, 1, ... , 7} into two sets of size 
four is determined by the 4-set in it that contains 0, and this 4-set in turn 
is determined by its nonzero elements. Hence the partitions correspond to 
the triples from {1, 2, ... , 7} and two partitions are adjacent in X if and 
only if the corresponding triples have exactly one element in common. D 

2.5 Primitivity 

Let G be a transitive group on V. A nonempty subset 8 of V is a block of 
imprimitivity for G if for any element g of G, either 89 = 8 or 8 n 89 = 0. 
Because G is transitive, it is clear that the translates of 8 form a partition 
of V. This set of distinct translates is called a system of imprimitivity for 
G. 

An example of a system of imprimitivity is readily provided by the 
cube Q shown in Figure 2.2. It is straightforward to see that Aut(Q) acts 
transitively on Q (see Section 3.1 for more details). 

For each vertex x there is a unique vertex x' at distance three from 
it; all other vertices in Q are at distance at most two. If 8 = {x, x'} 
and g E Aut(Q), then either 89 = 8 or 8 n 89 = 0, so 8 is a block of 
imprimitivity. There are four disjoint sets of the form 8 9 , as 9 ranges over 
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Figure 2.2. The cube Q 

the elements of Aut(Q), and these sets are permuted among themselves by 
Aut(Q). 

The partition of V into singletons is a system of imprimitivity as is 
the partition of V into one cell containing all of V. Any other system of 
imprimitivity is said to be nontrivial. A group with no nontrivial systems 
of imprimitivity is primitive; otherwise, it is imprimitive. There are two 
interesting characterizations of primitive permutation groups. We give one 
now; the second is in the next section. 

Lemma 2.5.1 Let G be a transitive permutation group on V and let x be 
a point in V. Then G is primitive if and only ifGx is a maximal subgroup 
ofG. 

Proof. In fact, we shall be proving the contrapositive statement, namely 
that G has a nontrivial system of imprimitivity if and only if Gx is not a 
maximal subgroup of G. First some notation: We write H ::; G if H is a 
subgroup of G, and H < G if H is a proper subgroup of G. 

Suppose first that G has a nontrivial system of imprimitivity and that 
B is a block of imprimitivity that contains x. Then we will show that 
Gx < G B < G and therefore that Gx is not maximal. If g E Gx , then 
BnBg is nonempty (for it contains x) and hence B = Bg. Thus Gx ::; GB. 
To show that the inclusion is proper we find an element in G B that is not 
in Gx . Let y #- x be another element of B. Since G is transitive it contains 
an element h such that xh = y. But then B = Bh, yet h f/. Gx , and hence 
Gx < GB . 

Conversely, suppose that there is a subgroup H such that Gx < H < G. 
We shall show that the orbits of H form a nontrivial system of imprimi­
tivity. Let B be the orbit of H containing x and let 9 E G. To show that 
B is a block of imprimitivity it is necessary to show that either B = Bg 
or B n Bg = 0. Suppose that y E B n Bg. Then because y E B there 
is an element h E H such that y = xh. Moreover, because y E Bg there 
is some element h' E H such that y = xh'g. Then xh'gh- 1 = x, and so 
h'gh-1 E Gx < H. Therefore, 9 E H, and because B is an orbit of H we 
have B = Bg. Because Gx < H, the block B does not consist of x alone, 
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and because H < G, it does not consist of the whole of V, and hence it is 
a nontrivial block of imprimitivity. 0 

2.6 Primitivity and Connectivity 

Our second characterization of primitive permutation groups uses the orbits 
of G on V xV, and requires some preparation. A path in a directed graph 
D is a sequence Uo, .. . , Ur of distinct vertices such that (Ui-l, Ui) is an 
arc of D for i = 1, ... , r. A weak path is a sequence uo, ... ,Ur of distinct 
vertices such that for i = 1, ... , r, either (Ui-l, Ui) or (Ui' Ui-l) is an arc. 
(We will use this terminology in this section only.) A directed graph is 
strongly connected if any two vertices can be joined by a path and is weakly 
connected if any two vertices can be joined by a weak path. A directed 
graph is weakly connected if and only if its "underlying" undirected graph is 
connected. (This is often used as a definition of weak connectivity.) A strong 
component of a directed graph is an induced subgraph that is maximal, 
subject to being strongly connected. Since a vertex is strongly connected, 
it follows that each vertex lies in a strong component, and therefore the 
strong components of D partition its vertices. 

The in-valency of a vertex in a directed graph is the number of arcs 
ending on the vertex, the out-valency is defined analogously. 

Lemma 2.6.1 Let D be a directed graph such that the in-valency and out­
valency of any vertex are equal. Then D is strongly connected if and only 
if it is weakly connected. 

Proof. The difficulty is to show that if D is weakly connected, then it is 
strongly connected. Assume by way of contradiction that D is weakly, but 
not strongly, connected and let Db ... , Dr be the strong components of D. 
If there is an arc starting in Dl and ending in D2, then any arc joining Dl 
to D2 must start in D 1 . Hence we may define a directed graph D' with the 
strong components of D as its vertices, and such that there is an arc from 
Di to D j in D' if and only if there is an arc in D starting in Di and ending 
in D j . This directed graph cannot contain any cycles. (Why?) It follows 
that there is a strong component, Dl say, such that any arc that ends on 
a vertex in it must start at a vertex in it. Since D is weakly connected, 
there is at least one arc that starts in Dl and ends on a vertex not in D 1 . 

Consequently the number of arcs in Dl is less than the sum of the out­
valencies of the vertices in it. But on the other hand, each arc that ends 
in Dl must start in it, and therefore the number of arcs in Dl is equal to 
the sum of the in-valencies of its vertices. By our hypothesis on D, though, 
the sum of the in-valencies of the vertices in Dl equals the sum of the 
out-valencies. Thus we have the contradiction we want. 0 
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What does this lemma have to do with permutation groups? Let G act 
transitively on V and let n be an orbit of G on V x V that is not symmetric. 
Then n is an oriented graph, and G acts transitively on its vertices. Hence 
each point in V has the same out-valency in n and the same in-valency. As 
the in- and out-valencies sum to the number of arcs in n, the in- and out­
valencies of any point of V in n are the same. Hence n is weakly connected 
if and only if it is strongly connected, and so we will refer to weakly or 
strongly connected orbits as connected orbits. 

Lemma 2.6.2 Let G be a transitive permutation group on V. Then G is 
primitive if and only if each nondiagonal orbit is connected. 

Proof. Suppose that G is imprimitive, and that B l , ... , Br is a system of 
imprimitivity. Assume further that x and yare distinct points in Bl and n 
is the orbit of G (on V x V) that contains (x, y). If 9 E G, then x9 and y9 

must lie in the same block; otherwise B9 contains points from two distinct 
blocks. Therefore, each arc of n joins vertices in the same block, and so n 
is not connected. 

Now suppose conversely that n is a nondiagonal orbit that is not con­
nected, and let B be the point set of some component of n. If 9 E G, then 
Band B9 are either equal or disjoint. Therefore, B is a nontrivial block 
and G is imprimitive. 0 

Exercises 

1. Show that the size of the isomorphism class containing X is 

n! 
IAut(X)I' 

2. Prove that IAut(Cn)1 = 2n. (You may assume that 2n is a lower 
bound on IAut(Cn)I.) 

3. If G is a transitive permutation group on the set V, show that there 
is an element of G with no fixed points. (What if G has more than 
one orbit, but no fixed points?) 

4. If 9 is a permutation of a set of n points with support of size s, 
show that orb2 (g) is maximal when all nontrivial cycles of 9 are 
transpositions. 

5. The goal of this exercise is to prove Frobenius's lemma, which as­
serts that if the order of the group G is divisible by the prime p, 
then G contains an element of order p. Let n denote the set of all 
ordered p-tuples (Xl"'" xp) of elements of G such that Xl ... xp = e. 
Let 7r denote the permutation of GP that maps (Xl, X2, . .. , xp) to 
(X2' ... , X P' Xl)' Show that 7r fixes n as a set. Using the facts that 7r 
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fixes (e, ... , e) and Inl = IGIP~\ deduce that 7T must fix at least p 
elements of n and hence Frobenius's lemma holds. 

6. Construct a cubic planar graph on 12 vertices with trivial auto­
morphism group, and provide a proof that it has no nonidentity 
automorphism. 

7. Decide whether the cube is a Halin graph. 

S. Let X be a self-complementary graph with more than one vertex. 
Show that there is a permutation 9 of VeX) such that: 

(a) {x, y} E E(X) if and only if {xg, yg} E E(X), 
(b) g2 E Aut(X) but g2 i= e, 
(c) the orbits of 9 on VeX) induce self-complementary subgraphs 

of X. 

9. If G is a permutation group on V, show that the number of orbits of 
G on V x V is equal to 

I~I L Ifix(g)1 2 

gEG 

and derive a similar formula for the number of orbits of G on the set 
of pairs of distinct elements from V. 

10. If Hand K are subsets of a group G, then H K denotes the subset 

{hk: hE H, k E K}. 

If Hand K are subgroups and 9 E G, then HgK is called a double 
coset. The double coset H gK is a union of right cosets of H and a 
union of left cosets of K, and G is partitioned by the distinct double 
cosets H gK, as 9 varies over the elements of G. Now (finally) suppose 
that G is a transitive permutation group on V and H :S G. Show 
that each orbit of H on V corresponds to a double coset of the form 
GxgH. Also show that the orbit of Gx corresponding to the double 
coset GxgGx is self-paired if and only if GxgGx = Gxg~lGx. 

11. Let G be a transitive permutation group on V. Show that it has a 
symmetric nondiagonal orbit on V x V if and only if IGI is even. 

12. Show that the only primitive permutation group on V that contains 
a transposition is Sym(V). 

13. Let X be a graph such that Aut(X) acts transitively on VeX) and let 
B be a block of imprimitivity for Aut(X). Show that the subgraph 
of X induced by B is regular. 

14. Let G be a generously transitive permutation group on V and let B 
be a block for G. Show that GrB and the permutation group induced 
by G on the translates of B are both generously transitive. 
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15. Let G be a transitive permutation group on V such that for each 
element v in V there is an element of G with order two that has 
v as its only fixed point. (Thus IVI must be odd.) Show that G is 
generously transitive. 

16. Let X be a nonempty graph that is not connected. If Aut(X) is 
transitive, show that it is imprimitive. 

17. Show that Aut(J(4n-l, 2n-l, n-l)) contains a subgroup isomorphic 
to Sym(4n). Show further that w(J(4n - 1, 2n - 1, n - 1)) :s; 4n - 1, 
and characterize the cases where equality holds. 

Notes 

The standard reference for permutation groups is Wielandt's classic [5]. We 
also highly recommend Cameron [1]. For combinatorialists these are the 
best starting points. However, almost every book on finite group theory 
contains enough information on permutation groups to cover our modest 
needs. Neumann [3] gives an interesting history of Burnside's lemma. 

The result of Exercise 15 is due to Shult. Exercise 17 is worth some 
thought, even if you do not attempt to solve it, because it appears quite 
obvious that Aut(J(4n-l, 2n-l, n-l)) should be Sym(4n - 1). The second 
part will be easier if you know something about Hadamard matrices. 

Call a graph minimal asymmetric if it is asymmetric, but any proper in­
duced subgraph with at least two vertices has a nontrivial automorphism. 
Sabidussi and Nesetfil [2] conjecture that there are finitely many isomor­
phism classes of minimal asymmetric graphs. In [4], Sabidussi verifies this 
for all graphs that contain an induced path of length at least 5, finding that 
there are only two such graphs. In [2], Sabidussi and Nesetfil show that 
there are exactly seven minimal asymmetric graphs in which the longest 
induced path has length four. 
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3 
Transitive Graphs 

We are going to study the properties of graphs whose automorphism group 
acts vertex transitively. A vertex-transitive graph is necessarily regular. 
One challenge is to find properties of vertex-transitive graphs that are not 
shared by all regular graphs. We will see that transitive graphs are more 
strongly connected than regular graphs in general. Cayley graphs form an 
important class of vertex-transitive graphs; we introduce them and offer 
some reasons why they are important and interesting. 

3.1 Vertex-Transitive Graphs 

A graph X is vertex transitive (or just transitive) if its automorphism group 
acts transitively on V(X). Thus for any two distinct vertices of X there is 
an automorphism mapping one to the other. 

An interesting family of vertex-transitive graphs is provided by the k­
cubes Qk. The vertex set of Qk is the set of all 2k binary k-tuples, with 
two being adjacent if they differ in precisely one coordinate position. We 
have already met the 3-cube Q3, which is normally just called the cube (see 
Figure 2.2), and Figure 3.1 shows the 4-cube Q4. 

Lemma 3.1.1 The k-cube Qk is vertex transitive. 

Proof. If v is a fixed k-tuple, then the mapping 

Pv:Xf--+x+v 
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Figure 3.1. The 4-cube Q4 

(where addition is binary) is a permutation of the vertices of Qk. This map­
ping is an automorphism because the k-tuples x and y differ in precisely 
one coordinate position if and only if x + v and y + v differ in precisely 
one coordinate position. There are 2k such permutations, and they form a 
subgroup H of the automorphism group of Qk. This subgroup acts transi­
tively on V(Qk) because for any two vertices x and y, the automorphism 
Py-x maps x to y. 0 

The group H of Lemma 3.1.1 is not the full automorphism group of Qk. 
Any permutation of the k coordinate positions is an automorphism of Qk, 
and the set of all these permutations forms a subgroup K of Aut(Qk), iso­
morphic to Sym(k). Therefore, Aut(Qk) contains the set HK. By standard 
group theory, the size of H K is given by 

IHKI = IHIIKI 
IHnKI· 

It is straightforward to see that H n K is the identity subgroup, whence 
we conclude that IAut(Qk)1 :2: 2kkL 

Another family of vertex-transitive graphs that we have met before are 
the circulants. Any vertex can be mapped to any other vertex by using a 
suitable power of the cyclic permutation described in Section 1.5. 

The circulants and the k-cubes are both examples of a more general 
construction that produces many, but not all, vertex-transitive graphs. 

Let G be a group and let C be a subset of G that is closed under taking 
inverses and does not contain the identity. Then the Cayley graph X(G, C) 
is the graph with vertex set G and edge set 

E(X(G, C)) = {gh : hg- 1 E C}. 
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If C i.s an arbitrary subset of G, then we can define a directed graph 
X(G, C) with vertex set G and arc set {(g, h) : hg- 1 E C}. If Cis inverse­
closed and does not contain the identity, then this graph is undirected and 
has no loops, and the definition reduces to that of a Cayley graph. Most 
of the results for Cayley graphs apply in the more general directed case 
without modification, but we explicitly use directed Cayley graphs only in 
Section 3.8. 

Theorem 3.1.2 The Cayley graph X(G, C) is vertex transitive. 

Proof. For each g E G the mapping 

Pg : x 1-+ xg 

is a permutation of the elements of G. This is an automorphism of X (G, C) 
because 

(yg)(xg)-l = ygg-lx- 1 = yx-l, 

and so xg rv yg if and only if x rv y. The permutations Pg form a subgroup 
of the automorphism group of X(G, C) isomorphic to G. This subgroup 
acts transitively on the vertices of X (G, C) because for any two vertices g 
and h, the automorphism Pg-lh maps g to h. 0 

The k-cube is a Cayley graph for the elementary abelian group (22: 2)k, 
and a circulant on n vertices is a Cayley graph for the cyclic group of order 
n. 

Most small vertex-transitive graphs are Cayley graphs, but there are 
also many families of vertex-transitive graphs that are not Cayley graphs. 
In particular, the graphs J(v, k, i) are vertex transitive because Sym(v) 
contains permutations that map any k-set to any other k-set, but in general 
they are not Cayley graphs. We content ourselves with a single example. 

Lemma 3.1.3 The Petersen graph is not a Cayley graph. 

Proof. There are only two groups of order 10, the cyclic group 22:10 and the 
dihedral group D lO . You may verify that none of the cubic Cayley graphs 
on these groups are isomorphic to the Petersen graph (Exercise 2). 0 

We will return to study Cayley graphs in more detail in Section 3.7. 

3.2 Edge-Transitive Graphs 

A graph X is edge transitive if its automorphism group acts transitively 
on E(X). It is straightforward to see that the graphs J( v, k, i) are edge 
transitive, but the circulants are not usually edge transitive. 

An arc in X is an ordered pair of adjacent vertices, and X is arc transitive 
if Aut (X) acts transitively on its arcs. It is frequently useful to view an edge 
in a graph as a pair of oppositely directed arcs. An arc-transitive graph is 
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necessarily vertex and edge transitive. In this section we will consider the 
relations between these various forms of transitivity. 

The complete bipartite graphs Km,n are edge transitive, but not vertex 
transitive unless m = n, because no automorphism can map a vertex of 
valency m to a vertex of valency n. The next lemma shows that all graphs 
that are edge transitive but not vertex transitive are bipartite. 

Lemma 3.2.1 Let X be an edge-transitive graph with no isolated vertices. 
If X is not vertex transitive, then Aut(X) has exactly two orbits, and these 
two orbits are a bipartition of X. 

Proof. Suppose X is edge but not vertex transitive. Suppose that {x, y} E 

E(X). If w E V(X), then w lies on an edge and there is an element of 
Aut(X) that maps this edge onto {x,y}. Hence any vertex of X lies in 
either the orbit of x under Aut(X), or the orbit of y. This shows that 
Aut(X) has exactly two orbits. An edge that joins two vertices in one orbit 
cannot be mapped by an automorphism to an edge that contains a vertex 
from the other orbit. Since X is edge transitive and every vertex lies in an 
edge, it follows that there is no edge joining two vertices in the same orbit. 
Hence X is bipartite and the orbits are a bipartition for it. 0 

Figure 3.2 shows a regular graph that is edge transitive but not vertex 
transitive. The colouring of the vertices shows the bipartition. 

Figure 3.2. A regular edge-transitive graph that is not vertex transitive 

An arc-transitive graph is, as we noted, always vertex and edge transitive. 
The converse is in general false; see the Notes at the end of the chapter for 
more. We do at least have the next result. 

Lemma 3.2.2 If the graph X is vertex and edge transitive, but not arc 
transitive, then its valency is even. 
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Proof. Let G = Aut(X), and suppose that x E V(X). Let y be a vertex 
adjacent to x and n be the orbit of G on V X V that contains (x, y). Since 
X is edge transitive, every arc in X can be mapped by an automorphism to 
either (x, y) or (y, x). Since X is not arc transitive, (y, x) ~ n, and therefore 
n is not symmetric. Therefore, X is the graph with edge set nUnT. Because 
the out-valency of x is the same in nand nT, the valency of X must be 
even. 0 

A simple corollary to this result is that a vertex- and edge-transitive 
graph of odd valency must be arc transitive. Figure 3.3 gives an example 
of a vertex- and edge-transitive graph that is not arc-transitive. 

Figure 3.3. A vertex- and edge- but not arc-transitive graph 

3.3 Edge Connectivity 

An edge cutset in a graph X is a set of edges whose deletion increases the 
number of connected components of X. For a connected graph X, the edge 
connectivity is the minimum number of edges in an edge cutset, and will 
be denoted by "'1 (X). If a single edge e is an edge cutset, then we call 
e a bridge or a cut-edge. As the set of edges adjacent to a vertex is an 
edge cutset, the edge connectivity of a graph cannot be greater than its 
minimum valency. Therefore, the edge connectivity of a vertex-transitive 
graph is at most its valency. In this section we will prove that the edge 
connectivity of a connected vertex-transitive graph is equal to its valency. 
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If A <:;:; V(X), then we define 8A to be the set of edges with one end in 
A and one end not in A. So if A = 0 or A = V(X), then 8A = 0, while the 
edge connectivity is the minimum size of 8A as A ranges over the proper 
subsets of V(X). 

Lemma 3.3.1 Let A and B be subsets ofV(X), for some graph X. Then 

18(A U B)I + 18(A n B)I ::; 18AI + 18BI· 
Proof. The details are left as an exercise. We simply note here that the 
difference between the two sides is twice the number of edges joining A \B 
to B\A. 0 

Define an edge atom of a graph X to be a subset S such that 18S1 = 
Kl(X) and, given this, lSI is minimal. Since 8S = 8V\S, it follows that if 
S is an atom, then 21S1 ::; IV(X)I. 

Corollary 3.3.2 Any two distinct edge atoms are vertex disjoint. 

Proof. Assume K = Kl(X) and let A and B be two distinct edge atoms in 
X. If A U B = V(X), then, since neither A nor B contains more than half 
the vertices of X, it follows that 

IAI = IBI = ~IV(X)I 
and hence that AnB = 0. So we may assume that AUB is a proper subset 
of V(X). Now, the previous lemma yields 

18(A U B)I + 18(A n B)I ::; 2K, 

and, since AU B f= V(X) and An B f= 0, this implies that 

18(A U B)I = 18(A n B)I = K. 

Since A n B is a nonempty proper subset of the edge atom A, this is 
impossible. We are forced to conclude that A and B are disjoint. 0 

Our next result answers all questions about the edge connectivity of a 
vertex-transitive graph. 

Lemma 3.3.3 If X is a connected vertex-transitive graph, then its edge 
connectivity is equal to its valency. 

Proof. Suppose that X has valency k. Let A be an edge atom of X. If A is 
a single vertex, then 18AI = k and we are finished. Suppose that IAI 2: 2. If 
g is an automorphism of X and B = A9, then IBI = IAI and 18BI = 18AI. 
From the previous lemma we see that either A = B or AnB = 0. Therefore, 
A is a block of imprimitivity for Aut(X), and by Exercise 2.13 it follows 
that the subgraph of X induced by A is regular. 

Suppose that the valency of this sub graph is C. Then each vertex in A 
has exactly k - C neighbours not in A, and so 

18AI = IAI(k - C). 
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Since X is connected, £ < k, and so if IAI 2 k, then loAI 2 k. Hence we 
may assume that IAI < k. Since £ :::; IAI - 1, it follows that 

loAI2 IAI(k + 1 -IAI). 
The minimum value of the right side here occurs if IAI = lor k, when it is 
equal to k. Therefore, loAI 2 k in all cases. 0 

3.4 Vertex Connectivity 

A vertex cutset in a graph X is a set of vertices whose deletion increases 
the number of connected components of X. The vertex connectivity (or just 
connectivity) of a connected graph X is the minimum number of vertices 
in a vertex cutset, and will be denoted by f[o(X). For any k :::; f[o(X) we 
say that X is k-connected. Complete graphs have no vertex cutsets, but 
it is conventional to define "'o(Kn) to be n - 1. The fundamental result 
on connectivity is Menger's theorem, which we state after establishing one 
more piece of terminology. If u and v are distinct vertices of X, then two 
paths P and Q from u to v are openly disjoint if V (P \ { u, v}) and V ( Q \ 
{u, v}) are disjoint sets. 

Theorem 3.4.1 (Menger) Let u and v be distinct vertices in the graph 
X. Then the maximum number of openly disjoint paths from u to v equals 
the minimum size of a set of vertices S such that u and v lie in distinct 
components of X\S. 0 

We say that the subset S of the theorem separates u and v. Clearly, two 
vertices joined by m openly disjoint paths cannot be separated by any set of 
size less than m. The significance of this theorem is that it implies that two 
vertices that cannot be separated by fewer than m vertices must be joined 
by m openly disjoint paths. A simple consequence of Menger's theorem is 
that two vertices that cannot be separated by a single vertex must lie on 
a cycle. This is not too hard to prove directly. However, to prove that two 
vertices that cannot be separated by a set of size two are joined by three 
openly disjoint paths seems to be essentially as hard as the general case. 
Nonetheless, this is possibly the most important case. (It is the one that 
we make use of.) 

There are a number of variations of Menger's theorem. In particular, two 
subsets A and B of V(X) of size m cannot be separated by fewer than m 
vertices if and only if there are m disjoint paths starting in A and ending in 
B. This is easily deduced from the result stated; we leave it as an exercise. 

We have a precise bound for the connectivity of a vertex-transitive 
graph, which requires much more effort to prove than determining its edge 
connectivity did. 
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Theorem 3.4.2 A vertex-transitive graph with valency k has vertex 
connectivity at least ~ (k + 1). 

Figure 3.4 shows a 5-regular graph with vertex connectivity four, showing 
that equality can occur in this theorem. 

Figure 3.4. A 5-regular graph with vertex connectivity four 

Before proving this result we need to develop some theory. If A is a set 
of vertices in X, let N(A) denote the vertices in V(X)\A with a neighbour 
in A and let A be the complement of Au N(A) in V(X). A fragment of 
X is a subset A such that A =f. 0 and IN(A)I = t;;o(X). An atom of X is 
a fragment that contains the minimum possible number of vertices. Note 
that an atom must be connected and that if X is a k-regular graph with 
an atom consisting of a single vertex, then t;;o(X) = ~ It is not hard to 

show that if A is a fragment, then N(A) = N(A) and A = A. 
The following lemma records some further useful properties of fragments. 

Lemma 3.4.3 Let A and B be fragments in a graph X. Then 

(a) N(A n B) ~ (A n N(B)) U (N(A) n B) U (N(A) n N(B)). 
(b) N(A U B) = (A n N(B)) U (N(A) n B) U (N(A) n N(B)). 
(c)AUB~AnB. 

(d) AUB=AnB. 

Proof. Suppose first that x E N(A n B). Since An Band N(A n B) are 
disjoint, if x E A, then x fI B, and therefore it must lie in N(B). Similarly, 
if x E B, then x E N(A). If x does not lie in A or B, then x E N(A)nN(B). 
Thus we have proved (a). 

Analogous arguments show that N(A U B) is contained in the union of 
An N(B), N(A) n B, and N(A) n N(B). To obtain the reverse inclusion, 
note that if x E An N(B), then x does not lie in A or B. Since x E N(B), 
it follows that x E N(A U B). Similarly, we see that if x E N(A) n B or 
N(A) n N(B), then x E N(A U B). 
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Next, if x E A, then x does not lie in A or N(A), and therefore does not 
lie in An B or N(A n B). So x E An B. This proves (c). We leave the 
proof of (d) as an exercise. 0 

B N(B) B 

A a 

N(A) b c d 

A e 

Figure 3.5. Intersection of fragments 

Theorem 3.4.4 Let X be a graph on n vertices with connectivity K.. Sup­
pose A and B are fragments of X and An B -=f 0. If IAI ~ IBI, then An B 
is a fragment. 

Proof. The intersections of A, N(A), and A with the sets B, N(B), and B 
partition V(X) into nine pieces, as shown in Figure 3.5. The cardinalities 
of five of these pieces are also defined in this figure. We present the proof 
as a number of steps. 

(a) IA U BI < n - K.. 
Since IFI + iFl = n - K. for any fragment F of X, 

IAI~IBI=n-K.-IBI, 

and therefore IAI + IBI ~ n- K.. Since AnB is nonempty, the claim follows. 

(b) IN(A U B)I ~ K.. 
From Lemma 3.4.3 we find that IN(A n B)I ~ a + b + c and IN(A U B)I = 
c + d + e. Consequently, 

2K. = IN(A)I+IN(B)I = a+b+2c+d+e ~ IN(AnB)I+IN(AUB)I. (3.1) 

Since IN(A n B)I ~ K., this implies that IN(A U B)I ~ K.. 
(c) AnB-=f0. 

From (a) and (b) we see that IAU BI + IN(AU B)I < n. Hence Au B -=f 0, 
and the claim follows from Lemma 3.4.3(d). 

(d) IN(A U B)I = K.. 
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For any fragment F we have N(F) = NCF). Using part (a) of Lemma 3.4.3 
and (b) we obtain 

N(A n B) ~ (A n N(B)) U (B n N(A)) U (N(A) n N(B)) 

= (A n N(B)) U (B n N(A)) U (N(A) n N(B)) 

= N(AUB). 

Since An B is nonempty, IN(A n B)I 2: 11, and therefore IN(A U B)I 2: 11,. 

Taken with (b), we get the claim. 

(e) The set A n B is a fragment. 

From (3.1) we see that IN(A n B)I + IN(A U B)I :S 211" whence (d) yields 
that N(A n B) :S 11,. D 

Corollary 3.4.5 If A is an atom and B is a fragment of X, then A is a 
subset of exactly one of B, N(B), and B. 

Proof. Since A is an atom, IAI :S IBI and IAI :S IBI. Hence the intersection 
of A with B or B, if nonempty, would be a fragment. Since A is an atom, 
no proper subset of it can be a fragment. The result follows immediately.D 

Now, we can prove Theorem 3.4.2. Suppose that X is a vertex-transitive 
graph with valency k, and let A be an atom in X. If A is a single vertex, 
then IN(A)I = k, and the theorem holds. Thus we may assume that IAI 2: 2. 
If g E Aut(X), then A9 is also an atom, and so by Corollary 3.4.5, either 
A = A9 or An A9 = 0. Hence A is a block of imprimitivity for Aut(X), 
and its translates partition VeX). Corollary 3.4.5 now yields that N(A) is 
partitioned by translates of A, and therefore 

IN(A)I = tlAI 

for some integer t. Suppose u is a vertex A. Then the valency of u is at 
most 

IAI-1 + IN(A)I = (t + 1)IAI-1, 

and from this it follows that k + 1 :S (t + l)IAI and K,o(X) 2: t!l k. To 
complete the proof we show that t 2: 2. 

This is actually a consequence of Exercise 20, but since X is vertex transi­
tive and the atoms are blocks of imprimitivityfor Aut(X), there is a shorter 
argument. Suppose for a contradiction that t = 1. By Corollary 3.4.5, N(A) 
is a union of atoms, and so N(A) is an atom. Since Aut(X) acts transitively 
on the atoms of X, it follows that IN(N(A))I = IAI, and since AnN(N(A)) 
is nonempty, A = N(N(A)). This implies that A = 0, and so A is not a 
fragment. 
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3.5 Matchings 

A matching M in a graph X is a set of edges such that no two have a 
vertex in common. The size of a matching is the number of edges in it. 
A vertex contained in an edge of M is covered by M. A matching that 
covers every vertex of X is called a perfect matching or a I-factor. Clearly, 
a graph that contains a perfect matching has an even number of vertices. 
A maximum matching is a matching with the maximum possible number 
of edges. (Without this convention there is a chance of confusion, since 
matchings can be partially ordered by inclusion or by size.) 

We will prove the following result. It implies that a connected vertex­
transitive graph on an even number of vertices has a perfect matching, and 
that each vertex in a connected vertex-transitive graph on an odd number 
of vertices is missed by a matching that covers all the remaining vertices. 

Theorem 3.5.1 Let X be a connected vertex-transitive graph. Then X has 
a matching that misses at most one vertex, and each edge is contained in 
a maximum matching. 

We first verify the claim about the maximum size of a matching. This 
requires some preparation, including two lemmas. If M is a matching in X 
and P is a path in X such that every second edge of P lies in M, we say 
that P is an alternating path relative to M. Similarly, an alternating cycle 
is a cycle with every second edge in M. 

Suppose that M and N are matchings in X, and consider their symmetric 
difference M EEl N. Since M and N are regular subgraphs with valency 
one, M EEl N is a subgraph with maximum valency two, and therefore each 
component of it is either a path or a cycle. Since no vertex in M EEl N lies 
in two edges of M or of N, these paths and cycles are alternating relative 
to both M and N. In particular, each cycle must have even length. 

Suppose P is a path in M EEl N with odd length. We may assume without 
loss that P contains more edges of M than of N, in which case it follows 
that N EEl P is a matching in X that contains more edges than N. Hence, if 
M and N are maximum matchings, all paths in M EEl N have even length. 

Lemma 3.5.2 Let u and v be vertices in X such that no maximum match­
ing misses both of them. Suppose that Mu and Mv are maximum matchings 
that miss u and v, respectively. Then there is a path of even length in 
Mu EEl Mv with u and v as its end-vertices. 

Proof. Our hypothesis implies that u and v are vertices of valency one in 
Mu EEl Mv so, by our ruminations above, both vertices are end-vertices of 
paths in Mu EEl Mv. As Mu and Mv have maximum size, these paths have 
even length. If they are end-vertices of the same path, we are finished. 

Assume that they lie on distinct paths and let P be the path on u. Then 
P is an alternating path relative to Mv with even length, and Mv EB P is 
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a matching in X that misses u and v and has the same size as Mv' This 
contradicts our choice of u and v. 0 

We are almost ready to prove the first part of our theorem. We call a 
vertex u in X critical if it is covered by every maximum matching. If X 
is vertex transitive and one vertex is critical, then all vertices are critical, 
whence X has a perfect matching. Given this, the next result implies the 
first claim in our theorem. 

Lemma 3.5.3 Let u and v be distinct vertices in X and let P be a path 
from u to v. If no vertex in V(P) \ {u,v} is critical, then no maximum 
matching misses both u and v. 

Proof. The proof is by induction on the length of P. If u rv v, then no 
maximum matching misses both u and v; hence we may assume that P has 
length at least two. 

Let x be a vertex on P distinct from u and v. Then u and x are joined 
in X by a path that contains no critical vertices. This path is shorter than 
P, so by induction, we conclude that no maximum matching misses both 
u and x. Similarly, no maximum matching misses both v and x. 

Since x is not critical, there is a maximum matching Mx that misses 
it. Assume by way of contradiction that N is a maximum matching that 
misses u and v. Then, by Lemma 3.5.2 applied to the vertices u and x, 
there must be a path in Mx EB N with u and x as its end-vertices. Applying 
the same argument to v and x, we find that Mx EB N contains a path with 
v and x as its end-vertices. This implies that u = v, a contradiction. 0 

We noted above that a vertex-transitive graph that contains a critical 
vertex must have a perfect matching. By the above lemma, if X is vertex­
transitive and does not contain a critical vertex, then no two vertices are 
missed by a maximum matching, and therefore a maximum matching covers 
all but one vertex of X. 

It remains for us to show that every edge of X lies in a maximum 
matching. We assume inductively that this claim holds for all connected 
vertex-transitive graphs with fewer vertices or edges than X. If X is edge 
transitive, we are finished, so we assume it is not. Suppose e is an edge that 
does not lie in a maximum matching. Let Y be the subgraph of X with 
edge set consisting of the orbit of e under the action of Aut(X). Thus Y is 
a vertex-transitive spanning subgraph of X. Since X is not edge transitive, 
Y has fewer edges than X. We shall show that X has a matching contain­
ing an edge of Y that misses at most one vertex. This can be mapped to a 
matching containing e that misses at most one vertex. 

If Y is connected, then by induction, each edge in it lies in a match­
ing that misses at most one vertex. So suppose Y is not connected. The 
components of Y form a system of imprimitivity for Aut(X), and are pair­
wise isomorphic vertex-transitive graphs. If the number of vertices in a 
component of Y is even, then by induction, each component has a perfect 
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matching and the union of these perfect matchings is a perfect matching 
in Y. 

Assume then that the number of vertices in a component of Y is odd. Let 
Y1 , ... , Yr denote the distinct components of Y. Consider the graph Z with 
the components of Y as its vertices, with Yi adjacent to }j if and only if 
there is an edge in X joining some vertex in Yi to a vertex in }j. Then Z is 
a vertex-transitive graph and so, by induction, contains a matching N that 
misses at most one vertex. Suppose (Yi,}j) is an edge in this matching. 
Since Yi is adjacent to }j in Z, there are vertices Yi in Yi and Yj in}j such 
that Yi is adjacent to Yj in X. Because Yi and }j are vertex transitive and 
have an odd number of vertices, there is a matching in Yi that misses only 
Yi and, similarly, a matching in }j that misses only Yj. The union of these 
two matchings, together with the edge YiYj, is a matching in X that covers 
all vertices in Yi U }j. Thus each edge of N determines a matching that 
covers the vertices in two components of Y. 

If the number of components of Y is even, it follows that X has a per­
fect matching. If the number is odd, we still have a matching in X that 
covers all the vertices outside one of the components, Y1 say, of Y. Taken 
together with a matching of Y1 that misses exactly one vertex of Y1 , we get 
a matching of X that misses exactly one vertex. 

3.6 Hamilton Paths and Cycles 

A Hamilton path in a graph is a path that meets every vertex, and a Hamil­
ton cycle is a cycle that meets every vertex. A graph with a Hamilton cycle 
is called hamiltonian. All known vertex-transitive graphs have Hamilton 
paths, and only five are known that do not have Hamilton cycles. We 
consider these five graphs. 

Clearly, K2 is vertex transitive and does not have a Hamilton cycle. 
We pass on. A more interesting observation is that the Petersen graph 
J(5, 2, 0) does not have a Hamilton cycle. This can be proved by a suitable 
case argument; in Chapter 8 we will offer an algebraic proof. The Coxeter 
graph, an arc-transitive cubic graph on 28 vertices that we will discuss in 
Section 4.6, also has no Hamilton cycle. For references to proofs of this, see 
the Notes at the end of this chapter. 

The remaining two graphs are constructed from the Petersen and Coxeter 
graphs, by replacing each vertex with a triangle (see Figure 3.6). 

We give a more formal definition of what this means, using subdivision 
graphs. The subdivision graph S(X) of a graph X is obtained by putting 
one new vertex in the middle of each edge of X. Therefore, the vertex set of 
S(X) is actually V(X) U E(X), where two vertices of S(X) are adjacent if 
they form an incident vertex/edge pair in X. The subdivision graph S(X) 
is bipartite, with the two colour classes corresponding to V(X) and E(X). 
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Figure 3.6. The Petersen graph with each vertex replaced by a triangle 

The vertices in the "edge class" of S(X) all have valency two. If X is 
regular with valency k, then the vertices in the "vertex class" of S(X) all 
have valency k. Thus S(X) is a semiregular bipartite graph. 

The proof of the next result is left as an exercise. 

Lemma 3.6.1 Let X be a cubic graph. Then L(S(X)) has a Hamilton 
cycle if and only if X does. 0 

If X is arc transitive and cubic, it follows that L(S(X)) is vertex transitive. 
Hence we obtain the last two of the five known vertex-transitive graphs 
without Hamilton cycles. Of these five graphs, only K2 is a Cayley graph. 
Despite this somewhat limited evidence it has been conjectured that all 
Cayley graphs (other than K 2 ) are hamiltonian, and even more strongly 
that all vertex-transitive graphs other than these five are hamiltonian. The 
two conjectures have been quite intensively studied, and although some 
positive results are known, both conjectures seem to be wide open. (The 
conjecture is false for directed graphs.) 

It is natural to look for sensible lower bounds on the length of a longest 
cycle in a vertex-transitive graph X. Some measure of our inadequacy is 
provided by the fact that the best known bound is of order O( JIV(X)I). 
Since this is all we have, we derive it here anyway. We need one further 
result about permutation groups. 

Lemma 3.6.2 Let G be a transitive permutation group on a set V, let S 
be a subset of V, and set c equal to the minimum value of IS n S91 as 9 
ranges over the elements of G. Then lSI ~ JcjVf. 

Proof. We count the pairs (g, x) where 9 E G and xES n S9. For each 
element of G there are at least c such points in S, and therefore there are 
at least clGI such pairs. On the other hand, the elements of G that map x 
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to y form a coset of Gx , and so there are exactly ISllGxl elements g-l of 
-1 

G such that x9 E S, i.e., x E S9. Hence 

clGI::; ISI 2 IGxl, 
and since G is transitive, 

IGI/IGxl = IVI 
by the orbit stabilizer lemma. Consequently, lSI 2': JCjVf, as claimed. 0 

The proof of the next result depends on the fact that in a 3-connected 
graph any two maximum-length cycles must have at least three vertices in 
common. 

Theorem 3.6.3 A connected vertex-transitive graph on n vertices contains 
a cycle of length at least v'3ri:. 
Proof. Let X be our graph and let G be its automorphism group. First 
we need to know that a connected vertex-transitive graph with valency at 
least three is at least 3-connected. This is a consequence of Theorem 3.4.2. 
Now we let C be a maximum-length cycle of X. Then by Exercise 19, 
I C n C9 I 2': 3 for any automorphism g of X, and the result follows from the 
previous lemma. 0 

In fact, we can find a cycle through all but one vertex in both the Petersen 
and Coxeter graphs (see Figure 3.7 for the Petersen graph). 

Figure 3.7. A cycle through nine vertices of the Petersen graph 

3.7 Cayley Graphs 

We now develop some of the basic properties of Cayley graphs. First we 
need some more terminology about permutation groups. A permutation 
group G acting on a set V is semiregular if no nonidentity element of G 
fixes a point of V. By the orbit-stabilizer lemma it follows that if G is 
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semiregular, then all of its orbits have length equal to IGI. A permutation 
group is regular if it is semiregular and transitive. If G is regular on V, 
then IGI = IVI· 

Given any group G we can always find a set on which it acts regularly­
namely G itself. For each g E G recall that pg is the permutation of the 
elements of G that maps x to xg. The mapping 9 f-+ pg is a permutation 
representation of G (called the right regular representation). This group is 
isomorphic to G and acts transitively on G, hence is regular. Therefore, the 
proof of Theorem 3.1.2 implies the following result. 

Lemma 3.7.1 Let G be a group and let C be an inverse-closed subset of 
G\e. Then Aut(X(G, C)) contains a regular subgroup isomorphic to G. 0 

There is a converse to this lemma. 

Lemma 3.7.2 If a group G acts regularly on the vertices of the graph X, 
then X is a Cayley graph for G relative to some inverse-closed subset of 
G\e. 

Proof. Choose a fixed vertex u of X. Now, if v is any vertex of X, then 
since G acts regularly on V(X), there is a unique element, gv say, in G 
such that u9v = v. Define 

C := {gv : v rv u}. 

If x and yare vertices of X, then since gx E Aut(X), we see that x rv y if 
-1 -1 -1 

and only if x gx rv ygx . But x gx = u and 

and therefore x and yare adjacent if and only if gyg;l E C. It follows 
therefore that if we identify each vertex x with the group element gx, then 
X = X ( G, C). Since X is undirected and has no loops, the set C is an 
inverse-closed subset of G \ e. 0 

There are many Cayley graphs for each group. It is natural to ask when 
Cayley graphs for the same group are isomorphic. The next lemma provides 
a partial answer to this question. If G is a group, then an automorphism 
of G is a bijection 

8:G--7G 

such that 

8(gh) = 8(g)8(h) 

for all g, h E G. 

Lemma 3.7.3 If 8 is an automorphism of the group G, then X (G, C) and 
X(G,8(C)) are isomorphic. 
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Proof. For any two vertices x and y of X(G, C) we have 

(}(y)B(x)-l = (}(yx-1), 

and so (}(y)B(X)-l E (}(C) if and only if yx-1 E C. Therefore, () is an 
isomorphism from X(G, C) to X(G, (}(C). 0 

The converse of this lemma is not true. Two Cayley graphs for a group 
G can be isomorphic even if there is no automorphism of G relating their 
connection sets. 

A subset C of a group G is a generating set for G if every element of 
G can be written as a product of elements of C. Equivalently, the only 
subgroup of G that contains C is G itself. The proof of the following is left 
as an exercise. 

Lemma 3.7.4 The Cayley graph X(G,C) is connected if and only ifC is 
a generating set for G. 0 

3.8 Directed Cayley Graphs with No Hamilton 
Cycles 

In this section we show that it is relatively easy to find vertex-transitive 
directed graphs that are not hamiltonian, and in fact our examples are even 
directed Cayley graphs. 

Theorem 3.S.1 Suppose that distinct group elements a and (3 generate 
the finite group G, and that X = X(G, {a, (3}) is the directed Cayley graph 
of G with connection set {a, (3}. Suppose further that a and (3 have k and e 
cycles, respectively, in their action by left multiplication on G. If (3-1a has 
odd order and V(X) has a partition into r disjoint directed cycles, then r, 
k, and e all have the same parity. 

Proof. Suppose that V(X) has a partition into r directed cycles. Define 
a permutation 7r of G by x7r = y if the arc (x, y) is in one of the directed 
cycles. If we define 

P = {x E V(X) : x7r = ax}, Q = {x E V(X) : x7r = (3x}, 

then P and Q partition V(X). 
Let T be the permutation of G defined by 

x T = (3-1x7r . 

Clearly, T fixes every element of Q, and thus it fixes P setwise. Moreover, 
for any element x E P we have x T = (3-1ax, and since (3-1a has odd order, 
so does T. Therefore, T is an even permutation. (An element of odd order 
is the square of some element in the cyclic group it generates, and so is 
even.) 
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Now, "recall" that the parity of a permutation of n elements with exactly 
r cycles equals the parity of n+r. Since left multiplication by (3-1 followed 
by 7r is an even permutation, we see that f + r is even. Exchanging a and 
(3 in the above argument yields that k + r is even, and the result follows.D 

The two permutations a = (1,2) and (3 = (1,2,3,4) generate the sym­
metric group Sym(4); the Cayley graph X = X(Sym(4),{a,(3}) is shown 
in Figure 3.8 (where undirected edges represent arcs in both directions). 
Now, 

(3-1 a = (1,4,3), 

which has odd order, and since Sym(4) has order 24, a and (3 have 12 
and 6 cycles, respectively, in their action on Sym(4) by left multiplication. 
Therefore, V(X) can only be partitioned into an even number of directed 
cycles, and so in particular does not have a directed Hamilton cycle. 

Figure 3.8. A nonhamiltonian directed Cayley graph 

This example can be generalized to an infinite family X (n) of directed 
Cayley graphs, where 

X(n) = X(Sym(n), {(I, 2), (1,2,3, ... , n)}). 

Corollary 3.8.2 If n is even and n ~ 4, then the directed Cayley graph 
X(n) is not hamiltonian. D 

It is known that X(3) and X(5) are hamiltonian, but it is unknown whether 
X(n) is hamiltonian for odd n ~ 7. 



3.9. Retracts 51 

3.9 Retracts 

Recall that a subgraph Y of X is a retract if there is a homomorphism 1 
from X to Y such that the restriction 1 r Y of 1 to Y is the identity map. 
In fact, it is enough to require that 1 r Y be a bijection, in which case it is 
an automorphism of Y. (See Exercise 1.5.) 

The main result of this section is a proof that every vertex-transitive 
graph is a retract of a Cayley graph. Let G be a group acting transitively 
on the vertex set of X, and let x be a vertex of X. If y is a vertex of X, 
then by Lemma 2.2.1, the set of elements of G that map x to y is a right 
coset of Gx . Therefore, there is a bijection from V(X) to the right cosets of 
Gx , and so we can identify each vertex of X with a right coset of Gx • The 
action of G on V(X) coincides with the action of G by right multiplication 
on the cosets of Gx . (You ought to verify this.) 

Theorem 3.9.1 Any connected vertex-transitive graph is a retract 01 a 
Cayley graph. 

Proof. Suppose X is a connected vertex-transitive graph and let x be a 
vertex of X. Let C be the set 

C := {g E G : x rv xy}. 

Then C is a union of right cosets of G x, and since x is not adj acent to itself 
C n Gx = 0. Furthermore, xa rv xb if and only if x rv x ba- 1

, which is true 
if and only if ba-1 E C. 

If 9 E C and h, hi E Gx , then 

x = xh rv x yh = xh'yh, 

and thus high E C. Therefore, GxCGx ~ C, and since it is clear that 
C ~ GxCGx, we have C = GxCGx' 

Let G be the subgroup of Aut(X) generated by the elements of C. An 
elementary induction argument on the diameter of X yields that G acts 
transitively on V(X). 

Now, let Y be the Cayley graph X(G, C). The right cosets of Gx partition 
V(Y), so we can express every element of G in the form ga for some 9 E Gx . 

If 9 and h lie in Gx , then the two vertices ga and hb are adjacent if and 
only if 

hb(ga)-l = hba-1g-1 E C, 

which happens if and only if ba-1 E C. Therefore, any two distinct right 
cosets either have no edges between them or are completely joined, and 
since e 1- C, the subgraph of Y induced by each right coset is empty. 

Thus the subgraph of Y induced by any complete set of coset represen­
tatives of Gx is isomorphic to X. The map sending the vertices in Y in a 
given right coset of Gx to the corresponding right coset, viewed as a vertex 
of X, is a homomorphism from Y to X. Its restriction to a complete set 
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of coset representatives is a bijection, and thus we have the retraction we 
need. D 

A careful reading of the above proof reveals that the Cayley graph Y 
can be obtained from X by replacing each vertex in X by an independent 
set of size IGxl. The graph induced by a pair of these independent sets is 
empty when the vertices in X are not adjacent, or is a complete bipartite 
subgraph if they are adjacent. It follows that 

IV(X) I 
a(X) 

IV(Y) I 
a(Y) 

We will make use of this in Section 7.7. 

3.10 Transpositions 

We consider some special Cayley graphs for the symmetric groups. A set 
of transpositions from Sym(n) can be viewed as the edge set of a graph on 
n vertices (the transposition (ij) corresponding to the edge {i,j}). Every 
permutation in Sym(n) can be expressed as a product of transpositions, 
whence the transpositions form a generating set for Sym(n). A generating 
set C is minimal if C \ g is not a generating set for any element g of C. 

Lemma 3.10.1 Let T be a set of transpositions from Sym(n). Then T is 
a generating set for Sym(n) if and only if its graph is connected. 

Proof. Let T be the graph of T, which has vertex set {I, ... , n}. Let G 
be the group generated by T. If (Ii) and (ij) are elements of T, then 

(lj) = (ij)(li)(ij) E G. 

Consequently, a simple induction argument shows that if there is a path 
from 1 to i in T, then (Ii) E G. It follows that if k and £ lie in the same 
component, then (k£) E G. (Repeat the above argument with k in place 
of 1.) Hence the transpositions belonging to a particular component of T 
generate the symmetric group on the vertices of that component. 

Since no transposition can map a vertex in one component of T to a 
vertex in a second component, it follows that the components of T are the 
orbits of G. D 

Lemma 3.10.2 Let T be a set of transpositions from Sym(n). Then the 
following are equivalent: 

(a) T is a minimal generating set for Sym(n). 

(b) The graph of T is a tree. 

(c) The product of the elements of T in any order is a cycle of length 
n. 
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Proof. A connected graph on n vertices must have at least n - 1 edges, 
and has exactly n - 1 edges if and only if it is a tree. Thus (a) and (b) are 
equivalent. The equivalence of (b) and (c) is left as an exercise. D 

There are (n - I)! possible products of n - 1 transpositions, and if (c) 
holds, then these will be distinct, i.e., every cycle of length n will arise 
exactly once. 

If T is a set of transpositions, then the Cayley graph X(Sym(n), T) has 
no triangles: If {e, g, h} were a triangle, then g, h, and hg would all be 
in T, which is impossible because no transposition is a product of two 
transpositions. (In fact, it is almost as easy to prove that X(Sym(n), T) is 
bipartite. ) 

From Lemma 3.10.2 we see that each tree on n vertices determines a 
Cayley graph of Sym(n). We will use the next result to show that the 
Cayley graph is determined by the tree. 

Lemma 3.10.3 Let T be a set of transpositions from Sym(n) and let 9 
and h be elements of T. If the graph of T contains no triangles, then 9 and 
h have exactly one common neighbour in X(Sym(n), T) if gh of. hg, and 
exactly two common neighbours otherwise. 

Proof. The neighbours of a vertex 9 of X(Sym(n), T) have the form xg, 
where x E T. So suppose xg = yh is a common neighbour of 9 and h. Then 
yx = hg, and any solution to this equation yields a common neighbour. 

If hand g commute, then they have disjoint support, and without loss 
of generality we may take h = (12) and 9 = (34). Then 

hg = (12)(34) = (34)(12) = gh, 

and there are two solutions to the above equation, yielding the two common 
neighbours e and hg. 

If hand 9 do not commute, then they have overlapping support, and 
without loss of generality we may take h = (12) and 9 = (13). Then hg = 
(123), and the only way in which this can be factored into transpositions 
is 

(123) = (12)(13) = (13)(23) = (23)(12). 

However, since both (12) and (13) lie in T and the graph of T contains no 
triangles, then (23) does not lie in T, and hence there is only one possible 
factorization of hg, yielding e as the only common neighbour of 9 and h.D 

Theorem 3.10.4 Let T be a minimal generating set of transpositions for 
Sym( n). If the graph of T is asymmetric, then 

Aut(X(Sym(n), T)) ~ Sym(n). 

Proof. Let T be the graph of T. Since T is a minimal generating set, T is a 
tree and hence contains no cycles. Then by Lemma 3.10.3 we can determine 
from X(Sym(n), T) which pairs of transpositions in T do not commute, or 



54 3. Transitive Graphs 

equivalently, which have overlapping support. Thus X(Sym(n), T) deter­
mines the line graph of T. By Exercise 1. 21, the tree T is determined by 
its line graph. 

Any element 9 of Aut(X(Sym(n), T))e induces a permutation ofT. Since 
automorphisms preserve paths of length two, it follows that the restriction 
of 9 to T is an automorphism of T. Therefore, it is trivial. 

Now, suppose that 9 is an automorphism of X(Sym(n), T) fixing at 
least one vertex. We wish to show that 9 is the identity and hence that 
Aut(X(Sym(n), T)) acts regularly. Suppose for a contradiction that 9 is 
not the identity. Then since X(Sym(n), T) is connected, there is a vertex 
v fixed by 9 adjacent to a vertex w that is not fixed by it. Then Pvgp-;;l 
fixes e and moves the adjacent vertex wv-1 • This is impossible, and so we 
are forced to conclude that 9 is the identity. Therefore, the automorphism 
group acts regularly. D 

It is often quite difficult to determine the full automorphism group of a 
Cayley graph, which makes Theorem 3.10.4 more interesting. 

Exercises 

1. We describe a construction for the Folkman graph in Figure 3.2. Con­
struct a multigraph by doubling each edge in 8(K5 ), then replace each 
vertex of valency eight by two vertices of valency four with identical 
neighbourhoods. (This description is somewhat ambiguous, resolving 
this forms part of the problem.) Show that the result is the Folkman 
graph and prove that it is edge transitive but not vertex transitive. 

2. Show that the Petersen graph is not a Cayley graph. 

3. Show that the dodecahedron (Figure 1.4) is not a Cayley graph. 

4. Prove that a Cayley graph X(G, C) is connected if and only if C 
generates the group G. 

5. If T is a set of transpositions from Sym(n), show that the Cayley 
graph X(Sym(n), T) is bipartite. 

6. Prove that any vertex-transitive graph on a prime number of vertices 
is a Cayley graph. (Use Frobenius's lemma; see Exercise 2.5.) 

7. Let G be a transitive permutation group on V, let 8 be a nonempty 
proper subset of V, and let c be the minimum value of 18 n 8g 1 as 9 
ranges over the elements of G. Can IVI be equal to c-1 181 2? 

8. Prove that a transitive abelian permutation group is regular. 

9. Let G be an abelian group and let C be an inverse-closed subset of 
G \ e. Show that if I CJ 2:: 3, then X (G, C) has girth at most four. 
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10. Let C be an inverse-closed subset of CAe. Show that if G is abelian and 
contains an element of order at least three, then IAut(X(G, 0))1 ~ 
21GI· 

11. Let G be a group. If 9 E G, let Ag be the permutation of G such 
that Ag(h) = gh for all h in G. Then {Ag : 9 E G} is a subgroup 
of Sym(G). Show that each element of this subgroup commutes with 
the group {Pg : 9 E G}, and then determine when these two groups 
are equal. 

12. Let a and b be two elements that generate the group G. Let A and B 
respectively denote the nonidentity elements of the cyclic subgroups 
generated by a and b. If A n B = 0, show that the Cayley graph 
X(G, A U B) is a line graph. 

13. Show that S(X) is edge transitive if and only if X is arc transitive 
and is vertex transitive if and only if X is a union of cycles of the 
same length. 

14. If X is a cubic vertex-transitive graph with a triangle and is not K 4 , 

show that X can be obtained by replacing each vertex of a cubic 
arc-transitive graph with a triangle. (This smaller graph may have 
multiple edges). 

15. Let X be a connected arc-transitive graph with valency four and girth 
three. If X is not complete, show that it is the line graph of a cubic 
graph. 

16. Prove that the vertex connectivity of a connected edge-transitive 
graph is equal to its minimum valency. 

17. Let X be a graph. Show that two subsets A and B of V(X) of size 
m cannot be separated by fewer than m vertices if and only if there 
are m disjoint paths starting in A and ending in B. 

18. Show that any two paths of maximum length in a connected graph 
must have at least one vertex in common. 

19. Show that any two cycles of maximum length in a 3-connected graph 
have at least three vertices in common. 

20. If A is an atom and B is a fragment of X such that A ~ N(B), show 
that IAI :=::: IN(B)I/2. 

21. Show that if a vertex-transitive graph with valency k has connectivity 
~(k + 1), then the atoms induce complete graphs. 

22. Prove that if X is cubic, then L(S(X)) has a Hamilton cycle if and 
only if X does. 

23. A Cayley graph X(G, 0) for the group G is minimal if C generates 
G but for any element c of 0 the set C \ {c, c-1} does not generate 
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G. Show that the connectivity of a minimal Cayley graph is equal to 
its valency. 

24. The alternating group Alt(5) is generated by the two permutations 

00= (1,2,3), (3 = (3,4,5). 

Show that the directed Cayley graph X(Alt(5), {a, (3}) is not 
hamiltonian. 

25. If G is a group of order 2m k where k is odd, then G has a single 
conjugacy class of subgroups of order 2m called the Sylow 2-subgroups 
of G. Suppose that G is generated by two elements a and (3, where 
(3 has odd order. Show that if the Sylow 2-subgroups of G are not 
cyclic, then the directed Cayley graph 

X(G,{oo,oo(3}) 

is not hamiltonian. 

Notes 

The example in Figure 3.3 comes from Holt [6]. It follows from Alspach et 
al. [1], and earlier work reported there, that there are no smaller examples. 
(The smallest known examples with primitive automorphism group, found 
by Praeger and Xu [10], have 253 vertices and valency 24.) 

The fact that the edge connectivity of a vertex-transitive graph equals 
its valency is due to Mader [9]. Our derivation of the lower bound on the 
connectivity of a vertex transitive graph follows the treatment in Chap­
ter VI of Graver and Watkins [5]. The result is due independently to 
Mader [8] and Watkins [15]. For more details on the matching structure 
of vertex-transitive graphs, see [7, pp. 207-211]. 

Theorem 3.6.3 is due to Babai [2]. Exercise 19, which it uses, is due to 
Bondy. Our inability to improve on Babai's bound is regrettable evidence of 
our ignorance. Biggs [3] notes that there exactly six I-factors in the Petersen 
graph, all equivalent under the action of its automorphism group. He also 
shows that the Coxeter graph has exactly 84 I-factors, all equivalent under 
its automorphism group. Deleting anyone of them leaves 2C14 , whence 
the Coxeter graph is not hamiltonian, but is I-factorable. For the original 
proof that the Coxeter graph has no Hamilton cycle, see Tutte [14]. In 
Section 9.2, we will provide another proof that the Petersen graph does not 
have a Hamilton cycle. 

Sabidussi [12] first noted that if G acts as a regular group of automor­
phisms of a graph X, then X must be a Cayley graph for G. The fact that 
each vertex-transitive graph is a retract of a Cayley graph is also due to 
him. 

Exercise 23 is based on [4]. 
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LOV8,sZ has conjectured that every connected vertex-transitive graph has 
a Hamilton path. This is open even for Cayley graphs. Witte [16] has shown 
that directed Cayley graphs of groups of prime-power order have Hamilton 
cycles. 

There is a family of examples, due to Milnor, of directed Cayley graphs 
of metacyclic groups that do not have Hamilton paths. (A group G is 
metacyclic if it has a cyclic normal subgroup H such that G / H is cyclic.) 
These are described in Section 3.4 of Witte and Gallian's survey [17]. 

Our discussion of nonhamiltonian directed Cayley graphs in Section 3.8 
follows Swan [13]. Ruskey et al. [11] prove that the directed Cayley graph 
X(5) is hamiltonian. 
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4 
Arc-Transitive Graphs 

An arc in a graph is an ordered pair of adjacent vertices, and so a graph is 
arc-transitive if its automorphism group acts transitively on the set of arcs. 
As we have seen, this is a stronger property than being either vertex tran­
sitive or edge transitive, and so we can say even more about arc-transitive 
graphs. The first few sections of this chapter consider the basic theory 
leading up to Tutte's remarkable results on cubic arc-transitive graphs. We 
then consider some examples of arc-transitive graphs, including three of 
the most famous graphs of all: the Petersen graph, the Coxeter graph, and 
Tutte's 8-cage. 

4.1 Arc-Transitive Graphs 

An s-arc in a graph is a sequence of vertices (vo, ... , vs) such that consec­
utive vertices are adjacent and Vi-l =I- Vi+l when 0 < i < s. Note that an 
s-arc is permitted to use the same vertex more than once, although in all 
cases of interest this will not happen. A graph is s-arc transitive if its auto­
morphism group is transitive on s-arcs. If s ~ 1, then it is both obvious and 
easy to prove that an s-arc transitive graph is also (s - I)-arc transitive. 
A O-arc transitive graph is just another name for a vertex-transitive graph, 
and a I-arc transitive graph is another name for an arc-transitive graph. A 
I-arc transitive graph is also sometimes called a symmetric graph. 

A cycle on n vertices is s-arc transitive for all s, which only shows that 
truth and utility are different concepts. A more interesting example is pro-
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vided by the cube, which is 2-arc transitive. The cube is not 3-arc transitive 
because 3-arcs that form three sides of a four-cycle cannot be mapped to 
3-arcs that do not (see Figure 4.1). 

Figure 4.1. Inequivalent 3-arcs in the cube 

A graph X is s-arc transitive if it has a group G of automorphisms such 
that G is transitive, and the stabilizer Gu of a vertex u acts transitively on 
the s-arcs with initial vertex u. 

Lemma 4.1.1 The graphs J(v, k, i) are at least arc transitive. 

Proof. Consider the vertex {1, ... , k}. The stabilizer of this vertex con­
tains Sym(k) x Sym(v - k). Clearly, any two k-sets meeting this initial 
vertex in an i-set can be mapped to each other by this group. 0 

Lemma 4.1.2 The graphs J(2k + 1, k, 0) are at least 2-arc transitive. 0 

The girth of a graph is the length of the shortest cycle in it. Our first result 
implies that the subgraphs induced by s-arcs in s-arc transitive graphs are 
paths. 

Lemma 4.1.3 (Tutte) If X is an s-arc transitive graph with valency at 
least three and girth g, then 9 2 2s - 2. 

Proof. We may assume that s 2 3, since the condition on the girth is 
otherwise meaningless. It is easy to see that X contains a cycle of length 
9 and a path of length 9 whose end-vertices are not adjacent. Therefore X 
contains a g-arc with adjacent end-vertices and a g-arc with nonadjacent 
end-vertices; clearly, no automorphism can map one to the other, and so 
s < g. Since X contains cycles of length g, and since these contain s­
arcs, it follows that any s-arc must lie in a cycle of length g. Suppose that 
Vo, ... , Vs is an s-arc. Denote it by D:. Since Vs-l has valency at least three, 
it is adjacent to a vertex w other than Vs-2 and Vs, and since the girth of 
X is at least s, this vertex cannot lie in D:. Hence we may replace Vs by w, 
obtaining a second s-arc f3 that intersects D: in an (s -1)-arc. Since f3 must 
lie in a circuit of length g, we thus obtain a pair of circuits of length 9 that 
have at least s - 1 edges in common. 

If we delete these s - 1 edges from the graph formed by the edges of the 
two circuits of length g, the resulting graph still contains a cycle of length 
at most 2g - 2s + 2. Hence 2g - 2s + 22 g, and the result follows. 0 
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Given this lemma, it is natural to ask what can be said about the s-arc 
transitive graphs with girth 2s - 2. It follows from our next result that 
these graphs are, in the language of Section 5.6, generalized polygons. It is 
a consequence of results we state there that s :::; 9. 

Lemma 4.1.4 (Tutte) If X is an s-arc transitive graph with girth 2s - 2, 
it is bipartite and has diameter s - 1. 

Proof. We first observe that if X has girth 2s - 2, then any s-arc lies in at 
most one cycle of length 2s - 2, and so if X is s-arc transitive, it follows that 
every s-arc lies in a unique cycle of length 2s - 2. Clearly, X has diameter 
at least s - 1, because opposite vertices in a cycle of length 2s - 2 are at 
this distance. Now, let u be a vertex of X and suppose for a contradiction 
that v is a vertex at distance s from it. Then there is an s-arc joining u to 
v, which must lie in a cycle of length 2s - 2. Since a cycle of this length has 
diameter s - 1, it follows that v cannot be of distance s from u. Therefore, 
the diameter of X is at most s - 1 and hence equal to s - 1. 

If X is not bipartite, then it contains an odd cycle; suppose C is an odd 
cycle of minimal length. Because the diameter of X is s -1, the cycle must 
have length 2s - 1. Let u be a vertex of C, and let v and v' be the two 
adjacent vertices in C at distance s - 1 from u. Then we can form an s-arc 
(u, ... , v, v'). This s-arc lies in a cycle C' of length 2s - 2. The vertices of 
C and C' not internal to the s-arc form a cycle of length less than 2s - 2, 
which is a contradiction. 0 

In Section 4.5 we will use this lemma to show that s-arc transitive graphs 
with girth 2s - 2 are distance transitive. 

4.2 Arc Graphs 

If s 2': 1 and 0: = (xo, . .. , xs) is an arc in X, we define its head head(o:) 
to be the (s - l)-arc (Xl, ... , xs) and its tail tail(o:) to be the (s - l)-arc 
(xo, ... ,Xs-l). If 0: and (3 are s-arcs, then we say that (3 follows 0: if there 
is an (s+ l)-arc 'I such that head b) = (3 and tailb) = 0:. (Somewhat more 
colourfully, we say that 0: can be shunted onto (3, and envisage pushing 0: 

one step onto (3.) Let s be a nonnegative integer. We use X(s) to denote 
the directed graph with the s-arcs of X as its vertices, such that (0:, (3) is 
an arc if and only if 0: can be shunted onto (3. Any automorphisms of X 
extend naturally to automorphisms of X(s), and so if X is s-arc transitive, 
then X(s) is vertex transitive. 

Lemma 4.2.1 Let X and Y be directed graphs and let f be a homomor­
phism from X onto Y such that every edge in Y is the image of an edge in 
X. Suppose Yo, ... ,Yr is a path in Y. Then for each vertex Xo in X such 
that f(xo) = Yo, there is a path Xo, ... , Xr such that f(xi) = Yi· 
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Proof. Exercise. o 

Define a "spindle" in X to be a subgraph consisting of two given vertices 
joined by three paths, with any two of these paths having only the given 
vertices in common. Define a "bicycle" to be a subgraph consisting either of 
two cycles with exactly one vertex in common, or two vertex-disjoint cycles 
and a path joining them having only its end-vertices in common with the 
cycles. We claim that if X is a spindle or a bicycle, then X(1) is strongly 
connected. We leave the proof of this as an easy exercise. Nonetheless, it is 
the key to the proof of the following result. 

Theorem 4.2.2 If X is a connected graph with minimum valency two that 
is not a cycle, then Xes) is strongly connected for all s ~ o. 

Proof. First we shall prove the result for s = 0 and s = 1, and then by 
induction on s. If s = 0, then Xo is the graph obtained by replacing each 
edge of X with a pair of oppositely directed arcs, so the result is clearly 
true. If s = 1, then we must show that any I-arc can be shunted onto 
any other I-arc. Since X is connected, we can shunt any I-arc onto any 
edge of X, but not necessarily facing in the right direction. Therefore, it is 
necessary and sufficient to show that we can reverse the direction of any 
I-arc, that is, shunt xy onto yx. 

Since X has minimum valency at least two and is finite, it contains a 
cycle, C say. If C does not contain both x and y, then there is a (possibly 
empty) path in X joining y to C. It is now easy to shunt xy along the path, 
around C, then back along the path in the opposite direction to yx. 

If x and yare in V(C) but xy ~ E(C), then C together with the edge 
xy is a spindle, and we are done. 

Hence we may assume that xy E E(C). Since X is not a cycle, there is a 
vertex in C adjacent to a vertex not in C. Suppose w in V(C) is adjacent 
to a vertex z not in C. Let P be a path with maximal length in X, starting 
with wand z, in this order. Then the last vertex of P is adjacent to a 
vertex in P or a vertex in C. If it is adjacent to a vertex in C other than 
w, then xy is an edge in a spindle. If it is adjacent to w or to a vertex of P 
not in C, then xy is an edge in a bicycle. In either case we are done. 

Now, assume that Xes) is strongly connected for some s ~ 1. It is easy 
to see that the operation of taking the head of an (s + 1 )-arc is a homomor­
phism from X(s+1) to X(s). Since X has minimum valency at least two, 
each s-arc is the head of an (s + I)-arc, and it follows that every edge of 
Xes) is the image of an edge in X(s+1). Let a and (3 be any two (s+ I)-arcs 
in X. Since Xes) is strongly connected, there is a path in it joining head(a) 
to tail((3). By the lemma above, this path lifts to a path in X(s+l) from a 

to a vertex, where head b) = tail((3). Since s ~ 1 and X has minimum 
valency at least two, we see that, can be shunted onto (3. Thus a can be 
shunted to (3 via " and so there is a path in X(s+1) from a to (3. 0 
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In the next section we will use this theorem to prove that an arc-transitive 
cubic graph is s-arc regular, for some s. This is a crucial step in Tutte's 
work on arc-transitive cubic graphs. 

4.3 Cubic Arc-Transitive Graphs 

In 1947 Tutte showed that for any s-arc transitive cubic graph, s ::::; 5. This 
was, eventually, the stimulus for a lot of work. One outcome of this was a 
proof, by Richard Weiss, that for any s-arc transitive graph, s ::::; 7. This is 
a very deep result, the proof of which depends on the classification of the 
finite simple groups. 

We used a form of the next result in proving Theorem 3.10.4. 

Lemma 4.3.1 Let X be a strongly connected directed graph, let G be a 
transitive subgroup of its automorphism group, and, if u E V (X), let N (u) 
be the set of vertices v in V(X) such that (u, v) is an arc of X. If there is 
a vertex u of X such that Gu r N(u) is the identity, then G is regular. 

Proof. Suppose u E V(X) and Gu r N(u) is the identity group. By 
Lemma 2.2.3, if v E V(X), then Gv is conjugate in G to Gu . Hence GvrN(v) 
must be the identity for all vertices v of X. 

Assume, by way of contradiction, that Gu is not the identity group. Since 
X is strongly connected, we may choose a directed path that goes from u to 
a vertex, w say, that is not fixed by Gu . Choose this path to have minimum 
possible length, and let v denote the second-last vertex on it. Thus v is fixed 
by Gu , and (v, w) is an arc in X. Since Gu fixes all vertices in N(u), we 
see that v =1= u. 

Since Gu fixes v, it fixes N(v) but acts nontriviallyon it, because it does 
not fix w. Hence Gv r N (v) is not the identity. This contradiction forces us 
to conclude that Gu = (e). 0 

A graph is s-arc regular if for any two s-arcs there is a unique 
automorphism mapping the first to the second. 

Lemma 4.3.2 Let X be a connected cubic graph that is s-arc transitive, 
but not (s + I)-arc transitive. Then X is s-arc regular. 

Proof. We note that if X is cubic, then X(s) has out-valency two. Now let 
G be the automorphism group of X, let 00 be an s-arc in X, and let H be the 
subgroup of G fixing each vertex in 00. Then G acts vertex transitively on 
X(s), and H is the stabilizer in G of the vertex 00 in X(s). If the restriction 
of H to the out-neighbours of 00 is not trivial, then H must swap the two 
s-arcs that follow 00. Now, any two (s + I)-arcs in X can be mapped by 
elements of G to (s + 1 )-arcs that have 00 as the "initial" s-arc; hence in this 
case we see that G is transitive on the (s + I)-arcs of X, which contradicts 
our initial assumption. 
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Hence the restriction of H to the out-neighbours of a is trivial, and it 
follows from Lemma 4.3.1 that H itself is trivial. Therefore, we have proved 
that G Q = (e), and so G acts regularly on the s-arcs of X. 0 

If X is a regular graph with valency k on n vertices and s 2': 1, then 
there exactly nk(k - 1)8-1 s-arcs. It follows that if X is s-arc transitive 
then IAut(X) I must be divisible by nk(k - 1 )8-1, and if X is s-arc regular, 
then IAut(X)1 = nk(k _1)s-l. In particular, a cubic arc-transitive graph 
X is s-arc regular if and only if 

IAut(X)1 = (3n)2S-1. 

For an example, consider the cube. The alternative drawing of the cube 
in Figure 4.2 makes it clear that the stabilizer of a vertex contains Sym(3), 
and therefore its automorphism group has size at least 48. We observed 
earlier that the cube is not 3-arc transitive, so by Lemma 4.3.2 it must be 
precisely 2-arc regular, with full automorphism group of order 48. 

Figure 4.2. The cube redrawn 

Finally, we state Tutte's theorem. 

Theorem 4.3.3 If X is an s-arc regular cubic graph, then s ~ 5. 0 

The smallest 5-arc regular cubic graph is Tutte's 8-cage on 30 vertices, 
which we shall meet in Section 4.7. 

Corollary 4.3.4 If X is an arc-transitive cubic graph, v E V(X), and 
G = Aut(X), then IGvl divides 48 and is divisible by three. 0 

4.4 The Petersen Graph 

The Petersen graph is one of the most remarkable of all graphs. Despite 
having only 10 vertices, it plays a central role in so many different aspects 
of graph theory that almost any graph theorist will automatically be forced 
to give it special consideration when forming or testing new theorems. We 
have already met the Petersen graph in several guises: as J(5, 2, 0) or L(K5) 
in Section 1.5, as the dual of K6 in the projective plane in Section 1.8, and 
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as One of the five nonhamiltonian vertex-transitive graphs in Section 3.6. 
Two different drawings of it are shown in Figure 4.3. 

Figure 4.3. Two more drawings of the Petersen graph 

The Petersen graph can also be constructed from the dodecahedron, 
which is shown in Figure 1.4. Every vertex v in the dodecahedron has a 
unique vertex v' at distance five from it. Consider the graph whose vertex 
set is the ten pairs of the form {v, v'}, where {u, u /} is adjacent to {v, v'} if 
and only if there is a perfect matching between them. The resulting graph 
is the Petersen graph. In this situation we say that the dodecahedron is a 
2-fold cover of the Petersen graph. We consider covers in more detail in 
Section 6.S. 

Since Sym(5) acts on J(5, 2, 0), we see that the automorphism group of 
the Petersen graph has order at least 120, and therefore it is at least 3-arc 
transitive (also see Exercise 5). Because the Petersen graph has girth five, 
by Lemma 4.1.3 it cannot be 4-arc transitive. Hence it is 3-arc regular, 
and its automorphism group has order exactly 120. Therefore, Sym(5) in 
its action on the 2-element subsets of a set of five elements is the full 
automorphism group of the Petersen graph. 

The Petersen graph plays an important role in one of the most famous 
of all graph-theoretical problems. The four colour problem asks whether 
every plane graph can have its faces coloured with four colours such that 
faces with a common edge receive different colours. It can be shown that 
this is equivalent to the assertion that a cubic planar graph with edge 
connectivity at least two can have its edges coloured with three colours 
such that incident edges receive different colours (that is, has a proper 3-
edge colouring). The Petersen graph was the first cubic graph discovered 
that did not have a proper 3-edge colouring. 

Theorem 4.4.1 The Petersen graph cannot be 3-edge coloured. 

Proof. Let P denote the Petersen graph, and suppose for a contradiction 
that it can be 3-edge coloured. Since P is cubic, each colour class is a 1-
factor of P. A simple case argument shows that each edge lies in precisely 
two I-factors (Figure 4.4 shows the two I-factors containing the vertical 
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"spoke" edge). For each of these I-factors, the remaining edges form a 
graph isomorphic to 2C5 that cannot be partitioned into two I-factors. 
Since P is edge transitive, this is true for all I-factors of P, and thus P is 
not 3-edge colourable. 0 

Figure 4.4. Two I-factors through an edge of P 

Thus the Petersen graph made the first of its many appearances as a 
counterexample. Since it is not planar, it is not a counterexample to the 
four colour problem, which was eventually proved in 1977, thus becoming 
the four colour theorem. 

We have already observed that there is a cycle through any nine vertices 
in the Petersen graph. Let X \ v denote the subgraph of X induced by 
V(X) \ {v}. A nonhamiltonian graph X such that X \ v is hamiltonian for 
all v is called hypohamiltonian. The Petersen graph is the unique smallest 
hypohamiltonian graph; the next smallest have 13 and 15 vertices, respec­
tively, and are closely related to the Petersen graph. We will see two more 
hypohamiltonian graphs in Section 13.6. 

So far, we have only scratched the surface ofthe many ways in which the 
Petersen graph is special. It will reappear in several of the remaining sec­
tions of this book. In particular, the Petersen graph is a distance-transitive 
graph (Section 4.5), a Moore graph (Section 5.8), and a strongly regular 
graph (Chapter 10). 

4.5 Distance-Transitive Graphs 

A connected graph X is distance transitive if given any two ordered pairs 
of vertices (u, u') and (v, v') such that d(u, u') = d(v, v'), there is an auto­
morphism g of X such that (v, v') = (u, U')9. A distance-transitive graph is 
always at least I-arc transitive. The complete graphs, the complete bipartite 
graphs with equal-sized parts, and the circuits are the cheapest examples 
available. A more interesting example is provided by the Petersen graph. 
It is not hard to see that this is distance transitive, since it is arc transitive 
and its complement, the line graph of K5, is also arc transitive. 
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Another family of examples is provided by the k-cubes described in Sec­
tion 3.7. If d(u, u/) = d(v, v') = i, then by adding u to the first pair and 
v to the second pair, we can assume that u = v = o. Then u' and v' are 
simply different vectors with i nonzero coordinates that can be mapped to 
one another by Sym(k) acting on coordinate positions. 

Lemma 4.5.1 The graph J(v, k, k - 1) is distance transitive. 

Proof. The key is to prove that two vertices u and v have distance i in 
J(v, k, k - 1) if and only if lu n vi = k - i (viewing u and v as k-sets). We 
leave the details as an exercise. 0 

Lemma 4.5.2 The graph J(2k + 1, k + 1,0) is distance transitive. 0 

There is an alternative definition of a distance-transitive graph that often 
proves easier to work with. If u is a vertex of X, then let Xi(U) denote the 
set of vertices at distance i from u. The partition {u, Xl (u), ... , X d ( u)} is 
called the distance partition with respect to u. Figure 4.5 gives a drawing 
of the dodecahedron that displays the distance partition from a vertex. 

Figure 4.5. The dodecahedron 

Suppose G acts distance transitively on X and u E V(X). If v and v' 
are two vertices at distance i from u, there is an element of G that maps 
(u,v) to (u,v /), i.e., there is an element of Gu that maps v to v', and so 
G acts transitively on Xi(U). Therefore, the cells of the distance partition 
with respect to u are the orbits of Gu . If X has diameter d, then it follows 
that G acts distance transitively on X if and only if it acts transitively and, 
for any vertex u in X, the vertex stabilizer Gu has exactly d + 1 orbits. In 
other words, the group G is transitive with rank d + l. 

Since the cells of the distance partition are orbits of Gu , every vertex in 
Xi(U) is adjacent to the same number of other vertices, say ai, in Xi(u). 
Similarly, every vertex in Xi ( u) is adj acent to the same number, say bi , of 
vertices in XHr(u) and the same number, say Ci, of vertices in Xi-1(U). 
Equivalently, the graph induced by any cell is regular, and the graph in­
duced by any pair of cells is semiregular. The graph X is regular, and its 
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valency is given by bo, so if the diameter of X is d, we have 

Ci + ai + bi = bo, i = 0, 1, ... , d. 

These numbers are called the parameters of the distance-transitive graph, 
and determine many of its properties. We can record these numbers in the 
3 x (d + 1) intersection array 

{ :a 
bo 

Since each column sums to the valency of the graph, it is necessary to 
give only two rows of the matrix to determine it entirely. It is customary 
to use the following abbreviated version of the intersection array: 

For example, consider the dodecahedron. It is easy to see that every 
vertex in X2(U) is adjacent to one vertex in Xl(U), one in X2(U), and one 
in X3(U), and therefore a2 = b2 = C2 = 1. Continuing similarly we find 
that the intersection array for the dodecahedron is 

1 
o 
2 

1 
1 
1 

1 
1 
1 

2 
o 
1 

Lemma 4.5.3 A connected s-arc transitive graph with girth 2s - 2 is 
distance-transitive with diameter s - 1. 

Proof. Let X satisfy the hypotheses of the lemma and let (u, u' ) and (v, v') 
be pairs of vertices at distance i. Since X has diameter s-l by Lemma 4.1.4, 
we see that i ::; s - 1. The two pairs of vertices are joined by paths of length 
i, and since X is transitive on i-arcs, there is an automorphism mapping 
(u, u' ) to (v, v'). 0 

Distance transitivity is a symmetry property in that it is defined in terms 
of the existence of certain automorphisms of a graph. These automorphisms 
impose regularity properties on the graph, namely that the numbers ai, 

bi , and Ci are well-defined. There is an important combinatorial analogue 
to distance transitivity, which simply asks that the numerical regularity 
properties hold, whether or not the automorphisms exist. Given any graph 
X we can compute the distance partition from any vertex u, and it may 
occur "by accident" that every vertex in Xi(U) is adjacent to a constant 
number of vertices in X i- 1(U), Xi(U), and Xi+1(U), regardless of whether 
there are any automorphisms that force this to occur. (Looking forward 
to Section 9.3 this is saying that the distance partition is an equitable 
partition.) If the intersection array is well-defined and is the same for the 
distance partition from any vertex, then X is said to be distance regular. 
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It is immediate that any distance-transitive graph is distance regular, but 
the converse is far from true. 

We provide one class of distance-regular graphs that includes many 
graphs that are not distance transitive. A Latin square of order n is an 
n x n matrix with entries from {1, ... , n} such that each integer i occurs 
exactly once in each row and exactly once in each column. Given an n x n 
Latin square L, we obtain a set of n 2 triples of the form 

(i,j, Lij). 

Let X(L) be the graph with these triples as vertices, and where two triples 
are adjacent if they agree on the first, second, or third coordinate. (In fact, 
two triples can agree on at most one coordinate.) Alternatively, we may 
view X(L) as the graph whose vertices are the n2 positions in L, and two 
"positions" are adjacent if they lie in the same row or column, or contain 
the same entry. The graph X(L) has n 2 vertices, diameter two, and is 
regular with valency 3(n - 1). It is distance regular, and is in general not 
distance transitive. The proof that X(L) is distance regular is left as an 
exercise. We will encounter these graphs again in Chapter 10. 

4.6 The Coxeter Graph 

The Coxeter graph is a 28-vertex cubic graph with girth seven. It is shown 
in Figure 4.6. From the picture we see that it is constructed from circulants 
based on ::Z:7. Start with the three circulants X(::Z:7' {1, -1}), X(::Z:7' {2, -2}), 
X(::Z:7' {3, -3}) and then add seven more vertices, joining each one to the 
same element of ::Z:7 in each of the three circulants. 

We describe another construction for the Coxeter graph, which identifies 
it as an induced subgraph of J(7, 3, 0). The vertices of J(7, 3, 0) are the 
35 triples from the set n = {1, ... , 7}. Two triples are adjacent if they 
are disjoint, at distance two if they intersect in two points and at distance 
three if they have exactly one point in common. A heptad is a set of seven 
triples from n such that each pair of triples meet in exactly one point, and 
there is no point in all of them. In graph theoretic terms, a heptad is a set 
of seven vertices of J(7, 3, 0) such that each pair of distinct vertices is at 
distance three. The following seven triples are an example of a heptad: 

124, 235, 346, 457, 561, 672, 713. 

This set of triples is invariant under the action of the 7-cycle (1234567); 
denote this permutation by (Y. It is easy to verify that the four triples 

357, 367, 567, 356 

lie in distinct orbits under (Y. The orbit of 356 is another heptad. The 
orbits of the first three triples are isomorphic, in the order given, to 
X(::Z:7' {l, -1}), X(::Z:7' {2, -2}), and X(::Z:7' {3, -3}), respectively. It is easy 
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Figure 4.6. The Coxeter graph 

to check that 357, 367 and 567 are the unique triples in their orbits that are 
disjoint from 124, and somewhat more tedious to see that no triple from 
one of these orbits is disjoint from a triple in one of the other two. Thus, 
by a minor miracle, we infer that the orbits of the triples 

124, 357, 367, 567 

induce a sub graph of J(7, 3, 0) isomorphic to the Coxeter graph. We also 
see that the vertices not in this Coxeter graph form a heptad. 

We use the embedding of the Coxeter graph in J(7, 3, 0) to show that its 
girth is seven. First we determine the girth of J(7, 3, 0). 

Lemma 4.6.1 The diameter of J(7, 3, 0) is three and its girth is six. 

Proof. If we denote J (7, 3, 0) by Y, then Y1 (u) consists of the triples dis­
joint from u, while Y2 (u) consists of the triples that meet u in two points, 
and Y3 (u) consists of the triples that meet u in one point. Therefore, there 
are no edges in Y1 ( u) or Y2 ( u), so the girth of J (7, 3, 0) is at least six. Since 
it is easy to find a six-cycle, its girth is exactly six. 0 

An easy argument shows that every triple from n that is not in a heptad 
is disjoint from precisely one triple of the heptad. Therefore, deleting a 
heptad from J(7, 3, 0) results in a 28-vertex cubic graph X. To show that 
X has girth seven we must demonstrate that every heptad meets every 
six-cycle of J(7, 3, 0). To this end, we characterize the six-cycles. 

Lemma 4.6.2 There is a one-to-one correspondence between six-cycles in 
J(7, 3, 0) and partitions of n of the form {abc, de, fg}. 
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Proof. The partition {abc, de, fg} corresponds to the six-cycle ade, bfg, 
cde, afg, bde, cfg. To show that every six-cycle has this form, it suffices to 
consider six-cycles through 123. Without loss of generality we can assume 
that the neighbours of 123 in the six-cycle are 456 and 457. The vertex at 
distance three from 123 has one point in common with 123, say 1, and two in 
common with 456 and 457 and hence must be 145. This then determines the 
partition {167, 23, 45}, and it is straightforward to verify that the six-cycle 
must be of the type described above. 0 

Lemma 4.6.3 Every heptad meets every six-cycle in J(7, 3, 0). 

Proof. The seven triples of a heptad contain 21 pairs of points; since two 
distinct triples have only one point in common, these pairs must be distinct. 
Hence each pair of points from {I, ... , 7} lies in exactly one triple from the 
heptad. If the point i lies in r triples, then it lies in 2r pairs. Therefore, 
each point lies in exactly three triples. 

Without loss of generality, we consider the six-cycle determined by the 
partition {123, 45, 67}. Each heptad has a triple of the form a45 and one 
of the form b67. At least one of a and b must be 1, 2, or 3, or else the 
two triples would meet in two points. Hence this six-cycle has a triple in 
common with every heptad. 0 

We will see in Section 5.9 that all heptads in J(7, 3, 0) are equivalent 
under the action of Sym(7). 

The automorphism group of the Coxeter graph is at least the size of the 
stabilizer in Sym(7) of the heptad. The heptad we used above is fixed by 
the permutations 

(23)(47), (2347)(56), (235)(476), (1234567). 

The first two permutations generate a group of order eight, so the group 
generated by all four permutations has order divisible by 8, 3, and 7, and 
therefore its order is at least 168. 

This implies that the Coxeter graph is at least 2-arc transitive. In fact, 
there is an additional automorphism of order two (see Exercise 5.4), so its 
full automorphism group has size 336, and acts 3-arc regularly. 

4.7 Tutte's 8-Cage 

Another interesting cubic arc-transitive graph is Tutte's 8-cage on 30 ver­
tices. In 1947 Tutte gave (essentially) the following two-sentence description 
of how to construct this graph. Take the cube and an additional vertex 00. 

In each set of four parallel edges, join the midpoint of each pair of opposite 
edges by an edge, then join the midpoint of the two new edges by an edge, 
and finally join the midpoint of this edge to 00. The resulting graph is 
shown in Figure 4.7. 
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Figure 4.7. Tutte's 8-cage 

An alternative description of this graph makes use of the edges and 1-
factors of the complete graph K 6 . There are fifteen edges in K 6 . Each of 
these edges lies in three I-factors, and as each I-factor contains three edges, 
this implies that there are fifteen I-factors. 

Construct a bipartite graph T with the fifteen edges as one colour class 
and the fifteen I-factors as the other, where each edge is adjacent to the 
three I-factors that contain it. This is a cubic graph on 30 vertices, which 
is Tutte's 8-cage again. One advantage of this description is that is easy to 
see that Sym(6) acts as a group of automorphisms with the two parts of 
the bipartition as its two orbits. 

However, we have not yet established why the two descriptions are equiv­
alent. At the end of this section we sketch a proof that there is a unique 
bipartite cubic graph on 30 vertices with girth eight. First we will verify 
that T has girth eight. For reasons that we will reveal in Section 5.4, we 
do this by first establishing the following lemma. 

Lemma 4.7.1 Let F be a I-factor of K6 and let e be an edge of K6 that 
is not contained in F. Then there is a unique I-factor on e that contains 
an edge of F. 

Proof. Two edges of K6 lie in a I-factor if and only if they are disjoint, 
and two disjoint edges lie in a unique I-factor. Since e t/:. F, it meets two 
distinct edges of F, and hence is disjoint from precisely one edge of F, with 
which it lies in a unique I-factor. 0 
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Since T is bipartite, if its girth is less than eight, then it must be four or 
six. Since you should not just sit here reading, you may eliminate the possi­
bility that the girth is four. Having completed that we shall now eliminate 
the possibility that the girth is six. Suppose to the contrary that there is a 
6-cycle 

This implies that F2 and F3 are distinct I-factors on e3 that contain the 
edges e2 and el, respectively, contradicting the previous lemma. Hence we 
are forced to conclude that the graph has girth at least eight. There are a 
number of ways by which you might show that the girth is equal to eight. 

Now, we shall show that T is arc transitive. It is easy to see that if el 
and e2 are edges of K 6 , then there is a permutation of Sym(6) mapping 
el to e2. It is also clear that the stabilizer of el in Sym(6) is transitive 
on the three neighbours of el in T. Therefore, we conclude that Sym(6) 
is transitive on I-arcs starting at an "edge vertex." Similarly, Sym(6) is 
transitive on I-arcs starting at a "I-factor vertex" . 

The sole remaining task is to show that there is an automorphism that 
exchanges the two classes of vertices, and this requires some prepara­
tion. Although this argument is quite long, it is not atypical for such 
computations done by hand. 

A I-factorization of a graph is a partition of its edge set into I-factors. 
Given a I-factor F of K 6 , there are six I-factors that share an edge with 
F, and hence eight that are edge-disjoint from F. The union of two disjoint 
I-factors is a 6-cycle, and hence the remaining edges of K6 form a 3-prism 
(see Figure 4.8). It is straightforward to check that the 3-prism has four 
I-factors and a unique I-factorization (see Figure 4.8). Therefore, any two 
disjoint I-factors lie in a unique I-factorization. Counting triples (F, G, F) 
where F and G are I-factors contained in the I-factorization F, we see 
that there are six I-factorizations of K 6 . Since each I-factor lies in the 
same number of I-factorizations, this implies that each I-factor lies in two 
I-factorizations. There are fifteen pairs of distinct I-factorizations, and so 
any two distinct I-factorizations have a unique I-factor in common. 

Figure 4.8. The 3-prism together with its unique 1-factorization 

We will use the six I-factorizations to determine a bijection between 
the edges of K6 and the I-factors of K 6, and show that this bijection is 
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an automorphism of T. Arbitrarily label the six I-factorizations of K6 as 
F 1 , ... , F6 . Then define a map 'I(; as follows. If e = ij is an edge of K6 , then 
let 'I(;(e) be the I-factor that Fi and Fj have in common. The five edges 
of K6 containing i are mapped by 'I(; to the five I-factors contained in F i . 

If e and j are incident edges of K 6 , then 'I(;(e) and '1(;(1) are edge-disjoint 
I-factors. Since there are only eight I-factors disjoint from a given one, this 
shows that if e and j are not incident, then 'I(;(e) and '1(;(1) have an edge in 
common. 

Therefore, three independent edges of K6 are mapped by 'I(; to three 1-
factors, any two of which have an edge in common. Any such set must 
consist of the three I-factors on a single edge. So, if F = {e, j, g} is a 1-
factor, then define 'I(;(F) to be the edge of K6 common to 'I(;(e), '1(;(1), and 
'I(;(g). 

All that remains is to show that 'I(; is an automorphism ofT. Suppose that 
the edge e is adjacent to the I-factor F = {e, j, g}. Then 'I(;(F) is the edge 
that 'I(;(e), '1(;(1), and 'I(; (g) have in common. In particular, 'I(;(F) is an edge 
in 'I(; (e) , and so 'I(;(e) "" 'I(;(F) in T. Consequently, 'I(; is an automorphism 
of T that swaps its two colour classes. Therefore, T is vertex transitive 
and hence arc transitive with an automorphism group of order at least 
2 x 6! = 1440. If T is s-arc transitive, then s ::::: 5, and Lemma 4.1.3 (or 
Theorem 4.3.3) yields that s = 5. From Lemma 4.5.3 we conclude that T 
is distance transitive with diameter four. 

Now we sketch a proof that there is a unique cubic bipartite graph on 
30 vertices with girth eight, thus showing that both descriptions above 
are equivalent. So let X be a cubic bipartite graph on 30 vertices with 
girth eight. Let v be any vertex of X and consider the graph induced 
by X3(V) U X4(V). The eight vertices of X4(V) have valency three, and the 
twelve vertices of X3 (v) all have valency two and join two vertices of X 4 (v). 
Therefore, this graph is a subdivision of a cubic graph Y, that has girth 
four. The fact that X has girth eight implies that it must be possible to 
partition E(Y) into pairs of edges at distance three. The cube is the unique 
graph on eight vertices with these properties, and therefore X3 (v) U X4 (v) 
is the subdivision graph of the cube. It is now straightforward to check that 
the only way to extend a subdivision of the cube to a bipartite cubic graph 
on 30 vertices with girth eight is by following Tutte's original description 
of the 8-cage (see Exercise 15). 

Exercises 

1. Show that the graph J(2k + 1, k, 0) is at least 2-arc transitive. 

2. Prove that if X is a spindle or a bicycle, then X(1) is strongly 
connected. 
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3. Define the directed line graph DL(X) of a directed graph X to be the 
directed graph with the arcs of X as its vertices. If a and j3 are arcs 
in X, then (a, (3) is an arc in DL(X) if and only if head(a) = tail(j3) 
and tail( a) #- head(j3). (Thus (a, (3) is an arc if and only if a is the 
tail and j3 the head of a 2-arc in X.) Prove that if 8 ?: 1, then X(s+1) 

is the directed line graph of X(s). 

4. Let X be a vertex-transitive cubic graph on n vertices and let G be 
its automorphism group. If 3 divides the order of the stabilizer Gu of 
a vertex u, show that X is arc transitive. 

5. Show directly (without using Tutte's theorem) that the automor­
phism group of the Petersen graph has one orbit on 3-arcs, and hence 
that P is 3-arc transitive. 

6. Show that each edge of the Petersen graph lies in exactly two 1-
factors. Conclude that it contains precisely six I-factors, and that 
these I-factors are equivalent under the action of the automorphism 
group. Deduce from this that the Petersen graph does not have a 
Hamilton cycle. 

7. Find the intersection arrays of the Petersen graph, the Coxeter graph, 
and Tutte's 8-cage. 

8. Prove that J(v, k, k - 1) is distance transitive, and determine its 
intersection array. 

9. Prove that J(2k + 1, k, 0) is distance transitive, and determine its 
intersection array. 

10. The multiplication table of a group is a Latin square. Show that its 
Latin square graph is a Cayley graph. 

11. There are two distinct groups of order four, and their multiplication 
tables can be viewed as Latin squares. Show that the graphs of these 
Latin squares are not isomorphic. (One approach is to determine the 
value of x(X) for both graphs.) 

12. Show that an automorphism of Coxeter's graph that fixes two ver­
tices at distance three is necessarily the identity, and conclude that 
Coxeter's graph is not 4-arc transitive. 

13. Show that a distance-transitive graph with girth at least five is 2-arc 
transitive. Determine a relation between the girth and degree of arc 
transitivity. 

14. Show that an 8-arc transitive graph with girth 28 - 1 has diameter 8 
and is distance transitive. 

15. Let the edges of the graph K6 be given as pairs (i,j) where 1 s:; i < 
j s:; 6. By labelling the vertices of a cube with the edges (1,3), (1,4), 
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(1,5), (1,6), (2,3), (2,4), (2,5), (2,6) and labelling the point 00 with 
(1,2), reconcile Tutte's one-sentence description of the 8-cage with 
the description in terms of edges and I-factors of K 6 . 

Notes 

Theorem 4.2.2 is based on unpublished notes by D. G. Wagner. 
Biggs [1] shows that there are exactly six I-factors in the Petersen graph, 

all equivalent under the action of its automorphism group. He also shows 
that the Coxeter graph has exactly 84 I-factors, all equivalent under its 
automorphism group. Deleting anyone of them leaves 2C14 , whence the 
Coxeter graph is not hamiltonian, but is I-factorable. Coxeter gave a geo­
metric construction for Tutte's graph, and so it is sometimes referred to as 
the Tutte-Coxeter graph. 

Biggs [2] provides a proof of Tutte's theorem on arc-transitive cubic 
graphs, which loosely follows Tutte's treatment. Weiss provides a more 
succinct proof of a slightly more general result in [3]. (The advantages of 
his approach will be lost if you do not read German, unfortunately.) 
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5 
Generalized Polygons and Moore 
Graphs 

A graph with diameter d has girth at most 2d + 1, while a bipartite graph 
with diameter d has girth at most 2d. While these are very simple bounds, 
the graphs that arise when they are met are particularly interesting. Graphs 
with diameter d and girth 2d + 1 are known as Moore graphs. They were 
introduced by Hoffman and Singleton in a paper that can be viewed as 
one of the prime sources of algebraic graph theory. After considerable de­
velopment, the tools they used in this paper led to a proof that a Moore 
graph has diameter at most two. They themselves proved that a Moore 
graph of diameter two must be regular, with valency 2, 3, 7, or 57. We 
will provide the machinery to prove this last result in our work on strongly 
regular graphs in Chapter 10. 

Bipartite graphs with diameter d and girth 2d are known as general­
ized polygons. They were introduced by Tits in fundamental work on the 
classification of finite simple groups. The complete bipartite graphs, with 
diameter two and girth four, are the only examples we have met already. 
Surprisingly, generalized polygons are related to classical geometry; in fact, 
a generalized polygon with diameter three is another manifestation of a pro­
jective plane. When d = 4 they are known as generalized quadrangles, and 
many of the known examples are related to quadrics in projective space. 

In this chapter we consider these two classes of graphs. We develop 
some of the basic theory of generalized polygons proving that "nondegener­
ate" generalized polygons are necessarily semi regular bipartite graphs. We 
present the classical examples of generalized triangles and generalized quad­
rangles, and the smallest generalized hexagons. We show that the Moore 
graphs are distance regular, which is surprising, because it is not even 
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immediate that they are regular. We give a construction of the Hoffman­
Singleton graph, the unique Moore graph of diameter two and valency 
seven, which along with the Petersen graph and the 5-cycle completes the 
list of known Moore graphs of diameter two. The chapter concludes with 
a brief introduction to designs, which provide another source of highly 
structured graphs. 

5.1 Incidence Graphs 

An incidence structure consists of a set P of points, a set I: of lines (disjoint 
from P), and a relation 

I<:;.Pxl: 

called incidence. If (p, L) E I, then we say that the point p and the line L are 
incident. If I = (P, 1:, I) is an incidence structure, then its dual incidence 
structure is given by I* = (1:, P, 1*), where I* = {(L,p) I (p, L) E I}. 
Informally, this simply corresponds to interchanging the names of "points" 
and "lines." 

The incidence graph X(I) of an incidence structure I is the graph with 
vertex set P u 1:, where two vertices are adjacent if and only if they are in­
cident. The incidence graph of an incidence structure is a bipartite graph. 
Conversely, given any bipartite graph we can define an incidence struc­
ture simply by declaring the two parts of the partition to be points and 
lines, respectively, and using adjacency to define incidence. Since we can 
choose either half of the partition to be the points, any bipartite graph 
determines a dual pair of incidence structures. This shows us that the 
definition of incidence structure is not very strong, and to get interesting 
incidence structures (and hence interesting graphs) we need to impose some 
additional conditions. 

A partial linear space is an incidence structure in which any two points 
are incident with at most one line. This implies that any two lines are 
incident with at most one point. 

Lemma 5.1.1 The incidence graph X of a partial linear space has girth 
at least six. 

Proof. If X contains a four-cycle p, L, q, M, then p and q are incident to 
two lines. Since the girth of X is even and not four, it is at least six. 0 

When referring to partial linear spaces we will normally use geometric 
terminology. Thus two points are said to be joined by a line, or to be 
collinear, if they are incident to a common line. Similarly, two lines meet 
at a point, or are concurrent, if they are incident to a common point. 
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An automorphism of an incidence structure (P, £, I) is a permutation a 
of P U £ such that pu = P, £u = £, and 

This yields an automorphism of the incidence graph that preserves the two 
parts of the bipartition. An incidence-preserving permutation a of P U £ 
such that pu = £ and £rr = P is called a duality. An incidence structure 
with a duality is isomorphic to its dual, and called self-dual. 

5.2 Projective Planes 

One of the most interesting classes of incidence structures is that of pro­
jective planes. A projective plane is a partial linear space satisfying the 
following three conditions: 

(1) Any two lines meet in a unique point. 

(2) Any two points lie in a unique line. 

(3) There are three pairwise noncollinear points (a triangle). 

The first two conditions are duals of each other, while the third is self­
dual, so the dual of a projective plane is again a projective plane. 

The first two conditions are the important conditions, with the third 
serving to eliminate uninteresting "I-dimensional" cases, such as partial 
linear spaces where all the points lie on a single line or all the lines on a 
single point. 

Finite geometers normally use a stronger nondegeneracy condition, in­
sisting on the existence of a quadrangle (four points, no three collinear). 
Figure 5.1 shows a projective plane that a geometer would regard as 
degenerate. The reasons for this will become apparent in Section 5.6. 

Figure 5.1. A degenerate projective plane 

Theorem 5.2.1 Let I be a partial linear space that contains a triangle. 
Then I is a (possibly degenerate) projective plane if and only if its incidence 
graph X(I) has diameter three and girth six. 
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Proof. Let I be a projective plane that contains a triangle. Any two points 
lie at distance two in X(I), similarly for any two lines. Now, consider a line 
L and a point p not on L. Any line M through p must meet L in a point 
pi, and thus L, pi, M, p is a path of length three from L to p. Hence any 
two vertices are at distance at most three, and the existence of the triangle 
guarantees one pair at distance exactly three, so the diameter of X(I) is 
three. Since I is a partial linear space, the girth of X(I) is at least six, and 
the existence of the triangle guarantees that it is exactly six. 

Conversely, let X(I) be the incidence graph of an incidence structure 
and suppose that it has diameter three and girth six. Then one half of 
the bipartition corresponds to the points of I and the other to the lines 
of I. Any two points are at an even distance from each other, and since 
this distance is at most three, it must be two. There must be a unique 
path of length two between the two points; else there would be a four­
cycle in X(I). Hence there is a unique line between any two points. A dual 
argument shows that any two lines meet in a unique point, and hence we 
have a projective plane. 0 

5.3 A Family of Projective Planes 

Let V be the three-dimensional vector space over the field IF with q ele­
ments. We can define an incidence structure PG(2, q) as follows: The points 
of PG(2, q) are the I-dimensional subspaces of V, and the lines are the 2-
dimensional subspaces of V. We say that a point p is incident with a line L 
if the I-dimensional subspace p is contained in the 2-dimensional subspace 
L. A k-dimensional subspace of V contains qk - 1 nonzero vectors. There­
fore, a line L contains q2 - 1 nonzero vectors, while each I-dimensional 
subspace contains q - 1 nonzero vectors. Therefore, each line contains 
(q2 _ l)/(q - 1) = q + 1 distinct points. Similarly, the entire projective 
plane contains (q3 - 1) / (q - 1) = q2 + q + 1 points. It is also not hard to see 
that there are q2 + q + 1 lines, with q + 1 lines passing through each point. 

Each point may be represented by a vector a in V, where a and Aa 

represent the same point if A i- o. A line can be represented by a pair of 
linearly independent vectors, or by a vector aT. Here the understanding is 
that a line is the subspace of dimension two formed by the vectors x such 
aT x = o. Of course, if A i- 0, then AaT and aT determine the same line. 
Then the point represented by a vector b lies on the line represented by aT 

if and only if aTb = O. 
Two one-dimensional subspaces of V lie in a unique two-dimensional sub­

space of V, so there is a unique line joining two points. Two two-dimensional 
subspaces of V intersect in a one-dimensional subspace, so any two lines 
meet in a unique point. Therefore, PG(2, q) is a projective plane. 
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By Theorem 5.2.1, the incidence graph X of PG(2, q) is a bipartite graph 
with diameter three and girth six. It has 2(q2 +q+ 1) vertices and is regular 
of valency q+l. However, we can say more. We aim to prove that it is 4-arc 
transitive. To start with we must find some automorphisms of it. 

We denote the group of all invertible 3 x 3 matrices over IF by GL(3, q). It 
is called the 3-dimensionallinear group over IF. Each element of it permutes 
the nonzero vectors in V and maps subspaces to subspaces, therefore giving 
rise to an automorphism of X. By elementary linear algebra, there is an 
invertible matrix that maps any ordered basis to any other ordered basis, 
so GL(3, q) acts transitively on the set of all ordered bases of V. 

Let p V q denote the unique line joining the points p and q. If p, q, and 
r are three noncollinear points, then 

p, p V q, q, q V r, r, p V r 

is a hexagon in X. The sequence 

(p, p V q, q, q V r, r) 

is a 4-arc in X, and so it follows that Aut(X) acts transitively on the 4-arcs 
that start at a "point-vertex" of X. The same argument shows that Aut(X) 
acts transitively on 4-arcs starting at a "line-vertex" of X. Therefore, to 
show that Aut(X) is 4-arc transitive, it remains only to prove that there 
is an automorphism of X that swaps point-vertices and line-vertices of X. 

This automorphism is easy to describe. For each vector a, it swaps the 
point represented by a with the line represented by aT. Since aTb = 0 if 
and only if bT a = 0, this maps adjacent vertices to adjacent vertices, and 
hence is an example of a duality. 

Given this, it follows that X is a 4-arc transitive graph. In addition, from 
Lemma 4.5.3, X is distance transitive. 

5.4 Generalized Quadrangles 

A second interesting class of incidence structures is provided by generalized 
quadrangles. A generalized quadrangle is a partial linear space satisfying 
the following two conditions: 

(1) Given any line L and a point p not on L there is a unique point pi 
on L such that p and pi are collinear. 

(2) There are noncollinear points and nonconcurrent lines. 

These conditions are self-dual, so the dual of a generalized quadrangle is 
again a generalized quadrangle. 

Once again, the first condition is the important one, with the second 
condition serving to eliminate the uninteresting "I-dimensional" cases with 
all points on one line or all lines through one point. 
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We have already seen a generalized quadrangle. Lemma 4.7.1 showed 
that the incidence structure defined on the edges and I-factors of K6 is a 
generalized quadrangle with Thtte's 8-cage as its incidence graph. 

Two simple generalized quadrangles, called the grid and its dual are 
shown in Figure 5.2. In a grid, every point is on two lines, while in a dual 
grid, every line contains two points. For reasons that will become apparent 
in Section 5.6, finite geometers also sometimes regard these as degenerate. 

Figure 5.2. A grid and a dual grid 

Theorem 5.4.1 Let I be a partial linear space that contains noncollinear 
points and nonconcurrent lines. Then I is a generalized quadrangle if and 
only if its incidence graph X(I) has diameter four and girth eight. 

Proof. Let I be a generalized quadrangle, and consider the distances in 
X(I) from a point p. A line is distance one from p if it contains p, and 
at distance three otherwise (by the condition defining a generalized quad­
rangle). A point is at distance two from p if it is collinear with p, and at 
distance four otherwise. The existence of noncollinear points guarantees 
the existence of a pair of points at distance four. A dual argument for lines 
completes the argument, showing that the diameter of X(I) is indeed four. 

The girth of X(I) is at least six. If it were exactly six, then the point and 
line opposite each other in a six-cycle would violate the condition defining 
a generalized quadrangle. To show that there is an 8-cycle we let p and 
q be two noncollinear points. Then there is a line Lp on p that does not 
contain q, and a line Lq on q that does not contain p. But then there is a 
unique point on Lp incident to q and a unique point on Lq incident to p. 
These eight elements form a cycle of length eight in the incidence graph, 
and hence the girth is eight. 

Conversely, suppose X(I) is the incidence graph of some partial linear 
space, and that it has diameter four and girth eight. Then one part of the 
bipartition corresponds to the points of I, and the other part to the lines of 
I. Consider a line L and point p at distance three. Since the girth is eight, 
there is a unique path L, p', L', p from L to p. This provides the unique 
point p' satisfying the condition defining a generalized quadrangle. 0 
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5.5 A Family of Generalized Quadrangles 

In this section we describe an infinite class of generalized quadrangles. The 
smallest member of this family has Tutte's graph as its incidence graph. 

Let V be the vector space of dimension four over the field IF with order 
q. The projective space PG(3, q) is the system of one-, two- and three­
dimensional subspaces of V. We will refer to these as the points, lines, and 
planes, respectively of PG(3, q). There are q4 - 1 nonzero vectors in V, 
and each I-dimensional subspace contains q - 1 nonzero vectors, so there 
are exactly (q4 - I)/(q - 1) = (q + I)(q2 + 1) points. We will construct an 
incidence structure using all of these points, but just some of the lines of 
PG(3,q). 

Let H be the matrix defined by 

( -~ ~ 
H= 0 0 

o 0 

o 0) o 0 
o 1 . 

-1 0 

(If the field has characteristic 2 or, equivalently, q is even, then -1 = 1.) 
A subspace S of V is totally isotropic if uT Hv = 0 for all u and v in S. It 
is easy to see that uT Hu = 0 for all u, so all the I-dimensional subspaces 
of V are totally isotropic. We will be concerned with the 2-dimensional 
totally isotropic subspaces of V. Our first task is to count them. A 2-
dimensional subspace of V spanned by u and v is totally isotropic if and 
only if uT H v = O. For a nonzero vector u, define the set u-L as follows: 

u-L = {v E V I uTHv = O}. 

The determinant of H is one, so H is invertible, and the vector uT H is 
nonzero. Since u-L consists of all the vectors orthogonal to uT H, it is a 3-
dimensional subspace of V that contains u. We count the number of pairs of 
vectors u, v such that (u, v) is a 2-dimensional totally isotropic subspace. 
There are q4 - 1 choices for the vector u and then q3 - q choices for a 
vector v that it is in u-L but not in the span of u. Therefore, there are 
(q4 _ I)(q3 - q) pairs of vectors spanning 2-dimensional totally isotropic 
subspaces. Each 2-dimensional subspace is spanned by (q2 -1) (q2 - q) pairs 
of vectors, so the total number of 2-dimensional totally isotropic subspaces 
is (q2 + I)(q + 1). 

Using the language of geometry, we say that PG(3, q) contains (q2+I)(q+ 
1) totally isotropic points and (q2 + 1) (q + 1) totally isotropic lines. A 2-
dimensional space contains q+ 1 subspaces of dimension one, so each totally 
isotropic line contains q + 1 totally isotropic points. Because the numbers 
of points and lines are equal, this implies that each totally isotropic point 
is contained in q + 1 totally isotropic lines. Now, let W(q) be the incidence 
structure whose points and lines are the totally isotropic points and totally 
isotropic lines of PG(3, q). 
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Lemma 5.5.1 Let W(q) be the point/line incidence structure whose points 
and lines are the totally isotropic points and totally isotropic lines of 
PG(3, q). Then W(q) is a generalized quadrangle. 

Proof. We need to prove that given a point p and a line L not containing 
p, there is a unique point on L that is collinear with p. Suppose that the 
point p is spanned by the vector u. Any point collinear with p is spanned by 
a vector in u.L. The 3-dimensional subspace u.L intersects the 2-dimensional 
subspace L in a subspace of dimension one, and hence there is a unique 
point on L that is collinear with p. D 

If X is the incidence graph of W(q), then it is a bipartite graph on 
2(q2+ l)(q+ 1) vertices that is regular with valency q+l. By Theorem 5.4.1, 
it has diameter four and girth eight. As will become apparent in Section 5.6, 
it is also distance regular. 

Applying the construction to the field of order two, we obtain a gener­
alized quadrangle with fifteen points and fifteen lines; this is the same as 
the generalized quadrangle on the edges and 1-factors of K 6 • 

The matrix H we used can be replaced by any invertible 4 x 4 matrix 
over IF with all diagonal entries zero such that HT = -H. However, this 
does not change the generalized quadrangle that results. 

Although the construction described in this section yields generalized 
quadrangles that are regular, it should be noted that there are many that 
are not regular. We will not present any general constructions, although an 
example will arise later. 

5.6 Generalized Polygons 

In Section 5.2 and Section 5.4 we saw that two classes of interesting (and 
highly studied) incidence structures are equivalent to bipartite graphs with 
diameter d and girth 2d, for d = 3 and d = 4. This motivates us to define a 
generalized polygon to be a finite bipartite graph with diameter d and girth 
2d. When it is important to specify the diameter, a generalized polygon of 
diameter d is called a generalized d-gon, and the normal names for small 
polygons (triangle for 3-gon, quadrangle for 4-gon, etc.) are used. 

A vertex in a generalized polygon is called thick if its valency is at least 
three. Vertices that are not thick are thin. A generalized polygon is called 
thick if all its vertices are thick. Although on the face of it the defini­
tion of a generalized polygon is not very restrictive, we will show that the 
thick generalized polygons are regular or semiregular, and that the general­
ized polygons that are not thick arise purely as subdivisions of generalized 
polygons. 

The argument proceeds by a series of simple structural lemmas. The first 
such lemma is a trivial observation, but we will use it repeatedly. 
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Lemma 5.6.1 If d(v,w) = m < d, then there is a unique path of length 
m from v to w. D 

Lemma 5.6.2 If d(v, w) = d, then v and w have the same valency. 

Proof. Since X is bipartite of diameter d, any neighbour Vi of v has dis­
tance d - 1 from w. Therefore, there is a unique path of length d - 1 from Vi 

to w that contains precisely one neighbour of w. Each such path contains a 
different neighbour of w, and therefore w has at least as many neighbours 
as v. Similarly, v has at least as many neighbours as w, and hence they 
have equal valency. D 

Lemma 5.6.3 Every vertex in X has valency at least two. 

Proof. Let 0 be a cycle of length 2d in X. Clearly, the vertices of 0 have 
valency at least two. Let x be a vertex not on 0, let P be the shortest path 
joining x to 0, and denote the length of P by i. Travelling around the cycle 
for d - i steps we arrive at a vertex x' at distance d from x. Then x has 
the same valency as x', which is at least two. D 

Lemma 5.6.4 Any two vertices lie in a cycle of length 2d. 

Proof. Let v and w be any two vertices of X. Let P be the shortest path 
between them. By repeatedly choosing any neighbour of an endpoint of P 
not already in P, we can extend P to a geodesic path of length d with 
endpoints x and y. Then x has a neighbour x' not in P, and hence it has 
distance d - 1 from y, and by following the unique path of length d - 1 
from x' to y we extend P into a cycle of length 2d as required. D 

The next series of lemmas shows that generalized polygons that are not 
thick are largely trivial modifications of those that are thick. 

Lemma 5.6.5 Let 0 be a cycle of length 2d. Then any two vertices at the 
same distance in 0 from a thick vertex in 0 have the same valency. 

Proof. Let v be a thick vertex contained in 0 and let w be its antipode in 
o (that is, the unique vertex in 0 at distance d from v). Now, because v 
is thick, it has at least one further neighbour Vi, and hence there is a path 
P from Vi to w that is disjoint from 0 except at w. Therefore, 0 together 
with P forms three internally vertex-disjoint paths of length d from v to w. 
Consider two vertices VI, v2 in 0 both at distance h from v. Let x be the 
vertex in P at distance d - h from v. Then x is at distance d from both VI 

and V2, and hence VI and V2 both have the same valency as x, and so they 
have equal valencies. D 

Lemma 5.6.6 The minimum distance k between any pair of thick vertices 
in X is a divisor of d. If d/ k is odd, then all the thick vertices have the same 
valency; if it is even, then the thick vertices share at most two valencies. 
Moreover, any vertex at distance k from a thick vertex is itself thick. 
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Proof. Let v and w be two thick vertices of X such that d( v, w) = k, and 
let x be any other thick vertex of X. By extending the path from x to the 
closer of v and w, we can form a cycle C of length 2d containing v, wand x. 
Repeatedly applying the previous lemma to the thick vertices of C starting 
at v, we see that every kth vertex of C is thick. Since the antipode v' of 
v in C is thick, k must divide d. Again using the previous lemma we see 
that every second thick vertex in C has the same valency, and therefore 
every thick vertex in C has the same valency as either v or w. Thus our 
arbitrarily chosen thick vertex x has one of these two valencies, and the 
set of all thick vertices shares at most two valencies. If d/k is odd, then v' 
has the same valency as w, so the valency of v is equal to the valency of w. 
However, if d/ k is even, then v and w may have different valencies. Finally, 
consider any vertex x' at distance k from x. If x' E C, then the argument 
above shows that it is thick. If x' tt C, then we can form a new cycle of 
length 2d that includes x', x, and one of the vertices of C at distance k 
from x. Then repeating the above argument with the new cycle yields that 
x' is itself thick. D 

We have already defined the subdivision graph S(X) as being the graph 
obtained from X by putting a vertex in the middle of each edge. We could 
also regard this as replacing each edge by a path of length 2. Taking this 
point of view we define the k-fold subdivision of a graph X to be the graph 
obtained from X by replacing each edge by a path of length k. 

Theorem 5.6.7 A generalized polygon X that is not thick is either a cycle, 
the k-fold subdivision of a mUltiple edge, or the k-fold subdivision of a thick 
generalized polygon. 

Proof. If X has no thick vertices at all, then it is a cycle. Otherwise, 
the previous lemma shows that any path between two thick vertices of 
X has length a multiple of k with every kth vertex being thick and the 
remainder thin. Therefore, we can define a graph X' whose vertices are 
the thick vertices of X, and where two vertices are adjacent in X' if they 
are joined by a path of length k in X. Clearly, X is the k-fold subdivision 
of X'. If k = d, then two thick vertices at maximum distance are joined 
by a collection of k-vertex paths of thin vertices. This collection of paths 
contains all the vertices of X, so X contains only two thick vertices and 
is just a subdivided multiple edge. (If we are willing to accept a multiple 
edge as a thick generalized 2-gon, then we eliminate the necessity for this 
case altogether.) If k < d, then X' has diameter d' := d/k because a path 
of length d between two thick vertices in X is a k-fold subdivision of a path 
of length d' between two vertices of X'. Similarly, a cycle of length 2d in 
X is a k-fold subdivision of a cycle of length 2d/ k in X'. Therefore, X' 
has diameter d' and girth 2d' . It is clear that X' must be bipartite, for if it 
contained an odd cycle, then any k-fold subdivision of such a cycle would 
have a thin vertex at distance at least kd' + 1 from some thick vertex, 
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contradicting the fact that X has diameter d. Therefore, X' is a thick 
generalized polygon. 0 

Therefore, the study of generalized polygons reduces to the study of thick 
generalized polygons, with the remainder being considered the degenerate 
cases. The degenerate projective plane of Figure 5.1 is a 3-fold subdivision 
of a multiple edge. The grids and dual grids are 2-fold subdivisions of the 
complete bipartite graph, which is a generalized 2-gon. 

Although the proofs of the main results about thick generalized polygons 
are beyond our scope, the results themselves are easy to state. The following 
famous theorem shows that in a thick generalized polygon, the diameter d 
is severely restricted. 

Theorem 5.6.8 (Feit and Higman) If a generalized d-gon is thick, then 
dE {3,4,6,8}. 0 

We have already seen examples of thick generalized triangles (d = 3) and 
thick generalized quadrangles (d = 4). In fact generalized triangles and 
generalized quadrangles exist in great profusion. Generalized hexagons and 
octagons do exist, but only a few families are known. Unfortunately, even 
the simplest of these families are difficult to describe. 

Since a projective plane is a thick generalized triangle, it is necessarily 
regular. If all the vertices have valency s+ 1, then we say that the projective 
plane has order s. The other thick generalized polygons may be regular or 
semiregular. If the valencies of the vertices of a thick generalized polygon 
X are s + 1 and t + 1, then X is said to have order (s, t) (where s may 
equal t). 

We leave as an exercise the task of establishing the following result. 

Lemma 5.6.9 If a generalized polygon is regular, then it is distance 
regular. 0 

The order of a thick generalized polygon satisfies certain inequalities 
due to Higman and Haemers. We will prove the first of these later, as 
Lemma 10.8.3. 

Theorem 5.6.10 Let X be a thick generalized d-gon of order (s, t). 

(a) If d = 4, then s ~ t2 and t ~ s2. 

(b) If d = 6, then st is a square and s ~ t 3 and t ~ S3. 

(c) If d = 8, then 2st is a square and s ~ t2 and t ~ s2. o 

Note that it is possible to take a generalized polygon of order (s, s) and 
subdivide each edge exactly Once to form a generalized polygon of order 
(1, s). Therefore, it is possible to have a generalized 12-gon that is neither 
thick nor a cycle. 
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5.7 Two Generalized Hexagons 

Although it is known that an infinite number of generalized hexagons exist, 
it is not straightforward to present an elementary construction of an infinite 
family. Therefore, we content ourselves with a construction of the smallest 
thick generalized hexagon. 

The smallest thick generalized hexagon has order (2,2), and hence is 
a cubic graph with girth 6 and diameter 12. By Exercise 5 it is distance 
regular with intersection array 

{3,2,2,2,2,2;1,1,1,1,1,3}. 

Given the intersection array we can count the number of vertices in each 
cell of the distance partition from any vertex u. For example, it is clear that 
IX1(u)1 = 3. Therefore, there are six edges between Xl(U) and X 2(u), and 
since each vertex of X2(U) is adjacent to one vertex in Xl(U), we conclude 
that IX2 (u)1 = 6. Continuing similarly we see that the cells of the distance 
partition from u have 1, 3, 6, 12, 24, 48, and 32 vertices, respectively. 

Lemma 5.7.1 If X is a generalized hexagon of order (2, 2), then the graph 
X5 (u) U X6 (u) is the subdivision S(Y) of a cubic graph Y on 32 vertices. 

Proof. It is straightforward to confirm that the 48 vertices of X5 (u) are 
each adjacent to two vertices of X6(U), and each vertex of X6(U) is adjacent 
to three from X5(U). 0 

We will describe the generalized hexagon by giving the cubic graph Y 
on 32 vertices, and explaining which vertex of X5(U) subdivides each edge 
of Y. First we give a simple encoding of the 48 vertices in X5(U). Let the 
three vertices adjacent to u be called r, g, and b. Then each of these has 
two neighbours in X2(U): We call them rO, rl, bO, bl, gO, and gl. Similarly, 
we denote the two neighbours of rO in X3(U) by rOO and rOl. Continuing 
in this fashion, every vertex of X5 (u) is labelled by a word of length 5 with 
first entry r, g, or b and whose remaining four entries are binary. 

Lemma 5.7.2 For c E {r,g,b}, the 16 edges of Y subdivided by the 16 
vertices of X5(U) with first entry c form a one-factor ofY. 

Proof. The distance from c E {r, g, b} to any vertex of X 5 ( u) with first 
entry c is four, and so there is a path of length at most eight between any 
two such vertices. Since X has no cycles of length 10, two such vertices 
cannot subdivide incident edges of Y. 0 

Figure 5.3 shows a bipartite cubic graph with 32 vertices, along with 
a I-factorization given by the three different edge colours. This graph is 
drawn on the torus, but in an unusual manner. Rather than identifying 
points on the opposite sides of a square, this diagram identifies points on 
the opposite sides of a hexagon. 
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Figure 5.3. Building block for the generalized hexagon 

Temporarily define the distance between two edges of a graph Z to be 
the distance that the corresponding vertices have in the subdivision S(Z). 
(Thus incident edges of Yare deemed to have distance two.) 

Theorem 5.7.3 Let Y be the graph of Figure 5.3 and let R be the set of 
edges in one of the colour classes. Then for every edge e E R, there is a 
unique edge e' E R at distance 10 from e. Moreover, 

( a) There is a unique partition of the eight pairs { e, e'} into four quartets 
of edges with pairwise distance at least eight, and 

(b) There is a unique partition of these four quartets into two octets of 
edges with pairwise distance at least six. 

Proof. A few minutes with a photocopy of Y and a pencil will be far more 
convincing than any written proof, so this is left as an exercise. 0 

Now, it should be clear how we will subdivide the edges of Y to form a 
generalized hexagon. The edges in R are assigned to the vertices of X5 (u) 
with first element r. The two octets of edges are assigned to the two octets 
of vertices whose codes agree in the first two positions, the four quartets 
of edges are assigned to the quartets of vertices whose codes agree in the 
first three positions, and the eight pairs of edges are assigned to the pairs 
of vertices whose codes agree in the first four positions. Then the two edges 
of a pair are subdivided arbitrarily by the two vertices to which the pair is 
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assigned. The same procedure is followed for the other two colour classes 
of edges. 

It is clear that the resulting graph is bipartite, and the assertions of 
Theorem 5.7.3 are enough to show that it has no cycles of length less than 
12, and that its diameter is six. 

The automorphism group of this generalized hexagon does not act tran­
sitively on the vertices, but rather it has two orbits that are the two halves 
of the bipartition. If we calculate the distance partition from a vertex of 
the opposite colour to u, say v, then X5(V) U X6(V) is a subdivision of a 
different graph. In fact, it is the subdivision of a disconnected graph, each 
of whose components is isomorphic to the graph shown in Figure 5.4. 

Figure 5.4. Building block for the dual generalized hexagon 

Although we shall not do so here, it can be shown that the two graphs of 
Figure 5.3 and Figure 5.4 are the only possibilities for Y, and hence there 
is a unique dual pair of generalized hexagons of order (2,2). 

5.8 Moore Graphs 

A Moore graph is a graph with diameter d and girth 2d + 1. We already 
know two examples: C5 and the Petersen graph. Unfortunately, there are 
at most two more Moore graphs. (The proof of this is one of the major 
achievements in algebraic graph theory.) In this section we prove that a 
Moore graph must be distance regular, and in the next section we provide 
the third known example. 

Lemma 5.8.1 Let X be a graph with diameter d and girth 2d + 1. Then 
X is regular. 
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Proof. First we shall show that any two vertices at distance d have the 
same valency, and then we shall show that this implies that all vertices have 
the same valency. Let v and w be two vertices of X such that d(v, w) = d. 
Let P be the path of length d joining them. Consider any neighbour Vi of v 
that is not on P. Then the distance from Vi to w is exactly d; hence there 
is a unique path from Vi to w that contains one neighbour of w. Each such 
path uses a different neighbour of w, and hence w has at least as many 
neighbours as v. Similarly, v has at least as many neighbours as w, and 
so they have equal valency. Let C be a cycle of length 2d + 1. Starting 
with any given vertex v and taking two d-step walks around C shows that 
the neighbours of v have the same valency as v. Therefore, all vertices of 
C have the same valency. Given any vertex x not on C, form a path of 
length i from x to C. The vertex x' that is d - i further steps around C 
has distance d from x, and hence x has the same valency as x'. Therefore, 
all the vertices of X have the same valency, and X is regular. 0 

Theorem 5.8.2 A Moore graph is distance regular. 

Proof. Let X be a Moore graph of diameter d. By the previous lemma, X 
is regular, so denote its valency by k. In order to show that X is distance 
regular it is sufficient to show that the intersection numbers ai, bi , and Ci of 
Section 4.5 are well-defined. Let v be a vertex of the Moore graph and let 
X1(v), ... , Xd(v) be the cells of the distance partition. The arguments are 
straightforward, relying on the simple fact that for each vertex w E Xi (v) 
there is a unique path of length i from v to w. 

For any 1 :s: i :s: d a vertex w in Xi (v) cannot have two neighbours in 
X i - 1 (v) because if so, there would be a cycle oflength at most 2i containing 
v and w. On the other hand, w must have at least one neighbour in X i - 1 (v), 
and so Ci = 1 for all 1 :s: i :s: d. 

For any 1 :s: i :s: d - 1 a vertex w in Xi (v) cannot have a neighbour Wi in 
the same cell, because if so, there would be a cycle of length at most 2i + 1 
containing v, w, and Wi. Therefore, ai = 0 for all 1 :s: i :s: d - 1. 

By the previous lemma X is regular, and hence this is enough to show 
that bo = k, bi = k - 1 for 1 :s: i :s: d - 1 and ad = k - 1. Therefore, the 
intersection numbers are well-defined and hence X is distance regular. 0 

The theory of distance-regular graphs can be used to show that Moore 
graphs of diameter greater than two do not exist, and that if a Moore graph 
of diameter two does exist, then its valency is either 2, 3, 7, or 57. We will 
develop enough of this theory in our work on strongly regular graphs in 
Chapter 10 to determine the possible valencies of a Moore graph of diameter 
two. (In fact, it will become a fairly routine exercise: Exercise 10.7.) We 
construct a Moore graph of valency seven in the next section; the existence 
of a Moore graph of valency 57 is a long-standing and famous open problem 
in graph theory. 
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5.9 The Hoffman-Singleton Graph 

In this section we show that there is a Moore graph of diameter two and 
valency seven and study some of its properties. This graph is known as the 
Hoffman-Singleton graph after its discoverers. By counting the number of 
vertices at distance one and two from a fixed vertex, we find that it has 
1 + 7 + 42 = 50 vertices. 

Lemma 5.9.1 An independent set C in a Moore graph of diameter two 
and valency seven contains at most 15 vertices. If ICI = 15, then every 
vertex not in C has exactly three neighbours in C. 

Proof. Let X be a Moore graph of diameter two and valency seven. Sup­
pose that C is an independent set in X with c vertices in it. Without loss of 
generality we may assume that the vertices are labelled so that the vertices 
{ 1, ... , 50 - c} are the ones not in C. If i is a vertex not in C, let k i denote 
the number of its neighbours that lie in C. Since no two vertices in C are 
joined by an edge, we have 

50-c 

7c= L k i . 

i=l 

Now, consider the paths of length two joining two vertices in C. Since 
every pair of nonadjacent vertices in X has exactly one common neighbour, 
counting these in two ways yields 

From these last two equations it follows that for any real number f..L, 

50-c 

L (ki - f..L)2 = (50 - c)f..L2 - 14cf..L + c2 + 6c. (5.1) 
i=l 

The right side here must be nonnegative for all values of f..L, so regarding it 
as a quadratic in f..L, we see that it must have at most one zero. Therefore, 
the discriminant 

196c2 - 4(50 - c)(c2 + 6c) = 4c(c - 15)(c + 20) 

of the quadratic must be less than or equal to O. It follows that c ::; 15. 
If c = 15, then the right side of (5.1) becomes 

35f..L2 - 21Of..L + 315 = 35(f..L - 3)2, 

and so setting f..L equal to three in (5.1) yields that 

35 

L(ki - 3)2 = O. 
i=l 
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Therefore, k i = 3 for all i, as required. 0 

We will now describe a construction of the Hoffman-Singleton graph, 
using the heptads of Section 4.6. Once again we consider the 35 triples 
from the set n = {I, ... , 7}. A set of triples is concurrent if there is some 
point common to them all, and the intersection of any two of them is this 
common point. A triad is a set of three concurrent triples. The remainder 
of the argument is broken up into a number of separate claims. 

(a) No two distinct heptads have three nonconcurrent triples in common. 

It is enough to check that for one set of three nonconcurrent triples, there 
is a unique heptad containing them. 

(b) Each triad is contained in exactly two heptads. 

Without loss of generality we may take our triad to be 123, 145, and 167. 
By a routine calculation one finds that there are two heptads containing 
this triad: 

123 123 
145 145 
167 167 
246 247 
257 256 
347 346 
356 357 

Note that the second of these heptads can be obtained from the first by 
applying the permutation (67) to each of its triples. 

(c) There are exactly 30 heptads. 

There are 15 triads on each point, thus we obtain 210 pairs consisting of 
a triad and a heptad containing it. Since each heptad contains exactly 7 
triads, it follows that there must be 30 heptads. 

(d) Any two heptads have 0, 1, or 3 triples in common. 

If two heptads have four (or more) triples in common, then they have three 
nonconcurrent triples in common. Hence two heptads can have at most 
three triples in common. If two triples meet in precisely one point, there 
is a unique third triple concurrent with them. Any heptad containing the 
first two triples must contain the third. (Why?) 

(e) The automorphism group of a heptad has order 168, and consists of 
even permutations. 

Firstly, we note that Sym(7) acts transitively on the set of heptads, as it 
acts transitively on the set of triads and there are permutations mapping 
the two heptads on a triad to each other. Since there are 30 heptads, we 
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deduce that the subgroup of Sym(7) fixing a heptad has order 168, and in 
Section 4.6 we exhibited such a group consisting of even permutations. 

(f) The heptads form two orbits of length 15 under the action of the alter­
nating group Alt(7). Any two heptads in the same orbit have exactly one 
triple in common. 

Since the subgroup of Alt(7) fixing a heptad has order 168, the number of 
heptads in an orbit is 15. Let II denote the first of the heptads above. The 
permutations (123) and (132) lie in Alt(7) and map II onto two distinct 
heptads having exactly one triple in common with II. (Check it!) From each 
triple in II we obtain two 3-cycles in Alt(7)j hence we infer that there are 
14 heptads in the same orbit as II under Alt(7) each with exactly one triple 
in common with II. Since there are only 15 heptads in an Alt(7) orbit, and 
since all heptads in an Alt(7) orbit are equivalent, it follows that any two 
heptads in such an orbit have exactly one triple in common. 

(g) Each triple from n lies in exactly six heptads, three from each Alt(7) 
orbit. 

Simple counting. 

We can now construct the Hoffman-Singleton graph. Choose an Alt(7) 
orbit of heptads from n. Take the vertices of our graph to be these heptads, 
together with the 35 triples in n. We join a heptad to a triple if and only if it 
contains the triple. Two triples are adjacent if and only if they are disjoint. 
The resulting graph is easily seen to have valency seven and diameter two. 
Since it has 50 = 72 + 1 vertices, it is a Moore graph. The collection of 15 
heptads forms an independent set of size 15 as considered in Lemma 5.9.1. 

5.10 Designs 

Another important class of incidence structures is the class of t-designs. In 
general, t-designs are not partial linear spaces, and design theorists tend to 
use the word "block" rather than "line", and to identify a block with the 
subset of points to which it is incident. 

In this language, a t-(v, k, At) design is a set P of v points, together with 
a collection B of k-subsets of points, called blocks such that every t-set 
of points lies in precisely At blocks. The projective planes PG(2, q) have 
the property that every two points lie in a unique block, and so they are 
2_(q2 + q + 1, q + 1,1) designs. 

Now, suppose that V is a t-(v, k, At) design and let S be an s-set of points 
for some s < t. We will count the number of blocks As of V containing S. 
We will do this by counting in two ways the pairs (T, B) where T is at-set 
containing Sand B is a block containing T. Firstly, S lies in (~=:) t-subsets 
T, each of which lies in At blocks. Secondly, for each block containing S 
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there are (~=:) possible choices for T. Hence 

As (k - s) = At (v -s) , 
t-s t-s 

(5.2) 

and since the number of blocks does not depend on the particular choice 
of S, we see that V is also an s-(v, k, As) design. This yields a necessary 
condition for the existence of a t-design in that the values of As must be 
integers for all s < t. 

The parameter Ao is the total number of blocks in the design, and is 
normally denoted by b. Putting s = 0 into (5.2), we get 

The parameter Al is the number of blocks containing each point, and it is 
normally called the replication number and denoted by r. Putting t = 1 in 
the previous equation yields that 

bk = vr. 

If At = 1, then the design is called a Steiner system, and a 2-design with 
A2 = 1 and k = 3 is called a Steiner triple system. The projective plane 
PG(2, 2) is a 2-(7,3,1) design, so is a Steiner triple system. It is usually 
called the Fano plane and drawn as shown in Figure 5.5, where the blocks 
are the straight lines and the central circle. 

Figure 5.5. The Fano plane 

The incidence matrix of a design is the matrix N with rows indexed by 
points and columns by blocks such that Nij = 1 if the ith point lies in the 
jth block, and Nij = 0 otherwise. Then the matrix N has constant row 
sum r and constant column sum k, and satisfies the equation 

where J is the all-ones matrix. Conversely, any 01-matrix with constant row 
sum and constant column sum satisfying this equation yields a 2-design. 

The proof of the next result relies on some results from linear algebra 
that will be covered in Chapter 8. 

Lemma 5.10.1 In a 2-design with k < v we have b 2:: v. 
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Proof. Puttingt = 2 and s = 1 into (5.2) we get that r(k-I) = (v-I)A2' 
and so k < v implies that r-A2 > O. By the remark at the end of Section 8.6, 
it follows that N NT is invertible. It follows that the rows of N are linearly 
independent, and therefore that b ~ v. 0 

A 2-design with b = v is called symmetric. The dual of a I-design is a 
I-design, but in general the dual of a 2-design is not a 2-design. The next 
result shows that symmetric designs are exceptional. 

Lemma 5.10.2 The dual D* of a symmetric design D is a symmetric 
design with the same parameters. 

Proof. If N is the incidence matrix of D, then NT is the incidence matrix 
of D*. Since D is a 2-design, we have N NT = (r - A2)I + A2J, and thus 
NT = N-1((r - A2)I + A2J). Since D is symmetric, r = k, and so N 
commutes with both I and J. Therefore, NT N = (r - A2)I + A2J, showing 
that D* is a 2-design with the same parameters as D. 0 

Theorem 5.10.3 A bipartite graph is the incidence graph of a symmetric 
2-design if and only if it is distance regular with diameter three. 

Proof. Let D be a symmetric 2-(v, k, A2) design with incidence graph X. 
Any two points lie at distance two in X, and similarly for blocks. Therefore, 
a block lies at distance three from a point not on the block, and this is the 
diameter of X. Now, consider the distance partition from a point. Clearly, 
X is bipartite, so we have al = a2 = a3 = O. Since two points lie in A2 
blocks, we have C2 = A2, and (using r = k) it is straightforward to verify 
that the intersection numbers are 

{~ 
Since the dual of D is a design with the same parameters, the distance 
partition from a line yields the same intersection numbers. 

Conversely, suppose that X is a bipartite distance-regular graph with 
diameter three. Declare one part of the bipartition to be points, and the 
other to be blocks. Considering the distance partition from a point we 
see that every point lies in bo blocks, and every two points lie in C2 blocks, 
hence we have a 2-design with r = bo and A2 = C2. Considering the distance 
partition from a block, we see that every block contains bo points and every 
two blocks meet in C2 blocks. Thus we have a 2-design with k = bo = rand 
hence b = v. 0 

Since projective planes are symmetric designs, this provides another 
proof of Lemma 5.6.9 for the case of generalized polygons with diame­
ter three. The incidence graph of the Fano plane is called the Heawood 
graph, and shown in Figure 5.6. 
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Figure 5.6. The Heawood graph 

Another way to form a graph from a design D is to consider the block 
graph whose vertices are the blocks of D, where two vertices are adjacent 
if the corresponding blocks intersect. More generally, blocks in a design 
may meet in differing numbers of points, and interesting graphs can often 
be found by taking two blocks to be adjacent if they meet in some fixed 
number of points. 

Theorem 5.10.4 The block intersection graph of a Steiner triple system 
with v > 7 is distance regular with diameter two. 

Proof. Let D be a 2-(v, 3,1) design, and let X be the block intersection 
graph of D. Every point lies in (v - 1)/2 blocks, and so X is regular with 
valency 3(v - 3)/2. If we consider two blocks that intersect, then there are 
(v - 5)/2 further blocks through that point of intersection, and four blocks 
containing a pair of points, one from each block, other than the point of 
intersection. Therefore, 

al = (v - 5)/2 + 4 = (v + 3)/2. 

If we now consider two blocks that do not intersect, then we see that there 
are nine blocks containing a pair of points, one from each block, and so 
C2 = 9. This also shows that the diameter of X is two. From these it is 
straightforward to compute the remaining intersection numbers and hence 
show that X is distance regular. 0 

Exercises 

1. Find the degenerate projective planes (those that do not contain a 
triangle). 

2. Determine the degenerate generalized quadrangles (those without 
noncollinear points and nonconcurrent lines). 

3. Let G be a group of automorphisms of an incidence structure I and 
consider the set of points and lines fixed by G. Show that this is: 
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(1) A partial linear space if I is a partial linear space. 
(2) A projective plane if I is a projective plane. 
(3) A generalized quadrangle if I is a generalized quadrangle. 

4. Consider the projective plane PG(2, 2). An anti flag in PG(2, 2) is a 
pair (p, L) where p is not on L. If Land M are two lines, then let 
L n M denote the unique point incident with both Land M. Define 
a graph whose vertex set is the set of antifiags, and where (p, L) and 
(q, M) are adjacent if the point L n M is on the line p V q. Show that 
this graph is the Coxeter graph and that the duality gives rise to an 
automorphism of order two additional to the automorphism group of 
PG(2, 2). (We discussed the Coxeter graph at length in Section 4.6.) 

5. Show that a generalized hexagon of order (2,2) is distance regular 
with intersection array {3, 2, 2, 2, 2, 2; 1, 1, 1, 1, 1, 3}. 

6. Determine how to subdivide the edges of two copies of the graph of 
Figure 5.4 to form a generalized hexagon. 

7. The Shrikhande graph can be embedded as a triangulation on the 
torus as shown in Figure 5.7. Show that the graph of Figure 5.3 is 
the dual of the Shrikhande graph. 

Figure 5.7. The Shrikhande graph on the torus 

8. Let Y denote the graph of Figure 5.4. Show that every vertex v E 

V(Y) has a unique vertex v' at distance 4 from it. Define a graph Y' 
whose vertex set is the eight pairs of vertices, and where two pairs 
are adjacent if there are any edges between them in Y. What graph 
is Y'? (It will follow from our work in Section 6.8 that Y is a cover 
of Y'.) 
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9. Show that the graph of Figure 5.4 is the unique cubic graph of girth 
six on 16 vertices. Show further that the Heawood graph is the only 
smaller cubic graph of girth six. 

10. Show that if a Moore graph of valency 57 and diameter two exists, 
then an independent set in it has size at most 400. 

11. Suppose that X is a Moore graph with diameter two and valency 
k. Show that there are exactly k(k - 1)2/2 5-cycles through a given 
vertex of X. Deduce from this that 5 divides (k2 + l)k(k-1)2, and 
hence that k oj. 4 mod 5. 

12. Show that a Moore graph with diameter two and valency seven con­
tains a subgraph isomorphic to the Petersen graph with an edge 
deleted. Show further that the subgraph induced by this is isomorphic 
to the Petersen graph. 

13. Let X be the incidence graph of a projective plane of order n. (See 
Section 5.3 for details.) Let Y be the graph obtained from X by 
deleting an adjacent pair of vertices and all their neighbours. Show 
that the resulting graph is distance regular. 

14. Let X be a Moore graph with diameter two and valency seven. If 
U E V(X), show that the graph induced by the vertices at distance 
two from u is distance regular. 

15. Let X be a Moore graph with diameter two and valency seven, and 
let Y be an induced subgraph of X isomorphic to the Petersen graph. 
Show that each vertex in V (X) \ V (Y) has exactly one neighbour in 
Y. (It follows that the partition (V(Y), V(X) \ V(Y)) of V(X) is an 
example of an equitable partition. We will study these in Section 9.3.) 

16. Let X be a Moore graph with diameter two and suppose G is a group 
of automorphisms of X. Let Y be the subgraph of X induced by the 
fixed points of G. Show that Y is isomorphic to either KI, KI,r for 
some r, or a Moore graph of diameter two. 

17. In Section 1.8 we saw that the Petersen graph is the dual of K6 
embedded in the projective plane. This embedding determines a set 
of 5-cycles such that each edge lies in exactly two of them. We build 
an incidence structure as follows. Let V be the set {O, 1, ... , 1O} and 
let V \ 0 be the vertices of a copy of the Petersen graph. The first 
six blocks of the incidence structure are the vertex sets of the six 5-
cycles given by the embedding of this graph in the projective plane. 
There are five further blocks, consisting of a set of four independent 
vertices in the Petersen graph, together with O. (You might wish to 
verify that the Petersen graph has exactly five independent sets of size 
four.) Show that the 11 points in V and the 11 blocks just described 
form a 2-(11,5,2) design. 
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Notes 

Feit and Higman proved their theorem in [8]. A number of alternative 
proofs of this result are known now. For one of these, and more details, 
see Section 6.5 of [3]. The study of Moore graphs began with the work of 
Hoffman and Singleton [9]. Biggs [2] presents a proof that a Moore graph 
has diameter at most two. His treatment follows Damerell [7]; this result 
was proved independently by Bannai and Ito [1]. 

Although generalized triangles and generalized quadrangles had previ­
ously been studied, the concept of a generalized polygon is due to Tits [11]. 
Our proof that a generalized polygon is semiregular is based on Yanushka 
[12], while our proof that a Moore graph is necessarily regular follows Sin­
gleton [10]. The construction of the generalized hexagon in Section 5.7 is 
essentially the same as that offered by Cohen and Tits in [6]. There they 
also prove that there is a unique dual pair of generalized hexagons with 
order (2,2). 

The construction of the Hoffman-Singleton graph we presented is related 
to the projective geometry PG(3,2) of dimension three over GF(2). We 
may take the heptads in one Alt(7) orbit to be the points, the triples as 
the lines, and the remaining Alt(7) orbit of heptads as the planes. The 
resulting collection of points, lines, and planes is PG(3, 2). 

An independent set C in a Moore graph of valency 57 and diameter two 
has size at most 400. (See Exercise 10.) If such a set C exists, then each of 
2850 vertices not in it is adjacent to exactly eight vertices in C. This gives 
us a 2-(400,8,1) design. The projective geometry PG(3, 7) has 400 points 
and 2850 lines. It is perhaps tempting to use this to construct a Moore 
graph of valency 57, with these points and lines as its vertices. A point will 
be adjacent to a line if it is on it; the unresolved difficulty is to decide how 
to define a suitable adjacency relation on the lines of PG(3, 7). 

G. Higman [4] showed that if a Moore graph with valency 57 and diameter 
two exists, it cannot be vertex transitive. This improved on earlier work 
of Aschbacher, who showed that the automorphism group of such a graph 
could not be a rank-three group. 

A solution to Exercise 12 will be found in Chapter 6 of [5]. 
We do not seem to be at all close to deciding whether there is a Moore 

graph with diameter two and valency 57. This is one of the most famous 
open problems in graph theory. 
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6 
Homomorphisms 

Although any isomorphism between two graphs is a homomorphism, the 
study of homomorphisms between graphs has quite a different flavour to 
the study of isomorphisms. In this chapter we support this claim by intro­
ducing a number of topics involving graph homomorphisms. We consider 
the relationship between homomorphisms and graph products, and in par­
ticular a famous unsolved conjecture of Hedetniemi, which asserts that if 
two graphs are not n-colourable, then neither is their product. Our second 
major topic is the exploration of the core of a graph, which is the minimal 
subgraph of a graph that is also a homomorphic image of the graph. Study­
ing graphs that are equal to their core leads us to an interesting class of 
graphs first studied by Andnisfai. We finish the chapter with an exploration 
of the cores of vertex-transitive graphs. 

6.1 The Basics 

If X, Y, and Z are graphs and there are homomorphisms f from X to Y 
and 9 from Y to Z, then the composition go f is a homomorphism from X 
to Z. (This needs a line of proof, which is a task for the reader.) Note that 
we have 9 0 f and not fog, an unfortunate consequence of the fact that 
it is traditional to write homomorphisms on the left rather than the right. 
Now, define a relation "-+" on the class of all graphs by X -+ Y if there 
is a homomorphism from X to Y. (It may help if you read "-+" as "has 
a homomorphism into.") Since the composition of two homomorphisms is 



104 6. Homomorphisms 

a homomorphism, "~" is a transitive relation. Since the identity map is 
a homomorphism, we have X ~ X for any graph X, and therefore ~ is 
reflexive as well. Most reflexive transitive relations you have met have been 
partial orders such as: 

( a) ~ on the reals, 

(b) m divides n on the integers, or 

(c) ~ on the subsets of a set. 

Our new relation is not a partial order because it is not antisymmetric, 
that is to say, if X ~ Y and Y ~ X, it does not necessarily follow that 
X = Y. (Take X to be any bipartite graph and Y to be an edge.) 

If X and Yare graphs such that there is a homomorphism from X to 
Y and a homomorphism from Y to X, we say they are homomorphically 
equivalent. A homomorphism from X to Y is surjective if every vertex of Y 
is the image of a vertex of X. If there is a surjective homomorphism from 
X to Y and from Y to X, then X and Yare isomorphic (this implicitly 
uses the fact that X and Yare finite). 

If f is a homomorphism from X to Y, then the preimages f-l(y) of 
each vertex y in Yare called the fibres of f. The fibres of f determine a 
partition 7l' of V(X) called the kernel of f. If Y has no loops, then the 
kernel is a partition into independent sets. Given a graph X together with 
a partition 7l' of V(X), define a graph X/7l' with vertex set the cells of 7l' and 
with an edge between two cells if there is an edge of X with an endpoint 
in each cell (and a loop if there is an edge within a cell). There is a natural 
homomorphism from X to X/7l' with kernel 7l'. 

Although it is generally a hard task to show that there is no homomor­
phism from one graph to another, there are two parameters that can be 
useful. Recall from Lemma 1.4.1 that a graph Y can be properly coloured 
with r colours if and only if there is a homomorphism from Y to K r . There­
fore, if there is a homomorphism from X to Y, we have X ~ Y ~ Kr, and 
so X(X) ~ X(Y). Hence if X(X) > X(Y), then there can be no homomor­
phism from X to Y. Second, if X has an induced odd cycle of length i and 
any induced odd cycle in Y has length greater than i, then there cannot 
be a homomorphism from X to Y, because the homomorphic image of an 
odd cycle must be an odd cycle of no greater length. We call the length 
of a shortest odd cycle in X the odd girth of X; the odd girth of X is an 
upper bound on the odd girth of any homomorphic image of X. 

6.2 Cores 

A graph X is a core if any homomorphism from X to itself is a bijection or, 
equivalently, if its endomorphism monoid equals its automorphism group. 
The simplest examples of cores are the complete graphs. A subgraph Y of 
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X is a core of X if Y is a core and there is a homomorphism from X to 
Y. We will see below that every graph has a core, and that all its cores are 
isomorphic. We denote the core of X by X·. If Y is a core of X and I is a 
homomorphism from X to Y, then I fY must be an automorphism of Y. 
The composition of I with the inverse of this automorphism is the identity 
mapping on Y; hence any core of X is a retract (see Exercise 1.5). 

A graph X is x-critical (or just critical) if the chromatic number of 
any proper subgraph is less than X(X). A x-critical graph cannot have a 
homomorphism to any proper subgraph, and hence must be its own core. 
This provides a wide class of cores, including all complete graphs and odd 
cycles. 

The next lemma implies that -+ is a partial order on isomorphism classes 
of cores. 

Lemma 6.2.1 Let X and Y be cores. Then X and Yare homomorphically 
equivalent il and only il they are isomorphic. 

Proof. Suppose X and Yare homomorphically equivalent and that I : 
X -+ Y and 9 : Y -+ X are the homomorphisms between them. Then 
because both log and 9 0 I must be surjective, we see that both I and 9 
are surjective, so X and Yare isomorphic. D 

Lemma 6.2.2 Every graph X has a core, which is an induced subgraph 
and is unique up to isomorphism. 

Proof. Since X is finite and the identity mapping is a homomorphism, the 
family of subgraphs of X to which X has a homomorphism is finite and 
nonempty and hence has a minimal element with respect to inclusion. Since 
a core is a retract, it is clearly an induced subgraph. Now, suppose that Yi 
and Y2 are cores of X and let Ii be a homomorphism from X to Yi. Then 
it f Y2 is a homomorphism from Y2 to Y1 , and h f Y1 is a homomorphism 
from Yi to Y2 . Therefore, by the previous lemma, Y1 and Y2 are isomorphic. 
D 

Lemma 6.2.3 Two graphs X and Yare homomorphically equivalent il 
and only il their cores are isomorphic. 

Proof. If there is a homomorphism I: X -+ Y, then we have a sequence 
of homomorphisms 

which composes to give a homomorphism from X· to Y·. Hence, if X and 
Yare homomorphically equivalent, so are X· and Y·. 

On the other hand, if I : X· -+ Y· is a homomorphism, then we have a 
sequence of homomorphisms 
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which composes to yield a homomorphism from X to Y, and so X and Y 
are homomorphically equivalent if X· and Y· are. 

Hence two graphs are homomorphically equivalent if and only if their 
cores are. By Lemma 6.2.1, two cores are homomorphicallyequivalent if 
and only if they are isomorphic. Hence the proof is complete. 0 

If we view "~" as a relation on the set of isomorphism classes of cores, 
then the above results have the following consequence. 

Corollary 6.2.4 The relation "~,, is a partial order on the set of 
isomorphism classes of cores. 

Proof. We have already seen that ,,~" is a transitive and reflexive relation 
on the set of isomorphism classes of graphs, whence it follows that it is 
transitive and reflexive on isomorphism classes of cores. By Lemma 6.2.1, if 
X and Y are cores and X ~ Y and Y ~ X, then X and Yare isomorphic. 
Hence "~" is antisymmetric, and a transitive, reflexive, antisymmetric 
relation is a partial order. 0 

We will learn more about this partial order in the next section. 

6.3 Products 

If X and Yare graphs, then their product X x Y has vertex set V(X) x 
V(Y), and (x,y) rv (X',y') if and only if x rv x' and y rv y'. The map that 
sends (x, y) to (y, x) is an isomorphism from X x Y to Y x X, and it is no 
harder to describe an isomorphism from (X x Y) x Z to X x (Y x Z), so 
this product behaves in much the way we might expect. However, 

K2 x 2K3 ~ 2C6 ~ K2 X C6 

(as you are invited to verify), and so if X x Y1 ~ X X Y2 , it does not follow 
that Y1 ~ Y2 . The product of connected graphs is connected if and only 
if at least one of the factors is not bipartite. (Another exercise.) We also 
point out that the product X x Kl is the empty graph, which is possibly 
not what you expected. 

For fixed x in V(X), the vertices of the form (x, y) in X x Y form an 
independent set. Therefore, the mapping 

Px : (x, y) f--+ X 

is a homomorphism from X x Y to X. It is dignified by calling it the 
projection from X x Y to X. Similarly, there is a projection py from X x Y 
to Y. 

Theorem 6.3.1 Let X, Y, and Z be graphs. If f : Z ~ X and g: Z ~ 
Y, then there is a unique homomorphism ¢ from Z to X x Y such that 
f = px 0 ¢ and g = py 0 ¢. 
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Proof. Assume that we are given homomorphisms f : Z --+ X and 9 : 
Z --+ Y. The map 

¢: z f---+ (f(z),g(z)) 

is readily seen to be a homomorphism from Z to X x Y. Clearly, p x 0 ¢ = f 
and py 0 ¢ = g, and furthermore, ¢ is uniquely determined by f and g. 0 

If X and Yare graphs, we use Hom(X, Y) to denote the set of all 
homomorphisms from X to Y. 

Corollary 6.3.2 For any graphs X, Y, and Z, 

IHom(Z, X x Y)I = IHom(Z,X)IIHom(Z,Y)I· o 

Our last theorem allows us to derive another property of the set of isomor­
phism classes of cores. Recall that a partially ordered set is a lattice if each 
pair of elements has a least upper bound and a greatest lower bound. 

Lemma 6.3.3 The set of isomorphism classes of cores, partially ordered 
by "--+", is a lattice. 

Proof. We start with the least upper bound. Let X and Y be cores. For 
any core Z, if X --+ Z and Y --+ Z, then X U Y --+ Z. Hence (X U Y)- is 
the least upper bound of X and Y. 

For the greatest lower bound we note that by the previous theorem, if 
Z --+ X and Z --+ Y, then Z --+ X x Y. Hence (X x Y)- is the greatest 
lower bound of X and Y. 0 

It is probably a surprise that the greatest lower bound (X x Y)- normally 
has more vertices than the least upper bound. Life can be surprising. 

If X is a graph, then the vertices (x, x), where x E V(X), induce a 
subgraph of X x X isomorphic to X. We call it the diagonal of the product. 
In general, X x Y need not contain a copy of X; consider the product 
K2 x K 3 , which is isomorphic to C6 and thus contains no copy of K 3 . 

To conclude this section we describe another construction closely related 
to the product. Suppose that X and Yare graphs with homomorphisms 
f and g, respectively, to a graph F. The subdirect product of (X, f) and 
(Y, g) is the subgraph of X x Y induced by the set of vertices 

{(x, y) E V(X) x V(Y) : f(x) = g(y)}. 

(The proof is left as an exercise.) If X is a connected bipartite graph, then it 
has exactly two homomorphisms hand h to K 2 . Suppose Y is connected 
and 9 is a homomorphism from Y to K 2 . Then the two subdirect products 
of (X, fi) with (Y, g) form the components of X x Y. (Yet another exercise.) 
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6.4 The Map Graph 

Let F and X be graphs. The map graph F X has the set of functions from 
V(X) to V(F) as its vertices; two such functions f and 9 are adjacent in 
F X if and only if whenever u and v are adjacent in X, the vertices f(u) 
and g( v) are adjacent in F. A vertex in F X has a loop on it if and only 
if the corresponding function is a homomorphism. Even if there are no 
homomorphisms from X to F, the map graph F X can still be very useful, 
as we will see. 

Now, suppose that '¢ is a homomorphism from X to Y. If f is a function 
from V(Y) to V(F), then the composition f 0 '¢ is a function from V(X) 
to V(F). Hence '¢ determines a map from the vertices of F Y to F X , which 
we call the adjoint map to '¢. 

Theorem 6.4.1 If F is a graph and'¢ is a homomorphism from X to Y, 
then the adjoint of'¢ is a homomorphism from F Y to FX. 

Proof. Suppose that f and 9 are adjacent vertices of F Y and that Xl 

and X2 are adjacent vertices in X. Then '¢(xd '" ,¢(X2), and therefore 
f(,¢(xd) rv g('¢(X2)' Hence f 0 '¢ and go '¢ are adjacent in FX. 0 

Theorem 6.4.2 For any graphs F, X, and Y, we have F XxY ~ (FX)Y. 

Proof. It is immediate that F XxY and (FX)Y have the same number of 
vertices. We start by defining the natural bijection between these sets, and 
then we will show that it is an isomorphism. 

Suppose that 9 is a map from V(X x Y) to F. For any fixed y E V(Y) 
the map 

gy : X 1-+ g(x, y) 

is an element of FX. Therefore, the map 

<I>g : y 1-+ gy 

is an element of (FX) Y. The mapping 9 1-+ <I> 9 is the bijection that we need. 
Now, we must show that this bijection is in fact an isomorphism. So let 

f and 9 be adjacent vertices of F X x Y. We must show that <I> f and <I> 9 are 
adjacent vertices of (FX)Y. Let YI and Y2 be adjacent vertices in Y. For 
any two vertices Xl rv X2 in X we have 

and since f rv g, 

and so 

<I> f (yd '" <I> 9 (Y2). 

A similar argument shows that if f 7- g, then <I> f 7- <I> g, and hence the 
result follows. 0 
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Corollary 6.4.3 For any graphs F, X, and Y, we have 

IHom(X x Y, F)I = IHom(Y, FX)I· 

Proof. We have just seen that FXxY ~ (FX)Y, and so they have the 
same number of loops, which are precisely the homomorphisms. D 

Since there is a homomorphism from X x F to F, the last result implies 
that there is a homomorphism from F into FX. We can be more precise, 
although we leave the proof as an exercise. 

Lemma 6.4.4 If X has at least one edge, the constant functions from 
V(X) to V(F) induce a subgraph of F X isomorphic to F. D 

6.5 Counting Homomorphisms 

By counting homomorphisms we will derive another interesting property 
of the map graph. 

Lemma 6.5.1 Let X and Y be fixed graphs. Suppose that for all graphs Z 
we have 

IHom(Z,X)1 = IHom(Z, Y)I· 

Then X and Yare isomorphic. 

Proof. Let Inj(A, B) denote the set of injective homomorphisms from a 
graph A to a graph B. We aim to show that for all Z we have IInj(Z, X)I = 
IInj(Z, Y)I. By taking Z equal to X and then Y, we see that there are 
injective homomorphisms from X to Y and Y to X. Since X and Y must 
have the same number of vertices, an injective homomorphism is surjective, 
and thus X is isomorphic to Y. 

We prove that IInj(Z, X)I = IInj(Z, Y)I by induction on the num­
ber of vertices in Z. It is clearly true if Z has one vertex, because any 
homomorphism from a single vertex is injective. 

We can partition the homomorphisms from Z into any graph W 
according to the kernel, so we get 

IHom(Z, W)I = L IInj(Zj1l", W)I, 

where 1l" ranges over all partitions. A homomorphism is an injection if and 
only if its kernel is the discrete partition, which we shall denote by o. 
Therefore, 

IInj(Z, W)I = IHom(Z, W)I- L IInj(Zj1l", W)I· 
7r~J 
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Now, by the induction hypothesis, all the terms on the right hand side of 
this sum are the same for W = X and W = Y. Therefore, we conclude 
that 

IInj(Z, X)I = IInj(Z, Y)I, 

and the result follows. 

Lemma 6.5.2 For any graphs F, X, and Y we have 

F XUY ~ F X X FY. 

Proof. For any graph Z, we have 

IHom(Z, FXUY)I = IHom(Z x (X U Y), F)I 

= IHom((Z x X) U (Z x Y), F)I 

= IHom(Z x X,F)IIHom(Z x Y,F)I 
= IHom(Z, FX)IIHom(Z, FY)I. 

D 

By Corollary 6.3.2, the last product equals the number of homomorphisms 
from Z to F X x F Y . Now, the previous lemma completes the argument.D 

It is not hard to find a direct proof of the last result, but the argument 
we have given has its own charm. 

6.6 Products and Colourings 

We recall that if X ----> Y, then X(X) ~ X(Y). Since both X and Yare 
homomorphic images of X x Y (using the projection homomorphisms), we 
have that 

x(X x Y) ~ min{x(X), X(Y)}. 

S. Hedetniemi has conjectured that for all graphs X and Y equality occurs 
in the above bound and hence that X(X x Y) = min{x(X), X(Y)}. 

An equivalent formulation of Hedetniemi's conjecture is that if X and 
Yare graphs that are not n-colourable, then the product X x Y is not 
n-colourable. When n = 2 we can prove this by showing that the product 
of two odd cycles contains an odd cycle. For n = 3, the conjecture was 
proved by EI-Zahar and Sauer in 1985. The remaining cases are still open. 

Our first result uses the map graph to simplify the study of Hedetniemi's 
conjecture. 

Theorem 6.6.1 Suppose X(X) > n. Then K; is n-colourable if and only 
if x(X x Y) > n for all graphs Y such that X(Y) > n. 

Proof. By Corollary 6.4.3, 

IHom(X x K;, Kn)1 = IHom(K;, K;")I > 0, 
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and therefore X x K; is n-colourable. Consequently, if X(X) > nand 
X(X x Y) > n whenever X(Y) > n, then K; must be n-colourable. 

Assume conversely that X(K;) ::; n and let Y be a graph such that 
X(Y) > n. Then there are no homomorphisms from Y into any n-colourable 
graph, and therefore 

0= IHom(Y,K;')1 = IHom(X x Y,Kn)l. 

Hence X(X x Y) > n. D 

This theorem tells us that we can prove Hedetniemi's conjecture by prov­
ing that X(K;) ::; n if X(X) > n. The next few results summarize the 
limited number of cases where the conjecture is known to be true. 

Theorem 6.6.2 The map graph K::n+l is n-colourable. 

Proof. We construct a proper n-colouring cp of K::n+l . For any f E K::n+l , 
there are two distinct vertices i and j such that f(i) = f(j)· Define cpU) 
to be the least value in the range of f that is the image of at least two 
vertices. If cpU) = cp(g), then for some distinct vertices if and jf we have 

f(i) = f(j) = g(if) = g(j'). 

Because i is not equal to both if and jf, this implies that f rf g. Therefore, 
cp is a proper n-colouring of K::n+l. D 

Corollary 6.6.3 Suppose that the graph X contains a clique of size n + 1. 
Then K; is n-colourable. 

Proof. Since Kn+l ---- X, by Theorem 6.4.1 

K x ____ KKn+l 
n n' 

By the theorem, K::n+l is n-colourable, and so K; is n-colourable. D 

Theorem 6.6.4 All loops in K::n are isolated vertices. The subgraph of 
K::n induced by the vertices without loops is n-colourable. 

Proof. Suppose f E K::n and f is a proper n-colouring of Kn. If 9 is 
adjacent to f, then g(i) "I- f(j) for j in V(Kn)\i. This implies that g(i) = 
f(i) and hence that 9 = f. 

For any f in the loopless part of K::n, there are at least two distinct 
vertices i and j such that f(i) = f(j), and we can define a proper n­
colouring of this part of K::n as in Theorem 6.6.2. D 

The next result is remarkably useful. 

Theorem 6.6.5 If X is connected and not n-colourable, then K; contains 
a unique n-clique, namely the constant functions. 

Proof. By Lemma 6.4.4, the subgraph of K; induced by the constant 
functions is an n-clique. We need to prove this is the only n-clique. 
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If x(X) > nand f is a homomorphism from X to K{fn, then, by the 
previous theorem, f must map each vertex of X onto the same loop of 
K{fn. Since Kn has exactly n! proper n-colourings, K{fn has exactly n! 
loops and therefore 

n! = IHom(X,K~n)1 
= IHom(Kn x X, Kn)1 

IHom(X x K n , Kn)1 

= IHom(Kn, K;)I· 

Thus there are exactly n! homomorphisms from Kn into K;, and therefore 
K; contains a unique n-clique. D 

The above proof shows that if X(X) > n, then there are exactly n! ho­
momorphisms from X x Kn to Kn. Hence X x Kn is uniquely n-colourable. 
(For more about this, see the next section.) 

Theorem 6.6.6 Suppose n ~ 2 and let X and Y be connected graphs, each 
containing an n-clique. If X and Yare not n-colourable, neither is X x Y. 

Proof. Let Xl, ... , xn and YI, ... , Yn be the respective n-cliques in X and 
Y and suppose, by way of contradiction, that there is a homomorphism f 
from X x Y into Kn. Consider the induced homomorphism from Y into K; . 
By Theorem 6.6.5, the image of Yll ... , Yn in K; consists of the constant 
maps. In other words, f(x, Yj), viewed as a function of X, is constant for each 
Yj. A similar argument yields that f(Xi, y) is constant as a function of y. 
Then f(XI, yI) = f(XI, Y2) = f(X2' Y2), so the adjacent vertices (Xl, YI) and 
(X2' Y2) are mapped to the same vertex of K n , contradicting the assumption 
that f is a homomorphism. D 

One consequence of this theorem is that if X and Yare not bipartite, 
then neither is X x Y. 

Corollary 6.6.7 Let X be a graph such that every vertex lies in an n­
clique and X(X) > n. If Y is a connected graph with X(Y) > n, then 
X(X x Y) > n. 

Proof. Suppose by way of contradiction that there is a homomorphism f 
from X x Y into Kn. Then consider the induced mapping if!f from X into 
K;:. Because K;: has no loops, every n-clique in X is mapped injectively 
onto the unique n-clique in K;:. Every vertex of X lies in an n-clique, 
and so every vertex of X is mapped to this n-clique. Therefore, if! f is a 
homomorphism from X into K n , which is a contradiction. D 
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6.7 Uniquely Colourable Graphs 

If X is a graph with chromatic number n, then each n-colouring of X 
determines a partition of V(X) into n independent sets; conversely, each 
partition of V(X) into n independent sets gives rise to exactly n! proper 
n-colourings. We say that a graph is uniquely n-colourable if it has chro­
matic number n, and there is a unique partition of its vertex set into n 
independent sets. It is not hard to see that if a graph X has at least n 

vertices, then it is uniquely n-colourable if and only if there are exactly n! 
homomorphisms from X to Kn. The simplest examples are the connected 
bipartite graphs with at least one edge, which are uniquely 2-colourable. 

There are a number of conjectures concerning uniquely colourable graphs 
related to Hedetniemi's conjecture. The connections arise because of our 
next result, which is implicit in the proof of Theorem 6.6.5, as we noted 
earlier. 

Theorem 6.7.1 If X is a connected graph with x(X) > n, then X x Kn 
is uniquely n-colourable. 0 

We have the following generalization of the first part of Theorem 6.6.4. 

Lemma 6.7.2 If X is uniquely n-colourable, then each proper n-colouring 
of X is an isolated vertex in K; . 

Proof. Let f be a proper n-colouring of X and let x be a vertex in X. 
Since X is uniquely n-colourable, each of the n - 1 colours other than f (x) 
must occur as the colour of a vertex in the neighbourhood of x. It follows 
that if 9 "" f, then g(x) = f(x), and so the only vertex of K; adjacent to 
f is f itself. 0 

Let )'(K;) denote the subgraph of K; induced by its loopless vertices. 
We can state the following conjectures: 

(Bn) If X is uniquely n-colourable and Y is a connected graph that is not 
n-colourable, then X x Y is uniquely n-colourable. 

(Dn) If X is uniquely n-colourable, then the subgraph of K; induced by 
its loopless vertices is n-colourable. 

(Hn) If x(X) = X(Y) = n + 1, then x(X x Y) = n + l. 
The conjecture that (Hn) holds for all positive integers n is equivalent 

to Hedetniemi's conjecture. We will show that 

(Bn) ~ (Dn) =} (Hn). 

Suppose that (Bn) holds, and let X be uniquely n-colourable. If Y is any 
subgraph of ).(K;), then there are more than n! homomorphisms from Y 
into K; (there is one homomorphism for each of the n! loops, along with 
the identity map), and so 

IHom(X x Y, Kn)1 = I Hom(Y, K;)I ~ n! + 1. 



114 6. Homomorphisms 

This shows that X x Y is not uniquely n-colourable, whence (Bn) implies 
that X(Y) :s; n. Hence (Bn) implies (Dn). 

But (Dn) implies (Bn) too. For if Y is connected and X(Y) > nand 
:\(K;) is n-colourable, then the only homomorphisms from Y to K; are 
the maps onto the loops. Therefore, 

n! = IHom(Y,K;;)1 = IHom(X x Y,Kn)l, 

with the implication that X x Y is uniquely n-colourable. 
We will use the next lemma to show that (Dn) implies (Hn) (which, we 

recall, is Hedetniemi's conjecture). 

Lemma 6.7.3 If x(X) > n, then there is a homomorphism from K; to 
the subgraph of K;XKn induced by the loopless vertices. 

Proof. Let px be the projection homomorphism from X x Kn to X, and 
let cp be the induced mapping from K; to K;xKn. (See Theorem 6.4.1, 
where this was introduced.) If 9 E K;, then 9 is not a proper colouring of 
X, and so there are adjacent vertices u and v in X such that g(u) = g(v). 
Now, cp(g) = go Px, whence cp(g) maps (u, i) and (v,j) to g(u), for any 
vertices i and j in Kn. Hence cp(g) is not a proper colouring of X x K n, 
which means that it is not a loop. 0 

So now suppose that (Dn) holds and let X be a graph with X(X) > n. 
By Theorem 6.7.1, X x Kn is uniquely n-colourable, and so (Dn) implies 
that :\(K;XKn) is n-colourable. Hence, by the lemma, K;; is n-colourable, 
and Hedetniemi's conjecture holds. 

6.8 Foldings and Covers 

We call a homomorphism from X to Y a simple folding if it has one fibre 
consisting of two vertices at distance two, and all other fibres are singletons. 
For example, the two homomorphisms from the path on three vertices to 
K2 are simple foldings. A homomorphism is a folding if it is the composition 
of a number of simple foldings. 

Lemma 6.8.1 If f is a retraction from a connected graph X to a proper 
subgraph Y, then it is a folding. 

Proof. We proceed by induction on the number of vertices in X. Suppose 
f is a retraction from X to Y, that is, f is a homomorphism from X to Y 
and fry is the identity. If X = Y, we have nothing to prove. Otherwise, 
since X is connected, there is a vertex y in Y adjacent to a vertex x not in 
Y. Now, f fixes y and maps x to some neighbour, z say, of yin Y. 

Let 7r be the partition of V (X) with {x, z} as one cell and with all other 
cells singletons. There is a homomorphism h from X to a graph Xl with 
kernel 7r. Since the kernel of h is a refinement of the kernel of f, there is 
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a homomorphism fz from Xl to Y such that fz o!I = f. Since !I maps 
each vertex in Y to itself, it follows that Y is a subgraph of Xl, and fz is a 
retraction from Xl to Y. Finally, !I is a simple folding, and by induction, 
we may assume that fz is a folding. This proves the lemma. 0 

We call a homomorphism a local injection if the minimum distance 
between two vertices in the same fibre is at least three. Clearly, any 
automorphism is a local injection. 

Lemma 6.8.2 Every homomorphism h from X to Y can be expressed as 
the composition fog, where 9 is a folding and f a local injection. 

Proof. Let 7f be the kernel of h. If u and v are vertices of X, write u ~ v 
if u and v lie in the same cell of 7f and are equal or at distance two in X. 
This is a symmetric and reflexive relation on the vertices of X. Hence its 
transitive closure is an equivalence relation, which determines a partition 
7f' of V(X). There is a homomorphism 9 from X to X/7f' with kernel 7f' 

and a homomorphism f from X/7f' to Y such that h = fog. 
Clearly, 9 is a folding. We complete the proof by showing that f is a local 

injection. Assume by way of contradiction that 0: and (3 are vertices in X/7f' 
at distance two such that 1(0:) = 1((3). Let r be a common neighbour of 0: 
and (3 in X/7f'. There must be a vertex u of X in g-l(o:) adjacent (in X) 
to a vertex u' in g-l(1), and a vertex v of X in g-l((3) adjacent (in X) 
to a vertex v' in g-l(1). But u' and v' are joined in X by a walk of even 
length, hence this holds true for u and v as well. This implies that u and v 
must lie in the same cell of 7f', a contradiction that completes the proof. 0 

A homomorphism f from X to Y is a local isomorphism if for each 
vertex y in Y, the induced mapping from the set of neighbours of a vertex 
in f- 1 (y) to the neighbours of y is bijective. We call f a covering map if 
it is a surjective local isomorphism, in which case we say that X covers 
Y. If 1 is a local isomorphism, then each fibre is an independent set of 
vertices in X, and between each fibre there are either no edges or there is 
a matching. If the image of X is connected, then each fibre has the same 
size. This number is called the index r of the cover, and X is said to be an 
r-fold cover of Y. There may be more than one covering map from a graph 
X to a graph Y, so we define a covering graph X of Y to be a pair (X, f), 
where f is a local isomorphism from X to Y. 

If (X, 1) is a cover ofY and Y1 is an induced subgraph ofY, then f- 1 (Yd 
covers Y1 . This means that questions about covers of Y can be reduced to 
questions about the covers of its components. If Y is a connected graph 
and (X,1) is a cover of Y, then each component of X covers Y. (We leave 
the proof of this as an exercise.) 

Our next result is a simple but fundamental property of covering maps. 

Lemma 6.8.3 If X covers Y and Y is a tree, then X is the disjoint union 
of copies of Y. 
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Proof. Suppose f is a covering map from X to Y. Since f is a local 
isomorphism, if x E VeX), then the valency of f(x) in Y equals the valency 
of x in X. This implies that the image of any cycle in X is a cycle in Y, 
and hence the girth of X cannot be less than the girth of Y. Thus, since Y 
is acyclic, so is X. 

A local isomorphism is locally surjective; hence if f(x) = y, then each 
edge on y is the image under f of an edge on x. It follows that any path 
in Y that starts at y is the image under f of a path in X that starts at 
x (and this is also true for walks). Therefore, there is a tree T in X such 
that f is an isomorphism from T to Y. Hence Y is a retract of X, and as 
each component of X covers Y, it follows from Lemma 6.8.1 that X is the 
disjoint union of copies of Y. D 

We say that a cover (X, f) of index rover Y is trivial if X is isomorphic 
to r vertex disjoint copies of Y and the restriction of f to any copy of Y 
is an isomorphism. The previous lemma implies that any cover of a tree is 
trivial. 

Interesting covers are surprisingly common. The cube Q has the property 
that for each vertex x there is a unique vertex in Q at distance three from 
x. Thus V(Q) can partitioned into four pairs, and these pairs are the fibres 
of a covering map from Q onto K4 (see Figure 6.1). 

Figure 6.1. The cube is a 2-fold cover of K4 

Similarly, the dodecahedron covers the Petersen graph and the line graph 
of the Petersen graph covers K 5 . The 42 vertices at distance two from a 
fixed vertex in the Hoffman-Singleton graph form a 6-fold cover of K 7 . For 
any graph X, the product X x K2 is a 2-fold cover of X. In Chapter 11 we 
will study two-graphs, which can be defined as 2-fold covers of complete 
graphs. 

If (X,1) and (Y, g) are covers of F, then so is their sub direct prod­
uct. (The proof is left as an exercise. We defined the sub direct product in 
Section 6.3.) 

6.9 Cores with No Triangles 

We showed in Section 6.2 that every graph has a core, but despite this, 
it is not trivial to provide examples of cores. Critical graphs provide one 
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such class. So far, the only critical graphs we have identified are the odd 
cycles and the complete graphs. There are many critical graphs known 
that are more interesting, but we do not consider them here, since we have 
nothing to say about them from an algebraic viewpoint. Since any homo­
morphism must map triangles to triangles, it would seem comparatively 
easy to construct examples of cores that contain many triangles. In this 
section we therefore take a more difficult route, and construct examples of 
cores without triangles. 

We begin by deriving a simple sufficient condition for a graph to be a 
core. 

Lemma 6.9.1 Let X be a connected nonbipartite graph. If every 2-arc lies 
in a shortest odd cycle of X, then X is a core. 

Proof. Let f be a homomorphism from X to X. This necessarily maps a 
shortest odd cycle of X onto an odd cycle of the same length, so any two 
vertices in the cycle have different images under f. Since every 2-arc lies 
in a shortest odd cycle, this shows that f is a local injection, and hence by 
Lemma 6.8.1, it cannot map X onto a proper subgraph of itself. 0 

If two vertices u and v in a graph X have identical neighbourhoods, then 
X is certainly not a core, for there is a retraction from X to X \ u. This 
motivates the following definition: A graph is reduced if it has no isolated 
vertices and the neighbourhoods of distinct vertices are distinct. 

Now, suppose that X is a triangle-free graph. If u and v are two vertices 
in X at distance at least three, then the graph obtained by adding the edge 
uv is also triangle free. Continuing this process, we see that any triangle­
free graph X is a spanning subgraph of a triangle-free graph with diameter 
two. 

We note a useful property of reduced triangle-free graphs with diameter 
two. 

Lemma 6.9.2 Let X be a reduced triangle-free graph with diameter two. 
For any pair of distinct nonadjacent vertices u and v, there is a vertex 
adjacent to u but not to v. 

Proof. Suppose for a contradiction that N(u) <.;;: N(v). Since X is reduced, 
there is some vertex w adjacent to v but not to u. Since X has no triangles, 
w is not adjacent to any neighbour of u, which implies that the distance 
between u and w is at least three. 0 

This last result enables us to characterize a class of cores. 

Lemma 6.9.3 Let X be a triangle-free graph with diameter two. Then X 
is a core if and only if it is reduced. 

Proof. Our comments above establish that a graph that is not reduced is 
not a core. So we assume that X is reduced and show that each 2-arc in X 
lies in a 5-cycle, whence the result follows from Lemma 6.9.1. 
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Assume that (u, v, w) is a 2-arc. Then w is at distance two from u. Since 
N (w) is not contained in N (u), there is a neighbour, w' say, of w at distance 
two from u. Now, w' must have a neighbour, v' say, adjacent to u. Since X 
has no triangles, v' i= v, and therefore (u, v, w, w', v') is a 5-cycle. D 

It follows immediately that any reduced triangle-free graph of diameter 
two is a core. The graph obtained by deleting a vertex from the Petersen 
graph is triangle free with diameter three, but any proper homomorphic 
image of it contains a triangle, thus showing that the condition in the 
lemma is not necessary. 

6.10 The Andnisfai Graphs 

We define a family of Cayley graphs And(k), each of which is a reduced 
triangle-free graph with diameter two. For any integer k ~ 1, let G = 
L63k-l denote the additive group of integers modulo 3k - 1 and let C be 
the subset of LZ 3k-l consisting of the elements congruent to 1 modulo 3. 
Then we denote the Cayley graph X(G, C) by And(k). The graph And(2) 
is isomorphic to the 5-cycle, And(3) is known as the Mobius ladder (see 
Exercise 44), and And(4) is depicted in Figure 6.2. 

Figure 6.2. And(4) = X(£:ll, {I, 4,7, 1O}) 

Lemma 6.10.1 For k ~ 2, the Cayley graph And(k) is a reduced triangle­
free graph with diameter two. 

Proof. First we show that And(k) is reduced. If And(k) has two distinct 
vertices with the same neighbours, then there must be an element 9 in G 
such that 9 i= 0 and 9 + C = C. It follows that both 9 + 1 and 9 - 1 lie in 
C, which is impossible, since they are not both congruent to 1 modulo 3. 

Next we show that And(k) has no triangles containing the vertex O. Let 
9 and h be two neighbours of O. Then 9 and h are in C, and so 9 - h is zero 
modulo 3. Thus 9 - h tf. C, and so 9 is not adjacent to h. Since And(k) is 
transitive, this suffices to show that it is triangle-free. 
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Finally, we show that And(k) has diameter two, by showing that there 
is a path of length at most two from ° to any other vertex. If 9 = 3i, then 
the path (0,3i + 1, 3i) has length two, and if 9 = 3i + 2, then the path 
(0, 3i + 1, 3i + 2) has length two. Every other vertex is adjacent to 0, and 
so the result follows. 0 

Let X be a reduced triangle-free graph with diameter two, and let S 
be an independent set in X. If S is an independent set that is maximal 
under inclusion, then every vertex of X is adjacent to at least one vertex 
in S. The graph we get by taking a new vertex and joining it to each 
vertex of S is triangle-free with diameter two. Provided that S is not the 
neighbourhood of a vertex, this new graph is also reduced. This gives us 
a procedure for embedding each reduced triangle-free graph with diameter 
two as an induced subgraph of a reduced triangle-free graph with diameter 
two with one more vertex-unless each independent set in X is contained in 
the neighbourhood of a vertex. This observation should make the following 
result more interesting. 

Lemma 6.10.2 Each independent set of vertices of And(k) is contained 
in the neighbourhood of a vertex. 

Proof. Consider the k -1 pairs of adjacent vertices of the form {3i, 3i -I} 
for 1::; i < k. Now, any vertex gEe has the form 3q + 1. If q ~ i, then 9 
is adjacent to 3i, but not to 3i -1. If q < i, then 9 is adjacent to 3i -1, but 
not to 3i. Therefore, every vertex in C is adjacent to precisely one vertex 
from each pair. 

Suppose now that there is an independent set not contained in the neigh­
bourhood of a vertex. Then we can find an independent set S and an 
element x such that S U x is independent, S is in the neighbourhood of a 
vertex, but SUx is not in the neighbourhood of a vertex. By the transitivity 
of And(k) we can assume that S is in the neighbourhood of 0. Since x is 
not adjacent to 0, either x = 3i or x = 3i - 1 for some i. If x = 3i, then 
every vertex of S is not adjacent to x, and so is adjacent to x-I, which 
implies that S U x is in the neighbourhood of x - 1. Finally, if x = 3i - 1, 
then every vertex of S is not adjacent to x and so is adjacent to x + 1, 
which implies that S U x is in the neighbourhood of x + 1. Therefore, S U x 
is in the neighbourhood of some vertex, which is a contradiction. 0 

6.11 Colouring Andnisfai Graphs 

In the next section we will use the following properties of Andnisfai graphs 
to characterize them. 

Lemma 6.11.1 If k ~ 2, then the number of 3-colourings of And(k) is 
6(3k - 1), and they are all equivalent under its automorphism group. 
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Proof. In any 3-colouring of And(k), the average size of a colour class is 
k -~. Since the maximum size of a colour class is k, two colour classes have 
size k, and the third has size k - 1. By Lemma 6.10.2, the two big colour 
classes are neighbourhoods of vertices. 

Suppose that we have a 3-colouring of And(k) and that one of the big 
colour classes consists of the neighbours of 0; this colour class may be any 
of the three colours. 

Now, consider the set of vertices not adjacent to O. This can be 
partitioned into the two sets 

A:= {2,5, .. . ,3k - 4}, B:= {3,6, .. . ,3k - 3}. 

It is immediate that A and B are independent sets and that the ith vertex 
of A is adjacent to the last k - i vertices of B (Figure 6.3 shows this 
for And(4)). Hence Au B induces a connected bipartite graph, and can 
therefore be coloured in exactly two ways with two colours. 

There are now two choices for the colour assigned to 0, and so in total 
there are 12 distinct colourings with the neighbours of 0 as a big colour 
class. Since And(k) is transitive with 3k - 1 vertices, and each 3-colouring 
has two big colour classes, the first claim follows. 

The permutation that exchanges i and -i modulo 3k - 1 is an auto­
morphism of And(k) that exchanges A and B, and hence the second claim 
follows. 0 

Figure 6.3. Another view of And(4) 

We note another property of the Andrasfai graphs. The subgraph of 
And(k) induced by {O, 1, ... , 3(k-1) - 2} is And(k -1). Therefore, we can 
get And(k - 1) from And(k) by deleting the path (3k - 4, 3k - 3, 3k - 2). 

Lemma 6.11.2 Let X be a triangle-free regular graph with valency k ;::: 2, 
and suppose that P is a path of length two in X. If X \ P ~ And( k - 1), 
then X ~ And(k). 

Proof. Let P be the path (u, v, w) and let Y denote X \ P. Since X is 
triangle-free and regular, the neighbours of u, v, and w that are in Y form 
independent sets of size k - 1, k - 2, and k - 1 respectively. Since Y is 
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regular of valency k - 1, each vertex of Y is adjacent to precisely one 
vertex of P. Therefore, these independent sets are a 3-colouring of Y. Since 
all 3-colourings of Yare equivalent under Aut(Y), the result follows. 0 

6.12 A Characterization 

The condition that each independent set lies in the neighbourhood of a 
vertex is very strong: We show that a reduced triangle-free graph with 
this property must be one of the Cayley graphs And(k). This is surprising, 
because we know very few interesting cases where a simple combinatorial 
condition implies so much symmetry. 

Theorem 6.12.1 If X is a reduced triangle-free graph such that each in­
dependent set in X is contained in the neighbourhood of a vertex, then X 
is an Andnisfai graph. 

Proof. We break the proof into a number of steps. 

(a) If u and v are distinct nonadjacent vertices, then there is a unique 
vertex au ( v) adjacent to v but not u and such that 

The set of vertices 

is independent and, by Lemma 6.9.2, contains at least one vertex of Xl(U). 
Therefore, it is contained in the neighbourhood of some vertex, w say, 
not adjacent to u. We will take au(v) to be w, but must show that it is 
unique. Suppose for a contradiction that there is another vertex w' such 
that w' is adjacent to all the vertices in the above set. Then wand w' 
are not adjacent, and so there is a vertex x that is adjacent to w but not 
w'. However, this implies that {U,X,W/} is an independent set. Any vertex 
adjacent to u and w' is adjacent to w, and therefore it cannot be adjacent 
to x (because w is). Thus we have an independent set that is not contained 
in the neighbourhood of a vertex, which is the required contradiction. This 
implies that au is a fixed-point-free involution on the set of vertices at 
distance two from u. 

(b) X is a k-regular graph on 3k - 1 vertices. 

Let u be a vertex of X, and consider the edges between Xl(U) and X2(U). 
Every vertex of Xl ( u) is adj acent to exactly one vertex from each pair 
{v,au(v)}. Therefore, every vertex in X 1 (u) has the same valency, which 
implies that every pair of vertices at distance two has the same valency. 
Consequently, either X is bipartite or it is regular of valency k. If X has 
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two distinct nonadjacent vertices u and v, then u, v, and o-u(v) lie in a 5-
cycle, and so X is not bipartite. Therefore, if X is bipartite, it is complete 
and thus equal to K 2 , which is And(l). If it is regular of valency k, then 
for any vertex u, there are k - 1 pairs {v, o-u(v)} in X2(U), and hence 
IX2 (u)1 = 2(k - 1). 

(c) If k :::: 2, then for each vertex u in X there is a vertex w such that u 
and w have a unique common neighbour. 

First we show that there is a vertex v such that u and v have k -1 common 
neighbours. Let v be a vertex with the largest number of common neigh­
bours with u, and suppose that they have k - s common neighbours, where 
s:::: 1. Let U denote X 1(U)\X1 (v) and V denote X 1 (V)\X1 (u). Then both 
U and V contain s vertices; moreover, U contains o-v(u) and V contains 
o-u(v). 

If s > 1, then V contains a vertex Vi other than 0-u (v). Since 0-u ( v) is 
the unique vertex adjacent to v and everything in U, it follows that there 
is some vertex u' E U not adjacent to Vi. Then 

is independent and hence contained in the neighbourhood of a vertex w i= u. 
Therefore, u and w have at least k - s+ 1 common neighbours. By the choice 
of v, this cannot occur, and therefore s = 1, and u and v have k -1 common 
neighbours. 

If u and v have k - 1 common neighbours, then u and w = 0-u (v) have 
one common neighbour, and the claim is proved. 

(d) Let k :::: 2, and suppose that P = (u, v, w) is a path in X such that 
v is the unique common neighbour of u and w. Then X \ P is a reduced 
triangle-free graph such that every independent set is in the neighbourhood 
of a vertex. 

If Y denotes X\P, then it is immediate that Y is a triangle-free graph, and 
so we must show that every independent set of Y lies in the neighbourhood 
of a vertex, and that it is reduced. 

Let U, V, and W be the neighbours of u, v, and w, respectively, in Y. 
Since no vertex of Y is in two of these sets, and they have sizes k -1, k - 2, 
and k - 1, respectively, these three sets partition V(Y). 

Suppose that S is an independent set in Y, and hence an independent set 
in X. Then S lies in the neighbourhood of a vertex, x say, in X. If x is not 
in { u, v, w}, then it is a vertex of Y, and there is nothing to prove. If x = u, 
then S ~ U and since the vertex o-u(v) is adjacent to everything in U, the 
set S is in the neighbourhood of o-u(v). An analogous argument deals with 
the case where x = w. For the final case, where x = v, note that v and 
o-u(w) have was their unique common neighbour, and therefore o-v(o-u(w)) 
lies in U and is adjacent to everything in V. Therefore, we conclude that 
in every case S lies in the neighbourhood of a vertex in Y. 
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Finally, we prove that Y is reduced, by showing that any two vertices 
x and y have different neighbourhoods. If x and yare both in U, then 
since they have different neighbourhoods in X, they have different neigh­
bourhoods in Y. The same argument applies if they are both in V or both 
in W. So suppose that x and yare in different sets from {U, V, W}, and 
without loss of generality we assume that x E U. Then 0' w (u) is in U and 
is adj acent to everything in W, and 0' v (0' u ( W )) is in U and is adj acent to 
everything in V. Therefore, every vertex in V (Y) \ U is adjacent to a vertex 
in U and so cannot have the same neighbourhood as x. 

(e) X is an Andrasfai graph. 

It is easy to check that And(2) is the unique reduced triangle-free graph 
with valency two such that every independent set is in the neighbourhood 
of a vertex. The result follows by induction using (d) and Lemma 6.11.2.0 

6.13 Cores of Vert ex-Transitive Graphs 

In this section we consider some further simple techniques that allow us 
to identify classes of cores. Although these techniques use the theory of 
homomorphisms that we have developed in a relatively elementary way, 
we can get some quite strong results that would be difficult to prove 
without using homomorphisms. The first result is quite surprising, as it 
provides a somewhat unexpected connection between homomorphisms and 
automorphisms. 

Theorem 6.13.1 If X is a vertex-transitive graph, then its core X· is 
vertex transitive. 

Proof. Let x and y be two distinct vertices of X·. Then there is an auto­
morphism of X that maps x to y. The composition of this automorphism 
with a retraction from X to X· is a homomorphism f from X to X·. The 
restriction f r X· is an automorphism of X· mapping x to y. 0 

The graph of Figure 6.4 is an example of a quartic vertex-transitive graph 
whose core is the vertex-transitive graph Cs. 

Theorem 6.13.2 If X is a vertex-transitive graph, then IV(X·)I divides 
IV(X)I· 

Proof. We show that the fibres of any homomorphism from X to X· have 
the same size. Let f be a homomorphism from X to X whose image Y is a 
core of X. For any element g of Aut(X), the translate yg is mapped onto 
Y by f, and therefore yg has one vertex in each fibre of f. 

Now, suppose v E V(X) and let F be the fibre of f that contains v. 
Since X is vertex transitive, the number of automorphisms g such that yg 
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Figure 6.4. Quartic vertex-transitive graph with core C5 

contains v is independent of our choice of v. If we denote this number by 
N, then since every image yg of Y meets F, 

IAut(X)1 = IFIN. 

Since N does not depend on F, this implies that all fibres of f have the 
same size. 0 

This result has an immediate corollary that provides us with further large 
classes of cores. 

Corollary 6.13.3 If X is a nonempty vertex-transitive graph with a prime 
number of vertices, then X is a core. 0 

More surprisingly, it also yields an elegant proof of a result in graph 
colouring theory. 

Corollary 6.13.4 Let X be a vertex-transitive graph on n vertices with 
chromatic number three. If n is not a multiple of three, then X is triangle­
free. 

Proof. Since X is 3-colourable, it has a homomorphism onto K 3 . If X 
contained a triangle, then the core of X would be a triangle and n would 
be a multiple of three, contradicting the hypothesis. Therefore, X has no 
triangles. 0 

This result can easily be generalized to other chromatic numbers, as you 
are asked to show in Exercise 41. 

To complete this section, we note another application of Lemma 6.9.1. 

Theorem 6.13.5 If X is a connected 2-arc transitive non bipartite graph, 
then X is a core. 

Proof. Since X is not bipartite, it contains an odd cycle; since X is 2-arc 
transitive, each 2-arc lies in a shortest odd cycle. 0 
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This provides a simple proof that the Petersen graph and the Coxeter 
graph are cores; alternative proofs seem to require tedious case arguments. 
By Lemma 4.1.2 and the previous theorem, we see that the Kneser graphs 
J(2k + 1, k, 0) are cores; in Chapter 7 we will show that all Kneser graphs 
are cores. 

6.14 Cores of Cubic Vertex-Transitive Graphs 

The cycles are the only connected vertex-transitive graphs of valency two, 
so cubic vertex-transitive graphs are the first interesting vertex-transitive 
graphs, and as such, they have been widely studied. In this section we 
consider cores of cubic vertex-transitive graphs, strengthen some of the 
results of Section 6.13, and provide some interesting examples. 

We start by showing that a connected cubic graph is a core if it is arc 
transitive, thus strengthening Theorem 6.13.5. 

Theorem 6.14.1 If X is a connected arc-transitive nonbipartite cubic 
graph, then X is a core. 

Proof. Let C be a shortest odd cycle in X, and let x be a vertex in C 
with three neighbours Xl, X2, and X3, where Xl and X2 are in C. If G is 
the automorphism group of X, then the vertex stabilizer Gx contains an 
element g of order three, which can be taken without loss of generality to 
contain the cycle (XIX2X3). The 2-arc (3 = (XI,X,X2) is in a shortest odd 
cycle, and therefore so are (39 = (X2' X, X3) and (399 = (X3, X, Xl). Hence any 
2-arc with X as middle vertex lies in a shortest odd cycle, and because X 
is vertex transitive, the same is true for every 2-arc. Thus by Lemma 6.9.1, 
X is a core. 0 

We note in passing that there are cubic graphs that satisfy the condition 
of Lemma 6.9.1 that are not arc transitive. For example, Figure 6.5 shows 
two such graphs that are not even vertex transitive. 

Figure 6.5. Two cubic cores that are not vertex transitive 
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It is easy to show that a graph with maximum valency Do can be properly 
coloured with Do + 1 colours. The following useful strengthening of this 
observation is a standard result from graph theory, known as Brooks's 
theorem. 

Theorem 6.14.2 (Brooks) If X is a connected graph of maximum va­
lency Do that is neither complete nor an odd cycle, then the chromatic 
number of X is at most Do. 0 

Theorem 6.14.3 If X is a connected vertex-transitive cubic graph, then 
X· is K 2 , an odd cycle, or X itself. 

Proof. The proof of this is left as Exercise 42. o 

This theorem raises the question as to whether we can identify cubic 
vertex-transitive graphs whose cores are odd cycles. We content ourselves 
with presenting an interesting example, which is the smallest cubic vertex­
transitive graph after the lO-vertex ladder that has core C5 • First some 
notation: Given a graph X, a truncation of X is a graph Y obtained by 
replacing each vertex v of valency k with k new vertices, one for each 
edge incident to v. Pairs of vertices corresponding to the edges of X are 
adjacent in Y, and the k vertices of Y corresponding to a single vertex of 
X are joined in a cycle of length k. If k = 3, then there is only one way to 
do this, but otherwise the order in which the k vertices are joined must be 
specified. If the graph X is embedded in a surface, then there is a "natural" 
truncation obtained by joining the k vertices in the cyclic order given by 
the embedding (see Figure 6.6). 

, , , , , , , , 

:> 

Figure 6.6. Thuncating a vertex of valency k 

The graph K6 can be embedded in the real projective plane as we saw 
in Figure 1.13. Truncating this graph yields the vertex-transitive graph on 
30 vertices shown in Figure 6.7 (also drawn in the real projective plane). 
The odd girth of this graph is five, so by Theorem 6.14.3, it is either a core 
or has a homomorphism onto C5 . In fact, it can be shown that it has a 
homomorphism onto C5 , as given by the colouring of the vertices in the 
figure. It is the second-smallest cubic vertex-transitive graph with core C5 

after the lO-vertex ladder (see Exercise 44). 
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Figure 6.7. Cubic vertex-transitive graph with core C5 

Truncating the icosahedron embedded in the plane (Figure 6.8) yields a 
cubic vertex-transitive graph on 60 vertices (see Figure 9.5); The truncated 
icosahedron is well known because it describes the structure of the molecule 
0 60 (here 0 stands for carbon not cycle!) known as buckminsterfullerene. 
Like the cube, the truncated icosahedron is antipodal; it is a 2-fold cover 
of the graph of Figure 6.7. One consequence of this is that the truncated 
icosahedron also has core C5 . We will meet the truncated icosahedron once 
again when we study fullerenes in Section 9.8. 

Figure 6.8. The icosahedron 
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Exercises 

1. Show that in a bipartite graph, every isometric path is a retract. 

2. Show that in a bipartite graph, any cycle of length equal to the girth 
is a retract. 

3. Show that any bipartite graph is an isometric subgraph of a product 
of paths. 

4. If S ~ V(X) and X(X \ S) < X(X), show that every retract of X 
contains at least one vertex of S. 

5. If X is arc transitive and C is a core of X, show that C is arc 
transitive. What if X is s-arc transitive? 

6. Show that the product of two connected graphs X and Y (with 
at least two vertices) is not connected if and only if X and Yare 
bipartite. 

7. Let X and Y be two graphs. Show that w(X x Y) is the minimum of 
w(X) and w(Y). Show that the odd girth of X x Y is the maximum 
of the odd girths of X and Y. (This implies that if X and Yare not 
bipartite, then neither is X x Y.) 

8. Show that K2 x J(2k - 1, k - 1, 0) ~ J(2k, k, k - 1). (See Section 1.6 
if you have forgotten the notation.) 

9. For i = 1,2, let Xi and Yi be graphs and let Ii be a homomorphism 
from Xi to Yi. Show that the mapping that sends a vertex (Xl, X2) in 
Xl x X 2 to (/I (xt), !2(X2)) is a homomorphism to YI x Y2· 

10. Suppose that for each pair of distinct vertices u and v in X, there 
is an r-colouring of X where u and v have different colours. Show 
that X is a subgraph of the product of some number of copies of K r . 

Deduce that And(k) is a subgraph of a product of copies of K 3 . 

11. Let X and Y be fixed graphs. Show that if IHom(X, Z)I 
IHom(Y, Z)I for all Z, then X and Yare isomorphic. 

12. Show that if X x X ~ Y x Y, then X ~ Y. 

13. Show that there is a homomorphism from X into X x Y if and only 
if there is a homomorphism from X into Y. 

14. Show that the constant functions from V(X) to V(F) induce a 
subgraph of F X isomorphic to F. 

15. If X is not bipartite, show that K! is the disjoint union of K2 with 
some (usually large) number of isolated vertices. Using this deduce 
that if X x Y is bipartite, then X or Y is bipartite. 
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16. Show that there is bijection between the arcs of F X and the set of 
homomorphisms from X x K2 to F. 

17. Show that for any graph X, the product X x K'; is n-colourable. (In 
fact, construct an explicit n-colouring, then prove the result again by 
counting homomorphisms.) 

18. Suppose that there are graphs X and Y, neither n-colourable, such 
that X(X x Y) = n. Show there are subgraphs X' and Y' of X and Y, 
respectively, such that X(X') = X(Y') = n + 1 and X(X' x Y') = n. 

19. If X and Yare connected graphs, then show that Kn is a retract of 
X x Y only if it is a retract of X or a retract of Y. 

20. Show that Hedetniemi's conjecture is equivalent to the statement that 
Kn is a retract of the product X x Y of two graphs only if it is a 
retract of X or a retract of Y. 

21. Show that the sub direct product of two covers of Y is a cover of Y. 

22. If X and Yare connected bipartite graphs, show that the two 
components of X x Yare subdirect products of X and Y. 

23. Show that if (X, f) is a cover of the connected graph Y, then each 
component of X covers Y. 

24. Show that a nontrivial automorphism of a connected cover that fixes 
each fibre must be fixed-point free. 

25. Let X be a Moore graph of diameter two and valency m. Show that 
the m 2 - m vertices at distance two from a fixed vertex in X form 
an (m - I)-fold cover of Km. 

26. Let X be the incidence graph of a projective plane of order n. (See 
Section 5.3 for details.) Let Y be the graph obtained from X by 
deleting an adjacent pair of vertices and all their neighbours. Show 
that the resulting graph is an n-fold cover of Kn,n' 

27. A homomorphism f from a graph X to a graph Y determines a map, 
l' say, from L(X) to L(Y). Show that the following are equivalent: 

(a) f is a local injection, 
(b) l' is a homomorphism, 
(c) l' is a local injection. 

28. Show that if f is a local injection from X to itself, then f is an 
automorphism. 

29. Suppose the Cayley graph X(G, C) for the group G is triangle-free. 
Show that there is a subset D of G\e such that C <;;; D and X(G, D) 
is triangle-free and has diameter two. 
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3D. The complement of And(k) (see Section 6.9) has the property that 
the neighbourhood of each vertex is covered by two vertex-disjoint 
cliques. Prove or disprove that it is a line graph. 

31. Show that the graph we get by deleting a vertex from the Petersen 
graph has the property that each proper homomorphic image contains 
a triangle. 

32. Let X be a reduced triangle-free graph with diameter two. If u and 
v are nonadjacent vertices in X, show that there is a unique vertex 
v' adjacent to v such that each neighbour of u is adjacent to v or v'. 

33. Show that the Cayley graph And(k) does not contain an induced copy 
ofC6 . 

34. Show that a triangle-free graph X on n vertices that contains a 
subgraph isomorphic to the Mobius ladder on eight vertices (see Ex­
ercise 44 for the definition of Mobius ladder) has minimum valency at 
most 3n/8. (Hint: Any independent set in And(3) contains at most 
three vertices. Hence if And(3) is a subgraph of X, then any vertex 
not in this subgraph has at most three neighbours in it.) 

35. Show that a triangle-free graph on n vertices with minimum valency 
greater than [3n/8] has a homomorphism into C5 . 

36. Let rand k be integers such that r ~ 3 and k ~ 2. Let Andr(k) 
denote the Cayley graph for IZCk-1)r+2 with connection set 

C = {I, r + 1, ... , (k - l)r + I}. 

Show that {D, 1,2, ... , r - I} induces a path and 

Andr(k) \ {D, 1,2, ... , r - I} ~ Andr(k -1). 

37. Suppose X = And(k), with vertex set {D, 1, ... , 3k - 2}. Show that 
ai(i + 2) = i + 3, where addition is modulo 3k - 1. 

38. Prove or disprove: If k ~ r, then x(Andr(k)) = r. 

39. Let Hk be the graph defined as follows. The vertices of Hk are the 3k-
1 vertices of a regular (3k -1)-gon inscribed in a circle. Two vertices 
are adjacent if and only if their distance is greater than the side of 
the regular triangle that can be inscribed in the circle. Show that H k 

is a Cayley graph for 1Z3k-1, and then show that Hk is isomorphic to 
And(k). 

4D. Show that the icosahedron is a core. 

41. We saw (in Corollary 6.13.4) that if X is a vertex-transitive graph 
with X(X) = 3 and IV(X) I is not divisible by three, then X is 
triangle-free. Find and prove an analogue of this result for graphs 
with chromatic number k. 
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42. Prove that if X is cubic and vertex transitive, then X· is K 2 , an odd 
cycle, or X itself. (Hint: Consider the odd girth of X). 

43. Show that if X is a quartic vertex-transitive graph on an odd number 
of vertices, then its core is either complete, an odd cycle, or itself. 
What about quartic graphs on 2n vertices? 

44. The ladder L(2n) is the cubic graph constructed as follows: Take 
two copies of the cycle Cn on disjoint vertex sets {al,"" an} and 
{b1 , ... ,bn }, and join the corresponding vertices aibi for 1 ::::; i ::::; n. 
The Mobius ladder M(2n) is obtained from the ladder by deleting 
the edges ala2 and b1b2 and then inserting edges a 1b2 and a2b1 . Find 
the cores of L(2n) and M(2n) for all n. 

45. Consider the cubic graph obtained by subdividing every edge of the 
cube and joining pairs of vertices corresponding to opposite edges 
(the first step in the construction of Tutte's 8-cage). Show that this 
graph is a core. 

46. Let X be a graph and let C be a subset of E(X). Construct a graph 
Y with vertex set 

V(X) x {0,1} 

as follows. If uv E C, then (u,O) '" (v, 1) and (u, 1) '" (v,O) (in Y). 
If uv E E(X) \ C, then (u,O) '" (v,O) and (u, 1) '" (v, 1). Show that 
Y is a double cover of X, and that the girth of Y is greater than r 
if and only if each cycle of X with length at most r contains an odd 
number of edges from C. 

47. Let X be a graph and let C be a subset of E(X). If u E V(X), let 
S( u) denote the set of edges in X that are incident with u. Show that 
the double cover determined by C is isomorphic to the double cover 
determined by the symmetric difference of C and S(u). 

48. The aim of this exercise is to show that if n 2': 2, then there is a 
unique double cover of the n-cube with girth six. For n = 2, this is 
immediate, so assume n > 2. View the n-cube Qn as consisting of a 
top and bottom copy of Qn-l with a perfect matching consisting of 
vertical edges joining the two copies. Now, proceed as follows: 

(a) If C ~ E(Qn), then there is a subset C' of E(Qn) that contains 
no vertical edges, but determines a double cover isomorphic to 
the one given by C. 

(b) Suppose C is a subset of E(Qn) that contains no vertical edges. 
For any edge e in the top copy of E(Qn-l), let e' denote the 
corresponding edge in the bottom copy. Show that the double 
cover determined by C has girth at least six if and only if C 
contains precisely one edge from each pair {e, e'}. 
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Notes 

(c) Prove that up to isomorphism there is a unique double cover 
of Qn with girth six. 

The survey by Hahn and Tardif [11] is an excellent source of information on 
graph homomorphisms, and has had a strong influence on our treatment. 

Many of the questions about homomorphisms we have considered can be 
extended naturally to directed graphs. See, e.g., [10]. 

The theory of graph homomorphisms can be presented naturally in terms 
of the category with graphs as its objects and homomorphisms as its maps. 
Then X x Y is the categorical product; the sub direct product is the natural 
product for the category formed by the covers of a fixed graph Y, with local 
isomorphisms as mappings. Imrich and Izbicki enumerate all the natural 
graph products in [15]. The products used most frequently in graph theory 
are the "product," the strong product and the Cartesian product, all of 
which we have considered in this chapter. Imrich and Klavzar [16] provide 
an extensive treatment of graph products. 

The map graph K; was introduced by El-Zahar and Sauer and extended 
to F X by Haggkvist et al. in [10]. Our treatment has been influenced by 
Duffus and Sauer's treatment in [6]. Lemma 6.5.1 is due to Lovasz, as is 
Exercise 12. (See Section 5 of [18].) 

The strongest result concerning Hedetniemi's conjecture is due to El­
Zahar and Sauer [7], who proved that if X and Yare not 3-colourable, 
then neither is their product X x Y. Their paper is elegant and accessible. 
Greenwell and Lovasz first proved that Kn x X is uniquely n-colourable 
when X(X) > n or X is uniquely n-colourable. Burr, Erdos, and Lovasz [4] 
proved that X(X x Y) = n + 1 if X(X) = X(Y) = n + 1 and each vertex 
of X lies in an n-clique. Welzl [21] and, independently, Duffus, Sands, and 
Woodrow [5] proved that if X(X) = X(Y) = n + 1 and both X and Y 
contain an n-clique, then X(X x Y) = n + l. 

The comparison between the conclusions in Exercise 19 and Exercise 20 
is very surprising. Most of the interesting results in graph theory that 
hold for connected graphs hold for all graphs, but the essential difficulty 
of Hedetniemi's conjecture lies in establishing it for graphs that are not 
necessarily connected! For further information related to this, see Larose 
and Tardif [17]. 

Covers play a significant role in the theory of graph embeddings, dis­
guised as "voltage graphs". (See [8].) The theory of covering graphs can be 
viewed a special case of the theory of covering spaces in topology. If this 
approach is taken, it is more natural to allow our graphs to have multiple 
edges and loops, and our definition of a covering map needs adjustment. 
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It would be useful to have a combinatorial development of the theory and 
applications of covering graphs, but we do not know of one. 

Hell and Nesetfil [14] prove that if Y is not bipartite, then the problem 
of deciding whether there is a homomorphism from a given graph X into 
Y is NP-complete. 

The Cayley graphs And(k) were first used by Andrasfai in [1], and also 
appear in his book [2]. Pach [20] showed that a reduced triangle-free graph 
of diameter two such that each independent set lies in the neighbourhood of 
a vertex must be isomorphic to one ofthe Cayley graphs And(k). Brouwer 
[3] has a second proof. Exercise 39 provides the original description of the 
Andrasfai graphs. 

Exercise 1 and Exercise 3 are from Hell [12] and [13], respectively, while 
Exercise 2 is an unpublished observation due to Sabidussi. Exercise 27 and 
Exercise 28 are due to Nesetfil [19]. Exercise 34 and Exercise 35 come from 
[9]. 

Without a doubt, Hedetniemi's conjecture remains one of the most 
important unsolved problems in this area. 
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7 
Kneser Graphs 

The Kneser graph Kv:r is the graph with the r-subsets of a fixed v-set 
as its vertices, with two r-subsets adjacent if they are disjoint. We have 
already met the complete graphs K v:1 , while Kv:2 is the complement of 
the line graph of Kv. The first half of this chapter is devoted to fractional 
versions of the chromatic number and clique number of a graph. We dis­
cover that for the fractional chromatic number, the Kneser graphs play 
a role analogous to that played by the complete graphs for the ordinary 
chromatic number. We use this setting to provide a proof of the Erdos­
Ko-Rado theorem, which is a famous result from extremal set theory. In 
the remainder of the chapter, we determine the chromatic number of the 
Kneser graphs, which surprisingly uses a nontrivial result from topology, 
and study homomorphisms between Kneser graphs. 

7.1 Fractional Colourings and Cliques 

We will use I(X) to denote the set of all independent sets of X, and I(X, u) 
to denote the independent sets that contain the vertex u. 

A fractional colouring of a graph X is a nonnegative real-valued function 
f on I(X) such that for any vertex x of X, 

L f(8) ~ 1. 
SEI(X,x) 
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The weight of a fractional colouring is the sum of all its values, and the 
fractional chromatic number X*(X) of the graph X is the minimum possi­
ble weight of a fractional colouring. (We address the question of why this 
minimum exists in a later section.) We call a fractional colouring regular 
if, for each vertex x of X, we have 

L f(8) = l. 
SEI(X,x) 

The colour classes of a proper k-colouring of X form a collection of k 
pairwise disjoint independent sets VI' ... ' Vk whose union is V(X). The 
function f such that f(Vi) = 1 and f(8) = 0 for all other independent sets 
8 is a fractional colouring of weight k. Therefore, it is immediate that 

x*(X) :::; X(X). 

Conversely, suppose that X has a OI-valued fractional colouring f of weight 
k. Then the support of f consists of k independent sets VI' ... ' Vk whose 
union is V(X). If we colour a vertex x with the smallest i such that x E Vi, 
then we have a proper k-colouring of X. Thus the chromatic number of X 
is the minimum weight of a OI-valued fractional colouring. 

The five-cycle C5 has exactly five independent sets of size two, and each 
vertex lies in two of them. Thus if we define f to take the value! on each of 
these independent sets and 0 on all others, then f is a fractional colouring 
of C5 with weight ~. Of course, X(C5 ) = 3, and thus we see that x*(X) 
can be strictly less than x(X). (Despite this, x*(X) is no easier to compute 
than x(X), in general.) 

For a second example, consider the Kneser graph K v :r . The r-sets that 
contain a given point i form an independent set of size (~=D, and each 
vertex lies in exactly r of these independent sets. The function with value 
Ilr on each of these sets, and zero elsewhere, is a fractional colouring with 
weight vir, and so X*(Kv:r) :::; vir. 

The empty set is an independent set, and so if f is a fractional colouring, 
then f(0) is defined. However, if f(0) =I- 0, then we may adjust f by declar­
ing it to be zero on 0 (and leaving its value on all nonempty independent 
sets unaltered). The resulting function is a still a fractional colouring, but 
its weight is less than that of f. Thus we can usually assume without loss 
that f(0) = o. 

7.2 Fractional Cliques 

A fractional clique of a graph X is a nonnegative real-valued function on 
V(X) such that the sum of the values of the function on the vertices of any 
independent set is at most one. The weight of a fractional clique is the sum 
of its values. The fractional clique number of X is the maximum possible 
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weight of a fractional clique, and it is denoted by w* (X). The characteristic 
function of any clique of size k in X is a Ol-valued fractional clique of weight 
k, and thus 

w(X) :::; w*(X). 

The function with value ~ on each vertex of C5 is a fractional clique with 
weight ~, and thus we see that w*(X) can be strictly greater than w(X). 
More generally, if a(X) denotes the maximum size of an independent set in 
X, then 9 := a(X)-11 is a fractional clique. Hence we have the following. 

Lemma 7.2.1 For any graph X, 

w*(X) ~ !~~?!. o 

There is one important case where we can determine the fractional clique 
number. 

Lemma 7.2.2 If X is vertex transitive, then 

w*(X) = W(X)! 
a(X) 

and a(X)-11 is a fractional clique with this weight. 

Proof. Suppose 9 is a nonzero fractional clique of X. Then 9 is a function 
on VeX). If 'Y E Aut(X), define the function g'Y by 

g'Y(x) = g(x'Y). 

Then g'Y is again a fractional clique, with the same weight as g. It follows 
that 

9 := !Aut
1
(X)! L:: g'Y 

'YEAut(X) 

is also a fractional clique with the same weight as g. If X is vertex transitive, 
then it is easy to verify that 9 is constant on the vertices of X. Now, c1 is 
a fractional clique if and only if c :::; a(X)-l, and so the result follows. 0 

So far we have not indicated why the fractional chromatic number and 
fractional clique number are well-defined, that is, why fractional colourings 
of minimum weight and fractional cliques of maximum weight must exist. 
We remedy this in the next section. 

7.3 Fractional Chromatic Number 

Let B be the OI-matrix with rows indexed by the vertices of X and with 
the characteristic vectors of the independent sets of X as columns. Then a 
nonnegative vector f such that Bf ~ 1 (that is, each coordinate of Bf is 
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at least one) is the same thing as a fractional colouring, and a nonnegative 
vector g such that gT B ~ 1 is a fractional clique. Our first lemma shows 
that if f is a fractional colouring, then there is a regular fractional colouring 
l' of no greater weight than f. 

Lemma 7.3.1 If a graph X has a fractional colouring f of weight w, then 
it has a fractional colouring l' with weight no greater than w such that 
Bf' = 1. 

Proof. If Bf i=- 1, then we will show that we can perturb f into a function 
l' of weight no greater than f such that B l' has fewer entries not equal to 
one. The result then follows immediately by induction. 

Suppose that some entry of Bf is greater than 1; say (Bf)j = b > 1. 
Let 8 1 , ... , 8 t be the independent sets in the support of f that contain Xj' 

Choose values aI, ... , at such that 

i=t 

and L ai=b-1. 

Then define l' by 

{ 
f(8) - ai, 

f'(8) = f(8) + ai, 
f(8), 

i=l 

if 8 = 8 i ; 

if 8 = 8 i \ Xj and 8 i=- 0; 
otherwise. 

Then l' is a fractional colouring with weight no greater than w such that 
(B1')j = 1 and (B1')i = (Bf)i for all i i=- j. D 

The next result is extremely important, as it asserts that the fractional 
chromatic number of a graph is a well-defined rational number. It is possible 
to provide a reasonably short and direct proof of this result. However, it is 
a direct consequence of the basic theory of linear programming, and so we 
give only the statement, leaving the details of the direct proof as Exercise 1. 

Theorem 7.3.2 Any graph X has a regular rational-valued fractional 
colouring with weight x* (X). D 

Similarly, the fractional clique number is also well-defined and rational 
valued. 

7.4 Homomorphisms and Fractional Colourings 

We have already seen two graph parameters, namely the chromatic num­
ber and the odd girth, that can be used to demonstrate that there is no 
homomorphism from one graph to another. We show that the fractional 
chromatic number can also fill this role. 
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First, we make some remarks about the preimages of independent sets 
in Y. If <p is a homomorphism from X to Y and 8 is an independent set 
in Y, then the preimage <p-1(8) is an independent set in X, as is easily 
verified. If T is a second independent set in Y and 

8 n <p(X) = Tn <p(X), 

then <p-1(8) = <p-1(T). It follows that the preimage of an independent set 
8 of Y is determined by its intersection with <p(X). 

Now, suppose that <p is a homomorphism from X to Y and f is a 
fractional colouring of Y. We define a function} on I(X) by 

}(8) = f(T), 
T:<.p-l(T)=S 

and say that} is obtained by lifting f. The support of } consists of in­
dependent sets in X of the form <p-1(8), where 8 E I(Y). If two or more 
independent sets in Y have the same intersection with <p(X), then they 
have the same preimage 8, and so all contribute to the value }(8). As ev­
ery independent set in Y makes a contribution to }, the weight of} is the 
same as the weight of f. 

Theorem 7.4.1 If there is a homomorphism from X to Y and f is a 
fractional colouring of Y, then the lift} of f is a fractional colouring of 
X with weight equal to the weight of f. The support of } consists of the 
preimages of the independent sets in the support of f. 

Proof. If u E V(X), then 

L }(T) f(8) 
TET(X,u) S:uE<.p-'(S) 

L f(8). 
SET(Y,<.p(u)) 

It follows that} is a fractional colouring. o 

Corollary 7.4.2 If there is a homomorphism from X to Y, then x*(X) ::; 
x*(Y). 0 

If there is an independent set in the support of f that does not inter­
sect <p(X), then its preimage is the empty set. In this situation }(0) i= 0, 

and there is a fractional colouring that agrees with } on all nonempty 
independent sets and vanishes on 0. Hence we have the following: 

Corollary 7.4.3 Let X and Y be two graphs with the same fractional chro­
matic number. If <p is a homomorphism from X to Y and f is a fractional 
colouring of Y with weight x* (Y), then the image of X in Y must meet 
every independent set in the support of f. 0 
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Lemma 7.4.4 If X is vertex transitive, then X*(X) :::; IV(X)\la(X). 

Proof. We saw in Section 7.1 that X*(Kv:r) :::; vir. If X is vertex tran­
sitive, then by Theorem 3.9.1 and the remarks following its proof, it is 
a retract of a Cayley graph Y where \V(Y)\la(Y) = IV(X)\la(X). By 
Corollary 7.4.2 we see that X*(X) = X*(Y). If n = \V(Y)\ and a = a(Y), 
then we will show that there is a homomorphism from Y into Kn:a. 

Thus suppose that Y is a Cayley graph X(G, C) for some group G of 
order n. As in Section 3.1, we take the vertex set of Y to be G. Let S be 
an independent set of size a(Y) in Y, and define a map 

<p: 9 t--+ (S-l)g, 

where S-l = {S-l : s E S}. Now, suppose that 9 '" h and consider 
<p(g) n <p(h). If y E <p(g) n <p(h), then y = a- 1g = b-1 h where a, bE S. But 
then ba- 1 = hg- 1 E C, and so a '" b, contradicting the fact that S is an 
independent set. Thus <p(g) is disjoint from <p(h), and <p is a homomorphism 
from Y to Kn:a. 0 

In the previous proof we used the existence of a homomorphism into Kv:r 
to bound X*(X). Our next result shows that in fact the Kneser graphs play 
the same central role in fractional graph colouring as the complete graphs 
in graph colouring. 

Theorem 7.4.5 For any graph X we have 

X*(X) = min{vlr: X --+ Kv:r}. 

Proof. We have already seen that X*(Kv:r) :::; vir, and so by Corol­
lary 7.4.2, it follows that if X has a homomorphism into K v :r , then it 
has a fractional colouring with weight at most vir. 

Conversely, suppose that X is a graph with fractional chromatic number 
X*(X). By Theorem 7.3.2, X*(X) is a rational number, say min, and X 
has a regular fractional colouring f of this weight. Then there is a least 
integer r such that the functioo. 9 = r f is integer valued. The weight of 9 
is an integer v, and since f is regular, the sum of the values of 9 on the 
independent sets containing x is r. 

Now, let A be the \V(X)\ x v matrix with rows indexed by V(X), such 
that if S is an independent set in X, then A has g(S) columns equal to 
the characteristic vector of S. Form a copy of the Kneser graph Kv:r by 
taking n to be the set of columns of A. Each vertex x of X determines 
a set of r columns of A-those that have a 1 in the row corresponding 
to x-and since no independent set contains an edge, the sets of columns 
corresponding to adjacent vertices of X are disjoint. Hence the map from 
vertices of X to sets of columns is a homomorphism from X into K v :r . 0 

The proof of Lemma 7.4.4 emphasized the role of Kneser graphs, but 
there are several alternative proofs. One of the shortest is to observe that 
if X is vertex transitive and S is an independent set of maximum size 
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a(X), then the translates of S under the action of Aut(X) are the support 
of a fractional colouring with weight IV(X)I/a(X). We will offer another 
argument in the next section. 

7.5 Duality 

We give an alternative description of x* (X) and w* (X), which will prove 
very useful. 

Let B be the Ol-matrix whose columns are the characteristic vectors of 
the independent sets in X. The fractional chromatic number x*(X) is equal 
to the value of the following linear optimization problem: 

min IT f 
Bf 21 

f 2 O. 

Similarly, w* (X) is the value of the optimization problem 

max gT 1 

gT B ::; 1 

9 2 O. 

These are both linear programming problems; in fact, they form a dual 
pair. 

We use the formulations just given to prove the following result. Since 
w(X) ::; w*(X) and x*(X) ::; X(X), this could be viewed as a strengthening 
of the simple inequality w(X) ::; X(X). 

Lemma 7.5.1 For any graph X we have w*(X) ::; X*(X). 

Proof. Suppose that f is a fractional colouring and 9 a fractional clique 
of X. Then 

1 T f - gT 1 = IT f - gT B f + gT B f - gT 1 

= (e -gTB)f+gT(Bf-1). 

Since 9 is a fractional clique, IT _gT B 2 O. Since f is a fractional colouring, 
f 2 0, and consequently (IT - gT B)f 2 O. Similarly, 9 and B f - 1 are 
nonnegative, and so gT (B f - 1) 2 O. Hence we have that IT f - gTl is 
the sum of two nonnegative numbers, and therefore IT f 2 gTl for any 
fractional colouring f and fractional clique g. 0 

The above argument is essentially the proof of the weak duality theorem 
from linear programming. We point out that the strong duality theorem 
from linear programming implies that X*(X) = w*(X) for any graph X. 
For vertex-transitive graphs we can prove this now. 
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Corollary 7.5.2 If X is a vertex-transitive graph, then 

w*(X) = X*(X) = I~~~?I. 
Proof. Lemma 7.2.1, Lemma 7.5.1, and Lemma 7.4.4 yield that 

W(X)I < w*(X) < X*(X) < W(X)I 
a(X) - - - a(X) , 

and so the result follows. o 

The odd circuit C2m+1 is vertex transitive and a(C2m+1 ) = m, so we see 
that X*(C2m+d = 2 + ~. 

We extract two consequences of the proof of Lemma 7.5.1, for later use. 

Corollary 7.5.3 For any graph X we have 

X*(X) ~ I~~?I. 
Proof. Use Lemma 7.2.1. o 

Lemma 7.5.4 Let X and Y be vertex-transitive graphs with the same frac­
tional chromatic number, and suppose <p is a homomorphism from X to 
Y. If 8 is a maximum independent set in Y, then <p-l(8) is a maximum 
independent set in X. 

Proof. Since X and Yare vertex transitive, 

W(X)I = x*(X) = X*(Y) = W(Y)I. 
a(X) a(Y) 

Let f be a fractional colouring of weight x*(X) and let g = a(X)-11. By 
Lemma 7.2.2 we have that g is a fractional clique of maximum weight. From 
the proof of Lemma 7.5.1 

Since the sum of the values of 9 on any independent set of size less than 
a(X) is less than 1, this implies that f(8) = 0 if 8 is an independent set 
with size less than a(X). On the other hand, Theorem 7.4.1 yields that 
X has a fractional colouring of weight x*(X) with <p-l(8) in its support. 
Therefore, 1<p-l(8)1 = a(X). 0 

7.6 Imperfect Graphs 

It is a trivial observation that x(X) ~ w(X). We call a graph X perfect 
iffor any induced subgraph Y of X we have X(Y) = w(Y). A graph that 
is not perfect is called imperfect. The simplest examples of perfect graphs 
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are the bipartite graphs, while the simplest examples of imperfect graphs 
are the odd cycles. 

A much larger class of perfect graphs, known as comparability graphs, 
arise from partially ordered sets. If 8 is a set, partially ordered by":::;", 
then we say that two elements a and b are comparable if a :::; b or b :::; a. 
The comparability graph of 8 is the graph with vertex set 8, where two 
vertices are adjacent if they are distinct and comparable. An induced sub­
graph of a comparability graph is also a comparability graph. A clique in 
a comparability graph corresponds to a chain in the partially ordered set, 
and an independent set to an antichain. A famous theorem of Dilworth as­
serts that the minimum number of antichains needed to cover the elements 
of a partially ordered set equals the maximum size of a chain. Equivalently, 
comparability graphs are perfect. Every bipartite graph is a comparability 
graph, and so this result generalizes the observation that bipartite graphs 
are perfect. 

Dilworth also proved that the minimum number of chains needed to 
cover the elements of a poset equals the maximum size of an antichain. 
Expressed graph-theoretically, this result states that the complement of a 
comparability graph is perfect. Lovasz settled a long-standing open problem 
by proving that the complement of any perfect graph is perfect, and we will 
present a short proof of this fact. 

A graph is minimally imperfect if it is not perfect but each induced proper 
subgraph is perfect. The odd cycles are the simplest examples of minimally 
imperfect graphs. If X is minimally imperfect, then X(X) = w(X) + 1 and 
X(X\ v) = w(X), for each vertex v of X. Let us say that an independent 
set 8 in a graph X is big if 181 = a(X), and that a clique is big if it has 
size w(X). 

Lemma 7.6.1 Let X be a minimally imperfect graph. Then any indepen­
dent set is disjoint from at least one big clique. 

Proof. Let 8 be an independent set in the minimally imperfect graph X. 
Then X \ 8 is perfect, and therefore x(X \ 8) = w(X \ 8). If 8 meets each 
big clique in at least one vertex, it follows that w(X \ 8) :::; w(X) - 1. 
Consequently, 

x(X) = 1 + X(X\8) = w(X), 

which is impossible. o 

Suppose X is a minimally imperfect graph on n vertices, and let a and w 
denote a(X) and w(X), respectively. If v E V(X), then X\v has a partition 
into w(X) independent sets. Each of these sets contains a neighbour of v, 
for otherwise we could extend the colouring to a proper colouring of X 
with w colours. Thus these independent sets are maximal in X. We now 
define a collection S of independent sets in X. First choose an independent 
set 80 of size a. For each vertex v in 80 , take w independent sets in X \ v 
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that form an w-colouring of X \ v. This gives a collection of N = 1 + aw 
independent sets So, ... , S N -1 . 

Lemma 7.6.2 Each vertex of X lies in exactly a members of S, and any 
big clique of X is disjoint from exactly one member of S. 

Proof. We leave the first claim as an exercise. 
Let K be a big clique of X, let v be an arbitrary vertex of X, and suppose 

that X \ v is coloured with w colours. Then K has at most one vertex in 
each colour class, and so either v tf. K and K meets each colour class in 
one vertex, or v E K and K is disjoint from exactly one colour class. 

We see now that if K is disjoint from So, then it must meet each of 
Sl, ... , S N -1 in one vertex. If K is not disjoint from So, then it meets it in 
a single vertex, u say. If v E So \ u, then K meets each of the independent 
sets we chose in X \ v. However, K misses exactly one of the independent 
sets from X \ u. 0 

Let A be the N x n matrix whose rows are the characteristic vectors of 
the independent sets in S. By Lemma 7.6.1 we may form a collection C of 
big cliques C i such that Ci n Si = 0 for each i. Let B be the N x n matrix 
whose rows are the characteristic vectors of these big cliques. Lemma 7.6.2 
implies that Si is the only member of S disjoint from Ci . Accordingly, the 
following result is immediate. 

Lemma 7.6.3 ABT = J - I. o 

Theorem 7.6.4 The complement of a perfect graph is perfect. 

Proof. For any graph X we have the trivial bound IV(X)I ~ x(X)a(X), 
and so for perfect graphs we have IV(X)I ~ a(X)w(X). 

Since J - I is invertible, the previous lemma implies that the rows of A are 
linearly independent, and thus N ~ n. On the other hand, IV(X\v) I ~ aw, 
and therefore n ~ N. This proves that N = n, and so 

n = IV(X)I = 1 + a(X)w(X) = 1 + w(X)a(X). 

Therefore, X cannot be perfect. 
If X is imperfect, then it contains a minimally imperfect induced sub­

graph Z. The complement Z is then an induced subgraph of X that is 
not perfect, and so X is imperfect. Therefore, the complement of a perfect 
graph is perfect. 0 

We extract further consequences from the above proof. If X is minimally 
imperfect and n = 1 +aw, the w independent sets that partition a subgraph 
X \ v must all have size a. Therefore, all members of S have size a. 

We can define a function f on the independent sets of X by declaring f to 
have value 1/ a on each element of S and to be zero elsewhere. By the first 
part of Lemma 7.6.2, this is a fractional colouring. Since lSI = n, its weight 
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is n/a, and therefore X*(X) ~ n/a. On the other hand, Corollary 7.5.3 
asserts that IV(X)I/a(X) ::::: X*(X), for any graph X. Hence we find that 

X* (X) = a(:) = w(X) + a(~)' 
For any graph, 

w(X) ~ w*(X) ~ X*(X) ~ X(X), 

and so whenever Y is an induced subgraph of a perfect graph we have 
X*(Y) = X(Y). Therefore, we deduce that a graph X is perfect if and only 
if X*(Y) = X(Y) for any induced subgraph Y of X. 

We note one final corollary of these results. Suppose that K is a big 
clique of X, and let x be its characteristic vector. By the second part of 
Lemma 7.6.2, we see that b = Ax has one entry zero and all other entries 
equal to one. Hence b is a column of J - I. Since ABT = J - I and A 
is invertible, this implies that x must be a column of B T , and therefore 
K E C. Thus C contains all big cliques of X. It follows similarly that S 
contains all big independent sets of X. 

7.7 Cyclic Interval Graphs 

The cyclic interval graph C(v, r) is the graph whose vertex set is the set of 
all cyclic shifts, modulo v, of the subset {I, ... , r} of [2 = {I, ... , v}, and 
where two vertices are adjacent if the corresponding r-sets are disjoint. It 
is immediate that C(v, r) is an induced subgraph of the Kneser graph Kv:r 

and that C(v,r) is a circulant, and hence vertex transitive. 
If v < 2r, then every two vertices intersect and C(v, r) is empty, and 

therefore we usually insist that v 2: 2r. In this case we can determine 
the maximum size of an independent set in C ( v, r) and characterize the 
independent sets of this size. 

Lemma 7.7.1 For v 2: 2r, an independent set in C (v, r) has size at most 
r. Moreover, an independent set of size r consists of the vertices that 
contain a given element of {I, ... , v}. 

Proof. Suppose that 8 is an independent set in C ( v, r). Since C ( v, r) is 
vertex transitive, we may assume that 8 contains the r-set (3 = {I, ... , r}, 
Let 8 1 and 8 r be the r-sets in 8 that contain the points 1 and r, respectively. 
Let j be the least integer that lies in all the r-sets in 8r . The least element 
of each set in 8 r is thus at most j, and since distinct sets in 8 r have distinct 
least elements, it follows that 18r l ~ j. On the other hand, each element of 
8 1 has a point in common with each element of 8 r . Hence each element of 
81 contains j, and consequently, I 811 ~ r - j + 1. Since v 2: 2r this implies 
that 8 1 n 8r = {(3}, and so we have 

181 = 1811 + 18r l - 1 ~ (r - j + 1) + j - 1 = r. 
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If equality holds, then S consists of the vertices in C(v, r) that contain j.D 

Corollary 7.7.2 If v:::: 2r, then X*(C(v, r)) = vir. o 

Corollary 7.7.3 For v :::: 2r, the fractional chromatic number of the 
Kneser graph Kv:r is vir. 

Proof. Since C( v, r) is a subgraph of Kv:n it follows that 

~ = X*(C(v,r)):::; X*(Kv:r), 
r 

and we have already seen that X*(Kv:r) :::; vir. o 

Corollary 7.7.4 If v > 2r, then the shortest odd cycle in Kv:r has length 
at least vl(v - 2r). 

Proof. If the odd cycle C2m+l is a subgraph of Kv:n then 

2 + 2.- = X*(C2m+1 ) :::; ~, 
m r 

which implies that m :::: rl(v - 2r), and hence that 2m + 1:::: vl(v - 2r).D 

The bound of this lemma is tight for the odd graphs K 2r+l:r ' 

7.8 Erdos-Ko-Rado 

We apply the theory we have developed to the Kneser graphs. The following 
result is one of the fundamental theorems in extremal set theory. 

Theorem 7.8.1 (Erdos-Ko-Rado) Ifv > 2r, then a(Kv:r) = (~=i). 
An independent set of size (~=D consists of the r-subsets of {I, ... , v} that 
contain a particular point. 

Proof. From Corollary 7.7.3 and Corollary 7.5.2, it follows that 

a(Kv:r) = (v -1). 
r-1 

Suppose that S is an independent set in Kv:r with size (~=D. Given any 
cyclic ordering of {I, ... , v}, the graph C induced by the cyclic shifts of 
the first r elements of the ordering is isomorphic to C ( v, r). The inclusion 
mapping from C to Kv:r is a homomorphism, and S n V (C) is the preimage 
of S under this homomorphism. Therefore, by Lemma 7.5.4 we have that 
IS n V (C) I = rand S n V (C) consists of the r cyclic shifts of some set of 
r consecutive elements in this ordering. 

First consider the natural (numerical) ordering {I, ... , v}. Relabelling if 
necessary, we can assume that S contains the sets 

{I, 2, ... , r}, {2, 3, ... , r, r + I}, ... , {r, r + 1, ... , 2r - I}, 
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that is, all the r-subsets that contain the element r. To complete the proof 
we need to show that by varying the cyclic ordering appropriately, we can 
conclude that S contains every r-subset containing r. First note that since 
S contains precisely r cyclic shifts from any cyclic ordering, it does not 
contain {x, 1, ... , r - I} for any x E {2r, ... , v}. 

Now, let g be any element of Sym( v) that fixes {I, ... , r - I} setwise and 
consider any cyclic ordering that starts 

{x, 19 ,29 , ... , (r - l)g, r, .. . }, 

where x E {2r, ... ,v}. Then S contains (3 = {lg,2g, ... ,(r-l)9,r} but 
not {x, 1 g, ... , (r - l)g}, and so S must contain the r right cyclic shifts of 
(3. For any r-subset Q containing r, there is some cyclic ordering of this 
form that has Q as one of these r cyclic shifts unless Q contains all of the 
elements {2r, ... , v} (for then there is no suitable choice for x). 

For any y E {r + 1, ... , 2r - I}, the same argument applies if we con­
sider the natural cyclic ordering with 2r interchanged with y (with v as 
x). Therefore, every r-subset containing r is in S except possibly those 
containing all the elements of {y, 2r, ... , v}. By varying y, it follows that if 
there is any r-subset containing r that is not in S, then it contains all of 
the elements of {r + 1, ... , v}. Since v > 2r, there are no such subsets and 
the result follows. 0 

Corollary 7.8.2 The automorphism group of Kv:r is isomorphic to the 
symmetric group Sym(v). 

Proof. Let X denote Kv:r and let X (i) denote the maximum independent 
set consisting of all the r-sets containing the point i from the underlying set 
!1. Any automorphism of X must permute the maximum independent sets 
of X, and by the Erdos-Ko-Rado theorem, all the maximum independent 
sets are of the form X(i) for some i E !1. Thus any automorphism of X 
permutes the X(i), and thus determines a permutation in Sym(v). It is 
straightforward to check that no nonidentity permutation can fix all the 
X(i), and therefore Aut(X) ~ Sym(v). 0 

The bound in Theorem 7.8.1 is still correct when v = 2r; the maximum 
size of an independent set is 

( 2r - 1) = ~ (2r) . 
r -1 2 r 

But K2r:r is isomorphic to e:~;) vertex-disjoint copies of K 2 , and therefore 
it has 

( 2r-l) 2 r-l 

maximum independent sets, not just the 2r described in the theorem. 
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7.9 Homomorphisms of Kneser Graphs 

In this section we consider homomorphisms between Kneser graphs. Our 
first result shows that Kneser graphs are cores. 

Theorem 7.9.1 If v> 2r, then Kv:r is a core. 

Proof. Let X denote Kv:n and let X(i) denote the maximum independent 
set consisting of all the r-sets containing the point i from the underlying 
set O. Let <p be a homomorphism from X to X. We will show that it is 
onto. If (3 = {1, ... , r}, then (3 is the unique element of the intersection 

X(l) n X(2) n··· n X(r). 

By Lemma 7.5.4, the preimage <p-1(X(i)) is an independent set of maxi­
mum size. By the Erdos-Ko-Rado theorem, this preimage is equal to X(i'), 
for some element i' of O. We have 

<p-l{(3} = <p-1(X(1)) n <p-1(X(2)) n··· n <p-1(X(r)), 

from which we see that <p-1{(3} is the intersection of at most r distinct sets 
of the form X(i'). This implies that <p-1{(3} #- 0, and hence <p is onto. 0 

Our next result implies that Kv:r ....... Kv-2r+2:1; since K v-2r+2:1 is the 
complete graph on v - 2r + 2 vertices, this implies that X(Kv:r) ::; v - 2r + 2. 
In the next section we will see that equality holds. 

Theorem 7.9.2 If v ~ 2r and r ~ 2, there is a homomorphism from Kv:r 
to K v - 2:r - 1 . 

Proof. If v = 2r, then Kv:r = e;~11)K2' which admits a homomorphism 
into any graph with an edge. So we assume v > 2r, and that the under­
lying set 0 is equal to {1, ... , v}. We can easily find a homomorphism <p 
from K v - 1:r to K v - 2:r - 1 : Map each r-set to the (r - l)-subset we get by 
deleting its largest element. We identify K v- 1:r with the subgraph of Kv:r 
induced by the vertices that do not contain v, and try to extend <p into a 
homomorphism from Kv:r into K v- 2:r- 1. 

We note first that the vertices in Kv:r that are not in our chosen K v- 1:r 
all contain v, and thus they form an independent set in K v :r . Denote this 
set of vertices by S and let Si denote the subset of S formed by the r-sets 
that contain v, v - 1, ... , v - i + 1, but not v-i. The sets S1, ... , Sr form 
a partition of S. If a E S1, define <p(a) to be a \ v. If i > 1 and a E Si, 
then v - itt a. In this case let <p(a) be obtained from a by deleting v and 
replacing v-1 by v-i. It is now routine to check that <p is a homomorphism 
from Kv:r into K v- 2:r- 1. 0 

Lemma 7.9.3 Suppose that v > 2r and vir = wis. There is a 
homomorphism from Kv:r to Kw:s if and only if r divides s. 

Proof. Suppose r divides s; we may assume s = mr and w = mv. Let W 
be a fixed set of size wand let 7r be a partition of it into v cells of size 
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m. Then the s-subsets of W that are the union of r cells of 1f induce a 
subgraph of Kw:s isomorphic to K v:r . 

Assume that the vertices of X are the r-subsets of the v-set V, and for 
i in V, let X (i) be the maximum independent set formed by the r-subsets 
that contain i. Similarly, assume that the vertices of Yare the s-subsets of 
W, and for j in W, let Y (j) be the maximum independent set formed by 
the s-subsets that contain j. The preimage <p-l(Y(j)) is equal to X(i), for 
some i. 

Let IIi denote the number of elements j of W such that <p-l(Y(j)) = 
X(i). Let a be an arbitrary vertex of X. Then <p-l(Y(j)) = X(i) for some 
i E a if and only if <p-l(Y(j)) contains a if and only if j E <p(a). Therefore, 

(7.1) 

Moreover, IIi is independent of i. Suppose a and (3 are vertices of X such 
that la n (31 = r - 1. Then, if a \(3 = {k} and (3 \ a = {f}, we have 

o = s - s = L IIi - L IIi = Ilk - 11£. 

iEa iEf3 

Thus Ilk = 11£, and therefore IIi is constant. By (7.1) it follows that r divides 
s, as required. 0 

7.10 Induced Homomorphisms 

We continue our study of homomorphisms between Kneser graphs by show­
ing that in many cases a homomorphism from Kv:r to Kw:£ induces a 
homomorphism from K v - 1:r to K w - 2:£. 

For this we need to consider the independent sets of the Kneser graphs. 
We have already seen that the maximum independent sets of X = Kv:r are 
the sets X(1), ... , X(v) where X(i) comprises all the subsets that contain 
the point i. More generally, let S be an independent set in K v :r . An element 
of the underlying set n is called a centre of S if it lies in each r-set in S. If 
an independent set in Kv:r has a centre i, then it is a subset of X(i). Let 
hv,r denote the maximum size of an independent set in Kv:r that does not 
have a centre. 

Theorem 7.10.1 (Hilton-Milner) If v ~ 2r, the maximum size of an 
independent set in Kv:r with no centre is 

_ (v -1) _ (v -r -1) 
hv,r - 1 + 1 l' r- r-

o 

Lemma 7.10.2 Suppose there is a homomorphism from Kv:r to K w:£. If 

fG) > vG =~) + (w - v)hv,r, 
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then there is a homomorphism from K v - 1:r to K w - 2 :R. 

Proof. Suppose that f is a homomorphism from X = Kv:r to Y = Kw:c. 
Consider the preimages f- 1 (Y (i)) of all the maximum independent sets 
of Y, and suppose that two of them, say f-l(Y(i)) and f- 1 (Y(j)), have 
the same centre c. Then f maps any r-set that does not contain c to an 
{i-set that does not contain i or j, and so its restriction to the r-sets not 
containing c is a homomorphism from K v - 1 :r to K w - 2 :C• 

Counting the pairs (0:, Y(i)) where 0: E V(Kv:r) and Y(i) contains the 
vertex f(o:) we find that 

L Irl(Y(i))1 = {i(~). 
l 

If no two of the preimages f- 1 (Y (i)) have the same centre, then at most v 
of them have centres and the remaining w - v do not have centres. In this 
case, it follows that 

L Irl(Y(i))1 :::; vG =~) + (w - v) hv,T) 
l 

and thus the result holds. D 

By way of illustration, suppose that there were a homomorphism from 
K7:2 to K ll :3. The inequality of the lemma holds, and so this implies the 
existence of a homomorphism from K6:2 to K 9 :3. This can be ruled out 
either by using Lemma 7.9.3 or by applying the lemma one more time, and 
seeing that there would be an induced homomorphism from K5:2 to K7:3, 
which can be directly eliminated as 

X*(K5:2) = ~ > ~ = X*(K7:3). 

This argument can be extended to show that there is a homomorphism 
from Kv:2 to KW:3 if and only if w ;:::: 2v - 2, but we leave the proof of this 
as an exercise. 

7.11 The Chromatic Number of the Kneser Graph 

We will use the following theorem from topology, known as Borsuk's the­
orem, to determine X(Kv:r). A pair of points {x, y} on the unit sphere in 
IR n is antipodal if y = -x. 

Theorem 7.11.1 If the unit sphere in IR n is expressed as the union of n 
open sets, then one of the sets contains an antipodal pair of points. D 

At first (and second) glance, this bears no relation to colouring graphs. We 
therefore present Borsuk's theorem in an alternative form. If a is a nonzero 
vector, the open half-space H(a) is the set of vectors x such that aT x > O. 
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Lemma 7.11.2 Let C be a collection of closed convex subsets of the unit 
sphere in ]R.n. Let X be the graph with the elements of C as its vertices, 
with two elements adjacent if they are disjoint. If for each unit vector a the 
open half-space H(a) contains an element of C, then X cannot be properly 
coloured with n colours. 

Proof. Suppose X has been coloured with the n colours {I, ... , n}. For 
i E {I, ... , n}, let Ci be the set of vectors a on the unit sphere such that 
H(a) contains a vertex of colour i. If 8 E V(X), then the set of vectors a 
such that aT x > 0 for all x in 8 is open, and Ci is the union of these sets 
for all vertices of X with colour i. Hence Ci is open. 

By our constraint on C, we see that Ui=l Ci is the entire unit sphere. 
Hence Borsuk's theorem implies that for some i, the set Ci contains an 
antipodal pair of points, a and -a say. Then both H (a) and H ( -a) contain 
a vertex of colour i; since these vertices must be adjacent, our colouring 
cannot be proper. 0 

To apply this result we need a further lemma. The proof of this involves 
only linear algebra, and will be presented in the next section. 

Theorem 7.11.3 There is a set n of v points in ]R.v-2r+1 such that each 
open half-space H(a) contains at least r points from n. 0 

Theorem 7.11.4 X(Kv:r) = v - 2r + 2. 

Proof. We have already seen that v-2r+2 is an upper bound on X(Kv:r); 
we must show that it is also a lower bound. 

Assume that n = {Xl,"" Xv} is a set of v points in ]R.v-2r+1 such that 
each open half-space H(a) contains at least r points of n. Call a subset 
8 of n conical if it is contained in some open half-space. For each conical 
r-subset a of n, let 8(a) be the intersection with the sphere with the cone 
generated by a. (In other words, let 8(a) be the set of all unit vectors 
that are nonnegative linear combinations of the elements of a.) Then let 
X be the graph with the sets 8(a) as vertices, and with two such vertices 
adjacent if they are disjoint. If 8(a) is disjoint from 8(/3), then clearly a is 
disjoint from /3, and so the map 

cp : 8(a) ~ a 

is an injective homomorphism from X to K v :r • Thus by Lemma 7.11.2, the 
chromatic number of Kv:r is at least v - 2r + 2. 0 

Since the fractional chromatic number of Kv:r is only vir, this shows that 
the difference between the chromatic number and the fractional chromatic 
number can be arbitrarily large. 
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7.12 Gale's Theorem 

We have already used the following to determine X(Kv:r); now we prove it. 

Theorem 7.12.1 If v ~ 2r, then there is a set n of v points in m,v-2r+1 
such that each open half-space H(a) contains at least r points from n. 
Proof. Let al, ... , av be any v distinct real numbers, and let G be the 
(2m + 1) x v matrix 

1 

for any integer m such that v ~ 2m + 2. 
We claim that the rank of G is 2m + 1. We shall show that for any vector 

f = (fo, ... , hm)T we have fTG #- 0, and hence the 2m + 1 rows of G are 
linearly independent. If f(t) is the polynomial of degree at most 2m given 
by 

2m 

f(t) = LJiti, 
i=O 

then 

fT G = (f(aI), ... , f(av)), 

and so fT G has at most 2m entries equal to 0; thus fT G #- O. 
Now, consider the null space of G. We shall show that any vector x#-O 

such that Gx = 0 has at least m + 1 negative entries and at least m + 1 
positive entries. Suppose for a contradiction that Gx = 0 and that x has 
at most m negative entries. Then 

g(t) := II (x - ai) 
Xi<O 

is a polynomial of degree at most m, and f(t) := g(t? is a polynomial of 
degree at most 2m. Then y = fT G is a vector in the row space of G such 
that y ~ 0 and Yi = 0 if and only if Xi < O. Since yT x = 0, it follows that 
x can have no positive entries, and since Gx = 0, we have found a set of 
at most m linearly dependent columns, contradicting the fact that G has 
rank 2m + 1. Hence x has at least m + 1 negative entries, and because -x 
is also in the null space of G, we see that x has at least m + 1 positive 
entries. 

Now, let N be the (v - 2m - 1) x v matrix whose rows are a basis for 
the null space of G. The columns of N form a set of v vectors in m,v-2m-l 
such that for any vector a there are at least m + 1 positive entries in aT N. 
Therefore, the open half-space H(a) in m,v-2m-l contains at least m + 1 
columns of N. Taking m equal to r - 1, the theorem follows. 0 
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7.13 Welzl's Theorem 

The rational numbers have the property that between any two distinct 
rational numbers there is a third one. More formally, the usual order on 
the rationals is dense. It is amazing that the lattice of cores of nonbipartite 
graphs is also dense. 

Theorem 7.13.1 (Welzl) Let X be a graph such that x(X) ~ 3, and let 
Z be a graph such that X ----; Z but Z -ft X. Then there is a graph Y such 
that X ----; Y and Y ----; Z, but Z -ft Y and Y -ft X. 

Proof. Since X is not empty or bipartite, any homomorphism from X 
to Z must map X into a nonbipartite component of Z. If we have homo­
morphisms X ----; Y and Y ----; Z, it follows that the image of Y must be 
contained in a nonbipartite component of Z. Since Y cannot be empty, there 
is a homomorphism from any bipartite component of Z into Y. Hence it will 
suffice if we prove the theorem under the assumption that no component 
of Z is bipartite. 

Let m be the maximum value of the odd girths of the components of 
Z and let n be the chromatic number of the map-graph X z. Let L be 
a graph with no odd cycles of length less than or equal to m and with 
chromatic number greater than n. (For example, we may take L to be a 
suitable Kneser graph.) Let Y be the disjoint union X U (Z xL). 

Clearly, X ----; Y. If there is a homomorphism from Y to X, then there 
must be one from Z x L to X, and therefore, by Corollary 6.4.3, a ho­
momorphism from L to XZ. Given the chromatic number of L, this is 
impossible. 

Since there are homomorphisms from X to Z and from Z x L to Z, there 
is a homomorphism from Y to Z. Given the value of the odd girth of L, 
there cannot be a homomorphism that maps a component of Z into L. 
Therefore, there is no homomorphism from Z to L, and so there cannot be 
one from Z into Z x L. D 

An elegant illustration of this theorem is provided by the Andrlisfai 
graphs. Each Andrllsfai graph is 3-colourable, and so And(k) ----; K 3 , but 
And(k) is triangle-free, and so K3 -ft And(k). The theorem implies the 
existence of a graph Y such that And(k) ----; Y ----; K 3 , and from our work 
in Section 6.11 we see that we can take Y to be And(k + 1). Therefore, we 
get an infinite sequence 

And(2) ----; And(3) ----; ... ----; K 3 . 

The fractional chromatic number of And(k) is (3k - l)/k, and so the frac­
tional chromatic numbers of the graphs in this sequence form an increasing 
sequence tending to 3. 
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7.14 The Cartesian Product 

We introduce the Cartesian product of graphs, and show how it can be used 
to provide information about the size of r-colourable induced subgraphs of 
a graph. 

If X and Yare graphs, their Cartesian product X D Y has vertex set 
V(X) x V(Y), where (XI, yr) is adjacent to (X2' Y2) if and only if Xl = YI 
and X2 "-' Y2, or Xl "-' YI and X2 = Y2. Roughly speaking, we construct the 
Cartesian product of X and Y by taking one copy of Y for each vertex 
of X, and joining copies of Y corresponding to adjacent vertices of X by 
matchings of size IV(Y)I. For example, Km D Kn = L(Km,n). 

Let ar(X) denote the maximum number of vertices in an r-colourable 
induced subgraph of X. 

Lemma 7.14.1 For any graph X, we have ar(X) = a(X D Kr). 

Proof. Suppose that S is an independent set in X D K r . If v E V(Kr ), 

then the set Sv, defined by 

Sv = {u E V(X): (u,v) E S}, 

is an independent set in X. Any two distinct vertices of X D Kr with 
the same first coordinate are adjacent, which implies that if v and w are 
distinct vertices of Kr. then Sv n Sw = 0. Thus an independent set in 
X D Kr corresponds to a set of r pairwise-disjoint independent sets in X. 
The subgraph induced by such a set is an r-colourable subgraph of X. For 
the converse, suppose that X' is an r-colourable induced subgraph of X. 
Consider the set of vertices 

S = {(x, i) : X E V(X') and x has colour i} 

in XDKr . All vertices in S have distinct first coordinates so can be adjacent 
only if they share the same second coordinate. However, if both (x, i) and 
(y, i) are in S, then x and Y have the same colour in the r-colouring of X', 
so are not adjacent in X. Therefore, S is an independent set in X D Kr.D 

In Section 9.7 we will use this result to bound the size of the largest 
bipartite subgraphs of certain Kneser graphs. 

If X and Yare vertex transitive, then so is their Cartesian product (as 
you are invited to prove). In particular, if X is vertex transitive, then so is 
XDKr . 

Lemma 7.14.2 If Y is vertex transitive and there is a homomorphism 
from X to Y, then 

IV(X)I < IV(Y)I. 
ar(X) - ar(y) 

Proof. If there is a homomorphism from X to Y, then there is a homo­
morphism from X D Kr to Y D K r . Therefore, x*(X D Kr) :::; X*(YD K r). 
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Using Corollary 7.5.3 and Corollary 7.5.2 in turn, we see that 

IV(XDKr)1 < *(X K) < *(YDK) = IV(YDKr)1 
o:(X 0 Kr) - X 0 r - X r o:(Y 0 Kr) , 

and then by the previous lemma 

IV(X 0 Kr)1 IV(Y 0 Kr)1 
O:r(X) ::; O:r(Y) , 

which immediately yields the result. o 

We offer a generalization of this result in Exercise 25. 

7.15 Strong Products and Colourings 

The strong product X * Y of two graphs X and Y is a graph with vertex 
set X x Y; two distinct pairs (Xl, YI) and (X2' Y2) are adjacent in X * Y if 
Xl is equal or adjacent to X2, and YI is equal or adjacent to Y2. 

In the strong product X * Y any set of vertices of the form 

{(X, y) : X E V(X)} 

induces a subgraph isomorphic to X. Similarly, the sets 

{(X, y) : Y E V(Y)} 

induce copies of Y, and so it follows that 

X(X * Y) ~ max{x(X) , X(Y)}. 

This bound is not tight if both X and Y have at least one edge, as will be 
proved later. 

We define the n-colouring graph Cn(X) of X to be the graph whose 
vertices are the n-colourings of X, with two vertices f and g adjacent if 
and only if there is an n-colouring of X * K2 whose restrictions to the 
subsets V(X) x {I} and V(X) x {2} of V(X *K2 ) are f and g respectively. 
Notice that unlike the map graph K;, the vertices of Cn(X) are restricted 
to be proper colourings of X. 

Lemma 7.15.1 For graphs X and Y, 

Proof. Exercise. o 

Applying this lemma with X = Kr we discover that 
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Recall that the lexicographic product X [Yl of two graphs X and Y is the 
graph with vertex set V(X) x V(Y) and where 

{
Xl = X2 and YI '" Y2, or 

(Xl, YI) '" (X2' Y2) if Xl '" X2 and YI = Y2, or 
Xl '" X2 and YI '" Y2· 

Theorem 7.15.2 Cn(Kr) = Kn:r[KrJ]. 

Proof. Each vertex of Cn(Kr) is an n-colouring of K r, and so its image 
(as a function) is a set of r distinct colours. Partitioning the vertices of 
Cn(Kr) according to their images gives G) cells each containing r! pair­
wise nonadjacent vertices. Any two cells of this partition induce a complete 
bipartite graph if the corresponding r-sets are disjoint, and otherwise in­
duce an empty graph. It is straightforward to see that this is precisely the 
description of the graph Kn:r[KrtJ. 0 

Corollary 7.15.3 Kn:r and Cn{Kr) are homomorphically equivalent. 0 

Corollary 7.15.4 There is an n-colouring of Kr * X if and only if there 
is a homomorphism from X into K n :r . 0 

A more unusual application of these results is the determination of the 
number of proper colourings of the lexicographic product Cn[Krl. 

Lemma 7.15.5 The number of v-colourings of the graph Cn[Krl is equal 
to 

I Hom(Cn, Kv:r[KrIJ)I. 

Proof. The lexicographic product Cn[Krl is equal to the strong product 
Kr * Cn, and therefore we have 

I Hom(Cn [Kr], Kv)1 = IHom(Kr * Cn, Kv)1 

= IHom(Cn,Cv(Kr))1 

= IHom(Cn, Kv:r[KrIJ)I· 

o 

In Exercise 8.1 we will see how this last expression can be evaluated in 
terms of the eigenvalues of a suitable matrix. 

Exercises 

1. Let f be a fractional colouring of the graph X, and let B be the matrix 
with the characteristic vectors of the independent sets of X as its 
columns. Show that if the columns in supp f are linearly dependent, 
there is a fractional colouring f' such that supp(f') c supp(f) and 
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the weight of l' is no greater than that of f. Deduce that there is a 
fractional colouring f with weight X*(X), and that X*(X) must be a 
rational number. 

2. Prove that w* (X) is rational. 

3. Show that Kv:r is isomorphic to a subgraph of the product of enough 
copies of K v- 2:r- 1 . (Hint: First, if f is a homomorphism from Kv:r 
to Kv- 2:r- 1 and'Y E Aut (Kv:r ), then f 0 'Y is a homomorphism from 
Kv:r to K v- 2:r- 1 i second, the number of copies needed is at most 
IAut(Kv:r)I·) 

4. Prove that C(v,r) is a core. (Hint: It is possible to use the proof of 
Theorem 7.9.1 as a starting point.) 

5. Show that X(C(v, r)) = r~l 

6. Suppose v ~ 2r, w ~ 2s, and vir ~ wis. Show that there is a 
homomorphism from C(v, r) into C(w, s). 

7. The circular chromatic number of a graph X is defined to be the 
minimum possible value of the ratio vir, given that there is a homo­
morphism from X to C ( v, r). Denote this by XO (X). Show that this is 
well-defined and that for any X we have X(X) - 1 < XO(X) ~ X(X). 

8. If X is vertex transitive, show that cy(X)w(X) ~ IV(X)I. Deduce 
that if X is vertex transitive but not complete and IV(X) I is prime, 
then w(X) < X(X). 

9. Let X be a minimally imperfect graph and let A and B respectively 
be the incidence matrices for the big independent sets and big cliques 
of X, as defined in Section 7.6. Show that BJ = JB = wJ and that 
A and BT commute. Deduce that each vertex of X lies in exactly 
w(X) big cliques. 

10. Let X be a minimally imperfect graph, and let 5 and C be the col­
lections of big independent sets and big cliques of X, as defined in 
Section 7.6. Let Si and Sj be two members of 5, and let Ci be the 
corresponding members of C. Show that if neither Si n Sj nor C i n C j 

is empty, then some entry of BT A is greater than 1. Deduce that for 
each vertex v in X there is a partition of X\ v into CY cliques from C. 

11. Let S be a subset of a set of v elements with size 2£ - 1. Show 
that the k-sets that contain at least g elements of S form a maximal 
independent set in KV:Tl although the intersection of this family of k 
sets is empty. 

12. Show that there are no homomorphisms from K6:2 or K 9 :3 to K 15 :5 , 

but there is a homomorphism from K6:2 X K 9 :3 to K 15 :5 . 

13. Show that cy(X * Y) ~ cy(X)cy(Y) and w(X * Y) = w(X)w(Y). 
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14. Show that x(X * Y) ~ X(X)X(Y), and that this bound is sharp for 
graphs whose chromatic and clique numbers are equal. 

15. Show that X(C5 * C5 ) = 5. 

16. If X is a graph on n vertices, show that a(X * X) ~ n. 

17. Show that C5 is homomorphicallyequivalent to C5(C5). (Hence X(X * 
C5 ) = 5 if and only if there is a homomorphism from X to C5.) 

18. Let X* be the graph obtained from X by replacing each edge of X 
by a path of length three. (So X* is a double subdivision of X, but 
not a subdivision of S(X).) Show that there is a homomorphism from 
X* into C5 if and only if there is a homomorphism from X into K 5 . 

19. Convince yourself that if L1 denotes the loop on one vertex, then 
X x L1 ~ X. Show that the subgraph of F XUY induced by the 
homomorphisms is, essentially, the strong product of the subgraphs 
of F X and F Y induced respectively by the homomorphisms from X 
and Y into F. (And explain why we wrote "essentially" above.) 

20. The usual version of Borsuk's theorem asserts that if the unit sphere 
in ]R. n is covered by n closed sets, then one of the sets contains an 
antipodal pair of points. The aim of this exercise is to show that 
this version implies the one we used. Suppose that Sl, ... , Sk are 
open sets covering the unit sphere in ]R.n. Show that there is an open 
set T1 whose closure is contained in Sl such that T1, together with 
S2, ... , Sk, covers the unit sphere; using this deduce the version of 
Borsuk's theorem from Section 7.11. [Hint: Let R1 be the complement 
of S2 U ... U Sk; this is a closed set contained in Sl. The boundary of 
R1 is a compact set, hence can be covered by a finite number of open 
disks on the sphere, each of which is contained in Sd 

21. Show that if X and Yare vertex transitive, then so is their Cartesian 
product. 

22. Show that if there is a homomorphism from X to Y, then there is a 
homomorphism from X 0 Kr to YO Kr. 

23. Show that if X has n vertices, then a(X 0 C5 ) ~ 2n and equality 
holds if and only if there is a homomorphism from X into C5 . Hence 
deduce that if X has an induced subgraph Y on m vertices such that 
there is a homomorphism from Y into C5 , then 2JV(Y)1 ~ a(XDC5). 

24. Show that K7:3 0 C5 contains an independent set of size 61. 

25. Let v(X, K) denote the maximum number of vertices in a subgraph 
of X that admits a homomorphism to K. If Y is vertex transitive and 
there is a homomorphism from X to Y, show that 

JV(X) I < JV(Y) I . 
v(X, K) - v(Y, K) 
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(Hint: Do not use the Cartesian product.) 

26. If Y and X are graphs, let Y[X] be the graph we get by replacing each 
vertex ofY by a copy of X, and each edge ofY by a complete bipartite 
graph joining the two copies of X. (For example, the complement of m 

vertex-disjoint copies of Xis isomorphic to Km[X].) If v 2: 2r+ 1 and 
Y = K v :r , show that X(X) ::; r if and only if X(Y[X]) ::; v. If X(X) > 
r, show that any n-colouring of Y determines a homomorphism from 
Kv:r to Kn:r+1 . 

27. Show that there is a homomorphism from Kv:2 to Kw:3 if and only if 
w 2: 2v - 2. 

28. Using the Hilton-Milner theorem (Theorem 7.10.1), prove that for 
v 2: 7 there is a homomorphism from KV:3 to Kw:4 if and only if 
w 2: 2v - 4. 

29. Let V be a set of size v, let a be a k-subset of V, and suppose 1 E V\a. 
Let 'H denote the set of all k-subsets of V that contain 1 and at least 
one point from a, together with the set a. Show that any two elements 
of 'H have at least one point in common, but the intersection of the 
elements of'H is empty. (Note that I'HI = 1 + (~=D - (Vk~~l).) 

30. Let V be a set of size v that contains {I, 2, 3}. Show that the set 
of triples that contain at least two elements from {I, 2, 3} has size 
1 + 3(v - 3). (Note that 3v - 9 = (v;l) _ (V;4).) 

Notes 

The theory of the fractional chromatic number provides a convincing 
application of linear programming methods to graph theory. 

The idea of using the fractional chromatic number to restrict the exis­
tence of homomorphisms is apparently due to Perles. It is an extension of 
the "no homomorphism lemma" of Albertson and Collins, which appears 
in [1]. The results in Section 7.14 are also based on this paper. 

The study of perfect graphs has been driven by two conjectures, due 
to Berge. The first, the so-called weak perfect graph conjecture, asserted 
that the complement of a perfect graph is perfect. This was first proved 
by Lovasz, although it was subsequently realized that Fulkerson had come 
within easy distance of it. The proof we give is due to Gasparian [7]. The 
second conjecture, the strong perfect graph conjecture, asserts that a mini­
mally imperfect graph is either an odd cycle or its complement. This is still 
open. Inventing new classes of perfect graphs has been a growth industry 
for many years. 

The circular chromatic number of a graph, which we introduced in Ex­
ercise 7, was first studied by Vince [12], who called it the star chromatic 
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number. See Bondy and Hell [4] and Zhu [14] for further work on this 
parameter. 

For a treatment of the Erdos-Ko-Rado theorem from a more traditional 
viewpoint, see [3]. 

The chromatic number of the Kneser graphs was first determined by 
Lovasz [8], thus verifying a 23-year-old conjecture due to Kneser. A shorter 
proof was subsequently found by Barany [2], and this is what we followed. 

The proof of Theorem 7.13.1 is due independently to Perles and Nesetfil. 
It is a significant simplification of Welzl's original argument, in [13]. 

The strong product X * Kr is isomorphic to the lexicographic product 
X[Kr] (see Exercise 1.26). Theorem 7.9.2 and Lemma 7.9.3 are due to Stahl 
[10]. Section 7.15 is based on Vesztergombi [11], which in turn is strongly 
influenced by [10]. 

Reinfeld [9] uses the result of Lemma 7.15.5 together with the spectrum 
of the Kneser graph to find the chromatic polynomial of the graphs Cn[Kr] 
(see Chapter 15 for the definition of chromatic polynomial). 

The truths expressed in Exercise 23 and Exercise 24 were pointed out to 
us by Tardif. In Section 9.7 we will present a technique that will allow us 
to prove that o:(K7:3 D Cs) = 61. (See Exercise 9.18.) Tardif observes that 
this implies that an induced subgraph of K7:3 with a homomorphism into 
Cs must have at most 30 vertices; he has an example of such a subgraph 
with 29 vertices, and this can be shown by computer to be the largest such 
subgraph. For the solution to Exercise 25, see Bondy and Hell [4]. 

Exercise 26 is based on Garey and Johnson [6]. They use it to show 
that if a polynomial-time approximate algorithm for graph colouring ex­
ists, then there is a polynomial-time algorithm for graph colouring. (The 
expert consensus is that this is unlikely.) For information related to the 
Hilton-Milner theorem (Theorem 7.10.1), see Frankl [5]. Exercise 29 and 
Exercise 30 give all the families of k-sets without centres that realize the 
Hilton-Milner bound. 

It would be interesting to find more tools for determining the existence 
of homomorphisms between pairs of Kneser graphs. We personally cannot 
say whether there is a homomorphism from KlO:4 to K 13:S . The general 
problem is clearly difficult, since it contains the problem of determining 
the chromatic numbers of the Kneser graphs. 
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8 
Matrix Theory 

There are various matrices that are naturally associated with a graph, such 
as the adjacency matrix, the incidence matrix, and the Laplacian. One of 
the main problems of algebraic graph theory is to determine precisely how, 
or whether, properties of graphs are reflected in the algebraic properties of 
such matrices. 

Here we introduce the incidence and adjacency matrices of a graph, and 
the tools needed to work with them. This chapter could be subtitled "Linear 
Algebra for Graph Theorists," because it develops the linear algebra we 
need from fundamental results about symmetric matrices through to the 
Perron-Frobenius theorem and the spectral decomposition of symmetric 
matrices. 

Since many of the matrices that arise in graph theory are Ol-matrices, 
further information can often be obtained by viewing the matrix over the 
finite field GF(2). We illustrate this with an investigation into the binary 
rank of the adjacency matrix of a graph. 

8.1 The Adjacency Matrix 

The adjacency matrix A(X) of a directed graph X is the integer matrix 
with rows and columns indexed by the vertices of X, such that the uv-entry 
of A(X) is equal to the number of arcs from u to v (which is usually 0 or 
1). If X is a graph, then we view each edge as a pair of arcs in opposite 
directions, and A(X) is a symmetric Ol-matrix. Because a graph has no 
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loops, the diagonal entries of A(X) are zero. Different directed graphs on 
the same vertex set have different adjacency matrices, even if they are 
isomorphic. This is not much of a problem, and in any case we have the 
following consolation, the proof of which is left as an exercise. 

Lemma 8.1.1 Let X and Y be directed graphs on the same vertex set. 
Then they are isomorphic if and only if there is a permutation matrix P 
such that p T A(X)P = A(Y). 0 

Since permutation matrices are orthogonal, pT = p-l, and so if X and Y 
are isomorphic directed graphs, then A(X) and A(Y) are similar matrices. 
The characteristic polynomial of a matrix A is the polynomial 

¢(A, x) = det(xI - A), 

and we let ¢(X, x) denote the characteristic polynomial of A(X). The 
spectrum of a matrix is the list of its eigenvalues together with their multi­
plicities. The spectrum of a graph X is the spectrum of A(X) (and similarly 
we refer to the eigenvalues and eigenvectors of A(X) as the eigenvalues and 
eigenvectors of X). Lemma 8.1.1 shows that ¢(X, x) = ¢(Y, x) if X and 
Yare isomorphic, and so the spectrum is an invariant of the isomorphism 
class of a graph. 

However, it is not hard to see that the spectrum of a graph does not 
determine its isomorphism class. Figure 8.1 shows two graphs that are not 
isomorphic but share the characteristic polynomial 

(x + 2)(x + 1)2(x - 1)2(x2 - 2x - 6), 

and hence have spectrum 

{ - 2, -1 (2), 1 (2), 1 ± J7 } 
(where the superscripts give the multiplicities of eigenvalues with multi­
plicity greater than one). Two graphs with the same spectrum are called 
cospectral. 

Figure 8.1. Two cospectral graphs 

The graphs of Figure 8.1 show that the valencies of the vertices are not 
determined by the spectrum, and that whether a graph is planar is not 
determined by the spectrum. In general, if there is a cospectral pair of 
graphs, only one of which has a certain property P, then P cannot be 
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determined by the spectrum. Such cospectral pairs have been found for a 
large number of graph-theoretical properties. 

However, the next result shows that there is some useful information that 
can be obtained from the spectrum. A walk of length r in a directed graph 
X is a sequence of vertices 

Vo rv VI rv ••• rv Vr . 

A walk is closed if its first and last vertices are the same. This definition is 
similar to that of a path (Section 1.2), with the important difference being 
that a walk is permitted to use vertices more than once. 

Lemma 8.1.2 Let X be a directed graph with adjacency matrix A. The 
number of walks from u to V in X with length r is (Ar)uv. 

Proof. This is easily proved by induction on r, as you are invited to do.D 

The trace of a square matrix A is the sum of its diagonal entries and 
is denoted by tr A. The previous result shows that the number of closed 
walks of length r in X is tr Ar, and hence we get the following corollary: 

Corollary 8.1.3 Let X be a graph with e edges and t triangles. If A is the 
adjacency matrix of X, then 

(a) tr A = 0, 

(b) tr A2 = 2e, 

(c) tr A3 = 6t. o 

Since the trace of a square matrix is also equal to the sum of its eigen­
values, and the eigenvalues of Ar are the rth powers of the eigenvalues of 
A, we see that tr Ar is determined by the spectrum of A. Therefore, the 
spectrum of a graph X determines at least the number of vertices, edges, 
and triangles in X. The graphs K I ,4 and KI U C4 are cospectral and do 
not have the same number of 4-cycles, so it is difficult to extend these 
observations. 

8.2 The Incidence Matrix 

The incidence matrix B(X) of a graph X is the OI-matrix with rows and 
columns indexed by the vertices and edges of X, respectively, such that the 
uf-entry of B(X) is equal to one if and only if the vertex u is in the edge 
f. If X has n vertices and e edges, then B(X) has order n x e. 

The rank of the adjacency matrix of a graph can be computed in poly­
nomial time, but we do not have a simple combinatorial expression for it. 
We do have one for the rank of the incidence matrix. 
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Theorem 8.2.1 Let X be a graph with n vertices and Co bipartite con­
nected components. If B is the incidence matrix of X, then its rank is 
given by rkB = n - co. 

Proof. We shall show that the null space of B has dimension co, and hence 
that rk B = n - Co. Suppose that z is a vector in ~ n such that zT B = o. If 
uv is an edge of X, then z", + zv = O. It follows by an easy induction that if 
u and v are vertices of X joined by a path of length r, then Zu = (-1 t Zv. 

Therefore, if we view z as a function on V(X), it is identically zero on any 
component of X that is not bipartite, and takes equal and opposite values 
on the two colour classes of any bipartite component. The space of such 
vectors has dimension co. 0 

The inner product of two columns of B(X) is nonzero if and only if the 
corresponding edges have a common vertex, which immediately yields the 
following result. 

Lemma 8.2.2 Let B be the incidence matrix of the graph X, and let L be 
the line graph of X. Then BT B = 2I + A(L). 0 

If X is a graph on n vertices, let ~(X) be the diagonal n X n matrix with 
rows and columns indexed by V(X) with uu-entry equal to the valency 
of vertex u. The inner product of any two distinct rows of B(X) is equal 
to the number of edges joining the corresponding vertices. Thus it is zero 
or one according as these vertices are adjacent or not, and we have the 
following: 

Lemma 8.2.3 Let B be the incidence matrix of the graph X. Then BBT = 
~(X) + A(X). 0 

When X is regular the last two results imply a simple relation between the 
eigenvalues of L(X) and those of X, but to prove this we also need the 
following result. 

Lemma 8.2.4 If C and D are matrices such that CD and DC are both 
defined, then det(I - CD) = det(I - DC). 

Proof. If 

X= (; ~), y= (-~ ~), 
then 

XY = (I -OCD ~) , YX= (~ I_CDC) , 

and since det XY = det Y X, it follows that det(I - CD) = det(I - DC).D 

This result implies that det(I - x-lCD) = det(I - X-I DC), from which 
it follows that CD and DC have the same nonzero eigenvalues with the 
same multiplicities. 



8.3. The Incidence Matrix of an Oriented Graph 167 

Lemma 8.2.5 Let X be a regular graph of valency k with n vertices and 
e edges and let L be the line graph of X. Then 

¢(L, x) = (x + 2)e-n¢(x, x - k + 2). 

Proof. Substituting C = x-I BT and D = B into the previous lemma we 
get 

whence 

det (x Ie - BT B) = x e- n det (xIn - BBT) . 

Noting that ~(X) = kI and using Lemma 8.2.2 and Lemma 8.2.3, we get 

det((x - 2)Ie - A(L)) = x e- n det((x - k)In - A(X)), 

and so 

¢(L, x - 2) = xe-n¢(x, x - k), 

whence our claim follows. o 

8.3 The Incidence Matrix of an Oriented Graph 

An orientation of a graph X is the assignment of a direction to each edge; 
this means that we declare one end of the edge to be the head of the edge 
and the other to be the tail, and view the edge as oriented from its tail 
to its head. Although this definition should be clear, we occasionally need 
a more formal version. Recall that an arc of a graph is an ordered pair of 
adjacent vertices. An orientation of X can then be defined as a function a­
from the arcs of X to {-I, I} such that if (u, v) is an arc, then 

a-(u, v) = -a-(v, u). 

If a-( u, v) = 1, then we will regard the edge uv as oriented from tail u to 
head v. 

An oriented graph is a graph together with a particular orientation. We 
will sometimes use X" to denote the oriented graph determined by the 
specific orientation a-. (You may, if you choose, view oriented graphs as a 
special class of directed graphs. We tend to view them as graphs with extra 
structure.) Figure 8.2 shows an example of an oriented graph, using arrows 
to indicate the orientation. 

The incidence matrix D(X") of an oriented graph X" is the {O, ±1}­
matrix with rows and columns indexed by the vertices and edges of X, 
respectively, such that the uf-entry of D(X") is equal to 1 if the vertex u 
is the head of the edge f, -1 if u is the tail of f, and 0 otherwise. If X 
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2 5 

Figure 8.2. An oriented graph 

has n vertices and e edges, then D(xa) has order n x e. For example, the 
incidence matrix of the graph of Figure 8.2 is 

C~ 
1 0 0 0 

-~) 0 -1 1 0 
0 1 0 1 
0 0 0 -1 

-1 0 -1 0 

Although there are many different ways to orient a given graph, many 
of the results about oriented graphs are independent of the choice of 
orientation. For example, the next result shows that the rank of the in­
cidence matrix of an oriented graph depends only on X, rather than on the 
particular orientation given to X. 

Theorem 8.3.1 Let X be a graph with n vertices and c connected compo­
nents. If a is an orientation of X and D is the incidence matrix of xa, 
then rk D = n - c. 

Proof. We shall show that the null space of D has dimension c, and hence 
that rk D = n - c. Suppose that z is a vector in lH'. n such that ZT B = o. If 
uv is an edge of X, then Zu - Zv = o. Therefore, if we view z as a function 
on V(X), it is constant on any connected component of X. The space of 
such vectors has dimension c. D 

We note the following analogue to Lemma 8.2.3. 

Lemma 8.3.2 If a is an orientation of X and D is the incidence matrix 
of xa, then DDT = 6.(X) -A(X). D 

If X is a plane graph, then each orientation of X determines an orientation 
of its dual. This orientation is obtained by viewing each edge of X* as 
arising from rotating the corresponding edge of X through 90° clockwise 
(as in Figure 8.3). We will use a to denote the orientation of both X and 
X*. 



8.4. Symmetric Matrices 169 

x* 
Figure 8.3. Orienting the edges of the dual 

Lemma 8.3.3 Let X and Y be dual plane graphs, and let a be an orien­
tation of X. If D and E are the incidence matrices of Xu and yu, then 
DET = O. 

Proof. If u is an edge of X and F is a face, there are exactly two edges 
on u and in F. Denote them by g and h and assume, for convenience, that 
g precedes h as we go clockwise around F. Then the uF -entry of D ET is 
equal to 

Du9EJF + DuhE'fF' 

If the orientation of the edge g is reversed, then the value of the product 
Du9EJF does not change. Hence the value of the sum is independent of the 
orientation a, and so we may assume that g has head u and that f has tail 
u. This implies that the edges in Y corresponding to g and h both have 
head F, and a simple computation now yields that the sum is zero. D 

8.4 Symmetric Matrices 

In this section we review the main results of the linear algebra of symmetric 
matrices over the real numbers, which form the basis for the remainder of 
this chapter. 

Lemma 8.4.1 Let A be a real symmetric matrix. If u and v are 
eigenvectors of A with different eigenvalues, then u and v are orthogonal. 

Proof. Suppose that Au = AU and Av = TV. As A is symmetric, uT Av = 
(vT Au)T. However, the left-hand side of this equation is TUTV and the 
right-hand side is AuT v, and so if T -=1= A, it must be the case that uT v = O. 
D 

Lemma 8.4.2 The eigenvalues of a real symmetric matrix A are real 
numbers. 

Proof. Let u be an eigenvector of A with eigenvalue A. Then by taking 
the complex conjugate of the equation Au = AU we get Au = Xu, and 
so u is also an eigenvector of A. Now, by definition an eigenvector is not 
zero, so uTu > O. By the previous lemma, u and u cannot have different 
eigenvalues, so A = X, and the claim is proved. D 
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We shall now prove that a real symmetric matrix is diagonalizable. For 
this we need a simple lemma that expresses one of the most important 
properties of symmetric matrices. A subspace U is said to be A -invariant 
if Au E U for all u E U. 

Lemma 8.4.3 Let A be a real symmetric n x n matrix. If U is an A­
invariant subspace ofJRn, then U.L is also A-invariant. 

Proof. For any two vectors u and v, we have 

vT (Au) = (Avf u. 

If u E U, then Au E U; hence if v E U.L, then vT Au = O. Consequently, 
(Av)Tu = 0 whenever u E U and v E U.L. This implies that Av E U.L 
whenever v E U.L, and therefore U.L is A-invariant. 0 

Any square matrix has at least one eigenvalue, because there must be at 
least one solution to the polynomial equation det(xI -A) = O. Hence a real 
symmetric matrix A has at least one real eigenvalue, () say, and hence at 
least one real eigenvector (any vector in the kernel of A-()I, to be precise). 
Our next result is a crucial strengthening of this fact. 

Lemma 8.4.4 Let A be an n x n real symmetric matrix. If U is a nonzero 
A-invariant subspace ofJRn, then U contains a real eigenvector of A. 

Proof. Let R be a matrix whose columns form an orthonormal basis for 
U. Then, because U is A-invariant, AR = RB for some square matrix B. 
Since RT R = I, we have 

RTAR = RTRB =B, 

which implies that B is symmetric, as well as real. Since every symmetric 
matrix has at least one eigenvalue, we may choose a real eigenvector u of 
B with eigenvalue A. Then ARu = RBu = ARu, and since u i 0 and 
the columns of R are linearly independent, Ru i O. Therefore, Ru is an 
eigenvector of A contained in U. 0 

Theorem 8.4.5 Let A be a real symmetric n x n matrix. Then JR n has an 
orthonormal basis consisting of eigenvectors of A. 

Proof. Let {Ul' ... , urn} be an orthonormal (and hence linearly indepen­
dent) set of m < n eigenvectors of A, and let M be the subspace that 
they span. Since A has at least one eigenvector, m ~ 1. The subspace M 
is A-invariant, and hence M.L is A-invariant, and so M.L contains a (nor­
malized) eigenvector Urn+!' Then {Ul, ... , Urn, u rn+!} is an orthonormal set 
of m + 1 eigenvectors of A. Therefore, a simple induction argument shows 
that a set consisting of one normalized eigenvector can be extended to an 
orthonormal basis consisting of eigenvectors of A. 0 
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Corollary 8.4.6 If A is an n x n real symmetric matrix, then there are 
matrices Land D such that LT L = LLT = I and LALT = D, where D is 
the diagonal matrix of eigenvalues of A. 

Proof. Let L be the matrix whose rows are an orthonormal basis of eigen­
vectors of A. We leave it as an exercise to show that L has the stated 
properties. o 

8.5 Eigenvectors 

Most introductory linear algebra courses impart the belief that the way to 
compute the eigenvalues of a matrix is to find the zeros of its characteristic 
polynomial. For matrices with order greater than two, this is false. Gener­
ally, the best way to obtain eigenvalues is to find eigenvectors: If Ax = ex, 
then e is an eigenvalue of A. 

When we work with graphs there is an additional refinement. First, we 
stated in Section 8.1 that the rows and columns of A(X) are indexed by 
the vertices of X. Formally, this means we are viewing A(X) as a linear 
mapping on ~ V(X) , the space of real functions on V(X) (rather than on 
the isomorphic vector space ~n, where n = IV(X)I). If f E ~ V(X) and 
A = A(X), then the image Af of f under A is given by 

(Af)(u) = L Auvf(v); 

since A is a Ol-matrix, it follows that 

(Af)(u) = L f(v). 

In words, the value of Af at u is the sum of the values of f on the neighbours 
of u. If we suppose that f is an eigenvector of A with eigenvalue e, then 
Af = ef, and so 

ef(u) = L f(v). 

In words, the sum of the values of f on the neighbours of u is equal to 
e times the value of f at u. Conversely, any function f that satisfies this 
condition is an eigenvector of X. Figure 8.4 shows an eigenvector of the 
Petersen graph. It can readily be checked that the sum of the values on 
the neighbours of any vertex is equal to the value on that vertex; hence we 
have an eigenvector with eigenvalue one. (The viewpoint expressed in this 
paragraph is very fruitful, and we will make extensive use of it.) 

Now, we will find the eigenvalues of the cycle Cn. Take the vertex set of 
Cn to be {a, 1, ... , n - I}. Let T be an nth root of unity (so T is probably 
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Figure 8.4. An eigenvector of P with eigenvalue 1 

not a real number) and define f(u) := 7 U • Then for all vertices u, 

and therefore 7-1 + 7 is an eigenvalue of en. Note that this is real, even if 
7 is not. By varying our choice of 7 we find the n eigenvalues of en. This 
argument is easily extended to any circulant graph. 

By taking 7 = 1 we see that the vector with all entries equal to one is an 
eigenvector of en with eigenvalue two. We shall denote this eigenvector by 
1. It is clear that 1 is an eigenvector of a graph X with eigenvalue k if and 
only if X is regular with valency k. We can say more about regular graphs. 

Lemma 8.5.1 Let X be a k-regular graph on n vertices with eigenvalues 
k, (h, . .. , ()n. Then X and its complement X have the same eigenvectors, 
and the eigenvalues of X are n - k - 1, -1 - ()2, ... , -1 - ()n. 

Proof. The adjacency matrix of the complement X is given by 

A(X) = J - I - A(X), 

where J is the all-ones matrix. Let {1, U2, ... , Un} be an orthonormal basis 
of eigenvectors of A(X). Then 1 is an eigenvector of X with eigenvalue 
n - k - 1. For 2 :::; i :::; n, the eigenvector Ui is orthogonal to 1, and so 

A(X)Ui = (J - I - A(X))Ui = (-1- ()i)Ui. 

Therefore, Ui is an eigenvector of A(X) with eigenvalue -1 - ()i. 0 

Finally, suppose that X is a semiregular bipartite graph with bipartition 
V (X) = VI U V2 , and let k and C be the valencies of the vertices in VI and 
V2, respectively. Assume that Ul is a vertex with valency k, and U2 is a 
vertex with valency C. We look for an eigenvector f that is constant on the 
two parts of the bipartition. If f is such an eigenvector and has eigenvalue 
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(), then 

Because an eigenvector is a nonzero vector, we can multiply the two 
equations just given to obtain 

()2 = kf. 

Thus, if () = ±/ki, then defining f by 

f(u) = {~/k, 
yields two eigenvectors of X. 

ifu E VI, 
ifu E V2, 

We comment on a feature of the last example. If A is the adjacency 
matrix of a graph X, and f is a function on V(X), then so is Af. If X is a 
semiregular bipartite graph, then the space of functions on V(X) that are 
constant on the two parts of the bipartition is A-invariant. (Indeed, this is 
equivalent to the fact that X is bipartite and semiregular.) By Lemma 8.4.4, 
an A-invariant subspace must contain an eigenvector of A; in the above 
example this subspace has dimension two, and the eigenvector is easy to 
find. In Section 9.3 we introduce and study equitable partitions, which 
provide many further examples of A-invariant subspaces. 

8.6 Positive Semidefinite Matrices 

A real symmetric matrix A is positive semidefinite if uT Au ~ 0 for all 
vectors u. It is positive definite if it is positive semidefinite and uT Au = 0 
if and only if u = O. (These terms are used only for symmetric matrices.) 
Observe that a positive semidefinite matrix is positive definite if and only 
if it is invertible. 

There are a number of characterizations of positive semidefinite matrices. 
The first we offer involves eigenvalues. If u is an eigenvector of A with 
eigenvalue (), then 

uT Au = ()uT u, 

and so we see that a real symmetric matrix is positive semidefinite if and 
only if its eigenvalues are nonnegative. 

Our second characterization involves a factorization. If A = BT B for 
some matrix B, then 

uT Au = uT BT Bu = (Bu)T Bu ~ 0, 

and therefore A is positive semidefinite. The Gram matrix of vectors 
UI, ... , Un from ~m is the n x n matrix G such that Gij = u; Uj. Note 
that BT B is the Gram matrix of the columns of B, and that any Gram 
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matrix is positive semidefinite. The next result shows that the converse is 
true. 

Lemma 8.6.1 If A is a positive semidefinite matrix, then there is a matrix 
B such that A = BT B. 

Proof. Since A is symmetric, there is a matrix L such that 

A= LTAL, 

where A is the diagonal matrix with ith entry equal to the ith eigenvalue 
of A. Since A is positive semidefinite, the entries of A are nonnegative, and 
so there is a diagonal matrix D such that D2 = A. If B = LT DL, then 
B = BT and A = B2 = BT B, as required. 0 

We can now establish some interesting results about the eigenvalues of 
graphs, the first being about line graphs. 

Let Bmax(X) and Bmin(X) respectively denote the largest and smallest 
eigenvalues of A(X). 

Lemma 8.6.2 If L is a line graph, then Bmin(L) ~ -2. 

Proof. If L is the line graph of X and B is the incidence matrix of X, we 
have 

A(L)+2I=BT B. 

Since BT B is positive semidefinite, its eigenvalues are nonnegative and all 
eigenvalues of BT B - 21 are at least -2. 0 

What is surprising about this lemma is how close it comes to 
characterizing line graphs. We will study this question in detail in 
Chapter 12. 

Lemma 8.6.3 Let Y be an induced subgraph of X. Then 

Bmin(X) ~ Bmin(Y) ~ Bmax(Y) ~ Bmax(X). 

Proof. Let A be the adjacency matrix of X and abbreviate Bmax(X) to 
B. The matrix BI - A has only nonnegative eigenvalues, and is therefore 
positive semidefinite. Let f be any vector that is zero on the vertices of X 
not in Y, and let fy be its restriction to V(Y). Then 

o ~ F(BI - A)f = /{:(BI - A(Y))Jy, 

from which we deduce that BI - A(Y) is positive semidefinite. Hence 
Bmax(Y) ~ B. A similar argument applied to A-Bmin (X)I yields the second 
claim of the lemma. 0 

It is actually true that if Y is any subgraph of X, and not just an induced 
subgraph, then Bmax(Y) ~ Bmax{X). Furthermore, when Y is a proper 
subgraph, equality can hold only when X is not connected. We return 
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to this when we discuss the Perron-Frobenius theorem in the next two 
sections. 

Finally, we clear a debt incurred in Section 5.10. There we claimed that 
the matrix 

(r - >')I + >'J 

is invertible when r > >. ~ o. Note that (r - >.)I is positive definite: All 
its eigenvalues are positive and >'J = >'11 T is positive semidefinite. But 
the sum of a positive definite and a positive semidefinite matrix is positive 
definite, and therefore invertible. 

8.7 Subharmonic Functions 

In this section we introduce subharmonic functions, and use them to 
develop some properties of nonnegative matrices. We will use similar tech­
niques again in Section 13.9, when we show how linear algebra can be used 
to construct drawings of planar graphs. 

If A is a square matrix, then we say that a nonnegative vector x is >.­
subharmonic for A if x =I- 0 and Ax ~ >.x. When the value of>. is irrelevant, 
we simply say that x is subharmonic. We note one way that subharmonic 
vectors arise. Let IAI denote the matrix obtained by replacing each entry 
of A with its absolute value. If x is an eigenvector for A with eigenvalue e, 
then 

j j 

from which we see that Ixl is lel-subharmonic for IAI. 
Let A be an n x n real matrix. The underlying directed graph of A has 

vertex set {I, ... , n}, with an arc from vertex i to vertex j if and only if 
Aij =I- O. (Note that this directed graph may have loops.) A square matrix 
is irreducible if its underlying graph is strongly connected. 

Lemma 8.7.1 Let A be an n x n nonnegative irreducible matrix. Then 
there is a maximum real number p such that there is a p-subharmonic vector 
for A. Moreover, any p-subharmonic vector x is an eigenvector for A with 
eigenvalue p, and all entries of x are positive. 

Proof. Let 

F( ) . (AX)i 
X = mIn--

i:Xi,t:O Xi 

be a function defined on the set of nonnegative vectors, and consider the 
values of F on the vectors in the set 

S = {x : x ~ 0, IT X = I} . 
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It is clear that any nonnegative vector x is F(x)-subharmonic, and so we 
wish to show that there is some vector yES such that F attains its 
maximum on y. Since S is compact, this would be immediate if F were 
continuous on S, but this is not the case at the boundary of S. As A is 
irreducible, Lemma 8.1.2 shows that the matrix (I + A)n-l is positive. 
Therefore, the set 

contains only positive vectors, and F is continuous on T. Since T is also 
compact, it follows that F attains its maximum value p at a point z E T. 
If we set 

z 
y = IT z ' 

then yES and F(y) = F(z) = p. Moreover, for any vector x we have 

F((I + A)n-l(x)) ;::: F(x), 

and therefore by the choice of z, there is no vector xES with F(x) > p. 
We now prove that any p-subharmonic vector is an eigenvector for A, 

necessarily with eigenvalue p. If x is p-subharmonic, define a(x) by 

a(x) = {i: (AX)i > pxd. 

Clearly, x is an eigenvector if and only if a(x) = 0. Assume by way of 
contradiction that a(x) i=- 0. The support of a vector v is the set of nonzero 
coordinates of v and is denoted by supp( v). Let h be a nonnegative vector 
with support equal to a(x) and consider the vector y = x + Eh. 

We have 

If i E a(x), then (AX)i > PXi, and so for all sufficiently small values of E, 

the right side of (8.7) is positive. Hence 

(AY)i > PYi· 

If itt. a(x), then (AX)i = PXi and hi = 0, so (8.7) yields that 

Provided that E > 0, the right side here is nonnegative. Since A is irre­
ducible, there is at least one value of i not in a(x) such that (Ah)i > 0, 
and hence a(y) properly contains a(x). 

If la(y)1 = n, it follows that y is p'-subharmonic, where pi > p, and this 
is a contradiction to our choice of p. Otherwise, y is p-subharmonic but 
la(y)1 > la(x)l, and we may repeat the above argument with y in place 
of x. After a finite number of iterations we will arrive at a p'-subharmonic 
vector, with pi > p, again a contradiction. 
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Finally, we prove that if x is p-subharmonic, then x > O. Suppose instead 
that Xi = 0 for some i. Because a(x) = 0, it follows that (AX)i = 0, but 

(AX)i = LAijxj, 
j 

and since A ~ 0, this implies that Xj = 0 if Aij =f. O. Since A is irreducible, 
a simple induction argument yields that all entries of x must be zero, which 
is the required contradiction. Therefore, x must be positive. D 

The spectral radius p(A) of a matrix A is the maximum of the moduli of 
its eigenvalues. (If A is not symmetric, these eigenvalues need not be real 
numbers.) The spectral radius of a matrix need not be an eigenvalue of it, 
e.g., if A = -I, then p(A) = 1. One consequence of our next result is that 
the real number p from the previous lemma is the spectral radius of A. 

Lemma 8.1.2 Let A be an n x n nonnegative irreducible matrix and let p 
be the greatest real number such that A has a p-subharmonic vector. If B 
is an n x n matrix such that IBI ::; A and Bx = Ox, then 101 ::; p. If 101 = p, 
then IBI = A and Ixl is an eigenvector of A with eigenvalue p. 

Proof. If Bx = Ox, then 

IOllxl = IOxl = IBxl ::; IBllxl ::; AlxI-

Hence Ixl is IOI-subharmonic for A, and so 101 ::; p. If 101 = p, then Alxl = 
IBllxl = plxl, and by the previous lemma, Ixl is positive. Since A-IBI ~ 0 
and (A - IBI)Ixl = 0, it follows that A = IBI. D 

Lemma 8.1.3 Let A be a nonnegative irreducible nxn matrix with spectral 
radius p. Then p is a simple eigenvalue of A, and if x is an eigenvector 
with eigenvalue p, then all entries of x are nonzero and have the same sign. 

Proof. The p-eigenspace of A is I-dimensional, for otherwise we could 
find a p-subharmonic vector with some entry equal to zero, contradicting 
Lemma 8.7.1. If x is an eigenvector with eigenvalue p, then by the previous 
lemma, Ixl is a positive eigenvector with the same eigenvalue. Thus Ixl is a 
multiple of x, which implies that all the entries of x have the same sign. 

Since the geometric multiplicity of pis 1, we see that K = ker(A - pI) 
has dimension 1 and the column space C of A - pI has dimension n - 1. If 
C contains x, then we can find a vector y such that x = (A - pI)y. For any 
k, we have (A - pI)(y + kx) = x, and so by taking k sufficiently large, we 
may assume that y is positive. But then y is p-subharmonic and hence is a 
multiple of x, which is impossible. Therefore, we conclude that K n C = 0, 
and that ~n is the direct sum of K and C. Since K and C are A-invariant, 
this implies that the characteristic polynomial cp(A, t) of A is the product 
of t - p and the characteristic polynomial of A restricted to C. As x is not 
in C, all eigenvectors of A contained in C have eigenvalue different from 
p, and so we conclude that p is a simple root of cp(A, t), and hence has 
algebraic multiplicity one. D 



178 8. Matrix Theory 

8.8 The Perron-Frobenius Theorem 

The Perron-Frobenius theorem is the most important result on the 
eigenvalues and eigenvectors of nonnegative matrices. 

Theorem 8.8.1 Suppose A is a real nonnegative n x n matrix whose 
underlying directed graph X is strongly connected. Then: 

(a) p(A) is a simple eigenvalue of A. If x is an eigenvector for p, then 
no entries of x are zero, and all have the same sign. 

(b) Suppose Al is a real nonnegative n x n matrix such that A - Al 
is nonnegative. Then p(AI) ::; p(A), with equality if and only if 
Al =A. 

(c) Ife is an eigenvalue of A and lei = p(A), then ej p(A) is an mth root 
of unity and e21rir/mp(A) is an eigenvalue of A for all r. Further, 
all cycles in X have length divisible by m. 0 

The first two parts of this theorem follow from the results of the previous 
section. We discuss part (c), but do not give a complete proof of it, since 
we will not need its full strength. 

Suppose A is the adjacency matrix of a connected graph X, with spectral 
radius p, and assume that e is an eigenvalue of A such that lei = p. If e "# p, 
then e = -p, and so {} j p is a root of unity. If Zo and ZI are eigenvectors with 
eigenvalues e and p, respectively, then they are linearly independent, and 
therefore the eigenspace of A2 with eigenvalue p2 has dimension at least 
two. However, it is easy to see that p2 is the spectral radius of A2. As A2 
is nonnegative, it follows from part (a) of the theorem that the underlying 
graph of A2 cannot be connected, and given this, it is easy to prove that 
X must be bipartite. 

It is not hard to see that if X is bipartite, then there is a graph isomorphic 
to X with adjacency matrix of the form 

A= (;T ~), 
for a suitable Ol-matrix B. If the partitioned vector (x, y) is an eigenvector 
of A with eigenvalue e, then it is easy to verify that (x, -y) is an eigenvector 
of A with eigenvalue -{}. It follows that e and -e are eigenvalues with the 
same multiplicity. Thus we have the following: 

Theorem 8.8.2 Let A be the adjacency matrix of the graph X, and let p 
be its spectral radius. Then the following are equivalent: 

( a) X is bipartite. 
(b) The spectrum of A is symmetric about the origin, i.e., for any e, the 

multiplicities of e and -e as eigenvalues of A are the same. 
(c) -pis an eigenvalue of A. o 
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There are two common applications of the Perron-Frobenius theorem 
to connected regular graphs. Let X be a connected k-regular graph with 
adjacency matrix A. Then the spectral radius of A is the valency k with 
corresponding eigenvector 1, which implies that every other eigenspace of 
A is orthogonal to 1. Secondly, the graph X is bipartite if and only if -k 
is an eigenvalue of A. 

8.9 The Rank of a Symmetric Matrix 

The rank of a matrix is a fundamental algebraic concept, and so it is natural 
to ask what information about a graph can be deduced from the rank of its 
adjacency matrix. In contrast to what we obtained for the incidence matrix, 
there is no simple combinatorial expression for the rank of the adjacency 
matrix of a graph. This section develops a number of preliminary results 
about the rank of a symmetric matrix that will be used later. 

Theorem 8.9.1 Let A be a symmetric matrix of rank r. Then there is a 
permutation matrix P and a principal r x r submatrix M of A such that 

pT AP = (~) M (I RT ). 

Proof. Since A has rank r, there is a linearly independent set of r rows 
of A. By symmetry, the corresponding set of columns is also linearly inde­
pendent. The entries of A in these rows and columns determine an r x r 
principal submatrix M. Therefore, there is a permutation matrix P such 
that 

pTAP= (~ ~). 
Since the first r rows of this matrix generate the row space of p T AP, we 
have that N = RM for some matrix R, and hence H = RNT = RM RT. 
Therefore, 

as claimed. o 

We note an important corollary of this result. 

Corollary 8.9.2 If A is a symmetric matrix of rank r, then it has a 
principal r x r submatrix of full rank. 0 

If a matrix A has rank one, then it is necessarily of the form A = xyT for 
some nonzero vectors x and y. It is not too hard to see that if a matrix 
can be written as the sum of r rank-one matrices. then it has rank at most 
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r. However, it is less well known that a matrix A has rank r if and only if 
it can be written as the sum of r rank-one matrices, but no fewer. If A is 
symmetric, the rank-one matrices in this decomposition will not necessarily 
be symmetric. Instead, we have the following. 

Lemma 8.9.3 Suppose A is a symmetric matrix with rank r over some 
field. Then there is an integer 8 such that A is the sum of r - 28 symmetric 
matrices with rank one and 8 symmetric matrices with rank two. 

Proof. Suppose A is symmetric. First we show that if A has a nonzero 
diagonal entry, then it is the sum of a symmetric rank-one matrix and a 
symmetric matrix of rank r -1. Let ei denote the ith standard basis vector, 
and suppose that a = e; Aei i:- O. Let x = Aei and define B by 

B := A - a-1xxT . 

Then B is symmetric, and a-1xxT has rank one. Clearly, Bu = 0 whenever 
Au = 0, and so the null space of B contains the null space of A. This 
inclusion is proper because ei lies in the null space of B, but not A, and so 
rk(B) ::; rk(A) -1. Since the column space of A is spanned by the columns 
of B together with the vector x, we conclude that rk(B) = rk(A) - 1. 

Next we show that if there are two diagonal entries Aii = Ajj = 0 
with Aij i:- 0, then A is the sum of a symmetric rank-two matrix and a 
symmetric matrix of rank r - 2. So suppose that e; Aei = eJ Aej = 0 but 
that (3 = e; Aej i:- O. Let y = Aei, z = Aej and define B by 

B:= A - (3-1 (yzT + zyT ). 

Then B is symmetric and (3-1 (yzT + zyT) has rank two. The null space of 
B contains the null space of A. The independent vectors ei and ej lie in the 
null space of B but not in the null space of A, and so rk(B) ::; rk(A) - 2. 
Since the column space of A is spanned by the columns of B together with 
the vectors y and z, we conclude that rk(B) = rk(A) - 2. 

Therefore, by induction on the rank of A, we may write 

r-2s s 

A = L a;1xix; + L (3;1 (YjzJ + ZjyJ), (8.1) 
i=1 j=1 

and thus we have expressed A as a sum of s symmetric matrices with rank 
two and r - 28 with rank one. 0 

Corollary 8.9.4 Let A be a real symmetric n x n matrix of rank r. Then 
there is an n x r matrix C of rank r such that 

A=CNCT , 

where N is a block-diagonal r x r matrix with r - 28 diagonal entries equal 
to ±1, and 8 blocks of the form 
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Proof. We note that 

f3-1( yzT +zyT) = (f3-1y z) (~ ~) (f3- 1y zf. 

Therefore, if we take G to be the n x r matrix with columns Vla;llxi' 
f3;lyj, and Zj, then 

A= GNGT , 

where N is a block-diagonal matrix, with each diagonal block one of the 
matrices 

(0), (±1) , 

The column space of A is contained in the space spanned by vectors Xi, 

Yj and Zj in (8.1); because these two spaces have the same dimension, we 
conclude that these vectors are a basis for the column space of A. Therefore, 
rk(G) = r. 0 

The previous result is an application of Lemma 8.9.3 to real symmetric 
matrices. In the next section we apply it to symmetric matrices over GF(2). 

8.10 The Binary Rank of the Adjacency Matrix 

In general, there is not a great deal that can be said about a graph given the 
rank of its adjacency matrix over the real numbers. However, we can say 
considerably more if we consider the binary rank of the adjacency matrix, 
that is, the rank calculated over GF(2). If X is a graph, then rk2 (X) 
denotes the rank of its adjacency matrix over GF(2). 

First we specialize the results of the previous section to the binary case. 

Theorem 8.10.1 Let A be a symmetric n x n matrix over GF(2) with 
zero diagonal and binary rank m. Then m is even and there is an m x n 
matrix G of rank m such that 

A = GNGT , 

where N is a block diagonal matrix with m/2 blocks of the form 

Proof. Over GF(2), the diagonal entries of the matrix yzT + zyT are 
zero. Since all diagonal entries of A are zero, it follows that the algorithm 
implicit in the proof of Lemma 8.9.3 will express A as a sum of symmetric 
matrices with rank two and zero diagonals. Therefore, Lemma 8.9.3 implies 
that rk(A) is even. The proof of Corollary 8.9.4 now yields the rest of the 
theorem. 0 
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Next we develop a graphical translation of the procedure we used to 
prove Lemma 8.9.3. If u E V(X), the local complement au(X) of X at u is 
defined to be the graph with the same vertex set as X such that: 

(a) If v and ware distinct neighbours of u, then they are adjacent in Y 
if and only if they are not adjacent in X. 

(b) If v and ware distinct vertices of X, and not both neighbours of u, 
then they are adjacent in Y if and only if they are adjacent in X. 

Less formally, we get Y from X by complementing the neighbourhood 
XI(U) of u in X. If we view au as an operator on graphs with the same 
vertex set as X, then a; is the identity map. If u and v are not adjacent 
in X, then auav(X) = avau(X). We leave the proof of this as an exercise, 
because our concern will be with the case where u and v are adjacent. One 
consequence of the following theorem is that (a ua v)3 is the identity map if 
u and v are adjacent. 

Theorem 8.10.2 Let X be a graph and suppose u and v are neighbours in 
X. Then auavau(X) = avauav(X). IfY is the graph obtained by deleting 
u and v from auavau(X), then rk2 (X) = rk2 (Y) + 2. 

Proof. Let A be the adjacency matrix of X. Define a to be the character­
istic vector of the set of neighbours of u that are not adjacent to v. Define 
b to be the characteristic vector of the set of the neighbours of v, other 
than u, that are not adjacent to u. Let c denote the characteristic vector 
of the set of common neighbours of u and v. Finally, let eu and ev denote 
the characteristic vectors of u and v. 

The characteristic vector of the neighbours of u is a + c + ev , and so the 
off-diagonal entries of A(au(X)) are equal to those of 

Al =A+(a+c+ev)(a+c+ev)T. 

Similarly, as a + b + eu is the characteristic vector of the neighbours of v 
in au(X), the off-diagonal entries of A(avau(X)) are equal to those of 

A2 = Al + (a + b + eu)(a + b + eu)T. 

Finally, the characteristic vector of the neighbours of u in avau(X) is b + 
c + ev , and so the off-diagonal entries of A(auavau(X)) are equal to those 
of 

A3 = A2 + (b+c+ev)(b+c+evf· 

After straightforward manipulation we find that 

A3 = A + abT + baT + acT + caT + bcT + cbT 

+ (a + b)(eu + ev)T + (eu + ev)(a + bf + eue~. 
The only nonzero diagonal entry of this matrix is the uu-entry, and so we 

conclude that A(auavau(X)) = A3 + eue~. The previous equation shows 
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that A3 + eu e~ is unchanged if we swap a with band eu with ev. Therefore, 
auavau(X) = avauav(X), as claimed. 

The u-column of A is a + c + ev , the v-column of A is b + c + eu , and 
e~ Aev = 1. Therefore, the proof of Lemma 8.9.3 shows that the rank of 
the matrix 

A + (a +c+ ev)(b + c+ euf + (b+ c + eu)(a + c+ evf 

is equal to rk2(A) - 2. The u- and v-rows and columns of this matrix are 
zero, and so if A' is the principal submatrix obtained by deleting the u­
and v-rows and columns, then rk2(A') = rk2(A) - 2. 

To complete the proof we note that since 

(a+c)(b+c)T +(b+c)(a+bf 

= abT + baT + acT + caT + beT + cbT , 

it follows that the matrix obtained by deleting the u- and v-rows and 
columns from A3 is equal to A'. This matrix is the adjacency matrix of Y, 
and hence the second claim follows. D 

We will say that the graph Y in the theorem is obtained by rank-two 
reduction of X at the edge uv. 

By way of example, if X is the cycle Cn and n 2: 5, then the rank-two 
reduction of X at an edge is Cn - 2 • When n = 4 it is 2K1 , and when n = 3 
it is K 1 . It follows that rk2(Cn ) is n - 2 when n is even and n - 1 when n 
is odd. Clearly, we can use Theorem 8.10.2 to determine the binary rank of 
the adjacency matrix of any graph, although it will not usually be as easy 
as it was in this case. 

8.11 The Symplectic Graphs 

If a graph X has two vertices with identical neighbourhoods, then deleting 
one of them does not alter its rank. Conversely, we can duplicate a vertex 
arbitrarily often without changing the rank of a graph. Similarly, isolated 
vertices can be added or deleted at will without changing the rank of X. 
Recall that a graph is reduced if it has no isolated vertices and the neigh­
bourhoods of distinct vertices are distinct. It is clear that every graph is a 
straightforward modification of a reduced graph of the same rank. We are 
going to show that there is a unique maximal graph with binary rank 2r 
that contains every reduced graph of binary rank at most 2r as an induced 
subgraph. 

Suppose that X is a reduced graph with binary rank 2r. Relabelling 
vertices if necessary, Theorem 8.9.1 shows that the adjacency matrix of X 
can be expressed in the form 

A(X) = (~) M(I RT ), 
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where M is a 2r x 2r matrix oHull rank. Therefore, using Lemma 8.9.3 we 
see that 

A(X) = (~) CNCT(I RT), 

where N is a block diagonal matrix with r blocks of the form 

This provides an interesting vectorial representation of the graph X. The 
vertices of X are the columns of the matrix CT (I RT), and adjacency 
is given by 

u "" v if and only if uTNv = 1. 

Therefore, X is entirely determined by the set 0 of columns of CT ( I RT ). 
Since C has full rank, 0 is a spanning set of vectors. Conversely, if 0 is a 
spanning set of nonzero vectors in GF(2)2r and X is the graph with vertex 
set 0 and with adjacency defined by 

then X is a reduced graph with binary rank 2r. 
We give an example in Figure 8.5; this graph has binary rank 4, and 

therefore can be represented by eight vectors from GF(2)4. It is easy to 
check that it is represented by the set 

0= {1000,0100,0010,0001,1110,1101,1011,0111}. 

Figure 8.5. Graph with binary rank 4 

Let Sp(2r) be the graph obtained by taking 0 to be GF(2)2r \ 0. We 
call it the symplectic graph, for reasons to be provided in Section 10.12. 
The next result shows that we can view Sp(2r) as the universal graph with 
binary rank 2r. 

Theorem 8.11.1 A reduced graph has binary rank at most 2r if and only 
if it is an induced subgraph of Sp(2r). 
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Proof. Any reduced graph X of binary rank 2r has a vectorial representa­
tion as a spanning set of nonzero vectors in GF(2)2r. Therefore, the vertex 
set of X is a subset of the vertices of Sp(2r), where two vertices are ad­
jacent in X if and only if they are adjacent in Sp(2r). Therefore, X is an 
induced subgraph of Sp(2r). The converse is clear. D 

This implies that studying the properties of the universal graph Sp(2r) 
can yield information that applies to all graphs with binary rank 2r. A 
trivial observation of this kind is that a reduced graph with binary rank 
2r has at most 22r - 1 vertices. A more interesting example will be given 
when we return to the graphs Sp(2r) in Section 10.12. Finally, we finish 
with an interesting property of the symplectic graphs. 

Theorem 8.11.2 Every graph on 2r - 1 vertices occurs as an induced 
subgraph of Sp( 2r). 

Proof. We prove this by induction on r. It is true when r = 1 because a 
single vertex is an induced subgraph of a triangle. So suppose that r > 1, 
and let X be an arbitrary graph on 2r - 1 vertices. If X is empty, then it is 
straightforward to see that it is an induced subgraph of Sp(2r). Otherwise, 
X has at least one edge uv. Let Y be the rank-two reduction of X at the 
edge uv. Then Y is a graph on 2r - 3 vertices, and hence by the inductive 
hypothesis can be represented as a set 0 of nonzero vectors in GF(2)2r-2. 
If z is a vector in 0 representing the vertex y E V (Y), then define a vector 
z' E GF(2)2r as follows: 

{ 
Zi, for 1 ~ i ~ 2r - 2; 

z~ = 1, if i = 2r - 1 and y '" u in X, or i = 2r and y '" v in X; 
0, otherwise. 

Then the set of vectors 

0' = {z' : Z E S} U {e2r- b e2r} 

is a set of 2r vectors in GF(2)2r. Checking that the graph defined by 0' 
is equal to X requires examining several cases, but is otherwise routine, so 
we leave it as Exercise 28. D 

8.12 Spectral Decomposition 

Let A be an n x n real symmetric matrix and let ev(A) denote the set of 
eigenvalues of A. If (j is an eigenvalue of A, let Eo be the matrix representing 
orthogonal projection onto the eigenspace of (j. These are sometimes called 
the principal idempotents of A. Then 

E~ = Eo, 
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and since distinct eigenspaces of A are orthogonal, it follows that if () and 
r are distinct eigenvalues of A, 

EoEr = o. 
Since lR n has a basis consisting of eigenvectors of A, we have 

I= LEo. 
OEev(A) 

From this equation we see that 

A= L ()Eo; 
OEev(A) 

this is known as the spectral decomposition of A. 
More generally, if p is any polynomial, then it follows from the above 

that 

p(A) = L p(())Eo. (8.2) 
OEev(A) 

Since we may choose p so that it vanishes on all but one of the eigenvalues 
of A, it follows from (8.2) that Eo is a polynomial in A. The matrices Eo 
are linearly independent: If Eo aoEo = 0, then 

o = Er L aoEo = arEr . 
o 

Therefore, the principal idempotents form a basis for the vector space of 
all polynomials in A, and therefore this vector space has dimension equal 
to the number of distinct eigenvalues of A. 

Lemma 8.12.1 If X is a graph with diameter d, then A(X) has at least 
d + 1 distinct eigenvalues. 

Proof. We sketch the proof. Observe that the uv-entry of (A + It is 
nonzero if and only if u and v are joined by a path of length at most 
r. Consequently, the matrices (A + It for r = 0, ... , d form a linearly 
independent subset in the space of all polynomials in A. Therefore, d + 1 
is no greater than the dimension of this space, which is the number of 
primitive idempotents of A. 0 

A rational function is a function that can be expressed as the ratio q/r 
of two polynomials. It is not too hard to see that (8.2) still holds when p 
is a rational function, provided only that it is defined at each eigenvalue of 
A. Hence we obtain that 

(xl - A)-l = L (x - ())-l Eo. (8.3) 
OEev(A) 
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8.13 Rational Functions 

In this section we explore some of the consequences of (8.3); these will be 
crucial to our work on interlacing in the next chapter. 

Lemma 8.13.1 Let A be a real symmetric n x n matrix and let B denote 
the matrix obtained by deleting the ith row and column of A. Then 

¢(B, x) T -1 
¢(A, x) = ei (xl - A) ei, 

where ei is the ith standard basis vector. 

Proof. From the standard determinantal formula for the inverse of a 
matrix we have 

(( I _ A)-I) .. = det(xI - B) 
x 22 det(xI _ A) , 

so noting that 

suffices to complete the proof. 

Corollary 8.13.2 For any graph X we have 

Proof. By (8.3), 

¢'(X,x) = L ¢(X\u,x). 
uEV(X) 

( I A) -1 L tr Eo tr x - = --. x-e o 

By the lemma, the left side here is equal to 

L 
UEV(X) 

¢(X\ u, x) 
¢(X, x) . 

o 

If mo denotes the multiplicity of e as a zero of ¢(X, x), then a little bit of 
calculus yields the partial fraction expansion 

¢'(X, x) = L ~. 
¢(X,x) 0 x - e 

Since Eo is a symmetric matrix and E~ = Eo, its eigenvalues are all 0 or 1, 
and tr Eo is equal to its rank. But the rank of Eo is the dimension of the 
eigenspace associated with e, and therefore tr Eo = mo. This completes the 
~~ 0 

If f = pjq is a rational function, we say that f is proper if the degree of 
p is less than the degree of q. Any proper rational function has a partial 
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fraction expansion 

{--. pi(X) 
~ (x - ().)m i • 

i=l • 

Here mi is a positive integer, and Pi (x) is a nonzero polynomial of degree 
less than mi. We call the numbers ()i the poles of f; the integer mi is the 
order of the pole at ()i' A simple pole is a pole of order one. If the rational 
function f has a pole of order m, then P has a pole of order at least 2m. 
(You are invited to prove this.) 

Theorem 8.13.3 Let A be a real symmetric n x n matrix, let b be a vector 
of length n, and define 'ljJ(x) to be the rational function bT(xI - A)-lb. 
Then all zeros and poles of'ljJ are simple, and 'ljJ' is negative everywhere it 
is defined. If () and T are consecutive poles of'ljJ, the closed interval [(), T] 
contains exactly one zero of'ljJ. 

Proof. By (8.3), 

bT(xI _ A)-lb = " bT Eob. 
~ x-() 

OEev(A) 

(8.4) 

This implies that the poles of 'ljJ are simple. We differentiate both sides of 
(8.4) to obtain 

, bTEob 
'ljJ (x) = - L (x _ ())2 

o 

and then observe, using (8.3), that the right side here is -bT(xI - A)-2b. 
Thus 

'ljJ'(x) = -bT(xI - A)-2b. 

Since bT(xI - A)-2b is the squared length of (xl - A)-lb, it follows that 
'ljJ'(x) < 0 whenever x is not a pole of'ljJ. This implies that each zero of'ljJ 
must be simple. 

Suppose that () and T are consecutive poles of 'ljJ. Since these poles are 
simple, it follows that 'ljJ is a strictly decreasing function on the interval 
[(), T] and that it is positive for values of x in this interval sufficiently close 
to (), and negative when x is close enough to T. Accordingly, this interval 
contains exactly one zero of'ljJ. 0 

Exercises 

1. Show that IHom( Cn , X) I equals the number of closed walks of length 
n in X, and hence that IHom(Cn , X)I is the sum of the nth powers 
of the eigenvalues of X. 
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2. Let Band D be respectively the incidence and an oriented incidence 
matrix for the graph X. Show that X is bipartite if and only if there 
is a diagonal matrix M, with all diagonal entries equal to 1 or -1, 
such that M D = B. Show that X is bipartite if and only if ~ + A(X) 
and ~ - A(X) are similar matrices. 

3. Show that cospectral graphs have the same odd girth. 

4. Show that the sum of two positive semidefinite matrices is positive 
semidefinite, and that the sum of a positive definite and positive 
semidefinite matrix is positive definite. 

5. Let /1, ... , In be a set of vectors in an inner product space V and let 
G be the n x n matrix with Gij equal to the inner product of Ii and 
Ii. Show that G is a symmetric positive semidefinite matrix. 

6. Show that any principal submatrix of a positive semidefinite matrix 
is positive semidefinite. 

7. Let A be a symmetric positive semidefinite matrix. Show that the ith 
row of A is zero if and only if Aii = O. 

8. Let X be a regular graph on n vertices with valency k and let () be 
an eigenvalue of X. If u is an eigenvector for A(X) with eigenvalue 
() and Ju = 0, show that u is an eigenvector for X with eigenvalue 
-1-(). Use this to give an expression for ¢(X, x) in terms of ¢(X, x). 

9. Determine the eigenvalues of L(P) in the following stages: 

(a) Determine the eigenvalues of Kn. 
(b) Find the eigenvalues of L(K5~ 
(c) Find the eigenvalues of P = L(K5). 
(d) Find the eigenvalues of L(P). 

10. Determine the eigenvalues of Km,n and their multiplicities. 

11. Let Pn be the path with n vertices with vertex set {Vb . .. , vn }, where 
Vi rv Vi+! for i = 1, ... , n - 1. Suppose that I is an eigenvector for X 
with eigenvalue () such that I ( Vl) = 1. If we define polynomials Pr (x) 
recursively by Po (x) = 1, Pl(X) = x, and 

Pr+1(X) = xPr(x) - Pr-l(X), 

then show that I (vr ) = Pr-l (()). Deduce from this that Pn (x) is the 
characteristic polynomial of Pn . 

12. Show that when n is odd, ¢(C2n , x) = - ¢(Cn, x) ¢(Cn, -x). 

13. If Y is a subgraph of X, show that p(A(Y)) ::; p(A(X)). If X is 
connected, show that equality holds if and only if Y = X. 

14. Let X be a graph with maximum valency a. Show that 

Va ::; p(A(X)) ::; a 
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and characterize the cases where equality holds. 

15. Let A be a symmetric matrix with distinct eigenvalues (h, ... , On, and 
for each i, let Xi be an eigenvector with length one and eigenvalue 
Oi' Show that the principal idempotent Ei corresponding to Oi equals 
xixT· 

16. A graph X is walk regular if for all nonnegative integers r, the di­
agonal entries of A(XY are equal. (The simplest examples are the 
vertex-transitive graphs. Strongly regular graphs, which we study in 
Chapter 10, provide another less obvious class.) Show that a regular 
graph with at most four distinct eigenvalues is walk regular. 

17. If f is a rational function with a pole of order m, show that P has a 
pole of order at least 2m. 

18. Let B be the submatrix of the symmetric matrix A obtained by delet­
ing the ith row and column of A. Show that if X is an eigenvector 
for A such that Xi = 0, then the vector y we get by deleting the ith 
coordinate from X is an eigenvector for B. We call y the restriction 
of x, and X the extension of y. Now, suppose that 0 is a common 
eigenvalue of A and B, and that its multiplicity as an eigenvalue of 
A is m. If the multiplicity of 0 as an eigenvalue of B is m - 1, show 
that each O-eigenvector of B extends to an eigenvector for A. Using 
the spectral decomposition, prove that if the multiplicity of 0 as an 
eigenvalue of B is at least m and x is a O-eigenvector x of A, then 
Xi = O. 

19. If 

( 0 bT) 
A= b B ' 

then show that an eigenvector of B extends to an eigenvector of A if 
and only if it is orthogonal to b. 

20. If 

then show that 

(1 0) -1 ( X _bT ) 

o xl - B -b xl - B 

= (~ 
Hence deduce that 

det(xI - A) = _ bT( _ B)-1b 
det(xI _ B) x xl . 
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21. Let X be a regular graph on 2m vertices and suppose S ~ V(X) such 
that lSI = m. Let Xl be the graph we get by taking a new vertex 
and joining it to each vertex in S. Let X 2 be the graph we get by 
taking a new vertex and joining it to each vertex in V(X)\S. Use the 
previous exercise to show that Xl and X 2 are cospectral. Construct 
an example where Xl and X 2 are not isomorphic. 

22. Let A be an irreducible nonnegative matrix, and let L be the set of 
all real numbers A such that there is a A-subharmonic vector for A. 
Show directly that L is closed and bounded, and hence contains a 
maximum element p. 

23. Show that an m x n matrix over a field IF has rank r if and only if it 
can be written as the sum of r matrices with rank one. 

24. Show that if a graph has two vertices with identical neighbourhoods, 
then deleting one of them does not alter its rank. 

25. Show that if X is bipartite and Y is obtained from X by rank-two 
reduction at an edge, then Y is bipartite. 

26. Suppose we consider graphs with loops, but at most one loop per 
vertex. Define a rank-one reduction operation, similar to local com­
plementation at a vertex, that converts a given vertex to an isolated 
vertex and reduces the rank of the adjacency matrix. 

27. Let A be the adjacency matrix of the Petersen graph. Compute rk2(A) 
and rk2(A + I) using rank-one and rank-two reductions. 

28. Complete the details in the proof of Theorem 8.11.2 that every graph 
on 2r - 1 vertices occurs as an induced subgraph of Sp(2r). 

29. A matrix A over a field of odd characteristic is skew symmetric if 
A = _AT. (In even characteristic, we must add the requirement 
that the diagonal entries of A be zero.) An oriented graph can be 
represented naturally by a skew symmetric matrix over GF(3). Show 
that there is a universal oriented graph of rank r that contains each 
reduced oriented graph of rank at most r as an induced subgraph. 

30. Let A be the adjacency matrix of the graph X over some field IF. If 
c E IF and c =1= 0, show that a(X) :::; rk(A + cI). If c E IF and c =1= 1, 
show that 1 + w(X) :::; rk(A + cI). 

31. Let A be the adjacency matrix of the graph X over some field IF. If 
c E IF\ {O, I} and r = rk(A + cI), show that JV(X) I < 2r + r. 
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Notes 

Detailed information and further references concerning the eigenvalues of 
the adjacency matrix of a graph will be found in [4, 3,2]. Another approach, 
placing more emphasis on the characteristic polynomial, is presented in [5]. 
Most books on matrix theory include material on the Perron-Frobenius 
theorems (for example [8, 9]), and Minc [10] gives a detailed treatment of 
nonnegative matrices. We have covered some material not in the standard 
sources; we refer in particular to our discussions of rank and binary rank 
(in Section 8.9 and Section 8.10), and rational functions (in Section 8.13). 

The observation that a reduced graph with binary rank 2r is an induced 
subgraph of Sp(2r) is due to Rotman [11], and this is explored further in 
Godsil and Royle [7]. A graph is called n-full if it contains every graph 
on n vertices as an induced subgraph. Vu [12] observed that Sp(2r) is 
(2r - I)-full and gave the proof presented in Theorem 8.11.2. Bollobas 
and Thomason [1] proved that the Paley graphs, which we will meet in 
Section 10.3, also contain all small graphs as induced subgraphs. More 
information on walk-regular graphs appears in [6]. 
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9 
Interlacing 

If M is a real symmetric n x n matrix, let (h (M) ~ (h (M) ~ ... ~ en (M) 
denote its eigenvalues in nonincreasing order. Suppose A is a real symmetric 
n x n matrix and B is a real symmetric m x m matrix, where m ::; n. We say 
that the eigenvalues of B interlace the eigenvalues of A if for i = 1, ... , m, 

We will see that the eigenvalues of an induced subgraph of X interlace the 
eigenvalues of X. It follows that if we know enough about the spectrum of 
X, we can derive constraints on the subgraphs of X. We develop the theory 
of interlacing, equitable partitions, and generalized interlacing, and present 
a range of applications. These applications range from bounding the size of 
an independent set in a graph, and hence bounding its chromatic number, 
through to results related to the chemistry of the carbon molecules known 
as fullerenes. 

9 .1 Interlacing 

We derive the interlacing inequalities as a consequence of our work on 
rational functions (in Section 8.13). 

Theorem 9.1.1 Let A be a real symmetric n x n matrix and let B be a 
principal submatrix of A with order m x m. Then, for i = 1, ... , m, 
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Proof. We prove the result by induction on n. If m = n, there is nothing 
to prove. Assume m = n - 1. Then, by Lemma 8.13.1, for some i we have 

¢(B, x) T -1 
¢(A, x) = ei (xl - A) ei· 

Denote this rational function by 'l/J. By Theorem 8.13.3, 'l/J(x) has only 
simple poles and zeros, and each consecutive pair of poles is separated by 
a single zero. The poles of'l/J are zeros of A, the zeros of'l/J are zeros of B. 

For a real symmetric matrix M and a real number A, let n(A, M) denote 
the number of indices i such that Bi(M) 2:: A. We consider the behaviour 
of n(A, A) - n(A, B) as A decreases. If A is greater than the largest pole of 
'l/J, then the difference n(A, A) - n(A, B) is initially zero. Since each pole 
is simple, the value of this difference increases by one each time A passes 
through a pole of 'l/J, and since each zero is simple, its value decreases by one 
as it passes through a zero. As there is exactly one zero between each pair 
of poles, this difference alternates between ° and 1. Therefore, it follows 
that BH1 (A) ::; Bi(B) ::; Bi(A) for all i. 

Now, suppose that m < n - 1. Then B is a principal submatrix of a 
principal submatrix C of A with order (n - 1) x (n - 1). By induction we 
have 

By what we have already shown, 

and it follows that the eigenvalues of B interlace the eigenvalues of A. 0 

We will use Theorem 8.13.3 again in Chapter 13 to derive an interlac­
ing result for the eigenvalues of the Laplacian matrix of a graph. (See 
Theorem 13.6.2.) 

We close this section with an example. Let P be the Petersen graph 
and PI denote the subgraph obtained by deleting a single vertex. Then by 
Exercise 8.9, the characteristic polynomial of P is given by 

By Corollary 8.13.2, we have 

¢'(P,x) = 10¢(P\I,x), 

and so 

Therefore, 

'l/J(x) = (x2 - 2x - 2)(x - 1)4(x + 2)3 = ~ + ~ + 2/5 
(x - 3)(x -1)5(x + 2)4 (x - 3) (x - 1) (x + 2)" 
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The zeros of this are 1 ± V3, and the poles are 3, 1, and -2. Hence there 
is a zero between each pole, and given this it is not at all difficult to verify 
the the eigenvalues of P\ 1 interlace the eigenvalues of P. 

9.2 Inside and Outside the Petersen Graph 

We noted in Chapter 4 that the Petersen graph has no Hamilton cycle. We 
now give a proof of this using interlacing. 

Lemma 9.2.1 There are no Hamilton cycles in the Petersen graph P. 

Proof. First note that there is a Hamilton cycle in P if and only if there 
is an induced ClD in L(P). 

Now, L(P) has eigenvalues 4, 2, -1, and -2 with respective multiplic­
ities 1, 5, 4, and 5 (see Exercise 8.9). In particular, fh(L(P)) = -1. The 
eigenvalues of C lD are 

1+v5 -1+v5 I-v5 -1-v5 
2 -- -- -2 

, 2' 2 ' 2' 2 ' , 

where 2 and -2 are simple eigenvalues and the others all have multiplicity 
two. Therefore, fh(ClD ) ~ -0.618034. Hence 87 (ClD ) > 87 (L(P)), and so 
ClD is not an induced subgraph of L(P). 

It would be very interesting to find further applications of this argument. 
For example, there is no analogous proof that the Coxeter graph has no 
Hamilton cycle. 

Lemma 9.2.2 The edges of KID cannot be partitioned into three copies of 
the Petersen graph. 

Proof. Let P and Q be two copies of Petersen's graph on the same vertex 
set and with no edges in common. Let R be the subgraph of KlD formed 
by the edges not in P or Q. We show that R is bipartite. 

Let Up be the eigenspace of A(P) with eigenvalue 1, and let UQ be the 
corresponding eigenspace for A(Q). Then Up and UQ are 5-dimensional 
subspaces of m: lD. Since both subspaces lie in 1.1, they must have a nonzero 
vector u in common. Then 

A(R)u = (J - I - A(P) - A(Q))u = (J - I)u - 2u = -3u, 

and so -3 is an eigenvalue of A(R). Since R is cubic, it follows from 
Theorem 8.8.2 that it must be bipartite. 0 

9.3 Equitable Partitions 

In this section we consider partitions of the vertex set of a graph. We say 
that a partition 7r of V(X) with cells C1 , ... , C r is equitable if the number 
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of neighbours in C j of a vertex u in C i is a constant bij , independent of 
u. An equivalent definition is that the subgraph of X induced by each cell 
is regular, and the edges joining any two distinct cells form a semiregular 
bipartite graph. The directed graph with the r cells of 7f as its vertices and 
bij arcs from the ith to the jth cells of 7f is called the quotient of X over 
7f, and denoted by X/7f. Therefore, the entries of the adjacency matrix of 
this quotient are given by 

One important class of equitable partitions arises from automorphisms of 
a graph. The orbits of any group of automorphisms of X form an equitable 
partition. (The proof of this is left as an exercise.) An example is given 
by the group of rotations of order 5 acting on the Petersen graph. The 
two orbits of this group, namely the 5 "inner" vertices and the 5 "outer" 
vertices, form an equitable partition 7f1 with quotient matrix 

Another class arises from a mild generalization of the distance partitions 
of Section 4.5. If C is a subset of V(X), let Ci denote the set of vertices in 
X at distance i from C. (So Co = C.) We call a subset C completely regular 
if its distance partition is equitable. Any vertex of the Petersen graph is 
completely regular, and the corresponding distance partition 7f2 has three 
cells and quotient matrix 

A(X/~,) ~ 0 ~ D 
If 7f is a partition of V with r cells, define its characteristic matrix P to 

be the IVI x r matrix with the characteristic vectors of the cells of 7f as its 
columns. Then pT P is a diagonal matrix where (pT P)ii = ICil. Since the 
cells are nonempty, the matrix pT P is invertible. 

Lemma 9.3.1 Let 7f be an equitable partition of the graph X, with char­
acteristic matrix P, and let B = A(X/7f). Then AP = PB and B 
(PTp)-lpT AP. 

Proof. We will show that for all vertices u and cells Cj we have 

(AP)uj = (PB)uj. 

The uj-entry of AP is the number of neighbours of u that lie in Cj . If 
u E Ci, then this number is bij . Now, the uj-entry of PB is also bij , 
because the only nonzero entry in the u-row of P is a 1 in the i-column. 
Therefore, AP = PB, and so 

pTAP=pTpB: 
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since p T P is invertible, the second claim follows. 0 

We can translate the definition of an equitable partition more or less 
directly into linear algebra. 

Lemma 9.3.2 Let X be a graph with adjacency matrix A and let 7r be a 
partition of V(X) with characteristic matrix P. Then 7r is equitable if and 
only if the column space of P is A -invariant. 

Proof. The column space of P is A-invariant if and only if there is a 
matrix B such that AP = P B. If 7r is equitable, then by the previous 
lemma we may take B = A(X/7r). Conversely, if there is such a matrix B, 
then every vertex in cell Ci is adjacent to bij vertices in cell C j , and hence 
7r is equitable. 0 

If AP = P B, then AT P = P BT for any nonnegative integer r, and 
more generally, if f(x) is a polynomial, then f(A)P = Pf(B). If f is a 
polynomial such that f(A) = 0, then P f(B) = O. Since the columns of 
P are linearly independent, this implies that f(B) = O. This shows that 
the minimal polynomial of B divides the minimal polynomial of A, and 
therefore every eigenvalue of B is an eigenvalue of A. 

In fact, we can say more about the relationship between eigenvalues of 
B and eigenvalues of A. The next result implies that the multiplicity of (J 
as an eigenvalue of B is no greater than its multiplicity as an eigenvalue of 
A. 

Theorem 9.3.3 If 7r is an equitable partition of a graph X, then the char­
acteristic polynomial of A(X/7r) divides the characteristic polynomial of 
A(X). 

Proof. Let P be the characteristic matrix of 7r and let B = A(X/7r). If 
X has n vertices, then let Q be an n x (n - 17r1) matrix whose columns, 
together with those of P, form a basis for ~n. Then there are matrices C 
and D such that 

AQ=PC+QD, 

from which it follows that 

A(P Q)=(P Q)(~ ~). 
Since (P Q) is invertible, it follows that det(xI - B) divides det(xI - A) 
as asserted. 0 

We can also get information about the eigenvectors of X from the eigen­
vectors of the quotient X/7r. Suppose that AP = P B and that v is an 
eigenvector of B with eigenvalue (J. Then Pv i=- 0 and 

APv = PBv = (JPv: 
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hence Pv is an eigenvector of A. In this situation we say that the eigenvector 
v of B "lifts" to an eigenvector of A. 

Alternatively, we may argue that if the column space of P is A-invariant, 
then it must have a basis consisting of eigenvectors of A. Each of these 
eigenvectors is constant on the cells of P, and hence has the form Pv, 
where v of. O. If APv = BPv, then it follows that Bv = Bv. 0 

If the column space of P is A-invariant, then so is its orthogonal com­
plement; from this it follows that we may divide the eigenvectors of A into 
two classes: those that are constant on the cells of 7f, which have the form 
Pv for some eigenvector of B, and those that sum to zero on each cell of 
7f. 

For the two equitable partitions of the Petersen graph described above 
we have 

¢(X/7fl' x) = (x - 3)(x - 1) 

and 

¢(X/7f2, x) = (x - 3)(x - 1)(x + 2), 

and therefore we can conclude that -2, 1, and 3 are eigenvalues of the 
Petersen graph. 

We conclude this section with one elegant application of Theorem 9.3.3. 
A perfect e-code in a graph X is a set of vertices S such that for each vertex 
v of X there is a unique vertex in S at distance at most e from v. 

Lemma 9.3.4 If X is a regular graph with a perfect I-code, then -1 is an 
eigenvalue of A(X). 

Proof. Let S be a perfect I-code and consider the partition 7f of V(X) into 
S and its complement. If X is k-regular, then the definition of a perfect 
I-code implies that 7f is equitable with quotient matrix 

(~ k~I)' 
which has characteristic polynomial 

x(x - (k - 1)) - k = (x - k)(x + 1). 

Therefore, -1 is an eigenvalue of the quotient matrix, and hence an 
eigenvalue of A(X). 0 

We have already seen an example of a perfect I-code in Section 4.6: A 
heptad in J(7, 3, 0) forms a perfect I-code, because every vertex either lies 
in the heptad or is adjacent to a unique vertex in the heptad. In the next 
section we show that the eigenvalues of J(7, 3, 0) = K7:3 are 

-3, -1, 2, 4, 

which is reassuring. 
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9.4 Eigenvalues of Kneser Graphs 

If X is a graph, and 7r an equitable partition, then in general the eigenvalues 
of X/7r will be a proper subset of those of X. However, in certain special 
cases X/7r retains all the eigenvalues of X, and we can get a partial converse 
to Theorem 9.3.3. 

Theorem 9.4.1 Let X be a vertex-transitive graph and 7r the orbit par­
tition of some subgroup G of Aut(X). If 7r has a singleton cell {u}, then 
every eigenvalue of X is an eigenvalue of X/7r. 

Proof. If f is a function on V(X), and g E Aut(X), then let f9 denote 
the function given by 

fY(x) = f(x9). 

It is routine to show that if f is an eigenvector of X with eigenvalue 0, then 
so is f9. 

If f is an eigenvector of X with eigenvalue 0, let j denote the average 
of fY over the elements 9 E G. Then j is constant on the cells of 7r, and 
provided that it is nonzero, it, too, is an eigenvector of X with eigenvalue 
O. 

Now, consider any eigenvector h of X with eigenvalue O. Since h =I- 0, 
there is some vertex v such that h(v) =I- O. Let g E Aut(X) be an element 
such that u9 = v and let f = h9. Then f(u) =I- 0, and so 

j(u) = f(u) =I- O. 

Thus j is nonzero and constant on the cells of 7r. Therefore, following the 
discussion in Section 9.3, this implies that j is the lift of some eigenvector 
of X/7r with the same eigenvalue. Therefore, every eigenvalue of X is an 
eigenvalue of X/7r. 0 

We shall use this result to find the eigenvalues of the Kneser graphs. 
Assume that v ~ 2r, let X be the Kneser graph Kv:n and assume that 
the vertices of X are the r-subsets of the set 0 = {I, ... , v}. Let a be the 
fixed r-subset {I, ... , r} and let C i denote the r-subsets of 0 that meet a 
in exactly r - i points. The partition 7r with cells Co, ... ,Cr is the orbit 
partition of the subgroup of Sym(O) that fixes a setwise, and hence 7r is 
an equitable partition satisfying the conditions of Theorem 9.4.l. 

Now, we determine A(X/7r). Let f3 be an r-set meeting a in exactly r-i 
points. Then the ij-entry of A(X/7r) is the number of r-subsets of 0 that 
are disjoint from f3 and meet a in exactly r - j points. Hence 

( i) (v -r - i) A(X/7r)ij = r _ j j , o ~ i,j ~ r. 
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For example, if r = 3, then 

To determine the eigenvalues of A (X/rr), we need to carry out some 
computations with binomial coefficients; we note one that might not be 
familiar. 

Lemma 9.4.2 We have 

Proof. Denote the sum in the statement of the lemma by f(a, h, k). Since 

we have 

f(a, h, k) = f(a - 1, h, k) + f(a - 1, h, k - 1). 

We have f(k, h, k) = (_l)h, while f(a, h, 0) = 0 if h > 0 and f(a, 0, 0) = l. 
Thus it follows by induction that 

h(a - h) f(a,h,k)=(-l) k-h 

as claimed. o 

Theorem 9.4.3 The eigenvalues of the Kneser graph Kv:r are the integers 

i=O,l, ... ,r. 

Proof. If h(i, j) is a function of i and j, let [h(i, j)] denote the (r+ 1) x (r+ 
1) matrix with ij-entry h( i, j), where 0 ::; i, j ::; r. Let D be the diagonal 
matrix with ith diagonal entry 

We will prove the following identity: 

Here 
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and hence this identity implies that A(X/7r) is similar to the product 
D[ (;=~)l. Since [(;=~) J is upper triangular with all diagonal entries equal 
to 1, it follows that the eigenvalues of X/7r are the diagonal entries of D, 
and this yields the theorem. 

We prove (9.1). The ik-entry of the product 

equals 

t (v - ~ -i) ( i .) (j) . 
j=O J r - J k 

Since 

we can rewrite this sum as 

~ (v -; -i) (v -; ~ : -i) (r ~ j) 
(v -; - i) ~ (v -; ~ : - i) C ~ j) 

= (v -; - i) (v ~ : ~ k). 
(The last equality follows from the Vandermonde identity.) 

Given this, the hk-entry of the product 

equals 

which by Lemma 9.4.2 is equal to 

(_l)h(V~:~k) (V~:~h) = (_l)h(V~:~h) G=~)' 

(9.2) 

where the last equality follows from (9.2) by taking a = v-r-h, b = r-h, 
and c = k - h. This value is equal to the hk-entry of 

and so the result is proved. o 
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9.5 More Interlacing 

We establish a somewhat more general version of interlacing. This will 
increase the range of application, and yields further information when some 
of the inequalities are tight. 

We will use a tool from linear algebra known as Rayleigh's inequalities. 
Let A be a real symmetric matrix and let UI, ... , Uj be eigenvectors for 
A such that AUi = lh(A)Ui. Let Uj be the space spanned by the vectors 
{UI' ... , Uj}. Then, for all U in Uj 

uTAu > O·(A) 
uTu - J , 

with equality if and only if u is an eigenvector with eigenvalue OJ(A). If 
u E U/, then 

uTAu 
-T- ::; OJ+! (A), 
u u 

with equality if and only if u is an eigenvector with eigenval ue OJ +! (A). If 
you prove these inequalities when A is a diagonal matrix, then it is easy 
to do the general case; we invite you to do so. Also, the second family of 
inequalities follows from the first, applied to -A. 

Suppose that the eigenvalues of B interlace the eigenvalues of A, so that 

Then we say the interlacing is tight if there is some index j such that 

Oi(B) = {Oi(A), for ~ =~, .. . ,j; 
On-m+i (A), for z = J + 1, ... , m. 

Informally this means that the first j eigenvalues of B are as large as 
possible, while the remaining m - j are as small as possible. 

Theorem 9.5.1 Let A be a real symmetric n x n matrix and let R be an 
n x m matrix such that RT R = 1m. Set B equal to RT AR and let VI, ... , Vm 
be an orthogonal set of eigenvectors for B such that BVi = Oi (B)Vi' Then: 

(a) The eigenvalues of B interlace the eigenvalues of A. 

(b) 1fOi(B) = Oi(A), then there is an eigenvectory of B with eigenvalue 
Oi(B) such that Ry is an eigenvector of A with eigenvalue Oi(A). 

(c) IfOi(B) = Oi(A) fori = 1, ... ,l, then RVi is an eigenvector forA 
with eigenvalue Oi(A) for i = 1, ... , l. 

(d) If the interlacing is tight, then AR = RB. 

Proof. Let UI, ... ,Un be an orthogonal set of eigenvectors for A such that 
AUi = Oi(A)Ui. Let Uj be the span of UI,"" Uj and let Vi be the span of 
Vb ... , Vj' For any i, the space "i has dimension i, and the space (RTUi_ l ) 

has dimension at most i - 1. Therefore, there is a nonzero vector y in the 
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intersection of Vi and (RTUi_1)-L. Then yT RT Uj = 0 for j = 1, ... , i-I, 
and therefore Ry E ul:- 1 . By Rayleigh's inequalities this yields 

B.(A) > (Ry)T ARy = yT By > B.(B). 
2 - (Ry)TRy yTy - 2 

(9.3) 

We can now apply the same argument to the symmetric matrices -A and 
-B and conclude that Bi ( -B) :::; Bi( -A), and hence that Bn-m+i(A) :::; 
Bi(B). Therefore, the eigenvalues of B interlace those of A, and we have 
proved (a). 

If equality holds in (9.3), then y must be an eigenvector for Band Ry 
an eigenvector for A, both with eigenvalue Bi(A) = Bi(B). This proves (b). 

We prove (c) by induction on e. If i = 1, we may take y in (9.3) to be 
Vl, and deduce that ARvl = B1(A)Rvl' So we may assume that ARvi = 

Bi(A)Rvi for all i < g, and hence we may assume that Ui = RVi for all 
i < g. But then Vi lies in the intersection of Ve and (RTUe_d-L, and thus 
we may choose y to be Ve, which proves (c). 

If the interlacing is tight, then there is some index j such that Bi (B) = 
Bi(A) for i :::; j and Bi ( -B) = Bi ( -A) for i :::; m - j. Applying (c), we see 
that for all i, 

RBvi = Bi(B)Rvi = ARvi, 

and since Vl, ... ,Vm is a basis for lR m, this implies that RB = AR. 0 

If we take R to have columns equal to the standard basis vectors ei for i 
in some index set I, then RT AR is the principal submatrix of A with rows 
and columns indexed by I. Therefore, this result provides a considerable 
generalization of Theorem 9.1.1. We present an important application of 
this stronger version of interlacing in the next section, but before then we 
note the following consequence of the above theorem, which will be used in 
Chapter 13. 

Corollary 9.5.2 Let M be a real symmetric n x n matrix. If R is an n x m 
matrix such that RT R = 1m, then tr RT M R is less than or equal to the sum 
of the m largest eigenvalues of M. Equality holds if and only if the column 
space of R is spanned by eigenvectors belonging to these eigenvalues. 0 

9.6 More Applications 

Let X be a graph with adjacency matrix A, and let 1f be a partition, 
not necessarily equitable, of the vertices of X. If P is the characteristic 
matrix of 1f, then define the quotient of A relative to 1f to be the matrix 
(pT P)-l p T AP, and denote it by A/1f. We will show that the eigenvalues 
of A/1f interlace the eigenvalues of A, and then we will give examples to 
show why this might be of interest. 
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Lemma 9.6.1 If P is the characteristic matrix of a partition 7r of the 
vertices of the graph X, then the eigenvalues of (pT p)-l pT AP interlace 
the eigenvalues of A. If the interlacing is tight, then 7r is equitable. 

Proof. The problem with P is that its columns form an orthogonal set, 
not an orthonormal set, but fortunately this can easily be fixed. Recall that 
pT p is a diagonal matrix with positive diagonal entries, and so there is a 
diagonal matrix D such that D2 = pT P. If R = P D- 1 , then 

RT AR = D-1 pT APD-1 = D(D-2 pT AP)D-1, 

and so RT AR is similar to (pT p)-l pT AP. Furthermore, 

RT R = D-1(pT P)D- 1 = D-1(D2 )D-1 = I, 

and therefore by Theorem 9.5.1, the eigenvalues of RT AR interlace the 
eigenvalues of A. If the interlacing is tight, then the column space of R is 
A-invariant, and since Rand P have the same column space, it follows that 
7r is equitable. 0 

The ij-entry of p T AP is the number of edges joining vertices in the ith 
cell of 7r to vertices in the jth cell. Therefore, the ij-entry of (pT p)-l pT AP 
is the average number of edges leading from a vertex in the ith cell of 7r to 
vertices in the jth cell. 

We show how this can be used to find a bound on the size of an inde­
pendent set in a regular graph. Let X be a regular graph on n vertices 
with valency k and let 8 be an independent set of vertices. Let 7r be the 
partition with two cells 8 and V(X) \ 8 and let B be the quotient matrix 
A/7r. There are 181k edges between 8 and V(X)\8, and hence each vertex 
not in 8 has exactly 18Ik/(n -181) neighbours in 8. Therefore, 

B = ([~k k _ k[S[k ). 
n-k n-[S[ 

Both rows of B sum to k, and thus k is one of its eigenvalues. Since 

tr B = k _ 181k , 
n-k 

and tr B is the sum of the eigenvalues of B, we deduce that the second 
eigenvalue of B is -kI81/(n-181). Therefore, if 7 is the smallest eigenvalue 
of A, we conclude by interlacing that 

kl81 
7 ~ - n -181' (9.4) 

Lemma 9.6.2 Let X be a k-regular graph on n vertices with least 
eigenvalue 7. Then 

o:(X) ~ n( -7) . 
k-7 
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If equality holds, then each vertex not in an independent set of size a(X) 
has exactly -7 neighbours in it. 

Proof. The inequality follows on unpacking (9.4). If S is an independent 
set with size meeting this bound, then the partition with Sand V(X)\S as 
its cells is equitable, and so each vertex not in S has exactly kISI/(n-ISJ) = 
-7 neighbours in S. 0 

The Petersen graph P has n = 10, k = 3, and 7 = -2, and hence 
a(P) S 4. The Petersen graph does have independent sets of size four, and 
so each vertex outside such a set has exactly two neighbours in it (and 
thus the complement of an independent set of size four induces a copy of 
3K2 ). The Hoffman-Singleton graph has n = 50, k = 7, and as part of 
Exercise 10.7 we will discover that it has 7 = -3. Therefore, the bound on 
the size of a maximum independent set is 15, and every vertex not in an 
independent set of size 15 has exactly three neighbours in it. Thus we have 
another proof of Lemma 5.9.1. 

We saw in Section 9.4 that the least eigenvalue of Kv:r is 

_(v -r -1). 
r-I 

Since Kv:r has valency (v;-r), we find using Lemma 9.6.2 that the size of 
an independent set is at most 

thus providing another proof of the first part of the Erdos-Ko-Rado theo­
rem (Theorem 7.8.1). As equality holds, each vertex not in an independent 
set of this size has exactly (V;-:~l) neighbours in it. 

We can use interlacing in another way to produce another bound on 
the size of an independent set in a graph. If A is a symmetric matrix, let 
n+(A) and n-(A) denote respectively the number of positive and negative 
eigenvalues of A. 

Lemma 9.6.3 Let X be a graph on n vertices and let A be a symmetric 
n x n matrix such that Auv = 0 if the vertices u and v are not adjacent. 
Then 

a(X) S min{n - n+(A), n - n-(A)}. 

Proof. Let S be the subgraph of X induced by an independent set of size 
s, and let B be the principal submatrix of A with rows and columns indexed 
by the vertices in S. (So B is the zero matrix.) By interlacing, 

Bn-s+i(A) S Bi(B) S Bi(A). 

But of course, Bi(B) = 0 for all i; hence we infer that 

Os Bs(A) 
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and that n-(A) S n - s. We can apply the same argument with -A in 
place of A to deduce that n+(A) S n - s. 0 

We can always apply this result to the adjacency matrix A of X, but 
there are times when other matrices are more useful. One example will be 
offered in the next section. 

9.7 Bipartite Subgraphs 

We study the problem of bounding the maximum number of vertices in a 
bipartite induced subgraph of a Kneser graph K 2r+1:r. (The Kneser graphs 
with these parameters are often referred to as odd graphs.) 

We use Qr(X) to denote the maximum number of vertices in an 
r-colourable subgraph of X. By Lemma 7.14.1, we have that 

from which it follows that any bound on the size of an independent set 
in X 0 Kr yields a bound on Qr(X). We will use the bound we derived 
in terms of the number of nonnegative (or nonpositive) eigenvalues. For 
this we need to determine the adjacency matrix of the Cartesian product. 
Define the Kronecker product A I8i B of two matrices A and B to be the 
matrix we get by replacing the ij-entry of A by AijB, for all i and j. If X 
and Yare graphs and X x Y is their product, as defined in Section 6.3, 
then you may show that 

A(X x Y) = A(X) I8i A(Y). 

For the Cartesian product X 0 Y we have 

A(X 0 Y) = A(X) I8i I + I 181 A(Y). 

We attempt to justify this by noting that A(X) I8i I is the adjacency matrix 
of W(Y)I vertex-disjoint copies of X, and that I I8i A(Y) is the adjacency 
matrix of W(X)I vertex-disjoint copies of Y, but we omit the details. 

The Kronecker product has the property that if A, B, C, and D are four 
matrices such that the products AC and BD exist, then 

(A I8i B)(C I8i D) = AC I8i BD. 

Therefore, if x and yare vectors of the correct lengths, then 

(A I8i B)(x I8i y) = Ax I8i By. 

If x and yare eigenvectors of A and B, with eigenvalues 0 and r, 
respectively, then 

Ax I8i By = Or x I8i y, 
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whence x ® y is an eigenvector of A ® B with eigenvalue OT. In particular, 
if x and yare eigenvectors of X and Y, with respective eigenvalues 0 and 
T, then 

A(XDY)(x®y) = (O+T)X®Y. 

This implies that if 0 and T have multiplicities a and b, respectively, then 
0+ T is an eigenvalue of X D Y with multiplicity abo We also note that if 
T and s are real numbers, then TO + ST is an eigenvalue of 

TA(X) ® f + sf ® A(Y) 

with multiplicity abo 
We are now going to apply Lemma 9.6.3 to the Kneser graphs K 2r+1:r. 

As we saw in Section 9.4, the eigenvalues of these graphs are the integers 

i = 0, .. . ,T; 

the multiplicities are known to be 

i = 0, .. . ,T, 

with the understanding that the binomial coefficient C\) is zero. (We have 
not computed these multiplicities, and will not.) 

We start with the Petersen graph K 5:2 . Its eigenvalues are 3, -2 and 
1 with multiplicities I, 4, and 5. The eigenvalues of K2 are -1 and I, so 
K5:2 D K2 has eight negative eigenvalues, seven positive eigenvalues, and 
five equal to zero. This yields a bound of at most 12 vertices in a bipartite 
subgraph, which is certainly not wrong! There is an improvement available, 
though, if we work with the matrix 

A' = A(K2r+1:r) ® f + ~f ® A(K2 ). 

For the Petersen graph, this matrix has seven positive eigenvalues and 13 
negative eigenvalues, yielding Q:2(X) :::; 7. This can be realized in two ways, 
shown in Figure 9.1. 

Figure 9.1. Bipartite subgraphs of K5:2 
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Applying the same modification to K 7:3 , we find that 

a2(K7 :3 ) ::; 26, 

which is again the correct bound, and again can be realized in two different 
ways. In general, we get the following, but we leave the proof as an exercise. 

o 

For K9:4 this gives an upper bound of 98. The exact value is not known, 
but Tardif has found a bipartite subgraph of size 96. 

9.8 Fullerenes 

A fullerene is a cubic planar graph with all faces 5-cydes or 6-cydes. 
Fullerenes arise in chemistry as molecules consisting entirely of carbon 
atoms. Each carbon atom is bonded to exactly three others, thus the ver­
tices of the graph represent the carbon atoms and the edges the bonded 
pairs of atoms. An example on 26 vertices is shown in Figure 9.2. 

Figure 9.2. A fullerene on 26 vertices 

Lemma 9.8.1 A fullerene has exactly twelve 5-cycles. 

Proof. Suppose F is a fullerene with n vertices, e edges, and f faces. Then 
n, e, and 1 are constrained by Euler's relatton, n - e + 1 = 2. Since F is 
cubic, 3n = 2e. Let fr denote the number of faces of F with size r. Then 

3 1 
15 + f6 = f = 2 + e - n = 2 + 2n - n = 2 + 2n. 

Since each edge lies in exactly two faces, 

5f5 + 6/6 = 2e = 3n. 
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Solving these equations implies that /5 = 12. 0 

It follows from the argument above that 

n = 2f6 +20. 

If f6 = 0, then n = 20, and the dodecahedron is the unique fullerene on 20 
vertices. 

Most fullerene graphs do not correspond to molecules that have been 
observed in nature. Chemists believe that one necessary condition is that no 
two 5-cycles can share a common vertex-such fullerenes are called isolated 
pentagon fullerenes. By Lemma 9.8.1, any isolated pentagon fullerene has at 
least 60 vertices. There is a unique example on 60 vertices, which happens 
to be the Cayley graph for Alt(5) relative to the generating set 

{(12)(34), (12345), (15342)}. 

This example is shown in Figure 9.5 and is known as buckminsterfullerene. 
We describe an operation on cubic planar graphs that can be used to 

construct fullerenes. If X is a cubic planar graph with n vertices, m = 3n/2 
edges and f faces, then its line graph L(X) is a planar 4-regular graph 
with m vertices and n + f faces; the reason it is planar is clear from a 
drawing such as Figure 9.3. The n + f faces consist of n triangular faces 
each containing a vertex of X, and f faces each completely inscribed within 
a face of X of the same length. 

Figure 9.3. A cubic planar graph X and its line graph L(X) 

The leapfrog graph F(X) is formed by taking each vertex of L(X) and 
splitting it into a pair of adjacent vertices in such a way that every trian­
gular face around a vertex of X becomes a six-cycle; once again, a drawing 
such as Figure 9.4 is the easiest way to visualize this. Then F(X) is a cubic 
planar graph on 2m vertices with n faces of length six and f faces of the 
same lengths as the faces of X. In particular, if X is a fullerene, then so is 
F(X). 
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Figure 9.4. The leapfrog graph 

The edges joining each pair of newly split vertices form a perfect match­
ing M in F (X). The n faces of length six around the vertices of X each 
contain three edges from M and three other edges, and we will call these 
faces the special hexagons of F (X). The remaining faces, those arising from 
the faces of X, contain no edges of M. Therefore, regardless of the start­
ing fullerene, F(X) is an isolated pentagon fullerene. Buckminsterfullerene 
arises by performing the leapfrog operation on the dodecahedron. 

There is an alternative description of the leapfrog operation that is more 
general and more formal. Suppose a graph X is embedded on some surface 
in such a way that each edge lies in two distinct faces. We construct a 
graph F(X) whose vertices are the pairs (e, F), where e is an edge and F 
a face of X that contains e. If Fl and F2 are the two faces that contain e, 
we declare (e, F1 ) and (e, F2) to be adjacent. If el and e2 are two edges on 
F, then (ell F) is adjacent to (e2' F) if and only if el and e2 have a single 
vertex in common. We say that F(X) is obtained from X by leapfrogging. 
The edges of the first type form a perfect matching M in F (X), and the 
edges of the second type form a disjoint collection of cycles, one for each 
face of X. We call M the canonical perfect matching of F(X). 

9.9 Stability of Fullerenes 

In addition to the isolated pentagon rule, there is evidence that leads some 
chemists to believe that a necessary condition for the physical existence of a 
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Figure 9.5. Buckminsterfullerene 

particular fullerene is that the graph should have exactly half its eigenvalues 
positive, and half negative. In this section we use interlacing to show that 
a fullerene derived from the leapfrog construction has exactly half of its 
eigenvalues positive and half negative. Other than the leapfrog fullerenes, 
there are very few other fullerenes known to have this property. 

Lemma 9.9.1 If X is a cubic planar graph with leapfrog graph F(X), then 
F(X) has at most half of its eigenvalues positive and at most half of its 
eigenvalues negative. 

Proof. Let 1f be the partition whose cells are the edges of the canonical 
perfect matching M of F(X). Since X is cubic, two distinct cells of 1f are 
joined by at most one edge. The graph defined on the cells of 1f where two 
cells are adjacent if they are joined by an edge is the line graph L(X) of 
X. 

Let P be the characteristic matrix of 1f, let A be the adjacency matrix of 
F(X), and let L be the adjacency matrix of L(X). Then a straightforward 
calculation shows that 

pTAP = 2I +L. 
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Because the smallest eigenvalue of Lis -2, it follows that p T AP is positive 
semidefinite. If R = P /)2, then RT AR is also positive semidefinite, and 
its eigenvalues interlace the eigenvalues of A. Therefore, if F(X) has 2m 
vertices, we have 

Next we prove a similar bound on Om+! (A). We use an arbitrary orienta­
tion a of X to produce an orientation of the edges of the canonical perfect 
matching M. Suppose e E E(X) and Fl and F2 are the two faces of X 
that contain e. Then (e, F 1 ) and (e, F2 ) are the end-vertices of an edge of 
M. We orient it so that it points from (e, F 1) to (e, F2) if F2 is the face on 
the right as we move along e in the direction determined by a. Denote this 
oriented graph by MU. 

Let Q be the incidence matrix of MU and let D be the incidence matrix 
of Xu. Then 

QTAQ= _DTD, 

which implies that QT AQ is negative semidefinite. If R = Q /)2, then 
RT AR is also negative semidefinite, and the eigenvalues of RT AR interlace 
those of A. Therefore, 

and the result is proved. o 

Theorem 9.9.2 If X is a cubic planar graph, then its leapfrog graph F(X) 
has exactly half of its eigenvalues negative. If, in addition, X has a face of 
length not divisible by three, then its leapfrog graph F(X) also has exactly 
half of its eigenvalues positive. 

Proof. By the lemma, the first conclusion follows if Om+! (A) -=I- 0, and the 
second follows if Om(A) -=I- 0. 

Suppose to the contrary that Om+! (A) = 0. Then by Theorem 9.5.1, 
there is an eigenvector f for A with eigenvalue ° that sums to zero on 
each cell of 1r. Let F = Vo, ... , Vr be a face of F(X) that is not a special 
hexagon. Thus each vertex Vi is adjacent to Vi-l, Vi+! , and the other vertex 
Wi in the same cell of 1r. Since f sums to zero on the cells of 1T, we have 
f(Wi) = - f(Vi). Since f has eigenvalue 0, the sum of the values of f on 
the neighbours of Vi+! is 0, and similarly for Vi+2. Therefore (performing 
all subscript arithmetic modulo r + 1), we get 

and hence 

f(Vi) - f(Vi+l) + f(Vi+2) = 0, 

f(vi+d - f(Vi+2) + f(Vi+3) = 0, 
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If the length of F is not divisible by six, then f is constant, and therefore 
zero, on 'the vertices of F. Any cubic planar graph has a face of length less 
than six, and therefore F(X) has a face that is not a special hexagon on 
which f is zero. Every edge of M lies in two special hexagons, and if f is 
determined on one special hexagon, the values it takes on any "neighbour­
ing" special hexagon are also uniquely determined. If f is zero on a special 
hexagon, then it is routine to confirm that it is zero on any neighbouring 
special hexagon, and therefore zero on every vertex of F(X). Otherwise, 
by starting with a special hexagon H sharing an edge with F and inferring 
the values that f must take on the special hexagons neighbouring Hand 
so on, it is possible to show that there is a "circuit" of special hexagons 
such that f takes increasingly large absolute values on every second one; 
we leave the details as an exercise. This, of course, is impossible, and so we 
conclude that there is no such eigenvector. 

Next we suppose that Bm(A) = 0, in which case there is an eigenvector 
for A with eigenvalue ° that is constant on each cell of 7r. An analogous 
argument to the one above yields that for a face F = Vo, ... , Vr that is not 
a special hexagon, we have 

If F has length not divisible by three, then f is constant, and hence zero 
on every vertex of F. It is left as an exercise similar to the case above to 
show that this implies that f = 0. D 

Exercises 

1. What goes wrong if we apply the argument of Lemma 9.2.1 in an 
attempt to prove that the Petersen graph has no Hamilton path? 

2. Show that the orbits of a group of automorphisms of X form an 
equitable partition. 

3. If 'If is an equitable partition of the vertex set of the graph X, show 
that the spectral radius of A(Xj'lf) is equal to the spectral radius of 
A(X). 

4. Determine the graphs with Bmin ~ -1. 

5. Let X be a vertex-transitive graph with valency k, and let B be a 
simple eigenvalue of its adjacency matrix A. Show that either B = 
k, or IV(X) I is even and k - B is an even integer. (Hint: If P is a 
permutation matrix representing an automorphism of X and u is an 
eigenvector of A, then Pu is an eigenvector with the same eigenvalue.) 

6. Let X be an arc-transitive graph with valency k. Show that if B is a 
simple eigenvalue of A(X), then B = ±k. 
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7. Let X be a vertex-transitive graph with two simple eigenvalues, 
neither equal to the valency. Show that IV(X) I is divisible by four. 

8. Let X be a graph and 7f an equitable partition of V(X). Show that 
the spectral radius of X is equal to the spectral radius of X/7f. 

9. Let X be a graph with largest eigenvalue fh and average valency k. 
Use interlacing to prove that 81 ::::: k, with equality if and only if X 
is regular. 

10. Let X be the Kneser graph K v :r , with the r-subsets of n as its 
vertices. If 1 E n, let 7f be the partition of X with two cells, one 
consisting of the r-subsets that contain 1, and the other of those that 
do not. Show that this partition is equitable, and that - (v~:~l) is 
an eigenvalue of the quotient. 

11. Let X and Y be graphs with respective equitable partitions CJ and 7f. 

If A(X/CJ) = A(Y/7f), show that there is a graph Z that covers both 
X and Y. 

12. Let A be a symmetric n x n matrix and let R be an n x m matrix 
such that RT R = I. Show that there is an orthogonal matrix Q whose 
first m columns coincide with R, and hence deduce that RT AR is a 
principal submatrix of a symmetric matrix similar to A. 

13. Let X be a graph on n vertices and let 7f be an equitable partition 
of X. Let Q be the normalized characteristic matrix of 7f and assume 
that B is the quotient matrix, given by 

AQ=QB. 

If 8 is an eigenvalue of A with principal idempotent Eg, define Fg by 

EgP = PFg. 

(Note that Fg might be zero.) Show that Fg is symmetric and FJ = 
Fg. Show further that Fg is one of the principal idempotents of B. If 
the first cell of 7f consists of the first vertex of X, show that 

14. Suppose X is a walk-regular graph on n vertices and 7f is an equitable 
partition of X with the first vertex of X as a cell. Assume B = 

A(X/7f) and e is a simple eigenvalue of B; let Xg be an eigenvector of 
B with eigenvalue 8. If mg is the multiplicity of 8 as an eigenvalue of 
X, show that mg = n(xg)i/llxgI1 2 , where Ilxll denotes the Euclidean 
length of a vector x. (Hint: Use the previous exercise.) 

15. Suppose X is a graph on n vertices and 7f is an equitable partition of 
X with the first vertex of X as a cell. Show how to determine n from 
A(X/7f). 
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16. Let A be a real symmetric n x n matrix. A subspace U of ~n is 
isotropic if xT Ax = 0 for all vectors x in U. Let V (+) be the subspace 
of~n spanned by the eigenvectors of A with positive eigenvalues, and 
let V( -) be the subspace spanned by the eigenvectors with negative 
eigenvalues. Show that 

V(+) n V(-) = {O}, 

and if U is isotropic, then 

V(+) nU = V(-) nU = {O}. 

Using this, deduce that o:(X) cannot be greater than n - n+(A) or 
n - n-(A). 

17. Compute the eigenvalues of And(k) and then use an eigenvalue bound 
to show that its independence number is bounded above by its 
valency. (See Section 6.9 for the definition of these graphs.) 

18. Use a weighted adjacency matrix to prove that o:(K7:3 D C5) ::; 61. 

19. Find an expression for the eigenvalues of the lexicographic product 
X [Km] in terms of the eigenvalues of X. 

20. Let X be a cubic planar graph with leapfrog graph F(X), and let f 
be an eigenvector of F(X) with eigenvalue 0 that sums to zero on the 
cells of the canonical perfect matching. Show that f = 0 if and only 
if f is zero on the vertices of a face that is not a special hexagon. 

21. Let X be a cubic planar graph with leapfrog graph F(X), and let f 
be an eigenvector of F(X) with eigenvalue 0 that is constant on the 
cells of the canonical perfect matching. Show that f = 0 if and only 
if f is zero on the vertices of a face that is not a special hexagon. 

22. Define a generalized leapfrog operation as follows. If X is a graph, 
then define a graph F'(X) on the vertex set He, i) : e E E(X), i = 
0,1}. All the pairs of vertices (e,O) and (e, 1) are adjacent, and there 
is a single edge between He, 0), (e, I)} and {(f, 0), (f, I)} if and only 
if e and f are incident edges in X. Show that any generalized leapfrog 
graph has at most half its eigenvalues positive and at most half 
negative. 

Notes 

The full power of interlacing in graph theory was most convincingly demon­
strated by Haemers, in his doctoral thesis. He has exhausted his supply of 
copies of this, but [1] is a satisfactory substitute. 

The proof that KlO cannot be partitioned into three copies of the 
Petersen graph is based on Lossers and Schwenk [3]. 
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The bound on a( X) involving the least eigenvalue of X is due to Hoffman, 
although inspired by a bound, due to Delsarte, for strongly regular graphs. 
The bound on a(X) in terms ofn+(A) and n-(A) is due to Cvetkovic. This 
bounds seems surprisingly useful, and has not received a lot of attention. 

Our treatment of the stability of fullerenes follows Haemers [1], which is 
based in turn on Manolopoulos, Woodall, and Fowler [4]. 

More information related to Exercise 11 is given in Leighton [2]. 
The proof, in Section 9.2, that the Petersen graph has no Hamilton cycle 

is based on work of Mohar [5]. Some extensions to this will be treated in 
Section 13.6. In the notes to Chapter 3 we discussed two proofs that the 
Coxeter graph has no Hamilton cycle. Because we have only a very limited 
selection of tools for proving that a graph has no Hamilton cycle, we feel 
it could be very useful to have a third proof of this, using interlacing. 
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10 
Strongly Regular Graphs 

In this chapter we return to the theme of combinatorial regularity with the 
study of strongly regular graphs. In addition to being regular, a strongly 
regular graph has the property that the number of common neighbours 
of two distinct vertices depends only on whether they are adjacent or 
nonadjacent. A connected strongly regular graph with connected comple­
ment is just a distance-regular graph of diameter two. Any vertex-transitive 
graph with a rank-three automorphism group is strongly regular, and we 
have already met several such graphs, including the Petersen graph, the 
Hoffman-Singleton graph, and the symplectic graphs of Section 8.1l. 

We present the basic theory of strongly regular graphs, primarily using 
the algebraic methods of earlier chapters. We show that the adjacency 
matrix of a strongly regular graph has just three eigenvalues, and develop 
a number of conditions that these eigenvalues satisfy, culminating in an 
elementary proof of the Krein bounds. Each of these conditions restricts 
the structure of a strongly regular graph, and most of them yield some 
additional information about the possible subgraphs of a strongly regular 
graph. 

Although many strongly regular graphs have large and interesting 
groups, this is not at all typical, and it is probably true that "almost 
all" strongly regular graphs are asymmetric. We show how strongly regular 
graphs arise from Latin squares and designs, which supply numerous exam­
ples of strongly regular graphs with no reason to have large automorphism 
groups. 
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10.1 Parameters 

Let X be a regular graph that is neither complete nor empty. Then X is 
said to be strongly regular with parameters 

(n, k, a, c) 

if it is k-regular, every pair of adjacent vertices has a common neighbours, 
and every pair of distinct nonadjacent vertices has c common neighbours. 
One simple example is the 5-cycle C5 , which is a 2-regular graph such that 
adjacent vertices have no common neighbours and distinct nonadjacent ver­
tices have precisely one common neighbour. Thus it is a (5,2,0,1) strongly 
regular graph. 

It is straightforward to show that if X is strongly regular with parameters 
(n, k, a, c), then its complement X is also strongly regular with parameters 
(n, k, ii, c), where 

k = n - k -1, 

ii = n - 2 - 2k + c, 

c = n - 2k + a. 

A strongly regular graph X is called primitive if both X and its com­
plement are connected, otherwise imprimitive. The next lemma shows that 
there is only one class of imprimitive strongly regular graphs. 

Lemma 10.1.1 Let X be an (n, k, a, c) strongly regular graph. Then the 
following are equivalent: 

(a) X is not connected, 

(b) c = 0, 
(c) a = k - 1, 

(d) X is isomorphic to mKk+1 for some m > l. 

Proof. Suppose that X is not connected and let Xl be a component of X. 
A vertex in Xl has no common neighbours with a vertex not in Xl, and 
so c = 0. If c = 0, then any two neighbours of a vertex u E V(X) must 
be adjacent, and so a = k - 1. Finally, if a = k - 1, then the component 
containing any vertex must be a complete graph K k +1, and hence X is a 
disjoint union of complete graphs. 0 

Two simple families of examples of strongly regular graphs are provided 
by the line graphs of Kn and Kn,n. The graph L(Kn) has parameters 

(n(n - 1)/2, 2n - 4, n - 2, 4), 

while L(Kn,n) has parameters 

(n2 , 2n - 2, n - 2, 2). 
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These graphs are sometimes referred to as the triangular graphs and the 
square lattice graphs, respectively. 

The parameters of a strongly regular graph are not independent. We can 
find some relationships between them by simple counting. Every vertex u 
has k neighbours, and hence n - k - 1 non-neighbours. We will count the 
total number of edges between the neighbours and non-neighbours of u 
in two ways. Each of the k neighbours of u is adjacent to u itself, to a 
neighbours of u, and thus to k - a - 1 non-neighbours of u, for a total of 
k(k - a -1) edges. On the other hand, each of the n - k -1 non-neighbours 
of u is adjacent to c neighbours of u for a total of (n - k - l)c edges. 
Therefore, 

k(k-a-1) = (n-k-1)c. (10.1) 

The study of strongly regular graphs often proceeds by constructing a 
list of possible parameter sets, and then trying to find the actual graphs 
with those parameter sets. We can view the above equation as a very simple 
example of a feasibility condition that must be satisfied by the parameters 
of any strongly regular graph. 

10.2 Eigenvalues 

Suppose A is the adjacency matrix of the (n, k, a, c) strongly regular graph 
X. We can determine the eigenvalues of the matrix A from the parameters 
of X and thereby obtain some strong feasibility conditions. 

The uv-entry of the matrix A 2 is the number of walks of length two from 
the vertex u to the vertex v. In a strongly regular graph this number is 
determined only by whether u and v are equal, adjacent, or distinct and 
nonadjacent. Therefore, we get the equation 

A 2 = kI + aA + c( J - I - A), 

which can be rewritten as 

A2 - (a - c)A - (k - c)I = cJ. 

We can use this equation to determine the eigenvalues of A. Since X 
is regular with valency k, it follows that k is an eigenvalue of A with 
eigenvector 1. By Lemma 8.4.1 any other eigenvector of A is orthogonal to 
1. Let z be an eigenvector for A with eigenvalue 0 =I k. Then 

A 2 z - (a - c)Az - (k - c)Iz = cJz = 0, 

so 

02 - (a - c)O - (k - c) = 0. 

Therefore, the eigenvalues of A different from k must be zeros of the 
quadratic x 2 - (a - c)x - (k - c). If we set 6. = (a - c)2 + 4(k - c) (the 



220 10. Strongly Regular Graphs 

discriminant of the quadratic) and denote the two zeros of this polynomial 
by 0 and T, we get 

0= (a - c) + v'K 
2 ' 

(a - c) - v'K 
T = 2 . 

Now, OT = (c - k), and so, provided that c < k, we get that 0 and T 
are nonzero with opposite signs. We shall usually assume that 0 > O. We 
see that the eigenvalues of a strongly regular graph are determined by its 
parameters (although strongly regular graphs with the same parameters 
need not be isomorphic). 

The multiplicities of the eigenvalues are also determined by the parame­
ters. To see this, let mIJ and mr be the multiplicities of 0 and T, respectively. 
Since k has multiplicity equal to one and the sum of all the eigenvalues is 
the trace of A (which is 0), we have 

Hence 

(n-1)T+k 
mIJ=- 0 ' -T 

(n-1)(}+k 
m r = O-T . (10.2) 

Now, 

(0 - T)2 = (0 + T? - 40T = (a - C)2 + 4(k - c) =~. 

Substituting the values for 0 and T into the expressions for the multiplici­
ties, we get 

mIJ = ~ ((n _ 1) _ 2k + (n -l)(a - c)) 
2 v'K 

and 

_ ~ (( _ 1) 2k + (n - l)(a - c)) 
m r - 2 n + v'K . 

This argument yields a powerful feasibility condition. Given a parame­
ter set we can compute mIJ and mr using these equations. If the results 
are not integers, then there cannot be a strongly regular graph with these 
parameters. In practice this is a very useful condition, as we shall see in Sec­
tion 10.5. The classical application of this idea is to determine the possible 
valencies for a Moore graph with diameter two. We leave this as Exercise 7. 

Lemma 10.2.1 A connected regular graph with exactly three distinct 
eigenvalues is strongly regular. 
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Proof. Suppose that X is connected and regular with eigenvalues k, (), 
and T, where k is the valency. If A = A(X), then the matrix polynomial 

1 
M := (k _ ())(k _ T) (A - ()I)(A - T1) 

has all its eigenvalues equal to 0 or 1. Any eigenvector of A with eigenvalue 
() or T lies in the kernel of M, whence we see that the rank of M is equal to 
the multiplicity of k as an eigenvalue. Since X is connected, this multiplicity 
is one, and as Ml = 1, it follows that M = ~J. 

We have shown that J is a quadratic polynomial in A, and thus A2 is a 
linear combination of I, J, and A. Accordingly, X is strongly regular. 0 

10.3 Some Characterizations 

We begin this section with an important class of strongly regular graphs. 
Let q be a prime power such that q == 1 mod 4. Then the Paley graph P(q) 
has as vertex set the elements of the finite field GF(q), with two vertices 
being adjacent if and only if their difference is a nonzero square in GF(q). 
The congruence condition on q implies that -1 is a square in GF(q), and 
hence the graph is undirected. The Paley graph P(q) is strongly regular 
with parameters 

(q, (q -1)/2, (q - 5)/4, (q - 1)/4). 

By using the equations above we see that the eigenvalues () and Tare 
(-1 ± y'q)/2 and that they have the same multiplicity (q - 1)/2. 

Lemma 10.3.1 Let X be strongly regular with parameters (n, k, a, c) and 
distinct eigenvalues k, (), and T. Then 

nkk 
m()mr = (() _ T)2. 

Proof. The proof of this lemma is left as an exercise. o 

Lemma 10.3.2 Let X be strongly regular with parameters (n, k, a, c) and 
eigenvalues k, (), and T. If m() = mr, then k = (n - 1)/2, a = (n - 5)/4, 
and c = (n - 1)/4. 

Proof. If m() = mT) then they both equal (n - 1)/2, which we denote 
by m. Then m is coprime to n, and therefore it follows from the previous 
lemma that m 2 divides kk. Since k + k = n - 1, it must be the case that 
kk ~ (n -1)2/4 = m 2 , with equality if and only if k = k. Therefore, we 
must have equality, and so k = k = m. Since m(() + T) = -k, we see that 
()+T = a - c = -1, and so a = c-1. Finally, because k(k - a-I) = kc we 
see that c = k - a-I, and hence c = k/2. Putting this all together shows 
that X has the stated parameters. 0 
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A graph with me = m T is called a conference graph. Therefore, all Pa­
ley graphs are conference graphs (but the converse is not true; there are 
conference graphs that are not Paley graphs). 

The difference between me and m T is given by 

2k + (n - l)(a - c) 
m T - me = -yIK . 

If the numerator of this expression is nonzero, then ~ must be a perfect 
square, and the eigenvalues () and T are rational. Because they are the roots 
of a monic quadratic with integer coefficients, they are integers. This gives 
us the following lemma. 

Lemma 10.3.3 Let X be strongly regular with parameters (n, k, a, c) and 
eigenvalues k, (), and T. Then either 

(a) X is a conference graph, or 

(b) (() - T)2 is a perfect square and () and T are integers. o 

The graph L(K3 •3 ) satisfies both (a) and (b), and more generally, all Paley 
graphs P(q) where q is a square satisfy both these conditions. 

We can use our results to severely restrict the parameter sets of the 
strongly regular graphs on p or 2p vertices when p is prime. 

Lemma 10.3.4 Let X be a strongly regular graph with p vertices, where p 
is prime. Then X is a conference graph. 

Proof. By Lemma 10.3.1 we have 

(()_T)2= pkk. 
memT 

(10.3) 

If X is not a conference graph, then (() - T)2 is a perfect square. But since 
k, k, me, and m T are all nonzero values smaller than p, the right-hand side 
of (10.3) is not divisible by p2, which is a contradiction. 0 

Lemma 10.3.5 Let X be a primitive strongly regular graph with an eigen­
value () of multiplicity n/2. If k < n/2, then the parameters of X 
are 

Proof. Since me = n - 1 - m T, we see that me i= m T, and hence that () 
and T are integers. 

First we will show by contradiction that () must be the eigenvalue of 
multiplicity n/2. Suppose instead that m T = n/2. From above we know 
that m T = (n() + k - ())/(() - T), and because m T divides n, it must also 
divide k - (). But since X is primitive, 0 < () < k, and so 0 < k - () < n/2, 
and hence m T cannot divide k - (). Therefore, we conclude that me = n/2. 
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Now, m() = (n7 + k - 7)/(7 - 0), and since m() divides n, it must also 
divide k - 7. But since -k ::::: 7, we see that k - 7 < n, and hence it must 
be the case that m() = k - 7. 

Set m = m() = n/2. Then m T = m-1, and since tr A = ° and tr A2 = nk, 
we have 

k+mO+(m-1)7=0, 

By expanding the terms (m - 1)7 and (m - 1)72 in the above expressions 
and then substituting k - m for the second occurrence of 7 in each case we 
get 

1 + 0 +7 = 0, 

respectively. Combining these we get that m = 02 + (0 + 1)2, and hence 
that k = 0(20 + 1). Finally, we know that c - k = 07 = -(02 + 0), and so 
c = 02 ; we also know that a - c = 0 + 7 = -1, so a = 02 - 1. Hence the 
result is proved. 0 

Corollary 10.3.6 Let X be a primitive strongly regular graph with 2p 
vertices where p is prime. Then the parameters of X or its complement 
are 

Proof. By taking the complement if necessary, we may assume that 
k ::::: (n - 1)/2. The graph X cannot be a conference graph (because for 
a conference graph n = 2mT + 1 is odd), and hence 0 and 7 are integers. 
Since (0 - 7)2m ()mT = 2pkk, we see that either p divides (0 - 7)2 or p 
divides m()mT' If p divides (0 - 7)2, then so must p2, and hence p must 
divide kk. Since k ::::: (2p - 1)/2, this implies that p must divide k, and 
hence k = p and k = p - 1. It is left as Exercise 1 to show that there are 
no primitive strongly regular graphs with k and k coprime. On the other 
hand, if p divides m()mT' then either m() = p or m T = p, and the result 
follows from Lemma 10.3.5. 0 

Examples of such graphs can be obtained from certain Steiner systems. In 
particular, if D is a 2 - (20( 0 + 1) + 1, 0 + 1, 1) design, then the complement 
of the block graph of D is a graph with these parameters. Such designs 
are known only for 0 ::::: 4. However, there are many further examples of 
strongly regular graphs with these parameters. 

lOA Latin Square Graphs 

In this section we consider an extended example, namely the graphs arising 
from Latin squares. Recall from Section 4.5 that a Latin square of order n 
is an n x n matrix with entries from a set of size n such that each row and 
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column contains each symbol precisely once. Here are three examples: 

(
1 2 3 4) 2 1 4 3 

L1 = 3 4 1 2 ' 

432 1 

(1 3 4 2) 
4 2 1 3 

L2 = 2431 ' 
3 124 

Two Latin squares L = (lij) and M = (mij) are said to be orthogonal if 
the n2 pairs 

where l~i,j~n, 

are all distinct. The Latin squares L1 and L2 shown above are orthogonal, 
as can easily be checked by "superimposing" the two squares and then 
checking that every ordered pair of elements from {l, 2, 3, 4} occurs twice 
in the resulting array: 

11 23 34 42 
24 12 41 33 
32 44 13 21 
43 31 22 14 

A set S of Latin squares is called mutually orthogonal if every pair of 
squares in S is orthogonal. 

An orthogonal array with parameters k and n is a k x n2 array with 
entries from a set N of size n such that the n2 ordered pairs defined by 
any two rows of the matrix are all distinct. We denote an orthogonal array 
with these parameters by OA(k, n). A Latin square immediately gives rise 
to an OA(3, n) by taking the three rows ofthe orthogonal array to be "row 
number," "column number," and "symbol": 

1 1 1 1 2 2 
1 2 3 4 1 2 
1 2 3 4 2 1 

2 2 3 3 3 3 4 4 4 4 
3 4 1 2 3 4 1 2 3 4 
4 3 3 4 1 2 4 3 2 1 

Conversely, any OA(3, n) gives rise to a Latin square (or in fact several 
Latin squares) by reversing this procedure and regarding two of the rows 
of the orthogonal array as the row and column indices of a Latin square. 

In an analogous fashion an OA(k, n) gives rise to a set of k - 2 Latin 
squares. It is easy to see that these Latin squares are mutually orthogonal, 
and hence we have one half of the following result. (The other half is easy, 
and is left to the reader to ponder.) 

Theorem 10.4.1 An OA(k, n) is equivalent to a set of k - 2 mutually 
orthogonal Latin squares. 0 

Given an OA(k, n), we can define a graph X as follows: The vertices of X 
are the n2 columns of the orthogonal array (viewed as column vectors of 
length k), and two vertices are adjacent if they have the same entries in 
one coordinate position. 
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Theorem 10.4.2 The graph defined by an OA(k, n) is strongly regular 
with parameters 

(n2 , (n-l)k, n-2+(k-l)(k-2), k(k-l)). o 

Notice that the graph defined by an OA(2, n) is isomorphic to L(Kn,n). We 
can say more about the structure of strongly regular graphs arising from 
orthogonal arrays. 

Lemma 10.4.3 Let L be a Latin square of order n and let X be the graph 
of the corresponding OA(3, n). Then the maximum number of vertices a(X) 
in an independent set of X is n, and the chromatic number x(X) of X is 
at least n. If L is the multiplication table of a group, then X(X) = n if and 
only if a(X) = n. 

Proof. If we identify the n 2 vertices of X with the n 2 cells of the Latin 
square L, then it is clear that an independent set of X can contain at 
most one cell from each row of L. Therefore, a(X) :::; n, which immediately 
implies that X(X) ?: n. 

Assume now that L is the multiplication table of a group G and denote 
the ij-entry of L by ioj. An independent set of size n contains precisely one 
cell from each row of L, and hence we can describe such a set by giving for 
each row the column number of that cell. Therefore, an independent set of 
size n is determined by giving a permutation 7r of N := {I, 2, ... , n} such 
that the map i f--+ i 0 i1f is also a permutation of N. But if kEN, then the 
permutation 7rk which maps i to k 0 i1f will also provide an independent set 
either equal to or disjoint from the one determined by 7r. Thus we obtain 
n independent sets of size n, and so X has chromatic number n. 0 

Lemma 10.4.4 Let L be a Latin square arising from the multiplication 
table of the cyclic group G of order 2n and let X be the graph of the 
corresponding OA(3, 2n). Then X has no independent sets of size 2n. 

Proof. Suppose on the contrary that X does have an independent set of 
2n vertices, described by the permutation 7r. There is a unique element 7 

of order two in G, and so all the remaining nonidentity elements can be 
paired with their inverses. It follows that the product of all the entries in 
G is equal to 7. Hence 

7 = L i 0 i1f = L i L i1f = 7 2 = 1. 
iEG iEG iEG 

This contradiction shows that such a permutation 7r cannot exist. 0 

An orthogonal array OA(k, n) is called extendible if it occurs as the first 
k rows of an OA(k + 1, n). 

Theorem 10.4.5 An OA(k, n) is extendible if and only if its graph has 
chromatic number n. 
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Proof. Let X be the graph of an OA(k, n). Suppose first that x(X) = n. 
Then the n2 vertices of X fall into n colour classes V(X) = VI U··· U Vn . 

Define the (k + 1 )st row of the orthogonal array by setting the entry to i 
if the column corresponds to a vertex in \Ii. Conversely, if the orthogonal 
array is extendible, then the sets of columns on which the (k + l)st row is 
constant form n independent sets of size n in X. 0 

Up to permutations of rows, columns, and symbols there are only two 
Latin squares of order 4, one coming from the group table of the cyclic 
group of order 4 and the other from the group table of the noncyclic group 
of order 4. Of the three Latin squares above, Ll is the multiplication table 
of the noncyclic group, L2 a permuted version of the same thing, and L3 the 
multiplication table of the cyclic group. From Lemma 10.4.4 the orthogonal 
array corresponding to L3 is not extendible (and hence we cannot find a 
Latin square orthogonal to L3). However, Ll and L2 are orthogonal, and 
hence give us an OA(4, 4). The graph corresponding to this orthogonal ar­
ray is the complement of 4K4 , and hence is 4-colourable. Thus the OA(4, 4) 
can be extended to an OA(5, 4) whose graph is the complete graph K 16• 

This shows that the graph of Ll is the complement of the graph defined by 
just two rows of the orthogonal array, which is simply L(K4,4). 

10.5 Small Strongly Regular Graphs 

In this section we describe the small primitive strongly regular graphs, 
namely those on up to 25 vertices. First we construct a list of the param­
eter sets that satisfy equation (10.1) and for which the multiplicities of 
the eigenvalues are integral. This is not hard to do by hand; indeed, we 
recommend it. 

The parameter sets in Table 10.1 pass this test. (We list only those where 
k::; n/2.) 

Graphs that we have already met dominate this list. Paley graphs occur 
on 5, 9, 13, 17, and 25 vertices. The Petersen graph is a strongly regu­
lar cubic graph on 10 vertices, isomorphic to L(K5). The complement of 
L(K6) is a 6-valent graph on 15 vertices, while L(K7) and its complement 
are strongly regular graphs with parameters (21,10,5,4) and (21,10,3,6), 
respectively. There are two nonisomorphic Latin squares of order four, and 
the complements of their associated graphs provide two (16,6,2,2) strongly 
regular graphs. The line graph L(K5,5) is a (25,8,3,2) strongly regular 
graph. It is possible to show that the parameter vector (16,6,2,2) is re­
alized only by the two Latin square graphs, and that each of the other 
parameter vectors just mentioned is realized by a unique graph. 

There is a (16,5,0,2) strongly regular graph called the Clebsch graph, 
shown in Figure 10.1. We will discuss this graph, and prove that it is 
unique, in Section 10.6. There are two Latin squares of order 5, yielding 



n 

5 

9 

10 

13 

15 

16 

16 

17 

21 

21 

21 

25 

25 

k a c 

201 

4 1 2 

301 

6 2 3 

613 

5 0 2 

6 2 2 

834 

10 3 6 

10 4 5 

10 5 4 

8 3 2 

12 5 6 

e 
(-1 + )5)/2 

1 

1 

(-1 + Vi3)/2 
1 

1 

2 

(-1+vTI)/2 

1 

(-1+J2i)/2 

3 

3 

2 
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T 

(-1 - )5)/2 

-2 

-2 

(-1- Vi3)/2 
-3 

-3 

-2 

(-1 - vTI)/2 

-4 

(-1 - J2i)/2 

-2 

-2 

-3 

2 2 

4 4 

5 4 

6 6 

9 5 

10 5 

6 9 

8 8 
14 6 

10 10 

6 14 

8 16 

12 12 

Table 10.1. Parameters of small strongly regular graphs 

two (25, 12, 5,6) strongly regular graphs. An exhaustive computer search 
has shown that there are 10 strongly regular graphs with these parameters. 
Such exhaustive computer searches have also been performed for a very lim­
ited number of other parameter sets. The smallest parameter set for which 
the exact number of strongly regular graphs is unknown is (37,18,8,9). 

The only parameter set remaining from Table 10.1 is (21,10,4,5). A 
graph with these parameters would be a conference graph. However, it is 
known that a conference graph on n vertices exists if and only if n is the 
sum of two squares. Therefore, there is no strongly regular graph with these 
parameters. 

10.6 Local Eigenvalues 

Let X be a strongly regular graph and choose a vertex u E V(X). We can 
write the adjacency matrix A of X in partitioned form: 

Here Al is the adjacency matrix of the subgraph of X induced by the neigh­
bours of u, and A2 is the adjacency matrix of the subgraph induced by the 
vertices at distance two from u. We call these two subgraphs respectively 
the first and second subconstituents of X relative to u. Our goal in this 



228 10. Strongly Regular Graphs 

Figure 10.1. The Clebsch graph 

section is to describe the relation between the eigenvalues of X and the 
eigenvalues of its subconstituents. 

Suppose that X has parameters (n, k, a, c). Then 

A2 - (a - c)A - (k - c)I = cJ. 

On the other hand, we also have 

( 
kIT AlIT BT ) 

A2= All J+Ar+BTB AlBT+BTA2 , 
B1 BAI + A2B A~ + BBT 

and so, comparing these expressions, we obtain the following three 
conditions: 

Ai - (a - C)Al - (k - c)I + BT B = (c - l)J, 

A~ - (a - c)A2 - (k - c)I + BBT = cJ, 

BAI +A2B = (a-c)B+cJ. 

We say that an eigenvalue of Ai is local if it is not equal to an eigen­
value of A and has an eigenvector orthogonal to 1. We have the following 
characterization. 

Lemma 10.6.1 Let X be strongly regular with eigenvalues k > B > T. 

Suppose that x is an eigenvector of Al with eigenvalue 0"1 such that IT x = 
0. If Bx = 0, then 0"1 E {B,T}, and if Bx =I- 0, then T < 0"1 < B. 

Proof. Since IT x = 0, we have 

(Ai - (a - c)Al - (k - c)I)x = _BT Bx, 
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and since X is strongly regular with eigenvalues k, 0, and 7, we have 

(A~ - (a - C)A1 - (k - c)I)x = (A1 - OI)(A1 - 7I)x. 

Therefore, if x is an eigenvector of A1 with eigenvalue a1, 

(a1 - O)(a1 - 7)X = _BT Bx. 

If Bx = 0, then (a1 - O)(a1 - 7) = 0 and a1 E {O,7}. If Bx #- 0, then 
BT Bx #- 0, and so x is an eigenvector for the positive semidefinite matrix 
BT B with eigenvalue -(a1 -O)(a1 -7). It follows that (a1 -O)(a1 -7) < 0, 
whence 7 < a1 < O. D 

Either using similar arguments to those above or taking complements we 
obtain the following result. 

Lemma 10.6.2 Let X be a strongly regular graph with eigenvalues k > 
o > 7. Suppose that y is an eigenvector of A2 with eigenvalue a2 such that 
1 T Y = o. If BT y = 0, then a2 E {O, 7}, and if BT y#-O, then 7 < a2 < O. D 

Theorem 10.6.3 Let X be an (n, k, a, c) strongly regular graph. Then a 
is a local eigenvalue of one subconstituent of X if and only if a - c - a is 
a local eigenvalue of the other, with equal multiplicities. 

Proof. Suppose that a1 is a local eigenvalue of A1 with eigenvector x. 
Then, since IT x = 0, 

implies that 

Therefore, since Bx #- 0, it is an eigenvector of A2 with eigenvalue a-c-a1. 
Since 1TB = (k -1- a)lT, we also have 1TBx = 0, and so a- c- a1 is a 
local eigenvalue for A2 • 

A similar argument shows that if a2 is a local eigenvalue of A2 with 
eigenvector y, then a - c - a2 is a local eigenvalue of A1 with eigenvector 
BTy. 

Finally, note that the mapping B from the a1-eigenspace of A1 into the 
(a - c - a1 )-eigenspace of A2 is injective and the mapping BT from the 
(a - c - a1)-eigenspace of A2 into the a1-eigenspace of A1 is also injective. 
Therefore, the dimension of these two subspaces is equal. D 

These results also give us some information about the eigenvectors of 
A. Since the distance partition is equitable, the three eigenvectors of the 
quotient matrix yield three eigenvectors of A that are constant on u, V(X1 ), 

and V(X2 ). The remaining eigenvectors may all be taken to sum to zero 
on u, V(X1), and V(X2). If x is an eigenvector of A1 with eigenvector a1 
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that sums to zero on V (Xl)' then define a vector z by 

z=(~). 
aBx 

We will show that for a suitable choice for a, the vector z is an eigenvector 
of A. If Bx = 0, then it is easy to see that z is an eigenvector of A with 
eigenvalue 0'1, which must therefore be equal to either () or T. 

If Bx i= 0, then 

Az= (a1x+~BTBX) = ((a1 -a(a1 -o())(a1 -T))x) 
Bx + aA2Bx Bx + aA2Bx 

Now, A2Bx = (a-c-aI}Bx, and so by taking a = (0'1 _T)-l and recalling 
that () = a - c - T, we deduce that 

Az = ( ()~ ). 
()aBx 

Therefore, z is an eigenvector of A with eigenvalue (). Taking a = (0'1 _())-1 

yields an eigenvector of A with eigenvalue T. 

We finish with a result that uses local eigenvalues to show that the 
Clebsch graph is unique. 

Theorem 10.6.4 The Clebsch graph is the unique strongly regular graph 
with parameters (16,5,0,2). 

Proof. Suppose that X is a (16,5,0,2) strongly regular graph, which 
therefore has eigenvalues 5, 1, and -3. Let X 2 denote the second subcon­
stituent of X. This is a cubic graph on 10 vertices, and so has an eigenvalue 
3 with eigenvector 1. All its other eigenvectors are orthogonal to 1. Since ° 
is the only eigenvalue of the first subconstituent, the only other eigenvalues 
that X 2 can have are 1, -3, and the local eigenvalue -2. Since -1 is not 
in this set, X 2 can not have K4 as a component, and so X 2 is connected. 
This implies that its diameter is at least two; therefore, X 2 has at least 
three eigenvalues. Hence the spectrum of X 2 is not symmetric about zero, 
and so X 2 is not bipartite. Consequently, -3 is not an eigenvalue of X 2 • 

Therefore, X 2 is a connected cubic graph with exactly the three eigenvalues 
3, 1, and -2. By Lemma 10.2.1 it is strongly regular, and hence isomorphic 
to the Petersen graph. The neighbours in X 2 of any fixed vertex of the first 
sub constituent form an independent set of size four in X 2 . Because the 
Petersen graph has exactly five independent sets of size four, each vertex 
of the first subconstituent is adjacent to precisely one of these indepen­
dent sets. Therefore, we conclude that X is uniquely determined by its 
parameters. D 
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10.7 The Krein Bounds 

This section is devoted to proving the following result, which gives in­
equalities between the parameters of a strongly regular graph. The bounds 
implied by these inequalities are known as the Krein bounds, as they apply 
to strongly regular graphs. (There are related inequalities for distance­
regular graphs and, more generally, for association schemes.) The usual 
proof of these inequalities is much less elementary, and does not provide 
information about the cases where equality holds. 

Theorem 10.7.1 Let X be a primitive (n, k, a, c) strongly regular graph, 
with eigenvalues k, (), and 7. Let mo and m'T denote the multiplicities of() 
and 7, respectively. Then 

()72 - 2()27 - ()2 - k() + kT2 + 2k7 ~ 0, 

()27 _ 2()72 - 7 2 - kT + k()2 + 2k() ~ O. 

If the first inequality is tight, then k ~ mo, and if the second is tight, then 
k ~ m'T' If either of the inequalities is tight, then one of the following is 
true: 

(a) X is the 5-cycle C5 . 

(b) Either X or its complement X has all its first subconstituents empty, 
and all its second subconstituents strongly regular. 

(c) All subconstituents of X are strongly regular. 0 

Our proof is long, and somewhat indirect, but involves nothing deeper than 
an application of the Cauchy-Schwarz inequality. We break the argument 
into a number oflemmas. First, however, we introduce some notation which 
is used throughout this section. Let X be a primitive (n, k, a, c) strongly 
regular graph with eigenvalues k, (), and 7, where we make no assumption 
concerning the signs of () and 7 (that is, either () or 7 may be the positive 
eigenvalue). Let u be an arbitrary vertex of X and let Xl and X 2 be the 
first and second subconstituents relative to u. The adjacency matrix of Xl 
is denoted by Ai' We use m for mo where needed in the proofs, but not 
the statements, of the series of lemmas. 

Lemma 10.7.2 If k ~ mo, then 7 is an eigenvalue of the first 
subconstituent of X with multiplicity at least k - mo. 

Proof. Let U denote the space of functions on V(X) that sum to zero on 
each subconstituent of X relative to u. This space has dimension n - 3. 
Let T be the space spanned by the eigenvectors of X with eigenvalue 7 

that sum to zero on V(Xl ); this has dimension n - m - 2 and is contained 
in U. Let N denote the space of functions on V (X) that sum to zero and 
have their support contained in V(Xd; this has dimension k - 1 and is 
also contained in U. If k > m, then dimN +dimT > dimU, and therefore 
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dim N n T 2: k - m. Each function in N nTis an eigenvector of X with 
eigenvalue T, and its restriction to V(XI ) is an eigenvector of Xl with the 
same eigenvalue. 0 

The next result is the heart of the theorem. It is essentially the first of 
the two Krein inequalities. 

Lemma 10.7.3 If k 2: mo, then 

(mo - l)(ka - a2 - (k - mO)T2) - (a + (k - mO)T)2 2: o. 
Proof. We know that a is an eigenvalue of Al with multiplicity at least 
one, and that T is an eigenvalue with multiplicity at least k - m. This leaves 
m -1 eigenvalues as yet unaccounted for; we denote them by al,···, am~l. 
Then 

0= tr(Ad = a + (k - m)T + L ai 

and 

By the Cauchy~Schwarz inequality, 

with equality if and only if the m - 1 eigenvalues O"i are all equal. Using 
the two equations above, we obtain the inequality in the statement of the 
lemma. 0 

Lemma 10.7.4 If k < mo, then 

(mo - l)(ka - a2 - (k - mO)T2) - (a + (k - mO)T? > O. 

Proof. Define the polynomial p( x) by 

p(x) := (m - l)(ka - a2 - (k - m)x2) - (a + (k - m)x)2. 

Then 

p(x) = (m - l)ka - ma2 + 2a(m - k)x + (k - l)(m - k)x2, 

and after some computation, we find that its discriminant is 

-4a(m - k)(m - l)k(k - 1- a). 

Since k < m and 1 < m, we see that this is negative unless a = O. If a = 0, 
then 

p(x) = (k - l)(m - k)x2, 

and consequently p(T) #- 0, unless T = O. 
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If a = 0 and T = 0, then X is the complete bipartite graph Kk,k with 
eigenvalues k, 0, and -k. However, if T = 0, then () = -k and m = 1, which 
contradicts the condition that k < m. 0 

Note that the proof of Lemma 10.7.4 shows that if k < me, then p(x) 2: 0 
for any choice of x, while the proof of Lemma 10.7.3 shows that if k 2: me, 
then the eigenvalue T must satisfy p(T) 2: O. Therefore, only Lemma 10.7.3 
provides an actual constraint on the parameters of a strongly regular graph. 

We have now shown that whether or not k 2: me, 

(me -l)(ka - a2 - (k - me)T2) - (a + (k - me)T)2 2: O. 

Using Exercise 5, we can write this in terms of k, (), and T, obtaining 

_ kT(T + 1)(() + 1) (2()2T + ()2 _ ()T2 + k() _ kT2 _ 2kT) > O. 
(k + ()T)(() - T) -

(10.4) 

(Don't try this at home on your own! Use Maple or some approximation 
thereto.) Also from Exercise 5 we find that 

i:= _ k(() + l)(T + 1) 
k + ()T 

is the number of vertices of X 2 , and since X is primitive, this is strictly 
positive. Therefore, 

kT(T + 1)(() + 1) iT 
(k+()T)(()-T) ()-T' 

Since X is primitive, T =I 0, and so T(()-T)-l < O. Therefore, (10.4) implies 
that 

2()2T + ()2 - ()T2 + k() - kT2 - 2kT ::; O. 

Thus we have proved the first inequality in the statement of our theorem. 
Because our proofs made no assumption about which eigenvalue was the 
positive one, the second inequality follows immediately from the first by 
exchanging () and T. 

Next we consider the case where one of the inequalities is tight. 

Lemma 10.7.5 If 

(me - l)(ka - a2 - (k - me)T2) - (a + (k - me)T)2 = 0, 

then k 2: me. In addition, either each first subconstituent of X is strongly 
regular, or k = me and a = O. 

Proof. By Lemma 10.7.4, equality cannot occur if k < me, and so 
k 2: me. If equality holds in the Cauchy-Schwarz bound in the proof of 
Lemma 10.7.3, then the eigenvalues ai must all be equal; we denote their 
common value by a. Therefore, Xl has at most three distinct eigenvalues 
a, a, and T. 
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If k = m, then 

0= (k - 1)(ka - a2) - a2 = k 2a - ka2 - ka = ka(k - a - 1). 

Since X is neither empty nor complete, k ::f. 0 and k ::f. a + 1, which implies 
that a = O. 

Therefore, we assume that k > m and consider separately the cases where 
Xl has one, two, or three distinct eigenvalues. If Xl has just one eigenvalue, 
then it is empty, and so a = a = r = O. Since (}r = c - k, this implies that 
c = k and X is a complete bipartite graph, which is not primitive. 

If Xl has exactly two distinct eigenvalues, then by Lemma 8.12.1, each 
component of Xl has diameter at most 1, and so Xl is a union of cliques. 
Since X is not complete, there are at least two cliques, and since Xl has two 
eigenvalues, these cliques have size at least two. Therefore, Xl is strongly 
regular. 

If Xl has three distinct eigenvalues, then Xl is a regular graph whose 
largest eigenvalue is simple. By the Perron-Frobenius theorem the mul­
tiplicity of the largest eigenvalue of a regular graph equals the number 
of components, and so it follows that X I is connected. Therefore, by 
Lemma 10.2.1, Xl is strongly regular. 0 

To complete our proof we consider the complement of X, which is 
strongly regular with parameters 

(n, n - 1 - k, n - 2 - 2k + c, n - 2k + a) 

and has eigenvalues n - k - 1, -1 - r, and -1 - () with multiplicities 1, 
mr , and me, respectively. If we set i equal to n - 1 - k and b equal to 
n - 2 - 2k + c, then 

(me - 1)(ib - b2 - (i - me)(r + 1)2) - (b + (i - me)( -r - 1))2 ~ O. 

If we write the left-hand side of this in terms of k, (), and r (Maple again!), 
then the surprising conclusion is that it is also equal to 

_ kT(r + 1)((} + 1) (2(}2r + (}2 _ (}r2 + k() _ kr2 _ 2kT). 
(k + (}r)(() - r) 

Therefore, if equality holds for X, it also holds for X, and we conclude 
that either i = me and b = 0 or the first subconstituent of X is strongly 
regular. Consequently, the second subconstituent of X is either complete 
or strongly regular. 

Therefore, when equality holds, Xl is empty or strongly regular, and X 2 

is complete or strongly regular. It is straightforward to see that 0 5 is the 
only primitive strongly regular graph with Xl empty and X 2 complete. The 
Clebsch graph provides an example where Xl is empty and X 2 is strongly 
regular, and we will discuss a graph with both subconstituents strongly 
regular in the next section. 

We give one example of using the Krein bound to show that certain 
feasible parameter sets cannot be realized. 
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Corollary 10.7.6 There is no strongly regular graph with parameter set 
(28,9,0,4). 

Proof. The parameter set (28,9,0,4) is feasible, and a strongly regular 
graph with these parameters would have spectrum 

{9, 1(21), _5(6)}. 

But if k = 9, () = 1, and 7 = -5, then 

()27 - 2()72 - 7 2 - kT + k()2 + 2k() = -8, 

and hence there is no such graph. o 

Although we cannot go into the matter in any depth here, the case where 
a = ° and k = me is extremely interesting. If k = me (or k = m r ), then 
X is said to be formally self-dual. Mesner has shown that other than the 
conference graphs, there are just two classes of such graphs. The first are the 
strongly regular graphs constructed from orthogonal arrays, and these are 
not triangle-free. The second are known as negative Latin square graphs, 
and the Clebsch graph is an example. 

10.8 Generalized Quadrangles 

We recall from Section 5.4 that a generalized quadrangle is an incidence 
structure such that: 

(a) any two points are on at most one line (and hence any two lines 
meet in at most one point, 

(b) if P is a point not on a line £, then there is a unique point on £ 
collinear with P. 

If every line contains 8 + 1 points, and every point lies on t + 1 lines, then 
the generalized quadrangle has order (s, t). As we saw in Section 5.4, the 
edges and one-factors of K6 form a generalized quadrangle of order (2,2). 

The point graph of a generalized quadrangle is the graph with the points 
of the quadrangle as its vertices, with two points adjacent if and only if 
they are collinear. The point graph of the generalized quadrangle on the 
edges and one-factors of K6 is L(K6), which is strongly regular. This is no 
accident, as the next result shows that the point graph of any nontrivial 
generalized quadrangle is strongly regular. 

Lemma 10.8.1 Let X be the point graph of a generalized quadrangle of 
order (8, t). Then X is strongly regular with parameters 

((8+1)(8t+1), 8(t+1), 8-1, t+1). 

Proof. Each point P of the generalized quadrangle lies on t+ 1 lines of size 
8 + 1, any two of which have exactly P in common. Hence X has valency 
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s(t + 1). The graph induced by the points collinear with P consists of t + 1 
vertex-disjoint cliques of size s, whence a = s - 1. Let Q be a point not 
collinear with P. Then Q is collinear with exactly one point on each of the 
lines through P. This shows that c = t + 1. 

Finally, we determine the number of vertices in the graph. Let £ be a 
line of the quadrangle. Each point not on £ is collinear with a unique point 
on £; consequently, there are st points collinear with a given point of £ and 
not on £. This gives us exactly st( s + 1) points not on £, and (s + 1) (st + 1) 
points in total. 0 

Lemma 10.8.2 The eigenvalues of the point graph of a generalized quad­
rangle of order (s, t) are s(t + 1), s - 1, and -t - 1, with respective 
multiplicities 

1, 
st(s + 1)(t + 1) 

s+t 

Proof. Let X be the point graph of a generalized quadrangle of order 
(s, t). From Section 10.2, the eigenvalues of X are its valency s(t + 1) and 
the two zeros of the polynomial 

x 2-(a-c)x-(k-c) = x 2-(s-t-2)x-(s-I)(t+l) = (x-s+l)(x+t+l). 

Thus the nontrivial eigenvalues are s - 1 and -t - 1. Their multiplicities 
now follow from (10.2). 0 

The fact that these expressions for the multiplicities must be integers 
provides a nontrivial constraint on the possible values of sand t. A further 
constraint comes from the Krein inequalities. 

Lemma 10.8.3 If 9 is a generalized quadrangle of order (s, t) with s > 1 
and t > 1, then s :::; t 2 and t :::; s2. 

Proof. Let X be the point graph of g. Substituting k = s( t + 1), 0 = s -I, 
and 7 = -t - 1 into the second Krein inequality 

027 - 2072 - 7 2 - kr + k02 + 2kO ;:::: 0 

and factoring yields 

(S2 - t)(t + 1)(s - 1) ;:::: O. 

Since s > 1, this implies that t :::; s2. Since we may apply the same argument 
to the point graph of the dual quadrangle, we also find that s :::; t2 . 0 

Generalized quadrangles with lines of size three will arise in the next 
chapter, where we study graphs with smallest eigenvalue at least -2. There 
we will need the following result. 

Lemma 10.8.4 If a generalized quadrangle of order (2, t) exists, then t E 
{I, 2, 4}. 
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Proof. If s = 2, then -t - 1 is an eigenvalue of the point graph with 
multiplicity 

8t+4 =8-~. 
t+2 t+2 

Therefore, t + 2 divides 12, which yields that t E {I, 2, 4, 1O}. The case 
t = 10 is excluded by the Krein bound. 0 

Note that a generalized quadrangle of order (2, t) has 6t + 3 points; thus 
the possible number of points is 9, 15, or 27. 

10.9 Lines of Size Three 

At the end of the previous section we saw that if there is a generalized 
quadrangle of order (2, t), then t E {I, 2, 4}. In this section we will show 
that there is a unique example for each of these three values of t. 

Lemma 10.9.1 Let X be a strongly regular graph with parameters 

(6t + 3, 2t + 2,1, t + 1). 

The spectrum of the second subconstituent of X is 

{(t+l)<l\ l(x), (1-t)(t+1), (-t-1)(Y)} 

where 

4(t2 - 1) 
x=---:...-----:.. 

t+2 ' 
t(4-t) 

y= t+2 . 

Proof. The first subconstituent of X has valency one, and hence consists of 
t+l vertex-disjoint edges. Its eigenvalues are 1 and -1, each with multiplic­
ity t+ 1, and so -1 is the unique local eigenvalue of the first subconstituent. 
Therefore, the nonlocal eigenvalues of the second subconstituent of X are 
t + 1 (its valency) and a subset of {I, -1- t}. The only local eigenvalue of 
the second subconstituent is 1-(t+l)-(-I) = I-t with multiplicityt+1. 
We also see that t+ 1 is a simple eigenvalue, for if it had multiplicity greater 
than one, then it would a local eigenvalue. Therefore, letting x denote the 
multiplicity of 1 and y the multiplicity of -1 - t we get the spectrum as 
stated. 

Then, since the second subconstituent has 4t vertices and as its 
eigenvalues sum to zero, we have 

1 + (t + 1) + x + y = 4t, 
t + 1 + (t + 1)(1 - t) + x - y(t + 1) = o. 

Solving this pair of equations yields the stated expression for the 
multiplicities. 0 
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We will use these results to show that there is a unique strongly regular 
graph with these parameters for t E {1, 2, 4}. Throughout we will let X be 
the point graph of the generalized quadrangle, and Xl and X2 will denote 
the first and second subconstituents of X relative to an arbitrary vertex. 

The three proofs below all follow a common strategy. First we show that 
the second subconstituent X2 is uniquely determined from its spectrum. 
Then it remains only to determine the edges between Xl and X 2 . Because 
the first subconstituent of any vertex consists of t + 1 disjoint edges, each 
vertex of Xl is adjacent to t vertex-disjoint edges in X 2 . If xy is an edge 
of Xl, then the t edges adjacent to x together with the t edges adjacent 
to y form a one-factor of X 2 . Since a = 1, the graph X has no induced 
4-cycles. This implies that the endpoints of the t edges adjacent to x have 
vertex-disjoint neighbourhoods. We say that a one-factor of size 2t has a 
proper partition if it can be divided into two sets of t edges such that the 
endpoints of the edges in each set have vertex-disjoint neighbourhoods. If 
X 2 is connected, then a one-factor has at most one proper partition. 

In each of the following proofs we show that every edge of X 2 lies in 
a unique one-factor with a proper partition, and thus find exactly t + 1 
one-factors of X 2 with proper partitions. Every way of assigning the t + 1 
one-factors to the t + 1 edges of Xl is equivalent. The one-factor assigned 
to the edge xy has a unique proper partition. It is clear that both ways 
of assigning the two parts of the one-factor to x and y yield isomorphic 
graphs. 

Lemma 10.9.2 The graph L(K3,3) is the unique strongly regular graph 
with parameters (9,4,1,2). 

Proof. Let X be a strongly regular graph with parameters (9,4,1,2). Ev­
ery second subconstituent X 2 is a connected graph with valency two on 
four vertices, and so is C4 . Every edge of C4 lies in a unique one-factor, 
and so in a unique one-factor with a proper partition. 0 

Lemma 10.9.3 The graph L(K6) is the unique strongly regular graph with 
parameters (15,6,1,3). 

Proof. The second sub constituent X 2 is a connected cubic graph on 8 
vertices. By Lemma 10.9.1 we find that its spectrum is symmetric, and 
therefore X 2 is bipartite. From this we can see that X 2 cannot have diam­
eter two, and therefore it has diameter at least three. By considering two 
vertices at distance three and their neighbours, it follows quickly that X 2 

is the cube. 
Consider any edge e = uv of the cube. There is only one edge that 

does not contain u or v or any of their neighbours. This pair of edges can 
be completed uniquely to a one-factor, and so every edge lies in a unique 
one-factor with a proper partition. 0 
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In Section 11.7 we will see a strongly regular graph with parameters 
(27,16,10,8) known as the Schlafl.i graph. 

Lemma 10.9.4 The complement of the Schliifii graph is the unique 
strongly regular graph with parameters (27,10,1,5). 

Proof. The second subconstituent X2 is a connected graph on 16 vertices 
with valency 5. Using Lemma 10.9.1 we find that X2 has exactly three 
eigenvalues, and so is strongly regular with parameters (16,5,0,2). We 
showed in Section 10.6 that the Clebsch graph is the only strongly regular 
graph with these parameters, and so X 2 is the Clebsch graph. 

Let uv be an edge of the Clebsch graph. The non-neighbours of u form a 
copy P of the Petersen graph, and the neighbours of v form an independent 
set S of size four in P. This leaves three edges, all in P, that together with 
uv form a set of four vertex-disjoint edges. This set of four edges can be 
uniquely completed to a one-factor of the Clebsch graph by taking the four 
edges each containing a vertex of S, but not lying in P. Therefore, every 
edge lies in a unique one-factor with a proper partition. 0 

Corollary 10.9.5 There is a unique generalized quadrangle of each order 
(2,1), (2,2), and (2,4). 

Proof. We have shown that the point graph of a generalized quadrangle 
of these orders is uniquely determined. Therefore, it will suffice to show 
that the generalized quadrangle can be recovered from its point graph. If 
X is a strongly regular graph with parameters (6t + 3, 2t + 2,1, t + 1), then 
define an incidence structure whose points are the vertices of X and whose 
lines are the triangles of X. It is routine to confirm that the properties of 
the strongly regular graph imply that the incidence structure satisfies the 
axioms for a generalized quadrangle. Therefore, the previous three results 
imply that there is a unique generalized quadrangle of each order (2,1), 
(2,2), and (2,4). 0 

We will use the results of the section in Chapter 12 to characterize the 
graphs with smallest eigenvalue at least -2. 

10.10 Quasi-Symmetric Designs 

A 2-design V is quasi-symmetric if there are constants i\ and £2 such that 
any two distinct blocks of V have exactly £1 or £2 points in common. For 
example, a Steiner triple system is a quasi-symmetric design with (£1,£2) 
equal to (0,1). We call the integers £i the intersection numbers of the 
design. Our next result provides the reason we wish to consider this class 
of designs. 

Lemma 10.10.1 Let V be a quasi-symmetric 2-(v, k, >..) design with inter­
section numbers £1 and £2. Let X be the graph with the blocks of V as its 
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vertices, and with two blocks adjacent if and only if they have exactly £1 
points in common. If X is connected, then it is strongly regular. 

Proof. Suppose that V has b blocks and that each point lies in r blocks. If 
N is the v x b incidence matrix of V, then from the results in Section 5.10 
we have 

N NT = (r - A)I + AJ 

and 

NJ=rJ, NTJ=kJ. 

Let A be the adjacency matrix of X. Since V is quasi-symmetric, we have 

NT N = kI + £lA + £2(J - I - A) = (k - £2)1 + (£1 - £2)A + £2J. 

Since NT N commutes with J, it follows that A commutes with J, and 
therefore X is a regular graph. 

We now determine the eigenvalues of NT N. The vector 1 is an 
eigenvector of NT N with eigenvalue rk, and so 

rkl = (k - £2 + b£2)1 + (£1 - £2)Al, 

from which we see that 1 is an eigenvector for A, and hence the valency of 
X is 

rk - k + £2 - b£2 

£1 - £2 

Because NT N is symmetric, we can assume that the remaining eigen­
vectors are orthogonal to 1. Suppose that x is such an eigenvector with 
eigenvalue (J. Then 

(Jx = (k - £2)X + (£1 - £2)Ax, 

and so x is also an eigenvector for A with eigenvalue 

(J - k + £2 
£1 - £2 . 

By Lemma 8.2.4, the matrices N NT and NT N have the same nonzero 
eigenvalues with the same multiplicities. Since N NT = (r-A)I +AJ, we see 
that it has eigenvalues rk with multiplicity one, and r - A with multiplicity 
v - 1. Therefore, NT N has eigenvalues rk, r - A, and 0 with respective 
multiplicities 1, v-I, and b - v. 

Hence the remaining eigenvalues of A are 

with respective multiplicities v-I and b - v. 
We have shown that X is a regular graph with at most three eigenvalues. 

If X is connected, then it has exactly three eigenvalues, and so it is strongly 
regular by Lemma 10.2.1. 0 
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It is possible that a graph obtained from a quasi-symmetric design is 
not connected. This occurs when the valency of X coincides with one of 
the other eigenvalues, and so is not simple. If V is the design obtained 
by taking two or more copies of the same symmetric design, then X is 
complete multipartite or a disjoint union of cliques. 

10.11 The Witt Design on 23 Points 

The Witt design on 23 points is a 4-(23,7,1) design. It is one of the most 
remarkable structures in all of combinatorics. 

The design can be described as follows. Over GF(2), the polynomial 
x 23 - 1 factors as 

(x - l)g(x)h(x), 

where 

and 

h(x) = xllg(X- 1 ) = xll + x 10 + x6 + x5 + x4 + x2 . 

Both g(x) and h(x) are irreducible polynomials of degree 11. Let R denote 
the ring of polynomials over GF(2), modulo X 23 -1, and let C be the ideal 
in this ring generated by g(x), that is, all the polynomials in R divisible by 
g(x). (In this case, though not in general, it suffices to take just the powers 
of g(x) modulo x23 -1.) Each element of R is represented by a polynomial 
over GF(2) with degree at most 22. In turn, any such polynomial f can be 
represented by a vector of length 23 over GF(2) with the ith coordinate 
position (counting from 0) being the coefficient of xi in f. Though we 
will not prove it, the ideal C contains 2048 polynomials, whose associated 
vectors form the binary Golay code. Exactly 253 of these vectors have 
support of size 7, and the supports of these vectors form a 4-(23,7,1) 
design known as the Witt design on 23 points. 

It is known that the Witt design is the only design with these parameters, 
but we will not need this fact and shall not prove it. However, we will prove 
that this design is quasi-symmetric with intersection numbers 1 and 3. 

First, as in Section 5.10, we compute that a 4-(23,7,1) design has 253 
blocks, 77 blocks on each point and 23 blocks on each pair of points; that 
is, 

b = 253, r = 77, A2 = 21. 

Let B be an arbitrarily chosen block of the 4-(23, 7, 1) design V. By rela­
belling the points if necessary, we may assume that B = {I, 2, 3, 4,5,6, 7}. 
For i + j :::; 7, define the parameter Ai,j to be the number of blocks of V 
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that contain the first i - j points of B, but none of the next j points. Thus 
we have 

AO,O = 253, A1,0 = 77, A2,0 = 21, A3,0 = 5, 

and Ai,O = 1 if 4 ::; i ::; 7, since no two distinct blocks have four points in 
common. 

Given these values, we can compute the remaining ones, because if i, j 2 
1 and i + j ::; 7, then 

the proof of which we leave as an exercise. For any chosen initial block B, 
the values of Ai,j are given by the following lower triangular matrix: 

253 
77 176 
21 56 120 
5 16 40 80 
1 4 12 28 52 
1 0 4 8 20 32 
1 0 0 4 4 16 16 
1 0 0 0 4 0 16 0 

We note that for a general t-design, the values Ai,j are guaranteed to be 
independent of the initial block only when i + j ::; t. However, the Witt 
design has A4 = 1, and this is sufficient for the result to hold as stated. 

From the last row we infer that any two blocks meet in either one or three 
points, and therefore V is quasi-symmetric. By the results of the previous 
section, the graph on the blocks of V where two blocks are adjacent if they 
intersect in One point is strongly regular with parameters 

(253, 112,36,60) 

and eigenvalues 112, 2, and -26. 
In the next chapter we show how to use the Witt design to construct a 

strongly regular graph On 275 vertices with strongly regular subconstituents 
on 112 and 162 vertices. 

10.12 The Symplectic Graphs 

In this section we examine an interesting family Sp(2r) of strongly regular 
graphs known as the symplectic graphs; we first encountered these graphs 
in Section 8.10. 

For any r > 0, let N be the 2r x 2r block diagonal matrix with r blocks 
of the form 
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The symplectic graph Sp(2r) is the graph whose vertex set is the set of all 
nonzero vectors in CF(2)2r, with adjacency defined by 

x '" y if and only if x T Ny = 1 

with all calculations over CF(2). The name "symplectic graph" arises 
because the function 

f(x, y) = x T Ny 

is known as a symplectic form. Two vectors x and yare orthogonal with 
respect to f if f(x, y) = O. Therefore, Sp(2r) is the nonorthogonality graph 
of CF(2)2r \ 0 with respect to the symplectic form f. 
Lemma 10.12.1 The graph Sp(2r) is strongly regular with parameters 

(22r _ 1, 22r-1, 22r- 2, 22r-2) , 

and it has eigenvalues 

22r- 1 , 2r- 1 , and _ 2r-l. 

Proof. In CF(2)2r, the number of vectors orthogonal to a given vector y 
is the number of solutions to the equation yT N x = O. Now, if y is nonzero, 
the rank of yT N is one, and hence its null space has dimension 2r - 1. 
Therefore, the number of nonzero vectors that are not orthogonal to y is 
22r - 22r- 1 = 22r-l. If x and z are distinct nonzero vectors in CF(2)2r, 
then the vectors mutually orthogonal to both form a subspace of dimension 
2r - 2, which leaves 22r- 2 vectors mutually nonorthogonal to both x and 
y. Therefore, Sp(2r) has parameters as given. The eigenvalues of Sp(2r) 
follow directly from the results of Section 10.2. 0 

By Theorem 8.11.1, every reduced graph X of binary rank 2r is an in­
duced subgraph of Sp(2r). One implication of this is that the chromatic 
number of X is no more than the chromatic number of Sp(2r). We will 
use the algebraic techniques of Section 9.6 to bound the chromatic number 
of Sp(2r). We start by bounding the size of an independent set in Sp(2r). 
The graph Sp(2r) is k-regular with k = 22r- 1 and has minimum eigenvalue 
7 = _2r-l. By Lemma 9.6.2 we have 

a(Sp(2r)) < n( -7) = (22r - 1)2r - 1 = 2r _ 1. 
- k - 7 22r- 1 + 2r- 1 

We can easily find independent sets of this size. Any set of r linearly in­
dependent mutually orthogonal vectors generates a subspace that contains 
2r - 1 mutually orthogonal nonzero vectors (check this!). One such set is 
given by the standard basis vectors e2, e4, ... , e2r. 

Therefore, the chromatic number of Sp(2r) satisfies the inequality 

x(Sp(2r)) ~ n/a(Sp(2r)) = 2r + 1. 

The chromatic number of Sp(2r) is equal to 2r + 1 if and only if the vertex 
set can be partitioned into independent sets of this maximum size. 
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The graph Sp( 4) is a (15,8,4,4) strongly regular graph, and therefore 
isomorphic to L(KG). An independent set of size three in L(KG) is a I-factor 
of KG, and a partition into independent sets of size three is a I-factorization 
of KG. The results of Section 4.7 show that I-factorizations of KG exist, and 
hence X(Sp(4)) = 5. Although we shall not prove it, there is always such a 
partition, and so we get the following result. 

Theorem 10.12.2 The chromatic number ofSp(2r) is 2T + 1. 0 

Corollary 10.12.3 Let X be a graph with binary rank 2r. Then X(X) ~ 
2T + 1. 

Proof. Duplicating vertices or adding isolated vertices does not alter the 
chromatic number of a graph. Therefore, we can assume without loss of 
generality that X is a reduced graph. Thus it is an induced subgraph of 
Sp(2r) and can be coloured with at most 2T + 1 colours. 0 

Exercises 

1. If X is a strongly regular graph with k and k = n - k - 1 coprime, 
show that X is imprimitive. Deduce that if p is a prime, all strongly 
regular graphs on p + 1 vertices are imprimitive. 

2. What are the parameters of mKn and mKn? 

3. Determine the strongly regular graphs with c = k. 

4. Prove that m(}mT(B - T)2 = nkk. 

5. Let X be an (n, k, a, c) strongly regular graph with eigenvalues k, B, 
and T. Let £ be n - k - 1, which is the number of vertices in the 
second subconstituent of X. The following identities express various 
parameters of X as functions of the eigenvalues. Verify them. 

a = k + B + T + BT, 

c = k + BT, 

n= 

m(} = 

(k - B)(k - T) 
k + BT 

k(B + I)(T + 1) 
k + BT 

k(k - T)(T + 1) 
(k + BT)(T - B)' 

6. Let X be a k-regular graph on n vertices and, if u E V(X), let tu 
denote the number of triangles that contain u. Let v be a fixed vertex 
in X and let 7r be the partition of V(X) with three cells: {v}, the 
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neighbours of v, the vertices distinct from and not adjacent to v. If 
A = A(X), show that the quotient Aj11' is given by 

k 
£he 

k 
k2_k-2t" 
n-l-k 

If (h, ... ,On are the eigenvalues of X in nonincreasing order, show 
that 

k nk - 2k2 + 2tv - _ d (Aj) kO 0 
n _ 1 _ k - et 11'::::; 2 n· 

Deduce from this that 

2tv ::::; 2k2 - nk - 020n(n - 1 - k) 

and that if equality holds for each vertex, then X is strongly regular. 

7. Let X be a Moore graph of diameter two and valency k. Compute 
the multiplicities of the eigenvalues of X, and hence show that k E 
{2, 3, 7, 57}. 

8. Prove that an orthogonal array OA(k, n) is equivalent to a set of k-2 
mutually orthogonal Latin squares. 

9. Prove that the graph of an OA(k, n) is strongly regular with 
parameters 

(n2, (n-l)k, n-2+(k-l)(k-2), k(k-l)). 

10. Let X be the graph of an OA(k, n). Show that the size of a maximum 
clique in X is n. 

11. Let X be the graph of an OA(k, n). If X has no independent sets of 
size n, then show that x(X) 2 n + 2. 

12. Call two triples from a fixed set of v points adjacent if they have 
exactly one common point, and let X denote the resulting graph on 
the triples of a set of size v. Show that X is strongly regular if v = 5, 
v = 7, or v = 10, and determine its parameters. 

13. Let 0 denote the set of all partitions of a set of nine elements into 
three triples. If 11' and a are two of these partitions, define their 
product to be the partition whose cells are all possible nonempty 
intersections of the cells of 11' with those of a. Define two elements 
of 0 to be adjacent if their product contains exactly five cells. Show 
that the graph on 0 with this adjacency relation is strongly regular, 
and determine its parameters. 

14. Show that C5 is the only primitive strongly regular graph with all 
first subconstituents empty and all second subconstituents complete. 
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15. Show that if there is a thick generalized quadrangle of order (3, t), 
then t E {3, 5, 6, 9}. 

16. Show that if there is a thick generalized quadrangle of order (4, t), 
then t E {2, 4, 6, 8,11,12, 16}. 

17. If X is the point graph of a generalized quadrangle of order (s, t), 
then show that the second subconstituent X 2 has spectrum 

{(s - l)(t + 1)(1), (s -1)(x), (s - t - l)(s-l)(t+1), (-t - l)(Y)} 

where 

t(s -1)(s2 - t) 
y= . 

s+t 

Under what conditions is the second sub constituent strongly regular? 

18. Suppose we have a finite group of people such that any two have 
exactly one friend in common. Show that there must be a politi­
cian. (A politician is a person who is everyone's friend. Friendship is 
understood to be a symmetric, irreflexive relation.) 

19. Show that if there exists a quasi-symmetric 2-(v, k, >.) design with 
intersection numbers £1 and £2, then £1 - £2 divides r - >.. 

20. Determine the parameters of the strongly regular graphs obtained 
from the blocks of the Witt design on 23 points. 

21. There are 77 blocks in the Witt design on 23 points that contain 
a given point. Show that the set of blocks we get by deleting the 
common point from each of these 77 blocks is a 3-(22,6,1) design. 
Show that this is a quasi-symmetric design with intersection num­
bers 0 and 2, and determine the parameters and eigenvalues of the 
associated strongly regular graphs. 

Notes 

Further information on strongly regular graphs can be found in [2, 3, 5]. 
Our treatment of the Krein bounds in Section 10.7 is equivalent to that 

offered by Thas in [8]. 
Quasi-symmetric designs are studied at length in [7]. 
The solution to Exercise 13 is in [6]. Exercise 6 is based on Theorem 7.1 in 

[4]. The result of Exercise 18 is sometimes called the "friendship theorem." 
It is easily seen to be equivalent to the fact, due to Baer [1], that a polarity of 
a finite projective plane must have absolute points. (The adjacency matrix 
of the friendship relation is the incidence matrix of a projective plane, where 
each line is the set of friends of some person.) 
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We do not know whether the number of primitive triangle-free strongly 
regular graphs is finite. The largest known such graph is the Higman~Sims 
graph, with parameters (100,22,0,6). 
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11 
Two-Graphs 

The problem that we are about to discuss is one of the founding problems 
of algebraic graph theory, despite the fact that at first sight it has little 
connection to graphs. A simplex in a metric space with distance function d 
is a subset S such that the distance d(x, y) between any two distinct points 
of S is the same. In ~d, for example, a simplex contains at most d + 1 
elements. However, if we consider the problem in real projective space then 
finding the maximum number of points in a simplex is not so easy. The 
points of this space are the lines through the origin of ~ d, and the distance 
between two lines is determined by the angle between them. Therefore, a 
simplex is a set of lines in ~ d such that the angle between any two distinct 
lines is the same. We call this a set of equiangular lines. In this chapter we 
show how the problem of determining the maximum number of equiangular 
lines in ~d can be expressed in graph-theoretic terms. 

11.1 Equiangular Lines 

We can represent a line in ~ d by giving a unit vector x that spans it, 
and so a set of lines can be represented by a set n = {Xl, ... ,xn } of unit 
vectors. Of course, -x represents the same line as x, so n is not unique. If 
n represents an equiangular set of lines where the angle between any two 
distinct lines is B, then for i i= j, 

xfXj = ±cosB. 
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We can get an example by taking the 28 unit vectors in ~ 8 of the form 

xi = y'1/24 (3,3, -1, -1, -1, -1, -1, -1) 

with two entries equal to 3 and the remaining six equal to -1. For i i- j, 
we have xi Xj = ±1, where the positive sign is taken if and only if Xi and 
Xj have an entry of 3 in the same coordinate. Therefore, we have a set of 28 
equiangular lines in ~8. Since all of the vectors are orthogonal to 1, they 
lie in the 7-dimensional subspace 1 ~, so in fact there are 28 equiangular 
lines in ~7. 

Given a set n = {Xl, ... , Xn} of vectors in ~d, let U be the d x n matrix 
with the elements of n as its columns. Then 

is the Gram matrix of the vectors in n. Thus G is a symmetric positive 
semidefinite matrix with the same rank as U. Conversely, given a symmetric 
positive semidefinite n x n matrix G of rank d, it is possible to find a d x n 
matrix U such that G = UTU (see the proof of Lemma 8.6.1). Therefore, 
for our purposes it suffices to represent n by its Gram matrix G. 

If n is a set of unit vectors representing a set of equiangular lines with 
xT Xj = ±o:, then its Gram matrix G has the form 

G = 1 + o:S, 

where S is a symmetric (0, ±1 )-matrix with all diagonal entries zero and all 
off-diagonal entries nonzero. By taking -1 to represent adjacent and 1 to 
represent nonadjacent we can view this as a kind of nonstandard "adjacency 
matrix" of a graph X. This matrix is called the Seidel matrix of X and is 
related to the usual adjacency matrix A(X) by 

S(X) = J - 1 - 2A(X). 

Suppose now that we start with a graph X on n vertices and form its 
Seidel matrix S. Then since tr S = 0 and S i- 0, the least eigenvalue of S 
is negative. If this eigenvalue is -0:, then 

1 
1+-S 

0: 

is a positive semidefinite matrix. If its rank is d, then it is the Gram matrix 
of a set of n equiangular lines in ~d with mutual cosine ±1/0:. Therefore, 
the geometric problem of finding the least integer d such that there are n 
equiangular lines in ~ d is equivalent to the graph-theoretic problem of find­
ing graphs X on n vertices such that the multiplicity of the least eigenvalue 
of S(X) is as large as possible. 

We describe one example. If X = L(Ks), then by Lemma 8.2.5, the 
eigenvalues of A(X) are 15, 1, and -5 with multiplicities 1, 7, and 20, 
respectively. Hence the eigenvalues of S(X) are 9 and -3 with multiplicities 
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7 and 21, respectively. Therefore, 

1 
1+ 3S(X) 

is the Gram matrix of a set of 28 equiangular lines in It!'. 7. It is easy to see 
that the 28 lines given at the start of this section yield the graph L(Ks), 
and we will see later that this is the maximum number possible in It!'. 7. 

Choosing different sets of vectors to represent the set of equiangular lines 
(that is, replacing some of the Xi with -Xi) will yield different graphs. This 
is explored in more depth in Section 11.5. 

11.2 The Absolute Bound 

In this section we will derive an upper bound On the number of equiangu­
lar lines in It!'. d. It is called the absolute bound because the expression is 
independent of the angle between the lines. 

Let X be a unit vector in It!'. d and let X = xxT . Then X is a symmetric d x d 
matrix and X 2 = X. Therefore, X represents orthogonal projection onto 
its column space, which is the line spanned by x. Furthermore, replacing X 

by -x does not change the matrix X (in general, the form of a projection 
onto a subspace does not depend on the basis chosen for the subspace). 

If y is a second unit vector in It!'. d and Y = yyT, then 

XY = xxT yyT = (xT y)xyT, 

and so 

tr(XY) = (xT y)2. 

Therefore, the trace of XY is the square of the cosine of the angle between 
the lines spanned by x and y. Also, 

tr(X) = tr(xxT ) = tr(xT x) = 1. 

Theorem 11.2.1 (The Absolute Bound) Let Xl, .. . ,Xn be the pro­
jections onto a set of n equiangular lines in It!'. d. Then these matrices 
form a linearly independent set in the space of symmetric matrices, and 
consequently n ::::; (dtl). 

Proof. Let a be the cosine of the angle between the lines. If Y = Li CiXi, 

then 

tr(y2) = L CiCj tr(XiXj) 
i,j 

= L C; + L Ci Cja2 

i,j:ih 



252 11. Two-Graphs 

It follows that tr(y2) = 0 if and only if c.; = 0 for all i, so the Xi are 
linearly independent. The space of symmetric d x d matrices has dimension 
(d~l), so the result follows. 0 

11.3 Tightness 

We have just seen that if there is a set of n equiangular lines in lRd, then 
n :::; (d~l). If equality holds, then the projections Xl, ... , Xn onto the lines 
form a basis for the space of symmetric d x d matrices. In particular, this 
means that there are scalars Cl, ... ,Cn such that 

1= LCiXi. 
i 

The fact that I is in the span of the projections Xl, ... , Xn has significant 
consequences whether or not the absolute bound is met. 

Lemma 11.3.1 Suppose that X!, ... , Xn are the projections onto a set of 
equiangular lines in lR d and that the cosine of the angle between the lines 
is a. If 1= Ei CiXi, then Ci = din for all i and 

d-da2 

n = 1- da2' 

The Seidel matrix determined by any set of n unit vectors spanning these 
lines has eigenvalues 

1 n-d 
a' da 

with multiplicities n - d and d, respectively. If n #- 2d, then a is an integer. 

Proof. For any j we have 

and so by taking the trace we get 

1 = tr(Xj ) = L c.; tr(XiXj) = (1 - ( 2 )cj + a 2 L c.;. (11.1) 

The first consequence of this is that all the Ci'S are equal. Since d = tr I = 
Ei Ci, we see that Ci = din for all i. Substituting this back into (11.1) gives 
the stated expression for d. 

Now, let Xl, ... , Xn be a set of unit vectors representing the equiangular 
lines, so Xi = XiX:. Let U be the d x n matrix with Xl,"" Xn as its 
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columns. Then 

and 

By Lemma 8.2.4, UUT and UTU have the same nonzero eigenvalues with 
the same multiplicities. We deduce that I + as has eigenvalues 0 with 
multiplicity n - d and n/ d with multiplicity d. Therefore, the eigenvalues of 
S are as claimed. Since the entries of S are integers, the eigenvalues of S are 
algebraic integers. Therefore, either they are integers or are algebraically 
conjugate, and so have the same multiplicity. If n i=- 2d, the multiplicities 
are different, so l/a is an integer. D 

Now, suppose the absolute bound is tight and that there is a set of 
n = (d~l) equiangular lines in ~d. Then the previous result shows that 
d + 2 = 1/ a 2 • If d i=- 3, then n i=- 2d, and so d + 2 must be a perfect square. 
So we get the following table: 

d n l/a 

3 6 J5 
7 28 3 

14 105 4 

23 276 5 

Six equiangular lines in ~ 3 can be constructed by taking the six diagonals 
of the icosahedron. We have already seen a collection of 28 equiangular lines 
in ~7, and in Section 11.8 we will see a collection of 276 equiangular lines 
in ~23. Later we will see that l/a must be an odd integer, so there cannot 
be a set of 105 equiangular lines in ~ 14. Are there further examples where 
the absolute bound is tight? We do not know. 

11.4 The Relative Bound 

In this section we consider the relative bound, which bounds the maximum 
number of equiangular lines in ~ d as a function of both d and the cosine 
of the angle between the lines. 

Lemma 11.4.1 Suppose that there are n equiangular lines in ~d and that 
a is the cosine of the angle between them. If a-2 > d, then 

d-da2 

n ~ 1- da2' 



254 11. Two-Graphs 

If Xl, ... ,Xn are the projections onto these lines, then equality holds if and 
only ifLi Xi = (n/d)I. 

Proof. Put 

Because Y is symmetric, we have tr(y2) ~ 0, with equality if and only if 
Y = O. Now, 

so 

This reduces to 

d - do: 2 ~ n(l - do:2 ), 

which, provided that 1 - do: 2 is positive, yields the result. Equality holds 
if and only if tr(y2) = 0, in which case Y = 0 and Li Xi = (n/d)I. 0 

The Petersen graph provides an example where the relative bound is 
tight. The eigenvalues of the Seidel matrix of the Petersen graph are ±3 
with equal multiplicity 5. Thus we can find 10 equiangular lines in IR: 5 where 
the cosine of the angle between the lines is equal to -1. This meets the 
relative bound, but not the absolute bound. 

If equality holds in the relative bound, then I is in the span of the 
projections Xi, and so the results of Lemma 11.3.1 hold. In particular, 
the Seidel matrix determined by the set of lines has only two eigenvalues. 
Conversely, if S is a Seidel matrix with two eigenvalues, then the set of 
equiangular lines that it determines meets the relative bound. 

11.5 Switching 

Given a set of n equiangular lines, there are 2n possible choices for the set 
o = {Xl, ... ,xn } of unit vectors representing those lines. Different choices 
for 0 may have different Gram matrices, hence yield different graphs. In 
this section we consider the relationship between these graphs. Let (J" be a 
subset of {I, ... , n} and suppose that we form 0' from 0 by replacing each 
vector Xi by -Xi if i E (J". The Gram matrix for 0' is obtained from the 
Gram matrix for 0 by multiplying the rows and columns corresponding to 
(J" by -1. If X is the graph obtained from 0, and X' is the graph obtained 
from 0', then X' arises from X by changing all the edges between (J" and 
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V(X) \ (J to nonedges, and all the nonedges between (J and V(X) \ (J to 
edges. This operation is called switching on the subset (J. 

If X is a graph and (J <:;; V(X), then XU denotes the graph obtained 
from X by switching on (J. If (J, T <:;; V(X), then 

Xu = XV(X)\u 

and 

where 6 is the symmetric difference operator. 
The collection of graphs that can be obtained from X by switching on 

every possible subset of V (X) is called the switching class of X. A switching 
class of graphs is also known as a two-graph. It may seem unnecessary to 
have two names for the same thing, but "two-graph" is also used to refer 
to other combinatorial objects that are equivalent to a switching class of 
graphs. Thus a set of equiangular lines in lP? d determines a two-graph. 

Certain graph-theoretical parameters are constant across all the graphs 
in a two-graph, and hence can usefully be regarded as parameters of the 
two-graph itself. For example, the next result shows that the Seidel matrices 
of all the graphs in a two-graph have the same eigenvalues; we call these 
the eigenvalues of the two-graph. 

Lemma 11.5.1 If X is a graph and (J is a subset ofV(X), then S(X) and 
S(XU) have the same eigenvalues. 

Proof. Let D be the diagonal matrix with Duu = -1 if u E (J and 1 
otherwise. Then D2 = I, so D is its own inverse. Then 

S(XU) = DS(X)D, 

so S(X) and S(XU) are similar and have the same eigenvalues. 0 

If Y is isomorphic to Xu for some (J, we say that X and Yare switching 
equivalent. If N(v) denotes the neighbourhood of the vertex v, then XN(v) 
is a graph with the vertex v isolated. We denote by Xv the graph on 
n - 1 vertices obtained from XN(v) by deleting the isolated vertex v, and 
say that Xv is obtained by switching off v. For any vertex v, there is a 
unique graph in the switching class with v isolated, so the collection of 
graphs {Xv: v E V(X)} is independent of the choice of X. Therefore, 
this collection of graphs is determined only by the two-graph; we call these 
graphs the neighbourhoods of the two-graph. This shows that determining 
switching equivalence is polynomially reducible to the graph isomorphism 
problem. 

Given a graph X, we define the switching graph Sw(X) of X as follows: 
The vertex set of Sw(X) is V(X) x {O, I}. If u '"" v in X, then join (u, 0) 
to (v,O) and (u,l) to (v, I), and if u f v, then join (u,O) to (v,l) and 
(u,l) to (v,O). The neighbourhoods of the vertices (v,O) and (v,l) are 
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both isomorphic to Xv. Since Sw(X) is determined completely by anyone 
of its neighbourhoods, we see that the switching graph is determined only 
by the two-graph, rather than the particular choice of X used to construct 
it. Therefore, X and Yare switching equivalent if and only if Sw(X) is 
isomorphic to Sw(Y). 

If we consider the complement X of a graph X, it is straightforward to 
see that 8(X) = -8(X). The neighbourhoods of the two-graph containing 
X are the complements of the neighbourhoods of the two-graph containing 
X. 

11.6 Regular Two-Graphs 

If a set of equiangular lines meets the absolute bound or the relative bound, 
then the associated two-graph has only two eigenvalues. This is a very 
strong condition: A symmetric matrix with only one eigenvalue must be a 
multiple of the identity. Motivated by this, we define a regular two-graph 
to be a two-graph with only two eigenvalues. The switching classes of the 
complete graph and the empty graph are regular two-graphs; the neighbour­
hoods of these two-graphs are all complete or empty, respectively. We refer 
to these two-graphs as trivial, and usually exclude them from discussion. 

Theorem 11.6.1 Let cp be a nontrivial two-graph on n + 1 vertices. Then 
the following are equivalent: 

(a) cP is a regular two-graph. 

(b) All the neighbourhoods of cP are regular graphs. 

(c) All the neighbourhoods of cP are (n, k, a, c) strongly regular graphs 
with k = 2c. 

(d) One neighbourhood of cP is an (n, k, a, c) strongly regular graph with 
k= 2c. 

Proof. (a) :::} (b) Let 8 be the Seidel matrix of any neighbourhood of CPo 
Then the matrix 

T=(~ 1;) 
has two eigenvalues, and so it satisfies an equation of the form 

T2 +aT+bI = 0 

for some constants a and b. Since 

2 ( n+b 
T + aT + bI = 81 + a1 

we see that 81 = -aI, which implies that 8 has constant row sum -a. 
Therefore, 8 is the Seidel matrix of a regular graph. 
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(b) =} (c) Let X be a neighbourhood of <J> and let 

V(X) = {v} UN(v) UN(v), 

where N(v) and N(v) are nonempty. Then (X U K1)N(v) = YUKI, and 
both X and Yare k-regular. 

Let w be the isolated vertex in Xu K 1. Then in YUKI, the vertex v 
is now isolated, w is adjacent to N(v), and the edges between N(v) and 
N (v) have been complemented. 

Consider a vertex in N(v), and suppose that it is adjacent to r vertices 
of N (v) in X. Then its valency in Y is 

k + IN(v)l- 2r, 

and so r = IN(v)I/2. Therefore, every vertex in N(v) is adjacent to the same 
number of vertices in N (v), and hence to the same number of vertices in 
N(v). 

Now, consider a vertex in N(v), and suppose that it is adjacent to 8 

vertices of N(v) in X. Then its valency in Y is 

k + IN(v)l- 28, 

and so 8 = IN(v)I/2 = k/2. Therefore, every vertex in N(v) is adjacent to 
k/2 vertices in N(v). 

As v was an arbitrarily chosen vertex of X, this shows that X is a strongly 
regular graph with c = k/2, and the claim follows. 

(c) =} (d) This is obvious. 

(d) =} (a) Let X be an (n, k, a, c) strongly regular graph with k = 2c. 
Let A be the adjacency matrix of X with eigenvalues k, () and 7, and let 
S = J - I - 2A be the Seidel matrix of X. Now, we wish to consider the 
eigenvalues of 

( 0 IT) 
T= IS. 

If z is an eigenvector of S orthogonal to I, then (~) is an eigenvector 
of T with the same eigenvalue. Therefore, T has n - 1 eigenvectors with 
eigenvalues - 2() - 1 or - 27 - 1. 

The above partition of the matrix T is equitable, with quotient matrix 

Q _ (0 n ) 
- 1 n -1- 2k . 

Therefore, any eigenvector of Q yields an eigenvector of T that is constant 
on the two cells of the partition, and so in particular is not among the 
n - 1 eigenvectors that we have already found. Therefore, the remaining 
eigenvalues of T are precisely the two eigenvalues of Q. 
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Using k - c = -(h, k = 2c, and a - c = 0 + r we can express all the 
parameters of X in terms of 0 and r, yielding 

Therefore, 

n = -(20 + 1)(2r + 1), 

k = -20r, 

a = 0 + r - Or, 

c = -Or. 

Q_ (0 -2(O+I)(2r+l)) 
- 1 -2(O+r+l) , 

which has eigenvalues -20 - 1 and -2r - 1, and so we can conclude that 
T has precisely two eigenvalues. 0 

Corollary 11.6.2 A nontrivial regular two-graph has an even number of 
vertices. 

Proof. From the above proof, it follows that n = -(40r + 2(0 + r) + 1). 
Because both Or and 0 + r are integers, this shows that n is odd; hence 
n + 1 is even. 0 

The Paley graphs are strongly regular graphs with k = 2c, so they provide 
a family of examples of regular two-graphs. Although the corresponding set 
of equiangular lines meets the relative bound, this yields only 4k + 2 lines in 
lR 2k+ 1. More generally, any conference graph will yield a regular two-graph. 

Finally, we note that Theorem 11.6.1 can be used to find strongly regular 
graphs. Suppose we start with a strongly regular graph X with k = 2c. 
Then by forming the graph XUK1 and switching off every vertex in turn, we 
construct other strongly regular graphs with k = 2c, which are sometimes 
nonisomorphic to X. 

11. 7 Switching and Strongly Regular Graphs 

There is another connection between regular two-graphs and strongly reg­
ular graphs. This arises by considering when a regular two-graph contains 
a regular graph. 

Theorem 11.7.1 Let X be a k-regular graph on n vertices not switching 
equivalent to the complete or empty graph. Then S(X) has two eigenvalues 
if and only if X is strongly regular and k - n/2 is an eigenvalue of A(X). 

Proof. Any eigenvector of A(X) orthogonal to 1 with eigenvalue 0 is an 
eigenvector of S(X) with eigenvalue -20 -1, while 1 itself is an eigenvector 
of S(X) with eigenvalue n -1- 2k. Therefore, if X is strongly regular with 
k - n/2 equal to 0 or r, then S(X) has just two eigenvalues. 
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For the converse, suppose that X is a graph such that S(X) has two 
eigenvalues. First we consider the case where X is connected. Since X is 
not complete, A(X) has at least three distinct eigenvalues (Lemma 8.12.1). 
Since S(X) has only two eigenvalues, this implies that A(X) must have 
precisely three eigenvalues k, (), and 7 and also that n - 1 - 2k must equal 
either -2() - 1 or -27 - 1. Therefore, by Lemma 10.2.1, X is strongly 
regular, and k - n/2 is either () or 7. 

Now, suppose that X is not connected. Then there is an eigenvector of 
A(X) with eigenvalue k orthogonal to 1. Hence n - 1 - 2k and -1 - 2k 
are the two eigenvalues of S(X). Therefore, every component of X has 
at most one eigenvalue () other than k, and this eigenvalue must satisfy 
n-1-2k = -1-2(). Since X is nonempty, every component of X has exactly 
one further eigenvalue (), and so is complete. Thus () = -1, k = (n/2) - 1 
and X = 2K(n/2)-I, which is easily seen to be switching equivalent to the 
complete graph. 0 

If X = L(Ks), then X is a (28,12,6,4) strongly regular graph with 
eigenvalues () = 4 and 7 = -2, so the two-graph <I> containing X 
is regular. Switching off a vertex yields the Schliifii graph, which is a 
(27,16,10,8) strongly regular graph whose uniqueness was demonstrated 
in Lemma 10.9.4. 

Does <I> contain any regular graphs other than L(Ks)? To answer this we 
need to find all the proper subsets 0" of V(X) such that X CT is regular. If a 
vertex in 0" is adjacent to a vertices in 0", then it is adjacent to k-a vertices 
in V(X) \ 0". After switching, its valency increases by n - 10"1 - 2(k - a). 
Since this must be the same for every vertex in 0", we conclude that a 
is independent of the choice of vertex. Arguing similarly for V(X) \ 0" we 
conclude that the partition {O", V(X) \ O"} is equitable. 

The partition of the vertices of L(Ks) into 0" and its complement is 
equivalent to a partition of the edges of Ks into two graphs Xl and X 2 . 

The partition is equitable if and only if both L(XI ) and L(X2 ) are reg­
ular graphs. From Lemma 1.7.5 we see that this implies that Xl and X 2 

are regular or bipartite and semiregular. However, if Xl is bipartite and 
semiregular, then L(X2) consists of two cliques of different sizes. Hence 
both Xl and X 2 are regular. Conversely, if Xl is an r-regular graph on 8 
vertices, then 10"1 = 4r, a = 2(r - 1), and routine calculations show that 
XCT is 12-regular. 

We can assume that 10"1 :::; 14, and hence r :::; 3. If r = 1, then we can take 
X = 4K2 ; if r = 2, then Xl is one of Os, 0 5 U 0 3 , and 04 U 0 4 ; and if r = 3, 
there are six possible cubic graphs on eight vertices. Some of these choices 
give isomorphic graphs. It is relatively straightforward to show that L(Ks) 
and the three graphs obtained by taking Xl = Os, 0 5 U 0 3 , and 0 4 U 0 4 

are pairwise nonisomorphic. These latter three graphs are called the Ohang 
graphs. It is a little harder to show that every other choice for Xl leads to 
a graph isomorphic to one of the three Chang graphs. 



260 11. Two-Graphs 

11.8 The Two-Graph on 276 Vertices 

The Witt design on 23 points is a 4-(23,7,1) design, which we studied in 
Section 10.11. There we found that if N is the incidence matrix of this 
design, then 

NNT = 56! + 21J 

and 

NJ = 77J, NT J = 7J, NTNJ = 539J. 

Further, this design is quasi-symmetric, with intersection numbers 1 and 
3. Hence there is a Ol-matrix A such that 

NT N = 7I + A + 3(J - I - A) = 4I - 2A + 3J. 

Define the matrix S by 

( J-I 
8 = J _ 2NT 

J-2N ) 
NTN - 5I - 2J . 

Since NT N - 5I - 2J = -2A - ! + J is a Seidel matrix, it follows that 
S is a Seidel matrix. To prove that 8 determines a regular two-graph, we 
aim to show that it has only two eigenvalues. The obvious approach, which 
is to show that 8 2 can be expressed as a linear combination of S and I, 
rapidly leads to unpleasant algebraic manipulations. Rather than this, we 
use a method similar to that used in Section 10.6 to find local eigenvectors, 
and determine a complete collection of eigenvectors of S. 

Theorem 11.8.1 The matrix 8 defined above has two eigenvalues, which 
are -5 with multiplicity 253 and 55 with multiplicity 23. 

Proof. We work with partitioned vectors of the form 

where x has length 23 and y length 253. First we compute 

8 (a1) = (22a1 +991). 
1 9a1 + 281 

Hence we get an eigenvector for 8 with eigenvalue () if and only if 

The eigenvalues of this 2 x 2 matrix are -5 and 55, and a simple calculation 
shows that 

are eigenvectors for 8 with eigenvalues -5 and 55, respectively. 
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Next we look for eigenvectors of S orthogonal to the pair we have just 
found. Suppose y E rn;253 and IT y = o. Then IT Ny = 0, and hence 

( NY) ( -Ny - 2(3Ny ) 
S (3y = -2NT Ny + (3NT Ny - 5(3y 

_ ( -(1 + 2(3)Ny ) 
- ((3 - 2)NT Ny - 5(3y . 

If we take y to be an eigenvector of NT N with eigenvalue 0, then 

( NY) ((-1- 2(3)Ny ) 
S (3y = (((3 - 2)0 - 5(3)y , 

and therefore, if we select (3 such that (3( -1 - 2(3) = ((3 - 2)0 - 5(3, we will 
find an eigenvector of S. Solving this last equation implies that we must 
select (3 = 2 or (3 = -0/2. 

Now, we need to know the eigenvalues of NT N in order to find the eigen­
vectors that are orthogonal to 1. By Lemma 8.2.4, the nonzero eigenvalues 
of NT N equal the nonzero eigenvalues of N NT, and have the same mul­
tiplicities. Since N NT = 56! + 21J, its eigenvalues are 539 and 56, with 
multiplicities 1 and 22, respectively. Hence NT N has eigenspaces of dimen­
sion 1, 22, and 230, with the latter two consisting of eigenvectors orthogonal 
to 1. 

Now, if we take (3 = 2, then we get 252 linearly independent eigenvectors 
of S of the form 

all of which have eigenvalue -1 - 2(3 = -5. 
In addition, NT N has 22 linearly independent eigenvectors with eigen­

value 0 = 56, and so taking (3 = -0/2 yields 22 eigenvectors of the 
form 

all with eigenvalue -1 - 2(-28) = 55. These are necessarily independent 
of the 252 eigenvectors with eigenvalue -5. The 230 eigenvectors of NT N 
with eigenvalue 0 do not produce any further eigenvectors of S because 
both Ny and (3y are zero for all of these. This is just as well, because 
the 274 eigenvectors that we have just found, together with the two initial 
eigenvectors, form a set of 276 linearly independent eigenvectors. Therefore, 
there are no further eigenvectors of S, and it has just two eigenvalues -5 
and 55. D 

By Theorem 11.6.1, the neighbourhoods of a regular two-graph on 276 
vertices are strongly regular graphs. If X is such a neighbourhood with 
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eigenvalues k, (), and 7, then we must have 

-1- 2() = -5, 

-1- 27 = 55, 

and so () = 2 and 7 = -28. Using the expressions given in the proof 
of Theorem 11.6.1, we see that X has parameters (275,112,30,56). These 
values give equality in the second Krein bound, whence we deduce from 
Theorem 10.7.1 that both subconstituents of X are strongly regular. It 
can also be shown that the subconstituents of these subconstituents are 
strongly regular too, but we leave this an exercise. 

Exercises 

1. If n is odd, show that a switching class of graphs on n vertices contains 
a unique graph in which all vertices have even valency. 

2. Show that the strongly regular graph that arises by switching a vertex 
off the Petersen graph is L(K3,3). 

3. Let S be the Seidel matrix for C5 U K 1 . Show that S has only two 
eigenvalues and that there is no regular graph in its switching class. 

4. Let X be the block graph of a Steiner triple system on v points. 
Show that the switching class of X is a regular two-graph if and 
only if v = 13. Show that the switching class of X U Kl is a regular 
two-graph if and only if v = 15. 

5. Let X be a strongly regular graph constructed from a Latin square 
of order n. Show that the switching class of X U Kl is a regular two­
graph if and only if n = 5. Show that the switching class of X is a 
regular two-graph if and only if n = 6. 

6. Let X be a k-regular graph on n vertices. If there is a nontrivial 
switching a such that Xu is k-regular, show that k- ~ is an eigenvalue 
of A(X). 

7. Show that the Petersen graph can be switched into its complement. 

8. Let X be the neighbourhood of a vertex in the regular two-graph on 
276 vertices. Determine the eigenvalues and their multiplicities for 
each of the subconstituents of X, and show that the subconstituents 
of the subconstituents are strongly regular. 
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Notes 

Seidel's selected works [3] contains a number of papers on two-graphs, 
including two surveys. 

The regular two-graph on 276 vertices is a remarkable object. Its au­
tomorphism group is Conway's simple group ·3. Goethals and Seidel [2] 
provide a short proof that there is a unique regular two-graph on 276 ver­
tices; their proof reduces to the uniqueness of the ternary Golay code. The 
switching class of this two-graph contains a strongly regular graph with 
parameters (276, 135,78,54). 

One of the oldest open problems concerning two-graphs is the ques­
tion of whether there exist regular two-graphs on 76 and 96 vertices. 
The corresponding strongly regular graphs have parameters (75,32,10,16) 
and (95,40,12,20). The switching classes of the two-graphs could contain 
strongly regular graphs on 76 or 96 vertices. 

It would be interesting to have better information about the maximum 
number of equiangular lines in IRn. The absolute bound gives an upper 
bound of order n 2 /2. Dom de Caen [1] has a class of examples that provides 
a set of size 2q2 in IR 3q-I, where q = 22t-l. These examples do not form 
regular two-graphs, which makes them even more interesting. It would be 
very surprising if there was a further set of lines realizing the absolute 
bound. 
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12 
Line Graphs and Eigenvalues 

If X is a graph with incidence matrix B, then the adjacency matrix of its 
line graph L(X) is equal to BT B-2I. Because BT B is positive semidefinite, 
it follows that the minimum eigenvalue of L(X) is at least -2. This chapter 
is devoted to showing how close this property comes to characterizing line 
graphs. The main result is a beautiful characterization of all graphs with 
minimum eigenvalue at least -2. One surprise is that the proof uses sev­
eral seemingly unrelated combinatorial objects. These include generalized 
quadrangles with lines of size three and root systems, which arise in con­
nection with a number of important problems, including the classification 
of Lie algebras. 

12.1 Generalized Line Graphs 

Suppose that A is a symmetric matrix with zero diagonal such that A + 21 is 
positive semidefinite. Then A + 2I = UUT for some matrix U, and thus A + 
21 is the Gram matrix of a set of vectors, each with length v'2. Conversely, 
given a set of vectors with length v'2 and pairwise inner products 0 and 
1, we can construct a graph with minimum eigenvalue at least -2. Our 
eventual aim is to characterize all such sets of vectors, and hence the graphs 
with minimum eigenvalue at least -2. However, it is necessary to approach 
this task by first considering sets of vectors of length v'2 whose pairwise 
inner products are allowed to be 0, 1, or -1. We begin by defining an 
important set of vectors with this property. 
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Let el, ... , en be the standard basis for ]R. n and let Dn be the set of all 
vectors of the form 

±ei±ej, i=lj. 

All vectors in Dn have squared length 2, and the inner product of two 
distinct vectors from Dn is 0, 1, or -1. Hence if S is a subset of Dn such 
that the inner product of any two elements of S is nonnegative, then the 
Gram matrix of S determines a graph with minimum eigenvalue at least 
-2. 

Since Dn contains all the vectors ei + ej, it follows that the columns of 
the incidence matrix of any graph on n vertices lie in Dn, and so all line 
graphs can be obtained in this way. This motivates us to call a graph X a 
generalized line graph if 2I + A(X) is the Gram matrix of a subset of Dn 
for some n. 

All line graphs are generalized line graphs, but there are many generalized 
line graphs that are not line graphs. A simple example is given by the graph 
4K2 which has adjacency matrix A satisfying A + 2I = DT D, where D is 
the matrix 

(~ 
1 1 

-1 0 
o 1 
o 0 
o 0 

1 1 
o 0 

-1 0 
o 1 
o 0 

1 1 
o 0 
o 0 

-1 0 
o 1 

~) . 
-1 

Since 4K2 contains a copy of K5 with an edge removed as an induced 
subgraph, it is not a line graph. This example is easily generalized (sorry!) 
to yield that rK2 is a generalized line graph for all r ~ 4. (The graph 3K2 

is the line graph of K4.) 

12.2 Star-Closed Sets of Lines 

If x is a vector in ]R.n, let (x) denote the line spanned by x. Suppose that 
S is a set of vectors in ]R. m of length v'2 such that their pairwise inner 
products lie in {-I, 0,1}. Then the set of lines £. = {(x) : XES} has the 
property that any two distinct lines are at an angle of 60° or 90°. Our aim 
is to classify such sets of lines. 

We call such a set maximal if there is no way to add a new line at 60° or 
90° to those already given. All maximal sets are finite. To see this, consider 
the points formed by the intersection of the lines with the unit sphere in 
]R. n. Since the angle formed at the origin by any two points is at least 60°, 
the distance in ]R. n between any two points is at least 1. Since the unit 
sphere has finite area, this means we can have only finitely many points. 
Thus it suffices to classify the maximal sets of lines at 60° and 90°. 
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A star is a set of three coplanar lines, with any two at an angle of 60°. 
A set of lines C is star-closed if for any star £, m, and n such that £ and 
m lie in C, the line n also lies in C. The star-closure of a set of lines C 
is the intersection of all the star-closed sets of lines that contain C. It is 
immediate that the star-closure of a set of lines is itself star-closed. 

Theorem 12.2.1 A maximal set of lines at 60° and 90° in ]Rn is star­
closed. 

Proof. Let C be a set of lines at 60° and 90°, and suppose that (a), 
(b) E C are two lines at 60°. We can assume that a and b have length y'2 
and choose b such that (a, b) = -1. Then a + b has length y'2, and (a + b) 
forms a star with (a) and (b). We show that (a + b) is either in C or is 
at 60° or 90° to every line in C. Let x be a vector spanning a line of C. 
Then (x, a + b) = (x, a) + (x, b), and so (x, a + b) E {-2, -1,0,1, 2}. If 
(x, a + b) = ±2, then x = ±(a + b), and so (a + b) E C. Otherwise, it is at 
60° or 90° to every line of C, and so can be added to C to form a larger set 
~~. 0 

We note that the converse of Theorem 12.2.1 is false: For example, the 
four vectors el ±e2 and e3 ±e4 in D4 are pairwise orthogonal, and therefore 
span a star-closed set of lines at 60° and 90°. 

We record a result that we will need later; the proof is left as an exercise. 

Lemma 12.2.2 The set of lines spanned by the vectors of Dn is star­
closed. 0 

12.3 Reflections 

We can characterize star-closed sets of lines at 60° and 90° in terms of their 
symmetries. If h is a vector in ]R n, then there is a unique hyperplane through 
the origin perpendicular to h. Let Ph denote the operation of reflection in 
this hyperplane. Simple calculations reveal that for all x, 

(x, h) 
Ph(X) =x-2(h,h)h. 

We make a few simple observations. It is easy to check that Ph(h) = -h. 
Also, Ph (x) = x if and only if (h, x) = O. The product PaPb of two reflections 
is not in general a reflection. It can be shown that PaPb = PbPa if and only 
if either (a) = (b) or (a, b) = O. 

Lemma 12.3.1 Let C be a set of lines at 60° and 90° in ]Rn. Then C 
is star-closed if and only if for every vector h that spans a line in C, the 
reflection Ph fixes C. 



268 12. Line Graphs and Eigenvalues 

Proof. Let h be a vector of length v'2 spanning a line in £. From our 
comments above, Ph fixes (h) and all the lines orthogonal to (h). So suppose 
that (a) is a line of £ at 60° to (h). Without loss of generality we can assume 
that a has length v'2 and that (h, a) = -1. Now, 

( -1) 
Ph(a) = a - 2-2-h = a + h, 

and (a + h) forms a star with (a) and (h). This implies that Ph fixes £ if 
and only if £ is star-closed. 0 

A root system is a set S of vectors in rn;. n such that 

(a) if hE S, then (h) n S = {h, -h}; 

(b) if hE S, then Ph(S) = S. 

Lemma 12.3.1 shows that if £ is a star-closed set of lines at 60° and 90° 
in rn;.m, then the vectors of length v'2 that span these lines form a root 
system. For example, the set Dn is a root system. 

The group generated by the reflections Ph, for h in S, is the reflection 
group of the root system. The symmetry group of a set of lines or vectors in 
rn;. n is the group of all orthogonal transformations that take the set to itself. 
The symmetry group of a root system or of a set of lines always contains 
multiplication by -1. 

12.4 Indecomposable Star-Closed Sets 

A set £ of lines at 60° and 90° is called decomposable if it can be partitioned 
into two subsets £1 and £2 such that every line in £1 is orthogonal to every 
line in £2. If there is no such partition, then it is called indecomposable. 

Lemma 12.4.1 For n ::::: 2, the set of lines £ spanned by the vectors in Dn 
is indecomposable. 

Proof. The lines (e1 + ei) for i ::::: 2 have pairwise inner products equal 
to 1, and hence must be in the same part of any decomposition of £. It 
is clear, however, that any other vector in Dn has nonzero inner product 
with at least one of these vectors, and so there are no lines orthogonal to 
all of this set. 0 

Theorem 12.4.2 Let £ be a star-closed indecomposable set of lines at 60° 
and 900 • Then the reflection group of £ acts transitively on ordered pairs 
of nonorthogonal lines. 

Proof. First we observe that the reflection group acts transitively on the 
lines of £. Suppose that (a) and (b) are two lines that are not orthogonal, 
and that (a, b) = -1. Then c = -a - b spans the third line in the star with 
(a) and (b), and the reflection Pc swaps (a) and (b). Therefore, (a) can be 
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mapped on to any line not orthogonal to it. Let C' be the orbit of (a) under 
the reflection group of C. Then every line in C \ c' is orthogonal to every 
line of C'. Since C is indecomposable, this shows that C' = C. 

Now, suppose that ((a), (b)) and ((a), (c)) are two ordered pairs of 
nonorthogonallines. We will show that there is a reflection that fixes (a) 
and exchanges (b) and (c). Assume that a, b, and c have length J2 and 
that (a, b) = (a, c) = -1. Then the vector -a - b has length J2 and spans 
a line in C. Now, 

1 = (c, -a) = (c, b) + (c, -a - b). 

If c = b or c = -a - b, then (c) and (b) are exchanged by the identity 
reflection or Pa, respectively. Otherwise, c has inner product 1 with precisely 
one of the vectors in {b, -a-b}, and is orthogonal to the other. Exchanging 
the roles of b and -a - b if necessary, we can assume that (c, b) = 1. Then 
(b - c) E C, and the reflection Pb-c fixes (a) and exchanges (b) and (c). 0 

Now, suppose that X is a graph with minimum eigenvalue at least -2. 
Then A(X) + 2I is the Gram matrix of a set of vectors of length J2 that 
span a set of lines at 60° and 90°. Let C(X) denote the star-closure of this 
set of lines. Notice that the Gram matrix determines the set of vectors up 
to orthogonal transformations of the underlying vector space, and therefore 
C(X) is uniquely determined up to orthogonal transformations. 

Lemma 12.4.3 If X is a graph with minimum eigenvalue at least -2, 
then the star-closed set of lines C(X) is indecomposable if and only if X is 
connected. 

Proof. First suppose that X is connected. Let C' be the lines spanned 
by the vectors whose Gram matrix is A(X) + 21. Lines corresponding to 
adjacent vertices of X are not orthogonal, and hence must be in the same 
part of any decomposition of C(X). Therefore, all the lines in C' are in the 
same part. Any line lying in a star with two other lines is not orthogonal 
to either of them, and therefore lies in the same part of any decomposi­
tion of C(X). Hence the star-closure of C' is all in the same part of any 
decomposition, which shows that C(X) is indecomposable. 

If X is not connected, then C' has a decomposition into two parts. Any 
line orthogonal to two lines in a star is orthogonal to all three lines of the 
star, and so any line added to C' to complete a star can be assigned to one 
of the two parts of the decomposition, eventually yielding a decomposition 
of C. 0 

Therefore, we see that any connected graph with minimum eigenvalue at 
least -2 is associated with a star-closed indecomposable set of lines. Our 
strategy will be to classify all such sets, and thereby classify all the graphs 
with minimum eigenvalue at least -2. 
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12.5 A Generating Set 

We now show that any indecomposable star-closed set of lines L at 60° and 
90° is the star-closure of a special subset of those lines. Eventually, we will 
see that the structure of this subset is very restricted. 

Lemma 12.5.1 Let L be an indecomposable star-closed set of lines at 60° 
and 90°, and let (a), (b), and (c) form a star in L. Every other line of L 
is orthogonal to either one or three lines in the star. 

Proof. Without loss of generality we may assume that a, b, and c all have 
length J2 and that 

(a, b) = (b, c) = (c, a) = -1. 

It follows then that c = -a - b, and so for any other line (x) of L we have 

(x, a) + (x, b) + (x, c) = o. 
Because each of the terms is in {O, ±1}, we see that either all three terms 
are zero or the three terms are 1, 0, and -1 in some order. D 

Now, fix a star (a), (b), and (c), and as above choose a, b, and c to be 
vectors of length J2 with pairwise inner products -1. Let D be the set of 
lines of L that are orthogonal to all three lines in the star. The remaining 
lines of L are orthogonal to just one line of the star, so can be partitioned 
into three sets A, B, and C, consisting of those lines orthogonal to (a), (b), 
and (c), respectively. 

Lemma 12.5.2 The set L is the star-closure of (a), (b), and C. 

Proof. Let M denote the set of lines {(a), (b)} U C. Clearly, (c) lies in the 
star-closure of M, and so it suffices to show that every line in A, B, and 
D lies in a star with two lines chosen from M. Suppose that (x) E A, and 
without loss of generality, select x such that (b, x) = -1. Then -b - x E L 
and straightforward calculation shows that (-b - x) E C. Thus (x) is in 
the star containing (b) and (-b - x). An analogous argument deals with 
the case where (x) E B, leaving only the lines in D. Let x be a line in D, 
and first suppose that there is some line in C, call it z, not orthogonal to 
x. Then we can assume that (x, z) = -1, and hence that -x - z E L. Once 
again, straightforward calculations show that -x - z E C, and so (x) lies in 
a star with two lines from C. Therefore, the only lines remaining are those 
in D that are orthogonal to every line of C. Let D' denote this set of lines. 
Every line in D' is orthogonal to every line in M, and hence to every line 
in the star-closure of M, which we have just seen contains L \ D'. Since L 
is indecomposable, this implies that D' is empty. D 

Clearly, an analogous proof could be used to show that L is the star­
closure of (a), B, and (c) and that L is the star-closure of A, (b), and (c). 
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However, it is not necessary to do so because Theorem 12.4.2 implies that 
all choices of a pair of lines are equivalent under the reflection group of C. 

12.6 The Classification 

We now need to select a spanning vector for each of the lines in A, B, and 
C. We assume that every vector chosen has length yI2, but this still leaves 
us two choices for each line. We fix the choice of one vector from each line 
by defining A *, B*, and C* as follows: 

A* = {x: (x) E C, (a,x) = 0, (b,x) = 1, (c,x) = -1}, 

B* = {x: (x) E C, (a,x) = -1, (b,x) = 0, (c,x) = 1}, 

C* = {x: (x) E C, (a,x) = 1, (b,x) = -1, (c,x) = O}. 

With these definitions, it is routine to confirm that 

A* = Pb(C*) = C* + b, 

B* = Pc(A*) = A* + c, 

C* = Pa(B*) = B* + a. 

Lemma 12.6.1 If x and yare orthogonal vectors in C*, then there is a 
unique vector in C* orthogonal to both of them. 

Proof. Suppose that vectors x, y E C* are orthogonal. Then by our com­
ments above, we see that x + b E A * and that y - a E B* and that 
(x + b, y - a) = -1. Therefore, (a - b - x - y) E C, and calculation shows 
that a - b - x - Y E C*. Now, 

(a - b - x - y, x) = (a - b - x - y, y) = 0, 

and so a - b - x - y is orthogonal to both x and y. If z is any other vector 
in C* orthogonal to x and y, then 

(z, a - b - x - y) = (z, a) - (z, b) = 2, 

and hence z = a - b - x - y. o 

U sing this lemma we see that C* has a very special structure. Define 
the incidence structure Q to have the vectors of C* as its points, and the 
orthogonal triples of vectors as its lines. The previous lemma shows that 
any two points lie in at most one line, and hence Q is a partial linear space. 
However, we can say more about Q. 

Theorem 12.6.2 Let Q be the incidence structure whose points are the 
vectors of C*, and whose lines are triples of mutually orthogonal vectors. 
Then either Q has no lines, or Q is a generalized quadrangle, possibly 
degenerate, with lines of size three. 
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Proof. A generalized quadrangle has the property that given any line f 
and a point P off that line, there is a unique point on f collinear with P. 
We show that Q satisfies this axiom. 

Suppose that x, y, and a - b - x - yare the three points of a line of 
Q, and let z be an arbitrary vector in C*, not equal to any of these three. 
Then 

(z, x) + (z, y) + (z, a - b - x - y) = (z, a - b) = 2. 

Since each of the three terms is either 0 or 1, it follows that there is a 
unique term equal to 0, and hence z is collinear with exactly one of the 
three points of the line. 

Therefore, Q is a generalized quadrangle with lines of size three. 0 

From our earlier work on generalized quadrangles with lines of size three, 
we get the following result. 

Corollary 12.6.3 If Q is the incidence structure arising from a star-closed 
indecomposable set of lines at 60° and 90°, then one of the following holds: 

(a) Q has no lines; 
(b) Q is a set of concurrent lines of size three; 

(c) Q is the unique generalized quadrangle of order (2,1), (2,2), or 
(2,4). 0 

In the next section we will describe families of lines that realize each of the 
five cases enumerated above. 

12.7 Root Systems 

In this section we present five root systems, known as Dn, An, E g , E7 , 

and E6 . We will show that the corresponding sets of lines are indecom­
posable and star-closed, and that they realize the five possibilities of 
Corollary 12.6.3. 

We have already defined Dn , and shown that the corresponding set of 
lines is star-closed and indecomposable. We leave it as an exercise to confirm 
that the corresponding incidence structure Q is a set of concurrent lines of 
size three. 

The next root system is An, which consists of all nonzero vectors of the 
form ei - ej, where ei and ej run over the standard basis ofIT£.n+l. This is 
a subset of Dn +1, and in fact is the set of all vectors orthogonal to 1. We 
leave the proof of the next result as an exercise. 

Lemma 12.7.1 The set of lines corresponding to the root system An is 
star-closed and indecomposable. The incidence structure Q has no lines. 0 
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Our next root system is called E s, and lives in ~s. It contains the vectors of 
Ds, together with the 128 vectors x such that Xi E {-~, ~} for i = 1, ... ,8 
and the number of positive entries is even. 

Theorem 12.7.2 The root system Es contains exactly 240 vectors. The 
lines spanned by these vectors form an indecomposable star-closed set of 
lines at 60° and 90° in ~s. The generalized quadrangle Q associated with 
this set of lines is the unique generalized quadrangle of order (2,4). 

Proof. This is immediate, since Ds contains 112 vectors, and there are 
128 further vectors. 

First we show that the set of lines spanned by Es is indecomposable. 
Since the set of lines spanned by Ds is indecomposable, any decomposition 
will have all the lines spanned by Ds in one part. Any vector in Es \ Ds 
that is orthogonal to el + e2 has its first two entries of opposite sign, while 
any vector orthogonal to el - e2 has its first two entries of the same sign. 
Therefore, there are no vectors in Es \ Ds orthogonal to all the vectors in 
Ds· 

To show that Es is star-closed, we consider pairs of vectors x, y that 
have inner product -1, and show that in all cases -x - y E Es. Observe 
that permuting coordinates and reversing the sign of an even number of 
entries are operations that fix Es and preserve inner products, and so we 
can freely use these to simplify our calculations. Suppose firstly that x and 
yare both in Es \Ds. Then we can assume that x = ~1, and so y has six 
entries equal to -~ and two equal to ~. Therefore, -x - y E Ds, and so 
this star can be closed. Secondly, suppose that x is in Es \ Ds and that 
y E Ds. Once again we can assume that x = ~1, and therefore y has two 
entries equal to -1. Then -x - y has two entries of ~ and six equal to - ~, 
and so lies in Es \Ds. Finally, if x and yare both in Ds , then we appeal 
to the fact that Ds is star-closed. 

By Theorem 12.4.2 we can select any pair of nonorthogonallines as (a) 
and (b), so choose a = el + e2 and b = -el + e3, which implies that 
c = -e2 - e3. We count the number of lines orthogonal to this star. A 
vector x is orthogonal to this star if and only if its first three coordinates 
are Xl = a, X2 = -a, X3 = a. Therefore, if x E Ds, we have a = 0, and 
there are thus 4 (~) = 40 such vectors. If x E Es \ Ds, then the remaining 
five coordinates have either 1, 3, or 5 negative entries, and so there are m + m + m = 16 such vectors. Because a can be ±~, this yields 32 
vectors. Therefore, there are 72 vectors in Es orthogonal to the star, or 36 
lines orthogonal to the star. Since there are 120 lines altogether, this means 
that the star together with A, B, and C contain 84 lines. Since A, B, and 
C have the same size, this shows that they each contain 27 lines. Thus Q is 
a generalized quadrangle with 27 points, and so is the unique generalized 
quadrangle of order (2,4). 0 



274 12. Line Graphs and Eigenvalues 

We define two further root systems. First E7 is the set of vectors in Es 
orthogonal to a fixed vector, while E6 is the subset of Es formed by the 
set of vectors orthogonal to a fixed pair of vectors with inner product ±l. 
The next result outlines the properties of these root systems; the proofs 
are similar to those for Es, and so are left as exercises. 

Lemma 12.7.3 The root systems E6 and E7 contain 72 and 126 vectors 
respectively. The sets of lines spanned by the vectors of E6 and E7 are star­
closed and indecomposable. The associated generalized quadrangles are the 
unique generalized quadrangles of order (2,1) and (2,2), respectively. 

Theorem 12.7.4 An indecomposable star-closed set of lines at 60° and 
90° is the set of lines spanned by the vectors in one of the root systems E 6 , 

E 7 , E s, An, or Dn (for some n). 

Proof. The Gram matrix of the vectors in C* determines the Gram matrix 
of the entire collection of lines in C, which in turn determines C up to 
an orthogonal transformation. Since these five root systems give the only 
five possible Gram matrices for the vectors in C*, there are no further 
indecomposable star-closed sets of lines at 60° and 90°. 0 

We summarize some of the properties of our five root systems in the 
following table. 

Name Size IC*I 
Dn n(2n - 2) 2n-5 

An n(n + 1) n-2 

Es 240 27 

E7 126 15 

E6 72 9 

12.8 Consequences 

We begin by translating Theorem 12.7.4 into graph theory, then determine 
some of its consequences. 

Corollary 12.8.1 Let X be a connected graph with smallest eigenvalue at 
least -2, and let A be its adjacency matrix. Then either X is a generalized 
line graph, or A + 21 is the Gram matrix of a set of vectors in Es. 

Proof. Let S be a set of vectors with Gram matrix 21 + A. Then the star­
closure of S is contained in the set of lines spanned by the vectors in Es or 
Dn. 0 

This implies that a connected graph with minimum eigenvalue at least 
-2 and more than 120 vertices must be a generalized line graph. We can 
be more precise than this, at the cost of some effort. 
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Theorem 12.8.2 Let X be a graph with least eigenvalue at least -2. If 
X has more than 36 vertices or maximum valency greater than 28, it is a 
generalized line graph. 

Proof. If X is not a generalized line graph, then A(X) + 21 is the Gram 
matrix of a set of vectors in Es. So let 8 be a set of vectors from Es with 
nonnegative pairwise inner products. First we will show that 181 ::; 36. For 
any vector x E rn: s, let Px be the 8 x 8 matrix xxT . The matrices Px span a 
subspace of the real vector space formed by the 8 x 8 symmetric matrices, 
which has dimension G) = 36. To prove the first part of the lemma, it will 
suffice to show that the matrices Px for x E 8 are linearly independent. 

Suppose that there are real numbers ax such that 

Then we have 

= Laxay tr(xxTyyT) 
x,y 

= L aXay(xT y)2. 
x,y 

The last sum can be written in the form aT Da, where D is the matrix 
obtained by replacing each entry of the Gram matrix of 8 by its square. 
This Gram matrix is equal to 21 + A(X), and since A(X) is a Ol-matrix, 
it follows that D = 41 + A(X). But as 21 + A(X) is positive semidefinite, 
D is positive definite, and so a = O. Therefore, the matrices Px are linearly 
independent, and so 181 ::; 36. 

It remains for us to prove the claim about the maximum valency. Suppose 
that a E 8, and let (a), (b), and (c) be a star containing (a). The vectors 
whose inner product with a is 1 are the vectors -b, -c, and the vectors in 
C* and - B*. If x E C*, then x - a E B*, and so a - x E - B*. Then 

(x,a-x) = 1-2 = -1, 

and so 8 cannot contain both x and a-x. Similarly, 8 cannot contain both 
-b and -c, because their inner product is -1. Thus 8 can contain at most 
one vector from each of the pairs {x, a - x} for x E C*, together with at 
most one vector from {-b, -c}. Thus 8 contains at most 28 vectors with 
positive inner product with a, and so any vertex of X has valency at most 
28. 0 
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12.9 A Strongly Regular Graph 

Finally, we show how to construct a strongly regular graph from the root 
system E 8 . 

Let C be the set of lines spanned by the vectors in E 8 . Let X be the 
graph with the lines of C as its vertices, with two lines adjacent if they 
are distinct and are not perpendicular. We will prove that X is a strongly 
regular graph with parameters (120,56,28,24). 

Choose one vector from each pair of vectors {x, -x} in E 8 , and let P 
be the collection of matrices Px ' The map that takes a pair of symmetric 
matrices A and B to tr(AB) is an inner product on the space of symmetric 
matrices. Using this inner product, we can form the Gram matrix D of the 
elements of P. Then 

D = 41 +A, 

where A is the adjacency matrix of X. To show that X is strongly regular 
we will determine the eigenvalues of D. 

For each vector x in E8 there are 56 = 2(27 + 1) vectors y in E8 such 
that (x, y) = 1; hence X has valency 56, and the row sum of Dis 60. This 
provides one eigenvalue of D. 

The span of P has dimension at most 36, and so the rank of the Gram ma­
trix ofP is at most 36. Therefore, D has 0 as an eigenvalue with multiplicity 
at least 120 - 36 = 84. 

Now, we have found at least 85 eigenvalues of D. Let 81 , ... ,835 denote 
the remaining ones, which may also be equal to 0 or 60. Then 

480 = tr D = 60 + L 8i 

and 

Since tr D2 is the sum of the squares of the entries of D, we have 

tr D2 = 120(16 + 56) = 8640. 

Thus our two equations yield that 

L8i = 420, L8; = 5040. 

Now, 

35 

35L8; ~ 
i=l 

with equality if and only if the eigenvalues 8i are all equal. But in this case 
both sides equal (420)2, whence 8i = 12 for all i. 
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Therefore, the eigenvalues of Dare 60, 12, and 0 with respective multi­
plicities 1, 35, and 84. The eigenvalues of A = D - 4I are 56, 8, and -4, 
which shows that X is a regular graph with exactly three eigenvalues. Since 
the largest eigenvalue is simple, X is connected, and so by Lemma 10.2.1, 
we find that X is strongly regular. Given the eigenvalues of X, we can 
compute that the parameter vector for X is (120,56,28,24). Note that 

n 
k - "2 = 56 - 60 = -4; 

hence the switching class of X is a regular two-graph, by Theorem 11.7.1. 
Each second sub constituent of X is a strongly regular graph on 63 

vertices, namely the graph Sp(6). 

Exercises 

1. Let a and b be two nonzero vectors in ~m. Show that PaPb = PbPa if 
and only if either (a) = (b) or aTb = O. 

2. Show that the set of lines spanned by the vectors of Dn is star-closed 
and indecomposable. 

3. If.c is a set of lines, then select a pair {x, -x} of vectors of length J2 
spanning each line. Define a graph Y on this set of vectors where ad­
jacency is given by having inner product 1. If .c is an indecomposable 
star-closed set of lines 60° and 90°, then find the diameter of Y. 

4. Let Y be the graph defined on an indecomposable set of lines at 60° 
and 90° as in Exercise 3. Let a be a vertex of Y and let N be the set 
of neighbours of a. Show that each vector in N is adjacent to exactly 
one vector in - N. 

5. Let S be a set of vectors in An. If the inner product of any pair of 
vectors in S is nonnegative, then show that the Gram matrix of S is 
equal to 2I + A, where A is the adjacency matrix of the line graph of 
a bipartite graph. 

6. Let X be the orthogonality graph of C*. Let u and v be two nonad­
jacent vertices in X. Show that there is an automorphism of X that 
swaps u and v, but fixes all vertices adjacent to both u and v and all 
vertices adjacent to neither. 

7. Let X be a graph with minimum eigenvalue at least -2. Show that 
if a(X) :::: 9, then X is a generalized line graph. 

8. If X is a line graph and u and v are vertices in it with the same set 
of neighbours, show that u = v. 

9. If X is a generalized line graph, but not a line graph, show that there 
must be a pair of vertices in X with the same neighbours. 



278 References 

10. Show that Petersen's graph is neither a line graph nor a generalized 
line graph. 

11. In which of the root systems E6 , E7 , and Es is Petersen's graph 
contained, and in which is it not? (It is contained in at least one, and 
it is not necessary to construct an embedding.) 

12. Show that the set of lines spanned by the vectors in E7 is star-closed 
and indecomposable. 

13. Show that the set of lines spanned by the vectors in E6 is star-closed 
and indecomposable. 

14. Let X be a graph with least eigenvalue greater than -2. Show that 
if X is not a generalized line graph, then IV(X) I ~ 8. 

15. Determine the graphs with largest eigenvalue at most 2. 

Notes 

The results in this chapter are based on the fundamental paper by Cameron 
et al [2J. Alternative expositions are given in [1, 3]. These place less em­
phasis on the role of the generalized quadrangles with lines of size three. 
There is still scope for improvement in the results: In [4J Hoffman shows 
that if the minimum valency of X is large and Omin(X) > -1 - v'2, then 
Omin(X) ~ -2 and X is a generalized line graph. Neumaier and Woo [5] 
completely determine the structure of the graphs with Omin(X) ~ -1- vI2 
and with sufficiently large minimum valency. 
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13 
The Laplacian of a Graph 

The Laplacian is another important matrix associated with a graph, and 
the Laplacian spectrum is the spectrum of this matrix. We will consider 
the relationship between structural properties of a graph and the Laplacian 
spectrum, in a similar fashion to the spectral graph theory of previous 
chapters. We will meet Kirchhoff's expression for the number of spanning 
trees of a graph as the determinant of the matrix we get by deleting a row 
and column from the Laplacian. This is one of the oldest results in algebraic 
graph theory. We will also see how the Laplacian can be used in a number 
of ways to provide interesting geometric representations of a graph. This is 
related to work on the Colin de Verdi ere number of a graph, which is one 
of the most important recent developments in graph theory. 

13.1 The Laplacian Matrix 

Let a be an arbitrary orientation of a graph X, and let D be the incidence 
matrix of xa. Then the Laplacian of X is the matrix Q(X) = DDT. It is 
a consequence of Lemma 8.3.2 that the Laplacian does not depend on the 
orientation a, and hence is well-defined. 

Lemma 13.1.1 Let X be a graph with n vertices and c connected 
components. If Q is the Laplacian of X, then rkQ = n - c. 

Proof. Let D be the incidence matrix of an arbitrary orientation of X. 
We shall show that rkD = rkDT = rkDDT, and the result then follows 
from Theorem 8.3.1. If z E ITt n is a vector such that DDT z = 0, then 
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ZT DDT Z = O. But this is the squared length of the vector DT z, and hence 
we must have DT z = O. Thus any vector in the null space of DDT is in the 
null space of DT , which implies that rkDDT = rkD. 0 

Let X be a graph on n vertices with Laplacian Q. Since Q is symmetric, 
its eigenvalues are real, and by Theorem 8.4.5, m.n has an orthogonal basis 
consisting of eigenvectors of Q. Since Q = DDT, it is positive semidefinite, 
and therefore its eigenvalues are all nonnegative. We denote them by A1(Q), 
... , An(Q) with the assumption that 

We use Ai(X) as shorthand for Ai(Q(X)), or simply Ai when Q is clear 
from the context or unimportant. We will also use Aoo to denote An. For 
any graph, A1 = 0, because Q1 = O. By Lemma 13.1.1, the multiplicity 
of zero as an eigenvalue of Q is equal to the number of components of X, 
and so for connected graphs, A2 is the smallest nonzero eigenvalue. Much 
of what follows will concentrate on the information determined by this 
particular eigenvalue. 

If X is a regular graph, then the eigenvalues of the Laplacian are 
determined by the eigenvalues of the adjacency matrix. 

Lemma 13.1.2 Let X be a regular graph with valency k. If the adjacency 
matrix A has eigenvalues (}1, ... , (}n, then the Laplacian Q has eigenvalues 
k - (}1, ... ,k - (}n. 

Proof. If X is k-regular, then Q = ~(X) - A = kI - A. Thus every 
eigenvector of A with eigenvalue () is an eigenvector of Q with eigenvalue 
k - (). 0 

This shows that if two regular graphs are cospectral, then they also have 
the same Laplacian spectrum. However, this is not true in general; the two 
graphs of Figure 8.1 have different Laplacian spectra. 

The next result describes the relation between the Laplacian spectrum 
of X and the Laplacian spectrum of its complement X. 

Lemma 13.1.3 If X is a graph on n vertices and 2::; i ::; n, then Ai(X) = 
n - An -i+2(X). 

Proof. We start by observing that 

Q(X) + Q(X) = nI - J. (13.1) 

The vector 1 is an eigenvector of Q(X) and Q(X) with eigenvalue O. Let 
x be another eigenvector of Q(X) with eigenvalue A; we may assume that 
x is orthogonal to 1. Then Jx = 0, so 

nx = (nI - J)x = Q(X)x + Q(X)x = AX + Q(X)x. 

Therefore, Q(X)x = (n - A)X, and the lemma follows. o 
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Note that nI - J = Q(Kn); thus (13.1) can be rewritten as 

Q(X) + Q(X) = Q(Kn). 

From the proof of Lemma 13.1.3 it follows that the eigenvalues of Q(Kn) 
are n, with multiplicity n - 1, and 0, with multiplicity 1. Since Km,n is the 
complement of Km U K n, we can use this fact, along with Lemma 13.1.3, 
to determine the eigenvalues of the complete bipartite graph. We leave the 
pleasure of this computation to the reader, noting only the result that the 
characteristic polynomial of Q(Km,n) is 

t(t - m)n-l(t - n)m-l(t - m - n). 

We note another useful consequence of Lemma 13.1.3. 

Corollary 13.1.4 If X is a graph on n vertices, then An(X) ::; n. If X 
has c connected components, then the multiplicity of n as an eigenvalue of 
Q(X) is c - 1. 0 

Our last result in this section is a property of the Laplacian that will provide 
us with a lot of information about its eigenvalues. 

Lemma 13.1.5 Let X be a graph on n vertices with Laplacian Q. Then 
for any vector x, 

XTQX = L (xu - xv)2. 
uvEE(X) 

Proof. This follows from the observations that 

xTQx = xT DDT X = (DT x)T(DT x) 

and that if uv E E(X), then the entry of DT x corresponding to uv is 
±(xu - xv). 0 

13.2 Trees 

In this section we consider a classical result of algebraic graph theory, which 
shows that the number of spanning trees in a graph is determined by the 
Laplacian. 

First we need some preparatory definitions. Let X be a graph, and let 
e = uv be an edge of X. The graph X \ e with vertex set V(X) and edge 
set E(X) \ e is said to be obtained by deleting the edge e. The graph 
X/ e constructed by identifying the vertices u and v and then deleting 
e is said to be obtained by contracting e. Deletion and contraction are 
illustrated in Figure 13.1. If a vertex x is adjacent to both u and v, then 
there will be multiple edges between x and the newly identified vertex in 
X/e. Furthermore, if X itself has multiple edges, then any edges between 



282 13. The Laplacian of a Graph 

u and v other than e itself become loops on the newly identified vertex in 
X/e. Depending on the situation, it is sometimes possible to ignore loops, 
multiple edges, or both. 

Figure 13.1. Graph Y, deletion Y \ e, and contraction Y / e 

If M is a symmetric matrix with rows and columns indexed by the set 
V and if S ~ V, then let M[S] denote the submatrix of M obtained by 
deleting the rows and columns indexed by elements of S. 

Theorem 13.2.1 Let X be a graph with Laplacian matrix Q. If u is an 
arbitrary vertex of X, then det Q[u] is equal to the number of spanning trees 
ofX. 

Proof. We prove the theorem by induction on the number of edges of X. 
Let T(X) denote the number of spanning trees of X. If e is an edge 

of X, then every spanning tree either contains e or does not contain e, 
so we can count them according to this distinction. There is a one-to-one 
correspondence between spanning trees of X that contain e and spanning 
trees of X/e, so there are T(X/e) such trees. Any spanning tree of X that 
does not contain e is a spanning tree of X\e, and so there are T(X\e) of 
these. Therefore, 

T(X) = T(X/e) + T(X\e). (13.2) 

In this situation, multiple edges are retained during contraction, but we 
may ignore loops, because they cannot occur in a spanning tree. 

Now, assume that e = uv, and let E be the n x n diagonal matrix with 
Evv equal to 1, and all other entries equal to O. Then 

Q[u] = Q(X\e)[u] + E, 

from which we deduce that 

det Q[u] = det Q(X \ e)[u] + det Q(X \ e)[u, v]. (13.3) 

Note that Q(X\e)[u,v] = Q[u, v]. 
Assume that in forming X/e we contract u onto v, so that V(X/e) = 

V(X) \ u. Then Q(X/e)[v] has rows and columns indexed by V(X) \ {u, v} 
with the xy-entry being equal to Qxy, and so we also have that Q(X/e)[v] = 
Q[u, v]. 
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Thus we can rewrite (13.3) as 

det Q[u] = det Q(X \ e)[u] + det Q(X/e)[v]. 

By induction, det Q(X\e)[u] = T(X\e) and det Q(X/e)[v] = T(X/e); hence 
(13.2) implies the theorem. 0 

It follows from Theorem 13.2.1 that det Q[u] is independent of the choice 
of the vertex u. 

Corollary 13.2.2 The number of spanning trees of Kn is nn-2. 

Proof. This follows directly from the fact that Q[u] = nln-l - J for any 
vertex u. 0 

If M is a square matrix, then denote by M (i, j) the matrix obtained by 
deleting row i and column j from M. The ij-cofactor of M is the value 

(-l)i+j detM(i,j). 

The transposed matrix of cofactors of M is called the ad jugate of M and 
denoted by adj M. The ij-entry of adj M is the ji-cofactor of M. The most 
important property of the adjugate is that 

Madj(M) = (detM)I. 

If M is invertible, it implies that M- 1 = (det M)-l adj(M). Theo­
rem 13.2.1 implies that if Q is the Laplacian of a graph, then the diagonal 
entries of adj(Q) are all equal. The full truth is somewhat surprising: All 
of the entries of adj ( Q) are equal. 

Lemma 13.2.3 Let T(X) denote the number of spanning trees in the graph 
X and let Q be its Laplacian. Then adj(Q) = T(X)J. 

Proof. Suppose that X has n vertices. Assume first that X is not con­
nected, so that T(X) = O. Then Q has rank at most n - 2, so any submatrix 
of Q of order (n - 1) x (n - 1) is singular and adj(Q) = O. 

Thus we may assume that X is connected. Then adj( Q) i- 0, but nonethe­
less Q adj( Q) = O. Because X is connected, ker Q is spanned by I, and 
therefore each column of adj(Q) must be a constant vector. Since adj(Q) 
is symmetric, it follows that it is a nonzero multiple of J; now the result 
follows at once from Theorem 13.2.1. 0 

To prove the next result we need some information about the character­
istic polynomial of a matrix. If A and B are square n x n matrices, then 
det(A+B) may be computed as follows. For each subset S of {I, ... , n}, let 
As be the matrix obtained by replacing the rows of A indexed by elements 
of S with the corresponding rows of B. Then 

det(A + B) = L det As. 
s 
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Applying this to tI + (-A), we deduce that the coefficient of t n - k in 
det (tI - A) is (-1) k times the sum of the determinants of the principal 
k x k submatrices of A. (This is a classical result, due to Laplace.) 

Lemma 13.2.4 Let X be a graph on n vertices, and let AI, ... ,An be the 
eigenvalues of the Laplacian of X. Then the number of spanning trees in 

X is ~ n~=2 Ai' 

Proof. The result clearly holds if X is not connected, so we may assume 
without loss that X is connected. Let ¢( t) denote the characteristic poly­
nomial det(tI - Q) of the Laplacian Q of X. The zeros of ¢(t) are the 
eigenvalues of Q. Since Al = 0, its constant term is zero and the coefficient 
of tis 

n 

(_1)n-1 II Ai· 
i=2 

On the other hand, by our remarks just above, the coefficient of the linear 
term in ¢(t) is 

(_1)n-1 L detQ[u]. 
uEV(X) 

This yields the lemma immediately. o 

13.3 Representations 

Define a representation p of a graph X in JR m to be a map p from V (X) into 
JRm. Informally, we think of a representation as the positions of the vertices 
in an m-dimensional drawing of a graph. Figure 13.2 shows a representation 
of the cube in JR3. 

(1,1,1) 

(-1,-1,1) 0----+---0 

(1,-1,-1) (}---+----o (1,1,-1) 

(-1,-1,-1) CJ-----......(J 

Figure 13.2. The cube in IR3 
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We regard the vectors p(u) as row vectors, and thus we may represent 
p by the IV(X) I x m matrix R with the images of the vertices of X as its 
rows. 

Suppose then that p maps V(X) into rn: m . We say p is balanced if 

L p(u) = o. 
UEV(X) 

Thus p is balanced if and only if 1 T R = O. The representation of Fig­
ure 13.2 is balanced. A balanced representation has its "centre of gravity" 
at the origin, and clearly we can translate any representation so that it is 
balanced without losing any information. Henceforth we shall assume that 
a representation is balanced. 

If the columns of the matrix R are not linearly independent, then the 
image of X is contained in a proper subspace of rn: m , and p is just a 
lower-dimensional representation embedded in rn: m . Any maximal linearly 
independent subset of the columns of R would suffice to determine all the 
properties of the representation. Therefore, we will furthermore assume 
that the columns of R are linearly independent. 

We can imagine building a physical model of X by placing the vertices 
in the positions specified by p and connecting adjacent vertices by identical 
springs. It is natural to consider a representation to be better if it requires 
the springs to be less extended. Letting Ilxll denote the Euclidean length 
of a vector x, we define the energy of a representation p to be the value 

£(p) = L IIp(u) - p(v)112, 
uvEE(X) 

and hope that natural or good drawings of graphs correspond to represen­
tations with low energy. (Of course, the representation with least energy is 
the one where each vertex is mapped to the zero vector. Thus we need to 
add further constraints, to exclude this.) 

We can go further by dropping the assumption that the springs are iden­
tical. To model this, let w be a function from the edges of X to the positive 
real numbers, and define the energy £(p) of a representation p of X by 

£(p) = L wuvllp(u) - p(v)112, 
uvEE(X) 

where Wuv denotes the value of w on the edge uv. Let W be the diagonal 
matrix with rows and columns indexed by the edges of X and with the 
diagonal entry corresponding to the edge uv equal to Wuv . 

The next result can be viewed as a considerable generalization of 
Lemma 13.1.5. 

Lemma 13.3.1 Let p be a representation of the edge-weighted graph X, 
given by the IV(X)I x m matrix R. If D is an oriented incidence matrix 
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for X, then 

£(p) = trRTDWDTR. 

Proof. The rows of DT R are indexed by the edges of X, and if uv E E(X), 
then the uv-row of DTR is ±(p(u) - p(v)). Consequently, the diagonal 
entries of DTRRTD have the form IIp(u) - p(v)112, where uv ranges over 
the edges of X. Hence 

£(p) = trWDT RRTD = tr RTDWDT R 

as required. o 

We may view Q = DW DT as a weighted Laplacian. If uv E E(X), then 
Quv = -Wuv , and for each vertex u in X, 

Quu = Lwuv . 

v~u 

Thus Q1 = o. Conversely, any symmetric matrix Q with nonpositive off­
diagonal entries such that Q1 = 0 is a weighted Laplacian. 

Note that RT DW DT R is an m x m symmetric matrix; hence its eigen­
values are real. The sum of the eigenvalues is the trace of the matrix, and 
hence the energy of the representation is given by the sum of the eigenvalues 
of RTDWDTR. 

For the normalized representation of the cube we have (with W = 1) 

RT = _1_ (: 
1 -1 -1 1 1 -1 -1) -1 -1 1 1 -1 -1 1 , 

vis 1 1 1 1 -1 -1 -1 -1 

3 -1 0 -1 -1 0 0 0 
-1 3 -1 0 0 -1 0 0 

0 -1 3 -1 0 0 -1 0 

Q= -1 0 -1 3 0 0 0 -1 
-1 0 0 0 3 -1 0 -1 

0 -1 0 0 -1 3 -1 0 
0 0 -1 0 0 -1 3 -1 
0 0 0 -1 -1 0 -1 3 

which implies that 

0 0 

~) RTQR= 2 
0 

and £(p) = 6. This can be confirmed directly by noting that each of the 12 
edges of the cube has length 1/ v'2. 
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13.4 Energy and Eigenvalues 

We now show that the energy of certain representations of a graph X are 
determined by the eigenvalues of the Laplacian of X. If M is an invertible 
m x m matrix, then the map that sends u to p(u)M is another represen­
tation of X. This representation is given by the matrix RM and provides 
as much information about X as does p. From this point of view the rep­
resentation is determined by its column space. Therefore, we may assume 
that the columns of R are orthogonal to each other, and as above that each 
column has norm 1. In this situation the matrix R satisfies RT R = 1m , and 
the representation is called an orthogonal representation. 

Theorem 13.4.1 Let X be a graph on n vertices with weighted Laplacian 
Q. Assume that the eigenvalues of Q are Al ~ ... ~ An and that A2 > 0. 
The minimum energy of a balanced orthogonal representation of X in JP!. m 

equals L:~l Ai. 

Proof. By Lemma 13.3.1 the energy of a representation is tr RTQR. From 
Corollary 9.5.2, the energy of an orthogonal representation in JP!.£ is bounded 
below by the sum of the f smallest eigenvalues of Q. We can realize this 
lower bound by taking the columns of R to be vectors Xl, ... , X£ such that 
QXi = AiXi. 

Since A2 > 0, we must have Xl = 1, and therefore by deleting Xl we ob­
tain a balanced orthogonal representation in JP!. £-1, with the same energy. 
Conversely, we can reverse this process to obtain an orthogonal represen­
tation in JP!.£ from a balanced orthogonal representation in JP!.£-l such that 
these two representations have the same energy. Therefore, the minimum 
energy of a balanced orthogonal representation of X in JP!. m equals the min­
imum energy of an orthogonal representation in JP!.m+l, and this minimum 
equals A2 + ... + Am+!. 0 

This result provides an intriguing automatic method for drawing a 
graph in any number of dimensions. Compute an orthonormal basis of 
eigenvectors Xl, ... , xn for the Laplacian Q and let the columns of R 
be X2, ... , Xm+l. Theorem 13.4.1 implies that this yields an orthogonal 
balanced representation of minimum energy. The representation is not nec­
essarily unique, because it may be the case that Am+! = Am+2' in which 
case there is no reason to choose between Xm+l and X m+2. 

Figure 13.3 shows that such a representation (in JP!.2) can look quite 
appealing, while Figure 13.4 shows that it may be less appealing. 

Both of these graphs are planar graphs on 10 vertices, but in both cases 
the drawing is not planar. Worse still, in general there is no guarantee that 
the images of the vertices are even distinct. The representation of the cube 
in JP!. 3 given above can be obtained by this method. 

More generally, any pairwise orthogonal triple of eigenvectors of Q pro­
vides an orthogonal representation in JP!.3, and this representation may have 
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Figure 13.3. A planar triangulation represented in]R2 

Figure 13.4. A planar triangulation represented in ]R2 

pleasing properties, even if we do not choose the eigenvectors that minimize 
the energy. 

We finish this section with a corollary to Theorem 13.4.l. 

Corollary 13.4.2 Let X be a graph on n vertices. Then the minimum 
value of 

LUVEE(X) (xu - xv)2 

LuX; 
as X ranges over all nonzero vectors orthogonal to 1, is A2 (X) . The 
maximum value is Aoo(X). 0 

13.5 Connectivity 

Our main result in this section is a consequence of the following bound. 

Theorem 13.5.1 Suppose that S is a subset of the vertices of the graph 
X. Then A2(X) :::; A2(X\S) + lSI. 
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Proof. Let z be a unit vector of length n such that (when viewed as a 
function on V(X)) its restriction to 8 is zero, and its restriction to V(X)\8 
is an eigenvector of Q(X \ 8) orthogonal to 1 and with eigenvalue e. Then 
by Corollary 13.4.2 

A2(X)::; L (zu - zv)2. 
uvEE(X) 

Hence by dividing the edges into those with none, one, or two endpoints in 
X\8 we get 

A2(X) ::; L L z~ + L (zu - zv)2 ::; 181 + e. 
uES v~u uvEE(X\S) 

We may take e = A2(X \ 8), and hence the result follows. D 

If 8 is a vertex-cutset, then X \ 8 is disconnected, so A2 (X \ 8) = 0, and 
we have the following bound on the vertex connectivity of a graph. 

Corollary 13.5.2 For any graph X we have A2(X) ::; lio(X). D 

It follows from our observation in Section 13.1 or from Exercise 4 that the 
characteristic polynomial of Q(K1,n) is t(t _l)n~l(t - n -1). This provides 
one family of examples where A2 equals the vertex connectivity. 

Provided that X is not complete, the vertex connectivity of X is bounded 
above by the edge connectivity, which, in turn, is bounded above by the 
minimum valency J(X) of a vertex in X. We thus have the following useful 
inequalities for noncomplete graphs: 

Note that deleting a vertex may increase A2. For example, suppose X = K n, 
where n 2: 3, and Y is constructed by adding a new vertex adjacent to two 
distinct vertices in X. Then A2(Y) ::; 2, since J(Y) = 2, but A2(X) = n. 

Recall that a bridge is an edge whose removal disconnects a graph, and 
thus a graph has edge-connectivity one if and only if it has a bridge. In 
this case, the above result shows that A2(X) ::; 1 unless X = K 2. It has 
been noted empirically that A2 seems to give a fairly natural measure of 
the "shape" of a graph. Graphs with small values of A2 tend to be elon­
gated graphs of large diameter with bridges, whereas graphs with larger 
values of A2 tend to be rounder with smaller diameter, and larger girth and 
connectivity. 

For cubic graphs, this observation can be made precise, at least as regards 
the minimum values for A2. If n 2: 10 and n == 2 mod 4, the graphs shown 
in Figure 13.5 have the smallest value of A2 among all cubic graphs on 
n vertices. If n 2: 12 and n == 0 mod 4, the graphs shown in Figure 13.6 
have the smallest value of A2 among all cubic graphs on n vertices. In both 
cases these graphs have the maximum diameter among all cubic graphs on 
n vertices. 
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Figure 13.5. Cubic graph with minimum .A2 on n == 2 mod 4 vertices 

Figure 13.6. Cubic graph with minimum .A2 on n == 0 mod 4 vertices 

13.6 Interlacing 

We now consider what happens to the eigenvalues of Q(X) when we add 
an edge to X. 

Lemma 13.6.1 Let X be a graph and let Y be obtained from X by adding 
an edge joining two distinct vertices of X. Then 

A2(X) ::::; A2(Y) ::::; A2(X) + 2. 

Proof. Suppose we get Y by joining vertices rand s of X. For any vector 
Z we have 

ZTQ(Y)Z = L (zu - zv)2 = (Zr - Z8)2 + L (zu - zv)2. 
uvEE(Y) uvEE(X) 

If we choose Z to be a unit eigenvector of Q(Y), orthogonal to 1, and with 
eigenvalue A2(Y), then by Corollary 13.4.2 we get 

A2(Y) ?: A2(X) + (zr - Z8)2. (13.4) 

On the other hand, if we take Z to be a unit eigenvector of Q(X), 
orthogonal to 1, with eigenvalue A2(X), then by Corollary 13.4.2 we get 

A2(Y) ::::; A2(X) + (zr - Z8? (13.5) 

It follows from (13.4) that A2(X) ::::; A2(Y). We can complete the proof 
by appealing to (13.5). Since z; + z; ::::; 1, it is straightforward to see that 
(zr - Z8)2 ::::; 2, and the result is proved. D 

A few comments on the above proof. If we add an edge joining the two 
vertices in 2Kl (to get K 2 ), then A2 increases from 0 to 2. Although this 
example might not be impressive, it does show that the upper bound can 
be tight. The full story is indicated in Exercise 8. 

Next, the reader may well have thought that we forgot to insist that the 
edge added to X in the lemma has to join two distinct and nonadjacent 
vertices. In fact, the proof works without alteration even if the two ver­
tices chosen are adjacent. We say no more, because here we are not really 
interested in graphs with multiple edges. 
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Theorem 13.6.2 Let X be a graph with n vertices and let Y be obtained 
from X by adding an edge joining two distinct vertices of X. Then Ai (X) ~ 
Ai(Y), for all i, and Ai(Y) ~ Ai+l(X) ifi < n. 

Proof. Suppose we add the edge uv to X to get Y. Let z be the vector 
of length n with u-entry and v-entry 1 and -I, respectively, and all other 
entries equal to O. Then Q(Y) = Q(X) + zzT, and if we use Q to denote 
Q(X), we have 

tI - Q(Y) = tI - Q - zzT = (tI - Q)(I - (tI - Q)-lzzT). 

By Lemma 8.2.4, 

det(I - (tI - Q)-lzzT) = 1- zT(tI - Q)-lz, 

and therefore 

det(tI - Q(Y)) = 1- zT(tI _ Q)-lz. 
det(tI - Q(X)) 

The result now follows from Theorem 8.13.3, applied to the rational 
function 'IjJ(t) = 1 - ZT(tI - Q)-lz, and the proof of Theorem 9.1.1. 0 

One corollary of this and Theorem 13.4.1 is that if X is a spanning 
subgraph of Y, then the energy of any balanced orthogonal representation 
of Y can never be less than the energy of the induced representation of X. 

As another corollary of the theorem, we prove again that the Petersen 
graph does not have a Hamilton cycle. The eigenvalues of the adjacency 
matrix of the Petersen graph are 3, 1, and -2, with multiplicities 1, 5, and 
4, respectively. Therefore, the eigenvalues of the Laplacian matrix for the 
Petersen graph are 0, 2, and 5, with multiplicities I, 5, and 4, respectively. 
The eigenvalues of the adjacency matrix of C lD are 2 cos(7rr/5) , for r = 

0,1, ... ,9. It follows that 

A6(ClD ) = (3 + V5)/2 > A6(P) = 2. 

Consequently, the eigenvalues of the Laplacian matrix of ClD do not in­
terlace the eigenvalues of the Laplacian matrix of the Petersen graph, and 
therefore the Petersen graph does not have a Hamilton cycle. 

We present two further examples in Figure 13.7; we can prove that these 
graphs are not hamiltonian by considering their Laplacians in this fash­
ion. These two graphs are of some independent interest. They are cubic 
hypohamiltonian graphs, which are somewhat rare. The first graph, on 18 
vertices, is one of the two smallest cubic hypohamiltonian graphs after the 
Petersen graph. Like the Petersen graph it cannot be 3-edge coloured (it is 
one of the Blanusa snarks). The second graph, on 22 vertices, belongs to 
an infinite family of hypohamiltonian graphs. 

It is interesting to note that the technique described in Section 9.2 using 
the adjacency matrix is not strong enough to prove that these two graphs 
are not hamiltonian. However, there are cases where the adjacency matrix 
technique works, but the Laplacian technique does not. 
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Figure 13.7. Two nonhamiltonian graphs 

13.7 Conductance and Cutsets 

We now come to some of the most important applications of >'2. If X is a 
graph and S ~ V(X), let oS denote the set of edges with one end in Sand 
the other in V(X) \S. 

Lemma 13.7.1 Let X be a graph on n vertices and let S be a subset of 
V(X). Then 

Proof. Suppose lSI = a. Let z be the vector (viewed as a function on 
V(X)) whose value is n - a on the vertices in S and -a on the vertices not 
in S. Then z is orthogonal to 1, so by Corollary 13.4.2 

>'2(X) < L::uvEE(X)(zu - zv)2 _ loSIn2 . 

- L::u z~ a(n - a)2 + (n - a)a2 

The lemma follows immediately from this. 0 

By way of a simple example, if S is a single vertex with valency k, then the 
lemma implies that >'2 (X) ~ kn/(n-1). This is weaker than Fiedler's result 
that >'2 is no greater than the minimum valency of X (Theorem 13.5.1), 
although not by much. 

Our next application is much more important. Define the conductance 
<I>(X) of a graph X to be the minimum value of 

10SI 
lSI' 

where S ranges over all subsets of V(X) of size at most IV(X)I/2. (Many 
authors refer to this quantity as the isoperimetric number of a graph. We 
follow Lovasz, which seems safe.) From Lemma 13.7.1 we have at once the 
following: 

Corollary 13.7.2 For any graph X we have <I>(X) ::::: >'2(X)/2. 0 
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The real significance of this bound is that ),2 can be computed to a given 
number of digits in polynomial time, whereas determining the conductance 
of a graph is an NP-hard problem. A family of graphs with constant valency 
and conductance bounded from below by a positive constant is called a 
family of expanders. These are important in theoretical computer science, 
if not in practice. 

The bisection width of a graph on n vertices is the minimum value of 
18SI, for any subset S of size In/2J. Again, this is NP-hard to compute, 
but we do have the following: 

Corollary 13.7.3 The bisection width of a graph X on 2m vertices is at 
least m),2(X)/2. 0 

We apply this to the k-cube Qk. In Exercise 13 it is established that 
),2 (Qk) = 2, from which it follows that the bisection width of the k-cube 
is at least 2k-l. Since this value is easily realized, we have thus found the 
exact value. 

Let bip(X) denote the maximum number of edges in a spanning bipartite 
subgraph of X. This equals the maximum value of 18SI, where S ranges 
over all subsets of V(X) with size at most W(X)I/2. 

Lemma 13.7.4 If X is a graph with n vertices, then bip(X) :::; n),oo(X)/4. 

Proof. By applying Lemma 13.7.1 to the complement of X we get 

which is the desired inequality. o 

13.8 How to Draw a Graph 

We will describe a remarkable method, due to Tutte, for determining 
whether a 3-connected graph is planar. 

Lemma 13.8.1 Let S be a set of points in m;m. Then the vector x in m;m 
minimizes LYES Ilx - Yl12 if and only if 

1 
x = TSI Ly· 

yES 

Proof. Let fj be the centroid of the set S, i.e., 

AI",", 
Y = TSI ~y. 

yES 

Then 

L Ilx - Yl12 = L II(x - fj) + (fj - y)112 
yES yES 
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ISlllx - f)11 2 + L 11f) - Yl12 + 2 L (x - i), i) - y) 
yES yES 

ISlllx - f)11 2 + L IIi) - Y112. 
yES 

Therefore, this is a minimum if and only if x = f). o 

We say that a representation p of X is barycentric relative to a subset 
F of V (X) if for each vertex u not in F, the vector p( u) is the centroid of 
the images of the neighbours of u. A barycentric representation can easily 
be made balanced, but will normally not be orthogonal. If the images of 
the vertices in F are specified, then a barycentric embedding has minimum 
energy. Our next result formalizes the connection with the Laplacian. 

Lemma 13.8.2 Let F be a subset of the vertices of X, let p be a repre­
sentation of X, and let R be the matrix whose rows are the images of the 
vertices of X. Let Q be the Laplacian of X. Then p is barycentric relative 
to F if and only if the rows of QR corresponding to the vertices in X \ F 
are all zero. 

Proof. The vector x is the centroid of the vectors in S if and only if 

L(x - y) = O. 
yES 

If u has valency d, the u-row of QR is equal to 

The lemma follows. o 

Lemma 13.8.3 Let X be a connected graph, let F be a subset of the ver­
tices of X, and let a be a map from F into m;m. If X \ F is connected, 
there is a unique m-dimensional representation p of X that extends a and 
is barycentric relative to F. 

Proof. Let Q be the Laplacian of X. Assume that we have 

where the rows and columns of Ql are indexed by the vertices of F. Let R 
be the matrix describing the representation p. We may assume 

where Rl gives the values of a on F. Then p extends a and is barycentric 
(relative to F) if and only if 
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Then BRI + Q2R2 = 0, and so if Q2 is invertible, this yields that 

R2 = -Q;;lBR1, Y1 = (Ql -BT Q2 B )R1. 

We complete the proof by showing that since X \ F is connected, Q2 is 
invertible. Let Y = X\F. Then there is a nonnegative diagonal matrix ~2 
such that 

Q2 = Q(Y) + ~2. 
Since X is connected, ~2 =I- o. We prove that Q2 is positive definite. We 
have 

x T Q2X = x T Q(Y)x + x T ~2X. 

Because xTQ(Y)x = L:ijEE(y)(Xi - Xj)2, we see that xTQ(Y)x 2 0 

and that x T Q(Y)x = 0 if and only if x = c1 for some c. But now 
x T ~2X = c21 T ~21, and this is positive unless c = o. Therefore, x T Q2X > 0 
unless x = 0; in other words, Q2 is positive definite, and consequently it is 
invertible. 0 

Thtte showed that each edge in a 3-connected graph lies in a cycle C 
such that no edge not in C joins two vertices of C and X \ C is connected. 
He called these peripheral cycles. For example, any face of a 3-connected 
planar graph can be shown to be a peripheral cycle. 

Suppose that C is a peripheral cycle of size r in a 3-connected graph X 
and suppose that we are given a mapping (J from V(C) to the vertices to 
a convex r-gon in ITt 2 , such that adjacent vertices in C are adjacent in the 
polygon. It follows from Lemma 13.8.3 that there is a unique barycentric 
representation p of X relative to F. This determines a drawing of X in the 
plane, with all vertices of X \ C inside the image of C. Thtte proved the 
truly remarkable result that this drawing has no crossings if and only if X 
is planar. 

Peripheral cycles can be found in polynomial time, and given this, 
Lemma 13.8.3 provides an automatic method for drawing 3-connected pla­
nar graphs. Unfortunately, from an aesthetic viewpoint, the quality of the 
output is variable. Sometimes there is a good choice of outside face, maybe 
a large face as in Figure 13.8 or one that is preserved by an automorphism 
as in Figure 13.9. 

However, particularly if there are a lot of triangular faces, the algorithm 
tends to produce a large number of faces-within-faces, many of which are 
minuscule. 

13.9 The Generalized Laplacian 

The rest of this chapter is devoted to a generalization of the Laplacian 
matrix of a graph. There are many generalized Laplacians associated with 
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Figure 13.8. Tutte embeddings of cubic planar graphs 

Figure 13.9. Different Tutte embeddings of the same graph 

each graph, which at first sight seem only tenuously related. Nevertheless, 
graph-theoretical properties of a graph constrain the algebraic properties of 
the entire class of generalized Laplacians associated with it. The next few 
sections provide an introduction to this important and recent development. 

Let X be a graph with n vertices. We call a symmetric n x n matrix Q a 
generalized Laplacian of X if Quv < 0 when u and v are adjacent vertices 
of X and Quv = 0 when u and v are distinct and not adjacent. There are 
no constraints on the diagonal entries of Q; in particular, we do not require 
that Ql = O. The ordinary Laplacian is a generalized Laplacian, and if A 
is the adjacency matrix of X, then -A is a generalized Laplacian. 

As with the usual Laplacian, we will denote the eigenvalues of a 
generalized Laplacian Q by 

We will be concerned with the eigenvectors in the >'2-eigenspace of Q. If 
Q is a generalized Laplacian of X, then for any c, the matrix Q - cI is a 
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generalized Laplacian with the same eigenvectors as Q. Therefore, we can 
freely assume that A2(Q) = 0, whenever it is convenient to do so. 

Lemma 13.9.1 Let X be a graph with a generalized Laplacian Q. If X is 
connected, then A1 (Q) is simple and the corresponding eigenvector can be 
taken to have all its entries positive. 

Proof. Choose a constant c such that all diagonal entries of Q - cI are 
nonpositive. By the Perron-Frobenius theorem (Theorem 8.8.1), the largest 
eigenvalue of -Q+cI is simple and the associated eigenvector may be taken 
to have only positive entries. 0 

If x is a vector with entries indexed by the vertices of X, then the positive 
support supp+(x) consists of the vertices u such that Xu > 0, and the 
negative support supp_(x) of the vertices u such that Xu < o. A nodal 
domain of x is a component of one of the subgraphs induced by supp+(x) 
or supp_(x). A nodal domain is positive if it is a component of supp+(x); 
otherwise, it is negative. 

If Y is a nodal domain of x, then Xy is the vector given by 

( ) { Ixul, u E Y; Xy u = 
0, otherwise. 

If Y and Z are distinct nodal domains with the same sign, then since no 
edges of X join vertices in Y to vertices in Z, 

x'{:Qxz = O. (13.6) 

Lemma 13.9.2 Let x be an eigenvector of Q with eigenvalue A and let Y 
be a positive nodal domain of x. Then (Q - >.I)xy ::; o. 
Proof. Let y denote the restriction of x to V (Y) and let z be the restriction 
of x to V(X) \ supp+(x). Let Qy be the submatrix of Q with rows and 
columns indexed by V(Y), and let By be the submatrix of Q with rows 
indexed by V(Y) and with columns indexed by V(X) \ supp+(x). Since 
Qx = AX, we have 

Qyy + Byz = Ay. (13.7) 

Since By and z are non positive, By z is nonnegative, and therefore 

Qyy::; Ay· 

o 

It is not necessary for x to be an eigenvector for the conclusion of this 
lemma to hold; it is sufficient that (Q - >.I)x ::; o. Given our discussion in 
Section 8.7, we might say that it suffices that x be A-superharmonic. 

Corollary 13.9.3 Let x be an eigenvector of Q with eigenvalue A, and 
let U be the subspace spanned by the vectors Xy, where Y ranges over the 
positive nodal domains of x. If u E U, then uT(Q - >.I)u ::; o. 
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Proof. If u = 2:y ayXy, then using (13.6), we find that 

uT(Q - >J)u = La~ xf(Q - >J)xy, 
y 

and so the claim follows from the previous lemma. o 

Theorem 13.9.4 Let X be a connected graph, let Q be a generalized Lapla­
cian of X, and let x be an eigenvector for Q with eigenvalue A2 (Q). If x has 
minimal support, then supp+(x) and supp_(x) induce connected subgraphs 
ofX. 

Proof. Suppose that v is a A2-eigenvector with distinct positive nodal 
domains Y and Z. Because X is connected, Al is simple and the span of 
vy and Vz contains a vector, u say, orthogonal to the AI-eigenspace. 

Now, u can be expressed as a linear combination of eigenvectors of Q 
with eigenvalues at least A2; consequently, uT(Q - A2I)u 2:: 0 with equality 
if and only if u is a linear combination of eigenvectors with eigenvalue A2. 

On the other hand, by Corollary 13.9.3, we have uT(Q - A2I)u ::::: 0, and 
so uT(Q - A2I)u = o. Therefore, u is an eigenvector of Q with eigenvalue 
A2 and support equal to V(Y) U V(Z). 

Any A2-eigenvector has both positive and negative nodal domains, be­
cause it is orthogonal to the AI-eigenspace. Therefore, the preceding 
argument shows that an eigenvector with distinct nodal domains of the 
same sign does not have minimal support. Therefore, since x has minimal 
support, it must have precisely one positive and one negative nodal domain. 

o 

Lemma 13.9.5 Let Q be a generalized Laplacian of a graph X and let 
x be an eigenvector of Q. Then any vertex not in supp(x) either has no 
neighbours in supp(x), or has neighbours in both supp+(x) and supp_(x). 

Proof. Suppose that u tJ. supp(x), so Xu = O. Then 

0= (Qx)u = Quuxu + L Quvxv = L Quvxv. 

Since Quv < 0 when v is adjacent to u, either Xv = 0 for all vertices adjacent 
to u, or the sum has both positive and negative terms. In the former case 
u is not adjacent to any vertex in supp(x); in the latter it is adjacent to 
vertices in both supp+(x) and supp_(x). 0 

13.10 Multiplicities 

In this section we show that if X is 2-connected and outerplanar, then 
A2 has multiplicity at most two, and that if X is 3-connected and planar, 
then A2 has multiplicity at most three. In the next section we show that if 
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equality holds in the latter case, then the representation provided by the 
>'2-eigenspace yields a planar embedding of X. 

Lemma 13.10.1 Let Q be a generalized Laplacian for the graph X. If X 
is 3-connected and planar, then no eigenvector of Q with eigenvalue >'2(Q) 
vanishes on three vertices in the same face of any embedding of X. 

Proof. Let x be an eigenvector of Q with eigenvalue >'2, and suppose that 
u, v, and ware three vertices not in supp(x) lying in the same face. We 
may assume that x has minimal support, and hence supp+(x) and supp_ (x) 
induce connected subgraphs of X. Let p be a vertex in supp+(x). Since X 
is 3-connected, Menger's theorem implies that there are three paths in X 
joining p to u, v, and w such that any two of these paths have only the 
vertex p in common. It follows that there are three vertex-disjoint paths 
Pu , Pv , and Pw joining u, v, and w, respectively, to some triple of vertices 
in N(supp+(x)). Each of these three vertices is also adjacent to a vertex in 
supp_(x). Since both the positive and negative support induce connected 
graphs, we may now contract all vertices in supp+(x) to a single vertex, all 
vertices in supp_(x) to another vertex, and each of the paths Pu , Pv , and 
Pw to u, v, and w, respectively. The result is a planar graph which contains 
a copy of K 2 ,3 with its three vertices of valency two all lying on the same 
face. This is impossible. 0 

Corollary 13.10.2 Let Q be a generalized Laplacian for the graph X. If 
X is 3-connected and planar, then >'2 (Q) has multiplicity at most three. 

Proof. If >'2 has multiplicity at least four, then there is an eigenvector in 
the associated eigenspace whose support is disjoint from any three given 
vertices. Thus we conclude that >'2 has multiplicity at most three. 0 

The graph K 2 ,n is 2-connected and planar. Its adjacency matrix A has 
eigenvalues ±J2n, both simple, and 0 with multiplicity n - 2. Taking Q = 
- A, we see that we cannot drop the assumption that X is 3-connected in 
the last result. 

Lemma 13.10.3 Let X be a 2-connected plane graph with a generalized 
Laplacian Q, and let x be an eigenvector of Q with eigenvalue >'2 (Q) and 
with minimal support. If u and v are adjacent vertices of a face F such that 
Xu = Xv = 0, then F does not contain vertices from both the positive and 
negative support of x. 

Proof. Since X is 2-connected, the face F is a cycle. Suppose that F 
contains vertices p and q such that xp > 0 and Xq < O. Without loss 
of generality we can assume that they occur in the order u, v, q, and 
p clockwise around the face F, and that the portion of F from q to p 
contains only vertices not in supp(x). Let v' be the first vertex not in 
supp(x) encountered moving anticlockwise around F from q, and let u' be 
the first vertex not in supp(x) encountered moving clockwise around F 
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from p. Then u' , v', q, and p are distinct vertices of F and occur in that 
order around F. Let P be a path from v'to p all of whose vertices other 
than v' are in supp+(x), and let N be a path from u' to q all of whose 
vertices other than u' are in supp _ (x). The existence of the paths P and 
N is a consequence of Corollary 13.9.4 and Lemma 13.9.5. Because F is a 
face, the paths P and N must both lie outside F, and since their endpoints 
are interleaved around F, they must cross. This is impossible, .since P and 
N are vertex-disjoint, and so we have the necessary contradiction. 0 

We call a graph outerplanar if it has a planar embedding with a face 
that contains all the vertices. Neither K 2,3 nor K4 is outerplanar, and it is 
known that a graph is outerplanar if and only if it has no minor isomorphic 
to one of these two graphs. (A minor of a graph X is a graph obtained by 
contracting edges in a subgraph of X.) 

Corollary 13.10.4 Let X be a graph on n vertices with a general­
ized Laplacian Q. If X is 2-connected and outerplanar, then A2(Q) has 
multiplicity at most two. 

Proof. If A2 had multiplicity greater than two, then we could find an 
eigenvector x with eigenvalue A2 such that x vanished on two adjacent 
vertices in the sole face of X. However, since x must be orthogonal to 
the eigenvector with eigenvalue AI, both supp+(x) and supp_(x) must be 
nonempty. 0 

The tree Kl,n is outerplanar, but if A is its adjacency matrix, then -A 
is a generalized Laplacian for it with A2 having multiplicity greater than 
two. Hence we cannot drop the assumption in the corollary that X be 
2-connected. 

13.11 Embeddings 

We have seen that if X is a 3-connected planar graph and Q is a generalized 
Laplacian for X, then A2(Q) has multiplicity at most three. The main 
result of this section is that if A2(Q) has multiplicity exactly three, then 
the representation p provided by the A2-eigenspace of Q provides a planar 
embedding of X on the unit sphere. 

As a first step we need to verify that in the case just described, no vertex 
is mapped to zero by p. This, and more, follows from the next result. 

Lemma 13.11.1 Let X be a 3-connected planar graph with a generalized 
Laplacian Q such that A2(Q) has multiplicity three. Let p be a representa­
tion given by a matrix U whose columns form a basis for the A2-eigenspace 
of Q. If F is a face in some planar embedding of X, then the images under 
p of any two vertices in F are linearly independent. 
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Proof. Assume by way of contradiction that u and v are two vertices in a 
face of X such that p(u) = exp(v) for some real number ex, and let w be a 
third vertex in the same face. Then we can find a linear combination of the 
columns of U that vanishes on the vertices u, v, and w, thus contradicting 
Lemma 13.10.1. 0 

If p is a representation of X that maps no vertex to zero, then we define 
the normalized representation p by 

Suppose that X is a 3-connected planar graph with a generalized Laplacian 
Q such that >'2(Q) has multiplicity three, and let p be the representation 
given by the >'2-eigenspace. By the previous lemma, the corresponding nor­
malized representation p is well-defined and maps every vertex to a point of 
the unit sphere. If u and v are adjacent in X, then p(u) =I- ±p(v), so there 
is a unique geodesic on the sphere joining the images of u and v. Thus we 
have a well-defined embedding of the graph X on the unit sphere, and our 
task is to show that this embedding is planar, i.e., distinct edges can meet 
only at a vertex. 

If C ~ lR n, then the convex cone generated by C is the set of all nonneg­
ative linear combinations of the elements of C. A subset of the unit sphere 
is spherically convex if whenever it contains points u and v, it contains all 
points on any geodesic joining u to v. The intersection of the unit sphere 
with a convex cone is spherically convex. Suppose that F is a face in some 
planar drawing of X, and consider the convex cone C generated by the 
images under p of the vertices of F. This meets the unit sphere in a convex 
spherical polygon, and by Lemma 13.10.3, each edge of F determines an 
edge of this polygon. 

This does not yet imply that our embedding of X on the sphere has no 
crossings; for example, the images of distinct faces of X could overlap. Our 
next result removes some of the difficulty. 

Lemma 13.11.2 Let X be a 2-connected planar graph. Suppose it has a 
planar embedding where the neighbours of the vertex u are, in cyclic order, 
Vl, ... , Vk. Let Q be a generalized Laplacian for X such that >'2(Q) has 
multiplicity three. Then the planes spanned by the pairs {p(u), p(Vi)} are 
arranged in the same cyclic order around the line spanned by p( u) as the 
vertices Vi are arranged around u. 

Proof. Let x be an eigenvector with eigenvalue >'2 with minimal support 
such that x(u) = X(Vl) = O. (Here we are viewing x as a function on V(X).) 
By Lemma 13.10.1, we see that neither X(V2) nor X(Vk) can be zero, and 
replacing x by -x if needed, we may suppose that X(V2) > O. Given this, 
we prove that X(Vk) < O. 

Suppose that there are some values h, i, and j such that 2 S h < i < j S 
k and X(Vh) > 0, x(Vj) > 0, and X(Vi) SO. Since supp+(x) is connected, the 
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vertices Vh and Vj are joined in X by a path with all vertices in supp+(x). 
Taken with u, this path forms a cycle in X that separates VI from Vi. Since 
X is 2-connected, there are two vertex-disjoint paths PI and Pi joining VI 

and Vi respectively to vertices in N(supp+(x)). The end-vertices of these 
paths other than VI and Vi are adjacent to vertices in supp_(x), and thus 
we have found two vertices in supp _ (x) that are separated by vertices in 
supp+(x). This contradicts the fact that supp_(x) is connected. 

It follows that there is exactly one index i such that X(Vi) > 0 and 
X(Vi+1) ::; O. Since x(u) = 0 and X(V2) > 0, it follows from Lemma 13.9.5 
that u has a neighbour in supp_(x), and therefore X(Vk) must be negative. 

From this we see that if we choose x such that x(u) = X(Vi) = 0 and 
X(Vi+I) > 0, then X(Vi-I) < 0 (where the subscripts are computed modulo 
k). The lemma follows at once from this. 0 

We now prove that the embedding provided by p has no crossings. The 
argument is topological. 

Suppose that X is drawn on a sphere Sa without crossings. Let Sb be 
a unit sphere, with X embedded on it using p, as described above. The 
normalized representation p provides an injective map from the vertices of 
X in Sa to the vertices of X in Sb. By our remarks preceding the previous 
lemma, this map extends to a continuous map 'ljJ from Sa to Sb, which 
injectively maps each face on Sa to a spherically convex region on Sb. From 
Lemma 13.11.2, it even follows that 'ljJ is injective on the union of the faces 
of X that contain a given vertex. Hence 'ljJ is a continuous locally injective 
map from Sa to Sb. 

It is a standard result that such a map must be injective; we outline a 
proof. First, since 'ljJ is continuous and locally injective, there is an integer 
k such that 1'ljJ-I(X)1 = k for each point x on Sb. Let Y be any graph 
embedded on Sb, with V vertices, e edges, and f faces. Then 'ljJ-I(y) is 
a plane graph on Sa with kv vertices, ke edges, and kf faces. By Euler's 
formula, 

2 = kv - ke + kf = k(v - e + f) = 2k, 

and therefore k = 1. 
Thus we have shown that 'ljJ is injective, and therefore it is a 

homeomorphism. We conclude that p embeds X without crossings. 

Exercises 

1. If D is the incidence matrix of an oriented graph, then show that any 
square submatrix of D has determinant 0, 1, or -1. 

2. Show that the determinant of a square submatrix of B(X) is equal 
to 0 or ±2T , for some integer r. 
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3. If M is a matrix, let M(i/j) denote the submatrix we get by deleting 
row i and column j. Define a 2-forest in a graph to be a spanning 
forest with exactly two components. Let Q be the Laplacian of X. If 
u, p, and q are vertices of X and p =I- q, show that det Q[u](plq) is 
equal to the number of 2-forests with U in one component and P and 
q in the other. 

4. Determine the characteristic polynomial of Q(Km,n)' 

5. An arborescence is an acyclic directed graph with a root vertex u 
such that u has in-valency 0 and each vertex other than u has in­
valency 1 and is joined to u by a directed path. (In other words, 
it is a tree oriented so that all arcs point away from the root.) Let 
Y be a directed graph with adjacency matrix A and let D be the 
diagonal matrix with ith diagonal entry equal to the in-valency of 
the ith vertex of Y. Show that the number of spanning arborescences 
in Y rooted at a given vertex u is equal to det((D - A)[uJ). 

6. Show that if X is connected and has n vertices, then 

\ (X) _ . n LijEE(X) (Xi - Xj )2 
"'2 - mIn "( )2' 

x L.Ji<j Xi - Xj 

where the minimum is taken over all nonconstant vectors x. 

7. Show that if T is a tree with at least three vertices, then A2(T) ::; 1, 
with equality if and only if T is a star (i.e., is isomorphic to KI,n)' 

8. Let rand s be distinct nonadjacent vertices in the graph X. If e E 
E(X), show that A2(X\e) = A2(X) - 2 if and only if X is complete. 

9. Let D be an oriented incidence matrix for the graph X. Let di denote 
the valency of the vertex i in X. Show that the largest eigenvalue of 
DT D is bounded above by the maximum value of d i + dj , for any 
two adjacent vertices i and j in X. Deduce that this is also an upper 
bound on Aoo. (And for even more work, show that this bound is tight 
if and only if X is bipartite and semiregular.) 

10. Let X be a connected graph on n vertices. Show that there is a subset 
of V(X) such that 2181 ::; n, 

1881 = <I>(X) 
181 ' 

and the subgraphs induced by 8 and V \ 8 are both connected. 

11. Let X be a graph on n vertices with diameter d. Show that A2 :::: lind. 

12. If X is the Cartesian product of two graphs Y and Z, show that 
A2(X) is the minimum of A2(Y) and A2(Z), (Hint: Find eigenvectors 
for X, and hence determine all eigenvalues of X in terms of those of 
its factors.) 
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13. Use Exercise 12 to show that A2(Qk) = 2. 

14. If X is an arc-transitive graph with diameter d and valency r, show 
that <I>(X) ~ r /2d. 

15. Show that a cycle in a 3-connected planar graph is a peripheral cycle 
if and only if it is a face in every planar embedding of the graph. 

16. Let X be a connected graph and let z be an eigenvector of Q(X) with 
eigenvalue A2. Call a path Ul, ... , Ur strictly decreasing if the values 
of z on the vertices of the path form a strictly decreasing sequence. 
Show that if U E V(X) and Zu > 0, then U is joined by a strictly 
decreasing path to some vertex v such that Zv ~ O. 

17. Let X be a connected graph. Show that if Q(X) has exactly three 
distinct eigenvalues, then there is a constant J.L such that any pair 
of distinct nonadjacent vertices in X have exactly J.L common neigh­
bours. Show further that there is a constant jl such that any pair 
of distinct nonadjacent vertices in X have exactly jl common neigh­
bours. Find a graph X with this property that is not regular. (A 
regular graph would be strongly regular.) 

18. Let Q be a generalized Laplacian for a connected graph X. If x is an 
eigenvector for Q with eigenvalue A2 and U is a vertex in X such that 
Xu is maximal, prove that 

Quu+ LQuv ~A2' 
v~u 

19. Let Q be a generalized Laplacian for a connected graph X and con­
sider the representation p provided by the A2-eigenspace. Show that 
if p( u) does not lie in the convex hull of the set 

N := {p(v) : v'" u} U {O}, 

then there is a vector a such that aT p(u) > aT p(v), for any neighbour 
v of u. (Do not struggle with this; quote a result from optimization.) 
Deduce that if p( u) does not lie in the convex hull of N, then 

Quu+LQuv<A2' 

20. Let Q be a generalized Laplacian for a path. Show that all the 
eigenvalues of Q are simple. 

21. Let Q be a generalized Laplacian for a connected graph X and let x 
be an eigenvector for Q with eigenvalue A2. Show that if no entries 
of x are zero, then both supp+(x) and supp_(x) are connected. 

22. Let Q be a generalized Laplacian for a connected graph X, let x be 
an eigenvector for Q with eigenvalue A2 and let C be the vertex set 
of some component of supp(x). Show that N(C) = N(supp(x)). 
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Notes 

Theorem 13.4.1 comes from Pisanski and Shawe-Taylor [8], and our dis­
cussion in Section 13.3 and Section 13.4 follows their treatment. Fiedler 
[2] introduced the study of >'2. He called it the algebraic connectivity of a 
graph. In [3], Fiedler proves that if z is an eigenvector for the connected 
graph X with eigenvalue >'2 and c :S 0, then the graph induced by the set 

{u E V (X) : Zu 2: c} 

is connected. Exercise 16 shows that it suffices to prove this when c = o. 
Our work in Section 13.6 is a modest extension of an idea due to Mo­

har, which we treated in Section 9.2. Van den Heuvel [11] offers further 
applications of this type. 

Alon uses Lemma 13.7.4 to show that there is a positive constant c such 
that for every e there is a triangle-free graph with e edges and 

bip(X) :S ~ + ce4/ 5 . 

Lovasz devotes a number in exercises in Chapter 11 of [4] to conductance. 
Section 13.8 is, of course, based on [9], one of Tutte's many masterpieces. 
The final sections are based on work of van der Holst, Schrijver, and 

Lovasz [12], [13], [5]. These papers are motivated by the study of the Colin 
de Verdiere number of a graph. This is defined to be the maximum corank 
of a generalized Laplacian Q that also satisfies the additional technical 
condition that there is no nonzero matrix B such that Q B = 0 and Buv = 0 
when u is equal or adjacent to v. For an introduction to this important 
subject we recommend [13]. 

For a solution to Exercise 5, see [4]. The result in Exercise 9 comes from 
[1]. Exercise 10 comes from Mohar [6]. B. D. McKay proved that if X 
has n vertices and diameter d, then d 2: 4/n>'2. This is stronger than the 
result of Exercise 11, and is close to optimal for trees. For a proof of the 
stronger result, see Mohar [7]; for the weaker bound, try [4]. It might appear 
that we do not need lower bounds on the diameter, as after all, it can be 
computed in polynomial time. The problem is that this is polynomial time 
in the number of vertices of a graph. However, we may wish to bound the 
diameter of a Cayley graph given by its connection set; in this case we need 
to compute the diameter in time polynomial in the size of the connection 
set, i.e., the valency of the graph. Exercise 17 is based on van Dam and 
Haemers [10]. 

The Colin de Verdiere number of a graph is less than or equal to three if 
and only if the graph is planar, and in this case, we can find a generalized 
Laplacian of maximum corank. The null space of this generalized Laplacian 
then yields a planar representation of the graph, using the method described 
in Section 13.11. However, for a general graph X, we do not know how to 
find a suitable generalized Laplacian with corank equal to the Colin de 
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Verdiere number of X, nor do we know any indirect method to determine 
it. 
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14 
Cuts and Flows 

Let X be a graph with an orientation a and let D be the incidence matrix 
of Xu. In this chapter we continue the study of how graph-theoretic prop­
erties of X are reflected in the algebraic properties of D. As previously, 
the orientation is merely a device used to prove the results, and the results 
themselves are independent of which particular orientation is chosen. Let 
IR E and IR v denote the real vector spaces with coordinates indexed by the 
edges and vertices of X, respectively. Then the column space of DT is a 
subspace of IRE, called the cut space of X. The orthogonal complement of 
this vector space is called the flow space of X. 

One of the aims of this chapter is to study the relationship between the 
properties of X and its cut space and flow space. In particular, we observe 
that there are significant parallels between the properties of the cut space 
and the flow space of X, and that if X is planar, this extends to a formal 
duality. 

We also study the set of integral vectors in the cut space and the flow 
space; these form a lattice, and the geometric properties of this lattice yield 
further information about the structure of X. 

We may also choose to view D as a matrix over a field other than the real 
numbers, in particular the finite field GF(2). Since the cut space and the 
flow space are orthogonal, they intersect trivially when considered as vector 
spaces over the real numbers. Over GF(2), however, their intersection may 
be nontrivial; it is known as the bicycle space of X, and will playa role in 
our work on knots in Chapter 17. 
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14.1 The Cut Space 

Let X be a graph with an orientation a, and let D be the incidence matrix 
of Xu. The column space of DT is known as the cut space of the oriented 
graph. Clearly, the cut space depends not only on X, but also on the orien­
tation assigned to X. However, the results in this chapter are independent 
of the particular orientation, and so we abuse notation by referring simply 
to the cut space of X with the understanding that a is some fixed, but 
arbitrarily chosen, orientation. 

The first result is an immediate consequence of Theorem 8.3.1: 

Theorem 14.1.1 If X is a graph with n vertices and c connected 
components, then its cut space has dimension n - c. 0 

Next we shall examine the elements of the cut space of X that justify its 
name. If (U, V) is a partition of V(X) into two nonempty subsets, the set 
of edges uv with u in U and v in V is a cut. We call U and V the shores 
of the cut. A nonempty cut that is minimal (with respect to inclusion) is 
called a bond. If X is connected, then the shores of a bond are connected. 

An oriented cut is a cut with one shore declared to be the positive shore 
V( +), and the other the negative shore V( -). Using the orientation of X, 
an oriented cut determines a vector z E lR E as follows: 

{ 
0, 

Ze = 1, 
-1, 

if e is not in C; 
if the head of e is in V( +); 
if the head of e is in V( -). 

We refer to Z as the signed characteristic vector of the cut C. The sign on 
an edge in the cut is + 1 if the edge is oriented in the same sense as the 
cut, and -1 otherwise. 

Now, each vertex u determines an oriented cut C(u) with positive shore 
{u} and negative shore V(X) \ u. The u-column of DT is the signed char­
acteristic vector of the cut C(u), and so these vectors lie in the cut space 
of X. In fact, we can say much more. 

Lemma 14.1.2 If X is a graph, then the signed characteristic vector of 
each cut lies in the cut space of X. The nonzero elements of the cut 
space with minimal support are scalar multiples of the signed characteristic 
vectors of the bonds of X. 

Proof. First let C be a cut in X and suppose that V( +) and V( -) are its 
shores. Let y be the characteristic vector in lR v of V ( +) and consider the 
vector DT y. It takes the value 0 on any edge with both ends in the same 
shore of C and is equal to ±1 on the edges C; its value is positive on e if 
and only if the head of e lies in V ( + ). So DT Y is the signed characteristic 
vector of C. 

Now, let x be a nonzero element of the cut space of X. Then x = DT y 
for some nonzero vector y E lR v. The vector y determines a partition of 
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V(X) with cells 

8(a) = {u E V(X) I Yu = a}. 

An edge is in supp(x) if and only if its endpoints lie in distinct cells of 
this partition, so the support of x is determined only by this partition. 
If there are edges between more than one pair of cells, x does not have 
minimal support, because a partition created by merging two of the cells 
would determine an element x' with supp(x') c supp(x). 

Therefore, if x has minimal support, the only edges between distinct 
cells all lie between two cells 8(a) and 8((3). This implies that x is a scalar 
multiple ofthe signed characteristic vector ofthe cut with shores 8(a) and 
V(X)\8(a). Finally, we observe that if x is the signed characteristic vector 
of a cut, then it has minimal support if and only if that cut is a bond. D 

There are a number of natural bases for the cut space of X. If X has 
c connected components, then we can form a basis for the cut space by 
taking the signed characteristic vectors of the cuts C ( u ), as u ranges over 
every vertex but one in each component. This yields n - c independent 
vectors, which therefore form a basis. 

There is a second class of bases that will also prove useful. First we con­
sider the case where X is connected. Let T be a spanning tree of X and let 
e be an edge of T. Then T \ e has exactly two connected components, so 
we can define an oriented cut C(T, e) whose positive shore is the compo­
nent containing the head of e and whose negative shore is the component 
containing the tail of e. 

Lemma 14.1.3 Let X be a connected graph and let T be a spanning tree 
of X. Then the signed characteristic vectors of the n - 1 cuts C(T, e), for 
e E E(T), form a basis for the cut space of x. 

Proof. An edge e E E(T) is in the cut C(T, e) but not in any of the cuts 
C(T,1) for f =1= e. Therefore, the signed characteristic vectors of the cuts 
are linearly independent, and since there are n - 1 vectors, they form a 
basis. D 

c c 

Figure 14.1. An oriented graph X, spanning tree T, and cut C(T, b) 
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Figure 14.1 shows a graph, together with a spanning tree T and a cut 
defined in this fashion. 

This result is easily extended to the case where X is not connected. Recall 
that in a graph with c connected components, a maximal spanning forest is 
a spanning forest of c trees, each spanning one connected component. If F 
is a maximal spanning forest and e is an edge in F, then F \ e has exactly 
c+ 1 components. Define a cut whose positive shore contains the component 
containing the head of e and whose negative shore contains the component 
containing the tail of e. Denote the resulting cut (which is independent of 
which shore the other components are assigned to) by C(F, e). Then the 
signed characteristic vectors of the n - c cuts C (F, e) form a basis for the 
cut space of X. 

14.2 The Flow Space 

The flow space of a graph X is the orthogonal complement of its cut space, 
so therefore consists of all the vectors x such that Dx = O. The dimension 
of the flow space of X follows directly from elementary linear algebra. 

Theorem 14.2.1 If X is a graph with n vertices, m edges, and c connected 
components, then its flow space has dimension m - n + c. D 

Let C be a cycle in a graph X. An oriented cycle is obtained by choosing a 
particular cyclic order Ul, ... , U r for the vertices of C. Using the orientation 
of X, each oriented cycle C determines an element z E l1t E as follows: 

{ 
0, 

Ze = 1, 
-1, 

if e is not in C; 
if e = UiUi+l and Ui+l is the head of e; 
if e = UiUi+l and Ui+l is the tail of e. 

We will refer to Z as the signed characteristic vector of the oriented cycle 
C. The sign on an edge in the cycle is + 1 if the edge is oriented in the same 
sense as the cycle, and -1 otherwise. 

Theorem 14.2.2 If X is a graph, then the signed characteristic vector of 
each cycle lies in the flow space of X. The nonzero elements of the flow 
space with minimal support are scalar multiples of the signed characteristic 
vectors of the cycles of X. 

Proof. If C is a cycle with signed characteristic vector z, then it is a 
straightforward exercise to verify that Dz = O. 

Suppose, then, that y lies in the flow space of X and that its support is 
minimal. Let Y denote the sub graph of X formed by the edges in supp(y). 
Any vertex that lies in an edge of Y must lie in at least two edges of Y. 
Hence Y has minimum valency at least two, and therefore it contains a 
cycle. 
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Suppose that C is a cycle formed from edges in Y. Then, for any real 
number a, the vector 

y' = y+az 

is in the flow space of X and has support contained in Y. 
By choosing a appropriately, we can guarantee that there is an edge of C 

not in supp(y'). But since y has minimal support, this implies that y' = 0, 
and hence y is a scalar multiple of z. 0 

If x and yare vectors with the same support S, then either x is a scalar 
multiple of y, or there is a vector in the span of x and y with support 
a proper subset of S. This implies that the set of minimal supports of 
vectors in a finite-dimensional vector space is finite, and that the vectors 
with minimal support in a subspace must span it. This has the following 
consequence: 

Corollary 14.2.3 The flow space of X is spanned by the signed charac: 
teristic vectors of its cycles. 0 

There are also a number of natural bases for the flow space of a graph. If 
F is a maximal spanning forest of X, then any edge not in F is called a 
chord of F. If e is a chord of F, then e together with the path in F from 
the head of e to the tail of e is a cycle in X. If X has n vertices, m edges, 
and c connected components, then this provides us with m - n + c cycles. 
Since each chord is in precisely one of these cycles, the signed characteristic 
vectors of these cycles are linearly independent in ~ E, and hence they form 
a basis for the flow space of X. 

The spanning tree depicted in Figure 14.1 has three chords; Figure 14.2 
shows the cycles corresponding to these chords. 

c 

Figure 14.2. The cycles associated with chords d, e, and f 

Theorem 14.2.4 Let X be a graph with n vertices, m edges, and c 
connected components. Suppose that the rows of the (n - c) x e matrix 

M = (I R) 
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form a basis for the cut space of X. Then the rows of the (m - n + c) x e 
matrix 

N = (_RT I) 

form a basis for the flow space of X. 

Proof. It is obvious that M NT = O. Therefore, the rows of N are in the 
flow space of X, and since they are linearly independent, they form a basis 
for the flow space of X. D 

Let F be a maximal spanning forest of X, and label the edges of X so 
that the edges of F come first. Then the matrix whose rows are the signed 
characteristic vectors of the cuts C (F, e) has the form M = (I R ). By 
Theorem 14.2.4, the rows of the matrix N = (_RT I) are a basis for the 
flow space. In fact, they are the signed characteristic vectors of the cycles 
corresponding to the chords of F. 

14.3 Planar Graphs 

The results in the previous sections indicate that there are a number of 
similarities between properties of the cut space and properties of the flow 
space of a graph. For planar graphs we can show that these similarities are 
not accidental. Our next result provides the basic reason. 

Theorem 14.3.1 If X is a plane graph, then a set of edges is a cycle in 
X if and only if it is a bond in the dual graph X* . 

Proof. We shall show that a set of edges D ~ E(X) contains a cycle of X 
if and only if it contains a bond of X* (here we are identifying the edges 
of X and X*). If D contains a cycle C, then this forms a closed curve in 
the plane, and every face of X is either inside or outside C. So C is a cut 
in X* whose shores are the faces inside C and the faces outside C. Hence 
D contains a bond of X*. Conversely, if D does not contain a cycle, then 
D does not enclose any region of the plane, and there is a path between 
any two faces of X* that uses only edges not in D. Therefore, D does not 
contain a bond of X* . D 

Corollary J4.3.2 The flow space of a plane graph X is equal to the cut 
space of its dual graph X* . D 

The full significance of the next result will not become apparent until the 
next chapter. 

Lemma 14.3.3 If X is a connected plane graph and T a spanning tree of 
X, then E(X) \ E(T) is a spanning tree of X*. 
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Proof. The tree T contains no cycle of X, and therefore T contains no 
bond of X*. Therefore, the graph with vertex set V(X*) and edge set 
E(X) \ E(T) is connected. Euler's formula shows that IE(X) \ E(T)I 
IV(X*)I- 1, and the result follows. D 

14.4 Bases and Ear Decompositions 

Let C be a set of cycles in the graph X and let H be the matrix with the 
signed characteristic vectors of these cycles as its rows. We say that C is 
triangular if, possibly after permuting some of the rows and columns of H, 
some set of columns of H forms an upper triangular matrix. Clearly, the 
set of signed characteristic vectors of a triangular set of cycles is linearly 
independent. An example is provided by the set of cycles determined by 
the chords of a spanning tree. This is a triangular set because the identity 
matrix is upper triangular. In this section we present a large class of graphs 
with triangular bases for the flow space. 

Let Y be a graph and let P be a path with at least one edge. If the 
graph X is produced by identifying the end-vertices of P with two vertices 
in Y, we say that X comes from adding an ear to Y. The path P may have 
length one, in which case we have just offered a complicated description 
of how to add an edge to Y. The end-vertices of P may be identified with 
the same vertex of Y, but if the two vertices from Yare distinct, we say 
that the ear is open. Any graph that can be constructed from a single 
vertex by successively adding ears is said to have an ear decomposition. An 
ear decomposition is open if all of its ears after the initial one are open. 
Figure 14.3 shows an open ear decomposition of the cube. 

o 

Figure 14.3. An open ear decomposition of the cube 
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If Y' is obtained by adding an ear to the connected graph Y, then 

IE(Y')I-W(Y')I = IE(Y)I -W(Y)I + 1. 

Therefore, there are exactly IE(X)I - W(X)I + 1 ears III any ear 
decomposition of a connected graph X. 

Ear decompositions can be used to construct triangular bases, but be­
fore we can see this, we need some information about graphs with ear 
decompositions. Recall that a cut-edge in a connected graph X is an edge 
whose removal disconnects X. An edge is a cut-edge if and only if it is not 
contained in a cycle. 

Lemma 14.4.1 Let Y be a graph with no cut-edges and let X be a graph 
obtained by adding an ear to Y. Then X has no cut-edges. 

Proof. Assume that X is obtained from Y by adding a path P and suppose 
e E E(X). If e E E(P), then X \ e is connected. If e E Y, then Y \ e is 
connected (because Y has no cut-edges), and hence X\ e is connected. This 
shows that X has no cut-edges. 0 

Suppose that X is a graph with an ear decomposition, and that the paths 
Po, ... , Pr are the successive ears. Let Yi be the graph obtained after the 
addition of ear Pi. (So Yo is a cycle and Yr = X.) Choose an edge eo in Yo, 
and for i = 1, ... , r, let ei be an edge in Pi that is not in E(Yi-l). For each 
i, the graph Yi has no cut-edges, so it has a cycle Ci containing the edge ei. 
Clearly, if j > i, then ej tJ- Ci . If we form a matrix with the signed charac­
teristic vectors of these cycles as the rows, then the columns corresponding 
to the edges eo, ... , er form a lower triangular matrix. Therefore, the set of 
cycles Co, ... , Cr is a triangular set of cycles. Since an ear decomposition 
of X contains exactly IE(X)I -W(X)I + 1 ears, it follows that the signed 
characteristic vectors of these cycles form a basis for the flow space. 

The next theorem provides a converse to Lemma 14.4.1 and shows that 
the class of graphs with ear decompositions is very large. 

Theorem 14.4.2 A connected graph X has an ear decomposition if and 
only if it has no cut-edges. 

Proof. It remains only to prove that X has an ear decomposition if it has 
no cut-edges. In fact, we will prove something slightly stronger, which is 
that X has an ear decomposition starting with any cycle. Let Yo be any 
cycle of X and form a sequence of graphs Yo, Y1 , ... as follows. If Yi i:- X, 
then there is an edge e = uv E E(X) \ E(Yi), and because X is connected, 
we may assume that u E V(Yi). Since e is not a cut-edge, it lies in a cycle 
of X, and the portion of this cycle from u along e until it first returns to 
V (Yi) is an ear; this may be only one edge if v E V (Yi). Form Yi+1 from Yi 
by the addition of this ear. Because X is finite, this process must terminate, 
yielding an ear decomposition of X. 0 
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14.5 Lattices 

Up till now we have worked with the row space of the incidence matrix 
over the rationals. From the combinatorialist's point of view, the most 
interesting vectors in this row space are likely to be integer vectors. The 
set of integer vectors in a subspace forms an abelian group under addition, 
and is a prominent example of a lattice. We turn to the study of these 
objects. 

Let V be a finite-dimensional vector space over Ift. Then V is an abelian 
group under addition. A subgroup C of V is discrete if there is a positive 
constant E such that if x E C and x i= 0, then (x, x) ~ E. We define a lattice 
to be a discrete subgroup of V. The rank of a lattice in V is the dimension 
of its span. A sublattice M of a lattice C is simply a subgroup of C; we call 
it a full sublattice if it has the same rank as C. The set zn of all vectors in 
Ift n with integer coordinates provides a simple example of a lattice, and the 
subset (2z)n of all vectors with even integer coordinates is a full sublattice 
of zn. 

Lemma 14.5.1 The set of all integer linear combinations of a set of 
linearly independent vectors in V is a lattice. 

Proof. Suppose that M is a matrix with linearly independent columns. 
It will be enough to show that there is a positive constant E such that if 
y is a nonzero integer vector, then yT MT My ~ E. But if y is an integer 
vector, then yT y ~ 1. Since MT M is positive definite, its least eigenvalue 
is positive; and since it equals 

min yTMTMy, 
IIYl121 

we may take E to be least eigenvalue of MT M. o 

We state without proof two important results about lattices. An integral 
basis for a lattice C of rank r is a set of vectors Xl, ... , xr from C such 
that each vector in C is an integral linear combination of Xl, ... ,Xr . The 
standard basis vectors el, ... ,er form an integral basis for zr. It is by no 
means clear in advance that a lattice should have an integral basis, but in 
fact, this is always the case. 

Theorem 14.5.2 Every lattice has an integral basis. o 

One consequence of this result is that every lattice in V is the set of all 
integer linear combinations of a set of linearly independent vectors in V. 
This is often used as the definition of a lattice. 

Theorem 14.5.3 Suppose A is a matrix whose columns form an integral 
basis for C, and B is a matrix whose columns form an integral basis for a 
full sublattice M of C. Then there is an integer matrix G such that AG = B. 
The absolute value of det G is equal to the number of cosets of M in C. 0 
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This result implies that the index of M in C must be finite; hence the 
quotient group C/ M is a finite abelian group of order det G. 

14.6 Duality 

If C is a lattice, then the dual C* of C is defined by 

£* = {x E span(C) ; (x, y) E Z, 'c/y E C}. 

We say that C is an integral lattice if it is contained in its dual. Therefore, 
a lattice is integral if and only if (x, y) E Z for all x, y E C. Any sublattice 
of zn is certainly integral, but in general, the vectors in an integral lattice 
need not be integer vectors. The dual of a lattice is again a lattice. To see 
this, suppose that M is a matrix whose columns form an integral basis for 
C. Then C* consists of the vectors x in the column space of M such that 
x T M is an integer vector. It is easy to write down an integral basis for C*. 

Lemma 14.6.1 If the columns of the matrix M form an integral basis for 
the lattice C, then the columns of M(MT M)-l are an integral basis for its 
dual, C*. 

Proof. Let aI, ... , ar denote the columns of M and b1, ... , br the columns 
of M(MT M)-l. Clearly, the vectors bl , ... , br lie in the column space of 
M, and because MT M(MT M)-l = I we have 

i = j; 
otherwise. 

Therefore, the vectors bl , ... ,br lie in C*. 
Now, consider any vector x E C*, and define 

X ;= l: (x, ai)bi . 

Then x is an integer linear combination of the vectors bi . Since (x - x, ai) = 
0, we have that (x - x) T M = O. Therefore, x - x belongs to both the column 
space of M and its orthogonal complement, and so x - X = O. Therefore, x. 
is an integer linear combination of the basis vectors Xl, ... , x r . 0 

As an example of this result, consider the lattice with integral basis given 
by the columns of the matrix 

M=(-~ ~). 
o -1 

Then we have 

( 2 -1) 
-1 2' 

( 
2/3 

M(MTM)-l = -1/3 
-1/3 

1/3) 1/3 . 
-2/3 
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If.c is an integral lattice, then by Theorem 14.5.3, with A = M(MT M)-l 
and G = MT M, the index of.c in.c* is equal to det MT M. This may ex­
plain why this index is called the determinant of .c. A lattice is unimodular 
if its determinant is 1, in which case it is equal to its dual. Note in addition 
that an integral lattice is a full sublattice of its dual. 

For the next results, we need a preliminary result from linear algebra. 

Theorem 14.6.2 If M is a matrix with linearly independent columns, then 
projection onto the column space of M is given by the matrix 

P= M(MTM)-lMT. 

This matrix has the properties that P = pT and p2 = P. o 

Suppose that .c is a lattice in V = ~ n and that M is an integer matrix 
whose columns form an integral basis for .c. If p is the matrix representing 
orthogonal projection onto the column space of M, then for any vector x 
in V and any vector y in .c we have 

(Px,y) = (Pxfy = xTpTy = xT(Py) = (x,Py) = (x,y). 

If x is an integer vector in V, then (x, y) E ~, and it follows that Px E .c*. 
Thus P maps ~n into .c*. We will show that in many important cases this 
map is onto. 

Theorem 14.6.3 Suppose that M is an n x r matrix whose columns form 
an integral basis for the lattice.c. Let P be the matrix representing orthogo­
nal projection from ~ n onto the column space of M. If the greatest common 
divisor of the r x r minors of M is 1, then.c* is generated by the columns 
ofP. 

Proof. From Theorem 14.6.2 we have that P = M(MTM)-lMT, and 
from Lemma 14.6.1 we know that the columns of M(MT M)-l form an 
integral basis for .c*. Therefore, it is sufficient to show that if y E ~r, then 
y = MT x for some integer vector x. Equivalently, we must show that the 
lattice generated by the rows of M is ~r. 

Let M denote the lattice generated by the rows of M. There is an r x r 
matrix N whose rows form an integral basis for M. The rows of N are 
an integral basis, so there is some integer matrix X such that X N = M. 
Because N is invertible, we have X = M N-1 , so we conclude that M N-1 

has integer entries. If M' is any r x r submatrix of M, then M' N- 1 is 
also an integer matrix; hence det N must divide det M'. So our hypothesis 
implies that det N = 1, and therefore M = ~r. 0 

14.7 Integer Cuts and Flows 

The set of all integer vectors in the cut space of a graph is a lattice; we 
call it the lattice of integer cuts or the cut lattice. If x is an integer cut and 
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D is the incidence matrix of X, then x = DT y for some vector y. Hence, 
if uv E E(X), then Yu - Yv is an integer, and it follows that there is an 
integer vector, y' say, such that x = DT y'. Thus the lattice of integer cuts 
of X is the set of all integer linear combinations of the columns of DT. If 
X is connected with n vertices, then any set of n -1 columns of DT forms 
an integral basis for this lattice. 

The set of all integer vectors in the flow space of a graph is the lattice 
of integer flows, or the flow lattice. The bases for the flow space of X that 
we described in Section 14.2 and Section 14.4 are integral bases for this 
lattice. 

The norm of a vector x in a lattice is (x, x) (which, we admit, would be 
called the square of the norm in most other contexts). A vector is even if 
it has even norm. An integral lattice .c is even if all its elements are even; 
it is doubly even if the norm of each element is divisible by four. A graph 
is called even if each vertex has even valency. 

Lemma 14.7.1 The flow lattice of a graph X is even if and only if X is 
bipartite. The cut lattice of X is even if and only if X is even. 

Proof. If x and yare even vectors, then 

(x + y, x + y) = (x, x) + 2(x, y) + (y, y), 

and so x + y is also even. If X is bipartite, then all cycles in it have even 
length. It follows that the flow lattice of integer flows is spanned by a set 
of even vectors; therefore, it is even. If X is even, then each column of DT 
is even, so the cut lattice is also spanned by a set of even vectors. 

The converse is trivial in both cases. 0 

Theorem 14.7.2 The determinant of the cut lattice of a connected graph 
X is equal to the number of spanning trees of X. 

Proof. Let D be the oriented incidence matrix of X, let u be a vertex of 
X, and let Du be the matrix obtained by deleting the row corresponding 
to u from D. Then the columns of D;; form an integral basis for the lattice, 
and so its determinant is det(DuD;;). By Theorem 13.2.1, this equals the 
number of spanning trees of X. 0 

Theorem 14.7.3 The determinant of the flow lattice of a connected graph 
X is equal to the number of spanning trees of X. 

Proof. Suppose the rows of the matrix 

M = (I R) 

form a basis for the cut space of X (the existence of such a basis is guar­
anteed by the spanning-tree construction of Section 14.1). Then the rows 
of the matrix 
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form a basis for the flow space of X. 
The columns of MT and NT form integral bases for the cut lattice and 

the flow lattice, respectively. Therefore, the determinant of the cut lattice 
is det M M T , and the determinant of the flow lattice is det N NT. 

But 

MMT=I+RRT, 

and so by Lemma 8.2.4, 

detMMT = detNNT , 

and the result follows from Theorem 14.7.2. o 

We leave to the reader the task of showing that for a disconnected graph 
X, the determinant of the cut lattice and the flow lattice is equal to the 
number of maximal spanning forests of X. 

14.8 Projections and Duals 

In the previous section we saw that the cut lattice C and flow lattice F of 
a graph have the same determinant. This means that the quotient groups 
C* IC and F* IF have the same order. In fact, they are isomorphic, and this 
can be proved using the theory we have already developed. But we take an 
alternative approach. 

Assume that X is connected and has n vertices and m edges. Let u be 
a vertex in X and put M = Dr. Every (n - 1) x (n - 1) minor of M is 
either 0,1, or -1, and since the columns of M are linearly independent, at 
least one of them is nonzero. Therefore, the greatest common divisor of the 
minors is 1. By Theorem 14.6.3 we conclude that if P represents orthogonal 
projection onto the column space of M, then the columns of P generate 
C. 

We note that the kernel of P is the flow space of X; hence P maps ;zmlF 
onto C*. Since Px = x for each x in the cut space of X, it follows that P 
maps ;zm/(C EB F) onto C* IC. It is not hard to see that this mapping is 
injective; hence we conclude that 

~ c,; C* 
CEBF-C' 

Turning to flows, we note that I - P represents orthogonal projection 
onto the flow space of X, and a straightforward modification of the previous 
argument yields that 

~ c,; F* 
CEBF F 

Therefore, the groups C* IC and F* IF are isomorphic. 
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Now, we derive an expression for the matrix P that represents orthogonal 
projection onto the cut space of a graph X. First we need some notation. If 
T is a spanning tree of X, then define the matrix NT with rows and columns 
indexed by E(X) as follows: The e-column of NT is zero if e fj. E(T) and 
is the signed characteristic vector of the cut G(T, e) if e E E(T). 

Theorem 14.8.1 If X is a connected graph, then the matrix 

represents orthogonal projection onto the cut space of X. 

Proof. To prove the result we will show that P is symmetric, that Px = x 
for any vector in the cut space of X, and that Px = 0 for any vector in the 
flow space of X. 

Now, 

(NT)~g = L (NT)ef(NT)fg, 
fEE (X) 

and (NT )fg can be nonzero only when f E E(T), but then (NT )fg = 0 
unless 9 = f. Hence the sum reduces to (NT )eg(NT )gg = (NT )eg, and so 
N:j. = NT. Because the column space of NT is the cut space of X, we 
deduce from this that NTx = x for each vector in the cut space of X, and 
thus that Px = x. 

Next we prove that the sum of the matrices NT over all spanning trees 
of X is symmetric. Suppose e and f are edges of X. Then (NT )ef is zero 
unless f E E(T) and e E G(T, I). Let Tf denote the set of trees T such 
that f E E(T) and e E G(T, I); let Te denote the set of trees T such that 
e E E(T) and f E G(T,e). Let 7f(+) and 7f(-) respectively denote the 
set of trees in 7f such that the head of e lies in the positive or negative 
shore of G(T, f), and define Te( +) and Te( -) similarly. Note next that if 
T E 7f, then (T\I) U e is a tree in Te. This establishes a bijection from Te 
to 7f, and this bijection maps Te ( +) to 7f ( + ). 

Since (NT )ef equals 1 or -1 according as the head of e is in the positive 
or negative shore of G(T, I), it follows that 

L(NT )ef = L(NT )fe, 
T T 

and therefore that P is symmetric. 
Finally, if x lies in the flow space, then xT NT = 0, for any tree T, and 

so xT P = 0, and taking the transpose we conclude that Px = o. 0 
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14.9 Chip Firing 

We are going to discuss some games on graphs; the connection to lattices 
will only slowly become apparent. We start with a connected graph X and 
a set of N chips, which are placed on the vertices of the graph. One step 
of the game is taken by choosing a vertex that has at least as many chips 
as its valency, then moving one chip from it to each of its neighbours. We 
call this firing a vertex. The game can continue as long as there is a vertex 
with as many chips on it as its valency. The basic question is, given an 
initial configuration, whether the game must terminate in a finite number 
of steps. We start with a simple observation. 

Lemma 14.9.1 In an infinite chip-firing game, every vertex is fired 
infinitely often. 

Proof. Since there are only a finite number of ways to place N chips on 
X, some configuration, say s, must reappear infinitely often. Let (j be the 
sequence of vertices fired between two occurrences of s. If there is a vertex 
v that is not fired in this sequence, then the neighbours of v are also not 
fired, for otherwise the number of chips on v would increase. Since X is 
connected, either (j is empty or every vertex occurs in (j. 0 

Before we prove the next result we need some additional information 
about orientations of a graph. An orientation of a graph X is called acyclic 
if the oriented graph contains no directed cycles. It is easy to see that every 
graph has an acyclic orientation. 

Theorem 14.9.2 Let X be a graph with n vertices and m edges and 
consider the chip-firing games on X with N chips. Then 

(a) If N > 2m - n, the game is infinite. 

(b) If m :::; N :::; 2m - n, the game may be finite or infinite. 

(c) If N < m, the game is finite. 

Proof. Let d( v) be the valency of the vertex v. If each vertex has at most 
d(v) -1 chips on it, then 

N :::; 2) d( v) - 1) = 2m - n. 
v 

So, if N > 2m - n, there is always a vertex with as least as many chips 
on it as its valency. We also see that for N :::; 2m - n there are initial 
configurations where no vertex can be fired. 

Next we show that if N ~ m, there is an initial configuration that 
leads to an infinite game. It will be enough to prove that there are infi­
nite games when N = m. Suppose we are given an acyclic orientation of 
X, and let d+(v) denote the out-valency of the vertex v with respect to 
this orientation. Every acyclic orientation determines a configuration with 
N = e obtained by placing d+(v) chips on each vertex v. If an orientation is 
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acyclic, there is a vertex u such that d+(u) = d(u); this vertex can be fired. 
After u has been fired it has no chips, and every neighbour of u has one 
additional chip. However, this is simply the configuration determined by 
another acyclic orientation, the one obtained by reversing the orientation 
of every edge on u. Therefore, the game can be continued indefinitely. 

Finally, we prove that the game is finite if N < m. Assume that the chips 
are distinguishable and let an edge capture the first chip that uses it. Once 
a chip is captured by an edge, assume that each time a vertex is fired, it 
either stays fixed, or moves to the other end of the edge it belongs to. Since 
N < m, it follows that there is an edge that never has a chip assigned to 
it. Hence neither of the vertices in this edge is ever fired, and therefore the 
game is finite. 0 

Now, consider a chip-firing game with N chips where m ~ N ~ 2m - n. 
We will show that whether the game is finite or infinite depends only on 
the initial configuration, and not on the particular sequence of moves that 
are made. 

First we need some additional terminology. At any stage in a chip-firing 
game, the state is the vector indexed by V(X) giving the number of chips 
on each vertex; we will also use this term as a synonym for configuration. 
The score of a sequence of firings is the vector indexed by V(X) that gives 
the number of times each vertex has been fired. If a chip-firing game is in 
state s, then after applying a firing sequence (J" with score x, the resulting 
state is t = s - Qx, where Q is the Laplacian of X. In this situation we say 
that (J" is a firing sequence leading from s to t. 

If x and yare two scores, then we define the score x V y by 

(x VY)u = max{xu, Yu}. 

If (J" and T are two sequences, then we construct a new sequence (J" \ T as 
follows: For each vertex u, if u is fired i times in T, then delete the first i 
occurrences of u from (J" (deleting all of them if there are fewer than i). 

Theorem 14.9.3 Let X be a connected graph and let (J" and T be two firing 
sequences starting from the same state s with respective scores x and y. 
Then T followed by (J" \ T is a firing sequence starting from s having score 
xVy. 

Proof. We leave the proof of this result as a useful exercise. o 

Corollary 14.9.4 Let X be a connected graph, and s a given initial state. 
Then either every chip-firing game starting from s is infinite, or all such 
games terminate in the same state. 

Proof. Let T be the firing sequence of a terminating game starting from 
s, and let (J" be the firing sequence of another game starting from s. Then 
by Theorem 14.9.3, (J" \ T is necessarily empty, and hence (J" is finite. 

Now, suppose that (J" is the firing sequence of another terminating game 
starting from s. Then both (J" \ T and T \ (J" are empty, and hence (J" and T 
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have the same score. Since the state of a chip-firing game depends only on 
the initial state and the score of the firing sequence, all terminating games 
must end in the same state. 0 

14.10 Two Bounds 

We consider two bounds on the length of a terminating chip-firing game. 

Lemma 14.10.1 Suppose u and v are adjacent vertices in the graph X. At 
any stage of a chip-firing game on X with N chips, the difference between 
the number of times that u has been fired and the number of times that v 
has been fired is at most N. 

Proof. Suppose that u has been fired a times and v has been fired b times, 
and assume without loss of generality that a < b. Let H be the subgraph of 
X induced by the vertices that have been fired at most a times. Consider the 
number of chips currently on the subgraph H. Along every edge between 
Hand V(X)\H there has been a net movement of chips from V(X)\H to 
H, and in particular, the edge uv has contributed b - a chips to this total. 
Since H cannot have more than N chips on it, we have b - a ~ N. 0 

Theorem 14.10.2 If X is a connected graph with n vertices, e edges, and 
diameter D, then a terminating chip-firing game on X ends within 2neD 
moves. 

Proof. If every vertex is fired during a game, then the game is infinite, and 
so in a terminating game there is at least one vertex v that is never fired. By 
Lemma 14.10.1, a vertex at distance d from v has fired at most dN times, 
and so the total number of moves is at most nDN. By Theorem 14.9.2, 
N < 2e, and so the game terminates within 2neD moves. 0 

Next we derive a bound on the length of a terminating chip-firing game, 
involving the eigenvalue >'2. This requires some preparation. 

Lemma 14.10.3 Let M be a positive semidefinite matrix, with largest 
eigenvalue p. Then, for all vectors y and z, 

Proof. Since M is positive semidefinite, for any real number t we have 

(y + tzf M(y + tz) ::::: O. 

The left side here is a quadratic polynomial in t, and the inequality implies 
that its discriminant is less than or equal to zero. This yields the following 
extension of the Cauchy-Schwarz inequality: 

(y™z)2 ~ yTMyzTMz. 
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Since pI - M is also positive semidefinite, for any vector x, 

° '5. xT(pI - M)x, 

and therefore 

x T Mx '5. pxT x. 

The lemma now follows easily. o 

Theorem 14.10.4 Let X be a connected graph with n vertices and let Q 
be the Laplacian of X. If Qx = y and Xn = 0, then 

11Txl '5. ;21Iyll. 

Proof. Since Q is a symmetric matrix, the results of Section 8.12 show 
that Q has spectral decomposition 

Q = I.: BE(}. 
(}Eev(Q) 

Since X is connected, ker Q is spanned by 1, and therefore 

1 
Eo = -J. 

n 

Define the matrix Qt by 

Qt := I.: B- 1 E(}. 
(}¥o 

The eigenvalues of Qt are 0, together with the reciprocals of the nonzero 
eigenvalues of Q. Therefore, it is positive semidefinite, and its largest 
eigenvalue is Ail. Since the idempotents E(} are pairwise orthogonal, we 
have 

1 
QtQ = I.:E(} = I - Eo = 1-;/. 

(}¥o 

Therefore, if Qx = y, then 

(I-~J)X=Qty. 
Multiplying both sides of this equality on the left by e~, and recalling that 
e~x = 0, we get 

By Lemma 14.10.3, 

from which the theorem follows. o 
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Corollary 14.10.5 Let X be a connected graph with n vertices. A 
terminating chip-firing game on X with N chips has length at most 
/2nN/A2. 

Proof. Let s be the initial state and t the final state of a chip-firing game 
with score x. Since the game uses N chips, we have Ilsll ::; Nand Iltll ::; N, 
and since both sand t are nonnegative, 118 - til::; /2N. Because the game 
is finite, some vertex is not fired, and we may assume without loss that it 
is the last vertex. Since Qx = 8 - t, the result follows directly by applying 
the theorem with s - t in place of y. 0 

14.11 Recurrent States 

We say that a state s is recurrent if there is some firing sequence leading 
from state 8 back to 8. Clearly, a chip-firing game is infinite if and only if 
there is some firing sequence leading from the initial state to a recurrent 
state. A state s is diffuse if and only if for every induced subgraph Y ~ X 
there is some vertex of Y with at least as many chips as its valency in Y. 

Theorem 14.11.1 A state is recurrent if and only if it is diffuse. 

Proof. Suppose that s is a recurrent state, and that a is a firing sequence 
leading from s back to itself. Let Y ~ X be an induced subgraph of X, 
and let v be the vertex of Y that first finishes firing. Then every neighbour 
of v in Y is fired at least once in the remainder of a, and so by the time 8 

recurs, v has at least as many chips as its valency in Y. 
For the converse, suppose that the state s is diffuse. Then we will show 

that some permutation of the vertices of X is a firing sequence from 8. 

Since X is an induced subgraph of itself, some vertex is ready to fire. Now, 
consider the situation after some set W of vertices has been fired exactly 
once each. Let U be the subgraph induced by the unfired vertices. In the 
initial state s, some vertex u E U has at least as many chips on it as its 
valency in U. After the vertices of W have been fired, u has gained one chip 
from each of its neighbours in W. Therefore, u now has at least as many 
chips as its valency in X, and hence is ready to fire. By induction on IWI, 
some permutation of the vertices is a firing sequence from s. 0 

One consequence of the proof of this result is that it is easy to identify 
diffuse states. Given a state, simply fire vertices at most once each in any 
order. This process terminates in at most n steps, with the state being 
diffuse if and only if every vertex has been fired. 

Theorem 14.11.2 Let X be a connected graph with m edges. Then there 
is a one-to-one correspondence between diffuse states with m chips and 
acyclic orientations of X. 
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Proof. Let s be a state given, as in the proof of Theorem 14.9.2, by an 
acyclic orientation of X. If Y is an induced subgraph of X, then the re­
striction of the acyclic orientation of X to Y is an acyclic orientation of Y. 
Hence there is some vertex whose out-valency in Y is equal to its valency 
in Y, and so this vertex has at least as many chips as its valency in Y. 
Therefore, s is diffuse. 

Conversely, let s be a diffuse state with m chips, and let the permutation 
(J' of V(X) be a firing sequence leading from s to itself. Define an acyclic 
orientation of X by orienting the edge ij from i to j if i precedes j in (J'. For 
any vertex v, let U and W denote the vertices that occur before and after 
v in (J', respectively, and let nu and nw denote the number of neighbours 
of v in U and W, respectively. When v fires it has at least d(v) = nu +nw 
chips on it, of which nu were accumulated while the vertices of U were 
fired. Therefore, in the initial state, v has at least nw = d+(v) chips on it. 
This is true for every vertex, and since N = m = Lu d+ (u), every vertex 
v has exactly d+(v) chips on it. 0 

14.12 Critical States 

We call a state q-stable if q is the only vertex ready to be fired, and q­
critical if it is both q-stable and recurrent. By Theorem 14.9.2, the number 
of chips in a q-critical state is at least the number of edges. Applying 
Theorem 14.11.2 and the fact that q is the only vertex ready to be fired, we 
get the following characterization of the q-critical states with the minimum 
number of chips. 

Lemma 14.12.1 Let X be a connected graph with m edges. There is a one­
to-one correspondence between q-critical states with m chips and acyclic 
orientations of X with q as the unique source. 0 

Lemma 14.12.2 Let X be a connected graph with m edges, and let t be 
a q-critical state. Then there is a q-critical state s with m chips such that 
Sv :::; tv for every vertex v. 

Proof. The state t is recurrent if and only if there is a permutation (J' of 
V(X) that is a legal firing sequence from t. Suppose that during this firing 
sequence, v is the first vertex with more than d( v) chips on it when fired. 
Then the state obtained from t by reducing the number of chips on v by 
the amount of this excess is also q-cri tical. If every vertex has precisely d ( v ) 
chips on it when fired, then there are m chips in total. 0 

This result shows that the q-critical states with m chips are the "min­
imal" q-critical states. Every q-critical state with more than m chips is 
obtained from a minimal q-critical state by increasing the number of chips 
on some of the vertices. 
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Although the number of chips on q in q-critical state can be arbitrarily 
large, the number of chips on any other vertex v is at most d( v) - 1. This 
implies that the number of q-critical states with d(q) chips on q is finite, 
and also yields the following bounds. 

Lemma 14.12.3 Let X be a connected graph on n vertices with m edges. 
The number of chips N in a q-critical state with d(q) chips on q satisfies 

m :s; N :s; 2m - n + 1. o 

Suppose that we call two states equivalent if they differ only in the num­
ber of chips on q. Then we have proved that there are only finitely many 
equivalence classes of q-critical states. In the next section we prove that 
the number of equivalence classes of q-critical states equals the number of 
spanning trees of X. 

14.13 The Critical Group 

In this section we will investigate the number of equivalence classes of q­
critical states in the chip-firing game. One problem is that two equivalent 
states may lead to inequivalent games, one terminating and the other in­
finite. However, this problem can be overcome by introducing a slightly 
modified game known as the dollar game. We arrive at the dollar game by 
introducing a separate rule for firing the special vertex q: 

(a) Vertex q can be fired if and only if no other vertex can be fired. 

An immediate consequence of this rule change is that every game is 
infinite. If q has fewer than d(q) chips on it when no other vertex can be 
fired, then it is fired anyway and just ends up with a negative number of 
chips. The second important consequence of this is that the possible games 
leading from one state to another are now independent of the initial number 
of chips on q, and so are determined by the equivalence classes of the two 
states. 

It is straightforward to verify that a state is q-critical in the dollar game 
if and only if it is equivalent to a q-critical state in the chip-firing game. 
We will select one representative state from each equivalence class of states 
in the dollar game. Define a state s to be balanced if its entries sum to 
zero, that is, sT1 = 0, and it is nonnegative on V(X) \ q. It is immediate 
that each equivalence class of states in the chip-firing game contains a 
unique balanced state. If the dollar game starts from a state s, then after 
a sequence of firings the new state is represented by t = s - Qx, and so t is 
balanced if and only s is balanced. Therefore, we can view the dollar game 
as a game on balanced states only, with the property that q-critical states 
in the dollar game correspond precisely to equivalence classes of q-critical 
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states in the chip-firing game. Henceforth we adopt this view, and so any 
state in the dollar game is balanced. 

Now, let X be a connected graph on n vertices with Laplacian Q, and 
let C(Q) denote the lattice generated by the columns of Q. Every column 
of Q is orthogonal to 1, so this is a sublattice of::zn n 1.1. Hence we deduce 
that s and all the states reachable from s lie in the same coset of C(Q) 
in ::zn n 1.1. We will show that the q-critical states form a complete set of 
coset representatives for C(Q). 

Suppose we play the dollar game on X. From a q-stable state, vertex q 
is fired a number of times and then the game is played under the rules of 
the chip-firing game until another q-stable state is reached. We can view 
one of these portions of a dollar game as a terminating chip-firing game, 
which by Corollary 14.9.4 ends in the same q-stable state regardless of 
the moves chosen. Therefore, every dollar game from a given initial state 
passes through the same infinite sequence of q-stable states. Since there are 
finitely many q-stable states, some of them recur, and so every game from 
s passes through the same infinite sequence of q-critical states. Our next 
result implies that there is only one q-critical state in this sequence. 

Lemma 14.13.1 In the dollar game, after q has been fired, no other vertex 
can be fired twice before q is fired again. 

Proof. Suppose that no vertex has yet been fired twice after q and consider 
the number of chips on any vertex u that has been fired exactly once since 
q. Immediately before q was last fired, u had at most d(u) - 1 chips on it. 
Since then, u has gained at most d(u) chips, because no vertex has been 
fired twice, and has lost d(u) chips when it was fired. Therefore, u is not 
ready to fire. 0 

Now, suppose that s is a q-critical state and that a is a nonempty firing 
sequence with score x that starts and finishes at s. Then we have 

s-Qx = s, 

which implies that Qx = 0. Since X is connected, the kernel of Q is spanned 
by 1, and hence x = ml, for some positive integer m. By the previous 
lemma, each vertex must be fired exactly once between each firing of q, 
so 1 is a legal firing sequence from s. Since all games starting at s pass 
through the same sequence of q-stable states, no q-stable states other than 
s can be reached. 

Lemma 14.13.2 If sand tare q-critical states such that s - t = Qx for 
some integer vector x, then s = t. 

Proof. We shall show that x is necessarily a constant vector, so Qx = 0, 
and hence s = t. Assume for a contradiction that x is not constant. Then, 
exchanging sand t if necessary, we may assume that Xq is not a maximum 
coordinate of x. Let the permutation T be a legal firing sequence starting 
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and ending at t, and let v =f. q be the first vertex in T such that Xv is one of 
the maximum coordinates of x. Let W be the neighbours of v that occur 
before v in T. Then 

wEW 

~ d(v). 

This contradicts the fact that s is a q-critical configuration, because v is 
ready to be fired. 0 

Theorem 14.13.3 Let X be a connected graph on n vertices. Each coset 
of C( Q) in zn n 11. contains a unique q-critical state for the dollar game. 

Proof. Given a coset of C(Q), choose an element s in the coset that repre­
sents a valid initial state for the dollar game. By the discussion above, every 
game with initial state s eventually falls into a loop containing a unique 
q-critical state. Therefore, each coset of C( Q) contains a q-critical state, 
and by Lemma 14.13.2 no coset contains more than one q-critical state. 0 

Thus we have shown that the q-critical states form a complete set of 
coset representatives for C(Q). The determinant of C(Q) is equal to the 
number of spanning trees of X. Therefore, the number of q-critical states 
is equal to the number of spanning trees of X, regardless of the choice of 
vertex q. 

We can now consider the quotient group 

(zn n 1 T)I C(Q) 

to be an abelian group defined on the q-critical states. If sand tare q­
critical states, then their sum is the unique q-critical state in the same 
coset as s + t. It seems necessary to actually play the dollar game from s + t 
in order to identify this q-critical state in any particular instance! 

We leave as an exercise the task of showing that this quotient group is 
isomorphic to C* IC and F* IF, and therefore independent of q. It is known 
as the critical group of X. 

14.14 Voronoi Polyhedra 

Let C be a lattice in a vector space V and let a be an element of C. The 
Voronoi cell of a is the set of all vectors in V that are as close to a as 
they are to any other point of C. The Voronoi cells of distinct elements of 
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£ differ only by a translation, so we will usually consider only the Voronoi 
cell of the origin, which we denote by V. This consists of the vectors x in 
V such that for all vectors a in £, 

(x, x) ~ (x - a, x - a). 

Let H(a) denote the half-space of V defined by the inequality 

1 
(x, a) ~ 2 (a, a). 

(14.1) 

Since (x - a, x - a) = (x, x) - 2(x, a) + (a, a), (14.1) implies that V is 
the intersection of the half-spaces H(a), where a ranges over the nonzero 
elements of £. One consequence of this is that the Voronoi cells of a lattice 
are closed convex sets; one difficulty with this description is that it uses an 
infinite set of half-spaces. 

Our next result will eliminate this difficulty. 

Lemma 14.14.1 Let a and b be elements of the lattice £ with (a, b) ~ O. 
Then H(a) n H(b) <; H(a + b). 

Proof. Suppose x E H(a) n H(b). Then 

1 1 
(x, a + b) = (x, a) + (x, b) ~ 2(a, a) + 2(b, b). 

Since (a, b) ~ 0, we have that 

(a + b, a + b) ~ (a, a) + (b, b). 

It follows that x E H(a + b). D 

Define an element a of £ to be indecomposable if it is nonzero and cannot 
be written as b + c, where band c are nonzero elements of £ and (b, c) ~ O. 
Then our last result implies that V is the intersection of the half-spaces 
H(a), where a runs over the indecomposable elements of £. 

We first show that indecomposable elements exist, then that there are 
only finitely many. 

Any element of minimum norm is indecomposable: If a = b + c, then 

(a, a) = (b + c, b + c) = (b, b) + (c, c) + 2(b, c); 

if (b, c) ~ 0 and b, c =f. 0, this implies that the norm of a is not minimal. 

Lemma 14.14.2 An element a of £ is indecomposable if and only if a and 
-a are the two elements of minimum norm in the coset a + 2£. 

Proof. Suppose a E £. If x E £, then a = a - x + x, whence we see that 
a is indecomposable if and only if 

(a - x,x) < 0 

for all elements of £ \ {O, a}. Since 

(a - 2x, a - 2x) = (a, a) - 4( (a, x) - (x, x)), 
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this condition holds if and only if for any x in £ \ {a, a}, 

(a - 2x, a - 2x) > (a, a), 

which implies that any other elements of the coset have greater norm than 
a. 0 

If £ has rank n, then 2£ has index 2n in £. In particular, there are only 
finitely many distinct cosets of 2£ in £. It follows that V is the intersec­
tion of a finite number of closed half-spaces, and therefore it is a convex 
polytope. 

A face of a convex polytope is the intersection of the polytope with a 
supporting hyperplane. Informally, a hyperplane is supporting if it contains 
points of the polytope, but does not divide it into two parts. Formally, we 
may define a hyperplane H to be supporting if whenever p and q are two 
points in the polytope and the line segment joining p to q meets H, then 
p or q (or both) lie in H. A facet of a polytope is a face with dimension 
one less than the dimension of the polytope. It is not hard to show that 
if a polytope is presented as the intersection of a finite number of closed 
half-spaces, then each face must be contained in a hyperplane bounding 
one of the half-spaces. 

Theorem 14.14.3 Let V be the Voronoi cell of the origin in the lattice £. 
Then V is the intersection of the closed half-spaces H(a), where a ranges 
over the indecomposable elements of £. For each such a, the intersection 
V n H(a) is a facet. 

Proof. We must show that V n H(a) has dimension one less than the 
dimension of the polytope. So let a be a fixed indecomposable element of 
£ and let u be any vector orthogonal to a. If b is a second indecomposable 
element of £, then 

(b,~(a+EU)) = ~((b,a)+E(b,u)). 
If b =f- ±a, then (a, b) < (b, b); hence for all sufficiently small values of Ewe 
have 

(b,~(a+EU)) ~ ~(b,b). 
This shows that for all vectors u orthogonal to a and all sufficiently small 
values of E, the vector ~(a + EU) lies in the face H(a) n V. Therefore, this 
face is a facet. 0 

The next theorem identifies the indecomposable vectors in the flow lattice 
of a connected graph. 

Theorem 14.14.4 The indecomposable vectors in the flow lattice of a 
connected graph X are the signed characteristic vectors of the cycles. 



332 14. Cuts and Flows 

Proof. Let .c be a lattice contained in ;z:;n, and let x be an element of .c 
of minimal support which has all its entries in { -1,0,1}. For any element 
y E .c we have (X+2Y)i 1= 0 whenever Xi 1= 0, and so (x+2y, x+2y) 2: (x, x). 
Equality holds only if supp(y) = supp(x), and then y is a multiple of 
x. Therefore, by Lemma 14.14.2, x is indecomposable. Since the signed 
characteristic vectors of the cycles of X have minimal support, they are 
indecomposable elements of the flow lattice. 

Conversely, suppose that x is a vector in the flow lattice :F of X. Since x 
is a flow, there is a cycle C that supports a flow c such that CeXe 2: 0 for all 
e E E(C). (Prove this.) Then (x, c) 2: 0, and so either x is decomposable, 
or x = ±C. D 

14.15 Bicycles 

We consider some properties of the cut and flow spaces of a graph X over 
GF(2). This topic is interesting in its own right, and the information we 
present will be needed in our work on knots in Chapter 17. Some aspects 
of our work are simplified by working over GF(2). Firstly, there is no need 
to introduce orientations, since the oriented incidence matrix D is equal 
to the ordinary incidence matrix B. Secondly, every vector in GF(2)E is 
the characteristic vector of a subset of the edges of X. Therefore, we can 
easily visualize any vector as a subgraph of X. The binary addition of two 
vectors in GF(2)E corresponds to taking the symmetric difference of the 
edge-sets of two subgraphs of X. 

Lemma 14.15.1 Let X be a graph with n vertices and c components, with 
incidence matrix B. Then the 2-rank of B is n - c. 

Proof. The argument given in Theorem 8.3.1 remains valid over GF(2). 
(The argument in Theorem 8.2.1 implicitly uses the fact that -11= 1, and 
hence fails over GF(2).) D 

Let X be a graph with incidence matrix B and let S be a subset of E(X) 
with characteristic vector x. Then Bx = 0 if and only if each vertex of X 
lies in an even number of edges from S. Equivalently, each vertex in the 
subgraph of X formed by the edges in S has even valency. Therefore, the 
flow space of X consists of the characteristic vectors of the even subgraphs. 

We say that S is a bicycle if the characteristic vector x of S lies in both 
the flow space and cut space of X. Thus S is an edge cutset that is also 
an even subgraph. We admit the empty subgraph as a bicycle, and provide 
two more interesting examples in Figure 14.4, where the bicycles are shown 
with thick edges. 

Let C denote the cut space of X and F its flow space. Then each element 
of C n F is the characteristic vector of a bicycle; conversely, the character­
istic vector of a bicycle lies in C n F. Therefore, we call C n F the bicycle 
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Figure 14.4. Bicycles in the Petersen graph and the cube 

space of X. If X has no nonempty bicycles, then it is called pedestrian. 
Trees provide simple examples of pedestrian graphs, as do the complete 
graphs on an odd number of vertices. 

Now, 

dim(C + F) = dim(C) + dim(F) - dim(C n F), 

whence we see that C + F is the space of all binary vectors oflength IE(X) I 
if and only if C n F is the empty subspace. 

Lemma 14.15.2 A graph X is pedestrian if and only if each subgraph of 
X is the symmetric difference of an even subgraph and an edge cutset. 

Proof. A subgraph of X is the symmetric difference of an even subgraph 
and an edge cutset if and only if its characteristic vector lies in C + F. D 

Lemma 14.15.3 Let X be a graph with c components on n vertices, and 
let Q be its Laplacian. Then the dimension of the bicycle space of X is 
n - c-rk2Q. 

Proof. Since we are working over GF(2), we have Q = BBT. The bicycle 
space of X may be identified with the set of vectors BT x such that BBT x = 
O. In other words, it is the image of the null space of BBT under BT. Hence 
the dimension of the bicycle space is 

dim ker BBT - dim ker BT. 

Since dimker BBT = n - rk2(Q) and dimker BT = c, the result follows. D 

Theorem 14.15.4 For a connected graph X on n vertices, the following 
assertions are equivalent: 

( a) X is pedestrian. 

(b) The Laplacian Q of X has binary rank n - 1. 
(c) The number of spanning trees of X is odd. 

Proof. It follows at once from the previous lemma that (a) and (b) are 
equivalent. 
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We will prove that (b) and (c) are equivalent. If rk2(Q) = n - 1, then 
by Theorem 8.9.1, Q has a principal (n - 1) x (n - 1) submatrix of full 
rank. If we denote this submatrix by Q[u], then det Q[u] ¢. 0 mod 2, and 
so over the integers, det Q[u] is odd. By Theorem 13.2.1, we conclude that 
the number of spanning trees of X is odd. 

Conversely, if the number of spanning trees of X is odd, then by The­
orem 13.2.1, any principal (n - 1) x (n - 1) submatrix of Q has odd 
determinant over Z::. Therefore, it has nonzero determinant over GF(2), 
which implies that rk2(Q) ~ n - 1. 0 

14.16 The Principal Tripartition 

We can use the bicycles of a graph to determine a natural partition of its 
edges into three classes, called the principal tripartition. 

Suppose e E E(X), and identify e with its characteristic vector in 
GF(2)E. If e lies in a bicycle with characteristic vector b, then bT e i- 0, 
and therefore 

e i. (CnF)J... = (CJ... +FJ...) = F+C. 

If e does not lie in a bicycle, then e is orthogonal to all vectors in C n F, 
and so e E F + C. In other words, either e is contained in a bicycle, or e is 
the symmetric difference of a cut and an even subgraph. 

Figure 14.5. A cut and an even subgraph 

Figure 14.5 shows a cut and an even subgraph whose symmetric difference 
is a single edge. In this figure we see that the edge is in the even subgraph, 
but not in the cut. There may be more than one way of representing a 
particular edge as the symmetric difference of a cut and an even subgraph, 
but we claim that in any such representation the edge will either always lie 
in the cut, or always lie in the even subgraph. For suppose that e = c+ 1= 
c' + 1', where c and c' lie in C and I and I' lie in F. Then c + c' E C and 
I + I' E F, and so c + c' = I + I' is a bicycle. Since e does not lie in a 
bicycle, we see that it must lie in both or neither of c and c', and similarly 
for I and 1'. This can be summarized in the following result: 
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Theorem 14.16.1 Let e be an edge in the graph X. Then precisely one of 
the following holds: 

(a) e is contained in a bicycle, 

(b) e lies in a cut S such that S \ e is an even subgraph, or 

( c) e lies in an even subgraph T such that T \ e is a cut. o 

This provides us with a partition of the edges of X into three classes: 
bicycle-type, cut-type, and flow-type according as case (a), (b), or (c), re­
spectively, holds. This is known as the principal tripartition of the edges of 
X. Figure 14.6 shows the principal tripartition of the graph of Figure 14.5. 

Figure 14.6. Bicycle-type (thick), cut-type (light), and flow-type (dashed) edges 

If X is a plane graph, then clearly the bicycles of X are bicycles of its 
dual graph, and it is not hard to see that edges of cut-type in X correspond 
to edges of flow-type in X*. 

It is not difficult to find the principal tripartition of the edge set of 
a graph. The next result shows that it can be determined by solving a 
system of linear equations over GF(2) with augmented matrix (Q B), 
and therefore can be found using Gaussian elimination. 

Theorem 14.16.2 Let y be the column of the incidence matrix B corre­
sponding to the edge e, and consider the system of linear equations Qx = y. 
Then: 

(a) If Qx = y has no solution, then e is of bicycle-type. 

(b) If Qx = y has a solution x, where xT Qx =f. 0, then e is of cut-type. 

(c) If Qx = y has a solution x, where xT Qx = 0, then e is of flow-type. 

Proof. Identify e with its characteristic vector in GF(2)E, and suppose 
that there is a vector x such that Qx = y. Then BBT x = Y = Be, and as 
ker B = F, we have 

BTx E F+e. 
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Now, BT X is a cut, and so this provides us with a representation of e as 
the symmetric difference of a cut and an even subgraph. Therefore, if e is 
of bicycle-type, the system of linear equations has no solution. If there is 
a solution, then the additional condition merely checks whether e is in the 
cut or not. 0 

Theorem 14.16.3 In a pedestrian graph X, the union of the cut-type 
edges is a cut, and the union of the flow-type edges is a flow. 

Proof. Since X is pedestrian, any edge e has a unique expression of the 
form 

e = c(e) + fee), 

where c(e) E C and fee) E F. Define c* and f* by 

c* := I:c(e), f* := I: fee). 
e e 

Then c* is the characteristic vector of a cut, f* is the characteristic vector 
of a flow, and 

1 = I: e = c* + f* . 
e 

Using the fact that the characteristic vector of any cut is orthogonal 
to the characteristic vector of any flow, we obtain the following string of 
equalities: 

c(e)T e = c(ef(c(e) + fee)) = c(e)T c(e) 

= c(e)T1 

= c(ef(c* + f*) 

= c(ef c* 

= (e + f(e)f c* 
= eTc*. 

Now, c(e)T e = 1 if and only if e is of cut-type, and therefore eT c* = 1 if 
and only if e is of cut-type. 0 

Exercises 

1. If z is the signed characteristic vector of a cycle of X, show that 
Dz=O. 

2. Show that a graph has an open ear decomposition if and only if it 
contains no cut-vertex. 

3. Show that if X is connected and has no cut-vertices and e E E(X), 
then there is a cycle basis consisting of cycles that contain e. (You 
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may need to use the fact that in a graph without cut-vertices any two 
edges lie in a cycle.) 

4. A strong orientation is an orientation of a graph such that the re­
sulting directed graph is strongly connected. Show that a connected 
graph with no cut-edge has a strong orientation. 

5. Determine the rank over GF(p) of the incidence matrix B of a graph 
X. 

6. Let X be a connected plane graph with n vertices and e edges, and 
with faces F I , ... , Fe - n +2. Each face Fi is a cycle in X, and hence 
determines an element Xi of its flow space. Show that the cycles can be 
oriented so that Li Xi = 0, and that there is no other linear relation 
satisfied by these vectors. (Hence, if we drop anyone of them, the 
remaining e - n + 1 form a basis for the flow space.) 

7. Show that if X belongs to the flow lattice :F of X, then there is a 
signed circuit with characteristic vector c such that XeCe 2: 0 for each 
edge e of X. Prove similarly that if X E C, then there is a signed bond 
with characteristic vector b such that xebe 2: 0 for all edges e. 

8. A source in an oriented graph is a vertex with d+(u) = d(u), and a 
sink is a vertex with d- (u) = d( u). Show that a graph with an acyclic 
orientation has at least one sink and at least one source. 

9. In the chip-firing game, show that a game is infinite if and only if 
every vertex is fired at least once. 

10. Let X be a pedestrian graph. Then the number T(X) of spanning trees 
of X is odd, and so exactly one ofT(X\e) and T(Xje) is odd. Show 
that if e is of cut-type, then T(Xje) is odd, and if e is of flow-type, 
then T(X \ e) is odd. 

11. Show that if X is an even graph on n vertices, then the dimension 
of the bicycle space of X is congruent to (n - 1) mod 2. (So an even 
graph on an even number of vertices must have a nonempty bicycle.) 

12. If X is an even graph, show that it has no edges of cut-type. If X is 
bipartite, show that it has no edges of flow-type. 

13. Show that each subgraph obtained from the Petersen graph by delet­
ing a vertex has two cycles of length nine in it (i.e., two Hamilton 
cycles). Show that the Petersen graph contains at least 12 pentagons, 
10 hexagons, 15 octagons, 20 nonagons, and 6 subgraphs formed from 
two vertex-disjoint pentagons. Verify that the even subgraphs just 
listed are all the nonempty even subgraphs of the Petersen graph. 
Which even subgraphs form the bicycle space? [You may use any 
standard facts about automorphisms of the Petersen graph to shorten 
your work.] 
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14. Let X be a pedestrian graph with T(X) spanning trees, and let P be 
the matrix representing orthogonal projection onto the real cut space 
of X (as in Section 14.8). Show that the edge e is of cut-type if and 
only if the diagonal ee-entry of T(X)P is odd. 

15. Suppose e is an edge of X, and e = c + f, where c is a cut and f is 
a flow in X. Show that if e is of cut-type, then Icl is odd and If I is 
even, and if e is of flow-type, then Icl is even and If I is odd. 

Notes 

The material in the first four sections of this chapter is quite standard. Our 
results on lattices come mostly from Bacher, de la Harpe, and Nagnibeda 
[1] and the related work of Biggs [2]. Section 14.14 is based on [1]. 

Chip firing is a topic with a surprising range of ramifications. There is 
a considerable physics literature on the subject, in the guise of "abelian 
sandpiles." For graph theorists, the natural starting points are Bjorner 
and Lovasz [4], Bjorner, Lovasz, and Shor [5], and Lovasz and Winkler 
[8]. The bound on the length of a terminating chip-firing game given as 
Theorem 14.10.2 is due to G. Tardos [9]. The eigenvalue bound, given as 
Corollary 14.10.5, is from [5]. 

Biggs [3] establishes a connection between chip-firing and the rank poly­
nomial. We treat the rank polynomial at length in the next chapter, but 
unfortunately, we will not be able to discuss this work. 

Our treatment of chip firing generally follows the work of Biggs. The very 
useful concept of a diffuse state comes from Jeffs and Seager [6] though. 
Our approach in Section 14.13 is based in part on ideas from Ahn-Louise 
Larsen's Master's thesis [7]. 

Bicycles and the principal tripartition will playa useful role in our work 
on knots and links in Chapter 17. 
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15 
The Rank Polynomial 

One goal of this chapter is to introduce the rank polynomial of a signed 
graph, which we will use in the next chapter to construct the Jones poly­
nomial of a knot. A second goal is to place this polynomial in a larger 
context. The rank polynomial is a classical object in graph theory, with a 
surprising range of ramifications. We develop its basic theory and provide 
an extensive description of its applications. 

We treat the rank polynomial as a function on matroids, rather than 
graphs. This certainly offers greater generality at a quite modest cost, but 
the chief advantage of this viewpoint is that there is a natural theory of ma­
troid duality which includes, as a special case, the duality theory of planar 
graphs. This duality underlies many properties of the rank polynomial. 

15.1 Rank Functions 

Let n be a finite set. A function rk on the subsets of n is a rank function 
if it is nonnegative, integer-valued, and satisfies the following conditions: 

(Rl) If A and B are subsets of n and A <;;; B, then rk(A) :::; rk(B). 
(R2) For all subsets A and B of n, 

rk(A n B) + rk(A U B) :::; rk(A) + rk(B). 

(R3) If A <;;; n, then rk(A) :::; IAI. 
Functions satisfying Rl are called monotone, and functions satisfying R2 

are called submodular. These are the important properties; Section 15.15 
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shows that any integer-valued monotone submodular function can be 
modified to produce a rank function. 

A rather uninteresting example of a rank function is the function rk(A) = 
IAI, which clearly satisfies the three conditions. The following result gives 
a family of more interesting examples. 

Lemma 15.1.1 Let D be an m x n matrix with entries from some field 
IF, and let n index the columns of D. For any subset A ~ n, view the 
columns corresponding to the elements of A as vectors in wm and let 
rk(A) = dim(span(A)). Then rk is a rank function. 0 

There are two particularly important special cases of this result, arising 
from graphs and from codes. 

Let X be a graph with an arbitrary orientation a and let D be the 
incidence matrix of the oriented graph XU. Reversing the orientation on an 
edge only multiplies the corresponding column of D by -1, and hence does 
not alter the rank function. Therefore, the rank function is independent of 
the orientation, and so is determined only by the graph X. 

A linear code is a subspace of a vector space wn. A generator matrix for 
a linear code C is a k x n matrix whose rows form a basis for C. Although 
a linear code may have many generator matrices, the rank function is inde­
pendent of which matrix is chosen, and hence we refer to the rank function 
determined by a code C. 

All of these examples have the property that the elements of n are vec­
tors in a vector space and the rank of a subset is the dimension of its 
span. However, there are rank functions that are not of this form, and we 
present one example. Consider the configuration of points and lines shown 
in Figure 15.1. Let n be the set of points, and define a function as follows: 

{ 
IAI, if IAI ~ 2; 

rk(A) = 2, if A is the 3 points of a line; 

3, otherwise. 

Figure 15.1. A configuration of points and lines 
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15.2 Matroids 

A matroid is a set 0 together with a rank function rk on the subsets of 
O. The theory of matroids is an abstraction of the theory of dependence 
and independence in linear algebra, with the rank function playing the 
role of "dimension." Therefore, much of the language of matroid theory 
is analogous to that of linear algebra. A subset A ~ 0 is independent 
if rk(A) = IAI, and dependent otherwise. A maximal independent set is 
called a basis. As well as the language, some of the fundamental properties 
of linear algebra also hold in the more abstract matroid setting. 

Lemma 15.2.1 If A ~ 0, then the rank of A is the size of any maximal 
(with respect to inclusion) independent set contained in A. 

Proof. If A is itself independent, then the result follows immediately. So 
let A' be any maximal independent set properly contained in A. Then for 
every element x E A \A' we have rk(A' U{x}) = rk(A). Now, consider any 
subset B such that A' c B ~ A, and let x E B \ A'. Then by applying the 
submodularity property to B \ {x} and A' U {x} we get 

rk(A') + rk(B) ~ rk(B\ {x}) +rk(A' U {x}), 

and so rk(B) = rk(B\ {x}), which in turn implies that rk(B) = rk(A'). By 
taking B = A this yields that rk(A) = rk(A') = IA'I. D 

An important consequence of this result is that the collection of indepen­
dent sets determines the rank function, and hence the matroid. Therefore, 
a matroid M can be specified just by listing its independent sets. In fact, 
since any subset of an independent set is independent, it is sufficient to list 
just the bases of M. Alternatively, a matroid can be specified by listing the 
minimal dependent sets of M; these are called the circuits of M. 

Corollary 15.2.2 If M is a matroid, then all bases of M have the same 
size rk(O). D 

The common size of all the bases of M is called the rank of the matroid, 
and denoted by rk(M). This is again reminiscent of linear algebra, where 
all bases of a vector space have the same size. 

Now, we consider the matroid determined by a graph in more detail. Let 
X be a graph on n vertices and D be the incidence matrix of an arbitrary 
orientation of X. The columns of D can be identified with the edges of 
X, and therefore the rank function determined by X yields a matroid on 
0= E(X). This matroid is called the cycle matroid of X and denoted by 
M(X). 

We identify a subset A ~ E(X) with the subgraph of X with vertex set 
V(X) and edge set A. If A has c components, then by Theorem 8.3.1, 

rk(A) = n - c. 
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If A does not contain any cycles, then c = n-IAI, and so A is independent. 
Conversely, if A does contain a cycle, then the corresponding columns of D 
are linearly dependent, and so A is a dependent set of M(X). Therefore, 
the independent sets of M(X) are precisely the sets of edges that contain 
no cycles. The bases of M(X) are the maximal spanning forests of X­
spanning trees if X is connected-and the circuits of M(X) are the cycles 
of X. 

A loop in a matroid is an element e such that rk( { e}) = o. If a graph 
contains a loop, then the corresponding column of its incidence matrix D 
is defined to be zero. Therefore, this column forms a dependent set on its 
own, and so is a loop in the cycle matroid. 

Distinct graphs may have the same cycle matroid. For example, any tree 
on n vertices has a cycle matroid with n - 1 elements where every subset 
of 0 is independent. More generally, if X and Yare two graphs on disjoint 
vertex sets, then the disconnected graph X U Y has the same cycle matroid 
as the graph obtained by identifying a single vertex of X with a vertex of 
Y. However, it is known that the cycle matroid determines the graph if it 
is 3-connected. 

15.3 Duality 

An important secret of elementary linear algebra is that the concepts "span­
ning set" and "independent set" are dual. Thus the fact that a minimal 
spanning set is a basis is dual to the assertion that a maximal independent 
set is a basis. This is a reflection of the result that if M is a matroid on a 
set 0, then the complements of the bases of M are the bases of a second 
matroid on D. 

We will denote the complement in 0 of the set A by A. If f is a function 
on the subsets of 0, define its dual to be the function f.L, given by 

f.L(A) := IAI + f(A) - feD). 

A little thought shows that if f(0) = 0, then (f.L).L = f, which provides 
some justification for the notation. 

Theorem 15.3.1 If rk is a rank Junction on 0, then the Junction rk.L 
given by 

rk.L(A) := IAI + rk(A) - rk(D) 

is also a rank Junction on D. 

Proof. If J is a function on the subsets of 0, let 1 be the function (on 
subsets of 0) defined by 

l(A) := J(A). 
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If A and B are subsets of 0 and f is submodular, we have 

fCA) + f(B) ;:::: f(A n B) + f(A U B) = f(A U B) + f(A n B), 

which implies that 1 is submodular. It is immediate that the sum of two 
submodular functions is submodular. Since the size of a set is a submodular 
function, it follows that, if f is submodular, then so is 1 + 1·1. 

Next we show that if f is a rank function on 0, then the function mapping 
a subset A to f(A) + IAI is monotone. If A ~ B, then 

f(A) = f(BU (B\A)) :::; f(B) + f(B\A):::; f(B) + IB\AI· 

Hence 

f(A) + IAI :::; f(B) + IB\AI + IAI = f(B) + IBI· 

Thus we have established that rk1. is monotone and submodular, and it 
remains only to show that rk1. is nonnegative and satisfies rk1.(A) :::; IAI. 
Because rk is submodular and monotone, 

rk(O) :::; rk(A) + rk(A), 

and so 

0:::; rk(O) - rk(A) :::; rk(A) :::; IAI. 

Therefore, if we rewrite rk1. as 

rk1.(A) = IAI - (rk(O) - rk(A)), 

we see that 

0:::; rk1.(A) :::; IAI. 

Therefore, rk1. is a rank function. o 

If rk is the rank function of a matroid M, we call the matroid with rank 
function rk1. the dual of M and denote it by M 1.. The rank of the dual 
matroid is rk1.(O) = 101- rk(O). 

Lemma 15.3.2 The bases of M 1. are the complements of the bases of M. 

Proof. If A is a subset of 0, then 

rk1.(A) = IAI + rk(A) - rk(O), 

and so if A is an independent set in M, then A is a spanning set in M 1. . 
Conversely, if A is a spanning set in M 1., then A is independent in M. By 
duality, A is a spanning set in M if and only if A is independent in M 1. . 
Therefore, A is a base of M if and only if A is a base of M 1. . 0 

The dual of the cycle matroid of a graph X is called the bond matroid 
of X. For a subset A ~ E(X), let c be the number of components of the 
spanning subgraph of X with edge set A. Then 

rk1.(A) = IAI + (n - c) - (n - 1) = IAI- c + 1. 
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Thus A is independent in M.L if and only if c = lor, equivalently, if A 
does not contain a set of edges whose removal disconnects X. Therefore, 
the circuits of M.L are the minimal edge cuts, or bonds, of X; hence justi­
fying the name bond matroid. This also holds true for disconnected graphs, 
provided that we consider an edge-cut to be a set of edges whose removal 
increases the number of components of the graph. 

If X is a graph embedded in the plane, then the cycle matroid of X is 
the bond matroid of the dual graph of X. A matroid is graphic if it can be 
expressed as the cycle matroid of a graph. The bond matroid of a graph X 
is known to be graphic if and only if X is planar. 

An element e of a matroid M such that e is a loop in M.L is called a 
co loop in M. In general, we see that e is a coloop if and only if 

rk(n\ {e}) = rk(n)-1. 

In a graphic matroid, this implies that e is a coloop if and only if it is a 
cut-edge, or bridge. 

15.4 Restriction and Contraction 

Suppose that M is a matroid with rank function rk defined on a set n. If T 
is a subset of n, then the restriction of rk to subsets of T is a rank function 
on T. Hence we have a matroid on T, denoted by M fT, and called the 
restriction of M to T. Sometimes this is also called the deletion of T from 
M. In particular, if e E n, we usually denote M ren \ e) by M \ e, and say 
that it is obtained by deleting e. 

Now, let p denote the function on subsets of T given by 

peA) = rk(A U T) - rk(T). 

Then p is a rank function, and hence determines a matroid on T. This can 
be shown directly by showing that p satisfies the three conditions for a 
rank function, but we get more information if we proceed by considering 
p.l. Then 

p.l(A) = IAI + p(T\A) - p(T) 

= IAI + rk((T\A) U T) - rk(T) + rk(T) - rk(n) 

= IAI + rk(n \ A) - rk(n) 

= rk.L(A). 

Consequently, p.l is a rank function on T, and therefore p is a rank function 
on T. The corresponding matroid is called the contraction of T from M, 
and is denoted by MIT. Our argument has also shown that 

(MIT).l = M.l fT 
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and, by duality, 

You are invited to verify that if e and f are distinct elements of M, then 

(M\e)jf = (Mjf)\e. 

Our next result implies that for the cycle matroids of graphs, the termi­
nology just introduced is consistent with the graph-theoretic terminology 
defined in Section 13.2. 

Theorem 15.4.1 Let X be a graph, and let e E E(X). Then M(X) \ e = 
M(X\e) and M(X)je = M(Xje). 

Proof. The result for deletion is a direct consequence of the definitions 
of deletion, so we need only consider the result for contraction. If e is a 
loop, then Xje = X \ e, and it is easy to see that M(X)je = M(X) \ e, 
and so the result follows from the result for deletion. So suppose that e is 
not a loop. From the definition of p, a set A C;;; E(X) \ e is independent in 
M(X)je if and only if Au e is independent in M(X). It is not hard to see 
that A U e contains no cycles of X if and only if A contains no cycles of 
X j e. Therefore, M (X) j e and M (X j e) have the same independent sets. 0 

If there is a subset T of 0 with 0 < ITI < 101 such that for all subsets A 
of 0 

rk(A) = rk(A n T) + rk(A n T), 

then we say that M is the direct sum of the matroids M r T and M r 
T. A matroid is connected if it is not a direct sum. If the graph X is 
not connected, then the cycle matroid M(X) is a direct sum of the cycle 
matroids of each connected component. If X is connected but has a cut­
vertex, then M(X) is again not connected; it is the direct sum of the cycle 
matroids of the maximal cut-vertex-free subgraphs, or blocks, of X. If e is 
a loop or a coloop in a matroid M, then M is the direct sum of M r { e } 
and M\e = Mje. 

15.5 Codes 

Recall that a linear code of length n is simply defined to be a subspace of 
a vector space lFn. Let C be a linear code with generator matrix G, and 
consider the rank function defined on the columns of G. The rank function 
is independent of the choice of generator matrix, and so we denote the 
corresponding matroid by M(C). The columns of G correspond to the 
coordinate positions of vectors in lFn , so we may assume that M (C) is a 
matroid on the set 0 = {I, ... , n}. 
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An element i E n is a loop in M (C) if and only if the ith column of 
G is zero. An element i is a coloop if the rank of the matrix obtained by 
deleting column i from G is less than the rank of G. If M(C) has a coloop 
i, then by using row operations on G if necessary, we can assume that C 
has a generator matrix of the form 

... 0 

(15.1 ) 

From this we see that if i is a coloop, then C contains the ith standard 
basis vector ei. It is not hard to verify the converse, and thus we conclude 
that i is a coloop if and only if ei E C. 

If C is a code, then its dual code, CJ., is defined by 

CJ.:= {v E r : (u,v) = 0 for all u in C}. 

If C is the row space of the generator matrix G, then CJ. is the null space 
ofG. 

Lemma 15.5.1 If the linear code C has a generator matrix 

G=(h M), 

then the matrix 

H = (_MT In-k) 

is a generator matrix for CJ.. 

Proof. Clearly, G HT = 0, so the columns of HT are in the null space of 
G. Since G has rank k and HT has rank n - k, the columns of HT form a 
basis for the null space of G. 0 

The next result shows that matroid duality corresponds to duality in 
codes as well as graphs. 

Lemma 15.5.2 If C is a code of dimension k in wn, then M(CJ.) = 
M(C)J.. 

Proof. Suppose that A ~ n is a base of M(C). Then there is a generator 
matrix for C such that the matrix formed by the columns corresponding 
to A is h. Hence by Lemma 15.5.1, there is a generator matrix H for 
CJ. where the matrix formed by the columns corresponding to A is I n - k . 

Therefore, A is a base of M(CJ.). By duality, if A is a base of M(CJ.), 
then A is a base of M(C). Hence the bases of M(CJ.) are precisely the 
complements of the bases of M(C), and the result follows. 0 

A coding theorist punctures a code C at coordinate i by deleting the ith 
entry of each codeword. The resulting code is denoted by C \ i. It is clear 
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that puncturing a code corresponds to deleting an element, and that the 
matroid of the resulting code is M(C) \ i. 

A code is shortened at coordinate i by taking the subcode formed by the 
vectors x such that Xi = 0 and then puncturing the resulting subcode at 
i. The resulting code is denoted by C Ii, and the next result justifies this 
choice of terminology. 

Theorem 15.5.3 If C Ii is the code obtained by shortening C at coordinate 
position i, then M(Cli) = M(C)/i. 

Proof. Let G be the generator matrix for C. If i is a loop, then the ith 
column of G is zero, and puncturing and shortening the code are the same 
thing, and so M(Cli) = M(C) \ i = M(C)/i. So suppose that i is not a 
loop. Using row operations if necessary, we can assume that the ith column 
of G contains a single nonzero entry in the first row and that the remaining 
k - 1 rows of G form a generator matrix for C I i. Recall that if rk is the 
rank function for M (C), then rk( A U i) - 1 is the rank function for M (C I i). 
Then it is clear that A is independent in M (C) Ii if and only if A U i is 
independent in M (C) if and only if A is independent in M (C I i). Hence 
M(Cli) = M(C)/i. 0 

A matroid is called IF-linear if it is determined by the columns of a 
matrix over IF, and binary if it is determined by the columns of a matrix 
over GF(2). By Lemma 14.15.1 the cycle matroid of a graph is binary, and 
thus Lemma 15.5.1 implies that the bond matroid is also binary. 

15.6 The Deletion-Contraction Algorithm 

In this section we will consider several graph parameters that can be 
computed using a similar technique: the deletion-contraction algorithm. 

We start with one that we have seen several times already. In Section 13.2 
we gave an expression for the number of spanning trees r(X) of a graph 
X: 

{ 
r(X\e), 

r(X) = r(Xle), 

r(X\e) +r(Xle); 

if e is a loop; 

if e is a cut-edge; 

otherwise. 

Since both X\e and Xle are smaller graphs than X, this yields a recursive 
algorithm for computing r(X) by applying this equation until the only 
graphs in the expression are trees (which of course have one spanning tree). 
This algorithm is called the deletion-contraction algorithm. 

The deletion-contraction algorithm is not a good algorithm for comput­
ing the number of spanning trees of a graph, because it can take exponential 
time, while the determinant formula given in Section 13.2 can be computed 
in polynomial time. However, there are other graph parameters for which 
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the deletion-contraction algorithm is essentially the only available algo­
rithm. Let I\;(X) denote the number of acyclic orientations of X. Then we 
can find an expression for I\;(X) that depends On whether an edge is a loop, 
coloop, or neither. 

Theorem 15.6.1 If X is a graph, then the number I\;(X) of acyclic 
orientations of X is given by 

{ 
0, if X contains a loop; 

I\;(X) = 21\;(X/e), if e is a cut-edge; 

I\; (X \ e) + I\;(X/e)j if e is not a loop or a cut-edge. 

Proof. If X contains a loop, then this loop forms a directed cycle in any 
orientation. If e is a cut-edge in X, then any acyclic orientation of X can 
be formed by taking an acyclic orientation of X/e and orienting e in either 
direction. Suppose, then, that e = uv is neither a loop nor a cut-edge. If a is 
an acyclic orientation of X, then T = a i(V(X) \ e) is an acyclic orientation 
of X \ e. We partition the orientations of X \ e according to whether or 
not there is a path respecting the orientation joining the end-vertices of e 
(either from u to v, or v to Uj clearly, there cannot be both). If there is no 
path joining the end-vertices of e, then T is an acyclic orientation of X/e, 
and so there are I\;(X/e) such acyclic orientations, leaving I\;(X\e) -I\;(X/e) 
remaining acyclic orientations. If T is in the former category, then it is the 
restriction of two acyclic orientations of X (because e may be oriented in 
either direction), and if it is in the latter category, then it is the restriction 
of One acyclic orientation of X (since e is oriented in the same direction as 
the directed path joining its end-vertices). Therefore, 

I\;(X) = 21\;(X/e) + (I\; (X \ e) - I\;(X/e)) = I\;(X/e) + I\;(X \ e), 

as claimed. o 

Consider nOw the number of acyclic orientations I\;(X, v) with a particular 
vertex v as the unique source. It is not at all obvious that this is independent 
of v. However, this is in fact true, and is a consequence of the following 
result. 

Theorem 15.6.2 If X is a graph, then the number I\;(X, v) of acyclic 
orientations of X where v is the unique source is given by 

{ 
0, if X contains a loop; 

I\; (X, v) = I\;(X/e, v), ife is a cut-edge; 

I\; (X \ e, v) + I\;(X/e, v)j if e is not a loop or a cut-edge. 

Proof. This is left as Exercise 8. 0 
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15.7 Bicycles in Binary Codes 

If C is a code over a finite field IF, then the intersection C n C1.. may be 
nontrivial. Coding theorists call it the hull of the code. If C is the binary 
code formed by the row space of the incidence matrix B of a graph X, 
then the hull of C is just the bicycle space of X. In this section we consider 
only binary codes, and therefore call C n C1.. the bicycle space of C, and 
its elements the bicycles of C (or of C1..). 

We start by extending the tripartition of Section 14.16 to binary codes. 

Theorem 15.7.1 Assume that C is a binary code of length n and let ei 
denote the ith standard basis vector of GF(2)n. Then exactly one of the 
following holds: 

(a) i lies in the support of a bicycle, 

(b) i lies in the support of a codeword "( such that "( + ei E C1.., or 

(c) i lies in the support of a word <p in C1.. such that <p + ei E C. 

Proof. If i does not lie in the support of a bicycle, then (ei' (3) = 0 for 
each element (3 of C n C1.., and consequently 

ei E (C n C1..)1.. = C1.. + C. 

Thus ei = "( + <p, where "( E C and <p E C1... 
Suppose we also have ei = "(' + <p', where "(' E C and <p' E C1... Then 

"( + "(' = <p + <p' E C n C1... 

Therefore, i is in the support of both or neither of "( and "(', and similarly 
for <p and <p'. Hence precisely one of the last two conditions holds. 0 

We say that an element i is of bicycle-type, cut-type, or flow-type accord­
ing as (a), (b), or (c) respectively holds. This classification therefore gives 
us a tripartition of the elements of the matroid M(C). It is straightforward 
to check that any loop is of flow-type, and any coloop is of cut-type. 

Our next aim is to relate the dimension of the bicycle space of C with 
that ofC\i and Cli. 

Theorem 15.7.2 Let C be a binary code with a bicycle space of dimension 
b. Ifi is an element of M(C), then the following table gives the dimension 
of the bicycle space of C \ i and C Ii. 

Type of i C\i Cli 

Loop or coloop b b 

Bicycle-type b-1 b-1 

Cut-type, not coloop b+1 b 

Flow-type, not loop b b+1 
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Proof. To verify this table, we need only consider the effect of deletion, 
since once we know what happens in this case, the effect of contraction is 
determined by duality. 

First we consider loops and coloops. Deleting a loop clearly does not 
affect the dimension of the bicycle space. If i is a coloop, then no bicycle 
of C has i in its support. Any bicycle of C is a bicycle of C\ i once the ith 
coordinate is deleted, and conversely, any bicycle of C \ i yields a bicycle of 
C by inserting an ith coordinate with value O. 

For any codeword 0: E C, let a denote the codeword in C \ i obtained 
by deleting the ith coordinate of 0:. Provided that i is not a coloop, every 
codeword in C \ i is the image under the map 0: f--> a of a unique codeword 
in C. We will analyze when a is a bicycle, which depends both on 0: and 
the type of i. 

If 0: is a bicycle in C, then a is a bicycle in C \ i if and only if O:i = O. If 
0: is not a bicycle and O:i = 0, then a is not a bicycle. However, if 0: is not 
a bicycle but O:i = 1, then a is a bicycle if and only if 0: + ei E C.L. 

Therefore, the map 0: f--> a may map both bicycles and non-bicycles of C 
to bicycles and non-bicycles of C\i. For each type of edge we must account 
for the bicycles lost and gained. 

If i is of bicycle type, then only the bicycles of C with O:i = 0 map to 
bicycles of C\ i, and therefore the dimension of the bicycle space drops by 
one. 

If i is not of bicycle type, then every bicycle of C maps to a bicycle of 
C \ i, and so the only question is whether any bicycles are gained. If i is of 
flow-type, then there are no codewords 0: for which 0: + ei E C.L, and so 
the dimension of the bicycle space of C \ i is equal to the dimension of the 
bicycle space of C. However, if i is of cut-type, then there is a codeword 0:, 

with i in its support, such that 0: + ei E C.L. Therefore, a is a bicycle in 
C \ i. Now, if f3 is another codeword such that ~ is a bicycle in C \ i, then 
f3 + ei E C.L, and so 0: + f3 E C.L, and so is a bicycle. Therefore, every vector 
with i in its support that maps to a bicycle has the form 'Y + 0:, where 'Y 
is a bicycle. Hence the dimension of the bicycle space of C \ i is just one 
greater than the dimension of the bicycle space of C. 0 

We can use the information we have just obtained to show that the di­
mension of the bicycle space can be obtained by deletion and contraction. If 
C is a binary code, let £( C) denote its length and let b( C) be the dimension 
of its bicycle space. Define the parameter bike( C) by 

bike(C) = (_1)1'(Cl (_2)b(Cl . 

Up to sign, this is simply the number of bicycles in C. 
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Lemma 15.7.3 Let i be an element of the code C. Then 

{ 
(-l)bike(C\i), ifi is a loop; 

bike( C) = ( -1) bike( C / i), if i is a coloop; 

bike( C \ i) + bike( C / i), otherwise. 

Proof. If i is a loop or a coloop, then b( C \ i) = b( C / i) = b( C), whence 
the first two claims follow. So suppose that i is neither a loop nor coloop, 
and assume that £( C) = nand b( C) = d. If i is of cut-type, then 

bike(C\i) + bike(C/i) = (_1)n-l(_2)d+l + (_1)n-l(_2)d 
= (_1)n(_2)d. 

If i is of flow-type, then 

bike(C\i) + bike(C/i) = (-It- 1(-2)d + (_1)n-l(_2)d+1 
= (_1)n(_2)d. 

Finally, if i lies in the support of a bicycle, then 

bike(C\i) + bike(C/i) = 2(-lt-1 (-2)d-l 

= (-It(-2)d. 

Thus in all cases, bike ( C \ i) + bike( C / i) = bike( C). o 

Although the dimension of the bicycle space can be calculated by the 
deletion-contraction algorithm, this leads to an exponential algorithm. In 
practice, the dimension of the bicycle space can be computed more easily 
using Gaussian elimination. Along with the number of spanning trees, this 
provides an example showing that evaluating the rank polynomial at a 
specific point can be easy, whereas finding the rank polynomial itself is 
NP-hard. 

15.8 Two Graph Polynomials 

Numerical parameters are not the only graphical parameters that can be 
calculated by the deletion-contraction algorithm. In this section we con­
sider two graph polynomials: the chromatic polynomial and the reliability 
polynomial of a graph. 

Given a graph X, let P(X, t) be the number of proper colourings of the 
vertices of X with t colours. For some graphs we can compute this function 
easily. If X = Kn, then it is easy to see that 

P(Kn , t) = t(t - 1)··· (t - n + 1), 

because there are t choices of colour for the first vertex, t - 1 for the second 
vertex, and so on. If T is a tree, then there are t choices of colour for the 
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first vertex, and then t - 1 choices for each of its neighbours, t - 1 choices 
for each of their neighbours, and so on. Therefore, 

P(T, t) = t(t - l)n-l. 

The function P(X, t) is called the chromatic polynomial of the graph X. 
For complete graphs and trees we have just seen that the function actually 
is a polynomial in t. The next result shows that this is true for all graphs. 

Theorem 15.8.1 Let P(X, t) denote the number of proper colourings of 
X with t colours. Then 

{ a, 
P(X, t) = P(X \ e, t) - P(X/e, t), 

if X contains a loop; 

if e is not a loop. 

Proof. If X is empty, then P(X, t) = tn. If X contains a loop, then it 
has no proper colourings. Otherwise, suppose that u and v are the ends of 
the edge e. Any t-colouring of X \ e where u and v have different colours 
is a proper t-colouring of X, while colourings where u and v are assigned 
the same colour are in one-to-one correspondence with colourings of X/e. 
Therefore, 

P(X \ e, t) = P(X, t) + P(X/ e, t), 

and the result follows. D 

This result shows that the chromatic polynomial of a graph can be 
computed by deletion and contraction, and therefore that it actually is a 
polynomial in t. Using the deletion-contraction algorithm on the Petersen 
graph yields the chromatic polynomial 

t (t - 1) (t - 2) (t1 -12t6 + 67t5 - 230t4 + 529t3 - 814t2 + 775t - 352) . 

Our next example is based on the idea of using a graph to represent 
a computer network, where the edges represent possibly unreliable links 
that may fail with some probability. Let X be a graph and suppose we 
independently delete each edge of X with fixed probability p where ° :::; 
p:::; 1. Let C(X,p) denote the probability that no connected component of 
X is disconnected as a result-the probability that the network "survives." 
For example, if T is a tree on n vertices, then it remains connected if and 
only if every edge survives, so 

C(T,p) = (1 _ p)n-l. 

The function C(X,p) is called the reliability polynomial of X. As with 
the chromatic polynomial, we justify its name by showing that it actually 
is a polynomial. 

Theorem 15.8.2 Let C(X,p) denote the probability that no component 
of X is disconnected when each edge of X is deleted independently with 
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probability p. Then 

C(X,p) = (1 - p)C(X/e,p), if e is a cut-edge; { 
C(X\ e,p), if e is a loop; 

pC(X\e,p) + (1- p)C(X/e,p), otherwise. 

Proof. In each case we consider the two possibilities that e is deleted or 
not deleted and sum the conditional probabilities that no component of X 
is disconnected given the fate of e. For example, if e is a cut-edge, then 
the number of components of X remains the same if and only if e survives 
(probability (1 - p)) and the deleted edges do not form a cut in the rest 
of the graph (probability C(X/e,p)). Arguments for the other cases are 
broadly similar. D 

Using the deletion-contraction algorithm on the Petersen graph yields 
the reliability polynomial 

(704 p6 + 696 p5 + 390p4 + 155 p3 + 45p2 + 9p + 1) (1- p)9 . 

Figure 15.2 shows a plot of the reliability polynomial for the Petersen graph 
over the range 0 ::; p ::; 1. 
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Figure 15.2. Plot of the reliability polynomial of the Petersen graph 

15.9 Rank Polynomial 

The similarity of the deletion-contraction formulas for the parameters and 
polynomials introduced in the previous sections strongly suggests that we 
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should search for a common generalization. This generalization is the rank 
polynomial, which we introduce in this section. 

The rank polynomial of a matroid M on n with rank function rk is the 
polynomial 

R(M; x, y) = L xrk(!!)-rk(A)yrk-L(!!)-rk-L (!!\A). 

A~!! 

From this we see at once that 

R(Ml..;x,y) = R(M;y,x). 

Since rkl..(n \ A) = In \ AI + rk(A) - rk(n) and rkl..(n) = Inl - rk(n), it 
also follows that 

R(M; x, y) = L xrk(!!)-rk(A)yIAI-rk(A). 

A~!! 

This shows that the rank polynomial is essentially a generating function 
for the subsets of n, enumerated by size and rank. 

We have the following important result. 

Theorem 15.9.1 If M is a matroid on nand e E n, then 

{
(I + y)R(M \ e; x, y), if e is a loop; 

R(M;x,y)= (l+x)R(M/e;x,y), ifeisacoloop; 

R(M\ e; x, y) + R(M/e; x, y), otherwise. 

Proof. If e is a loop or coloop, then this follows directly from the definition 
of the rank polynomial. If e is neither a loop nor a coloop, then the subsets 
of n that do not contain e contribute R(M\e; x, y) to the rank polynomial, 
while the subsets that do contain e contribute R(M/e; x, y). 0 

Therefore, the rank polynomial of any matroid can be calculated using 
the deletion-contraction algorithm. The coefficients of the rank polynomial 
of the cycle matroid of the Petersen graph are 

yO yl y2 y3 y4 y5 y6 

xO 2000 2172 1230 445 105 15 1 
xl 4680 2765 816 135 10 0 0 
x 2 5805 1725 240 15 0 0 0 
x 3 4875 630 30 0 0 0 0 

R(P;x,y) = 
x4 2991 130 0 0 0 0 0 
x 5 1365 12 0 0 0 0 0 
x 6 455 0 0 0 0 0 0 
x 7 105 0 0 0 0 0 0 
x 8 15 0 0 0 0 0 0 
x 9 1 0 0 0 0 0 0 
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Lemma 15.9.2 Suppose that M is a matroid on n. Then 

(a) R(M; 1, 1) = 21!!1. 

(b) R(M; 0, 0) is the number of bases of M. 

(c) R(M; 1,0) is the number of independent sets in M. 

(d) R(M; 0, 1) is the number of spanning sets in M. o 

This result shows that various properties of a matroid can be found as 
evaluations of its rank polynomial at specific points. However, we can say 
something much stronger: The rank polynomial is the most general matroid 
parameter that can be computed by deletion-contraction. The key to this 
observation is the following converse of Theorem 15.9.1. Despite the power 
of this result, the proof is quite straightforward, and so we leave it as an 
exercise. 

Theorem 15.9.3 Let F be a function defined on matroids such that for 
the empty matroid 0, we have F(0) = 1, and for all other matroids 

{ 
a(1 + y)F(M \ e), if e is a 100Pi 

F(M) = b(1 + x)F(Mje), if e is a coloOPi 

aF(M \ e) + bF(Mje) , otherwise. 

If M is a matroid on n, then F(M) = al!!l-rk(!!)brk(!!)R(M;x,y). 0 

15.10 Evaluations of the Rank Polynomial 

In this section we present several applications of Theorem 15.9.3, showing 
that all of the parameters that we have considered in the last few sections 
are evaluations of the rank polynomial. 

Lemma 15.10.1 The number of spanning trees in a connected graph X is 

T(X) = R(M(X); 0, 0). o 

Lemma 15.10.2 The number of acyclic orientations of a graph X is 

K(X) = R(M(X); 1, -1). 

Proof. Using Theorem 15.9.3 and the deletion-contraction expression 
given in Theorem 15.6.1, we see that 

and so x = 1 and y = -1. 

a(1 + y) = 0, 

b(l+x) = 2, 

a = 1, 

b = 1, 

o 
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Theorem 15.10.3 Let C be a binary code of length n, with a bicycle space 
of dimension d. Then 

(_I)n( _2)d = R(M(C); -2, -2). 

Proof. This follows directly from Theorem 15.9.3 and Lemma 15.7.3. 0 

Theorem 15.10.4 If X is a graph with n vertices, c components, and 
chromatic polynomial P(X, t), then 

P(X, t) = (-It- Ct C R(M(X); -t, -1). 

Proof. We cannot work directly with P(X, t) because it does not satisfy 
the conditions of Theorem 15.9.3. Instead, consider the function 

P(X, t) := C C P(X, t), 

which takes the value 1 on the empty matroid, that is, on a graph with 
no edges. If e is a coloop, then some thought shows that P(X \ e, t) 
tP(X/e, t), and therefore putting P into Theorem 15.9.3, we get 

a(1 + y) = 0, 

b(1 + x) = (t -1), 

a = 1, 

b = -1, 

and therefore y = -1 and x = -to Multiplying by tC to recover P(X, t) 
gives the stated result. 0 

We leave the proof of the final result as an exercise. 

Theorem 15.10.5 If X is a graph with n vertices, e edges, c components, 
and reliability polynomial C(X,p), then 

C(X,p) = (1- pt-cpe-n+cR (M(X); 0, ~ -1) . o 

15.11 The Weight Enumerator of a Code 

The weight of a codeword is the number of nonzero entries in it. If C is a 
code of length n over a finite field, then the number of codewords of any 
weight is finite. For a code C over a finite field, the weight enumerator of 
the code is the polynomial 

n 

W(C,t):= Lniti, 
i=O 

where ni is the number of codewords of weight i in C. 
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Theorem 15.11.1 Let C be a linear code over the finite field GF(q) with 
weight enumerator W (C, t). Then 

{ 
W(C\ i, t), if i is a loop in M(C); 

W(C, t) = (1 + (q - l)t)W(C ji, t), if i is a coloop in M(C); 

tW(C\ i, t) + (1 - t)W(C ji, t), otherwise. 

Proof. The result is clear if i is a loop. If i is a coloop, then consider a 
generator matrix G in the form of (15.1). Any codeword of C is either zero 
or nonzero in coordinate position i. The codewords that are zero in this po­
sition contribute W(Cji, t) to the weight enumerator. All other codewords 
consist of a codeword in C ji plus a nonzero multiple of the first row of G. 
These codewords contribute (q - l)tW(Cji, t) to the weight enumerator. 
Now, suppose that i is neither a loop nor a coloop, and so there is a one-to­
one correspondence between codewords of C \ i and C. If every codeword 
of C had nonzero ith coordinate, then the weight enumerator of C would 
be tW(C\i, t). However, every codeword does not have nonzero ith coordi­
nate, and those with ith coordinate zero actually contribute W(Cji, t) to 
the weight enumerator rather than tW(Cji, t). Subtracting the overcount 
gives the stated result. 0 

Therefore, the weight enumerator of a code is an evaluation of the rank 
polynomial of the associated matroid. 

Theorem 15.11.2 Let C be a code of dimension k and length n over the 
finite field GF(q) and let M be the matroid determined by C. Then 

W(C,t)=(l-t)ktn-kR(M;l~t' l~t). 0 

Given that R(M; x, y) = R(Ml..; y, x), this result implies the following 
important theorem from coding theory. 

Theorem 15.11.3 (MacWilliams) Let C be a code of length nand 
dimension k over the finite field GF(q). Then 

W(Cl..,t) = q-k(l + (q-1)t)nw (C, 1 +1(;~ l)t). 0 

15.12 Colourings and Codes 

Let D be the incidence matrix of an arbitrarily oriented graph XU. We can 
choose to view the row space of D as a code over any field, although this 
does not change the associated matroid. 

So suppose that we take D to be a matrix over the finite field GF(q). If 
X has n vertices, then any vector x E GF(q)n can be viewed as a function 
on V(X). The entries of xT D are all nonzero if and only if x takes distinct 
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values on each pair of adjacent vertices, and so is a proper q-colouring of 
X. Therefore, if X has e edges, the row space of D contains vectors of 
weight e if and only if X has a q-colouring. (This shows that determining 
the maximum weight of a code is as difficult a problem as determining the 
chromatic number of a graph; hence it is NP-hard.) 

By Theorem 15.10.4, the number of q-colourings of a graph is an evalua­
tion of the rank polynomial, and hence we can find the number of codewords 
of weight e in the row space of D. Our next result extends this to all codes. 

Lemma 15.12.1 If M is the matroid of a linear code C of length nand 
dimension k over the field GF(q), then the number of codewords of weight 
n in Cis 

(_I)k R(M; -q, -1). 

Proof. Let a( C) denote the number of codewords with no zero entries in 
a code C. It is straightforward to see from Theorem 15.11.1 that 

{ 
0, if i is a loop in M(C); 

a(C) = (q - l)a(C/i), if i is a coloop in M(C); 

a(C\i) - a(C/i), otherwise. 

The result then follows immediately from Theorem 15.9.3. o 

Suppose C is a code of dimension k and length n over GF(q), with 
generator matrix G. Then we may view G as a matrix over GF(qT), in 
which case it generates a code C' with the same dimension k, and so 

IC'I = qTk = ICiT. 
Even though C and C' are different codes, M(C) = M(C'). Hence, if 
M = M(C), then IR(M; _qT, -1)1 equals the number of words of weight n 
in C'. 

There is a second interpretation of IR(M; _qT, -1)1. Suppose that D 
is the incidence matrix of an oriented graph as above. If X has c con­
nected components, then the number of proper qT -colourings of X is 
(qT)CIR(M; _qT, -1)1, because (qT)C vectors x in GF(qT)n map onto each 
word xT D of weight e. Since GF(qT) and GF(qy are isomorphic as vector 
spaces over GF(q), there is a one-to-one correspondence between vectors 
x E GF(qT)n and r x n matrices A over GF(q) such that xTD has no 
zero entries if and only if AD has no zero columns. Therefore, the num­
ber of such matrices is qTC I R( M; _qT, -1) I. Interpreting this in terms of an 
arbitrary code yields the following result. 

Lemma 15.12.2 Let C be a code of length n over a field q and let M be 
the matroid of C. Then the number of ordered r-tuples of codewords in C 
such that the union of the supports of the codewords in the r-tuple has size 
n is 

(_I)k R(M; _qT, -1). o 
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Applying this to the incidence matrix of an oriented graph, we conclude 
that a graph X is qT -colourable if and only if it is the union of r graphs, each 
q-colourable. This may appear surprising, but is very easy to prove directly, 
without any reference to matroids. (Algebraic methods often allow us access 
to results we cannot prove in any other way; still, there are occasions such 
as this where they provide elephantine proofs of elementary results.) 

We have established a relation between colouring problems on graphs and 
a natural problem in coding theory. We now go a step further by describing 
a geometric view. Let G be a k x n matrix of rank k over GF(q) and let M 
be the matroid on its columns. The columns of G may be viewed as a set 
n of points in projective space of dimension k - 1. Each vector x E G F( q)k 
determines a hyperplane 

{y E GF(q)k : x T y = a}, 

which is disjoint from n if and only if no entry of x T G is zero. All nonzero 
scalar multiples of x determine the same hyperplane; hence Lemma 15.12.1 
yields that the number of hyperplanes disjoint from n is 

(q _1)-1( _l)k R(M; -q, -1). 

(Thus we might say that the GF(q)-linear matroid Mis q-colourable if and 
only if there is a hyperplane disjoint from n.) Further, there is an r x k 
matrix A over G F( q) such that no column of AG is zero if and only if there 
are r hyperplanes whose intersection has dimension k - r and is disjoint 
from n. Therefore, IR(M; _qT, -1)1 =f=. a if and only if there is a space of 
dimension k - r disjoint from n. 

We note one interesting application of this. Let n be the set of all nonzero 
vectors with weight at most din GF(q)k. Then a subspace disjoint from n 
is a linear code with minimum distance at least d + 1. If M is the matroid 
associated with n, then the smallest value of r such that R(M; _qT; -1) =f=. a 
is the minimum possible co dimension of such a linear code. Determining 
this value of r is, of course, a central problem in coding theory. 

15.13 Signed Matroids 

Let n = n( +) u n( -) be a partition of n into two parts. In this situation 
we call n a signed set, and refer to the positive and negative elements of 
n. If M is a matroid on n, then its rank polynomial counts the subsets of 
n according to their size and rank. In this section we consider a general­
ization of the rank polynomial that counts subsets of n according to their 
size, rank, and number of positive elements. This polynomial will play an 
important role in our work on knots in the next chapter. 

If A <;;; n, then define A(+) to be Ann(+) and A(-) to be Ann(-). As 
usual, A refers to n \ A. Then if M is a matroid on nand 0: and (3 are two 
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commuting variables, we define the rank polynomial of the signed matroid 
Mby 

R(M; a, (3, x, y) 
:= L aIA(+ll+IA(-ll (3IA(+ll+IA(-llxrk(Ol-rk(Alyrk.l.(Ol-rk.l.(4.). 

AC;:;O 

If e is a loop, then 

If e is a coloop, then 

R(e) = {(a + (3y), e E 0(+); 
(ay + (3), e E 0(-). 

{
(ax + (3), e E 0(+); 

R(e) = (a + (3x), e E 0(-). 

Theorem 15.13.1 Let M be a matroid on the signed set 0 and let e be 
an element of O. If e is neither a loop nor a coloop, then 

_ {aR(M\e) + (3R(M/e), e E 0(+); 
R(M) - (3R(M\e) +aR(M/e), e E 0(-). 

If e is a loop, then R(M) = R(e)R(M \ e), and if e is a coloop, R(M) = 
R(e)R(M/e). 0 

The signing of 0 provides a new parameter for each subset of 0, but leaves 
the rank function unchanged. If 0 is a signed set, then we define the dual 
of M to be M J., but swap the signs on O. With this understanding, we 
obtain the following: 

Corollary 15.13.2 If M is a matroid on a signed set and MJ. its dual, 
then 

R(MJ.; a, (3, x, y) = R(M; a, (3, y, x). o 

If M- is the matroid obtained from M simply by swapping the signs on 0 
but leaving the rank function unchanged, then 

R(M-;a,(3,x,y) = R(M;(3,a,y,x). 

If M is the cycle matroid of a graph and e is a coloop, then M\ e = M / e, 
but X \ e =I- X/e. If X is a signed graph with c components, define the 
modified polynomial R(X) by 

R(X; a, (3, x, y) := xc - 1 R(M(X); a, (3, x, y). 

If X is a connected planar graph, then R(X; a, (3, x, y) = R(X*; a, (3, y, x), 
where as above, the sign on an edge is reversed on moving to the dual. 
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Theorem 15.13.3 Let R(X) be the modified rank polynomial of the signed 
graph X. Then 

{ 
R(e)R(X\e), 

R(X) = a~(X \ e) + /3~(X/e), 
/3R(X \e) + aR(X/e) , 

Proof. If e is a coloop in X, then 

if e is a loop; 

if e is positive and not a loop; 

if e is negative and not a loop. 

x-CR(X\e) = R(X\e) = R(X/e) = x-c+1R(X/e), 

and so R(X \ e) = xR(X/e). Since R(X) = R(e)R(X/e), it follows that if 
e is a positive coloop, then R(X) = (ax + /3)R(X/e) , and so 

R(X) = aR(X\e) + /3R(X/e). 

Similarly, if e is a negative coloop, then 

R(X) = /3R(X\e) + aR(X/e). 

It is easy to verify that the last two recurrences hold true for positive and 
negative edges that are neither loops nor coloops. D 

We conclude with two small examples, both based on the graph K 3 . If 
all three edges are positive, then 

R(K3; a, /3, x, y) = 3a/32 + 3a2/3x + /33 y + a3x2, 

while if two are positive and one negative, we get 

R(K3; a, /3, x, y) = /33 + 2a2/3 + (2a/32 + ( 3 )x + a/32 y + a2/3x2. 

15.14 Rotors 

Although the rank polynomial of the cycle matroid of a graph X contains a 
lot of information about X, it does not determine the graph. This can easily 
be demonstrated by selecting nonisomorphic graphs with isomorphic cycle 
matroids, which obviously must yield the same rank polynomial. However, 
it is also possible to find nonisomorphic pairs of 3-connected graphs with 
cycle matroids-necessarily not isomorphic-having the same rank poly­
nomial. An example is provided in Figure 15.3, which shows the smallest 
cubic planar 3-connected graphs whose cycle matroids have the same rank 
polynomial. We describe a method of constructing such pairs of graphs. 

For n 2: 3, a rotor of order n is a graph R together with a set N of n 
vertices that is an orbit of a cyclic subgroup of Aut(R) of order n. Therefore, 
there is some element g E Aut(R) of order n and some vertex Xo EN such 
that 

N = {xo, ... , Xn-l}, 
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Figure 15.3. Two graphs with the same rank polynomial 

where XiH = xf. The first graph in Figure 15.4 is a rotor of order five with 
the five vertices of N highlighted. 

Figure 15.4. The rotor R and graph S 

Let S be an arbitrary graph with vertex set disjoint from VCR), together 
with a set N' = {yO, ... , Yn-d of distinguished vertices. Then define two 
graphs X and X'P, where X is obtained from R U S by identifying vertices 
Xi and Yi for all i, and X'P is obtained from R U S by identifying vertices Xi 

and Yn-i for all i. If S is the second graph of Figure 15.4, then Figure 15.5 
shows the graph X. 

For obvious reasons, we say that X'P is obtained from X by flipping the 
rotor R; this is shown in Figure 15.6. 

Theorem 15.14.1 If R is a rotor of order less than six, then the cycle 
matroids of X and X'P have the same rank polynomial. 

Proof. We describe a bijection between subsets of edges of X and subsets 
of edges of X'P that preserves both size and rank. 

Let A = AR U As be a subset of E(R) U E(S), where AR ~ E(R) and 
As ~ E(S). The connected components of the subgraph of R with edge-set 
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Figure 15.5. The graph X obtained from R and S 

AR induce a partition p on the vertices {xo, ... , xn-t}, and the connected 
components of the subgraph of S with edge-set As induce a partition (T on 
the vertices {Yo, ... , Yn-t}. 

The number of connected components of A depends on the number of 
components that do not contain any vertices of N, and the number of cells 
in the join p V (T. 

It is straightforward to check that any partition of a set of size five or 
less is invariant under at least one of the "reflections" 

T(i) : YHj f-+ Yi-j' 

(If n = 4, then it may be necessary to take i to be nonintegralj in this case 
i will be an odd multiple of ~, which causes no difficulty.) Therefore, there 
is at least one i such that (T is invariant under T(i). Choose the smallest 
such i, set h = g-2i, and define 

A' = A~UAs. 

We claim that the rank of A in the cycle matroid of X is equal to the rank 
of A' in the cycle matroid of X'P. Establishing this claim will prove the 
theorem, because since the same T( i) is chosen every time a particular As 
is used, the mapping from A to A' is a bijection between subsets of E(X) 
and subsets of E(X'P). 

Let p' be the partition determined by A~ on {xo, ... , Xn-l}. It is clear 
that A and A' have the same number of components that do not contain 
any vertices of N. Therefore, to show that they have the same rank, we 
need to show that p' V (T and p V (T have the same number of cells. 

In X'P the vertex Xj-2i is identified with 

r(i) 
Yn-(j-2i) = Y2i-j = YHi-j = Yj , 
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Figure 15.6. The graph X'P obtained from X by flipping the rotor 

and therefore expressed as a partition of {Yo, ... , Yn-I}, 

p' = pT(i). 

Since a is invariant under T(i), we have 

p' Va = pT(i) VaT(i) = (p V at(i), 

and so the two partitions have the same number of cells. Clearly, A and A' 
contain the same number of edges, and so the claim is proved. 0 

If Rand S are chosen so that neither has an automorphism of order two, 
then usually X and X'" will not be isomorphic. 

We can define a signed rotor-a rotor with signed edges-in an analo­
gous fashion to a rotor, with the understanding that an automorphism is a 
mapping that preserves both sign and incidence. The rank polynomial of a 
signed graph counts subsets of edges according to rank and the number of 
positive edges. The bijection given in Theorem 15.14.1 preserves the num­
ber of positive edges, and so can be used unchanged to prove the following 
result. 

Theorem 15.14.2 If X and Yare signed graphs such that Y is obtained 
from X by flipping a signed rotor of order less than six, then the rank 
polynomial of X is equal to the rank polynomial of Y. 0 

15.15 Submodular Functions 

Suppose that f is an integer-valued function on the subsets of n that is 
monotone and submodular. Although f may not be a rank function itself, 
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we can nevertheless associate a matroid with f by devising a rank function 
based on f. 

By adding a constant function to f, we can assume that it is nonnegative 
and that f(0) = O. The final modification requires more work. 

Theorem 15.15.1 Let f be an integer-valued monotone submodular func­
tion on the subsets of n such that f(0) = O. The function j on the subsets 
of n defined by 

j(A) := min{f(A \E) + lEI: E ~ A} 

is a rank function. 

Proof. Clearly, j is nonnegative. We show that it is monotone, submodular 
and that j(A) ~ IAI. First, suppose that A ~ AI. If E ~ AI, then A \E ~ 
Al \ E, and since f is monotone, 

f(AI \E) + lEI:::: f(A \E) + IAnEI· 

Therefore, j(AI ) :::: j(A), which shows that j is monotone. 
Now, let A and E be subsets of n. Suppose that C ~ A and D ~ E are 

the subsets that provide the values for j(A) and j(E), respectively. Let 
W = (C\E) U (D\A) U (C n D) and X = (CU D) n (A n E), and observe 
that 101 + IDI = IWI + IXI· Then 

j(A) + j(E) = f(A \ C) + f(E \ D) + ICI + IDI 

:::: f((A \ C) U (E\D)) + f((A \ C) n (E\D)) + ICI + IDI 

= f((A U E) \ W) + f((A n E) \X) + IWI + IXI 
:::: j(A U E) + j(A n E), 

and so j is submodular. 
Finally, by taking E equal to A in the definition of j, we see that j(A) ~ 

IAI, and therefore j is a rank function. 0 

Therefore, any integer-valued monotone submodular function f such that 
f(0) = 0 determines a matroid M whose rank function is j. We can describe 
the independent sets of M directly in terms of the original function f. 

Corollary 15.15.2 Let f be an integer-valued monotone submodular func­
tion on the subsets of n such that f(0) = 0, and let M be the matroid 
determined by the rank function j. A subset A of n is independent in M 
if and only if f(E) :::: lEI for all subsets E of A. 0 

Proof. A subset A of n is independent in M if and only if f(A \E) + lEI :::: 
IAI for all subsets E of A, or, equivalently, if and only if f(A \E) :::: IA \EI 
for all subsets E. 0 

We consider some examples of rank functions arising in this ma~ner. It 
is reassuring to observe that if rk is a rank function already, then rk = rk. 
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Let X be a bipartite graph and let (0, <p) be a bipartition of its vertex 
set. If A S;; 0, define N(A) to be the set of vertices in <P adjacent to a vertex 
in A. Define f(A) to be IN(A)I. It is easy to see that f is submodular (and 
monotone and integer-valued and that f(0) = 0), so j is a rank function 
determining a matroid on O. By the corollary, a subset A is independent 
in this matroid if and only if IN(B) I ~ IBI for all subsets B S;; A. The 
following result, known as Hall's theorem, shows that this happens if and 
only if there is a matching covering the vertices in A. 

Lemma 15.15.3 Let X be a bipartite graph with bipartition (0, <p), and 
let A S;; O. There is a matching in X that covers the vertices in A if and 
only if IN(B)I ~ IBI for all subsets B of A. D 

(It should be clear that Hall's condition for the existence of a matching 
that covers A is necessary; the point of the result is that this condition is 
sufficient. ) 

The last example can be generalized. Suppose that X is a bipartite graph 
as above and that l' is the rank function of a matroid M on <P. If we 
define f(A) to be r(N(A)), once again we find that f is an integer-valued 
monotone submodular function with f(0) = 0, and so j is the rank function 
of a matroid M' on O. We say that M' is the matroid induced from M 
by X. A subset A S;; 0 is independent in M' if and only if there is a 
matching that covers A and pairs the vertices of A with the vertices of 
an independent set of M'. (This claim is a modest, but nonetheless very 
significant, generalization of Hall's theorem due to Rado.) 

If rkl and rk2 are the respective rank functions of matroids MI and M2 on 
the same set 0, then their sum rkl + rk2 is a monotone nonnegative integer­
valued submodular function On O. Hence, by the theorem, it determines a 
rank function; the corresponding matroid is called the union of MI and M2 
and denoted by MI V M 2. 

Lemma 15.15.4 Let M be the union of the matroids MI and M2 on o. 
A subset A of 0 is independent in M if and only if A = Al U A 2, where Ai 
is independent in Mi. 

Proof. Let rkl and rk2 be the rank functions of MI and M2 respectively. 
Suppose that A is the union of the sets Al and A 2, where Ai is independent 
in Mi. For any B S;; A, set Bi := B n Ai. Then 

and by Corollary 15.15.2, A is independent in MI V M 2. 
The converse takes more work. Let N denote the direct sum MI EB M 2, 

with ground set <P consisting of two disjoint copies of O. Let r denote a 
third copy of 0 and let X be the bipartite graph with bipartition (r, <p), 
where the ith element of r is joined to the ith elements in each of the two 
copies of 0 in <P. This is not a very interesting graph, but the matroid 
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induced from Ml EBM2 by X is Ml V M 2 . From this it follows that a subset 
A of r is independent in Ml V M2 if and only if there is a matching in 
X that pairs the vertices of A with an independent set in <1>, whence we 
infer that A is independent if and only if it is the union of two sets, one 
independent in Ml and the other in M 2 • 0 

We use this to prove a graph-theoretic result whose alternative proofs 
seem to require rather detailed arguments. If n is a partition of the vertex 
set of X, then let e(X, n) denote the number of edges going between distinct 
cells of n. 

Theorem 15.15.5 A connected graph X has k edge-disjoint spanning trees 
if and only if for every partition n of the vertices, 

e(X, n) ~ k(lnl - 1). 

Proof. For any partition n, it is easy to see that a spanning tree contributes 
at least Inl - 1 edges to e(X, n), and so if X has k edge-disjoint spanning 
trees, the inequality holds. 

For the converse, suppose that X has n vertices, and that rk is the rank 
function of the cycle matroid M (X). Let kM = M (X) V ... V M (X) denote 
the k-fold union of M(X) with itself. By the previous result, X has kedge­
disjoint spanning trees if and only if the rank of kM is k(n - 1). By the 
definition of the rank function of kM, this is true if and only if for all 
A ~ E(X), 

krk(A) + IAI ~ k(n -1). 

If A is a subset of E(X), then let n be the partition whose cells are the 
connected components of the graph with vertex set V(X) and edge set A. 
Then rk(A) = n - Inl and e(X, n) = IAI, and so 

krk(A) + IAI ~ k(n -In!) + k(lnl-1) = k(n -1), 

and thus the result follows. o 

Exercises 

1. Suppose that A and B are independent sets in a matroid with IAI < 
IBI. Show that there is an element x E B \ A such that A U {x} is 
independent. 

2. Suppose that C and D are distinct circuits in a matroid on n, and 
that x E enD. Prove that there is a circuit in CUD that does not 
contain x. 

3. A subset A in a matroid M is a fiat if rk(A U x) > rk(A) for all 
x E n \ A. Show that the set of flats ordered by inclusion forms a 
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lattice (that is, a partially ordered set in which every set of elements 
has a least upper bound and a greatest lower bound). 

4. A hyperplane is a maximal proper flat. Show that the rank of a hy­
perplane is rk(O) - 1, and that a subset is a hyperplane if and only 
if its complement is a circuit in M.l. 

5. If M is a matroid defined on the columns of a matrix D, then show 
that the complements of the supports of the words in the row space 
of D are flats. 

6. Show that a matroid is connected if and only if each pair of elements 
lies in a circuit. 

7. If the matroid M is the direct sum of matroids Ml and M 2 , show 
that R(M) = R(M1 )R(M2 ). 

8. Derive the expression given in Theorem 15.6.2 for the number of 
acyclic orientations of a graph with a given vertex as the unique 
source. Express this as an evaluation of the rank polynomial, and 
find the number of such orientations for the Petersen graph. 

9. For any e E E(X), show that 

IHom(X, Y)I = IHom(X\e, Y)I-IHom(X/e, Y)I. 

10. Use the results of this chapter to prove that a connected graph X has 
no bicycles if and only if it has an odd number of spanning trees. 

11. Prove the converse to the deletion-contraction formula for the rank 
polynomial, as given in Theorem 15.9.3. 

12. Let X be a graph with a fixed orientation a, and let D be the incidence 
matrix of the oriented graph XU. Then for any integer q > 1, a 
nowhere-zero q-flow on X is a vector x E (Zq)E(X) such that Xe #- 0 
for any e E E(X) and 

Dx = 0 (mod q). 

Show that the number F(X, q) of nowhere-zero q-flows satisfies the 
equation 

{ 
(q -l)F(X\ e, q), 

F(X,q) = 0, 

F(X/e,q) - F(X\e,q), 

if e is a loop; 

if X contains a bridge; 

if e is not a loop or a bridge. 

The function F(X, q) is known as the flow polynomial of a graph. 

13. Use the results of the previous exercise to express F(X, q) as an 
evaluation of the rank polynomial. 

14. An eulerian orientation of an even graph is an orientation such that 
the in-valency of every vertex is equal to its out-valency. Show that 
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if X is 4-regular, then there is a one-to-one correspondence between 
eulerian orientations of X and nowhere-zero 3-flows of X. Use the 
result of the previous exercise to obtain an expression for the number 
of eulerian orientations of a 4-regular graph. 

15. Let X be a connected graph with edge set E, and assume we are 
given a total ordering of E. Let T be a spanning tree of X. An edge g 
of X is internally active relative to T if it is contained in T and is the 
least element in the cut of X determined by g and T. It is externally 
active if it is not contained in T and it is the least edge in the unique 
cycle in TUg. Let tij (X) denote the number of spanning trees of X 
with exactly i internally active edges and j externally active edges. 
If edge e immediately precedes f in the order, show that swapping 
e and f does not change the numbers tij(X). (Hence these numbers 
are independent of the ordering used.) 

16. We continue with the notation of the previous exercise. If f is the 
last edge relative to the given ordering, and is not a loop or a bridge, 
show that 

(Note that a bridge lies in each spanning tree and is always internally 
active, while a loop does not lie in any spanning tree and is always 
externally active.) 

17. Define the Tutte polynomial T(X; x, y) of the graph X by 

T(X;x,y):= LtijXiyj. 
i,j 

Use the previous exercise to determine the relation between the Tutte 
and rank polynomials. 

18. If M is a matroid on the signed set n, then show that R(M rn(+)) 
and R(Mrn(-)) can both be determined from R(M). 

19. If Ml and M2 are matroids on n with rank functions rkl and rk2, 
respectively, then show that the rank in M = Ml V M2 of a subset 
A <;;; n is given by 

max{rk1(B) + rk2(A \B) : B <;;; A}. 

Notes 

One of the most useful references for the material in this chapter is Biggs [1 J. 
Two warnings are called for. If M is the cycle matroid of a graph, then our 
rk.L is not what Biggs calls the corank. Secondly, our rank polynomial is his 
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modified rank polynomial (see p. 101 of [1]) and not his rank polynomial. 
Our usage follows Welsh [10]. Oxley's book [7] is an interesting and current 
reference for background on matroid theory. 

Theorem 15.9.3 is encoded as Theorem 3.6 in Brylawski [4]. It is strongly 
foreshadowed by work of Tutte [8, 9]. 

The Tutte polynomial is the rank polynomial with a simple coordinate 
change, and so any results about one can immediately be phrased in terms 
of the other. Oxley and Brylawski [3] give an extensive survey of applica­
tions of the Tutte polynomial including many open problems. Welsh [11] 
considers several questions related to the complexity of evaluating the Tutte 
polynomial at specific points, or along specific curves. 

The rank polynomial of a matroid on a signed set is based on the 
graph polynomial introduced by Murasugi in [5, 6]. Perhaps the ultimate 
generalization of this approach is given in [2]. 

We offer a warning that the solution of Exercise 15 requires a large 
number of cases to be considered. 

We will use the rank polynomial of a signed matroid in the next chap­
ter to obtain a knot invariant. It would be interesting to find further 
combinatorial applications for this polynomial. 
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16 
Knots 

A knot is a closed curve of finite length in]]{3 that does not intersect itself. 
Two knots are equivalent if one can be deformed into the other by moving 
it around without passing one strand through another. (We will define 
equivalence more formally in the next section). One of the fundamental 
problems in knot theory is to determine whether two knots are equivalent. 
If two knots are equivalent, then this can be demonstrated: For example, 
we could produce a video showing one knot being continuously deformed 
into the other. Unfortunately, if two knots are not equivalent, then it is not 
at all clear how to prove this. The main approach to this problem has been 
the development of knot invariants: values associated with knots such that 
equivalent knots have the same value. If such an invariant takes different 
values on two knots, then the two knots are definitely not equivalent. 

Until very recently, most work on knots was carried out using topological 
tools, particularly fundamental groups and homology. One notable excep­
tion to this was some important early work of Alexander, which has a 
highly combinatorial flavour. More recently Vaughan Jones discovered the 
object now known as the Jones polynomial, a new knot invariant that has 
stimulated much research and has been used to answer a number of old 
questions about knots. 

In this chapter we derive the Jones polynomial from the rank polynomial 
of a signed graph. Thus we have a graph-theoretical construction of an 
important invariant from knot theory. 



374 16. Knots 

Figure 16.1. A knot diagram and a link diagram 

16.1 Knots and Their Projections 

A knot is a piecewise-linear closed curve in JRl. 3. A link is a collection of pair­
wise disjoint knots; the knots constituting a link are called its components. 
The assumption that a curve is piecewise linear ensures that it consists of a 
finite number of straight line segments. In practice, we will draw our links 
with such a large number of small straight line segments that they look 
like continuous curves, and there is no harm in viewing a knot as a smooth 
curve. (It is easier to work rigorously in the piecewise-linear category.) 

Although knots and links live in JRl.3, we usually represent them by link 
diagrams, which live in JRl. 2. Figure 16.1 provides examples. We can view 
a diagram as the shadow that a link would cast onto a wall if a light was 
shone through it, together with extra "under-and-over" information at the 
crossings indicating which strand is further from the light. Some care is 
needed, we insist: 

(a) That at most two points on the link correspond to a given point in 
its diagram; neither of these points can be the end of a segment. 

(b) That only finitely many points in the diagram correspond to more 
than one point on the link. 

If a diagram has at least one crossing, then we may represent it by a 
4-regular plane graph, together with information about over- and under­
crossings at each vertex. For obvious reasons, we call this plane graph the 
shadow of the link diagram; an example is shown in Figure 16.2. A knot or 
link has infinitely many diagrams, and hence shadows associated with it. 

A homeomorphism is a piecewise-linear bijection. Two links L1 and L2 
are equivalent if there is an orientation-preserving homeomorphism cP from 
JRl.3 U 00 to itself that maps L1 onto L2. (Topologists prefer to view links 
as sitting in the unit sphere S3 in JRl.\ which is equivalent to JRl.3 U 00.) 
The map cP is necessarily an isotopy. This means that there is a family CPt 
of piecewise linear homeomorphisms where t E [0,1] such that CPo is the 
identity, CP1 = cP, and the map 

(x, t) r-+ (CPt (x), t) 
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Figure 16.2. A knot diagram and its shadow 

o 
Figure 16.3. Two projections of the unknot 

is a piecewise-linear homeomorphism from 8 3 x [0, 1] to itself. (This justifies 
our analogy with the video in the introduction above.) 

A knot is the unknot if it is isotopic to a circle lying in a plane. 
The fundamental problem of knot theory is to determine when two links 

are equivalent. As we are primarily interested in the way a link is tangled, 
rather than its location in lR 3, we will often informally refer to links as 
being the 'same' if they are equivalent. Given a diagram of a link L, it 
is straightforward to construct a link equivalent to L. The difficulty (and 
challenge) of knot theory arises from the fact that a link can have several 
diagrams that look quite different. It is far from obvious that the two dia­
grams of Figure 16.3 are both diagrams of the unknot. (Convince yourself 
that they are by using a piece of string!) Even recognizing whether a given 
knot is the unknot is an important problem. 

Given a link L, we can form its mirror image L' by reflecting L in a plane 
through the origin. Although such a reflection is a bijective linear map, it is 
not orientation preserving. (A bijective linear map is orientation preserving 
if and only if its determinant is positive.) Therefore, it may happen that 
Land L' are inequivalent. A diagram of L' can be obtained by reflecting 
a diagram of L in a line in the plane or, equivalently, by swapping all the 
under-crossings and over-crossings. A link that is equivalent to its mirror 
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Figure 16.4. The right-handed and left-handed trefoil 

RI RII 

RIll 

Figure 16.5. The three Reidemeister moves 

image is called achiral. Figure 16.4 shows the trefoil and its mirror image. 
In Section 16.3 we will see how to prove that the trefoil is not achiral. 

16.2 Reidemeister Moves 

If two diagrams are related by an isotopy of the plane to itself, then they de­
termine the same knot. In addition, there are three further operations that 
can be applied to a link diagram without changing the knot it represents, 
even though they do alter the number of crossings. These operations are 
known as the Reidemeister moves of types I, II, and III, and are shown in 
Figure 16.5. Each involves replacing a configuration of strands and cross­
ings in a link diagram with a different configuration, while leaving the 
remainder of the link diagram unchanged. 

It should be intuitively clear that diagrams related by a Reidemeister 
move represent the same link. Therefore, any two link diagrams related by 
a sequence of Reidemeister moves and planar isotopies are diagrams of the 
same link. Much more surprising is the fact that the converse is true. 



16.2. Reidemeister Moves 377 

Figure 16.6. An arc in a link projection 

Theorem 16.2.1 Two link diagrams determine the same link if and only 
if one can be obtained from the other by a sequence of Reidemeister moves 
and planar isotopies. 0 

We omit the proof of this because it is entirely topological; nonetheless, it 
is neither long nor especially difficult. This result shows that equivalence 
of links can be determined entirely from consideration of link diagrams. 
We regard this as justification for our focus on link diagrams, which are 
2-dimensional combinatorial objects, rather than links themselves, which 
are 3-dimensional topological objects. Therefore, to show that two links 
are equivalent it is sufficient to present a sequence of Reidemeister moves 
leading from a diagram of one link to a diagram of the other. 

Demonstrating that two links are not equivalent requires showing that 
there is no sequence of Reidemeister moves relating the two link diagrams. 
Doing this directly, for example by systematically trying all possible se­
quences, is not even theoretically possible because there is no known limit 
to how many moves may be required. A more promising approach is to find 
properties of link diagrams that are not affected by Reidemeister moves. 
Such a property is then shared by every diagram of a link, and so de­
termines a link invariant. If a link invariant takes different values on two 
link diagrams, then the diagrams represent different links. We consider one 
important example of a link invariant. 

Define an arc of a link diagram to be a piece that is maximal subject to 
having no under-crossing; one is shown in Figure 16.6. At each crossing one 
arc starts and another arc ends, so the number of arcs equals the number 
of crossings. (The unknot, as usual, provides an anomaly, which, as usual, 
we ignore.) 

A 3-colouring of a link diagram is an assignment of one of three colours 
to each arc such that the three arcs at each crossing are all the same 
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\ I 

P\ 
Figure 16.7. RII preserves a 3-colouring 

Figure 16.8. A 3-colouring of a knot diagram 

colour or use all three colours. (See Figure 16.8.) Clearly, any link diagram 
has a 3-colouring where all the arcs receive the same colour, but not all 
link diagrams have proper (that is, nonconstant) 3-colourings. Moreover, 
if a link diagram has a proper 3-colouring, then so does any link diagram 
obtained after performing a single Reidemeister move. Figure 16.7 shows a 
pictorial proof of this for RIl; we leave the proof for moves RI and RIll as 
an exercise. 

Therefore, the property of having a proper 3-colouring is a link invariant. 
In particular, the unknot does not have a proper 3-colouring, and so the 
knot of Figure 16.8 is actually knotted. We can use 3-colourings to show 
that large classes of knots are knotted, but there are knots with no 3-
colourings that are not equivalent to the unknot. 

This idea can be generalized to colourings with n colours for any odd 
integer n. An n-colouring of a link diagram is a map, from its arcs to the 
set {a, 1, ... , n -I} such that if the arc x goes over the crossing where arcs 
y and z end, then 

2,(x) == ,(y) + ,(z) (mod n). 

It is an interesting exercise to show that the number of proper n-colourings 
of a link diagram is invariant under Reidemeister moves. 
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Figure 16.9. The graph on the black faces of a 4-valent plane graph 

16.3 Signed Plane Graphs 

The shadow of a knot diagram is a connected 4-regular plane graph, and 
hence its dual graph is bipartite. Thus we may 2-colour the faces of the 
shadow of a knot diagram with two colours, say black and white. Given 
such a colouring, we can define two graphs, one on the faces of each colour. 
Let B denote the graph with the black faces as its vertices, and the vertices 
of the shadow as its edges, with adjacency given as follows. Every vertex 
v of the shadow yields an edge of B joining the black faces that contain v. 
If v lies in only one black face, then the corresponding vertex of B has a 
loop, while if distinct black faces share more than one common vertex, then 
the corresponding vertices of B are joined by a multiple edge. Figure 16.9 
shows a 4-regular plane graph, together with the graph on its black faces. 
We define the graph W on the white faces of the shadow analogously. 

The two graphs Band Ware called the face graphs of the shadow. Since 
the shadow of a knot diagram is connected, the graphs Band Ware also 
connected, and it is not hard to see that W = B* and B = W*, that is, the 
two face graphs are planar duals of each other. We will study the relation 
between the shadow of a knot diagram and its face graphs in some detail 
in the next chapter. For now, we content ourself with the observation that 
it is not hard to convince oneself (if not someone else) that a connected 
4-regular plane graph is determined by either of its face graphs. 

If L is a link diagram of a link with more than one component, then the 
shadow of L may not be connected. If X is a disconnected shadow, then we 
can still colour the faces of X with two colours. However, if we were to define 
the face graphs precisely as above, then one of them would be connected, 
and we would be unable to reconstruct X uniquely from it. To overcome 
this, we consider each component of X separately, and define the black face 
graph B of X to be the union of the black face graphs of its components, 
and analogously for W. In this way, any 4-regular plane graph is determined 
by either of its face graphs. If Y is a plane graph, then the componentwise 
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Figure 16.10. A positive and a negative crossing relative to the black faces 

+ 

Figure 16.11. A knot diagram and one of its signed face graphs 

planar dual Y* of Y is the graph whose connected components are the 
planar duals of the components of Y considered separately. With this notion 
of planar duality, once again we have W = B* and B = W*. 

Now, let L be a link diagram and let X be the shadow of L, with a face 
graph Y. Then L is determined by X, together with the under-and-over 
information at the crossings. Therefore, since X is determined by its face 
graph Y (or Y*), it is natural to consider a way of representing the link 
diagram by adding the under-and-over information to Y. Given a crossing 
in a link diagram, consider rotating the over-crossing anticlockwise until it 
lies parallel to the under-crossing. In doing this, the over-crossing moves 
over two faces of the same colour, and we define the crossing to be positive 
relative to the faces of this colour, and negative relative to the faces of the 
other colour. For example, Figure 16.10 shows crossings that are positive 
and negative with respect to the black faces. 

Each crossing in the link diagram L is a vertex of X and an edge in each 
of the face graphs of X. If the crossing is positive relative to the black faces, 
then the corresponding edge is declared to be positive in B and negative 
in W. Therefore, in this fashion, a link diagram determines a dual pair 
of signed plane graphs, where the dual is the componentwise planar dual 
and signs are swapped on moving to the dual. The link diagram can be 
recovered uniquely from either of these signed plane graphs. 
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Figure 16.12. An alternating knot and a nonalternating knot 

A knot is alternating if it has a knot diagram such that each of the 
signed face graphs has edges of only one sign. If it seems that this is the 
opposite of alternating, consider the knots in Figure 16.12 and observe that 
in the first knot, following the strand results in using over-crossings and 
under-crossings alternately. 

16.4 Reidemeister moves on graphs 

Since a link diagram can be represented as a dual pair of signed plane 
graphs, the Reidemeister moves on link diagrams can be described purely 
as operations on signed plane graphs. 

Let L be a link diagram and Y and Y* the two signed face graphs 
determined by L. Each Reidemeister move corresponds to an operation 
and its inverse, since the configuration on either side of the arrow can be 
replaced by the other. 

A Reidemeister move of type I corresponds to deleting a positive loop 
from a vertex of Y or adding a positive loop to a vertex of Y. In the dual 
graph Y* , this corresponds to contracting a negative coloop incident with a 
vertex of valency one, or adding a negative coloop attached to a new vertex 
of valency one. 

We say that two edges are parallel if they are not loops, but share the 
same end-vertices. Then RII corresponds to deleting a pair of parallel edges 
of opposite sign, or adding a pair of parallel edges of opposite sign between 
two vertices of Y. In the dual graph, this operation is more complicated to 
describe, and involves either contracting or inserting a path of length two. 
A path uvw of length two can be contracted to a single vertex if uv and vw 
have opposite sign and v is a vertex of valency two. After contraction, v is 
adjacent to the neighbours of both u and w. The inverse operation involves 
replacing a vertex x with a path uvw of length two, where uv and vw have 
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Figure 16.13. The star-triangle operation 

RI' 
RIll' 

Figure 16.14. The mirror images of RI and RIll 

opposite sign, v has valency two, and the edges that were incident to x are 
made incident to either u or W, in such a way that a plane graph results. 

The operation RIll corresponds to replacing a star with two negative 
edges with a triangle with two positive edges, or replacing a triangle with 
star. In replacing a star with a triangle, the centre vertex and three edges 
e, j, and g are removed, and the triangle e, j, and 9 inserted. The edges 
e, j, and 9 have opposite sign to e, j, and g respectively, and join the two 
vertices of the triangle not incident with e, j, and g, respectively. (We offer 
Figure 16.13 to aid in decoding this description.) In the dual graph, this 
corresponds to replacing a triangle with two positive edges with a star with 
two negative edges. 

Reidemeister moves RI and RIll have mirror images RI' and RIll' as 
shown in Figure 16.14. In graphical terms, RI' corresponds to deleting or 
adding a negative loop, or dually, contracting or adding a positive end­
edge. The move RIll' is the star-triangle operation where the star has 
two positive edges, and the triangle two negative edges. It is a worthwhile 
exercise to show that RI' and RIll' are consequences of the Reidemeister 
moves. Once you have convinced yourself of this, you can freely use RI' and 
RIll' as additional "moves" in trying to show Reidemeister equivalence of 
two knots or signed plane graphs. 

The next result shows that, at least in theory, it does not matter which 
face graph you choose to work with. 

Theorem 16.4.1 There is a sequence of Reidemeister moves leading from 
any signed plane graph Y to its componentwise dual Y*. 0 
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16.5 Reidemeister Invariants 

In the remainder of this chapter we develop a link invariant based on the 
rank polynomial of a signed graph. In this section we show that a suitable 
evaluation of the modified rank polynomial of the signed face graph asso­
ciated with a link diagram is invariant under the Reidemeister moves RII 
and RIll. Although not invariant under RI, it is not hard to see the effect 
of moves of type RI, and Section 16.7 describes how to account for these. 

Lemma 16.5.1 Let Y be a signed graph and let e and f be parallel edges 
of opposite sign, not loops. If 0.13 = 1 and y = -(0.2 + 0.-2 ), then R(Y) = 
R(Y \ { e, f} ). 

Proof. Without loss of generality, suppose that e is positive. Then by 
Theorem 15.13.3, 

R(Y) = o.R(Y\ e) + f3R(Yje). 

Since f has the opposite sign to e and is an edge in Y\ e and a loop in Y j e, 
we have 

R(Y) = a (f3R(Y \ {e, f}) + o.R((Y \ e)j I) + f3(o.y + f3)R((Yje) \1). 
Since (Y \ e) j f = (Y j e) \ f, the lemma follows, provided that 0.13 = 1 and 

0.2 + 132 + o.f3y = 0, 

which follow from the given conditions. o 

A similar argument also yields the following result: 

Lemma 16.5.2 Let Y be a signed graph and let e and f be edges of opposite 
sign having a common vertex of valency two. If 0.13 = 1 and x = _(0.2 + 
0.-2 ), thenR(Y) =R(Yj{e,f}). 0 

Therefore, we have shown that if 0.13 = 1 and x = y = _(0.2 + 0.-2 ), 

then the modified rank polynomial of a signed plane graph is invariant 
under Reidemeister moves of type II. It is extremely surprising that these 
conditions are sufficient for R to be invariant under type-III moves as well. 

Lemma 16.5.3 IfY is a signed graph, 0.13 = 1, and x = y = _(0.2 +0.-2 ), 

then R(Y; a, 13, x, y) is invariant under Reidemeister moves of type III. 

Proof. Let Y be a graph containing a star with two negative legs and a 
positive leg, and Y' the graph obtained by performing the star-triangle 
move on Y as shown in Figure 16.13. Let Z be the graph we get from Y\e 
by contracting f and g. Alternatively, it is the graph obtained from Y' by 
contracting e and deleting j and g. 

By applying Theorem 15.13.3 to the edge e in Y we find that 

R(Y) = f3R(Y\ e) + o.R(Yje). 
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Applying Lemma 16.5.2 to the edges f and g in Y\e, we see that R(Y\e) = 

R(Z), and therefore 

R(Y) = /3R(Z) + aR(Yle). 

By applying Theorem 15.13.3 to the edge e in Y' we find that 

R(Y') = aR(Y' \ e) + /3R(Y'le). 

In Y' I e, the edges j and 9 are parallel with opposite sign. Hence 
Lemma 16.5.1 yields that R(Y'le) = R(Z). Since Y'\e = Yle, we conclude 
that R(Y) = R(Y'). D 

Let L be a link diagram with signed face graph Y. Then the Kauffman 
bracket of L is defined to be 

[LJ := R(Y; a, a-I, _(a2 + a-2 ), _(a2 + a-2 )). 

An operation on link diagrams that is a combination of planar isotopy 
and Reidemeister moves of types II and III is known as a regular isotopy. 
Therefore, the results above show that the Kauffman bracket of a link 
diagram is invariant under regular isotopies. 

Although a link diagram has two signed face graphs, the Kauffman 
bracket is well-defined, because using either Y or y* gives the same result. 
If Y is connected, this follows immediately because 

R(Y*; a, /3, x, y) = R(Y; a, /3, y, x), 

and Y* is connected. If Y is not connected and has components Y1 and Y2 , 

then 

and so we get 

R(Y) = xR(Yi)R(y2 ). 

If y* is the componentwise dual of Y, and x = y, then R(Y*) = R(Y). 
Now, consider the knot diagrams for the right-handed trefoil and its 

mirror image, the left-handed trefoil, shown in Figure 16.4. The diagram of 
the right-handed trefoil has K3 with all edges positive as a face graph, and 
the diagram of the left-handed trefoil K3 with all edges negative. Using 
the expression given at the end of Section 15.13 yields that the Kauffman 
brackets of these two diagrams are 

a 7 _ a 3 _ a-5 

and 

respectively. 
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x 
Figure 16.15. A crossing in standard position 

x )( 
Figure 16.16. Link diagrams L, L =, and LII, respectively 

Even though the Kauffman bracket of a link diagram is not a full Rei­
demeister invariant, it can still be useful. Reidemeister moves of type I 
correspond to adding or deleting a positive loop in one of the face graphs. 
By Theorem 15.13.3, if e is a loop in the signed graph Y, then 

R(Y) = R(e)R(Y\e). 

If e is a positive loop, a(3 = 1, and x = y = _(a2 + a~2), then 

R(e) = a + (3y = _a~3. 

We conclude that if two signed graphs Y and Z are related by a sequence 
of Reidemeister moves, then R(Y)/R(Z) is ±1 times a power of a 3 . Since 
the Kauffman brackets of the link diagrams of the trefoil and its mirror 
image are not related in this fashion, we deduce that there is no sequence 
of Reidemeister moves that takes the right-handed trefoil to the left-handed 
trefoil. Therefore, the trefoil knot is not achiral. 

16.6 The Kauffman Bracket 

In this section we provide another approach to the Kauffman bracket as 
developed in the previous section. We show that the deletion~contraction 
recurrence for the rank polynomial can be described directly in terms of 
the link diagram. 

Let L be a link diagram with signed face graphs Y and Y*. Given a 
crossing, the link diagram can be rotated (a planar isotopy) so that the 
crossing has the form shown in Figure 16.15. 

Let L = and LII denote the link diagrams obtained by replacing the 
crossing with two noncrossing strands, as shown in Figure 16.16. 
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Figure 16.17. Recurrence for the Kauffman bracket 

Let Y be the face graph containing the north and south faces and y* 
the face graph containing the east and west faces. If e is the edge of Y and 
y* corresponding to the crossing, then e is positive in Y and negative in 
Y*. The link diagram L = has Y \ e and Y* / e as its two face graphs, and 
the link diagram LII has Y/e and Y*\e as its face graphs. If e is not a loop 
in Y, then by Theorem 15.13.3, we get 

[L] = aR(Y\ e) + (JR(Y/e) = a[L=] + a-1[LII]. 

If e is a loop in Y, then it is not a loop in Y*, and so by Theorem 15.13.3, 
we get 

Therefore, in all cases we have 

[L] = a[L=] + a-1[LII]. (16.1) 

This expression is usually presented in picturesque fashion, as shown in 
Figure 16.17. The second relation is equivalent to the first (rotate the page 
through a quarter turn) and given only for convenience. 

Since both L = and LII have fewer crossings than L, it follows that re­
peated application of (16.1) yields an expression where every term is the 
Kauffman bracket of a link diagram with no crossings, that is, a diagram 
whose components are all isotopic to circles. If L is such a diagram with d 
components, then 

[L] = (_a2 _ a-2 )d-l. 

Figure 16.18 shows one step of this process on the knot diagram for the 
right-handed trefoil. In this case, the second recurrence from Figure 16.17 
applies, and so [L] = a-1[L=] + a[LII]. 

16.7 The Jones Polynomial 

In this section we show how to convert the Kauffman bracket of a link 
diagram L into a link invariant. 
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Figure 16.18. Link diagrams L, L=, and LII 

x x 
Figure 16.19. Left-hand, and right-hand, crossings 

We start by introducing another parameter that is invariant under Rei­
demeister moves of type II and III, but not under type-I moves. We are 
obliged to work with oriented links-links in which a direction has been 
assigned to each component-but will show that the particular choice of 
orientation does not affect the result when the link is a knot. In a link 
diagram of an oriented link, define a crossing to be left-handed if when we 
move along the under-crossing branch in the direction of the orientation, 
the over-crossing runs from left to right. If a crossing is not left handed it is 
right-handed. The writhe of a link diagram L is the number of left-handed 
crossings, less the number of right-handed crossings; we denote it by wr( L). 

The diagrams of the trefoil and its mirror image shown in Figure 16.4 
have writhes 3 and -3, respectively. 

It is not difficult to verify that the writhe of a link diagram is invariant 
under regular isotopy, but we leave the proof of this as an exercise. If the 
orientation of every component of a link is reversed, then the writhe of 
its link diagram does not change. Hence the writhe of a knot diagram is 
independent of the orientation. 

A Reidemeister move of type I that is equivalent to deleting a positive 
loop decreases the writhe by one, because the number of left-handed cross­
ings goes down by one. Adding a positive loop increases the writhe by 
one. 

Theorem 16.7.1 Let L be a link diagram of an oriented link. Then 

( _(3 )wr(Ll[L] 

is invariant under all Reidemeister moves, and hence is an invariant of the 
oriented link. 
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Proof. The expressions [LJ and (_0-3)wr(L) are both regular isotopy in­
variants. A Reidemeister move of type I has the same effect on both 
expressions, and hence their ratio is invariant under all three Reidemeister 
moves. 0 

If L is a link diagram of an oriented link, then 

( _(3)Wr(L)[LJ 

is an integral linear combination of the indeterminates 

{ -8 -4 0 4 8 } ... ,0 ,0 ,0,0,0, .... 

We define the Jones polynomial of an oriented link to be the polyno­
mial in t obtained by substituting t = 0 1/ 4 into this expression. Although 
this is standard terminology, it is somewhat cavalier with the use of the 
term "polynomial". Since the Jones polynomial is an expression in the 
indeterminates 

{ ... , t- 2 , t- 1 , 1, t, e, .. . }, 
it is a Laurent polynomial rather than a polynomial. Nevertheless, the 
standard terminology causes no difficulty, and we continue to use it. 

As an example, consider the knot diagram L for the right-handed trefoil 
as shown in Figure 16.4. We have seen that [LJ = 0 7 - 0 3 - 0-5 and that 
wr(L) = 3. Therefore, the Jones polynomial of the right-handed trefoil is 

(_03 )3(07 _ 0 3 _ 0-5 ) = _t4 + t3 + t. 
The Jones polynomial of the left-handed trefoil is 

_t-4 + C 3 + C 1 , 

and in general the Jones polynomial of the mirror image of a knot is ob­
tained by substituting rl for t into the Jones polynomial for the knot. 
Therefore, any knot with a Jones polynomial that is not invariant under 
this substitution is not achiral. 

Although the Jones polynomial is a powerful knot invariant, it is not a 
complete invariant, because there are pairs of distinct knots that it cannot 
distinguish. We will see examples of this in the next section. 

16.8 Connectivity 

A link is split if it has a link diagram whose shadow is not connected. De­
ciding whether a particular shadow is connected is easy, but it appears to 
be a hard problem to determine whether a link is split or not. Thus, it is 
difficult to determine if a signed planar graph is Reidemeister equivalent to 
a disconnected graph. (It is also difficult to determine whether a signed pla­
nar graph is Reidemeister equivalent to K 1 . This is the problem of deciding 
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Figure 16.20. The sum of two knots 

whether a knot is the unknot.) In this section we are going to study the 
relationship between the connectivity properties of 4-valent plane graphs 
and the links they represent. 

First we introduce an operation on knots that allows us to build "com­
posite" knots from smaller ones. Suppose that K1 and K2 are two knot 
diagrams, which we shall assume are oriented. Then their sum K = K1 +K2 
is the oriented knot diagram obtained by cutting one strand of K1 and K 2, 
and joining them up to form one component in such a way that the orien­
tations match up. It is necessary to use orientations to ensure that the sum 
is well-defined, because if K~ is obtained by reversing the orientation on 
K 2, then it may occur that K1 +K2 is not equivalent to K1 +K~. However, 
for our current purposes, the orientation plays no role, and can safely be 
ignored. Figure 16.20 shows one of the knot diagrams that results when 
two trefoils are added. 

Despite its name, the sum of two knots behaves more like a product, and 
topologists define a knot to be prime if it does not have a knot diagram 
that is the sum of two nontrivial knot diagrams. Most published tables of 
knots list only prime knots. The shadow of the sum of two nontrivial knot 
diagrams has an edge cutset of size two, and therefore has edge connectivity 
two. Conversely, if the shadow of a knot diagram has edge connectivity two, 
then it is the sum of two smaller knot diagrams. 

Recall that 1\;0 (X) denotes the vertex connectivity of X and that 1\;1 (X) 
denotes the edge connectivity of X. We leave the proof of the following 
result as an exercise. 

Lemma 16.8.1 Let X be a connected 4-valent plane graph, with face graph 
Y. Then 1\;1 (X) = 2 if and only if 1\;0(Y) = 1. 0 

It follows from this result that the Kauffman bracket of the sum of two 
knots is the product of the Kauffman brackets of the components. 

The edge connectivity of any eulerian graph is even, and since the shadow 
of a knot diagram is 4-valent, the set of edges incident with anyone vertex 
is an edge cutset of size four. Therefore, the shadow of a knot diagram has 
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edge connectivity either two or four. We call the set of edges incident with 
a single vertex a star. 

Lemma 16.8.2 Let X be a connected 4-valent plane graph with no edge 
cutset of size two, and let Y be the face graph of X. Then X has an edge 
cutset of size four that is not a star if and only if t;;o(Y) = 2. 0 

Suppose Z and Z' are distinct graphs, possibly with signed edges, and that 
{UI, U2} and {VI, V2} are pairs of distinct vertices in Z and Z', respectively. 
Let YI be the graph obtained by identifying UI with VI and U2 with V2, 

and let Y2 be the graph obtained by identifying UI with V2 and U2 with 
VI. Then both YI and Y2 have a vertex cutset of size two, and any graph 
with a vertex cutset of size two can be constructed in this fashion. In this 
situation we say that YI and Y2 are related by a Whitney flip. If there is an 
automorphism of Z that swaps UI and U2, then YI and Y2 are isomorphic, 
and similarly for Z'. In general, though, YI and Y2 are not isomorphic. We 
provide one example in Figure 16.21, where the shaded vertices form the 
pair {Ul, U2} = {VI, V2}' 

Figure 16.21. The Whitney flip 

Theorem 16.8.3 Let YI and Y2 be signed graphs that are related by a 
Whitney flip. Then their rank polynomials are equal. 

Proof. The graphs YI and Y2 have the same edge set, and it is clear that 
a set S ~ E(Yd is independent in M(YI ) if and only if it is independent 
in M (Y2 ). Therefore, the two graphs have the same cycle matroid. 0 

Two knot diagrams whose face graphs are related by a Whitney flip are 
said to be mutants of one another. Mutant knots have the same Kauffman 
bracket, and hence the same Jones polynomial. Figure 16.22 shows a famous 
mutant pair of knots. 

If we view a Whitney flip as flipping a "rotor of order two," then flipping 
rotors of order n > 2 can be viewed as a generalization of knot mutation. 
Rotor-flipping permits the construction of many pairs of knots with the 
same Jones polynomial. However, we note that in general it is not easy to 
determine whether the resulting knots are actually inequivalent. 
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Figure 16.22. Two knots with the same Jones polynomial 

Exercises 

1. Show that the number of n-colourings of a link diagram is invariant 
under the Reidemeister moves. 

2. Do the knots of Figure 16.22 have 3-colourings? 

3. We label the arcs of an oriented knot diagram with elements of a 
group G by assigning elements of G to the arcs, subject to the fol­
lowing condition. Suppose that at a given crossing the arc ending 
at the crossing is labelled h and the arc starting at it is labelled k. 
Then, if the crossing is left-handed, the label 9 of the overpass must 
be chosen so that k = g-lhgj if the crossing is right-handed, then we 
require h = g-lkg. Thus all elements used in a proper labelling must 
be conjugate in G. Show that the property of having a labelling using 
a given conjugacy class of G is invariant under Reidemeister moves. 

4. Show that the moves RI' and RIll' are consequences of planar isotopy 
and the Reidemeister moves RI, RIl, and RIlL Why is there no move 
RIl'? 

5. Prove Theorem 16.4.1. 

6. Prove Lemma 16.5.2. 

7. Show that the writhe of a link is invariant under regular isotopy. 

8. Show that the Jones polynomial, when expressed in terms of a, 
involves only powers of a 4 . 

9. Show that the Jones polynomial of a knot evaluated at t = 1 has 
absolute value 1. 
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Notes 

There are now a number of excellent references on knots. The books of 
Adams [1], Livingston [6], and Gilbert and Porter [3] all provide interesting 
elementary treatments of the subject, including the Alexander and Jones 
polynomial. The books by Lickorish [5] and Prasolov and Sossinsky [7] 
provide more advanced treatments, but are still quite accessible. Lickorish 
treats all the polynomials we have mentioned, while Prasolov and Sossin­
sky offer a nice treatment of braids. Kauffman's paper [4] is a fascinating 
introduction to his bracket polynomial. 

There are a number of approaches to the Jones polynomial. Kauffman's 
is the simplest, and is highly combinatorial. Our approach has been chosen 
to emphasize that this polynomial is a close relative of the rank polynomial, 
which is a central object in algebraic graph theory. There is also an algebraic 
approach, based on representations of the braid group. This is, essentially, 
Jones's original approach, and has proved the most fruitful. 

There are other useful knot polynomials of combinatorial interest that 
we have not discussed. In particular, the Alexander polynomial is quite ac­
cessible and would fit in well with what we have done. Alexander's original 
paper on his polynomial is very readable, and has a highly combinatorial 
flavour. Then there is the HOMFLY polynomial, a polynomial in two vari­
ables that is more or less the least common multiple of the Alexander and 
Jones polynomials. The most convenient reference for these polynomials is 
Lickorish [5]. 

The term "mutant" was coined by Conway, and the two knots of Fig­
ure 16.22 are called the Conway knot and the Kinoshita-Terasaka knot. 
Anstee, Przytycki, and Rolfsen [2] consider some generalizations of mu­
tation that are based essentially on rotor-flipping. Their aim was to see 
whether the unknot, which has a Jones polynomial equal to 1, could be 
mutated into a knot. This would provide an answer to the unsolved ques­
tion of whether the Jones polynomial can be used to determine knottedness. 
A resolution of this question, at least in the affirmative, would be a major 
advance in knot theory. 
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17 
Knots and Eulerian Cycles 

This chapter provides an introduction to some of the graph theory asso­
ciated with knots and links. The connection arises from the description of 
the shadow of a link diagram as a 4-valent plane graph. The link diagram 
is determined by a particular eulerian tour in this graph, and consequently 
many operations on link diagrams translate to operations on eulerian tours 
in plane graphs. The study of eulerian tours in 4-valent plane graphs leads 
naturally to the study of a number of interesting combinatorial objects, 
such as double occurrence words, chord diagrams, circle graphs, and maps. 
Questions that are motivated by the theory of knots and links can often 
be clarified or solved by being reformulated as a question in one of these 
different contexts. 

17.1 Eulerian Partitions and Tours 

We defined walks in graphs earlier, but then we assumed that our graphs 
had no loops and no multiple edges. We now need to consider walks on 
the shadow of a link diagram, and so we must replace our earlier definition 
by a more refined one: A walk in a graph X is an alternating sequence of 
vertices and edges that starts and finishes with a vertex, with the property 
that consecutive vertices are the end-vertices of the edge between them. A 
walk is closed if its first and last elements are equal, and eulerian if it uses 
each edge at most once. 
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We will be concerned with closed eulerian walks, but first we consider 
two operations on this set. A rotation of a closed eulerian walk is the closed 
eulerian walk obtained by cyclically shifting the sequence of vertices and 
edges. A reversal of a closed eulerian walk is obtained by reversing the 
sequence of vertices and edges. For our purposes, only the cyclic ordering 
of vertices and edges determined by a closed eulerian walk is important, 
rather than the starting vertex. Therefore, we wish to regard all rotations 
of a closed eulerian walk as being the same. Usually, the direction of a 
closed eulerian walk is also not important, and so we define an eulerian 
cycle to be an equivalence class of closed eulerian walks under rotation and 
reversal. We normally treat an eulerian cycle as a specific closed eulerian 
walk, but with the understanding that any other member of the equivalence 
class could equally well be used. 

Note that the subgraph spanned by the set of vertices and edges of an 
eulerian cycle need not be a cycle in the usual sense, but will be an eulerian 
subgraph of X. 

An eulerian partition of X is a collection of eulerian cycles such that 
every edge of X occurs in exactly one of them. An eulerian tour of X is an 
eulerian cycle of X that uses every edge of X or, equivalently, an eulerian 
partition with only one eulerian cycle. If X is a 4-valent plane graph, then 
an eulerian cycle is straight if it always leaves a vertex by the edge opposite 
the edge it entered by. 

Figure 17.1. A straight eulerian cycle and a straight eulerian partition 

Given a link, choose a starting point and imagine following the strand 
(in a fixed, but arbitrarily chosen, direction) until we return to the starting 
position. Visualizing this same process on the link diagram, it is easy to see 
that it corresponds to tracing out a straight eulerian cycle in the shadow 
of the link diagram. Therefore, each component of a link determines a 
straight eulerian cycle, and the link itself determines an eulerian partition 
into straight eulerian cycles. We call this the straight eulerian partition. 
If the link has only one component, then it determines a straight eulerian 
tour. 
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Suppose now that we are given an eulerian partition of a 4-valent graph. 
This eulerian partition induces a partition on the four edges incident to any 
given vertex into two pairs of consecutive edges. Conversely, an eulerian 
partition can be specified completely by giving the induced partition at 
each vertex. (So a 4-valent graph with n vertices has exactly 3n eulerian 
partitions.) We say that two eulerian partitions differ at x if they do not 
determine the same partition at x; if they do not differ at x, we say that 
they agree there. An eulerian partition that differs at each vertex from the 
straight eulerian partition of a 4-valent plane graph is said to be bent. 

Lemma 17.1.1 Let I be an eulerian tour of the 4-valent graph X. If u E 
V(X), then there is unique eulerian tour T' in X that differs from I at u 
and agrees with I at all other vertices of X. 

Proof. There are three eulerian partitions that agree with I at the vertices 
in V(X) \ u. We show that one of these is an eulerian tour and that the 
other has two eulerian cycles. 

Suppose that u E V(X) and that a, b, c, and d are the edges on u and 
that I contains the subsequence (a, u, b, S, c, u, d), where S is an alternating 
sequence of incident edges and vertices. Thus I partitions the edges on u 
into the pairs {a, b} and {c, d}. Let S' be the reverse of the eulerian walk 
S. If we replace the subsequence (b, S, c) of I by its reversal (c, S', b), the 
result is a new eulerian tour that partitions the edges on u into the pairs 
{a,c} and {b,d}. 

There is a unique eulerian partition that agrees with I at each vertex 
other than u, and partitions the edges at u into the pairs {a, d} and {b, c}. 
But this eulerian partition has two components, one of which is the eulerian 
cycle (u, b, S, c, u). D 

If I' is the unique eulerian tour that differs from I only at u, then we 
say that T' is obtained from I by flipping at u. 

Lemma 17.1.2 Let S and I be two eulerian tours in the 4-valent graph 
X. Then there is a sequence of vertices such that I can be obtained from 
S by flipping at each vertex of the sequence in turn. 

Proof. Suppose S and I are two eulerian tours that do not agree at a 
vertex u. Let S' and I' denote the tours obtained from S and I, respec­
tively, by flipping at u. Since there are only three partitions of the edges 
on u into two pairs, and since S and I do not agree at u, one of the three 
pairs of tours 

{S', I}, {S, I'}, {S', I'} 

must agree at u, and therefore differ at one fewer vertex than {S, I}. A 
straightforward induction on the number of vertices at which two tours 
differ yields the result. D 
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Let £(X) denote the graph on the eulerian tours of X, where two eulerian 
tours are adjacent if and only if they are obtained from each other by 
flipping at a vertex. The previous result shows that £(X) is connected. 

17.2 The Medial Graph 

The shadow of a link diagram is a 4-valent plane graph, which gives rise 
to a dual pair of face graphs. In Section 16.3 we asserted that this graph is 
determined by either of its face graphs, and now we formalize the procedure 
that takes us from a face graph back to the 4-valent plane graph. 

Given a connected plane graph Y, its medial graph M(Y) is defined as 
follows. The vertices of M(Y) are the edges of Y. Each face F = el, ... , er 

of length r in Y determines r edges 

{eieiH : 1 :::; i :::; r - I} U {erel} 

of M (Y). In this definition, a loop e that bounds a face is viewed as a face 
of length one, and so determines one edge of M (Y), which is a loop on 
e. If Y has an edge e adjacent to a vertex of valency one, then the face 
containing that edge is viewed as having two consecutive occurrences of e, 
and so once again there is a loop on e. Figure 17.2 gives an example of a 
plane graph and its medial graph. 

Figure 17.2. A plane graph and its medial graph 

There are two important consequences of this definition. Firstly, it is 
clear that M (Y) is a 4-valent graph. Secondly, if two edges are consecutive 
in some face of Y, then they are consecutive in some face of Y*, and hence 
M(Y) = M(Y*). Finally, we note that Y and y* are the face graphs of 
M(Y). 

There is a more topological way to approach this rather awkward def­
inition of a medial graph. Consider placing a small disk of radius El over 
each vertex, and a thin strip of width E2 over each edge, where E2 is much 
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smaller than fl. The union of the disks and the strips forms a region of the 
plane. At the midpoint of each thin strip, pinch the two sides of the strip 
together to a single point. Then the boundary of this region is a collection 
of curves meeting only at the points where the strips were pinched together. 
The medial graph is the graph whose vertices are these points, and whose 
edges are these curves. Figure 17.3 should help convince you that these two 
definitions are equivalent. Although this is straightforward, care is needed 
with edges adjacent to a vertex of valency one and loops that bound a face. 

Figure 17.3. Disks, strips, and the medial graph 

We now consider a special kind of walk in a plane graph Y. As above, 
view each vertex of Y as a small disk, and each edge as a thin strip. Since 
each edge is a strip, it has two distinct sides, and we can visualize travelling 
along the side of an edge. Select a starting point on the graph where the 
side of a strip meets the boundary of a disk. We call such a vertex-edge­
side triple a flag. From there, walk along the side of the edge crossing to the 
opposite side of the edge when you reach the point on the edge halfway be­
tween its endpoints. On reaching the neighbouring vertex, walk around the 
boundary of the disk representing the vertex, leaving the vertex along the 
side of the edge lying in the same face as the side of the edge you have just 
arrived on. Extend the walk by using the same rules for negotiating edges 
and vertices. A left-right walk is the alternating sequence of vertices and 
edges encountered during such a walk, together with the starting flag. (This 
definition can be given more formally-but less intuitively-purely in terms 
of flags; we develop some of the necessary machinery in Section 17.10.) 

The underlying sequence of vertices and edges in a left-right walk is a 
walk in the usual sense, but distinct left-right walks may have the same 
underlying walk if they start at flags on opposite sides of the same edge. A 
flag in the plane graph Y determines a flag in its dual graph Y*, and with 
the usual identification between the edges of Y and its dual Y*, a left-right 
walk in Y is also a left-right walk in Y*. 
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A closed left-right walk is a left-right walk that starts and ends at the 
same flag. A left-right cycle is an equivalence class of closed left-right walks 
under rotation and reversal; an example is shown in Figure 17.4. Thus in 
a left-right cycle, the cyclic order of the vertices and edges is important 
and which sides of the edges are used is important, but the direction and 
starting vertex are not. 

Figure 17.4. A left-right cycle 

After these definitions have been mastered, the following result is 
immediate. 

Lemma 17.2.1 Let Y be a connected plane graph and let X be its medial 
graph. Then there is a bijection between straight eulerian cycles in X and 
left-right cycles in Y. 0 

17.3 Link Components and Bicycles 

If X is the shadow of a link diagram, then the number of components of 
the link is the number of eulerian cycles in the straight eulerian partition 
of X. In this section we relate the number of components of a link to the 
dimension of the bicycle space of the face graph of X. 

Let Y be a plane graph, and let P be a left-right cycle in Y. If P uses an 
edge, then it uses it at most twice. The set of edges that are used exactly 
once is called the core of P. 

Lemma 17.3.1 The core of a left-right cycle in a plane graph Y is a 
bicycle of Y. 

Proof. Let P be a left-right cycle and let Q be its core. Let u be a vertex 
of Y, and consider the edges on u. The total number of occurrences of these 
edges in P is even, and so the total number of these edges in Q is also even. 
Therefore, Q determines an even subgraph of Y. Since P is also a left-right 
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cycle in Y*, it follows that Q is also an even subgraph of Y*. Therefore, Q 
is a bicycle of Y. 0 

Every edge of Y either occurs once in each of two left-right cycles or 
occurs twice in one left-right cycle. Therefore, each edge of Y lies either in 
two cores or no cores at all. 

Lemma 17.3.2 Let Y be a connected plane graph and let P be the set of 
all the left-right cycles of Y. Each edge of Y occurs in an even number of 
members ofP, but no proper subset ofP covers every edge an even number 
of times. 

Proof. The first claim follows directly from the comments preceding this 
result. For the second claim, suppose that p' is a proper subset of P con­
taining every edge an even number of times. Then there is at least one edge 
that does not occur at all in the walks in P'. Since Y is connected, we can 
find a face of Y containing two consecutive edges e and f, where e does not 
occur in the walks in pI but f occurs twice. This, however, is impossible, 
because one of the left-right cycles through f must use the neighbouring 
edge e. 0 

An immediate consequence of this result is that if any left-right cycle 
has an empty core, then it contains every edge an even number of times, 
and so is the only left-right cycle in Y. 

Lemma 17.3.3 Let Y be a connected plane graph with exactly c left­
right cycles. Then the subspace of GF(2)E(Y) spanned by the characteristic 
vectors of the cores has dimension c - 1. 

Proof. Let P = {PI"'" Pc} be the set of left-right cycles in Y, and 
let Q = {QI,"" Qc} be the corresponding cores. Identify a core with its 
characteristic vector, and suppose that there is some linear combination of 
the cores equal to the zero vector. Let Q' be the set of cores with nonzero 
coefficients in this linear combination, and let pI be the corresponding left­
right cycles. Then Q' covers every edge an even number of times, and so 
pi covers every edge an even number of times. By the previous result pi 
is either empty or pI = P. Therefore, there is a unique nontrivial linear 
combination of the cores equal to the zero vector, and so the subspace they 
span has dimension c - 1. 0 

We now consider a partition of the edges of a plane graph Y into three 
types. An edge is called a crossing edge if some left-right cycle of Y uses 
it only once. Any edge e that is not a crossing edge is used twice by some 
left-right cycle P. If P uses it twice in the same direction, we say that e is 
a parallel edge, and otherwise it is a skew edge. Any coloop in Y is a skew 
edge, any loop is a parallel edge, and any edge is parallel in Y if and only 
if it is skew in Y*. We let c(Y) denote the number of left-right cycles in a 
graph Y. 
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Lemma 17.3.4 If Y is a plane graph, and e is an edge of Y, then 

(a) If e is a loop or coloop, then c(Y\ e) = c(Y/e) = c(Y). 

(b) If e is a parallel edge, then c(Y \ e) = c(Y) = c(Y / e) - 1. 

(c) If e is a skew edge, then c(Y/e) = c(Y) = c(Y \ e) - 1. 

(d) If e is a crossing edge, then c(Y \ e) = c(Y / e) = c(Y) - 1. 

Proof. We leave (a) as an exercise. 
If e = uv is a parallel edge, then we can assume that the left-right cycle 

containing e has the form P = (u, e, v, 8, u, e, v, T). The graph Y\e contains 
all the left-right cycles of Y except for P, and in addition the left-right 
cycle (u, 8', v, T) where 8' is the reverse of 8. The graph Y / e has also lost 
P, but it has gained two new left-right cycles, namely (x, 8) and (x, T), 
where x is the vertex that resulted from merging u and v. 

If e is a skew edge, then it is parallel in Y*, and the result follows directly 
from (b). 

Finally, if e is a crossing edge, then the two left-right cycles through e 
are merged into a single walk in both Y / e and Y\ e. Therefore, both graphs 
have one fewer left-right cycle than Y. 0 

Theorem 17.3.5 If Y is a connected plane graph with exactly cleft-right 
cycles, then the bicycle space has dimension c - 1 and is spanned by the 
cores of Y. 

Proof. We prove this by induction on the number of left-right cycles in 
Y. First we consider the case where Y has a single left-right cycle. Assume 
by way of contradiction that Y has a nonempty bicycle B. Then B is both 
an even subgraph and an edge cutset whose shores we denote by Land 
R. Since B is even, it divides the plane into regions that can be coloured 
black and white so that every edge in B has a black side and a white side, 
and every other edge of Y has two sides of the same colour. Consider a 
left-right cycle starting from a vertex in L on the black side of an edge in 
B. After it uses this edge, it is on the white side of the edge at a vertex 
in R. Every time the walk returns to L it uses an edge in B, and therefore 
returns to the black side of that edge. Therefore, the edges in B are used 
at most once by this walk, contradicting the assumption that Y has only 
one left-right cycle. 

Now, let Y be a plane graph with c > 1 left-right cycles. The dimension 
of its bicycle space is at least c -1 by Lemma 17.3.3. If e is a crossing edge 
of Y, then Y \ e has c - 1 left-right cycles and by the inductive hypothesis, 
a bicycle space of dimension c - 2. Since deleting an edge cannot reduce 
the dimension of the bicycle space by more than one, the bicycle space of 
Y has dimension at most c - 1, and the result follows. 0 

Corollary 17.3.6 If a link has c components, then the face graphs of any 
link diagram L have a bicycle space of dimension c - 1. In particular, the 
face graphs of a knot diagram are pedestrian. 0 
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4 2 

Figure 17.5. Crossing eulerian tour of a knot shadow 

In addition, the results of this section imply that the partition of the edges 
of a plane graph into crossing edges, parallel edges, and skew edges is 
actually the principal tripartition of Section 14.16 in disguise. The crossing 
edges are the bicycle edges, the parallel edges are the flow-type edges, and 
the skew edges are the cut-type edges. We finish with one application of 
this observation to knot diagrams. 

Theorem 17.3.7 Let Y be the signed face graph of a knot diagram K. 
Let e be the number of negative cut-type edges plus the number of positive 
flow-type edges ofY, and let r be the number of positive cut-type edges plus 
the number of negative flow-type edges of Y. Then the writhe of K is equal 
toe-r. D 

17.4 Gauss Codes 

We have seen that the face graphs of a link diagram provide a way to 
represent the link, and also yield useful information about the link it­
self. However, as representations of link diagrams, face graphs are not 
particularly simple. In dealing with knots there is a useful alternative 
representation that goes back to the work of Gauss. 

Consider a knot diagram where the crossings are arbitrarily labelled. 
The shadow ofthe knot diagram has a unique straight eulerian tour, which 
can be recorded simply by writing down the crossing points in the order 
in which they are visited by the tour. The resulting string of symbols is 
called the Gauss code of the shadow, and unsurprisingly, it is determined 
only up to rotation and reversal. The shadow of the knot diagram shown 
in Figure 17.5 has Gauss code 1 23451652346. 
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We emphasize that the Gauss code determines only the shadow of a 
knot diagram. If the knot is alternating, then the Gauss code is sufficient to 
determine the knot up to reflection, because the crossings alternate between 
under-crossings and over-crossings. Otherwise, it is necessary to distinguish 
between under-crossings and over-crossings in some fashion. One method 
would be to sign the entries in the Gauss code so that over-crossings receive 
a positive label and under-crossings a negative label. 

A word w of length 2n in a set of n symbols is called a double occurrence 
word if each symbol occurs twice. Each such word determines a 4-valent 
graph with a distinguished eulerian tour. The vertices of the graph are the 
symbols. The edges of the graph are the subsequences of length two in the 
word, and a vertex is incident with an edge if it is contained in it. (So our 
graph is undirected even though each edge is associated with an ordered 
pair of symbols.) It is immediate that the word itself describes an eulerian 
tour. Conversely, an eulerian tour in a 4-valent graph determines a double 
occurrence word on the vertices of the graph. 

Our ultimate aim is to characterize the double occurrence words that 
arise as the straight eulerian tour of the shadow of a knot diagram. For the 
moment we note two useful properties of such words. 

Lemma 17.4.1 If w is the Gauss code of the shadow of a knot diagram, 
then 

(a) Each symbol occurs twice in w. 

(b) The two occurrences of each symbol are separated by an even number 
of other symbols. 

Proof. The Gauss code gives the unique straight eulerian tour of the knot 
shadow, and since an eulerian tour of a 4-valent graph visits each vertex 
twice, the first part of the claim follows immediately. 

The two occurrences of the symbol v partition the Gauss code into two 
sections. The edges of the shadow of the knot diagram determined by one 
of these sections form a closed curve C in the plane starting and ending 
at the crossing labelled v. The edges determined by the other section form 
another closed curve starting and ending at v, and the first and last edges 
of this curve are both inside or both outside C. Therefore, by the Jordan 
curve theorem these two curves intersect in an even number of points other 
than v. 0 

A double occurrence word is called even if the two occurrences of each 
symbol are separated by an even number of other symbols. If X is a 4-
valent graph embedded in any surface, then it has a unique straight eulerian 
partition. If this has only one component, then it is a double occurrence 
word. Our next result indicates when a double occurrence word obtained 
in this manner is even. 

An embedding of a graph in a surface is called a 2-cell embedding if every 
face is homeomorphic to an open disk; for the remainder of this chapter 
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we will assume that all embeddings are 2-cell embeddings. If X is a graph 
embedded in a surface, then we orient a cycle of X by giving a cyclic 
ordering of its vertices. If the surface is the sphere, for example, we can 
orient each face of X clockwise about a nonzero vector pointing outwards 
from the centre of the face. By orienting a cycle we also give an orientation 
to each edge in it. The orientations of two cycles are compatible if no edge 
in their union occurs twice with the same orientation. We say that an 
embedding of X in a surface is orientable if there is an orientation of the 
faces of X such that every pair of faces is compatibly oriented. Finally, a 
surface is orient able if there is an orientable embedding of some graph in 
it. (It can be shown that if one graph has an orient able embedding in a 
surface, then all embeddings are orientable. Thus orient ability is a global 
property of a surface.) 

Theorem 17.4.2 Let X be a 4-valent graph embedded in a surface and 
suppose w is the double occurrence word corresponding to a straight eulerian 
tour of X. If the surface is orientable and X* is bipartite, then w is even. 

Proof. Assume that the surface is orient able. Since X* is bipartite, we 
may partition the faces of X into two classes, so that two faces in the same 
class do not have an edge in common. Choose one of these classes and 
call the faces in it white; call the other faces black. The straight eulerian 
tour given by w has the property that as we go along it, the faces on the 
left alternate in colour. Since the embedding is orientable, we can orient 
the white faces. This gives an orientation of the edges of X so that at 
each vertex there are two edges pointing in and two pointing out. This 
orientation has the further property that any two consecutive edges in w 
point in opposite directions, which implies that w is even. 0 

This result shows that merely being even is not sufficient to guaran­
tee that a double occurrence word is the Gauss code of the shadow of a 
knot diagram. We provide a complete characterization of Gauss codes in 
Section 17.7. 

17.5 Chords and Circles 

We will use a pictorial representation of a double occurrence word, known 
as a chord diagram. The chord diagram of w is obtained by arranging the 
2n symbols of the word on the circumference of a circle and then joining 
the two occurrences of each symbol by a chord of the circle. Figure 17.6 
shows the chord diagram corresponding to the Gauss code given above. 

We may also view a chord diagram as a graph in its own right. It is a cubic 
graph with a distinguished perfect matching (the chords); the remaining 
edges form a hamilton cycle called the rim of the chord diagram. If we write 
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3 4 

Figure 17.6. Chord diagram of a double occurrence word 

down the sequence of vertices in the rim in order, we recover the double 
occurrence word. 

If we contract each chord in a chord graph, we get a 4-valent graph, and 
the image of the rim in this is the eulerian tour from which the chord graph 
was constructed. Also, we can represent a signed Gauss code by orienting 
each chord in its chord diagram. For example, a chord could always be 
oriented from the over-crossing to the under-crossing. 

A circle graph is a graph whose vertices are the chords of a circle, where 
two vertices are adjacent if the corresponding chords intersect. The chord 
diagram of any double occurrence word therefore immediately yields a circle 
graph, as shown in Figure 17.7. Two double occurrence words related by 
rotation and/or reversal determine the same circle graph. See Exercise 8 
for an example indicating that the converse of this statement is not true. 

1 

6 2 
~--+-+--T---'O 

3 4 

5 3 

4 

Figure 17.7. Chord diagram and associated circle graph 

Lemma 17.5.1 A chord diagram is a planar graph if and only if its circle 
graph is bipartite. 

Proof. Let Z be a chord diagram with a bipartite circle graph. We can 
map the rim of Z onto a circle in the plane. The chords in one colour class 
of the circle graph can be embedded inside the circle without intersecting, 
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and the chords in the other colour class similarly embedded outside the 
circle. 

Conversely, suppose we have an embedding of a chord diagram in the 
plane. The rim of the chord diagram is a continuous closed curve in the 
plane, which divides the plane into two disjoint parts: inside and outside. 
Thus there are two classes of chords, those embedded on the inside and 
those on the outside, and no two chords in the same class are adjacent in 
the circle graph. Hence the circle graph of Z is bipartite. D 

17.6 Flipping Words 

If w is a double occurrence word, then we flip it at the symbol v by reversing 
the subsequence between the two occurrences of v. You might object that 
there are two such sequences, since double occurrence words are cyclically 
ordered. But since we do not distinguish between wand its reversal, both 
choices yield the same result. If w corresponds to an eulerian tour in a 
graph X, then the word we get by flipping at v corresponds to the eulerian 
tour we get by flipping at the vertex v in the sense of Section 17.1. Thus 
it is the unique eulerian tour that differs from the original eulerian tour at 
v, and agrees with it everywhere else. 

We can also interpret a flip in terms of the associated chord diagram 
and circle graph. In the chord diagram, flipping at the chord joining the 
two occurrences of v can be viewed as cutting out the section of the rim 
between the two occurrences of v, flipping it over (with any other chords 
still attached), and then replacing it in the rim (see Figure 17.8). The rim 
of the flipped chord diagram is the flipped double occurrence word. 

In the circle graph, flipping at the vertex v has the effect of replacing all 
the edges in the neighbourhood of v with nonedges, and all the nonedges 
in the neighbourhood of v with edges. Recall that this operation is known 
as local complementation at v (see Figure 17.9). 

3 4 3 3 

Figure 17.8. Flipping on chord 1 
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1 1 

6 2 6 2 
Q--+-+--T-----:O Q--+-+--T----:D 

5 3 5 3 

4 4 

Figure 17.9. Local complementation at vertex 1 

xxx 
Figure 17.10. Overpass, one-way, and two-way vertices 

The vertices in an arbitrary eulerian tour of a 4-valent plane graph may 
be classified into three types: overpass, one-way, and two-way. A vertex v is 
an overpass if the eulerian tour enters and leaves v through opposite edges. 
A vertex is one-way if the two portions of the eulerian tour are oriented in 
the same direction as they pass through v, and two-way if they are oriented 
in opposite directions as they pass through v. Figure 17.10 should help in 
interpreting this. 

Flipping an eulerian tour at a vertex alters the types of the vertices 
in a predictable manner. Suppose that w is the double occurrence word 
describing an eulerian tour of a 4-valent plane graph. We consider the 
effect of flipping at v, first on the type of v, and then on the types of the 
remaining vertices. If v is an overpass, then flipping at v changes it to a 
two-way vertex, and vice versa. If v is a one-way vertex, then its type is 
not changed by flipping at v. The type of any vertex other than v changes 
only if it is adjacent to v in the circle graph determined by w. If w is a one­
way or two-way vertex adjacent to v in the circle graph, then flipping at v 
changes its type to two-way or one-way, respectively. If it is an overpass, 
then its type does not change. 

17.7 Characterizing Gauss Codes 

We now have the necessary tools to characterize which double occurrence 
words are Gauss codes. Any double occurrence word describes an eulerian 
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2 

Figure 17.11. Plane chord diagram of a bent eulerian tour 

tour in some 4-valent graph (possibly with multiple edges and loops). If 
the 4-valent graph is not the shadow of a knot diagram or the eulerian tour 
is not the straight eulerian tour, then the double occurrence word is not 
a Gauss code. Lemma 17.4.1 shows that a Gauss code is necessarily even, 
but this condition is not sufficient; any attempt to reconstruct a shadow 
with Gauss code 1 2 3 4 5 3 4 1 2 5 will not succeed. We describe another 
property of Gauss codes, which will enable us to provide a characterization. 

If we flip on each symbol of a Gauss code in some order, the double 
occurrence word that results corresponds to an eulerian tour with no over­
passes, and so it is a bent tour. Suppose that we draw this bent tour 
on the shadow of the knot diagram, split each vertex into two vertices a 
short distance apart, and join each pair with a short edge. The resulting 
graph is clearly a plane graph. The bent tour does not cross itself, and the 
newly introduced edges are so short that no problems arise. Moreover, this 
plane graph is actually the chord diagram of the bent eulerian tour-just 
embedded in an unusual manner. 

For example, if we start with the word 1 2 3 4 5 1 6 5 2 3 4 6, associated 
with the knot of Figure 17.5, then flipping at the symbols 1 through 6 in 
order results in the double occurrence word 1 5 2 3 4 5 6 4 3 2 1 6. This is 
a bent tour of the shadow pictured in Figure 17.5, and its chord diagram 
is shown in Figure 17.11. 

Recall that a chord diagram is planar if and only if its associated circle 
graph is bipartite. We conclude that if w is a Gauss code and w' is the 
double occurrence word obtained from w by flipping once on each symbol, 
then the circle graph of w is even and the circle graph of w' is bipartite. 
The surprise is that this easily checked condition is sufficient to characterize 
Gauss codes. 

Theorem 17.7.1 Let w be a double occurrence word with circle graph X. 
Let w' be the double occurrence word obtained by flipping once at each 
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symbol of W in some order, and let X' be its circle graph. Then W is the 
Gauss code of the shadow of a knot diagram if and only if X is even and 
X' is bipartite. 

Proof. It remains only to prove that if X is even and X' is bipartite, then 
W is a Gauss code. We shall demonstrate this by explicitly constructing the 
shadow of a knot diagram with a straight eulerian tour given by w. 

We work with circle graphs, rather than double occurrence words. As­
sume that X has vertex set {I, ... , n}, and that the local complementations 
are carried out in numerical order. Let Wo = wand Wi be the double oc­
currence word obtained after locally complementing at vertices {I, ... , i}. 
Similarly, let Xo = X and Xi be the circle graph associated with Wi. Since 
X' = Xn is bipartite, the chord diagram of Wn has a planar embedding, 
and by shrinking the chords we can find a plane 4-valent graph with a bent 
eulerian tour Cn given by W n . By considering what happens to the rim of 
a chord diagram as each chord is shrunk to a vertex, it is easy to see that 
every vertex is two-way in Cn. 

Now, we aim to construct a series of eulerian tours Cn, Cn~l' ... , Co, 
where C i has double occurrence word Wi, so that the final eulerian tour is 
straight. The first condition is easy to satisfy: Starting with Cn we merely 
need to flip on the vertices n to 1 in reverse numerical order to get the 
eulerian tours Cn~l to Co. The only remaining question is whether this 
necessarily creates a straight eulerian tour. Since each flip can create at 
most one overpass, Co is a straight eulerian tour if and only if everyone of 
the n flips creates one overpass each. This occurs if and only if the vertex 
i is two-way in Ci, for all i. 

Since every vertex in Cn is two-way, the type of i in C i depends on 
whether its type has been changed an even or odd number of times as a 
consequence of the flips at vertices {n, ... , i + I}. Now, X is even, and an 
easy induction argument shows that for all i, the subgraph of Xi induced 
by {i + 1, ... , n} is also even. Therefore, i is adjacent to an even number 
of vertices of {i + 1, ... , n} in Xi. 

Now, we claim that for all j :::: i, either i is two-way in C j and is adjacent 
to an even number of vertices from {j + 1, ... , n} in Xj or i is one-way in 
C j and is adjacent to an odd number of vertices from {j + 1, ... , n} in X j . 

This is true when j = n, and since i changes type when j is flipped if and 
only if i rv j in X j , it is true for j = n -1, ... , j = i. Since we know that 
i is adj acent to an even number of vertices from {i + 1, ... , n} in Xi, we 
conclude that i is two-way in Ci, and the result follows. 0 

17.8 Bent Tours and Spanning Trees 

In this section we consider some more properties of eulerian tours of 4-
valent plane graphs. In particular, we determine a relationship between the 
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bent eulerian tours of a 4-valent plane graph and the spanning trees of its 
face graphs. 

Suppose that X is a 4-valent plane graph and that its faces are coloured 
black and white. There are three partitions of the four edges at a vertex 
v E V(X) into two pairs of edges. We will call the partition at a vertex 
straight if the two cells are pairs of opposite edges, black if the two edges 
in each cell lie in different black faces, and white if the two edges in each 
cell lie in different white faces (see Figure 17.12). 

Figure 17.12. Straight, black, and white partitions at a vertex 

A bent eulerian partition of X induces a partition at each vertex that 
is either black or white. Conversely, by specifying at each vertex whether 
the black or white partition is to be used, we determine a bent eulerian 
partition. (Thus if X has n vertices, then it has 2n bent eulerian partitions.) 

Lemma 17.S.1 Let X be a 4-valent plane graph with face graph Y. Then 
there is a bijection between the bent eulerian tours of X and the spanning 
trees ofY. 

Proof. Suppose that Y is the graph on the white faces, and that Y* is 
the graph on the black faces. Let T be a spanning tree of Y, and then 
T = E(Y) \ T is a spanning tree of Y*. We can identify E(Y) and E(Y*) 
with V(X), and so T U T is a partition of V(X). Now, define an eulerian 
partition of X by taking the white partition at every vertex in T and the 
black partition at every vertex in T. (That is, take the white partition for 
every edge in the white spanning tree, and the black partition for every 
edge in the black spanning tree.) From our earlier remarks this is a bent 
eulerian partition, so it remains to show that it has just one component. 

Consider an adjacency relation on the faces of X, with two white faces 
being adjacent if they meet at a vertex where the induced partition is 
white, and two black faces being adjacent if they meet at a vertex where 
the induced partition is black. It follows immediately that this adjacency 
relation is described by T and T, and so has two components, being all 
the white faces and all the black faces. An eulerian cycle of X determines 
a closed curve C in the plane, and so has an inside and an outside. The 
adjacency relation cannot connect a face inside C to a face outside C. If 
the bent eulerian partition has more than one component, then there are 
either two white or two black faces on opposite sides of an eulerian cycle, 
which is a contradiction. 
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Conversely, given a bent eulerian tour, partition the vertices into two 
sets T and T, according to whether the bent eulerian partition induces the 
white partition or the black partition, respectively, at that vertex. Then T 
is a spanning tree of Y, and T is a spanning tree of y* . 0 

Figure 17.13 shows a 4-valent plane graph, together with a spanning tree 
on the white faces, and Figure 17.14 shows the corresponding bent eulerian 
tour. 

Figure 17.13. A 4-valent plane graph and spanning tree on the white faces 

Figure 17.14. Spanning tree and associated bent eulerian tour 

In Section 17.7 we saw that flipping once on each vertex of the straight 
eulerian tour of X yields a bent eulerian tour. The next result shows that 
every bent eulerian tour of X arises in this fashion. 

Lemma 17.8.2 Suppose that X is a 4-valent plane graph with a straight 
eulerian tour S. For every bent eulerian tour T of X, there is a sequence a 
containing each vertex of X once such that T is obtained from S by flipping 
on the elements of a in turn. 
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Proof. See Exercise 7. 0 

Now, suppose that Y is a plane graph, and that X is its medial graph. 
Any spanning tree of Y determines a bent eulerian tour of X, which deter­
mines a planar chord diagram, which in turn has a bipartite circle graph. 
Therefore, any plane graph Y determines a collection of bipartite circle 
graphs. 

The adjacency matrix of any bipartite graph can be written in the form 

( 0 MT) 
A= MO. 

However, when A is the adjacency matrix of a bipartite circle graph arising 
from a spanning tree of a plane graph, then it can be described in terms 
of the spanning tree T. We declare that the rows of M are indexed by the 
edges of Y in T and the columns of M are indexed by the edges of Y not in 
T. Every edge f of Y that is not in T determines a unique cycle in TU {t}. 
We claim that if e E T and f tJ. T, then the ef-entry of Mis 1 if and only 
if e lies on the unique cycle in T U {f}. 

This implies that the rows of the matrix 

are a basis for the flow space of Y (over GF(2)). We described this basis 
earlier in Section 14.2; from our work there it follows that the rows of 

(M 1) 

are a basis for the cut space. It follows that the kernel of A + I is the 
intersection of the cut space and flow space of Y. In other words, it is 
the bicycle space of Y. Therefore, the rank of A + I depends only on the 
dimension of the bicycle space of Y, and in particular A + I is invertible 
over GF(2) if and only if Y is pedestrian. 

17.9 Bent Partitions and the Rank Polynomial 

In the last section we saw that the number of bent eulerian tours in a 4-
valent plane graph is equal to the number of spanning trees of one of its 
face graphs. The number of spanning trees is an evaluation of the rank 
polynomial, and a bent eulerian tour is a bent eulerian partition with one 
component. Our next task is to show that the rank polynomial actually 
counts the bent eulerian partitions with any number of components. 

Lemma 17.9.1 Let X be a 4-valent plane graph with face graphs Y and 
Y*, and let T be a bent eulerian partition of X with c components. Then 
T determines a set of edges S in Y and the complementary set of edges S 
in Y*. If Cw is the number of components in the subgraph of Y with edge 
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set S, and Cb the number of components in the subgraph of Y* with edge 
set S, then 

C=Cb+Cw-l. 

Proof. The eulerian cycles of the bent eulerian partition T form a collec­
tion of disjoint closed cycles in the plane, and hence divide the plane into 
C + 1 regions. Every face of X lies completely within one of these regions, 
and each region contains faces of only one colour. Two white faces of X 
lie in the same region if and only if there is a path in Y connecting them 
using only edges of S, and two black faces lie in the same region if and 
only if there is a path joining them in Y* using only edges of S. Therefore, 
the partition into regions is the same as the partition into components of 
Y and Y*. Hence C + 1 = Cb + Cw , and the result follows. 0 

Corollary 17.9.2 Let X be a 4-valent plane graph with face graph Y. Let 
R(Y; x, y) be the rank polynomial of Y. Then the number of bent eulerian 
partitions of X with c components is the coefficient of x c - 1 in R(Y; x, x). 

Proof. Let E denote the edge set of Y, and identify it with the edge set 
of Y*. By the definition of the rank polynomial we see that 

R(Y; x, x) = L xrkCE)-rkcs)xrk-LCE)-rk-LCE\s). 

S~E 

From the results of Section 15.2, the expression rk(E) - rk(S) is equal 
to the number of components of the subgraph of Y with edge set S, and 
rk-L (E) - rk-L (E \ S) is the number of components of the subgraph of y* 
with edge set S. 0 

17.10 Maps 

In previous sections we have been content to use an intuitive topologically 
based notion of the embedding of a graph in a surface. We are going to 
present a purely combinatorial approach, which describes maps by ordered 
triples of suitable permutations. 

Before giving the formal definition, we present an extended example 
showing how our usual concept of a graph embedded in a surface leads to 
three permutations. We will use the Cartesian product K3 0 K3 embedded 
in the torus as shown in Figure 17.15. 

Define a flag to be an ordered triple consisting of a vertex, an edge, 
and a face such that the vertex is contained in the edge, which in turn is 
contained in the face. Let cI> denote the set of flags in our embedding of 
K3 0 K 3. If (v, e, 1) E cI>, then there are unique flags (v', e, j), (v, e', 1), and 
(v, e, 1') that each differ from (v, e, 1) in only one element. We define three 
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Figure 17.15. K3 0 K3 embedded in the torus 

involutions 70,71, and 72 on <P as follows: 

70 : (v, e, f) f--7 (Vi, e, I), 

71: (v,e,f) f--7 (v,e',f), 

72: (v,e,f) f--7 (v,e,f'). 

We can visualize these permutations on a drawing of the graph by rep­
resenting each flag (v, e, I) as a small vertex near v, towards the end of e 
and inside f. If two flags are exchanged by 70, 71, or 72, then join the corre­
sponding vertices with an edge of colour 0, 1, or 2, respectively. Figure 17.16 
shows such a representation for our example. 

Now, we take a more formal stance, and give a combinatorial definition 
of a map purely in terms of the action of three permutations. Let <P be an 
arbitrary set whose elements we call flags, and let (70,71,72) be an ordered 
triple of permutations of <P. We say that M = (70,71,72) is a map if: 

I. 70, 71, and 72 are fixed-point-free involutions, 

II. 7072 = 7270, and 7072 is fixed-point free, 

III. (70,71,72) is transitive. 

The vertices, edges, and faces of the map M are defined to be the 
respective orbits on <P of the subgroups 

(71,72), (70,72), (70,71). 

A vertex is incident with an edge or a face if the corresponding orbits have 
a flag in common; similarly, an edge and face are incident if they have a 
flag in common. 

Given a map M, we can also define an edge-coloured cubic graph Z with 
vertex set <P, where two vertices are joined by an edge of colour 0, 1 or 2 if 
they are exchanged by 70,71, or 72, respectively. The edges of a given colour 
form a perfect matching in Z, and so the union of the edges of two colours is 
a 2-regular subgraph whose components are even cycles. If the two colours 
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Figure 17.16. The three permutations as an edge-coloured graph 

concerned are i and j, then these components are called ij-cycles. We can 
interpret the axioms above in terms of Z. For example, Axiom II above is 
equivalent to the requirement that each 02-cycle should have length four, 
and Axiom III is equivalent to requiring that Z be connected. It would 
be quite reasonable to use these conditions as the definition of a map. We 
define M to be orientable if Z is bipartite. 

The dual of the map M = (70,71,72) is the map specified by the triple 
(72,71,70); it is easy to see that this coincides with our intuitive notion of 
the dual of a graph embedded in a surface. 

The medial graph of M has the edges of M as its vertices and has the 
orbits of 71 as its edges. An orbit of 71 contains two flags, and so joins the 
edges of M that contain those flags. (Each edge is an orbit of (70,72) and 
consists of four flags.) 

If M = (70,71,72) is a map, then 

is also a map, called the Petrie map of M. The Petrie map of M has the 
same vertices and edges as M, but its faces are the orbits of the subgroup 
(7072,71), which are the left-right cycles of M. Since the left-right cycles 
are the faces of the Petrie map, it follows that they cover each edge of the 
map exactly twice, but no proper subset covers each edge an even number 
of times. Thus we have a generalization of Lemma 17.3.2. 
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17.11 Orientable Maps 

For orient able maps, we can simplify our machinery: Only two permutations 
are needed. Let S be a set of size 2m, with elements 

{I, 2, ... , m} U {l', 2', ... , m'}. 

Let 8 be the fixed-point-free involution of S that exchanges i and i' for 
all i, and let a be a permutation of S such that (a,8) is transitive. Then 
M = (a, 8) is a map whose vertices, edges, and faces are the respective 
orbits on S of the subgroups 

(a), (8), (a8). 

Two elements of the map are incident if they have an element of S in 
common. 

We consider an example. Suppose that a and 8 are given by 

a = (1,2,3,4)(1',3',4',2'), 

8 = (1,1')(2,2')(3,3')(4,4'). 

Since the group (a,8) is transitive, these permutations determine an 
orient able map M, whose faces are the orbits of 

a8 = (1,2')(1',3,4',2,3',4). 

If n, e, and f are the numbers of vertices, edges, and faces of M, then we 
see that n = 2, e = 4, and f = 2. Putting these values into the left-hand 
side of Euler's formula, we see that 

n - e + f = 0, 

and so this is not a map on the plane. However, Figure 17.17 shows this 
map on the torus. In general, the value n - e + f determines the surface in 
which an orientable map can be embedded. 

Figure 17.17. A map on the torus 

It is not too difficult to translate between the two definitions of an ori­
entable map. Let M = (70,71,72) be an orientable map according to the 
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definition given using three permutations. Then the edge 3-coloured cubic 
graph associated with M is bipartite, and we can define S to be one of the 
two colour classes. If we take 

then it is not hard to see that (J and () satisfy the requirements for a map 
under the second definition. Moreover, the vertices, edges, and faces of this 
map are the intersections of the vertices, edges, and faces of M with S. 
It is a worthwhile exercise to show that any map according to this second 
definition is a map according to the first definition. 

There is also a natural way to represent an orient able map in terms 
of a cubic graph. If M is an orientable map, then we can form a cubic 
graph Z by truncating the vertices of the map (in the same sense as in 
Section 6.14). Then the vertices of Z can be identified with the elements of 
S. The distinguished perfect matching of Z consisting of the original edges 
of the map is the permutation (). The remaining edges of Z form a collection 
of disjoint cycles, and if these are oriented consistently (all clockwise or 
all anti clockwise ), then they form the cycles of (J. The embedding of the 
map obviously leads directly to an embedding of Z in the same surface. 
Figure 17.18 shows this for the map of Figure 17.17. 

Figure 17.18. Truncation of a map on the torus 

Conversely, suppose that Z is a connected cubic graph with a distin­
guished perfect matching F. Label the two ends of the ith edge of F with 
i and i', and set () to be the involution exchanging all such pairs. The 
edges not in this matching form a disjoint union of cycles, and if each of 
these is oriented, then they determine a permutation (J of V(Z). Since Z 
is connected, the group generated by these permutations is transitive, and 
so (0", ()) is an orientable map. The faces of the map associated with Z can 
easily be identified in Z itself. Define an alternating cycle to be an oriented 
cycle in Z that alternately uses edges from Z \ F in the direction in which 
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they are oriented, and edges from the perfect matching F. There is a bi­
jection between the faces of the map ((7, ()) and the alternating cycles of 
z. 

Note that we can form a cubic graph by truncating a map on any sur­
face, but the map itself can be reconstructed from the graph, the perfect 
matching, and the orientation of the cycles only if the surface is orientable. 

17.12 Seifert Circles 

In this section we give a connection between an important invariant of an 
oriented link and the faces of an associated map. 

Before we start this, however, we need to extend our terminology to 
account for the orientation of the link. Define an oriented eulerian cycle 
to be an equivalence class of closed eulerian walks under rotation only. 
Thus we are now viewing an eulerian cycle and its reversal as different. 
If XP is an oriented graph, then an oriented eulerian partition of XP is 
a collection of oriented eulerian cycles such that each edge of X occurs­
correctly oriented-in exactly one of the oriented eulerian cycles. 

Lemma 17.12.1 If X is a 4-valent plane graph and p is an orientation 
such that every vertex is the head of two edges and the tail of two edges, 
then XP has a unique straight oriented eulerian partition S and a unique 
bent oriented eulerian partition S* . 0 

The conditions of this lemma are satisfied if X is the shadow of the link 
diagram of an oriented link and p is the orientation of X inherited from the 
orientation of the link. Since S* is bent, it forms a collection of noncrossing 
closed curves in the plane, which are known as the Seifert circles of the 
link diagram. The minimum number of Seifert circles in any diagram of an 
oriented link is an important invariant in knot theory. 

A knot can be oriented in only two ways, and both orientations yield the 
same collection of Seifert circles up to reversal. In particular, the number 
of Seifert circles is an invariant of the knot diagram. Figure 17.1 9 shows 
the shadow of a knot diagram and its Seifert circles. 

Figure 17.19. The shadow of a knot diagram and its Seifert circles 
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The oriented eulerian cycles of S use each vertex of X twice. If we arbi­
trarily label one occurrence of each vertex x with x', then S determines a 
permutation a of the set 

S= {1,2, ... ,n}U{1',2', ... ,n'}. 

If we take () to be the usual involution exchanging i and i', then since X is 
connected, M = (a, ()) is an orientable map. The faces of M are the Seifert 
circles of the oriented link diagram. Similarly, S* determines an orient able 
map; this map is the dual of M. 

17.13 Seifert Circles and Rank 

We can say more about Seifert circles if we restrict our attention to knot 
diagrams. In particular, we will show that the number of Seifert circles of 
a knot diagram is determined by the binary rank of the associated circle 
graph. 

Suppose that X is the shadow of a knot diagram, and let Z be the 
chord diagram whose rim is the straight eulerian tour of X, and where for 
convenience we assume that the rim is oriented clockwise. For each vertex 
x, arbitrarily relabel one of its two occurrences with x'. Then Z is a cubic 
graph where the chords form the distinguished perfect matching, and the 
rim is a single oriented cycle. The Seifert circles of X are the faces of the 
associated orient able map, and so are determined by the alternating cycles 
of Z. 

Each alternating cycle of Z alternately uses rim edges in a clockwise 
direction and chords. The collection of all alternating cycles of Z uses each 
rim edge once in the clockwise direction, and each chord twice, once in each 
direction. If C is an alternating cycle of Z, then define its core to be the 
set of chords that it uses once only. 

Our remaining results are based on the following simple property of an 
alternating cycle. Say that an alternating cycle crosses the chord aa' if 
successive rim edges are on opposite sides of aa'. It is straightforward to 
verify that an alternating cycle can cross ad only if the chord separating 
the successive rim edges is a chord that crosses aa'. 

Lemma 17.13.1 Let Z be a chord diagram with associated circle graph Y, 
and let A(Y) be the adjacency matrix of Y. Then the characteristic vector 
of the core of any alternating cycle is in the kernel of A(Y) over GF(2). If 
Z has s alternating cycles, then the cores of these cycles span a subspace 
of dimension s - 1 in ker(A(Y)). 

Proof. Let C be an alternating cycle of Z, and let aa' be an arbitrary 
chord of Z. Since C is a cycle, it starts and ends on the same side of aa', 
and so crosses aa' an even number of times in total. A chord not in the 
core of C is used exactly twice, and so the number of chords in the core of 
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C that cross aa/ is even. Hence the core of C contains an even number of 
neighbours of any vertex a, and so its characteristic vector is in ker(A(Y)). 

Let C l , ... , Cs be the collection of alternating cycles of Z, and 
let Cl, ... , Cs be the characteristic vectors of the cores of Cl , .. ·, Cs , 

respectively. Clearly, 

Cl + C2 + ... + Cs = 0, 

and so we must show that no other linear combination of the vectors is 
equal to zero. So suppose instead for a contradiction that there is some set 
of indices I c {I, ... , s} such that 

Then the corresponding set of alternating cycles C I = {Ci : i E I} contains 
every chord an even number of times. As this collection of alternating cycles 
does not contain every chord twice, there is a pair of chords aa/ and (3(3/ 
with a and (3 successive vertices of the rim of Z, and such that aa/ occurs 
twice in C1 and (3(3/ does not occur at all. This is clearly impossible, because 
(3(3/ must be the chord used immediately after a/a in an alternating cycle, 
and so we have the desired contradiction. D 

Lemma 17.13.2 Let Z be a chord diagram with associated circle graph Y. 
If Z has only one alternating cycle, then A(Y) is invertible over GF(2). 

Proof. If C is an alternating cycle, then form a word w/ by listing the 
vertex at the end of each "chord" step. Since C is the only alternating 
cycle of Z, it uses every chord twice, and so w/ is the rim of another chord 
diagram Z/ on the same set of vertices as Z. If y/ is the circle graph of Z/, 
then we claim that over GF(2), 

A(Y)A(Y') = I, 

which clearly suffices to show that A(Y) is invertible. 
Let Ny(a) denote the set of vertices adjacent to a in Y; we identify this 

set of vertices with the corresponding set of chords of Z. Then the (a, (3)­
entry of A(Y)A(Y') is determined by the parity ofthe set Ny(a) n Ny, ((3). 
We aim to show that this is odd if a = (3 and even if a =1= (3. Let C/ be the 
portion of C that leaves (3 along a rim edge and ends at (3/ having used the 
chord (3(3/. This determines the subword of w/ between (3 and (3/. Therefore, 
the neighbours of (3 in Y/ are the chords that are used exactly once in C/, 
other than (3 itself. Every time C/ uses a chord from Ny (a) it crosses from 
one side of aa/ to the other. 

First suppose that a = (3. Then C/ crosses aa/ an odd number of times 
(because the first rim edge used is the one immediately clockwise of a, 
while the last rim edge used is the one immediately anticlockwise of a), 
and so INy(a) n NY'(a)1 is odd. 
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Now, suppose that a -I- (3. The number of times that 0' crosses aa' 
depends on whether (3 and (3' are on the same side of aa'. If (3 and (3' are 
on the same side, then 0' crosses aa' an even number of times, and so 
I Ny (a) n NY' ((3) I is even. If (3 and (3' are on opposite sides of aa', then 0' 
crosses aa' an odd number of times. However, one of the chords used by 
0' is (3(3' itself, which is not in Ny,((3), and so again INy(a) n NY'((3)1 is 
even. 0 

To illustrate this result consider the chord diagram with rim 

w = 1 3 4 2 I' 2' 3' 4'. 

This has a single alternating cycle 

0=1 33' 4' 4 2 2' 3' 344' 1 I' 2' 2 I', 

and so 

w' = 1 3' 4 2' 34' I' 2. 

Exercise 10 asks you to verify that the adjacency matrices of the circle 
graphs associated with wand w' are indeed the inverses of each other. 

Theorem 17.13.3 Let Z be a chord diagram with n chords, and with as­
sociated circle graph Y. If Z has s alternating cycles, then rk2(A(Y)) 
n+ 1- s. 

Proof. We will prove this by induction; our previous result shows that it 
is true when s = l. 

So suppose that Z has s 2 2 alternating cycles 0 17 "" Os. Select a 
chord aa' that is in two distinct cores, say Os-1 and Os, and consider 
the chord diagram Z \ aa' obtained by deleting a and a' from the rim 
of Z. The alternating cycles of this chord diagram are 0 17 "" Os-2 and 
an alternating cycle obtained by merging Os-1 and Os, whose core has 
characteristic vector Cs -1 + cs . Therefore, Z \ aa' has s - 1 alternating 
cycles, and by induction 

rk2(A(Y \ a)) = (n - 1) + 1 - (s - 1) = n + 1 - s. 

Since A(Y\a) is a principal submatrix of A(Y), we see that rk2(A(Y)) is 
at least n + 1 - s. By Lemma 17.13.1, rk2(A(Y) is at most n + 1 - s, and 
so the result follows. 0 

Corollary 17.13.4 Let Y be the circle graph associated with the diagram 
of a knot. If the diagram has n crossings and s Seifert circles, then 

s = 1 + n - rk2(A(Y)). o 
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Exercises 

1. The goal of this exercise is to present Tutte's proof of Smith's result: 
Each edge in a cubic graph lies in an even number of Hamilton cycles. 
Let X be a cubic graph and let S be the set of subgraphs formed by 
the disjoint union of two perfect matchings. Each 3-edge colouring of 
X gives rise to three elements of S; we call them a balanced triple. 
Let us use the same symbol for a subset of E(X) and its characteristic 
vector over CF(2). If Sl, S2, and S3 form a balanced triple, then 

(17.1 ) 

If S E S, let c(S) denote the number of components of S. We see that 
S can be expressed as the disjoint union of two perfect matchings in 
exactly 2(c(S)~1) ways. Since the set of edges not in S is a perfect 
matching, this means that S gives rise to 2(c(S)~1) distinct balanced 
triples. Given all this, use (17.1) to show that 

where the sum is over all Hamilton cycles in X. 

2. Show that a cubic graph with a Hamilton cycle has at least three 
Hamilton cycles. 

3. Show that a planar graph is hamiltonian if and only if the vertex set 
of its dual can be partitioned into two sets, each of which induces a 
tree. 

4. Let X be a cubic plane graph on n vertices. Show that there is a 
bijection between the perfect matchings of the medial graph of X 
and the orientations of X such that each vertex has odd out-valency. 
Hence deduce that the number of perfect matchings in the medial 
graph of X is 2nj2+l if n == 0 mod 4, and 0 otherwise. 

5. Show that the embedding of K6 in the projective plane is not 
orientable. 

6. Let X be a 4-valent graph embedded in a surface and suppose w is a 
double occurrence word corresponding to a straight eulerian tour in 
X. Prove that any two of the following assertions imply the third: 

(a) The surface is orient able. 
(b) X* is bipartite. 
(c) w is even. 

7. Let X be a 4-valent plane graph with a straight eulerian tour S. If 
Y and y* are the face graphs of X, show that every vertex of X 
determines an edge of either Y or Y*, according to whether flipping 
at that vertex would result in the white or the black partition at that 
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vertex. Use this to prove the assertion of Lemma 17.8.2 that every 
bent eulerian tour can be obtained from S by flipping at each vertex 
in some order. 

8. Consider the two mutant knots of Figure 16.22. Show that the asso­
ciated double occurrence words are not related by rotation, reversal, 
or relabelling, but that they yield isomorphic circle graphs. 

9. Let Z be the truncation of an orientable map, with associated perfect 
matching F, and with the cycles of Z \ F oriented clockwise. If we 
contract the edges in F, the graph Z/ F that results is 4-valent and 
has an oriented eulerian partition, S say. Describe how to recover the 
original map from Z/ F and the partition. If S* is the partition dual 
to S, show that the map determined by Z/ F and S* is the dual of 
the original map. Show that S* is straight. 

10. Show that the circle graphs that arise from the double occurrence 
words 

13421234 

and 

13423412 

have adjacency matrices that are inverses over GF(2). 

11. Let X be the 4-valent plane graph shown in Figure 17.19. Draw the 
chord diagram Z corresponding to the straight eulerian partition of 
X, and find the associated circle graph Y. Show that Z has three 
alternating cycles and that the core of each is in ker(A(Y)). 

Notes 

There are several definitions of medial graph in the literature, some of 
which do not account for the subtleties raised by face-bounding loops or 
vertices of valency one. In evaluating any proposed definition, a useful rule 
of thumb is to try it on the "tadpole"-a two-vertex graph equal to K2 
with a loop on one vertex-which encapsulates the difficulties. 

Section 17.3 is based on Shank's paper [8]. The main result-the relation 
between the bicycle space and the cores-is ascribed there to J. D. Horton. 

A number of papers have presented characterizations of Gauss codes. The 
fundamental idea of flipping words is due to Dehn, but was extended by 
Rosenstiehl and Read [7], and then given in a manner essentially equivalent 
to ours by de Fraysseix and Ossona de Mendez [3]. 

Although lists of knots could be given by Gauss codes, it is not usual to do 
so. The Gauss code is essentially a description of the rim of a chord diagram, 
from which the chords are implicit. However, it is quite possible to describe 
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the chords instead, leaving the rim implicit. This is done by labelling the 
symbols on the rim 1 through 2n in order as we move clockwise around the 
rim. Then the chords give a perfect matching on the set {I, ... , 2n}. If the 
chord diagram comes from a Gauss code, then this matching pairs each odd 
integer with an even integer; hence we can describe it by listing the even 
integers paired with 1, 3, 5, etc. The latter is known to topologists as the 
Dowker code and appears to be their preferred numerical representation. 

The correspondence between bent eulerian tours and spanning trees in 
Section 17.8 is due to de Fraysseix [2]. Our work in Section 17.9 largely 
follows Las Vergnas [5]. The relationship between the alternating cycles of 
a chord diagram and the binary rank of a circle graph is due to Bouchet 
[1]. 

For treatments of maps along the lines we followed, see the work of 
Lins [6] and Vince [9]. Graph theorists tend to prefer using two permuta­
tions (and much baroque terminology) to describe maps, rather than three 
involutions. 

Exercise 4 is a slight extension of an observation from Section VI B of 
Kuperberg [4]. 

References 

[1] A. BOUCHET, Unimodularity and circle graphs, Discrete Math., 66 (1987), 
203-208. 

[2] H. DE FRAYSSEIX, Local complementation and interlacement graphs, Discrete 
Math., 33 (1981), 29-35. 

[3] H. DE FRAYSSEIX AND P. OSSONA DE MENDEZ, On a characterization of 
Gauss codes, Discrete Comput. Geom., 22 (1999), 287-295. 

[4J G. KUPERBERG, An exploration of the permanent-determinant method, 
Electron. J. Combin., 5 (1998), Research Paper 46,34 pp. (electronic). 

[5] M. LAS VERGNAS, Eulerian circuits of 4-valent graphs imbedded in surfaces, in 
Algebraic methods in graph theory, Vol. I, II (Szeged, 1978), North-Holland, 
Amsterdam, 1981,451-477. 

[6] S. LINs, Graph-encoded maps, J. Combin. Theory Ser. B, 32 (1982),171-181. 

[7J R. C. READ AND P. ROSENSTIEHL, On the Gauss crossing problem, in 
Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, 
North-Holland, Amsterdam, 1978, 843-876. 

[8] H. SHANK, The theory of left-right paths, Lecture Notes in Math., 452 (1975), 
42-54. 

[9] A. VINCE, Combinatorial maps, J. Combin. Theory Ser. B, 34 (1983), 1-21. 



Glossary of Symbols 

The entries in this index are divided into two lists. Entries such as A(X) 
and x( X) that have fixed letters as part of their representation occur in the 
first list, in alphabetic order (phonetically for Greek characters). Entries 
such as X· that involve only variables and mathematical symbols occur in 
the second list, grouped somewhat arbitrarily. 

A(X) 

adjM 

a(X) 

Alt(7) 

And(k) 

Aut(X) 

B(X) 

C(T,e) 

C(X,p) 

C(u) 

adjacency matrix of X, 163 

root system, 272 

the adjugate of M, 283 

size of largest independent set in X, 3 

alternating group, 94 

Andnisfai graph, 118 

automorphism group of X, 4 

incidence matrix of X, 165 

cut defined by spanning tree T and edge e, 309 

reliability polynomial of X, 354 

cut with positive shore u, 308 

cycle with n vertices, 8 
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x*(X) 

XO(X) 

C(v, r) 

Cn(X) 

x(X) 

Dn 

~(X) 

dimU 

d(v) 

d+(v) 

8A 

detA 

d(x, y) 

dx(x, y) 

E(X) 

E6 

E7 

Es 

Eo 

ev(A) 

F(X,q) 

fix(g) 

GL(3,q) 

Hom(X,Y) 

J 

J(v, k, i) 

Kn 

fractional chromatic number of X, 136 

circular chromatic number of X, 157 

cylic interval graph, 145 

n-colouring graph of X, 155 

chromatic number of X, 7 

root system, 266 

diagonal matrix of valencies, 166 

dimension of U, 231 

valency of vertex v, 321 

out-valency of vertex v, 321 

set of edges with one end in A, 38 

determinant of A, 187 

distance from x to y, 5 

distance from x to y in X, 5 

edge set of X, 1 

root system, 272 

root system, 272 

root system, 272 

principal idempotent, 185 

ith standard basis vector, 180 

eigenvalues of A, 185 

flow polynomial of X, 370 

fixed points of permutation g, 22 

general linear group, 81 

set of homomorphisms from X to Y, 107 

all-ones matrix, 95 

generalized Johnson graph, 9 

complete graph on n vertices, 2 

star graph, 10 

complete bipartite graph, 12 



!\;(X) 

!\;o(X) 

!\;l(X) 

kerA 

Kv:r 

L(X) 

Ai(Q(X)) 

M(C) 

M(X) 

MIT 

M\e 

M(Y) 

me 

N(x) 

n+(A) 

n-(A) 

OA(k,n) 

w(X) 

w*(X) 

P(X, t) 

PG(2,q) 

PG(3,q) 

<I> (X) 

<I>(A,x) 

<I>(X,x) 

Q(X) 

Qk 

R(M;x,y) 

rk 
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number of acyclic orientations of X, 350 

vertex connectivity of X, 39 

edge connectivity of X, 37 

kernel of A, 177 

Kneser graph, 135 

line graph of X, 10 

ith smallest eigenvalue of Q(X), 280 

matroid defined by code C, 347 

cycle matroid of X, 343 

matroid obtained by contracting T, 346 

matroid obtained by deleting e, 346 

medial graph of Y, 398 

multiplicity of eigenvalue (), 220 

neighbours of x, 5 

number of positive eigenvalues of A, 205 

number of negative eigenvalues of A, 205 

orthogonal array, 224 

size of largest clique of X, 3 

fractional clique number of X, 137 

chromatic polynomial of X, 353 

classical projective plane, 80 

3-dimensional projective space, 83 

path on n vertices, 10 

conductance of X, 292 

characteristic polynomial of A, 164 

characteristic polynomial of X, 164 

Laplacian of X, 279 

k-dimensional cube, 33 

rank polynomial of M, 356 

rank function. 341 
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rk B rank of B, 166 

rk2 (X) binary rank of X, 181 

p(A) spectral radius of A, 177 

S(X) Seidel matrix of X, 250 

S(X) subdivision graph of X, 45 

supp( v) support of v, 176 

CTu(X) local complement of X at u, 182 

Sw(X) switching graph of X, 255 

symmetric group, 4 

symplectic graph, 184 

Sym(V) 

Sp(2r) 

r(X) 

Bi(A) 

Bmax(X) 

Bmin(X) 

tr A 

number of spanning trees of X, 282 

ith largest eigenvalue of A, 193 

maximum eigenvalue of X, 174 

minimum eigenvalue of X, 174 

trace of A, 165 

V(X) 

W(C, t) 

wr(L) 

X(G,C) 

X(Zn,C) 

X(I) 

H<G 

H~G 

x~y 

[L] 

X 

go! 

I* 

£* 

vertex set of X, 1 

weight enumerator of C, 358 

writhe of L, 387 

Cayley graph for G, 34 

circulant graph, 8 

incidence graph of I, 78 

H is a proper subgroup of G, 

H is a subgroup of G, 28 

x is adjacent to y, 1 

Kauffman bracket of L, 384 

complement of X, 5 

28 

composition of homomorphisms, 

dual incidence structure, 78 

dual lattice. 316 

103 



X* 

(x) 
X~Y 

(n, k, a, c) 

t-( v, k, At) 

A®B 

X*Y 

X[Y] 

XDY 

XxY 

Q[u] 

A/n 

X/n 

X/n 

~V(X) 

X\e 
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dual code, 348 

subspace of vectors orthogonal to u, 83 

dual graph, 14 

Euclidean length of x, 285 

the map graph, 108 

subspace spanned by x, 266 

X is isomorphic to Y, 2 

parameters of a strongly regular graph, 218 

parameters of at-design, 94 

Kronecker product, 206 

strong product, 155 

lexicographic product, 17 

Cartesian product, 154 

product of X and Y, 106 

matrix Q with row and column u deleted, 282 

quotient matrix, 203 

quotient graph, 104 

quotient graph, 196 

space of functions from V (X) ---- ~, 171 

restriction of f to Y, 7 

stabilizer of S in G, 20 

stabilizer of x in G, 20 

space of real-valued functions on E, 307 

image of v under mapping g, 4 

orbit of x under G, 20 

image of Y under mapping g, 5 

transpose of orbital 0, 26 

graph obtained from X by contracting e, 281 

core of X, 105 

graph obtained from X by deleting e, 281 



there is a homomorphism from X to Y, 103 

oriented graph with orientation IJ, 167 

graph obtained from X by switching on IJ, 255 

vertices at distance i from u in X, 67 
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achiral, 376 
action, 19 
acyclic graph, 4 
acyclic orientation, 321 
adjacency matrix, 163 
adjacent, 1 
adjoint, 108 
adjugate, 283 
algebraic connectivity, 305 
alternating 

cycle, 418 
alternating knot, 381 
arborescence, 303 
arc, 35 

s-arc, 59 
s-arc transitive, 59 
in a graph, 2 
of a link diagram, 377 
regular, 63 
transitive, 35 

asymmetric, 22 
atom, 40 
automorphism 

of a graph, 4 
of a group, 48 

automorphism group 
of a graph, 4 

balanced representation, 285 
barycentric representation, 294 
basis 

of a matroid, 343 
bent eulerian partition, 397 
bicycle, 332 
bicycle space, 333 

of a code, 351 
bicycle-type, 335, 351 
binary matroid, 349 
bipartite graph, 6 
bisection width, 293 
block 

of a design, 94 
of a graph, 347 
of imprimitivity, 27 

block graph, 97 
bond, 308 
bond matroid, 345 
bridge, 37 

Cartesian product, 154 
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Cayley graph, 34 
Chang graphs, 259 
characteristic matrix, 196 
characteristic polynomial, 164 
x-critical, 105 
chip firing, 321 
chord,311 
chord diagram, 405 
chromatic number, 7 
chromatic polynomial, 354 
circle graph, 406 
circuit of a matroid, 343 
circulant graph, 8 
circular chromatic number, 157 
Clebsch graph, 226 
clique, 3 
closed 

left-right walk, 400 
walk, 165, 395 

cofactor, 283 
Colin de Verdiere number, 305 
collinear, 78 
coloop, 346 
colour class, 7 
colouring, 6 

of a link diagram, 378 
comparability graph, 143 
complement, 5 
complete 

bipartite graph, 12 
graph,2 

completely regular, 196 
component 

of a graph, 4 
of a link, 374 

concurrent, 78 
conductance, 292 
conference graph, 222 
conjugacy class, 21 
conjugate, 21 
connected 

component, 4 
graph, 4 
matroid, 347 

connection set 

of a circulant, 8 
connectivity, 39 
contraction, 346 
core, 104 

of a graph, 105 
cospectral, 164 
covering graph, 115 
covering map, 115 
critical, 105 
q-critical, 326 
critical group, 329 
cube, 14, 33 

k-cube Qk, 33 
cubic,5 
cut, 308 
cut lattice, 317 
cut space, 308 
cut-edge, 37 
cut-type, 335, 351 
cycle, 4 

en, 8 
cycle matroid, 343 
cyclic interval graph, 145 

decomposable, 268 
deletion, 346 
deletion-contraction algorithm, 

349 
dependent set, 343 
determinant, 317 
diagonal 

of a product, 107 
orbital, 26 

diameter, 16 
diffuse state, 325 
direct sum, 347 
directed edge, 2 
directed graph, 2 
disconnected, 4 
disjoint union, 4 
distance, 5 
distance partition, 67 
distance regular, 68 
distance transitive, 66 
dollar game, 327 



double occurrence word, 404 
Dowker code, 425 
dual 

code, 348 
function, 344 
graph, 14 
incidence structure, 78 
lattice, 316 
map, 416 
matroid, 345 

duality, 79 

ear decomposition, 313 
edge, 1 

atom, 38 
colouring, 65 
connectivity, 37 
cutset, 37 
transitive, 35 

empty graph, 2 
endomorphism, 8 
endomorphism monoid, 8 
energy, 285 
equiangular lines, 249 
equitable partition, 195 
equivalent links, 374 
eulerian 

cycle, 396 
partition, 396 
tour, 396 

eulerian orientation, 370 
eulerian walk, 395 
even 

double occurrence word, 404 
graph,318 

expander, 293 
external face, 13 

face 
of a plane graph, 13 

face graph, 379 
faithful, 19 
Fano plane, 95 
feasibility condition, 219 
fibre 
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of a homomorphism, 104 
finite graph, 2 
firing 

chip firing, 321 
5-prism,7 
flag, 414 
flat, 369 
flip 

a double occurrence word, 407 
an eulerian tour, 397 

flipping the rotor, 364 
flow lattice, 318 
flow polynomial, 370 
flow space, 310 
flow-type, 335, 351 
folding, 114 
forest, 4 
fractional 

chromatic number, 136 
clique, 136 
clique number, 136 
colouring, 135 

fragment, 40 
n-full, 192 
fullerene, 208 

Gauss code, 403 
generalized 

Laplacian, 296 
line graph, 266 
polygon, 84 
quadrangle, 81 

generating set, 49 
generator matrix, 342 
generously transitive, 26 
G-invariant, 20 
girth, 60 
Gram matrix, 173 
graph,l 
graphic matroid, 346 
grid, 82 

Halin graph, 25 
Hamilton cycle, 45 
Hamilton path, 45 
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hamiltonian, 45 
head of an edge, 167 
heptad, 69 
Hoffman-Singleton graph, 92 
homeomorphism, 374 
homomorphically equivalent, 104 
homomorphism, 6 
hull 

of a code, 351 
hyperplane, 370 
hypohamiltonian, 66 

icosahedron, 127 
imperfect, 142 
imprimitive 

graph, 218 
group, 28 

in-valency, 29 
incidence, 78 
incidence graph, 78 
incidence matrix 

of a design, 95 
of a graph, 165 
of an oriented graph, 167 

incidence structure, 78 
incident 

point and line, 78 
vertex and edge, 1 

indecomposable, 268 
independent set, 343 

of vertices, 3 
index 

of a cover, 115 
induced subgraph, 3 
infinite face, 13 
integral basis, 315 
integral lattice, 316 
interlace, 193 
intersection array, 68 
intersection numbers, 239 
invariant, 170 
G-invariant, 20 
irreducible, 175 
isometric, 16 
isomorphic, 1 

isomorphism, 2 
isomorphism class, 22 
isoperimetric number, 292 
isotopy, 374 
isotropic, 215 

Johnson graph, 9 
Jones polynomial, 388 

Kauffman bracket, 384 
k-connected, 39 
kernel 

of a homomorphism, 104 
Kneser graph, 9 
knot, 374 
k-regular, 5 
Krein bound, 231 
Kronecker product, 206 

ladder, 131 
Laplacian, 279 
Latin square, 69 
lattice, 107, 315 
Laurent polynomial, 388 
leapfrog graph, 209 
left-right cycle, 400 
left-right walk, 399 
lexicographic product, 17, 156 
line graph, 10 
linear 

code, 342 
group, 81 
matroid, 349 

link, 374 
link diagram, 374 
link invariant, 377 
local 

complement, 182 
eigenvalue, 228 
injection, 115 
isomorphism, 115 

loop 
in a graph, 8 
in a matroid, 344 



Mobius ladder, 118 
map, 415 
map graph, 108 
matching, 43 
matroid, 343 
maximal planar graph, 13 
maximal spanning forest, 4 
maximum matching, 43 
medial graph, 398 
minimal asymmetric graph, 32 
minimally imperfect, 143 
minor, 300 
mirror image, 375 
monoid,8 
monotone, 341 
Moore graph, 90 
multiple edge, 14 
mutant knots, 390 

n-colouring graph, 155 
neighbour, 1 
nodal domain, 297 
normalized representation, 301 
null graph, 2 

octahedron, 13 
odd girth, 104 
odd graph, 206 
1-factor, 43 
I-factorization, 73 
orbit, 20 
orbital, 25 
order 

of generalized polygon, 87 
orientable map, 416 
orient able surface, 405 
orientation, 167 
oriented 

cut, 308 
cycle, 310 
eulerian cycle, 419 
eulerian partition, 419 
graph, 167 
link, 387 

orthogonal array, 224 
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orthogonal representation, 287 
out-valency, 29 
outerplanar, 300 

Paley graph, 221 
parameters, 218 
partial linear space, 78 
path,4 
pedestrian, 333 
perfect code, 198 
perfect graph, 142 
perfect matching, 43 
peripheral cycle, 295 
permutation group, 19 
permutation representation, 19 
Petersen graph, 9 
Petrie map, 416 
planar, 12 
planar embedding, 13 
planar triangulation, 13 
plane graph, 13 
point graph, 235 
pointwise stabilizer, 20 
positive definite, 173 
positive semidefinite, 173 
prime knot, 389 
primitive 

graph, 218 
group, 28 

principal idempotents, 185 
principal tripartition, 334 
prism 

5-prism, 7 
product, 106 
projective plane, 79 
projective space, 83 
proper colouring, 6 
puncturing a code, 348 

q-critical, 326 
q-stable, 326 
quartic, 5 
quasi-symmetric design, 239 
quotient graph, 196 
quotient matrix, 203 
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rank 
function, 341 
of a group, 26 
of a lattice, 315 
polynomial, 356 

rank-two reduction, 183 
rational function, 186 
Rayleigh's inequalities, 202 
real projective plane, 15 
recurrent state, 325 
reduced, 117 
reflection group, 268 
regular 

k-regular, 5 
fractional colouring, 136 
graph, 5 
group, 48 
isotopy, 384 
two-graph, 256 

Reidemeister moves, 376 
reliability polynomial, 354 
replication number, 95 
representation 

of a graph, 284 
restriction, 346 
retract, 7 
retraction, 7 
r-fold cover, 115 
right regular representation, 48 
rim, 405 
root system, 268 
rotor, 363 

s-arc, 59 
Schliifli graph, 259 
score, 322 
Seidel matrix, 250 
Seifert circles, 419 
self-complementary, 17 
self-dual, 14 

graph, 14 
incidence structure, 79 

self-paired orbital, 26 
semiregular 

bipartite graph, 12 

group, 47 
setwise stabilizer, 20 
shadow, 374 
shore, 308 
shortening a code, 349 
signed characteristic vector, 308 
signed rotor, 366 
signed set, 361 
simple folding, 114 
simple graph, 2 
simplex, 249 
sink, 337 
skew symmetric, 191 
source, 337 
spanning subgraph, 3 
spanning tree, 4 
spectral decomposition, 186 
spectral radius, 177 
spectrum, 164 
split link, 388 
square lattice graph, 219 
stabilizer, 20 
q-stable, 326 
star, 267 

K 1,n,1O 
star-closed, 267 
star-closure, 267 
state, 322 
Steiner system, 95· 
Steiner triple system, 95 
straight eulerian cycle, 396 
straight eulerian partition, 396 
strong component, 29 
strong orientation, 337 
strong product, 155 
strongly connected, 29 
strongly regular, 218 
subconstituents, 227 
sub direct product, 107 
subdivision graph, 45 
subgraph,3 

induced, 3 
spanning, 3 

subharmonic, 175 
sublattice, 315 



submodular, 341 
sum 

of two knots, 389 
support 

of a permutation, 23 
of a vector, 176 

switching, 255 
class, 255 
equivalent, 255 
graph, 255 
off a vertex, 255 

symmetric 
design, 96 
graph, 59 
group, 4 
orbital, 26 

symmetry group, 268 
symplectic form, 243 
symplectic graph, 184, 242 
system of imprimitivity, 27 

tail of an edge, 167 
thick 

generalized polygon, 84 
vertex, 84 

thin 
vertex, 84 

tight interlacing, 202 
torus, 15 
totally isotropic, 83 
trace, 165 
transitive 

graph, 33 
group, 20 

tree, 4 
triad,93 
triangle, 11 
triangular graph, 219 
triangulation, 13 
truncation, 126 
Tutte polynomial, 371 
2-cell embedding, 404 
two-graph, 255 

unimodular. 317 
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uniquely n-colourable, 113 
unknot, 375 

valency, 5 
vertex, 1 

connectivity, 39 
cutset, 39 
transitive, 33 

walk, 165, 395 
walk regular, 190 
weak path, 29 
weakly connected, 29 
weight 

of a codeword, 358 
of a fractional clique, 136 
of a fractional colouring, 136 

weight enumerator, 358 
weighted Laplacian, 286 
Whitney flip, 390 
Witt design, 241 
writhe, 387 
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