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Preface

The Fourier transform and the Laplace transform of a positive measure share,
together with its moment sequence, a positive definiteness property which
under certain regularity assumptions is characteristic for such expressions.
This is formulated in exact terms in the famous theorems of Bochner,
Bernstein-Widder and Hamburger. All three theorems can be viewed as
special cases of a general theorem about functions ¢ on abelian semigroups
with involution (S, +, *) which are positive definite in the sense that the
matrix (@(s}¥ + ;) is positive definite for all finite choices of elements
515 - .., 8, from S. The three basic results mentioned above correspond to
(R, +, x* = —x), ([0, of, +, x* = x) and (N,, +, n* = n).

The purpose of this book is to provide a treatment of these positive
definite functions on abelian semigroups with involution. In doing so we also
discuss related topics such as negative definite functions, completely mono-
tone functions and Hoeffding-type inequalities. We view these subjects as
important ingredients of harmonic analysis on semigroups. It has been our
aim, simultaneously, to write a book which can serve as a textbook for an
advanced graduate course, because we feel that the notion of positive
definiteness is an important and basic notion which occurs in mathematics
as often as the notion of a Hilbert space. The already mentioned Laplace and
Fourier transformations, as well as the generating functions for integer-
valued random variables, belong to the most important analytical tools in
probability theory and its applications. Only recently it turned out that
positive (resp. negative) definite functions allow a probabilistic characteriza-
tion in terms of so-called Hoeffding-type inequalities.

As prerequisites for the reading of this book we assume the reader to be
familiar with the fundamental principles of algebra, analysis and probability,
including the basic notions from vector spaces, general topology and abstract
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measure theory and integration. On this basis we have included Chapter 1
about locally convex topological vector spaces with the main objective of
proving the Hahn-Banach theorem in different versions which will be used
later, in particular, in proving the Krein-Milman theorem. We also present
a short introduction to the idea of integral representations in compact
convex sets, mainly without proofs because the only version of Choquet’s
theorem which we use later is derived directly from the Krein-Milman
theorem. For later use, however, we need an integration theory for measures
on Hausdorff spaces, which are not necessarily locally compact. Chapter 2
contains a treatment of Radon measures, which are inner regular with respect
to the family of compact sets on which they are assumed finite. The existence
of Radon product measures is based on a general theorem about Radon
bimeasures on a product of two Hausdorff spaces being induced by a Radon
measure on the product space. Topics like the Riesz representation theorem,
adapted spaces, and weak and vague convergence of measures are likewise
treated.

Many results on positive and negative definite functions are not really
dependent on the semigroup structure and are, in fact, true for general
positive and negative definite matrices and kernels, and such results are
placed in Chapter 3.

Chapters 4-8 contain the harmonic analysis on semigroups as well as a
study of many concrete examples of semigroups. We will not go into detail
with the content here but refer to the Contents for a quick survey. Much
work is centered around the representation of positive definite functions
on an abelian semigroup (S, +, *) with involution as an integral of semi-
characters with respect to a positive measure. It should be emphasized that
most of the theory is developed without topology on the semigroup S. The
reason for this is simply that a satisfactory general representation theorem for
continuous positive definite functions on topological semigroups does not
seem to be known. There is, of course, the classical theory of harmonic
analysis on locally compact abelian groups, but we have decided not to
include this in the exposition in order to keep it within reasonable bounds
and because it can be found in many books.

As described we have tried to make the book essentially self-contained.
However, we have broken this principle in a few places in order to obtain
special results, but have never done it if the results were essential for later
development. Most of the exercises should be easy to solve, a few are more
involved and sometimes require consultations in the literature referred to.
At the end of each chapter is a section called Notes and Remarks. Our aim has
not been to write an encyclopedia but we hope that the historical comments
are fair.

Within each chapter sections, propositions, lemmas, definitions, etc. are
numbered consecutively as 1.1, 1.2, 1.3, .. .in §1,as 2.1, 2.2, 2.3, . . . in §2,
and so on. When making a reference to another chapter we always add the
number of that chapter, e.g. 3.1.1.
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We have been fascinated by the present subject since our 1976 paper and
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CHAPTER 1
Introduction to Locally Convex
Topological Vector Spaces and Dual Pairs

§1. Locally Convex Vector Spaces

The purpose of this chapter is to provide a quick introduction to some of the
basic aspects of the theory of topological vector spaces. Various versions of
the Hahn-Banach theorem will be used later in the book and the exposition
therefore centers around a fairly detailed treatment of these fundamental
results. Other parts of the theory are only sketched, and we suggest that the
reader consult one of the many books on the subject for further information,
see e.g. Robertson and Robertson (1964), Rudin (1973) and Schaefer (1971).

1.1. We assume that the reader is familiar with the concept of a vector space
E over a field K, which is always either K = R or K = C, and of a topology
O on a set X, where ¢ means the system of open subsets of X.

Generally speaking, whenever a set is equipped with both an algebraic
and a topological structure, we will require that the structures match in the
sense that the algebraic operations become continuous mappings.

To be precise, a vector space E equipped with a topology 0 is called a
topological vector space if the mappings (x, y)+x + y of E x E into E and
(4, x) = Ax of K x E into E are continuous. Here it is tacitly assumed that
E x E and K x E are equipped with the product topology and K = R or
KK = C with its usual topology. A topological vector space E is, in particular,
a topological group in the sense that the mappings (x, y)>x + yof E x E
into E and x — —Xx of E into E are continuous.

For each u € E the translation t,: x — x + u is a homeomorphism of E,
so if 4 is a base for the filter # of neighbourhoods of zero, then u + #is a
base for the filter of neighbourhoods of u. Therefore the whole topological
structure of E is determined by a base of neighbourhoods of the origin.
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A subset 4 of a vector space E is called absorbing if for each x € E there
exists some M > 0 such that x € A4 for all A e K with |4} > M; and it is
called balanced, if A4 = A for all A e K with |1} < 1. Finally, A is called
absolutely convex, if it is convex and balanced.

1.2. Proposition. Let E be a topological vector space and let U be the filter
of neighbourhoods of zero. Then:

(i) every U € % is absorbing;
(ii) for every U € U there exists Ve withV + V < U;
(iti) for every U € U, b(U) = ﬂl 1z 1 MU is a balanced neighbourhood of zero
contained in U.

PRrOOF. For a € E the mapping A+ Aa of K into E is continuous at A =0
and this implies (i). Similarly the continuity at (0, 0) of the mapping (x, y) —
X + y implies (ii). Finally, by the continuity of the mapping (4, x) — Ax at
(0,0) € K x E we can associate with a given U € % a number ¢ > 0 and
V € % such that AV < U for |A| £ & Therefore

eVebU)cU
so U contains the balanced set b(U) which is a neighbourhood of zero
because ¢V is so0, x — ¢x being a homeomorphism of E. O

From Proposition 1.2 it follows that in every topological vector space the
filter % has a base of balanced neighbourhoods.

A topological vector space need not have a base for # consisting of
convex sets, but the spaces we will discuss always have such a base.

1.3. Definition. A topological vector space E over [K is called locally convex
if the filter of neighbourhoods of zero has a base of convex neighbourhoods.

1.4. Proposition. In a locally convex topological vector space E the filter of
neighbourhoods of zero has a base % with the following properties:

(i) Every U € & is absorbing and absolutely convex.
(i) If Ue Band A % 0, then AU € A.

Conversely, given a base & for a filter on E with the properties (i) and (ii),
there is a unique topology on E such that E is a (locally convex) topological
vector space with % as a base for the filter of neighbourhoods of zero.

Proor. If U is a convex neighbourhood of zero then b(U) is absolutely convex.
If %, is a base of convex neighbourhoods, then the family # =
{Ab(U)|U € %B,, A + 0} is a base satisfying (i) and (ii).

Conversely, suppose that # is a base for a filter # on E and satisfies (i)
and (ii). Then every set U € & contains zero. The only possible topology on
E which makes E to a topological vector space, and which has % as the
filter of neighbourhoods of zero, has the filter a + & as filter of neigh-
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bourhoods of a € E. Calling a nonempty subset G < E “open” if for every
a € G there exists Ue % such that ¢ + U < G, it is easy to see that these
“open” sets form a topology with a + & as the filter of neighbourhoods
of a, and that E is a topological vector space. O

In applications of the theory of locally convex vector spaces the topology
on a given vector space E is often defined by a family of seminorms.

1.5. Definition. A function p: E — [0, oo[ is called a seminorm if it has the
following properties:

(1) homogeneity: p(Ax) = |Alp(x)for Ae K, x € E;
(i) subadditivity: p(x + y) < p(x) + p(y) for x, y € E.

If, in addition, p~({0}) = {0}, then p is called a norm.

If pis a seminorm and o > 0 then the sets {x € E| p(x) < o} are absolutely
convex and absorbing.
For a nonempty set 4 = E, we define a mapping p4: E — [0, o] by

p4(x) = inf{A > O|x € A4}

(where p,(x) = oo, if the set in question is empty).
The following lemma is easy to prove.

1.6. Lemma. If A c Eis

(i) absorbing, then p ,(x) < oo for x € E;
(i) convex, then p, is subadditive;
(iii) balanced, then p, is homogeneous, and

{xeElpax) <1} = 4 = {xe E|ps(x) = 1}.

If A satisfies (i)-(iii) then p, is called the seminorm determined by A.

A seminorm p satisfies |p(x) — p(y)| < p(x — y). In particular, if E is a
topological vector space then p is continuous if and only if it is continuous
at 0 and this is equivalent with {x|p(x) < a} being a neighbourhood of zero
for one (and hence for all) o > 0.

We will now see how a family (p,);.; of seminorms on a vector space E
induces a topology on E.

1.7. Propeosition. There exists a coarsest topology on E with the properties
that E is a topological vector space and each p; is continuous. Under this
topology E is locally convex and the family of sets

{x€E|p;,(x) <& ...,pi(x) <e}, it,....ip€l, neN, £>0,

is a base for the filter of neighbourhoods of zero.
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PROOF. Let £ denote the above family of sets. Then 4 is a base for a filter on
E having the properties (i) and (ii) of Proposition 1.4, and the unique topology
asserted there is the coarsest topology on E making E to a topological vector
space in which each p; is continuous.

The above topology is called the topology induced by the family (p;);c; of
seminorms.

Note that in this topology a net (x,) from E converges to x if and only if
lim, p(x — x,) =0foralliel.

The topology of an arbitrary locally convex topological vector space E is
always induced by a family of seminorms, e.g. by the family of all continuous
seminorms as is easily seen by 1.4 and 1.6.

1.8. Proposition. Let E be a locally convex topological vector space, where the
topology is induced by a family (p;);.; of seminorms. Then E is a Hausdorff
space if and only if for every x € E\{0} there exists i € I such that p(x) % 0.

ProOOF. Suppose x + y and that (p;);.; has the above separation property.
Then there exist i € I and ¢ > 0 such that p(x — y) = 2¢. The sets

{ulpx — u) < e}, {ulp(y —u) < ¢}
are open disjoint neighbourhoods of x and y.

For the converse we prove the apparently stronger statement that the
separation property of (p;);.; is a consequence of E being a T;-space (i.e. the
one point sets are closed). In fact, if x 4 0 and {x} is closed there exists a
neighbourhood U of zero such that x ¢ U. By Proposition 1.7 there exist
¢ > 0 and finitely many indices iy, ..., i, € I such that

{J’|P,,(Y) < & ...y p;,,(y) < 8} = U’
so for some i € {iy, ..., i,; we have p(x) = e. a

1.9. Finest Locally Convex Topology. Let E be a vector space over K. Among
the topologies on E, which make E into a locally convex topological vec-
tor space, there is a finest one, namely the topology induced by the family
of all seminorms on E. This topology is called the finest locally convex
topology on E. An alternative way of describing this topology is by saying
that the system of all absorbing absolutely convex sets is a base for the filter
of neighbourhoods of zero, cf. 1.4.

The finest locally convex topology is Hausdorfl. In fact, let e € E\ {0} be
given. We choose an algebraic basis for E containing e and let ¢ be the linear
functional determined by ¢(e) = 1 and ¢ being zero on the other vectors
of the basis. Then p = || is a seminorm with p(e) = 1, and the result follows
from 1.8.

Notice that every linear functional is continuous in the finest locally
convex topology.

In Chapter 6 the finest locally convex topology will be used on the vector
space of polynomials in one or more variables.
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1.10. Exercise. Let E be a topological vector space, and let 4, B, C, F < E.

(a) Show that A + Bis open in E if A is open and B is arbitrary.
(b) Show that F + C s closed in E if F is closed and C is compact.

1.11. Exercise. Let E be a topological vector space. Show that the interior
of a convex set is convex. Show that if U is an absolutely convex neighbour-
hood of 0 in E then its interior is absolutely convex. It follows that a locally
convex topological vector space has a base for the filter of neighbourhoods
of 0 consisting of open absolutely convex sets.

1.12. Exercise. Show that a Hausdorff topological vector space is a regular
topological space. (It is actually completely regular, but that is more difficult
to prove.)

1.13. Exercise. Let E be a topological vector space and A = E a nonempty
and balanced subset. Then:

(1) f Aisopen, A = {x e E|p,(x) < 1};
(i) if Aisclosed, A = {x € E|p.(x) < 1}.

1.14. Exercise. Let p, g be two seminorms on a vector space E. Then if
{xe E{p(x) £ 1} = {x € E|q(x) £ 1} it follows that p = q.

1.15. Exercise. Let the topology of the locally convex vector space E be
induced by the family (p;);.; of seminorms, and let f be a linear functional
on E. Then fis continuous if and only if there exist ¢ € J0, co[ and some
finite subset J < I such that | f(x)| £ ¢ - max{p,x)|ie J} for all x € E.

§2. Hahn-Banach Theorems

One main result in the theory of locally convex topological vector spaces is
the Hahn-Banach theorem about extensions of linear functionals. In the
following we treat this and closely related results under the name of Hahn-
Banach theorems.

We recall that a hyperplane H in a vector space E over K is a maximal
proper linear subspace of E or, equivalently, a linear subspace of codimension
one (ie. dim E/H = 1). Another equivalent formulation is that a hyper-
plane is a set of the form ¢~ !({0}) for a linear functional ¢: E — K not
identically zero.

Neither local convexity nor the Hausdorff separation property is needed
in our first version of the Hahn-Banach theorem. However the existence of
a nonempty open convex set 4 + E is a strong implicit assumption on E.
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2.1. Theorem (Geometric Version). Let E be a topological vector space over
I and let A be a nonempty open convex subset of E. If M is a linear subspace of
E with An M = (J, there exists a closed hyperplane H containing M with
AnH= (.

ProOF. We first consider the case I = R. By Zorn’s lemma there exists a
maximal linear subspace H of E such that M < H and 4 n H = . Let
C=H+ (150 A4

The sum of an open set and an arbitrary set is open, hence C is open,
cf. Exercise 1.10. We now derive four properties of C and H by contradiction:

@Cn(-0C)=g.
In fact, if we assume x € C n (—C), we have x = h; + A,a; = h; — 4,4,
withh;e H,a;€ A, A; > 0,i = 1, 2. By the convexity of A4

j,l+,{2a1+,11+,{2a2=/11+,{2(h2_h1)EAmH

which is impossible.

b)) HuCu(-C)=E.

In fact, if there exists x € E\(H U C U (—C)) we define # = H + Rx, so
H is a proper subspace of A. Furthermore A n H = (f because ye A n A
can be written y = h + Ax with he H and A £+ 0 (4 n H = (J), and then
x = (1/A)y — (1/)h e C u (—C), which is incompatible with the choice of
x. Finally the existence of H is inconsistent with the maximality of H so (b)
holds.

© Hn(Cu(-CO)=¢.

In fact,if xe HN C then x = h + Aa with he H,ae A and A > 0, but
then a = (1/A)X(x — h) € A n H, which is a contradiction.

From (b) and (c) follows that H is the complement of the open set
C u (=), hence closed.

(d) H is a hyperplane.

If H is not a hyperplane there exists x € E\H suchthat = H + Rx + E.
Without loss of generality we may assume xe€ C and we can choose
y e (—C)\AH. The function f: [0, 1] - E defined by f(1) = (1 — )x + iy
is continuous, so f ~*(C) and f ~!(—C) are disjoint open subsets of [0, 1]
containing, respectively, 0 and 1. Since [0, 1] is connected there exists
o € ]0, 1[ such that f(«) € H. But thisimplies y = (1/a}(f(2) — (1 — 2)x) € A,
which is a contradiction. ‘

This finishes the proof of the real case.

A complex vector space can be considered as a real vector space, and if H
denotes a real closed hyperplane containing M and such that A n H = J,
then H n (iH) is a complex hyperplane with the desired properties. O
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The following important criterion for continuity of a linear functional
will be used several times.

2.2. Propeosition. Let E be a topological vector space over IK, let ¢: E — K
be a nonzero linear functional and let H = ¢~ '({0}) be the corresponding
hyperplane. Then precisely one of the following two statements is true:

(i) ¢ is continuous and H is closed,;
(ii) ¢ is discontinuous and H is dense.

ProoOF. The closure H is a linear subspace of E. By the maximality of H we
therefore have either H = H or H = E.If ¢ is continuous then H = ¢~ 1({0})
is closed. Suppose next that H is closed. Let a € E\H be chosen such that
¢(a) = 1. By Proposition 1.2 there exists a balanced neighbourhood V of
zero such that (a + V) n H = &, and therefore ¢(V) is a balanced subset
of K such that 0 ¢ 1 + @(V), hence ¢(V) < {x € K||x| < 1}. It follows that
|o(x)] < & for all x € eV, ¢ > 0, so ¢ is continuous at zero, and hence con-
tinuous. d

2.3. Theorem of Separation. Let E be a locally convex topological vector space
over K. Suppose F and C are disjoint nonempty convex subsets of E such that F
is closed and C is compact. Then there exists a continuous linear functional
¢: E - K such that

sup Re ¢(x) < inf Re ¢(x).

xeC xeF
Proor. Let us first suppose K = R, and consider the set B=F — C.
Obviously B is convex, and using the compactness of C it may be seen that
B is closed, cf. Exercise 1.10. Since F n C = (& we have 0 ¢ B, so by 14
there exists an absolutely convex neighbourhood U of Osuchthat U n B = (.
The interior V of U is an open absolutely convex neighbourhood (cf. Exercise
1.11)so A = B + V = B — V is a nonempty open convex set (1.10) such
that 0 ¢ 4. Since {0} is a linear subspace not intersecting A, there exists by
Theorem 2.1 a closed hyperplane H with 4 n H = (. Let ¢ be a linear
functional on E with H = ¢~ }({0}). By 2.2, ¢ is continuous. Now ¢(4) is a
convex subset of R, hence an interval, and since 0 ¢ ¢p(4) we may assume
o(A4) = 10, co[. (If this is not the case we replace ¢ by —¢). We next claim

inf p(x) > 0,

xeB
which is equivalent to the assertion. If the contrary was true there exists a
sequence (x,) from B such that ¢(x,) — 0. Since V is absorbing there exists
ueV with o) <0, but x, + ue A so that ¢(x,) + ¢(u) > 0 for all n,
which is in contradiction with ¢(x,) — 0.

In the case K = C we consider E as a real vector space and find a R-linear
functional ¢: E — R as above. To finish the proof we notice that there exists
precisely one C-linear functional : E — C with Re ¢y = ¢ namely y(x) =
o(x) — ip(ix), which is continuous since ¢ is so. U
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Applying the theorem to two one-point sets we find

2.4. Corollary. Let E be a locally convex Hausdorff topological vector space.
Fora,be E,a + b, there exists a continuous linear functional f on E such that

f@ + f(b).

We shall now treat the versions of the Hahn-Banach theorem which are
called extension theorems. Although they may be derived from the geometric
version, we give a direct proof using Zorn’s lemma.

The first extension theorem is purely algebraic and very useful in the
theory of integral representations. It uses the following weakened form of
the concept of a seminorm.

2.5. Definition. Let E be a vector space. A function p: E — R is called sub-
linear if it has the following properties:

(i) positive homogeneity: p(Ax) = Ap(x) for A = 0, x € E;
(i) subadditivity: p(x + y) < p(x) + p(y) for x, y € E.

A function f: E — R is called dominated by p if f(x) < p(x) for all x € E.

2.6. Theorem (Extension Version). Let M be a linear subspace of a real vector
space E and let p: E — R be a sublinear function. If f: M — R is linear and
dominated by p on M, there exists a linear extension f: E — R of f, which is
dominated by p.

Proor. We first show that it is always possible to perform one-dimensional
extensions assuming M & E.

Let ee E\M and define M’ =span(M v {e}). Every element x' € M’ has
a unique representation as x’ = x + te with x e M, r € R. For every a € R
the functional f,: M’ - R defined by f(x + te) = f(x) + ta is a linear
extension of f. We shall see that « may be chosen such that f, is dominated
by p.

By the subadditivity of p we get for all x, ye M

SO+ ) =Sfx+y) =p(x+y) =p(x—e)+ple+ ),

or
f(x) — p(x — e) < ple + y) — f(p).
Defining
k = sup{f(x) — p(x — e)|x € M},
K =inf{p(e + y) — f()Iye M},
we have

—0<kZLK<oo.
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It is easily seen that a necessary condition for f, to be dominated by p on
M’ is that « € [k, K]. This condition is also sufficient. In fact, for « € [k, K],
x,yeMandt > 0, we have

f@ %) = pt7'x —e) Sa < ple +t71y) — f(71Y).
Multiplying by ¢ > 0 and rearranging yields
f&) -t = plx —te),  f(y) + 1S p(y +te)

and shows that f, is dominated by p on M".

We next consider the set & of pairs (M, f’), where M’ = M is a linear
subspace of E and f” is a linear p-dominated extension of fto M'. For (M, f"),
M", f"Ye F we define (M, f') < (M”", f") if and only if M’ = M” and f”
is an extension of f’. Under this relation % is inductively ordered, so by
Zorn’s lemma there exists a maximal element (M, f). The preceding discus-
sion shows that M = E, which finishes the proof. O

The following corollary was established by Choquet (1962) in his treat-
ment of the moment problem.

2.7. Corollary. Let M be a linear subspace of a real vector space E, and let P
be a convex cone in E such that M + P = E. Then every linear functional
f:M > R, which is nonnegative on M N P, can be extended to a linear
functional f: E — R which is nonnegative on P.

ProoF. On E we define the order relation x < y by y — xe€ P. For xe E
there exist y,, y, € M such that y, < x < y, because x, —x e M + P. This
implies that the expression

p(x) = inf{f(y)lye M,y 2 x}, x€E

satisfies — o0 < p(x) < oo, and it is clear that p is sublinear and f(x) = p(x)
for x e M. Let f: E - R be a linear extension of f which is dominated by p.
We shall see that f(x) = 0 for all x € P. Indeed, for x € P we have —x £ 0
and hence f(—x) < p(—x) £ f(0) = 0. O

2.8. Theorem. Let M be a linear subspace of a vector space E over K and let
p: E - [0, o[ be a seminorm. If f: M — K is linear and satisfies | f(x)| <
p(x) for all x € M, there exists a linear extension f : E - K of f which satisfies

| f(x)| £ p(x) for all x € E.

ProOF. The real case follows immediately from Theorem 2.6 since a seminorm
p is sublinear and satisfies p(—x) = p(x).

In the complex case, we consider E as a real vector space and extend
g = Re(f) to a R-linear functional §: E — R satisfying |g(x)| < p(x) for
x € E. Let finally f: E — C be the unique C-linear functional with Re(f) = §,
ie. f(x) = §(x) — ig(ix) for x € E. Since Re(f|M) = §|M = g = Re(f) we
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necessarily have f|M = f. For x € E we choose a € C with |a| = 1 such that
of (x) = | f(x)|, and find

| 7C)I = f(ax) = Re f(ax) = f(ax) < plax) = |a|p(x) = p(x). O

2.9. Corollary. Let E be a locally convex topological vector space and M a
linear subspace. A continuous linear functional on M can be extended to a
continuous linear functional on E.

Proor. There exists an absolutely convex neighbourhood U of 0 in E such
that the linear functional f on M satisfies | f(x)| £ 1 for xe U n M. Let
x €M and let A > 0 be such that x e AU. Then A"!'x e U n M and hence
| f(x)| < A. This shows that the seminorm p; determined by U (cf. 1.6)
satisfies | f(x)| < py(x) for x € M. Let f be a linear extension of f satisfying
| f(x)| € pu(x) for x € E. Then | f(x)| < ¢ for x € eU, which shows that fis
continuous. O

2.10. If E denotes a topological vector space we denote by E’ the vector
space of continuous linear functionals on E, and E’ is called the topological
dual space, which is a linear subspace of the algebraic dual space E* of all
linear functionals on E.

2.11. Exercise. Let E be a real vector space and p a sublinear function on E.
Show that

p(x) = sup{f(x)| f € E*, f < p}.

2.12. Exercise. Let py, ..., p,: E — R be sublinear functions on a real vector
space E and let f : E — R be linear and satisfying f(x) < py(x) + - -+ + pu(x)
for x € E. Show that there exist linear functions fi, ..., f,: E —» R such that
f=fi+---+ f, and such that f; is dominated by p; for i=1,...,n.
Hint: Consider the product space E™.

2.13. Exercise. With the notation as in Theorem 2.6 we denote by A(f, E)
the set of linear extensions f : E — R of f which are dominated by p. Clearly
A(f, E) is convex. Show by a Zorn’s lemma argument that A(f, E) has
extreme points. Let x, € E. Show that there exists an extreme point f, in
A(f, E) such that

Jo(xo) = sup{f(xo)|f € A(f, E)}.

(For the notion of an extreme point see 2.5.1. The result of the exercise is due
to Vincent-Smith (1966, private communication). For a generalization see
Andenaes (1970).)
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§3. Dual Pairs

Let Ny = {0, 1, 2,...}, let E = R be the vector space of real sequences
s = (Skzo and let F be the vector space of polynomials p(x) = Zzzo cpx*
with real coefficients. Note that F can be identified with the subspace of
sequences s € E with only finitely many nonzero terms. Forse Eand pe F
we can define

s, p) = Z Sk Cy
k=0

and {.,-) is a bilinear mapping of E x F into R, which clearly satisfies the
axioms in the following definition, so E and F form a dual pair under {-, - ).

3.1. Definition. Let E and F be vector spaces over Kand (-, ->: E x F —» K
a bilinear form, i.e. separately linear. We say that E and F form a dual pair
under (-, - ) if the following conditions hold:

(i) For every e € E\ {0} there exists f € F such that {e, f)> £ 0.
(ii) For every f € F\ {0} there exists e € E such that (e, f) + 0.

3.2. A locally convex Hausdorff topological vector space E and its topo-
logical dual space E’ form a dual pair under the bilinear form {x, ¢ = ¢(x)
for x e E, ¢ € E'. The condition (ii) is clearly true and (i) follows from
Corollary 2.4.

A vector space E and its algebraic dual space E* form a dual pair under
the bilinear form {x, ¢> = @(x). This example is a special case of the above
example if E is equipped with the finest locally convex topology, cf. 1.9.

We see below that every dual pair (E, F, {, -)) arises in the above way in
the sense that there exist a topology n on E, such that E is a locally convex
Hausdorff topological vector space, and an isomorphism j: F — E’ such
that j(f)e) = <e,f) for e € E, f € F. Such a topology # is called compatible
with the duality between E and F. In general there exist many different topolo-
gies on E of this kind, and we will now define one, which turns out to be the
coarsest compatible with the duality and therefore is called the weak topology.

3.3. Definition. Let E and F be a dual pair under (., ->. The weak topology
o(E, F) on E is the topology induced by the family (p,);.r of seminorms,

where p,(e) = [<e,fD|.

Condition (i) of 3.1 implies that o(E, F) is Hausdorff, cf. 1.8. By reasons
of symmetry there is also a weak topology o(F, E) on F.

3.4. Proposition. The topology o(E, F) is the coarsest of the topologies
compatible with the duality between E and F.

Proor. If # is a topology compatible with the duality then e (e, f) is
n-continuous for all f € F, and so are the seminorms (p;),.r. By 1.7 it
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follows that o (E, F) is coarser than #. If E is equipped with the weak topology
then e (e, f) is a continuous linear functional on E for each f € F, and
the mapping j: F — E’ given by j(f)e) = {e,f) is linear and one-to-one
(condition (ii) of 3.1). To see that j is onto we consider a ¢(E, F)-continuous
linear functional ¢ on E. By 1.7 there exists ¢ > O and f}, ..., f, € F such that
pr(x) <é&i=1,...,n, implies |@(x)| < 1. This gives at once that

{xe EXx,f> =0,i=1,...,n} € 0™ '({0}). 6]
Let us consider the linear mapping y: E — K" defined by

Y(x) = % f10, ... (% 00), x€E

The image Y(E) is a linear subspace of K" and the inclusion (1) implies that
@: Y(E) — Kis well defined by ¢(y(x)) = ¢@(x), x € E. But a linear functional
on a subspace of K" may be written

P() = _Zl Ay, yeY(E) s K,

for a not necessarily unique vector (4,,..., 4,) € K", and this shows that
@(x) = {x, f > with f = Y7, 4, f; € F, hence j(f) = . O

It is only slightly more difficult to show that there is also a finest topology
on E compatible with the duality. This topology is called the Mackey
topology and is denoted ©(E, F), cf. Exercise 3.13.

We now associate with each subset of one of the two vector spaces of a
dual pair a subset of the other space of the pair, called the polar subset.

3.5. Definition. Let E and F be a dual pair under (-, ->. For asubset 4 < E
the polar subset A° is given by

A° = {f eF|Rele,f) < 1forallee A}.

For e € E the set {e}° = {f € F|Re{e,f) < 1} is convex and closed in any
topology ¢ on F compatible with the duality. Therefore also
A° = () {e}°

ecA

is é-closed and convex. Furthermore 0 € A°.

3.6. The Bipolar Theorem. Let 1 be any topology on E compatible with the
duality between E and F and let A < E. The bipolar set A°° = (A°)° is the
smallest n-closed and convex subset of E containing A U {0}.

Proor. From the above remark it follows that A°° is an 5-closed and convex
set containing A U {0}. To finish the proof we show that the existence of an
n-closed convex set B containing A U {0} and a point e € 4°°\ B will lead
to a contradiction. In fact, by the separation theorem (2.3) there exists an
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n-continuous linear functional ¢: E - K and a number 4 € R such that

Re ¢p(e) < 4 < inf Re ¢(b).

beB

Since 0 € B we have 4 < 0. If f € F is such that ¢(x) = {x,f) for x € E we

find
1 1
supRe<b,—f> <1 <Re{e-f)
beB A A

The first inequality shows that (1/1) f € A° and the last inequality is then
incompatible with e € A°°.

3.7. Remark. If A4 is balanced we have
A°={feF||{e,f>| £ 1forallee A4}.

This is often used as a definition of the (absolute) polar set.
If Ais a cone (i.e. A4 < A for all A = 0) we have

A° = {f e F|Ree,f) < 0forall e 4},

which is a convex cone. With 4 = E we also associate another convex cone
A* < F, which is closed in any topology on F compatible with the duality
between E and F, namely

At = {f eF|{e,f> = 0forallee A}.

Clearly A* = —A° and if E and F are real vector spaces and if A is a cone
then 4+ = —A4°.

For a set A containing 0 the bipolar theorem states that 4°° is the 5-closed
convex hull of 4. Using translations we therefore have the following con-
sequence of the bipolar theorem:

3.8. Proposition. The closed convex hull of a subset of E is the same for all
topologies on E compatible with a given duality.

If E is a finite dimensional vector space over KK, hence isomorphic with
K" where n is the dimension of E, there is exactly one topology on E com-
patible with the duality between E and E*. More generally there is exactly
one Hausdorff topology on E such that E is a topological vector space. We
will refer to this topology as the canonical topology of E. These assertions are
contained in the following result.

3.9. Proposition. Let E be a finite dimensional subspace of a Hausdorff topo-
logical vector space F. Then E is closed in F, and any algebraic isomorphism
¢: K" > E (n = dim(E)) is a homeomorphism, when K" is equipped with the
topology generated by the euclidean norm.
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Proor. We first show by induction that any isomorphism ¢: K" —» E is a
homeomorphism.

Forn = 1 we put ¢(1) = e. The continuity of scalar multiplication implies
that ¢: A — e is continuous from KK to E. The inverse ¢! is a linear func-
tional on E, and its kernel is the hyperplane {0}, which is closed since E is
Hausdorff. By 2.2 it follows that ¢ ™! is continuous.

Let us assume that the above statement is true for all dimensions less
than n and let ¢: K" — E be an algebraic isomorphism. As before the con-
tinuity of the algebraic operations shows that ¢ is continuous. To see that
@~ ': E - K" is continuous it suffices to prove that each linear functional
on E is continuous. To get a contradiction let us assume that : E —» Kisa
discontinuous linear functional and put H = ¢~ !({0}). Then His a (n — 1)-
dimensional hyperplane, which is dense in E by 2.2. Let | - || be the euclidean
norm (or any norm) on H. By the induction hypothesis the norm topology
on H coincides with the topology induced from E, so there exists an open
set U in E such that

UnH={xeH||x| < 1}.

Since H is dense in E and U is open, we have U n H = U, where the closures
are in E. But the set {x € H| |/ x| < 1} is compact in H, hence in E and in
particular closed in E, so we get

UcU=UnHc{xeH||x| £1}.

Since U is absorbing in E we get E = H. By this absurdity ¢ is indeed a
homeomorphism.

We finally show that E is closed in F. If this is not true there exists x € E\E.
Then E = span(E U {x}) is a (n + 1)-dimensional space. If e,, ..., e, is an
algebraic basis for E, then ¢: K"*! - E given by ¢(A;, ..., 4, 4) =
Y7_1Ae; + Ax is an algebraic isomorphism, hence a homeomorphism. It
follows that E is closed in E, hence x € E n E = E, which is a contradiction.

O

3.10. Exercise. Let E and F be a dual pair under ¢:,-». Then the weak
topology o(E, F) is the coarsest topology on E for which the mappings
e — {e, f) are continuous when f ranges over F.

3.11. Exercise (Theorem of Alaoglu-Bourbaki). Let E be a locally convex
Hausdorff topological vector space with topological dual space E’ and let
U be a neighbourhood of zero in E. Show that U° is ¢(E’, E)-compact.
Hint: Show that for x € E there exists 4 > 0 such that |{x, f>| < 4 for all
felU®°

3.12. Exercise. Let E, F be a dual pair under <., -> and let # be a topology on
E compatible with the duality. Let U be a closed, absolutely convex neigh-
bourhood of zero in E and let py be the seminorm determined by U, cf. 1.6.
Show that

pu(x) = sup{[<x,f>||f e U°}, xeE.



Notes and Remarks 15

3.13. Exercise (Theorem of Mackey-Arens). Let E, F be a dual pair under
{+ >, and let & be the family of all absolutely convex and o(F, E)-compact
subsets of F. For A € of we define

lells = sup{|<e.f>||f € 4}, eeE.

Show that || - || , is @ seminorm on E. Use 3.11 and 3.12 to show thatifnisa
topology on E compatible with the duality then # is induced by some sub-
family of (]| || ) 4ew- Show finally that the topology induced by the family
(I 1) 4 o is the Mackey topology, i.e. the finest topology on E compatible
with the duality.

Notes and Remarks

In the period up to the 1940°s most results in functional analysis were about
normed spaces. The development of the theory of distributions of Schwartz
was one main motivation for a study of general spaces, since the basic spaces
of test functions and distributions are nonnormable in their natural topology.
Today locally convex Hausdorff topological vector spaces are a natural
frame for many theories and problems in functional analysis, e.g. the theory
of integral representations, which we shall discuss in the next chapter. For
historical information on the theory of topological vector spaces we refer
the reader to the book by Dieudonné (1981).



CHAPTER 2
Radon Measures and
Integral Representations

§1. Introduction to Radon Measures on
Hausdorff Spaces

It is well known that the pure set-theoretical theory of measure and inte-
gration has its limitations, and many interesting results need a topological
frame because measure spaces without an underlying “nice” topological
structure may be very pathological. In classical analysis this difficulty was
overcome by introducing the theory of Radon measures on locally compact
spaces. On these spaces there is a particularly important one-to-one relation-
ship between Radon measures and certain linear functionals (see below)
which in many treatments on analysis leads to the definition, that a Radon
measure Is a linear functional with certain properties.

Another branch of mathematics with a need for a highly developed
measure theory is probability theory. Here the class of locally compact
spaces turned out to be far too narrow, partly due to the fact that an infinite
dimensional topological vector space never can be locally compact. For
example, it was found that the class of polish spaces (i.e. separable and com-
pletely metrizable spaces) was much more appropriate for probabilistic
purposes.

Later on it became clear that a very satisfactory theory of Radon measures
can be developed on arbitrary Hausdorff spaces. This has been done, for
example, in L. Schwartz’s monograph (1973). We shall follow an approach
to Radon measure theory which has been initiated by Kisynski and developed
by Topsge. It deviates, for example, from the Schwartz-Bourbaki theory in
working only with inner approximation, but we hope to show that it gives
an easy and elegant access to the main results.
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In the following let X denote an arbitrary Hausdorff space. The natural
g-algebra on which the measures considered will be defined will always be
the o-algebra # = %(X) of all Borel subsets of X, i.e. the o-algebra generated
by the open subsets of X. In our terminology a measure will always be non-
negative; a measure defined on £(X) will be called a Borel measure on X.
Later on we also need to consider s-additive functions on #(X) which may
assume negative values, these functions will be called signed measures.

1.1. Definition. A Radon measure u on the Hausdorff space X is a Borel
measure on X satisfying

(i) w(C) < oo for each compact subset C < X,
(ii) w(B) = sup{u(C)|C < B, C compact} for each B € Z(X).

The set of all Radon measures on X is denoted M , (X).

Remark. Many authors require a Radon measure to be locally finite, i.e.
each point has an open neighbourhood with finite measure. There are good
reasons for not having this condition as part of the definition, see Notes and
Remarks at the end of this chapter. A finite Radon measure u (i.e. u(X) < )
satisfies

w(B) = inf{i(G)|B < G, G open} for Be #(X)

asis easily seen by considering the property (ii) for B. However for arbitrary
Radon measures this need not be true as is shown by Exercise 1.30 below.

Let A = X#(X) denote the family of all compact subsets of X. Clearly
the restriction to " of a Radon measure u is a set function
A A — [0, cof

satisfying the axioms of a Radon content below.

1.2. Definition. A Radon content is a set function A: # — [0, co[ which
satisfies

MC3p) — MCy) = sup{U(C)|C = C,\Cy, Ce X} 6y
forall C;, C, € X with C; < C,.

The key result in our approach to Radon measure theory is the extension
theorem (1.4) below, the proof of which will need the following lemma.

1.3. Lemma. A Radon content A has the following properties:

(i) MCH L ANCY) forallCy,Cye A, Cy < C,,ie. Ais monotone.
(i) AC,u Cy) + ACy n Cy) = MCy) + AC,), ie. Ais modular.
(iii) Ifanet(C,),c in A isdecreasing withC = (), C,then A(C) = lim, A(C,)
= inf, A(C,). In particular for a decreasing sequence C; 2 C, 2 --- of
compact sets we have lim, _,, A(C,) = A" \x=1 Cp).
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PROOF. (i) as well as A(F) = 0 is obvious.
(it) We have (C, u C,)\C, = C;\(C; n C,) and therefore
MCy L Cy) = MCy) = ACy) — MC1 N Cy)
as an immediate consequence of (1).
(iii) Assume that d == inf (A(C,) — A(C)) > 0. We choose a fixed set C,,
and C' ¢ C, \C, C’' € A such that
MC,,) — HC) — AC) <.
Now ﬂ@ao(C’ N C,) = & and therefore C' n C,, = & for some C,, = C,,
since C' is compact and (C,),. 4 is decreasing. From (ii) we get
MC' U G, = AC) + AC,,) £ MCy)
<MCY+ MC)+ 6
implying A(C,,) — A(C) < J, a contradiction. O

1.4. Theorem. Any Radon content on a Hausdorff space has a unique extension
to a Radon measure.

PRrROOF. Let A be a Radon content on X. We define for any subset A < X the
inner measure by
A (4) :==sup{A(C)|C € 4, Ce X}

and have to show that p := 1,| % is a measure. Of course 4, is an extension
of A, but it may assume the value + oo, if 1 is unbounded. In a certain analogy
with Carathéodory’s famous abstract measure extenston theorem we con-
sider the set system

o ={A S X|A(C A A) + 4,(C A A) = A,(C)for all C e A},

and we will show that </ is a g-algebra containing 4, on which the restriction
of 4, is o-additive.

From the very definition &/ is closed under complements and contains
the empty set. The defining property (1) of a Radon content shows that .of
even contains all open subsets of X. Let 4,, A, € &/ be disjoint and let
C, € 4, C, = A, be compact. Then the modularity of A gives

HC) + UCy) = UCy U Cy) S A4(4, L A4y)

and hence
A A1) + A4,(4)) S )»*(Al v A4,),

ie. 4, is “superadditive”. As a consequence ./ may also be written as
A ={A S X|[A(C N A)+ A (Cn A) = A(C)forall Ce X}.

Now let a sequence 4,, 4,,...€ o/ be given and fix C € # as well as
¢ > 0. Then there exist compact sets K; = Cn A4; and L; = C n Aj such
that

AC) S MK + ML) + % i=12.... Q@)
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From the modularity of 1 we get
n+1 n
A(UK,-)+/1< pt1 O UK) A(UK)+/1(K,,H) 3)
j=1 j=1

as well as
n+1 n
i=1 Jj=

We have
j=1 j=1

and

tn:=Ln+1U mLJECm<ﬂA UAn+1),
J

i=1 1
hence K, and L, are disjoint compact subsets of C, so that
AR, + ML) < XO). )
Adding the equalities (3) and (4) and inserting (2) and (5) give
n+1 n+1 n n
A(U Kj) + /l(ﬂ Lj> = A(U K,~> + A(ﬂ L,-) + MKpy1) + ALy y)
j=1 j=1 j=1 j=1

o) Af5)

If weadd (6) overn = 1,2,..., N — 1 and use (2) for j = 1 we get
N N N 1
A(UKJ)+A<ﬂLj>g/1(C)——s~Z?. ™
S -1 £

Put A:= ()%, 4;;then A((J¥%, K;) £ 4,(C n A)for all N and

A(ﬁ )—hml(ﬂL)g/l*(CnAc) ®)

j=1 N-oow
by Lemma 1.3(iii), hence letting N tend to infinity in (7) gives
AC N A)+ A,(Cn A Z AC) — ¢,

and since this holds for all ¢ > 0, we have in fact shown 4 € o, hence < is
a g-algebra containing the open sets and therefore the Borel sets.

Let us now furthermore assume that the sets A;, 4,, ... € & are pairwise
disjoint and that C < 4. Then limy., , A(()}=; L;) = 0 by (8), and taking
again the limit in (7) gives

MC) — e £ lim A(UK) = lim ZA(KJ)— Z/l(K,)< Z/l*(Aj)

N—- o =1 N-oow j=1
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for all ¢ > 0. Letting ¢ — 0 we find

A (4) =sup{A(C)|[C = A, Ce N} £ i A (4)),

and since the reverse inequality is obvious by the superadditivity of 4, we
have that 1, |« is a measure, thus finishing our proof.

The result we are now going to prove is a kind of monotone convergence
theorem for Radon measures. The usual form of this theorem on general
measure spaces deals with an increasing sequence of nonnegative measurable
functions; however, if the underlying measure is a Radon measure and if the
functions to be integrated are lower semicontinuous (i.e. { f > t} is open for
all t € R), then the sequence may be replaced by an arbitrary increasing net
of functions, as we shall see.

In the sequel we shall make repeated use of the obvious inequality

_1
-5

being valid for arbitrary functions f with values in [0, co]. If f'is finite the
infinite series in (9) reduces to a finite sum (pointwise) and f — f, < 1/2"
Note that f, increases to falso if f assumes the value co. Let us mention that
the family of all lower semicontinuous functions is closed under finite sums,
multiplication with a nonnegative constant, and that the supremum of an
arbitrary subfamily of these functions is still lower semicontinuous. Noting
finally that an indicator function f = 1 is lower semicontinuous if and only
if G is open, we see that the functions f, defined in (9) are lower semicontinuous
if f is.

Oéfn‘ z 1{f>i/2n}§f (9)
=1

1.5. Theorem. Let yu be a Radon measure on the Hausdorff space X. Then the
Jollowing holds:

(i) If a net (G,)ye 4 of open subsets of X is increasing with | ), G, = G then
H(G) = sup u(G,) = lim u(G,).

(ii) Ifanet (f,),c of lower semicontinuous functions X — [0, co] is increasing
with sup, f, = f then

ffdy=sgpfﬁdy=li£rlfﬁdu.

ProOF. (i) Let C < G be compact. Then finitely many G,,, ..., G,, cover C
and by assumption there is some oy such that G, U - - - U G,, € G,,,implying
wC) £ G,,) £ sup, u(G,) and therefore

#(G) = sup{u(O)|C = G, Ce A} <sup w(G,).

The reverse inequality is trivial.
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(ii) For every t € R the open sets {f, > t} increase to {f > t}. Using the
functions f, and the corresponding f, , as defined in (9) we find

S e e !
~lim % ¥ u({f, > ;}) = tim [ £, dn

where the interchange of limits is justified, both limits being suprema, and
using this device once more we get

ffdﬂ=supfﬁdy=supsupffm,,,du

= supsup [ fondu=sup [ fod
applying, of course, the usual monotone convergence theorem. O

1.6. Remark. Theorem 1.5 can be applied to an upwards filtering family 4
of sets or functions by defining an increasing net in the following way: The
index set and the mapping of the net will be 4 and the identical mapping.

A Borel measure satisfying property (i) of the above theorem is usually
called a t-smooth measure. The class of these measures is in general larger
than the class of Radon measures, however, for finite Borel measures on
locally compact spaces the two notions coincide. The generalized monotone
convergence theorem expressed as property (ii) of the above theorem uses
only the t-smoothness of the underlying Radon measure and therefore
remains valid for t-smooth measures as well, see Topspe (1970) and
Varadarajan (1965).

We shall need in the following the notion of restriction of a Radon measure
to a Borel subset. If X is a Hausdorff space and B € #(X), then B is again a
Hausdorff space with respect to the trace topology {B n G|G open in X}
and it is easy to see that the Borel subsets of B are given by

BB)={Bn A|Ae B#(X)} = {De B#X)|D < B}
so that in fact Z(B) <= #(X). For u e M ,(X) we now define
u|B: B(B) — [0, 0]
as the restriction of u to #(B), i.e. (u|B)(4) = w(A) for A € #(B). It is im-

mediately seen that u|B is again a Radon measure.

1.7. Proposition. Let 11 be a Radon measure on X. If the functionf : X — [0, 0]
is Borel measurable, then

fdu=sup | fdu (10)

Kex vK



22 2. Radon Measures and Integral Representations

and if f+ X — [0, co[ is continuous then v: B(X) — [0, co] defined by

W(B) = fo du

is again a Radon measure. The measure v is often denoted fu or fdu.

ProOF. If f = 1, for some B € #(X), then (10) follows from the definition
of a Radon measure. It is obvious that (10) remains true if fis an elementary
measurable nonnegative function, ie. f = 7., ;15 with pairwise disjoint
Borel sets By, ..., B,and a5, ..., o, = 0. But it is well known that an arbi-
trary Borel measurable f = 0 is the pointwise limit of some increasing
sequence of elementary functions, so that the usual monotone convergence
theorem and the possibility of interchanging two suprema give (10) in the
general case also.

Let now f:X —» R, be continuous and v(B) = (5[ du, Be B(X).
Obviously, v is finite on compact sets. Applying (10) to the restrictions
u|B and | B we find

Lf du = Sup{fxf dulKe A, K < B} O

1.8. Let u be a Radon measure on X and consider the family ¢ of all open
p-zero sets in X. The system of all finite unions of sets in ¢ filters upwards to
the union G of all sets in % and u(G) = 0 by Theorem 1.5. The open set G is
therefore maximal in % and its complement is called the support of u or
abbreviated supp(u). It is immediate that supp(u) is closed and that

supp(p) = {x € X|u(U) > 0 for each open set U such that x € U}.

Particularly simple examples of Radon measures are those with a finite
support which we will call molecular measures, and among these are the
one-point or Dirac measures ¢, defined by ¢,({x}) = 1 and ¢ ({x}°) = 0. Of
course supp(e,) = {x} and if p = Y7, a&,, is a molecular measure with
x; # x;for i # j, then supp(p) = {x;|a; > 0}. The set of molecular measures
is denoted Mol (X).

In the usual set-theoretical measure theory, as well as in the theory of
Radon measures, the notion of a product measure is of central importance.
In the latter case we are immediately confronted with the following problem:
Let X and Y be two Hausdorff spaces; then the product of the two -algebras
of Borel sets, usually denoted #(X) ® %#(Y), is by definition the smallest
g-algebraon X x Y renderingthe two canonical projectionsny: X x ¥ - X
andmy: X x Y — Y measurable,ie. #(X) ® %(Y)isthe o-algebra generated
by nx {(#(X)) U ny }(B(Y)). By definition of the product topology these
two projections are continuous on X X Y and therefore Borel measurable,
so that always

BX)RQBY) <= BX x Y).
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On “nice” spaces we even have equality of these two o-algebras on X x Y,
but this need not always hold, see the exercises below.

Our next goal will be to show existence and uniqueness of the product of
two arbitrary Radon measures. This stands in some contrast to set-theoretical
measure theory where usually o-finiteness of the measures is required in
order to guarantee a uniquely determined product measure. We begin with
a lemma.

1.9. Lemma. Let Z be a Hausdorff space and let of be an algebra of subsets of
Z containing a base for the topology. If A: of — [0, oo is finitely additive
then A: A (Z) - [0, o[ defined by

MC) =1inf{A(G)|C = G, G open, G € o/}
is a Radon content on Z.

ProOF. Let C = Z be compact, then every point x € C has an open neigh-
bourhood G, € /. Finitely many of these neighbourhoods cover C and
their union is still in /. Hence A(C) is certainly finite.

Now let two compact sets C; < C, be given. For ¢ > 0 there is an open
set G, 2 C;, G, € & such that A(G,) — XC,) < e The set C:=C, n G
is compact, too, allowing us to choose a further open set G € &, G =2 C with
A(G) — IC) < & Of course, C, =€ G U G, € so that A(C,) < AG) +
A(G,) and therefore A(C,) — A(Cy) £ A(G) + A(Gy) + ¢ — A(G,) < XC) +
2¢. Hence

MC,) — AC,) £ sup{U(C)|C = C,\C,, Ce A}

The reverse inequality will follow immediately if we can show that 4 is
additive on disjoint compact sets. Therefore let K, L € #" with K n L = J
be given. One direction, namely

MK U L)< AK)+ A(L)
is obvious, so it remains to be shown that for arbitrary ¢ > 0
MK+ ML) S MK uUlL)+e

By definition there is an open set W € o/ containing K U L such that
A(W) — A(K u L) < &. The assumption made on the algebra o/ implies
that K and L may be separated by open sets G, H belonging to ., i.c. we
have

K <G, LcH, GNnH=(.
Hence
AK) + ML) £ AG A W) + AH A W)
— A(G U H) " W)
< AW) <MK UL)+e
thus finishing the proof. O
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Later on we shall need existence and unicity of certain Radon measures
on the product of two Hausdorff spaces X and Y not only for the product of
two measures, but also for so-called Radon bimeasures. If (X, /) and (Y, %)
are just two measurable spaces (without an underlying topological structure)
then a bimeasure @ is by definition a function

O: o x B - [0, 0]

such that for fixed A € o/ the partial function B+ ®(4, B) is a measure on
4% and for fixed B € 4 the function 4+>®(A, B)is a measure on /. Obviously,
if x is a measure on o ® 4%, then (4, B) — k(A x B) is a bimeasure, but in
general not even a bounded bimeasure is induced in this way, cf. Exercise
1.31. Our next result will, however, show that for Radon bimeasures such
pathologies do not exist, where by definition ® is a Radon bimeasure if ®
is a bimeasure defined on #(X) x Z(Y) such that ®(K, L) < oo for all
compact sets K, L and ®(4, B) = sup{®(K, L) A2 Ke X (X), B2
L e 4 (Y)} for all Borel sets 4 and B.

1.10. Theorem. Let X and Y be two Hausdorff spaces and let ®: B(X) x
B(Y) — [0, co] denote a Radon bimeasure. Then there is a uniquely determined
Radon measure k on X x Y with the property

OK,L)y=x(K x L) forall KeX(X), LeA(Y).
Furthermore, the equality
(4, B) = k(4 x B)
holds for all Borel sets A € #(X), B € #(Y).

PrOOF. Denote Z:=X x Y and let of be the algebra generated by the
“measurable rectangles” A4 x B, where A€ #(X) and Be %#(Y). This
algebra contains, of course, the products of open sets in X (resp. Y) and there-
fore a base for the topology on Z. It is easy to see that there is a uniquely
determined finitely additive set function A on .« fulfilling

A(A x B) = ®(A4, B) forall Ae#A(X) and Be %(Y).

Let us now first assume that ®(X, Y) < co. Then we may apply Lemma 1.9
which, combined with the extension theorem 1.4, shows the existence of a
Radon measure k on Z such that

k(C) = inf{A(G)|C < G € o, G open}

for each compact set C = Z. If C = K x L is the product of two compact
sets K < X, L = Y, then C € o/ and

k(K x L) = A(K x L) = ®(K, L)

by monotonicity of A. On the other hand, we may use the two finite Radon
measures p(A4):=®(4, Y) on X and w(B):=®(X, B) on Y to provide us
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with open sets G 2 K, H =2 L such that y(G\K) < g¢and v(H\L) < ¢ Then

A(G x H\K x L) £ A(G\K) x Y) + A(X x (H\L))
= w(G\K) + v(H\L) < 2,
and thus
k(K x L) £ AK x L),
i.e. we have the desired equality.

If Ae #(X), Be #(Y) and C is a compact subset of 4 x B, then the
projections K :=nx(C) and L= ny(C) are still compact and C € K x
L = A x B, implying

k(A x B) = sup{k(C)|C = A x B, Ce X (Z)}
= sup{k(K x L)|JK € A,L < B,Ke A (X),Le X (Y)}
= sup{®(K, L)|[K € A4, L < B,Ke A (X),Le A (Y)}
= @(4, B),
using in the last equality once more that @ is a Radon bimeasure. We also
see from the preceding argument that « is indeed uniquely determined from
its values on products of compact sets (still assuming ®(X, Y) < o).
In the second step we abandon the finiteness restriction on ®. For two

compact sets K = X, L < Y we know that there is a uniquely determined
Kg,L € M (K x L)such that

kg, (4 x B) = ®(A, B)
for all Borel sets A = K, B = L. Of course these measures kg ; are com-
patible in the sense that K, = K,, L, € L, implies
KKy 12| K1 X Ly = Kg, 1,

Ifnow C < Ziscompact,then C = K x L for suitable compact sets K < X,
L < Y, and irrespective of the choice of K and L the value

k(C) = kg, (C)
is well defined; furthermore, we see immediately that x is even a Radon
content on Z whose extension to a Radon measure on Z we still denote
by k.
Repeating the argument already used we see that also in this case
k(A x B) = ®(4, B) forall Ae%#(X), Be %(Y).

Since the values x (C) for compact subsets C < Z are uniquely determined
by the values k (K x L) for K € #'(X), L € #(Y), so is finally «x itself,
thereby finishing the proof. (]

A particularly important special case is the following: let ue M (X)
and v e M (YY) denote two Radon measures, then ®(4, B) := u(A) - v(B) is
of course a Radon bimeasure leading to
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1.11. Corollary. If y and v are two Radon measures on the Hausdorff spaces
X and Y, then there is a uniquely determined Radon measure on X x Y,
called the product of u and v and denoted p ® v, with the property

U@ VK x L)y=wK)-w(L) forall KeA(X), LeA(Y)
For all Borel sets A = X and B = Y we have
U@ v(4 x B) = u(A)- v(B),

so that, in particular, the restriction of u ® v to the product o-algebra #(X) ®
B(Y) is a product measure of u and v in the usual sense.

Later on we shall also need an amended version of the Fubini theorem,
being more general in allowing the interchange of the order of integration
for some Borel measurable functions on the product X x Y which are not
necessarily measurable with respect to #4(X)® 4(Y). In particular, this
interchange will be possible for all nonnegative continuous functions on
X x Y.

1.12. Theorem. Let p and v be two Radon measures on the Hausdorff spaces
Xand Y and let f: X x Y - [0, oo] be lower semicontinuous. Then the two
Jfunctions

X f feuydy)  and  ye f feaydutx) (1)

are again lower semicontinuous and

d = = d d . (12
fmf ®v) f Lf(x,y)dv(y)du(x) f Lf(x,y) u() dv(y). (12)

If wand v are o-finite Radon measures and f: X x Y — [0, 0] is Borel
measurable, then the two functions in (11) are again Borel functions and (12)
continues to hold.

Proor. We know from the preceding corollary that the restriction of u ® v
to #B(X) ® #(Y) is a product measure in the usual sense. Let us first con-
sider the simple case where f = 1, .5 for Borel sets A = X and B< Y.
Then [ f(x, y) dW(y) = v(B)- 1,(x), | f(x, y) du(x) = p(A)- 15(y) are cer-
tainly measurable on X (resp. Y) and (12) obviously holds. This result
extends immediately to the case where f is the indicator function of a set in
the algebra spanned by the “measurable rectangles” A x B, A € #(X) and
B e #(Y), so that it holds, in particular, for f = 1y where U = UL (G; x Hy)
and G; € X, H; = Y are open sets. In this case, however, f is also lower
semicontinuous and we have asserted that the partial integrations in (11)
yield again lower semicontinuous functions. To show this we have to make
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use of the sections of a subset of X x Y, defined for an arbitrary V < X x Y
by

Ver={yeY|(x,y) eV}
and
V={xe X|(x,y) eV}

All the properties of sections which we shall need follow from the simple fact
that V, is the preimage of ¥ under the continuous mapping y+— (x, y) and
the corresponding fact for V7. If all the sections of V are Borel sets in X
(resp. Y) (which certainly is true for V € Z(X x Y)), then the two functions
in (11) are well defined for f = 1, and

f £ ) dv(y) = (V). f £ y) du(x) = w(V?)

Now let us continue to assume f = 1, with U = U;‘=1(G,~ x H;), G; and
H; being open. For given t € R, let

D,=={oc c {1,...,n}|v<U Hl-) > t},

xeXppUy>1ty= ) ()G

aeD; iea

then

is an open set, hence v(U,) is lower semicontinuous as a function of x and,
of course, y — u(U?) is also lower semicontinuous.

If V = X x Y isan arbitrary open set, then V is the union of an upwards
filtering family of open sets U, of the above simple type, i.c. each U, is a
finite union of open rectangles. In this case

vV =supwW(U,),)  and  u(V?) = sup u((U,))

are again lower semicontinuous, and then Theorem 1.5 shows that (12)
remains valid for f = 1,,. The extension to an arbitrary nonnegative lower
semicontinuous function f is now easily obtained using the approximating
functions f, as defined in (9) and using once more Theorem 1.5.

Let us now assume that u and v both are finite measures and put
Z =X x Y. Then the set system

9 = {V e B(Z)|v(V,) and w(V"”) are Borel measurable and
(12)is valid for f = 1}

has the following three properties:

() Ze D
(i) Ac D= A€ D
(iii) Ay, A, ... € 2 pairwise disjoint = | J2, 4,€ 2.
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This means that 2 is a so-called Dynkin class and the main theorem about
these classes is as follows (cf. Bauer 1978, Satz 2.4): If Q is a nonempty set
and & is a family of subsets of Q closed under finite intersections, then the
smallest Dynkin class containing & equals the g-algebra generated by &.

Applying this result in our special situation where Q = Z and where &
is the family of all open subsets of Z, we may conclude that 2 = %(Z), so that
(12)isindeed valid for all f= 1, V € %(Z), and then, by the usual extension,
for all Borel measurable /: Z - [0, o0 ].

The extension to the case where p and v are o-finite is completely straight-
forward and therefore omitted.

1.13. It is, of course, a natural question to ask if equality in (12) holds for
more general functions than just nonnegative lower semicontinuous ones.
The following example shows that one cannot, in general, hope for too
much.

Let X be the unit interval with usual topology and with Lebesgue measure
u, and let Y be the unit interval with discrete topology (i.e. every subset is
open in Y). On Y, we consider the counting measure v, i.c. W(B) = card(B)
for all B < Y. Both measures y and v are Radon measures, so that Theorem
1.12 may be applied. The diagonal A := {(x, x)|0 < x £ 1} is closed in
X x Y, hence f := 1, is a bounded nonnegative upper semicontinuous func-
tion, in particular fis Borel measurable. But

f f 1(x, ) du(x) d(y) = 0
and

[[ 146592 o) ey = 1.

1.14. Another important method of generating new Radon measures from
given ones is the formation of image measures. Let X and Y be two Hausdorff
spaces, let 4 be a Radon measure on X and suppose that the mapping
f: X — Y is continuous. Then a set function x4/ may be defined on the Borel
sets of Y by

W(B)=u(f"'(B), BeB(Y)

and it is immediate that u’ is o-additive, i.e. u/ is a Borel measure on Y,
called the image of p under f.

The simple example of Lebesgue measure on the real line and a constant
function shows that the image of a Radon measure need not again be of this
type. We have, however, the following positive result which will be sufficient
in many cases of interest.
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1.15. Proposition. Let X and Y be Hausdor{f spaces, let u be a Radon measure
on X and suppose that f: X — Y is continuous.
If u(f ~Y(K)) < oo for each compact set K < Y then p/ is a Radon measure.
This condition holds if either w(X) < oo or if f is proper, ie. f ~(K) is
compact for each compact set K < Y.

ProOF. We have only to verify condition (ii) of Definition 1.1 for u/, since
condition (i) is part of the assumptions. Let B € #(Y) be given. For any
a < p/(B) = u(f~'(B)) there exists a compact set K = f~'(B) such that
a < J(K). Now C := f(K) is a compact subset of B and

W(C) = u(f~HC) 2 uK) > a
which shows condition (ii). O

1.16. Later on in this book we will work repeatedly with the so-called
convolution of finite Radon measures on a Hausdorff topological semigroup
or group. We are now going to give the precise definition of this notion. Let
S denote a Hausdorff topological abelian semigroup, i.e. S is a Hausdorff
space and there is a composition law +: S x S — S which is assumed to be
associative, commutative and continuous. For a detailed discussion of this
subject see Chapter 4. Let u and v be two finite Radon measures on S. Then
their convolution u * v is defined by

pxv=Hv)",
i.e. as the image of the product measure u ® v under the composition law.

By the preceding proposition y * v is again a finite Radon measure on S and
it is not difficult to see that

prxv=v*p

and

(B*v)* K= p*(viK)

hold for all u, v, k € M%(S), the set of finite Radon measures on S; another
way to express this is, of course, that (M?% (S), *) is again an abelian semigroup.
We shall see later (cf. 3.4) that M5 (S) is even a topological semigroup in a
naturally chosen topology.

A special case deserves mention. Suppose S is an abstract abelian semi-
group, i.e. no topology is given on S in advance. If we then declare every
subset of S as open, i.e. if we equip S with the so-called discrete topology, S
becomes a topological semigroup in which the compact subsets are just
the finite ones. Every molecular measure

n
,“L = z aigs,’
i=1

(where {s;,...,8.) €8, {o3,...,,} < R,) is, of course, a finite Radon
measure on S, so that the convolution of molecular measures is well defined.
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In fact, if v = )7, B;¢,, is a second molecular measure on S then

n m
uxv= Z Z o B 41y

i=1 j=1
We finish this section by proving the so-called “localization principle”
for Radon measures which will turn out later to be very important for the
proofs of several integral representation theorems.
The following lemma will be needed in the proof of the localization
principle.

1.17. Lemma. Let X be a Hausdorff space and let C < X be a compact subset
covered by finitely many open sets Gy, ..., G,,ie.C € Gy U---UG,. Then
there are compact subsets C; = G;, 1 £ i< n,suchthat C = C,u---u C,.

ProoOF. We use induction on n. For n = 2 we have C = G; U G,, hence the
disjoint compact sets C n G4, C N G5 can be separated by open sets U,,
U,,ie.

Cn G eU,, CnGs5cU, and U nU,=¢g.

But then C,:=Cn U{ € G,, C,:=Cn U <G, and, of course, C =
Ciu(C,.

Assuming the assertion for n, let now C <G U --- UG, =
(Gyu---uG) UG, . Then C = KuC,,HwhereKCGlu-uuG,,and
C,+1 € G, are compact. By assumption K = C; u .- u C, for compact
sets C; < G;, i £ n, thus finishing the proof. U

1.18. Theorem. Let (G,),. p be an open covering of the Hausdorff space X and
on each G, let a Radon measure u, be given such that p(B) = uy(B) for each
pair of indices «, B € D and for each Borel set B < G, N Gg. Then there is a
uniquely determined Radon measure p on X such that W(B) = p(B) if Bis a
Borel set contained in G,.

Proor. Let C = X be compact. We say that C = UL 1 A;1s a decomposition
of C if (4,) is a finite family of pairwise disjoint Borel sets such that for each
i=1,...,n the (compact) closure 4; is contained in some G,,, a;€D.
Decompositions always exist, because by compactness C = U?=1 G,, for
suitable a4, ..., «, € D, and by Lemma 1.17 there exist compact sets C; < G,,
with C = { Ji=,; C;. Finally we put 4, == C,, 4;:=C\(C,; U --- U C;_,) for
i=2...,n

If we have two decompositions of a compact set C, C = (Ji-; 4; =
(Ur=1 B; with 4; = G,,, B; < Gy,, then

X

m

‘iuai(Ai)=iuai<.QAiﬁ ) Z Z (4; " B)

1
J(UA' n ) = ;1#3,-(3,'),

=1

M=
M=
‘:
’a:
D
U::
uMs
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so that

HC)= T i)

is a well-defined function A: # — [0, co[. We show that A is a Radon content.
Indeed, if C,, C, and L are compact subsets of X with C; < C,,L < C,\Cy,
and if C, = A, U---U A, is a decomposition, then C; = (A4, " Cy) U ---
v{Ad,nCy) and L=(A;nL)u---U (4, n L) are decompositions, too,
and

MCy) — MCy) = _Zl[#a.-(Ai) = I {4; 0 Cy)]

M=

1 (ANCy) 2 .;:ua.-(Ai N L) = AL).

i=1

On the other hand, given & > 0, there exist compact subsets K; < 4,\C,
such that 1, (A\C;) — (K, < ¢/n, and K = | Ji—; K, is a decomposition
of the compact set K = C,\C,; hence

AK) = .Z_,llia.-(Ki) > __ler‘ai(Ai\Cl) —¢&

= XCy) — XC,) — e

Let u be the unique extension of 4 to a Radon measure on X. Then if B
is a Borel subset of some G,, we have u(C) = u,(C) for each compact subset
C < B and therefore u(B) = u(B).

If v is another Radon measure on X such that w(B) = pu(B) for B € #(X),
B <G, aeD,and if C = | Ji-, 4; is a decomposition of the compact set
C < X, then

n

MO = TA) = T i) = HO) = W)

i=1

implying, of course, equality of x and v. O

1.19. Exercise. Let X be a Hausdorff space with a countable base 2 (i.e.
each open set in X is the union of some subfamily of 2), then %(X) equals
the o-algebra generated by 2. If Y is a further Hausdorff space with a
countable base, then (X x Y) = #(X) ® #(Y).

1.20. Exercise. Let R, be the real line equipped with the Sorgenfrey topology
(i.e. a neighbourhood base of x € R is given by {[x, a[[x < a < c0}). Then
R, is a Hausdorff space, Z(R,) = #(R), but B(R) @ #(R,) ¢ B(R, x Ry).
Hint: The topology induced by RZ on the second diagonal

A={(x, —x)|xeR}

is discrete.
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1.21. Exercise. Show that any Borel measure u on R" which is finite on
compact sets, is already a Radon measure.

1.22. Exercise. There are o-finite measures on R which are not Radon
measures.

1.23. Exercise. If #is a Radon measure on X and 4 € #(X), then p,: 4(X) —
[0, oo] defined by p4(B) == (A N B) is again a Radon measure.

1.24. Exercise. If 4 and v are Radon measures on X and Y, then
supp(¢ ® v) = supp(p) x supp(v). If u is finite and f': X — Y is continuous,
then supp(u’) = f(supp(p)). If X = Y is an abelian topological semigroup
and u, v are both finite, then supp(u * v) = supp(u) + supp(v).

1.25. Exercise. Let X be a Hausdorff space and let the set function
u: B(X) - [0, o] be finitely additive, finite on compact sets and inner
regular, ie. u(B) = sup{u(K)|B = K € A (X)} for all Be #(X). Then u is
already g-additive and hence a Radon measure.

1.26. Exercise. If 4 is a Radon measure on X, v is a Radon measure on Y,
and f: X x Y > Y x X is defined by f(x,y) = (y, x) then (u® v) =
vV U

1.27. Exercise. Let u and v be two finite Radon measures on a completely
regular Hausdorff space X. If | f du < [ f dv for each bounded nonnegative
continuous function then y < v, i.e. w(B) < v(B) for all Borel sets B < X.

1.28. Exercise. Let X be a Hausdorff space, let (u,) be a sequence of Radon
measures on X and let the set function u: 4(X) — [0, oo] be defined by

w(B) = i 1AB) for Be #(X).
n=1

Show that if (K) < oo for all compact sets K = X then pu is a Radon
measure on X and

ffdu=n‘; £ du

for all Borel measurable functions f: X — [0, co] and all p-integrable
functions f: X — C.

1.29. Exercise. Let X be a Hausdorff space, let (1,), . 4 be an increasing net
of Radon measures on X (ie. o, fe A, a < = u(B) < uy(B) for all
B e #(X)), and let the set function p: (X) — [0, co] be defined by

w(B) = sup u(B) = lim u,(B) for Be %(X).

acA axe A
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Show that if w(K) < oo for all compact sets K = X then u is a Radon
measure on X and

ffdu=sup £ duy = lim [ f dp,

acAd acA

for all Borel measurable functions f: X — [0, co]. Furthermore,

[ 7w =tim {1 a,

acA
for all y-integrable functions f: X — C. (Note that 1.28 is a special case of
1.29)

1.30. Exercise. Let X = N U {c0} be the Appert-Varadarajan space, i.e. all
sets {n} < N are open and a subset G = X containing oo is open if and only
if its “density” lim,_, ,(1/n)|G n {1, ..., n}| equals one. Show that X is a
normal Hausdorff space in which only finite sets are compact. Therefore the
counting measure on X is a Radon measure which is not locally finite.

1.31. Exercise. Let m denote Lebesgue measure on [0, 1] and let X, X, be
disjoint nonmeasurable subsets of [0, 1] both with outer Lebesgue measure
1. (For the existence of such sets see Oxtoby (1971, pp. 23-24).) On X; we
consider the Borel g-algebra #(X)) = {X;n B|Be %([0,1])}, i=1, 2.
Show that

®(A,, A,)=mB, " B,) for A eBX)

is independent of the choice of B; € #4([0, 1])suchthat 4; = X; n B;,i = 1,2,
and that @ is a bimeasure on #(X,) x %(X,). Show that there is no measure
pon B(X,) ® #(X,) such that

#(Al X A2) = q)(Al’ A2) fOI‘ Ai € g(X1)9 i= 1, 2.
Hint: Consider the decreasing sequence of sets in 4(X ;) ® #(X,)

-1 k k+1 k k+1
En= kgo (Xlﬁ [5;,—2" [) X <in [‘2—",'—‘—2" [).

§2. The Riesz Representation Theorem

In the introduction to §1 we have mentioned the close connection between
certain linear functionals and Radon measures on locally compact spaces, a
connection made precise in the famous Riesz representation theorem. There
is, however, a much more general integral representation theorem due to
Pollard and Topsge (1975) which implies not only numerous topological
representation theorems but also, for example, the abstract Daniell extension
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theorem. We shall not prove this result in full generality, but instead confine
our presentation to the topological setting.

Let X be a Hausdorff space and let € be a convex cone of continuous
R,-valued functions on X, separating the points in X (i.e. if x & y then
f(x) £ f(y) for some f € €). We consider a mapping

T:% — [0, 0],
and we shall assume that € and T fulfil the following conditions:

() Iff,gebthenf Ange¥,(f —g)" €ebandf A 1.

) T(f +9)=T(f)+ T(g)forallf,ge ¥.
(iii) For each f € € we have

T(f) = sup{T(9)| f = g € ¥, g bounded, T(g) < o}

(iv) For each compact set K < X there is some f € € with 1y < f and
T(f) < co.

(v) Givenf € % such that T(f) < oo and given ¢ > 0 there is a compact set
K = Xsuchthatge @, g < fand g|K = 0 implies T(g) < &.

Note that these conditions are obviously all fulfilled in the “classical”
setting where € = C¢,(X) is the set of all nonnegative continuous functions
with compact support on a locally compact space X, and where T is the
restriction to % of some positive linear functional on C(X).

An immediate consequence of (i) and (ii) is the monotonicity of 7, i.e.
we have T(f) £ T(g) if f £ g, and this again, together with the additivity
of T, implies

T(af) = aT(f) forall fe¥ andall aeR,.

One might consider condition (v) as the “crucial” one among (i) to (v);
it follows from Proposition 1.7 that (v) necessarily holds if T(f) = | f du
for some Radon measure p on X.

For the proof of the announced representation theorem we need the
lemma below.

2.1. Lemma. Assuming the above conditions on € the following properties
hold:

(@) Forall x %+ yin X there is some f € € such that f(x) = L and f(y) = 0.

(b) For all x + y in X there are disjoint neighbourhoods U of x and V of y
such that f|U = Land f|V = 0 for somef € €.

(¢) If K and L are disjoint compact subsets of X then f|K = 1 and f|L =0
for some f € €.

(d) If K and L are disjoint compact subsets of X then there are two functions
figebsuchthat Iy < f<1,1,Sg<landf Ang=0.

ProOF. (a) With the cone € being point separating we find some h € € with
h(x) + h(y) and without restriction we may assume max{h(x), h(y)} = L.
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Using property (iv) there issome g € % such that 1, ,, < g. Nowif h(x) < h(y)
then
1
f’1-m@
belongs to € and f(x) = 1, f(y) = 0; if on the other hand h(x) > h(y) then
put

Gnrl-n"

!

_ 1
T 1 - h(y)

and in this case f := (g A 1 — K')™ has the desired prope‘rties.
(b) Using (a) we find two functions g, h € € such that g(x) = 1, g(y) = 0,
h(x) = 0 and h(y) = 1. The two sets

U={g>3h<f), V={g<ph>3

(gr1-n7,

are open disjoint neighbourhoods of x (resp. y), and for the functions g’ :=
$g A, W :=%h A2 wesee that g'|U = 1 = I'|V whereas g'|V < 4 and
also i'| U < %. Now it is clear that
f=0g—-W-g)1"
is one on U and zero on V.
(c) For each pair x € K, y € L there are disjoint neighbourhoods U, of
x, V, of y and functions f, , € € such that f, ,|U, =0,f, ,|V, = 1.

Let us first fix a point y € L, then there is a finite subset {x;,..., x,} = K
such that K < U, u---u U, . The function

fy = min{fxl,y, ) fxn,y}

belongs to ¥, equals one in some neighbourhood W, of y and is zero on all
of K. Using again (iv) we choose some g € € with 1, < ¢g; then

hy=(@ Anl—f)"

is zero on W, and one on K. Now by compactness of L we find {y,,..., ¥} S L
with L € W, u---U W, and finally f :=min{h,,,..., h, } has the desired
properties.

(d) By (c) and (i) there is some he ¥ such that h <1, h|K =1 and
h|L = 0; again we choose ¢ € ¢ with 15, < ¢ < 1. Putting

f=[h-(e-NT
and

g:=[e—h" —Hl",
we have indeed f|K = 1,g|L=1andf A g=0. (|
2.2. Theorem. Let X be a Hausdorff space, let € denote a point separating

convex cone of continuous functions f: X — [0, oo[, and let T: € — [0, «0]
together with € fulfil the above conditions (i) — (v). Then there is a uniquely
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determined Radon measure p on X such that

T(f)=ffd/1 forall feé.

The measure u is furthermore locally finite.
Proor. We define A: #(X) — [0, o[ by
MK) :=inf{T(f)|1x £ f € ¢}
and we shall show that A is a Radon content. It is very easy to see that A is
subadditive, i.e.
MK U L)< AMK)+ ML)
for all K, L € #'(X). If, furthermore, K n L = ¢, then Lemma 2.1 ensures
existence of f,g € ¥suchthat 1 < f,1, < gandf A g = 0.For any function
h e € with 1; ,; < h we then have
MY+ ALY SEThAN+TH A9
=ThAf+hng)
< T(h)
and therefore
AMK) + ML)y = MK v L),
i.e. A is additive on disjoint compact sets, and this impiies for compact sets
C, < C, that
sup{A(K)|K < C,\Cy, K € X(X)} = UC;) — ACy).

To show the other direction we choose, given £ > 0, some f € € such that
le, £ fand T(f) < AC,) + & We also fix some number a € ]0, 1[ and
define K, := C, n {f < a}. Certainly K, is a compact subset of C,\C,, and
if 1, < ge%then

1
le, g+ 2 A
implying
1 1
AC) = MKy + - T(f) = MKy + - [MCy) + ]

< sup{MK)|K = C,\C}, Ke X (X)} + é [ACy) + €]

Taking now on the right-hand side the limit for « — 1 and ¢ — 0 we see
that A indeed is a Radon content.

Let u denote the Radon extension of A. We have to show that u represents
T, ie. that T(f) = | fdu for all f € 4. To see that [ fdu < T(f) it is
certainly enough to prove that
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implies
._Zlai:u(Ki) < T(f),

whenever K, ..., K, are pairwise disjoint compact sets and a; > 0 for all
i=1...,n
Again we use Lemma 2.1 providing us for each 1 <i <j < n with
functions f;;, g;; € € such that
lK,é./;]él’ 1K1§g11§ 1 and ﬁj/\glj=0

For convenience put f;; = g;; = 1 and let

. . 1
ﬁ::(mmgk,)/\(mmfij)/\(—f), i=1...,n
k<i jzi a;

Then f;|K; = 1 and f; A f; = Ofor i % j. Furthermore,
h é Z aifi _S_ f7
i=1
whence

il aifi) < T(/),

i=

iaiu(Ki) < ;aiT(fi) - T(

and therefore, as already remarked, | f du < T(f).

The reverse inequality remains to be shown, ie. T(f) < { f du for each
f €%. By (iii) we may assume 0 < f <1 and T(f) < o0. Given ¢ > 0 we
choose a compact set K as indicated in (v). There also exists a function
he® with 1x < h <1 and T(h) < oo, and then for n suitably chosen we
have (1/n)T(h) < e.

Consider now the compact sets

KJ-:Kﬁ{fz_];}, j=l,...,n

leading to the inequality

and thus to

12 ) "1
ff duz -y wK)z mf{T(g)lg €692 ) - lx,},
nj=1 =11
where the last inequality is an immediate consequence of the definition of
uon X' (X), i.e. the definition of the Radon content A. (In view of what has
already been shown, this last inequality is in fact an equality.)
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Let us now choose a g € ¢, g = (1/n) ) -, 1x,, such that

1 n
T) S, YuK)+e

and without restriction g < f. Then

h +
re(r-a-1) =f rik=o
and therefore T(f’) < & by choice of K. But
. h
f-9=/f +to

and so

T(f —9)=T() — T(9) = 2,
and finally

TNS TG +25, SuK)+ 33 [fdu+ 3

We now show uniqueness of the representing measure. Let v be some
Radon measure on X which also represents 7T, i.e. j fdv=T(f)= j' fdu
for all f € €. Given K € /(X)) and 1 < f € € we have

WK) < f £ dv=T(f)

and therefore W(K) < u(K) by construction of u. For the other direction
we choose some h € € such that 1z £ h £ 1 and T(h) < co. By 1.7 the set
function B+ ghdv is a finite Radon measure on X, hence given & > 0
there is a compact set L disjoint with K such that

f hdv <.
(KuL)¢

Once more by Lemma 2.1 there is some f € € with f|K = 1, f|L = 0 and
without restriction f < h, implying

u(K)gT(f)=ffdv=Lfdv+fodv+f(Kuwfdv

< wWK) + f hdv < v(K) + &

(KuLY

Hence u and v agree on compact sets and are therefore equal.
The local finiteness of u results as an immediate consequence of property

(). O
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If X is a Hausdorff space we let C(X) denote the vector space of all real-
valued continuous functions on X. Three subspaces of C(X) deserve par-
ticular interest: the space C%(X) of continuous functions “tending to zero at
infinity” in the sense that {| f| = &} is compact for each ¢ > 0, the space
C*(X) of continuous functions with compact support, where the support of
f € C(X) is defined by

supp(f) = {f + 0},

and the space C®(X) of bounded continuous functions, being a Banach
space with respect to the supremum norm. Clearly,

C{(X) < C%X) < C*(X) = C(X)

and the four spaces coincide in case X is compact. If X is locally compact,
then it follows from Urysohn’s lemma that C°(X) is the uniform closure of
C{(X).

As a corollary we now get the classical Riesz representation theorem.

2.3. Corollary. Let X be locally compact. Then there is a bijection between
all positive linear functionals T on C(X) and all Radon measures u on X
given by

T(f) = f fdu,  feCX).

In the following we also have to consider ¢g-additive set-functions which
may assume negative values. If u, and u, are two finite measures on a
measurable space (X, #) then p == pu; — u, is of this type and will be called
a finite signed measure. Conversely, the Jordan-Hahn decomposition
theorem tells that any g-additive set function u: # — R is representable as
the difference of two finite measures u, and u,, even in such a way that p,
and p, are concentrated on disjoint measurable sets. It follows in particular
that a g-additive real-valued function defined on a ¢-algebra is bounded.
Any difference of two Radon measures will be called a signed Radon measure.
This is perfectly well-defined when dealing with finite Radon measures. If
infinite Radon measures are involved, the difference is as a set function only
well-defined on the family of all relatively compact Borel sets.

In the first chapter we have defined for any topological vector space E
the topological dual E’ consisting of all scalar-valued continuous linear
functions on E. We shall now identify E’ in some cases where E is a certain
space of continuous functions. At first we shall treat the case where X is
compact and C(X) denotes the space of all real-valued continuous functions
on X. The space C(X) will be given the sup-norm; it is well known that
C(X) in this norm is a Banach space, and that (C(X)) is a Banach space,
too, if we define the norm of T € (C(X))' by

Tl :== sup |T(f)I.
st
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The set M(X) of all signed Radon measures on X will be given the total
variation norm; if 4 € M(X) then

il += sup{| (A)| + | w(A°)|| A € B(X)}.
2.4. Theorem. If X is compact then (C(X)) = M(X) in the sense that there

is a bijective linear isometry p— T, from M(X) onto (C(X)), given by the
natural mapping

1.0) = [ f du
where( f du:= f du, — [ f du, isindependent of the choice of i, p, € M . (X)

such that p = p; — U,.

PRrOOF. At first we remark that T, € (C(X)) for p e M(X).Forletu = py — p,
with (positive) Radon measures u,, u, being concentrated on disjoint Borel
sets; then

deu'éjmdul + 11 duy 2151l
showing also || T, [l < |lul.
Let now T € (C(X)) be given. We then define T*: C(X) — R by
TH(f)=sup{T)|f 2 he C.(X)}, [feC.(X).
It follows that 0 < T*(f) £ |IT| | fll < o0, and for f, g € C .(X) we have
T'(f+9) 2T () + T ().
Letf,g,he C.(X)suchthath < f + g. We put

HOS(x)
o if

Ko = 170 + 900y )T >0
0 if £(x) = 909) = 0,
h9g(x)

oo 176 + gy T+ 809 >0.

0 if f(x) = g(x) = 0,
then ', " € C,(X),h < f, " < gand I + h" = h, implying
Th) =T (f)+ T*(9)

so that finally T is additive on C, (X).

Weput T~ := T* — T which also is additive, nonnegative and positively
homogeneous on C, (X). By Corollary 2.3 there are two Radon measures
Il 4, on X such that

T*(f)=ffdu1, T(f) = ffduz, feC.(X),
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implying for f € C(X)
TN =TUH-TU =T -T () ~-IT(f) - T (f7)]

= [ d =~ ) = [ 57 e = )

= ffdﬂ, U=y — U

so that T = T,. By Corollary 2.3 we also get immediately that there is only
one signed Radon measure p with this property.

Let u = u* — u~ denote the Jordan-Hahn decomposition of g, ie.
ut(B) = (B~ D) and u~(B) = u(B n D) where D € #(X) is chosen in
such a way that both u* and u~ are nonnegative (see, for example, Billingsley
(1979, p. 373)). Then u* and .~ are Radon measures and furthermore

ffdu1=sup{fhdu+ —fhdy—loghgf,hec(X)}

< [raw

for all f € C,(X), hence u; < u™ by Exercise 1.27 and similarly p, < u™.
Consequently we get u,(D°) = 0 = u,(D) and therefore p; = p*, p, = p~
as well as [[pfl = py(D) + pa(D°).

We still have to show the reverse inequality ||7,|| = |jull. Given ¢ > 0 we
choose compact sets K* < D, K~ < D such that

m(D\K") < pp(D\K7) <e

By Urysohn’s lemma there is a continuous function f: X —» [—1, 1] such
that f|[K* = land f|K~ = —1, implying

Hf du‘ 2 (K + pa(K™) — 26 2 |jul — 4e.
This shows || T,| = ||u|| and finishes the proof of the theorem. O

We shall now consider the case where X is locally compact. For a given
compact subset K = X we denote by C(X) the vector space of all continuous
functions on X whose support is contained in K ; of course, Cx(X) is a Banach
space with respect to the supremum norm and

CX)= | CX).
KeX'(X)
A linear functional T on C°(X) is called continuous if all the restrictions
T | Cx(X) are continuous in the usual sense.

2.5. Theorem. For a locally compact Hausdorff space X the continuous
linear functionals T on C(X) are in a bijective linear relation with the signed



42 2. Radon Measures and Integral Representations

Radon measures y on X via the natural formula

109 = [ 1 du

ProoOF. If u is a signed Radon measure, i.e. u = y; — u, for Radon measures
[, Mo, then T(f) = ( fdu={ fdu, — [ fdp, is well defined and con-
tinuous in the above sense; the unicity of the representing measure p is
obvious by Corollary 2.3.

Now let a continuous linear functional T: C(X) — R be given. Imitating
the proof of Theorem 2.4 we define for /' € C%(X)

T*(f)=sup{T(h)| f = he C:.(X)}.

Any function h occurring here belongs to C,,,,s(X), implying that for some
constant a > 0
IT(W)| = allhl = al £,

hence
0 TH() < .

The same arguments used already in the preceding proof show that T
andalso T~ := T+ — T are both additive. Again an application of Corollary
2.3 finishes the proof. O

Let X be a locally compact space and V = C(X) a linear subspace of
continuous functions. Motivated by the classical moment problem Choquet
introduced a simple sufficient condition on V in order that every positive
linear functional L: ¥ — R can be represented by a Radon measure on X
as in the Riesz representation theorem where V = C(X), cf. Choquet
(1962, 1969).

For functions f, g: X - R we write f € o(g) if formally f/g vanishes at
infinity on X, but due to possible zeros of g the precise meaning of f € #(g)
is the following:

For every ¢ > 0 there exists a compact subset K < X such that | f(x)| <
elg(x)| for x € X\ K.

2.6. Definition. A convex cone C < C_(X) of nonnegative continuous
functions is called an adapted cone if:

(i) For every x € X there exists f € C such that f(x) > 0.
(ii) For every f € C there exists g € C such that f € »(g).

A linear subspace V < C(X) is called an adapted space if:

Gii) V=V, — V,,where V, = V n C,(X).
(iv) V, is an adapted cone.

If f € C5(X) then f € o(f) and for f € C%(X) we have f € o(ﬁ), which
shows that C°(X) and C°(X) are adapted spaces. If p and g are two real
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polynomials in one variable then p € o(q) if and only if deg(p) < deg(q). It
follows easily that the space of polynomials in one variable is an adapted
space of continuous functions on X = R. Similarly the space of polynomials
in k variables is adapted on X = R

The main property of adapted spaces is given in the following:

2.7. Theorem. Let V be an adapted space of continuous functions on a locally
compact space X. For every positive linear functional L: V — R there exists a
Radon measure p on X such that V < £'(u) and

L(f)=ffdu forall feV.

Proor. We define
V={feCX)|lflSgforsomegeV,}

Then V is a subspace of C(X) containing V, and a simple compactness
argument combined with (i) shows that C°(X) = V. We claim that V= V, + V.
In fact, if f € ¥ and g € V, is such that | f| £ g, then f = (g + f) + (—9)
shows the assertion. By Corollary 1.2.7 it follows that L can be extended to a
positive linear functional I: ¥ — R, and by the Riesz representation theorem
there exists a Radon measure z on X representing L| C{(X).

For g € V, and ¢ € C(X) satisfying 0 < ¢ < g we have

L) = Lg) 2 L(g) = f o dp.

By Urysohn’s lemma the family & := {p € C°(X)|0 £ ¢ = g} filters upwards
to g, so by Theorem 1.5

fg dp = sup“co dule e 9’} < L(g) < oo,

hence g € #!(n). To see that j g du = L(g) we choose he V, such that
g € o(h). Let ¢ > 0 be given. There exists a compact set K < X such that

g(x) < eh(x) for xe X\K.
We choose ¢ € C°(X) such that 1 < ¢ < 1 and find

0=g-go=ch
hence
0 < L(9) — Ligp) < eL(h),

or

Lg) = fg(p du + eL(h) £ Jg du + eL(h),
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which suffices since ¢ > 0 is arbitrary and independent of h. The equality

L(g) = fg du

extends clearly from V, to V. |

2.8. Exercise. Let X be locally compact. Show that the dual (C%(X))’ of the
Banach space C°(X) equals M®(X), the space of all finite signed Radon
measures on X (which is again a Banach space with respect to the total
variation norm) in the sense, that there exists a linear bijective isometry
from M®(X) onto (C°(X)). Hint: Use the one-point compactification of X.

2.9. Exercise. Show that the following conditions are equivalent for a
locally compact space X:

(i) X is o-compact, i.e. X is a countable union of compact sets.
(i) There is a strictly positive function f € C°(X).
(iii) There is a function f € C(X) with f(x) — oo for x — oo, i.e. such that
{f £ a} is compact for all a € R.
(iv) C(X) is an adapted space.

2.10. Exercise. Try to find a finite signed Radon measure y on R such that
supp(u®) = supp(u™) =R, where u = u* — p~ is the Jordan-Hahn de-
composition of .

2.11. Exercise. Let X be locally compact and consider on C°(X) the following
four families (p;);cy,,J = 1,..., 4, of seminorms:

Iy ={A = X|J + Afinite},  p,(f):=max|f(x)],

I, =A(X), px(f)=max|f(x)],

xekK

Iy = {w},  po(f)=sup|f(x)],

xeX
{p;liel,} = {p|pis a seminorm on C(X) whose
restriction to Cx(X) is continuous for all K € #(X)},
where Ci(X) = {f € C(X)|supp(f) € K} is considered as a Banach space
with respect to the supremumnorm. Let ¢, . .., 0, denote the corresponding
locally convex topologies on C(X) (which are all Hausdorff).
Show that the topological duals of C°(X) with respect to these four
topologies are given (by natural identification) in the following way:
(CAX), 0,) = {ne M(X)|supp(u) is finite},
(C(X), 0y) = {ne M(X)|supp(u) is compact},
(CX), 03) = {ne M(X]pl < oo},
(C(X), 0) = M(X),
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where supp(p) == supp(u*) U supp(u”)if p = p* — u~ is the Jordan~Hahn
decomposition of pu.

2.12. Exercise. Let V be an adapted space of continuous functions on a
locally compact space X, let F < X be a closed subset and put

VE = {feV]f(x) 2 O0forall x e F}.

Show that any linear functional L: ¥ — R which is nonnegative on V% can
be represented as

L= [rdu for sev.
where p € M, (X) is supported by F.

2.13. Exercise. Let X, Y be locally compact spaces and f: X — Y a con-
tinuous surjective mapping such that f~*(K) is compact in X for each
compact subset K < Y. Show that each v e M, (Y) s of the form pu for some
ue M, (X). Hint: Use Corollary 1.2.7 and the Riesz representation theorem.

2.14. Exercise. Let X and Y be locally compact spaces and T: C(X) x
C‘(Y) — R a bilinear mapping which is positive in the sense that T(f,g) = 0
if f € C.(X) and g € C°.(Y). Show that

T(f,g)=jf®gdu

for some uniquely determined pe M (X x Y).

§3. Weak Convergence of Finite Radon Measures

The theory of weak convergence of finite Radon measures is a well-developed
theory which is of great importance in probability theory, in particular when
dealing with stochastic processes. We will later need only a very few basic
facts which we are going to develop in this section.

Let X be a Hausdorff space and denote by M? (X) the set of all finite
Radon measures on X, i.e. all Radon measures u with u(X) < co. The weak
topology on M® (X)is the coarsest topology such that the functions y — j fdu
become lower semicontinuous for every bounded lower semicontinuous

f: X — R. The family of sets
Jf du > t}

is a subbase for the weak topology when f ranges over the bounded lower
semicontinuous functions on X and t € R.

The following result is part of the so-called portmanteau theorem (cf.
Topsgpe 1970, Theorem 8.1).

Gyio= {u e M3,(X)
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3.1. Theorem. For pe M%(X) and a net (u,),cq in M%(X) the following
properties are equivalent:

(i) p, — u weakly, i.e. in the weak topology;
(i) lim inf pu(G) = W(G) for all open G = X and lim p (X) = w(X);
(iii) lim sup p,(F) < u(F) for all closed F < X and lim p(X) = w(X);
(iv) lim inf { f dp, = | f dp for all bounded lower semicontinuous f: X — R;
(v) lim sup { f dp, < | f dufor all bounded upper semicontinuous f : X — R.

If ())~(v) are fulfilled, then lim | f du, = [ f du for each bounded continuous
f:X — R, and this property implies (1)—(v) if X is in addition a completely
regular space.

ProoOF. By definition (i) is equivalent with (iv), and the equivalence of (ii)
and (iii) (resp. (iv) and (v)) is immediate.

“(ii) = (iv)” Let f: X - R be lower semicontinuous and assume without
restriction 0 £ f < 1. From the obvious inequality

1 + 1n—1
- = - 1 >i/n =
(f n) _nigl > f

we get

lim inf ff du, g%ZIim inf,ua({f > é}) g%Zpr > %}),

where the last expression convergesto | f du as ntends to co. The implication
“(@iv) = (ii)” is obvious.

Iff: X - R is bounded and continuous and u, — u weakly, then by (iv)
and (v) | f du, - j f du. Now suppose that X is completely regular and
lim | f dp, = | f du for all continuous bounded f: X — R. To show (ii) let
G < X be open and let K < G be compact. As an immediate consequence of
the very definition of complete regularity we find a continuous function
S:X - [0,1]such that f|K = 1 and f |G = 0. Then

w© 2 [ fdu~ [ duz uK)

hence lim inf p(G) = w(K) and finally lim inf 4,(G) = u(G), which had to
be proved. O

3.2. Proposition. The space M®.(X) of finite Radon measures is a Hausdorff
space in the weak topology.

PROOF. Let (y,) be a net in M3 (X) converging to u, as well as to u, weakly.
Then p,(X) = p,(X) and, of course, to show u, = py, it is enough to prove
that u,(B) < u,(B) for all Borel subsets B = X.

If A < X, then the above theorem implies

#1(A) < lim inf y,(A) < lim sup p,(A) £ p,(A).
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Now let Be #(X) and ¢ > 0 be given. There exist compact sets K; < B,
K, < Bfsuchthat y,(B\K;) < eand u,(B°\K,) < e. A simple compactness
argument shows the existence of two open sets G,, G, < X separating K,
and K,,ie. K, € G, K, € G, and G, n G, = &. Then

K, G, G, cG,<cK;
and hence
ui(B) — & = puy(Ky) = pp(K3) < py(B) + &
This holds for all ¢ > 0 so that u,(B) < u,(B). O
In §1 it was shown that given two Radon measures yu, v on spaces X

and Y, there is a unique product Radon measure £ ® v on X x Y charac-
terized by

#®v(C x D) = u(CWD) forallcompact C< X, DcY,

and giving for all measurable rectangles the “right” value. In particular the
product of two finite Radon measures is finite again (as it should be), and it
is only natural to guess that u ® v depends continuously (in the weak
topology) on both of its arguments.

3.3. Theorem. Let X and Y be two Hausdorff spaces. Then the mapping
(u, V)= u ® v from M5(X) x M4(Y) to M% (X x Y) is weakly continuous.
PRrOOF. In a first step we show that the mapping
X x ML(Y)-> Mi(X xY)
(x, Ve, ®v

is continuous. Assume that x, - x and v, » v. Let G,,...,G, < X and
H,,...,H, < Y beopen and put U := ( J/_; (G; x H;). We show first that

lim inf &, ® v(U) 2 & ® v(U).
This holds trivially if x ¢  J{-, G;. Suppose now that
I'={isn|xeG} + .

Then there exists some «, such that x, € ();c; G; for all « Z a, and for those
o we get

gxa ® va(U) g 'Bxa ® va(U (Gl X Hl)) = va(U Hi)5

iel iel

hence

lim inf &, ® v,(U) = lim inf va< U Hi)
iel

2 V<U H.-) = ¢, @ W(U).

iel
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Every open set U = X x Y has the form U = | J;., (G, x H,) for suitable
open sets G; € X and H,; < Y. By Theorem 1.5 we can find, given ¢ > 0,
finitely many 4,, ..., 4, € A such that

n

3x®V(U(G,1,~ X HM)) >e ®wWU) —e.

i=1

This implies

2

liminfe, ® v(U) 2 liminfe, ® v,( (G,, x H /1.-))
=1

1

gsx®v< ' (G, x H,li)) >e @vwWU) — e
=1

Hence lim inf e, @ v,(U) 2 ¢, ® w(U) and 3.1 implies &, ® v, = &, ® V.

The second step will now be an easy consequence of the first one. Let
f:X x Y—>[0,00] be lower semicontinuous. From the continuity of
(x, V)&, ® v we get that

X x ME(Y) - [0, o]
) f (% y) dv(y) = sup j (n A £(x, ) dW(y)
Y n Y

is also lower semicontinuous, and using the fact that M?%(Y) is again a
Hausdorff space as well as the Fubini theorem for lower semicontinuous
functions (1.12), we may repeat this argument and conclude that

ME(X) x M5(Y) > [0, @],
d = d
() f f £ y) dv(y) dux) ff “w® )

is lower semicontinuous, too. If now f: X x Y — R is lower semicontinuous
and bounded, then /' + ¢ = 0 for some ¢ € R, and

(V) f fAu® ) = f (f + ) d(u ® v) — cu(X)(Y)

is again lower semicontinuous, the second term on the right being a con-
tinuous function of u and v. This finishes our proof. d

3.4. Corollary. If S is a Hausdorff topological semigroup, then so is M%(S)
with respect to convolution.

PRrOOF. The mapping (u, v) — u * v is continuous as composition of (i, v) —
#® v and the mapping ®: M4 (S x S) - M5 (S) defined by ¥(x):= k",
where + denotes the semigroup operation and k* is the image of k under
+; cf. 1.15, 1.16 and Exercise 3.7 below. U
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It is a general principle in mathematics to approximate complicated
functions (or other objects) by simpler ones. Among the Radon measures
the so-called molecular measures (i.e. finite positive linear combinations of
one-point (or “atomic”) measures) are considered to be “simple” objects.
They are dense in the set of all finite Radon measures even in a stronger
sense than with respect to the weak topology.

3.5. Proposition. For every Hausdorff space X the set of molecular measures
is a dense subset of M (X) with respect to the pointwise convergence on #(X).

PROOF. As the directed set we choose the family 4 of all finite Borel partitions
of X, ie. the set of all « = {B,,..., B,} & #(X) such that B, + &, B; n
B; = @ fori+jand | -, B; = X, ordered by refinement. For such o we
put, given any pe M%(X), p,=)1-; u(B)e,,, where x;€ B; is chosen
arbitrarily. Now let B € Z(X)\{, X} be given; then for all « € 4 finer than
oo = {B, B°} we have u(B) = u(B); and u,(B) = w(B) for all « € A when
Be {7, X}. O

3.6. Exercise. Let (1,) and u be finite Radon measures on the Hausdorff
space X and let them all be concentrated on the Borel subset Y < X. Then
. = 1 weakly in M% (X) if and only if u,| Y — u|Y weakly in M% (Y).

3.7. Exercise. Let X and Y be two Hausdorff spaces and let f: X — Y be a
continuous mapping. Then for any pe M%(X) the image measure u'
belongs to M4%(Y), cf. Proposition 1.15. Show that the transformation
us pf from M% (X) to M5 (Y) is continuous.

3.8. Exercise. Let X be a Hausdorff space and M%(X) the set of Radon
probability measures on X, ie. MYI(X) = {ue ML (X)|u(X) = 1}. Let
E := {¢,|x € X} be the set of all one-point measures. Show that every {0, 1}-
valued measure p € ML (X) already belongs to E. Show further that E is a
weakly closed subset of M% (X) homeomorphic to X and that E = ex(M 1 (X)).
(For the notion of an extreme point see 5.1.)

3.9. Exercise. Let u be a Radon measure on the Hausdorff space X. For
Ke X (X) define uX(B):=u(Bn K) and ug(B):=uB n K)/uK) (f
u(K) > 0). Show that the net (u*) converges to u pointwise on %#(X) and
that

lim fg duX = fg du
K

for every p-integrable function g: X — C. Show that if u(X) < co then
(u®) (resp. (ug)) converges weakly to u (resp. u/p(X)).

3.10. Exercise. Let (p,) denote a net of probability Radon measures on the
product X x Y of two Hausdorff spaces, and denote by u, (resp. v,) the
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marginal distribution of p, on X (resp. Y) (i.e. the image measures under the
two canonical projections). If (u,) converges to u and (v,) converges to some
one-point measure &,, then (p,) tends to u ® &,.

3.11. Exercise. Let (S, +, 0) denote a Hausdorff topological abelian semi-
group with neutral element 0 (cf. 1.16) and let u € M%(S). Then

o) u*n
y = lim (g0 + p/m)*"

n=0 N n—o0
holds in the sense that both limits exist and agree for all Borel subsets of S.
Their common value is often called the exponential of u and abbreviated
exp(u). In particular both limits exist and agree with respect to the weak

topology.

3.12. Exercise. Let S and T be two Hausdorff topological semigroups and
let h: S > T be a continuous homomorphism. Then for u, ve M%(S) we
have

(u* vt = ub V-

§4. Vague Convergence of Radon Measures on
Locally Compact Spaces

In this section X denotes a locally compact Hausdorff space. The vector
space C°(X) of continuous functions f: X — R with compact support and
the vector space M(X) of signed Radon measures on X form a dual pair under
the bilinear form

Gty = f fdu peMX), feCX).

4.1. Definition. The vague topology on M(X) is the weak topology o(M(X),
C*(X)), i.e. the coarsest topology in which the mappings u— {u,f) are
continuous, when f ranges over C(X), cf. 1.3.10. In particular the vague
topology is a Hausdorff topology.

We first remark that for any lower semicontinuous functionf: X — [0, o0]
the function

qufdu

is lower semicontinuous on M , (X) with the vague topology.
In fact, from Urysohn’s lemma it follows that any such fis the supremum
of the upward filtering family of functions ¢ € C°(X) satisfying 0 < ¢ < f,
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so by Theorem 1.5
ff du = Sup{ffp dulee C(X), 0= ¢ = f}

A combination of this remark and Theorem 3.1 immediately gives the
following relationship between the weak topology on M3%(X) and the
restriction of the vague topology to M?% (X):

4.2. Proposition. Let (u,),.4 be a net on M%(X) and let pe M4 (X). Then
(u,) converges weakly to u if and only if (u,) converges vaguely to u and
lim p(X) = u(X).

4.3. Corollary. The vague topology and the weak topology coincide on the set
M1 (X) of Radon probability measures.

Under some extra assumptions on a net (4,),.4 in M, (X) the vague
convergence implies the convergence of (| f du,),. 4 for certain functions
f € C(X)O\C(X). As an important example we have

4.4. Proposition. Let (u,),.4 be a net on M%(X) converging vaguely to
pe M5y (X). If

¢ =sup u,(X) < oo,
then u(X) £ c, and for all f € C°(X) we have

tim [ f do = [ £ de M
Proor. For any ¢ € C°(X) satisfying 0 < ¢ < 1 we have
<#s (P> = lim<ua9 (P> Se,

hence
wX) =sup{, |10 p £ L, pe C(X)} S c.

Let feC%X). For any ¢> 0 there exists ¢ e C(X) such that
If — @ll, < & and therefore we find

ffdu—ffdua §266+U<pdu—f<pdua

and now it is easy to see that (1) holds. O

s

The following result characterizes the relatively compact subsets
M < M (X) in the vague topology, i.e. the subsets M for which the vague
closure M is vaguely compact.
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4.5. Theorem. A subset M = M (X) is relatively vaguely compact if and
only if

sup{<p, p>|lpe M} < oo
for each ¢ € C°.(X).

Proor. The space of functions of C‘(X) into R can be considered as the
product space IT := R¢® which will be equipped with the product topology.
The subset A of positive linear functionals of C°(X) into R is closed in I1,
and because of the Riesz representation theorem (2.3) there is a bijection of
M ,(X) onto A which is a homeomorphism when M ,(X) carries the vague
topology and A carries the topology inherited from II. Therefore, M <
M . (X) is relatively compact in the vague topology if and only if the corre-
sponding set of positive linear functionals is relatively compact in II. By
the Tychonoff theorem this is the case if and only if {{u, ¢>|ue M} is
relatively compact in R for each ¢ € C°(X), which gives the conditions of the
theorem since a subset of Ris relatively compact precisely if it is bounded. [

4.6. Proposition. Let ¢ > 0. The set
fue ML(X) | (X) = c}
is vaguely compact.

PROOF. The set in question is closed by Proposition 4.4 and relatively compact
by Theorem 4.5. O

4.7. Corollary. Suppose X is a compact space. Then M (X) is compact in the
weak (or vague) topology.

ProOF. By Proposition 4.6 we have that M (X) is relatively compact in the
vague topology, but also closed since 1 € C°(X). The proof is finished by the
observation in Corollary 4.3. O

The following result was established by Choquet (1962) in his treatment
of the moment problem.

4.8. Proposition. Let V be an adapted space of continuous functions on a
locally compact space X and let L: V — R be a positive linear functional. The
set of representing measures, i.e. the set

C={yeM+(X) ffdy=L(f) for all feV}

is convex and compact in the vague topology.

Proor. It is clear that C is convex. For ¢ € C¢ (X) there exists f € V, such
that ¢ < f (cf. the proof of Theorem 2.7), hence

oy = ffdy:L(f) for uecC,
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so C is relatively compact by Theorem 4.5. Let (u,),.4 be a net from C
converging vaguely to u € M ,(X) and let f € V, . By the remark following 4.1
we get

ffdu =< liminfffdu,, = L(f).
We choose g € V. such that f € #(g), and let ¢ > 0 be given. There exists a
compact set K = X such that f(x) < gg(x) for x e X\ K, and if ¢ € C5(X)
is such that 1z < ¢ < 1 we have f(1 — @) < &g. From
[raw=ny= {10 - oraw- )+ [fodu-w

we therefore get

b

[ fo dtu -

ffdu—l&ﬂ‘ésfgdu+sL@)+
and since f¢ € C(X) the last term tends to zero, so we have

1 f £ du — L(f)| < 26L(g).

Since ¢ > 0 is arbitrary we get | fdu = L(f) for all fe V., and then for all
f €V, thus proving that u € C. ]

Let p be a signed Radon measure on X and let G < X be an open subset.
Then G is itself locally compact and if f € C°(G) is extended to X by

_J/x®),  xeg,
f@)_{u xe X\G,

then f € C%(X). The mapping f — | f du is a continuous linear functional
on C°(G), hence by Theorem 2.5 represented by a signed Radon measure on
G, denoted p| G, and called the restriction of uto G. In case of a (nonnegative)
Radon measure uon X the restriction | G is of course the usual set-theoretical
restriction, introduced already after Remark 1.6.

Vague convergence of Radon measures is a local concept as the following
result shows:

4.9. Theorem. Let (G,),.p be an open covering of a locally compact space X.
A net (1;);; of signed Radon measures on X converges vaguely to u € M(X)
if and only if (11;| G,); . 1 converges vaguely to (u|G,) for each o € D.

ProOF. The “only if ” part is obvious, so suppose that (y;|G,);.; converges to
(u|G,) for each a € D. Let f € C°(X) have the compact support C, and choose
ay,...,a, €D such that C = G,, U G,,U---UG, . By Lemma 1.17 there
exist compact sets C, < G, k=1,...,nsuchthat C=C, u--- U C,. By
Urysohn’s lemma there exist functions ¢, € C°(X) such that 1¢, < ¢, =< 1g,,



54 2. Radon Measures and Integral Representations

and supp(¢,) € G,,, k = 1,..., n. The functions

fe -2 e
f=1 Lo

0, x e X\C,
belong to C*(X), supp(fy) < G,, and f = Y %, f, so we have

[raw=3 [fdwi6) for iel
k=1
and the assertion follows. O

The following result will be used occasionally. For the proof, see e.g.
Bauer (1978, p. 233).

4.10. Proposition. Suppose that the locally compact space X has a countable
base for the topology. Then the vague topology on M . (X) is metrizable.

4.11. Exercise. Let X be locally compact. For a net (1,) on M (X) and
1€ M, (X) the following conditions are equivalent:

() po — pvaguely;
(ii) lim sup p(K) < u(K) for each compact K < X and lim inf y,(G) =
#(G) for all relatively compact open sets G < X;
(iii) lim u,(B) = u(B) for all relatively compact Borel sets B = X such that
w(@B) = 0.

4.12. Exercise. Show that the set of all Radon measures on a locally compact
space taking only values in N, = {0, 1, 2,..., oo} is vaguely closed.

4.13. Exercise. Let the Radon measures p, tend vaguely to p and assume
that all the u, are concentrated on the closed subset Y = X. Then y is con-
centrated on Y, too, and y, tends vaguely to u also on the locally compact
space Y.

4.14. Exercise. Show that (i, v) — p ® v is vaguely continuous as a mapping
from M, (X) x M, (Y) to M (X x Y) for two locally compact spaces X
and Y. Hint: Use the Stone—Weierstrass theorem.

4.15. Exercise. Property (ii) in Exercise 4.11 above makes sense on any
Hausdorff space X and hence can be used to define vague convergence of
Radon measures in this generality. Show however that if M, (X)) with respect
to vague convergence is a Hausdorff space, then X is necessarily locally
compact. Hint: If x, € X has no relatively compact neighbourhood, then
for a certain net (x,) in X we have x, = x,, &, = ¢,,and &, = 0.
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§5. Introduction to the Theory of Integral
Representations

Throughout this section E denotes a locally convex Hausdorff topological
vector space over R. The theory below can be applied to complex vector
spaces by restricting the multiplication with scalars to real scalars.

The basic observation, which should be kept in mind when reading the
following general theorems, is that a convex polyhedron is the convex hull
of its corners, or equivalently, that any point in the convex polyhedron is the
centre of gravity of a molecular probability measure on the corners. The
basic notion is that of an extreme point of a set, which is a generalization of a
corner of a convex polyhedron and defined below. We shall limit ourselves
here to those parts of the theory of integral representations which will be
needed in the sequel. A detailed exposition can be found in Alfsen (1971)
or Phelps (1966).

5.1. Definition. Let A = B < E be subsets of E. Then A4 is called an extreme
subset of B if for all x, ye Band A€ ]O, 1[:

X+ (1 —-A)yed=x,ye A

A point a € A is called an extreme point of A if {a} is an extreme subset of A.

It is easy to see that if A is convex then a € A4 is an extreme point if and
only if forall x, y € 4:

a=3x+y)=x=y=a

The set of extreme points of 4 is denoted ex(A4) and in some literature
called the extreme boundary of A.

Notice that “extreme subset of ” is a transitive relation in the set of subsets
of E. The above definitions of course make sense for an arbitrary real vector
space without topology.

Let x,,..., x, be points in E and let 4, ..., 4, be numbers € [0, 1] with
with }7_, 4; = 1. The corresponding convex combination of x,, ..., x, is the
point

If u denotes the molecular measure on E with mass 4, at x;, i.e.

n= Z A’isx,"
i=1
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then the point b is called the barycentre of u. For any (continuous) linear
functional fon E we have

16 = Y30 = [ f du
i=1
and this is the motivation for the following:

5.2. Definition. Let X be a compact subset of E and let u e M (X) be a
Radon probability measure on X. A point b € E is called the barycentre of
if and only if

f(b) = L fdu forall fekFE.

Remark. There exists at most one barycentre of ue M%(X). In fact, if b,,
b, are barycentres of u we have f(b,) = f(b,) for all /' € E’, and since E’
separates the points of E we find b, = b,. As well as barycentre one also
encounters the words centre of gravity and resultant. The barycentre is “the
value of” the vector integral

fx x dy(x),

but such a vector integral need not always converge in E, so a barycentre
need not exist. We have, however, the following result:

5.3. Proposition. Let X be a compact subset of E such thatr K = Conv(X)
is compact. Then for every u € M. (X) the barycentre exists and belongs to K.
Conversely, every point x € K is barycentre of some y e M1 (X).

ProoF. For f € E' and u € M%(X) we put

H, = {er|f(x) = ff d,u}.

The intersection of the H’s for f € E' is the set of barycentres of u, hence
either empty or a singleton. We shall show

NH nK+ .
feE

The set H, n K is a closed subset of K, so by a result from general topology
it suffices to prove that

=

H,nK+J (1)

i=1

for an arbitrary finite subset {f;,...,f,} < E'. For such a subset we define
a continuous linear mapping T: E - R" by

T(x) = (fi(x), ... Ju(¥))s



§5. Introduction to the Theory of Integral Representations 57

and claim that

p==(ffldu,...,ff;du)enx),

which shows (1). If the contrary is true, there exists by the separation theorem
1.2.3 a linear form ¢: R" — R such that

sup ¢(T(K)) < o(p). @

The linear form ¢ is given as ¢(x) = {a, x) for some a = (a,,...,a,) €R",
and defining g = Y 7_, a; f; € E’, (2) can be expressed

sup g(K) < f g du,
K

which is impossible, 4 being a probability.

We next have to prove that any x e conv(X) is the barycentre of some
pe ML(X). This is clear if x € conv(X), in fact such a point is the barycentre
of a molecular measure as remarked earlier. For x € conv(X) there exist nets
(X )zc 4 Of points from conv(X) converging to x and (y4,),. 4 of molecular
measures from M1 (X) such that x, is the barycentre of p, for each a € 4.
By Corollary 4.7 there exist u € M, (X) and a subnet (y,,) converging weakly
to u. For f € E’ we then have

[ 7w =tim [ 1w, = tim £, = 50
B B
which shows that x is the barycentre of u. Od

5.4. Remark. If E is complete then Tonv(X) is compact for every compact
X € E, so every pe ML1(X) has a barycentre in this case. This applies in
particular to Fréchet spaces and Banach spaces. For details, see, e.g.
Robertson and Robertson (1964).

Already Minkowski proved that a compact convex set K in R" is the
convex hull of ex(K). In 1940 Krein and Milman found a far-reaching
generalization of Minkowski’s result:

5.5. Theorem. Every compact convex set K in E is the closed convex hull of
its extreme points, i.e.

K = conv(ex(K)).

Proor. We first show that any nonempty compact set C has extreme points.

We form the family & of nonempty, closed extreme subsets of C. Notice
that Ce #. A Zorn’s lemma argument shows that & contains a minimal
element M with respect to inclusion. To see that M has only one point,
which is then an extreme point of C, we assume the existence of x, y e M,
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x # y, and choose f € E’ such that f(x) > f(y). Then
M, = {ze M| f(z) = sup f(M)}

is easily seen to be an extreme subset of M, hence M, e #. Since M, is a
proper subset of M we are led to a contradiction.

Clearly conv(ex(K)) is a compact convex subset of K. If they are not
equal, there exists by the separation theorem 1.2.3 an f € E’ such that

sup f(K) > sup f(conv(ex(K))). 3
The set

M = {x e K| f(x) = sup f(K)}

is a nonempty compact subset of K, and by the first part of the proof
ex(M) £ . Since M is an extreme subset of K we have ex(M) < ex(K), but
this is impossible due to (3). O

For every subset A = E we have conv(4) = conv(4). An equivalent

formulation of the Krein-Milman theorem is therefore that K = ¢onv(ex(K)).
Using Proposition 5.3 we can reformulate the theorem in the following way:

5.6. Theorem. Let K be a compact convex set in E. Every x € K is the bary-
centre of a measure i € M2 (ex(K)).

A natural and important question in connection with the above theorem
is whether u can be chosen such that u is concentrated on the set of extreme
points, i.e. such that u(K\ex(K)) = 0.

The answer is yes if K is metrizable, and this is the content of Choquet’s
theorem. The answer is no in general if K is nonmetrizable, simply because
ex(K) can be a nonmeasurable subset of K in this case. There is however a
satisfactory solution to the question in the nonmetrizable case also, related
to the notion of a boundary measure.

For a compact convex subset K of E we define a partial ordering < on
M’ (K) by

p<ve [faus [rav
for all continuous convex functions f: K — R.

5.7. Definition. A measure u e M%(K) is called a boundary measure if it is
maximal with respect to the ordering <.

A boundary measure u is pseudo-concentrated on ex(K) in the sense that
w(G) = 0 for all Gssets G < K such that G n ex(K) = . (We recall that
a subset of a topological space is called a G;-set if it is the intersection of
countably many open sets.)



§5. Introduction to the Theory of Integral Representations 59

In the metrizable case the set ex(K) of extreme points is a Borel set, in
fact even a G;-set. Furthermore, any compact subset of K is a Ggset. It
follows that a boundary measure u on K is concentrated on ex(K) in the
ordinary sense.

We can now formulate the generalization of Theorem 5.6 going back to
Choquet in the metrizable case and to Bishop and de Leeuw in the general
case.

5.8. Theorem. Let K be a compact convex set in E. Every x € K is the bary-
centre of a boundary measure yu € M (K).

Remark. In our applications of the present theory the compact convex sets
K which we consider always have the property that ex(K) is closed, so we
may apply Theorem 5.6 instead of Theorem 5.8.

We will mention briefly the very important modern notion of a simplex.

5.9. Definition. A compact convex set K < E is called a simplex if every
x € K is the barycentre of precisely one boundary measure, and it is called a
Bauer simplex if furthermore ex(K) is closed.

5.10. Example. Let X be a compact Hausdorff space and let E = M(X) be
the vector space of signed Radon measures with the vague topology. The
set K = ML(X) is a compact convex set, and by Exercise 3.8 ex(K) =
{e,|x € X} is a compact set. It is easily seen that K is a Bauer simplex.

In applications we often want to give an integral representation of the
elements in a convex cone C. This is possible if C has a compact base B, i.e.
a compact convex subset B = C\{0} such that for any x € C\{0} there
exists a unique number A > 0 with Ax € B.

The following general result was proved by Neumann (1983) and will be
applied later.

Let X be a nonempty set, let E = C* be the vector space of functions
f: X - C with the topology of pointwise convergence and let K < E be a
compact convex set. We assume that y: X — X is a mapping and define the
following subsets of K:

K, = {f e K|l f(X)* £ f(y(x)) for all x € X},
I'={feK||fX)* = f(yx)) for all x € X}.
5.11. Proposition. With the above notation K, is a compact convex set and
I' = ex(K,).

Proor. The function z+ |z}? is convex from C to R and therefore K, is a
convex set which is clearly closed, hence compact. Let f € I' and suppose
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f =4Hg + h)with g, he K,. For x € X we then have

39X + 1h(x)|*) = Hg(r(x)) + h(p()) = f(¥(x))
=S = 21g(x) + h(x)*

which implies |g(x) — h(x)|*> < 0,henceg = h. This shows that fis an extreme
point of K. O

5.12. Corollary. If ex(K) < I then ex(K) =T

Proor. If ex(K) < I, we get by the Krein-Milman theorem that K = K,
hence I' < ex(K) by 5.11. (I

5.13. Exercise. Let K be a metrizable compact convex set in E and let
d: K x K — [0, oo[ be a metric defining the topology of K. For eachne N
define

F, = {xele =4y +2),y,zekK, d(y,2) g%}
Show that
ex(K) = aK\F,,
and deduce that ex(K) is a G;-set.

5.14. Exercise. Let K be a compact convex set in E and let b: ML (K) > E
be the mapping which to e M1 (K) associates the barycentre b(u) of u.
Show that b is continuous when M1 (K) carries the weak topology and that
b is affine.

5.15. Exercise. Let K be the set of stochasticn x nmatrices,ie. 4 = (a;;)) € K
if and only if a;; 2 0 and )., a;=1for i =1,...,n Show that K is a
compact convex set in the vector space of all real n x n matrices with the
canonical topology. Show that A is an extreme point of K if and only if each
row has n — 1 zero entries.

Show that the set Q, of doubly stochastic n x n matrices is a compact
convex subset of K, where a stochastic matrix 4 is called doubly stochastic
if also the sum of each column is one. Show that the extreme points of Q,
are the permutation matrices arising from the unit matrix by permutations
of the columns. (This result is due to G. Birkhoff.) Hint: Consider the matrix
as a chessboard. If a doubly stochastic matrix 4 is not a permutation matrix
there exists a closed circuit for a rook with each move starting on a position
ij with 0 < a;; < 1. Adding successively ¢, —¢, &,...and —¢, & —e¢,...at
each position of the circuit with ¢ > 0 sufficiently small, we get two matrices
A, and A_ in Q, such that 4 = (4, + A4_).
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5.16. Exercise. Let K be the unit ball {x € H|| x| < 1} of a Hilbert space H.
Show that ex(K) is the topological boundary of K, i.e.

ex(K) = {x e H||x|| = 1}.

5.17. Exercise. Let (X, /) be a measurable space and let E be the Banach
space over KK of bounded /-measurable functions f:X — K with the
uniform norm || f|} = sup{| f(x)||x € X}. Show that the set of extreme
points of the unit ball {f € E|| f| < 1} of E is the set of functions f € E with
| f(x)} = 1forall xe X.

Formulate and prove a similar result when X is a compact Hausdorff
space and E = C(X).

5.18. Exercise. Let K denote the set of convex functions f: 0, co[ — [0, 1]
considered as a subset of R!% “l with the topology of pointwise convergence.
Show that K is a metrizable compact convex set. Show that every f € K is
decreasing, continuous and differentiable from the left and the right. For
f e K and t > 0 we define

fi(x) = {f(t) +x—=0f_() for0<x=<t,

JS(x) for x > t.
Show that f;, f — f, € K and deduce that the extreme points of K are the
following functions @, =0, ¢, = 1, ¢(x) = (1 — x/t)*,0 < t < c0. Show
finally that K is a Bauer simplex. (This way of finding the extreme points of
K is taken from Johansen (1967).)

5.19. Exercise. Show that the Riesz representation theorem on a compact
Hausdorff space is a special case of the Krein-Milman theorem.

5.20. Exercise. (Douglas 1964). Let V be an adapted space of continuous
functions on a locally compact space X and let C be the convex set of repre-
senting measures for a positive linear functional L: V — R. Show that ue C
is an extreme point of C if and only if V is dense in Z(X, p).

5.21. Exercise. Let K and L be compact convex subsets of locally convex
spaces, and let f: K — Lbe continuous, affine and onto. Show that ex(L) =
f(ex(K)), and use this result to determine the set of extreme points of

L= {( ft du(t). ftz du(t), - -, f t" du(t))

Notes and Remarks

pe ML([O, 1])} :

We have not assumed a Radon measure to be locally finite. The reason for
this is simply that we do not need this condition to derive any of the main
results and, on the other hand, on many spaces a Radon measure is auto-
matically locally finite. Certainly this is the case for locally compact spaces
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but it holds, for example, also for metric spaces: Let 4 be a Radon measure
on the metric space X and suppose there is some x € X such that y(G) = o©
for each open set G containing x, then in particular u(B,) = oo if B, is the
open ball of radius 1/n around x, and hence u(K,) = n for a suitable com-
pact set K, < B,, where without restriction x € K,,. Now the point is that
K =)=, K, is again compact, because if K < { J;. G, for a family of
open sets (G,), then for some A, we have x € G,, and then for some n,
x € B,, = G,, implying | J;%,, K, = G,,. The fact that u(K) = oo shows
that our assumption was wrong.

Exercise 1.30 shows that non locally finite Radon measures may occur,
and this depends on the fact that each compact subset is finite. As another
example where this is the case we mention the fine topology of potential
theory, for instance on R?, cf. Helms (1969). The fine topology is by definition
the coarsest topology on R® in which all superharmonic functions are
continuous. The fine topology is completely regular (Brelot 1971, p. 5), and
the fact that every finely compact set is finite is proved in Helms (1969,
p. 208).

Next we want to relate our approach to Radon measures with the
“classical” one as developed, for example, in Bourbaki (1965-1969). There,
as already mentioned in the introduction, the “functional point of view” is
prevalent, a (Radon) measure u being by definition a positive linear form
on C(X), if X is locally compact. Two set functions are then considered, la
mesure extérieure p* defined by

#*G) = sup{u, 71/ € C(X), 0= f = 15}  foropen G< X

and
u*(4) = inf{u*(G)|4 = G, G open} for A< X,

and y' derived from lintégrale superieure essentielle and given by
w(A) = sup{u*(4A n K)|K € #(X)} for A< X.

Both u* and u’ are Borel measures, i.e. g-additive when restricted to #(X),
and y’ is a Radon measure in our sense whereas u* is not so in general. One
has p < pu* and they agree on open sets and on Borel sets B with
w*(B) < oo, and in particular on compact sets. It follows that for locally
compact and o-compact spaces one has u'(B) = u*(B) for all Be 4(X),
so for these spaces Bourbaki’s notion of a Radon measure is equivalent
to ours. This holds in particular for compact spaces. Bourbaki (1965-1969,
Ch. 1V, §1, Ex. 5) gives an example where u'(F) = 0 and y*(F) = oo for a
certain closed subset F in some locally compact space, and this shows that
u* is not a Radon measure in our sense.

Bourbaki defines a (Radon) premeasure on a Hausdorff space X as a
mapping W which to every compact subset K = X associates a Radon
measure Wy on K such that Wy|L = W, if L is a compact subset of K. Then
the following set function W' is considered

W' (A) = sup{(Wy)'(4 n K)|K € A (X)} for A< X.
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The restriction of W’ to #(X) is a Radon measure in our sense. Bourbaki
calls W a (Radon) measure if W' is in addition locally finite. It follows that
Bourbaki’s notion of (Radon) measures is equivalent with locally finite
Radon measures in our sense.

Let X be a Hausdorff space and consider Borel measures v: #4(X) —
[0, oo] satisfying

(a) wW(K) < o for Ke A(X);
(b) v(G) =sup{AK)|K € G, K e #(X)} foropen G < X;
(¢) w(B) = inf{WG)|B < G, G open} for Be #4(X).

There is a one-to-one correspondence between locally finite Radon measures
pon X and Borel measures v satisfying (a), (b) and (c).
In fact, if u is a locally finite Radon measure then

u*(B) = inf{u(G)|B < G, G open} for Be #(X)
is a Borel measure satisfying (a), (b) and (c), and if v has these properties then
vi(B) = sup{W(K)|K € B, K € A (X)} for Be #(X)

is a locally finite Radon measure. Furthermore (u*)" = g and (v')* = v. For
the proof of these assertions see Schwartz (1973), where a third equivalent
definition of a locally finite Radon measure is given, namely as a pair (m, M)
of Borel measures satisfying certain conditions realized by (u, 4*) and (v, v)
in the above notation. Notice that a Borel measure v satisfying (b) and (c) is
locally finite if and only if (a) holds. In the locally compact case the exterior
measure p* satisfies (a), (b) and (c) and (u*) = pu, (u)* = p*.

The generalized monotone convergence theorem (1.5) involves only the
values of the underlying Radon measure u on open sets, so it holds for any
Borel measure v which agrees with 4 on open sets. In particular, we have

[rau=[rav

for each lower semicontinuous function f = 0 on X. For a continuous
real-valued function f'integrability with respect to u and v are equivalent and
§ fdu={ fdvin case of integrability.

Bourbaki (Ch. IX, §3) also considers the possibility of “extending” a set
function A: #(X) — [0, o[ to a Radon measure, however the crucial
property (1) of our §1, the defining property of a Radon content, which goes
back to Kisynski (1968), is not discussed there. Théoréme 1 of §3 in Bourbaki
should be compared with our Lemma 1.3. Theorem 1.4 is due to Kisynski.

Replacing the Hausdorff space X by an abstract set and the family #'(X)
of compact subsets of X by a suitable set system called “compact paving”,
Topsge (1978) proved an abstract measure extension theorem which not
only contains Theorem 1.4 but also, for example, Carathéodory’s classical
result.
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It should be mentioned that on many “nice” spaces a finite Borel measure
is automatically a Radon measure. This holds in particular on Polish spaces,
ie. separable and completely metrizable spaces, cf. for example, Bauer
(1978, Satz 41.3), but it can even be shown for so-called analytic spaces, i..
Hausdorff spaces which are the continuous image of some Polish space; see
Dellacherie and Meyer (1978, Chap. III) for a proof.

The last-mentioned book also contains a proof of the bimeasure theorem
for finite Radon bimeasures on separable metric spaces. A slightly more
general version may be found in Morando (1969), but both results are in
fact a special case of a theorem of Marczewski and Ryll-Nardzewski (1953)
about nondirect products of measures.

The Riesz representation theorem is certainly a cornerstone of functional
analysis. Our proof is based on Pollard and Topsge (1975) and we refer to
the references given there, in particular to Batt (1973) for further information
on this important topic. The theory of adapted spaces has had important
applications in potential theory, see Sibony (1967-1968).

The theory of weak convergence of finite (or probability) Radon measures
is mainly motivated by its applications in probability theory and mathe-
matical statistics. For a thorough treatment on metric spaces we refer to
Billingsley (1968) and Parthasarathy (1967). Later on Topsge (1970) dis-
covered that a satisfactory theory of weak convergence can be developed on
arbitrary Hausdorff spaces. For a completely regular space X the weak
topology on M%(X) is induced by the weak topology o(M®(X), C*(X)).
However, for Hausdorff spaces in general it is not possible to extend the
weak topology from M%(X) to M?(X) in such a way that M?(X) is a
Hausdorff topological vector space. In fact, if such an extension was pos-
sible then M®(X) would be completely regular and so would {e,|x € X},
which is homeomorphic to X by Exercise 3.8. A particularly important
topic for probabilistic applications is the characterization of relatively
compact subsets of M’ (X) in the weak topology, and we should mention
the striking result due to Prohorov: For Polish spaces X a subset M <
M’ (X) is weakly relatively compact if and only if for each & > O there
is a compact set K = X such that sup, ., w(X\K) < ¢, a condition on
M called uniform tightness, see Billingsley (1968, Theorems 6.1 and 6.2).
Theorem 3.3 may be found in Ressel (1977); Exercise 3.10 is a generalization
of Slutsky’s theorem, cf. Ressel (1982b).

For a locally compact space X the space C°(X) is often equipped with
the inductive limit topology of the Banach spaces Cx(X), K € A (X), appear-
ing before Theorem 2.5. With this topology, which is equal to the topology
given in Exercise 2.11 by the family I,, C°(X) is a barrelled space, and the
topological dual space is M(X) with the vague topology. This approach is
the starting point in Bourbaki (1965-1969), who also seems to be the first
who has systematically studied the vague topology. Theorem 4.5 is a special
case of the Alaoglu-Bourbaki theorem, cf. Exercise 1.3.11. In the special case
of X = R Theorem 4.5 is sometimes called Helly’s selection theorem. In
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fact it follows from 4.5 and 4.10 that any sequence of measures in M?% (R)
with bounded total mass has a vaguely convergent subsequence.

The result in Exercise 4.15 is due to Topsée.

The importance of the theory of integral representations lies undoubtedly
in the fact that it gives a unified approach to a great number of classical
formulas and theorems, cf. Phelps (1966). Let us just mention here Herglotz’
formula for nonnegative harmonic functions in a ball, the far more general
Martin representation, and the theorems of Bernstein and Bochner. In
Chapter 4 we shall use the theory to prove integral representation theorems
for positive definite functions on abelian semigroups.

The idea of considering a point in a metrizable compact convex set K as
the barycentre of a probability measure concentrated on ex(K) is due to
Choquet, and the whole theory is often called Choquet theory.

In our applications of the theory we use only the special case where ex(K)
is closed, in which case the representation theorem is equivalent with the
Krein~Milman theorem. Therefore we have given a complete proof of the

latter and only indicated the general results, which can be found in many
books, for example, Alfsen (1971) and Phelps (1966).



CHAPTER 3
General Results on Positive and
Negative Definite Matrices and Kernels

§1. Definitions and Some Simple Properties of
Positive and Negative Definite Kernels

When dealing with positive and negative definite kernels a certain amount
of confusion often arises concerning terminology. A positive definite kernel
defined on a finite set is usually called a positive semidefinite matrix. Some-
times it is only called “positive”, which may be misleading. When working
on groups, the name positive definite function is used traditionally. In our
previous papers on abelian semigroups we also followed this tradition.
Instead of calling a kernel i negative definite, some authors call the kernel
— 1 “conditionally positive definite” or “almost positive.” In this book
we use mainly the larger class of “semidefinite” kernels of all kinds and
therefore prefer to avoid the prefix “semi” which otherwise would appear
several hundred times.

Adapting the above point of view, an n x n matrix 4 = (a;) of complex
numbers is called positive definite if and only if

for all {c,,...,¢c,} = C.

It is well known that this is the case if and only if 4 is hermitian (i.e.
a; = a,;for j,k = 1,..., n) and the eigenvalues of 4 are all Z0.

Similarly A is called negative definite if and only if A is hermitian and

IIA

n
Y ¢Gap <0
=1
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forall{c,, ..., ¢,} = Cwiththeextra condition )}_, ¢; = 0. (This definition
requires n = 2. Any 1 x 1 matrix A = (a,,) with real a,, is called negative
definite.)

1.1. Definition. Let X be a nonempty set. A function ¢: X x X - C is
called a positive definite kernel if and only if

Z cjc_k(p(xja xk) g 0
j k=1
forallneN, {x,,...,x,} € X and {c,,...,c,} © C. We call the function
¢ a negative definite kernel if and only if it is hermitian (i.e. o(y, x) = ¢(x, y)
for all x, ye X) and

n
z Cjc_k-(P(xj’ x) =0
hk=1
foralln 2 2,{x,...,x,} < X and {cy,...,¢,} = Cwith}%_,¢c;=0.
If the above inequalities are strict whenever x4, ..., x, are different and
at least one of the cy, ..., c, does not vanish, then the kernel ¢ is called
strictly positive (resp. strictly negative) definite.

1.2. Remark. In the above definitions it is enough to consider mutually
different elements x;, ..., x, € X. In fact, if x,, ..., x, € X are arbitrary and

Xy - - -5 Xq, are the mutually different elements among the x;’s, then
n p
Z cjc—k(p(xj’ X)) = Z djd—k(p(xaj’ xak)’
Jk=1 k=1
where

o= Y c, k=1,...,p
{8} xi = Xz}
Furthermore, if 6: X — X is a bijection, then ¢ is a positive (resp. negative)
definite kernel if and only if ¢ ° (¢ X o) is a positive (resp. negative) definite
kernel.
If X is a finite set, say X = {x,,..., X,}, then plainly ¢ is positive (resp.
negative) definite if and only if the n x n matrix

((P(xj, X1 <jksn
is positive (resp. negative) definite.

We now list some simple properties and examples of positive and negative
definite kernels.

1.3. A kernel ¢ on X x X is positive (resp. negative) definite if and only if
for every finite subset X, < X the restriction of ¢ to X, x X, is positive
(resp. negative) definite.
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1.4. If pis positive definite, then ¢(x, x) = Oforall x € X, i.e. ¢ isnonnegative
on the diagonal A := {(x, x)| x € X}.

1.5. Let (z Z) be a positive definite 2 x 2 matrix. Then

0§(1,1)<“ b)<i>=a+b+c+d

¢ d
implying Im b = —Im c. Further,
0§(1,i)<“ b)( 1_)=a—ib+ic+d
c dj\—i

implying Re b = Rec, i.e. b = ¢. It follows immediately that any positive
definite kernel is hermitian.

1.6. A real-valued kernel ¢ on X x X is positive (resp. negative) definite
if and only if ¢ is symmetric (i.e. (x, y) = ¢(y, x) for all x, y € X)) and

Y ae(x;x) 20  (resp. <0)

Jk=1

forallneN, {x;,...,x,} < X and {c,...,c,} S R (resp. Y-, ¢; =01in
addition). For, if ¢; = a; + ib;, a; and b; being real, then

Z CiC (X5, X)) = Z (a;a, + bjb)o(x;, x,)

J.k=1 J k=1

+i Z (bja, — a;jb)o(x;, xi),
jk=1

and the last sum is zero if ¢ is symmetric.

. b\ . ) o .
1.7. A2 x 2 matrix C d) is negative definite if and only if a,d e R, b = ¢

0%(1,-1)(2‘ Z)(_i):a—b—c+d,

and this inequality is equivalent with

and

a+dZ2Reb.
Therefore, we have for any negative definite kernel y the inequality

Y(x, x) + Y(y, y) £ 2 Re Y(x, y).
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1.8. Let (b p

a b) be a hermitian 2 x 2 matrix. Then for z, w e C we have

(w, z)(z 2)(‘:) = a|w|? + 2 Re(bzw) + d|z|?
2 'Z

+ ~a—2(ad — b))  (fora + 0).

=4a

b
w+ -z
a

The matrix is therefore positive definite if and only ifa = 0, d = 0 and

a b 5
= ad — >
det(b d) ad — |b]2 2 0,

Hence for any positive definite kernel ¢ we have

lo(x, MI* = o(x, x) - (y, y).

1.9. Iff: X — Cis an arbitrary function, then ¢(x, y) := f(x) f(y) is positive
definite, because

n

2 ¢ f(x)

j=1

n 2
Y CGp(x), %) = 20

J k=1
The kernel Y(x, y):= f(x) + f(y) is negative definite, for if Y7, ¢; =0,
theneven Y% .-, ¢;G¥(x;, x,) = 0. In particular, a constant kernel (x, y) ¢
is positive definite if and only if ¢ = 0 and negative definite if and only if
celR

1.10. The kernel y(x, y) = (x — y)? on R x R is negative definite, ¢; + ---
+ ¢, = 0 implying (for real numbers c;, see 1.6)

n 2
cjxj) <0.
j=1

i ciclxj — x)* = ——2(

J k=1

1.11. If X is a nonempty set, then the family of all positive (resp. negative)
definite kernels on X x X is a convex cone, closed in the topology of point-
wise convergence.

A very important property of positive definite kernels is their closure
under pointwise multiplication which was proved by Schur (1911) (in the
case of matrices):

1.12. Theorem. Let ¢, ¢,: X X X — C be positive definite kernels. Then
@, 0,: X x X — Cis positive definite, too.

Proor. It suffices to prove that if A = (a;) and B = (by) are positive definite
n x n matrices, then C = (aubj,) is positive definite.
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Now it is well known from linear algebra (and also follows from 3.1
below) that there are n functions f,, ..., f,: {1,..., n} > C such that

ajk = pr(])fp(k)’ fOI' J:k = 15---7”-
p=1
Letcy, ..., c, € C be arbitrary, then

Z ¢;jCeauby = Z Z ¢; e fo(k)bj 2 0. U

jk=1 p=1 jk=1

1.13. Corollary. Let ¢,: X x X > C and ¢,:Y x Y > C be positive
definite kernels. Then their tensor product @, ® @,: (X x Y) x (X x Y)-»C
defined by @ ® @y(x1, V1, X3, ¥2) = @1(X1, X3) - 92(yy, ¥,) Is also positive
definite.

ProOOF. If ¢;: (X x Y) x (X x Y)— C is defined by @,(x;, y1, X3, ;) =

®1(xy, x,) and analogously @,(xy, y1, X2, y2) = @2(yy, ¥2), then ¢, ® ¢, =
@, - @, and is therefore positive definite. (]

1.14. Corollary. Let ¢: X x X — C be positive definite such that | p(x, y)| < p
for all (x,y)e X x X. Then if f(z) = Z,f‘;o a,z" is holomorphic in
{z€ C| |z| < p} and a, Z 0 for all n = 0, the composed kernel [ - ¢ is again
positive definite. In particular if ¢ is positive definite, then so is exp(¢).

Proor. By Theorem 1.12 for each n e N the kernel ¢" is positive definite,
therefore Y \_, a,¢" is positive definite for all N € N and so is its pointwise
limit f o ¢. a

1.15. Remark. In contrast to Theorem 1.12 above the ordinary matrix
product of two positive definite matrices is positive definite if and only if the
two matrices commute. This follows from the simultaneous diagonalization
of these matrices. In particular the matrix exponential of any positive
definite matrix again has this property. By using the Jordan decomposition
one can show that the matrix exponential of every symmetric real matrix
is positive definite (even strictly).

The following remarkable criterion for strict positive definiteness is often
useful.

1.16. Theorem. Let A = (a;) be some hermitian n x n matrix. Then A is
strictly positive definite if and only if

det((@)j k<p) > 0

forp=1,...,n
PROOF. Suppose first A4 to be strictly positive definite. As in the proof of 1.12
we choose n vectors z,, ..., z, € C" such that

ap = <z ), Lk=1,...,n
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which of course can also be written as A = BB*, where B is the n x n matrix
with rows z,,...,z,. This implies det A = |det B|*> = 0 and certainly 4
cannot be singular so that in fact det A > 0. Obviously the same reasoning
can be applied to the submatrices (ay); y<,forp=1,...,n

For the other direction, we proceed by induction on n. The case n = 1
being trivially true, let us suppose that the theorem holds for n — 1. By
assumption a,, > 0 and we subtract a,,/a,, times the first column from the
kth column, k = 2, ..., n. The new matrix (aj); x<a (where the first column
remained unchanged whereas for k = 2 we have aj = aj — (ay/a,1)a;1)
has the same principal minors as (a J,‘), 1e.

det((ap); k<p) = det((@j)j k<p) p=1...,n

and if we now change the matrix (aj) to B, where

a; 0 ... O

’ ’
B _ O a22 LRI azn
0 a, ... a,

then still det((by); ,<,) = det((ap); x<,) for all p, and B is furthermore
hermitian. Now

ay, ... ay
det((bjk)j,k§p) = all . det E E > 0

! !

Apy -++ Gpp

for p=2, 3,...,n implying by assumption that the (n — 1) x (n — 1)
matrix

! !
a22 “ee 612,,

!

!
ayy ... Gy,

is strictly positive definite. For ¢y, ..., ¢, € C we have

< 1ka11 “
Z CjCkajk = Z C; Ck Jk =Z

j k=1 j k=2 11

— 2
+ Z €1Gay + ¢y ["ayy
k=2

1
= Z cc,,ajk+——
k=2 11

2 n

+2a11Re(c Z alk)+(|c1|a11)]

2

Z ccka1k+
jk=2 agy

Z €jaj1
i=
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If (c,,...,¢c,) ¥+ O then the first sum is >0, and for (c,,..., c,) = 0 but
¢; # 0 the second term is strictly positive. Hence A is a strictly positive
definite matrix. 0

One might expect that a corresponding result for positive definite matrices
holds if the determinants in the above theorem are only supposed to be

0 -1
destroys this hope. However, the following result seems to be rather satis-
factory, at least theoretically.

. {0 0
nonnegative. The simple counterexample given by the 2 x 2 matrix ( )

1.17. Theorem. Let ¢: X x X — C be a hermitian kernel. Then ¢ is positive
definite if and only if

det(((l’(xja xk))j,k_s_n) 20
forallneNandall {x,,...,x,} € X.

Proor. If ¢ is positive definite, then as in the beginning of the proof of the
above theorem we see that all determinants in question are nonnegative.
Let us on the other hand assume this condition. We define a slightly per-
turbed kernel ¢,:=¢ + ¢-1,, where ¢ > 0 and A is the diagonal in
X x X. For mutually different elements x,, ..., x, € X it is easily seen that

n

det((@.(x;, Xi))jkzn) = 2, dy €%

p=0
where d, = 1 and
d, = ) det((9(x;, Xi))jken) Z 0

AS{l,...,n}

|Al=n-p
for p=0, 1,...,n — 1. Therefore det((¢.(x;, X)) x<a) = € > 0 implying
that ¢, is a strictly positive definite kernel. Hence the pointwise limit ¢ =
lim,_,, ¢, is positive definite. O

The special case n = 2 has already been derived in 1.8.
1.18. Exercise. If ¢ is a positive definite kernel, then also Re ¢, @ and |¢|?

are positive definite, but not necessarily |¢|. If i is negative definite, then so
are Re  and ¢.

1 z =z
1.19. Exercise. For ze C define M,:=}z 1 z|. Then M, is positive
z z 1

definite if and only if [z| £ 1 and [3 — 2 Re(2)]|z|* £ 1. For —1 £z < —}
the matrix M, is not positive definite.
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1.20. Exercise. Let H be a complex (pre-) Hilbert space. Then its scalar
product (-, -) is a positive definite kernel. The squared distance y(x, y) =
llx — y||? is negative definite.

1.21. Exercise. Let ¢: X x X — R be a symmetric kernel. Then ¢ is positive
definite if (and only if)

Z Cjck‘P(xj» x) 20

forallneN, {x,,...,x,} € Xand {cy,...,c,} € Z

1.22. Exercise. Show that for each a € R the kernel ¥/,(x, y) == (a + x — y)?
on R x R fulfils the inequalities

Z cjckl//a(xja xk) é 0

jk=1

foralln = 1, allxl,...,x,,eRandallcl,...,cnelRwichcj= 0. Never-
theless ¥, is negative definite only for a = 0.

1.23. Exercise. Let X be a nonempty set and let T < X x X contain the
diagonal. Then the kernel 14 is positive definite if and only if T is an equiv-
alence relation.

1.24. Exercise. Let X = [a, b] be a compact interval and let ¢: [a, b] x
[a, b] = C be continuous. Then ¢ is positive definite if and only if

b b
[ [ et »axayz o
for each continuous function ¢: X — C.

1.25. Exercise. An invertible square matrix is positive definite if and only if
its inverse has this property (and in this case both matrices are strictly
positive definite).

1.26. Exercise. Let A = (a;) be a real negative definite n x n matrix. Then

2
2 Gk

trdA £
n—1;%

§2. Relations Between Positive and Negative
Definite Kernels

There are many interesting and important relations between positive and
negative definite kernels some of which were first known in special cases
only, say for positive (resp. negative) definite functions on groups. Later on
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they turned out to hold for more general kernels, too. Of course, it is trivially
true that —¢ is negative definite whenever ¢ is positive definite. The re-
markable part in the following lemma is therefore, that it is an “if and only
if ” statement.

2.1. Lemma. Let X be a nonempty set, xo € X, and let Y: X x X -» C be a
hermitian kernel. Put @(x, y) = Y(x, xo) + ¥(y, Xo) — Y(x, y) — ¥(xq, Xo)-
Then ¢ is positive definite if and only if \y is negative definite. If Y(x,, Xo) 2 0
and @o(x, y) = Y(x, xo) + Y(y, xo) — WY(x, y), then @, is positive definite if
and only if \J is negative definite.

PrOOF. For ¢y, ...,c,€C, ) ¢; = 0,and x4, ..., x, € X we have

n n
> G @(X; X)) = Y, €T PolX;s X)
Jk=1 Ji k=1

n
= - z Cja‘//(xj, Xg)-
Jk=1
Hence positive definiteness of ¢ or of ¢, implies negative definiteness of .
Suppose on the other hand that y is negative definite. Let x,, ..., x,€ X
and c,, ..., ¢, € C be given and put ¢y == — Y _, ¢;. Then

n

0= Z C;CW(xj, X)) = Z ;T (x5 %)

Jk=0 k=1

+ _;Cjc_o‘//(xj’ Xo) + kzlco C(Xo, Xi) + |eo PP, X0)

J

=y ;[ (x;, x) — Y(x;, X0) — W(xXo, Xi) + WY(xg, X0)]

j k=1
= - Z Cjc_k(P(xja X1
k=1
thus showing that ¢ is positive definite.
Now if ¥(x,, xo) = 0 then ¢, = @ + Y(x,, X,) is positive definite. [

The following result, due mainly to Schoenberg, is of central importance.

2.2. Theorem. Let X be a nonempty set and let y: X x X — C be a kernel.
Then y is negative definite if and only if exp(—ty) is positive definite for all
t>0.

Proor. If exp(—ty) is positive definite, then 1 — exp(—ty) is, of course,
negative definite and so is therefore the pointwise limit

Y = lim 1(1 — exp(—ty)).

o<t-o !t
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Now suppose that y is negative definite. For obvious reasons we need
only show that exp(—1ty) is positive definite for t = 1. We choose x5 € X
and with ¢ as in the above lemma we have

—¥(x, y) = @(x, y) — Y(x, x0) — Y(¥, Xo) + ¥(xo, Xo),

where ¢ is positive definite. Hence

exp(—Y(x, y)) = exp(@(x, y)) - exp(—Y(X, xo)) - exp(—Y(y; Xo))
- exp(Y(xo, Xo))
and from 1.14, 1.9 and 1.12 we conclude that exp(— ) is positive definite. [

In the following let C, = {z € C|Re z = 0}. It is known that a kernel
V: X x X » C, is negative definite if and only if (¢ + ¥)~! is positive
definite for all ¢t > 0. Instead of proving this we show the following more
general result.

2.3. Theorem. Let u be a probability measure on the half-line R, such that
0 < [§ sdu(s) < oo, and let Lp denote its Laplace transform, i.e. £u(z) =
§& e du(s), ze C,. Then : X x X — C, is negative definite if and only if
Luty) is positive definite for all t > 0.

Proor. If i is negative definite then for t > 0 we have

Luty) = f "exp(~ 150) du(s)

pointwise on X x X, which is positive definite, being a mixture of the
positive definite kernels exp(—tsy).

If on the other hand £ u(ty) is positive definite for all t > 0, then for each
(x,y)e X x X we get

0 - Zues = [ R

0 t

Y, y) fwsdms) for ¢ 0,
0

du(s)

where we could apply Lebesgue’s theorem because of

[1 — exp[—tsy(x, y)]|
t

£ [Y(x, y)ls.

Being a pointwise limit of negative definite kernels, ¥ itself is negative
definite, too.

Choosing p = ¢, in the above theorem, we get back Theorem 2.2 for
C . -valued ¥, and the choice of u = e~* dt shows, as already mentioned, that
Y: X x X - C, is negative definite if and only if (t + ¥)~! is positive
definite for all ¢t > 0.
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2.4. Remark. If a probability measure x on R, has infinite first moment and
V: X x X - C, is negative definite, then Lu(ry) is still positive definite
for all t > 0, but, in general, the converse does not hold. It follows from later
results (cf. 2.10 and 4.4.5) that exp( —\/E) is the Laplace transform of some
probability measure g on R, . Now a matrix (a;,) of the form a, = (s; + 5%,
where s;,...,s, 2 0, is not negative definite in general, ¢, + ---+ ¢, =0
implying Y’ cjcay = 23 ¢;s;)% but nevertheless for all r > 0

Lu(taz) = exp(—/tay) = exp(—/ts) exp(—+/ts0)
is positive definite by 1.9.

2.5. Remark. If ¢ is positive definite and @|A = ¢ for some c € R, then
obviously ¢ — ¢ is negative definite, bounded and vanishes on the diagonal
A. A similar statement in the other direction (which may be found in the
literature) is not generally true; see, however, 4.3.15. For x;, = —1,x, =0,
X3 = +1,the 3 x 3 matrix

01 4
(ap) = ((x;—xH =1 0 1
4 1 0

is negative definite, vanishes on the diagonal, and is bounded by 4, but for
no real number ¢ the matrix (t — a;,) is positive definite, because

t t—1 t—4
det(t —ap) =t —1 t t—1|= -8 forall teR.
t—4 -1 t

Negative definite kernels are intimately related to so-called “infinitely
divisible” positive definite kernels.

2.6. Definition. A positive definite kernel ¢ is called infinitely divisible if for
each n € N there exists a positive definite kernel ¢, such that ¢ = (¢,)"

If  is negative definite then ¢ = e~V is infinitely divisible since @, =
exp(—(1/n)y) is positive definite and (¢,)" = ¢. Furthermore, ¢ has no
zeros. Proposition 2.7 below shows, in particular, that every strictly positive
infinitely divisible kernel has this form.

Let ¢ be infinitely divisible. Then

ol =1onl" = (1024)" = [(920a )T, kin 21,

so that the nonnegative kernel || is infinitely divisible inside the family of
all nonnegative positive definite kernels, each (under this restriction
uniquely determined) nth root | ¢, | again being an infinitely divisible positive
definite kernel. Let A, (X) denote the closure of all real-valued negative
definite kernels on X x X in the space ]— o0, co]¥*%.
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2.7. Proposition. For a positive definite kernel @ = 0 on X x X the following
conditions are equivalent:

(1) o is infinitely divisible;
(i) —log ¢ € A (X);
(iii) @' is positive definite for all t > 0.

PROOF. “(i) = (ii)” Let i := —log ¢, then
Y = lim n[1 — exp(—y/n)] € A (X).
“(ii) = (iii)” Let (¥,) be a net of (finite) negative definite kernels converging

pointwise to Y = —log @. Then for any ¢t > 0 we have exp(—ty,) —
exp(— 1)) = @', so that ¢’ is positive definite by Theorem 2.2.
“(iii) = (1)” Taket = 4,4, 4,.... O

2.8. Remarks. (1) The above proof shows that 4, (X) is in fact the monotone
sequential closure of the subset of all negative definite kernels, bounded
above.
1 . o s
(2) For ze C, |z| £ 1 the 2 x 2 matrix (_ i) is an infinitely divisible
z
positive definite kernel with nonuniquely determined positive definite
“roots ”.

We conclude this section by indicating a large class of functions which
operate on negative definite kernels.
For ue M, (]0, oo[) we define g: D(u) —» C by

4@) = f:(i e ) du(d),

— Az

where D(y) is the set of z € C for which 1+ 1 — e™** is p-integrable.

2.9. Proposition. Let : X x X — C be a negative definite kernel and let
ue M0, D). If (X x X) = D(u) then g o Y is negative definite. Further-
more, for x, € X the kernel (x, y)+— gly(x, xo) + ¥(, x0)] — gl¥(x, y) +
W(xo, Xo)] is positive definite provided (Y(X x X) + Y(xo, Xo)) W (Y(X, Xo)
+ ¥(xo, X)) < D(w).

If f@ A1 + )~ du(d) < oo and Y|A 2 0 then g o Y is negative definite
and gy (x, xo) + ¥ (¥, Xo)] — glw(x, y)] is positive definite for all x, € X.
ProoF. It suffices to prove the result for g(z) = 1 — e~** where 4 € ]0, o[,
ie.p=1¢,Du) =ClIfx,...,x,e Xandc,,...,c,e Csuchthat} ¢;=0
we get

z Cjc_k(l — e—l'l/(xj,xk)) = — chc—ke—iwx,-,xk) <0

Jrk Jk
as an immediate consequence of Theorem 2.2. For any x, € X the kernel
W(x, xXo) + U(y, xo) — Y(x, y) — Y(xo, Xo) is positive definite by Lemma 2.1,
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as is therefore the kernel

exp(A[Y(x, xo) + Y(y, Xo) — Y(x, y) — ¥(xo, Xo)]) — 1
by 1.14, and multiplying with the positive definite kernel

exp(— AY(x, x,)) exp(—AY(y, x,))
gives
exp(—ALY(x, y) + Y(xo, Xo)]) — exp(—ALY(x, Xo) + ¥(¥, x0)1)
= glY(x, xo) + ¥(y, Xo)] — gl¥(x, y) + Y(xo, Xo)],

which is positive definite by Theorem 1.12.

If [§ A(1 + A)™ ' du(A) < oo then C, <= D(u). Notice that |A = 0 if and
only if y(X x X) < C, because of 1.7. It follows that Y(X x X) & D(u)
and Y(X x X) + y(X x X) = D(u) so goy is negative definite and
gl(x, xo) + (¥, x0)] — gl¥(x, ¥) + ¥(x9, xo)] is positive definite.
Using the fact that the kernel ¥(x, xo) + W(¥, xo) — Y(x, y) is positive

definite by Lemma 2.1, it is seen as above that g[y(x, xo) + ¥(¥, Xo)] —
glv(x, y)] is also positive definite. O

2.10. Corollary. If : X x X — C is negative definite and satisfies Yy|A = 0
then so are Y* for 0 < a < 1 and log(1 + ¥).

ProoOF. The assertions follow by Proposition 2.9 and the formulas

. o @ s dl
Z_I“(l—oc)_L(l ¢ @

© -
log(1 + z) =f A—e®
. 7

which are valid for Re z 2 0. Each formula can be established by showing that
both sides of the equation have equal derivatives. O

2.11. Corollary. If f: X — C satisfies Re f = O then for each a € [1, 2] the
kernel

Valx, 9) = = (f () + fO)”

is negative definite.

ProOF. An equivalent formulation is that the kernel —(x + )* is negative
definite on C, x C. . This is clear when & = 1 and « = 2. Integrating with
respect to z in the formula for z* (0 < a« < 1) in the previous proof we get

_Za+1 — (X(l + a)f (1 /12)

Td — %) zeCy

}'a+2’
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and the assertion follows since
Y eE(l — et — Az + B) = —|Y e £0,

whenever z,,...,2,€C, and ¢y, ..., c, € Cwith ) ¢; = 0. O

2.12. Exercise. Show by using only the results of this and the preceding
section that the following kernels are positive definite.

(@) o(x,y) =cos(x —y) onR x R.

(b) o(x, y) = cos(x? —y?) onR x R.

© ox,)=1+|x-y})"' onR xR

(d) o(x,y) = exp[—(1 —e D] onR x R.

© o, ) =1+ /x+y) ! onR, x R,.

() o(x,y) =t*"Pon Z x Z,wherete [—1, 1].

(8 ¢(x,y) = (x+y)~ton]0, o x JO, cof.

() o(x, )= (IxP + [y’ —|x — y[* on R x R, where 0 < f £ 2,
O<a=sl.

1) ox,y) =P+ y* —(x+ y)* onR, x R,,wherea, €70, 1].

(J) @(4,B) = P(A " B) — P(A)P(B) on & x o/, where (Q, &, P)
denotes a probability space.

k) o(x,y) =x A y—xyon [0, 1] x [0, 1].

2.13. Exercise. Show that the following kernels are negative definite.

@) Y(x,y) = [sin(x — »)]> onR x R.

(b) Y(x,y) = ||x — y|®? on H x H, H being a Hilbert space, 0 < p £ 2.
(©) ¥(x,¥) = ljp, of(x +y) onR, x R,.

(d) ¥(x, y) = log(x + y) on JO, co[ x 10, oo[.

) Y(x,y)=1-<x,y> on H x H, H being a Hilbert space.

€ v, =v1+|x—y] onR xR

(g) ‘p(x’ y) = 1(0}(xy) onR x R.

2.14. Exercise. Let ¢ be a positive definite kernel bounded by 1 and let
0 < a < 1. Then (1 — ap)~ ! is an infinitely divisible positive definite kernel.

2.15. Exercise. Let ¢ be an infinitely divisible positive definite kernel on
X x X and denote T == {¢ # 0}. Then 1; is positive definite, too. This does
not hold in general without the assumption of infinite divisibility.

2.16. Exercise. For X + @ the set of infinitely divisible positive definite
kernels on X x X is closed with respect to pointwise convergence. Hint: Use
universal subnets.

2.17. Exercise. Any negative definite kernel with nonnegative real part is the
pointwise limit of a sequence of bounded negative definite kernels with
nonnegative real part.
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2.18. Exercise. Let the function g: C, — C be given by
g(z) =a + Pz +yz + f [1 — exp(—sz — t2)] du(s, t)
R:
where o, B, 7€ R, and u e M, (R?) satisfies

s+t
——du(s, t) < 0.
J~|]Q2+1+S+t'u( )

If  is a negative definite kernel with Re i = 0 then so is the kernel g o .

2.19. Exercise. Let g: 10, co[ — [0, oo[ be a Borel measurable function such
that g(4) = 4 + O(4?) for A — 0. Show that if u e M, (]0, oo[) satisfies

flz du(d) < oo and fmmax(l, g(d) du(2) < oo,
0 1
then
W) = f U = e — g(2) du(h)
0

is well defined for ze C,, and y(x + y) is a negative definite kernel on
C, xC,.

2.20. Exercise. Let X be nonempty, x, € X, and let the linear transformation
T be defined on the real vector space of all hermitian kernels y: X x X - C
by

(TYX)x, y) = Y(x, Xo) + Y(¥, Xo) — ¥(x, y) — Y(Xo, Xo)-

Denoting by 2 and 4" the cones of all positive (resp. negative) definite
kernels on X x X, the result of Lemma 2.1 is that T~ (%) = 4 Show that

ker(T) = {¢/|3f: X » C such that ¥(x, y) = f(x) + f(y)} and show also
that T(A") = {p € 2| p(x, x,) = O for all x € X}.

2.21. Exercise. Let i be a negative definite kernel with strictly positive real
part. Then 1/ is positive definite. For the case Re y = 0, the result still holds

if Y does not assume the value zero.

2.22. Exercise. Given the negative definite n x n matrix (bj) put
1 —_— 1
ajk ==;(bj + bk) - b_]k - Fb,
where b; = Y%_ by, j=1,...,nand b=Y",_, b;. Show that (ay) is

positive definite, and derive from this another proof that (e”'?/) is positive
definite for all t > 0.
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2.23. Exercise. Let A4 be a hermitian n x n matrix, let ve C" satisfy
Y1 v; = 1and define an n x n matrix P, with ij’s element J;; — v;. Show
that — A is negative definite if and only if P, AP} is positive definite.

§3. Hilbert Space Representation of Positive and
Negative Definite Kernels

Around 1940 Schoenberg published three fundamental papers (1938a, b,
1942) all of which were very closely connected with positive and negative
definite kernels. The main motivation for deriving these results at that
time was to decide which metric (or more general semimetric) spaces (X, d)
can be imbedded into a Hilbert space H, i.e. when does there exist a mapping
®: X — H such that

|®(x) — ©(y)| = d(x, y) forall x,yeX.

It turned out that this property of (X, d) is equivalent to d* being negative
definite. We are now going to give an easy derivation of this result using the
so-called reproducing kernel Hilbert space (RKHS) associated with a positive
definite kernel.

3.1. Let X be a nonempty set and ¢: X x X — C be positive definite. Let
H, be the linear subspace of C* generated by the functions {¢,|x € X}
where ¢.(y) = @(x, y). If f = Y ¢; ¢,,and g = Y d, ¢, belong to H,, then
Z akf(yk) = Z Cjak(p(xj, i) = Z ng(xj) ¢))
k ik j
evidently does not depend on the chosen representations of f, g (which may
be not unique) and is denoted {f, g>. Then (f, f) = Z CiCep(xj, %) 2 0
by assumption and the form -, -) is linear in its first and antilinear in its
second argument, implying in particular
Y zinl S fo = <Zz,~f,~, szfj> z0
Jk=1 j=1 j=1
for fy,...,f,€e Hy and zy, ..., z,€C, ie. {-,-) is a positive definite kernel
on H, x H,. An immediate consequence of (1) is the reproducing property
{f, 0.0 = f(x) forall feH, and xe X
which implies in particular <{¢,, ¢,> = ¢(y, x) and by 1.8
S = S fD - olx, x)
so that ([, f> = 0 if and only if f'is identically zero. Therefore, H, is a pre-

Hilbert space and its completion H is a Hilbert space in which H, is a dense
subspace. The transformation

H->C*
[, 00)



82 3. General Results on Positive and Negative Definite Matrices and Kernels

being linear and injective, the Hilbert space H can even be thought of as a
linear subspace of C?, i.e. as a space of functions and not, as mostly, as a
space of equivalence classes of functions. This Hilbert function space is
usually called the RKHS associated with ¢. If ¢ is real-valued then, of course,
H can be chosen as a real function space.

To sum up there is a Hilbert space H = C* and a mapping x — ¢, from X
to H such that

o(x, ) = @, 0, forx,yeX.

The Hilbert space representation of general negative definite kernels looks
a little bit more complicated.

3.2. Proposition. Let X be a nonempty set and Y: X x X — C be negative
definite. Then there is a Hilbert space H < CX and a mapping x — ¢, from
X to H such that

Ux, ») = lo:l® + oyl = 2¢o,, 9,0 + f(x) + (), @

where f: X — C is a certain complex function on X. If there is some xy, € X
such that Y(x, xq) € R for all x e X and if Y vanishes on the diagonal A =
{(x, x)|x € X}, then fmay be chosen to be zero. If { is real-valued, then H may
be chosen as a real Hilbert space and equation (2) becomes

Yx, ») = lox — )2 + f(x) + f(»)

where f: X — R. The function f is nonnegative whenever Vs is.
If ¥ is real-valued and vanishes on A then f = 0 and ﬂ is a semimetric

such that x v @, is an isometry. If, furthermore, {y = 0} = A then /Y is a
(hilbertian) metric on X.

ProoF. We fix some x, € X and define
@(x, y) = 300(x, x0) + W(y, xo) — ¥(x, ¥) — (X0, Xo)],

which is a positive definite kernel by Lemma 2.1. Let H be the associated
RKHS for ¢ and again put ¢.(y) = ¢(x, y). Then

I = o(x, x) + ¢(y, y) — 2 Re (x, y)
= Re l//(x’ y) - %W(x, X) + 'p(y9 y)]:

lo:l? + lo,1? — 2{0, 0,> = llo, — ¢, — 2i Imo,, ¢,>
= ¥(x, y) = 3[W(x, x) + (3, »)]
—i Im[w(x’ xo) + lP(y9 xo)]-
Setting f(x) := 3y(x, x) + i Im Y(x, x,), we therefore obtain
Y%, ) = loxl? + 1o,* — 2o, 0,0 + f(x) + fO).

The other statements can be derived immediately. O

lox — @,
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. . . 0 i .
The negative definite 2 x 2 matrix{ | 0) shows that not every negative
—i

definite kernel y vanishing on the diagonal can be represented in the form

Y(x, p) = llo.l? + llo,)* — 2{ox, 0,>

for some Hilbert space valued mapping x> ¢,, since this would imply
Re Y(x, y) = o, — ¢,|> = 0, hence ¢, = ¢, and then Y(x, y) = 0.

3.3. Corollary. Let ¢,(x,y) = exp(—|x — y["), x, yeR and 0 < p < .
Then @, is positive definite if and only if p < 2.

ProOF. By 1.10 the kernel y(x, y) = (x — y)? is negative definite, hence so
is *for 0 < o < 1 by 2.10, and from Theorem 2.2 we get that ¢, is positive
definite for all p < 2.

Suppose now there is some p > 2 such that ¢, is positive definite. Then
foranyt > 0,x,,...,x,e Rand ¢y, ..., ¢, € R we have

n n
Y cioexp(—t|x; — x [P) = Y cjcexp(—[t'Px; — 1P, |P) 2 0,
j, k=1 j k=1
so by Theorem 2.2 the kernel |x — y|? is negative definite, and by the
proposition above |x — y|P’? is a metric on R. However,

0—1P2=1=[1-2]P2 |0-2pP2=272>2

contradicting the triangle inequality. O

3.4. Exercise. Let the kernel ¢, be defined on R, x R, by ¢,(x,y) =
exp[—(x + y)’] where 0 < p < co. Show that ¢, is positive definite if and
onlyifp £ 1.

3.5. Exercise. Let H be the RKHS associated with the positive definite
kernel ¢: X x X — C. Show that any closed subspace of H is the RKHS
for some positive definite kernel on X x X.

3.6. Exercise. Let ¢, Y: X x X — C be two positive definite kernels. Then
RKHS(¢) € RKHS(y) if and only if Ay — ¢ is positive definite for some
A>0.

3.7. Exercise. Let ¢: X x X — C be a positive definite kernel not identically
zero. Show that the following conditions are equivalent:

(i) ¢ generates an extreme ray in the convex cone 2 of positive definite
kernels on X x X (i.e. {Ap|A = 0} is an extreme subset of 2).
(i) RKHS(¢) is of dimension 1.

(iii) @(x, y) = f(x)f(y) for some function f: X — C not identically zero.
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3.8. Exercise. Let ¢: X x X — C be a positive definite kernel such that
o(x, y) # 0 for all (x, y)e X x X. Show that if also 1/¢ is positive definite

then @(x, y) = f(x)f(y) for some function f: X — C\ {0}.

3.9. Exercise. Given a positive definite kernel ¢: X x X — C and a non-
empty subset X’ < X, consider the restriction ¢’ := ¢@|X’' x X’ and the two
RKHS’s H and H' associated with ¢ (resp. ¢"). Show that H' = {f | X’ ] feH}
Hint: There is an isometry U: H' — H (not necessarily onto) mapping
¢ to @, for each x' € X'. Use U as well as the adjoint operator U*.

3.10. Exercise. If p > 2 then for no 4 > 0 the kernel exp[—A|x — y|¥] is
positive definite on R x R. Nevertheless there are mixtures

o0

o(x, y) = f exp[—Alx — yPldu(h),  pe M0, o),

0

which are positive definite.

3.11. Exercise. Let ¢ be a positive definite kernel defined on X x X where
X is a topological space. Show that ¢ is continuous if and only if Re ¢ is
continuous at each point of the diagonal.

Notes and Remarks

Positive (semi-) definite matrices have a long history and we have not traced
this history back to its origins. The first instance where a positive definite
kernel on a nonfinite set has been considered, seems to be within the theory
of integral equations, and the first systematic treatment in this connection
was given by Mercer (1909). Mercer defines a continuous and symmetric
real-valued function ¢ on [a, b] x [a, b] = R? to be of positive type if and
only if

b b
f f c()e()o(x, y) dx dy = 0 (1)

holds for all continuous functions c: [a, b] —» R, and he shows that this
condition is equivalent to ¢ being a positive definite kernel in our terminol-
ogy; cf. Exercise 1.24. Property (1) had already been singled out a few years
earlier by Hilbert (1904) who called the function ¢ definite in this case.
Mercer also defined a function y to be of negative type if and only if — is of
positive type. The idea leading to the notion of a negative definite kernel
(in our terminology) goes back to Schoenberg (1938b); however, he requires
these kernels to vanish on the diagonal—a condition appearing natural in
his context: imbedding of metric spaces in a Hilbert space.

The product stability of positive definiteness (Theorem 1.12) has been
shown by Schur (1911, Satz VII). A remarkable result in this connection was
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found by Fitzgerald and Horn (1977): if (a;) is a positive definite n x n
matrix with nonnegative entries then for all real « = n — 2 the matrix (a%)
is positive definite, too, and this lower bound for « is sharp.

The fundamental connection between positive and negative definite
kernels expressed in Theorem 2.2 goes back to Schoenberg (1938b) in case
the negative definite kernel vanishes on the diagonal. The general case seems
to have been proved first in Herz (1962).

Infinitely divisible positive definite kernels appear at many places in
analysis and—particularly important—in probability theory. Infinitely
divisible complex-valued kernels are studied in some detail by Horn (1969a).
A study of positive and negative definite kernels with invariance properties
under a group action may be found in Parthasarathy and Schmidt (1972).

The possibility of representing a positive definite kernel ¢: X x X - C
as @(x, y) = {F(x), F(y)> for some Hilbert space valued function F on
X —which may be looked at as some weak form of integral representation—
has, of course, been well known for a long time in the case of a finite set X.
For countable X the result was shown by Kolmogorov (1941), and a few
years later Aronszajn (1944, 1950) settled the question fully. His second
named paper, an enlarged version of the first one, gives the first systematic
treatment of the theory of reproducing kernels which has since found many
applications in mathematical analysis; for example, in complex function
theory, cf. Hille (1972), or in time series analysis, see Parzen (1971). See also
Donoghue (1974).

Proposition 3.2 contains as a special case the statement that a real-valued
negative definite kernel y on X x X vanishing on the diagonal can be
represented as

Y(x, y) = [F(x) = FO)II?

for some Hilbert space valued mapping F on X, a result due to Schoenberg
(1938Db).



CHAPTER 4

Main Results on Positive and Negative
Definite Functions on Semigroups

§1. Definitions and Simple Properties

In the present book we will deal mainly with positive (and negative) definite
functions on abelian semigroups, but nevertheless we will introduce the
concepts for arbitrary semigroups with involution.

The subject of positive definite functions on locally compact groups splits
into two completely different theories for abelian and nonabelian groups. At
present there exists a rather satisfactory theory of positive definite functions
on abelian semigroups whereas very little is known about the nonabelian
case.

1.1. Definition. A semigroup (S, ) is a nonempty set S equipped with an
associative composition o and a neutral elementt e.

A semigroup with involution or a %-semigroup (S, o, #) IS a semigroup
(S, o) together with a mapping *: § — S, called involution, satisfying
(i) (set)* =t*os*fors,teS,;
(ii) (s*)* =sforseS.

One should note that the axioms imply e = e*, in fact: e* = e*oe =
(e*oe)* = (e¥)* = e

For an abelian (= commutative) semigroup the composition and neutral
element are always denoted + and 0, and the neutral element is called zero.

We now list some examples showing the great generality of the above
concept.

t Many authors do not assume the existence of a neutral element in the definition of a semi-
group. With the exception of Chapter 8 we always assume that semigroups have a neutral
element.
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1.2. Examples. (a) Any group (G, o) is a semigroup with involution when we
define s* = s 1,

(b) Any abelian semigroup (S, +) is a semigroup with involution when
we define s* = s, the identical involution.

(c) Let (T, +)bean abelian semigroup. The product semigroupS = T x T
is a semigroup with involution if (¢, t,)* = (¢,, t,).

(d) The closed unit disc D == {z € C||z| £ 1} with zo w:=zw and z*:=%
is a semigroup with involution.

Concrete examples of semigroups occur throughout mathematics. We
will study some in detail in §4.

1.3. Let (S, o) denote a semigroup with neutral element e. A subsemigroup
of S is any subset T = S such that e € T, and which contains s - t whenever
s, t € T. If S has an involution, then T < § is called a *-subsemigroup, if T
is a subsemigroup which contains t* whenever t € T.

An element we S is called absorbing if scw = wos = w for all seS;
obviously there can exist at most one absorbing element in S and clearly
w* = w. In the additive semigroup ([0, o], +) we have w = oo and in the
closed unit disc (D, -) we have w = 0. Each semigroup S can be enlarged to a
semigroup T with absorbing element defining T := S u {®} (where & is
some element not contained in S) and Aos=5scD=D=D- D, seS.
Note that if S contains the absorbing element w then S\ {w} is not necessarily
a subsemigroup of S.

Let (S, o), (T, ) be semigroups with neutral elements eg and e;. A mapping
f:8 - T is called a homomorphism if f(es) = er and f(xo y) = f(x) o f(¥)
for x, y € S. If both S and T have involutions we add the requirement f(s*) =
f(s)* for s e S in order to call f a homomorphism. Sometimes we use the
word *-homomorphism in this case. If f: S — T is a homomorphism which
is one-to-one and onto it is called an isomorphism.

1.4. Let (S, o) be a semigroup. If S is equipped with a topology ¢ we call
(S, o, 0) a topological semigroup provided the composition mapping (s, t) —
s o t is continuous from S x S into S. If S in addition has an involution % we
require s — s* to be continuous, too.

In the rest of this section S = (S, o, *) denotes a semigroup with involution.

1.5. Definition. A function ¢: S — C is called positive definite if (s, t)+—
o(s* o t) is a positive definite kernel on S x §, i.e. if

n
Y (st o 5) 2 0
Jk=1

for all neN, {51,...,5,}3 8, {¢1,...,¢,3 & C, and it is called strictly
positive definite if the kernel ¢(s* o ¢) is so.
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The set of positive definite functions ¢: S — C is denoted £(S) and
21(8) = {9 e Z2(5)|p(e) = 1}.

The above concept is not changed if the kernel @(s* - t) is replaced by the
kernel ¢(s o t*).

On an abelian group (G, +) we can consider two different involutions,
the identical involution and the involution x* = —x for x € G. Corre-
sponding to these two involutions we have two different notions of positive
definiteness for functions on G. We say that ¢: G — C is positive definite in
the group sense if it is positive definite when G carries the involution x* = —x
for x € G, and we say that ¢ is positive definite in the semigroup sense if G is
equipped with the identical involution. Later on, in particular in Chapter 5,
both of these notions of positive definiteness will occur simultaneously.
Likewise for negative definite functions on G, to be introduced in Definition
1.8 below, we have the two notions of negative definiteness in the group sense
and in the semigroup sense.

1.6. By 3.1.5 it follows that any positive definite function ¢ is hermitian, i.e.
o(s*) = ¢(s) for s € S, and by 3.1.8 we have

@(s*o5) 20 and  [@(s* o)’ S @(s* o S)p(t*ot), s, tES,
in particular,
pe)z0 and  |9(s)]* < p(e)p(s* o5),  seS.

The last inequality implies that ¢ = 0 if ¢(e) = 0.

The set 2(S) is a convex cone in the vector space C° of complex-valued
functions on S. By 3.1.12 and 3.1.11 it follows that 2(S) is stable under
products and closed in the topology of pointwise convergence. The set
Z,(S) is closed and convex and a base for 2(S), i.e. for every ¢ € 2(S)\ {0}
there exists a unique pair (4, @) with A > Oand ¢, € Z,(S) such that ¢ = Ag,,
namely 4 = ¢(e) and @, = A" 1o.

1.7. Remark. Let H be a complex Hilbert space and B(H) the set of bounded
operators on H. Following Sz.-Nagy (1960) a function ®: S — B(H) is
called of positive type if for all neN, all {s,...,s,} =S and all

{élﬁ"'a én} o= 11
Y O(sFos)éy, € 2 0.

J,k=1
If @ is of positive type, then ® is positive definite in the sense that all the scalar
functions ®y(s) = (D(s)¢, &), £ e H, are positive definite. Examples are
known showing that the converse is not true, cf,, e.g. Arveson (1969).
If H = C the functions of positive type are the same as positive definite
functions. More generally if ®(S) is contained in a commutative C*-algebra
of B(H), it can be shown that the two notions coincide.



§1. Definitions and Simple Properties 89

A C*-algebra S with unit can be considered as a semigroup with involution,
the composition being the multiplication of the C*-algebra. Then linear
mappings ®: S — B(H) of positive type are widely studied under the name
of completely positive mappings, whereas a linear ® is positive definite if
and only if it is positive, i.e. maps positive elements in S into positive elements
of B(H).

There exists a vast literature about these operator-valued functions, see
Arveson (1969), Evans and Lewis (1977) and Mlak (1978), and references
therein, but a treatment of this subject falls outside the scope of this book.

1.8. Definition. A function ¥: S —» C is called negative definite if (s, t)—
Y(s* o t) is a negative definite kernel on S x S, i.e. if Y is hermitian and

n
Y ChY(sFos) S0
pk=1

foralln 22, {sy,...,s,} =S and {cy,...,¢c,} < Cwith D7_; ¢; =0. The
set of negative definite functions y: S — C is denoted A7(S).

The set A7(S) is a closed convex cone in C® containing the real constants.
For y € A#(S) we have by 3.1.7 that

2ReY(s*ot) = Y(s*os) + Y(t*ot), s, tes,
in particular
2Re yY(t) = Y(e) + Yy(t* o 1), tes. €]

As an application of Lemma 3.2.1 we get

1.9. Proposition. Let yy: S — C be a hermitian function satisfying y(e) Z 0.
Then  is negative definite if and only if the kernel (s, t)— Y(s) + ¥(t) —
Y(s* o t) is positive definite.

In the further development of the theory we need to consider certain
boundedness conditions for positive definite functions.

1.10. Definition. A function a: S — R, is called an absolute value if

() afe) = 1;
(ii) a(s o t) £ a(s)a(t) for s, t € S;
(ii1) afs*) = a(s) for se S.

We will later see many examples of absolute values. At present we note
that the constant function s+ 1 is an absolute value. If o, f are absolute
values and k > 0 then o, max(x, f) and o are again absolute values.
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1.11. Definition. A function f: S — C is called bounded with respect to an
absolute value a (shortly: a-bounded) if there exists a constant C > 0 such
that

| f(8)] £ Cals) for seS§,
and fis called exponentially bounded if there exists an absolute value with
respect to which f'is bounded.

The set of exponentially bounded functions is an algebra.

1.12. Proposition. Let ¢ € 2(S) be bounded with respect to an absolute value
o. Then

lo(s)| £ p(e)a(s)  for seS.

Proor. Without loss of generality we may assume that ¢(e) = 1, so that
lo(s)|* £ o(s* o 5). By iteration we get for ne N

o) 1" £ @((s* 2 5)*" ),
and using |@(t)| < Ca(t) for some constant C > 0 we get
()" < Caf(s* ° )" ") < Cals)™",
hence
[@(s)| £ a(s) lim C?™" = as). O

n-— o

1.13. Let ¢ € 2(S) and let H,, be the linear subspace of CS generated by the
functions {@|s € S}, where ¢ (t) = @(s* o t). Then H, is equipped with a
scalar product <-, -> such that

<(ps! (pt> = (p(S* ° t)’ S, te S;

and the completion H of H,, (realized in C) is the RKHS associated with ¢,

cf. 3.3.1.
For each s e S there exists a linear transformation n(s): H, - H, such

that
T(S)P, = Psoys s, tes,

and n is a representation of S in the space Hom(H ) of linear transformations
of Hy,ie.

(s o t) = n(s)n(t), n(e) = 1, n(s*) = n(s)*,
where the last equation means that
(n(s)f, 9> = {f,n(s*)g>  for f,geH,.
We see that
o(s) = {p, n(s)p),  sE€S.
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Conversely, if K, is a pre-Hilbert space, ¢ € K, and n: S - Hom(K,) is a
representation, then it is easily seen that ¢(s) := (&, n(s)&) is positive definite.
We shall now characterize the positive definite functions ¢ for which the
operators n(s) are bounded on H . If this is the case, then 7n(s) can be uniquely
extended to a bounded operator 7(s) on the Hilbert space H, and 7 is a
representation of S in B(H), the C*-algebra of bounded operators on H.

1.14. Theorem. Let ¢ € 2(S), and let n: S - Hom(H,) be the representation
as above. Then @ is exponentially bounded if and only if n(s) is a bounded
operator on Hy, for each s.

PRrROOF. Suppose first that n(s) is bounded on H,, for each s € S. Then a(s) :==
In(s)ll is an absolute value on S and |@(s)| = [<@, n(s)p)| < llo|*|n(s)ll,
thus showing that ¢ is bounded with respect to a.

Conversely, suppose that }o(s)| < ¢(e)a(s) for some absolute value a.
Letf = Y%_, ¢;0,, € Hy and define

495)= Y @ osox),  seS.

Jk=1

Then g € 2(S), forif {y, ..., Y} €S, {d;,...,d,,} < C we have

dpd,g(yEoy) = Y Y (dc)dc)o((yp o X)* o (Vg0 %)) 2 0.

pq=1 j k=1

Nk
2

ps
Furthermore, g is bounded with respect to a since

n

2
lg()| = (Z lcjla(xj)> p(e)x(s).

i=1
By Proposition 1.12 it follows that
7)1 = g(s* o 5) < gle)u(s)* = [ f [ *ads)?,

which shows that n(s) is a bounded operator on H,, of norm = o(s). O

1.15. Exercise. Let E; denote the shift operator on C5 defined by E, f(t) =
f(sot),s teS,feCS Letpe 2(S)and let Hy =€ H < C5 be the associated
pre-Hilbert space and Hilbert space. Use the closed graph theorem to prove
that E.(H) = H if and only if n(s) is a bounded operator on Hy,. If n(s) is a
bounded operator on H,, then the unique continuous extension 7 (s) of n(s)
to H is given by (s)f = E. f for f € H.

1.16. Exercise. Suppose that S is a group with s* = s~'. Show that every
¢ € P(S) satisfies | p(s)| < ¢(e), s € S.

1.17. Exercise. Let I'(S) denote the set of functions f: S — C for which

1A= 2 1/ < o0,

seS
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and define
S xg(s) = ( I;sz f@gb),  fXs)=fG%), seS.
a!obis

Show that [*(S) is a Banach algebra with involution and unit.

Let ¢: S — C be a bounded function and let L,: I1(S) — C be defined by
L(f) = Yses f(9)9(s). Show that ¢ € 2(S) if and only if L,(f** f) =0
for all f e I(S).

1.18. Exercise. Let (S, o, *x) denote a semigroup with involution and let
H < § be a nonempty subset of S. Then if 1, € £(S) it follows that H is a
x-subsemigroup of S. In case S is an abelian group and s* = — s the converse
also holds, i.e. 15 is positive definite in the group sense if and only if H is a
subgroup of S (cf. Exercise 3.1.23). Try to find a counterexample for the
converse statement on a semigroup with identical involution.

1.19. Exercise. Let (S, o, ) be a semigroup with involution and add an
absorbing element @ to S (cf. 1.3). If ¢ € 2(S) then ¢: S U {&} — C defined
by @|S = ¢ and @(@) = 0 is positive definite on S U {@}. For any positive
definite extension ¢ of ¢ we have 0 £ (@) < inf, 5 @(s* o s).

§2. Exponentially Bounded Positive Definite
Functions on Abelian Semigroups

Throughout this section, S = (S, +, %) is an abelian semigroup with in-
volution, which may or may not be the identity.

2.1. Definition. A function p: S — C is called a semicharacter if

(@) p(0) = 1;
(@ii) p(s + 1) = p(s)p(t) for s, t € S;
(iii) p(s*) = p(s) for s € S.

Note that if (ii) holds, then (i) is equivalent with p £ 0. A semicharacter is
a homomorphism of (S, +, %) into the semigroup (C, -, —), where the com-
position and involution are multiplication and conjugation.

If the involution = is the identity, a semicharacter is automatically real-
valued. If (S, +) is an abelian group and s* = —g, a semicharacter has its
values in the circle group T = {z € (Cl |z] = 1} and is a group character.

2.2. The set of semicharacters on S is denoted S*. We equip S* with the
topology inherited from C%, having the topology of pointwise convergence.
In particular S* is a Hausdorff space. (Since C5 is completely regular and S*
is a (closed) subset of C5 we have in fact that S* is a completely regular space.)
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Note that S* is a topological semigroup under pointwise multiplication,
the mapping p +— pis an involution and the function 1 is the neutral element.
We call $* the dual semigroup of S.

2.3. The semigroup structure of S* leads to a convolution in M5 (S*), cf.
2.1.16. Let m: $* x S* — S* be the continuous mapping given by n(p,, p,) =
p1p,. For u, v e MY (S*) the convolution u * v e M% (S*) is by definition the
image measure of the Radon product measure yu @ v under the mapping =,
i.e.

puxv(B)=u@v(n"'(B)) for BeB(S*).

Note that by 2.1.24 supp(u * v) = supp(n) - supp(v).

2.4. Every semicharacter is positive definite. Our main concern is whether
every positive definite function can be represented as an integral of semi-
characters. We shall return to this question in Chapter 6, where it will be
shown that the answer is in general negative. However, exponentially
bounded positive definite functions admit such an integral representation
as we shall see next.

For u e M (S*), the set of Radon measures on S* with compact support,
the function

o(s) = L ) du(p),  seS

is positive definite. In fact, for {s,,...,s,} < S, {¢y,..., ¢,} & C we find
n n 2
Y ot + D) = [ | L epe)| duo) 20,
j k=1 j=1

Furthermore, ¢ is exponentially bounded. To see this we define an absolute
value ay associated with a compact subset K < S* by

ax(s) = sup{|p(s)||pe K}, s€S.
In the special case of K = supp(u) we find
lo(s)| = u(K)ak(s) = @(0)og(s)  for seS,

showing that ¢ is bounded with respect to ag. This establishes the “only if”
part of the following result:

2.5. Theorem. A function ¢: S — C has an integral representation of the form
o) = [ (9 duto) o)

S*
with p € MS,(S*) if and only if it is positive definite and exponentially bounded.

If @ has these properties there is exactly one measure € M (S*) such that
(1) holds.
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As a preparation to the proof we fix an absolute value o and consider the
set 2%(S) of a-bounded functions ¢ € £(S), and the subset 25(S) of functions
¢ € 2%(S) satisfying ¢(0) = 1. Clearly £%(S) is a closed convex subcone of
2(S) and 2%(8S) is a closed convex set, which is a base for 2%(S).

We remark that the set 2¢(S) of exponentially bounded positive definite
functions is given as

28) = |) 27(5),

where the union is taken over the set of absolute values, so 2¢(S) is a convex
cone, stable under products, cf. 1.10.

2.6. Theorem. Let « be an absolute value on S. Then P3(S) is a compact
convex set whose extreme points are precisely the a-bounded semicharacters.

PrOOF. Since the functions in £{(S) are pointwise bounded, Tychonoff’s
theorem implies that £5(S) is compact. A semicharacter p is a-bounded if
and only if | p(s)| £ a(s) for s € S.

We show below that ex(#1(S)) = S* and defining 7y: S —» S by y(s) =
s* + s we conclude from Corollary 2.5.12 that ex(£%(S)) is precisely the set
of a-bounded semicharacters.

In order to establish ex(2%(S)) < S*, we define for ¢ € 2%S), ae S and
o € C with |g| < 1 the function T, , ¢ by

T.,9(s) = d@)p() + 5 (s + ) + 5 9(s + a*),  s€S.
We claim that T, ,@ € 2%(S). For {sy, ..., 8.} €8, {cy,..., ¢c,} & Cwehave

n n
Y E T o0l +s) =@ Y ¢;5o(ss + 50

Jk=1 J k=1

+ Re{a Y ciGo(st + 5 + a)}

Jik=1

= a(a)g(0) + Re{og(a)},

where

g(s):= Y c;Go(s¥ + s+ ), seS.
k=1

According to the proof of Theorem 1.14 we have g € 2%(S), so the inequality
[9(a)| £ g(0)(a) (cf. 1.12) implies that T, ,@ € Z(S) and T, ,¢ is clearly
a-bounded.

Let ¢ € ex(21(S)). We shall show that ¢(s + a) = @(s)p(a) for s, ae S.
This is clear if a(a) = 0 because |@p(s + a)| < a(s + a) £ a(s)a(a) = 0 and
|@o(a)] £ aa) = 0. Suppose a(a) > 0. Since

Lo+T, wo=T,0+ T, 0= 2u(a)o,
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all the functions T, , ¢ are proportional to ¢ for ¢ € {+1, +i}, and it follows
that ¢(s + a) = k(a)p(s), s € S, for a certain proportionality factor k(a).
Putting s = 0 we get k(a) = ¢(a). a

Proor oF THEOREM 2.5. If @ is positive definite, exponentially bounded and not
identically zero, there exists an absolute value a such that ¢(0) !¢ € 25(S).
By Theorem 2.5.6 there exists a Radon probability measure 7 on the compact
set of a-bounded semicharacters having ¢(0)~'¢ as barycentre. Using the
continuous linear functionals f+ f(s) on C* we get

o(s) = fs P du(p) seS,

where y = @(0)r belongs to M (S¥).
To prove the uniqueness assertion assume that

o(s) = f P(s) dup) = f ), ses,

where p e M¢ (S*) and ve M, (S*) is such that p— p(s) is v-integrable for
all s € S. The set

o = {pH chp(sj)!cl,...,c,,eC,sl,...,s,,eS,neN}
=1

J

of continuous complex-valued functions on S* is an algebra stable under
conjugation, containing the constant functions and separating the points of
S*. It follows by the Stone—Weierstrass theorem that the set of restrictions to
a compact subset K = S§* of the functions in &/ is a dense subset of C(K) in
the uniform norm. All functions ® € .o/ are v-integrable and [ @ du = | ® dv.

We claim that supp(v) < supp(p). If not, there exists a compact set
L <= $* disjoint from supp(u) such that v(L) > 0. Choose ¢ > 0 such that
£2¢(0) < v(L). By the Stone-Weierstrass theorem there exists a real-valued
function ® € o such that ® > 1 on L and 0 < ® < ¢ on supp(x). Then
®* e o, ®* = 0 and

L) £ f Drdv < f@z dv = f(I)Z dp £ 2u(S*) = 2¢(0),
L

which is a contradiction. Finally, the set of restrictions to supp(u) of the

functions in o is dense in C(supp(u)), so by the Riesz representation theorem
= a

The uniqueness statement in Theorem 2.5 combined with Theorem 2.6
can be expressed in the terminology of the theory of integral representations.

2.7. Corollary. Let o be an absolute value on S. Then #5(S) is a Bauer simplex.
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As a special case we consider the absolute value b(s) = 1, s € S. The cone
P"(S) is equal to the cone of bounded positive definite functions, and we
define

8:=8*% n 2S) = {p e S*||p(s)| S Lforse S},

which is a compact subsemigroup of S* called the restricted dual semigroup.
It is easy to see that § is the set of bounded semicharacters.

For this special case Theorem 2.6 and Corollary 2.7 lead to the following
result:

2.8. Theorem. The set #5(S) of bounded positive definite functions ¢ with
¢(0) = 1 is a Bauer simplex and its set of extreme points is S. A bounded
positive definite function @ has an integral representation

o0 = [ P dutp),  ses.
N
where p € M . (S) is uniquely determined.

In the special case of S being an abelian group with s* = —s, Theorem 2.8
reduces to Bochner’s theorem for discrete abelian groups, cf. Rudin (1962):

2.9. Theorem. Let G be a discrete abelian group. A function ¢: G — C is
positive definite in the group sense if and only if it is the Fourier transform of a
(nonnegative) Radon measure on the compact dual group G.

2.10. The set of signed measures of the form pu, — u, + i(us — p,) with

u; € M. (8%),j = 1,..., 4will be denoted M“(S*). Extending the convolution

of measures in M (S*) to M(S*) by bilinearity, M‘(S*) becomes an algebra.
For u e M°(S*) we denote by f the function

As) = L PO dup),  seS

and fi is called the generalized Laplace transform of u. The mapping u+— fi
of M(S*) into C5, the generalized Laplace transformation, has the following
properties, where o, f € C, u, ve M(S*):

() (op + Bv)" = aft + B9;
() (u*v)"=p-9;
(i) i =0=>pu = 0;
i.e. u— 1 is an injective algebra homomorphism. Since M‘ (S*) is mapped
onto the cone #°(S), M(S*) is mapped onto the subspace of C5 spanned
by £°(S). Among the above properties (i) and (ii) are straightforward
to establish, and (iii) follows from the proof in Theorem 2.5. Indeed, if
p= (U — p) + i(us — py), with y; € M4 (8*), and K < S* is compact such
that supp(u;) = K, j=1,...,4, then [ ®du =0 for all ® e .o, and the
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restrictions @ | K form a dense subspace of C(K). By Theorem 2.2.4 it follows
that u = 0.

We identify M , (S) with the set of u € M¢,(S*) for which supp(u) < 8. For
p, v € M5.(S*) with support in S, u * v also has its  support in §, so we can
consider the convolution as a composition in M . (S).

In the following result M . (S) is equipped with the weak topology, which
is equal to the vague topology. The result is analogous to the Lévy continuity
theorem in probability theory, but simpler.

2.11. Theorem. The transformation pw— fi is a homeomorphism of M o)
onto 2°(S).

ProOOF. Only the continuity of the inverse mapping [+ u needs some
explanation. Let (u,) be a net in M, (8), let u e M, (8) and assume fi,(s) -
A(s) for each s € S. In particular there exists «, and C > 0 such that p (5) =
fi,(0) = C for a = a,, showing that (u,) is eventually in the compact set of
measures in M , (S) with total mass < C. It therefore suffices to show that u
is the only accumulation point for (u,). Indeed, if ¢ is an accumulation point
for (u,), then i = & by the continuity of *, hence y = . O

2.12. Exercise. Let S be an abelian semigroup with involution. Show that
the Banach algebra I*(S) from Exercise 1.17 is abelian. Let A be the Gelfand
spectrum of nonzero multiplicative linear functionals (Rudin 1973, p. 265),
and let A, denote the set of hermitian elements, i.e. the set of L € A such that
L(f*) = L(f) for f € I'(S). Let " denote the set of nonzero bounded func-
tions y: S — C satisfying y(s + t) = y(s)y(¢) for s, ¢ € S with the topology of
pointwise convergence. For y € T let L,: I!(S) —» C be defined by
L,(f) = Zsf ($)y(s).

Show that y — L, is a homeomorphism of I" onto A which maps S onto A,.
It can be proved that I*(S) is semisimple if and only if I separates the points
of S, cf. Hewitt and Zuckermann (1956).

2.13. Exercise. Let (S, +, ) and (T, +, ) be abelian semigroups with
involution, and let (§ x T, +, *) be the product semigroup defined by
0+ wv)=(s+ ut+0v), (s,1)* = (s* t*). Show that there exists a
topologlcal semlgroup isomorphism of $* x T* onto (S x T)*, which maps
Sx TontoSx T.

2.14. Exercise. Let (S, +, *) and (7, +, x) be abelian semigroups with
involutions and let h: S — T be a homomorphism. The dual map h: CT — CS
is defined by A(f) = foh. Show that A(P(T)) = 2(S), h(P(T)) < Z4S),
R(T*) = $*, h(T) < S and that h* := | T* is a continuous homomorphism
of T* into S* which, furthermore, is one-to-one if h is onto.

Let ¢ e 2°(S) have the representing measure pue M (S*). Show that
@ = fohfor some fe #%T) if and only if u = v*" for some ve M (T*).



98 4. Main Results on Positive and Negative Definite Functions on Semigroups

2.15. Exercise. Let o be an absolute value on S and let ¢ € 2%(S) satisfy
|o(s)|*> = @(s + s*)foralls € S. Show that ¢ € S*. Show also that if ¢ € 25(S)
satisfies | @(s)| = a(s) for all s € S, then ¢ € S*.

2.16. Exercise. Let (S, +, *) be an abelian semigroup with involution. Show
that S* is a linearly independent subset of C5 and conclude that if S is finite
then card S* < card S. Give an example where card $* < card § < oo.

2.17. Exercise. Show that ([—1, 1], )" can be described as T usgn-T U
{sgn’} where T:={t—|t| ae[0, 0]}, sgn:=1, 4 — 11—y ¢, and
[¢]°:=1,[t]® =1, y®)forte [—1, 1]. ‘

2.18. Exercise. Let ¢ e 2%S). Then {seS|o(s) = afs)} as well as
{s € S||¢(s)| = a(s)} are »-subsemigroups of §.

2.19. Exercise. Let (S, +, *) be an abelian semigroup with involution and
let T:={pe §|[p[ = 1}. If ¢ € #%(S) has the representing measure u then

W(T) = inf; s (s + s*).

2.20. Exercise. Let (S, +, *) be an abelian semigroup and consider S U {@}
as in Exercise 1.19. Let ¢ € 2°(S) have the representing measure p. Then an
extension @ of ¢ to S U {@} is positive definite if and only if 0 < &(d) £

u({1s})-

2.21. Ex/egcise. Let S be an alzelian semigroup with involution, let ne N
and let S" be identified with (S)" in accordance with Exercise 2.13. Show
that if @ € 2°(S") has the representing measure pe M, (8", and if ¢ is a
permutation of n elements, then ¢ o ¢ has the representing measure pu° .
Conclude that ¢ € 2°(S") is symmetric, i.e. ¢ - ¢ = ¢ for all permutations g,
if and only if y is symmetric.

2.22. Exercise. Let S = [0, 1] and define sot = (s + ¢t~ 1)* for s, te8S.
Show that (S, <) is an abelian semigroup with neutral element 1 and absorbing
element 0. Show further that S is 2-divisible (cf. 6.8) and that §* = {1, 1,;,}.

§3. Negative Definite Functions on
Abelian Semigroups

In most of this section, we consider negative definite functions on an abelian
semigroup with involution (S, +, *). From 3.20 onwards, we will specialize
to semigroups with the identical involution.
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For iy € #(S) we know by Theorem 3.2.2 that e € 2(S) for t > 0. Since
we only have an integral representation for exponentially bounded positive
definite functions and, in particular, for bounded positive definite functions,
the following simple result is of some interest.

3.1. Proposition. Let € A (S). Then e € 2%(S) (resp. € #°(S)) for all
t > 0 if and only if there exists an absolute value a« = 1 and a constant C € R
such that

Rey(s) = C —logafs) for seS,

(resp.Rey(s) =2 C  for sef)
If this is the case then C = y(0) can be used.

ProoF. If e”V is exponentially bounded (resp. bounded) there exists an
absolute value «, where we may assume o = 1 (resp. « = 1), such that

Ie—W(s)l = g Revls) < e_"’(o)cx(s), sE S,

and the stated inequalities follow. Conversely, if the first inequality of the
proposition holds, we get for ¢t > 0

Ie—tvt(S)| < e—'cot(s)’, SES,
which shows that e~ e 2S) (resp. € #%(S) when o = 1) since o' is an

absolute value. O

The set of negative definite functions ¥ for which Re i is bounded below
will be denoted A7(S).
3.2. Corollary. For € A"/(S) we have
Re y(s) 2 ¥(0), seSs.

3.3. Proposition. Let € A7'(S) satisfy y(0) = 0. Then
VWG + 01 < JWe) + VWO, s, teS.

ProOF. By Proposition 1.9 the matrix
( 2 Re '//@_— Y(s* +5)  Y(s) + @) — Y(s* + t))
Y(s) + Y(t) — Y(s + t*)  2Re () — Y(t* +1)
is positive definite, hence, using inequality (1) of §1,
[9(s) + (1) — Y(s* + D = 2 Re Y(s) — Y(s* + 5))
x 2 Re y(t) — Y(t* + 1)
= 41Y) (@)

Replacing s by s* and extracting the square root gives

(s + DI = W) + Y@ + 2J/[¥6) VYO,

and the inequality follows. O
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In some later applications we shall need the following boundedness
result for negative definite functions on semigroups with absorbing element
(cf. 1.3).

3.4. Proposition. Let S contain the absorbing element . Then the functions in
NUS) are automatically bounded. More precisely if Yy € /(S) and y(0) = 0

then Y], < /5¥(w).

PROOF. For fixed s € S the 3 x 3 matrix

v UM (o)

Y(s) Y(s+ 5% Y(o) ]| =@jk=1.23

V)  Yo) Yo)
is negative definite. Writing down explicitly the inequality Y ¢;Geay < 0
forc, =c¢, =1,¢3 = —2 gives

¥(0) + 2 Re Y(s) + Y(s + s*) = H(w),

and since Y(s + s*) = Rey(s + s¥) =20 by Corollary 3.2 we get
0 < Re Y(s) £ 2¥(w). Similarly, the choice of ¢; =1, ¢; =i, c3 = —1—1i

gives — Im yY(s) < Y(w), and the coefficients ¢, =1, ¢, = —i, ¢c3 =i —1
yield Im y(s) £ Y(w). Hence |Im y(s)| < ¥(w) and therefore |||l <
NEO! O

We shall next establish an important relationship between functions
¥ € #°X(S) and convolution semigroups of Radon measures on the compact
semigroup S, which is the restricted dual semigroup of S.

3.5. Definition. Let T be a Hausdorff topological semigroup with neutral
element e. A convolution semigroup on T is a family (i), from M%(T)
such that ¢ — g, is a continuous homomorphism from the semigroup (R, , +)
into the semigroup (M5 (T), ), i.e. such that:

(@) po = &;
(1) py > pp = pyy, fort,reRy;
(iii) ¢+ u, is weakly continuous.

In the case of T = § condition (iii) can be replaced by a seemingly weaker
one as the following lemma shows.

3.6. Lemma. Let ¢+ p, be a homomorphism from (R, , +) into M ,(S) such
that lim,_, o p, = &, weakly, then (,),> o is a convolution semigroup on §.

PRrOOF. By Theorem 2.11 it suffices to prove that j(f) :== fi,(s) is a continuous
mapping from R, into C for each s € S. By assumption we have j(t + r) =
J®)jr) and lim,_, j(t) = 1, so there exists 4 > 0 such that |j(¢)| < 2 for
t € [0, A]. It follows that |j(z)| £ 2" for t € [0, n4], in particular j is locally
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bounded. This combined with the equations (¢, r,t — r > 0)
st + 1) = ji@® = 1ji®Ijr) — 11,

ljst = 1) = j@&)| = 1jt — NljLr) — 1]
implies that j, is continuous. O

3.7. Theorem. There is a one-to-one correspondence between convolution
semigroups (11,),5 o on S and negative definite functions € A"X(S) established
via the formula

) =e ™ for t20, seS. n

PrOOF. Let (u,),», be a convolution semigroup. For se€ S the mapping
js: t— fi(s) is continuous by Theorem 2.11 and satisfies j(t + r) = j(£)j(r),
hence of the form jy(t) = e~ " for a uniquely determined complex number
Y(s). Since e~ e 2%(S) for each t > 0 it follows by Theorem 3.2.2 and
Proposition 3.1 that ¥ € A°(S) and that Re iy = y/(0). Conversely, if i has
these properties there exists a uniquely determined family (y,),o from
M ,(S) such that (1) holds. Clearly
ASA(s) = fi,v(s)  and  lim f(s) =1 = &(s)
=0
for s € 8, so (1), is a convolution semigroup by 2.10, 2.11 and 3.6. O

We will now consider two special types of functions i € A7(S), namely,
purely imaginary homomorphisms and nonnegative quadratic forms.

3.8. Definition. A function : S — C is called a purely imaginary homo-
morphism if it has the form = il, where I: § —» R s *-additive, ie. I(s + t) =
I(s) + l(t) and U(s*) = —I(s)for s, t € S.

A function q: S - R is called a quadratic form if

2q(s) + 2q(t) = q(s + t) + q(s + t*) for s,teSs.

If the involution on S is the identical, every purely imaginary homomor-
phism is identically zero, and a quadratic form is a homomorphism of (S, +)
into (R, +).

If S is an abelian group, with the involution being s* = —s for s € S, the
functional equation for a quadratic form q is

2q(s) + 2g(t) = q(s + ) + g(s — ¢t) for s,tes.

3.9. Theorem. Purely imaginary homomorphisms and nonnegative quadratic
forms belong to /°(S).

PROOF. Let /: § — C be a purely imaginary homomorphism, let {s, ..., s,}
cSand {cy,...,c,} € Cwith>%_; ¢; = 0. Then

n

i CJQW(ST + 8) = Z Cjc_k(‘//(sj) + ¥(s)) = 0,

J k=1 J.k=1

hence y € A7(S).
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Let g: S —» R be a quadratic form. Note that ¢(0) = 0 and g(s*) = g(s).
We define B: S x S - Rby

B(s, 1) = q(s) + q(t) — q(s + t*), s, t€S§,
and claim that B has the following properties for s, t, 7 € S:
(i) B(s,t) = B(t, s);
(ii) B(s* t) = B(s, t*) = —B(s, 1);
(iii)) B(s + r,t) = B(s, t) + B(r, t);
(iv) 3B(s, s) = lim, _,, (q(ns)/n?).
Here (i) is clear, and
B(s*, 1) = B(s, t*) = q(s) + q(t) — gq(s + 1)
= g(s + t*) — gq(s) — q(t) = —B(s, ).
To see (i), we first remark that
g(s) + q(t + t*) =gq(s +t + t¥) for s,tes,
and therefore we have
B(s, ) + B(r, £) = q(s) + q(t) — q(s + t*) + q(r) + q(t) — q(r + t¥)
= q(s) + q(r) + 2q(t) — 3lq(s + t* +r + t%)
+q(s + t* +t + r*)]
= q(s) + q(r) + 2q(t) — 3q(s + 1) — 3q(t + 1*)
-G +r +t* +t%)
= 39(s + 1) + 2q() — 2q(t + t*)
—32q(s +r + t*) + 29(t) — q(s + r + t + t*)}
=qs+r)+q@t) —qgls+r+t*)=B(E+r1).

To see (iv) we remark that forne N

nn — 1)
2

q(ns) = n’q(s) — q(s + s%).

This formula is clearly true for n = 1, 2, and assuming it is correct for n — 1,
n we get

q((n + 1)s) = 2q(ns) + 2q(s) — q((n — s + (s + s*))
= (2n% + 2)q(s) — n(n — 1g(s + s*) — q((n — 1)s) — q(s + s*)
(n+ n

= (n + 1)?%q(s) — g(s + s*).

It follows that

fim Q(nr;s) = 4(s) — 34(s + s*) = 3B, 5).

n—o
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If g is a nonnegative quadratic form it follows by (iv) that B(s, s) = 0 for all
seS. For {s,....,s,} €8, {cy,...,C,} S Z we now get

n

S cialals) + als) — 4t +s0) = 3 ¢jeB(s s

k=1 k=1
= B(t,t) 2 0,

where

Y s+ Y (—cpst.

jic;20 jre; <0

We conclude from Proposition 1.9 and Exercise 3.1.21 that g is negative
definite. O

3.10. Remark. If a quadratic form g is bounded below then it is nonnegative
and negative definite. In fact, the proof shows that B(s, s) = 0, hence g € #}(S)
and, finally, q(s) = ¢(0) = 0 by Corollary 3.2.

For f € C5and a € S, we define I', f € C° by
[Lf(s) =%f(G+a)+ f(s+a%), seS.

3.11. Proposition. Let y € AX(S) and let (1), be the corresponding con-
volution semigroup on 8. For a € S we have T,y — Y € #%(S), and if6,€ M . (5)
is the unique Radon measure such that T ,\y — = &, then

g, = lim(1 — Re p(a)) /.t,
t—0
weakly.

Proor. If I is the identity operator on C° we have
1 _ 1 _ 1
H = DU =76 = (= TXe™X9) =7 [ o1 = Re pla) dis(o)

showing that (I', — I)((1/0)(1 — e~"¥)) € 2°(S). For ¢ — 0 this function tends
pointwise to I',iy — , which then necessarily belongs to 2°(S). The assertion
about the measure follows immediately from the Lévy continuity theorem

(2.11). a

We now consider an arbitrary hermitian function y: S — C with the
property that I',iy — y € 2°(S) for all a € S, and we denote by o, the unique
Radon measure on S such that T,y — ¢ = &,.

3.12. Lemma. Let: S — C be a hermitian function such that 1:,, Y — Y e?(S)
for each a € S. There exists a unique Radon measure p € M . (S\{1}) such that

(1 — Re p(@u = a,|(S\{1})  for aeS. )
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If y e #XS) and (>0 is the corresponding convolution semigroup then
o= lim, o(1/0) | (S\{1}) vaguely.

PRrROOF. For a € S we let
0,= {peS|Re p(a) < 1},

which is an open subset of S. Since ©, = {p € §|p(a) + 1} the family (€,),.s
is an open covering of the locally compact space S\ {1}. On each ¢/, we con-
sider the Radon measure

1,:=(1 — Re p(a)) " (0,]0,).
Since
(T = D@y — DY(s) = —(T, — DT, — D(s)

L p(sX(1 — Re p(a)) day(p)

- L p(X1 — Re p(b)) do(p),

we get by the unicity assertion of Theorem 2.8 that
(1 — Re p(a))ab = (1 — Re p(b))o-aa a, be S:

so the compatibility condition of Theorem 2.1.18 is satisfied for the measures
(t1.)ses- Consequently, there exists a uniquely determined Radon measure u
on S\{1} such that u{@, = 1, for a€ S, and it is clear that p is the only

Radon measure satisfying (2).
To finish the proof it is enough by Theorem 2.4.9 to prove that for each

aes

1
lim n w0, =1, vaguely on O,.
-0

Let f € C.(0,) be given. Then

_Jf(p1 —Rep(@)™', ped,,
9(p) = {O, pE g\@a

is a bounded continuous function on §, so by 3.11,
.1
lim ¢ [ 1 duie) = [ gdo, = [raz. O
t—

3.13. Definition. Let  be as in Lemma 3.12. The measure u is called the
Lévy measure for y or for the corresponding convolution semigroup (&), o
in case ¥ € #(S).
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The Lévy measure might have infinite total mass, but (2) implies that

f (1 — Re p(a)) du(p) < oo forall aeS. 3)

S\{1}

Let £ denote the set of ue M (S\{1}) for which (3) holds.
With the same assumptions as in Lemma 3.12 we have:

3.14. Lemma. The following conditions are equivalent:

(i) u=0;
(ii)) T',y¥ — ¥ is constant for eacha € S;
(iit) ¥ = Y(0) + g + il, where q is a nonnegative quadratic form, and | is
x-additive.

PrROOF. The equivalence “(i) <> (ii)” is obvious. Suppose that (ii) holds.
Defining g = Re(yy — y(0)), I = Im(y — (0)), we have

Faq_q‘:()-a({l})goa I“al_l'__-o
and
q@*) = q(a),  la*) = —la)

for all a € S, and it follows easily that g is a nonnegative quadratic form and
lis =-additive. In fact

Laq(s) — q(s) = T',q(0) — q(0) = q(a), sE€S,
which is the functional equation for a quadratic form. Furthermore,
TUs) — Us) = 3[i(s + a) + (s + a*)] — I(s) = 0, seSs,
so by interchanging the roles of a and s we have
Its + a) + Is + a*) = 2I(s),
l(a + 5) + l(a + s*) = 2l(a),
and using I(s + a*) = —l(a + s*) we find
I(a + s) = l(a) + I(s).
Conversely, if (iii) holds, it is easy to see that I',¢y — ¢ = g(a). O

As another use of the Lévy measure we can completely characterize the
set A%(S) of bounded negative definite functions.

3.15. Proposition. Let € A(S). Then the Lévy measure u for  satisfies
1 \{1}) £ 1Yl and
WO =y + [ (= pendutp,  ses.

A

S\
In particular \ has the form ¢ — ¢ where c € R and ¢ € 2°(S).
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PRrOOF. Without loss of generality we may assume y/(0) = 0. The correspond-
ing convolution semigroup (), o consists of probability measures, and we
have fort > 0

L= e = [ (1= o) duto) = [ (1= ) dudp)
3 S\
Using Re y(s) = 0 (cf. 3.2) and |1 — e¢™?| £ |z] for Re z = 0, we find
0= [ (1= Rep(9) dup) < el(o)| S ¢ o
S\
For any molecular measure « on S we define
(o) = [ P dats), e
M

If o is a molecular probability measure on S we have

o= [ ([ a-repauin) ase
S \vYS\{1}

= [ = Rea(e) duo) < ¥l
S\

Let C = S\ {1} be a compact set. For any p, € C there exists a € S such
that Re po(a) < 1, and there exists an open neighbourhood U of p, in § such
that Re p(a) < 1 for all p € U. By compactness of C there exist finitely many
points a,, ..., a, € S such that

1 n
. Y. Rep(a) < 1 forall peC.
i=1
If we define the molecular probability « by

o

|
i; % (Ba,- + ga‘,?)a

then

S| =

&(p) = ZRe p(ai)e[_la 1], peg

i=1

and &(p) < 1 for p € C. For every natural number p the convolution power
a*P is again a molecular probability measure and (¢*?)*(p) = (&(p))?, p€ S.
Applying Fatou’s lemma gives

A

S\{1} p-o

w(C) < f lim inf(1 — (3(0))*"* ) dys(p)

< lim inf f(l — @EN** Y dufp) £ th

p—>®©
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and C being arbitrary, we get

{1 = eyl -

Since (1/01,|(S\{1}) —» u vaguely for t — 0 we get by Proposition 2.4.4 that
u(S\{1}) £ ¥, and that

Y(s) = lim —i—(l — e‘tW(S))

t—0

. 1
=lim | (1 - p(s)) dplp)
10 JE\(1)

= [ = o) dutp)
$\n
because p— 1 — p(s) belongs to C°(S\ {1}). O

3.16. Corollary. Let S contain an absorbing element w. Then the transformation
PUS) — (Y € F(SY(O0) = 0, Y(w) £ 1},
p—1-09
is onto, i.e. is an affine homeomorphism.

PrROOF. Let y € A7X(S) fulfil ¥(0) = 0 and ¥(w) < 1. By Proposition 3.4 y
is bounded and therefore ¥ has the representation

wwfu—mwm ses,
S\(1}

where Y(w) = u(S\{1}P) < 1. Put a:=1— p(S\{1}) and p':=p+ ag, €
ML (S), then

l—l//(s)=ot+f

A

S\{1}
showing that 1 — ¥ € Z4(S). O

o) dup) = [ p(5) o)
N

Our goal is to extend the integral representation in Proposition 3.15 to
functions ¥ € A7(S), thus looking for a representation analogous to the
classical Lévy-Khinchin formula in probability theory, cf, e.g. Loe¢ve
(1963). If u € M, (S\{1}) is such that

f|1 — p(s)| du(p) < © for ses, 4)
then

bO=[ (- po)dup,  ses ®)

A

S\{1}
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belongs to A7), as is easily seen. However (4) need not hold for all Lévy
measures, and therefore it is necessary to introduce a compensating term in
the integral in (5). This is made precise in the following.

3.17. Definition. A function L: S x § - R is called a Lévy function for S if

(i) L(., p) is a *-additive function from § into R for each p € §.
(ii) L(s, -) is Borel measurable on § for each s € S.
(i) {11 — p(s) + iL(s, p)| du(p) < oo for all s€S and all measures ue £
(i.e. such that (3) holds).

We do not know if every semigroup with involution has a Lévy function,
and it is probably a difficult question. If § is an abelian group and s* = —s
there exists a Lévy function. This may be seen from Parthasarathy et al.
(1963) and depends on the structure theory for abelian groups. See also
Forst (1976). If S is an abelian semigroup with s* = s the function L = 0
is a Lévy function. This also holds (cf., 3.4 and 3.15) if S contains an absorbing
element. We shall later give other examples of Lévy functions.

3.18. Proposition. Suppose S has a Lévy function L. For any measure e £
the function

b= [ =g+ iLe e, ses

a

$vn
belongs to A"}(S) and the Lévy measure for y,, is .

Proor. The function ¥, is easily seen to be negative definite and Re yy = 0.
Furthermore,

= D) = [ poX1L — Re pl@) due). s eSS,

A

S\{1}

which shows that o, e M (S), determined such that 6, = (I', — ny,, is
concentrated on S\ {1} and equal to (1 — Re p(a))y. By Lemma 3.12 it
follows that y is the Lévy measure for y,,. O

We can now state and prove the “ Lévy-Khinchin” integral representation
for A7K(S).

3.19. Theorem. Suppose S has Lévy function L. The following conditions are
equivalent for a function y: S — C:

() ¥ e &)
(ii) ¢ is hermitian and T,y — € P*(S) for each a € S.
(iii) There exists a triple (I, q, u) where l: S - R is x-additive, q is a non-
negative quadratic form and yu e & such that

Y(s) = Y(0) + il(s) + q(s) + L \m(l — p(s) + iL(s, p)) du(p)
forallseS.
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The triple (I, q, p) is uniquely determined by y € /XS), u being the Lévy
measure for Y and

ses.

Re Wz(nS) + lim Y(n(s + S*)),
n 2n

PROOF. “(ii) = (iii)” Let u be the Lévy measure for y and let ¥, be defined
as in Proposition 3.18. The function

re=y —y0) -y,

is hermitian and T',r — r = &, — (6,|(S\{1}))" = a,({1}) for a€ S, hence
positive definite and constant. By Lemma 3.14 it follows that y has the
representation stated in (iii). Finally, if (iii) holds, it is clear by 3.9, 3.14 and
3.18 that € A7(S), and that the Lévy measure for y is p. This shows that
the triple (I, g, 1) is uniquely determined by , and we find

R
D I [ 5= Rl dute),

g(s) = lim

n—oo n—w

Vnts + 5%) _ VO alnts +5%)
n n n

1
[ Sa=1p0r du)
S\{1}

By the proof of Theorem 3.9 we have

tim 9% 4(9) ~ 4405 + 5%,

n-oo

and by the functional equation for quadratic forms
g(n(s + s*)) = nq(s + s*),

which gives the formula for g(s) provided the integrals tend to zero. That
this is true follows from the dominated convergence theorem because of the
inequalities

1 T
-2 (1= Re(p(s))) = (1 — Re p(s)),

%(1 — |p()>") £ 1 — Re p(s + s¥).

Putting p(s) = re, r € [0, 1], 0 € ] — =, =], these inequalities become

1 2 1
=1 ——r"cos(nO))g%(l —reosd), —(L-rM<l-r,  neN.

Clearly 1 — r" £ n(1 — r) for r € [0, 1], n € N, and using the inequalities

sinx _ 2
£1, xeR, —2-
X 4

sin x T
for |x| = >

X
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we find for 8 e ]—=, 7]

S_nnf)z 0 \*

in — Z

_ a2 0 2 2 220

1 — cos(nf) = 2 sin > == ——.n 5 2n? sin 7
2/ \"2

n.Z
< s n*(1 — cos ),

hence

n

1 1
(1= 1" cos(ni)) < — (1 — ") + ,:—2 (1 — cos nf)

1 n? n?
£S-0-N+=rl—-cosh £—N —-rcosh). 0O
n 4 4

Remark. In the above representation g and u are independent of the Lévy
function L, whereas | depends on the choice of L.

In the rest of this section, we assume that S is an abelian semigroup with
the identical involution. Then negative definite functions are real-valued and
AKS) is the set of negative definite functions y which are bounded below or
equivalently satisfy y(s) = y/(0).

For f € RS and a € S, we define A, f € RS by

Af)=fls+a)— f(s), seS,

hence A, f = (I', — I) fwith the previous notation.
The function L = 0is a Lévy function for S, and from the previous results
it is easy to get the following:

3.20. Theorem. Let S have the identical involution. The following conditions
are equivalent for a function y: S - R:

@) ¢ e AKS).
(i) A,y € P(S) for each a € S.
(iii) There exist an additive function q: S — [0, co[ and a Radon measure
pe M, (S\{1}) such that

Y(s) = ¥(0) + q(s) + f (1 = p(s)) du(p)-

a

S\{1}

The decomposition in (iii) is uniquely determined, u being the Lévy measure
Jor \ and

g(s) = lim

n—-o

If ¢ = 0 then  is bounded if and only if p(S\{1}) < oo.

|//(_ns_)’ ses.
n
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3.21. Corollary. Every y € A, (S) satisfies the inequalities
W(s) =yl SY(s + ) S Y(s) +¥(@®)  for s,teS.

Proor. The set of functions y: S — [0, oo satisfying the above inequalities
is a closed convex cone C in R® containing the nonnegative constants, the
additive functions q: S — [0, co[ and the functions 1 — p, p € S. By 3.20 it
follows that A4, (S) < C. W]

The following result is inspired by a remark of van Harn and Steutel
(1980).

3.22. Proposition. Let y: S — R and define y (s) .= Y(a) + Y(s) — ¥(a + s)
for aeS. If e ¥S) then e /%(S) for a€S. Conversely, if Y,e N (S)
for all a € S then y € N(S).

PROOF. If i € A7(S) has the representation of (iii) in 3.20 we get

Uals) = YO) + j (1 = p&)X1 — pla)) du(p),

a

S\{1}

and since (1 — p(a))u is a finite measure, ¥, € #(S).
Conversely, if , € #%(S) with Lévy measure p,, we have by 3.15 that

Yu(s) = ¥(0) + L (1 = p(s)) dud(p)-

\{1}
Now

Ayro(s) = AY(s) = Y(a + 5) + Y(b +5) — Y(s) — Y(a + b +3)

and

A(s) = f p(s)(1 — p(b)) dp(p),

a

S\{1}
Ai(s) = L O~ ) i)

By uniqueness of representing measures we get

(1 - p®Nu, = (1 — p(a)py, a,beS.

As in the proof of Lemma 3.12, there exists a unique Radon measure y on
S\ {1} such that

A —-p@u=p, for aes§,

and since p, is finite we have u € £ The function

h(s) = Y(s) — ¥(0) — f (1 = p(s)) du(p),  seS
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is real-valued, and we get

h(a) + h(s) — h(a + 5) = Yu(s) — ¥(0) — f(l — p(NA — p(a)) du(p)

= U(s) — W(0) ~ f (1 — p(s)) dualp) = O,

which shows that h is additive, hence h € A(S).
The formula

U(s) = Y(O) + h(s) + f (1 = p(s) du(p),  sES,
shows that i is negative definite. O

3.23. Exercise. Let S be an abelian semigroup with involution and /: § - R
a function such that y(s) = il(s) is negative definite. Show that / is x-additive.

3.24. Exercise. Let S, T be abelian semigroups with involution having Lévy
functions. Construct a Lévy function for § x T.

3.25. Exercise. Let S be an abelian semigroup with involution and Lévy
function. Show that if ¥ € A7%(S) then Re y(a) — (T, — Dy € #5(S) for all
aeS.Letiy: S — C be a hermitian function such that Re y(a) — (I', — Y €
NY(S) for all a € S. Show that i is sum of a quadratic form and a function
in A(S). Show finally that y € A#"(S) if Re ¥ in addition is bounded below.

3.26. Exercise. Let S have the identical involution and let ¢ € #(S) be
infinitely divisible (cf. 3.2.6). Show the inequalities:

(@) p(9)et) = o(s + 1) £ /0(25)/9(2t);
(b) o(s + o(s) = @(1).

Show that on S = (R, , +)inequality (a) holds even without the assumption
of ¢ being infinitely divisible.

3.27. Exercise. Let S have an absorbing element w. If Yy € A7'(S)and y(0) = 0,

then |||, < 2¥(w), i.e. the constant /5 in Proposition 3.4 can be amended
to 2 in case (0) = 0.

3.28. Exercise. Let (S, +, %) be an abelian semigroup with involution and
let G <= S be a generator set (see 5.7). Show that if y € M, (S\{1}) satisfies

f (1 — Re p(a)) du(p) < forall aeG
8\

then u € 8 (see 3.13).
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3.29. Exercise. Let S be an abelian semigroup with the identical involution
and let G = S be a generator set. Show the following generalization of
Theorem 3.20:

If : S — R satisfies A,y € 2°(S) for all a € G then y € #7(S).

§4. Examples of Positive and Negative
Definite Functions

4.1. S = (R,, +). The closed half-line R, is an abelian semigroup. As
involution we use the identical involution x = x*. Since R, is 2-divisible
(i.e. every x € R, can be written x = 2y for y € R,), we see that positive
definite functions on R, are nonnegative; if they are bounded they are even
completely monotone, cf. Corollary 6.8.

For a € [0, oo] we define p,: R, — R by p,(s) = e~ * with the convention
that 0. 00 =0, a- 0 = o for a > 0, i.e. p, = 1. Then p, is a bounded
semicharacter, continuous when a € [0, o[ and discontinuous when
a = oo. Conversely, if p is a bounded semicharacter, then0 < p(s) < 1, which
implies that p is decreasing. Let a € [0, co] be determined such that p(1) =
e~ “ Then it is easy to see that p = p,, so a+> p, is a bijection of [0, co] onto
S, and it is continuous when [0, co] is considered as the one-point compacti-
fication of [0, cof. It follows by a well-known theorem from topology that
a p, is a homeomorphism.

It is not possible to give a similar simple representation of S*. However,
if h: R > R is any solution of the functional equation h(x + y) = h(x) +
h(y), x, y € R, then exp(h)| R, is a semicharacter, and all p € S*\{p,} are
given in this way. By the axiom of choice there exist nonmeasurable solutions
h of the functional equation.

An application of Theorem 2.8 leads to the following result:

—as

4.2. Proposition. A function ¢: R, — R is positive definite and bounded if
and only if it has the form

o0 = [ e du@ + bp), s 20,
0
where ue M5 (R, ) and b = 0. The pair (u, b) is uniquely determined by ¢.

An additive function ¢q: R, — {0, oo[ is necessarily of the form g(s) = c¢s
with ¢ = ¢(1) = 0. By 3.20 we then have:

4.3. Proposition. A function y: R, — R belongs to /(R.) if and only if it
has the form

U(s) = (0) + cs + blyp,of(s) + f:a e dua), 520,

where b, c Z 0 and pe M ,(]0, oo) are uniquely determined by .
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Remark. The measures u € M, (JO, co[) which occur in the above formula
can be characterized by the single integrability condition

Jw —Ldp(x) < 0.

0 1+ x

The functions of the form
f@=v+e+ [ (-en@  szo
0

where ¢, 7 2 0 and u e M, (J0, o) such that [$[x/(1 + x)] du(x) < oo, are
called Bernstein functions by some authors, cf. Berg and Forst (1975). By
Proposition 4.3 we see that f: R, — R is a Bernstein function if and only if
it is continuous and belongs to 4, (R,). The expression for a Bernstein
function is well defined in the right half-plane {z € C|Re z = 0}. It is con-
tinuous there and holomorphic in the interior. Bernstein functions f operate
on negative definite kernels ¥: X x X — C with |A = 0 in the sense that
f oy is again a kernel of this type, cf. Proposition 3.2.9.

4.4. The function
s f e **du(a)
o

is called the Laplace transformof pand is denoted £ . This function is actually
well defined in the right half-plane Re z = 0 by the formula

o]

L) = f e dy(a),

0

and it is easily seen to be continuous, and holomorphic in the open half-plane
Re z > 0. Furthermore,

(Zw™(z) = f (—a)y'e *du(a) for Rez>0, n=0,
0

so in particular
(—D"(Lw"(x) =0 for x>0.
We have the following corollary of Proposition 4.2.

4.5. Corollary. A function ¢: R, — R is continuous, positive definite and
bounded if and only if it is the Laplace transform of a measure in M4 (R.).

In Theorem 6.13 we will give a completely different characterization of
the functions in Corollary 4.5.

46. S = (R%, +). Fors = (s;,...,5) € R% and a = (a,, ..., a) € [0, 0]
we put (s,a) = Y %_, s;a; and define p,: R, — R by p,(s) = e~ *. Then
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the mapping ar p, is a homeomorphism and an isomorphism of
([0, ©J¥, +) onto (S, -). The semicharacter p, is continuous on R when
a e R% and discontinuous when a € [0, 0 ]*\R% . Clearly we have results
analogous to 4.2 and 4.3. For u € M% (RY ) the function

Lu) = [ 0@, sem
i34

is the (k-dimensional) Laplace transform of u. This formula makes sense for

seC* and defines a continuous function which is holomorphic in

{ze C|Re z > O}%

A k-dimensional version of Corollary 4.5 is

4.7. Proposition. A function ¢: R — R is continuous, positive definite and
bounded if and only if it is the Laplace transform of a measure in M (RY.).

Proor. It is enough to prove that a continuous, bounded and positive
definite function ¢ is a Laplace transform of a measure in M4 (R%), the
converse being obvious. There exists u € M ([0, c0]*) such that

o(s) = J e~ du(a), seRY.
[0, 01*

If ;: [0, o ]* — [0, o] denotes the projection onto the jth coordinate, we

have
#@,...,0,5,0,...,0) = u({a € [0, 0T*|a; = 0})1(s))

+ f e %t da (1),
0

where o is the restriction of the image measure u™ to R, , and it follows that
p({a € [0, 0]*|a; = o0}) =0 for j=1,...,k hence ([0, c0]\R%)=0,
and ¢ is the Laplace transform of p. O

4.8. S = (N§, +). Here Ny = {0, 1,2, ...} and k = 1. The involution is the
identical mapping. For x = (x4, ..., x,) € R* the function p,: N§ — R given
by

p(m)=x"=x7...x%  n=(ng...,m)eNE,

is a semicharacter, and it is easy to see that the mapping x — p, is a topo-
logical semigroup isomorphism of (R, ) onto (N%)*, where the composition
in R*is x-y = (x1)y, ..., Xy)- Under this isomorphism [—1, 1]* corre-
sponds to N¥.

A measure u € M (R¥) such that x" € #*(u) for all n e Nf is said to have
moments of all orders. The function

o(n) = f " dp(x),  ne Nk
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is called the moment function of u, and the number ¢(n) is called the nth
moment of p.

The classical moment problem consists in characterizing the set of
moment functions. We return to this in Chapter 6. Using that n > g™* " *™
is an absolute value on N, for each a > 0, we get the following partial
solution of the moment problem from Theorem 2.6.

4.9. Proposition. A function ¢: N& — R is positive definite and verifies
lp(m)| < Ca™**"™  for neNGg,

where C, a >0, if and only if ¢ is a moment function of a measure
peM ([—a,al"), ie. is of the form

o(n) = f x"du(x)  for neN§.
[—a,al*

In particular @ is positive definite and bounded if and only if ¢ is a moment
function of a measure pe M_ ([ 1, 17%).

From Theorem 3.20 we get the following description of A/(N¥):

4.10. Proposition. A function y: N§ — R is negative definite and bounded
below if and only if

I =vO+ o+ [ (-, ne s

withb = (by,...,b)eRY and pe M ([—1, 1]\ {1}), where 1 = (1, ..., 1).

Remark. The measures € M ([ — 1, 1]¥\ {1}) which can occur in the above
formula are characterized by

f k= (x; + -+ + x)) du(x) < co.
(- 1,171
In fact, this condition is equivalent with the k conditions
f (I —xp)du(x) <o, j=1,...,k
[- 1,111

which are clearly necessary. They are also sufficient (cf. 3.28), as is seen from
the inequalities

g

0S1—xP...xpx< Y nd—-xp) xe[-1,17%

j=1

4.11. S = (N}, +, ). In this case we equip the additive semigroup (N2, +)
with the involution (n, m)* = (m, n).
For z € C, the function p,: N2 — C given by

p.(n, m) = z"z™ for (n,m)e N}
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is a semicharacter, and it is easy to see that the mapping z+> p, is a topo-
logical semigroup isomorphism of (C, -) onto $*. Under this isomorphism
the unit disc D = {z e C||z| < 1} corresponds to 3.

For a measure p € M, (C) such that z"z" € £!(u) for all (n, m) € N3 the
function

o(n, m) = f 22" du(z),  (n,m)e N
c

is called the complex moment function of u, and the number ¢(n, m) is called
the (n, m)th complex moment of .

The complex moment problem consists in characterizing the set of
complex moment functions. We return to this in Chapter 6, cf. 6.3.5. Using
that (n, m)—a"*™ is an absolute value on N3 for each a > 0, we get the
following partial solution of the complex moment problem from Theorem
2.6.

4.12. Proposition. A complex-valued function ¢ is positive definite on
(N2, +, *) and verifies

lo(n, m)| < Ca"*™  for (n,m)e NG,
where C, a > 0, if and only if @ is a complex moment function of a measure

peM, ({zeC||z| £ a}), ie. is of the form

o(n,m) = f 27" du(z),  (n,m)e N3.

|zl Sa

In particular ¢ is positive definite and bounded if and only if ¢ is a complex
moment function of a measure y€ M (D).

In preparation for the Lévy-Khinchin representation in this case we need
the following two lemmas.

4.13. Lemma. The +-homomorphisms 1: (N2, +, *) > R are given by
I(n,m) = a(n — m), aeR,
and the quadratic forms q: (N2, +, ¥) - R are given by
gn,m) = a(n + m) + p(n — m)?,, o, BeR.
Here g 2 Oifand only if o, p = 0.

ProOF. The assertion about the *-homomorphisms is easily established. Let
q be a quadratic form and put a = ¢(1,0), b = q(1, 1). Since q(s + 1) =
q(s) + q(t) if t = t* we have

qin,m) = qin —m,0) + mb  if n=m,
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and from the proof of Theorem 3.9 we know that

nn — 1)
2

q(n, 0) = na — b, nz=0.

For n = m we therefore have
b b
q(n,m) = (n — m)z(a - 5) + (n+ m)f’

and since q(n, m) = g(m, n) this holds for all (n, m) € N32.

Conversely, it is clear that any function of the form g(n, m) = a(n + m) +
B(n — m)?, o, B € R, is a quadratic form, which is nonnegative if a, f 2 0;and
if ¢ = 0 then g(1, 1) = 2a 2 0 and lim,,_, ,(1/n%)q(n,0) = B = 0. O

4.14. Lemma. The function L: N3 x D — R given by

L((n, m), z) = y(n — m), z=x+ iy
is a Lévy function for (N3, +, ). A measure p € M (D\{1}) satisfies (3) of
3.13 if and only if

f (1 — x)du(z) < 0.
D\{1}

Proor. The condition given on u is clearly necessary. Suppose next that u
satisfies the given condition. For (n, m)e N3 such that n + m > 0 and
z = x + iy € D we have

1 - Re(znzm) =1 Z (:) <':;)xn+m—p—q(__ l)q(-- 1)(p+q)/2yp+q,

where the sum is over (p, q) such that p < n, g £ mand p + ¢q is even. For
p = q = 0 we have the term x"*™ In all other terms we have a factor y?*4,
where p + giseven = 2,50 y?*?1 £ (1 — x?)®?*9/2, Therefore

o5 1-mer 21 wom o 3 () e

which shows that there exists a constant K > 0 (depending on n, m) such
that
1 — Re(z'2™) = K(1 — x)

80 (3) of 3.13 holds. (This result also follows from Exercise 3.28.)
The function L clearly satisfies (i) and (ii) of 3.17, and (iii) follows if we
establish

[1 —2"2" + i(n — m)y| £ K(1 - x) for z=x+iyeD

and a suitable constant K depending on (n, m). Thisis easily seenforn + m <1
and for n + m = 2 we find

1=22"+in—my=1—x"""+iy(n — m)(1 — x"*"" 1)
+y*P(x, y),
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where P is a polynomial, hence

1 -z"Z"+in—my| =1 — x"""") +n=—ml - xn+m—1)
+ (1 = x?)max | P(x, )|
D

and the inequality follows. O
We can now give the Lévy—Khinchin representation.

4.15. Proposition. A function y: N} — C belongs to A(N3) if and only if it
has a representation

Y(n, m) = (0, 0) + ia(n — m) + b(n + m) + c(n — m)?
+ f (1 — 2"2"™ + iy(n — m)) du(z),
D\{1}

whereae R, b,c = 0and ue M (D\{1}) satisfies

J (1 — x) du(z) < 0.
D\{1}

4.16. Definition. A commutative semigroup (S, +) is called idempotent if
s+ s=gs,foreverysesS.

We shall always equip an idempotent semigroup with the identical
involution.

Let (S, +) be an idempotent semigroup. We define an ordering < on §
bys £ tif s + t = t. It is easy to see that < is reflexive, transitive and anti-
symmetric, and that 0 < s, s + ¢ = sup(s, t) for s, t € S. If § has a greatest
element then it is absorbing and vice versa.

A semicharacter p on S is 0-1-valued so § = S*. Furthermore, the set
I = p~({1}) is a subsemigroup which is hereditary on the left, ie. for s,
te S with s < r and t € I we have s € I. Conversely, it is easy to see that if
I < S is a subsemigroup and hereditary on the left then 1; € S*. Therefore
S* is isomorphic with the set & of subsemigroups which are hereditary on
the left, considered as a semigroup under intersection. The neutral element
is S and {0} is an absorbing element. The topology from S* transported to
& is the coarsest topology under which the mappings (x,);.s from & to
{0, 1} are continuous, where

1 ifsel
D= ’ f
1D {0 fsél for Ie&

A function ¢ e #(S) is nonnegative, decreasing and bounded, so, in
particular, 2(S) = 2%(S). In fact ¢(s) = (s + s) 2 0, and if s <t then
@(t)* = (s + 1) S o(s + )t + 1) = @(s)e(t) s0  @(t) < p(s). In
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particular, @(t) < ¢(0). Similarly, ¥ € #(S) is increasing and satisfies
¥(0) < Y(s) so H(S) = N(S).

By specialization of the Theorems 2.8 and 3.20 we get:

4.17. Proposition. Let (S, +) be an idempotent semigroup. For ¢ e 2(S)
there is a unique ue M () such that

o) =u{leF|sel}), seS,
and for y € A(S) there is a unique € M (£ \{S}) such that
W(s) = Y(0) + u({Ie S\{S}s¢1}), seS.

A function ¢: S — [0, co[ which is decreasing and bounded need not be
positive definite, cf. Exercise 4.25. However, if S has the further property of
the order being total, i.e. for any s, t € S either s £ t or t £ s, then we have

4.18. Proposition. Let (S, +) be an idempotent semigroup for which the
ordering is total. Then @: S — R is positive (resp. negative) definite if and only
if @ is nonnegative and decreasing (resp. increasing).

PROOF. Let ¢: S — [0, co[ be decreasing and let s, ...,s,€8,¢,...,c,€ R
By 3.1.2 it is no restriction to assume s; = s, = --- = s,. From probability
theory we know the existence of n independent normally distributed random
variables X ,, ..., X, with mean zero and variances ¢(s,), ¢(s;) — @(51);- - -,
o(s,) — @(s,-)- (If one of the variances is zero the corresponding normal
distribution is degenerate.)

Put ¥, =3*%_, X;, k=1,...,n and denote the expectation by E; then
ifj <k,

E(Y; Y) = E(Y]) = o(s)) + 0(s;) — o(s)) + -+ + o(s;) — o(s;- 1)
= 90(31') = (P(Sj + 5)
implying

n n 2
Y ciaes; + 58) = [E{( ¢; Yj> } =0.
k=1 j=1
If ¢: S - R is increasing then e¢™*¢ is nonnegative and decreasing for each
t > 0, and it follows by Theorem 3.2.2 that ¢ is negative definite. O

4.19. As an example of an idempotent semigroup whose ordering is total
we consider S = [0, 1], the composition being maximum. The neutral
element is zero and 1 is an absorbing element. The ordering of 4.16 is the
usual ordering. The set & of Proposition 4.17 has the following elements:
{0}, [0, a], [0, a[ where a € ]0, 1], and we will now describe the topology on
& induced by the isomorphism between S* and &,
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a ~ [0, a]

b~1[0,b[
Figure 1

A base of neighbourhoods of {0}, [0, a] and [0, b[, where a, be 10, 1], is
given, respectively, by

(1) {{0}} U {[0,s]|s€10,¢[} u {[0,s[|se]0, e[} for 0 < ¢ < 1;

(ii) {[0, s]|s€[a, a + e[n[O0, 11} w {[0, s[|s€]a, a + e[ [0, 1]}
for0<e<1;

@iii) {[0, s]|s € Ib — ¢, B[N[O0, 13} U {[O, s[|s € Ib — ¢ b]N]O, 1]}
for0<e< 1.

We remark that & is totally ordered under inclusion and that the corre-
sponding order topology on & is the topology just described. It is useful to
think of % as two copies of [0, 1] glued together in the point 0 as Figure 1
illustrates. On the upper segment a € ]0, 1] represents [0, a] and on the
lower segment b € 10, 1] represents [0, b[.

We know that & is a compact Hausdorff space and see that [0, 1] is an
isolated point. Furthermore & is one of those strange nonmetrizable spaces
which are first countable (i.e. every point has a countable neighbourhood
base). In fact, if & was metrizable, then a classical theorem from topology
(cf. Bauer (1978, p. 217)) implies that the Banach space C(&¥) of continuous
functions on & is separable, which is not true: For a € [0, 1] let §, € C(¥)
be the function I+ 1,(a). Then |0, — J,|| = 1 for a + b, so the open balls
B(5,, %) in C(¥), a € [0, 1] form a noncountable family of disjoint open sets
contradicting the separability.

As an application of 4.17 and 4.18 we get

4.20. Proposition. To every decreasing function ¢: [0, 1] — [0, co[ there
exists a unique Radon measure u on & such that

o(s) = u({l e L|s e I}), se [0, 1].

4.21. Exercise. Let (N, -) be the multiplicative semigroup of natural numbers.
Show that the dual semigroup and the restricted dual semigroup are iso-
morphic to R® and [—1, 1]® where P = {2,3,5,...} denotes the set of
primes.
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4.22. Exercise. Let ¢ € 2°(N,) have the representing measure g on [—1, 1].
Show that Y @ |@(n)| < oo if and only if (1 — [t])™' e L (w).

4.23. Exercise. Let 4 = (a;;) be a real positive definite k x k matrix. Show
that there exists a function ¢ € 2°(N¥) such that

a;=q@le,+e¢) for i,j=1,... .,k

where e, =(1,0,...,0),...,¢,=(0,...,0,1). Hint: Assume |a;| = 1.
There exists a real k x k matrix B = (b;;) such that 4 = B*B. Let x,, ...,
x, € R* be the row-vectors of B, and define a measure pe M_([—1, 11%) by
putting mass 1 at each of the points x, ..., X;.

4.24. Exercise. Let ¢: [0, 1] — [0, oo[ be decreasing and let u be the repre-
senting measure on & according to Proposition 4.20. Show that

¢(a@) — ola + 0) = pu({[0,a]}), O=a<l,
ola — 0) — ¢(a) = u({[0,a[}), O<asl
Show further that

o(s) = o(1) + Y u({[0, alD1o,as) + bZBu({[O, b[N1i0,5:(s)

acA

+u{leSL|sel}),

where A is the at most countable set of a € [0, 1[ such that u({[0, al}) > O,
B is the at most countable set of b € ]0, 1] such that u({[0, b[}) > 0 and g,
is the continuous part of u. The function s+ u ({I € &|s € I}) is continuous
and decreasing.

4.25. Exercise. Let X be a nonempty set. The set P(X) of subsets of X is an
idempotent semigroup under intersection. Describe the semicharacters of
P(X) explicitly in the case where X has two elements, and show that ¢ =
1 — 1,4, is decreasing but not positive definite.

4.26. Exercise. On R, we define x o y = x + y + xy. Show that (R, , o) is
an abelian semigroup and that x — log(1 + x) is an isomorphism of (R, )
onto (R, , +). Show that the bounded semicharacters on (R, , o) are given
by

t
xv—»( 1 ) for 05t < .
1+x

4.27. Exercise. An infinite matrix (a;) of the form aj, = ¢(j + k) with
¢: Ny — Ris called a Hankel matrix. It is positive (resp. negative) definite if
and only if ¢ is positive (resp. negative) definite on the semigroup (N, +),
and it is infinitely divisible if and only if ¢’ is positive definite for all ¢ > 0.
Show that the so-called Hilbert matrix (1/(j + k + 1)); x50 is infinitely
divisible.
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4.28. Exercise. Let y: R, — R, be given. Show that ¢y € A (R, ) if and only
if @ oy € Z°(R,) for all p € Z°(R,).

4.29. Exercise. Show that if y/,, ¥, € A4, (R,) then y; o Y, € AL(R,).

4.30. Exercise. For M = M.(R%) the following three conditions are
equivalent:

(i) M is relatively compact with respect to the weak topology.
(i) {Zu|p e M} is uniformly equicontinuous on R .
(iit) {Lulue M} is equicontinuous in 0.

Hint: Use Prohorov’s compactness criterion mentioned in the Notes and
Remarks to Chapter 2.

4.31. Exercise. (Continuity Theorem for Laplace Transforms). Let a sequence
Ui Bas - - - € ML(RY) be given such that ¢(t) = lim,_, , (£ p,)(t) exists for all
t e R* and assume that ¢ is continuous at 0. Then ¢ = Lu for some
pe ML(RL) and u, —» u weakly.

4.32. Exercise. If M. (R¥ )is equipped with the weak topology and Z%(R%,) n
C(RX) with the topology of uniform convergence on compact subsets of
R%, the Laplace transformation %:ML(RX)— Z5(RE)NCRY) is a
homeomorphism.

§5. 7-Positive Functions

In this section, we shall present an approach due to Maserick (1977) to the
integral representation of positive definite functions.

Let A be a real or complex commutative algebra with identity e and
involution =. If 4 is a real algebra we always assume a* = afor all a € 4.

The basic idea is to find an integral representation of certain “positive”
linear functionals on A, the representing measure being concentrated on a
set of multiplicative linear functionals. The connection to semigroups is
obtained if 4 is chosen to be the algebra of shift operators generated by the
shifts E,, s € S, where (E, f)(t) = f(s + t)for f € C5. By the relation L(E;) =
f(s) functions fon S are in one-to-one correspondence with linear functionals
L on A.

The positivity concept for linear functionals depends on the notion of an
admissible subset 7 of A.

5.1. Definition. A nonempty subset t = A is called admissible if

(i) a* = aforallae;
(ii) e — acalg span*(r) for allaet;
(ii1) alg span(t) = A.
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Here alg span(r) (resp. alg span*(z)) is the set of linear combinations
Y7, A;x;, where each ; is a scalar (resp. = 0) and each x; is a finite product
of elements from . Note that alg span™* () is the smallest convex cone in A4,
stable under multiplication and containing t. Furthermore e € alg span™*(z)
because of (ii).

5.2. Lemma. Let t be an admissible subset of A. Then:
(i) e—x;...x,ealgspan*(7) for x,,..., x, € T;
(ii) for x € alg span™* (z) there exists &(x) > 0 such that e — ex € alg span™ (1)
for g € [0, &(x)].
PRrROOF. The assertion (i) follows from the algebraic identity
e— [Ix;= Y [Ix3e—x)', 6))
j=1 o¥1 j=1

where the summation is taken over all ¢ = (0,,..., 6,) € {0, 1}\{(1,..., 1)}
(note that x° := e), and this identity follows in turn by the formula

e = f[(xj + (e — x;).

j=1

Ifx= Z'}=1 A:y;, where 4; > 0 and y; is a product of elements from t,
we put &(x) = (37, 4;))~". For ¢ € [0, &(x)], we find

e —ex = (1 - ﬁ)e +¢ Z Afe — y;) € alg span* (1)

because of (i). O

A linear functional L: A — C is called t-positive, where-1 is admissible, if
L@ =0 forall aealgspan*(7).
This holds if and only if
La,...a,) 20 for all finite sets {a;,...,a,} <

The set A¥ of 7-positive linear functionals on 4 is a convex cone in the
algebraic dual space A*, closed in the topology a(4*, A). Note that L(x*) =

L(x) for xe A when L € A¥. By Lemma 5.2 it follows that L(e) > O for
L e A¥\{0}, so
B:={Le A¥|L(e) = 1}

is a base for A*.
5.3. Lemma. The base B is compact.

ProoF. For x € A there exists a constant K, > 0 such that
|L(x)| = K, L(e) for Le A¥
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In fact, if x € alg span™(t) we can use K, = &(x)~ ! with &(x) from 5.2(ii), and
every x € A can be written x = x; — X, + i(x3 — X4) with x; € alg span™ (1),
j=1,...,4.1f (L,) is a universal net on B the above inequality shows that
L(x) = lim, L,(x) exists for every x € 4, and this implies the compactness
of B. O

Let A denote the set of t-positive, multiplicative linear functionals on A4,
which are not identically zero. Clearly A is a compact subset of B.

5.4. Theorem. A linear functional L on A is t-positive if and only if there exists
a (necessarily unique) Radon measure € M ,(A) such that

L(x) = f 8(x) du(d) for xeA. )
A
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