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Preface

« ERh bien, Monsieur, que
pensez-vous des x et desy ?»
Je lui ai répondu :

« C’est bas de plafond. »

V. Hugo [Hugb1]

The term “quantum groups” was popularized by Drinfeld in his address to
the International Congress of Mathematicians in Berkeley (1986). It stands
for certain special Hopf algebras which are nontrivial deformations of the
enveloping Hopf algebras of semisimple Lie algebras or of the algebras of
regular functions on the corresponding algebraic groups. As was soon ob-
served, quantum groups have close connections with varied, a priori remote,
areas of mathematics and physics.

The aim of this book is to provide an introduction to the algebra behind
the words “quantum groups” with emphasis on the fascinating and spec-
tacular connections with low-dimensional topology. Despite the complexity
of the subject, we have tried to make this exposition accessible to a large
audience. We assume a standard knowledge of linear algebra and some
rudiments of topology (and of the theory of linear differential equations as
far as Chapter XIX is concerned).

We divided the book into four parts we now briefly describe. In Part I
we introduce the language of Hopf algebras and we illustrate it with the
Hopf algebras SL,(2) and U, (sl(2)) associated with the classical group
SL,. These are the simplest examples of quantum groups, and actually the
only ones we treat in detail. Part II focuses on two classes of Hopf algebras
that provide solutions of the Yang-Baxter equation in a systematic way. We
review a method due to Faddeev, Reshetikhin, and Takhtadjian as well as
Drinfeld’s quantum double construction, both designed to produce quan-
tum groups. Parts I and II may form the core of a one-year introductory
course on the subject.

Parts III and IV are devoted to some of the spectacular connections
alluded to before. The avowed objective of Part III is the construction of
isotopy invariants of knots and links in R?, including the Jones polynomial,
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from certain solutions of the Yang-Baxter equation. To this end, we intro-
duce various classes of tensor categories that are responsible for the close
relationship between quantum groups and knot theory. Part IV presents
more advanced material: it is an account of Drinfeld’s elegant treatment of
the monodromy of the Knizhnik-Zamolodchikov equations. Our aim is to
highlight Drinfeld’s deep result expressing the braided tensor category of
modules over a quantum enveloping algebra in terms of the corresponding
semisimple Lie algebra. We conclude the book with the construction of a
“universal knot invariant”. This is a nice, far-reaching application of the
algebraic techniques developed in the preceding chapters.

I wish to acknowledge the inspiration I drew during the composition of
this text from [Dri87] [Dri89a] [Dri89b] [Dri90] by Drinfeld, [JS93] by Joyal
and Street, [Tur89] [RT90] by Reshetikhin and Turaev. After having become
acquainted with quantum groups, the reader is encouraged to return to
these original sources. Further references are given in the notes at the end
of each chapter. Lusztig’s and Turaev’s monographs [Lus93] [Tur94] may
complement our exposition advantageously.

This book grew out of two graduate courses I taught at the Department
of Mathematics of the Université Louis Pasteur in Strasbourg during the
years 1990-92. Part I is the expanded English translation of [Kas92]. It is a
pleasure to express my thanks to C. Bennis, R. Berger, C. Mitschi, P. Nuss,
C. Reutenauer, M. Rosso, V. Turaev, M. Wambst for valuable discussions
and comments, and to Raymond Séroul who coded the figures. I owe special
thanks to Patrick Ion for his marvellous job in preparing the book for
printing, with his attention to mathematical, English, typographical, and
computer details.

Christian Kassel
March 1994, Strasbourg

Notation. — Throughout the text, k is a field and the words “vector
space”, “linear map” mean respectively “k-vector space” and “k-linear
map”. The boldface letters N, Z, Q, R, and C stand successively for the
nonnegative integers, all integers, the field of rational, real, and complex
numbers. The Kronecker symbol 6,; is defined by é,; = 1 if ¢ = j and is
zero otherwise. We denote the symmetric group on n letters by S,,. The
sign of a permutation o is indicated by &(o).

The symbol O indicates the end of a proof. Roman figures refer to the
numbering of the chapters.
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Chapter 1

Preliminaries

The goal of this first chapter is the construction of polynomial algebras
GL(2) and SL(2) modelling the 2 x 2-matrices with invertible determinant
[resp. with determinant equal to 1]. The multiplication of matrices induces
an additional structure on these algebras. This structure is one of the basic
ingredients of what will be called a Hopf algebra in Chapter III. We com-
plete the chapter with various concepts of ring theory to be used in the
sequel. The ground field is denoted by k.

I.1  Algebras and Modules

We recall some facts on algebras and modules.

An algebra is a ring A together with a ring map 7, : £ — A whose image
is contained in the centre of A. The map (A, a) — n4(A)a from &k x A to A
equips A with a vector space structure over k£ and the multiplication map
tatAxA— Ais bilinear.

A morphism of algebras or an algebra morphismis aringmap f: A — B
such that

fong=ng- (1.1)

As a consequence of (1.1), f preserves the units, i.e., we have f(1) = 1.
The linear map 74 : k — A is a morphism of algebras. If i : A — B is an
injective algebra morphism, we say that A is a subalgebra of the algebra B.

Let us denote by Homj, (A, B) the set of algebra morphisms from A to
B. In general, this set has no further structure. Nevertheless, we shall soon
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see how to put a group structure on Hom Alg(A, B) when A and B satisfy
some additional hypotheses.

We give a few examples of algebras that will be used frequently in this
book.

1. Given an algebra A, we define the opposite algebra A°F as the algebra
with the same underlying vector space as A, but with multiplication defined
by

Haor = Ha©Ta A (1.2)

where 74 4 is the flip switching the two factors of A x A. In other words,
taop(a,a’) = d'a. (1.3)
An algebra A is commutative if and only if
Hgop = Hg- (1.4)
2. The centre Z(A) of an algebra A is the subalgebra
{a € Alad =daforalld € A}.

We have Z(A) = Z(A°P).
3. If I is a two-sided ideal of an algebra A, i.e., a subspace of A such that

pall x A) C 1D pp(AxI),

then there exists a unique algebra structure on the quotient vector space
A/I such that the canonical projection from A onto A/I is a morphism of
algebras.

4. We endow the product set A = [[,.; A; of a family (A,),c of algebras
with the unique algebra structure such that the canonical projection from
A to A, is an algebra morphism for all ¢ € I. The algebra A is called the
product algebra of the family (A;);c;-

5. Given an algebra A we can form the algebra Alz] of all polynomials
doieo a;z" where n is any non-negative integer and the algebra Alz, 7
of all Laurent polynomials Y1 a,z" where m,n € Z.

6. For any positive integer n we denote by M, (A) the algebra of all
n X n-matrices with entries in A.

7. The space End(V) of linear endomorphisms of a vector space V' is an
algebra with product given by the composition and unit by the identity
map idy, of V.

Given an algebra A, a left A-module or, simply, an A-module is a vector
space V together with a bilinear map (a,v) — av from A x V to V such
that

a(a’v) = (ad')v and lv=v (1.5)
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for all a,a’ € A and v € V. One similarly defines a right A-module using
a bilinear map from V' x A to V. A right A-module is nothing else than a
left module over the opposite algebra A°P. Therefore we need only consider
left modules which shall for simplicity be called modules in the sequel.

If V and V' are A-modules, a linear map f : V — V' is said to be
A-linear or a morphism of A-modules if

flav) = af(v) (1.6)

forallae Aand v e V.

An A-submodule V' of an A-module V is a subspace of V with an A-
module structure such that the inclusion of V' into V is A-linear.

The action of A on an A-module V defines an algebra morphism p from
A to End(V) by

p(a)(v) = av. (1.7)

The map p is called a representation of A on V.
Given A-modules V, ...,V , the direct sum V; ®- - -@V,, has an A-module
structure given by

a(vy,...,v,) = (avy,...,av,) (1.8)

wherea € A,v, € V},...,v,, €V, . These definitions lead us to the following
ones.

Definition 1.1.1. An A-module V is simple if it has no other submodules
than {0} and V. It is semisimple if it is isomorphic to a direct sum of
simple A-modules. It is indecomposable if it is not isomorphic to the direct
sum of two non-zero submodules.

In the language of representations, a simple module [resp. a semisimple
module] is an irreducible representation [resp. a completely reducible repre-
sentation]. The following well-known proposition will be used in Chapters
V-VIL

Proposition 1.1.2. The following statements are equivalent.

(i) For any pair V' C V of finite-dimensional A-modules, there exists
an A-module V" such that V =2V @ V".

(ii) For any pair V' C V of finite-dimensional A-modules where V' is
simple, there exists an A-module V" such that V2V & V" .

(iii) For any pair V' C V of finite-dimensional A-modules, there exists
an A-linear map p: V — V' with p* = p.

(iv) For any pair V' C 'V of finite-dimensional A-modules where V' is
simple, there exists an A-linear map p: V — V' with p? =p.

(v) Any finite-dimensional A-module is semisimple.
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PROOF. Clearly, (i) = (ii) and (iii) = (iv). We also have (i) = (iii): it
suffices to define p as the canonical projection from V' & V" onto V'
Similarly, (i) = (iv).

Assertion (iii) = Assertion (i). Let V" = Ker (p); it is a submodule of V.
The relations v = p(v) + (v — p(v)) and p? = p prove that V is the direct
sum V' and V”. Similarly, (iv) = (ii).

Assertion (ii) = Assertion (v). Assuming (ii), we have to prove that
any finite-dimensional A-module V is semisimple. We may also assume
that dim(V) > 0. Consider a non-zero submodule V; of V of minimal
dimension; it has to be simple. By (i) there exists a submodule V' such
that V = V, ® V! and dim(V?') < dim(V). Iterating this procedure, we
build a sequence (V,,),,s¢ of simple submodules and a sequence (V"),- of
submodules such that

Vvrey, e VPt and  dim(V") < dim(V™).

Since the dimension of V" is strictly decreasing, there exists an integer p
such that VP = {0}. The module V is a direct sum of simple modules:
VEVi&---aV,

It remains to be shown that Assertion (v) implies Assertion (i). Let
V' C V be a pair of finite-dimensional A-modules. By (v)

V=@V,
i€l
is a direct sum over a finite index set I of simple submodules V. Let J be
a maximal subset of I such that

V(@ v, = {0} (1.9)
jeJ
If ¢ ¢ J, then
vin(v,e @ v, # {0},
jEJ
hence
Vin(v'+ @ ;) # {0}
jeJ
Since V; is simple, this implies that
vicV'+ @V,
jed
for all ¢ ¢ J. This holds also for all i € J. Consequently, for the sum V of
all V; we must have
v=v'+Pv,. (1.10)
jeJ
As a consequence of (1.9-1.10), we get V = V' & V" where V" is the
submodule ;¢ ; V. a
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[.2  Free Algebras

Let X be a set. Consider the vector space k{X} with basis the set of all
words z;, ...z, in the alphabet X, including the empty word §. A word

will be called a monomial. Define the degree of the monomial z;, ..., as

its length p. Concatenation of words defines a multiplication on k:{X } by
@ T Ny @) =T T T LT (2.1)

Formula (2.1) equips k{ X } with an algebra structure, called the free algebra
on the set X. The unit is the empty word: 1 = . In the sequel we shall
mainly consider free algebras on finite sets. If X = {z,...,z,} we also
denote k{X} by k{z,,...,z,}.

Free algebras have the following universal property.

o TL

Proposition 1.2.1. Let X be a set. Given an algebra A and a set-theoretic
map f from X to A, there exists a unique algebra morphism f E{X} — A
such that f(z) = f(z) for allz € X.

PROOF. It is enough to define f on any word of X. For the empty word we

set f(0) = 1. Otherwise, if Ty, ., ; are elements of X, we define

oy, omg)) = flay,) - =)
The rest of the proof follows easily. a

An equivalent formulation of Proposition 2.1 is: There exists a natural
bijection

HomAIg(k{X}7 A) = HomSet(Xv A) (22)

where Homg,, (X, A) is the set of all set-theoretic maps from X to A. In

particular, if X is the finite set {z,,...,z,}, then f— (f(z;),..., f(z,))
induces a bijection

HomAIg(k{xla"'7xn}7A) gAn (23)

Any algebra A is the quotient of a free algebra k{X}. It suffices to take
any generating set X for the algebra A (for instance X = A). Consequently,
A = k{X}/I where I is a two-sided ideal of k{X}. In this case, for any
algebra A’ we have the natural bijection

Hom , (k{X}/1, A") = {f € Homg, (X, A') | f(I) = 0}. (2.4)

Example 1. Let I be the two-sided ideal of k{z,...,z,} generated by all
elements of the form z,x; — z;z; where 4, j run over all integers from 1 to
n. The quotient-algebra k{xz,,...,z,}/I is isomorphic to the polynomial
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algebra k[x,,...,x,] in n variables with coefficients in the ground field k.
As a corollary of (2.4) we have
Hom y, (klzy, ..., 2,], 4) = {(ay,...,a,) € A" | a;a; = a;a; for all (4,1}
(2.5)

for any algebra A.

In the next sections we shall see more examples where families of elements
subject to “universal” algebraic relations are represented by quotients of
free algebras.

1.3 The Affine Line and Plane

Let us restrict to commutative algebras. As a consequence of (2.5) we have
the following proposition.

Proposition 1.3.1. Let A be a commutative algebra and f be a set-theoretic
map from the finite set {z;,...,x,} to A. There exists a unique morphism
of algebras f from k[x,,...,z,] to A such that f(z;) = f(x;) for all i.

In other words, giving an algebra morphism from the polynomial algebra

k[z,,...,z,] to a commutative algebra A is equivalent to giving an n-tuple
(ay,...,a,) of elements of A:
Hom y, (k[zy,...,2,], A) = A™. (3.1)

Let us consider the special case n = 1 of (3.1). For any commutative
algebra A the underlying set A is in bijection with the set Hom 4, (k[z], A):

Hom y, (k[z], A) = A. (3.2)

The algebra k[z] is called the affine line and the set Homy,, (k[z], A) is
called the set of A-points of the affine line. Now A has an abelian group
structure. We wish to express it in a universal way using the affine line
k[x]. The abelian group structure of A consists of three maps, namely the
addition + : A> — A, the unit 0 : {0} — A, and the inverse — : A — A,
satisfying the well-known axioms which express the fact that the addition
is associative and commutative, that it has 0 as a left and right unit and
that
(—a)+a=a+(~a)=0

for all a € A. These laws do not depend on the particular commutative
algebra A. It will therefore be possible to express them universally.
To this end, let us introduce the affine plane k[z’, z”] with the bijection

Hom y,, (k[z', "], A) = A? (3.3)
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obtained from (3.1) for n = 2. An element of Hom 4, (k[z', 2"], A) is called
an A-point of the affine plane. The set Homy, (k, A), reduced to the single
point 74, will be denoted by {0}.

Proposition 1.3.2. Let A : kjz] — k[z',2"], € : k[z] — k, S : k[z] — k[z]
be the algebra morphisms defined by

A(z)y=2z'+2", e(x)=0, S(z)=-—=z.

Under the identifications (3.2-3.3), the morphisms A, £ and S correspond
to the maps +, 0 and — respectively.

PROOF. Left to the reader. O

The morphisms A, € and .S are subject to further relations which express
the associativity, the commutativity, the unit and the inverse axioms of an
abelian group. They equip the affine line k[z] with what will be called a
cocommutative Hopf algebra structure in Chapter III.

In order to illustrate better the phenomenon we have just observed, we
give another example. For any algebra A denote by A* the group of in-
vertible elements of A. We represent the set A* by an algebra as above.
Consider the ideal I of kfz,y] generated by zy — 1. For any commutative

algebra A we have
HomAlg(k[x?y]/I,A) = AX. (34)

The set {2¥},.5 is a basis of the vector space k[z,y]/I. We denote this
algebra by k[z, z~1]; it is the algebra of Laurent polynomials in one variable.
One defines similarly the algebra

klz' o a' "t 2" =k, 2"y 2y — 1,2y~ 1)
of Laurent polynomials in two variables. We have a bijection
Hom y, (k[2/, '~ 2", 2" 7], A) =2 AX x A, (3.5)
Define algebra morphisms
Ak, e — k2, 2’7 2" 2", e km ] — k,

S:klz, 27t — klz, 27

by
Alz) =2'2", e(x)=1, S(z)=z""1 (3.6)

Then the morphisms A, € and S correspond respectively to the multipli-
cation in A*, to the unit 1 and to the inverse under the identifications
(3.4-3.5). Here again, the morphisms A, ¢, S equip k[z,z '] with a cocom-
mutative Hopf algebra structure.
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.4 Matrix Multiplication

For any algebra A we denote by M,(A) the algebra of 2 x 2-matrices with
entries in A. As a set, M,(A) is in bijection with the set A* of 4-tuples of
A. By (3.1) we have a natural bijection

Homy, (M(2), A) = M,(A) (4.1)

for any commutative algebra A where M (2) is defined as the polynomial
algebra k[a, b, ¢, d]. This bijection maps an algebra morphism f : M(2) — A

to the matrix
( fla)  f(b) )
fle) fld) )-
The multiplication of matrices is a map My(A) X My(A) — M,(A) we
wish to represent universally on M (2), in the spirit of Section 3. The set
M,(A) x M,(A) being in bijection with A®, we introduce the polynomial

algebra
M(2)®2 — k[a',a",b’,b",c’,c",d’,d”]. (4'2)

Proposition 1.4.1. Let A : M(2) — M(2)®? be the algebra morphism
defined by

A(a) _ a/all + bICI/, A(b) — alb// + b/dl/7
Ac) =cdd" +d' ", A(d) = b +d'd".
Then for any commutative algebra A, the morphism A corresponds to the

matriz multiplication in My(A) under the identifications (4.1-4.2).

The proof is easy and left to the reader. It is convenient to rewrite the
formulas for A in Proposition 4.1 in the compact matrix form

a b\ _ [ Ala AB) Y _[(a ¥V a” v
A( ¢ d ) = < Ao A )=\ e @)l ) 43
.5 Determinants and Invertible Matrices
We keep the notations of the previous section. We now consider the group
GL,(A) of invertible matrices of the matrix algebra M,(A). When A is

commutative, we know that a matrix is invertible if and only if its deter-
minant is invertible in A:

GL,(A) = {( : *g ) € M,(A) such that ab — B € AX}.

Define SL,(A) as the subgroup of GL,(A) of matrices with determinant
ab— pBy=1.
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Proposition 1.5.1. Define the commutative algebras
GL(2) = M(2)[t]/((ad — be)t — 1)

and

SL(2) = GL(2)/(t—1) = M(2)/(ad — bc — 1).
For any commutative algebra A there are bijections
HomAIg(GL(2),A) > GLy(A) and HomAJg(SL(2),A) >~ SL,(A) (5.1)

sending an algebra morphism f to the matriz

(ﬂ@f@)_

fle) fld)

PROOF. We give it only for GL(2). Similar arguments work for SL(2). Let
< o b > be a matrix in GLy(A). Since A is commutative, there exists a

v 6
unique algebra morphism f : M(2)[t] - A such that

fl@)=a, fO)=8, fl)=~ [f(d=6§ and f(t)=(as-pF7)""

Now,

f(lad=bet=1) = (F@)F(d) — FOIF))F(E) = £(1)

= (a6 —pBy)(ab-By) " -1
- 0.

This implies that the morphism f factors through the quotient algebra
GL(2). The rest of the proof is easy. a

The next lemma follows from a straightforward computation using the
morphism A of Proposition 4.1.

Lemma 1.5.2. We have A(ad — bc) = (a’'d’ — ') (a"d" —v'c").

We now lift the group structures of GL,(A) and of SL,(A) to the algebras
GL(2) and SL(2). Consider the commutative algebras

GL(2)®2 — M(2)®2[t’,t"]/((a'd' . blcl)tl _ 17 (a//d// _ b"c")t” _ 1)
and
SL(2)%* = GL(2)®*/(t'—1,t"—1) = M(2)®*/(a/d =¥/ ' ~1,a"d"—b""~1).

Proposition 1.5.3. The formulas of Proposition 4.1 define algebra mor-
phisms

A:GL(2) — GL(2)®? and A:SL(2) — SL(2)%2.
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Proor. The formulas of Proposition 4.1 define an algebra morphism A
from M(2)[t] to GL(2)®* provided we set A(t) = ¢'t”. In order to show
that A factors through GL(2) we have to check that A((ad — bc)t — 1)
vanishes. Now, by Lemma 5.2 and by definition of GL(2)®?, we have

A((ad —bc)t —1) = (a'd =¥ ) (a"d" =b"N " -1
1.1-1=0.
The proof for SL(2) is similar. m|

In Section 4 we checked that the map A corresponded to matrix multi-
plication under the above identifications. Let us exhibit the algebra maps

€:GL(2) —k and e:SL(2)—k

corresponding to the units of the groups GL,(A) and SL,(A) and the
algebra morphisms

S:GL(2) - GL(2) and S:SL(2)— SL(2)

corresponding to the inversions in the same groups. They are defined by
the formulas

ela) =¢e(d)=¢€(t) =1, e(b) =e(c) =0,
S(a) = (ad — bc)™ 1 d, S(b) = —(ad — bc)™' b,
S(c) = —(ad — be) e, S(d) = (ad — bc) ' a,

and S(t) = t7 = ad — be. We rewrite them in the more compact and
illuminating form

E(Z Z):(é (l))andS((Z Z):(ad—bc)1<_dc _ab>

(5.2)

[.6 Graded and Filtered Algebras

The remaining sections of this chapter are devoted to some concepts of ring
theory.

Definition 1.6.1. An algebra A is graded if there exist subspaces (A;);en
such that
A= 4, and A A CA
i€EN

for alli,j € N. The elements of A, are said to be homogeneous of degree 7.
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We always assume that the unit 1 of a graded algebra belongs to A.

Example 1. Free algebras are graded by the length of words, i.e., the
subspace A; of A = k{X} is defined as the subspace linearly generated by
all monomials of degree i. The elements of X are of degree 1.

Proposition 1.6.2. Let A =@, A, be a graded algebra and I be a two-
sided ideal generated by homogencous elements. Then

1= In4,

i>0
and the quotient algebra A/I is graded with (A/T), = A,/(INA;) for alli.

PROOF. It suffices to show that I = @,., I N A;. First observe that the
sum has to be direct since the subspaces A, form a direct sum. Therefore,
it remains to be checked that I = 3., INA;. The ideal I is generated by
homogeneous elements x; of degree d,. Consequently, if € I then

ng a;x,;b;
i

for some a;,b,€A. Now, a; = 3, al and b, = 2 b!, where a] and b] are

27 71

homogeneous elements of degree j. It follows that

_ J k
x—E a; x;b;

.5,k

is a sum of homogeneous elements of degree d, + j + &k in I. This implies
that I is a subspace of .., I N A;. The converse inclusion is clear. a

Example 2. The polynomial algebra k[z,, ..., z,] is graded as the quotient
of the free algebra A = k{z,,...,z,} (graded as in Example 1) by the ideal
I generated by the degree-2 homogeneous elements z,z; —z,;2; where i and
J run over all integers between 1 and n. The generators z,,...,x,, are of
degree one.

The algebras M(2) and M (2)®? of Section 4 are graded as polynomial
algebras. On the contrary, the ideals defining the algebras GL(2) and SL(2)
are not generated by homogeneous elements. Though not graded, GL(2)
and SL(2) are filtered algebras in the sense of the following definition.

Definition 1.6.3. An algebra A is filtered if there exists an increasing se-
quence {0} C Fy(A) C ... C F,(A) C ... C A of subspaces of A such
that
A= F(A) and F(A)-F;(A) CF (A
i>0

The elements of F;(A) are said to be of degree < i.
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For any filtered algebra A there exists a graded algebra S = gr(A) defined
by
S; = Fy(A)/F;_,(A).

We give a few examples of filtered algebras.

Example 3. Any algebra A has a trivial filtration given by F;(A) = A for
all 7.

Example 4. We filter any graded algebra A = ®i20 A, by
F(A) =P 4
0<5<i

for all i € N. We have gr(A4) = A.

Example 5. Let AD ... D F,(A) D F,(A) be a filtered algebra and I be a
two-sided ideal of A. The quotient-algebra A/I is filtered with

F,(A/T) = F,(A)/F,(A) N1
In this case we have

gr(A/I) = P Fi(A)/(F,_,(A) + F,(A)NT).

>0

As a special case, consider the algebra SL(2). It is filtered as the quotient
of the graded algebra M (2). We have

gr(SL(2)) = kla,b,c,d,]/(ad — bc).

1.7 Ore Extensions

Let R be an algebra and R[t] be the free (left) R-module consisting of all
polynomials of the form

P=at"+a, "+ +ayt’

with coefficients in R. If a,, # 0, we say thai the degree deg(P) of P is
equal to n; by convention, we set deg(0) = —oo. The aim of this section is
to find all algebra structures on R[t] compatible with the algebra structure
on R and with the degree. We need the following definition.

Let o be an algebra endomorphism of R. An a-derivation of R is a linear
endomorphism § of R such that

8(ab) = a(a)é(b) + 6(a)b (7.1)
for all a,b € R. Observe that (7.1) implies 6(1) = 0.
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Theorem 1.7.1. (a) Assume that R[t] has an algebra structure such that
the natural inclusion of R into R[t] is a morphism of algebras, and we have
deg(PQ) = deg(P) + deg(Q) for any pair (P, Q) of elements of R[t]. Then
R has no zero-divisors and there exist a unique injective algebra endomor-
phism o of R and a unique a-derivation 6 of R such that

ta = a(a)t + 6(a) (7.2)

for all a € R.

(b) Conversely, let R be an algebra without zero-divisors. Given an injec-
tive algebra endomorphism o of R and an a-derivation 6 of R, there exists
a unique algebra structure on R[t] such that the inclusion of R into R[t] is
an algebra morphism and Relation (7.2) holds for all a in R.

The algebra defined by Theorem 7.1 (b), denoted R[t, «, 8], is called the
Ore extension attached to the data (R, a, 6).

ProOOF. (a) Let a, b be non-zero elements of R, hence of degree 0 in R[t].
We have deg(ab) = deg(a) + deg(b) = 0, which implies that ab # 0. Conse-
quently, R has no zero-divisors.

Let us now prove the existence and the uniqueness of the endomorphisms
o and 6. Take any non-zero element a of R and consider the product ta.
We have deg(ta) = deg(t) + deg(a) = 1. By definition of R][t] there exist
uniquely determined elements a(a) # 0 and 6(a) of R such that

ta = afa)t + é(a). (7.2)

This defines maps « and § in a unique fashion. The left multiplication by
t being linear, so are « and §. Furthermore, o has to be injective. Let us
expand both sides of the equality (ta)b = ¢(ab) in R[t] using (7.2). Here a
and b are elements of R. We get

a(a)a(b)t + a(a)d(b) + 6(a)b = a(ab)t + 6(ab). (7.3)
Relation (7.3) implies that
a(ab) = ala)a(b) and é(ab) = a(a)6(b) + 6(a)b. (7.4)

Applying (7.2) to t1 =t yields (1) = 1 and 6(1) = 0. It follows that « is
an injective algebra endomorphism and ¢ is an a-derivation.

(b) Tt clearly suffices to know the product ta for any a € R in order to
determine the product on R[t] completely. Thus, (7.2) defines the algebra
structure on R[t] uniquely.

Let us now prove the existence of the algebra structure. To this end, we
shall embed R[t] into the associative algebra M consisting of all infinite
matrices (f;); ;j>1 With entries in the algebra End(R) of linear endomor-
phisms of R such that each row, as well as each column, has only finitely
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many non-zero entries. The unit of M is the infinite diagonal matrix I
with identities on the diagonal. Given an element a of R, we denote by
@ € End(R) the left multiplication by a. The hypotheses made on « and §
translate into the relations

aa = oz/(;)oz and da = 05/(2)5 + (5/(\(1) (7.5)
in End(R). Now, consider the infinite matrix

0

o oo Rk >

o OR >»O

o QP >xOo O
> O O

Q

in M. It allows one to define a linear map ® : R[t] — M by

(Z a; tl) Z @)1 (7.6)

=0
Lemma 1.7.2. The map ® is injective.

PROOF. For any integer i > 1, let e, be the infinite column vector whose
entries are all zero, except for the i-th one which is equal to the unit 1 of
R. We may apply the matrix T' of endomorphisms to e;. Since §(1) = 0 and
a(l) =1 we get

T(e;) = €ipy (7.7)

for all i > 1. Now, let P = Y7, a,;t" be an element of R[t] such that
®(P) = 0. We wish to show that all elements a,...,a, are zero. Apply
®(P) to the vector column e,. By (7.7) we get

n n
0= Z aT(e,) = Z @i€iyq-
=0 i=0
The set {e;},>; being free, we have @, = 0 for all i. Since R has a unit, we

get a, = 0 for all 7. Hence, P = 0. O
Relations (7.5) imply the following relation in M for all @ € R.

Lemma 1.7.3. We have T'(GI) = (« ( VI )T+(6(a) ).

We now complete the proof of Theorem 7.1 (b). Let S be the subalgebra
of M generated by the elements T' and al where a runs over R. By Lemma
7.3 it is clear that S is the image of R[t] under the map ®. Since the latter
is injective, it induces a linear isomorphism from R]t] to the algebra S. This
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allows one to lift the algebra structure of S to R[t]. Relation (7.2) holds in
R[t] in view of Lemma 7.3. a

We draw a few consequences. First, we wish to give a general formula
for the product in Rl[t,c,8]. Consider P = Y7 ( a;t* and Q = .17 b;t".
Set PQ = 77" ¢;t'. Let S, , be the linear endomorphism of R defined

as the sum of all ( n

k ) possible compositions of k copies of § and of n —k

copies of a.

Corollary 1.7.4. Under the hypotheses of Theorem 7.1 (b), the following
holds.
(a) For all i with 0 <4 < m+n we have

% 14
¢ = Z a’p Z Sp,k(bi—p+k) (78)
p=0 k=0

and for all a € R and n € N we have in R[t, «, 6]

n

t"a=>Y" S, (a)t" " (7.9)

k=0

(b) The algebra R[t, o, 8] has no zero-divisors. As a left R-module, it is
free with basis {t'},en-

(c) If @ is an automorphism, then R[t, «, 6] is also a right free R-module
with the same basis {t'};en-

ProoFr. (a) Relation (7.9) follows from (7.2) by induction on n. It implies
(7.8).

(b) This is a consequence of the existence of the degree and of the defi-
nition of R[t].

(c) Let us first prove that the set {t'},~, generates R[t,q,6] as a right
R-module. This means that any element P of R[t, c, 6] can also be written
under the form P = 3" , t'a’ where ag,...,a, € R. Let us prove this by
induction on the degree n of P. For n = 0, it is clear. For higher n we use
the relation

at” = t"a""(a) + lower-degree terms (7.10)

which makes sense once « is assumed to be invertible. It remains to be
proved that the set {t'},5 is free. Suppose it is not. Then there exists a
relation of the form

t"a, +t" ta, ; +-+tag +ay =0
with a,, # 0. Using (7.10) once again, we get another relation of the form

a"(a,)t" + lower-degree terms = 0,
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which, by Part (b), implies that a"(a,,) = 0. The map « being an isomor-
phism, we get a,, = 0, hence a contradiction. O

Example 1. Consider the special case o = idp. If 6 = 0, then the Ore
extension R[t,idy,0] is clearly isomorphic to the polynomial algebra R[t].
In case of a general derivation &, the algebra R[t,idg, 6] is an algebra of
polynomial differential operators (see Exercise 8). When R = k[z] and 6
is the usual derivation d/dx of polynomials, then R[t,idg,¢] is the Weyl
algebra which is generated by two variables x and 6 subject to the well-
known Heisenberg relation éx — xzé6 = 1.

[.8 Noetherian Rings

Proposition 1.8.1. Let A be a ring. The following two statements are
equivalent.

(i) Any left ideal I of A is finitely generated, i.e., there exist a,...,a
in I such that I = Aay, + -+ Aa,.

(ii) Any ascending sequence I, C I, C I; C ... C A of left ideals of A is
finite, i.e., there exists an integer r such that I, ., = I, for alli > 0.

n

PROOF. Let us first show that (i) implies (ii). Consider an ascending se-
quence I; C I, C I; C ... of left ideals of A. The union of these ideals is
a left ideal I which, by (i), is generated by a finite number a,...,a, of
elements of A. By definition of the union there exists an integer r such that
ay, .- .,a, all belong to the ideal I,.. It follows that I C I, C I, C I for
all 1 > 0.

We now establish the converse. Let I be a left ideal that is not finitely
generated and a, be an element of I. The left ideal I, = Aa, is contained
in I and I # I. Therefore, we can find an element a, € I\ Aa;. We have
I, C I, = Aay + Aa, C I and I; # I, # I. Proceeding inductively, we find
an infinite strictly ascending sequence I, C ---1, C I, C ---T of left
ideals. o

Any ring A satisfying the equivalent conditions of Proposition 8.1 is said
to be left Noetherian. The ring A is right Noetherian if the opposite ring A°P
is left Noetherian. It is Noetherian if it is both left and right Noetherian.

Example 1. Any (skew-)field K is Noetherian, the only ideals being {0}
and K.

The property of being Noetherian is preserved by quotients and Ore
extensions, as will be seen next.

Proposition 1.8.2. Let ¢ : A — B be a surjective morphism of rings. If
A is left Noetherian, then so is B.
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PRrROOF. Let .J be a left ideal of B. The left ideal I = ¢_;(J) of A is
generated by elements ay,...,a,. Therefore, J = p(p_;(J)) is generated

by @(ay), ..., ¢(ay,). =

The following theorem is a non-commutative version of Hilbert’s basis
theorem.

Theorem 1.8.3. Let R be an algebra, o be an algebra automorphism and 6
be an a-derivation of R. If R is left Noetherian, then so is the Ore extension
R[t, o, 6].

As a consequence of Proposition 8.2 and Theorem 8.3 applied to the case
a =1id and § = 0, we have

Corollary 1.8.4. If R is left Noetherian, then so is R[Xy,...,X,]/1 for
any ideal I.

Proof of Theorem 8.3. Let I be a left ideal of the Ore extension R[t, o, 6].
We have to prove that I is finitely generated. Given an integer d > 0, define
I, as the union of {0} and of all elements of R which appear as leading
coefficients of degree d elements of I. One checks easily that I, is a left
ideal of R.

On the other hand, if a is the leading coefficient of some polynomial P,
then a(a) is the leading coefficient of ¢tP. Consequently, a(l;) is included
in I;,,. We therefore have the ascending sequence

I,ca'(I)ca X)) C...Cca™,) Ca ™ )C...

of left ideals in R. Since R is left Noetherian, there exists an integer n such
that 1, ;, = a'(I,) for all i > 0.

For any d with 0 < d < n choose generators agy,...,a,, of I;. Let
P, ; be a degree d element of I whose leading coefficient is ag ;. The set
{Py.i}o<a<ni<i<p is finite. Let us prove by induction on the degree that
any polynomial P in I belongs to the ideal I' = >, ; R[t,a, 6] P ;. This
will imply that I = I’ is finitely generated, hence establish the theorem.

The induction hypothesis clearly holds in degree 0. Suppose we have
proved that any element of degree < d in I is in I’. Let P be a degree d
element of I.

(a) If d < n, the leading coefficient a of P is of the forma = } oo, 7;a4;
where 1, ... 7, are elements of R. Consequently, @ = P — ZOSiSP Py
is an element of I of degree < d. By induction, @, hence P, belong to I'.

(b) If d > n, the leading coefficient a of P belongs to I; = at (1) Tt
can be written a = > o<, r;a®""(ay ;) for some 7, ..., 7, in R. Consider
the polynomial

Q=P- > rtt"P,

0<:<p
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The coefficient of t¢ in Q is

a— Z riad_”(aw) =0,

which shows that the degree of @Q is < d. We can therefore apply the
induction hypothesis and conclude as above. O

I.9

1.

2.

3.

Exercises

(Schur’s lemma) Prove that any A-linear map between simple A-
modules is either zero or an isomorphism. Deduce that the A-linear
endomorphisms of a simple A-module form a skew-field.

Let p = p? be an A-linear idempotent endomorphism of an indecom-
posable A-module V. Show that p =0 or p = id,,.

Let A;, A, be algebras. Let V| be an A;-module and V, be an A,-
module. Establish that (a;, a,)(vy,vy) = (a;v;, a5v,) (Where a; € A,
ay € Ay, vy € Vi, vy € V) defines an A; x A,-module structure on
Vi x V,. Prove also that any A; x A,-module is of this form.

Let A be a filtered algebra and gr(A) the associated graded algebra.
Prove that if gr(A) is Noetherian without zero-divisors, then so is A.

(Rees algebra) Let A D ... D F, D F, be a filtered algebra. Define
the Rees algebra R(A) as the subalgebra

R(A) =) F,t"
n>0
of the polynomial algebra Alt]. Prove that

(i) there are algebra isomorphisms

R(A)/(t-1)= A, R(A)/(t) =gr(4), RAE]= ALt

(ii) if the algebra gr(A) is generated by homogeneous elements a, . . .,
a,, of respective degrees dy,...,d,, then R(A) is generated by the

) n?

elements t, a,t%, ..., a,t% where a, is a lift of @, in F} for all 4.

(Poincaré series of a graded algebra) Let A = 0, A; be a graded
algebra such that the vector spaces A, are all finite-dimensional. De-
fine the Poincaré series of A as the formal series

P(A) =) dim(4,)".

i>0
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Prove that

1
P(k{zy,....wn}) = 7= and Plklay,....z,]) =

Compute the Poincaré series of the graded algebra associated to the
filtered algebra SL(2).

(Leibniz formula) Let 6 be an a-derivation of an algebra R. Prove
that if aq,...,a, are elements of R, then
6(ay ... an) =6(aj)ay...qa,
+3000 alag - a;1)8(a)ay - a, +afa . a,_)é(a,)
and

"(ayay) Z Snk )" k( 2) -

for n > 1. The endomorphisms Sn,k were defined in Section 7.

Let R be an algebra with an algebra automorphism a and an a-
derivation é. Establish that éa~! is an o~ !-derivation of the opposite
algebra R°P and that we have an algebra isomorphism

R[t,a,8]°° = RP[t,a™t, —6a™!].
Deduce that R[t, a,d] is right Noetherian if R is.

(Algebra of differential operators) Let R be an algebra over a field
of characteristic zero and let § be a derivation of R. The algebra of
differential operators associated to § is the Ore extension R[t,idg, 6],
which we simply denote by R[t,6].

(a) Prove that for any integer n > 0 and any element a of R we have

n

=Y ( . ) 8*(a) t"F.

k=0

(b) Show that any trace on R[t,6], i.e., any linear map 7 on R[t, d]
such that 7(zy) = 7(yz) for any pair (z,y) of elements of R[t, ], is
Z€ro.

(Algebra of pseudo-differential operators) Keep the hypotheses and
the notations of the previous exercise. Show that the formula

(Z at') (Z bt') = Z ot
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where

pp—1)...(p—k+1)
G = E : k! ap 5k(bifp+k:)7
keEN,peEZ

defines an algebra structure on the vector space R[t, §][[t~!]] of formal
series of the form 3°7 _ a,;t". Check that R[t, ] is a subalgebra. De-
fine the non-commutative residue as the linear map from R[t, &][[t]]
to R/([R, R] + 6(R)), sending the formal series Y ;- __a,t' to the
class of the coefficient a_;. Prove that the non-commutative residue

is a trace on the algebra R[t, 6][[t™*]] of pseudo-differential operators.

1.10 Notes

Ore extensions were introduced by Ore in [Ore33]. They are also called
“skew polynomial rings” in [Coh71] [MR8T] (see also [Cur52]). One of Ore’s
motivations was to find a large class of non-commutative algebras that
are embeddable into a skew-field. As is well-known, this is possible for
any commutative integral domain, but not for a general non-commutative
algebra. Ore proved that any algebra obtained from a skew-field by iterated
Ore extensions can itself be embedded into some skew-field (see Proposition
0.8.4 in [Coh71]). For more details on Noetherian rings, we refer the reader
to [Lan65] and [MR87]. The examples given in [MR87], 2.11 show that the
non-commutative version of Hilbert’s basis theorem is no longer true if the
endomorphism « is not assumed to be bijective.
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Tensor Products

This chapter is devoted to a few facts on tensor products of vector spaces
and of algebras that will be needed in the sequel. We fix a field £ once and
for all.

I1.1 Tensor Products of Vector Spaces

Given vector spaces U and V', we denote by Hom(U, V') the space of linear
maps from U to V. In particular, define End(V)) = Hom(V, V), the space
of linear endomorphisms of V. If W is a third vector space, we denote by
Hom(z)(U, V; W) the space of bilinear maps from U x V to W.

The tensor product U @ V of two vector spaces can be characterized as
follows.

Theorem II.1.1. Given vector spaces U and V there exist a vector space
U®V and a bilinear map @y : U x V. — U QV such that, for all vector
spaces W, the linear map

Hom(U ® V, W) — Hom® (U, V; W)

given by f — f oy, is a linear isomorphism. The vector space U @V 1is
called the tensor product of U and V. It is unique up to isomorphism.

For any u € U and v € V, set u ® v = @y(u,v). Since ¢y is bilinear, the
following relations hold in U ® V:

(u+v)@v=u®v+u Qu, (1.1)
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u@+v) =uRv+uv, (1.2)
AMu®v) = (M) ®@v =u®(\v) (1.3)

where u,u’ € U, v,0" € V and A € k. Moreover, as we shall see in the
subsequent proof, any element of U ® V is a finite sum of the form

p
i=1
where u,,...,u, belong to U and vy,...,v, belong to V.
1 D 1 P

PRrOOF. We indicate the proof. Consider the vector space k[U x V] whose
basis is the set U x V. We define U ® V' as the quotient of k[U x V] by the
subspace generated by the elements

(u+u',v) — (u,v) ~ (v,v), (u,v+2") = (u,v) = (u,v"),

Au,v) — A(u,v),  (u, Av) — A(u,v)

where u,u’ € U, v,v" € V and X € k. The class of (u,v) e UxVinU®V
is denoted ¢,(u,v) = u ® v. By construction, the canonical map ¢, from
U xV toU®YV is bilinear. The rest of the proof follows easily. For details,
see [Bou70], Chap. 2 and [Lan65]. O

Corollary I1.1.2. For any triple (U,V,W) of vector spaces there is a
natural isomorphism

Hom(U ® V, W) = Hom(U, Hom(V, W)) .

Proor. If ¢ is a bilinear map from U x V to W and u is any vector of
U, then ¢(u,—) is a linear map from V to W. This sets up the desired
isomorphism. O

The proof of the following easy proposition is left to the reader.

Proposition I1.1.3. Let U, V, W be vector spaces. There are isomor-
phisms
UV)eW=2U(VeWw)

determined by (U@ V) @ W — U (v w),
keV2V=Vek

determined by AQ vi— v and v — v ® 1, and
Voaw=zweV

given by the flip Ty, defined by TV’W(U QW) =w®uv.
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The tensor product also commutes with the direct sum of spaces. Let
(U,);er be a family of vector spaces indexed by a set I. Recall that there
exists a vector space @, ; U, called the direct sum of the family (U;), and
linear maps g; : U; — €,; U, such that for any vector space V, the linear

map
Hom(EP U, V) — [ [ Hom(U,, V) (1.5)
i€l el

given by f — (f o g;); is an isomorphism.

Proposition I1.1.4. We have

EPu)ev=P U V). (1.6)

i€l iel
Proor. By Corollary 1.2 and (1.5) we have the chain of isomorphisms

Hom((P U,) @ V,W) 2 Hom(EP U,, Hom(V, W)
i€l el

[ Hom(U,, Hom(V, W)

i€l

[[Hom(U, @ v, W)

i€l

Hom(@ (U, V), W).
el

14

(1

1

These hold for any vector space W. A classical argument given in full detail
in the second proof of Proposition 5.1 (¢) allows one to conclude. 0

Recall also the notion of a direct product of vector spaces. Let (V;),c;
be a family of vector spaces indexed by a set I. There exists a vector space
[Tic; ;. called the direct product of the family (V;),c;, and linear maps
D, HZGI V, — V, such that for all vector spaces U, the map

Hom(U, [[ Vi) = [] Hom(U, V;) (1.7)
€] i€l

given by f — (p; o f); is an isomorphism. As a set, [[,c; V; may be real-
ized as the vector space of all families (v;);c; such that v; € V; for all 7.
The direct sum @, V; is then the subspace of [, V; consisting of the
families (v;);c; where all but finitely many v; are zero. When the indexing
set I is finite, the direct product coincides with the direct sum. Otherwise,
the direct sum is a proper subspace of the direct product.

Corollary I1.1.5. Let {u;},c; be a basis of the vector space U and {v;} ¢,
be a basis of V. Then the set {u; ® v} jerxs 5 o basis of the tensor
product U @ V. Consequently, we have dim(U ® V) = dim(U) dim(V').
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PRroOOF. By definition of the direct sum, we have
U@ ku, and V=P kv (1.8)
i€l jeJ
Applying Propositions 1.3-1.4 and using k£ ® k = k, we get

UeV EB k (u; ® ;).
(i.J)€IxJ

O

Let us define the notion of a free module over an algebra A using the
tensor product. It is a module of the form A ® V where V is a vector space
and A acts on A® V by

ala’ ®@v) =ad @v

for a,a’ € A and v € V. A basis of an A-module M is a subset {z,},; of
M such that the map
(a;)ier — Z a;T;

i€l
from the direct sum €, .; A to M is an isomorphism. By Propositions
1.3-1.4,
PAa=Pack=acV
i€l il

where V' = @, k. It follows that an A-module has a basis if and only if
it is free.

I1.2  Tensor Products of Linear Maps

Let f:U — U’ and g : V — V’ be linear maps. We define their tensor
product f@g: UV - U @V’ by

(feg)(uev) = f(u)@g(v) (2.1)
for all v in U and v in V. This gives rise to a linear map
A : Hom(U,U’) @ Hom(V, V') — Hom(V @ U,U' @ V') (2.2)

defined by
(Mo 9)wew = fu) e gv). (2:3)

The reasons for the switch of U and V in (2.2) will become apparent in
I11.5.2 and in Chapter XIV. The main result of this section is the following.



11.2 Tensor Products of Linear Maps 27

Theorem I1.2.1. The map A is an isomorphism provided at least one of
the pairs (U,U"), (V,V') or (U, V) consists of finite-dimensional vector
spaces.

PROOF. Assume that U and U’ are finite-dimensional. We wish to show
that the map A of (2.2) is an isomorphism. We shall do this by reducing A to
simpler maps. We can write U = @,; ku; where {u,};c; is a finite basis of
U. As a consequence of the isomorphism (1.5-1.6), the map A turns into a
map from ([], Hom(ku,,U")) @ Hom(V, V") to [[, Hom(V ® ku,;,U' @ V").
The set I being finite, we may replace [], by €,. Applying (1.6) again, it
remains to prove that the map

A : Hom(ku;, U') @ Hom(V, V') — Hom(V ® ku;, U’ ® V")

is an isomorphism in the special case U = ku,.
Since ku,; is one-dimensional, this amounts to checking that the map

N U @Hom(V, V') — Hom(V, U’ @ V') (2.4)
defined by
N (W' ® f)(v) =’ ® f(v)

is an isomorphism. By assumption, we also have U’ = @,/ ku; for some
finite basis {u;};c;. We again use (1.6-1.7) and the fact that the direct
product over the finite set I’ is the same as the direct sum. We get

U’ @ Hom(V, V') = P ku} ® Hom(V, V")
el

and
Hom(V,U' @ V') = H Hom(V, ku; @ V).
il

This allows us to break X into the direct product of the maps
N ¢ kv, @ Hom(V, V') — Hom(V, ku; @ V).

In this special case, X is given by X' (u; ® f)(v) = w; ® f(v), which is clearly
an isomorphism. Hence, so is the map A’ of (2.4), which concludes the proof.
There are similar arguments in the remaining two cases. 0O

We deduce two corollaries involving the dual vector space V* = Hom(V, k)
of a vector space V. For the first one, we specialize Theorem 2.1 by taking
U=V =k

Corollary I1.2.2. The map X : U*®@V* — (V. QU)" is an isomorphism
provided U or V are finite-dimensional.

For the second corollary, we take U = V' = k in Theorem 2.1.
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Corollary 11.2.3. The map Ay : VQU™ — Hom(U, V) given foru € U,
veVand acU* by
Aoy (v ® @) () = alu)v (2.5)

is an isomorphism if U or V are finite-dimensional. In particular, if V s
a finite-dimensional vector space, the map Ay is an isomorphism
VeV 2End(V).

We now wish to express the general map A of (2.2) in terms of the special
maps A defined in Corollaries 2.2-2.3 and of the flip. This is done in the
following lemma which will be useful later. Note that the map Ay @ Ay v
is invertible when either U or U’, and either V or V' are finite-dimensional.

Lemma I1.2.4. The following diagram commutes:
A QA ’
UeU eV v 220, Hom(U,U')® Hom(V,V’)
J/id@TU*,V/ ®id

UV eU eV lx
id@id®A
UeVeVel) —YE2UeV, gV eUU oV
ProoFr. Easy. O

There is another important operation on linear homomorphisms that we
have not yet discussed. It is the composition (g, f) — g o f of two linear
maps. This operation is bilinear and leads, for any triple (U, V, W) of vector
spaces, to the map

Hom(V, W) ® Hom(U, V)~ Hom(U, W).

Under some finite-dimensionality conditions, we can express the composi-
tion in simpler terms again involving the special maps A of Corollary 2.3
as well as the evaluation map

evy V'V =k
which is defined as usual, namely by
evy (a®v) =< a,v >=a(v) (2.6)
for any linear form o« and any vector v of V.

Lemma I1.2.5. The square

id®ev i
WeV eV eU* S B WU
Av,w Ry, v l/\v,w
Hom(V, W) ® Hom(U, V) = Hom(U, W)

commutes.

ProOF. Easy. m]
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I1.3 Duality and Traces

All vector spaces considered in this section are assumed to be finite-dimen-
sional. If V is such a vector space, we denote a basis of V' by {v,}, using
the corresponding lower-case letter for vectors. The dual basis in the dual
vector space V* is denoted {vi}i. Using these bases, the evaluation map
can be redefined by

evv(vi®vj)=<vi,vj >=8,;. (3.1)

Let us express the isomorphism Ay, : V@U* = Hom(U, V) of Corollary
2.3 in terms of bases. Let f : U — V be a linear map. Using bases for U

and V, we have
w) =Y fi, (3.2)
i

for some family ( fl) of scalars. It is easily checked that

f=Xuy (Z f; v ® uj). (3.3)

j

In particular, taking for f the identity of V, we get

idy = Ay y (Z v; & vi). (3.4)

This allows us to define the coevaluation map of any finite-dimensional
vector space V' as the linear map 6, : k — V ® V* defined by

Sy (1) = Aph (idy) Z v, ® v, (3.5)

By its very definition, the map ¢y, is independent of the choice of a basis. We
now record some relations between the evaluation and coevaluation maps.
These relations will turn out to be fundamental when we define duality in
categories in Chapter XIV.

Proposition I1.3.1. The composition of the maps
V Sy ®idy V® V* ® V idv®evv V
is equal to the identity of V. Similarly, the composition of the maps

P v @ o1 oy S ®idy -

is equal to the identity of V™.

ProOOF. Immediate. O
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Let us recall the operation of transposition. For a linear map f: U — V,
define its transpose f* : V* — U™ as the linear map defined for all o € V*
and all u € U by

< fHa),u>=<a, flu)>. (3.6)

In other words, f* is the unique linear map such that the square

fr®idy
-

V*eU UrU
lid‘,*@f levy (3.7)
Viev 2% k

commutes. The transposition may be recovered from the evaluation and
coevaluation maps as shown in the following result whose proof is left to
the reader.

Proposition I1.3.2. Let f: U — V be a linear map. Then the transpose
f* is equal to the composition of the maps

idy» ® f®idy = evy, ®idy«
_— _

Vv s o @ U VeV eU* U*.

Observe that if (3.2) holds, then

fr) = flu. (3.8)

We thus see that transposition amounts to exchanging upper and lower
indices. We generalize this as follows. Let f be a linear map from V @ W
to X ® Y. Using bases on these spaces, we define the partial transposes

T X*@W-=V*®Y and f*: VY —>Xe@W"

by
$®w)—Zf’§vk®yz (3.9)
and
(v; ®y7) Z fh e, @ wt (3.10)
if
flo,@w) =Y fiz, @y, (3.11)
k.l

Lemma I1.3.3. The definitions of f* and f* are independent of the choice
of bases. We also have

(= () =

PROOF. Left to the reader. O
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The isomorphism Ay, of Corollary 2.3 allows one to define the trace of
an endomorphism in a finite-dimensional vector space V. The trace tr :
End(V) — k is defined as the composition

—1

A T * v
End(V)2%V @ VISV @ VS, (3.12)

Proposition I1.3.4. Let f and g be endomorphisms of a finite-dimension-
al vector space V.
(a) The trace satisfies the relation

tr(fog) =tr(go f). (3.13)
(b) If (f]z)U is the matriz of f in a basis of V', then
tr(f) = Z fi. (3.14)
(c) We also have
tr(f*) = te(f). (3.15)

PROOF. (a) By linearity, it suffices to prove (3.13) for
f=Apy(v®a) and g= A,y (w®p)

where v,w € V and a, f € V™. We have fog = Ay (a(w) v®3) by Lemma
2.5. Consequently, tr(f o g) = a{w) B(v), which clearly equals tr(g o f).
(b) From Relations (3.2-3.3) we derive

()= f; <ol >=>" fl.
i3 i

(¢) Relation (3.15) follows from (3.8) and (3.14). O

The next result expresses the trace in terms of the evaluation and co-
evaluation maps and of the flip.

Proposition I1.3.5. The trace of f : V — V 14s equal to the composition
of the maps

Ky @y LBdve,

Ve vyt o v,

We close these generalities with the partial traces of an endomorphism f
of U®V. By Theorem 2.1 the map f®g + A f®g)o7y y is an isomorphism
A from End(U) ® End(V') onto End(U ® V). We define tr; and tr, by the
following commutative diagram.

tro

End(V) pixs End(U ® V) SEEN End(U)

- k 1

ko End(V) <99 End(U) @ End(V) 225 End(U) ® k
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Lemma IL.3.6. If f(u, ®v;) =), f;;z u, @ v, on some bases of U and
V', then

try (f)(v;) = Z Zf v, and  try(f)(ug) = Z fik'j U (3.17)

i€ ik
We also have try (tro(f)) = try(try (f)) = tr(f).

PROOF. Left to the reader. O

1.4 Tensor Products of Algebras

Given algebras A and B, we put an algebra structure on the tensor product
A® B by

(a®b)(a' ®b') = aa’ @ bb’ (4.1)
where a,a’ € A and b,b' € B. We call A ® B the tensor product of the
algebras A and B. Its unit is 1 ® 1. Defining i 4 (a) =a®land iz(b) = 1®b,
we get algebra morphisms iy : A - A®B and iz : B - A®B. The
following relation holds in view of (4.1):

ia(a)ig(b) =ip(b)ig(a) =a®b (4.2)

for all a € A and b € B. The tensor product of algebras enjoys the following
universal property.

Proposition I1.4.1. Let f : A— C and g : B — C be algebra morphisms
such that, for any pair (a,b) € Ax B, the relation f(a)g(b) = g(b) f(a) holds
in C. Then there exists a unique morphism of algebras fQg: AQB — C
such that (f®g)oi, = f and (f®g)oig=g.

We can rephrase Proposition 4.1 by saying that Hom,, (A® B,C) is
the subset of Hom (A, C) x Homy,, (B, C) consisting of all pairs (f, g) of
morphisms whose images commute in C. In particular, if C' is commutative
we have

HOIIlAIg(A ® B, C) =~ HOmAIg(A, C) X HOmA]g(B, C) (43)

PROOF. Any element of A® B is a finite sum of elements of the form a ® b.
Therefore, by (4.2), f ® g (if it exists) has to be of the form

(f@9)(a®b) = (f ©9)(i4(a))(f ®9)(ip(b)) = [(a)g(b).

This proves the uniqueness assertion. As for the existence of the map f®g,
one checks that the previous formula defines an algebra morphism. This
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uses the commutativity assumption as follows:

(feg(aeb)(feg)(deb) =

We apply Proposition 4.1 to a situation encountered in Chapter I.

Proposition 11.4.2. Let A = k{X}/I be a quotient of the free algebra on a
set X. Take two copies X' and X" of X. Let I’ and I be the corresponding
ideals in k{X'} and k{X"}. Then the tensor product algebra A ® A is
isomorphic to the algebra

A®2 — k{X/ I_IXI/}/(I,7II/7X/XI/ _X//X/)

where X' U X" denotes the disjoint union of the two copies and where
X'X" — X" X' is the two-sided ideal generated by all elements of the form
z'z" — 22" with ' € X' and 2" € X"

ProoOF. For any £ € X we denote the corresponding copy in X' [resp. in
X"] by x' [resp. by z”']. Setting ¢’'(z) = 2’ and ¢"(z) = =" defines algebra
morphisms ¢, 0" : A — A®?. Since z'y” = y”z’ by definition of A®2
we have ¢’ (z)¢” (y) = ¢”(y)¢'(x) for any pair (x,y) of elements of X. By
Proposition 4.1 there exists an algebra morphism ¢ : A® A — A®? such
that p(z®@y) = z'y".

Conversely, we get an algebra morphism 1 from 4®2 to A ® A by setting
P(z') = x®1 and ¥(z"”) = 1®x where 2’ € X' and z” € X”. One easily
checks that ¢ and ¥ are inverse of each other. a

We retain from the previous statement that one passes from A®2 to
A® A by replacing the copy z’ of by x ® 1 and the copy z” by 1 ® z and
vice versa. Let us apply this recipe to the constructions of 1.4-5. Denoting
M(2), GL(2) or SL(2) by G, we see that in all three cases the algebra G®?
defined in I.4-5 is isomorphic to the tensor product algebra G @ G. We can
thus rewrite the map A of Proposition 1.4.1 as the algebra morphism from
G to G ® G determined by

Ala)=a®a+b®c, AbD)y=a®b+b®d,

Alc)=c®a+dec, Ald)=c®b+dod.
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We rewrite these four relations in the compact matrix form

(1) (38 8)-(2 D)=(22)

Lemma 1.5.2 implies that

A(ad — be) = (ad — be) @(ad — be). (4.5)

I1.5 Tensor and Symmetric Algebras

Let V be a vector space. Define TO(V) =k, T*(V) =V and T"(V) = V&
(the tensor product of n copies of V') if n > 1. The canonical isomorphisms

(V)RT™(V) =T (V)

induce an associative product on the vector space T(V) = @, T"(V).
Equipped with this algebra structure, T(V) is called the tensor algebra of
V. The product in T(V) is explicitly given by

(.%‘1®...®£En)(.’l7n+1 ®"‘®xn+m) =T ®"‘®xn®xn+1®"'®xn+m

(5.1)

where zy,...,2,,%, 1)+, Ty, are elements of V. The unit for this prod-
uct is the image of the unit element 1in k = TY(V). Let iy, be the canonical
embedding of V' = T*(V) into T(V). By (5.1) we have

T, ®...0x, =iy,(z))...ly(z,), (5.2)
which allows us to set
Ty T, =08...9z, (5.3)
whenever z4,...,z, are elements of V.

Proposition IL1.5.1. (a) The algebra T(V) is graded such that T™(V') is
the subspace of degree n homogeneous elements.

(b) For any algebra A and any linear map f : V — A, there exists a
unique algebra morphism f : T(V) — A such that foiy, = f. Consequently,
the map f v f o4y is a bijection

Hom ., (T(V), A) = Hom(V, A). (5.4)

(c) Let I be an indezing set for a basis of the vector space V. Then the
tensor algebra T'(V') is isomorphic to the free algebra k{I}.

PROOF. Part (a) is clear. Let us prove Part (b). If f exists, it has to be of
the form
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in view of (5.3). This proves the uniqueness of f. As for its existence, one
checks immediately that the previous formula defines an algebra morphism
from T(V) into A.

(¢) By Corollary 1.5, if {e;},c; is a basis of V, then {e; ...e; };/ , <ris
a basis of the vector space T™ (V). When n runs over the set of non-negative
integers we get a basis of T(V') which is clearly in bijection with a basis of
k{I}. This bijection induces an isomorphism between both vector spaces.
The product on T'(V') corresponds to the concatenation in £{J} under this
isomorphism.

Let us give another, less pedestrian, proof of Part (¢). By (1.5), {1.8),
(5.4) and (1.2.2) we have the following chain of natural bijections:

Hom, (T(V),A) = Hom(V,A)
= Hom(@ ke;, A)
il
= H Hom(ke,, A)
icl
= HomSet(I? A)

1%

Hom,y,, (k{I}, A).

Let a be the composition of these bijections. First, take A = T(V) and
define ¢ = a(idpy); this is an algebra morphism from k{I} to T'(V'). Now
take A = k{I} and define ¢ = a_l(idk{l}); this is an algebra morphism
from T'(V') to k{I'}. We claim that ¢ and 1 are isomorphisms between T'(V)
and k{I}. First, observe that the bijection « is natural, which means that
for any algebra morphism f: A — A’ we have

foalw)=a(fow)

for any w € Hom, (T(V), A). Let us now compose ¢ and . On the one
hand, we get

'(ﬂ oY= Tﬂ &) a(ldT(V)) = Oé(lp o ldT(V)) = Ol(w) = idk{]}’

whereas on the other hand, we have
alpoy) =poa(yh) = poidypy = o,

whence g o) = a () = iy .

Let us define symmetric algebras. If V' is a vector space, the symmetric
algebra S(V') is the quotient S(V') = T(V)/I(V) of the tensor algebra T'(V)
by the two-sided ideal I(V') generated by all elements zy — yx where x and
y run over V. If 24, ..., z, are elements of V, we again denote by =, ...z,
the class of z, ...z, in S(V). The image of T"(V) under the projection
of T(V) onto S(V) is denoted S™(V). Let iy, be the canonical map from
V =TYV) to S(V).
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Proposition I1.5.2. (a) The algebra S(V) is commutative, and is graded
such that S™(V) is the subspace of degree n homogeneous elements.
(b) For any algebra A and any linear map f:V — A such that

for any pair (x,y) of elements of V, there exists a unique algebra morphism
f:S(V) — A such that foiy, = f.

(¢) If I is an indexing set for a basis of V', then the symmetric algebra
S(V) is isomorphic to the polynomial algebra k[I] on the set I.

(d) If V' is another vector space, we have an algebra isomorphism

SWVaeV)=s(V)eS(V). (5.5)
Part (b) implies that the map f — f o1, is a bijection
Homy,, (S(V), A) = Hom(V, A) (5.6)

when the algebra A is commutative.

PROOF. We leave (a)—(c) as an exercise. Let us give a short proof of (d).
Using (1.5), (4.3) and (5.6), we have the chain of natural bijections

1R

Hom,, (S(V & V'), A) Hom(V @ V', A)
Hom(V, A) x Hom(V’, A)
Homy,, (S(V), A) x Hom,, (S(V'), 4)

Hom,, (S(V)® S(V'), A).

i

1%

1R

We then successively take A to be S(V @& V') and S(V) @ S(V'), which
produces isomorphisms between these algebras, as in the second proof of
Part (c¢) of Proposition 5.1. O

11.6 Exercises

1. If f and f’ [resp. g and ¢'] are composable linear maps, show that
(ffof)®(gog)=(f®g)o(fDg)

2. Prove that if f is a surjective linear map, then so is f ® id;, for any
vector space V. What about the kernel of f @ idy?
3. Prove that the map A of (2.2) is injective.

4. Let U,V be finite-dimensional vector spaces, f [resp. g] be an endo-
morphism of U [resp. of V]. Show that tr(f ® g) = tr(f) tr(g).
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5 Let A=@,5, A, and A" =@, A; be graded algebras. Show that
the tensor product algebra A ® A’ is graded with

(A A, @ A ® AL

i+j=n

6. (Exterior algebra) For any vector space V we define the exterior alge-
bra (or Grassmann algebra) A(V) as the quotient A(V) = T(V)/I'(V)
of T(V') by the two-sided ideal I’(V') generated by the elements z @ x
where = runs over V. If z,,...,z, are elements of V, denote by
zyA... Az, theclassof z; ® ... ®x,, in A(V). The subspace of A(V)
generated by the elements z; A ... Az, is denoted A™(V). Let iy,
be the canonical map from V = TY(V) to A(V). Prove the following
statements.

(a) The algebra A(V) is graded such that A™(V') is the subspace of
degree n homogeneous elements.

(b) For any algebra A and any linear map f : V — A satisfying
f (z)> =0 for all € V, there exists a unique algebra morphism
f:A(V) — Asuch that foi, = f.

(¢) Let I be an ordered set indexing a basis {e;};.; of V. Then the
set {e; AN...Ae; }i < <ierisabasis of A"(V).

(d) Assume V of finite dimension d. Prove that

> dim(AM(V)) " = (1+ )%,

n>0

7. (Symmetric and antisymmetric tensors) The symmetric group S,, has
a left action on T (V) given by

U(Q:l@ ®$n) = xo"l(l)®' ..®x0__1(n)

where o € S,, and z4,...,%, € V. Define two endomorphisms ¥ (the
symmetrization operator) and A (the antisymmetrization operator)
of T™(V) by

Y(a) = Z o(a) and A(a)= Z g(o)o(w)

ocES, ocESy

where £(c0) is the sign of the permutation o. A tensor o of T™(V) is
symmetric [resp. antisymmetric] if o(a) = o [resp. o(a) = (o) ()]
for any permutation . The subspace of symmetric [resp. antisym-
metric] tensors of 7" (V') is denoted S;,(V') [resp. A7, (V)]. Prove that

(a) (T"(V)) € S, (V) and A(T™(V)) C A (V),
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(b) if n! is invertible in the field k, the previous inclusions are equal-
ities and the composition of the inclusion S,, (V) — T™ (V) [resp.
of the inclusion A/,(V) — T™(V')] with the canonical projection
T"(V) — S™(V) [resp. with the projection T™(V) — A™(V)] is
an isomorphism.

8. Let ARV be a free A-module. Prove that the space of A-linear maps
from A ® V to any A-module W is isomorphic to Hom(V, W).

I11.7 Notes

For more details on the tensor, symmetric and exterior algebras as well as
on the subspaces S;,(V) and A;,(V) of Exercise 7, see [Bou70], Chap. 3.



Chapter III
The Language of Hopf Algebras

In this chapter we introduce the fundamental concepts of coalgebras, bial-
gebras, Hopf algebras and comodules which we shall use extensively in the
sequel. We shall also prove that the algebras GL(2) and SL(2) of Chapter
T are Hopf algebras.

II.1 Coalgebras

The concept of a coalgebra is dual to the concept of an algebra in the
following sense. Paraphrasing the definition of an algebra in 1.1, we can say
that an algebra is given by a triple (A4, u, ) where A is a vector space and
b:AQ®A — Aand n: k — A are linear maps satisfying the following
axioms (Ass) and (Un).

(Ass): The square

ApAA 24 A4

lid@p l# (1.1)

AA B A

commutes.
(Un): The diagram

koA 29 AgAa M2 Agk

N\, & lu Ve (1.2)
A

commutes.
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The axiom (Ass) expresses the requirement that the multiplication u is
associative whereas Axiom (Un) means that the element n(1) of A is a left
and a right unit for p. The algebra A is commutative if, in addition, it
satisfies the axiom

(Comm): The triangle

AA 24 AcA

N\ H | a (1.3)

commutes, where 74 4 is the flip switching the factors: 74 4(a®a’) = a’®a.
A morphism of algebras f : (A, u,n) — (A, ', n’) is a linear map f from
A to A’ such that

po(f@f)=fou and fon=1'" (1.4)
We now get the definition of a coalgebra by systematically reversing all

arrows in the previous diagrams.

Definition IIL.1.1. (a) A coalgebra is a triple (C, A, €) where C' is a vector
space and A : C —- C QR C and e : C — k are linear maps satisfying the
following axioms (Coass) and (Coun).

(Coass): The square

c 2, cec
lA s lM®A (1.5)

ceC CeCal

commutes.
(Coun): The diagram

koC <29 cgo 4%, owk
N [a = (1.6)
C

commutes. The map A is called the coproduct or the comultiplication while
e 1s called the counit of the coalgebra. The squares (1.5-1.6) express that
the coproduct A is coassociative and counital.

If, furthermore, the triangle (Cocomm)

C
o \oa (1.7)

TC,C

cCeC — CC

commutes, where T4 o s the flip, we say that the coalgebra C' is cocommu-
tative.

(b) Consider two coalgebras (C,A,e) and (C',A',¢'). A linear map f
from C to C' is a morphism of coalgebras or a coalgebra morphism if

(f@floA=A'of and e=¢of. (1.8)
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It is easily checked that the composition of two morphisms of coalgebras
is again a morphism of coalgebras.
Let us give a few examples of coalgebras.

Example 1. (The ground coalgebra) The field k has a natural coalgebra
structure with A(1) = 1 ® 1 and £(1) = 1. Moreover, for any coalgebra
(C,A,¢), the map € : C — k is a morphism of coalgebras.

Example 2. (Opposite coalgebra) For any coalgebra C = (C, A, ) set
AP =7550A. (1.9)

Then (C,A°P ¢) is a coalgebra which we call the opposite coalgebra and
denote by C°°P.

The next result relates algebras and coalgebras.
Proposition II1.1.2. The dual vector space of a coalgebra is an algebra.

PROOF. Let (C, A, g) be a coalgebra. Recall the map A : C*@C* — (C®C)*
of Corollary 11.2.2. Set A = Ao Tow o+ Define A = C%, p = A* o X and
n = €* where the superscript * on a linear map indicates its transpose.
Then (A4, u,7n) is an algebra (use the commutative diagrams (1.1-1.2) and
(1.5-1.6)). O

Example 3. (Coalgebra of a set) Let X be aset and C' = k[X] = @ . x kz
be the vector space with basis X. We put a coalgebra structure on C by

defining
Ay =z@z and e(z)=1 (1.10)

where z € X. The dual algebra C* is the algebra of functions on X with
values in k. Indeed, a linear form f on C' is determined by its values on the
basis X. Let f’ be another linear form. Then

(ff)(@) = u(f & [)(z) = N[ @ [)(Al2) = f(2)f'(2).

Finally, the unit of the algebra C* is given by the constant function e.
We shall later return to this example when X has, in addition, a group
structure.

In general, the dual vector space of an algebra does not carry a natural
coalgebra structure. Nevertheless, we have the following result in the finite-
dimensional case (see also Section 9).

Proposition II1.1.3. The dual vector space of a finite-dimensional alge-
bra has a coalgebra structure.

PrOOF. Let (A, i, n) be a finite-dimensional algebra. Then the map A from
A* @ A* to (A ® A)* is an isomorphism, which allows us to define A by
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A=X o p*. We also set € = n*. Using the commutative diagrams (1.1-
1.2) and (1.5-1.6), one checks that (A", A,¢) is a coalgebra. O

Example 4. (The matriz coalgebra) Let A = M, (k) be the algebra of n x n-
matrices with entries in k. Denote by E,; the matrix with all entries equal
to 0, except for the (¢, 7)-entry which is equal to 1. The set of matrices
E;; (1 <4i,j < n)is a basis of M, (k). Let {z;;} be the dual basis. Then
A* is the coalgebra defined by

Az;;) = ink ®zy; and e(zy;) =0, (1.11)
k=1

Indeed, we have
5(1’@') = ﬂfij(n(l)) = mij(z Ey) = Z 6ik6kj = 5i_j
k k
and

:u‘*(xij (Ekf ® Emn) = wij(‘u’(Ekl ® Emn))
6€mwij(Ekn)
= 5em5ik6jn

= Z 5ik6£p6pm6jn
p

= Z wip(Ekl)mpj (Emn)

p
= X(Z T, ® fvm) (B ® Epp)-
p

Il

Example 5. (Tensor product of coalgebras) The tensor product C ® C'
of two coalgebras (C, A, ) and (C’, A’,¢’) has a coalgebra structure with
comultiplication (id ® 7¢ v ® id) o (A ® A") and counit ¢ ® ¢’

We return to Example 3.

Proposition I11.1.4. Let X and Y be two sets and X XY be the product
set. There exists an isomorphism of coalgebras

k[X] @ k[Y] = K[X x Y].

PROOF. The isomorphism is given on the basis {z ® y}, ,jexxy ©of the
tensor product k[X] ® k[Y] by

Y(z®y) = (z,y). (1.12)
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It is clear that
(YeY)(ideTeid)(A®A)z®y) = (2,y) ® (z,y) = AY(z Q@ y)

and eY(z ® y) = 1 = e(x)e(y), which shows that ¢ is a morphism of
coalgebras. m]

We shall also need the following concept.

Definition III.1.5. Let (C,A,¢) be a coalgebra. A subspace I of C is a
coideal if AL CIT®@C+CQI and e(I) = 0.

When I is a coideal, then A factors through a map A from C/I to
CeC/I®C+CeI)=C/I®C/I.

Similarly, the counit factors through a map € : C /I — k. Then clearly, the
triple (C/I,A,) is a coalgebra. It is called the quotient-coalgebra. We shall
give examples later.

Notation 1.6. We now present Sweedler’s sigma notation which we shall
use continually in the sequel. If z is an element of a coalgebra (C, A, ¢), the
element A(x) of C ® C is of the form

Az) = Zx: ® . (1.13)

In order to get rid of the subscripts, we henceforth agree to write the sum
(1.13) in the form

Alz) =) o' @2’ (1.14)
(z)

Using (1.14) we may express the coassociativity of A, i.e., the commuta-
tivity of the square (1.5), by

Z(Z(x’)' ® (x/)”) ®z' = Zm’ ® (Z(az”)’ ® (x”)”). (1.15)
(z) (') (z) (=)

By convention again, we identify both sides of (1.15) with

Zx’@m”@x’”, (1.16)
(z)

also written Z(Z) M @ 2 @ 3. If we apply the comultiplication to
(1.16), we get the following three equal expressions

ZA(ZJ) ®I” ®£IZ”I, le ® A(CC”) ®:1:///7 le ®1‘“ ® A(JE”I)
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which we agree to write

Z a,;l ® .’E” ® QL‘”I ® .CEW/ (1'17)
(z)

or Z(z) M ® 23 @23 @ @, More generally, let A™ . ¢ — ¢®M+D)
be defined inductively on n > 1 by A®) = A and
AM™ = (A@idpam-1) 0 AP = (idgem-n ® A) o AP (1.18)

Then by convention, we write

A (z) = Z D g... @t (1.19)
(=)

These conventions and the coassociativity of A imply for instance that

(idC RA® idC®2> (Z 93(1) ® :17(2) ® $(3) ® x(4))
(z)

= 1) 2 3) ® g ®
Z(I)aﬁ Rz x' Qx (1.20)

Using the conventions (1.14), the condition (1.6) for counitality may be
reformulated for any x € C as

Ze(x')x” =z = Za:’s(:r”). (1.21)
(z) (z)
As a consequence of (1.21) and of (1.19), we get identities such as
Z M @e(z?)@2® @z @0 = Z M@z @z® g™, (1.22)
(z) (x)
Indeed, the left-hand side may be rewritten as
Y W@ (ewid)(AE?) ©2® @ ®.
(z)

Then apply (1.21).
The coalgebra C' is cocommutative if

Zm’@w" :Zx"@x' (1.23)
(z) (z)

forallz € C.
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The left Relation (1.8) defining a coalgebra morphism can be reformu-

lated as
Y fa@)e )= Y fa) @ f(z)". (1.24)
(2) (f(=z))
The comultiplication of the tensor product C @ C’ of the coalgebras C
and C’ (see Example 5) is given for z € C' and y € C’ by

Aoy =Y @eyo@ey = Y @ey)s@ o). (12)
(z®y) (z)(v)
We invite the reader to play with Sweedler’s sigma notation in order to
acquire some familiarity with this most useful convention.

[11.2 Bialgebras

Let H be a vector space equipped simultaneously with an algebra structure
(H,u,m) and a coalgebra structure (H, A,¢). Let us discuss two compati-
bility conditions between these two structures. We give H @ H the induced
structures of a tensor product of algebras (see I1.4) and of a tensor product
of coalgebras (see Section 1, Example 5).

Theorem II1.2.1. The following two statements are equivalent.
(i) The maps p and i are morphisms of coalgebras.
(ii) The maps A and & are morphisms of algebras.

PROOF. It consists essentially in writing down the commutative diagrams
expressing both statements. The fact that p is a morphism of coalgebras is
equivalent to the commutativity of the two squares

HeH = o HoH =25 kok
l(id@r@id)(A@A) lA ll—t lid
(HeH)o (HeH) 2% HeH H =k

whereas the fact that n is a morphism of coalgebras is expressed by the
commutativity of the two diagrams

k =, H k A, H
lid lA Nid e o
tok " HeoH k

Observe that these four commutative diagrams are exactly the same as the
following four diagrams whose commutativity express the fact that A and
¢ are morphisms of algebras:

HeoH 222, (HeoH)®(H®H) k R H
lp, l(u@u)(id@ﬂ@id) lid J,A
H 2, H® H keok 2% HeoH
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and

HoH =% kok L H
lu lid Nid e
H LN k k

This leads to the following definition.

Definition IT1.2.2. A bialgebra is a quintuple (H, u,n, A, &) where (H, p, 1)
is an algebra and (H, A, €) is a coalgebra verifying the equivalent conditions
of Theorem 2.1. A morphism of bialgebras is a morphism for the underlying
algebra and coalgebra structures.

In the sequel, we shall mainly use Condition (ii) of Theorem 2.1 to define
a bialgebra structure. Using the conventions of 1.6, we see that the condition
A(zy) = A(x)A(y) is expressed for any pair (z,y) of elements in a bialgebra

by
> (@) @ =Y 2y ey (2.1)
(=v) @

We also have
A1) =181, e(zy) =e@)ely), (1) = 1. (2.2)
The following proposition is easy to check.

Proposition I11.2.3. Let H = (H, u,n, A, ) be a bialgebra. Then
H? = (H,MOP,TLA,E)v H®P = (H,M,W,AOP»E),
and HOP P = (H, u°?,n, A &) are bialgebras.

Example 1. By Propositions 1.2-1.3 the dual vector space H* of a finite-
dimensional bialgebra H has a natural bialgebra structure.

Example 2. In Example 3 of Section 1 we associated a coalgebra k[X] to
a set X. Assume now that X comes with a unital monoid structure, i.e.,
with an associative map g : X x X — X having a left and right unit e.
The map p induces an algebra structure on k[X] with unit e. We have

Alry) =zy @y = (z @ x)(y ®y) = A(z)Ay)

and e(zy) = 1 = e(z)e(y), which implies that the maps A and e are
morphisms of algebras. Thus k[X] becomes a bialgebra.

If, in addition, X is a finite set, then the dual of k[X] also is a bialgebra.
We have already observed that the algebra structure of the dual is the
usual algebra structure of the space of k-valued functions on X. An easy
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computation shows that the comultiplication and the counit on the algebra
of functions are given by

A(f)z®@y) = fzy) and e(f) = f(e). (2.3)

Example 3. (The bialgebra M(n)) Let M(n) = k[z;,...,%,,] be the
polynomial algebra in n? variables {5 1<i j<n- For all 4, j, set

Alzy) = Z zyp®1y; and e(zy) =6, (2.4)
k=1

These formulas define morphisms of algebras A : M(n) — M(n) ® M(n)

and € : M(n) — k equipping M (n) with a bialgebra structure. When n = 2,
one recovers the bialgebra M(2) of I.4.

We now endow the tensor algebra with a bialgebra structure.

Theorem III.2.4. Given a vector space V, there exists a unique bialgebra
structure on the tensor algebra T(V) such that Alv) =1Q@v+v® 1 and
e(v) =0 for any element v of V.. This bialgebra structure is cocommutative

and for allvy,...,v, € V we have

e(vy...v,) =0 (2.5)

and A(vy...v,)

n—1
=1®v,... vn—l—z Z V(1) - Vo(p) OVo(pt1) - - V() TU1 - - Uy @1 (2.6)
p=1 o

where o runs over all permutations of the symmetric group S, such that
oc(l)<o(2)...<o(p) and op+1)<olp+2)...<o(n).

Such a permutation o is called a (p,n — p)-shuffle.

PROOF. By universality of the tensor algebra, there exist unique algebra
morphisms A : T(V) — T(V}® T(V) and ¢ : T(V) — k such that their
restrictions to V' are given by the formulas of the theorem. Now consider
several elements vy,...,v, in V. Formula (2.5) is a trivial consequence of
the multiplicativity of e.

Let us now compute A(v, ...v,). We shall do this by induction on n.
Formula (2.6) holds for n = 1 by definition. Suppose it holds up ton—1 > 1.
Then we have the series of equalities

Avy...v,)
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= A;...v,_1)1®v, +v,®1)
n—2

= (1 R R Z Z Uo(1) - Vo(p) © Vo(p+1) -+ + Vo (n—1)
p=1 o
+Uy. U, ®1)(1®vn+vn®l)
n—2
= 1Vt DD Vo) V() B Va(prn) ++ Volno1)Vn
p=1 o

+v; ...V, 1 QV, +v, V...V, 4

+ Z Z 'Ua(l) e 'Uo_(p)'Un ® Uo,(p+1) PN Ua(n—l) + Ul .. .Un ® 1

p=1 o

where o runs over all (p,n — 1 — p)-shuffles of S,,_;. Let us rewrite the last
sum in the form

1®@vy .. vy + Z D ) Up(p) @ V1) - - Up(n—1)Un
p=1 p

+ V..V, 1OV, TV, OV ...V, g

+ Z Z 'U,r(l) e UT(p—l)vn ® v‘l'(p) . ’UT(TLA].) + 'Ul e 'U,n ® 1
p=2 T

where p runs over all (p,n — 1 — p)-shuffles of S,,_; and 7 runs over all
(p — 1,n — p)-shuffles permuting the set {1,...,n}\ {p}. Now observe that
if o € S,, is a (p,n — p)-shuffle, then either o(n) = n, hence the restriction
pofotoS, ;isa(p,n—1—p)-shuffle, or o(p) = n, hence 7 = o acting on
{1,...,n}\{p} isa (p— 1,n — p)-shuffle. This completes the proof of (2.6).

It remains to prove the coassociativity, the counitality and the cocom-
mutativity of A. The counitality results from an easy computation using
(2.5) and (2.6). The cocommutativity is a consequence of the fact that the
permutation

1 2 .. p p+1l p+2 ..o0n
p+1 p+2 ... n 1 2 . D

switches (p,n—p)-shuffles and (n— p, p)-shuflles. As for the coassociativity,
one may check it directly using (2.6). But, we rather observe that A :
T(V) — T(V)®T(V) is induced by the diagonal map §(v) = (v,v) from V
into V@ V. The coassociativity of A then results from the obvious relation
(6®id)od = (Id® )0 é. m

‘We now introduce the concept of a primitive element.

Definition IT1.2.5. Let (C,A,e) be a coalgebra. An element x of C is
primitive if we have
Alx)=10z+z®1.
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We denote by Prim(C') the subspace of all primitive elements of C.

Proposition II1.2.6. If x is a primitive element of a bialgebra, then we
have e(z) = 0. If y is another one, then the commutator [x,y] = xy — yz
18 primitive too.

Proor. By definition of the counit and of a primitive element we have
r=¢(l)z+e(z)l =z +e(x)l.
The vanishing of e(x) follows immediately. As for the second assertion, we
have
Alzy)=(10z+201)(10oy+y®1l)=1Q@wy+rQy+y@z+ry® L.
We deduce
Alz,y]) =1@ [z, y] + [z,9] @1,
which implies that [z,y] is primitive. O

The generators v € V of the tensor algebra T(V') are primitive by The-
orem 2.4. Let H be a bialgebra and x4, ..., z,, be primitive elements of H.
Consider a vector space V with basis {v,..., v, }. There is a unique alge-
bra morphism f from the tensor algebra T(V) to H such that f(v,) = z;
for all i.

Proposition I11.2.7. The map f : T(V) — H is a morphism of bialge-
bras.

PROOF. We have to check that
e(f(§) =¢e(§) and (f@ f)AE) = A(f(&)) (2.7)

for all ¢ € T(V). Since all maps involved in (2.7) are algebra maps, it is
enough to check (2.7) when £ = v € V. In this case (2.7) holds because «;

is primitive and we have Proposition 2.6. O
As a consequence of Proposition 2.7, we see that for any set {z,,...,z,}
of primitive elements in a bialgebra, A(zq,...,2,,) is given by Formula

(2.6) of Theorem 2.4 after replacing v, by z;.

I11.3 Hopf Algebras

Given an algebra (A, u,n) and a coalgebra (C,A,¢) we define a bilinear
map, the convolution, on the vector space Hom(C, A) of linear maps from
C to A. By definition, if f,g are such linear maps, then the convolution
f * g is the composition of the maps

2000 %% A0 A5 A, (3.1)
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Using Sweedler’s sigma notation of 1.6, we have
(frg)(z)=>_ fla)g(x") (3:2)
(x)
for any element x € C. The convolution is clearly bilinear.

Proposition II1.3.1. (a) The triple (Hom(C, A),*,no¢) is an algebra.

(b) The map Ac,at A®C* — Hom(C, A) of Corollary 11.2.3 is a mor-
phism of algebras where A @ C* is the tensor product algebra of A and of
the algebra C* dual to the coalgebra C'.

PROOF. (a) By (3.2), by the associativity of the product in A and by the
coassociativity of the coproduct in C we have

((Fxg)xh)(@) = 3 F@)g@ ") = (£ x(g%h)) (@)
()

This proves that the convolution is associative. The map noe is a left unit
for the convolution in view of

((ne) » (@) = Y e@)f@") = £(3 e(a)a”) = f(a),
() ()

which results from (1.21). One proves similarly that 7 o€ is a right unit.
(b) Let a,b € A and o, 8 € C*. Then for z € C we have

(Ach(a(X)a)*AC’A(b@ﬁ)) (x) = Z a(lﬁ’)ﬂ(l’”) ab
@
= (af)(z)ab

= ()\C,A(ab ® aﬂ)) ().

This proves that A\ 4 preserves the product. As for the unit, we have

(Mea(1®9) (@) = =(@)1 = (n02)(@).
O

Example 1. When A = k the algebra structure (Hom(C, k), x,n0¢) on the
dual space C* is the same as the one defined in Proposition 1.2.

When (H, u,n, A, €) is a bialgebra we may consider the case C = A= H
and thus define the convolution on the vector space End(H) of endomor-
phisms of H.

Definition T11.3.2. Let (H,u,n,A,e) be a bialgebra. An endomorphism
S of H is called an antipode for the bialgebra H if

Sxidy =idg+xS=noe.
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A Hopf algebra is a bialgebra with an antipode. A morphism of Hopf alge-
bras is a morphism between the underlying bialgebras commuting with the
antipodes.

A bialgebra does not necessarily have an antipode. But if it does, it has
only one. Indeed, if S and S’ are antipodes, then

S=8x(ne)=89*(idy*xS) =(Sxidg)* S = (ne) xS’ = 9.

A Hopf algebra with an antipode S will be denoted by (H, i, 7, A, €, .5).
Using Sweedler’s convention 1.6, we see that an antipode satisfies the

relations
> a'S@E") =e(z)1 =) S@)a” (3.3)
(z) (z)

for all x € H. In any Hopf algebra we have relations such as

Y W 2@ @5 ee®0® = 320 @sa?) @ ea®
(2) (@)

3 2 @@ @,
()

The first equality follows from (3.3), i.e., by definition of the antipode

while the second one follows from (1.21), i.e., from the Axiom (Coun).

Such computations will be performed later without further explanations.
We state the counterpart of Example 1 of Section 2.

Proposition 111.3.3. Let H be a finite-dimensional Hopf algebra with an-
tipode S. Then the bialgebra H* is a Hopf algebra with antipode S*.

PROOF. The endomorphism S* of H* is the transpose of S. Let us prove
the first equality in (3.3). For all « € H* and z € H we have

(Z a’S*(a”)) (x) — Z O/(ml)s*(a")(m”)
(a) (a)(x)
= Z a’(x/)a”(va”)
(a)(z)
= a(Z x'(Sx”))
()
= o(ne(z))
= 0 (a)(z).

One shows similarly that 3° ,, S*(a')a” = e™n"(a). O

Example 2. Let G be a monoid and k[G] the bialgebra of Section 2, Example
2. Then k|G] has an antipode if and only if any element x of G has an
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inverse, i.e., if and only if G is a group. Indeed, if S exists, by definition of

A we must have
zS(z) =S(z)z =¢e(z)l =1

for any z € G. This implies that S(z) = ™! for x € G.

We state a few important properties of the antipode.

Theorem I11.3.4. Let (H,p,n,A,e,S) be a Hopf algebra.
(a) Then S is a bialgebra morphism from H to H°P°P, i.e., we have

S(zy) = S(y)S(z), S(1) =1 (3.4)
forallz,y € H and
(S®S)A =APS, coS=c. (3.5)

(b) The following three statements are equivalent:
(i) we have S* = idy,
(i) for all z € H we have 37, S(z")z’" = e(z)1,
(iii) for all x € H we have 37,y 2”5(z") = e(z)1.
(¢) If H is commutative or cocommutative, then S* = id.

The left relation in (3.5) can be reformulated under Sweedler’s convention

1.6 as
Y S@)eS@) =) S@a")e S (3.6)
(S()) (x)

PROOF. (a) Let us start with (3.4). Define maps v, p in Hom(H ® H, H) by
viz®y)=Sy)S(z) and plz®y)=5S(zy)

where z,y € H. We have to show that p = v. It is enough to prove that
p*u=p*rv=mne Now, by (1.21), (2.1) and (3.2)

(prmzoy) = > pley))uwzoy)”)

(z®y)

= > @ ey)uE"ey")
(@)(»)

_ Z S(ac'y')x"y”
(@)(»)

= > S((y))(zy)"
(zy)

= ne(zy).



I11.3 Hopf Algebras 53

On the other hand, we have

(prv)zey) = Y, oy )vzoy))
(z@y)
- Z x’y'S(y”)S(a:")
(z)(y)
— Z ' (Z y’S(y”))S(az”)
() (v)
= > ey)S")
(@)
= ne(z)ne(y)
= ne(ey),
which is the same.
Applying (id » S)(z) = ne(z) to = 1, one gets S(1) = 1. This proves
3.4).
( Lzzt us deal with (3.5). It is equivalent to prove Ao S = (S®.5) o A°P. We
set p = AoS and v = (S®S)oA°P. These are linear maps from H to HQH.

We wish to show that p = v. This will follow from p*xA = Axv = (n®n)e,
which we prove now. On the one hand, by (1.21)

(px D)) = Y ASENAE") =A(Y S)a")
(2) (z)
= AWe) = (n@m)e)(a)

for all x € H. On the other hand, we have

A = Y AE)((S@S)a%E")
()

= Y@ e (sE") @ sE")
(z)
= Z 2’ S(z"") @ 2" S(x")
(z)
= Z z'S(z") ®@e(z")1
(z)
= Z 2'e(x")S(z") ® 1
(z)
= Z Z'S(x"y® 1
()

= eg(x)l®l
= (n@n)(s(z)).
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The fourth and seventh equalities follow from (3.3), the sixth one from
(1.21).
We also derive

£(8(2) =(S(Y e(@)a")) =&(} e(@)5(")) = elne(a) = (a)
(z) (z)

from (1.21). This completes the proof of (3.5).

(b) Let us prove that (ii) implies (i). By uniqueness of the inverse, it is
enough to show that S? is a right inverse of S for the convolution, just as
is id ;. Now, using (3.4) and Condition (ii), we get for all z € H

(SxS%)@) = 3 S@)S") = S(Z S(x”)x’)
(z) (z)
= S(e(x)1) =e(z)S(1) = e(x)1.

This implies that S x S% = ne, hence S? = idy. Let us prove the converse
implication: if $? = id;; we have

Y S = SZ(Z S(x”):r’)
(z) (z)
= S(Z S(m’)SZ(x”))
®)

= S(Z S(w')x”)
(z)

S(e(@)1)
= ¢(x)l.
One proves that (i) is equivalent to (iii) in a similar fashion.
(c) Recall Relations (3.3): we have
Z z'S(z") = ne(z) = Z S(z")z"
(x) (@)
for all x € H. When H is commutative, the first equality becomes
Y Sz = ne(w),
()
which implies S? = idj; by Part (b) (ii). When H is cocommutative, the
second equality becomes
ne(z) =Y S(")a’
(@)
which again implies S? = idj; in view of Part (b) (iii). a

As an immediate consequence of Theorem 3.4, we have the following.
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c

Corollary I11.3.5. Let H = (H,u,n,A,e,5) be a Hopf algebra. Then
Hop cop = (H’ ILLOP’ 777 AOP’ 6\7 S)

is another Hopf algebra and S : H — H°PP s a morphism of Hopf
algebras. If, moreover, S is an isomorphism with inverse S™1, then

H = (H, ;. n,A,e,87Y) and H®P = (H,pu,n, A%, ¢, S

are isomorphic Hopf algebras, the isomorphism being given by S.

An endomorphism T of a bialgebra H such that

Z T(z"a =e(x)l = Z 2'T(x) (3.7)
(z) ()

for all x € H is sometimes called a skew-antipode for H. Alternatively, a
skew-antipode for H is an antipode for the bialgebras H°P and H“P. By
Corollary 3.5 the inverse (if it exists) of an antipode is a skew-antipode.

It is not always easy to check the defining Relations (3.3) of an antipode
for every element, of a bialgebra, but it may be simpler to check only for
some generators. It is convenient to have the following lemma.

Lemma I11.3.6. Let H be a bialgebra and § : H — H°P be an algebra
morphism. Assume that H is generated as an algebra by a subset X such

that

Y 2'S@") =ela) =) S@)"
() ()

for allxz € X. Then S is an antipode for H.

PRrROOF. It is enough to check that if (3.3) holds for z and y, then it holds
for the product zy. Now, by (3.3-3.4)

> (@y)S(ay)) = Y a'y'S@"y")
(zy) (z)(y)

= > (X vsw))sa)

() (¥)

= (X @'s@)e)

(x)
e(z)e(y)
= e(zy).
One proves Y-, S((zy))(zy)” = e(xy) similarly. 0

Use the previous lemma to show that the following provide examples of
Hopf algebras.
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Example 3. The tensor bialgebra H = T(V) is a Hopf algebra with an
antipode determined by S(1) = 1 and for all vy,vy,...,v,, € V by

S(vvy...v,) = (=1)"v,, ... vy0;.

Example 4. (The symmetric bialgebra S(V)) Let I be the kernel of the
projection of T(V) onto the symmetric algebra S(V'). Let us show that I
is a coideal for the coalgebra structure put on T(V) in Theorem 2.4. Any
element of I is a sum of elements of the form z[v, wly where z,y € T(V)
and v,w € V. By Theorem 2.4 we have

Aafo,wly) = Y (fowly’ @ 2"y’ +a'y @ "o, uly”)
(z)(y)

which belongs to I Q@ T(V) +T(V) @ I and
e(zv, wly) = e(2)[e(v), e(w)]e(y) =0,

which proves that [ is a coideal. It follows that the bialgebra structure of
T(V) induces a bialgebra structure on S(V) for which the elements of V are
primitive. One checks that S(V') has an antipode which is the multiplication
by (=1)™ on S™(V).

Another useful concept is the concept of a grouplike element of a coalge-
bra (H,A,¢), i.e., an element x # 0 such that

Alz)=z®z. (3.8)
The set of grouplike elements of H will be denoted by G(H).

Proposition I11.3.7. Let H be a bialgebra. Then G(H) is a monoid for
the multiplication of H with unit 1. If, furthermore, H has an invertible
antipode S, then any grouplike element x has an inverse in G(H) which is
S(z). Consequently, G(H) is a group.

PROOF. The first assertion is clear. As for the second, observe that (3.6)
and (3.8) imply A(S(z)) = S(z) ® S(z). It follows that S(z) belongs to
G(H). To complete the proof, one checks that e(z) = 1 when z is grouplike,
and one uses the computation in Example 2 in order to show that S(z) is
the inverse of z. o

Example 5. If k[G] is the Hop{ algebra associated to a group G as in
Example 2, then the elements of G are the only grouplike elements of k[G].
In other words, we have

G(k[G)) = G. (3.9)
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I1I.4 Relationship with Chapter 1. The Hopf
Algebras GL(2) and SL(2)

The aim of this section is to show that the algebras M(2), GL(2) and
SL(2) defined in 1.4 and 1.5 are bialgebras. We use Proposition I1.4.2 in
order to identify M(2)®? with M(2)® M(2), GL(2)%? with GL(2) ® GL(2)
and SL(2)%? with SL(2)®SL(2). Let us show that the morphisms A of 1.4
and ¢ of 1.5 equip these algebras with a cocommutative bialgebra structure.
Recall (I1.4.4): we have

Ala) AB) N [ a b a b
< A A )= \e a)®\ e d (4.1)
and A(t) = t® t. In order to prove that A is coassociative, it suffices to

check this on the generators a, b, ¢, d, and ¢, which results from the fact
that t is grouplike and from the matrix equality

((Fa)e(ta))e(a)
-(a)e((a)e(2 )

Similarly, the counit axiom follows from &(t) = 1 and from the matrix
equalities

(L)) )= )2 a) e

The algebra morphism S defined in (I.5.2) is an antipode for the bial-
gebras GL(2) and SL(2) which become Hopf algebras in this way. Indeed,
by Lemma 3.6, it is enough to check Relations (3.3) for the generators
a,b,c,d,t. For a, b, ¢, d it follows from

a b S(a) Sb) \_[ S(a) S() a b\ _[ ela) eb)
< ¢ d )( S(c) S(d) >_< S(e) S(d) )( c d >_< e(c) 6(d)(4)35
As for t, we have tS(t) = S(t)t = &(t) = 1 since S(t) =t~ ! = ad ~ be. .
The antipode is an involution due to the fact that GL(2) and SL(2) are

both commutative. This can also be checked directly on Formula (I.5.2)
defining S.

IT11.5 Modules over a Hopf Algebra

Let A be an algebra. The tensor product U @ V of two A-modules is an
A ® A-module by
(a®d)(u®v) =au®av (5.1)
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where a,a’ € A, u € U and v € V. Now, if A possesses a bialgebra structure
(A, pu,m, A €), then the algebra morphism A : A — A ® A enables us to
equip the A ® A-module U ® V with an A-module structure by

a(u®v) =Ala)(u®v) = Z a'u®av. (5.2)
(a)

The counit € equips any vector space V with a trivial A-module structure
by
av = e(a)v (5.3)
where a € A and v € V.
The following is the natural extension of Proposition 11.1.3 to the frame-
work of A-modules.

Proposition II1.5.1. If A is a bialgebra, U,V and W are A-modules and
k is given the trivial A-module structure, then the canonical isomorphisms
of Proposition I11.1.3

UV)eW2UR(VeOW) ad kVEXV2VeEk

are A-module isomorphisms. If, furthermore, A is cocommutative, then the
fip Ty VOW W RV is an isomorphism of A-modules.

PROOF. The proof is easy and is left to the reader. m|

Let us show how an antipode allows us to give a natural A-module struc-
ture to the vector space Hom(V, V') of linear maps from V to V' when V
and V' have A-module structures. We first observe that

((a@a)f)w) = af(a'v) (5.4)
puts an A ® A°?-module structure on Hom(V, V’). Indeed, we have
((a ®a) (b V) f) (v) = ((ab ®ba) f) (v)
= abf(tav)
- a((b ® ) f) (a'v)
= (ea)@en)n)w)

for a,a’,b,t/ € A, v € V and f € Hom(V,V'). Now, if A is a Hopf algebra
with antipode S, then the map (id® S) o A is a morphism of algebras from
A to A® A°P. Pulling (5.4) back along this morphism, we get an A-module
structure on Hom(V, V'). Explicitly, if a € A, v € V and f € Hom(V, V"),
the action of A on Hom(V, V) is given by

(af)(v) =) d'f(S(a")w). (5:5)
(a)
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In particular, if V' = k is given the trivial A-module structure, then (5.5)
induces an A-module structure on the dual vector space V* which becomes

(af)(v) = £(S(a)). (5.6)
Indeed, by (5.5) and (1.21), we get
(@f)(v) = > e(@)f(Sa")w) = F(S(Y ela)a"w) = f(S(a)v).
(a) (a)

Proposition ITL.5.2. Let (A, p,n,A,e,S) be a Hopf algebra and U,U',V
and V' be A-modules such that, either U or U’, and, either V or V', are
finite-dimensional vector spaces. Then the linear map

X : Hom(U,U’) @ Hom(V, V') - Hom(V @ U,U’ @ V')

of (IL2.2) is A-linear if, in addition, the flip 7. v : U* @V = V' @ U*
is A-linear. In particular, the maps

MU @V = (VeU)* and Apy Vo U* - Hom(U,V)
are A-linear.

PROOF. (a) Let f: U - U', g: V-V, ueU,veV and a € A. Let us
first compute A(a(f ® g)) using (11.2.2), (5.2) and (5.5). We have

(Ma(f@9))weu)

- z): AMd'f®d"g)(v@u)

= iz):(a’ Hw) @ (a"g)(v)

- (Z): (a") £(S((a")")u) ® (a”) g(S((a”)")v)
- ; d' f(S(a")u) ® a" g(S(a"")v)

i

Z

using Sweedler’s sigma notation. On the other hand, eA(f ® g) is given by

7, = (a\feg)veu

> dAf®9)(S(a") (v e )
(a)

S @A ©9)(S(@"Yv @ S(a")"u)
(a)

I
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- (z): a'Mf @ g)(S((a")")v & S((a”)")u)
- ; dMf©g)(S(@”)v® S(a")u)
= (Z)j a'( F(S(a")u) ®g(5(a’”)v))
= ; (a') F(S(a")u) ® (a')"g(S(a" )
- ; a'f(S(a")u) ® a”g(S(a"")v).
We used (3.6) for the fourth equality. Observe that Z, # Z, in general.

(b) Let V' = k be given the trivial action. Replacing a” in Z, [resp. a”
in Z,] by e(a’’) [resp. by e(a”)] and using (1.21), we get

4y =12y = Z a'f(S(a")u) ® g(S(a”)v),
(a)

which proves that A : Hom(U,U’) ® V* — Hom(V ® U,U’) is A-linear. We

get the two special cases of Proposition 5.2 with U’ = k and with U = k.
For the general case, we use Lemma I1.2.4 which expresses A in terms of

the special maps A and of the flip 7. . a

As a corollary of Proposition 5.2, we see that the general map A\ of
Theorem II.2.1 is A-linear when A is cocommutative. This happens, for
instance, when A is a group algebra or an enveloping algebra.

As for the evaluation and the coevaluation maps, we have the following
result.

Proposition I11.5.3. Let V be an A-module. Then the evaluation map
evy : V'@V — k is A-linear. If, moreover, the vector space V 1is finite-
dimensional, then the coevaluation map 6y, : k — V @ V* of IL.3 and the
composition

Hom(V, W) ® Hom(U, V)~= Hom(U, W)

are A-linear too.

PROOF. (a) Let a € A, v € V and a € V*. Then

evy(ala®v)) = Z evy(da®a'v)

= Z (d'a)(a"v)
(a)

= a()_ S(a)d"v)
(a)
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by the rightmost relation (3.3) and by (5.6). This implies that the evalua-
tion map is A-linear.

(b) The coevaluation map 8y, is A-linear as the composition of the unit
n:k — End(V) and of Aj,},. The latter is A-linear by Proposition 5.2. So

2

is the map 7 : £k — End(V) following
(an(1))(v) = (aidy)(v)
= Z a'idy, (S(a”")v)
(a)

= Z a'S(a"yv
(a)
e(a)v

(n(a1))(v)

for all v € V and a € A. Here we used the leftmost relation (3.3).
(c) For the composition map, one uses Lemma I1.2.5. O

I

III.6 Comodules

Algebras act on modules, coalgebras coact on comodules. This section is
devoted to the definition of the latter concept. Let A be an algebra. Recall
that an A-module is a pair (M, p,,;) where M is a vector space and p,; :
A®M — M is a linear map such that the following axioms (Ass) and (Un)
hold.
(Ass): The square
ApAeM £2,
lid@uM luM (6.1)
A®M L, M
commutes.
(Un): The diagram

koM 2% AgM
N MM (6.2)
M

commutes.
A morphism of A-modules f : (M, uy) — (M, ppy) is a linear map f
from M to M’ such that

g 0 (A ® f) = f oy (6.3)
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The definition of a comodule over a coalgebra is obtained by reversing
all arrows in the diagrams above.

Definition IT1.6.1. Let (C,A,e) be a coalgebra.

(a) A C-comodule is a pair (N,Ay) where N is a vector space and
Ay : N — C®N is a linear map, called the coaction of C on N, such that
the following azioms (Coass) and (Coun) are satisfied.

(Coass): The square

N Ln, C®N

lAN lid@AN (6.4)
Agid
C®N —— C®CQ®N

commutes.
(Coun): The diagram

kN 29 ocgN

\g TAN (6.5)
N

commutes.
(b) Let (N,Ay) and (N',Ay)) be C-comodules. A linear map f from N
to N’ is a morphism of C-comodules if

(id® f)oAy =Ap o f. (6.6)

(c) A subspace N' of a C-comodule (N,Ay) is a subcomodule of N if
AN(NYCC®N'.

Actually, the comodules we have just defined are left comodules. One
similarly defines a right C-comodule N, using a map N ® C' — N subject
to relations parallel to (6.4-6.5). A right C-comodule is the same as a (left)
comodule over the opposite coalgebra C°°P.

The composition of two morphisms of comodules is another morphism
of comodules. Similarly, the inclusion of a subcomodule into a comodule is
a morphism of comodules. Let us give a few examples of comodules.

Example 1. Let C be a coalgebra. Then (C, A) is a C-comodule.

Example 2. Let C be a coalgebra and C* the dual vector space equipped
with the dual algebra structure of Proposition 1.2. If (N,Ay) is a C-
comodule, then the dual vector space N* has the structure of a right C*-
module given by the composition of the maps

N*®C* 2 (C ® Ny 24 N7, 6.7)
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Example 3. Let A be a finite-dimensional algebra and A* be the dual vector
space with the coalgebra structure given by Proposition 1.3. If (M, p,,) is
a right A-module, then the dual vector space M™ has a structure of A™-
comodule given by the composition of the maps

M50 0 A2 AT @ M* (6.8)

In order to put a structure of comodule on the tensor product of two
comodules, we need a bialgebra structure as in Section 5.

Example 4. (Tensor product of comodules) Let (H, i, 11, A, ) be a bialgebra
and M and N be H-comodules. We define A, n by

Apon = (B ®idyen)(dy @ Ty g ®idy)(Ay @ Ay). (6.9)

The map A,y endows the tensor product M @ N with an H-comodule
structure.

Example 5. (Trivial comodule) Let (H, p, 1, A, €) be a bialgebra and V be
a vector space. The linear map

Vekev P gev (6.10)

equips V with an H-comodule structure. Such a comodule is called a trivial
comodule.

Example 6. (Free comodule) Let (C,A,¢) be a coalgebra. The free C-
comodule on a vector space V is the comodule (C ® V,A®1id,,). This is a
generalization of Example 1.

Proposition 5.1 has the following counterpart for comodules. The proof
is left to the reader.

Proposition I11.6.2. If H is a bialgebra, M, N, P are H-comodules and
k is given the trivial H -comodule structure of Example 5, then the canonical
tsomorphisms of Proposition 11.1.3

(MON)QP2M(N®P) and k@M=2M2M®k

are 1isomorphisms of H-comodules. If, in addition, the bialgebra H is com-
mutative, then the flip Ty y + M @ N = N @ M 1is an isomorphism of
H-comodules too.

Notation 6.3. It is often convenient to use for comodules the same kind
of notation as was introduced for coalgebras in Section 1. Let (C, A, z) be
a coalgebra and (V, Ay ) be a C-comodule. By convention we shall write

AN(I):Z$C®1‘N (6.11)
(z)
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for any z € N. Relation (6.4) is equivalent to

Z (zo) @ (zc)" @y = Z e ® (Tn)o ® (Tn)n (6.12)
(z) (x)

for all z € N. Relation (6.5) is equivalent to

Z exe) @y = 2. (6.13)
(z)

A linear map f: N — N’ is a morphism of C-comodules if

> 2 ® flzy) Z f(@)e ® f(@) - (6.14)
(2)

I11.7 Comodule-Algebras. Coaction of SL(2) on
the Affine Plane

The aim of this section is to define a coaction of the bialgebra SL(2) on
the affine plane of Chapter 1. Before doing so, we introduce the following
concept.

Definition II1.7.1. Let (H, fip, g, Ay, ep) be a bialgebra and (A, pi ,14)
be an algebra. We say A is an H-comodule-algebra if

(a) the wector space A has an H-comodule structure given by a map
Ayt A—-H®A, and

(b) the structure maps py : A® A— A and ny : k — A are morphisms
of H-comodules, the tensor product AQ A and the ground field k being given
the H-comodule structures described in Section 6.

We note the following useful characterization of comodule-algebra struc-
tures.

Proposition II1.7.2. Let H be a bialgebra and A be an algebra. Then A
is an H-comodule-algebra if and only if

(a) the wvector space A has an H-comodule structure given by a map
Ayt A—->H®A, and

(b) the map A4 : A — H ® A is a morphism of algebras.

PROOF. It is similar to the proof of Theorem 2.1. We first express the fact
that 44 is a morphism of H-comodules with the commutative square

AR A La, A

lu lAA (7.1)
id®ua
RA®A) —— HA
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where u = (py ®id®id)o (Id® T4 y ®id) o (A4 ® A,). The fact that n,y
is a morphism of H-comodules is equivalent to the commutativity of the

square
k T, A

= (7.2)
k el;) LA EN & gg

Now, Diagrams (7.1-7.2) are exactly the same as Diagrams (7.3) below
which express the fact that A, is a morphism of algebras:

A A 24224, (HeNe(HoA) k — kok

£MA o . g)A Illm - glf;@m (7.3)

where v = (g @ puy) o (id ® 74 5 ®1id). Indeed, we have
([d@pg)ou=vo(A,y@Ay).
(]

Using the conventions of Sections 1 and 6, we can rewrite Condition (b)
of Proposition 7.2 as A 4(1) =1® 1 and

Z (ab)g @ (ab)4 = Z by ®aba (7.4)
(ab) (a)(b)
for all a,b € A.

We now show that the affine plane k[z,y] defined in 1.3 possesses an
comodule-algebra structure over the bialgebras M (2) and SL(2).

Theorem II1.7.3. There emists a unique M (2)-comodule-algebra struc-
ture and a unique SL(2)-comodule-algebra structure on the affine plane
A = klx,y] such that

x a b T
AA(@/>_<C d>®<y>'
This matrix notation is short for the two relations

As(zy=a®@z+b®y and Ay (y)=cQr+dly. (7.5)

PRrROOF. We use Proposition 7.2. First observe that Formulas (7.5) define a
morphism of algebras A , : k[z,y] — M(2)®k[z,y]. The projection of M (2)
onto SL(2) being an algebra morphism too, so is the resulting composition
klz,y] — SL(2) ® klz,yl.

Tt remains to be checked that A 4 defines a comodule structure, i.e., that
for all z € k[z,y] we have

(id®A ) oA 4 (2) = (A®id)oA,(z) and (e®id)oA,(2) =1®2 (7.6)
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where A and ¢ are as in 1.4-1.5. As both sides of each equality to be proved

consist solely of algebra morphisms, it suffices to check (7.6) only for z = «
and z = y. The above matrix notation allows us to do this simultaneously.

We have
ssa-s) () - (2 8)o(22)(5)
((A@id)oAA) ( "2)

in view of (4.1). On the other hand, using (1.5.2) we get

comnse(3)=(3 D)o((1) ()

l

a
Let us compute A 4(z'y?) in M(2) ® k[z,y].
Lemma IIL.7.4. For alli,j > 0 we have
RS () (1) avmrewmr gy
7=0 s=0
ProoF. Since A 4 is an algebra morphism, we have
Au(a'y’) = Ba@)Auy) = (a@z+bey)(cor+doy).
Next, apply the binomial formula. 0O

Let us denote by k[z,y],, the subspace of homogeneous polynomials of
total degree n in A = k[z,y]. Lemma 7.4 implies that k[x,y],, is a subco-
module of the affine plane due to the fact that

AA(k[wv y]n) c M(2) & k[.’E, y]n'

Actually, the M (2)-[resp. SL(2)-]comodule k[z,y] is the direct sum of the
comodules k[z, y],,.

According to Section 6, Example 2, the dual vector space k[x, y]; of the
comodule k[z,y],, has a module structure over the algebra SL(2)*, the dual
of the coalgebra SL(2). We shall identify this module in V.7.

I11.8 Exercises

1. (Tensor product of coalgebras) Let (C, A, ¢) and (C', A, ") be coalge-
bras. Show that the linear maps 7 : C®C’ — Cand 7' : CRC' — C’
defined by m(c® ¢) = ¢'(c')c and 7'(c ® ¢’) = g(c)c’ are morphisms
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of coalgebras and that the coalgebra C ® C’ satisfies the following
universal property: for any cocommutative coalgebra D and any pair
f:D — Cand f : D — C’ of coalgebra morphisms, there exists
a unique morphism of coalgebras f® f' : D — C ® C' such that
ro(fef)=fandx' o(f® f)=f.

. {Divided powers) Consider the vector space C' = kft] of polynomials
in one variable. Prove that there exists a unique coalgebra structure
(C,A,e) on C such that

At")y= Y @t and e(t") =5,
p+g=n

for all n > 0. Show that C becomes a bialgebra when given the
product
P — ( ptq > s
p

Find an antipode.
. (Tensor coalgebra) Let V be a vector space.

(a) Show that the canonical isomorphisms V®+m) = yon g yy@m
endow T'(V) = @,5, V®" with a coalgebra structure, called
the tensor coalgebra of V.

(b) Let py, be the canonical projection of 7/(V) onto V. Prove that
for any coalgebra C and any linear map f : C — V, there exists

a unique morphism of coalgebras f : C — T'(V) such that
f=pyo f .

(c¢) Using the notation of Chapter 11, Exercise 7, define the subspace
S' (V) = @nso Su(V) [resp. A(V) = D,,59 AR (V)] of T'(V)
generated by all symmetric [resp. antisymmetric] tensors. Show
that S'(V) and A'(V) are subcoalgebras of T'(V).

(d) Let C be a cocommutative coalgebra and f be a linear map from
C to V. Prove the existence and the uniqueness of a coalgebra
morphism f: C — §'(V) such that f = py o f.

. (Graded dual) The graded dual vector space of a graded vector space
V = @, V;, is the graded vector space V, = @, Vir- Let
@n>0 W.,, be another graded vector space Show that there

is a grading on the tensor product V' ® W such that

Vvew),= P view,.

i+j=n

Prove that V, @ W, = (V@W); if V, is finite-dimensional for each
n > 0.
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5. (Graded coalgebra) Keep the notation of the previous exercise. A coal-

gebra (C, A, ¢) is graded if there exist subspaces (C,,), o of C such
that C = €P,,5¢ C,, and A(C,) C D, -, C; ®C; for all n > 0 and
e(C,,) = {0} for all n. > 0.

(a) Prove that the graded dual vector space of a graded coalgebra
carries a natural graded algebra structure.

(b) Let A =8p,,~o A, be a graded algebra whose summands A, are
all finite-dimensional. Prove that the graded dual vector space
of A carries a natural graded coalgebra structure.

(c) Check that the coalgebra C of Exercise 2 is the graded dual
vector space of the polynomial algebra kl[t].

(d) (Shuffle bialgebra) Let V be a finite-dimensional vector space.
Show that the tensor coalgebra T"(V) of Exercise 3 is the graded
dual of the tensor algebra T'(V'). Deduce that 7/(V') has a bial-
gebra structure whose multiplication is given by

(1@ @V, (V41 ©- Uptq) Z Ug(1) @+ @ Ug(psq)
where vy,...,v,, . are elements of V' and where o runs over all
(p, q)-shuffles of the symmetric group S, .

(e) Under the same hypotheses as before, show that S'(V) and
A'(V) are subbialgebras of T'(V) whose graded duals are the
bialgebras S(V) and A(V) respectively.

6. (Convolution algebra) Let G be a finite group. Equip the vector space

C(G) of complex-valued functions on G with the convolution product

(ff)=) =) Iy

yeG

where r € G and f, f’ € C(G). Show that C(G) has a Hopf algebra
structure such that the linear map f +— 3 .. f(2)z is a Hopf algebra
isomorphism from C(G) to the group Hopf algebra C[G]. Determine
the unit, the comultiplication, the counit and the antipode of C(G).

. (An example of a non-commutative, non-cocommutative Hopf alge-

bra) Let H be the quotient of the free algebra k{t,z} by the two-
sided ideal generated by t? — 1,22 xt + tz. Prove that H is a four-
dimensional vector space and that

A)=t®t, A@)=1Rzr+z®t,
e(t)=1, ex)=0, St)=t, S() =tz

endow H with a Hopf algebra structure whose antipode is of order 4.
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8. (Convolution and composition) Consider a morphism of algebras f :
A — A’ and a morphism of coalgebras g : C' — (. Prove that the
map h +— fohog from Hom(C, A) to Hom(C’, A") is a morphism of
algebras for the convolution .

9. Use the previous exercise to show that a morphism of bialgebras
between two Hopf algebras is necessarily a morphism of Hopf algebras
(Hint: prove So f = foS by applying left and right convolution with
f=foid=ido f).

10. Let H = (H, u,n, A, €,5) be a Hopf algebra.

(a)

Set % = ne, and ¥" = id}; (convolution of n morphisms all
equal to the identity of H) if n > 0 and %" = S if n < 0.
Prove that each map %" is an endomorphism of algebras [resp.
of coalgebras] when H is commutative [resp. cocommutative]
and that, in both cases, we have ™ o ¢y™ = ™™ for any pair
(n,m) of integers.

Let H = k[G] be a group. Show that ™ is the coalgebra endo-
morphism given by ¥™(g) = ¢" (¢ € G).

Let H = S(V) be a symmetric algebra. Then ¢™(z) = nx for
any z € SYV).

Show that if H = SL(2), then the algebra endomorphism ¢" is
determined by the matrix identity

(i w0 )=(2a)  nmo
and by

(5 58)-(42) e

11. Let H be a Hopf algebra, A be a commutative algebra and C be a
cocommutative coalgebra. Prove that the set Hom Alg(H , A) of algebra
morphisms (resp. the set Home,,(C, H) of coalgebra morphisms) is
a group for the convolution, the inverse of a morphism f being given
by fo S [resp. by So f].

12. Let A be a commutative algebra.

()

Let V be a finite-dimensional vector space. Consider the sym-
metric algebra S(V) with the Hopf algebra structure described
in Section 3, Example 4. Prove that the group Hom ,, (S(V), 4)

is isomorphic to the additive group underlying Adim(V)
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(b) Show that Hom,, (k[Z], A) is isomorphic to the group of invert-
ible elements of A where k[Z] is the Hopf algebra of the group
of integers.

(c) Let C be the Hopf algebra of Exercise 2. Determine the group
Homy,, (C, A).

13. Let (C, A, ¢) be a coalgebra and (C® V, A®idy,) be a free comodule
(see Section 6, Example 6). Prove that for any comodule N the map
f— (e®idy,)o f is a linear isomorphism from the space of comodule
maps from N to C ®V to the space Hom(N, V).

14. Let C be a coalgebra and (N, Ay ) be a C-comodule. Prove that A,
is an injective morphism of comodules from N to the free comodule
(C®N,A®idy).

15. Let {z,};c; be a basis of a C-comodule (N, Ay). Define elements c]
of the coalgebra (C,A,¢) by Ay(z;) =3, cjz; forallie I.

(a) Prove that A(c]) = Sker F ®c£ and e(c!) = 6;; foralli,j e 1.
(b) Show that the subspace Cp of C linearly generated by the

elements (¢! )ijer is the smallest subspace C” of C' such that
AN(N) C €' ® N. Check that Cy is a coalgebra.

(c) Assume that N is finite-dimensional. Prove that the element
ty = Y ieq C; of Cy is independent of the basis {z,};c;-

16. Prove the structure theorem for bimodules over a Hopf algebra as
stated in Section 9.

1IT1.9 Notes

The concept of a Hopf algebra was developed by algebraic topologists ab-
stracting the work of Hopf [Hop41] on manifolds admitting a product (such
as Lie groups). A basic reference is the famous article [MM65] by Milnor
and Moore. Hopf algebras also came up in the representation theory of Lie
groups and algebraic groups (see [Abe80] [DG70] [Hoc81] [Ser93]). For ab-
stract Hopf algebras, we refer to Abe’s and Sweedler’s monographs [Abe80]
[Swe69].

All examples of bialgebras given in this chapter turn out to be either
commutative or cocommutative, except for the Hopf algebra of Exercise 7
which is due to Sweedler. Not many examples of non-commutative, non-
cocommutative bialgebras were known before the “quantum group” era
(nevertheless, see [Par81], [Rad76], [Swe69], pages 89-90, [Taf71], [TW80]).
This has dramatically changed in the 1980’s with the appearance of quan-
tum groups. For details on the order of the square of the antipode of a Hopf
algebra, see [Rad76][Taf71][TW80].
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(Restricted dual) We saw in Section 1 or in Exercise 5 how to put a
coalgebra structure on the dual of an algebra A = (A4, i, n) which is either
finite-dimensional or graded. In the general case one can proceed as follows.
We know that the map A: A" ® A — (A ® A)* of Corollary 11.2.2 allows
to identify A* @ A* with a subspace of (A ® A)*. Define

A ={a € A" |u*(a) € A" @ A*).

If the algebra is finite-dimensional, then A is an isomorphism and A° = A*.
One can show that A” is the subspace of linear forms whose kernel contains
an ideal of finite codimension in A. The vector space A° enjoys the following
property: the embedding A induces an isomorphism

A°® A° = (A® A)°.

Consequently, 1*(a) belongs to A° ® A° whenever « is in A°. Tt results
that (A°, /L'*AU ,n") defines a coalgebra structure on A°. If, in addition, 4
has a bialgebra [resp. a Hopf algebra] structure, then so has A°. For more
details, read [Abe80] [Swe69] [Tak85].

(Restricted dual of a Hopf algebra and representations) Let H be a
Hopf algebra. Its restricted dual H? also has a Hopf algebra structure.
It has the following alternative definition based on representations. Let
p: H — End(V) be a representation of H on a finite-dimensional vec-
tor space V. Consider the transpose map p* : End(V)* — H*. Its image
Im (p*), called the coefficient space of the representation p, sits in the re-
stricted dual H?. Then the restricted dual may also be defined as the sum
of the coefficient spaces of all finite-dimensional representations. In the case
when all finite-dimensional H-modules are semisimple, H? is the direct sum
of the coalgebras Im (p;) where p; runs over all finite-dimensional simple
H-modules up to isomorphism. (see [Abe80] [Ser93] [Swe69]).

( Bimodules) Let H be a bialgebra. Let A be a vector space equipped
with an H-module and an H-comodule structure given by maps

ppy c HOM - M and Ay M- HRM.

Give H ® M the induced module and comodule structures. Then f,, is a

morphism of comodules if and only if A,; is a morphism of modules. If

these equivalent conditions are satisfied, we say that A is an H-bimodule.
Given such a bimodule M, define the subspace

N={meM|A,(m)=1xm}

Tt turns out that N is a subcomodule, but not a submodule of A/. Put the
induced comodule structure on the free H-module H @ M. Then H @ M
becomes a bimodule. The structure theorem for bimodules can be stated
as follows: if H is a Hopf algebra, then the map z ® m — zm from H @ N
to M is an isomorphism of H-bimodules. For details, see [Abe80] [Swe69].



Chapter IV

The Quantum Plane and Its
Symmetries

In Chapter I we defined the affine plane as the algebra freely generated by
two variables « and y subject to the trivial commutation relation yz = zy.
This corresponds to our classical perception of plane geometry. In this
chapter, we consider a modified commutation relation depending on a pa-
rameter q, namely

yr = q Y.

This new relation defines the quantum plane. In Section 2 we derive a few
identities well-known to combinatorialists and to the experts in the theory
of linear g-difference equations. Next, investigating the self-transformations
of the quantum plane, we build a bialgebra M, (2) and Hopf algebras G'L,(2)
and SL,(2), which are one-parameter deformations of the bialgebras M (2),
GL(2), and SL(2) defined in Chapter I. The bialgebras obtained in this
way are our first examples of quantum groups. They have the peculiarity
of being neither commutative nor cocommutative.

IV.1 The Quantum Plane

Let ¢ be an invertible element of the ground field k, and let /, be the two-
sided ideal of the free algebra k{z,y} generated by the element yr — gzy.
We define the quantum plane as the quotient-algebra

kylz,y) = k{z,y}/1,. (1.1)
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When ¢ # 1, the algebra k [z,y] is non-commutative. If we give the free
algebra k{z,y} its natural grading, then the ideal I, is generated by a
homogeneous degree-two element. It follows that the quantum plane has a
grading such that the generators x and y are of degree 1. We denote by
k,[x,y], the vector subspace of all degree-n elements of k,[z,y].

Proposition IV.1.1. (a) If « is the automorphism of the polynomial ring
klz] determined by a(z) = qx, then the algebra k [x,y] is isomorphic to
the Ore extension k[x]ly,a,0]. Thus, k [z,y] is Noetherian, has no zero
divisors, and the set of monomials {:ciyj}i’jzo is a basis of the underlying
vector space.

(b) For any pair (i,7) of nonnegative integers, we have

Yt = gzt (1.2)
(c) Given any k-algebra R, there is a natural bijection
Homy, (k,[z,y], R) = {(X,Y) € Rx R|YX = ¢XY}. (1.3)

A pair (X,Y) of elements of R subject to the relation Y X = ¢XY will
be called an R-point of the quantum plane.

PROOF. (a) We use the theory of Ore extensions as presented in 1.7-8.
Define an algebra morphism ¢ : k{z,y} — k[z]ly, @, 0] by ¢(z) = z and
p(y) = y. Since

oy)p(z) — go(x)e(y) = yz — qzy = a(x)y — qzy = 0,

the morphism ¢ vanishes on the ideal I , thus defining a morphism of
algebras, still denoted ¢, on k,[z,y]. The morphism ¢ is surjective because
the Ore extension k[z][y, , 0] is generated by = and y. In order to show
that ¢ is an isomorphism, we only have to construct a linear map 1 from
klz]ly, @, 0] to k,lz,y] such that 1 o ¢ = id. We define 1 on the basis
{z'y’}, ;>0 of k[z][y, o, 0] by ¥(z'y’) = z'y’. The rest of the proof of (i)
follows from 1.7 and L.8.

Part (b) is proved by an easy induction. Part (c) is a consequence of the
universal property (I1.2.4) and of the definition (1.1). a

We give an example of an R-point of the quantum plane.

Example 1. Let A be the algebra of smooth complex functions on C\ {0}
and let ¢ be a complex number different from 0 and from 1. Consider the
linear endomorphisms 7, and 6, in R = End(A) defined by

flaz) - f(2)

7, (/)(x) = flgz) and &,(f)(z) = (qz —2)

The pair {7,,6,} is an R-point of ky[z,y]. The “limit” of the operator &,
when g tends to 1 is the usual derivative d/dzx.
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IV.2 Gauss Polynomials and the ¢g-Binomial
Formula

We fix an invertible element ¢ of the field k. For future applications, we
need to compute the powers of x +y in the quantum plane &, [x,y]. To this
end, we introduce the so-called Gauss polynomials which are polynomials
in one variable ¢ whose values at ¢ = 1 are equal to the classical binomial
coefficients.

Let us start with some notation. For any integer n > 0, set

q" —1

(n)g=1+q+-+q¢" "= T (2.1)
Define the g-factorial of n by (0)!, = 1 and
(), = (1),(2), .- (n), = (e=Dle =1 (¢" =1 (2.2)

(g—1)n

when n > 0. The g-factorial of n is a polynomial in ¢ with integral coef-
ficients and with value at ¢ = 1 equal to the usual factorial n!. We define
the Gauss polynomials for 0 < k < n by

( ’ )q - % (23)

Proposition IV.2.1. Let 0 < k < n.
(a) ( Z ) s a polynomial in q with integral coefficients and with value
q

at ¢ = 1 equal to the binomial coefficient ( Z )

(b) We have
(1)),

(¢c) (g-Pascal identity) We also have
ny\ (n-1 e[ n—1 [ n-1 nk [ n—1
(8 )= Cimn e () -0 )= (),
q g q q

PROOF. Relations (2.4-2.5) follow from easy computations. For Part (a),
one proceeds by induction on n using (2.5). a

We return to the quantum plane of Section 1 and prove the g-binomial
formula.
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Proposition IV.2.2. Let © and y be variables subject to the quantum
plane relation yr = qry. Then for all n > 0 we have

@ty = (Z ) T
0<k<n q

PRrROOF. Because of the universal property of the quantum plane, it suffices
to prove the statement in k[, y]. Expanding (2+y)" and using (1.2), we see
that the monomials in the expansion are all scalar multiples of monomials
of the form z¥y"~%. We therefore have

@ty =Y, (Z)/wky”"‘"

0<k<n
n /
where ( ) is a polynomial with integral coefficients in q. Let us prove

k

by induction on n that we have

(2)=(3), )

Relation (2.6) clearly holds for n = 1. It thus suffices to check that the
/

coefficients ( Z

3 <Z>/xky”"“ = (x+y)< >, (n};l >/x’°y”‘1_'“>

0<k<n 0<k<n—1

/
_ Z <n;1>$k+1yn~lvk
0<k<n—1
n—1Y
+ Z qk< . >xkyn—k

0<k<n—1

-1 -1y _
_y <<2_1>+qk<nk ))mky ‘
0<k<n

We get (2.5) in view of the linear independence of the monomials {z*y™ ¥}, .
O

) satisfy (2.5). Using (1.2), we have

We now derive a few g¢-identities from the g-binomial formula. These
identities will not be needed in the sequel. The first one is the ¢-analogue
of the Chu-Vandermonde formula.

Proposition IV.2.3. Form > p < n, we have

mEn oy (m=k)(p=k) [ ™ n
(") - X e ) ()
4  0<k<p q q
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PROOF. Expand both sides of the identity (z +y)™*" = (z 4+ y)™(z +y)"

using Proposition 2.2 and identify the terms corresponding to zPy™*+"P.
0

We introduce a ¢-variant of the exponential. Let z be a variable (com-
muting with q). We define the g-ezponential as the formal series

n

e()=Y (s—),q (2.7)

n>0

Observe that this series is well-defined provided ¢ is not a root of unity,
which we assume until the end of this section.

Proposition IV.2.4. Let x and y be variables such that yr = qry. Then
eq(@+y) = eg(z)e(y)-

PRrROOF. By application of Proposition 2.2, we have

zk ¢ (n)!,
(Z m) (ZZ (’gﬁ - Z (n% (,:;_n B0, )
oy @ty
- X,

O

The g-exponential is an invertible formal series, but, in contrast to the
case ¢ = 1, we have eq(z)*1 # e,(—2). In order to compute the inverse
of e,(z), we consider the algebra of formal series k[[2]] and the algebra
End(%[[2]]) of linear endomorphisms of k[[z]]. Define two elements Z and
7, of End(k[[2]]) by (Zf)(2) = 2f(2) and (7,f)(2) = f(gz). An easy com-
putation shows that (Z,7,) is an End(k[[z]])-point of the quantum plane,
which is to say we have the following lemma.

Lemma IV.2.5. We have 7,Z = q Z7, in End(k[[2]]).

If for any scalar a of the field k we apply the endomorphism ((a - Z)7,)"
to the constant formal series 1, we get

((a- Z)Tq)n(l) —(a—2)(a-gqz2)...(a—q"12). (2.8)
In particular, for a = 0 we have
(*ZTq)n(l) — (_1)n qn(n—l)/2 P (29)

Proposition IV.2.6. The inverse of e (2) is given by

_ nn— z"
e,(2) L= Z G )
n>0 /q
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ProOOF. Lemma 2.5 implies (—Z7,)Z = qZ(—Z7,). Using Proposition 2.4,
we get the following identity in End(k[{z]]):

e(Z(1=7,)) = e, (2)oe,(~2ZT,). (2.10)

Let us apply both sides of (2.10) to the constant formal series 1. On the
one hand, we have e (Z(1 — 7,))(1) = 1 because (1 — 7,)(1) = 0. On the
other hand, by (2.9) we get

e(2)(eq(=27,)(1)) = ,(2) (D (~1)r gnin-12 i)

= (n)!,

Here are two more general g-identities.

Proposition IV.2.7. For any scalar a we have
(a—2)(a—qz)...(a—q¢"'2) = Z (—1)* ( Z ) gF k=172 gn—k 2k
k=0 q
and
— 1 n—1
eq(a):eq(z)(z W(a—z)(a—qz)...(a—q z))

n=0 q

PROOF. One proceeds as in the proof of Proposition 2.6, but now with the
operator identity (a7,)(—Z71,) = q(-Z7,)(a7,). By Propositions 2.2 and
2.4, we get

(l0=2)" =320 () @t otany
q

and

e,((a—2)1,) =e,(=Z7,) 0 e,(a)
in End(k[[z]]). Applying again these identities to the constant formal series
1, we get the desired relations in view of e (—Z7,)(1) = ¢, (2)7!, which was
proved above. a

IV.3 The Algebra M,(2)

From now on, we assume that ¢? # —1. Let us define a g-analogue of the
algebra M(2) of 1.4. In addition to variables z, y subject to the quantum
plane relation yz = qxy, consider four variables a, b, ¢, d commuting with
2 and y. Define z’, ¢/, 2", and 3" using the following matrix relations

(-3 = ()-G96),

o 2
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Theorem IV.3.1. Under the previous hypotheses, there is an equivalence
between

(i) the two relations y'z' = qz'y’ and y"'z" = qz"'y", and

(ii) the siz relations

ba = qab, db = gbd, (3.2)
ca = qac, de = qcd, (3.3)
be=ch, ad—da= (g7 —q)be (3.4)

PROOF. Let us check that (i) implies (ii). By (3.1) we have
(cx + dy)(ax + by) = q (az + by)(cz + dy).
Identifying the coefficients of 22, y?, and of zy, we obtain
ca = qac, db=gbd, cb+ qda = qad+ ¢*be. (3.5)
Dividing the latter by ¢ yields
ad — da = q~'¢cb — gbe. (3.6)

Using 2" and y” in a similar fashion leads to three more relations obtained
from (3.5-3.6) by exchanging b and ¢, namely

ba = gab, dc=qcd, ad— da=q ‘bc— qcb. (3.7)

From (3.6-3.7) we derive (¢7' + q)(bc — cb) = 0, which is equivalent to
be = cb since ¢* # —1. We have proved that (i) implies (ii). The converse
implication follows from similar straightforward computations. O

Definition IV.3.2. The algebra Mq(2) s the quotient of the free algebra
k{a,b,c,d} by the two-sided ideal J, generated by the siz relations (3.2-3.4)
of Theorem 3.1.

When ¢ = 1, the algebra Mq(2) is clearly isomorphic to the algebra
M (2) of 1.4. Since the ideal J, is generated by quadratic elements, the
natural grading of the free algebra induces a grading on M (2) such that
the generators a, b, ¢, d are of degree 1.

Given an algebra R, we define an R-point of M, (2) to be a quadruple
(A, B,C, D) € R* satisfying the relations

BA=gAB, DB =¢BD, (3.8)
CA=qAC, DC =qCD, (3.9)
BC =CB, AD-DA=(¢"!~-q)BC. (3.10)

By the very definition of M_(2), the set of R-points of M, (2) is in bijection
with the set Homg,, (M,(2), R) of algebra morphisms from M,(2) to R. It
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will sometimes be convenient and more enlightening to write an R-point
(A,B,C, D) of M,(2) in the matrix form

( 4 ) (3.11)

Theorem 3.1 can be paraphrased using the language of R-points as follows:
a quadruple < é g ) of elements of an algebra R is an R-point of M .(2)

if and only if the following pairs (X', Y”) and (X", Y"') are R'-points of the
quantum plane, where X', Y’ X" Y" are matricially defined by

X'\ (A B X q X"\ (A C X
v J="\ec p)\vyv ) Yy" )=\ B D Y
and where R’ is the tensor product algebra
R =R® kX, Y] = R{X,Y}/(YX — ¢XY).
We now introduce the quantum determinant det, as the following ele-
ment of the algebra M, (2).

Proposition IV.3.3. The element det, = ad — g tbc = da— gbe of M,(2)
18 central.

ProoF. It suffices to show that det, commutes with the generators a, b, c,
d. Now, by (3.2-3.4) we have

(ad — g~"bc)a = a(da— gbe), (ad — g~"be)b = b(ad — g~be),
(ad — g tbc)e = clad — ¢~ be), (da — gbc)d = d(ad — g~ tbe). m

A B

Given an R-point m = < C D

) of M,(2), the element

Det,(m) = AD — ¢ 'BC = DA —¢qBC
of R is called the quantum determinant of m.

Proposition IV.3.4. Let R be an algebra and

(A B PR A B
m"=\c p) M "= »
be two R-points of Mq(2) such that the elements A, B, C, D commute with
the elements A’, B', C', D'.
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(a) The element m'm defined by the matriz product

A" B” A B A B
m/m:<cu D//>:<O/ D/)(C D)
is an R-point of M, (2).
(b) We have Det,(m'm) = Det, (m') Det,(m) in R.

(¢) The quadruple
D —qB
—q¢lc A

is an R-point of M,—1(2) and an R°P-point of M,(2).

PROOF. (a) We use the reformulation of Theorem 3.1 stated a few lines
ahead of Proposition 3.3. Let R’ be the tensor product algebra

R =R®k,[X,Y] = R{X,Y}/(YX - gXY).
Define X', Y', X", Y" by

X' A B X X" A X

v )"\ ¢ D y ) ®d Ly )= B D» Yy )
By definition, the elements X,Y of R’ commute with the other variables A,
A, etc. It results from Theorem 3.1 that the pairs (X',Y”) and (X", Y")
are R'-points of the quantum plane. Now, by hypothesis, the elements A’,

B', C', D' of R’ commute with X’ and Y’ and the elements A, B, C, D
commute with X" and Y”. By a second application of Theorem 3.1,

AI BI X/ _ AI/ BI/ X
C/ Dl Y/ - CI/ DII Y
A C X/I _ AII C// X
B D Y/I - BII D/l Y

are R’-points of the quantum plane. It follows that m'm is an R-point of
M,(2).

(b) This follows from computations we leave to the reader. A more con-
ceptual method is suggested as an exercise at the end of this chapter.

(c) Define A’ = D, B' = —¢B, ' = —¢~'C, and D' = A. Then Relations
(3.8-3.10) imply

and

AIBI — qBIA/, B/D/ — qD,BI,
A/C, — qC,A/, C/D/ — qchl,
CIB/ — B/CI, D/A/ _ A/DI — (q—l _ q) Blcf/7

which means precisely that (4’, B',C’,D’) is an R-point of M,.(2) or an
R°P-point of M,(2). a
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IV.4 Ring-Theoretical Properties of M,(2)

The aim of this section is to show that the algebra M, (2), though non-
commutative, retains certain properties of the commutative algebra M (2).
We freely use the notations and the results of 1.7-8.

Theorem IV.4.1. The algebra M (2) is Noetherian and has no zero divi-
sors. A basis for the underlying vector space is given by the set of monomials

{aibjckdk}i,j,k,ézo .

We shall prove this theorem by building a tower
Ay=kCA CACA;CAy=M/(2)

of algebras such that each A, is an Ore extension of A, ;. As a consequence
of Corollary 1.7.2, we conclude that the set {a(a)ia(b)ja(c)ko(d)g}i_j 5050
is also a basis of M (2) for any permutation o of the set {a,b, c,d}. Define
the algebras A; = k[a], A5 = k{a,b}/(ba — gab), and

Ay = k{a,b,c}/(ba — gab, ca — qac, cb — be).

The algebra A, is trivially an Ore extension of A,. Let o, be the automor-
phism of A, determined by o, (a) = ga.

Lemma IV.4.2. There is an isomorphism between Ay and the Ore exten-
ston A, [b, oy, 0]. Furthermore, the set {a't’}; ;o is a basis of Ay.

Observe that the algebra A, is isomorphic to the quantum plane &, [z, Y]
(the isomorphism sends a onto x and b onto y).

PROOF. Let us define ¢, : Ay — A;[b,@1,0] by ¢;(a) = a and ¢,(b) = b.
Since

@1(b)py(a) — qpy(a)p, (b) = ba — gab = o (a)b — qab = 0,

¢, defines a morphism of algebras. This morphism is surjective since the
algebra A;[b, ay,0] is generated by a and b. In order to show that it is an
isomorphism, we only have to build a linear map v, : A;[b,o;,0] — A,
such that ¥, o, = id. We define ¢, on the basis {a’t’}, ;¢ of 4,[b, 0]
by 9, (a't’) = a't’ . O

It is easy to check that ay(a) = ga and a,(b) = b define an automorphism
a,, of the algebra A,. We have the following result whose proof follows the
same lines as the proof of Lemma 4.2.

Lemma IV.4.3. The algebra A, is isomorphic to the algebra A,lc, oy, 0];
the set {albjck}i,jﬁkzo is a basis of Aj.
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The last step consists in building 4, out of As. This is the only step
involving a non-zero derivation. First, one checks that

ag(a) =a, oag(b) =qb, az(c)=qc

define an algebra automorphism of A;. We define another endomorphism
6 of A, on the basis {azb]ck}mwkzo by 6(b7c*) = 0 and by

21

S(aibich) = (g — g1+

ai= it okl (4.1)
1—-¢q

2

if i > 0. The proof of the following result is left to the reader.
Lemma IV.4.4. The endomorphism § is an ag-derivation of As.
We use this result to prove the next one.

Lemma IV.4.5. The algebra A, = M, (2) is isomorphic to the Ore exten-
sion Asld, ag, 6], and {aibjckd(}ivj’k,7(20 is a basis of A,.

PROOF. Set @ (a) = a, ¢, (b) = b, p,(c) = ¢, p4(d) = d. This defines a sur-
jective morphism of algebras o, from A, onto the Ore extension A;[d, oy, 8],
provided we check that (¢4(a),,(b), ¢4(c), ¢,(d)) is an Agld, ag, 6]-point
of M,(2). This implies checking the six relations (3.8-3.10). Now the three
relations not involving d already hold in A5. As for the three remaining,
namely

db = gbd, dc=qcd, da=ad+ (qg—q ')be,

they hold in Aj[d, oy, 6] by the very definition of a5 and of 6. To complete
the proof, one constructs a linear map v, such ¢, o ¢, = id as in the proof
of Lemma 4.2. o

Theorem 4.1 is now a consequence of Lemmas 4.2, 4.3 and 4.5, of Corol-
lary 1.7.2, and of Theorem I.8.3.

IV.5 Bialgebra Structure on M,(2)

We now endow the algebra M, (2) with a bialgebra structure. The comul-
tiplication and the counit will be the same as the comultiplication and the
counit put on M (2) in 1.4 (see also I11.4).

Theorem IV.5.1. There exist morphisms of algebras
A M (2) — M (2) ® M (2) and e: M, (2) —k
uniquely determined by

Ala)=a®a+b®c, Ab)=a®b+dbad, (5.1)
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Ale)=c®a+d®c, Ald)=c®b+d®d, (5.2)
ela) =¢e(d) =1, e(b)=¢(c)=0. (5.3)
Equipped with these morphisms, the algebra M (2) becomes a bialgebra that

18 neither commutative nor cocommutative. Furthermore, we have
A(det,) = det, @ det, and e(det,) =1. (5.4)

We may rewrite Relations (5.1-5.3) in the abridged matrix form
()= )e(8) m (2 2)-(38)
(

5.5)

PrOOF. In order to show that A is a morphism of algebras, it suffices to
check that (A(a), A(b), A(c), A(d)) is an M, (2) @ M,(2)-point of M,(2).
This follows from Proposition 3.4 (a). A simple computation shows that
(e(a),e(b),e(c),e(d)) is a k-point of M, (2), thus proving that ¢ also defines
an algebra morphism.

We now have to check the coassociativity and counit axioms. Let us start
with

(A®id)A = 1Id® A)A. (5.6)

Since both sides of (5.6) are morphisms of algebras, it is enough to verify
it on the generators a, b, ¢, d. Using the matrix form, we have

(aewa) (7 2) = ((Ta)e(2a))e(t0)
- (Fa)e((t )t 3))
((aea)a) ( ‘ Z)

A similar argument shows that the counit axiom follows from the matrix
identity

() Gon)-(a)-Ga)(ea)

As for the computation of A(det,), it results from Proposition 3.4 (b). O

o8 o e

IV.6 The Hopf Algebras GL,(2) and SL,(2)

We proceed by analogy with 1.5. Using the quantum determinant det, of
Proposition 3.3, we define the algebras

GL,(2) = M,(2)[t}/(t det, — 1)
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and
SLq(2) = Mq(2)/(detq -1) = GLq(2)/(t —1).

Given an algebra R, we define an R-point of GL,(2) [resp. of SL,(2)] as
an R-point m = (A, B, C, D) of M,(2) whose quantum determinant

Det,(m) = AD — ¢ 'BC

is invertible in R [resp. is equal to 1]. Denoting GL,(2) and SL,(2) by
G,, we see that the set of R-points of G, is in bijection with the set
Homy, (G, R) of algebra morphisms from G, to R.

Theorem IV.6.1. Relations (5.1-5.3) defining the comultiplication A and
the counit € of M,(2) equip the algebras GL,(2) and SL,(2) with Hopf
algebra structures such that the antipode S is given in matriz form by

S((l) S(b) . -1 d —qb
< S(e) S(d) )= det, gl a . (6.1)
PROOF. (a) We first have to show that A and ¢ are well-defined on GL,(2)
and on SL,(2). For SL,(2) this results from the following computations:

by (5.4)
A(det, — 1) = (det, — 1) @ det, + 1 @ (det, — 1)

and e(det, — 1) = 0. A similar argument works for GL,(2) provided we set
Alt)=t®t and e(t) =1 (6.2)

The coassociativity and counit axioms hold for GL,(2) and for SL,(2) since
they already hold for M,(2).
(b) It remains to check that GL,(2) and SL,(2) have antipodes. Set

S'(a)=d, S'(b)=—gb, S'(c)=—qtc, S'(d)=a. (6.3)

By Proposition 3.4 (c), the quadruple (S'(a), S'(b), S’(c), S'(d)) is a M, (2)°P-
point of M q(2). Consequently, S’ defines a morphism of algebras from
M, (2) to M, (2)°P. Next, we extend S” to GL,(2) and to SL,(2) by setting
S’(t) = t. This is a well-defined algebra morphism because

S'(£)S' (det,) = (s’(d)s’(a) - q_ls’(c)S'(b)> S'(t) = (ad ~ ¢~ 'be) t = 1.

Since the quantum determinant is invertible and central in G, = GL,(2)
and SL,(2), it is possible to define an algebra morphism S from G, to GgP
by S(t) =t~! and

(50 50 -on (50 50 ) oL )
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Finally, to check that S is an antipode, it suffices to work with the
generators a, b, ¢, d, according to Lemma I11.3.6. Relations (I11.3.3) are
equivalent to the matrix identities

a b d —qgb _ d —qb a b
c d —q ¢ a o ¢ ¢ a c d
1 0
= det, ( 0 1 >
O

In contrast to the inversion in a group and to the antipode of GL(2)
and of SL(2), the antipode S of GL,(2) and of SL (2) is in general not
involutive. Indeed, from (6.1) we derive

( 5%"(a) S*"(b) > ( qﬁ%nc qQ(;b )

S2(c)  S2(d) )
(5 2% &)

for any positive integer n. Fix such an n and let ¢ be a root of unity of
order exactly n. Then we obtain two examples of Hopf algebras for which
the square of the antipode has order n. For results on the order of S?
previous to the quantum group era, see [Rad76] [Taf71] [TW80].

I

IV.7 Coaction on the Quantum Plane

We saw in II1.7 that the affine plane kfz,y] was a comodule-algebra over
either one of the bialgebras M (2} and SL(2). We now develop a quantum
version of this.

Theorem IV.7.1. There exists a unique JV[q(Q)—comodule—algebm struc-
ture and a unique SLq(2)—com0dule—algebm structure on the quantum plane
A =k, lz,y] such that

Ay(z)=a®@z+bRy and Auly) =cRr+d@y.
We rewrite these formulas in the matrix form
T a b x
G-

PRrROOF. We use Proposition II1.7.2. We first check that (7.1) defines an
algebra morphism A 4 from A to M, q(2) ® A. It is enough to verify that

A, ()A4(x) = qA 4 (7)A4(y)
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in M,(2) ® A. Now, by (3.2-3.4), we have

A (A ) = (c®@z+dRy)(a®@z+bRY)
= gac® z* + (bc + qda) @ zy + qbd @ y*
= q(ac®x2+(q_1bc+ad)®xy+bd®y2)
= q(a®z+by)(cOz+doY)
= qA,(@)A4(Y)
Since the projection of M, (2) onto SL,(2) is a morphism of algebras, the
resulting map A — SLq(Z) ® A is an algebra morphism too.

It remains to check that A 4, defines a comodule structure on the quantum
plane. This is done as in the proof of Theorem III.7.3. O

We record the following quantum version of Lemma II1.7.4.

Lemma IV.7.2. Fori,j > 0 we have

i J . .
AA(LL‘iyj) — ZZ q(i—r)s ( ;La ) ( .; ) arbivrcsdj—s ®x1‘+syi+jfrfs'
q? q?

r=0 s=0

PRrROOF. We first observe that A ,(2'y?) = A, (z)'A4(y)’ since A, is an
algebra morphism. Next, we have

boyass)=¢@o)(boy) and (dey)(c®a)=q"(cDa)(ddy)

in the algebra M, (2) ® A. This allows us to apply Proposition 2.2 to both

AA(I)lz(a®x+b®y)z and AA(y)]:(C®a+d®y)J O

Denote by k,[z,y], the subspace of degree n elements of A = k, [z, y].
As a consequence of Lemma 7.2, we see that k,[z,y], is a subcomodule of
the quantum plane. Actually, the quantum plane is the direct sum of the
comodules k,[z,y],,. By 1IL.6, Example 2, the dual vector space k, [, y]r is
a module over the algebra SL,(2)* dual to the coalgebra SL,(2). We shall
identify this module in VIL.5.

IV.8 Hopf *-Algebras

The standing assumption in this section is that the ground field & is the
field of complex numbers. Given a complex number z, we denote its complex
conjugate by Z. Recall that an R-linear map u : V — V' between complex
vector spaces is said to be antilinear if u(Av) = Av for all A € C and v € V.
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Definition IV.8.1. Let (H,u,n,A,¢,S) be a complex Hopf algebra. We
say that H is a Hopf x-algebra if there exists an antilinear tnvolution * on
H satisfying the two conditions

(i) the map * is an antimorphism of real algebras, i.e., an algebra mor-
phism from H into H°P, as well as a morphism of real coalgebras, and

(i) we have S(S(x)*)" =« for allz € H.

Two Hopf *-algebra structures *; and *, on H are equivalent if there
exists a Hopf algebra automorphism ¢ of H such that p(z*') = ¢(x)*? for
all x in H.

We wish to show that the Hopf algebras GL,(2) and SL(2) have natural
Hopf *-algebra structures given by matrix transposition. We shall need the
following equivalent formulation.

Lemma IV.8.2. A Hopf algebra H has a Hopf x-algebra structure if and
only if there exists an antilinear automorphism ~ of H such that

(i) the map v is a morphism of real algebras and an antimorphism of real
coalgebras, and

(ii) we have v2 = (Sv)? = idy.

PROOF. Suppose we have an involution * as in Definition 8.1. Define v by
y(z) = S7'(z*) for all z € H. It is clear that v is an antilinear algebra
automorphism. It is an antimorphism of coalgebras because so are the an-
tipode S and its inverse by Theorem II1.3.4 (a). We have S = «, which
shows that S7v is an involution. Finally, v is an involution too, as can been
seen from

7= (571? = ((+8)2) 7 = iy = idy.

The second equality follows from * being an involution while the third
one follows from Definition 8.1 (ii). Conversely, define * = Sv from an
automorphism v as in Lemma 8.2. It is an involution by Lemma 8.2 (ii).
Let us check Condition (i) of Definition 8.1. We have

(+8)* = (578) = (SN H S =97 =idy. 0
We now present the main result of this section. We freely use the notation
of the previous sections. Recall the inverse ¢ of the element det, = ad—q 1be

of GL,(2). In SL,(2) we have t = 1.

Theorem IV.8.3. There exist unique Hopf x-algebra structures on the
Hopf algebras GL,(2) and SL,(2) such that

o =td, b*=—-qte, ¢ =—q'th, d"=ta, t"=t"
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d
is an M, (2)-point of M, (2). Consequently, there exists a unique antilinear
algebra endomorphism v of M, (2) defined by the matrix identity

v(a) ~(b) a ¢
(30 0 )=(5a) 5
Since transposition is involutive, so is . The map v is an antimorphism
of coalgebras in view of the formula (5.5) giving the comultiplication on
M q(2) and of the fact that matrix transposition reverses products.

We now extend 7 to GL,(2) by (t) = t. Since y(tdet, — 1) = tdet, —1, it
defines an antilinear algebra automorphism both on GL,(2) and on SL,(2).
Let us check that S+ is an involution. It is enough to verify this on the
generators a, b, ¢, d, and t. For ¢, this is clear. For the remaining generators,

PROOF. By Theorem 3.1, the transpose ( Z ccl ) of the matrix ( ZL b )

we have
a b\ d —qc
(SW)<C d)ﬁt(—q“lb a )
Therefore,
2f a b _ d —qc
se(en) = e Ly ) e
o a b -1
=t < c d ) ¢
_ a b
n c d )’
We conclude the proof by recalling that x = Sy. |

IV.9 Exercises

1. (Gauss) Show that

> (=¥ ( Z )q = { 1-q@ —q3()),,,(1 — g™ Y g: i 23edn.

0<k<n

2. (Gauss) Show that

n+m+1) Z k(m+k>
( m+1 q 0<k<n m q
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3. Let F be a finite field of order g.

n
k
spaces of a n-dimensional vector space over F.

(a) Show that ( ) is equal to the number of k-dimensional sub-

(b) Prove Relations (2.4-2.5) using the previous assertion.

4. (q-differentiation) Consider the linear endomorphisms Z, 7y and 6, of

the polynomial algebra k[z] and of the algebra k[[z]] of formal series,
defined by

flaz) — f=)

(Zf)(z) = 2f(2), (1,(I)(2) = flgz), (6,(F))(z) = (0= = =)

(a) Check that

64Ty = AT,0, (64 Z] = Ty 0,2 —qZé,=1.

b) Prove that 7, is an algebra automorphism and that 6, is a -
a q q
derivation.

(c) Show that any 7, -derivation é of k[2] is of the form é = P¢, for
some polynomial P. If, moreover, 67, = ¢ 7,6, then P has to be a
constant.

(d) Assume that ¢ is not a root of unity. Check that
n n—1

54((5)1) - (nz— 1,

for all n > 1. Deduce that the g-exponential e (z) is, up to a mul-
tiplicative constant, the only formal series solution of the equation

6,(f)=1.
5. Let A [£,n] be the algebra k{€,n}/(€%, 7, &n+ gné). Set

£N_(ab £

n ) \c d U
where a,b,c and d are variables commuting with £ and 7. Assume
that ¢% # —1.

(a) Prove that Assertions (i) and (ii) of Theorem 3.1 are equivalent
to the relations

ya'=qa'y and €% =1 =&+ qng=0.

(b) Check that (a€ + bn)(cf + dn) = det, &n. Deduce Part (b) of
Proposition 3.4.

(¢) Find a M, (2)-comodule-algebra structure on A/[¢, 7).
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6. Show that the centre of M, (2) is the subalgebra generated by det,
when ¢ is not a root of unity.

7. (Basis of SL,(2)) Show that the set {aibjck}iyj’kzoU{bicjdk}i,jzovbo
is a basis of SL,(2).

8. Let ¢ be a root of unity of order d > 1. Prove that yz = qzy implies
(z+y)% = 2% + ¢

9. Let H be a complex Hopf x-algebra whose counit is denoted €. Show

that e(z*) = e(x) for all elements z of H.

IV.10 Notes

The content of Section 2 on g-identities, as well as Exercises 1-3, is classical.
We borrowed it from [And76], Chap. 3 and from [Cig79].

The g-exponential is an example of a g-hypergeometric series or basic
hypergeometric series, i.e., of a formal series > -, a,2" such that each
quotient a,,,, /a,, is a rational function of ¢" (where g is a complex param-
eter different from 0 and from 1). Basic hypergeometric series first appeared
in a note published by Heine [Heid6] in 1846. Since, g-analogues of most
classical functions and identities have been found. F.H. Jackson [JaclO]
introduced the g-differentiation operator ¢, and its inverse which is the ¢-
integration. Nowadays, g-series appear in combinatorics, in number theory,
in statistical mechanics, and in the theory of Lie algebras. There are many
monographs on this vast subject, e.g., [GR90] [Sla66].

The operator 7, introduced in Section 2 is fundamental in the theory of
linear g-difference equations with polynomial coefficients. Such an equation
is a functional equation of the form

> Pi(2)f(qd'2) = Q(2)
=0

where Py(z),..., P,(z),Q(z) are polynomials and f(z) is a function. Using
the operator 7,, one can rewrite the equation above as (37", PrI(f) = Q.
The articles by Adams [Ada29] and by Trjitzinsky [Trj33] are two classical
references on the formalism of the g-difference equations.

Sections 3, 5 and 6 are taken from Manin’s book [Man88]. With Section
3 we entered the heart of the subject of Part I of this book. The bialge-
bras M, (2), GL,(2), and SL,(2) of Sections 5-6 depend on one parameter.
There also exist two-parameter versions such as the algebra M, q (2) gen-

erated by four generators a, b, ¢, d and the six relations
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ba = pab, db = qbd,

ca = qac, dc = pcd,
be=pqtch, ad—da=(qg" —p)ch.

It has the same bialgebra structure as M(2). With the additional relation
ad — p~tbe = 1, one gets the Hopf algebra SL, ,(2) of [AST91].

In higher dimension n > 2, Faddeev, Reshetikhin, Takhtadjian [RTF89]
defined the bialgebra M, (n) generated by the generators (17 )i<i j<n and
the relations

k
ITE =g T TP =g TPT

TP IF =TPT, TFTP —TPTF = (¢! —g) T"Tf
for ¢ < j and k < m. The comultiplication and the counit are given by
AT =) TFeT] and &(I})=6,;.
k=1

The algebra M, (n) is an iterated Ore extension and, like M, (2), it possesses
a remarkable grouplike central element that is

dety = > (—q)~ @17V T7™),
gES,

where £(o) is the length of a minimal decomposition of the permutation
o in product of transpositions. The quantum determinant det, allows one
to construct GL,(n) and SL,(n) as in the case n = 2 discussed in this
chapter. The bialgebra M, (n) has two interesting comodule-algebras: the
first one

Aq”|0 =k{zy,...,2,}/(z;2; — qz,z; fori < j)

generalizes the quantum plane whereas the second one

A2|n = k{£17 s 7£n}/( 1'27€j£i + qfigj for ¢ < ‘7)

generalizes the algebra A [€, 7] of Exercise 5.

Both algebras AZ"O and Agl” are examples of quadratic algebras, i.e., of
quotients of free algebras by ideals generated by degree-two homogeneous
elements. For authors like Manin, quadratic algebras form the starting point
of the theory of quantum groups. Manin assigns to every quadratic alge-
bra a universal Hopf algebra over which the given quadratic algebra is a
comodule-algebra. When applied to the quantum plane, Manin’s construc-
tion yields GL,(2). For further reading, see [Man87] [Man88].

We have just mentioned the quantum groups SLq(n). There exist quan-
tum groups for all classical Lie groups and supergroups. For instance,
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Takeuchi [Tak89] constructed quantum versions of the symplectic and or-
thogonal groups.

Woronowicz exhibited Hopf x-algebra structures on quantum groups in
the framework of C*-algebras. See [Wor87b| [Wor87a] [Wor88].

The reader will find more examples of and more details on quantum
groups in [AST91] [Mal90] [Mal93] [Man89] [PW91] [Res90] [Sud90]
[Tak92c].



Chapter V
The Lie Algebra of SL(2)

In this chapter we investigate the enveloping Hopf algebra U = U(sl(2)) of
the Lie algebra s[(2) of traceless two-by-two matrices. This Hopf algebra
is in duality with SL(2). We also describe the finite-dimensional repre-
sentations of U. Chapter V prepares for Chapters VI-VII where we shall
construct a g-deformation U, of U and study its finite-dimensional repre-
sentations. The statements and proofs for U, will essentially be copied from
those of the present chapter. We start by recalling the classical concepts of
Lie algebras and enveloping algebras. As usual, we denote the ground field
by k.

V.1 Lie Algebras

Definition V.1.1. (a) A Lie algebra L is a vector space with o bilinear
map [,]: L x L — L, called the Lie bracket, satisfying the following two
conditions for all z,y,z € L:
(i) (antisymmetry)
[:ray] = _{yax]a

(ii) (Jacobi identity)

[.T, [y’ Z” + [ya {Z,$]] + [z, [:v,y]] =0.

(b) A Lie subalgebra L' of a Lie algebra L is a subspace L' of L such
that for any (z,y) € L' x L' we have [z,y] € L'. An ideal I of a Lie algebra
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L is a subspace I of L such that for any element (x,y) € L x I we have
[z,y] € I.

(c) A morphism of Lie algebras f from the Lie algebra L into the Lie
algebra L' is a linear map f : L — L' such that f([z,y]) = [f(z), f(y)] for
all z,y € L.

(d) A Lie algebra is abelian if its Lie bracket is zero.

Let us give a few examples of Lie algebras.

1. If L and L' are Lie algebras, we equip the direct sum L & L' with a
Lie bracket given by

[(JT,IE'), (y,y')] = ([w,y], [x/,y/])

for x,y € L and z’,y’ € L. The canonical injections of L and L' into L& L'
and the canonical projections of L @ L' onto L and L’ are morphisms of
Lie algebras.

2. Given a Lie algebra L, we define the opposite Lie algebra L°P as the
vector space L with Lie bracket [—, —]°P given by

[I7y]0p = [y,x] = _[I’y}'

The linear map op(z) = —z is a Lie algebra isomorphism from L to L°P.

3. Let I be an ideal of a Lie algebra L. There exists a unique Lie al-
gebra structure on the quotient vector space L/I such that the canonical
projection from L onto L/I is a morphism of Lie algebras.

4. Let f : L — L' be a morphism of Lie algebras. Its kernel Ker (f) is
an ideal of L, the image f(L) is a subalgebra of L', and the induced map
L/Ker (f) — f(L) is an isomorphism of Lie algebras.

5. Let A be an (associative) algebra. Set [a,b] = ab — ba for a,b € A. It
is easy to show that this bilinear map is antisymmetric and satisfies the
Jacobi identity. We also have [a, bc] = [a,b]c+ b[a, c] for all a,b,c € A. This
Lie algebra will be denoted by L(A).

For any vector space V, we denote the Lie algebra L(End(V)) of all
endomorphisms of V by gl(V). When V is of finite dimension n, then gl(V)
is isomorphic to the Lie algebra gl(n) = L(M,,(k)) of n x n-matrices with
entries in the field k. It is clear that the commutator of two matrices with
zero trace is of trace zero. Consequently, the vector space sl(n) of traceless
n by n matrices is a Lie subalgebra of gl(n).

V.2 Enveloping Algebras

To any Lie algebra I we assign an (associative) algebra U(L), called the
enveloping algebra of L, and a morphism of Lie algebras i; : L — L(U(L)).
We define the enveloping algebra as follows. Let I(L) be the two-sided
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ideal of the tensor algebra T(L) generated by all elements of the form
axy — yx — [x,y] where z,y are elements of L. We define

U(L) = T(L)/I(L).

The above generators of (L) are not homogeneous for the grading of T'(L)
defined in IL5. Therefore there is no grading on the enveloping algebra
compatible with the grading of the tensor algebra. Nevertheless, U(L) is
filtered as a quotient algebra of T'(L).

We define a map i; as the composition of the canonical injection of L
into T(L) and of the canonical surjection of the tensor algebra onto the
enveloping algebra. By definition of i;, we have i, ([z,y]) = zy — yz, which
shows that i, is a morphism of Lie algebras.

Example 1. 1If L is an abelian Lie algebra, then U(L) coincides with the
symmetric algebra S(L). In particular, if L is the zero Lie algebra {0}, then
U({0}) = k. We also have U(L°P) = U(L)°P.

We now state the universal property of U(L).

Theorem V.2.1. Let L be a Lie algebra. Given any associative algebra
A and any morphism of Lie algebras f from L into L(A), there exists a
unique morphism of algebras ¢ : U(L) — A such that ¢ oi; = f.

If we denote by Homy (L, L’) the set of morphisms of Lie algebras from
L into L', we can express Theorem 2.1 by a natural bijection

Homy, (L, L(A)) = Hom,,, (U(L), A).

PROOF. By definition of the tensor algebra, f extends to a morphism of
algebras f from T(L) to A defined by f(z...z,) = f(z;)... f(z,) for
zy,...,x, in L. The existence of ¢ follows from f(I(L)) = {0}. In order to
prove this fact, we only have to show that f(zy — yx — [z,y]) vanishes for
any pair (z,y) of elements of L. Now,

flzy —ya —[z,y]) = f(@)fy) = F)f (@) = f([z,9]),

which is zero since f is a morphism of Lie algebras.
The uniqueness of ¢ is due to the fact that L generates the algebra T'(L),
hence U(L). O

We derive two corollaries from Theorem 2.1.

Corollary V.2.2. (a) For any morphism of Lie algebras f : L — L/,
there exists a unique morphism of algebras U(f) : U(L) — U(L') such that
U(f)oip =iy of. We also have U(idy) = idyp-

(b) If f/ - L — L" is another morphism of Lie algebras, then

U(f o f)=U(f") o U(f)-
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PROOF. (a) Apply Theorem 2.1 to A = U(L') and to the morphism of Lie
algebras i;, o f.
(b) We have

U(f)eU(f)oiy=U(f)oigof =ignofof =U(f"of)oi.

One concludes by appealing to the uniqueness of U(f’ o f) proved in Part
(a). The uniqueness assertion also implies that U(id;) is the identity of
U(L). |

Corollary V.2.3. Let L and L' be Lie algebras and L & L' their direct
sum. Then
ULeL)=2U(L)oU(L).

PRroOF. We first construct an algebra morphism ¢ from U(L & L') to the
algebra U(L) @ U(L'). For any x € L and 2’ € L/, set

fl@,d) =i (z) @1+ 1®i5(2").

This formula defines a linear map f from L® L’ into U(L) @ U(L'). Let us
show that f is a morphism of Lie algebras. For z,y € L and 2,3’ € L’ we
have

[f(z.2), f(y,9)] = (@) @1+1R4,(2")((y)@1+1®i5(y)
— (@) @1+1®i(y)(iL(z) @1+ 1@iL(
= [ig(@),ig(W] @1+ 1 [ig(2'),ip(y)]
= i(lzy) @1+ 1@ (2, y])
= f(zy[="y]) = f((z,2), (v, 5)])-

Applying Theorem 2.1, we get an algebra morphism ¢ from U(L & L') to
U(L)o U(L").

We now use the universal property of the tensor product of two algebras
in order to build a morphism of algebras v : U(L) ® U(L') — U(L & L).
The compositions of the canonical injections of L and of L into L& L’ and
of the map iy 4, are morphisms of Lie algebras. By Theorem 2.1 there exist
morphisms of algebras v, : U(L) — U(L® L") and ¢ : U(L') - U(L® L")
such that, for any z € L and 7’ € L', we have

)
z'))

Yy (z) = iLEBL’(an) and  9,(z’) = lreL (0,2").

By Proposition I1.4.1, the formula 1(a ® a’) = ¥, (a),(a’) defines an al-
gebra morphism v from U(L) ® U(L') into U(L & L') provided we show
that ¥, (a)py(a’) = ¥y(a’)py (a) for all a € U(L) and o’ € U(L'). We prove
the latter by observing that it is enough to check that v, (a) and ¥, (a’)
commute when a =z € L and @’ = 2’ € L. Now,
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[W1(2),%2(2")] = [irgL(x,0),iLeL(0,2")]
= gy ([(z,0),(0,2)])
= g ([x,0],[0,27])
= 0.

We claim that the morphisms ¢ and ¢ are inverse of each other. Let
us consider the composition 2 o ¢. It is an endomorphism of the algebra
U(L & L') restricting to the identity on the image of L ® L'. Indeed, for all
relLandz' €/

1/1(S0(=’E, 1/)) = 1/1(53 & 1) + 11)(1 ® z,) = iL@L’((:E7 0) + (07 xl)) = iLGBL/('T’ LIL‘/).
Consequently, 1 o ¢ = id. A similar argument shows that ¢ o ¢ = id. 0O

Corollaries 2.2 and 2.3 allow us to put a Hopf algebra structure on the
enveloping algebra U(L). Indeed, a comultiplication A on U(L) is defined
by A = poU(§), where § is the diagonal map x — (z,z) from L into L& L
and ¢ is the isomorphism U(L & L) — U(L) ® U(L) that was built in the
proof of Corollary 2.3. The counit is given by € = U(0) where 0 is the zero
morphism from L into the zero Lie algebra {0}. Finally, the antipode is
defined by S = U(op) where op is the isomorphism from L onto L°P of
Example 1.2.

Proposition V.2.4. The enveloping algebra U(L) is a cocommutative Hopf
algebra for the maps A, €, and S defined above. Forz,...,x, € L, we have

n—1
A(xlxn) = 1®$1...xn+zzma.(l)...xo.(p)®xa(p+1)...l’0(n)

p=1 o
+z,...2, @1

where o runs over all (p, q)-shuffles of the symmetric group S,,, and
Sz xg...x,) = (=D, ... 252,

PROOF. The coassociativity axiom (I11.1.5) is satisfied as a consequence of
the commutativity of the square

C e Le L
la lid@é
s@id
Lol —— LelLol

the counit axiom (IT.1.6) because of the commutativity of the diagram

0kid id@0
— ——

L&L

AN T[s S
L

0 L Lol
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and the cocommutativity (I11.1.7) thanks to the commutativity of the tri-

angle
L

V) N 8
LoL - L&l
The formula for A results from Theorem II1.2.4. The definition of S and
Lemma, I11.3.6 imply that S is an antipode for U(L). O

For the sake of completeness, we give two additional important properties
of enveloping algebras.

Theorem V.2.5. Let L be a Lie algebra.

(a) The algebra U(L) is filtered as a quotient of the tensor algebra T(L)
(graded as in I1.5) and the corresponding graded algebra is isomorphic to
the symmetric algebra on L:

grU(L) = S(L).

Hence, if {v;};c1 is a totally ordered basis of L, {v;, ... v; }i < <i er nen
is a basis of U(L).

(b) When the characteristic of the field k is zero, the symmetrization
map n: S(L) — U(L) defined by

1
T](Ul e Un) = E Z 'Uo,(l) e UU(TL) (21)
" oeS,
forvy, ... v, € L, is an isomorphism of coalgebras.

Part (a) of the statement is known as the Poincaré-Birkhoff- Witt The-
orem. For a proof of Theorem 2.5, we refer to [Bou60] [Dix74] [Hum?72]
[Jac79].

We end this section by a few remarks on the representations of Lie al-
gebras. By definition, an L-module is a U(L)-module in the sense of 1.1,
which is the same as a morphism of algebras p : U(L) — End(V). In view
of the universal property of U(L) stated in Theorem 2.1, it is equivalent to
a morphism (still denoted p) of Lie algebras p: L — gl(V'). For z € L and
v € V, set zv = p(z)(v). We observe that (z,v) — zv is a bilinear map
from L x V to V such that

[z,ylv = 2(yv) — y(zv) (2.2)

for z,y € L and v € V. Conversely, any bilinear map from L x V to V such

that Relation (2.2) holds for all z,y € L and v € V, defines an L-module.

The L-module V is trivial in the sense of II1.5 if we have zv = 0 for all

z € L and v € V. By definition of the coproduct in the enveloping algebra,

the structure of L-module on the tensor product of two L-modules V' and
V' is given by

zv@v)=2v@v +v® (2.3)
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forz € L,v €V, and v € V’'. According to IIL.5, the Lie algebra acts on
Hom(V, V') by
(2f)(v) =z f(v) = fav), (2.4)

which can also be expressed as p(z)(f) = [p(), f] for f € Hom(V,V’). In
particular, if V' is the trivial module k, then L acts on the dual vector
space V™ = Hom(V, k) by

(@f)(v) = —f(zv). (2.5)

Finally, L acts on itself by the so-called adjoint representation which is
given for z, 2’ € L by
zx' = [z,7']. (2.6)

V.3 The Lie Algebra sl(2)

To simplify matters, we assume for the rest of this chapter that the ground
field k is the field of complex numbers. The Lie algebra gi(2) = L(M,(k)) of
2 x 2-matrices with complex entries is four-dimensional. The four matrices

=(00) =(V5)
(o 5) (o)

form a basis of gl(2). Their commutators are easily computed. We get
[X,Y]=H, [H X]=2X, [HY]=-2Y,

and
[,X)=[,Y]=[I,H]=0. (3.1)

The matrices of trace zero in gl(2) form the subspace sl(2) spanned by
the basis {X,Y, H}. Relations (3.1) show that s[(2) is an ideal of gl(2) and
that there is an isomorphism of Lie algebras

al(2) 2 s1(2) ® kI,

which reduces the investigation of the Lie algebra gl(2) to that of sl(2).
The enveloping algebra U = U(s{(2)) of s[(2) is isomorphic to the algebra
generated by the three elements X, Y, H with the three relations

(X,Y]=H, [H X]=2X, [HY]=-2Y. (3.2)

We prove some relations in U.
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Lemma V.3.1. The following relations hold in U for any p,q > 0O:
XPH? = (H —2p)IXP, YPH?=(H+2p)Y?,
[X,YP)=pY? " (H —p+1) =p(H +p—- )Y},
[(XP,YV]=pXP "(H+p~1)=pH -—p+1)X"~".

PROOF. One proves the first two relations by an easy double induction on
p and g using the relations XH = (H — 2)X and YH = (H + 2)Y, which
is another way of expressing the commutation relations (3.2).

We prove the third relation by induction on p. It trivially holds for p = 1.
When p > 1, we have

X, Y7 = (X, VPV +YPX,Y]
(p—-V)YP2(H-p+2)Y +YP'H
= v ((p-1)(H -p)+ H)
= pYP ' (H -p+1).

We conclude by letting Y?~! jump over H according to the second relation.
As for the last relation, it can be obtained from the third one by applying
the automorphism o of s[(2) defined by

oX)=Y, oY)=X, o(H)=-H. (3.3)
O
Proposition V.3.2. The set {X'Y7H*}, |\ is a basis of U(sl(2)).

ProOOF. It is a consequence of the Poincaré-Birkhoff-Witt Theorem 2.5.
Another proof can be given, using Ore extensions, along the lines of the
proof of Proposition VI.1.4. O

We close this section by a few remarks on the centre of U. Let us consider
the Casimir element defined as the element

H2

of the enveloping algebra U.
Lemma V.3.3. The Casimir element C belongs to the centre of U.

PROOF. It is enough to show that the Lie brackets of C' with H, X, Y
vanish. Now,

[H,C] [H,X]Y + X[H,Y]+ [H,Y]X +Y[H,X] + % [H, H?]

2XY -2XY -2YX +2YX =0.

Il
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We also have

1 1
(X.C] = X[X.Y]+[X,Y]X + 2 [X, HH + 5 HX, ]
= XH+HX-XH-HX =0,

One shows [Y, C] = 0 in a similar fashion. O

Harish-Chandra constructed an isomorphism of algebras from the centre
of U to the polynomial algebra k[t]. This isomorphism sends C to the
generator t (see for instance [Bou60], Chap. 8 or [Dix74], Chap. 7). As a
consequence, the Casimir element generates the centre of the enveloping
algebra. We shall give full details in the quantum case (see VI.4).

V.4 Representations of sl(2)

We now determine all finite-dimensional U-modules. We start with the
concept of a highest weight vector.

Definition V.4.1. Let V be a U-module and A be a scalar. A vector v # 0
m V' is said to be of weight A € k if Hv = M. If, in addition, we have
Xv =0, then we say that v is a highest weight vector of weight \.

Proposition V.4.2. Any non-zero finite-dimensional U-module V' has a
highest weight vector.

PROOF. Since k is algebraically closed and V is finite-dimensional, the
operator H has an eigenvector w # 0 with eigenvalue a: Hw = aw. If
Xw =0, then w is a highest weight vector and we are done. If not, let us
consider the sequence of vectors X™w. By Lemma 3.1, we have

H(X"w) = (a+ 2n)(X"w).

Consequently, (X"w),,~q is a sequence of eigenvectors for H with distinct
eigenvalues. As V is finite-dimensional, H can have but a finite number of
eigenvalues; consequently, there exists an integer n such that X" w s 0 and
X" = 0. The vector X™w is a highest weight vector. a

Lemma V.4.3. Let v be a highest weight vector of weight A\. For p € N,
set v, = ﬁ YPy. Then

Hyp:(/\—2p)vp, va:(/\—p+1)v va:(p+1)vp+1.

p=1

PRroOOF. The third relation is trivial; the first two result from Lemma 3.1.
Od

We now state the theorem describing simple finite-dimensional U-modules.
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Theorem V.4.4. (a) Let V be a finite-dimensional U-module generated
by a highest weight vector v of weight X. Then

(i) The scalar X is an integer equal to dim(V) — 1.

(ii) Setting v, = 1/p!YPv, we have v, = 0 for p > X and, in addition,
{v =1vy,0y,...,0,} 1s a basis for V.

(iii) The operator H acting on'V is diagonalizable with the (A+1) distinct
eigenvalues {\, X —2,..., A —2X = =}

(iv) Any other highest weight vector in V is a scalar multiple of v and is
of weight A.

(v) The module V is simple.
(b) Any simple finite-dimensional U-module is generated by a highest weight
vector. Two finite-dimensional U-modules generated by highest weight vec-
tors of the same weight are isomorphic.

PROOF. (a) According to Lemma 4.3, the sequence {v, },,( is a sequence of
eigenvectors for H with distinct eigenvalues. Since V' is finite-dimensional,
there has to exist an integer n such that v,, # 0 and v, ; = 0. The formulas
of Lemma 4.3 then show that v,, = 0 for all m > n and v,, # 0 for all
m < n. We get n = X since we have 0 = Xv,; = (A — n)v, by Lemma
4.3. The family {v = v,,...,v,} is free, for it is composed of non-zero
eigenvectors for H with distinct eigenvalues. It also generates V'; indeed,
the formulas of Lemma, 4.3 show that any element of V', which is generated
by v as a module, is a linear combination of the set {v;};. It results that
dim(V) = A+ 1. We have thus proved (i) and (ii). The assertion (iii) is also
a consequence of Lemma 4.3.

(iv) Let v" be another highest weight vector. It is an eigenvector for the
action of H; hence, it is a scalar multiple of some vector v;. But, again by
Lemma 4.3, the vector v, is killed by X if and only 7 = 0.

(v) Let V' be a non-zero U-submodule of V and let v be a highest weight
vector of V’. Then v’ also is a highest weight vector for V. By (iv), v is a
non-zero scalar multiple of v. Therefore v is in V’. Since v generates V, we
must have V C V', which proves that V is simple.

(b) Let v be a highest weight vector of V; if V' is simple, then the submod-
ule generated by v is necessarily equal to V. Consequently, V is generated
by a highest weight vector.

If V and V' are generated by highest weight vectors v and v" with the
same weight \, then the linear map sending v, to v, for all ¢ is an isomor-
phism of U-modules. O

Up to isomorphism, the simple U-modules are classified by the nonnega-
tive integers: given such an integer n, there exists a unique (up to isomor-
phism) simple U-module of dimension n+ 1, generated by a highest weight
vector of weight n. We denote this module by V(n) and the corresponding
morphism of Lie algebras by p(n) : s{(2) — gl(n + 1).

For instance, we have V(0) = k and p(0) = 0, which means that the
module V(0) is trivial, as is also the case for all modules of dimension 1.
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More generally, any trivial U-module is isomorphic to a direct sum of copies
of V(0).

Observe that the morphism p(1) : 51(2) — gl(2) is the natural embedding
of 51(2) into gl(2) and that the module V(2) is isomorphic to the adjoint
representation of s{(2) via the map sending the highest weight vector v,
onto X, v, onto —H and v, onto Y.

As for the higher-dimensional module V' (n), the generators X, Y, and
H act by operators represented by the following matrices in the basis

{vg,V1,...,0,}:

0 n 0 0
0 0 n-—1 0
p(n)(X) = )
0 O 1
0 0 0 0
0 o0 --- 0 O
1 0 0 0
pn)(Y)=1 0 2 0 o0 f,
0 0 n 0
and
n 0 0 0
0 n—2 0 0
pn)(H)=1| + - - : :
0 0 e —n+2 0
0 0 0 -n

Let us determine the action of the Casimir element on the simple module
V(n).

Lemma V.4.5. Any central element of U acts by a scalar on the sim-
ple module V(n). In particular, the Casimir element C' acts on V(n) by
n(n-+2)

multiplication by the scalar ===, which is non-zero when n > 0.

PROOF. Let Z be a central element in U. It commutes with H which decom-
poses V(n) into a direct sum of one-dimensional eigenspaces. Consequently,

the operator Z is diagonal with the same eigenvectors {v = vy,...,v,} as
H. In particular, there exist scalars «y,...,q, such that Zv, = ayv, for
all p. Now

Y, =a, 0+ Vv, = @0+ 1) 2,y = Z2Yv, =Y Zv, = a, Y,

Consequently, all scalars o, are equal, which shows that Z acts as a scalar.

p
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In order to determine the action of the Casimir element on V(n), we
have only to compute Cv for the highest weight vector v. By (3.4) and by
Lemma 4.3 we get

H? n? n{n + 2) "

CUZXYU+YXU+TU:TLU+?@: 5

O

We finally show that any finite-dimensional U-module is a direct sum of
simple U-modules.

Theorem V.4.6. Any finite-dimensional U-module is semisimple.

Proor. By Proposition 1.1.3, it suffices to show that for any finite-di-
mensional U-module V' and any submodule V' of V, there exists another
submodule V' such that V is isomorphic to the direct sum V' @& V”. Set
L =sl(2).

1. We shall first prove the existence of such a submodule V" in the
case when V' is of codimension 1 in V. We proceed by induction on the
dimension of V.

If dim(V’) = 0, we may take V" = V. If dim(V') = 1, then necessarily
V' and V/V' are trivial one-dimensional representations. Therefore there
exists a basis {v; € V', vy} of V such that Lv, = 0 and Lv, C V' = kv,.
Consequently, we have [L, Ljv, = 0 for ¢ = 1,2. Formulas (3.2) show that
the action of L on V is trivial. We thus may take for V" any supplementary
subspace of V' in V.

We now assume that dim(V’) = p > 1 and that the assertion to be proved
holds in all dimensions < p. We have the following alternative: either V' is
simple, or it is not.

1.a. Let us first suppose that V' is not simple; then there exists a sub-
module V; of V/ such that 0 < dim(V;) < dim(V’) = p. Let 7 be the
canonical projection of V onto V' = V/V;. The module V' = 7(V') is a
submodule of V of codimension one and its dimension is < p. This allows
us to apply the induction hypothesis and to find a submodule V" of V such
that V = V7 @ V”. Lifting this isomorphism to V, we get

V=V +r (V7).

Now, since dim(V”’) = 1, the vector space V; is a submodule of codimension
one of 7~ (V""). We again apply the induction hypothesis in order to find a
submodule V" of 771 (V"") such that 7~ (V") = V,; @ V". Let us prove that
the one-dimensional submodule V" has the expected properties, namely
V =2 V'@ V", Indeed, the above argument implies that V =V’ +V, + V";
now Vj is contained in V', which shows that V is the sum of V' and of
V", The formula dim(V) = dim(V") +dim(V") implies that this is a direct
sum.
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1.b. If the submodule V' is simple of dimension > 1, then Lemma 4.5 im-
plies that the Casimir element C acts on V' as a scalar o # 0. Consequently,
the operator C/a is the identity on V'. Now V/V" is one-dimensional, hence
a trivial module. Therefore C sends V into the submodule V’, which means
that the map C/a is a projector of V onto V'. As C/a commutes with any
element of U, the map C/« is a morphism of U-modules. By Proposition
I.1.3, the submodule V" = Ker (C/a) is a supplementary submodule to V.

2. General case. We are now given two finite-dimensional modules V! ¢ V
without any restriction on the codimension. We shall reduce the situation
to the codimension-one case by considering vector spaces W' C W defined
as follows: W [resp. W’] is the subspace of all linear maps from V to V'
whose restriction to V' is a homothety [resp. is zero]. It is clear that W' is
of codimension one in W. In order to reduce to Part 1, we have to equip
W and W’ with U-module structures. We give Hom(V, V') the U-module
structure defined by Relation (2.4). Let us check that W and W’ are U-
submodules. For f € W, let « be the scalar such that f(v) = av for all
v € V'; then for any = € L, we have

(2))(w) = 2f(v) - f(@v) = a(av) — alav) = 0.

A similar argument proves that W’ is a submodule. Applying Part 1, we
get a one-dimensional submodule W such that W =2 W’ @ W”. Let f be
a generator of W”. By definition, it acts on V"’ as a scalar « # 0. It follows
that f/a is a projector of V onto V'. To conclude, it suffices to check that f
(hence f/«) is a morphism of modules. Now, since W” is a one-dimensional
submodule, it is trivial. Therefore, we have xf = 0 for all z € L, which by
(2.4) translates into zf(v) — f(zv) =0 for all v € V. O

V.5 The Clebsch-Gordan Formula

Given two finite-dimensional U-modules, we consider their tensor product
equipped with the module structure given by Relation (2.3). By Theorem
4.6 it can be decomposed in simple modules. By the distributivity of the
tensor product with respect to direct sums and by Theorems 4.4 and 4.6,
it is enough to decompose V{(n) ® V(m) into simple modules. This is the
object of the next assertion known as the Clebsch-Gordan formula.

Proposition V.5.1. Consider two nonnegative integers n > m. Then
there exists an isomorphism of U-modules

Vin)V(m) 2 Vin+m)dV(in+tm—-2)&---@V(n-—m+2)oV(n—m).

Proor. It is enough to prove that, for all p with 0 < p < m, the module
V(n)®V (m) contains a highest weight vector of weight n+m —2p. In effect,
if so0, there exists a non-zero morphism of modules from V(n+m —2p) into
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V(n)®V(m). The module V (n+m—2p) being simple, the kernel of such a
morphism has to be zero, which means that the morphism is an embedding
of V(n+m—2p) into V(n) ® V(m). The submodules V(n +m — 2p) being
simple and of distinct highest weights, their sum in V(n) ® V(m) is direct.
Thus, the right-hand side of the Clebsch-Gordan formula embeds into the
left-hand side. To conclude, it suffices to check that both sides have the same
dimension. Now the dimension of V(n+m)®V(n+m—-2)&---®V(n—m)
equals

i(n—l—m—?p—f—l) = (n+1)(m+1)

p=0
= dim(V(n))dim(V(m))
= dim(V{(n) ® V(m)).

Proposition 5.1 will then be a consequence of the following lemma. O

Lemma V.5.2. Letv be a highest weight vector of V(n) and v’ be a highest
weight vector of V(m). Define v, = %va and v, = 5 YPv' forp > 0.
Then

P ; (m—p+D)(n—i)! ,
PCIECEL I

is a highest weight vector of V(n) ® V(m) of weight n +m — 2p.

PROOF. Set

P
— /
and w = E ;U @ V-
i=0

It is enough to check that Xw = 0 and Hw = (n + m — 2p)w. The latter
holds because the tensors v; ® ’l);)_i all are of weight n + m — 2p. Indeed,
by Lemma 4.3, we have

H(v; ® v]’)‘i) =H(v;) ® ’U;—i +v;® H(v;)—i) =(n+m-—2p)v; ® U;/)—z"

Let us compute Xw. By Lemma 4.3 again, we have

P P
Xw = Z a; X (v;) ® vy, +Z a;v; ® X (v,_;)
i=0 =0
P P
= Z a(n—i+1)v,_ ®uv,_, —I—Z a(m—-p+i+1)v; ®v, ;4
i=0 i=0

P
= Z (ai(n —i+1)+o;_(m—p+ z)) V1 @ Uy

i=1
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Now,

oa;(n—i+1)+a,_(m—p+i)
(m—p+i)(n—1)!

= (m —p)in! (n—i+1)
+(—1yim (m—p —I_(;__l;!)(!z!_ i+ 1)! (m—p+1)
= 0

O

Remark 5.3. (a) One deduces from Proposition 5.1 that the adjoint repre-
sentation V' (2) is related to V(0) and V(1) by

V(1)®2 =V (2) e V(0).

(b) The dual module V(n)* is isomorphic to the simple module V(n)
(prove it). Consequently, we have the U-linear isomorphisms

Hom(V(n),V(m)) 2 V(m)®@V{(n)" 2 V(m)® V(n).

V.6 Module-Algebra over a Bialgebra. Action of
s[(2) on the Affine Plane

We now introduce a concept that formalizes nicely many situations where
an algebra acts on another one.

Definition V.6.1. Let H be a bialgebra and A an algebra. We call A a
module-algebra over H if

(a) the vector space underlying A is an H-module, and

(b) the multiplication p: A® A — A and the unitn: k — A of A are
morphisms of H-modules, the tensor product A®@ A and the ground field k
being given the H-module structures described by Relations (I11.5.2-5.3).

In the literature, module-algebras over a bialgebra H are also called H-
algebras. By making explicit Condition (b) of Definition 6.1, we see that A
is a module-algebra over H if the action of H on A satisfies the following
two compatibility relations with the product and the unit of A:

z(ab) =Y _ (2'a)(z’'b) (6.1)
(z)

and
zl =¢g(z)l (6.2)
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where z is an element of H and a,b are elements of A. Here we used
Sweedler’s sigma notation (see 111.1.6). The map € is the counit of the
bialgebra H while 1 is the unit of A.

It is not always convenient to check Relation (6.1) for all elements x of
H. The following result shows that it is enough to check it for a set of
generators.

Lemma V.6.2. Let H be a bialgebra and A be an algebra with a structure
of H-module such that Relation (6.2) holds. Assume that H is generated
as an algebra by a subset X whose elements = satisfy Relation (6.1) for all
elements a and b in A. Then A is a module-algebra over H.

Proor. It suffices to check that if Relation (6.1) holds for z and y in H,
then it also holds for their product zy. Now, for all a,b € A, we have

(zy)(ab) = x(y(ab))

= (Y Wa)w")

(y)

= Y (#0@) (=" o)
() ()
= 3 (@y)a) (@)
(z)(v)
- 5 () (o).
(zy)
O

The following examples show that module-algebra structures appear in
a number of situations.

Example 1. Let ¢ be an automorphism of an algebra A. Consider the
algebra k[Z] of the group of integers with the bialgebra structure described
in II1.2, Example 2. If k[Z] acts on A by sending a generator of Z on ¢,

then A becomes a module-algebra over k[Z].

Let us describe module-algebras over enveloping algebras.

Lemma V.6.3. Let L be a Lie algebra. An algebra A is a module-algebra
over U(L) if and only if A has an L-module structure such that the elements
of L act on A as derivations.

PROOF. From Section 2 we know that a U(L)-module is an L-module and
conversely. Assume that A is a module-algebra over U(L). If z € L we have
A(z) =z ®1+1® z. For such an z, Relation (6.1) becomes

z(ab) = z(a)b+ ax(b)
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for all a,b € A, which shows that x acts as a derivation. The converse
statement results from Lemma 6.2. O

We now return to the Lie algebra s[(2) and show how the affine plane
becomes a module-algebra over the enveloping algebra U(sl(2)).

Theorem V.6.4. Define an action of the Lie algebra sl(2) on the polyno-
mial algebra klz,y] by

oP oP opP oP
oy Yo Tor Yoy
where P denotes any polynomial of k[z,y].
(a) Then k[x,y] becomes a module-algebra over U(sl(2)).
(b} The subspace k[z,y], of homogeneous polynomials of degree n is a

submodule of klx,y] isomorphic to the simple sl(2)-module V (n).

We have thus succeeded in packing into a single module all simple finite-
dimensional U(s[(2))-modules, thanks to the notion of module-algebra.

PrOOF. (a) We shall first check that the above formulas define an action
of sI(2) on k[z,y]. We have

o/ OP o, opP
XV = g (vgy) g (05y)
oP 9P P %P
Toz + xym B ya_y B ywé)xay
= HP.

One similarly shows that [H, X|P = 2XP and [H,Y|P = -2YP.

In order to conclude that we have a module-algebra structure, it is enough
in view of Lemma 6.3 to check that the generators X, Y, H act on k[z,y]
as derivations, which is clearly the case.

(b) Fix a non-negative integer n and set v = z" € k[z,y],,. Clearly, v is
a highest weight vector of weight n. For all p > 0 we have

1 n
- Py — n—p,p
vp—p!Yv—<p>x Y
if p<nand v, =0 if p > n. Since the monomials {’Up}p generate k[z,y],,

the latter is a s1{2)-module generated by a highest weight vector of weight
n. Hence, by Theorem 4.4, it is isomorphic to the simple module V(n). O

V.7 Duality between the Hopf Algebras U(s((2))
and SL(2)

The main objective of this section is to relate this chapter to Chapter I by
building a duality between U = U(s1(2)) and the Hopf algebra SL(2) de-
fined in 1.5. We start with the following definition due to Takeuchi [Tak81].
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Definition V.7.1. Given bialgebras (U, p,m,A,e) and (H,p,n, A, e) and
a bilinear form < , > on U x H, we say that the bilinear form realizes a
duality between U and H, or that the bialgebras U and H are in duality, if
we have

<uv,T >:Z <u,z’ ><v,z"” >, (7.1)
(x)
<uzy>=Y <u,z><uy>, (7.2)
(u)
<l,z>=¢(x), (7.3)
and
<u,1>=¢(u) (7.4)

for allu,v e U and z,y € H.

If, in addition, U and H are Hopf algebras with antipodes S, then they
are said to be in duality if the underlying bialgebras are in duality and if,
moreover, we have

< Su),z >=<wu,S(z) > (7.5)
forallueU and x € H.

Let us motivate this definition. Let ¢ be the linear map from U to the
dual vector space H* defined by

ou)(z) =< u,z>.

Similarly, ¥(z)(u) =< u,z > defines a linear map from H to U*. From
Proposition III.1.2 we know that the dual spaces U* and H* carry natural
algebra structures. If, in addition, the vector space H is finite-dimensional,
then the dual space H* has a natural bialgebra structure induced by the one
on H (see II1.2, Example 1). We are now ready to state a characterization
for duality between bialgebras.

Proposition V.7.2. Given bialgebras U and H and a bilinear form <, >
on U x H, the bilinear form realizes a duality between U and H if and only
if the linear maps ¢ and 1 are morphisms of algebras.

If, moreover, H is finite-dimensional, then the bilinear form realizes a
duality if and only if ¢ is a morphism of bialyebras.

We shall say that the duality between U and H is perfect when both
maps ¢ and 1 are injective. In case U and H are finite-dimensional, a
perfect duality between them induces isomorphisms of bialgebras between
U and H* and between H and U*.

PROOF. Let us express that ¢ is a morphism of algebras. Recall that the
unit of H* is equal to the counit € of H and that the product of two linear
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forms o and 3 of H™ is given by

(@p)(z) = a(z)B(x")
(z)

for all x € H. Then the relations p(1) = 1 and @(uv) = ¢(u)p(v) imply
<1,z >=p(1)(z) =e(z) and

<uv,z > = puv)(z) = (e(u)p(v))(z)

= Z o) (Ne)(@") = Z <u,z’ ><v,z” >.
() (z)

It results that Relations (7.1) and (7.3) of Definition 7.1 are equivalent
to the fact that ¢ is a morphism of algebras. By symmetry, we see that
Relations (7.2) and (7.4) are equivalent to the fact that ¢ is a morphism
of algebras.

Now assume that H is finite-dimensional. Then the dual space H* is
a bialgebra. We have already expressed the fact that ¢ is a morphism of
algebras. Let us express that it is a morphism of coalgebras. On one hand,
the relation ep = ¢ expressing that ¢ preserves the counit reads

e(u) = (ep)(u) = p(u)(1) =<u,1>.

On the other hand, if ¢ preserves the comultiplication, we have

<u,zy > = ou)(zy) = Alp(u))(z©y)
= Y o) (@)p(")(y)
(w)

Yo o<uiz><uy>.
(u)

Thus, the map ¢ is a morphism of coalgebras if and only if Relations (7.2)
and (7.4) are satisfied. O

We return to the enveloping algebra U = U(sl(2)). We wish to set it
in duality with the Hopf algebra SL(2). Our first task is to construct a
morphism of algebras 1 from the algebra M (2) = kla, b, ¢, d] (introduced in
1.4) to the dual algebra U*. We shall deduce a bilinear form on U x M(2)
defined by < u,z >= ¥(z)(u) and satisfying Relations (7.2) and (7.4).
Now, building 1 is equivalent to giving four pairwise commuting elements
A,B,C, D of U*.

The definitions of A, B,C, and D use the simple U-module V(1) with
the basis {vy, v;} described in Section 4. Given an element u in U, we set

o= (50 D)
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where p is the representation p(1) corresponding to V(1). This defines four
linear forms on U, hence four elements A, B, C, D of the dual space
U*. The comultiplication of U being cocommutative, the dual algebra U*
is commutative. Therefore, the quadruple (A, B,C, D) defines a unique
morphism of algebras ¢ : M(2) — U™ such that

Proposition V.7.3. The bilinear form < u,x >= ¢ (x)(u) realizes a du-
ality between the bialgebras U and M (2).

PROOF. Tt remains to check Relations (7.1) and (7.3). We start with (7.3).
The identity p(1) = 1 yields

(Shez i) =(& o) -(5 )

_ [ ela) =(b)
-(9 5o (7
by definition of the counit in M (2). Now, from Relation (7.2) we get

<lLizy>=<l,z><1l,y>.

Both maps z — < 1,z > and ¢ are morphisms of algebras and they coincide
on the generators a,b,c,d of M(2) by (7.7). Therefore, they have to be
equal, which proves Relation (7.3).

We now turn to the proof of Relation (7.1). Let us denote by C(z) the
following condition on an element x of M (2): For any pair (u, v) of elements
of U, we have

<uv,T >= Z <u,z ><v,z’ >.
(z)
Let us first show that C(1) is satisfied. Indeed, from (7.4) we get

<uv,l >=¢(uww) =e(we(v) =<u,1 ><v,1>.

We next prove that Conditions C(a), C(b),C(c), C(d) hold. By definition,

we have
(u) = u u <u,a> <ub>
plu) = C(u) D(u) <u,c> <u,d> )
Let us express that p(uv) = p(u)p(v). We have

<uv,a > <uv,b>
<wuv,c> <uv,d>

_ <u,a> <wu,b> <wv,a> <uv,b> (7.8)
T\ <u,ec> <u,d> <wv,ec> <v,d> )’ )
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Expanding this matrix product, we get exactly the four desired conditions
since, as we know from Chapter I, the coproduct on M (2) is defined by the

matrix relation
a b a b a b
A(c d>_<c d>®<c d)'

In order to conclude the proof of (7.1), we need to check Condition C(x)
for an arbitrary element x of M(2). To this end, we first observe that if
C(z) and C(y) are verified, then so is C(Az + y) for any scalar }; second,
we use the following lemma, which completes the proof of the proposition.

O

Lemma V.7.4. If Conditions C(z) and C(y) hold, then so does C(zy).
PrOOF. Relation (7.2), and Conditions C'(z) and C(y) imply that

<wv,xy > = Z < (w),z >< (w)",y >

(uw)

Z <u'v,x><uv,y >

(u)(v)

= Z <u,z >< v 2 ><d Yy >< oy >
() (v){(=)(y)

I

They also yield

Z < u, (zy) >< v, (zy)" >
(zy)
= Z <u,z'y ><v, 2y’ >
(z)(y)
= Yoo < sy ><d 2 >< Y >
() (v)(2)(y)
= <uv,zy > .

a

The duality between M (2) and U is not perfect: the morphism 1 is not
injective as the following lemma shows.

Lemma V.7.5. We have y(ad — bc) = 1.

Equivalently, < u,ad — bc >= &(u) for all elements u of U.

ProOF. Lemma 1.5.2 as rephrased in (11.4.5) means that the element ad—bc
is grouplike. Consequently, by (7.1) we have

< uv,ad — be > =< u,ad — bc >< v,ad — bc >
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for any pair (u,v) of elements of U. On the other hand, by (7.3) we have
<1l,ad —bc>=c¢€(ad —bc) = 1.

This implies that the linear map u — < u,ad — bc > is a morphism of
algebras from U to k. To show that this morphism coincides with the
counit ¢, it suffices to check that both maps have the same values on the
generators X, Y and H. Now we have

< X,ad — bc >
= egla) <X, d>+<X,a>e(d)—e(b) < X,c>—- < X,b>¢e(c)
= 0=¢(X).
Similarly, we get < Y,ad — bc >= 0 = ¢(Y). Finally,
< H,ad — bc >

= gla) < H,d>+ < H,a>¢e(d)—¢e(b) < Hc>— < H,b>e(c)
= —-1+1=0=¢(H).
]

As a consequence of the previous lemma, the morphism of algebras 1 :
M(2) — U* factors through SL(2) = M(2)/(ad — bc — 1). We still denote
by 1 the induced morphism of algebras from SL(2) to U* and by <, >
the corresponding bilinear form.

Theorem V.7.6. The bilinear form < u,x >= 1p(x)(u) realizes a duality
between the Hopf algebras U and SL(2).

PROOF. We already know that ¢ is a morphism of algebras. By Proposition
7.2 we are left with showing that ¢ : U — SL(2)* is a morphism of algebras
too. Now, the projection from M(2) onto SL(2) dualizes to an injective
morphism from SL(2)* into M(2)*. It is clear that, when composing the
latter with ¢, we get the morphism of algebras ¢ : U — M (2)" investigated
earlier. Consequently, ¢ : U — SL(2)* is a morphism of algebras. This
shows that we have a duality between bialgebras.

It remains to examine the antipodes and to check Relation (7.5). Let us
start with the generators. In the abridged matrix form we have

<500, 5 )> = ASE0) = o)
- (6)
= <X,<_dc _ab>>

- <x(3 3)

One proceeds similarly with Y, H, and 1.
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For arbitrary elements of U and SL(2), we use the following result. O
Lemma V.7.7. Let u,v be elements of U. If
< Su),z>=<u,Sx)> and <Sw),z>=<wv ) >

for all z € SL(2), then < S(uwv),x > = < uw, S(x) >. Similarly, let z,y be
elements of SL(2). If

<Su)yz > =<u,Sx) > and <Su)y>=<uSy) >
for alluw e U, then < S(u),zy > = < u, S(zy) >.
PROOF. Theorem 111.3.4 (a} and Definition 7.1 imply that

< S{uv),z > = < SwW)S(u),z >

= > <S(v),2 >< S(u),z" >
(x)

= Z <u,S(z") >< v, S(z") >
(@)

= Z <u,S(z) >< v, S(x)" >
(8(=))

= <uv,S(z)>.

The proof of the second assertion is similar. ]

To the duality between U and SL(2) corresponds a duality between U-
modules and SL(2)-comodules. We now investigate this. In I11.7 we showed
that the vector space k[z, y],, of homogeneous polynomials of total degree n
had a natural SL(2)-comodule structure. By duality, the dual vector space
k[z,y] has a module structure over the algebra SL(2)*, hence over the
algebra U via the morphism ¢ : U — SL(2)". The following result gives
the structure of k[z,y];, as a U-module.

Theorem V.7.8. The U-module klx,y];, is simple with highest weight n.

In other words, the SL(2)-comodule k[z,y],, corresponds by duality to
the U-module V (n).

PROOF. We shall show that the linear form on k[z,y],, defined by
f(qun-l) = 6ni

is a highest weight vector with weight n of the U-module k[z, y],, which will
imply that k[z,y]; contains a submodule isomorphic to the simple module
V(n). Since

dim(V(n)) = n + 1 = dim(k[z, yl5),

we get klz,y|r = V(n).
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In order to prove that f is a highest weight vector, we need the identity
(wf)(zy" ) = < u,a’c" " > (7.9)

for all u € U and for all 4 such that 0 <4 < n. Indeed, by definition of f,
by II1.6, Example 2 and by Lemma I11.7.4 we have

wha'y)
= @e N(A4(y" )

n,r+s

<u,d"bTEdV T > 6, 6

(n R Z) <u,d" b TEdV T > 6
>

0
= <u,ac

Let us apply Relation (7.9) to H. A straightforward computation using
(7.2-7.3) and the definition of the bilinear form yields

< H,d'dd >= b0
Consequently, we have (H f)(z'y"™"*) = né,,;, which implies that Hf = nf.
It remains to prove that X f = 0. This is a consequence of Relation (7.9)
applied to X and of the fact that < X,a'¢’ >= 0 for all 7 and j. Let us

prove the latter. First, we have < X,1 > = ¢(X) = 0. Next, if ¢ > 0, we
have by (7.2-7.3)

<X,a'> = ela)<X,a" P>+ < X,a>e@ )
= <X,a"l>=...=<X,a>=0.

Similarly, if 7 > 0 we get
<X, d>=¢lc)< X, ' >+ < X,e>e(d ) =0.
Consequently,

<X,d'd >=¢(a) < X,dd >+ < X,a" >¢e(d) =0.
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V.8 Exercises

1. Let L be a Lie algebra. Show that [L, L] is an ideal of L and that the
quotient Lie algebra L = L/[L, L] is abelian. Prove that if f is a
morphism of Lie algebras from L to any abelian Lie algebra V', then
there exists a unique linear map f2® from L* into V such that f is

the composition of f2® and of the canonical projection from L onto
L,

2. For any Lie algebra L determine the group of grouplike elements of
the Hopf algebra U(L).

3. Let A be an algebra and Der(A) the vector space of all derivations
of A. Show that the commutator of any two derivations is again a
derivation and that Der(A) is a Lie subalgebra of gl(A).

4. Show that any algebra A is a module-algebra over the enveloping
algebra of the Lie algebra Der(A) and over the bialgebra k[G] where
(7 is the group of algebra automorphisms of A.

5. Let L be a Lie algebra and p : L — gl(V') a finite-dimensional repre-
sentation of L. Define a symmetric bilinear form on L by

<,y >, = tr(p(z)p(y))

where tr denotes the trace of endomorphisms.
(a) Prove that this form is invariant, i.e., we have
<[z,yl,z >, =<aly, 2] >,

for all z,y,2z € L.

(b) Let {z,},<;<4 e a basis of L. Assume the form < , > non-
degenerate. Define a new basis {z'},;<, of L by requiring that
< a,a) >, = 6,;. We get an element C, = 37,y z,x" of
U(L). Show that C, belongs to the centre of the enveloping
algebra and that tr(p(C,)) = d = dim(L).

(¢) (Whitehead Lemma) Let f : L — V be a linear map satisfying
the relation

flz,y) =z f(y) —yf(x)

for all x,y € L. Assume that the form <, > is non-degenerate
and that C, is well-defined. Show that we have

C,f(z)= x( Z xlf(zl)>
1<i<d

Deduce that, when p(C p) is invertible, there exists a vector v in
V such that f(x) = av for all z in L.
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10.
11.

12.

13.

14.

15.
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Find all invariant symmetric bilinear forms of s[(2) (as defined in the
previous exercise; assume that the field k is of characteristic zero).

Show that the enveloping algebra U (sl(2)) is Noetherian and has no
divisors of zero. Find its centre (Hint: proceed by analogy with V1.4).

Assume that k is a field of characteristic zero. Show that the Lie
algebra s[(2) has no ideals but {0} and the algebra itself. Deduce
that sl(2) = [sl(2), sI(2)].

. Show that the dual of the U-module V'(n) is isomorphic to V(n).

Determine all Hopf algebra automorphisms of U(s((2)).

Check that there is an antiautomorphism T of algebras of U(sl(2))
such that T'(X) =Y, T(Y) = X, and T(H) = H. Prove that T is a
morphism of coalgebras. Find all non-degenerate symmetric bilinear
forms ( , ) on the simple module V (n) such that (zv,v") = (v, T'(z)v")
for all z € U(sl(2)) and v,v" € V(n). Show that the basis of V(n)
consisting of the vectors vy, . .., v, (defined in Section 4) is orthogonal
for such a form.

(Bialgebra structure on the quantum plane) (a) Show that the formu-
las

Alz)=z®z, Aly)=z0y+y®l, &@)=1 £y =0

equip the free algebra k{z,y} and the quantum plane k, [z, y| with a
bialgebra structure.

(b) Prove that an algebra R is a module-algebra over the bialgebra
k{z,y} [resp. over k,[r,y] | if and only if R possesses an algebra
endomorphism 7 and a 7-derivation é [resp. 7 and é§ such that the
relation 67 = ¢76 holds].

(c) Find all k/[z, y]-algebra structures on the polynomial algebra &[]
(consider only the ones for which 7 is an automorphism). In par-
ticular, show that, when 7 is the algebra automorphism 7, of k[z]
considered in TV.2, then § is necessarily a scalar multiple of §, (see

Exercise 4 in Chapter IV).

Show that any antilinear involution % on a complex Lie algebra L
such that [z,y]* = [y*,z*] for all z,y € L induces a Hopf *-algebra
structure on U(L).

Prove that there exists a unique Hopf x-algebra structure on U(s[(2))
such that X* =Y, Y* =X, and H* = —H.

Find all Hopf x-algebra structures on U(sl(2)) up to equivalence,
assuming that the ground field is the field of complex numbers.
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V.9 Notes

There exist numerous textbooks on the theory of Lie algebras. See, for
instance, [Bou60][Dix74][Hum72][Jac79][Ser65][Var74]. The content of this
chapter is essentially taken from these sources. We found the proof of The-
orem 4.6 in Serre’s book [Ser65]. As for Definition 7.1, we took it from
[Tak81]. Let us supplement the content of this chapter with the following
remarks.

(Free Lie algebras) Let X be a set. Consider the smallest Lie subalgebra
L(X) of the free algebra k{X} containing X. Denote by i the injection
of X into £{X). The free Lie algebra £({X) enjoys the following universal
property: For any set-theoretic map f from X into a Lie algebra L, there
exists a unique morphism of Lie algebras f : £(X) — L such that f = foi .
It follows from this universal property, from Proposition 1.2.1, and from
Theorem 2.1 that there is an isomorphism of algebras

U(L(X)) 2 k{X).

A description of bases for £{X) may be found in [Bou60], Chap. 2. See also
[Reu93].

(Primitive elements of the enveloping bialgebra) Any Lie algebra L is
contained in the Lie algebra of primitive elements of its enveloping algebra.
In characteristic zero, this embedding is an equality:

L = Prim(U(L)).

When applied to free algebras, one gets £{X) = Prim(k{X}) (see [Bou60],
Chap. 2).

(Real forms) A real form of a complex Lie algebra L is a real Lie subal-
gebra Ly of L such that the embedding of the complexification Ly ® 1Ly
into L is an isomorphism of complex Lie algebras. Here ¢ denotes a square
root of —1. To any real form of L, one associates its conjugation, which is
the antilinear involutive endomorphism of Lie algebras o given by

olz +iy) =z — 1y

for all z,y € Lg. Conversely, given any such involution of L, we obtain a
real form by
Lp={zreLl|o(z) =z}
For any real form of L with conjugation o, we define a Hopf *-algebra
structure on the enveloping algebra U(L) by x = SoU{(o). In other words,
we have 1* =1 and

(2y...7,)" = (~1)"0(z,)...0(x,)

for all z,,...,x, € L. Conversely, suppose we have a Hopf *-algebra struc-
ture on the enveloping algebra U(L). Since # is a coalgebra morphism, it
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preserves the Lie subalgebra of primitive elements, which is L (we are in
characteristic zero). It is easy to check that the subspace of all elements
x of L such that z = —z* is a real form of L. We thus see that the real
forms on a complex Lie algebra L are in one-to-one correspondence with
the Hopf x-algebra structures on U(L).

For instance, the real Lie subalgebra su(2) of 2 x 2-matrices M in s[(2)
such that M = —'M is a real form of s[(2). The vectors A = (X —Y),
B = L(X+Y), iH form a real basis of su(2) such that

[4,B]=C, [B,C]=A, [C,A]=B.

This proves that su(2) is isomorphic to the Lie algebra so(3) of real anti-
symmetric 3 x 3-matrices.

(Duality) Theorem 7.6 asserts the existence of a Hopf algebra morphism
from SL(2) to U(sl(2))*. This morphism is actually an isomorphism from
SL(2) to the restricted dual U(sl(2))°. This holds, more generally, for
any simply-connected algebraic group in characteristic zero (see [Abe80]
[Hoc81] [JS91b] [Sweb9]).



Chapter VI

The Quantum Enveloping Algebra
of s[(2)

The aim of Chapters VI-VII is to construct a Hopf algebra U, = U, (s(2))
which is a one-parameter deformation of the enveloping algebra of the Lie
algebra s[(2) investigated in Chapter V, and which is in duality with the
Hopf algebra SL (2) defined in Chapter IV. It will be our second main
example of a quantum group. When the parameter ¢ is not a root of unity,
the algebra U, has properties parallel to those of the enveloping algebra
of 5[(2). In the present chapter we classify the simple finite-dimensional
modules of U, and determine its centre. We close the chapter with a few
considerations on the case when ¢ is a root of unity.

We assume throughout this chapter that the ground field £ is the field
of complex numbers.

VI.1 The Algebra U,(sl(2))

Let us fix an invertible element ¢ of & different from 1 and —1 so that the

fraction q_é —+ is well-defined. We introduce some notation.

For any integer n, set

n

" —q
[n] = — 1
q9—4q
These g-analogues are more symmetric than the ones defined in IV.2, as
shown by the relations

=" g g g (L)

[-n]=~[n] and [m+n]=q"[m]+q "n]. (1.2)
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Observe that, if g is not a root of unity, then [n] # 0 for any non-zero
integer. This is not so when ¢ is a root of unity. In that case, denote by d
its order, i.e., the smallest integer > 1 such that ¢¢ = 1. Since we assume
¢* # 1, we must have d > 2. Define also

e:{ d ifdis odd (1.3)

d/2 when d is even.

Let us agree that d = e = oo when ¢ is not a root of unity. Now it is easy
to check that
[n] = 0 <= n = 0 modulo e. (1.4)

We also have the following versions of factorials and binomial coefficients.
For integers 0 < k < n, set [0]! =1,

K] = [1)[2]... [%] (1.5)
if £ >0, and -
n n|!

[ k ] NOTEDh (16)

These g-analogues are related to those of IV.2 by

[n] = ¢~ (=1 (n)yer [l = q—n(n—l)/Z(n)!q27 (1.7)

[ Z ] _ k) ( Z )Q2. (1.8)

With this new notation we can rewrite Proposition IV.2.2 as follows. If z
and y are variables subject to the relation yz = ¢*zy, then we have (n > 0)

and

n

(z+y)" Zq’“”’“){ }’“”’“ (1.9)

k=0

Definition VI.1.1. We define U, = U (s1(2)) as the algebra generated by
the four variables E,F, K, K~ with the relations

KK '=K'K=1, (1.10)

KEK '=¢*E, KFK!'=q¢°F, (1.11)
and )
K—-K—

The rest of the section is devoted to a few elementary properties of U, P
The following lemma has an easy proof left to the reader.



VI.1 The Algebra U, (s((2)) 123

Lemma VI.1.2. There is a unique algebra automorphism of U, such that

wE)=F, wF)=F, wkK)=K"

The automorphism w is sometimes called the Cartan automorphism. We
now state a g-analogue of Lemma V.3.1.

Lemma VI.1.3. Let m > 0 and n € Z. The following relations hold in
U :
g EmKn — q—2mn K"E™ FmKn — q2mn K™

A(mfl)K _ qm—lel

EF™ = [mFme
[E, F™] [m] p—
m—1lg —(m—l)K—l
= [m)? 1 __ Fml,
g—q
—(m—l)K__ m—1p—1
[E™F] = [m]? 5!
4—q
_ qm—lK_q—(m—l)K—l
= [m]E™! = .

PROOF. The first two relations result trivially from Relations (1.11). The
third one is proved by induction on m using

K- K!

[E,F™ = [E,F™ F+ F" ' [E,F] = [E,F" ' |F + F™~!
q—q7!

as in the proof of Lemma V.3.1. Applying the automorphism w to the third
relation, one gets the fourth one. O

We now describe a basis of U, by showing that U, is an iterated Ore
extension. We refer to 1.7-8 for information concerning Ore extensions.

Proposition VI.1.4. The algebra U, is Noetherian and has no zero divi-
sors. The set {EiFjKe}ivjeN;éez is a basis of U,.

PRrOOF. Define A, = k[K, K~']. We shall construct two Ore extensions
Ay C A, such that A, is isomorphic to U,. First, observe that the algebra
A, has no zero divisors and is Noetherian as a quotient of a (Noetherian)
two-variable polynomial algebra. The family {K*},.5 is a basis of A,.

Consider the automorphism «; of A, determined by o, (K) = ¢*K and
the corresponding Ore extension A, = Ay[F, aq,0]: the latter has a basis
consisting of the monomials {F7K*} jen, ecz- An argument analogous to
the one used to prove Lemma IV.4.2 shows that A, is the algebra generated
by F,K, K~ and the relation FK = ¢’KF.
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We now build an Ore extension A, = A;[E, a4, 6] from an automorphism
a; and an «;-derivation of A;. The automorphism «, is defined by

o (FIKY = ¢ *FIK". (1.13)

Let us take as given for a moment that there exists an a;-derivation é such

that L
K-K~
qa—4q

Then the following relations hold in A,:
EK =a,(K)E+6§(K)=q *KE

and
K—-K!

et

EF = a,(F)E + §(F) = FE +

From these one easily concludes that A, is isomorphic to U,- It then re-
sults from Corollary 1.7.2 and from Theorem 1.8.3 that U, has the required
properties. 0

It remains to prove the following technical lemma in order to complete
the proof of Proposition 1.4.

—1

Lemma VI1.1.5. Denote by 6(F)(K) the Laurent polynomial %, and
set §(K*) =0 and
j—1
S(FIK®) =" FI'6(F) (¢ K)K* (1.14)
=0

when j > 0. Then é§ extends to an ay-derivation of A,.

PRrROOF. We must check that, for all j,m € N and all £,n € Z, we have
S(FIKY F™K™) = a(FIKY6(F™K™) + §(F/KHF™K™.  (1.15)

Let us compute the right-hand side of (1.15) using (1.11), (1.13), and (1.14).
We have

o (FIKYS(F™K™) + §(F K*) F™K"™
m—1
— Z q—ZZ FjKeFm“lé(F)(q“ziK)K"
=0
j—1
+ ) FITS(F) (¢ K)K FM K™
1=0
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Ju

m—
— Z q-2€—2€(m~1) F‘j+m~16(F) (q—2iK)KZ+n
= .
+ Z q—%m Fm+j~15(F) (q—2i—2mK)KZ+n
=0
m-—1
— Z q—%m Fm+j_1(5(F) <q—2iK)K£+n
=0
j+m—1
+ Z q~22m Fm+]—15(F) (q—2iK)KZ+n
j+m—71
_ q-%m ( Z Fj+m—1§(F) <q—2iK)KZ+n)
=0
_ q—QZmé(Fj+mKé+n)
= S(FVK'-F™K™).

V1.2 Relationship with the Enveloping Algebra of
sl(2)
One expects to recover U = U(sl(2)) from U, by setting ¢ = 1. This is

impossible with Definition 1.1. So we first have to give another presentation
for U,
q

Proposition V1.2.1. The algebra U, is isomorphic to the algebra U; gen-
erated by the five variables E, F, K, K~ L and the relations

KK '=K 'K =1, (2.1)

KEK'=¢*E, KFK '=q?F (2.2)

{E7F]:L7 (q_q-_l)L:K_K*la (23)
[L,E]=q(FK + K7 'E), [L,Fl=—-q¢ ' (FK+K'F). (2.4)

Observe that, contrary to U, the algebra Ué is defined for all values of
the parameter ¢, in particular for ¢ = 1. In some sense, it would have been
better to proceed through the whole theory of the quantum enveloping
algebra of s[(2) with U, rather than with U, but the simpler presentation
given in Section 1 is sufficient for our purposes.

PROOF. Set
e(E)=E, @(F)=F, @K)=K
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and

It is clear that ¢ gives rise to a well-defined morphism of algebras from U,
to U, . Let us show that ¢ : U, — U, is well-defined too. It suffices to check
that the images under 1 of the defining Relations (2.1) hold in the algebra
U,. This is clearly true for Relations (2.1-2.2) and for [E, F] = L. For the
remaining relation in (2.3) we have

(¢=¢ (L) =(g—q B F]=K-K .
For the first relation in (2.4) we get

[WL)9(E) = (B.F)B] = ——[K~K'.E]
_ (-1EK+(#-1)K'E
B q—q!

= ¢(EK+ K 'E).

One derives the last relation in a similar fashion.
The reader may now verify that ¢ and ¢ are reciprocal algebra mor-
phisms by checking the necessary relations on the generators. O

The relationship with the enveloping algebra U is given in the following
statement.

Proposition VI1.2.2. If g =1, we have
U, 2U[K]/(K*~1) and U=U{/(K-1).

PROOF. It suffices to prove the first isomorphism. Now Uj has the following
presentation: it is generated by E, F, K, K~!, L and Relations (2.1-2.4) in
which ¢ has been replaced by 1, namely

KK '=K 'K =1, (2.5)

KEK'=E, KFK'=F, (2.6)
[E,F]=L, K—-K'=0, (2.7)

[L,E) = (EK + K~'E), [L,F]=—(FK+ K 'F). (2.8)

Relations (2.5-2.6) imply that K is central. Relation (2.7) yields K? = 1,
which allows one to rewrite the Relations (2.8) as

[L,E] = 2EK, [L,F]=-2FK. (2.9)
We then get an isomorphism from Uj to U[K]/(K? — 1) by sending E to
XK, FtoY, K toK,and L to HK. O

In particular, the projection of U] onto U is obtained by sending E to
X,FtoY, K tol,and L to H. One may use this projection to rederive
certain relations in U (for instance, Lemma V.3.1) from their g-analogues
inU’.

q
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VI.3 Representations of U,

We assume in this section that the complex parameter ¢ is not a root of
unity. Our aim is to determine all finite-dimensional simple U gmodules
under this assumption by closely following the methods of Section V.4.

For any U -module V and any scalar A 5 0, we denote by V" the subspace
of all vectors v in V such that Kv = Av. The scalar X is called a weight of
Vif V£ {0}.

Lemma VL3.1. We have EV> C V&> and FV> c V7 2,
PROOF. For v € V* we have
K(Ev) = ¢*E(Kv) = ¢ XEv and K(Fv)=q ?F(Kv) =q¢ 2\ Fu.
O

Definition VI1.3.2. Let V be a U -module and A be a scalar. An element
v # 0 of V is a highest weight vector of weight \ if Ev =0 and if Kv = \v.
A U,-module is a highest weight module of highest weight A if it is generated
by a highest weight vector of weight .

Proposition VI.3.3. Any non-zero finite-dimensional U -module V' con-
tains a highest weight vector. Moreover, the endomorphisms induced by F
and F on 'V are nilpotent.

ProOOF. Since & = C is algebraically closed and V is finite-dimensional,
there exists a non-zero vector w and a scalar « such that Kw = ow. If
Ew = 0, the vector w is a highest weight vector and we are done. If not,
let us consider the sequence of vectors E™w where n runs over the non-
negative integers. According to Lemma 3.1, it is a sequence of eigenvectors
with distinct eigenvalues; consequently, there exists an integer n such that
E™w # 0 and E™ 1w = 0. The vector E™w is a highest weight vector.

In order to show that the action of E on V is nilpotent, it suffices to check
that 0 is the only possible eigenvalue of E. Now, if v is a non-zero eigen-
vector for E with eigenvalue X # 0, then so is K™v with eigenvalue ¢~2" \.
The endomorphism E would then have infinitely many distinct eigenvalues,
which is impossible. The same argument works for F. (]

Lemma V1.3.4. Let v be a highest weight vector of weight A. Set vy = v
and v, = ﬁ EFPy for p > 0. Then

—(=1) ) . gp— 1)L
- q q
Kv, = A\q 2pvp, Ev, = = v Fu, | = [p]uv,.

PROOF. These relations result from Lemma 1.3. O

We now determine all finite-dimensional simple U -modules.



128 Chapter VI. The Quantum Enveloping Algebra of 5[(2)

Theorem VI.3.5. (a) Let V be a finite-dimensional U, -module generated
by a highest weight vector v of weight A. Then

(i) The scalar X is of the form X = € q" where e = £1 and n is the integer
defined by dim (V) =n+ 1.

(ii) Setting v, = FPv/[p]!, we have v, = 0 for p > n and, in addition,
the set {v = vy, vy,...,0,} is a basis of V.

(iii) The operator K acting on'V is diagonalizable with the (n+1) distinct
eigenvalues {eq™,eq" 2, ... eq "2 eq7"}.

(iv) Any other highest weight vector in V' is a scalar multiple of v and s
of weight X.

(v) The module V is simple.

(b) Any simple finite-dimensional U, -module is generated by a high-
est weight vector. Two finite-dimensional U-modules generated by highest
weight vectors of the same weight are isomorphic.

PROOF. (a) According to Lemma 3.4, the sequence {v, },>( is a sequence of
eigenvectors for K with distinct eigenvalues. Since V is finite-dimensional,
there has to exist an integer n such that v,, # 0 and v,,,; = 0. The formulas
of Lemma 3.4 then show that v, = 0 for all m > n and v,, # 0 for all
m < n. By Lemma 3.4, we also have

q—n)\ _ qn/\—l

0=FEv, ;= i

Uy, -
Hence, ¢~"\ = ¢"A~!, which is equivalent to A = #+¢". The rest of the
proof of (i)—(iii) is as in the classical case (see Theorem V.4.4).

(iv) Let v' be another highest weight vector. It is an eigenvector for the
action of K; hence, it is a scalar multiple of some vector v,. But, again by
Lemma 3.4, the vector v, is killed by F if and only i = 0.

(v) Let V' be a non-zero U, -submodule of V and let v’ be a highest
weight vector of V’. Then v also is a highest weight vector for V. By (iv),
v’ has to be a non-zero scalar multiple of v. Therefore v is in V’. Since v
generates V', we must have V C V', which proves that V is simple.

(b) The proof is the same as for Theorem V.4.4 (b). O

Theorem 3.5 implies that, up to isomorphism, there exists a unique sim-
ple U -module of dimension n+1 and generated by a highest weight vector
of weight £¢™. We denote this module by V, ,, and the corresponding mor-
phism of algebras U, — End(V&n) by p. ,. Observe that the formulas of
Lemma 3.4 may be rewritten as follows for V_

n—2
Kv,=¢eq" ", (3.1)

Ev,=¢en—-p+1v, 4, (3.2)

and
Fu, 1 = [plv, (3.3)
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As a special case, we have V_ ; = k. The morphism p, , is given by

Ps,O(K) =&, Pe,o(E) = Pe,o(F) =0.

We shall see in VIL.1 that p, , may be identified with the counit of a Hopt
algebra structure on U, . It will imply that the module V] ¢ is trivial and
that any trivial U, - module is isomorphic to a direct sum of copies of Vi o-
On the other hand, the module V_; 4 is not trivial.

On the (n+ 1)-dimensional module V., the generators F, F' and K act

g,n’?

by operators that can be represented on the basis {vy,vy,...,v,} by the
matrices
0 [n] 0 e 0
0 0 n—1 -+ 0
0 O ' ) 1
0 0 0 0
o 0 - 0 0
1 0 - 0 0
pE TL(F) = 0 [2] O 0 ?
0 0 [n] 0O
and
g 0 0 0
0 ¢" 2 0 0
Pen(K)=c ' :
0 0 q~n—|—2 0
0 0 0 qg "

So far, we have built U -modules generated by highest weight vectors
whose weights A had special values. Let us now show that there exist highest
weight modules with arbitrary highest weights.

Let us fix a scalar A # 0. Consider an infinite-dimensional vector space
V() with denumerable basis {v;};en. For p > 0, set

Ku, :/\q’2pvp, K~ v =A"1g%y (3.4)
A~ g
Evypy = R Fo,=[p+1]vpy, (3.5)
and EFv, = 0.

Lemma VI.3.6. Relations (3.4-3.5) define a U,-module structure on V(A).
The element v, generates V(\) as a U -module and is a highest weight vec-
tor of weight A.
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PRrROOF. Immediate computations yield

KK‘lvp = Ups
KEK'lvp = ¢*Ev

1 __
K™ Kuv, =,
KFK 'y, =q *Fuv,

D’

‘We also have

q~p/\_qp)(1 q~(p*1))\_qp71)\~1
B, = (p+1122 - = ) v
_ q—2p/\ qZp)\fl
B g—q 1 7
K-K!
IR

This proves that Relations (3.4-3.5) define a U -module structure on V().

Next, we have Kvy = Av, and Evy = 0, which means that v, is a highest
weight vector of weight . Finally, (3.5) implies that v, = FPv,/ [p]! for all
p, which proves that V() is generated by v,. |

By analogy with the classical case, the highest weight U -module V'())
is called the Verma module of highest weight A. It enjoys the following
universal property.

Proposition VI.3.7. Any highest weight U, -module V' of highest weight
X is a quotient of the Verma module V (X).

PRrOOF. Let v be a highest weight vector generating V. We define a linear
map f from V(X) to V by f(v,) = 1/[p]! FPv. Lemma 3.4 implies that f is
U,-linear. Since f(vy) = v generates V, the map [ is surjective. m]

In particular, the simple finite-dimensional module V ,, described above
is a quotient of the Verma module V(e¢™). As a consequence, the module
V()\) cannot be simple when ) is of the form +¢" where n is a nonnegative
integer.

V1.4 The Harish-Chandra Homomorphism and
the Centre of U,

Our next objective is to describe the centre Z, of U, in case ¢ is not a root
of unity. We assume this throughout this section.

We start by introducing a special central element of U,. It is sometimes
called the quantum Casimir element.
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Proposition V1.4.1. The element

—1 -1 —1lg—1
K +gK K K
@ KreK T _ppy e KT
(g—q71) (g—qh)

belongs to the centre of U,.

C,=EF +

Proo¥. It suffices to check that €, commutes with the generators K, E, F.
The commutation with K is clear from KEFK™! = EF. As for E, we
have

K +q 'K ¢ 'K +gK™!
rFC =FFF+F~———~———=FEFE+ ———~-FE=CFE.
! (g—q71)? (g—q1)? !
Similar argument gives the result for F. ]

Let UqK be the subalgebra of U, of all elements commuting with K.

Lemma VI1.4.2. An element of U, belongs to U{IK if and only if it is of
the form

> F'PE (4.1)

>0
where Py, P, ... are elements of k[K, K 1].
PRrooF. This is a consequence of the fact that {FiKeEj}i7j€N;¢€Z is a
basis of U, and that K(F'K*E/)K~! = ¢*0=" FIK'EJ. u
Let us consider the left ideal I = U EN UqK of UqK .
Lemma VL4.3. We have I = FU,NUF and UX = k[K, K '[& 1.

PROOF. Let u = 3",5, F*P,E" be an element, of U, If u also lies in U, E,
then P, = 0. Hence, u belongs to FU,NU, qK and conversely. Since the form
(4.1) is unique for any element of U(f{ , we get the desired direct sum. O

It results from [ = FUq N UqK that I is a two-sided ideal and that the

projection ¢ from UqK onto k[K, K~!] is a morphism of algebras. The map
@ is called the Harish-Chandra homomorphism. It permits one to express
the action of the centre Z, on a highest weight module.

Proposition V1.4.4. Let V be a highest weight U, -module with highest
weight \. Then, for any central element z of U, and any v € V, we have

zv = @(2)(A)v.
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Recall that ¢(2) is a Laurent polynomial in K and that ¢(z)()) is its
value at A.

PROOF. Let vy be a highest weight vector generating V' and z a central
element of U,. The element z can be written in the form

2= p(:) + Y FRE
>0
Since Ev, = 0 and Kv, = Av,, we get zvy = ¢(2)(N)v,. If v is an arbitrary
element of V', we have v = v for some z in U ; hence,

20 = zzvy = xzvy = @(2)(N)zy, = p(z)(A)v.

O
Example 1. The definition of the central element C; shows that
qK _ q—lK—l
pC)= ——"—— 4.2

Consequently, C, acts on a highest weight module of highest weight A as
the multiplication by the scalar
A4 g At
CAl (4.3)
(g—q")
Let us now prove that the restriction of the Harish-Chandra homomor-
phism to the centre Z  is injective.

Lemma VI.4.5. Let z € Z,. If p(z) =0, then z = 0.

PROOF. Let z be an element in the centre such that ¢(z) = 0. Assume
2 non-zero; it can be written as z = Ef:k F'P,E" where 0 < k < ( are
integers and Py, ..., P, are non-zero Laurent polynomials in K. Consider
a Verma module V(\) whose highest weight is not a power of ¢g. Then
Relations (3.4-3.5) show that Ev, = 0 if and only if p = 0. Let us apply
z to the vector v, of V(X). On the one hand, Proposition 4.4 implies that
zvy, = ©(2)(N)v, = 0; on the other, we get

2vy, = FRP E*v, = ¢ P.(\)vy,

where c is a non-zero constant. It follows that P, (A) = 0. As a consequence,
we have a non-zero polynomial P, with infinitely many roots; hence a
contradiction. a

Verma modules will also allow us to prove a symmetry relation for the
polynomials ¢(z). Before we state this, let us introduce the following nota-
tion. For any Laurent polynomial P in k[K, K '], denote by P the poly-
nomial defined by the change of variable

P(A) = P(g~'\).
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Lemma VI1.4.6. For any element z in the centre Z,, we have

@(2)(A) = p(z)(A71).

PRoOOF. For any integer n > 0, consider the Verma module V(¢"™'). By
(3.5) we have

—(n—1) n—1 __ n-1_—(n—1)
By, =4 g ¢ 4 v, = 0.

" q—q!

n—1-2n

Thus, v,, is a highest weight vector of weight ¢ = ¢ " '. By Propo-
sition 4.4, a central element z acts on the module generated by v,, as the
multiplication by the scalar ¢(2)(¢~"™'); but, since v,, is in V(¢g"™!), the
element z also acts as the scalar ¢(2)(¢"!). In other words, we have

o(2)(d") = o(z)(g™").

One concludes by observing that the powers of ¢ form an infinite sequence
of distinct scalars. a

We pause to record the following lemma.

Lemma VL.4.7. Any Laurent polynomial of k|K, K™'] satisfying the re-
lation P()\) = P(A\™') is a polynomial in K + K.

PrROOF. We proceed by induction on the degree of the polynomial. If the
degree is 0, the statement holds trivially. Let us suppose that the lemma is
proved for all degrees < n and let P be a Laurent polynomial of degree n
such that P()\) = P(A™!). Then we may write P in the form

P(K)=c(K"+ K™")+ (terms of degree < n).

Now,
K"+ K" = (K + K 1)" + (terms of degree < n).

One concludes by applying the induction hypothesis. a

We are ready to state the main theorem.

Theorem VI.4.8. When q is not a root of unity, the centre Z, of U, 1s
a polynomial algebra generated by the element C,. The restriction of the
Harish-Chandra homomorphism to Z, is an isomorphism onto the subalge-

bra of k[K, K] generated by gK + ¢ 'K .

Proor. We already know that the restriction of ¢ to the centre is injective.
We are left with determining its image. By Lemmas 4.6 and 4.7, the latter
is contained in the subalgebra of k[K, K] generated by ¢K + ¢ 'K~
Consider the central element C, defined above. By (4.2) we know that

1

p(C) = m(ql(+ g 'K,
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which proves that the image of Z, is the whole subalgebra and that C,
generates the centre. The latter is a polynomial algebra because the powers
of gK + ¢~ *K~! are linearly independent for obvious reasons of degree.

O

VI.5 Case when ¢ is a Root of Unity

Our next aim is to find all finite-dimensional simple U, -modules in the case
when the complex parameter q is a root of unity # +1. As we shall quickly
see, the situation is much more complicated than in the generic case when
g is not a root of unity. Define the order d of ¢ and the integer e as in (1.3).
Recall that [e] = 0.

The following theorem asserts that the simple U -modules of sufficiently
low dimensions are the same as in the generic case.

Proposition VI.5.1. Any simple non-zero U, -module of dimension < e
is isomorphic to a module of the form V,_ , wheree = +1 and0 <n <e—1.

The modules V,C.n have been described in Section 3.

PRrROOF. The proof is exactly the same as the proof of Theorem 3.5. One
uses the fact that 1,¢2,...,¢*" are distinct scalars when n < e. O

The first big difference with the generic case appears in the following
statement.

Proposition VI1.5.2. There is no simple finite-dimensional U -module of
dimension > e.

Before we prove this proposition, we state two lemmas. The first one
implies that the centre of U, is much bigger when ¢ is a root of unity than
when it is not. The second one is a special case of a general statement on
finite-dimensional modules.

Lemma VI.5.3. The elements E€, F*°, and K belong to the centre of U,,.

PRroOF. This is a consequence of Relation (1.1) and of Lemma 1.3. Indeed,
E* commutes with K because ¢°¢ = 1 and with F because [e] = 0. Similar
arguments can be applied to F'® and to K*. ]

Lemma VI1.5.4. Let z be a central element of U,. Then z acts on any
finite-dimensional simple U,-module V' by multiplication by a scalar.

PROOF. Let u be the endomorphism induced by the action of z on V: it
is U -linear because z is central. Since V' is finite-dimensional, the endo-
morphism u has an eigenvalue A. Consider the U -linear endomorphism
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u — Aidy,. Its kernel K is a submodule of the simple module V. Since
K +# {0}, we must have K = V. |

Proof of Proposition 5.2. Let us assume that there exists a simple finite-
dimensional module V of dimension > e. We shall prove that V has a
non-zero submodule of dimension < e. Hence, a contradiction.

(a) Suppose there exists a non-zero eigenvector v € V for the action
of K such that Fv = 0. We claim that the subspace V' generated by
v,Ev,..., E° v is a submodule of dimension < e. It is enough to check
that V' is stable under the action of the generators E, F, K. This is clear
for K. Let us check that V' is stable under E. The vector E(EPv) = EP*ly
belongs to V' if p<e— 1. If p=-e — 1, we have

E(E“ ) = E =cpv

where ¢; is a scalar in view of Lemmas 5.3 and 5.4. Finally, V' is stable
under F' thanks to F'v = 0 and Lemma 1.3.

(b) Now, suppose there is no non-zero eigenvector v € V for the action of
K such that Fv = 0. Let v be a non-zero eigenvector for the action of K. We
have Fv # 0. We claim that the subspace V" generated by v, Fu, ..., F¢~ty
is also a submodule of dimension < e. Again, V" is clearly stable under K.
It is also stable under F since the vector F(FPv) = FP*ly belongs to V"
ifp<e—1.Ifp=e—1, we have

F(F ) = Fo = cyv

where ¢, is another scalar, again in view of Lemmas 5.3 and 5.4. The scalar
¢, is not zero; otherwise, there would exist an integer p < e such that FPv
would be an eigenvector for K killed by F', which would contradict our
assumption.

In order to check that V” is stable under E, we use the central element
C, defined in Section 4. By Lemma 5.4, it acts on V by multiplication by
a scalar cy. By definition of C; we get for p > 0

E(FPv) = EF(FP ')
-1 -1
¢ K +gK _
= (q# 12 )(Fp 'v)
(g—q)
-1 -1
K K
= C3 Fp_lv - g +_ql 2 (Fp_lv)a
(g—q71)
which shows that E(FPv) sits in V. When p = 0, we use the same argu-
ment after observing that v = c; ' F®v. O

It remains now to find the simple U, -modules in dimension e. We shall
content ourselves with their descriptions, omitting proofs. First, we give
two families of e-dimensional modules.
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The first one depends on three complex numbers A, a, and b. We assume
that A # 0. Consider an e-dimensional vector space equipped with a basis
{vgy -+ Vo_y}. For 0 <p<e—1,set

Kv, = /\q*2pvp, (5.1)
_(CPA=gPA !

E’UP+1 = (T*q*:l— [p —+ 1] + ab) ’Up7 (52)

Fo, =wv,4, (5.3)

and Evy = av,_, Fv,_, = byy, and Kv,_; = Ag~2€=Hy_ . These formu-
las endow this vector space with a U, -module structure, denoted V (A, a,b).
The second family depends on two scalars u # 0 and ¢. We let E, F, K

act on a vector space with basis {vy,...,v,_,} by
Kv, = uq2pvp, (5.4)
—p -1 D
T — 4"
Fo,.=-——=—[Pp+1y, (5.5)
q9-—9q
Ev, = v, (5.6)

if0 <p<e—-1andby Fv, =0, Ev,_; = cvy, and Kv,_; = wg v,

otherwise. These formulas determine another U -module, denoted V'(x, c).
The following theorem which we admit without proof closes the list of
all simple finite-dimensional U -modules when ¢ is a root of unity.

Theorem VI.5.5. Any simple U -module of dimension e is isomorphic to
a module of the following list:
(i) V(A a,b) with b # 0,
(i) V(X, a,0) where X is not of the form +¢'~! for any 1 <j <e—1,
(i) V(xq' ™7, c) withc£0 and 1 < j <e— 1.

It should be added that all modules V' (A, a,b) and V (g, ¢), including the
ones that are not in the list of Theorem 5.5, are indecomposable.

In the situation under investigation, the algebra U, possesses an inter-
esting finite-dimensional quotient-algebra.

Definition V1.5.6. The algebra Uq is the quotient of the algebra U, by
the two-sided ideal generated by the central elements E€, I'¢, and K¢ — 1.

It is not difficult to convince oneself that a finite-dimensional Uq—module
is simple [resp. indecomposable] if and only if it is simple [resp. indecom-
posable] as a U, ,~module. Therefore, in order to have a complete list of all
simple finite-dimensional Uq—modules, it is enough to determine the simple
finite-dimensional U -modules on which E°, F'® and K* —1 act by 0. This
is done without any difficulty using Theorem 5.5 and Relations (5.1-5.6).
We get the following:
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Theorem VI1.5.7. Any non-zero simple finite-dimensional Uq—module 18
isomorphic to a module of the form

() V,, with0<n<e—1, orV(g7',0,0) if d = e is odd,

(ii) Vi, withn even < e—1ifd and e are even,

(iii) V, ,, withn even < e—1, or V_,  withn odd < e—1, or V(—q™*,0,0)
if d is even and e is odd.

We shall need the following proposition in IX.6.
Proposition V1.5.8. The finite set {Ei]”'I('e}og’jlge_1 is a basis oqu.
ProoOF. Thanks to the commutation relations between the generators,
we are reduced to showing that {Fj_KEEZ}OSZ»JJSe_1 is a basis of U,.
By Proposition 1.4 it is clear that this set generates Uq. It remains to
check that it is free. To this end, we introduce an intermediate quotient-
algebra U, defined by U, = U,/(E®, F°) and we show first that the set
{FIK'E"}y; i<c_1.0ez 18 a basis of U,. Let us prove this claim. Again, it
is enough to prove that the set is free.

Let us consider a linear relation of the form

Z = > a; FIK'E" = 0. (5.7)

0<,j<e—1;r<€<s

We let it act on the vectors v,, of the canonical basis of the module V'(A, 0, 0)
(check that this module is killed by E® and F¢, but in general not by K¢—1).
We assume that A is neither zero, nor a root of unity. Since Fv, = 0, we
have

i\f ¢
Zyy = Z e FIX vy = Z a()jé)‘ v; = 0.
0<i,j<e—1;r<f<s 0<i,j<e—1;r<i<s
(5.8)
Since vy, ..., v,_; are linearly independent, Relation (5.8) implies that
S—=7
¢
> g, A =0 (5.9)
(=0

for all j. Writing (5.9) for s — r + 1 distinct complex numbers A, we get a
linear system whose determinant is a non-zero Vandermonde determinant.
Consequently, agje = 0 for all j and ¢. Next, we apply Z to the vector
v;. The hypothesis made on A implies that Fv, is a non-zero multiple of
vy; hence we get ay;, = 0 for all j and ¢ by the same argument as above.
Applying Z successively to the vectors v, up to v,_;, one shows that all
coefficients o ;, vanish.

Now that we have secured a basis for [7(1, we prove Proposition 5.8. We
consider a linear relation of the form
> ey FPKE =0. (5.10)
0<i,j,e<e—1
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in Uq. Denoting by Z the element of ﬁq represented by the left-hand side of
(5.10), we see Z belongs to the two-sided ideal of U, generated by K — 1.
Hence, we have Z = (K¢ —1)Y where Y = Yo . e 1.4e7 BijeFP K°E".
Since K¢ is central, we get -
Z = > ByF KeE — Y B FIK'E".  (5.11)
0<i,j<e—1;£€Z 0<i,j<e—1;4€Z
Assume Z # 0, hence Y # 0. Denote by d(Z) [resp. by 6(% )] the degree in

K [resp. the degree in K 1] of the non-zero element Z of U , written in the
above-mentioned basis. Relation (5.11) implies that

d(Z)=d(Y)+e and 6(2)=6(Y). (5.12)

Now, by definition of Z, we have
0<6(2)<d(2) <e. (5.13)
Combining (5.12-5.13), we get d(Y') < 0 < §(Z) = 6(Y"). This is impossible;
hence, Z = 0. O

V1.6 Exercises

1. Compute [E*, F7] in U,.

2. (Simple Verma modules) Assume that g is not a root of unity. Show
that the Verma module V() is simple if and only if A is not of the
form A\ = £q¢™ with n € N.

3. Prove Theorem 5.5.
4. Prove Theorem 5.7.

5. Assume that ¢ is of finite order d > 2. Let A be a non-zero scalar.
Consider the Verma module V' (A). Show that F°v, generates a highest

weight submodule of weight A and that the quotient V/(A) of V(X) by
this submodule is a simple U -module of dimension e.

6. Under what conditions on A, a, and b is the module V(A a, b) of Sec-
tion 5 a highest weight module?

VI.7 Notes

The algebra U, = U, (s1(2)) is due to Kulish and Reshetikhin [KR81]. Drin-
feld [Dri85][Dri87] and Jimbo [Jim85] independently generalized this con-
struction by defining an algebra Uq(g) for any complex semisimple Lie
algebra (more generally, for any symmetrizable Kac-Moody Lie algebra) g.
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A complex semisimple Lie algebra is determined by its so-called Cartan
matrix (a;;),<; ;< (see [Bou60], chap. 8, [Hum?72], [Ser65]). In case g is
of type A, D or E, the Cartan matrix (az‘j)1§i,jge is symmetric, positive
definite with integral coefficients such that a;; = 2 and a;; =0, —-1if ¢ # j.
Then Drinfeld-Jimbo’s algebra U, (g) can be presented as follows: it is the

algebra generated by (E;, F;, K, Kfl)lgigz and the relations
KK '=K 'K, =1, KK,;=KK,
K,E;K;'=q"E;,  KJFK '=q “F,

K, —K '

q—q!

E,E, = E;E, and F,F;=FF, ifa;=0,

[Ei’Fj] =0

1j

E?E; ~ 2] E,E,E; + E,E; =0 and F}F; - (2] F;F;F, + F;F} =0,

if a;; = —1. When a;; = 0if [i — j[ > 1 and a;; = —1 if ¢ —j] =1, we
obtain U, (sl(£+1)). A presentation of U,(g) corresponding to the algebra
U, was given by Lusztig [Lus89].

The algebra U, (g) possesses a Poincaré-Birkhoff-Witt-type basis ([Lus90a]
[Lus90b] [Ros89] [Yam89]) and a quantum Casimir element (see [Jim85]).
Lusztig [Lus88] and Rosso [Ros88] proved that, when g is not a root of
unity, any finite-dimensional simple g-module could be deformed into a
finite-dimensional simple Uq(g)—module. A quantum Harish-Chandra ho-
momorphism was constructed by [CK90] [JL92] [Ros90] [Tan90].

Numerous authors have investigated the algebras U (g) and their re-
presentations when ¢ is a root of unity, for instance, [CK90] [CKP92]
[DIMM91] [Lus89] [Lus90b] [RA89] [Sal90] (see also [Ros92]). We refer to
[CK90] [CKP92] for a description of the centre of U, : it is a finite extension
of the polynomial subalgebra generated by E¢, F® and K°. Contrary to the
generic case, there is a bound for the dimension of the finite-dimensional
simple U -modules. For g = 51(2), this bound is e (see Proposition 5.2).

We owe the treatment of Section 5 (including statements and proofs) to
R. Berger.



Chapter VII

A Hopf Algebra Structure on
Uy(s1(2))

We assume in this chapter that the field & is the field of complex numbers
and that g is not a root of unity. We now equip the algebra U, = U, (s(2))
defined in Chapter VI with a Hopf algebra structure. Then we prove that
any finite-dimensional U -module is a direct sum of the simple modules de-
scribed in VI.3. We show later that U, acts naturally on the quantum plane
of IV.1 and that it is in duality with the Hopf algebra SLq(2) of Chapter
IV. We shall also build scalar products on the simple finite-dimensional
U,modules. We describe the quantum Clebsch-Gordan formula and give
the main properties of the quantum Clebsch-Gordan coefficients.

VII.1 Comultiplication

We resume the notation of the previous chapter. Set

AE)=1QE+E®K, AF)=K'®@F+F®]1, (1.1)
AK)=K®K, AK YHY=K'eoK!, (1.2)
e(E)=¢e(F)=0, eK)=¢eK')=1, (1.3)

and
S(E)y=—-EK™', S(F)=-KF, S(K)=K™' S(K'Y)=K. (14)

Proposition VIIL.1.1. Relations (1.1-1.4) endow U, with a Hopf algebra
structure.
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PRrROOF. (a) We first show that A defines a morphism of algebras from U,
into U, @ U,. Tt is enough to check that

AK)AK™Y) = A(KTHA(K) =1, (1.5)
A(E)AB)A(K™!) = ¢*A(E), (1.6)
A(K)A(F)A(K™Y) = ¢ *A(F), (1.7)

N -1
IA(E), A(F)] = A(K; = j(lK ). (1.8)

Relations (1.5) are clear. As for (1.6), we have

AKVAR)AK™) = (KK)(1E+E@K) (K '®K™)
= 1®@KEK '+ KEK 'oK
= ¢(I19E+E®K)
= GFA(E).

Relation (1.7) is proved in a similar way. Finally, for (1.8) we have

[A(E), A(F)]

= (IQRE+EQK)(K '9F+F®1)
~(K'9F+Fo1)(1®E+ E®K)

= K'@QFF+FQE+FK 'QKF+EFQK
~-K'QFE-K'EQFK -F®E-FEQK

= K !'®[E,F]+[E,FI®K

K'9K-KHY+(K-KYHYeK
g—qt

A(K) - A(K™)

qg—qt '

(b) Next, we check that A is coassociative. It suffices to do it on the four
generators. We give a sample calculation for £. On the one hand, we have

(ARIDA(E) = (ARI)(18F+FRK) = 1®1RE+1REK+EQK®K.
On the other hand, we have
(Id@A)A(E) = dRANIQE+FERK) =11FE+1EQRK+EQRK®K,

which is the same.
(c) It is easy to check that € defines a morphism of algebras from U, onto
k and satisfies the counit axiom.
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(d) It remains to see that S defines an antipode for U,. We have first to
check that S is a morphism of algebras from U, into U, gp, namely that the
following four relations hold:

S(K H)S(K)=S(K)S(K™') =1, (1.9)

S(K~YHS(E)S(K) = ¢*S(E), (1.10)

S(K~HS(F)S(K) = ¢ 2S(F), (1.11)
_ -1

[S(F), S(E)] = %Sg(—) (1.12)

We give the computations for (1.10) and (1.12). We have

S(K™YS(E)S(K) = —K(EK Y)K™' = —-?EK ' = ¢*S(E)

and
[S(F),S(E)] = KFEK™'-EK 'KF=|[F,E|
_ K'-K SK)-SK
Cog-q¢t T g—gt

To conclude that S is an antipode, we appeal to Lemma I11.3.6. It suffices
to check that the relations

Z ' S(x") = Z S(z)x" = e(x)1
(x)

(x)
hold when z is any of the generators E, F, K, K~'. This verification is left
to the reader. m]

We have thus defined a Hopf algebra that is neither commutative nor
cocommutative. Observe also that the square of the antipode is not the
identity (when ¢ # 1). Nevertheless, it is an inner automorphism, as ex-
pressed by the following statement.

Proposition VIL1.2. We have S$*(u) = KuK ™" for any u € U,.
PROOF. In effect, we have

S*E)=¢’E=KEK™!, S*F)=q*F=KFK™',
and S*(K) = K. a

We thus get, just as in Chapter IV, examples of Hopf algebras whose
antipodes have a finite order 2N for any integer N > 1; it suffices to take
any primitive 2N-th root of unity as the parameter q.
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The algebra Ué of V1.2 can be endowed with a Hopf algebra structure
such that the isomorphism ¢ : U, — Ué of Proposition VI.2.1 preserves the
Hopf algebra structures. In addition to Relations (1.1-1.4), it suffices to set

AL)=K'®@L+L®K, &L)=0, S(L)=-L. (1.13)

It follows easily that the isomorphism U(sl(2)) = U; /(K — 1) is an isomor-
phism of Hopf algebras. In other words, the Hopf algebra structure of U
extends the Hopf algebra structure of the enveloping algebra U(sl(2)).

We end this section by expressing the comultiplication of U, in the basis
described in Proposition VI.1.4.

Proposition VII.1.3. For alli,j € N and £ € Z we have

i J . .
AEFKY) = SOY qensi-o-2-r6-s) [ i } [ I ]

r=0s5=0
% Ei—rFsKZ—(j—s) ® ETFj_sK€+(i_T).

Proor. First observe that

A(E'FIKY) = A(E)YAF)AK)*
= (I®E+E®K)YK'®F+Fel)(K'c® K.
Now,
(E®K)(1®E)=¢*(1® E)(E®K)
and

(Ko (Fol)=(Fo1l)(K'QF).
Applying Relation (VI.1.9), we get

7 .
A(E)z — Z qr(i——r) { :. :l T ® ETK™T
r=0

and

J .
A(FY = Z g9 { i ] FSK-U-9) g Fi—s.
0

One concludes with (VI.1.11). O

VIL.2 Semisimplicity

In this section we shall prove that any finite-dimensional U -module is the
direct sum of simple U, -modules when ¢ is not a root of unity, which we
assume in this chapter. Let us start with a technical lemma on the simple
modules V, ,, of VL3.
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Lemma VII.2.1. There exists an element C of the centre of U, acting by

0 on V_ 4 and by a non-zero scalar on V., when n is an integer > 0 and
/

g, ==*1.

n

PRrOOF. Define .

q+q
(g—q71)?
where C, is the central element introduced in VL.4. By (V1.4.3), C acts on
V.o by

C:C’q—s

1 1

q+q q+q
—€ =0,

a—a 2 “lg-q )2

and on V_, ,, by

Ll g g (nt) 1

4 L atd
(q—q71)? (g—q1)?

We have to show that the latter is not 0. If it were, we would have

q2n+2 _ €€/qn+2 _ EE/qn +1= 0,
or, equivalently,
(¢"? —ee)(¢" —ec’) = 0,
which would be contrary to the assumptions. O

We now state a quantum version of Theorem V.4.6.

Theorem VIL.2.2. When q is not a root of unity, any finite-dimensional
U,-module is semisimple.

PROOF. We follow the proof of Theorem V.4.6 step by step. Recall that it
is enough to prove that if V is any finite-dimensional U_-module and V' is
any submodule of V, then there exists another submodule V" such that V
is isomorphic to the direct sum V' @ V" as a module.

1. We shall first prove the existence of such a submodule V" in the
case when V'’ is of codimension one in V. We proceed by induction on the
dimension of V.

If dim(V’) = 0, we may take V" = V. If dim(V’) = 1, then necessarily
V' and V/V' are simple one-dimensional modules of respective weights &,
and e,. If the weights £, and e, differ, there exists a basis {v;,v,} of V in
which K acts diagonally. Since Ev, is an eigenvector for K with eigenvalue
£,q4°> # g;, we must have Ev, = 0 for ¢ = 1,2. Similarly, F" acts trivially on
V. Hence, the module V is the direct sum of the submodules V' = kv, and
V" = kv,.

Otherwise, there exists a basis {v;,v,} with V' = kv, such that we have
Kwv, =¢ev, and Kv, = €v, + ow;. Again, Fv, is an eigenvector for K with
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eigenvalue eg® # &, hence it is zero. Let us prove that FEv, is zero too.
Indeed, writing Fv, = Av; + pv,, we have

eAVy +pu(evytav)) = KEv, = P EKvy = ¢?E(zvy+av,) = ¢ (M, +pv,),

which implies pe(¢? — 1) = 0 and Ae(¢? — 1) = pa. Thus, A = g = 0. One
proves in a similar way that F' acts as 0 on V. Since [E, F] acts as 0, we
have K = K~ on V. In particular, since K~ 'v, = ev, — av,, we have
a = —a, hence a = 0. In this situation K is also diagonalizable and we
reach the same conclusion as before.

We now assume that dim(V’) = p > 1 and that the assertion to be
proved holds in dimension < p. There is the following alternative: either
V'’ is simple, or it is not.

l.a. If V’ is not simple, one uses the same argument as in Part 1.a of the
proof of Theorem V.4.6.

1.b. Suppose now that the submodule V' is simple of dimension > 1. The
one-dimensional quotient module V/V' has weight € = +1. Let us consider
the operator C of Lemma 2.1; it acts by 0 on V/V'. Consequently, we have
CV c V’. On the other hand, C acts on V' as multiplication by a scalar
« # 0. Tt follows that C'/« is the identity on V'. Therefore the map C/« is
a projector of V onto V'. This projector is U ,linear since C' is central. By
Proposition 1.1.3, the submodule V" = Ker (C/a) meets the requirements.

2. General case. We are now given finite-dimensional modules V' ¢ V
without any restriction on the codimension. We shall reduce to the codimen-
sion-one case by considering vector spaces W' C W defined as follows: W
[resp. W] is the subspace of all linear maps from V to V' whose restriction
to V' is a homothety [resp. is zero]. It is clear that W' is of codimension one
in W. In order to reduce to Part 1, we have to equip W and W’ with U,
module structures. We give Hom(V, V') the U,module structure defined
in IIL5. Let us check that W and W' are submodules of Hom(V,V’). For
f € W, let a be the scalar such that f(v) = av for all v € V'; then for all
z €U, and v € V', we have

(xf)(v) = Z ' f(S@"w) = a(z a:’S(:U”))U = ae(z)v.
() ()

A similar argument proves that W’ is a submodule too. Applying Part 1,
we get a one-dimensional submodule W such that W = W’ & W”. Let
f be a generator of W”. By definition, it acts on V' as a scalar « # 0. It
follows that f/a is a projector of V onto V' and that V" = Ker (f) is a
supplementary subspace of V'. To conclude, it suffices to check that V" is
a U,-submodule of V. Now, since W is a one-dimensional submodule, it
is simple of weight 1. Therefore, for all z € U, we have zf = +e(z)f. In
particular, if v belongs to V', we have

K7 f(Kv) = (K1) () = (K1) f(v) =0,
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which implies f(Kv) = 0. This proves that KV" C V”. Similarly, V" is
stable under K~!. On the other hand, we have for v, hence for Kv in V",

0 = *e(BE)f(Kv)=(Ef)(Kv
= f(S(E)Kv)+ Ef(K 'Kv) = —f(Ev) + Ef(v).

Consequently, f(Ev) = 0, which implies that V" is stable under the action
of E. A similar computation shows that F'V” C V"”. The subspace V" is
therefore a submodule. |

VIL.3  Action of U,(s[(2)) on the Quantum Plane

This section is the quantum version of V.6. We start with a few generalities
on skew-derivations of an algebra A. For a € A, denote by a, [resp. a,] the
left [resp. right] multiplication by the element a. If o is an automorphism
of the algebra A, we have

oa, =o(a),0 and oa, =o(a),.0. (3.1)

Given two automorphisms o and 7 of an algebra A, a linear endomor-
phism 6 of A is called a (o, 7)-derivation if

§(aad) = o(a)é(a’) + é6(a)7(a) (3.2)
for all a,a’ in A. Relation (3.2) is equivalent to
ba, = o(a),6 +6(a),T (3.3)

or to
ba, =7(a),6 + 6(a),0. (3.4)

It is well-known that, if § is a derivation of a commutative algebra, then
a,6 is a derivation too. In a non-commutative situation, this is no longer
the case. Nevertheless, the following assertion holds.

Lemma VIL.3.1. Let § be a (o, 7)-derivation of A and a be an element of
A. If there exist algebra automorphisms o’ and 7' of A such that

! __ I
a,0 =aq0 and a,7 =a.T,

then the linear endomorphism a,6 is a (o', 7)-derivation and a,.6 is a (o, 7')-
derivation.

ProoF. This follows from straightforward computations. ]

We now return to the quantum plane A = k, [z,y] of IV.1. Let us consider
its algebra automorphisms o, and o, defined by

o,(z) =qz, o,(y) =y, o,(z)=2 o,y =qy (3.5)
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y = id. We define g-analogues J,/0z and

0,/0y of the classical partial derivatives by

m,n )

0, (z™y
ox

=|m] x

m TL)

0™y
Ay

m—lyn and — [TL] $myn"1 (3.6)

for all m,n > 0. Let us describe all commutation relations between the
endomorphisms z,, ., Y, Y, 04, 0, 0,/0z, 3q/6y. We say that a commu-
tation relation between two endomorphisms u and v is trivial if uv = vu.

Proposition VIIL.3.2. (a) Within the algebra of linear endomorphisms of
k,[z,yl, all commutation relations between the above six endomorphisms
are lrivial, except the following ones:

YeXyp = qLeYy, Tp Yy = qY, T,

Oxlyy = qx[,rgzv O—yye,r = qy@,ro'y’

15} 0 0 15}

Y. % Y9, _ .. %

9’ T gy Ay %y = 1% ay’

0 0 0 15}

24, 9 T = 4

gzt T Wegy  gyTr T gy
9, 0

-1 q - q -1
Ty +0, = qxe% +o,,

53;% —4 or

15) s} 0

g, _ 1 q _ q —1
8yy'r—q yr6y+0y_qyray+0y *
We also have

7] o, —o ! 0

q z T q
r,)—=-2—2 and == =

9r  q—q! '%By

(b) The endomorphism % isa (aglay,ai)—derivation and, similarly, g—z

is a (0,,0,0, " )-derivation.

ProOF. (a) This part results from easy, but fastidious computations.
(b) First observe that, if Relation (3.3) holds for two elements a, a’ of A,
then it holds for their product aa’. Indeed, we have

é(aa’), =
= o(a),bay + 6(a),Tay
= o(a)o(a’),8 +a(a),d(a’),m + 8(a),7(a),7
= o(aa'),6 + 8(aa’),T.

!
ba,ay
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We are reduced to checking Relation (3.3) for 9,/0z and 0,/0y in the case
when a =z and a = y. For §,/0z we have

o oz P 9
1 9 (%" _ 1, % ]
(07 ") (@)eg, + ( oz )e% 4 Ty, T = 5T

by Proposition 3.2(a). We also have

) d.y a.
-1 q q _ 9 _ 4
(0 0,) (W), o T ( I ) Oz = Wegy = 5,V

Similar computations can be carried out for 9,/0y. ad

We now show how the “quantum partial derivatives” % and g—; endow

the quantum plane with the structure of a module-algebra (as defined in
V.6.1) over the Hopf algebra U,.

Theorem VIL.3.3. For any P € k,[z,y], set

P 9,P o 9P
Sy TPy
KP = (0,0, ")(P), K“IP:(aya;I)(P). (3.7)

(a) Formulas (3.7) define the structure of a U,-module-algebra on k[, y].

(b) The subspace kq[a:, yl,, of homogeneous elements of degree n is a U, -
submodule of the quantum plane. It is generated by the highest weight vector
x™ and is isomorphic to the simple module V, ,,.

Theorem 3.3 is the quantum version of Theorem V.6.4. It shows that the
quantum plane contains all finite-dimensional simple U -modules.

PROOF. (a) We first show that the formulas (3.7) equip k/[z,y] with a
U,-module structure. In other words, we have to check Relations (VI.1.10-
1.12). We use Proposition 3.2.

Relation (1.10) is trivially verified. For Relation (1.11) we have

9,
KEK™! = 0.0y 93@8_‘7‘7 ot

8
Y 6‘

= qz,0,

One proves KFK~! = ¢ 2F in a similar fashion. As for (1.12), we have
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o, d 0, 0
_ q L .
B, F] = xé@yyram yrax“’"‘fay
o, 0 0 o, 0 0
_ -1 q g a _ -1 9 79 _ 9
-4 xzyrﬁy 3x+xzay8x 4 Ui, oy yr%ay
0 3]

q q
T,0, — — Y. .0, -~
14 Y Ox Yr may
Uy(ax_gz_l)_gm(ay_ay-l)
q—q!

oxay_1~ay0;1

q—q?
K-K!
g-q

We now prove that the quantum plane is a U, -algebra. By Lemma V.6.2,
it is enough to check that for any u € U, we have

ul = e(u)l, (3.8)
and
K(PQ) = K(P)K(Q), (3.9)
E(PQ) = PE(Q)+ E(P)K(Q), (3.10)
F(PQ) = K-\ (P)F(Q) + F(P)Q, (3.11)

for any pair (P,Q) of elements of the quantum plane. Relation (3.8) fol-
lows easily from (3.5-3.7) and Relation (3.9) from the fact that K acts as
an algebra automorphism. By Lemma 3.1 and by Proposition 3.2(b), the

endomorphism xeg—"y is a (id,axay‘l)—derivation and yr% is a (ngay, id)-
derivation, which implies Relations (3.10-3.11).

(b) We have Ex"™ =0, Kz2" = ¢"z", and

1 _ [n]!
__FP(z") =q7? T PyP.
) [p]'[n — p]!
Consequently, z™ is a highest weight vector of weight ¢" and generates the
submodule k [z, ], ]

Observe that [E, F| acts on the quantum plane as the operator

0 0

xgaya—; - yraza—z.

Its “limit when ¢ tends to 17 is the operator £8/0z — y0/0y by which the
element H of s[(2) acts on the affine plane (see Theorem V.6.4).
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VII.4 Duality between the Hopf Algebras
U,(s1(2)) and SL,(2)

We now relate this chapter to Chapter IV by showing that U, is in duality
with the Hopf algebra SL,(2) defined in IV.6. We use the concept of duality
introduced in V.7.

As in V.7, our first task is to construct an algebra morphism i from the
algebra M, (2) (defined in IV.3) into the dual algebra U;. We shall deduce
a bilinear form on U, x M, (2) defined by < u,z > = 9(z)(u) and satisfying
Relations (V.7.2) and (V.7.4). Giving the morphism v is equivalent to
giving four elements A, B,C, D in U satisfying the six defining relations
of M,(2) (see IV.3).

The definitions of A, B,C, D use the simple U, -module V; ; of highest
weight ¢ and with basis {v,, v, }. The matrix representations of the gener-
ators F, F and K in this basis have been given in VI.3. Setting p = p; 4,
we have

=0 o) se=(10) s=(8 ) w

More generally, for any element u of U, define

A(u) B(u
s =( ot D ) 42
We thus get four linear forms on U, hence four elements A,B,C,D of Uy.
Lemma VIL.4.1. The quadruple (A, B,C, D) is a U; -point of M(2).

PRrooOF. This is done by a direct, but laborious checking. First, one has to
compute in Uy the twelve products AB, BA, AC, CA,... formed by all
pairs of distinct elements of the set {4, B, C, D}. Recall that the product
of any two elements z,y of U; is given by

(ey)(u) =Y z(w)y(u"). (4.3)
(w)
It suffices to evaluate (zy)(u) on the basis {E‘FVK*} of U, Let us set

u= E'FIK* When i > 2 or when j > 2, we see from Proposition 1.3 that
in the sum >, «' ®u"”, either u’ or u” contains powers of £ or of F" with

exponents > 1. Now, by (4.1), p(E*F/K*) = p(E)'p(F)’p(K)* vanishes
when i > 1 or j > 1. Consequently, if z,y € {A, B,C, D}, we have
(o) (BTFIK?) = 0

whenever ¢ > 2 or j > 2. It therefore remains to evaluate the products on
the elements F'FVK* where 0 <i<2and 0 < j < 2.
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(i) If u = K*, we have A(K*) = K* ® K* and all products evaluated on
u vanish, except that

(AD)(u) = (DA)(u) = 1. (4.4)

(i) If u = FK*, we have A(FK*) = K1 @ FK’ + FK* ® K* and all
products evaluated on u vanish, except that

(CA)(w) = q(AC)(u) = ¢* and (DC)(u) =q(CD)(w) =q. (4.5)
(iii) If uw = F2K*, we have
A(F?K*%) = oy FK* ' @ FK* 4 (terms of degree > 2 in F)

and all products evaluated on u vanish.

(iv) If u = EK?, we have A(EKY) = EK' @ K*' + K* @ EK* and all
products evaluated on u vanish, except that

(BA)(u) = q(AB)(v) = ¢ and (DB)(u) = q(BD)(u)=q . (4.6)

(v) If u = EFK*, we have

A(EFKYY = K*l'®EFK'+EFK'® K™
+ FK'Q EK' + ¢ 2EK ' @ FK*!

and all products evaluated on u vanish, except that
(BCO)(u) = (CB)(uw) =1, (DA)(u)=g, and (AD)(u)=¢""'. (4.7)
(vi) If u = EF?K*, we have

A(EF?KY = o,(FK' '@ EFK'+ ¢ ?EFK" ' ® FK*)
+ (terms of degree > 2 in F)

and all products evaluated on u vanish, except
(CA) () = q(AC)(u) = ay ¢*". (4.8)
(vii) If u = E2K*, we have
A(E*K') = a3 EK* ® EK*T + (terms of degree > 2in E)

and all products evaluated on u vanish.
(viii) If u = E?FK*, we have

A(E*FK® = o,(BEFK'® EK*' 4+ ¢ ?EK*' @ EFK*™)
+ (terms of degree > 2in F)
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and all products evaluated on u vanish, except
(BA)(u) = q(AB)(u) = ay. (4.9)
(ix) If u = E?F?K*, we have
A(E*F?’KY) = oy EFK* '@ EF K'!  (terms of degree > 2 in E and F)

and all products evaluated on u vanish.

In Cases (iii) and (vi-ix) we denoted by ay, ay, o, oy, and a5 scalars
that are well-defined, but about which we need not be explicit. From this
case-by-case analysis, it is easy to check that A, B,C, D satisfy the six
defining relations of M (2). As a sample calculation, we check the most
involved relation, namely

DA—AD = (¢—-q ') BC.

From the above observations, we see that it is enough to perform the check-
ing for u = K*, which is trivial, and for u = EF K. In the latter case, (4.7)
implies
(DA—AD)(w) =q—q ' = (g ¢~ ") (BC)(u).
O

As a consequence of Lemma 4.1 and of IV.3, there exists a unique mor-
phism of algebras 9 from M, (2) into U; such that

Proposition VIL.4.2. The bilinear form < u,z >= (z)(u) realizes a
duality between the bialgebras U, and M,(2).

PRrROOF. The comultiplication and the counit of M (2) being the same as
those of M(2), the proof follows along the same lines as in the proof of
Proposition V.7.3. O

The duality between M (2) and U, is not perfect, just as in the classical
case.

Lemma VII.4.3. For the quantum determinant det, = da—qbc of M, (2),
we have Y(det,) = 1.

Equivalently, < u,det, >= ¢(u) for all elements u of U,.

PROOF. By Theorem IV.5.1, the element det, is grouplike, i.e., we have
A(det,) = det, ® det,. It results that the map u — < u,det, > is a
morphism of algebras from U, to k. To show that this morphism coincides
with the counit ¢, it suffices to check that both maps take the same values
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on the generators E, F, K and K~'. Using (V.7.2-7.3) and (1.1), we get
for E:

< B, det, >
= < FE,da>—-q<Ebc>
= gd)<E,a>+<E,d><K,a>
—qge(b) < E,c>—q< E,b>< K,c>
= 0=¢(F).

For K we have

< K,det, > = < K,da > —q < K,bc >
= <K d><K,a>—q<K,b><K,c>
= ¢ 'g=1=¢K).

Similar computations can be carried out for F' and K1, a

As a consequence of Lemma 4.3, the algebra morphism ¢ from M q(2)
to Uy factors through SL,(2) = M, (2)/(det, — 1). We still denote by v
the induced morphism of algebras from SLq(2) into U, and by <, > the
corresponding bilinear form.

Theorem VII.4.4. The bilinear form < u,z >= ¢(x)(u) realizes a dual-
ity between the Hopf algebras U, and SL(2).

Proor. We use the same argument as in the proof of Theorem V.7.6. The
only difference lies with the antipodes. We first check Relation (V.7.5) for
the generators. Using the condensed matrix form, we have

< S(E)»( . 3 ) >=p(S(E)) = ~p(E)p(K™) = ( 8 - )

:<E,< d1 _qb)>:<E,<§,(a) S(b)>>.

—-q c a
For F' we have

<5, (00 ) > = a8t == = (g )
n{ e ) eeen(30 )

One proceeds with K and K~! similarly. To conclude, one appeals to
Lemma V.7.7. U
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VIL5 Duality between U,(sl(2))-Modules and
SL,(2)-Comodules

Exactly as in the classical case considered in V.7, there is a duality between
U,modules and SL,(2)-comodules. We have seen in IV.7 that the vector
space k, [x,y],, of homogeneous elements of degree n of the quantum plane
has a natural structure as an S Lq(2)—comodule. By duality, the dual vector
space k,[z,y]; has a module structure over the algebra SL (2)", hence
over the algebra U, via the morphism ¢ : U, — SL,(2)". The following
statement gives the structure of k [z, y];, as a U -module.

Theorem VIL5.1. The U ,-module k,[z,yl];, is isomorphic to the simple
module V) . of highest weight q".

Thus, the SL (2)-comodule & [z, yl,, corresponds by duality to the U,-
module V; .

PROOF. We shall show that the linear form on k,[z,y], defined by

f(miyn_i) = (sni
is a highest weight vector, with weight ¢", of the U, ,-module k,[z, y];,, which
implies that k, [z, y];, contains a submodule isomorphic to the simple mod-
ule V; ,,. Since
dim(V, ,,) = n+ 1 = dim(k, [z, ylr),
we get k, [z, yl5 2 Vi .
In order to prove that f is a highest weight vector, we need the relation

(uf) (@Y =< u,a’c"" > (5.1)

for all u € U, and for all 7 such that 0 < i < n. But this is so since,
by definition of f, by I11.6, Example 2, by Lemma IV.7.2, and using the

abbreviation ’ .
_ (i—7)s ? n—1
o=a (1) ("71),

to shorten the formulas, we have

W@y ) = (we )(As"y")
i n—t
— ZZ Cr,s <u, arbi—'rcsdn—iAs > f(x'r-{»syn—r—s)
r=0 s=0
i n—i ] )
= ZZ Crs <u,d"b77cPd" T >4, 0
r=0 s=0
= ZZ Crs <uy a’b" A T T > 6 6,
r=0 s=0

i,.n—1

= <u,ac > .
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Let us apply Relation (5.1) to K. A straightforward computation yields
<K,d'd >=<K,a>'<K,e>=6,,¢".

Consequently, we have (K f)(z'y™™") =6, ¢" = 6, ¢", which implies that
Kf=q"f.

It remains to prove that Ef = 0. This is a consequence of Relation (5.1)
applied to E and of the fact that < E,a*¢® > = 0 for all ¢ and j. Let us
prove the latter. First, we have < E,1 >= ¢(E) = 0. Next, if ¢ > 0 we
have by (V.7.2-7.3)

<E,d'> = ela)<E,a ' >4+ <Ea><Ka !>
<Edl'>=...=<Ea>=0.

Similarly, if j > 0 we get
<Ed>=¢lc)<E,d ' >+<Ec><KJI>=0.
Consequently,

< E,didd >=¢(a)' < E,d >+ < E,a* >< K,dd >=0.

VIL.6 Scalar Products on U,(sl(2))-Modules

In this section, given any finite-dimensional Uq—module V, we construct a
scalar product, i.e., a non-degenerate symmetric bilinear form ( ,) on V
such that

(zv,v") = (v, T(z)v") (6.1)
for all z € U, and v, v’ € V. The linear map T is the algebra antiautomor-
phism of U, defined as follows.

Proposition VIL.6.1. There ezists a unigue algebra antiautomorphism T’
of U, such that T(E) = KF, T(F) = EK~', and T(K) = K. The auto-
morphism T 1is also a morphism of coalgebras.

PRrooF. Left to the reader. O

By Theorem 2.2, it is enough to construct a scalar product on any simple
U,-module of the form V, . This is done in the following theorem.

Theorem VIL.6.2. On the simple U -module V, , generated by the highest
weight vector v, there ezists a unique scalar product such that (v,v) = 1. If
we define the vectors v, for alli > 0 by v; = F'v/[i]!, then they are pairwise
orthogonal and we have

(v;,v;) = g [ ; ] .

7
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PROOF. Let us first assume that there exists a scalar product on V, , such
that (v,v) = 1. Let us show that (v;,v.) is necessarily of the prescribed

AR
form. By definition and by (6.1) we have
1 : 1 ; 1 1
(v;,v;) = [— (F'v,v;) = = (v,T(F)’Uj) = — (v, (FK 1)"1)]-).

i]!

[ ]!

An easy induction on i shows that (EK 1) = ¢**1D) K—E" for any i > 0.

Consequently, the vector T(F)ivj is a scalar multiple of Eivj which vanishes
as soon as ¢ > j. Therefore (v;,v;) = 0if i > j. By symmetry, we also have
(v,v;) =0if i < j.

We need the formula

i =g+
Elv; =¢" S T
[n =]t
to compute (v;,v;). We have
LG —i i
(v;,v;,) = Wq D) (v, K~ Etv,)

atial n|! i
= gt k)

= gtt-m [ ZL } (v,v).

This proves the uniqueness of the scalar product. Let us now prove its
existence.
Clearly, there exists a non-degenerate symmetric bilinear form such that

(v;,v;) = g~ ("= V { 7; ] 8. (6.2)

We have to check that it satisfies Relation (6.1). It is enough to check this
for z = E, F, K and K~!. We shall do this for £ = E leaving all other
computations to the reader. On the one hand, we have

[n]!
(¢ —1]!n — ]!

On the other hand, by (VI.3.1-3.3) and by (6.2), we have
(vivT(E)vj) = (”ivKij)
= Eqn_z(j+l)[j + 1] (v;, vj+1)

(Bv;,v;) = e[n =i+ 1(v;_y,v;) = €b;_q ; g~ (rmI6=1)

A |
_ 5. . —(n—i—1)i+n—2(j+1) [, 1 [n]
€0ij+14 +1] [i)tn — ]!

_ R )
= 55i,j+1‘1( G )m—(&)wvﬂ.
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VIL.7 Quantum Clebsch-Gordan

‘We now prove a quantum Clebsch-Gordan formula for the finite-dimensional
simple U -modules. Since

n ngE,O@)‘/l,n gVvl,n®vvs,0’ (71)

we need give this formula only for the modules V; ,,, henceforth denoted
for simplicity by V..

Theorem VIL.7.1. Let n > m be two nonnegative integers. There exists
an isomorphism of U,-modules

‘/n®vvmgv EBV—(—m 269 69Vn—m

One proves Theorem 7.1 in the same way as Proposition V.5.1. It suffices
to check that the module V,, ®V,,, contains a highest weight vector of weight
g™ =2 for any integer p such that 0 < p < m.

Lemma VIL.7.2. Let v'™) be a highest weight vector of weight ¢" in V.,
and v'"™ be a highest weight vector of weight ¢™ in V, . Let us define
vé") = ﬁFT’U(”) and vl(,m) = [—p}]—!F”v(m) for all p > 0. Then,
,U(n+7n~2p) _ zp: (_1)i [m —-p+ Z]'[ Z} q—z(m 2p+i+1) (n) ® U(m)
P [m — p]![n]! d

is a highest weight vector of weight ¢"*™~ % in V. @V, .

PROOF. It is clear that v(n) ® v(m) has weight ¢~ 2+m—2(p— 0= gntm=2p,

Let us prove that EU(”+m 27) = (. Recall that A(E) = 1@ E+ E® K. It
follows that

Ev(n,+m-2p)

P . .
- Z _1)1', [m -pt Z]'[TL - Z]! —z(m 2p+1+1) (n) ®EU(m)

] =

. 1)? [m —p—l—Z]'[n — Z]‘ —i(m—2p+i+1) E (n) QK (m
+ Z(_ ) [m_p]|[ ]‘ q v; Up—i

i=0
14 .

; . [m—p-’rl]'[n—l] —i(m—2p+i+1)
= —1)Ym-p+i+1 q P
2 1 =i
(n) ®U;(>m2 1

p . .
; . m—p+dn =i _im2pritt)+(m-2p+20)
Y _ 1 (m—2p+1t 4
+ L D i U
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(™)

(n)
le 1 p i

= e (R

=0

[m—p+i]![n~i+1]!q_<z 1) (m— 2p+z)) ™) & o)
[m — p]![n]! - -

O

This concludes the proof of Theorem 7.1. We wish to go one step further
and address the following problem. We now have two bases of V,, ® V,, at
our disposal. They are of different natures: the first one, adapted to the
tensor product, is the set

{v; ™ g v(m)}0<z<n 0<j<m

the second one, formed by the vectors

(n+m-2p) _ 1 4 (n+m—2p)
v [k]' F*v

with 0 < p <mand 0 < k < n+m— 2p, is better adapted to the U -
module structure. Comparing both bases leads us to the so-called quantum
Clebsch-Gordan coefficients

n m n+m-—2
i g k

defined for 0 <p<mand 0 <k <n+m—2pby
(n+m—2p) _ nom n+m-=2p | ) (m
vy, = Z [ij 3 ]vz- ®uv; . (7.2)
0<i<n, 0<j<m

The remainder of this section is devoted to a few properties of these coef-
ficients, also called quantum 3j-symbols in the physics literature.

Lemma VIL7.3. Fizp and k. The vector v.""™ %" is q linear combina-

tion of vectors of the form v( m) ® v(mz+k. Therefore, we have

n m n+m-—2p |
{z’ j A ]—O (7.3)

when i+ j # p+ k. We also have the induction relation

n m n+m-2p ] [j+ He ™2+ [n m n+m—2p
ioj+1 k+1 - [k +1] i k
(7.4)
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PRrOOF. This goes by induction on k. The assertion holds for £ = 0 thanks
to Lemma 7.2. Supposing

(n+m 2p) (n) (m)
Z a; v, ®vp ik

we get

[k’—{— 1]U(n+m—2p) _ Fv(n+m—2p)

k+1
= Z (K_l e Ful o+ Py ® ”SILZM)

= Z & ([p~i+k+1] (2, (n) ®“p L+k+1
+ i+ 1ol ® U;Tﬁ+k)

= Z Q; ([p —itk+1g " 4 M) " ”;(> 7)+k+1
The rest follows easily. m]
We now prove some orthogonality relations for the quantum Clebsch-
Gordan coeflicients, which will allow us to express the basis {vgn) ®v](-m) }i g
in terms of the basis {v{"*" ") }p.x- Let us equip V,, and V,, with the scalar
product ( , ) defined in Section 6. Consider the symmetric bilinear form on
V, ®V,, given by
(vl ®U/1,U2 ®U/2) = (1)1,'1}2)(1}/1,’0/2) (7.5)
where v,,v, € V,, and vi,v5 € V,,.
Lemma VII.7.4. The symmetric bilinear form (7.5) is non-degenerate

and the basis {v(n) ® 'v(m)} , is orthogonal. Furthermore, for all x € U,
and all wy,w, €V, ® V , we have

(zwy,wy) = (wy, T(z)w,).
PROOF. The first two assertions are clear. Let us prove the last one. If
w; = v; ® v] and wy = v, ® vh, we have
(zwy,wy) = (A(z)(v; @ V), v, ® vy)
= Y (@vy,vy) (@ vy, v)
()
= Z(vl,T(x')vz)(v'l,T(:r”)v'z)
(z)
= Y (0, (@) 0y) (0, T(2) ")
(T(x))
= (wy, T(z)w,),
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using the fact that T is an automorphism of coalgebras (see Proposition

6.1). |
The second basis of V,, ® V,, is orthogonal too.

Proposition VIL.7.5. (a) The basis {vl(gn+m72p)}OSpSm,OSkSnv{-m—Qp is

orthogonal.
(b) Fiz integers p,q,k,£. We have the following orthogonality relations:

_ —i(n—i—1)—j(m—j—-1) | T m
' - X Hin
%

n om n+m-—20 n m n+m-—2q
x| S
1] k i ¢

whenp # q ork #4, and

2
Zq—i(nﬁfl)ﬁ'(mwa‘—l) n m nom n+m-—2p
— 1 j i g k
(2]

~k(n+m—2p—k—1) [ n+m—2p J .

(¢) Given i and j, we have

o™ ®v§-m) _ q‘i(nfifl)vj(m—j—l) { n ] [ m }

K3 7 ]
oo [ n m n+m-—2 ]
m n+m-—2p . .
k(n+m—2p—k—1) tJ k (n+m—2p)
X q v .
;) ;L:B [ n+ n}z - 2p } k

PROOF. (a) Arguing as in the proof of Theorem 6.2, one shows that

(UI(quLm—-Zp)’vén-l—m—Zp)) -0
whenever k # £. Let us examine the case when p # ¢. Let us first show
that the highest weight vectors v("+™=2P) and v("*™=249) are orthogonal.
In fact, Lemma 7.2 implies that (v("F™=2P) 4("+m=20)y can he written
(ulmtm=2) plrtm=20) - = % a8, (0™, o) (), 0i™)

2,7

37 (0™, 0™ (W5, 00,

I

1
which is zero because p — i # ¢ — . It remains to show that

(U’(€n+m-2p), v§n+m—2q)) -0

when k, ¢ > 0.
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By symmetry, it is enough to consider the case k > £. We have

(vl(fner%p)’vén+nv,—2q)) = - (Fkv(nqt’anZp)’ v§n+mf2q))
_ A// (v(rH-m—Qp)7 Ekvén+m—QQ))

for some scalars v and 4. Now, if k > £, the vector Ekvén-l'm*mn is zero or

is a scalar multiple of the highest weight vector v("*™~29) which brings us

back to a previous case.

(b) Let us compute (v (n+m=2p) vf”+"L~QQ)>

Uy
Z Z n o m n+m-—2p n m n+m-—2q
B i 7 k r 8 I4
i+j=p+kr+s=q-+£

x (0" o)™ o)

. It is equal to

(3

Z {n m n+m~2p}{n m n+m—2q}
A F v ¢
x (v o)™ o)

? 2

Z q—i(n~i—1)—j(m—j—l) n m n m n+m-—2
1 j i 7 k

i+j=p+k

| n o m n+m-—2q ]
x | . .
i ] £

On the other hand, we have

e e [ n+ n; ~2p } .
(c) We have v\™ @ v,( = o Syt Yok o) for some coef-

ficients 7, Therefore,
,ka( (n—{—m 2p) (n+m—2p))
(v 2( ®,U(m) (n+m 2P))

_ n m n+m-—2p (n) (n)y, (m) (m)
- i ] k (Ui 7vi )(Uj / )

Applying (6.2), one gets the desired explicit expression for . )

For more details on the quantum Clebsch-Gordan coefficients, see [KR89]
[KK89] [Vak89] where they are expressed in terms of g-Hahn polynomi-
als, i.e., of certain orthogonal g-hypergeometric series (see also [GR90],
Chap. 7). Koelink-Koornwinder and Vaksman showed that the orthogonal-
ity relations of the ¢-Hahn polynomials were equivalent to the orthogonality
relations of the quantum Clebsch-Gordan coefficients. The corresponding
property for the classical Clebsch-Gordan coefficients was known already
(see [K0090]).
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VII.8 Exercises

1. Compute S(E'F'K*) in U,

2. Let = be an element of U,. Prove successively that

(a) x is grouplike if and only if x is of the form z = K™;
(b) if A(z) = 1® 2z + 2 ® K and ¢(z) = 0, then z is a linear
combination of E and of KF;
(c)if A(x) = K'®z+2®1 and e(z) = 0, then x is a linear
combination of F and of EK ';
(d) if A(z) =1®z+2z® K™ !, then z = 0.
Use Exercise 2 to show that there exists an isomorphism of Hopf

algebras from U, onto U, if and only if ¢ = £q¢*!, and that any
Hopf algebra automorphism ¢ of U, is of the form

p(E)=aE, ¢(F)=a"'F, @(K)=K
where « is a non-zero scalar.

(Hopf *-algebra structures on U, q) ‘We use the concepts introduced in
IvV.8.

(a) Prove that U, is a Hopf x-algebra if and only if ¢* is a real
number or ¢ is a complex number of modulus 1.

(b) Check that the following formulas determine five Hopf *-algebra
structures on U :
(i) E*=E, F*=F,and K* =K if |¢| = 1;
(ii) E* =KF, F* = FK™!, and K* = K if ¢ is real > 0;
(iil) B* = —KF, F* = ~EK™!, and K* = K if ¢ is real < 0;
) BT

(iv = iKF, F*¥ = (FK~ ' and K* = K if ¢ = X\i with )
real > 0;

(v) E* = —iKF, F* = —iEK~' and K* = K if ¢ = i with A
real < 0.

(c) Show that any Hopf *-algebra structure on U, is equivalent to
one of the previous five ones (Hint: use Exercise 2).

Given a Hopf x-algebra structure on U, and a U ,-module V, define a
Hermitian scalar product as a definite positive Hermitian form ( , )
such that (zv,v) = (v,2*v") for all z € U, and v,v" € V. Determine
all Hermitian scalar products on the simple module V ,,.

Prove that there exists a U,-linear isomorphism between the simple
module V, , and its dual module.
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VII.9 Notes

The Hopf algebra structure of U, (sl(2)) is due to Sklyanin [Ski85]. The
Drinfeld-Jimbo algebras U, (g) also have a non-commutative, non-cocom-
mutative Hopf algebra structure. In the cases A, D, E considered in V1.7,
it is given on the generators (E;, F;, K;) <;<¢ by

A(E) =1QE+ERQK;, A(F)= Ki‘1®Fi+Fi®1v A(K;) = K;®K,,

e(Ey) =¢e(F}) =0, e(K;)=1,

and
S(Ez) = _EiKi_17 S(Fi) = _KiFi’ S(Ki) = Kz'_l-

In this chapter we adopted the conventions of Takeuchi [Tak92c| rather
than those of Drinfeld and Jimbo. In the special case g = s!(2), Takeuchi’s
conventions allow U, to act on the quantum plane of Chapter IV. Following
Drinfeld [Dri87], Takeuchi [Tak92c| [Tak92b] also showed the existence of a
duality between U, (sl(n)) and the Hopf algebra SL (n) of IV.9, embedding
the latter into the restricted dual of U, (sl(n)).

The semisimplicity of the finite-dimensional U -modules is due to Rosso
[Ros88]. We followed his proof closely.

For more details on quantum Clebsch-Gordan coefficients, read [KR89]
[KK89] [Koo90] [Vak89]. For the Hopf *-algebra structures on U, (deter-

mined in Exercise 4), see [MMN*90].
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Chapter VIII

The Yang-Baxter Equation and
(Co)Braided Bialgebras

Part II is centered around the now famous Yang-Baxter equation whose so-
lutions are the so-called R-matrices. We introduce the concept of braided
bialgebras due to Drinfeld. These are bialgebras with a universal R-matrix
inducing a solution of the Yang-Baxter equation on any of their mod-
ules. This provides a systematic method to produce solutions of the Yang-
Baxter equation. There is a dual notion of cobraided bialgebras. We show
how to construct a cobraided bialgebra out of any solution of the Yang-
Baxter equation by a method due to Faddeev, Reshetikhin and Takhtadjian
[RTF89]. We conclude this chapter by proving that the quantum groups
GL,(2) and SL,(2) of Chapter IV can be obtained by this method and
that they are cobraided.

VIII.1 The Yang-Baxter Equation

Definition VIIL.1.1. Let V be a vector space over a field k. A linear
automorphism ¢ of V. ® V' is said to be an R-matriz if it is a solution of
the Yang-Baxter equation
(c®idy)(idy ® c)(c®idy) = (idy ® ¢)(c@idy)(idy ® )
that holds in the automorphism group of V@V @ V.
Finding all solutions of the Yang-Baxter equation is a difficult task, as

will appear from the examples given below. Let {v;}, be a basis of the
vector space V. An automorphism ¢ of V ® V is defined by the family
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(cf]-z)m’ x.¢ of scalars determined by

c(v; ® 11]-) = Z cfje v, @ vy
k.0

Then c¢ is a solution of the Yang-Baxter equation if and only if for all
i,7,k, ¢, m,n, we have

Z (Cfgqékv")(épxcg:)(cizlézn) = Z (6Lp631;)(C;gérz)(émfcgr;nzn%
P¢TT,Y,2 POTTY2
which is equivalent to

q yn _m __ ar Ly mn
Z C?j Cak Cpy = Z CkCiq Cyr - (1'1)

p,q,y Y.q9,7

for all 4, 7, k, £, m,n. Solving the non-linear equations (1.1) is a highly non-
trivial problem. Nevertheless, numerous solutions of the Yang-Baxter equa-
tion have been discovered in the 1980’s. Let us list a few examples.

Example 1. For any vector space V we denote by 7y, € Aut(V ® V) the
flip switching the two copies of V. It is defined by

Ty v (V] ®v,) = vy @ vy,

for any v,,v, € V. The flip satisfies the Yang-Baxter equation because of
the Coxeter relation (12)(23)(12) = (23)(12)(23) in the symmetry group
Ss.

Here is a way to generate new R-matrices from old ones.

Lemma VIIL1.2. Ifc € Aut(V®V) is an R-matriz, then so are Ac, ¢!
and Tyy ©COTyy where \ is any non-zero scalar.

Proor. This follows from the identities
(Ae®idy) = Alc®idy), (idy ® Ae) = A(idy @ ¢),

(c'eidy) = (c@idy)™!, (idy®c ') =(dy ®)7"
(¢ ®idy) = o(idy ®c)o™ !, (idy @) =olc®idy)ot,

where ¢’ = Tyy ©coTyy and o is the automorphism of V@V @V defined
by (v, ® vy ® vg) = V4 ® v, ® v; for vy,vy,v3 € V. O

Example 2. Let us solve the Yang-Baxter equation when V' =1V, =V, , is
the 2-dimensional simple module over the Hopf algebra U, = U, (sl(2)) con-
sidered in Chapters VI-VIIL. More precisely, let us find all U -automorphisms
of V; ® V] that are R-matrices. We freely use the notation of the above-
mentioned chapters. Recall that if v, is a highest weight vector of V;, then
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the set {vy,v; = Fv} is a basis of V;. By the Clebsch-Gordan Theorem
VIL7.1 we have V; @ V] 2V, @ V. Lemma VIL.7.2 implies that the vectors

wy =1, Qv, and t=v,®v; —q v, @Y,
are highest weight vectors of respective weights ¢ and 1. We complete the
set of linearly independent vectors {wyg, ¢} into a basis for V@V by setting

-1
wy = Fwy =q¢ 'y @, +v,®v, and w, = — F2w, = v, @ v,

2
where [2] =g+ ¢~ .
Proposition VIIL.1.3. Any U -linear automorphism ¢ of V, @V, is dia-
gonalizable and of the form o(w;) = Aw, (i =0,1,2) and @(t) = pt where
A and p are non-zero scalars. The automorphism ¢ is an R-matriz if and
only if

(A= w)(gA +a  1)(g A+ qu) = 0.

PROOF. Since ¢ is U -linear, the image under ¢ of a highest weight vector
is a highest weight vector of the same weight. Now, w, and t have different
weights (we still assume that ¢* # 1); therefore, there exist A and u such
that @(wy) = Aw, and () = ut.

As for the remaining basis vectors, we have

olw,) = [—1] o(Fiuy) = [—1] Fio(w,) = A,

for ¢ = 1,2. This completes the proof of the first assertion in Proposition
1.3.

The second assertion results from tedious computation. Let us give some
details. We first observe that the matrix ® of ¢ with respect to the basis
{vg @ vy, Vg @ vy, v; ® vy, v, @ vy} is given by

A0 06O
1 0 a v O
®= 0 v 5 0
0 0 0 A
where . .
a2 g e p A p
2l &I 2]

The automorphisms ¢ ® id and id ® ¢ can be expressed, respectively, by
the 8 x 8-matrices ®,, and ®,; in the basis consisting of the elements
Uy @V & Uy, Vg Uy RV, Vg Q¥ &V, Yy @V QV, V] ®Yg Vg, U By Xy,
v ® v, ®ug, and v; Qv Qv of VRV ®V where
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A0 0 0 0 0 00O

0O A0 0 O0O0O0TO

0 0 a O 0 0O

o 0 00w 0 v 0O

2710 0 v 0 8 0 0 0

0 00 ~ 0 p 00

000 0 00 X O

0 00O 0O 0O 0 0 X

and

A0 0 0O 0 O OO

0 a v 00 0 0 O

0O 600 0 0O

o 0 00OXNO O OO0

27100 00 X0 00

0 0000 a v O

0 000 0~ B 0

00 0O0O 0O 0 0 X

Now, @1,Pp3P15 — Po3®15Po3

0 0 0 0 0 0 0 0
0 K —afBy 0 0 0 0 0
0 —apfy L 0 afy O 0 0
N 0 0 -K 0 a8y 0 O
10 0 afy 0 M 0 0 0
0 0 0 aBy 0 —L afy O
0 0 0 0 0 aBy —-M O
0 0 0 0 0 0 0 0

where K = a((A — a)A —v?), L = af(a — B) and M = B(v* + A(B — N)).
Suppose that we have proved that K, L and M are multiples of a3v. Then
D1oPo3Piy — Py PypPys = affy x ¥

where W is a non-zero matrix. It follows that ® is an R-matrix if and only
if @B~y = 0, which would complete the proof of Proposition 1.3.

It remains to show that K,L and M are multiples of af8vy. An easy
computation proves that

A—a=qy, A=f=q¢", ¢A-v=¢"a, A-7=qf
and 8 — a = (¢ — ¢~ ')7. Therefore,
K=oay(gh—7) =qapy, L=—(q—q ")aby

and M = By(y—q~'A) = —¢ B 0
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To sum up, the R-matrices of the U ,-module V; ® V| belong to the
following three types depending on a parameter A # 0:
1. If A =, @ is a homothety.

2. If g\ + ¢ 'y =0, then

gt 0 0 0
- 0 ¢gl=q 1 0
P=ar| 1 0 0
0 0 0 ¢!
3. If ¢ A+ g = 0, then

qg 0O 0 0
0 0 1 0

_ -1
®=q"A 01 g—qgt 0
0 0 0 q

It is clear that Cases 2 and 3 are equivalent within a change of basis after
exchanging ¢ and ¢~!. As we shall see in the next example, the minimal
polynomial of ® is of degree < 2.

Example 3. We now give an important class of R-matrices with quadratic
minimal polynomial. Such R-matrices will be used in Chapter XII to con-
struct isotopy invariants of links in R3.

Let V be a finite-dimensional vector space with a basis {e,,..., ey }. For
two invertible scalars p,q and for any family {Tij}lgi,jg w of scalars in k
such that r;; = q and r;;7;, = p when i # 7, we define an automorphism ¢
of VRV by

cle;@e;) = qe; Qe
r.e. Qe le<]
. . = JZ ] ¢
C(ez®ey) { Tii € ®ei+(q—Pq~1)€i®ej if ©>j.

Proposition VIIL.1.4. The automorphism c is a solution of the Yang-
Bazxter equation. Moreover, we have

(¢ — qidygy)(c+pg  idygy) =0,
or, equivalently, 2 - (g — pq_l)C - Pidv®v =0.

PROOF. (a) We first show that ¢ is an R-matrix. In order to simplify the
proof, let us introduce the following notation. The symbol (ijk) will stand
for the vector ¢; ® e; ® €y, and [i > j] for the integer 1 if i > j and for 0
otherwise. Then ¢ can be redefined as

cle; @e;) =rye; @e;+ [0 > jlfe; Qe

where = q—pg~'.
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An immediate computation yields
(c®id)(id ® ¢)(c ® id)((ijk))
73iTkiTh; (KJ8) + 75717 > k] B(5ki)
i rili > J18(kiG) +rigli > G117 > k1A% (ikg)
(> 41l > k1 + > )5 > K]) BGiik)
o (ryaryli > KB + 1 > 41l > KB (igk)
and

(4 ® o)(c @ id)(id @ ) (ijk))
= 7Tl (KJE) + 77 > KIB(5k)
Fryralt > J18(kiG) +ryli > K[j > k|62 (jik)
i (1> Kl > 5]+ i > G115 > k) 6 (ik3)
+(ryeregli > KB+ (6> ) > HB) i)

We have to prove that these expressions are equal for all i, j, k. This is
clearly the case if i = j = k. If 1, j, k are distinct indices, they are equal in
view of relations of the type

[i > jlli > k] = [i > jllj > k] + [i > K][k > j]

which express the fact that for distinct indices, we have ¢ > j and i > k
ifand only if ¢ > § > k or i > k > j. If exactly two indices are equal, say
i = j # k, then the desired equality is equivalent to r% = fBr,. + p, which
holds since 7;;, = ¢ and 8 = ¢ — pg~ L.

(b) One computes ¢® — fc — pidy gy on any vector of the form e; ®e;. If
i # j, one immediately obtains 0. If i = 5, one gets (¢° — 3¢ — p)(e; ® ¢,),
which is zero because of the value given to . o

Consider the following two special cases:

(i) If p = ¢2 and r;; = q for all 7, j, then ¢ is a homothety.

(ii) Take p = 1 and r;; = 1 for i # j. Then c takes the form shown in
Case 3 of Example 2 when V is two-dimensional. Thus, Example 2 turns
out to be a special case of Example 3.

VIIL.2 Braided Bialgebras

The aim of this section is to define the concept of a braided bialgebra. The
importance of this concept comes from the fact proved in Section 3 that
braided bialgebras generate solutions of the Yang-Baxter equation.
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Definition VIIL.2.1. Let (H,p,n,Ae) be a bialgebra. We call it quasi-
cocommutative if there exists an invertible element R of the algebra H @ H
such that for all x € H we have

A°P(z) = RA(z)R™L. (2.1)

Here A°? = 7 5 o A denotes the opposite coproduct on H. An element
R satisfying this condition is called a universal R-matriz. It is part of the
data of a quasi-cocommutative bialgebra. Any cocommutative bialgebra is
quasi-cocommutative with universal R-matrix equal to R = 1 ® 1. Thus
we can look upon a quasi-cocommutative bialgebra as a bialgebra whose
non-cocommutativity is controlled by its universal R-matrix.
If we set R = ) . s; ®t;, then Relation (2.1) can be expressed, for all
z € H, by
Z s, @ a't, = Z s, @ t;x" (2.2)
(z),i (z),i
using Sweedler’s sigma notation introduced in I11.1. We also define a quasi-

cocommutative Hopf algebra as a Hopf algebra whose underlying bialgebra
has a universal R-matrix.

Convention. The following notation will be used extensively in the sequel.
Let H be an algebra and X =3, xgl) ®... ®x§p) € H®P (p > 1). For any
p-tuple (ky,...,k,) of distinct elements of {1,...,n} (n > p), we denote
by Xy, .k, the element of H®"™ given by

1
Xpow, =2 v e oy

where ygkj) = :1:,5‘“ for any j < p and ygk) = 1 otherwise. For instance, if

R = 27 s; ®t;, then Ry, will be the element of He®3 given by

Ry =) t,019s,

We now introduce the main concept of this section.

Definition VIIL.2.2. A quasi-cocommutative bialgebra (H,u,n, A€, R)
or a quasi-cocommutative Hopf algebra (H, p1,1, Ae, S, S R) is braided
if the universal R-matriz R satisfies the two relations

(A®idg)(R) = Ri3Ry (2.3)

and
(idg ® A)(R) = B3R, (2.4)
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Braided bialgebras are central in the theory of quantum groups and R-
matrices. In the literature, notably in Drinfeld’s papers [Dri87] [Dri89al
where this concept was defined for the first time, braided bialgebras are
called quasi-triangular bialgebras. We call them braided because their cat-
egories of modules are braided in a sense that will be explained in Chapter
XIIT.

If R=)", s;®t;, Relations (2.3) and (2.4) can be expressed respectively

as
Z () ®(s)" ®@t; = Z 5, ®8; Qtt; (2.5)
i,(s:) 1,5

and
Z $; ® (t;)' ® (t;)" = Z 8;8; ®t; ® ;. (2.6)
iv(ti) ivj

Example 1. Cocommutative bialgebras are braided with universal R-matrix

R=1®1.

Here is a non-trivial example.

Example 2. (Sweedler’s four-dimensional Hopf algebra) Let H be the al-
gebra generated by two elements z,y and relations

=1, 3*=0, yr+azy=0.

The set {1,z,y,zy} forms a basis of the underlying vector space. There is
a unique Hopf algebra structure on H such that

Alz) =z ®z, e(x)=1, S(z)=rz,
Aly) =1@y+y®z, c(y) =0, Sl =y

Observe that the antipode S is of order 4 and that, for any a € H, we have
5%(a) = wax~". Set

1 A
Ry, = §<1®1+1®x+m®1—x®x) +§<y®y+y®wy+xy®xy—my®y)

where A is any scalar. It is easy to show that R, satisfies the conditions
of Definition 2.2, thus endowing H with the structure of a braided Hopf
algebra for any scalar \. Observe that R, ' = T 1 (Ry)-

We now investigate a few properties of universal R-matrices. The follow-
ing lemma will be useful later. It shows how to form new quasi-cocommut-
ative Hopf algebras from a given one.

Lemma VIIL2.3. (a) If (H,pu,n,A,6,8, S R) is a quasi-cocommut-
ative Hopf algebra whose antipode S is bijective, then so are

(H,u%,n,A,e,S7 S, R7Y),  (H,p,n,A%,e,571,5,R™)
and (H,p,n, AP, ¢, 571, S, Ty g (R))-
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(b) If, furthermore, (H,u,n,A,€,8,8™ 1, R) is braided, then so is
(Hv s 1, Aop’ &, S_l, Sv TH,H(R))‘

PROOF. (a) As a result of Corollary 111.3.5, we see that (H, u°P,n, A, e, S™1)
and (H, u,n, A°P, e, S™1) are Hopf algebras. In (H, u°?,n, A,e,S71), Rela-
tion (2.1) reads A°P(z) = R™'A(x)R, whereas it becomes

A(z) = RT'AP(2)R and A(z) = TH7H(R)A°p(x)TH’H(R)’1

in (H,p,n, A%, e,S™1), which proves Part (a).

(b) According to (a), the Hopf algebra (H,u,n, AP ¢, 571 S, 7(R)) is
quasi-commutative. We now have to check Relations (2.3) and (2.4).

Let us start with (A ® id;)(R) = R,3R,5 and let us apply the transpo-
sition (12) to it. We get

(A ®idg)(R) = RgyRy3.

We now use the circular permutation (123) to obtain

; op -

(idyy © AP)(R) = (ry 5 (B) | (i (R)) .
Similarly, one shows that Relation (2.4) for R implies Relation (2.3) for
Ty, u(R). O

Theorem VIIL.2.4. Let (H,u,n, A, e, R) be a braided bialgebra.
(a) Then the universal R-matriz R satisfies the equation

RiyRi3Ry3 = RogRi3 Ry, (2.7)
and we have
(e®idy)(R) =1={(idy ®¢)(R). (2.8)
(b) If, moreover, H has an invertible antipode, then
(S®idy)(R) = R~ = (idy ® S™H)(R) (2.9)
and
(S® S)(R) = R. (2.10)

Using the above conventions, in any braided Hopf algebra H whose uni-
versal R-matrix is of the form R = ), s, ® t;, Relations (2.7-2.9) are
equivalent to

Z 5pS; @ tys; @t = Z 8;8; ® st ® Tyt (2.11)
4,7,k 47,k

D et =3 sielt) =1, (2.12)

i %
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and

ZS ®t—ZS ® St (2.13)

PROOF. (a) Relation (2.3) and the definition of R imply

RyRi3Ry; = Rip(A®id)(R)
= (A’ ®id)(R)R;»
= (tgg® id)(A ®1d)(R)R;4
= (TH,H ®id)(Ry3R93) Ryy
= R23R13R12'
From (¢ ® id)A = id and from (2.3), we get
R=(¢®id®id)(A ®id)(R) = (¢ ®id ® id)(R5R3) = (¢ ® id)(R)e(1)R.

Since (1) = 1 and R is invertible, we obtain (¢ ® id)(R) = 1. Similarly, we
use the relation (id ® €)A = id and (2.4) to derive (id®¢)(R) = 1.

(b) Now suppose that H has an invertible antipode S. We know that the
antipode verifies p(S ® id)A(z) = e(x)1 for all x € H. This implies

(k®id)(S®id®id)(A®id)(R) = (e ®id)(R) =1
from (2.8). Consequently,
1=(p®id)(S®id®id)(R3R.;) = (S®id)(R) S(1)R.

Since S(1) = 1, we get
(S®id)(R) = R (2.14)

Replace (H, u,m, A, ¢, 5,81, R) by the braided Hopf algebra
(H, p,n, A%, e, 7", 8,75 y(R))
of Lemma 2.3 (b). Then Relation (2.14) becomes
(5'® id)(rg 4 (R)) = TH,H(R)_la
~!. Finally, we have

which is clearly equivalent to (id ® S™*)(R

) =

(S®S)R) = (d®S)(S®id)(R)

= ([d®S)(R™)
(id® 8)(id® S™)(R)

(id @ id)(R)

R.

Il



VIIL.2 Braided Bialgebras 177

In Chapter XIII we shall give a categorical interpretation of Relations
(2.3) and (2.4). Here we give another one in terms of algebra and coalgebra
maps. Indeed, with the universal R-matrix R we can build two linear maps
rA and Ap from the dual vector space H™ into H. They are defined by

rMa) = Z afs;)t, and Ag(a) = Z s;a(t;) (2.15)

i %

where R = ), 5, ® t; and « is any linear form on H. We endow the
dual space H* with its canonical algebra structure and, if I is finite-

dimensional, with its canonical coalgebra structure.

Proposition VIII.2.5. Let (H, p,n,A,e, R) be a braided bialgebra. Then
RrA 18 an algebra map and Ay s an algebra antimorphism. Moreover, if H
is finite-dimensional, then Ap is a coalgebra map and R\ is a coalgebra
antimorphism.

PRrOOF. We first prove that pA is an algebra map. Let us compute pA(e).
From (2.12) we get zpA(g) =3, e(s;)t; = 1, which shows that ) sends the
unit of H* to the unit of H. Now, let o and 3 be linear forms on H. Then
by (2.3), or its equivalent form (2.5), we have

rMaB) = Y (aB)(s)t; =) (@®B)(As)1,

K3 7

Z a(si)ﬂ(sj) Lty = rAM@) RA(B),

]

|

which proves that pA preserves the multiplications. One may show in an
analogous way that A is an algebra antimorphism using (2.4).

Now assume that H is finite-dimensional. Then the dual space H* has a
coalgebra structure. Its comultiplication A satisfies

a(zy) = Ala)(z®y) =Y _ o (z)a(y).
(@

In order to prove that Ay is a coalgebra map, we first have to check that
Al = (A ®@ AR)A.
Now, we have

Ag() = - Alsalty) = (@ a)(A @ id)(R);

so using (2.5) we get A(Ap(a)) =37, ; a(t;t;)s; ® s;. On the other hand,
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(Ar®Ap)Aa) = Z Ag(e) ® Ag(a”)

(a)

= Z 5,0/ (t;) ® Sja”(tj)
4,5, (c)
D altit)s; ©s;
i,j
= AQAg(a).

We next prove that Ap preserves counits. Using (2.12), we get

eAp(a) = a(z s,a(t)) = a(Zv e(s,)t;) = a(1) = £(a).

(@) (@),

One similarly proves that A is a coalgebra antimorphism using (2.4). O

VIII.3 How a Braided Bialgebra Generates
R-Matrices

We now prove the existence of a solution of the Yang-Baxter equation on
every module over a braided bialgebra (H, u,n, A, €, R).

Let V and W be two H-modules. The universal R-matrix R in H @ H
allows us to build a natural isomorphism c{zw of H-modules between V@W
and W ® V. This isomorphism generalizes the flip 7,15, between the factors
V and W and is defined for all v € V and w € W by

Cl\;,w(”‘g’w):Tv,W( U®w> ZtW®sv (3.1)
where R =Y, s;®t;. By (2.13) ¢ff ;; is an isomorphism with inverse given
by
(CI\},W)_I(WQ@U):R_l(U@w ZS v®tw*st®S Lt)w.

(3.2)
The latter two equalities hold only when H has an invertible antipode.

Proposition VIII 3.1. Under the previous hypotheses,
(a) the map cVW is an isomorphism of H-modules, and
(b) for any triple (U, V,W) of H-modules, we have

Hovw = (cfw®idy)(idy@clw), cGyew = (dy ®ciiy)(cty @idy)
and
(C‘};,W ®idy)(idy ® cgw)(cﬁv ®idy)
= (idy ® et ) (cfw @ idy) (idy @ eff ).
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PROOF. {a) We have to prove that cﬁw is H-linear. Now, by (2.1), for any
x € H we have

cbwlavow) = my(RA@Ee)
= 1y (AP @)RE S w))
=A@ (Reew)
= 1(05,W(“ ® w)).

(b) We prove the second and the last relations, leaving the first one to
the reader. For u € U, v € V and w € W we get using (2.6)

(idy, ® cﬁ,W)(ch @idy ) (u@vew) = Z tv®tw® s;s;u
]

- Zwvet) ves

ZA (v w)® su

= cg‘,@W(u Qv w).
As for the last relation in Part (b) of Proposition 3.1, we have
(et w @idy) (idy ®cg w)(cfhy @idy) (u@Vew) = Z Ll w® st v®s;8,u
.7,k
and
(1dW®cUV)(cUW®1dv)(1dU®cVW URURW) Z titwRt,s,v@ 8,8, U,
4,5,k

Both right-hand sides are equal in view of (2.11). An alternative proof will
be given in XIII.1. O

Setting U = V = W in Part (b) of Proposition 3.1, we conclude that
c{iv is a solution of the Yang-Baxter equation for any H-module V. This
efficient way of producing R-matrices explains why the element R is called
the universal R-matrix of H. Observe that if R =1® 1, then c{}w =Tyw
is the flip. We have already remarked in Proposition III.5.1 that the flip
was an isomorphism of H-modules for cocommutative H.

VIII.4 The Square of the Antipode in a Braided
Hopf Algebra

As we observed in Theorem III.3.4, the antipode S of a cocommutative
Hopf algebra, is an involution: $* = idy. In the quasi-cocommutative case,
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52 is in general not equal to the identity. Nevertheless, as we shall see in
this section, it is an inner automorphism.

Let (H,p,n,Ae,S,5™!, R) be a quasi-cocommutative Hopf algebra with
an invertible antipode. Consider the element u of H given by

u= Z S(t;)s; (4.1)

where R=3Y", 8, ®t,.Set R™' =3, 5, ®1,.

Proposition VIIL.4.1. Under the previous hypothesis, the element u is
inwertible in H with inverse given by

S _Y s, (42)
i
and for all x € H we have
S?%(z) = uzu™t. (4.3)
PROOF. Let us first show that S?(z)u = uz for all z. If y belongs to H® H,
Relation (2.1) implies the equality
(AP @id)(y)(Re1) = (RO 1)(A®id)(y)
in H® H® H. When y = A(z) for some z € H, we get
Yoa's;eat, 9 =Y sl @t @
i,(z) i,(x)

To the latter relation we apply the linear map from H ® H® H to H which
is idy; ® S ® S? composed with the multiplication from right to left. This

yields
Z S%(z"S(z't,)x"s; = Z 5%(2")S(t;x")s;a’,
i,(z) i,(z)
or, equivalently,
Z S%(2")S(t,)S(z")x"s; = Z S%(2")S(z")S(t;)s;2, (4.4)
i,(z) i,(z)

since the antipode is an antiautomorphism of algebra. Let us first evaluate
the left-hand side of (4.4). By definition of the antipode and of the counit,

we have
ZS z’ ®x"'=Z€(a¢')1®m”:1®x.
()
Hence, 3, S(ac Yo' ® S%(z"") = 1 ® S%(x). Multiplying both sides on the
right by >, s; ® S(t;), we get
D S(a)a"s; @ S (=")S(¢, Zs®52 (t.).
()1
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Consequently, for the left-hand side of (4.4), we have

Z S2 (2" )z'’'s, = Z S%(z = S?(x)u. (4.5)
i (x)

The relation S?(z)u = uz will then be a consequence of (4.4-4.5) and of

Z S2(z")S(2'")S(t,)s;2’ = uz. (4.6)
i, {x)

Let us prove (4.6).

Zm@S (2" S(z") Z:c@S ) => ae(@)®5(1) =z 1.

()

Multiplying by © ® 1 on the left, we get

Z S(t)sa’ © S2(2")S(@") = ur @1,

which implies (4.6) after applying the multiplication in H.
It remains to show that u is invertible. Set

v=> S L)s, (4.7)
i
where R~! =3, 5, ®t,. Then
uy = Z uS™HL,) 5, = Z NG
from the first part of the proof. Consequently,

uszS(tt)ss = S(1)1 =

2]

since }_, ; §,5; ®t;t; = RR™ 1= 1® 1. It follows that 1 = uv = S*(v)u,
which 1mphes that u is left and right invertible with inverse v. ]

Observe that S?(u) = u and S*(u™!) =u™l.

Corollary VIIL.4.2. Under the hypotheses of Proposition 4.1, we have
uS(u) = S(u)u. This element is central in H.

PROOF. Let = be any element in H. Applying S to ur = S%(z)u implies
S(z)S(u) = S(u)S*(x). Replacing & by S™'(z), we get

2S(u) = S(u)S*(z) = S(u)uzu™",
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hence zS(u)u = S(u)ux. This proves that S(u)u is central in H. For z = u,
this formula leads to uS(u) = S(u)u. O

As we already know, any module V over a Hopf algebra H with invertible
antipode has two duals V* and *V. As vector spaces, both coincide with
the vector space of linear forms on V. However, the H-actions are different:
On V* an element a of H acts on a linear form « by

<aw,—>=<a,S(a)— >
whereas on *V it acts by
<ao,—>=<a,5 Ha)->.

Using the defining property of the antipode we observe that the evaluation
maps V*®@V — k and V ® *V — k are H-linear (notice the precise order
of the tensorands). The element u induces an isomorphism between both
duals as recorded in the next proposition.

Proposition VIIL.4.3. If H is a quasi-cocommutative Hopf algebra, then
the map o — au?) from V* to *V is an isomorphism of H-modules.

PROOF. By a(u?) we mean the linear form v — a(uv). Set j(a) = a(u?).
The map j is bijective because u is invertible. Let us show that j is H-linear.
For any v € V, Relation (4.3) implies

<jlaa),v> = <a(S(a)u?),v>

< a, S(a)uv >

= <a,8%(S Ha))uv >
= <a,uS " a)v>

= < j(a),S a)v >
= <ajla),v>.

[}

Define the biduals V** and **V by V** = (V*)" and **V = *(*V). The
reader is invited to prove the following proposition.

Proposition VII1.4.4. Under the hypotheses of Proposition 4.3, the map
Vi < —,uv > [resp. the map v — < — ,u" v >] from V to V** [resp. to
**V] is an H-linear injective map.

We now assume that H is braided. Then by (2.13) and by Proposition
4.1, the inverse of u is given by

ul = Z S7Ht;)S(s,) = Z S72(t;)s;- (4.8)

In the braided case, we have the following additional relations for u.
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Proposition VIIL.4.5. If H is a braided Hopf algebra, then the element
u satisfies the relations

e(u) =1, A(u) = (RyuR) ' (v®u) = (u@u)(RyR) ™,
A(S(w) = (B R) ™ (S(w) © S(u)) = (S(u) © Sw)) (R )™
and for the central element wS(u) we have
AluS(u)) = (RMR)*?(US(U) ® uS(u)) - (uS(u) ® uS(u))(RmR)_Q.

PRrOOF. (a) The relation e(u) = 1 follows from (2.12).
(b) Let us compute A(u). Applying the flip 7 5 to (2.1), we get

A(a) = Ry A% (a)Ryy! (4.9)
for all @ € H. Relations (2.1) and (4.9) imply
A(a)Ryy R = Ry RA(a) (4.10)

for all a € H. In view of (4.10) it is enough to show that A(u)Ry R = u®u.
By (4.10) again and by Theorem I11.3.4 we have

A(u)Ry R = ZA(S(ti))A(Si)RmR

I

Z (S @ S)(A%(t;))Als;) Ry R

g

D (S @ S) (A (L) Ry RA(s)).

i

We now let the algebra H®* act on H ® H on the right by
(@a®b)- (A0 B) = (S® S)(B)(a®b)A

where a,b € H and A, B € H ® H. We can rewrite the previous equalities
as
A(u)Ryi R = Ry - (RypRygRyz Ry Ryy)-

By (2.7) this equals Ry - (RygRy3R15 R4 Ry4), which we now evaluate.
Using Relation (2.13), which gives the inverse of R, we get

Ry - Ryy = Z S(t;)t; ® s;8;
6,
= (seid)(3 ST, @ s5;)
i3

= (S®id)(R511R21)
= (Seid)(1e1)
= 1®1.
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Hence,
Ry - (Ry3Ry3) = (1®1) - R13—ZS 5; 9l =u®l.
Next,
Ry (Ry3Ri3R15) = (u®1) Ry = (u@1)R
and

Ry - (RygRy3R15Ryy) = (u®1) (Z si8; ® S(t )

= (u®1)(id®S) (Z 58, ® Sil(ti)tj)
= (u®1)(id®5)(RllR)
(ue1)(id®S)(1®1)

= (u®1l).

Finally, we have
Ryy - (RogRygRip Ry Roy) = (u®1) - Ryy = (u®1)(1®u) = u®u,

which is what we wished to prove.

(¢) The formula for A(S(u)) is an easy consequence of the formula for
A(u) and of (S ® S) o A = A°P o S, which was proved in Theorem II1.3.4.
(d) The last relation follows from (b), (¢) and the centrality of uS(u).

0

VIIL.5 A Dual Concept: Cobraided Bialgebras

Just as braided bialgebras induce R-matrices on their modules, there are
bialgebras inducing R-matrices on their comodules. These are the cobraided
bialgebras which we now define.

Definition VIIL.5.1. A cobraided bialgebra (H, u,n, A, e,7) is a bialgebra
H together with a linear form r on H @ H satisfying the conditions
(i) there exists a linear form 7 on H ® H such that

(ii) we have
uoP =7 Pk T, (5.2)

(iii) and

r(p®@idy) =rgxryy and r(idy @ p) =113% 7 (5.3)
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where x is the convolution operation on linear forms, and the linear forms
T1a: Tog and 715 are defined by

TR =TRE, To=€Q®r, Ti3=(@7)(Tyy®@idy).

The linear form r is called the universal R-form of H. A Hopf algebra is
cobraided if the underlying bialgebra is.

This definition is dual to Definition 2.2. More precisely, Relation (5.2)
is dual to Relation (2.1), whereas Relations (5.3) correspond to Relations
(2.3-2.4). Conditions (5.1-5.3) can be reexpressed in the following way. For
any triple (z,y, z) of elements of H we have

(1)
Z T(l‘/ ®y')f(x” ® y//) — Z 77(1_/ ® y/)r(x// ®y//) — e(x)s(y), (5.4)
(@} () ()(y)
(i)
yr = Z ( Ry )I//y//’f’( " s y///) (55>
(2){(y)
(iif)
rayez) = 3 1@ @e)el@ )y 92" = Y e )y )
(@} y) (=) (2)

(5.6)
and
rlz®yz) = Z r(x’ ®2)e(y)e(z")r(z" @y") Z r(@' @2)r(z" ®y).
(=) () (2) (z)
(5.7)

A bialgebra satisfying only Conditions (i) and (ii) of Definition 5.1 may
be called quasi-commutative by analogy with the quasi-cocommutative case
of Section 2.

We now show how the universal R-form r of a cobraided bialgebra H
induces a solution of the Yang-Baxter equation on any H-comodule. The
map cff y, defined in (3.1) for a braided bialgebra H with a universal R-
matrix R and H-modules V, W is the composition of the maps

Vew-0VeW go Ve Ww—

MHOTHVENW  p e Ve HeW MUYy ew YNWw eV

where gy and py, are the actions of i/ on V and W respectively and where
we have identified R with the linear map from k to H ® H, sending 1 to R.

Let H be a cobraided bialgebra with universal R-form r. Given the H-
comodules V' and W with respective coactions Ay : V. — H ® V and
Ay W — H®@W, we define the linear map

w VOW -WeV
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by analogy with the above definition of C\};,W as the composition of the
maps

VeaWwllweo V-2 \HoW o HQV—

Mu®w a8y poHeW eV 2 oy (5.8)

(this was obtained by reversing the arrows and interchanging V and W).
Using the conventions of I11.6 we can rewrite this definition for any v € V
and w € W as

cyw(vew) = Z rwyg @vg) wy @ vy . (5.9)
(v)(w)

Proposition VIIL.5.2. (a) Under the previous hypotheses, the map cv.w
is an isomorphism of H-comodules.
(b) If U is a third H-comodule, we have

vev,w = (pw ®1dy)(idy © ¢y w)
and
cuvew = (idy ® cw)(cpy ®idy ).

Moreover, we have

(cvw ®@idy)(idy @ ) (cpy ® idy)
= (idW ® CB,V)(C;'LW ® idv)(idU ® CQ/,W)-

Setting U = V = W in the last relation, we see that cj, is a solution of
the Yang-Baxter equation.

PROOF. (a) We use Condition (5.1) to prove that cy,y, is invertible. Define
a linear map ¢y, from W@V to V® W by

Crw(w®v) = Z oy @ wy) vy @ wy.
(v)(w)

We claim that ¢y, is an inverse to cf,y,. Let us show that it is a left
inverse. We have

vw o cyw)(v @ w)

= Z r(wy ®vy) F((UV’)H ® (wW)H) (vy)y ® (wy)w
(v)(w)
= Z T((WH)I ® (vH)/) ’F((wH)” ® (UH)”) vy @ wyy
(v)(w)
Z e(wy)e(vy)vy ® wy
(v)(w)
= VR w.
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The second equality follows from the coassociativity of the coactions while
the third one is a consequence of Relation (5.1) and the last one follows from
the counitarity of the coactions. One proves that ¢,y is a right inverse to
cyw in a similar way.

We now prove that Relation (5.2) implies that ¢y, is a map of comod-
ules, namely we have

T _ T
Awegvocyw = (dy @cyy) o Aygy -

This is equivalent to

r(wy @ vg) (Wy) g (vy) g @ (Wi )w @ (vy)y
= > (ww)n @ @v)r) vwy © (ww)w ® (vy)y
(v) ()

for any v € V and w € W. Now by the coassociativity of the coactions, the
previous relation can be rewritten as

> r((wg) @ wr)) (wg)"wg)" ©ww @ vy
(v){(w)

= (o) (w) (UH)I(wH)IT<(wH)// ® (vH)”) ® wy ® vy
The latter is a consequence of r*u = p°Pxr, which is equivalent to Relation

(5.2) after convolution with 7.
(b) Let us prove that cigy = (¢ ®idy ) (idy ® ). We have

(chw ®idy)((idy @ ) (u@ v o W)

= Z r(wy ®vy) T((WW)H ® UH) (ww)w ®@uy vy
(u}(v)(w)
Z T((wH)/ ® UH) T((U’H)” ® UH) Wy @ uy @ vy
(u)(v)(w)
= Z rlwy @ ugvy) wy Q uy @ vy
(u) (v){w)
= C’{J®V’W(’U]®’U®'LU).

f

The second equality follows from the coassociativity, and the third one from
Relation (5.7). One proves that cf;y gy = (idy ® cpw)(cpy ®idy) in a
similar way.

The last relation of Proposition 5.2 is a consequence of the previous
relations and of the naturality of the maps ¢". We leave the proof to the
reader. A proof in a more general context will be given in XIII.1. a
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VIII.6 The FRT Construction

We have just seen that a cobraided bialgebra gives rise to an R-matrix on
each comodule. Conversely, Faddeev, Reshetikhin and Takhtadjian showed
in [RTF89] that any R-matrix ¢ in Aut(V @ V) on a finite-dimensional
vector space V can be obtained as in Section 5 from a cobraided bialgebra
A(c) coacting on V. The Faddeev-Reshetikhin-Takhtadjian construction
(FRT construction for short) is based on the following theorem.

Theorem VIIL.6.1. Let V be a finite-dimensional vector space and c an
endomorphism of VRV . There exists a bialgebra A(c) together with a linear
map Ay 1V — A(c) @ V' such that
(i) the map A, equips V with the structure of a comodule over A(c),
(ii) the map ¢ becomes a comodule map with respect to this structure,
(ili) if A’ is another bialgebra coacting on V via a linear map A}, such
that Condition (il) is satisfied, then there exists a unique bialgebra mor-
phism f: A(c) — A" such that

A, = (f®idy) o Ay
The bialgebra A(c) is unique up to isomorphism.

The proof will be given in several steps.

L. In the first one, we define A(c) as an algebra. Let {v;}, ., be a basis
of V and let the coefficients c;;" be defined by

c(v; ®v,;) = z " U, ® U,

1<mn<N

Pick a family of indeterminates Tij , where ¢ and j both run over the set
{1,...,N}.

Definition VIIL.6.2. The algebra A(c)is the quotient of the free algebra
F' generated by the family (Ti])lgi,jSN by the two-sided ideal I(c) generated
by all elements C3™ where

cpr= Y T - N TRTR (6.1)
1<kZ<N 1<k <N
and i, j,m and n Tun over the indexing set.
2. We put a bialgebra structure on A(c).

Lemma VIIIL.6.3. There is a unique bialgebra structure on A(c) such that

ATH= Y TFeT] and &(T)) =6, (6.2)

1j
1<k<N
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PROOF. It is clear that the above formulas define unique algebra maps
A:F—F®F and ¢:F —k.

To check the coassociativity and the counitarity, it is enough to check these
on the generators 77, which is easy and done as in IT11.4 and in IV.5. We
also have to prove that I(c) is a coideal, i.e., that

AI(e)) CI(c) @ F+ F®I(c) and e(I(c))=0.

We have
Ay = > HTITERTITY - > TP @ TRy
k.,p,q k£,p,q
kr{ 7
= D CHeTIT+ Y Tl Ty
7q k.£.p.q
P rg mn kérmmm
+Z T; TJ ®C£q - Z TipTJg®cquk 7,
k.£,p.q
- Y aperpn Y mriecy
p.q P.q
and

g(Crny = Zc (T Tf) — Y e(TFTY) ey

k¢
. . mn
= E Cij ékrn5en - _S_ 6ik6jéck£
Py k2
. mn mn __
= " et = 0

O

3. We now let A(c) coact on V. Define a linear map Ay, from V to
A(c) @ V on the basis {v;};,<n by

> T e, (6.3)

1<5EN

It is an easy exercise to check that this endows V with a left comodule
structure over the bialgebra A(c).

4. We prove that the endomorphism ¢ of V @ V is a comodule map for
the coaction we have just defined. The coaction Ay, induces on V@V a
coaction Ay defined by

Aygy(v; ®@v;) = Z TIT @ v, ® v,
1<k (<N
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Then ¢ is a comodule map if and only if

Aygy (C(vz‘ ® ”j)) — (id () ®0) (AV®V(vi ® v]-))
= Y Trredh,ev, - Y TR e g, ®u,

k,L,m,n k,.,m,n

vanishes in A(c) ® V. Now, it is clear that the last expression is equal to

Z C" @ v, @ Uy,

m,n

which is zero by definition of A(c).
5. We now establish the universality of A(c). Let (A’, Aj/) be a pair satis-

fying the conditions of Theorem 6.1. Then there exists a family (u]);<; j<n
of elements of A’ uniquely determined by

D uweu
1SN
The coassociativity and the counitarity of A}, imply that
Aul) = Z wf@ul and e(ul) = 6;j-
1<k<N

Condition (ii) of Theorem 6.1 is equivalent to the vanishing of

AV gy (C(Ui ® Uj)) — (ida(y ® ) (A§/®V(Ui ® vj))

for all 4 and j, in other words to the vanishing of

E ckeuk uy — E ukuecﬁ”

1<k <N 1<k <N

for all 4,j,m and n. From this it is clear that the map f from F to A’
defined by f(T; J )= u] for all ¢ and j extends to a bialgebra map factoring
through A(c). Let us ‘check the relation AL, = (f®idy,)Ay. For any ¢ we
have

(f@idy)(Av) = > fTH)ev= Y ul@v,=A4AL@).

1<j<N 1<j<N

Conversely, the relation A}, = (f®id, )A, necessarily implies f (TLJ ) = u{ ,
which proves the uniqueness of f along with the fact that the family (7V)
generates the algebra A(c). This completes the proof of Theorem 6.1.
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Theorem VIIL.6.4. Assume in addition to the hypotheses of Theorem 6.1
that the endomorphism c of VQV is a solution of the Yang-Baxter equation.
Then there exists a unique linear form r on A(c) ® A(c) turning A(c) into
a cobraided bialgebra such that cy,y, = c. We have

r(I" Q1) = i (6.4)
foralli,j,m and n.

The rest of this section is devoted to the proof of Theorem 6.4.

(a) Suppose A(c) is cobraided with a universal R-form r such that the
automorphism cf, , coincides with the given R-matrix c. By (5.9) and (6.3)
we have

clv; ®v;) = Z (T @17 )v, @ v,.

™m,n

On the other hand, we have c(v; ®v;) =3, , ¢ji"v,, ®v,. It follows that

7"(T{”®Tj") = c;™ for all 4, j,m, n. Relations (5 6-5.7) 1mply the uniqueness
assertion in Theorem 6.4.

{b) We now prove the existence of r. We first have to define r on the
whole space A(c) ® A(c). Let W be the vector subspace of F' spanned by
the set {T7},; ;< We define r: W @ W — k by (6.4). Conditions (5.3)
and ‘ 4 _

rAT?)=r(T) 1) =¢(T}) = b;;
allow one to extend r into a linear form, still denoted r, on F ® F.

In order to prove that r defines a form on A(c) ® A(c), we have to prove

the following lemma.

Lemma VIIL6.5. We have r(F ® I(c)) =r(I(c)® F) = 0.
PROOF. First, we observe that
r(1® I{c)) =r(I(c)®1) =e(l(c)) =0.

Using Conditions (5.3), we see that it is now enough to show that the
images (T @ C[3") and r(Cj7™ ® T}7) vanish for all ¢, j, m,n,p, q. We have

T(Tg & CZ;L”) — Z Ckfr Tq R T Té') _ Z (Tq ®TkTé) mn
k.l
= Z CM 7. T'I" ® T(n) T(Tg ® T]:n)
kL,

__Z TT®T£ Tq®Tk) mn
k.t

_ E: klrnqm_E: re gk ;mn
- C” Cép Cryr ]pczr Cke >

k., klr

which is zero in view of (1.1), i.e., of the Yang-Baxter equation. 0
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(c) Now that r is defined, we have to check the conditions of Definition
5.1. This will be done in several steps.

1. Conditions (iii) are satisfied by definition of r.

2. Condition (i): we have to prove that r is invertible with respect to the
convolution, namely that there exists a linear form 7 on A(c) ® A(c) such
that 7 + 7 = 7 * r = €. We define 7 on the generators T¢ by

rI7 @I7) = (¢Ti" and FAOT) =7(I]" ®1) = (T]") = &y,

ij

where the coefficients (¢™')}y" are defined in terms of the inverse ¢~ '

by
C_l(vi ® vj) = Z (C—I)Z'm"’m ® Up,-

™m,n

Lemma VIIL.6.6. The above formulas define a unique linear form 7 on
A(c) ® A(c) such that for all z,y in A(c) we have

ray@2) =Y Fly®2)r(ze2") (6.5)
(2)
and

Flz@yz) = Z 7' ®y)rr’ @ z2). (6.6)
(z)

PROOF. The proof is similar to the proof of Lemma 6.5. Use the fact that
¢! is also a solution of the Yang-Baxter equation. O

We now check Relation (5.4). Let us prove that

Y or@@ ey)ra" ®y") = e(@)e(y) (6.7)
(=)(y)

by induction on the degrees of x and y. If z or y is of degree zero, this is
immediate. If both z and y are of degree 1, this follows from the subsequent
computation. For z = T;™ and y = 17" we have

X o)y o) - 3 = BBy = (T)e(T)).

p.q

The second equality results from the fact that ¢! is the inverse of c. The
general case follows from the next lemma.

Lemma VIIL.6.7. If Relation (6.7) is verified by the couples (z,y), (x, 2)
and (y, z), then it also holds for the couples (z,yz) and (zy, 2).
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Proor. We give the proof for the couple (z,yz). The proof for (zy,2) is
similar. In view of Relation (5.7) and Relations (6.6-6.7) we have

S @y @y
(z)(y)(2)
= > r@e)rE’ ey " oy )" ")

(}(y)(2)
Z r(z’ ® 2 )e(z")e(y)r(z"” @ 2")
(z)(2)
= Z e(y)r(z’ @ 2" )r(z" ® 2")

(z)(2)
= e(ye(z)e(z)
= e(x)e(yz).

1l

0
The relation 3 ) v 7(2'®y') r(z" ®y") = e(2)e(y) is proved similarly.
3. Condition (ii): We have to check that for any x and y in A(c) we have
Z ’I“(CC/ ® y/)x//y// — Z y’x’r(ac" ® y//)‘ (68)

(z):(y) (x),(v)

We proceed as for Condition (i), namely we first check (6.8) in case z =1
or y = 1 when it is trivial and in case z = T;" and y = T7", then show that
if (6.8) is true for (z,y), (z, 2) and (y, z), then it is for (z,yz) and (zy, 2).
Firstly, we have

Do rITeTHTITY = 3 ST
p.q »,q
= 2 LTy
0.9

= Y TITPr(Iy o Ty

p.q

because of the defining relations of A(c).
We continue with the following analogue of Lemma 6.7.

Lemma VIIL.6.8. If(6.8) is verified by the couples (x,y), (z, z) and (y, 2),
then it is by the couples (z,yz) and (zy,z).

PROOF. Suppose (6.8) is true for (z,y) and for (z, z). Then for (z,yz) we
have
Z 7‘(.73/ ® y/Z/)CL'//yUZN — Z T(wl ® Z/)T(l‘” ® y/)x///yuz//
(2)(y)(2) ()(¥)(2)
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— Z (.T ®z)y’x”r(a¢'"®y )
(@) (y)(2)
Z yr(x ®Z)LL'NZ”7”($H/®3/ )
(@) (y)(2)
_ Z y/zlxlr(:r/l ® Z”) (x/// ®y )
(z)(y)(z)
— Z ylz/g:/,r, :I? ®y”z")
(@) (y)(2)

The other cases are proved similarly. 0

This completes the proof of Theorem 6.4.

VIIL.7 Application to GL,(2) and SL,(2)

In this section we show that the bialgebra M (2) and the Hopf algebras
GL,(2) and SL,(2) defined in Chapter IV are cobraided.

Let V be a two-dimensional vector space with basis {v;,v,} and let ¢
be the automorphism of V' ® V whose matrix with respect to the basis
{v @ vy, vy @ Vg, v; ® Vg, v, @y} is

g 0 0 0
12| 0 g 0 0
q 000 1 (7.1)

001 ¢g-qt

where ¢'/? is an invertible scalar. This matrix has been displayed in Section
1 where we proved it was an R-matrix. The FRT construction associates
to ¢ a cobraided bialgebra A(c) which we now describe.

Proposition VIIL.7.1. The bialgebra A(c) associated to the R-matriz (7.1)
is isomorphic to the bialgebra M, (2) of Definition IV.3.2.

PROOF. Let T} = a, T = b, Ty = c and T% = d. By the FRT construction,
A(c) is the algebra generated by a, b, c,d and the sixteen relations which
can be written in the following compact matrix form

qg 0 0 0 a? v ab ba

0 g O 0 A d* cd de

0 00 1 ac bd ad bc

0 01 g—qg*t ca db cb da
a®> v ab ba g 0 0 0
? d? ed de 0 ¢g O 0
ac bd ad be 0 0 0 1
ca db c¢b da 001 g—qt
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An easy computation shows that these relations are equivalent to the six
relations

ba = qab, db = gbd,
ca = qac, dc = gqcd,
cb = be, da—ad = (q—q " )be,

defining the algebra M, (2). This identifies A(c) and M,(2) as algebras.
The corresponding comultiplications are clearly the same (compare (6.2)
and Theorem IV.5.1). |

From this and from Theorem 6.4, we deduce the following important
result on M, (2).

Corollary VIIL.7.2. The bialgebra Mq(2) has a unique structure as a co-
braided bialgebra with universal R-form r determined by

rla®a) rb®b) r(a®bd) rboa) g 0 0 0

ric®c) r(ded) rced) rdoc) | A 0 ¢ O 0

rla@c) r(bed) re®@d) rbec) | 001 g—qt

rlc®a) r(dob) r(e®bd) rda) 0 00 1
where A = ¢~ /2.

It is easy to check that the coaction of A(c) on the two-dimensional vector
space V coincides with the coaction of M_(2) on the elements of degree 1
of the quantum plane k[, y] (see TV.7).

We now show that GL,(2) and SL,(2) are cobraided with the same
universal R-form. Since SL,(2) is a quotient of GL,(2), it is enough to
prove this for SL (2). We start with the following lemma.

Lemma VIIL.7.3. For all z € M (2) we have
r(z ® det,) = r(det, ®z) = (z).

Recall that det, = da — gbc is the quantum determinant introduced in
Chapter IV.

PROOF. Suppose we have proved that the relations in Lemma 7.3 hold for
two elements z and y. Since det, is grouplike by Theorem IV.5.1, we deduce
from (5.6) that

r(zy ® det,) = r(z ® det ) r(y ® det) = e(z)e(y) = e(zy),

which reduces a proof of Lemma 7.3 to checking it for z = a, b, ¢, d.
For x = a we have
r(a ®det,) = rla@a)r(a®d) +rb@a)r(d®d)
—gr{a®@ c)r(a®b) — qr(b® ¢)r(d ® b)
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since A(a) = a ® a+ b ® d. Using Corollary 7.2, we get
r(a®det,) = ¢4 ?+0-0-0=1=¢(a).
We leave the other verifications to the reader. )

Corollary VIIL7.4. The Hopf algebras GL,(2) and SL,(2) are cobraided
with universal R-form r.

PROOF. Recall that SL,(2) is the quotient of M, (2) by the ideal I generated
by the element det, —1. Now, Lemma 7.3 is equivalent to the statement that

r((det, —1) @ z) = (z ® (det —1))

for all 2 € M, (2). Therefore r vanishes on I ® M,(2) and on M, (2) ® I,
which proves that r defines a bilinear form on SL,(2). O

Remark 7.5. The normalization constant ¢~'/2 in front of the R-matrix in
(7.1) has been introduced precisely so as to have r vanish on the ideal /
defining SL,(2).

VIII.8 Exercises

1. Consider a matrix of the form

p

o0 8 O
S AT o
o O O

0
0
0 q

Show that it is a solution of the Yang-Baxter equation if and only if
the following conditions are satisfied:

adb = adc = ad(a — d) =0,

p?a = pa® +abe, GPa= qa® + abe,
p?d = pd® + dbe, ¢*d = qd® + dbe.

2. Consider the Hopf algebra H of Section 2, Example 2. Show that
there exists an automorphism ¢ of the Hopf algebra H such that
(p®@¢)(R,) = R, if and only if there exists a non-zero scalar ; such
that X = p2\.

3. Find all (co)braided bialgebra structures on the group bialgebra of a
finite group.

4. Let H be a finite-dimensional bialgebra and H* be the dual bialgebra.
Show that H* is cobraided if and only if H is braided.
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5. Let H be a cobraided bialgebra with universal R-form r. Show that
Tog ¥ T13 ¥ T1g = T1p ¥ T3 * Tog.

6. Let (H,pu,n, A, e, S S, r) be a cobraided Hopf algebra with invert-
ible antipode S.

(a) Show that ro (n®idy) =ro(idy ®n) =€ and
ro(S®idg)=7, Fo(ldy®S)=r, ro(S®S)=r

(b) Define a linear form «w on H by u = ro (idy ® S) o A°P. Show
that u is invertible as an element of H* and that S? = ux*id,, *
where @ denotes the inverse of u for the convolution.

7. Let (H,u,n,A,e,7) be a cobraided bialgebra. Define linear maps A
and A, from H to H* by A(z) = r(— ®z) and \.(z) = r(z ® —).
Show that , A is an algebra antimorphism and A, is an algebra map
and, in case H is finite-dimensional, .\ is a coalgebra map and A, a
coalgebra antimorphism.

8. Let A be the algebra k{s,t,t7'}/(s?, st +ts). Show that the following
formulas define a unique cobraided Hopf algebra structure on A:

Ay =t®t, Als)=s@1+t'@s,
ety =1, e(s)=0, S@t)=t"', S(s)=st,
rget)=-1, r(s®t)=r(ts)=r(s®@s)=0.
Check that the antipode S is of order 4.

9. Let ¢ € Aut(V ® V) be a solution of the Yang-Baxter equation and
let ¢’ = 7y, 0coTy y. Show that we have the following isomorphisms

Alc) = A(c) and  A(c) = A(c)°P.

10. Let ¢ be the R-matrix of Proposition 1.4. Prove that A(c) is the
algebra generated by (T}), <, j<n and the relations

Tom 13 13 = q TV, Tji @mTim = qu’ngma

T4 TjnTim =Tpm TimT]n7 Tji ijTin “Tmn Tinij = (q _pq—‘l) ,‘Z—‘imT;L

where 4, j, m, n run over all positive integers < N such that ¢ < j and
m > n.

11. Use the description of the universal R-form on SL,(2) to find an
R-matrix on the SL,(2)-comodule k/[z,y] described in IV.7.
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VIII.9 Notes

The Yang-Baxter equation first came up in a paper by Yang [Yan67] as a
factorization condition of the scattering S-matrix in the many-body prob-
lem in one dimension and in work of Baxter [Bax72] [Bax82] on exactly solv-
able models in statistical mechanics. It also played an important réle in the
quantum inverse scattering method created around 1978-79 by Faddeev,
Sklyanin, Takhtadjian [Fad84] for the construction of quantum integrable
systems. Attempts to find solutions of the Yang-Baxter equation in a sys-
tematic way have led to the theory of quantum groups (see [Dri87]). Many
papers in the literature are devoted to the construction of R-matrices, e.g.,
[Dri85] [Dri87] [Jim86a] [Jim86b] [KS80], to quote but a few.

The concept of a quasi-cocommutative and of a braided (or quasi-tri-
angular) Hopf algebra is due to Drinfeld [Dri87] [Dri89a]. For a review, see
[Maj90b]. The four-dimensional Hopf algebra of Example 2 of Section 2
is due to Sweedler. The universal R-matrices R, were found by Radford
[Rad93a].

The dual concept of cobraided bialgebras appears in [Hay92] [LT91]
[Maj91b] [Sch92]. Cobraided bialgebras have properties dual to braided
bialgebras. We gave some of them in Exercises 5-7.

The FRT construction is due to Faddeev, Reshetikhin and Takhtadjian
[RTF89]. The bialgebras M, ,(2) and M, (n) of IV.10 can be obtained by
this method (see Exercise 10). In Sections 56 we followed the treatment
proposed by [LT91].

Exercise 1 is taken from [Kau9l] and Exercise 2 from [Rad93a]. The
cobraided Hopf algebra of Exercise 8 was found by Pareigis [Par81] before
the advent of quantum groups.



Chapter IX
Drinfeld’s Quantum Double

In the previous chapter we showed that braided Hopf algebras provided
solutions of the Yang-Baxter equation. The problem is now to find enough
such Hopf algebras. Drinfeld [Dri87] devised an ingenious method, the
“quantum double construction”, which builds a braided Hopf algebra out of
any finite-dimensional Hopf algebra with invertible antipode. It is the goal
of this chapter to describe this construction in full detail, and to show how
to apply it to the finite-dimensional quotient of the Hopf algebra U, (s((2))
considered in VI.5. We also give a characterization of the modules over the
quantum double in Section 5.

IX.1 Bicrossed Products of Groups

The quantum double construction is a special case of the bicrossed product
construction. Since the latter is rather involved, we start with an analo-
gous construction for groups, namely the bicrossed product of groups due
to Takeuchi {Tak81]; it generalizes the notion of a semidirect product of
groups.

Let G be a group with subgroups H and K. We assume that for any
element z in G there exists a unique pair (y, z) € H x K satisfying

T =yz. (1.1)

This allows us to attach to any pair (y,2) € H x K a unique element 2z -y
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in H and a unique element z¥ in K such that
2y =(z-y) 2. (1.2)

Let y,y' be elements of H and 2,2’ be elements of K. Expanding the
associativity relations

(22")y = 2(z'y) and z(yy') = (2v)y’

gives us the relations

(22)y = 2-(y), (1.3)

() = 2V, (1.4)

2 (wy) = (z-y9)¥ ), (1.5)

Y = (Y)Y (1.6)

Similarly, we expand z = z1 and y = ly, which implies

z-1 = 1, (1.7)

2t = oz (1.8)

Ly = vy (1.9)

v o= 1 (1.10)

Relations (1.3) and (1.9) mean precisely that the map o : K x H — H
defined by

alzy) =2y

is a left action of the group K on the set H. Similarly (1.6) and (1.8) mean
that the map 8 : K x H — K defined by

B(z,y) = 2¥

is a right action of the group H on the set K. We make the following
definition.

Definition IX.1.1. A pair (H, K) of groups is said to be matched if there
exist a left action a of the group K on the set H and a right action 3 of
the group H on the set K, such that for all y,y' € H and 2,2 € K we have

(22)V = 272V, (1.4)

2 (') = (z-y)(z" - ¥), (1.5)
2 1=1, (1.7)

=1, (1.10)

where a(z,y) = z -y and B(z,y) = 2Y.
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Proposition IX.1.2. (a) Let (H, K) be a matched pair of groups. There
exists a unique group structure, denoted H <1 K, on the set-theoretic pro-
duct H x K with unit (1,1) such that

(y7 Z)(y/a Z/) = (y(z : y,)7 Zylzl)

for ally,y' € H and 2,2’ € K. This group structure is called the bicrossed
product of H and K. Furthermore, the groups H and K can be identified
respectively with the subgroups H x {1} and {1} x K of H =1 K, and every
element (y,z) in H >4 K can be written uniquely as the product of an
element of H x {1} and an element of {1} x K:

(y,2) = (y, )(1,2)

where y € H and z € K.

(b) Conversely, let G be a group and H, K be subgroups of G such that
the multiplication on G induces a set-theoretic bijection from H x K onto
G. Then the pair (H, K} is necessarily matched and the previous bijection
induces a group isomorphism from the bicrossed product H > K onto G.

PROOF. (a) It is easy to check that the above-defined product on H 1 K
is associative with (1, 1) as unit. Details are left to the reader.

To prove that (y, z) is invertible in the bicrossed product, let us first look
for elements ¢’ € H and 2’ € K such that

(v, 2)(y, ") = (1, 1).
By definition of the product, this is equivalent to the following two relations:
y(z-y)=1 and 2¥2 =1.

From the first one we derive

!

Y=z (z-y)=2"" -y,

and then from the second one we get

Set (y',2')(y,2) = (Y, Z) where y' and z’ are given the above values. We
have to show that (Y, Z) = (1,1). Multiplying the last identity by (y, z) on
the left, we get

(,2) = (1, 2)(Y, 2) = (y(2- V), 2" 2).
This implies that

Y=z:1(YV)=2"1=1 and Z=2"z"'=z"2"1=1
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Thus, the element (y, 2) is invertible with inverse equal to

).

(y7 Z)—l — (ZAl . y—I, (zzil'yf
It is easy to check that

(ya 1)(3/,7 1) = (yy,v 1)? (1,2)(1,2/) = (LZZ,) and (yv 1)(17z) = (yv Z)7

which proves the remaining assertions of Part (a).
For the proof of Part (b), it suffices to review the arguments that led us
to Definition 1.1. ]

Example 1. (Product of groups) Let H and K be groups. We let each one
act trivially on the other, which means, using the above notation, that

z-y=y and 2Y=z

Then (H,K) is a matched pair, and the bicrossed product H < K is
isomorphic to the usual product of groups H x K.

Example 2. (Semidirect product of groups) Let H and K be groups. We
suppose that H acts trivially on K, which means that 2¥ = 2z, and that K
acts on H by group automorphisms, which means that

z-(yy)=(z-y)(z-y) and z-1=1

for all y,y' € H and z € K. Then (H, K) is a matched pair and the
bicrossed product H >t K is isomorphic to the semidirect product of K
by H. In this case, the identity (1,2)(y,1)(1,2)" " = ((2-y), 1) proves that
H x {1} is a normal subgroup of H > K and that the action of K on H
corresponds to the conjugation in the bicrossed product.

IX.2 Bicrossed Products of Bialgebras

We observed in Chapter III that the algebra of a group has a natural Hopf
algebra structure. The question we raise now is this: Given a matched pair
(H, K) of groups, can we build the algebra of the bicrossed product H 1 K
out of the group algebras k[H] and k[K]? In order to answer this question,
we first give a group algebra version of the action of a group on a set. Let
us consider the case of a group G acting on a set X via a map

a:GxX —X.
Linearizing, we get a morphism of coalgebras

a: kG x X] — k[X]
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for the coalgebra structures introduced in III.1, Example 3. Composing
with the natural isomorphism

kG ® k[X] = k[G x X],

which is a coalgebra isomorphism by Proposition 111.1.4, we see that the
group action of G on the set X gives rise to an action of the Hopf algebra
k[G] on the coalgebra k[X] such that the structural map

k[G] © k[X] — K[X]

is a morphism of coalgebras. The coalgebra k[X] is thus a module-coalgebra
on the Hopf algebra k[G] in the sense of the following definition.

Definition IX.2.1. Let H be a bialgebra and C be a coalgebra. We say
that C is a module-coalgebra over H if there exists a morphism of coalgebras
H ® C — C inducing an H-module structure on C.

We are ready to give the definition of a matched pair of bialgebras.

Definition IX.2.2. A pair (X, A) of bialgebras is matched if there exist
linear maps « : AQX — X and f: A® X — A turning X into a module-
coalgebra over A, and turning A into a right module-coalgebra over X, such
that, if we set

ala@zy=a-z and Bla®z)=a",

the following conditions are satisfied:

a-(wy)= Y (@ -a)(a"" -y), (2.1)
(a)(z)
a-1=¢(a)l, (2.2)
(ab)® = > o b, (2.3)
(0)(x)
17 = g(x)1, (2.4)
Z a/z’ ®a// . :EN - Z a//z” ®a/ ! (2.5)
(a)(z) (a)(z)

foralla,be A and z,y € X.

Observe that Condition (2.5) is automatically satisfied when both bial-
gebras A and X are cocommutative. We also remark that Definition 2.2
is an immediate generalization of Definition 1.1. As a basic example of a
matched pair of bialgebras, we may take the pair (k[H],k[K]) of group
bialgebras where (H, K) is a matched pair of groups.
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The maps « and 8 being morphisms of coalgebras, we have

Ala-z) = Z a-r'®d 2" and e(a-z)=-¢e(a)e(z)l (2.6)
(a)(2)

in X, and

A(a®) = Z d* @ad"" and £(a®) = e(a)e(z)1 (2.7)
(a)(2)

in A. We state the main result of this section; it is a natural extension of
Proposition 1.2.

Theorem IX.2.3. Let (X, A) be a matched pair of bialgebras. There exists
a unique bialgebra structure on the vector space X ® A, with unit equal to
1® 1, such that its product is given by

@@ayeb) =Y =z y)od?,
@

its coproduct by

Az®a)= ) (@®d)e @@ @d),
(a)(z)

and its counit by
e(z®a) =e(x)e(a)

forallx,y € X and a,b € A. Equipped with this bialgebra structure, X @ A
1s called the bicrossed product of X and A and denoted X 1 A. Further-
more, the injective mapsix(z) =2 ®1 andi (a) = 1®a from X and from
A into X 1 A are bialgebra morphisms. We also have

r®a=(z®1)(1®a)

fora€e Aandz e X.
If the bialgebras X and A have antipodes, respectively denoted Sy and
S 4, then the bicrossed product is a Hopf algebra with antipode S given by

Sr@a)= Y Sala") Sx(a") ®S,(a)** ).
(z)(a)

PROOF. The above formulas show that we equipped the bicrossed product
with the coalgebra structure of the tensor product of coalgebras X and A.
It is then clear that iy and i, are coalgebra morphisms. It remains to be
proved that X o< A has an algebra structure and that the coproduct and
the counit, as well as the embeddings 4y and 7,4, are algebra morphisms.
Let us start with the associativity of the product. An easy but tedious
computation using Relations (2.1) and (2.3) and the fact that both o and
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(3 are coalgebra morphisms, shows that if z,y,2 € X and a,b,c € A, then
both

(zeawen)eed mi @oo(yeh:ed)
are equal to

Z x(a/ . y/) ((a//y”b/) . Z’) ® a///y”’( 2" b///z " c.
(a)(b)(y)(z)

For the unit we get, using (2.2) and (2.4),

(1@1)(z®a) = Z (1-2)®1" a = Z r'®e(z")a=)_ 2e(2")®a =120
(%) (z) ()

and

(z®a)(1®1) Z T a't = Z ze(ad)®ad" = Z z®e(a’)a” = zQa.
(a)

(a) (a)

Let us prove that the counit is a morphism of algebras. We have to check
that

e((z@a)(y@b)) =c(z®a)e(y ®b) = e(x)e(a)e(y)e(b).
Now the left-hand side is equal to

5( Z N@ad" b) = Z) e(z)e(d - y)e(a? )e(b)
(a)(y) (a)y
= @)Y @)eW)eey")
(a)(»)
= c(@)et)e@)ey)

in view of (2.6) and (2.7). To conclude, we show that Relation (2.5) implies
that the coproduct is a morphism of algebras. We have

1t

A(r ® a)A(y ® b) _ Z x/(a/ . y/) ® CL//y”b/ ® x//(a/// . y///) ®a™ b/l,
(z)(a){y)(b)

and, on the other hand,

1111

A ((;p Ra)y® b)) = Z x'(a’ . y/) ® a///ymb/ ® x//(a// . y//) Qa" "

(x)(a)(y)(®)

Both expressions are equal in view of Relation (2.5).
Now suppose that A and X have antipodes. We have to check that the
formula
Sea)= 3 Sal@")- Sx(a")® Sala)y™)
(®)(a)
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defines an antipode on the bialgebra X 0 A. Using the fact that S, and
Sy are antipodes, we get

Z (ZL’/ ®a')S(x" ®a//)

(z)(a)
= Y (@ ®a)(Sal@") - Sx(@") @ Sa(a”)x")
(2)(a)
— Z ! ((a/SA(a//// ) . SX (x////)) ® (a”SA (alll))SX(I//)
(z)(a)

= (Z)(:) x,((aISA(a"')) . Sx(fl”)) ®e(a")e(Sx(z")1
-2 o' ((@'S4(a") - Sx(a")) @1

= @)(} Sxe @1)

= s(a)s((;c))l ®1

= er®a)lel

Similarly, we have

Z S(CIII ® a')(az” ®a//)
(@)(a)

Z (Sa(a”) - Sx(@)® SA(a’)SX(ﬂf'))(x/// ® a")
(z)(a)

= Z (SA(a///) . Sx(l‘,/l))(SA(a”)SX(x”) ) 93”")
(z)(a) ®SA(a/)SX(J;’)z//H/a””

_ Z Sy (a//) . (SX(:E”)Z'W) ® SA(a/)Sx(z’)z””a///
(z)(a)

= Y e(@”)(Sa(a”) - 1) ® Su (@)
(z)(a)

_ Z E(SA(GN)) 1® SA(a/)Sx(a:’)z"a///
(z)(a)

— @)Y 188,

(a)
= g(x)e(a)l®1
= ¢(z®a)l®l.
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We conclude this section with three examples.

Example 1. As already observed, if (H, K) is a matched pair of groups,
then the pair (k[H], k[K]) is a matched pair of bialgebras. Furthermore,
the group algebra of the bicrossed product is isomorphic to the bicrossed
product of the group algebras

K[H > K] = k[H] > k[K].

Example 2. (Tensor product of bialgebras) Let X and A be bialgebras. We
let each one act trivially on the other one by

a-z=c¢e(a)r and a" =c¢e(z)a

for all a € A and x € X. It is easy to see that these trivial actions satisfy
the conditions of Definition 2.2. In particular, both sides of Relation (2.5)
are equal to z®a. The formulas given in Theorem 2.3 show that in this case
the bicrossed product X < A is isomorphic to the tensor product bialgebra
X ® A.

Example 3. (Crossed product of bialgebras) This notion is parallel to the
semidirect product of groups. Let X and A be bialgebras. Suppose firstly
that X acts trivially on A as in Example 2, namely that a® = e(x)a for
all a € A and z € X, secondly that A acts on X via a map « which turns
X not only into a module-coalgebra, but also into a module-algebra, and
thirdly that we have the compatibility relation

Za'@a'/~x=2a”®a’-x, (2.8)
(a) (a)

which is satisfied, for instance, when A is cocommutative. Then X and A
are matched bialgebras, and the corresponding bicrossed product is called
the crossed product of A by X. The multiplication in the crossed product
is given by
(z®a)(y®b) = Z z(a' -y) ®a’b. (2.9)
(a)

IX.3 Variations on the Adjoint Representation
Let (H, pu,m,A,£,5) be a Hopf algebra. If @ and x are elements of H, we

set
a-xr= Z a'xS(a”) and z%= Z S(al)xa”- (31)
(a) (a)

Proposition I1X.3.1. The map (a,x) — a-x endows H with the structure
of a left module-algebra on the bialgebra H. We denote by ,4H the thus
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defined H-module, and we call this action the left adjoint representation
of H. Similarly, the map (z,a) — z® endows H with the structure of a
right module-algebra on the bialgebra H. We denote by H,,; the H-module
defined this way, and we call this action the right adjoint representation of
H.

PRrROOF. We give the proof for the left adjoint representation. We first check
that (a,z) — a -2z puts an H-module structure on H. Indeed, we have
l-x=x and

be(a-z)=Y VadzS@)SH") =) (ba)zS((ba)") = (ba) - x
(a)(b) (ba)

for all a,b,z € H. Let us show it is a module-algebra over H. We have

a-1= Z a'S(a") = e(a)l
(a)

and

Z (a/ . x)(a” i y) — z a’xS(a")a"'yS(a'”')
(a) (a)

= Z a'ze(a”)yS(a"")
(a)

= Z a’zyS(a”)
(a)

= a (ay).
O

Example 1. (Conjugacy in a group) Let G be a group and k[G] be the
corresponding Hopf algebra. The left adjoint representation of k[G] is given
by the formula

a-z=aza"}

for a,z € G.

Example 2. (Adjoint representation of a Lie algebra) Let L be a Lie alge-
bra and U(L) be its enveloping algebra equipped with its canonical Hopf
algebra structure (see V.2). The left adjoint representation of U(L) is given
by the formula

a-T=axr — xa
for a,z € L. The corresponding representation of L is called the adjoint
representation of the Lie algebra L.

We now wish to deduce the so-called coadjoint representations of H on
the dual vector space H* from the above-defined adjoint representations.
We use the following lemma.
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Lemma 1X.3.2. Consider a Hopf algebra H with invertible antipode S
and an algebra A that is a left [resp. right] module-algebra over H. Let us
put on the dual vector space A™ the left [resp. right] H-module structure
given by

<a,xf >=< 8 Yz)a, f> [resp. <a,fr>=<aS '(z),f>]
foralla € A, x € H, and f € A*. If A is finite-dimensional, then the
coalgebra (A°P)” is a module-coalgebra over H.

The comultiplication on the finite-dimensional coalgebra (A°P)* is the
opposite comultiplication of the dual coalgebra A*; in other words,

<ab, f>=>_ <bf ><af’> (3.2)
N
whenever a,b € A and f € (A°P)".

PROOF. Checking that A* is a left H-module is easy. Let us show that the
left action of H on A* defines an H-module-coalgebra structure on A*. It
suffices to check that the map from H ® A* to A* which defines the action
of H on A™ is a coalgebra morphism. More precisely, we should have

e(zf) = e(x)e(f)
and
Z (xf)’ ® (Z‘f)” — Z CE/f/ ®93Hf”. (3.3)
(=f) (&)(f)
Now,

e(af) = (xf)(1) = F(S7H@)1) = (5™ (@) f(1) = e(@)e(f)

since 1 = g(x)1. Let us check (3.3) by evaluating both sides on an element
a®bin A A. We have

<a@b Y (af) @ (xf) > Y <a,(@f) ><b,(xf) >
(zf) (zf)
= <ba,xf >
= < S Hz)(ba), f >
= > < (87 @) D)7 (2)"a), f >

(z

)
< SNz, f" >< STHa Ya, f >
(®)(f)
Z <a, 2 f ><bx"f" >
(@)(f)
= <a®b, Z 2 f oL >.
(z)(f)

One proceeds in a similar fashion for the right action. a
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As an immediate consequence of Proposition 3.1 and of Lemma 3.2, we
deduce

Corollary I1X.3.3. Let H = (H,p,n, A, &, 5,5™1) be a finite-dimensional
Hopf algebra with invertible antipode S. There is a unique left [resp. right]
H-module-coalgebra structure on the dual of the opposite Hopf algebra, that
is, on (H°P)* = (H*, A*,&*, (u°P)*, n*, (S™1)*,S*), given for a,z € H and
feH" by

<a,z-f> = Z < S Y z"ax', f >
(z)
[resp. <a,f*> = Z <z"aS7 ), f > .
(z)

These actions will be called the left and right coadjoint representations
of H. Applying Corollary 3.3 to the Hopf algebra

(Hcop)* = (H*7 (Aop)*7 8*7 M*7 n*’ (S—l)*? S*)

and using the natural identification between the bidual H** and H, we get
a right (H°°P)*-module-coalgebra structure on the Hopf algebra

H = (H7 /"l’7 n? A? 67 S7 S_l)'

By Corollary I11.3.5, the Hopf algebra (H°°P)* is isomorphic via the map
S* to the Hopf algebra (H°P)* = (H*, A*,&*, (u°P)*,n*, (S™1)*,S*). This
isomorphism induces a right action of (H°P)* on H. We summarize this
with the following statement.

Proposition IX.3.4. Under the hypotheses of Corollary 3.3, there exists
a unique right (H°P)*-module-coalgebra structure on H given for a € H
and f € H* by
of = Z f(Svl(a"')a’)a".
(a)
PROOF. Let f,g € H* and a € H. By Corollary 3.3, the action of (HP)*
on H is given by

<alg>=) <a,f'95*(f)>.
()

Computing in (HP)*, we get

<af,g> = Y <d’ f"><dg><d, S (f)>
(£)(a)

= Z <S(), f ><ad" f" ><ad",g>
(£)(a)
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Z<<S(’ ya" f>a", g >
(a)

Z < f(S(a")a")a", g > .
(a)

Therefore, the right coadjoint action of (H°P)* on H is given by

f _ Z f / ///
Composing with (S71)*, we get a right action of (H°P)* on H given by

a(S_l)*( foS~ Zf / /// Zf /// / a".

O

We now state the main result of this section. It will allow us to construct
Drinfeld’s quantum double in the next section.

Theorem IX.3.5. Let (H,u,n,A,¢,S,571) be a finite-dimensional Hopf
algebra with invertible antipode. Consider the Hopf algebra

X — (Hop)* — (H*,A*,E,(MOP)*,’H, (S_l)*,S*).
Leta : H®X — X and f: H® X — H be the linear maps given by

aa®f)=a f=Y_ f(S ("))
(a)

and

Bla® f)=al =" f(S7(a")d)a"
(a)
where a € H and f € X. Then the pair (H, X) of Hopf algebras is matched
in the sense of Definition 2.2.

PROOF. In this proof we systematically use Sweedler’s sigma notation (de-
fined in III.1) as well as the definitions of o- and 3, the counitality of € and
relations of the form 3, a”$ ~1(a’) = ¢(a). The question mark ? serves
as a mute variable. Corollary 3.3 and Proposition 3.4 show that o and
endow each Hopf algebra with the structure of a module-coalgebra over the
other one. We yet have to check Relations (2.1-2.5) of Definition 2.2.
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Relation (2.1): For € H, we have

<z, 3 @)@ g >

(@)(f)

= > (@) 9E"
(a)(H)(z)

= > Fs a2l (87 a)a®) (@ - g)(a")
(a)(f)(x)

= Y £ Ha)aM) (87 (aD)a)g(57H (a®)a"a)
(a)(f)(=)

= Z f(S71(a®a (a(z))x’a(l))g(S*l(a(5))x”a(4))
(a)(@)

= Y @) f(57Ha)2'a®)g(s 7 (a®)a"a®)
(a)(z)

= Y HSTH@Ma)g(s T (a")a"a"),
(a)(z)

which proves Relation (2.1).
Relation (2.2): We have

a-&= Z e(S~Ha")?a )e(a)e = Z e(a)e(a")e = e(a)e.
(a) (a)

Relation (2.3): We have to show that

(ab)f _ Z ab’-f’ b”f”.
®(f)

Now,

Z ab'~f' b//f// _ Z f b// ( l//)alb/)fl/(s—l (bllll/)blll)a/lbllll
®)(f) (a)(®)(f)
_ Z f b///// b S (b")Skl (a///)a/b/)a//bml
(a)(b)
— Z €(b”)f(5‘1 (b////)SHl (a///)a/b/)a//b///
(a)(b)
Z f(S—l(b///)Sv ( ///) /b/) a'v"
(a)(b)
Z f( ((ab)"")(ab)’ )(ab)”
(ab)
= (ab)’.

i
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Relation (2.4): We have 1/ = f(1) = ¢(f)1.
Relation (2.5): We have to check that

Z a/f ®a// "o_ Z a//f ®a f (3.4)
(a)(f) (a)(f)
For the left-hand side of (3.4) we get
Z a/fl ® a// . f// — Z f /N /)a// @ f//(S—l(a/////)7a////)
(a)(£) (a)(f)
— Z a// ® f(S—l(a/////)?a////S—l(a///)a/)

Z E( ///) //®f( ( ////)?a/)
(a)
Z a”®f(S_ ( ///)7a)

(a)(£)

I

whereas for the right-hand side we have
S a el f = Y ST @ f(S7 e a)
(a)(f) (a)(f}
= Z a" @ f(S Ha"")a" S (a")?7a))
(a)

— Z E(a”)a”’ ® f(S—l(a////)?a/)
(a)

— Z a”®f ///) /)

(a)
which proves (2.5). a

[X.4 Drinfeld’s Quantum Double

Let (H, u,n,A,¢,5,S™1) be a finite-dimensional Hopf algebra with invert-
ible antipode S. Let X = (H°P)* = (H*, A%, &, (1°P)*,n, (S™1)*, S) be the
dual Hopf algebra. We have just proved that (H, X) is a matched pair of
Hopf algebras.

[X.4.1 The quantum double as a Hopf algebra

Definition IX.4.1. The quantum double D(H) of the Hopf algebra H is
the bicrossed product of H and of X = (HP)*:

D(H)= X< H = (H®) a H.
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We first give a more explicit description of D(H), then in the next sub-
section we prove that the quantum double is a braided Hopf algebra in the
sense of VIIIL.2.

As a vector space, we have D(H) = X ® H. The unit of D(H) is 1 ® 1.
Its counit and its comultiplication are given by

e(f®a)=¢(a)f(1) (4.1)
and
A(fea)= > (f'@d)e(f ©ad) (4.2)
(a)(f)
where f € X and a,b € H.

Lemma IX.4.2. The multiplication in D(H) is given by

(fea)(geb)=Y_ fg(S (")) @a"b (4.3)
()

where f,g € X and a,b € H.
Here g(S™%(a")?a’) means the map z — g(S~'(a"")za’).
PROOF. By definition of the bicrossed product, the product of D(I) is
given by
(foa)geb) =Y f(d ¢)ea"Db.
(a)(g)
Computing the right-hand side using the formulas of Theorem 3.5, we get

Z fg (S a" 7a ) ®gll( —1(a/////)a///)a////b
(a)(g)

- ng 1(a///// ///S ( )(J,I)(X)a,mb
(a)

_ Z e(a")fg(S_l(a"")?a') ®a///b
(a)

— ng l(a/// 7a)®a"b
(a)
[}

The quantum double D(H) contains H and X as Hopf subalgebras via
the embeddings iy and iy given by

igla)=1®a and ix(f)=f®1L
Formula (4.3) implies that
forall fe X and a € H.
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We shall use Relation (4.4) in order to simplify our notations and write
fa instead of f ® a = ix(f)iy(a) whenever a is an element of H and f is
a linear form on H. Under this convention, the multiplication in D(H) is
determined by the straightening formula

af =Y f(S7Ha")?a')a” (4.5)
(a)

where f € X and a € H.

When H is cocommutative, the bicrossed product construction of the
double of H can be reduced to the crossed product construction of Section
2, Example 3, as shown in the following statement.

Proposition 1X.4.3. Let H be a cocommutative finite-dimensional Hopf
algebra with invertible antipode. Then the quantum double D(H) is iso-
morphic, as a Hopf algebra, to the crossed product of H with (HP)*, the
first algebra acting on the second one by the left coadjoint representation of
Corollary 3.3.

ProOOF. We first have to prove that we are in the situation of Example 3
of Section 2, namely that (H°P)* acts trivially on H and that (H°P)* is a
module-algebra over H for the left coadjoint representation. The compati-
bility condition (2.8} is trivially satisfied since H is cocommutative.

Resuming the notations of Proposition 3.4 and using the cocommutativ-
ity of H, we have

of = Zf(sél(am)a/)a”
(a)

— Z f(S“l(a”’)a")a'
(a)

= Y fe(a")d
(a)
= &(f)a,

which proves that (H°P)* acts trivially on H.
In order to prove that (H°P)* is a module-algebra over H, we have to
check that

a-1=c¢(a)l and a-(fg):Z(wf)(wg)
(a)

for a € H and f,g € (H°P)*. This is left to the reader.
Let us now prove that the multiplication in D(H) coincides with the
multiplication of the crossed product given in (2.9). For a € H and f € H*,
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we have the following equalities in the quantum double:

(lf _ Z f(S—l(a///)?a/)a//
(a)
— Zf(s—l(a///)?a//)a/
(a)
= D (@

(a)

— Z(al'f)a”~

(a)

Here we used the cocommutativity of H in the second and fourth equalities
as well as the definition of the coadjoint representation (see Corollary 3.3).
The last term of this series of equalities is the multiplication formula given
in (2.9) for the crossed product algebra. The coalgebra structures coincide
for both constructions. O

IX.4.2 Description of the universal R-matrix

Let us consider the map Ay 5 : H®X — End(H) defined inIL.2 fora,b € H
and f € X by Ay y(a® f)(b) = f(b)a. Since H is finite-dimensional, the
map Ag g is an isomorphism, which allows us to set

p=Agyidy) e HR® X.
We define the universal R-matrix of the quantum double as the element
R=(ig®ix)(p) € D(H)® D(H).

We get a more explicit formula for R by choosing a basis {e;};; of the
vector space H together with its dual basis {e'},c; in X. Then

p:ZeiQ@ei and RzZ(l@ei)@)(ei@l). (4.6)

iel iel
‘We state the main theorem of this section.

Theorem IX.4.4. Under the previous hypotheses, the Hopf algebra D(H)
equipped with the element R=",.;, (1®e;) ® (' ®1) € D(H)® D(H) is
braided.

PRroOOF. We have to prove that R satisfies the conditions of Definitions
VIII.2.1-2.2. More precisely, we must prove

(1) that R is invertible in D(H) ® D(H),

(2) that (A ® id)(R) = R;3R,; and (id® A)(R) = R3R,,, and
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(3) that for all f € X and a € H, we have
A®’(f ®a)R = RA(f ®a).

(1) We claim that R is invertible with inverse R equal to
R=Y (1@e)®((¢'0S)®1).
il
Consider an element { =0 @u®c®vin H® X ® H® X. Let us pair it
with RR using the duality between H and X. We get
<RRE> = > <(10ee)®(e(d08)@1),b@u@cav>
i,jel

- ) S (5 ) (85 )

() iel Jj€

= ()w(1) u(Z c'S(c“))
(c)

= e(b)v(1)e(c)u(l)
= <19101®1L,E>.

Consequently, RR = 1®1®1® 1. One proves that R is a left inverse of R
in a similar way.

(2) We now check that (A ®id)(R) = Ry3R,5 or, equivalently, that

Y ledeledecdal=)Y 1eeleeRed @l
1€1,(e;) i,jel

Let us evaluate the left-hand side on an element § = aQtR R UR cR v
of the tensor product D(H)® D(H) @ D(H). We have

<(ARIR),0> = < Y 1Rl e ®l,0>
i€l,(e;)

i€1,(e;)
We now remark that

Z d ®@d = Z e'(a) e, ® e (4.7)
(a) (a),i€1,(es)

by application of the coproduct of H to a =} ,; e'(a) e;. Using (4.7), we

obtain
S e ulel) = 3 e ule)

iel ©
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Therefore,

< (A®id)(R),0 >= Z e(a)e(b)v(1)t()u(c”).
(e)

On the other hand, we have

< RygRg3,0 > = e(a)e(b)v(1) Z te;)ule;)(e'e’)(c)

i€l
= ¢e(a)e(b)v(1) Z t(z ei(c')ei> u(z e](c”)ej)
() d€l Jel

= e(@)z(B)v(1) Y ' Yulc")
(c)
= <(A®id)(R),0>.

One checks similarly that (id ® A)(R) = R,3R;,.
(3) Let us evaluate A’(f ® a)Ron £ =b® u® c ® v. We have

<A®’(f®a)R,& >

= Y <(f'ed)(1ee)e(fed)(d®l),f>
(a)(f)iel
Z < f// ® allllei ® f/ei(s—l(a///)?a/) ® a”,f >
(@)(f),iel
- Z f// a )f,(cl)ei(s_l(GIH)C”G,/)U(CLH)

(a)(e)(f). ZGI

— Z f bc /I// z( (a”’)c”a')ei)v(a”)

(a)(c), i€l

— Z f(bcl) a"s— ( ///) "a’)v(a")

= Z e(a”) f(bcyu(c"a"yv(a")

I
*ﬁ
=

Q
\
A
\-/

On the other hand, we have
< RA(f®a),£ >
= ) <(ee)fed)eol)(f ®a")t>
(a)(f).iel

— Z <f( ('")‘?e)®e”a’®elf”®a”,§>
(a)(f),i€1 (es)
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— Z f /// be ) (e//a/)e (c')f”(c”)v(a”)
(a)(e)(f),i€l, (ez)

Z f ”S /// be) (e//a/)e (c’)v(a”).

(a)(c),ie1,(e:)

i

Applying (A ®idg)A to c = Y,c; €'(c)e;, we get

Z dedod = Z ec)el@el @el. (4.8)

i€l,(eq)

Using (4.8}, we obtain

<RA(fa)E> = 3 ("7 Julca')o(a")
(a)(e)
= 3 el (bl pola)
(a)(c)
- Z fbc /// ( )
a)(c)
= <A°p(f® a)R,§ > .

IX.4.3 Quantum double of a group algebra

We end this section by applying the quantum double construction to the
finite-dimensional cocommutative Hopf algebra k|G| where G is a finite
group. By Proposition 4.3 we know that D(k[G]) is a crossed product.

Let {e,},cc be the dual basis of the basis {g} g of £[G]. It is easy to
check that the dual algebra (k[G]°P)* is the algebra k% with multiplication
given by

€4 = b1, €4 (4.9)

for all g,h € G and with unit deG e, = 1. The comultiplication A, the
counit ¢, and the antipode S of (k[G]|°?)* are defined by

Z e, ®e,, eg) =85, Sle,) =e,1 (4.10)

uv=g

for each element g of the group.
The above description of a quantum double shows the set {e,h}, neaxa
is a basis of D(k[G]). The product of the quantum double is determined by

he, = epgp-1h, (4.11)
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which proves again that D(k[G]) is the crossed product of k[G] by itself,
where the algebra acts on itself by conjugation. Its universal R-matrix is

R=> g®e, (4.12)
geG

Despite the fact that the quantum double is not cocommutative when G is
not abelian, its antipode is involutive, which implies that the element

u= Z €419 (4.13)

geG
introduced in VIIL4 is central in D(k[G]). We also have
S(u) = u. (4.14)

[X.5 Representation-Theoretic Interpretation of
the Quantum Double

Let H = (H,p,n,A,&,5) be a finite-dimensional Hopf algebra with invert-
ible antipode. Again we choose a finite basis {a;};c; of H along with its
dual basis {a'},.;. The purpose of this section is to characterize modules
over the quantum double D(H). In view of Relation (4.5), a D(H)-module
is nothing but a vector space V with a left H-module structure as well as
a left H*-module structure such that foralla € H, f € H*, and v € V we

have
=3 (5 M a2 )(a”v). (5.1)
(a)
We wish to rephrase such data purely in terms of H without any reference
to the dual algebra H*. We first introduce the following concept.

Definition IX.5.1. A crossed H-bimodule is a vector space V together
with linear maps pyy, - HQV =V and Ay, : V -V @ H such that

(i) the map py [resp. Ay] turns V into a left H-module [resp. into a
right H-comodule], and

(ii) the diagram

HQV L0V peHeoV
ARAYy lidH®lLV
HHRVeH HeV
lidH‘g’TH,V@idH lTH,V
HeVeH®H Vel
luv@u lAV®idH
VeH Moy e HeH

commutes.
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Set piy(a ®v) = av and Ay (v) =3, vy ®vy fora € H andv e V.
Then, according to the conventions set up in I1I.1 and II11.6, the commuta-
tivity of the above diagram is equivalent to

Z ad'vy ®a vy = Z (a"v)y ® (a"v)y (5.2)
(a)(v) (a)(v)

where ¢ runs over all elements in H and v over all elements in V.
We state the main result of this section.

Theorem IX.5.2. Let H be a finite-dimensional Hopf algebra with invert-
ible antipode. Any left D{H)-module has a natural structure as a crossed
H-bimodule. Conversely, any crossed H-bimodule has a natural structure
as a left module over the quantum double D(H).

ProOOF. (a) Let V be a left D(H)-module. As we mentioned before, the
space V is a left H-module as well as a left H"-module satisfying Relation
(5.1). We wish to show that V' can be endowed with a crossed bimodule
structure.

Given a basis {a,}; of H and its dual basis {a'},, we use the left action
of H* on V in order to define a map Ay, : V — V ® H by

Ay (v) = Z a'v ® a; (5.3)

for any v € V. Let us show that A, defines a right coaction of i on V. We
have to check that A, is coassociative and counitary. Rather than verify
this directly, we observe that A, is the transpose of the associative, unitary
right action V* ® H* — V* of H* on V* given by

<af,v>=<a,fv>

for « € V*, v €V and f € H*. Indeed, we have

a9 fAyW)> = 3 ala)f(a)

= <a, (Z f(ai)ai)v >
= < a,fvz>
= <afv>

since f = Y. f(a;)a'. Incidentally, this observation implies that Ay is
independent of the choice of the basis.

In order to complete the proof that V is a crossed H-bimodule, we have
to check Relation (5.2) using (5.1). If a € H, v € V and f € H", then
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(id® f)( Z a'vy, ® a"vH) = (d® f)(z a(a'v) ® a”ai)
(a)(v) (a);i
= Y d(@v)f(d"e)
(@),
= Y fla)f"(a")d (a')
(a)(f)i
= Y @ (X flaap)
(a)(f) i
— Z f”(a”)a'(f’v)
(a)(f)
— Z f//(a////)f/(S—l(a///)?a/) (a//v)
(a)(f)
— Z f(a////S—l (a///)?a/) (G,N’l))
(a)
— Z e(a’”)f(?a')(a"v)
(a)
= Z f(?a)(a"v)
(a)
- Z f'(a') f”a”v
(a)(f)
= Y. d@v)f"(a)f ()
(a)(f)yi
= Y d@")f(od)
(a),1
= (d® f)(z a*(a’v) ®aia’)
(@),
= (e (Y @)y o @v)yd).
(a)(v)
This, being true for any linear form f, implies (5.2). In the previous series
of equalities, we used the comultiplication on H*, Relation (5.1), the fact
that ' is a skew-antipode, that ¢ is a counit, and that f =3, f(a;)a".
(b) Conversely, let V' be a crossed H-bimodule. We show that V' can be
given a D(H)-module structure. Observe that if (V,Ay, : V -V ® H) is

a right H-comodule, then V becomes a left module over the dual algebra
X =H"by
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id er idy*®T id
H* @ V2 ®AY e oy @ g OV e o g @ v ey

where evy, is the evaluation map. In other words, a linear form f € H*
acts on an element v € V by

f~v:Z < f,vg > vy. (5.4)
(v)
In view of this observation, we see that a crossed bimodule has a left H-

action as well as a left H-action. In order to prove V is a D(H)-module,
it is enough to check Relation (5.1). We have

S ST ) (@) = Y < £S5 @ g > (@)
(a) (a)(v)
Z < £,87Hd")a" vg > d'vy
(a)(v)
= Z e(d’) < fug > d'vy,
(a)(v)
= Z < fyvg > avy
(v)
= a(f )
for any a € H, f € H* and v € V. The second equality is a consequence

of Relation (5.2). The third one follows from the fact that S7' is a skew-
antipode. m|

I

Remark 5.3. Formula (5.3) defining the coaction Ay, may be rewritten as
Ay(v) =Ry (v®1) (5.5)

where R, is obtained from the universal R-matrix of D(H) by applying
the flip. We shall use Relation (5.5) in order to determine the universal
R-matrix of U, (s[(2)) in XVIL.4.

IX.6 Application to U,(sl(2))

We now return to the Hopf algebra U, = U,(sl(2)) studied in detail in
Chapters VI-VII. We wish to show that it has a universal R-matrix using
the quantum double construction of Section 4. However, we only gave this
construction for finite-dimensional Hopf algebras, which is not the case of
U, Therefore we postpone the construction of the universal R-matrix of
U, to Chapter XVII. Instead, we now work with the finite-dimensional

quotient U, introduced in VL5.
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We assume until the end of this chapter that ¢ is a root of unity of order
d in the field k£ where d is an odd integer > 1. Let us resume the notation
of VI.1. Recall

n

[n] = -
T
which is defined for any integer n, and the corresponding g-factorials [n]!.

We have [n] # 0 if 0 <n < d and [d] = 0.
In VL5 we defined the algebra U, as the quotient of U, by the two-

sided ideal generated by the three elements Ed, Fe K% —1. We proved in
Proposition VI.5.7 that the finite set {E’F]K‘Z}OSm-’[gd_1 was a basis of

the underlying vector space of Uq. We endow the algebra Uq with a Hopf
algebra structure.

Proposition IX.6.1. The algebra Uq has a unique Hopf algebra structure

such that the canonical projection from U, to Uq is a morphism of Hopf
algebras.

__In other words, the comultiplication, the counit and the antipode of
U, are determined by Formulas (VIL.1.1-1.4) defining the Hopf algebra
structure of U,.

PROOF. The proof proceeds as for Proposition VII.1.1. We still have to
check that
AE) = A(F)¥E =AK)T-1=0,
e(E)? =¢e(F)¥ =e(K)4-1=0,
S(E)=8(F)¢=8(K)-1=0.
The only non-trivial computations concern the vanishing of A(E)? and of
A(F)?. Following Proposition VII.1.3, we get

r=d-—1
d_ d d rd-ry | d
AEY =E‘@K '+ > ¢ [r

r=1

} Ed—T®ETKd—T+1®Ed:0

because E? = 0 on one hand and

7] = i

on the other. One proves that A(F)? =0 in a similar way. i

The goal of this section is to establish that Uq is a braided Hopf algebra.
To this end, we shall present Uq as a quotient of the quantum double of

a Hopf subalgebra B, of Uq. We define B, as the subspace of Uq linearly
generated by the set {E™ K"}, . <q_1. Formulas (VIL.1.1-1.4) show that
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B, is a Hopf subalgebra of Uq. The reader may check that, as an algebra,
B, is generated by E' and K and the relations

KEK'=¢E, E*=0, and K?=1. (6.1)

We now apply the quantum double construction of Section 4 to the
Hopf algebra H = B,. We first determine X = (BgP)" as a Hopf al-
gebra. Consider the linear forms « and n on B, defined on the basis

{EmKn}OSm,ngd—l by

<o, E"K" >=6,,,¢"" and <n,E"K">=6,,. (6.2)
Proposition IX.6.2. The following relations hold in the Hopf algebra X :

ad=1, n2=0, ana!=q 3,
Al =a®a, AN =101n1+1n® q,
ela) =1, &(n) =0,
S(a) =ad™t  S(n) = —naL.
Moreover, the set {n'a’}o<; j<q_1 forms a basis of X.
PrOOF. We start with the following lemma.
Lemma IX.6.3. For all integers i, j, m,n, we have
<n'ad, FMK™ > = O (i)!qz qgj(”").

Proor. By Proposition VII.1.3, if a and § are linear forms on H, then the
product af in X is given by

r=m
<af, EMK" >= Z ( mn ) <a,BE"TTK"™ >< B, ETK™TT >
r=0 " q?
(6.3)
One uses (6.3) to show that
< EMKY >= 68, (1)l
by induction on %, and that
< aj7EmKn >= 6m0 q2jn
by induction on j. Then
r=m
< niaj7EmKn - = ( m > < ni,E7n4‘rKn > < Ozj7E'er+”‘T S
r=0 " q?
r=m m -
= < ) 6m—'r,i 6r0 (Z)‘qZ q2](7n+n—'r)
r=0 " q?
= 6y (8)lge g0 u]
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Let us prove Proposition 6.2.
(1) Using the previous lemma and ¢¢ =1, we get

<ot E"K" >=6,,=<¢E"K" > .
Therefore, a? = ¢ is the unit of X. Analogously,

< E"K">=6,,(d)!,.=0

(]2

since (d),2 = (¢®**—1)/(¢* = 1) = 0. As for an, we have

r=m

m

< an, ETK" >= Z ( r ) R 6m~r,0 51'1 q2n = 6m1 q2n.
r=0 q

In view of Lemma 6.3 we can write
<no, EMK"™ >=6,,, qz("'H) =¢* <an, EMK" >,

whence na = ¢%am.

(2) Let us deal with the comultiplication of X. By definition, if « is a
linear form on H, then A(a) is given by A(a)(z®vy) = a(yz) for z,y € H.
Therefore

A(a)(EzK] ® EmKn) q2ni < a,Ei+ij+n >

6i+m,0 q2niq2(j+n)

= 0,00m0 q2jq2"
<a®a,EB'K' Q@ EmK™ >,

which implies that A(a) = a ® a.
Similarly, we have

A(T])(E'LK] ® EmKn) — q2ni <mn, Ei+ij+n >
— 6i+m,1 q2ni
= 8ig 1 + 611 60 4"

10 Yml

<1n+n® o, B'K) @ E"K™ > .

Consequently, A(n) =1®n+17® a.
(3) Concerning the counit, we have

gla) =<a,1>=1 and e(n)=<n,1>=0.

The computation of S(a) and of S(n) is left to the reader.
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(4) Let us prove the last assertion of Proposition 6.2. As the dimension
of X is d?, it is enough to show that the set {n'a’ Yo<ij<d—1 18 linearly
independent. Suppose there exists a relation of the form

Z )\ijniaj =0.

0<i,j<d—1

Applying it to the vector E™ K™, we get

Z )‘ijémi(i)!qzqzj(i+n) = (m)!qz ( Z /\qu2j(m+n)> =0.

0<i,j<d—1 0<j<d-1

Letting m fixed and running n over the d integers between 0 and d ~ 1, we
obtain a system of d linear equations with unknowns Ao, A1, -5 Ay g1
The determinant of this system is the determinant of the matrix (Ay,),,
defined by A,, = (qz(m"“é))k . It is a Vandermonde determinant which does
not vanish because g2t £ ¢2("+) whenever 0 < £ #£ ¢ < d — 1.
Therefore, the system has 0 as its unique solution; in other words, we have
Ay = 0 for all j. a

We now construct the quantum double D = D(B,). By definition, the
set {n'a! ® EkKé}OSi’j,Hde is a basis of D. To simplify notation, we
identify an element z of H = B, with its image 1 ® z in D and an element
« of the dual X with its image o ® 1. Under the convention already set
up in Section 4, the elements of the previous basis can be rewritten in the

form o o
n'od @ B*K* = ' EFK*.

To determine the multiplication of the double D, it is enough to know how
the generators «, 17, £, K in D multiply together.

Proposition IX.6.4. The following relations hold in D = D(B,):
Koa=aK, Kn=q ?nK,
Fa=q ?aE, En=-—q¢ %1-9E-akK).

PROOF. By (4.5) the product z« in D of 2 € H of oo € X is given by

To = Z a(S™Hz") ') 2.
(z)

Let us apply this formula to the generators. First, we have S™}(K) = K !
and (A®id)(A(K)) = K@ K® K. Consequently, for any linear form g € X
we have

KB =p(K 7K) K. (6.4)
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Next, S™}(F) = ~K'E and
(ARID)(AE)=1910E+1EQK+EQKQK.

Hence,
Ef = -B(K'EN) +B(K ') E+ B(K1?7E) K. (6.5)

Proposition 6.4 is then a consequence of (6.4-6.5) and of the following
lemma. a

Lemma IX.6.5. We have

a(K1?7K) = a, a(K7'E?) = 0,
a(K71?) = ¢ ?q, ol K71?7E) = 0,
n(K~17K) = ¢, nKE?) = ¢’
(K = g7, n(K1E) = ¢ o
PROOF. Left to the reader. a

We now relate the quantum double D(B,) and the Hopf algebra Uq.

Theorem IX.6.6. Let x: D(B,) — Uq be the linear map determined by

o —q7INT v , L
X(nza]EkKZ) — (q qg ) q2(1+])k—z(z—1) FzEkKH—,H-E (66)

where 0 < 4,5, k, £ < d—1. Then x is a surjective Hopf algebra morphism.

PROOF. The surjectivity of x follows from the fact that the image of the
basis {n'a’ E*K*} generates u,.

In order to show that x is a map of algebras, it is enough to check that
the images under x of the generators E, K, «,n satisfy the relations of
Proposition 6.4. Observe that (6.6) implies

x(E)=E, x(K)=K,

x(e) =K,  x(n)
Now, by definition of Uq we have
X(K)x(a) = x(a)x(K),

1
XE)xn) = L KFE = ¢ x(mx(K),
X(E)x(a) = q *x(a)x(E).

i

q
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Finally, we get

x(E)x(n) = 7z EFK

q—q " 1
= FEK + — (K- K hHK
¢ g

-1
= —q? (1 171 prE- KQ)
q

= = (1~ x()x(B) — x(@)x(K)):

This proves that x is a morphism of algebras.

Again, to show that y respects the comultiplication and the antipode, it
is enough to check on the generators. For F, K, and «, this is clear. We
still have to examine the case of 1 for which we have

_ -1
Ax(m)) = & q§ A(FK)

q2 18 FK 4 FK oK)
= x(1) @x(n) + x(n) & x(e)
- o (sm)

Similarly,

We draw the following consequence which was our main goal.
Corollary 1X.6.7. The Hopf algebra U 1s braided.

PROOF. The Hopf algebra D = D(B,) is braided by Theorem 4.3. Let
R, € D® D be its universal R-matrix. Define the invertible element R of
U,@U, by

R=(x®x)(Rp)- (6.7)
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Since y is a surjective morphism of Hopf algebras, it is clear that R satisfies
Conditions (VIII.2.1-2.3). O

We shall compute the universal R-matrix R of Uq in the next section.

IX.7 R-Matrices for U,

We keep the hypotheses and the notations of Section 6.

Theorem IX.7.1. The universal R-matriz of Uq 18 given by

= 1 (a—q V)" k(k—1)/242k(i—j)—2ij mk i k 1j
R== Y T’ E*K'@ FFKI.
0<i,j,k<d—1 [ ]'

PROOF. According to Section 4, we have Rp = 3, e,®¢’ where {e;},c; is

any basis of the vector space B, and {ei}ie ; is its dual basis. Consequently,
by (6.7)

R=73 x(e;) ®x(e). (7.1)
i€l
As above, we take the set {Ein}OSi’de_l as a basis of B,. Denote by
{BY Yo<i j<d—1 the dual basis. By Proposition 6.2 we know there exist
scalars {/J’Iic];q}ogi,j,k,égd~l such that
pI= 3 whnta. (7.2)
0<k,0<d—1

Apply Relation (7.2) to the vector E™K™: using Lemma 6.3, we obtain the
linear system of equations

6im6jn = Z ﬂ?ﬁ5km(m)!q2q2e(k+n)
0<k,£<d—1
= (m)!cﬂ( Z uiizq”‘m”))-
0<4<d~1

An argument similar to the one that proved the linear independence of the
family {n'c’}o<; j<q—1 In Prgposition 6.2 shows that p,?, = 0 for m # 1.
Computing the coefficients 4 that are solutions of the linear system
ij 20(itn) _ L
> Hia = O

]
0<e<d—1 (m)lg2

requires inverting a Vandermonde matrix. We shall not do this since we are
interested in R, not in Rj,. Instead, we shall use a simpler and more direct
method.
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Indeed, from the above arguments we know that R is a tensor of the
form

R= Y px(EK)exn'a).
0<i,j,0<d—1

Now x(n'e’) is a scalar multiple of F'K*"*. Therefore, R has the more
precise form

R = Z e n E*K @ FFKI.
0<i,j,k<d—1

We now determine the coefficients € j k- Theorem 7.1 will follow from
Lemma 7.2. O

Lemma IX.7.2. For all i, j,k we have

S 1(q— g b)F k(k—1)/242k(i~5)~2ij
e BT T '

PROOF. (a) We first express c; ; ;. in terms of ¢ = ¢ o o using the relations
A% (z)R = RA(x)

for x = F and x = F'. We have

A°®(E)R (E®1—|—K®E)< > ci’j’,{E’“K'i®F’“Kj>
0<i,4,k<d—1
= > g ETK e@FK
0<4,5,k<d—1
T Z qZk Ci,ng EkKi+1 ® EFkK],
0<i,j,k<d—1

and

RA(E) = ( > e EK'® FkKj> (1@ E+EQ®K)
0<4,5,k<d—1
= Z ¢* ¢;; "K' ® FFEKY
0<i,j,k<d—1
+ Z q2i C'L'_'j,k; Ek+1Ki ® Fk:Kj+1
0<4,5,k<d—1
= > ¥ BYK @ EFFKY
0<i,j,k<d—1

- 3 ke

q—q!

2j—(k—=1) . )
ci,j,k Esz ® Fk—lK]—Fl 4
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q2j+(k—1) o el i1
i 1
+ Z [k’]m Ci,j,kE K ®F K‘]
0<i,j,k<d—1
+ Z q2i C/L'J‘,k Ek+1K’i ®FkK]+1
0<i4,j,k<d—1
Identifying the coefficients of F*K' @ EFFK7 we get

Cijk = @) Ci1,5,k" (7.3)

Starting all over again with F, we get

A®(F)R = (FK '+1® F)( Y e EK'e F’“Kj)
0<14,5,k<d-1

— Z q2k Ciyj’k; FEsz ® FkKj—l

0<i,j,k<d—1

+ Y e EFK @ PRI
0<i,j, k<d—1

— Z q2k Ci,j,k EkFKL ® Fk’Kj—l

0<i,j k<d—1

- > [

0<i,j,k<d—1

q
D D L
0<i,j,k<d—1 7-4q

+ ) ¢ n BPK' @ FFHIKD,
0<i,5,k<d—1

g+ (k=1)

qg—qt
2k—(k—1)

Ciik EkflKi—t-l ® FkKj—l

C»L'vj’k» Ek*lKi—l ®FkK[71

On the other hand, we have

RA(F) = ( Y g EK e F’“Kj) (KT'9F+F®1)
0<i,j,k<d—1
= > g Ve BRI @ FRKT
0<i,j,k<d—1
+ Y ¥, EFFK @ FFEI.
0<i,j,k<d—1

We identify the coefficients of EFFK* ® FFKJ—!, which yields

—2(k+i
Cijk =4 (k) Cij—1,k> (7.4)

and the coefficients of E¥K* @ FFT'K7_ which leads to
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. 2R+ D +k
Ve = gy kAt 11? Ci,j+1,k+1
g2k +1)—k
+[k +1] 1 Cit1,j+1,k+1" (7.5)
From (7.3) and (7.4) we get
Cij,0 = q % Co0,0 = q % . (7.6)
Combining (7.3) and (7.5), we obtain
242k PR
g2+ 2k=g) Cijk = Cijp—lk+ 1]@ Cit1,j+1,k+1
E+2
+[k + 1]q—_q—q Cit1,j+1,k+10
hence .
o a9—q k—4j-2 ,
i+1,5+1,k+1 &+ 1] q 1,7,k
or, equivalently,
=9 k45
Cigk = (] gt Cim1,j~1,k—1"

Therefore, we get

e = (g—q " k(k-+1)/2—dkj+2k(k—1)+k
1,9,k [K]! q
(q—q V) ), ~2(ik)(j
k(k—1) /2+2K(k~25) ,~2(i~K) (G —k)

= T ¢ q

Cik,j—k,0

by (7.6). In other words, we have

(g—q )" k(k—1)/2+2k(i~5)—2ij
Cm‘,k:CTq P

__(b) It is now enough to prove that ¢ = 1/d. From Part (a) we know that
R is of the form

R=c Y q¢*K®K +..
0<i,j<d
where + ... stands for a sum of monomials containing only positive pow-

ers of E or of F. We now use (A ® id)(R) = R,3R,,, Which is Relation
(VIIL.2.3). We have

A@id)(R)=c Y, ¢K QK oK +... (7.7)
0<i,j<d
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whereas
RisRyy = & Z g M Kl K™ @ K4 4 ..
0<if,m,j<d
- 2 Z q—zie—2m(j—e) KiQK™"® KJ + ...
0<4,8,m,j<d
= 2 Z q—2mj( Z q(2m—2i)£) KioK"® Ki+....
0<i,m,j<d 0<e<d

Now, 3 o<j<a ¢V’ vanishes except when N is a multiple of d, in which case
the sum equals d. Therefore,

RigRy=d® > ¢ K QK @K +.... (7.8)
0<i,j<d

We deduce from (7.7-7.8) that ¢ = dc?. Since R is invertible, ¢ does not
vanish. This implies the announced value for c. O

We conclude this section by deriving a few R-matrices from Theorem 7.1.
Let 0 < n < d. Consider the simple U -module V,, =V, , defined in Chap-
ter VI. As a module, it is generated by a highest weight vector v ) of weight

q". Recall that the action of U, on the canonical basis {o™ v (") oM}

of V, is given by the relations
Kvén) =g" % vz(,"), Evl(]") =[n—-p+1] ’Uz(;li)l, F’U(n) =[p+1] 1(J+)1

We use them to deduce the form of the R-matrix

C‘R/n,Vm : Vn ® Vm - Vm ® Vn

obtained from R via the construction of (VIIL.3.1). Recall that cgmvm isa
solution of the Yang-Baxter equation.

Corollary IX.7.3. The isomorphism an,vm VeV, =V, ®V, is the
U -linear map determined by
F v (57 @ 0(™)
— g Hkp -~ !
S A e
o<hzio1 ! n —p)![r]!

where « is any integer such that m + ad is even and

qpr (ko) = k(k—1)/2+k(m—n)—pm—rn——2(k—17)(k+7“)+(m+ad)n/2.
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PROOF. By definition of c@mvm and in view of Theorem 7.1, we have

(o) © o)
1 (@—q ¥ In—p+kJlr+ k]! D2
d 0<4,j,k<d—1 (k]! [n — p)![r]!

X Qpr (k) ol @ v

Cvn Vin

where
nm __ 2(2—9)k—2ij+i{n—2p)+j(m—2r
pr(k)_ 2{ q(a) J+i{n—2p)+j( )’
0<i,j<d
which we can rewrite as

k) = Z q2ik+i(nf2p)< Z q(m—2r—2i—2k)j).

0<i<d 0<j<d
Again, >, j<d g™V vanishes except when N is a multiple of d. Thus,
Z?vﬁ(k:) — dz q2ik+i(n~2p)
i
where 4 runs over the set of all integers in [0, d — 1] such that
2t =m — 2r — 2k + ad.

As 2 is invertible modulo d, there exists only one integer 4 satisfying these
conditions. Therefore,

ik+i(n— —n)—pm-—rn— —p)(k )
Z;n(k) :dq21k+z(n 2p) :qu(m n)—pm—rn—2(k—p)( +r)+(m+ozd)n/2' 0

Application 7.4. Consider the case n = m = 1. We may take o = 1.
Corollary 7.3 implies that

ey, v, (Vo ® vg) Aq vy ® v,

Czl,Vl(”0®”1) = Av; ® vy,

Cﬁ,vl (v, ®vy) = A(vp®v;+(g— g vy ® ),
oy, (0 ®v) = Aqu®u;

where A = ¢4 9/2 4 = v(()l) and v; = vgl) The reader is invited to
compare these formulas with the R-matrices of VIILI, Example 2.
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I1X.8 Exercises

. Let H be a bialgebra and C' a coalgebra. Prove that C' is a module-

coalgebra over H if and only if there exists an H-module structure
on C such that the comultiplication A : C — C ® C and the counit
€ :C — k of C are H-module maps for the tensor product H-module
structure on C ® C and for the trivial H-module structure on k.

Let H be a bialgebra and C a coalgebra. Then C is a comodule-
coalgebra over H if there exists an H-comodule structure on C such
that the coproduct A : ¢ — C®C and the counit & : C — k of C are
morphisms of H-comodules for the tensor product H-comodule struc-
ture on C®C and for the trivial H-comodule structure on k. Draw the
commutative diagrams expressing an H-coalgebra-comodule struc-
ture on C'. Deduce that C' is a comodule-coalgebra over H if and only
if there exists a linear map A, : C — H®C inducing an H-comodule
structure on C and satisfying for all x € H and ¢ € C the relations

Z e ® (o) ®(co)’ = Z ¢l @ (e ® ()
(c) (c)

and 3 cyelcg) = €(c)l where Ag(c) = 30 ¢y @ ¢

Let H be a bialgebra and C' a coalgebra equipped with a comodule-
coalgebra structure on H. Show that the dual algebra C* can be given
a comodule-algebra structure on H.

Let H be a bialgebra and C a coalgebra equipped with a module-
coalgebra structure on H. Show that if C is finite-dimensional, then
the dual algebra C* can be given a module-algebra structure on H.

(Adjoint corepresentation) Let H be a Hopf algebra. Define a linear
map A,,; from H to H ® H by

Ay a) = Z a'S@")®a".
(a)

Prove that A_; endows H with a comodule-coalgebra structure over
itself.

. (Coadjoint corepresentation) Let H be a finite-dimensional Hopf alge-

bra with invertible antipode. Prove that the adjoint corepresentation
induces an H-comodule-algebra structure on the dual vector space
H™.

Let G be a finite group. (a) Show that a left module over the quantum
double D(k[G]) is a left G-module V with a decomposition of the form
V =@,cc V, such that AV, C Vjg,— forall g,h € G.
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(b) Let W = D ,cq W, be another left D(k[G])-module. Show that

the automorphism ¢ defined in VIIL.3 sends Vo @W,, to W, ® V), 0,1
as the map v @ w — w R hv.

(Tensor product of crossed bimodules) Use Theorem 5.2 to define the
tensor product of two crossed bimodules.

Compute the central element u.S(u) (defined in VIIL.4) for Uq.

Determine 05'2_",2 associated to the simple Uq—module V, under the
form of a 9 x 9 matrix.

(A cobraided Hopf algebra structure on End(H)) Suppose given a
finite-dimensional Hopf algebra (H,u,n,A,€,S,S™!) with bijective
antipode. Let F = End(H), and identify £ ® E with End(H @ H).

(a) Prove that there exists a Hopf algebra structure on E for which
the product is the convolution of II1.3, the unit is 7 o &, the
coproduct A’, the counit &', and the antipode S’ are given by

AN(f)zoy) = (1ed)A(f(ye") (1 S@"),
@

() ==(f(1), S(Hlx)=_ SN (SFSH) ")z
(z)
forall z,y € H and f € E.

(b) Identifying E with H® H* via the map Ay 5 of Corollary 11.2.3,
define maps py : £ — H and py. : B — H**? by

pplz®@a)=a(l)z and py.(z®a)=c(x)a

where z € I and o € H*. Prove that p; and py. are morphisms
of Hopf algebras such that the composition of the maps

EAI,E(@EJL@Z’LH@H*

is /\I_{,lH.
(¢) Check that the linear form r on E ® E defined by

r(f®g)=<pg-(f),pulg) >

for f,g € F equips E with a cobraided Hopf algebra structure.

(d) Show that the dual braided Hopf algebra E* is isomorphic to
Drinfeld’s quantum double D(H).
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I1X.9 Notes

The quantum double construction is due to Drinfeld [Dri87]. Our pre-
sentation is inspired from [Maj90a] [Tak81] (see also [RSTS88]). Radford
[Rad93a] proved that the quantum double is a minimal braided Hopf al-
gebra, i.e., it has no proper braided Hopf subalgebras. Conversely, any
minimal braided Hopf algebra is finite-dimensional and is a quotient of the
quantum double of some Hopf algebra. More generally, if H is braided with
universal R-matrix R, consider the subspace A of H generated by all ele-
ments of the form (id; ® a)(R) where « is any linear form on H. Radford
showed that the subspace A can be given the structure of a Hopf subalge-
bra, and that there exists a map of braided Hopf algebras from D(A) to H
whose image is a minimal braided Hopf subalgebra of H.

In Section 4 we proved that the quantum double of H was isomorphic to
a crossed product when H is cocommutative. This is true more generally
when H is braided. For more details, see [Maj9la).

Exercise 11 presents a construction dual to Drinfeld’s quantum double,
yielding cobraided Hopf algebras. We took it from Takeuchi [Tak92a] where
a dual version of Theorem 5.2 is also given (see also [PW90] [RSTSS8S]).

The term “crossed bimodule” is due to [Yet90]. It was called a “quantum
Yang-Baxter module” in [Rad93b].

The Hopf algebra U, has been considered in [Lus90a]{Lus90b]. A compu-
tation of its universal R-matrix was performed in [KM91] using a different
method. It also appears in work by Reshetikhin-Turaev [RT91] constructing
quantum invariants for 3-dimensional manifolds.
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Chapter X
Knots, Links, Tangles, and Braids

We now embark into a topological digression which will lead us into the
world of knots. The reason for the presence of this chapter in a book de-
voted to quantum groups is the close relationship between the newly dis-
covered invariants of links (such as the celebrated Jones polynomial) and
R-matrices. This relationship will become more precise in Chapter XII. In
this one we proceed to describe several classes of one-dimensional subman-
ifolds of the three-dimensional space R?, such as knots, links, tangles, and
braids. Since there are excellent textbooks on knot theory, we shall not
prove all assertions that can be found elsewhere. Nevertheless, all results
pertaining to the matter of this book, namely those connecting topological
problems with the algebra of quantum groups, will be proved in detail.

After defining knots and links in R®, we recall the classical problem of
their classification up to isotopy. Traditionally, one approaches this problem
by constructing algebraic isotopy invariants. One major step in this direc-
tion was undertaken in the 1920’s by Alexander, who associated a polyno-
mial to each isotopy class of oriented links. The Alexander polynomial was
used to distinguish many links and has been a powerful tool in knot theory
since.

In the summer of 1984 Vaughan Jones found a different one-variable
polynomial which distinguished knots that the Alexander polynomial could
not distinguish [Jon85]. Shortly after, a new invariant appeared, the so-
called Jones-Conway polynomial, which is a two-variable generalization of
both the Alexander and the Jones polynomials. Another aim of this chapter
is to establish the existence and the main properties of the Jones-Conway
polynomial.
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X.1 Knots and Links

Let us start with some vocabulary from general topology. The only topo-
logical spaces considered here are the real Euclidean vector spaces R™ with
their standard topology as well as their subsets and quotients with the
induced topologies.

A continuous map f from a subset U of R™ to a subset X of R"
is piecewise-linear if there exists a finite partition (U;), of U such that
the n components of the restriction of f to any U, are maps of the form
(2153 2p) > g+ aq2y + - - - a2, Where ag,a,,...,a,, are real numbers.

Let X be a convex topological subspace of the Euclidean space R3. In
the sequel, X will be either R3, R?, R? x [0,1], or R x [0,1]. Given a
finite sequence (M,,...,M,) of points in X, we denote by [M,,..., M,]
[resp. |M, ..., M,| ] their closed [resp. open| convex envelope, i.e., the set
of all points of the form A\; M; +- - -+, M, where (A,...,\,) is a sequence
of real numbers > 0 [resp. > 0] such that \; +---+ A, = L.

Definition X.1.1. A polygonal arc L in X is the union

n—1
L= U [M¢7Mi+1]
i=1

of a finite number of segments such that |M;, My [ 0 |M;, M; ,[= 0 if
i # j. The points M,,..., M, are called the vertices of the polygonal arc
and the segments [M;, M, ,] are its edges. We say that the polygonal arc is
simple if the points My, ..., M,_, are all distinct. The polygonal arc L is
closed if M, = M, ; in this case, we say that the boundary OL is empty. If
M, # M,,, we set OL = {M;, M,,}; the point M, is the origin of the simple
polygonal arc L and M, s its endpoint.

By ordering the vertices of L we define an orientation on L. It will be
materialized in the figures by arrows on the edges such that on the edge
[M;, M, ] the arrow points to M, ;.

Definition X.1.2. A link L in X is the union of a finite number m of
pairwise disjoint simple closed polygonal arcs in X. The closed arcs are

called the connected components of L. The integer m is called the order of
the link. A knot is a link of order 1.

A link is oriented by giving an orientation to each of its connected compo-
nents. In the sequel we consider only oriented links. Following Reidemeister
[Rei32], we define a combinatorial operation A on links. We assume X to
be R until the end of this section.

Definition X.1.3. (a) Let L be a link in X and M;, M, , two consecutive
vertices in a connected component of L. Given a point N in X such that



X.1 Knots and Links 243

N¢L, M, ¢ [Na ]\/[z’+1]; Mi+1 ¢ [MmN]y and
[Mi7 N, A4¢+1] NL= [Mi’ Mi+1]7
we denote by L' the link
L' = (L\ [M;, M; 1)U [M,;, N]U [N, M, ,].

We say that L' is obtained from L by a A-operation.

(b) Two links L and L' are combinatorially equivalent — we write this
L ~, L' — if there exist links L = Ly, Ly,...,L, = L' such that for
all i, one of the two links L;, L, is obtained from the other one by a
A-operation.

The relation ~, is an equivalence relation: it is the equivalence relation
generated by the A-operations.

Figure 1.1. A A-operation

It is also possible to deform links continuously. This leads us to the
concept of isotopy.

Definition X.1.4. (a) An isotopy of X is a piecewise-linear map h from
[0,1] x X to X such that, for any t € I, the mapping h(t, —) is a homeo-
morphism of X, and h(0, =) is the identity of X.

(b) Two links L and L' are isotopic — we write L ~; L' — if there exists
an orientation-preserving isotopy h of X such that h(1,L) = L'.

Lemma X.1.5. Isotopy is an equivalence relation for links.

PROOF. Let L, L/, and L” be links. (a) Set h(t,—) =idy for all t € I. It is
clear that h is an isotopy between L and itself: L ~, L.

(b) Let us suppose that L ~; L/ via an isotopy h. Let h'(t, —) = h(t,—)"
be the inverse homeomorphism. It is an isotopy between L’ and L. Hence

L'~ L.
(c) If, moreover, L' ~, L” via an isotopy h', then
Wit -y = | 126) if 0<t<1/2
T W(2t—-1,—)oh(1,—) if 1/2<t<1

defines an isotopy between L and L”. In other words, the relation ~; is
transitive. a

We now have two equivalence relations on links. The following proposi-
tion identifies them with each other.



244 Chapter X. Knots, Links, Tangles, and Braids

Proposition X.1.6. Let L and L' be links in R®. Then
L~, L' < L~ L.

The reader will find a proof of this result in [BZ85], Prop. 1.10. As a
consequence, we shall suppress the subscripts ¢ and ¢ from the symbols ~;
and ~, and henceforth speak of isotopic or equivalent links.

We end this section with a definition of a trivial link.

Definition X.1.7. A4 link of order m in R? is trivial if it is isotopic to
the union of m disjoint triangles in a plane. A trivial knot is a trivial link
of order 1.

We denote a trivial link of order m by
0®™ =00---0 (m times).

Trivial links of the same order, but with different orientations, are always
isotopic. Therefore we need not specify the orientation of a trivial link.

X.2 Classification of Links up to Isotopy

The fundamental problem in knot theory is to classify all links in R® up
to isotopy. In particular, one would like to have convenient criteria for two
links to be isotopic or for a link to be trivial. This is a difficult problem.

A classical way of approching this problem is to assign to each link L an
algebraic object I such that I; = I,, whenever L and L’ are equivalent.
Such a function I is called an isotopy invariant for links. Let us give some
examples.

(a) (The order) It is clear that the number of connected components of
a link is preserved by an isotopy or a A-operation. Therefore the order of a
link, i.e., the number of its connected components, is an isotopy invariant.
However, this invariant is weak since it is clearly insensitive to how much
a link is “knotted”. Indeed all knots have the same order and nevertheless
there exists non-trivial knots such as the right-handed trefoil knot drawn

in Figure 2.1.

Figure 2.1. A right-handed trefoil knot
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(b) (The linking number) This is a more refined invariant which dates
back to Gauss. Let us consider two connected components L, and L, of
a link L. Consider a diagram of L (to be defined in Section 3). It shows
crossings of L, and of L,. We associate to each crossing P’ an integer
e(P) = +£1 defined as in Figure 2.2.

A X
£(P)=+1 e(P)=—1

Figure 2.2. The linking number

Then the linking number of the components L, and L, is the integer

(L1, L) = 5 3 e(P)

P

where P runs over all crossings of L, and L,. This number does not de-
pend on the projection and is an isotopy invariant for links of order 2. For
instance, we have 1k(OO) = 0 for the trivial link with two components,
and lk(H) = 1 for the Hopf link H drawn in Figure 2.3. It follows that the

Hopf link is not trivial.

Figure 2.3. The Hopf link

(¢) (The fundamental group of a link) Define n(L) = m(R>\ L) as the
fundamental group of the complement of the link in R?® (the definition
of the fundamental group is given in the Appendix to this chapter). For
the trivial knot, the group wn(O) is isomorphic to Z. More generally, the
group of the trivial link of order m is isomorphic to the free group F,, on
m generators. By the very definition of isotopy, the fundamental group of
a link is an isotopy invariant. It is a very powerful invariant as one can
see from a theorem of Dehn’s which asserts that a link L of order m is
trivial if and only if 7(L) = F,,. In general, the group of a link is non-
abelian. Though it is possible to give a presentation of (L) by generators
and relations from a plane projection of L, it is very difficult to use this
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presentation, for instance, to decide whether L is isotopic to another given
link. For more details, see [Bir74][BZ85].

(d) (Alezander and Conway polynomials) In 1928 Alexander [Ale28] con-
structed for each link L a polynomial A, € Z[t,t™!] defined only up to + a
power of ¢, which he proved to be an isotopy invariant. This invariant was a
very efficient tool for distinguishing links that were not equivalent. In 1970
Conway [Con70] showed that a suitable normalization of the Alexander
polynomial was of the form A (t) = V (¢t —t™') where V(2) is a poly-
nomial, now called the Conway polynomial, in Z|[z]. Moreover, the Conway
polynomial has a simple characterization in terms of the skein relations
that will be described in Section 4.

X.3 Link Diagrams

The simplest way to describe a link in R is to represent it by a planar
diagram. We have already used this technique for the figures of Sections
1-2. We now give a definition of what we mean by a link diagram. We first
need the notion of a regular projection.

Definition X.3.1. (a) A link projection II is the union of a finite number
of closed polygonal arcs in R? such that no vertex lies in the interior of
any edge. A crossing point of I1 is a point of the link projection lying in
the interior of at least two edges. The order of a crossing point P is the
number of distinct edges in the interior of which P lies.

(b) A link projection is reqular if each crossing point is of order exactly 2.

It is not difficult to see that a crossing point cannot be a vertex, and that
a link projection has only finitely many crossing points. The ordering of
each component will be represented by arrows on the edges of the projection
of the link following the rule given in Section 1.

Let II be a regular link projection in the plane. Given a crossing point P
we may consider the set Ep consisting of the two edges on which P lies. A
priori, the set Ep is unordered. This brings us to the following definition.

Definition X.3.2. A link diagram is a regular link projection in R? for
which all sets Ep (indezed by the crossing points P) are ordered. Given a
crossing point P, the first edge of the set Ep with respect to the ordering
is called the overcrossing edge whereas the other edge is called the under-
crossing edge.

Observe that an overcrossing edge for a crossing point may be under-
crossing for another crossing point. Changing the ordering in some sets
Ep will be called a change of crossings. If a regular link projection has
m crossing points, then clearly there are 2™ link diagrams with the same
underlying link projection.
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We represent a link diagram by a drawing of the regular link projection
in which the undercrossing edges are interrupted in the neighbourhood of
the crossings (as in Figures 2.1 and 2.3). From such a picture we observe
that any link diagram defines a link in R® by letting any undercrossing edge
pass under the corresponding overcrossing edge in the neighbourhood of the
crossing point. This link is defined only up to isotopy. There is no reason —
and in general it is false — why two link diagrams differing by a change of
crossings should define equivalent links. Nevertheless, the following should
be noted.

Lemma X.3.3. Any link diagram may be turned after appropriate changes
of crossings into a link diagram representing a trivial link in R>.

PROOF. Consider a link diagram. Pick a vertex and start moving along the
link, leaving a trail of red paint on the edges. At each crossing point, make
the red edge into an overcrossing edge unless the other edge is already red,
in which case the first edge is made into an undercrossing one. Apply this
procedure to each connected component. The resulting link diagram (ob-
tained from the original ones by a series of changes of crossings) represents
a trivial link. o

The obvious question is now: Can any link in R® be represented by a
link diagram, at least up to isotopy? The answer is yes and provided by
the following proposition where we fix a linear projection 7, of the space
R? on the plane R2.

Proposition X.3.4. Any link in R? is equivalent to a link L whose image
(L) is a regular link projection.

Proor. We sketch the proof. For details, see [BZ85]. Let L be a link in
R3. Consider the set S of all possible linear projections of R? onto a fixed
plane. Given a projection 7 of S, there exists a homeomorphism A of R?
such that m(h(L)) = w(L). It is therefore enough to show that the subset
Seq Of those projections m of S such that 7(L) is a regular link projection
is not empty. Now § is in bijection with R?. Therefore we can transport
the topology of R? onto S. What we shall actually prove, is that Sreq 18
dense in S for this topology.

Let 7 be an element of S\ S,,,. Then in the projection 7(L) we may
have the following singularities: some crossing point may be of order > 3
or some vertex may sit in the interior of some edge. This happens when the
direction of the projection 7 passes through three edges or when it passes
through a vertex and an edge. In the first case, the direction sweeps over a
portion of a quadric; this projects to a part of a conic. In the second case,
it determines by projection a segment of the plane. Identifying S with R,
we see that S\ S, is contained in a finite number of straight lines and

conics of the plane. Therefore 5,,, is dense in 5. ad
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Having expressed the problem of classification of links in R? in purely
two-dimensional terms, we now ask: When do two link diagrams represent
isotopic links? Before we answer this important question, let us again fol-
low Reidemeister by introducing the four transformations on link diagrams
shown in Figures 3.1-3.4. These transformations are also called Reidemeis-
ter moves.

Figure 8.1. Reidemeister move (0)

il

Figure 3.2. Reidemeister move (I)

\ /

) (

/ \

Figure 3.3. Reidemeister move (1)

Figure 3.4. Reidemeister move (III)

Applying Transformation (0) to a link diagram means that one modifies it
locally by substituting one of the drawings of the figure of Transformation
(0) by another one without touching the rest of the link diagram. Similarly
for the other Transformations. Figures 3.5-3.8 show that Transformations
(0), (I), (IT), and (III) are obtained by projection of A-operations. Conse-
quently, applying these transformations to link diagrams does not change
the isotopy class of the link in R3.
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Figure 3.6. (I projected)

Figure 8.7. (II projected)

Y

NN

Figure 3.8. (III projected)

Reidemeister Transformations are sufficient in a sense we shall make
precise below after we defined the following additional concepts. Two link
diagrams TI, I are isotopic if there exists an isotopy h of 